File No. S360-29
order cc28-2045-1] TSS

Systems Reference Library

IBM System/360 Time Sharing System

PL/I Language Reference Manual

This publication is a companion volume to IBM
Systenv/360 Time Sharing System: PL/I Programmer's
Guide, Order GC28-2049. Together the two kocks form a
guide to the writing and execution of PL/1 programs
under the control of an IBM Systemn/360 Time Sharing
System that includes the PL/I compiler.

|

This publication is planned for use as a
reference book by the PL/I user. It is not
intended to be a tutorial publication, but
is designed for the reader who already has
a knowledge of the language and who
requires a source of reference material.

It is divided into two parts. Part I
contains discussions of concepts of the
language. Part II contains detailed rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete
description of any implementation
environment. In general, it contains
information needed in writing a program; it
does not contain all of the information
required to execute a program. For further
information on executing a program refer to
the publication: IBM Systems360 Time
Sharing System: PL/I Programmer's Guide,
Form GC28-2049,

The features discussed in this
publication correspond to those implemented
in tne fifth version of the PL/I (F)
Compiler in Release 18 of 1IBM System/360
Operating System.

PREFACE

RECOMMENLCED PUBLICATIONS

The following publications contain other
information that might be valuable to the
PL/I user or to a user who is learning
PL/1:

IBM Systen/360 Time Sharing System:
PL/1 Programmer's Guide, Form
GC28-2049 o

A PL/]1 Primer, Form GC28-6808

A Guide to PL/I for Commercial
Programmers, Form GC20-1651

A Guide tc PL/I for FORTRAN Users, Form
GC20-1637

The fcllowing publication contains a
description cf the IBM System/360 Time
Sharing System:

IBM System/360 Time Sharing System:
Concepts and Facilities, Form
GC28-2003

iii

INTRODUCTION

PART I: CONCEFTS OF PL/I

-

« e e« e & e

SECTION 1: BASIC CBARACTERISTICS OF PL/1

Machine Independence .
Program Structure . . .

-

. . « e -

Data Types and Data Description

Default Assumptions . .
Storage Allocation . .
Expressions
pata Collections . . .
Input and Output . . .
Compile-Time Operations
Interruption Activities
Multitasking

SECTION 2: PROGRAM ELEMENTS

Character Sets
&60-Character Set . .
48~-Character Set . .

Using the Character Set

Identifiers . . .
The Use of Blanks .
comments . . .« . e
Basic Program Structure

-

-

Simple and Comgound Statements o e

Statement Prefixes
Groups and Blocks . .

SECTION 3: DATA ELEMENTS

Data Types . . « « .« .

Problem Lata
Arithmetic Deta . . .

Decimal Fixed-Point Data

-

-

-

= e e ® e @

« =« & & =2 @

Sterling Fixed-Point Data
Binary Fixed-Point Data
Decimal Floating-Point Data
Binary Floating-Point . Data
Ccmplex Arithmetic Data

Numeric Character Data

Precision cf Arithmetic

String Data

Character-Stxring Data

Bit-string Data . .
Program Control Data .
label pata
Event Data
Task Data
Locator Data .+ « . .
Area Data . . . + « «
Data Organization . . .
AXrays .« .« « « o o« »

-

o e . e . .

c e e . .

constants .

Expressiocons as Subscripts

Cross Sections of Arrays

Structures . . . « o
gualified Names . .
arrays of Structures
Gther Attributes . . .

-

The DEFI"tD Attribute

The LIKE Attrikute

The ALIGNED and UNALIGNED Attributes

CONTENTS

.
.
.
NSNS n

.
.
L]

Yelo e olfs e el)

The INITIAL Attribute

SECTION 4: EXFRESS1IONS AND DATA CONVERSION
Use Of EXPresSiOnsS .« + « a o o o s s o

Data Converzion in Operational Expressions
Problem Lata Conversion « « « « « « o o
Bit-string to Character-String . . .
Character-string toc Bit-string . . .
Character-string to Arithmetic . . .
Lrithmetic to Character-String . . .
Bit-string tc Arithmetic
Arithmetic tc¢ Bit-string
Arithmetic Mode Conversion
Arithmetic Rase and Scale Conversion
Locator Deta CONVErsSion « + « « « « « &
Gffset tu Polinter < <«
Pointer to Offset <«
conversion by Assignment . . .+ + <« ¢ . .
Expression Operations . . <« « « « « o « &
Arithmetic Operations . . . « .« « « . .

Data Ccnversion in Arithmetic Operations

Results ot Arithmetic Operations . .
Bit-string Operations . . . « « « . .« .
Conparison Ogerations+ « . .« < .
oncatenation Cperations . « « <« .« o« .
cewhinations of Operations . . . o . .

Priority of Cperatcrs .« « o« « + « o«

ATYay EXPreSSicChnS « o « o o o s o s o o
Prefix Operators and Arrays . . . < .« .
Infix Operators and Arrays « .«

Array and Element Cperations

Arxray and Array Operations

Array and Structure Cperations . . .

Data Conversion in Array Expressions

Structure EXPressionS . « o « « o o o o
Prefix Operators and Structures
Tntix Operators and Structures

Structure and Element Operations . .

Structure and Structure Operations .

Structure Assignment BY NAME

Operands of EXpPressions « « « ¢ « + « o o
Function Reference Operands
Concepts of Data Conversion
Tarcget Attributes for Type Conversion . .
Bit to Character and Character to Bit .
Arithmetic to String « . « &
String to Arithmetic <« .

Target Attrikutes for Arithmetic Expression

-

Operands . .

Precision and length of Expression Orerand Targets . . .

Precision for Arithmetic Conversions
Lengths of Character-String Targets .
Lengths of Bit-string Targets

Conversion of the Value of an Expressicn

Conversion Operations . . « « « « « o .
The CONVERSION, SIZE, FIXEDOVERFLOW, and

SECTION 5: STATEMENT CIASSIFICATION . . .
Classes of Statements « +« « « « &
Descriptive Statements
The DECLARE Statement
Other Descriptive Statements
Input/Output Statements
RECORD I/0 Transfer Statements . . .
STREAM 1I/0 Transfer Statements . . .
Inputs/Output Contrcol Statements . . .
The DISPLAY Statement
Data Movement and Computational Statemen
The Assignment Statement

vi

-

OVE

ts

e e & s e e

« e e 2 e o

* e & e e o o

RFLOW Conditions

The STRING OptiOn « o v o 4 v o o o« o o o o « o = =« = « o« « o« « « 50
Program Structure Statements . .« . . ¢ ¢ ¢ ¢ « < & 4 s+ e & « « o - 51
The PROCFDURE Statement . « « o« « o « « o « o o« a o s« o« o « » « « 51
The ENTRY 3tatement . o . o« + o« 4 s « o o o o 5 o o s « o o « s = 51
The BECIN SLatement « .+ +o «4 « o o o o « « = s o s o » o« « o« « « « 51
The END Statement . . « & o « « = o » « « o« o o s s 2 o o s « « « 52
The ALLOCATE and FREL Statements e s+ 2 e e + = e e e & s+ « =« « 2 52
Preprocessor StatementsS . o« ¢« + « ¢ o & « s+ o o o o o s s + o s & . 52
Control StatementsS .+ ¢« ¢« o« ¢ + 4 « o s s s e & s & e« s « » o o + « 52
The GO TO Statement « ¢ & s « o o o o a o = o o o a = « o o o« « » 52
The IF Statement .« « ¢ « « s o o a a » o « s o 2 o o o o o« « « « 53
The DO Statement . o & ¢ & 4 e & o + o o o« 2 « o s o o« o« o« « s« « 53
Noniterative DO Statements .« o o o v 4 o v 4 o « =« « a2 o « o« « « bu
The CALL, RETURN, and END Statements “ e s e+ e e = = s e o o o « 54
The STOP and EXIT StatementsS .« « ¢« o o « o o o 2 « o o o« o« o « « 55
Exception Contrcl StatementS . « . v ¢ ¢ ¢ ¢ 4 4 4 ¢ 4« 4« 4 « « - . 55
The ON Statement .« <« o & o o « o o « =« « o o o &« s o« o« o« o« o « « 55
The REVERT Statement .+ .+ + « o ¢« « o o 2 2 o o s s o s« o« « o «» « 55
The SIGNAL Statement .« « + =« o + o « 2 o o = « o o o o« o« o« « o« » 55

SECTION 6: JLOCKS, +rLOW OF CONTRCOL, AND STOKAGE ALILOCATION 56
BlOCKS © ¢ v v = v v 4 4 o o a4 o s s a4 & « 4 o & o s 2 e 4 e e « o« « 56
Procedure BlGCKS « « v 4 ¢ 4« o o o o o o o o o o o s 2 s o « =+ + « 56
Begin BlOCKS « v ¢ o o « v o o o « o o 2 s s o« a o o o o« 2 « o« « « 56
Internal and External Block - Y4
Use of the EhD Statement With Nested Blocks and DO-Groups
{(Multiple Clcosure) . . ¢ v 4« v e 4 4 2 4 4 e s 2 e = o a = s s s 957
Activation and Termination of Blocks ¢ &« & 4 &« « + « « . 58
ACtIVAtion .+ + & v v 4 4 4« 4 4 e« 4 e e & s e o s s s e« « « s .« . 58
TERMINATION . . 4 v 4 ¢ 4 e o o o o s a o a s o s a2 s« « o « o« o« « » 60
Begin Block Termination . « « « « o ¢ o « o « « o o o o« = « « « » 60
Procedure Termination « « « ¢ 4 « o« o o « o o o o o s o o« « s « « 60
Program Termination . .« . ¢ ¢ v 4 ¢« ¢« & ¢« o o o o o o« o« = « « « « 61
Storage ALIoCATICN « ¢ o ¢ v 4 4« s+t e a4 4 e 4 s e e s s s+ « « 4« . 61
StAticC SEOLATE « v v v« o o » o o o o o o o o« o o« s &« s o o« «» « « 61
Automatic StOTrage .« o v v ¢ & o o o 4 e e 2 e e 4 s e e e o« & o« « 62
Controlled StOXage .+ ¢ o« v o 4 « v o o o o o = 2 2 e s s o+ & o < 62
Based StOrage . « ¢ « 4 4« 4 v a4 e s e e e s
Reactivation of an Active Procedure (RECURSION) + ¢ ¢« « o« « . 62
Effect of Recursion on Storage ClasSes .« ¢« ¢ « + o o « o o« « « . 63
Prologues and EpllOgUeEs . . . v .+ « o 4 « & « o + o o o o« o « s« « « « b4
ProlOgUES « & o « « « 4 o o + o o o s s o o o s « o s o o s o « . 64
EFLL1LIOQUES & « « v « 4 o & a o o o s + o & o o » & « s & s « +« « « 6O

SECTION 7: RECOGNITION OF NAMES . . ¢ ¢ ¢ ¢ &t o 4 o o o« o o « o = & « 65
Explicit Declardtlion =« ¢ & & o & 4 ¢ o o« & « o o o o o o « s« « o« « o« 65
Scope of an kxplicit Declaraticn . . . ¢ . o ¢ 4« ¢ v o« 4 « « « o+ . 66
Centextual Declaration .« .+ 4 4 ¢ 4 4 4 v 4 4 v e s 2 s s e 4 4 « . 66
Scope of a Contextual Declaration . . .+« ¢ 4+ ¢ v ¢ 4 4 o o « « « « . 686
Irplicit Declaraticn . . « « v & 4 o ¢ 4 « 4 s o o o o o & o« 2 4 o . 67
Examples of LCeclarations . . ¢ . ¢ ¢ 4@ ¢ o v 4« o o o o o o s o o« « «» 67
Application of Default Attributes + . . . 4 68
The INTEKRNAL and EXTERNAL Attributes s v e « s e e e s s e s+ s o« a2 o 68
Scope of Member Names of External Structures . . .« . . « . « « « 70
Multiple Declarations and Ambiguous References 70

SECTION 8: INPUT AND OUTPUT . & v ¢ o 4 o o o o o o o o s o « o « o« « 11
DAta@ SEtS v v & 4 4 e e s 4 s e+ e s 2 s s s 2 w e s e 4 2 =+ o e o« 11
0 =]
The File AttribUte .« ¢ ¢ 4 ¢ 4 4 4 4 o o o o o o o o o o o o o o« « 12
Alternative Attributes 4 4 4 4 i 4 4 e e s s e s o o o « 13
The STREAM and FECCRD Attributes « e .

The INPUT, OUTPI T, and UPDATE Attributes « + s s s e o s« e « « o 13

The SEQUENTIAL and DIRECT Attributes e s e e o o & o e e « « o « 13

The BUFFERED and UNBUFFERED Attributes s e s s a e« » e « s o « « 13
Additive AttXILULES & ¢ 4 v 4 v ¢ s 4 + 4 2 e o s e 4 s e s e o« « « T4
The PRINT At ribut@ . ¢ ¢« ¢ o« & o ¢ & o 2+ 2 « o a s o o o « s o « 14

The BACKWARDS Attribute . «¢ ¢ o ¢ v 6 4« 4« o o o o o o o« o« « « o« « 14

The KEYED Attribute
The FXCLUSIVE Attribute
The ENVIRONMENT Attribute
Opening and Closing Files . . . « . . .
The OPEN Statement . . .« « .+ o« « o«
Irplicit OCenNIng .« .« « « « « « o o =
Merging of Attributes . . . « o .
Associating Cata Sets With Flles .«
The CLOSE Statement « ¢ « « .
Standard Files . . . ¢ o ¢ o o o o o &

SECTION 9: STREAM-ORIENTED TRANSMISSION .
List-Directed Transmission . .+« « « . »
Data-Directed Transmission . .« . « .«
Edit-Directed Transmission . « « . .+ .

Tata Transmission Statements . « . « .« .
Cpticons of Transmissicn Statements . .

The FILE and STRING Options
The COPY OptiOn . « « o v o o o o « o
The SKIP Option + o « o o o 2 « o = »
The PAGE Option . . < . . +« ¢« ¢« « « &
The LINE Option .« . « « «v ¢« ¢ o « o«
Data 3pecifications « « o o o o o o o @
Data Lists . . ¢ ¢ ¢ ¢ o o « o o o «
List-Directed Data Sgecification . . .
List-Directed Data in the Stream . .
List-Directed Input Format
List-pirect«d Output Format
Data-Directed bData Sgecification . . .
Data—Directed Data in the Stream . .
Data-Directad Input Format
Data-Directed Output Format
Length of Data-Directed Output Flelds
Edit-Directed Data Specification . . .
Format LiStS . +v ¢ o ¢ « o o 4 o« o «
Print Files . . . « ¢ ¢ v ¢ 4« o o o o« o &
Standard File SYSPRINT . « . « .« « «

The Environment Attrikute « .

Record Format . . . « ¢ « o o« « o o o «
BlocKing .« « « 4 ¢ v v o o o « o o
Line Size and Record Format

Buffer Allocation « « ¢ & .

Data Set Organization . . . « « « « « «

Volume Disposition .« . « ¢ ¢« + ¢ 4 o+ .

SECTION 10: RECORD-ORIENTED TRANSMISSION
Introduction . . . ¢ . 4 + 4 e o« o s e @
Lata Transmission Statements
The READ Statement . . ¢« ¢ + ¢ o o«

The WRITE Statement . . « . « & o« o« &

The REWRITE Statement . . « « « + o« =«

The LOCATE Statement

The DELETE Statement . . « « « « o o«

The UNLOCK Statement . . « . o .« .« .
Options of Transmission Statements . .
The FILE Option . . +« « <« ¢« o« ¢« « o« &

The INTC Option . . +« « ¢« « « « o o« =«
The FROM Option . . .+« « ¢« ¢ o« + o o «

The SET Option .« « « « « o« « o « o
The IGNORE OCtiOn . « « o o « « o o«

The KEY Option . . e« e 4 e = e
The KEYFROM and KEYTO Options

The EVENT Cprtion .« « ¢ <« ¢ « o o o @

The NOLOCK OptiOn « +« « « o o + & o
Processing Modes . . « « v o ¢ o« + o « o
Move Mode « .« ¢ ¢ ¢ o o o o o o a o o =
Iocate Mode . . ¢ ¢ 4 ¢ o o o o o « o @
The Environment Attrikute

viii

RecCrd FOrmat .« o « 4 ¢ o o « o s o o « 5 o « s o o o o o » o =

BloCKing « « v o o o & o o 4 e 4 s e s e e o « e s s e s e .
Buffer Allocation . « « o + o + o o o o & 2 o o o o o o o « « o
Data Set 0rganization . . .« <« & 4 4 ¢ 4 4 4« e @ e e e« s = e e

Volume Disposition .« « o o 4 o ¢ o @ o s e e o e e a e 2 e e
Printer/Punch ControOl . ¢ « o« o o ¢ ¢ & o o o o o « o o o« o « =
Interchange of Data Between COBCL and PL/I Programs . . . « . -«
Asynchronous Operations Limit « ¢ < « ¢ ¢ ¢ ¢ ¢ « o o« .
Track OVerflOw « « « ¢ o o & o o o o v o o o o « = o » o « o
Consecutive 0rganization . . « « « ¢ « « « 4 « « o 4 o s o o =
Sequential Update . . .« o ¢ ¢« 4t « 4 4 4 4 e e s e 4 e e e w e
Indexed O0rganization . « « ¢« « 4+ ¢ + « « 4 e 4 = e o o« = o o o =
KEYS &« o« ¢ v « v o« o a o o a o o o @« a o o o a2 =« s 8 « o o o
Creating A Data Set . ¢ v ¢ ¢ o« o o o o o o o o o s s a « o o
Sequential ACCESS . . . ¢ 4 ¢ ¢ 4 e e e e 4 e e 4 e v e e e . .
Direct Access e 4 2 4 e« & + a2 e 2 s e e e e o e o o
Surmary of Reccrd- Orlented Transmission @ e e e s e e e s e e
Examples of Declarations for Record Flles © et e e e e e e e e e .

SECTION 11. EDITING AND STRING HANDLING ¢ 4 o & o o o &

Editing By Assignment e e s e = s e e & a2 s e s o @
Altering The Length Cf Strlng Data e e s e s e & o e s 8 ® e =
Cther Forms cf Assignment . . « ¢ ¢ & ¢ ¢ &+ ¢ 4 ¢ o o « « o o «

Input and Cutput Ogeratlons « . e . s e s e s s s e s e o

The STRING Option in GET and PUT Statements e e e s s 4 e e
The Picture Specification . . . « & ¢ ¢ ¢ ¢ 4 v v v o o « o a &
Numeric Character opec1f1cat10ns D T o o o
The '9' Picture ‘Character in Numeric Character Spec1f1cat10ns
The Z and * Picture Characters . . . ¢« ¢ ¢« ¢ ¢ ¢ & o « o o =
The V Picture Character . . . « v ¢ ¢ & o o « s o o o s « o =
The Insertion Picture Characters: B . ;, 7/ o o o o« « o o o o« «
The $§ Picture Character . . .« ¢« ¢ v ¢ o ¢ o s o « s« o « o « =
Sign Specification in Numeric Character Specifications . . .
Overpunched Sign-Specification Characters: T, I, and R . . .
Other Numeric-Cnaracter Facilities . . . ¢ .« & & ¢« & & « « .
Character-string Picture Specifications
Bit-string Handling . « « ¢ ¢ « ¢ o 4 o o « o « o « s o s o« « =
Character-String and Bit-string Built-In Functions

SECTION 12: SUBROUTINES AND FUNCTIONS . . +. ¢ ¢ ¢ ¢ 4 & « o » o «
Arguments and Parameters . . . o 4 v 4 i 4 s 4 e s e e e e o e
SUbroutines . .+ .« v 4 i 4t 4 4 e e 4 e e e e e 4 e e e e e e .
Functicns . . . 4 e e e 2 8 s 4 e e e s e o w s 2 e s 2 e s e o
Attributes of Returned Values « o o s e + e s e e« s 4 s e o =
Built-In FUNCLiONS . ¢ ¢ & o ¢ 4 o o o o o 2 o « « o« o o o «
Relationship of Arguments and Parameters . . ¢ ¢ o o o « o o« « &
DUmMIY AIQURENES =« ¢« & &« o o o o o 2 « « o = s o o « o o o o « =
The ENTRY Attribute ¢ v ¢ ¢ 4 4o ¢ v ¢ o ¢« o o s o o o »
Entry Names as Arguments .« .« o . ¢ ¢ o o o o o o o o o o « «
Allocation of Parameters . . o ¢ v v ¢« ¢ ¢ o o 2 2 v = o o o
Parameter Bounds and Lengths ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o« &
Simple Parameter Bounds and Lengths . ¢ e s e e e o e o o
ccntrolled Parameter Bounds and]engths s o o e 1 s s e s o =
Argument and Parameter Types ¢ o ¢ +v o o o o « o s +
Generic Names and References . . . ¢ v & ¢ v ¢ o o« s o o o « o« «
Passing an Argument to the Main Procedure &+ &+ « o o « o .

SECTION 13: EXCEPTIONAL CONDITION HANDLING AND PROGRAM CHECKOUT .
Enabled Conditions and Established Action . . « « <« ¢ ¢ ¢ o o« « .
condition PrefixXesS . . & & ¢ ¢ 4 4 4 s o o o o o s a o o o
Scope of the Coidition PrefixX . . « ¢ o ¢ ¢ ¢ 4 o ¢ ¢« o o o «
The ON Statemenc . . ¢ « v ¢ 4 o e « o 2 = s o o o o « o« s o
The NUll On-Unit . ¢ & + & v v & o « o o 2 o o o o o o o o
Scope of the CN Statement ¢ o & ¢ ¢ ¢ « o & o o o o o
The REVERT Statement s e e o e e w a o s s e & o s s = a4 o =
The SIGNAL . tatement e o ® s e e e 8 € o e e o o o a4 8 e e
The CONDITION Condition « ¢ « ¢ ¢ v ¢ o ¢ o o o s o « « o« » @
The CHECK Condition « « « o &+ o o « o« o o o o« o o o o o o o

-101
.101
.102
.102
.103
.103
.103
.103
.104
.104
.104
.104
.106
.108
-108
.108
-108
.109

.110
.110
.110
-111
.111
.111
.112
112
.113
.113
.113
<114
.114
114
.115
. 115
.115
.116
<117

.118
-118
.119
.120
.121
.122
.123
.123
124
.125
.126
.127
.127
.127
.128
.129
.130

.131
-131
.131
-131
.132
.132
-133
.133
.133
.133
.134

The SUBSCRIPTRANGE Condition « + « o« o o o « o o « « o o « « « 2134
The STRINGRANGE CONGItION « « o« « o o o s s s o o o« o« = » = « « 134
Condition Built-In Functions and Ccnditicn Codes13%
Exanple of Use of ON-ConditionsS .« « ¢ ¢ o o o o o o o o o o« o « = o« <134

SECTION 14: BASED VARIABLES AND LIST PROCESSING . « « « « « « « « « .138
INtrodUcCtion . ¢ & & 4 4 o o o s s o o s « a o s o o o » s = o « =« <138
Based Variables and Pointer Variables . . .« ¢ . ¢ ¢ ¢ ¢ ¢ o « « « o« 2139
Pointcr Qualification o ¢ o o ¢ 4 o o« o « o s o + + a s o « « « « 2139
Rules and Res3triCtionNS .« « o « o o o s o o 2 o o o o« o« s o « « « 139
Pointer Defining . . 4 4+ o o ¢ o o o s o = s o o« o « « o « « 2140
Self-Defining LatA o « o o o « s o s s o o o s o o « o o « o » « o140
The BEFUOR Cption e e e e & s e o e e s @ c e & = e = » = « o <100
Pointer Setting, Based Storage Allocation, and Input/Cutput141
Redad with SEL & ¢ v 4 4 4 4 o o o o o a 2 s s o o « o o« o« » = « « <141
focate with and without Set ¢ ¢ ¢ ¢ o o ¢ 4 o o o o o a o « » « « 2182
Aliccate with andé without Set ¢ & v ¢ ¢ ¢ ¢ o o o o o =« o « « » « <142
PoInter ASSIgnIeent ¢ . ¢ v 4 4 e v s e s e e o s e + o s« s o « = 2182
The ADDk Built-in Function .+ .+ o ¢ o « « s o o« o« o » » « « » « <142

The NULL Built-in FUunction . . o ¢ ¢ o « o o o =« o « « s « o« « <143
Freeing Based SLOLAGE o4 ¢ 4 o o o o o o o o s s « o o o s =« o » o« o« 2183
The Free Sfatoment o 4 @ v 6 6 o o e o o o s o o o o o s o « o « 2143
Loplicit FICEINU v v v o 4 4 e o o o o o = =« o o o o o« « = o « « 184
Breas and OFffSehS @ v 6 6 6 o 4 4 o e 8 4 o a s e s = a e s s = « < J1ul
Area Variablss e e 4 4 e e 4 e s e e o s e e s e s o o « o e« « « 2184
Rules and Restrictions .+ . & 4 v v 4« v e o o o o o o o s « +» « <145
Oftset Variables . & 4 4 ¢ 4 4 o o o « o o o o o s 2 o s o o « « 21845
Rules and KesStriCLlONS o o 4 o o o o o s « s = o s » o « « « « 185
Allocation Within anm AT€A o ¢ « « « o o o o o s « o o o« o« o o » « <145
Setting Offset VAalues . v ¢ ¢ 4 o 4 o o o o o o o o s « o s o« « o 186
The NULLC Built-in FUNcCtion . « « o « o ¢ o o o o » o« o« « « « « <1146
Area Assignment and Input/outpu e e + o e e e e s e e e o « o o 186
The EMPTY Built-3in FUnction . « + « +¢ o ¢ o o o o s o« o« s« « « « <146

Thne AREB ON-CONAdition « o o o & o o o = s s « o s o« « s o « o o 21487
Input and QUEPUL . ¢ v ¢ o 4 « o o o o o a4 o o s e o e &« o o o 107
Brea and Otfset DEfining « « «o o o o o o o o 5 o « o o« o« o « « « 187
Communication btetween FroCeEAUTES o « o o o o o o o o s o« o o o« « o <147
Arguments and PAreémet@IrS . . ¢ o« 4 o o o o o o o o o o » « » « o 2147
Pointer to PCINLEY & 2 ¢ o « o o « s o s« o a s o o « o« o« » o o 147
Offset tO POINLEY ¢ ¢ o o o « o o 2 o o » o s o o s o o « o« « » 148
Offset tO OFffSeL & v 4 4 o o o s o o o « o o o s o 2 « = « « « 21U8
Pointer to OFffsSet .+ ¢ & &+ o s o o « s o o s = o« o = o o« o« « «» « 188
Area O BAYE€A & ¢ « 4 4 « a o o o o s 2 s e = s s o v e« o« « =+ « <148
Returns from Entry POIntsS . &+ 4 o ¢ o o ¢ o o o o« o = o « o« o « « o148
LOCAtOY RELUINS o « 4 o o o o o« o o o« o o s o o o o a o« = =« « » <148
Area RELUINS + & « o 4 o o 4 o s o s o s o o o« s = o o a o « o« =149
Variable length Parameter Lists . . « ¢ ¢ ¢ v ¢« ¢ o o o & o = « o« 2149
Examples of List Processing Technique . . ¢ « « o« o o o « « « & « « .150

SECTION 15: COMPILE-TIME FACILITIES « ¢ ¢ « o« o ¢ o « o« ¢ o o o« » o« 2153
INtroduction . ¢ v ¢ 4 i e 4+ e 4 e 4 o « s s e s = e o s 2 = « = o 2153
Preprocessor Input and OUtpuUt . ¢ ¢« « ¢ &+ o &+ o o o e « « s s« s « « 2153
PXEErOCESSOY SCAIN « « « o o o o o o o o o o s o o o o o o o o o« o »153
Rescanning and Replacement . . . ¢ ¢« « o ¢ o o « s « o « « « « 154
Preprocessor Variables . o ¢ v 4 v ¢ o ¢ « 4 o o o o o o o « « o » 155
PreproCcesSsSoOr EXPIESSIONS o o o « o o o o o + o o s o o s« » » o « =« 2156
Preprocessor ProCedUICS .+ .« o o « 2 5 o o = » o o o o s o = o o » » 2156
Invccatiocn of Preprocessor ProceduUres . « « + « « o « s o = o o o <156
Arguments and Parameters for Pregrocessor Functions ,157
Returned Value . . . ¢ . ¢ ¢ ¢ o o o o o o o « o s « =« = o« =« « 2157
Examples of Preprocessor FUnctions . « ¢« . < + « o« « o « « « o+ .158

Use of the SUBSTR Built-In Function . . . « « ¢ ¢ ¢ ¢ « « « « « 159

The Preprocessor DO-GIOUP « « « = « = « s o o o o o o o o s o« s o « 2159
Inclusion Of External TeXt . « « ¢ o o o o o 2 « o o o s « o« « o o« 2159
Preprocessor Statements .o . . ¢ « 2 o o o 4 4 s . s e s s s = s « + <160

SECTION 16: OPTINMIZATICN AND EFrICIENT PERFORMANCE161
Introduction . . ¢ ¢ 4« 4 4« 4 « o e s o e e « o s e« e s e = e = « <161

Effect of Compilation on Okject Program
PL/I Options: ORDER and REORDER . . .
The ORLCER Option . « « « « « « « «

The REORDER Cption . . . « . .« .
Effect of ORDER and REORDER Optlons
Compiler Option: OPT=N . .« « . .« . .
Locp and Subscript Optimization . . .
Assignment Handling
INLINE OPERATIONS . . « « « & 2 « «
Data Conversion « « ¢« o+ .
String Handling « . « « .
Programming Techniques . . . « « « . .
Improving Speed of Execution

Methods of Improvement When OPT=0 cr

Methods of Improvement When OPT=2 .
Avoiding Common EXrors . .« « « « « .
Scurce Program and General Syntax .
Program Control . . . « « « . .« . .
Declarations and Attributes
Assignments and Initialization . .
Arithmetic and Logical Operations .
DO-groups « « « o « ¢ o « o = o« o a
Data Aggregates . « « < ¢« « « o < .
StYings . . . 4 4 e e e e e e . . o
Functions and Pseudo-Variables . .
On-Conditions and On-Units
Input/Output . . . <« ¢ & & + o . .

PART II: Rules and Syntactic Descriptions

SECTION 1: SYNTAX NOTATION

SECTION 2: CHARACTER SETS WITH EBCDIC AND

60—-Character Set + . .+ ¢« o« .
48-Character Set . .« . o &« « o « « =

Efficiency

-

SECTION 3: KEYWORDS ANLC KEYWORD ABBREVIATIONS

SECTION 4: PICTURE SPECIFICATION CHARACTERS
Picture Characters for Character-String Data

Picture Characters For Numeric Character Data

Digit and Decimal-Point Specifiers .
Zerc Suppression Characters
Insertion Characters . . . « « . . .
Signs And Currency Symkol
Credit, Debit, And Overpunched Slgns
Exponent Specifiers
Scaling Factor .« & o ¢ o & s o o o o
Sterling Pictures

SECTION 5: EDIT-DIRECTED FORMAT ITEMS .
Data Format ItemsS « ¢« « o « 2 o o o « @
Control Format Items . . . o & « &« <« &
Remote Format Item . . ¢« & ¢ & o +o o
Use of Format Items e e 4w
ALPHABETIC LIST OF FORMAT ITEMa « e e =
The A Format Item « <« « « .
The B Format Item « o« « o .
The C Format Item . « « + & o o « &
The COLUMN Format Item
The E Format Ttem« .
The F Format [(tem « s e e o s o @
The LINE Format Item = e s e o s =
The P Format Jtem . . ¢« + o « o« « &
The PAGE Formait Item . . .« . « o« &
The R For—at Item . . ¢« « o « o« + &

-

-

~-- Example

.

.161
.161
.162
.162
.162
.162
.163
.163
164
.164
-166
.166
.166
.166
.170
.170
.170
171
.171
.173
174
.176
177
<177
.177
177
.178

.181
.183

.185
.185
.186

.187

.192
.192
-193
.194
.194
.196
-197
.199
. 200
-200
.201

.203
. 203
.203
. 204
. 204
. 204
.204
. 204
.205
. 205
.206
. 207
.208
. 208
.208
.208

The CKIP Format Ttem . « « o « o o« «
The X Formot Jtem o o ¢ o o« o o » o o

SECTION &: PRCRBLEM LATA CONVERSION . e e
Aritametic COnversion « o« ¢ « « « « e

Floatiny-Point Conversion
Mode CONVErcion o ¢ o o o & s s o o
Precision Conversion .« « o + o o v -
Base CONVEISION « « « o o o s +« » o
Coded Aritnmetic to Numeric Character
Numeric Character to Coded Arithmetic

Data Type CONVErSION o « « o « o o o &

Charactor-ofring to Arithmetic . . .
Arithiet ic .0 Character-String . . .
Character-Itring to Bit-string . . .
Rit-string t¢o Character-String . . .
Arvitnmelic Lo Bit-stiing
Git-string vo Arithmetic .« . + o o+ .

Tabte of Ceirting Values« .

Tabhloes

SECT LGN 7 Uit~ IN FUNCTIONS AND PSEUDO-VARIABLES

Coapgiibatingil ailt-iIn Functions
Strying Hanaling Bailt-in Functions . .

SIT Strine Burlt-in Function . . .+ .
BOCL strang Zaarle-in Function - . . .
THAR Stroan fLitean Functlion « o . .
HATCH Swvias t~in Function
NNEX St riog Built-in Function
LENGTH »ivine Bullt-in Function . . .
LOW String Built-in Function
gELLAT String Barit-in Function . . .
RING S*ring Dulic-in Function . . .
SUBSTR Ssring Buliit-in Function . . .
The TRANSLATE String Bulilt-in Function
UNSFEC S'ring Buirli-in Function . . .
The VEX1TY Liripg built-in Function .

Arithmetir Ruilt-In Functions

ABS Aritumetic Built-in Function . .
ADD Aritnmetic 3uilt-in Function . .
BINARY Arithmetic Built-in Function .
CETL Arithwetic Built-in Function . .
COMPLEX Arithmsat ic Built-in Function
CONJG Arithietic Built-in Function .
DECIMAL Arithmetic Built-in Function
DIVIDE Arithmetic Built-in Function .
FIXED Aritnwetic Built-in Function .
FLOAT Arithmetic Built-in Function .
FLOOEK Aritnmetic Built-in Function .
1MAG Arithmetic Built-in Function . .
MAX Arithimetic Built-in Function . .
MIN Arithmetic Built-in Function . .
MOD Arithmetic Built-in Function . .
MULTIPLY Arithmetic Built-in Function
PRECISION Arithmetic Built-in Function
KREAL Arithmetic Built-in Function . .
ROUND Aritnmetic Built—-in Function .
SIGN Arithmetic Built-in Function . .
TRUNC Arithmetic Built-in Function .

Mathematical Built-in Functions

xii

ATAN Mathematical Built-in Function .
ATAND Mathematical Built-in Furcticn
ATANH Mathematical Built-in Function
C0OS Mathematical Built-in Functicn .
COSD Mathematical Built-in Function .
COSH Mathematical Built-in Tunction .
ERF Mathematical Built-in Function .
ERFC Mathematical Built-in Function .

for results of Arithmetic Operations

.209
. 209

-210
.210
.210
.210
.210
.211
.211
. 211
. 211
.211
.212
.213
.213
.214
. 214
. 214
. 214

.220
.221
.221
.221
.221
.222
.222
.222
.223
.223
.223
.224
224
L2284
.225
.226
.226
.227
.227
.227
.227
.227
.228
.228
.228
.228
.228
.229
.229
.229
.229
.229
.230
.230
.230
.230
.231
.231
.231
.231
.233
.233
.234
.234
.234
.234
.234

—

EXP Mathematical Built-in Function . . .
LOG Mathematical Built-in Function . . .
LOG10 Mathematical Built-in Function . .
LOG2 Mathematical Built-in Function . . .
SIN Mathematical Built-in Function . . .
SIND Mathewatical Built-in Function . . .
SINH Mathematical Built-in Function . . .
SQRT Mathemwatical Built-in Function . . .
TAN Mathematical Built-in Function . . .
TAND Mathematical RBuilt-in Functions . .
TANd Mathematical Built-in Function . . .
Summary of Mathematical Functions
Array Manipulation Built-in Functions . . .
ALL Array Manipulation Function'
ANY Array Manipulation Function
DIM Array Manipulation Function
HBOUND Array Manipulation Function . . .
LBOUND Array Manipulation Function . . .
POLY Array Manipulation Function
PROD Array Manipulation Functicn
SUM Array Manipulation Function
Condition Built-in Functions
DATAFIELD Condition Built-in Function . .
ONCHAR Conditicn Built-in Function . . .
ONCODE Condition Built-in Function . . .
ONCOUNT Condition Built-In Function . . .
ONFILE Condition Built-in Function . . .
ONKEY Condition Built-in Function
ONLOC Condition Built-in Function
ONSOURCE Conditiocon Built-in Function . .
Based Storage Built-in Functions
ADDR Based Storage Built-in Function . .
EMPTY Based Storage Built-in Function . .
NULL Rased Storage Built-in Function . .
NULLO Based Storage Built-in Function . .
Multitasking Built-in Functions . . . e o
COMPLETION Multitasking Built-in Functlon
STATUS Multitasking Built-in Function . .
Miscellaneous Built-In Functions
ALLOCATION Built-in Function
COUNT Built-in Function . .« « « « « o« « =
DATE Built—-in Function . . . « « « « «
LINENO Built-in Function . .« « « « « « &
TIME Built-in FURCLiION .« « 4 o « o =« o
Pseudo-vVariables . . . ¢ ¢ 4 ¢ ¢ ¢ o o o o @
COMPLETION Pseudo-variable
COMPLEX Pseudo-variable . . . + « «+ « .+ .
IMAG Pseudo-variable
ONCHAR Pseudo-variable « « .
ONSOURCE Pseudo~variakle
REAL Pseudo-variable « . .
STATUS Pseudo-variable « . . .
STRING Pseudo-variable+ .« .
SUBSTR Pseudo-variable
UNSPEC Pseudo-variable

SECTICN 8: ON-CONDITIONS « e s o ® o s s e @
Introduction . . . « » s e+ & & 2
Condition Codes (ON—Codes) e e e e e e
Multiple Interruaptions . . .+ ¢« o « « & =
Section Organizaticn . « <« ¢ 4w « &+ o« .o . .
Computational Conditions« . .
The CONVERSICN _ondition o e e e s e =
The FIXEDOVFRFLOW Condition « . .
The OVERFLC:.. Condition .+ .+ ¢ & v o o o« &
The SIZE Condition .« . «¢ ¢ o« « o « « o« o
The UNDERFLOW Condition « « « .
The ZERODIVIDE Condition s e e e s e e

. 234
. 234
. 235
.235
.235
.235
. 235
.235
. 235
.235
.236
.236
. 236
.236
. 236
.236
. 237
.237
.237
.237
. 237
.238
. 238
.238
.238
.238
.238
.239
.239
. 239
.239
. 239
.239
. 240
. 2040
. 240
.240
. 240
. 240
. 240
241
. 241
241
. 201
. 241
. 241
.242
.242
242
.242
. 242
- 242
242
. 243
. 243

. 244
.244
. 244
246
. 246
247
. 247
.248
.248
.248
.2u8
.249

xiii

Input/Cutput Conditions . « & o« o o = o =+ o o « o = « «

The ENDFILE CORdition « « + + o s o » o s o o a o = =
The ENDPAGE ConditiONn « « + « 2 « o o« o s o » o o o »
The KEY Condition .+ « ¢ ¢ 4 o o o o o o« o = 2 o o« o =
The NAME Condition . . &+ ¢ o o & o « o « o s o o o «
The PENDING ConditioOn « « <« ¢ o o o o o o = o o o « »
The RECORD CoOnditiCn . .+ 4« o« o o o o o o o o o o « =
The TRANSMIT Condition . e s o 8 e« o e o o o o & e
The UNDEFINEDFILE Condltlon e % s e e« s a o ® e o e

Program-Checkout Conditions . . . ¢« ¢ ¢ ¢ o « o o « o o« «

The CHECK Condition « « ¢ v 4 ¢ 4 o o o s« s s« o s + =
The STRINGRANGE Condition « « o« =« « o o o « o o s o =
The SUBSCRIPTRANGE Condition e s e e % % e & u e o o

List Processing Condition . .« ¢ « o o « o o o o o o o o «

The AREA ConditiON .« « « ¢« + o « « o s o o s o o o

System Action ConditionS . < ¢ o ¢ 4 s o o o o o« s o o

The ERROR ConditiOn . « .+ « v o o o o s o = o o o o «
The FINISH Condition . . .+ ¢ ¢ ¢ ¢« ¢ ¢ ¢ o o = o o &«

User-Named Condition . . +« ¢ ¢ 4 4 4 o « o s « o s o« a «

The CONDITION Condition . .« . ¢ ¢ ¢ ¢ o @ ¢ o o o« o @

SECTION 9: ATTRIBUTES .+ ¢ ¢ 4 ¢ ¢« ¢ o o o o o o o o o o o
Specification of Attrikutes . . ¢ v v ¢« o ¢ 2+ o o o o o

Fa

ctoring of Attributes ¢ ¢ ¢ ¢ ¢ 0 4 e e e o .

Data Attribaltes . . . o o o 4 ¢ o o« o o a o 2 o « o o o o
Problem Data o & ¢ 4« o o o 4 o o o o o o a s« « o o o o
Program Control Batada . ¢ ¢ ¢« « ¢ ¢ o o o o o o 2 o« o =

Entry Name Attributes . . ¢« ¢ ¢ « o« < e o o « o o o « o

File Description Attribates . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 4 o o &

Scope Attributes . . . ¢ . ¢ 4 4 4 i e e 4 4 e e e o o

Storage Class Atlributes . ¢ ¢ v ¢ ¢ ¢« o ¢« o o o« o o o =

Alphaketic List of Attributes s e 4 e e s e s e e e s @

xiv

ALIGNED and UNALIGNED (Data Attributes)
AREA (Program Control Data Attribute)

AUTuMATI(, STATIC, CONTROLLED and BASED (Storage Class

Attributes) . . . ¢ . . <« e e s e o o o
BACKWARDS (F;le Description Attrlbute) e e e o o =
BASED (Sstorage Class Attibute) « ¢

BINARY and DECIMAL (Arithmetic Data Attrlbutes) « o
BIT and CHARACTER (String Attributes)
BUFFERED and UNBUFFERED (File Description Attrlbutes)
BUILTIN (Entry Attribute) ¢« ¢« ¢ ¢ o o & « &
CBARACTER (String Attribute) . . . e s o
COMPLEX and REAL (Arithmetic Data Attrlbutes) . e e .
CONTROLLED (Storage Class Attribute) ¢ . . .
DECIMAL (Arithmetic Data Attribute})
DEFINED (Data Attribute) . . . ¢ ¢ ¢ ¢ ¢ o ¢ ¢« o o &
Dimension (Array Attribute)
DIRECT and SEQUENTIAL (File Description Attrlbutes) .
ENTRY Attribute e 4 e s e o
ENVIRONMENT (File Lescription Attrlbute) e o o e o @
EVENT {(Program Control Data Attrikute)
EXCLUSIVE (File Description Attribute)
EXTERNAL and INTERNAL (Scope Attributes)
FILE (File Description Attribute) « o s s .
FIXED and FLOAT (Arithmetic Data Attrlbutes) « e e .
FLOAT (Arithmetic Data Attribute) « . .
GENERIC (Entry Name Attribute) o .
INITIAL (Data Attribute) . . . ¢ ¢ ¢ ¢ & ¢ ¢ o o » «

INPUT, OUTPUT, and UPDATE (Fil: Cescrirtion Attrilkutes)

INTERNAL (Scope Attribute) e+ 4 ¢ a4 o e e 8 o e = s
IRREDUCIBLE and REDUCIBLE . . « ¢ ¢ « 2 « « o o s = =
KEYED (File Description Attribute) o o« « o« =«
LABEL (Program Control Data Attribute)
Length (String Attrikute) ¢ ¢ ¢ o « ¢ & & »
LIKE (Structure Attribute) - .
OFFSET and POINTER (Program Control Data Attrlbutes)

OUTPUT (File Description Attribute)

- 249
. 249
. 249
. 250
«250
250
.250
. 251
. 251
.252
.252
. 254
. 254
. 254
. 254
. 255
. 255
. 255
. 255
. 255

.256
. 256
.256
. 256
. 256
. 257
. 257
.257
«257
. 258
.258
. 258
.259

.260
. 261
.261
.261
.262
.262
<262
. 263
263
. 263
.263
. 263
. 265
.266
. 266
-267
.267
. 268
269
. 269
. 269
. 269
.269
.271
.273
.273
.273
273
.273
. 274
.27“
. 275
<275

PICTURE (Data Attrikbute) e e e .
POINTER (Program Control Data Attrlbute) . . .
POSITION (pata Attribute) ¢« « . .
Precision (Arithmetic Data Attribute)
PRINT (File Description Attribute)
REAL (Arithmetic Data Attribute) « o«

RECORD and STREAM (File Description Attrlbutes)
Reducible . . . + « ¢ ¢ ¢ o« ¢ ¢ ¢ 4 4 e e 4
KETURNS (Entry Name Attribute)
SEQUENTIAL (File Description Attrikute)
STATIC (Stcrage Class Attribute)
STREAM (File Description Attribute)
TASK (Program Control Data Attribute)
UNALIGNED (Data Attribute) “ o o
UNBUFFERED (File Description Attrlbute) e e .
UPDATE (File Description Attribute)
VARYING (String Attribute) e e e e & a2 s s e e

SECTION 10: STATEMENTS . & ¢ v 4 o « o o o o o o «
The ALLOCATE Statement . « « « <« ¢ « ¢ o « o«
The Assignment Statement . . « .+ ¢« « ¢ o « +
The BEGIN Statement . « « 4+ + o o 4 o o « « o o
The CALL Statement . . « « o o o o « o » s o o
The CLOSE Statement . . . ¢« ¢ ¢ &+ o o « o« o o =
The DECLARE Statement « « « +« ¢ ¢ o « o + o o =
The DELAY Statement . « o o« o o o o s o s « o o
The DELETE Statement e o o & & o & s a o 2 » @
The DISPLAY Statement . . .« . « o ¢ « & o o o o
The DO Statement . .« o o « o o o o o o« o o «
The END Statement . <« o« « + o o o« o« o 2 + o o« »
The ENTRY Statement . « ¢ « o o o o o » « o =
The EXIT Statement . . ¢ o v o & o o s o« o o «
The FORMAT Statement . . ¢ « o o« « o + « o » =
The FREE Statement e o o e o o ® e & » e e w @
The GET Statement . . ¢ « ¢ ¢ o« o o o o o o o @
The GO TO Statement . ¢« « « ¢ « o « o« ¢ o » o o
The IF Statement . « ¢ o « o o« s o o « o o « &«
The LOCATE Statement . « ¢ « o o ¢ o o « o o =«
The Null Statement . . .« ¢ « & ¢« « « o « o «
The ON Statement . . ¢ o o o o o 5 o o o o o
The OPEN Statement .« . « « « o « o « « « = o
The PROCEDURE Statement . . . « ¢ ¢« « o o« « o &«
The PUT Statement . « ¢« <« o & « o o = « s = =«
The READ Statement . . ¢« « ¢ ¢ o ¢ o o o o « =«
The RETURN Statement . . + ¢ o o ¢ « o« o o « &
The REVERT Statement . . +« + o o o o o o o « o
The REWRITE Statement . ¢« « « & o o « o o o« & @
The SIGNAL Statement . « « « o« o« o « s o « o« o
The STOP Statement . .« .+ + 4 ¢ « ¢ o s « = o o
The UNLOCK Statement . . o« « o« « « « o o « « &
The WAIT statement . o« « « o o « o o o « « o =
The WRITE Statement « « « ¢« « o o o s o s o « =

Preprocessor Statements ¢ 4 & o . o . .
The FACTIVATE Statement . « ¢ ¢ « « o o« o « »
The % Assignment Statement .« « « + + o « o o o
The FDEACTIVATE Statement . . « « « « o« o « +
The %DECLARE Statement . <« ¢ ¢« ¢ ¢ o ¢ o o « &
The DO Statement « « « « « o o « o o « o a « =
The REND Statement .« . <« ¢« « ¢ o o « o o « o o
The %GO TO Statement .« .« . + o « o o o 2 o o
The %IF Statement . . « + « « o « « s o » o« s «
The RINCLUDE Statement . « « o« o « o« » + s o =
The % Null Statement . . ¢ ¢ « o o o ¢ & o o« &«
The %PROCED'. :E Statement . . . B,
The Preprocessor RETURN Statement « o o = a e a

. 275
.278
. 278
.278
. 279
.279
.279
.279
. 279
. 280
-280
.280
. 280
.280
- 280
.280
. 280

.281
. 281
.283
. 286
. 287
. 288
. 288
.289
. 289
.290
. 290
.292
. 293
.293
. 294
<294
.295
.296
.296
. 297
. 297
. 297
. 299
.300
. 301
.303
. 305
.305
.306
. 307
. 307
.307
. 307
.308
.309
.309
.310
.310
- 310
.311
.311
.312
-312
.312
.313
.313
. 314

Xxv

SECTION 11: DATA MAPPING .« . ¢ 4 « o o o o o o o o o s e o =« = « « 2315
Structure Mapping . « « « « <« o & « « ¢ o o 2 + 4 e s « « a o » o » 4315

RULES . & & & 4 ¢ 4 v v e o o 4 4 e = e o 4+ s 4 s s = e s o s « « =315
Rules for Order of Pairing . ¢« +« « o 4 ¢ 4 « o o« « o o « o o« « +315
Rules for Mapping One PaiXr . . .+ & ¢« o« ¢ o 2 o o« o = s = = « » 2316

Effect of UNALIGNED Attribute ¢ . 4 ¢ o & & « o o o « « 316
Example of Structure Mapping . .« « « « & o o + o o « « « « « « . .318
kecord Alignment ¢ 4 4 . 4 4 e e 4 s e o e o s+ =« « o o <326

SECTION 12: DEFINITIONS OF TERMS . . . ¢ ¢ v o 4 & & = o « « « « « 329

INDEX . & @ ¢ o 4 o s o o o o « 4 a o o s« o« s « o a s « = « =« o« « « <336

FIGURES

Figure 1. Sowe Functions of Special Characters 9
Figure 2. Target Types for Expression Operands . . . « « . « . . . U2
Figure 3. Precision for Arithmetic Conversion . . « « <« « « « « « - 43
Figure 4. Lengths of Character-String Targets . . . < « . « « . . . U5
Figure 5. Lengths of Bit-String Targets . . . « ¢ « « « « « « « o« o U5
Figure 6. Circumstances that can Cause Conversion . . « « U6
Figure 7. Scopes of Lata Declarations . .« + « « « « o o« o & =« « « . 67
Figure 8. Scopes of Entry and Lakbel Declarations 68

Figure 9. General Format for Repetitive Specifications 82
Figure 10. Example of Data-Directed Transmission (Both Input and
DUEPUL) & v 4 ¢ o « o o o o o o o o o« s o o o o o o o o« o a o« o« « « « 87
Figure 11. Options and Format Items fcr Ccntrclling Layout of

PRINT Fil@S v v o o o o o @ o o o o « = s o o o o« a o o a o« « « o« « 2 91

Figure 12. Relationship Between Line Size and Record Size 9u
Figure 13. 1Input and Output: Move Mode ¢ ¢ & « « o « o « « «» 99
Figure 14. Locate Mode Input, Move Mode Output100
Fiqgure 15. Statements and Options Permitted for Creating and

Accessing CONSECUTIVE Data Sets« . . e« « « « < . 2105
Figure 16. Relationship Between RKP Subogrerand and Record Format . .106
Figure 17. Statements and Options Permitted for Creating and

Accessing INDEXEL Data SetS . . o v ¢ &« o o « « « o o o o = = » « « 4107
Figure 18. A Program Checkout koutine « + . ¢«135
Figure 19. Example of Two-Directional Chain 150
Figure 20. Implicit Data Conversions Performed Inline (Part 1 of 2) 1eu
Figure 21. Conditions Under Which the String Operations are

Handled Inline N X X
Figure 22. Conditions Under Whlch the String Functions are Handled -
INIINE & ¢ v 4 4 « « o « o o o s s 2 o o o o o o « = s« s o & » o« « 2168
Figure 23. Pictured Character-String Examgles193

Figure 24. Pictured Numeric Character Examples © e e e o . 2198
Figure 25. Examples of Zero Suppression . . « « « « o « 2 « « - « .195
Figure 26. Examples of Insertion Characters e e e e e + = e + - <196
Figure 27. Examples of Drifting Picture Characters « + < « « . . J198
Figure 28. Examples of CR, DB, T, 1, and R Picture Characters . 199

Figure 29. Examples of Floating-Point Picture Specifications . .+ .200
Figure 30. Examples of Scaling Factor Picture Characters201

Figure 31. Examples of Sterling Picture Sgecifications e+« s . .201
Figure 32. Examples of Conversion From Fixed-Point to
Character-String . . « 4 e e s e s s e e s s e e s e e s 2 s « &« 2214

Figure 33. LExamples of Conversion Fror Arithmetic to Bit-string . .215
Figqure 34. Data Type of Result of Bit-string Operation215
Figure 35. Data Type of Result of Concatenation Operation215
Figure 36. Data Type of Result of Comparison Operation215
Figure 37. Data Type of Intermediate Operands of Comparison

OPeration « « « ¢« 4 « 4 o o o o 2 o = o « « o s 2 a o o « o o &+ « o« 2216
Figure 38. Data Type of Result of Arithmetic Operation 216
Figure 39. Precision for Arithitetic Conversions216
Figure 40. Lengths of Converted Character Strings (Arithmetic to
Character-String) . « « ¢ ¢ & ¢ 4 4t ¢ ¢« o o o « o o o o o o o o & . 2217

xXvi

Figure

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

41.

Bit-String)

Lengths of Converted Bit Strings (Arithmetic to

. »

= s e 2 e 8 & e & e o s

. . -

Figure #42. Ceiling Values . . « ¢ ¢ ¢ ¢ o o o o o o « o o o o« «
Fiqure 43. Attributes of Result in Addition and Subtraction
OpPerationS . . . < 4 o o o » s o o = = o o = « + o 4 2 4 s e e s
Figure 44. Attributes of Result in Multiplication Operations . .
Figure 45. Attributes of Result in Division Operations
Figure 46. Attributes of Result in Exponentiation Operations . .
Figure 47. Mathematical Built-In Functions (Part 1 of 2)
Figure 48. Permissible Items for Overlay Defining
Figure 48A. Summary of Attributes « ¢« + & « « . .
Figure 49. General Formats of the Assignment Statement e e e e
Fiqure 50. General Format of the DO Statement
Figure 51. Format of Option List for READ Statement
Figure 52. General Format of the XDECIARE Statement
Fiqure 53. Summary of Alignment Requirements for ALIGNED Data .
Figure 54. Surmmary of Alignment Requirements for UNALIGNED Data
Figure 55. Marpping of Minor Structure G + & + « o « o«
Figure 56. Mapping of Minor Structure E+ . . .
Figure 57. Mapping of Minor Strucrure N« . . « « « .
Figure 58. Mapping of Minor Structure S . . e e e e e e e e
Figure 59. Margping of Minor Structure C ¢ « .« « « « o« .
Fiqure 60. Magpping of Minor Structure M
Fiqure 61. Mapping of Major Structure A «
Figure 62. Offsets in Final Mapping of Structure A
Figure 63. Format of Structure S e s s e e e e e e e e e e .
Figure 64. Block Created from Structure S « « « « « . .
Figure 65. Block Created by Structure S With Correct Alignment
Figure 66. Alignment of Data in a Buffer in Locate Mode
Input/OQutput, for Different Formats and Data Set Organizations

. 217
. 217

.218
.218
. 219
. 219
.232
. 259
. 280
. 284
.290
.303
.310
- 317
. 318
. 319
. 320
.321
.322
.323
. 324
. 325
. 326
.326
. 326
. 327

.328

xvii

An explanation of the syntax language the language. For example, references to

used in this rpublicatiocn to describe ele- certain parameters of the DDEF command are
ments of PL/I is contained in Part II, Sec- essential to an explanation of record-
tion 1, "Syntax Notation."” oriented input and output file
crganization.
IMPLEMENTATION CONSIDERATIONS Implementation features jidentified by
the phrase "for System/360 implementa-
This publication reflects features of tions..." agply to all implementaticns for
1 the TSS/360 version of the PL/I compiler. IBM System/360 computers. Features identi-
No attempt is made to provide complete fied by the phrase "for the TSS/360 PL/I
implementation information. Discussion of compiler..." apply specifically to the

implementation is limited to those features PL/I compiler under the IBM System/360 Time
that are required for a full explanation of Sharing System.

PART I: CONCEPTIS OF PL/L

Introduction 3

The modularity of PL/I, the ease with
which subsets can be defined to meet dif-
ferent needs, becomes apparent when one
examines the different features of the lan-
guage. Such modularity is one of the most
important characteristics of PIL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
sections.

MACHINE INDEPENDENCE

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used program-
ming languages. The methods used to
achieve this show in the form of restric-
tions in the language. The most obvious
example is that data with different charac-
teristics cannot in general share the same
storage; to equate a floating-point number
with a certain number o©f alphabetic charac-
ters would be to make assumptions about the
representation of these data items which
would not be true for all machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as the UNSPEC built-
in function and record-oriented data trans-
mission, do permit a degree of machine
dependence.

PROGRAM STRUCTURE

A PL/I program consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a subrou-
tine. Procedures may invoke other proce-
dures, and these procedures or subroutines
may either be compiled separately, or may
be nested within the calling procedure and
compiled with it. Each procedure may con-
tain declarations that define names and
control allocation of storage.

The rules defining the use of proce-
dures, communication between procedires,
the meaning of names, and allocaticn of
storage are fundamental to the proper un-
derstanding of PL/I at any level bu'. the
most elementary. These rules give the user
considerable control over the Z.gree of
interaction between subroutines. They per-
nit flexible communication and storage
allocation, at the same time allowing the

SECTION 1: BASIC CHARACTERISTICS OF PL/I

definition of names and allocation of
storage for private use within a procedure.

By giving the user freedom to determine
the degree to which a subroutine is self-
contained, PL/I makes it possible to write
procedures which can freely be used in
cther environments, while still allowing
interaction in procedures where interaction
is desirable.

DATA TYPES AND DATA DESCRIPTION

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or deci-
ral, fixed-point or floating-point, real or
complex, and its precision may be
specified.

PIL/I provides features to perform arith-
metic operations, operations for compari-
sons, logical manipulation of bit strings,
and operations and functions for assem-
kling, scanning, and subdividing character
strings.

The compiler must be able to determine,
for every name used in a program, the com-
plete set of attributes associated with
that name. The user may specify these
attributes explicitly by means of a DECLARE
statement, the compiler may determine all
or some of the attributes by context, or
the attributes may be assumed by default.

CEFAULT ASSUMPTIONS

An important feature of PL/I is its
default philoscophy. If all the attributes
associated with a name, or all the options
permitted in a statement, are not sgpecified
bty the user, attributes or options may be
assigned by the compiler. This default
action has two main consequences. First,
it reduces the amount of declaration and
cther program writing required; second, it
makes it possible to teach and use subsets
of the language for which the user need not
know all possible alternatives, or even
that alternatives exist.

Since defaults are based on assumptions

about the intent of the user, errors or

Section 1: Basic Characteristics of PL/I 5

omissions may be overlooked, and incorrect
attributes may be assigned by default. To
reduce the chance of this, the compiler
optionally provides an attribute listing,
which can be used to check the names in the
program and the attributes associated with
them.

STORAGE ALLOCATION

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembler-
language user to handle for himself; yet it
is automatically provided in PL/I. There
are four different storage classes: AUTO-
MATIC, STATIC, CONTROLLED, and BASED. In
general, the default storage class in PL/I
is AUTOMATIC. This class of storage is
allocated whenever the block in which the
variables are declared is activated. At
that time the bounds of arrays and the
lengths of strings are calculated. AUTO-
MATIC storage is freed and is available for
reuse whenever control leaves the klock in
which the storage is allocated. '

Storage also may be declared STATIC, in
which case it is allocated when the program
is lcaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the user with ALLOCATE and FREE state-
ments, independent of the invocation of
blocks; or it may be declared BASED, which
gives the user an even higher degree of
control.

The existence of several storage classes
enables the user to determine for himself
the speed, storage space, or programming
economy that he needs for each application.
The cost of a particular facility will
depend upon the implementation, but it will
usually be true that the more dynamic the
storage allocation, the greater the over-
head in execution time.

EXPRESSIONS

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of elemen-
tary algebra. For example:

A+ B=*C

This specifies multiplication of th: value
of B by the value of C and adding the value
of A to the result. PL/I places few re-
strictions on the kinds of data that can be
used in an expression. For example, it is
conceivable, though unlikely, that A could
be a floating-point number, B a fixed-point
number, and C a character string.

When such mixed expressions are speci-
fied, the operands will be converted so
that the operation can be evaluated mean-
ingfully. ©Note, however, that the rules
for conversion must be considered careful-
ly; converted data may not have the same
value as the original. BAnd, of course, any
conversion requires additional compiler-
generated coding, which increases execution
time.

The results of the evaluation of expres-
sions are assigned to variables by means of
the assignment statement. An example of an
assignment statement is:

X =A + B * C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
cf the result of the expression, conversion
will again be performed.

CATA COLIECTIONS

PL/I permits the user many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
collections of data elements, all of the
same type, collected into lists or tables
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other
structures of deeper levels. The deepest
levels of the hierarchy represent elemen-
tary data items or arrays.

An element of an array may be a struc-
ture; similarly, any level of a structure
may be an array. Operations can be speci-
fied for arrays, structures, or parts of
arrays or structures. For example:

A =B + C;
[]
In this assignment statement, A, B, and C

could be arrays or structures.

INPUT AND OUTPUT

Facilities for input and output allow
the user to choose between factors such as
simplicity, machine independence, and effi-
ciency. There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
conpletely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to inter-
nal form and assigned to variables speci-
fied in a list. . Similarly, on output, data

items are converted one by one to external
character form and are added tc a conceptu-
ally continuous stream of characters.
Within the class of stream input/output,
the user can choose different levels of
control over the way data items are edited
and selected from or added to the stream.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a speci-
fied line size and page size. The user has
facilities to detect the end of a page and
to specify the beginning of a line or a
page. These facilities may ke used in sub-
routines that can be developed into a
report generating system suitable for a
particular installation or application.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these a
record at a time without any data conver-
sion; the external representation is an
exact copy of the internal representation.
Because the aggregate is treated as a
whole, and because no conversion is per-
formed, this form of input/output is poten-
tially more efficient than stream-oriented
input/output, although the actual efficien-
cy of each class will, of course, depend on
the implementation.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data con-
version is required. Record-oriented input
and output, on the other hand, provides
faster transmission by transmitting data as
entire records, without conversion.

COMPILE-TIME OPERATIONS

Most programming is concerned only with
operations upon data. PL/I permits a
compile-time level of operation, in which
preprocessor statements specify operations
upon the text of the source program itself.
The simplest, and perhaps the commonest
preprocessor statement is %INCLUDE (in gen-
eral, preprocessor statements are preceded
Ly a percent sign). This statement causes
text to be inserted into the program,
replacing the %INCLUDE statement itself. A
typical use could be to copy declarations
from an installation's standard set of
definitions into the program.

Another function provided by compile-
time facilities is the selective coupila-

tion of program text. For example, it
might specify the inclusion or deletion of
debugging statements.

Since a simple but powerful part of the
PL/I language is available for comgile-time
activity, the generation, or replacement
and deletion, of text can become mwore elab-
orate, and more -subtle transformations can
be performed. Such transformations might
then be considered to be installation-
defined extensions to the language.

INTERRUPTION ACTIVITIES

Computing systems provide facilities for
interrupting the execution of a program
whenever an exceptional condition arises.
Further, they allow the program to deal
with the exceptional condition and to
return to the point at which the interrup-
tion occurred.

P1/1I provides facilities for detecting a
variety of exceptional conditions. It
allows the user to specify, by means of a
condition prefix, whether certain interrup-
tions will or will not occur if the condi-
tion should arise. And, by use of an ON
statement, he can specify the action to be
taken when an interruption does occur.

MULTITASKING

In TSS/360, the concept of multitasking
is inherent in the structure of the system;
there are extensive multitasking facilities
in the TSS5/360 command system. In this
implementation of the compiler, no initia-
tion of tasks will be permitted from within
a PL/I executable program. The user can
start an independent task in TSS/360 by
several different methods. There is no way
for these tasks to communicate within the
PL/I code. (Refer to IBM System/360 Time
Sharing System: Command System User's
Guide, Order No. GC28-2001.)

The effect, then, is that although mul-
titasking statements are accepted by the
compiler, the current inmplementation cannot
honor them and upon encountering a tasking
statement will terminate execution.

Note: If a program contains a CALL state-
ment with a multitasking option (TASK,
EVENT, or PRIORITY), the entire program is

unaccertable for TSS/360 execution.

Section 1: Basic Characteristics of PL/I 7

SECTION 2: PROGRAM ELEMENTS

There are few restrictions in the format
of PL/1 statements. Consequently, programs
can be written without consideration of
special coding forms or checking to see
that each statement begins in a specific
column. As long as each statement is ter-
minated by a semicolon, the format is com-
pletely free. Each statement may begin in
the next column or position after the pre-
vious statement, or any nurber of blanks
may intervene.

CHARACTER SETS

One of two character sets may be used to
write a socurce program; either a 60-
character set or a 48-character set.
given external procedure, the choice
between the two sets is optional.

For a

60~-CHARACTER SET

The 60-character set is composed of
digits, special characters, and alphabetic
characters.

There are 29 alphabetic characters
Lbeginning with the currency symbol (%),
number sign (#), and the commercial "at"
sign (@), which precede the 26 letters of
the English alphabet in the IBM System/360
collating sequence in e£xtended Binary-
Coded-Decimal Interchange Code (EBCDIC).
For use with languages other than English,
the first three alphabetic characters can
be used to cause printing of letters that
are not included in the standard English
alphabet.

the

There are ten digits. The decimal
digits are the digits 0 through 9. A
kinary digit is either a 0 or a 1.

There are 21 special characters. They
are as follows:
Name Character
Blank "—”

kqual sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiply symkol
Slash or divide symbol

Left parenthesis

Right parenthesis

Comma

Point or period

Apocstrophe

Percent symbol

Semicolon

o N R]

2W me w

~e

Name

Colon

"Not" symbol

"And" symbol

"Or" symbol

"Greater than"™ symbol
"Less than"™ symbol
Ereak character? _
Question mark ?

Character

AN o @ e

Special characters are combined to cre-
ate other symbols. For example, <= means
"less than or equal to," 1= means "nct
equal to.®™ The combination *#* denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite syrbols.

An alphameric character is either an
alrhabetic character or a digit, but not a
special character.

Note: The question mark, at present, has
no specific use in the language, even
though it is included in the 60-character
set.

48-CHARACTER SET

The u48-character set is composed cf 48
characters of the 60-character set. 1In all
kut four cases, the characters of the
reduced set can ke combined to represent
the missing characters from the larger set.
For example, the percent symbol (%) is not
included in the 48-character set, but a
double slash (//) can be used to rerresent
it. The four characters that are not du-
plicated are the commercial "at™ sign, the
number sign, the break character, and the
question mark.

The restrictions and changes for this
character set are described in Part I1I,
Section 2, "Character Sets with EBCDIC and
Card-Punch Codes."™

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and comrents may
contain any character permitted by a par-
ticular machine configuration.

iThe break character is the same as the
typewriter underline character. It can be
used with a name, such as GROSS_PAY, to
improve readability.

Certain characters perform specific The string operator is:
functions in a PL/I program. For example,

many characters function as operators. |}l dencoting concatenation
There are four types of operators: Figure 1 shows some of the functions of
arithmetic, comparison, bit-string, and othex special characters.
string.
Identifiers

The arithmetic operators are:
In a PL/I program, names or labels are

+ denoting addition or prefix plus given to data, files, statements, and entry

- denoting subtraction or prefix points of different program areas. In
minus creating a name or label, a user must

* denoting multiplication observe the syntactic rules for creating an

/ denoting division identifier.

** denoting exponentiation
An identifier is a single alphabetic

The comparison operators are: character or a string of alphameric and
kreak characters, not contained in a com-
> denoting "greater than® ment or constant, and preceded and followed
1> denoting "not greater than" ty a blank or some other delimiter; the
= denoting "greater than or initial character of the string must be
equal to" alphabetic. For System/360 implementation,
= denoting "equal to" the length must not exceed 31 characters.
+= denoting "not equal to”
<= denoting "less than or equal to" Language keywords also are identifiers.
< denoting "less than® A keyword is an identifier that, when used
1< denoting "not less than" in proper context, has a specific meaning
to the compiler. A keyword can specify
The bit-string operators are:) such things as the action to be taken, the
nature of data, the purpose of a name. For
1 denoting "not" example, READ, DECIMAL, and ENDFILE are
& denoting "and" keywords. Some keywords can be abbre-~
| denoting “or" viated. A ccmplete list of keywords and
[it § Bt T T e 1
| Name | Character | Use |
G — e e e e 1
{ comma } ' | Separates elements of a list |
| | | |
| period | . | Indicates decimal point or binary point; connects elements |
| | | of a qualified name |
| | | [
| semicolon | H | Terminates statements i
| | | I
| assignment | = | Indicates assignment of values? |
e |
| colon | : | Connects prefixes to statements; can be used in specifica- |
| | | tion for bounds of an array |
| | | |
| blank | | Separates elements of a =iatement |
| | | |
| apostrophe | ’ | Encloses string constants and picture specification |
| | I |
| parentheses | {) | Enclose lists; specify information associated with various |
{ | | keywords; in conjunction with coperators and operands, |
| | | delimit portions of a computational expression |
| | | |
| arrow | -> | Denotes pointer gqualification |
| | | |
| percent | *® | Indicates statements to be executed by the compilerx i
| symbol | | preproc:ssor |
L —— b e m e e e e e e e oo ot e o £t 2t e e e e e e et . 2 et 2 e e et S e 2 e e e i
r
| |

Section 2: Program Elements 9

their abbreviations is contained in Part
11, Section 3, "Keywords and Keyword
Abbreviations."

Note: PL/I keywords are not reserved

words. They are recognized as keywords by
the compiler only when they appear in their
proper context. In other contexts they may

be used as user—-defined identifiers.

No identifier can exceed 31 characters
in length; for the TSS/360 PL/I compiler,
scme identifiers, as discussed in later
chapters, cannot exceed seven characters in
lengtii. This limitation is placed upon
certain names, called external names, that
may be vreferred to by the time-~sharing sys-
temr or by more than one separately compiled
procedure. If an external name contains
more than seven characters, it is truncated
by the compiler, which concatenates the
tirst four characters with the last three
characters.

Examples of identifiers that could be
used for nawmes or labels:

A
FILE2
LOOF_3
RATE_OF PAY
#32

The Use of Blanks

Blanks may be used freely throughout a
PL/1 prcgram. They may or may not surround
operators and most other delimiters. In
general, any number of blanks may appear
wherever one blank is allowed, such as
between words in a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some cother delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, =) can-
not contain blanks.

Other cases that require or permit
blanks are noted in the text where the fea-
ture of the language is discussed. Some
examples of the use of blanks are:

AB+BC is equivalent to AB + BC

TABLE(10) is equivalent to TABLE (10)
FIRST,SECOND is equivalent to FIRST, SECOND
ATOB is not equivalent to A TO B

Comments

Comments are permitted wherever blanks
are allowed in a program, except within

10

data items, such as a character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. Comments do not other-
wise affect execution of a program; they
are used only for documentation purpcses.
Corments may be punched into the same cards
as statements, either inserted between
statements or in the middle of them.

The general format of a comment is:

Ve character-string */

The character pair /#%* indicates the
teginning of a comment. The same character
gair reversed, #*/, indicates its end. No
btlanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be immedi-
ately adjacent. The comment itself may
contain any characters except the */ combki-
nation, which would be interpreted as ter-

minating the comment.
Example:

THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT */

/¥

Any characters permitted for a particu-
lar machine configuration may be used in
comments.

BASIC PROGRAM STRUCTURE

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple state-
ments: keyword, assignment, and null, each
cf which contains a statement body that is
terminated by a semicolon.

A keyvword statement has a keyword to
indicate the function of the statement; the
statemeut body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keywcrd.

The null statement consists only of a
semicolon and indicates no operaticn; the
semicolon is the statement body.

Examples of simple statements are:

the
TO

GO TO LOOP_3; (GO TO is a keyword;

blank between GO and

is optional. The state-
ment body is LOOP_3;)
A =B+ C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolcn. Hence,
the compound statement is terminated by
this semicolon. The IF statement can con-
tain two simple statements as shown in the
following example:

IF A>B THEN A = B+C; ELSE GO TO
LOOP_3;

This example can also be written as
follows:

IF A>B
THEN A=B+C;
ELSE GO TO LOOP_3;

Following are examples of the ON
statement:

ON OVERFLOW GO TO OVFIX;
ON UNDERFLOW;

The contained statement in the second
example is the null statement represented
by a semicolon only; it indicates that no
action is to be taken when an UNDERFLOW
interruption cccurs.

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement Ly a colon.
Any statement may have one or more labels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interruptions are to result from the
occurrence of the named conditions. Condi-
tion names are lanquage keywords, each of
which represents an exceptional cond..tion
that might arise during execution of a pro-
gram. Examples are OVERFLOW and SIZE. The
OVERFLOW condition arises when the exponent
of a floating-point number exceeds the
maximum allowed (representing a waximum
value of about 107%). The SIZE condition
arises when a value is assigned to a vari-

able with loss of high-order digits or
bits.

A condition name in a condition rrefix
wray ke preceded by the word NO to indicate
that, effectively, no interruption is to
cccur if the condition arises. If NO is
used, there can be no intervening blank
ketween the NO and the condition nare.

A condition prefix consists of a list of
cne or more condition names, separated by
commas and enclosed in parentheses. One or
nrore condition prefixes may be attached to
a statement, and each parenthesized list
rmust be followed by a colon. Condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement. For example:

(SIZE, NCOVERFLOW) : COMPUTE: A = B * C *% D;

The single ccndition prefix indicates that
an interruption is to occur if the SIZE
condition arises during execution of the
assignment statement, but that no interrugp-
tion is to occcur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the lakel prefix COMPUTE.

Since intervening blanks between a pre-
fix and its associated statement are
ignored, it is often convenient to punch
the condition prefix into a separate card
that precedes the card into which the
statement is punched. Thus, after debug-
ging, the prefix can be easily removed.
For example:

(NOCONVERSION) :
(SIZE, NCOVERFLOW) :
COMPUTE: A = B * C ** D;

Note that there are two condition prefixes.
The first specifies that no interruption is

+to occur if an invalid character is encoun-

tered during an attempted data conversion.

Condition prefixes are discussed in Part
I, Section 13, "Exceptional Condition
Handling and Program Checkout.”

GROUPS AND BLOCKS

A group is a sequence of statements
headed by a DO statement and terminated Ly
a corresponding END statement. It is used
for control purposes. A group also may be
called a DO-groug.

A block is a sequence of statements that
defines an area of a program. It is used
to delimit the scope of a name and for con-
trol purposes. A program may consist of
cne or more hlocks. Every statement must
appear within a block. There are twc kinds
cf blocks: begin blocks and procedure

Section 2: Program Elements 11

Llocks. A begin block is delimited by a
BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure

12

block must be invoked by execution of a
statement in another block. The first pro-
cedure in a program to be executed is
invoked automatically by the system. For
System/360 implementations, this first pro-
cedure must be identified by specifying
OPTIONS (MAIN) in the PROCEDURE statement.

Data is generally defined as a represen-
tation of information or of value.

In Pi/I, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having 8
value that may change during execution of a
program.

A constant (which is not a symbolic
name) has a value that cannot change.

The following statement has both
variables and constants:

AREA = RADIUS*#2%3.1416;

AREA and RADIUS are variakbkles; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item; the characters 3.1416 also
are written to refer to the data item.

If the number 3.1416 is to be used in
mrore than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has Lkeen
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREAR = RADIUS**2%PI;

In this statement, only the digit 2 is a
constant.

In preparing a PL/I program, the user
must be familiar with the types of data
that are permitted, the ways in which data
can be organized, and the methods by which
data can be referred to. The following
paragraphs discuss these features.

DATA TYPES

The types of data that may be used in a
PL/I program fall into two categor.es:
problem data and program control data.
Problem data is used to represent vilues to
be processed by a program. It consists of
two data types, arithmetic and . tring.
Program control data is used to control the
execution of a program. Program control

SECTION 3: DATA ELEMENTS

data consists of the following types:
lakel, event, task, locator, and area.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

The characteristics of a variable are
not immediately apparent in the name.
Since these characteristics, called attri-
butes, must be known, certain keywords and
expressions may ke used to specify the
attributes of a variable in a DECLARE
statement. The attributes used to describe
each data type are discussed briefly in
this chapter. BA complete discussion of
each attrikute appears in Part 1I, Section
9, "Attributes."

PROBLEM LATA

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale, preci-
sion, and mode. The characteristics of
data items represented by an arithretic
variable are sgpecified by attributes
declared for the name, or assumed by
default.

The base of an arithmetic data item is
either decimal or binary.

The scale of an arithmetic data itex is
either fixed-point or floating-point. A
fixed-roint data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
winimum number of significant digits
(excluding the exponent) to be maintained,

Section 3: Data Elements . 13

in the case of floating-point. For fixed-
point data items, precision can also speci-
fy the assumed position of the decimal or
binary point, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared preci-
sion is maintained. The assigned item is
aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item con-
tains too many integer digits; truncation
on the right may occur if it contains too
many fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers:
the first is real and the second is
imaginary. For a variable representing
complex data items, the base, scale, and
precision of the two parts must Le
identical.

Base, scale, and mode of arithmetic
variables are specified by keywords; preci-
sion is specified by parenthesized decimal
integer constants. The precision of arith-
metic constants is discussed in greater
detail below, under the heading "“Precision
of Arithmetic Constants.”

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, sterling fixed-point, binary
fixed-point, decimal floating-point, and
binary floating-point. Any of these,
except sterling fixed-point, can be used as
the real part of a complex data item. The
imaginary part of a complex number is dis-
cussed in "Conplex Arithmetic Data,” in
this section.

Complex arithmetic variables must be
explicitly declared with the COMPLEX attri-
bute. Real arithmetic variables may be
explicitly declared to have the REAL attri-
kute, but it is not necessary to do so,
since any arithmetic variable is assumed to
be real unless it is explicitly declared
complex.

Decimal Fixed-Point Data

A decimal fixed-point constant consists
of one or more decimal digits with an
optional decimal point. If no decimal
point appears, the point is assumed to be
immediately to the right of the rightmost
digit. 1In most uses, a sign may optionally
precede a decimal fixed-point constant.

14

Examples of decimal fixed-point con-
stants as written in a program are:

3.1416
455.3
732
003
5280
.0012

The keyword attributes for declaring
decimal fixed-point variables are LECIMAL
and FIXED. Precision is stated by two dec-
imal integers, separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total num-
ber of digits; the second, the scale fac-
tor, may be signed and specifies the number
of digits to the right of the decimal
point. If the variable is to represent
integers, the scale factor and its preced-
ing comma can ke omitted. The attributes
may appear in any order, but the precision
specification must follow either DECIMAL or
FIXEDC (or REAL or COMPLEX).

Following are examples of declarations
of decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);
DECIARE B FIXED (6,0) DECIMAL;
DECLARE C FIXED (7,-2) DECIMAL;

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal fixed-
point and aligned on the decimal point.

The second DECLARE statement specifies that
B is to represent integers of no rpore than
6 digits. ©Note that the comma and the zero
are unnecessary; it could have been speci-
fied B FIXED DECIMAL (6). The third
DECLARE statement specifies a negative
scale factor of -2; this means that the
assumed decimal point is two places to the
right of the rightmost digit of the item.

The maximum number of decimal digits
allowed for System/360 implementations is
15. Default precision, assumed when nc
specification is made, is (5,0). The
internal coded arithmetic form of decimal
fixed-point data is packed decimal. Packed
decimal is stored two digits to the Lyte,
with a sign indication in the rightmost
four bits of the rightmost byte. Conse-
quently, a decimal fixed-point data item is
always stored as an odd number of digits,
even though the declaration of the variable
xay specify the number of digits {(p) as an
even numker. When the declaration speci-
fies an even number of digits, the extra
digit place is in the high-order position,
and it participates in any operations per-

formed upon the data item, such as in a
comparison operation. Any arithmetic over-
fiow or assignment into an extra high-order
digit place can be detected only if the
SIZE condition is enabled.

Sterling Fixed-Point Data

PL/I has a facility for handling con-
stants stated in terms of sterling currency
value. The data may be written in a pro-
gram with pounds, shillings, and pence
fields, each separated by a period. Such
data is converted and maintained internally
as a decimal fixed-point numker represent-
ing the equivalent in pence. A sterling
data constant ends with the letter L,
representing the pounds symbol. All three
tields {(pounds, shillings, and pence) must
ke present in a sterling constant. Note
that the the maximum numkber of digits
allowed in the pounds field of a sterling
constant is 13. The pence field is one or
more decimal digits with an optional deci-
mal point (the integer part must be less
than 12 and cannot be omitted, and the
fractional part must not exceed 13 minus
the number of digits in the pounds field).

Examples of sterling fixed-point con-
stants as written in a program are:

101.13.8L
1.10.0L
0.0.2.5L
2.4.6L

The third example represents twopence-
halfpenny. The last example represents two
pounds, four shillings, and six pence. It
is converted and stored internally as 534
(pence).

There are no keyword attributes for
declaring sterling variakles, kut a vari-
able can be declared with a sterling pic-
ture, or sterling values may be expressed
in pence as decimal fixed-point data. The
precision of a sterling constant is the
precision of its value expressed in pence.

Binary Fixed-Point Data

A binary fixed-point constant consists
of one or more binary digits with an
optional binary point, followed immediately
by the letter B, with no intervening blank.
In most uses, a sign may optionally precede
the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B
11111B
101B
111.01B
1011.111B

The keyword attributes for declaring
tinary fixed-point variables are RINARY and
FIXELC. Precision is specified by two deci-
mal integer constants, enclosed in paren-
theses, to represent the maximum number of
binary digits and the number of digits to
the right of the binary point, respective-
ily. If the variable is to represent inte-
gers, the second digit and the conma can be
cmitted. The attributes can appear in any
order, but the precision specificaticn must
follow either BINARY or FIXED (or REAL or
COMPLEX) .

Following is an example of declaration
cf a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 kinary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+262,143.75.

The maximum number of binary digits
allowed for System/360 implementations is
31. Default precision is (15,0). The
internal coded arithmetic form of Lkinary
fixed-point data is a fixed-point binary
fullword or halfword. (A& fullword is 31
kits plus a sign bit; a halfword is 15 bits
plus a sign kit.) Any binary fixed-point
variable of precision less than 16 is
always stored as 15 digits, even though the
declaration of the variable may specify
fewer digits; any tinary fixed-point vari-
able of precision greater than 15 (or any
tinary fixed-point constant, regardless of
precision) is always stored as 31 digits.
The declared numker of digits are consid-
ered to be in the low-order positions, but
the extra high-order digits participate in

~any operations performed upon the data

item. BAny arithmetic overflow into such
extra high-order digit positions can ke
detected only if the SIZE condition is
enabled.

An identifier for which no declaration
is mace is assumed to be a binary fixed-
point variable, with default precision, if
its first letter is any of the letters 1
through N.

Decimal Floating-Point Data

A decimal floating-point constant is
written as a field of decimal digits fol-
lowed by the letter E, fcllowed by an
cptionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

Section 3: Data Elements 15

15E-23

15E23

4E-3
48333E65
438E0
3141593E-6
.003141593E3

The last two examples represent the same
value.

The keyword attributes for declaring
decimal floating-point variakles are DECI-
MAL and FLOAT. Precision is stated by a
decimal integer constant enclosed in paren-
theses. It specifies the minimum number of
significant digits to ke maintained. If an
item assigned to a variable has a field
width larger than the declared precision of
the variable, truncation may occur on the
right. The least significant digit is the
first that is lost. Attributes may appear
in any order, but the precision specifica-
tion must follow either DECIMAL or FLOAT
{or REAL or COMPLEX).

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT_ YEARS DECIMAL FLOAT (5);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for deci-
mal floating-point data items for System/
360 implementations is (16); the exponent
cannot exceed two digits. A value range of
approximately 10-7® to 107% can be ex-~
pressed by a decimal floating-point data
item. Default precision is (6). The
internal coded arithmetic form of decimal
floating-point data is normalized hexadeci-
mal floating-point, with the point assumed
+o the left of the first hexadecimal digit.
If the declared precision is less than or
egqual to (6), short floating-point form is
used; if the declared precision is greater
than (6), long floating-point form is used.

An identifier for which no declaration
is made is assumed to ke a decimal
floating-point variable if its first letter
is any of the letters A through H, ©
through Z, or one of the alphabetic exten-
ders, $, #, a.

Binary Floating-Point Data

A binary floating-point constant con-
sists of a field of binary digits followed
by the letter E, followed by an copticually
signed decimal integer exponent followed by
the letter B. The exponent is a string of
decimal digits and specifies an integral

16

power of two. The field of binary digits
ray contain a kinary point. A binary
floating-point constant may be preceded by
a plus or minus sign. Examples of binary
floating-point constants as written in a
program are:

101101E5B
101.101E28
11101E-28B

The keyword attributes for declaring
binary floating-point variables are BRINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.

The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or COM-
PLEX). Following is an example of declara-
tion of a binary floating-point variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items for System/360
implementations is (53); default precision
is (21). The exponent cannot exceed three
decimal digits. A value range of approxim-
ately 2-269 to 2252 can be expressed by a
kinary floating-point data item. The
internal coded arithmetic form of binary
floating-point data is normalized hexadeci-
mal floating-point. If the declared preci-
sion is less than or equal to (21), short
floating-point form is used; if the
declared precision is greater than (21),
long floating-point form is used.

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginaxy part. There are noc ccm-
rlex constants in PL/I. The effect is
obtained by writing a real constant and an
imaginary c¢onstant.

An imaginary constant is written as a
real constant of any type (except sterling
fixed-point) immediately followed by the
letter I.

Examples of imaginary constants as writ-
ten in a program are:

271
3.968E10I
11011.01BI

Fach of these is considered to have a real
part of zero. Alithough complex constants

cannot be written with a nonzerc real part,
PL/I provides the facility to express such
values in the following form:

real-constant{+|-}iraginary-constant

Thus a comgplex value could be written as
38+271I.

The keyword attribute for declaring a
complex variable is CONMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both
fields.

Unless a variable is explicitly declared

to have the COMPLEX attribute, it is
assumed to rerresent real data items.

Numeric Character Data

A numeric character data item (also
known as a numeric field data item) is the
value of a variable that has Lbeen declared
with the PICTURE attribute and a numeric
picture specification. The data item is
the character representation of a decimal
fixed-point or floating-point vaiue.

A numeric picture specification
describes a character string tc which only
data that has, or can ke converted to, an
arithmetic value is to be assigned. A nu-
meric picture specification cannot contain
either of the picture characters A or X,
which are used for non-numeric picture-
character strings. The basic form of a nu-
meric picture specification is one or more
occurrences of the digit-specifying picture
character 9 and an optional occurrence of
the picture character V, to indicate the
assumed location of a decimal point. The
picture specification must be enclosed in
apostrophes. For example:

999v99"

This numeric picture specification
describes a data item consisting of up to
five decimal digits in character form, with
a decimal point assumed to precede the
rightmost two digits.

Repetition factors may ke used in numer-
ic picture specifications. A repetition
factor is a decimal integer constant, en-
closed in parentheses, that indicates the
number or repetitions of the immediately
following picture character. For example,
the following picture specification would
result in the same descriptic . as the
example shown above:

*(3)9v(2)9°

The format for declaring a numeric
character variable is:

DECLARE identifier PICTURE
'numeric-picture-specification';

For example:
DECLARE PRICE PICTURE '999V99°*;

This specifies that any value assigned to
PRICE is to Le maintained as a character
string of five decimal digits, with an
assumed decimal point preceding the right-
most two digits. Data assigned to PRICE
will be aligned on the assurmed point in the
same way that point alignment is maintained
for fixed-point decimal data.

The numeric picture specificaticn can
specify all of the arithmetic attributes of
data in much the same way that they are
specified ky the appearance of a constant.
Only decimal numeric data can be repre-
sented by picture character. Complex data
can ke deéclared ky specifying the COMPLEX
attribute along with a single picture sgec-
ification that describes either a fixed-
point or a floating-point data iten.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic focrm. In System/360 implementa-
tions, numeric character data is stored in
zoned decimal format; before it can be used
in arithmetic computations, it must ke con-
verted either to packed decimal or to hexa-
decimal floating-point format. Such con-
versions are done automatically, but they
require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the deciral point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can ke spe-
cified fcr insertion into a numeric
character data item, and such characters
are actually stored within the data item.
Cconsequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character cr
arithmetic variakle, the editing characters
will not be included in the assignment;
cnly the actual digits and the location of
the assumed decimal point are assigned.

Consider the following example:
DECLARE PRICE PICTURE '$99Vv.99',

COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);

Section 3: Data Elements 17

PRICE = 12.28;
COST = '512.28";

in the picture specification for PRICE, the
currency symbol ($) and the decimal point
{.) are editing characters. They are
stored as characters in the data item.

‘hey are not, however, a part of its arith-
metic value. After execution of the second
assignment statement, the actual internal
character representation of PRICE and COST
can be considered identical. If they were
printed, they would print exactly the same.
They do not, however, always function the
same. For example:

VALUE = PRICE;
CO8T = PRICE;
VALUE = COST;
PRICE = COST;

t

After the first two assignment state-
wents are executed, the value of VALUE
would be 0012.28 and the value of COST
would be *5$12.28°%. In the assignment of
PRICE +to VALUE, the currency symbol and the
deciwal point are considered to ke editing
characters, and they are not part of the
assignuent; the arithmetic value of PRICE
15 converted to internal coded arithmetic
fOYMm. In the assignment of PRICE to COST,
nowever, the assignment is to a character
string, and the editing characters of a nu-
meric picture specification always parti-
cipate in such an assignment. NG conver-
sion 1s necessary because PRICE is stored
in character form.

fhe third and fourth assignment state-
ments would cause errors. The value of
08T cannot ke assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
vatue of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a nu-
weric picture specification.

Note: Although the decimal point can be an
editing character or an actual character in
a character string, it will not cause an
exrror in converting to arithmetic form,
since its appearance is valid in an arith-
metic constant. The same would be true of
a valid plus or minus sign, since arithme-
tic constants can be preceded by signs.

Other editing characters, including zero
suppression characters, drifting charac-
ters, and insertion characters, can be used
in numeric picture specifications. For
complete discussions of picture characters,
see Part 1I, Section 4, "Picture Specifica-
tion Characters™ and the discussici.. of the
PICTURE attribute in Part II, Section 9,
"Attributes."”

18

Precision of Arxithmetic Constants

For purposes of expression evaluation,
an apparent precision is defined for real
arithmetic cconstants:

Real fixed-point constants have a preci-
sion (p,q), where p is the total number of
digits in the constant and g is the number
of digits specified to the right of the
decimal or binary point.

The precision of a sterling constant is
equivalent tc the precision of its corre-
sponding value in fixed-point pence. This
value is determined as follows: multiply
the value of the pounds field by 240; add
the value of the shillings field multiplied
by 12; add the value of the pence field.
The precision of the result {with leading
zeros removed) is the precision of the cor-
responding sterling constant.

The precision of a floating-point con-
stant is (p), where p is the number of
digits of the constant left of the E.

Examples:

3.14 has grecision (3,2)
0.012E5 has precision (4)
0.9.0.5L has precision (4,1)
0000001B has precision (7,0)

STRING DATA

A string is a contigquous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or kinary digits) it contains.

There are two types of strings:
character strings and bit strings.

Character-String Data

& character string can include any
digit, letter, or special character recog-
nized as a character by the particular
machine configuration. Any blank included
in a charicter string is an integral
character and is included in the count of
length. A comment that is inserted within
a character string will not be recognized
as a comment. The comment, as well as the
corpent delimiters (/#% and #*/), will be
considered to be part of the character-
string data.

Character-string constants, when written
in a program, must be enclcsed in apostro-
phes. 1If an apostrophe is a character in a
string, it must be written as two agostro~
rhes with no intervening blank. The length
of a character string is the number of
characters between the enclosing apostro-

Page ot GC2B-2045-1,

phes. If two apostrophes are used within
the string to represent a single apos-
trophe, they are counted as a single
character.

A null character-string constant is
written in a program as two apostrophes
with no intervening blank.

Examples of character-string constants
are:

' LOGARITHM TABLE®
'PAGE 5°

' SHAKESPEARE''S
AC438-19°

(2) *"WALLA * '
*' (null character-string constant)

.'..HAMLE'T""'

The third example actually indicates SHAKE-
SPEARE'S ''HAMLET'' with a length of 2u.

In the fifth example, the parenthesized
number is a repetition factor, which indi-
cates repetition of the characters that
follow. This example specifies the con-
stant "WAILA WALLA * (the blank is included
as one of the characters to be repeated).
The repetition factor must be an unsigned
decimal integer constant, enclosed in
parentheses.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length is declared by an expression or a
decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length spec-
‘ification must follow the keyword CHARACTER
For example:

DECLARE NAME CHARACTER (15);

This DECLARE statement specifies that the
identifier NAME is to represent character- -
string data items, 15 characters in length.
If a character string shorter than 15
characters were to be assigned to NAME, it
would be left adjusted and padded on the

right with blanks to a length of 15. If a
longer string were assigned, it would be
truncated on the right. (Note: If such

truncation occurs, no interruption will
result as it might for truncation of arith-
metic data, and there is no ON condition in
PL/I to deal with string truncation.)

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;
This DECLARE statement Spécjfies that the
identifier NAME is to be used to represent
varying-length character-string data items
with a maximum length of 15. The actual
length attribute for NAME at any particular

Issued September 30, 1971 by TNL GN28-3185

time is the length of the data item
assigned to it at that time. The user need
not keep track of the length of a varying-
length character string; this is done auto-
matically. The length at any given time
can ke determined by the user, however, by
use of the LENGTH built-in function, as
discussed in Part I, Section 11, "Editing
and String Handling.® Note for the TSS/360
PL/1 compiler that until a varying-length
string variable is given an initial value,
its length is set to zero.

Character-string data in System/360
implementations is maintained internally in
character format, that is, each character
cccuries cne byte of storage. The maximum
length aliowed for wvariables declared with
the CHARACTER attribute is 32,767. The
maximum length allowed for a character-
string constant after application of repe-
tition factors varies according to the
amount o©of storage available to the compil-
er, but it never will he less than 1,007.
The minimum length for a character string
is zero.

Character-strinqg variables also can be
declared using the PICTURE attribute of the
form:

PICTURE ‘character-picture-specification®

The character picture specification is a
string composed of the picture specifica-
tion characters A, X, and 9. The strinqg of
picture characters must be enclosed in
apostrophes, and it must contain at least
one A or X and no other picture characters
excert 9. The character A specities that
the corresponding position in the descrited
field will contain an alphabetic character
or blank. The character X specifies that
any character may appear in the correspond-
ing position in the field. The picture
character 9 specifies that the correspond-
ing position will contain a numeric
character or blank. For example:

DECLARE PART_NO PICTURE 'AA9999X999°;

This DECILARE statement specifies that the
identifier PART NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may ke any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants. Repeti-
tion factors must be placed inside the
apostrophes. The repetition factor speci-
fies repetition of the immediately follow-
ing picture character. For example, the
above picture specification could be
written:

Section 3: Data Elements 19

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

*(2)A(4)9X(3) 9"

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as dis-
cussed above.

Note that, for character picture speci-
fications, the picture character 9 speci-
fies a digit or a blank, while, for numeric
picture specifications, the same character

specifies only a digit.

Bit-string Data

A bit-string constant is written in a
program as a series of binary digits en-
closed in apostrophes and followed immedi-
ately by the letter B.

A null bit-string constant is written in
a program as two apostrophes with no inter-
vening blank, followed immediately by the
letter B.

Examples of bit-string constants as
written in a program are:

‘1'B
11111010110001°*B
(64) "0'B

'IB

The parenthesized number in the third
example is a repetition factor which speci-
fies that the following series of digits is
to be repeated the specified number of
times. The example shown would result in a
string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length is spec-
ified by an expression or a decimal integer
constant, enclosed in parentheses, to spec-
ify the number of binary diqgits in the
string. The letter B is not included in
the length specification since it is not
part of the string. The length specifica-
tion must follow the keyword BIT. Follow-
ing is an example of declaration of a bit-
string variable:

DECLARE SYMPTOMS BIT (64);
Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost
digits are truncated; if shorter, padding,
on the right, is with zeros.

A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variables in the preceding section.

20

With Systems/360 implementations, kit
strings are stored eight bits to a byte.
The maximum length allowed for a bit-string
variable with the TSS/360 PL/I compiler is
32,767 bits. The maximum length allowed
for a bit-string constant after application
of repetition factors depends upon the
amount of storage available to the compil-
er, but it will never be less than 8,056
(1,007 bytes). The minimum length for a
bit string is zero.

PROGRAM CONTROL DATA

The types of program control data are
label, event, task, locator, and area.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier writ-
ten as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: DISTANCE = RATE*TIME;
In this example, ABCDE is the statement
label. The statement can be executed ei-
ther by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A
statement-label variable is an identific:
that refers to statement-label constants.
Consider the following example:

-

LBL_A: statement;

LBL_B: statement;

GO TO LBL_X;

LBL A and LBL B are statement-label con-
stants because they are prefixed to state-
ments. LBL_X is a statement-label vari-
able. By assigning LBL_A to LBL X, the
statement GO TO LBL_X causes a transfer to

——

the LBL_A statement. Elsewhere, the pro-
gram may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
LBL_B. This value of IBI_X is retained
until another value is assigned to it.

A statement-label variakle must be
declared with the LABEL attribute, as
follows:

DECLARE LBL_X LABEL;

EVENT DATA

Event variables are designed to coordi-
nate the concurrent execution of a number
of procedures in a multiprogramming
environment, or to allow a degree of over-
lap between a record-oriented input/output
operation and the execution of other state-
ments in the procedure that originated the
operation. Since multitasking is not sup-
ported in TSS/360, event variables used in
a multiprogramming context do not have as
much significance as in the IBM System/360
Operating System.

A variable is given the EVENT attribute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see "The EVENT
Option®™ in Part I, Section 10, "Record-
Oriented Transmission."®

TASK DATA

Task variables are designed to control
the relative priorities of different PL/I
tasks (i.e., concurrent separate execution
of procedures). Since in TSS/360, the cur-
rent implementation does not support mul-
tiple PL/I tasks, task variables have no
significance.

LOCATOR DATA

There are two types of locator data:
pointer and offset.

The value of a pointer variable is ef-
fectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may hive been
allocated storage in several different
locations, all of which are immediately
accessible. Since based storage ir so
allocated, reference to a based variable
must be gualified in some way; vith the
TSS/360 compiler, this qualification must
Le provided by a pointer variable.

The value of an offset variable speci-
fies a location relative to the start cf a
reserved area of storage and remains valid
when the address of the area itself
changes.

Lecator variakles can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (RAREAl);

In this example, AREA1l is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variakle can also ke given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the left-
hand side of a pointer gualification sym-
btol, or by its appearance in a SET option.

For detailed information, see Part I,
Section 14, "Based Variables and List
Processing."™

AREA DATA

Area variakles are used to descrike
areas of storage that are to be reserved
for the allocation of based variables.
area can be assigned or transmitted com-
plete with its contained allocations; thus,
a set of based allocations can be treated
as one unit for assignment and input/outgut
while each allocation retains its individu-
al identity.

An

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by exglicit
declaration, as in the following example:

DECLARE AREA1l AREA(2000),
AREA2 AREA;

The number of bytes of storage to ke
reserved can be stated explicitly, as it
has been for AREAl in the example; other-
wise a default size is assumed. For the

1 TSS/360 PL/I compiler, this default size is
1000 rytes.

For detailed information, see Part I,

Section 14, "Based Storage and List
Processing."

DATA ORGANIZATION

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (alsc
called a scalar variable). A variable that
represents a collection of data elements is

Section 3: Data Elements 21

either an arxay variable or a structure
variable.

Any type of problem data or program con-
trol data can be collected into arxrays or
structures.

ARRAYS

Data elements having the same charac-
teristics, that is, of the same data type
and of the same precision or length, may be
grouped together to form an array. An
array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative position
within the arxay.

Cconsider the following two declarations:

DECLARE LIST (8) FIXED DECIMNAL (3);
DECLARE TABLE (4,2) FIXED DECIMAL (3);

n rhe first example, LIST is declared to
be a one-dimensional array of eight ele-
wents, each of which is a fixed-point deci-
mal item of three digits. In the second
example, TABLE is declared to ke a two-
dimensional array, also of eight fixed-
point decimal elements.

The parenthesized numker or numbers fol-
lowing the array name in a DECLARE state-
ment is the dimension attribute specifica-
tion. It must fcllow the array name, with
or without an intervening klank. It speci-
fies the number of dimensions of the array
and the bounds, or extent, of each dimen-
sion. Since only one bounds specification
appears for LIST, it is a one-dimensional
array. Two bounds specifications,
separated by a comma, are listed for TABLE;
consequently, it is declared to be a two-
dimensicnal array.

The bounds of a dimension are the begin-
ning and the end of that dimension. The
extent is the number of integers between,
and including, the lower and urper bounds.
If only one integer appears in the bounds
specification for a dimension, the lower
hound is assumed to be 1. The one dimen-
sion of LIST has bounds of 1 and 8; its
extent is 8. The two dimensions of TABLE
have bounds of 1 and 4 and 1 and 2; the
extents are 4 and 2.

If the lower bound of a dimension is not
1, both the upper bound and the lower bound
must be stated explicitly, with the two
numbers connected with a colon. For
example:

DECLARE LIST A (4:11)
DECLARE LIST_B (-4:3)

.
¢
.
7

22

In the first example, the bounds are 4 and
11; in the seccud they are -4 and 3. Note
that the extents are the samwe; in each
case, there are # integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in Part I, Section 4, "Expressions®)
involving more than one array, the bounds
-- not merely the extents ~- must ke iden-
tical. Although LIST, LIST A, and LIST_B
all have the same extent, the bounds are
not identical.

The kounds of an array determine the way
elements of the array can ke referred to.
For example, assume that the following data
items are assigned to the array LIST, as

declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20
LIST (2) 5
LIST (3) 10
LIST (&) 30
LIST (5) 630
LIST (6) 150
LIST (7) 310
LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized sub-
script following an array name, with or
without an intervening blank, specifies the
relative position of a data item within the
array. A sukscripted name, such as LIST
(43, refers to a single element and is an
element variable. The entire array can be
referred to by the unsubscripted name of
the array, for example, LIST. In this
case, LIST is an array variable. Note the
difference between a subscript and the
dimension attribute specification. The
latter, which appears in a declaration,
specifies the dimensionality and the number
cf elements in an array. Subscripts are
used in other references tc identify spe-
cific elements within the array.

The same data assigned to LIST A and

1IST B, as declared above, would be

referred to as follows:
Reference Element Reference
LIST_ A (&) 20 LIST_B (-4}
LIST A (5) 5 LIST_B (-3)
LIST A (&) 10 LIST_B (-2)
LIST A (7 30 LIST B (-1)
LIST A (8) 630 LIST_B (0)
LIST A (9) 150 LIST B (1)
LIST A (10) 310 LIST_B (2}
LIST A (11) 70 LIST_B (3)

Assume that the same data were assigned
to TABLE, which is declared as a two-
dimensional array. TABLE can ke illus-
trated as a matrix of four rows and two

columns, as follows:
TABLE (m,n) (m,1) (m,2)
(1,n) 20 5
(2,n) 10 30
(3,n) 630 150
(4,n) 310 70

An element of TABLE is referred to by a
subscripted name with two parenthesized
subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,
the data item 10.

Note: The use of a matrix to illustrate
TABLE is purely conceptual. It has no
relationship to the way in which the itens
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the right-most sub-
script varying most rapidly. For example,
assignment to TABLE would be tc TABLE(1,1),
TABLE(1,2), TABLE(2,1), TABLE(2,2) and so
forth.

Arrays are not limited to two dimen-
sions. The PL/I ccmpiler allows as many as
32 dimensions to be declared for an array.
In a reference to an element of any array,
a subscripted name must contain as many
subscripts as there are dimensions in the
array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. Other
data types may be collected into arrays.
String arrays, either character or bit, are
valid, as are arrays of statement labels.

Expressions as Subscripts

The subscripts of a subscripted name
need not be constants. Any expression that
vyields a valid arithmetic value can be
used. If the evaluation of such an expres-
sion does not yield an integer value, the
fractional portion is ignored. For System/
360 implementations, the integer value is
converted, if necessary, to a fixed-point
binary number of precision (15,0), since
subscripts are maintained internally as
binary integers. Note that, although the
TSS/360 compiler maintains fixed-point
binary variakles of precision less than 16
as halfwords, this does not apply to sub-
script expressions. These, like most other
compiler-created fixed-point kirary tem-
poraries (see Section 4, "Expressions and
Data Conversion") are stored as fullwords,
regardless of precision.

Subscripts are frequently expressed as
variables or other expressions. Thus,

TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross Sections of Arrays

Cross sections of arrays can be referred
to by substituting an asterisk for a sub-
script in a subscripted name. The asterisk
then specifies that the entire extent is to
ke used. For example, TABLE(*,1) refers to
all of the elements in the first column of
TABLE. It specifies the cross secticn ccn-
sisting of TABLE(1l,1), TABLE(2,1), TABLE(3,
1), and TABLE(4,1). The subscripted name
TABLE(2,*) refers to all of the data items
in the second row of TABLE. TABLE(*,*)
refers to the entire array.

Note that a subscripted name containing
asterisk sukscripts represents, not a
single data element, but an array with as
many dimensions as there are asterisks.
Consequently, such a name is not an element
expression, but an array expression.

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouged
into aggregates called structures.

Like an array, the entire structure is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the struc-
ture name, which represents the entire
collection of element variakles. For
example, the following is a collecticn of
element variables that might be used to
compute a weekly payroll:

LAST_NAME
FIRST NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME_RATE

These variakles could be collected into
a structure and given a single structure
name, PAYROLL, which would refer to the
entire collection.

PAYROLL
LAST_NAME REGULAR_HOQURS REGULAR_RATE
FIRST_NAME OVERTIME HOURS OVERTIME RATE

Section 3: Data Elements 23

Any reference tc PAYRCLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL);
This input statement could cause data to

Le assigned to each of the element
variables of the structure PAYROLL.

It often is convenient to subdivide the
entire collection into smaller logical
collections. In the above examples, LAST -
NAME and FIRST NAME might make a logical
subcollection, as might REGULAR_HOURS and
CVERTIME_HOURS, as well as REGULAR_RATE and
OVERTIME RATE. 1In a structure, such subco-
llections alsc are given names.

PAYROLL
NAME HOURS RATE
FIRST REGULAR REGULAR
LAST OVERTIME OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the structure nanme
(called a majcr structure name); at a deep-
er level are the names of substructures
(called winor structure names); and at the
deepest are the element names (called ele-
mentary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is spec-
iried in a DECLARE statement through the
use of level numbers. A major structure

name must be declared with the level number

1. Minor structures and elementary names
must be declared with level numbers arith-
metically greater than 1; they must be
decimal integer constants. A blank must
separate the level number and its asso-
ciated name. The maximum declared level
number permitted in a structure is 255.
The maximum true level number permitted in
a structure is 63.

For example, the items of a weekly
payroll could be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,
3 LAST,
3 FIRST,
2 HOURS,
3 REGUILAR,
3 OVERTIME,
2 RATE,
3 REGULAR,
3 OVERTIME;

Note: 1In an actual declaration of the
structure PAYROLL, attrikutes wou:d be
specified for each of the elementary names.
The pattern of indention in this example is

24

used only for readability. The statement
could pbe written in & continuous string as
CECLARE 1 PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HCURS, and RATE. Each minor structure con-
tains twc elementary names. A user can
refer to the entire structure by the nare
PAYROLL, or he can refer to portions of the
structure by referring tc the minor struc-
ture names. He can refer to an element by
referring to an elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
nurbers chosen for successively deeper
levels need not be the immediately succeed-
ing integers. They are used merely to spe-
cify the relative level of a name. A minor
structure at level n contains all the names
with level numbers greater than n that 1lie
Letween that minor structure name and the
next name with a level numbexr less than cr
equal tc n. PAYROLIL might have been
declared as follows:

CECLARE 1 PAYROLL,

4 NAME,
5 LAST,
5 FIRST,

2 HOURS,
6 REGULAR,
5 CVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

This declaration would result in exactly
the same structuring as the previous
declaration.

The descripticn of a major structure
name is terminated by the declaration of
another item with a level number 1, Lky the
declaration of another item with no level
number, or by a semicolon terminating the
CECLARE statement.

Level numkers are specified with struc-
ture names only in DECLARE statements. In
references to the structure or its ele-
ments, no level numbers are used.

gualified Names

A minor structure or a structure element
can be referred to by the minor structure
name or the elementary name alone if there
is no ambiguity. Note, however, that each
of the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name would
ke ambiguous without some qualification to
rnake the name unique.

PL/I allows the use of qualified names
to avoid this ambiguity. A gualified name
is an elementary name or a mincr structure
name that is made unique by qualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and OVER-
TIME could be made unique through use of
the qualified names HOURS.REGULAR, HOURS.
OVERTIME, RATE.REGULAR, and RATE.OVERTIME.

The different names of a gqualified name
are connected by periods. Blanks may or
may not appear surrounding the period.
gualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL.HOURS.REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK.HOURS.REGULAR}. All of the qual-
ifying names need not ke used, although
they may be, if desired. Qualification
need go only sc far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name PAYROLL.
LAST is a valid reference to the name
PAYROLL.NAME.LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attrikute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

DECLARE 1 WEATHER(12),

2 TEMPERATURE,
3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND_VELOCITY,
3 HIGH DECIMAL FIXED(3),
3 LOW DECIMAL FIXECD(2),

2 PRECIPITATION,
3 TOTAL DECIMAL FIXED(3,1),
3 AVERAGE DECIMAL FIXED(3,1);

Thus, a user could refer to the weather
data for the month of July by specifying
WEATHER(7). Portions of the July weather
could be referred to by TEMPERATURZ(T),
WIND _VELOCITY(7), and PRECIPIT [ION(7), but
TOTAL(7) would refer tc the total precipi-
tation during the month of July.

TEMPERATURE.HIGH(3), which would refer
to the high temperature in March, is a sub-
scripted gualified name.

The need for subscripted qualified names
tecomes mcre aprarent when an array of
structures contains minor structures that
are arrays. For example, consider the fol-
lowing array of structures:

DECIARE 1 A (6,6),
2B (%),
3 c,
3 D,
2 E;

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).C
identifies a particular C that is an ele-
rent of B in a structure in A.

So long as the order of subscripts
remains unchanged, subscripts in such
references may ke moved to the right or
left and attached to names at a lower cx
higher level. For example, A.B.C(1,1,2)
and A(1,1,2).B.C have the same meaning as
A(1,1).B(2).C for the above array of struc-
tures. Unless all of the subscripts are
nmoved to the lowest or highest level, the
qualified name is said to have interleaved
subscripts; thus, A.B(1,1,2).C has inter-
leaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For exarrple, in
the above declaration for the array of
structures A, the array B is a three-
dimensional structure, because it inherits
the two dimensions declared for A. If B is
unique and requires no gqualification, any
reference to a particular B would require
three sukscripts, two to identify the spe-
cific A and cone to identify the specific B
within that A.

OTHER ATTRIBUTES

Keyword attributes for data variables
such as BINARY and DBECIMAL are discussed
kriefly in the preceding sections cf this
chapter. Other attributes that are not
peculiar to one data type may also be ap-
rlicable. A complete discussion of these
attributes is contained in Part II, Section
9, "Attributes.®™ Some that are esrecially
arplicable tc a discussion of data type and
data organization are DEFINED, LIKE,
ALIGNED, UNALIGNED, and INITIAL.

The CEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is

Section 3: Data Elewents 25

to occupy the same storage area as that
assigned to other data. For examgle,

DECLARE LIST (100,100),
LIST ITeEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST_ITEM is an identical array defined on
LIST. A reference to an elewment in LIST I-
TEM is the same as a reference to the
corresponding element in LIST.

The DEFINED attribute, along with the
POSITION attribute, can be used to subdi-
vide or overlay a data item. For example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTER{10) DEFINED LIST,
LISTE CHARACTER(10) DEFINED LIST
POSITION(11),
LISTC CHARACTER(30) DEFINED LIST
POSITION(21);

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINEL attribute may also ke used
to specify parts of an array through use of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can ke specified as any
decimal integer constant from 1 through n
(where n represents the number of dimen-
sions for the defined item). The value of
the dummy variable (iSUB) ranges from the
lower bound to the upper tound of the
dimension specified by n. For example:

DECLARE A(20,20),
B{(10) DEFINED A(2*1SUB,2#%1SUB);

B is a subset of A consisting of every even
element in the diagonal of the array, A.

In other words, B(l) corresponds to A(2,2),
B(2) corresponds to A(4,4).

The LIKE Attribute

The LIKE attribute is used to indicate
that the name being declared is to be given
the same structuring as the major structure
or minor structure name following the
attribute LIKE. For examgle:

DECLARE 1 BUDGET,
2 RENT,
2 FOOD,
3 MEAT,
3 EGGS,
3 BUTTER,
2 TRANSPORTATION,
3 WORK,
3 OTHER,
2 ENTERTAINMENT,
1 COST_OF_LIVING LIKE BUDGET;

26

This declaration for COST_OF LIVING is the
sarre as if it had been declared:

DECLARE 1 COST_OF LIVING,

2 RENT,

2 FGOD,
3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies structur-
ing, names, and attributes of the structure
Eelow the level of the specified name only.
No dimensionality of the specified name is
copied. For example, if BUDGET were
declared as 1 BUDGET{(12)}, the declaration
of COST_CF_LIVING LIKE BUDGET would not
give the dimension attribute to COST_OF -
LIVING. To achieve dimensionality cf
COST_OF_LIVING, the declaration would have
to be DECLARE 1 COST OF LIVING(12) LIKE
BUDGET.

A minor structure name can be declared
IIKE a major structure or LIKE another
rinor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

The ALIGNED and UNALIGNED Attributes

The ALIGNED and UNALIGNED attributes are
used tc specify the positicning in storage
cf data elements, to influence speed of
access or storage econcomy respectively.

Note: Use of the UNALIGNED attribute
allows data interchange with FORTRAN files.

ALIGNED in System/360 implementations
specifies that the data element is tc be
aligned on the storage boundary correspond-
ing to its data type requirement.

UNALIGNED in System/360 implementations
specifies that each data element is to he
stored contiguously with the data element
preceding it: a character-string item is
to be mapred on the next byte boundary, a
bEit-striug item is to be magped on the next
kit, and a fullword and doubleword item is
to be mapped on the next byte houndary.

Defaults are applied at element level,
The default for bit-string data, character-
string data, and numeric character data is
UNALIGNED; for all other types of data, the
default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that

are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED declara-
tions for a structure and its elements:

DECLARE 1 STRUCTURE,

2 X BIT(2), /% UNALIGNEL BY
CEFAULT */
2 A ALIGNED, /* ALIGNED EXPLICITLY #*/
3 B, /* ALIGNED FROM A */
3 C UNALIGNED, /* UNALIGNED
EXPLICITLY */
4 D, /* UNALIGNEL FROM C */
4 E ALIGNED, /* ALIGNED EXPLICITLY #*/
4 F, /% UNALIGNED FROM C */
3 G, /% ALIGNED FROM A */
2 H; /% ALIGNED BY DEFAULT */

Although UNALIGNED causes economic use
of data storage, for System/360 implementa-
tions it will increase the amount of code
generated to access data items that are not
aligned on the required byte boundaries.

The INITIAL Attribute

The INITIAL attribute specifies an ini-
tial value to be assigned to a variakle at
the time storage is allocated for it. For
example:

DECLARE NAME CHARACTER(10) INITIAL
(*JOHN DOE');

DECLARE PI FIXED CECIMAL (5,4) INITIAL

(3.1416) ;

DECLARE TABLE (100,100) INITIAL CALL
SUBR (ALPHA) ;

When storage is allccated for NAME, the
character string 'JCHN DCE' (padded to 10
characters) will be assigned to it. When
PI is allocated, it will be initialized to
the value 3.1416. Either value may be
retained throughout the program, or it may
be changed during execution. The third
example illustrates the CALL option. It
indicates that the procedure SUBR is to be
invoked to perform the initialization.

For a variable that is allocated when
the program is loaded, that is, a static
variable, which remains in allocation
throughout execution of the program, any
value specified in an INITIAL attribute is
assigned only once. Fcr autcmatic
variables, which are allocated at :@:ach
activation of the declaring klock, any
specified initialization is assigned with
each allocation. For contreclled variables,
which are allocated at the execution of
ALLOCATE statements, any spec.:.ied initial-
ization is assigned with each allocation.
Note, however, that this initialization can
be overridden in the ALLOCATE statement.

The compiler does not allow the INITIAL
attribute to be specified for based
variables.

The INITIAL attribute cannot be given
for entry names, file names, DEFINEL data,
entire structures, parameters, task data,
c¢r event data.

Note: The CALL option cannot be used with
the INITIAL attribute for static data.

The INITIAL attribute cannot be used
without the CALL option for pointer, off-
set, or area data. An area variable is
automatically initialized with the value of
the EMPTY Ltkuilt-in function, on allocation,
after which any specified INITIAL CALL is
arrlied.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. 1In a structure declaration,
only elementary names can be given the INI-
TIAL attrikute.

An array or an array of structures can
ke partly initialized or fully initialized.
For example:

DECIARE A(15) CHARACTER(13) INITIAL
(*JOHN DOE', 'RICHARD ROW',
*MARY SMITH'),

B (10,10) DECIMAL FIXED(5)
INITIAL((25)0,(25)1, (50)0),

1 C(8),
2 D INITIAL (0),
2 E INITIAL((8)0);

In this exarple, only the first three ele-
ments of A are initialized; the rest of *he
array is uninitialized. The array B is
fully initialized, with the first 25 ele-
rents initialized to 0, the next 25 to 1,
and the last 50 to 0. The parenthesized
numbers (25, 25, and 50) are iteration fac-
tors, that specify the numter of elements
to be initialized. In the structure C,
where tlie dimension (8) has been inherited
ty D, cnly the first element of D is
initialized; where the dimension (8) has
Eeen inherited ky E, all the elements of E
are initialized.

When an array of structures is declared
with the LIXE attrikute to obtain the same
structuring as a structure whose elements
have been initialized, it should be noted
that only the first structure in this array
cf structures will be initialized. For
examples:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL(O),
1 J(8) LIKE G;

Section 3: Data Elements 27

In this example, only J(1).H and J(1).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decimal integer constants; for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be con-
fused with the string repetition factor
discussed earlier in this chapter. Consid-
er the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL ((10)°'A', (25) (10)*B',
@y w'cY);

This INITIAL attribute specification con-

tains both iteration factors and repetition
factors. It specifies that the first ele-

28

ment of TABLE is to be initialized with a
string censisting of 10 A's, each of the
next 25 elements is to be initialized with
a string consisting of 10 B's, and each of
the last 24 elements is to be initialized
with the single character C. 1In the INI-
TI/.L attribute specification for a string
array, a single parenthesized factor pre-
ceding a string constant is assumed to ke
string repetition factor {(as in (10)'A"').
If more than one appears, the first is
assured to ke an iteration factor, and the
second a string repetition factor. For
this reason (as in (24)(1)°C'), a string
repetition factor of 1 must be inserted if
a single string constant is to be used to
initialize more than one element.

The CALL option can be used tc initial-
ize arrays, except for arrays of static
storage class.

-—

An expression is a representation of a
value. A single constant or a variable is
an expression. Combinations of constants
ands/or variables, along with operators and/
or parentheses, are expressions. An ex-
pression that contains operators is an
operational expression. The constants and
variables of an operational expression are

called operands.

Examples of expressions are:

27

LOSS

A+B

(SOTY-QTY) #SPRICE

Any expression can ke classified as an
element expression (also called a scalar

expression), an array expression, or a
structure expression. An element expres-

sion is one that represents an element
value. An array expression is one that
represents an array value. A structure ex-
pression is one that represents a structure
value.

For the TSS/360 PL/I compiler, array
variables and structure variakles cannot
appear in the same expression. Element
variables and constants, however, can
appear in either array expressions or
Structure expressions. An elementary name
within a structure or a sukscripted name
that specifies a single element of an array
is an element expression.

Note: If an elementary name of a structure
is given the dimension attribute, that ele-
mentary name is an array variakle and can
appear only in array expressions.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10,10) BINARY FIXED (31),

B(10,10) BINARY FIXED (31),
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),

2 SECONDARY DECIMAL FIXED (4,2},
1 COST, 2 PRIMARY DECIMAL FIXED (u4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

Examples of element expressions are:
C * D
A(3,2) + B(4,8)
RATE.PRIMARY - COST.PRIMARY
A(4,4) *= C
RATE.SECONDARY / 4
A(4,6) * COST.SECONDARY

Section 4:

SECTION 4: EXPRESSIONS AND DATA CCNVERSION

All of these expressions are element ex-
pressions because each operand is an ele-
ment variakle or constant (even though some
may be elements of arrays or elementary
names of structures); hence, each expres-
sion represents an element value.

Examples of array expressions are:

D

WP
N %+
=0t

6B

All of these expressions are array expres-
sions because at least one operand of each
is an array variable; hence, each expres-
sion represents an array value. Note that
the third example contains the binary
fixed-point constant 10B.

Examples of structure expressions are:

RATE * COST
RATE / 2

Both of these expressions are structure ex-
pressions because at least one operand of
each is a structure variable; hence, each
expression represents a structure value.

USE OF EXPRESSIONS

Expressions that are single constants or
single variakles may appear freely through-
out a program. However, the syntax of many
PL/I statements allows the appearance of
operational expressions, so long as evalua-
tion of the exrression yields a valid
value.

In syntactic descriptions used in this
publicaticon, the unqualified term "expres-
sion" refers to an element expression, an
array expression, or a structure expres-
sion. For cases in which the kind of ex-
pression is restricted, the type of re-
striction is noted; for example, the term
"element-expression®™ in a syntactic
description indicates that neither an array
expression nor a structure expression is
valid.

Note: Although operational expressions can
appear in a number of different PL/I state-
nents, their most common occurrences are in
assignment statements of the form:

A =B + C;
The assignment statement has no PL/I key-
word. The assignment symbol (=) indicates

Expressions and Data Conversion 29

that the value of the expression on the
right (B + C) is to be assigned to the
variable on the left (A). For purposes of
illustration in this chapter, some examples
of expressions are shown in assignment
statements.

DATA CONVERSION IN OPERATIONAL EXPRESSIONS

An operaticnal exgpression consists of
one or more single operations. A single
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
cperands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type, as
specified by the attrikutes of a variable
or the notation used in writing a constant.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a common representation
refore the operation is performed. General
rules for conversion of different data
types are discussed in the following para-
graphs and in a later section of this
chapter, "Concepts of Data Conversion."
Letailed ruales for specific cases, includ-
ing rules for computing the precision or
length of a ccnverted item, can ke found in
Part II, Section 6, "Problem Data
Conversion."”

Data conversion is mainly cconfined to
yiroblem data. The only conversion possible

with program control data is conversion
between coffset and pointer types.

PROBLEM DATA CONVERSION

Data conversion can be applied to all
types of problem data, as listed below.

Bit-string to Character-String

The bit 1 becomes the character 1; the

bit 0 becomes the character 0.

Character-String to Bit-string

The character string should contain the
characters 1 and 0 only, in which case the
character 1 becomes the kit 1, and the
character 0 becomes the bit 0. The CONVER-
SION condition is raised by an attempt to
convert any character other than 1 or 0 to
a bit.

Character-String to Arithmetic

The character string must be in the form
of a signed or unsigned arithmetic r:onstant
(or an expression representation of a COM-
PLEX data item). The constant may be sur-
rounded by blanks, but blanks must not be

30

imbedded in a number. Any character other
than those allowed in arithmetic data will
raise the CONVERSION condition if conver-
sion is attempted.

Note: In the conversion, for an infix
cperation, of a character string that
represents a fixed-point constant -- either
decimal or kinary -- any fractional gortion
will be lost if it is converted to fixed-

f point. For the TS55/360 PL/I compiler,
integer digits will be truncated if the
character string contains more than 5
decimal integer digits or 15 binary digits.
If the conversion is to floating-point, it
will retain its fractional value. Rules
for the precisicn of such conversion are
listed in Part iI, Secticn 6, "Problem Data
conversion.”

Arithmetic tc Character-String

The value of an internal coded arithme-
tic operand is converted to its character
representation. The converted field is a
character string in the form of a valid
arithmetic constant. The length of the
character string is dependent upon the pre-
cision of the arithmetic data item.

Bit-string to Arithmetic

A bit string is interpreted as an
unsigned binary integer and is converted to
fixed-point binary of positive value. The
rase and scale are further converted, if
necessary.

Arithmetic to Bit-string

The absolute value is converted, if
necessary, to a real fixed-point binary
integer. Ignoring the plus sign, the
integer is then interpreted as a bit
string. The length of the kit string is
dependent upon the precision of the origi-
nal unconverted arithmetic data item.

Arithmetic Mode Conversion

If a complex data item is converted to a
real data item, the result is the real part
cf the ccmplex item.

A real data item is converted to a com-
plex data item by adding an imaginary part
cf zero.

Arithmetic Base and Scale Conversion

The precision of the result of an arith-
metic base or scale conversion is degendent
upon the precision of the original arithme-
tic data item. The rules are listed in
Part 1II, Section 6, "Problem Data
Conversion."”

LOCATOR DATA CONVERSION

Only offset to pointer conversion occurs
as a result of an operational expression
(locator variables are restricted to = and
1= comparison operations), but either of
the following types of conversion can
result from assignment. (See also Part I,
Section 14, “Based Storage and List
Processing.")

Offset to Pointer

An offset value is converted to pointer
by combining the offset value with the
pointer value relating to the start of the
area named in the OFFSET attribute.

Pointer to Offset

A pointer value is converted to offset
by effectively deducting the pocinter value
for the start of the area from the pointer
value to be converted. This conversion is
limited to pointer values that relate to
addresses within the area named in the OFF-
SET attribute.

CONVERSION BY ASSIGNMENT

In addition to conversion performed as
the result of an operation in the evalua-
tion of an expression, conversion will also
occur when a data item -- or the result of
an expression evaluation -- is assigned to
a variable whose attrikutes differ from the
attributes of the item assigned. The rules
for such conversion are generally the same
as those discussed above and in Part 1I,
Section 6, "Problem Data Conversion.”

EXPRESSION OPERATIONS

An operational expression can specify
one or more single operations. The class
of operation is dependent upon the class of
operator specified for the operation.

There are four class of operations --
arithmetic, bit-string, comparison, and
concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ - * / %=

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand. such as +A
or -A) or as infix operators .associated
with and between two operands, such as A+B

Section U4:

or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
ke ccmposed of a set of such arithmetic
operations. Note that prefix operators can
precede and ke associated with any of the
operands of an infix operation. For
example, in the expression A*-B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
the negative value of B.

More than one prefix operator can gpre-
cede and be associated with a single vari-
able. More than one positive prefix opera-
tor will have no cumulative effect, but two
consecutive negative prefix operators will
have the same effect as a single positive
prefix operator. For example:

-A The single minus sign has the effect
of reversing the sign of the value
that A represents.

One minus sign reverses the sign of
the value that A represents. The
second minus sign again reverses the
sign of the value, restoring it to
the original arithmetic value repre-
sented by A.

---A Three minus signs reverse the sign of
the value three times, giving the
same result as a single minus sign.

Data Conversion in Arithmetic Operations

The two operands of an arithmetic opera-
tion may differ in type, base, mode, preci-
sion, and scale. When they differ, conver-
sion takes place according to rules listed
Lelow. Certain other rules -- as stated
kelow -- may apply in cases of
exponentiation.

TYPE: Character-string operands, numeric
character field operands (digits recorded
in character form), and kit-string operands
are converted to internal coded arithmetic
tyre. The result of an arithmetic opera-
tion is always in coded arithmetic form.
Note that type conversion is the only con-
version that can take place in an arithme-
tic prefix operation.

BASE: If the kases of the two operands
differ, the decimal operand is converted to
kinary.

MODE: If the modes of the two operands
differ, the real operand is converted to
complex mode (ky acquiring an imaginary
part of zerc with the same base, scale, and
precision as the real part). The exception
to this rule is in the case of exponentia-
tion when the second operand (the exponent
of the operation) is fixed-point real with

Expressions and Data Conversion 31

a scale factor of zero. 1In such a case, no

ceonversion is necessary.

PRECISION: If only precisions differ, no
type conversion is necessary.

SCALE: If the scales of the two operands
differ, the fixed-point operand is con-
verted to fleoating-point scale. The excep-
tion to this rule is in the case of
exponentiation when the first operand is of
floating~-point scale and the second operand
(the exponent of the operation) is fixed-
point with a scale factor of zero, that is,
a fixed-point integer constant or a vari-
able that has been declared with precision
{p,9). 1In such a case, no conversion is
necessary, but the result will be
floating-point.

If both operands of an exponentiation
operation are fixed-point, conversions may
occur, as follows:

1. Both operands are converted to
floating-point if the exponent has a
precision other than (p,0).

2. The first operand is converted to,
floating~-point unless the exponent is
an unsigned fixed-point integer
constant.

3. The first operand is converted to
floating-point if precisions indicate
that the result of the fixed-point
exponentiation would exceed the maxi-
mum number of digits allowed for the
implementation (for System/360, 15
decimal digits or 31 binary digits).
Further details and examples of con-
version in exponentiation are included
in the section "Ccncepts of Data Con-
version™ in this chapter.

Results of Arithmetic Operations

The ®"result® of an arithmetic operation,
as used in the following text, may refer to
an intermediate result if the operation is
only one of several operations specified in
a single operational expression. Any
result may reguire further conversion if it
is an intermediate result that is used as
an operand of a subsequent operation or if
it is assigned to a variable.

After required conversions have taken
place, the arithmetic operation is per-
formed. If maximum precision is exceeded
and truncation is necessary, the truncation
is performed on low-order fractional
digits, regardless of base or scale of the
operands. In some cases involving fixed-
point data, however, high-order digits may
sometimes be lost when scale factc~s are
such that point alignment does not allow
for the declared number of integer digits.

32

The kase, scale, mode, and precision of
the result depend upon the operands and the
cperator involved.

For prefix coperations, the result has
the same base, scale, mode, and precision
as the converted operand. Note that the
result of -A, where A is a string, is an
arithmetic result, since A must first be
converted to coded arithmetic form kefore
the cperation can ke performed.

For infix ogperations, the result depends
upon the scale of the operands in the fol-
lowing ways:

FLOATING-POINT: 1If the converted operands
of an infix operation are of floating-goint
scale, the result is of floating-point
scale, and the base and mode of the result
are the common base and mode of the
operands. The precision of the result is
the greater of the precisions of the two
cperands.

FIAEC-POINT: If the converted operands of
an infix operation are of fixed-point
scale, the result is of fixed-point scale,
and the base and mode of the result are the
common base and wode of the operands. The
rrecision of a fixed-point result depends
upon operands, according to the rules
listed below.

In the formulas for computing precision,
the symbols used are as follows:

p represents the total number of
digits of the result

q represents the scale factor of
the result

P represents the total number of
digits of the first operand

qdi rerresents the scale factor of
the first operand

P2 represents the total number of
digits of the second operand

Lo P represents the scale factor of
the second operand

ADDITION AND SUBTRACTION: The total number
of digits in the result is equal to 1 plus
the number of integer digits of the operand
having the greater number of integer digits
plus the numker of fractiomnal digits of the
cperand having the greater numker of frac-
tional digits. The total number of posi-
tions cannot exceed the maximum number of
digits allowed (15 decimal digits, 31
kinary digits). The scale factor of the
result is equal to the larger scale factor
cf the two ogerands.

Formulas:

p = 1 + maximum {(pi-Qy, Pa-dqz)
+ maximum (g,, ggz)

g = maximum (g,, g2)
Example:

12354.2385 + 222.11111
A B C D

The total number of digits in the result
would be equal to 1 plus the number of
digits in A plus the numker of digits in D.
The scale factor of the result would be
equal to the number of digits in D. Preci-
sion of the result would be (11,5).

MULTIPLICATION: The total numker of digits
in the result is equal to one plus the
number of digits in operand one plus the
number of digits in operand two. The total
number of digits cannot exceed the maximum
number of digits allowed for the implemen-
tation (15 decimal, 31 binary). The scale
factor of the result is the sum of the
scale factors of the two operands.

Formulas:

p=ps tpzt 1
q = ds ¥+ gz

Example:

345.432 * 22.45
A B C D

The total number of digits in the result
would be equal to 1 plus the sum of the
number of digits inm A, B, C, and D. The
scale factor of the result would be the sum
of the number of digits in B and D. Preci-
sion of the result would be (11,5).

DIVISION: The total number of digits in
the quotient is equal to the maximum
allowed by the implementation (15 decimal,
31 binary). The scale factor of the quo-
tient is dependent upon the number of
integer digits of the dividend (A in the
example below), and the number of fraction-
al digits of the divisor (D in the example
telow). The scale factor is equal to the
total number of digits of the result minus
the sum of A and D.

Formulas:

p = 15 decimal, 31 binary

g = 15 (or 31)-((py-q4) + ga}
Example:

432.432 /7 2
A B Cc D

Section U:

Caution:

The total number of digits in the quctient
would be 15 (the maximum number allowed).
The scale factor would be 15 minus the sum
cf 3 (A, the number of integer digits in
the dividend) and zero (D, the number of
fractional digits in the divisor). Preci-
sion of the quctient would be (15,12).

Note that any change in the nurber of
integer digits in the dividend or any
change in the number of fractional digits
in the divisor will change the precision of
the quotient, even if all additional digits

are zerxrcs.

Examgples:

00u32.432 7 2
432.432 s 2.0000

Precision of the quotient of the first
example would ke (15,10); scale factor is
equal to 15-(5+0). Precision of the quo-
tient of the second example would be
(15,8); scale factor is equal to 15-(3+u4).

In the use of fixed-point divi-
sion operations, care should be taken that
declared precision of variables and
apparent precision of constants will not
give a result with a scale factor that can
force the result of subsequent operations
to exceed the maximum number of digits
allowed by the implementation.

EXPONENTIATION: If the second operand (the

exponent) is an unsigned nonzero real
fixed-goint constant of precision (p,0),
the total number of positions in the result
is equal to one less than the product of a
number that is one greater than the nurker
cf digits in the first operand multiplied
ky the value of the second operand (the
exponent). The scale factor of the result
is equal to the product of the scale factor
of the first operand multiplied by the
value of the second operand (the expcnent).

Note: Some special cases of exponentiation
are Zefined as follows:
1. Real mode, x**y
a. If x=0 and y>0, the result is 0.

b. If x=0 and y<0, the ERROR condi-
tion is raised.

c. If x#0 and y=0, the result is 1.
d. If x<0 and y is not fixed-point
with precision (p,0), the ERROR

condition is raised.

2. Complex mode, x**y

Expressions and Data Conversion 33

a. If x=0 and y has its real part >0
and its imaginary part =0, the
result is 0.

b. 1If x=0 and the real part of y<0 or
the imaginary part of y+#0, the
ERROR condition is raised.

(As pointed out under "Data Conversion
in Arithmetic Operations,®™ if the
exponent is not an unsigned real
fixed-point integer constant, or if
the taotal number of digits of the
result would exceed 15 decimal digits
or 31 binary digits, the first operand
is converted to fleoating-point scale,
and the rules for floating-point
exponentiation apply.)

Formulas:

{(py +1) * (value-of-exponent)) -1
qs * (value-of-exgponent)

n

p

q

Example:
32 *% 5

The total number of digits in the
result would be 14. This is arrived
at by multiplying a number equal to
one plus the number of digits in the
first operand (1+2) by the value of
the exponent and subtracting one. The
scale factor of the result would be
zero {0 * 5, scale factor of the first
operand multiplied by the value of the
exponent).

3. The expression X**(-N) for N>0 is
evaluated by taking the recirrocal of
X#**N. This may cause the OVERFLOW
condition to occur as the intermediate
result is computed, which corresponds
to UNDERFLOW in the original
expression.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

v & |

The first operator, the "not™ symbol, can
be used as a prefix operator only. The
second and third operators, the "and"” sym-
bol and the "or" symbol, can ke used as
infix operators only. (The operators Lave
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit stri.gs
tefore the operation is performed. If the
operands of an infix operation are ot

34

unequal length, the shorter is extended on
the right with zeros.

The result of a bit-string operation is
a bit string egual in length to the length
of the operands {the two operands, after
conversion, always are the same lengthl.
If either is a varying-length bit string,
the result is of varying length.

Bit-string operations are performed on a
kit-by-bit basis. The effect of the "not”"
operation is bit reversal; that is, the
result of 1 is 0; the result of 70 is 1.
The result of an "and"™ operation is 1 only
if both corresgponding kits are 1; in all
other cases, the result is 0. The result
cf an "or"™ oreration is 1 if either or both
of the corresponding bits are 1; in all
cther cases, the result is 0. The follow-
ing table illustrates the result for each
kit position for each of the operators:

| S T=——""" 2 SR B T--—-"" b B

b a | B Il 4Aa] B | ASB | A|B |
b= - - - o S Bt 4
| | I | | [!
- 1 1 o o 1 1 | 1 |
b - -t - t--——- 4
| | i | | | |
i1 o0 {1 0 L0 1|
- L G o o t=m——- 1
| | I |] | |
[N § I A e o {1 |
b= t-——- H—-- t——- - S At i
| | I | |] |
(o 1 o 4 1] 14 0 | 0 |
| j . P 1 O, 5 [. i 3

More than one bit-string operaticn can
ke comkined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is "010111°'B, the value of
cperand B is '111111'B, and the value of
cperand C is "110'RB, then:

1 A yields '101000°'B
4 C yields '001°'B
C & B yields "110000°'B
A | B yields *111111'B
C | B yields '11111°B

A | (4C) yields "011111'B
2 (3O | (1 B)) yields *110111'B

COMPARISON OPERATIONS
A compariscn operation is one that is
specified by combining operands with one of
the following coperators:
< 1(<= = 1F >= > 1)
These operators specify "less than," "not

less than,"™ "less than or equal to,” "egual
to," "not equal to," “"greater than or egual

to,"™ "greater than," and "not greater
than."”

There are three types of comparisons:

1. Algebraic, which involves the compari-
son of signed arithmetic values in
internal coded arithmetic form. If
orerands differ in kase, scale, preci-
sion, or mode, they are converted
according to the rules for arithmetic
orerations. Numeric character data is
converted to coded arithmetic before
comparison.

2. Character, which involves left-to-
right, character-by-character compari-
sons of characters according to the
collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

If the operands of a corparison are not
immediately compatible (that is, if their
data types are appropriate to different
types of comparison), the operand of the
lower comparison type is converted to con-
form to the comparison type of the operand
of the higher type. The priority of com-
parison types is (1) algekraic (highest},
(2) character string, (3) bit string.

Thus, for example, if a kit string were to
be compared with a fixed decimal value, the
bit string would be converted to arithmetic
(i.e., fixed binary) for algebraic compari-
son with the decimal value (which would
also be converted to fixed binary for the
comparison).

If operands of a character-string com-
parison, after conversion, are of different
lengths, the shorter operand is extended on
the right with blanks. If operands of a
bit-string comparison are of different
lengths, the shorter is extended on the
right with zeros.

In the execution of PL/I programs, com-
parisons of character data will observe the
collating sequence resulting from the
representations of characters in bytes of
System/360 storage, in extended kinary
coded decimal interchange code (EBCDIC).

The result of a comparison operation
always is a bit string of length one; the
value is '1'B if the relationship is true,
or '0'B if the relationship is not true.

The most common occurrences of compari-
son operations are in the IF statement, of
the following format:

IF A =B
THEN action-if-true
ELSE action-if-false

Section 4:

The evaluation of the expression A = B
yields either '1'B or '0'B. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following assignment statement could be
valid:

X = A < B;

In this example, the value '1'B would be
assigned to X if A is less than B; other-
wise, the value '0'B would be assigned. 1In
the same way, the following assignment
statement could be wvalid:

X = A = B;

The first symbol (=) is the assignment sym-
kol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be "1'B; if A is not equal to B, the
value of X will be '0°'B.

Only the comparison operations of
"equal” and "not equal" are valid for com-
parisons of complex operands, or comgari-
sons of locator operands. Comparison
operations with program control data other
than locator data are not allowed.

CONCATENATION CPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

i

It signifies that the operands are to be
joined in such a way that the last charac-
ter cr bit of the operand to the left will
immediately precede the first character or
bit of the operand to the right, with no
intervening bits or characters.

The concatenation operator can cause
conversicn to string type since concatena-
tion can be performed only upon strings,
either character strings or kit strings.
If both operands are character strings or
if both operands are bit strings, no con-
version takes place. Otherwise both
crerands are converted to character
strings.

The results of concatenation operations
are as follows:

Bit String: A kit string whose length is
equal to the sum of the lengths of the two
kit-string operands.

Expressions and Data Conversion 35

Character String: A character string whose
length is egual to the sum of the lengths
of the two character-string operands. 1f
an operand requires conversion for the con-
catenation operation, the result is depen-
dent upon the length of the character
string to which the operand is converted.

For exawmple, if A has the attributes and
value of the constant *010111'B, B of the
constant *101°'8, C of the constant *XY,Z°',
and D of the constant 'AA/BB', then

Aj|B yields '010111101'B
Aj{A||B yields '010111010111101"B
j|{D yieids 'XY,ZBAA/BB’
D
i

yields 'RA/BBXY,Z'
o yields "101AR/BB®

m e
1N

¥

Note that, in the last example, the bit
string "101'B is converted to the character
stiing '101' berore the concatenation is
verformed. The result is a character
string consisting of eight characters.

Note: If either of the operands of a con-
catenation operation has the VARYING attri-
bute, the result will ke a VARYING string.
vhei: VARYING strings are concatenated, the
iantermediate string created has a length
egqual to the sum of the maximum lengths.

If the maximun lengths are known at compile
time and their sum exceeds 32767, then a
truncated intermediate string of length
32767 will be created and an error message
produced. If the maximum length of either
operand is not known at compile time and
their sum exceeds 32767, a truncated inter-
mediate string of length 32767 will be
created but there will be no diagnostic
nessaje.

The use of adjustable VARYING strings
can create a similar proklem. When an
cperand ¢of the concatenate operator or the
arguament of the UNSPEC function is an
adjustable VARYING string, the length of
the intermediate result field is not
tested, and execution will fail. This
situation can also occur with SUBSTR if the
third argument is not a constant, Lecause
in this case the result is an adjustable
VARYING string.

Similarly, when a VARYING string is
passed as an arqgument to a fixed-length
string parameter, the length of the tem-
porary argument created is the maximum
length. If the user wishes to pass the
current length of the VARYING string (in,
for example, Y=X(A)), a possible method is:

DCL ATEMP CHAR(#*) CTL;
ALLOCATE ATEMP CHAR(LENGTH(A));
ATEMP=A;
Y=X(ATEMP);
FREE ATEMP;

36

COMBINATIONS OF OPERATIONS

Different types of operations can be
combined within the same operational ex-
pressicn. Any combkination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C & D;

Fach operaticn within the expression is
evaluated according to the rules fcr that
kind of cperation, with necessary data con-
versions taking place before the operaticn
is performed.

Assume that the variables given above
are declared as follows:

DECILARE RESULT BIT{3},
A FIXED DECIMAL(1),
B FIXED BINARY (3),
C CHARACTER(2), D BIT(4);

* The decimal value of A would be con-
verted to kinary base.

e The kinary addition would be performed,
adding A and B.

s The kinary result would ke compared
with the converted binary value cf C.

The bit-string result of the ccrparison
would ke extended to the length of the
bit string D, and the "and" operation
would ke performed.

e The result of the "and™ operation, a
bit string of length 4, would ke
assigned to RESULT without conversion,
but with truncation on the right.

The expression in this example is
described as being evaluated operation-by-
operation, from left to right. Such wcould
ke the case for this particular expression.
The order of evaluation, however, depends
upon the priority of the operdtors appear-
ing in the expression.

Priority of Operators

In the evaluation of expressions,
priority of the operators is as follows:

** prefix+ prefix- 1 {highest}
* 7/ {
infix+ infix- |

i1 |
< 3< <= = 4= »>= > > |
& v

| (lowest)

If two or more cvperators of the highest
priority appear in the same expression, the
order of priority of those operators is
from right to left; that is, the rightmost

exponentiation or prefix operator has the
highest priority. Each succeeding exponen-
tiation or prefix operator to the left has
the next highest priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order of priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & D;

is the result of the priority of the opera-
tors. It is as if various elements of the
expression were enclosed in parentheses as
follows:

(A) + (B)
(A + B) < (O)
(A + B <C) & (D)

The order of evaluation (and, conse-
quently, the result) of an expression can
ke changed through the use of parentheses.
The above expression, for example, might be
changed as follows:

(A + B) < (C & D)

The order of evaluation of this expres-
sion would yield a bit string of length
cne, the result of the comparison opera-
tion. In such an expression, those expres-
sions enclosed in parentheses are evaluated
first, to be reduced to a single value,
tefore they are considered in relation to
surrounding operators. Within the lan-
guage, however, no rules specify which of
two parenthesized expressions, such as
those in the above example, would be evalu-
ated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (RESULT 1). The value of C would be
converted to a bit string (if valid for
such conversion) and the "and®™ operation
would be performed.

At this point, the expression would have
peen reduced to:

RESULT 1 < RESULT 2

RESULT 2 would be converted to binary, and
the algebraic comparison would be per-
formed, yielding the bit-string r¢sult of
the entire expression.

The priority of operators is deiined
only within operands (or sub-orerands). It
does not necessarily hold truc for an
entire expression. Consider the following
example:

Section 4:

A+ (B<C) & (D || E ** F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur kefore the concatenation. It
does not specify the order of the operation
in relation to the evaluation of the other
operand (A + (B < C)).

Any operational expression (except a
prefix expression) must eventually be
reduced to a single infix operation. The
cperands and ogerator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
{which contains no parentheses), the "and"
operator is the operator of the final infix
cperaticn; in this case, the result of
evaluation of the expression is a bit
string of length 4. 1In the second example
(becuase of the use of parentheses), the
operator of the final infix operation is
the comparison operator, and the evaluation
yields a bit string of length 1.

In general, unless parentheses are used
within the expression, the operator cf low-
est priority determines the operands of the
final operation. For example:

A +B#** 3 || C*%D-E
In this case, the concatenation operator
indicates that the final operation will be:
(A + B *+ 3) || (C * D - E)
The evaluation will yield a character-
string result.

Subexpressions can be analyzed in the
same way. The two operands of the expres-
sion can be defined as follows:

A + (B *x 3)
(C *# D) - E

ARRAY EXPRESSIONS

An array expression is a single array
variable or an expression that includes at
least one array cperand. Array exrpressicns
way also include operators -- koth prefix
and infix -- element variables and
constants.

Evaluation of an array expression yields
an array result. BAll operations performed
on arrays are performed on an element-by-
element kasis, in row-major order. There-
fore, all arrays referred to in an array
expression must be of identical bounds.

Although comparison operators are valid

for use with array operands, an array
operand cannot appear in the IF clause of

Expressions and Data Conversion 37

an IF statement. Only an element expres-
sion is valid in the IF clause, since the
IF statement tests a single true or false
result.

Note: Array expressions are not always ex-
pressions of conventional matrix algebra.

For the T5S/360 Compiler the level of
nesting in array expressions is limited by
the following rule:

For each level of nesting of array expres-
sions, add 2 for the maximum number of
dimensions in the array, add 3 for each
subscript or argument list in the expres-
sjion or assignment, and finally, add 5.
The total for the whole nest should not
exceed 900.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of ident-
ical bhounds, each element of which is the
result of the operation having been per-
formed upon each element of the original

array. For example:
If A is the array 5 3 -9
1 -2 7
6 3 -4
then ~-A is the array -5 -3 9
-1 2 -7
-6 -3 4

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an element
or another array as the cther operand.

Array and Element Operations

The result of an operation in which an
element and an array are connected by an
infix operatcor is an array with bounds
identical to the criginal array, each ele-
ment of which is the result of the opera-
tion performed upon the corresponding ele-
ment of the original array and the single
element. For example:

If A is the array 5 10 8
12 11 3

then A*3 is the array 15 30 24
36 33 9

The elerment of an array-element opera-
tion can be an element of the same array.
For example, the expression A*A(2,3) would
give the same result in the case of the
array A above, since the value of A(2,3) is
3.

38

Consider the following assignment
statement:

A=A % 7(1,2);

Again, using the above values for A, the
newly assigned value of A would be:

50 100 800
1200 1100 300

Note that the original value for A(1,2},
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, the new value
cf A(1,2) is used for all subsequent opera-
tions. The first two elements are multi-
rlied by 10, the original value of A(1,2);
all other elements are multiplied by 100,
the new value of A(1,2).

Array and Array Operations

If two arrays are connected by an infix
operator, the two arrays must be of ident-
ical bounds. The result is an array with
kounds identical to those of the original
arrays; the operation is performed upon the
corresponding elements of the two original
arrays.

Ncte that the arrays must have identical
bounds. They must have the same nunker of
dirensions, and corresponding dimensions
must have identical lower bounds and ident-
ical ugper bounds. For example, the bounds
of an array declared X(10,6) are not ident-
ical to the kounds of an array declared
¥(2:11,3:8) although the extents are the
same for corresponding dimensions, and the
number of elements is the same.

Examples cf array infix expressions are:

If A is the array 2 4 3
6 1 7

4 8 2

and if B is the array 1 5 7
8 3 4

6 3 1

then A+B is the array 3 9 10
ig 4 11

10 11 3

and A*B is the array 2 20 21
48 3 28

24 24 2

Array and Structure Operations

For the TSS/360 PI/I compiler, no
reference can be made to both an array and
a str¥ucture in the same expression or in
the same assignment statement.

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single arithme-
tic operations. The rules for comrbining
operations and for data conversion of
operands are the same as those for element
operations.

STRUCTURE EXPRESSIONS

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can ke operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although ccmparison operators are valid
for use with structure operands, a struc-
ture operand cannot appear in the IF clause
of an IF statement. Only an element ex-
pression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment
(seebelow), all structure variables appear-
ing in a structure expression must have
identical structuring.

Identical structuring means that the
structures must have the same minor struc-
turing and the same number of contained
elements and arrays and that the position-
ing of the elements and arrays within the
structure (and within the minor structures
if any) must be the same. Arrays in corre-
sponding positions must have identical
bounds. Names do not have to be the same.
Data types of corresponding elements do not
have to be the same, so long as valid con-
version can be performed.

For the TSS/360 Compiler the level of
nesting in structure expressions is limited
by the following rule:

For each level of nesting of structure ex-
pressions, add 2 for the maximum pumber of
dimensions in the structure, add 2 for the
maximum level in a structure ¢ (pressionm,
add 3 for each subscript or argument list
in the expression or assignment, and final-

Section U4:

ly, add 15. The total for the whole nest
should nct exceed 900.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a grefix
cperator on a structure is a structure of
identical structuring, each element of
which is the result of the operation having
keen performed upon each element of the
original structure.

Note: Since structures may contain ele-
ments of many different data types, a pre-
fix operation in a structure expression
would be meaningless unless the cperaticn
can be validly performed upon every element
represented by the structure variable,
which is either a major structure name or a
minor structure name.

INFIX OPERATCRS AND STRUCTURES

Infix operations that include a struc-
ture variable as one operand may have an
element or another structure as the other
cperand.

Structure operands in a structure ex-
pression need not be major structure names.
A minor structure name, at any level, is a
structure variable. Thus, if M.N is a
rinor structure in the major structure M,
the following is a structure expression:

M.N § '1010'B

Structure and Element Operations

When an operation has one structure and
cne element operand, it is the same as a
series of operations, one for each element
in the structure. Each sub-operation
involves a structure elewment and the single
element.

Ccocnsider the following structure:

1A

2B
3 cC
3D
3 E

2 F
3G
3 H
31

If X is an element variable, then A * X is

equivalent to:

CA.C = X
A.D * X
A.E * X
A.G * X
A.H * X
A.I * X

Expressions and Data Conversion 39

Structure and Structure Operations

when an operation has two structure
operands, it is the same as a series of
element operations, one for each corre-
sponding pair of elements.

For example, if A is the structure shown
in the previous example and if M is the
following structure:

1M
2 N
30
3P
390
2 R
385
3T
3 U
then A || M is equivalent to:
A.C || M.O
A.D || M.P
A.E || M.O
A.G || M.S
A.H || M.T
a.I || M.U

Structure Assignment BY NAME

One exception to the rule that operands
of a structure expression must have the
same structuring is the case in which the
structure expression appears in an assign-
ment statement with the BY NAME option.

The BY NAME appears at the end of a
structure assignment statement and is pre-
ceded by a comma. Examples are shown
below.

Consider the following structures and
assignment statements:

1 ONE 1 TWO 1 THREE

2 PART1 2 PART1 2 PART1
3 RED 3 BLUE 3 RED
3 ORANGE 3 GREEN 3 BLUE

2 PART2 3 RED 3 BROWN
3 YELLOW 2 PART2 2 PART2
3 BLUE 3 BROWN 3 YELLOW
3 GREEN 3 YELLOW 3 GREEN

ONE = TWO, BY NAME;

ONE.PART1 = THREE.PART1, BY NAME;

ONE = TWO + THREE, BY NAME;

The first assignment statement would he the
same as the fcllowing:

ONE.PART1.RED = TWO.PART1.RED;
ONE.PART2. YELLOW = TWO.PART2.YELLOW;

The second assignment statement would be
the same as the following:

40

ONE.PART1.RED = THREE.PART1.RED;

The third assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED

+ THREE.PART1.RED;
ONE.PART2.YELLOW = TWO.PARTZ2.YELLOW

+ THREE.PART2.YELLCW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.

Except for the highest-level qualifier sge-
cified in the assignment statement, all
gualifying names must be identical.

If an operational expression arpears in
an assignment statement with the BY NAME
option, operation and assignment are per-
formed only upcon those elements whose names
have been declared in each of the struc-
tures. In the third assignment statement
above, no operation is performed ugon ONE.
PART2.GREEN and THREE.PARTZ2.GREEN, because
GREEN does not appear as an elementary name
in PART2 of TWO.

OPERANDS OF EXPRESSIONS

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B * SQRT(C);

In this example, the expression SQRTI(C)
represents a value that is equal to the
square rcot of the value of C. Such an ex-
pression is called a function reference.

FUNCTION REFERENCE OPERANDS

A function reference consists of a name
and, usually, a parenthesized list of c¢ne
cr more variables, constants, or other ex-
pressions. The name is the name of a Llock
of ccding written to perform specific com-
putations upon the data represented Ly the
list and to sukstitute the computed value
in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference SQRT
{C) causes execution of the coding that
would compute the square root of 16 and
replace the function reference with the
value 4. 1In effect, the assignment state-
ment would become:

A =B * 4;

The coding represented ky the name in
the function reference is called a func-
tion. The function SQRT is one of the PL/I
built-in functions. Built-in functions,
which provide a number of different opera-
tions, are a part of the PL/I language. A
complete discussion of each appears in Part
11, Section 7, "Built-In Functions and
Pseudo-Variables.” In addition, a user may
write functions for other purposes (as
described in Part I, Section 12, "Subrou-
tines and Functions"™), and the names of
those functions can be used in function
references.

The use of a function reference is not
limited to operands of operatiocnal expres-
sions. A function reference is, in itself,
an expression and can be used wherever an
expression is allowed. It cannot be used
in those cases where a variable represents
a receiving field, such as to the left of
an assignment symbol.

There are, however, ten built~-in func-
tions that can be used as pseudo-variables.
A pseudo-variakle is a built-in function
name that is used in a receiving field.
Consider the following example:

DECLARE A CHARACTER(10),
B CHARACTER(30);

SUBSTR(A,6,5) = SUBSTR(B, 20,95);

In this assignment statement, the SUBSTR
built-in function name is used both in a
normal function reference and as a
pseudo-variable.

The SUBSTR built-in function extracts a
substring of specified length from the
named string. As a pseudo-variable, it
indicates the location, within a named
“string, that is the receiving field.

In the above example, a substring five
characters in length, teginning with char-
acter 20 of the string B, is to be assigned
to the last five characters of the string
A. That is, the last five characters of A
are to be replaced by characters 20 through
24 of B. The first five characters of A
remain unchanged, as do all of the charac-
ters of B.

All ten of the built-in functions that
can be used as pseudo-variables are dis-
cussed in Part II, Section 7, "Built-In
Functions and Pseudo-Variakles®™. No user-
written function can be used as a
pseudo-variable.

CONCEPTS OF DATA CONVERSION

Data conversion is the transformation of
the representation of a value from one form

Section 4:

to another. PL/I makes very few restric-
tions upon the use of the available forms
cf data representation or upon the mixing
cf different representations within an
expression.

Users who want to make use of this free-
dom must understand that mixed expressions
imply conversions. If conversions take
rlace at execution time, they will slow
down the execution, sometimes significant-
ly. Unless care is taken, conversions can
result in loss of precision and can cause
unexpected results. A lack of understand-
ing of conversions can lead to logical
errors and inaccuracies that are sometimes
hard to trace.

This section is concerned primarily with
the concepts of conversion operations.
Specific rules for each kind of conversion
are listed in Part I1IXI, Section 6, "Problem
Data Conversion." Earlier sections of this
chapter discuss circumstances under which
conversion can occur during evaluaticn of
expressions. This section deals with the
processes of the conversion.

The subject of conversion can be consi-
dered in two parts, first, determining the
target attributes, and, second, the conver-
sion operation with known source and target
attributes. This section deals with deter-
rining target attributes. Rules for con-
version operations are given in Part II,
Section 6, "Proklem Data Conversion.®
Within each section, here and in Part II,
arithmetic cocnversion and type conversion
are considered separatelvy.

The target of a conversion is the
receiving field to which the converted
value is assigned. 1In the case of a direct
assignment, such as A = B, in which conver-
sion must take place, the variable to the
left of the assignment symbol (in this
case, A) is the target. Consider the fol-
lowing example, however:

DECLARE A CHARACTER(8),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A = B 4+ C;

buring the evaluation of the expression B+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned

2. The comgpiler-created temporary to

which the binary result of the addi-
tion is assigned

Expressions and Data Conversion 41

3. The temporary to which the converted
decimal fixed-point equivalent of the
binary result is assigned

4., A, the final destination of the
result, to which the converted
character-string equivalent of the
deciral fixed-point representation of
the value 1s assigned

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
pinary, the other is ccnverted to kinary
vefore evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the con-
verted representation of B). The attri-
tutes of the third target are determined in
part from the scurce (the second target)
and in part from the attributes of the
eventual target (A). (The only attribute
determined from the eventual target is
DECIMAL, since a binary arithmetic repre-
sentation must be converted to decimal
revresentation before it can ke converted
to a character string.) The attributes of
the fourth target (A) are known from the
DECLARE statement.

When an expression 1s evaluated, the
target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some implemen-
tation restrictions {(for example, maximum
precision) and conventicns exist. After an
e¥pression 1s evaluated, the result may ke
further converted. 1In this case, the tar-
get attributes usually are independent of
the source. Since the process of determin-
ing target attributes is different for ex-
pression cperands and for the results of
expression evaluation, the two cases are
dealt with separately.

A conversion always involves a source
data iter and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or assumed, at compile time.

It is possikle for a conversion to
involve intermediate results whose attri-
kEutes may depend upon the source value.
For example, conversion from character
string to arithmetic may require an inter-
mediate conversion and, thus, an inter-
mediate result, before final conversior is
completed. The final target attributes in
such cases, however, are always de*crmined
from the source data iterm and are indepen-
dent of the values of the variables.

42

The maximum number of temporary results
which may exist during the evaluaticn of an
expressicn or during an assignment state-
ment is 200. An estimate of the nurber of
tempcrary results which may exist during
the evaluation of an expression can ke
cbtained from the following:

At each level of parentheses, count one for
each operator which is forced to be evalua-
ted kefore an inner level of parentheses.
For each such operator, count cne for each
operand which requires conversion kefore
use, count one for each nested function,
count one for each subscripted variatle
used as a target in an assignment state-
nrent, and finally, count one for each
pseudo-variakle and each argument of a
gseudo-variakle.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, '1'B, '1i°',
1B, or 1E0. Constants may be converted at
compile time or at execution time, Lbut in
either case, the rules are the same.

TARGET ATTRIBUTES FOR TYPE CCNVERSION

When an expression operand requires tyge
conversion, some target attributes must be
assumed or deduced from the source. Soame
ct these assumptions can be made based on
the operator, as shown in Figure 2.

BIT TO CHARACTER AND CHARACTER TO BIT

In the conversion of bit to character,
and character to bit, the length of the
target (in bits or characters) is the sane
as the length of the source (in bits or
characters).

it B e 1
| Operator | Target Type |
e T 1
| + - * s #%| coded arithmetic |
I | |
| & | 4 | bit string |
| | !
Vi | character string {(unless |
| { koth operands are kit i
| | strings) |
| | i
| > < | arithmetic, unless bcth |
| >= «= | operands are strings; thenj
| = = i character string, unless |
| => =< { koth operands are kit |
i } strings; then kit string |
R, A 1
Figure 2. Target Types for Expression
Operands

AR1THMETIC TO STRING

In the conversion of arithmetic to bit-
string or character-string data, the length
of the target is deduced from the precision
of the source. Algorithms for determining
the length of the target are given below
under the headings "Lengths of Bit-string
Targets™ and "Lengths of Character-String
Targets." 1In the case of expression
operands, there is no truncation of the
resulting character-string value, since the
length of the target is the length of the
intermediate string.

STRING TO ARITHMETIC

In the conversion of kit-string or
character-string data to arithmetic, the
string must consist of digits that repre-
sent a valid arithmetic constant. The com-
piler has no way of determining the attri-
putes of the constant represented ky the
string; therefore, attributes must be
assumed for the target.

In the case of character-string to
arithmetic conversion, the attributes
assumed for the target are those attributes
that would have been assumed if a fixed-
peint decimal integer of grecision (15,0)
had appeared in place of the string. Simi-
larly, for a bit-string source that is to
be converted to arithmetic type, the attri-
butes of the target are the attrikbutes that
would have been given to the target if a
fixed-point binary integer of precision
(31,0) had appeared in place of the bit
string.

...,
1]
i
i
|
1
f
I
t
|
I
|
|
t
|
]
|
!
]
]
i
!
|

|source Attributes

{DECIMAL FIXED(p,q) DECIMAL FLOAT

|
| DECIMAL FIXED(p,q) BINARY FIXED

| DECIMAL FIXED(p,q) BINARY FLOAT

|
| DECIMAL FLOAT (p) BINARY FLOAT

|
| BINARY FIXED(p,q) BINARY FLOAT

|
| BINARY FIXED (p,q) DECIMAL FIXED

|
| BINARY FIXED (p,q) DECIMAL FLOAT

I
| BINARY FLOAT (p) DECIMAL FLOAT

e e e e e e e e e e e e e e

Target Attrikutes for Arithmetic Expression
Operands

Except for exponentiation, the target
attributes for arithmetic conversion are
assumed as follows:

BINARY unless both operands are DECIM-
AL, in which case no base con-
version is performed

FLOAT unless both operands are FIXED,
in which case no scale conver-
sion is performed

COMPLEX unless bkoth operands are REAL,
in which case no mode conver-
sion is performed

unless base cr scale ccnversion
is performed (see Figure 3,
"Precision for Arithmetic
Conversion®)

precision
cf scurce

In the case of exponentiation, the base
and precision are determined as for other
cperations. The target scale of the first
operand is always FLOAT unless the first
cperand source is FIXED and the second
operand (the exponent) is an unsigned
fixed-point integer constant with a value
small enough that the result of the
exponentiation will not exceed the maximum
number of digits allowed {(for Systerns/360
implementations, 31, if binary, or 15, if
decimal). The target scale of the second
cperand is FLOAT unless it is an integer
constant or a variable of precision (g,0).
If either cf the operands is COMPLEX, the
target mode is COMPLEX for both operands

__________________________________ 3
Target Precision

1+p*3.32, q*3.32

p*3.32

P
1+p/3.32, q/3.32

p/3.32

o e o e s e . i S S . . . e S . o s]

|
4
|
|
|
|
i
p¥3.32 %
|
|
|
{
|
I
|
4

|Note: Conversion from floating-po.nt to fixed-point scale will occur only when a target|

| precision is known, as in assignment to a fixed-pcint variakle.
|precision is incapakle cof holding che floating-point value,

If the target |
truncation on both left |

jand right will occur, and the SIZE condition will be raised (if enabled) if significant|

digits are lost.

|
e e e e e

Section U4:

Expressions and Data Conversion 43

unless the second operand is a REAL integer

Precision and Length of Expression Operand

constant or variable of precision (p,0).
in either case, the target mode for the
second operand is REAL (that is, its mode
is not converted).

In the exanples of exponentiation shown
kelow, the variables are those named in the 1.
following DECLARE statement:

DECLARE A FIXED DECIMAL(2),

B FIXED DECIMALI(3,2),

C FLOAT DECIMAL(4),

D FLOAT DECIMAL(7),

E FIXED CECIMAL(8),

FIXED DECIMALI(15),
COMPLEX FLOAT DECIMAL(6);

[PRo]

Note: If only one digit appears in the
precision attribute specification for a
fixed-point variable, the scale factor is,
ry default, zero; the precision is (p,0).

NO conversion necessary. Both
operands are floating-point.

L ** C

No conversion necessary.
Second operand is unsigned
fixed-point integer constant,
and the result will not exceed
15 digits.

N¢c conversion necessary. First
cperand is floating-point;

second is fixed-point with pre-
cision (p,0). 2.
No conversion necessary. First
operand is floating-point;
second 1s fixed-point with pre-
cision (p,0}.

First operand is converted to
flcating-point because second
operand is not unsigned fixed-
point integer constant. Second
operand is not converted
because it has precision (p,0).

Second operand is converted to
floating-point because it does
nct have precision (p,0). Even
if B had an integer value with
a fractional part of zero, it
still would be converted, since
its declared precision is
(3,2).

First operand is comglex.
Second ogperand is convertad to
floating-point complex because
its grecision is not (p,0).

G ** B

Targets

The following rules apply to all calcu-
laticns of precision and length:

Precision and length specifications
are always integers. If any of the
calculations given below produces a
nonintegral value, the next largest
integer is taken as the resulting pre-
cision. In the case of scale factors,
which can ke negative, it is the abso-
lute (positive) value that is used to
take the next largest integer; the
result, of course, will be negative if
the source scale factor is negative.

The following illustrates how preci-
sion would ke computed in a conversion
from DECIMAL FIXED (13,-4) to BRINARY
FIXED:

1 + 13 * 3.32 = 44,16 resulting number
of digits (p) is
45

-4 * 3,32 = -13.28 resulting scale

factor (qg) is

-14
Thus, the resulting precision is (45,-
14); however, due to rule 2 below, it

becomes (31,-14).

There is an implementation-defined
maximum for the precision of each
arithmetic representation. If any
calculation yields a value greater
than the implementation-defined lirit,
then the implementation limit is used

instead. In System/360 implerenta-
tions, these limits are:

FIXELD DECIMAL -- 15 digits

FIXED BINARY -- 31 digits

FLOAT CECIMAL -- 16 digits

FLOAT BINARY -- 53 digits

Because of the particular values for
these implementations, these limits
willi usually come intc effect only for
conversions from fixed-point decimal
to fixed-point binary.

The scale factor for both binary and
decimal base has the range +127 to
-128 in System/360 implementations.
This limit will rarely concern the
user.

Precision for Arithmetic Conversions

Note: All of these examples would be the
same if they had been declared binary rath-
er than decimal, except that the maximum
number of rinary digits allowed is 31.

b4y

Figure 3 gives the target precisicn for
an operand if base or scale conversion
occurs.

[T e T s e Sttt
|Source Attributes | Conditions
_________________________ o
{ DECIMAL FIXED(p,q) | If p>=g>=0

| |

l | If g>p

| | or

| | q negative

| |

| |

| DPECIMAL FLOAT (p) |

|]

|Numeric character field |
. S

The target gprecision of one operand of
an expression is not affected ky the preci-
sion of the other operand. This can have a
significant effect on accuracy, particular-
ly if one of the operands is a constant.

Lengths of Character~String Targets

The length of a character-string target
is related to the precision of the decimal
source, as shown in Figure 4.

Note: If a binary data item is converted
to character, it is first converted to
decimal. The rrecision of this intermedi-
ate conversion result controls the length
of the final character-string target.
Algorithms for computing the intermediate
precision of a decimal item converted from
binary are shown in Figure 3.

For corplex coded arithmetic sources,
the target length is one greater than twice
the length of the target for the corre-
sponding real source. For comglex numeric
character data, the target length is twice
the length of the real part of the source.

Lengths of Bit-string Targets

When converting arithmetic operands to
bit string, the arithmetic source is con-
verted to a positive binary integer. The
precision of the binary integer target is
the same as the length of the bit-string
target as given in Figure 5.

riron mrriteies 1 zarger zemgtn]
e —————— RO i
:DECIMAL FLOAT (p) } p*3.32 %
:BINARY FIXED(p,q) } P-q %
|BINARY FLOAT(p) { p i
e e e e e e o e o e e e a—— - J4

Lengths of Bit-String Targets

Section U4:

~~~~~~~~~ T T T T T T T T T e e e e e
| Target Length {
————————— N |
| p+3 |
| |
t p*3+k |
i (where k = number of decimal |
| digits to express scale |
| factor) |
! |
i p+6 |
I |
| Same as source |
......... A e

Note that p-q represents the number of
binary or decimal digits to the left of the
point. This coculd ke zero or negative, in
which case no conversion is performed and,
for the TS5/360 PL/I compiler, the final
result is a null string.

conversicn of the Value of an Expression

The result of a completely evaluated ex-
Fression may require further conversion.
The circumstances in which this can occur,
and the target attributes for each situa-
tion, are given in Figure 6. 1In addition,
certain ruilt-in functions cause ccnver-
sion. Any subscript reference is converted
to binary integer.

CONVERSION OPERATIONS

As in the case of determining target
attributes, conversion operations may also
ke considered in two stages: type ccnver-
sion and arithmetic conversion. For
example, when a character-string source is
converted to a coded arithmetic target, the
string is first converted to an arithmetic
form whose attrikutes are determined by the
constant expressed by the string. This
intermediate result is then converted (if
necessary) tc the attributes of the target.
These twoc stages may not be separated in an
actual irplementation, but for the purpose
of description it is convenient to ccnsider
them scparately.

There are six cases of type conversion:

Arithmetic to character-string
Character-string to arithmetic
Arithmetic to kit-string
Bit-string to arithmetic
Character-string to kit-string
Bit-string to character-string

For specific rules for each of the cases
cf type conversion and for arithmetic con-
version, see Part 11, Section 6, "Prokler
Data Conversion."

Expressions and Data Conversion 45



Fi

TH

Cause
Assignment

Argument to procedure
with ENTRY declared

RETURN{expression)

Target Attributes

Attritutes of variakle to the left of the assignment symbol

Attributes of corresponding parameter declared in ENTRY
declaration

Attributes specified in PROCEDURE or ENTRY statement

The following may cause conversion to character-string:

Statement
OPEN

DISPLAY

RECCRD 1/0

String Le

ngth

Source, 8
Source, 1
Key lengt

Key lengt

-character maximum
00~-character maximum
h specified in DDEF command

h specified in LDEF command

The following may cause conversion to a binary integer whose precision, as defined

for the compiler,

DECLARE/ALLOCATE

DELAY

FORMAT
(and format items
in GET and PUT)

OPEN

I/0

is given below:

Option/Attribute
length

ktounds
repetition facto
milliseconds
iteration factor
W

d

S

LINESIZE
PAGESIZE

SKIP
LINE

IGNCRE

Precision
15

15
r 15

31

gure 6. Circumstances that can Cause Conversion

E CONVERSION, SIZE,

FIXEDOVERFLOW, AND

OVERFLOW CONDITIONS

sentation to another,
SIZE conditions may be raised.

When data is converted from one repre-

the CONVERSION orx

The OVER-

FLOW and FIXEDOVERFLOW conditions are
raised only when the result of an arithme-
tic operation exceeds the implementation-
fined limit. When an operand is con-
verted from one representation to another,
if the value of the result will not fit in
the declared precision for the new repre-
sentation, the SIZE condition is raisedld.

de

46

The SIZE condition is raised when signi-
ficant digits are lost from the left-hand

side of an arithmetic value. This can
occur during conversion within an expres-
sion, or upon assigning the result of an
expression. It is not raised in conversicon
to character string or kit string even if
the value is truncated. It is raised cn
conversion to E or F format in edit-
directed transmission if the field width
specified will not hold the value of the
list item. The SIZE condition is normally
disakled, so an interruption will occur
only if the condition is raised within the
scope of a SIZE rrefix.

The CCNVERSION condition is raised when
the source field contains a character that
is invalid for the conversion keing per-



formed. For example, CONVERSION would be
raised if a character string keing con-
verted to arithmetic contains any character
other than thcse allowed in arithmetic con-
stants, or if a character string that is
being converted to bit contains any charac-
ter other than 0 and 1. Each invalid char-
acter raises the CONVERSION condition once,
so a single ccnversion oreration causes
several interruptions if more than one
invalid character is encountered. The CON-
VERSION condition is normally enabled, so
when the condition is raised, an interrup-
tion will occur. It can ke disakled by a
NOCONVERSION prefix, in which case an
interruption will not occur when the condi-
tion is raised.

Section 4§:

Ncte that the OVERFLOW and FIXELCOVERFLOW
conditions are raised when an implementa-
tion maximum is exceeded, while the SIZE
condition is raised when a declared rpreci-
sion is exceeded. For example, if the
addition of two kinary halfword values
resulted in an overflow into a sixteenth
digit position, and the result were
assigned to a kinary halfword variable,
SIZE would be raised (if enabled). Note
that, in such a case, SIZE would be the
only indication that an error had cccurred,
whereas if a similar situation arose with
fullword binary values (i.e., an attemgted
overflow past the thirty-first digit posi-
tion), FIXEDCVERFLOW would be raised during
the actual computation, before the attempt.

Expressions and Data Conversion 47



SECTION 5: STATEMENT CLASSIFICATION

This section classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement

is not included in this section kut may be
found in Part II, Section 10, "Statements.”

CLASSES OF STATEMENTS

Statements can be grouped into the fol-
lowing six classes:

Descriptive

Input/Qutput

Data Movement and Computational
Program Structure

Preprocessor

Control

Exception Control

The names of the classes have been chosen
for descriptive purposes only; they have no
fundamental significance in the language.
Some statements are included in more than
one class, since they can have more than
one function.

DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except a constant, is
referred to in the program by a name. The
PL/I language requires that the properties
(or attributes) of data items referred to
must bhe known at the time the program is
compiled. There are a few exceptions to
this rule; the bounds of the dimensions of
arrays, the length of strings, and some
file attributes may be determined during
executicn of the program.

The DECLARE Statement

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by con-
text. If the attributes are not specific-
ally declared and if they cannot be deter-
mined by context, then default rules are
applied. The combination of defa.lt rules
and context determination can make it unne-
cessary, in some cases, to use a DECLARE
statement.

48

DECLARE statements are always needed for
fixed-point decimal and floating-point
kinary variables, character- and bit-string
variables, label variables, arrays and
structures, static, controlled, and based
variables, offset variables, and all data
with the PICTURE attribute. An ENTRY
declaration must be made in a DECLARE
statement for the name of any function that
returns a value with attributes different
from the default attributes that would be
assumed for the name -- FIXED BINARY(15) if
the first letter of the name is I through
N; otherwise, DECIMAL FLOAT(#6). (The
default precisions are those defined for
System/360 implementations.) An ENTRY
declaration also must be made if arguments
and parareters do not match exactly, as may
be the case when constants are passed as
arguments.

DECLARE statements may also be an impor-
tant part of the documentation of a pro-
gram; consequently, users may make liberal
use of declarations, even when default
attributes arply or when a contextual
declaration is possible. Because there are
no restricticons on the number of DECLARE
statements, different DECLARE statements
can ke used for different groups of names.
This can make modification easier and the
interpretatiocn of diagnostics clearer.

Other Descriptive Statements

The OFEM statement allows certain attri-
btutes to be specified for a file narme and
nay, therefore, also be classified as a
descriptive statement. The FORMAT state-
rent may be thought of as describing the
layout of data on an external medium, such
as on a page or an input card.

INPUT/OUTPUT STATEMENTS

The principal statements of the input/
ocutprut class are those that actually cause
a transfer of data between internal stcrage
and an external medium. Other input/outrut
statements, which affect such transfers,
may be considered input/output control
statements.

In the following list, the statements
that cause a transfer of data are grouped
into two sukclasses, RECORD I/0 and STREAM
I/0:

RECORD I/0 Transfer Statements
READ
WRITE



REWRITE
LOCATE
DELETE

STREAM I/0 Transfer Statements

GET
PUT

170 Control Statements

OPEN
CLOSE
UNLOCK

A related statement, discussed with
these statements, is the DISPLAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is trans-
mitted; in RECORD transmission, the record
on the external medium is an exact copy of
the record as it exists in internal
storage, with no editing or conversion
performed.

As a result of these differences, record
transmission is particularly agplicable for
processing large files that are written in
an internal representation, such as in
binary or packed decimal. Stream transmis-
sion can be used for processing typed or
keypunched data and for producing readable
output, where editing is required. Since
files for which stream transmission is used
tend to be smaller, the larger processing
overhead can be ignored.

RECORD I/0 Transfer Statements

The READ statement transmits records
directly into working storage or makes
records available for processing. The
WRITE statement creates new records,
transferring collections of data to the
output device. The LOCATE statement allo-
cates storage for a variable within an out-
put buffer, setting a pointer to indicate
the location in the buffer, having pre-
viously caused any record already located
in a buffer for this file to be written
out.

The REWRITE statement alters existing
records in an UPDATE file. The D:ILETE
statement removes records from an UPDATE
file.

STREAM I/0 Transfer Statements

Only sequential files can ke processed
with the GET and PUT statements. Record

roundaries generally are ignored; data is
considered tc be a stream of individual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes,
data-directed, list-directed, or edit-
directed. 1In data-directed transwission,
the names of the data items, as well as
their values, are recorded on the external
medium. In list-directed transmission, the
data is recorded externally as a 1list cof
constants, separated by blanks or commas.
In edit-directed transmission, the data is
recorded externally as a string of charac-
ters to be treated character by character
according to a format list.

Data-directed transmission is most use-
ful for reading a relatively small nunker
of values and for producing self-annotated
debugging output. List-directed ingut is
suitable for reading in larger volumes of
data punched in free form. Edit-directed
transmission is used wherever format must
be strictly controlled, for example, in
producing regorts and for reading cards
punched in a fixed format.

Note: The GET and PUT statements can also
ke used for internal data movement, by
specifying a string name in the STRING
option instead of specifying the FILE
cption. Although the facility may be used
with READ and WRITE statements for moving
data to and from a buffer, it is not actu-
ally a part of the input/output operation.
GET and PUT statements with the STRING
option are discussed in the section "Data
Movement and Computational Statements," in
this section.

Input/Output Control Statements

The OPEN statement associates a file
name with a data set and prepares the data
set for processing. It may also specify
additional attrikutes for the file.

A OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name of an unogened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
declare attributes for a file; for a PRINT
file, the length of each printed line and
the number of lines per page can be sgeci-
fied only in an OPEN statement. The OPEN
statement can also be used to specify a
name (in the TITLE option) other than the
file name, as a link between the data set
and the file.

Section 5: Statement Classification 49



The CLOSE statement dissociates a data
set from a file. All files are closed at
termination of a program, so a CLOSE state-
ment 1S not always required.

The UNLOCK statement is accepted, but is
of no significance to the TSS/360 compiler,
since TSS5/360 data management automatically
locks records being read, if the file has
been opened for direct access.

The DISPLAY Statement

The DISPLAY statement is used to write
nlessages on the user's terminal. It may
also be used, with the REPLY ortion, to
allow the user to communicate with the pro-
gram by typing in a code or a message. The
REFLY option rway be used merely as a means
of suspending program execution until the
user acknowledges the message.

CRTA MOVEMENT AND COMPUTATIONAL STATEMENTS

Internal data movement involves the as-
signment of the value of an expression to a
specified variable. The expression may ke
a copstant or a variable, or it may be an
uxpression that specifies computations to
pe made.

The most cowmonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option also can be used for )
internal data movement. The PUT statement
can, in addition, specify computations to
ke made.

The Assignment Statement

The assignment statement, which has no
keyword, is identified by the assignment

sympcl (=). It generally takes one of two
forms:

A = B;

A= B+ (C;

The first form can be used purely for
internal data movement. The value of the
variable (or ccnstant) to the right of the
assignment symbol is to ke assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symkol. The
second form specifies computations to be
made, as well as data movement.

Since the attributes of the variable on
the left may Jdiffer from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

50

The variable on the left may be the name
cf an array or a structure; the exrression
cn the right may yield an array or struc-
ture value. Thus the assignment statement
can ke used to move aggregates of data, as
well as single items.

Multiple Assignment

The value of the expression in an as-
signment statement can be assigned to more
than one variakle in a statement of the
following form:

A, X = B + C;

Such a statement is executed in exactly the
same way as a single assignment, except
that the value of B + C is assigned to both
A and X. 1In general, it has the same
effect as if the following two statements
had been written:

A =B + C;
X =B + C;
Note: If multiple assignment is used for a

structure assignment BY NAME, the elemen-
tary names affected will be only those that
are common to all of the structures listed
to the left cf the assignment symbol.

The STRING Ortion

If the STRING option appears in a GET or
PUT statement in place of a FILE ogtion,
execution of the statement will result only
in internal data movement; neither input
nor cutput is involved.

Assume that NAME is a string of 30
characters and that FIRST, MIDDLE, and LAST
are string variables. Consider the follow-
ing examgle:

GET STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A(1) ,A(17));

This staterent specifies that the first 12
characters of NAME are to be assigned to
FIRST, the next character to MIDDLE, and
the remaining 17 characters to LAST.

The PUT statement with the string option
specifies the reverse operation, that is,
that the values of the specified wvariables
are to be concatenated into a string and
assigned as the value of the string named
in the STRING option. For example:

PUT STRING (NAME) EDIT
(FIRST,MIDDLE, LAST)
(A(12),A (1) ,A(17));

This statement specifies that the values of
FIRST, MIDDLE, and LAST are to be conca-



tenated, in that order, and assigned to the
string variable NAME.

Computations to be performed can be sge-
cified in a PUT statement ky including
operational expressions in the data list.
Assume, for the following example, that the
variables A, B, and C represent arithmetic
data and BUFFER represents a character
string:

PUT STRING (BUFFER) LIST (A*3,B+C);

This statement specifies that the character
string assigned to BUFFER is to consist of
the character representations of the value
of A multiplied by 3 and the value of the
sum of B and C.

Operational expressions in the data 1list
of a PUT statement are not limited to PUT
statements with the STRING option. Opera-
tional expressions can appear in PUT state-
ments that specify output to a fiie.

PROGRAM STRUCTURE STATEMENTS

The programr structure statements are
those statements used to delimit sections
of a program into blocks and groups, and to
control the allocation of storage within a
rrogram. These statements are the PROCE~
DURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
DO statement, the ALLOCATE statement, and
the FREE statement. The concept of blocks
and groups is fundamental to a proper un-
derstanding of PL/I and is dealt with in
detail in Sections 6, 7, and 12 in Part I.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
users are cooperating in writing a single
program. It may also result in more effi-
cient use of storage, since dynanic storage
of the auvtomatic class is allocated on
entry to the klock in which it is declared.

The PROCEDURE Statement

The princigpal function of a procedure
klock, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
ke invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and cne END statement.
A program may consist of a number of sepa-
rately written procedures link-d together.
A procedure may also contain cther proce-
dures nested within it. These internal

procedures may contain declarations that
are treated (unless otherwise specified) as
local definitions of nawes. Such defini-
tions are not known outside their own
klock, and the names cannot be referred to
in the containing procedure. Storage asso-
ciated with these names is generally allo-
cated upon entry to the block in which such
a name is defined, and it is freed ugon
exit from the klock.

The sequence of statements defined by a
procedure can ke executed at any point at
which the procedure name is known. A pro-
cedure is invoked either by a CALL state-
nent or ky the appearance of its name in an
expression, in which case the procedure is
called a function procedure. A function
reference causes a value to be calculated
and returned to the function reference for
use in the evaluation of the expression.

Communication between two procedures is
ky means of arguments passed from an invok-
ing procedure to the invoked procedure, Ly
a value returned from an invoked procedure,
and by names known within both procedures.
A prccedure may therefore operate upon dif-
ferent data when it is invoked from dif-
ferent points. A value is returned from a
function procedure to a function reference
bty means of the RETURN statement.

The ENTRY Statement

The ENTRY statement is used to provide
an alternate entry point to a procedure
and, possibly, an alternate parameter list
to which arguments can be passed, corre-
spending to that entry point.

Hote: It is important to distinguish
ketween the ENTRY statement, which speci-
fies an entry to the procedure in which it
occurs, and the ENTRY attribute specifica-
tion, which describes the attributes of
rarameters of procedures that are invoked
from the procedure in which the ENTRY
attribute specification appears.

The BFGIN Statement

iocal definitions of names can also be
wade within kegin klocks, which are delimi-
ted by a BEGIN statement and an associated
END statement. Begin blocks, however, are
executed in the normal flow of a program,
either sequentially or as a result of a GO
TO or an IF statement transfer. One of the
most common uses of a begin block is as the
on-unit of an ON statement, in which case
it is not executed through normal flow of
control, but only upon occurrence of the
specified condition. It is also useful for
delirmiting a section of a program in which
some automatic storage is to be allccated.

Section 5: Statement Classification 51



Each begin block must ke nested within a
rocedure or another begin block.

The END Statement

The END statement is used to signify the
end of a block or group. Every block or
group wust have an END statement. However,
the END statement may ke explicit or impli-
cit; a single END statement can be applied
to a number of nested klocks and groups by
the inciusion of the label of the contain-
ing block or group after the keyword END.
The other END statements are then implied
by the one containing the lakel, and need
nov pe given explicitly. If no label fol-
lows END, the scatement applies to only one
arcup or block.  (Multiple closure is dis-
cussed in more detail in Section 6,
"slocks, Fiow of Control, and Storage
Allocation.™)

Execution of an END statement for a
Lilock terminates the block. However, it is
not the only means of terminating a block,
«ven though each block must have an END
ctatement. For example, a procedure can be
terminated by execution of a RETURN state-
vent (see "Control Statements,™ below).

The effect cf execution of an END state-
went for a grcup depends on whether or not
the group is iterative. If the group is
ilerative, execution of the END statement
cauges control to return to the keginning
of the group until all iterations are com-
plete, unless control is passed out of the
group before tnen. (See "Control State-
ments, " below.) If the group is nonitera-
tive, the END statement merely delimits the
group (to enable the group to be treated as
a single statement), and control passes to
the next statement.

The ALLCCATE and FREE Statements

As wWith many other conventions in PL/I,
the convention concerning storage alloca-
tion and the scope of definitions of names
can be overridden by the user. The storage
class attribute AUTOMATIC is assumed for
most variables. However a variable can be
declared STATIC, in which case it is allo-
cated throughout the entire program; or it
can be declared CONTROLLED, or BASED, in
which case its allocation can be explicitly
specified by the user.

The ALLOCATE statement is used to assign
storage to controlled and based data, inde-
pendent of block boundaries. The bounds of
controlled arrays and the length of con-
trolled strings, as well as their initial
values, may also be specified at the time
the ALLOCATE statement is executed. The
FREE statement is used to free controlled
and based storage after it has been
allocated.

52

PREPROCESSOR STATEMENTS

PL/1 allows a degree of control over the
contents of the source program during the
compilation. The programmer can sgecify,
for example, that any identifier appearing
in the source program will be changed; he
can select parts of the program to be com-
piled without the rest; he can include text
from an external source. These operations
are performed by the preprocessor stage of
the compiler, and are specified by prepro-
cessor statements that appear among the
other statements within the source program
itself.

In general, preprocessor statements are
identified by a leading percent symbol
ktefore the keyword: several of them have
the same keyword as standard PL/I state-
ments, and these have a similar effect at
compile-time to that of their counterpart
at execution time.

The complete list of preprocessor state-
rents is:

% ACTIVATE

% assignment
% DEACTIVATE
% DECLARE
% DO

% END

% GO TO
% IF

% INCLUDE

% null

% PROCEDURE
RETURN

These statements are discussed in Part I,
Section 15, "Compile-Time Facilities," and
in Part II, Section 10, "Statements.”™

CONTROL STATEMENTS

Statements in a PL/I program, in gener-
al, are executed sequentially unless the
flow of contrcl is modified by the occur-
rence of an interruption or the execution
cf one of the following control statements:

GO TO
iFr

j3le]
CALL
RETURN
END
STOP
EXIT

The GO TO Statement

The GO TO statement is most frequently
used as an unconditional branch. If the
destination of the GO TO is specified by a
label variable, it may then be used as a



rage of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

switch by assigning label constants, as
values, to the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. Since multidimensional label
arrays are allowed, and since logical
values may be used as subscripts, quite
subtle switching can be effected. It is
usuvally true, however, that simple control
statements are the most efficient.

The keyword of the GO TC statement may

be written either as two words separated by
a blank or as a single word, GOTO.

The IF Statement

The IF statement provides the most com-
mon conditional branch and is usually used
with a simple comparison expression follow-
ing the word IF. For example:

IF A =B
THEN action-if-true
ELSE action-if-false

If the comparison is true, the THEN
clause (the "action to be taken") is
executed. After execution of the THEN
clause, control branches around the ELSE
clause (the "alternate action™), and execu-
tion continues with the next statement.
Note that the THEN clause can contain a GO
TO statement or some other control state-
ment that would result in a different
transfer of control.

If the comparison is not true, control
branches around the THEN clause, and the
ELSE clause is executed. Control then con-
tinues normally.

The IF statement might be as follows:

IF A =B
THEN C = D;
ELSE C = E;

If A is equal to B, the value of D is
assigned to C, and control branches around
the ELSE clause. If A is not equal to B,
control branches around the THEN clause,
and the value of E is assigned to C.

Either the THEN clause or the ELSE
clause can contain some other control
statement that causes a branch, either con-
ditional or unconditional. If the THEN
clause contains a GO TO statement, for
example, there is no need to specify an
ELSE clause. Consider the following
example:

IF A =B
THEN GO TO LABEL 1;
next-statement

if A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL 1. If A is not equal to B,
control branches around the THEN clause to
the next statement, whether or not it is an
ELSE clause associated with the IF
statement.

Note: If the THEN clause does not cause a
transfer of control and if it is not fol-
lowed by an ELSE clause, the next statement
will be executed whether or not the THEN
clause is executed.

The expression following the IF keyword
can be only an element expression; it can-
not be an array or structure expression.
it can, however, be a logical expression
with more than one operator. For example:

IFA=B&§C=0D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are egquivalent:

IFA=BE&§&§ C=0D
THEN GO TO R;
B=B8B+ 1;

IF A =B
THEN IF C = D
THEN GC TO R;

B=B+ 1;

IF A 4= B THEN GO TO S;
IF ¢ 4= D THEN GO TO S;
GO TO R;

S: B =B + 1;

The DO Statement

The most common use of the DO statement
is to specify that a group of statements is
to be executed a stated number of times
while a control variable i1s incremented
each time through the loop. Such a group
might take the form:

DO I =1 TO 10;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of the DO and END statements would
be the same as the following:

I=1;
A: IF I > 10 THEN GO TO B;

Section 5: Statement Classification 53



Page of GC28-2045-1,

I = I+1;
GO TO A;
B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement fol-
lowing the group only when the value of the
control variable exceeds the limit set in
the DO statement. If a reference is made
to a control variable after the last itera-
tion is completed, the value of the vari-
able will be one increment beyond the spe-
cified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I =1 TO 10 WHILE (A = B);

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one successive iteration spe-
cification can be included in a single DO
statement. Consider each of the following
DO statements:

i TO 10, 13 TO 15;
1 TO 10, 11 WHILE (A = B);

DO I
DO I

/]

The first statement specifies that the DO
grocup is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
second DO statement specifies that the
group is to be executed at least ten times,
and then (provided that A is equal to B)
once more; if "BY 0% were inserted after
*11", execution would continue with I sef.
to 11 as long as A remained equal to B.
Note that in both statements a comma is
used to separate the two specifications.
This indicates that a succeeding specifica-
tion is to be considered only after the
preceding specification has been satisfied.

The control variable of a DO statement
can be used as a subscript in statements

54

Issued September 15, 1970 by TNL GN28-3171

within the DO-group, so that each iteration
deals with successive elements of a table
or array. For example:

DO I =1 TO 10;
A(I) = I;
END;

In this example, the first ten elements of
A are set to 1,2,...,10, respectively.

The increment in the iteration specifi-
cation is assumed to be one unless some
other value is stated, as follows:

DO I =2 TC 10 BY 2;
This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO Statements

The DO statement need not specify
repeated execution of the statements of a
DO-group. A simple DO statement, in con-
junction with a DO-group, can be used as
follows:

DO;

The use of the simple DU statement in this
manner merely indicates that the DO-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause c¢r the ELSE clause of an IF
statement, thus maintaining sequential con-
trol without the use of a begin block.
(Only a single statement, a DO-group, or a
begin block can be specified in the THEN
clause or in the ELSE clause.)

The CALL, RETURN, and END.Statements

A subroutine may be invoked by a CALL
statement that names an entry point of the
subroutine. Control is returned to the
activating, or imvoking, procedure when a
RETURN statement is executed in the subrou-
tine or when execution of the END statement
terminates the subroutine.

The RETURN statement with a parenthe-
sized expression is used in a function pro-
cedure to return a value to a function
reference. This form is used to return a
value from a procedure that has been
invoked by a function reference.

Normal termination of a program occurs
as the result of execution of the final END
statement of the main procedure or of a
RETURN statement in the main procedure,



Page of GC2B-2045-1,

either of which returns contrcl to the
system.

Note: A CALL statement must not contain a
multitasking option if any part of the pro-
gram containing the CALL statement is to be
executed on TSS/360.

The STOP and EXIT Statements

The STOP and EXIT statements are both
used to cause termination of execution and
return of control to the cormand system.

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of con-
trol whenever they are executed. Another
way in which the sequence of execution can
be altered is by the occurrence of a pro-
gram interruption caused by an exceptional
condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an
expected action, such as an end of file,
that occurs at an unpredictakle time. A
detailed discussion of the handling of
these conditions appears in Part I, Section
13, "Exceptional Condition Handling and
Program Checkout.®

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

The ON Statement

The ON statement is used to specify
action to be taken when any subsequent
occurrence of a specified condition causes
a program interruption. ON statements may,
specify particular action for any of a
numper of different conditions. For all of
these conditions, a standard system action
exists as a part of PL/I, and if no ON
statement is in force at the time an inter-
ruption occurs, the standard system action
will take place. For most conditions, the
standard system action is to print a mes-
sage and terminate execution.

The ON statement takes the form:
ON condition-name (SYSTEM; |on-unit}

The "condition name®" is one of the keywords
listed in Part II1, Section 8, "ON-
Conditions.® The "on-unit® is a single
statement or a begin block that specifies
action to be taken when that condition
arises and an interruption ~ccurs. For
example:

ON ENDFILE(DETAIL) GO TC NEXT_MASTER;

" tablishment of the on-unit,

Issucd September 30, 1977 by UNL GNZH- §185

This statement specifies that when an
interruption occurs as the result of trying
to read keyond the end of the file named
DETAIL, control is to bhe transferred to the
statement lakeled NEXT_MASTER.

When execution of an on-unit is sSuccess-
fully completed, control will normally
return to the point of the interruption or
to a point immediately following it,
depending upon the condition that caused
the interruption.

An important use of the ON statement is
for derugging. The CHECK condition causes
debugging information to be printed whenev-
er the value of one of a list of specified
variables is changed or whenever a sgeci-
fied statement is executed.

The effect of an ON statement, the es-
can be changed
within a block (1) by execution of another
ON statement naming the same condition with
either ancther on-unit or the word SYSTEM,
which reestablishes standard system action,
or (2) by the execution of a REVERT state-
ment naming that condition. On-units in
effect at the time another block is acti-
vated rerain in effect in the activated
Elock, and in other blocks activated by 1it,
unless another ON statement for the same
condition is executed. When control
returns to an activating block, on-units
are reestaklished as they existed.

The REVERT Statement

The REVERT statement 1s used to cancel
the effect of all ON statements for the
same condition that have been executed in
the block 1n which the REVERT statement
agpgpears.

The REVERT statement, which must specify
the condition name, reestablishes the on-
unit that was in effect in the activating
klock at the time the current blcck was
invoked.

The SIGNAL Statement

The SIGNAL statement simulates the
occurrence of an interruption for « named
condition. It can be used to test the cod-
ing of the on-unit established by execution
cf an ON statement. For example:

SIGNAL OVERFLOW;

This statement would simulate the occur-
rence of an overflow interruption and would
cause execution of the on-unit established
for the OVERFLOW condition. If an on-unit
has not teen established, standard system
action is taken.

Section 5: Statement Classification 5%



Page of GC28-2045-1, Issued September 30,

SECTION 6: BLOCKS,

1971 by TNL GN28-3185

FLOW OF CONTROL, AND STORAGE ALLOCATION

This section discusses how statements
can be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements to another,
and how storage may be allocated for data
within a block of statements.

BLOCKS

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared
within the block and limits the allocation
of variables. There are two kinds of
blocks: procedure blocks and begin blocks.

PROCEDURE BLOCKS

A procedure block, simply called a pro-
cedure, is a sequence of statements headed
by a PROCEDURE statement and ended by an
END statement, as follows:

PROCEDURE;

-

label: {label:l...

-

END[labell;

All procedures must be named because the
procedure name is the primary point of
entry through which control can be trans-
ferred to a procedure. Hence, a PROCEDURE
statement must have at least one label. A
label need not appear after the keyword END
in the END statement, but if one does
appear, it must match the label (or one of
the labels) of the PROCEDURE statement to
which the END statement corresponds.

(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups®
in this chapter.) An example of a
procedure:

PROCEDURE
statement-1
statement-2

A: READIN:

-

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

56

A PL/I program consists of one or more
such procedures, each of which may contain
other procedures ands/or begin blocks.

BEGIN BLOCKS

_A begin block is a set of statements
headed by a BEGIN statement and ended by an
END statement, as follows:

{label:)... BEGIN;

END [labell;

Unlike a procedure block, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may pass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be trans-
ferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
label can appear after END, matching a
label of the corresponding BEGIN statement.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups®”
in this chapter.) An example of a begin
block:

B: CONTROL: BEGIN;
statement-1
statement-2

statement-n
END B;

Unlike procedures, beqin blocks general-
ly are not given control through special
references to them. The normal sequence of
control governing ordinary statement execu-
tion also governs the execution of begin
blocks. Control passes into a begin block
sequentially, following execution of the
preceding statement.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are dis-
cussed in this section and in Part I, Sec-
tion 7, “"Recognition of Names.*



INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more
blocks. That is, a procedure, as well as a
kegin block, can contain other procedures
and begin blocks. dowever, there can be no
overlapping of blocks; a klock that con-
tains another block must totally encompass
that block.

A procedure block that is contained
within another block is called an internal
procedure. A procedure klock that is not
contained within ancther klock is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note: With System/360 implemen-
tations, each external procedure is com-
riled separately. Entry names of external
procedures cannot exceed seven characters.)

Begin blocks are always internal; they
must always be contained within another
klock.

Internal procedure and begin blocks can
also be referred to as nested klocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The outer-
most block always must be a procedure.
Consider the following example:

A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;

statement-Ltil

statement-b2
statement-b3

END B;
statement-al
statement-ab
C: PROCEDURE;

statement-cl

statement-c2

D: BEGIN;

statement-dl

statement-d2

statement-d3

E: PROCEDURE;
statement-el
statement-e2
END E;

statement-Aa4

END D;

END C;
statement-aé
statement-a7
END A;

In the above example, procedur: block A
is an external procedure because it is not
contained in any other block. Blcck B is a
begin block that is contained in A; it con-
tains no other blocks. Block : is an
internal procedure; it contains kegin block
D, which, in turn, contains intermnal proce-

Section 6:

dure E. This example contains three levels
cf nesting relative to A; B and C are at
the first level, D is at the second level
(but the first level relative to C) and E
is at the third level (the second level
relative to C, and the first level relative
to D).

There must not be more than 50 levels of
nesting at any point in the compilation.
The degree of nesting at any point is the
number of PROCEDURE, BEGIN, or DO state-
ments without a corresponding END state-
ment, plus the number of currently active
IF compound statements, plus the nurber of
currently unmatched left parentheses, plus
the number of dimensions in each active
array expression, plus the maxipum numker
cf dimensicns in each active array expres-
sion, plus the maximum numpbexr of dimensions
in each active structure expression.

Use of the END Statement With Nested Blocks

and LO-CGroups {(Multiple Closure)

The use of the END statement with a pro-
cedure, kegin klock, or DO~group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes (i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO~group headed by the DO staterent,
that physically precedes, and appears
closest to, the END statement.

2. 1If the optional label is used after
END, the END statement closes that
unclosed klock or DO-group headed by
the BEGIN, PROCEDURE, or DC statement
that has a matching lakel, and that
chvsically precedes, and arpears clos-
est to, the END statement. Any
unclosed blocks or DO~groups nested
within such a klock or DO-group are
automatically closed by this END
statement; this is known as multiple
closurxe.

From the second rule, it is evident that
nested hlocks sometimes make it possikble
for a3 single END statement to close more
thar one block. For example, assume that
the following external procedure has been
defined:

FRST: PRCCEDURE;
statement-f1
statement-£2
ABLK: BEGIN;

statement-al
statement-a2
SCND: PROCEDURE;
statement-sl
BBLK: BEGIN;
statement-bl
END;

Blocks, Flow of Control, and Storage Allocation 57



END;
statement-al3
END ABLK;
END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is, there are no
statements between the END statements for
each. This is also true for bkegin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can ke used to end BBLK
and SCND, and another END can be used to
end ABLK and ¥RST. 1In the first case, the
statement would be END SCND, kecause one
END statement with no following label would
close only the begin block BBLK {see the
first rule above). In the second case,
only the statement END FRST is required;
the statement END ABLK is superfluous.
Thus, the exanple could ke specified as
follows:

FRST: PROCEDURE:;
statement~-f1
statement-f2
ABLK: BEGIN;
statement-ai
statement-az2
SCND: PROCEDURE;
statement-sl
statement-s2
BBLK: BEGIN;
statement-bil
statement-b2
END SCND;
statement-a3
END FRST;
Note the following example:

CBLK: PROCEDURE;
statement-cl
statement-c2
DO I = 1 TC 10;
statement-dl
GO TO LBL;
statement-d2
END CBLK;

DGP:

LBL:

In this example, the END CBLK statement
closes the block CBLK and the iterative
DO-group DGP. The effect is as if an un-
labeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would prevent all but the
first iteration of DGP from taking place,
and statement-d2 would not be executed.

ACTIVATION ANL TERMINATICN OF BLOCKS

ACTIVATION

Although the begin block and the proce-
dure have a physical resemklance and play

58

the same role in the allocation and freeing
of storage, as well as in delimiting the
scope of names, they differ in the way they
are activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can appear
wherever a single statement can appear.

For a procedure, however, normal sequential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the arppearance
of an entry name {(defined below) in one of
the following contexts:

1. After the keyword CALL in a CAILL
statement

2. After the keyword CALL in the CALL
option of the INITIAL attribute (see
the discussion of the INITIAL attri-
bute in Part II, Section 9, "Attri-
butes,” for details)

3. As a function reference (see Part I,
Section 12, "Subroutines and Func-
tions,” for details)

This chapter uses examples of the first
of these; that is, with the procedure
reference of the form:

CALL entry-name;

The material, however, is relevant to the
other two forms as well.

An entry name is defined as either of
the follcwing:

1. The lakel, or one of the labels, of a
PROCELURE statement

2. The label, or one of the labels, of an
ENTRY statement appearing within a
procedure

The first of these is called the primary

entry point to a procedure; the second is

known as a secondary entry point tc a pro-
cedure. The following is an example of a
procedure containing secondary entry
points:

A: PROCEDURE;
statement-1
statement- 2

ERRT: ENTRY;
statement~3
statement-4
statement-5



NEXT: RETR: ENTRY;
statement-6
statement-7
statement-8
ENDC A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points. Actu-
ally, since they are both labels of the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point.

When a procedure reference is executed,
the procedure containing the specified
entry point is activated and is said to be
invoked; control is transferred to the
specified entry point. The point at which
the procedure reference arpears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking klock remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a proce-
dure is invoked at a secondary entry point,
execution begins with the first executable
statement following the ENTRY statement
that defines that secondary entry point.
Therefore, if all of the numbered state-
ments in the last example are executable,
the statement CALL A would invoke procedure
A at its primary entry point, and execution
wculd begin with statement-1; the statement
CALL ERRT would invoke procedure A at the
secondary entry poeint ERRT, and execution
would begin with statement-3; either of the
statements CALL NEXT or CALL RETR would
invoke procedure A at its other secondary
entry point, and execution would begin with
statement-6. Note that any ENTRY state-
ments encountered during sequential flow
are never executed; control flows around
the ENTRY statement as though the statement
were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal pro-
cedures that are at the first level of
nesting relative to a containing procedure
can always be invoked ky that containing
procedure, or by each other. For example:

PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

statement-al
statement-a2

Section 6:

Blocks,

B: PROCEDURE;
statement-bl
statement-b2

END A;

statement-4

statement-5

C: PROCEDURE;
statement-cl
statement~c2

END C;

statement-6
statement-7
END PRMAIN;

In this example, PRMAIN can invcke pro-
cedures A and C, but not B; procedure A can
invoke procedures B and C; procedure B can
invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the acti-
vaticn of klocks presupposes that a program
has already been activated. A PL/I program
becomes active when a calling grogran
invokes the initial procedure. This call-
ing program usually is the time-sharing
system, although it could ke another pro-
gram. For System/360 implementations, the
initial procedure, called the main proce-
dure, must be an external procedure whose
PROCEDURE statement has the OPTIONS{(MAIN)
specification, as shown in the following
examgple:

CONTRL: PROCEDURE OPTIONS(MAIN);
CAIL A;
CALL B;
CAIL C;

END CONTRL;

In this example, CONTRL is the initial pro-
cedure and it invokes other procedures in
the program.

The fcllowing is a summary of the acti-
vation of blocks:

* A program becomes active when the ini-
tial procedure is activated by the
system.

* Except for the initial procedure,
external and internal procedures con-
tained in a program are activated cnly
when they are invoked by a procedure
reference.

e Begin blocks are activated through
normal sequential flow or as on-units.

e The initial procedure remains active
for the duration of the prograrw.

e All activated klocks remain active
until they are terminated (see below).

Flow of Control, and Storage Allocation 59



TERMINATION

In general, a procedure block is ter-
minated when, by some means other than a
procedure reference, control passes back to
the invoking block or to some other active
block. Similarly, a begin block is ter-
minated when, by some means other than a
procedure reference, control passes to
another active block. There are a number
of ways by which such transfers of control
can be accomplished, and their interpreta-
tions differ according to the type of block
keing terminated.

Begin Block Termination

A begin block is terminated when any of
the following occurs:

1. Contrel reaches the END statement for
the block. When this occurs, control
moves to the statement physically fol-
lowing the END, except when the block
is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any block
activated from within that Legin
block) transfers control to a point
not contained within the klock.

3. A STOP or EXIT statement is executed
(thereby terminating execution).

4. Control reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well.

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin klock B is con-
tained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B effec-
tively terminates both A and B. This case
is illustrated below:

FRST: PROCEDURE OPTICNS (MAIN);
statement-1
statement-2
statement-3
A: BEGIN;
statement-al
statement-a2
B: BEGIN;
statement-bl
statement-b2

60

GO TC 1AB;
statement-b3
END Bj;
statement-a3
END A;
statement-4
statement-5
statement-6
statement-7
END FRST;

LAB:

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two state-
ments in A are executed and then begin
tlock B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
Elock A as well as termination of klock B.

Procedure Termination

A procedure is terminated when one of
the following occurs:

1. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes contrcl
to ke returned to the point of invoca-
tion in the invoking rrocedure. If
the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
exesution of the statement containing
the reference will ke resumed.

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GC TO staterent
within the procedure (or any block
activated from within that procedure)
transfers control to a point not con-
tained within the procedure.

4. A STOP or EXIT statement is executed
(thereby terminating execution).

Items 1, 2, and 3 are normal procedure
terminations; item 4 is abnormal prccedure
termination.

As with a begin klock, the type of ter-
mination described in item 3 can sonetimes
result in the termination of several proce-
dures and/or begin blocks. Specifically,
if the transfer point specified by the GO
TO statement is contained in a block that



Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

did not directly activate the block being
terminated, all intervening blocks in the
activation sequence are terminated. Con-
sider the following example:

A: PROCEDURE OPTIONS (MAIN) ;
Statement-1
statement -2
B: BEGIN;
statement-bl
statement-b2
CALL C;
statement-b3
END B;
statement-3
statement-4
C: PROCEDURE;
statement-cl
statement-c2
statement-c3
D: BEGIN;
statement-dil
statement-d2
GO TO LAB;
statement-d3
END D;
statement-cu
END C;
statement-5
statement-6
statement-7
END A;

In the above example, A activates B,
which activates €, which activates D. 1In
D, the statement GO TO LAB transters con-
trol to statement-6 in A. Since this
statement is not contained in D, C, or B,
all three blocks are terminated; A remains
active. Thus, the transfer of control out
of D results in the termination of inter-
vening blocks B and C as well as the ter-
mination of block D.

Program Termination

A program is terminated when any one of
the following occurs: .

1. Control for the program reaches an
EXIT statement. This is abnormal
termination.

2. Control for the program reaches a STOP
statement. This also is abnormal
- termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal termination.

4. An on-unit for the ERROR c¢ondition is
executed with normal return (that is,
a GO TO statement does not transfer
control out of the on-unit) or the
FINISH condition is raised as a result
of the standard system action for the
ERROR condition.

5. Execution of a restricted function

(for example, multitasking or REGIONAL
1/0) is called for.

Section 6:

- Section 8,

Blocks,

Note: The termination of a program, wheth-
er normal or abnormal , raises the FINIGH
condition. The standard system action for
this condition is to return control to the
system. For normal termination, the system
will then pass control to the calling pro-
gram, it any. For abnormal termination, it
will terminate execution. (See Part 11,
"ON-Conditions.")

STORAGE ALLOCATION

Storage allocation is the process of
associating an area of storage with a vari-
able so that the data items to be repre-
sented by the varieble may be recorded
internally. When storage has been asso-
ciated with a variable, the variable iu
said to be allocated. Allocation for a
given variable may take place statically,
that is, before the execution of the pro-
gram, or dynamically, during execution. A
variable that i5 allocated statically
remains allocated while the program iu
loaded. A variable that 1s allocated
dynamically relinquishes its storage either
upon the termination of the block contain-
ing thdat wvariable or at. the request ot the
user, depending upon 1ts storage class.

The manner in which storaqge 15 allocated
for a variable 15 determined by the storage
class of that variable. There are tour
stourage classes: static, automatic, con-
trolled, and based. Each storage clas: is
specified by its corresponding storage
class attribute: STATIC, AUTOMATIC, CON-
TROLLED, and BAGED, respectively. The laut
three define dynamic storage allocation.

Storage class attributes may be declared
explicitly for element, array, and major
structure variables. If a variable is an
array or 4 major structure variable, the
storage class declared for that variable
applies to alli of the elements in the array
or structure.

All variables that have not been expli-
citly declared with a storage class attri-
bute are assumed to have the AUTOMATIC
attribute, with one exception: any vari-
able that has the EXTERNAL attribute 1is
assumed to have the STATIC attribute.

Static Storage

All variables that have the STATIC
attribute are part of the compiled program.
They are allocated storage when the program .
is loaded and they remain allocated until
the program is unloaded. Static variables
that are given initial values can therefore
be said to be initialized before the first
execution after a load, but they are not
reinitialized for any subsequent execution
unless the program is unloaded first. If
the values of static variables are changed,
they remain changed ftor subsequent execu-
tions. Example:

Flow of Control, and Storage Allocation 61



Page of GC28-2045-1, Issued September 30,

OUTP: PROCEDURE;

DECLARE X FIXED STATIC INITIAL (1);

PUT DATA (X);

X = X+1;
END OUTP;

In the above example, the first time
that procedure OUTP is invoked, X has the
value 1 and execution of the PUT statement
causes the item X=1 to be written. Hefore
OUTP is terminated, the assignment state-
ment X=X+1 increases the value of X by 1.
If OUTP is invoked a second time during the
same load, and if the value of X is not
changed elsewhere in the program, X has the
value 2. (X is not reinitialized to 1.) X
would also have the value 2 if:

s CUTP were a main procedure.

s X were declared as an EXTERNAL static
variable.

When the PUT statement is executed for the
second time, the item X=2 is written into
the stream.

Thus, the static variable X might be
used to record the number of times OUTP is
invoked.

Automatic Storage

A variable that has the AUTOMATIC attri-
bute is allocated storage upon activation
of the block in which that wvariable is
declared. The variable remains allocated
as long as the block remains active; it is
freed when the block is terminated. Once a
variable is freed, its value is lost.

controlled Storage

A variable that has the CONTROLLED
attribute is allocated storage only upon
the execution of an ALLOCATE statement
specifying that variable. Storage remains
allocated for that variable until the
execution of a FREE statement in which the
variable is specified. This allocation
remains even after termination of the block
in which it is allocated. Thus, the allo-
cation and freeing of storage for variables
declared with the CONTROLLED attribute is
directly under the control of the user.

A controlled variable may be stacked;
that is, storage may be allocated for a
controlled variable even when a previcus
allocation for that variable exists. In
terms of ALLOCATE and FREE statements,
stacking occurs when an allocated con-
trolled variable is specified in an ALLO-
CATE statement without first having been

62

1971 by TNL GN28-3185

specified in a FREE statement. When this
occurs, the previous allocation is not
released; its value remains the same but,
for the time being, this value is not
available to the user. Conceptually, the
new allocation is stacked on top of the
previous allocation, with the result that
the previous allocation is "pushed-down” in
the stack. Subsequent allocations are
always added to the top of the stack.

Any reference to a stacked controlled
variable always refers to the most recent
allocation for that variable, that is, to
the allocation at the top of the stack.
Thus, a FREE statement specitying a stacked
controlled variable will cause the alloca-
tion at the top of the stack to be freed.
When this occurs, the other allocations in
the stack are "popped-up®, the most recent
previous allocation coming to the top and
being available once again. When an allo-
cation is popped up to the top ot a stack,
its value is the same as it was when it was
pushed down.

Based Storage

Based storage is similar to controlled
storage in that it can be allocated by the
ALLOCATE statement and freed by the FREL
statement; and more than one allocation can
exist tor one variable. However, the user
has a much greater degree of control with
based storage. For example, all current
based allocations are available at any
time: unique reference to a particular
allocation is provided by a pointer value
qualifying the based variable reference.

The use of based storage also allowi
data to be processed in an I/0 buffer
without it having to be moved from the
buffer to a variable (that is, to a work
area). By means of the LOCATE statement
and the READ statement with the SET optiun,
the structure of the based variable is
sdperimposed on the data in the output or
input buffer respectively, so that any
reference to that allocation of the based
variable is a reference to that data.

Based sturage is the most powerful of
the PL/I storage classes, but it must b
used carefully; many of the safequards
against error that are provided for other
storage classes cannot be provided forx
based.

For full details of based storage, see

Part I, Section 14, "Based Storage and List
Processing.”™

REACTIVATION OF AN ACTIVE PROCEDURE

(RECURS1ION)

An active procedure that can be reacti-
vated from within itself or from within
another active procedure is said to be a



APage of GC28-2045~1, Issued September 15, 1970 by TNL GN28-3171

For full details of based storage, see
Part I, Section 14, "Based Storage and List
Processing.”

REACTIVATION OF AN ACTIVE.PROCEDURE
(RECURSION)

An active procedure that can be reacti-
vated from within itself or from within
another active procedure is said to be a

Section 6: Blocks, Flow of Control, and Storage Allocation 62.1






recursive procedure; such reactivation is

called recursion.

A procedure can be invoked recursively
only if the RECURSIVE option has keen spec-
ified in its PROCEDURE statement. This
option also applies to the names of any
secondary entry points that the procedure
might have.

The environment (that is, values of
automatic variables, etc.) of every invo-
cation of a recursive procedure is pre-
served in a manner analogous to the stack-
ing of allocations of a controlled vari-
able. BAn environment can thus be thought
of as being "pushed down" at a recursive
invocation, and "popped up” at the termina-
tion of that invocation. Note that a lakel
constant always contains information iden-
tifying the current invocation of the block
that contains the lakel. Hence, if a label
constant is assigned to a label variable in
a particular invocation, a GO TO statement
naming that variable in another invocation
could restore the environment that existed
when the assignment was performed.

Consider the following example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL

(0);

X=X+1;
PUT DATA (X);
IF X =5 THEN GO TC 1AB;
CALL AGN;
X =X-1;
PUT DATA (X);
LAB: ENC RECURS;
AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

-

-

X=X+1;
PUT DATA(X);

CALL RECURS;
X=X-1;

PUT DATA
END AGN;

(X);

In the above example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL att ibute, it is
allocated and initialized kefore execution
of the program begins.

Section 6:

Blocks,

The first time that RECURS is invoked, X
incremented ky 1 and X=1 is transmitted
ty the PUT statement. Since X is less than
5. AGN is invoked. In AGN, X is incre-
mented by 1 and X=2 is transmitted (alsc by
a PUT statement). AGN then reinvokes
RECURS.

18

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as before,
and then ¥X=3 is transmitted. X is still
less than 5, so AGN is invoked again.

Since AGN is active when invoked, this
invocation of AGN is also recursive. X is
incremented once again, X=4 is transmitted,
and RECURS is invoked for the third tipe.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is nc longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS 1is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time; that is,
contrcl returns to the statement following
CALL RECURS in the second invocaticn of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second
invocation of AGN is terminated, and con-
trol returns to the procedure that invoked
AGN for the second time; that is, ccntrol
returns to the statement following CALL AGN
in the second invocation of RECURS. Here X
is decrenented again and X=3 is trans-
mitted, after which the second invocaticn
cf RECURS is terminated and control returns

to the first invocation of AGN. X is
decremented again, X=2 is transmitted, the
first invocation of AGN is terminated, and

control returns to the first invocation of

RECURS. X is decremented, X=1 is trans-
mitted, X 1s reset to 0, and the first

invocation of RECURS is terminated. Ccn-
trol then returns to the procedure that
invoked RECURS in the first place.

Ncte the difference between recursive
and reenterakle procedures. A procedure is
recursive only if the RECURSIVE option is
specified in the PROCEDURE statenment.

Every procedure compiled by the TSS/360
PL/T compiler is reenterable; that is, it
is a procedure that does not modify itself
during its execution, so that subseguent
execution of the procedure with the sane
data will always give the same result.

Effect of Recursion on Storage Classes

Allocation cf static variables {as ii-
lustrated above) is not affected by recur-
sicn, kecause they are allocated storage
ocutside the environment of a recursive pro-
cedure. Allccation of controlled variaktles
is likewise unaffected because their allo-
cation and release is completely under the

Flow of Control, and Storage Allo~ation 63

Ty



control of the user. However, allocation
«f automatic variables is affected, because
they are a part of the environment of a
particular invocation and also because
their allocation and release is not direct-
ly controlled by the user. This applies to
Lased variables also, but with the provi-
sion that the storage class of the pointer
variable must be taken into account.

Fach time a procedure is invoked recur-
sively, storage for each automatic variable
15 reallocated, and the previous allocation
i3 pushed Jown in a stack. Each time an
activation of a recursive procedure is ter-
winated, autowatic storage is popped up to
yield the next most recent generation of
auvtomatic storage. Hence, each generation
of eutomatic storage is preserved as part
of the environment of the corresponding
recursive activation.

pointer variables, unless they are
explicitly declared otherwise, are automat-
ic by detault, and are therefore subject to
the stacking process described akove. Con-
' sequently, when reference is made to a
based variable in a recursive procedure,
the programaer should take care to ensure
the validity aud accuracy of the pointer
qualifier.

PROLOGUES AND EPITOGUES

Each time a block is activated, certain
activities must be performed before control
can reach the first executable statement in
the block. This set of activities is
called a prolcogue. Similarly, when a block
is terminated, certain activities must be
rertormed befcre control can ke transferrxed
out of the block; this set of activities is

called an epilogque.

vrologues and egpilogues are the respon-
sibility of the compiler and not of the
user. They are discussed here because
knowledge of them may assist the user in
inproving the performance of his program.

Prologues

A prologue is a comgiler-written routine
logically appended to the beginning of a
block and executed as the first step in the
activation of a block. 1In general, activi-
ties performed by a prologue are as
follows:

6l

e Computing dimension kounds and string
lengths for automatic and DEFINED
variakles and ENTRY declarations.

s Allocating storage for automatic
variables and initialization, if
specified.

¢ Cetermining which currently active
kElocks are known to the procedure, sc
that the correct generations of auto-
matic storage are accessible, and the
correct cn-units may be entered.

* Allocating storage tor dummy arguments
that may be passed from this Lklock.

The prologue may need to evaluate ex-
pressions defining lengths, bounds, itera-
tion factors, and initial values. Note
that if an item is referred to in an ex-
pression and the allocation or initializa-
tion of a second item depends on that ex-~
pression, then the first item must be in no
way dependent on the second item for its
own allocation and initialization. Furth-
er, the first item must be in no way depen-
dent on any other item that so depends on
the second item. For example, the focllow-
ing declaration is invalid:

DCL A(B(1)) INITIAL(Z),
B(A{1)) INITIAL(3);

However, the following declaration is
valid:

DCL N INITIAL(3),
A(N),
B CBAR(N);

Epilogues

An epilogue is a compiler-written rou-
tine logically appended to the end of a
kElock and executed as the final step in the
termination of a block. In general, the
activities performed by an epilogue are as
follows:

s Reestablishing the on-unit envircnment
existing tefore the block was
activated.

* Releasing storage for all automatic
variables allocated in the block.



declaration of that name.

Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

A PL/I program consists of a collection
of identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either key-
words oOr names with a meaning specified by
the user. The PL/I language is constructed
so that the compiler can determine from
context whether or not an identifier is a
keyword, so there is no list of reserved
words that must not be used for user-
defined names. Any identifier may be used
as a name; the only restriction is that at
any point in a program a name can have one
and only one meaning. For example, the
same name cannot be used for both a file
and a floating-point variable.

Note: The above is true so long as the
60-character set is used. Certain identi-
fiers of the 48-character set cannot be
used as user-defined identifiers in a pro-
gram written using the 48-character set;
these identifiers are: GT, GE, NE, LT, NG,
LE, NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a pro-
gram. A name declared within a block has a
meaning only within that block. Outside
the block it is unknown unless the same
name has also been declared in the outer
block. In this case, the name in the outer
block refers to a different object. This
enables users to specify local definitions
and, hence, to write procedures or begin
blocks without knowing all the names being
used by other users writing other parts of
the program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a particu-
lar meaning applies to. In PL/I a name is
given attributes and a meaning by a
declaration (not necessarily explicit).

The part of the program for which the mean-
ing applies is called the scope of the

In most cases,
the scope of a name is determined entirely
by the position at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with
the same name {(such as in recursion); such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to under-
stand the terms "contained in* and “"intern-
al to."

SECTION 7: RECOGNITION OF NAMES

Contained In: All of the text of a block,
from the PROCEDURE or BEGIN statement
through the corresponding END statement, is
said to be contained in that block. Note,
however, that the labels of the BEGIN or
PROCEDURE statement heading the block, as
well as the labels of any ENTRY statements
that apply to the block, are not contained
in that block. Nested blocks are contained
in the block in which they appear.

Internal To: Text that is contained in a
block, but not contained in any other block
nested within it, is said to be internal to
that block. Note that entry names of a
procedure (and labels of a BEGIN statement)
are not contained in that block. Conse-
quently, they are internal to the contain-
ing block. Entry names of an external pro-
cedure are treated as if they were external
to the external procedure.

In addition to these terms, the dif-
ferent types of declaration are important.
The three different types -- explicit
declaration, contextual declaration, and
implicit declaration -- are discussed in
the followirg sections.

EXPLICIT DECLARATION

A name is explicitly declared if it
appears:

1. In a DECLARE statement
2. In a parameter list
3. As a statement label

4. As a label of a PROCEDURE or ENTRY
statement

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately follow-
ing the PROCEDURE or ENTRY statement in
which the parameter list occurs (though the
same name may also appear in a DECLARE
statement internal to the same block).

The appearance of a statement label pre-
fix constitutes explicit declaration of a
statement label constant.

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement is
the same as if it were declared in a
DECLARE statement immediately preceding the
PROCEDURE statement for the procedure to
which it refers.

Section 7: Recognition of Names 65



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of
a name is that block to which the declara-
tion is internal, but excluding all con-
tained blocks to which another explicit
declaration of the same identifier is
internal. .

For example:
P A B Q B'* C
P: PROCEDURE; 7 7 } 7]
DECLARE A, B;
Q: PROCEDURE;
DECLARE B, C;

END Q;

END P; J 1 1
The lines to the right indicate the

scope of the names. B and B' indicate the
two distinct uses of the name B.

CONTEXTUAL DECLARATION

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit
declaration for the same name, the name is
said to be contextually declared.

A name that has not been declared ex-
plicitly will be recognized and declared
contextually in the following cases:

i. A name that appears in a CALL state-
ment, in a CALL option, or followed by
a parenthesized list in a function
reference (in a context where an
expression is expected) is given the
ENTRY and EXTERNAL attributes.

2. A name that appears in a FILE option,
or a name that appears in an ON, SIG-
NAL, or REVERT statement for a condi-
tion that requires a file name, is
given the FILE and EXTERNAL
attributes.

3. A name that appears in an ON CONDI-
TION, SIGNAL CONDITION, or REVERT CON-
DITION statement is recognized as a
user—-defined condition name.

4. A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

S. A name that apéears in a TASK option
is given the TASK attribute.

66

6. A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side of a pointer qualifica-
tion symbol is given the POINTER
attribute.

7. A name that appears in an IN option,
or in the OFFSET attribute is given
the AREA attripute. Note, howvever,
that all contextually declared area
variables are given the AUTOMATIC
attribute. The compiler requires that
the variable named in the OFFSET
attribute must be based; if a nonbased
area variable is named, the offset
variable will be changed to a pointer
variable. Hence, unless the variable
named in the OFFSET attribute is ex-
plicitly declared, OFFSET effectively
becomes POINTER, and a severe error
occurs.

8. If an undeclared identifier appears:

a. before the equal signm in an as-
signment statement, or

b. Dbefore the assignment symbol in a
DO statement (or in a repetitive
specification), or

C. in the data list of a GET
statement

and if that identifier is neither en-
closed within an arqument list nor
immediately followed by an argument
list, that identifier is contextually
declared to be a variable and not a
reference to a built-in function or
pseudo-variable. This rule does not
apply to the identifiers ONCHAR,
ONSOURCE, and PRIORITY.

Examples of contextual declaration are:

READ FILE (PRED) INTO (Q);
ON CONDITION (NEG) CALL CREDIT;

In these statements, PREQ is given the FILE
attribute, N&G is recognized as a user-
defined condition name, and CREDIT is given
the ENTRY attribute. The EXTERNAL attri-
bute is given to all three by default.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately follow-
ing the PROCEDURE statement of the external
procedure in which the name appears.



Note that contextual declaration has the
same effect as if the name were declared in
the external procedure, even when the
statement that causes the contextual
declarations is internal to a biock (called
B, for example) that is contained in the
external procedure. Consequently, the name
is known throughout the entire external
procedure, except for any klocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing extermal procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the con-
text of a name to add to the attributes
established for that name in an explicit
declaration.

For example, the following procedure is
invalid:

P: PROC (F);

READ FILE(F) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. It is
given the attributes REAL DECIMAL FLOAT by
default. Since F is explicitly declared,
its appearance in the FILE option does not
constitute a contextual declaration. Such
use of the identifier is in error.

IMPLICIT DECLARATION

If a name appears in a program and is
not explicitly or contextually declared, it
is said to be implicitly declared. The

scope of an implicit declaration is deter-
mined as if the name were declared in a
LECLARE statement immediately following the
first PROCEDURE statement of the external
procedure in which the name is used.

An implicit declaration causes default
attributes to ke applied, depending upon
the first letter of the name. If the name
kegins with any of the letters I through N
it is given the attributes REAL FIXED
BINARY (15,0). If the name begins with any
other letter including one of the alrhabet-
ic extenders §, #, or a, it is given the
attributes REAL FLOAT DECIMAL (6). (The
default precisions are those defined for
System/360 implementations.)

EXAMPLES OF DECLARATIONS

Scopes of data declarations are illus-
trated in Fiqure 7. The brackets to the
left indicate the klock structure; the
brackets to the right show the scope of
each declaration of a name. 1In the dia-
gram, the scopes of the two declarations of
¢ and R are shown as Q and Q' and R and R"'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
cf A except B; the scope of the second
declaration is block B only.

R is declared in block C, but a
reference to R is also made in block B.
The reference to R in klock B results in an
implicit declaration of R in A,the external
procedure. Two separate names with dif-
ferent scopes exist, therefore. The scope
cf the explicitly declared R is C; the
scope of the implicitly declared R is all
of A except block C.

A: PROCEDURE;
DECLARE P, Q;
T B: PROCEDURE;
DECLARE ¢;
R = Q;
C: BEGIN;
DECLARE R;
DO I =1 TO 10;
END;
END C;
ENL B;
: PROCEDURE;
CECLARE S;
END D;
L L END A;

ar

[ e S . S o — i, W " V— g S— {— — q— o

R* S 1

d
0
©
|

b e e s Gt E— ———— ———d—— — a— t— o

Scopes of LCata Declarations

Figure 7.

Section 7: Recognition of Names 67



I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C and D.

S is explicitly declared in procedure D
and is known only within D.

Scopes of entry name and statement lakel
declarations are illustrated in Figure 8.
The example shows two external procedures.
The names of these procedures, A and E, are
atsumed to be explicitly declared with the
EXTERNAL attribute within the procedures to
which they apply. In addition, E is con-
textually declared in A as an EXTERNAL
+ntly name by its appearance in the CALL
statewent in kblock C. The contextual
declaraticn of E arplies throughout block A
and is linked to the explicit declaration
nf E that applies throughout klock E. The
scope of the name E is all of block 2 and
211 of block E. The scope of the name A is
cnly all of the block A, and not E. 1in E,
since the CALL statement itself would pro-
vide a contextual declaration of A, which
would then result in the scope of A being
all of A and all of E.

The label L1 appears with statements
internal to A and to C. Two separate
declarations are therefore established; the
first applies to all of ktlock A except
clock ¢, the second applies to block C
only. Theretore, when the GO TO statement
in block B is executed, control is trans-
ferred to L1 in block A, and klock B is
terminated.

D and B are explicitly declared in block
A and can be referred to anywhere within A;
tut since they are INTERNAL, they cannot be
referred to in block E (unless passed as an
argument to E).

i
| [A: PROCEDURE;

| L1: P = Q;

| [ B: PRCCEDURE;

| L2: CALL C;

i C: PRCCEDURE;

{ Li: X = Y;

1 CALL E;

] END C;

| GO TC 11;

l L END B;

{ D: PROCEDURE;

| [ ENLC D;

i CALL B;

i R END A;

| E: PROCEDURE;

i L END E;

e e e e e e e e

Figure 8.

68

C is explicitly declared in B and can be
referred to from within B, but not from
cutside B.

L2 is declared in B and can be referred

to in block B, including C, which is con-
tained in B, but not from outside B.

APPLICATION OF DEFAULT ATTRIBUTES

The attrikutes associated with a name
comprise those explicitly, contextually, or
implicitly declared for that name, as well
as those assumed by default. The default
for each attribute is given in Part II,
Section 9, "Attributes."

THE _INTERNAL AND EXTERNAL ATTRIBUTES

The scope of a name with the INTERNAL
attribute is the same as the scope of its
declaration. Any other explicit declara-
tion of that name refers to a new object
with a different, nonoverlapping scope.

A name with the EXTERNAL attribute may
be declared more than once in the samre pro-
gram, either in different external proce-
dures or within blocks contained in exter-
nal procedures. Each declaration of the
name establishes a scope. These declara-
tions are linked together and, within a
program, all declarations of the same iden-
tifier with the EXTERNAL attribute refer to
the same name. The scope of the name is
the sum of the scopes of all the declara-
tions of that name within the prograr.

Note: External names cannot be more than
seven characters long for TSS/360
implementation.

Since these declarations all refer to
the same thing, they must all result in the

s v i s ity O WM Sy W——— — - T WoATD AT o, st o, s

H—r

Scopes of Entry and Lakel Declarations



same set of attributes. It may ke imposs-
ible for the compiler to check this, parti-
cularly if the names are declared in dif-
ferent procedures, so care should be taken
to ensure that different declarations of
the same name with the EXTERNAL attribute
do have matching attributes. The attribute
listing, which is availakle as optional
output from the compiler, helps to check
the use of names. The following example
illustrates the above points in a program:

A: PROCELURE;
DECLARE S CHARACTER (20);
CALL SET (3);
E: GET LIST (S,M,N);
B: BEGIN;
DECLARE X({NM,N), Y(N);
GET LIST (X,Y);
CALL C(X,¥Y);
C: PROCEDURE (P,Q);
DECLARE P(*,%), Qf(¥*),
S BINARY FIXED EXTERNAL;
S = 0;
DO I = 1 TO M;
IF SUM (P(I,*)) = Q(I)
THEN GO TO B;
S = S+1; R
IF S = 3 THEN CALL OUT (E);
CALL D(I);
B: ENLC;
END C;
D: PROCEDURE (N);
PUT LIST ('ERRCR IN ROW °,
N, °‘TABLE NAME *, S);
END D;
END B;
GO TO E;
END A;
OUT: PROCEDURE (R);
DECLARE R LABEL,
(M,L) STATIC INTERNAL
INITIAL (0Q),
S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(1);
M = M+1l; S=0;
IF M<L THEN STOP;
ENTRY (Z);
L=%Z;
RETURN;
END OUT;

EISE GO TO R;
SET:

A is an external procedure name; its
scope is all of block A, plus any other
blocks where A is declared (explicitly or
contextually) as external.

S is explicitly declared in block A and
block C. The character string dec.aration
applies to all of block A except block C;
the fixed binary declaration applies only
within block C. Notice that although D is
called from within block C, th¢ reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in block C.

N agppears as a parameter in block D, but
is also used outside the block. Its
apearance as a parameter establishes an
explicit declaration of N within D; the
references ocutside D cause an implicit
declaration of N in block A. These two
declarations of the name N refer to dif-
ferent objects, although in this case, the
ckbjects have the same data attributes,
which are, by default, FIXED (15,0),
BINARY, and INTERNAL.

X and Y are known throughout B and could
ke referred to in block C or D within B,
but not in that part of A outside B.

P and ¢ are parameters, and therefore
their appearance in the parameter list is
sufficient to constitute an explicit
declaration. However, a separate LECLARE
statement is required in order to specify
that P and Q are arrays. Note that
although the arguments X and Y are declared
as arrays and are known in block C, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the kounds of the
arguments.)

I and M are not explicitly declared in
the external procedure A; they are there-
fore implicitly declared and are kncwn
throughout A, even though I appears only
within block C.

Within the external procedure A, QUT and
SET are contextually declared as entry
names, since they follow the keywcrd CALL.
They are therefore considered to be
declared in A and are given the EXTERNAL
attribute bty default.

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to ke explicitly
declared with the EXTERNAL attribute. The
two entry names SET and OUT are therefore
known throughout the two procedures.

The label B appears twice in the gro-
gram, once as the lakel of a begin klcck,
which is an explicit declaration, as a
lakel in A. It is redeclared as a label
within block C by its appearance as a pre-
fix to the END statement. The reference to
B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside klock C,
any reference to B would be to the label of
the begin Lblcck.

Ncte that C and D can be called from any
peoint within B but not from that part of A
outside B, nor from another external proce-
dure. Similarly, since E is known through-
cut the external procedure A, a transfer to

Secticn 7: Recognition of Names 69



® L TR T,

TR TN T S AR T i R

t way be made from any peint within A. The
label B within block C, however, can only
he referred to from within C. Transfers
out of a block by a GO TO statement can be
wade; but such transfers into a nested
tiock generally cannot. An exception is
shown 1n the external procedure OUT, wherxe
the label E from block A is passed as an
avgument to the label parameter R.

The statement GO TO R causes control to
(458 to the Label E, even though E is
declared within A, and nct known within
ouT .,

ihie variables M and L are declared
within the block OUT to be STATIC, so their
valies are prescerved between calls to OUT.

in order to identify the S in the proce-
cure OUT as the same S in the procedure C,
toth have been declareid with the attribute
LA UBERNATLL

Seope of Member Names cf External

Wh=n 4 wajor structure name is declared
witis the EXTERNAL attribute in more than
one hlock, the attrikbutes of the corre-
-ounding structure members must be the same
in cach case, although the corresponding
member names need not be identical. Mem-
pers of structures always have the INTERNAL
ac*ribute, and cannot ke declared with any
scope attribute. However, a reference to a
mewber of an external structure, using the
member name known to the Eblock containing
the reference, is effectively a reference
1o that member in all klocks in which the
external name is known, regardless of
whether the corresponding memkber names are
identical. For example:

PROCEDURE;

DECLARE 1 A EXTERNAL,
2 B,
2 C;

PROCA:

-

END PROCA;

PROCB: PROCEDURE;
DECLARE 1 A EXTERNAL,
2 B,
2 D;

END PROCB;
In this example, if A.B is chang24 in
PROCA, it is also changed for PROCB, and

vice versa; if A.C is changed in PROCA, A.D
is changed for PROCB, and vice versa.

70

MULTIPLE DECLARATIONS AND AMBIGUOUS
REFERENCES

Two or more declarations of the same
identifier internal to the same block con-
stitute a multirle declaration, unless at
least one of the identifiers is declared
within a structure in such a way that name
qualification can ke used to make the namwes
unique.

Two or more declarations anywhere in a
program cf the same identifier as different
names with the EXTERNAL attribute consti-
tute a multiple declaration.

Multiple declarations are in error.

A name need have only enough qualifica-
tion to make the name unique. Reference to
a name is always taken to apply to the
identifier declared in the innermost block
containing the reference. An ambiquous
reference is a name with insufficient qual-
ification to make the name unique.

The following examples illustrate both
rultiple declarations and ambiguous
references:

DECIARE 1 A, 2 C, 2 D, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
A.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
tlock.

DECIARRE 1 A, 2 B, 2 B, 2 C, 3 L, 2 L;
In this example, B has been multiply
declared. BA.D refers to the second D,
since A.D is a complete qualificaticn of
cnly the second D; the first D would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3C, 2D, 3 C;
In this example, A.C is ambiquous Lecause
neither C is completely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A;
In this example, A refers to the first A,
A.A refers to the second A, and A.A.A

refers to the third A.
DECLARE X;
DECLARE 1 Y,

In this example, X refers to the first

CECLARE statement. A reference to Y.Z is

ambiguous; Y.Y.Z refers to the second Z;
and Y.X.Z2 refers to the first 2.



PL/I includes input and output state-
ments that enakle data to ke transmitted
tetween the internal and external storage
devices of a computer. A colilection of
data external to a program is called a data
set. Transmission of data from a data set
to a program is termed input, and transmis-
sion of data from a program to a data set
is called output.

PL/I input and output statements are
concerned with the logical organization of
a data set and not with its physical char-
acteristics; a program can be designed
without specific knowledge of the input/
output devices that will ke used when the
program is executed. To allow a source
program to deal primarily with the logical
aspects of data rather than with its phys-
ical organization in a data set, PL/I em-
ploys a symbolic representation of a data
set called a file. A file can be asso-
ciated with different data sets at dif-
ferent times during the execution of a
program.

Two types of data transmission can be
used by a PL/I program. In stream-oriented
transmission, the organization of the data
in the data set is ignored within the pro-
gram, and the data is treated as though it
actually were a continuous stream of indi-
vidual data items in character form; data
is converted from character form to inter-
nal form on input, and from internal form
to character form on output. In record-
oriented transmission, the data set is con-
sidered to be a collection of discrete rec-
ords. No data conversion takes place dur-
ing record transmission; on input the data
is transmitted exactly as it is recorded in
the data set, and cn ocutput it is trans-
mitted exactly as it is recorded internal-
ly. It is possible for the same data set
to be processed at different times by eith-
er stream transmission or record transmis-
sion; however, all items in the data set
would have to be in character form.

Stream-oriented transmission is ideal
for simple applications, particularly those
that use terminal or punched card input and
have limited output; a minimum of coding is
required of the user, especially for ter-
minal or punched card input and printed
output. However, compared with record-
oriented transmission, stream-criented
transmission is less efficient in terms of
execution time because of the data conver-
sion it involves, and more sp:ce is
required on external storage devices
because all data is in character form.

SECTION 8: INPUT AND OUTPUT

Although record-oriented transmission
may demand rather more effort from the
user, it is more versatile than stream-
oriented transmission, with regard to the
manner in which data can be processed and
the types of data set that can be pro-
cessed. Since data is recorded in a data
set exactly as it appears in main storage,
any data format is acceptable; nc cconver-
sion proklems will arise, but the user rust
have a greater awareness of the structure
of his data.

This section discusses those asgpects of
PL/I input and output that are common to
stream-oriented and record-oriented trans-
nission, including files and their attri-
kFutes, and the relationship of files to
data sets. Sections 9 and 10 describe the
input and output statements that can be
used in a PL/I program, and the various
data set organizations that are recognized
in P1/I. Stream-oriented transmission is
dealt with in Part I, Section 9, and
record-oriented transmission in Part I,
Section 10.

CATA SETS

Data sets are stored on a variety of
external storage media, such as punched
cards, reels of magnetic tape, and disks.
Despite their variety, these media have
wrany corron characteristics that permit
standard methods of collecting, storing,
and transmitting data. For convenience,
the general term volume is used to refer to
a unit of external storage, such as a reel
of magnetic tape or a disk pack, without
regard tc its specific physical
composition.

The data items within a data set are
arranged in distinct physical groupings
called blocks. These blocks allow the data
set Lo be transmitted and processed in por-
tions rather than as a unit. For proces-
sing purposes, each block may consist of
cne or more logical subdivisions called
records, each of which contains one or more
data items. (Sometimes a klock is called a
physical record, because it is the unit of
data that is physically transmitted to an
its logical sukdivisions are called logical
records.)

When a block contains two or more rec-
crds, the records are said to be blocked.
Elocked records often permit more compact
and efficient use of storage. Consider how
data is stored on magnetic tape: the data

Section 8: Input and Cutput 7Tl



¢
2
Iy
&
D

' cent.

tetween two successive interrecord gaps is
one block, or physical recocrd. If several
logical records are contained within one
bicck, the number of gaps is reduced, and
nuch more data can be stored on a full
length of tape. For example, on a tape of
density 800 characters/inch with an inter-
record gap of 0.6 inches, a card image of
80 characters would take up 0.1 inches. If
the records were unblocked, each record
wcnld require 0.1 inches, plus 0.6 inches

i for the interblock gap, waking a total of

records would therefore
take up 70 inches of tape. If the records
were: blocked, however, at, say, 40 records
t a block, each block of 10 records would
take up 1 inch, plus 0.6 inches for the
gap, making a total of 1.6 inches. Thus,
160 records would now take up only 16
icvches of tape: this is less than 25 per-
of the amount needed for the unblocked

reocrds.

0.7 1inches. 100

Most data processing applications are
concerned with logical records rather than
; Therefore, the input and output

: statements of PL/I generally refer to log-

rcal records; this allows the user to con-
centrate on the data to be processed,

without. being directly concerned akout its
phvsical organization in external storage.

E

(9]

]

¥

|
|

‘0 allow & source program to deal pri-
marily with the logical aspects of data
rather than with its physical organization
in a data set, PL/I employs a symbolic
representation of a data set called a file.
This sywmbolic representation determines how
input and output statements access and pro-
cess the asscciated data set. Unlike a
data set, however, a file has a signifi-
cance only within the source program and
does not exist as a physical entity exter-
nal to the program.

PL/I requires a file name to ke declared
for a file, and allows the characteristics
of the file tc be descriked with keywords
called file attributes, which are specified
for the file name. The following lists
show the attributes that are arplicable for
each type of data transmission:

Strean-Oriented Record-Oriented

Transmission Transmission
FILE FILE

STREAM RECORD

INPUT INPUT

OUTPUT CUTPUT
EXTERNAL UPDATE
INTERNAL SEQUENTIAL
PRINT DIRECT

72

BUFFERED
UNBUFFERED
EXTERNAL
INTERNAL
BACKWARDS
KEYED
EXCLUSIVE
ENVIRONMENT

ENVIRCNMENT

The TRANSIENT attribute is designed to
allow teleprocessing applications prograns
to be written in PL/I. Since teleproces-
sing is not supported in TSS/360, the TRAN-
SIENT attribute is accepted by the compil-
er, but the UNDEFINEDFILE condition is
raised when an attempt ic made to use a
file with the TRANSIENT attribute.

A detailed description of each cf these
attributes agppears in Part II, Section 9,
"Attributes." The discussions below give a
bkrief description of each of the file
description attributes and show how these
attributes are declared for a file. The
scope attributes, EXTERNAL and INTERNAL,
are discussed in Part I, Section 7, "Recog-
nition of Names."

THE FILE ATTRIBUTE

The FILE attribute indicates that the
associated identifier is a file name. For
example, the identifier MASTER is declared
to be a file name in the following
statement:

DECIARE MASTER FILE;

The attributes associated with the FILE
attribute fall into two categories: alter-
native attrikutes and additive attributes.
An alternative attribute is one that is
chosen from a group of attrihutes. If no
explicit or implicit declaration is given
for one of the alternative attributes in a
grour and if one of the alternatives is
required, a default attribute is assumed,
although this is deferred until OPEN time,
when some attributes can be supplied in the
PL/I OPEN statement.

An addicive attribute is one that must
ke stated explicitly or is implied Ly
another explicitly stated attribute or
name. The additive attribute KEYED can ke
implied ky the DIRECT attribute. The addi-
tive attribute PRINT can be implied by the
standard output file name SYSPRINT. An
additive attrikute can never be applied by
default.

Note: With the exception of the INTERNAL
and EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified for a file
that has at least one of the alternative or



additive attributes already specified
explicitly. The FILE attribute must be
specified explicitly, however, if only the
INTERNAL or EXTERNAL attrikute is speci-
fied; otherwise, the identifier will be
assumed, by default, to ke an arithmetic
variable rather than a file name.

ALTERNATIVE ATTRIBUTES

PL/I provides tive groups of alternative
file attributes. Each group is discussed
individually. Following is a list of the
groups and the default for each:

Grougp Alternative Default
Type Attributes Attribute
Usage STREAM| RECORD STREAM
Function INPUT|OUTPUT|UPDATE INPUT
Access SEQUENTIAL|DIRECT SEQUENTIAL
Buffering BUFFERED{|{UNBUFFERED BUFFERED
Scope EXTERNAL| INTERNAL EXTERNAL

The scope attributes are discussed in
detail in Part II, Section 9, "Attributes"™;
a brief descrigtion of alterpative attri-
tutes is given below.

The STREAM and RECORD Attributes

The STREAM and RECORD attritutes
describe the type cof data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attribute causes a file to be
treated as a continuous stream of data
items recorded only in character form.

The RECORD attribute causes a file to be
treated as a sequence of reccrds, each
record consisting of one or more data items
recorded in any internal form.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREAN;

The INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT
attribute apgplies to files that are to be
written only. The UPDATE attribute
describes a file that is to be used for
both input and output; it allows records to
Le inserted into an existiny file and other
records already in that file to ke altered
or deleted.

DECLARE
DETAIL FILE INPUT,
REPORT FILE OUTPUT,
MASTER FILE UPDATE;

The SEQUENTIAL and DIRECT Attributes

The access atributes apply only tc a
file with the RECORD attribute, and provide
information regarding access to the con-
tents of the file.

The SEQUENTIAL attribute specifies that
successive records in the file are to be
accessed on the basis of their successive
rhysical positions, such as they are on
magnetic tape.

The DIRECT attribute specifies that a
record in a file is to be accessed on the
kasis ¢f its location in the file and not
on the basis of its position relative tc
the record previously read or written. The
location of the recoxrd is determined by a
character-string which is called a key;
therefore, the DIRECT attribute implies the
KEYEL attrikute. The associated data set
must be in a direct-access volume.

The BUFFERED and UNBUFFERED Attributes

The kuffering attributes apply only to
files that have the SEQUENTIAL and RECORL
attributes. The BUFFERED attribute indi-
cates that records transmitted to and fron
a file must pass through an intermediate
internal-storage area. Use of the BUFFERED
attribute enakles the system to automatic-
ally overlap data transmission with cther
processing. The size of a buffer is usual-
ly related to the size of the blocks (phys-
ical records) in the data set associated
with the file.

The UNBUFFERED attribute indicates that
a record in a data set need not pass
through a kuffer but may be transmitted
diiectly to and from the intermnal storage
associated with a variakle. Any desired
overlapping of data transmission with other
processing is the responsikility of the
user, who can use the EVENT option for this
purpose. The klocks and records are gener-
ally the same size in a data set that is
associated with an UNBUFFERED file.

Note: Srpecification of UNBUFFEREL does not
preclude the use of buffers. In some
cases, "hidden buffers” are required.

These cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
Part II, Section 9, "Attrikbutes.®

Section 8: Input and Cutput 73



ADDITIVE ATTRILUTES
The additive attributes are:
FRINT
BACKWARDS
KEYED
EXCLUSIVE
ENVIRONMENT (option-list)

the PRINYT Attribute

The PRINT attribute applies only to
fi1les with the STREAM and OQUTPUT attri-
utes. It indicates that the file is
eventually to be printed, that is, the data

saociated with the file is to appear on
vinted pages, although it may first be
ricten on some other medium. The PRINT
actiribuwce causes the initial byte of each
i of whe associated data set to be
:oerved for a printer control character.

Lie EACKWARDS Attribute

o BRCRWARDNS attribute applies only to
files with the SEQUENTIAL, RECCRD, and
LElUT sttyvabutes and only to data sets on
magnetic tape. It indicates that a file is
¢y e accessed in reverse order, keginning
ivi tne last record and proceeding through
fiie until the first record is
accessed.

The KEYEL Attribute

The KEYED attribute indicates that rec-
21ds in the file are to ke accessed using
one of the key options (KEY, KEYTO, or KEY-
TROM) of data transmission statements or of
+he DELETE statement. Ncte that the KEYED
atrripute does not necessarily indicate
that the actual keys exist or are to be
written in the data set; consequently, it
need nct be specified unless one of the key
options 15 to be used. The STREAM attri-
cute cannot be applied toc a file that has
the KEYED attribute. The nature and use of
keys is discussed in detail in Section 10,

i "rRecord-Criented Transmission.”

The EXCLUSIVE Attribute

The EXCLUSIVE attrikbute applies only to
files with the RECORL, DIRECT, and UPDATE
attributes. Under TS53/360, the EXCLUSIVE
attribute need not be declared, since
record-locking is automatic and cannot be
suppressed by a NOLOCK option.

The ENVIRONMENT Attribute

The ENVIRONMENT attrikute provides
information that allows the compiler to
determine the method of accessing the data
associated with a file. It specifies the
physical crganization of the data set that

L

will be associated with the file, and indi-
cates how the data set is to be handled.

The general format of the ENVIRONMENT
attribute is:

ENVIRONMENT (option-list)

The cptions appropriate to the two types of
data transwission are descriked in the
relevant sections in Part I, Section 9,
"Stream-Oriented Transmission,™ and Section
10, "Record-Oriented Transmission."

OPENING AND CLCSING FILES

Before the data associated with a file
can ke transmitted by input or output
statements, certain file preparaticn acti-
vities must occur, such as checking for the
availability of external storage media,
Fositioning the media, and allocating
appropriate programming support. Such
activity is known as opening a file. Also,
when processing is completed, the file must
ke closed. Cleosing a file involves releas-
ing the facilities that were established
during the opening of the file.

PL/I provides two statements, OPEN and
CLOSE, to rerform these functions. These
statements, however, are optional. If an
CPEN statement 1is not executed for a file,
the file is opened automatically when the
first data transmission statement for that
file is executed; in this case, the auto-
matic file preparation consists of standard
system procedures that use information
about the file as specified in a DECLARE
statement (or assumed from a contextual
declaration). Similarly, the file is
closed automatically on termination of the
program that opened it, if it has not Lkeen
exrlicitly closed tkefore termination.

The OPEN Statement

Execution of an OPEN statement causes
cne or more files to be opened explicitly.
The OPEN statement has the following basic
format :

OPEN FILE(file-name)
[,FILE(file-name)

{option-list]
foption-listll...;

The cption list of the OPEN statement can
specify any of the alternative and additive
attributes, except the INTERNAL, EXTERNAL,
and ENVIRONMENT attributes. Attributes
included as options in the OPEN statement
are merged with those stated in a DECLARE
statement. The same attributes need nct be
listed in koth an OPEN statement and a
DECLARE statement for the same file, and,
cf course, there must be no conflict.

Cther options that can appear in the OPEN
statement are the TITLE option, used to



associate the file name with the data set,
and the PAGESIZE and LINESIZE options, used
to specify the layout of a data set. The
TITLE option is discussed below under
"Associating Data Sets with Files," and the
PAGESIZE and LINESIZE options, which apply
only to STREAM files, in Part I, Section 9.
The option list may precede the FILE (file
name) specification.

For the TSS/360 PL/I compiler, the OPEN
statement is executed by library routines
that are loaded dynamically at the time the
OPEN statement is executed. Consequently,
execution time can be reduced if more than
one file is specified in the same OPEN
statement.

For a file to be opened explicitly, the
OPEN statement must be executed kefore any
of the input and output statements listed
below in "Implicit Opening®™ are executed
for the file.

Inplicit Orening

An implicit opening of a file occurs
when one of the statements listed below is
executed for a file for which an OPEN
statement has not already been executed.
The type of statement determines which
unspecified alternatives are applied to the
file when it is opened.

The following list contains the state-
ment identifiers and the attrikutes deduced
from each:

Statement Identifier Attributes Deduced

GET STREAM, INPUT
PUT STREAM, OUTPUT
READ RECORD, INPUT
(see Note)
WRITE RECORD, OUTPUT
(see Note)
LOCATE RECORD, OUTPUT
SEQUENTIAL, BUFFERED
REWRITE RECORD, UPDATE
DELETE RECORD, UPDATE
UNLOCK RECORD, DIRECT,
UPDATE, EXCLUSIVE
Note: INPUT and OUTPUT are deduced from

READ and WRITE only if UPDATE has .ot been
explicitly declared.

An implicit opening caused ky one of the
above statements is equivalent :0 preceding
the statement with an OPEN statement that
specifies the deduced attributes.

Merging of Attrikutes

There must be no conflict between the
attributes sgecified in a file declaration
and the attributes merged, explicitly or
implicitly, as the result of opening the
file. For example, the attributes INPUT
and UPDATE are in conflict, as are the
attributes UPDATE and STREAM.

After the attributes are merged, the
attribute implications listed below are
applied prior to the application of the
default attributes discussed earlier.
Implied attributes can also cause a con-
flict. If a conflict in attributes exists
after the agrlication of default attri-
kutes, the UNDEFINEDFILE condition is
raised.

Following is a list of merged attributes
and attributes that each implies after
merging:

Merged Attributes Implied Attrikutes

JPDATE RECORD
SEQUENTIAL RECORD
DIRECT RECORD, KEYED
BUFFERED RECORD
UNBUFFERED RECORD
PRINT OUTPUT, STREAM
BACKWARDS RECORD, SEQUENTIAL
INPUT
KEYED RECORD
EXCLUSIVE RECORD, KEYED,
DIRECT, UPLCATE
Note: The attrikutes SEQUENTIAL or DIRECT

and BUFFERED or UNBUFFERED do not agply to
a file with the STREAM attribute.

The fcllowing two examples illustrate
attribute merging for an explicit ogening
and fcr an implicit opening.

Explicit opening:

DECLARE LISTING FILE STREAM;

-

OPEN FILE(LISTING) PRINT;

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM,
PRING and OQUTPUT. Attributes after default
arrlication are STREAM, PRINT, OUTPUT, and
EXTERNAL.

Section B: Input and Cutput 75



Implicit opening:

DECLARE MASTER FILE KEYED INTERNAL;

READ FILE (MASTER) INTO
(MASTER_RECORD) KEYTO(MASTER KEY):

Attributes after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attributes after implication are KEYED,
TERNAL, RECORD, and INPUT (no additional
attributes are implied). Attributes after
default application are KEYED, INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUFFERED.

IN-

Associating Data Sets With Files

With TSS/360, the association of a file
with a specific data set is accomplished
using the TSS/360 command system, outside
the PL/I program. At the time a file is
opened, the PL/I file nare is associated
with the name (ddname) of a DDEF command,
which is, in turn, associated with the name
of a specific data set (dsname). Note that
the direct association is with the name of
a DDEF command, not with the name of the
data set itself.

A ddname can be associated with a PL/I
file eithexr through the file name or
through the character-string value of the
expression in the TITLE option of the asso-
ciated OPEN statement.

If a file is opened implicitly, or if no
TITLE option is included in the OPEN state-
ment that causes explicit opening of the
file, the ddname is assumed to be the same
as the file name. If the file name is
longer than eight characters, the ddname is
assumed to be composed of the first eight
characters of the file name.

Note: Since external names are limited to
seven characters for the compiler, an ex-
ternal file name of more than seven charac-
ters is shortened into a concatenation of
the first four and the last three charac-
ters of the file name. Such a shortened
name is nct, however, the name used as the
ddname in the associated DDEF command.

Consider the following statements:

1. OPEN FILE(MASTER);
2. OPEW FILE(OLDMASTER);
3. READ FILE(DETAIL)...;

When statement numbexr 1 is executed, the

file name MASTER is taken to Le t.& same as
the ddname of a DDEF command in the current
task. When statement number 2 is executed,

76

the name OLDMASTE is taken to be the same
as the ddname of a DDEF command in the cur-
rent task. {The first eight characters of
a file name form the ddnawe. Note, howev-
er, that if OLCMASTER is an external name,
it will be shortened by the compiler to
OLDMTER for use within the program.) If
statement number 3 causes implicit orening
cf the file DETAIL, the name DETAIL is
taken to be the same as the ddname cf a
LCDEF command in the current task.

For RECORD 1I/0, in each of the above
cases, a corresponding DDEF command must
arpear in the task; otherwise, the UNDE-
FINEDFILE condition would be raised. The
three DDEF commands would appear, in part,
as follows:

1. DDEF DDNAME=MASTER,DSNAME=...
2. DDEF DDNAME=OLDMASTE, DSNAME=...
3. DDEF DDNAME=DETAIL,DSNAME=...

For STREAM 1,0, if no DDEF is given, the
records are read from/to SYSIN/SYSPRINT.

If a file is opened explicitly by an
OPEN statement that includes a TITLE
cption, the ddname is taken from the TITLE
option, and the file name is not used ocut-
side the program. The TITLE option appears
in an OPEN statement as shown in the fol-
lowing forgat:

OPEN FILE(file-name) TITLE(expression);

The expression in the TITLE option is eval-
uated and converted to a character string,
if necessary, that is assumed to be the
ddname identifying the appropriate data
set. If the character string is longer
than eight characters, only the first eight
characters are used. The following OPEN

statement illustrates how the TITLE opticn

right ke used:
OPEN FILE{(DETAIL) TITLE{('DETAILL"):

If this statement were executed for RECORD
170, there must ke a DDEF command in the
current ‘ask with DETAIL!l as its ddname.
It might appear, in part, as follows:

DDEF DDNAME=DETAILl ,DSNAME=DETAILA,...

Thus, the data set DETAILA is associated
with the file DETAIL through the ddname
DETAIL1.

Although a data set name represents a
specific collection of data, the file name
can, at different times, represent entirely
different data sets. Using the ahove
example of the COPEN statement, whatever
data set is named in the DSNAME parameter
of the DETRIL1 DDEF command is the one that



is associated with DETAIL at the time it is
opened.

Use of the TITLE option allows a user to
choose dynamically, at open time, one amcng
several data sets to be associated with a
particular file name. Consider the follow-
ing example:

DECLARE 1 INREC, 2 FIELD 1...,
2 FILE_IDENT CHARACTER(8),
CETAIL FILE INPUT...,
MASTER FILE INPUT...;
OPEN FILE(DETAIL);
READ FILE(DETAIL) INTO (INREC);
OPEN FILE(MASTER) TITLE(FILE_ IDENT);

Assume that the program containing these
statements is used to process several dif-
ferent detail data sets, each of which has
a different corresponding master data set.
Assume, further, that the first record of
each detail data set contains, as its last
data item, a character string that identi-
fies the appropriate master data set. The
following DDEF commands might appear in the
current task:

DDEF CDNAME=LDETAIL,LCSNAME=...

DDEF DDNAME=MASTER1A, DSNAME=MASTER1A
DDEF DDNAME=MASTER1B,DSNAME=MASTER1B
DDEF DDNAME=MASTER1C,DSNAME=MASTER1C

In this case, MASTER1A, MASTER1B, and MAS-
TER1C represent three different master
files. The first record of DETAIL would
contain as its last item, either °*MASTER-
1A', 'MASTER1B', or 'MASTER1C', which is
assigned to the character-string variable
FILE IDENT. When the OPEN statement is
executed to oren the file MASTER, the cur-
rent value of FILE_IDENT would be taken to
be the ddname, and the appropriate data set
identified by that ddname would be asso-
ciated with the file name MASTER.

Another similar use of the TITLE option
is jllustrated in the following statements:

DCL IDENT(3) CHAR(1)
INITIAL('A', 'B',
DO I = 1TO 3;
OPEN FILE (MASTER)
TITLE(*MASTER1'||IDENT(I));

lct):

CLOSE FILE(MASTER);
END;

In this exemple, ILENT is declarel as a
character-string array with three elements
having as values the specific character
strings ‘'A‘', 'B', and 'C'. When MASTER is
opened during the first iteration of the
DO-group, the character constant °*MASTERL'
is concatenated with the value of the first
element of IDENT, and the associated ddname

is taken to be MASTER1A. After processing,
the file is closed, dissociating the file
name and the ddname. During the second
iteration of the group, MASTER is opened
again. This time, however, the value of
the second element of IDENT is taken, and
MASTER is associated with the ddname MAS-
TER1B. Similarly, during the final itera-
tion of the group, MASTER is associated
with the ddname MASTERIC.

Note: The TS5/360 command system does not
allow the break character ( _ ) to agpear
in names. Consequently, this character
cannot appear in ddnames. Care should thus
ke taken to avoid using break characters
among the first eight characters of file
names, unless the file is to be opened with
a TITLE option with a valid ddname as its
expression. The alphabetic extender char-
acters §, @, and #, however, are valid for
ddnames, except in the first position.

The CLOSE Statement

The kasic form of the CLOSE statement
is:

CLOSE FILE (file-name)
[,FILE (file-name)l...;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also disso-
ciates from the file all attributes estab-
lished for it by the implicit or explicit
cpening process. If desired, new attri-
tutes may be specified for the file name in
a suksequent OPEN statement. However, all
attributes explicitly given to the file
name in a DECLARE statement remain in
effect.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
can save execution time.

Note: Closing an already closed file or
opening an already opened file has nc
effect.

STANCARD FILES

Two standard files are provided that can
ke used ky any FL/I program. One is the
standard system file called SYSIN. The
cther is the standard PL/I output file
called SYSPRINT. On program executicn,
this PL/I file kecomes the system file SYS-
OUT. sStandard files can be used only with
stream-oriented transmission, and they
differ from normal files in that their rec-
ords cannot be reread or replaced.

These files need not be declared or

opened explicitly; they are opened automat-

Section 8: Input and Output 77



ically, with a standard set of attributes.
For SYSIN, these attrikutes specify that it
is a stream-oriented input file. For SY¥S-
PRINT, the standard attributes specify
stream-oriented output. Both file names,
SYSIN and SYSPRINT, are assumed to have the
external attribute, even though SYSPRINT
contains more than seven characters.

These file names need not be explicitly
stated in GET and PUT statements when these
files are to be used. GET and PUT 1I/0
statements that do not name any file, or
that name a file which is not defined by a
DDEF command in the current task, are equi-
valent to:

GET FILE(SYSIN)...;
PUT FILE(SYSPRINT)...;

It is more advantageous to name a file;
this gives the user the option of substi-
tuting for SYSIN or SYSPRINT at any time,
by issuing a CLEF command for the file.

Any references to SYSIN and SYSPRINT
other than those in GET and PUT statements
must be stated explicitly.

The identifiers SYSIN and SYSPRINT are
not reserved for the specific purposes
described above. These identifiers can ke
used, except as external names, for other

»78

purposes besides identifying standard sys-
tem files. Other attributes can be applied
to them, either explicitly or contextually,
kut the PRINT attribute is applied automat-
ically to SYSPRINT unless it is declared
explicitly and without the STREAM OUTPUT
attributes.

Note: Special care must be taken when
SYSIN or SYSPRINT is declared by the user
as anything other than a STREAM file. The
compiler causes, in effect, the identifier
SYSIN to be inserted into each GET state-
ment in which no file name is explicitly
stated and the identifier SYSPRINT to be
inserted into each PUT statement in which
no file name is explicitly stated. Conse-
quently, the following would be in error:

DECLARE (SYSIN,SYSPRINT) FIXEL
DECIMAL (4, 2);

-

GET LIST (a,B,C);
PUT LIST (D,E,F);

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. 1In this case, however, they
would not refer to the standard files, but
to the fixed-point variakles declared in
the block.



rage of GC28-2045-1,

This section describes the input and
output statements used in stream-oriented
transmission, which is one of the two types
of data transmission available in PL/I.
Those features that apply equally to
stream-oriented and record-oriented trans-
mission, including files, file attributes,
and opening and closing files, are
described in Section 8, which forms a gen-
eral introduction to this section and to
Section 10.

In stream-oriented transmission, a data
set is treated as a continuous stream of
data items in character form; within a pro-
gram, block and record boundaries are
ignored. However, a data set is considered
to consist of a series of lines of data,
and each data set that is created or
accessed by stream-oriented transmission
has a line size associated with it'. 1In
general, a line is equivalent to a record
in the data set; however, the line size
does not necessarily equal the record size.

There are three modes of stream-oriented
transmission: list-directed, data-
directed, and edit-directed. The transmis-
sion statements used in all three modes
generally require the following information

1. The name of the file associated with
the data set from which data is to be
obtained or to which data is to be
assigned.

2. A list of program variables to which
data items are to be assigned during
input or from which data items are to
be obtained during output. This list
is called a data list. On output, the
data list can also include constants
and other expressions.

3. The format of each data item in the
stream.

Under certain conditions all of this
required information can be implied; in
other cases, only a portion of it need be
stated explicitly. 1In list-directed and
data-directed transmission, the formats of
data items are not specified in the state-
ments. And in data-directed transmission,
even the data list is optional.

LIST-DIRECTED TRANSMISCION

List-directed transmission permits the
user to specify the variables to which data
is assigned and to specify data to be
transmitted without specifying the format.

Section 9:

Issucd September 30, 1971 hy TNL GN2B-11BS

SECTION 9: GTREAM-ORIENTED TRANOSMISSION

Input: In general, the data items in the
stream dre character strings in the form of
optionally signed valid constants or in the
form of expressions that represent complex
constants. The variables to which the data
is to be assigned are specified by a data
list. 1Items are separated by a comma and/
or one or more blanks.

Output: The data values to be transmitted
are specified by a variable, a constant, or
an expression that represents a data item.
Fach data item placed in the stream is a
character-string representation that
reflects the attributes of the variable.
Items are separated by a blank. Leading
zeros of arithmetic data are suppressed.
Binary fixed-point and floating-polnt
items, however, are character strings that
express the value in decimal
represcntation.

For PRINT files, data items are automat -
ically aligned on implementation-defined
preset tab positions. For the TG540/ 360 FLAI
compiler, these positions are 1, 25, 49,
73, 97, and 121, but provision 15 nade for
the uscr to alter these values (see PL/1
Programmer's Guide). T

DATA-DIRECTED TKANUMISHION

Data-directed transmission permits the
user to transmit self-identifying data.

Input: Each data item in the stream i in
the form of an assignment statement that
specifies both the value and the varianple
to which it is to be assigned. In gencral,
values are in the form of constants. Items
are separated by a comma ands/or onc or more
blanks. A semicolon must end each qroup ot
items to be accessed by a single GRT state-
ment. A data list in the GET statement is
optional, since the semicolon determines
the number of items to be obtained from the;
stream.

Output: The data values to be transmitted
may be specified by an optional data list.
Each data item placed in the stream has the
form of an assignment statement without a
semicolon. Items are separated by a blank.
The last item transmitted by each pUT
statement is followed by a semicolon.
Leading zeros of arithmetic data are sup-~
pressed. The character representation of
each value reflects the attributes of the
variable, except for fixed-point and
floating-point binary items, which appear
as values expressed in decimal notation.

Stream-Oriented Transmission 79



rage of GC28-20u45-1, Issued September 306, 1971 by TNL GN28-1185

If the data list is omitted, it is
assumed to specify all variables that are
known within the block containing the
statement and are permitted in data-
directed output.

For PRINT files, data items are automat-
ically aligned on the implementation-—
defined preset tab positions referred to
under "List-Directed Transmission.”

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the
user to specify the variabies to which data
is to be assigned or to specify data to be
transmitted, and to specify the format for
each item on the external medium.

Input: Data in the stream is a continuous
string of characters; different data items
are not separated. The variables to which
the data is to be assigned are specified by
a data list. Format items in a format list
specify the number of characters to be
assigned to each variable and describe
characteristics of the data (for example,
the assumed location of a decimal point).

Output: The data values to be transmitted
are defined by a data list. The format
that the data is to have in the stream is
defined by a format list.

DATA TRANSMISSION STATEMENTS

Stream-oriented transmission uses only
one input statement, GET, and one output
statement, PUT. A GET statement gets the
next series of data items from the stream,
and a PUT statement puts a specified set of
data items into the stream. The variables
to which data items are assigned, and the
variables or expressions from which they
are transmitted, are generally specified in
a data list with each GET or PUT statement.
The statements may also include options
that specify the origin or destination of
the data or indicate where it appears in
the stream relative to the preceding data.

The following is a summary of the
stream-oriented data transmission state-
ments and their options:

STREAM INPUT:
GET{[FILE(filename)] [data-specificaticnl
{CcOPY] {SKIP{ (expression)ll]}|
{STRING {character-string-name}
data-specification};

STREAM OUTPUT:

PUT{(FILE(filename)] {data-specification]
[SKIP((expression)1}1}]

80

{STRING(character-string-name)
data-specification};

STREAM OUTPUT PRINT:

PUT (FILE (tile-name)]
[data-specification]}
PAGE [LINE(expression}]
[SKIP((eXpression)} }
LINE (expression)

The options may appear in any order. The
data specification can have one of the fol-
lowing forms:

"LIST (data-list)
DATA [(data-list)])

EDIT (data-list) (format-list)
[(data-1list? (format-list)l...

The data specification can be omitted for
STREAM OUTPUT PRINT files only if one of

the control options (PAGE, SKIP, or LINE)
appears. Format lists may use any of the
following format items:

A,B,C,E,F, which may be used with

P,R, X, any STREAM file

SKIP ((w)]

COLUMN (w)

PAGE which can be used with

LINE (w) STREAM OUTPUT PRINT

files only

A,B,C,E,F,P,R, ¥ which may be used with

the STRING option
The statements are discussed individually

in detail in Part II, Section 10,
"Statements.” '

OPTIONS OF TRANSMISSION STATEMENTS

The FILE and STRING Optiong

The FILF option specifies the name of
the file wpon which the operation is to
take place. The STRING option allows GET
and PUT statements to be used to transmit

~ data between internal storage locations

rather than between internal and external
storage. If neither the FILE option nor
the STRING option appears in a GET state-.
ment, the standard input file SYSIN is
assumed; if neither option appears in a PUT
statement, the standard output file SYS-
PRINT is assumed.

Examples of the use of the FILE option
are given in some of the statements below;
Part I, Section 11, "Editing and String
Handling,®" illustrates the use of the
STRING option.



Page of GC28-2045-1,

The COPY Option

The COPY option should appear only in a
GET FILE statement. It specifies that each
data item is to be written, exactly as
read, into the standard output file SYS-
PRINT. For example, the statement

GET FILE(SYSIN) DATA(A,B,C)COPY;

not only transmits the values assigned to
A, B, and C in the input stream to the
variables with these names, but alsc causes
them to be printed out in data-directed
format.

The SKIP Option

The SKIP option specifies a new current
line (or record) within the data set. The
parenthesized expression is converted to an
integer w, which must be greater than zeroc
(unless the file is a PRINT file). The
data set is positioned to the start of the
wth line (record) relative to the current
iine (record).

For non-PRINT files, if the expression
is omitted or if w is not greater than
zerc, a value of 1 is assumed. For PRINT
files, it w is less than or equal to zero,
the effect is that of a carriage return
with the same current line.

The SKIP option takes effect before the
transmission of any values defined by the
data specification, even if it appears
after the data specification. Thus, the
statement

PUT LIST(X,Y,Z) SKIP(3);
causes the values of the variables X, Y,
and Z to be printed on the standard output
file SYSPRINT commencing on the third line
after the current line.

The PAGE Option

The PAGE option can be specified only
for PRINT files. It causes a new current
page to be defined within the data set.
The PAGE option takes effect before the
transmission of any values defined by the
data specification (if any), even if it
appears after the data specification.

The LINE Option

The LINE option can be specified only
for PRINT files. It causes blank lines to
be inserted so that the next line will be
the wth line of the current page, where w
is the value of the parenthesized expres-
sion when converted to an integer. The
LINE option takes effect before the trans-
mission of any values defined by the data
specification (if any), even if it follows

Section 9:

Issued September 15, 1970 by TNL GN28-317]

the data specification. If both the PAGE
option and the LINE option appear in the
same statement, the PAGE option is applied
first. For example, the statement

PUT FILE(LIST) DATA(P,Q,R)
LINE(34) PAGE;

causes the values of the variables P, Q,
and R to be printed in data-directed format
on a new page, commencing at line 34.

DATA SPECIFICATIONS

pata specifications are given in GET and
PUT statements to identify the data to be
transmitted. The data specifications
correspond to the modes of transmission.

pata Lists

List-directed, data-directed, and edit-
directed data specifications require a data
list to specify the data items to be
transmitted.

General format:
(data-list)

where "data list® is defined as:
element (,elementl...

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules are as follows:

1. O©On input, a data-list element for
edit-directed and list-directed trans-
mission can be ‘one of the following:
an element, array, or structure vari-
able, a pseudo-variable, or a repeti-
tive specification (similar to a
repetitive specification of a DO
group) involving any of these ele-
ments. For a data-directed data spe-
cification, a data-list element can be
an element, array, or structure vari-
able. None of the names in a data-
directed data list can be subscripted,
but gualified names are allowed.

2. On output, a data-list element for
edit-directed and list-directed data
specifications can be one of the fol-
lowing: an element expression, an
array expression, a structure expres-
sion, or a repetitive specification
involving any of these elements. For
a data-directed data specification, a
data-1list element can be an element,
array, or structure variable, or a
repetitive specification involving any.
of these elements. Subscripts are
allowed for data-directed output.

Stream-Oriented Transmission 81



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

3. The elements of a data list must be of
arithmetic or string data type.

4. A data list must always be enclosed in
parentheses.

REPETITIVE SPECIFICATION: The general for-
mat of a repetitive specification is shown
in Figure 9.

Syntax rules:

1. An element in the element list of the
repetitive specification can be any of
those allaowed as data-list elements as
listed above.

2. The expressions in the specification,
which are the same as those in a DO
statement, are described as follows:

a. Each expression in the specifica-
tion is an element expression.

b. 1In the specification, expression-1
represents the starting value of
the control variable or pseudo-
variable. Expression-3 represents
the increment to be added to the
control variable after each repe-
tition of data-list elements in
the repetitive specification.
Expression-2 represents the ter-
minating value of the control
variable. Expression-4 represents
a second condition to control the
number of repetitions. The exact
meaning of the specification is
identical to that of a DO state-
ment with the same specification.
When the last specification is
completed, control passes to the
next element in the data list.

3. Each repetitive specification must be
enclosed in parentheses, as shown in
the general format. Note that if a
repetitive specification is the only
element in a data list, two sets of
outer parentheses are required, since
the data list must have one set of
parentheses and the repetitive speci-
fication must have a separate set.

4. As Figure 9% shows, the “"specification®
portion of a repetitive specification
can be repeated a number of times, as
in the following form:

DO I=1T0O 4, 6 TO 10

Repetitive specifications can be
nested; that is, an element of a
repetitive specification can itself be
a repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the
beginning of the entire repetitive
specification).

When DO portions are nested, the
rightmost DO is at the outer level of
nesting. For example, consider the
following statement:

GET LIST (((A(I,J) DO I = 1 TO 2)
DO J = 3 TO 4));

Note the three sets of parentheses, in
addition to the set used to delimit
the subscript. The outermost set is
the set required by the data list; the
next is that required by the outer
repetitive specification. The third
set ofparentheses is that required by
the inner repetitive specification.
This statement is equivalent to the
following nested DO-groups:

DO J = TO 4;

DO I i TOo 2;
GET LIST (A (1I,J3));
END;

END;

3

It gives values to the elements of the
array A in the following order:
A(1,3), A(Z,3),

A(L, ), a(2,4)

Note: Al?h?ugh the DO keyword is used in
Fhe repetitive specification, a correspond-
ing END statement is not allowed.

- —————

i variable
| (element [,element]...DO
l pseudo-variable

A "specification®™ has the following format:

]
|
ﬁ
| expression-1 [
|

TO expression-2 [BY expression-3}

BY expression-3 [TC expression-21]

specification(,specificationl...)

} [WHILE (expression-4)}

i E e hpvsunp———

Figure 9.

82

General Format for Repetitive Specifications



Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

TRANSMISSION OF DATA-LIST ELEMENTS: If a
data-list element is of complex mode, the
real part is transmitted before the
imaginary part.

If a data-list element is an array vari-
able, the elements of the array are trans-
mitted in row-major order, that is, with
the rightmost subscript of the array vary-
ing most frequently.

i1 o udta-iist element 15 a structure
vallubie, the elements of the structure are
transmitted in the order specified in the
structure declaration.

For example, if a declaration is:

DECLARE 1 A (10), 2 B, 2 C;

then the statement:
PUT FILE(X) LIST(A);

would result in the output being ordered as
follows:

A.B(1) A.C(1) A.B(2) A.C(2) A.B(3)
A.C(3)...etc.
the declaration had been:

1f, however,

DECLARE 1 A, 2 B(10), 2 C{(10);
then the same PUT statement would result in

the output being ordered as follows:

A.B(3)...A.B(10)
A.C(3)...A.C(10)

A.B(1) A.B(2)
A.C(1) A.C(2)

If, within a data list used in an input
statement for list-directed or edit-
directed transmission, a variable is
assigned a value, this new value is used if
the variable appears in a later reference
in the data list. Example: .

GET LIST
SUBSTR

(N, (X(I)
(NAME,

pori=1 TO (),
J.K));

J, K,

When this statement is executed, data is
transmitted and assigned in this order:

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive speci-
fication in the order Xx(1), X(2),...X
(N), with the new value of N used to
specify the number of items to be
assigned.

3. A new value is assigned to J.
4. A new value is assigned to K.
S. A substring of length K is assign:d to

the string variable NAME, beginning at
the Jth character.

LIST-DIRECTED DATA SPECIFICATION

The general format of a list-directed
data specification, either input or output,
is:

LIST (data-list)
The data list is described under =Data
Lists,® above. The keyword LIST must
appear to specify the list-directed mode of
transmission.

List-Directed Data in the Stream

Data in the stream, either input or out-
put, is of character data type and has one
of the following general forms:

{+|-1 arithmetic-constant
character-string-constant
bit-string-constant

{+]|-] real-constant{+|-]limaginary~constant

These forms correspond exactly to the forms
used for writing optionally signed con-
stants in a PL/I program. However, ster-
ling constants cannot be used A string con-
stant must be one of the two permitted
forms listed above; iteration and string
repetition ftactors are not allowed. A
blank must not precede the central + or -
in complex expressions.

List-Directed Input Format

When the data named is an array, the
data consists of constants, the first of
which is assigned to the first element of
the array, the second constant to the
second element, etc., in row-major order.

A structure name in the data list repre-
sents a list of the contained element
variables and arrays in the order specified
in the structure description.

On input, each pair of data items in the
stream must be separated either by a blank, |
a comma, Or a carriage return. This i
separator may be surrounded by an arbitrary
number of blanks. A null field in the
stream is indicated either by the first
non-blank character being a comma, or by ‘
two commas separated by an arbitrary number
of blanks. A null field specifies that the
value of the associated item in the data
list is to remain unchanged.

The transmission of the list of con-
stants on input is terminated by expiration
of the list or by the end-of-file condi-
tion. In the former case, positioning in
the stream for the next GET statement is
always at the character following the first
blank or comma following the last data item

Section 9: Stream-Oriented Transmission 83



PR

Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

transmitted. More than one blank can
separate two data items, and 4 comma
separator may be preceded or followed by
one or more blanks. In such cases, a sub-
sequent GET statement will ignore interven-
ing blanks and the comma (if present}) and
will access the next data item. However,
1f an edit-directed GET statement should
follow, the first character accessed will

be the character to which the file has been

positioned (in other words, the next data
item will begin with the first character

following the blank or comma that separated

it from the previous data item).

If the data is a character-string con-
stant, the surrounding apostrophes are
removed, and the enclosed characters are
interpreted as a character string.

If the data is a bit-string constant,
enclosing apostrophes and the trailing
character B are removed, and the enclosed
charac .ers are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it 1is converted to
coded arithmetic form with the base, scale,
mode, and precision implied by the
constant.

Data type conversions follow the rules
for conversion from character type, as
listed in Part 11, Section 6, "Problem Data
Conversion."™

List-Directed Output Format

The values of the element variables and
expressions in the data list are converted
to character representations and transmit-
ted to the data stream.

A blank separates successive data items
transmitted. (For PRINT files, items are
separated according to program tab
settings.)

The length of the data field placed in
the stream is a function of the attributes
of the data item, including precision and
length. Detailed discussions of the con-
version rules and their effect upon preci-
sion are listed in the sections covering
conversion to character type in Part 1I,
Section 6, "Problem Data Conversion.®

Fixed-point and floating-point binary
data items are converted to decimal note-
tion before being placed in the stream.

For numeric character values, the
character-string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1, en-
closed in apostrophes, and followed by the
letter B.

84

Character strings are written out. If
the file does not have the attribute PRINT,
enclosing apostrophes are supplied, and
contained apostrophes are replaced by two
apostrophes. The field width is the cur-
rent length of the string plus the number
of added apostrophes. If the file has the
attribute I'RINT, enclosing apostrophes are
not supplied, and contained apostrophes are
unmodified. The field width is the current
length of the string.

Examples of list-directed data
specifications:

LIST (CARD, RATE, DYNAMIC_ FLOW)

LIST ((THICKNEUS(DISTANCE)
DO DISTANCE = 1 TO 1000))

LIST (P, 2, M, R)
LIST (A*B/C, (X+Y)#%2)

The specification in the last examfle
can be used only tor output, since it con-
tains operational expressions. Such ex-
pressions are evaluated when the statement
is executed, and the result is placed in
the stream.

DATA-DIRECTED DATA SPECIFICATION

The general tormat of a data-directed
data specification, for either input or
output, is:

DATAR [(data-11i5t) )
General ruless

1. The data list is described in “Data
Lists™ in this section. It cannot
include parameters, defined variables,
or basied variables. For input, the
data list cunnot contain subscripted
names . Names of structure elements in
the data list need only have enough
qualification to resolve any ambiqui-
ty; full qualification is not
required. On input, if the stream
contains a name that does not have a
counterpart in the data list, the NAME
condition is raised.

2. Omission of the data list implies that
a data 1list is assumed. This assumed
data list contains all the names that
are known to the block and are valid
for data-directed transmission. On
input, if the stream contains a name
not known within the block, the NAME
condition is raised. If the assumed
data list contains a name that is not
included in the stream, the value of
the associated variable remains
unchanged. On output, all items in
the assumed data list are transmitted.



Page of GC28-2045-1,

When a name occurs in more than one
block, all data with that name in the
active blocks is transmitted, not only
data with that name within the scope
of the current block.

3. On input, recognition of a semicolon
or an end of file in the stream causes
transmission to cease, whether or not
a data list is specified. On output,
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-Directed Data in the Stream

The data in the stream associated with a
data-directed transmission statement is in
the form of a list of element assignments
having the following general format (the
optionally signed constants, like the vari-
able names and the equal signs, are in
character form):

element-variable = constant
[tb],|crlelement-variable = constantl)...;
General rules:

1. The element variable may be a sub-
scripted name. Subscripts must be
optionally signed decimal integer
constants.

2. On input, the element assignments may
be separated by either a blank (b in
the above format), a comma, or a car-
riage return (cr in the above format).
Redundant blanks are ignored. On out-
put, the assignments are separated by
a blank.

3. Each constant in the stream has one of
the forms described for list-directed
transmission.

Data-Directed Input Format

General rules for data-directed input:

1. If the data specification does not
include a data list, the names in the
stream may be any names known at the
point of transmission. Qualified
names in the input stream must be
fully qualified.

2. If a data list is used, each element
of the data list must be an element,
array, or structure variable. Names
cannot be subscripted, but gqualified
names are allowed in the data list.
All names in the stream should appear
in the data list; however, the order
of the names need not be the same, and
the data list may include names that
do not appear in the stream.

For example, consider the following
data list, where A, B, C, and D are
names of element variables:

Issued September 30, 1971 by TNL GN2B-3185

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:
A=2.5, B=.0047, D=125, 2=‘ABC';
Note: ¢ appears in the data list but
not in the stream; its value remains
unaltered. 2, which is not in the
data list, raises the NAME condition.

3. If the data list includes the name of
an array, subscripted references to
that array may appear in the stream
although subscripted names cannot
appear in the data list. The entire
array need not appear in the stream;
only those elements that actually
appear in the strecam will be assigned.

Let X be the name of a two-dimensional
array declared as follows:

DECLARE X (2,3)FIXED (6,2);

Consider the following data list and
input data stream:

Data List Input Data Stream
DATA (X)  X(1,1)=7.95, X(1,2)=8085,
X(1,3)=73;

Although the data list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array. In
this case, only three elements are
assigyned; the remainder of the array
is unchanyged.

4. If the data list includes the names of
structure elements, then fully quali-
fied names must appear in the stream,
although full gqualification is not
required in the data list. Consider
the following structures:

DECLAKE 1 CARDIN, 2 PARTNC, 2 DESCRP,

2 PRICE, 3 RETAIL, 3 WHSL,

1. CARDOUT, 2 PARTNO, 2 DESCRP,

2 PRICE, 3 RETAIL, 3 WHSL;

If it is desired to read a value for
CARDIN.PRICE.RETAIL, the data specifi-
cation and input data stream could
have the following forms:

Data Specification
DATA (CARDIN.RETAIL)

Input Data Stream
CARDIN.PRICE.RETAIL =

4.28;

5. Interleaved subscripts cannot appear
in qualified names in the stream. All
subscripts must be moved all the way
to the right, following the last name
of the qualified name. For example,
assume that Y is declared as follows:

Section 9: Stream-Oriented Transmission 85



Page

Data-

of GC28~2045-1, Issued September 30,

DECLARE 1 Y(5,5),2 A(10),3 B,
3¢, 3 D; :

An element name would have to appear
in the stream as follows:
Y.A.B(2,3,8)= 8.72

The name in the data list could not
contain the subscript.

Directed Output Format

General rules for data-directed output:

1.

86

An element of the data list may be an .
element, array, or structure variable,
or a repetitive specification involv-
ing any of these elements or further
repetitive specifications. Sub-
scripted names can appear. The names
appearing in the data list, together
with their values, are transmitted in
the torm of a list of element assign-
ments separated by blanks and ter-
minated by a semicolon. (For PRINT
files, items are separated accordlng
to program tab settings.?

Array variables in the data list are
treated as a list ot the contained
subscripted elements in row-ma jor
order.

Consider an array declared as follows:

DECLARE X (2,U4)FIXED;

If X appears in o data list as follows:

DATA (X)

on output, the output data stream

would have the form:

X(1,1)=1 X(1,2)=2 X(1,3)=3
X(1,8)=4 X(2,1)=5 X(2;2)=6
X(02,3)=7 X(2,4)=8;

Note: In actual output, more than one
blank would follow the equal sign. 1In
conversion trom coded arithmetic to
character, leading zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

Subscript expressions that appear in a
data list are evaluated and replaced

by the value.

Items that are part of a structure
appearing in the data list are trans-
mitted with the full qualification,
but subscripts follow the qualified
names rather than being interleaved.
If a data list is specified for a
structure element transmitted under
data-directed output as follows:

DATA (¥(1,-3).Q)

1971

by TNIL GN28-13185

the associated data field in the out-
put stream is of the form;
Y.(1,-3)= 3,756;

5. The number of characters in a quali-
fied name must not exceed 256.

6. - Structure names in the data list are
interpreted as a list of the contained
element or elements, and any contained
arrays are treated as above.

Consider the following structure:

DECLARE 1 A, 2 B, 2 C, 3 D;
If a data list for data-directed out-

put is as follows:
DATA (A)

and the values of B and D are 2 and

1?, respect ively, the associated data

fields in the output stream would be:
A.B= 2 A.C.D= 17;

data-directed

subsequent

7. In the tollowing cases,
output is not valid tor
data-directed input:

d. When the precision attribute of a
tixed-point variable iy such that
the assumed point 1s located out -
side the field with assumed zero:
intervening; that is, it for preci-
sion (p,q) p is less than q, or
is less than zero. (In this caue
an exponent is transmitted, pre-
ceded by a letter F which is not
valid tor conversion to arithmetic
type.)

b. When the character-string value of
a numeric character variable does
not represent a valid optionally
siyned arlthmetlc constant. For
example, this 15 always true for
complex numeric Chardctor variables,

Length of Data-birected Output Fields

The length of the data tield on the
external medium is a function of the attri-
butes declared for the variable and, since
the name is also included, the length of
the fully qualified subscripted name. The
field length or output items converted from
coded arithmetic data, numeric character
data, and bit-string data is the same as
that for list-directed output data, and is
governed by the rules for data conversion
to character type as described in Part II,
Section 6, "Problem Data Conversion.®

For character-string data, the contents
of the character string are written out en-
closed in apostrophes. Each apostrophe
cogntained within the character string is
represented by two successive apostrophes.



Page of GC28-2045-1, Issued September 30, 1971 by TNL GN28-3185

In the example shown in Figure 10, A is
declared as a one-dimensional array of six
elements; B is a one-dimensional array of
seven elements. The procedure calculates
and writes out values for A(I) = B(I+l) +
B(I).

EDIT-DIRECTED DATA SPECIFICATION
General format for an edit-directed data

specification, either for input or output,
is as follows:

EDIT (data-list) (format-list) 4.
{(data-list) (format-list)]... ;

| Syntax rules:

1. The data list, which must be enclosed
in parentheses, is described above in
"pata Lists.® The format list, which 5.
also must be enclosed in parentheses,
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream; control format items,
which describe page, line, and spacing
operations; and remote format items,
which specify the label of a separate
statement that contains the format
list to be used. Format lists and
format items are discussed in more
detail in "Format Lists,® below.
Edit-directed transmission is the only
mode that can be used for reading or
writing sterling data, by use of a
picture specification.

. 2. For nonconversational input, data in
the stream is considered to be a con-
tinuous string of characters not
separated into individual data items.
The number of characters for each data
item is specified by a format item in 6.
the format list. The characters are
treated according to the associated
format item.

3. Por conversational input, the preced-
ing rule applies, except that a car-

== ————

PROCEDURE;

E

Input Stream
B(1)=1, B{2)=2,

DECLARE (A(6), B(7)) FIXED;

GET FILE (X) DATA (B);
B(4)=1, B(5)=2,
DO I =1 TO 6;

A (I) = B (I+1) + B (I);
Output Stream

END;

PUT FILE (Y) DATA (A};
A(S)=5 A(6)=7;

[ o e — S —— —— —— ——o— —— o——

END AB;

A(1)=3 A(2)=5 A(3)=4 A(4)=3

riage return delimits an incompletely

entered item:

¢ If the target item is a varying
string, the input is transmitted as
is; no extra blanks are inserted.

e If the target item is not a varying
string, the input is padded on the
right with blanks to give it the
necessary field width.

For output, the value of each item in
the data list is converted to a format
specified by the associated format

" item and placed in the stream in a

field whose width also is specified by
the format item.

For either input or output, the first
data format item is associated with
the first item in the data list, the
second data format item with the
second item in the data list, and so
forth. If a format list contains
fewer format items than there are
items in the associated data list, the
format list is reused; if there are
excessive format items, they are
ignored. Suppose a format list con-
taining five data format items and its
associated data list specifies ten
items to bhe transmitted. Then the
sixth item in the data list will be
associated with the first data format
item, and so forth. Suppose a format
list contains ten data format items
and its associated data list specifies
only five items. Then the sixth
through the tenth format items will be
ignored.

An array or structure variable in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be asso-
ciated with a separate use of a data
format item.

e 1 ot i S i S e S . S S . S . o T~ . 7 s 2o o . . . . o o i o . . . . A o o o e e S . . e o i . <t o o 2 o

B(3)=3,

B(6)=3, B(7)=4;

- o . s oo o i o o S . o S . ] o Al 2 s . 2 o 0 e i i s . s s e

Figure 10. Example of Data-Directed Tramsmission (Both Input and Output)

Section 9: StreamOriented Transmission 87



Page of GC28-2045-1, Issued September 30,

7. If a data list item is associated with
a control format item, that control
action is executed, and the data list
item is paired with the next format
item.

8. The specified transmission is complete
when the last item in the data list
has been processed using its corre-
sponding format item. Subsequent for-
mat items, including control format
items, are ignored.

9. On output, data items are not automat-
ically separated, but arithmetic data
items generally include leading blanks
because of data conversion rules and
zero suppression.

Examples:

GET EDIT (NAME, DATA, SALARY)
(A(N), X(2), A(6), F(6,2));

PUT EDIT ('INVENTORY='||INUM,INVCODE)
(A,F(5));

The first example specifies that the
first N characters in the stream are to be
treaded as a character string and assigned
to NAME; the next two characters are to be
skipped; the next six are to be assigned to
DATA in character format; and the next six
characters are to be considered as an
optionally signed decimal fixed-point con-
stant and assigned to SALARY.

The second example specifies that the
character string 'INVENTCRY=' is to be con-
catenated with the value of INUM and placed
in the stream in a field whose width is the
length of the resultant string. Then the
value of INVCODE is to be converted to
character to represent an optionally signed
decimal fixed-point integer constant and is
then to be placed in the stream and is then
to be placed in the stream right-adjusted
in a field with a width of five characters
(leading characters may be blanks). Note
that operational expressions and constants
can appear in output data lists only.

Format Lists

Each edit-directed data specification
requires its own format list.
General format: (format-1list)

where "format list™ is defined as:

item Q , item
n item ‘ . N item “ e
‘n (format-1list) , n {(format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

88

1971 by TNL

(GN28-13185

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses or an unsigned
decimal integer constant. If it is
the latter, a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero or negative iteration
factor specifies that the associated
format item or format list is to be
skipped and not used (the data list
item will be associated with the next
format item). If an expression is
used to represent the iteration fac-
tor, it is evaluated and converted to
an integer once for each set of itera-
tions. The associated format item or
format list is that item or list of
items immediately to the right of the
iteration factor.

General rule:

There are three types of format items:
data format items, control format items,
and the remote format item. Data format
items specify the external forms that data
fields are to take. cControl format items
specify the page, line, column, and spacinyg
operations. The remote format item allows
format items to be specified in a separate
FORMAT statement elsewhere in the block.

Detailed discussions of the various
types of format items appear in Part II,
Section 5, "Edit-Directed Format Items.”™
The following discussions show how the for-
mat items are used in edit-dirscted data
specifications.

Data Format Items

On input, each data format item specifies
the number of characters to be associated
with the data item and how to interpret the
external data. The data item is assigned to
the associated variable named in the data
list, with necessary conversion to contorm
to the attributes of the variable. On out-
put, the value of the associated element in
the data list is converted to the character
representation specified by the format item
and is inserted into the data stream.

There are six data format items: fixed-
point (F), floating-point (E), complex (C),
picture (P), character-string (A), and bit-
string (B). They are, in general, speci-
fied as follows:

F (wl,dl,plD)
E (w,dl,s])

C (real-format-item [,real-format-item})

P ‘picture~specification®



Page of GC28-2045~-1, Issued September 30, 1971 by TNL GN28-3185

A [(w))] MASKFLE as a string of 25 characters
consisting of 0's and 1's. A field
B [(w)] width specification can be given in
the B format item. It must be stated
In this list, the letter w represents an for input.
expression that specifies the number of
characters in the field. The letter d spe- 3. PUT EDIT (TOTAL) (F(6,2));
cifies the number of digits to the right of
a decimal point; it may be omitted for | Assume TOTAL has the attributes FIXED
integers. The real format item of the com- (4,2); then the above statement speci-
pPlex format item represents the appearance fies that the value of TOTAL is to be
of either an F, B or P format item. The converteda to the character representa-
picture specification of the P fcrmat item tion of a fixed-point number and writ-
can be either a numeric character specifi- ten into the standard output file SYS-
cation or a character-string specification. PRINT. A decimal point is to be
On output, data associated with F and P inserted before the last two numeric
format items is rounded if the internal ‘ characters, and the number will be
precision exceeds the external precision. right-adjusted in a field of six char-
acters. Leading zeros will be changed
A third specification (p) is allowed in to blanks, and, if necessary, a minus
the F format item; it is a scaling factor. sigh will be placed to the left of the
A third spetification (g) is allowed in the first numeric character.
E format item to specify the number of
digits that must be maintained in the first In conversion from internai decimal
subfield of the floating-point number. fixed-point type to character type,
These specifications are discussed in the resultant string always is three
detail in Part II, Section S "Edit-Directed characters longer than p, the number
Format Items.”® ' of digits in the precision specifica-
. tion of a decimal fixed-point vari-
Note: Fixed-point binary and floating- able. The extra characters may appear
point binary data items must always be as blanks preceding the number in the
represented in the input stream with their converted string. And, since leading
values expressed in decimal digits. The F zeros are converted to blanks, addi-
and E format items then are used to access tional blanks may precede the number.
them, and the values will be converted to If a decimal point or a minus sign
binary representation upon assignment. On appears, either will cause one leading
output, binary items are converted to blank to be replaced.
decimal values and the associated F or E '
format items must state the field width and In edit-directed output, the field
point placement in terms of the converted width specification in the format item
decimal number. i (in this case, the 6 in the F{(6,2)
' format item) can be used to truncate
The following examples illustrate the leading zeros. 1In this specification,
use of format items: one zero is truncated. TOTAL would be,
converted to a character string of
1. GET FILE (INFILE) EDIT (ITEM) (A(20)); length seven. If all four digits of
) the converted number are greater than
This statement causes the next 20 . zero, the number, with its inserted
characters in the file called INFILE decimal point, will require five digit-
to be assigned to ITEM. The value is positions; if the number is negative,
automatically transformed from its . another digit position will be
character representation specified by required for the minus sign. Conse-
the format item A(20), to the repre- quently, the F(6,2) specification will
sentation specified by the attributes always allow all digits, the point,
declared for ITEM. and a possible sign to appear, but
will remove the extra blank by
Note: If the data list and format truncation.

list were used for output, the length
of a string item need not be specified 4. GET FILE(A) EDIT (ESTIMATE) (E(10,6));
in the format item if the field width :

is to be the same as the li:ngth of the This statement obtains the next ten
string, that is, if no blanks are to characters from the file called A and
follow the string. interprets them as a floating-point
decimal number. A decimal point is
2. PUT FILE (MASKFLE) EDIT (MASK) (B); assumed before the rightmost six
digits of the mantissa. An actual
Assume MASK has the attribute BIT point within the data can override
(25) ; then the above statement writes this assumption. The value of the
the value of MASK in the file called number is converted to the attributes

Section 9: Stream-Oriented Transmission 89



Page of GC28-2045-1, Issued September 30,

of ESTIMATE and assigned to this
variable.

S. GET EDIT (NAME, TOTAL)
(P'AAAA' ,P'9999°);

When this statement is executed, the
standard input file SYSIN is assumed.
The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four char-
acters must be nonblank numeric char-
acters and they are assigned to TOTAL.

Control Format Items

The control format items are the spacing

format item (X), and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format item specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only appear in PUT
statements. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement.

The following examples illustrate the
use of the control format items:

1. GET EDIT (NUMBER, REBATE)
(A(5), X(5), A(S));

This statement treats the next 15
characters from the standard input
file, SYSIN, as follows: the first
five characters are assigned to NUM-
BER, the next five characters are
spaced over and ignored, and the
remaining five characters are assigned
to REBATE.

2. GET FILE(IN) EDIT{MAN,OVERTIME)
(SKIP(1), A(6), COLUMN(60), F(u,62));

This statement positions the data set
associated with file IN to a new line;
the first six characters on the line
are assigned to MaN, and the four
characters beginning at character
position 60 are assigned to OVERTIME,

3. PUT FILE(OUT) EDIT (PART, COUNT)
(A(4), X(2), F(5);

This statement places in the file
named OUT four characters that repre-
sent the value of PART, then two blank
characters, and finally five charac-
ters that represent the fixed-point
value of COUNT.

4. The following examples show the use of
the COLUMN, LINE, PAGE, and SKIP for-
mat items in combination with one
another.

90

1971 by TNL GN28-3185

PUT EDIT (°QUARTERLY STATEMENT')

(PAGE, LINE(2), A{19));
PUT EDIT
(ACCT#, BOUGHT, SOLD,

PAYMENT, BALANCE)
(SKIP(3), A(6), COLUMN(14),
E(7,2), COLUMN(30), F(7,2),
COLUMN(45), F(7,2),
COLUMN (60), F(7,2));

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new page
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
"skip to the third following line®)
and the value of ACCT# is to be writ-
ten, beginning at the first character
of the fifth line; the value of
BOUGHT, beginning at character posi-
tion 14; the value of SOLD, beginning
at character position 30; the value of
PAYMENT beginning at character posi-
tion 45; and the value of BALANCE at
character position 60.

Note: Control format items are executed at
the time they are encountered in the format
list. Any control format list that appears
after the data list is exhausted will have
no effect.

Remote Format Item

The remote format item (R) specifies the
label of a FORMAT statement (or a label
variable whose value is the label of a FOR-
MAT statement) located elsewhere; the FOR-
MAT statement and the GET or PUT statement
specifying the remote format item must be
internal to the same block. The FORMAT
statement contains the remotely situated
format items. This facility permits the
choice of different format specifications
at execution time, as illustrated by the
following examgple:

DECLARE SWITCH LABEL;

GET FILE(IN) LIST(CODE);

IF CODE = 1
THEN SWITCH = L1:
ELSE SWITCH = L2Z;

GET FILE(IN) EDIT (W,X,Y,2)
(R{SWITCH));

L1: FORMAT (4 F(8,3));

L2: FORMAT (4 E(12,6}));

SWITCH has been declared to be a label
variable; the second GET statement can be
made to operate with either of the two FOR-
MAT statements.

Expressions in Format Items
The w, p, d, and s specifications in

data format items, as well as the specifi-~
cations in control format items, need not



Page of GC28-2045-1,

be decimal integer constants. Expressions
are allowed. They may be variables or
other expressions.

On input, a value read into a variable
can be used in a format item associated
with another variable later in the data
list.

PUT EDIT (NAME,NUMBER,CITY)
(A(N) ,A(N-4),A(10));

GET EDIT (M,STRING_A,I,STRING_B)
(F(2) ,A(M),X(M),F(2),A(1));

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N char-
acters; NUMBER is left-adjusted in a field
of N-4 characters; and CITY is left-
adjusted in a field of 10 characters. 1In
the second example, the first two charac-
ters are assigned to M. The value of M is
then taken to specify the number of charac-
ters to be assigned to STRING A and also to
specify the number of characters to be
ignored before two characters are assigned
to I, whose value then is used to specify
the number of characters to be assigned to
STRING_B.

PRINT FILES

The PRINT attribute can be applied only
to a STREAM OUTPUT file. It indicates that
the data in the file is ultimately intended
to be printed talthough it may first be
written on a medium other than the printed
page). The first data byte of each record
of a PRINT file is reserved for a ANSI
printer control character; the compiler
causes the control characters to be
inserted automatically when statements con-

file).

Issued September 30, 1971 by TNL GN2B-3185

taining the control options and format
items PAGE, SKIP, and LINE are executed.

The layout of a PRINT file can be con-
trolled by the use of the options and for-
mat items listed in Figure 11. (Note that
LINESIZE, SKIP, and COLUMN can also be used
for non-PRINT files.) LINESIZE and PAGE-

"SIZE establish the dimensions of the

printed area of the page, excluding head-
ings and footings. The LINESIZE option
specifies the maximum number of characters
to be included in each printed line; if it
is not specified for a PRINT file, a
default value of 120 characters is assumed
(but there is no default for a non-PRINT
The PAGESIZE option specifies the
maximum number of lines to appear in each
printed page; if it is not specified, a
default value of 60 lines is assumed.

Consider the following example:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(55) LINESIZE(110);

This statement opens the file REPORT as a
PRINT file. The specification PAGESIZE(55)
indicates that each page should contain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already been
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
the ENDPAGE condition is to skip to a new
page, but the user can establish his own
action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised:
the first time. This can be useful, for
example, it a footing is to be written at
the bottom of each page.

r T -—= B St T 1
| | | Statement in| {
| { |which option} H
| | Edit-directed|or format { ]
| Option |format item |item appears| Effect {
_______________________ e B et TSP |
|LINESIZE(W) 1| - | OPEN |Establishes line width i
| | | ’ 1
{ PAGESIZE(wW) | - | OPEN jEstablishes page length {
| | | I ]
| PAGE | PAGE | puUT | Skip to new page i
| | | | |
| LINE (w) | LINE{(w) | PUT | Skip to specified line |
| | | | {
ISKIPI(x)1* | SKIP[(x)12 | PUT ) Skip specified number of lines i
] | | | i
i - | COLUMN(w)1* | PUT {Skips to specified character position in line |
L i i 4
t - —_ ——— ——————— e e {
|*Can also be used with non-PRINT files; see "Options of Transmission Statements® {
| and "control Format Items,® above, and "Line Size and Record Format," below. |
L — e e e e . s e e . i e S A i . o D . S o . i o . S S0 o S R A T . o U . e o A . e e 2 S e 3
Figure 11. Options and Format Items J[or Controlling Layout of PRINT Files
Section 9: Stream-Oriented Transmission 91



Page of GC28-2045-1, Issued September 30,

For example;

SKIP LIST(FOOTING);
PAGE;

FILE (REPORT)
FILE(REPORT)
N + 1;

FILE (REPORT)
FILE (REPORT)

PUT
PUT
N =
PUT
PUT
END;

LIST('PAGE '"||N);
SKIP (3);

Assume that REPORT has been opened with
PAGESIZE(55), as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip beyond line 55), the
ENDPAGE condition will arise, and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped, and the value of FOOTING,
presumably a character string, is to be
printed on line 57 (when ENDPAGE arises,
the current line is always PAGESIZE+l),

The second PUT statement causes a skip to
the next page, and the ENDPAGE counter is
automatically reset for the new page. The
page number is incremented, and the
character string 'PAGE' is concatenated
with the new page number and printed. The
final PUT statement causes three lines to
be skipped, so that the next printing will
be on line 4. cControl returns from the
begin block to the PUT statement that
caused the ENDPAGE condition, and the data
is printed. Any SKIP option specified in
that statement is ignored, however.

Note that SIGNAL ENDPAGE is ignored if
there is no ENDPAGE on-unit, since it may
not be possible for standard system action
(start a new page) to occur (for example,
if the file has not been opened).

The specification LINESIZE(110} indi-
cates that each line on the page can con-
tain a maximum of 110 characters. An
attempt to write a line greater than 110
characters will cause the excess characters
to be placed on the next line.

Standard File SYSPRINT

Unless the standard file SYSPRINT is
declared explicitly, it is always given the
attribute PRINT. When the file is opened,
4 new page 1s initiated automnatically. If
the first PUT statement that refers to the
file has the PAGE option, or if the first
PUT statement includes a format list with
PAGE as the first item, a blank page will

appear.

THE ENVIRONMENT ATTRIBUTE

The ENVIRONMENT attribute specifies
information about the physical organization
of the data set associated with a file.

The information is contained in a paren-
thesized option list; the general format
is:

92

.

1971 by TNL GNZ28-131185

ENVIRONMENT (option-list)
The options applicable to stream—
oriented transmission are:

(record-format optionl
[BUFFERS (n) ]
CONSECUTIVE

LEAVE
REWIND

The options may appear in any order and
are separated by blanks. The options them-
selves cannot contain blanks.

The options are discussed below under
four headings: record format, buffer allo-
cation, data set organization, and volume
disposition. The information supplied by
some of the options can alternatively be
specified by default or in DDEF commands
(see also PL/I Proqrammer's Guide).

RECORD FORMAT

Although record boundaries are ignored
in stream-oriented transmission, record
format is important when a data set is
being creuated, not only because it affects
the amount of storage space occupied by the
data set and the efficiency of the program
that processes the data, but also because
the data set may later be processed by
record-oriented transmission. Having spec-
ified the record format, the user need not
concern himself with records as long as he
uses only stream-oriented transmission; he
can consider his data set as a series of
characters arranged in lines, and can use
the SKIP option or format item (and, for a
PRINT file, the PAGE and LINE options and
format items) to select a new line.

Logical records can be in one of three
formats: fixed-length (format-r),
variable-length (format-Vv), or undefined-
length (format-U).

Record-format options for VAM data sets are:

I

Record-format options for PS data sets are:

Flrecord size) l
Vimaximum-recordsize)
Ulmaximum-record-size)

F{block-sizel, record-sizel)

Vi{maximum-block-size
[,maximumrecord-sizel)

(U(maximum—block-size) j

VAM data sets and PS data sets are
described below, under "Blocking."



Page of GC28-2045~1, Issued September 30,

Blocking

The user's concern with blocking depends
on the type of data set that he is using.

Two basic types of data sets can be used
in TSS/360: VAM data sets, and physical
sequential (PS) data sets. VAM data sets
are formatted for use with direct access
devices and for interface with the TSS/360
virtual access method (VAM) data management
routines. PS data sets are formatted for
use with magnetic tape or for communication
between TSS/360 programs and programs on
the IBM Systems/360 Operating System or on
the Model 44 Programming System. Except
when the user specifies (in the DDEF com-
mand) that a data set is PS, TSS/360 treats
all data sets as VAM data sets.

VAM DATA SETS: Blocking and deblocking for
VAM data sets is done automatically by the
system. The system uses page-size blocks '
(4096 bytes), and ignores any attempt by
the user to specify a block size. The only
restriction placed on the user by the sys-

tem's blocking facilities is that the reco-

rds must stay within the specified record
size, and format-U records must be mul-
tiples of a page in length.

PS DATA SETS: For PS data sets, blocking
and deblocking of fixed- and variable-
length records is done automatically.
However, the block size must be stated
(unless the records are unblocked and the
record size is given by the LINESIZE
option). If no record size or line size is
specified, the records are assumed to be
unblocked (that is, each block contains
only one record). Undefined-length records
cannot be blocked by the system; therefore,
their record size is not specified.

Block size and record size are specified
in number of bytes.

PS fixed-length records are blocked and
deblocked in accordance with the specified
block size and record size. The block size
must be an exact multiple of the record
size.

When variable-length records are written
onto PS data sets, deblocking information
is automatically inserted into each record
and block. Four bytes are prefixed to the
data in each record to specify deblocking
information, including two bytes for the
total record size; a further four bytes are
prefixed to the first record in each block,
two of which specify the total block size.

The user of a PS data set with variable-
length records must specify the maximum
block size and, for blocked records, the
maximum record size. In each case, he must
allow an additional four bytes for the

~ OPEN statement.

1471 by TNL GN28-3185

deblocking information. The record size
must never exceed the block size. For
example, if the maximum data length antici-
pated is 120 bytes, a block size of not
less than 128 bytes must be specified,
whether the records are blocked or not,
since unblocked records are considered to
be in blocks of one record each; if the
records are blocked, the record size must
not be less than 124 bytes, and must be at
least four bytes less than the specified
block size.

For PS undefined-length records, all
‘processing of records is the responsibility
of the user. 1If a length specification is
included in the record, the user must
insert it himself, and he must retrieve the
information himself.

Note: 1. Record format, block size, and
record size can be specified in
the DCB operand of a DDEF com-
mand instead of in the ENVIRON-
MENT attribute, but all three
must appear together in one
place or the other. The rele-
vant DCB suboperands are RECFM,
BLKSIZE, and LRECL.

2. The record size for a PRINT file
must include one byte for a
printer control character. If
record format, block size, and
record size are not specified
for a PRINT file, the following
default assumptions are made:

Record format \'4
Reccrd size 125 bytes

Line Size and Record Format

The record size for a STREAM OUTPUT file
can be given in the LINESIZE option of an
For a non-PRINT file, the
value specified in the LINESIZE option is
the actual record size for fixed-length or
undefined-length records, but does not
include the four bytes for deblocking
information in variable-length records.

For a PRINT file, the value specified in
the LINESIZE option is the actual length of
the printed line; it does not include the
printer control character. Thus the equiv-
alent record size is one byte more than the
line size for fixed-length or undefined-
length records, and five bytes more for
variable-length records. See Figure 12.

If the records are unblocked, it is not
necessary to specify a block size. If the
records are blocked, the block size must be
compatible with the record size: for
fixed-length records, it must be an exact
multiple of the record size; for variable-
length (format-VB) records, it must be at

Section 9: Stream-Oriented Transmission 93



Page of GC28~20H§—1, Issued Scptember 30,

1971 by TNL GN28-3185

— —-——=-7 e e e e S S T T T 8 Sabsit it 4 -
H | | format-F | format-v | format-U |
i‘ - % ————————————————— ——-~—¢--~—-—v--v--+ —————————— + —————————— + . —— o %
| | Record sizel { L+1 | L+5 | L+1 i
| PRINT file | | | { |
| | Block size (if not specified) | L+1 { L+9 i L+1 {
k- + e -—-t- oo i
| | Record size? ) L | L+4 | L |
| Non-PRINT file | i | | |
I f Block size (if not specified) 1 L { 1.+8 | L |
- - e e s e o o e o - ——— e L —— 4
| L—llne size syecxfled in LINESIZE option |
| *"Record size®™ here means the equivalent record size (or maximum record size in the |
| cases of format-V and -U records) that would be specified in the ENVIRONMENT |
i attribute : |
K e e e e e e < e . 2 i e . e 2 e . S e S o e e o e o p— S 2 . " 2 v 2 . . oo o . 2 11 . 2 2P e - S . S0 S i o e e o o e 2 e s o ]
Figure 12. Relationship Between Line Size and Record Size

least four bytes larger than the maximum
record size.

1f neither line size nor block size are
specified for a PRINT file, a default line
size of 120 characters is applied; there is
no default line size for non-PRINT files.’

BUFFER ALLOCATION

A buffer is an internal storage area
that is used for the intermediate storage
of data transmitted to and from a data set.
The use of buffers allows transmission and
computing time to be overlapped, and it may
help speed up processing, especially where
the data set contains format-V or format-uU
records or where the amount of processing
per record 1is irreqular. Buffers are
essential for the automatic blocking and
deblocking of records.

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number(n) of buff-
ers to be allocated for a data set; this
number must not exceed 255 {(or such other
maximum as was established at system
generation). If the number of buffers is
not specified or is specified as zero, two
buffers are assumed.

The number of buffers can be specified
in the BUFNO suboperand of a DDEF command
instead of in the ENVIRONMENT attribute.

DATA SET ORGANIZATION
The organization of a data set deter-
mines how data is recorded in the data set,

and how the data is subsequently retrieved.
so that it can be transmitted to the pro-

94

gram. The TS5/360 PL/I compiler recognizes
two data set organizations, CONSECUTIVE and
INDEXED. A data set that is to be accessed
by stream-oriented transmission must have
CONSECUTIVE organization; since this is the
default for data set organization, it need
not be specified at all for a STREAM file.

The records in a CONSECUTIVE data set
are arranged sequentially in the order in
which they were written; they can be re-
trieved only in the same order (unless
record-oriented transmission is used).
After the data set has been created, the
associated file can be opened for input (to
read the data), or for output (to extend
the data set by adding records at the end,
or tc replace the contents of the data set
by new data: the effect of using an OUTPUT
file to process an existing data set
depends on the DISP operand of the asso-
ciated DDEF command).

VOLUME DISPOSITION

* The volume disposition options allow the

‘,user to specify the action to be taken (1)

when the end of a magnetic tape volume is
reached and (2) when a data set on a mag-
netic tape volume is closed normally or
abnormally.

The action specified by the LEAVE option
depends on the volume position.

1, If the end of the volume has been
reached, no rep051t10n1nq of the tape
occurs and the channel is freed.

2. If a data set is closed normally or
abnormally before the end of the
volume, the tape is repositioned at



the end of the data set (unless it is If neither IEAVE nor REWIND is sgpecified

already there) or at the end of the in the oftions list of the ENVIRONMENT
current volume if a multivolume data attribute, the tape is repositioned at the
set is being accessed. reginning of the current data set on the

current volume.

The REWIND option repositions the mag- If both LEAVE and REWIND are specified
netic tape to the beginning of the data as options of the ENVIRONMENT attribute,
set. REWIND is ignored.

Section 9: Stream-Oriented Transmission 95e



SECTION 10: RECORL-ORIENTED TRANSMISSION

INTRODUCTION

This secticn descrikes the input and
output statements used in record-oriented
transmission, which is one of two types of
data transmission used for input and outgut
in PL/I. Those features of PL/I that apply
€gually to record-oriented and stream-
oriented transmission, including files,
file attributes, and opening and closing
files, are described in Part I, Section 8,
which forms a general introduction to this
section and Section 9.

In record-criented transmission, data in
a data set is considered to be a collection
ot records recorded in any format accept-
able to the computer. WNo data conversion
is performed during record-oriented trans-
mission: on input, the READ statement
causes a single record to ke transmitted to
a program variable exactly as it is record-
ed in the data set; on output, the WRITE,
REWRITE, or LOCATE statement causes a
single record to be transmitted from a pro-
gram variable exactly as it is recorded
internally. Although data is actually
transmitted to and from a data set in
blocks, the statements used in record-
oriented transmission are concerned only
with records; the records are klocked and
deblocked automatically.

CATA TRANSMISSION STATEMENTS

The following is a general description
of the record-oriented data transmission
statements; they are described in detail in
Part II, Section 10, "Statements.”

The variables involved in record-
oriented transmission must be unsub-
scripted, of level 1 (element and array
variables not contained in structures are
of level 1 by default), and may ke of any
storage class. The variables canncot be
rarameters or defined variakles. They can
ke label, pointer, or event variakles, but
such data may lose its validity in
transmission.

There are four statements that actually
cause transmission of reccrds to or from
external storage. They are READ, WRITE,
LOCATE, and REWRITE. A fifth statement,
the DELETE statement, is used to del~te
records from an UPDATE file. The attri-
ktutes of the file determine which state-
ments can be used.

e 96

The READ Statement

The READ statement can be used with any
INPUT or UPDATE file. It causes a record
to be transmitted from the data set tc the
progran, either directly to a variakle or
to a buffer. In the case of blocked rec-
crds, the READ statement causes a record to
ke transferred from a buffer toc the vari-
able; consequently, every READ statement
may not cause actual data transmission from
the ingut device.

The WRITE Statement

The WRITE statement can ke used with any
QUTPUT file, DIRECT UPLATE file, but nct
with a SEQUENTIAL UPDATE file. It causes a
record to be transmitted from the program
to the data set. For unblocked records,
transmission may be directly from a vari-
able or from a buffer. For Lklocked rec-
ords, the WRITE statement causes a logical
record to ke placed into a kuffer; only
when the blocking of the record is complete
is there actual data transmission to the
output device.

The REWRITE Statement

The REWRITE statement causes a record to
ke replaced in an UPDATE file. For SEQUEN-
TIAL UPCATE files, the REWRITE statement
specifies that the last record read from
the file is to be rewritten; consequently a
record rust ke read kefore it can Le
rewritten. For DIRECT UPDATE files, any
record can ke rewritten whether or nct it
has first been read.

The LOCATE Statement

The ICCATE statement can ke used only
with a BUFFERELC OUTPUT SEQUENTIAL cr TRAN-
SIENT file. (Note: A program that uses a
TRANSIENT file cannot be executed cn TSS/
360.) It allocates storage within an out-
put buffer for a based variable, setting a
Eointer to the location in the buffer as it
does so. This gpointer can then be used tc
refer to the allocation so that data can be
roved into the kuffer. The record is writ-
ten out automatically, during execution of
a suksequent WRITE or LOCATE statement for
the file, or when the file is closed.

The DELETE Statement

The DELETE statement specifies that a
record in an UPDATE file be deleted. It
can cnly be used for a file associated with
an INDEXED data set.



Page of GC28-20u45~1,

The URLOCK Statement

The UNLOCK statement is accepted, but is
of no significance to the TSS/360 compiler,
since page-level interlocks are automatic-
ally set by VISAM data management if a file
is opened for direct access.

OPTIONS OF TRANSMISSION STATEMENTS

Options that are allowed for record-
oriented data transmission statements dif-
fer according to the attributes of the file
and the characteristics of the associated
data set. Lists of all of the allowed com-
binations for each type of file are given
in Figures 15, and 17 later in this
section.

Each option consists of a keyword fol-
lowed by a value, which is a file name, a
variable, or an expression. This value
must always be enclosed in parentheses. 1In
any statement, the options may appear in
any order.

The FILE Option

The FILE option must appear in every
record-oriented statement. It specifies
the name of the file upon which the opera-
tion is to take place. It consists of the
keyword FILE followed by the file name en-
closed in parentheses. An example of the
FILE option is shown in each of the state-
ments in this section.

The INTQO Option

The INTO option can be used in the READ
statement for any INPUT or UPDATE file.
The INTO option specifies a variable to
which the logical record is to be assigned.

READ FILE (DETAIL) INTO (RECORD_1);

This specifies that the next seguential
record is to be assigned to the variable
RECORD 1.

Note that the INTO option can name an
element string variable of varying length;
thus it is possible to read a record whose
length is unknown to the PL/I user, and is
not contained in the data. The current
length of the string is set to the length
of the record. The LENGTH built-in func-
tion can be used to find the lenyth of the
record.

When the record variable of a READ sta-
tement is a variable length i :t-string, the
byte count, and not the bit count, is
stored as the current length. This is an
implementation restriction because all
variable length bit-strings are not both
byte aligned and multiples of eight.

Section 10:

Issued September 15, 1970 by TNL GN28-3171

The FROM Option

The FROM option must be used in the
WRITE statement for any OUTPUT or DIRECT
UPDATE file. It can also be used in the

REWRITE statement for any UPDATE file. The
FROM option specifies the variable from
which the record is to be writtenm. If this

variable is a string of varying length, the
current length of the string determines the
size of the record.

For files other than DIRECT UPDATE or
SEQUENTIAL UNBUFFERED UPDATE files, the
FROM option can be omitted from a REWRITE
statement. If the last record was read by
a READ statement with the INTO option,
REWRITE without FROM has no effect on the
record in the data set; but if the 1last
record was read by a READ statement with
the SET option, the record will be updated,
in the buffer, by whatever assignments were
made.

WRITE FILE (MASTER) FROM (MAS REC);
REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the wvalue of
the variable MAS_REC is to be written into
the file MASTER. In the case of the WRITE
statement, it specifies a new record in a
SEQUENTIAL OUTPUT file. The REWRITE state-
ment specieies that MAS _REC is to replace
the last record read from a SEQUENTIAL UP-
DATE file.

The SET Option

The SET option can be used with a READ
statement or a LOCATE statement. It speci-
fies that a named pointer variable is to be
set to point to the location in the buffer
into which data has been moved during the
READ operation, or which has been allocated
by the LOCATE statement.

READ FILE (LIST) SET (P);
This statement specifies that the value of
the pointer variable P is to be set to the
location in the buffer of the next seguen-
tial record.

The IGNORE Option

The IGNORE option can be used in a READ
statement for any SEQUENTIAL INPUT or UP-
DATE file. It includes an expression whose
integral value specifies a number of rec-
ords to be skipped over and ignored.

READ FILE (IN) IGNORE (3);
This statement specifies that the next

three records in the file are to be
skipped.

Record-Oriented Transmission 97



Page of GC28-2045-1,

If a READ statement includes none of the
options INTO, SET, and IGNORE, IGNORE(1) is *
assumed.

The KEY Option

The KEY option applies only to KEYED
files associated with data sets of INDEXED
organization. (The types of data set
organization applicable to record-oriented
transmission are discussed under “"Data Set
Organization,™ below.) The option consists
of the keyword KEY followed by a parenthe-
sized expression, which may be a character-
string constant, a variable, or any other
element expression; if necessary, the
expression is evaluated and converted to a
character string. The rules governing the
length of the character string and what it
represents are discussed below under “IN-
DEXED Organization.®

The KEY option identifies a particular
record. It can be used in a READ statement
for an INPUT or UPDATE file, or in a
REWRITE or DELETE statement for a DIRECT
UPDATE file. (The KEY option can be used
in a READ statement for a SEQUENTIAL file
only if the associated data set has INDEXED
organization.)

READ FILE (STOCK) INTO (ITEM)
KEY (STKEY);

This statement specifies that the record
identified by the character-string value of
the variable STKEY is to be assigned to the
variable ITEM.

The EEYFROM and KEYTO Options

The KEYFROM and KEYTO options apply only
to KEYED files associated with data sets of
INDEXED organization. FEach option consists
of the keyword KEYFROM or KEYTO followed by
a parenthesized expression. For KEYFROM,
the expression may be a character-string
constant, a variable, or any other element
expression; if necessary, the expression is
evaluated and converted to a character
string. For KEYTO, the expression must be
a character-string variable. The rules
governing the lengths of the character
strings and what they represent are dis-
cussed below, under "INDEXED Organization.®

The KEYFROM option specifies the loca-
tion within the data set where the record
is to be written. It can be used in a WRITE
statement for a RECORD OUTPUT or DIRECT UP--
DATE file, or in a LOCATE statement.

WRITE FILE (LOANS) FROM (LOANREC)
KEYFROM (LOANNO);

This statement specifies that the value of
LOANREC is to be written as the next record
in the file LOANS, and that the value of
LOANNO is to be used as the key.

98

Issued September 15, 1970 by TNL GN28-3171

The KEYTO option specifies the name of
the variable to which the key of the record
being read is to be assigned. It can be
used in a READ statement for a SEQUENTIAL
INPUT or SEQUENTIAL UPDATE file.

READ FILE (DETAIL) INTC (INVTRY)
KEYTO (KEYFLD);

This statement specifies that the next
record in the file DETAIL is to be assigned
to the variable INVTRY, and that the key of
the record is to be assigned to the vari-
able KEYFLD.

The EVENT Option

The EVENT option is specified with the
keyword EVENT followed by the parenthesized
name of an event variable. (The appearance
of a name in the EVENT option constitutes a
contextual declaration of an event vari-
able.) The option can appear in any READ,
WRITE, REWRITE, or DELETE statement for an
UNBUFFERED file.

The EVENT option is designed to be used
when asynchronous I/0 operation is possi-
ble. 1In TSS/360, the user's execution is
suspended while I/0 is in progress, except
for CONSECUTIVE SEQUENTIAL UNBUFFERED.
Cnly in this case is asynchronous I1/0 pos-
sible. Thus, when a WAIT statement is
encountered, I/0 is generally complete, so
that this option is of little value to the
TSS/360 PL/I user.

The EVENT option also specifies that
record I/0 interruptions (except for UNDE-
FINEDFILE) are not to occur until a WAIT
statement, specifying the same event vari-
able, is executed by the same task. For
example:

READ FILE (MASTER) INTO (REC_VAR)
EVENT (RECORD 1) ;

-

WAIT (RECORD 1);

In this examule, when the READ statement.is
executed, the input operation is started.
No I/0 interruption for RECORD, TRANSMIT,
KEY, or ENDFILE conditions will take place
until the WAIT statement is executed. If,
when the WAIT statement is executed, the
input operation is not complete {possible
only for CONSECUTIVE SEQUENTIAY. UNBUFFERED
files), and if none of the four conditions
is raised, inline processing stops, but the
operaticn continues. When the operation is
successfully completed, processing con-
tinues with the next statement following
the WAIT statement. If any of the four
conditions arise during execution of the
READ statement, an interruption will occur
when the WAIT statement is executed. On-



units will be entered in the order in which
the interruptions occur (normaliy, TRANSMIT
or ENDFILE, KEY, RECORD). Then upon normal
return fror all of the on-units thus
entered, processing ccgntinues with the next
statement following the WAIT statement.

Note that although the EVENT option
specifies asynchronous processing, it does
not srecify that interrurtions will ke
caused asynchronously; none cf the four
conditions can cause an interruption until
they are synchronized with processing by
the WAIT statement.

Other interrugtions can occur, however.
Any condition that arises during the inline
processing will, of <¢ourse, cause an inter-
rupt if it is enahbled. In addition, if the
1/0 statement containing the EVENT option
should cause implicit cpening of the file,
and if the UNDEFINEUFILE condition should
arise because of that implicit opening, the
interruption will occur at the time the
UNDEFINELCFILE condition is raised. Only
the four conditions TRANSMIT, KEY, RECQRD,
and ENDFILE can ke synchronized Ly the WAIT
statement.

Once a statement containing an EVENT
option has been executed, the event vari-
able named in the opticn is considered to
ke active; while it is active, the event
variable cannct pe srecified again in an
EVENT option. The event variakle becomes
inactive again only after execution of the
corresponding WAIT statement.

An input/output event should ke waited
for only by the task that initiated the
input/cutput oreration.

The NCLOCK Option

The NOLOCK option is ignored, since
page-level interlocks are automatically set
by VISaM data management if a file is
opened for direct access.

PROCESSING MODES

Record-oriented transmission offers the
user alternative methods of nandliing his
data. He can process data within the
storaye area allccated to his program; this
is termed tne move mode because the data is
actually moved into or out ¢f grogram
storage either directly or via a buffer.
Alternatively, the user can process his
data while it remains in a buffer (that is,
without woving it into the storage area
allocated to his program); tnis is termed
the locate mode, kecause the execution of a
data transmission statement. mevrely identi-
fies the lccation of the storage allocated
to a record in the buffer. The locate mode
is applicable only to BUFFERED SEQUENTIAL

Section 10:

files. Which rode is used is determined by
the data transmission statements and
cpticns specified ky the user.

MOVE MODE

In the wrove mode, a READ statement
causes a record to be transferred from
external storage to the variable named in
the INTO option (via an input buffer if a
FUFFERED file is used); a WRITE or REWRITE
statement causes a record to be transferred
from the variakle named in the FROM option
to external storage (perhaps via an output
kuffer). The variakles named in the INTO
and FROM options can be of any storage
class.

Consider the following example, which is
illustrated in Figure 13:

NEXT: READ FILE(IN) INTO(DATA);

-

WRITE FILE (OUT) FROM (DATA);
GO TO NEXT;

DATA ‘
SET

\“"—'_\/"-”_"‘
157
READ
T
INPUT i
BUFFER }
L
134 N J3RD
READ REaD / READ
i
VARIABLE i
{DATAY l
157 2ND\ 3RD

WRITE CWURITENWRITE

T

OUTPUT }
BUFFER | E

i

[pE——

DATA
SET

Figure 13. Input and Output: Move Mcde

Record-Oriented Transmission 99



The first time the READ statement is Figure 1U illustrates the following
executed, a klock is transmitted from the example, which uses locate mode for ingput
data set associated with the file IN to an and rove mode for output:

input buffer, and the first record in the

klock is assigned to the variable DATA;

further executions of the READ statement DCL DATA BASED(P) ;

assign successive records from the buffer .

to DATA. When the buffer is empty, the .

next READ statement causes a new block to NEXT: READ FILE(IN) SET(P);

be transmitted from the data set. The .

WRITE statement is executed in a similar .

manner, building physical records in an .

output buffer and transmitting them to the WRITE FILE(OUT) FROM(DATA);
data set asscciated with the file OUT each GO TO NEXT;

time the buffer is filled.
The first time the READ statement is
executed, a klock is transmitted from the
The move mcde may be simpler to use than data set associated with the file IN to an

the locate mode since there are no buffer input kbuffer, and the pointer variable P is
alignment problems. Furthermore, it can set to point tc the first record in the
result in faster execution when there are kuffer; any reference to the variable DATA
nurerous references to the contents of the or to any other based variable qualified by
same record, because of the overhead the pointer P will then in effect be a
incurred by the indirect addressing tech- reference to this first record. Further
nigue used in locate mode. executions of the READ statement set the

pointer variable P to point to succeeding
records in the kuffer. When the buffer is
empty, the next READ statement causes a new
block to be transmitted from the data set.

LOCATE MODE

lLocate nmode requires the use of based OATA
variables. A bhased variable is effectively SET
overlaid on the data in the buffer, and
different based variables can ke used to
access the same data by associating the
same pointer with each one; thus the same
data can be interpreted in different ways.
Locate mode can also ke used to read self-
defining records, in which informaticon in
one part of the record is used to indicate
the structure of the rest of the record;
for example, this information could be a INPUT
count of the number of repetitions of a BUFFER
subfield, or a code identifying which one P1 °I 1 (
T
!
t
t
]

157
READ

of a class of structures should be used to

interpret the record. ‘ i
1% 2ND 3RD
READ READ READ

A READ statement causes a block of data

to be transferred from the data set to an

input buffer, if necessary, and then sets S%z gxm

the pointer variable named in the SET

option of the next record; the data in the OUTPUT

record can then be processed by reference BUFFER

to the based variable associated with the

pointer variable. The record is available

only until the execution of the next READ

statement that refers to the same file.

3RD
WRITE

Locate mode frequently provides fastaor 3RD
execution than move since there is less WRITE
movement of data, and less storage may be
required. But it must be used carefully;
in particular, the user must ke aware of falle
how his data will be aligned in the osuffer
and how structured data will ke mapped;
structure mapping and data alignment are Figure 14. Iocate Mode Input, Move Mode
discussed in Part II, Section 11. Output

e 100



Page of

It is doubtful whether the use of locate
mode for both input and output in the above
example would result in increased efficien-
cy. An alternative would be to use move
mode tor input and locate mode for output,

tor example:

DCL DATA BASED(P);

LOCATE DATA FILE(OUT);
READ FILE(IN) INTO(DATA);

NEXT:

GO TO NEXT;

Each execution of the LOCATE statement
reserves storage in an output buffer for a
new allocation of the based variable DATA
and sets the pointer variable P to point to
this storage. The first execution of the
READ statement causes a block to be trans-
mitted from the data set associated with
the file IN to an input buffer, and the
first record in the block to be assigned to
the tirst allocation of DATA; subsequent
executions of the READ statement assign
successive logical records to the current
allocation of DATA. When the input buffer
is empty, the next READ statement causes a
new block to be transmitted from the data
set. Each record is available for proces-
sing during the period between the execu-
tion of the READ statement and the next
execution of the LOCATE statement. When no
further space is available in the output
hbuffer, the next execution of the LOCATE
statement causes a block to pe transmitted
to the data set associated with the file
OoUT, and a new buffer to be allocated.

Note that, in each of the foregoing
examples, if the data set accessed in the
move mode had had unblocked records and the
associated file had been declared UNBUF-
FERED, movement of data in internal storage
may have been unnecessary; if possible,
each record would have been read into and
written from the same buffer.

THE ENVIRONMENT ATTRIBUTE

The ENVIRONMENT attrikute can be speci-
fied only in a DECLARE statement; it cannot
be specified as an option of an OPEN state-
ment. It specifies information about the
physical organization of the dat: set asso-
ciated with a file. The information is
contained in a parenthesized option list;
the general format is:

ENVIRONMENT (option-list:}
The options applicable to record-

oriented transmission, with the exceptinn
of teleprocessing applications, are:

Section 10:

GU28-2045-1,

.

Issued Scptember 30, 1971 by TNL GN28-3185
[record-format optionl

[BUFFERS(N) )

s

| INDEXED {
{ LEavE !
}REWINDQ
TYcrLasal
CTL360 |

{COBOL]

[\consﬁcnnw ] ]

[NCp(decimal-integer-constant)]
[TRKOFL]

Note: The INDEXAREA and NOWRITE options
are ignored in TGS5/360.

The options may appear in any order, and
are separated by blanks. The options them-
selves cannot contain blanks.

The options are discussed below under
eleven headings: record format, buffer
allocation, data set organization, volume
disposition, carriage control, data inter-
change, data management optimization, key
classification, asynchronous operations
limit, and track overflow. The information
supplied by some of the options can alter-
natively be specified in a DDEF command or
by default. The DDEF command is described
in IBM System/360 Time Sharing System:
PL/1 Programmer's Guide.

RECORD FORMAT

Logical records can be in one of three
formats: fixed-length (format-F),
variable-length (format-V), and undefined-
length length (format U).

Record-format options for VAM data sets are:

SF(record size)
Vi{maximum-record-size)
U{maximum-record-size)

Record-format options for PS data sets arc:
F(block-sizel,record-sizel)
V{maximum-block-size

{,maximum-record-sizel)
Ulmaximum-block-size)

VAM data sets and PS data sets are
described below, under "Blocking.®

Blocking

The user's concern with blocking depends
on the type of data set that he is using.

Record-Oriented Transmission 101



Page of GC28-2045-1, Issucd Septemher 30,

Two basic types of data sets can be used
in TSS/360: VAM data sets, and physical
sequential (PS) data sets. VAM data sets
are formatted for use with direct access
devices and for interface with the THU/360
virtual access method (VAM) data management
routines. PS data sets are formatted for
use with magnetic tape or for communication
between TSS/360 programs and programs on
the IBM System/360 Operating System or on
the Model 44 Programming System. Except
when the user specifies (in the DDEF com-
mand) that a data set is PS, TSS/360 treats
all data sets as virtual storage data sets.

VIRTUAL STORAGE DATA SETS: Format-F, -V,
and -U records are permitted. Blocking and
deblocking are done automatically by the
system. The system uses page-size blocks
{4096 bytes), and ignores any attempt by
the user to specify a block size. Records
must stay within the specified record size,
and format-U records must he multiples of a
page in length.

PS DATA SETS: Iformat-F, -V, and -U records
are permitted. The block size and record
size are specified in number of bytes. .- The
block size must always be stated; if no
record size is specified, the record:s are
assumed to be unblocked (that is, each
block contains only one record).
Undefined-length records cannot be blacked;

therefore, the record size can be specified’

for fixed-length and variable-length rec-
ords only. &Blocking and deblocking of
fixed-length and variable-length records
are handled automatically.

Fixed-length (format-f) records are-
blocked and deblocked in accordance with
the specified block size and record size.
The block size must be an exact multiple of
the record size.

When variable-length (format-V) records
are written, deblocking information is
-automatically inserted into each record and
block. Four bytes are prefixed to the data
in each record to specify deblocking infor-
mation, including two bytes for the total
record size; a further four bytes are pre-
fixed to the first record in each block,
two of which specify the total block size.

For format-vV records, the user must spe-
cify the maximum block size and, for
blocked records, the maximum record size;
in each case, he must allow an additional
four bytes for the deblocking information.
The record size must never exceed the black
size. For example, if the maximum data
length anticipated is 120 bytes, the maxi-
mum record size should be specified as 124
bytes, and a block size of not less than
128 bytes should be specified whetner the
records are blocked or not (unblocked rec-
ords are considered to be in blocks of one
record each).

102

1971 by TNI GNZB-31HS

For undefined-length (format-U) records,
all proces:sing of records is the responsi-
bility of the user. If a length specifica-
tion iu included in the record, the user
must insert it himself, and he must re-
trieve the information himuelf.

Record format, block size, and record
size can be specified in the DCB operand of
a DDEF command instead of in the ENVIRON-
MENT attribute, bhut all three must appear
together in one place or the other. The
relevant DCB suboperands are RECFM,
BLKSIZE, and LKRECL.

BUFFER ALLOCATION

A buffer is an internal storage area
that is used for the intermediate storage
of data transmitted to and from a data set.
The use of buffers allows transmission and
computing time to be overlapped, and it may
help speed up processing, especially where
the amount of jprocessing per record is
irregular. Bufters are essential for the
automatic blocking and deblocking of rec-
ords and for locate-mode transmission.

The option RUFFERS(n) in the ENVIRONMENT
attribute specifies the number (n) of buf-
fers to he allocated for a data set; this
number must not exceed 255 (or such other
maximum as was established at system
generation). If the number of buffers is
not specified for a BUFFERED file or is
specified as zero, two buffers are assumed.

The number of buffers can be specified
in the DUFNO suboperand of a DDEF command
inctead of in the ENVIRONMENT attribute.

DATA SET ORGANIZATION

The orguanization of a data set deter-
mines how data is recorded in a data set
volume, and how the data is subsequently
retrieved so that it can be transmitted to
the program. Records are stored in and re-
trieved from a data set éither sequentially
on the basis ot successive physical posi-
tions, or directly by the use of keys spe-
cified in data transmission statements.
These storage and retrieval methods provide
PL/1 with two general data set organiza-
tions: CONSECUTIVE and INDEXED: CONSECU~
TIVE is assumed by default if no data set
organization is specified.

In a data set with CONSECUTIVE organiza-
tion, records are organized solely con the
basis of their successive physical posi-
tions; records are retrieved only in
sequent 1al order, and keys are not used.
The records of an INDEXED data set are
arranged in logical sequence according to
keys associated with cach record; the rec-
ords are arranged in ascending key



Poege of

sequence, and indexes, created and main-
tained by the system, are used tor retriev-
al ot records.

CONSECUTIVE data sets are the simpler of
the two types to create and use, and they
have the advantage that les:s internal and
external storage is required. However,
records in a CONSECUTIVE data set can be
updated only in their existing sequence,
and if records are to be inserted a new
data set must be created. Even sequential
updating is not supported for magnetic
tape.

Although an INDEXED data set wmust be
created sequentially, once it exints rec-
ords can be retrieved, updated, added, or
deleted at random. Seguential processing
ot an INDEXED data set 15 slower than that
of a corresponding CONSECUTIVE data set,
because the records it contains are not
necessarily arranged in physical sequence
but are logically chained in order ot
ascending key values. An INDEXED data set
can contain only format-F or format-V rec-
ords; format-U records are not supported.

The use of the record-oriented transmis-
sion statements to process data sets of
each type of organization is discusued
under appropriate headings below.

VOLUJME DISPOSITION

The volume disposition option allows the
user to specify the action to be taken (1)
when the end of a magnetic tape volume i
reached and (2) when a data set on 4 mag-
netic tape volume is closed normally or
abnormally.

The action specified by the LEAVE option
depends on the volume position.

1. If the end of the volume has been
reached, no repositioning of the tape
occurs and the channel is freed.

2. 1f the data set is closed normally or
abnormally before the end of the
volume, the tape is repositioned at
the end of the data set (unless it 14
already there) or at the end of the
current volume if a multivolume data
set 1s being accessed.

The REWIND option repositions the mag-
netic tape to the beginning of the data
set.

If neither LEAVE or REWINDL is sSpecified
in the options list of the ENVIRONMENT
attribute, the tape is repositioned at the
beginning of the current data set on the
current volume.

GU2B=20405=1,

Section 10:

Tssued September 30, 1971 by TNIL GN2B-341HS

If both LEAVE and REWIND are specified
a4t options of the ENVIRONMENT attribute,
REWIND 15 yqgnored. ‘

PRINTER/PUNCH CONTROL

The printer/punch control optionus CTLAGA
and CTL360 apply only to OUTPUT files asso-
ciated with CONGECUTIVE data sets. They
specify that the first character of a rec-
ord is to be interpreted as a control
character.

1. The CTLAGA option specifies American
Nat jonal ot andard FORTRAN control
character:.

2. The CTL360 option specifies IBM
System/ 360 machine code control
characters.

INTERCHANGE OF DATA BETWEEN COBOL AND PL/I
PROGRAMG

The COBOL option in the ENVIRONMENT
attribute specities that the file will con-
tain structures: mapped according to the
COBOL (F) alqorithm. This type of file is
subject to the tollowing restrictions:

1. The tile can be used only for READ
INTO and WRITE FROM statements.

2. The EVENT option cannot be used with
the: above statement:.

3. - It an ON-condition arises as a result
ot the READ INTO statement, the vari-
able named in the INTO option cannot
be used in the on-unit, and return
from the on-unit must be normal if the
comp.leted vdariable is required.

4. The tile name cannot be passed as an
argument.

ALYNCHRONOUS OPERATIONS LIMIT

The asynchronous operations limit speci-
ties the number of incomplete 1/0 opera-
tions with the EVENT option that are
allowed to exist for the file at one time.

The decimdal integer constant specified
with NCP must have a value in the range 1

-through 99; otherwise, 1 is assumed and an

Crror message is issued.

This option 15 equivalent to the NCP
suboperand ot the DCR operand of the DDEF
command. UYee Appendix D of PL/I Program-
wer's Guide.

Record-Oriented Transmission 103



Page of GC2B-2045-1, Issucd September 30,

Note: Use of the NCP option is valid only
for PS data sets accessed by BIAM (i.e.,
CONSECUTIVE SEQUENTIAL UNBUFFERED tiles).

TRACK OVERFLOW

The track overflow option specifties that
records transmitted to a direct-access
storage device can be writtcen on overflow
tracks if necessary.

This option is equivalent to the specir

fication of ®"T" in the RECFM subparameter
of the DCB parameter of the DDEF command.

CONSECUTIVE ORGANIZATION

In a data set with CONSECUTIVE organiza-
tion, the records have no keys. When the
data set is created, records are written
consecutively in the order in which they
are presented. The records can he re-
trieved only in the order in which they
were written or in the reverse order;
therefore, the associated file must have -
the SEQUENTIAL attribute. A CONSECUTIVE
data set can have format-F, format-V, or
format-U records.

Note the difference between the CONSECU-
TIVE option of the ENVIRONMENT attribute
and the SEQUENTIAL attribute. CONSECUTIVE
specifies the physical organization of a
data set; SEQUENTIAL specifies how a file
is to be processed. A data set with CONSE-
CUTIVE organization must be asscciated with
a SEQUENTIAL file; but a data set with IN-
DEXED organization can be associated with
either a SEQUENTIAL or DIRECT file.

A CONSECUTIVE Jdata set on magnetic tape
can be read forwards or backwards. If the
data set 1is to be read backwards, the asso-
ciated file must have the BACKWARDS attri-
bute. If a data set is f{irst read or writ-
ten forwards and then read backwards in the
same program, the LEAVE option should be
specified in the ENVIRONMENT attribute to
prevent normal rewind when the file is
closed (or, with a multivolume data set,
when volume-switching occurs). Variable-
length records cannot be read backwards.

Once a CONSECUTIVE data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or SEQUENTYAL

OUTPUT; or it can be opened for SEQUENTIAL -

UPDATE, provided that the data set is on a
direct-access storage device. If it is on
magnetic tape and opened for OUTPUT, DISP=.
MOD must be specified in the DDEF command;
records can then be added to the end of the
data set. (If DISP=MOD is not specified
for a CONSECUTIVE data set that is already
created and on magnetic tape, the data set
will be overwritten.) Figure 15 lists the

104

1971

by TNI. GN2H-11HA

data transmission statements and options
that can bhe used to create and access a
CONSECUTIVE data set.

OEQUENTIAL UPDATE

when a consecutive data set is accessed
by a SEQUENTIAL UPDATE file, a record must
be retrieved with a READ statement before
it can be updated by a REWRITE statement;
however, every record that is retrieved
need not be rewritten. A REWRITE statement
will always update the last record read.

Consider the following:

READ FILE(F) INTO(A);

.

READ FILE(F) INTO(B);

-

REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record
which was read by the second RFAD state-
ment. The record that was read by the
first statement cannot be rewritten after
the second READ statement has bheen
executed.

Intervening READ statements are not per-
mitted between a READ statement and a
REWRITE statement that refer to the same
record in a data set. For example, the
following is not valid:

READ FILE (F) INTO (A) EVENT (E1);

READ FILE (F) INTO (B) EVENT (E2);

WAIT (E1);
REWRITE FILE (F) FROM (RA);

The REWRITE statement will attempt to
update the last record read, which, in this’
instance, is the record read by the first
READ statement. (A record accessed by a
READ statement with the EVENT option is not
considered to have been read until the
corresponding WAIT statement has been
executed.) Because of the intervention of
the second READ statement, the ERROR condi-
tion will be raised.

INDEXED ORGANIZATION

' Sipce a data set with INDEXED organiza-
tion is a VAM data set (of the virtual in-
dexed type), it must be on a direct access



iFlle declarat10n1|Va11d statements, with options that must
| | appear

b +
| SEQUENTIAL OUTPUT|WRITE FILE(file-name) FROM(variable);

| BUFFERED |
] | LOCATE variakle FILE(file-name); SET(pointer-variakle) |
e —————— e s e T !
| SEQUENTIAL OUTPUT|{WRITE FILE(file-name) FROM(variable); EVENT {event-variakle) |
| UNBUFFERED | |
v e u— e 1
| SEQUENTIAL INPUT |READ FILE(file-name) INTO(variakle); |
| BUFFERED | |
| |READ FILE(file-name) SET(pointer-variakle); |
| | I
| |READ FILE(file-name) IGNORE (expression); |
e a————— A e e :
|SEQUENTIAL INPUT |READ FILE(file-name) INTO(variable; EVENT (event-variable) |
| UNBUFFERED { |

et ——— A 1
| SEQUENTIAL UPDATE|READ FILE(file-name) INTO(variakle);

| BUFFERED |

| |READ FILE(file-namre SET (pocinter-variakle);
| |

| |READ FILE(file-name) IGNORE({expression};

|
I

|
[REWRITE FILE(file-name);

|
|
+
I
|
|
|
!
4
|
| |REAC FILE(file-name) IGNORE{expression); | EVENT (event~variakle) |
4
[
|
|
I
!
l
i
| SEQUENTIAL UPDATE|REALC FILE(file-name) INTO(variable); |
| UNBUFFERED I
| |REAC FILE(file-name) IGNORE(expression) |
|
|

|REWRITE FILE(file-name) FROM(variable); thENT(event-Varlatle)

} _________________ gy gy g N S S ]

|*The complete file declaration would include the attrikutes FILE, RECORD, and
ENVIRONMENT (CONSECUTIVE), for example:

|

|

|

|

{

|

|

1

:
EVENT (event-variakle) ]
|

|

1

|

}
DECLARE MASTER FILE RECORD SEQUENTIAL CUTPUT BUFFERED ENVIRONMENT (CONSECUTIVE); |
|

|

|
|
!
| By omitting the attributes that would be applied by default, this can be shortened to:
!
|

DECLARE MASTER FILE RECORD OUTPUT; i

Figure 15. Statements and Options Permitted fcr Creating and Accessing CONSECUTIVE Data
Sets
device. 1Its records are arranged in logic- SEQUENTIAL or DIRECT as well as INPUT or

al sequence according to keys that are
associated with each recocrd. A key is a
character string that usually represents an
item within the record, such as a part
number, a date, or a name. Logical records
are arranged in the data set in ascending
key sequence according to the System/360
collating sequence. Indexes included in
the data set are used by the operating sys-
tem data-management routines to locate a
record when the key is suprlied. Format-V
and format-F records can ke used in an IN-
DEXED data set.

Unlike CONSECUTIVE organization, INDEXED
organization does not require every record
to be accessed in sequential f£~shion. Once
an INDEXED data set has keen created, the
associated file may have the attribute

Section 10:

UPCATE. The INLDEXED data set's records can
ke retrieved, deleted, and replaced at ran-
dom, cor added to the end of the data set.
If the associated file has the DIRECT
attribute, records can also be inserted at
random.

An INDEXED data set can be accessed ran-
domly (i.e., nonsequentially), whether its
associated file is SEQUENTIAL or DIRECT.
The differences are:

e A SECUENTIAL file is more efficient, if
the records are generally accessed in
rhysical sequence.

¢ A SEQUENTIAL file allows either sequen-
tial (no keys specified) or random
(keys specified) access; all 1/0 state-

Record-Oriented Transmission 105 e



ments used with a LCIRECT file must spe-
cify a key.

¢ Only a DIRECT file can be used to add
records at random. With a SEQUENTIAL
file, reccrds can only be added to the
end of the data set, or replaced (not
inserted).

» Only a DIRECT file causes the setting
of an interlock while a data set is
being updated. (An interlock is a pro-
granming device that allows a data set
to be updated without interference from
other users who have been given access
to the data set.)

* For cases where a KEY, KEYTO, c©r KEY-
FRONM option is in error, the PL/I
library gives more comglete diagnostic
facilities if the CIRECT file is being
used.

Figure 17 lists the data-transmission
statements and options that can ke used to
create and access an INDEXED data set.

KEYS

There are two kinds of keys, recorded
keys and source keys. A recorded key is a
character string that actually appears with
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the character-
string value of the expression that appears
in the KEY or KEYFROM option of a data
transmission statement to identify the
statement to which the record refers; for
direct access of an INDEXED data set, each
transmissicn statement must include a
source key.

The length of the recorded keys in an
INDEXED data set is defined ky the KEYLEN
suboperand of the DDEF command that defines
the data set. If the length of a source
key differs from the specified length of
the recorded keys, the source key is trun-
cated on the right or padded with blanks on
the right to the specified length.

Since the GENKEY (generic key) option is
not supported by TSS/360 data management,
all source keys should have the length spe-
cified in the KEYLEN subcperand of the
DDEF command. If a record with a matching
key is not found, the KEY condition is
raised and the data set is positioned to
the first record.

The recorded keys in an INDEXED data set
may be separate from, or embedded within,
the logical records. The RKP sukoperand of
the DDEF command determines how the key is
to be maintained. (See Figure 16.) This
suboperand specifies the displacement, in

2106

Initial Key Embedded Key
RKP =0 RKP #0

w

g

5|1 ey DATA DATA KEY DATA
RKP = 4 RKP 4

=

© || 4-byte 4-byte

Elltength | KEY DATA length | DATA | KEY | DATA

= field fietd

Figure 16. Relationship Between RKP Sub-

operand and Record Format

kytes, of the key from the bkeginning of the
record. The library maintains the key as
an initial (non-emkedded) key if RKP equals
zexo, for format-F records, or if RKP
equals four, for format-V records. The
library maintains the key as part of the
data if RKP is not zero, for format-F rec-
ords, or if RKP is greater than four, for
format-V records. Maintaining the key as
part of the data means that the user must
ensure that the key is in position tefore
the record is written; on input, the KEYTO
option can be used to obtain a copy of the
key.

The use of embedded keys chviates the
need for the KEYTO option during sequential
input, but the KEYFRCM option is still
required for output. (However, the data
specified by the KEYFROM option may ke the
emkbedded key itself.)

During the execution of a LOCATE or
WRITE statement that adds a record to a
data set with embedded keys, the value of
the expression in the KEYFROM option is
compared with the key emkedded in the rec-
ord; if they do not match, the KEY condi-
ticn is raised. When the KEY condition is
raised in this way by a LOCATE statenent,
the record in the kuffer cannot be trans-
mitted until the key embedded in the record
has keen changed to match the value given
in the KEYFROM option; if the file is
closed* refore the key has been corrected,
the key sugprlied in the KEYFROM option is
automatically substituted for the ernkedded
key, and the record is then transmitted.

1In these circumstances, the file cculd not
ke closed explilicitly (i.e., by a CLOSE
statement) but only implicitly on termina-
tion of the task that opened the file.



T T T T e e B 2 e g 1
| {Valid statements, with options that must |Other options that can |
|File declaration?| appear | also be used |
———————————————————————————————————————————————————————————— e —mmmeee]
|SEQUENTIAL OUTPUT|{WRITE F1LE(file-name) FROM{variable) | |
| BUFFERED2 | KEYFROM(expression); | |
i | |
| | LOCATE variable FILE(file-namre) |SET(pointer-variakle) |
| | KEYFROM(expression); | |
T ———— e e i
| SEQUENTIAL INPUT |READ FIli(file-name) INTO(variakle); | KE¥{expression) oxr KEYTO |
| BUFFERED? | | (character-string- [
i | ) |variatle) |
| |READ FILE(file-name) SET(pointer-variable);|KEY(expression) or KEYTC |
| | | (character-string- |
| | | variable) |
| |READ FILE(file-name) IGNORE (expression); | ]
e e oo !
| SEQUENTIAL UPDATE|REALC FILE(file-name) INTO{variable); |KEY (expression) or KEYTO |
| BUFFERED? | | (character-string- |
| | | variable) |
| |READ FILE(file-name) SET(pointer-variakle); |KEY(expression) or KEYTO |
i i | (character-string- |
| i | variable) |
| |REALC FILE(file-name) IGNORE{expression); | |
i | | |
| |REWRITE FILE(file-name); |FROM(variable) |
| ! | |
| | DELETE FILE(file-name); | |
i U e G oo 1
| DIRECT OUTPUT |WRITE FILE(file-name) FROM(variable) | EVENT (event-variakle)3 |
] | KEYFROM(exgression); | |
----------------- e P T
| DIRECT INPUT |READ FIlt(file-name) INTO(variakle) |EVENT (event-variakle) 3 |
| | KEY(expression); | |
frmmmm e o o e {
| DIRECT UPDATE |READ FILE(file-name) INTO(variakle) | EVENT (event-variakle) 3 |
| | KEY(expression); | |
| I | |
| |REWRITE FILE(file-name) FROM(variable) |EVENT (event-variakle)3 |
| | KEY{expressionl); | |
| | | I
| |WRITE FILE(file-name) FROM(variable) | EVENT (event-variable) 3 |
| | KEYFROM(expression); | |
| ! | |
| | DELETE FILE(file-name) KEY{expression); iEVENT(event variakle)3 |
pomommmo e b e e e e 1
|1The complete file declaration would include the attributes FILE, RECORD, and ENVIRON- |
| MENT (INDEXED); if any of the options KEY, KEYFROM, and KEYTO is used, it must also |
| include the attribute KEYEL. For example: {
| |
| DECLARE MASTER FILE RECORD SEQUENTIAL OUTPUT BUFFERED KEYED ENVIRONMENT(INDEXED); |
| |
| By omitting the attributes that would be agplied by default, this can ke shortened to:|
| |
| DECLARE MASTER FILE RECORD KEYED ENVIRONMENT (INDEXED); |
| |
|21f a SEQUENTIAL file associated with an INLCEXEL data set is declared UNBUFFERED, the |
| compiler will change the declaration to BUFFERED. Thus a declaration of UNBUFFERED |
| gains nothing. |
| |
| 3Use of the EVENT variakle with DIRECT files is supported by TSS/360 for compatibility |
| only; in TSS/360, asynchronous 1/0 can occur only with CCNSECUTIVE SEQUENTIAL UNBUF- |
| FERED files. ' |
b e e e e e e e e e e e e e 2 e e e . 4

Figure 17. Statements and Ogt¢qns Permitted for Creating and A
Sets

ccessing INDEXEL Data

Secticn 10: Record-Oriented Transmission 10

Te



CREATING A DATA SET

Wheri an INLEXED data set is keing
created, if the associated file is opened
for SECQUENTIAL OUTPUT, the records must Le
presented in the order of ascending key
values. (If there is an error in the key
sequence, the KEY condition will be
raised.) The associated file can also be
opened for DIRECT OUTPUT, although this
entails a larger processing overhead than
for SEQUENTIAL OUTPUT; the keys can then be
presented at random.

Once an INDEXEL data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT cr UPDATE, or
for DIRECT INPUJT cr UPDATE. It cannot be
opened for OUTPUT.

SEQUENTIAL ACCESS

A SEQUENTIAL file that is used to access
an INDEXED data set may ke opened with
either the INPUT or the UFDATE attribute.
The data transmission statements need not
include source keys, nor need the file have
the KEYED attribute. Sequential access is
in order of ascending recorded-key values;
records are retrieved in this crder, and
not necessarily in the order in which they
were added tc the data set.

The rules governing the relationship
retween the READ and REWRITE statements for
a4 SEQUENTIAL UPDATE file that accesses an
1NDEXED data set are identical to those for
a CONSECUTIVE data set (descriked above).

puring sequential access of an INDEXED
data set, it is possible to regosition the
data set to a particular reccrd ky supply-
ing a source key in the KEY option of a
READ statement, and to continue sequential
reading from that record. (The associated
file must have the KEYED attribute.}) Repo-
sitioning can occur in either a forward or
a backward direction. Thus, a READ state-
ment that includes the KEY option will
cause the record whose key is supplied to
be read; a subsequent READ statement
without the KEY option will cause the rec-
ord with the next higher recorded key to be
read.

Since the GENKEY option is not supported
in TSS/360, the source key should ke the
same length as the recorded keys. If the
source key is longer, it is truncated on
the right. If it is shorter, the source
key is padded on the right with klanks.

DIRECT ACCESS
A DIRECT file that is used to access an

INDEXED data set may be opened with either

108

the INPUT or the UPDATE attribute. All
data transmissicn statements must include
source keys; the DIRECT attribute inplies
the KEYEL attrikute.

A DIRECT UPELATE file can ke used to re-

trieve, add, delete, or replace records in
an INDEXED data set.

SUMMARY OF RECORD-ORIENTED TRANSMISSION

The fcllowing points c¢over the salient
features of record-oriented transwissicn:

1. A SEQUENTIAL file specifies that the
data set records can be accessed,
created, or modified, in a particular
order, that is, from the first reccrd
of the data set to the last record of
the data set (or from the last to the
first 1f the BACKWARDS attribute has
been specified).

2. A DIRECT file specifies that the data
set reccrds can be accessed, created,
or modified, in randcm corder. The
particular record of the data set to
be operated upon must be identified Ly
a key.

3. A data set that is accessed, created,
or modified by a SEQUENTIAL file may
or may not have recorded keys. If it
does, the keys can be ignored while
accessing seguentially, or they may be
extracted fron the data set or placed
into the data set by the KEYFROM and
KEYTO options. In general, the ncst
efficient wdy to create a data set
containing recorded keys is as a
SEQUENTIAL QUTPUT file. It then can
be accessed as a DIRECT file.

4. SEQUENTIAL INPUT and SEQUENTIAIL UPDATE
files may be positioned to a particu-
lar reccrd within the data set Ly a
READ operation that specifies the key
of the desired record. *Thereafter,
successive READ statements withcut the
KEY option will access the records
sequentially. This kind of accessing
may be used only if the data set has
INDEXED organization and if the file
has the KEYED attrilkute.

5. Existing records of a data set in a
SEQUENTIAL UPLCATE file can be rewrit-
ten, nmcdified, ignored, or deleted.
The DELETE statement used with this
type of file specifies that the last
record read is to be deleted.* Orera-
tion with a DIRECT UPDATE file, howev~

1If the DELETE statement is used with a
sequential file, the data set must have IN-
DEXED organization.



er, can sgpecify which record is to be
deleted by means of a key; also, rec-
ords can be added to the data set by
means of the WRITE statement. An
existing record in an UPDATE file can
be replaced through use of a REWRITE
statement.

Although the EXCLUSIVE attribute, the
NOLOCK ofption, and the URLOCK option
are accepted by the compiler, they
have no meaning in TSS/360. Inter-
locks are applied automatically
whenever a file is opened for DIRECT
access.

A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
staterent may be used with CUTPUT
files, and DIRECT UPDATE files, but a
REWRITE statement may be used with UP-
DATE files only. Moreover, for DIRECT
files, a REWRITE statement uses the
KEY option to identify the existing
record tc be replaced; a WRITE state-
ment uses the KEYFROM option, which
not only specifies where the record is
to be written in the data set, but
also specifies an identifying key to
be recorded in the data set.

Records of a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file can be skipped
over and ignored ky use of the IGNORE
option of a READ statement. The
expression of the IGNORE option speci-
fies the number of records to be
skipped. A READ statement in which
only the FILE option appears indicates
that one record is to be skigped.

EXAMPLES OF DECLARATIONS FOR RECORD FILES

Following are examples of declarations
of files, including the ENVIRONMENT
attribute:

DECILARE INVNTRY UPDATE BUFFERED
ENVIRONMENT (F(100)
INDEXED) ;

This declaration also specifies only three
file attributes: UPDATE, BUFFERED, and

Section 10:

ENVIRONMENT. Implied attributes are FILE,
RECORD, and SECUENTIAL (the last two attri-
kutes are implied ky BUFFERED). Scope is
EXTERNAL, by default. The data set is of
INCEXED crganization, and it contains
fixed-length records of 100 bytes each.
Note that although the data set actually
contains recorded keys, the KEYTO cgticn
cannot be specified in a READ statement,
since the KEYEL attribute has not been
specified.

Ncte that for both of the akove declara-
tions, all necessary attributes are either
stated or implied in the DECLARE statement.
None of the attributes can be changed in an
CPEN statement or in a DDEF command. The
second declaration might have been written:

DECLARE INVNTRY
ENVIRONMENT(F(100) INLDEXED);

With such a declaration, INVNTRY can be
opened for different purposes. It could,
for example, be opened as focllows:

OPEN FILE (INVNTRY)
UPDATE SEQUENTAIAL BUFFERED;

With this OPEN statement, the file attri-
kutes would be the same as those srecified
(or implied) in the DECLARE statement in
the second example above (the number of
kuffers would have to be stated in the
associated DDEF command). The file might
ke orened in this way, then closed, and
then later opened with a different set of
attributes, for example:

OPEN FILE (INVNTRY)
INPUT SEQUENTIAL KEYED;

This OPEN statement allows records tc ke
read with either the KEYTO or the KEYED
cption. Because the file is SEQUENTIAL and
the data set is INDEXED, the data set is
INDEXED, the data set may be accessed in a
purely sequential manner; 'or, by means of a
READ statement with a KEY option, it may be
accessed randomly. A KEY option in a READ
statement with a file of this descrigticn
causes a specified record to be obtained.
Subsegquent READ statements without a KEY
cption access records sequentially, begin-
ning with the next record.

Record-Oriented Transmission 109



SECTION 11. ECITING AND STRING HANDLING

The data manipulation performed by the
arithmetic, ccmparison, and kit-string
operators are extended in PL/I by a variety

£ string-handling and editing features.
These features are specified by data attri-
putes, statement options, built-in func-
tions, and pseudo-variatles.

The following discussions give general

descripticns of each feature, along with
illustrative examples.

EDITING BY ASSIGNMENT

The most fundamental form of editing
performed by the assignment statement
involves converting the data type of the
value on the right side c¢f the assignment
symbol to conform to tne attributes of the
receiving varxiable. Because the assigned
value is made to convorm to the attributes
of the receiving field, the precision or
length of the assigned value may be
altered. Such alteraticn can involve the
addition of digits or characters to and the
deletion of digits or characters from the
converted item. The rules for data conver-
sion are discussed in Part I, Section 4,
"Expressions and Data Conversion,™ and in
Part II, Secticn 6, "Proklem Data
Conversion."”

ALTERING THE LENGTH OF STRING DATA

When a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as
the receiving string and also, if neces-
sary, is truncated or extended on the right
to conform to the declared length of the
receiving string. For example, assume SUB-
JECT has the attributes CHARACTER (10),
indicating a fixed-length character string
of ten characters. Consider the following
statement:

SUBJLECT = ‘'TRANSFORMATIONS®;

The length of the string on the right is
fifteen characters; therefore, five charac-
ters will be truncated from the right end
of the string wnen it 1s assigned to SUB-
JECT. This is equivalent to executing:

SUBJECT = 'TRANSFORMA®;
If the assigned string is shorter than
the length declared for the receiving

string variable, the assigned string is
extended on the right either with blanks,

110

in the case of a character-string variable,
or with zeros, in the case of a bit-string
variable. BAssume SUBJECT still has the
attributes CHARACTER (10). Then the fol-
lowing two statements assign equivalent
values to SUBJECT:

SUBJECT = "PHYSICS';
SUBJECT = *PHYSICSbbb';

The letter b indicates a blank character.

Let CCDE ke a bit-string variable with
the attributes BIT(10). Then the following
two statements assign equivalent values to
CODE:

CODE
CGCDE

*110011°'B;
'*1100110000°'B;

I

Note, however, that the following state-
ments do not assign eguivalent values to
SUBJECT if it has the attributes CHARACTER
(10) :

i

SUBJECT '110011'8B;
SUBJECT = '1100110000'B;

When the first statement is executed, the
kit-string ccnstant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT = *110011bbbb";

The second of the two statements
requires only a conversion from bit-string
to character-string type and is equivalent
to:

SUBJECT = *1100110000°*;

A string value, however, is not extended
with blank characters or zero bits when it
is asgigned to a string variable that has
the VARYING attribute. 1Instead, the length
specification of the receiving string vari-
able is effectively adjusted tc describe
the length of each assigned string. Trun-
cation will occur, though, if the length of
the assigned string exceeds the maximum
length declared for the varying-length
string variatle.

For the T55/360 compiler the length, in
characters or kits, of a string variable or
intermediate string result is limited to
32,767.



OTHER FORMS OF ASSIGNMENT

In addition to the assignment statement,
PL/1I provides other ways of assigning
values to variables. BAmong these are two
methods that involve input and output sta-
tements: one in which actual input and
output operations are performed, and one in
which data movement is entirely internal.

Input and Output Operations

Although the assignment statement is
concerned with the transwission of data
tetween storage locations internal to a
computer, input and output operations can
also be treated as related forms of assign-
ment in which transmission occurs between
the internal and external storage facili-
ties of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must ke per-
formed within internal storage either
before the record is written or after it is
read.

Stream-oriented operations, on the other
hand, do provide a variety of editing func-
tions that can be applied when data items
are read or written. These editing func-
tions are similar to those provided by the
assignment statement, except that any data
conversion always involves character type,
conversion from character type on input,
and conversion to character tygpe on output.

The STRING Option in GET and PUT Statements

The STRING option in GET and PUT state-
ments allows the statements to be used to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In both
GET and PUT statements, the FILE ogtion,
specified by FILE (file-name), is replaced
ky the STRING option, as shown in the fol-
lowing formats:

GET STRING (character-string-variable)
data-specification;

PUT STRING (character-string-variable)
data-specification;

The GET statement specifies that data items
to be assigned to variables in the data
list are tc be obtained from the specified
character string. The PUT statement speci-
fies that data items of the data list are
to be assigned to the specified churacter-
string variable. The "data+-specification®
is the same as described for i:put and out-
put. In general, it takes one of the fol-
lowing forms:

Section 11:

DATA [(data-1list)]
LIST (data-list)

EDIT (data-1list) (format-list)

Although the STRING option can ke used
with each of the three modes of stream-
criented transmission, it is most useful
with edit-directed transmwmission, which con-
siders the input stream to be a continuous
string of characters. For list-directed
and data-directed GET statements, individu-
al items in the character string must be
separated ty commas or blanks; for data-
directed GET statements, the string must
also include the transmission- terrminating
semicolon, and each data item must appear
in the form of an assignment staterent.
Edit-directed transmission provides editing
facility by means of the format list.

The STRING option permits data gathering
cr scattering operations to ke performed
with a single statement, and it allows
stream-oriented processing of character
strings that are transmitted by record-
criented statements.

Ccnsider the following statement:

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS#*RATE)
(A{12), A(7), P"'$999V.99);

This statement specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12
character positions of the string named
RECORD, and that the character-string value
of PAY# is to be assigned to the next seven
character positions of RECORD. The value
of HOURS is then to be multiplied Lty the
value of RATE, and the product is to ke
edited into the next seven character posi-
tions, according to the picture
specification.

Frequently, it is necessary to read rec-
ords of different formats, each of which
gives an indication of its format within
the record by the value of a data item.

The STRING option provides an easy way to
handlc such records; for example:

REALC FILE (INPUTR) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F{1));
IF CODE ;= 1 THEN GO TO OTHER_ TYPE;
GET STRING (TEMP) EDIT (X,Y,Z)

(X(1), 3 F(10,4));

The READ statement reads a record from the
input file INPUTR. The first GET statemwent
uses the STRING option to extract the code
from the first byte of the record and to
assign it to COCE. The code is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items

Editing and String Handling 111



in the record to X,Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(1) format item in the format
list). Each GET statement with the STRING
cption always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in the second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within internal storage. In the
following example, assume that the file
CUTPRT is eventually to be printed.

STRING (RECORL) EDIT
(NAME, PAY#, HOURS*RATE)
(X(1), A(12), x{(10), A(T),
P'$999V.99%) ;

PUT

X(10),

WRITE FILE (OQUTPRT) FROM (RECORD);

The PUT statement specifies, by the X({1)
spacing format item, that the first
character assigned to the character-string
variable is to be a single blank, the ANSI
carriage-control code that specifies a
single space before printing. Following
that, the values of the variables NAME and
PAY# and of the expression HOURS*RATE are
assigned. The format list specifies that
ten klank characters are to be inserted
between NAME and PAY# and ketween PAY# and
the expression value. The WRITE statement
specifies that record transmission is to be
used to write the record into the file
GUTPRT.

THE PICTURE SPECIFICATICN

Picture specifications extend the edit-
ing facilities availakle in PL/I, and pro-
vide the user with greater control over his
data formats. A picture specification con-
sists of a sequence of character codes en-
closed in apostrophes which is either part
of the PICTURE attribute, or part of the P
(picture) forrmat-item:

PICTURE®$Z9V99";

EDIT
("PART NUMBER®, PARTH#)
(A{12), P'AARIOX');

DECLARE PRICE
PUT FILE(SYSPRINT)

Picture specifications are of two types:
* numeric character specifications
s character-string picture sgecificaticns
A numeric character specificatior in a
PICTURE attribute indicates that the data

item represents a numeric quantity, but
that it is to be stored as a character

112

string; it also indicates how the numeric
value is to be represented in the string.

A nureric character, specified in a P for-
mat item, indicates how a numeric value is,
cr is to be, represented as a character
string on the external medium.

A character-string picture specification
is an alternative way of describing a
fixed-length character string, with the
additicnal facility of specifying positions
in the string that can only contain charac-

" ters from certain subsets of the complete

set of characters avairlabie on the IBM

! System/360 Operating System.

The concepts of the two types of picture

! specifications are described separately

"of an A

. numeric

telow, and a detailed description of each
Eicture character, together with examples
of its use, appears in Part II, Section &,
"Picture Specification Characters. It is
sufficient here to note that the presence
cr X picture character defines a
specification as a character-string
specification; otherwise it is a
character specification.

picture
picture

Numeric Character Specifications

A numeric character specification speci-
fies that the associared data item has a
nugeric value, but 1is to be maintained
within the ccmputer (or, 15 represented in
the external medium) as a character string.
It also specifies the torm the character
string is to take, and axactly how the num-
eric value is represented in the string.
For example:

DCL PRICE PICTURE'S$Z9V99Y;

This specifies that PRICE is to be repre-
sented by a character string of length 5.
The first character is always $, the second
is a blank or non-zero digit, and the
third, fourth, and fifth characters are
digits. The numeric value is the four
characters that can represent digits,

+ regarded as FIXED DECIMAL {4,2), and is

13.25 i=
155095,

always positive.
‘$1325' and .95 as

represented as

The numeric character specification has
twWo rajor uses:

® The first use is for data items that
will be concerned with input/ocutput
operations, kut can be used anywhere in
a program where numeric data can occur.
However, on IBM System/360 Time Sharing
System, most nomeric ogerations on pic-
tured data are considerably less effi-
cient than the same operations on coded
numeric data.

» The second use stems from the fact that
a pictured data item effectively has



Page ot

two values. When the item 14 used in a
numeric context, the numeric value i
obtained from or stored inta the
chardcter string, by the conversion
process defined by the picture specifi-
cation; when the item is used in a
character context, the actual character
string that represents the value is
used. For example:

DCL COUNT PICTURE®999°*

STRING CHAR (3);
COUNT = COUNT +1;
GTRING = COUNT;

INITIAL(O),

The initial representation of COUNT is
'000*. 1In the first assignment state-
ment this 1s converted to FIXED DECIMAL
(3,0); the addition is performed; and
the result is converted back to the
pictured form *'001°*. 1In the second
assignment statement the value ot
string i set to *001°.

Note that "character context® includes
defining. A numeric-character data
item may be defined on a character
string and vice versa.

When « character-string value 15
assigned to a numeric character data
item (whether by direct assignment, or
as the result of strean~oriented 1/0),
the source must contain a constant that
15 valid according to the rules for
constants in PL/I source programs. The
value of this constant is then con-
verted and edited to the picture
specification.

The following example will therefore
result in a conversion errcr:

DCL A PICTURE '$$59V.99°;
A = '617.95%;

The currency symbol makes the
character-string constant invalid for
conversion to the arithmetic value of
the numeric character variable, even
though its character-string value con-
tains a currency symbol.

Correct examples are:

A = *17.95°";
A = 17.95;

either of which would result in A hav-
ing the character-string value b$17.95.

The *9*' Picture Character in Numeric
Character Specifications

The picture character '9' is the simp-
lest form of numeric character specifica-
tion. A string of n, '9' picture charac-
ters specifies that the item is to be

GU2B=-2045-1,

Section 11:

Issued Soptembor 30, 1971 by TNL GN2H-1318%

represented hy o fixed-length character
string of lemgth n, each character of which
is a digit (zero throuagh nine). The numer-
ic value i the value of the digits ais an
unsigned decimal number (i.e., FIXED DECI-
MAL (n,0)). For example:

DCL DIGIT PICTUKRE'9',
COUNT PICTURE®999"',
XYZ PICTURE '(10)9°;

The last line shows an alternative way of
writing the picture character '9°' ten
times.

‘"Example of use:

DCL 1 CARD_IMAGE,
2 DATA CHAR(72),
2 IDENTIFICATION CHAR(3),
2 SEQUENCE PIC'99999°;

SEQUENCE = SEQUENCE + 1;
WRITE FILE(OUTPUT) FROM(CARD_ IMAGE);

Note that the definition of *'9' in a
character-ntring picture allows the corres-
.onding character to be either a blank or a
digit.

The 4 and * Picture Characters

It 15 often preferable to replace lead-
ing zeros in numbers by blanks: In picture
specifications, this is accomplished by
using the Z picture character. A picture
specification containing only 2's and 9°'s
has one or more 2's optionally followed by
one or more 9's. The representation of
numeric data is as for the '9' picture spe-
cification, except that if the digit to be
held would otherwise be zero and if all
digit positions to the left would also be
zero, then the character string will con-
fain a blank in this position. Example:

DCL PAGE NUMEBER PICTURE'ZZ9°;

197 is helda as *197', 69 as "b69°', 5 as
'buo', and zero as 'bb0'. With a picture
specification of all 2's, a value of zero
is held as an all-blank string.

The asterisk picture character has the
same effect as the '2', except that an 's'
is held in the string instead of a blank.
This can be used, for example, when print-
ing checks, when it is desired not to leave
blank spaces within fields. For example:

DCL CREDIT PICTURE '$#¢9_.99°;
(The § and . picture characters are
described helow.) A value of 95 is held as

'$#%0.95'; a value of 12350 is held as
'$123.50°.

Editing and String Handling 113



Page of GC28-2045-1, lssued September 30,

The V Picture Character

Up to now, numeric character upecitica-
tions have only represented non-negative
integer values. The V picture character
indicates the position of an assumed deci-
mal point within the character string. For
example:

DCL VALUE PICTURE °*Z9V999°';

The string *12345° represents the numeric
value 12.345. Note that the V does not
specify a character position in the
character-string representation; on assign-
ment to the data item, a decimal point is
not included in the character string.

The Insertion Picture Characters: B .

B
I

A decimal point picture character (,)
can appear in a numeric picture specifica-
tion. It merely indicates that a decimal
point is to be included in the character
representation of the value. Therefore,
the decimal point is a part of itg )
character-string value. The decimal point
picture character does not cause decimal
point alignment during assignment; it is
not a part of the variable's arithmetic
value. Only the V picture character causes
alignment of decimal points. For example:

DECLARE SUM PICTURE '999v.99°';

SUM is a numeric character variable repre-
senting numbers of five digits with a deci-
mal point assumed between the third and
fourth digits. The actual point specified
by the decimal point insertion character is
not a part of the arithmetic value; it is,
however, part of its character-string
value. (The decimal point picture charac-
ter can appear on either side of the char-
acter V. Gee Part II, Section 4, "Picture
Specification Characters.®™) The following
two statements assign the same character
string to SUM:

SUM =
SUM =

123;
123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the following
declaration:

DECLARE RATE PICTURE '9V99.99°;
Let RATE be used as follows:
RATE = 7.62;

When this statement is executed, decimal
point alignment occurs on the character V

114

1971 by TNL GN28-i185

and not on the decimal point picture char-
acter that appears in the picture specifi-
cation for RATE. I1f RATE were printed, it
would appear as '762.00°, but its arithme-
tic value would be 7.6200.

Unlike the V picture character, which
can appear only once in & picture specifi-

cation, the decimal point picture character
can appedr more than once; this allows

digit group:s within the numeric character
data item to be separated by points, as is
common in Dewey decimal notation and in the

numeric notations of some European

countries.

Because a decimal point picture charac-
ter causes a period character to be
inserted into the character-string value of
4 numeric character data item, it 1s called
an insertion character. PL/I provides
three other insertion characters: comma
(,), slash (), and blank (B), which are
used in the same way as the decimal point
picture character except that a comma,
slash, or blank is inserted into the char-
acter string. Consider these statements:

DECLAKRE RESULT PICTURE °9.999.999,v99';
RESULT = 1234567;

The character-string value of RESULT would
be '1.234.567,00'. Note that decimal point
aliynment occurs before the ‘two rightmost
digit positions, as specified by the V pic-
ture character. If RESULT were assigned to
a coded arithmetic field, the value of the
data converted to arithmetic would be
1234567.00.

The $§ Picture Character

The $ picture character controls the
appearance of the currency symbol ($) in
specified positions of numeric character
data items. For example, a dollar sign can
be appended to the left of a numeric char-
acter iter, as indicated in the following
statements:

DECLARE PRICE PICTURE *$99v.99°;
PRICE = 12.45;

The character-string value of PRICE is
eguivalent to the character-string constant
'$12.45". Its arithmetic value, however,
is 12.45.

Sign Specification in Numeric Character
Specifications

Therc are several ways in which signed
information can be held in a numeric char-



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

acter data item. The simplest of these is
the S character specification. This speci-
fies a character in the character-string
representation that contains '+® if the
value is positive or zero, and '-* if the
value is negative. It must occur either to
the right or to the left of all digit posi-
tions. For example:

DCL ROOT PICTURE "59%99°;

50 is held as '+050', zero as *+000', and
-243 as '-243'. Similarly the *+' picture
character specifies a corresponding charac-
ter position containing '+' for positive or
zero, and blank for negative values; the
'~' picture character specifies a corres-
ponding character position containing blank
for positive or zero, and '-' for negative
values.

Overpunched Sign-Specification Characters:
T, I, and R

An alternative way of representing
signed values, which does not require an
additional character in the string, is by
an overpunched sign specification. This
representation arose from the custom of
indicating signs in numeric data held on
punched cards, by superimposing a 12-punch
(to represent +) or an ll-punch (to repre-
sent -~} on top of a column containing a
digit (usually the last one in a field).
The resulting card code is, in most cases,
the same as that for an alphabetic charac-
ter, e.g., 12-punch superimposed on 1
through 9 gives A through I, 1li-punch
superimposed on 1 through 9 gives J through
R. The 12-0 and 11-0 combinations are not
characters in the PL/I set but are within
the set of characters accepted by the IBM
System/360 Time Sharing System implementa-
tions for character data.

The T picture character specifies a
character in the character-string represen-
tation that holds a digit and sign, in the
representation described above, i.e., 12-
punch superimposed on 1 through 9 (A
through I) for positive or zero, 1l-punch
superimposed on 1 through 9 (J through R)
for negative. It can appear anywhere a '9°
picture specification character could have
occurred. For example:

DCL CREDIT PICTURE 'ZZV9T';

The character-string representatin of
CREDIT is 4 characters. +21.05 is held as
*210E'. ~0.07 is held as 'bb0OP'.

The I picture character specifies a
character position that holds ithe represen-
tation of a digit overpunched with a 12-
punch if the value is positive or zero, or
a digit without overpunch, if the value is
negative.

The R picture character specifies a
character position that holds the represen-
tation of a digit overxrpunched with an 11-
punch if the value is negative, or a digit
without overpunch, if the value is posi-
tive. For example:

GET EDIT (X) (P°*R99°);
sets X to (#}132 on finding '132* in the
next 3 positions of the input stream, but
to -132 on finding *J32°'.

Other Numeric-Character Facilities

Further details of usage of the above
picture specification characters, together
with details of picture specification char-
acters for floating signs and currency sym
bols, floating point wvalues, and sterling
values, appear in Part II, Section 4, "Pic-
ture Specification Characters.™

The full list of numeric-character-
specification characters is 9,V,Z,*,Y,
(-)0 (,)gl.B,S,"‘,“, $,CR,DB,T,I.R,K,E,F,8,7,6
P,H,G,,G,H, and M, of which all except X,V,
F,G, and M specify the occurrence of a
character in the character-string
representation.

Character-string Picture Specifications

Section 11:

A character-string picture specification
is an alternative way of describing a
fixed-length character string, with the
additional facility of specifying positions
in the string that only contain characters
from certain subsets of the complete set of
characters available on the IBM System/360
Time Sharing System.

A character-string picture specification
is recognized by the occurrence cof an A or
X picture character. The only valid char-
acters in a character-string picture speci-
fication are A, X, and 9. Each of these
specifies the presence, in the character
string, of one character position that can
contain the following:

X Any character recognized by the
particular implementation (for the
IBM System/360 Time Sharing System,
any cf the 256 bit combinations
that ¢an occur in the 8-bit byte).

A Any alphabetic character, or blank.

9 Any digit, or blank. Note the dif-
ference from the 9 picture charac-
ter in numeric character
specifications.

When a character-string value is assigned,
or transferred, to a pictured character-
string data item, the particular character
in each pesition is checked for walidity,

Editing and String Handiing 115



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

as specified by the corresponding picture
specification character. If the character
is invalid, the CONVERSION condition is
raised. For example:

DECLARE PART# PICTURE 'AAA99X*;

The following values are valid for assign-
ment to PART#.

*ABC12M°
' bbb09/*
*XY¥Zb13*

The following values are not (the invalid
characters are underscored);

'AB123M'
*ABC1/2°
* Mb#A5; *

BIT-STRING HANDLING

The following examples illustrate some
of the facilities of PL/I that can be used
in bit-string manipulations.

DECLARE 1 PERSONNEL_RECORD,
2 NAME,
3 LAST CHARACTER(15),
3 FIRST CHARACTER(10),
3 MIDDLE CHARACTER(1),
2 CODE_STRING,
3 MALE BIT(1),
3 SECRETARIAL BIT(1),
3 AGE,

4 (UNDER_20,

TWENTY _TO_ 30,
OVER_30) BIT(1),
3 HEIGHT,

4 (OVER 6,

FIVE_SIX TO_6,
UNDER_5_6) BIT(1),
3 WEIGHT,

4 (OVER_180,
ONE_TEN_TO_180,
UNDER_110) BIT(1),

3 EYES,
4 (BLUE,
BROWN,
HAZEL,
GREY,
OTHER) BIT(1),
3 HAIR,
4 (BROWN,
BLACK,
BLOND,
RED,
GREY,
BALD) BIT(1),
3 EDUCATION,
4 (COLLEGE,
HIGH SCHOOL,
GRAMMAR _SCHOOL) BITi(%);

This structure contains NAME, a minor
structure of character-strings, and CODE-

116

_STRING, a minor structure of bit-strings.
* By default, the elements of PERSONNEL_RE-
CORD have the UNALIGNED attribute. Conse-
quently, CODE_STRING is mapped with eight
elements per byte, that is, in the same way
as a bit-string of length 25.

Each of the first two bits of the string
represents only two alternatives: MALE or
+MALE and SECRETARIAL or 4SECRETARIAL. The
other categories (at level 3) list several
alternatives each. {(Note that the level
number 4 and the attributes BIT(1) are fac-
tored for each category.)

The following porticn of a program might
be used with PERSONNEL_ RECORD:

INREC: READ FILE(PERSONNEL)
INTO {(PERSONNEL_RECORD) ;

IF (yMALE & SECRETARIAL
UNDER_20

UNDER_5_6

UNDER_ 110

BLUE
(HAIR.BROWN | BLOND)
HIGH SCHOOL)

(MALE & ,SECRETARIAL
OVER_ 30

OVER_6

OVER_180
EYES.GREY

BALD

COLLEGE)

MMM ¢

THEN PUT LIST (NAME);
GO TC INREC;

Another way to program the same informa-
tion retrieval operxation, as shown in the
following coding, would result in consi-
derably shorter execution time:

DECLARE PERS_STRING BIT(25) DEFINED
CODE_STRING;

IF PERS_STRING
= '0110000100110000100000010"'RB
THEE GO TO OUTP;

IF PERS_STRING
= °0110000100110000001000010° E
THEN GO TO OUTP;
IF PERS_STRING
= *1000110010000010000001100'B
THEN GC TO OUTP;
GO TO INREC;
OUTP: PUT LIST {(NAME):
GO TO INREC;

In this example, the bit string PERS_STRING
is defined on the minor structure



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

CODE_STRING. Bit-string constants are con-
structed to represent the values of the
information being sought. The bit string
then is compared, in turn, with each of the
bit-string constants. Note that the first
and second constants are identical except
that the first tests for brown hair and the
second tests for blond hair. These two

Section 11:

variations are specified in the first
example by (HAIR.BROWN|BLOND).

Note that the second method of testing
PERSONNEL_RECORD could not be used if the
structure were ALIGNED (the base identifier
for overlay defining must be UNALIGNED).

Editing and String Handling 116.1






The first method, if it were used, would be
more efficient with an ALIGNED structure.

The tests might alsc ke made with a
series of IF statements, either nested or
unnested, in which each kit would be tested
with a single IF statement. It would
require a greater amount of coding, but it
would be faster at execution time than an
IF statement containing many tkit-string
operators.

CHARACTER-STRING AND BIT-STRING BUILT-IN
FUNCTIONS

PL/1 provides a numker of kuilt-in func-
tions, some of which also can be used as
pseudo-variables, to add power to the
string~handling facilities of the language.
Following are krief descriptions of these
functions (more detailed descriptions
appear in Part II, Section 7, "Built-In
Functions and Pseudo-Variables™).

The BIT built-in function specifies that
a data item is to be ccnverted to a kit
string. The built-in function allows a
user to specify the length of the converted
string, overriding the length that would
result from the standard rules of data
conversion.

The CHAR built-in function is exactly
the same as the RIT built-in function,
except that the conversion is to a charac-
ter string of a specified length.

The SUBSTR built-in function, which can
also serve as a pseudo-variable in a
receiving field, allows a specific sub-
string to be extracted from (or assigned
to, in the case of a pseudo-variakle) a
specified string value.

The INDEX built-in function allows a
string, either a character string or a bit
string, to be searched for the first occur-
rence of a specified substring, which can
be a single character or bit. The value
returned is the locaticn of the first char-
acter or bit of the substring, relative to
the beginning of the string. The value is
expressed as a binary integer. 1If the sub-

Section 11:

string dces not occur in the srecified
string, the value returned is zero.

The LENGTH kuilt-in function gives the
current length of a character string or bit
string. It is particularly useful with
strings that have the VARYING attritute.

The HIGH built-in function provides a
string cf a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
System/360 implementations, the character
is hexadecimal FF.

The LOW built-in function provides a
string of a specified length that consists
of repeated occurrences of the lowest char-
acter in the ccllating sequence. For
System/360 implementations, the character
is hexadecimal 00.

The REPEAT kuilt-in function permits a
string toc be formed from repeated cccur-
rences of a specified substring. It is
used to create string patterns.

The STRING built-in function which can
also be used as a pseudo-variakle, conca-
tenates all the elements in an aggregate
variable into a single string element.

The BOOL built-in function allows up to
16 different Boolean orerations to ke ag-
plied to two srecified kit strings.

The UNSPEC kuilt-in function, which can
also be used as a pseudo-variable, speci-
fies that the internal coded representation
of a value is to be regarded as a kit
string with no conversion.

The TRANSIATE built-in function trans-
lates a specified string according to a
translation takle defined Ly two other
strings.

The VERIFY built-in function verifies
that each character or kit in a given
source string is represented in a given
verification string; in other words, it
tests the validity of each character cr kit
according to user-specified criteria.

Editing and String Handling 117



SECTION 12: SUBROUTINES AND FUNCTIONS

ARGUMENTS AND PARAMETERS

Data can be made known in an invoked
procedure by extending the scope of the
names identifying that data to include the
invoked prccedure. This extension of scoge
is accomplished by nesting procedures or by
specifying the EXTERNAL attribute for the
names.

There is yet another way in which data
can be made known in an invoked procedure,
and that is to specify the names as arqu-
ments in a list in the invoking statement.
Each argument in the list is an expression,
a file name, a statement label constant or
variable, or an entry name that is to be
passed to the invoked procedure.

Since argurents are passed to it, the
invoked procedure must have some way of
accepting them. This is done by the expli-
cit declaraticn of one or more parameters
in a list in the PROCECDURE or ENTRY state-
ment that is the entry pcint at which the
procedure is invoked. A parameter is a
name used within the 1nvoked procedure to
represent another name (cr expression) that
is passed to the procedure as an argument.
Each parameter in the parameter list of the
invoked procedure has a corresronding argu-
ment in the argqument list of the invoking
statement. This correspondence is taken
from left-to-right; the first argument
corresponds to the first parameter, the
second argument corresgonds to the second
parameter, and so forth. In general, any
reference to a parameter within the invoked
procedure is treated as a reference to the
corresponding argument. The numker of
arguments and parameters must be the same.
The maximum number of parameters permitted
at any entry point is 64.

The example pelow illustrates how param-
eters and arguments may ke used:

PRMAIN: PROCEDURE;
CECLARE NAME CHARACTER (20),

ITEM BIT(5);

CALL OUTSUB (NAME, ITEM);

END PRMAIN;

118

OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),

B BIT(5);

PUT LIST (A,B);

END OUTSUB;

In prccedure PRMAIN, NAME is declared as
a character string, and ITEM as a kit
string. The CALL statement in PRMAIN
invokes the procedure called OUTISUB, and
the rarenthesized list included in this
procedure reference contains the two argu-
ments being passed to CUTSUB. The PROCE-
LURE statement defining OUTSUB declares two
parameters, A and B. When OUTSUB is
invoked, NAME is associated with A and ITEM
is associated with B. Each reference to A
in OUTSUB is treated as a reference tc NAME
and each reference to B is treated as a
reference to ITEN. Therefore, the PUT LIST
(A,B) statement causes the values of NAME
and ITEM to be written into the standard
system output file, SYSPRINT.

Note that the passing of arguments usu-
ally invclves the passing of names and not
merely the values represented by these
names. (In general, the name that is
passed is usually the address of the value
or an address that can be used to retrieve
the value.) As a result, storage allocated
for a variable kefore it is passed as an
argument is not duplicated when the proce-
dure is invoked. Any change of value spec-
ified for a parameter actually is a change
in the value of the argument. Such changes
are in effect when contrcl is returned to
the invoking klock.

A parameter can be thought of as
indirectly representing the value that is
directly represented by an argument. Thus,
since both the argument and the parareter
represent the same value, the attriktutes of
a parameter and its corresponding argument
must agree. For example, an obvious error
exists if a parameter has the attribute
FILE and its corresponding argument has the
attribute FILOAT. However, there are cases
in which such an error may not be so
obvious, for example, when an argument is a
constant. Certain inconsistencies ketween
the attributes of an argument and its asso-
ciated parameter can be resolved by speci-
fying, in an invoking procedure, the ENTRY
attribute for an entry name to be invoked.



Page of GC28-2045-1, Issued Scptember 30,

The ENTRY attribute specification provides
the facility to specify that the compiler
is to generate cocding to convert one or
more arquments to conform with the attri-
butes of the associated parameters. This
topic is discussed later in this chapter in
the sections "The FENTRY Attribute” and
*Dummy Arguments.®

A name is explicitly declared to be a
parameter by its appearance in the parame-
ter list of a PROCEDURE or ENTRY statement.
However, its attributes, unless defaults
apply, must be explicitly stated within’
that procedure in a DECLARE statement.

Parameters, therefore, provide the means
for generalizing procedures s¢ that data
whose names may not be known within such
procedures can, nevertheless, be operated
upon. There are two types cf generalized
procedures that can be written in PL/I:
subroutine procedures {(called simply, sub-
routines) and function procedures
(functions).

SUBROUTINES

A subroutine is a procedure that is
invoked by a CALL statement and usually
requires arguments to be passed to it. It
can be either an external or internal pro-
cedure. A reference to such a procedure is
known as a subroutine reference. The gen-
eral format of a subroutine reference is as
follows:

CALL entry-name [(argument![,argumentl]...}];

Note that a subroutine can also e invoked
through the CALL option of an INITIAL
attribute specification.

Whenever a subroutine is invoked, the
arqgquments of the invoking statement are
associated with the parameters of the entry

point, and control is then passed to that
entry point. The subroutine is thus acti-
vated, and execution begins.

Upon termination of a subroutine, con-
trol normally is returned to the invoking
block. A subroutine can be terminated
normally in any of the following ways:

1. <Control reaches the final END state-
ment of the subroutine. Execution of
this statement causes control to be
returned to the first executable
statement logically following the
statement that originally invoked the
subroutine. There is an exception,
however: return of control from a
subroutine invoked by the CALL option
is to the statement containing the
CALL option at the point immediately
following that option. Either of

1971 by TNI. GN2B-318%

these is considered to be a normal
return.

2. Control reaches a RETURN statement in
the subroutine. This causes the same
normal return caused by the END
statement.

3. Control reaches a GO TO statement that

transfers control out of the subrou-
. tine. (This is not permitted if the

subroutine is invoked by the CALL
option.) The GO TO statement may
specify a label in a containing block
(the label must be known within the
subroutine), or it may specify a pa-
rameter that has been associated with
a label argument passed to the subrou-
tine. Although this is considered to
be normal termination of the subrou-
tine, it is not normal return of con-
trol, as effected by an END or RETURN
stutement.

A STOP or EXIT statement encountered in a
subroutine abnormally terminates execution
of that subroutine and of the entire pro-
gram associated with the procedure that
invoked it.

The following example illustrates how a
subroutine interacts with the procedure
that invokes 1it:

A: PROCEDURE;
DECLARE RATE FLOAT (10), TIME FLOAT(S5),
DIGTANCE FLOAT(15), MASTER FILE;

-

CALL READCM (RATE, TIME, DISTANCE,
MASTER) ;

END A;
READCM: PROCEDURE (W,X,Y,2);
DECLARE W FLOAT (10),

Y FLOAT(15),

X FLOAT(S),
Z FILE:

-

GET FILE (Z) LIST (W,X,Y);

Y = W*X;
IF Y > 0 THEN RETURN;

ELSE PUT LIST('ERROR READCM®);
END READCM;

The arquments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
¥, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the :. me as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

Section 12: Subroutines and Functions 119



Page of GC28-2085-1, Issued September 30,

FUNCTIONS

A function 1s a procedure that always
returns a single value to the point of
invocation. It usually requires arguments
to be passed to it when it is invoked, and
is invoked by the appearance of the func-
tion name (and associated argument:) in an
expression. Such an appearance is called a
function reference. Like a subroutine, a
function can operate upon the arguments
passed to it and upon other known data.
But unlike a subroutine, a function is
written to compute a singlec value which
returned, with control, to the point of
invocation, the function reference. This
single value can be of arithmetic, string
(including picture data), locator, or area
type. The maximum number of different data
types or precisions returned by one fung-
tion may not exceed 256. An example of a
function reference is contained in the fol-
lowing procedure:

is

MAINP: PROCEDURE;

GET LIST (A, B, C, Y);

Y*#3+S5PROD(A,B,C);

END MAINP;
In the above procedure, the assignment
statement

X = Y**#3+SPROD(A,B,C);

contains a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

-
-

IF U >V + W
THEN RETURN (0);
ELSE RETURN (U*VsyW);

END SPROD;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been exp’icitly
declared for the argquments and parameters,
default attributes of FLOAT DECIMAL (6) are

120

1971

by TNI GN2B-11K5

applied to each argument and parameter.
{The default precision is that defined for
System/360 implementations.) Hence, the
attributes are consistent, and the associa-
tion of the arquments with the parameters
produces no error.

buring the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the

statement associated with the THEN clause
is executed; otherwise, the statement asso-
ciated with the ELSE clause is executed.

In either case, the executed statement is a

-RETURN statement.

The RETURN statement is the usual way by
which a function is terminated and control
is returned to the invoking procedure. Its
use in a function differs somewhat from its
use in a subroutine; in a function, not
only does it return control but it also
returns a value to the point of invocation.
The general form of the RETURN statement,
when it is used in a function, is as
follows:

RETURN (element-expression);

The expression must be present and must
represent & single value; i.e., it cannot
be an array or structure expression. It is
this value that is returned to the invoking
procedure at the point of invocation.

Thus, for the above example, SPROD returns
cither 0 or the value represented by UsVsW,
along with contrcl to the invoking expres-
sion in MAINP. The returned value then
effectively replaces the function
reference, and evaluation of the invoking
expression continues. !

A function can also be terminated by
execution of a GO TO statement. If this
method is used, evaluation of the expres-
sion that invoked the function will not be
completed, and control will go to the des-
ignated statement. As in a subroutine, the
transfer point specified in a GO TO state-
ment may be a parameter that has been asso-
ciated with a label arqgument. For example,
assume that MAINP and SPROD have been
defined as follows: -

MAINP: PROCEDURE

GET LIST (A,B,C,Y):

X ¥ Y**3+SPROD(A,B,C,LAB1};
LAB1: CALL ERRT;

-



Page of GC28-2045-1, Issued September 15, 1970 by TNL GN28-3171

END MAINP;
SPROD: PROCEDURE (U,V,W,2);
DECLARE 2 LABEL;
IF U >V + W
THEN GO TO Z;
ELSE RETURN {U*V#W);
END SPROD;

In MAINP, LABL is explicitly declared to
be a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LABl is
associated with parameter Z. Since the
attributes of A must agree with those of
LABl1, 2 is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. If U is
greater than V + W, the THEN clause is
executed, control returns to MAINP at the
statement labeled LABl, and evaluation of
the expression that invoked SPROD is dis-
continued. If U is not greater than V + W,
the ELSE clause is executed and a return to
MAINP is made in the normal fashion. Addi-
tional information about the use of label
arguments and label parameters is contained
in the section "Relationship of Arguments
and Parameters®™ in this section.

Note: In some instances, a function may be
so defined that it does not require argqu-
ments. In such cases, the appearance of
the function name within an expression will
be recognized as a function reference only
if the function name has been explicitly or
contextually declared to be an entry name.
See "The ENTRY Attribute®” in this section
for additional information.

Attributes of Returned Values

The attributes of the value returned by
a function may be declared in two ways:

1. They may be declared by default
according to the first letter of the
function name.

2. They may be explicitly declared in the
RETURNS option of the PROCEDURE (or
ENTRY) statement for the function.

The value of the expression in the RETURN
statement is converted within the function,
whenever necessary, to conform to the
attributes specified by one of the two
methods above.

Attributes specified in ENTRY statements
can be different from those specified in
the encompassing PROCEDURE statement.

In the previous examples of MAINP and
SPROD, the PROCEDURE statement of SPROD
contains no attributes declared for the
value it returns. Thus, these attributes
must be determined from the first letter of
its name, S. The attributes of the
returned value are therefore FLOAT and
DECIMAL. Since these are the attributes
that the returned value is expected to
have, no conflict exists.

Note: Unless the invoking procedure pro-
vides the compiler with information to the
contrary, the attributes of the value
returned by a function to the invoking pro-
cedure are always determined from the first
letter of the function name.

The RETURNS Option: The way in which
attributes can be declared for the returned
value in the PROCEDURE or ENTRY statement
is illustrated in the following example.
Assume that the PROCEDURE statement for
SPROD has been specified as follows:

SPROD: PROCEDURE {(U,V ,W,2)

{FIXED BINARY);

RETURNS

With this declaration, the value returned
by SPROD will have the attributes FIXED and
BINARY. However, since these attributes
differ from those that would be determined
from the first letter of the function name,
this difference must be stated in the
invoking procedure to avoid a possible
error. The PL/I user communicates this
information to the compiler with the
RETURNS attribute specified in a DECLARE
statement in the invoking procedure.

The RETURNS Attribute: The RETURHNS attri-
bute 1s specified in a DECLARE statement
for an entry name. It specifies the attri-

I bute of the value returned by that func-

tion. It further specifies, by implica-
tion, the ENTRY attribute for the name;
consequently, it is an eptry name attribute
specification. Unless default attributes
for the entry name apply, any invocation of
a function must appear within the scope of
a RETURNS attribute declarationm for the
entry name. For an internal function, the
RETURNS attribute can be specified only in
4 DECLARE statement that is intexnal to the
same block as the function procedure.

The general format of the RETURNS attri-
bute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from the named entry point is to be treated
as though it had the attributes given in
the attribute iist. The word treated is
used because no conversion is performed in
an invoking block upon any value returned
to it. Therefore, if the attributes of the

Section 12: Subroutines and Functions 121



Page of GC28-2045-1,

returned value do not agree with those in
the attribute 1ist of the RETURNS attri-
bute, an error will probably result.

In order to specify to the compiler that
coding for MAINP is to handle the FIXED
BINARY value being returned by SPROD, this
declaration must be given within MAINP:

DECLARE SPROD RETURNS (FIXED BINARY);

Note what is implied in the above dis-
cussion. During compilation of the invok-
ing block, there is no way for the compiler
to check a function procedure to determine
the attributes of the value it returns. In
the absence of explicit information in a
RETURNS attribute specification, the com-
piler can only assume that the attributes
will be consistent with the attributes
implied by the first letter of the function
name. This is true even if the function
procedure is contained in the invoking pro-
cedure. If the returned value does not
have the attributes that the invoking pro-
cedure is prepared to receive, no conver- -
sion can be performed. The RETURNS attri-
bute must be declared for a function that
returns any value.

Built-In Functions

Similar to function procedures that a
user can define for himself is a comprehen-
sive set of pre-defined functions called
built-in functions.

The set of built-in functions is an
intrinsic part of PL/I. It includes not
only the commonly used arithmetic functions
but also other necessary or useful func-
tions related to language facilities, such
as functions for manipulating strings and
arrays.

Built-in functions are invoked in the
same way that user-defined functions are
invoked. However, many built-in functions
can return arrxay or structure values,
whereas a user-defined function can return
only an element value.

Note: Some built-in functions may actually
be compiled as in-1line code rather than as
procedure invocations. All are referred to
in a PL/I source program, however, by func-
tion references, whether or not they result
in an actual procedure invocation.

Neither the ENTRY attribute nor the
RETURNS attribute can be specified for an:
built-in function name. The use of the
name in a function reference is recognized
without need for any further identifica-
tion; attributes of values returned by
built-in functions are known by the
compiler.

122

Issued September 15, 1970 by TNL GN28+3171

But since built-in function names are
PL/I keywords, they are not reserved; the
same identifiers can be used as user-
defined names. Consequently, ambiguity
might occur if a built-in function
reference were to be used in a block that
is contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attribute can be declared for a
built-in function name in any block that
has inherited, from a containing block,
some other declaration of the identifier.
Consider the following example.

A: PROCEDURE;

-
-

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

-
-

C: BEGIN;
DECLARE SQRT BUILTIN;

END A;

Assume that in external procedure A,
SQRT is neither explicitly nor contextually
declared for some other use. Consequently,
any reference to SQRT would refer to the
built-in function of that name. In B,
however, SQRT is declared to be a floating-
point binary variable, and it cannot be
used in any other way. Finally, in C, SQRT
is declared with the BUILTIN attribute so
that any reference to SQRT will be recog-
nized as a reference to the built-in func-
tion and not co the floating-point binary
variable d=clared in B.

Note that a wariable having the same
identifier as a built-in function can be
contextually declared by its appearance on
the left-hand side of an assignment symbol
(in an assignment statement, a DO state-
ment, Or a repetitive specification) or in
the data list of a GET statement, provided
that it is neither enclosed within nor
immediately followed by an argument list.
(This does not apply to the names ONCHAR,
ONSGURCE, and PRIORITY which are pseudo-
variables that do not require arquments.)
For example, if the statement SQRT = 1 had
appeared in pracedure B instead of the
explicit declaration, SQRT would have been



contextually declared as a floating-point
decimal varialkle.

A user can even use a built-in function
name as the entry name of a user-written
function and, in the same program, use both
the built-in function and the user-written
function. This can be accomplished by use
of the BUILTIN attribute and the ENTRY
attribute. (The ENTRY attribute, which is
used in a DECLARE statement to specify that
the associated identifier is an entry name,
is discussed in a later section of this
section.)

The following example illustrates use of
the ENTRY attribute in conjunction with the
BUILTIN attribute.

SQRT: PROCEDURE (PARAM) FIXED (6,2);
DECLARE PARAM FIXED (12);

ENL SQRT;

A: PROCEDURE;
DECLARE SQRT ENTRY RETURNS
(FIXED(6,2)), Y FIXED(12);

-

X = SQRT(Y);

B: BEGIN;
DECLARE SQRT BUILTIN;

Z = SQRT (P);

END A;

The use of SQRT as the label of the
first PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. Since, in this case, SQRT is not the
built-in function, the entry name must be
explicitly declared in A (and the RETURNS
attribute is specified because the attri-
kutes of the returned value are not
apparent in the function name). "‘he func-
tion reference in the assignment statement
in A thus refers to the user-written SQRT
function. In the begin klock, the identi-
fier SQRT is declared with the BUILTIN
attribute. Consequently, the function
reference in the assignment statement in B
refers to the built-in SQRT function.

If a user-written function using the
name of a built-in function is external,
any procedure containing a reference to
that function name must also contain an
entry declaration of that name; otherwise a
reference to the identifier would ke a
reference tc the built-in function. In the
above example, if the PROCEDURE B were not
contained in A, there would be no need to
specify the BUILTIN attribute; so lcng as
the identifier SCRT is not known as some
other namwe, the identifier would refer to
the built-in function.

If a user-written function using the
name of a kuilt-in function is internal,
any reference to the identifier in the con-
taining klock would be a reference to the
user-written function, provided that its
name is known in the block in which the
reference is made. NoO entry name attri-
kutes would have to ke specified if attri-
kutes to the returned value could be
inferred from the entry name.

RELATIONSHIP OF ARGUMENTS AND PARAMETERS

When a function oxr subroutine is
invoked, a relationship is established
bLetween the arguments of the invoking
statement or expression and the parareters
cf the invcked entry point. This relation-
ship is dependent upon whether or not dummy
arguments are created.

DUMMY ARGUMENTS

In the introcductory discussion of argu-
ments and parameters, it is pointed cut
that the name of an argument, not its
value, is passed to a subroutine or func-
tion. Hcwever, there are times when an
argument has no name. A constant, for
example, has nc name; nor does an opera-
tional expression. But the mechanism that
associates arguments with parameters cannot
handle such values directly. Therefcre,
the compiler must provide storage for such
values and assign an internal narne fcr
each. These internal names are called
dummy argquments. They are not accessikle
tc the PL/I user, but he shculd be aware cf
their existence kecause any change to a pa-
rameter will be reflected only in the value
cf the durmy arqument and not in the value
of the original argument from which it was
constructed.

A dummy argument is always created fcr
any cf the following cases:

1. If an argument is a constant
2. If an argument is an expression

invelving operators

Section 12: Subroutines and Functicns 123



3. If an argument is an expression in
parentheses

4. If an argument is a variable whose
data attributes are different from the
data attributes declared for the pa-
rameter in an entry name attribute
specification appearing in the invok-
ing block

5. If an argument is itself a function
reference containing arguments

6. If, for the TSS/360 PL/I compiler, an
argument is a controlled array or
string associated with a simple param-
eter, unless the asterisk notation is
used.

In all other cases, the arqument name is
passed directly. The parameter becomes
identical with the passed argument; thus,
changes to the value of a parameter will be
reflected in the value of the original
argument only if a dummy argument is not
passed.

A task variable cannot ke passed as an
argument if this would cause a dummy argu-
ment to be created.

Note: When a dummy argument is created for
an argument that is a constant, the attri-
butes of the dummy argument will ke those
indicated by the constant. For example, if
SUB is a subroutine that expects to be
rpassed a fixed binary argument, the
statement

CALL SUB(2);

will lead to error, since the dummy argu-
ment will be fixed decimal. This can be
avoided either by assigning the value 2 to
a fixed binary variable and passing the
variable name, e.g-.,

I=2;
CALL SUB(I);

or by using the ENTRY attribute.

THE ENTRY ATTRIBUTE

There is no way during compilation of a
subroutine or function that the compiler
can know the attributes of arguments that
will be passed to a parameter. The compil-
er must assume that the attrikutes of each
argument will agree with the attributes of
its associated parameter. Wherever there
is disagreement, the program must provide,
in the invoking procedure, an ENTRY attri-
kute declaration for the entry name of the
subroutine or function being invcked. The
general form of the ENTRY attribute is as
follows:

124

ENTRY [(parameter-attribute-list
[,parameter-attribute-listl...)]

Note that the akove format allows the
keyword ENTRY to be specified without
accompanying parameter attribute lists, as
it might be used to identify a function
entry name that does not require arguments.

Each parameter attribute list in the
ENTRY attribute specification corresponds
to one parameter of the subroutine or func-
tion involved and specifies the attributes
of that parameter. In general, if the
attributes of an argument do not agree with
those of its corresponding parameter (as
specified in a parameter attribute list), a
dummy argument is constructed for that
argument if conversion is possible. The
dummy argument contains the value cf the
criginal argument converted to conform with
the attributes of the corresponding paramre-
tex. Thus, when the subroutine or function
is invoked, it is the dummy argument that
is rassed to it.

If an ENTRY attribute with parameter
attribute lists is not used, the cowmpiler
assumes that the arqguments are compatible
and acts according to the default attri-
kutes cf the parameters. If the argument
attributes do not agree with the attributes
ct the corresponding parameter, no conver-
sion occurs, and an error probably results.
For example, if a fixed decimal argqument,
which should be kyte aligned, is passed to
a procedure which expects a fixed binary
argurent, then a specification interruption
probably occurs when the argument is
treated as fullword binary.

When the above form of the ENTRY attri-
kute is used, each parameter of the subrou-
tine or function must be accounted for. If
there is no need to specify the attributes
of ‘a particular parameter, its place must
ke kept by a comma. For example, the
statement:
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>