
--..- ------ --------~ ---- -- ----------_.-

Customer
Information
Control
System
CICS/OOS/VS

Licensed Program
Version 1.7

Program Number
5746-XX3

Application
Programmer's
Reference
Manual
(Command Level)

SC33-0077 -5

Sixth Edition (July 1987)

This editilon applies to Version 1 Release 7 (Version 1.7) of the IBM licensed program
Customer Information Control System/ Disk Operating System/Virtual Storage
(CICS/DOS/VS), program number 5746-XX3, and to all subsequent releases and
modifications until otherwise indicated in new editions or technical newsletters.

This edition is based on the CICS/VS Version 1 Release 6 edition (SC33-0077-4), and
changes from that edition are indicated by vertical lines to the left of the changes. The
1.6 edition remains applicable and current for users of Version 1.6.

Changes are made periodically to the information herein; before using this publication
in connection with the operation of IBM systems, consult the latest IBM System/370,
30xx, and 4300 Processors Bibliography, GC20-000 1, for the editions that are applicable
and current,

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM licensed program in this publication is not intended to slate or
imply that only IBM's licensed program may be used. Any functionally equivalent
program may be used instead.

Publications are not stocked at the addresses given below. Requests for IBM
publications should be made to your IBM representative or to the 10M branch office
serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed either to:

International Business Machines Corporation, Department 6Rl H,
180 Kost Road, Mechanicsburg, PA 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Bursley Park, Winchester, Hampshire, England, S021 2JN.

IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

This pubHcation contains sample programs. Permission is hereby granted to copy and
store the sample programs into a data processing machine and to use the stored copies
for study and instruction only. N'o permission is granted to use the sample programs
for any other purpose.

No other part of this publication may be reproduced in any form or by any means,
including storing in a data processing machine, without permission in writihg from
IBM.

THE PlJULlCATlON OF TilE INFORMATION CONTAINED HEnEIN IS NOT
INTENnl~D TO ANn DOES NOT CONVEY ANY RIGHTS OR LlCENSI~S,
EXPRESS OR IMPLJEIJ, UNDER ANY IBM PATI~NTS, COPYRIGHTS,
TRAOEMARKS, MASK WORKS OR ANY OTHER INTELLF,CTUAL PROPE.RTY
RIGHTS.

© Copyright International Business Machines Cnrporation 1977, 1978, 1980, 1981,
1982, 1983, 1985, 1987

Preface

What This Book Is About

This book describes the IBM Customer
Information Control System/Disk Operating
System/Virtual Storage (CICS/DOS/VS) command
level application programming interface; it contains
introductory and reference information necessary to
prepare assembler language, CO BO L, and PL/I
application programs, using CICS commands, to
execute under the IBM licensed program
CICS/DOS/VS (5746-XX3).

Note: The INQUIRE and SET commands of the
command level application programming interface,
together with the spool commands of the CICS
interface to POWER, are primarily for the use of
the system programmer. The commands are fully
described in the CICS/DOS/VS Customization
Guide.

Who This Book Is For

The book is intended primarily for use by
application programmers, but will be useful also for
system programmers and systems analysts.

What You Need to Know to Understand This Book

Experience in writing programs in assembler
language, COBOL, or PL/I is assumed. No
previous experience of CICS is assumed.

However, a knowledge of the concepts and
terminology introduced in the CICS/ DOS/ VS
Facilities and Planning Guide is required. This
facilities and planning guide also contains details of
system requirements and a glossary applicable to
CICS.

How to Use This Book

This book is mainly for reference. Each of the
chapters (other than the introductory chapter) of
the parts of the book has a standard format. The
first section of a chapter describes, in general terms,
functions of the commands included in the chapter.
For each command the following information is
presented:

• The syntax of the command and its associated
options

• Exceptional conditions that can occur

• A detailed description of what the command
does

• And possibly one or more examples showing
typical coding of the command.

Finally, two alphabetical lists are given:

• A list of the options, with their functions, that
can be used in any of the commands in the
chapter

• A list of the exceptional conditions, and their
causes, that can occur during execution of the
commands.

Note...~ on Terminology

• VTAM refers to ACF/VTAM and
ACF/VTAME

• "TAM refers to BTAM-ES.

• ASl\f is used sometimes as the abbreviation for
assembler language.

Preface iii

Book Structure

"Part 1. Command Level Programming" on page
Introduces CICS commands and describes
the basic facilities that are available to the
user. A chapter is included about the
command language translator and the options
that can be selected to modify the way in
which the translator operates.

"Part 2. Files and Data Ba.. .. es" on page 73
Deals with access to data sets in the user's
CICS system either through CICS fue control
or through DL/1.

"Part 3. Data Communication Operations" on
p=lge 127
Deals with communication with tenninals,
logical units, and subsystems in the
telecommunications network to which the
CICS system is connected.

A chapter is inciuded about the report
controller (a separately orderable feature) and
the commands and options that can be
selected to control the way it operates.

.Another chapter is included that describes
application programming using the Structured
Query Language/Data System (SQL/DS).

"Part 4. Control Operations" on page 335
Describes the facilities for controlling the
operation of application programs in the
CICS system.

"Part 5. Recovery and Debugging" on page 379
Deals with facilities available for recovery
from abnonnal tennination, monitoring,
tracing program operation, and dumping
areas of main storage.

"Part 6. The CICS Built-In Function Command"
on page 407
Describes the one built-in function (BIF
DEEOIT) available with the command-level
interface.

"Appendixes" on page 411

A. EXEC Interface Block

B. Translation Tables for the 2980

C. CICS Macros and Equivalent
Commands

D. Sample Programs (ASM)

E. Sample Programs (COBOL)

F. Sample Programs (PL/I).

G. Report Controller Sample Programs

"Index" on page 557

iv CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Bibliography

CICS/DOS/VS Version 1 Release 7 Library

General
General Information

GC33-0155

Library Guide

GC33-0356

Planning
Facilities and
Planning Guide

SC33-0228

Intercommunication
Facilities Guide

SC33-0133

Recovery and Restart Guide

SC33-0135

Performa nee Guide

SC33-0134

Performance Data

SC33-0219

3270 Data Stream Device
Guide

SC33-0096

3650/3680 Guide

SC33-0073

3767/3770/6670 Guide

SC33-0074

3790/3730/8100 Guide

SC33-0075

4700/3600/3630 Guide

SC33-0072

Release Guide

GC33-0130

Master Index

SC33-0095

Administration
Installation and
Operations Guide

SC33-0070

Resource Definition
(Online)

SC33-0238

Resource Definition
(Macro)

SC33-0149

Customization Guide

SC33-0131

CICS-Supplied
Transactions

SC33-0080

End User
Report Controller
User's Guide

SC33-0382

Messages and Codes

SC33-0081

Programming Service
Application Programming Problem Determination
Primer Guide

SC33-0139 SC33-0089

Program Debugging
Application Programmer's Reference Summary
Reference Manual
(Command Level) SX33-6010
SC33-0077

Application Programmer's
Reference Summary Data Areas
(Command Level)
GX33-6012

LY33-6033

Application Programmer's Diagnosis Reference
Reference Manual
(RPG II)
SC33-0085 LC33-0105

Application Programmer's Remote Server
Reference Manual Diagnosis
(Macro Level)
SC33-0079 LC33-0438

Preface V

Books from Related Libraries

Systems Network Architecture

See the: following Systems Network Architecture
(SNA) manual for further information on SNA:

Sessions between Logical Units, GC20-1868

Structured Query I.language/Data System
(SQL1DS)

For information on executing SQL/DS in a CICS
application program see the following manuals:

SQL/ DS Application Programming, SH20- 50 19

IBM DATABASE2 Application Programming
Guide for CICS Users, SC26-4080

IBM DAT ABASE2 Reference, SC26-4078.

Other Products

You nlay also want to refer to the following IBM
publications:

Distributed Processing Programming
Executive/ Distributed Presentation Services
(DPPX/DPS):

DPP X/ Distributed Presentation Services Version
2 System Programming Guide, SC33-0117

Screen Definition Facility/CICS SDF/CICS
Program Reference Manual, SH19-6077

IBM System/360 Disk Operating System:

Sub.ret American National Standard COBOL
Compiler and Library Programmer's Guide,
SC28-6439

Full American National Standard CDBDL
Compiler and Library Version 3, Programmer's
Guide, SC28-6441

Full American National Standard COBDL
Programmer's Guide , GC28-6398

DDS/VS CGBDL Compiler and Library
Programmer's Guide, SC28-6478

DD8 P L/ I Gptimizing Compiler Programmer's
Guide, SC33-0008

DL/I DGS/ VS Application Programming: lligh
Level Programming Interfaces, SH24-5009

DL/I DGS/ VS Interactive Resource Definition and
Utilities, SH24-5029

IBM 3274 Control Unit Reference Summary,
GX20-1878

vi CICSjDOSjVS Application Programmer's Reference Manua1 (Command Level)

Contents

Part 1. Command Level Programming 1 Restrictions 24
Compilers Supported 25

Chapter 1.1. Introduction to Command Level Base Locator for Linkage 25
Programming 3 NOTR UNC Compiler Option 28

Commands Instead of Macros 3 Program Segments 28
Syntax Notation Used in This Manual 4 PL/I Considerations 29

Restrictions 29

Chapter 1.2. Command Format and Argument PL/I STAE Execution-Time Option 29

Values 5 Compilers Supported 29

Command Format 5 OPTIONS(MAIN) Specification 30

Coding Conventions 5 Program Segments 30

Argument Values 6
Argument Values in Assembler Language ... 6 Chapter 1.5. Exceptional Conditions 31
Argument Values in COBOL 7 Alternative to the HANDLE Command 32
Argument Values in PL/I 8 Handle Exceptional Conditions (l-IANDLE

CONDITION) 34
Chapter 1.3. Command I .. anguage Translator . 11 Ignore Exceptional Conditions (IGNORE
Translator Data Sets 11 CONDITION) 35

Input Data Set 11 Suspend Condition Handling (PUSH and POP) 35

Output Data Set II List of Exceptional Conditions 35

Listing Data Set 12
Translated Code 12 Chapter 1.6. Access to System Information ... 41

Assembler Language 12 INQUIRE/SET Commands 41

COBOL 15 EXEC Interface Block (EIB) 41

PL/I 15 Access to CICS Storage Areas (ADDRESS) .. 41

Translator Options 16 ADDRESS Command Options 42
Values Outside the Application Program

Chapter 104. Programming Techniques and
Restrictions 21

(ASSIGN) 42
Example of ADDRESS and ASSIGN

General Programming Techniques 21 Commands 43

CICS Macros Used With CICS Commands 23 Assign Command Options 43
Program Size 23
Entry Point Address 23
BMS Map Size 24

Chapter 1.7. Execution (Command Level)
Diagnostic Facility 49

Assembler-Language Considerations 24
Restrictions 24

Functions of EDP 49
Security Rules 51

Commands Contained Within Macros and Installing EDF 51
COpy Code 24 Invoking EDF 51

Invoking Assembler-Language Application
Programs by a Call Statement 24

COBOL Considerations 24

EDF bisplays 52
Terminal Sharing Between Transaction and
J~I)F 54

Contents vii

Program Function (PF) Keys 54
Overtyping BDF Displays 57

Checkung Pseudoconversational Programs 58
Progratn Labels 58
EDF and EXEC DLI Commands 59

Chapter 1.8. Command Level Interpreter 61
Invoking the Command Level Interpreter 61
Screen Layout 62

ConunandInputAuea 62
Status Auea 62
Info:rmation Area 63
PF Key Values Area 66
Terrninal Sharing 67

Progralm Control 67
Security Rules 68
Installing the Command Level Interpreter 68

ChaptE!r 1.9. Temporary Storage Browse 69
The Browse Transaction 69

Using the Transaction 69
CEBR Commands 69

Resource Defmition 71

Part :t. Files and Data Bases ... & •• 73
Introduction to Files and Data Bases 74

Chapb~r 2.1. General Description of File
Contliol Facilities 75

VSAM[Data Sets 75
Key-Sequenced Data Set , 75
Entry-Sequenced Data Set '.... 76
Relative Record Data Set ,. 76
VSAM Data Set Organization 76
VSAM Paths and Bases 76
VSAM Share Options , 77

DAM Data Sets ,.... 77
Data Set Identification ,.... 78
Accessing Data Sets From CICS Application

Programs ,.... 78
Retrieving Records ,.... 78
Updating Records 81
Del,eting Records 82
Adding Records 82

Review of File Control Command Options .. 83
Preventing Transaction Deadlocks 84

KEYLENGTH Option for Remote Data Sets 86

Chaph~r 2.2. File Control - VSAM
Considerations 87

Record Identification 87
CICS Locking of VSAM Records in

Recoverable Files 88

Chapter 2.3. File Control - DAM
Considerations 89

Record Identification 89
Browsing Records From DAM data sets 89
Adding Records to DAM Data Sets 90
DAM Exclusive Control 91

Chapter 2.4. File Control ~ Commands,
Options, and Conditions 93

Read a Record (READ) 93
Write a Record (WRITE) 94
Update a Record (REWRITE) 94
Delete a Record (DELETE) - VSAM Only .. 95
Release Exclusive Control (UNLOCK) 95
Start Browse (STARTBR) 95
Read Next Record During a Browse

(READNEXT) 96
Read Previous Record During a Browse

(READPREV) - VSAM Only 96
Reset Start of Browse (RESETBR) 97
End Browse (ENDBR) 97
File Control Options 98
File Control Exceptional Conditions 100

Chapter 2.5. DL/I Services (EXEC DLI
Command) 105

EXEC DLI COInmand .. ,.............. 105
General Pormat of EXEC DLI Command .. 106

Schedule the PSB 106
Get One or More Segments 106
Insert One or More Segments 106
Load a Segment (Batch only) 107
Replace One or More Segments 107
Delete a Segment 107
Terminate Access to the PSB 107
Request a Basic Checkpoint 107

General Rules and Conventions 107
DL/I Interface Block (DIB) 108

Example of DL/I Requests Using EXEC DLI 109

Chapter 2.6. DL/I Services (DL/I CALL
Statement) 115

User Interface Block (VIB) 116
Schedule the PSB and Obtain PCB Addresses 116
Segment Search Arguments 117
I/O Work Area for DL/I Segments 117
Issue a DL/I Data Base Call 118

viii CICS/DOSjVS Application Programmerts Reference Manual (Command Level)

Terminate a PSB in the CICS Application
Program

Check the Response to a DL/I CALL
Check the CICS-DL/I Response Codes in

UIBRCODE
Check the DL/I Function

Examples of DL/I Requests

Part 3. Data Communication

118
119

119
120
120

Operations 127

Chapter 3.1. Introduction to Data
Communication Operations 129

Chapter 3.2-1. Introduction to Basic Mapping
Support

I low BMS Affects Programming
BMS Maps
BMS Map Defmition
Cataloging BMS Map Sets
BMS Commands
Facilities Provided by BMS
Sample Programs

Chapter 3.2-2. Minimum Function BMS
IBM 3270 Information Display System

Input Operations
Output Operations
Display Field Concepts

Screen Layout Design
Defming BMS Maps

Defming a Map Set
Defining Maps Within a Map Set
Defming Pields Within a BMS Map
Terminating a Map Set Defmition
Example of Map Set Defmitions
Assembling and Cataloging BMS Maps "

Writing Programs to Use BMS Services
Copying Symbolic Description Maps
Processing Data Structures Under BMS ..
Sending Data to a Display
Sending Device Controls Without Display

Data
Cursor Positioning
Accessing Data Outside the Program
Receiving Data From a Display
Responding to Terminal Input

Exceptional Conditions
Printed Output

131
131
132
132
133
133
134
134

135
135
135
136
136
139
140
141
142
143
144
145
145
147
147
148
150

153
153
154
154
156
157
158

Chapter 3.2-3. Standard Function BMS
Text Processing

Character Attribute Control
Printer Support

3270 Printers Without the NLEOM Option
3270 Printers With the NLEOM Option
SCS and Other Non-3270 Printers
FORMFEED Option
Printers and BMS Text
Printers and Device Independence

Partition Support
Applications of Partitions Under CICS

How Existing Programs can Use Partitions
How New Application Programs Can Use

Partitions.
How CICS Manages Partitions

Partitioning Concepts
Summary of Implementation and Use of

Partitions
Application Programming

Defming Partition Sets
Assembling and Cataloging a Partition Set
Specifying a Partition Within a Map Set ..
How You Code Programs to Manage

Partitions
Logical Device Components

Defining Logical Device Components
Sending Data to a Logical Device

Component
10/63 Magnetic Slot Reader Control

Application Programming
Trigger Fields

Application Programming
Outboard Formatting
Block Data Format

Chapter 3.2-4. }'ull Function BMS
Logical Message IIandling

Logical Messages for Direct Terminal
Output

Logical Messages With the SET Option ..
Logical Messages for Terminal Operator

Paging
Cumulative Output Processing CACCUM

Option)
Cumulative Text Formatting
Cumulative Processing and Device Controls
Cumulative Processing and Partitions
Cumulative Processing and Logical Device

Components
Message Routing

161
162
162
163
163
163
164
164
164
165
165
166
166

166
167
168

169
169
170
171
171

172
175
175

175
176
176
177
177
179
179

]8t
181

183
184

184

186
192
194
195

195
195

Contents IX

Defming a RO UTE List 196
Disposition and Message Routing 197
Interleaving Conversation with Message

Routing 197
TITLE Option of the ROUTE Command 198
Rou1te List and Operator Class Codes

(LIST and OPCLASS) 198
Rou1te List Fonnat 199
Rou1ting and Page Overflow 201

Message Switching Transaction (CMSG) ... 201
Returning Mapped Data to a Program Before

Output 201
SET Option 201
Ternnnal Code Table 202
SEND TEXT MAPPED Command 203
SEND TEXT NOEDIT Command 203

Chaptelr 3.2-5. BMS Macro and Command
Refef(~nc~ Summary 205

Map Sf!t, Map, and Field Defmition 205
Map Set Defmition Macro (DFHMSD) .. 205
Map Defmition Macro (DFHMDI) 206
Field Defmition Macro (DFHMDF) 206
Ending a Map Set Defmition 207
Map Definition Macro Operand Summary 207

Partition Set Defmition 220
Partition Set Defmition Macro (DFHPSD) 220
Partition Definition Macro (DFHPDI) 220
Ending a Partition Set Defmition 220
Partition Defuution Macro Operand

Surrunary 221
BMS Related Constants 222

Standard Attribute and Printer Control
Character List (DFHBMSCA) 222

Attention Identifier Constants (DFHAID) 224
Magnetic Slot Reader (MSR) Control

Value Constants (DFHMSRCA) 224
Input Commands 225
Output Commands 226
BMS Related ASSIGN Options 229
BMS Options 230
B MS Exceptional Conditions 236

Chaptelr 3.3. Terminal Control 239
Commands and Options for Tenninals and

Logical Umts 241
Fullword Lengths 241
Read FrOln Tenninal or Logical Umt

(RECEIVE) 241
Write to Terminal or Logical Unit (SEND) 241

Synchronize Tenninal I/O for a
Transaction (WAIT TERMINAL) 242

Converse With Terminal or Logical Umt
(CONVERSE) 242

Send an Asynchronous Interrupt (ISSUE
SIGNAL) 242

Relinquish a Commumcation Line (ISSUE
RESET) 242

Disconnect a Switched Line (ISSUE
DISCONNECT) 242

Tenninal-Oriented Task Identification ... 243
Commands and Options for Logical Umts .. 244

Send/Receive Mode 244
Send/Receive Protocol (Invite Option) ... 244
Chaining of Input Data 244
Chaining of Output Data 246
Logical Record Presentation 246
Defmite Response 247
Function Management Header (FMH) 247
Unsolicited Input 248
Bracket Protocol (LAST option) 248
Suspend a Task (WAIT SIGNAL) 248
Terminate a Session (ISSUE

DISCONNECT) 248
VTAM Application Routing (ISSUE

PASS) 249
Sync Point Processing (ISSUE PREPARE) 249
Receipt of VTAM Logon Data

(EXTRACT LOGONMSG) 249
Return a Facility to CICS (FREE) 250

BT AM Programmable Terminals 250
Teletypewriter Programming 250

Message Fonnat 251
Message Length 251
Connection Through VT AM 252

Display Device Operations 252
Print Displayed Information (ISSUE

PRINT) 252
Copy Displayed Information (ISSUE

COPY) 253
Erase All Unprotected Fields (ISSUE

ERASEAUP) 253
Input Operation Without Data

(RECEIVE) 253
Standard Attention Identifier List

(DFHAID) 254
Handling Attention Identifiers (HANDLE

AID) 254
Standard Attribute and Printer Control

Character List (DFHBMSCA) 255
Standard CICS Terminal Support (BTAM) 257

x CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

LUTYPE4 Logical Unit 257
LUTYPE6.1 Logical Unit 258

Session Status Information 259
Application-Oriented Information 259
Session-Oriented Information 259

LUTYPE6.2 Logical Unit (VT AM Only) 260
Synchronization Levels 260
Session-Oriented Information 261

System! 3 262
Sydem/370 262
System/7 262
2260 Display Station 264
2265 Display Station 264
2741 Communication Terminal 264

Read Attention 264
2770 Data Communication System 265
2780 Data Transmission Terminal 266
2980 General Banking Terminal System 266

Passbook Control 266
Output Control 267
Output to a Common Buffer 267
The DFH2980 Structure 267

3270 Information Display System (BT AM) . 268
3270 Logical Unit 269
3270 SCS Printer Logical Unit 269
3270-Display Logical Unit (LUTYPE2) and

3270-Printer Logical Unit (LUTYPE3) ... 270
3600 Finance Communication System

(BTAM) 270
Input 270
Output 271
Resend Message 271

3600 Pipeline Logical Unit 272
3600 (3601) Logical Unit 272
3600 (3614) Logical Unit 273
3630 Plant Communication System 273
3650/3680 Host Command Processor Logical

Unit 273
3650 Host Conversational (3270) Logical Unit 274
3650 Host Conversational (3653) Logical Unit 274
3650 Interpreter Logical Unit 275
3650 Pipeline Logical Unit 275
3650/3680 Full Function Logical Unit 275
3660 Supermarket Scanning System 275
3735 Programmable Buffered Terminal 276

3735 Transactions - Autoanswer 276
3735 Transactions - Autocall or

Time-Initiated 276
3740 Data Entry System 277
3767 Interactive Logical Unit 278
3770 Batch Logical Unit 278

3770 Interactive Logical Unit 279
3770 Full Function Logical Unit 279
3780 Communications Terminal 279
3790 Full Function Logical Unit 279
3790 Inquiry Logical Unit 280
3790 SCS Printer Logical Unit 280
3790 (3270-Display) Logical Unit 281
3790 (3270-printer) Logical Unit 281
4700 Finance Communication System 282
7770 Audio Response Unit 282
Terminal Control Options 283
Terminal Control Exceptional Conditions 290

Chapter 3.4. Report Controller 293
Reports 294
Identifying a Report 295

Report Name 295
Report Title 295
U serdata 295
Tokens 295
Report Number 296

Creating a Report 296
ReportTypes 296
Opening a Report 298
Writing Data to a Report 298
Closing a Report 299

Formatting a Report 300
Report Formats 300
NOCC, ASA, and MCC Formats 300
SCS and T3270 Formats 303
BMS Mapped Reports 305
ESCAPE Format 305
lCL Format 306

Printing a Report 307
Controlling Where Reports are Printed 307
Controlling When Reports are Printed ... 308
Controlling How Reports are Printed 309

Security and Recovery 310
Resource Security Level 310
PRINTFAIL 310
Report Recovery 310
Sync Point 311

Report Controller Commands 311
Open ASA, MCC, or NOCC Report 311
Open MAP Format Report 311
Open SCS or T3270 Report 312
Open ESC Format Report 312
Open lCL Format Report 312
Write to a Report (not MAP) 312
Close a Report 312
Reopen a Report 312

Contents xi

Writl~ to a MAP Report 313
Report Controller Options 313
Report Controller Exceptional Conditions ., 320

Chaptelr 3.5. Batch Data Interchange 323
Destination Selection and Identification .. 323
Defmite-Response 324
Waiting for Function Completion 324

Interrogate a Data Set (ISSUE QUERY). .. 324
Read a Record From a Data Set (ISSUE

RECEIVE) 324
Add a Record to a Data Set (ISSUE ADD) . 325
Update a Record in a Data Set (ISSUE

REPLACE) 325
Delete a Record from a Data Set (ISSUE

ERASE) 326
End Processing of a Data Set (ISSUE END) 326
End Processing of a Data Set Abnormally

(ISSUE ABORT) 326
Send Data to an Output Device (ISSUE

SEND) 326
Request Next Record Number (ISSUE

NOTE) 327
Wait for an Operation to be Completed

(ISSUE WAIT) 327
Batch Data Interchange Options 327
Batch Data Interchange Exceptional

Conditions 329

Chapt€~r 3.6. Structured Query Language/Data
System (SQL/DS) 331

Embedded SQL Comlnands 331
Preparing a Program 332

Part 4. Control Operations OJ' 335

Chap"~r 4. t. Introduction to Control
Oper:aiions 337

Chapt4~r 4.2. Interval Control 339
Request Current Date and Time of Day

(ASKTIME) 340
Select the Format of Date and Time

(FORMATTIME) 340
Delay Processing of a Task (DELAY) 340
Request Notification when Specified Tinu! has

Expired (POST) 341
Wait £Dr an Event to Occur (WAIT EVENT) 342
Start a. Task (START) 342

Statting Tasks without Terminals 343

Starting Tasks with Terminals but Without
Data 343

Starting Tasks with Terminals and Data .. 344
Retrieve Data Stored for a Task

(RETRIEVE) 344
Cancel Interval Control Requests (CANCEL) 345
Interva.l Control Options 346
Interval Control Exceptional Conditions 350

Chapter 4.3. Task Control 353
Suspend a Task (SUSPEND) 353
Schedule use of a Resource by a Task (ENQ

and DEQ) 353
Task Control Options 354
Task Control Exceptional Condition 354

Chapter 4.4. Program Control 355
Application Program Logical Levels 355
Link to Another Program Anticipating Return

(LINK) 355
Transfer Program Control (XCTL) 356
Return Program Control (RETURN) 356
Load a Program (LOAD) 357
Delete a Loaded Program (RELEASE) 358
Passing Data to Other Programs 358

Examples of Passing Data 359
Program Control Options 363
Program Control Exceptional Conditions ... 364

Chapter 4.5. Storage Control 365
Obtain and Initialize Main Storage

(GETMAIN) 365
Release Main Storage (FREEMAIN) 365
Storage Control Options 366
Storage Control Exceptional Conditions 366

Chapter 4.6. Transient Data Control 367
Write Data to Transient Data Queue

(WRITEQ TD) 369
Read Data from Transient Data Queue

(READQ TD) 369
Delete an Intrapartition Transient Data Queue

(DELETEQ TD) 370
Transient Data Control Options 370
Transient Data Control Exceptional

Conditions 371

Chapter 4.7. Temporary Storage Control ... 373
Write Data to a Temporary Storage Queue

(WRITEQ TS) 374

xii CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Read Data from Temporary Storage Queue
(READQ TS) 375

Delete Temporary Storage Queue (DELETEQ
TS) 375

Temporary Storage Control Options 376
Temporary Storage Control Exceptional

Conditions 377

Part 5. Recovery and Debugging .. 379 .

Chapter 5.1. Introduction to Recovery and
I>ebugging 381

Sequential Terminal Support 381

Chapter 5.2. Abnormal Termination Recovery 385
Handle an Abnormal Termination Exit

(HANDLE ABEND) 385
Terminate Task Abnormally (ABEND) 387
Abnormal Termination Recovery Options .. 387
Abnormal Termination Recovery Exceptional

Condition 387

Chapter 5.3. Trace Control•. 389
Trace Entry Points 389
Event Monitoring Points 389
Trace Facility Control 390
Trace Table Format 390
CICS Auxiliary Trace Facility 392
User Trace Entry Point and Event Monitoring

Point (ENTER) 392
Control the CICS Trace Facility (TRACE

ON, TRACE OFF) 393
Macro-Level Trace Facilities 393

Trace Control Options 393
Trace Control Exceptional Conditions 394

Chapter 5.4. Dump Control 395
Dump Main Storage (DUMP) 396
Dump Control Options 396
Dump Control Exceptional Conditions 398

Chapter 5.5. Journal Control 399
Create a Journal Record (JOURNAL) 401
Synchronize with Journal Output (WAIT

JOURNAL) 402
Jounlal Control Options 402
Journal Control Exceptional Conditions 403

Chapter 5.6. Recovery (Sync Points) 405
Establish a Sync Point (SYNCPOINT) 406
Sync Point Option 406

Sync Point Exceptional Condition 406

Part 6. The CICS Built-In Function
Command 407

Chapter 6.1. The .Field Edit Built-In Function
(BIF I>EEDIT) Command 409

Appendixes 411

Appendix A. EXEC Interface Block 413
EIB Fields 413

Appendix B. Translation Tables for the 2980 421

Appendix C. CICS Macros and Equivalent
Commands 425

Appendix 1>. Sample Programs (Assembler
I.language) 427

Operator Instruction Program (ASM) 428
Description 428
Source Listing 428
Program Notes 428

Inquiry/Update Sample Program (ASM) ... 429
Description 429
Program Notes 434

Browse Sample Program (ASM) 436
Description 436
Program Notes 441

Order Entry Sample Program (ASM) 442
Description 442
Program Notes 444

Order Entry Queue Print Sample Program
(ASM) 446

Description 446
Program Notes 447

Low Balance Report Sample Program (ASM) 449
Description 449
Program Notes 451

Maps and Screen Layouts for ASM Satnple
Programs 452

DPH$AGA Screen Layout 453
DFH$AGB Screen Layout 456
DFH$AGC Screen Layout 460
DFH$AGD Screen Layout 463
DFH$AGK Screen Layout 466
DFH$AGL Print Format 468

Record Descriptions for ASM Sample
Programs 469

Contents xiii

FILEA Record Description 469 Operator Instruction Program (PL/I) 510
LOGA Record Description 469 Description 510
L860 Record Description 469 Source Listing 510

Inquiry/Update Sample Program (PL/I) 511
Appendix :E. Sample Programs (COnOL) .. 471 Description 511
Operator Instruction Program (COBOL) ... 472 Program Notes 515

Description 472 Browse Sample Program (PL/I) 517
Source Listing 472 Description 517

Inquiry/Update Sample Prograrn (COBOL) . 473 Program Notes 521
Description 473 Order Entry Sample Program (PL/I) 523
Program Notes 477 Description 523

Browse Sample Progratn (COBOL) 479 Program Notes 525
Description " 479 Order Entry Queue Print Sanlple Program
Program Notes 483 (PL/I) 527

Order Entry Sample Program (COBOL) 484 Description 527
Description 484 Program Notes 528
Program Notes 486 Low Balance Report Sample Program (PL/I) 530

Order Entry Queue Print Sample Program Description 530
(COBOL) 488 Program Notes 531

Description 488 Maps and Screen Layouts for PL/I Sample
Program Notes 490 Programs 533

Low Balance Report Sample Program DFH$PGA Screen Layout 534
(COBOL) 491 DFH$PGB Screen Layout 537

Description " 491 DFH$PGC Screen Layout 541
Prograrn Notes 492 DFH$PGD Screen Layout 543

Maps and Screen Layouts for COBOL DFH$PGK Screen Layout 545
Sample Programs 494 DFH$PGL Print Format 547

DFH$CGA Screen Layout 495 Record Descriptions for PL/I Sarnple
DFH$CGB Screen Layout 498 Prograrns 548
DFI-J[$CGC Screen Layout 502 FILEA Record Description 548
DFH$CGD Screen Layout 504 LOGA Record Description 548
DFH$CGK SCREEN LAYOUT 506 L860 Record Description 548
DFH$CGL Print Layout 507

Record Descriptions for COBOL Sample Appendix G. Report Controller Sample
Programs 508 Progralns 549

FILEA Record Description 508 Description 549
LOGA Record Description 508 Program Notes 555
L860 Record Description 508

Index 557
Appendix F. Sample Programs (Pl./I) 509

xiv CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Figures

1. Translated Code for a CICS Command 13 14. Many BMS Maps on One Page 191
2. Translated Code for User Variables 14 15. Overflow Processing 193
3. Typical EDF Display 53 16. Example of Paging 194
4. "Stop-Conditions" Display 56 17. Terminal Oriented Task Identification 245
5. First Page of Typical EXEC DLI Display 59 18. BTAM Programmable Terminal
6. Second Page of Typical EXEC D LI Programming 251

Display 60 19. SOL commands embedded in
7. "Command Syntax Check" Display 63 application programs 332
8. "About to Execute Command" Display 64 20. Application Program Logical Levels 357
9. "Command Execution Cotnp1ete" 21. ABEND Exit Processing 386

Display 65 22. 2980-1 Teller Station Character
10. Initial Display Produced By the Browse Set/Translate Table 422

Transaction 70 23. 2980-2 Administrative Station Character
11. Examples of Record Identification 90 Set/Translate Table 423
12. BMS Map Set Suffixing Logic 146 24. 2980-4 Teller Station Character
13. MSR Control Byte Values 178 Set/Translate Table 424

Figures XV

Sunlmary of Amendments

Amendments for Latest Edition
(CICS/DOS/VS 1.7)

This book includes information about the new or
enhanced facilities introduced by CICS/DOS/VS
Version 1 Release 7.

Some of these facilities, listed below, are not
described in this publication because they do not
directly affect the application programmer; for more
information on these, refer to the other CICS
publications Hsted in the bibliography.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Multiregion performance improvements
Temporary storage performance improvements
Transient data performance improvements
CICS monitoring facility improvelnents
R DO for ternllnals and sessions
Improved restart for CICS
Task control improvements
File control enhancements
ISC enhancements
Security enhancements
Monitoring enhancements
EXEC API enhancements
VT AM interface enhancements
BMS enhancements and query support
Report controller
System spooling interface
Serviceability enhancements.

In particular, note that file control is now covered
in four chapters, which have been designed to make
file control easier to understand and use. The first
three of these chapters have been completely
rewritten and do not contain revision bars; they
should be read in their entirety.

A new chapter (Chapter 3.4) has been added
describing the report controller, which provides, in
conjunction with POWER, an integrated spooling
facility. Again, this chapter carries no revision bars
and it should be read in its entirety.

Another new chapter (Chapter 3.6) has been added
describing the use of Structured Query
Language/Data System (SQL/DS) commands in an
application program. Again, this chapter carries no
revision bars and it should be read in its entirety.

You will find information about all the new
facilities of CICS/DOS/VS Version I Release 7 in
the CICS/DOS/VS Release Guide.

The following functions are obsolete and have been'
omitted from the manual:

•
•
•

Static user exits
Asynchronous transaction processing
ISAM support.

Summary of Amendment'i xvii

Part 1. Command Level Programming

Chapter 1.1. Introduction to Command Level Programming 3

Chapter 1.2. Command Format and Argument Values 5

Chapter 1.3. Command Language Translator 11

Chapter 1.4. Programming Techniques and Restrictions 21

Chapter 1.5. Exceptional Conditions 31

Chapter 1.6. Access to System Information 41

Chapter 1.7. Execution (Command l.evel) Diagnostic Facility 49

Chapter I.S. Command Level Interpreter 61

Chapter 1.9. Temporary Storage Browse 69

Part 1. Command Level Programming 1

Chapter 1.1. Introduction to Command Level Programming

The IBM Customer Information Control
System/Virtual Storage (CICS/VS) command level
application programming interface allows you to
request CICS services by means of CICS
commands. These commands are statements that
you can include at appropriate points in your
application program. They have a format similar
to the. statements of the programming language in
use.

You can include CICS commands in application
programs written in assembler language, COBOL,
PL/I, or RPGn. The commands are essentially the
same in each language, differing only in the
delimiter used, and, in the case of RPGn only, in
the syntax.

Because of its fixed format, RPGn is not included
in this manual. Instead, a separate manual is
available entitled CICS/DOS/VS Application
Programmer's Reference Manual (RPG II).

Application programs that include CICS
commands are processed by the command language
translator, which translates the commands into
statements in the language being used. You can
then assemble (or compile) and link edit your
programs in the usual way. When your application
programs are executed, the statements inserted by
the translator invoke the EXEC interface program,
which provides the service requested by each
command by invoking one or more CICS control
programs.

In addition to invoking CICS control programs, the
EXEC interface program obtains, and provides
addressability to required areas of storage which
when no longer required, are released
automatically.

As a general rule, you need only select the required
function and code the appropriate command. You
do not normally need to know about CICS storage
areas and control blocks; in those cases when you
do need access to such areas, the command level
interface provides commands for this purpose, as
described in "Chapter 1.6. Access to System
Information" on page 41.

For a basic description of CICS, see the CICS/VS
Application Programming Primer, which has been
designed to teach you, step by step, how to write a
realistic CICS application program, using the CICS
command level interface and the CO BO L
programming language.

The primer answers questions like "What is
CICS?," "Why have CICS?," "What does CICS
do?," "How does a CICS-based system differ from
a batch system?," "How does CICS help you set
up an online system?," and "How do you use
CICS?"

For information about the performance of a CICS
application program, see the CICS/DOS/VS
Performance Guide.

Commands Instead of Macros

You are advised to use the command level interface
instead of the macro level interface for all new
application programs.

In general, macro level programs will work as
before unless you need to use the new or enhanced
functions introduced in the more recent releases,
because these functions are only implemented at
cOInmand level.

Chapter 1.1. Introduction to Command Level Programming 3

If you have an existing macro level program. that
you enhance using CICS commands, you must be
aware that in some cases you will get unpredictable
results, because of addressability and storage
problems.

It is therefore better to convert your macro level
program to command level and then add the
enhancements using CICS commands. There is a
program that will do most of this conversion for
you. It is called the IBM CICS Conversion Utility
Program Offering (CICS/CVT), program number
5789-DPL.

Similar ,considerations apply if you have a
command level progr~ that invokes a macro level
prograrrt, and vice-versa. You must ensure that
addressability is maintained across such
invocations.

Syntax Notation Used in This
Manual

lhroughout this manual, wherever a CICS
command is shown, the symbols { }, [], I, and ...
are used in defining the command format. These
symbols are not part of the command and you
should never include them in your code. Their
purpose is to tell you how the command may be
written, and you should interpret them as follows:

• Code punctuation symbols and uppercase
characters exactly as shown.

• Lowercase characters indicate that user text
should be coded as required. The character
"b" is used in some places to indicate a blank.

• Square brackets [] are used to indicate that the
enclosed identifiers are optional. The less than
and greater than symbols < > are used to
replace square brackets in the syntax displays
produced by the command level interpreter.
(See "Chapter 1.8: Command Level
Interpreter" on page 61.)

• The "or" symbol I is used to separate
altenlatives.

• Under1ining is used to denote that the identifier
is the default; that is, the one that will be
assumed if no explicit choice is made.

• Braces { } are used to enclose a set of
alternatives, one of which must be coded.

• The ellipsis ... denotes that the immediately
preceding identifier(s) can be coded repetitively.

To denote, for example, that either GTEQ, or
EQUAL, or neither, can be coded (and that GTEQ
is the default), the syntax notation would be:

[GTEQIEQUAll

4 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 1.2. Command Format and Argument Values

This chapter explains the general rules governing
the use of the CICS commands that are described
in the following chapters.

Command Format

The general format of a CICS command is
EXECUTE CICS (or EXEC CICS) followed by
the name of the required function, and possibly by
one or more options, as follows:

EXEC CICS function [option[{arg)]] ...

where:

"function" describes the operation required (for
example READ).

"option" describes any of the many optional
facilities available with each function. Some
options are followed by an argument in
parentheses, others are not. You can write options
(including those that require arguments) in any
order.

"arg" (short for argument) is a value such as
"data-value" or "name", as defmed below.

An example of a CICS command (from "Chapter
2.4. File Control - Commands, Options, and
Conditions" on page 93) is as follows:

EXEC CICS READ
DATASETC'FIlEA')
INTO{FIlEA)
RIDFlD{KEYNUM)
UPDATE

You must add the appropriate end-of-command
delimiter, described in the next section.

Coding Conventions

You can include CICS commands in an assembler
language, COBOL, or PLjI program anywhere that
an executable statement can be included.

In assembler language:

• You must code the keyword EXEC in an
operator position. You can also label the
command.

• You must use either a blank or a comma, but
not both, as the delimiter between options.
The appearance of "comma-blank" or
"period-blank" immediately following an
option indicates that the rest of the line is a
comment.

• The usual continuation conventions for macro
instructions apply (use a nonblank character in
column 72, and start the continuation line in
column 16).

In CO no L, you must delimit a command with
"END-EXEC" as shown in the following example:

EXEC CICS ISSUE RESET END-EXEC

This delimiter allows you to write a command
within a THEN clause.

In PLjI, you must delimit a command with a
semicolon as shown in the following example:

EXEC eIes ISSUE RESET;

In the following chapters, for simplicity, the syntax
of each of the commands that you can specify in an
application program is presented without the

Chapter 1.2. Command Format and Argument Values 5

phrase EXEC CICS, without the continuation
conventions, and without the end-of-command
delimiter (END-EXEC or semicolon).

In the programming examples in the text, the
phrase EXEC CICS is added but not the
continuation conventions or end-of-command
deIimite~r. When coding commands, you must add
these as. appropriate for the programming language
you are using.

Argument Values

The prurenthesizcd argument values that follow
options. in a CICS command are specified as
follows:

• data-value

• data-area

• pointer-value (or ptr-value)
• pointer-ref (or ptr-ref)
• nrune
• label
• hrummss.

When a CICS command offers the LENGTH
option" the LENGTH is generally expressed as a
signed half word binary value. This puts a
theoretical upper limit of 32,767 bytes on the
LENGTH. In practice (depending on issues of
recoverability, function shipping, and so on) the
achievable upper limit varies from command to
comm:uld, but will be somewhat less than the
theoretical maximum.

Whatever the CICS command, to be on the safe
side, do not let the LENGTH you code excecd
24K bytes.

For journaled items, the length may be further
restricted by the buffer size of the journal.

For journal commands, the restrictions apply to the
sum of the LENGTH and PFXLENG values (see
"Chapter 5.5. Journal Control" on page 399).

Finally, for temporary storage, transient data, and
file control, the dataset defmitions may themselves
impose further restrictions. You'll fmd any such

restrictions documented in the books describing
installation and resource defmition.

Most progratnmers are unlikely to fmd a 24K limit
a hindrance; online programs will not often handle
such large amounts of data for the sake of efficiency
and response time.

The argument values are defmed in the following
sections.

Argument Values in Assembler Language

In general, an argument may be either the address
of the data or the data itself (in assembler language
terms, either a relocatable expression or an absolute
expression).

A relocatable expression must not contain
unmatched brackets (outside quotes) or unmatched
quotes (apart from length attribute references).
Provided this rule is obeyed, any expression may be
used, including literal constants, such as
= AL2(lOO), forms such as 20(O,Rll), and forms
which use the macro replacement facilities.

An absolute expression must be a single term
which may be either a length attribute reference, or
a self-defining constant.

Care must be taken with equated symbols which
should be used only when referring to registers
(pointer references). If an equated symbol is used
for a length, say, it will be treated as the address of
the length and an unpredictable error will occur.

• "data-value" can be replaced by a relocatable
expression that is an assembler-language
reference to data of the correct type for the
argument, or by a constant of the correct type
for the argument.

• "data-area'! can be replaced by a relocatable
expression that is an assembler-language
reference to data of the correct type for the
argument.

• "pointer-value" can be replaced by an absolute
expression that is an assembler-language
reference to a register.

6 C]lCS/DOSjVS Application Programmer's Reference Manual (Command Level)

• "pointer-rer' can be replaced by an absolute
expression that is an assembler-language
reference to a register.

• "name" can be replaced either by a character
string in quotes, or by an assembler-language
relocatable expression reference to a character
string with a length equal to the maximum
length allowed for the name. The value of the
character string is the name to be used by the
argument.

/

• "label" is intended to refer to a destination
address to which control is transferred. It can
be replaced by the lahel of the destination
instruction or by the label of an address
constant for the destination. This constant
must not specify a length.

The expression = A(dest) where "dest" is a
relocatable expression denoting the destination.

For example, the following commands are
equivalent:

HANDLE CONDITION ERRORCDEST)
HANDLE CONDITION ERRORCADCON)
HANDLE CONDITION ERRORC=ACDEST»

DEST DR 14
ADCON DC ACDEST)

• "hhmmss" can be replaced by a self-derIDing
decimal constant or an assembler language
4"eference to a field dermed as PIA. The value
must be of the form OHHMMSS + where III I
represents hours from 00 through 99, MM
represents minutes from 00 through 59, and SS
represents seconds from 00 through 59.

Many commands involve the transfer of data
between the application program and CICS. In
most cases, the length of the data to be transferred
must be provided by the application program.
However, if a data area is specified as the source or
target, it is not necessary to provide the length
explicitly, because the command language translator
will generate a default length value of L'data-area.

Although the DESTIDLENG, FROMLENGTH,
KEYLENGTH, LENGTH, PFXLENG,

TOLENGTH, or VOLUMELENG options are
shown as required options in the syntax for a
command, these options are always optional in an
assembler language program which specifies a data
area (except in the case of the ENQ and DEQ
commands). In most cases, the LENGTH option
must be specified if SET is used; the syntax of each
command and its associated options show whether
or not this rule applies.

Argument Values in COBOL

• "data-value" can be replaced by any COBOL
data name of the correct data type for the
argument, or by a constant that can be
converted to the correct type for the argument.
The data type can be specified as one of the
following:

Halfword binary - PIC S9(4) CaMP

Pullword binary - PIC S9(8) CaMP

Character string - PIC X(n) where "n" is the
number of bytes.

• ICdata-area" can be replaced by any COBOL
data name of the correct data type for the
argument. The data type can be specified as
one of the following:

Halfword binary - PIC S9(4) CaMP

Fullword binary - PIC S9(8) CaMP

Character string - PIC X(n) where "n" is the
number of bytes.

In cases where the data type is unspecified, the
data area can refer to an elementary or group
item.

• "pointer-value" can be replaced by the name of
any n LL (base locator for linkage) cell, or by
any CO no L data name which contains a copy
of such a pointer in a BLL cell:

• "pointer-ref' can be replaced by the name of
any BLL cell.

Chapter 1.2. Command Format and Argument Values 7

• "name" can be replaced by either of the
following:

A character string in quotes (that is, a
nonnumeric literal). If this is shorter than
the required length, it is padded with
blanks.

A COBOL data area with a length equal to
the length required for the name. The
value in the data area is the name to be
used by the argument. If the data area is
shorter than the required length, the excess
characters arc undefmed.

• "label" can be replaced by any COBOL
paragraph name or a section name.

• "hhmmss" can be replaced by a decimal
constant or by a data name of the foml PIC
S9(7) COMP-3. The value must be of the
fonn OHHMMSS + where HII represents
hours from 00 through 99, MM represents
minutes from 00 through 59, and SS represents
seconds from 00 through 59.

Argun.lent Values in PL ,I

• "data-value" can be replaced by any PL/I
expression that can be converted to the correct
data type for the argument. The data type can
be specified as one of the following:

Halfword binary - FIXED BIN(15)

FuUword binary - FIXED BIN(31)

Character string - CHAR(n) where "n" is the
nUlnber of bytes.

"data-value" includes "data-area" as a subset.

• "data-area" can be replaced by any PL/I data
refc~rence which has the correct data type for
the argument. The data type can be specified
as one of the following:

Halfword binary - FIXED BIN(l5)

Fullword binary - FIXED BIN(31)

Character string - CHAR(n) where "n" is the
number of bytes.

If the data type is unspecified, the data area can
refer to an element, array, or structure; for
example, FROM(P- > STRUCTURE)
LENGTH(LNG). The reference must be to
connected storage.

The data area must also have the correct PL/I
alignment attribute. This is ALIGNED for
binary items, and UNALIGNED for strings.

If data that is not in varying length string
fonnat is read into a varying length string, the
length bytes at the beginning of the varying
length string will be corrupted.

• "pointer-value" (which includes "pointer-ref'
as a subset) can be replaced by any PL/I
expression that can be converted to
POINTER.

• "pointer-ref' can be replaced by any PL/I
reference of type POINTER ALIGNED.

• "name" can be replaced by either of the
following:

A character string in quotes (that is, a
literal constant)

A PL/I expression or reference whose value
can be converted to a character string with
a length equal to the maximum length
allowed for the name. The value of the
character string is the name to be used by
the argument.

• "label" can be replaced by any PL/I expression
whose value is a label.

• "hhmmss" can be replaced by a decimal
constant or an expression that can be converted
to a FIXED DECIMAL(7,0) value. The value
must be of the fonn OHHMMSS + where HH
represents hours from 00 through 99, MM
represents minutes from 00 through 59, and SS
represents seconds from 00 through 59.

8 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

If the UNALIGNED attribute is added to the
ENTR Y declarations generated by the CICS
translator by a DEFAULT DESCRIPTORS
statement, data area or pointer reference arguments
to CICS commands must also be UNALIGNED.
Similarly for the ALIGNED attribute; data area or
pointer reference arguments must be ALIGNED.

Many commands involve the transfer of data
between the application program and CICS. In
most cases, the length of the data to be transferred
must be provided by the application program.
However, if a data area is specified as the source or
target, it is not necessary to provide the length
explicitly, because the command language translator

will generate a default length value of either
STG(data-area) or CSTG(data-area) as appropriate.

Although the DESTIDLENG, FROMLENGTH,
KEYLENGTH, LENGTH, PFXLENG,
TOLENGTH, or VOLUMELENG options may
be shown as required options in the syntax for a
command, these options are always optional in a
PL/I program which specifies a data area (except in
the case of the ENQ and DEQ commands). In
most cases, the LENGTH option must be specified
if SET is used; the syntax of each command and its
associated options show whether or not this rule
applies.

Chapter 1.2. Command Format and Argument Values 9

Chapter 1.3. Command Language Translator

The command language translator accepts as input
a source program, written in assembler language,
COBOL, or PL/I, in which CICS commands have
been coded, and produces as output an equivalent
source program in which each command has been
translated into a call macro or statement in the
language of the source program.

At execution time, the call macro or statement
invokes the EXEC interface program, which
accepts the arguments passed by the call macro or
statement, sets up the parameters in the CICS
control blocks, and passes control to the
appropriate CI CS facility.

The translator is executed in a separate job step.
The job step sequence for preparing an application
program is translate - assemble (or compile) -
link-edit. Cataloged procedures are supplied to
assist the user; refer to the CICS/DOS/VS
Installation and Operations Guide for details. The
translator requires a partition of 256K bytes.

There are three separate translators, one for
assembler language, one for COBOL, and one for
PL/1. Each translator reads its input from
SYSIPT.

For COnOL and PL/I, the translator writes its
output (the translated source program) on
SYSPCH, and writes the source listing, error
messages, and so on, on SYSLST.

For assembler language, the translator writes its
output to SYSPCH, which also contains error
messages (if any) as assembler comments.
SYSLST contains only a list of translator options,
the number of messages produced together with the

highest message severity, and the return code from
the translator step.

All the translators accept also the commands that
can be used to access DL/I data bases. These
commands are identified by EXEC DLI and are
translated in a similar way to the EXEC CICS
commands; they are described in "Chapter 2.5.
DL/I Services (EXEC DLI Command)" on
page 105.

Translator Data Sets

Input Data Set

The input data set must be a sequential data set. It
may be on punched cards, on a direct-access device,
or on magnetic tape.

The input data set must contain 80-byte
fixed-length unblocked records.

Output Data Set

The output data set must be a sequential data set.
It may be on punched cards, on a direct-access
device, or on magnetic tape.

The output data set must contain 80-byte
fixed-length unblocked records.

Subsequent copying or manipulating of statements
originally inserted by the CICS trarlslator in an
application program may produce unpredictable
results.

Chapter 1.3. Command Language Translator 11

1.,istinl~ Data Set

The listing data set must be a sequential data set.
Although the listing is usually printed, it can be
stored on any direct-access device or on magnetic
tape.

The listing data set must contain 121-byte
fixed-length unblocked records.

Translated Code

Assell11bler Language

The invocation of a CIC8 assembler-language
application program obeys system standards, which
means' that on entry to the application program,
registers I, 15, 14, and 13 contain the following:

• Register I contains the address of the
parameter list; there are two entries in this list,
as follows:

Address of the EIB (EXEC interface block)

Address of the COMMAREA; if no
COMMAREA, entry is X'FFOOOOOO'.

• Register 15 contains the address of the entry
point

• Register 14 contains the address of the return
point

• Rf~gister 13 contains the address of the save
arc::a.

All other registers are undefmed.

DFHECALL Macro

For an assembler-language application program,
each command is replaced by an invocation of the
DFHECALL macro.

This Olacro expands to a system-standard call
sequence using registers 15, 14,0, and 1, whose
contents are:

• Register 15 contains the address of the entry
point in the EXEC interface program

• Register 14 contains the address of the return
point in your application program

• Register 0 is undefmed

• Register I contains the address of the
parameter list.

The entry point held in register 15 is resolved in the
EXEC interface processor (DFHEAI) which must
be link -edited with your application program.

You can specify the exit from the application
program by a CIC8 RETURN command in your
source program. Alternatively, you can let the
translator-inserted macro DFHEIRET, which has
been inserted before the END statement, do it.
This macro restores the registers and returns
control to the address in register 14.

During assembly, the DFHECALL macro builds
an argument list in dynamic storage, so that the
application program is reentrant, and then invokes
the EXEC interface program (DFHEIP).
DFHEIP also obeys system standards, as described
above.

As well as the invocation of the DFHECALL
macro, the translator also inserts the following
macros into your source program:

DFHEIENT This macro is inserted after the first
C8ECT or 8T AR T instruction. It performs
prolog code, that is, it:

• saves registers

• obtains an initial allocation of the storage
defined by DFIIEISTG (see below)

• sets up a base register (default register 3)

• sets up a dynamic storage register (default
register 13)

• sets up a register to address the EIB (default
register II).

12 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

INSTRUCT CSECT
EXEC CICS SEND MAPC'DFH$AGA') MAPONLY ERASE
END

The above source program is translated tOt

DFHEIGBL , INSERTED BY TRANSLATOR
INSTRUCT CSECT

DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS SEND MAPC'DFH$AGA') MAPONLY ERASE

DFHECALL =X'1804C0000800000000046204000020',(CHA7,=CL7'DFH$AGA*
'),C RF,DFHEIVOO)

DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

Figure I. Translated Code for a CI CS Command

DFHEIRET This macro performs epilog code,
that is, it:

• restores registers

• returns control to the address in register 14.

DFHEISTG and DFHEIEND These macros defme
dynamic storage, that is, they:

• defme the storage required for the parameter
list

• defme a save area.

A copy book, DFHEIBLK, containing a DSECT
which describes the EIB is also included
automatically.

The example in Figure I shows a simple
assembler-language application program that uses
the BMS command SEND MAP to send a map to
a terminal. The lower part of the figure shows the
output after program INSTRUCT has been
translated.

Extensions to Dynamic Storage

You can extend dynamic storage to provide extra
storage for user variables.

You do this by defining these variables in your
source program in a DSECT called DFHEISTG.
The maximum amount of dynamic storage

obtainable using the DFHEISTG DSECT is 65264
bytes. (Note that DFHEISTG is a reserved name).
At translation, the translator inserts the
DFHEISTG macro immediately following your
DFHEISTG DSECT instruction. In this way the
DSECT describes dynamic storage needed for the
parameter list, for the command-level interface, and
for any user variables.

The example in Figure 2 on page 14 shows a
simple assembler-language application program that
uses such variables in dynamic storage.

Multiple Base Registers

The values provided by the automatic insertion of
DFHEIENT may be inadequate for application
programs that produce a translated output greater
than 4095 bytes.

For example, by default, the translator only sets up
one base register (register 3) and in some
circumstances, for example, when the DLI
translator option has been specified, the literals
produced by the translator initializing the DIB
could fall outside the range of that single base
register.

To overcome this problem, you can prevent the
translator from automatically inserting its version of
the DFHEIENT macro by specifying the translator
option NOPROLOG. This will enable you to
specify your own DFHEIENT macro with the
CODEREG operand so that you can specify more

Chapter 1.3. Command Language Translator 13

DFHEISTG DSECT
COpy DFH$AGA INPUT MAP DSECT
COpy DFH$AGB OUTPUT MAP DSECT

MESSAGE DS CL39
INQUIRY CSECT

EXEC CICS RECEIVE MAP('DFH$AGA')
MVC NUMBO,KEYI
MVC MESSAGE,=CLCL'MESSAGE)'THIS IS A MESSAGE'
EXEC CICS SEND MAPC'DFH$AGB') ERASE
END

The above source program is translated tOI

DFHEIGBL , INSERTED BY TRANSLATOR
DFHEISTG DSECT

DFHEISTG INSERTED BY TRANSLATOR
COpy DFH$AGA INPUT MAP DSECT
COPY DFH$AGB OUTPUT MAP DSECT

MESSAGE DS CL39
INQUIRY CSECT

DFHEIENT INSERTED BY TRANSLATOR
* EXEC CICS RECEIVE MAPC'DFH$AGA')

DFHECALL =X'1802C0000800000000040900000020',CCHA7,=CL7'DFH$AGA*
'),C RF,DFH$AGAI)

MVC NUMBO,KEYI
MVC MESSAGE,=CLCL'MESSAGE)'THIS IS A MESSAGE'

* EXEC CICS SEND MAPC'DFH$AGB') ERASE
DFHECALL =X'1804C000080000000004E204000020',(CHA7,=CL7'DFH$AGB*

'),(RF,DFH$AGBO)
DFHEIRET INSERTED BY TRANSLATOR
DFHEISTG INSERTED BY TRANSLATOR
DFHEIEND INSERTED BY TRANSLATOR
END

Figure 2:. Translated Code for User Variables

than one base register . You must code your own
version of the DFHEIENT macro, which can have
up to three operands, in place of the frrst CSECT
or START instruction in your source program.
The three operands are as follows:

• CODEREG - base registers

• DA T AREG - dynamic storage registers

• EIBREG - register to address the EIB.

For example, the source code shown in Figure
on page 13 would become:

INSTRUCT DFHEIENT
CODEREG=(2,3,4),
DATAREG=(13,S),
EIBREG=6
EXEC eICS SEND
MAPC'DFH$AGA')
MAPONLY ERASE
END

The symbolic register DFHEIPLR is equated to
the first DATA REG either explicitly specified or
obtained by default. It is recommended that,
because register 13 points to the save area defmed
in dynamic storage by DFHEISTG, you use
register 13 as the frrst dynamic storage register.

DFHEIPLR will be assumed by the expansion of a
CICS command to contain the value set up by
DFHEIENT. You should either dedicate this
register or ensure that it is restored before each
CICS command.

Assembler language programs, translated with the
DLI option, will have a DLI initialization call
inserted after each CSECT statement. Assembler
language programs larger than 4095 bytes that do
not use the CODEREG parameter of the
DFIIEIENT macro to establish multiple base
registers, must include an L TORG statement to
ensure that the literals, generated by either

14 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DFHEIENT or a DLI initialization call, fall within
the range of the base register.

Note that, in general, an L TORG statement is
needed for every CSECT that exceeds 4095 bytes in
length.

Commands Mixed with Macros

An assembler-language application program that
uses both the command level interface and the
macro level interface (that is, a mixture of
commands and macros) must defme the macro
global bit &DFHEIMX and set it to 1. This will
ensure that register 13 points to the CSA, and
register 12 to the TCA. In this case, DFHEIPLR
will not be assumed by the expansion of a CICS
command.

COBOL

For a COBOL application program, each
command is replaced by one or more CO BO L
MOVE statements followed by a COBOL CALL
statement.

The purpose of the MOVE statements is to assign
constants to COBOL data variables; this enables
constants and names to be specified as arguments
to options in the commands. For example, a
cornnland such as:

EXEC CICS RECEIVE MAPC'A') END-EXEC

may be translated to:

MOVE ' , TO DFHEIVO
MOVE 'A' TO DFHC0070
CALL 'DFHEIl' USING DFHEIVO DFHC0070 AI

Declarations for the generated variables DFHEIVO
and DFHC0070 are included automatically in
working storage; their names are reserved. The
string within the quotes moved to DFHEIVO
consists of characters some of which may be
unprintable. The use of EXEC, CICS, DLI,
END-EXEC, or names starting with DFH, as
names for user variables should be avoided.

The translator modifies the linkage section by
inserting the EIB structure as the frrst parameter,

and inserts declarations of the temporary variables
that it requires into the working-storage section.

It is possible to translate program segments for later
inclusion into the procedure division. In order to
use the library management functions MAINT
(DOS/VS(E» or LIBRARIAN (VSE/SP) to
catalog pretranslated code for later inclusion in
input to the compiler, a job of the following
sequence should be run:

I • Step 1 punches a JOB card and JCL to invoke
I the required library management function

I • Step 2 is the translator which punches
I translated code to follow the JCL in step 1

I • Step 3 punches the end of job JCL.

The combined punch output must then be routed
back to the job input queue (via the spooler, for
example POWER, or by physically handling cards)
so that the library management function saves the
translated output in the library.

PL/I

For a PL/I application program, each command is
always replaced by a DO statement, a declaration
of a generated entry name, a CALL statement, and
an END statement. The ENTRY declaration
ensures that the appropriate conversions for
argument values take place.

If a PL/I on-unit consists of a single EXEC CICS
command, the command should be inside a
BEGIN block, for example:

ON ERROR BEGIN;
EXEC CICS RETURN;
END;

In a similar way, if an EXEC CICS command is
associated with a PL/I condition prefix, the
command should be inside a BEGIN block, for
example:

CNOZERODIVIDE)t BEGIN;
EXEC CICS GETMAIN
SETCptr-ref)
LENGTHCdata-value);
END;

Chapter 1.3. Command Language Translator 15

If OPTIONS(MAIN) is specified, the translator
modific::s the parameter list by inserting the EIB
structure pointer as the rust parameter. If
OPTIONS(MAIN) is not specified (that is, if the
prograrn is to be link-edited to the main module),
the parameter list is not modified, and it is the
application programmer's responsibility to address
the EIB structure in the link-edited program if
access 1to it is required. In any case, where a
progratn commences with a valid PL/I
PROCEDURE statement, the translator will insert
the dec:laration of the EIB structure.

It is possible to translate program segments for later
inclusion into a main program. In order to use the
library management functions MAINT
(DOS/VS(E)) or LIBRARIAN (VSE/SP) to
catalog pretranslated code for later inclusion in
input to the compiler, a job of the following
sequence should be. run:

I • Skp 1 punches a JOB card and JCL to invoke
I the required library management function

I • Step 2 is the translator which punches
I translated code to follow the JCL in step I

I • St(~P 3 punches the end of job JCL.

The combined punch output must then be routed
back to the job input queue (via the spooler, for
example POWER, or by physically handling cards)
so that the library management function saves the
translated output in the library. It is possible to
translate program segments for later inclusion into
a main program.

Translator Options

The translator provides a number of optional
facilities, for example, to allow for different record
formats and to specify what information is required
on the listing. The translator options and their
defaults (indicated by underlines) are listed below.

Translator options are specified in the +ASM
statem.ent for assembler language, the CDL
statem.ent for COBOL, or in the +PROCESS
statem,ent for PL/I. These statements must precede

the source program; there is no batching facility.
The +ASM statement must obey the same syntax
and continuation rules as the assembler-language
comment statement.

Translator options may also be specified in the
PARM operand of the EXEC job control
statement that invokes the translator.

If both methods are used, the options specified in
the "'ASM, CBL, or +PROCESS statements
override those in the EXEC job control statement,
and the last setting for each option takes
precedence.

Translator options are written as a list within the
XOPTS keyword option, for example:

*ASM XOPTSCNOPROlOG NOEPIlOG)

or

CBl XOPTSCQUOTE SPACE(2»

or

*PROCESS XOPTSCFlAGCW) SOURCE);

No characters, other than blanks, can appear before
the CBL statement on the COBOL options card.

The options may appear in any order. They may
. be separated by one or more blanks or by a

comma. If coded in the P ARM operand of the
EXEC job control statement, the XOPTS keyword
(and its associated parentheses) is unnecessary; only
options for the translator are permitted.

For compatibility with previous releases, the CICS
keyword can be used as an alternative to XOPTS.

If the application program contains EXEC DLI
commands, the options DLI and CICS must be
specified in an + ASM, CBL, or +PROCESS
statement, as follows:

*ASM XOPTS(DlI,CICS)

or

CDl XOPTSCDlI,CICS)

or

16 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

*PROCESS XOPTS(DlI,CICS)j

The CBL or +PROCESS statement can also
contain options that apply to the following
compiler. These options will be ignored by the
translator (that is, they will not be checked for
validity) but they will be copied through onto the
output data set. For example, a PL/I application
program preceded by:

*PROCESS XOPTS(SOURCE),ATTRIBUTESj

will be passed to the PL/I compiler preceded by:

*PROCESS ATTRIBUTES;

The following translator options apply to all three
languages (ASM, COBOL, and PL/I) except where
stated otherwise.

CICS
specifies that the translator is to process
EXEC CICS commands. This option may
be specified either as an alternative to, or as a
suboption of, the XOPTS option. If neither
XOPTS nor CICS is specified, CICS is
assumed by default. This option must not be
specified for batch DL/I application programs
containing EXEC DLI commands;
XOPTS(DLI) must be specified instead.

DEBUGINODEBUG (COBOL and PL/I only)
specifies whether or not the translator is to
produce code that passes the translator line
number through to CICS to be displayed by
the Execution (Command Level) Diagnostic
Facility (EDF).

I DLI
specifies that the translator is to process
EXEC DLI commands.

EDFINOEDF
specifies whether the Execution Diagnostic
Facility is to apply to the program. There is
no performance advantage in specifying
NOEDF, but the option can be useful to
prevent commands in well debugged
subprograms appearing on EDF displays.

EPILOGINOEPIl,OG (ASM only)

FE

EPILOG specifics that the translator is to
insert the macro DFHEIRET. NOEPILOG
prevents the translator inserting the macro
DFHEIRET. DFHEIRET is described on
page 13.

produces translator informatory messages
which print (in hexadecimal notation) the bit
pattern corresponding to the frrst argument of
the translated call. This bit pattern has the
encoded information that the EXEC interface
program uses to determine which function is
required and which options are specified. If
FE is specified, all diagnostic messages are
listed, whatever the FLAG option specifies.

FLAG(!IWIEIS)J (COBOL and PL/I only)
Abbreviation: F
specifies the minimum severity of error that
requires a message to be listed.

}~LAG(I)

all messages

FLAGIFLAG(W)
All except informatory messages

Fl,AG(E)
All except warning and informatory
messages

FLAG(S)
Only severe and unrecoverable error
messages.

GDS (ASM only)
specifies whether the translator is to process
EXEC CICS GDS commands. For more
information see the CICS/DOS/VS
I ntercommunicat ion Facilities Guide.

LANGLVU1)ILANGLVL(2) (COBOL only)
specifies whether the translator is to analyze
the source program and generate code
according to the American National Standard
X3.23-1968 (LANGLVL(l» or X3.23-1974
(LANGLVL(2» interpretations. The same
value for this option must be specified for the
translator and following compiler.

Chapter 1.3. Command Language Translator 17

LINECOUNT(n) (COBOL and PL/I only)
Abbreviation: LC
specifies the number of lines to be included in
each page of translator listing, including
heading and blank lines. The value of "n"
Inust be an integer in the range I through
255; if "n" is less than 5, only the heading
and one line of listing will be included on
each page. The default is 60.

MARGINS(m,n(,c)) (PL/I only) Abbreviation:
r~AR

specifies the extent of the part of each input
line or record that contains PL/I statements.
The translator does not process data that is
outside these limits (but it does include it in
the source listings).

The option can also specify the position of an
American National Standard printer control
character to format the listing produced if the
SOURCE option applies; otherwise the input
records will be listed without any intervening
blank lines.

"m" Column number of left-hand Jnargin.

"n" Column number of right-hand margin.
][t must be greater than "m".

"c" Column number of the American
National Standard printer control character.
][t must be outside the values specified for
"m" and "n". A zero value for "c" means no
printer control character. Only the following
printer control characters can be used (b
represents a blank):

b Skip I line before printing.

° Skip 2 lines before printing.

- Skip 3 lines before printing.

+ No skip before printing.

Start new page.

The default is MARGINS(2,72,0) for
:fixed-Iength records.

PROl.OGINOPROLOG (ASM only)
PROLOG specifies that the translator is to
insert the macros DFHEISTG, DFHEIEND,
and DFHEIENT. NOPROLOG prevents
the translator inserting the macros
DFHEISTG, DFHEIEND, and
DFHEIENT. These macros are described on
page 12.

NUMINONUM (COBOL only)
specifies whether or not the translator is to
use the line numbers appearing in columns I
through 6 of the card as the line number in
its diagnostic messages and cross-reference
listing. If NUM is not specified, the
translator generates its own line numbers.

OPMARGINS(m,n(,cl) (Pl./I only) Abbreviation:
OM
specifics the translator output margins, that
is, the margins of the input to the following
compuer. Normally these will be the same as
the input margins. For the meaning of "m",
"n", and "c" see MARGINS. The default is
OPMARGINS (2,72,0).

OPSEOUENC~m,n)INOOPSEQUENCE (PL/I
only) Abbreviations: OS and NOS
specifies the position of the sequence field in
the output records. For the meaning of "m"
and "n" sec SEQUENCE. The default is
a PSEQ UENCE(73,80).

OPTINOOPT (COBOL only)
specifies whether or not the translator is to
generate SERVICE RELOAD statements to
address the EIB and DFHCOMMAREA.
You must specify this option if the translated
program is to be compiled using the
optimization feature of COBOL. If the
program is not optimized, you need not
specify 0 PT.

OPTIONSINOOPTIONS Abbreviations: OP and
NOP
specifies whether the translator is to include
in the listing a list of all the translator options
used during tlus translation.

18 CICSjDOSjVS Application Programm(~r's Reference Manual (Command Level)

QUOTEIAPOST (COBOL only)
QUOTE indicates to the translator that the
double quotation marks (") should be
accepted as the character to delineate literals;
APOST indicates that the apostrophe (')
should be accepted instead. The same value
must be specified for the translator and
following compiler.

The CICS-supplied COBOL copy books use
APOST.

SEOINOSEQ (COBOL only)
indicates whether or not the translator is
required to check the sequence of source
statements. If SEQ is specified and a
statement is not in sequence it is flagged.

SEQUENCE(m,n)INOSEQUENCE (PL/I only)
Abbreviations: SEQ and NSEQ
specifies the extent of the part of each input
line or record that contains a sequence
number. This number is included in the
source listing and used in the error message
and cross-reference listings. No attempt is
made to sort the input lines or records into
sequence. If no sequence field is specified,
the translator creates and prints in the source
listing its own sequence numbers; this is
necessary so that the error messages and
cross-reference listings can refer to a particular
line in the source listing.

"m" Column number of left-hand
margin.

"n" Column number of right-hand
margin.

The extent must not exceed eight characters
and must not overlap the source program (as
specified in the MARGINS option).

The default is SEQUENCE(73,80).

SOURCEINOSOURCE (COBOL and PL/I only)
specifies whether or not the translator is to
produce a listing of the source program. For
compatibility with previous releases,
LISTINOLIST is acceptable as equivalent.

SP ACE(n) (COBOL only)
indicates the required type of spacing to be
used in the output listing: SPACE(1) specifies
single spacing; SPACE(2) double spacing;
and SPACE(3) triple spacing.

SPIEINOSPIE
SPIE specifies that the translator is to trap
unrecoverable errors. NOSPIE prevents the
translator from trapping unrecoverable errors;
instead, a dump is produced.

VBREFINOVBREF (COBOL and PL/I only)
specifies whether or not the translator is
required to provide a cross-reference list of all
the commands used in its input. For
compatibility, XREF and NOXREF are still
accepted.

Chapter 1.3. Command Language Translator 19

Chapter 1.4. Programming Techniques and Restrictions

This chapter contains infonnation that will help to
improve perfonnance and efficiency of an
application program in the CICS system.

The fust section deals with general programming
techniques; this section gives advice about the
virtual-storage environment in which CICS
application programs operate. The rest of the
chapter contains infonnation that is applicable only
to programs written in assembler language,
COBOL, and PL/I, and includes the restrictions
that apply to each language when CICS commands
are used.

This manual does not contain any guidance on the
use of programming·language statements or
programming techniques that are unrelated to
CICS; such infonnation is given in the appropriate
language publications.

Files and queues are not defmed within application
programs; these defmitions are established with the
help of the system programmer. Refer to the
CICS/DOS/VS Resource Definition (Macro)
manual.

General Programming Techniques

To see how programming techniques can affect the
perfonnance and efficiency of the CICS system, it
is necessary to understand a little of the virtual
storage environment in which CICS operates. Two
concepts are important: multithreading and
virtual-storage paging.

Multithreading: is a technique, used by CICS, that
allows a single copy of an application program to
process several transactions concurrently. For
example, the fust section of an application program
may be processing one transaction. When that
section is completed (in general, signaled by the
execution of a CICS command that causes a wait),
processing of another transaction using a different
section of the application program may take place.
(Compare this with single threading, which is the
execution of a program to completion. Processing
of one transaction is completed before another
transaction is started.)

Multithreading requires that all CICS application
programs be quasi-reentrant; that is, they must be
serially reusable between entry and exit points, and
any instructions or data altered in them must be
restored. CICS application programs using the
command level interface obey this rule
automatically (provided that, in PL/I programs,
static storage is used for read-only data). For these
programs to stay reentrant, variable data should not
appear as static storage in PL/I, nor as a DC in the
program CSECT in assembler language. For
COBOL programs, quasi-reenterability is insured
by a fresh copy of working storage being obtained
each time the program is invoked.

Care must be taken if a program involves lengthy
calculations; because an application program retains
control from one CICS command to the next,
processing of other transactions is completely
excluded. However, the task control SUSPEND
command can be used to allow other transaction
processing to proceed; refer to "Chapter 4.3. Task
Control" on page 353 for details.

Chapter 1.4. Programming Techniques and Restrictions 21

VirtuaJ.·storage paging: is a technique used by
CICS in a virtual-storage environment. The key
objective of programming in this environment is
the reduction of page faults. A page fault occurs
when a program refers to instructions or data that
do not reside in real storage, in which case, the
page in virtual storage that contains the referenced
instructions or data must be paged into real storage.
The more paging required, the lower the overall
system performance.

Although an application program is not precluded
from direct communication with the operating
system, the results of such action are unpredictable
and can degrade performance.

An understanding of the following terms is
necessary for writing application programs to be
run in :a virtual-storage environment:

• Locality of reference - the consistent reference,
during the execution of the application
program, to instructions and data within a
relatively small number of pages (compared to
the: total number of pages in a program) for
relatively long periods.

• Working set - the number and combination of
pages of a program needed during a given
period.

• V ~didity of reference - direct reference to the
required pages, without intermediate storage
references that retrieve useless data.

In general, the following techniques should be used:

1. To improve locality of reference, processing
should be sequential for both code and data,
where possible.

a. The ideal application program executes
sequentially with no branch logic reference
beyond a small range of address space.
However, error-handling or
unusual-situation routines should be
separated from the main section of a
program; they should be subprograms.

b. Subroutines should be placed near to the
caller.

c. Subprograms that are short and used only
once or twice (other than error-handling or
unusual-situation routines) should be
coded inline in the calling program.

d. Try to keep the execution path in a straight
line by using XCTL commands to transfer
control to other programs when necessary,
rather than LINK commands.

e. Initialize data as close as possible to its flfst
use.

f. Derme arrays or other data structures in the
order in which they will be referred to.
Refer to elements within arrays in the order
in which they are stored; for example, in
I'L/I programs, in rows rather than in
columns.

g. Issue as few as possible GETMAIN
commands.

h. In COBOL programs, avoid using
EXAMINE or VARIABLE MOVE
operations, because these expand into
subroutine executions.

2. To minimize the size of the working set, the
amount of storage that a program refers to in a
given period should be as small as possible.

a. Write modular programs and structure the
modules according to frequency and .
anticipated time of reference. Do not
modularize merely for the sake of size;
consider duplicate code inline as opposed
to subroutines or separate modules.

b. Use separate subprograms whenever the
flow of the program suggests that execution
will not be sequential.

c. Do not tie up main storage awaiting a
reply from a terminal user.

d. Use command-level HIe control
locate-mode input/output rather than
move-mode.

22 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

e. In COBOL programs, specify constants
directly, rather than as data variables in the
working-storage section.

f. In PL/I programs, use static storage for
constant data.

g. Avoid using LINK commands where
possible, because they generate requests for
main storage.

3. To improve validity of reference, the correct
page should be determined directly.

a. Avoid long searches for data.

b. Use data structures that can be addressed
directly, such as arrays, rather than
structures that must be searched, such as
chains.

c. Avoid indirect addressing and any methods
that simulate indirect addressing.

No attempt should be made to use overlays (paging
techniques) in an application program. System
paging is provided automatically and has superior
performance. The design of an application
program for a virtual-storage environment is similar
to that for a real environment. The system should
have all module~ resident so that code on
unreferenced pages need not be paged in.

If the program is dynamic, the entire program must
be loaded across adjacent pages before execution
begins. Dynamic programs can be purged from
storage if not in use and an unsatisfied storage
request exists. Allowing sufficient dynamic area to
prevent purging is more expensive than making
them resident, because a dynamic program will not
share unused space on a page with another
program.

If you program in assembler language, note that the
program mask is undefmed to CICS on entry to an
application program. You must set the program
mask for any module that requires a specific value
for the mask. CICS does not preserve the mask
value across the interface to other called programs,

for example, when a LINK or XCTL command is
used.

CICS Macros Used With CICS
Commands

Care should be exercised when writing application
programs that contain a mixture of CICS
commands and CICS macros, or in a macro-level
program that invokes a command-level program
and vice-versa.

Avoid mixtures of commands and macros
whenever you can. Using commands and macros
that usc the same component of CICS will often
give wrong results. For example, using a mixture
of BMS commands and DFHTC macros is likely
to cause an error in TIOA usage.

Any program that contains a mixture of commands
and macros should return to the program that
called it using an EXEC CICS RETURN
command.

For example, when a RECEIVE MAP command
is used with the SET option, the EXEC interface
program always reuses the terminal input/output
area (TIOA) obtained. This TIOA should only be
released in the command level program. Do not
use a DFIISC TYPE = FREEMAIN,
RELEASE = ALL macro in the same or an
invoked program because the TIOA is freed
unknown to the EXEC interface program, which
will attempt to reuse it, giving unpredictable results.

Program Size

The load module resulting from any application
program must not occupy more than 524,152 bytes
of main storage.

Entry Point Address

For all programs, the entry point address must be
less than 32,768 bytes from the load point.

Chapter 1.4. Programming Techniques and Restrictions 23

BM~; Map Size

The load module of a BMS map that is loaded
dynamically using the LOAD command must not
exceed 65,520 bytes in size.

Asselmbler-Language
Considerations

Restrictions

The foUowing instructions cannot be used in an
assembler language program that is to be used as a
CICS :3lpplication program:

COM (identify blank common control section)
ICTL (input format control)
OPSYN (equate operation code).

CODlDlands Contained Within Macros and
COP~{ Code

Macro instructions that generate commands, and
CO PY code that contains commands, must be
translated and stored in the source library in
translated form for later inclusion by the assembler.

Invokjing Assembler-Language Application
Programs by a Call Statement

Assembler-language application programs
containing commands can be treated as separate
CICS programs that have their own program
processing table (PPT) entries and that can be
invoked by assembler language, COBOL, PL/I, or
RPGII application programs using LINK or
XCTL commands (see "Chapter 4.4. Program
ContrOiI" on page 355).

However, because assembler-language application
progratns containing commands are invoked by a
system standard call, they can be invoked also by a
COBOL, PL/I, or RPGII CALL statement or by
an assembler-language CALL macro. A single
CICS application program with one PPT entry
may consist of a module containing separate

CSECTs linked together, although they may have
been compiled or assembled separately.

Also, assembler-language application programs
containing commands can be linked with other
assembler-language programs, or with programs in
one of the high-level languages COBOL, PL/I, or
RPGII, but with only one. When such an
application program is linked with an
assembler-language application program, the main
program must be the one coded in the high-level
language, and the PPT must specify that high-level
language.

The main program must be the only one
containing the CICS interface stub, and the link
edit must be done such that this stub is the frrst
CSECT in the load module.

Because assembler-language application programs
containing comnlands are always passed the
parameters EIB and COMMAREA when invoked,
the CALL statement Of macro nlUst pass these two
parameters followed, optionally, by other
parameters.

An assembler language application program that is
called by another application program must be
preceded by the DFHEIENT macro and followed
by the DFlIEIRET macro.

COBOL Considerations

Restrictions

The following restrictions apply to a COBOL
program that is to be used as a CICS application
program. (Refer to the appropriate COBOL
programmer's guide for more information about
these functions.)

1. You cannot use the entries in the environment
division and data division that are normally
associated with data management. However,
you sti11 need to code the headers for both of
these divisions.

2. ¥ou cann()t use the fue section of the data
division.

24 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

3. You cannot use the special options:

REPORT WRITER
SEGMENTATION
SORT
TRACE

4. You cannot use compiler options that require
the use of operating system services:

COUNT
DYNAM
FLOW
STATE
STXIT
SYMDMP

5. You cannot use COBOL statements that
require the use of operating system services:

ACCEPT
CURRENT -DATE
DATE
DAY
DISPLAY
EXHIBIT
INSPECT
SIGN IS SEPARATE
STOP RUN I
STRING
TIME
UNSTRING

I Because STOP RUN can be generated by the
COBOL compiler, you must always code either
a COBOL GOBACK statement or a CICS
RETURN command at the end of your
program.

6. You should not use the COBOL statements:

CLOSE
OPEN
READ
WRITE

because you are provided with CICS
commands for the storage and retrieval of data,
and for communication with tenninals.

7. Optimization option of the DOS Full COBOL
V3 compiler cannot be used.

8. When you link edit separate COBOL routines
together, only the first can invoke CICS or
DL/1.

9. The length of working storage plus the length
of the TGT (task global table) must not exceed
64K bytes.

10. If both the identification and procedure
divisions are presented to the translator in the
fonn of a source program or copy book, the
following coding is produced or expanded:

DFHEIVAR
DFHEIBlK
DFHCOMMAREA
PROCEDURE DIVISION USING

DFHEIBlK DFHCOMMAREA

CICS commands

If no identification division is present, only the
CICS commands are expanded.

If the identification division only is present,
only DFHEIVAR, DFHEIBLK, and
DFHCOMMAREA are produced.

Compilers Supported

You can use only the following COBOL compilers
to process your COBOL application programs:

• DOS Full COBOL Version 3 Compiler
(5736-CB2)

• DOS/VS COBOL Compiler (5746-CBI).

Base Locator for Linkage

The n LL mechanism is used to address storage
outside the working-storage section of an
application program. It operates by addressing the
storage as if it were a parameter to the program.
The storage must be defmed by means of an
OI-Ievel data defmition in the linkage section of the
program. The COBOL compiler generates code to
address the storage via the parameter list. When

Chapter 1.4. Programming Techniques and Restrictions 25

the program is invoked, CICS sets up the
parameter list in such a way that the parameter list
is itself addressable by the application program.

The parameter list must be defmed as the first
parameter to the program, unless a communication
area is being passed to the program, in which case
the DFHCOMMAREA defmition must precede it.
(See "Passing Data to Other Programs" on
page 358.)

In the following example, the fust 02-level data
name (that is, FILLER) is set up by CICS to
provide addressability to the other fields in the
parameter list. The other data names are known as
BLL ceUs, and address the remaining paranleters of
the program. There is a one-to-one
correspondence between the 02-level data names of
the parameter list defmition and the Ol-level data
defmitions in the linkage section.

LINKAGE SECTION.
01 PAR:MLIST.

02 FILLER PIC S9(8) COMPo
02 A-POINTER PIC S9(8) COMPo
02 B-POINTER PIC S9(8) COMPo
02 C-POINTER PIC S9(8) COMPo

01 A-illATA.
02 PARTNO PIC 9(4).
02 QUANTITY PIC 9(4) .
02 DESCRIPTION PIC X(100).

01 B-IlIATA PIC X.
01 C-IlIATA PIC X.

In this f:xample, A-POINTER addresses A·· DATA ,
B-POINTER addresses B-DATA, and
C-POINTER addresses C-DATA. The data
names c:hosen for the BLL cells and for the data
areas that they address are not significant, but the
names rnust be defmed in the correct order, so that
the necc:::ssary correspondence is established.

If a BLlL cell is named in the SET option of a
CICS command, subsequent reference to the
corresponding data defmition name will address the
storage supplied by CICS as a result of executing
the command. For example, suppose that a
progranl is required to read a variable-length record
from a file, examine part of it, and update it; all of
this is to be done without providing storage for the
record within the program. Using the data
defmitions shown in the example above, the
progranl could be written as follows:

EXEC CICS READ UPDATE DATASET('FILEA')
RIDFLD(PART-REQD) SETCA-POINTER)
LENGTHCA-LRECL) END-EXEC

IF A-LRECL LESS THAN 8 GO TO ERRORS.
IF QUANTITY GREATER ZERO

SUBTRACT 1 FROM QUANTITY
EXEC CICS REWRITE DATASETC'FILEA')

FROMCA-DATA) LENGTHCA-LRECL)
END-EXEC.

CICS reads the record into an internal buffer and
supplies the address of the record in the buffer to
the application program. The application program
updates the record in the buffer and rewrites the
record to the data set.

Bl.L and Chained Storage Areas

If access is needed to a series of chained storage
areas (that is, areas each of which contain a pointer
to the next area in the chain), a paragraph name
must be inserted immediately following any
statement that establishes addressability to one of
the storage areas. For example:

LINKAGE SECTION.
01 PARMLIST.

02 USERPTR PIC S9(8) COMPo

01 USERAREA.
02 FIELD PIC X(4).
02 NEXTAREA PIC S9(8) COMPo

PROCEDURE DIVISION.

MOVE NEXTAREA TO USERPTR.
ANYNAME.

MOVE FIELD TO TESTVAL.

In this example, storage areas mapped or defmed
by USERAREA are chained. The fust MOVE
statement establishes addressability to the next area
in the chain. The second MOVE statement moves
data from the newly addressed area, but only
because a paragraph name follows the fust MOVE
statement. If no paragraph name is inserted, the
reference to FIELD is taken as being to the storage
area that is addressed when the first MOVE
statement refers to NEXT AREA.

26 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Insertion of a paragraph name causes the compiler
to generate code to reestablish addressability
through USERPTR, so that the reference to
FIELD (and the next reference to NEXTAREA) is
to the newly addressed storage area.

BLL and OCCURS DEPENDING ON Clauses

If the object of an OCCURS DEPENDING ON
clause is defmed in the linkage section, a special
technique is required to ensure that the correct
value is used at all times.

In the following example, FIELD-COUNTER is
defmed in the linkage section. The MOVE
FIELD-COUNTER TO FIELD-COUNTER
statement is needed to ensure that unpredictable
results do not occur when referring to DATA.

LINKAGE SECTION.

01 FILE-REC.

.
02 FIELD-COUNTER PIC 9(4) COMPo
02 FIELDS PIC XeS) OCCURS I TO S

TIMES DEPENDING ON
FIELD-COUNTER.

02 DATA PIC X(20).

PROCEDURE DIVISION.

EXEC CICS READ DATASET('FILEA')
RIDFLD(KEYVAL)
SET(RECPTR)
END-EXEC.

MOVE FIELD-COUNTER TO FIELD-COUNTER.
MOVE DATA TO DATA-VAL.

The MOVE statement referring to
FIELD-COUNTER causes the compiler to
reestablish the value it uses to compute the current
number of occurrences of FIELDS and ensures
that it can determine the displacement of DATA
correctly.

nLl. and l.arge Storage Areas

If an area greater than 4096 bytes is defmed in the
linkage section, additional statements are required
to establish addressability to the extra area. An
additional B LL cell is required for each extra 4096
bytes (or part) added to the area. (No additional
corresponding 0 I-level data name defmition is
added, so the usual one-to-one correspondence of
BLL cells to the data areas they address is not
maintained.) An ADD statement is required also
for each extra 4096 bytes (or part); it is placed after
the statement that establishes addressability to the
data area.

The extra statements are shown in the following
example:

LINKAGE SECTION.
01 PARMLIST.

02 FRPTR PIC S9(8) COMPo
02 FRPTRI PIC S9(8) COMPo

01 FILE-REC.
02 FIELDI PIC X(4000).
02 FIElD2 PIC X(IOOO).
02 FIELD3 PIC X(400).

PROCEDURE DIVISION.

EXEC CICS READ DATASET('FILEA')
RIDFLD(KEYVAL)
SET(FRPTR)
END-EXEC.

ADD 4096 FRPTR GIVING FRPTRI.

No additional BLL cell is required if
DFHCOMMAREA itself is larger than 4096 bytes.

nLL and the Optimization Feature

If an application program is to be compiled using
the DOS/VS COBOL compiler with the
optimization (OPT) feature, a special compiler
control statement must be inserted at appropriate
places within the program to ensure addressability
to a particular area defined in the linkage section.
This control statement has the form:

SERVICE RELOAD fieldname

Chapter 1.4. Programming Techniques and Restrictions 27

where "fieldname" is the symbolic name of a
specific storage area which is also defmed in an
Ol-level statement in the linkage section. The
SERVICE RELOAD statement must be used
following each statement which modifies
addressability to an area defmed in the linkage
section, that is, whenever the contents of a BLL
cell is changed in any way.

When using HANDLE CONDITION or
HANDLE AID commands, SERVICE RELOAD
statements should be specified at the start of the
paragraph whose name is specified in the
HANDLE command for all those BLL cells that
may have been altered from the time when the frrst
HANDLE comtnand activated the exit routine up
to and including any CICS command that can
cause the HANDLE exit to be invoked.

If the B LL mechanism is used (described earlier in
the chapter), addressability to the parameter list
must be established at the start of the procedure
division. This is done by adding a SERVICE
RELOAD P ARM LIST statement at the start of
the procedure division in the earlier examples.

For exatnple, after a locate-mode input operation,
the SERVICE RELOAD statement must be used
to estabHsh addressability to the data, as follows:

EXEC CICS HANDLE CONDITION
ERROR(GIVEUP)
LENGERR(BADLENG)
END-EXEC

EXEC CICS READ DATASET('FILEA')
RIDFLD(PART-REQD)
SET(A-POINTER)
LENGTH(A-LRECL)
END-EXEC

SERVICE RELOAD A-DATA.
BADLEN:G.
SERVICE RELOAD A-DATA.

If an address is moved into a B LL cell,
addressaLbility must be established in the satne way,
for ex;atllple:

MOVE I-POINTER TO A-POINTER
SERVICE RELOAD A-DATA.

If areas larger than 4096 bytes are being addressed,
the secondary B LL cells must be reset after the
SERVICE RELOAD statement has been executed.
(Resetting a BLL cell is described in the previous
section.)

NOTRUNC Compiler Option

If an argument to a command is greater than 9999
in value, the NOTRUNC compiler option must be
specified to ensure successful execution.

Program Segments

Segments of programs to be copied into the
procedure division can be translated by the
command language translator, stored in their
translated form, and later copied into the program
to be compiled.

In order to use the library management functions
MAINT (DOS/VS(E)) or LIBRARIAN (VSE/SP)
to catalog pretranslated code for later inclusion in
input to the compiler, a job of the following
sequence should be run:

I • Step 1 punches a JOB card and JCL to invoke
I the required library management function

I • Step 2 is the translator which punches
I translated code to follow the JCL in step 1

I • Step 3 punches the end of job JCL.

The combined punch output must then be routed
back to the job input queue (via the spooler, for
example POWER, or by physically handling cards)
so that the library management function saves the
translated output in the library.

Subsequent copying or manipulating of statements
originally inserted by the CICS translator in an
application program may produce unpredictable
results.

28 CICSjDOS/VS Application Programmer's Reference Manual (Command Level)

PL/I Considerations

Restrictions

The following restrictions apply to a PL/I program
that is to be used as a CICS application program.
Refer to the P L/ I Optimizing Compiler
Programmer's Guide for more information about
these facilities.

1. You cannot use the multitasking built-in
functions:

COMPLETION
PRIORITY
STATUS

2. Y riu cannot use the multitasking options:

EVENT
PRIORITY
TASK

3. You should not use the PL/I statements:

READ
WRITE
GET
PUT
OPEN
CLOSE
DISPLAY
DELAY
REWRITE
LOCATE
DELETE
UNLOCK
STOP
HALT
EXIT
FETCH
RELEASE

You are provided with CICS comnlands for
the storage and retrieval of data, and for
communication with terminals. (However, you

can use CLOSE, PUT, and OPEN for
SYSPRINT.)

Refer to the P L/ I Optimizing Compiler
Programmer's Guide for information on when
the use of these PL/I statements is necessary
and the consequences of using them.

4. You cannot use PL/I Sort/Merge.

5. You cannot use static storage (except for
read-only data). A consequence of this
restriction for PL/I users is that
CONTROLLED variables cannot be used.

6. If you declare a variable with the attributes
STATIC and EXTERNAL you should also
include the INITIAL attribute. If you do not,
such a declaration will generate a common
CSECT that cannot be handled by CICS.

7. You cannot use the PL/I 48-character set
option.

8. You cannot write your PL/I programs with
lowercase keywords.

PL/I STAE Execution-Time Option

If this option is specified, an abend occurring in the
transaction will be handled by PL/I error handling
routines, and the transaction may terminate
normally, in which case, CICS facilities, such as
dynamic transaction backout (DTB), will not be
invoked.

Further information about PL/I and the ST AE
option is given in the CICS/DOS/VS Recovery and
Restart Guide.

Compilers Supported

You can use only the following PL/I compiler to
process your PL/I application programs:

• DOS PL/I Optimizing Compiler, Version 1,
Release 5.0

Cllapter 1.4. Programming Techniques and Restrictions 29

o PTI 0 NS(MAIN) Specification

If OPTIONS(MAIN) is specified in an application
prograrn, that progra.m can be the frrst program of
a transaction, or control can be passed to it by
means of a LINK or XCTL command.

If OPTIONS(MAIN) is not specified, it cannot be
the frrst program in a transaction, nor have control
passed to it by a LINK or XCTL command, but it
can be link-edited to a main program.

The defmition of the EIB is generated in each
prograrn. However, in programs other than that
declared with OPTIONS(MAIN), addressability to
the EIB is the user's responsibility.

Addressability is achieved by using the command:

EXEC CICS ADDRESS EIBCDFHEIPTR)

or by passing the EIB address or particular fields
therein as arguments to the CALL statement that
invokes the external procedure.

Program Segments

Segments of programs can be translated by the
command language translator, stored in their
transla1ted form, and later included in the program
to be compiled.

In ord(!r to use the library management functions

MAINT (DOS/VS(E)) or LIBRARIAN (VSE/SP)
to catalog pretranslated code for later inclusion in
input to the compiler, a job of the following
sequence should be run:

I • Step 1 punches a JOB card and JCL to invoke
I the required library management function

I • Step 2 is the translator which punches
I translated code to follow the JCL in step 1

I • Step 3 punches the end of job JCL.

The combined punch output must then be routed
back to the job input queue (via the spooler, for
example POWER, or by physically handling cards)
so that the library management function saves the
translated output in the library.

Subsequent copying or manipulating of statements
originally inserted by the CICS translator in an
application program may produce unpredictable
results.

The external procedure must always be passed
through the CICS translator, even when all its
commands are in included segments.

30 CICSjOOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 1.5. Exceptional Conditions

A CICS "exceptional condition" or "condition" for
short, is dermed as the reason why a CICS
command cannot be executed.

Conditions may occur at any time during the
execution of a command and, unless you specify
otherwise in your application program, a standard
system (default) action for each condition will be
taken. Usually, this default action is to terminate
the task abnormally.

There are about 70 conditions in all, each one
identified by name, for example LENGERR, and a
corresponding number. All the conditions are
listed, in alphabetical order of name, at the end of
this chapter, and under EIBRCODE in
Appendix A, "EXEC Interface Block" on
page 413. Their numbers are listed in numerical
order under EIBRESP also in Appendix A.

There are three possible states that an application
program can be in with respect to a condition
detected during the attempted execution of a
command, as follows:

1. HANDLE CONDmON active
control goes to a label in the program dermed
earlier by a HANDLE CONDITION
command.

This state occurs after the execution of a

HANDLE CONDITION condition(label)

or

HANDLE CONDITION ERROR(label)

2. Take no action
control returns to the next instruction
following the command that has failed to

execute. At the same time, a return code is
set in EIBRESP and EIBRCODE
corresponding to the condition encountered.

This state occurs after the execution of an

IGNORE CONDITION condition

or an

IGNORE CONDITION ERROR

if there is no current active HANDLE
CONDITION command that includes a
label.

This state also occurs during execution of a
command that includes one of the options
NOHANDLE or RESP.

3. Standard system action (Default action)
for most conditions this is to terminate the
task abnormally.

However, for the conditions ENQBUSY,
NOJBUFSP, NOSPACE, NOSTG, QBUSY,
SESSBUSY, and SYSBUSY, standard system
action is to suspend the task until the
required resource becomes available, when
execution of the associated command is
resumed.

This state occurs if neither a

HANDLE CONDITION condition(label)

nor a

HANDLE CONDITION ERROR(label)

has been executed.

Chapter 1.5. Exceptional Conditions 31

This state also occurs after executing a

HANDLE CONDITION condition

command without a label or

PUSH HANDLE

Altem;ative to the HANDLE Command

The NOHANDLE, RESP, and RESP2 options
(described below) are supplied as an alternative to
the HANDLE command just described.

You ar(~ recommended to use these options because
they allow you to write structured programs.

NOHANDLE Option

You can use the NOHANDLE option with any
command to specify that you want no action to be
taken for any condition or AID resulting from the
ex;ecution of that command. In this way you can
control the scope of the IGNORE CONDITION
command to cover specified conditions for all
commands (until a HANDLE CONDITION for
the condition is executed). Similarly, you Gan
control the scope of the NOHANDLE option to
cover aU conditions for specified commands.

RESP :and RESP2 Options

You can use the RESP and RESP2 options with
any cOlnmand to test the response to the execution
of that command.

RESP(xxx)
"xxx" is a user-defmed fullword binary data
area. On return from the command, it
contains a value corresponding to the
condition that may have been raised, or to a
normal return, that is,
xxx = DFHRESP(NORMAL). You can test
this value by means of DFHRESP, as
follows:

EXEC CICS WRITEQ TS FROMCabc)
QUEUECqname)
RESPCx>c:x)

If xxx=DFHRESPCNOSPACE) THEN ...

As the use of RESP implies NOHANDLE,
you must be careful when using RESP with
the RECEIVE command, because
NOHANDLE overrides the HANDLE AID
command as well as the HANDLE
CONDITION command with the result that
PF key responses will be ignored.

RESP2(yyy)
"yyy" is a fullword binary value that further
qualifies the response to some commands. It
is used in the INQUIRE and SET
commands, and in the spool commands of
the CICS interface to POWER.

These commands are primarily for the use of
the system programmer, and are described in
the CICS/DOS/VS Customization Guide.

ERROR Exceptional Condition

Apart from the conditions associated with
individual commands, there is a general condition
named ERROR whose default action also is to
terminate the task abnonnally.

If no HANDLE CONDITION command is active
for a condition, but one is active for ERROR,
control will be passed to the label specified for
ERROR.

A subsequent HANDLE CONDITION command
(with or without a label) for a condition overrides
the HANDLE CONDITION ERROR command
for that condition.

You should not include commands in an error
routine that may give rise to the same condition
that caused the branch to the routine; you should
take special care not to cause a loop on the
ERROR condition.

You can avoid a loop by including a HANDLE
CONDITION ERROR command as the first
command in your error routine.

You should reinstate the original error action at the
end of your error routine by including a second
HANDLE CONDITION ERROR command.

32 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Unsupported Function

A task will be abended unconditionally if, in a
command, you request an unsupported function,
even if you have specified a HANDLE ERROR
command, an IGNORE ERROR command, or
have included the RESP condition in that
command.

NOTAUTH Exceptional Condition

The NOTAUTH condition is a general condition
that can be associated with individual commands.
It is raised when a resource security check has
failed.

The reasons for the failure are the same as for the
abend code AEY7, as described for the DFHEIP
module in the CICS/DOS/VS Messages and Codes
manual.

Summary of CONDITION Commands and Actions

tICS maintains a table of conditions referred to by
HANDLE CONDITION and IGNORE
CONDITION commands in an application
program. Execution of these commands either
updates the existing entry, or causes a new entry to
be made if the condition has not yet been the
subject of such a command. Each entry indicates
one of the three states described earlier.

When the condition occurs, the following tests are
made:

1. If the command has NOHANDLE or RESP,
control returns to the next instruction in the
application program. Otherwise the condition
table is scanned to see what to do.

2. If an entry for the condition exists, this
determines the action.

3. If no entry exists and the default action for this
condition is to suspend execution, then:

• If the command has the NOSUSPEND or
NOQUEUE option, control returns to the
next instruction.

• If the command does not have one of these
options, the task is suspended.

4. If no entry exists and the default action for this
condition is to abend, a second search is made
for the ERROR condition, and this entry, if
found, determines the action.

• If found, this entry determines the action.

• If ERROR is searched for and not found,
the task is abended.

The commands ALLOCATE, ENQ, GETMAIN,
JOURNAL, READQ TD, and WRITEQ TS can
give rise to conditions for which the default action
is to suspend the execution of the application
program until the specified resource becomes
available.

On these commands, the option NOSUSPEND is
provided to inhibit this waiting and to cause an
immediate return to the instruction in the
application program following the command.

Throughout this manual, where appropriate,
conditions are described, together with the CICS
default action, at the end of a chapter, and a list of
conditions that apply to a command is included
within the syntax box for the command.

Some conditions can occur during the execution of
anyone of a number of unrelated commands, for
example, IOERR can occur during file control
operations, interval control operations, and others.
If you want the same action for all occurrences,
simply code a single HANDLE CONDITION
IOER R command at the beginning of your
program.

If you want different actions, you must code
HANDLE CONDITION commands specifying
different labels, at appropriate points in the
program, or you can specify the same label for all
commands.

You can test fields EIBFN, EIBRCODE, and
EIBRESP (in the EIB) to fmd out which condition
has occurred and in which command. The EIB is
described in Appendix A, "EXEC Interface Block"
on page 413.

Chapter 1.5. Exceptional Conditions 33

Handle Exceptional Conditions
(HANDLE CONDITION)

[HANDLE CONDITION
condition[(label)] ... J

condi tion (I abel»)
"condition" specifies the name of the
condition, and "label" specifies the location
within the program to be branched to if the
condition occurs.

If you omit the condition, the default action
for the condition is taken, unless the default
action is to terminate the task abnormally, in
which case the ERROR condition occurs.

If you omit label, any HANDLE
CONDITION command for the condition is
deactivated, and the default action for the
condition is taken if the condition occurs.

You use this command to specify the label to
which control is to be passed if a condition occurs.
You must include the name of the condition and,
optionally, a label to which control is to be passed
if the condition occurs. You must ensure that the
HANDLE CONDITION command is executed
before the command that may give rise to the
associated condition.

You will fmd a list of the conditions that can be
used in this command at the end of the chapter.

You crumot include more than sixteen conditions
in the same command; the conditions should be
separated by at least one space. You must specify
additional conditions in further HANDLE
COND1[TION commands. You can also use the
ERROR condition within the same list to specify
that all other conditions are to cause control to be
passed to the same label.

lbe HANDLE CONDITION command for a
given condition applies only to the progranl in
which i1t is specified. The HANDLE
CONDITION command:

I •
I

Remains active while the program is executing,
or until:

An IGNORE CONDITION command for
the same condition is encountered, in
which case the HANDLE CONDITION
command is overridden

Another HANDLE CONDITION
command for the same condition is
encountered, in which case the new
command overrides the previous one.

I • Is temporarily deactivated by the
I NOlIANDLE or RESP option on a
I command.

When control passes to another program, the
HANDLE CONDITION commands that were
active in the calling program are deactivated. When
control returns to a program from a program at a
lower logical level, the HANDLE CONDITION
commands that were active in the higher-level
program before control was transferred from it are
reactivated, and those in the lower-level program
are deactivated. (Refer to "Chapter 4.4. Program
Control" on page 355 for information about logical
levels.) This will not apply if macro-level links are
used; current active conditions will remain active.

The following example shows you how to handle
conditions, such as DUPREC, LENGERR, and so
on, that can occur when you use a WRITE
command to add a record to a data set. Let's
suppose that you want DUPREC to be handled as
a special case; that you want standard system
action (that is, to terminate the task abnormally) to
be taken for LENGERR; and that you want all
other conditions to be handled by the error routine
ERRHANDL.

You would code:

EXEC CICS HANDLE CONDITION
ERROR(ERRHANDL)
DUPREC(DUPRTN)
LENGERR

In an assembler-language application program, a
branch to a label caused by a condition will restore
the registers in the application program to their

34 ClCS/DOSjVS Application Programmer's Reference Manual (Command Level)

values in the program at the point where the
command that caused the condition is issued.

In a PL/I application program, a branch to a label
in an inactive procedure or in an inactive begin
block, caused by a condition, will produce
unpredictable results.

Ignore Exceptional Conditions
(IGNORE CONDITION)

IGNORE CONDITION
condition condition

condition
specifies the name of the condition that is to
be ignored.

You use this command to specify that no action is
to be taken if a condition occurs (that is, control
returns to the instruction following the command
that has failed to execute and the EIB is set.)

Execution of a command could result in several
conditions being raised. CICS checks these in a
predetermined order and only the fust one that is
not ignored (by your IGNORE CONDITION
command) will be passed to your application
program.

You will fmd a list of the conditions that can be
used in this command at the end of the chapter.

The IGNORE CONDITION command for a
given condition applies only to the program in
which it is specified, and it remains active while the
program is executing, or until A HANDLE
CONDITION command for the same condition is
encountered, in which case the IGNORE
CONDITION command is overridden.

You cannot code more than sixteen conditions in
the same command; the conditions should be
separated by at least one space. You must specify
additional conditions in further IGNORE
CONDITION commands.

Suspend Condition Handling
(PUSH and POP)

The commands PUSH and POP enable you to
suspend all current HANDLE CONDITION,
IGNORE CONDITION, HANDLE AID, and
HANDLE ABEND commands. This can be
useful, for example, during a branch to a
subroutine embedded in a main program.

Normally, when a CICS program calls a
subroutine, the program or routine that receives
control inherits the current HANDLE commands.
These commands may not be appropriate within
the called program. The called program can use
the command, PUSH, to suspend existing
HANDLE commands. The fonn of the PUSH
command is:

~H HANDLE

Before returning control to the caller, a called
program can restore the original commands using
the POP command, which has the form:

I POP HANDLE

You can nest PUSH ... POP command sequences
within a task. Each PUSH command stacks a set
of specifications; the POP that follows it restores
them.

List of Exceptional Conditions

The following list shows all the conditions that can
occur during the execution of CICS commands.
Each condition is followed by one or more
commands during the execution of which the
condition may occur. The numbers in parentheses
are the numbers of the chapters that describe those
commands. For the meaning of a condition, and
the default action associated with that condition,
refer to the list of conditions at the end of the
indicated chapter.

Chapter 1.5. Exceptional Conditions 35

ConditjLon Command Chapter Condition Command Chapter

CBIDERI~ ALLOCATE (3.3) EOF CONVERSE (3.3)
CONVERSE (3.3) RECEIVE (3.3)
EXTRACT ATTACH (3.3)
SEND (3.3) ERROR General exceptional

condition (1.5). Not
CCERROI~ SPOOL OPEN (3.4) included in the list of

SPOOLWRITE (3.4) conditions in the syntax
of individual commands.

DISABLIED ENDBR (2.4)
DELETE (2.4) EXPIRED DELAY (4.2)
READ (2.4) POST (4.2)
READNEXT (2.4)
READPREV (2.4) FUNCERR ISSUE ABORT (3.5)
RESETBR (2.4) ISSUE ADD (3.5)
REWRITE (2.4) ISSUE END (3.5)
STARTBR (2.4) ISSUE ERASE (3.5)
UNLOCK (2.4) ISSUE NOTE (3.5)
WRITE (2.4) ISSUE QUERY (3.5)

ISSUE REPLACE (3.5)
DSIDERR ENDBR (2.4) ISSUE SEND (3.5)

DELETE (2.4) ISSUE WAIT (3.5)
READ (2.4)
READNEXT (2.4) IGREQCD CONVERSE (3.3)
READPREV (2.4) ISSUE SEND (3.5)
RESETBR (2.4) SEND (3.3)
REWRITE (2.4) SEND CONTROL (3.2)
STARTBR (2.4) SEND MAP (3.2)
UNLOCK (2.4) SEND PAGE (3.2)
WRITE (2.4) SEND TEXT (3.2)

DSSTAT' ISSUE RECEIVE (3.5) IGREQID SEND CONTROL (3.2)
SEND MAP (3.2)

DUPKEY' READ (2.4) SEND TEXT (3.2)
READNEXT (2.4)
READPREV (2.4) ILLOGIC DELETE (2.4)

ENDBR (2.4)
DUPREe: WRITE (2.4) READ (2.4)

REWRITE (2.4) READNEXT (2.4)
READPREV (2.4)

ENDDATA RETRIEVE (4.2) RESETBR (2.4)
REWRITE (2.4)

ENDFIl.E READNEXT (2.4) SPOOL CLOSE (3.4)
READPREV (2.4) SPOOL OPEN (3.4)

STARTBR (2.4)
ENDINPT RECEIVE (3.3) UNLOCK (2.4)

WRITE (2.4)
ENQBUSY ENQ (4.3)

INBFMH CONVERSE (3.3)
ENVDEFERR RETRIEVE (4.2) RECEIVE (3.3)

EOC ALLOCATE (3.3) INVERRTERM ROUTE (3.2)
CONVERSE (3.3)
RECEIVE (3.3) INVlDC ROUTE (3.2)
RECEIVE MAP (3.2) SEND CONTROL (3.2)
RECEIVE PARTN (3.2) SEND MAP (3.2)
SEND (3.3) SEND TEXT (3.2)

EODS CONVERSE (3.3) INVMPSZ RECEIVE MAP (3.2)
ISSUE RECEIVE (3.5) SEND MAP (3.2)
RECEIVE (3.3)
RECEIVE MAP (3.2) INVPARTN RECEIVE MAP (3.2)
RECEIVE PARTN (3.2) RECEIVE PARTN (3.2)

36 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Condition Command Chapter Condition Command Chapter

INVPARTN SEND CONTROL (3.2) IOERR READ (2.4)
(Continued) SEND MAP (3.2) (Continued) READNEXT (2.4)

SEND TEXT (3.2) READPREV (2.4)
READQ TD (4.6)

INVPARTNSET SEND PARTNSET (3.2) READQ TS (4.7)
RESETBR (2.4)

INVREQ ALLOCATE (3.3) RETRIEVE (4.2)
ASSIGN (1.6) REWRITE· (2.4)
CANCEL (4.2) SPOOL CLOSE (3.4)
CONNECT PROCESS (3.3) SPOOL OPEN (3.4)
CONVERSE (3.3) SPOOLWRITE (3.4)
DELAY (4.2) START (4.2)
DELETE (2.4) STARTBR (2.4)
ENDBR (2.4) UNLOCK (2.4)
ENTER (5.3) WAIT JOURNAL (5.5)
EXTRACT ATTACH (3.3) WRITE (2.4)
EXTRACT PROCESS (3.3) WRITEQ TD (4.6)
EXTRACT TCT (3.3) WRITEQ TS (4.7)
FREE (3.3)
ISSUE ABEND (3.3) ISCINVREQ CANCEL (4.2)
ISSUE CONFIRMATION (3.3) DELETE (2.4)
ISSUE COPY (3.3) DELETEQ TD (4.6)
ISSUE ENDFILE (3.3) DELETEQ TS (4.7)
ISSUE ENDOUTPUT (3.3) ENDBR (2.4)
ISSUE EODS (3.3) READ (2.4)
ISSUE ERASEAUP (3.3) READNEXT (2.4)
ISSUE ERROR (3.3) READPREV (2.4)
ISSUE LOAD (3.3) READQ TD (4.6)
ISSUE PRINT (3.3) READQ TS (4.7)
ISSUE RESET (3.3) RESETBR (2.4)
POST (4.2) RETRIEVE (4.2)
READ (2.4) REWRITE (2.4)
READNEXT (2.4) START (4.2)
READPREV (2.4) STARTBR (2.4)
READQ TS (4.7) UNLOCK (2.4)
RECEIVE (3.3) WRITE (2.4)
RESETBR (2.4) WRITEQ TD (4.6)
RETRIEVE (4.2) WRITEQ TS (4.7)
RETURN (4.4)
REWRITE (2.4) ITEMERR READQ TS (4.7)
ROUTE (3.2) WRITEQ TS (4.7)
SEND (3.3)
SEND CONTROL (3.2) JIDERR JOURNAL (5.5)
SEND MAP (3.2) WAIT JOURNAL (5.5)
SEND PAGE (3.2)
SEND PARTNSET (3.2) LENGERR CONNECT PROCESS (3.3)
SEND TEXT (3.2) CONVERSE (3.3)

DUMP (5.4)
SPOOL OPEN (3.4) GETMAIN (4.5)
SPOOLCLOSE (3.4) ISSUE RECEIVE (3.5)
START (4.2) JOURNAL (5.5)
STARTBR (2.4) READ (2.4)
WAIT CONVID (3.3) READNEXT (2.4)
WAIT EVENT (4.2) READPREV (2.4)
WAIT JOURNAL (5.5) READQ TD (4.6)
WRITE (2.4) READQ TS (4.7)
WRITEQ TS (4.7) RECEIVE (3.3)

RECEIVE PARTN (3.2)
INVTSREQ RETRIEVE (4.2) RETRIEVE (4.2)

REWRITE (2.4)
IOERR DELETE (2.4) SEND (3.3)

JOURNAL (5.5) SPOOLWRITE (3.4)

Chapter 1.5. Exceptional Conditions 37

Condi1:ion Command Chapter Condition Command Chapter

LENGERR WRITE (2.4) NOTAUTH READNEXT (2.4)
(Conti.nued) WRITEQ TD (4.6) (Continued) READPREV (2.4)

RELEASE (4.4)
MAP ERROR SPOOL WRITE (3.4) RESETBR (2.4)

RETRIEVE (4.2)
MAPFAJ:L RECEIVE MAP (3.2) RETURN (4.4)

SPOOLWRITE (3.4) REWRITE (2.4)
SPOOL CLOSE (3.4)

NAMEERROR SPOOL OPEN (3.4) SPOOL OPEN (3.4)
SPOOLHRITE (3.4)

NOJBUFSP JOURNAL (5.5) START (4.2)
STARTBR (2.4)

NONVAl. ISSUE LOAD (3.3) UNLOCK (2.4)
WAIT JOURNAL (5.5)

NOPASSBKRD RECEIVE (3.3) WRITE (2.4)
WRITEQ TD (4.6)

NOPASSBKWR SEND (3.3) WRITEQ TS (4.7)
XCTL (4.4)

NOSPACE REWRITE (2.4)
SPOOLCLOSE (3.4) NOTFND CANCEL (4.2)
SPOOL OPEN (3.4) DELETE (2.4)
SPOOL WRITE (3.4) READ (2.4)
WRITE (2.4) READNEXT (2.4)
WRITEQ TD (4.6) READPREV (2.4)
WRITEQ TS (4.7) RESETBR (2.4)

RETRIEVE (4.2)
NOSPOOL SPOOLCLOSE (3.4) STARTBR (2.4)

SPOOL OPEN (3.4)
SPOOLWRITE (3.4) NOTOPEN DELETE (2.4)

ENDBR (2.4)
NOSTA'~T ISSUE LOAD (3.3) JOURNAL (5.5)

READ (2.4)
NOSTG GETMAIN (4.5) READNEXT (2.4)

READPREV (2.4)
NOTALI.OC CONNECT PROCESS (3.3) READQ TD (4.6)

CONVERSE (3.3) RESETBR (2.4)
EXTRACT ATTACH (3.3) REWRITE (2.4)
EXTRACT PROCESS (3.3) STARTBR (2.4)
FREE (3.3)

UNLOCK (2.4)
ISSUE ABEND (3.3) WAIT JOURNAL (5.5)
ISSUE CONFIRMATION (3.3) WRITE (2.4)
ISSUE DISCONNECT (3.3) WRITEQ TD (4.6)
ISSUE ERROR (3.3)
ISSUE SIGNAL (3.3) OVERFLOW SEND MAP (3.2)
POINT (3.3)
RECEIVE (3.3) PARTNFAIL RECEIVE MAP (3.2)
SEND (3.3)
WAIT CONVID (3.3) PGMIDERR HANDLE ABEND (5.2)
WAIT TERMINAL (3.3) LINK (4.4)

LOAD (4.4)
NOTAUTH CANCEL (4.2) RELEASE (4.4)

DELETE (2.4) XCTL (4.4)
DELETEQ TD (4.6)
DELETEQ TS (4.7) QBUSY READQ TD (4.6)
ENDBR (2.4)
LINK (4.4) QIDERR DELETEQ TD (4.6)
LOAD (4.4) DELETEQ TS (4.7)
JOURNAL (5.5) READQ TD (4.6)
READ (2.4) READQ TS (4.7)
READQ TD (4.6) WRITEQ TD (4.6)
READQ TS (4.7) WRITEQ TS (4.7)

38 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Condition Command Chapter Condition Command Chapter

QZERO READQ TD (4.6) SYSIDERR FREE (3.3)
(Continued) READ (2.4)

RDATT CONVERSE (3.3) READNEXT (2.4)
RECEIVE MAP (3.2) READPREV (2.4)
RECEIVE (3.3) READQ TD (4.6)

READQ TS (4.7)
RETPAGE SEND CONTROL (3.2) RESETBR (2.4)

SEND MAP (3.2) . RETRIEVE (4.2)
SEND PAGE (3.2) REWRITE (2.4)
SEND TEXT (3.2) START (4.2)

STARTBR (2.4)
ROLLEDBACK SYNCPOINT (5.6) UNLOCK (2.4)

WRITE (2.4)
RTEFAIL ROUTE (3.2) WRITEQ TD (4.6)
RTESOME ROUTE (3.2) WRITEQ TS (4.7)

TERMERR CONVERSE (3.3)
SELNERR ISSUE ABORT (3.5) ISSUE ABEND (3.3)

ISSUE ADD (3.5) ISSUE CONFIRMATION (3.3)
ISSUE END (3.5) ISSUE COPY (3.3)
ISSUE ERASE (3.5) ISSUE DISCONNECT (3.3)
ISSUE NOTE (3.5) ISSUE EODS (3.3)
ISSUE QUERY (3.5) ISSUE ERASEAUP (3.3)
ISSUE REPLACE (3.5) ISSUE ERROR (3.3)
ISSUE SEND (3.5) ISSUE LOAD (3.3)
ISSUE WAIT (3.5) ISSUE PRINT (3.3)

ISSUE SIGNAL (3.3)
SESSBUSY ALLOCATE (3.3) RECEIVE (3.3)

SEND (3.3)
SESSIONERR ALLOCATE (3.3) WAIT SIGNAL (3.3)

CONVERSE (3.3)
EXTRACT ATTACH (3.3) TERMIDERR ISSUE COpy (3.3)
FREE (3.3) START (4.2)
ISSUE DISCONNECT (3.3)
ISSUE SIGNAL (3.3) TRANSIDERR START (4.2)
POINT (3.2)
RECEIVE (3.2) TSIOERR PURGE MESSAGE (3.2)
SEND (3.3) SEND CONTROL (3.2)
WAIT TERMINAL (3.3) SEND MAP (3.2)

SEND PAGE (3.2)
SIGNAL CONVERSE (3.3) SEND TEXT (3.2)

RECEIVE (3.3)
SEND (3.3) UNEXPIN ISSUE ABORT (3.5)
WAIT CONVID (3.3) ISSUE ADD (3.5)
WAIT SIGNAL (3.3) ISSUE END (3.5)
WAIT TERMINAL (3.3) ISSUE ERASE (3.5)

ISSUE NOTE (3.5)
SYSBUSY ALLOCATE (3.3) ISSUE QUERY (3.5)

ISSUE RECEIVE (3.5)
SYSIDERR ALLOCATE (3.3) ISSUE REPLACE (3.5)

CANCEL (4.2) ISSUE SEND (3.5)
DELETE (2.4) ISSUE WAIT (3.S)
DELETEQ TD (4.6) RECEIVE MAP (3.2)
DELETEQ TS (4.7)
ENDBR (2.4) I WRONGSTAT SPOOL OPEN (3.4)

C11apter 1.5. Exceptional Conditions 39

Chapter 1.6. Access to System Information

You can write many application programs using
the CICS command-level interface without any
knowledge of or reference to the fields in the CICS
control blocks and storage areas. However, you
might sometimes need to get information that is
valid outside the local environment of your
application program. You use the ADDRESS and
ASSIGN commands to access such information;
these commands are described in the following
sections.

Not all fields are intended to be accessed by the
application program; refer to the CICS/VS
Application Programmer's Reference Manual
(Macro Level) for a list of the fields that are part of
the application programming interface (the API)
and that will remain valid from release to release.
Details of each control block and its fields are
contained in the CICS/DOS/VS Data Areas
manual.

When using the ADDRESS and ASSIGN
commands, the fields in the API can be read but
should not be set or used in any other' way. This
means that you should not use any of the CICS
fields as arguments in CICS commands, because
these fields may be altered by the EX EC interface
modules.

INQUIRE/SET Commands

The INQUIRE and SET commands allow
application programs to access infonnation about
CICS resources. The application program can
retrieve and modify information for CICS data sets,
terminals, system entries, mode names, system
attributes, programs, and transactions.

The commands are fully described in the
CICS/DOS/VS Customization Guide.

EXEC Interface Block (EIB)

In addition to the usual CICS control blocks, each
task in a command-level environment has a control
block called the EXEC interface block (EIB)
associated with it. The field names and the data
types of the fields in this control block are defmed
in Appendix A, "EXEC Interface Block" on
page 413.

An application program can access all of the fields
in the EIB by name. The EIB contains
information that is useful during the execution of
an application program, such as the transaction
identifier, the time and date (initially when the task
is started, and subsequently, if updated by the
application program), and the cursor position on a
display device. The EIB also contains information
that will be helpful when a dump is being used to
debug a program.

Access to CICS Storage Areas
(ADDRESS)

I ADDRESS
option(ptr-ref) ...

This command is used to obtain access to any of
the following areas: the common system area
(CSA), the common work area (CWA), the
tenninal control table user area (TCTUA), the
transaction work area (TWA), and to the EXEC
interface block (EIB). No more than four options
can be specified in one ADDRESS command.

Chapter 1.6. Access to System Information 41

ADDRESS Command Options

CSA
allows access to control blocks addressed by
the CSA. The pointer reference is set to the
address of the CSA. The CSA gives access to
aU fields in CICS control blocks and storage
areas.

CWA

F~lB

is used to pass infonnation between
application programs. The pointer reference
is set to the address of the CW A. If a CW A
does not exist, the pointer reference is set to
X'FFOOOOOO'.

i8 used to obtain addressability to the EXEC
interlace block in application routines other
than the first invoked by CICS (for which
addressability to the EIB is provided
automatically) .

TCruA

lWA

is used to pass infonnation between
application programs, but only if the same
terminal is associated with the application
programs involved (which can be in different
tasks). The pointer reference is set to the
address of the TCTUA. If a TCTUA does
not exist, the pointer reference is set to
X'FFOOOOOO'. The data area contains the
address of the TCTUA of the principal
tacility, not that for any alternate facility that
lnay have been allocated.

is used to pass infonnation between
application programs but only if they are in
the same task. The pointer reference is set to
the address of the TWA. If a TW A does not
lexist, the pointer reference is set to
X'FFOOOOOO'.

An e1tample of the use of the ADDRESS
comlnand is given in the next section.
(Information can also be passed between programs
using the COMMAREA option of the program
control commands, described in "Chapter 4.4.
Program Control" on page 355.)

If an ADDRESS command is included in a
COBOL program that is to be compiled using the
optimization feature, it must be followed by
SER VICE RELOAD statements to reload the
BLL cell being used. (The SERVICE RELOAD
statement is described under "BLL and the
Optimization Feature" on page 27.)

Values Outside the Application
Program (ASSIGN)

ASSIGN
optionCdata-area) ...

Condition: INVREQ

This command is used to obtain values outside the
local environment of the application program. The
value obtained is assigned to the data area specified
in the option.

The following values can be obtained:

• Lengths of storage areas

• Values needed when communicating with the
2980 General Banking Terminal System
(copied from the TCTTE)

• Values needed during basic mapping support
(BMS) operations

• Values needed during batch data interchange

• Information on terminal characteristics, such as
screen size and supported features (copied from
the TCTTE)

• Other information that may be useful to the
application programmer (copied from various
CICS control blocks).

A complete list ()f ASSIGN command options is
given at the end of the chapter. Up to 16 options
can be specified in one ASSIGN command.

42 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Example of ADDRESS and ASSIGN
Commands

The following example shows, in the different
application programming languages, how the
ADDRESS command is used to obtain access to
the 1WA, and how the ASSIGN command is used
to obtain the length of the 1W A. Included is a test
for validity; if there is no 1W A, the ASSIGN
TWALENG command will obtain a length of zero.

ASM

DSHORKA
WAPTR

COUNT

DFHEISTG
TWALENG
CODE

CONTINUE

DSECT
EQU 08
USING DSWORKA,WAPTR

DS H

DSECT
DS H
CSECT
EXEC CICS ASSIGN
TWALENGCTWALENG)
CLC TWALENG,=H'O'
BNH CONTINUE
EXEC CICS ADDRESS
TWACWAPTR)
LH 6,COUNT
LA 6,I(6)
STH 6,COUNT
DS OH

COBOL

WORKING-STORAGE SECTION.
77 TWALENG PIC S9(4) COMPo

LINKAGE SECTION.
01 BLLCELLS.

02 FILLER PIC S9(8) COMPo
02 WAPTR PIC S9(8) COMPo

01 WORKAREA.
02 COUNT PIC S9(4) COMPo

PROCEDURE DIVISION.
EXEC CICS ASSIGN TWALENG
CTWALENG) END-EXEC
IF TWALENG GREATER THAN 0 THEN
EXEC CICS ADDRESS THACWAPTR)
END-EXEC
ADD 1 TO COUNT.

PL/I

DCl TWAlENG FIXED BINC1S);
DCl 1 WORKAREA BASEDCWAPTR),

2 COUNT FIXED BINC1S);

EXEC CICS ASSIGN TWAlENGCTWAlENG)j
IF TWAlENG>O THEN DO;

EXEC CICS ADDRESS TWACWAPTR);
COUNT=COUNT+l;

END;

Assign Command Options

Where any of the following options apply to
terminals or terminal related data, the reference is
always to the principal facility.

ABCODE
specifies a variable that is set to the current
value of the abend code (abend codes are
documented in the GIGS/DOS/VS Messages
and Godes manual). If an abend has not
occurred, the variable is set to blanks. The
format of the value is a 4-byte character
string.

APPlJD
returns the value specified in the APPLID
operand of the DFHSIT system macro for
the system owning the transaction. The
format of the value is an 8-byte character
string.

BTRANS
specifies that the value required is an
indicator showing that the terminal is defmed
as having the background transparency
capability (X'FF'); or not (X'OO'). If the task
is not initiated from a terminal, INVREQ
occurs. The fonnat of the value is a I-byte
character.

COl.OR
specifies that the value required is an
indicator showing that the terminal is defmed
as having the extended color capability
(X'FIi'); or no extended color capability
(X'OO'). If the task is not initiated from a

Chapter 1.6. Access to System Information 43

tenninal, INVREQ occurs. The forrnat of
the value is a I-byte character.

CWAl,ENG
specifies that the length of the CW A is
required. If no CW A exists, a zero length is
returned. No exceptional condition occurs.
The fonnat of the value is halfword binary.

DEI.lIl'tfITER
specifies that the value required is the
dlata-link control character for a 3600, copied
from TCTTEDLM. If the task is not
initiated from a teoninal, INVREQ occurs.
The format of the value is a I-byte character.

DESTCOUNT
This option has two uses.

~t Following a BMS ROUTE command, it
specifies that the value required is the
number of different terminal types in the
route list, and hence the number of
overflow control areas that may be
required. A zero value is returned if fast
path BMS only is in use.

• Within BMS overflow processing,
specifies that the value required is the
relative overflow control number of the
destination that has encountered
overflow. If this option is specified when
overflow processing is not in effect, the
value obtained will be meaningless. If no
BMS commands have been issued,
INVREQ occurs.

The format of the value is halfword binary.

See "Routing and Page Overflow" on
page 201.

DESTID
specifies that the value required is the
identifier of the outboard destination, padded
with blanks on the right to eight characters.
If this option i~ specified before a batch data
interchange command has been issued in the
task, INVREQ occurs. The fonnat of the
value is an 8-byte character string.

DESTIDLENG
specifies that the value required is the length
of the destination identifier obtained by
DESTID. If this option is specified before a
batch data interchange command has been
issucd in the task, INVREQ occurs. The
fonnat of the value is halfword binary.

EXTDS
specifies that the value required is an
indicator showing that the terminal is defmed
as having the extended data stream capability
(X'FF'); or no extended data stream
capability (X'OO'). If this option is specified
and there is no TCTTE for the task,
INVREQ occurs. The fonnat of the value is
a I-byte character.

FACILITY

FCI

specifies that the value required is the
identifier of the facility that initiated the
transaction. The value is copied from the
first four bytes pointed at by TCAFCAAA.
If this option is specified, and there is no
allocated facility, INVREQ occurs.

Note: You should always use the QNAME
option (described on page 47) to get the
name of the transient data intrapartition
queue whose trigger level caused the
transaction to be initiated. The fonnat of the
value is a 4-byte character string.

specifies that the value required is the facility
control indicator, copied from TCAFCI, that
indicates the type of facility associated with
the transaction, for example, X '0 I' indicates a
terminal or logical unit. The obtained value
is always returned. No exceptional condition
occurs. The fonnat of the value is a I-byte
character.

GCHARS
specifies that the value required is the graphic
character set global identifier (the GCSGID).
The value is a number between I and 65,534
representing the set of graphic characters that
can be input or output at the terminal. If the
task is not initiated from a terminal,

44 CICS/DOS/VS Application Programmer's Reference Manual (Command Level)

INVREQ occurs, The format of the value is
halfword binary,

GCODES
specifies that the value required is the code
page global identifier (the CPGID). The
value is a number between 1 and 65,534
representing the EBCDIC code page derming
the code points for the characters that can be
input or output at the terminal. If the task is
not initiated from a terminal, INVREQ
occurs. The format of the value is halfword
binary.

HILIGHT
specifies that the value required is an
indicator showing that the terminal is dermed
as having the extended highlight capability
(X'FF'); or no extended highlight capability
(X'OO'). If this option is specified and there is
no TCTTE for the task, INVREQ occurs.
The format of the value is a I-byte character.

INPARTN
specifies that the value required is the name
of the most recent input partition. If the task
is not initiated from a terminal, INVREQ
occurs. The format of the value is a 1- or
2-character name.

KATAKANA
specifies whether the principal facility
supports KA T AKANA., If the task is not
initiated from a terminal, INVREQ occurs.
The format of the value is a I-byte character.

LDCMNEM
specifies that the value required is the logical
device code (LDC) mnemonic of the
destination that has encountered overflow. If
this option is specified when overflow
processing is not in effect, the value obtained
will be meaningless. If no BMS commands
have been issued, INVREQ occurs. The
format of the value is a 2-byte character
string.

LDCNUM
specifies that the value required is the LDC
numeric value of the destination that has
encountered overflow. This indicates the type

of the LDC, such as printer or console. If
this option is specified when overflow
processing is not in effect, the value obtained
will be meaningless. No exceptional
condition occurs. The format of the value is
a I-byte character.

MAP COLUMN
specifies that the value required is the number
of the column on the display containing the
origin of the most recently positioned map.
If no map has yet been positioned, or if BMS
routing is in effect, INVREQ occurs. The
format of the value is half word binary.

MAPHEIGHT
specifies that the value required is the height
of the most recently positioned map. If no
map has yet been positioned, or if BMS
routing is in effect, or if the task is not
initiated from a terminal, INVREQ occurs.
A zero value is returned if fast path BMS
only is in use. The format of the value is
halfword binary.

MAPlJNE
specifies that the value required is the number
of the line on the display containing the
origin of the most recently positioned map.
If no map has yet been positioned, or if BMS
routing is in effect, or if the task is not
initiated from a terminal, INVREQ occurs.
A zero value is returned if fast path BMS
only is in use. The format of the value is
halfword binary.

MAPWIDTH
specifies that the value required is the width
of the most recently positioned map. If no
map has yet been positioned, or if BMS
routing is in effect, or if the task is not
initiated from a terminal, INVREQ occurs.
A zero value is returned if fast path BMS
only is in use. The format of the value is
halfword binary.

MSRCONTROL
specifies that the value required is an
indicator showing that the terminal supports
magnetic slot reader (MSR) control (X'FF')
or does not (X'OO'). If the task is not

Chapter 1.6. Access to System Information 45

initiated from a terminal, INVREQ occurs.
The format of the value is a I-byte character.

NE1NAME
specifies that the value required is the name
of the logical unit in the VT AM network. If
the task is not initiated from a terminal,
IlNVREQ occurs. The format of the value is
an 8-byte character string.

NUMI'AB
specifies that the value required is the number
of the tabs required to position the print
element in the correct passbook area of the
2980. If this option is specified and there is
no TCTfE for the task, INVREQ occurs.
The format of the value is a I-byte character.

OPCLASS
specifies that the value required is the
operator class, copied from TCTTEOCL. If
this option is specified and there is no
lrCTfE for the task, INVREQ occurs. The
format of the value is a 3-byte character
s.tring.

OPERKEYS
specifies that the value required is the eight '
byte operator security key, copied from fields
in the TCTTE. If this option is specified and
there is no TCTTE for the task, INVREQ
occurs. The format of the value is an 8-byte
Gharacter string.

OPID
8pecifies that the value required is the
operator identification, copied from
TCTTEO I. If this option is specified and
there is no TCTTE for the task, INVREQ
occurs. The format of the value is a 3-byte
lcharacter string.

OPSECURITY
'specifies that the value required is the
operator security key, copied from
TCTTESK. If this option is specified and
there is no TCTTE for the task, INVREQ
occurs. This option returns only the 24-bit
mask corresponding to operator security key
values 1 through 24. For the 64-bit mask use

the OPERKEYS option. The format of the
value is a 3-byte character string.

OUTLINE
specifies that the value required is an
indicator showing that the tenninal is defmed
as having the field outlining capability
(X'FF'); or not (X'OO'). If the task is not
initiated from a terminal, INVREQ occurs.
The format of the value is a I-byte character.

PAGENUM
specifies that the value required is the current
page number for the destination that has
encountered an overflow. If this option is
specified when overflow processing is not in
effect, the value obtained will be meaningless.
A zero value is returned if fast path BMS
only is in use. If no BMS commands have
been issued, INVREQ occurs. The format of
the value is halfword binary.

PAR1NPAGE
specifies that the value required is the name
of the partition that most recently caused
page overflow. A blank value is returned if
partitions are not in use, or if BMS fast-path
is in use. If no BMS commands have been
issued, INVREQ occurs. The format of the
value is a 1- or 2-character name.

PAR1NS
specifies that the value required is an
indicator showing that the tenninal supports
partitions (X'FF') or does not (X'OO'). If the
task is not initiated from a tenninal,
INVREQ occurs. The format of the value is
a I-byte character.

PARlNSET
specifies that the value required is the name
of the application partition set. A blank
value is returned if there is no application
partition set. If the task is not initiated from
a terminal, INVREQ occurs. The format of
the value is a 1- through 6-character name.

PRINSYSID
specifics that the value required is the name
of the TCTSE (terminal control table system
entry) associated with the principal facility. If

46 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

PS

there is no TCTTE for the task or if th(~
principal facility is not an LU6 or MRO
session, INVREQ occurs. The format of the
value is a 4-byte character string.

specifies that the value required is an
indicator showing that the terminal is dermed
as having the programmed symbols capability
(X'FF'); or no programmed symbols
capability (X'OO'). If this option is specified
and there is no TCTTE for the task,
INVREQ occurs. The format of the value is
a I-byte character.

QNAME
specifies that the value required is the name
of the transient data intrapartition queue that
caused this task to be initiated by reaching its
trigger level. If the task is not initiated by
automatic task initiation (ATI), INVREQ
occurs. The format of the value is a 4-byte
character string.

RESTART
specifies that the value required is an
indicator showing whether a restart of the
task (X'FF'), as opposed to a normal start of
the task (X'OO'), has occurred.

SCRNHT
specifies that the value required is the height
of the current 3270 screen. If this option is
specified and there is no TCTTE for the task,
INVREQ occurs. The format of the value is
halfword binary.

SCRNWD
specifies that the value required is the width
of the current 3270 screen. If this option is
specified and there is no TCTTE for the task,
INVREQ occurs. The format of the value is
halfword binary.

SIGDATA
specifies that the value required is the signal
data received from a logical unit, copied from
TCTESIDI. If this option is specified and
there is no TCTTE for the task, INVREQ
occurs. The format of the value is a 4-byte
ch~acter string.

SOSI
specifies that the value required is an
indicator showing that the terminal is dermed
as having the mixed EBCDICjDBCS fields
capability (X'FF'); or not (X'OO'). The
OBCS subfields within ail EBCDIC field are
delimited by SO (shift out) and SI (shift in)
characters. If the task is not initiated from a
terminal, INVREQ occurs. The format of
the value is a I-byte character.

STARTCODE
specifies that the value required is a code
indicating how a transaction has been started.
The format of the value is a 2-byte character
string which can have the following values:

Code Tx started by

QD Transient data trigger level
S START command (no data)
SD START command (with data)
TD Terminal input
U User-attached task

STATIONID
specifies that the value required is the station
identifier of a 2980. If this option is specified
and there is no TCTTE for the task,
INVREQ occurs. The format of the value is
a I-byte character.

SYSID
specifies that the value required is the name
given to the local CICS system. This value
may be specified in the SYSID option of a
file control, interval control, temporary
storage, or transient data command, in which
case the resource to be accessed is assumed to
be on the local system. The format of the
value is a 4-byte character string.

TCTUAl,ENG
specifies that the value required is the length
of the terminal control table user area
(TCTUA). If no TCTUA exists, a zero
length is returned. No exceptional condition
occurs. The format of the value is halfword
binary.

Chapter 1.6. Access to System Information 47

TELLERID
specifies that the value required is the teller
identifier of a 2980. If this option is specified
and there is no TCTTE for the task, the
INVREQ condition occurs. The format of
the value is a I-byte character.

TERl\-l[CODE
specifies that the value required is a code
giving the type and model number of the
terminal associated with the task, copied from
TCTTETT and TCTTETM. If the code
returned in TCTTETT is TCTELU6, an
EXEC CICS INQUIRE CONNECTION
command can be executed to detemline if this
][SC session is using LU61 or APPC
protocols. If this option is specified and there
is no TCTTE for the task, INVREQ occurs.
The fonnat of the value is a 2-byte character
atring.

lWA1LENG
:specifies that the value required is the length
IOf the transaction work area (TWA). If no
TWA exists, a zero length is retunled. No
exceptional condition occurs. The fonnat of
the value is halfword binary.

UNATIEND
specifies that the value required is a code
indicating that the mode of operation of the
terminal is unattended (X'FF') or attended
(X'OO'), copied from TCTEMOP. If this
option is specified and there is no TCTTE for
the task, INVREQ occurs. The format of the
value is a I-byte character.

USERID
specifies that the value required is the user
identifier of whoever is signed on. This
option will return a null string when there is
no user identifier. If the task is not initiated
from a terminal, INVREQ occurs. The
fonnat of the value is an 8-byte character
string.

VALIDATION
specifies that the value required is an
indicator showing that the terminal is defmed
as having the validation capability (XCFF')
consisting of the mandatory fill, mandatory
enter, and trigger attributes. No validation
capability is indicated by (X'OO'). If this
option is specified and there is no TCTTE for
the task, INVREQ occurs. The format of the
value is a I-byte character.

48 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 1.7. Execution (Command Level) Diagnostic Facility

The Execution (Command Level) Diagnostic
Facility (EOF) enables you to test a command
level application program online without modifying
the program or the program preparation procedure.
EOF intercepts execution of the application
program at various points and displays information
about it at/these points. Also displayed are any
screens sent by the application program, so that
you can converse with the application program
during testing just as a user would on the
production system.

BOF can only be used to test user application
programs; it cannot be used for system transactions
that use the command level interface. User
application programs that are to be debugged using
EOF must be assembled (or compiled) with the
translator option EOF, which is the default. If you
specify NOEDF, the program cannot be debugged
using EDF.

EOF runs as a CICS transaction. You start it by a
transaction identifier (CEOF) or by a PF key
named in the program control table (the PCT).
You must also ensure that the programs and maps
that are used by EO F are specified in the
processing program table (the PPT). EOF uses
temporary storage and BMS. You can only use
EOF from a 3270 terminal that has a screen width
of 80 columns or more and a screen depth of 24
lines or more.

EOF is a command level diagnostic aid only, and
unpredictable results may occur if macro
instructions are coded, or the terminal control tabl~
(the TCT) is in application programs monitored by
EDF.

When the CEO F initialization screen is being
displayed and a COBOL program is the fust to be
executed, this program is locked and any attempt to

use it will cause a wait until CEDF initialization is
complete. At this time, if the task is abended the
program will remain locked until a master terminal
NEWCOPY command is executed to unlock it.

When using single screen mode with CEOF,
automatic message joumaling should not be
specified for CEO F or for the user transaction.

If you want to test an application program which
uses partitions, or which does its own request unit
(R U) chaining, (R U chaining is described in
"Chaining of Input Data" on page 244) you must
run EOF on a terminal other than the terminal on
which that application program is executing. In
other words, EDF must be used in dual screen
mode as described in "Invoking EOF" on page 51.

If a SEND LAST command is issued, EDF is
terminated before the command is executed.

Functions of EDF

During execution of a transaction in debug mode,
EDP intercepts the execution of the application
program at the following points:

I. At transaction initialization:

After the EXEC interface block (EIB) has been
initialized; but

Before the application program is given
control.

2. At the start of the execution of every EXEC
CICS and EXEC OLI command:

After the initial trace entry has been made; but

Chapter 1.7. Execution (Command Level) Diagnostic Facility 49

Before the requested action has been
peJfonned.

3. At the end of the execution of every command
(eJC:cept ABEND, XCTL, and RETURN):

Aliter the requested action has been perfonned;
but

Before the HANDLE CONDITION
m(!chanism is invoked; and

Before the response trace entry is made.

4. At program termination.

5. At nonnal task tennination.

6. When an ABEND occurs.

7. A1t abnonnal task tennination.

At all the above points of interception, BDP
displays the current status, by identifying the cause
of int(:rception. In addition:

• At point 1, EDF displays the contents of the
fidds in the EIB.

• At point 2, EDF displays the command,
including keywords, options, and argument
values. The command is identified by
transaction identifier, program name, the
hexadecirnal offset within the prograrn, and, if
the program has been translated with the
DEBUG translator option, the line number of
the command as given in the translator source
listing.

• At point 3, EDP displays the same as at point
2, plus the response from command execution.

• At points 6 and 7, EDF displays the values of
the fields in the EIB and the following items:

The abend code;

If the abend code is ASRA (that is, a
program interrupt has occurred), the PSW

at the time of interrupt, and the source of
the interrupt as indicated by the PSW;

If the PSW indicates that the instruction
giving rise to the interrupt is within the
application program, the offset of that
instruction.

You can also display any of the following:

• The values of the fields in the EXEC interface
block (the EIB) and the DL/I interface block
(the DID).

• The program's working storage in hexadecimal
and character fonn.

• The last ten commands executed, including all
argument values, responses, and so on.

• The contents (in hexadecimal) of any address
location within the CICS partition.

At any of these points of interception, you can
interact with the application program in the
following ways:

• If the current command is being displayed
before it is executed, you can modify any
argument value by overtyping the value that is
displayed on the screen. Alternatively, you can
suppress execution of the command (that is,
convert it to a null operation), but you cannot
add or delete options.

• If the current command is being displayed after
it has been executed, you can modify certain
argument values and the response code by
overtyping the displayed value or response with
the required value or response.

• You can modify the program's working storage
and most fields of the EIB and DIB.

• You can request a display of the contents of
any temporary storage queue.

• You can switch off debug mode (except at
point 2) and continue running the application
no nn ally . Alternatively, you can force an
abend.

50 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

• You can request that command displays are
suppressed until one or more of a set of specific
conditions is fulfilled. These conditions are:

A specific named command is encountered.

Any exceptional condition occurs for which
the system action is to raise ERROR.

A specific exceptional condition occurs.

The command at a specific offset or on a
specific line number (assuming the program
had been translated with the DEBUG
option) is encountered.

An abend occurs.

The task terminates normally.

The task terminates abnormally.

Any DL/I error status occurs.

A specific DL/I error status occurs.

Security Rules

If EOP has security required, the user transaction
must have the same type of security. If the security
is external, the transaction must be defmed to that
security manager. To invoke EOP, you must have
a security key that matches the security key defmed
for EOP in the PCT.

In addition, to test a particular transaction, you
must have a security key that matches the security
key for that transaction. If this condition is not
satisfied, the EO F session is terminated
immediately.

By default, resource level security checks will be
made during execution of the transaction under test
unless EOF has been redefmed as not requiring
these checks.

If such checks indicate that you are not allowed
access to the resource, your transaction will be
abended.

Installing EDF

To ensure that EDF is available on the test system,
the system programmer must make one group
entry in the PCT and one group entry in the PPT
(see either the CI CS / DOS / VS Resource Definition
(Online) manual or the CI CS / DOS / VS Resource
Definition (Macro) manual for details of
constructing a PCT and PPT).

EDF can send messages greater than 4K bytes in
length. If you are using VTAM, you should ensure
that your NCP (network control program) can
handle data of this length.

Invoking EDF

You can run EDF on the same terminal as the
transaction to be tested (this is called "single screen
mode"), or on a different terminal ("dual screen
mode"). You cannot use single screen mode if the
transaction to be tested makes use of extended
attributes or partitions.

You start EOF in single screen mode either by:

• Entering transaction code CEOF or

• Pressing the appropriate PF key (if one has
been defmed for EDF).

Next, you start the transaction to be tested by:

• Pressing the CLEAR key to clear the screen

• Entering the transaction code of the transaction
to be tested.

You start EOF in dual screen mode by entering:

CEDF xxxx

on the current terminal. This terminal must be in
TRANSCEIVE status (that is, it can both send and
receive data).

Chapter 1.7. Execution (Command Level) Diagnostic Facility 51

Here "xxxx" is the four-character identifier of the
terminal (termid) on which the transaction to be
tested iB being run. (This identifier is as defmed in
the TRMIONT operand of the OFHTCT
TYPE:= TERMINAL system macro).

If a cornmand level transaction is already running
on that terminal, EOF will associate itself with that
transaction; otherwise it will associate itself with the
next command level transaction started at that
terminal.

The above also applies to a single system. If the
transaction running on the terminal has been
transaction routed, EOF will not associate itself
with it, nor with any other transaction that has
been routed. EOF will associate itself with the
next command level transaction that runs on the
system to which the terminal is connected.

You mlust include the identifier of the session
(sessionid) when you want to test a transaction that
is attached across an MRO or LU6.l session.
Alternatively, you must provide the sessionid to the
system on which the attached transaction is
running. All CICS commands executed by the
attach(:d transaction will be tested.

You can include the identifier of the system (sysid)
when you want to test transactions attached across
LU6.2 sessions. In this case, EOF will associate
itself with the first transaction attached across an
LU6.2 session belonging to the specified system.

You can enter CEDF from a formatted screen.
The effect is the same as if you had pressed the PF
key, that is, the terminal at which CEOF is entered
is put into EOF mode. (No message is issued, so
that the formatted screen remains intact.)

The full format of the command to initiate or
ternunate an EOF session is:

I CEDF [termidlsYSidlsessionid]~
[,.ol!I,OFF1 ~

If you. omit the tenninal identifier, the terminal at
which the CEOF transaction is initiated is
assumed.

You cannot defme CEDF to be a remote
transaction. The only way to test a transaction
running in a connected system is by means of the
routing transaction CR TE. You use CR TE to set
up a routing session with the connected system.
You can then use your terminal in single screen
mode, entering CEOF to invoke BOF within the
routing session. You eannot use P A or PF keys in
a routing session. You cannot use EOF in dual
screen mode if the transaction under test, or the
terminal that invokes it, is owned by a different
system.

EDF Displays

An example of a typical BOF display is given in
Figure 3 on page 53. The five lines at the foot of
the screen provide a menu indicating the effect of
the ENTER and PF keys for that particular
display. If the terminal does not have PF keys, the
same effect can be obtained by positioning the
cursor under the required instruction on the screen
and pressing the ENTER key. The cursor can be
correctly positioned by using the tab keys.

Although the menu may change from one display
to another, no function will move from one key to
another as a result of a menu change.

If the ENTER key is pressed while the cursor is
not positioned within the menu, the function
specified for the ENTER key is performed.

EOP uses the line immediately above the menu to
display messages to the user.

Up to ten displays are remembered and can be
redisplaycd later.

The number at the top right of the screen indicates
the current display number; it is possible to recall
any of the last ten displays, which are numbered
-01, -02, and so on, by overtyping this number.
Alternatively, PFIO and PFII can be used to step
back and forward one display at a time. Note that
PP 10 and PF 11 become undefined if there are no
further displays backward or forward respectively.

52 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

TRANSACTION: MENU PROGRAM: DFH$CMNU
STATUS: COMMAND EXECUTION COMPLETE

EXEC CICS SEND MAP
MAP ('MENU ')
MAPONLY
MAPSET C'DFHtCGA')
TERMINAL
ERASE

OFFSET:X'0005B6'
RESPONSE: NORMAL

ENTER: CONTINUE

LINE:OOOll

TASK NUMBERt 0000023

EIBFN=X'1804'
EIBRESP=O

DISPLAYt 00

PFI : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFIO: PREVIOUS DISPLAY

PF2 : SWITCH HEX/CHAR
PF5 : WORKING STORAGE
PF8 : SCROLL FORWARD
PFll: UNDEFINED

PF3 : END EDF SESSION
PF6 t USER DISPLAY
PF9 : STOP CONDITIONS
PF12: ABEND USER TASK

Figure 3. Typical EDF Display

Argument values can be displayed in character or
hexadecimal format. If character format is
requested, numeric arguments are shown in signed
numeric character format. Each argument value is
restricted to one line of the display; if the value is
too long, only the flIst few bytes are displayed,
followed by " ... " to indicate that the value is
incomplete. If the argument is displayed in
hexadecimal format, the address of the argument is
also displayed. This enables the user to display the
argument value in full by requesting a display of
that location and scrolling if necessary.

The user can overtype any screen area at which the
cursor stops when the tabbing keys are pressed,
such as the response field. For example, the
response can be changed from "NORMAL" to
"ERROR" or some other exceptional condition, so
as to test the program's error handling at this point
in the program. A list of areas that can be
overtyped is given later under "Overtyping EDP
Displays" on page 57.

The response of EDP to a user request is in
accordance with the following order of priority:

1. If the CLEAR key is used, EDF redisplays the
screen with any changes ignored.

2. If invalid changes are made, EDF accepts any
valid changes and redisplays the screen with a
diagnostic message.

3. If the display number is changed, EDF accepts
any other changes and displays the requested
display.

4. If a PF key is used, or the ENTER key is
pressed when the cursor is in the PF key
definition area, EDP accepts any changes and
performs the action requested by the PF key.

5. If the ENTER key is pressed, while the cursor
is not in the PF key defmition area, and the
screen has been modified (other than the
REPLY field), BDP redisplays the screen with
changes included.

6. If the ENTER key is pressed, while the cursor
is not in the PF key defmition area, and the
screen has not been modified (other than the
REPLY field), then if the ENTER key means
CONTINUE, execution of the user transaction
continues, otherwise if the ENTER key means
CURRENT DISPLAY, EDF redisplays the
current status display.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 53

Tennilnal Sharing Between Transaction and
EDF

When both EDF and the user transaction are
sharing the same terminal, ED F restores the user
transaction's display at the following times:

• Whc~n the transaction requires input from the
operator

• Wh,~n the transaction's display is changed

• At the end of the transaction

• When EDF displays are suppressed

• When USER DISPLAY is requested.

When a. SEND command is followed by a
RECEIVE command, the display sent by the
SEND ,command appears twice, once when the
SEND ,command is executed, and again when the
RECEIVE command is executed. It is not
necessary to respond to the SEND command, but
if a response is made, EDF will remember it and
redisplay it when the screen is restored for the
RECEIVE command. The response passed to the
transaction is that which is made to the RECEIVE
command.

When EDF restores the transaction display, it does
not sound the alarm or affect the keyboard in the
same way as the user transaction. The effect of the
user transaction options will be seen when the
SEND command is executed, but not when the
screen is restored.

For sarne terminal use, when EDF restores the
transaction display on a device that uses color,
prograrnmed symbols, or extended highlighting, the
attributes will no longer be present and the display
will be in monochrome with no programmed
symbolls, or extended highlighting.

If the inbound reply mode in the application
progralTI is set to character (to enable the attribute
setting keys) EDF will reset this mode causing
these keys to be disabled.

When EDF restores the transaction display, it locks
the keyboard until the transaction issues a

RECEIVE command, at which time EDF frees the
keyboard.

If the EDF session is terminated part way through
the transaction, EDF restores the screen with the
keyboard locked if the last send/receive to the
terminal is a RECEIVE command; otherwise, the
keyboard is unlocked. This will usually, but not
always, match the normal behavior of the
transaction.

Program Function (PF) Keys

The following list explains the meanings of the
program function (PF) keys. Where a terminal has
24 PF keys, EDF treats PF13 through PF24 as
duplicates of PF 1 through PF 12 respectively.

ABEN» USER TASK
terminates the task. EDF asks you to
confirm this action by displaying the message
"ENTER ABEND CODE AND REQUEST
ABEND AGAIN." After entering the code at
the position indicated by the cursor, the user
must request this function again to abend the
task with a transaction dump identified by the
specified code. If "NO" is entered, the task
will be abended without a dump.

Abend codes beginning with the character A
are reserved for use by CICS. Use of a CICS
abend code may cause unpredictable results.

This function cannot be used if an abend is
already in progress or the task is terminating.

BROWSE TEMP STORAGE
produces a display of the temporary storage
queue CEBRxxxx, where xxxx is the terminal
identifier. The queue name can be changed
by using CEBR commands. The CEBR
transaction is described in "Chapter 1.9.
Temporary Storage Browse" on page 69.

CONTINUE
causes the user transaction to continue unless
the screen has been modified. In the latter
case, EDF redisplays the screen with changes
incorporated.

54 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

CURRENI' DISPLAY
displays the screen that was being displayed
before the user started examining other
displays, such as remembered displays, unless
the screen has been modified. In the latter
case, EDF redisplays the screen with changes
incorporated.

DIB DISPLAY
shows the contents of the DIB; see "DL/I
Interface Block (DIB)" on page 108 for a
description of the fields in the DIB.

EIBDISPLAY
shows the contents of the EIB and
COMMAREA (if any); see
Appendix A, "EXEC Interface Block" on
page 413 for a description of the fields in the
EIB.

END EDF SESSION
ends the debugging session, and takes the
terminal out of debug mode. The user
transaction continues.

NEXT DISPLAY
used when examining displays, to step on to
the next remembered display. Repeated use
stops at the current display, when the "next
display" key is no longer available.

PREVIOUS DISPLAY
shows the latest remembered display.
Repeated use stops at the earliest remembered
display. Further use merely causes the
earliest remembered display to be redisplayed.

REGISTERS AT ABEND

displays storage containing the values of the
registers in the event of an ASRA abend.
The layout of the storage is as follows:

• PSW at abend (8 bytes)

• Register values (0 through 15).

In some (very rare) cases, when a second
program check occurs in the system before
EDF has captured the values of the registers,
this function will not appear on the menu of

the abend display. If this happens, a second
test run will generally prove to be more
informative.

REMEMBER DISPLAY
places a display that would not normally be
remembered, such as an EIB display, in the
memory. (Normally, only the command
displays are remembered.) The memory can
hold up to ten displays. All pages associated
with the display are remembered (and can be
scrolled when recalled) except for storage
displays where only the page currently
displayed is remembered.

SCROLL BACK
scrolls a command or EIB display backward.
A plus sign (+) against the frrst option or
field indicates there are more options or fields
preceding.

SCROlJ.I BACK FULL
scrolls a working storage display a full screen
backward, displaying lower addresses.

SCROI.J.I BACK HALF
scrolls a working storage display half a screen
backward, displaying lower addresses.

SCROLL FORWARD
scrolls a command or EIB display forward.
A plus sign (+) against the last option or
field indicates there are more options or fields
fonowing.

SCROLl, FORWARD HALF
scrolls a working storage display half a screen
forward, displaying higher addresses.

SCROLIJ FORWARD FUIJI.I
scrolls a working storage display a full screen
forward, displaying higher addresses.

STOP CONDITIONS
displays, as shown in Figure 4 on page 56, a
skeleton menu with which the user can
specify one or more conditions that will cause
EDP to stop the user transaction, and start
redisplaying commands, after displays have
been suppressed by the SUPPRESS
DISPLAYS function.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 55

TRANSACTION: XABC PROGRAM: UPDATE TASK NUMBER: 0000111 DISPLAYI 00
DISPLAY ON CONDITION:

COMMAND: EXEC CICS
OFFSET:
LINE NUMBER:
CICS EXCEPTIONAL CONDITION:
ANY CICS ERROR CONDITION
TRANSACTION ABEND
NORMAL TASK TERMINATION
ABNORMAL TASK TERMINATION

DLI ERROR STATUSI
ANY DLI ERROR STATUS

'X' '

YES
YES
YES
YES

YES

ENTER: CURRENT DISPLAY
PF1 : UNDEFINED PF2 I UNDEFINED PF3 : UNDEFINED

PF6 t USER DISPLAY
PF9 I UNDEFINED

PF4 I SUPPRESS DISPLAYS
PF7 : UNDEFINED

PF5 I WORKING STORAGE
PF8 I UNDEFINED

PF1ClI t UNDEFINED PF11: UNDEFINED PF121 REMEMBER DISPLAY

Figure 4. "Stop-Conditions" Display

These functions are used to reduce the
amount of operator intervention required to
check out a program that is partly working.

The transaction can be stopped:

• When a specified type of command is
reached.

• When a specified exceptional or error
condition occurs during execution of a
command.

• When a specified offset or line is reached.

• At transaction abend.

• At normal task termination.

• At abnormal task termination.

The line number, which will be available on
the source listing if the program has been
translated using the DEBUG translator
option, must be specified exactly as it appears
on the listing, including leading zeros, and
Inust be the line on which a command starts.

The offset specified must be the offset of the
BALR instruction corresponding to the
command.

The correct line can be determined easily
from the translator output listing. The offset
can be determined from the code listing
produced by the assembler or compiler.

Por transactions that contain DLI
commands, the qualifier CICS on the
command line can be overtyped with DLI to
specify a DLI command. Also, the
transaction can be stopped when a specified
error status, or any error status, occurs.

SUPPRESS DISPLAYS
suppresses all EDF displays until the next
stop condition occurs.

SWITCH HEX/CHAR
switches the display between hexadecimal and
character representation. This is a mode
switch; subsequent displays will stay in the
chosen mode until the next time this key is
pressed. This switch has no effect on
previously remembered displays, stop
condition displays, and working storage
displays.

56 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

UNDEFINED
means that this key is not available with this
type of display.

USER DISPLAY
shows what the user would see if the terminal
was not in EDF mode. Hence, this function
is usable only for same terminal checkout.

WORKING STORAGE
displays the program's working storage, in a
form similar to that of a dump listing, that is,
in both hexadecimal and character
representation. When this key is used, two
additional scrolling keys are provided, and
other PF keys allow the EIB (and the DIB if
a DL/I command has been processed by
EDF) to be displayed.

The meaning of "working storage" depends
on the programming language of the
application program, as follows:

ASM
The storage defmed in the current
DFHEISTG DSECT.

COBOL

PL/I

All data storage defined in the
WORKING-STORAGE section of the
program.

The dynamic storage area (DSA) of the
current procedure.

Except for COBOL programs, working
storage starts with a standard format save
area, that is, registers 14-12 are stored at
offset 12 and register 13 at offset 4.

Working storage can be changed at the
screen; either the hexadecimal section or the
character section may be used. Also, the
ADDRESS field at the head of the display
can be overtyped with a hexadecimal address;
storage starting at that address will then be
displayed when ENTER is pressed. This
allows any location in the partition to be
examined. Further information on the use of

overtyping is given later under "Overtyping
EDP Displays."

If the storage examined is not part of the
user's working storage (which is unique to the
particular transaction under test), the
corresponding field on the screen is inhibited
to prevent the user from overwriting storage
that can affect more than one task in the
program.

If the initial part of a working storage display
line is blank, the blank portion is not part of
working storage. This can occur because the
display is doubleword aligned.

At the beginning and end of a task, working
storage is not available. In these
circumstances, EDF generates a blank storage
display so that the user can still examine any
storage area in the partition by overtyping the
address field.

Overtyping EDF Displays

As mentioned above, certain areas of an EDF
display can be overtyped. These areas can be
identified by use of the tab keys; the cursor stops
only at fields that can be overtyped (excluding fields
within the menu).

• Any command can be overtyped with
"NOOP" or "NOP" before execution; this
suppresses execution of the command. Use of
the ERASE EOP key, or overtyping with
blanks, will give the same effect. When the
screen is redisplayed with NOOP, the original
verb line can be restored by erasing the whole
verb line with the ERASE EOP key.

• Any argument value can be overtyped, but not
the keyword of the argument. An optional
argument cannot be removed, nor can an
option ,be added or deleted. Overtyping must
not extend beyond the argument value
displayed. Any modification that is not
overtyping of the displayed value is ignored (no
diagnostic message being generated). When an
argument is displayed in hexadecimal format,
the address of the argument location is also
displayed.

Chapter 1.7. Execution (Command Level) Diagnostic Facility 57

• Numeric values always have a sign field, which
can be overtyped with a minus or a blank only.

• The response field can be overtyped with the
natne of any exceptional condition, including
ERROR, that can occur for the current
function, or with the word "NORMAL". The
effec:t when EDF continues will be that the
program will take whatever action has been
pres1cribed for the specified response.

I • The EIBRCODE and EIBRESP fields, when
I displayed as part of the EXEC interface block,
I can be overtyped with any desired hexadecimal
I codes. This does not apply when these fields
I are part of a command display.

When a field representing a data area of a program
is overtyped; the entered value is placed din~ctly
into the application program's storage. On the
other hand, before execution of a command, when
a field representing a data value (which may
possibly be a constant) is overtyped, a copy of the
field is used; thus, other parts of the program that
might use the same constant for some unrelated
purpose will not be affected by the change. If, for
example:, the map name is overtyped before
executing a SEND MAP command, the map
actually used temporarily is the map with the
entered name; but the map name displayed on
response will be the original map name. (The
'''previous display" key can be used to display the
map n3.1me actually used.)

When an argument is to be displayed in character
format, some of the characters may not be
displayable (including lowercase characters). EDF
replaces each nondisplayable character by a. period.
When overtyping a period, the user must be aware
that the storage may in fact contain a character
other than a period, the user may not overtype any
character with a period; if this is done, the change
is ignored and no diagnostic message is issued.
Similarly, when a value is displayed in hexadecimal
format, overtyping with a blank character is ignored
and no dia.gnostic message is issued.

When storage is displayed in both character and
hexadecimal format and changes are made to both,
the value of the hexadecimal field will take

precedence should the changes conflict; no
diagnostic message is issued.

If invalid data is entered, the result is as follows,
regardless of the action requested by the user:

• The invalid data is ignored;

• A diagnostic message is displayed;

• The alarm is sounded if the terminal has the
alann feature.

EDF does not translate lowercase characters to
uppercase. If uppercase translation is not specified
for the terminal in use, the user must take care to
enter only uppercase characters.

Checking Pseudoconversational
Programs

On termination of the task, EDF displays a
message saying that the task is terminated and
prompting the user to specify whether or not debug
mode is to continue into the next task. This is to
allow realistic debugging of pseudoconversational
programs. If the terminal came out of debug mode
between the tasks involved, each task would start
with fresh EDF settings, and the user would not be
able, for example, to display screens remembered
from previous tasks.

Program Labels

Some commands, such as HANDLE
CONDITION, require the user to specify a
program label. The form of the display program
labels depends on the programming language in
use:

• Por assembler language, the offset of the
program label is displayed; for exatnple,
ERROR (X'00030C')

• Por COBOL, a null argument is displayed: for
example, ERROR ()

58 ClfCS/DOSjVS Application Programmer's Reference Manual (Command Level)

• For PL/I, the address of the label constant is
displayed; for example, ERROR
(X'OO 1 DOO 16').

If no label value is specified on a HANDLE
CONDITION command, EDF displays the
condition name alone.

EDF and EXEC DLI Commands

EDP supports EXEC DLI commands in the same
way as it supports EXEC CICS commands.
However, the following minor differences should be
noted:

• The two-character DL/I status code appears in
the RESPONSE field and the EIBRCODE
field is not displayed. The status code can be
displayed in character or hexadecimal format.
If the status code is changed to an invalid
value, or to a value that would have caused
DL/I to abend the user task, a warning

TRANSACTION, XDLI PROGRAMs UPDATE
STATUS. COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT

USING PCB (+00003)

FIRST
SEGMENT ('A ')
INTO (' ')
SEGLENGTH (+00012)

FIRST
VARIABLE

+SEGMENT ('B ')

OFFSET,X'000246'
RESPONSE: 'AD'

ENTER: CONTINUE

LINE: 00000510

message is issued before continuing the user
task.

• For commands that generate more than one
CALL statement, the offset is that of the last
CALL.

• Por the WHERE option, only the keyfield
value (the component following each
comparison operator) can be converted to
hexadecimal. The address shown for this .
option is that of the keyfield value. All the
components of a WHERE option, including
comparison and boolean operators, can be
overtyped.

• For transactions that contain EXEC DLI
commands, the DL/I interface block can be
displayed, and additional stop conditions can
be specified.

Examples of typical displays for an EXEC DLI
command are given in Figure 5, and in Figure 6
on page 60.

TASK NUMBER, 0000111 DISPLAY: 00

EIBFN,X'OOOC'

PFI , UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 , SCROLL BACK
PFI0: PREVIOUS DISPLAY

PF2 I SWITCH HEX/CHAR
PF5 : WORKING STORAGE
PF8 , SCROLL FORWARD
PFllz UNDEFINED

PF3 I END EDF SESSION
PF6 : USER DISPLAY
PF9 I STOP CONDITIONS
PFI2, ABEND USER TASK

Figure s. First Page of Typical EXEC DLI Display

Chapter 1.7. Execution (Command Level) Diagnostic Facility 59

TRANSACTION: XDLI PROGRAM: UPDATE TASK NUMBER. 0000111 DISPLAY: 00
STATUS. COMMAND EXECUTION COMPLETE
EXEC DLI GET NEXT

FIRST
SEGMENT (IC I)
SEGLENGTH (+00010)
LOCKED
INTO (ISMITH ')
WHERE (ACCOUNT = '12345')
FIELDLENGTH (+00005)

OFFSET.X'000246'
RESPONSE. 'AD'

LINE: 00000510 EIBFN:XIOOOC'

ENTER: CONTINUE
PFI : UNDEFINED
PF4 : SUPPRESS DISPLAYS
PF7 : SCROLL BACK
PFI0: PREVIOUS DISPLAY

PF2 r SWITCH HEX/CHAR
PF5 • WORKING STORAGE
PF8 • SCROLL FORWARD
PFI1. UNDEFINED

Figure Ci. Second Page of Typical EXEC DLI Display

60 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

PF3 : END EDF SESSION
PF6 : USER DISPLAY
PF9 • STOP CONDITIONS
PFI2: ABEND USER TASK

Chapter 1.S. Command Level Interpreter

The command level interpreter enables CICS
commands to be entered, syntax checked, and
executed interactively at a 3270 screen. The
interpreter performs a dual role in the operation of
a CICS system.

• For the application programmer, it provides a
reference to the syntax of the whole of the
CICS command level application programming
interface (excluding DL/I). Most of the
commands can be carried through to execution,
and the results of execution can be displayed.
However, the interpreter cannot be used to
execute corrunands that refer to partitions.
This is because the display cannot be restored
after the screen has been partitioned.

• For the system programmer, it provides a
means of interaction with the system. For
example, a corrupted data base record can be
"repaired", a temporary storage queue can be
created or deleted, and so on. It provides a
useful extension to the facilities provided by the
master terminal transaction CEMT.

Invoking the Command Level
Interpreter

The command level interpreter is a CICS
application program and runs as a CICS
transaction. It is started by the transaction
identification of "CECI", or "CECS", followed
optionally by the command.

The general format is:

CECIICECS [command]

where "command" can be any of the CICS
commands (except EXEC D LI) described
throughout this manual.

The use of CECI will give the full facilities of the
interpreter right through to execution of the
command.

For example, entering:

CECI READ DATASETC'FIlEA')

will give the screen display shown in Figure 7.
Note that a severe error message (indicated by S) is
displayed near the bottom of the screen.

If you are trying this command using the
pregenerated system, as described in the
CICS/ DOS/ VS Installation and Operations Guide,
you must first sign on as one of the operators
defmed in the sample sign-on table, with
RSLKEY = I. See also "Security Rules" on
page 68.

Modifying the command input to:

READ DATASETC'FIlEA') RIDFlDC'009000')

will give the screen display shown in Figure 8.
The error message has disappeared because the
requested record identification field has been
supplied.

The command is now ready to be executed, and
this is achieved simply by pressing the ENTER
key. The display shown in Figure 9 will appear
showing the result of execution.

It is possible to prevent unauthorized access by the
interpreter to resources such as data sets. Refer to
the security rules later in the chapter.

Chapter 1.8. Command Level Interpreter 61

A question mark (?) before the command always
gives the command syntax check display and
preven1ts command execution.

The use of CECS forces a question mark before the
comm~tnd. This always gives the command syntax
check display and prevents command execution. In
a systeln where security is important, CECS can be
made IJnore widely available than CECI.

Scre4en Layout

The command interpreter uses a basic screen layout
of four areas, as shown in Figure 7 on page 63.
These areas are:

• Command, Input Area (the frrst line of the
screen)

• Status Area (the second line of the screen)

• Information Area (21 tines on a 24 x 80
display)

• PF Key Values Area (the last line of the
scn~en).

C0lDD11and Input Area

This is the flrst line of the screen. The command,
whose syntax is to be checked, or which is to be
executed, is entered on this line, either in the
normal format described in "Chapter 1.2.
Comm~md Format and Argument Values" on
page 5 and as illustrated throughout this manual,
or in an abbreviated or condensed form that
reduces the number of keystrokes involved. The
condensed form of the command is obtained as
follows:

• The keywords EXEC CICS are optional.

• The options of a command can be abbreviated
to ~LI1y number of characters sufficient to make
theln unique. Valid abbreviations are shown in
uppercase characters in syntax displays.

• The quotes around character strings are
optional, and all strings of characters will be
treated as character-string constants unless they
are preceded by an ampersand (&) in which
case they are treated as variables, as described
on page 65.

• Options of a command that receive a value
from CICS when the command is executed are
called "receivers", and need not be specified.
The value received from CICS will be included
in the syntax display after the command has
been executed.

The following example shows the condensed form
of a command. The ftIe control command:

EXEC CICS READ DATASE'TC'FILEA')
RIDFLDC'009000') INTOCdata-area)

can be entered on the command input line, as:

READ DATCFILEA) RIDC009000)

or at a minimum, as:

READ DCFILEA) RC009000)

here, the INTO option is a receiver (as defmed
above), and can be omitted.

Status Area

This is the second line of the screen. It will contain
one of the following:

• COMMAND SYNTAX CHECK
• ABOUT TO EXECUTE COMMAND
• COMMAND EXECUTION COMPLETE (or

COMMAND NOT EXECUTED)
• EIB DISPLAY
• VARIABLES
• ERROR MESSAGES
• EXPANDED AREA

This status line describes the type of information in
the immediately following information area of the
display.

62 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

READ DATASET('FILEA')
STATUS. COMMAND SYNTAX CHECK

EXEC CICS READ
DAtasetC 'FILEA ')
< SYsid() >
SEt() I IntoC)
< Length() >
RIdfld()
< KeylengthC) < GEneric> >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

S RIDFLD MUST BE SPECIFIED.

NAME=

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 7. "Command Syntax Check" Display

Infonnation Area

This area consists of the remainder of the screen
between the "command input" and "status" areas
at the top, and "PF key values" at the bottom of
the screen. This area is used to display the syntax
of the entered command, error message
information, the response to execution, and any
other information that can be obtained by using the
PF keys or the cursor.

A line at the bottom of this area is reserved for
messages that describe errors in the conversation
with the user (for example, "INVALID PACKED
DECIMAL"). These messages are intensified to
attract attention.

Command Syntax Check

When this status message appears (as shown in
Figure 7), it indicates that the command which has
been entered on the command input line has been
syntax checked but is not about to be executed.
This will always be the status for CECS or for
CECI with a question mark before the command.
It is also the status when the syntax check of the
command gives severe error messages and for those
commands which are not executable (for example,
HANDLE CONDITION and HANDLE AID).

The INFORMATION AREA of the display for
"Command Syntax Check", "About to Execute
Command", and "Command Execution Complete"
contains information common to all three displays.

The full syntax of the command is displayed
together with error information at the foot of the
display. Options in the syntax panel are intensified
to show those specified on the command input line,
those assumed by default, and any "receivers".

You can modify the command on the command
input line at any time by overtyping and pressing
ENTER.

When an argument is to be displayed in character
format, some of the characters may not be
displayable (including lowercase characters). CECI
replaces each nondisplayable character by a period.
When overtyping a period, you must be aware that
the storage may in fact contain a character other
than a period. You cannot overtype any character
with a period; if you do, the change is ignored and
no diagnostic message is issued. Similarly, when a
value is displayed in hexadecimal format,
overtyping with a blank character is ignored and no
diagnostic message is issued.

Chapter 1.8. Command Level Interpreter 63

RE:AD DATASET(' FIlEA') RIDFlD(' 009000')
STATUSa ABOUT TO EXECUTE COMMAND

E:XEC CICS READ
DAtaset('FIlEA ')
< SYsid() >
SEt() I Into()
< length() >
RIdfld('009000')
< Keylength() < GEneric> >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

NAME=

PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 8. "About to Execute Command" Display

If you need to overtype a character with a period,
you can do so by switching the display to
hexadecimal fonnat, using PF2, and overtyping
with heJt 4B.

If the command has more opiions than can be held
in one display, a plus sign (+) will appear at the
left-hand side of the last option of the current
display to indicate that there are more. These can
be displayed by using one of the scrolling PF keys.

The syntax display differs slightly from the syntax
shown throughout the manual in the following
ways:

• Square brackets [] are replaced by the less-than
and greater-than symbols < >.

• Braces { } are not used. If a mandatory option
is mnitted, an error message will be displayed
and execution will not proceed until the option
has been specified.

• Parentheses () are used to indicate that an
option requires a value or data field but none
has been specified.

The error infonnation consists either of a single
error message or an indication of the number and
severity of the messages generated.

The NAME = field on the syntax display can be
used to create a variable containing the current
command. (See the description of a variable later
in the chapter.)

About to Execute Command

This display (as shown in Figure 8) appears when
none of the reasons for stopping at Command
Syntax Check apply. Option values can be
modified by overtyping them in the syntax panel.

This is a temporary modification for the duration
of the command and does not affect the command
input line. It is similar to the modification of
option values that is possible with EDF when
debugging an application program.

64 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

READ DATASETC'FILEA') RIDFLDC'009000')
STATUS. COMMAND EXECUTION COMPLETE

EXEC CICS READ
DAtasetC 'FILEA ')
< SYsidC) >
SEtC) I

NAME=

IntoC 'U009000I. COLLINGTON SURREY, ENGLAND 0987654321 ' ...)
< LengthC +00080) >
RIdfidC '009000')
< KeylengthC) < GEneric> >
< RBa I RRn I DEBRec I DEBKey >
< GTeq I Equal >
< Update >

RESPONSE: NORMAL EIBRESP=+OOOOOOOOOO
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 9. "Command Execution Complete" Display

Command Execution Complete

This display (as shown in Figure 9) appears in
response to the ENTER key after an "about to
execute command" display. The command has
been executed and the results are displayed on the
screen. Any "receivers", whether specified or not,
together with their CICS-supplied values, are
displayed intensified. If the value of an option is
too long for the line, only the frrst part will be
displayed followed by " ... " to indicate there is
more. Positioning the cursor, using the tab key, at
the start of the option value and pressing ENTER
will produce an expanded display of the whole
option value.

Also displayed at the foot of the information area,
is the appropriate response code (for example,
NORMAL) together with the contents of the
EIBRESP field of the EIB.

Note: CECI will return INVREQ for some
commands, even if the selected options are correct,
because CECI checks every option of the invoked
command, some of which may be invalid at
invocation. The command executed is the
command on the command line together with all
receiver parameters.

Because CECI is an interactive transaction, all
commands that execute under its control are
processed as if the NOHANDLE option were
active, thus forcing all responses back to CECI
when execution has completed.

Variables

This display will show, in response to pressing key
PFS, aU the variables associated with the current
interpreter session, showing for each, its name,
length, and value.

Normally, the value supplied for an option in the
command input area is taken as a character string
constant. However, there is sometimes a
requirement for this value to be represented by a
variable. The command interpreter will recognize a
value as a variable only if it is preceded by an
ampersand (&).

A variable is required when two associated
commands are to be connected through the values
supplied in their options, for example, READ
INTO(data-area) UPDATE and REWRITE
FROM(data-area). A variable can be used to make
the data area in the FROM option the same as that
in the INTO option.

Chapter 1.8. Command Level Interpreter 65

A variablte is also useful when the values of options
cause the command to exceed the line length of the
command input area. Creating variables with the
required values and specifying the variable names in
the cotnnland will enable a command to be
accommodated.

Variables can also be used to contain commands,
and variable names can be entered in a comtnand
input line that contains complete or partial
commands.

Variables are deleted at the end of an interpreter
session unless action has been taken to save them,
for example, in temporary storage, as described
below.

Variables, which can be of data type character,
fullword, halfword, or packed decimal, can be
created, ~LS follows:

1. By naming the variable in a receiver. TIle
variable will be created when the command is
executed. The data type is implied by the type
of rel:;eiver.

2. By adding one or more new entries to the list
of variables already defmed. This list is
displayed by pressing key PF5. The display
shows all defmed variables giving, for each, its
name, length in bytes, and its value. The value
is displayed in character form but PF2 can be
used to switch from character to hexadecimal.
An expanded display of each variable can be
obtaiined by positioning the cursor under the &
of the name and pressing ENTER. To create a
new character variable, enter its name and its
lengt.h and press ENTER. The variable will be
initialized to blanks, which can then be
ovedyped. For a fullword, halfword, or packed
variable, enter F, H, or P in the length field.
These fields are initialized to zero.

Variable narnes, lengths, and their values, can
be lIlodified by overtyping. Variables can be
deleted by positioning the cursor under the &
of the name and pressing ERASE EOF.
Variables can be copied by obtaining the
expanded display of the variable and overtyping
the name field.

3. By associating a variable name with the value
of an option. Positioning the cursor, using the
tab key, at the start of the line of the syntax
display and pressing ENTER will produce an
expanded display of the whole option value. A
variable name can now be assigned to the data
so displayed.

4. By entering a name in the NAME = field of
the syntax panel. This will create a variable
containing the current command.

Three variables are provided initially. The frrst,
&DFHC, is a sample. The second, &DFHW,
contains a temporary storage WRITEQ command,
and the third, &DFHR, contairls a READQ
command. It is possible to write a command to
temporary storage by entering &DFHC in the
NAME = field of the syntax panel, entering
&DFHW in the command input line, and
executing the WRITEQ command. In this way, a
list of commands can be written. The command
list can be read and executed by alternately entering
&DFHR and &DFHC in the command input line.

Expanded Area

This display will use the whole of the information
area of the screen to display areas selected by
means of the cursor. The cursor can be positioned
at the start of the value of an option on a syntax
display, or under the ampersand of a variable in a
variables display. Pressing ENTER will then give
the expanded area display. The scrolling keys can
be used to display all the information if it exceeds a
full screen.

PF Key Values Area

The single line at the foot of the screen provides a
menu indicating the effect of the ENTER and PF
keys for the display. Continuation of interpretation
depends entirely upon use of the ENTER key;
unless this key is pressed no further action will
occur.

The PF keys are self explanatory; if the terminal
has no PF keys, the same effect can be obtairled by
positioning the cursor under the required item in

66 C«:5jDOSjVS Application Programmer's Reference Manual (Command Level)

the menu by means of the tab keys and pressing
ENTER. The following PF keys are available:

PFt: HELP
displays a HELP panel giving more
infonnation on how to use the command
interpreter and on the meanings of the PF
keys.

PF2: SWITCH HEX/CHAR
switches the display between hexadecimal and
character representation. This is a mode
switch; all subsequent displays will stay in the
chosen mode until the next time this key is
pressed.

PF3: END SESSION
ends the current session of the interpreter.

PF4: EIB DISPLAY
shows the contents of the EXEC interface
block (EIB); see Appendix A, "EXEC
Interface Block" on page 413 for a
description of the fields in the EIB.

PF5: VARIABLES
shows all the variables associated with the
current command interpreter session, giving
for each its name, length, and value.

PF6: USER DISPLAY
shows what the user would see if the terminal
had been executing a transaction which
contained the commands which have been
executed using the interpreter.

PF7: SCROLL BACK HALF
scrolls half a screenful backward.

PF8: SCROLL FORWARD HALF
scrolls half a screenful forward.

PF9: EXPAND MESSAGES
shows all the messages generated during the
syntax check of a command.

PFtO: SCROLL BACK
scrolls backward.

PFt t: SCROLL FORWARD
scrolls forward.

PFI2: UNDEFINED
means that this key is not available with this
type of display.

Tenninal Sharing

When the command being interpreted is one that
uses the screen which the interpreter is using, the
command interpreter will manage the sharing of the
screen between the interpreter display and the user
display.

The user display will be restored:

•

•

When the command being executed requires
input from the operator.

When the command being executed is about to
modify the user display.

• When USER DISPLAY is requested.

Thus, when a SEND command is followed by a
RECEIVE command, the display sent by the
SEND command appears twice, once when the
SEND command is executed, and again when the
RECEIVE command is executed. It is not
necessary to respond to the SEND command, but
if a response is made, the interpreter will remember
it and redisplay it when the screen is restored for
the RECEIVE command.

When the interpreter restores the user display, it
does not sound the alarm or affect the keyboard in
the same way as when a SEND command is
executed.

Program Control

The interpreter is itself a CICS application program
and the execution of certain program control
commands may cause different results from an
application program containing those commands.
For example, an EXEC CICS ABEND command
will be intercepted by the interpreter rather than
abending the interpreter (unless the CANCEL
option is specified).

Chapter 1.8. Command Level Interpreter 67

If the int1erpreter is used to LINK to a program, the
interprett~r will not be aware of modifications to the
USER DISPLA Y made by that program. If the
interpreter executes an XCTL command, control
will be transferred to that program and that will be
the end of the interpreter session.

Securjity Rules

To invoke the command interpreter, the user must
have a security key that matches the security key
defmed in the PCT.

The corrunand level interpreter transaction
identifier, CECI, specifies, by default, that resource
level security checking is required for any resources
referenced with the interpreter. This checking
applies to data sets, transient data queues,
temporary storage queues, programs, transaction
identifiers of the START command, and journal
ftIe identifiers.

If the resource security level specified in the
appropriate CICS table (for example, the PCT for
a data set) is not matched by the authorization
obtained from a sign-on, the resource security
check fails, and the response to the command will
be the NOT AUTH condition (EIBRESP = 70).
This response is given on the "command execution
complete" display.

Installing the Command Level
Interpreter

To ensure that the command interpreter is available
on the system, the system programmer must make
one group entry in the PPT and in the PCT. (See
the CICS/DOS/VS Resource Definition (Online) or
CICS/DOS/VS Resource Definition (Macro)
manual for details on constructing a PPT and a
peT.)

68 CJiCS/DOSjVS Application Programmer"s Reference Manual (Command Level)

Chapter 1.9. Temporary Storage Browse

The Browse Transaction

You use the browse transaction (CEBR) to browse
the contents of CICS temporary storage queues.

You start the CEBR transaction directly by
entering the transaction identifier CEBR, and,
optionally, a queue name. You end the transaction
by pressing PF3.

You can also start the CEBR transaction from
BDF. Press PF5 to obtain the working storage
display, then PF2 to invoke CEBR. (When you
press PF3 to terminate CEBR, after invoking it
from EDF, CICS reinstates the EDF working
storage display.)

CEBR begins by generating the display shown in
Figure lOon page 70. As you can see from the
figure, the display shows the contents of a
temporary storage queue associated with the
invoking terminal. That is, the transaction's initial
display refers to a queue called CEBRname (where
"name" is your terminal identifier).

You use CEBR commands (see below), or the PF
keys, to process the queue. You can also use
CEBR to copy transient data queues to temporary
storage, although you cannot read an output
extrapartition transient data queue.

The CEBR transaction allows you to browse,
copy, and delete data on queues. Before you
enable the transaction, therefore, you should
consider the possible consequences of using it. In
particular, you should ensure that data cannot be
browsed by unauthorized personnel. In other
words, you should employ resource level security.

U sing the Transaction

If you invoked the browse transaction from a
terminal with the identifier L 77 A, you would
receive the display shown in Figure lOon page 70.

When this display appears, continue the transaction
by entering one of the CEBR commands into the
command line at the top of the screen.

The PP keys help you view the queue. There is a
list of these keys at the bottom of each CEBR
display. If your terminal does not have PF keys,
you can simulate their use by placing the cursor
under the key description at the bottom of the
display and pressing ENTER.

If you want a full list of the commands that you
can type when CEBR is active, you should initiate
the transaction by typing just CEBR, then pressing
PFI. This produces a HELP display. You return
from this to the main CEBR panel by pressing the
ENTER key.

CEBR Commands

Here is a list of the CEBR commands:

QUEUE xxxxxxxx
Names a queue that you want to become the
"current queue ". The value that you specify
can be in hexadecimal, for example, QUEUE
X'C134'. CEBR responds by displaying the
data that is in the named queqe.

TERMINAt xxxx
Changes the name of the queue. The four
characters represented by "XXXX " (the
term-id) become the last four characters of
the new queue name.

Chapter 1.9. Temporary Storage Browse 69

CEBR TS QUEUE CEBRL77A RECORD 1 OF 0 COL 1 OF 0
ENTER COMMAND ===>

********************** TOP OF QUEUE ************************************
********************** BOTTOM OF QUEUE *********************************

TEMPORARY STORAGE QUEUE CEBRL77A IS EMPTY
PFI ~ HELP PF2 t SWITCH HEX/CHAR PF3 I TERMINATE BROWSE

PF6 I REPEAT LAST FIND
PF9 I UNDEFINED

PF4 I VIEW TOP PF5 I VIEW BOTTOM
PF7 1 SCROLL BACK HALF PF8 I SCROLL FORWARD HALF
PFIO I -SCROLL BACK FULL PFll t SCROLL FORWARD FULL PF12s UNDEFINED

Figure I ~[). Initial Display Produced By the Browse Transaction

. PURGE: LINE nnnn
Erase the contents of the queue being Make the specified line the second line on the
browsed. displayed page.

TOP

If the queue is recoverable, you should
terminate the browse before using the
PURGE command, otherwise an abend will
o(:cur. Do not use PURGE to erase the
contents of an internally generated queue,
such as a BMS logical message.

Show the ftrst page of this queue.

BOTTOM
Show the last page of this queue.

FIND lstring
Find the next occurrence of the specified
string, making the line containing the string
the second on the display page.
"/ " is a delimiting character. It doe:s not

have to be "/ ", but must not be a character
that appears in the search argument. If there
are blank characters in the string, you must
terminate it with the delimiting character that
started it.

COLUMN nnnn
Move the displayed area to this column of
the queue.

GET xxx x
Transfer the named transient data queue to
temporary storage. This allows you to
browse the contents of the queue.
"xxxx " must be either the name of an

intrapartition transient data queue, or the
name of an extrapartition transient data
queue that has been opened for input.

PUT xxxx
Transfer the temporary storage queue that is
being browsed to the named transient data
queue. You can use this command to
prepare data for printing.
"xxxx " must be either the name of an

intrapartition transient data queue, or the
name of an extrapartition transient data
queue that has been opened for output.

70 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Resource Definition

If you want to use the temporary storage browse
transaction in your installation, you must generate
a CICS system that includes EDF in the PCT and
the PPT. To do this you must code the EOF
option of the FN operand of both the DFHPCT
TYPE = GROUP and DFHPPT TYPE = GROUP
system macros.

To limit access to restricted data, you should
specify RSLC= YES in your DFHPCT entry for
the transaction. This will at least ensure that users
of the transaction can only browse queues with a
resource level given by RSL= PUBLIC. You
should code a DFHTST TYPE = SECURITY
system macro for each queue that can be browsed.

Chapter 1.9. Temporary Storage Browse 71

Part 2. Files and Data Bases

Chapter 2.1. General Description of File Control Facilities 75

Chapter 2.2. File Control - VSAM Considerations 87

Chapter 2.3. File Control - DAM Considerations 89

Chapter 2.4. File Control - Commands, Options, and Conditions 93

Chapter 2.5. DL/I Services (EXEC »IJI Command)

Chapter 2.6. DL/I Services (DIJ/I CALL Statement)

lOS

115

Part 2. Files and Data Bases 73

Introttluction to Files and Data
Bases

CICS transactions can access fues and data bases,
which can be on either a local or remote system.

Files are processed by the CICS fue control
progranl, which allows you to read, add, update,
delete (VSAM only), and browse records in VSAM
and DAM data sets. When you access fue8
through the fue control program, you do not have
to consider such things as buffer management,
blocking and deblocking, and access method
dependencies. File control is described in Chapters
2.1 through 2.4.

DL/I d:llta bases give you a greater degree of data
independence than fue control does. You are
presented with a logical view of the data base in
terms of a hierarchy of segments. DL/I offers you
facilities for manipulating these segments and you
do not need to know how they are organized.

DL/I data bases are processed by the IBM licensed
program DL/I DOS/VS, Program Number
5746-XXl.

CICS has two programming interfaces to DL/I.
You are recommended to use what is called the
"EXEC DLI interface", as it is simpler to use and
can be used with EDF.

The other DL/I programming interface is known as
the "DL/I CALL" interface.

The CICS-DL/I interface invoked by means of the
EXEC DLI command is described in "Chapter 2.5.
DL/I Services (EXEC, DLI Command)" on
page 105.

The CICS-DL/I interface invoked by means of the
DL/I CALL statement is described in "Chapter 2.6.
DL/I Services (DL/I CALL Statement)" on
page 115.

74 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 2.1. General Description of File Control Facilities

CICS fue control provides the application
programmer with facilities to read, update, add,
delete, and browse data in a data set.

In general, the application programmer does not
need to be concerned with the type of data set nor
with the precise physical organization of data in the
data set.

A CICS application program reads data from a
data set and writes data to a data set in the form of
individual records. Each such request to access a
record is made by means of a CICS command,
described in detail in "Chapter 2.4. File Control -
Commands, Options, and Conditions" on page 93.

To access a record, the application program must
identify the data set as well as the record within the
data set. In addition, the application program must
specify the area of storage into which the record is
to be read or from which it is to be written.

Using CICS fue control, you can access data sets
that are managed by the following standard
operating system access methods:

•
•

Virtual Storage Access Method (VSAM)

Direct Access Method (DAM) .

The data sets handled by these access methods are
called VSAM data sets and DAM data sets. They
are described in the next two sections.

VSAM Data Sets

CICS supports access to any of the three types of
VSAM data set, namely:

• Key-sequenced data set (KSDS)

• Entry-sequenced data set (ESDS)

• Relative record data set (RRDS).

Key-Sequenced Data Set

A key-sequenced data set is one in which each of
its records is identified by means of a key. The key
of any record is stored as a field in a predefmed
position as part of the record. Each key value must
be unique in the data set. When the data set is
initially loaded with data and when new records are
added, the physical order of the records is
determined by the collating sequence of the key
field. This also determines the order in which
records are retrieved when browsing through the
data set.

To enable VSAM to determine the physical
location of a record in a KSOS, VSAM creates and
maintains an index which relates the key of each
record with the record's relative location in the data
set. When a record is added to, or deleted from, a
KS OS, the index is updated to reflect the change.

Any record in a KSDS may also be identified by its
address relative to the beginning of the data set.
However, this address, known as the relative byte
address (RBA), may not remain constant: it may
change whenever records are added to, or deleted
from, the data set.

Chapter 2.1. General Description of File Control Facilities 75

Entry-Sequenced Data Set

An entry-sequenced data set is one in which each
record i8 identified by its relative byte address.
Records are stored in an ESDS in the order in
which they are initially loaded into the data set.
Further records added to an ESDS are always
stored after the last record in the data set. Records
may not be deleted from an ES DS, nor may their
lengths be altered. After a record has been stored
in an ESDS, its RBA will remain unchanged.
When browsing through an ESDS, records are
retrieved in the order in which they were added to
the data set.

Relathre Record Data Set

A relatiive record data set consists of a series of
fixed-length slots that have been predefmed to
VSAM and in which records may be stored. A
record in an RRDS is identified by the relative
record number (RRN) of the slot in which it is
stored. When a new record is added to an RRDS,
VSAM assigns the next sequential number in the
data se1t or the number supplied with the request.

Unlike records in a KSDS or an ESDS, records in
an RRDS must be of fixed length, equal to the size
of slot in the RRDS.

VSAM Data Set Organization

VSAM: data sets are stored on direct-access storage
devices. (DASD), sometimes called auxiliary
storage:. The space allocated to a VSAM data set is
divided by VSAM into control areas, which are
further divided into control intervals. Each control
interval is of fixed predefmed size and will, in
generall, contain a nunlber of records. When
VSAl\1[reads a record, on behalf of CICS fde
control, from a data set, it reads the whole control
intervaJ containing the record. The control interval
is thus the unit of data transmission between virtual
and auxiliary storage.

VSAlVl allows a KSDS or ESDS to be defined so
as to pennit records to extend over more than a
single control interval. These are called SIJanned
records. CICS fde control imposes no restrictions

on processing spanned records: application
programs can access spanned and nonspanned
records in exactly the same way.

VSAM Paths and Bases

An application program may fmd it convenient to
identify records in a data set in terms of a
secondary (alternate) key instead of the primary
identification described above. An alternate key is
defmed in the same way as the primary key in a
KSDS, as a field of fixed length and fixed position
within the record. Any number of alternate keys
may be defmed and, unlike the primary or base
key, an alternate key need not have a unique value.

As an example of primary and alternate keys,
consider a key-sequenced data set containing
records for employees in an organization. Each
record is identified by a primary key, defmed as the
employee number. The employee name, which
need not be unique, is used as an alternate key.
The employee's department tnight be defmed as a
further alternate key.

VSAM allows alternate keys to be defmed for
key-sequenced and entry-sequenced data sets
(though not for relative record data sets). When
the data set is created, a secondary or alternate
index (AIX) is built for each alternate key in the
record and is related to the primary or base data
set. To access records using the alternate key, a
further VSAM object, an alternate index path must
also be defined. The path then behaves as if it
were a key-sequenced data set in which records are
accessed using the alternate key.

When a record is updated by way of a path, the
corresponding alternate index is updated to reflect
the change. If the record is updated directly by
way of the base, or by a different path, the AIX
will be updated only if it has been defmed to
VSAM when it is created to belong to what is
termed the upgrade set of the base data set.

A CICS application program need not be aware of
whether the file it is accessing is a path or the base.
In a running CICS system, accesses to a single base
data set can be made by way of the base and by
any of the paths defmed over it, as long as each

76 CICSjDOSjVS Application Programm{~r's Reference Manual (Command Level)

such access route has been dermed to CICS in the
rtIe control table (FCT).

You should, however, be aware that if the same
control interval or the same record in the base data
set is simultaneously updated by more than one
request, a VSAM exclusive control conflict or a
CICS record locking conflict may occur. CICS
then causes the request that suffered the conflict to
wait until the conflict is resolved before allowing
the request to be completed.

VSAM Share Options

Every data set dermed to VSAM is associated with
a share options attribute which can take on values
1,2,3, or 4, and which dermes how the data set
can be shared among users. In the CICS
environment, different FCT entries referring to the
same base data set represent different users.

For a data set dermed with share options 1 or 2, if
the rtIe is dermed to be recoverable (LOG = YES in
the FCT) CICS will ensure that integrity of data is
preserved. For any such data set, VSAM imposes
a restriction that only a single FCT entry can be
open for update at anyone time. If an attempt is
made to open a further FCT entry for update, the
open will fail with an appropriate VSAM return
code.

A data set dermed with share options 3 or 4 can,
on the other hand be updated concurrently through
more than one FCT entry. For such data sets
however, CICS is unable to ensure that integrity of
data is preserved.

DAM Data Sets

CICS supports access to keyed and nonkeyed
DAM data sets. DAl\Il support makes use of the
physical nature of a record on a DASD device.
DAM data sets are made up of unblocked records
with the following fonnat:

Physical
Count (recorded)

key
Data

~--------Physical recorrid----------~

Keyed DAM files have a physical key identifying
the DAM record. The count area contains the
physical key length, the physical data length, and
the record's data location. Nonkeyed DAM files
have a zero key length in the count area of the
physical record.

CICS may derme a further structure on top of
DAM data sets. It introduces the concept of
blocked data sets:

Count Physical
key

IlogreC I

Data

logrec 2

~--------Physical recorrid----------~
(block)

The data portion of the physical record may itself
consist of logical records. To CICS the whole
structure is dermed to be a block: the physical key
now identifies the block. CICS will support the
retrieval of logicru. records from the data part of the
block. CICS also supports the concept of
unblocked records, in which case the structure
reverts to the original DAM concept of one logical
record for evcry physical record.

To retrieve a physical record from a DAM ftIe
under CICS, a record identification field
(RIDFLD) has to be defined to specify how the
physical record should be retrieved. This may be
done using the pnysical key, by relative address, or
by absolute address.

If the data set is dermed to CICS to be blocked,
then the physical record is seen by CICS as a
block. Individual records within the block can be
retrieved (deblocked) in two addressing modes, by
key or by relative record. To deblock by key, the
key of the logical record (that is, the key contained
in the logical record) is used to identify which
record is required from the block. To deblock by

Chapter 2.1. General Description of File Control Facilities 77

relative record, the record number in the block,
relative to zero, of the record to be retrieved, is
used. 1he key or relative record number used for
deblocking is specified in a subfield of the
RIDFLD option used when accessing CICS DAM
files. The addressing mode for CICS DAM data
sets is set in the FCT using the REL TYPE
keyword.

A more detailed discussion of record identiftcation
and DAM record access is given later in "Chapter
2.3. Fi1c~ Control- DAM Considerations" on
page 89.

Data. Set Identification

You use the DATASET option in a ftIe control
command to specify the symbolic name of an entry
in the PCT that identifies the data set to be
accessed. The FCT entry must be defmed in the
CICS system (unless the data set resides in a
remote system) and must have been associated with
a physical data set before the command can be
execut(~d.

This association is done by including a joh control
statemlent for the data set in the CICS job. The
FCT entry name is used as the ftIename on the
DLBL statement and the 44-character physical data
set narne is specified as the ftIe id on the D LB L
statement. The data set will be allocated to CICS
at the time of CICS job initiation and will remain
allocated through to CICS termination.

Acc~~ssing Data Sets From CICS
Application Programs

The following sections describe the facilities
available to application programs for accessing data
sets. The discussion is presented in terms of
VSAl\t1 data sets, though most of the facilities apply
equally to DAM data sets. Where there are
differences, or particular considerations that are
appropriate only to DAM, these are noted in the

text and in "Chapter 2.3. File Control - DAM
Considerations. "

Retrieving Records

Direct Reading

A record in the data set is read by means of the
READ command. The command must include
sufficient information to identify the record to be
retrieved and must also specify whether the record
is to be read into an area of storage provided by the
application program, or into a CICS buffer
acquired by rue control. In the latter case, the
address of the data in the CICS buffer is returned
to the program.

Direct Reading From a KSDS

When reading from a VSAM KSDS, the record to
be retrieved is usually identified by specifying the
full key. It is, however, also possible to specify a
partial (generic) key. CICS then retrieves from the
data set the fust record whose leftmost characters
match the partial key. Alternatively, it is possible
to retrieve the record in the data set whose key is
greater than or equal to the full key provided with
the command.

Finally, it is also possible to identify the record to
be retrieved by providing a generic key together
with the "greater than or equal"(GTEQ) option.
The NOTFND condition will be returned if no
record with the key specified is found; or, in the
case of the GTEQ option, no record is found with
a key greater than or equal to the specified key.

Direct Reading From an ESDS

When reading from a VSAM ESDS, an individual
record is identified by an RBA. For any record in
an ESDS, its RBA cannot change; the application
program is therefore able to keep an account of the
values of the RBAs corresponding to the records it
wishes to access. An access to a VSAM ESDS
specifying an incorrect RBA, or an RBA where
there is no record, will return the ILLOGIC
condition.

78 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Direct Reading From an RRDS

When reading from a VSAM RRDS, the record to
be retrieved is identified by its relative record
number. Again, the application program needs to
be aware of the RRN values of the records it is to
retrieve. For records not present in the data set,
the NOTFND condition is returned.

Direct Reading by Way of a path

If a KSDS or an ESDS has an alternate index and
an alternate index path defmed, and if the alternate
index path is defmed to CICS by an entry in the
FCT, a record in the base data set can be retrieved
by means of an alternate key. In this case, the
generic option and the greater than or equal option
may also be used in exactly the same way as for a
read from a KSDS using the primary key.

If the alternate key provided in a READ command
is not unique, the frrst record in the data set having
that key is read and the DUPKEY condition is
returned. To retrieve other records having the
same alternate key, a browse operation has to be
started at this point.

Sequential Reading (Browsing)

Records may be read in sequence (browsed) from
the data set. A browse is initiated using the
ST ARTBR command in which a particular record
is identified in the same way as for a direct read.
However, the STARTBR command identifies only
the starting position for the browse; no record is
retrieved.

The READNEXT command reads records
sequentially from the data set, beginning at the
starting point provided by the STAR TBR
command. The field specified in the RIDFLD
option on the READNEXT command is updated
by CICS with the complete key, relative byte
address, or relative record number of the record
retrieved each tiine a READ NEXT command is
executed.

Also available for use on VSAM data sets is the
READPREV command. This behaves in the same

way as a READNEXT command, except that
records are read sequentially backwards from the
starting point provided by the STAR TBR
command.

Browsing Through a KSDS

When browsing through a VSAM KSDS, a generic
key may be used on the STAR TBR command.
However, a browse initiated in this way may only
continue forwards through a data set. The
INVREQ condition is raised if a READPREV is
attempted during a browse initiated using a generic
key.

The options "key equal to" and "key greater than
or equal to" may be used on the STARTBR
command. The default, unlike the default on a
direct read command, is the "key greater than or
equal to" option. If no record can be found
matching the key specified with the STAR TBR
command, the NOTFND condition is returned.

Only after the successful execution of a STAR TBR
command can a READ NEXT or READPREV
command be executed successfully.

A forward browse through a VSAM KSDS can be
started at the beginning of the data set by specifying
a key of hexadecimal zeros, or by specifying
options of GENERIC and KEYLENGTH(O) on
the STARTBR or RESETBR command. In the
latter case, the RIDFLD keyword is required
although its value is not used. Similarly, a
complete key of hexadecimal ClFF"s on a
STARTBR command will point to the last record
in the data set ready for a backward browse.

Browsing Through an ESDS

When browsing through a VSAM ESDS, the
GTEQ option is invalid on the STARTBR
command. If no record is found matching the
RBA specified in the STARTBR command, the
ILLOGIC condition is raised. As for a VSAM
KSDS, keys of hexadecimal zeros and "FF"s on a
STARTBR command enable a forward browse to
start at the first record, and a backward browse to
start from the last record respectively.

Chapter 2.1. General Description of File Control Facilities 79

Browsing Through an RRDS

When browsing through a VSAM RRDS, the
GTEQ option can be used on a STAR TBR
cOIrunand, and is set by default, even though on a
direct READ use of this option has no effect. A
direct read GTEQ command specifying an RRN
that does not exist will return NOTFND because
only the EQUAL option is taken.

However, a STARTBR GTEQ using the same
RR N will complete successfully, and set a pointer
to the relevant position in the data set foI' the start
of the browse. The first record in the data set is
identiHed using hexadecimal "1" and the last record
by hex.adecimal "FF"s.

Browsing by Way of a Path

Brow8ing may also be performed by way of an
alternate index path to a VSAM KSDS or an
ESDS. The browse is performed in exactly the
same way as for a VSAM KSDS, but the alternate
key is used. The records are thus retrieved in
alternate key order.

When nonunique alternate keys are involved, a
browse operation will retrieve all records with the
same alternate key. The READNEXT command
will rdrieve records in the order in which they were
added to the data set. (READPREV could be
used, but the records will be returned in the same
order as for READNEXT). In switching from a
direct read to a browse, the frrst record having a
nonunique key is retrieved twice, once for the
READ command, and again for the frrst
READNEXT command.

The DUPKEY condition is returned for each
retrieval operation except the last. For example, if
there are three records with the same alternate key,
the DUPKEY condition will be returned upon
retrieval of the frrst two, but not the third. The
appli(~ation program can be designed to revert from
browsing to direct reading when the DUPKEY
condition no longer occurs.

Ending the Browse

An attempt to browse past the last record in a data
set will raise the ENDFILE condition. A browse is
terminated using the ENDBR command. This
command should always be issued before an update
operation is performed on the same data set (read
update, delete with RIDFLD, or write), before a
sync point, or before task tennination. Failure to
do so will lead to unpredictable results, including
self-inflicted deadlock.

A browse can be reset at any tUne using the
RESETBR command. The command can be used
to defme a new starting position for the browse, or
it can be used to change the type of search
argument (key, relative byte address, or relative
record number) employed.

Simultaneous Browse Operations

CICS allows a transaction to be performing more
than one browse on the same data set at the same
time. To distinguish between browse operations,
the REQID option is included on each browse
command.

Skip-sequential Processing

For VSAM data sets it is possible to browse using
skip-sequential processing by altering the key,
RBA, or RRN, in the RIDFLD option of the
READNEXT or READPREV command to that
of the next record required. This may even be
done on the first READNEXT or READPREV
after a STARTBR or RESETBR command. This
procedure allows quick direct access to records in a
VSAM data set by reducing index search time. It
must be noted however that the RIDFLD option
on the READNEXT or READPREV command
must be in the same form (key, RBA, RRN) as
that used in the STARTBR command or last
RESETBR command. If generic keys were used
on a forward browse, the new RIDFLD must also
be a generic key, although it need not be of the
same length. Including the KEYLENGTH option
on the READNEXT command has the same effect
as a RESETBR, since the keylength has been
changed. To continue browsing from this new
point, remove the KEYLENGTH option from
subsequent READNEXT commands.

80 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Note also that if a "key equal to" search is specified
on a STARTBR command, or a RESETBR
command, a READ NEXT command using
skip-sequential processing may result in the
NOTFND condition being raised.

Specifying Record Length

A fue may be defmed in the FCT as containing
either fixed-length or variable-length records.
Fixed-length records may be defmed only if the
VSAM Access Method Services defmition also
specifies fixed-size records (average size equals
maximum size), and also if all the records in the
data set are of that length.

For direct reading and browsing, if the me is
defmed as containing fixed-length records, and if
the application program provides an area into
which the record is to be read, that area must be of
the defmed fixed length. If the fue contains
variable-length records, the command must also
specify the length of the area provided. For
fixed-length records and for records retrieved into
the CICS-provided buffer, the length argument
need not be specified, although it may be useful to
do so, to check that the record being read is not
too long for the available data area. If the length
argument is provided, CICS uses the length field to
return the actual length of the record retrieved.

Updating Records

A record to be updated must frrst be retrieved using
a READ command with the UPDATE option.
The record is identified in exactly the same way as
for a direct read. After the record has been
modified by the application program, it is written
back to the data set using the REWRITE
command.

In the case of a VSAM KSDS or ESDS, the record
may, as with a direct read, be accessed either by
way of an PCT entry that refers to the base, or to a
path defmed over it. Note however, that if more
than one FCT entry refers to the same base data
set, and this has been defmed to VSAM with share
options 1 or 2, only a single FCT entry may be

open at any time. Multiple concurrent updates to
a data set through different FCT entries can be
made only if the data set is defmed with share
options 3 or 4; for such data sets, CICS cannot
ensure that data integrity is preserved.

The REWRITE command cannot identify the
record being rewritten. In anyone transaction
CICS allows only a single update to a given data
set to be in progress at any time; the record being
rewritten is therefore identified by the previous
READ UPDATE conunand.

A record that has been retrieved as part of a browse
operation may not be updated during the browse.
The application program must end the browse,
read the desired record with a direct command and
perfonn the update. Failure to do this may cause a
deadlock.

The record to be updated may, as in the case of a
direct read, be read into an area of storage supplied
by the application program or into a
CICS-provided buffer. If the record is read into the
CICS buffer, it may then be copied into application
program storage and rewritten from that storage, or
it may be modified and rewritten direct from the
CICS buffer.

For a VSAM KSDS, the base key in the record
must not be altered when the record is modified.
Similarly, if the update is being made by way of a
VSAM path, the alternate key used to identify the
record must not be altered either, although other
alternate keys may be altered. If the data set
defmition allows variable-length records, the length
of the record may be changed.

The length of records in an ESDS or an RRDS can
never be altered.

Specifying Record l/ength

For a me defmed as containing fixed-length records,
the length of record being rewritten must equal the
length defined to VSAM in the Access Method
Services defmition. For variable-length records, the
length must be specified with both the READ and
the REWRITE commands.

Chapter 2.1. General Description of File Control Facilities 81

Deletil1lg Records

In the case of a KSDS or RRDS, instead of
rewriting the record, the application program may
issue a DELETE command to erase it from the
data set. As in the case of the REWRITE
command, the record to be deleted must not be
identified within the DELETE command, but is,
by defilult, the most recently read record. If the
RIDFLD option is included in this fonn of the
DELETE command, an INVREQ condition is
returned to the application program.

The application program may wish to complete the
updatc;: operation without rewriting or deleting the
record. This can be done by means of the
UNLOCK command. This command releases any
CICS storage acquired for the READ and
completes the VSAM request by issuing a VSAM
ENDREQ command.

Deleting Records

As described above, a record in a VSAM KSDS or
RRDS may be deleted by frrst retrieving it for
updat'~ and then issuing a DELETE command. It
is also possible to delete a record in a single
operation, again using the DELETE command. In
this case, the record to be deleted must be identified
as part of the command. The record is identified in
the same way as when reading a record, except that
the GTEQ option may not be used.

Records may never be deleted from an ES DS,
irrespective of whether the ESDS is being accessed
by way of the base or by a path.

If a full key is provided with the DELETE
cmnnland, a single record with that key is deleted.
This :means that, if the data set is being accessed by
way of an AIX path that allows nonunique
alternate keys, only the frrst record with that key is
deletc;:d. At the completion of such an operation, if
further records exist with the same alternate key,
the DUPKEY condition is returned.

Deleting Groups of Records (Generic Delete)

If a generic key is provided with the DELETE
command, instead of deleting a single record, all the
records in the data set whose keys match the
generic key are deleted with the single command.
The number of records deleted is returned to the
application program if the NUMREC option is
included with the command. If access is by way of
an AIX path, the records deleted are all those
whose alternate keys match the generic key.

Adding Records

New records are added to a data set by means of
the WRITE command, and they must always be
written from an area provided by the application
program.

Adding to a KSDS

When adding a record to a VSAM KSOS, the base
key of the record identifies the position in the data
set where the record will be inserted. Although the
key is part of the record, CICS also requires the
application program to specify the key separately
using the RIDFLD option on the WRITE
command.

A record added to a KS OS by way of an AIX path
is also inserted into the data set in the position
detennined by the base key. However, the
command must also include the AIX key as the
record identifier.

Adding to an ESDS

A record added to an ES DS is always added to the
end of the data set. It is not possible to insert a
record in an ESOS between existing records. After
the operation is completed, the relative byte address
in the data set where the record was placed is
returned to the application program.

When adding a record to an ES OS by way of an
AIX path, the record is also placed at the end of
the data set. lbe command must include the AIX
key in the same way as for a KSOS path.

82 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Adding to an RRDS

To add a record to an RRDS, the WRITE
command must include the relative record number
as a record identifier. The record is then stored in
the data set in the position corresponding to the
RRN.

Specifying Record Length

When writing to a fixed-length VSAM file, the
record length must be the same as the value
specified at the time the data set was created. In
this case the application program need not include
the length with the command, although it may be
convenient to do so to check that the length agrees
with that originally defmed to VSAM. If the fIle is
defmed as containing variable-length records, the
command must also include the length of the
record.

Sequential Adding of Records (MASSINSER1)

A group of records may be added to any VSAM
data set using the mass sequential insertion
operation. This is more efficient than issuing
separate WRITE commands. A mass sequential
insertion operation consists of a series of WRITE
commands. Each command identifies the record to
be added in exactly the same way as for a direct
WRITE, but also includes the MASSINSERT
option. When using the mass insert operation to
add records to a KSDS or RRDS, or to a KSDS or
ESDS by way of a path, the keys or RRN values
of consecutive records must be in ascending, but
not necessarily consecutive, order.

The operation must be completed by issuing an
UNLOCK command to ensure that all the records
are written to the data set and the position is
released. Note that a READ command will not
necessarily retrieve a record that has been added by
an incomplete mass insert operation. If an
UNLOCK command is not issued, the mass
sequential insertion operation will be completed
when a sync point is issued, or at task termination.

Review of File Control Command
Options

Whenever you retrieve a record using the READ
command, add a record using the WRITE
command, delete a record using the DELETE
command (except in the case when you have read
the record for update frrst), or initiate a browse
using the ST ARTBR command, you identify the
record by means of the RIDFLD option. Further,
during a browse using READNEXT or
READPREV commands, you must include this
option to provide a means for CICS to return the
identifier of each record retrieved.

• RIDFLD identifies a field containing the
record identification appropriate to the access
method and the type of data set being accessed.
The detailed formats are described in chapters
2.2 and 2.3.

When retrieving records from a VSAM KSDS,
or from a VSAM KSDS or ESDS by way of
an alternate index path, or when identifying a
starting position for a browse in this type of
data set, it is possible to include one or both of
the further options GTEQ and GENERIC
with the command. These options are used
when the RIDFLD option by itself may not
identify a specific record in the data set.

When executing READNEXT or
READPREV commands, the application
program would not normally set the RIDFLD
field. After each command, CICS updates this
field with the actual identifier of the record
retrieved. The application may, however, alter
the RIDFLD value to identify a new position
from which the browse is to continue.

When you retrieve a record using the READ,
READNEXT, or READPREV commands, the
record is retrieved and placed in main storage
according to which of the options INTO or SET
you have specified.

• I NTO specifies the area in main storage into
which the record is to be placed. For
fixed-length records, you need not include the
LENGTH option. If you do, the length

Chapter 2.1. General Description of File Control Facilities 83

specified must be the same as the defmed
length, otherwise the LENGERR condition
will occur. For variable-length records you
must always specify, in the LENGTII option,
the: maximum length of record that your
application program will accept, otherwise the
LENGERR condition will occur. This
condition will also occur if the record exceeds
this maximum length, in which case the record
is truncated to that length. Mter the record has
been retrieved, if the LENGTH option has
been included, the data area specified in this
option is set to the actual record length (before
any truncation occurred).

• SET specifies a pointer reference that is set to
th(~ address of the buffer in main storage
acquired by CICS and large enough to hold the
record. When using SET, the LENGTH
option need not be included. If it is included,
th(~ data area specified is set to the actual record
length after the record has been retrieved.

When you add records using the WRITE
command, or update records using the REWRITE
command, you must specify the record to be
written by means of the FROM option.

• FROM specifies the area in main storage which
contains the record to be written. In general,
this area will be part of storage owned by the
application program. On a REWRITE
command, the FROM area will usually,
though not necessarily, be the same as the
corresponding INTO area specified on the
READ UPDATE command. The length of
thle record may be changed when rewliting to a
variable-length VSAM KSDS.

TIle LENGTH option must always be included
when writing to a variable-length file. If the
value specified exceeds the maximum allowed
in the data set defmition, the LENGERR
condition will be returned when the command
is executed. When writing to a fixed-length ftle,
C][CS uses the length specified in the data set
definition as the length of the record to be
written. The LENGTH option need not
therefore be included. If it is, its value is
checked against the defmed value and

LENGERR is returned if the values are not
equal.

Preventing Transaction Deadlocks

The application programmer should be aware of
the need to design applications in such a way as to
prevent the occurrence of transaction deadlocks. A
deadlock may occur when one transaction needs
exclusive use of some resource (for example, a
particular record in a data set), that is already held
by a second transaction. The frrst transaction will
wait for the resource to become available: but if
the second transaction is not in a position to
release it because it, in tum, is waiting on some
other resource held by the frrst, both are
deadlocked and the only way of breaking the
deadlock is to cancel one or both transactions.

A transaction may have to wait for a resource for a
number of different reasons while executing ftle
control commands. First, for both VSAM and
DAM data sets, any record that is in the process of
being modified is held in exclusive control by the
access method for the duration of the request. (In
the case of VSAM, not only the record but the
complete control interval containing the record is
held in exclusive control). Secondly, if a
transaction has modified a record in a recoverable
file, that record is locked by CICS to the
transaction even after the request that performed
the change has completed. That transaction may
continue to access and modify the same record;
other transactions, however, are obliged to wait
until the transaction releases the lock either by
issuing a sync point request or by terminating.

Whether a deadlock actually occurs depends on the
relative timing of the acquisition and release of the
resources by different concurrent transactions.
Application programs may continue to be used for
some time before encountering a set of
circumstances which results in a deadlock situation;
for this reason it is important to recognize the
possibility of deadlock at an early stage of the
application program design.

The following are examples of different types of
deadlock:

84 CICSjDOSjVS Application Programm(:r's Reference Manual (Command Level)

•

•

•

Two transactions are running concurrently and
are modifying records within a single
recoverable file, through the same FCT entry,
in the following manner:

Trans.II READ UPDATE rec.I
UNLOCK rec.I

Trans.2: DELETE rec.2

Trans. 1 : WRITE rec.2

Trans.2. READ UPDATE rec.I
REWRITE rec.I

Transaction I has acquired the record lock for
record I (even though it has completed the
READ UPDATE with an UNLOCK).
Transaction 2 has similarly acquired the record
lock for record 2. Each transaction is then in a
deadlock state since it wishes to acquire the
lock held by the other transaction.

Two transactions are running concurrently and
are modifying two recoverable flIes as follows:

Trans. 1 : READ UPDATE file 1 rec.I
REWRITE file 1 rec.I

Trans.21 READ UPDATE file 2 rec.2
REWRITE file 2 rec.2

Trans.II READ UPDATE file 2 rec.2
REWRITE file 2 rec.2

Trans.2: READ UPDATE file 1 rec.I
REWRITE file 1 rec.I

In this case the record locks have been acquired
on different ft.les as well as different records,
however the deadlock is similar to the frrst
example.

Two transactions are running concurrently and
are modifying a single recoverable KSDS,
through the same PCT entry, with the
following sequence of operations:

Trans.I: READ UPDATE rec.I

Trans.2. DELETE rec.3

Trans.II WRITE rec.3

Trans.2. READ UPDATE rec.2

Suppose records 1 and 2 are stored in the same
control interval. The frrst READ UPDATE
has acquired VSAM exclusive control of the CI
containing record 1. The DELETE operation
has completed and has acquired the CICS
record lock on record 3. The WRITE
operation is forced to wait for the lock on
record 3 to be released before it can complete
the operation. Finally, the last READ
UPDATE is forced to wait for the VSAM
exclusive control lock held by transaction I to
be released.

I • A transaction is in the process of updating a
I VSAM data set that uses shared resources
I (LSRPOOL not equal to NONE in the FeT).
I A READ UPDATE has been executed
I successfully for a record in the data set, but a
I REWRITE has not yet been performed.
I Before the REWRITE, the transaction issues a
I request to browse through the ftle starting at
I the same record, or at a record in the same
I control interval. Since VSAM already holds

exclusive control of the control interval on
behalf of the frrst request, the second request is
forced to wait indefinitely: the transaction has
produced its own deadlock.

In order to reduce the opportunity for deadlock,
CICS rccognizes certain situations that may lead to
it and prevents them occurring by returning the
INVREQ condition to the application program.
Por example, CICS does not allow a transaction to
issue a READ UPDATE request to a particular
data sct if a previous READ UPDATE has not yet
been completed with a REWRITE, DELETE or
UNLOCK command.

CICS does not, however, detect every situation
which may cause a deadlock. The application
programmer can avoid deadlocks by following these
rules:

1. All applications that update (modify) multiple
resources should do so in the same order. For
instance, if a transaction is updating more than
one record in a data set, it can do so in
ascending key order (or ascending alternate key
order). A transaction that is accessing more
than one ftle should always do so in the same
predefmed sequence of ftles.

Chapter 2.1. General Description of File Control Facilities 85

2. An application that issues a READ UPDATE
command should follow it with a REWRITE,
DELETE without RIDFLD or UNLOCK to
release position before performing any other
operation on the data set.

3. A sequence of WRITE MASSINSERT
requests must use ascending keys (or RRN
values). The sequence must terminate with the
UNLOCK command to release position. No
othe:r operation on the data set should be
perlDrmed before the UNLOCK command has
been issued.

4. An application must end all browses on a data
set by means of ENDBR commands (thereby
releasing position) before issuing a READ
UPlDA TE, WRITE or DELETE with
RIDFLD to the data set.

KEYLENGTH Option for
Remote Data Sets

In general, execution of fue control commands
requires the RIDFLD and KEYLENGTH options
to be specified. KEYLENGTH may be specified
explicitly in the command, or it may be determined
implicitly from the FCT.

For remote data sets, that is, those for which
SYSID has been specified, KEYLENGTH should
be specified only if RIDFLD specified a key. If the
remote data set is being browsed, KEYLENGTH
is not required for the READ NEXT or
READPREV commands.

For a remote DAM data set, where the DEB KEY
or DEBREC options have been specified,
KEYLENGTH (when specified explicitly) should
be the total length of the key (that is, aU specified
subfields).

86 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 2.2. File Control - VSAM Considerations

Record Identification

You identify records in VSAM data sets in one of
three ways:

• by key

• by relative byte address (RBA)

• or by relative record number (RRN).

To distinguish which fonnat of record identification
is to be used, the RBA and RRN options can be
used on most commands that access VSAM data
sets. The options effectively defme the fonnat of
the record identification field (RIDFLD). If
neither the RBA nor the RRN option is specified,
the RIDFLD option should contain a key to be
used for accessing a VSAM KSDS, or a VSAM
KSDS or ESDS by way of a path.

The RBA option specifies that the RIDFLD
contains the relative byte address of the record to
be accessed. A relative byte address is used to
access a VSAM ESDS, and it may also be used to
access a VSAM KSDS. However, if a KSDS is
accessed in this way, it must be noted that the
RBA of the record may change during the
transaction as a result of another transaction adding
records to, or deleting records from, the same data
set.

The RRN option specifies that the RIDFLD
contains the relative record number, (the frrst
record in a data set being numbered I), of the
record to be retrieved.

Operations involving use of VSAM keys may
specify either a complete key or a generic (partial)
key. (The one exception to this rule is when a
record is written to a VSAM KSDS. In this
instance, the complete key must be specified in the
RIDFLD option of the command.) When a
generic key is used, its length must be specified in
the KEYLENGTH option, and the GENERIC
option must also be specified on the command. A
generic key cannot have a key length equal to the
full keylength. That is, a generic key is defmed to
be of a length that is strictly less than that of the
complete key.

For both complete and generic keys, the GTEQ
option may also be specified on certain commands.
The command then positions at, or applies to, the
record in the data set with the next higher key if a
matching key cannot be found. When accessing a
data set by way of an alternate index path, the
record identified is the one with the next higher
alternative when a matching record cannot be
found.

The application programmer should always, even
when using generic keys, use an area of storage for
the RIDFLD whose length is equal to the length of
the complete key. The reason for this is that
during a browse operation, after retrieving a record,
CICS copies into the RIDPLD area the actual
identifier of the record retrieved. In some cases,
CICS will return to the application program a
complete key, even when a generic key was
specified on the command. An example of this is a
generic browse through a VSAM KSDS where the
complete key is returned to the application
program on each READNEXT and READPREV
command.

Chapter 2.2. File Control - VSAM Considerations 87

CIC~, Locking of VSAM RE~cords
in R.~coverable Files

In the previous chapter, the prevention of
transaction deadlocks is described in terms of the
record llocks CICS acquires whenever records in a
recoverable fIle are modilled. The locks are held on
behalf of the transaction performing the change
until the transaction issues a sync point request or
terminates (at which time a sync point is
automatically performed). For VSAM recoverable
fIle processing, you must be aware of certain further
considerations.

Whenever a VSAM record is modified, CICS me
control locks the record by means of a CICS
ENQUEUE request using the primary record
identiller as the enqueue argument. If a record is
modifit::d by way of a path, the enqueue uses the
base ke:y or the base RBA as argument. This
means that CICS will permit only one transaction
at a tinle to perform its request, the other
transactions having to wait until the first has
reached a sync point.

For the READ UPDATE, REWRITE-related
comtnands, the record lock is acquired as soon as
the READ UPDATE has been issued. For a
DELETE command that has not been preceded by
a READ UPDATE, or for a WRITE corrunand,
the record lock is acquired at the time the
command is executed. For a WRITE
MASS INSERT command, which consists of a
series of commands, a separate record lock is
acquire:d at the time each individual WRITE
command is performed. Similarly, for a DELETE
GENERIC command, each record deleted acquires
a separate lock on behalf of the transaction issuing
the request.

The record locks described above are known as
update locks since they are acquired whenever a
record is updated (modifIed). A further type of
lock known as a delete lock is also acquired by fue
control whenever a DELETE, a WRITE or a
WRITE MASSINSERT operation is being
performed. A DELETE operation therefore
acquires two separate locks on the record being
deleted.

The delete lock, separate frorn the update lock, is
required because of the method used by fue control
to implement WRITE operations. In advance of
executing a WRITE or WRITE MASS INSERT
command to a KSDS or RRDS, fue control fmds
and locks the empty range into which the new
record or records are to be inserted. The empty
range is locked by identifying the next existing
record in the data set and acquiring its delete lock.

The empty range is locked in order to prevent other
requests simultaneously adding records into the
empty range. Moreover, the end of the empty
range must not be changed while the add operation
is in progress. If another transaction issues a
request to add records into the empty range or to
delete the record at the end of the range, the delete
lock will force the transaction to wait until the
WRITE or WRITE MASSINSERT is completed.
The record held with a delete lock may, however,
be updated by another transaction during the
WR ITE operation.

Unlike an update lock, a delete lock is held only for
the duration of a DELETE, WRITE, or WRITE
MASSINSERT operation. A MASSINSERT that
adds records to the file into more than one empty
range will release the previous delete lock as it
moves into a new empty range.

88 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 2.3. File Control - DAM Considerations

Record Identification

You identify records in DAM data sets by a block
reference, a physical key (keyed data set), and a
deblocking argument (blocked data set). The
record identification (specified in the RIDFLD
option) contains a subfield for each, which, when
used, must be in the above order. The subfields are
as follows:

Block reference - one of the following:

• Relative track and record (hexadecimal format):
2-byte IT, I-byte R (RELTYPE=HEX).

The 2-byte TT begins at relative track O. The
I-byte R begins at relative record 1.

• Relative track and record (zoned decimal
format): 6-byte TTTTTT, 2-byte RR
(RELTYPE= DEC).

• Actual (absolute) address: 8-byte
MBBCCHHR (RELTYPE operand omitted).

The type of block reference being used must be
specified in the REL TYPE operand of the
DFHFCT TYPE = DATASET system macro
which defmes the data set.

Physical key - required only if the data set has been
defmed to contain recorded keys. If used, it must
immediately follow the block reference. Its length
must be the same as the length specified in the
BLKKEYL operand of the DFHFCT
TYPE = DATASET system macro that defmes the
data set.

Deblocking argument - required only if specific
records are to be retrieved from a block. If used, it

must follow immediately the physical key (if
present) or the block reference. If omitted, an
entire block will be retrieved.

The deblocking argument may be either a key
(specify the DEBKEY option on a READ or
STARTBR command), in which case its length
must be the same as that specified in the KEYLEN
operand of the DFHFCT TYPE = DATASET
system macro, or it may be a relative record
number (specify the DEBREC option on a READ
or STARTBR command), in which case it is a
one-byte binary number (first record = 0).

The examples in Figure lIon page 90 assume a
physical key of four bytes and a deblocking
argument of three bytes.

Browsing Records From DAM
data sets

The record identification field must contain a block
reference (for example, TTR or MBBCCHHR)
that conforms to the addressing method defmed for
the data set. Processing begins with the specified
block and continues with each subsequent block
until the browse is terminated.

If the data set contains blocked records, processing
begins at the first record of the frrst block and
continues with each subsequent record, regardless
of the contents of the record identification field.

That is, CICS uses only the information held in the
TTR or MBBCCHHR subfield of the RIDFLD to
identify the record. All other information, such as
physical key and relative record, or logical key, is
ignored. On completion of the READ NEXT

Chapter 2.3. File Control - DAM Considerations 89

Byte 10 1 2 3 4 5 6 7 8 9 10

IT T RI PH-KEY KE~

1M B B C C H H RI NJ

IT T T T T T R RI PH-KEY

IT T RI KEY

Figure II. Examples of Record Identification

command, the RIDFLD is updated by CICS with
the complete identification of the record retrieved.
For example, assume a browse is to be started with
the first record of a blocked, keyed data set j and
deblocking by logical key is to be performed.

Before issuing the STARTBR command, the TTR
(assuming that is the addressing method) of the first
block should be placed in the record identification
field. After the frrst READNEXT command, the
record identification field might contain:

X'00000l0504'

where 0100001 represents the TTR value, 05
represents the block key, and 04 represents the
logical record key.

As another example, assume that a blocked,
non-keyed data set is being browsed using relative
record deblocking and the second record from the
second physical block on the third relative track is
read by a READNEXT command. Upon return
to the application program, the record identification
field contains

X'OOO1)020201'

where 000002 represents the track, 02 represents the
block, and 01 represents the number of the record
in the block relative to zero.

It should be noted at this point that the options
DEBREC and DEBKEY need to be specified on

11 12 13 14 15

Search by relative track
and record and key;
deblock by key

Search by actual address;
deblock by relative record

KEY Search by zoned decimal
relative track and record
and key; deblock by key

Search by relative track
and record; deblock by key

the ST A R TB R command when browsing blocked
data sets, in order for the correct contents to be
returned by CICS in the RIDFLD. Specifying
DEBREe on the STARTBR command will cause
the relative record number to be returned. The
DEB KEY option specified on the ST ARTBR
command will cause the logical record key to be
returned. The omission of DEBREC or DEBKEY
when browsing a blocked me has the following
effect. The logical record is retrieved from the
block, the length parameter is set equal to the
logical record length, but the RIDFLD is not
updated with the full identification of the record.
This method should not be used. This should be
contrasted with the omission of the DEBREC or
DEB KEY option from the READ command when
reading from a blocked DAM data set. In this
case, the whole block is retrieved, and the length
parameter is set equal to the length of the block.

Adding Records to DAM Data
Sets

When adding records to a DAM data set, the
following considerations and restrictions apply:

1. When adding undefmed or variable-length
records (keyed or non-keyed), the track on
which each new record is to be added must be
specified. If space is available on the track, the
record is written following the last previously

90 ClCSjDOSjVS Application Programmer's Reference Manual (Command Level)

written record, and the record number is placed
in the "R" portion of the record identification
field of the record. The track specification may
be in any of the acceptable fonnats except
relativeblock. If zoned decimal relative fonnat
is used, the record number is returned as a
2-byte zoned decimal number in the seventh
and eighth positions of the record identification
field.

An attempt to add undefmed or variable-length
records is limited to the single track specified.
If insufficient space is available on that track,
the NOSPACE condition occurs. However, an
attempt may be made to add the record on
another track simply by altering the track
identifier and using another WRITE command.
The location at which the record is added is
returned to the application program in the
record identification field being used.

When adding records of undefmed length, the
length of the record must be specified in the
LENGTH option. When an undefmed record
is retrieved, the application program must
detennine its length.

2. When adding keyed fixed-length records the
data set must frrst be formatted with dummy
records or "slots" into which the records may
be added. A dummy record is signified by a
key of hexadecimal "FF"s.

3. When adding non-keyed fixed length records,
the block reference must be given in the record
identification field. The new records are
written in the location specified, destroying the
previous contents of that location.

4. When adding keyed fixed-length records, track
information only is used to search for a dummy
key and record, which, when found, is replaced
by the new key and record. The location of
the new record is returned to the application
program in the block reference subfield of the
record identification field.

Por example, for a record whose identification
field is as follows:

o 3 0 ALPHA
T T R KEY

the search will start at relative track 3. When
control is returned to the application program,
the record identification field will be as follows:

o 4 6 ALPHA

showing that the record is now record 6 on
relative track 4.

5. When adding variable length blocked records a
four-byte record description field (RDF) must
be included in each record. The frrst two bytes
specify the length of the record (including the
4-byte RDF); the other two bytes consist of
zeros.

DAM Exclusive Control

When a blocked record is read for update, CICS
maintains exclusive control of the containing block.
An attempt to read a second record from the block
before the frrst is updated (by a REWRITE
command), or before exclusive control is released
(by an UNLOCK command), will cause a
deadlock.

Chapter 2.3. File Control - DAM Considerations 91

Chapter 2.4. File Control - Commands, Options, and Conditions

This chapter shows the syntax of each file control
command, describes the purpose and fonnat of
each command and its options, and gives a list of
the exceptional conditions that can arise during
execution of a fue control command.

Read a Record (READ)

READ
DATASET(name)
(INTO(data-area)ISET(ptr-ref)}
[LENGTH(data-area)] 1

RIDFLDCdata-area)
[KEYLENGTH(data-value)2[GENERIC]3]
[SYSIDCname)]
[RBA 3 IRRN3 IDEBKEy 4 IDEBREC4]
[GTEQ I f..iUAlJ 3.
[UPDATrr-

Conditions: DISABLED, DSIDERR,
DUPKEya, ILLOGICa, INVREQ, IOERR,
ISCINVREQ, LENGERR, NOTAUTH, NOTFND,
NOTOPEN, SYSIDERR

1 Mandatory with SYSID, and with
INTO when reading variable-length
records

2 Mandatory with SYSID unless RBA
or RRN is coded also, in which
case it is invalid

a VSAM only
4 Blocked DAM only

You use this command to read a record from a
direct access data set on a local or remote system.

If you include the UPDATE option, you must
identify the record to be updated by the record
identiftcation field specified in the RIDFLD option.
Immediately upon completion of a READ
UPDATE command, the RIDFLD data area is
available for reuse by the application program.

You can only specify one update operation per
data set within a transaction at any given time.
Further, to avoid deadlock when accessing a
VSAM data set, your next command to the data
set should be a REWRITE, DELETE without
RIDPLD, or UNLOCK.

The following example shows you how to read a
record from a data set into a specified data area:

EXEC CICS READ
INTO(RECORD)
DATASET('MASTER')
RIDFLD(ACCTNO)

The following example shows you how to read a
record for update from a VSAM data set using a
generic key and specifying a greater-or-equal key
search.

EXEC CICS READ
INTO(RECORD)
LENGTH(RECLEN)
DATASETC'MASTVSAM')
RIDFLD(ACCTNO)
KEYLENGTH(4)
GENERIC
GTEQ
UPDATE

Chapter 2.4. Pile Control - Commands, Options, and Conditions 93

Write! a Record (WRITE)

WRITE
DATASET(name)
FROMI(data-area)
[LENGTHCdata-value)] 1

RIDF1DCdata-area)
[KEYLENGTHCdata-value)}2
[SYSIDCname)]
[RBAIRRN]3
[MASSINSERT]3

Conditions: DISABLED, DSIDERR,
DUPREC, ILLOGIC3, INVREQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE,
NOTAUTH, NOTOPEN, SYSIDERR

1 Mandatory with SYSID, and with
FROM when writing variable-length
re!cords

2 Mandatory with SYSID unless RBA or
RRN is coded also, in which case
it: is invalid

3 VSAM only

You Us(~ this command to write a record to a direct
access data set on a local or remote system. For
example:

EXEC eICS WRITE
I=ROM(RECORD)
I.ENGTH(DATLEN)
DATASET('MASTER')
IUDFLDCKEYFLD)

For a VSAM entry-sequenced data set (ESDS) the
record is always added at the end of the data set.
VSAM does not use the identification field specified
in RIDFLD when calculating the RBA of the new
record, but the new RBA is returned to th(~
application in the record identification field
specified in the RIDFLD option.

For a VSAM KSDS, the record is added in the
location specified by the associated key; this
location may be anywhere in the data set. For

VSAM data sets, the key in the record and the key
in the RIDFLD identification field must be the
same.

Records for ES OS and KS DS data sets can be
either fixed length or variable length. Those for a
rdative record data set must be fixed length.
MASSINSER T operations must proceed with
ascending keys, and must be terminated by an
UNLOCK before any other request to the same
data set.

lfpdate a Record (REWRITE)

REWRITE
DATASET(name)
FROMCdata-area)
[LENGTH(data-value)] 1

[SYSIDCname)]

Conditions: DISABLED, DSIDERR,
DUPREC, ILLOGIC2, INVREQ, IOERR,
ISCINVREQ, LENGERR, NOSPACE,
NOTAUTH, NOTOPEN, SYSIDERR

1 Mandatory with SYSID, and with
FROM when rewriting variable
length records

2 VSAM only

You use this command to update a record in a
direct-access data set on a local or remote system.
You must always precede this command with a
READ UPDATE to read the record to be updated.
For example:

EXEC CICS REWRITE
FROM(RECORD)
DATASET('MASTER')

For VSAM data sets you must not change the key
field in the record.

94 CICS/DOS/VS Application Programmer's Reference Manual (Command Level)

Delete a Record (DELETE) -
VSAM Only

DELETE
DATASETCname)
[RIDFLDCdata-area)1

[KEYLENGTHCdata-value)2
[GENERIC [NUMRECCdata-area)]]]]

[SYSIDCname)]
[RBAIRRN]

Conditions: DISABLED, DSIDERR,
DUPKEY, ILLOGIC, INVREQ,
IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN,
SYSIDERR

1 Mandatory with GENERIC
2 Mandatory with SYSID unless RBA

or RRN is coded also, in which
case it is invalid

You use the DELETE command to delete a record
from a KSDS or RRDS data set on a local or
remote system. You must identify the record to be
deleted in the RIDFLD option.

You can also delete a record that has been retrieved
for update (by a READ UPDATE command),
instead of rewriting it, by this command. In this
case, you must not specify the RIDFLD option.

You can delete groups of records in a similar way,
except that you identify the group by the
GENERIC option.

The following example shows you how to delete a
group of records in a VSAM data set:

EXEC CICS DELETE
DATASETC'MASTVSAM')
RIDFLDCACCTNO)
KEYLENGTH(4)
GENERIC
NUMRECCNUMDEL)

Release Exclusive Control
(UNLOCK)

UNLOCK
DATASETCname)
[SYSIDCname)]

Conditions: DISABLED, DSIDERR,
ILLOGICl, IOERR, ISCINVREQ, NOTAUTH,
NOTOPEN, SYSIDERR

1 VSAM only

You use this command to release exclusive control
position made in response to a READ command
with the UPDATE option. You use it if you
retrieve a record for update, and then decide that
you do not want to update the record after all.
However, for a data sct for which the system
programmer has specified auto logging, the resource
remains under the task control enqueue until either
a sync point command is executed or the task is
terminated. The record can be in a data set on a
local or remote system.

You can also use this command to tenninate a
VSAM WRITE MASSINSER T operation.

Start Browse (STARTBR)

STARTBR
DATASETCname)
RIDFLDCdata-area)
[KEYLENGTHCdata-value)l[GENERIC]2]
[REQIDCdata-value)]
[SYSIDCname)]
[RBA 2 IRRN 2 IDEBKEy3 IDEBREC3]
[GTEQIEQUAL]2

Conditions: DISABLED, DSIDERR,
ILLOGIC2, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR

1 Mandatory with GENERIC or SYSID
unless RBA or RRN is coded
also, in which case
it is invalid

2 VSAM only
3 Blocked DAM only

Chapter 2.4. File Control - Commands, Options, and Conditions 95

You use this command to specify the record in a
data set, on a local or remote system, at which you
want the browse to start. No records will be read
until a READNEXT command (or, for VSAM
only, a READPREV command) is executed.

Read Next Record During a
Browse (READNEXT)

READI~EXT
DATA:SETCname)
{INTOCdata-area)ISETCptr-ref»
[LENGTHCdata-area)] 1

RIDFILDCdata-area)
[KEYILENGTHCdata-value)]2
[REQIDCdata-value)]
[SYSIDCname)]
[RBA I'RRN]-

Conditions: DISABLED, DSIDERR,
DUPKEY- ENDFILE, ILLOGIC-, INVREQ,
IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFND, NOTOPEN, SYSIDERR4

1 Mandatory with SYSID, and with
INTO when reading variable
length records

2 Mandatory with SYSID unless RBA
or RRN is coded also, in which
case it is invalid

a VSAM only
4 Not raised following successful

STARTBR to remote system if
that system becomes unavailable.
Abend AZI4 issued instead.

You Us(~ this command to read records in
sequential order from a data set on a local or
remote system. You can also use it during VSAM
skip sequential processing.

If the NOTFND condition occurs during a browse,
you must include a RESETBR command to reset
or an ENDBR command to terminate, the brows~.

A READNEXT command following a
READPREV command will read the same record
as that read by the READPREV command.

Read Previous Record During a
Browse (READPREV) - VSAM
Only

READPREV
DATASETCname)
(INTOCdata-area)ISETCptr-ref)}
[LENGTHCdata-area)] 1

RIDFLDCdata-area)
[KEYLENGTHCdata-value)]2
[REQIDCdata-value)]
[SYSIDCname)]
[RBAIRRN]

Conditions: DISABLED, DSIDERR,
DUPKEY, ENDFILE, ILLOGIC, INVREQ,
IOERR, ISCINVREQ, LENGERR, NOTAUTH,
NOTFND, NOTOPEN, SYSIDERR-

1 Mandatory with SYSID, and with
INTO when reading variable
length records

2 Mandatory with SYSID unless RBA
or RRN is coded also, in which
case it is invalid

J Not raised following successful
STARTBR to remote system if
that system becomes unavailable.
Abend AZI4 issued instead.

You use this command only to read records in
reverse sequential order from a VSAM data set on
a local or remote system.

If you include a READPREV command
immediately following a STARTBR command,
your STARTBR command must specify the key of
a record that exists on the data set, otherwise the
NOTFND condition will be raised for the
READPREV command.

A READPREV command following a
READNEXT command will read the same record
as that read by the READNEXT command.

If you want to restart a browse using the
RESETBR command, you must supply a complete
key. If the key you supply does not exist, the
NOTFND condition will be raised.

96 CliCSjDOSjVS Application Programmer's Reference Manual (Command Level)

Reset Start of Browse
(RESETBR)

RESETBR
DATASETCname)
RIDFLDCdata-area)
[KEYLENGTHCdata-value)l[GENERIC]]
[REQIDCdata-value)]
[SYSIDCname)]
[~IEQUAL]2
[RBAIRRN]2

Conditions: DISABLED, DSIDERR,
ILLOGIC2, INVREQ, IOERR, ISCINVREQ,
NOTAUTH, NOTFND, NOTOPEN, SYSIDERR

1 Mandatory with SYSID unless RBA
or RRN coded also, in which case
it is invalid

2 VSAM only

You use this command to specify the record in a
data set, on a local or remote system, at which you
want the browse to be restarted.

You can include this command at any time prior to
issuing any other browse command. It is similar to
an ENDBR - STARTBR sequence (but with less

function), and gives the DAM user the sort of skip
sequential capability that is available to VSAM
users through use of the READ NEXT command.

End Browse (ENDBR)

ENDBR
DATASETCname)
[REQID(data-value)]
[SYSID(name)]

Conditions: DISABLED, DSIDERR,
ILLOGICl, INVREQ, ISCINVREQ,
NOTAUTH, NOTOPEN, SYSIDERR

1 VSAM only

You use this command to end a browse on a data
set on a local or remote system.

You should always issue an end browse (ENDBR)
command before performing any update operations
on the same data set (READ UPDATE, DELETE
with RIDFLD, or WRITE), and before a sync
point.

Chapter 2.4. File Control - Commands. Options. and Conditions 97

File <:ontrol Options

DAT ASET(name)
specifies the symbolic name of the data set to
be accessed. The name must be
alphanumeric, up to 7 characters in length,
and must have been defined in the fue control
table (FCT).

If SYSID is specified, the data set is assumed
to be on a remote system irrespective of
whether or not the name is defmed in the
FeT. Otherwise, the FeT entry will be used
to determine if the data set is on a local or
relnote system.

DEBKEY (blocked DAM only)
sp1ecifies that deblocking is to occur by key.
If neither DEBREC nor DEB KEY is
sp'ecified, deblocking does not occur.

If KEYLENGTH is specified, its value must
be the sum of the lengths of all three subfields
comprising the key.

DEBRE,C (blocked DAM only)
specifies that deblocking is to occur by
relative record (relative to zero). If neither
DEBREC nor DEB KEY is specified,
deblocking does not occur.

If KEYLENGTH is specified, its value must
be the sum of the lengths of all three subfields
comprising the key.

EQUAl, (VSAM only)
specifies that the search will be satisfied only
by a record having the same key (complete or
generic) as that specified in the RIDPLD
option.

FROM(data-area)
specifies the record that is to be written to the
data set.

GENERIC (V SAM only)
specifies that the search key is a generic key
whose length is specified in the
KEYLENGTH option. The search for a
reGord is satisfied when a record is found that

has the same starting characters (generic key)
as those specified.

GTEQ (VSAM only)
specifies that if the search for a record having
the same key (complete or generic) as that
specified in the RIDFLD option is
unsuccessful, the first record having a greater
key will satisfy the search.

INTO(data-arca)
specifies the data area into which the record
retrieved from the data set is to be written.

KEYl.ENGTH(data-value)
specifies the length (halfword binary) of the
key that has been specified in the RIDFLD
option, except when RBA or RRN is
specified, in which case it is invalid. This
option must be specified if GENERIC is
specified, and it can be specified whenever a
key is specified. However, if the length
specified is different fronl the length defmed
for the data set and the operation is not
generic, the INVREQ condition occurs.

The INVREQ condition also occurs if a
READ, DELETE, or STARTBR command
specifies GENERIC, and the KEYLENGTH
is not less than that specified in the VSAM
definition.

If KEYLENGTH is omitted from a
READNEXT or READPREV command
uscd in a generic browse, nonnal browsing
occurs.

If KEYLENGTII is included in a
READNEXT or READPREV command
used in a generic browse, a new browse is
started using the key length specified and the
key in the RIDFLD option. If the data set is
remote, and SYSID is specified, specifying
KEYLENGTH will not start a new generic
browse on a READNEXT or READPREV
command.

If KEYLENGTH(O) is used with the object
of reading the first record in the data set, the
GTEQ option must also be specified,
otherwise the NOTFND condition will be

98 CICSjDOSjVS Application Programmer's Reference Manual (Command LeveJ)

raised. Note that GTEQ is the default for
STARTBR and RESETBR, but not for
READ.

The use of this option with remote data sets
is discussed further in "KEYLENGTH
Option for Remote Data Sets" on page 86.

LENGTH(parameter)
specifies the length (as a halfword binary
value) of the record to be retrieved or written
by the READ, READNEXT, READPREV,
WRITE and REWRITE commands. On
completion of a retrieval operation, (READ,
READNEXT, READPREV) the LENGTH
parameter is set to the length of the retrieved
record.

This option must be specified with SYSID.
It must also be specified with the INTO and
FROM options on file control commands
involving variable-length records. It need not
be specified for fixed-length records, but its
inclusion is recommended because:

• It causes a check to be made that the
record being read or written is not too
long for the available data area

• When reading or browsing fixed-length
records into an area longer than the
record being accessed, the LENGERR
condition will be raised for assembler
language and PL/I applications if the
LENGTH option is not specified.

When reading or browsing into a target data
area longer than the record being read, the
contents of the target data area, from the end
of the retrieved record to the end of the target
data area, are unpredictable.

For a READ, READNEXT or
READPREV command with the INTO
option, the LENGTH parameter must be a
data area that specifies the largest record the
program will accept. If the retrieved record is
longer than the value specified in the
LENGTH option, the record is truncated to
the specified value and the LENGERR
condition is raised. In this case, the

LENGTH data-area is set to the length of the
record prior to truncation.

For a READ, READNEXT or
READPREV command with the SET
option, the LENGTH option need not be
specified but, if it is, the parameter must be a
data area.

For a WRITE or REWRITE command, the
parameter must specify a data value that is
the actual length of the record that is to be
written. When writing fixed-length records,
the LENGTH option need not be specified.
However, if it is, its value is compared against
the record length dermed for the data set and
the LENGERR condition is raised if the
values are not equal.

MASSINSERT (VSAM only)
specifies that the WR ITE command is part of
a mass-insert operation.

NUMREC(data-area)
specifies a halfword binary data area that is
set to the number of records that have been
deleted.

RBA (VSAM only)
specifies that the record identification field
specified in the RIDFLD option contains a
relative byte address.

REQID(data-value)
specifies as a halfword binary value a unique
request identifier for a browse, used to
control multiple browse operations on a data
set. If this option is not specified, a default
value of zero is assumed.

RIDFLD(data-area)
specifies the record identification field. The
contents can be a key, a relative byte address,
or relative record number (for VSAM data
sets), or a block reference, physical key, and
deblocking argument (for DAM data sets).
For a relative byte address or a relative record
number, the format of this field must be
fullword binary. When adding records to a
keyed data set, the field must contain the
complete key_

Chapter 2.4. File Control - Commands, Options, and Conditions 99

RRN (VSAM only)
sp(:cifies that the record identification field
specified in the RIDFLD option contains a
relative record number. This option should
only be used with relative record data sets.

SET(ptr·-ref)
specifies the pointer reference which is to be
set to the address of the retrieved record.

In assembler language, if the DUPKEY
exceptional condition occurs, the register
specified will not have been set, but can be
loaded from DFHEITPI.

The pointer reference is valid until the next
READ command for the same data sct or
until completion of a corresponding
REWRITE or DELETE command in the
case of READ UPDATE SET. If the user
wishes to retain the data within the field
addressed by the pointer, it should be moved
to the user's own area.

SYSID(name)
specifies the name of the system whose
resources are to be used for
intercommunication facilities. The name may
be: up to four characters in length.

When this option is specified, LENGTH and
KEYLENGTH must be specified in some
situations where normally they need not be,
as follows.

If neither RBA nor RRN is specified,
KEYLENGTH must be specified; it cannot
bf~ found in the FCT.

If SET is not specified, LENGTH must
either be specified explicitly or must be
capable of being defaulted from the INTO or
FROM option using the length attribute
reference in assembler language, or STG and
CSTG in PL/1. LENGTH must be specified
explicitly in COBOL.

UPDATE
specifies that the record is to be obtained for
uJPdating or (for VSAM only) deletion. If

this option is omitted, a read only operation
is assumed.

File Control Exceptional
Conditions

DISABLED
occurs if a data set is disabled. A data set
may be disabled because:

• It was initially defined as disabled and has
not since been enabled

• -It has been disabled by an EXEC CICS
SET command or by the CEMT
transaction.

DSIIJERR
occurs if a data set name referred to in the
DATASET option cannot be found in the
FCT.

Default action: terminate the task abnormally.

DUPKEY (VSAM only)
occurs if a record is retrieved by way of an
alternate index with the NONUNIQUEKEY
attribute, and another alternate index record
with the same key follows. It does not occur
as a result of a READ NEXT command that
reads the last of the records having the
nonunique key.

In assembler language, if the SET option is
being used, the register specified will not have
been set, but can be loaded from
DFHEITPI.

Default action: terminate the task abnormally.

DUPREe
occurs if an attempt is made to add a record
to a data set, or to an alternate index with the
UNIQUEKEY attribute, in which the same
key already exists.

It may also occur when an attempt is made
to add a record to a data set whose upgrade

100 CICSjDOSjVS Application Programmc~rts Reference Manual (Command Level)

set has an alternate index with the
UNIQUEKEY attribute, if the corresponding
alternate key already exists in the alternate
index.

Default action: tenninate the task abnormally.

ENDFILE
occurs if an end-of-rue condition is detected
during a browse.

Default action: tenninate the task abnormally.

ILLOGIC (VSAM only)
occurs if a VSAM error occurs that does not
fall within one of the other CI CS response
categories. Further information is available in
the EXEC interface block (refer to
Appendix A, "EXEC Interface Block" on
page 413 for details).

Default action: tenninate the task abnormally.

INVREQ
occurs if any of the following situations exist:

• A requested rue control operation is not
allowed according to the data set entry
specification in the FCT.

• A REWRITE command, or a DELETE
command without the RIDFLD option,
is issued for a data set for which no
previous READ UPDATE command has
been issued.

• A READNEXT, READPREV,
ENDBR, or RESETBR command is
issued for a data set for which no
previous STAR TB R command has been
issued.

• A READPREV command is issued for a
data set for which the previous
STARTBR command has the
GENERIC option.

• The KEYLENGTH option is specified
(but the GENERIC option is not
specified), and the specified length does

not equal the length dermed for the data
set.

• The KEYLENGTH and GENERIC
options are specified, and the length
specified in the KEYLENGTH option is
either less than zero, or greater than or
equal to the length of a full key.

• A DELETE command is issued for a
DAM data set, or for a VSAM ESDS
data set.

• A DELETE command with the
RIDFLD option specified is issued for a
VSAM data set when a READ
UPDATE command is outstanding.

• Following a READ UPDATE command
for a data set, a WRITE or READ
UPDATE command is issued for the
same data set before exclusive control is
released by a REWRITE, UNLOCK, or
DELETE command.

• An attempt is made to start a browse
with a REQID already in use for another
browse.

• The type of record identification (for
example, key or relative byte address)
used to access a data set during a browse
is changed by a READNEXT or
READPREV command.

• For a WRITE command, when writing
records containing imbedded keys, the
key in the record area (FROM option)
and the key in RIDFLD do not match.

Default action: terminate the task abnormally.

IOERR
occurs if there is an I/O error during a rue
control operation. An I/O error is any
unusual event that is not covered by a CICS
exceptional condition.

Further information is available in the EXEC
interface block (refer to
Appendix A, "EXEC Interface Block" on
page 413 for details).

Chapter 2.4. File Control - Commands. Options. and Conditions 101

Default action: terminate the task abnormally.

ISCINVREQ
oecurs when the remote system indicates a
failure which does not correspond to a known
condition.

Default action: terminate the task abnormally.

LENGERR
oecurs if any of the following situations exist:

• The LENGTH option is not specified for
a read (without the SET option specified)
or write operation involving
variable-length records.

• The length specified for a write operation
exceeds the maximum record sizc;:; the
record is truncated.

• The length of a record read during a read
operation (with the INTO option
specified) exceeds the value specified in
the LENGTH option; the record is
truncated, and the data area supplied in
the LENGTH option is set to the actual
length of the record.

• An incorrect length is specified for a read
or write operation involving fixed length
records.

Default action: terminate the task abnormally.

NOSPACE
occurs if no space is available on the direct
al~cess device for adding records to a data set.

Default action: terminate the task abnormally.

NOTAUTH
occurs when a resource security check has
failed. Use of SYSID will always raise the
NOTAUTH condition when resource
security level checking is in effect
(lRSLC = YES in the PCT). The reasons for
the failure are the same as for abend code
AEY7, as described hi the GIGS/DOS/VS
AI essages and Godes manual.

Default action: terminate the task abnormally.

NOTFNI>
occurs if an attempt to retrieve or delete a
record based on the search argument provided
is unsuccessful. It may occur on a
READPREV command immediately
following a STARTBR command which
specifies the key of a record that does not
exist on the data set.

Default action: terminate the task abnormally.

NOTOPEN
occurs if one of the following situations exist:

• The requested data set is CLOSED and
UNENABLED. The CLOSED,
UNENABLED state is reached after a
close request has been received against an
OPEN ENABLED data set and the data
set is no longer in use. This state can
also be specified as the initial state by
means of the FILST A T parameter of the
DFHFCT TYPE= DATASET system
macro.

• The requested data set is still open and in
use by other requests, but a close request
against the data set has been received.
Existing users are allowed to complete.

This condition can occur only during the
execution of the following commands:

• READ
• WRITE
• The first command in a WRITE

MASSINSER T sequence
• DELETE
• The first command in a DELETE

GENERIC sequence
• STARTBR

Other commands cannot raise this condition
because they are part of an active request.

This condition docs not occur if the request is
made to either a CLOSED, ENABLED data
set or a CLOSED, DISABLED data set. In
the first case, the data set is opened as part of

102 CICS/DOS/VS Application Programmer's Reference Manual (Command Level)

executing the request. In the second case, the
DISABLED condition is raised.

This condition may also occur when a ftIe
control command refers to a data set defmed
as REMOTE, where the remote system is a
release of CICS earlier than 1.7. The
condition can then occur in response to any
ftIe control command.

Default action: terminatc the task abnormally.

SYSIDERR
occurs when the SYSID option specifies
either a name which is not defmed in the
intersystem table or a system to which the
link is closed.

Default action: terminate the task abnormally.

Chapter 2.4. File Control - Commands. Options. and Conditions 103

Chapter 2.S. DL/I Services (EXEC DLI Command)

This chapter outlines the EXEC DLI commands
that can be used in command level application
programs that are used to access DL/I data bases.
These application programs can be written only in
COBOL or PL/1.

Execution of the application programs requires the
installation of the DL/I DOS/VS licensed program
(program number S746-XXI).

These commands have a syntax and format that are
similar to CICS commands (they use EXEC DLI
instead of EXEC CICS). Full details of the
commands are given in the publication D L/ I
DOS/VS Application Programming: lligh Level
Programming Interfaces.

For online application programs, the commands
are translated by the appropriate command
language translator (see "Chapter 1.3. Command
Language Translator" on page II) into calls to the
CICS link edit stub. At execution, DFHEIP is
invoked which in tum invokes a DL/I interface
program to perform the requested operations.

For batch and MPS (multiple partition support)
application programs, the DL/I link edit stub is
invoked.

EXEC DLI Command

The EXEC DLI command is similar to the EXEC
CICS command, yet provides the same facilities as
the existing call DL/I interface, as described in
"Chapter 2.6. DL/I Services (DL/I CALL
Statement)" on page llS. You can use a simpler,
more flexible, and easier-to-read command format

to request the same DL/I facilities. Perhaps as
important, you can use EDF to test EXEC DLI
commands in an application program; you cannot
do that if you use DL/I calls. EDP is described in
"Chapter 1.7. Execution (Command Level)
Diagnostic Facility" on page 49.

CICS trace facilities record events for EXEC DLI
requests in the same way as for DL/I call
statements.

There are no exceptional conditions for DL/I
commands, though you can code HANDLE
ABEND commands to handle abends issued by
DL/I, including those caused by error status codes.

This chapter describes the EXEC DLI commands,
options, and arguments that you can code.
Typically, the procedure for accessing a DL/I data
base is as follows:

1. Schedule your access to the data base. That is,
tell the system that you want access, and defme
the kind of access.

2. Perform operations involving the data base.
That is, read or update data, or request
statistics.

3. Terminate access.

4. Request a checkpoint or other system services.

The range of EXEC DLI commands available
differs according to the environment in which your
program is to run. The following table shows
which commands you can use in a given
environment.

Chapter 2.5. DLjl Services (EXEC DLI Command) 105

Cam!and Online MPS Batch

GET NEXT YES YES YES
GET NEXT

IN PARENT YES YES YES
GET UNIQUE YES YES YES
INSERT YES YES YES
REPLACE YES YES YES
DELETE YES YES YES
LOADI NO NO YES
CHECKPOINT YES YES YES
SCHEDULE YES NO NO
TERMIINATE YES NO NO

General Format of EXEC DLI
Comlrnand

lbe general fonnat of the EXEC DLI command is
as follows:

[EXEC DLI function
. [option[(argument)]] ...

The following panels show the syntax of the EXEC
DLI commands. For simplicity, the syntax panels
omit the keywords EXEC DLI that should appear
at the beginning of each command in your
prograrn.

Each function keyword has two fonns: a full fonn,
and an abbreviated fonn. Again for simplicity, the
abbreviated fonns are shown in the syntax panels,
the full fonn being shown immediately following
the panel.

This manual does not explain the meanings of the
options of EXEC DLI commands. For such
meanings, you should refer to the publication DL/ I
DOS/VS Application Programming: High Level
Programming Interfaces.

Schedule the PSB

I SCHD PSB(name)

The full form of the command is SCHEDULE.

Get One or More Segments

(GUIGNIGNP)
[USING PCB(integer-expr)]
[KEYFEEDBACKCdata-area)]

[FEEDBACKLENCinteger-expr)]

For each parent segment:
[VARIABLE]
[FIRSTILAST]
[SEGMENTCname)]
[SEGLENGTH(integer-expr)]
[OFFSET(integer-expr)]
[LOCKED]
[INTO(data-area)]
[WHERE(where clause)

[FIElDlENGTH(integer-expr)]]

For the object segment:
[VARIABLE]
[FIRSTILAST]
[SEGMENT(name)]
[SEGlENGTH(integer-expr)]
[OFFSETCinteger-expr)]
[LOCKED]
INTO(data-area)
[WHERE(where clause)

[FIElDLENGTHCinteger-expr)1]

The full fonn of the command is GET UNIQUE,
GET NEXT, or GET NEXT IN PARENT.

Insert One or More Segments

ISRT
[USING PCB(integer-expr)]

For each parent segment:
[VARIABLE]
[FIRSTILAST]
[SEGMENT(name)]
[SEGLENGTH(integer-expr)]
[FROM(data-area)]
[WHERE(where clause)

[FIElDLENGTHCinteger-expr)]]

For the object segment:
[VARIABLE]
[FIRSTILAST]
[SEGMENTCname)]
[SEGLENGTHCinteger-expr)]
[OFFSETCinteger-expr)]
FROMC data-area)

The full form of the command is INSERT.

106 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Load a Segment (Batch only)

LOAD
[USING PCBCinteger-expr)]
[VARIABLE]
[SEGMENTCname)]
FROMCdata-area)
[SEGlENGTHCinteger-expr)]

Replace One or More Segments

REPL
[USING PCBCinteger-expr)]

For each parent segment,

[VARIABLE]
[SEGMENT(name)]
[SEGlENGTHCinteger-expr)]
[OFFSETCinteger-expr)]
[FROM(data-area)]

For the object segment,

[VARIABLE]
[SEGMENT(name)]
[SEGlENGTH(integer-expr)]
[OFFSET(integer-expr)]
FROM(data-area)

The full fonn of the command is REPLACE.

Delete a Segment

DLET
[USING PCB(integer-expr)]
[VARIABLE]
[SEGMENT(name)]
FROM(data-a rea)
[SEGlENGTHCinteger-expr)]

The full fonn of the command is DELETE.

Terminate Access to the PSB

I TERM

The full fonn of the command is TERMINATE

When you issue a TERM command, the resources
associated with the previously scheduled PSB, are
released, and become available for scheduling by
other tasks. (The issuing of a sync point is part of
this operation).

Request a Basic Checkpoint

CHKP
IDCdata-area)IC'char-expr')

The full fonn of the command is CHECKPOINT.

General Rules and Conventions

As a general rule, you need only specify LENGTH
parameters in COBOL application programs.

On the GET, INSERT, and REPLACE
commands, you can repeat the segment-oriented
keywords (that is, aU those except USING PCB
and KEYFEEDBACK) for each segment, but you
must name them in hierarchical order, that is, the
last segment named must be the object segment.

You must code keywords preceding the keyword
SEGMENT immediately preceding the segment to
which they apply, but within themselves may be
coded in any order.

Similarly, you must code keywords which follow
the keyword SEGMENT immediately following the
segment to which they apply, but within themselves
they may be coded in any order.

You cannot code either FIRST or CURRENT on
GET UNIQUE comtnands, but you must code the
SEGMENT option for the object segment on GET
UNIQUE commands.

A where clause has the following fonn:

WHERECfieldname operator value
[ANDIOR fieldname operator value ...])

[FlElDlENGTHCinteger-exprl
[,integer-expr2, ... J)]

Chapter 2.S. DL/I Services (EXEC DLI Command) 107

"fieldnrune" must be the name of a field as defmed
in the data base description (the DBD).

"value" is a reference to a data area containing the
value to be compared.

You mULst specify delimiters for COBOL and PL/I
EXEC DLI commands, in the same way as EXEC
CICS commands, by END-EXEC for COBOL and
by a semicolon for PI,/I, for example:

For COBOL.

EXEC DLI GU SEGMENTCSKILL)
INTOCSKILLSTRUCT)
WHERECSKILLTYPE=PLUMBER)
END-EXEC

For Pl./I:

EXEC DLI GU SEGMENTCSKILL)
INTOCSKILlSTRUCT)
WHERECSKILLTYPE=PLUMBER);

DL/I lnterface Block (DIB)

Whenever you make an EXEC DLI request, DLI
responds by storing information in the D L/I
interface block (the DIB) in your program. A DIB
is inserted automatically into your prograrrt by the
CICS command translator. The DIB contains the
following named fields:

- Fields of the DIB

Field COBOL PL/I

DIBSTAT PIC XX CHAR(2)
DIBSEGM PIC X(8) CHAR(8)
DIBFLAG PIC XX CHAR(2)
DIB5EGLV PIC XX CHAR(2)
DIBKFBL PIC 59(4) FIXED

CaMP BINCl5,O)

DIBSllAT
is the DL/I status code. It indicates the
degree to which your DL/I request has been
successful. The status code returned can be
one of the following:

bb (blanks) request successful

G A crossed hierarchical boundary into higher
level

Gn end of data set; beyond last segment

GE segment not found

GK different segment type at same level
returned

II segment to insert already exists

loin segment to load already exists (batch
only)

NE index segment not found

TG TERM attempted when PSB not
scheduled

A fulIlist of status codes is given in the
application programming reference manual
for DL/I VSE.

Any other status code indicates that the DL/I
interface program has found an unrecoverable
error. Such an error abends your CICS
transaction. The abend code generated by
the error has the form DlIxx, where xx is the
DL/I status code.

DlnSEGM
is the name of the object segment or the
lowest level parent segment actually retrieved.

DIBFLAG
is a flag indicating that an online task had to
wait for a resource owned by an MPS batch
task. The value is either HIGHMVALUE in
COBOL, HIGH(I) in PL/I or
LOW-VALUE in COBOL, LOW(l) in PL/I.

DIBSEGI .. V
gives the hierarchical level of the object
segment or lowest level parent segment
actually retrieved.

DIBKFnL
is the half word binary value, when
KEYFEEDBACK has been specified,
representing the actual length of the key

108 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

returned to the KEYFEEDBACK area. It
normally represents the concatenated key of
the segment named in DIBSEGM, but may
be truncated if the area you provide is not
long enough.

~xample of DL/I Requests Using
EXEC DLI

T~e following example shows, in COBOL and
P~/I, the use of the EXEC DLI command in a
CICS application program to request DL/I services.

COBOL Example of EXEC DLI Commands

CBL LIB,APOST,XOPTS(CICS,DLI)
IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE.

* COBOL EXEC DLI ONLINE PROGRAM
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 SEGKEYA
77 SEGKEYB
77 SEGKEYC
77 SEGKEYI
77 SEGKEY2
77 SEGKEY3
77 SEGKEY4
77 CONKEYB
77 SEGNAME
77 SEGLEN
71 PCBNUM
01 AREAA

* DEFINE SEGMENT I/O
01 AREAB
01 AREAC
01 AREAG

COPY MAPSET.
PROCEDURE DIVISION.

AREA

PIC X(4).
PIC X(4).
PIC X(4).
PIC X(4).
PIC X(4).
PIC X(4).
PIC X(4).
PIC X(S).
PIC XeS).
COMP PIC S9(4).
COMP PIC S9(4).
PIC X(SO).

PIC XCSO).
PIC XCSO).
PIC X(250).

* *** * INITIALIZATION * HANDLE ERROR CONDITIONS IN ERROR ROUTINE * HANDLE ABENDS (DLI ERROR STATUS CODES) IN ABEND ROUTINE
* RECEIVE INPUT MESSAGE
* ~**

EXEC CICS HANDLE CONDITION ERROR(ERRORS) END-EXEC.

EXEC CICS HANDLE ABEND LABELCABENDS) END-EXEC.

EXEC CICS RECEIVE MAP ('SAMPMAP') MAPSETC'MAPSET') END-EXEC.
* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
* *** * SCHEDULE PSB NAMED 'SAMPLE1'
* ***

EXEC DLI SCHD PSBCSAMPLE1) END-EXEC.
PERFORM TEST-DIB THRU OK.

* ***
~ RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDANTS
* ***

MOVE 'A300' TO SEGKEYA.

Chapter 2.5. DL/I Services (EXEC DLI Command) 109

COBOL Example of EXEC DLI Commands (Continued)

EXEC DLI GU USING PCBCl) SEGMENTCSEGA) INTOCAREAA)
SEGlENGTH(80) WHERECKEYA=SEGKEYA) FIELDLENGTH(4)

END-EXEC.
PERFORM TEST-DIB THRU OK.

GNPLOOP.
EXEC DLI GNP USING PCBCl) INTO(AREAG) SEGLENGTH(250)
END-EXEC.
IF DIBSTAT EQUAL TO 'GE' THEN GO TO LOOPDONE.
PERFORM TEST-DIB THRU OK.
GO TO GNPLOOP.

LOOPDONE.
* *** * INSERT NEW ROOT SEGMENT
* ***

MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAA.
EXEC DLI ISRT USING PCB(l) SEGMENTCSEGA) FROM(AREAA)

SEGLENGTH(80) END-EXEC.
PERFORM TEST-DIB THRU OK.

* *** * RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM
* ***

MOVE 'A200' TO SEGKEYA.
MOVE 'B240' TO SEGKEYB.
MOVE 'C24l' TO SEGKEYC.
EXEC DLI GU USING PCB(l)

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA) FIELDLENGTH(4)
INTO(AREAA)
SEGLENGTH(80)

SEGMENT(SEGB) WHERE(KEYB=SEGKEYB) FIELDLENGTH(4)
INTOCAREAB)
SEGLENGTH(80)

SEGMENTCSEGC) WHERECKEYC=SEGKEYC) FIELDLENGTH(4)
INTO(AREAC)
SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB THRU OK.

* UPDATE FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(l)

SEGMENTCSEGA) FROMCAREAA) SEGLENGTH(80)
SEGMENTCSEGB) FROMCAREAB) SEGLENGTH(80)
SEGMENT(SEGC) FROMCAREAC) SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB THRU OK.

* *** * INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT
* ***

MOVE 'DATA FOR NEW SEGMENT INCLUDING KEY' TO AREAC.
MOVE 'A200B240' TO CONKEYB.
EXEC DLI ISRT USING PCBCl)

SEGMENTCSEGB) KEYSCCONKEYB) KEYLENGTH(8)
SEGMENTCSEGC) FROMCAREAC) SEGLENGTH(80)

END-EXEC.
PERFORM TEST-DIB lHRU OK.

* *** * RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY
* AND THEN DELETE IT AND ITS DEPENDANTS
* ***

MOVE 'A200B230' TO CONKEYB.
EXEC DLI GU USING PCB(l)

110 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

COBOL Example of EXEC DLI Commands (Continued)

SEGMENTCSEGB)
KEYSCCONKEYB) KEYLENGTHCS)
INTOCAREAB) SEGLENGTH(SO)

END-EXEC.
PERFORM TEST-DIB THRU OK.
EXEC DLI DLET USING PCBCl)

SEGMENTCSEGB) SEGLENGTHCSO) FROMCAREAB) END-EXEC.
PERFORM TEST-DIB THRU OK.

* *** * RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY, * OBJECT SEGMENT WITH WHERE OPTION,
* AND THEN SET PARENTAGE

* USE VARIABLES FOR PCB INDEX, SEGMENT NAME, AND SEGMENT LENGTH
* ***

MOVE 'A200B230' TO CONKEYB.
MOVE 'CS20' TO SEGKEYC.
MOVE 'SEGA' TO SEGNAME.
MOVE SO TO SEGLEN.
MOVE 1 TO PCBNUM.
EXEC DLI GU USING PCBCPCBNUM)

SEGMENTC(SEGNAME»
KEYSCCONKEYB) KEYLENGTHCS) SETPARENT

SEGMENTCSEGC) INTOCAREAC) SEGLENGTHCSEGLEN)
WHERECKEYC=SEGKEYC) FIELDLENGTH(4) END-EXEC.

PERFORM TEST-DIB THRU OK.
* *** * RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS
* ***

MOVE 'AOSO' TO SEGKEYl.
MOVE 'AlSO' TO SEGKEY2.
MOVE 'A27S' TO SEGKEY3.
MOVE 'A3S0' TO SEGKEY4.
EXEC DLI GU USING PCBCl) SEGMENTCSEGA) INTOCAREAA)

SEGLENGTHCSO) FIELDLENGTHC4,4,4,4)
WHERECKEYA>SEGKEYI AND KEYA<SEGKEY2 OR

KEYA>SEGKEY3 AND KEYA<SEGKEY4)
END-EXEC.
PERFORM TEST-DIB THRU OK.

* TERMINATE PSB WHEN DLI PROCESSING IS COMPLETED
EXEC DLI TERM END-EXEC.

* SEND OUTPUT MESSAGE
EXEC CICS SEND MAP('SAMPMAP') MAPSETC'MAPSET')
EXEC CICS WAIT TERMINAL END-EXEC.

* COMPLETE TRANSACTION AND RETURN TO CICS
EXEC CICS RETURN END-EXEC.

* CHECK STATUS IN DIB
TEST-DIB.

EQUAL TO' 'THEN GO TO OK.

END-EXEC.

* OK.

IF DIBSTAT
HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS

ERRORS.
* HANDLE ERROR CONDITIONS

ABENDS.
HANDLE ABENDS INCLUDING DLI ERROR STATUS CODES

Chapt.er 2.5. OL/I Services (EXEC DLI Command) III

PL/I Example of EXEC DLI Commands

* PROCESS INCLUDE,GN,XOPTSCCICS,DLI);
SAMPLE: PROCEDURE OPTIONSCMAIN);

/* PROGRAM: PL/I EXEC DLI ONLINE PROGRAM
DCL
DCl
DCL
DCL
DCL
DCL
DCL
DCL
DCL
DCl
DCll 1

/*
DCIL 1
DCIL 1
DCll 1

SEGKEYA CHAR (4)j
SEGKEYB CHAR (4)j
SEGKEYC CHAR (4);
SEGKEY1 CHAR (4);
SEGKEY2 CHAR (4);
SEGKEY3 CHAR (4);
SEGKEY4 CHAR (4);
CONKEYB CHAR (8);
SEGNAME CHAR (8);
PCBNUM FIXED BIN (15);
AREAA CHAR (80);
DEFINE SEGMENT I/O AREA
AREAB
AREAC
AREAG

CHAR (80);
CHAR (80);
CHAR (250);

"INCLUDE MAPSET
/* ** */
/* INITIALIZATION */
/* HANDLE ERROR CONDITIONS IN ERROR ROUTINE */
/* HANDLE ABENDS CDLI ERROR STATUS CODES) IN ABEND PROGRAM */
/* RECEIVE INPUT MESSAGE */

/* ** */
EXEC CICS HANDLE CONDITION ERROR(ERRORS);
/*
EXEC CICS HANDLE ABEND PROGRAMC'ABENDS');
/*
EXEC CICS RECEIVE MAP C'SAMPMAP') MAPSET('MAPSET')j
/* ANALYZE INPUT MESSAGE AND PERFORM NON-DLI PROCESSING
/* ** */
/* SCHEDULE PSB NAMED 'SAMPLE1' */

/* ** */
EXEC DLI SCHD PSB(SAMPLEI);
CALL TEST DIB;
/* ** */
/* RETRIEVE ROOT SEGMENT AND ALL ITS DEPENDANTS */

/* ** */
SEGKEYA = 'A300';
EXEC DLI GU USING PCB(I) SEGMENT(SEGA) INTO(AREAA)
WHERECKEYA=SEGKEYA);
CALL TEST DIBj

GNPLOOP: -
EXEC DLI GNP USING PCB(I) INTO(AREAG);
IF DIBSTAT = 'GE' THEN GO TO LOOPDONEj
CALL TEST DIB;
GO TO GNPIOOp;

LOOPDONE:
/* ** */
/* INSERT NEW ROOT SEGMENT */

/* ** */
AREAA = 'DATA FOR NEW SEGMENT INCLUDING KEY';
EXEC DLI ISRT USING PCB(l) SEGMENT(SEGA) FROM(AREAA);
CALL TEST_DIB;
/* ** */
/* RETRIEVE 3 SEGMENTS IN PATH AND REPLACE THEM */

/* ** */
SEGKEYA = 'A200'j

112 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

PL/I Example of EXEC DLI Commands (Continued)

SEGKEYB = 'B240';
SEGKEYC = 'C241';
EXEC DLI GU USING PCB(l)

SEGMENT(SEGA) WHERE(KEYA=SEGKEYA)
INTO(AREAA)

SEGMENT(SEGB) WHERE(KEYB=SEGKEYB)
INTOCAREAB)

SEGMENTCSEGC) WHERECKEYC=SEGKEYC)
INTOCAREAC);

CALL TEST DIB;
/* UPDATE-FIELDS IN THE 3 SEGMENTS
EXEC DLI REPL USING PCB(l)

SEGMENTCSEGA) FROM(AREAA)
SEGMENTCSEGB) FROMCAREAB)
SEGMENTCSEGC) FROMCAREAC);

CALL TEST_DIB;
/* ** */
/* INSERT NEW SEGMENT USING CONCATENATED KEY TO QUALIFY PARENT */
/* ** */
AREAC = 'DATA FOR NEW SEGMENT INCLUDING KEY';
CONKEYB = 'A200B240';
EXEC DLI ISRT USING PCB(l)

SEGMENTCSEGB) KEYSCCONKEYB)
SEGMENTCSEGC) FROMCAREAC);

CALL TEST_DIB;
/* ** */
/* RETRIEVE SEGMENT DIRECTLY USING CONCATENATED KEY */

*/
/* ** */
CONKEYB = 'A200B230';

/* AND THEN DELETE IT AND ITS DEPENDANTS

EXEC DLI GU USING PCB(l)
SEGMENTCSEGB)

KEYSCCONKEYB)
INTOCAREAB);

CALL TEST DIB;
EXEC DLI DLET USING PCB(l)

SEGMENT(SEGB) FROMCAREAB);
CALL TEST_DIB;
/* ** */
/* RETRIEVE SEGMENT BY QUALIFYING PARENT WITH CONCATENATED KEY,*/
/* OBJECT SEGMENT WITH WHERE OPTION */
/* AND THEN SET PARENTAGE */
/* */
/* USE VARIABLES FOR PCB INDEX, SEGMENT NAME */
/* ** */
CONKEYB = 'A200B230';
SEGNAME = 'SEGA';
SEGKEYC = 'C520';
PCBNUM = 1;
EXEC DLI GU USING PCB(PCBNUM)

SEGMENT«SEGNAME»
KEYSCCONKEYB) SETPARENT

SEGMENTCSEGC) INTO(AREAC)
WHERECKEYC=SEGKEYC);

CALL TEST DIB;
/* ******i*** */
/* RETRIEVE ROOT SEGMENT USING BOOLEAN OPERATORS */
/* ** */
SEGKEYl = 'AOSO';

Chapter 2.5. DL/I Services (EXEC DLI Command) 113

PL/I Example of EXEC DLI Commands (Continued)

SEGKEY2 = 'AlSO';
SEGKEY3 = 'A275';
SEGKEY4 = 'A350';
EXEC DLI GU USING PCBCI) SEGMENTCSEGA) INTOCAREAA)

WHERECKEYA>SEGKEYI AND KEYA<SEGKEY2 OR
KEYA>SEGKEY3 AND KEYA<SEGKEY4);

CALL TEST DIB;
/* ******i*** */
/* TERMINATE PSB WHEN DlI PROCESSING IS COMPLETED */

/* ** */
EXEC DlI TERM;
/* ** */
/* SEND OUTPUT MESSAGE */

/* ** */
EXEC CICS SEND MAPC'SAMPMAP') MAPSETC'MAPSET');
EXEC CICS WAIT TERMINAL;
/* ***~**** */
/* COMPLETE TRANSACTION AND RETURN TO CICS */

/* ** */
EXEC CICS RETURN;
/* ** */
/* CHECK STATUS IN DIB */

/* ** */
TEST DIB: PROCEDURE;

IF DIBSTAT =' 'THEN GO TO OK;
/* HANDLE DLI STATUS CODES REPRESENTING EXCEPTIONAL CONDITIONS */

OK:
END;
ERRORS:

/* HANDLE ERROR CONDITIONS
END SAMPLE;

114 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 2.6. DL/I Services (DL/I CALL Statement)

DL/I is a general-purpose data base control system
that executes in a virtual-storage environment
under VSE. DL/I simplifies the creation of data
bases by CICS application programs. It also
simplifies the subsequent maintenance of those data
bases by CICS application programs. The DL/I
licensed program (program number 5746-XX 1) is
used, running as part of the CICS partition.

For assembler language, COBOL, and PL/I
application programs using the EXEC CICS
command level interface, DL/I CALL statements
are similar to DL/I data base CALL statements
running in batch mode. (For assembler-language
application programs, the CALLDLI macro, rather
than the CALL macro, should be used when
running under CICS.)

However, the DL/I command level interface
provides a simpler method (using the EXEC DLI
command) of accessing DL/I data bases.

This chapter describes the DL/I CALL statement
method of accessing DL/I data bases in an online
environment only. The use of the EXEC DLI
command is described in "Chapter 2.5. DL/I
Services (EXEC DLI Command)" on page 105.

The two methods of accessing DL/I data bases
cannot both be used in the same task. However, it
is possible for different tasks in the same system to
use different methods.

The CICS application program can request DL/I
services by means of a DL/I CALL statement. In
response to such a request, control is passed to a
CICS-DL/I routine that acts as an interface
between the CICS application program and DL/1.
This interface routine checks the validity of the
CALL list, sets up DL/I to handle the request, and
passes control and the CALL list to DL/1. When

the interface routine regains control, it, in its turn,
returns control to the calling program, unless a
DL/I pseudoabend has occurred, in which case the
CICS task is abnormally terminated.

Under CICS, two or more tasks may require access
to the same application program at the same time.
Because CICS application programs must be
quasi-reenterable, DL/I areas that may be modified
under CICS, such as PCB pointers, segment search
arguments, and I/O work areas, should be placed in
dynamic storage. For assembler language this will
be in the DFHEISTG DSECT, for COBOL in
working storage, and for PL/I in AUTOMATIC
storage.

The DL/I data base access capabilities of a CICS
application program are defmed in a program
specification block (PSB) which is created, by the
system programmer, by means of a PSB generation
utility program. The PSB contains one or more
program communication blocks (PCBs) that
describe the data base access requirements of each
DL/I data base to be accessed by the application
program.

A CICS application program designed to access
DL/I data bases must schedule its access to DL/I.
Scheduling involves, for example, ensuring that the
PSB is valid, that the application is not already
scheduled, that the referenced data bases are open
and enabled, and that there is no intent conflict
between the PSB and already scheduled PSBs from
other application programs. Negative responses to
any of the above will prevent scheduling.

The scheduling call, if successful, returns a list of
addresses of the PCBs within the scheduled PSB.
The application program in a subsequent CALL
statement can specify, from this list, the address of

Chapter 2.6. DL/I Services (DL/I CALL Statement) 115

the PCB corresponding to the data base to be
accessed.

If the scheduling call is unsuccessful. an INVREQ
indicator is returned in response to subsequent
DL/I CALL statements in the application program.

A task tnay schedule only one PSB at a time. Any
attempt to schedule a second PS B while one is still
scheduled causes the INVREQ indicator to be
returned.

A sync point request (see "Chapter 5.6. Recovery
(Sync Pointsy' on page 405) by a task that :is
scheduled to use DL/I resources implies the release
of those resources. This means that if. after issuing
a sync point request. access to a DL/I data base is
required, the PSB must be rescheduled. The
previous position of the data base has been lost.

To access DL/I data bases. you should:

1. Issue a DL/I call to schedule the PSB and
obtain PCB addresses.

2. Issue a DL/I call to access the data base.

3. Check the status code and UIBRCODE
immediately following each DL/I call.

4. Issue a DL/I call. when all DL/I access is
complete. to terminate the connection by
releasing the PSB. The DL/I call also causes a
sync point to be taken. (Otherwise. the PSB is
released when the transaction is tenninated.)

User Interface Block (UIB)

The CICS· DL/I routine that acts as the interface
between the CICS application program and DL/I
passes information to the application program in a
User Interface Block (UID). A defmition of the
UIB should only be included in the application
program if the UIB is to be referenced. The UIB is
acquired by the interface routine when an
application program issues a schedule request
specifying a pointer reference to be set with the

address of the UID. The UID contains the address
of the PCB address list (UIBPCBAL) from the
schedule request and. for each DL/I request. the
response (UIllRCODE) from the interface routine.
as follows:

Fields of the UIB

Field ASM COBOL Pl/I

UIBPCBAl DS A PIC 9(8) POINTER
CaMP

UIBRCODE DS OXL2 PIC XX

UIBFCTR DS X PIC X BIT(8)

UIBDLTR DS X PIC X BIT(8)

The fields UIBFCTR and UIBDLTR are overlays
for the fust and second bytes respectively of the
return code (See "Check the Response to a DL/I
CALl.!' on page 119).

ASM
The {JIB definition is included by invoking
the DLIUIB macro.

COBOL

PI.,/I

The UIll definition is included by a COpy
DLIUIB statement in the linkage section of
the program.

The UID defmition is included by a
%INCLUDE DLIUIB statement.

Examples of these are given at the end of the
chapter. A COBOL application program must not
include both DFHTCADS and DLIUIB DSECTS,
otherwise duplicate labels will be generated.

Schedule the PSB and Obtain
PCB Addresses

The format of the CALL statement to request
scheduling of the PSB and to obtain the associated
PCB addresses is as follows:

116 CICSjDOS/VS Application Programmer's Reference Manual (Command Level)

ASM:

CALLDLI ASMTDLI,([parmcount,]
function,psbname,ptr-ref)

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function, psbname, ptr-ref

PL/I:

CALL PLITDLI(parmcount,
function,psbname,ptr-ref)

where:

"parmcount"
is a binary fullword containing a count of the
arguments that follow. (Required only for
PL/I).

"function"
is the name of the field containing the
four-character function 'PCBb'.

"psbname"
is an 8-byte field containing the PSB
generation name (I through 7 characters)
accessed by the application program. It is left
justified and padded right with blanks as
appropriate.

If the PS B name is specified as ,+, padded
right with blanks, a default name is supplied.

For CICS/DOS/VS this default is the frrst
PSB name associated with the application
program in the DL/I DOS/VS application
control table (the ACT) as defmed during
DL/I DOS/VS system generation.

If the call is successful, field UIBPCBAL in
the UIB will contain the address of the list of
PCB addresses. The order of the addresses is
the same as the PCBs within the PS B as
specified when the PSB is generated.

If the call is unsuccessful, the reason for the
failure will be indicated in field UIBRCODE
in the UIB.

"ptr-rer'
is a pointer reference that will be set to the
address of the UIB after the call has been
processed. The UIB contains the address of
the PCB address list and the response from
the CICS-DL/I interface.

Segment Search Arguments

Segment search arguments (SSAs) are used to
identify segments of a DL/I data base. SSAs may
be simple segment names or they may be qualified
to include constraints made upon the values of
fields within the named segment types.

For information on how to build an SSA, refer to
the publication DL/I DOS/VS Application
Programming: CALL and RQDLI Interfaces.

Except for a read only operation, when it is
unnecessary, SSAs used by a CICS application
program must be in dynamic storage because of the
requirement for the program to be
quasi-reenterable.

• For assembler language programs, the SSAs
should be placed in the dummy section called
DFIIEISTG.

• For COBOL programs, the SSAs should be in
the working storage section.

• For PL/I programs, the SSAs should be in
AUTOMATIC storage.

I/O Work Area for DL/I
Segments

An I/O work area is required by DL/I to hold the
segment being retrieved or to hold the segment
being written to the data base. Like SSAs, this
work area must be in dynamic storage. The
address of the work area is specified as the address
of the first byte of the data area.

Chapter 2.6. DL/I Services (DL/I CALL Statement) 117

Issue .a DL/I Data Base Call

The fomlat of the CALL statement to request
DL/I services is as follows:

ASM:

CALLDLI ASMTDLI[,([parmcount,]function
,pcb,workarea[,ssal,ssa2, ...])]

COBOL:

CALL 'CBLTDLI' USING [parmcount,]
function,pcb,workarea[,ssal,ssa2, ...]

PL/I:

CALL PlITDLI ([parmcount,]function
,pcb,workarea[,ssal,ssa2, ...])

where:

"parmcmmt"
is the name of a binary fullword containing a
COUint of the arguments that follow.

"function"
is the 2 through 4 byte name of the function
to be perfonned. Valid function names for a
CICS application program are as follows:

"CHKP"
request that a checkpoint be issued.

"GU"

"GN"

get a unique segment identified by
SSAs.

get the next segment in the data base,
optionally qualified by SSAs.

"GNP"
get the next segment within the scope
of the current hierarchy in the data
base, optionally qualified by SSAs.

"GHU"
as for "GU", but in addition, hold the
segment for subsequent update.

"pcb"

"GHN"
as for "GN", but in addition, hold the
segment for subsequent update.

"GHNP"
as for "GNP", but in addition, hold the
segment for subsequent update.

"ISRT"
insert a new segment at the current
position; also used in the initial load of
a data base.

"REI)L"
replace a segment at the current
position.

"DLET"
delete the segment at the current
position.

is a field containing the address of the PCB
corresponding to the data base specified in
the call. This address is one of the addresses
returned in the address list by the scheduling
call.

"work area"
specifics the work area that contains the
segment being passed to 0 L/I or is to contain
the segment being retrieved from DL/I.

"ssa 1 ,ssa2, ... "
arc the names of the segment search
arguments.

For details of these calls, refer to the publication
DL/I DOS/VS Application Programming: CALL
and RQDLI Interfaces

Terminate a PSB in the CICS
Application Program

When all DL/I operations have been completed,
the PSB should be terminated (or released). This is
done either by issuing an explicit tennination call,
or on termination of the task. The releasing

118 CICS/DOSjVS Application Programmer'!; Reference Manual (Command Level)

application program can reuse the PSB or a
different PSB as required.

The DL/I CALL statement is used to terminate a
PS B. It causes all data base records used by the
application program, and all associated log records
to be written out. It also causes a CICS sync point
to be taken, which commits all activity performed
by this task, both related to DL/I and to CICS
recoverable resources.

Changes performed prior to the execution of the
command will not be backed out either in the event
of dynamic transaction backout for a single failing
task, or in the event of an emergency restart
following an abnormal termination of the system.
A CICS sync point generates implicitly a DL/I
termination call. (A sync point is specified by the
SYNCPOINT command, as described in "Chapter
5.6. Recovery (Sync Points)" on page 405.) CALL
statements and sync points should be specified only,
at points in the transaction where logically related
processing ends.

The PSB must be rescheduled explicitly after it has
been terminated (by a CALL or sync point) if
further access to the data base is required, because
the position of the data base has been lost by the
release mechanism.

The format of the CALL statement to terminate a
PSB is as follows:

ASM:

CALLDLI ASMTDLI,([parmcount,]function)

COBOL:

CALL 'CBLTDLI' USING
[parmcount,]function

PL/I:

CALL PLITDLI (parmcount,function);

where:

"parmcount"
is the name of the binary fullword containing
the parameter count value of one.

"function"
is the name of the field containing the
four-character function 'TERM' or 'Tbbb'.

Check the Response to a DL/I
CALL

The response to a DL/I CALL statement should
always be checked so that, if unsuccessful,
alternative processing can be initiated.

Check the CICS-DL/I Response Codes in
UIBRCODE

You should frrst use the response code in field
UIBRCODE in the UIB for the task to check that
the CICS-DL/I interface has been used correctly by
the application program (for example, the required
PSB not being found in the directory of PSBs
would cause a response code to be returned).

Initially, one of three response codes appears in
field UIBFCTR, as follows:

Contcnts of Ficld UIBFCTR

Condition ASM COBOL PL/I

NOR ESP

INVREQ

X'OO' 12-0-1-8-9 00000000

X' 08' 12-8-9

NOTOPEN X'OC' 12-4-8-9

00001000

00001100

In the above table, NORESP means "normal
response" .

For the two responses INVREQ (invalid request)
and NOTOPEN (not open), further information
appears in field UIBDLTR, as shown below.
(UIBFCTR and UIBDLTR are known collectively
as UIBRCODE).

If the code for INVREQ appears in UIBFCTR,
one of the following codes appears in UIBDL TR:

Chapter 2.6. DL/I Services (OL/I CALL Statement) 119

}'ield UIBDLTR for INVREQ

Condition ASM COBOL PL/I

Invalid X'OO' 12-0-1 00000000
argument -S-9
passed
to I)L/I

PSBNF X'OI' 12-1-9 00000001
TASK~IA X'02' 12-2-9 00000010
PSBSCH X'03' 12-3-9 00000011
LANGCON X'04' 12-4-9 00000100
PSBFAIL X'OS' 12-5-9 00000101
PSBNA X' 06' 12-6-9 00000110
TERMNS X' 07' 12-7-9 00000111
FUNC~IS X'OS' 12-S-9 00001000
MPS batch X'09' 12-9-9 00001001
DL INt\ X'FF' 12-11-0 11111111

-7-S-9

The condition names in the above table have the
following meanings:

PSBNF - PSB not found

TASKNA - task not authorized

PSBSCH - PSB scheduled

LANGCON -language conflict

PSBlP AIL - PSB initialization failed

PSBNA - PSB in scheduling call not defined in
program application control table entry, is too
long, or not delimited by a blank

TERMNS - terminal unscheduled

FUNCNS - function unscheduled

MPS: batch - l\fPS batch program issues PCB
call for read-only PSB or for nonexclusive PSB
if program isolation is active

OLINA - OL/I not active.

If the code for NOTa PEN appears in UIBFCTR,
one of the following codes appears in UIBDLTR:

Field UIBDL TR for NOTOPEN

Condition ASM COBOL PL/I

Data base X'OI' 12-1-9 00000001
stopped

Intent X'02' 12-2-9 00000010
scheduling
conflict

If fields UIBPCTR and UIBDLTR are normal,
you should examine the OL/I status codes in the
PCB. These status codes are listed in the
publication DL/ I DOS/ VS Application
Programming: CALL and RQDLllnterfaces.

Check the D L/I Function

You can also check that the specified OL/I
function has been performed correctly according to
the rules of OL/I (for example, a segment that
cannot be located from the specified SSA would
cause an error indication).

This type of error is detected internally by DL/I
and is explained in the appropriate DL/I
application programming reference manual.

DL/I may also issue a pseudoabend which causes
the task to be terminated rather than control to be
returned to the CICS application program. The
task is terminated with an ABEND code of
"Dnnn", where "nnn" is the DL/I pseudoabend
code.

Examples of DL/I Requests

The following example shows, in assembler
language, COBOL, and PL/I, the use of OL/I
CALL statements in a CICS application program
to request DL/I services.

120 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

ASM Example of DL/I Call

DFHEISTG DSECT
UIBPTR DS F
IOAREA DS OCl40
AREAl DS Cl3
AREA2 DS Cl37

DlIUIB
USING UIB,8

PCBPTRS DSECT
* PSB ADDRESS lIST
PCBIPTR DS F
PCBI DSECT

USING PCBI,6
DBPCIDBD DS el8
DBPCIlEV DS Cl2
DBPCISTC DS Cl2
DBPCIPRO DS Cl4
DBPCIRSV DS F
DBPCISFD DS Cl8
DBPCIMKl DS F
DBPCINSS DS F
DBPCIKFD DS OCl256
DBPCINM DS OCll2
DBPCINMA DS OCll4
DBPCINMP DS Cll7
ASMUIB CSECT

B SKIP
PSBNAME DC Cl8'ASMPSB'
PCB FUN DC Cl4'PCB'
REPlFUN DC Cl4'REPl'
TERMFUN DC Cl4'TERM'
GHUFUN DC Cl4'GHU'
SSAI DC Cl9'AAAA4444'
GOODRC DC XlI'OO'
GOODSC DC ClZ"
SKIP DS OH
* SCHEDULE PSB AND OBTAIN PCB ADDRESSES

CAllDlI ASMTDlI,(PCBFUN,PSBNAME,UIBPTR)
l 8,UIBPTR
ClC UIBFCTR,X'OO'
BNE ERRORI

GET PSB ADDRESS lIST
l 4,UIBPCBAl
USING PCBPTRS,4

* GET ADDRESS OF FIRST PCB IN LIST
L 6,PCBIPTR

* ISSUE DL/I CALL: GET A UNIQUE SEGMENT
CALlDlI ASMTDlI,(GHUFUN,PCBI,IOAREA,SSAI)
ClC UIBFCTR,GOODRC
BNE ERROR2
ClC DBPCISTC,GOODSC
BNE ERROR3

PERFORM SEGMENT UPDATE ACTIVITY
MVC AREAl,
MVC AREA2,
ISSUE Dl/I CAll: REPLACE SEGMENT AT CURRENT POSITION
CAllDlI ASMTDlI,(REPlFUN,PCBI,IOAREA,SSAI)
ClC UIBFCTR,GOODRC
BNE ERROR4

Chapter 2.6. DLjI Services (OLjl CALL Statement) 121

ASM Example of DL/I Call (Continued)

CLC DBPClSTC,GOODSC
BNE ERROR5
B TERM

ERRORl DS OH

* INSERT ERROR DIAGNOSTIC CODE
B TERM

ERROR2 DS OH

* INSERT ERROR DIAGNOSTIC CODE
B TERM

ERROR3 DS OH

* INSERT ERROR DIAGNOSTIC CODE
B TERM

ERROR4 DS OH

* INSERT ERROR DIAGNOSTIC CODE
B TERM

ERROI~5 DS OH

* INSERT ERROR DIAGNOSTIC CODE
TERM DS OH
* RELEASE THE PSB

CALlDLI ASMTDLI,(TERMFUN)
EXEC CICS RETURN
END ASMUIB

122 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

COBOL Example of DIJ/I Call

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CBLUIB'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PSB-NAME PIC X(8) VALUE 'CBLPSB
77 PCB-FUNCTION PIC X(4) VALUE 'PCB '.
77 TERM-FUNCTION PIC X(4) VALUE 'TERM'.
77 GHU-FUNCTION PIC X(4) VALUE 'GHU '.
77 REPL-FUNCTION PIC X(4) VALUE 'REPL'.
77 SSAI PIC X(9) VALUE 'AAAA4444 '.
77 SUCCESS-MESSAGE PIC X(40).
77 GOOD-STATUS-CODE PIC XX VALUE' .
77 GOOD-RETURN-CODE PIC X VALUE LOW-VALUE.
01 MESSAGE.

02 MESSAGEI PIC X(38).
02 MESSAGE2 PIC XX.

01 DLI-IO-AREA.
02 AREAl PIC X(3).
02 AREA2 PIC X(37).

LINKAGE SECTION.
I 01 BLLCELLS.

02 FILLER PIC S9(8) COMPo
02 UIB-PTR PIC S9(8) COMP .
02 B-PCB-PTRS PIC S9(8) COMPo
02 PCBI-PTR PIC S9(8) COMPo

2 COPY DLIUIB.
3 01 PCB-PTRS.

02 B-PCBI-PTR PIC 9(8) COMPo
4 01 PCBI.

02 PCBI-DBD-NAME PIC X(8).
02 PCBI-SEG-LEVEL PIC XX.
02 PCBI-STATUS-CODE PIC XX.
02 PCBI-PROC-OPT PIC XXXX.
02 FILLER PIC S9(5) COMPo
02 PCBI-SEG-NAME PIC X(8).
02 PCBI-LEN-KFB PIC S9(5) COMPo
02 PCBI-NU-SENSEG PIC S9(5) COMPo
02 PCBI-KEY-FB PIC X(256).

PROCEDURE DIVISION.
* SCHEDULE PSB AND OBTAIN PCB ADDRESSES

CALL 'CBLTDLI' USING PCB-FUNCTION, PSB-NAME, UIB-PTR.
IF UIBFCTR IS NOT EQUAL LOW-VALUES THEN

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

MOVE UIBPCBAL TO B-PCB-PTRS.
MOVE B-PCBI-PTR TO PCBI-PTR. * ISSUE DL/I CALL. GET A UNIQUE SEGMENT
CALL 'CBLTDLI' USING GHU-FUNCTION, PCBI, DLI-IO-AREA, SSAI.
SERVICE RELOAD UIB-PTR
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-CODE THEN * INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
IF PCBI-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN

* INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

* PERFORM SEGMENT UPDATE ACTIVITY
MOVE TO AREAl.
MOVE TO AREA2.

Chapter 2.6. DLjl Services (DLjI CALL Statement) 123

COBOL Example of DL/I Call (Continued)

Notes:

* ISSUE DL/I CALLa REPLACE SEGMENT AT CURRENT POSITION
CALL 'CBLTDLI' USING REPL-FUNCTION, PCBl, DLI-IO-AREA, SSAI.
IF UIBFCTR IS NOT EQUAL GOOD-RETURN-CODE THEN

INSERT ERROR DIAGNOSTIC CODE
EXEC CICS RETURN END-EXEC.

IF PCBI-STATUS-CODE IS NOT EQUAL GOOD-STATUS-CODE THEN
* INSERT ERROR DIAGNOSTIC CODE

EXEC CICS RETURN END-EXEC.
* RELEASE THE PSB

CALL 'CBLTDLI' USING TERM-FUNCTION.
EXEC CICS RETURN END-EXEC.

/. The linkage section must start with a definition of this type to provide addressability to a parameter
list which will contain the addresses of storage outside the working storage of the application
program. The first 02 level definition is used by CI CS to provide addressability to the other fields in
the list. There is a one to one correspondence between the other 02 level names and the 01 level data
definitions in the linkage section.

2. This will be expanded as shown in "User Interface Block (UIB)" on page //6.

3. The VIE will return the address of an area containing the PCB addresses. This definition is required
to obtain the actual PCB addresses.

4. The PCBs are defined in the linkage section.

124 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

PL/I Example of DL/I Call

PLIUIBa PROC OPTIONSCMAIN);
DCl PSB NAME CHAR(8) STATIC INITC'PlIPSB ');
DCl PCB-FUNCTION CHAR(4) STATIC INITC'PCB ');
DCl TERM FUNCTION CHAR(4) STATIC INITC'TERM');
DCl GHU FUNCTION CHAR(4) STATIC INITC'GHU I);
DCl REPL FUNCTION CHAR(4) STATIC INIT('REPl');
DCl SSAI-CHAR(9) STATIC INIT('AAAA4444 ');
DCl PARM CT I FIXED BIN(31) STATIC INITCI);
DCl PARM-CT-3 FIXED BIN(31) STATIC INIT(3);
DCl PARM-CT-4 FIXED BIN(31) STATIC INIT(4);
DCl GOOD-RETURN CODE BIT(8) STATIC INITC'O'B);
DCl GOOD-STATUS-CODE CHAR(2) STATIC INITC' ');

I XINClUDE-DlIUIB;
2 DCl I PCB POINTERS BASEDCUIBPCBAl),

2 PCBI PTR POINTER;
DCl I DlI IO-'AREA,

2 AREAl CHAR(3),
2 AREA2 CHAR(37);

3 DCl I PCBI BASEDCPCBI PTR),
2 PCBI DBD NAME-CHAR(8),
2 PCBI-SEG-lEVEl CHAR(2),
2 PCB I-STATUS CODE CHAR(2),
2 PCBI-PROC OPTIONS CHAR(4),
2 PCBI-RESERVE DlI FIXED BIN (31,0),
2 PCBI-SEGNAME-FB CHAR(8),
2 PCBI-lENGTH FB KEY FIXED BINC31,0),
2 PCB I-NUMB SENS-SEGS FIXED BINC31,0),
2 PCBI-KEY FB AREA CHARCI7);

/* SCHEDULE PSB-AND OBTAIN PCB ADDRESSES ~/
CAll PlITDlI(PARM CT 3,PCB FUNCTION,PSB NAME,UIBPTR);
IF UIBFCTR-=GOOD RETURN CODE THEN DOi -

/* ISSUE Dl/I CAll: GET A UNIQUE SEGMENT ~/
END;
CAll PlITDlICPARM CT 4,GHU FUNCTION,PCBI,DlI 10 AREA,SSAI);
IF UIBFCTR-=GOOD RETURN CODE THEN - -

IF PCBI STATUS CODE=GOOD STATUS CODE THEN
DOi - -

/* PERFORM SEGMENT UPDATE ACTIVITY ~/
/* INSERT ERROR DIAGNOSTIC CODE ~/

END;
IF PCBI STATUS CODE-=GOOD STATUS CODE THEN DO;
/~ INSERT ERROR DIAGNOSTIC CODE ~/

AREAI= ;
AREA2= ;

/* ISSUE Dl/I: REPLACE SEGMENT AT CURRENT POSITION ~/
CAll PlITDlICPARM CT 4,REPl FUNCTION,PCBI,DlI 10 AREA,SSAI);
END; - - - - -

END;
IF UIBFCTR-=GOOD RETURN CODE THEN DO;
/~ ANALYZE UIB-PROBlEM ~/

/* ISSUE DIAGNOSTIC MESSAGE ~/
END;

ELSE IF PCBI STATUS CODE-=GOOD STATUS CODE THEN DO;
/~ EXAMINE PCBI_STATUS_CODE ~/ -

Chapter 2.6. DL/I Services (DL/I CALL Statement) 125

PL/I Example of DL/I Call (Continued)

/* ISSUE DIAGNOSTIC MESSAGE */
END;

/* RELEASE THE PSB */
CALL PLITDLICPARM_CT_l,TERM_FUNCTION);
EXEC CICS RETURN;
END PLIUIBi

Notes:

I. This will be expanded as shown in "User Interface Block (UIB)" on page 116.

2. The U IB will return the address of an area containing the PCB addresses. This definition is required
to obtain the actual PCB addresses.

3. The PCBs are defined based on the addresses pa.r.red in the U lB.

126 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Part 3. Data Communication Operations

Chapter 3.1. Introduction to Data Communication Operations 129

Chapter 3.2-1. Introduction to Basic Mapping Support 131

Chapter 3.2-2. Minimum Function BMS 135

Chapter 3.2-3. Standard Function BMS 161

Chapter 3.2-4. Full Function BMS 181

Chapter 3.2-5. BMS Macro and Command Reference Summary

Chapter 3.3. Terminal Control

Chapter 3.4. Report Controller

265

239

293

Chapter 3.5. Batch Data Interchange 323

Chapter 3.6. Structured Query Language/Data System (SQL/DS) 331

Part 3. Data Communication Operations 127

Chapter 3.1. Introduction to Data Communication Operations

Three methods are available to the CICS
application programmer for communicating with
the terminals and logical units in the subsystems of
the network that forms part of the CICS system.
The methods dealt with are:

• Basic mapping support (BMS)

• Terminal control

• Batch data interchange.

You are recommended to refer to the
CICS/DOS/VS IBM 3270 Data Stream Device
Guide for full details of programming for the IBM
3270 Information Display System and similar
terminals, such as the IBM 8775 Display Terminal.

Basic mapping support provides commands and
options that can be used to format data in a
standard manner. BMS converts data streams
provided by the application program to conform to
the requirements of the devices. Conversely, data
received from a device is converted by B MS to a
standard form. However, not all devices supported
by CICS can be used with BMS and, for those that
cannot, terminal control must be used. Also, in
some cases, the overhead incurred to achieve data
stream independence may outweigh the advantages.
BMS is described in Chapters 3.2-1 through 3.2-5.

Terminal control is the basic method for
communicating with devices, whereas both BMS

and batch data interchange extend the facilities of
terminal control to simplify further the handling of
data streams. Both BMS and batch data
interchange use terminal control facilities when
invoked by an application program. Terminal
control provides commands and options that can
be specified in various combinations according to
the requirements of the devices. However,
application programs written in this way are
dependent on the data formatting requirelnents of
these devices and a detailed knowledge of the
devices is required. Terminal control is described
in "Chapter 3.3. Terminal Control" on page 239.

The report controller provides commands and
options that may be used, in conjunction with
POWER, to provide an integrated spooling facility.
The report controller is described in "Chapter 3.4.
Report Controller" on page 293.

Batch data interchange provides commands and
options that may be used, possibly in conjunction
with OMS commands, to communicate with the
6670 logical unit and with the batch logical units of
the 37:70 and 3790 subsystems. Batch data
interchange is described in "Chapter 3.5. Batch
Data Interchange" on page 323.

Structured Query l/anguage (SQL/DS) is
supported by CICS. SQL/DS is described in
"Chapter 3.6. Structured Query Language/Data
System (SQL/DS)" on page 331.

Chapter 3.1. Introduction to Data Communication Operations 129

Chapter 3.2-1. Introduction to Basic Mapping Support

Basic mapping support (BMS) is an interface
between CICS and its application programs. There
are three versions of BMS, as follows:

• Minimum Function BMS
• Standard Function BMS
• Full Function BMS

Each version formats input and output display data
in response to BMS commands in the application
programs. To do this, it uses device information
from CICS system tables and formatting
information from maps you have prepared for your
application program.

BMS commands have a simple, generalized form,
because formatting information is stored separately,
in what are called maps. This makes it easier to
write your application programs and makes them
less susceptible to changes to the system or its
devices. Such changes can be made independently
of your application programs simply by changing
the maps.

A single BMS command in an application program
can address more than one kind of device. This is
because BMS gets information about the terminal
from a system table. It interprets commands
differently for different device types.

How BMS Affects Programming

A CICS application program does not use ordinary
programming language commands to perform input
and output. Instead, it uses BMS commands, or
tenninal control commands, or both. BMS
provides most of the input and output facilities
required by application programs, and is easier to
use than terminal control. Nevertheless, you might

have special requirements that favor the use of
terminal control.

BMS allows you to separate the tasks of display
design and CICS application programming. It
interprets generalized application program output
commands, and generates data streams for specific
output devices. (Such data streams are said to be
device dependcnt.) Conversely, it transforms
incoming data streams to a form acceptable to
application programs. It obtains information about
the format of the data stream for the terminal from
the terminal control table terminal entry (the
TCTTE) for the task, not from the application
program. The same BMS input or output
commands in an application program can be used
with different kinds of device.

You can design several versions of a display map,
each exploiting the advantages of a different device.
By defining data as having field format, you can use
application program commands to address
predefined fields in a display by name, without
knowing the positions of those fields. The same
fields must appear in all versions of a display, but
can be arranged differently in different versions.
This is most useful when an installation uses
devices with a variety of screen sizes. A suffixing
mechanism enables BMS to associate a display
version with the kind of device to which it applies.

The process of changing field data to and from its
displayable form is called mapping.

As an altenlative to field data format, you can
display data in tcxt data format. Text fonnat
presents data as a series of lines on a display or
printer. To format text data, BMS breaks the data
into strings that are, as nearly as possible, the same
width as the display device. Rather than breaking a
word or character string that cannot fit at the end

Chapter 3.2-1. Introduction to Basic Mapping Support 131

of a line, BMS places it whole at the beginning of
the next line.

Maps tell BMS how to fonnat (map) field data for
display .. They are not needed for text data output.
Every BMS field data mapping command names a
map that contains fonnatting (mapping)
instructions. Each map has two fonns, physical
and symbolic.

BMS fcJnnats a display for a given device by
embedding control characters in the data stream. A
physicall map tells it how to do this.

A symbolic description map is a source language
data structure that the assembler or compiler uses
to resolve source program references to fields in the
map. Symbolic description maps are described in
more dletail in "Chapter 3.2-2. Minimum Function
BMS" on page 135.

The physical map and the symbolic description
map are generated separately. However, a
complete map defmition contains enough data to
produce both types. You only need to change the
TYPE operand in the defmition to produce one
type rather than the other.

You will be told later how to produce physical
maps and symbolic description maps.

Every map must be part of a map set, even a single
map. You usually group related maps together
into one of these map sets. You defme a map set
by coding a series of CICS macro instructions.
The furst of these macros defines the map set itself,
the second defmes the first or only map; and others
defme fields within those maps.

When a CICS task uses a map, CICS loads the
entire map set that includes that map, into storage.
The tnap set remains in storage until the task either
ends or requests a map from a different map set.
Obviously, if several maps are used by the same
application or transaction, it makes sense to derme
them in the same map set, thus ensuring that eICS
loads 1them all at once.

You could define a single map set to suit every
terminal attached to a CICS system. However, it
may be necessary or desirable to fonnat the same
data differently for different devices. For example,
the same transaction can be initiated from displays
of various screen sizes. Alternatively, a program
might communicate with a device that has a special
feature, such as screen partitioning. The map set
definition macro enables you to associate a special
version of a map set with a terminal type or model.

BMS Map Definition

You define map sets, maps, and fields within maps
by means of the following macros:

DFHMSD - defines a map set
DFHMDI - defines a map
DFHMDF - defines a field

The macros define the size, shape, position,
potential content, and characteristics of the various
elements that make up a display. It is best to
design the layout and content of a display before
attempting to code the macros.

You can also use the IBM licensed program Screen
Definition Pacility/CICS (SDF/CICS) to defme,
edit, and generate BMS maps interactively. By
using SDF/CICS, you avoid having to code map
definition macros. SOF /CICS runs as a eICS
application program. However, this description of
BMS assumes that you are going to use the
macros, and describes the procedure.

A map definition always starts with the OFHMSO
macro. You use the TYPE= MAP operand to
generate a physical map; you use the
TYPE = DSECT operand to generate a symbolic
description map, for example:

DFHMSD TYPE=DSECT

The DFIIMSD macro starts the definition of the
map set. It is always followed by a DFHMOI
macro for the first (or only) map in the map set,
for example:

DFHMSD TYPE=DSECT
DFHMDI ...

132 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

After the DFHMDI macro, there follow,
optionally, one or more DFHMDF macros
defining the individual fields within the map:

DFHMSD TYPE=DSECT
DFHMDI
DFHMDF
DFHMDF ...

If there is more than one map in your map set,
repeat the sequence of DFHMDI and DFHMDF
macros for each subsequent map in the set. End
the map set defmition with a DFHMSD macro
with the TYPE = FINAL operand. The sequence
of macros would look like this:

DFHMSD TYPE=DSECT
DFHMDI
DFHMDF
DFHMDF
DFHMDI
DFHMDF
DFHMDF
DFHMDF ...
DFHMSD TYPE=FINAl

You specify attributes of map sets, maps, and fields
by using operands in the appropriate macros. You
can specify the same operand in more than one of
the macros defming a single map, selecting a
different value each time. For example, you can
specify a value for CO La R in a field defmition that
is different from that in the corresponding map
defmition. Both can differ from the value in the
map set defmition.

An operand in a DFHMDF macro overrides, for
that field, the same operand in a DFHMDI macro.
Similarly, an operand of DFHMDI overrides, for a
map, the same operand of DFHMSD. If an
operand is omitted from DFHMDF, the macro will
adopt the same operand value from DFHMDI. If
it is omitted from both DFHMDF and DFHMDI,
the operand in DFHMSD is adopted. If omitted
altogether, an operand will adopt the default for
DFHMDF.

Some facilities of 3270 devices, such as color, are
not provided by all tenninal models. Attempts to
use a facility that the terminal does not provide are

ignored. This means that different 3270 terminals
do not necessarily need different maps.

Cataloging BMS Map Sets

You can use the same set of DFIIMSD,
DFHMDI, and DFHMDF macros to defme both
the physical maps and symbolic description maps
of a map set. You assemble and link edit physical
maps, storing them in the CICS program library.
You also assemble symbolic description maps, but
you store the assembler output from these, which is
a source language data structure, in the source
library. You copy the structure into any
application program, that refers to the map set,
before assembling or compiling that program. The
TYPE operand of the DFHMSD macro governs
whether the assembler produces a physical map or
a symbolic description map.

A physical map must have an entry in the
processing program table (the PPT) before it can
be loaded by CICS. The simplest way of creating
such an entry is by using the CEDA transaction.
This transaction is described in the CICS/DOS/VS
Resource Definition (Online) manual.
Alternatively, you can use the DFHPPT system
macro, as described in CICS/DOS/VS Resource
/Jejinit ion (Macro) manual.

BMS Commands

Input and output operations are performed by
BMS in response to commands in your application
program. These commands have a similar form to
other CICS commands. A command requesting
B MS services names the map containing the
mapping information. Non-CICS application
program statements, that is, normal assembler
language, COBOL, or PL/I statements can refer to
fields in a map by name. Using BMS commands,
not only can you read and change the contents of
fields, you can also determine or modify their
attributes (for example, length or color).

Chapter 3.2-1. Introduction to Basic Mapping Support 133

Facilities Provided by BMS

As stated earlier, B MS exists in three pregenerated
versions: minimum BMS, standard BMS, and full
BMS.

The version available on your system will have
been decided before CICS syst.em generation. Each
version provides a different level of function, and
therefore requires a different amount of virtual
storage. The minimum version uses considerably
less storage than the other two . You can only use
minimum BMS at the command level. Both
standard and full can be used at command and
Inacro level.

If you use either the full BMS version or the
standard BMS version, you can benefit from the
size of the minimum version. This is because the
minimum version is a discrete component of the
other two, provides their most commonly used
functions, and can be paged into real storage
independently of their other component nlodules.
This is, likely to reduce the size of your CICS
working set if most of your BMS requests can be
satisfied by the minimum version.

The support provided by each version is as follows:

- Minimum BMS

FUl1lction Provided

• SEND MAP command
• RECEIVE MAP command
• SEND CONTROL command
• Default and alternate screens
• Extended attributes
• Map set suffixes
• Screen coordination with null map
• Field and block data.

Deyices Supported

All 3270 displays and printers except SNA
character string printers, which are defmed as
such in the TCT.

Standard BMS

Function Provided

• All function of minimum - PLUS
• SEND TEXT command
• Outboard formats
• Partitions
• Control of an MSR
• NLEOM mode for 3270 printers
• Subsystem LDC controls.

Devices Supported

All devices supported by B MS

I'ull BMS

Function Provided

• All function of standard - PLUS
• Terminal operator paging
• Cumulative mapping
• Page overflow
• Cumulative text processing
• Message routing
• Message switching
• Returning B MS-generated data stream to

program before output
• Report controller.

Devices Supported

All devices supported by BMS

Sample Programs

Appendixes D, E, and F contain sample programs
that illustrate, among other things, various aspects
of programming for BMS. You should refer to
these programs as you study new topics. Note,
however, that each sample program illustrates
different aspects of BMS. Some of the samples do
not apply to minimum BMS. Others do not apply
to standard B MS either.

134 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Chapter 3.2-2. Minimum Function BMS

Minimum function BMS supports the IBM 3270
and IBM 3270-like range of displays and printers
(but not SCS printers). For convenience,
"minimum function BMS" will be shortened to
"minimum BMS". This chapter introduces:

• The IBM 3270 Information Display System

• The principles of display layout design

• The way in which you specify display layouts
to CICS

• The commands and options provided by
minimum BMS for communicating with a
display that has a predefmed layout.

The information in this chapter applies equally well
to the IBM 3270-like displays, for example the
IBM 8775 Display Terminal.

IBM 3270 Information Display
System

The 3270 data stream conveys both displayable
data characters and nondisplayable control
characters between the host processor and a
terminal. Using BMS commands, you do not have
to understand the format of the data stream.
Nevertheless, you need to know the range of things
the data stream allows you to do. This section
describes the features of 3270 terminals, and
discusses how you can use them. Refer to the
CICS/DOS/VS IBM 3270 Data Stream Device
Guide for more information on the 3270 data
stream, and the features available on 3270 and
3270-like terminals.

Input Operations

The operations you perform at a 3270 terminal
need not always result in data being sent to the
host processor. For example, you can press the
alphanumeric keys indefinitely without sending
data. However, certain actions (such as pressing
ENTER) always cause your terminal to send a data
stream, even if you haven't provided any data.

Apart from the alphanumeric keys, the keys that
you can press without sending data are:

• Repeat-action keys
• Forward and backward tabbing keys
• New line tabbing key
• Horizontal cursor positioning keys
• Vertical cursor positioning keys
• Backspace key
• Erase input (ERASE INPUT) key
• Erase end-of-field (ERASE EOF) key
• Insert mode (INS MODE) key
• Delete (DEL) key.

These and special features of individual models
make it easier for you to enter data. The features
are described in the Operator's Guidefor the IBM
3270 Information Di.'iplay System, and the IBM
8775 Di.rplay Terminal User's Guide.

When you have typed data onto a display, you will
probably want to send it to the host processor.
You do this by one of the following:

• Pressing the ENTER key
• Pressing a program function (PF) key
• Using an identification card reader
• U sing a magnetic slot reader and hand scanner
• Detecting a light-pen attention field.

Chapter 3.2-2. Minimum Function BMS 135

Although CICS will send modified data when you
press PF keys, the keys are not normally used for
this. Generally, you assign a specified meaning to
the key itself.

If you want to get the attention of the host
processor without sending data, you can:

• Pre:ss the CLEAR key
• Press a program access (PA) key.

If you want to send data without having to enter it
explicitly, you can:

• U sle a light pen
• Pn~ss the cursor select key.

An att(mtion identifier (AID) character is always
sent to the host processor whenever a 3270 input
operation is performed. This indicates the cause of
the input operation.

CICS ensures that an application program receives
input data intended for it. The AID allows the
application program to react differently, depending
on the input operation. The effect of diffc:rent
combinations of data and AIDs depends entirely
upon the design of the application progratn.

OutP1llt Operations

A ternlinal can receive data from an application
program, as well as send data to it. Some of the
data can be displayed, the rest consists of device
controls. By building data streams containing
device controls, you can, for example:

• Sound the audible alarm (if the terminal has
one)

• Unlock the keyboard for input
• Reset the modified data tag (the MDT) of each

field
• Print the contents of a screen
• Erase all unprotected fields
• Position the cursor.

The way you use these features is up to you.
Howe:ver, they can improve the usability of your
application program.

Display Field Concepts

An application program can divide a screen into
more than one field. The fields combine to
produce a complete screenful of data.

A field starts with an attribute character, continues
with data characters, and ends at the next attribute
character. A field can contain only a single
character or it can span several lines, as the last
character on a line is logically followed by the frrst
character on the next line .. You should note,
however, that BMS does not allow a field to "wrap
around" from the end of one line to the start of the
next. Nor docs it allow a field to "wrap around"
from the bottom of the screen to the top.

Nonnally, an image is divided into several fields by
the program but it is possible to have an image
with no fields (no attribute characters). This occurs
when you press the CLEAR key; such unformatted
images are not supported by BMS. An application
program can use the HANDLE AID command to
detect the use of the CLEAR key. This command
is described in "HANDLE AID Com'mand" on
page 156. An attempt to read from a cleared
screen raises the MAPF AIL condition.

Attribute Character

The attribute character is always the frrst character
of a field. It occupies a character position on the
screen but appears as a blank. An extended data
stream is used to communicate with a device that
supports extended color, highlighting, programmed
symbols, or validation. The single blank attribute
character on a display produced by such a data
stream can represent several attribute bytes.

Attribute bytes can convey the following field
attributes.

• Unprotected

You can enter any keyboard character into an
unprotected field.

• Numeric-only

A numeric-only field is unprotected and only
the digits 0 through 9 and the special characters

136 CI('li/DOSjVS Application Programmer's Reference Manual (Command Level)

period, dash, and "DUP" may be entered. If
the keyboard numeric lock feature is installed
on the 3270 and the operator attempts to enter
any other characters, the keyboard is locked. If
the keyboard numeric lock feature is not
installed, any data can be entered in the field.
On a data entry keyboard, a numeric-only field
causes a numeric shift to occur.

• Protected

Data cannot be entered in a protected field. If
the operator attempts to enter data, the
keyboard is locked. Stopper fields following
variable-length data fields are normally defined
with protected attribute characters. If the
operator attempts to enter more characters than
the variable-length data field can contain, the
stopper field following it will cause the
keyboard to be locked.

• Autoskip

An autoskip field is a protected field that
automatically skips the cursor to the next
unprotected field. Keyword fields and stopper
fields following fixed-length data fields are
normally dermed with autoskip attribute
characters.

Note: The unprotected, numeric-only,
protected, and autoskip characteristics of the
attribute character are mutually exclusive.
Only one may be selected for each field.

• Normal intensity

A normal intensity field displays the data at the
normal operating intensity.

• Bright intensity

A bright intensity field displays the data at a
brighter than normal intensity. This is often
used to highlight keywords, errors, or operator
messages.

• Base color

The IBM 3279 Model 2A or 3A display device
produces a base color image by using the

•

PROTECT and INTENSIFY attributes of the
3270 standard data stream to select four colors:
white, red, blue, and green. A switch on the
display control panel permits the operator to
select default color, causing the display to
behave as a monochrome 3270 display, with
WHITE representing INTENSIFY. The
protect bit retains its protect function when
conveying color information.

Extended color

The IBM 3279 Model 2B or 3B uses extended
color attributes in an extended data stream to
determine the colors of display elements. The
data stream can specify the colors of
multicharacter fields. Seven colors can be
selccted: blue, red, pink, green, turquoise,
yellow, and neutral.

An IBM 3279 Model 2B or 3B will act as a
Model 2A or 3A until it detects an extended
color attribute byte in the data stream. It will
display the image in default color or base color,
according to the setting of the switch on the
control panel.

As soon as an extended color attribute is
received, the display treats the whole image as
an extended color image. Fields that have no
color attribute adopt the default colors (green
for normal intensity, white for bright). If the
color control switch has been set to base color,
the part of the image that has already been
displayed will change from base color to default
color. Such a change, which could disturb an
operator, can be avoided by applying an
extended color attribute to the frrst field in any
imagc that uses extended color.

The device interprets extended color attributes
to determine the colors of fields in an image.

• Extended highlighting

Extended highlighting can be applied to
characters, or character fields, in a display that
uses the extended data stream. It can take one
of three forms: BLINK, REVERSE, or
UNDERLINE.

Chapter 3.2-2. Minimum Function BMS 137

• NOllldisplay

A nondisplay field does not display the data on
the screen for operator viewing and does not
print the field data. This might be used to
enter security data when the screen is visible to
others. This attribute characteristic should be
used with care, as the operator loses the ability
to verify the data entered in a nondisplay field.
This field might also be used to store nlessages
on the screen. The messages can be displayed
later by changing the attribute character to
bright or normal intensity.

Note: The normal, bright, and nondisplay
characteristics of the attribute character are
mutually exclusive. Only one may be selected
for each field.

• Programmed symbols

As well as the standard display symbol sets, the
3278, the 8775, the 3279 Model 2B or 3D, and
the 3290 can have optional additional symbol
store, enabling them to display up to six
191-character symbol sets, whose fonts and
codes are defmed by the user. Characters in
difl:erent display fields can be selected from
different symbol sets. This feature uses the
extended data stream.

The definition of the programmed sytnbols
must be sent to the terminal before
programmed symbols can be used. TillS is
discussed further in the CICS/DOS/VS IBM
3270 Data Stream Device Guide.

• Lil~ht pen detectable

A light pen detectable field is sensitive to the
light pen (a special feature) and the cursor
select key. Two types of detectablf! fields are
possible: a delayed detectable field and an
immediately detectable field.

If a delayed detectable field is selected by the
operator using the light pen, the modified-data
tag (MDT) is turned on. If an immediately
detectable field is selected, the modified-data
tag is turned on and transmission occurs. See

An Introduction to the IBM 3270 Information
Display System.

• Validation

The extended data stream can be used to defme
an input field in an 8775 display as one of the
following:

Mandatory fill
Input field must be filled before pressing
ENTER.

Mandatory enter
The operator must key data into the
input field before pressing ENTER

Trigger
Every time the cursor leaves a data field
that has the trigger attribute and that has
been modified by the operator, the
terminal transmits the contents of the
field to CICS.

Note: Although mandatory fill and mandatory
enter force you to enter data into a field, your
program can provide an "escape" mechanism
for an operator who does not know what data
to enter. Terminals that have the validation
feature usually have ERROR keys to help you
do this. Such keys generate the character
X' 3 F' . Your program can test for this
character in input fields whenever a validation
operation is performed. The supplied
DFIIERROR constant makes it unnecessary
for you to remember the character value.
"Attribute Constants" on page 150 shows how
this and other constants can help you modify
data structures.

• l\1odificd data tag (MDT)

The modified data tag is turned on when fields
are modified by the operator. When the
operator presses the ENTER key or a PF key,
only fields that have been modified by the
operator or selected by the light pen are
transtnitted to the processor. The program
may send fields to the 3270 with the
modified-data tag already on to guarantee that

138 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

the field will be returned with the next
transmission.

• Insert-cursor indicator

The insert-cursor indicator is not a field
attribute. Instead, it places the cursor under
the frrst data character of the field. If the insert
cursor indicator is specified for more than one
field, the cursor is placed under the first data
character of the last field specified. If no insert
cursor is specified, the cursor is placed at
position zero (row 1, column 1) on the screen.

I • Background transparency

Detennines whether the background of an
alphanumeric field is transparent or opaque;
that. is, whether an underlying (graphic)
presentation space is visible between the
characters.

I • Field outlining

Allows lines to be included above, below, to
the left, or to the right of a field. You can use
these lines in any combination to construct
boxes around fields or groups of fields.

I • SO/SI creation

Indicates that the field may contain a mixture
of EBCDIC and DBCS data. The DBCS
subfields within an EBCDIC field are delimited
by SO (shift out) and SI (shift in) characters.
SO and SI both occupy a single screen position
(normally displayed as a blank). They can be
included in any non-DBCS field on output
provided they are correctly paired. The
terminal user can transmit them inbound if
they are already present in the field, but he may
only add them to an EBCDIC field if the field
has the SOSI attribute.

Screen Layout Design

The features of the 3270 system allow screen
layouts to be designed for operator convenience
and efficiency. The success of an online system
depends on its ease-of-use, screen clarity, and
tenninal operator acceptance.

The following features of some 3270 displays make
it easier for the layout designer to fu1ft! the
requirements:

• Color
• Field highlighting
• Programmed symbols
• Easy correction
• Numeric shift for numeric data
• Validation
• Field delimiters or stoppers (to control the

length of data entered).

The first step in designing 3270 screen layouts is to
divide the screen into functional areas such as a
title area, an application data area, and a message
area.

Title Area

The title area of a screen should identify the
program that displayed the data. Data fields from
the same file can appear in the same screen
locations for different applications, permitting the
operator to become familiar with fields by their
screen location. A title can be used to help the
operator recognize the application. The title area is
normally the top one or two lines of the screen and
may contain a page number (if more than one page
is needed), field headings, and other data besides
the title.

Application Data Area

The application data area comprises the main
portion of the screen. Data from one or more
records in the same file or multiple files is entered
or displayed, depending on the application
requirements.

Three kinds of field are usually found in this area:
keyword, data, and stopper.

Chapter 3.2-2. Minimum Function BMS 139

Keyword fields contain constant data sent by the
progr3.1TI to identify the contents of a data field.
For example, a keyword field containing
"ACCOUNT BALANCE:" might precede and
identify a data field containing "$129.54". A
keyword field might also be used in a data entry
application to identify the data being entered. For
examplle,

QUANTITY:

means enter the quantity.

Data fields contain me data that the application
progrrutn retrieves from files and displays. The data
may appear exactly as stored in the me, or it may
be edited by the program. Data fields may also be
left blank for the operator to enter data. The
application program can use the entered data to
make (;hanges to a record or to alter the processing
of the program. In some cases, it may be
appropriate for the program to display characters in
an entry data field to guide the operator in entering
the data. For example,

DATEI MMDDYY

means enter month, day, year, each having two
characters.

Stopp(~r fields (see "Attribute Character" on
page 136) on data entry screens restrict the length
of the data fields. Stopper fields containing no data
are used to define the space between data fields and
to stop the operator from entering too ma.ny
characters in a field.

For example, a field containing a street address may
be 20 characters long, but for screen layout reasons
an entire line of 40 characters is provided for this
field. To prevent the operator from keying more
than 20 characters on this line, the program should
defme a stopper field starting in the twenty-first
position of the line. 1 he stopper field should be
protected from data entry to restrict the operator to
the 20-character field.

The BMS map defmition macros do not allow you
to define a zero length field. Thus a stopper field
occupies two screen positions, one for the attribute
byte, and one for a blank data character.

Message Area

The message area of a screen is used to send
instruction messages to assist the operator in
processing a transaction. This area should be
separate from the application data area to allow
communication with the operator, without
disturbing the application data. The message area
is normally the bottom one or two lines of the
screen.

Screen Sizes

As mentioned above, the 3270 is available in
several screen sizes. Some 3270 devices are
available with two screen sizes: the DEFAULT
(small) size and the ALTERNATE (large) size.
The system programmer specifies the screen sizes in
the terminal control table (TCT), and specifies, in
the program control table (PCT) for each
transaction, which of the two possible sizes that
transaction will use.

If ERASE is not specified on a terminal control or
. BMS output command, the screen will be
unchanged from its previous screen size setting, that
is, the previous transaction selection, or the default
if the operator has just switched on or has cleared
the screen.

In normal practice, this means that an application
program should specify ERASE with its frrst
output request. On receipt of a CLEAR key
indication, CICS will preserve the selected screen
size, so that an ERASE is not needed for output
requests following the first.

Defining BMS Maps

This section describes the three macros DFHMSD,
DPIIMDI, and DFHMDF, that are used to defme
BMS map sets, maps, and fields. It shows how to
usc the macros to defme a simple map set, and how
to catalog this map set for use by application
programs.

As you read about the macros, you will probably
find it helps to study the sample map defmitions in
Appendixes D, E, and F.

140 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

You must code the macros according to assembler
language source coding rules. You must derme all
maps (including a single map) as part of a map set.
You always start your map set defmition with a
DFHMSD TYPE = MAP or TYPE = DSECT
macro, and must always end it with a DFHMSD
TYPE = FINAL macro.

Defining a Map Set

You use the DFHMSD macro to define a set of
maps, that is, a "map set". The macro consists of
operands that derme characteristics of the map, or
maps, comprising the map set. Some operands
specified in DFHMSD can be overridden, for
individual maps or fields that make up the map set,
by operands in the map (DFHMDI) and field
(DFHMDF) defmition macros. The full syntax of
the map set definition macro, and a description of
its operands, is given in "Chapter 3.2-5. BMS
Macro and Command Reference Summary" on
page 205. However, using minimum BMS you
will not use all of the operands.

The syntax of the DFHMSD macro is as follows:

mapset DFHMSD
TYPE={~IMAP}

,TIOAPFX=YES
, {STORAGE=AUTOIBASE=name}

[,MODE={INIYUTIINOUT}]
[,LANG={ASM COBOLIPLIIRPG}]
[,CTRL=(IPRINT]

[,FREEKB][,ALARM][,FRSET])]

[,MAPATTS=(attrl,attr2, ...)]
[,DSATTS=(attrl,attr2, ...)]
[,COLOR={DfFAULTlcolor}]
[,VALIDN={ MUSTFILL][,MUSTENTER]

[,TRIGGER]}]
[,HILIGHT={OFFIBLINKIREVERSEI
UNDERLINE}]
[,PS={BASElpsid}]
[,OUTLINE={BOXI([LEFT][,RIGHT]

[,OVER][,UNDER])}]
[,SOSI={N.O.IYES}]
[,TRANSP=1~INO}]

[,SUFFIX=suffixl
,TERM={3270-113270-2}]

Most of the operands are self explanatory. For
more information, see the description of the

operand in "Map Dermition Macro Operand
Summary" on page 207.

You must produce at least two versions of any map
set that you derme. One must contain the operand
TYPE = OSECT, the other TYPE = MAP. The
map set source mes can be stored before assembly.
Alternatively, the value of the TYPE operand can
be supplied by the SYSPARM mechanism before
assembly. This avoids the need for two similar
map sets, which differ only in their TYPE operand.
The SYSPARM mechanism is described in the
CICS/ DOS/ VS Installation and Operations Guide.

Operands of DFHMSD

You use OFHMSO to specify the following:

• The name of your map set (by labeling the
DFHMSD macro).

• Whether it is a physical map or a symbolic
description map (TYPE operand).

• Whether it is to be used for input, output, or
both (MODE operand).

• Which programming language will be used to
code the application programs that will use the
map or maps in the map set (LANG operand).
If programs written in different languages are to
use the same map set, you must prepare a
separate version of the symbolic description
map for each language.

• Whether maps within the map set will occupy
the same area in storage, each overlaying the
last as it is loaded (STORAGE and BASE
operands). Assuming that you do not want
them to overlay each other, you code
STORAGE = AUTO. See "Getting Storage
for a Data Structure" on page 151.

• Whether 3270 terminal control commands
(such as sounding the alarm) are to be
activated during transmission (CTRL operand).

• Whether maps fu the map set have attributes
that use the extended data stream; for example,
color, highlighting, programmed symbols, or
validation (MAPA TTS and DSA TTS operands
for maps and DSECTs respectively).

Chapter 3.2-2. Minimum Function BMS 141

EXTA 1'1' is accepted fot' compatibility with
previous releases. KEXT A 1'1' is accepted for
compatibility with the IBM Japan 5550
support feature.

• The default values of the extended attributes,
where applicable (COLOR, HILIGHT,
OUTLINE, PS, SOSI, TRANSP, and
VAlLIDN operands.)

• Whether the map set name is to be suflixed
(TERM or SUFFIX operand.) See
"Assembling and Cataloging BMS Maps" on
page 145.

Defining Maps Within a Map Set

Each map in a map set is defmed using the
DFHMDI macro. This macro is similar in fonn to
DFHMSD. It allows you to override some of the
options inherited from DFHMSD, and to specify
some new ones. The full syntax of the macro is
shown in "Chapter 3.2-5. BMS Macro and
Command Reference Summary" on page 205.

You use DFHMDI to specify the following:

• The name of a map (by labeling the DFHMDI
macro).

• Its size; that is, the depth in number of lines
and the width in number of columns. (SIZE
op1erand.)

• The position (line and column) of its top
lefl-hand comer. (LINE and COLUMN
operands.)

• Whether 3270 terminal control cotrunands
(such as sounding the alarm) are to be
activated during transmission (CTRL operand.)

• Whether maps in the map set have attributes
that use the extended data stream; for example,
color, highlighting, programmed symbols, or
validation (MAP A T1'8 and DSA TT8 operands
for maps and DSECTs respectively).

EXT A T1' is accepted for compatibility with
previous releases. KEXT A TT is accepted for

compatibility with the the IBM Japan 5550
support feature.

• The default values of the extended attributes,
where applicable (COLOR, HILIGHT,
OUTLINE, PS, SOSI, TRANSP, and
V ALIDN operands.)

• That the map contains no fields; that is, it is a
null map. You would fmd this useful if you
wanted to reserve part of the screen for a
program other than BMS (FIELDS operand.)

The syntax of the DFHMDI macro is as follows:

map DFHMDI
[,SIZE=(line,column)]
[,LINE=number]
[,COLUMN=number]
[,JUSTIFY=BOTTOM]
[,CTRL=([PRINT]

[,FREEKB][,ALARM][,FRSET1)]

[,EXTATT={HQIMAPONlYIYES}]
[,COlOR={~fFAUlTlcolor}]
[,VAlIDN= MUSTFIll][,MUSTENTER]

[,TRIGGER])]
[,HIlIGHT={OFFIBlINKIREVERSEI

UNDERLINE)]
[,PS={BASElpsid)]

[,FIElDS={YESINO)]

[,SUFFIX=suffixl
,TERM={3270-113270-2)]

[,MAPATTS=(attrl,attr2, ...)]
[,DSATTS=(attrl,attr2, ...)]
[,OUTlINE={BOXI([lEFT][,RIGHT]

[,OVER][,UNDER]»]
[, SOSI = <.tltll YES) 1
[,TRANSP=1~INO}]

A map set definition must contain at least one map
definition. Where you have more than one map,
you code their definitions one after another, the
end of one being marked by the next DFHMDI
macro or by a DFHMSD TYPE = FINAL macro.

All maps in a map set are loaded whenever anyone
of them is used. If all the maps in a map set are
used during a single invocation of the program, the
single load of all maps is more efficient than
loading each map as it is required. You should
ensure that you use unique names for maps within

142 CICSjDOS/VS Application Programmer's Reference Manual (Command Level)

a map set, or within multiple map sets that are
copied into one application program.

Another reason for loading several maps at the
same time is that more than one of them can
appear on the screen at one time. This is because a
map defmition can specify where a map is to be
placed on the screen. When BMS sends a map to
a display, it does not erase the existing contents of
the display unless you code the ERASE option.
Instead, it uses your program data, plus constant
map data, to overlay part of the screen. Therefore,
if you design your maps so that they occupy
different parts of a screen, you can display them at
the same time. Alternatively, you can design some
maps in a map set so that they overlay one
another. In this way, you can erase parts of the
contents of the screen without affecting the rest.

Data Fields

A map usually consists of one or more data fields.
Each field contains display data, and has a set of
.associated attributes that are initialized by coding
operands in a DFHMDF macro. All field
defmition macros following a map definition macro
belong to that map. The end of one field defmition
is indicated either hy the beginning of another, by
the next DFHMDI macro, or by a DFHMSD
TYPE = FINAL macro.

Maps Without Fields

You can defme maps that have no fields. You do
this to reserve part of the screen for use by another
program. By defming such a null map, BMS has
no affect on data that appears in the reserved part
of the screen. You would use null maps in this
way if you wanted to build a composite display
containing both BMS text data and graphics data.
If the graphics data is produced by GDDM, you
should ensure that a GDDM PSRSRV call is
included to prevent programmed symbol sets that
are· being used by BMS from being corrupted by
GDDM.

There are other considerations when coordinating
use of a screen between BMS and other programs,
see "Accessing Data Outside t4e Program" on
page 154.

Defining Fields Within a BMS Map

The DFIIMDF macro is used to specify initial
attributes to be given to fields within a map.

You use DFI-IMDI to specify the following:

• The one-to-seven character name of the field.
You only have to name fields if your
application program refers to them. Only
named fields appear in the symbolic description
map.

• The position of the start of the field relative to
the map origin. This is the position of the
attribute byte for the field (POS operand.)

• The length of the field excluding its attribute
byte (LENGTH operand). Specifying the
length of a field does not cause BMS to delimit
it with "stopper" fields; you must do that
yourself either by making successive fields
contiguous, or by inserting fields with
ATTRB=PROT.

A field cannot extend beyond the right-hand
edge of the map, that is, it cannot "wrap"
around the display.

• Whether data placed in the field is to be left- or
right-justified. (JUSTIFY operand.)

• What character must be used to pad a justified
field. (JUSTIFY = BLANK or
JUSTIFY = ZERO.)

• The initial contents of the field. (INITIAL or
XINIT operand.)

• Attributes of the field, for example, skip,
protect, nondisplay. (ATTRB operand.)

• Extended data stream attributes of the field.
(COLOR, HILIGHT, OUTLINE, PS, SOSI,
TRANSP, and V ALIDN operands.)

• A picture to be used to edit input. (PICIN and
PICOUT operands.)

These functions are a subset of those provided by
the standard and full BMS systems. The syntax of

Chapter 3.2-2. Minimum Function BMS 143

the full DFHMDF macro, and a defmition of its
operands can be found in "Chapter 3.2-5. BMS
Macro and Command Reference Summary" on
page 205.

The syntax of the DFHMDF macro is as ibllows:

fld DFHMDF
[,POS={numberl(line,column)}]
[,L.ENGTH=number]
[, .. IUSTIFY=

([{lEFTIRIGHT}][,{BlANKIZERO}])]
[,INITIAl='character data'i

XINIT='hexadecimal data']
[,ATTRB=([{ASKIPIPROTIUNPROT

[,NUM]}][,{BRTINORMIDRK}]
[,DET][,IC][,FSET])]

[,GASE=MIXED]

[,GRPNAME=group-name]
[,OCCURS=number]
[,PICIN='value']
[,PICOUT='value']

[,COlOR={DEFAUlTlcolor}]
[,VAlIDN={[MUSTFIll][,MUSTENTERl

[,TRIGGER]}]
[,PS={BASElpsid}l
[,HIlIGHT={OFFIBlINKIREVERSEI

UNDERLINE}]
[,OUTlINE={BOXI([lEFT][,RIGHT]

[,OVER][,UNDER])}]
[,SOSI={.tiO.IYES}]
[,TRANSP=r~INO}]

Field Groups

Although most of the operands of DFH·MDF
explain themselves, the operands OCCURS,
PICIN, PICOUT, and GRPNAME need more
explanation. OCCURS, PICIN, and PICOUT are
described in detail in "Map Defmition Macro
Operand Summary" on page 207. The
GRPNAME operand will be described here.

Very often, an output data display field has to
contain several subfields, all sharing the same
display attributes, each of which might have to be
modi:6ed separately. At output, subfields that have
not been modified by the program can adopt
default data values from the output map. For
example, a display can include a date field,
comprising a "day" subfield, a "month" subfield,
and a "year" subfield. The contents of the year
subfield remain constant over a relatively long
period. Its value can safely be taken from a map.

However, the day value and month value must be
updated regularly. Similarly, on input the terminal
operator can enter data in each subfield separately.

You use the GRPNAME operand to defme a
group of subfields that combine to produce a field.
The start of the group is indicated by a DFHMDF
macro with the GRPNAME operand. This
operand defmes the frrst subfield, and specifies the
attributes and name of the group. It is followed by
other DFIIMDF macros, one for each of the other
subfields. Each of these must specify the group
name, but cannot specify attribute values. The
definition of the group is terminated by a
DFHMDF macro that specifies a different group
name, by one that specifies no group name, or by a
DPHMDI or DFHMSD macro.

Briefly, a group of fields in a map would appear as
follows in the map defmition:

MAPSET DFHMSD

MAP DFHMDI

DD DFHMDF GRPNAME=DATE,POS=40,
lENGTH=2,ATTRB= ...

MM DFHMDF GRPNAME=DATE,POS=46,

YY

lENGTH=2

DFHMDF GRPNAME=DATE,POS=52,
lENGTH=2

FIELD DFHMDF lENGTH=5,COlOR=GREEN, ...
DFHMSD TYPE=FINAl

The pas operand specifies the position of the
attribute byte of the field even though subfields of a
group do not have to be attributes. If the subfields
are positioned contiguously with no intervening
blanks, the POS of the second and succeeding
subfields must be the last characters of the previous
subficld.

Terminating a Map Set Definition

The macro DFHMSD TYPE = FINAL terminates
a map set definition. It is coded as follows:

mapset DFHMSD TYPE=FINAl

144 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

The name of the map set, if specified, must match
that specified by the DFHMSD TYPE = INITIAL
macro.

Example of Map Set Definitions

Appendixes D, E, and F contain sample programs
in assembler language, COBOL, and PL/I
respectively. The programs show various aspects of
CICS application programming, including map
defmition. You will probably fmd it useful to
study the sample map defmitions now.

Assembling . and Cataloging BMS Maps

You assemble a BMS map defmition to generate
either a symbolic description map or a physical
map. The CICS/DOS/VS Installation and
Operations Guide describes how to assemble and
catalog the maps.

Symbolic Description Map

A symbolic description map set defmition
(DFHMSD TYPE = DSECT) is assembled, and
cataloged in the source statement library. The
member name is usually the same as the map set
name, but it need not be. Alternatively, the
symbolic description map can be copied or inserted
directly into the application program.

Physical Map

A physical map set defmition (DFHMSD
TYPE = MAP) is assembled, link edited, and
cataloged in the core image library.

When you catalog the physical map, you should
consider whether to add a suffix to its name
(specified with the PHASE statement). The reason
for suffixing a map is that you might wish to
produce alternative versions of it for different
terininal models.

Map Sct Suffixing

If you want to execute the same transaction from
more than one type of terminal, you might need to
use B MS map set suffixing. If you are prepared to
use the same map to format data for all your
terminals, you need not read the rest of this section.
If however, you wish to organize output data
according to the terminal in use, making best use of
its features, you ought to consider suffixing map
sets.

For example, if you have displays with screens of
different sizes, you might want to arrange display
fields differently for each size of screen, ensuring
that each display appears "balanced." You add a
different suffix to each version of the same map.

When a mapping operation is requested by a BMS
command, CICS adds a suffix to the map set name
specified in the command, and attempts to load a
map set with that suffixed name.

To understand why you might suffix a map set
name, you must understand how CICS uses
suffixes. Figure 12 on page 146 summarizes the
map set selection logic used by BMS.
Minimum BMS supports only 3270 terminals.
There are only two TERM values that have
meaning under minimum BMS. They are
TERM = 3270-1 and TERM = 3270-2. Their maps
should be suffixed Land M respectively.

By default, terminal type 3270-1 is a 40-column
display; 3270-2 is an 80-column display. If your
terminal has different characteristics, you must use
a suffix of your own choice, using the SUFFIX
operand. For example, a 3278 Model 5 display
device has a screen that is 132 characters wide, and
27 characters deep. Maps that use the full display
must have special suffixes. If you do not need to
distinguish between maps for the two types, you
need produce only one version, and should give it
an unsuffixed name.

Finally, you should ask your system programmer
to ensure that your physical maps are cataloged
with the correct suffixes. In particular, you should
note the following points about suffixing:

Chapter 3.2-2. Minimum Function BMS 145

'mEJ

Upon receivIng a
mappIng request,
BMS reads the
unauffJxed name
of the map set
from thB BM6
command.

Doos
the program

<control table entry ~
for thIs transaotlon ,/ -­
specify SCRN6ZE=

~~~?------------.~~--------------~ 

.... 

Datormlne the type 
and model of too 
termInal from thB 
termInal control 
table terminal entry. 
FlndthB 
correapondlng 
suffix. 

Figure 12. OMS Map Set Suffixing Logic 

1. If you specify TERM or SUFFIX on your 
DFHMSD macro, you should ensure that the 

... 
1 

Load It and use 
It for mapping 
operations 

physical map set is cataloged using the correctly 
sum xed name. 

146 CICSjDOSjVS Application Programmer's Reference Manua1 (Command Level) 



2. You can code SUFFIX, instead of TERM, on 
DFHMSD if you need to create a special 
version of a map. By specifying 
SCRNSZE=ALTERNATE when you defme 
the CEDA proft1e for the transaction that uses 
the map, you tell BMS to try to load a special 
version of the map. This is the version of the 
physical map whose suffix is specified by the 
ALTSFX operand of the TCT entry for the 
terminal. (If you do not use CEOA, you must 
code SCRNSZE=ALTERNATE on the PCT 
entry for your transaction.) 

Table entries such as those described above are 
usually defmed by a system programmer. 

If all your map sets are unsuffixed, you get better 
performance if NODDS i~ specified for the BMS 
operand of the OFHSIT system macro. However, 
if your system has been initialized with the default 
DDS option, you will get better performance if all 
your map sets are suffixed. Figure 12 shows why 
this is so. 

Writing Programs to Use BMS 
Services 

The layout of a BMS input or output display is 
defmed by one or more maps. These can defme 
display data fields that can be addressed by name 
from the application program. This means that the 
attributes (that is, color, highlighting, and so on) 
and contents of such fields can be changed 
dynamically. This section describes how this can 
be done. 

Application programs use BMS SEND and 
RECEIVE comtnands to send and receive display 
data. This section shows the syntax of these and 
other commands, and demonstrates their use. It 
also explains how to produce a printed copy of a 
screen image. 

BMS commands are not accepted by the assembler 
or compilers. They must be translated, as are other 
CICS commands, before being assembled or 
compiled. 

Copying Symbolic Description Maps 

Earlier in this chapter, under "Oefming BMS 
Maps" on page 140, we describe how to defme, 
assemble, and catalog the symbolic version of a 
map set. :rhe cataloged version of a map set (the 
symbolic storage definition) is an application data 
structure, which must be copied into any 
application program that refers to fields in its maps. 

Appendixes 0, E, and F show examples of 
application program data structures for assembler 
language, COBOL, and PL/I respectively. It might 
help if you pause to study these before proceeding 
further. 

The following examples show you how to copy 
these structures for each programming language. In 
these examples, mapsetname 1, mapsetname2, and 
mapsetname3 are the names of members in the 
source library that contain the assembly of a BMS 
symbolic map definition. These member names are 
the same as the names used to catalog the symbolic 
description map set, as described in "Assembling 
and Cataloging BMS Maps" on page 145. The 
following examples assume that the source library 
has been assigned to SYSLIB by suitable job 
control language as described in the CICS/DOS/VS 
In.~tallation and Operations Guide. 

I. An assembler language program must contain 
COpy instructions for each symbolic storage 
definition. You can specify that all definitions 
must occupy the same area (that is, by 
overlays). If this is what you want, the second 
and subsequent COpy instructions must be 
preceded by OR G instructions to reposition the 
assembler to the start of the data area. 

COPY mapsetnamel 
COpy mapsetname2 
COpy mapsetname3 

2. A COBOL program must contain a COBOL 
COpy statement for each symbolic map 
definition. Generally, you should code the 
CO PY statements in the working storage 
section of a program. This saves you from 
having to acquire storage for them. 

Chapter 3.2-2. Minimum Function BMS 147 



WORKING STORAGE SECTION. 
COpy mapsetnamel. 
COpy mapsetname2. 
COPY mapsetname3. 

3. A 1PL/I program must contain a %INCLUDE 
statement for each symbolic storage definition. 

XINCLUDE mapsetnamel; 
XINCLUDE mapsetname2; 
XINCLUDE mapsetname3; 

Alternatively, the assembled symbolic description 
map set can be inserted directly into your 
application program, as described in II Assembling 
and Cataloging BMS Maps" on page 145. 

Processing Data Structures Under BMS 

An application program can read or modify the 
attributes or initial data of any named field in an 
application data structure. The form of an input 
map data structure differs from that of an output 
map structure. 

When designing a map, you assign names to fields 
that contain variable data. The symbolic map data 
structure contains extended versions of these fields, 
each one consisting of subfields. Each subfield can 
be referred to by its name, which is the name 
assigned in the symbolic map definition, plus a 
single ]letter suffix. Each kind of subfield has a 
different suffix. 

Furthermore, the whole input data structure, or 
output data structure, can be addressed by its 
suffixed name. The suffixed name of an input map 
is its original name extended by the suffix "I". The 
corresponding suffix for the output map is "0". 
For assembler maps only, the beginning and end of 
the data structure are labeled automatically with the 
map name extended by the suffixes "S" and "E" 
respectively. This E suffix is useful if you need to 
detennine the length of the DSECT; for ex.ample if 
you wish to initialize its contents to X COO'. 

Input Map Data Structures 

The suffixes used to address subfields, and the 
contents of those subfields, in input maps are: 

D (ASM only) The first byte of the first 
occurrence of a field defmed by the OCCURS 
operand of the DFHMDF macro. 

F a flag byte. This is normally set to X '00'. If 
the field has been modified but no data is sent 
(that is, the field is cleared), the flag byte is set 
to X'80'. 

I input data read from the display. It is set to 
X'OO' if no data is entered for that field. If the 
input process is inhibited by a light pen, the 
first byte of the input data subfield will be set to 
X'FF', the rest of the field being set to nulls 
(X'OO'). The use of the light pen is discussed 
under "Ilandling Light Pen AIDs" on 
page 157. 

1.1 a halfword binary length value. This defines the 
number of characters that are typed into the 
data field before it is read by BMS. 

N (ASM only) The frrst byte of the next 
occurrence of a field defined by the OCCURS 
operand. 

Input Field Suffixes 

Ilaving read data, a program can process it by 
issuing ordinary application programm.ing 
commands that address fields by name. 

Consider a field, called INPUT, in an input map. 
A program can test that either its length field 
INPUTL contains a value greater than 0 (data has 
been entered) or that its flag byte INPUTF 
indicates that the field has been cleared. Provided 
one of these is true, it can, for example, move the 
first INPOTL characters from INPUTI to another 
data area. 

The suffix on the data structure for the whole map 
enables you to manipulate the whole data structure. 
Por example, you can write simple commands to 
copy the whole structure into another data area. 

148 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Output Map Data Structures 

The suffixes used to address subfields, and the 
contents of those subfields, in output maps are: 

A an attribute byte defming the characteristics of 
the field (for example, protected or 
unprotected) . 

C an attribute byte specifying the color of the 
field. This will be ignored if the tenninal does 
not support the extended data stream. 

D (ASM only) The first byte of the first 
occurrence of a field defmed by the OCCURS 
operand of the DFHMDF macro. 

H an attribute byte defming the highIlghting to be 
used within a field in a display. This will be 
ignored if the terminal does not support the 
extended data stream. 

M an attribute byte defming that SO/SI creation is 
to be used. 

N (ASM only) The frrst byte of the next 
occurrence of a field defmed by the OCCURS 
operand. 

o output data to be sent to the display. The 
program will usually store data in such a field 
before sending the map. If the contents of the 
field begin with a null (X'OO') character, the 
whole field will be ignored, the contents of the 
display field being taken from the physical map. 
If you want to send a blank field, you must 
store blanks (X'40') in the symbolic map data 
structure. Being nonnull, this will override the 
contents of the physicai map. 

P an attribute byte defming the programmed 
symbol set to be used within a field in a display. 
This will be ignored if the tenninal does not 
support the extended data stream. 

If you want to use programmed symbols, you 
must ensure that a suitable symbol set has been 
sent to the device. The CICS/DOS/VS IBM 

3270 Data Stream Device Guide describes how 
to do this. 

T an attribute byte derming that background 
transparency is to be used. 

U an attribute byte defming the outline to be used. 

V an attribute byte defming the kind of validation 
to be performed on data typed into a display 
field. This will be ignored if the terminal does 
not support the extended data stream. 

Subficlds with suffixes H, P, V, C, U, M, and T are 
only generated if the corresponding attribute types 
are included in the DSA TTS operand of the 
DFIIMDI or DPHMSD macros. If 
EXTATT = YES is specified, subfields with suffixes 
II, P, V, and C are generated. If 
KEXTATT = YES is specified in addition to 
EXT ATT = YES, subfields with suffixes U and M 
are also generated. 

As with input data fields, a program can address 
individual subfields in an output field, verifying or 
changing their contents. For example, an 
application program can check a calculated data 
value, say BALANCE. If the value is found to be 
negative, the color attribute constant 
(BALANCEC) in a field called BALANCE can be 
set to produce red characters when displayed. The 
data value in the field will occupy subfield 
BALANCEO. 

You can also manipulate the whole output data 
structure using its suffixed name. For example, 
you could copy data into it from another area. 
More importantly, you can write commands to set 
the whole data structure to nuUs (X'OO') before 
using its corresponding physical map in an output 
operation. By doing this, you ensure that fields 
and attributes in the output display inherit the 
default contents of the physical map, not whatever 
happens to be in the symbolic data structure. The 
fonowing code shows how you might do this in 
assembler language, COBOL, and PL/I 
respectively. 

Chapter 3.2-2. Minimum Function BMS 149 



ASM 

COBOL 

PL/I 

XC MAPO(MAPE-MAPO),MAPOI 

MOVE LOW-VALUES TO MAPO 

DCL STR BASED CHAR(32767); 

SUBSTR(ADDR(MAPO)->STR,l, 
STG(MAPO»=LOW(STG(MAPO» 

IData structure must be less than or equal to 256 
bytes. You must use another method if the 
structUrt! is larger than this. 

Attribute Constants 

Subfield suffixing allows an application program to 
change the data within a data structure. However, 
the bit patterns representing particular attributes are 
difficult to remember, so CICS provides a list of 
named standard attribute bytes. You can code 
these names in a program instead of their 
hexadecimal equivalents. To use them, you must 
copy the list (a copy book supplied by IBM and 
stored in the system source library at installation) 
into your program, using the name DFIIBMSCA. 
The constants and their meanings are shown under 
"BMS Related Constants" on page 222. 

Using attribute constants and subfield suffixing, a 
prograrrt can modify field attributes using simple 
commands. The following examples illustrate how 
you could: (I) put data into an output data field, 
(2) set the color attribute of the output data field, 
and (3) set the highlighting attribute of the output 
data field. 

ASM MVC ACCOUNTO,CUSTNO ........ (1) 
MVC ACCOUNTC,DFHBLUE ....... (2) 
MVC ACCOUNTH,DFHBLINK ...... (3) 

COBOL MOVE CUSTNO TO ACCOUNTO .... (1) 
MOVE DFHBLUE TO ACCOUNTC ... (2) 
MOVE DFHBLINK TO ACCOUNTH .. (3) 

PL/I ACCOUNTO=CUSTNO; ........... (1) 
ACCOUNTC=DFHBlUE; .......... (2) 
ACCOUNTH=DFHBLINK; ......... (3) 

Additional installation defmed named attribute 
constants can be created and cataloged in 
DFHBl\.1SCA in the source library. 

The value of an attribute constant can be 
determined by referring to the publication An 
Introduction to the IBM 3270 Information Display 
System. 

Invalid nata 

BMS does not check the validity of attribute and 
data values in the symbolic data structure. Invalid 
data may be transmitted to the terminal. Some 
terminals will detect this invalid data and send error 
information to CICS. This error information is 
handled by CICS code and usually results in an 
abnormal termination of the transaction with an 
ATNI abend code. This abend can be intercepted 
by user-written terminal or node error programs 
(TEPs or NEPs) as described in the 
CICS/ DOS/ VS Customization Guide. 

Sending Data to a Display 

You use the SEND MAP command to send 
mapped data to a display . You can send three 
kinds of data, depending on what options you 
specify, as follows:. 

• constant display data (with attributes) such as 
headings, footings, prompt fields, and 
comments 

• variable display data (with attributes) such as 
user data or warning messages 

• device control data such as instructions to clear 
the screen, or sound an alarm, before displaying 
data. 

The syntax of the command is: 

SEND MAP(name) 
[MAPSETCname)] 
[FROMCdata-area) LENGTHCdata-value)I 

DATAONlYIMAPONLY] 

[devcntrl ... J 

The MA P option names the map that is used to 
fonnat the data, and the MAPSET option names 
the map set to which the map belongs. If the map 

150 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



set has the same name as the map, you do not need 
to specify MAPSET. 

In its simplest form, the SEND MAP command is 
used as follows: 

1. The application program assigns values to 
variables named in the symbolic description 
map. 

2. The program issues a SEND MAP command. 
This uses the application data in the 
application data structure to replace default 
data and attributes in the physical map, and 
sends the modified map to the display. 

For example, if a map set called DISPLAY 
contains an output map of the same name, the 
map can be displayed using the command: 

SEND MAPC'DISPLAY') 

Another map, called ERROR, in the same map set 
can be displayed by: 

SEND MAP('ERROR') MAPSETC'DISPLAY') 

By default, BMS displays application data or 
attribute data from the application data structure 
rather than default data from the physical map. To 
override this for a given field, your program must 
set the corresponding subfield in the data structure 
to hexadecimal zeros (X '00') before issuing a 
SEND MAP command. 

Composite Displays 

If your program sends a succession of maps to a 
display, the fmal fonn of the display depends on 
both the design of the maps, and the fonn of the 
SEND MAP command. For example, if the final 
map fills the screen, or the SEND MAP command 
includes the ERASE option (see "Device Control 
Options" on page 153) it obliterates all previous 
output. However, if you design your maps to 
occupy different parts of the screen, or to overlay 
each other only partially (see "Defming Maps 
Within a Map Set" on page 142), you can combine 
them to produce the fmal display. 

Refreshing and Modifying Displays 

You use the MAPONL Y option of the SEND 
MAP command to build a display using data from 
the physical map, without inserting user data. This 
can be useful when sending a menu to a display, as 
no data is sent with the map, and input data fields 
regain their default data values (perhaps blank). 

You use the DATA ONLY option to modify the 
variable data in a display that has already been 
created by a SEND MAP command. BMS 
transmits variable data but no physical map data. 

You cannot issue a SEND MAP DATAONLY 
command if the screen is unformatted (that is, if 
there has been no preceding SEND MAP). 

No data is sent for fields that you have cleared to 
nulls (X'OO'). You can use a SEND MAP 
DATAONLY to ensure that only changed fields 
are sent. 

Getting Storage for a Data Structure 

You have now seen how to map data from one or 
more data structures. Depending on how you 
define your map sets, a program might have to 
issue commands to acquire main storage for the 
data structures it uses. It does this by issuing 
GETMAIN commands. You can usually avoid 
having to code GETMAIN commands by coding 
STORAGE = AUTO on the DFHMSD macro. 

I t has been assumed so far in this chapter that 
every output map has its own data structure. 
However, you might decide that this uses too much 
storage. To save storage, you can specify that 
different maps are to use the same storage area. 
You do this by coding BASE = name (or nothing 
at all), instead of STORAGE = AUTO, on the 
DFHMSD macro. This section describes what 
happens when you code each operand for each 
language, and how it affects application programs. 

Remember that however you acquire storage you 
should clear its contents (to X'OO') before issuing a 
SEND MAP command. If you do not do this, 
existing data in storage can modify the output 

, display unpredictably. If you use GETMAIN to 

Chapter 3.2-2. Minimum Function BMS 151 



acquir1e storage, you can clear the storage by coding 
the INITIM G option. 

Here are the rules for assembler language (ASM), 
COBOL, and PL/I: 

ASM 

STORAGE = AUTO if you code this operand, each 
map will need its own storage. To acquire the 
storage automatically (without coding 
GETMAIN commands), you should code your 
CO PY statements for map sets immediately after 
the DFHEISTG statement. If you do this, the 
DFHEIENT macro acquires storage for you. 
This is the best way of getting the storage. It is 
demonstrated in the "Low Balance Report 
Sarnple Program (ASM)" on page 449 

If you don't code the COpy statements after 
DFHEISTG, you must code GETMAIN 
commands before you use maps. 

BASE = name you cannot code this for assembler 
language maps. 

nothin:g specified the assembler generates 0 R G 
state~ments that cause maps in the set to overlay 
each other. You should code your CO PY 
commands for map sets immediately after the 
DFHEISTG statement (as for 
STORAGE = AUTO). CICS acquires storage 
automatically, but only enough to hold the 
largest map in the set. 

If you don't code the CO PY statements 
immediately after DFHEISTG, you must 
perfc)nn your own GETMAIN t specifying the 
size of the largest map in the set. 

Note: There is more infonnation on using the 
BASE operand under "Map Defmition Macro 
Operand Summary" on page 207. 

COBOL 

STORAGE = AUTO The data structure must be 
copiled into the worlcing storage section. CICS 
acquires storage automatically for every map; 
you do not have to code a GETMAIN 
command. 

BASE = name the map set must be copied into the 
linkage section. You must code a GETMAIN 
command to acquire enough main storage to 
contain the largest map in the set. 

nothing specified if the map set is copied into the 
working storage section, you don't have to code 
a GETMAIN command, but you should place 
the largest map frrst in the set. 

If the map set is copied into the linkage section, 
you must code a GETMAIN command to get 
storage for it. 

Note: When you use GETMAIN to get main 
storage for a COBOL map, you must ensure that 
you establish addressability for the map. For more 
information, see "Base Locator for Linkage" on 
page 25 and the coding example in the description 
of the BASE option under "Map Definition Macro 
Operand Summary" on page 207. 

Pl.,/I 

STORAGE = AUTO CICS acquires storage 
automatically for every map; you do not have to 
code a GETMAIN command. 

BASE = name you must code a GETMAIN 
command that gets at least enough main storage 
to contain the largest symbolic map in the map 
sets sharing tIus data base. 

nothing specified you must code a GETMAIN 
command that sets the pointer BMSMAPBR to 
the address of the acquired data area. The 
GETMAIN must get at least enough storage to 
contain the largest map in the sets. 

Alternative Data Structures 

The examples so far have shown SEND MAP 
commands that contain literal map names. If the 
map name referenced by your program is to be a 
variable, you need to code additional options, 
FROM and LENGTH, on the SEND MAP 
command. 

FROM enables you to display data stored in a data 
area other than the data structure for the symbolic 

152 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



description map. In the command syntax 
summary, "data-area" represents the name of the 
alternative data area. 

FROM and MAPONLY are mutually exclusive. 

LENGTH specifies the length of the data string 
stored in the FROM data area. It need not be 
coded unless the data to be mapped occupies less 
than the whole data area. 

Device Control Options 

As well as transmitting application data to a 
display, BMS can relay device control commands. 
An application program uses options of the SEND 
command to specify which controls are to be 
activated. Alternatively, it can use the BMS SEND 
CONTROL command, which transmits device 
control commands without also sending application 
data. In the syntax display for SEND MAP, these 
options are indicated by "devcntrl...". For 
example, the command 

SEND MAPC'ERROR') MAPSETC'DISPLAY') 
ERASE 

erases the screen before data is displayed. 

You can code one or more of the following device 
control options in a SEND MAP command: 

AI,ARM sound audible alarm on displaying data. 

CURSOR specify position of cursor after output. 
The cursor position is a halfword binary value, 
representing the absolute screen address of the 
cursor. However, you need not always specify a 
value. For more information, see "Cursor 
Positioning. " 

ERASE erase screen and place cursor in top 
left-hand comer of screen before output. 

the frrst SEND MAP command of any CICS 
application program should specify ERASE. 
This ensures that the size of the screen is set to 
default or alternate, according to the SCRNSZE 
operand of the DFHPCT TYPE = ENTRY 
system macro. 

ERASEAUJ> erase all unprotected fields before 
output. 

:FORMFEED send a form feed character as the frrst 
character in the device-dependent data stream. 

FREEKB unlock the keyboard for data input. 

I;RSET reset all modified data tags (to "not 
modified" state) before output. 

PRINT start printing (when terminal is a printer). 

Sending Device Controls Without Display 
Data 

You use the DIVIS SEND CONTROL command 
to transmit device control orders without also 
sending data. 

The BMS SEND CONTROL command allows 
you to send any of the device orders listed in 
II Device Control Options." The command has the 
following syntax: 

SEND CONTROL 
[ERASEAUPIERASEl 
[ALARM] 
[FREEKB] 
[FRSETl 
[CURSOR[Cdata-value)]] 
[PRINT] 
[FORMFEEDl 

Cursor Positioning 

You can control the positioning of the display 
cursor in two different ways, as described below. 

Normal Cursor Positioning 

You can specify a two-byte cursor position on the 
BMS SEND commands. This enables you to 
specify the absolute value of the cursor position on 
the screen after the SEND has been performed. 
Note that the frrst location on the display screen is 
address O. 

Chapter 3.2-2. Minimum Function BMS 153 



You specify the address in parentheses after the 
CURSOR keyword, as follows: 

CURSOR(44) 

If you omit the CURSOR option, BMS will search 
the map for a field with the IC attribute. (You 
would have given it this attribute by coding 
ATTRB = IC on the DFHMDF macro for the 
field.) If there is more than one field with the IC 
attribute, BMS places the cursor at the beginning 
of the last one. If there is no such field, BMS 
places the cursor at screen address O. 

If you omit the CURSOR option from the SEND 
CONTROL command, the cursor position remains 
unchanged. 

Symboli4~ Cursor Positioning 

You can use symbolic cursor positioning instead of 
coding an explicit value on the CURSO R option of 
the SEND MAP command. To position the 
cursor symbolically you must mark a field in the 
symbolic map data structure with a special symbol. 
If CICS fmds this symbol in a data field, it places 
the cursor under the fust data byte in the field on 
the output screen. 

To use 8ymbolic cursor positioning, you must: 

1. Specify MODE= INOUT in the DFlIMSD 
macro. 

2. Set the length of the of the field (to which the 
cursor is to be positioned) to -1. 

3. Execute the SEND command, specifying 
CURSOR without an argument. 

Accessing Data Outside the Program 

Sometirnes your program needs access to 
infonilation held by CICS. The ASSIGN 
command allows it such access. 

Some ASSIGN options apply exclusively to BMS; 
there is a full list of these under ICBMS Related 
ASSIGN Options" on page 229. However, the 
only ASSIGN options you can use under 
minimum B MS are those concerned with null 

maps. (Null maps have already been described 
under "Maps Without Fields" on page 143.) The 
ASS I G N options you can use are: 

MAPLINE requests the number of the line, on a 
display, that contains the map's origin. 

MAPCOLUMN requests the number of the 
column, on a display, that contains the map's 
origin. 

MAI)WIDTH returns the width of the map. 

MAPHEIGHT returns the height of the map. 

For example, you can write a mixed GDDM/BMS 
application program using a BMS SEND MAP 
statement to position the "graphic hole"; using a 
CICS ASSIGN command to determine the size and 
position of this graphic hole; and using the returned 
size and position in a GDDM create graphic field 
(GSPLD) call. 

Receiving Data From a Display 

You usc the RECEIVE MAP command to receive 
data from a display. The data from the display is 
mapped into a data area in an application program. 

The syntax of the command is: 

RECEIVE MAPlname) 
[MAPSETCname)] 
[INTOCdata-area)ISETCptr-ref)] 
[FROMCdata-area) lENGTHCdata-value) I 

TERMINAL I [ASIS]] 

The MAP option names the map that is used to 
convert the data to its unfonnatted fonn, and the 
MAPSET option names the rnap set to which the 
map belongs. If the map set has the same name as 
the map, you do not need to specify MAPSET. 

For example, in its simplest form, the RECEIVE 
MA P command is coded as: 

RECEIVE MAPC'DISPLAY') 

This command tells BMS to map the input data 
into a symbolic map data structure called 

154 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



DISPLA Y. The example assumes that the name of 
the map set is also DISPLAY. 

Another map, MENU, in the same map set can be 
read by: 

RECEIVE MAPC'MENU') MAPSETC'DISPlAY') 

This command tells BMS to map the input data 
into a symbolic map data structure called MENU. 

After a RECEIVE MAP command, your program 
can determine the inbound cursor position by 
inspecting the halfword binary value stored in 
EIBCPOSN. Similarly, it can determine the type 
of attention identifier (AID) by inspecting EIBAID. 

You cannot issue RECEIVE MAP or RECEIVE 
PAR TN commands in a nonterminal task, because 
these tasks do not have a TIOA or a TCTTE. The 
INVREQ condition will be raised if you attempt 
this. 

Receiving Data Into an Alternative Data Structure 

The sample RECEIVE MAP commands shown 
above use a literal for the name of the map or map 
set. You can also use a variable for these names, in 
which case you must use one of the options INTO 
or SET. 

If you code INTO, display data will be mapped 
into the named data area rather than into the data 
structure for the symbolic description. 

If you code SET, BMS acquires a data area for 
you, maps the display data into it, and stores the 
address of the data area in the named pointer 
reference. Note that this data area includes the 
12-byte TIOA prefix. 

The rules for getting main storage for an input 
operation are the same as for output. For more 
information, see "Getting Storage for a Data 
Structure" on page 151. 

BMS sets the receiving area to nulls (X'OO') before 
performing the RECEIVE. So you should save 
any data in this area before performing a 
RECEIVE. Furthermore, if you depend on BMS 
to set a data area to nulls for you during a 
RECEIVE, you should be aware of the MAPFAIL 

condition. If this arises, BMS does not set the 
input map to nulls. 

If an operator types into a BMS input map, but 
does not fill one of the fields, BMS justifies the 
input data, and pads the empty part of the field 
according to predefmed rules. These depend upon 
what you specify with the JUSTIFY operand of 
the DFHMDF macro. For more information on 
JUSTIFY, see page 213. 

The MAPF AIL condition can arise unexpectedly 
after a RECEIVE MAP command. For example, 
it arises if you press a PA or PF key when CICS is 
waiting to perform a RECEIVE command. 
Therefore, you should always consider coding a 
HANDLE CONDITION command for the 
MAPFAIL condition. 

Uppercase Translation 

By default, the data to be mapped is assumed to 
come from a terminal. The terminal control table 
entry for the terminal can specify that all input data 
is to be translated to uppercase 
(FEATURE = UCTRAN). You can override this 
for any individual RECEIVE command by 
specifying ASIS. Note, however, that ASIS has no 
effect for a RECEIVE MAP command if that 
command maps the data that initiated the 
transaction. 

Mapping Data From Another Data Area 

Sometimes, however, you need to perform an input 
mapping operation in two stages; accepting and 
storing the input data in one stage, mapping it in 
the second. For example, your program might 
receive (but not map) data using a terminal control 
RECEIVE command. It would then have to map 
the data from CICS storage. 

You use the FROM and LENGTH options of the 
RECEIVE MAP command to specify that data is 
to be mapped from a data area instead of from a 
terminal. FROM names the data area; LENGTH 
indicates the number of bytes of data to be 
mapped. If the data is produced by a terminal 
control RECEIVE command or by a BMS 
RECEIVE PARTN command, the LENGTH 
value of the RECEIVE MAP command must 

Chapter 3.2-2. Minimum Function BMS 155 



match that specified in the original RECEIVE 
command. 

The terrninal control RECEIVE command is 
described in "Chapter 3.3. Tenninal Control" on 
page 239. The RECEIVE PARTN command is 
described on page 173. 

Responding to Tenninal Input 

As we have seen at the beginning of this chapter, 
certain operator actions cause an AID to be 
transmitted to CICS. Each such action generates a 
different AID. The AID is a one-byte character, 
and can be tested by an application program. This 
can be used as a mechanism for controlling 
programl flow. The HANDLE AID command 
controls conditional branching caused by AIDs. 

HANDI~E AID Command 

I ~:~~~~[:f:_b_e_l_)_]_._._. ___________ ~ 
You US(! the HANDLE AID command to pass 
control to a specified label when CICS receives an 
AID from a display device; control is passed after 
the input operation is completed. In the absence of 
a HANDLE AID for an AID, control returns to 
the application program at the point immediately 
following the input request. 

You can suspend the HANDLE AID command by 
means of the PUSH and POP commands as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

A HANDLE AID command takes precedence over 
a HANDLE CONDITION command. If an AID 
is received during an input operation, for which a 
HANDLE AID is active, control passes to the 
label specified in that request regardless of any 
exceptional conditions, for example MAPFAIL, 
that oc(:ur (provided they do not stop receipt of the 
AID). 

The HANDLE AID options that can be specified 
under nlinimum BMS are: 

ANYKEY any PA key, any PF key, or the 
CLEAR key, but not ENTER 

CLEAR for the key of that name 

Cl,RP ARTN for the key of that name 

ENTER for the key of that name 

lJGHTPEN for a light pen attention 

OPERID for the operator identification card 
reader, the magnetic slot reader (MSR), or the 
extended MSR 

PAl, P A2, or P A3 any of the program access keys 

PFI through PF24 any of the program function 
keys 

TRIGGER which means that the display cursor has 
left a field described as a trigger field which has 
been modified by the terminal operator. 

A HANDLE AID command for a specified AID 
remains active until the task is terminated or until 
another HANDLE AID is issued for that AID. (If 
no label is specified in the new request, the existing 
HANDLE AID command is suspended.) 

A HANDLE AID command is valid only for the 
program in which it is issued. Each new program 
in a task starts without any active HANDLE AID 
settings. When control returns to a program from 
a program at a lower logical level, the HANDLE 
AID commands that were active in the higher-level 
program before control was transferred from it are 
reactivated, and any HANDLE AID commands 
activated in the lower-level program are deactivated. 

If CICS detects an OPERID AID, the code that 
handles the AID can inspect the EXEC interface 
block (the EIB) to find 0\1t which of the magnetic 
stripe readers (MSR OR MSRE) has been used. 
MSR generates an AID of X'E6', MSRE generates 
an AID of X'E7'. 

If an AID covered by the general option ANYKEY 
is received and there is no active HANDLE AID 
command for the specified AID but there is an 
active HANDLE AID ANYKEY command, 

156 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



control will pass to the label specified in this 
command. A HANDLE AID command for an 
AID overrides the HANDLE AID ANYKEY 
command as far as that AID is concerned. 

The following example shows a HANDLE AID 
command that specifies one label (LAB 1) for the 
PAl key AID, a second label (LAB2) for the PA2 
and P A3 key AIDs, all of the PF key AIDs except 
PFIO, and the CLEAR key AID: 

EXEC CICS HANDLE AID 
PAl(LABl) 
ANYKEY(LAB2) 
PFIO 

You cannot code more than 16 options in a single 
HANDLE AID command. 

Rather than using HANDLE AID, a program can 
examine the value of the EIBAID field in the EIB 
to fmd out which attention key has been pressed. 
The 3270 terminal transmits an AID character, 
which is stored in field EIBAID. The program can 
compare the contents of EIBAID with the 
constants supplied in the CICS copy book 
DFHAID. The contents of DFHAID relevant to 
minimum BMS are shown below. For the full list 
of contents, see "Attention Identifier Constants 
(DFHAID)" on page 224. 

Constant 

DFHENTER 
DFHCLEAR 
DFHPAI-DFHPA3 
DFHPFI-DFHPF24 
DFHOPID 
DFHMSRE 
DFHTRIG 
DFHPEN 

Meaning 

ENTER key 
CLEAR key 
PAI-PA3 keys 
PFI-PF24 keys 
OPERID or MSR 
Extended(standard) 
Trigger field 
SELECTOR PEN or 

CURSOR SELECT key 

Handling lJght Pen AIDs 

MSR 

There are two different kinds of light pen detectable 
fields: immediate and deferred. You indicate an 
immediate field by storing a blank (X'40') in its 
frrst byte. You show that it is a deferred field by 
storing a question mark (?) in its frrst byte. In 
either case, you must ensure that the attribute byte 
for the field indicates that it is light pen detectable. 

When an operator selects an immediate field, the 
display device transmits an AID plus the contents 

of the field. It sets the frrst byte of the returned 
field to X'FI" to indicate that the field is a light 
pen field. 

When an operator selects a deferred light pen 
detectable field, the display device changes the 
field's question mark to a "greater than" (» sign. 
This indicates that the field has been selected. No 
data is transmitted at this point. By reselecting the 
> sign, the operator can cancel the selection, 
resetting the question mark. Data is eventually 
transmitted when another operation, for example 
pressing the ENTER key, or selecting an 
immediate detectable field, generates an AID. 
Before the data field is returned to BMS, its frrst 
byte is set to X'FI" to indicate that the field is a 
light pen field. 

Deferred fields are useful when an operator has to 
select a series of items in a display. Deferring the 
input operation until all the selections have been 
made improves efficiency. 

The CLEAR, PAl, PA2, and PA3 keys do not 
transmit data to CICS. They nonnally signal a 
special operator request that does not require data, 
such as print, page forward, page backward, or exit 
from a repeating transaction. In practice, the PF 
keys are also often used for this purpose. 

Exceptional Conditions 

CICS exceptional conditions have already been 
introduced under "Chapter 1.5. Exceptional 
Conditions" on page 31. OMS commands in your 
program can raise a number of exceptional 
conditions. These, and the default system action 
they invoke, are listed under "BMS Exceptional 
Conditions" on page 236. 

You are only likely to encounter two exceptional 
conditions when using minimum BMS, as follows: 

MAPF AIL occurs, on input only, if the data to be 
mapped has a length of zero or does not contain 
a set buffer address (SBA) order. This is what 
happens if you press a P A key, the CLEAR key, 
or either ENTER or a PI' key without data. 

Chapter 3.2-2. Minimum Function BMS 157 



Default action: tenninate the task abnormally. 

ERROlt See under IIERROR Exceptional 
Condition" on page 32 for an explanation of the 
ERROR condition. 

You should remember that an exceptional 
condition is not necessarily an error condition. 
Sometinaes you might even wish to treat an 
exceptional condition as part of the normal course 
of events. 

You use the HANDLE CONDITION command 
to respond to exceptional conditions. 

Printled Output 

Very often you will fmd that you want printed 
output (hard copy) as well as, or instead ofl the 
screen unages produced by a transaction. You 
have a choice of methods of producing such 
output. Which one you choose depends on your 
requirenaents. This section describes the methods 
available; briefly, they are: 

• Hardware print key feature 

• CICS local copy key 

• The: ISSUE PRINT command 

• Asynchronous page build transaction. 

You can also get reports printed by using spooler 
commands, as described in IIChapter 3.4. Report 
Controller" on page 293. 

Hardware Print Key Feature 

Some display terminals models have a hardware 
print key. Pressing one of these keys initiates a 
print process involving only the terminal, its 
controller, and a printer attached to the controller. 
This allows you to print the contents of your 
display screen. Neither the host processor, nor 
CICS, nor your application program can control 
this prolcess. 

CICS Local Copy Key 

In the absence of a hardware print key, you may 
want your program's end-user operators to be able 
to print copies of the screen contents using a P A 
(program access) key. If that is so, you must 
ensure that your CICS system has been designed to 
allow it. The local copy key causes CICS to print 
the contents of a screen on the first eligible and 
available 3270 printer. 

To defme a terminal to use a local copy key, see 
the appropriate Resource Definition manual. 

For more information, see the CICS/DOS/VS IBM 
3270 Data Stream Device Guide. 

ISSUE I)RINT Command 

The format of the command is: 

I ISSUE PRINT 

The ISSUE PRINT command prints the contents 
of a screen on the first eligible and available 3270 
printer. 

Por more information on defining print keys, see 
the CICS/DOS/VS IBM 3270 Data Stream Device 
Guide. 

Asynchronous Page Build Transaction 

The methods of printing described so far have the 
advantage of being simple to implement. However, 
they do not provide the flexibility often needed in 
commercial applications. In particular, they do not 
allow your program to combine mapped output 
data to produce an entire printed page. There are 
two ways of achieving this under mininlum BMS. 
Both apply only to non-SCS 3270 printers. For 
additional printer support you must use standard 
function BMS. Refer to IIPrinter Support" on 
page 163. Before looking at the two methods, let 
us first consider how a program uses a 3270 printer. 

A 3270 printer contains a page buffer. BMS moves 
data into this page buffer when instructed to do so 
by SEND MAP or SEND CONTROL commands. 

158 CICSjOOSjVS Application Programmer's Reference Manual (Command Level) 



The page buffer is printed only when B MS receives 
a SEND MAP or SEND CONTROL command 
containing the PRINT option. Likewise, it is 
erased only if BMS receives a SEND MAP or 
SEND CONTROL command that specifies the 
ERASE option. These properties of the printer 
make it possible for a program to build a single 
page of printed output from a series of maps. 

Two ways of printing a page built from multiple 
maps are: 

1. U sing the interval control START command 

You use the START command (see "Start a 
Task (START)" on page 342) to initiate a 
secondary CICS task. This will be a print task 
if the TERMID option of the command names 
a printer as its principal facility . Your initial 
transaction can pass data to the print tast by 
specifying the FROM and LENGTH options 
of the START command. If the primary 
transaction has already created a series of 
output data structures in the FROM area, the 
secondary transaction can map the data into 
the printer buffer, then initiate printing using a 
BMS SEND with the PRINT option. 

2. U sing a transient data queue with a trigger level 

You can send symbolic map data structures to 
a transient data queue using the WRITEQ 
command. CICS can be made to initiate a 
print transaction when a certain number of 
records have been written to the queue. The 
name of the transaction to be initiated, the 
identifier of the printer that is to be its principal 
facility, and the trigger level at which it is 
started, are defmed in the destination control 
table (DCT). 

Note however, that output from several 
instances of your transaction may be 
interleaved on the transient data queue. This 
can be avoided if all the data to be printed by 
an instance of your transaction is stored in a 
single transient data queue item. Alternatively, 
each instance of your transaction can obtain 
exclusive control of the transient data queue by 
ENQ and DEQ commands. 

Blank Lines and 3270 Printers 

Every line in a map for a 3270 printer must contain 
field data (blanks if necessary), because the 3270 
does not print empty lines (that is, lines of null 
characters) . 

Setting the Printer Page Width 

BMS builds device dependent data streams for 3270 
printers by computing "set buffer address" (SBA) 
orders based on the page width specified by the 
PGESIZE or AL TPGE options of the DFHTCT 
TYPE=TERMINAL system macro, or by the 
PAGESIZE or ALTPAGE attributes of the 
TYPETER M defmition. 

The 3270 printer, however, prints the data using a 
line width specified in the write control character 
(WeC). This line width must be set to 40, 64, or 
80 columns, or the printer platen width. The WCC 
line width is set by BMS from the TCT page 
width, unless it is overridden by the L40, L64, or 
L80 options of the SEND MAP or SEND 
CONTROL command that specifies the PRINT 
option. 

Unexpected results will occur if the TCT page 
width is not 40, 64, or 80 columns, or is not the 
printer platen width. Unexpected results will also 
occur if the WCC page width is set by the 
application program to be different from the TCT 
page width. Normally, your program should not 
specify one of these options in a BMS SEND 
command. Por this reason, the command syntax 
panels in this chapter do not show the options, 
even though you can code them. 

Form Feed Characters 

You can code an option, called PORMFEED, on 
the SEND MAP and SEND CONTROL 
commands. This generates a form feed (X'OC') 
character at the start of the data stream. If you 
code this option for a terminal that doesn't support 
form feed, CICS simply ignores the request. To 
indicate that a terminal supports form feed, you 
must code "FF = YES" on its DFHTCT 
TYPE = TERMINAL system macro, or use the 
FORMPEED attribute of the TYPETERM 
definition. 

Chapter 3.2-2. Minimum Function BMS 159 



The form feed character occupies screen position I 
(the top left hand comer) on a 3270 display or 
printer.. It can be overwritten by other data sent to 
the tenninal, in which case form feed will not 
occur. 

'Ine FORMFEED option on 3270 displays is 
particularly useful if the screen is to be printed 
using the hardware local copy key or the CICS 

PAl print key facility. Its use ensures that the 
screen image is printed on a fresh page. 

Be careful when using the FORMFEED option on 
a SEND CONTROL command. The SEND 
CONTROL command will always generate a 
complete blank page. Thus a SEND CONTROL 
FORMFEED will skip to a new page and also 
send this as a blank page. However, as described 
earlier, 3270 printers sometimes suppress null lines 
so that a blank page will be printed as a single line. 

160 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 3.2-3. Standard Function BMS 

This chapter describes the features provided by 
standard function BMS that are additional to those 
provided by minimum function B MS as described 
in "Chapter 3.2-2. Minimum Function BMS" on 
page 135. For convenience, "standard function 
BMS" will be shortened to "standard BMS". 

Standard BMS supports all terminals and printers 
in the 3270 family of devices (for example 3180, 
3270-PC, 3279, 3286, 3290, LUTYPE2, 
LUTYPE3, and SCSPRT). It also supports the 
terminal types and associated terminal features 
listed below. This list does not include all 
terminals supported by CICS; some devices can 
only be used through the terminal control interface. 

CRLP terminals 
Magnetic Tape 
Sequential Disk 
TWX Model 33/35 
1050 
2740-1,-2 (no buffer receive) 
2741 
2740-2 (buffer receive) 
2770 
2780 
3780 
3767/70 Interactive LU 
2980 Models 1 and 2 
2980 Model 4 
3600 (3601) LU 
3650 Host Convers (3653) LU 
3650 Interpreter LU 
3650 Host Convers (3270) LU 
3770 Batch LU 
LUTYPE4 

Standard BMS provides the following function in 
addition to that provided by minimum BMS: 

• Text processing. The SEND TEXT command 
allows your application program to send data 
to a terminal. BMS splits the text into lines 

that fit the target terminal, ensuring that words 
do not split across line boundaries. 

• Printer support. The NLEOM option of the 
SEND MAP and SEND TEXT commands 
tells BMS to build a device dependent data 
stream for 3270 printers. Such a data stream 
allows greater flexibility in page width settings 
for 3270 printers, and avoids the suppression of 
null lines in printed output. 

• Partition support. Some terminals allow your 
application program to divide the display area 
into a number of independent "logical 
terminals" or partitions that it can address 
individually. 

• Logical device components. Some terminals 
(for example, the 3601, LUTYPE4, and 3790) 
have more than one component, such as a 
printer and a console. BMS can treat each of 
these components as a separate terminal. 

• 10/63 Magnetic slot reader control. Support 
for application program control of the 10/63 
magnetic slot reader attached to an 8775 or a 
3643 tenninal. 

• Trigger fields. Support for the TRIGGER 
validation attribute. This allows a program to 
start processing input data without the terminal 
operator having to press the ENTER key. 
This can make data entry more efficient. 

• Outboard formatting. This is a process that 
helps to reduce line traffic. 

• Block data format. (See "Block Data Format" 
on page 179) This is an alternative to field data 
format, but you are recommended not to use it. 

Chapter 3.2-3. Standard Function BMS 161 



Text JProcessing 

You use the SEND TEXT command to send text 
to a tenninal. 

The syntax of the SEND TEXT command under 
standard BMS is as follows: 

SEND TEXT 
FROMCdata-area) 
lENGTHCdata-value) 
[CURSORCdata-value)] 
[ FORMIFEED] 
[ERASE] 
[PRINT] 
[FREE:KB] 
[AlA~~M] 
[NlE(]IM] 
[lDCCname) I [ACTPARTNCname)] 
[OUTPARTNCname)]] 
[MSRCdata-value)] 

Conditions: INVlDC, INVPARTN, 
INVREQ, RETPAGE, WRBRK 

The data. area containing the text to be sent is 
specified in the FROM option. The LENGTH 
option specifies the length of this area. The text 
may contain embedded new line characters (X'lS'), 
embedded blanks (X'40'), and embedded character 
attribute control~. Character attribute controls are 
discussedl below. 

When formatting the text, BMS splits it into lines 
of length less than or equal to the terminal page 
width. The terminal pa.ge width is specified by the 
PGESIZE or ALTPGE operands of the DFHTCT 
TYPE = TERMINAL system macro, or by the 
PAGESIZE or ALTPAGE attributes of the 
TYPETERM defmition. BMS pads the ends of 
lines with blanks rather than splitting words. BMS 
starts each line with a single blank corresponding to 
the 3270 attribute byte. On a 3270 the attribute 
byte is set to unprotected and normal intensity. 

If a line of text ends with a character, however, and 
the next character is a blank, BMS will process the 
data as if it were a sentence, that is, the blank will 
be removed and the next character positione:d in 
the fITst I:olumn of the next line. 

Where a line of text ends with a blank and the next 
character is also a blank, BMS will honor all blanks 
to process the data as if it were in table format. 

If the FROM data area contains more text than 
will fit on a single page, BMS creates more than 
one page. These overwrite each other on a display 
terminal, unless you code the PAGING option, 
which is available only under full BMS. 

New line characters (X'IS') and blanks (X'40') 
embedded in the text are honored. 

The other options of the SEND TEXT command 
have the same effect as the corresponding options 
of the SEND MAP command, as described on 
page 226. 

Character Attribute Control 

When data is destined for a device that supports the 
extended data stream, you can include SA (set 
attribute) orders in the data area specified in the 
FROM option. These orders enable you to apply 
extended attributes to characters or words in the 
data stream. Orders for extended attributes not 
supported by a terminal are removed from the data 
stream by DMS. If a sequence of orders is less 
than three characters long, or contains an invalid 
attribute type, the transaction is terminated 
abnormally with abend code ABMX. 

A ttributes remain effective until overridden by 
subsequent orders. Attributes are reset to their 
default values by a subsequent SEND TEXT 
command. 

As described in "Attribute Constants" on 
page 150, copy book DFHBMSCA contains a 
selection of predefmed constants that you can use 
in your programs. Here is a simple PL/I statement 
that will color a single word blue: 

TEXTSTR='data 'I IDFHSAI IDFHCOlORl1 
DFHBlUEll'blueword 'I I 
DFHSAllDFHCOlORl1 
DFHDFCOll I 'rest of data'; 

SEND TEXT FROMCTEXTSTR) lENGTHCIOO); 

162 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Printer Support 

This section discusses the differences between 3270 
printers, 3270 printers using the NLEOM option, 
and other printers. It also contains guidelines. on 
writing application programs that are independent 
of printer type. 

3270 Printers Without the NLEOM 
Option 

IBM 3270 printers (whose DFHTCT 
TYPE = TERMINAL macro does not specify 
TRMTYPE= SCSPRT, or whose DEVICE 
attribute on their TYPETERM defmition is not 
SYSPRINT) differ from other types of printer, 
because th,ey contain a page buffer. Data is moved 
into this page buffer by SEND MAP, SEND 
TEXT, and SEND CONTROL commands. The 
page buffer is printed only if those commands 
specify the PRINT option. The page buffer is 
erased only if those commands specify the ERASE 
option. This has the following consequences: 

1. A printer page can be composed of several 
small maps. The frrst SEND MAP specifies 
the ERASE option, and the last SEND MAP 
specifies the PRINT option. 

2. If successive prInter pages are required with a 
single map on each page, each SEND MAP 
command must specify both the ERASE and 
PRINT options. 

Other printers do not have page buffers. Instead, 
for such printers, each SEND MAP, SEND 
TEXT, or SEND CONTROL command prints a 
complete page. A single page cannot be composed 
of several small maps, unless the ACCUM option 
(full BMS only) is used. 

You should note that for 3270 printers null lines 
are suppressed, that is, they are not printed. Every 
line in a map for a 3270 printer should contain a 
field; a blank field will suffice. 

If you are using 3270 printers without the NLEOM 
option, you should ensure that your TCT terminal 
entry PGESIZE and AL TPGE settings, or the 
PAGESIZE or ALTPAGE attributes of the 

TYPETERM definition, are 40, 64, 80, or the 
printer platen width, otherwise unpredictable results 
will occur. This is discussed further in "Setting the 
Printer Page Width" on page 159. 

3270 Printers With the NLEOM Option 

If you omit the NLEOM option from SEND MAP 
or SEND TEXT commands, BMS builds a device 
dependent data stream that includes SBA (set 
buffer address) orders. lbese orders position fields 
on the printer page. 

If you include the NLEOM option on SEND 
MAP or SEND TEXT commands, BMS builds a 
device dependent data stream using new line and 
blank characters to position fields on the printer 
page. The data stream is terminated by an EOM 
(end of message) order, which stops printing. 

If you use the NLEOM option, you should note 
the following: 

1. The printer buffer is printed only if the PRINT 
option is specified in a SEND MAP, SEND 
TEXT, or SEND CONTROL command. 

2. The printer buffer is cleared only if the ERASE 
option is specified in a SEND MAP, SEND 
TEXT, or SEND CONTROL command. 
Successive BMS output commands specifying 
NLEOM, but not ERASE, build successive 
pieces of that data stream in the printer page 
buffer. However, as the first piece of data 
stream is terminated by an EOM order, this is 
the only data that can be printed. 

A printer page cannot be composed of several 
small maps if NLEOM is used, unless 
ACCUM is also specified. rIlle ACCUM 
option is supported only by full BMS. 

3. The printer buffer can never contain null lines, 
even if the map contains blank lines. Blank 
lines in the map are represented by new line 
characters in the printer page buffer. 

4. Use of NLEOM may allow larger pages to be 
printed. This is because NLEOM uses the 
buffer more efficiently. It eliminates spacing 
with null characters in the print buffer. 

Chapter 3.2-3. Standard Function BMS 163 



5. VSle of NLEOM allows you to specify a page 
width other than 40, 64, 80, or the printer 
platen width in your TCT. 

SCS flnd Other Non-3270 Printers 

A 3270 printer whose DFHTCT 
TYPE:= TERMINAL macro specifies 
TRMTYPE = SCSPRT, or whose TYPETERM 
defmition specifies DEVICE(SCSPRINT), or a 
non-3270 printer, does not have a page buffer. As 
a result the NLEOM, PRINT, and ERASE 
options: on SEND MAP, SEND TEXT, and 
SEND CONTROL commands are ignored. Each 
BMS output command causes a complete page to 
be printed. 

B MS glenerates a data stream for these terminals 
using blanks and new line characters to position 
data. It also uses horizontal and vertical tab 
charactlers to position data in the following 
circum8tances: 

1. The;} DFHTCT TYPE = TERMINAL macro 
specifies either HF = YES or VF = YES, or 
both. The equivalent attributes for the 
TYPETERM defmition are HORIZFORM 
and VERTICALFORM respectively. 

2. The DFHMSD map set definition macro 
defines a tab map using the HTAB and VTAB 
ope:rands. 

The use of tab characters may result in a shorter 
data stream. 

The horizontal and vertical tabs generated by BMS 
assume that the application program has previously 
set up the tabs on the printer using a terminal 
control SEND command. The CICS/DOS/VS 
IBM 3270 Data Stream Device Guide describes how 
to do tins. 

FORM FEED Option 

The FORMFEED option has been described for 
minimum OMS. However, 3270 printers and 
non-3270 printers respond differently to the option 
on the SEND CONTROL command. You should 
use the FORMFEED option on SEND 
CONTROL with care. 

A SEND CONTROL FORMFEED command 
directed to an SCS printer with form feed support 
will start a new page, and then print a blank page 
(note that all BMS output commands directed to 
an SCS printer transmit an entire page). A SEND 
CONTROL FORMFEED PRINT command 
directed to a 3270 printer with form feed support 
will similarly start a new page, and then transmit an 
entire page of null lines (if NLEOM is not 
specified). IIowever, the 3270 printer will suppress 
these null lines, replacing them all with a single new 
line. 

Printers and BMS Text 

You should note the following if your application 
program uses the BMS SEND TEXT command to 
communicate with a printer. 

Text output to SCS printers and, if NLEOM is 
specified, to other 3270 printers can be formatted in 
two ways, depending on the specification of 
PRINTERCOMP on the proftle defmition if you 
are using resource definition online (RDO) or 
PTRCOMP/NPTRCOMP if you are using the 
peT macro. 

PRINTERCOMP(NO), which is the default, 
produces printed output consistent with the format 
that would be produced on a 3270 display, that is, 
the first character of each line, and of each separate 
SEND TEXT request if this continues a line, is a 
blank, corresponding to the 3270 attribute byte on 
the display. 

Remember that BMS starts each line of output 
with a single blank. The maximum available line 
width is one character less than the printer page 
width. 

164 CICS/DOSjVS Application Programme:rts Reference Manual (Command Level) 



If you use cumulative text processing, discussed in 
"Cumulative Text Formatting" on page 192, you 
should note that BMS precedes each block of text 
(that is, the text specified in a single SEND TEXT 
command) by a single blank attribute byte. Single 
words should not be split across multiple text 
blocks. 

PRINTERCOMP(YES) allows use of the full 
width of the page for printed data, and suppresses 
the initial blank on each line. 

PRINTERCOMP(NO) is recommended for new 
applications, unless the full width of the page is 
required. This option ensures consistent results if 
the application is run on different printer types. 

PRINTERCOMP(YES) should be used if the full 
width of the page is required and the application 
will always run on SCS printers or the SEND 
TEXT requests include the NLEO M option. 
PRINTERCOMP(YES) provides printed output 
compatible with that produced in CICS Version 1.5 
and before. 

In both cases, new line characters (X'15') 
embedded in the text data are always honored. If, 
for example, you want to print lines of 120 
characters you should embed new line characters in 
your text data, and insure that your TCT page 
width setting is at least 121 characters (subject to 
the discussion on printer line widths in "3270 
Printers Without the NLEOM Option" on 
page 163). 

Printers and Device Independence 

You should use the following guidelines if your 
application program is to function, under standard 
BMS, on both 3270 and SCS printers: 

1. Each printer page should contain a single map 
or block of text. Both the ERASE and 
PRINT options should be specified on the 
SEND MAP and SEND TEXT commands. 
Alternatively, the ACCUM option should be 
used; this requires full BMS. 

2. If the NLEOM option is not used for 3270 
printers, a field (perhaps a blank field) should 
be defined on each line of the map. 

3. The 3270 printer page width should be 40, 64, 
or 80, or the printer platen width, or the 
NLEOM option should be used. 

Partition Support 

Application programs can use simple BMS 
commands to manage a partitioned display. 

An IBM device that supports partitions can divide 
its screen to produce up to eight working areas, 
called partitions. When you write a CICS 
transaction for a partitioned display, you can treat 
each partition as a different display . You can send 
data from different programs, or different program 
steps, in the transaction to different partitions 
(though different transactions cannot communicate 
with different partitions at the same time). This 
enables you to design very complex interactive 
transactions without making operator procedures 
too complicated to be practical. 

The design of the terminal makes it easy for 
operators to use a properly designed transaction 
using partitions. Only one partition can be 
"active" at a time. This active partition contains 
the cursor. 

The normal display controls (such as the cursor 
control key, the enter key, and cursor wraparound) 
apply to the active partition only, not to the whole 
display. Por example, pressing ENTER after 
typing data into an input display menu transmits 
data from the active partition only. An operator 
can concentrate on the contents of a single 
partition, using the terminal keyboard to 
communicate with that partition alone. A special 
key, the PARTITION JUMP key, allows you to 
change the active partition at will. 

The CLEAR key erases the entire s~reen, as for 
any other display device. However, for keyboards 
that contain a CLEAR PARTITION key, the 
contents of the active partition can be erased 
without affecting other partitions. 

Chapter 3.2-3. Standard Function BMS 165 



A CICS program can determine from which 
partition the data it receives has been sent. It can 
also control which partition is active. 

When you defme a partition, you allocate it an area 
of the display screen, called a "viewport", and a 
portion of the device's buffer storage, called its 
"presentation space". If the presentation space is 
larger than the viewport, the partition can be 
scrolled. (vertically, but not horizontally). 

Screen partitioning is a relatively new concept, and 
you are unlikely to have experience of using it. 
The following examples may help you to appreciate 
the range of possible applications. 

Applications of Partitions Under 
CIC~, 

You can modify tables and maps to execut.e 
existing transactions from a partitioned screen. 
However, the full benefit of partitioning can best be 
obtaine:d by designing new transactions. 

How ]~xisting Programs can Use Partitions 

SendinJ~ a Different Map to Each Partitiol1l 

You can execute existing CICS BMS applications 
on partitioned screens simply by modifying maps. 
Each Inap can be sent to a different partition. 

Cursor movement on a partitioned screen is 
restricted to the viewport of the active partition (for 
exatnple, the tab key does not move the cursor out 
of the viewport). You can use this fact to improve 
the usability of displays built from several maps. 

Defining an Error Partition 

Terminal operators can fmd transactions easier to 
use if you define an error message partition. CICS 
sends error messages to an error partition whenever 
possibll~, thereby keeping the contents of the 
transaction's display intact. 

How New Application Programs Can Use 
Partitions 

Overlapping Operator Keystrokes 

One source of operator frustration is the delay 
sometimes experienced when performing a 
repetitive data entry task. After ftiling a screen with 
data and pressing ENTER, the operator has to wait 
for the application program to respond before 
further typing. 

A data entry transaction using a terminal with two 
partitions can display two copies of the same data 
entry panel. After filling the first panel, the 
operator presses ENTER to transmit the data, then 
presses the PARTITION JUMP key. While CICS 
is processing the input from the frrst, the operator 
can type data into the second partition. Further 
input to the frrst partition is inhibited until the 
application program responds to it. Error messages 
associated with the frrst panel are sent to the frrst 
partition, and do not affect the data being entered 
in the second partition. If you defme an error 
partition, the error message need not affect either 
data entry partition. 

Sample programs are provided in CO BO L and 
PL/I which illustrate overlapped keystroking into 
two BMS partitions. The source code for these 
programs is in the CICS/VS library 
CICS 170.SAMPLIB and is named 
DFlI$CPKO(COBOL) and DFH$PPKO(PLI). 

Scrolling 

Scrolling can remove the need for BMS terminal 
paging, when handling larger amounts of data than 
will fit onto a partition's viewport. (Terminal 
paging is a function of full B MS.) As well as 
simplifying operator procedures, scrolling reduces 
line traffic. It can also improve response time, 
because after data has been transmitted to the 
terminal, scrolling can be performed without 
involving the host processor. If the quantity of 
data to be scnt to the screen exceeds the size of the 
presentation space, BMS paging must also be used. 

It is important to note that you can use scrolling 
even when there is only one partition. This can be 
especially useful, because you can use all available 

166 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



buffer storage in the terminal to store a single 
message. 

Look Aside Querying 

An operator performing order entry in one 
partition can activate another partition to make 
look aside queries. These can include checks on 
stock levels, prices, or customer credit levels. 
Without partitions this could only be achieved by 
complicated programming and a high level of data 
transmission. Using partitions, a partially 
completed order need not be transmitted to the 
host processor before releasing the screen for an 
inquiry. The order can be entered in one partition, 
the inquiry in another. 

Sample programs are provided in CO BO L and 
PL/I which illustrate overlapped keystroking into 
one BMS partition while look aside queries can be 
made using another BMS partition. The source 
code for these programs is in the CICS/DOS/VS 
library CICS 170.SAMPLIB and is named 
DFH$CPLA(COBOL) and DFH$PPLA(PLI). 

Data Comparison 

An operator can compare two or more sets of data 
by displaying them simultaneously in different 
scrollable partitions. To do this without partitions, 
an application program would probably use BMS 
page chaining. However, page chaining is only 
available under full BMS. 

1be data to be compared could be taken from two 
different parts of the same document, or from two 
separate documents. 

Tutorial Information 

One of the partitions on a screen can be reserved 
for use as a HELP panel. This can be useful as a 
training aid for new operators, or as memory aid 
when you are using a transaction that is rarely 
needed. 

How CICS Manages Partitions 

CICS partitions a display according to defmitions 
stored in a partition set. You create a partition set 
by coding and assembling a series of macro 
instructions. Every different partition configuration 
requires its own set of macros. 

To partition a display, CICS loads a partition set 
into the internal buffer of the display device. You 
can use the CEDA transaction (or the DFHPCT 
system macro) to name a partition set to be loaded 
for a particular transaction. CICS loads this 
partition set when the transaction frrst sends data to 
the display. If you do not defme such a transaction 
partition set, CICS sets a display device to its base 
(unpartitioned) state before initiating the 
transaction. The terminal does not have to remain 
in this state throughout the transaction: the BMS 
command SEND PARTNSET, allows you to load 
a partition set, dynamically, from your application 
program. 

You use BMS SEND and RECEIVE commands 
to communicate with a display that has been 
partitioned. The commands allow you to name the 
partition with which you wish to communicate. 

Map Suffixing and Partitions 

BMS map set suffixes relate different versions of a 
map set to different terminal models. This- allows 
you to format the same data differently on different 
screen types, in response to the same programming 
request, as shown in Figure 12 on page 162. 

Suffixing can also relate versions of maps to 
particular partitions. Each partition on a display 
can be treated as a separate screen. The same 
transaction may be initiated from partitions of 
various sizes, and thus might need a different 
version of each map for each partition. When 
selecting a map set to perform an input or output 
operation, BMS loads the version with a suffix 
specified in the definition for that partition. If such 
a version does not exist, BMS uses the un suffixed 
version. 

Chapter 3.2-3. Standard Function BMS 167 



Partitioning Concepts 

CICS nlakes it easy to write programs to use 
partitioned displays. Nevertheless, there are several 
concepts that you must understand before you can 
design such programs. This section outlines the 
concepts, and introduces some new terms. 

Partitions 

A partition is an addressable subset of the internal 
resources of a display device. It consists of a fixed 
part of its screen, and a fixed part of its internal 
storage. The part of the screen allocated to a 
partition is called its viewport. The internal storage 
containing data to be displayed is called its 
presentation space. A partition's presentation space 
contains only display data that CICS sent to that 
partition. If it is larger than the viewport, only part 
of the data it contains can be displayed at one time. 
The part being displayed is called the partition's 
window. 

Partition Set 

Although your programs can address individual 
partitions, CICS can deal only with partition sets. 
A partition set is a group of partitions designed to 
share the same screen. CICS must load the whole 
partition set onto a terminal before it can 
communicate with any of the partitions. This does 
not mean that you have to have more than one 
partition in a set; you can have a set that contains 
only one partition. By defming a single partition, 
you can use all of the available display buffer as the 
presentation space for that partition. This enables 
you to scroll large amounts of data. 

ApplicaHon Partition Set 

CICS does not load a partition set into a display's 
buffer until your application program issues an 
output request. The partition set it loads becomes 
the application partition set. By default, this is the 
partition set that is named in the PCT when your 
transaction is added to the CICS system. 
Alternatively, it is the partition set named by the 
most recent SEND PAR TNSET command that 
your program issued. 

Output Partition 

CICS directs output data to the partition named in 
the OUTPARTN option of the SEND MAP, 
SEND TEXT, or SEND CONTROL command. 
If OlJTPARTN is not coded on a SEND 
command, BMS sends the data to the f1£st partition 
in the partition set. If the display has not been 
partitioned, or cannot be partitioned, BMS ignores 
the OUTPARTN option. 

Active Partition 

The active partition is the partition that contains 
the cursor. It can be scrolled vertically. While a 
partition is active, the cursor "wraps around" at the 
viewport boundaries, and the ENTER key (or any 
input key) transmits data from that partition only. 
The active partition can be changed either by 
coding the ACTP AR TN operand on a SEND 
MAP, SEND TEXT, or SEND CONTROL 
cOtnmand, or by using the PARTITION JUMP 
key. 

Input Partition 

Although a program can activate a particular 
partition, the terminal operator can use the 
partition jump key to activate a different one 
instead. If the program logic requires input from a 
particular partition, you must code the INP AR TN 
option on the RECEIVE MAP command. This 
option tells BMS from which partition it must 
receivc data. If it receives data from the wrong 
partition, BMS moves the display cursor into the 
correct input partition. It does not change the 
contcnts of other partitions, except to display a 
message in the error partition (if there is one). 

Although the RECEIVE MAP command can be 
used to receive data from any partition on a screen, 
it must specify the correct map for the partition 
that supplied the data. A new command, 
RECEIVE PARTN, can be used to read data from 
an unspecified partition into a data area (and to 
discover which partition it comes from). This 
command is fully discussed in "Determining the 
Actual Input Partition" on page 173. The data can 
then be mapped, according to the partition it has 
been read from, using a RECEIVE MAP FROM 

168 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



command. For example, a PL/I application 
program might contain the following: 

RECEIVE PARTNCPNAME) INTOCA); 
IF PNAME='Pl! THEN 

RECEIVE MAPCMAPl) FROMCA); 
IF PNAME='P2' THEN 

RECEIVE MAPCMAP2) FROMCA); 

Unpartitioned or "Base" State 

CICS can only create an application partition set 
on the instructions of either your application 
program or its PCT entry. If it receives no such 
instructions, it setl' t.he terminal to base state before 
sending data to it. In this state, the terminal 
behaves as an ordinary (unpartitionable) display 
device. 

Symbol Sets and Character Size 

The IBM 3290 can contain up to six of your own 
symbol sets, in which you can specify the size of 
the characters. Any of your symbol sets can be 
loaded or replaced under program control. The 
3290 also contains two standard character sets. 

During customer set up (CSU), you must ensure 
that the 3290 divides the screen in an appropriate 
fashion, by specifying a character cell size, which 
becomes the default. You can override this default 
by coding CHARSZE when you define a partition. 
Character cell definition is discussed further in 
"Character Cells in Partitions" on page 174. 

Summary of Implementation and 
Use of Partitions 

The rest of this section describes what you must do 
if you want to use partitions fully. The following 
summarizes the steps involved. 

1. Ensure that the version of BMS loaded during 
CICS initialization supports partitions. This is 
part of the Installation task. 

2. Define partition sets (Application 
Programming) . 

3. Write application programs that use the 
partition sets (Application Programming). 

4. Defme BMS maps for partitions (Application 
Programming). 

5. Assemble partition sets and store in the CICS 
program library. This is part of the Resource 
Definition task. 

6. Assemble programs and maps (Application 
Programming). 

7. Create TCT entries for the terminals. This is 
part of the Resource Definition task. 

Remember that the IBM 3290 can be 
configured as more than one logical unit, in 
which case it should have more than one 
definition in the TCT. 

8. Use CEDA (or DFHPCT and DFHPPT) to 
define and install resource groups containing 
entries for related programs, map sets, partition 
sets, transactions, and proftles. This is part of 
the Resource Definition task. 

9. Document new operator procedures for users 
of the new devices. This is a prerequisite for 
the Operation task. 

Application Programming 

CICS partition support is based on the concept of 
the partition set. Partition sets are analogous to 
map sets. They are defined using partition 
definition macros. 

As map sct definition allows a programmer to 
design a program and its maps separately, so 
partition set definition can be performed apart from 
application programming. lrus means that 
predesigned partition sets can be used to control 
transmission of data requested using simple CICS 
commands. The commands you code to 
communicate with a display that supports 
partitions are described later. The next section 
describes how to define partition sets and prepare 
them for use. 

Chapter 3.2-3. Standard Function BMS 169 



Defining Partition Sets 

Partitions are defmed by coding the macros 
DFHPSD (partition set defmition) and DFHPDI 
(partition defulition). Each partition defInition 
must be part of a partition set definition. 

Partition Set Definition Macro (DFHPSD) 

This section describes the partition set definition 
macro, DFHPSD. Each DFHPSD macro is 
followed by one or more DFHPDI macros, and is 
ended with a DFHPSD TYPE = FINAL macro. 

The format of the partition set defmition Jnacro is: 

Lartnset DFHPSD ~ [SUFFIX=user-suffix] 
[,ALTSCRN=(lines,columns)] 
[,CHARSZE=(vpels,hpels)] 

The operands have the following meanings: 

partnS4~t is a I to 6 character partition set name. 

SUFFIX = user-suffix is a I-character user suffix for 
this version of the partition set. It allows 
different versions of a partition set to be 
associated with different terminals. Partition sets 
are selected according to the same rules as map 
sets. For more information, see Figure 12 on 
page: 162. 

ALTSCRN(lincs,columns) specifies the size, in 
characters, of the usable area of the target 
terminal. This is normally the same as the 
ALTSCRN operand of the DFHTCT 
TYPE = TERMINAL entry for the tenninal. 
You use ALTSCRN to ensure that the viewports 
of partitions within a partition set fit into the 
usable area of the screen. 

CHARSZE(vpels,hpels) specifies the size of the 
character cell, on a display, to be allocated to 
each character displayed in partitions of the 
partition set. You specify the size as "vpcls" (the 
number of vertical picture elements), and as 
"hpels" (the number of horizontal picture 
elem.ents). For guidance on the choice of values, 
see the description of CHARSZE in "Character 

Cells in Partitions" on page 174. The values 
specified in this operand become the defaults for 
all partitions in the partition set. You can 
override this default for individual partitions by 
coding ClIARSZE in the DFlIPDI macro. 

Partition Definition Macro (DFHPDI) 

A partition set contains one or more partitions. 
Each partition is dermed by coding a partition 
definition macro. 

The format of the partition definition macro is: 

[partn] DFHPDI 
VIEWPOS=(lines,columns) 

,VIEWSZE=(lines,columns) 
[,BUFSZE=(lines,columns)] 
[,CHARSZE=(vpels,hpels)] 
[,MAPSFX=mapset-suffix] 
[,ATTRB=ERROR] 

The operands have the following meanings: 

partn is a I or 2 character partition name. It allows 
you to refer to the partition in your application 
programs. 

Every partition in a partition set must have a 
different name. Only the error partition can be 
unnamed (sec ATTRB = ERROR operand). 

VIEWPOS = (lincs,columns) specifies the position 
of the top left hand corner of this partition's 
viewport. You specify the position in numbers 
of lines and numbers of columns. 

The DPIIPDI macro checks that viewports do 
not overlap. If the ALTSCRN operand of the 
DPIIPSD macro has been coded, DFHPDI also 
checks that all viewports fit within the usable 
area of the tencinal screen. 

VIEWSZE = (lincs,columns) specifies the size, in 
lines and columns, of the partition viewport. 
The DFIIPDI macro checks that viewports do 
not overlap. If you code the ALTSCRN 
operand of the DFHPSD macro, DFHPDI will 
check that the partitions aU fit within the usable 
area of the tencinal screen. 

170 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



BUFSZE = (lines,columns) specifies the size of the 
partition's presentation space. Device limitations 
mean that the "columns" value must be equal to 
the "columns" value specified by the VIEWSZE 
operand. The "lines" value can be greater than 
or, by default, equal to the value specified by the 
VIEWSZE operand. A greater lines value 
implies that the target terminal supports vertical 
scrolling. The default value of "lines" is the 
same as the value specified by the VIEWSZE 
operand. 

CHARSZE(vpels,hpels) specifies the size of the 
character cell, on an IBM 3290 (or similar) 
display, to be allocated to each character 
displayed in the partition. You specify the size 
as "vpels" (the number of vertical picture 
elements), and as "hpels" (the number of 
horizontal picture elements). If you code the 
CHARSZE operand on the DFHPDI macro, 
you must also code it on the DFHPSD macro, 
specifying the default cell size. 

MAPSFX = mapset-suflix is the partition's 
I-character map set suffix. BMS uses the suffix 
to select map set versions in the same way as the 
ALTSFX operand of the DFHTCT 
TYPE = TERMINAL macro. For more 
information on map set suffixing, see Figure 12 
on page 162. If the MAPSFX operand is 
omitted, a suffix L is assumed if the "columns" 
value of the B UFSZE operand is less than or 
equal to forty; otherwise M is assumed. 

ATTRB= ERROR specifies that error messages are 
to be directed to this partition whenever possible. 
The partition is cleared before an error message 
is displayed. Attributes specified on the 
ERRATT operand of the DFHTCT 
TYPE = TERMINAL macro will be honored, 
but the LASTLINE operand will be ignored. 

An error message partition can be used directly 
by a BMS application program, but remember 
that CICS error messages may be written to this 
partition, destroying any user data it contains. 

If you do not defme an error message partition, 
CICS will send error messages to a cleared 
unpartitioned screen, obeying any ERRATT 
operand specified on the DFHTCT 

TYPE = TERMINAL macro. You are 
recommended to defme an error message 
partition whenever possible. 

Note: The information given here on positioning 
viewports is necessarily brief. For more 
information you should consult the component 
description for the device you are using. 

End of Partition Set (DFHPSD TYPE = FINAL 
Macro) 

This macro ends a partition set defmition. Its 
format is: 

I [partnsetl DFHPSD TYPE=FINAL 

If you code a label on this macro, it should match 
the label on the DFIIPSD macro that started the 
partition definition. 

Assembling and Cataloging a Partition Set 

When you have defmed a partition set, you must 
assemble it and store it in the program library. Its 
name must be given an appropriate suffix, if 
necessary . You use the dynamic addition 
transaction (CEDA) to create a PPT entry for it. 
Otherwise you must create a PPT entry using the 
D F II PPT system macro. 

Specifying a Partition Within a Map Set 

You use the PARTN operand of the map 
definition macros (DFHMSD and DFHMDI) to 
associate an output partition or input partition with 
a map or map set. The format of the operand is: 

PARTN=(name[,ACTIVATE1) 

If you code the operand in DFHMSD, it sets the 
default partition name for all maps in the map set. 
You can override the default, for individual maps, 
by the same operand on DFIIMDI. The partition 
becomes the active partition if you specify 
ACTIVATE. The PAR TN operand allows some 
existing BMS transactions to exploit multiple 
partitions by map and table changes only. 

Chapter 3.2-3. Standard Function BMS 1 71 



Any partition operands associated with a map are 
overridden by the corresponding options on the 
BMS SEND or RECEIVE commands. 

How 1{ou Code Programs to Manage 
Partitiions 

This section describes the commands or keywords 
you mUtst code in your application programs if you 
wish to use BMS partition management services. It 
describ(~s commands that enable you to: 

• Handle exceptional conditions caused by your 
partitioning commands 

• Load the application partition set 

• Nrume the partition in which BMS must display 
data 

• Change the active partition 

• Na:me a partition from which BMS must 
receive input data 

• Read data from a partition into a data area 
be~Dre mapping it 

• Obtain information about the state of a 
device's partitions. 

The rest of this section explains how CICS support 
of partitions affects CICS outboard formatting, 
terminal sharing, and shared use of a screen by 
BMS and another display manager. 

Handling Conditions Raised by Partition 
Operatiions 

A new HANDLE AID keyword (CLRPARTN) 
allows an application to intercept CLEAR 
PART1[TION requests from the keyboard. 

The HANDLE CONDITION command can 
recognize new error conditions raised by partition 
management. These conditions are described in 
"Exceptional Conditions" on page 175. 

Loading the Application Partition Set 

The SEND PARTNSET command loads the 
correctly suffixed version of a partition set into 
CICS storage from the CICS program library. The 
partition set becomes the application partition set, 
and is loaded onto the terminal when the next 
BMS output command is executed. 

SEND PARTNSET[(name)] 

Conditions: INVPARTNSET, INVREQ 

P ARTNSET(name) specifies the 1 to 6 character 
name of the partition set to be loaded. If 
"name" is omitted, the tenninal is set to base 
(unpartitioned) state. 

Note: A SEND PARTNSET command must not 
be followed immediately by a RECEIVE 
command. The two commands must be separated 
by a SEND MAP, SEND TEXT, or SEND 
CONTROL command, so that the partition set is 
sent to the terminal. 

Setting the Current Output Partition 

The OtJTPARTN(name) option of the BMS 
SEND MAP, SEND TEXT, and SEND 
CO NTR 0 L commands names the partition to 
which data is to be sent. The partition name can 
be one or two characters long. This option is 
ignored if the terminal does not support partitions, 
or if no application partition set has been specified. 

An OtJTPARTN option in a SEND MAP 
command overrides an OUTPARTN operand 
coded in a BMS map definition macro. 

The OtJTPARTN option and the LDC option 
cannot both be specified in the same command (see 
later in the chapter). 

If OUTPARTN is omitted, and a partition set has 
been loaded, the data is sent to the rust partition 
defined in the partition set. 

Conditions: INVPARTN, INVREQ 

172 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Setting the Active Partition 

The ACTPARTN(name) option of the BMS 
SEND MAP, SEND TEXT, and SEND 
CONTRO L comtnands names the partition to be 
activated. The cursor is moved into the active 
partition, and the keyboard is reset for that 
partition. 

The ACTPAR TN option is ignored if the terminal 
does not support partitions, or if there is no 
application partition set. If the. operand is not 
coded, no partition is activated, and the cursor does 
not move. 

The ACTPARTN option and the LDC option 
cannot both be specified in the same command (see 
later in the chapter). 

Conditions: INVREQ, INVPARTN 

Setting the Expected Input Partition 

The INPARTN(name) option of the BMS 
RECEIVE MAP command names the "expected 
input partition" for an input operation. The 
option is ignored if the terminal does not support 
partitions, or if there is no application partition set. 
If INP AR TN is omitted, input data is accepted 
from any partition. If INPARTN is coded, and 
input is received from a partition other than the 
expected input partition, CICS takes the following 
action: 

I. It activates the expected input partition 
(moving the cursor and unlocking the 
keyboard). 

2. It sends the following message to the error 
message partition named in the application 
partition set: 

DFH4190 INPUT DATA ENTERED 
FROM THE WRONG PARTITION. 
RE-ENTER IN PARTITION 
CONTAINING THE CURSOR. 

No message is issued if no error message 
partition has been defmed. 

Data sent to CICS from the wrong partition is 
not destroyed. It can be sent when the 
expected input has been transmitted. 

3. It reissues the BMS RECEIVE command. 

Steps 1 to 3 are performed three times. If data is 
still entered from the wrong partition, BMS raises 
the PAR TNFAIL condition. 

INPARTN and FROM cannot both be specified 
in the same RECEIVE MAP command. 

Conditions: INVPARTN, PARTNFAIL 

Determining the Actual Input Partition 

Sometimes you want a CICS application program 
to accept input from any partition, mapping the 
data differently according to its origin. You can 
make it do this by using the RECEIVE PAR TN 
command. The data is received and mapped in 
separate steps. The RECEIVE PAR TN command 
is followed by code to discover the name of the 
input partition. Then, mapping is performed using 
a map designed to compensate for the 
characteristics of the partition. You code a 
RECEIVE PARTN command to read data into a 
data area, and a RECEIVE MAP FROM 
cotrunand to map the data. 

RECEIVE PARTNldata-areaJ 
(INTOCdata-area)ISETCptr-ref)} 
LENGTHCdata-area) 
[ASIS] 

Conditions: INVPARTN, lENGERR 

The options have the following meanings: 

PARTN names the two byte data area into which 
CICS must put the partition name of the actual 
input partition. 

INTO or SET specify the data area into which 
CICS must put the inbound data stream. The 
real terminal AID will be returned in EIBAID, 
and the inbound cursor position in EIBCPOSN. 

LENGTH specifies the name of a data area into 
which CICS must put the length of the received 
data string. If INTO is used, LENGTH must be 
initialized to the length of the INTO area before 
the RECEIVE command is executed. 

Chapter 3.2-3. Standard Function BMS 173 



ASIS specifies that data must not be translated to 
uppercase, even if the terminal has been defmed 
with FEATURE = UCTRAN. 

ASSIGN Command 

You use the ASSIGN command to ask CICS for 
information about your application program 
environment. There are four options that produce 
information about partitions, as follows: 

P ARll~SET specifies that the value required is the 
one through six character name of the 
application partition set. A blank value is 
returned if there is no application partition set. 

INP ARTN specifies that the value required is the 
one or two character name of the most recent 
input partition. A blank value is returned if 
partitions are not in use. 

I) ARll~P AGE specifies that the value required is 
the one or two character name of the partition 
that most recently caused page overflow. A 
blank value is returned if partitions are not in 
use. 

P ARll~S specifies that the value required is a one 
byte indicator showing that the terminal supports 
partitions (X'FF') or does not (X'OO'). 

Character Cells in Partitions 

You use the CHARSZE operand of the DFHPSD 
and DFHPDI macros to defme the size (in pels) of 
the character cells used in an individual partition. 

You establish a default cell size for a partition set 
when you code the CHARSZE operand on the 
DFHPSD macro. 

If you do not specify CHARSZE, the 3290 adopts 
the cell size specified at CS U for all partitions. 

In all cases, it will then select the optimum 
character size for that cell size. If CHARSZE is 
specified on any DFHPDI macro, it must be 
specified on all DFHPDI macros within t.he same 
partition set, or on the DFHPSD macro. 

A cell size set by the DFHPSD macro can be 
overridden for individual partitions using the 
CHARSZE operand on the DFHPDI macro. 
However, if you code CHARSZE on the DFHPDI 
macro, you must also code CHARSZE on the 
DFHPSD macro; you should not let it default to 
the size chosen during CSU. The assembler will 
not accept a partition set that has CHARSZE 
specified in DFHPSD but not in DFHPDI. 

A cell size is specified as the number of vertical 
picture clements (vpels), and the number of 
horizontal picture elements (hpels). 

If you decide to define partitions that have different 
values of CIIARSZE, you should work in units of 
pels when calculating the sizes and positions of 
partitions. That is, the partition height is the 
product of the number of rows in the partition and 
the vertical CHARSZE dimension (vpels); the 
partition width is the product of the number of 
columns and the horizontal CHARSZE component 
(hpels). 

The screen has a physical limitation of 750 by 960 
pels. This means that you fit the maximum 
amount of data onto the screen by using a 
CIIARSZE of 6 by 12 with a display area 
measuring 160 characters by 62 characters. If you 
usc the 160 by 62 screen size but have characters 
larger than 6 by 12, your partitions will overflow 
the screen at the bottom and right. During 
assembly, the partition set defmition macros warn 
you that overflow will occur. 

When data is sent to a partition, the 3290 selects 
the appropriate character set and places characters 
at the top left hand comers of their cells. If the cell 
size defined by CHARSZE exceeds the character 
sizes defined in the character set used, characters 
will appear widely separated. Conversely, if the cell 
size is smaIter than the defmed character size, the 
characters will be truncated at the bottom and 
right. 

Partitions and Outboard Formats 

3270 outboard formatting (see 'T)utboard 
Formatting" on page 179) works with multiple 
partitions. 

174 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Partitions and Terminal Sharing 

You can use partitions with terminal sharing. 
However, systems involved in terminal sharing 
should always use the same partition set name to 
refer to the same partition set. 

Partitions and GDDM 

CICS output and GDDM output cannot be 
displayed on the same screen if partitions are being 
used. 

Exceptional Conditions 

A program using BMS partition management can 
encounter the following additional exceptional 
conditions. You can code HANDLE 
CONDITION commands to override the default 
action taken by CICS. Unless otherwise stated, the 
default action is to terminate the task abnormally. 

INVP ARTNSET partition set is invalid; that is, it 
is not a partition set. 

INVREQ the last request was invalid. This 
condition indicates a different error for each 
BMS request that caused it. For more 
information, see the full description in "Chapter 
3.2-5. BMS Macro and Command Reference 
Summary" on page 205. 

INVP ARTN the partition named by an 
INPARTN, OUTPARTN, or ACTPARTN 
operand, or returned by a RECEIVE PAR TN 
command, is not a member of the application 
partition set. 

LENGERR the INTO area named by the 
RECEIVE PAR TN command is too small for 
the inbound data. This condition does not 
terminate the task abnormally; instead, CICS 
truncates data to the size of the INTO area. 

P ARTNF AIL data has been entered from the 
wrong partition three times in succession. 

Logical Device Components 

The 3601, 3770 batch, 3770, 3790 batch and 
LUTYPE4 terminals may be configured with a 
number of subcomponents, such as a printer and a 
console. Each of these subcomponents is a logical 
device component, and is handled by BMS output 
commands as if it were a separate terminal. 

Defining Logical Device Components 

Logical device components are similar to partitions, 
but unlike partitions, are statically defined by the 
DFIITCT system macros. See the GIGS/DOS/VS 
Resource Definition (Macro) manual for more 
information on DFHTCT. 

The following is defined for each logical device 
component: 

• A 2-character component name. 

• A I-character code, indicating the device type 
(for example line printer, card punch). This 
code is assigned by CICS when the logical 
device component is defmed. Possible codes 
are listed in the GIGS/DOS/VS Resource 
Definition (Macro) manual. 

• A DMS page size. BMS positions map and 
text data within this area. 

• A DMS page status (AUTOPAGE or 
NOAUTOPAGE). This is discussed further in 
"Chapter 3.2-4. Full Function BMS" on 
page 181. 

Sending Data to a Logical Device 
Component 

A BMS generated data stream can be directed to a 
particular logical device component by specifying 
the LDC option on the SEND MAP, SEND 
TEXT, or SEND CONTROL command. This 
option specifies a 2 character mnemonic, 
corresponding to an LDC definition in the TCT. 

If OMS output is directed to a logical device 
component, but the LDC option is omitted from 

Chapter 3.2-3. Standard Function BMS 175 



the SEND MAP command, the output is sent to 
any logical device component associated with the 
map. 1be target component is identified by the 
LDC operand of DFHMSD. You can override the 
choice of component to which data is to be sent by 
coding the LDC option on a BMS SEND 
command. If there is no component associated 
with thf~ map, or the LDC option is omitted from a 
SEND TEXT or SEND CONTROL cOffi1nand, 
the data is sent to the "default logical device 
component". This default is specified by the 
DFHTCT macros which derme the logical device 
components for the terminal, and depends on the 
terminal type. This is discussed further in "Chapter 
3.2-5. BMS Macro and Command Reference 
Summary" on page 205. 

10/63 Magnetic Slot Reader 
Contlrol 

Some IBM display terminals support a magnetic 
slot reader (an MSR), a device that reads data from 
smalilnagnetic cards, as an optional feature. Some 
control the reader themselves, but others (such as 
the IB1\1 8775 and the IBM 3643) let you control 
functions of the reader from your programs. 

An MS R has colored indicator lights and an 
audible alarm to prompt operator actions. You 
can control these components of an MSR from an 
application program. 

Appli(:ation Programming 

You can code application program commands to 
control an MSR attached to a terminal su<:h as the 
8775 or 3643. You use the MSR option of the 
BMS SEND MAP, SEND TEXT, and SEND 
CONTROL commands to identify a four-byte field 
contammg device control data. The format of the 
option is: 

MSR(data-value) 

where Cldata-value" is the name of the four-byte 
device control data field. Named constants 
supplied with CICS provide the most useful 
combinations of device control commands. A list 
of the supplied constants appears below. Users can 
create other constants if they are needed. 

Checking That a Device Supports MSR Control 

The MSRCONTROL option of the ASSIGN 
command allows an application program to 
determine whether a target tenninal supports MSR 
control. The format of the comrnand is: 

ASSIGN MSRCONTROL(data-area) 

where Cldata-area" is the name of a one-byte data 
area into which CICS places its response to the 
ASS I G N command. The response is hexadecimal 
X'PF' if the terminal supports MSR control, X'OO' 
if it does not. 

The ASS I G N command is described in ClChapter 
1.6. Access to System Information" on page 41. 

Supplied Constants 

A selection of MSR control bit patterns has been 
created for CICS and stored in the copy book 
DPHMSRCA. Figure 13 shows the meaning of 
each bit. You can use this information to create 
new constants to add to DFHMSRCA. The 
patterns are stored as named constants that can be 
loaded by appJication program commands. 
Provision of such constants saves you from having 
to build a commonly used bit pa.ttern whenever it 
is required. The constants supplied in 
DPIIMSRCA are as follows: 

176 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Constant 

DFHMSRST 

DFHMSCON 

DFHMSFIN 

DFHMSALR 

DFHMSALS 

DFHMSIPY 

DFHMSIPN 
DFHMSLKY 

DFHMSLKN 

DFHMSAEY 

DFHMSAEN 

DFHMSLBN 

DFHMSLBY 

DFHMSSBN 

DFHMSSBY 

DFHMSNOP 

Meaning 

MSR reset. All lights and 
buzzers off. MSR available 
for input. 
Transaction ready for more 
input. Green and yellow on; 
emit short buzz; IN PROCESS 
(user) mode set. 
Input complete. Green on; 
emit short buzz; IN PROCESS 
mode reset. 
Operator alert. Green, 
yellow, and red on; emit 
long buzz; IN PROCESS mode 
reset. 
Operator alert. Green, 
yellow, and red on; emit 
long buzz; IN PROCESS mode 
set. 
IN PROCESS mode set. Yellow 
on. 
IN PROCESS mode reset. 
MSR operation inhibited. 
Yellow on. 
MSR input allowed. Green on. 
Yellow on. 
MSR auto enter on. 
Yellow on. 
MSR auto enter off. 
Yellow on. 
Long buzzer suppressed. 
Yellow on. 
Long buzzer permitted. 
Yellow on. 
Short buzzer suppressed. 
Yellow on. 
Short buzzer permitted. 
Yellow on. 
Leave all MSR settings 
unchanged. 

The SEND CONTROL, SEND MAP, or SEND 
TEXT commands that include the MSR option 
have no effect until the next RECEIVE command 
is executed, or until the task terminates. For 
example, SEND CONTROL MSR commands 
must be interspersed with RECEIVE commands. 

Trigger Fields 

You can use display trigger fields to initiate input 
to an application program. A trigger field is one 
that is transmitted to the host processor as soon as 
the terminal operator has modified the field and 
then tries to move the cursor out of it. The trigger 
attribute is ignored if the operator has not modified 
the trigger field. 

A pplication Programming 

CICS application programs can receive data from 
trigger fields. Any keystroke (for example, the tab 
key) that makes the cursor leave a trigger field 
containing modified data causes the terminal to 
transmit an attention identifier (AID), plus the 
contcnts of the field, to CICS. The value of the 
AID is X'7P'. 

You derme trigger fields during map defmition. 
Application programs that use trigger fields should 
contain the HANDLE AID TRIGGER command, 
passing control to a label that processes trigger 
input. The code at this label should process the 
input rapidly, as a long delay can inhibit input. 
This is because, after sending trigger data, the 
terminal stores further keystrokes, but cannot 
process them until the host processor acknowledges 
the trigger. The operator can perform up to 30 
keystrokes during the wait. 

Following receipt of a trigger field, the application 
program must validate the trigger field data, and 
respond to the 8775 terminal as follows: 

• If validation is successful, the application 
program should issue a SEND MAP, SEND 
TEXT, or SEND CONTROL command 
specifying the FREEKB option and omitting 
the ERASE and ERASEA UP options. The 
command must address the partition containing 
the trigger field; it allows the 8775 terminal to 
process stored keystrokes. 

• If validation is unsuccessful, the application 
program can instruct the 8775 to discard stored 
keystrokes, as follows: 

By issuing a SEND MAP, SEND TEXT, 
or SEND CONTROL command that does 
not spccify the FREEKB option, and/or is 
not directed to the partition containing the 
trigger field. Typically, this SEND 
command would issue an error message 
indicating why the trigger field input was 
rejected. 

By issuing a SEND MAP, SEND TEXT, 
or SEND CONTROL command 

Chapter 3.2-3. Standard Function BMS 1 77 



BYTE: (PURPOSE) 

1 (STATE MASK) 

If a bit is on in 
the STATE MASK, 
the state it 
repr'esents 
is adopted by 
the device if the 
corresponding bit 
is also on in the 
STATE VALUE byte. 

BIT 

o 

1 

2 

3 
4 

VALUE 

USER 

LOCK 

AUTO 

AilS 
Ai2S 

MEANING 

User mode. Turn the yellow light on if the 
same bit is on in STATE VALUE. 

Locked/Unlocked. If locked, MSR input is 
inhibited. 
Autoenter on/off. If set on, any card read 
by the MSR will cause an ENTER operation. 
If off, only a secure card causes an 
ENTER. 
Suppress audible alarm 1 
Suppress audible alarm 2 

~-------------------------r------r----.----+-------.----------------------------------------------------~ 
2 (STATE VALUE) 

Modifies state to 
on Qlr off if the 
corresponding bit 
is siet on in 
STATE MASK 

3 (INDICATOR MASK) 

Performs a similar 
function to STATE 
MASK, but for 
indicators. 

4 (INDICATOR VALUE) 

Performs similar 
function to STATE 
VALu/E. 

o 
1 
2 
3 
4 

Figure 13. MSR Control Byte Values 

specifying the ERASE, ERASEAUP, or 
ACTP ARTN options. 

By issuing a RECEIVE MAP, RECEIVE 
PAR TN, or a tenrunal control RECEIVE 
command. 

By terminating the transaction. 

Defininl~ Maps to Provide Trigger Validation 

Light 1 (Green) 
Light 2 (Yellow) 
Light 3 (Red) 
Audible Alarm 1 (Long buzz) 
Audible Alarm 2 (Short Buzz) 

by default, to maps within the set, and fields within 
those maps. 

CICS-Supplied Trigger Constants 

Parts of a display can be assigned the trigger 
validation attribute by coding the 
VALIDN=TRIGGER operand in one or more of 
the rn,ap definition macros, DFHMSD, DFHMDI, 
and DFHMDF. The form of the operand is: 

As well as being able to define maps with trigger 
fields, you can write programs that set the trigger 
attribute of a field dynamically in an application 
program. Copybook DFHBMSCA contains 
constants that provide the bit settings for the 
attribute byte. The constants are listed in "Chapter 
3.2-5. OMS Macro and Command Reference 
Summary" on page 205. 

Handling the Trigger AID 

[,VALIDN=([MUSTFILL)[,MUSTENTERl 
[,TRIGGER])] 

As for other map set defmition macro operands, 
values established in the DFHMSD macro apply, 

The TRIGGER option of the HANDLE AID 
command allows a program to pass control to a 
handling routine upon receiving input from a 
trigger field. The form of the command is: 

HANDLE AID TRIGGER(label) 

178 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



where "label" is the name of a program statement 
to which control is passed when the program 
receives a TRIGGER AID. 

Outboard Formatting 

Outboard formatting is a technique for reducing the 
amount of line traffic between the host processor 
and an attached subsystem. The reduction is 
achieved by sending only variable data across the 
network. This data is combined with constant data 
by a program within the subsystem. The formatted 
data can then be displayed. 

You can use outboard formatting with either a 
3650 Host Communication Logical Unit, or an 
8100 Series processor with DPPX and DPS 
Version 2. Maps used by the 3650 must be 
redefmed using the 3650 transformation defmition 
language before they can be used. For more 
information, see the section describing BMS in the 
CICS/DOS/VS IBM 3650/3680 Guide. Maps to be 
used with the 8100 must be generated on the 8100 
using either a utility of SDF/CICS or the 
interactive map defmition component of the 
licensed program DPS Version 2. For more 
information on either of these methods, see the 
DPPX/DPS Version 2 System Programming Guide. 

If a program in the host processor sends a lot of 
mapped data to subsystems, you can reduce line 
traffic by telling BMS to transmit only the variable 
data in maps. The subsystem must then perform 
the mapping operation when it receives the data. 
BMS prefixes the variable data with information 
that identifies the subsystem map to be used to 
format the data. 

Terminals that support outboard formatting will 
have BMSFEAT= OBFMT specified in their TCT 
entries. When a program issues a SEND MAP 
command for such a tenninal, and the specified 

map definition contains OBFMT= YES, BMS 
assumes that the subsystem is going to format the 
data. It therefore generates an appropriate data 
stream. 

If you send a map that has OBFMT= YES to a 
terminal that does not support outboard 
formatting, BMS will ignore the OBFMT operand. 

Users of full BMS may be interested to know that 
floating maps, which are discussed in "Chapter 
3.2-4. Full Function BMS" on page 181, can be 
sent to an 8100 processor for outboard formatting. 

Block Data Format 

A symbolic description map can be generated using 
block data format by specifying DATA = BLOCK 
on the DFHMSD and DFHMDI map definition 
macros. 

'Ibe block data format of the symbolic map is an 
image of the source map. This image contains one 
character for each character position in the source 
map. If the source map is 80 columns wide by 5 
lines deep, the symbolic map data structure will 
contain 412 characters, including a 12 byte TIOA 
prefix. The fields in the symbolic map are 
positioned as in the source map. A field positioned 
at column 10 line 2 in the above source map would 
have an attribute field 101 characters from the start 
of the symbolic map (allowing a 12 byte TIOA 
prefix), and a data field 102 bytes from the start of 
the symbolic map. As there is only room for one 
attribute field in the block data format, block data 
cannot have extended attributes. 

The block data symbolic map format can be useful 
if an application program has built a printer page 
image and wishes to display it on a screen. Most 
applications, however, will find the normal field 
data symbolic map format more useful. 

Chapt.er 3.2-3. Standard Function BMS 1 79 





Chapter 3.2-4. Full Function BMS 

This chapter describes the additional facilities 
provided by full function BMS. For convenience, 
"full function BMS" will be shortened to "full 
BMS". Full BMS supports the same range of 
devices as standard BMS, but provides extra 
function, as follows: 

• Logical message handling. This enables you to 
request: 

Terminal operator paging using the 
PAGING option 

Cumulative output data formatting using 
the ACCUM option 

Combined use of ACCUM and PAGING 

• Message routing. The ROUTE command 
allows an application program to build device 
dependent data streams for several terminals 
simultaneously. 

• Message switching. The message switching 
transaction (CMSG) allows a terminal operator 
to send a message to a list of terminals, or a list 
of terminal operators. 

• Facilities for intercepting formatted 
device-dependent data and relaying it to a 
terminal later. This facility enables you to 
develop output routines to modify data streams 
before output. This is not recommended, as 
the format of the device-dependent data stream 
cannot be guaranteed. 

You use the SET option to intercept output 
data, and then relay it using the SEND TEXT 
MAPPED command. 

I • Report controller. Full BMS is required when 
I using the CICS report controller (a 
I separately-priced feature.) 

Logical Message Handling 

A logical message is a collection of formatted 
output data produced by chaining several smaller 
items of data. You build a logical message by 
coding a series of BMS SEND commands, each 
having either the ACCUM option or PAGING 
option, or both. When you build a page of 
message data, CICS does not send the data until 
you issue a SEND PAGE command. However, if 
you produce more than a pageful of data, it will 
send the data in installments (one every time page 
overflow occurs). 

You complete a logical message by issuing a SEND 
PAGE command. Alternatively, you can cancel 
the message by issuing the PURGE MESSAGE 
command. 

If you issue a SYNCPOINT command, or 
terminate your transaction, before issuing SEND 
PAGE, CICS usually assumes that you meant to 
issue SEND PAGE. Consequently, it terminates 
the message, and sends the data. However, if your 
logical message does not contain a single complete 
page, the logical message will be lost. You should 
therefore always explicitly code a SEND PAGE 
command before the SYNCPOINT command or 
before the transaction is tenninated, and not rely 
on any implied SEND PAGE command. 

The PAGING option tells BMS to send the output 
data to temporary storage, from where an operator 
can retrieve it using the terminal operator paging 
transaction. With this transaction, the operator can 

Chapter 3.2-4. Full Function BMS 181 



view the pages in any order, and as often as 
necessary. When the message is no longer needed, 
the operator can delete it and continue normal 
transaction processing. 

The ACCUM option tells BMS to accumulate 
pages of output data, and to send each page when 
it is complete. BMS sends the pages directly to the 
terminal unless PAGING or SET is specified as 
well as ACCUM. If PAGING is specified, BMS 
accumulates them on temporary storage. If SET is 
specified, BMS returns completed pages to the 
application program, as described below. This is 
an economical way of building pages of display 
data, because CICS fits as much data as possible 
on each page before sending it. 

It is usual to build logical messages using both the 
ACCUl'v1 and PAGING options, in combination 
with floating maps or cumulative text (which are 
discussed later). If you do this, BMS optimizes the 
use of the available display area on the target 
terminal, building several pages each containing a 
pageful of data. It then writes each page to CICS 
temporary storage, and initiates the terminal 
operator paging transaction when the SEND 
PAGE command is encountered, see "Example of 
How to Use Paging" on page 192. 

The following rules apply while a BMS logical 
message is active: 

1. Only one BMS logical message can be active at 
a tune. 

2. All SEND MAP, SEND TEXT and SEND 
CONTROL commands in a BMS logical 
message must specify the same combination of 
ACCUM, PAGING, SET, TERMINAL, and 
REQID options as the OMS command that 
starte:d the logical message. 

3. A ROUTE or SEND PARTNSET command 
cannot be issued. 

4. SEND CONTROL commands can be used 
with either SEND MAP or SEND TEXT 
corrunands. However, SEND MAP and 
SEND TEXT commands can be mixed in a 
BMS logical message only if the text data and 

I 
I 
I 
I 
I 
I 
I 

mapped data are sent to different partitions or 
LDes. 

With only one exception, the INVREQ condition 
is raised if any of these rules are violated. The 
exception is that the IGREQID condition is raised 
if the REQID for a SEND command differs from 
the REQID for the whole message. 

The ACCUM option and the PAGING option are 
discussed later in this section; the SYNCPOINT 
cOlnmand is described in "Chapter 5.6. Recovery 
(Sync Points)" on page 405. The SEND PAGE 
and PURGE MESSAGE commands, which apply 
only to logical messages, are described below. 

BMS Message Recovery IRestart 

Following a warm or emergency restart, you can 
retrieve logical messages under certain 
circumstances. 

OMS provides message recovery for routed and 
nonrouted logical messages. Recoverable messages 
must satisfy the following requirements: 

• The PAGING option must have been specified 
in the OMS SEND commands that built the· 
logical message. 

• The OMS default REQID ('''''''') or the 
specified REQID for the logical message must 
have been identified to the temporary storage 
program (via the DFHTST macro) as 
recoverable. 

• The task that built the message must have 
reached its logical end of task. 

• The temporary storage program and the 
interval control program must also support 
recovery. 

• Should any of the pages have been retrieved, 
the paging session will be effectively restarted. 
r or a warm restart where the paging session 
has been started from a terminal that had an 
operator signed on to it, the message will only 
be retrieva.ble by the same operator on the 
same terminal. 

182 CICSjDOSjVS Application Programmer':; Reference Manual (Command Level) 



I • The message has not been purged. 

Tenninal operator paging and display data 
accumulation are described later. First, consider 
the SEND PAGE and PURGE MESSAGE 
commands. 

SEND PAGE Command 

The syntax of the SEND PAGE command is as 
follows. This command is only available on full 
function BMS. 

SEND PAGE 
[RELEASE[TRANSIDCname)]IRETAIN] 
[TRAILERCdata-area)] 
[SETCptr-ref)] 
[AUTOPAGE[CURRENTIALL] I NOAUTOPAGEl 
[OPERPURGEl 
[FMHPARMl 
[LASTl 

Conditions: IGREQCD, INVREQ, 
RETPAGE, TSIOERR 

The SEND PAGE command causes BMS to 
generate a device dependent data stream for the last 
(perhaps the only) page of data. Typically this last 
page is only partially full. 

Options can be included to specify how much 
control the terminal operator should have over the 
disposition of the logical message (AUTOPAGE, 
NOAUTOPAGE, and OPERPURGE), to 
determine whether control should return to the 
application program after transmission of the 
logical message (RELEASE and RETAIN), to add 
trailer data to a text logical message (TRAILER), 
and to return the device dependent data stream for 
the last page of a logical message to the application 
program (SET). 

The TRAILER option is only relevant to text 
messages, and is discussed in "Cumulative Text 
Formatting" on page 192. 

All options except SET and TRAILER apply only 
to paging logical messages. Their use is described 

under "Logical Messages for Terminal Operator 
Paging" on page 184. 

PURGE MESSAGE Command 

The PURGE MESSAGE command simply deletes 
the current logical message, including any pages of 
device dependent data stream already written to 
CICS temporary storage. The application program 
may then build a new logical message. 

The syntax of the PURGE MESSAGE command 
is as follows. This command is only available with 
full BMS. 

PURGE MESSAGE 

Condition: TSIOERR 

Logical Messages for Direct Tenninal 
Output 

If the TERMINAL option (the default) is used for 
this logical message, the SEND PAGE command 
immediately sends the last page of the device 
dependent data stream to the terminal. The 
RETAIN and RELEASE options are then ignored. 

You can use the ACCUM and TERMINAL 
options together to build a single page out of 
several maps or blocks of text. Data stream 
gencration and transmission for this single page is 
then deferred until the logical message is terminated 
by a SEND PAGE command. This gives better 
performance on a display device than a series of 
separate BMS SEND commands. 

This form of processing is essential if a printer page 
for a non-3270 printer or a 3270 printer whose 
DFIITCT TYPE = TERMINAL macro specifies 
TRMTYPE = SCSPRT is composed of several 
maps or text blocks. Otherwise, each BMS SEND 
MAP, SEND TEXT, or SEND CONTROL 
command will send a whole page, using a form feed 
or an appropriate number of blank lines. This is 
discussed in "Chapter 3.2-3. Standard Function 
BMS" on page 161. 

Chapter 3.2-4. Full Function BMS 183 



Logical Messages With the SET Option 

If the SET option is used for this logical message, 
the SEND PAGE command returns the last page 
of a device dependent data stream to the 
application program. This is further discussed in 
"Returning Mapped Data to a Program Before 
Output" on page 201. The RETAIN and 
RELEASE options are ignored if they are specified 
with SET. 

Logical Messages for Tenninal Operator 
Paging 

If the PAGING option is specified on BMS SEND 
MAP, SEND TEXT, and SEND CONTROL 
commands, the device dependent data stream built 
by BMS its sent to CICS temporary storage for 
subsequent retrieval by an operator using the 
terminal operator paging transaction. A separate 
temporary storage queue is used for each B MS 
logical message. The queue name is determined by 
CICS, using the value of any REQID operand of 
the SEND MAP, SEND TEXT, and SEND 
CONTROL commands as the frrst 2 characters of 
the queu(;~ name. If the REQID option is omitted, 
the frrst 2. characters of the queue name are 1+ +, . 

The REQ ID option allows application programs to 
send some BMS logical messages to recoverable 
temporary storage, and some to nonrecoverable 
temporary storage, as discussed in "BMS Message 
Recovery/Restart" on page 182. 

The temporary storage queue for a BMS logical 
message is deleted by a PURGE MESSAGE 
command, or (ignoring routing) by the terminal 
operator purging the message at the end of a 
terminal operator paging session. 

The appLication program terminates the logical 
message, and initiates the terminal operator paging 
transaction by the SEND PAGE command, whose 
syntax is shown in "SEND PAGE Command" on 
page 183. 

If the PAGING option is used for this logical 
message, the SEND PAGE command writes the 
last page of device dependent data stream to C I CS 
temporary storage. The SEND PAGE comtnand 

then initiates the terminal operator paging 
transaction. This initiation is controlled by the 
RETAIN and RELEASE options as follows: 

• If RETAIN is specified, the terminal operator 
paging transaction is initiated immediately. 
The frrst page is sent to the terminal (or the 
first page in each partition), and the terminal 
operator can use the terminal operator paging 
commands described in "Terminal Operator 
Paging Commands" on page 185. The 
terminal operator paging transaction operates 
conversationally in this mode. When the 
terminal operator terminates the paging session 
by purging the message, control is returned to 
the application program following the SEND 
PAGE RETAIN command. The application 
program retains control after a paging session. 

The OPERPURGE option specifies that CICS 
is to delete the B MS logical message only when 
the terminal operator requests deletion by an 
explicit page purge command. If the option is 
omitted, CICS deletes the message if the 
operator enters data that is not a paging 
command. 

If OPERPURGE is not specified on the 
SEND PAGE command, the terminal operator 
can terminate the paging session by entering 
data which is not a valid terminal operator 
paging command. This data can be accessed 
by the application program issuing a 
RECEIVE MAP or a terminal control 
RECEIVE following the SEND PAGE 
RETAIN command. 

• If RELEASE is specified, the terminal operator 
paging transaction immediately displays the 
first page of data (or the first page in each 
partition). The application program 
transaction is then terminated, and the paging 
session continues pseudoconversational1y. 
When the terminal operator terminates the 
paging session by purging the message, control 
is returned to CICS. CICS will then initiate 
any transaction specified by the TRANSID 
option of the SEND PAGE RELEASE 
command. The application program releases 
control after the SEND PAGE command. 

184 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



A SEND PAGE RELEASE must be the last 
executed command in a transaction. SEND 
PAGE RELEASE can be thought of as a 
combination of SEND PAGE RETAIN and a 
CICS RETURN command. 

• If neither RETAIN nor RELEASE is specified, 
the terminal operator paging transaction is 
initiated for execution when the current 
application transaction terminates. The 
terminal operator paging transaction is queued 
for execution on the target terminal, following 
any other transactions queued for that terminal. 

The AUTO PAGE and NOAUTOPAGE options 
overwrite any paging status specified by the 
PGESTAT option of the DFHTCT 
TYPE = TERMINAL macro. The PGEST AT 
value is honored if neither AUTO PAGE nor 
NOAUTOPAGE is specified on the SEND PAGE 
command. AUTO PAGE specifies that each page 
of the logical message is to be sent to the terminal 
without terminal operator paging commands. This 
is frequently used for printers. 

The options CURRENT and ALL apply to 2741 
terminals only, and are discussed in "Map 
Defmition Macro Operand Summary" on 
page 207. 

If an error occurs during the processing of a SEND 
PAGE command, control is returned to the 
application program, and the RETAIN or 
RELEASE specification is ignored. The logical 
message is not considered complete. The 
application program should either retry the SEND 
PAGE operation or delete the logical message. 

Terminal Operator Paging Commands 

The terminal operator commands provided by the 
terminal operator paging transaction are discussed 
in the CICS/DOS/VS CICS-Supplied Transactions 
manual. They are summarized here for 
completeness. 

The terminal operator paging transaction is usually 
initiated automatically by a BMS application 
program issuing a SEND PAGE command for a 
logical message that was built using the PAGING 
option. However, the terminal operator has to 

start the paging transaction explicitly (by entering 
CSPG) if automatic transaction initiation (ATI) is 
not available with the terminal (see the TRMST AT 
operand of the DFHTCT TYPE = TERMINAL 
system macro), and terminal operator paging was 
initiated with a SEND PAGE specifying neither 
RELEASE nor RETAIN. 

The terminal operator paging transaction provides 
the following facilities: 

Page Retrieval: The terminal operator can enter a 
command (or use a PF key if these have been 
defined via the SKRxxx options of the DFHSIT 
macro) to retrieve the first, last, nth, next, or 
previous page. If partitions are used, the page 
retrieval command relates to the partition in which 
it was entered. If LDCs are used, the LDC name is 
entered as part of the page retrieval command. 

Page Query: The terminal operator may obtain a 
list of logical messages queued for hls terminal. 
This list includes the BMS assigned message 
identifier, and any TITLE option specified by the 
ROUTE command of the application program that 
built the message. The terminal operator may use 
the message identifiers to retrieve pages for a 
spccified message. 

Set to Autopage: The terminal operator of a 
printer keyboard terminal may request that all 
remaining pages (for all partitions or LDCs) be sent 
without further operator intervention. 

Page Copy: The terminal operator may copy the 
current page to another terminal (generally a 
printer). BMS does any reformatting that may be 
needed, if the target terminal for the copy has a 
smaller page size than the source terminal. 

Page Chaining: The terminal operator may invoke 
another transaction, whlch communicates with the 
terminal in the normal way. This invoked 
transaction may in tum build pages, which if the 
SEND PAGE command in the invoked transaction 
specified RETAIN or RELEASE are "chained" to 
the pages built by the original transaction. The 
terminal operator may then retrieve pages for either 
transaction, possibly for comparison purposes. 
The norma1 BMS application is unlikely to use 
page chaining. 

Chapter 3.2-4. Full Function BMS 185 



Page Purge: When the terminal operator has 
fmished reviewing the pages of a logical message it 
can be purged by an explicit page purge cOlnmand, 
or implicitly by entering data which is not a paging 
command. However, this implicit purging its only 
possible if the OPERPURGE option was not 
specified on the SEND PAGE command which 
initiated the paging session.: The process is more 
complex if page chaining is used. The terminal 
operator can purge various levels of chained pages. 

The PAGR PURGE command purges all pages in 
all partitions or LDCs for the appropriate logical 
message. 

Cmnuhdive Output Processing (ACCUM 
Option) 

If the ACCUM option is used in a BMS logical 
message, a device dependent data stream is 
generated on "page overflow". BMS disposes of 
each page of a device dependent data stream as 
follows: 

1. If the TERMINAL option (the default) is used 
for this logical message, BMS immediately 
send.s the page to the terminal. This may be 
usefhl for printers, but successive pages will 
overwrite each other on a screen. 

2. If the SET option is used for this logical 
message, BMS returns the page to the 
application program. 

3. If the PAGING option is used for this logical 
message, BMS writes the page of device 
dependent data stream to CICS temporary 
storage. 

The page overflow condition is fully discussed in 
"Handling Page Overflow" on page 190. Briefly, 
page ove:rflow occurs when the next BMS lnap or 
block of text will no longer fit on the current page 
of the ta:rget terminal. 

Floating 1\1aps, Header and Trailer Maps 

In minimum and standard BMS, all maps were 
positioned absolutely, as specified by the 
LINE = number and COLUMN = number 
operands of the DFHMDI map definition macro. 
In full n MS, maps can "float". That is, they can 
be positioned relative to the previous map. This is 
done by coding LINE = SAMEINEXT or 
COLUMN = SAMEINEXT on the DFHMDI map 
definition macro. Floating maps can be sent to a 
terminal by successive SEND MAP ACCUM 
commands, until no more will fit on the current 
page. Page overflow then occurs, and can be 
handled as described in "Handling Page Overflow" 
on page 190. 

Avoid using floating maps, header maps, or trailer 
maps in a RECEIVE MAP command. This is 
because the floating map will be positioned on an 
empty page and the meanings of the LINE, 
COLUMN, and JUSTIFY operands of the 
DFlIMDI macro are modified as explained in 
"Map Definition Macro Operand Summary" on 
page 207. 

A map can be defmed as a TRAILER map by 
specifying TRAILER = YES on the DFHMDI 
map defmition macro. JUSTIFY= LAST is 
usually also specified to position the map at the 
bottom of the page. BMS allows for trailer maps 
in determining on each BMS SEND MAP 
ACCUM command whether the map referenced by 
this command will fit on the current page. BMS 
docs this by leaving space for the largest trailer map 
in the map set referenced by the SEND MAP 
ACCUM command. If several map sets are used 
to compose a page, each map set which conta:ins 
floating maps should also contain a trailer map (a 
dummy map which is not otherwise used will 
suffice) to aI10cate space for the actual trailer 
map(s) transmitted by the page overflow process. 

A dummy trailer map may :uso be needed to 
allocate the overall trailer area if the application 
program sends several trailer fllaps. Its depth must 
be at least equal to the combined depths of the 
trailer maps. This is illustrated in the following 
diagrams: 

186 Cl[CSjDOSjVS Application Programmer's Reference Manual (Command Level) 



No dummy trailer required 

TR1 

TR2 TR3 

Dummy trailer required 

An attempt to place more lines of trailer data on 
the page than are available, causes the trailer data 
to be placed on a separate page by itself. 

A map can be defined as a HEADER map by 
specifying HEADER = YES on the DFHMDI map 
definition macro. JUSTIFY = FIRST is usually 
also specified to complete processing of the 
previous page, and to begin a new page. An 
attempt to place more header data on the page than 
the page can contain causes multiple pages to be 
created. 

If a header map is not used, JUSTIFY = FIRST 
must be specified for the first map used to start a 
new page. Failure to specify this will result in a 
further page being sent for each SEND MAP 
command (as each map will be placed at the 
bottOln of a page, causing page overflow). 

Map Positioning 

This section explains the full capability of the BMS 
map positioning algorithm. In practice, however, it 
is unlikely that this full capability is needed. If 
JUSTIFY = RIGHT is avoided on the DFHMDI 
map definition macro, BMS will fill the page from 
top left to bottom right. Any unused areas to the 
top and left of the current map are thus unavailable 
for maps on this page. 

The position of a map on a screen is detennined by 
two major factors: the current contents of the 
screen, and the values coded for the LINE, 
COLUMN, and JUSTIFY operands of the 
DFIIMDI macro. Positioning is also affected if the 
DFHMDI macro specifies HEADER = YES or 
TRAILER = YES, and by the depth of the deepest 
trailer map in the map set. 

At any instant, the part of the screen that is still 
available for maps is in the fonn of either an L, a 
reversed L, a rectangle, or an inverted T, as shown 
by the unshaded area in the following diagram. 
The most likely case is a rectangle. 

Chapter 3.2-4. full function BMS 187 



h 

Next 
frae IIrle 

Nextoolumn 
from left 

t 

f 
Current 
line 

Fn1e area 

Next oolumn 
from right 

t 
.;.; 

-----------------
Trailer 

The shape and size of this area is represented 
internally by four variables: current line, next free 
line, next column from left, and next column from 
right. 

Two other pointers are maintained that are relevant 
to map placement though they do not affect the 
area available: left reference column and right 
reference column, which are used when 
COLUMN = SAME is specified. 

The trailer size is equal to the number of lines that 
would be: occupied by the deepest trailer map in the 
map set currently in use. It is determined when the 
map set is assembled, and is copied from the map 
set whenever one is loaded. The trailer size is 
assumed to be zero if a HANDLE CONDITION 
OVERFLOW command is not in effect. 

The area defined by trailer size is not available for 
mapping unless no overflow label has been 
specified or the map has TRAILER = YES 
specified in its DFHMDI macro. 

If JUSTIFY = FIRST is specified, the map is 
placed on a new page, so that the only maps above 
it are the header maps used in overflow processing. 

The LI NE operand may also be used with 
JUSTIFY = FIRST to place the map below the top 
of the page. 

If JUSTIFY = LAST is specified, the map is placed 
as low as possible on the page" For a nontrailer 
map, this is immediately above the trailer area; for 
a trailer map, it is at the bottom of the page. In 
the absence of an overflow label, the trailer area is 
null and JUSTIFY = LAST places the map at the 
bottom of the page. 

A map defined with JUSTIFY= LAST cannot be 
used in input operations unless it was previously 
put out without the ACCUM option, in which 
case JUSTIPY= LAST is ignored and the map is 
positioned at the top of the page. 
JUSTIFY = BOTTOM is equivalent to 
JUS'~'IPY = LAST for cumulative mapping, and 
provIdes a similar capability for noncumulative 
mapping, and for input. 

I Por SEND MAP commands (without ACCUM) 
I and RECEIVE MAP commands 
I JUSTIPY= BOTTOM causes th~ map to be 
I positioned at the bottom of the screen if the 
I number of lines in the map is specified in the SIZE 
I ?perand. Space is not reserved for any trailer maps 
I ~n the map set. JUSTIFY= BOTTOM is ignored 
I If the number of lines in the map is not specified in 
I the SIZE operand. If JUSTIFY = BOTTOM and 
I LINE are both specified, the value specified in 
I LI NE will be ignored; 

JUSTIFY = BOTTOM is intended to allow the 
positioning of a map at the bottom of a screen 
whatever the screen size, and to allow input from 
such a map without the application program 
having to take account of the screen size in use. It 
can be used, for example, if command input is 
required to be from the bottom lines of the screen 
on a variety of display models. 

The LINE operand specifies the line of the screen 
on which the first line of the map is to be placed. 
The initial determination of this line is made 
without regard to the specification of the 
COLUMN operand or the columns available on 
the screen on that particular line. If the map will 
not fit on the chosen line, the first subsequent line 
that will satisfy the column requirements is selected. 

188 ClCSjDOSjVS Application Programmer's Reference Manual (Command Level) 



If LINE = SAME or LINE = NEXT is specified, 
the initial line selected for the start of the map is 
the current line or the next free line, respectively. If 
a number is specified in the LINE operand, the line 
with that number is selected, provided the number 
is greater than or equal to the number of the 
current line; if not, the overflow condition is raised 
so that the map can be placed on the next page. 

The line selected becomes the new current line and, 
if it is below the next free line, the next free line is 
reset to the same line; the next column from the 
left and right are also reset, to the left and right 
margins respectively. 

If the line selected is such that the end of the map 
extends into the trailer area for a non-trailer map or 
beyond the end of the page for a trailer map, the 
overflow condition is raised and the map will be 
placed on the frrst available line of the next page 
when the request is reissued after handling the 
overflow. 

The COLUMN specification may be either NEXT, 
SAME, or a number and is processed in 
conjunction with the LEFT or RIGHT 
specification of the JUSTIFY operand. 
JUSTIFY = LEFT is the default and implies that 
the column specification is related to the left-hand 
margin. Conversely, JUSTIFY = RIGHT implies 
that the column specification is related to the 
right-hand margin. For the purposes of this 
explanation, it is assumed hereafter that 
JUSTIFY = LEFT has been specified (or applied 
by default). 

If COLUMN = NEXT is specified, the column 
chosen for the map is the next column from the 
left. If a numeric value is specified, the column 
with that number is chosen, counting from the left. 
If COLUMN = SAME is specified, the left 
reference column is chosen. (The left reference 
column is the one that was most recently specified 
by number with JUSTIFY = LEFT.) 

The map is then checked to ensure that its right 
margin is not to the right of the next column from 
the right. If it is, the map will not fit into the 
remaining space, so a new line must be selected. 
This will be either the next full line or, if the map is 
too deep, the frrst available line on the next page. 

Finally, the column pointers are updated by setting 
the next column from the left to the right margin of 
the map, and, if COLUMN = number was 
specified, by setting the left reference column to the 
specified column number. 

Map Positioning Examples 

The effects of the mechanisms described above are 
illustrated by the following examples. The 
examples show the interactions between SIZE, 
LINE, COLUMN, and JUSTIFY= LEFT or 
RIGHT. Header and trailer maps and 
JUSTIFY = FIRST or LAST are not brought into 
the examples. 

In processing a BMS command, BMS determines 
whether the area of the page required by the map is 
wholly available or whether any part of it has been 
used by an earlier command. "Used" means 
actually filled by a map or rendered unavailable. 

When the LINE operand of the DFHMDI macro 
is coded, ai1lines above the specified line are 
unavailable. 

When JUSTIFY = LEFT is coded (or applied by 
default), as in the following definition: 

MAPA DFHMDI ... ,LINE=3,COLUMN=S, 
JUSTIFY=LEFT, ... 

all columns to the left of the leftmost map column, 
for the full depth of the map, are unavailable, as 
shown (by the cross hatching) in the following 
diagram: 

When JUSTIFY = RIGHT is coded, as in the 
following defmition: 

MAPA DFHMDI ... ,LINE=3,COLUMN=3S, 
JUSTIFY=RIGHT, ... 

Chapter 3.2-4. Full Function OMS 189 



all columns to the right of the rightmost map 
column, for the full depth of the map, arc 
unavailable, as shown in the following diagram: 

36 1 

When two or more maps are placed so that they 
share c(:rtain lines, as in the following definitions: 

MAPA DFHMDI ooo,lINE=3,COlUMN=2, 
JUSTIFY=lEFT, 0 00 

MAPB DFHMDI ooo,lINE=4,COlUMN=20, 
JUSTIFY=lEFT, 0 • 0 

all colUlmns beneath a map that ends higher are 
unavailable to the depth of the map that ends 
lowest, as shown in the following diagram: 

2 20 

3 

Similarly unavailable are all columns to the left (if 
the higher map is left justified) or to the right (if 
the higher map is right justified) of the "used" area 
beneath the higher map. The following two 
diagrams illustrate similar situations: 

MAPA DFHMDI .oo,lINE=3,COlUMN=2, 
JUSTIFY=lEFT,ooo 

MAPB DFHMDI ooo,lINE=4,COlUMN=35, 
JUSTIFY=RIGHT, 00 0 

2 35 

MAPA DFHMDI ooo,lINE=3,COlUMN=40, 
JUSTIFY=RIGHT,.o. 

MAPB DFHMDI .. o,lINE=3,COlUMN=l, 
JUSTIFY=lEFT, ... 

The effect of several different maps on one page is 
shown in Figure 14 on page 191. 

If an area of the page directly specified for a map 
has already heen used by a previous map, the 
overflow condition is raised. This condition is 
handled as described in the next section. 

Handling Page Overflow 

Page overflow occurs when the number of lines in 
the requested map plus the number of lines in the 
largest trailer map in the map set (if there are any 
trailer maps) is greater than the number of lines 
remaining in the page being built. 

When page overflow occurs, BMS transfers control 
to a labc1 in the application program. It does not 
call a subroutine. There is no easy way of 
returning from the overflow processing to the 
application program command that caused 
overflow. 

190 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



MapB 

JUSTIFY 
= LEFT Map 0 

JUSTIFY = LEFT 

Figure 14. Many OMS Maps on One Page 

The label to which control is transferred is specified 
by a HANDLE CONDITION OVERFLOW 
command. The data which was to have been 
mapped, but which caused the overflow, is not 
mapped by BMS and remains unaltered. 

If partitions or LDCs are used, pages are 
accumulated separately for each partition or LDC. 
This complicates page overflow processing, as 
discussed in "Page Overflow and Partitions or 
LDCs." 

Overflow can occur on a logical message being 
built for routing. Again this complicates page 
overflow, as discussed in "Routing and Page 
Overflow" on page 201. 

This simple process is inadequate if the "body" of 
the page is composed of several different kinds of 
map. The application program must remember 
which map name it is about to process by a SEND 
MAP ACCUM command so that it can resend this 
map and its associated application'data in the event 
of page overflow. 

MapC 

MapA 

JU8TIFV = RIGHT 

BMS maintains the overflow environment for as 
long as the application program issues BMS 
commands using maps defmed as headers or 
trailers. While in the overflow environment, the 
overflow condition is not raised, as this may result 
in an infinite loop. The first use of a map that is 
no!, defined as a header or trailer tenninates 
overflow processing. 

If an overflow label has not been specified via a 
HANDLE CONDITION OVERFLOW 
command, no overflow occurs and new pages are 
forced out automatically. 

An overview of overflow processing is given in 
Figure 15. 

Page Overflow and Partitions or LDCs 

Pages are accumulated separately for each partition 
or LDC. Thus page overflow occurs on a partition 
or LDC basis. Page numbers are maintained on a 
partition or LDC basis, so that the ASSIGN 
PAGENUM command returns the page number 
for the most recently overflowed partition or LDC. 

Chapter 3.2-4. Full Function BMS 191 



The ASSIGN PARTNP AGE command returns 
the partition name of the most recently overflowed 
partition. Similarly the ASSIGN LDCMNEM 
command returns the name of the most recently 
overflowed LDC. 

If LDCs are used, the overflow processing code in 
the appHcation program must send header c:md 
trailer lTLapS to the LDC which has just overflowed. 
Otherwise the INVREQ condition is raised. 

If partitilons are used, the overflow processing code 
in the application program is not obliged to send 
header ~md trailer maps to the partition which has 
just overflowed. However, the application program 
must then avoid sending a header or trailer map to 
a different partition, which causes that partition to 
overflow. 

Exampl,e of How to Use Paging 

This section shows you how to build a B MS 
logical rnessage and how to handle page overflow. 
An ord{!f entry application is assumed, in particular 
a tr~saction to display customer orders on a screen 
with 80 columns ~d ~ arbitrary number of lines. 

This transaction uses the following maps: 

L A header map (called URDHEAD) containing 
the customer's name and address, the order 
number, and column headings for the following 
order lines. This map is to be displayed at the 
top of every page. It is defmed with 
HEADER = YES, JUSTIFY = FIRST, 
LINE= 1, ~d COLUMN = 1. 

2. A floating map (called ORDLINE) containing 
part number, part description, quantity, and 
price. A number of these will be displayed on 
the screen, depending on the size of the screen 
~d the number of different parts in the 
customer order. This map is defmed with 
LINE = NEXT ~d COLUMN = 1. 

3. A trailer map (called ORFTRL) containing a 
page number ~d instructions for the operator 
on how to view the next page. This map is 
displayed at the bottom of each page, including 

the last. This map is defined with 
TRAILER=YES and JUSTIFY= LAST. 

The PI,/I version of the program for this 
transaction is shown in Figure 16 on page 194. 

Cumulative Text Fonnatting 

By specifying the ACCUM option on the SEND 
TEXT command, you c~ accumulate blocks of 
text from mUltiple SEND TEXT ACCUM 
commands and c~ fonnat them to produce 
complete pages of text by BMS. 

You can usc the HEADER and TRAILER 
options to specify data to be placed at the top ~d 
bottom of each page. As a page boundary can 
occur as a result of ~y SEND TEXT ACCUM 
command, the HEADER and TRAILER options 
should be repeated on each SEND TEXT 
ACClJM command in the BMS logical message. 
Automatic page numbering at a user specified 
location in the header and trailer data is possible. 

A text logical message must be terminated by a 
SEND PAGE or PURGE MESSAGE comm~d 
in the normal way. The TRAILER option of the 
SEND PAGE command allows trailer data to be 
specified for the last partially full page. 

The OVERFLOW condition is not raised by the 
SEND TEXT command. There is no simple way 
for the application program to gain control at the 
end of each page of text (it can be done using the 
SET option and the RETPAGE condition as 
discussed in "Returning Mapped Data to a 
Program Before Output" on page 201). 

The JUSTIFY, JU8FIRST, and JUSLAST 
options allow the application program to position a 
block of text on a particular line (JUSTIFY) or to 
position the block of text on the top (JUSFIRST) 
or bottom (J08LAST) of the page. 

The data areas named in the HEADER and 
TRAILER options have the following format: 

l L P c PNFlD 

<--------DATA---------> 

192 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Application program 
issues a 
SEND MAP ACCUM 
command 

8MS processes 
the command 

8MS returns control 

Yes 

8MS returns control to the 
application program at thp­

OVERFLOW liJbel. 

1. Application progrnm uses the 
ASSIGN PAGENUt''v1 command to 
find the current pnqe number. 

2. Application progrnrn moves 
page number and other data 
into the TRAILEr~ mnp, and 
issues a SEND tvll\f.l ACCUM 
command for the trrtilp,r m::tp. 

3. Application program starts a 
page by transmitting a 
HEADER map (whictl specifies 
JUSTIFY=FIRSn using SEND 
MAP ACCUM EI1ASE. 

4. Application progrnrn issues a 
SEND MAP ACCUM for the map 
that caused page overflow. 

to the appl ication , r 
program following the 0 
SEND MAP ACCUM 
command 

Figure 15. Overflow Processing 

where: 

LL is a half word binary field containing the length 
of the header or trailer data. (The value does not 
include the 4 bytes of LL, P, and C characters.) 

P is a one-byte field whose contents indicate 
whether page numbering is required or not. If 
the field contains a character other than a blank 
(X'40'), page numbering is required. (XIOC', 
X '15', XII?', X '26', and X'FF' are reserved and 
cannot be used). 

The character specified is the character that is 
embedded in the header or trailer data in the 
positions (a maximum of 5) where the page 
number is to appear. If the field contains a 
blank, page numbering is not required. 

C is a reserved one-byte field. 

PNFIJ) is the page number field. This field can be 
embedded anywhere in the header or trailer data 
in the required page number position. It can 
contain from 1 through 5 occurrences of the 
character specified by P. These characters will be 
replaced by the current page number, up to a 
maximum of 32,767, as a page is built. A SEND 
PAGE command will causes the page number to 
be reset to 1. 

DATA is the header or trailer data to be placed at 
the beginning or end of each page of output. 
Embedded new-line characters (X'15') may be 
used to provide multiple heading or footing lines. 

Cnaptcr 3.2-4. FuJI Function BMS 193 



The following is a PL/I example of a valid header 
or trailler data area: 

DCL 
1 HEADAREA, 

2 HEADLL FIXED BIN(lS) INIT(14), 
2 HEADP CHARCl) INITC'a'), 
2 HEADPAD CHARCl), 
2 HEAD CHAR(14) INITC'PAGE NO. aa'); 

Cumulative Processing and Device 
Controls 

Device: controls are handled as follows for each 
page of cumulative BMS output: 

1. The ERASE, ERASEAUP, NLEOM, and 
FORMFEED options are honored if they are 

used on any of the BMS SEND commands 
which contributed to this page. 

2. The most recent values of the CURSOR, 
ACTPARTN, FMHPARM, and MSR options 
are honored for this page. 

3. The most recent value of the 3270 write control 
character (Wee) is honored for this page. The 
wee is set by the ALARM, FREEKB, 
PRINT, FRSET, lAO, L64, L80, and 
IIONEOM options. Some (or all) of these 
options may be omitted from the most recent 
BMS SEND command which contributes to 
this page. BMS does not merge together the 
wce options for all the BMS SEND 
commands contributing to this page. J4. is 
essential that all the required wee opt:ons are 
specified on the last BMS SEND command for 
each page. 

/~ OUTPUT THE FIRST HEADER MAP FOR THE FIRST PAGE ~/ 
Move Customer data to symbolic map for ORDHEAD; 
SEND MAPSETC'SAMPLE') MAPC'ORDHEAD') ACCUM PAGING ERASE; 

/~ ISSUE A HANDLE CONDITION OVERFLOW */ 
HANDLE CONDITION OVERFLOWCOVLAB); 

/~ MAIN PROCESSING LOOP. OUTPUT ORDER LINES UNTIL THE ENTIRE */ 
/~ ORDER HAS BEEN DISPLAYED */ 

LOOP: 
DO UNTILCALLDONE); 

Move order line data into the symbolic map for ORDLINE; 
SEND MAPSETC'SAMPLE') MAPC'ORDLINE') ACCUM PAGING; 
Set ALLDONE to TRUE if this is the last order line; 

END; 
/~ ALL ORDER LINES OUTPUT. OUTPUT FINAL TRAILER */ 

PAGENO=PAGENO+I; 
Move PAGENO into symbolic map for ORDTRL; 
SEND MAPSETC'SAMPLE') MAPC'ORDTRL') ACCUM PAGING; 

/~ TERMINATE LOGICAL MESSAGE WITH A SEND PAGE */ 
SEND PAGE RETAIN; 
GOTO CONTINUE; 

OVLAB: 
/~ PAGE OVERFLOW PROCESSING. OUTPUT TRAILER MAP TO END */ 
/* THE CURRENT PAGE. */ 

ASSIGN PAGENUM(PAGENO); 
Move PAGENO into symbolic map for ORDTRL; 
SEND MAPSETC'SAMPLE') ~APC'ORDTRL') ACCUM PAGING; 

/~ OUTPUT A HEADER MAP WITH THE ERASE OPTION TO START THE */ 
/. NEXT PAGE. */ 

SEND MAPSETC'SAMPLE') MAPC'ORDHEAD') ACCUM PAGING ERASL; 
/~ RE ISSUE A SEND MAP FOR THE ORDER LINE WHICH CAUSED */ 
/~ PAGE OVERFLOW, AND RETURN TO THE MAIN LOOP */ 

SEND MAPSETC'SAMPLE') MAPC'ORDLINE') ACCUM PAGING; 
GOTO LOOP; 

/~ LOGICAL MESSAGE HilS BEEN DELIVERED. CONTINUE PROCESSING */ 
CONTINUE: 

Figure 16. Example of Paging 

194 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Cumulative Processing and Partitions 

BMS handles page overflow on a partition basis, 
using the size of the current partition's presentation 
space as the page size. 

It is possible for a CICS transaction to build a 
single logical message, directed to several partitions 
(all of which must be in the same partition set). 
The logical message is terminated in the normal 
manner by a BMS SEND PAGE command, and is 
purged by a PURGE statement. 

If the ACCUM option is used, pages of maps or 
text are built on a partition basis. 

Take care when using the ACCUM option with 
multiple partitions, especially if headers and trailers 
are to appear in different partitions. At any time, 
there is only one page overflow exit for all 
partitions. Avoid an infmite loop of page 
overflows. These drive the overflow exit, making 
header or trailer partitions overflow . You can 
avoid such loops by coding the IGNORE 
CONDITION OVERFLOW command. 

All the partitions in a single logical message must 
have the same disposition (that is, they must be all 
TERMINAL, all PAGING, or all SET). 

A program can perform cumulative mapping in one 
partition of a multiple partition logical message, 
and cumulative text in another. 

A program cannot issue a SEND PAR TNSET 
request while building a logical message. 

Cumulative Processing and Logical Device 
Components 

If logical device components are in usc, Bl\IS 
cumulative processing accumulates data separately 
for each logical device component. Page overflow 
occurs on a logic~l device component basis. 
Terminal operator paging commands operate on a 
logical device component basis. It is also possible 
to accumulate map data for one logical device 
component, and text data for a different logical 
device component. 

All the logical device components participate in the 
same BMS logicaltnessage. This is terminated by 
a single SEND PAGE or PURGE MESSAGE 
command. All pages in all logical device 
components are deleted when the terminal operator 
purges the message. 

Message Routing 

You use message routing to build a logical message 
and route it to one or more terminals. The 
message is scheduled, for each designated terminal, 
to be delivered as soon as the terminal is available 
to receive messages, or at a specified time. 
Terminal operators who receive the message use 
terminal operator paging commands to view it. A 
variety of operands on the ROUTE command 
allow you flexibility when specifying the message 
destinations. 

A ROUTE command initiates a message routing 
operation. It is followed by SEND MAP, SEND 
TEXT, or SEND CONTROL commands to build 
the logical message to be routed. These commands 
must specify the ACCUM option, and usually also 
specify the PAGING option (they can specify the 
SET option, though this is unlikely). A SEND 
PAGE command terminates the logical message, 
and causes it to be routed. When individual logical 
messages are routed to a terminal, they are not 
necessarily retrieved by the terminal operator in the 
sequence in which they were issued. If a specific 
sequence of pages is required, the pages must be 
sent as one message. 

The SEND MAP, SEND TEXT, or SEND 
CO NTR 0 L commands that build the message 
must specify the ACCUM option. Other SEND 
MAP or SEND TEXT commands can be 
interleaved with these comrnands to send messages 
to the terminal that initiated the transaction while 
the message to be routed is being built. This is 
useful if a screen oriented transaction is building 
data for a printer. The screen oriented transaction 
can use normal SEND MAP (without the 
ACCUM option) and RECEIVE MAP commands 
to communicate with the screen, and can 
simultaneously build a routed message for a printer, 

Chapter 3.2-4. Full Function BMS 195 



using SEND MAP ACCUM PAGING 
commands. 

Another consideration of routing to different types 
of terrninal is the handling of overflow conditions. 
This is discussed in "Routing and Page Overflow" 
on page 201. 

The ITteSsage routing facility of BMS is useful for 
developing message switching and broadcasting 
applications, and for interacting with a screen while 
collecting data for a printer. CICS provides a 
generalized message switching application program 
that uses the message routing facility of BMS (see 
the GIGS/DOS/VS GIGS-Supplied Transactions 
manual for details). It is not possible to route a 
multiple partition or multiple LDC logical message. 
Any OUTPARTN, ACTPARTN, or LDC options 
on the: BMS SEND commands are ignored while 
routing is in effect. 

Defining a ROUTE List 

The ROUTE command is used to derme a route 
list. It has the following syntax: 

ROUTE 
[INTERVAlChhmmss)lITIMEChhmmss)] 
[ERRTERM[Cname)]] 
[TITlECdata-area)] 
[lISTCdata-area)] 
[OPClASSCdata-area)] 
[REQIDCname)] 
[lDCCname)] 
[NlEOM] 

Conditions: INVERRTERM, INVlDC, 
INVREQ, RTEFAIl, RTESOME 

1 INTERVAlCO) is the default 

The options LIST and OPCLASS allow the 
designation of those tenninals or logical units, or 
particular operators, to which the logical rnessage is 
to be .scheduled for delivery. Whether or not the 
logical message will actually be delivered (that is, 
received at the terminal) depends on many factors, 
such as availability of the terminal, or of a specific 
operator, withffi a certain time after the logical 
message is ready to be delivered. 

The LIST option specifies a list of terminals and/or 
operators to receive the routed logical message. If 

no list is provided, the logical message will be 
scheduled for delivery to all terminals supported by 
OMS (unless the OPCLASS option is specified and 
has some effect). The message is only delivered to 
operators specified in the LIST if they remained 
signed on at the same terminal as they were signed 
on at when the ROUTE command was issued. 

There is a limit to the number of terminals to 
which a message can be sent. The maximum 
cannot be defined because it is dependent on the 
other operands specified on the routing command, 
but the transaction will be abended with an abend 
code of A B M C if the limit is exceeded. 

The OPCLASS option specifies the classes of 
operators to receive the routed logical message. 
OPCLASS can be used alone, or in conjunction 
with LIST. 

The uses and format of the route list and of the 
information to be provided in the OPCLASS 
option are described in ICRoute List and Operator 
Class Codes (LIST and OPCLASS)" on page 198. 

The logical message can be delivered at a specified 
time (TIME option) or after a certain interval has 
elapsed (INTERVAL option); if neither option is 
specified, or if INTERVAL(O) is specified, the 
logical message will be delivered as soon as 
possible. 

If a logical message is to be routed to more than 
one type of terminal, BMS builds a different logical 
message containing the appropriate device 
dependent data stream for each terminal type. 
Each message is stored on temporary storage until 
all terminals of this terminal type have received the 
message. 

If a terminal is scheduled to receive a message but 
is not eligible, the message is stored until one of the 
following conditions occurs: 

• A change in terminal status allows the message 
to be sent. 

• A period specified by the PRGDLAY option 
of the DPHSIT macro has elapsed, causing the 
message to be deleted by BMS. 

196 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



• The message is deleted by the destination 
terminal operator. 

If a logical message is to be routed to terminals 
with alternate screen sizes (for example, the 3278), 
the choice of alternate or default. screen size is made 
depending on the value specified using the 
SCRNSZE option of CEDA (or the SCRNSZE 
operand of DFHPCT TYPE = ENTRY) for the 
transaction issuing the ROUTE command. (See 
the CICS/DOS/VS Resource Definition (Online) 
manual, or the CICS/DOS/VS Resource Definition 
(Macro) manual.) 

If a ROUTE command followed by one or more 
BMS output commands is not terminated by a 
SEND PAGE command before a subsequent 
ROUTE command is issued, the INVREQ 
exceptional condition occurs. A ROUTE 
command may be issued immediately following 
another ROUTE command. In this case, the ftrst 
ROUTE command is nullified, and the second 
determines the routing environment. 

Any partition or LDC related options on the B MS 
SEND commands specifying the ACCUM option 
are ignored while routing is in effect. 

If a message cannot be delivered within a certain 
time, it will be deleted (purged); the time is 
specified in the PRGDLA Y (purge delay) operand 
of the DFHSIT macro. If the PRGDLA Y 
operand is omitted, undelivered messages await 
delivery indefmitely. If PRGDLA Y is specified, an 
error message is generated by CICS whenever a 
message becomes undeliverable. The error message 
will be sent to the terminal associated with the task 
that is sending the message; alternatively, the 
application program can specify a different terminal 
to receive such error messages by using the 
ERR TERM option. In addition to sending an 
error message, CICS lets the master terminal 
operator know how many undeliverable messages 
have been deleted for a destination. 

Disposition and Message Routing 

A logical message can be built using either of two 
dispositions: PAGING or SET. The first BMS 
output command following the ROUTE command 
(with some exceptions noted below) determines the 
disposition of the logical message. Once 
established, the disposition must remain unchanged 
until the logical message is completed by a SEND 
PAGE command, or is deleted by a PURGE 
MESSAGE command. An output request 
specifying a disposition that is not in effect results 
in the INVREQ condition. 

PAGING is the normal disposition and results in 
the logical message being written to tcmporary 
storage, and the terminal operator paging 
transaction being initiated for each terminal in the 
route list. 

The SET option is rarely used in conjunction with 
routing. SET causes the logical message to be 
returned to the application program which is then 
responsible for its delivery, as discussed in 
"Returning Mapped Data to a Program Before 
Output" on page 20 J • 

Interleaving Conversation with Message 
Routing 

A task can converse with the terminal to which it is 
currently attached while it is building a logical 
message, for example for a printer. The attached 
terminal is known as the direct terminal; a terminal 
to which the message is to be routed is known as a 
routing terminal. If any RECEIVE MAP, 
R RCEIVE PAR TN, or RECEIVE commands are 
encountered while the message is being built, they 
arc processed as usual. 

The following rules apply to a direct terminal: 

• TERMINAL must be specified or implied in 
any SEND command that is to go to the direct 
tenninal. 

• The ACCUM option with a disposition of 
TERMINAL is invalid and results in the 
INVREQ condition. 

Chapter 3.2-4. Full Function BMS 197 



• The direct terminal may be included in the 
routing environment without impairing the 
ability to converse with it while under 
ROUTE. Data routed to the direct tenninal 
will be delivered as though the ROUTE 
command had been issued from another 
tenninal. 

The following shows an example of a sequence of 
commands for a logical message, and summarizes 
briefly what action CICS takes in response to each. 

SEND TEXT TERMINAL - Transmit to 
direct terminal. 

ROUTE - Establish routing environment 

SEND MAP TERMINAL - Transmit to 
direct terminal. 

RECEIVE MAP - Receive from direct 
terminal. 

SEND TEXT PAGING ACCUM - First output 
command eligible for routing 
establishes disposition of 
PAGING. 

SEND MAP TERMINAL - Transmit to 
direct terminal. 

SEND TEXT SET{A) - Invalid request; 
routed logical message has 
already established a disposition 
of PAGING. 

SEND TEXT PAGING ACCUM - Continue 
building routed logical message. 

SEND MAP{Y) PAGING ACCUM - Invalid 
request; routed logical message 
cannot be built with both SEND 
TEXT and SEND MAP commands. 

SEND MAP{Y) TERMINAL ACCUM - Invalid 
request; cannot issue SEND MAP 
ACCUM or SEND TEXT ACCUM command 
to direct terminal while 
building a routed logical 
message. 

SEND TEXT PAGING ACCUM - Continue 
building routed logical message. 

SEND PAGE - Complete and send 
logical message and terminate 
routing operation. 

SEND TEXT TERMINAL - Send to 
direct terminal. 

TITLE Option of the ROUTE Command 

The title named in the TITLE option is displayed 
with the logical message identifier when the 
terminal operator page query command is entered 
(see the CICS/ DOS/ VS CICS-Supplied 
Transactions manual). This title serves as an 
additional message identifier, displayed upon 
request with the message identifier, not on the 
logical message. The value in the 2-byte length 
field preceding the title includes the bytes used for 
the length field. The length field and title, in total, 
may be up to 64 bytes long. For example: 

IX'OOlA'IMONTHlYbINVENTORYbREPORTI 

2-byte 
length 
field 

24-byte 
title 
field 

Route List and Operator Class Codes 
(LIST and OPCLASS) 

The system programmer specifies the tenninal or 
logical unit identifiers for aU the terminals of the 
CICS system in the terminal control table (TCT). 
(For logical units with LDC support, LDC 
mnemonics are specified in the LDC table.) Also, 
an operator identifier must be specified for each 
operator, and up to 24 operator class codes (in the 
range I through 24) can be specified for particular 
operators, using the OPIDENT and OPCLASS 
operands, respectively, of the sign-on-table system 
macro (DFHSNT TYPE=ENTRY). 

When an operator signs on at a terminal, CICS 
associates the operator and the optional class codes 
with that terminal until the operator signs off again. 
The application program can provide a route list in 
the LIST option to specify which terminals, or 
logical units, or operators are to receive the logical 
message; alternatively, or in addition, up to 24 
operator class codes can be specified for use with a 
ROUTE operation, by using the OPCLASS 
option. 

Before a logical message is delivered, all of the 
following conditions must be fulftlled: 

198 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



• The terminal or logical unit must be supported 
by BMS and be operational. 

• The logical message must be ready for delivery 
(TIME or INTERVAL options satisfied). 

• The purge delay must not have expired. 

Whether or not a logical message will be delivered 
at a specific terminal then depends on the use of 
the LIST and OPCLASS options, as follows: 

• LIST and OPCLASS are omitted. All 
terminals will receive the message. 

• LIST is specified but OPCLASS is omitted. 
The route list can contain three types of entry, 
each type having a different effect. All three 
types of entry can be included in the same list. 
The types of entry are: 

Entries specifying a particular terminal (or 
logical unit) identifier but no operator 
identifier. Each specified terminal will 
receive the message. 

Entries specifying a particular terminal (or 
logical unit) identifier and an operator 
identifier. Each specified terminal will 
receive the message if or when the specified 
operator is signed on at the terminal. 

Entries specifying only an operator 
identifier. Each specified operator must be 
signed on at a terminal supported by BMS 
when the ROUTE command is issued; 
otherwise the route list entry for that 
operator is ignored (skipped). CICS will 
then schedule the message for delivery to 
each terminal at which a specified operator 
is signed on. If a particular operator is 
signed on at more than one terminal, CICS 
will schedule the message for delivery to 
the one whose entry appears frrst in the 
terminal control table. Each terminal for 
which the message is scheduled will then 
receive the message (when it is ready for 
delivery if the specified operator is still 
signed on at the terminal or when the 
operator signs on again. 

• LIST is omitted but OPCLASS is specified. 
CICS will schedule the message for delivery to 
all terminals at which an operator having at 
least one of the specified operator class codes is 
signed on when the ROUTE command is 
issued. Each terminal for which the message is 
scheduled will then receive the message (when 
it is ready for delivery) if or when an operator 
(not necessarily the same one as before) having 
at least one of the specified operator class codes 
is signed on at the terminal. 

• LIST and 0 PCLASS are both specified. The 
effect of the OPCLASS specification for the 
different types of route list entries is as follows: 

Entries specifying no operator identifier. 
The effect is the same as if only the 
o PCLASS option were specified, but is 
restricted to those terminals (or logical 
units) specified in the route list. However, 
in this case, an operator with a matching 
operator class does not need to be signed 
on. 

Entries specifying an operator identifier 
(and possibly a terminal or logical unit 
identifier). The OPCLASS specification is 
ignored for these route list entries, and the 
effect is the same as if only the LIST 
option were specified. 

Route List Fonnat 

The route list specified in the LIST option must 
conform to a fixed format. The list consists of 
16-byte entries as follows: 

Bytes Contents 

0-3 Terminal or logical unit 
identifier (4 characters, 
including trailing blanks), or 
blanks 

4,5 lDC mnemonic (2 characters) 
for logical units with lDC 
support, or blanks 

6-8 Operator identifier, or blanks 

9 status flag for the route entry 

10-15 Reserved; must contain blanks 

Chapter 3.2-4. Full Function BMS 199 



The end of the list is designated by a binary 
halfword initialized to -1. 

The status flag (byte 9) indicates to the application 
program the status of the destination when the 
ROUTE command is issued. Upon return, the 
application program can investigate the status flag 
byte for each entry and take appropriate action. 
The status flag byte settings and their meanings are 
as foUlows: 

ENTIty SKIPPED 
A route list entry was excluded. If an entry 
has been excluded, another flag indicating 
why the entry was skipped may be on in the 
status byte.. This second flag could be any of 
the other flags shown in the table. If the 
OPERATOR NOT SIGNED ON flag is on, 
only an operator identifier was specified in 
the route list entry and the specified operator 
was not signed on at any terminal. The 
settings are X'80' for ASM, 12-0-1-8 for 
COBOL, and 10000000 for PL/1. 

INV ALID TERMINAL IDENTIFIER 
indicates that the terminal identifier specified 
in the route list entry does not have a 
corresponding entry in the terminal control 
table. This entry is also flagged as ENTRY 
SKIPPED. The settings are X'40' for ASM, 
no punches for COBOL, and 01000000 for 
PL/1. 

TER~t1INAL NOT SUPPORTED UNDER BMS 
indicates that the terminal identifier specified 
in the route list entry is for a type of terminal 
that is not supported under BMS; or the 
terminal table entry indicated that the 
terminal was not eligible for routing. This 
entry is also flagged as ENTRY SKIPPED. 
The settings are X'20' for ASM 11-0-1-8-9 for 
COBOL, and 00100000 for PL/1. 

OPERATOR NOT SIGNED ON 
indicates that the specified operator is not 
signed on. Anyone of the following 
conditions causes this flag to be set: 

• Both an operator identifier and a terminal 
identifier were specified, and the specified 

operator was not signed on at the 
terminal. This entry is not skipped. 

• An operator identifier was specified 
without a terminal identifier, and the 
operator was not signed on at any 
terminal. This entry is also flagged as 
ENTRY SKIPPED. 

• The a PCLASS option was specified with 
the ROUTE command and a terminal 
identifier was specified in the route list 
entry, but the operator signed on at the 
terminal did not have any of the specified 
operator classes. This entry is not 
skipped. 

The settings are X'lO' for ASM, 12-11-1-8-9 
for COnaL, and 00010000 for PL/1. 

OPERATOR SIGNED ON AT UNSUPPORTED 
TERMINAL 
indicates that only an operator identifier was 
specified in the route list entry, and that 
operator was signed on a terminal not 
supported by BMS. This entry is also flagged 
as ENTRY SKIPPED. The unsupported 
terminal identifier is returned in that route list 
entry's terminal identifier field. The settings 
are X108' for ASM, 12-8-9 for COBOL, and 
00001000 for PL/I. 

INV AlJD LDC MNEMONIC 
indicates that one of the following situations 
exists: 

• The LDC mnemonic specified in the 
route list does not appear in the LDC list 
associated with the TCT. 

• The device type generated in the system 
LDC table for the specified or implied 
LDC mnemonic is not the same as the 
device type for the first LDC specified in 
the route environment. 

The settings are X'04' for ASM, 12-4-9 for 
COBOL, and 00000100 for PL/I. 

A symboUc storage definition of the user-supplied 
route Ust is available in the source library (or 

200 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



libraries) under the member name DFHURLDS. 
This defmition can be used as an aid in building the 
route list, and if necessary, in testing the status flag 
byte for each entry upon return from a ROUTE 
command that refers to a list. 

The list can be supplied in noncontiguous areas 
called segments, in which case every segment except 
the last is terminated with (at least) an 8-byte entry 
with contents as follows: 

Bytes Contents 

0,1 ASM: binary halfword 
initialized to -2 

COBOL: 
PIC S9(4) COMP VALUE -2. 

PL/I I 

DCL FIXED BINCI5) INITC-2) 

2,3 Reserved 

4-7 Chain address to the first 
entry of the next segment 

The last segment (that is, the end of the route list) 
ends with a binary halfword initialized to -1. 

Routing and Page Overflow 

The routing process builds a separate logical 
message containing the appropriate device 
dependent data stream for each terminal type 
mentioned in the route list. Since different types of 
terminal may have different page sizes, the overflow 
condition is likely to occur at different times in 
page building. BMS returns control to an overflow 
label in the application program, where the 
application program can determine by appropriate 
ASSIGN options which type of terminal caused the 
overflow, the current page number for that terminal 
type, and the total number of terminal types in the 
route list. 

This is done using the ASSIGN command with 
either the DESCOUNT or PAGENUM options, 
as follows: 

1. The ASSIGN DESTCOUNT command may 
be issued following a ROUTE command. It 
returns a count of the number of terminal types 

to receive the routed message. This count tells 
the application program how many logical 
messages will be built by BMS, and hence how 
many "overflow control areas" the application 
program should allocate. These overflow 
control areas may be useful for the application 
program to remember, for example, the current 
page number for each terminal type. Note, 
however, that it is not necessary to use 
overflow control areas. 

2. The ASSIGN DESTCOUNT command may 
be issued following page overflow to return the 
relative overflow control number of the 
terminal type that has encountered the 
overflow. This number indicates which 
overflow control area should be referenced, 
perhaps through one or more trailer maps. 

3. The ASSIGN PAGENUM command returns 
the page number for the terminal type that has 
encountered the overflow. 

Message Switching Transaction 
(CMSG) 

CICS provides a message switching transaction 
(CMSG), which uses BMS text, routing, and 
paging. This transaction allows a terminal operator 
to send a text message to one or more other 
terminal operators. This transaction is discussed in 
the CICS/IJOS/VS CICS-Supplied Transactions 
manual. 

Returning Mapped Data to a 
Program Before Output 

SET Option 

The SET option of the SEND MAP, SEND 
TEXT, and SEND CONTROL commands causes 
completed pages of a device dependent data stream 
to be returned to the app1ication program, and sets 
a pointer to the address of a list of completed 
pages. The application program can use the SET 
option to: 

Chapter 3.2-4. Full Function BMS 201 



1. Implement its own terminal operator paging 
scheme. It will thus save the returned pages in 
tenlporary storage, and subsequently retrieve 
them from temporary storage and sendt them to 
the terminal by a SEND TEXT MAPPED 
cornmand. 

2. Fill a screen with text data, and gain control 
when the screen is full. This can be done by 
issuing: 

a. A HANDLE CONDITION 
RETPAGE(label) command. BMS passes 
control to the specified label on the SEND 
TEXT ACCUM SET command which 
causes "page overflow". 

b. SEND TEXT ACCUM SET cornmands 
to send the text. 

c. A SEND PAGE SET command followed 
by a SEND TEXT MAPPED command 
in the code which handles the RETPAGE 
condition. 

3. Modify the device dependent data stream 
returned by BMS. This is not recOtrunended, 
as the fonnat of the data stream is not 
guaranteed to retdafn unc~anged. 

A single BMS command can generate more than 
one page of output; there may be more than one 
entry in the list for a given type of terminal. (Note 
that pages may be built for multiple terminal types 
by a single BMS command if routing is in effect.) 

The entries for each type of terminal immediately 
follow one another in the list. Each entry contains 
a single byte terminal code (described in the next 
section) and a 3-byte address of a terminal 
input/output area (TIOA) containing a device 
dependent data stream plus header information. 
The layout of the TIOA is as follows: 

Field Contents 

TIOASAA 8-bytes of storage accounting 
information 

TIOATDl 2-bytes indicating length of 
data field TIOADBA, 
2-bytes reserved 

TIOADBA data field containing device 
dependent data stream 

The page list is terminated by an entry with a 
X'FF' value for the terminal code. The page list is 
reused following a SEND PAGE or PURGE 
MESSAGE command. 

At this point, the page buffers addressed by the 
page list are on the user's storage chain, and are 
disassociated from BMS control. The application 
program should free these pages by means of 
FREEMAIN commands, when the pages are no 
longer needed. The storage containing the page list 
should not be freed; the list will be reused by BMS 
to reduce processing time. The page list may be 
altered by the next B MS output command 
specifying the SET option. 

Tenninal Code Table 

A terminal code table is established within BMS for 
reference in servicing BMS-supported terminals. 
There is one entry in this table for each terminal 
supported under BMS. A terminal code appears in 
the list of completed pages made available to the 
application program when the SET option is 
specified in a B MS output command. The code is 
available also in the EIBRCODE field of the 
EXEC'interface block when the INVMPSZ 
condition occurs; for a description of this field, refer 
to Appendix A, "EXEC Interface Block" on 
page 413. This terminal type code is only of 
interest if B MS message routing is in effect. The 
codes are as follows: 

202 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Code Terminal or Logical Unit 

A CRlP terminals 
B Magnetic Tape 
C Sequential Disk 
D TWX Model 33/35 
E 1050 
F 2740-1,-2 (no buffer receive) 
G 2741 
H 2740-2 (with buffer receive) 
I 2770 
J 27S0 
K 37S0 
II 3270 (40-character width) 
M2 3270 (SO-character width) 
N Not used 
o Not used 
p3 3767/70 Interpreter lU 
Q 29S0 Models 1 and 2 
R 29S0 Model 4 
S Not used 
T Not used 
U 3600 (3601) lU 
V 3650 Host Conyers (3653) lU 
W 3650 Interpreter LU 
X 3650 Host Conyers (3270) lU 
yl 3770 Batch lU 
Z Not used 

I Used also for 3770 and 3790 batch 
data interchange logical units, and 
LUTYPE4 logical units. 

2 Includes all LUTYPE2 and lUTYPE3 
logical units. 

3 Used also for the 3790 full function 
logical unit and the SCS printer 
logical unit. 

SEND TEXT MAPPED Command 

This command sends a page of a device dependent 
data stream previously built by BMS, and returned 
to the application program via the SET option. 
The command syntax is: 

SEND TEXT 
MAPPED 
FROM(data-area) 
[lENGTH(data-value)] 
[PAGINGITERMINAL[WAIT]] 
[REQID(name)] 

Conditions: IGREQCD, IGREQID, 
RETPAGE, TSIOERR 

This command must only be used to output a 
device dependent data stream previously built by 
BMS. It references a 4-byte "Page Control Area 
(PGA)" which BMS placed at the end of the device 
dependent data stream. The length of device 
dependent data stream set in the TIOA TDL field 
of the page buffer returned by the SET option, 
does not include the PGA. The LENGTH option 
of the SEND TEXT MAPPED command should 
be set from this TIOATDL, and hence does not 
include the PGA. However, if the application 
program copies the page buffer returned by the 
SET option, it should include the PGA in the 
copied data. 

SEND TEXT NO EDIT Command 

This command sends a page of a device dependent 
data stream built by the application program. The 
data stream cannot contain structured fields. This 
command differs from a terminal control SEND, as 
the data stream may be written to temporary 
storage and interfaced to the terminal operator 
paging transaction (specify the PAGING option). 
Also the device dependent data stream may be sent 
to a partition (specify the OUTPARTN option). 

The syntax of this comman9 is: 

SEND TEXT 
NOEDIT 
FROM( data-area) 
[LENGTH(data-value)] 
[REQID(name)] 
[OUTPARTN(name)] 
[PAGINGITERMINAL[WAIT]] 
[ERASE] 
[PRINT] 
[FREEKB] 
[ALARM] 

Conditions: IGREQCD, IGREQID, 
INVREQ, RETPAGE, TSIOERR 

The device dependent data stream in the FROM 
area cannot use structured fields. 

If the 0 UTI' AR TN option is specified, the data 
stream is sent to the specified partition. 

Chapter 3.2-4. Full Function OMS 203 





Chapter 3.2-5. BMS Macro and Command Reference Summary 

This chapter shows the syntax of each BMS macro 
and command, separating the various operands and 
options into those appropriate to minimum, 
standard, and full function BMS. 

It describes the purpose and format of each macro 
and its operands, each command and its options, 
and pbints to related guidance information in the 
other BMS chapters. This chapter is for reference 
only; it contains no guidance information. 

Map Set, Map, and Field 
Definition 

This section describes the three map definition 
macros DFHMSD, DFHMDI, and DFHMDF. It 
shows the syntax of the macros, then lists and 
defmes the operands. 

You should ensure that the names of maps, and 
names of fields within a map set (or within multiple 
map sets that are copied into one application 
program) are unique. 

Map Set Definition Macro (DFHMSD) 

A DFHMSD macro defmes a map set; it begins: 

DFHMSD TYPE=MAP (or TYPE=DSECT) 

and endsl 

DFHMSD TYPE=FINAl 

The syntax of the DFHMSD macro is: 

Minimum BMS 

mapset DFHMSD 
TYPE={~IMAP) 

[, MODE= (INJ.o.ID.1 INOUT)] 
[,lANG={ASMICOBOlIPlIIRPG}] 
[,STORAGE=XUTOI,BASE=name] 
[,CTRL=([PRINT][,[length] 

[,FREEKB][,AlARM][,FRSET])] 
[,EXTATT={NOIMAPONlYIYES}] 
['COlOR={~ICOIOr}] 
[,HILIGHT= BlINKI 

REVERSEIUN RLINE}] 
[,PS={BASElpsid}] 
[,VAlIDN=([MUSTFILl] 

[,MUSTENTER][,TRIGGER])] 
[,TERM=typel,SUFFIX=n] 
[,TIOAPFX={YESIHQ}] 
[,MAPATTS=(attrl,attr2, ... )] 
[,DSATTS=(attrl,attr2, ... )] 
[,OUTlINE={BOXI([lEFT][,RIGHT] 

[,OVER][,UNDER])}] 
[,SOSI={tmIYES}] 
[,TRANSP=t~INO}] 

standard BMS 

[,PARTN=(name[,ACTIVATE])] 
[,LDC=mnemonic] 
[,OBFMT=(YESIHQ)] 
[,HTAB=tab[,tab] ... ] 
[,VTAB=tab[,tab] ... ] 
[,DATA={ElElDIBLOCK}] 
[,FlDSEP=rch8rIX'hex-char']] 

"mapset" is the 1- through 7 -character name of the 
map set. 

A DFIIMSD macro contains one or more map 
definition macros, each of which contains one or 
more field defmition macros. 

Chapter 3.2-5. OMS Macro and Command Reference Summary 205 



Map Definition Macro (DFHMDI) 

The DFHMDI macro defmes a map within the 
map se:t defmed by the previous DFHMSD macro. 
A map contains zero or more fields. The syntax of 
this macro is: 

Minimum BMS 

map DFHMDI 
[,SIZE=(line,column)] 
[,CTRL=([PRINT][,length] 
[,FREEKB][,ALARM][,FRSET])] 
[,EXTATT={KQIMAPONLYIYES}] 
[,COLOR={D~FAU~Tlcolor}] 
[,HILIGHT= gff BLINKI 

REVERSEIUNDERLINE}] 
[,PS={BASElpsid}] 
[,VALIDN={[MUSTFILL] 

[,MUSTENTER][,TRIGGER]}] 
[,COLUMN=number] 
[,LINE=number] 
[,FIELDS=NO] 
[,MAPATTS=(attrl,attr2, ... )] 
[,DSATTS=(attrl,attr2, ... )] 
[,OUTLINE={BOXI([LEFT][,RIGHT] 

[,OVER][,UNDER])}] 
[, SOSI = {tWI YES}] 
[,TRANSP=1~INO}] 
[,JUSTIFY=BOTTOM] 

Standard BMS 

[,PARTN=(name[,ACTIVATE])] 
[,OBFMT={YESINO}] 
[,DATA={ElElDIBLOCK}] 
[,TIOAPFx=lYESINO}] 
[~FLDSEP=[char X'hex-char']] 

Full BMS 

[,COLUMN={numberINEXTISAMf}] 
[,LINE={numberIHfXIISAMEJI 
[,JUSTIFY=([{lEEIIRIGHT}] 

[,(FIRSTILASill)] 
[,HEADER=YES] 
[,TRAILER=YES] 

"map:17 is the 1- through 7-character name of the 
map. 

Notefor COBOL Users: If the maps are for use in 
a COBOL program, and STORAGE = AUTO has 
not bI~en specified in the DFHMSD macro, they 
must be specified in descending size sequence. 
(Size refers to the generated 01 level data areas and 
not to the size of the map on the screen.) For 
more information, see "Getting Storage for a Data 
Structure" on page 151. 

Field Definition Macro (DFHMDF) 

lbe DPHMDF macro defines a field within a map 
defined by the previous DFHMDI macro. The 
syntax of this macro is: 

Minimum BMS 

[fld] DFHMDF 
[,POS={numberl(line,column)}] 
[,LENGTH=number] 
[,JUSTIFY=([{LEFTIRIGHT}] 

[,(BLANKIZERO}])] 
[,INITIAL='char data'i 

XINIT=hex data] 
[,ATTRB= 
([{ASKIPIPROTIUNPROT[,NUM])] 

[,{BRTINORMIDRK}] 
[,DET][,IC][,FSET])] 

[,COLOR={DfFAULflcolor}] 
[,PS={BASE psid ] 
[,HILIGHT={OfEIBlINKIREVERSEI 

UNDERLINElr 
[,VALIDN=([MUSTFILL] 

[,MUSTENTER][,TRIGGER])] 
[,GRPNAME=group-name] 
[,OCCURS=number] 
[,PICIN='value'] 
[,PICOUT='value'] 
[,OUTLINE={BOXI([LEFT][,RIGHT] 

[,OVER][,UNDER])}] 
[,SOSI={.HO.IYES}] 
[,TRANSP=tYfSINO}] 
[,CASE=MIX"EDl 

"fld" is the 1- through 7-character name of the 
field. 

If ccfld" is omitted, application programs cannot 
access the field to change its attributes or alter its 
contents. For an output map, omitting the field 
name may be appropriate when the INITIAL . 
operand is used to specify the contents of a field. If 
a field name is specified and the map that includes 
the field is used in a mapping operation, nonnull 
data supplied by the user overlays data supplied by 
initialization (unless default data only is being 
written). 

The performance of input mapping operations is 
optimized if DFHMDF macros are arranged in 
numerical order of the pas operand. 

You cannot defme more than 1023 named fields for 
a COBOL or PL/I input/output map. 

206 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Ending a Map Set Definition 

A map set defmition ends with a macro of the 
form: 

I [mapsetl DFHMSD TYPE=FINAL 

"mapset" is optional, but if used it must be the 
same as that on the DFHMSD macro that began 
the map set. 

Map Definition Macro Operand Summary 

This section lists and describes the operands of the 
three map defmition macros, DFHMSD, 
DFHMDI, and DFHMDF. 

ATIRB 
is applicable only to fields to be displayed on 
a 3270 (it is ignored if sent to a non-3270 
terminal) and specifies device dependent 
characteristics and attributes, such as the 
capability of a field to receive data or the 
intensity to be used when the field is output. 
If A TTRB is specified within a group of 
fields, it must be specified in the frrst field 
entry. A group of fields appears as one field 
to the 3270. Therefore, the A TTRB 
specification refers to all of the fields in a 
group as one field rather than as individual 
fields. Refer to the publication An 
Introduction to the IBM 3270 Information 
Display System for further information. 

This operand applies only to 3270 data 
stream devices; it will be ignored for other 
devices, except that ATTRB = DRK is 
honored for the SCS Printer Logical Unit. It 
will also be ignored (except for 
ATTRB = DRK) if the NLEOM option is 
specified on the SEND MAP command for 
transmission to a 3270 printer. In particular, 
ATTRB = DRK should not be used as a 
method of protecting secure data on output 
on non-3270, non-SCS printer terminals. It 
could however, be used for making an input 
field nondisplay for secure entry of a 
password from a screen. 

For input map fields, DET and NUM are the 
only valid options; all others are ignored. 

ASKIP specifies that data cannot be keyed 
into the field and causes the cursor (current 
location pointer) to skip over the field. 

PR OT specifies that data cannot be keyed 
into the field. 

If data is to be copied from one device to 
another attached to the same 3270 control 
unit, the first position (address 0) in the 
buffer of the device to be copied from must 
not contain an attribute byte for a 
protected field. When preparing maps for 
3270s, ensure that the frrst map of any page 
does not contain a protected field starting 
at position O. 

UNPROT specifies that data can be keyed 
into the field. 

NUM ensures that the data entry keyboard is 
set to numeric shift for this field unless the 
operator presses the alpha shift key, and 
prevents entry of nonnumeric data if the 
Keyboard Numeric Lock feature is 
installed. 

8RT specifies that a high intensity display of 
the field is required. By virtue of the 3270 
attribute character bit assignments, a field 
specified as B R T is also potentially 
detectable. However, for the field to be 
recognized as detectable by BMS, DET 
must also be specified. 

NORM specifies that the field intensity is to 
be normal. 

DRK specifies that the field is 
nonprint/nondisplay. DRK cannot be 
specified jf DET is specified. 

DET specifies that the field is potentially 
detectable. 

The first character of a 3270 detectable field 
must be one of the following: 

! > & blank 

Chapter 3.2-5. BMS Macro and Command Reference Summary 207 



If ? or >, the field is a selection field; if & 
or blank, the field is an attention field. 
(See the' publication An Introduction to the 
IBM 3270 Information Display SYJ·tem for 
further details of detectable fields.) 

A field for which B R T is specified is 
potentially detectable to the 3270, by virtue 
of the 3270 attribute character bit 
assignments, but is not recognized as such 
by BMS unless DET is also speciJied. 

DET and DRK are mutually exclusive. 

If DET is specified for a field on a map 
with MODE = IN, only one data byte is 
reserved for each input field. This byte is 
set to XIOO', and remains unchanged if the 
field is not selected. If the field is selected 
the byte is set to XIFF'. 

No other data is supplied, even if the field 
is a selection field and the ENTER key has 
been pressed. 

If the data in a detectable field is required, 
all of the following conditions must be 
fulfilled: 

1. The field must begin with om~ of the 
following characters: 

! > & blank 

and DET must be specified in the 
output map. 

2. The ENTER key (or some other 
attention key) must be pressed after the 
field has been selected, although the 
ENTER key is not required for 
detectable fields beginning with a & or 
a blank. 

3. DET must not be specified for the field 
in the input map. DET must, 
however, be specified in the output 
map. See "Chapter 3.2-2. Minimum 
Function BMS" on page 135 for more 

information on B MS support of the 
light pen. 

Ie specifies that the cursor is to be placed in 
the fust position of the field. The IC 
attribute for the last field for which it is 
specified in a map is the one that takes 
effect. If not specified for any fields in a 
map, the default location is zero. 
Specifying IC with ASKIP or PROT 
causes the cursor to be placed in an 
unkeyable field. 

This option can be overridden by the 
CURSOR option of the SEND MAP 
command that causes the write operation. 

FSET specifies that the modified data tag 
(MDT) for this field should be set when 
the field is sent to a terminal. 

Specification of FSET causes the 3270 to 
treat the field as though it has been 
modified. On a subsequent read from the 
terminal, this field is read, whether or not it 
has been modified. The MDT remains set 
until the field is rewritten without 
ATTRB = FSET or until an output 
mapping request causes the MDT to be 
reset. 

Either of two sets of defaults may apply 
when a field to be displayed on a 3270 is 
being defmed but not all parameters are 
specified. If no ATTRB parameters are 
specified, ASKIP and NORM are assumed. 
If any parameter is specified, UNPROT 
and NORM are assumed for that field 
unless overridden by a specified parameter. 

BASE = name 
specifies that the same storage base will be 
used for the symbolic description maps from 
more than one map set. The same name is 
specified for each map set that is to share the 
same storage base. Because all map sets with 
the same base describe the same storage, data 
related to a previously used map set may be 
overwritten when a new map set is used. 
Furthermore, different maps within the same 
map set will also overlay one another. 

208 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



This operand is not valid for assembler 
language programs, and cannot be used when 
STORAGE = AUTO has been specified. 

For example, assume that the following 
macros are used to generate symbolic 
description maps for two map sets: 

MAPSET1 DFHMSD TYPE=DSECT, 
TERM=2780,lANG=COBOl, 
BASE=DATAREA1,MODE=IN 

MAPSET2 DFHMSD TYPE=DSECT, 
TERM=3270,lANG=COBOl, 
BASE=DATAREA1,MODE=OUT 

The symbolic description maps of this 
example might be referred to in a CO BO L 
application program as follows: 

llNKAGE SECTION. 
01 DFHBllDS COpy DFHBllDS. 

02 TIOABAR PIC S9(8) COMPo 
02 MAPBASE1 PIC~S9(8) COMPo 

01 DFHTIOA COpy DFHTIOA. 
01 DATAREA1 PIC X(1920). 
01 name COpy MAPSET1. 
01 name COpy MAPSET2. 

. 
EXEC CICS GETMAIN lENGTH(1000) 

SET(MAPBASE) INITIMGCO) 
END-EXEC 

MAPSET I and MAPSET2 both redefme 
DATAREAI; only one 02 statement is 
needed to establish addressability. However, 
the program can only use the fields in one of 
the symbolic description maps at a time. 

If BASE = DA T AREA I is deleted from this 
example, an additional 02 statement is needed 
to establish addressability for MAPSET2; the 
01 DATAREAl statement is not needed. 
The program could then refer to fields 
concurrently in both symbolic description 
maps. 

The GETMAIN command should specify 
enough storage to contain the largest map of 
all those that share the same storage base. In 

this case, the programmer has decided that 
the largest map requires 1000 bytes of storage. 

In PL/I application programs, the name 
specified in the BASE operand is used as the 
name of the pointer variable on which the 
symbolic description map is based. If this 
operand is omitted, the default name 
(BMSMAPBR) is used for the pointer 
variable. The PL/I programmer is 
responsible for establishing addressability for 
the based structures. 

Note: The BASE operand is also described 
under "Getting Storage for a Data Structure" 
on page 151. 

CASE=MIXED 
specifies that the field contains both 
uppercase and lowercase data that is to be 
converted to uppercase if 
FEATURE = KAT AKANA has been 
included in the terminal defmition. 

This should be specified if a field is known to 
contain lowercase latin characters but may be 
displayed on a Katakana display. It should 
not be specified if the field may contain valid 
Katakana characters . 

COLOR 
indicates the individual color, or the default 
color for the map set (where applicable). 
This is overridden by the COLOR operand of 
the DFHMDI macro, which is in tum 
overridden by the CO LO R operand of the 
DFHMDF macro. 

The valid colors are blue, red, pink, green, 
turquoise, yellow, and neutral. 

If COLOR is specified when 
EXTATT= NO, a warning is issued and the 
option ignored. If COLOR is specified, but 
EXTATT is not, EXTATT=MAPONLY 
will be assumed. 

The COLO R operand is ignored unless the 
terminal supports color, as indicated by the 
FEATURE operand of the DFIITCT 
TYPE = TERMINAL system macro. 

Otapter 3.2~5. BMS Macro and Command Reference Summary 209 



COLUMN 
specifies the column in a line at which the 
rnap is to be placed, that is, it establishes the 
left or right map margin. The JUSTIFY 
operand of the DFHMDI macro controls 
whether map and page margin selection and 
column counting are to be from the left or 
light side of the page. The columns between 
the specified map margin and the page margin 
are not available for subsequent use on the 
page for any lines included in the map. 

number is the column from the left or right 
page margin where the left or right map 
margin is to be established. 

NEXT indicates that the left or right map 
margin is to be placed in the next available 
column from the left or right on the 
current line. 

SAME indicates that the left or right map 
margin is to be established in the same 
column as the last nonheader or 110ntrailer 
map used that specified 

CTRI., 

COLUMN = number and the same 
JUSTIFY parameters as this ma(:ro. 

For input operations, the map will be 
positioned either at the extreme left hand 
or right hand side depending on whether 
JUSTIFY = LEFT or RIGHT has been 
specified. 

Refer to "Map Po~itioning" on page 187 
for a detailed discussion of BMS map 
positioning. 

defmes characteristics of IBM 3270 terminals. 
The CTRL operand on the DFHMSD macro 
is overridden by the CTRL option on the 
DFHMDI macro, which is in tum overridden 
by the ALARM, FREEKB and so on, 
options on the SEND MAP command. 

If CTRL is used with cumulative BMS 
paging (that is, the ACCUM option is used 
on the BMS SEND MAP commands), it 
must be specified on the last (or only) map of 

a page, unless it is overridden by the 
ALARM, FREEKB and so on, options on 
the SEND MAP command. 

PRINT must be specified if the printer is to 
be started; if omitted, the data is sent to the 
printer buffer but is not printed. This 
operand is ignored if the map set is used 
with 3270 displays without the Printer 
Adapter feature. 

length indicates the line length on the printer; 
length can be specified as LAO, L64, L80, 
or IIONEOM. LAO, L64, and L80 force a 
new line after 40, 64, or 80 characters, 
respectively. HONEOM causes the default 
printer line length to be used. If this 
option is omitted, BMS will set the line 
length from the TCT page size. This is 
further discussed under "Printed Output" 
on page 158. 

FREEKB causes the keyboard to be unlocked 
after the map is written. If FREEKB is 
not specified, the keyboard remains locked; 
data entry from the keyboard is inhibited 
until this status is changed. 

ALARM activates the 3270 audible alarm. 
For non-3270 VT AM terminals it sets the 
alarm flag in the FMH. (This feature is 
not supported by interactive and batch 
logical units.) 

FRSET specifies that the modified data tags 
(MDTs) of all fields currently in the 3270 
buffer are to be reset to a not-modified 
condition (that is, field reset) before map 
data is written to the buffer. This allows 
the DFHMDF macro with the ATTRB 
operand to control the fmal status of any 
fields written or rewritten in response to a 
BMS command; 

DATA 
specifies the format of the data. 

FIELD specifies that the data is passed as 
contiguous fields each field having the 
format: 

210 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



IlllAldata fieldl 
I I I , 

"LL" is two bytes specifying the length of 
the data as input from the terminal (these 
two bytes are ignored in output 
processing). CIA" is a byte into which the 
programmer can place an attribute to 
override that specified in the map used to 
process this data (see copy book 
DFHBMSCA in "BMS Related 
Constants" on page 222). 

If you specify EXT A TT = YES, the field 
will have the form 

where C, P, H, and V are the color, 
program symbol, highlight, and validation 
attribute bytes, respectively. See "Chapter 
3.2-2. Minimum Function BMS" on 
page 135 for further information on field 
data. 

BLOCK specifies that the data is passed as a 
continuous stream in the following format: 

IAldata fieldlspacel 
I , I I 

This stream is processed as line segments of 
the length specified in the map used to 
process the data. The data is in the form 
that it appears on the terminal; that is, it 
contains data fields and interspersed blanks 
corresponding to any spaces that are to 
appear between the fields on output. 
EXT ATT = YES cannot be used if 
DATA = BLOCK is specified. 

Block data is further discussed in "Chapter 
3.2-3. Standard Function BMS" on 
page 161. Its use is not recommended. 

DSATTS 
specifies the attribute types to be included in 
the symbolic description map. These types 
can be one or more of the following: 
COLOR, HILIGHT, OUTLINE, PS, SOSI, 
TRANSP, and VALIDN. Any type included 

in DSA TTS should also be included in 
MAPATTS. 

EXTATf 
this operand is supported for compatibility 
with previous releases. For new maps, the 
operands DSA TTS and MAPA TTS should 
be used instead. 

NO is equivalent to neither of the operands 
DSA TTS and MAPA TTS being specified. 

YES is equivalent to: 

MAPATTS=(COlOR,HIlIGHT,PS,VAlIDN) 
DSATTS=(COlOR,HIlIGHT,PS,VAlIDN) 

MAPONL Y is equivalent to: 

MAPATTS=(COlOR,HIlIGHT,PS,VAlIDN) 

FIELDS 
specifies whether or not the map contains 
fields. If you specify FIELDS = NO, you 
create a null map that defmes a "hole" in 
BMS's view of the screen. BMS cannot 
change the contents of such a hole after it has 
created it by sending a null map. 

FLDSEP 
can be up to 4 characters indicating the field 
separator sequence for input from non-3270 
devices. Input from non-3270 devices can be 
entered as a single string of data with the field 
separator sequence delimiting fields. The data 
between the field separators is moved to the 
input fields in the map in order. 

GRPNAME 
is the name (1- through 7-characters) used to 
generate symbolic storage defmitions and to 
combine specific fields under one group 
name. The same group name must be 
specified for each field that is to belong to the 
group. 

If this operand is specified, the OCCURS 
operand cannot be specified. 

The fields in a group must follow on; there 
can be gaps between them, but not other 
fields from outside the group. A field name 

Chapter 3.2-5. OMS Macro and Command Reference Summary 211 



r:nust be specified for every field that belongs 
to the group, and the POS operand must be 
also specified to ensure the fields follow each 
other. All the DFHMDF macros dcfming 
the fields of a group must be placed together, 
and in the correct order (upward nUlneric 

. order of the POS operand). 

For example, the frrst 20 columns of the frrst 
six lines of a map can be defmed as a group 
of six fields, so long as the remaining columns 
on the frrst five lines are not defmed as fields. 

The A TfRB operand specified on the frrst 
field of the group applies to all of the fields 
within the group. 

A display field cannot extend beyond the 
right hand edge of a map. The length of the 
dlisplay field built by a group of subfields is 
thus limited to the width of the map. 

Field groups are described under "Field 
Groups" on page 144. 

HEAnER 
aUows the map to be used during pa.ge 
building without terminating the overflow 
condition (see "Floating Maps, Header and 
Trailer Maps" on page 186 for further 
details). This operand may be specified for 
[nore than one map in a map set. 

HII.lIGHT 
specifies the default highlighting attribute for 
all fields in all maps in a map set. 1ms is 
overridden by the HILIGHT operand of the 
DFHMDI, which is in tum overridden by the 
HILIGHT operand of the DFHMDF. 

OFF is the default and indicates that no 
highlighting is used. 

nLINK specifies that the field must blink. 

REVERSE specifies that the character or field 
is displayed in reverse video, for example, 
on a 3278, black characters on a green 
background. 

UNDERI.lINE specifies that a field is 
underlined. 

If HILIGHT is specified when 
EXTATT= NO, a warning is issued and the 
option ignored. If HILIGHT is specified, but 
EXTATT is not, EXTATT= MAPONLY 
will be assumed. 

The IIILIGHT operand is ignored unless the 
terminal supports highlighting, as indicated by 
the FEATURE operand of the DFHTCT 
TYPE = TERMINAL system macro. 

UTAD 
specifies one or more tab positions for use 
with interactive and batch logical units and 
SCS printers having horizontal forms control. 

INITIAI.. (or XlNrn 
specifies constant or default data for an 
output field. INITIAL is used to specify data 
in character form; XINIT is used to specify 
data in hexadecimal form. INITIAL and 
XINIT are mutually exclusive. 

For fields with the DET attribute, initial data 
that begins with one of the following 
characters: 

! > & blank 

should be supplied. 

The number of characters that can be 
specified in the INITIAL operand is restricted 
to the continuation limitation of the 
assembler to be used or to the value specified 
in the LENGTH operand (whichever is the 
smaller). 

Hexadecimal data is written as an even 
number of hexadecimal digits, for example, 
XINIT=CIC2. If the number of valid 
characters is smaller than the field length, the 
data will be padded on the right with blanks. 
For example, XINIT= CIC2 might result in 
an initial field of lAB ' . 

If hexadecimal data is specified that 
corresponds with line or format control 

212 CICS/DOS/VS Application Programmer's Reference Manual (Command Level) 



characters, the results will be unpredictable. 
The XINIT operand should therefore be used 
with care. 

JUSTIFY 
There are two uses for the operand. On 
DFHMDI, it specifies the position of the 
map on the page. On DFHMDF, it specifies 
the position of a field within a BMS map. 

Here is what you can specify on DFHMDI: 

LEFf specifies that the map is to be 
positioned starting at the specified column 
from the left margin on the specified line. 

RIGHT specifies that the map is to be 
positioned starting at the specified column 
from the right margin on the specified line. 

FIRST specifies that the map is to be 
positioned as the frrst map on a new page. 
Any partially formatted page from 
preceding BMS commands is considered to 
be complete. This operand can be 
specified for only one map per page. 

LAST indicates that the map is to be 
positioned at the bottom of the current 
page. This operand can be specified for 
multiple maps to be placed on one page. 
However, maps other than the frrst map for 
which it is specified must be able to be 
positioned horizontally without requiring 
that more lines be used. 

BOTTOM for a SEND MAP ACCUM 
command has the same effect as LAST, 
above. For a SEND MAP command 
(without ACCUM) and a RECEIVE MAP 
command, JUSTIFY = BOTTOM will 
position the map at the bottom of the 
screen if the number of lines in the map is 
specified in the SIZE operand. No account 
will be taken of trailer maps in the map set. 
JUSTIFY = BOTTOM is equivalent to 
specifying 

LINE = (screendepth - mapdepth + 1) 

on the map defmition, but it allows the 
same map to be used for different screen 

sizes. JUSTIFY = BOTTOM is ignored if 
the number of lines is not specified as well. 
If JUSTIFY = BOTTOM and LINE are 
both specified, the value specified in LINE 
will be ignored. 

LEFT and RIGHT are mutually exclusive, as 
are FIRST and LAST. If neither FIRST nor 
LAST is specified, the data is mapped at the 
next available position as determined by other 
parameters of the. map definition and the 
current mapping operation. FIRST and 
L,AST are ignored unless ACCUM is 
specified on SEND MAP commands; 
otherwise only one map is placed on each 
page. Refer to "Map Positioning" on 
page 187 for a more detailed discussion. 

.JUSTIFY on DFHMDF specifies the field 
justifications for input operations. This 
operand is ignored for VT AM -supported 
3600, 3650, and 3790 terminals, because input 
mapping is not available. 

Here is what you can specify on DFHMDF: 

l.EFT specifies that data in the input field is 
left justified. 

RIGHT specifies that data in the input field is 
right justified. 

BLANK specifies that blanks are to be 
inserted in any unfilled positions in an 
input field. 

ZERO specifies that zeros are to be inserted 
in any unfilled positions in an input field. 

LE PT and RIG liT are mutually exclusive, as 
are BLANK and ZERO. If certain 
parameters are specified but others are not, 
assumptions are made as follows: 

Specified Assumed 

LEFT BLANK 
RIGHT ZERO 
BLANK LEFT 
ZERO RIGHT 

Chapter 3.2-5. OMS Macro and Command Reference Summary 213 



If JUSTIFY is omitted, but the NUM 
attribute is specified, RIGHT and ZERO are 
assumed. If JUSTIFY is omitted, but 
attributes other than NUM are specified, 
LEFT and BLANK are assumed. 

Note: If a field is initialized by an output 
map or contains data from any other source, 
data that is keyed as input will only overwrite 
equivalent length existing data; surplus 
existing data will remain in the field and 
could cause unexpected interpretation of the 
m:w data. 

LANG 

LDC 

specifies the source language of the 
application programs into which the symbolic 
d(~scription maps in the map set will be 
copied. This option need only be coded for 
DFHMSD TYPE = DSECT. If a map set is 
to be used by more than one progranl, and 
the programs are not all written in the same 
source language, a separate version of the 
map set must be defmed for each 
programming language. 

specifies the code to be used by CICS to 
dc::termine the logical device mnemonic that is 
to be used for a BMS output operation and 
transmitted in the function management 
h(:ader to the logical unit if no LDC operand 
has been specified on any previous B:MS 
output in the logical message. This operand 
is used only for TCAM and 
VT AM -supported 3600 terminals, and batch 
logical units. For more information see 
"Logical Device Components" on page 175. 

LENGTH 
specifies the length (1 through 256 bytes) of 
the field. This specified length should be the 
maximum length required for application 
'program data to be entered into the field; it 
should not include the one-byte attribute 
indicator appended to the field by CICS for 
use in subsequent processing. The sUlm of 
the lengths of the fields within a group must 
not exceed 256 bytes. LENGTH can be 
ornitted if PICIN or PICOUT is specified but 
is required otherwise. 

l.INE 

The map dimensions specified in the SIZE 
operand of the DFHMDI macro instruction 
defining a map may be smaller than the 
actual page size or screen size as defmed for 
the terminal. The LENGTH specification in 
a DFHMDF macro cannot cause the 
map-defined boundary on the same line to be 
exceeded. That is, the length declared for a 
field cannot exceed the number of positions 
available from the starting position of the 
field to the fmal position of the map-defmed 
line. For example, given an 80-position page 
line, the following map definition and field 
definition are valid: 

DFHMDI SIZE=(2,40), ... 
DFHMDF POS=22,lENGTH=17, ... 

but the following defmitions are not 
acceptable: 

DFHMDI SIZE=(2,40), ... 
DFHMDF POS=22,lENGTH=30, ... 

specifies the starting line on a page in which 
data for a map is to be formatted. 

number is a value from 1 to 240, specifying a 
starting line number. A request to map 
data on a line and column that has been 
formatted in response to a preceding BMS 
command causes the current page to be 
treated as though complete. The new data 
is formatted at the requested line and 
column on a new page. 

NEXT specifies that formatting of data is to 
begin on the next available completely 
empty line. If LINE = NEXT is specified in 
the DFHMDI macro, it is ignored for 
input operations and LINE = 1 is assumed. 

SAME specifies that formatting of data is to 
begin on the same line as that used for a 
preceding BMS command. If 
COLUMN = NEXT is specified in the 
DFHMDI macro, it is ignored for input 
operations and COLUMN = I is assumed. 
If the data does not fit on the same line, it 

214 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



is placed on the next available 
completely-empty line. 

Refer to "Map Positioning" on page 187 
for a detailed discussion of map 
positioning. 

MAPAITS 
specifies the attribute types to be included in 
the physical map. These types can be one or 
more of the following: COLOR, HILIGHT, 
OUTLINE PS, SOSI, TRANSP, and 
V ALIDN. This list must include all the 
attribute types to be specified for individual 
fields in the map (DFHMDF macro). 

Where possible these values will be deduced 
from operands already specified in the 
DFHMSD and DFHMDI macros. For 
example, if COLOR = BLUE has been 
specified, MAPA TTS = CO LO R will be 
assumed. 

MODE 
specifies whether the map is to be used for 
input, output, or both. 

OBFMT 
specifies whether outboard formatting is to be 
used. This operand is available only for 3650 
logical units, or for an 8100 series processor 
running DPS Release 2 and defmed to CICS 
as an LUTYPE210gical unit. For more 
information, see "Chapter 3.2-3. Standard 
Function BMS" on page 161. 

The OBFMT option on DFHMSD is 
overridden by theOBFMT option on 
DFHMDI. 

YES specifies that all maps within this map 
set can be used in outboard formatting, 
except those for which OBFMT= NO is 
specified in the DFHMDI macro. 

NO specifies that no maps within this map 
set can be used in outboard formatting. 
except those for which OBFMT= YES is 
specified in DFHMDI. 

OUTLINE 
allows lines to be included above, below, to 
the left, or to the right of a field. You can 
use these lines in any combination to 
construct boxes around fields or groups of 
fields. 

OCCURS 
specifies that the indicated number of entries 
for the field are to be generated in a map and 
that the map definition is to be generated in 
such a way that the fields are addressable as 
entries in a matrix or an array. This permits 
several data fields to be addressed by the 
same name (subscripted) without generating a 
unique name for each field. OCCURS and 
GRPNAME are mutually exclusive; that is, 
OCCURS cannot be used when fields have 
been defmed under a group name. If this 
operand is omitted, a value of I is assumed. 

PARTN 
specifies the default partition to be associated 
with maps in this map set. If the 
A CTIV A TE option is specified, the specified 
partition will also be activated when maps in 
this map set are output to a terminal which 
supports partitions. This option is overridden 
by the PARTN option of the DFHMDI 
macro, which is in tum overridden by any 
OUTPARTN and/or ACTPARTN option 
on the SEND MAP command, or the 
INPARTN option on a RECEIVE MAP 
command. 

The PAR TN option is ignored if the target 
terminal does not support partitions, or if 
there is no partition set associated with the 
transaction. 

PICIN (COBOL and PL/I only) 
specifies a picture to be applied to an input 
field in an IN or INOUT map; this picture 
serves as an editing specification which is 
passed to the application program, thus 
permitting the user to exploit the editing 
capabilities of COBOL or PL/1. BMS checks 
that the specified characters are valid picture 
specifications for the language of the map. 

Chapter 3.2-5. BMS Macro and Command Reference Summary 215 



However, the validity of the input data is not 
Ichecked by B MS or the high level language 
when the map is used, so any desired 
Ichecking must be perfonned by the 
;application program. The length of the data 
associated with "value" should be the same as 
1that specified in the LENGTH operand if 
LENGTH is specified. 

If both PICIN and PICOUT (see below) are 
used, an error message is produced if their 
I~alculated lengths do not agree; the shorter of 
1the two lengths is used. 

If PICIN or PICOUT is not coded for the 
ltield defmition, a character defmition of the 
Jtield is automatically generated regardless of 
other operands that are coded, such as 
ATTRB=NUM. 

As an example, assume the following map 
defmition is created for reference by a 
COBOL application program: 

I~APX DFHMSD TVPE=DSECT, 
LANG=COBOL, 
MODE=INOUT 

IYfAP DFHMDI LINE=l,COLUMN=l, 
SIZE=(1,80) 

IFI DFHMDF POS=O, LENGTH:=30 
IF2 DFHMDF POS=40,LENGTH=10, 

PICOUT='$$$,$$O.OO' 
IF3 DFHMDF POS=60,LENGTH=6, 

PICIN='9999V99', 
PICOUT='ZZ9.99' 

DFHMSD TVPE=FINAL 

This generates the following DSECT: 

MAPI. 
02 FIL PIC S9(4) COMPo 
02 FIA PIC X. 
02 FILLER REDEFINES FlA. 

03 FIF PIC X. 
02 FII PIC X(30). 
02 FILLER PIC X. 
02 F2L PIC S9(4) COMPo 
02 F2A PIC X. 
02 FILLER REDEFINES F2A. 

03 F2F PIC X. 
02 F2I PIC X(10). 
02. FILLER PIC X. 
02 F3L PIC S9(4) COMPo 
02 F3A PIC X. 
02 FILLER REDEFINES F3A. 

03 F3F PIC X. 
02 F3I PIC 9999V99. 

02 FILLER PIC X. 

01 MAPO REDEFINES MAPI. 
02 FILLER PIC X(3). 
02 FlO PIC X(30). 
02 FILLER PIC X. 
02 FILLER PIC X(3). 
02 F20 PIC $$$,$$0.00. 
02 FILLER PIC X. 
02 FILLER PIC X(3). 
02 F30 PIC ZZ9.99. 
02 FILLER PIC X. 

Note: The valid picture values for COBOL 
maps are: 

A P S V X 9 / and ( 

The valid picture values for PL/I maps are: 

ABE F G H I K M P R S T V 
X V and Z 

1 236 7 8 9 / + - , . ~ 
$ and ( 

Refer to the appropriate language reference 
manual for the correct syntax of the 
PICTURE attribute. 

PICOUT (COBOL and PL/I only) 

POS 

is similar to PICIN, except that a picture to 
be applied to an output field in the OUT or 
INOUT map is generated. 

Note: The valid picture values for COBOL 
maps arc: 

ABE P S V X Z 0 9 , • + - $ 
CR DB / and ( 

The valid picture values for PL/I maps are: 

ABE F G H I K M P R S T V 
X V and Z 

1 236 7 89/ + -
CR DB and ( 

, . ~ $ 

Refer to the appropriate language reference 
manual for the correct syntax of the 
PICTURE attribute. 

specifics the location of a field. This operand 
specifics the individually addressable character 

216 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



location in a map at which the attribute byte 
that precedes the field is positioned. 

number specifies the displacement (relative to 
zero) from the beginning of the map being 
defmed. 

(Iine,column) specify lines and columns 
(relative to one) within the map being 
defmed. 

The location of data on the output 
medium is dependent on DFHMDI 
parameters as well. 

The frrst position of a field is reserved for 
an attribute byte. When supplying data for 
input mapping from non-3270 devices, the 
input data must allow space for this 
attribute byte. Input data must not start in 
column I but may start in column 2. 

The POS operand always contains the 
location o( the frrst position in a field, 
which is normally the attribute byte when 
communicating with the 3270. For the 
second and subsequent fields of a group, 
the POS operand points to an assumed 
attribute byte position, ahead of the start of 
the data, even though no actual attribute 
byte is necessary. If the fields follow on 
immediately from one another, the POS 
operand should point to the last character 
position in the previous field in the group. 

When a position number is specified which 
represents the last character position in the 
3270, two special rules apply: 

• The IC attribute should not be coded. 
The cursor may be set to location zero 
by using the cursor option of the 
SEND MAP, SEND CONTROL, or 
SEND TEXT command. 

• If the field is to be used in an output 
mapping operation with the 
DATA = ONLY specification, an 
attribute byte for that field must be 
supplied in the symbolic map data 
structure by the application program. 

PS 

SIZE 

specifies that programmed symbols are to be 
used. This is overridden by the PS operand 
of the DFHMDI macro, which is in tum 
overridden by the PS operand of the 
DFHMDF macro. 

BASE specifies that the base symbol set is to 
be used. 

p..~id specifies a single EBCDIC character, or a 
hexadecimal code of the form X'nn', that 
identifies the set of programmed symbols to 
be used. 

If PS is specified when EXTATT= NO, a 
warning is issued and the option ignored. If 
PS is specified, but EXT A TT is not, 
EXTATT = MAPONL Y will be assumed. 

The PS operand is ignored unless the 
terminal supports programmed symbols, as 
indicated by the FEATURE operand of the 
DPIITCT TYPE = TERMINAL system 
macro. 

specifies the size of a map. 

line is a value from I through 240, specifying 
the depth of a map as a number of lines. 

column is a value from I through 240, 
specifying the width of a map as a number 
of columns. 

This operand is required in the following 
cases: 

• An associated DFHMDF macro with 
the POS operand is used. 

• The map is to be referred to in a 
SEND MAP command with the 
ACCUM option. 

• The map is to be used when referring 
to input data from other than a 3270 
terminal in a RECEIVE MAP 
command. 

Olapter 3.2~5. BMS Macro and Command Reference Summary 217 



SOSI 
indicates that the field may contain a mixture 
of EBCDIC and DBCS data. The DBCS 
subfields within an EBCDIC field rure 
delimited by SO (shift out) and SI (shift in) 
Gharacters. SO and SI both occupy a single 
screen position (normally displayed as a 
blank). They can be included in any 
non-DBCS field on output provided they are 
correctly paired. The terminal user can 
transmit them inbound if they are already 
present in the field, but can add them to an 
EBCDIC field only if the field has the 80SI 
attribute. 

STORAGE = AUTO 
The meaning of this operand depends upon 
the language in which application programs 
aLfe written, as follows: 

~lSSembler language specifies that individual 
maps within a map set are to occupy 
separate areas of storage instead of 
overlaying one another. 

COBOl, specifies that the symbolic 
description maps in the map set are to 
occupy separate (that is, not redefined) 
areas of storage. This operand is used 
when the symbolic description ma.ps are 
copied into the working storage section and 
the storage for the separate maps in the 
map set is to be used concurrently. 

'tL/I specifies that the symbolic description 
maps are to be declared as having the 
AUTOMATIC storage class. If 
STORAGE = AUTO is not specified, they 
are declared as BASED. 

You cannot specify both BASE = name and 
STORAGE = AUTO for the same nlap set. 
For more information, see "Getting Storage 
for a Data Structure" on page 151. If 
STORAGE = AUTO is specified and 
TIOAPFX is not, TIOAPFX = YES is 
assumed. 

SUFFIX 
specifies a one character user-defmed device 
dependent suffix for this map set, as an 

alternative to a suffix generated by the 
TERM operand. The suffix specified by this 
option should match the value of the 
ALTSFX option of the DFHTCT 
TYPE = TERMINAL macro. Use a numeric 
value to avoid conflict with suffixes generated 
by the TERM operand. 

Map set suffixing is discussed under "Map 
Set Suffixing" on page 145. 

TERM 
specifies the type of terminal or logical unit 
(LU) associated with the map set. If no 
terminal type or LU is specified, 3270 is 
assumed. The terminal types and LUs you 
can specify, together with their generated 
suffixes, are shown in the following table. 

In addition, you should note the following: 

For TCA M -connected terminals (other than 
3270 or SNA devices), use either CRLP or 
ALL; for TCAM-connected 3270s or SNA 
devices, select the appropriate parameter in 
the normal way. 

If ALL is specified, ensure that device 
dependent characters are not included in the 
map set and that format characteristics such 
as page size are suitable for all input/output 
operations (and all terminals) in which the 
map set will be applied. For example, some 
terminals are limited to 480 bytes, others to 
1920 bytes; the 3604 is limited to six lines of 
40 characters each. Within these guidelines, 
use of ALL can offer important advantages. 
Because an assembly run is required for each 
map generation, the use of ALL, indicating 
that one map is to be used for more than one 
terminal, can result in significant time and 
storage savings. 

However, better run time performance for 
maps used by single terminal types will be 
achieved if the terminal type (rather than 
ALL) is specified. Alternatively, B MS 
support for device dependent map sets can be 
bypassed by specifying NO DDS in the BMS 
operand of the DFHSIT system macro. For 

218 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



TYPE 
CRlpl 
TAPE 
DISK 
TWX 
1050 
2740 
2741 
2770 
27S0 
37S0 
3270-1 (40-column) 
3270-2 (SO-column) 
INTlU/3767/3770I/SCS2 
29S0 
29S0-4 
~a blank 
3601 
3653 4 

3650UP5 
36·50/3270' 
BCHlU/3770B7 
All (all the above) 

Suffix 

A 
B 
C 
D 
E 
F 
G 
I 
J 
K 
l 
M 
P 
Q 
R 

U 
V 
W 
X 
y 
blank 

1 Card-reader-in/line-printer-out 

2 All interactive lUs including 
3790 full function lU and SCS 
printer lUs (3270 and 3790). 

a Default if TERM omitted. Same 
as All; used when no need to 
distinguish between models. 

4 Plus host-conv (3653) lU. 

S Plus interpreter lU. 

, Plus host-conv (3270) lU. 

7 Plus all batch and BDI lUs. 

more information, see the CICS/DOS/VS 
Resource Definition (Macro) manual. 

TIOAPFX 
specifies whether BMS should include a filler 
in the symbolic description maps to allow for 
the unused TIOA prefix. 

YES specifies that the filler should be 
included in the symbolic description maps. 
If TIOAPFX = YES is specified, all maps 
within the map set have the fl1ler, except 
when TIOAPFX= NO is specified on the 
DFHMDI macro. TIOAPFX = YES 
should always be used for command level 
application programs. 

NO is the default and specifies that the filler 
is not to be included. The filler may still 
be included for a map if TIOAPFX = YES 
is specified on DFHMDI. 

TRAILER 
allows the map to be used during page 
building without terminating the overflow 
condition (see IIFloating Maps, Header and 
Trailer Maps" on page 186). This operand 
may be specified for more than one map in a 
map set. If a trailer map is used other than 
in the overflow environment, the space 
normally reserved for overflow trailer maps is 
not reserved while mapping the trailer map. 

TRANSP 
determines whether the background of an 
alphanumeric field is transparent or opaque, 
that is, whether an underlying (graphic) 
presentation space is visible between the 
characters. 

TYPE 
specifies the type of map to be generated 
using the defmition. Both types of map must 
be generated before the map set can be used 
by an application program. If aligned 
symbolic description maps are required, you 
should ensure that you specify 
SYSPARM= ADSECT and 
SYSPARM= AMAP when you assemble the 
symbolic and physical maps respectively. 

DSEeT specifies that a symbolic description 
map is to be generated. Symbolic 
description maps must be copied into the 
source program before it is translated and 
compiled. 

MAP specifies that a physical map is to be 
generated. Physical maps must be 
assembled or compiled, link edited, and 
cataloged in the CICS program library 
before an application program can use 
them. 

If both map and DSECT are to be generated 
in the same job, the SYSPARM option can 
be used in the assembler job execution step, 

Chapter 3.2-5. 8MS Macro and Command Reference Summary 219 



as described in the CICS/DOS/VS 
Installation and Operations Guide. 

VALION 
specifies that validation is to be used on an 
8775 terminal. This is overridden by the 
V ALIDN operand of the DFHMDI macro, 
which is in tum overridden by the V ALIDN 
operand of the DFHMDF macro. 

l\fUSTFILL specifies that the field must be 
fdled completely with data. An attempt to 
move the cursor from the field befbre it has 
been filled, or to transmit data frorn an 
incomplete field, will raise the inhibit input 
condition. 

}\.IUSTENTER specifies that data must be 
entered into the field, though need not fill 
it. An attempt to move the cursor from an 
empty field will raise the inhibit input 
condition. 

TRIGGER specifies that this field is a trigger 
field. Trigger fields are discussed in 
"Chapter 3.2-3. Standard Function BMS" 
on page 161. 

The V ALIDN operand is ignored unless the 
terminal supports validation, as indicated by 
the FEATURE operand of the DFHTCT 
TYPE = TERMINAL system macro. 

VTAB 
specifies one or more tab positions for use 
with interactive and batch logical units and 
SCS printers having vertical fonns control. 

XINIT 
S(~e INITIAL, earlier in the list. 

Partition Set Definition 

Partitions are defmed by coding the macros 
DFHPSD (partition set defmition) and DFHPDI 
(partition defmition). Each partition definition 
must be part of a partition set defmition. 

Partition Set Definition Macro (DFHPSD) 

This section shows the syntax of the DFHPSD 
macro, which dermes a partition set. Each 
partition set defmition contains a single DFHPSD 
macro, followed by one or more DFHPDI m~cros, 
and ending with a DFHPSD TYPE = FINAL 
macro. 

The format of the DFHPSD macro is: 

partnset DFHPSD 
[SUFFIX=user-suffix] 

[,ALTSCRN=(lines,columns)] 
[,CHARSZE=(vpels,hpels)] 

ICpartnset" is a 1 through 6 character partition set 
name. 

Partition Definition Macro (DFHPDI) 

A partition set contains one or more partitions. 
Each partition is dermed by coding a partition 
defmition macro. The fonnat of the macro is: 

[partn] DFHPDI 
VIEWPOS=(lines,columns) 

,VIEWSZE=(lines,columns) 
[,BUFSZE=(lines,columns)] 
[,CHARSZE=(vpels,hpels)] 
[,MAPSFX=mapset-suffix] 
[,ATTRB=ERROR] 

ICpartn" is a 1 or 2 character partition name. It 
allows you to refer to the partition in your 
application programs. 

Every partition in a partition set must have a 
different name. Orily the error partition can be 
unnamed (see ATTRB = ERROR operand). 

Ending a Partition Set Definition 

This macro ends a partition set defmition. Its 
fonnat is: 

[partnsetl DFHPSD TYPE=FINAl 

220 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



The partnset name (if specified) must match that 
specified on the DFHPSD macro that started the 
partition set definition. 

Partition Definition Macro Operand 
Summary 

The operands have the following meanings: 

ALTSCRN(lines,columns) 
specifies the size, in characters, of the usable 
area of the target terminal. This is normally 
the same as the AL TSCRN operand of the 
DFHTCT TYPE = TERMINAL entry for 
the terminal. You use ALTSCRN to ensure 
that the viewports of partitions within a 
partition set fit into the usable area of the 
screen. 

ATfRB=ERROR 
specifies that error messages are to be directed 
to this partition whenever possible. The 
partition is cleared before an error message is 
displayed. Attributes specified on the 
ERRATT option of the DFHTCT 
TYPE = TERMINAL macro will be 
honored, but the LASTLINE option will be 
ignored. 

BUFSZE = (Iines,columns) 
specifies the size of the presentation space for 
the partition. Device limitations mean that 
the "columns" value must be equal to the 
"columns" value specified by the VIEWSZE 
operand. The "lines" value can be greater 
than or, by default, equal to the value 
specified by the VIEWSZE operand. A 
greater lines value implies that the target 
terminal supports vertical scrolling. The 
default value of "lines" is the same as the 
value specified by the VIEWSZE operand. 

CHARSZE(vpels,hpels) 
specifies the size of the character cell to be 
reserved for each character displayed in a 
partition. This operand can be specified on 
the DFHPSD macro alone, or on both the 
DFHPSD and DFHPDI macros. Values 
specified on the DFHPDI macro override, for 
that partition only, the default values 
specified on the DFHPSD macro. For 

guidance on using CHARSZE, see 
"Character Cells in Partitions" on page 174. 

MAI)SFX = mapset-suffix 
is the partition's I-character map set suffix. 
OMS uses the suffix to select map set 
versions in the same way as the ALTSFX 
operand of the DFHTCT 
TYPE = TERMINAL macro. If this 
operand is omitted, a suffix L is assumed if 
the "columns" value of the BUFSZE 
operand is less than or equal to forty; 
otherwise M is assumed. Suffixing in general 
is discussed more fully in "Map Set Suffixing" 
on page 145. 

SUFI'IX = user-suffix 
is a I-character user suffix for this version of 
the partition set. It allows different versions 
of a partition set to be associated with 
different terminals. When the partition set is 
to be loaded, CICS looks for a version whose 
suffix matches the ALTSFX operand 
specified on the DFI-ITCT 
TYPE = TERMINAL macro. If it cannot 
find the correct partition set version, it loads 
a version with the default suffix (M or L). If 
it cannot fmd a suffixed version either, it 
loads an un suffixed one. If it cannot fmd 
this, it raises the APCT abend. 

VIE\VPOS = (lines,columns) 
specifies the position of the top left hand 
corner of this partition's viewport. You 
specify the position in numbers of lines and 
numbers of columns. 

The DFHPDI macro checks that viewports 
do not overlap. If the AL TSCRN operand 
of the DFIIPSD macro has been coded, 
DFHPDI also checks that all viewports fit 
within the usable area of the terminal screen. 

VIEWSZE = (lines,columns) 
specifies the size, in lines and columns, of the 
partition's viewport. The DFHPDI macro 
checks that viewports do not overlap. If you 
code the AL TSCR N operand of the 
DFHPSD macro, DFHPDI will check that 
the partitions all fit within the usable area of 
the terminal screen. 

Chapter 3.2-5. BMS Macro and Command Reference Summary 221 



Note: The infonnation given here on positioning 
viewpOlts is necessarily brief. For more 
infonnation you should consult the component 
description for the device you are using. 

BMS, Related Constants 

Standard Attribute and Printer Control 
Chara4~ter List (DFHBMSCA) 

The standard list DFHBMSCA simplifies the 
provision of field attributes and printer control 
characters. The list is obtained by copying copy 
book DFHBMSCA into the application program. 

The synlbolic names for the various combinations 
of attributes and control characters are given below. 
Combinations other than shown must be generated 

Standard List DFHBMSCA 

Constant Meaning 

Printer end-of-message 
Printer new-line 
Autoskip 
Unprotected 
Unprotected and numeric 
Protected 
Bright 
Dark 
MDT set 
Protected and MDT set 
Autoskip and MDT set 
Autoskip and bright 
Shift out value X'OE' 
Shift in value X'OF' 
Field erased 
Field detected 
Set attribute (SA) order 
Error code 
Color 
Programmed symbols 
Highlight 
Base 3270 field attribute 
Validation 

separately; a bit map to help you do this is given 
on page 224. 

The value of an attribute constant can be 
detennined by referring to the publication An 
Introduction to the IBM 3274 Control Unit 
Reference Summary. 

For assembler language users, the list consists of a 
set of EQU statements. For COBOL users, the list 
consists of a set of 01 statements that can be copied 
into the working storage section. For PL/I users, 
the list consists of DECLARE statements defming 
elementary character variables. 

The symbolic name DFHDFT must be used in the 
application structure to override a map attribute 
with the default. On the other hand, to specify 
default values in a set attribute (SA) sequence in 
text build, the symbolic names DFHDFCOL, 
DFIIBASE, or DFIIDFHI should be used. 

DFHBMPEM 
DFHBMPNL 
DFHBMASK 
DFHBMUNP 
DFHBMUNN 
DFHBMPRO 
DFHBMBRY 
DFHBMDAR 
DFHBMFSE 
DFHBMPRF 
DFHBMASF 
DFHBMASB 
DFHBMPSO 
DFHBMPSI 
DFHBMEOF 
DFHBMDET 
DFHSAI 
DFHERROR 
DFHCOLORI 
DFHPSI 
DFHHLTI 
DFH3270 1 

DFHVAL 
DFHOUTLN 
DFHBKTRN 
DFHALLI 
DFHDFT 
DFHDFCOLI 
DFHBLUE 
DFHRED 
DFHPINK 

Field outlining attribute code 
Background transparency attribute 
Reset all to defaults 

code 

Default 
Default color 
Blue 
Red 
Pink 

222 CICSjDOSjVS Application Programmer's Reference Manual (Command ,Level) 



Standard List D}'HBMSCA (Continued) 

Constant 

DFHGREEN 
DFHTURQ 
DFHYEllO 
DFHNEUTR 
DFHBASEI 
DFHDFHII 
DFHBlINK 
DFHREVRS 
DFHUNDlN 
DFHMFIl2 
DFHMENT2 
DFHMFE 
DFHMT 
DFHMFT 
DFHMET 
DFHUNNOD 
DFHUNIMD 
DFHUNNUM 
DFHUNINT 
DFHUNNON 
DFHPROTI 
DFHPROTN 
DFHMFET 
DFHDFFR 
DFHUNDER 
DFHRIGHT 
DFHOVER 
DFHlEFT 
DFHBDX 
DFHSOSI 
DFHTRANS 
DFHOPAQ 

Meaning 

Green 
Turquoise 
Yellow 
Neutral 
Base programmed symbols 
Normal 
Blink 
Reverse video 
Underscore 
Mandatory fill 
Mandatory enter 
Mandatory fill and mandatory enter 
Trigger 
Mandatory fill and trigger 
Mandatory enter and trigger 
Unprotected, nondisplay, nonprint, nondetectable, MDT 
Unprotected, intensify, light pen detectable, MDT 
Unprotected, numeric, MDT 
Unprotected, numeric, intensify, light pen detectable, MDT 
Unprotected, numeric, nondisplay, nonprint, nondetectable, MDT 
Protected, intensify, light pen detectable 
Protected, nondisplay, nonprint, nondetectable 
Mandatory fill and mandatory enter and trigger 
Default outline 
Underline 
Right vertical line 
Overline 
left vertical line 
Underline and right vertical and overline and left vertical 
SOSI=yes 
Background transparency 
No background transparency 

1 For text processing only. Use for constructing embedded set 
attribute orders in user text 

2 Cannot be used in set attribute orders 

The table on page 224 contains a bit map for 
attributes other than those listed in copy book 
DFHBMSCA. 

The attributes in the headings are: 

prot = protected 
a/n = autoskip or numeric 
hi = high intensity 
spd = selector pen detectable 
ndp = non-display print 
mdt = modified data tag. 

The hex codes in the headings are: 

ebcd = extended binary-coded decimal 
interchange code 
asci = American National Standard Code for 
Information Interchange 
char = graphic character equivalent to hex 
code. 

The characters in the body of the table mean the 
following: 

II = high 
N = numeric 
P = protected 
S = automatic skip 
U = unprotected 
Y = yes 

Chapter 3.2-5. BMS Macro and Command Reference Summary 223 



Bit Map for Attributes Other than Listed in DFHBMSCA 

proi: a/n hi spd ndp Mdt 

U 
U y 
U Y 
U Y Y 
U H Y 
U H Y Y 
U Y 
U Y Y 
U N 
U N Y 
U N Y 
U N Y Y 
U N H Y 
U N H Y Y 
U N Y 
U N Y Y 
P 
P y 
P Y 
P Y Y 
P H Y 
P H Y Y 
P Y 
P Y Y 
P S 
P S Y 
P S Y 
P S Y Y 
P S H Y 
P S H Y Y 
P S Y 
P S Y Y 

Attentiion Identifier Constants (DFHAID) 

The constants supplied in copy book OF HAlO are 
as follows: 

Constant 

DFHENTER 
DFHCLEAR 
DFHPAI-DFHPA3 
DFHPFI-DFHPF24 
DFHOPID 
DFHMS~:E 

DFHTRIG 
DFHPEN 

DFHCLRP 
DFHSTR:F 

Meaning 

ENTER key 
CLEAR key 
PAI-PA3 keys 
PFI-PF24 keys 
OPERID or MSR 
Extended 
(standard) MSR 
Trigger field 
SELECTOR PEN or 
CURSOR SELECT key 
CLEAR PARTITION key 
Structured field 
pseudo-AID 

ebcd 

40 
Cl 
C4 
C5 
C8 
C9 
4C 
4D 
50 
Dl 
D4 
D5 
D8 
D9 
5C 
5D 
60 
61 
E4 
E5 
E8 
E9 
6C 
6D 
FO 
Fl 
F4 
F5 
F8 
F9 
7C 
7D 

asci char 

20 b (blank) 
41 A 
44 D 
45 E 
48 H 
49 I 
3C < 
28 ( 

26 & 
4A J 
4D M 
4E N 
51 Q 
52 R 
2A * 29 ) 

2D - (hyphen) 
2F / 
55 U 
56 V 
59 Y 
5A Z 
25 " 5F (underscore) 
30 0 
31 1 
34 4 
35 5 
38 8 
39 9 
40 a 
27 

Magnetic Slot Reader (MSR) Control 
Value Constants (DFHMSRCA) 

A selection of MSR control bit patterns has been 
created for CICS and stored in copy book 
DPIIMSRCA. 

The patterns are stored as named constants that 
can be loaded by simple application program 
commands. Provision of such constants saves the 
programmer from having to build a commonly 
used bit pattern whenever it is required. The 
constants supplied in DFHMSRCA are as follows: 

224 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Constant Meaning 

DFHMSRST MSR reset. All lights and 
buzzers off. MSR available 
for input. 

DFHMSCON Transaction ready for 
more input. Green and 
yellow on; emit short buzz 
IN PROCESS (user) mode set. 

DFHMSFIN Input complete. Green on; 
emit short buzz; 
IN PROCESS mode reset. 

DFHMSAlR Operator alert. Green, 
yellow, and red on; 
emit long buzz; IN 
PROCESS mode reset. 

DFHMSAlS Operator alert. Green, 
yellow, and red on; 
emit long buzz; 
IN PROCESS mode set. 

DFHMSIPY IN PROCESS state set. 
Yellow on. 

DFHMSIPN IN PROCESS state reset. 
DFHMSlKY MSR operation inhibited. 

Yellow on. 
DFHMSlKN MSR input allowed. 

Green on. Yellow on. 
DFHMSAEY MSR auto enter on. 

Yellow on. 
DFHMSAEN MSR auto enter off. 

Yellow on. 
DFHMSlBN long buzzer suppressed. 

Yellow on. 
DFHMSlBY long buzzer permitted. 

Yellow on. 
DFHMSSBN Short buzzer suppressed. 

Yellow on. 
DFHMSSBY Short buzzer permitted. 

Yellow on. 
DFHMSNOP leave all MSR settings 

unchanged. 

Input Commands 

RECEIVE MAP Command 

The full syntax of the RECEIVE MAP command 
is shown below. The keywords are separated into 
those supported by minimum, standard, and full 
BMS. 

Minimum BMS 

RECEIVE MAP(name) 
[MAPSET(name)] 
[INTO(data-area)ISET(ptr-ref)] 
[FROM(data-area) lENGTH(data-value)I 

TERMINAl[ASIS]] 

Standard BMS 

[INPARTN(name)] 

Conditions: EOC, EODS, INVMPSZ, 
INVPARTN, INVREQ, MAPFAIl, 
PARTNFAIl, RDATT, UNEXPIN 

The RECEIVE MAP command maps input data 
from a terminal into a data area in an application 
program. The process is described in "Receiving 
Data Prom a Display" on page 154. The 
INPART'N option is fully described in "Setting the 
Expected Input Partition" on page 173. 

Data from certain logical units is not mapped, but 
is left unaltered. Refer to the appropriate CICS 
subsystem guide to see if this is true for a particular 
logical unit. 

Following a RECEIVE MAP command, the 
inbound cursor position is placed in EIBCPOSN, 
and the terminal attention identifier (AID) placed 
in EIBAID. 

RECEIVE P AR1N Command 

The full syntax of the RECEIVE PAR TN 
command is shown below. This command is only 
available on standard and full function BMS. 

Standard BMS 

RECEIVE PARTN(data-areaJ 
(INTO(data-area)ISET(ptr-ref)} 
lENGTH(data-area) 
[ASIS] 

Conditions: EOC, EODS, INVPARTN, 
INVREQ, lENGERR 

This command reads data from a partition on an 
8775 terminal. It indicates which partition the data 
came from, and puts the data into the INTO or 
SET data area. You can then treat the data as 
though it had originated from a tenninal in base 

Chapter 3.2-5. BMS Macro and Command Reference Summary 225 



(unpartitioned) state. This command is fully 
described in "Determining the Actual Input 
Partition" on page 173 

Following a RECEIVE PARTN command, the 
inbound cursor position is placed in EIBCPOSN, 
and the terminal attention identifier (AID) placed 
in EIBAID. 

Output Commands 

SEND P ARlNSET Command 

The full syntax of the SEND PARTNSET 
command is shown below. This command is only 
available on standard and full function BMS. 

Standard BMS 

SEND PARTNSET[(nameJ] 

Conditions: INVPARTNSET, INVREQ 

This command associates the partition set specified 
by the PAR TNSET option with the application 
progranl. If the partition set name is omitted, the 
terminal is reset to the base (unpartitioned) state. 
lrus command is fully described in "Loading the 
Application Partition Set" on page 172. 

SEND MAP Command 

lbe fuUl syntax of the command is shown below. 
The options are separated into those supported by 
minimum, standard, and full function BMS. 

Minimum BMS 

SEND HAP(nameJ 
[MAPSETCname)J 
[FROMCdata-area) lENGTHCdata-value) I 

DATAONlYIMAPONLYJ 
[CURSOR[Cdata-value)]] 
[FORMFEEDJ 
[ERASEIERASEAUPJ 
[PRINT] 
[FREEKBJ 
[ALARM] 
[FRSETJ 

Standard BMS 

[NLEOMJ 
[MSRCdata-value)] 
[OUTPARTNCname)] 
[ACTPARTNCname)] 
[FMHPARM] 
[lDCCname)J 

Full BMS 

[ACCUM] 
[SETCptr-ref)IPAGINGI 
TERMINAl[WAIT][lAST]] 

[REQIDCname)] 
[l40Il64Il80IHONEOM] 

Conditions: IGREQCD, IGREQID, 
INVlDC, INVMPSZ, INVPARTN, INVREQ, 
OVERFLOW, RETPAGE, TSIOERR 

You usc the SEND MAP command to send 
mapped output data to a terminal. The process is 
described in "Sending Data to a Display" on 
page 150. 

SEND TEXT Command 

The full syntax of the SEND TEXT command is 
shown below. The options are separated into those 
supported by standard and full BMS. 

226 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Standard BMS 

SEND TEXT 
FROM( data-area) 
lENGTH(data-value) 
[CURSOR(data-value)] 
[FORMFEED] 
[ERASE] 
[PRINT] 
[FREEKB] 
[ALARM] 
[NlEOM] 
[lDC(name)] 
[OUTPARTN(name)] 
[ACTPARTNCname)] 
[MSR(data-value)] 

Full BMS 

[SET(ptr-ref)IPAGINGI 
TERMINAl[WAIT][lAST]] 

[REQID(name)] 
[HEADER(data-area)] 
[TRAIlER(data-area)] 
[JUSTIFY{data-value)IJUSFIRSTI 

JUSlAST]] 
[ACCUM] 
[l401l641l801HONEOM] 

Conditions: IGREQCD, IGREQID, 
INVlDC, INVPARTN, INVREQ, RETPAGE, 
TSIOERR 

This command is used to send text data without 
mapping. The text is split into lines of the same 
width as the terminal, such that words are not 
broken across line boundaries. If the text exceeds a 
page it is split into pages that fit on the tenninal 
with application dermed headers and trailers. It is 
described under "Text Processing" on page 162. 

SEND TEXT MAPPED Command 

The full syntax of the SEND TEXT MAPPED 
command is shown below. This command is only 
available on full B MS. 

-----._---
Full BMS 

SEND TEXT MAPPED 
FROMCdata-area) 
lENGTH(data-value) 
[PAGINGITERMiNAl[WAIT][lAST]] 
[REQID(name) 

Conditions: IGREQID, RETPAGE, 
TSIOERR 

This command is used to send data previously 
generated by a BMS SEND command specifying 
the SET option. It is described under "SEND 
TEXT MAPPED Command" on page 203. 

SEN» TEXT NOEDIT Command 

The full syntax of the SEND TEXT NO EDIT 
command is shown below. This command is only 
available on full BMS. 

Full BMS 

SEND TEXT NOEDIT 
FROM(data-area) 
lENGTHCdata-value) 
[ERASE] 
[PRINT] 
[FREEKB] 
[ALARM] 
[OUTPARTN(name)] 
[PAGINGITERMiNAl[WAIT][lAST]] 
[REQIDCname) 
[l40Il64Il80IHONEOM] 

Conditions: IGREQCD, IGREQID, 
INVPARTN, TSIOERR 

This command is used to output a user generated 
data stream. It differs from a terminal control 
SEND in that data may be output to temporary 
storage (using the PAGING option), or routed like 
any other BMS data. It is described under "SEND 
TEXT NO EDIT Command" on page 203. 

SEN» CONTROL Command 

The full syntax of the SEND CONTROL 
command is shown below. The options are 
separated into those supported by minimum, 
standard, and full BMS. 

Chapter 3.2--5. llMS Macro and Command Reference Summary 227 



Minimum BMS 

SENlD CONTROL 
[CURSOR[(data-value)]] 
[FORMFEED] 
[ER.I\SE I ERASEAUP] 
[PRINT] 
[FRIEEKB] 
[ALARM] 
[FRSET] 

Standard BMS 

[MSR(data-value)1 
[OUTPARTN(name)] 
[ACTPARTN(name)] 
[lDC(name)] 

Full BMS 

[ACCUM] 
[SET(ptr-ref)IPAGINGI 
~ERMfNAl[WAIT][lAST]] 

[R QID name)] 
[l401l641l801HONEOMl 

Conditions: IGREQCD, IGREQID, 
INVlDC, INVPARTN, INVREQ, RETPAGE, 
TSlltlERR 

This command is used to send device controls to a 
tenninal, without also sending map or text data. It 
is descdbed under "Sending Device Controls 
Without Display Data" on page 153. 

SEND PAGE Command 

The syntax of the SEND PAGE command is 
shown below. This command is only available on 
full B1\1S. 

FullL BMS 

SENI~ PAGE 
[RELEASE[TRANSID(name)]IRETAIN] 
[TRJ\IlER(data-area) ] 
[SElr(ptr-ref)] 
[AUlrOPAGE[CURRENTIAlllINOAUTOPAGEl 
[OPERPURGE] 
[FMtiPARM] 
[lAST] 

Conditions: IGREQCD, INVREQ, 
RETPAGE, TSIOERR 

This command is used to complete a BMS logical 
messag1e. If this is a paging message, the last page 

of the logical message is transmitted to temporary 
storage and the tenninal operator paging 
transaction is initiated. If it is a terminal logical 
message, the last page is transmitted to the 
terminal. Its basic form is described under "SEND 
PAGE Command" on page 183. 

PURGE MESSAGE Command 

The syntax of the PURGE MESSAGE command 
is shown below. This command is only available 
on full OMS. 

Full BMS 

PURGE MESSAGE 

Condition: TSIOERR 

This command is used to discontinue the building 
of a OMS logical message. The portions of the 
logical message already built in main storage or in 
temporary storage are deleted. It is described under 
"PURGE MESSAGE Command" on page 183. 

ROUTE Command 

The syntax of this command is shown below. This 
command is only available on full BMS. 

Full BMS 

ROUTE 
[INTERVAl(hhmmss)lITIMEChhmmss)] 
[ERRTERM[(name)]] 
[TITlECdata-area)l 
[lIST(data-area)] 
[OPClASS(data-area)] 
[REQIDCname)] 
[lDCCname)]2 
[NlEOM] 

Conditions: INVERRTERM, INVlDC, 
INVREQ, RTEFAIl, RTESOME 

1 INTERVAl(O) is the default 

2 logical units only. 

This command is used to route a BMS logical 
message to one or more terminals and/or terminal 
operators. Its uses are discussed under "Message 
Routing" on page 195. 

228 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



BMS Related ASSIGN Options 

The following options of the ASSIGN command 
may be useful to BMS application programs. The 
ASSIGN command is described in "Chapter 1.6. 
Access to System Information" on page 41. 

DESTCOUNT this option has two uses. 

• Following a BMS ROUTE command, it 
specifies that the value required is the 
number of different terminal types in the 
route list, and hence the number of 
overflow control areas that may be 
required. 

• Within.BMS overflow processing, 
specifies that the value required is the 
relative overflow control number of the 
destination that has encountered 
overflow. If this option is specified when 
overflow processing is not in effect, the 
value obtained will be meaningless. If no 
BMS commands have been issued, the 
INVREQ condition occurs. The format 
of the value is halfword binary. 

INP ARTN specifies that the value required is the 
name of the most recent input partition. The 
format of the value is a one or two byte 
character. 

LDCMNEM specifies that the value required is the 
mnemonic of the LDC which overflowed 
most recently. For more information, see 
"Page Overflow and Partitions or LDCs" on 
page 191. The returned value is meaningless 
unless overflow processing is being 
performed. The format of the value is a one 
or two byte character. 

LDCNUM specifies that the value required is the 
LDC numeric value of the destination that 
has encountered overflow. This indicates the 
type of the LDC, such as printer or console. 
If this option is specified when overflow 
processing is not in effect, the value obtained 
will be meaningless. No exceptional 
condition occurs. The format of the value is 
a one-byte character. 

MAPCOl.{]MN specifies that the value required is 
the number of the column on the display 
containing the origin of the most recently 
positioned map. If no map has yet been 
positioned, or if BMS routing is in effect, the 
INVREQ condition is raised. The format of 
the value is half word binary. 

MAI)HEIGHT specifies that the value required is 
the height of the most recently positioned 
map. If no map has yet been positioned, or 
if BMS routing is in effect, the INVREQ 
condition is raised. The format of the value 
is halfword binary. 

MAPIJNE specifies that the value required is the 
number of the line on the display containing 
the origin of the most recently positioned 
map. If no map has yet been positioned, or 
if BMS routing is in effect, the INVREQ 
condition is raised. The format of the value 
is halfword binary. 

MAI)w)I>TH specifies that the value required is 
the width of the most recently positioned 
map. If no map has yet been positioned, or 
if BMS routing is in effect, the INVREQ 
condition is raised. The format of the value 
is halfword binary. 

P AGENUM specifies that the value required is the 
current page number for the destination that 
has encountered an overflow. If this option 
is specified when overflow processing is not in 
effect, the value obtained will be meaningless. 
If no B MS commands have been issued, the 
INVREQ condition occurs. The format of 
the value is halfword binary. 

P ARTNP AGE specifies that the value required is 
the one through two character name of the 
partition that most recently caused page 
overflow. A blank value is returned if 
partitions are not in use. 

P ARTNSET specifies that the value required is the 
one through six character name of the 
application partition set. A blank value is 
returned if there is no application partition 
set. 

Chapter 3.2MS. BMS Macro and Command Reference Summary 229 



BM~, Options 

ACCUM 
specifies that this command is one of a 
IlLumber of commands that are used to build a 
logical message. The logical message is 
completed by a SEND PAGE command, or 
dleleted by a PURGE MESSAGE command. 
For more details see "Logical Message 
Handling" on page 181. 

ACTPARTN(name) 
specifies the 1- or 2-character name of the 
partition that is to be activated. Activating a 
partition moves the cursor into the specified 
partition, and unlocks the keyboard for the 
specified partition. 

This option is ignored if the target terminal 
does not support partitions, or if there is no 
Btpplication partition set. 

ALARM 

ALL 

ASIS 

specifies that the 3270 audible alarm feature is 
to be activated. For logical units supporting 
lIMHs (except interactive and batch logical 
units), ALARM signals BMS to set the alarm 
flag in the FMH. 

specifies that if the ATTN key on a 2741 is 
pressed while a BMS logical message is being 
sent to the terminal, transmission of the 
(:urrent page is to cease and no additional 
pages are to be transmitted. The logical 
Inessage is deleted. 

specifies that the specification 
FEATURE = UCTRAN in the TeT for the 
terminal is to be overridden. Lowercase 
characters in the data stream are not 
translated to uppercase. 

This option is not applicable to the initial 
input data for a transaction. For example, if 
a transaction is initiated by another 
transaction, and begins by receiving data 
originally output by that transaction, it 
(:annot suppress upper case translation on the 
data. 

AUTOPAGE 
specifies that each page of a BMS logical 
message is to be sent to the terminal as soon 
as it is available. If paging upon request is 
specified for the terminal by the PGEST A T 
operand of DFHTCT TYPE = TERMINAL 
macro, AUTO PAGE overrides it for this 
logical message. 

AUTOPAGE is assumed for 3270 printers; it 
does not apply to 3270 display terminals. If 
neither AUTOPAGE nor NOAUTOPAGE 
is specified, the terminal has the paging status 
specified for it by the DFHTCT 
TYPE = TERMINAL macro. 

CURRENT 
specifies that if the ATTN key on a 2741 is 
pressed while a BMS logical message is being 
sent to the terminal, transmission of the 
current page is to cease and transmission of 
the next page (if any) is to begin. 

CURSO RI( data-value») 
specifics the position to which the 3270 or 
3604 cursor is to be returned upon 
completion of a SEND MAP, SEND TEXT, 
or SEND CONTROL command. 

The data value must be a halfword binary 
value that specifics the cursor position relative 
to zero; the range of values that can be 
specified depends on the size of the screen 
being used. If no data value is specified, 
symbolic cursor positioning is assumed, as 
described in "Cursor Positioning" on 
page 153. 

This option overrides any IC option of the 
ATTRB operand of the DFHMDF macro. 
If ACCUM is being used, the most recent 
value of CURSOR specified is used to 
position the cursor. 

DATA ONLY 
specifics that only application program data is 
to be written. The attribute characters (3270 
only) must be specified for each field in the 
supplied data. If the attribute byte in the user 
supplied data is set to XIOO', the attribute 

230 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



byte on the screen will be unchanged. Any 
default data or attributes from the map are 
ignored. This is described under "Refreshing 
and Modifying Displays" on page 151. 

ERASE 
specifies that the screen printer buffer or 
partition is to be erased and the cursor 
returned to the upper left comer of the screen 
before this page of output is displayed. (This 
option applies only to the 3270, or 8775, and 
to the 3604 Keyboard Display.) The frrst 
output operation in any transaction, or in a 
series of pseudoconversational transactions, 
should always specify ERASE. For 
transactions attached to 3270 screens or 
printers, this will also ensure that the correct 
screen size is selected, as defmed for the 
transaction by the SCRNSZE keyword of 
CEDA DEFINE PROFILE or the 
SCRNSZE operand of DFHPCT. 

ERASEAUP 
specifies that before this page of output is 
displayed, all unprotected character locations 
in the partition or the entire screen are to be 
erased. (This option applies only to the 3270 
and 8775.) 

ERRTERM(name») 
specifies the name of the terminal to be 
notified if the message is deleted because it is 
undeliverable. The message number, title 
identification, and destination are indicated. 
If no name is specified, the originating 
terminal is assumed. 

This option is operative only if the 
PRGDLAY operand has been specified in 
the DFHSIT macro. 

FMHP ARM(name) 
specifies the name (1 through 8 characters) of 
the outboard map to be used. (This option 
applies only to 3650 logical units with 
outboard formatting.) 

FORMFEED 
specifies that a new page is required. For 
3270 printers and displays, the formfeed 
character is positioned at the start of the 
buffer. The application program must thus 

ensure that this buffer position is not 
overwritten by map or text data. 

This option is fully discussed under "Printed 
Output" on page 158. It is ignored if the 
target terminal does not support formfeed 
(that is, the DFHTCT TYPE = TERMINAL 
system macro does not specify FF = YES) 

FREEKB 
specifies that the 3270 keyboard should be 
unlocked after the data is written. If 
PREEKB is omitted, the keyboard remains 
locked. 

Note that the keyboard lock status is 
maintained separately for each partition on a 
terminal which supports partitions. 

FROl\1(data·area) 
specifies the data area containing the data to 
be processed by a SEND MAP or SEND 
TEXT command, or data to be mapped by a 
RECEIVE MAP command. 

FRSET 
specifies that the modified data tags (MDTs) 
of all fields currently in the 3270, (or 
partition) buffer are to be reset to the 
not-modified condition (that is, field reset) 
before any map data is written to the buffer. 

This allows the A TTRB operand of the 
DFHMDF macro for the requested map to 
control the fmal status of fields written or 
rewritten in response to a BMS command. 

HEADER( data-value) 
specifies the header data to be placed at the 
beginning of each page of text data. The 
format of the header is described under 
"Cumulative Text Formatting" on page 192. 

HONEOM 
specifies that the default printer line length is 
to be used. This length should be the same 
as that specified in the PGESIZE or 
ALTPAGE operand of the DFHTCT 
TYPE = TERMINAL system macro, and the 
same as the printer platen width, otherwise 
the data may not format correctly. 

Chapter 3.2-5. BMS Macro and Command Reference Summary 231 



INP ARTN (name) 
specifies the 1 or 2 character name of the 
partition in which the tenninal operator is 
expected to enter data. If the terminal 
operator enters data in some other partition, 
the INP AR TN partition is activated, the 
keyboard is unlocked for the partition, and an 
eITor message is output to any error Inessage 
partition. This option is ignored if the 
terminal does not support partitions, or if 
there is no application partition set. 

INTERV AL(hhmmss) 
specifies the interval of time after which the 
data is to be transmitted to the terminals 
specified in the ROUTE command. 

INTO( data-area) 
on a RECEIVE MAP command specifies the 
data area into which the mapped data is to be 
written. 

On a RECEIVE PARTN command, the 
INTO option specifies the area into which 
the input data stripped of partition controls is 
to be written. The length of this area must 
be specified by the LENGTH option. If the 
area is not large enough to hold the input 
data, the input data is truncated, and the 
LENGERR condition raised. The length 
option data area is set to the length of data 
received, prior to any truncation. 

JUSFIItST 
specifies that the text data is to be placed at 
the top of the page. Any partially fOlmatted 
page from previous requests is considered to 
bf: complete. If the HEADER option is 
specified, the header precedes the data. See 
also the description of the JUSTIFY option. 

JUSLAST 
specifies that the text data is to be positioned 
at the bottom of the page. The page is 
considered to be complete after the request 
has been processed. If the TRAILER option 
is specified, the trailer follows the data. See 
also the description of the JUSTIFY option. 

JUSTIFY( data-value) 
specifies the line of the page at which the text 
data is to be positioned. The data value must 
be a halfword binary value in the range 1 
through 240. Although they may not be 
specified as constants, the special values -1 
and -2 can be supplied dynamically to signify 
JUSPIRST or JUSLAST, respectively. 

IJAST 
specifies that this is the last output operation 
for a transaction and, therefore, the end of a 
bracket. If RELEASE is specified, LAST is 
assumed unless the SEND PAGE command 
is terminating a routing operation. This 
option applies to logical units only. 

I.lDC(namc) 
specifies a two-character mnemonic to be 
used to determine the logical device code 
(LDC) to be transmitted in the FMH to the 
logical unit. The mnemonic represents an 
LDC entry specified in the DFHTCT 
TYPE= LDC system macro. 

When an LDC is specified, BMS uses the 
device type, the page size, and the page status 
associated with the LDC mnemonic to 
format the message. These values are taken 
frOln the extended local LDC table for the 
LU, if it has one. If the LU has only a local 
(unextended) LDC table, the values are taken 
from the system LDC table. The numeric 
value of the LDC is obtained from the local 
LDC table, unless this is an unextended table 
and the value is not specified, in which case it 
is taken from the system table. 

If the LDC option of a SEND MAP or 
ROUTE command is omitted, the LDC 
mnemonic specified in the DFHMSD macro 
is used. If the LDC option has also been 
omitted from the DFHMSD macro, the 
action depends on the type of logical unit, as 
follows: 

3601 tu - the frrst entry in the local or 
extended local LOC table is used, if there is 
one. If a default cannot be obtained in this 
way, a null LDC numellc value (X'OO') is 
used. The page size used is the value that is 

232 CICSjDOS/VS Application Programmer's Reference Manual (Command Level) 



specified in the DFHTCT 
TYPE = TERMINAL system macro, or 
( 1 ,40) if such a value is not specified. 

LUTYPE4 LU, batch LU, or batch data 
interchange LU - the local LDC table is not 
used to supply a default LDC; instead, the 
message is directed to the LU console (that is, 
to any medium that the LU elects to receive 
such messages. For a batch data interchange 
LU, this does not imply sending an LDC in 
an FMH). The page size is obtained in the 
manner described for the 3601 LU. 

For message routing, the LDC option of the 
ROUTE command takes precedence over all 
other sources. If this option is omitted and a 
route list is specified (LIST option), the LDC 
mnemonic in the route list is used; if the 
route list contains no LDC mnemonic, or no 
route list is specified, a default LDC is chosen 
as described above. 

LENGTH( data-value) 
specifies the length of the data to be 
fonnatted as a halfword binary value. 

On a RECEIVE PARTN command, the 
LENGTH option must be set to the length 
of any INTO area prior to the command. 
After the command, BMS sets the LENGTH 
option to the length of data received prior to 
any truncation if the INTO area is too small. 

LIST( data-area) 

lAO 

specifies the data area that contains a list of 
terminals and/or operators to which data is to 
be directed. If this option is omitted, all 
terminals supported by B MS receive the data 
(unless the 0 PCLASS option has some 
effect). For more information, see "Route 
List and Operator Class Codes (LIST and 
OPCLASS)" on page 198. 

specifies the line length for a 3270 printer; a 
carrier return and line feed are forced after 40 
characters have been printed on a line. 
Unexpected results will occur if this differs 
from the page width specified by the 
PAGESIZE or AL TPGE options of the 
DFHTCT TYPE = TERMINAL macro. 

1.164 

L80 

specifies the line length for a 3270 printer; a 
carrier return and line feed are forced after 64 
characters have been printed on a line. 
Unexpected results will occur if this differs 
from the page width specified by the 
PAGESIZE or ALTPGE options of the 
DFHTCT TYPE = TERMINAL system 
macro. 

specifies the line length for a 3270 printer; a 
carrier return and line feed are forced after 80 
characters have been printed on a line. 
Unexpected results will occur if this differs 
from the page width specified by the 
PAGESIZE or ALTPGE options of the 
DFHTCT TYPE=TERMINAL system 
macro. 

MAP(name) 
specifics the name (I through 7 characters) of 
the map to be used. 

MAPONLY 
specifics that only default data from the map 
is to be written. If this option is specified, 
the FROM option must not be specified. 

MAPSET(name) 
specifies the unsuffixed name (I through 7 
characters) of the map set to be used. The 
map set must reside in the CICS program 
library, and an entry for it must exist in the 
processing program table (PPT). If this 
option is not specified, the name given in the 
MA P option is assumed to be that of the 
map set. 

MSR(data-value) 
specifics the 4-byte data value which controls 
the 10/63 magnetic stripe reader attached to 
an 8775 or 3643 terminal. A set of constants 
is provided in DFHMSRCA to assist in 
setting this 4 byte area. This option is ignored 
if the terminal's DFHTCT 
TYPE = TERMINAL macro does not specify 
FEATURE = MSRCNTRL. You will fmd 
more information about this under "10/63 
Magnetic Slot Reader Control" on page 176. 

Chapter 3.2-5. BMS Macro and Command Reference Summary 233 



NLE01M 
specifies that data for a 3270 printer or a 3275 
display with the printer adapter feature should 
be built with blanks and new-line (NL) 
characters, and that an end-of-message (EM) 
character should be placed at the end of the 
data. As the data is printed, each NL 
character causes printing to continue on the 
next line, and the EM character terminates 
printing. 

This option must be specified in the first 
SEND MAP or SEND TEXT command 
used to build a logical message, and in the 
RO UTE command if the message is to be 
routed. The option is ignored if the device 
receiving the message (direct or routed) is not 
one of those noted above. 

If this option is used, buffer updating and 
attribute modification of fields previously 
written into the buffer are not allowed. CICS 
includes the ERASE option with every write 
to the terminal. 

The NL character occupies a buffer position. 
A. number of buffer positions, equivalent to 
the value of the PGESIZE or ALTPGE 
operand of the DFHTCT system macro for 
that terminal, is unavailable for data. This 
mlay cause data to wrap around in the buffer; 
if this occurs, the PGESIZE value must be 
reduced. 

The NLEOM option overrides the ALARM 
option if the latter is present. 

The NLEOM option is further discussed 
under "Printer Support" on page 163. 

NOAUTOPAGE 
specifies that pages of a BMS logical message 
are to be sent one at a time to the terminal. 
B MS sends the frrst page to the terminal 
when the terminal becomes available or upon 
request of the terminal operator. Subsequent 
pages are sent to the terminal in response to 
requests from the terminal operator. (Refer 
to the CICS/DOS/VS CICS-Supplied 
Transactions manual.) 

If automatic paging is specified for the 
tenninal by the PGEST A T operand of the 
DFHTCT TYPE = TERMINAL system 
macro, NOAUTOPAGE overrides it for this 
logical message. For logical units, 
NOA UTOPAGE applies to all pages for all 
LDCs in the logical message. 

NOAUTOPAGE does not apply to 3270 
printers. 

OPCLASS( data-area) 
specifies the data area that contains a list of 
operator classes to which the data is to be 
routed. The classes are supplied in a 
three-byte field, each bit position 
corresponding to one of the codes in the 
range I through 24 but in reverse order, that 
is, the first byte corresponds to codes 24 
through 17, the second byte to codes 16 
through 9, and the third byte to codes 8 
through 1. 

OPERPIJRGE 
specifics that CICS is to delete the BMS 
logical message only when the terminal 
operator requests deletion. If the option is 
omitted, CICS deletes the message if the 
operator enters data that is not a paging 
command. 

OUTPARTN (name) 
specifics the 1- through 2-character name of 
the partition to which data is to be sent. 
This option is ignored if the terminal does 
not support partitions, or if there is no 
application partition set associated with the 
terminal. If there is an application partition 
set, and the OUTPARTN option is omitted, 
data is sent to the partition named by the 
PARTN operand of the DFHMSD or 
DFHMDI map deftnition macro. Ifmaps 
arc not used, or if there is no PAR TN 
operand, the output is sent to the first 
partition in the partition set. 

PAGING 
specifics that the output data is not to be sent 
immediately to the terminal, but is to be 
placed in temporary storage and displayed in 

234 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



response to paging commands entered by the 
terminal operator. 

If PAGING is specified with a REQID that 
is dermed as recoverable in the temporary 
storage table (TST), CICS provides message 
recovery for logical messages if the task has 
reached a sync point. 

PARTN (data area) 
is set by BMS to the 1 or 2 character name of 
the input partition. 

P ARTNSETI(name)J 
specifies the 1 through 6 character name of a 
partition set to be associated with the 
application program. If no name is specified, 
the terminal is set to unpartitioned state. 

PRINT 
specifies that a print operation is to be started 
at a 3270 printer or at a 3275 with the printer 
adapter feature, or that data on an 
LUTYPE2 (3274/76 or 3790) is to be printed 
on a printer allocated by the controller. If 
this option is omitted, the data is sent to the 
printer buffer but is not printed. 

RELEASE 
specifies that, after a SEND PAGE 
command, control is to be returned to the 
program at the next higher logical level, or to 
CICS (if the issuing program is at the highest 
logical level), after the pages have been 
written to the terminal. For more details of 
the effect of this option, refer to ilLogical 
Messages for Terminal Operator Paging" on 
page 184. 

REQID(name) 
specifies a 2-character prefix to be used as 
part of a temporary storage identifier for 
CICS message recovery. Only one prefix can 
be specified for each logical message. The 
default prefix is + + • 

BMS message recovery is provided for a 
logical message only if the PAGING option 
is specified in the BMS SEND commands 
and if the sync point has been reached. 

RETAIN 
specifies that, after a SEND PAGE 
command, control is to bc returned to the 
application program after the pages have been 
written to the terminal. For more details of 
the effect of this option, refer to "Logical 
Messages for Terminal Operator Paging" on 
pagc 184. 

SET(ptr-rcf) 
specifies the pointer that is to be set to the 
address of the input or output data. 

For input, the pointer is set to the address of 
the 12-byte prefix to the mapped data. 

Por output, the SET option specifies that the 
completed pages are to be returned to the 
application program. 'Ibe pointer is set to 
the address of a list of completed pages. See 
"Chapter 3.2-4. Full Function BMS" on 
page 181 for further details. 

The application program regains control 
either immediately following the BMS SEND 
command (if the current page is not yet 
completed), or at the label specified in a 
HANDLE CONDITION RETPAGE 
command if the page has been completed. 

TERMINAL 
specifics that input data is to be read from the 
tcrminal that originated the transaction, or 
that output data is to be sent to that terminal. 

TIME(hhmmss) 
specifies the time of day at which data is to 
be transmitted to the terminals specified in 
the ROUTE command. 

TITIJ~(data-area) 

spccifies the data area that contains the title 
to be used with a routing logical message. 
This title will appear as part of the response 
to a page query command. For the format of 
the title, refer to "TITLE Option of the 
ROUTE Command" on page 198. 

TRAILER( data-area) 
specifies the text data area that contains 
trailer data to be placed at the bottom of each 

Chapter 3.2-5. OMS Macro and Command Reference Summary 235 



output page (with a SEND TEXT command) 
or at the bottom of the last page only (with a 
SEND PAGE command). For the fonnat of 
the trailer data, refer to "Cumulative Text 
Fonnatting" on page 192. 

TRANSID(name) 
specifies the transaction identifier to be used 
with the next input message from the 
tenninal to which the task is attached. The 
identifier can consist of up to 4 alph~mumeric 
characters; it must have been defmed. in the 
program control table (PCT). TRANSID is 
valid only if SEND PAGE RELEASE is 
specified. 

If this option is specified in a progrruffi that is 
not at the highest logical level, the specified 
tlransaction identifier will be used only if a 
new transaction identifier is not provided in 
another SEND PAGE command (or in a 
RETURN program control command) issued 
in a program at a higher logical level. 

WAIT 
specifies that control should not be returned 
tn the application program until the output 
operation has been completed. 

If WAIT is not specified, control will return 
to the application program once the output 
operation has started. A subsequent input or 
output command (terminal control, BMS, or 
hatch data interchange) will cause the 
application program to wait until the 
previous command has been completed. 

BMS Exceptional Conditiol1ls 

Some of the following exceptional conditions may 
occur jin combination with others. CICS checks for 
these ,conditions in the following order: 

LENGERR 
OVERFLOW 
IGREQCD 
TSIOERR 
INVREQ 
RETPAGE 
MAPFAIL 
RTEFAIL 
RTESOME 
INVERRTERM 
IGREQID 
INVLDC 
INVMPSZ 
EODS 
INVPARTNSET 
INVPARTN 
PARTNFAIL 
UNEXPIN 
EOC 

If more than one of these conditions occurs, only 
the ftrst one found to be present is passed to the 
application program. 

Eoe 
occurs if the request/response unit (RU) is 
received with the end~of-chain (EOC) 
indicator set. It applies only to logical units. 

Default action: ignore the condition. 

EODS 
occurs if no data is received (only an FMH). 
It applies only to 3770 batch LUs and to 
3770 and 3790 batch data interchange LUs. 

Default action: terminate the task abnonnally. 

IGREQCD 
occurs when an attempt is made to execute a 
SEND MAP, SEND PAGE, SEND TEXT, 
or SEND CONTROL command after a 
SIGNAL data flow control command with an 
ReD (request change direction) code has 
been received from an LUTYPE4 LU. 

Default action: tenninate the task abnormally. 

IGREQID 
occurs if the prefix specified in the REQID 
option on a BMS SEND command is 
different from that established by a previous 
REQID option, or by default for this logical 
message (REQID (++)). 

236 CICSjDOS/VS Application Programmer's Reference Manual (Command Level) 



Default action: terminate the task abnormally. 

INVERRTERM 
occurs if the terminal identifier specified in 
the ERRTERM option of a ROUTE 
command is invalid or is assigned to a type of 
tenninal not supported by BMS. 

Default action: tenninate the task abnormally. 

INVLDC 
occurs if the specified LDC mnemonic is not 
included in the LDC list for the logical unit. 

Default action: terminate the task abnormally. 

INVMPSZ 
occurs if the specified map is too wide for the 
terminal, or if a HANDLE CONDITION 
OVERFLOW command is active and the 
specified map is too long for the terminal. 

Default action: terminate the task abnormally. 

INVPARTN 
occurs if the specified partition is not defmed 
in the partition set associated with the 
application program. 

Default action: terminate the task abnormally. 

INVPARlNSET 
occurs if the partition set named in the 
SEND PARTNSE'T command is not a valid 
partition set (for example, it may be a map 
set). 

Default action: terminate the task abnormally. 

INVREQ 
occurs if a request for BMS services is invalid 
for any of the following reasons: 

• The disposition (TERMINAL, 
PAGING, or SET) of a BMS logical 
message is changed prior to its 
completion by a SEND PAGE 
command. 

• A SEND PARTNSET command is 
issued while a logical message is active. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Text data is output to the same partition 
or LDC as mapped data while a BMS 
logical message is active. If neither 
partitions nor LDCs are in use, text data 
is output to the same logical message as 
mapped data. 

A separate SEND TEXT ACCUM or 
SEND MAP ACCUM command is 
issued to the terminal that originated the 
transaction while a routed logical message 
is being built. 

The TRAILER option is specified in a 
SEND PAGE command when 
tenninating a logical message built with 
SEND MAP commands only. 

An output mapping command is issued 
for a map without field specifications by 
specifying the FROM option without the 
DATAONLYoption. 

During overflow processing data is sent 
to a different LDC than the LDC that 
caused page overflow. 

Partitions are in use, the 0 UTPAR TN 
option has not been coded on a SEND 
MAP command, but the PAR TN 
operand has been coded in the map set 
definition. If the condition arises, it 
suggests that different versions of the map 
set have different PAR TN values, and 
that the suffix deduced for the partition is 
not the same as the suffix of the loaded 
map set. 

The length of a header on a SEND 
TEXT command is negative. 

The length of a trailer on a SEND TEXT 
or SEND PAGE command is negative. 

Bytes 10 through 15 of a route list entry 
do not contain blanks on a ROUTE 
command. 

RECEIVE MAP and RECEIVE 
PAR TN commands cannot be issued in a 

Chapter 3.2~5. BMS Macro and Command Reference Summary 237 



nonterminal task, because these tasks do 
not have a TIOA or a TCTTE. 

Default action: tenninate the task abnormally. 

LENGERR 
occurs if the INTO area of a RECEIVE 
PAR TN command is not large enough to 
hold the input data. 

Dlefault action: truncate the data to fit within 
the INTO area. 

MAPFAIL 
occurs if the data to be mapped has a length 
of zero or does not contain a 
set-buffer-address (SBA) sequence. It applies 
only to 3270 devices. The receiving data area 
will contain the unmapped input data stream. 
The amount of unmapped data moved to the 
user's area will be limited to the length 
specified in the LENGTH option of the 
RECEIVE MAP command. 

This condition also arises if a progratn issues 
a RECEIVE MAP command to which the 
te:nninal operator responds by pressing a 
CLEAR or PA key or pressing ENTER or a 
PF key without entering data. 

Default action: terminate the task abnormally. 

OVER:FLOW 
occurs if the mapped data does not fit on the 
current page. This condition is only raised if 
a HANDLE CONDITION OVERFLOW 
command is active. 

Default action: ignore the condition. 

PARTNFAIL 
occurs if the terminal operator persists in 
entering data in a partition other than that 
specified by the INP AR TN option of the 
RECEIVE MAP command. 

Default action: terminate the task abnormally. 

RDA1" 
occurs if a RECEIVE MAP command is 
tenninated by the operator using the ATTN 
key rather than the RETURN key. It applies 
only to the 2741 Communications Tenninal, 
and only if 2741 read attention support has 
been generated for CICS. 

Default action: ignore the condition. 

RETJlAGE 
occurs if the SET option is specified and one 
or more completed pages are ready for return 
to the application program. 

Default action: return control to the 
application program at the point immediately 
following the BMS SEND command. 

RTEf'AIL 
occurs if a ROUTE cOlnmand would result 
in t.he message being sent only to the terminal 
that initiated the transaction. 

Default action: return control to the 
application program at the point immediately 
following the ROUTE command. 

RTESOME 
occurs if any of the terminals specified by 
options of a ROUTE command will not 
receive the message. 

Default action: return control to the 
application program at the point immediately 
following the ROUTE command. 

TSIOERR 
occurs if there is an unrecoverable temporary 
storage input/output error. 

Default action: terminate the task abnormally. 

UNEXPIN 
Raised when unexpected or unrecognized 
data is received. This only applies to batch 
data interchange terminals. 

Default action: terminate the task abnormally. 

238 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 3.3. Terminal Control 

The CICS terminal control program provides for 
communication between user-written application 
programs and terminals and logical units, by means 
of terminal control commands. 

Terminal control uses the standard access methods 
available with the host operating system, as follows: 

• BT AM (Basic Telecommunications Access 
Method) is used by CICS for most· start-stop 
and BSC tenninals. 

• SAM (Sequential Access Method) is used 
where keyboard terminals are simulated by 
sequential devices such as card readers and line 
printers. 

• VT AM (Virtual Telecommunications Access 
Method) is used for systems network 
architecture (SNA) terminal systems. 

Terminal control polls terminals to see if they are 
ready to transmit or receive data. Tenninal control 
handles code translation, transaction identification, 
synchronization of input and output operations, 
and the line control necessary to read from or write 
to a terminal. 

The application program is freed from having to 
physically control terminals. During processing, an 
application program is connected to one terminal 
for one task and the terminal control program 
monitors which task is associated with which 
terminal. The task to be initiated is determined as 
described in "Terminal-Oriented Task 
Identification" on page 243. 

Terminal control is used for communication with 
tenninals. In SNA systems, however, it is used 
also to control communication with logical units or 
with another CICS system. 

A logical unit (LU) represents either a terminal 
directly, or a program stored in a subsystem 
controller which in turn controls one or more 
terminals. 

The CICS application program communicates, by 
means of the logical unit, eithcr with a terminal or 
with the stored program. For example, a 3767 
tcrminal is represented by a single logical unit 
without an associated user-written application 
program. In contrast, a 3790 subsystem is 
represented by a 3791 controller, ~ser-written 3790 
application programs, and one or more 3790 
terminals; when the subsystem is configured, one or 
more logical units are designated by the user. 

Terminal control is used also for communicating 
with a remote system by means of distributed 
transaction processing (DTP). SNA protocols are 
available, through terminal control commands, to 
initiate and terminate a conversation (a session) 
with a remote LU6.llogical unit. 

This conversation is carried on between a principal 
facility and one or more alternate facilities. 

A principal facility for a task is a terminal, LU6.1 
session, or LU6.2 session that is made available to 
the application program when the task is initiated. 

An alternate facility for a task is an LU6.1 session, 
or an LU6.2 session acquired as needed by the 
application program. In general, terminal-control 
commands that refer to an alternate facility should 
include the SESSION option, or for LU6.2, the 
CONVID option. 

The ALLOCATE and FREE commands allow the 
application program to acquire and release these 

Chapter 3.3. Terminal Control 239 



alternaLte facilities and allow both principal and 
alternate facilities to be used at the same time. 

For LU6.1, the BUILD ATTACH and 
EXTRACT ATTACH commands, together with 
the ATT ACHID option of the SEND command, 
allow the application program to attach a 
transaction in a remote system. 

For LU6.2, the CONNECT PROCESS command 
allows the application program to attach a 
transaction in the remote system. 

Fields in the BIB allow access to indicators that 
give the status of the conversation after execution 
of RECEIVE or CONVERSE commands. For 
example, EIBEOC, EIBATT, and EIBFMH 
provide more information about the received data, 
and EIBSYNC, EIBFREE, and EIBRECV 
provide more information about the session. 

The INVITE option of the SEND command 
allows the optimization of SNA flows that occUr 
when Icommunicating with another transaction. 

Distributed transaction processing is described fully 
in the CICS/DOS/VS Intercommunication Facilities 
Guide .. 

Cotnnlands and options that apply specifically to 
logical units are described later in the chapter. 

Terminal control commands are provided to 
request the following services that are applicable to 
most, or all, of the types of terminal or logical unit 
supported by CICS: 

• Read data from a terminal or logical unit 
(RECEIVE). 

• W'rite data to a terminal or logical unit 
(SEND). 

• Converse with a terminal or logical unit 
(CONVERSE). 

• Synchronize terminal input/output for a 
transaction (WAIT TERMINAL). 

• Send an asynchronous interrupt (ISSUE 
SIGNAL). 

• Relinquish use of a communication line 
(ISSUE RESET). 

• Disconnect a switched line or terminate a 
session with a logical unit (ISSUE 
DISCONNECT). 

It is possible to read records from a card reader and 
read records from or write records to a disk data 
set, magnetic tape unit, or a line printer defmed by 
the system programmer as a 
card-reader-in/line-printer-out (CRLP) terminal. 
For more information, see "Sequential Terminal 
Support" on page 381. 

Other services available in response to terminal 
control commands apply to specific types of 
terminal. The permissible commands and options 
that can be used by specific terminal types are 
detailed later in the chapter. Because many types 
of terminal are supported by CICS, many special 
services are provided. (For a list of terminals 
supported by CICS, see the CICS/DOS/VS 
Facilitie.f and Planning Guide.) In particular, a 
large number of commands are provided for 
communicating with display devices such as the 
IBM 3270 Information Display System; these are 
described in "Display Device Operations" on 
page 252. 

The options that follow the command depend on 
the terminal or logical unit (and sometimes, access 
method) used and the operations required. Options 
included in a terminal control command that do 
not apply to the device being used will be ignored. 

Exceptional conditions that occur during the 
execution of terminal control commands are 
handled as described in "Chapter 1.5. Exceptional 
Conditions" on page 31. 

240 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Commands and Options for 
Terminals and Logical Units 

The commands and options described in this 
section apply to all terminals and logical units. 
There may, however, be others that apply to 
specific devices. If so, details are given later in the 
chapter under headings for the device types. 

Fullword Lengths 

For all terminal control commands, fullword length 
options can be used instead of halfword length 
options. In particular, where the following options 
are used, the corresponding alternative can be 
specified instead: 

Option 

LENGTH 
TOLENGTH 
FROMLENGTH 
MAXLENGTH 

Alternative 

FLENGTH 
TOFLENGTH 
FROMFLENGTH 
MAXFLENGTH 

Application programs should be consistent in their 
use of fullword and halfword options on terminal 
control commands. The maximum value that can 
be specified as a parameter on any length keyword 
is 32,767. 

Read From Terminal or Logical Unit 
(RECEIVE) 

The RECEIVE command is used to read data from 
a terminal or logical unit. The INTO option is 
used to specify the area into which the data is to be 
placed. Alternatively, a pointer reference can be 
specified in the SET option. CICS acquires an area 
large enough to hold the data and sets the pointer 
reference to the address of that data. 

The contents of this area is available to the task 
until the next command is issued by the task. 
However, the area does not belong to the task and 
will be released by CICS while processing the next 
request. Therefore, this area cannot be passed back 
to CICS for further processing. 

The application can use MAXLENGTH to specify 
the maximum length of data that the program will 
accept. If the MAXLENGTH option is omitted 
on a RECEIVE command for which the INTO 
option is specified, the maximum length of data the 
program will accept can be specified in the 
LENGTH option. If the MAXLENGTH option 
is omitted on a RECEIVE command for which the 
SET option is specified, CICS will acquire enough 
storage to hold all the available data. 

If the data exceeds the specified maximum length 
and the NOTRUNCATE option is specified, the 
remaining data will be made available to satisfy 
subsequent RECEIVE commands. If 
NOTRUNCATE is not specified, the data is 
truncated and the LENGERR condition is raised. 
In this event, if the LENGTH option is specified, 
the named data area is set to the actual data length 
(before truncation occurs) when data has been 
received. The first RECEIVE command in a task 
started by a terminal will not issue a terminal 
control read but will simply copy the input buffer, 
even if the data length is zero. A second 
RECEIVE command must be issued to cause a 
tenninal control read. 

When a P A key is defmed in the SIT to mean 
PRINT, and that key is pressed in response to a 
RECEIVE command, it has no effect on the 
application program. The RECEIVE command is 
satisfied, and the application allowed to continue, 
when another attention (that is, one of the other 
PA keys, any of the PI' keys, the ENTER key, or 
the light pen) is made at the keyboard. 

Write to Terminal or Logical Unit (SEND) 

The SEND command is used to write data to a 
terminal or logical unit. The options FROM and 
LENGTH specify respectively the data area from 
which the data is to be taken and the length (in 
bytes) of the data. For a transaction started by 
automatic transaction initiation (ATI), a SEND 
cOlnmand should always precede the first 
RECEIVE in a transaction. 

Chapter 3.3. Terminal Control 241 



WAIT Option of SEND Command 

Unless the WAIT option is specified also, the 
transmission of the data associated with the SEND 
command is deferred until a later event, such as a 
sync point, occurs. This deferred transmission 
reduces the flows of data by allowing data flow 
controls to be transmitted with the data. 

Transnussion is not deferred for distributed 
transaction processing when interregion 
communication (IRC) is in use. See the 
CICS/DOS/VS Intercommunication Facilities Guide 
for further information. ' 

Synchronize Tenninal 1/0 for a 
Transaction (WAIT TERMINAL) 

This command is used to ensure that a terminal 
operation has completed before further processing 
occurs in a task under which more than one 
terminal or logical unit operation is performed. 
Alternatively, the WAIT option can be specified in 
a SEND command. (A wait is always carried out 
for a RECEIVE command.) 

Either method may cause execution of a task to be 
suspended. If suspension is necessary, control is 
return(~d to CICS. Execution of the task is 
resum(~d when the operation is completed. 

Even if the WAIT option is not specified in a 
SEND command, the EXEC interface program will 
ensure that the operation is completed before 
issuing a subsequent RECEIVE or SEND 
command. 

It is the user's responsibility to code an explicit 
wait between two terminal control operations if 
mixing command and macro level requests. 

Conv1erse With Tenninal or Logical Unit 
(COr~VERSE) 

For mlost ternunals or logical unit types a 
conversational mode of communication can be 
used. The CONVERSE command is used for this 
purpose. In general, the CONVERSE command 
can bf~ considered as a combination of a SEND 

command followed immediately bya WAIT 
TERMINAL command and then by a RECEIVE 
command. However, not all options of the SEND 
and RECEIVE commands are valid for the 
CONVERSE command. Specific rules are given in 
the syntax descriptions for different devices later in 
the chapter. The TOLENGTHoption is 
equivalent to the LENGTH option of the 
RECEIVE command, and the FROMLENGTH 
option is equivalent to the LENGTH option of the 
SEND command. 

Send an Asynchronous Interrupt (ISSUE 
SIGNAL) 

This command is used, in a transaction in receive 
mode, to signal to the sending transaction that a 
mode change is needed. The execution of the 
command will raise the SIGNAL condition on the 
next SEND or RECEIVE command executed in 
the sending transaction, and a previously executed 
HANDLE CONDITION command for this 
condition can be used either to action the request 
or to ignore it. 

Relinquish a Communication Line (ISSUE 
RESET) 

This command is used to relinquish use of a 
communication line. The command applies only 
to binary synchronous devices using BT AM. The 
next STAM operation will be a read or write 
initial. 

Disconnect a Switched Line (ISSUE 
DISCONNECT) 

This command is used to break a line connection 
between a terminal and the processor, or to break a 
session between ACF /VT AM logical units, when 
the transaction is completed. If the terminal is a 
buffered device, the data in the buffers will be lost. 

When used with a VTAM terminal, ISSUE 
DISCONNECT, which does not become effective 
until the task completes, signs off the terminal, frees 
the COMMAREA, clears the next TRANID, stops 
any RMS paging, and, if autoinstall is in effect, 
deletes the tenninal defmition. 

242 CICSjDOSjVS Application Programmer's Reference Manual (Command LeveJ) 



Tenninal ... Oriented Task Identification 

When CICS receives input from a terminal to 
which no task is attached, it has to determine 
which transaction should be initiated. The 
methods by which the user can specify the 
transaction to be initiated and the sequence in 
which CICS checks these specifications are as 
follows (see also Figure 17). 

The system macros referred to in the following tests 
are described in the GIGS/DOS/VS Resource 
Definition (Macro) manual. Where applicable, the 
CEDA transaction can be used, instead of system 
macros, to defme the resources, as described in the 
GIGS/DOS/VS Resource Definition (Online) 
manual. 

Test 0: 
(a) Is this terminal defmed as to be queried? 

(b) Has query been run to this terminal? 

If yes to (a) and no to (b), the query 
transaction, CQRY, is initiated before any 
other transaction. 

Test 1: 
Is the input from a P A key (of a 3270 
terminal) that has been defmed at system 
initialization as the print request key? 

If yes, printing of the data displayed on the 
screen is initiated. 

Test 2: 
(a) Is this terminal of a type supported by 
BMS terminal paging? 

(b) Is the input a paging command? (The 
terminal operator can enter paging commands 
defmed in the DFHSIT system macro.) 

If yes to both ( a) and (b), the transaction 
CSPG, which processes paging commands, is 
initiated. 

Test 3: 
If an attach FMH is present in the data 
stream and Tests 4 and 5 are not fulftlled, the 

transaction specified in the attach FMH is 
initiated. The architectured attach names are 
converted to IICSMI". 

Test 4: 
Docs the terminal control table entry for the 
terminal include a transaction identifier 
(specified by the TRANSID operand of the 
DFHTCT TYPE = TERMINAL system 
macro.) 

If yes, the specified transaction is initiated. 

Test 5: 
Is a transaction specified by the TRANSID 
option of a program control RETURN 
command (or by the application program 
moving the transaction name into 
'l'CANXTID)? 

If yes, the specified transaction is initiated. 

Test 6: 
(a) Is the terminal a 3270 (including 3270 
logical unit and 3650 host-conversational 
(3270) logical unit, connected via VT AM)? 

(b) Is the input from a PA key, PF key, light 
pen attention, or operator identification card 
reader? 

(c) Is this input specified by the TASKREQ 
operand of the DFHPCT TYPE = ENTRY 
system macro? 

If yes to (a), (b), and (c), the program 
specified by the PROGRAM operand of the 
same DFHPCT TYPE=ENTRY system 
macro is given control. 

Test 7: 
Is a valid transaction identification specified 
by the frrst ope to four characters of the 
terminal input? 

If yes, the specified transaction is initiated. 

For all P A keys and some LP As there cannot 
be terminal input. If there is no terminal 
input an lIinvalid transaction identification" 
message is sent to the terminal. 

Chapter 3.3. Terminal Control 243 



If non{~ of the above tests is met, an invalid 
transaction identification exists, and message 
DFH2001 (INVALID TRANSACTION 
IDENTIFICATION xxxx - PLEASE 
RESUBMIT) is sent to the terminal. 

The IBM 3735 Programmable Buffered Terminal 
makes an exception to this sequence when 
operating in inquiry mode. The test of input from 
the tenninal (Test 7 above) is given highest priority. 

Commands and Options for 
Logical Units 

An application program conununicates with a 
vr ANI logical unit in much the same way as it 
does with a BT AM terminal (that is, by using the 
terminal control commands described above). 
However, communication with logical units is 
govem,ed by the conventions (protocols) that apply 
to each type of logical unit. This section describes 
the additional conunands and options provided by 
CICS to enable application programs to comply 
with these protocols. 

The types of logical units and the related protocols 
for each of the SNA subsystems supported by 
CICS are described in the CICS guides for the 
subsys1tems. (See the "Bibliography" on page v.) 

Send/Receive Mode 

For SNA logical units, only one of the two ends of 
the session can be in send mode at anyone time, 
that is, one is in send mode, the other is in receive 
mode. An application program in send mode can 
issue any commands for the logical unit. On the 
other hand, one in receive mode, can issue only 
RECEIVE commands until the mode is clhanged 
back to send. The EIB indicator EIBRECV 
informs the application program that it is in receive 
mode ~md that it must perform the above 
operations. 

If the above protocols are not followed, the 
transaction will be abended, unless the read ahead 
queueing feature (RAQ = YES) is specified by the 
system programmer. This feature allows the 

application program to ignore the EIBRECV 
indicator and to send and receive at any time. 
However, it should only be used with transactions 
that support both bisynchronous devices and 
logical units. 

For displays, the transaction would normally be in 
send mode, provided that the INVITE option is 
not used, and can ignore the EIBRECV indicator. 
Displays work with a subset of the full protocols 
(see the CICS/DOS/VS Facilities and Planning 
Guide for further information). 

Send/Receive Protocol (Invite Option) 

The INVITE option of a SEND command informs 
the session partner that it is now in send mode and 
that it should send a reply. At the same time it 
places the transaction in receive mode. The 
transaction should now issue a RECEIVE 
command as its next operation. 

Chaining of Input Data 

The unit of data from a logical unit is the 
request/response unit (RU). One or more RUs can 
be grouped together and treated as a chain. 

The last R lJ in a chain (even if it is the only RUin 
the chain) raises an end-of-chain (EOC) condition. 
When this occurs, a HANDLE CONDITION 
EOC command will give control to a user-written 
routine, which can do any additional processing 
required when the complete chain has been 
received. 

Por logical units that do not send chained data (for 
example, the 3270 logical unit), the EOC condition 
occurs for every RECEIVE request. For logical 
units that send chained data, the EOC condition 
usually occurs for every RECEIVE request, but it 
may not, depending on the length of the data and 
on whether the terminal control table CHNASSY 
operand is specified by the system programmer. 
The syntax descriptions for individual logical units 
in this chapter omit the Eoe condition unless it is 
likely that meaningful use may be made of the fact 
that it has not been received. The IGNORE 
CONDITION command can be used to ignore the 

244 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



. Send 
"invalid tranid" 
message 
to terminal 

Initiate specified 
transaction 

Initiate specified 
transaction 

Initiate 
transaction 
specified by 
terminal input 

Figure 17. Terminal Oriented Task Identification 

EOC condition in cases where it is raised on every 
RECEIVE command. 

Initiate CORY 

Initiate CSPG 

Initiate 
transaction 
specified in 
attach FMH 

Initiate 
transaction 
specified by 
term input AID 

. The EOC condition may occur simultaneously with 
the EODS (end-of-data-set) and/or INBFMH 
(inbound-FMH) conditions. When this happens, 

Chapter 3.3. Terminal Control 245 



the user-written routine for the EODS or 
INBF1V1H conditions will be given contro» rather 
than the EOC routine. 

The system programmer specifies, in the TCTTE, 
whetht::r or not chaining is to occur. If chain 
assembly is specified, instead of an input request 
being s,atisfied by one R U at a time until the chain 
is complete, the whole chain is assembled and is 
sent to the CICS application program satisfying 
just one request. This ensures that the integrity of 
the whole chain is known before it is prescmted to 
the application program. 

Chaining of Output Data 

As in the case of input data, output data is 
transmitted as request/response units (R Us). If the 
length of the data to be sent exceeds the R U size, 
CICS breaks up the data into RUs and transmits 
these R Us as a chain. During transmission from 
CICS to the logical unit, the RUs are marked FOC 
(rust-of-chain), MOC (middle-of-chain), or EOC 
(end-of-chain) to denote their position in the chain. 
An R U that is the only one in a chain is marked 
OC (only-in-chain). 

If the system programmer specified that the 
application program can control the chaining of 
outbound data, the application program uses the 
CNOTCOMPL (chain-not-complete) option of the 
SEND command to indicate continuation of the 
chain. In general, the CNOTCOMPL option 
should not be used. Once an output request with 
CNOTCOMPL specified has been made, 
subsequent output requests may not use the FMH, 
LAST, or (for the 3600 (3601) logical unit) LDC 
options until the beginning of the next chain (that 
is, the fust output request following an output 
request in which CNOTCOMPL is omitted). 

For BTAM terminals, it indicates that the block 
sent as a result of the SEND command does not 
complete the message. If this option is omitted, 
the message will be regarded as complete when the 
SEND command has been fulfilled. 

Logical Record Presentation 

Each RECEIVE command results in one RU (or 
one chain of R Us if chain assembly is specified) 
being presented to the application program. An 
R U may consist of one or more logical records. If 
an R lJ contains more than one logical record, the 
records will be separated by new line (NL), 
interrecord separator (IRS), or transparent (TRN) 
characters. Except for LUTYPE4 devices, a logical 
record cannot be transmitted in more than one 
R U; the end of the R U is always the end of the 
logical record. Data from an LUTYPE4 may 
contain logical records that span R Us, in which 
case, chain assembly should be specified. 

The system programmer can specify in the PCT, 
for specific application programs, that the 
application program will be presented with logical 
records instead of with RUs or chains. For those 
appJication programs for which this option is 
specified, each RECEIVE command results in one 
logical record being presented to the application 
program, regardless of whether chain assembly is 
specified or not. 

If the logical records are separated by IRS or TRN 
characters, these are removed, and do not appear in 
the data. Therefore, a blank card will have a length 
of zero. If Nt, characters are used to separate the 
logical records, they are not removed, and the NL 
character from the end of each logical record 
appears at the end of the data. If the delimiter is a 
transparent (TRN) character, CICS will pass up to 
256 bytes in one logical record. This logical record 
can contain any characters, including NL and IRS 
characters, all of which will be treated as data . 

AU communication features for logical units are still 
in operation, that is, notification of end-of-chain 
conditions, and (for batch logical units only) 
notification of end-of-data-set conditions and 
presentation of the inbound FMHat the beginning 
of a chain, still occurs. 

If chain assembly has been specified, a logical 
record ends with a delimiter (NL, IRS, or TRN), 
or the end of the assembled chain. The end of 
chain notification occurs in the last logical record of 
the chain. 

246 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Definite Response 

The type of response requested by CICS for 
outbound data is generally determined by the 
system programmer in the PCT; it can be specified 
that all outbound data for an application program 
will require adefmite response, or that exception 
response protocol is to be used, that is, a response 
will be made only if an error occurs. 

If exception response protocol is used, an exception 
response may not be received and handled 
immediately after it arises. 

The use of defmite response protocol has some 
performance disadvantages, but may be necessary 
for some application programs. To provide a more 
flexible method of specifying the protocol to be 
used, the DEFRESP option is provided for use on 
the SEND command. One example of the use of 
this option is to request a defmite response for 
every tenth output command, exception response 
being the general rule. 

Because a defmite response can be requested only 
on the last element in the chain, the DEFRESP 
and CNOTCOMPL options are mutually 
exclusive. 

Function Management Header (FMH) 

A function management header (FMH) is a field 
that can be included at the beginning of an input or 
output message. It is used to convey information 
about the message and how it should be handled. 
For some logical units, the use of an FMII is 
mandatory, for others it is optional, and in some 
cases FMHs cannot be used at all. 

For output, the FMH can be built by the 
application program or by CICS. For input, the 
FMH can be passed to the application programor 
it can be suppressed by CICS. 

The FMH option of the SEND command is used 
to specify that the application program will provide 
the FMH in the data to be transmitted. 

Note: If the FMH option is used, the FMII data 
must conform to the SNA standards for FMH 
data, otherwise abend ATCY or unpredictable 
results can occur. 

The ATTACHID option specifies a set of values 
that CICS puts into an LU6 attach FMII which is 
concatenated ahead of the user data. 

Further information about FMHs is given in the 
CICS guides for the subsystems. (See the 
Bibliography.) 

Inbound f'1\1" 

An application program can request notification 
when an FMH is included in the data received 
from a batch logical unit. 

Whether or not inbound FMHs will be passed to 
the application program is specified in the 
INBFMII attribute of the PROFILE defmition, 
when using RDO, or in the INBFMH operand of 
the DFIIPCT TYPE= ENTRY system macro. It 
can be specified that no inbound FMHs will be 
passed, or that only the F M I I at the end of the 
data set will be passed, or that all inbound FMHs 
will be passed. 

If inbound FMlls are to be passed to the 
application program, a HANDLE CONDITION 
INBFMII command will allow control to be 
passed to a user-written routine whenever an 
inbound FMH is received. These user-written 
routines can investigate the contents of the FMH 
and take some action depending on, for example, 
the device from which the data has come. The 
contents of the FMII can be accessed also by 
means of the EIBFMH field of the EIB. 

If an inbound FMH, containing an attach FMII, is 
passed to the application program, the attach FMH 
can be removed as long as this has been allowed for 
by the system programmer in the PCT. The values 
of the attach FMlI may be examined by using the 
EXTRACT ATTACII command. 

When input data is received as a chain of R Us, 
only the first (or only) R U of the chain is preceded 
by an FMH. 

Chapter 3.3. Terminal Control 247 



Outbol!lnd FMH 

If the user data contains one or more FMHs, the 
output request must specify the FMH option. 
When sending output data to a logical unit that 
expects an FMH, the FMH must be at the start of 
the user data to be transmitted. 

Unsolicited Input 

If unsolicited input arrives from a logical unit, it is 
queued and used to satisfy future input requests for 
that logical unit. However, for 3270 logical units, 
unsolicited input will be discarded if the PUNSOL 
operand is specified in the DFHSG 
PROGRAM = TCP system macro. 

Bracket Protocol (LAST option) 

Bracket protocol prevents the interruption of a 
transaction between CICS and a logical unit. A 
bracket can, generally, be begun either by CICS or 
by the logical unit, or ended only by CICS unless it 
is for an LU6.1 or LU6.2 logical unit, in which 
case the logical unit can end it. A bracket also can 
delimit conversation between CICS and the logical 
unit or merely the transmission of a series of data 
chains in one direction. 

Bracket protocol is used when CICS comrnunicates 
with some logical units. The use of brackets is 
usually transparent to the application program. 

Only on the last output request of a task to a 
logical unit does the bracket protocol become 
apparent to the application program. On the last 
output request to a logical unit, the application 
progratn may specify the LAST option on the 
SEND command. The last output request is 
defmed as either the last SEND command specified 
for a task without chain control; or as the output 
request that transmits the FOC or OC marker of 
the last. chain of a transaction with chain control. 
The LAST option causes CICS to transnut an 
end-bracket indicator with the fmal output message 
to the logical unit. This indicator notifies the 
logical unit that the current transaction is ending. 
If the LAST option is not specified, CICS waits 
until the task detaches before sending the 

end-bracket indicator. Since an end-bracket 
indicator is transmitted only with the frrst R V of a 
chain, the LAST option is ignored for a transaction 
with chain control unless FOC or OC is also 
specified. 

Including a FREE command after a SEND 
command with the LAST option may be useful if 
the transaction does not terminate immediately 
after issuing the SEND command. This allows 
another transaction to be initiated from the LV or 
from CICS. 

Suspend a Task (WAIT SIGNAL) 

WAIT SIGNAL 

Condition: SIGNAL 

This command is used, for a principal facility only, 
to suspend a task until a SIGNAL condition 
occurs. Some logical units can interrupt the 
normal flow of data to the application program by 
a SIGNAL data-flow-control command to CICS, 
signaling an attention, which in tum causes the 
SIGNAL condition to occur. 

The HANDLE CONDITION SIGNAL command 
witl cause a branch to an appropriate user-written 
routine when an attention is received. 

Terminate a Session (ISSUE 
DISCONNECT) 

ISSUE DISCONNECT 
SESSION(name) 

Conditions: NOTALLOC , TERMERR 

This command is used to terminate a session 
between CICS and a logical unit, but only if the 
system programmer has specified 
RELREQ= (,YES) in the DFHTCT 
TYPE = TERMINAL system macro for the logical 
unit, or DISCREQ = YES in DEFINE 
TERMTYPE for RDO. 

248 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



VTAM Application Routing (ISSUE 
PASS) 

ISSUE PASS 
LUNAMECnameldata-area) 
[FROMCdata-area) LENGTHCdata-value)] 

Conditions: INVREQ, LENGERR 

This command is used to disconnect the tenninal 
from CICS after the task has tenninated, and 
transfer it to the VT AM application dermed in the 
LUNAME option. 

This command requires that A UTH = PASS is 
coded in the VT AM APPL macro for the CICS 
system that issues it, and DISCREQ = YES in 
DEFINE TYPETERM or RELREQ = (,YES) in 
the DFHTCT TYPE = TERMINAL macro for 
any terminal where this function might be used. 

If the LUNAME specified is the name of another 
CICS system, you can use the EXTRACT 
LOGONMSG command to access the data referred 
to by this command. 

Because of a VT AM limitation, the maximum 
length of the user data is restricted to 255 bytes. 

Sync Point Processing (ISSUE 
PREPARE) 

ISSUE PREPARE 
[CONVIDCname)ISESSIONCname)] 

Conditions: INVREQ, NOTALlOC 

The ISSUE PREPARE command applies only to 
distributed transaction processing over LUTYPE6.2 
links. It enables a sync point initiator to prepare a 
sync point slave for syncpointing by sending only 
the first flow (prepare-to-commit) of the sync point 
exchange. Depending on the reply from the sync 
point slave, the initiator can proceed with the sync 
point by issuing a SYNCPOINT command, or 
initiate back out by issuing a SYNCPOINT 
ROLLBACK command. For further details, refer 
to the CICS/DOS/VS Intercommunication Facilities 
Guide. 

Receipt of VT AM Logon Data 
(EXTRACT LOGONMSG) 

EXTRACT LOGONMSG 
{INTOCdata-area)ISET(ptr-ref)} 
lENGTHCdata-area) 

This command is used to access VT AM logon 
data. This data may have been specified by the 
terminal operator at logon or in the ISSUE PASS 
command, for example. This data is only available 
if LGNMSG = YES is specified in the SIT. The 
data can only be extracted once. It is possible to 
force the first transaction that runs on the terminal 
to be that which issues EXTRACT LOGONMSG 
by using the GMTRAN option in the SIT. 

All the logon data will be extracted and its length 
placed in the field specified by the LENGTH 
option. Because the LENGTH option cannot be 
used to limit the amount of data extracted, it is 
recommended that a field of 256 bytes is always 
used for this option. 

Chapter 3.3. Terminal Control 249 



Retunl a Facility to CICS (FREE) 

FREE: 
[CONVIDCname)ISESSIONCname)] 

Conditions: INVREQ, NOTALLOC, 
SYSIDERR 

This command is used to return a facility (a 
principal facility or a previously allocated alternate 
facility) to CICS when a transaction owning it no 
longer requires it. The facility then can be 
allocated for use by other transactions. 

If you omit to specify either SESSION or 
CONVID, the principal facility will be freed. 
Facilities not freed explicitly will be freed by CICS 
when the task terminates. 

If you are running EDF in dual terminaltTlode and 
the transaction issues the FREE command, EDF 
will be switched off without warning. 

BTAM Programmable Terminals 

When BTAM is used by CICS for programmable 
binary synchronous communication line 
management, CICS initializes the communication 
line with a BT AM read initial (TI); the terminal 
response must be a write initial (TI) or the 
equivalent. If an application program makes an 
input request, CICS issues a read continue (TT) to 
that line; if the application program makes an 
output request, CICS issues a read interrupt (R VI) 
to that line. If end of transmission (EaT) is not 
received on the RVI, CICS issues a read continue 
(TT) until the EaT is received. 

The programmable terminal response to a read 
interrupt must be "end of transmission" (EaT). 
The EOT response may, however, be preceded by 
writes, in order to exhaust the contents of output 
buffers; this is provided the input buffer size is not 
exceed~:d by this data. The input buffer size is 
specified by the system programmer during 
preparation of the TCT. CICS issues a read 
continue until it receives an EOT, or until the 

input message is greater than the input buffer (an 
error condition). 

After receiving an EaT, CICS issues a write initial 
(TI) or the equivalent (depending on the type of 
line). The programmable terminal response must 
be a read initial (TI) or the equivalent. 

If the application program makes another output 
request, CICS issues a write continue (TT) to that 
line. If the application program makes an input 
request after it has made an output request, CICS 
turns the line around with a write reset (TR). 
(CICS does not recognize a read interrupt.) 

To ensure that binary synchronous terminals (for 
example, System/370, 1130, 2780) remain 
coordinated, CICS processes the data collection or 
data transmission transaction on any line to 
completion, before polling other terminals on that 
line. 

The programmable terminal actions required for 
the above activity, with the corresponding user 
application program commands and CICS actions, 
are summarized in Figure 18 on page 251. 

Automatically initiated transactions attached to a 
device will cause message 

DFH2503 AUTO OUTPUT HAS BEEN REQ, 
PLEASE PREPARE TO RECEIVE 

to be sent to the device which must be prepared to 
receive it. 

Input data is deblocked to ETX, ETB, RS, and US 
characters. These characters are moved with the 
data but arc not included in the data length. 
Characters such as NL (new line), CR (carriage 
return), Lf (line feed), and EM are included as 
data in a CICS application program. 

Teletypewriter Programming 

The teletypewriter (World Trade only) uses two 
different control characters for print formatting, as 
follows: 

250 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



User Application 
Program Command 

CICSI Actions Programmable 
Terminal Action 

Read initial (TI) Write initial (TI) 

RECEIVE 

SEND 

Read continue (TT) Write continue (TT) 

Read interrupt (RVI) 2 Write reset (TR) or 

Read continue (TT)3 Write continue 
Write reset 

Write initial (TI) Read initial (TI) 

SEND 

RECEIVE 

Write continue (TT) Read continue (TT) 

Write reset (TR)4 Read continue (TT) 

Read initial (TI) Write initial (TI> 

I CICS issues the macro shown, or, if the line is switched, the equivalent. 
The user-written programmable terminal program must issue the equivalent 
of the BTAM operation shown. 

2 An RVI sequence is indicated by the DECFlAGS field of the data event control 
block (DECB) being set to X'02' and a completion code of X'7F' being 
returned to the event control block (ECB). 

3 The read continue is issued only if the EDT character is not received on the 
read interrupt. 

4 Write reset is issued only for point-to-point terminals. 

Figure 18. BT AM Programmable Terminal Programming 

< carriage return, (X'22' in ITA2 
code or X'15' in EBCDIC) 

- line feed, (X'28' in ITA2 code 
or X'25' in EBCDIC) 

The character < should always be used first 
otherwise following characters (data) may be 
printed while the typebar is moving to the left. 

Message Fonnat 

Message Begin: To start a message on a new line 
at the left margin, the message text must begin with 
X'151?' (EBCDIC). CICS recognizes the X'I?' 
and changes it to X'25' (X'I?' is an IDLE 
character) . 

Message Body: To write several lines with a single 
transmission, the lines must be separated by 
X'1525', or if multiple blank lines are required, by 
X'152525 ... 25'. 

Message End Before Next Input: To allow input 
of the next message on aline at the left margin, the 
preceding message must end with X'ISI?'. CICS 
recognizes X' 15' and changes the character 
following it to X'2S'. 

Me.rsage End Before Next Output: In the case of 
two or more successive output messages, the 
"message begin" and the "message end" look the 
same; that is X'15IT, except for the last message 
(see above). To make the "message end" of the 
preceding message distinguishable from the 
"message begin" of the next message, the next to 
last character of the "message end" must not be 
X'15'. 

Message Length 

Messages for teletypewriter terminals should not 
exceed a length of about 3000 bytes or 
approximately 300 words. 

Chapter 3.3. Terminal Control 251 

--



Conn4~ction Through VT AM 

Both the TWX Model 33/35 Common Carrier 
Teletypewriter Exchange and the WTTY 
Teletypewriter (World Trade only) can be 
connected to CICS through BT AM, or through 
VTAM[ using NTO. 

If a device is connected through VT AM using 
NTO, the protocols used are the same as for the 
3767 logical unit, and the application program can 
rnake use of these protocols (for example, 
HANDLE CONDITION SIGNAL). However, 
the data stream is not translated to a 3767 data 
stream but remains as that for a TWX/WTTY. 

Display Device Operations 

Besides the standard terminal control commands 
for sending and receiving data, several additional 
commands and lists are provided for use with 
display devices such as the 3270. 

TIle commands are: 

• Print displayed information (ISSUE PRINT). 

• Copy displayed information (ISSUE COPY). 

• Erase all unprotected fields (ISSUE 
ERASEAUP). 

• Input operation without. data (RECEIVE). 

• Handling attention identifiers (HANDLE 
AID). 

The lists are: 

• Standard Attention Identifier List (DFHAID). 

• Standard Attribute and Printer Control 
Character List (DFHBMSCA). 

For devices with switchable screen sizes, the size of 
the scre:en that can be used, and the size to be used 
for a given transaction, are defmed by CICS table 
generation. These values can be obtained by 

means of the ASSIGN command, described in 
"Chapter 1.6. Access to System Information" on 
page 41. 

The ERASE option should always be included in 
the first SEND command to clear the screen and 
format it according to the transmitted data. This 
first SEND with ERASE will select also the screen 
size to be used, as specified in the PCT and TCT. 
If ERASE is omitted, the screen size will be the 
same as its previous setting, which may be 
incorrect. 

Use of the CLEAR key outside of a transaction 
will set the screen to its default size. 

Print Displayed Infonnation (ISSUE 
PRINT) 

If the 3270 print request facility is included in the 
terminal control program at CICS system 
generation, the ISSUE PRINT command will 
cause the displayed data to be printed on the first 
available, print-request-eligible printer. 

For a BTAM-supported 3270, this is a printer on 
the same control unit. 

For a 3270 logical unit or a 3650 
host-conversational (3270) logical unit, it is a 
printer defined by the PRINTTO or ALTPRT 
operands of the DFHTCT TYPE = TERMINAL 
system macro, by RDO, or by a printer supplied 
by the autoinstall user program. 

For a 3270-display logical unit with the 
PTRADAPT feature (LUTYPE2 specified in the 
TRMTYPE operand and PTRADAPT specified in 
the FEATURE operand of the DFHTCT 
TYPE = TERMINAL system macro) used with a 
3274 or 3276, it is a printer allocated by the printer 
authorization matrix. See An Introduction to the 
IBM 3270 Information Display System. 

For a 3790 (3270-display) logical unit, it is a printer 
allocated by the 3790. 

For a printer to be available, it must be in service 
and not currently attached to a task. 

252 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



For a BT AM printer to be eligible, it must be 
attached to the same control unit as the display, 
must have a buffer capacity equal to or greater than 
that of the display, and must have 
FEATURE = PRINT specified in the associated 
DFHTCT TVPE=TERMINAL system macro. 

For a 3270 logical unit to be eligible, it must have 
been specified by the PRINTTO or ALTPRT 
operand of the OFHTCT TYPE = TERMINAL 
system macro, by ROO, or by a printer supplied 
by the autoinstall user program, and it must have 
the correct buffer capacity; FEATURE = PRINT is 
not necessary. If COpy is specified with the 
AL TPR T or PRINTTO operands, the printer 
must be on the same control unit. 

Do not use the ISSUE PRINT command in 
transactions that are invoked by a remote terminal. 

For some 3270 displays, it is possible also to print 
the displayed information without using CICS. See 
An Introduction to the IBM 3270 Information 
Display System. 

Copy Displayed Infonnation (ISSUE 
COPy) 

The ISSUE COpy command is used to copy the 
format and data contained in the buffer of a 
specified terminal into the buffer of the terminal 
that started the transaction. This conlmand cannot 
be used for an LUTYPE2. Both terminals must be 
attached to the same remote control unit. The 
terminal whose buffer is to be copied is identified in 
the TERMIO option. If the tenninal identifier is 
invalid, that is, it does not exist in the TCT, the 
TERMIOERR condition will occur. The copy 
function to be performed is defined by the copy 
control character (CCC) specified in the 
CTLCHAR option of the ISSUE COpy 
command. 

The WAIT option of the ISSUE COPY command 
ensures that the operation has been completed 
before control is returned to the application 
program. 

Erase All Unprotected Fields (ISSUE 
ERASEAUP) 

The ISSUE ERASEAUP command is used to 
erase all unprotected fields of a 3270 buffer, by the 
following actions: 

1. All unprotected fields are cleared to nulls 
(X'OO'). 

2. The modified data tags (MOTs) in each 
unprotected field are reset to zero. 

3. The cursor is positioned to the first 
unprotected field. 

4. The keyboard is restored. 

The WAIT option of the ISSUE ERASEAUP 
command ensures that the operation has been 
completed before control is returned to the 
application program. 

Input Operation Without Data 
(RECEIVE) 

The RECEIVE command with no options causes 
input to take place and the EIB to be updated. 
However, data received by CICS is not passed on 
to the application program and is lost. A wait will 
be implied. Two of the fields in the EIB that are 
updated are described below: 

Cursor Position (EI BCPOSN) - For every terminal 
control (or BMS) input operation associated with a 
display device, the screen cursor address (position) 
is placed in the EIBCPOSN field in the EIB. The 
cursor address is in the form of a halfword binary 
value and remains until updated by a new input 
operation. 

Attention Identifier ( ElBA I D) - For every terminal 
control (or BMS) input operation associated with a 
display device, an attention identifier (AID) is 
placcd in field EIBAID in the EIB. The AID 
indicates which method the tcrminal operator has 
used to initiate the transfer of information from the 
device to CICS; for example, the ENTER key, a 
program function key, the light pen, and so on. 

Chapter 3.3. Terminal Control 253 



The field contents remain unaltered until updated 
by a m~w input operation. 

Field EIBAID can be tested after each tenninal 
control (or BMS) input operation to determine 
further processing and a standard attention 
identifiler list (DFHAID) is provided for this 
purpos1e. Alternatively, the HANDLE AID 
command can be used to pass control to specified 
labels when the AIDs are received. The standard 
attention identifier list and the HANDLE AID 
command are described in the next two sections. 

Stand;ard Attention Identifier List 
(DFHAID) 

The st~mdard attention identifier list, DFHAID, 
simplifi.es testing the contents of the EIBAID field. 
The following list is obtained by copying DFHAID 
into the application program and shows the 
symbolic name for the attention identifier (AID) 
and the: corresponding 3270 function. 

Constiant 

DFHENTER 
DFHCLIEAR 
DFHPAI-DFHPA3 
DFHPFI-DFHPF24 
DFHOPID 
DFHMSIRE 
DFHTRIG 
DFHPEI~ 

Meaning 

ENTER key 
CLEAR key 
PAI-PA3 keys 
PFI-PF24 keys 
Operid or MSR 
Extended (standard) MSR 
Trigger field 
Light pen attention 

For COBOL users, the list consists of a set of 01 
stateme:nts that must be copied into the 
working-storage section. For PL/I users, the list 
consists of DECLARE statements defming 
elementary character variables. 

Handling Attention Identifiers (HANDLE 
AID) 

I HANDLE AID 
option[Clabel)] ... 

This command is used to specify the label to which 
control is to be passed when an AID is received 
from a display device. Control is passed af\er the 
input command is completed; that is, any data 

received in addition to the AID has been passed to 
the application program. 

In the absence of a HANDLE AID command, 
control returns to the application program at the 
point immediately following the input command. 
You can suspend the HANDLE AID command by 
means of the PUSH and POP commands as 
described in IIChapter 1.5. Exceptional Conditions" 
on page 31. 

In an assembler language application program, a 
branch to a label caused by receipt of an AID, for 
which a HANDLE AID command is active, will 
restore the registers in the application program to 
their values in the program at the point where the 
command that received the AID is issued. 

No more than 16 options are allowed in the same 
command. 

A HANDLE AID command will take precedence 
over a HANDLE CONDITION command. The 
HANDLE CONDITION command is described in 
IIChapter 1.5. Exceptional Conditions" on page 31. 
If an AID is received during an input operation for 
which a HANDLE AID command is active, 
control will pass to the label specified in that 
command regardless of any conditions that may 
have occurred (but which did not stop receipt of 
the AID). 

A print key specified in the SIT will take 
precedence over a HANDLE AID command. 

The options that can be specified are: 

• ANYKEY (any PA key, any PF key, or the 
CLEAR key, but not ENTER) 

• CLEAR (for the key of that name) 

• CLRPARTN (for the key of that name) 

• ENTER (for the key of that name) 

• LIGIITPEN (for a light pen attention) 

• OPERID (for the operator identification card 
reader, the magnetic slot reader (MSR), or the 
extended MSR) 

254 CICS/DOSjVS Application Programmerts Reference Manual (Command Level) 



• PAl, PA2, or P A3 (any of the program access 
keys) 

• PF 1 through PF24 (any of the program 
function keys) 

• TRIGGER (for a trigger field attention). 

The HANDLE AID command for a given AID 
applies only to the program in which it is specified, 
remaining active until the program is terminated, or 
until another HANDLE AID command for the 
same AID is encountered, in which case the new 
command overrides the previous one. 

When control returns to a program from a program 
at a lower logical level, the HANDLE AID 
commands that were active in the higher~level 
program before control was transferred from it are 
reactivated, and those in the lower-level program 
are deactivated. For more information about 
logical levels see "Chapter 4.4. Program Control" 
on page 355. 

If no HANDLE AID command is active for any 
P A key, any PF key, or the CLEAR key, but one 
is active for ANYKEY, control will be passed to 
the label specified for ANYKEY. A HANDLE 
AID command for an AID overrides the 
HANDLE AID ANYKEY command for that 
AID. 

The following example shows a HANDLE AID 
command that specifies one label for the PAl key, 
a second label for P A2 and P A3, all of the PF keys 
except PFIO, and the CLEAR key. If a PFIO AID 
is received, control returns to the application 
program at the instruction immediately following 
the input command. 

EXEC CICS HA~DlE AID PAl(lABl) 
ANYKEYClAB2) PFIO 

If a task is initiated from a terminal by means of an 
AID, the first RECEIVE command in the task will 
not read from the terminal but will copy only the 
input buffer (even if the . length of the data is zero) 
so that control may be passed by means of a 
HANDLE AID command for that AID. 

A BMS RECEIVE MAP command with the 
FROM option will not cause a HANDLE AID 
command to be invoked because no terminal input 
is involved. 

Standard Attribute and Printer Control 
Character List (DFHBMSCA) 

The standard list DFHBMSCA simplifies the 
provision of field attributes and printer control 
characters. 1be list is obtained by copying copy 
book DFIIBMSCA into the application program. 
The symbolic names for the various combinations 
of attributes and control characters are given below. 
Combinations other than shown must be generated 
separately. 

Constant 

DFHBMPEM 
DFHBMPNL 
DFH·BMASK 
DFHBMUNP 
DFHBMUNN 
DFHBMPRO 
DFHBMBRY 
DFHBMDAR 
DFHBMFSE 
DFHBMPRF 
DFHBMASF 
DFHBMASB 
DFHBMPSO 
DFHBMPSI 
DFHBMEOF 

Meaning 

Printer end-of-message 
Printer new line 
Autoskip 
Unprotected 
Unprotected and num 
Protected 
Bright 
Dark 
MDT set 
Protected and MDT set 
ASKP and MDT set 
Auto and bright 
Shift out value X'OE' 
Shift in value X'OF' 
Field erased 

Chapter 3.3. Terminal Control 255 



Constant 

DFHBMDET 
DFHSAI 
DFHERROR 
DFHCOLORI 
DFHPSI 
DFHHLTI 
DFH3270 1 

DFHVAL 
DFHOUTLN 
DFHBKTRN 
DFHALLI 
DFHDFT 
DFHDFCOLI 
DFHBLUE 
DFHRED 
DFHPINK 
DFHGREEN 
DFHTURQ 
DFHYELlO 
DFHNEUTR 
DFHBASEI 
DFHDFHII 
DFHBLINK 
DFHREVRS 
DFHUNDLN 
DFHMFIL2 
DFHMENT2 
DFHMFE 

DFHMT 
DFHMFT 

DFHMET 

DFHUNN:OD 

DFHUNIMD 

DFHUNNIUM 

DFHUNINT 

Meaning 

Field detected 
Set attribute (SA) order 
Error code 
Color 
PS 
Highlight 
Base 3270 field attribute 
Validation 
Field outlining attr code 
Background transp attr code 
Reset all to defaults 
Default 
Default color 
Blue 
Red 
Pink 
Green 
Turquoise 
Yellow 
Neutral 
Base PS 
Normal 
Blink 
Reverse video 
Underscore 
Mandatory fill 
Mandatory enter 
Mandatory fill and 

mandatory enter 
Trigger 
Mandatory fill and 
trigger 

Mandatory enter and 
trigger 

Unprotected non-display 
non-print non-detectable 
MDT 

Unprotected intensify 
light pen detectable 
MDT 

Unprotected numeric 
MDT 

Unprotected numeric 
intensify light pen 
detectable 
MDT 

Constant 

DFHUNNON 

DFHPROTI 

DFHPROTN 

DFHMFET 

DFHDFFR 
DFHUNDER 
DFHRIGHT 
DFHOVER 
DFHLEFT 
DFHBOX 
DFHSOSI 
DFHTRANS 
DFHOPAQ 

Meaning 

Unprotected numeric 
intensify light pen 
non-display non-print 
non-detectable 
MDT 

Protected intensify 
light pen detectable 

Protected 
non-display non-print 
non-detectable 

Mandatory fill and 
mandatory enter and 
trigger 

Default outline 
Under 
Right 
Overline 
Left 
Left+over+right+under lines 
SOSI=yes 
Background transparency 
No background transparency 

1 For text processing only. Use for 
constructing embedded set attribute 
orders in user text 

2 Cannot be used in set attribute orders 

For assembler language users, the list consists of a 
set of EQU statements. For COBOL users, the list 
consists of a set of 01 statements that must be 
copied into the working storage section. For PL/I 
users, the list consists of DECLARE statements 
defining elementary character variables. 

The symbolic name DFHDFT must be used in the 
application structure to override a map attribute 
with the default. On the other hand, to specify 
default values in a set attribute (SA) sequence in 
text build, the symbolic names DFHDFCOL, 
DFHRASE, or DFHDFHI should be used. 

256 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Standard CICS Terminal Support 
(BTAM) 

RECEIVE 
(INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Condition: lENGERR 

SEND 
FROMCdata-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DESTCname)] 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Condition: lENGERR 

ISSUE RESET 

ISSUE DISCONNECT 

These commands can be used by all terminals 
supported by CICS that are not dealt with 
separately in the following sections. 

LUTYPE4 Logical Unit 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
lENGERR, SIGNAL, TERMERR 

SEND 
FROMCdata-area) 
LENGTHCdata-value) 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlIDEFRESP] 
[FMH] 

Conditions: IGREQCD, SIGNAL, TERMERR 

CONVERSE 
FROMC data-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DEFRESP] 
[MAXlENGTH[Cdata-value)]] 
[FMH] 
[NOTRUNCATE] 

Conditions: EOC, EODS, IGREQCD, 
INBFMH, lENGERR, SIGNAL, TERMERR 

WAIT SIGNAL 

Conditions: SIGNAL, TERMERR 

ISSUE DISCONNECT 

Conditions: SIGNAL, TERMERR 

Chapter 3.3. Terminal Control 257 



LUTYPE6.1 Logical Unit 

RECE,IVE 
[SESSIONCname)] 
{INTO Cdata-area)ISETCptr-ref)} 
L ENOTHC data-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, INBFMH, NOTAllOC, 
lENGERR, SIGNAL, TERMERR 

SEND: 
[SESSIONCname)] 
[WAIT] 
[INVITEllAST] 
[ATTACHIDCname)] 
[FROMCdata-area)] 
[lENGTHCdata-area)] 
[FMH] 
[DEFRESP] 

Conditions: CBIDERR, NOTAllOC, 
SIGNAL, TERMERR 

CONVERSE 
[SESSIONCname)] 
[ATTACHIDCname)] 
[FROMCdata-area)] 
FROMll ENGTHC dat~-value) 
[INTOCdata-area)ISET(ptr-ref)] 
TOlENGTH(data-area) 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 
[FMH] 
[DEF'RESP ]. 

Conditions: CBIDERR, EOC, INBFMH, 
lENGERR, NOTAllOC, SIGNAL, TERMERR 

ALLOCATE 
(SESSION(name)ISYSID(name)} 
[PROFILE(name)] 
[NOQUEUEINOSUSPEND] 

Conditions: CBIDERR, EOC, INVREQ, 
SESSBUSY, SESSIONERR, SYSBUSY, 
SYSIDERR 

BUIL.D ATTACH 
ATTACHID(name) 
[PROCESS(name)] 
[RESOURCE(name)] 
[RPROCESS(name)] 
[RRESOURCECname)] 
[QUEUECname)] 
[IUTYPECname)] 
[DATASTR(name)] 
[RECFM(name)] 

1..,VTYPE6.1 Logical Unit (Continued) 

EXTRACT ATTACH 
[ATTACHIDCname)ISESSIONCname)] 
[PROCESSCdata-area)] 
[RESOURCECdata-area)] 
[RPROCESSCdata-area)] 
[RRESOURCECdata-area)] 
[QUEUECdata-area)] 
[IUTYPE(data-area)] 
[DATASTRCdata-area)] 
[RECFMCdata-area)] 

Conditions: CBIDERR, INVREQ, 
NOTAllOC 

EXTRACT TCT 
NETNAMECname) 
{SYSID( data-area) I TERMIDCdata-area)} 

Condition: INVREQ 

FREE 
[SESSIONCname)] 

Conditions: INVREQ, NOTAllOC, 

POINT· , 
[SESSION~ame) ] 

Condition: NOTAllOC 

WAIT SIGNAL 

WAIT TERMINAL 
[SESSIONCname)] 

Conditions: NOTAllOC, SIGNAL 

ISSUE DISCONNECT 
[SESSIONCname)] 

Conditions: NOTAllOC, TERMERR 

ISSUE SIGNAL 
[SESSIONCname)] 

Conditions: NOTAllOC, TERMERR 

The A J J,OCA TE command is used to acquire an 
alternate fa~,lity and to select optionally a set of 
terminal control processing options. If SYSID is 
specified, tICS will make available to the 
application program one of the sessions associated 
with the named system. The name of this session 
ean be obtained from field EIBRSRCE in the EIB. 

258 CICSjDOSjVS Application Programmer's Reference Manual (Command ~evel) 



If SESSION is specified, CICS will make the 
named session available. 

The BUILD ATTACH command is used to 
specify a set of values to be placed in the named 
attach header control block. This control block 
contains values that are to be sent in an L U 6 
attach FMH which is constructed by CICS, and is 
sent only when a SEND ATTACHID or 
CONVERSE ATTACHID command is executed. 
The specified values override existing values in the 
control block; unspecified values are set to default 
values. 

The EXTRACT ATTACH command is used to 
retrieve a set of values held in an attach header 
control block or that have been built previously. 
This control block contains values received in an 
attach FMH or that have been built previously. 

The EXTRACT TCT command is used to allow 
the eight-character VT AM network name for a 
terminal or logical unit to be converted into a 
corresponding four-character name bf: which it is 
known in the local CICS system. : 

The FREE command is used to return a facility to 
CICS when a transaction owning it no longer 
requires it. The facility can then be allocated for 
use by other transactions. A facility can be freed 
only when it is in free mode (EIBFREE set to 
X'FF'). 

The POINT command is used to obtain 
information about a named facility, such as 
whether it owns the given facility. All these 
commands, except EXTRACT TCT, WAIT 
SIGNAL, ISSUE SIGNAL, and ISSUE 
DISCONNECT, can be used on an MRO session. 
For more information on MRO and IRC see the 
CICS/DOS/VS Intercommunication Facilities 
Guide. 

Session Status Infonnation 

This information consists of several fields that 
contain application-oriented and session-oriented 
information when an LU6.1 session is in progress. 
These fields are located in the EIB. 

Session status information is set to zeros at the 
start of execution of every command and is updated 
whenever a RECEIVE or CONVERSE command 
naming an LU6.1 session is executed. If the 
information is to be retained across the execution 
of several commands, the user must take steps to 
preserve it. 

Application-Oriented Infonnation 

The application-oriented information determines 
the action taken by function processing logic. The 
information consists of, for example, indicators 
(such as end-of-chain), an attach header, and user 
data. 

The user data is moved to an area specified in the 
application program; alternatively the address of the 
user data is passed to the application program. 

The indicators, together with an attach header 
indicat.or, are passed to the application program in 
the EIB. The EXTRACT ATTACH command 
(described earlier in the chapter) can be used to 
process the attach header data if such data exists. 

The following application-oriented fields, each one 
byte in length, appear in the EIB: EIBATT, 
EIBEOC, and EIBFMH. 

Session-Oriented Infonnation 

The session-oriented information determines the 
action taken by session-handling logic, for example, 
sync point requested. This information is available 
to the application program in fields EIBSYNC, 
EIBFREE, EIBRECV, and EIBSIG in the EIB, 
and should be processed in that order, before 
further operations, such as SEND, RECEIVE, 
CO NVERSE, or FREE, are performed on the 
session. 

Chapter 3.3. Terminal Control 259 



LUl'YPE6.2 Logical Unit 
(VTi\M Only) 

RECEIVE 
[CONVIDCname)] 
{INTOCdata-area) I SETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, lENGERR, 
NOTAllOC, SIGNAL, TERMERR 

SEND 
[CONVIDCname)] 
[FROMCdata-area)] 
[LENGTHCdata-value)] 
[INVITEllAST] 
[CONFIRMIWAIT] 

Conditions: EOC, INVREQ, lENGERR, 
NOTAllOC, SIGNAL, TERMERR 

CONVERSE 
[CONVIDCname)] 
FROM(name) 
FROMLENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlfNGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, lENGERR, NOTAllOC, 
SIGNAL, TERMERR 

ALLtlCATE 
SYSIDCname) 
[PRIJFIlECname)] 
[NOQUEUEINOSUSPEND] 

Conditions: CBIDERR, INVREQ, 
SESSBUSY, SYSBUSY, SYSIDERR 

FREIE 
[CONVIDCname)] 

Conditions: INVREQ, NOTAllOC, 

CONNECT PROCESS 
CONVIDCname) 
PROCNAMECdata-area) 
PROCLENGTH(data-value) 
SYNCLEVELCdata-value) 
[PIPlISTCdata-area) 

PIPlENGTHCdata-value)] 

Conditions: INVREQ, NOTALLOC, 
LENOERR 

LUl'YPE6.1 Logical Unit (Continued) 

EXTRACT PROCESS 
[PROCNAMECdata-area) 

PROClENGTHCdata-area)] 
[CONVIDCname)] 
[SYNClEVElCdata-area)] 
[PIPlISTCptr-ref) 

PIPlENGTHCdata-area)] 

Conditions: INVREQ, NOTAllOC 

ISSUE ABEND 
[CONVIDCname)] 

Conditions: INVREQ, NOTAllOC, 
TERM ERR 

ISSUE CONFIRMATION 
[CONVIDCname)] 

Conditions: INVREQ, NOTAllOC, 
TERMERR 

ISSUE ERROR 
[CONVIDCname)] 

Conditions: INVREQ, NOTAllOC, 
TERMERR 

ISSUE SIGNAL 
[CONVIDCname)] 

Conditions: NOTAllOC, TERMERR 

WAIT 
CONVID[Cname)] 

Condition: NOTAllOC 

A program written to communicate across an 
LU6.1 link can be migrated to communicate across 
an LU6.2Iink. For further details see the 
CICS/ DOS/ VS Intercommunication Facilities 
Guide. 

Synchronization Levels 

LU6.2 application programs can run at three 
synchronization levels, as follows: 

o No synchronization capability 

Commit only synchronization 

260 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



2 Full synchronization. 

For further details of synchronization levels, see the 
CICS/DOS/VS Intercommunication Facilities 
Guide. 

The ALLOCATE command is used to acquire an 
alternate facility and to select optionally a set of 
tenninal control processing options. CICS will 
make available to the application program one of 
the sessions associated with the named system. 
CICS returns, in EIBRSRCE in the EIB, the 
4-byte CONVID (conversation identifier) that the 
application program uses in all subsequent 
commands that relate to the conversation. 

The CONNECT PROCESS command allows an 
application to specify a process name and 
synchronization level to be passed to CICS and 
used when the remote process (or transaction) is 
attached. 

The EXTRACT PROCESS command allows an 
application program to access conversation related 
data that is specified to CICS when the program is 
attached. The attach receiver does not have to 
execute an EXTRACT PROCESS command 
unless it requires this information. 

The ISSUE ABEND command allows an 
application program to abend the conversation with 
the connected LU6.2 system. 

The ISSUE CONFIRMATION command allows 
an application program to respond positively when 
the CONFIRM option has been specified on a 
SEND command executed by a process in a 
connected LU6.2 system. 

The ISSUE ERROR command allows an 
application program to inform a process in a 
connected LU6.2 system that some program 
detected error has occurred. For example, a remote 
CICS application is notified by having EIBERR 
set, with EIBERRCD = X'0889'. The actions 
required to recover from the error are the 
responsibility of logic contained in both application 
programs. The application program can use this 
command to respond negatively when the 
CONFIRM option has been specified on a SEND 
command executed by a process in a connected 
LU6.2 system. 

The WAIT CONVID command allows an 
application program to ensure that any 
accumulated application data from a SEND or 
CONNECT PROCESS command is transmitted to 
the connected LU6.2 process before further 
processing continues. 

Session-Oriented Infonnation 

For LU6.2 programs, this information is available 
in fields EIBSYNC, EIBSYNRB, EIBFREE, 
EIBRECV, EIBSIG, EIBCONF, EIBERR, and 
EIBERRCD in the EIB, and should be processed 
before further operations, such as SEND, 
RECEIVE, CONVERSE, or FREE are performed 
on the session. 

Guidance on writing applications for LU6.2, 
including the use of these fields and other fields in 
the EIB, is given in the CICS/DOS/VS 
Intercommunication Facilities Guide. 

Chapter 3.3. Terminal Control 261 



Sysb~m/3 

RECI£IVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTH(data-area) 
[MAXlENGTH[Cdata-value)]] 
[N01rRUNCA T E] 
[AS][S] 

Condition: lENGERR 

SENI) 
FRotUdata-area) 
lENGTHCdata-value) 
[DESTCname)] 
[HAl[T] 
[ASl[S] 
[CNOTCOMPl] 

CONVERSE 
FRor1C data-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DESTCname)] 
[MAXlENGTH[Cdata-value)]] 
[NOlrRUNCAT E] 

Condition: lENGERR 

Suppmt and command syntax as for System/3. 

System/7 

"." 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[PSEUDOBIN]l 
[ASIS] 

Condition: lENGERR 

SEND 
FROMCdata-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[PSEUDOBIN]l 
[ASIS] 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DESTCname)] 

Condition: lENGERR 

ISSUE RESET 

ISSUE DISCONNECT 

1 start-stop only 

Transactions are nonnallyinitiated from the 
System/? by issuing a four-character transaction 
code which is transmitted in BCD mode. 
Pseudobinary mode can be used only while 
communicating with an active CICS transaction; it 
cannot be used to initiate the transaction. The 
message length is given as the number of words to 
be transmitted (not as the number of characters). 

When a transaction is initiated on a System/?, 
CICS services that System/? only for the duration 
of the transaction; that is, to ensure efficient use of 
the line, any other System/7s on the same line are 
locked out for the duration of the transaction. 
CICS application programs for the multipoint 
System/? should be designed with the shortest 
possible execution time. 

The first word (two characters) of every message 
received by the System/? must be an identification 

262 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



~' 

word, except words beginning with H@"(X'20i) 
which are reserved by CICS. 

When the PSEUDOBIN option is specjed,'the 
length of the data area provided by t~e application 
program must be at least twice that df the data to 
be read. 

In the case of a System/? on a dial-up (switched) 
line, the System/? application program must, 
initially, transmit a four-character terminal 
identification. (This terminal identification is 
generated during preparation of the TCT through 
use of the DFHTCT TYPE = TERMINAL, 
TRMIDNT = parameter specification;) CICS 
responds with either a "ready" message, indicating 
that the terminal identifier is valid and that the 
System/? may proceed as if it were on a leased line, 
or an INVALID TERMINAL 
IDENTIFICATION message, indicating that the 
terminal identifier sent by the System/7 did not 
match the TRMIDNT = parameter specified. 

./' 1 

Whenever CICS initiates the connectionto a;::~ 
dial-up System/?, CICS writes a null message, 
consisting of three idle characters, prior to starting 
the transaction. If there is no program tesident in 

;.,' 

I 

, I~~ ~ 4 

the System/? capable of supporting the 
Asynchronous Communication Control Adapter 
(ACCA), DTAM error routines cause a data check 
message to be recorded on the CICS (host) system 
console. This is normal if the task initiated by 
CICS is to IPL the System/? Although the data 
check message is printed, CICS ignores the error 
and continues normal processing. If a program 
capable of supporting the ACCA is resident in the 
System/? at the time this message is transmitted, no 
data check occurs. 

When a disconnect is issued to a dial-up System/?, 
the "busy" bit is sometimes left on in the interrupt 
status word of the ACCA. If the line connection is 
reestablished by dialing from the System/? end, the 
'busy' condition of the ACCA prevents message 
transmission from the Systeml7. To overcome this 
problcm, the System/? program must reset the 
ACCA after each disconnect and before message 
transmission is attempted. This can be done by 
issuing the following instruction: 

PWRI 0,8,3,0 RESET ACCA 

This procedure is not necessary when the line is 
reconnected by CICS (that is, by an automatically 
initiated transaction). 

Chapter 3.3. Terminal Control 263 



2260 Display Station 

RECE~IVE 
(INTO(data-area)ISET(ptr-ref)} 
LENGTH(data-area) 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 
[LE~,VEKB] 

Conclition: LENGERR 

SENlt 
FRO~U data-area) 
LENGTH(data-value) 
[CTLCHAR(data-value)] 
[DEST(name)] 
[LINEADDR(data-value)] 
[WAIT] 
[lE'\VEKB] 

CONVERSE 
FRO'H data-area) 
FROMLENGTH(data-value) 
[INTO(data-area)ISET(ptr-ref)] 
TOL I:NGTH (da ta -a rea) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 
[CTLCHARCdata-value)] 
[DESTCname)] 
[lINEADDRCdata-value)] 

Condition: lENGERR 

ISSUE RESET 

ISSUE DISCONNECT 

The LINEADDR option specifies on which line of 
a 2260 screen writing is to begin. A line number in 
the range 1 through 12 must be provided in the 
application program. 

2265 Display Station 

SUppOlt and command syntax for the 2265 is as for 
the 2260 Display Station except that a line number 
in the range 1 through 15 must be provided in the 
application program. 

2741 Communication Terminal 

RECEIVE 
(INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: lENGERR, RDATT 

SEND 
FROMCdata-area) 
LENGTH(data-value) 
[DESTCname)] 
[WAIT] 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 
[DEST(name)] 

Conditions: LENGERR 1 

RDATT (not TCAM) 

ISSUE RESET 

ISSUE DISCONNECT 

Read Attention 

If the terminal operator presses the attention key 
on the 2741 after typing a message, it is recognized 
as a read attention if: 

• Read attention support is generated into the 
system. 

• Thc message is read by a RECEIVE command. 

When this occurs, control is transferred to a CICS 
read attention exit routine, if it has been generated 
into the system. This routine is a skeleton program 
that can be tailored by the system programmer to 
carry out actions such as the following: 

• Penorm data analysis or modification on a read 
attention. 

264 CICSjDOSjVS Application Programmfer's Reference Manual (Command Level) 



• Return a common response to the tenninal 
operator follo~ing a read attention. 

• 

• 

Return a response and request additional input 
that can be read into the initial input area or 
into a new area. 

Request new I/O without requiring a return to 
the task to request additional input. 

When the read attention exit routine is completed, 
control is returned to the application program at 
the address specified in the HANDLE 
CONDITION RDATT command. The return is 
made whenever one of the following occurs: 

• 

• 

The exit routine issues no more requests for 
input. 

The exit routine issues a RECEIVE request 
and the operator tenninates the input with a 
carriage return. (If the operator terminates the 
input with an attention, the exit routine is 
reentered and is free to issue another 
RECEIVE request). 

If a HANDLE CONDITION RDATT command 
is not included in the application program or read 
attention support has not been generated, the 
attention is treated as if the return key had been 
pressed. 

2770 Data Communication System 

Support and command syntax for the 2770 is as for 
System/3. The 2770 recognizes a read interrupt 
and responds by transmitting the contents of the 
1/0 buffer. Mter the contents of the buffer have 
been transmitted, the 2770 responds to the next 
read continue with an EOT. If the I/O buffer is 
empty, the 2770 transmits an EOT. CICS issues a 
read interrupt and read continue to relinquish use 
of the line and to enable the application program to 
write to the 2770. 

Input from a 2770 consists of one or more logical 
records. CICS provides one logical record for each 
read request to the application program. The size· 
of a logical record cannot exceed the size of the I/O 
buffer. If the input spans multiple buffers, multiple 
reads must be issued by the application program. 

The 2265 component of the 2770 Data 
Communication System is controlled by data 
stream characters, not BT AM macro instructions; 
appropriate screen control characters should be 
included in the output area. 

For 2770 input, data is deblocked to ETX, ETB, 
RS, and US characters. These characters are 
moved with the data to the input area but are not 
included in the data length; characters such as NL, 
CR, and LP are passed in the input area as data. 

Chapter 3.3. Terminal Control 265 



2780 Data Transmission Terminal 

Support and command syntax for the 2780 is as for 
System,!3. The 2780 recognizes a read interrupt 
and responds by transmitting the contents of the 
I/O buffer. After the contents of the buffer have 
been transmitted, the 2780· responds to the next 
read continue with an EDT. If the I/O buffer is 
empty, the 2780 transmits an EDT. CICS issues a 
read interrupt and read continue to relinquish use 
of the Line and to enable the application program to 
write to the 2780. 

Input fi~om a 2780 consists of one or more logical 
records. CICS provides one logical record for each 
read request to the application program. The size 
of a logical record cannot exceed the size of the I/O 
buffer. If the input spans multiple buffers, multiple 
reads trLUst be issued by the application program. 

Output to a 2780 requires that the application 
prograro contains an appropriate "escape sequence" 
forconlponent selection associated with the output 
message. (For programming details, see the 
publication Component Description: IBM 2780 
Data Transmission Terminal.) 

For 2780 input, data is deblocked to ETX, ETB, 
RS, and. US characters. These characters are 
moved with the data to the input area but are not 
included in the data length; characters such as NL, 
CR, and LF are passed in the input area as data. 

2980 General Banking Terminal 
System 

RECEIVE 
{INTO(data-area)ISET(ptr-ref)} 
LENGTH(data-area) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 
PASSBK 

Conditions: LENGERR, NOPASSBKRD 

SEND 
FROM(data-area) 
LENGTH(data-value) 
[DEST(name)] 
{PASSBKICBUFF} 

Condition: NOPASSBKWR 

Passbook Control 

All input and output requests to the passbook area 
of a 2980 are dependent on the. presence of a 
passbook. The PASSBK option is used to specify 
the passbook area. The conditions 
NOPASSBKRD and NOPASSBKWR will occur 
on input and output requests respectively when a 
passbook is not present. These conditions can be 
handled by a HANDLE CONDITION command 
and appropriate handling routines. 

If the passbook is present on an input request, the 
application program generally writes back to the 
passbook area to update the passbook. If the 
NOPASSBKWR condition occurs, CICS allows 
immediate output to the terminal. In a routine for 
the NOPASSBKWR condition, the application 
program should send an error message to the 
jounlal area of the terminal to inform the 2980 
operator of this error condition. To allow the 
operator to insert the required passbook, CICS 
causes the transaction to wait 23.5 seconds before 
continuing. 

On regaining control from CICS after sending the 
error message, the application program can attempt 
again to update the passbook when it has ensured 
that the print element is positioned correctly in the 
passbook area. This is generally accornplished by 

266 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



issuing two carrier returns followed by the number 
of tabs required to move the print element to the 
correct position. (See liThe DFH2980 Structure" 
later in the section.) 

If the NOPASSBKWR condition occurs during the 
second attempt to write to the passbook area, the 
application program can send another error 
message or take some alternative action (for 
example, place the terminal"out of service"). 

The presence of the Auditor Key on a 2980 
Administrative Station Model 2 is controlled by the 
SEND PASSBK command and may be used in a 
manner similar to that described above. 

Output Control 

The unit of transmission for a 2980 is called a 
segment. A segment is equivalent to the buffer size 
of the 2972 Control Unit. However, for the 
passbook and journal areas, CICS allows an 
application program to send messages that exceed 
the buffer size. For the passbook area, the 
maximum length of message is limited to one line 
of a passbook to avoid spacing (indexing) past the 
bottom of the passbook. For the journal area, the 
maximum length of message is specified in the 
LENGTH option of the SEND command. 

For example, consider a 2972 buffer size of 48 
characters and a 2980 Teller Station Model 4 
passbook print area of 100 characters/line. The 
application program can send a message of 100 
characters to this area; CICS segments the message 
to adjust to the buffer size. The application 
program must insert the passbook indexing 
character (X'2S') as the last character written in 
one output request to the passbook area. This is 
done to control passbook indexing and thereby 
achieve positive control of passbook presence. 

If a message contains embedded passbook index 
characters, and segmentation is necessary because 
of the length of the message, the output is 
terminated if the passbook spaces beyond the 
bottom of the passbook; the remaining segments 
are not printed. 

Output to a Common Buffer 

The SEND CBUFF command is used to transmit 
data to a common buffer. The data is translated to 
the character set of the receiving 2980 model. If 
more than one 2980 model type is connected to the 
2972 Control Unit, the lengths are truncated if they 
exceed the buffer size. 

The DFH2980 Structure 

The DFII2980 structure contains constants that 
may be used when writing only COBOL or PL/I 
application programs for the 2980. The structure is 
obtained by copying DFH2980 into the application 
program. 

For COBOL, DFH2980 is copied into the working 
storage section; for PL/I, DPH2980 is included 
using a %INCLUDE statement. 

The station identification is given in the field 
STATIONID, whose value must be determined by 
the ASSIGN command. To test whether a normal 
or alternate station is being used, the ST A TIONID 
field is compared with values predefmed in 
DPH2980. The values are: 

STATION-I-A or STATION-I-N 

STATION_I_A or STATION_I_N 

(COBOL) 

(PL/I) 

where # is an integer (0 through 9) and A and N 
signify alternate and normal stations. (The break 
symbol is "_" (minus) for COBOL, and "_" 
(underline) for PL/I.) 

The teller identification on a 2980 Teller Station 
Model 4 is given in the one-byte character field 
TELLERID. An ASSIGN command must be 
used to determine the TELLERID value. 

Tab characters (X 'OS') must be included in the 
application program. The number of tabs required 
to position the print element to the flfst position of 
a passbook area is given in the field NUMT AB. 
An ASS I G N command must be used to determine 
the NUMTAB value. The value of NUMTAB is 
specified by the system programmer and may be 
unique to each terminal. 

Chapter 3.3. Terminal Control 267 



Other tab characters are inserted as needed to 
control fonnatting. 

Any of the DFH2980 values TAB-ZERO through 
TAB-NINE for COBOL and PL/I, may be 
compared with NUMT AB to determine the 
number of tab characters that need to be inserted in 
an output message to obtain correct positioning of 
the print element. The tab character is included in 
DFH2980 as TABCHAR. 

Thirty special characters are defmed in DFH2980. 
Twenty-three of these can be referred to by the 
name SPECCHAR-# or SPECCHAR_# (for 
Americ:an National Standard COBOL or PL/I) 
where # is an integer (0 through 22). The seven 
other characters are dermed with names that imply 
their usage, for example, T ABCHAR. For further 
infonn:ation on these thirty characters, see 
Appendix B, "Translation Tables for the 2980" 
on page 421. 

Several other characters defmed in DFH2980, such 
as HOlLDPCF or TCTTEPCR, are intended for 
use in application programs using CICS macros 
and should not be required in application programs 
using CICS commands. 

3270 Information Display System 
(BTAM) 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
LENGTHCdata-area) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 
[ASIS] 
[BUFFER] 

Condition: LENGERR 

SEND 
FROMC data-area) 
LENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[STRFIELDI[[ERASE] 

[CTLCHARCdata-value)]]] 

CONVERSE 
FROMCdata-area) 
FROMLENGTH(data-value) 
[INTOCdata-area)ISET(ptr-ref)] 
TOLENGTHCdata-area) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 
[STRFIELDI[[ERASE] 

[CTLCHARCdata-value)]]] 

Condition: LENGERR 

ISSUE PRINT 

ISSUE COPY 
TERMID(name) 
[CTLCHARCdata-value)] 
[WAIT] 

Condition: TERMIDERR 

ISSUE ERASEAUP 
[WAIT] 

ISSUE RESET 

ISSUE DISCONNECT 

268 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



3270 Logical Unit 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[ASIS] 
[BUFFER] 
[NOTRUNCATE] 

Conditions: lENGERR, TERMERR 

SEND 
FROMC data-area) 
lENGTHCdata-value) 
[WAIT] 
[INVITEllAST] 
[STRFIElDI[[ERASE] 

[CTlCHARCdata-value)]]] 
[DEFRESP] 

Condition: TERMERR 

CONVERSE 
FROMC data-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
[STRFIElDI[[ERASE] 

[CTlCHARCdata-value)]] 
TOlENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[DEFRESP] 
[NOTRUNCATE] 

Conditions: lENGERR, TERMERR 

ISSUE PRINT 

Condition: TERMERR 

ISSUE COpy 
TERMIDCname) 
[CTlCHARCdata-value)] 
[WAIT] 

Conditions: lENGERR, TERMERR 

ISSUE ERASEAUP 
[WAIT] 

Condition: TERMERR 

ISSUE DISCONNECT 

3270 SCS Printer Logical Unit 

SEND 
FROMC data-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[INVITEILAST] 
[CNOTCOMPLIDEFRESP] 
[DEFRESPl 
[STRFIELD] 

Condition: TERMERR 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[DESTCname)] 
[DEFRESP] 
[STRFIElDl 
[NOTRUNCATEl 

Condition: TERMERR 

ISSUE DISCONNECT 

The SCS printer logical unit accepts a character 
string as defined by SNA (Systems Network 
Architecture). Some devices connected under SNA 
can send a signal which can be detected by the 
HANDI IE CONDITION SIGNAL command, 
which in tum can invoke an appropriate handling 
routine. If necessary, a WAIT SIGNAL command 
can be used to make the application program wait 
for the signal. The P A keys on a 3287 can be used 
in this way, or with a RECEIVE command. 

Chapter 3.3. Terminal Control 269 



3270··Display Logical Unit 
(LUTYPE2) and 3270-Printer 
Logi4~al Unit (LUTYPE3) 

RECE!IVE 
(INTOCdata-area)ISETCptr-ref)} 
LENGTHCdata-area) 
[MAXLENGTH[Cdata-value)]] 
[AStS] 
[BUFFER] 
[N01RUNCATE] 

Conditions: LENGERR, TERMERR 

SENI) 
FROMCdata-area) 
LENGTHCdata-value) 
[WAIT] 
[INVITEILAST] 
[DESTCname)] 
[STRFIELDI[[ERASE] 

[CTLCHARCdata-value)]]] 
[DEFRESP] 

Condition: TERMERR 

CONVERSE 
FROMCdata-area) 
FROMLENGTHCdata-value) 
INTOCdata-area)ISETCptr-ref)] 
[STRFIELDI[[ERASEl 

[CTLCHARCdata-value)]]] 
TOLENGTH(data-area) 
[MAXLENGTH[Cdata-value)]] 
[DESTCname)] 
[DEFRESP] 
[NOTRUNCATE] 

Condition: LENGERR, TERMERR 

ISSUE PRINT 

Condition: TERMERR 

ISSUE ERASEAUP 
[WAIT] 

Condition: TERMERR 

ISSUE DISCONNECT 

3600 Finance Communication 
System (BTAM) 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
LENGTHCdata-area) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 

Condition: LENGERR 

SEND 
FROMCdata-area) 
LENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[ASIS] 

CONVERSE 
FROMCdata-area) 
FROMLENGTHCdata-value) 
INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 
[DESTCname)] 

Condition: LENGERR 

ISSUE RESET 

ISSUE DISCONNECT 

Input 

The unit of transmission from a 360 I Finance 
Communication Controller to CICS is a segment 
consisting of the start-of-text data link control 
character (STX), the one byte identification of the 
3600 logical work station that issued the processor 
write, the data, and either an end-of-block (ETB) 
or an end-of-text (ETX) control character. 

A logical work station sends a message either in 
one segment, in which case the segment ends with 
ETX, or in more than one segment, in which case 
only the last segment ends with ETX, all others 
ending with ETB. 

The input area passed to the user-written 
application program consists of the data only. The 
one-byte field TCTTEDLM, which may be 

270 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



obtained by means of an ASSIGN DELIMITER 
command, contains flags describing the data-link 
control character (ETB, ETX, or IRS) that ended 
the segment. The application program can issue 
terminal control commands to read the data until it 
receives a segment ending with ETX. If blocked 
data is transmitted, it is received by CI CS as blocks 
of segments. Only the frrst segment in a block 
starts with the STX control character, and all 
segments are separated by IRS characters. None of 
the segments contain ETB or ETX characters 
except the last, which has the ETX character. 

For blocked input, the flags in TCTTEDLM only 
indicate end of segment, not end of message. The 
CICS application program still receives only the 
data, but user-defined conventions may be required 
to determine the end of the message. 

The field TCTTED LM also indicates the mode of 
the input, either transparent or nontransparent. 
Blocked input is nontransparent. 

The terminal control program does not pass input 
containing a "start of header" (SOH) data link 
control character to a user-written application 
program. If it receives an SOH it sets an indicator 
in TCTTEDLM, passes the input to the user exit 
in the terminal control program, and then discards 
it. 

Output 

When an application program issues a SEND 
command, the terminal control program 
determines, from the value specified in the 
BUFFER parameter of the DFHTCT 
TYPE = TERMINAL system macro, the number 
of segments to be built for the message. It sends 
the message to the 3600 logical unit either in one 
segment consisting of a start-of-text character 
(STX), the data, and an end-of-text character 
(ETX); or in more than one segment, in which case 
only the last ends with ETX, all others ending with 
ETB. 

The host input buffer of the 3600 controller and 
the input segment of the receiving logical unit must 
be large enough to accommodate the data sent by 
CICS. However, space for the data link control 

characters need not be included. The 3600 
application program reads the data from the host, 
by means of an LREAD, until it has received the 
entire message. 

CICS system output messages begin with "DFH" 
followed by a four-byte message number and the 
message text. These messages are sent in 
nontransparent mode. CICS user-written 
application programs should not send messages 
starting with "DFH" to the 3601. 

Resend Message 

When a logical unit sends a message to the host 
and a short-on-storage condition exists or the input 
is unsolicited (the active task associated with the 
terminal has not issued a read), the terminal control 
program sends a "resend" message to the logical 
unit. The format of this message is DFHI033 
RE-ENTER followed by X l IS' (a 3600 new line 
character) followed by the first eight bytes of the 
text of the message being rejected. No message is 
sent to the destinations CSMT or CSTL. 

The first eight bytes of data sent to CICS can be 
used by the 3600 application program to derme a 
convention to associate responses received from 
CICS with transactions sent to the host, fot; 
example, sequence numbers could be used. 

If a CICS user-written application program has 
already issued a SEND command when a resend 
situation occurs, the resend message is not sent to 
the 360 I until the user-written application program 
message has been sent. A 3600 logical unit cannot 
receive a resend message while receiving a 
segmented message. 

Only one resend message at a time can be queued 
for a logical unit. If a second resend situation 
occurs bcfore CICS has written the first, a resend 
messagc, containing the eight bytes of data that 
accompanied the second input transaction from the 
3600 logical unit, is sent. 

The resend message is sent in transparent mode jf 
the input data fronl the 3601 to be retransmitted is 
received by CICS in transparent mode. Otherwise 
it is sent in nontransparent mode. 

Chapter 3.3. Terminal Control 271 



3600 Pipeline Logical Unit 

SEND 
FROM(data-area) 
LENGTH(data-value) 
[WAIT] 

Condition: TERMERR 

ISSUE DISCONNECT 

3600 (3601) Logical Unit 

RECEIVE 
{INTO(data-area)ISET(ptr-ref)} 
LENGTH(data-area) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
LENGERR, SIGNAL, TERMERR 

SEND 
FROM(data-area) 
LENGTHCdata-value) 
[LDCCname)IFMH] 
[DESTCname)] 
[WA,IT] 
[INVITEILAST] 
[CNOTCOMPLIDEFRESP] 

Conditions: SIGNAL, TERMERR 

CONVERSE 
FROM ( da ta -a rea) 
FROMLENGTH(data-value) 
[INTOCdata-area)ISET(ptr-ref)] 
TOLENGTH(data-area) 
[LJ)lCCname)IFMHl 
[DEST(name)] 
[DE:FRESP] 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
LENGERR, SIGNAL, TERMERR 

WAJ:T SIGNAL 

Condition: SIGNAL 

ISSUE DISCONNECT 

COl1ldition: SIGNAL 

A logical device code (LDC) is a code that can be 
included in an outbound PMH to specify the 
disposition of the data (for example, to which 
subsystem tenninal it should be sent). Each code 
can be represented by a unique LDC mnemonic. 

The installation can specify up to 256 two-character 
mnemonics for each TCTTE, and two or more 
TCTTEs can share a list of these mnemonics. 
Corresponding to each LDC mnemonic for each 
TCTTE is a numeric value (0 through 255). 

A 3600 device and a logical page size are also 
associated with an LDC. "LDC" or "LDC value" 
is used in this publication in reference to the code 
specified by the user. "LDC mnemonic" refers to 
the two-character symbol that represents the LDC 
numeric value. 

When the LDC option is specified in the SEND 
command, the numeric value associated with the 
mnemonic for the particular TCTTE, is inserted in 
the PMII. The numeric value associated with the 
LDC mnemonic is chosen by the installation, and 
is interpreted by the 360 I application program. 

272 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



3600 (3614) Logical Unit 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: lENGERR, TERMERR 

SEND 
FROMCdata-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlI DEFRESP] 

Condition: TERMERR 

CONVERSE 
FROMC data-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DEFRESPCname)] 
[DESTCname)] 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: lENGERR, TERMERR 

ISSUE DISCONNECT 

The data stream and communication format used 
between a CICS application program and a 3614 is 
determined by the 3614. The application program 
is therefore device dependent when handling 3614 
communications. 

For further information about designing 3614 
application programs for CICS, refer to the 
CICS/DOS/VS IBM 4700/3600/3630 Guide. 

3630 Plant Communication 
System 

Support and command syntax as for the 3600 
(3601) logical unit and the 3600 pipeline logical 
unit as described earlier in this chapter for the 3600 
Finance Communication System. 

3650/3680 Host Command 
Processor Logical Unit 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, lENGERR, TERMERR 

SEND 
FROMC data-area) 
lENGTHCdata-value) 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlIDEFRESP] 
[FMH] 

Conditions: TERMERR 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[FMH] 
[DEFRESP] 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATEl 

Conditions: lENGERR, TERMERR 

ISSUE DISCONNECT 

Chapter 3.3. Terminal Control 273 



3650 Host Conversational (3270) 
Logical Unit 

RE.:EIVE 
(INTO(data-area)ISETCptr-ref)} 
lENGTH(data-area) 
[MAXlENGTH[(data-value)]] 
[NIlTRUNCATE] 

Conditions: EOC, lENGERR, TERMERR 

SEI~D 
FROM( data-area) 
LENGTH(data-value) 
[CTlCHAR(data-value)] 
[WAIT] 
[ERASE] 
[INVITEllASTl 
[CNOTCOMPlIDEFRESPl 
[FIt1Hl 

Condition: TERMERR 

CONVERSE 
FROM(data-area) 
FROMLENGTH(data-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[CTlCHARCdata-value)] 
[ERASE] 
[DEFRESPl 
[FIt1H] 
[MAXlENGTH[Cdata-value)]l 
[NOTRUNCATEl 

Conditions: lENGERR, TERMERR 

IS~SUE PRINT 

Condition: TERMERR 

ISSUE ERASEAUP 
[WAIT] 

Condition: TERMERR 

ISSUE DISCONNeCT 

3650 I-Iost Conversational (3653) 
Logical Unit 

RECEIVE 
(INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, lENGERR, TERMERR 

SEND 
FROMCdata-area) 
lENGTHCdata-value) 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlIDEFRESP] 

Condition: TERMERR 

CONVERSE 
FROMC data-area) 
FROMlENGTHtdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DEFRESP] 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EDC, lENGERR, TERMERR 

ISSUE DISCONNECT 

274 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



3650 Interpreter Logical Unit 

RECEIVE 
(INTOCdata-area)ISETCptr-ref)} 
LENGTHCdata-area) 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EOnS, INBFMH, 
LENGERR, TERMERR 

SEND 
FROMC data-area) 
LENGTHCdata-value) 
[WAIT] 
[INVITEILAST] 
[DEFRESP] 
[FMH] 

Condition: TERMERR 

CONVERSE 
FROMC data~area) 
FROMLENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOLENGTHCdata-area) 
[DEFRESP] 
[FMH] 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EOnS, INBFMH, 
LENGERR, TERMERR 

ISSUE LOAD 
PROGRAMCname) 
[CONVERSE] 

Conditions: NONVAL, NOSTART, TERMERR 

ISSUE EODS 

Condition: TERMERR 

ISSUE DISCONNECT 

The ISSUE LOAD command specifies the name of 
the 3650 application progranl that is to be loaded. 

The ISSUE EODS command can be used to send 
an end-of-data-set function management header to 
the 3650. 

3650 Pipeline Logical Unit 

Support and command syntax as for the 3600 
Pipeline Logical Unit. 

3650/3680 Full Function Logical 
Unit 

Support and command syntax as for the 3790 Full 
Function Logical Unit. 

3660 Supermarket Scanning 
System 

Support and command syntax as for System/3. 

Chapter 3.3. Terminal Control 275 



3735 Programmable Buffered 
Terminal 

RECEIVE 
{INTO(data-area)ISET(ptr-ref)} 
LENGTH(data-area) 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOF, LENGERR 

SEND 
FROM(data-area) 
LENGTH(data-value) 
[DEST(name)] 
[WAIT] 
[ASIS] 

CONVERSE 
FROM(data-area) 
FROMLENGTHCdata-value) 
[INTO(data-area)ISET(ptr-ref)] 
TOLENGTH(data-area) 
[DEST(name)] 
[MAXLENGTH[(data-value)]] 
[NOTRUNCATEl 

Conditions: EOF, LENGERR 

ISSUE RESET 

ISSUE DISCONNECT 

The 3735 Programmable Buffered Terminal may be 
serviced by CICS in response to terminal-initiated 
input (Autoanswer), or as a result of an automatic 
(Auto call) or time-initiated transaction. 

3735 Transactions - Autoanswer 

The 3735 transaction is attached by CICS upon 
receipt of input from a 3735. Data is passed to the 
application program in 476-byte blocks; each block 
(one buffer) may contain several logical records. 
The fIltlal block may be shorter than 476 bytes; 
zero-length fmal blocks are not, however, passed to 
the application program. If the block contains 
severalllogical records, the application program 
must perform any necessary deblocking and 
gathering of partial logical records. 

Input data from a 3735 should be spooled to an 
intermediate data set (for example, an intrapartition 
destination) to ensure that all data has been 
captured before deblocking and processing that 
data. 

The application program must follow 3735 
conventions and read to end-of-ftle before 
attempting to write FOPs (form description 
programs) or data to the 3735. For this reason, the 
application program must include a HANDLE 
CONDITION command for the EOF condition. 
When control passes to the EOF routine, FOPs or 
data may be written to the 3735, or, optionally, 
CICS requested to disconnect the line. 

The 3735 may transmit the EOF condition 
immediately upon connection of the line, in which 
case, a HANDLE CONDITION command for the 
EO P condition must be issued before any other 
terminal control commands. 

The application program must format all special 
message headers for output to the 3735 (for 
example, SELECTRIC, POWERDOWN). If 
FDPs are to be transmitted to a 3735 with ASCII 
transmission code, the ASIS option must be 
included in the SEND command for each block of 
PDP records. . 

An ISSUE DISCONNECT command must be 
issued whcn all output has been transmitted to the 
3735. If the application program ends during batch 
write mode before this command is executed, CICS 
forces a 3735 Clreceive abort" condition and all data 
just transmitted is ignored. 

3735 Transactions - Autocall or 
Time-) nitiated 

In automatic or time-initiated transactions, all 
considerations stated above apply when CICS dials 
a 3735, except that EOF cannot occur. 

CICS connects the line and allows the first terminal 
control command to indicate the direction of data 
transfer. If this flfst command is SEND and the 
3735 has data to send, the 3735 causes the line to 
be disconnected. 

276 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



3740 Data Entry System 

RECEIVE 
(INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOF, ENDINPT, 
lENGERR 

SEND 
FROMCdata-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[ASIS] 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DESTCname)] 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Condition: lENGERR 

ISSUE ENDFILE [ENDOUTPUT] 

ISSUE ENDOUTPUT [ENDFILEl 

ISSUE RESET 

ISSUE DISCONNECT 

In batch mode, many ftles are exchanged between 
the 3740 and CICS in a single transmission. The 
transmission of an input batch must be complete 
before an output transmission can be started. 

On input, the EOF (end-of-me) condition is raised 
by CICS when a null block (indicating the end of a 
physical file) is received from the 3740. A 
IIANDLE CONDITION EOP command should 
be ineluded to specify that processing of the fue is 
to continue. Eventually, the ENDINPUT 
condition is raised by CICS when all input has 
been received. No more RECEIVE commands 
will be executed and a HANDLE CONDITION 
ENDINPUT command should be included to 
specify that control is to be returned to CICS so 
that the 3740 can be set to receive data. 

On ,output, the ISSUE ENDFILE and ISSUE 
ENDOUTPUT commands are used to indicate the 
end-of-file and end-of-output conditions, 
respectively, to the 3740. These two conditions 
may be specified in one command if required, for 
example: ISSUE ENDFILE ENDOUTPUT. 

Chapter 3.3. Terminal Control 277 



3767 Interactive Logical Unit 

RECE:IVE 
(INTOCdata-area)ISETCptr-ref» 
lENGTHCdata-area) 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATEl 

Cond:Ltions: EOC, l ENGERR, SIGNAL, 
TERMIERR 

SEND 
FROM C da ta -a rea) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlI DEFRESP] 

Conditions: SIGNAL, TERMERR 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DESTCname)] 
[DEFRESP] 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, lENGERR, SIGNAL, 
TERMERR 

WAIT SIGNAL 

Condition: SIGNAL 

ISSUE DISCONNECT 

Condition: SIGNAL 

3770 Batch Logical Unit 

RECEIVE 
(INTOCdata-area)ISETCptr-ref» 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
lENGERR, SIGNAL, TERMERR 

SEND 
FROMCdata-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlIDEFRESP] 
[FMH] 

Conditions: SIGNAL, TERMERR 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[DESTCname)] 
[DEFRESP] 
[FMH] 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
lENGERR, SIGNAL, TERMERR 

WAIT SIGNAL 

Condition: SIGNAL 

ISSUE DISCONNECT 

Condition: SIGNAL 

278 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



3770 Interactive Logical Unit 

Support and command syntax for the 3770 
interactive logical unit is as for the 3767 Interactive 
Logical Unit 

3770 Full Function Logical Unit 

Support and command syntax for the 3770 full 
function logical unit is as for the 3790 Full 
Function Logical Unit. 

3780 Communications Terminal 

Support and cornmand syntax for the 3780 
communication tenrunal is as for the System/3. 

3790 Full Function Logical Unit 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
LENGERR, SIGNAL, TERMERR 

SEND 
FROM( data-area) 
LENGTHCdata-value) 
[DESTCname)] 
[WAIT] 
[INVITEILAST] 
[CNOTCOMPlIDEFRESP] 
[FMH] 

Conditions: SIGNAL, TERMERR 

CONVERSE 
FROM(data-area) 
FROMLENGTH(data-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTH(data-area) 
[DESTCname)] 
[FMH] 
[DEFRESP] 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
LENGERR, SIGNAL, TERMERR 

WAIT SIGNAL 

Condition: SIGNAL 

ISSUE DISCONNECT 

Condition: SIGNAL 

Chapter 3.3. Terminal Control 279 



3790 Inquiry Logical Unit 

RE(:EIVE 
(INTO( data-area) I SET( ptr-ref)} 
lENGTH(data-area) 
[MAXlENGTHI(data-valuel]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
lENGERR, TERMERR 

SEND 
FROM(data-area) 
l E~IGTH( data-value) 
[DE:ST(name)] 
[W~UT] 
[INlVITEllAST] 
[CNlOTCOMPlIDEFRESP] 
[FfiIH] 

Conditions: TERMERR 

CONVERSE 
FROM(data-area) 
FROMlENGTH(data-value) 
[INTO(data-area)ISET(ptr-ref)] 
TOlENGTH(data-area) 
[DEST(name)] 
[FMH] 
[DEFRESP] 
[MAXlENGTH[(data-value)]] 
[NOTRUNCATE] 

Conditions: EOC, EODS, INBFMH, 
lENGERR, TERMERR 

ISSUE DISCONNECT 

3790 SCS Printer Logical Unit 

SEND 
FROM(data-area) 
lENGTH(data-value) 
[DEST(name)] 
[WAIT] 
[INVITEllAST] 
[CNOTCOMPlIDEFRESP] 
[DEFRESP] 

Condition: TERMERR 

ISSUE DISCONNECT 

280 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



3790 (3270-Display) Logical Unit 

RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
LENGTHCdata-area) 
[ASIS] 
[BUFFER] 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: LENGERR, TERMERR 

SEND 
FROMCdata-area) 
LENGTHCdata-value) 
[DESTCname)] 
[CTLCHARCdata-value)] 
[WAIT] 
[ERASE] 
[INVITEILAST] 
[DEFRESP] 

Condition: TERMERR 

CONVERSE 
FROM C da ta -a rea) 
FROMLENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOLENGTHCdata-area) 
[DESTCname)] 
[DEFRESP] 
[CTLCHARCdata-value)] 
[ERASE] 
[MAXLENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Conditions: LENGERR, TERMERR 

ISSUE PRINT 

Condition: TERMERR 

ISSUE ERASEAUP 
[WAIT] 

Condition: TERMERR 

ISSUE DISCONNECT 

3790 (3270-printer) Logical Unit 

SEND 
FROMC data-area) 
LENGTHCdata-value) 
[CTLCHARCdata-value)] 
[WAIT] 
[ERASE] 
[INVITEILAST] 
[DEFRESP] 

Condition: TERMERR 

ISSUE PRINT 

I, Condition: TERMERR 

ISSUE ERASEAUP 
[WAIT] 

Condition: TERMERR 

ISSUE DISCONNECT 

Chapter 3.3. Terminal Control 281 



4700 Finance Communication 
System 

Support and command syntax for the 4700 fmance 
communication system is as for the 3600 Pinance 
Communication System. 

7770 Audio Response Unit 
--------------" ---

RECEIVE 
(INTOCdata-area)ISETCptr-ref)} 
lENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATE] 

Condition: lENGERR 

SEND 
FROMe data-area) 
lENGTHCdata-value) 
[DESTCname)] 
[WAIT] 

CONVERSE 
FROMCdata-area) 
FROMlENGTHCdata-value) 
[INTOCdata-area)ISETCptr-ref)] 
TOlENGTHCdata-area) 
[MAXlENGTH[Cdata-value)]] 
[NOTRUNCATEl 

Condition: lENGERR 

ISSUE RESET 

ISSUE DISCONNECT 

CICS cannot distinguish between special codes 
(characters) entered at audio terminals (for 
example, the 2721 Portable Audio Terminal); 
however, an application program can make use of 

these codes. The special codes that can be entered 
from a 2721 are as follows: 

Key 

CAll END 
CNCl 
I 
VERIFY 
RPT 
EXEC 
FI 
F2 
F3 
F4 
F5 
00 
000 
IDENT 

CodeChex) 

37 
18 
3B or 7B 
2D 
3D 
26 
BI 
B2 
B3 
B4 
B5 
AD 
3B or BO 
11, 12, 13, or 14 
plus two other characters 

Par further infonnation concerning the 2721, see 
the publication IBM 2721 Portable Audio Terminal 
Component Description. 

The special codes AO and 3B (or BO) are also 
generated by the keys + and # respectively of a 
"Touch-Tone" telephone. (Touch-Tone is the 
trademark of the American Telephone and 
Telegraph Company.) 

If the SET option has been specified in the 
associated ~ommand, codes 26, 37, and 3B (each of 
which causes a hardware interrupt) will 
immediately follow the data, but will not be 
included in the value set by the LENGTH option. 

If the end-of-inquiry (EOI) Disable Feature 
(Feature No. 3540) is installed on the 7770 Model 
3, the option of including either or both # and 000 
as data is available. 

If, after receiving at 1east one code from a terminal, 
no other codes have been received by the 7770 for 
a period of five seconds, the 7770 generates an EOI 
hardware interrupt that ends the operation. 

282 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Terminal Control Options 

ASIS 
for System/370, System/3, System/7, 2770, 
2780, and 3740: indicates that output is to be 
sent in transparent mode (with no recognition 
of control characters and accepting any of the 
256 possible combinations of eight bits as 
valid transmittable data). 

For System/7: indicates that the data being 
written or read is not to be translated. 

For 3735: prevents translation of the Form 
Description Program (FDP) records that are 
to be transmitted to a 3735 using ASCII 
code. 

For 3270 and VT AM terminals: specifies a 
temporary override of the uppercase 
translation feature of CICS to allow the 
current task to receive a message containing 
both uppercase and lowercase data. 

This option has no effect on the frrst 
RECEIVE command of a transaction, as 
terminal control will perform a read initial 
and use the terminal defaults to translate the 
data. 

This option has no effect if the screen 
contains data prior to a transaction being 
initiated. This data will be read and 
translated in preparation for the next task and 
the frrst RECEIVE command in that task 
will retrieve the translated data. 

A IT ACHID(name) 
specifies, for a BUILD ATTACH command, 
that the set of values specified is to be placed 
in an attach header control block identified . 
by the specified name (maximum of eight 
characters) . 

specifies, for a SEND or CONVERSE 
command, that an attach header (created by a 
BUILD ATTACH command) is to precede, 
and be concatenated with, the user data 
supplied in the FROM option. "Name" 
(maximum of eight characters) identifies the 

attach header control block to be used in the 
local task. 

specifies, for an EXTRACT ATTACH 
command, that values are to be retrieved 
from an attach header control block. 
"Name" (maximum of eight characters) 
identifies this control block to the local task. 
If the option is omitted, the attach header 
control block to be used is that associated 
with the facility named in the SESSION 
option. 

BUFFER 
specifies that the contents of the 3270 buffer 
are to be read, beginning at buffer location 
one and continuing until all contents of the 
buffer have been read. All character and 
attribute sequences (including nulls) appear in 
the input data stream in the same order that 
they appear in the 3270 buffer. 

CBUFF 
specifies that data is to be written to a 
common buffer in a 2972 Control Unit. The 
WAIT option is implied. 

CNOTCOMPL 
indicates that the request/response unit (R U) 
sent as a result of this SEND command will 
not complete the chain. If this option is 
omitted and chain assembly has been 
specified, the R U will terminate the chain. 

CONFIRM 
indicates that an application using a 
synchronization level 1 or 2 conversation 
requires a response from the remote 
application. A remote CICS application can 
respond positively by executing an ISSUE 
CONFIRMATION command, or negatively, 
by executing an ISSUE ERROR command, 
in which case the sending application will 
have EIBERR and EIBERRCD set. CICS 
will not return control to the sending 
application until the response is received. 

CONVERSE 
specifies that the 3650 application program 
will communicate with the host processor. If 
this option is not specified, the 3650 

Chapter 3.3. Terminal Control 283 



application program cannot communicate 
with the host processor. 

CONVlD( data·-area) 
specifies the symbolic identifier (maximum of 
four characters) of an LUTYPE6.2 
conversation. This option specifies the 
alternate facility to be used. If this option is 
omitted, the principal facility for the task will 
be used. 

CTLCIIAR( data-value) 
specifies a one-byte write control character 
('VCC) that controls a SEND command, or 
the copy control character (CCC) that 
controls an ISSUE COpy command, for a 
3270. A COBOL user must specify a data 
area containing this character. If the option 
is omitted from a SEND command, all 
m.odified data tags are reset to zero and the 
keyboard is restored. If the option is omitted 
from an ISSUE COPY command, the 
contents of the entire buffer (including nulls) 
are copied. 

OAT ASTR ((name) I( data-area)} 
this corresponds to the data stream proftle 
field, A TTDSP, in an LUTYPE6.1 attach 
gMH. 

For communication between two CICS 
systems, no particular significance is attached 
by CICS to the data stream proftle field in an 
attach FMH. For most CICS applications, 
the option may be omitted when a value of 
"user defmed" will be assumed. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the data stream proftle field in an 
aUach FMH. 

When ElBA TT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the data stream profile field 
received in the attach FMH. 

The value is halfword binary; only the 
low-order byte is used. If this option is 

omitted, "user defmed" is assumed. The bits 
in the binary value are used as follows: 

0-7 

8-11 

reserved - must be set to 
zero 

0000 - user defined 
1111 - SCS data stream 
1110 - 3270 data stream 
1101 - structured field 
1100 - logical record 

management 

12-15 defined by the user if 
bits 8-11 are set to 0000; 
otherwise reserved (must 
be set to zero). 

A value of "structured field" indicates that 
chains begin with four bytes of data that are 
used to interpret the following data; the four 
bytes consist of overall length (2 bytes), class 
identifier (I byte), and subclass identifier (I 
byte). A value of "logical record 
management" indicates that chains can be 
split into separate fields by the data receiver. 

These values may be used for communication 
between a CICS system and another 
subsystem; for further details of structured 
fields and logical record management refer to 
the documentation supplied by the 
subsystem. 

If the option is omitted from the BUILD 
ATTACH command, a value of "user 
defined" is assumed. 

DEFRESJl 
indicates that a definite response is required 
when the output operation has been 
completed. 

DEST(namc) 
specifies the four-byte symbolic name of the 
TeAM destination to which the message is 
to be sent. This option is meaningful only 
for tenninals for which DEVICE = TCAM 
has been specified in the DFHTCT 
TYPE=SDSCI system macro. 

ERASE 
specifies that the screen is to be erased and 
the cursor returned to the upper left comer of 

284 CICSjDOSjVS Application Programmelr's Reference Manual (Command Level) 



FMH 

the screen before writing occurs. Normally, 
ERASE should be specified in the frrst output 
command of a transaction. This will clear 
the screen ready for the new output data. 

However, when switching from one screen 
size to another on a transaction basis, it is 
important to note that if ERASE is not 
specified in the frrst output command of the 
transaction, the screen size will be unchanged 
from its previous setting, that is, the previous 
transaction setting: or the default screen size if 
the CLEAR key has been pressed. 

specifies that a function management header 
has been included in the data that is to be 
written. If the ATT ACHID option is 
specified as well, the concatenated PMH flag 
will be set in the attach FMH. 

FROM( data-area) 
specifies the data that is to be written to the 

, terminal or logical unit. For the ISSUE 
PASS command it contains the logon user 
data that is to be passed to the application 
named in the LUNAME option. This option 
may be omitted if ATTACHID is specified 
on an LUTYPE6.1 command, or if INVITE, 
CONFIRM, or LAST is specified on an 
LUTYPE6.2 SEND command. 

FROMLENGTH( data-value) 
see LENGTH(parameter). The 
FROMLENGTH option of the 
CONVERSE command is equivalent to the 
LENGTH option ofa SEND command. 

INTO(data-area) 
specifies the receiving field for the data read 
from the terminal or logical unit. 

INVITE 
specifies that the next terminal control 
command to be executed for this facility is a 
RECEIVE. This allows optimal flows to 
occur. 

IUTYPE{(name) I (data-area)} 
this corresponds to the interchange unit field, 
ATTIU, in an LUTYPE6.1 attach FMH. 

Por communication between two CICS 
systems, no particular significance is attached 
by C I CS to the interchange unit field in an 
attach PMH. For most CICS applications 
the option may be omitted, when a value of 
"multiple chain" will be assumed. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the interchange unit field in an 
attach PMH. 

When ElBA TT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the interchange unit field 
received in the attach PMH. 

The value is halfword binary; only the 
low-order 7 bits being used. The bits in the 
binary value are used as follows: 

0-10 reserved - must be set to 
zero 

II 0 - not end of multichain 
interchange unit 

I - end of multichain 
interchange unit 

12,13 reserved - must be set to 
zero 

14,15 00 - multichain interchange 
unit 

01 - single chain 
interchange unit 

10 - reserved 
11 - reserved 

If the option is omitted from the BUILD 
ATTACH command, values of "not end of 
multichain interchange unit" and "multiple 
chain" are assumed. 

l.AST 
specifies that this is the last output operation 
for a transaction and therefore the end of a 
bracket. 

IJDC(namc) 
specifies the two-character mnemonic used to 
determine the appropriate logical device code 
(LDC) numeric value. The mnemonic 
represents an LDC entry in the D FHTCT 
TYPE= LDC macro. 

Chapter 3.3. Terminal Control 285 



l.lENGTH(parameter) 
specifies the length (as a half word binary 
value) of the data transmitted by RECEIVE 
and SEND commands. 

For a RECEIVE command with the INTO 
option, but without the MAXLENGTH 
option, the parameter must be a data area 
that specifies the maximum length that the 
program will accept. If the value specified is 
le:ss than zero, zero is assumed. If the length 
of the data exceeds the value specified, but 
the NOTR UNCA TE option is not specified, 
the data is truncated to that value and the 
LENGERR condition occurs. When the 
data has been received, the data area is set to 
the original length of the data. 

For a RECEIVE command with the SET 
option, the parameter must be a data area. 
"Then the data has been received, the data 
area is set to the length of the data. 

For a SEND command, the parameter must 
h~ a data value that is the length of the data 
that is to be written. 

For an ISSUE PASS command, the 
parameter is a data value that is the length of 
the data specified in the FROM option. 

LINEADDR( data-value) 
specifies that the writing is to begin on a 
specific line of a 2260/2265 screen. The data 
value is a half word binary value in the range 
1 through 12 for a 2260, or 1 through 15 for a 
2265. 

LUNArVlE( data-area) 
specifies the name of the VT AM application 
to which the tenninal is to be passed" 

MAXLENGTH( data-value) 
specifies, as a halfword binary value, the 
maximum amount of data that CICS is to 
recover in response to a RECEIVE or 
CONVERSE command. If INTO is 
specified, MAXLENGTH will ovenide the 
U8e of LENGTH and TOLENGTH as an 
input to CICS. If SET is specified, 
MAXLENGTH provides a means whereby 

the progratn can limit the amount of data it 
receives at one time. If the length of data 
exceeds the value specified and the 
NOTRUNCATE option is not present, the 
data is truncated to that value and the 
LENGERR condition occurs. The data area 
specified in the LENGTH or TOLENGTH 
option is set to the original length of data. 

If the length of data exceeds the value 
specified and the NOTR UNCA TE option is 
present, CICS will retain the remaining data 
and use it to satisfy subsequent RECEIVE 
commands. The data area specified in the 
LENGTH or TOLENGTH option is set to 
the length of data returned. 

If no operand is coded for MAXLENGTH, 
CICS will default a value in the same way 
that it currently defaults a value for the 
LENGTH option if this is omitted. 

NETNAME(name) 
specifics the eight-character name of the 
logical unit in the VT AM network. 

NOQUEUE 
specifies that the request. to allocate a session 
or a system is not to be queued when a 
suitable session or system cannot be acquired 
immediately. The SESSBUSY or SYSBUSY 
condition will be raised and it will be handled 
as described on page 31. 

NOSUSPEND 
is an alternative keyword for NOQUEUE. It 
means the same. 

NOTRUNCATE 
specifics that when the data available exceeds 
the length requested in a RECEIVE or 
CO NVERSE command, the remaining data 
is not to be discarded but is to be retained for 
retrieval by subsequent RECEIVE 
commands. 

PASSBK 
specifics that communication is with a 
passbook at a 2980. The WAIT option is 
implied. 

286 CICS/DOS/VS Application Programmer's Reference Manual (Command Level) 



PIPl"ENGTH(parameter) 
for a CONNECT PROCESS command, 
parameter is a data value that specifies the 
total length of the list specified by PIPLIST. 
Its format is halfword binary. 

For an EXTRACT PROCESS command, 
parameter is a data area into which is 
returned the total length of the PIP (process 
initialization parameter) list. Its format is 
half word binary. 

PIPI.JST(parameter) 
for a CONNECT PROCESS command, 
parameter is a data area containing the PIP 
data that is to be sent to the remote system. 
The PIP list consists of variable length 
records, each containing a single PIP. 

For an EXTRACT PROCESS command, 
parameter is a pointer reference that is set to 
the address of a CICS-provided data area 
containing a PIP list. This list contains 
variable length records in the same format as 
the list in the CONNECT PROCESS 
command. A returned value of zero means 
that no PIP data has been received by CICS. 

PROCESS{(name)l(data area)} 
this corresponds to the process name, 
ATTOPN, in an LU6.l attach FMH. 

For communication between two CICS 
systems, a transaction running in one system 
can acquire a session to the second system 
and can identify the transaction to be 
attached; in the second system the 
identification is carried in the frrst chain of 
data sent across the session. 

In general, the frrst four bytes of data will 
identify the transaction to be attached. 
However an attach FMH, identifying the 
transaction to be attached, may be built and 
sent; the PROCESS option on the BUILD 
ATTACH command is used to specify the 
transaction name. (Note that the receiving 
CICS system will use just the frrst four bytes 
of the process name as a transaction name). 

No significance is attached by CICS to 
process names in attach FMHs sent in chains 
of data other than the first. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the process name field in an 
attach PMH. 

When ElBA TT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACII command may be 
used to examine the process name received in 
the attach PMH. 

PROCLENGTH( data-area) 
specifics, on a CONNECT PROCESS 
command, the length (as a half word binary 
value) of the process name specified by the 
PROCNAME option. On an EXTRACT 
PROCESS command, it specifies a half word 
data area that is set by CICS to the length of 
the process name. 

PROCNAME{(name)l(data area)} 
on a CONNECT PROCESS command, it 
specifies the process (in CICS terms, the 
transaction) that is to be connected in the 
remote system. 

On an EXTRACT PROCESS command, it 
specifics the data area into which the process 
name specified by the remote system which 
caused the task, is to be started. The data 
area must be 32 bytes long. The process 
name will be padded on the right with blanks 
if it is shorter that 32 bytes. 

PROFII."E(name) 
specifies the name (maximum of eight 
characters) of a set of session processing 
options, held in the peT, that are to be used 
during execution of terminal control 
commands for the session specified in the 
SYSID or SESSION options. If this option 
is omitted, a set of processing options, ealled 
DPIICICSA, will be selected. 

Chapter 3.3. Terminal Control 287 



PROGRAM(name) 
specifies the name (maximum of eight 
characters) of the 3600 application program 
that is to be loaded. 

PSEUDO BIN 
specifies that the data being written or read is 
to be translated from System/7 pseudobinary 
representation to hexadecimal on a 
RECEIVE command or from hexadecimal to 
pseudobinary on a SEND command. 

QUEUE{(name) I (data-area)} 
this corresponds to the queue name, 
ATTDQN, in an attach PMH. 

For communication between two CICS 
systems, no significance is attached by CICS 
to the queue name in an attach FMH. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the queue name field in an attach 
FMH. 

VVhen ElBA TT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the queue name received in 
the attach FMH. 

RECFM{(name)l(data area)} 
tlus corresponds to the deblocking algorithm 
field, ATTDBA, in an LU6.1 attach FMH. 

For communication between two CICS 
systems, no particular significance is attached 
by CICS to the deblocking algorithm field in 
an attach FMH. For most CICS 
applications, the option may be omitted 
when a value of "chain of RUs" will be 
assumed. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the deblocking algorithm field in 
an attach FMH. 

When EIBATT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the deblocking algorithm 
field received in the attach FMH. 

The value is half word binary; only the 
low-order 8 bits being used. The bits in the 
binary value are used as follows: 

0-7 reserved - must be set to 
zero 

8-15 X'OO' - reserved 
X'Ol' - variable length 

variable blocked 
X'02' - reserved 
X'03' - reserved 
X'04' - chain of RUs 
X'OS' 
to X'FF' - reserved 

If the option is omitted from the BUILD 
ATTACH command, a value of "chain of 
RUs" is assumed. 

RESOURCE{(name) I (data-area)} 
this corresponds to the resource name, 
ATTPRN, in an LU6.l attach FMH. 

For communication between two CICS 
systems, no significance is attached by CICS 
to the resource name in an attach FMH. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the resource name field in an 
attach PMH. 

When EIBATT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the resource name received 
in the attach FMH. 

RPROCESS{(name) I (data-area)} 
this corresponds to the return process name, 
ATTRDPN, in an LU6.l attach PMH. 

For communication between two CICS 
systems, no significance is attached by CICS 
to the return process name in an attach 
FMH. 

288 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the return process name field in 
an attach FMH. 

When ElBA TT is set during execution of a 
RECEIVE Of CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the return process name 
received in the attach FMH. 

RRESOURCE{ (name) I( data-area)} 
this corresponds to the return resource name, 
ATTRPRN, in an LU6.1 attach FMH. 

For communication between two CICS 
systems, no significance is attached by CICS 
to the return resource name in an attach 
FMH. 

For communication between a CICS system 
and another subsystem, refer to 
documentation supplied by the subsystem on 
how to use the return resource name field in 
an attach FMH. 

When ElBA TT is set during execution of a 
RECEIVE or CONVERSE command, the 
EXTRACT ATTACH command may be 
used to examine the return resource name 
received in the attach FMH. 

SESSION(name) 
specifies the symbolic identifier (maximum of 
four characters) of a session TCTTE. This 
option specifies the alternate session to be 
used. If this option is omitted, the principal 
facility for the task will be used. 

SET(ptr-ref) 
specifies the pointer reference that is to be set 
to the address of the data read from the 
terminal or logical unit. 

STRFIELD 
specifies that the data area specified in the 
FROM option contains structured fields. If 
this option is specified, the contents of all 
structured fields must be handled by the 
application program. The CONVERSE 

command, rather than a SEND command, 
must be used if the data area contains a read 
partition structured field. (Structured fields 
are described in the CICS/DOS/VS IBM 
3270 Data Stream Device Guide.) 
CTLCHAR and ERASE are mutually 
exclusive with STRFIELD, and their use 
with STRFIELD will generate an error 
message. 

SYNCLEVEL{(data-arealdata-value)} 
specifies, on a CONNECT PROCESS 
command, as a halfword binary value, the 
synchronization level for the current 
conversation. The possible values are: 0 
none, I commit only, 2 all. On an 
EXTRACT PROCESS command, specifies a 
halfword data area that is set by CICS to the 
SYNCLEVEL value. For further 
information about synchronization levels see 
the CICS/DOS/VS Intercommunication 
Facilities Guide. 

SYSID[(name)l(data-area)} 
specifics the name (maximum of four 
characters) of a system TCTSE. This option 
specifies that one of the sessions to the 
named system is to be allocated. 

When used with the EXTRACT TCT 
command, this option specifies the variable to 
be set to the equivalent local name of the 
system. 

TERMIIJ[(name)l(data-area)} 
specifics the name (up to four characters in 
length) of the terminal whose buffer is to be 
copied. The terminal must have been defmed 
in the TCT. 

When used with the EXTRACT TCT 
command this option specifies the variable to 
be set to the equivalent local name of the 
terminal. 

TOLENGTH( data-area) 
see LENGTH(parameter). The 
TOLENGTH option of the CONVERSE 
command is equivalent to the LENGTH 
option of a RECEIVE command. 

Chapter 3.3. Terminal Control 289 



WAIT 
specifies that processing of the command 
must be completed before any subsequent 
processing is attempted. 

If the WAIT option is not specified, control 
is returned to the application program once 
processing of the command has started. A 
subsequent input or output request (tenninal 
control, BMS, or batch data interchange) to 
the tenninal associated with the task will 
cause the application program to wait until 
the previous request has been completed. 

Terminal Control Exceptional 
Conditions 

Some of the following exceptional conditions may 
occur in combination with others. CICS checks for 
these conditions in the following order: I EODS, 2 
INBFMH, 3 EOC. If more than one of these 
conditions occurs, only the fITst one found to be 
present is passed to the application prograrrl. 

However, EIBRCODE will be set to indicate all 
the conditions that have occurred. 

CBIDE1RR 
occurs if the named set of terminal-control 
processing options cannot be found. 

Dc~fault action: terminate the task abnormally. 

ENDIN:PT 

EOC 

occurs when an end-of-input indicator is 
received. 

Default action: terminate the task abnormally. 

occurs when a request/response unit (R V) is 
received with the end-of-chain indicator set. 
Field EIBEOC also contains this indicator. 

Default action: ignore the condition. 

EODS 
occurs when an end-of-data-set indicator is 
received. 

EOF 
occurs when an end-of-file indicator is 
received. 

Default action: terminate the task abnormally. 

IGREQCD 
occurs when an attempt is made to execute a 
SEND or CONVERSE command after a 
SIGNAL data-flow control command with 
an RCD (request change direction) code has 
bcen received from an LVTYPE410gical 
unit. 

Default action: terminate the task abnormally. 

INBFMH 
occurs if a request/response unit (RU) 
contains a function management header 
(FMlI). Field EIBFMH contains this 
indicator and it should be used in preference 
to INBPMH. The IGNORE CONDITION 
command can be used to ignore the 
condition. 

Default action: terminate the task abnormally. 

INVREQ 
occurs, for various commands, as follows: 

• ALLOCATE - the LU specified is 
already allocated. 

• PREE - the LV specified is in the wrong 
state. 

• CONNECT PROCESS - SYNCLVL 2 
has been requested, but cannot be 
supported on the session in use. 

• EXTRACT A TT ACH - invalid data. 

• SEND - the CONFIRM option has been 
specified but LV6.2 conversation is not 
SYNCLVL l. 

• EXTRACT TCT - invalid NETNAME. 

• EXTRACT PROCESS - invalid 
CONVID. 

290 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



INVREQ also occurs if: 

• An invalid command has been issued for 
the terminal or LU in use. 

• An invalid command has been issued for 
the LU6.2 conversation type in use. 

Default action: tenninate the task abnormally. 

LENGERR 
occurs, for a RECEIVE or CONVERSE 
command, if data is discarded by CICS 
because its length exceeds the maximum the 
program will accept and the 
NOTRUNCATE option is not specified. 

Occurs also if an out of range value is 
supplied in the LENGTH option on the 
SEND command, the FROMLENGTH 
option on the CONVERSE command, or the 
PROCLENGTH option on the CONNECT 
PROCESS command. 

This condition will also occur if: 

• The value specified in the PIPLENGTH 
option is less than zero. 

• The value specified in the PIPLENGTH 
option exceeds the CICS implementation 
limit of 32,767. 

• A PIP length element has a value less 
than 4. 

• The sum of the length elements in the 
PIPLIST does not equal the value 
specified by PIPLENGTH. 

Default action: terminate the task abnormally. 

NONVAL 
occurs if a 3650 application program name is 
invalid. 

Default action: tenninate the task abnormally. 

NOPASSBKRD 
occurs if no passbook is present on an input 
operation. 

NOPASSBKWR 
occurs if no passbook is present on an output 
operation. 

NOSTART 
occurs if the 3651 is unable to initiate the 
requested 3650 application program. 

Default action: terminate the task abnormally. 

NOTALLOC 
occurs if the facility specified in the command 
is not owned by the application. 

Default action: terminate the task abnormally. 

RDA'IT 
occurs if a RECEIVE command is terminated 
by the attention (ATTN) key rather than the 
return key. 

Default action: ignore the condition. 

SESSnUSy 
occurs if the request for a session cannot be 
serviced immediately. 

Default action: queue the request until a 
session is available. 

SESSIONERR 
occurs if the name specified in the SESSION 
option of the ALLOCATE command is not 
that of a session TCTTE, or if the session 
cannot be allocated because it is out of 
service. 

Default action: terminate the task abnormally. 

SIGNAL 
occurs when an inbound SIGNAL data-flow 
control command is received from a logical 
unit or session. It is raised by execution of 
the next SEND, RECEIVE, or WAIT 
TERMINAL command that refers to the 
logical unit or session. It is raised also by 
execution of a WAIT SIGNAL command, in 
which case the data-flow control command 
has been received from the principal facility. 
EIBSIG will always be set when an inbound 
signal is received. 

Chapter 3.3. Terminal Control 291 



Default action: ignore the condition. 

SYSBUSY 
occurs if the request for a session cannot be 
serviced immediately. 

Default action: queue the request unt.il a 
se:ssion is available. 

SYSID'ERR 
occurs if CICS is unable to provide tlhe 
application program with a suitable session. 
This will occur if: 

1. The name specified in the SYSID option 
is not recognized by CICS, or 

2. The tnode name derived from the 
PROFILE option is not one of the mode 
names defmed for the LU6.2 system 
entry, or 

3. All of the sessions in the group specified 
by SYSID and mode name are out of 

service, or if all sessions are out of 
servIce. 

Default action: tenninate the task abnormally. 

TERMERR 
occurs for a tenninal related error, such as a 
session failure. This condition applies to 
VT AM -connected tenninals only. Because of 
the asynchronous nature of this condition, 
the application program should check, using 
CONFIRM or SYNCPOINT, to make sure 
any errors still outstanding have been resolved 
before it relinquishes control. 

Default action: terminate the task abnormally 
with abend code A TNI. 

TERMlIlERR 
occurs if the specified terminal identifier 
cannot be found in the terminal control table 
(TCT). 

Default action: tenninate the task abnormally. 

292 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



I Chapter 3.4. Report Controller 

The report controller is a separately priced feature 
of CICS. It provides an end user interface to the 
POWER LST and POWER RDR queues. 

This makes it possible for end users (who may not 
be DP professionals) to control the printing of their 
own reports, without needing to know anything 
about either CICS or POWER. 

The report controller provides panel-driven 
transactions (CEMS and CEOS) for the end user. 
With these transactions, the user can control when 
the report is printed, which printer is used, how 
many copies to print, and so on. They do this by 
changing the characteristics of the report (this is 
the phrase we use to include all these operations: 
you will see it used in the CICS/ DOS/ VS Report 
Controller User's Guide.) 

The characteristics of the report are set up initially 
by the program you write to create the report. The 
basic commands for creating reports 
(SPOOLOPEN, SPOOLWRITE, SPOOLCLOSE) 
are provided by CICS itself, but you need the 
report controller feature to be able to use the 
options that set many of these characteristics. 

In addition to options related to controlling 
printing, the report controller provides several other 
options that make report creation easier than 
existing methods. 

If you are designing application programs to create 
reports that you want end users to control and 
print using the report controller, you should first 
read the CICS/DOS/VS Facilities and Planning 
Guide. This gives an overview of report creation 
using the commands and options that are described 
in detail here. It aiso gives an overview of how the 

end user will control and print their reports: how 
they will use the various characteristics that you set 
up. This will help you to understand how your 
choice of options will influence their work. 

For more detailed infonnation about using the 
report controller transactions, look at the 
CICS/IJOS/VS Report Controller User's Guide, 
which has been designed specially for non-DP end 
users. 

We provide a sample program, listed in 
Appendix 0, "Report Controller Sample 
Programs" on page 549. This is based on the Low 
Balance Report sample program in Appendixes D, 
E, and F, and it shows how to create a report using 
the report controller. The source code is supplied 
in three versions: assembler language, COBOL, 
and PL/1. 

In addition, we supply a transaction (SREP) that 
creates a selection of reports so that end users can 
try out the report controller. This also shows you 
how to create reports, and the source program is 
also supplied in each of the three languages. 

Por more details about running both the sample 
program and SREP, see the CICS/DOS/VS 
Installation and Operations Guide. The reports that 
SREP creates fonn the basis of the tutorial in the 
CICS/DOS/VS Report Controller User's Guide. 

You can use the command interpreter (CECI) to 
try out the report controller commands. (You can 
see, although you cannot execute, the commands, 
even when you do not have the report controller 
installed). I Iowever, we recommend that you do 
not use CECI to create reports. 

Chapter 3.4. Report Controller 293· 



Reports 

In this chapter, a report is a file of data to be 
printed. In one special case, it can be a fIle of job 
control (JCL) statements and, optionally, data to. 
be processed by a batch program. Reports are held 
as POWER spool mes during and after creation, 
and before, during, and sometimes after, printing. 

Becaus,e a report is equivalent to a spool fue, the 
cOlrummds you use to create them begin with. 
SPOOL, to distinguish them from commands you 
use for creating ordinary fIles. We sometnnes refer 
to thelln collectively as the "SPOOL" commands. 
As you might expect, they are: 

• EXEC CICS SPOOLOPEN REPORT .. . 
• EXEC CICS SPOOLWRITE REPORT .. . 
• EXEC CICS SPOOLCLOSE REPORT .. . 

The REPORT option identifies the command as a 
report controller command, as well as specifying a 
name for the report. There are many other options 
that: 

• Identify the report (to users and to CICS): see 
"Identifying a Report" on page 295. 

• Specify how the report is to be created: sec 
"Creating a Report" on page 296. 

• Aflfect its appearance: see "Formatting a 
Report" on page 300. 

• In11uence how, when, and where it will be 
printed: see "Printing a Report" on page 307. 

• Provide for security and recovery: sec "Security 
and Recovery" on page 310. 

lbere are three basic report types that you can 
create, as follows: 

• Standard report 
• Resumable report 
• Log report. 

Your choice will depend on the way in which your 
transactions are going to add data to the report. 
You CaLn have one transaction create the whole 

report in one go (standard), you can have several 
transactions or a pseudoconversational transaction 
create a report in separate stages (resumable), or 
you can have many independent transactions 
interleaving their data to create a continuous report 
(log). 

We also provide for several different methods of 
formatting the report. The report format that you 
choose will depend on how you want to control 
such things as page breaks, line lengths, new lines, 
headings, footing, and page numbering. Your 
choice will depend largely on whether you are 
converting an existing program to use the S POO L 
commands, or writing a new one. If the former, 
you should fInd that we have provided a suitable 
fonnat. 

If your program uses ASA carriage control 
characters, machine code carriage control characters 
(MCC), the SNA character string (SCS), a 3270 
data stream, or BMS mapping, there is an output 
format for you. Not only that, but all these 
fonnats (with the exception of BMS) are converted 
to MCe, so that you can print any report on any 
of your printers, with the same results. However, if 
you want to use special features of your SCS or 
3270 printers, you can avoid the conversion. 

It is partly because of this convertibility and partly 
because we provide options for control over page 
breaks, line lengths, headings, footings, and page 
numbering, that you need not worry about the 
fonnat for new programs. For simplicity, choose 
NOCC (no carriage control) or ASA; you will have 
maximum flexibility with minimum fuss. 

If you have special requirements for graphics or an 
output format not mentioned above, you can write 
your own escape program which is invoked when 
the report is ready to be printed. 

Finally, there is a special format (JCL) for creating 
input to batch jobs. We shall return to report 
formats later, but fIrst let us see how you identify 
your reports and specify how they are to be 
created. 

294 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Identifying a Report 

Report Name 

The report name is the primary means of 
identifying the report. It is probably the name that 
the end user will know the report by . Your 
naming conventions for reports can influence the 
end user's efficiency, because they can use partial 
(or generic) names to request information about 
reports. If you allocate two or three characters to a 
user or group of users, and then start all their 
report names with those characters, it will be easy 
for them to list all their reports by typing only 
those characters. 

You identify the report by name in the 
REPORT(name) option. This option makes the 
report you are creating into a report that the end 
user can print using the report controller 
transactions CEMS or CEOS. You must use the 
REPORT(name) option on each command: if you 
do not, the command is not recognized as a report 
controller command. 

Report Title 

You can also provide a 32-character title for the 
report, if you want to. If you do not, the report 
name is used. The title appears on the CEMS and 
CEOS report characteristics panel. 

Userdata 

In addition, you can provide a 16-character 
description known as userdata. If you do not, the 
fIrst 16 characters of the title are used. If you do 
not provide either title or userdata, again, the report 
name is used. 

The userdata appears on the report controller 
report list panel. This is quite significant from the 
point of view of security, because any report 
controller user can see the contents of userdata for 
all reports. So, do not put any sensitive 
information in userdata. If you do not put 

anything in userdata, be careful about sensitive 
information in the title. 

You can put whatever information you want in 
userdata. Some things that you may want to use it 
for are: 

• To provide a reference number or other code, 
so that whoever created a report can recognize 
it on the report controller list panel. (You may 
have many users creating reports with the same 
name, or one user may create many versions of 
the same report. The reference number could 
be supplied by them to your application 
program, or generated by the application and 
displayed back to them.) 

• To provide a reference number or other code, 
in the text of a report, so that whoever is 
controlling printing can relate the output back 
to the report controller list panel. (They may 
have several versions of the same report: this 
wi1l help them to see which versions have been 
printed.) 

• To provide a more meaningful name for the 
report. For example, if you code: 

REPORTCTIM74MAY) 
TITLEC'DEPT74 TIMESHEET J.SMITH') 

and let USERDA T A default, DEPT74 
TIMESHEET is visible to all report controller 
users. It simply elaborates a little on the report 
name. J .SMITH is only visible to report 
controller users authorized to see the 
characteristics of that report. 

Tokens 

A token is an 8-byte identifier that is used by each 
spool command so that the CICS task can 
recognize which report is being created. When a 
report is first opened for input, CICS allocates a 
token to it. This token must be stored by the 
application program, to be used when the report is 
written to and when it is closed. 

When a resumable report is closed, the token is 
passed back to CICS and must be used when the 
report is opened again. 

Chapter 3.4. Report Controller 295 



Report Number 

You have no control over the report number in 
your program. The report number is allocated by 
POWER. It is shown on the CEMS/CEOS report 
list and report characteristics screens, so it can be 
used to distinguish between reports of the same 
name that are waiting to print. It is also printed on 
the separator pages preceding and following each 
report, if you choose to have them. 

Creating a Report 

Report Types 

As stated earlier, you can create three different 
types of report. They are described in more detail 
here, together with examples of coding to create 
each type. 

Standard Report 

A repOlt created by a single execution of a CICS 
transaction (a single task). A standard report is 
opened:, written to, and then closed. If your 
progranl has all the data it needs to create the 
whole report before opening it, the report can be 
standard. 

The foUowing coding shows how to create a 
standard report: 

EXEC CICS SPOOL OPEN 
REPORTCN21001) 
TOKENCTOKOOl) 
NOCC 

EXEC CICS SPOOlWRITE 
REPORTCN21001) 
TOKENCTOKOOl) 
FROMCIOOOl) 

EXEC. CICS SPOOlWRITE 
REPORTCN21001) 
TOKENCTOKOOl) 
FROMCIOOOl) 

EXEC CICS SPOOlWRITE 
REPORTCN21001) 
TOKENCTOKOOl) 
FROMCIOOOl) 

EXEC CICS SPOOlClOSE 
REPORTCN21001) 
TOKENCTOKOOl) 
HOLD 

Resumablc Report 

A report created by a series of separate CICS tasks, 
each of which may append data to it. A resumable 
report is opened in exactly the same way as a 
standard report. At the end of the task it is closed 
with the RESUME option. At the beginning of 
the next task it is opened with the RESUME 
option, and so on, until it is fmally closed without 
the RESUME option. 

The following coding shows how to create a 
resumable report: 

TRNl: 

EXEC CICS SPOOL OPEN 
REPORTCN21002) 
TOKENCTOK002C) 
ASA 

EXEC CICS SPOOLWRITE 
REPORTCN21002) 
TOKENCTOK002) 
FROMCI0002) 

EXEC CICS SPOOL CLOSE 
REPORTCN21002) 
TOKENCTOK002) 
RESUME 

EXEC CICS RETURN 
TRANSIDCTRN2) 
COMMAREACTOK002) 

TRN2: 

EXEC CICS SPOOL OPEN RESUME 
REPORTCN21002) 
TOKENCTOK002) 

EXEC CICS SPOOlWRITE 
REPORTCN21002) 
TOKENCTOK002) 
FROMCI0002) 

EXEC CICS SPOOlClOSE 
REPORTCN21002) 
tOKENCTOK002) 
RELEASE 

296 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



If your program is pseudoconversational, that is, 
control is returned to CICS while the user is 
entering data on the screen, you should create a 
resumable report. You can gather some of the 
data, write it to the report and then send another 
screen for the user to enter more data. You then 
close the report with the RESUME option, and 
store the TOKEN for use by the transaction that 
will open the report again. CICS uses the TOKEN 
to identify reports. You can use this technique for 
a series of different transactions, or for the same 
transaction invoked iteratively. 

You must also create a resumable report if you 
want to issue a sync point during report creation. 
TIns is because a sync point closes any report that 
is open, and sets it to READY status. To prevent 
this, you can code a SPOOLCLOSE RESUME 
command before the sync point. You must specify 
LOGICAL recovery for the report, if you are using 
syncpointing. (See "Report Recovery" on 
page 310.) 

The following coding shows how to create a 
resumable report, in a program that includes a sync 
point: 

EXEC CICS SPOOL OPEN 
REPORTCN21003) 
TOKENCTOK003) 
LOGICAL 
NOCC 

EXEC CICS SPOOLWRITE 
REPORTCN21003) 
TOKENCTOK003) 
FROMCI0003) 

EXEC CICS SPOOLCLOSE 
REPORT(N21003) 
TOKEN(TOK003) 
RESUME 

EXEC CICS SYNCPOINT 

EXEC CICS SPOOL OPEN RESUME 
REPORTCN21003) 
TOKENCTOK003) 

EXEC CICS SPOOLWRITE 
REPORTCN21003) 
TOKEN(TOK003) 
FROMCI0003) 

Notes: 

I. You cannot create a resumable report in JCL 
format. 

2. You cannot direct a resumable report to a 
destination at a different node. 

3. At SPOOLOPEN RESUME, a resource 
security level (RSL) check is performed. The 
operator must have the RSL value that is 
specified on the first SPOOLOPEN, among the 
RSLKEYs in the sign-on table entry. 

4. Any number ofresumahle reports with the same 
name may be opened at the same time. 

Log Report 

A report that, once open, can be written to by a 
number of tasks running concurrently. Records 
written to each CICS task are interleaved, but this 
type of report appears as a standard report to 
POWER. 

You need to open a log report only once, and then 
close it once when all records have been written. 
The log report can be closed either by the task that 
opened it or by another task. 

A log report may be created in any format. For 
any particular report name, only one log report 
may be open at once with that name. An attempt 
to open a log report that is already open will result 
in the W RON GST A T condition being raised. 

The following coding shows how to create a log 
report: 

Task 1: 

EXEC CICS SPOOL OPEN 
REPORTCN21004) 
TOKENCTOK004) 
LOG 
ASA 

EXEC eICS SPOOLWRITE 
REPORTCN21004) 
TOKEtH TOK004) 
FROMCI0004) 

Chapter 3.4. Report Controller 297 



Task 2: 

EXEC CICS SPOOlWRITE 
REPORTCN21004) 
TOKENCTOK004) 
FROMCI0004) 

Task 3: 

EXEC CICS SPOOlWRITE 
REPORTCN21004) 
TOKEN(TOK004) 
FROMCI0004) 

Task n: 

EXEC CICS SPOOlWRITE 
REPORT(N21004) 
TOKEN(TOK004) 
FROM(I0004) 

EXEC CICS SPOOlClOSE 
REPORT(N21004) 
TOKEN(TOK004) 

OpenJing a Report 

The SPOOL OPEN command is used in two ways: 

• TOI open a report for the fust time 
• TOI reopen a resumable report that has been 

clOised. 

Opening a Report for the First Time 

When you open a report for the fust time, you 
select, either explicitly or by default, many options 
that specify the characteristics of the report. 

In addition to specifying REPORT, USERDATA, 
TITLE, and TOKEN, you also specify: 

• The report format 
• Other formatting options 
• Options that help control printing 
• Options for security and report recovery. 

These options are discussed in "Report Controller 
Options" on page 313. 

Here is an example of the command that opens a 
report for the first time: 

EXEC CICS SPOOL OPEN 
REPORT('MKTOIA') 
TOKEN(TOKENC) 
Noce 
TITlE('MARKET ANALYSIS A') 
HEAD(HEADC) 
USERDATA(USERC) 
DATETIME 
SEP 
HEADNUM 

Rcopcn~ng a Resumable Report 

The RESUME option specifies that a resumable 
report is being reopened. The only other options 
you specify with this are REPORT and TOKEN, so 
the command will look like this: 

EXEC CICS SPOOL OPEN RESUME 
REPORT(WAGEREPT) 
TOKENCTOKENl) 

Here, WAGEREPT is a literal character string and 
TOKEN! is the name of a variable whose data value 
is the token saved from the SPOOlClOSE RESUME 
command last executed for this REPORT. 

When you use SPOOL OPEN RESUME, the next 
write will append a record to the report with the 
same token. The report must have previously been 
closed with the RESUME option. 

Writing Data to a Report 

You use the SPOOlWRITE command to write data 
to a report. You usually specify the data to be 
written using the FROM option, except for BMS 
mapping, when you can use the MAPONLY 
option instead. You can let CICS calculate the 
length of the data, or you can specify the length 
using the Fl ENGTH option. Note that if you are 
writing a COBOL program to create a non-BMS 
report, you must specify FLENGTH. 

You can write any number of lines in one 
SPOOLWRITE command. CICS calculates how 
many lines to write in different ways, depending 
upon the rcport format. We go into more detail 
later, in IIFormatting a Report" on page 300. 

298 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Usually, you specify the length of each line using 
the LINELENGTH option. The number of lines 
written by each SPOOLWRITE is calculated by 
dividing the FLENGTH value by the 
LINELENGTH value, any rernainder being padded 
with blanks and considered one line. This results 
in a report consisting of lines of fixed length. This 
applies to ASA, MCC, NOCC, JCL, and 
sometimes to SCS and T3270. 

For ASA and MCC, the nurnber of lines written 
also depends on any valid control characters found 
in column I after the FROM area has been split 
up into lines by dividing FLENGTH by 
LINELENGTH. 

For JCL, the LINELENGTH is always 80. You 
must ensure that each JCL statement begins in 
column I and ends in column 80, after the FROM 
area has been split up into lines. 

With other report formats, each SPOOLWRITE 
command is assumed to be for a page. With BMS 
mapping, the map determines how many lines are 
written. With SCS and T3270, all of the data can 
be considered as a single unit and written as one 
record. Control orders within the data stream 
control the number of lines to be written. With 
ESCAPE format, you must control the lines and 
pages in your escape program. 

Here is an example of the command that writes a 
line of data to a report: 

EXEC CICS SPOOLWRITE 
REPORTC'MKTOIA') 
TOKENCTOKENC) 
FROMCPRINTLINEC) 
FLENOTH(132) 

Closing a Report 

You use the SPOOLCLOSE command to close a 
report. In addition to the mandatory options 
REPORT and TOKEN, there are some other options 
that you can use with the SPOOL CLOSE command. 

The L 00 option identifies that a report is a log 
report. 

When you close a report for the last time, you 
specify DELETE, HOLD, or RELEASE. Whether 
you close a report as HOLD or RELEASE 
influences the job of the end user who has to print 
the report, so you should look at the guidance 
information in "Controlling When Reports are 
Printed" on page 308. 

The DEL ETE option is used only when you do not, 
after all, want already-written report records to 
remain as a spool fue on the POWER LST queue. 

When you close a resumable report, you specify the 
RESUME option. This option indicates that the 
report has not been closed pennanently: writing to 
it may be resumed by a later CICS task. For this 
purpose, the SPOOLCLOSE command passes the 
token back to CICS. You must store the token 
and use it when you code the SPOOL OPEN 
RESUME to reopen the report. 

A sync pomt forces a report to be closed in release 
status, so if you wish to create a report across more 
than one logical unit of work, you must code a 
SPOOLCLOSE RESUME command before the 
SYNCPOINT command. SPOOLCLOSE RESUME 
puts the report in resume status (POWER 
DISP=A). You must then code a SPOOL OPEN 
RESUME command before you can write to the 
report again. 

The following coding shows examples of the 
SPOOLCLOSE command: 

EXEC CICS SPOOLCLOSE 
REPORTC ) 
TOKENC ) 
HOLD 

EXEC CICS SPOOLCLOSE 
REPORT( ) 
TOKEN( ) 
RESUME 

Chapter 3.4. Report Controller 299 



Forllnatting a Report 

Repo:rt Fonnats 

You can create a report in a number of different 
formats, which you specify at SPOOLOPEN time 
using the following options: 

NOCC No carriage control 

ASA ASA control characters. 

MCC Machine code carriage control 

SCS SNA character string. 

T3270 3270 data stream 

MAP BMS mapping. 

ESC Escape mapping, for special things like 
graphics. 

JCL Job control language format. The report is 
placed on the POWER RDR queue to be 
input to a batch job. 

The format of a report dictates which of the 
options are valid, for example, headings or footings 
are not supported for a BMS map. 

Format Conversion 

Whether you specify ASA, MCC, NOCC, SCS, or 
T3270, the report controller arranges that the report 
can be: printed on a system printer, on an SCS 
printer, or on a 3270-type printer, with the same 
results,. 

It does this by converting all these formats to 
MCC. If you do not want the conversion, because 
you want to use the special features of a 3270-type 
or SCS printer, for instance, color, you can specify 
NOCONV. If you do this, you will get the special 
featuf(~s if you use the appropriate printer. 
However, the report cannot be printed on a 
different kind of terminal printer, or directly 
through POWER to a channel attached system 
printer. 

Pormat conversion enables distributed report 
printing: each recipient will receive an identical 
report, whether it was printed on a CICS printer or 
on a system printer. 

NOCC and ASA reports created using 
SPOOLOPEN, are always converted to MCC. 
ASA reports created by batch programs can also be 
printed on SCS or 3270 printers. 

ESC, MAP, and JCL reports are not converted, 
but remain fixed for the lifetime of the report. 

As we said earlier, it should be fairly easy for you 
to decide which format to use, whether you are 
writing a new program or converting an old one. 
Let us consider the simplest formats frrst. 

NOCC, ASA, and MCC Fonnats 

NOCC (no carriage control) is the format to 
choose if you do not need to be able to insert 
unconditional page breaks and line skips. The 
LINES option specifies the maximum number of 
lines on each page, and a new page is started 
whenever the LINES value is exceeded by the line 
count. 

The number of lines created by each 
SPOOLWRITE command is calculated by dividing 
the LINEI £NGTH value into the FLENGTH 
value. The default LINELENGTH is 132. 
PLENGTH defaults to the length of the data area 
specified by the FROM option. Each line thus 
created counts as one, and each heading and 
footing counts as 2, in the line count. 

As well as automated headings and footings, you 
can also specify page numbering and the 
DATETIME option with NOCC. NOCC data is 
always converted to MCC format. The machine 
code characters are inserted as the lines are inserted. 
Do not allow for them in your LINELENGTH. 

If you want to be able to specify unconditional line 
skips or page breaks in your program, you should 
choose ASA format. You can also make use of the 
LINES option to have an automatic page break 
wherever a page is filled. 

300 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Using ASA characters is simple: all you do is code 
one of the following characters in the ftrst position 
of each line that you want to print: 

blank space 1 line before writing the data 

o 

+ 

1 

space 2 lines before writing the data 

spcice 3 lines before writing the data 

suppress space, that is, print on same line 
as previous line 

skip to channel 1 (new page) before writing 
the data. 

ASA data is always converted to MCC fonnat. 
You can improve perfonnance by writing several 
ASA lines in one SPOOLWRITE command. The 
resulting increase in speed may, however, be offset 
by the increased storage needed for buffers. 

If you write more than one ASA line in one 
SPOOLWRITE command, the LINELENGTH 
value is divided into the FLENGTH value to 
calculate the number of lines. You must ensure 
that after this calculation is made, the ASA control 
characters will be in column 1. The total number 
of lines printed will be FLENGTH divided by 
LINELENGTH adjusted to take account of the 
ASA characters. The default LINELENGTH is 
133 (allowing for the ASA character and 132 
characters of data.) 

If you specify LINES(O), you can skip to channels 
2 through 12. LINES(O) means that no automatic 
page breaks are inserted. If you want automatic 
page breaks, you cannot skip to channels 2 through 
12. 

In addition to ASA control characters, LINES, and 
LINELENGTH, you can also have automatic 
headings and footings, page numbering, and the 
DA TETIME option with ASA fonnat. 

During report printing, invalid characters (less than 
X' 40') within ASA and MCC data records are 
converted to blanks to prevent tenninal errors. 
However, if the printer is defmed to support DBCS 
(double byte character set), records will be printed 
as they are received from POWER. 

MCC (machine code control) format is much the 
same as ASA, but you specify hexadecimal control 
characters to control unconditional line skips and 
page breaks. 

Note: There may be a slight perfonnance 
improvement if you use MCC format, because no 
conversion takes place. 

The options you can use for fonnatting NOCC, 
ASA, and MCC reports are: 

LINES 
Specifies the page length in tenns of number 
of lines on the page 

LINELENGTH 
Specifies the page width in tenns of number 
of characters in the line 

HEAD and FOOT 
Specify heading and footing text 

HEADNUM, FOOTNUM, and BOTHNUM 
Specify page numbering 

DATETIME 
Specifies date and time. 

Page I..ength 

LINES (in the range 0 through 99) can be specified 
at SPOOLOPEN for NOCC, ASA, or MCC 
format reports and for reports with SCS or T3270 
fonnat (without NOCONV). During creation, the 
report controller keeps a line count and if LINES is 
exceeded, a page break is created using appropriate 
carriage control characters. 

The number of lines per page are counted 
according to the report fonnat, as follows. 

ASA and MCC 
The line count is based on the carriage 
control character, that is, the actual number 
of printed lines is calculated. 

A heading counts 2 lines (that is, one header 
line and one blank line) 

Chapter 3.4. Report Controller 301 



A footing counts 2 lines (that is, one blank 
line and one footing line) 

If the carriage control character specifies skip 
to line I on new page, the line count is reset. 

NOCC 
Each line counts one line. 

A heading counts 2 lines. 

A footing counts 2 lines. 

If LINES is not specified, a system default is used. 
If LINES(O) is explicitly specified, no page 
formatting is attempted; DATETIME, HEAD, 
FOOT, HEADNUM, FOOTNUM, and 
BOTHNUM are invalid options with LINES(O). 

Line iLength 

LINELENGTH can be specified at SPOOLOPEN 
for ASA, MCC, or NOCC format reports. 
LINELENGTH can also be specified at 
SPOOLOPEN for reports with SCS or T3270 
format providing NOCONV is not specified. 
During creation, the report controller will insert 
new line (NL) carriage control characters when the 
SPOOLWRITE reaches the line length specified. 

Headings 

A heading (dermed as the top line of each new 
page) is supported for reports of ASA, MCC, and 
NOCC format. The heading is supplied at 
SPOOLOPEN time and will appear as the first line 
of each printed report page. 

A heading is printed whenever: 

• Printing of a report begins 
• A carriage control character "skip to new page" 

is encountered 
• Lines/page (if specified) is exceeded. 

A blank line will always appear immediately after a 
heading line. 

Footings 

A footing (defined as the bottom line of each page) 
is supported for reports of ASA, MCC, and NOCC 
fonnat. The footing is supplied at SPOOLOPEN 
time and will appear at the bottom of each printed 
page. 

The bottom line is calculated from the lines/page 
option or by implying the system default. 

A footing is printed whenever: 

• A carriage control character "skip to new page" 
is encountered (except if it appears on the very 
first line of the report) 

• Lines/page or the system default is exceeded 
• The end of the report is reached. 

A blank line will always appear immediately before 
the footing. 

Page Numbering 

Automated page numbering can be requested by 
specifying the HEADNUM, FOOTNUM, or 
BOTHNUM options of the SPOOLOPEN 
command. 

The page number(s) will appear as follows: 

HEADNUM 
The page number will appear as the last 5 
characters (leading zeros suppressed) of the 
heading Hne. (If no heading line is supplied 
at SPOOLOPEN, a blank heading line is 
produced.) 

FOOTNUM 
The page number will appear as the last 5 
characters (leading zeros suppressed) of the 
footing line. (If no footing line is supplied at 
SPOOLOPEN, a blank footing line is 
produced). 

BOTHNUM 
Page numbers appears as specified for 
BEADNUM and FOOTNUM. 

302 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Date and Time 

On a report where a heading is specified at 
SPOOLOPEN or a heading is implied by 
specifying HEADNUM or BOTHNUM, the 
specifying of DA TETIME triggers the report 
controller to insert on each heading line the date 
and time of creating the report. 

If no heading is specified, a blank heading line is 
produced. 

The date and time will appear 19 characters before 
the end of the line in one of following system 
defmed formats: 

DD/MM/YY HH:MN 
MM/DD/YY HH:MN 
YY/MM/DD HH:MN 

where: 

D D is the day of the month 
MM is the month 
YY is the year 
HH is the hour of the day 
MN is the minute within the hour 

These formats are as specified in the CSA (defmed 
in the SIT). 

SCS and T3270 Fonnats 

You can use these formats to take advantage of 
SCS or 1'3270 printer options (with NOCONV), or 
to keep all reports using same format, or you can 
use 1'3270 format to convert a report based on 
BMS mapping to print on a system printer: see 
"BMS Mapped. Reports" on page 305. 

Usually, when you send SCS (SNA character 
string) data or a 3270 data stream to a printer, you 
do not send it as individual lines, but as one long 
string containing SCS or 3270 control orders as 
well as data. It is the printer that acts upon these 
control orders and formats the data accordingly. 
You can continue to do this to create reports using 
the SPOOL commands, but the report controller 
provides another option: by default, the report 
controller converts SCS and 1'3270 reports into 
MCC format just as it does for NOCC reports, 

dividing LINELENGTH into FLENGTH. For 
example, if your report is based on a screen width 
of 80 characters, yoUl specify LINELENGTH(80) 
to ensure correct for-mat conversion. 

In addition, the following SCS control orders are 
supported: 

BS - Backspace 
C R - Carriage re:turn 
FF - Forms feed 
LF - Line feed 
NL - New line 
TRN - Transparent 

Any unsupported SCS orders are treated exactly as 
they are by printers that do not support them: if 
recognized as architected SCS orders, their default 
actions arc taken as specified in Systems Network 
Architecture: Sessionr Between Logical Units. 

3270 to MCC Convelrsion 

The following buffer control orders will be honored 
( I 2/14 bit addressing only) when carrying out 
format conversion: 

SBA - Set buffer address 
E U A - Erase unprotected to address 
RT 1\ - Repeat to address 

Other 3270 orders will be deleted from the data 
stream. Blanks will be inserted where necessary to 
maintain correct fomlat. The orders deleted from 
the data stream are: 

SF - Start field 
SPE - Start field extended 
MF - Modify field 
SA - Set attribute: 
IC - Insert cursor 
PT - Program tab 

The following format control orders will be 
honored when carrying out format conversion: 

CR - Carriage return 
NL - New line 
1'1' - Forms feed 
EM - End message 
GRE - Graphics escape (Defaulted to '-') 

Chapl.er 3.4. Report Controller 303 



Everything else will be treated as data and included 
in the data part of the MCC report. 

Conversion is carried out as if the SPOOLWRITE 
data stream were prefixed by a command byte and 
wee (write control character) byte (you must not 
include these in the SPOOLWRITE). The 
command is ERASE WRITE, the wee defines 
both that the printout fonnat is detennined by 
NL/eR and that the buffer should be printed at the 
end of the write. 

The 3270 data stream is converted to MCC in two 
stages, as shown in the following diagram. 

~OlWRITE LO Data 

Resolve buffer control orders 
(for examplp., SBA, EUA, RTA) 

~ 
Stage I 

Simulated Printer 
Buffer 

(modified 3270) 

I 
Resolve format control orders 
(for example, Nl, CR) 

~ 
Stage 2 

MICC 

Output 
Buffer 

I 
V 

TOI POWER 

The fU'st stage emulates the data arriving at a 
printer buffer. Buffer control orders are resolved as 
the data is placed in the buffer. 

The second stage creates an M CC report from this 
data. The fonnat of this report is such that if 

printed on a system printer it would be as near as 
possible to the fonnat of the original 3270 data 
stream if it had been printed directly on a 3270 
printcr (that is, the fonnat control orders are 
resolved). 

Conversion starts from the start of the simulated 
print buffer, and continues until an EM order or 
the end of the buffer is reached. Note that to 
prevent unwanted data being included in this 
conversion, you must include an EM order with 
each SPOOLWRITE. 

Simulated Buffer Size: The simulated buffer size is 
2K bytes. To accommodate large data streams this 
will automatically expand to 4K or 8K bytes. If an 
address translation (for example, SBA) is beyond 
the 8K buffer, the task abends APSG. If there are 
more than 8K bytes of modified 3270 data (that is, 
after stage 1 conversion), the additional data will 
wrap to the start of the buffer. 

Any unsupported 3270 orders are replaced by 
blanks where necessary, or are merely ignored. For 
example, SF (start field) occupies one character 
position in the print line, so it is replaced with one 
blank character. You can print reports in these 
formats on any printer: a system printer, or a 
CICS printer, whether it is a 3270-type or an ses 
printer. You can also use the LINES option to 
control automatic page breaks, just as you can for 
NOCC. 

You cannot have automated headings and footings, 
page numbering, or the DATETIME option with 
SCS or T3270 fonnats. 

The NOCONV Option 

For SCS and '1'3270 formats, you can specify the 
NOCONV option to prevent fonnat conversion. If 
you do, these fonnats remain fixed for the lifetime 
of the report. Specifying NOCONV restricts a 
report created in T3270 format to printing only on 
a CICS 3270 printer, and a report created in ses 
format to printing only on a CICS ses printer. 
Use NOCONV if you want to use SCS or 3270 
orders which are not supported by the conversion 
process (see above). 

304 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



If you specify a destination, it must be for one that 
will ultimately be a CICS printer, because 
NOCONV reports cannot be printed on a system 
printer. If you do not specify a destination, you 
should ensure that reports are created using a 
display device whose SPOOLTO destination 
represents a CICS printer. 

If you specify invalid control characters in a 
NOCONV report, the printer task will be abended. 

You cannot use the LINES and LINELENGTH 
options when you use the NOCONV option. 

BMS Mapped Reports 

If you have reports that include a lot of constant 
text, you can use BMS to format it. You could use 
BMS reports instead of preprinted forms. The data 
that is usually preprinted could be held as constants 
in the map. 

You could use the MAPONLY option of BMS to 
include a page of text that never varies, for 
example, a page of purchase conditions, or 
instructions. 

There are two ways to use BMS. 

The frrst way is by using BMS format. With this 
method, the report is formatted at print time. Only 
the variable data is held on the spool file, possibly 
saving space, but you can only print the report on 
a CICS printer. 

The second way is to open the report in T3270 
format. This specifies that T3270 format will be 
used to format the report. You then add the SET 
option to each SEND MAP command. This sets a 
pointer to an area, containing the mapped data. See 
"SEND MAP Command" on page 226. You then 
insert a SPOOLWRITE command, writing FROM 
the area pointed to by the SET. 

This method allows you to print BMS-mapped 
reports on a CICS printer or on a system printer. 
It is the only way that BMS-mapped reports can be 
printed on a non-CICS printer. The T3270 format 
is described in "SCS and T3270 Formats" on 
page 303. 

BMS Mapping Format 

You specify that the report will be formatted using 
n MS maps, by opening the report with the 
MAPNAME option. You must also use the 
MAPNAME option on each SPOOLWRITE. 
You must name the map being used on the 
SPOOLOPEN, the SPOOLWRITE, or on both. 
You can use more than one map in a report, but 
you cannot create a page from more than one map: 
one map is considered to be one page long. In 
other words, there is no ACCUM option, and you 
cannot specify headers, trailers, floating maps, and 
so on. 

If you specify a destination, it must be for a CICS 
printer, because BMS-mapped reports cannot be 
printed on a system printer. If you do not specify a 
destination, you should ensure that reports are 
created using a display device whose SPOOLTO 
destination specifies a CICS printer. 

You can use aU the options for controlling printing, 
and for security and recovery. However, the 
automated formatting features available for NOCC, 
ASA, and MCC formats are not available for MAP 
format. This includes automatic page breaks, 
headings and footings, page numbering, and the 
DATETIME option. All your formatting must be 
specified within the map itself. 

The length of the data is calculated from the length 
of the physical map. Remember that the map set 
and maps that you specify must be available to 
format the report at the time it is printed. Once 
the report is being printed I however, disabling a 
map will have no effect until after the printer has 
been stopped. 

ESCAPE Fonnat 

If you want to create reports in any format other 
than those described above, you must provide an 
escape program that wi.11 be invoked at printing 
time to fonnat the report. You can use this for 
graphics, or graphics and text on the same page, for 
instance. These reports cannot be printed on a 
system printer, but they can be printed on CICS 
printers. 

Chapter 3.4. Report Controller 305 



You specify the name of an escape program using 
the ESCAPE option on the SPOOLOPEN 
comrnand. You must ensure that this program is 
locatable at printing time. You can use several 
different escape programs for different reports. 

The data written by each SPOOLWRITE is 
considered one unit and is written as one record, 
the maximum record size being 32767. You must 
spe¢:( the length of the data as FLENGTH if you 
are using COBOL; if you are using assembler 
language or PL/I, the length is calculated from the 
length ofth~ FROM area. 

You can use all the options for controlling printing, 
and for security and recovery. However, the 
autornated formatting features available for NOCC, 
ASA, and MCC fonnats are not available for 
ESCAPE format. This includes automatic page 
break8, headings and footings, page numbering, and 
the DA TETIME option. All your formatting must 
be spflcified within your escape program itself. 

When printing ESCAPE reports, CEMS or CEOS 
printer commands cannot be actio ned until control 
is passed back from the user escape program. 
Control is passed back at end-of-copy and at 
end-of-report, This means that you cannot stop or 
pause a printer until the end of copy or report is 
reachf!d. 

When the report is ready to be printed, it is written 
to tenlporary storage. At end-of-report a CICS 
LINK is performed to the name supplied with the 
ESCAPE option. An 80-byte COMMAREA is 
passed to the escape routine and consists of: 

On Output Link 
link name. 8-byte temporary storage name. 
The natne consists of a concatenation of the 
hex characters FBOO, the characters PS, and 
xxxx, where "xxxx" is the termid of the 
printer serving the destination. 

On R'eturn 
A single byte return code followed by 79 
bytes of user message text. If the return code 
is X'OO', the escape report will be set to its 
normal disposition (that is, it will be held or 
deleted). If the return code is not X'OO', 
message DFH5467 will be sent to CSPW, 

containing the return code and any message 
text that you may insert in the trailing 79 
bytes of the COMMAREA. The report on 
the POWER queue will then be set to 
ERRPRT status. 

When control is returned from the escape routine, 
the temporary storage is deleted. 

JeL Fonnat 

Using the SPOOL commands you can create a fue 
of input to a batch program.. JCL format forces a 
LINELENGTH of 80, to create a fue of 80-byte 
card images. These mes are known as JCL reports, 
or jobs, and are written to the POWER RDR 
queue (not to the POWER LST queue). As you 
might expect, the options available for creating JCL 
reports arc different from those available for 
creating printable reports. In fact, there are very 
few options. 

A .JCL report may be created as a standard report, 
or by many transactions as a log report. It may 
not be created as a resumable report. 

A .JCL report cannot be defmed as physically 
recoverable: however, it can be defmed as logically 
recoverable. And, because log reports cannot be 
logically recoverable, a log report in JCL format is 
not recoverable at all. 

The command that opens a JCL report looks like 
this: 

EXEC CICS SPOOL OPEN 
REPORTCREPl) 
TOKENCTOKC) 
JCl 

[lOG] 
[LOGICAL] 

Some of the characteristics of JCL reports that 
CEMS users can use to control batch job 
submission can be specified on the JOB card, but 
there are no more options that you can specify on 
the SPOOLOPEN command. There are no 
options for formatting: a JCL report is always 80 
characters wide and written continuously. The 
resource security level value (RSL value) is 
assumed to be 1. 

306 CIC.1)/DOSjVS Application Programmer's Reference Manual (Command Level) 



Even the job status is derived from the JOB card 
you write to the fue, and not from the 
SPOOCLOSE command. The SPOOCLOSE 
command looks like this: 

EXEC CICS SPOOLCLOSE 
REPORTCREPl) 
TOKENCTOKC) 

JOB Card Parameters 

The following parameters on the JOB card written 
to a JCL report are of relevance to users of the 
report controller: 

• CLASS 

• PRIORITY 
• DISP 
• JOBNAME 
• USER 
• DEST or LDEST 

The class, priority, and status of JCL reports can 
be changed by any authorized user of the CEMS 
transaction, if the user has the RSL value of I 
included in the RSLKEYs in their sign-on table 
entry. 

If the JOB statement is missing, the report name 
will be AUTONAME, the class will be A, and the 
POWER defaults will be used. 

If a report submitted to POWER does not contain 
POWER JECL, the required JECL will be inserted 
by POWER, and the characteristics of the JCL 
report will default to those allocated by POWER. 
You must ensure that the syntax of the JCL is 
correct, because CICS does not check it. 

When creating JCL reports, if a POWER EOJ 
statement is output, the POWER job is made 
available for running before the SPOO LCLOSE is 
issued. This means that SPOOLCLOSE DELETE 
will only delete the last POWER job and not the 
complete JCL report (job). 

Printing a Report 

You associate a report with a printer by coding the 
DESTINATION option and, if the printer is 
remote, the NODE option. Even if there is a 
printer assigned to that destination, the report will 
be printcd only when the report is in READY 
status. Even then, it will be printed only if the 
printer is assigned to the same output class. 
Reports are printed, acccording to priority, within a 
class. To print a report, the printer must also be 
assigned to the same FORMS type. All these 
characteristics can be altered by the CEMS or 
CEOS user. In addition, you can set the number 
of copics and whether the report has separator 
pages (SEP or NOSEP), and the end user can also 
alter these. What the end user cannot alter is the 
RSL value. In addition to destination, status, class, 
priority, and forms, the RSL value determines 
whether a report can be printed by a given printer. 

Controlling Where Reports are Printed 

Destinations 

The report controller uses logical printer 
destinations. The destination associated with a 
printer is the means by which you can direct 
reports to a printer, without naming the printer 
explicitly in your program. The destination can 
have a number of printers associated with it. The 
destination for a printer can be specified as the 
SPOOLDEST in the TERMINAL defmition (or as 
SPLDEST in the DFIITCT macro). This 
destination can be overridden when the printer is 
started (either by using CEMS or CEOS or by 
using the POWER PSTART command). This 
destination can also be changed temporarily by 
using CEMS or CEOS. 

You can specify the destination at which a report is 
to be printed, in the SPOOLOPEN command. 
However, you may not want to code a specific 
destination for the report in your program, in 
which case, you can let the destination vary 
according to the display device used to create the 
report. Each display device can have a default 
destination specified in the SPOOLTO attribute of 
its TERMINAL defmition (or in the DFHTCT 
macro). If SPOOLTO is not specified, the 

Otapter 3.4. Report Controller 307 



destination defaults to ++SYSPRT, a special 
destination that indicates that a report is destined 
for the system printer. 

You can specify ++SYSPRT as a destination on the 
SPOOlLOPEN command to explicitly direct the 
report to the system printer. 

Whether the report is created using a destination 
coded im the SPOOLOPEN command, or derived 
from SPOOLTO, it can be altered using the 
transactions CEMS or CEOS. 

Note: A report controller destination is the same 
thing as a POWER USERID, but it is not the 
same as a CICS USERID. Note also that. a report 
controller destination is not the same thing as a 
transient data destination. 

Examples of destinations are as follows. 

Display devices: 

DDOI SPOOLTOCDDOIDEST) 
DD02 SPOOLTOCunspecified) 

Printers defmed to CICS: 

PROI SPOOLDESTCDDOIDEST) 
PR02 SPOOLDESTCDDOIDEST) 
PR03 SPOOLDESTCXXXXDEST) 

Reports created at D DO I, with no 
DESTllNATION specified on the SPOOLOPEN 
command are directed to PROI or PR02. 

Reports created at D D02, with no 
DESTINATION specified are directed to a system 
printer. 

Reports created at D DO 1 or D D02, with a. 
destination of XXXXDEST specified are directed 
to PR03. 

Reports created at DDOI or DD02, with a 
destination of ++SYSPRT specified are directed to 
a systelm printer. 

Routing Reports to Remote Destinations 

You can route a report to a destination associated 
with a printer at a different node in the network. 
You cannot do this with resumable reports, nor 
with JCL fonnat. Specifying NODE without 
DESTINATION means that the report will be 
routed to a systetn printer. The SPOOLDEST of 
the display device is ignored. 

Controlling When Reports are Printed 

Report Status 

When you close a report for the last time, you 
specify HOLD or RELEASE. 

Both result in a change in the status of the report 
on the POWER LST queue. A report closed as 
HOL D (POWER DISP = L) will appear to report 
controller end users as HELD. The end user will 
have to reset this status to READY before the 
report can be printed. When the report has been 
printed, the status is reset to HELD again. This 
means that the report can be printed again, possibly 
by mistake. You may therefore want to limit the 
use of HOLD as an option when closing reports. 

On the other hand, HOLD does have the 
advantage that a report lost because of a printing 
failure can be reprinted without being created again. 

HOLD gives end users the most complete control 
over their reports, if that is what they want. They 
will always have to intervene before a report can be 
printed, and they will always have to delete their 
reports from the queue when they no longer need 
them. 

A report closed as REL EASE (POWER DISP = D) 
will appear to the end user as READY. It will be 
printed as soon as a printer is available for the 
appropriate destination, output class, and security 
level (RSL). After being printed, the report is 
deleted from the POWER LST queue and is not 
available for reprinting. If you use REL EASE, you 
should ensure that you can create again, if 
necessary, a report lost because of a failure when it 
was being printed. 

308 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



On the other hand, RELEASE has the advantage 
that reports are printed and deleted from the queue 
with no operator intervention, beyond ensuring 
that a printer is started for the correct destination 
and class. 

Output Class 

Each report is assigned to one of 26 output classes. 
Each printer is also assigned to one of the 26 
output classes. A report can only be printed by a 
printer assigned to the same output class. The 
default output class for reports is specified in the 
DFHSIT SPOOL operand. 

There is no restriction on the number of different 
destinations, forms types, and RSL values you can 
have for the same output class. However, you may 
fmd it helpful to use output classes to keep reports 
with different forms types separate. This is 
particularly helpful if most reports are closed with 
the RELEASE option (READY to print), or if the 
user releases many reports all at once. 

A printer prints reports according to priority for the 
destination, output class, and RSL values it is 
assigned to. If the READY to print reports all 
have equal priority, all those of one forms type will 
be printed before going on to the next forms type. 
However, where different priorities are used~ extra 
work for the end user who has to change the paper 
would result, unless the forms types are kept in 
separate output classes. The output class can be 
changed by the CEMS or CEOS user. 

Priority 

Each report is assigned a priority value from I 
through 9. For a particular destination and class, 
reports with priority 9 will be printed frrst, followed 
by priority 8, and so on, down to I (as long as the 
RSL value is valid for that printer). The default 
priority value is 3. The priority can be changed by 
the CEMS or CEOS user. 

Controlling How Reports are Printed 

Forms Type 

The forms type is a 4-character name for a type of 
stationery. You may, for example, have different 
types of preprinted stationery, or different sizes of 
paper. It can be useful to separate different forms 
types by assigning them to different output classes; 
see output class, above. 

Before a report can be printed, the forms type 
specified for the report must match the forms type 
specified for the printer. These can both be altered 
by the CEMS or CEOS user. However, no check 
is made on the physical size of the paper that is 
actually loaded. The report will be printed when 
the names of the forms match up. 

Number of Copies 

You can specify how many copies of a report are 
to be printed. The default number is I, and the 
CEMS or CEOS user can ehange the number. 
Note that the there is another way the user can 
print more than one copy: if the report is closed in 
HOI,D status, it will return to the HELD queue 
after being printed. It can then be printed again, as 
many times as the user wants. 

Separator Pages 

A separator page is a cover page to be printed with 
a report. It makes it easier to sec where one report 
ends and the next begins, and also gives some 
information about the report. You can specify 
whether or not separator pages will be printed with 
a report. If you specify SEP, two separator pages 
are printed preceding the body of the report, and 
two following it. If you specify NOSEP, no 
separator pages will be printed. 

The size and content of the separator pages is 
determined by the DESTINATION name of the 
printer on which the report is printed. If the 
DESTINATION is ++SYSPRT, the separator 
pages will be the standard POWER separator 
pages. If the DESTINATION is anything else, the 
separator pages arc written by the report controller 
itsclf. The width of the report controller separator 
pages depends on the width (LINELENGTH) of 

Chapler 3.4. Report Controller 309 



the report that they accompany (which, if the 
correct forms is loaded, is less than or equal to the 
width of the paper.) Each report controller 
separator page shows the following information: 

• The: contents of the USERDAT A field 
• The: CICS USERID of the user who created 

the report (AUTHOR) 
• The: date and time the report was printed 
• The: DESTINATION the report was printed at 

(DEST) 
• The: TERMINAL name (TRMIDNT) of the 

printer (PR T) 
• The output CLASS (CL) 
• The FORMS type (FNO) 
• The: FCB code (always blank for CICS-created 

reports) 
• The network NODE at which the report was 

printed 
• The network NODE at which the report was 

created (O-NODE) 
• The name of the CICS system that created the 

report (0-USR: always SYSCICS followed by 
the identifier specified in the DFHSIT SPOOL 
operand) 

• The report number (O-NBR). 

The CEMS or CEOS user can decide whether to 
have separator pages or not, and can override what 
you code. 

Security and Recovery 

Resource Security Level 

Unauthorized access to a report can be prevented 
by specifying a resource security level (RSL) in the 
range I through 24, or "PUBLIC". If an RSL 
value is not coded on the SPOOLOPEN 
command, a value of "PUBLIC" will be assumed. 
You cannot code RSL on a JCL report: an RSL of 
I is always assumed. 

The RSL check is carried out when: 

• A SPOOLOPEN RESUME command is 
issued 

• A SPOOLWRITE or SPOOLCLOSE of a log 
repQirt is issued 

• An attempt is made to gain access to the 
detailed characteristics of a report or change its 
control information using the CEMS or CEOS 
transactions. The transaction defInitions 
supplied for CEMS and CEOS have 
RSLC(YES) specified. You may alter this if 
you want, by copying the defInition. You may 
also want to use transaction security to limit 
access to CEMS and CEOS, by using 
TRANSEC. 

• An attempt is made to print the report. 

For reopening, writing to, and closing reports and 
accessing their characteristics, the RSL value 'must 
be included in the RSLKEY operand in the 
sign-on table (SNT) entry for the user. If the user 
is not signed on (using CESN or CSSN), the RSL 
value must be included in the OPERRSL keys in 
the TCT entry for the display that is being used. 

For printing a report, the RSL value must be 
included in the OPERRSL keys in the TCT entry 
for the printer. 

The RS I j value for a report or a printer cannot be 
changed by the CEMS or CEOS user. If you are 
using RDO, the printer RSL can be changed by a 
CEDA user. 

PRINTFAIL 

Normally, a report that is being printed when the 
writer task (CEPW) abends, will be reprinted 
automatically when CEPW is recovered. This 
could result in, for example, two copies of an 
invoice being printed, or in sensitive information 
being printed while unauthorized people are 
present. To prevent this situation, you can specify 
PRINTPAIL for any report. A report with 
PRINTPAIL specified will not be reprinted 
without operator intervention. 

Report Recovery 

At SPOOLOPEN, the level of recovery required 
for the report is specified. The recovery level 
remains fixed for the lifetime of the report. Two 
types can be specified, as follows: 

310 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



PHYSICAL 
Each line is written directly to disk. This 
type of recovery makes heavy use of 
input/output, and its use should be carefully 
considered before it is selected. 

You must specify PHYSICAL for LOG 
reports. 

It is not allowed for JCL reports. Physical 
recovery, if coded, is ignored for JCL reports. 

LOGICAL 
The report is "checkpointed" by a 
SYNCPOINT command and the report is 
closed. If an abnormal termination (of either 
the task or CICS) occurs, the report will be 
deleted. 

Sync Point 

Issuing a SYNCPOINT command in an 
application program closes all reports. 

All standard and resumable reports open at the 
time the sync point is issued are closed and their 
status set to "ready to print". 

Standard reports with logical recovery for which a 
SPOOLCLOSE command has been issued before 
the SYNCPOINT is issued are committed, that is, 
they will be released for print. Only reports opened 
after the sync point are affected by abnormal 
termination of the task. 

Log reports can only be recovered at the physical 
level. As a result, each record will be committed to 
disk. 

See the CICS/DOS/VS Recovery and Restart Guide 
for more information about recovery. 

Report Controller Commands 

Open ASA, MCC, or NOCC Report 

.---------------------, 
SPOOLOPEN 
REPORT(name) 
TOKENCdata-value) 
{ASAIMCCI~} 
[TITlECdata-area)] 
[CLASSCdata-value)] 
[lOG] 
[USERDATACdata-area)] 
[PRIORITYCdata-value)] 
[DESTINATIONCname)] 
[NODECname)] 
[RSlCdata-value)] 
[PHYSICAlllOGICAl] 
[COPIESCdata-value)] 
[FORMSCname)] 
[gfINOSEP] 
[PRINTFAIL] 
[lINESCdata-value)] 
[lINELENGTHCdata-value)] 
[~IHEADNUMIFOOTNUMIBOTHNUM] 
[HEAD(data-area)] 
[FOOTCdata-area)] 
[DATETIME] 

Conditions, ILLOGIC, INVREQ, IOERR, 
NOSPACE, NOSPOOl, WRONGSTAT 

Open MAP Fonnat Report 

SPOOLOPEN MAPNAME[(name)] 
REPORTCname) 
TOKENCdata-value) 
[TITlECdata-area)] 
[ClASS(data-value)] 
[lOG] 
[MAPSET] 
[USERDATACdata-area)] 
[PRIORITYCdata-value)] 
[DESTINATION(name)] 
[NODECname)] 
[RSlCdata-value)] 
[PHYSICAlllOGICAl] 
[COPIES(data-value)] 
[FORMS(name)] 
[SEPINOSEP] 
[PRINTFAIl] 

ConditionSt CCERROR, ILLOGIC, 
INVREQ, IOERR, NOSPACE, NOSPOOl, 
WRONGSTAT 

Chapter 3.4. Report Controller 311 



Open SCS or T3270 Report 

SPOIDLOPEN 
REPIORT(name) 
TOKEN(data-value) 
{SC:5IT3270} 
[TITLE(data-area)] 
[CLASS(data-value)] 
[LOG] 
[USERDATA(data-area)] 
[PRIORITY(data-value)] 
[DE:5TINATION(name)] 
[NO:OE(name)] 
[RSlCdata-value)] 
[PHYSICALILOGICAL] 
[COPIES(data-value)] 
[ FOIRMS ( name) ] 
[&e.INOSEP] 
[PRINTFAIL] 
[LIINES(data-value) ]1 
[LINELENGTH(data-value)]1 
[NOtONV]1 

Conditions: CCERROR, ILLOGIC, 
INVREQ, IOERR, NOSPACE, NOSPOIOL, 
WROINGSTAT 

1 LINES and LINELENGTH cannot be 
specified for SCS (with NOCIONV) 
and T3270 (with NOCONV). 

Open ESC Fonnat Report 

SPOOLOPEN ESCAPElname) 
REPORTCname) 
TOKENCdata-value) 
[TITLECdata-area)] 
[CLASS(data-value)] 
[LOG] 
[USERDATA(data-area)] 
[PRIORITY(data-value)] 
[DESTINATION(name)] 
[NODE(name)] 
[RSl(data-value)] 
[PHYSICALILOGICAL] 
[COPIES(data-value)] 
[FORMS(name)] 
[~INOSEP] 
[PRINTFAIL] 

Conditions: CCERROR, ILLOGIC, 
INVREQ, IOERR, NOSPACE, NOSPOOL, 
WROINGSTAT 

Open .JCL Fonnat Report 

SPOOLOPEN 
REPORT(name) 
TOKENCdata-value) 
JCL 
[LOG] 

Conditionsl CCERROR, ILLOGIC, 
INVREQ, IOERR, NOSPACE, NOSPOOL, 
WRONGSTAT 

Write to a Report (not MAP) 

SPOOLWRITE 
REPORT(name) 
TOKEN 
FROMC data-area) 
[FLENGTHCdata-value)]1 
[LOG] 

Conditionsl CCERROR, IOERR, 
LENGERR, NOSPACE, NOSPOOL, NOTAUTH 

1 FLENGTH is mandatory for COBOL 

Close a Report 

SPOOLCLOSE 
REPORTCname) 
TOKENCdata-value) 
[RELEASEIHOLDIRESUMEIDELETE] 

Conditions: ILLOGIC, INVREQ, IOERR, 
NOSPACE, NOSPOOL, NOTAUTH 

Reopen a Report 

SPOOLOPEN RESUME 
REPORTCname) 
TOKEN 

Conditionsl ILLOGIC, IOERR, INVREQ, 
NAMEERROR, NOSPACE, NOSPOOL, 
NOTAUTH, WRONGSTAT 

312 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Write to a MAP Report 

SPOOLWRITE MAPNAME[(name)] 
REPORT(name) 
TOKEN 
(FROM( data-area) 

[FLENGTH(data-value)]IMAPONLY} 
[MAPSET(name)] 
[FLENGTH(data-value)] 
[LOG] 

Conditions: CCERROR, IOERR, 
LENGERR, MAPERROR, NOSPACE, NOSPOOL, 
NOTAUTH 

Note: Commands similar to the report controller 
commands are used for the CICS interface to 
POWER, but they do not have the REPORT 
option; these commands are described in the 
CICS/DOS/VS Customization Guide. 

Report Controller Options 

ASA 
Specifies that the report will be created using 
an ASA control character at the beginning of 
each line of data, as follows: 

blank space 1 line before writing the data 

o space 2 lines before writing the data 

space 3 lines before writing the data 

+ suppress space (that is, print on the 
same line as the previous line) 

1 skip to line 1 of new page before 
writing the data. 

You should ensure that valid carriage control 
characters are used. If not, the CCERROR 
condition is raised. 

If you specify LINES(O), you can skip to 
channels 2 through 12. LINES(O) means that 
no automatic page breaks are inserted. If you 
want automatic page breaks, you cannot skip 
to channels 2 through 12. 

ASA data is always converted to MCC 
format. You can improve perfonnance by 
writing several ASA lines in one 
SPOOLWRITE command. The resulting 
increase in speed may, however, be offset by 
the increased storage needed for buffers. 

nOTHNUM 
Specifies that page numbers are to appear on 
both headings and footings in the printed 
report. The page number will appear as the 
last 5 characters of each line with leading 
zeros suppressed. If you do not specify 
HEAD or FOOT, the rest of the heading or 
footing will be blank. 

Cl.ASS( data-value) 
Specifies the POWER output class for reports 
in all formats except JCL. The default class 
is the one specified in the DFHSIT SPOOL 
parameter. 

Data definition: 1 character (A through Z) 

COPIES( data-value) 
Specifies the number of copies (1 through 
255) requested for this report. If not 
specified, 1 is assumed. 

Data definition: signed binary halfword. 

DATETIME 
Specifies that the date and time of creating 
the report is to appear in the heading of each 
page. 

The format of the date is detennined by the 
fonnat specified by the system programmer at 
CICS generation time, depending on the 
format chosen for the system. It can be one 
of following: 

DD/MM/YY 
MM/DD/YY 
YY/MM/DD 

The format of the time is HH:MM as 
specified in the CSA. 

DELETE 
Specifies that the report can be deleted 
without printing; it is no longer required. 

Chapter 3.4. Report Controller 313 



DESTINA TION(name) 
Specifies the destination name (2 through 8 
characters) at which the report is to be 
printed. For more information, see 
II Destinations" on page 307. 

The valid characters that can be used in the 
destination name are as follows: 

A through Z 
o through 9 
@ $ # 
++SYSPRT 

The frrst character must not be numeric. 

Note: To avoid conflict with some POWER 
commands, DESTINATION should not be 
SI)ecified as LOCAL or SYSTEM. 

ESCAPE(name) 
Specifies the name of a user written escape 
program that will be invoked at printing time 
to format the output. For more information, 
se:e "ESCAPE Format" on page 305. 

Data definition: 8 characters. 

The valid characters that can be used in the 
escape name are as follows: 

A through Z 
o through 9 
@ $ # 

. The frrst character must not be numeric. 

Note: If the escape routine uses CICS 
commands, EIBRCODE must be set to zero 
at exit from the escape routine. 

If you use the master terminal transaction 
(CEMT) to disable or copy escape programs 
after a printer has been started, the effects of 
that CEMT command may not be felt until 
after the printer has been stopped. 

FLENGTH( data-value) 
The FLENGTH option is mandatory only 
for a COBOL program writing a non-MAP 

report. It specifies the length of the data 
supplied with a SPOOLWRITE command. 

• If the report is in ASA, MCC, NOCC, or 
JeL format, the number of lines to write 
to the report is calculated by dividing the 
LINELENGTH or its default into the 
length of the data specified by the 
FLENGTH option. Any remainder from 
the division is considered a line and is 
padded with blanks to full length before 
being written to the report. 

For ASA and MCC reports, the 
application programmer must ensure 
correct carriage control characters for all 
lines supplied in the command. 

• If the report is in ESC, MAP, SCS (with 
NOCONV), or T3270 (with NOCONV) 
form~t, the full length of the data is 
considered one unit and is written as one 
record. The maximum record size is 
32767. 

If the FLENGTH option is omitted, the 
following applies: 

• If the report is in ASA, MCC, NOCC, 
.JeL, T3270, SCS, or ESC format, the 
F I ,E N GTH option is implicitly 
calculated as the length of the data field 
specified in the FROM option. TIus 
length is resolved at program compilation 
time and cannot be dynamically changed 
during program execution . 

• If the report is in MAP fonnat, the 
length of the map is calculated by 
scanning the physical map. If the map 
set cannot be loaded from the library or 
the map cannot be located within the 
map set, the MAPERROR condition is 
raised. 

Data definition: signed binary fullword. 

FOOT( data-area) 
Specifies the field containing the footing to be 
used in the report. The length of the field 
must be at least that specified by the 
LINELENGTH option (or its default). If 

314 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



the report fonnat is ASA or MCC, the first 
character of the field is used for the carriage 
control character. 

Data definition: I through 205 characters. 

FOOTNUM 
Specifies that a page number is to appear as 
the last 5 characters of the footing of the 
report. If no footing is supplied at 
SPOOLOPEN, a blank footing line is 
inserted in the report. 

FORMS(name) 
Specifies the name of the stationery to be 
used to print the report. At print time, a 
match is made between the forms specified 
for the report and the fonns type for the 
printer. (The fonns type for a printer can be 
specified/altered using the CEMS and CEOS 
transactions). If they match, the report is 
printed, otherwise the report will remain "in 
use" until the correct forms type is selected. 

Note: It must be stressed that no physical 
check is made regarding the size of the paper 
in the printer; if the fonns type is right, the 
report is printed, regardless of what paper is 
actually loaded. 

Data definition: 4 characters. 

The valid characters that can be used in the 
fomls name are as follows: 

A through Z 
o through 9 
- . / @ $ # 

The first character must not be numeric. 

FROM(data-arca) 
Specifies the field containing the data to be 
written. This option is mandatory. For 
ASA, MCC, NOCC, and JCL fonnat 
reports, the data area can contain any number 
of lines. The repnrt controller will calculate 
the nmnber of lines by dividing 
LINELENGTH or its default into 
FLENGTH. Lines that are not filled will be 
padded with blanks before being written. 

\ 
/ 

If FLENGTH is omitted, CICS calculates the 
length of the data area. It is the responsibility 
of the application programmer to ensure 
correct carriage control characters in all lines 
supplied. If a nonvalid carriage control 
character is encountered, the CCERROR 
condition is raised. 

Data definition: 1 through 32767 characters 
for ESC, MAP, SCS (with NOCONV), and 
1'3270 (with NOCONV). For ASA, MCC, 
NOCC, and JCL there is no upper limit. 

HEAD(data-arca) 
Specifies the field containing the heading to 
be used in the report. The length of the field 
lnust be at least that specified by the 
LINELENGTH option (or its default). If 
the report format is ASA or MCC, the first 
character of the field should be left blank as it 
is used for the carriage control character. 

Data defmition: 1 through 205 characters. 

HEADNUM 
Specifies that a page number is to appear as 
the last 5 characters of the heading of the 
report. If no heading is supplied at 
SPOOLOPEN, a blank heading line is 
inserted in the report. 

HOl,D 

.JeI.I 

(POWER DISP = L) 

Specifies that the report is to be put in hold 
status after being closed. No attempt will be 
made to print the report until the status of 
the report has been changed using the CEMS 
or CEOS transactions, or, if preferred, by 
using the appropriate POWER command. 

Specifies that the report is to be in JCL 
format, and that it is to be written to the 
POWER RDR queue as input to a batch 
program. See "JCL Format" on page 306. 
It is the responsibility of the application to 
ensure correct .JCL syntax of the report. A 
JCL report has a forced LINELENGTH of 
80 characters. 

Chapter 3.4. Report Controller 315 



If a report submitted to POWER does not 
contain POWER JECL, the required JECL 
will be inserted by POWER, and the 
characteristics of the JCL report will default 
to those allocated by POWER. 

The only other options you can specify with 
JCL are LOGICAL or LOG, but you cannot 
specify both for the same JCL report. 

LINEI.ENGTH( data-value) 
Specifies the length of each line of the report. 
This value is specified at SPOOLOPEN and 
r~~mains fixed for the entire life of the report. 
The valid range is 1 through 205 characters. 

If DA TETIME is specified as well, 
LINELENGTH must be greater than or 
equal to 20. 

If HEADNUM, FOOTNUM, or 
BOTHNUM is specified as well, 
LINELENGTH must be greater than or 
equal to 6. 

VVhen deciding the linelength for a report, 
you should consider the type of printer on 
which the report will be printed. You are 
recommended to set the linelength to no 
nlOre than the width of the printer carriage 
nlinus 1. If the linelength exceeds the width 
of the printer carriage, the format of the 
printed report may be unpredictable. 

For ASA and MCC reports, LINELENGTI I 
should include the carriage control character. 

If this option is omitted, the following 
applies: 

• A JCL report is always forced to 80 
characters regardless of the 
LINELENGTH option. 

• The LINELENGT11 option is not 
meaningful for reports in ESC, MAP, 
SCS (with NOCONV), or T3270 (with 
NOCONV) formats. 

• For ASA or MCC format report, 133 is 
the default. 

• For NOCC, SCS, or T3270 formats, 132 
is the default. 

Data definition: Signed binary halfword. 

LINES( data-value) 

IJOG 

Specifies for ASA, MCC, NOCC, SCS 
(without NOCONV), and T3270 (without 
NOCONV) format reports, the number of 
lines accepted in each page of the report. 
The valid range is 0 through 99. 

When writing to the report, if this number is 
exceeded without a "skip to new page" being 
encountered, a "default page break" takes 
place. 

When the LINES option is not specified the 
system default is used. 

If I JNES(O) is explicitly specified, no page 
fonnatting is attempted and headings or 
footings are not allowed. 

Data definition: Signed 'binary halfword. 

Specifics that a log report is to be opened, 
written to, or closed. A log report is dermed 
as a report that can be written to by a 
number of applications concurrently. A log 
report stays open until it is closed explicitly, 
or it is closed implicitly at CICS termination. 

A log report can be in any format. 

LOGICAL 
Specifies that the report will have logical 
recovelY· 

Reports are not committed until a POWER 
checkpoint is issued. With LOGICAL 
recovery, a POWER checkpoint is issued 
only when the report is closed, either by a 
SPOOLCLOSE command, or when a sync 
point is issued. 

If an abnormal termination occurs while a 
task is active, the report will be backed out to 
the last POWER checkpoint. 

I Algical recovery is not supported for LOG 
reports. 

316 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



MAPNAME(name) 
Specifies the name of the map to be used in a 
SPOOLWRITE MAPNAME or 
SPOOLOPEN MAPNAME command. 

If MAPNAMEO is specified on a 
SPOOLWRITE command, the value 
specified at SPOOLOPEN is used. 

If MAPNAMEO is specified on a 
SPOOLWRITE command, and no value is 
specified at SPOOLOPEN, the 
MAPERROR condition is raised. 

Data defmition: 7 characters. 

The valid characters that can be used in the 
destination name are as follows: 

A through Z 
o through 9 
@ $ # 

The frrst character must not be numeric. 

Note: Suffixes are not supported by the 
report controller. 

MAP ONLY 
Specifies that only the map text is to be 
output. If you specify this option, you 
cannot specify FROf\1. 

MAPSET(name) 
Specifies the name of the map set that 
contains the MAPNAl\1E to be used for a 
MAP format report. 

If the MAPSET option is not specified, the 
map set name is assumed to be the same as 
the MAPNAME. 

If MAPSETO is specified on a 
SPOOLWRITE cOlllmand, the value 
specified at SPOOLOPEN is used. 

If MAPSETO is specified on a 
SPOOLWRITE command and no value is 
specified at SPOOLOPEN, the 
MAPERROR condition is raised. 

Data defmition: 7 characters. 

MCC 

The valid characters that can be used in the 
destination name are as follows: 

A through Z 
o through 9 
@ $ # 

The first character must not be numeric. 

Note: Suffixes are not supported by the 
report controller. 

Specifies that the report will be created using 
MCC machine carriage control characters, as 
follows: 

Hex Result 
OB space 1 line immediately 
13 space 2 lines immediately 
I B space 3 lines immediately 
09 space 1 line after write 
11 space 2 lines after write 
19 space 3 lines after write 
89 skip to channel 1 after write 
8B skip to channell immediately 
01 write without spacing 
03 no operation 

It is the responsibility of the application to 
ensure that the first character of each line to 
print is a valid carriage control character. If 
an invalid carriage control character is 
encountered, the CCERROR condition is 
raised. 

NOCC 
Specifics that no carriage control will be used 
when creating this report. You control page 
breaks using the LINES option. A new page 
will occur whenever the LINES option value 
is exceeded. 

NOCONV 
Specifics that no conversion to MCC format 
is required. If specified, the report can only 
be printed on an appropriate CICS printer. 
This option is applicable only to SCS and 
T3270 formats, and allows the user complete 
control over the data sent to the printer. 

Chapter 3.4. Report Controller 317 



However, if incorrect data is sent, the writer 
task may abend. 

When printing reports with this option, all 
the data specified with each SPOOLWRITE 
is sent to the printer. The printer buffer is 
then printed before the data associated with 
the next SPOOLWRITE is processed. 

NODE(name) 
Specifies the 8-character name of the target 
node, to which the the ftle is to be routed by 
the system spooler (POWER). If you specify 
NODE and USERID, the me may be routed 
to a CICS printer. If you specify NODE 
alone, the me may be routed only to a system 
plinter. 

The valid characters that can be used in the 
node name are as follows: 

A through Z 
o through 9 
@ $ # 

The frrst character must not be numeric. 

NONUM 
Specifies that no automated page numbering 
is to take place. 

NOSEFI 
Specifies that no separator pages are to 
appear with the printed report. Applies only 
to reports printed using the CEPW task. 

PHYSICAL 
Specifies that this report is to have physical 
recovery. When creating a report with 
physical recovery each SPOOLWRITE 
command, when completed, results in a 
physical write to disk of all data supplied in 
the command (with a POWER checkpoint). 
'Physical recovery makes heavy use of 
input/output and should be carefully 
considered before being selected. 

PRINTI~AIL 

Specifies that should CEPW abend (due to a 
CICS abend, and so on) before a report that 
is being printed has been closed, then when 

CEPW has recovered, it will not attempt to 
reprint this report. The report status will be 
set to ERRPRT. Operator intervention is 
required before printing of the report can 
continue. 

PRIORITY (data-value) 
Specifies the priority of the report. Reports 
destined for the same destination that are 
REA D Y will be printed in order of pqority. 
When specified, the value must be in the 
range from 1 through 9 (where 9 is highest 
priority). If not specified, a value of 3 is 
assumed. 

Data deftnition: 1 character. 

RELEASE 
(POWER DISP= D) 

Specifies that, after completion of the 
SPOOLCLOSE command this report should 
be printed. The spooler will set the report to 
READY status. The report may be printed 
when the specified destination becomes 
available. 

REPORT(name) 
Specifies the name of the report. This option 
is required for every command. 

SPOOLOPEN 
An attempt to open a log report with 
the same name as one already open will 
be rejected. 

SPOOLWRITE and SPOOCLOSE 
The name must match the name 
specified in the SPOOLOPEN that 
used the same token. Otherwise, the 
NAMEERROR condition is raised. 

Data definition: 2 through 8 characters. 

The valid characters that can be used in the 
report name are as follows: 

A through Z 
o through 9 
-./@$# 

318 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



The fITst character must not be numeric. 

Do not use any of the following names, 
because you will not be able to manipulate 
them using CEMS or CEOS, or using 
POWER operator commands: 

ALL 
DEV 
FREE 
HOLD 
LOCAL 
PNET 
RJE 
STATUS 

RESUME 
(POWER DISP = A) 

Specifies that the report being closed is to be 
set in appendable status. When used in a 
SPOOLOPEN command, the report 
controller requires the report being opened to 
have previously been closed with the 
RESUME opiion, that is, the status of the 
report must be RESUME. lbis option 
cannot be used for JCL reports or for reports 
that have NODE specified on the associated 
SPOOLOPEN command. 

You should issue a SPOOLCLOSE 
RESUME command before you issue a 
SYNCPOINT, and a SPOOLOPEN 
RESUME after the SYNCPOINT. 
Otherwise, the SYNCPOINT will result in 
the report being closed in READY status. 
However, there could be a transaction failure 
after the report has been closed, and before 
the SYNCPOINT. lbis could result in, for 
instance, HIe updates being backed out, while 
the report of ftle updates is not backed out. 

RSL( data-value) 
Speciftes the security key that will be 
associated with the report. The value must 
be in the range of 1 through 24 or 
"PUBLIC" (127). If the RSL option is not 
specified, public is assumed. 

Once the report is created, only tenninal 
operators with the same resource level 
specification (specified in the sign-on table) 

SCS 

SEP 

are able to alter its characteristics. The report 
can only be printed on printers with the same 
RSL value specified in OPERRSL. 

The security key is checked at 
SPOOLCLOSE of a continuous report and 
at SPOOLOPEN RESUME. If the terminal 
operator cannot match the security key, the 
NOT A UTH condition is raised. 

Data defmition: Signed binary halfword. 

After .TCL reports are closed, RSL is set to 1 

Specifies that the report being opened will use 
the SNA character string. It is the 
responsibility of the application programmer 
to ensure correct carriage control characters. 

For SCS, a SPOOLWRITE is formatted into 
a whole number of MCC lines. When an 
SCS (with NOCONV) report is printed, the 
destination is checked for SCS support. If no 
SCS support is specified for the destination, 
message DFH5459 is sent to CSPW. 

Specifies that 2 separator pages should be 
printed preceding the report, and 2 following. 
Separator page are described on page 309. 

TITLE( data-area) 
Specifies the title to be displayed on the 
CEMS/CEOS report characteristics panel. 
The title is a 32-character Held which is not 
subject to any restrictions or validation. The 
default title is the REPORT name. 
USERDATA defaults to the fITst 16 
characters of TITLE. 

Note that DBCS characters can be used in 
TITLE, but if you do not code 
lJSERDATA, and let it default to the fITst 16 
characters of TITLE, OBCS characters will 
be translated when they appear on the screen. 

TOK EN( data-value) 
A token is use by CICS to identify the report 
during creation. The option is required on all 
commands. 

Chapter 3.4. Report Controller 319 



SPOOI.lOPEN 
You must specify an 8-character area 
(that must be word aligned) and store 
the value returned by CICS after a 
successful SPOOLOPEN. 

SPOOLWRn'E and SPOOLCLOSE 

T3270 

You must specify an 8-character area 
that contains the value returned after 
SPOOLOPEN (except for LOG 
reports, when a token area mmlt be 
supplied but the returned value is not 
required.) 

Specifies that the report to be created is in 
terminal 3270 format. A report written in 
T3270 format can contain any control 
characters normally supported by the 
3270-type printers. It is the responsibility of 
the application to ensure that the control 
characters being used are valid as the report 
controller attempts no validation. 

For T3270, SPOOLWRITE is formatted into 
a whole number of MCC lines. When a 
T3270 (with NOCONV) report is printed, the 
destination is checked for 3270 support. If no 
3270 support is available, a message 
(DFH5459) is sent to CSPW. 

USERDAT A( data-area) 
Specifies a 16-character report description or 
other reference information to be displayed 
on the CEMS/CEOS report list panel. If this 
option is omitted, the fITst 16 printable 
characters of the title are used. If TITLE is 
also omitted, the report name is used. 

Note that DBCS characters should not be 
used in USERDATA, because they will be 
translated when they appear on the screen. 

USERI][)( data-value) 
This is a synonym for DESTINATION, as 
described on page 314. If you specify this 
option, you cannot specify DESTINATION. 

Report Controller Exceptional 
Conditions 

The exceptional conditions that can occur with the 
report controller are listed below. Each condition 
has a RESP value associated with it, and each 
RESP value has one or more further values, known 
as RESP2 values. A RESP2 value is an unique 
number (in decimal) corresponding to more 
detailed information that may help explain why the 
RESP condition has been raised. 

The RESP values are listed in numerical order 
under field EIBRESP in Appendix A, "EXEC 
Interface Block" on page 413. 

CCERROR RESP = 76 
occurs when an invalid control character has 
been specified. 

Default action: terminate the task abnormally. 

II.J.-OGle RESP = 21 
occurs when there is an error in the validation 
of a parameter. 

RESP2 Reason 

1 Invalid class. 
2 Reserved 
3 Invalid report name 
4 Invalid number of copies 
5 Invalid escape name 
6 Invalid priority 
7 Invalid forms 
8 Invalid destination 
9 Invalid node 
10 Invalid RSl value 
11 Invalid lines per page 
12 Invalid line length 
13 Invalid map set name 
14 Invalid map name 
15 Invalid userid 
16 Invalid token 
17 Reserved 
18 Invalid userdata field 

Default action: terminate the task abnormally. 

INVREQ RESP = 16 
occurs when a request is invalid. 

320 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



RESP2 Reason 

1 Reserved 
2 Token specified on SPOOlWRITE 

does not match the token 
received on SPOOL OPEN for a 
given report name. 

3 A SPOOlWRITE has been attempted 
without a preceding valid 
SPOOlOPEN. 

4 A SPOOlClOSE has been attempted 
without a preceding valid 
SPOOlOPEN. 

5 Token specified on SPOOlClOSE 
does not match the token 
received on SPOOL OPEN for a 
given report name. 

6-16 Reserved 
17 A SPOOlClOSE RESUME has been 

attempted for a report 
previously opened as a JCl type. 

18 A SPOOlClOSE RESUME has been 
attempted for a report that is 
on the XMT queue (NODE specified 
on SPOOlOPEN). 

19-21 Reserved 
22 Unsupported language (RPGII) 

Default action: terminate the task abnormally. 

IOERR RESP = 17 
occurs when an error response is returned 
from POWER. RESP2 contains the 
POWER return and feedback codes. See the 
CICS/DOS/VS Problem Determination Guide 
for help in interpreting the RESP2 values. 

Default action: terminate the task abnormally. 

LENGERR RESP = 22 
occurs when there is a length error. 

RESP2 Reason 

1 
2 

3 
4 

Reserved 
Length of SPOOlWRITE for ESC, 
BMS, SCS(NOCONV), or 
3270(NOCONV) type report is 
greater than the maximum 
allowable 32767 bytes. 
Reserved 
Invalid length for SPOOLWRITE. 
Length must be greater that o. 

Default action: terminate the task abnormally. 

MAPERROR RF..SP = 77 
occurs when there is an error during 
execution of a SPOOLWRITE MAPNAME 
command. 

RESP2 Reason 

1 No map set name specified for a 
report opened without a map set 
name. 

2 No map name specified for a 
report opened without a map 
name. 

3 Map set cannot be found. 
4 Map name specified not found 

in specified map set. 
5 No data fields in the specified 

map. 
6 GETMAIN for the specified map 

set failed. 

Default action: terminate the task abnormally. 

NAMEERROR RESP = 74 
occurs when an application has specified the 
wrong report name when issuing a command. 

Default action: terminate the task abnormally. 

NOSPACE RESP = 18 
This condition occurs when there is no space 
on the POWER spool fIle to add records. 
Open logical reports are deleted by POWER, 
physical reports are kept. 

Default action: terminate the task abnormally. 

NOSPOOI.. RESP = 80 
occurs when part, or all, of the POWER 
interface is unavailable. 

RESP2 Reason 

1 No subsystem present 
2 No report controller interface 

present 
3-5 Reserved 
6 Interface being terminated 
7 Interface not active 
8 Interface being disabled 
12 Interface has been stopped 

Default action: terminate the task abnormally. 

Chapter 3.4. Report Controller 321 



NOTAUTH RESP=70 
occurs when a resource security check has 
failed. The reasons for the failure are the 
sarne as for abend code AEY7, as listed in the 
CICS/DOS/VS Messages and Codes manual. 

Default action: terminate the task abnonnally. 

WRONGSTAT RESP=73 
occurs when a SPOOLOPEN RESUME 
command is issued but the report has not 
previously been closed as resumable. 

Default action: terminate the task abnonnally. 

322 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 3.5. Batch Data Interchange 

The CICS batch data interchange program provides 
for communication between an application 
program and a named data set (or destination) that 
is part of a batch data interchange logical unit in an 
outboard controller, or with a selected medium on 
a batch logical unit or an LUTYPE4 logical unit. 
This medium indicates the required device such as 
a printer or console. 

The term "outboard controller" is a generalized 
reference to a programmable subsystem, such as the 
IBM 3770 Data Communication System, the IBM 
3790 Data Communication System, or the IBM 
8100 System running DPCX, which uses SNA 
protocols. (Details of SNA protocols and the data 
sets that can be used are given in the publications 
CICS/DOS/VS IBM 3767/3770/6670 Guide and 
CICS/DOS/VS IBM 3790/3730/8100 Guide.) 

Batch data interchange commands are provided to: 

• Initiate transfer of a data set to the CICS 
application program (ISSUE QUERY). 

• Read a record from a data set or read data 
from an input medium (ISSUE RECEIVE). 

• Transmit data to a named data set or to a 
selected medium (ISSUE SEND). 

• Add a record to a data set (ISSUE ADD). 

• Update (replace) a record in a data set (ISSUE 
REPLACE). 

• Delete a record from a data set (ISSUE 
ERASE). 

• Terminate processing of a data set (ISSUE 
END). 

• Terminate processing of a data set abnormally 
(ISSUE ABORT). 

• Request the next record number in a data set 
(ISSUE NOTE). 

• Wait for an operation to be completed (ISSUE 
WAIT). 

Where the controller is an LUTYPE4 logical unit, 
only the ISSUE ABORT, ISSUE END, ISSUE 
RECEIVE, ISSUE SEND, and ISSUE WAIT 
commands can be used. 

Where the data set is a DPCX/DXAM data set, 
only the ISSUE ADD, ISSUE ERASE, and 
ISSUE REPLACE commands ean be used. 

The HANDLE CONDITION command is used to 
deal with any exceptional conditions that occur 
during execution of a batch data interchange 
command. Refer to "Chapter 1.5. Exceptional 
Conditions" on page 31 for further information 
about exceptional conditions. 

Destination Selection and Identification 

All batch data interchange cornmands except 
ISSlJE RECEIVE include options that specify the 
destination. This is either a named data set in a 
batch data interchange logical unit, or a selected 
medium in a batch logical unit or LUTYPE4 
logical unit. 

Selection by Named Data Set: The DESTID and 
DESTIDLENG options must always be specified, 
to supply the data set name and its length (up to a 
maximum of eight characters). For destinations 
having diskettes, the VOLUME and 
VOLUMELENG options may be specified, to 

Cha;>ter 3.5. Batch Data Interchange 323 



supply a volume name and its length (up to a 
maxnnum of six characters); the volume name 
identifies the diskette that contains the data set to 
be used in the operation. If the VOLUME option 
is not specified for a multidiskette destination, all 
diskettes are searched until the required data set is 
found. 

Selection by Medium: As an alternative to naming 
a data set as the destination, various media can be 
specified by means of the CONSOLE, PRINT, 
CARD, or WPMEDIAI-4 options. These media 
can be specified only in an ISSUE ABORT, 
ISSUE END, ISSUE SEND, or ISSUE WAIT 
command. 

Definite-Response 

CICS uses terminal control commands to carry out 
the functions specified in batch data interchange 
commands. For those commands that cause 
terminal control output requests to be made, the 
DEFRESP option can be specified. This option 
has the same effect as the DEFRESP option of the 
SEND terminal control command; that is, to 
request a defmite response from the outboard 
controUer, irrespective of the specification of 
message integrity for the CICS task (by the system 
progr3.1mmer). The DEFRESP option can be 
specified for the ISSUE ADD, ISSUE ERASE, 
ISSUE REPLACE, and ISSUE SEND commands. 

Waiting for Function Completion 

For those batch data interchange commands that 
cause terminal control output requests to be made, 
the NOW AIT option can be specified. This option 
has the effect of allowing CICS task processing to 
continue; unless the option is specified, task activity 
is susp,ended until the batch data interchange 
command is completed. The NOW AIT option can 
be specified only on the ISSUE ADD, ISSUE 
ERASE, ISSUE REPLACE, and ISSUE SEND 
commands. 

After a batch data interchange command with the 
NOW AIT option has been issued, task activity can 
be suspended, by the ISSUE WAIT command, at a 
suitable point in the program to wait for the 
command to be completed. 

Note: In the ISSUE END, ISSUE ABORT, 
ISSUE SEND, and ISSUE WAIT commands, the 
options CONSOLE, PRINT, CARD, and 
WPMEDIAI-4 are alternatives to DESTID and 
DESTIDLENG. 

Interrogate a Data Set (ISSUE 
QUERY) 

ISSUE QUERY 
DESTIDCdata-value) 
[DESTIDlENGCdata-value)] 
[VOlUMECdata-value) 

[VOlUMElENGCdata-value)]] 

Conditions: FUNCERR, SElNERR, 
UNEXPIN 

This command ~ used to request that a sequential 
data set in an outboard controller be transmitted to 
the host system. The application program should 
either follow this command with ISSUE RECEIVE 
commands to obtain the resulting inbound data, or 
terminate the transaction to allow CICS to start a 
new transaction to process the data. 

Read a Record From a Data Set 
(ISSUE RECEIVE) 

ISSUE RECEIVE 
{INTOCdata-area)ISETCptr-ref)} 
[lENGTHCdata-area)] 

Conditions: DSSTAT, EODS, lENGERR, 
UNEXPIN 

This command is used to read a record from an 
outboard controller. The INTO option specifies 
the area into which the data is to be placed. The 
LENGTII option must include a data area that 
contains the maximum length of record that the 
program will accept. If the record length exceeds 
the specified maximum length, the record is 
truncated and the LENGERR condition occurs. 
After the retrieval operation, the data area specified 

324 CICSjDOSjVS Applic~tion Programmer's Reference Manual (Command Level) 



in the LENGTH operand is set to the record length 
(before any truncation occurred). 

Alternatively, a pointer reference can be specified in 
the SET option. CICS then acquires an area of 
sufficient size to hold the record and sets the 
pointer reference to the address of that area. Mter 
the retrieval operation, the data area specified in the 
LENGTH option is set to the record length. 

The outboard controller might not send the data 
from the data set spe~ified in the ISSUE QUERY 
command. The ASSIGN command must be used 
to obtain the value of DESTID, which identifies 
the data set that has actually been transmitted; also 
the value of DESTIDLENG, which is the length of 
the identifier in DESTID. 

Add a Record to a Data Set 
(ISSUE ADD) 

ISSUE ADD 
DESTIDCdata-value) 
[DESTIDLENGCdata-value)] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 
FROMCdata-area) 
[LENGTH(data-value)] 
[NUMRECCdata-value)] 
[DEFRESP] 
[NOWAIT] 
[RIDFLDCdata-area) RRN] 

Conditions: FUNCERR, SELNERR, 
UNEXPIN 

TIns command is used to add records to a 
sequential or keyed direct data set in an outboard 
controller. The FROM option is used to specify 
the data to be written, and the LENGTH option 
specifies its length. 

The RIDFLD option is only needed with this 
command when it applies to a DPCX/DXAM data 
set. In this case, it specifies the relative record 
number of the record to be added. When 
RIDFLD is used, NUMREC must be I (the 
default). 

Update a Record in a Data Set 
(ISSUE REPLACE) 

ISSUE REPLACE 
DESTIDCdata-value) 
[DESTIDLENGCdata-value)] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 
FROM(data-area) 
[LENGTHCdata-value)] 
[NUMRECCdata-value)] 
RIDFLD(data-area) 
[[KEYLENGTH(data-value)] 

[KEYNUMBERCdata-value)]IRRN] 
[DEFRESP] 
[NOWAIT] 

Conditions: FUNCERR, SELNERR, 
UNEXPIN 

This command is used to update (replace) a record 
in either a relative (addressed direct) or an indexed 
(keyed direct) data set in an outboard controller. 

The FRO M option is used to specify the data to be 
written to the data set and the LENGTH option 
specifics the length of the data. 

The RIDFLD option specifies the relative record 
number of the frrst record to be replaced for a 
relative data set, or the embedded key in the data 
specified by the FROM option for an indexed data 
set. 

Por a relative data set, the RRN option must be 
specificd, since the RIDPLD option contains a 
relative record number. In addition, the 
NtJMREC option must specify the number of 
records to be replaced consecutively, starting with 
the one specified in.RIDPLD. 

Por an indexed data set, the RIDFLD option 
specifics the key embedded in the data specified in 
the FROM option. In addition, the 
KEYLENGTH option must specify the length of 
the key. The NUMREC option cannot be 
specified since only one record is replaced. 

For a DPCX/DXAM data set, KEYNUMBER 
specifics the number (1 through 8) of the index to 
be used to access the record to be updated. 

Chapter 3.5. Batch Data Interchange 325 



Delete a Record from a Data Set 
(ISSUE ERASE) 

ISSUE ERASE 
DESTIDCdata-value) 
[DESTIDLENGCdata-value)] 
[VOLUMECdata-value) 

[VOLUMElENGCdata-value)]] 
RIDFLDCdata-area) 
[[KEYLENGTHCdata-value)] 

[KEYNUMBERCdata-value)]IRRN] 
[NUMRECCdata-value)] 
[DEFRESP] 
[NOWAIT] 

Conditions: FUNCERR, SELNERR, 
UNEXPIN 

This command is used to delete a record from a 
keyed direct data set in an outboard controller, or 
erase aL record from a DPCX/DXAM relative 
record data set. RIDFLD specifies the key of the 
record to be deleted; the length of the key must be 
specified in the KEYLENGTH option. 

For a DPCX/DXAM data set, NUMREC must be 
set to 1 (the default). KEYNUMBER specifies the 
index i( I through 8) used to fmd the record to be 
erased.. Also, RIDFLD and RRN can be used to 
erase a record from a relative record data set. In 
this case, KEYNUMBER cannot be specified. 

End Processing of a Data Set 
(ISS:UE END) 

ISS:UE END 
[DESTIDCdata-value) 

[DESTIDLENGCdata-value)]I 
[SUBADDRCdata-value)] 

[CONSOLEIPRINTICARDI 
WPMEDIAIIWPMEDIA21 

WPMEDIA3IWPMEDIA4]] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 

Conditions: FUNCERR, SELNERR, 
UNE:XPIN 

This command is used to end communication with 
a data set in an outboard controller or with the 

selected medium. The data set specified in the 
DESTID option, or the selected medium, is 
dc-selected normally. 

End Processing of a Data Set 
Abnormally (ISSUE ABORT) . 

ISSUE ABORT 
[DESTIDCdata-value) 

[DESTIDLENGCdata-value)]I 
[SUBADDRCdata-value)] 

[CO~SOLEIPRINTICARDI 
W MEDIAIIWPMEDIA21 

WPMEDIA3IWPMEDIA4]] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 

Conditions: FUNCERR, SELNERR, 
UNEXPIN 

This command is used to end communication with 
a data set in an outboard controller, or with the 
selected medium, abnormally. The data set 
specified in the DESTID option is deselected 
abnormally. 

Send Data to an Output Device 
(ISSUE SEND) 

ISSUE SEND 
[DESTIDCdata-value) 

[DESTIDLENGCdata-value)]I 
[SUBADDRCdata-value)] 

[CON~OLEIPRINTICARDI 
WP EDIAIIWPMEDIA2 

WPMEDIA3IWPMEDIA4]] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 
[LENGTHCdata-value)] 
FROMC data-area) 
[NOWAIT] 
[DEFRESP] 

Conditions: FUNCERR, IGREQCD, 
SELNERR, UNEXPIN 

This command is used to send data to a named 
data set in an outboard controller, or to a selected 
medium in a batch logical unit or an LUTYPE4 
logical unit. 

326 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Request Next Record Number 
(ISSUE NOTE) 

ISSUE NOTE 
DESTIDCdata-value) 
[DESTIDLENGCdata-value)] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 
RRN 
RIDFLDCdata-area) 

Conditions: FUNCERR, SELNERR, 
UNEXPIN 

This command is used to fmd the relative record 
number of the next record in an addressed direct 
data set. The number is returned in the data area 
specified in the RIDFLD option. The RRN 
option must be specified, because a relative record 
number is involved. 

Wait for an Operation to be· 
Completed (ISSUE WAIT) 

ISSUE WAIT 
[DESTIDCdata-value) 

[DESTIDLENGCdata-value)]I 
[SUBADDRCdata-value)] 

[CONSOLEIPRINTICARDI 
WPMEDIAl!WPMEDIA21 

WPMEDIA3IWPMEDIA4]] 
[VOLUMECdata-value) 

[VOLUMELENGCdata-value)]] 

Conditions: FUNCERR, SELNERR, 
UNEXPIN 

This command is used to cause task activity to be 
suspended until the previous batch data interchange 
command is completed. This command is 
meaningful only when it follows an ISS UE ADD, 
ISSUE ERASE, ISSUE REPLACE, or ISSUE 
SEND command. 

Batch Data Interchange Options 

CARD 
specifics that the output medium is a card 
reader/punch device. This option is not valid 
with DESTID and DESTIDLENG. 

CONSOLE 
specifics that the output medium is that 
provided for messages to the operator. This 
option is not valid with DESTID and 
DESTIDLENG. 

I>EFRESP 
specifies that all tenninal control commands 
issued as a result of the batch data 
interchange command will request a defmite 
response from the outboard batch program, 
irrespective of the specification of message 
integrity for the CICS task (by the system 
programmer). 

I> ESTII)( data-value) 
specifies the name of the data set in the 
outboard destination. The data value must 
be a character string of up to eight characters. 
This option is not valid with CO NSO LEt 
CARD, PRINT, or WPMEDIAl-4. 

DESTIDLENG(data-value) 
specifies the length of the name specified in 
the DESTID option as a halfword binary 
value. This option is not valid with 
CONSOLE, CARD, PRINT, or 
WPMEDIA 1-4. 

FROM(data-area) 
specifics the data that is to be written to the 
data set. 

INTO(data-area) 
specifies the receiving field for the data read 
from the data set. The INTO option implies 
move-mode access. 

KEYIJ~NGTH(data-value) 

specifies the length of the key specified in the 
RIDPLD option as a halfword binary value. 

Chaptero3.5. Batch Data Interchange 327 



KEYNUMBER( data-value) 
specifies the number, as a halfword binary 
value, of the index to be used to locat.e the 
record. There can be eight indexes (1 
through 8). The default is 1. If the number 
is invalid, the FUNCERR condition will be 
raised. This option applies only to 
DPCX/DXAM and is mutually exclusive 
with RRN. 

LENGTH(parameter) 
specifies a halfword binary value to be used 
with ISSUE ADD, ISSUE RECEIVE, 
ISSUE REPLACE, and ISSUE SEND 
commands. 

For an ISSUE ADD, ISSUE REPLACE, or 
ISSUE SEND command, the parameter must 
be: a data value that is the length of the data 
that is to be written. 

For an ISSUE RECEIVE command with the 
INTO option, the parameter must be a data 
area that specifies the maximum lengt.h of 
data that the program is prepared to handle. 
If the value specified is less than zero, zero is 
assumed. If the length of the data exceeds 
the value specified, the data is truncated to 
that value and the LENGERR condition 
occurs. On completion of the retrieval 
operation, the data area is set to the original 
length of the data. 

For an ISSUE RECEIVE command with the 
SET option, the parameter must be a data 
area. On completion of the retrieval 
operation, the data area is set to the length of 
the data. 

NOWAIT 
specifies that the CICS task will continue 
processing without waiting for the batch data 
interchange command to complete. If this 
option is not specified, the task activity will 
be suspended until the command is 
completed. 

NUMREC( data-value) 
for a relative data set, specifies as a halfword 
binary value the number of logical records to 
be added, replaced, or deleted. Records are 

replaced sequentially starting with the one 
identified'by the RIDFLD option. 

Por an indexed data set, NUMREC cannot 
be specified since only one record is replaced. 

PRINT 
specifics that the output is to the print 
medium. 

RII>liLI>( data-area) 

RRN 

specifics the record identification field for use 
with ISSUE REPLACE and ISSUE ERASE 
commands; it also specifies a data area in 
which the relative record number of the next 
record is returned in an ISSUE NOTE 
command. 

Por ISSUE REPLACE, ISSUE ADD, or 
ISSUE ERASE commands for a relative data 
set, the RIDFLD option must specify a 
futlword binary integer being the relative 
record number (starting from zero) of the 
record. The RRN option is also required. 

Por ISSUE REPLACE and ISSUE ERASE 
commands for an indexed data set, the 
RIDFLD option specifies the key which is 
embcddcd in the data specified by the FROM 
option. The KEYLENGTH option is also 
required. 

specifics that the record identification field 
specified in the RIDPLD option contains a 
relative record number. If the option is not 
specified, RIDFLD is assumed to specify a 
key. 

SET(ptr-rcf) 
specifics the pointer reference that is to be set 
to the address location of the data read from 
the data set. The SET option implies 
locate-mode access. 

SlJBAI>I>R( data-value) 
specifies the medium subaddress as a decimal 
value (0 through 15) which allows media of 
the same type, for example, "printer I" or 
"printer 2", to be defined. Value 15 means a 
medium of any type. The default is 00. 

328 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



VOLUME(data-value) 
specifies the name of a diskette in an 
outboard destination that contains the data 
set specified in the DESTID option. The 
data value must be a character string of up to 
six characters. 

VOLUMELENG(data-value) 
specifies the length of the name specified in 
the VOLUME option as a halfword binary 
value. 

WPMEDIAI through WPMEDIA4 
specifies that for each specific LUTYPE4 
device, a word processing medium is dermed 
to relate to a specific input/output device. 

Batch Data Interchange 
Exceptional Conditions 

DSSTAT 
occurs when the destination status changes in 
one of the following ways: 

• The data stream is aborted. 

• The data stream is suspended. 

Default action: terminate the task abnormally. 

EODS 
occurs when the end of the data set is 
encountered. 

Default action: terminate the task abnormally. 

IGREQCD 
occurs when an attempt is made to execute 
an ISSUE SEND command after a SIGNAL 
ReD data-flow control code has been 
received from an LUTYPE410gical unit. 

Default action: terminate the task abnormally. 

FUNCERR 
occurs when an error occurs during execution 
of the command. Destination selection is 
unaffected and other commands for the same 
destination may be successful. 

Default action: terminate the task abnormally. 

I .. ENGERR 
occurs if the length of the retrieved data is 
greater than the value specified by the 
LE N GTH option for a move-mode ISSUE 
RECEIVE command. 

Default action: terminate the task abnormally. 

SELNERR 
occurs when an error occurs during 
destination selection. The destination is not 
selected and other commands for the same 
destination are unlikely to be successful. 

Default action: terminate the task abnormally. 

UNEXPIN 
occurs when some unexpected or 
unrecognized information is received from the 
outboard controller. 

Default action: terminate the task abnormally. 

Chapter 3.5. Batch Data Interchange 329 





Chapter 3.6. Structured Query Language/Data System (SQL/DS) 

Many query applications arise from specific needs 
of certain groups of end users. Programmed 
queries - such as CICS transactions - let you tailor 
your query operations to specific needs. An 
application program implementing preplanned 
queries makes better use of system resources than 
unplanned queries issued from a terminal. 

You can fmd further information in the SQL/ DS 
Application Programming manual, order number 
SH24-5018. 

The programmed SQL/DS commands are 
preprocessed once only for multiple executions and 
are held in executable form. Thus each program 
execution saves the extra processing needed for an 
unplanned query, such as an ISQL request. 

SQL commands in a CICS application program are 
interpreted before the application program is 
compiled (or assembled), This is done by 
submitting the program source code to one of the 
SQL/DS preprocessors. CICS application 
programs that include SQL/DS commands are first 
processed by the appropriate CICS language 
translator before the SQL/DS preprocessor takes 
over. 

The preprocessor produces modified source code 
for that language's normal compiler (or assembler) 
and saves an access module for that program in the 
SQL/DS data base. The access module holds the 
code needed to implement the SQL commands in 
the application program. Access modules are 
optimized for query and data manipulation 
operations. lbey are called every time the 
application program accesses SQL/DS data while 
executing. 

During application development, many SQL syntax 
errors can be caught and corrected at the 
preprocessor stage. Programs don't have to be 
fully compiled (or assembled) and tested just to 
catch such errors. 

You can use the CICS execution (command level) 
diagnostic facility (EDF) to debug application 
programs containing EXEC SQL commands. 
EDF will intercept your program's calls to SQL, 
but will not identify them as EXEC SQL 
commands. Instead it will show them as calls to 
the SQI, adapter program. 

Embedded SQ L Commands 

Each of the examples in Figure 19 shows the 
declaration of variables and a simple SQL query 
(SRI,ECT) command. Notice that the program 
variables to be shared by the program and SQL/DS 
are declared as usual in a "declaration" section of 
the program. This section is preceded and ended 
by special SQL commands. You can also see that 
the program variables are always preceded by a 
colon (:) when an embedded SQL command refers 
to them. 

The EXEC SQL prefix for SQL commands and 
the colons in front of each program variable are 
used by the SQL/DS preprocessors. The SELECT 
commands· in these examples get the 
DESCRIPTION and QUANTITY data from a 
table named INVENTORY only where the value 
in the PARTNUMBER field in that table matches 
the contents of variable ZZ. The retrieved data is 
copied into variables XX and YY. 

Chapter 3.6. Structured Query Language/Data System (SQL/DS) 331 



COBOL example 

DATA DIVISION. 
WORKING-STORAGE SECTION. 

EXEC SQL BEGIN DECLARE SECTION END-EXEC. 
01 XX. 

49 XX-LENGTH PICTURE S9(4) COMPUTATIONAL. 
49 XX-VALUE PICTURE X(24). 

77 YY PICTURE S9(9) COMPUTATIONAL. 
77 ZZ PICTURE S9(4) COMPUTATIONAL. 

EXEC SQL END DECLARE SECTION END-EXEC. 
• 
• 

PROCEDURE DIVISION. 
EXEC SQL SELECT DESCRIPTION, QUANTITY INTO lXX, IYY 

FROM INVENTORY WHERE PARTNUMBER = :lZ END-EXEC. 

PL/l' example 

EXEC SQL BEGIN DECLARE SECTION; 
DCL XX CHAR(24) VAR; 
DCL YY BIN FIXED(31); 
DCL ZZ BIN FIXED(15); 

EXEC SQL END DECLARE SECTION; 
• 
• 

EXEC SQL SELECT DESCRIPTION, QUANTITY INTO lXX, IYY 
FROM INVENTORY WHERE PARTNUMBER = :ll; 

AssE~mbler example 

EXEC SQL BEGIN DECLARE SECTION 
XX DS H,CL24 
YY DS F 
II DS H 

EXEC SQL END DECLARE SECTION 
• 
• 

EXEC SQL SELECT DESCRIPTION, QUANTITY INTO lXX, IYY 
FROM INVENTORY WHERE PARTNUMBER = :ZZ 

Il'igure 19. SQL commands embedded in application programs 

C 

Preparing a Program host language code (for example, COBOL) to 

The SQ L commands that you have embedded in 
an appJlication program must be analyzed and 
converted by SQL/DS before the normal language 
compilation (or assembly). This analysis and 
conversion is done by the SQL/DS preprocessing 
facility called PREP. 

PREP does two jobs. First, it generates a new 
version of your source code, suitable for normal 
compilation (or assembly). This version contains 
the SQL commands in comment form andl standard 

invoke an interface routine in place of the SQL 
commands. 

Then, PREP converts the SQL commands into an 
access module, putting the module into the 
SQL/DS data base. This module contains machine 
code designed specifically for the SQL cornmands 
you've used. 

After PREP, you input the new version of the 
source code to the appropriate compiler (or 
assembler) and link edit the resultant program with 

332 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



a small SQ LIDS routine to form the fmalload 
module. 

When SQL/DS receives a request from a CICS 
application program, the access module created by 
the preprocessor is called to handle each SQ L 
command. The SQL/DS interface routine handles 
the actual linkage and communications with 
SQL/DS. 

The first thing SQL/DS does when it loads the 
access module is to check that it is still valid. 
SQL/DS will have stored the original SQL 
commands with the access module at PREP time. 
If the access module is no longer valid, SQL/DS 
will use these commands to try to PREP the 
program again. Only if this fails will you be told of 
any problem .. otherwise the program will continue 
to run without any intervention. 

Chapter 3.6. Structured Query Language/Data System (SQL/DS) 333 





Part 4. Control Operations 

Chapter 4.1. Introduction to Control Operations ................... 337 

Chapter 4.2. Interval Control .................................. 339 

Chapter 4.3. Task Control .................................... 353 

Chapter 4.4. Program Control ................................. 355 

Chapter 4.5. Storage Control .................................. 365 

Chapter 4.6. Transient Data Control ............................ 367 

Chapter 4.7. Temporary Storage Control ......................... 373 

Part 4. Control Operations 335 





Chapter 4.2. Interval Control 

The CICS ,interval control program, in conjunction 
with a time-of-day clock maintained by CICS, 
provides functions that can be performed at the 
correct time; such functions are called 
time-controlled functions. 

The time of day is obtained from the operating 
system at intervals whose frequency, and thus the 
accuracy of the time-of-day clock, depends on the 
task mix and the frequency of task switching 
operations. 

Using interval control commands you can: 

• Request the current date and time of day 
(ASKTIME) 

I • : ~elect the format of date and time 
I (FORMATTIME) 

• Delay the processing of a task (DELAY) 

• 1 tequest notification when specified time has 
c~xpired (POST) 

• Wait for an event to occur (WAIT EVENT) 

• Start a task and store data for the task 
(START) 

• Retrieve data stored (by a START command) 
for a task (RETRIEVE) 

• Cancel the effect of previous interval control 
commands (CANCEL). 

Exceptional conditions that occur during execution 
of an interval control command are handled as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

Expiration Times 

The time at which a time-controlled function is to 
be started is called the expiration time. You can 
specify expiration times absolutely, as a time of 
day, or as an interval that is to elapse before the 
function is to be performed. 

An interval is measured relative to the current time 
and so the expiration time will always be after the 
current time (assuming a nonzero interval is 
specified). An absolute time is measured relative to 
midnight prior to the current time and may 
therefore be prior to the current time. 

CICS treats as expired a request for an absolute 
time that is equal to the current time or that 
precedes the current time by up to 6 hours. If you 
specified an absolute time, and it precedes the 
current time by more than 6 hours, CICS adds 24 
hours, that is, the requested function is performed 
at the time you specified but on the next day. 

Examples of the START command specifying 
absolute time-of-day requests, are as follows: 

EXEC CICSSTART TIME(123000) 

This command, issued at 1000 hours on Monday, 
will expire at 1230 hours on the same Monday. 

EXEC CICS START TIME(090000) 

This command, issued at 1000 hours on Monday, 
will expire immediately because the specified time is 
within the preceding 6 hours. 

EXEC CICS START TIME(020000) 

This command, issued at 1000 hours on Monday, 
will expire at 0200 hours on Tuesday because the 

Otapter 4.2. Interval Control 339 



specifie:d time is more than 6 hours before the 
current time. 

EXEC eICS START TIME(330000) 

This command, issued at 1000 hours on Monday, 
will expire at 0900 hours on Tuesday. 

Since each end of an intersystem link may be in a 
different time zone, you should use the 
INTERVAL form of expiration time when the 
transaction to be started is in a remote system. 

Request Identifiers 

As a mleans of identifying the request and any data 
associated with it, a unique request identifier is 
assigned by CICS to each DELAY, POST, or 
START command. You can specify your own 
request identifier by means of the REQID option; 
if you do not, CICS assigns (for POST and 
START only) a unique request identifier and places 
it in fie:ld EIBREQID in the EXEC interface block 
(EIB). You should specify a request identifier if 
you want the request to be canceled at SOIne later 
time by a CANCEL command. 

Request Current Date and l'ime 
of Day (ASKTIME) 

I ASKTIHE [ABSTIMECdata-area)] ~I 
You U8e this command to update the date and 
CICS time-of-day clock, and the fields EIBDATE 
and EIBTIME in the EIB. These two fields 
contain initially the date and time when the task 
started. The command returns the current time in 
the form of the number of milliseconds since 0000 
hours, on I January 1900. Refer to 
Appendix A, "EXEC Interface Block" on 
page 413 for details of the EIB. 

The following example shows you how the 
ABSTIME option works: 

EXEC CICS ASKTIME ABSTIMECutime) 

I 
I 

After execution, "utime" might contain the value 
002694057952138 in milliseconds. 

Select the Format of Date and 
Time (FORMATTIME) 

FORMATTIME 
ABSTIMECdata-value) 
[YYDDDCdata-area)] 
[YYMMDDCdata-area)] 
[YYDDMMCdata-area)] 
[DDMMYYCdata-area)] 
[MMDDYY(data-area)] 
[DATECdata-area)] 
[DATEFORMCdata-area)] 
[DATESEPCdata-value)] 
[DAYCOUNTCdata-area)] 
[DAYOFWEEKCdata-area)] 
[DAYOFMONTHCdata-area)] 
[MONTHOFYEARCdata-area)] 
[YEARCdata-area)] 
[TIMECdata-area) 

[TIMESEPCdata-value)]] 

You usc this command to transform the absolute 
date and/or time into any of a variety of formats, as 
described in the list of options at the end of the 
chapter. 

The following example shows the effect of some of 
the options pf the command: 

EXEC CICS FORMATTIME ABSTIME(utime) 
DATESEPC'-') DDMMYY(date) 
TIMECtime) TIMESEP 

After execution, "date" would contain 15-05-85, 
and "time" would contain 08:12:32. 

Delay Processing of a Task 
(DELAY) 

DELAY 
[INTERVAl(hhmmss)lITIMEChhmmss)] 
[REQIDCname)] 

Conditions: EXPIRED, INVREQ 

1 INTERVAlCO) is the default 

340 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



You use this command to suspend the processing 
of the issuing task for a specified interval of time or 
until a specified time of day. It supersedes any 
previously initiated POST command for the task. 

The following example shows you how to suspend 
the processing of a task for 5 minutes: 

EXEC CICS DELAY 
INTERVALCSOO) 
REQIDC'GXLBZQMR') 

The following example shows you how to suspend 
the processing of a task until 1245 hours: 

EXEC CICS DELAY 
TIMEC124S00) 
REQID('UNIQCODE') 

Request Notification when 
Specified Time has Expired 
(POST) 

POST 
[INTERVALChhmmss)lITIME(hhmmss)] 
SETCptr-ref) 
[REQID(name)] 

Conditions: EXPIRED, INVREQ 

1 INTERVALCO) is the default 

You use this command to request notification that 
a specified time has expired. In response to this 
command, CICS makes a timer event control area 
available for testing. This 4-byte control area is 
initialized to binary zeros, and the pointer reference 
specified in the SET option is set to its address. 
This area is available for the duration of the task 
issuing the POST command. 

When the time you specified has expired, the timer 
event control area is posted; that is, its first byte is 
set to X'40' and its third byte to X'80'. You can 
test postmg in either of the following ways: 

• By checking the timer event control area at 
intervals. You must give CICS the 

opportunity to post the area; that is, the task 
must relinquish control of CICS before you 
test the area. Normally, this condition is 
satisfied as a result of other commands being 
issued; if a task is performing a long internal 
function, you can force control to be 
relinquished by issuing a SUSPEND 
command, described in "Chapter 4.3. Task 
Control" on page 353. 

• By suspending task activity by a WAIT 
EVENT command until the timer event 
control area is posted. This action is similar to 
issuing a DELAY command, the difference 
being that with a POST -- WAIT EVENT 
sequence, you can do some processing after 
issuing the POST command, whereas a 
DELA Y command suspends task activity at 
once. No other task should attempt to wait on 
the event set up by a POST command. The 
timer event control area can be released for a 
variety of reasons (see below). If this happens, 
the result of any other task issuing a WAIT on 
the event set up by the POST is unpredictable. 

However, other tasks can CANCEL the event 
if they have access to the REQID associated 
with the POST command. (See CANCEL 
command and description of REQID option.) 

A timer event control area provided for a task is 
not released or altered (except as described above) 
until one of the following events occurs: 

• The task issues a subsequent DELAY, POST, 
or START command. 

• The task issues a CANCEL command to 
cancel the POST command. 

• The task is terminated, normally or 
abnormally. 

• Any other task issues a CANCEL command 
for the event set up by the POST command. 

A task can have only one POST command active 
at any given time. Any DELAY, POST, or 
START command supersedes a previously issued 
POST command by the task. 

Chapter 4.2. Interval Control 341 



The following example shows you how to request a 
timer event control area for a task, to be posted 
after 30 seconds: 

EXEC eICS POST 
J[NTERVAL C 30) 
REQIDC'RBL3D') 
SETCPREF) 

The following example shows you how to provide 
a timer event control area for the task, to be posted 
when the specified time of day is reached. Since no 
request identifier is specified in the command, 
CICS automatically assigns one and returns it to 
the application program in the EIBREQID field in 
the EIB. 

EXEC eICS POST 
TIMECPACKTIME) 
SETCPREF) 

Wait for an Event to Occur 
(WAIT EVENT) 

WAIl' EVENT ] ECADDRCptr-value) 

Condition: INVREQ 
'----_. 

You use this command to synchronize a ta.sk with 
the conlpletion of an event initiated by the same 
task or by another task. 

The evtmt would normally be the posting, at the 
expiration time, of a timer event control area 
provided in response to a POST command, as 
describt:d in the preceding section. 

The WAIT EVENT command provides a method 
of directly relinquishing control to some other task 
until the event being waited on is completed. 

You must specify, in the ECADDR option, a 
pointer value giving the address of an event control 
area, which must conform to the fonnat and 
standard posting conventions for an event control 
block (ECB); it will normally be the timer event 
control area created by a POST command. 

The following example shows you how to suspend 
processing of a task until the specified event control 
area is posted: 

EXEC CICS WAIT EVENT ECADDR(PVALUE) 

Start a Task (START) 

You use the START command to start a task, on 
a local or remote system, at a specified time. The 
starting task may pass data to the started task and 
may also specify a teoninal to be used by the 
started task as its principal facility. The 
TRANSID, TERMID, and FROM options specify 
the transaction to be executed, the terminal to 'be 
used, and the data to be used, respectively. 

You can specify the FMH option if the FROM 
option is specified. The FMH option indicates that 
the data, to be passed to the started task, contains 
function management headers. 

The syntax of the command is as follows: 

START 
[INTERVAL(hhmmss)lITIMEChhmmss)] 
TRANSIDCname) 
[REQIDCname)] 
[FROM(data-area) 

LENGTHCdata-value)(FMH]] 
[TERMIDCname)] 
[SYSID(name)] 
[RTRANSID(name)] 
[RTERMIDCname)] 
[QUEUE(name)] 
[NOCHECK] 
[PROTECT] 

Conditions: INVREQ, IOERR, 
ISCINVREQ, NOTAUTH, SYSIDERR, 
TERMIDERR, TRANSIDERR 

1 INTERVALCO) is the default 

Further data may be passed to the started task in 
the RTRANSID, RTERMID, and QUEUE 
options. For example, one task can start a second 
task passing it a transaction name and a teoninal 
name to be used when the second task starts a third 
task; the first task may also pass the name of a 
queue to be accessed by the second task. 

342 CICS/OOSjVS Application Programmer's Reference Manual (Command Level) 



If data is to be passed, it will be queued using the 
request identifier specified in the REQ ID option, if 
one is provided. This identifier should be 
recoverable (in temporary-storage terms) if the 
PROTECT option is also specified, or 
nonrecoverable if PROTECT is not specified, 
otherwise unpredictable results can occur. Such 
problems cannot occur if REQID is not used. 

The NOCHECK option specifies that no response 
(to execution of the START command) is expected 
by the starting transaction. For START 
commands naming tasks to be started on a local 
system, error conditions will be returned, whereas 
those for tasks to be started on a remote system 
will not be returned. The NOCHECK option 
allows CICS to improve performance when the 
START command has to be shipped to a remote 
system; it is also a prerequisite if the shipping of 
the START command is queued pending the 
establishing of links to the remote system. 

START commands are queued by means of the 
tOCALQ operand of the DFHPCT 
TYPE = REMOTE system macro as described in 
the CICS/DOS/VS Resource Definition (Macro) 
manual, or by means of the LOCALQ operand of 
the TRANSACTION defmition as described in the 
CICS/DOS/VS Resource Definition (Online) 
manual. 

One or more constraints have to be satisfied before 
the transaction to be executed can be started, as 
follows: 

1. The specified interval must have elapsed or the 
specified expiration time must have been 
reached. See the section "Expiration Times" 
earlier in the chapter. The INTERVAL option 
should be specified when a transaction is to be 
executed on a remote system; this avoids 
complications arising when the local and 
remote systems are in different time zones. 

2. If the TERMID option is specified, the named 
terminal must be available. 

3. If the PROTECT option is specified, the 
starting task must· have taken a successful sync 
point. This option, coupled to extensions to 
system tables, reduces the exposure to lost or 

duplicated data caused by failure of a starting 
task. 

4. If the transaction to be executed is on a remote 
system, the format of the data must be declared 
to be the same as that at the local system. 
This is done by the DA T ASTR and RECFM 
operands of the DFIITCT TYPE = SYSTEM 
system macro. For CICS-CICS these are 
always the default values. 

Execution of a START command naming a 
transaction in the local system will supersede any 
outstanding POST command executed by the 
starting task. 

Starting Tasks without Terminals 

If the task to be started is not associated with a 
terminal, each START command results in a 
separate task being started. This happens regardless 
of whether or not data is passed to the started task. 

The following example shows how to start a 
specified task, not associated with a terminal, in 
one hour: 

EXEC CICS START 
TRANSID('TRNL') 
INTERVAL(lOOOO) 
REQID('NONGL') 

Starting Tasks with Terminals but Without 
Data 

Only one task is started if several START 
commands, each specifying the same transaction 
and terminal, expire at the same time or prior to 
terminal availability. 

The following example shows how to request 
initiation of a task associated with a terminal. 
Since no request identifier is specified in this 
example, CICS assigns one and returns it to the 
application program in the EIBREQID field in the 
EXEC interface block. 

EXEC CICS START 
TRANSID('TRNl') 
TIME(185000) 
TERMID('STA5') 

Chapter 4.2. Interval Control 343 



Starting Tasks with Tenninals and Data 

Data is passed to a started task if one or nlore of 
the FROM, RTRANSID, RTERMID, and 
QUEUE options is specified. Such data is accessed 
by the started task through execution of a 
RETRIEVE command as described later in the 
chapter. 

It is possible to pass many data records to a new 
task by issuing several START commands, each 
specifying the same transaction and tenninal. 

Executilon of the frrst START command will 
ultimately cause the new task to be started and 
allow it to retrieve the data specified on the 
command. The new task will also be able to 
retrieve data specified on subsequently executed 
START commands that expire before the new task 
is termilnated. 

If such data has not been retrieved before the new 
task is terminated, another new task will be started 
and will be able to retrieve the outstanding data. 

If this 8econd new task fails to retrieve the 
outstanding data, a third task will be started, and so 
on, up to a maximum of 5 times, after which, the 
data will be lost. 

The following example shows how to start a task 
associated with a terminal and pass data to it: 

EXEC eICS START 
TRANSIDC'TRN2') 
TIME(173000) 
-rERMID('STA3') 
I~EQID( DATAREC) 
IFROM(DATAFlD) 
IL ENGTH( 100) 

Retrieve Data Stored for a Task 
(RElrRIEVE) 

You use the RETRIEVE command to retrieve data 
stored by expired START commands. It is the 
only method available for accessing such data. 

The syntax of the command is as follows: 

RETRIEVE 
[INTO(data-area)ISET(ptr-ref)] 
[lENGTH(data-area)] 
[RTRANSIDCdata-area)] 
[RTERMIDCdata-area)] 
[QUEUECdata-area)] 
[WAIT] 

Conditions: ENDDATA, ENVDEFERR, 
INVREQ, INVTSREQ, IOERR, lENGERR, 
NOTAUTH, NOTFND 

The INTO option specifies the area into which the 
data is to be placed. 

You must specify, in the LENGTH option, a data 
area that contains the maximum length of record 
that the application program will accept. 

If the record length exceeds the specified maximum, 
it is truncated and the LENGERR condition 
occurs. After the retrieval operation, the data area 
specified in the LENGTH option is set to the 
record length (before any truncation occurred). 

Alternatively, a pointer reference can be specified in 
the SET option. CICS then acquires an area large 
enough to hold the record and sets the pointer 
reference to the address of that area. Mter the 
retrieval operation, the data area specified in the 
LENGTH option is set to the record length. 

A task that is not associated with a terminal can 
access only the single data record associated with 
the original START command; it does &0 by 
issuing a RETRIEVE command. 

The storage occupied by the data associat~d with 
the task is released upon execution of the 
RETRIEVE command, or upon termination of the 
task if no RETRIEVE command is executed prior 
to termination. 

A task that is associated with a terminal can access 
all data records associated with all expired START 
commands having the same transaction identifier 
and terminal identifier as the START command 
that started the task; it does so by issuing 
consecutive RETRIEVE commands. . 

Expired data records are presented to the task upon 
request in expiration time sequence, starting with 

344 CICSjDOSjVS Application Programn1(~r's Reference Manual (Command Level) 



any data stored by the command that started the 
task, and including data from any commands that 
have expired since the task started. Each data 
record is retrieved from temporary storage using the 
REQ ID of the original START command as the 
identification of the record in temporary storage. 

When all expired data records have been retrieved, 
the ENDDAT A exceptional condition occurs. The 
storage occupied by the single data record 
associated with a START command is released 
after the data has been retrieved by a RETRIEVE 
command; any storage occupied by data that has 
not been retrieved is released when the CICS 
system is terminated. 

The WAIT option specifies that, if all expired data 
records have already been retrieved, the task is 
suspended until further expired data records 
become available. The transaction that issues a 
WAIT option must be running on a terminal, and, 
to pass an expired data record, you need to issue a 
START command from some other transaction 
that explicitly states the terminal id as well as the 
transaction id. 

The ENDDA T A exceptional condition will be 
raised: 

• If no data is available after the deadlock time 
interval (as specified in the DTIMOUT 
operand of the DFHPCT TYPE = ENTR Y 
system macro). 

• If CICS enters shutdown and the transaction is 
still suspended. An attempt to reissue the 
RETRIEVE command with the WAIT option 
after this event (that is, system shutdown) will 
cause an abend with a code of AICB. 

If the retrieved data contains FMHs, as specified by 
the FMH option on the associated START 
command, field EIBFMH in the EIB will be set to 
X'PF'. If no FMH is present, EIBFMH will be 
set to X'OO'. 

If an input/output error occurs during a retrieval 
operation, the IOERR exceptional condition 
occurs. The operation can be retried by reissuing 
the RETRIEVE command. 

The following example shows how to retrieve data 
stored by a START command for the task, and 
store it in the user provided data area called 
DATAFLD. 

EXEC CICS RETRIEVE 
INTOCDATAFLD) 
LENGTHCLENG) 

The following example shows how to request 
retrieval of a data record stored for a task into a 
data area provided by CICS; the pointer reference 
(PREF) specified by the SET option is set to the 
address of the storage area reserved for the data 
record. 

EXEC CICS RETRIEVE 
SETCPREF) 
LENGTHCLENG) 

Cancel Interval Control Requests 
(CANCEL) 

CANCEL 
[REQIDCname) 

[TRANSIDCname)][SYSIDCname)]] 

Conditions: INVREQ, ISCINVREQ, 
NOTAUTH, NOTFND, SYSIDERR 

You usc this command to cancel a previously 
issued DEI~AY, POST, or START command. If 
you include the SYSID option, the command is 
shipped to a remote system. If you omit SYSID, 
the TRANSID option, if present, will determine 
where the command is to be executed. The effect 
of the cancellation varies depending on the type of 
command being canceled, as follows: 

• A. DELA. Y command can be canceled only 
prior to its expiration, and only by a task other 
than the task that issued the DELAY 
command (which is suspended for the duration 
of the request). The REQID used by the 
suspended task must be specified. The effect of 
the cancellation is the same as an early 
expiration of the original DELAY. That is, the 
suspended task becomes dispatchable as though 
the original expiration time has been reached. 

Chapter 4.2. Interval Control 345 



• When a POST command issued by the same 
task is to be canceled, no REQID should be 
specified. Cancellation can be requested either 
before or after expiration of the original 
request. The effect of the cancellation is as if 
the original request had never been made. 

• When a POST command issued by another 
task is to be canceled, the REQID of that 
command must be specified. The effect of the 
cancellation is the same as an early expiration 
of the original POST request. That is, the 
timer event control area for the other task is 
posted as though the original expiration time 
had been reached. 

• Whe:n a START command is to be canceled, 
the REQ ID of the original command must be 
specified. The effect of the cancellation is as if 
the original command had never been made. 
The cancellation is effective only prior to 
expiration of the original command. 

Interval Control Options 

ABSTIMF~parameter) 

For the ASKTIME command, "parameter" 
specifies the user data area into which the 
tinle, in milliseconds since 0000 hours on 1 
January 1900, is to be stored. 

For the FORMATTIME command, 
"parameter" specifies the data value, in 
milliseconds since 0000 hours on 1 January 
19QO, that is to be converted to an alternative 
format. 

The format of the parameter is: 

ASM: 
COBOL: 
PL./I: 

PL8 
PIC 59(15) COMP-3 
FIXED DEC(15) 

DATE( data-area) 
specifies the variable that is to receive the 
date in the format specified in the SIT 
DATFORM operand. The returned value is 
in 8 character format, and a separator is 

present or not depending on the DATESEP 
option. You should normally use this option 
only when a date is needed for output 
purposes. Where a date is needed for 
analysis, you should request the date in 
explicit form, for example, MMDDYY. 

DATf:I4'ORM(data-area) 
specifics the format of the installation defmed 
date. CICS returns YYMMDD, 
DDMMYY, or MMDDYY (6 characters) 
according to the DATFORM operand of the 
DFIISIT system macro. 

DATESEP( data-value) 
specifies as a single character field the 
character to be inserted as the separator 
between the year and the month, between the 
day and the month, or between the year and 
the day if form YYDDD is specified. 

If you omit this option no separator is 
supplied. 

If you omit "data-value", a slash / is assumed 
as the separator. 

DA YCOUNT(data-area) 
returns in "data-area" the number of days 
since I January 1900 (day 0) as a 31-bit 
binary number. You will fmd this useful if 
you need to compare the current date with a 
previous date that has, for example, been 
stored in a data set. 

IlA YOfWEEK(data-area) 
returns in "data-area" the relative day number 
of the week as a 31-bit binary number. 
Sunday = 0, Saturday = 6. This number 
can be converted to a textual fonn of day in 
any language. 

DA YOFMONTH(data-area) 
returns in "data-area" the relative day number 
of the month as a 31-bit binary number. 

DDMMYY (data-area) 
specifics the user field (8 characters) in which 
CICS is to return the date, for example, 
21/10/84. 

346 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



ECADDR(ptr-value) 

FMH 

specifies the address of the timer event 
control area that must be posted before task 
activity can be resumed. 

specifies that the user data to be passed to the 
started task contains function management 
headers. 

FROM(data-area) 
specifies the data that is to be stored for a 
task that is to be started at some future time. 

INTERV AL(hhmmss) 
specifies the expiration time for an interval 
control function as an interval of time that is 
to elapse from the time at which the interval 
control command is issued. The time 
specified is added to the current clock time by 
CICS when the command is executed to 
calculate the expiration time. 

This option is used in DELA Y commands 
(to specify the time for which the task should 
be suspended), POST commands (to specify 
when the posting of the timer event control 
area should occur), and START commands 
(to specify when a new task should be 
started). 

"hhmmss" can be replaced by a decimal 
constant; or, for ASM, by a reference to a 
field dermed as PIA; for COBOL, by a data 
name of the form PIC S9(7) COMP-3; or for 
PL/I, by an expression that can be converted 
to FIXED DEC(7,0). The value must be of 
the form OHHMMSS + where "HH" 
represents hours from 00 through 99, "MM" 
represents minutes from 00 through 59, and 
"SS" represents seconds from 00 through 59. 

JNTO(data-area) 
specifies the user data area into which 
retrieved data is to be written. If this option 
is specified, move-mode access is implied. 

LENGTH(parameter) 
specifies a half word binary value to be used 
with START and RETRIEVE commands. 

For a START command, the parameter must 
be a data value that is the length of the data 
that is to be stored for the new task. 

For a RETRIEVE command with the INTO 
option, the parameter must be a data area 
that specifies the maximum length of data 
that the program is prepared to handle. If the 
value specified is less than zero, zero is 
assumed. If the length of the data exceeds 
the value specified, the data is truncated to 
that value and the LENGERR condition 
occurs. On completion of the retrieval 
operation, the data area is set to the original 
length of the data. 

For a RETRIEVE command with the SET 
option, the parameter must be a data area. 
On completion of the retrieval operation, the 
data area is set to the length of the data. 

MMDI>YY( data-area) 
specifies the 8 character user field in which 
CICS is to return the date, for example, 
07/10/84. 

MONTHOFYEAR(data-area) 
data-area is set to the relative month number 
of the year as a 31-bit binary number. 
January= 1, December= 12. You can 
convert this number, in your application 
program, to the name of the month in any 
language. 

NOCHECK 
specifies that, for a remote system, CICS 
should optimize the execution of the START 
command to improve performance by 
providing less error checking and slightly less 
function. 

PROTECT 
specifies that, in addition to the constraints 
described earlier in the chapter, the new task 
will not be started until the starting task has 
taken a sync point. If the starting task 
abends before the sync point is taken, the 
request to start the new task will be canceled. 
If the REQID option is specified as well, the 
request identifier should be a name dermed as 
recoverable to temporary storage. 

Chapter 4.2. Interval Control 347 



QUEUE{ (name) I( data area)} 
when used in a START command, "name" 
specifies the name of the queue that Inay be 
u8ed by the transaction specified also in the 
START command. The name can be up to 
8 characters in length. 

'When used in a RETRIEVE command, 
"data area" specifies the name of the queue 
that -may be accessed by the transaction 
issuing the RETRIEVE command. The data 
area must be 8 characters in length. 

REQID(name) 
specifies a unique name (up to 8 characters) 
to identify a command. This name will be 
used as a temporary storage identifier. The 
te:mporary storage queue thus identified must 
be:: defmed as a local queue on the CICS 
system where the START command will be 
processed. The START command will be 
processed on the system identified by the 
SYSID option or on the local system if 
SYSID is omitted. 

If specified in a START command that also 
specifies FROM, the data in the FROM 
option is stored in temporary storage using 
the name specified in REQID as the name of 
the temporary storage queue. 

This option can be used in a DELAY, 
POST, or START command when another 
task is to be provided with the capability of 
canceling an unexpired command; and in 
CANCEL commands, except those canceling 
a POST command issued by the same task 
(for which, the REQID option is ignored if it 
is specified). 

If this option is omitted from a POST 
command, CICS generates a unique request 
idlentifier in the EIBREQID field of the 
EXEC interface block. This applies also to a 
START command unless the NO·CHECK 
option is specified, in which case field. 
EIBREQID is set to blanks and cannot be 
used subsequently to cancel the START 
command.. 

RTERMID{(name)l(data area)} 
When used in a START command, "name" 
specifics a value, for example a terminal 
name, that may be retrieved when the 
transaction, specified in the TRANSID 
option in the START command, is started. 
The name can be up to 4 characters in length. 

When used in a RETRIEVE command, 
"data area" specifies an area which may be 
used in the TERMID option of a START 
command that may be executed subsequently. 
The data area must be 4 characters in length. 

RTRANSID{(name)l(data area)} 
When used in a START command, "name" 
specifies a value, for example a transaction 
name, that may be retrieved when the 
transaction, specified in the TRANSID 
option in the START command, is started. 
The name can be up to 4 characters in length. 

When used in a RETRIEVE command, 
"data area" specifies an area which may be 
used in the TRANSID option of a START 
command that may be executed subsequently. 
The data area must be 4 characters in length. 

SET(ptr-ref) 
When used with a POST command, SET 
specifics the pointer reference to be set to the 
address of the 4-byte timer event control area 
generated by CICS. This area is initialized to 
binary zeros; on expiration of the specified 
time, the fITst byte is set to X '40', and the 
third byte to X '80'. 

When used with a RETRIEVE command, 
SET specifics the pointer reference to be set 
to the address of the retrieved data. If this 
option is specified, locate-mode access is 
implied. 

SYSID(name) remote systems only 
specifies the name of the system whose 
resources are to be used for 
intercommunication facilities. The name can 
be up to 4 characters in length. The START 
command will be executed on the specified 
system. 

348 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



TERMID(name) 
specifies the symbolic identifier of the 
terminal associated with a transaction to be 
started as a result of a ST ART command. 
This option is required when the transaction 
to be started must communicate with a 
terminal; it should be omitted otherwise. The 
name must be alphanumeric, up to 4 
characters in length, and must have been 
defmed in the terminal control table (TCT) 
by the system programmer. 

The terminal identifier must be defmed as a 
local terminal in the TCT on the system in 
which the START command is executed. 

TIME(parameter) 
The parameter "hhmmss" specifies the 
expiration time for an interval control 
function. See the section "Expiration Times" 
earlier in the chapter. 

This option is used in DELA Y commands 
(to specify the time for which the task should 
be suspended), POST commands (to specify 
when the posting of the timer event control 
area should occur), and START commands 
(to specify when a new task should be 
started). 

"hhmmss" can be replaced by a decimal 
constant; or, for AS M, by a reference to a 
field defmed as PL4; for CO BO L, by a data 
name of the form PIC S9(7) COMP-3; or for 
PL/I, by an expression that can be converted 
to FIXED DEC(7,0). The value must be of 
the form OHHMMSS + where "111-1" 
represents hours from 00 through 99, "MM" 
represents minutes from 00 through 59, and 
"SS" represents seconds from 00 through 59. 

When used in a FORMATTIME command, 
"data-area" is set as an 8 character field to the 
current 24-hour clock time in the fonn 
hh:mm:ss, where the separator is determined 
by the TIMESEP option. 

TIMESEP( data-value) 
specifies the character to be used as the 
separator in the returned time. If you omit 

this option, no separator is assumed, and 6 
bytes are returned in an 8 character field. If 
you omit the "data-value", a colon: is used 
as a separator. 

TRANSID(name) 
specifies the symbolic identifier of the 
transaction to be executed by a task started as 
the result of a START command, or to be 
canceled by a CANCEL command. The 
name can be up to 4 characters in length and 
must have been defmed in the program· 
control table (peT) by the system 
programmer. 

If SYSID is specified, the transaction is 
assumed to be on a remote system 
irrespective of whether or not the name is 
defined in the PCT. Otherwise the entry in 
the PCT will be used to determine if the 
transaction is on a local or remote system. 

WAIT 
specifics that, if all expired data records have 
already been retrieved, the task is to be put 
into a wait state until further expired data 
records become available. The ENDDA T A 
condition will be raised only if CICS is shut 
down before any expired data records become 
available. 

YEAR(data-area) 
specifics the full number of the year as a 
31-bit binary number, for example, 1984, 
2001. 

YYDDD( data-area) 
specifics the user field (6 characters) in which 
CICS is to return the date, for example, 
84/301. 

YYDDMM(data-area) 
specifies the user field (8 characters) in which 
CICS is to return the date, for example, 
84/30/10. 

YYMMDD(data-area) 
specifies the user field (8 characters) in which 
CICS is to return the date, for example, 
84/10/21. 

Chapter 4.2. Interval Control 349 



Intel·val Control Exceptiona'( 
Conditions 

ENDUATA 
occurs if any of the following situations 
exists: ' 

• No Inore data is stored for a task issuing 
a RETRIEVE command. It can be 
considered a normal end of fIle response 
when retrieving data records sequentially. 

• The RETRIEVE command is issued by a 
task that is started by a START 
comtnand which did not specify the 
FROM option. 

• The RETRIEVE command is issued by a 
task that is not started by a START 
command. 

Default action: terminate the task abnormally. 

ENVDlEFERR 
occurs when a RETRIEVE command 
specifies an option not specified by the 
corresponding START command. 

Default action: terminate the task abnormally. 

EXPIRED 
occurs if the time specified in a POST or 
DELA Y command has already expired when 
the command is issued. 

Default action: ignore the condition. 

INVREQ 
occurs if an invalid type of interval control 
comtnand is received for processing by CICS, 
or if the ECB resides above 16 megabytes. 

Dlefault action: terminate the task abnormally. 

INVTSREQ 
occurs if there is no support for a temporary 
storage read request issued by CICS during 

execution of a RETRIEVE command. This 
situation can occur when a dummy 
Temporary Storage Program is included in 
the system by the system programmer in 
place of a functional Temporary Storage 
Program. 

Default action: terminate the task abnormally. 

IOERR 
occurs if an input/output error occurs during 
a RETRIEVE or START operation. The 
operation can be retried by reissuing the 
RETRIEVE command. 

This condition also occurs if a START 
operation attempts to write to temporary 
storage and the temporary storage data set is 
full. 

Default action: terminate the task abnormally. 

ISCINVREQ 
occurs when the remote system indicates a 
failure which does not correspond to a known 
condition. 

Default action: terminate the task abnormally. 

I.lENGERR 
occurs in move-mode retrieval if the length 
specified is less than the actual length of the 
stored data. 

Default action: terminate the task abnormally. 

NOTAUTH 
occurs when a resource security check has 
failed. Use of SYSID will always raise the 
NOTA UTH condition when resource 
security level checking is in effect 
(RSLC= YES in the peT). 

The reasons for the failure are the same as for 
ahend code AEY7, as described in the 
CICSjDOS/VS Messages and Codes manual. 

Default action: terminate the task abnormally. 

350 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



NOTFND 
occurs if any of the following situations 
exists: 

• The request identifier specified in a 
CANCEL command fails to match an 
unexpired interval control command. 

• A RETRIEVE command is issued but 
some prior task retrieved the data stored 
under the request identifier directly 
through temporary storage requests and 
then released the data. 

• The request identifier associated with the 
STAR T command is not unique; when a 
RETRIEVE command is issued, CICS 
cannot fmd the data. 

Default action: terminate the task abnormally. 

SYSIDERR 
occurs when the SYSID option specifies 
either a name which is not defmed in the 
intersystem table or a system to which the 
link is closed. 

Default action: terminate the task abnormally. 

TERMIDERR 
occurs if the terminal identifier in a START 
command cannot be found in the terminal 
control table. 

Default action: terminate the task abnormally. 

TRANSIDERR 
occurs if the transaction identifier specified in 
a START command cannot be found in the 
program control table. 

Default action: terminate the task abnormally. 

Chapter 4.2. Interval Control 351 



the specified resource; control is returned to the 
task when the resource is available. 

The ENQBUSY condition allows a conditional 
ENQ to be used. If a resource is not available 
when enqueued, ENQBUSY is raised. A 
HANDLE CONDITION ENQBUSY comlTland 
will return control to the task at the ENQBUSY 
label, without waiting for the resource to become 
available. 

DEQ causes a resource currently enqueued upon 
by the task to be released for use by other tasks. If 
a task enqueues upon a resource but does not 
dequeue from it, CICS releases the resource during 
sync point processing or when the task is 
tenninated. 

If more than one ENQ is issued for the same 
resource by a task, the resource remains owned by 
that task until the task issues a matching number of 
DEQs. 

The resource to he enqueued upon must be 
identified by one of the following methods: 

• Specifying a data area that is the resource 

• Specifying a data variable that contains a 
unique character-string argument (for example, 
an ernployee name) that represents the 
resource. The character string may he up to 
255 bytes in length. The length of the string 
must be supplied in the LENGTH option. 

When issuing DEQ, the resource to be dequeued 
from must be identified by the method used when 
enqueuing upon the resource. If no enqueue has 
been issued for the resource, the dequeue will be 
ignored. 

The following examples show how to enqueue 
upon a resource using the two methods shown 
above. 

EXEC CICS ENQ RESOURCECRESNAME) 

or 

EXEC CICS ENQ RESOURCECSOCSECNO) 
lENGTH(9) 

Substituting ICDEQ" for IIENQ" in these examples 
illustrates the ways in which a resource can be 
released. 

Task Control Options 

LENGTH( data-value) 
specifies that the resource to be enqueued 
upon (or dequeued from) is a data variable of 
length given by the data value. The data 
value is a half word binary value in the range 
I through 255. If LENGTH is specified in 
an ENQ, it must also be specified in the 
DEQ for that resource, and the values of 
these options must be the same. lms option 
is only required if the resource is specified as 
a character string. 

NOSUSPENI> 
specifies that application program suspension 
for ENQBUSY is to be inhibited. This 
condition will be handled as described on 
page 31. 

RESOURCE( data-area) 
specifies either the resource to be enqueued 
upon (or dequeued from) or a data variable 
that contains a character string (for example 
an employee name) that represents the 
resource. In the latter case, the length of the 
string must be specified by the LENGTH 
option. 

Task Control Exceptional 
Condition 

ENQBUSY 
occurs when an ENQ command specifies a 
resource that is unavailable. 

Default action: wait for the resource to 
become available. 

354 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 4.4. Program Control 

The CICS program control program governs the 
flow of control between application programs in a 
CICS system. The name of an application 
program referred to in a program control command 
must have been defmed as a program to CICS. 

Program control commands are provided to: 

• Link one user-written application program to 
another, anticipating subsequent return to the 
requesting program (LINK). The 
CO MMAREA option allows data to be passed 
to the requested application program. 

• Transfer control from one user-written 
application program to another, with no return 
to the requesting program (XCTL). The 
COMMAREA option allows data to be passed 
to the requested application program. 

• Return control from one user-written 
application program to another or to CICS 
(RETURN). The COMMAREA option 
allows data to be passed to a newly-initiated 
transaction. 

• Load a designated application program, table, 
or map into main storage and return control to 
the requesting program (LOAD). 

• Delete a previously loaded application 
program, table, or map from main storage 
(RELEASE). 

Exceptional conditions that occur during execution 
of a program control comnland are handled as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

The HANDLE ABEND command can be used to 
deal with abnormal terminations. Refer to 

"Chapter 5.2. Abnormal Termination Recovery" 
on page 385 for further information about this 
command. 

Application Program Logical 
Levels 

Application programs runningunder CICS are 
executed at various logical levels. The frrst 
program to receive control within a task is at the 
highest logical level. When an application program 
is linked to another, expecting an eventual return of 
control, the linked-to program is considered to 
reside at the next lower logical level. When control 
is simply transferred fro~ one application program 
to another, without expecting return of control, the 
two programs are considered to reside at the same 
logical level. 

Link to Another Program 
Anticipating Return (LINK) 

LINK 
PROGRAM(name) 
[COMMAREACdata-area) 

[lENGTH(data-value)]] 

Condition: NOTAUTH, PGMIDERR 

This command is used to pass, control from an 
application program at one logical level to an 
application program at the next lower logical level. 
If the linked-to program is not already in main 
storage, it will be loaded. When the RETURN 
command is executed in the linked-to program, 
control is returned to the program initiating the 

Chapter 4.4. Program Control 355 



linkage at the next sequential executable 
instruction. 

The following example shows how to request a link 
to an application program called PROGI: 

EXEC eICS LINK PROGRAMC'PROGl') 

The COMMAREA option can be used to pass 
data to the linked-to program. For further details, 
see "Passing Data to Other Programs" on 
page 358, the description of COMMAREA on 
page 363, and the description of TRANSID on 
page 363. 

The LENGTH option specifies the length of the 
data being passed. The LENGTH value being 
passed Inust not be greater than the length of the 
data area specified in the COMMAREA option. If 
it is, the: results are unpredictable. 

The linked-to program operates independently of 
the program that issues the LINK command with 
regard to handling exceptional conditions, attention 
identifiers, and abends. 

For example, the effects of HANDLE cotnmands 
in the linking program are not inherited by the 
linked-to program, but the original HANDLE 
commands are restored on return to the linking 
progrant. Figure 20 on page 357 illustrates the 
concept of logical levels. 

Transfer Program Control 
(XC1'L) 

XCTL 
PROGRAMCname) 
[COMMAREACdata-area) 

[LENGTHCdata-value)]] 

Condition: NOTAUTH, PGMIDERR 

This cmnmand is used to transfer control from one 
application program to another at the same logical 
level. The program from which control is 
transfened is released. If the program to which 
control is transferred is not already in main storage, 
it will hi;, loaded. 

The following example shows how to request a 
transfer of control to an application program called 
PROG2: 

EXEC CICS XCTL PROGRAMC'PROG2') 

The COMMAREA option can be used to pass 
data to the invoked program. For further details, 
see "Passing Data to Other Programs" on 
page 358. 

The LE N GTH option specifies the length of the 
data to be passed. The LENGTH value being 
passed must not be greater than the length of the 
data area specified in the COMMAREA option. If 
it is, the results are unpredictable. 

Return Program Control 
(RETURN) 

RETURN 
[TRANSID(name) 

[COMMAREA(data-area) 
[LENGTH(data-value)]]] 

Condition: INVREQ, NOTAUTH 

This command is used to return control from an 
application program either to an application 
program at the next higher logical level or to CICS. 

When the command is issued in a lower-level 
program, the program to which control is returned 
will have relinquished control by issuing a LINK 
command and will reside one logical level higher 
than the program returning control. 

When the command is issued in a program at the 
highest logical level, control returns to CICS. 

If the task is associated with a terminal, the 
TRANSID option can be used to specify the 
transaction identifier for the next program to be 
associated with that terminal; this causes 
subsequent input entered from the terminal to be 
interpreted wholly as data. In addition, the 
COMMAREA option can be used to pass data to 

356 CICSjDOS/VS Application Programmer's Reference Manual (Command Level) 



LEVEL 0 
__ .... :,.._ CIC9 

------------------_ ....... _-------------_ ....... --.--

,r LEVEL 1 

PROGA 
• 
• 

LINK --..... . 
RETURN ~ 

-----------~-----------------------
" 

PROGB 
• 
• 

)(011.. 
• 
• 

Figure 20. Application Program Logical Levels 

the new task that will be started. For further 
details, see "Passing Data to Other Programs" on 
page 358. 

The LENGTH option specifies the length of the 
data to be passed. The LENGTH value being 
passed must not be greater than the length of the 
data area specified in the COMMAREA option. If 
it is, the results are unpredictable. 

The COMMAREA and LENGTH options can be 
used only when the RETURN command is 
returning control to CICS; the INVREQ condition 
will occur otherwise. 

LEVEL 2 

PROGC 
• 
• 

LINK 
• 

RETURN 

LEVEL 3 

PROOD PROBE 
• • 
• • 

XCTL • 
• • 
• REl1JRN 

Load a Program (LOAD) 

LOAD 
PROGRAMCname) 
[SETCptr-ref)] 
[LENGTHCdata-area)I 

FLENGTHCdata-area)] 
[ENTRYCptr-ref)] 
[HOLD] 

Condition: NOTAUTH, PGMIDERR 

This command is used to fetch application 
programs, tables, or maps from the library where 
they reside and load them into main storage. This 

Chapter 4.4. Program Control 357 



facility is used to load an application program that 
will be used repeatedly, thereby reducing system 
overhead through a single load, to load a table to 
which control is not to be passed, or to load a map 
to be used in a mapping operation. (See "Chapter 
3.2-1. Introduction to Basic Mapping Support" on 
page 131 for further details about maps.) 

CICS se1ts the pointer reference specified in the 
SET option to the address of the loaded program, 
table, or map; if the LENGTH or FLENGTH 
option is specified, the data area provided will be 
set to the length involved. (See also the RELOAD 
operand of the DFHPPT TYPE = ENTRY macro 
as described in the CICS/DOS/VS Resource 
Definition (Macro) manual, or the RELOAD 
attribute: for the PPT as described in the 
CICS/DOS/VS Resource Definition (Online) 
m.anual.) 

If the HOLD option is specified, the loaded 
program:, table, or map remains in main storage 
until a RELEASE command is issued; if HOLD is 
not specified, the program, table, or map remains 
in main storage until a RELEASE command is 
issued or until the task that issued the LOAD 
command is terminated nonnally or abnorrnally. 

The following example shows how to load a 
user-prepared table -called TB I : 

EXEC tICS LOAD PROGRAMC'TBl') SETCPTR) 

Delet.e a IJoaded Program 
(REIJEASE) 

RELEASE 
PROGRAMCname) 

Condition: NOTAUTH, PGMIDERR ::::::J 
This co:mmand is used to delete from main storage 
a program, table, or map previously loaded by a 
LOAD command. If the HOLD option is 
specified in the LOAD command, the loaded 
progranl is deleted only in response to a 

RELEASE command. If the HOLD option is not 
specified, the loaded program can be deleted by a 
RELEASE, or it will be deleted automatically 
when the task that issued the LOAD is terminated. 

The following example shows how to delete an 
application program, called PROG4, loaded in 
response to a LOAD command: 

EXEC CICS RELEASE PROGRAMC'PROG4') 

Passing Data to Other Programs 

You can pass data to another program when 
control is passed to that other program by means 
of a program control command. 

The COMMAREA option of the LINK and 
XCTL commands specifies the name of a data area 
(known as a communication area) in which data is 
passed to the program being invoked. In a 
CO no I / program, you should specify the data area 
in the working storage section of the passing 
program and in the linkage section of the receiving 
program. In the receiving program you must give 
this data area the name DFHCOMMAREA. 

In a similar manner, the COMMAREA option of 
the R ETU R N command specifics the name of a 
communication area in which data is passed to the 
transaction identified in the TRANSID option. 
Sec the description of COMMAREA on page 363. 
(The TRANSID option specifies a transaction that 
will be initiated when input is received from the 
tenninal associated with the task.) See the 
description of TRANSID on page 363. The length 
of the communication area is specified in the 
LENGTI I option; PL/I programs need not specify 
the length. 

The invoked program receives the data as a 
parameter. The program must contain a defmition 
of a data area to allow access to the passed data. 

In an assembler language program, the data area 
should be a DSECT. The register used to address 
this DSECT must be loaded from DFHEICAP, 
which is in the DFHEISTG DSECT. 

358 CICS/DOSjVS Application Programm(~r's Reference Manual (Command Leve1) 



In a COBOL program, the data area must be 
specified in the linkage section of the receiving 
program, and must be called DFHCOMMAREA. 

In a PL/I program, the data area can have any 
name, but it must be declared as a based variable, 
based on the parameter passed to the program. 
The pointer to this based variable should be 
declared explicitly as a pointer rather than 
contextually by its appearance in the declaration for 
the area. This will prevent the generation of a PL/I 
error message. No ALLOCATE statement can be 
executed within the receiving program for any 
variable based on this pointer. 

The receiving data area need not be of the same 
length as the original communication area; if access 
is required only to the first part of the data, the 
new data area can be shorter. It must not be 
longer than the length of the communication area 
being passed, because the results in this situation 
are unpredictable. 

The invoked program can determine the length of 
any communication area that has been passed to it 
by accessing the EIBCALEN field in the EIB of 
the task. 

If no communication area has been passed, the 
value of EIBCALEN will be zero; otherwise, 
EIBCALEN will always contain the value specified 
in the LENGTH option of the LINK, XCTL, or 
RETURN command, regardless of the size of the 
data area in the invoked program. 

When a communication area is passed by means of 
a LINK command, the invoked program is passed 
a pointer to the communication area itself. 

Any changes made to the contents of the data area 
in the invoked program are available to the 
invoking program, when control returns to it; to 
access any such changes, the program names the 
data area specified in the original COMMAREA 
option. 

When a communication area is passed by means of 
an XCTL command, a copy of that area is made 
unless the area to be passed has the same address 

and length as the area that was passed to the 
program issuing the command. 

Por example, if program A issues a LINK 
command to program B which, in tum, issues an 
XCTL command to program C, and if B passes to 
C the same communication area that A passed to 
B, program C will be passed addressability to the 
communication area that belongs to A (not a copy 
of it) and any changes made by C will be available 
to A when control returns to it. 

A communication area can be passed by means of 
a RETURN command issucd at the highest logical 
level when control returns to CICS; in this case, a 
copy of the communication area is made, and 
addressability to the copy is passed to the frrst 
program of the next transaction. 

The invoked program can access field EIBFN in 
the EIB to determine which type of command 
invoked the program. The field must be tested 
before CICS commands are issued. If a LINK or 
XCTL invoked the program, the appropriate code 
will be found in the field; if RETURN is used, no 
CICS commands will have been issued in the task, 
and the field will contain zeros. 

Data can also be passed between application 
programs and transactions in other ways. For 
example, the data can be stored in a CICS storage 
area outside the local environtnent of the 
application program, such as the transaction work 
area (TWA); see "Chapter 1.6. Access to System 
Information" on page 41 for details. 

Another way is to store the data in temporary 
storage; see "Chapter 4.7. Temporary Storage 
Control" on page 373 for details. 

Examples of Passing Data 

The fol1owing examples, in assembler language, 
COBOL, and PL/I, show how the LINK 
command causes data to be passed to the program 
being linked to; the XCTL command is coded in a 
similar way. The examples also show how the 
RETURN command is used to pass data to a new 
transaction. 

Chapter 4.4. Program Control 359 



ASM example - LINK 

DFHEISTG DSECT Invoking program 
COMREG DS OClZO 
FIELD DS CL3 

PROIGI 

COMIREG 
FIEtD 

PROIG2 

CSECT 

MVC FIElD,=C'ABC' 
EXEC CICS lINK 
PROGRAM('PROGZ') 
COMMAREACCOMREG) 
lENGTH(3) 

END 

DSECT 
DS Cl3 

CSECT 

Invoked program 

l COMPTR,DFHEICAP 
USING COMREG,COMPTR 
ClC FIElD,=C'ABC' 

END 

- ASM example - RETURN 

DFHEISTG DSECT Invoking program 
TERMSTG DS OClZO 
FIELD DS Cl3 
DATAFlD DS Cll7 

PROGI 

TERMSTG 
FIELD 
DATAFlD 

PROG2 

LABEll 

lABEl2 

CSECT 

MVC FIElD,=C'ABC' 
EXEC CICS RETURN 
TRANSID('TRN2') 
COMMAREA(TERMSTG) 

END 

DSECT 
DS Cl3 
DS Cl17 

CSECT 

Invoked program 

ClC EIBCAlEN,=H'O' 
BNH lABEl2 
l COMPTR,DFHEICAP 
USING TERMSTG,COMPTR 
ClC FIElD,=C'XYZ' 
BNE LABEll 
MVC FIElD,=C'ABC' 
DS OH 

DS OH 

END 

360 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



COBOL example - LINK 

Invoking program 

IDENTIFICATION DIVISION. 
PROGRAM ID. 'PROGl'. 

WORKING-STORAGE SECTION. 
01 COM-REGION. 

02 FIELD PICTURE X(3). 

PROCEDURE DIVISION. 
MOVE 'ABC' TO FIELD. 
EXEC CICS LINK 

PROGRAM('PROG2') 
COMMAREA(COM-REGION) 
LENGTH(3) 
END-EXEC. 

Invoked program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 'PROG2'. 

LINKAGE SECTION. 
01 DFHCOMMAREA. 

02 FIELD PICTURE X(3). 

PROCEDURE DIVISION. 
IF EIBCALEN GREATER ZERO 
THEN IF FIELD EQUALS 'ABC' 

COBOL example - RETURN 

Invoking program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 'PROGl'. 

WORKING-STORAGE SECTION. 
01 TERMINAL-STORAGE. 

02 FIELD PICTURE X(3). 
02 DATAFLD PICTURE X(17). 

PROCEDURE DIVISION. 
MOVE 'ABC' TO FIELD. 
EXEC CICS RETURN 

TRANSID('TRN2') 
COMMAREA(TERMINAL-STORAGE) 
LENGTH(20) 
END-EXEC. 

Invoked program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 'PROG2' 

LINKAGE SECTION. 
01 DFHCOMMAREA. 

02 FIELD PICTURE X(3). 
02 DATAFLD PICTURE X(17). 

PROCEDURE DIVISION. 
IF EIBCALEN GREATER ZERO 
THEN IF FIELD EQUALS 'XYZ' 
MOVE 'ABC' TO FIELD. 
EXEC CICS RETURN 
END-EXEC. 

Chapter 4.4. Program Control 361 



PL/I example - LINK 

Invoking program 

PROGI. PROC OPTIONS(MAIN); 
DCL I COM REGION AUTOMATIC, 

Z FIELD CHAR(3), 

FIEilD='ABC' ; 
EXEC CICS LINK 

PROGRAMC'PROGZ') 
COMMAREACCOM REGION) 
LENGTH(3); -

END; 

PROGZ: Invoked program 

PROCCCOMM REG PTR) OPTIONSCMAIN); 
DCL COMM REG PTR PTR; 
DCL I COM REGION 

BASED(COMM REG PTR), 
2 FIELD CHAR(3), 

IF EIBCALEN>O THEN DO; 
IF FIELD='ABC' THEN 

END; 

END; 

PIJ/I example - RETURN 

Invoking program 

PROGI: PROC OPTIONSCMAIN); 
DCL 1 TERM STORAGE, 

2 FIELD CHAR(3), 

FIE L D = , XY Z' ; 
EXEC CICS RETURN 

TRNID('TRN2') 
COMMAREACTERM_STORAGE); 

END; 

PROG2: Invoked program 

PROCCTERM STG PTR) OPTIONSCMAIN); 
DCL TERM STG PTR PTR; 
DCL 1 TERM STORAGE 

BASEDCTERM STG PTR), 
2 FIELD CHAR(3); 

IF EIBCALEN>O THEN DO; 
IF FIELD='XYZ' 
THEN FIELD='ABC'; 
END; 

EXEC CICS RETURN; 
END; 

362 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Program Control Options 

COMMAREA( data-area) 
specifies a communication area that is to be 
made available to the invoked program. 

For a LINK command, a pointer to the data 
area is passed. 

For an XCTL command, a pointer to the 
data area is passed or a copy of it (see 
"Passing Data to Other Programs" on 
page 358) 

For a RETURN command, because the data 
area is freed before the next program is 
invoked, a copy of the data area is created 
and a pointer to the copy is passed. 

The communication area specified on a 
RETURN command will be passed to the 
next command level program that runs at the 
terminal. 

If the terminal is in TRANSCEIVE status, 
the next command level program is not 
guaranteed to be part of the transaction 
specified by TRANSID. It could be part of a 
transaction started by automatic task 
initiation (A TI). To ensure that the 
communication area is passed to the correct 
program, the terminal must not be in 
TRANSCEIVE status. 

ENTRY(ptr-ref) 
specifies the pointer reference that is to be set 
to the address of the entry point in the 
program, table, or map that has been loaded. 

FLENGTH(data-area) 
specifies a fullword binary area to be used 
with the LOAD command. On completion 
of the load operation, the data area is set to 
the length of the loaded program, table, or 
map. FLENGTH and LENGTH are 
mutually exclusive. 

HOLD 
specifies that the loaded program, table, or 
map is not to be deleted (if still resident) 

when the task issuing the LOAD command is 
terminated; deletion is to occur only in 
response to a RELEASE command, from 
this t.ask or from another task. 

l,ENGTH(parameter) 
specifies a halfword binary value to be. used 
with LINK, XCTL, RETURN, and LOAD 
commands. 

For a LINK, XCTL, or RETURN 
command, the parameter must be a data 
value that is the length in bytes of the 
communication area. If a negative value is 
supplied, zero is assumed. 

For a LOAD command, the parameter must 
be a data area. On completion of the LOAD 
operation, the data area is set to the length of 
the loaded program, table, or map. 

For the LOAD command, FLENGTH and 
IJ~NGTH are mutually exclusive. 

PROGRAM(name) 
specifies the identifier of the program to 
which control is to be passed unconditionally 
(for a LINK or XCTL command); or the 
identifier of a program, table, or map to be 
loaded (for a LOAD command) or deleted 
(for a RELEASE command). The specified 
name can consist of up to eight alphameric 
characters and must have been defmed as a 
program to CICS. 

SET(ptr-ref) 
specifies the pointer reference that is to be set 
to the address at which a program, table, or 
map is loaded. 

TRANSII>(name) 
specifies the transaction identifier to be used 
with the next input message entered from the 
terminal with which the task that issued the 
RETURN command has been associated. 
The specified name can consist of up to four 
characters and must have been defmed as a 
transaction to CICS. 

If the terminal is in TRANSCEIVE status, a 
transaction started by A TI may be run before 

Chapter 4.4. Program Control 363 



the next transaction started by terminal input. 
][f this happens and the transaction identifier 
of the transaction started by A TI is the same 
as that specified in the TRANSID option, 
CICS will assume that the transaction started 
by A TI performs the same function and will 
I;:rase the memory of the "name" specified in 
the TRANSID option. 

Pro~:ram Control Exception:al 
Conditions 

INVRlEQ 
occurs if either of the following situations 
exists: 

t. A RETURN command with the 
COMMAREA option is issued in a 

program that is not at the highest logical 
level. 

• A RETURN command with the 
TRANSID option is issued in a task that 
is not associated with a terminal. 

NOTAUTII 
occurs when a resource security check has 
failed. The reasons for the failure are the 
same as for abend code AEY7, as described 
in the CICS/DOS/VS Messages and Codes 
manual. 

Default action: terminate the task abnormally. 

PGMII)ERR 
occurs if a program, table, or map cannot be 
found in the PPT, in the library, or is 
disabled. 

364 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 4.5. Storage Control 

The CICS storage control program controls 
request.s Jor qiain storage to provide intermediate 
work areas. and any other main storage not 
provided automatically. by CICS but needed to 
process a tran'saction. You can initialize the 
acquired main storage to any bit configuration; for 
example, zeros or EBCDIC blanks. 

Storage control commands are provided to: 

• Get and initialize main storage (GETMAIN). 

• Release main storage (FREEMAIN). 

CICS releases all ma.in storage associated with a 
task when the tas". is terminated nonnally or 
abnonnally. This includes any storage acquired, 
and not subsequently released, by your application 
program .. 

If there is insufficient main storage to satisfy a 
GETMAIN command, the NOSTG exceptional 
condition will. occur. 

Exceptional conditions that occur during execution 
of a storage control command are handled as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

Obtain' and Initialize Main 
Storage (GETMAIN) 

This command is used to obtain a specified amount 
of main storage and, optionally, to initialize that 
storage to a specified bit configuration. The 
pointer reference specified in the SET option is set 
to the address of the acquired storage. The 
acquired storage is doubleword-aligned. 

GETMAIN 
SETCptr-ref) 
(lENGTHCdata-value)I 

FlENGTHCdata-value)} 
[INITIMGCdata-value)1 
[NOSUSPENDl 

Conditions: lENGERR, NOSTG 

Storage should be released when no longer needed; 
it will then be available to other tasks. Other 
storage not released will be released by CICS when 
the task is terminated. 

The LENGTH and FLENGTH options are 
mutually exclusive. 

The following example shows how to obtain a 
l024-byte area of main storage. You should 
declare OI,ANK in your program as a character 
representing a space. 

EXEC CICS GETMAIN SETCPTR) 
lENGTHCI024) INITIMGCBlANK) 

Release I\1ain Storage 
(FREEMAIN) 

I FREEHAIN 
DATACdata-area) 

This command is used to release main storage 
previously acquired by a GETMAIN command. If 
the task itself does not release the acquired storage, 
it is released by CICS when the task is tenninated. 

Chapter 4.5. Storage Control 365 



The following example shows how to release main 
storage: 

EXEC CICS FREEMAIN DATA(RECORD) 

Storage Control Options 

DATA(data-area) 
specifies that the main storage associated with 
the data area is to be released. This storage 
must have been acquired previously by a 
GETMAIN command and the length of data 
released will be the length obtained by the 
GETMAIN and not necessarily the length of 
the data area. 

FLENGTH( data-value) 
specifies the length of main storage required 
as a fullword binary value. The maximum 
length that you can specify is 65,504 bytes. 

FLENGTH and LENGTH are mutually 
lexclusive. 

INmMG(data-value) 
specifies the one-byte hexadecimal 
:initialization value for the acquired main 
storage. In COBOL programs, a data value 
Icannot be used. Instead the option should 
name a one byte data area containing the 
value. 

LENGTH( data-value) 
specifies the length of main storage required 
as a halfword binary value. The maximum 

length that you can specify is 32767 bytes. If 
you want to specify anything greater, use 
PLENGTH. 

LENGTH and FLENGTH are mutually 
exclusive. 

NOSUSPEND 
specifies that application program suspension 
for the NOSTG condition is to be inhibited. 
This condition will be handled as described 
on page 31. 

SET(ptr-ref) 
specifies the pointer reference to be set to the 
address of the acquired main storage. The 
pointer reference addresses the user data, and 
not the CICS control information that 
precedes the acquired main storage. 

Storage Control Exceptional 
Conditions 

LENGERR 
occurs if the value specified for FLENGTH 
exceeds the maximum length. 

Default action: terminate the task abnormally. 

NOSTG 
occurs if the requested main storage cannot 
be obtained. 

Default action: suspend task activity until the 
required main storage can be provided. 

366 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 4.6. Transient Data Control 

The CICS transient data control program provides 
a generalized queuing facility. Data can be queued 
(stored) for subsequent internal or external 
processing. Selected data, specified in the 
application program, can be routed to or from 
predefmed symbolic destinations, either 
intrapartition or extrapartition. 

Destinations are intrapartition if associated with a 
facility allocated to the CICS partition. 

Destinations are extrapartition if the data is 
directed to a destination that is external to the 
CICS partition. 

The destinations must be defmed in the destination 
control table (the DCT) by the system programmer 
when the CICS system is generated. 

Transient data control commands are provided to: 

• Write data to.a transient data queue (WRITEQ 
TD). 

• Read data from a transient data queue 
(READQ TD). 

• Delete an intrapartition transient data queue 
(DELETEQ TD). 

If TD is omitted, the command is assumed to be 
for temporary storage (see "Chapter 4.7. 
Temporary Storage Control" on page 373). 

Exceptional conditions that occur during execution 
of a transient data control command are handled as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

Intrapartition Destinations 

Intrapartition destinations are queues of data on 
direct-access storage devices for use with one or 
more programs running as separate tasks. Data 
directed to or from these internal destinations is 
called intra partition data; it must consist of 
variable-length records. 

Intrapartition destinations can be associated with 
either a terminal or an output data set. 
Intrapartition data may ultimately be transmitted 
upon request to the destination terminal or 
retrieved sequentially from the output data set. 

Typical uses of intrapartition data include message 
switching, broadcasting, data base access, and 
routing of output to several terminals (for example, 

. for order distribution), queuing of data (for 
example, for assignment of order numbers or 
priority by arrival), and data collection (for 
example, for batched input from 2780 Data 
Transmission Terminals). 

The storage associated with an intrapartition queue 
can be reused. The system programmer can 
specify, for each symbolic destination, whether or 
not storage tracks are to be reused as the data on 
them is read. 

If the storage is specified to be nonreusable, an 
intrapartition queue continues to grow, irrespective 
of whether the data has been read, until a 
DELETEQ TD command is issued when the 
whole of an intrapartition queue is deleted and the 
storage associated with it is released. 

Chapter 4.6. Transient Data Control 367 



Extral()artition Destinations 

Extrapartition destinations are queues (data sets) 
residing on any sequential device (DASD, tape, 
printer, and so on), which are accessible by 
programs outside (or within) the CICS partition. 
In general, sequential extrapartition destinations are 
used for storing and retrieving data outside the 
CICS partition. 

For example, one task may read data from a 
remote terminal, edit the data, and write the results 
to a data set for subsequent processing in another 
partition. Logging data, statistics, and transaction 
error rnessages are examples of data that can be 
written to extrapartition destinations. In general, 
extrapartition data created by CICS is intended for 
subsequent batched input to non-CICS programs. 
Data can also be routed to an output device such 
as a line printer. 

Data directed to or from an external destination is 
called extrapartition data and consists of sequential 
records that are fixed-length or variable-length, 
blocked or unblocked. The record format for an 
extrapartition destination must be defmed in the 
DCT lby the system programmer. (Refer to the 
GIGS/DOS / VS Resource Definition (Macro) 
manual for details.) 

Indirec~t Destinations 

intrapartition and extrapartition destinations can be 
used as indirect destinations. Indirect destinations 
provide some flexibility in program maintenance in 
that data can be routed to one of several 
destinations with only the DCT, not the program, 
having; to be changed. 

When the DCT has been changed, application 
programs continue to route data to the destination 
using the original sYlnbolic name; however, this 
name is now an indirect destination that refers to 
the new symbolic name. 

Since indirect destinations are established by means 
of nCT table entries, the application programmer 
need not usually be concerned with how this is 
done. Further information is available in the 

CICS/DOS/VS Resource Definition (Macro) 
manual. 

Automatic Task Initiation (ATI) 

For intrapartition destinations, CICS provides the 
option of automatic task initiation. A basis for 
automatic task initiation is established by the 
system programmer by specifying a nonzero trigger 
level for a particular intrapartition destination in 
the DCT. (See the discussion of the DFHDCT 
TYPE= INTRA macro in the GIGS/DOS/VS 
Re.c:ource Definition (Macro) manual.) 

When the number of entries (created by WRITEQ 
TD commands issued by one or more programs) in 
the queue (destination) reaches the specified trigger 
level, a task specified in the defmition of the 
destination is automatically initiated. Control is 
passed to a program that processes the data in the 
queue; the program must issue repetitive READQ 
TD commands to deplete the queue. 

Once the queue has been depleted, a new 
automatic task initiation cycle begins. That is, a 
new task is scheduled for initiation when the 
specified trigger level is again reached, whether or 
not execution of the prior task has terminated. 

If an automatically initiated task does not deplete 
the queue, access to the queue is not inhibited. 
The task may be normally or abnormally 
terminated hefore the queue is emptied (that is, 
before a QZERO exceptional condition occurs in 
response to a READQ TD command). 

If the destination is a terminal, the same task is 
reinitiated regardless of the trigger level. 

If the destination is a data set, the task is not 
reinitiated until the specified trigger level is reached. 
If the trigger level of a queue is zero, no task is 
automatically initiated. 

To ensure that termination of an automatically 
initiated task occurs when the queue is empty, the 
application program should test for a QZERO 
condition rather than for some 
application-dependent factor such as an anticipated 
number of records; only the QZERO condition 
indicates a depleted queue. 

368 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Write Data to Transient Data 
Queue (WRITEQ TD) 

WRITEQ TD 
QUEUE(name) 
FROM(data-area) 
[LENGTH(data-value)] 
[SYSID(name)] 

Conditions: IOERR, IsciNVREQ, 
LENGERR, NOSPACE, NOTAUTH, NOTOPEN, 
QIDERR, SYSIDERR 

This command is used to write transient data to a 
predefmed symbolic destination. The destination 
(queue) is identified in the QUEUE option. 

The FROM option specifies the data to be written 
to the queue. 

The LENGTH option specifies the record length. 

The LENGTH option need not be specified for 
extrapartition queues of fixed-length records if the 
length is known and a data area of the correct size 
is available. 

If SYSID is specified, LENGTH must be specified 
as well. 

The LENGTH option must be specified for a 
destination other than disk; length is not checked. 
If LENGTH is omitted, the LENGERR condition 
will occur. 

The following example shows how to write data to 
a predefmed symbolic destination; in this case, the 
control system message log (CSML): 

EXEC CICS WRITEQ TD 
QUEUE('CSML') 
FROM(MESSAGE) 
LENGTH(LENG) 

Read Data from Transient Data 
Queue (READQ TD) 

This command is used to read transient data from a 
predefined symbolic source. The source (queue) is 
identified in the QUEUE option. 

READQ TD 
QUEUE(name) 
(INTO(data-area)ISET(ptr-ref)} 
[LENGTH(data-area)] 
[SYSID(name)] 
[NOSUSPEND] 

Conditions: IOERR, ISCINVREQ, 
LENGERR, NOTAUTH, NOTOPEN, QBUSY, 
QIDERR, QZERO, SYSIDERR 

The I NTO option specifies the area into which the 
data is to be placed. The LENGTH option must 
specify a data area that contains the maximum 
length of record that the program will accept. If 
the record exceeds this value, it is truncated and the 
LENGERR condition occurs. After the retrieval 
operation, the data area specified in the LENGTH 
option is set to the record length (before any 
truncation occurred). The LENGTH option need 
not be specified for extrapartition queues of 
fixed-Icngth records if the length is known and a 
data area of the correct size is available. If SYSID 
is specified, LENGTH must be specified as well. 

Alternatively, a pointer reference can be specified in 
the SET option. CICS then acquires an area large 
enough to hold the record and sets the pointer 
reference to the address of that area. The area is 
retained until another transient data command is 
executed. After the retrieval operation, the data 
area specified in the LENGTH option is set to the 
record length. 

If automatic task initiation is being used (see 
"Automatic Task Initiation (ATI)" on page 368, 
the HANDLE CONDITION QZERO command 
should be included to ensure that termination of an 
automatically initiated task only occurs when the 
queue is empty. 

The LENGTH option must be specified for a 
destination other than disk, when the INTO option 

Chapter 4.6. Transient Data Control 369 



is sp(lcified. If the LENGTH option is omitted, the 
LENGERR condition will occur. 

The following example shows how to read a record 
from an intrapartition data set (queue), which in 
this case is the control system message log 
(CSl\1L), into a data area specified in the request: 

EXEC CICS READQ TD 
QUEUEC'CSML') 
INTOCDATA) 
LENGTHCLENG) 

The 1ollowing example shows how to read a record 
from an extrapartition data set (queue) having 
fixed·length records into a data. area provided by 
CICS; the pointer reference specified by the SET 
option is set to the address of the storage area 
reserved for the data record. It is assum(!d that the 
record length is known. 

EXEC CICS READQ TD 
QUEUECEXl) 
SETCPREF) 

Delete an Intrapartition Transient 
Data Queue (DELETEQ TD) 

DEILETEQ TD 
QUIEUECname) 
[S'YSIDCname)] 

Conditions: ISCINVREQ, NOTAUTH, 
QIDERR, SYSIDERR 

This lcommand is used to delete all of the transient 
data associated with a particular intrapartition 
destination (queue). All storage associated with the 
destination is released (deallocated). 

This command must be used to release the storage 
associated with a destination specified as 
nonre:usable in the OCT. Otherwise, the storage 
remains allocated to the destination; the data and 
the alnount of storage associated with the 
destination continue to grow whenever a WRITEQ 
TO command refers to the destination. 

Transient Data Control Options 

FR OM( data-area) 
specifies the data that is to be written to the 
transient data queue. 

INTO( data-area) 
specifies the user data area into which the 
data read from the transient. data queue is to 
be placed. If this option is specified, 
move-mode access is implied. 

LENGTH(parameter) 
specifies a halfword binary value to be used 
with WRITEQ TO and REAOQ TO 
commands. 

For a WRITEQ TO command, the 
parameter must be a data value that is the 
length of the data that is to be written. 

For a REAOQ TO command with the 
INTO option, the parameter must be a data 
area that specifies the maximum length of 
data that the program is prepared to handle. 
If the value specified is less than zero, zero is 
assumed. If the length of the data exceeds 
the value specified, the data is .truncated to 
that value and the LENGERR condition 
occurs. On completion of the retrieval 
operation, the data area is set to the original 
length of the data. 

For a REAOQ TO command with the SET 
option, the parameter must be a data area. 
On completion of the retrieval operation, the 
data area is set to the length of the data. 

NOSUSPENI> 
specifies that application program suspension 
for the QBUSY condition is to be inhibited. 
This condition will be handled as described 
on page 31. 

QUEUE(name) 
specifies the symbolic name of the queue to 
be written to, read from, or deleted. The 
name must be alphanumeric, up to four 
characters in length, and must have been . 

370 CICS/DOSjVS Application Programmer·s Reference Manual (Command Level) 



dermed in the OCT by the system 
programmer. 

When used with the READQ TO command, 
the name used should not be that of the 
system spool rue otherwise unpredictable 
results or an abnormal termination will occur. 

If SYSID is specified, the data set is assumed 
to be on a remote system irrespective of 
whether or not the name is dermed in the 
OCT. Otherwise the entry in the OCT will 
be used to determine if the data set is on a 
local or remote system. 

SET(ptr-ref) 
specifies a pointer reference that is to be set 
to the address of the data read from the 
queue. If this option is specified, 
locate-mode access is implied. 

SYSID(name) remote systems only 
specifies the name of the system whose 
resources are to be used for 
intercommunication facilities. The name can 
be up to four characters in length. 

Transient Data Control 
Exceptional Conditions 

IOERR 
occurs when an input/output error occurs and 
the data record in error is skipped. Also 
occurs for an extrapartition destination if the 
data length does not match the size specified 
in the RECSIZE operand of the DFHDCT 
TYPE = SDSCI system macro. 

Also occurs for an intrapartition destination if 
the data length exceeds the maximum 
permissible length for an intrapartition data 
set. 

This condition occurs so long as the queue 
can be read; a QZERO condition occurs 
when the queue cannot be read, in which case 
a restart may be attempted. 

Default action: terminate the task abnormally. 

ISCINVREQ 
occurs when the remote system indicates a 
failure which does not correspond to a known 
condition. 

Default action: terminate the task abnormally. 

l.ENGERR 
occurs in any of the following situations: 

• The LENGTH option is not coded for 
an input (without the SET option) or 
output operation involving 
variable-length records. 

• The length specified on output is greater 
than the maximum record size specified 
for the queue in the OCT. 

• The record read from a queue is longer 
than the length specified for the input 
area; the record is truncated and the data 
area supplied in the LENGTH option is 
set to the actual record size. 

• An incorrect length is specified for an 
input or output operation that involves 
fixed-length records. 

• The LENGTH option is not coded for 
an input operation (without the SET 
option) from, or an output operation to, 
a destination other than disk, involving 
fixed-length records. 

Default action: terminate the task abnormally. 

NOSPACE 
occurs if no more space exists on the 
intrapartition queue. When this happens, no 
more data should be written to the queue 
because it may be lost. 

Default action: terminate the task abnormally. 

NOTAUTH 
occurs when a resource security check has 
failed. Use of SYSID will always raise the 
NOTAUTH condition when resource 
security level checking is in effect 

Chapter 4.6. Transient Data Control 371 



(RSLC= YES in the PCT). The reasons for 
the failure are the same as for abend code 
AEY7, as described in the CICS/DOS/VS 
llJ essages and Codes manual. 

Default action: tenninate the task abnormally. 

NOTOPEN 
occurs if the destination is closed. 

Default action: tenninate the task abnormally. 

QBUSY 
occurs if a READQ TD command attempts 
to access a record in an intrapartition queue 
that is being written to or is being deleted by 
another task. This condition applies only to 
input; output requests are always queued 
until the intrapartition queue is no longer 
busy. 

Default action: the task issuing the READQ 
TD command waits until the queue is no 
longer being used for output. 

However, the NOSUSPEND option (see 
above) overrides this default action. 

QIDERR 
occurs if the symbolic destination to be used 
with a transient data control command 
cannot be found. 

Default action: terminate the task abnormally. 

QZERO 
occurs when the destination (queue). accessed 
by a READQ TD cOrnrrland is empty. 

Default action: terminate the task abnormally. 

SYSIDERR 
occurs when the SYSID option specifies 
either a name which is not defmed in the 
intersystem table, or a system to which the 
link is closed. 

Default action: terminate the task abnormally. 

372 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 4.7. Temporary Storage Control 

The CICS temporary storage control program 
provides the appli'cation programnier with the 
ability to store data in temporary storage queues, 
either in triam storage, or in auxiliary storage on a 
direct-access storage device. Data stored in a 
temporary storage queue. is known as temporary 
data.' . " 

Temporary' storage' control commands are provided 
to: 

• Write data to a temporary storage queue 
(WRITEQ TS). 

• Update data in a temporary storage queue 
(WRITEQ TS REWRITE). 

• Read data from a temporary storage queue 
(READQ TS). 

• Delete a temporary storage queue (DELETEQ 
TS). 

If TS is omitted, the command is assumed to be for 
temporary storage, not for transient data which has 
similar commands. 

Exceptional conditions that occur during execution 
of a temporary storage control command are 
handled as described in "Chapter 1.5. Exceptional 
Conditions" on page 31. 

Temporary Storage Queues 

Temporary storage queues are identified by 
symbolic names of up to eight characters assigned 
by the originating task. Temporary data can be 
retrieved by the originating task or by any other 
task using the symbolic name assigned to it. 
Specific items (logical records) within a queue are 
referred to by relative position numbers. To avoid 

conflicts caused by duplicate names, a naming 
convention should be established, for example, the 
operator identifier, tenninal identifier, or 
transaction identifier could be used as a prefix or 
suffix to each programmer-supplied symbolic name. 

Temporary storage queues remain intact until they 
are deleted by the originating task or by any other 
task; prior to deletion, they can be accessed any 
number of times. Even after the originating task is 
terminated, temporary data can be accessed by 
other tasks through references to the symbolic 
name under which it is stored. 

Temporary data can be stored either in main 
storage or in auxiliary storage. Generally, main 
storage should be used if the data is needed for 
short periods of time; auxiliary storage should be 
used if the data is to be kept for long periods of 
time. Data stored in auxiliary storage is retained 
after CICS termination and can be recovered in a 
subsequent restart, but data in main storage cannot 
be recovered. Main storage might be used to pass 
data from task to task, or for unique storage that 
allows programs to meet the requirement of CICS 
that they be quasi-reentrant (that is, serially 
reusable between entry and exit points of the 
program). 

Typical Uses of Temporary Storage Control 

A temporary storage queue having only one record 
can be treated as a single unit of data that can be 
accessed using its symbolic name. Using temporary 
storage control in this way provides a typical 
"scratch pad" capability. This type of storage 
should be accessed using the READQ TS 
command with the ITEM( I) option; failure to do 
so may cause the ITEMERR condition to be 
raised. 

Chapter 4.7. Temporary Storage Control 373 



In gem~ral, temporary storage queues of more than 
one record should be used only when direct access 
or repeated access to records is necessary; transient 
data control provides facilities for efficient handling 
of sequential data sets. 

Some uses of temporary storage queues folllow: 

• Terminal paging. A task could retrieve a large 
rnaster record from a direct-access data set, 
format it into several screen images (using basic 
mapping support), store the screen images 
tenlporarily in auxiliary storage, and then ask 
the terminal operator which "page" (sc,'1'een 
image) is desired. The application programmer 
cant provide a program (as a generalized routine 
or unique to a single application) to advance 
page by page, advance or back up a relative 
nmnber of pages, and so on. 

• A suspend data set. Assume a data collection 
task is in progress at a terminal. The task reads 
one or more units of input and then allows the 
tenninal operator to interrupt the process by 
some kind of coded input. If not interrupted, 
the task repeats the data collection process. If 
intt~rrupted, the task writes its "incomplete" 
data to temporary storage and terminates. The 
tenninal is now free to process a different 
transaction (perhaps a high-priority inquiry). 
When the tenninal is available to continue data 
coUection, the operator initiates the task in a 
"resume" mode, causing the task to recall its 
suspended data from temporary storage and 
continue as though it had not been interrupted. 

• Preprinted fonns. An application program can 
accept data to be written as output on a 
preprinted fonn. This data can be stored in 
temlporary storage as it arrives. When all the 
data has been stored, it can frrst be validated 
and. then transmitted in the order required by 
the fonnat of the preprinted fonn. 

Write Data to a Temporary 
Storage Queue (WRITEQ TS) 

WRITEQ TS 
QUEUECname) 
FROMCdata-area) 
[LENGTHCdata-value)] 
[ITEMCdata-area)[REWRITE]] 
[SYSIDCname)] 
[MAINIA~XI~IARY] 
[NOSUSP ND 

Conditions: INVREQ, IOERR, 
ISCINVREQ, ITEMERR, NOSPACE, 
NOTAUTH, QIDERR, SYSIDERR 

This command is used to store temporary data 
(records) in a temporary storage queue in main or 
auxiliary storage. 

If you use the MAIN option on this command to 
write data to a temporary storage queue on a 
remotc systcm, the data is stored in main storage 
provided that the remote system is accessed by the 
CICS multi region operation (MRO) facility and 
that the remote system is at the same release level 
as the requesting system. If these conditions are 
not met, the data is stored in auxiliary storage. 

The queue is identified in the QUEUE option. 
The PROM and LENGTH options are used to 
specify the record that is to be written to the queue, 
and its length. 

If the ITEM option is specified, CICS assigns an 
item number to the record in the queue, and sets 
the data area supplied in that option to the item 
number. If the record starts a new queue, the item 
number assigned is 1; subsequent item numbers 
follow on sequentially. 

The REWR ITE option specifies that records are to 
be updated, in which case the ITEM option must 
also be specified to identify the item (record) that is 
to be replaced by the data identified in the PROM 
option. If the specified queue exists, but the 
specified item cannot be found, the ITEMERR 
condition occurs. If the specified queue does not 
exist, the QIDERR condition occurs. 

374 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



The following example shows how to write a 
record to a temporary storage queue in auxiliary 
storage: 

EXEC CICS WRITEQ TS 
QUEUECUNIQNAME) 
FROMCMESSAGE) 
LENGTHCLENGTH) 
ITEMCDREF) 

The following example shows how to update a 
record in a temporary storage queue in main 
storage: 

EXEC CICS WRITEQ.TS 
QUEUEC'TEMPQl') 
FROMCDATAFLD) 
LENGTH(40) 
ITEMCITEMFLD) 
REWRITE 
MAIN 

Read Data from Temporary 
Storage Queue (READQ TS) 

READQ T9 
QUEUEC name) 
(INTOCdata-area)ISETCptr-ref)} 
[LENGTHCdata-area)] 
[NUMITEMSCdata-area)] 
[ITEMCdata-value)IHfXI] 
[SYSIDCname)] 

Conditions: INVRE~, IOERR, 
ISCINVREQ, ITEMERR, LENGERR, 
NOTAUTH, QIDERR, SYSIDERR 

This command is used to retrieve data from a 
temporary storage queue in main or auxiliary 
storage. The queue is identified in the QUEUE 
option. 

The INTO option specifies the area into which the 
data is to be placed. The LENGTH option must 
specify a data area that contams the maximum 
length of record that the program will accept. If 
the recqrd length exceeds the specified maximum 
length, it is truncated and the LENGERR 
condition occurs. After the retrieval operation, the 
data area specified in the LENGTH option is set to 
the record length (before any truncation occurred). 

Alternatively, a pointer reference can be specified in 
the SET option. CICS then acquires an area large 
enough to hold the record and sets the pointer 
reference to the address of the record. The area is 
retained until another READQ TS command is 
exec;uted. After the retrieval operation, the data 
area specified in the LENGTH option is set to the 
record length. 

The ITEM and NEXT options are used to specify 
which record (item) within a queue is to be read. 
If the ITEM option is specified, the record with the 
specified item number is retrieved. If the NEXT 
option is in effect (either explicitly or by default), 
the nex.t record after the last record to be retrieved 
(by any ta..r,k) is retrieved. Therefore, if different 
tasks are to access the same queue and each task is 
to start at the beginning of the queue, the ITEM 
option must be used. 

The following example shows how to read the f11'st 
(or only) record from a temporary storage queue 
into a data area specified in the request: 

EXEC CICS READQ TS 
QUEUECUNIQNAME) 
INTOCDATA) 
lENGTHClDATA) 

The following example shows how to read the next 
record from a temporary storage queue into a data 
area provided by CICS; the pointer reference 
specified by the SET option is set to the address of 
the storage area reserved for the data record. 

EXEC CICS READQ TS 
QUEUECDESCRQ) 
SET(PREF) 
lENGTH(lENG) 
NEXT 

Delete Temporary Storage Queue 
(DELETEQ TS) 

DELETEQ T9 
QUEUE(name) 
[SYSIDCname)] 

Conditions: ISCINVREQ, NOTAUTH, 
QIDERR, SYSIDERR 

Chapter 4.7. Temporary Storage Control 375 



This command is used to delete all the temporary 
data associated with a temporary storage queue. 
All storage associated with the queue is freed. 

Temporary data should be deleted at the earliest 
possible time to avoid using excessive amounts of 
storage. . 

Tenlporary Storage Control 
Options 

AUXILIARY 
specifies that the temporary storage queue i$ 
on a direct-access storage device in auxiliarY 
storage. : 

FRO~rf(data-area) 

specifies the data that is to be written to 
temporary storage. 

INTO( data-area) 
specifies the data area into which the data is 
to be written. The data area may be any 
variable, array, or structure. If this option is 
specified, move-mode access is implied. 

ITEM:(parameter) 
specifies a halfword binary value to be used 
with WRITEQ TS and READQ TS 
commands. 

~When used with a WRITEQ TS command in 
which the REWRITE option is not specifie(i, 
"parameter" must be a data area that is to be 
set to the item (record) number assigned to ' 
this record in the queue. If the REWRITE' 
option is specified, the data area specifies the 
item in the queue that is to be replaced. 

'Nhen used with a READQ TS corrunand, ' 
"parameter" specifies the item number of th~ 
logical record to be retrieved from the queuq. 
The parameter must be a data value that is to 
be taken as the relative number of the 10gicaJ. 
record to be retrieved. This number may be 
the number of any item that has been written 
to the temporary storage queue. 

LENGTH(parameter) 
specifies the length (as a halfword binary 
value) of the data to be used with WRITEQ 
TS and READQ TS commands. 

For a WRITEQ TS command, the parameter 
must be a data value that is the length of the 
data that is to be written. 

For a READQ TS command with the INTO 
option, the parameter must be a data area 
that specifies the maximum length of data 
that the program is prepared to handle. If the 
value specified is less than zero, zero is 
assumed. If the length of the data exceeds 
the value specified, the data is truncated to 
that value and the LENGERR condition 
occurs. On completion of the retrieval 
operation, the data area is set to the original 
length of the data. 

For a READQ TS command with the SET 
option, the parameter must be a data area. 
On completion of the retrieval operation, the 
data area is set to the length of the data. 

MAIN 
specifies that the temporary storage queue is 
in main storage. 

NEXT 
specifics that the next sequential logical 
record following the last record to be 
retrieved (by any task) is to be retrieved. 

NOSUSPEND 
specifies that application program suspension 
for the NOSPACE condition is to be 
inhibited. This condition will be handled as 
described on page 31. 

NUMITEMS 
specifies a halfword binary field into which 
CICS stores a number indicating how many 
items there are in the queue. 

QUEUE(name) 
specifies the symbolic name of the queue to 
be written to, read from, or deleted. If the 
queue name appears in the TST, and the 
entry is marked as remote, the request is 

376 CICSjDOSjVS Application Programmerts Reference Manual (Command Level) 



shipped to a remote system. The name must 
be alphameric, up to eight characters in 
length, and must be unique within the CICS 
system. Do not use hexadecimallFA' 
through IFF' as the frrst character of the 
name; these characters are reserved for CICS 
use. 

REWRITE 
specifies that the existing record in the queue 
is to be overwritten with the data provided. 
If the REWRITE option is specified, the 
ITEM option must also be specified. If the 
specified queue does not exist, the QIDERR 
condition occurs. If the correct item within 
an existing queue cannot be found, the 
ITEMERR condition occurs but the data is 
not stored. 

SET(ptr-ref) 
specifies the pointer reference that is to be set 
to the address of the retrieved data. If this 
option is specified, locate-mode access is 
implied. 

SYSID(name) (remote systems only) 
specifies the name of the system whose 
resources are to be used for 
intercommunication facilities. The name can 
be up to four characters in length. 

Temporary Storage Control 
Exceptional Conditions 

INVREQ 
occurs when a WRITEQ TS command refers 
to data whose length is zero, or when a 
WRITEQ TS command specifies a queue 
which is locked and awaiting ISC session 
recovery. (Refer to the appropriate 
CICS/DOS/VS Installation and Operations 
Guide for details.) This condition occurs also 
for a READQ TS or DELETEQ TS 
command when the record to be retrieved has 
been created by a DFHTS TYPE = PUT 
macro. 

Default action: terminate the task abnormally. 

IOERR 
occurs when there is an unrecoverable 
input/output error. 

Default action: terminate the task abnormally. 

ISCINVREQ 
occurs when the remote system indicates a 
failure which does not correspond to a known 
condition. 

Default action: terminate the task abnormally. 

ITEMERR 
occurs when the item number specified or 
implied by a READQ TS command, or a 
WR ITEQ TS command with the REWRITE 
option, is invalid (that is, outside the range of 
entry numbers assigned for the queue). 

Default action: terminate the task abnormally. 

IJENGERR 
occurs if the length of the stored data is 
greater than the value specified by the 
I J~NGTH option for move-mode input 
operations. 

Default action: terminate the task abnormally. 

NOSI)ACE 
occurs when insufficient space is available in 
the temporary storage data set to contain the 
data. 

Default action: suspend the task until space 
becomes available as it is released by other 
tasks; then return normally. 

NOTAUTH 
occurs when a resource security check has 
failed. Use of SYSID will always raise the 
NOTA UTH condition when resource 
security level checking is in effect 
(RSLC= YES in the peT). The reasons for 
the failure are the same as for abend code 
AEY7, as described in the CICS/DOS/VS 
Messages and Codes manual. 

Default action: terminate the task abnormally. 

Chapter 4.7. Temporary Storage Control 377 



QIDERR 
occurs when the queue specified by a 
READQ TS command, or by a WRITEQ 
1'S command with the REWRITE option 
cannot be found, either in main storage or in 
auxiliary storage. 

Default action: terminate the task abnormally. 

SYSII)ERR 
occurs when the SYSID option specifies 
either a name which is not dermed in the 
intersystem table, or a system to which the 
link is closed. 

Default action: terminate the task abnormally. 

378 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Part 5. Recovery and Debugging 

Chapter 5.1. Introduction to Recovery and Debugging ..........•..... 381 

Chapter 5.2. Abnormal Termination Recovery ...................... 385 

Chapter 5.3. Trace Control ................................... 389 

Chapter 5.4. Dump Control 395 

Chapter 5.5. Journal Control ............................•..... 399 

Chapter 5.6. Recovery (Sync Points) .......................•.... 405 

Part 5. Recovery and Debugging 379 





Chapter 5.1. Introduction to Recovery and Debugging 

CICS application programs are executed in an 
interactive environment. As a result, the operating 
system, CICS itself, and the application programs 
must be responsive to many factors. Because the 
network on which the CICS system is based 
consists of a variety of terminals and subsystems 
from which requests for services are received at 
random, the relationships between application 
programs and data set activity differ from one 
moment to the next. 

CICS provides the following aids to the testing, 
monitoring, and debugging of application 
programs: 

• Execution (Command Level) Diagnostic 
Facility (EDF). Allows commands to be 
displayed in source form on a screen, both 
before and after execution so that they can be 
checked and altered if necessary. This facility is 
described in "Chapter 1.7. Execution 
(Command Level) Diagnostic Facility" on 
page 49. 

• Sequential terminal support. Enables 
sequential devices, such as card readers and 
disk units, to simulate online interactive 
terminals or subsystems of a CICS network so 
that early testing can be carried out. 

• Abnormal termination recovery. The 
HANDLE ABEND command can be used to 
deal with abnormal termination conditions, and 
the ABEND command can be used to cause a 
task to he terminated abnormally. 

• Trace facility. A trace table containing entries 
that reflect the execution of various CICS 
commands, and entries generated by 
application programs, can be written to main 

storage and, optionally, to an auxiliary storage 
device. 

• Dump facility. Specified areas of main storage 
can be dumped onto a sequential data set, 
either tape or disk, for subsequent off-line 
formatting and printing using a CICS utility 
program. 

• Journals. Facilities are provided for creating 
entries in Cljournals". A journal is a set of 
special-purpose sequential data sets, which are 
used for statistical or monitoring purposes; for 
example, the system log is a journal. 

• Recovery. When a task is abnormally 
terminated, CICS can restore certain resources 
to their original state so that a transaction can 
he resubmitted for restart with no further 
action by the operator. The SYNCPOINT 
command can be used to subdivide a program 
so that only the uncompleted part of a 
transaction need be resubmitted. 

Sequential terminal support, for which no special 
CICS commands are required, is described below. 
The othcr facilities, and the commands that enable 
the application programmer to make use of them, 
are discussed in the other chapters of this part. 

Sequential Terminal Support 

Even at the simplest level of program testing, the 
programmer should take the following into 
consideration. It is inefficient and error-prone to 
test a program from a terminal if all test data must 
he keyed into the system from that terminal for 
each test case. The programmer cannot easily 
retain a backlog of proven test data and quickly test 

Chapter 5.1. Introduction to Recovery and Debugging 381 



programs through the key-driven tenninal as 
change:s are made. 

CICS allows the application programmer to test a 
program without the use of a telecommunication 
device. It is possible for the system programmer to 
specify through the tenninal control table (TCT) 
that sequential devices be used as tenninals. These 
sequential devices may be card readers, line 
printers, disk units, or magnetic tape units. In fact, 
the tenninal control table can include combinations 
of sequential devices such as: card reader and line 
printer (CRLP), one or more disk or tape data sets 
as input, one or more disk or tape data sets as 
output.. A TCT that contains references to these 
sequential tenninals can also defme other true 
teleconnnunications terminals in the system. 

The input data submitted from a sequential device 
must be prepared in the form in which it would 
come from a telecommunication device. The input 
data must start with a transaction identification 
code of up to four characters, unless the transaction 
identification is predefmed in the TCT. If there is 
more data, and the transaction identification code 
has less: than four characters, a system-defmed 
transaction code delimiter or a blank must precede 
the extra data. . 

If a sequential device is being used as a tenninal, an 
end-of-data indicator (a 0-2-8 punched card code 
(X'EO') or the equivalent as specified when the 
CICS system is generated) must follow the input 
messag(~ or the system-defmed data termination 
character. The input is processed sequentially and 
must b(~ unblocked. The seql,lential access method 
(SAM) is used to read and write the necessary 
inputs and outputs. The operating system utilities 
can be used to create the input data sets and print 
the output data sets. (If running sequential support 
on FBA devices under VSE, the user must employ 
LI OCS:1 because no utility exists for this 
environment. ) 

Using this approach, it is possible to prepare a 
stream of transaction test cases to do the basic 
testing of a program module. As the testing 
progresses, the user can generate additional 
transaction streams to validate the 
multiprogramming capabilities of the programs or 

to allow transaction test cases to be run 
concurrently. 

For operational convenience, it is usually 
appropriate to place a tenninating transaction at 
the end of each input stream. For tests that use a 
single input stream, the transaction can be CSMT 
SHUTDOWN with appropriate responses 
following the initial message to respond to the 
CSMT queries about the mode of shutdown. In a 
batch-only testing environment, this enables CICS 
to be terminated in an orderly manner without 
operator intervention. 

Where more than one sequential input stream is 
used, only one should include the CSMT 
SHUTDOWN transaction. Others can be 
terminated with CSSF GOODNIGHT. 

At some polnt in testing, it is necessary to use 
telecommunication devices to ensure that the 
transaction formats are satisfactory, that the 
terminal operational approach is satisfactory, and 
that the transactions can be processed on the 
terminal. The terminal control table can be altered 
to contain more and different devices as the testing 
requirements change. 

When testing has proved that transactions can be 
processed concurrently and the necessary data sets 
(actual or duplicate) for online operation have been 
created, the user begins testing in a controlled 
environment with the telecommunication devices. 
In this controlled environment, the transaction test 
cases should represent all functions of the eventual 
system, but on a smaller, measurable scale. For 
example, a company whose information system will 
work with 15 district offices may select one district 
office for the controlled test. During the controlled 
test, all transactions, data set activity, and output 
activity from the system should be monitored 
closely. 

Requests for input or output from a sequential 
terminal are expressed by means of terminal control 
commands in the normal way. Inr~sponse to a 
RECEIVE command, where the terminal has been 
described in the terminal control table as a CRLP, 
DISK, or TAPE terminal, data is read from the 
input data set until anyone of the following 
situations occurs: 

382 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



• An end-of-data indicator is detected in the 
input stream. (The indicator must be defmed 
by the user when the CICS system is 
generated. ) 

• Sufficient input has been read to fill the input 
area associated with the line used for 
transmission. If an end-of-data indicator is not 
detected before the input area is filled, all 
further data preceding an end-of-data indicator 
is bypassed and treated as a system error, which 
is passed to the user-installation terminal error 
program (DFHTEP). 

• End-of-fue (EOF) is detected. (EOF applies 
only to a card reader.) The input operation is 
considered complete. Any subsequent 
RECEIVE command is treated as a system 
error, which is passed to the user-installation 
terminal error program (DFHTEP) with a 
response code of 4. 

In response to a SEND command for a CRLP 
terminal, lines are written in print format as 
follows: 

• If there is no new-line (X'IS') character within 
the number of characters contained in one print 
line of the specified line size (as defmed by the 
system programmer in the LPLEN option of 
the DFIITCT TYPE = TERMINAL macro), 
the output is written in fixed-length lines of the 
size specified. 

• If new-line characters are encountered, a new 
line is begun for each one. 

Writing of output continues until the end of the 
user data is reached. For more information about 
terminal control commands, refer to "Chapter 3.3. 
Terminal Control" on page 239. 

Chapter 5.]. Introduction to Recovery and Debugging 383 





Chapter 5.2. Abnormal Termination Recovery 

During abnormal termination of a task, a 
program-level abend exit facility is provided in 
CICS so that you can include an exit routine of 
your own that can be executed when required. An 
example of a function performed by such a routine 
is the "cleanup" of a program that has started but 
not completed normally. 

The HANDLE ABEND command activates or 
reactivates an abend exit within your application 
program; you can also use this command to cancel 
a previously activated exit. 

The ABEND command terminates a tas~ 
abnormaUy, and causes an active exit routine to be 
executed; you can also use this command to 
request a dump. 

A HANDLE ABEND command overrides any 
preceding such command in any application 
program at the same logical level. Each application 
program of a transaction can have its own exit, but 
only one exit at each logical level can be active. 
(Logical levels are explained in "Chapter 4.4. 
Program Control" on page 355.) 

When a task is abnormally terminated, CICS 
searches for an active exit, starting at the logical 
level of the application program in which the abend 
occurred, and proceeding, if necessary, to 
successively higher levels. The frrst active exit 
found, if any, is given control. This procedure is 
shown in Figure 21 on page 386, which also shows 
how subsequent abend exit processing is 
determined by the user-written exit routine. 

To prevent recursive abends in an exit routine, 
CICS deactivates an exit upon entry to the exit 
routine. If a retry of the operation is attempted, 
the application programmer can branch to a point 
in the program that was in control at the time of 

the abend and issue a HANDLE ABEND RESET 
command to reactivate the exit. This command 
can also be used to reactivate an exit (at the logical 
level of the issuing program) that was canceled 
previously as described above. 

Refer to the section dealing with creating a 
program abend exit in the CICS/DOS/VS 
Customization Guide for additional information 
about exit routines, and to the CICS/DOS/VS 
Messages and Codes manual for a list of the 
transaction abend codes generated for abnormal 
terminations initiated by CICS. 

Handle an Abnormal Termination 
Exit (HANDLE ABEND) 

HANDLE ABEND 
[PROGRAMCname) I 

LABELClabel)ICANCELIRESET1 

Condition: PGMIDERR (PROGRAM only) 

This command is used to activate, cancel, or 
reactivate an exit for abnormal termination 
processing. You can suspend the command by 
means of the PUSH and POP commands as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

When activating an exit, you must use the 
PROGRAM option to specify the name of a 
program to receive control, or (except for PL/I 
programs) the LABEL option to specify a program 
label to which control will branch, when an 
abnormal termination condition occurs. A 
HANDLE ABEND PROGRAM or HANDLE 
ABEND LABEL command overrides any previous 

Chapter 5.2. Abnormal Termination Recovery 385 



( 1lIIIk ABEND 

DellotlvatuJ- Link to program 

the exit ,--0_' _b'_lln_ch~to_lll_be_l~ 

highest level 

[

Look at the next 

Figure 21. ABEND Exit Processing 

such request in any application program at the 
same lo~~callevel. 

If intersystem communication is being used, an 
abend in the remote system may cause a branch to 
the specified program or label, but subsequent 
requests to use resources in the remote system will 
fail. 

If an abend occurs as a result of a BMS command, 
control will not be returned to CICS to clean up 
the control blocks. Results will be unpredi(~table if 
the command is retried. 

Action taken In 
8xlt program 
or routine ABEND 

"'8 (1l!rmlnata Ihe l8BIc ) 

A HANDLE ABEND command with the 
CANCEL option will cancel a previously 
established exit at the logical level of the 
application program in control. 

A HANDLE ABEND command with the RESET 
option will reactivate an abnormal termination exit 
that was canceled by a HANDLE ABEND 
CANCEL command or by CICS. 

This command would usually be issued in an 
abnormal termination exit routine. 

386 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



When the label specified in a HANDLE ABEND 
LABEL command receives control, the registers are 
set as follows: 

ASM. Rl5 - Abend label. 
RO-14 - Contents at the time 
of last CICS service request. 

COBOL. Control returns to the HANDLE 
ABEND command with the 
registers restored; COBOL GO 
TO statement is then 
executed. 

The following example shows how to establish a 
program as an exit: 

EXEC CICS HANDLE ABEND 
PROGRAM('EXITPGM') 

Terminate Task Abnormally 
(ABEND) 

ABEND 
[ABCODE(name)] 
[CANCEL] 

This command is used to request that a task be 
terminated abnormally. 

The main storage associated with the terminated 
task is released; optionally, a dump of this storage 
can be obtained first by using the ABCODE option 
to specify a four-character abnormal termination 
code, which CICS will place in the dump to 
identify it. 

If the CANCEL option is specifted, all abnormal 
termination exits, if any, established by HANDLE 
ABEND commands at any level in the task are 
canceled before the task is terminated. 

The following example shows how to terminate a 
task abnonnally: 

EXEC CICS ABEND ABCODE('BCDE') 

Abnormal Termination Recovery 
Options 

ABCODE(name) 
speciftes that main storage related to the task 
that is being terminated is to be dumped and 
provides a name to identify the dump. The 
name may consist of up to 4 characters. 

CANCEL 
speciftes that exits established by HANDLE 
ABEND and ABEND commands are to be 
ignored. HANDLE ABEND CANCEL 
cancels a previously established exit at the 
logical level of the application program in 
control. ABEND CANCEL cancels all exits 
at any level in the task (and terminates the 
task abnormally). 

LABEL(label) 
specifies the label to which control will 
branch if abnormal termination occurs. 
LABEL cannot be used in PL/I programs. 

PROGRAM(name) 
specifies the name "of the program to which 
control is to be passed if the task is 
terminated abnormally. The name can 
consist of up to 8 alphanumeric characters 
and must have been defmed in the PPT. 

RESET 
specifies that an exit canceled by a HANDLE 
ABEND CANCEL command, or by CICS, 
is to be reactivated. 

Abnormal Termination Recovery 
Exceptional Condition 

PGl\UDERR 
occurs if a program cannot be found in the 
PPT or is disabled. 

Default action: terminate the task abnormally. 

Chapter 5.2. Abnormal Termination Recovery 387 





Chapter 5.3. Trace Control 

The CICS trace control program is a debugging 
and monitoring aid for application programmers 
and IBM field engineers. 

The facility makes use of a trace table, which 
resides in main storage, and which consists of 
entries produced in response to trace control 
commands. CICS auxiliary trace allows you to 
write trace records on a sequential device for later 
analysis. 

Using trace control commands, you can: 

• Specify user trace entry points or user event 
monitoring points (ENTER) 

• Switch the CICS trace facility on or off 
(TRACE ON and TRACE OFF). 

Trace Entry Points 

The points at which trace entries are produced 
during CICS operation are of two types: system 
trace entry points and user trace entry points. 

System trace entry points. These are points within 
CICS at which trace control requests are made. 
The only system trace entry points that need 
concern the command level application 
programmer are for the EXEC interface program. 
These produce entries in the trace table whenever a 
CICS command is executed. Two trace entries are 
made: the frrst when the command is issued, and 
the second when CTCS has performed the required 
function and is about to return control to the 
application program. Between them, these two 
trace entries allow the flow of control through an 
application program to be traced, and a check to be 
made on which exceptional conditions, if any, 

occurred during its execution. (The ABEND, 
RETURN, TRACE ON, TRACE OFF, and 
XCTL commands produce single entries only.) 

User trace entry points. These are additional points 
within your application program that you can 
include in the trace table to allow complete 
program debugging. For example, ypu could 
specify an entry for a program loop containing a 
counter value showing the number of times that the 
loop had been entered. A trace entry is produced 
wherever the ENTER command is executed. Each 
trace entry request, which can be given a unique 
identifier, causes eight bytes of data to be placed in 
the trace table. 

Event Monitoring Points 

A user event monitoring point (EMP) can be 
defined in an application program by means of the 
MONITOR option of the ENTER command. 

At a user EMP, information can be added to the 
user fields in accounting and performance class 
monitoring data records. The classes of data 
records to be eligible for the addition of user 
information are specified by the ACCOUNT and 
PERFORM options. 

The actual user information to be recorded is 
defined in the monitoring control table. The user 
information recorded, in conjunction with similar 
data recorded automatically by the system, can be 
used as input to offiine analysis and reporting 
programs. 

More infonnation on the use of monitoring is given 
in the CICS/DOS/VS Customization Guide. 

Chapter 5.3. Trace Control 389 



Trace Facility Control 

The CICS trace facility is controlled by a number 
of trace flags; the flags are stored within CICS and 
the TRACE ON and TRACE OFF commands are 
used to tum them on or off. 

There is a master system trace flag, which must be 
on beiore any system trace entries are produced, 
and a separate system flag for each type of system 
trace e:ntry. 

The Inaster system trace flag can be turned on or 
off independently of individual system trace flags; 
thus the system trace pattern of activity can be left 
intact but controlled as a single unit. 

When the master system trace flag and one or more 
system trace flags are on, the relevant system trace 
entries are produced for all active tasks, and tasks 
that become active subsequently, until the flags are 
turned off again. 

The TRACE command can be used to control the 
system trace flags for other parts of CICS, should it 
be necessary to debug a program down to the level 
of the CICS macro instructions issued by the. 
EXEC interface program; for further details, see 
"Contlrol the CICS Trace Facility (TRACE ON, 
TRACE OFF)" on page 393. 

There is a master user trace flag, and an individual 
user trace flag for each task. If the master user 
trace flag is on, requested user trace entries are 
produced for all active tasks, and tasks that become 
active subsequently, until the flag is turned off 
again. Each individual user trace flag controls user 
trace entries only for the task that turns the flag on 
or off. 

The master terminal operator can tum the: whole 
CICS trace facility on or off by entering suitable 
commcmds; all flags are turned on or off together 
when this method is used. 

'The CICS trace table is located in main storage; 
you can gain access to it by investigating a CICS 
dump. How to get a CICS dump is described in 
"Chapter 5.4. Dump Control" on page 395. 

Trace Table Format 

The trace table consists of a trace header and a 
variable number of fixed-length entries produced by 
the trace control commands. 

Trace Header 

Bytes Contents 

0-3 Address of last-used entry. 
4-7 Address of first entry in 

the table. 
8-11 Address of last entry in 

the table. 
12-31 Reserved. 

Each entry in the trace table is 32 bytes in length 
and is aligned on a 32-byte boundary. The trace 
table area is of a fixed size specified by the system 
programmer, and entries are placed in the table in a 
wraparound manner; that is, when the table is full, 
the next entry is placed at the head of the table, 
overwriting the original entry. 

The general format of a trace table entry in storage 
is as follows. Note that a different layout is used in 
the interpreted display of trace table entries in a 
CICS dump and in auxiliary trace output. See the 
CICS/DOS/VS Problem Determination Guide for 
further information. 

Trace Entry - General Format 

Bytes 

o 
1,2 
3,4 
5-7 
8-11 
12-15 
16-23 
24-27 
28-31 

Contents 

Trace identifier (binary). 
TCA type of request (binary). 
Reserved. 
TCA identifier (packed dec). 
Data field A. 
Data field B. 
Resource name (character). 
Register 14. 
Time stamp. 

The formats of the EXEC interface program trace 
entry on issuance of a command, on completion of 
a command, and of a user trace, are shown in the 
following tables. The numbers in parentheses are 
the bit positions of the associated byte. 

390 CICSjDOSjVS Application Programmerts Reference Manual (Command Level) 



Trace Entry on Issuance of Command 

Bytes 

o 
1 
2(0-3) 
2(4-7) 
3,4 
5-7 
8-11 

12,13, 
14,15 
16-23 
24-27 
28-31 

Contents 

X'El' trace identifier. 
Not used. 
X'O', identifying the first entry for the command. 
X'4', identifies entry as a system entry. 
Not used. 
User task sequence number (packed decimal). 
ASM: address of the dynamic storage described by 

DFHEISTG DSECT. 
COBOL I address of the working storage section. 
Pl/II address of the dynamic storage area (DSA). 
Not used. 
Code identifying the CICS command. (See EIBFN in Appendix A.) 
Not used. 
Return point in application program. 
Time stamp. 

Trace Entry on Completion of Command 

Bytes 

o 
1 
2(0-3) 
2(4-7) 
3,4 
5-7 
8-13 

14,15 

16-23 
24-27 

28-31 

Contents 

X'EI' trace identifier. 
EIBGDI - "gO to depending on index" field (COBOL only). 
X'F', identifying the second entry for the command. 
X'4', identifies entry as a system entry. 
Not used. 
User task sequence number (packed decimal). 
Code identifying the condition raised during execution of 
the command. (See EIBRCODE in Appendix A.) Zero means 
no condition raised. 
Code identifying the command (same as bytes 14 and 15 in the 
entry on issuance of the command, above). 
Not used. 
Return point in application program; if code in bytes 
8-13 is nonzero, these bytes contain address of label 
given in HANDLE CONDITION command associated with response. 
Time stamp. 

User Trace Entry 

Bytes 

o 

1 
2(0-3) 
2(4-7) 
3,4 
5-7 
8-15 
16-23 
24-27 
28-31 

Contents 

Trace identifier; the binary value specified in the TRACEID 
option of the ENTER command. 
Not used. 
Not used. 
X'2', identifies entry as a user entry. 
Not used. 
User task sequence number (packed decimal). 
Data field supplied in the FROM option of the ENTER command. 
Name supplied in the RESOURCE option of the ENTER command. 
Return point in application program. 
Time stamp. 

Chapter 5.3. Trace Control 391 



For systc~m trace entries only, if consecutive1 

identical entries for the trace table are generated, 
the fust lentry has the fonn of a standard entry, but 
subsequcmt identical entries are replaced by a single 
special entry., immediately following the frrst entry. 
The trace identifier of this special entry (in byte 0) 
is X'FD'; bytes 24 through 27 contain a pa(:ked 
decimal number that shows how many repeated 
entries have been replaced by this single entry. 

Trace tahle entries with the trace identifiers X'FE' 
or X'FF' indicate the turning on or turning off, 
respectively, of the trace facility. Details of these 
and other CICS trace entries are given in the 
CICS/ DOS/ VS Problem Determination Guide. 

CICS~ Auxiliary Trace Facility 

All trace entries that are written to the trace table 
will also be written to the auxiliary trace data sets, 
if the auxiliary trace facility is active. 

Note that auxiliary trace entries are recorded only 
when main storage trace is also active. Whereas 
the entries written to the trace table wrap around, 
the auxiliary trace data sets contains all of the tr::\ce 
table entries that have been made. 

The Cles trace utility program (DFHTUP) can be 
used to process and print selected trace entries from 
the data set (for example, all the EXEC interface 
progratn trace entries). The printout shows the 
trace entries in the same format as that used to 
display the main storage trace table in a CIeS 
formatt(~d dump. 

You will find more information on using the 
auxiliary trace facility in the CICS/DOS/VS 
Installation and Operations Guide. 

User Trace Entry Point and 
Event Monitoring Point (ENTER) 

The ENTER command is used to specify a. point 
within an application program at which a user trace 
table entry is to be produced (if the trace facility 
has been turned on for this type of entry). 

ENTER 
TRACEID(data-value) 
[FROM(data-area)] 
[RESOURCECname)] 
[ENTRYNAMECname)] 
[ACCOUNT] 
[MONITOR] 
[PERFORM] 

Condition: INVREQ 

The ENTER command is used also to defme a 
user event monitoring point (specify MONITOR). 
The classes of monitoring data for which user 
information is to be collected at this user event 
monitoring point can be specified by the 
ACCOUNT and PERFORM options. 

A trace identifier in the range 0 through 199 must 
be provided in the TRACEID option; this will 
appear in the first byte of the trace table entry that 
is produced. Optionally, 8 bytes of data can be 
supplied in the FROM option; this data will appear 
in bytes 8 through 15 of the trace table entry. 

Additionally, an 8~character name may be supplied 
in the RESOURCE option; this name will appear 
in the resource field (bytes 16 through 23) of the 
trace table entry. 

For a user event monitoring point, the TRACEID 
specified should match the identification number of 
a TYPE= EM!' entry in the monitoring control 
table that defines the user information to be 
collected. If no such entry exists, the ENTER 
command will have no effect. This provides a way 
of coding optional recording points which are 
activated by the use of an appropriate monitoring 
control table. 

If both the ACCOUNT and PERFORM options 
arc specified in the application program, the 
corresponding entry in the monitoring control table 
can specify recording of either accounting or 
performance data, or both. If only one option is 
specified at the user EMP, only that class of 
recording is possible. Thus greater flexibility is 
obtained by specifying both options for the user 
EM!' and controlling run~time activity by a 
suitably coded monitoring control table. 

392 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



The following example shows how to specify that a 
user trace table entry should be produced: 

EXEC CICS ENTER TRACEID(123) 
FROM(MSG) 

Control the CICS Trace Facility 
(TRACE ON, TRACE OFF) 

TRACE 
(ONIOFF} 
[SYSTEM] 
[EI] 
[USER] 
[SINGLE] 

This command is used to control the CICS trace 
facility by turning on and off the various trace flags. 
(See "Trace Facility Control" on page 390 for 
details of trace flags.) 

A TRACE ON or TRACE OFF command 
without options controls the entire CICS trace 
facility but leaves the established pattern of trace 
activity undisturbed. 

The SYSTEM option controls the master system 
trace flag, which must be on before any system 
trace table entries are produced. The EI option 
controls the EXEC-interface-program system trace 
flag. The USER option controls the master user 
trace flag, and the SINGLE option controls the 
user trace flag for the task. 

The following example shows how to tum on the 
master system and EXEC interface program system 
trace flags to start tracing of CICS commands: 

EXEC CICS TRACE ON SYSTEM EI 

Macro-Level Trace Facilities 

If debugging at the macro level is necessary, an 
additional option, ALL, can be used, specifying 
that the entire CICS trace facility is to be 
controlled by the TRACE ON and TRACE OFF 
commands. It has the same effect as a master 
terminal trace control instruction and affects all 
master, system, and user trace flags. 

The following options can only be used in 
conjunction with the SYSTEM option but no 
system trace entries will be produced unless the 
master system trace flag is on. Each option 
specifies that the system trace entries produced by 
the associated program are controlled by the 
TRACE ON and TRACE OFF commands. The 
options can be specified in any combination and in 
any order. 

Option CICS Program 

BF 
BM 
DC 
DI 
FC 
IC 
IS 
JC 
KC 
PC 
SC 
SP 
TC 
TD 
TS 
UE 

Built-in Function 
Basic Mapping Support 
Dump Control 
Batch Data Interchange 
File Control 
Interval Control 
ISC 
Journal Control 
Task Control 
Program Control 
Storage Control 
Sync Point 
Terminal Control 
Transient Data 
Temporary Storage 
User Exit Interface 

Trace Control Options 

ACCOUNT 

EI 

specifics, for a user event monitoring point, 
that user infonnation is to be collected in the 
accounting class monitoring data records. 

spccifies that tracing of CICS commands 
through the EXEC interface program is 
affected by the TRACE ON or TRACE 
() PF command. 

ENTRYNAME(namc) 
specifies a qualifier (up to 8 characters in 
length) for a user event monitoring point. If 
this option is omitted, a default entry name of 
USER will be assumed. 

FR OM( data-area) 
specifies an 8-byte data area whose contents 
are to be entered into the data field of the 
trace table entry. When used for monitoring, 

Chapter 5.3. Trace Control 393 



1the data area is regarded as two successive 
fullword fields. These correspond, in order, 
to the areas DATAl and DATA2, the 
required contents of which depend on the 
option specified in the DFHMCT 
TYPE=EMP system macro. Ifth(~ FROM 
option is omitted, two fullwords of binary 
zeros are passed as the values of DATAl and 
DATA2. 

MONITOR 
specifies that a user event monitoring point, 
lrather than a trace entry point, is to be 
lrecorded. 

PERFORM 
specifies, for a user event monitoring point, 
that user information is to be collected in the 
]performance class monitoring data records. 

RESOURCE(name) 
specifies an 8-character name which is to be 
entered into the resource field of the trace 
table entry. 

SING:LE 
specifies that the TRACE ON or TRACE 
OFF command applies to user entries of the 
single task issuing the request for the duration 
of the task. 

SYSTEM 
specifies that all trace entries made {i'om 
within CICS are affected by the TRACE ON 
or TRACE OFF command. 

This option controls the master system trace 
flag but does not change the status of 
individual system trace flags; the established 
pattern of system trace activity remains intact 
but is controlled as a single unit. (This 
characteristic is useful when macro-level tr~ce 
facilities are in use, as described earlier in the 
chapter.) 

TRACEID( data-value) 
specifies the trace identifier for a user trace 
table entry as a halfword binary value in the 
range 0 through 199. When used for> 
monitoring, the data value is the user-event 
monitoring point identifier as specified in the 
DFlIMCT TYPE = EMP system macro. 

USER 
specifics that all user entries . for all current 
transactions are affected by the TRACE ON 
or TRACE OFF command. 

Trace Control Exceptional 
Conditions 

INVREQ 
occurs when TRACEID is greater than 199. 

394 CICS/DOSjVS Application Programmerts Reference Manual (Command Level) 



Chapter 5.4. Dump Control 

The CICS dump control program allows you to 
spedfy areas of main storage to be dumped, by 
means of the DUMP command, onto a sequential 
data set, which can be either on tape or on disk. 

The contents of the data set can be formatted 
subsequently and printed offline (or while the 
dump data set is closed) using the CICS dump 
utility program (DFHDUP). 

Only one dump control command is processed at a 
time. If you issue additional dump control 
commands while a dump is in progress, activity 
within the tasks associa.ted with those commands is 
suspended until the dump is completed. 
Remaining dump commands are processed in the 
order in which they are made. The use of the 
DUMP command will cause certain fields (for 
example, EIBFN and EIBRCODE) in the EIB and 
the TCA to be overwritten. 

Options of the DUMP command allow you to 
dump the following areas of main storage in 
various combinations: 

• Task-related storage areas: selected main 
storage areas related to the requesting task. 
You would normally use a dump of these areas 
to test and debug your application program. 
(CICS automatically provides this service if the 
related task is terminated abnormally.) 

• CICS control tables: 

File control table (FCT) 

Destination control table (DCT) 

Program control table (PCT) 

Processing program table (PPT) 

System initialization table (SIT) 

Terminal control table (TCT). 

A dump of these tables is typically the frrst 
dump taken in a test in which the base of the 
test must be established; subsequent dumps are 
usually of the task-related storage type. 

• Task-related storage areas and CICS control 
tables (a complete dump): a complete dump is 
sometimes appropriate during execution of a 
task, but you should not use this facility 
excessively. CICS control tables are primarily 
static areas; you will find that specifying one 
CICS control tables dump and a number of 
task related storage dumps is generally more 
efficient than specifying a comparable number 
of complete dumps. 

Program storage will not be dumped for programs 
defined in the PPT as RELOAD = YES. 

You will also get a list of the CICS nucleus 
modules and active PPT programs, indexed by 
address, at the end of the printed dump. 

Note that the dump produced by the DUMP 
command displays the registers belonging to 
DFHEDCat the point of invocation of the dump 
control program at the macro level, not the 
registers belonging to the application at the time 
that the DUMP command is issued. 

Chapter 5.4. Dump Control 395 



Dunlp Main Storage (DUMP) 

DU"IP 
DUMIPCODE(name) 
[FROM( data-area) 

LENGTH(data-value) 
IFLENGTH(data-value)] 

[COMPLETE] 
[TASK] 
[STORAGE] 
[PR.OGRAM] 
[TERMINAL] 
[TABLES] 
[DeT] 
[FeT] 
[peT] 
[PPTl 
[SIT] 
[TeT] 

This command is used to dump any or all of the 
main storage areas related to a task, any or all of 
the CICS tables (FCT, DCT, PCT, PPT, SIT, 
TCT), or all of these together. 

The following example shows how to request a 
dump of the entire task-related storage areas, the 
terminal control table, and a specified data area: 

EXEC CICS DUMP 
TASK 
TCT 
FROM(AREAl) 
LENGTH(200) 
DUMPCODE('DUMl') 

DUItIP Control Options 

You can specify the dump control options in any 
combination; only one copy of each area or table 
will be dumped, even if you have specified it more 
than once. 

If you do not specify any options, that is you 
specify simply EXEC CICS DUMP, the areas 
dumped will be the same as those dumped when 
you specify the TASK option, except that the DL/I 
control blocks will not be dumped. 

COMPLETE 
dumps all main storage areas related to a task 
and all of the CICS tables. 

OCT 
dumps the destination control table 

DlJMPCODE(name) 

FCT 

specifies a name (up to four characters) that 
identifies the dump. 

dumps the file control table. 

FLENGTH( data-value) 
specifies, as a fullword binary value, the 
length of the storage area (specified iti the 
FROM option) that is to be dumped. The 
maximum length that you can specify is 
16,777,215 bytes. 

PIJENGTH and LENGTH are·mutually 
exclusive. 

FROM(data-area) 
dumps the specified data area which inust be 
a valid area, that is, storage allocated by the 
operating system withirithe CICS partition. 
In addition, the following areas are dumped: 

• Task control area (TCA) and, if 
applicable, the transaction work area 
(TWA). 

• Common system area (CSA), including 
the user's portion of the CSA (CW A). 

• Trace table (only when the CICS trace 
facility is active). 

• Contents of general-purpose ·registers 
upon entry to dump control from the 
requesting task. 

• Either the terminal control table terminal 
entry (TCTTE) or the destination control 
table entry associated with the requesting 
task. 

Whenever the TCTTE is dumped, the 
tenninal control table user area (if any) and 
the message control blocks (if any) associated 
with the TCTTE are dumped. The latter are 
used by basic mapping support. 

396 CICSjDOSjVS Application Programmer's Reference Manual (Command LeveJ) 



LENGTH 

peT 

PPT 

specifies the length (half word binary) of the 
data area specified in the FROM option. 

LENGTH and FLENGTH are mutually 
exclusive. 

dumps the program control table. 

dumps the processing program table. 

PROGRAM 

SIT 

specifies that program storage areas associated 
with this task are to be dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction work area 
(TWA). 

• Common system area (CSA), including 
the user's portion of the CSA (CWA). 

• Trace table (only when the CICS trace 
facility is active). 

• All program storage areas containing 
user-written application program(s) active 
on behalf of the requesting task. 

• Register save areas (RSAs) indicated by 
the RSA chain off the TCA. 

• Contents of general-purpose registers 
upon entry to dump control from the 
requesting task. 

• Either the terminal control table terminal 
entry (TCTTE) or the destination control 
table entry associated with the requesting 
task. 

Whenever the TCTTE is dumped, the 
terminal control table user area (if any) and 
the message control blocks (if any) associated 
with the TCTTE are dumped. 

dumps the system initialization table. 

STORAGE 
specifies that storage areas associated with 
this task are to be dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction work area 
(TWA). 

• Common system area (CSA), including 
the user's portion of the CSA (CWA). 

• Trace table (only when the CICS trace 
facility is active). 

• Contents of general-purpose registers 
upon entry to dump control from the 
requesting task. 

• All transaction storage areas chained off 
the TCA storage accounting field. 

• Either the terminal control table terminal 
entry (TCTTE) or the destination control 
table entry associated with the requesting 
task. 

Whenever the TCTTE is dumped, the 
tenninal control table user area (if any) and 
the message control blocks (if any) associated 
with the TCTTE are dumped. 

TABI~ES 

dumps the OCT, FCT, PCT, PPT, SIT, and 
the TCT. 

TASK 
specifies that storage areas associated with 
this task are to be dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction work area 
(TWA). 

• Common system area (CSA), including 
the user's portion of the CSA (CW A). 

• Trace table (only when the CICS trace 
facility is active). 

Oiapter 5.4. Dump Control 397 



TCT 

4. All program storage areas containing 
user-written application programs active 
on behalf of the requesting task. 

4. Contents of general-purpose registers 
upon entry to dump control from the 
requesting task. 

•• All transaction storage areas chained off 
the TCA storage accounting field. 

•• Either the terminal control table terminal 
entry (TCTTE) or the destination control 
table entry associated with the requesting 
task. 

•• Register save areas (RSAs) indicated by 
the RSA chain off the TCA. 

•• All terminal input/output areas (TIOAs) 
chained off the terminal control table 
terminal entry (TCTTE) for the terminal 
associated with the requesting task. 

'Whenever the TCTTE is dumped, the 
terminal control table user area (if any) and 
the message control blocks (if any) associated 
with the TCTTE are dumped. 

dumps the terminal control table. 

TERMINAL 
specifies that storage areas associated with the 
terminal are to be dumped, as follows: 

• Task control area (TCA) and, if 
applicable, the transaction work area 
(TWA). 

• Common system area (CSA), including 
the user's portion of the CSA (CWA). 

• Trace table (only when the CICS trace 
facility is active). 

• All terminal input/output areas (TIOAs) 
chained off the terminal control table 
terminal entry (TCTTE) for the terminal 
associated with the requesting task. 

• Contents of general-purpose registers 
upon entry to dump control from the 
requesting task. 

• Either the terminal control table terminal 
entry (TCTTE) or the destination control 
table entry associated with the requesting 
task. 

Whenever the TCTTE is dumped, the 
tenninal control table user area (if any) and 
the message control blocks (if any) associated 
with the TCITE are dumped. The latter are 
used by basic mapping support. 

Dump Control Exceptional 
Conditions 

There are no dump control exceptional conditions. 

398 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Chapter 5.5. Journal Control 

CICS provides facilities for creating and managing 
journals during CICS execution. 

A journal is a set of special-purpose sequential data 
sets. Journals may contain any and all data the 
user needs to facilitate subsequent reconstruction of 
events or data changes. 

For example, a journal might act as an audit trail, a 
change-fue of data base updates and additions, or a 
record of transactions passing through the system 
(often called a log). Each journal can be written 
from any task. 

Only the CICS facilities dealing with the creation of 
journal records (journal output) using journal 
control commands are dealt with here; the 
CI CS / DOS / VS Resource Definition (Macro) 
contains information about reading journal data 
sets (journal input), which involves the use of 
CICS journal control macros. 

Journal control commands are provided to allow 
the application programmer to: 

• Create a journal record (JOURNAL). 

• Synchronize with (wait for completion of) 
journal output (WAIT JOURNAL). 

Exceptional conditions that occur during execution 
of a journal control command are handled as 
described in "Chapter 1.5. Exceptional Conditions" 
on page 31. 

Journal Records 

Data may be directed to any journal specified in 
the journal control table (JCT), which defmes the 
journals available during a particular CICS 
execution. The JeT may define one or more 
journals on tape or direct access storage. Each 
journal is identified by a number known as the 
journal identifier. This number may range from 2 
through 99; the value 1 is reserved for a journal 
known as the system log. 

When a journal record is built, the data is moved 
to the journal buffer area. All buffer space and 
other work areas needed for journal operations are 
acquired and managed' by CICS. The user task 
supplies only the data to be written to the journal. 

.TournaI records are built into blocks compatible 
with standard variable-blocked format. CICS uses 
the sequential access method of the host operating 
system to write the blocks to auxiliary storage. 

Each journal record begins with a standard length 
field (LLbb), a user-specified identifier, and a 
system-supplied prefix. This data is followed in the 
journal record by any user-supplied prefix data 
(optional), and finally by the user-specified data. 

Journal control is designed so that the application 
programmer requesting output services need not be 
concerned further with the detailed layout and 
precise contents of journal records. The 
programmer needs to know only which journal to 
use, what user data to specify, and what 
user-identifier to supply. 

Chapter 5.5. Journal Control 399 



Journal Output Synchronization 

When a journal record is created by issuing the 
JOURNAL command with the WAIT option, the 
requesting task can wait until the output has been 
completed. By specifying that this should happen, 
the application programmer ensures that the 
journal record is written on the external storage 
devicl~ associated with the journal before processing 
continues; the task is said to be synchronized with 
the output operation. 

The application programmer can also request 
asynchronous journal output. This causes a 
journal record to be created in the journal buffer 
area and, optionally, initiates the data output 
operation from the buffer to the external device, 
but alllows the requesting task to retain control and 
thus to continue with other processing. The task 
may eheck and wait for output completion (that is, 
synchronize) at some later time by issuing the 
WAIT JOURNAL command. 

The basic process of building journal records in the 
buffer space of a given journal continues until one 
of th(~ following events occurs: 

• A request specifying the STARTIO option is 
Dlade (from any task) for output of a journal 
record. 

• A request is rejected because of insufficient 
journal buffer space. 

• The available buffer space is reduced below an 
amount that is specified by the systeln 
programmer. 

• One second elapses after the last occasion on 
which any task started writing to this journal 
buffer. 

When anyone of these occurs, all journal records 
present in the buffer, including any deferred output 
resulting from asynchronous requests,. are written to 
auxiliary storage as one block. 

The advantages that may be gained by deferring 
journal output are: 

• Transactions may get better response times by 
waiting less. 

• The load of physical I/O requests on the host 
system may be reduced. 

• Journal data sets may contain fewer but Jarger 
blocks and so better utilize auxiliary storage 
devices. 

However, these advantages are achievable only at 
the cost of more buffer space and greater 
programming complexity. It is necessary to plan 
and program to control synchronizing with journal 
output. 

Additional decisions that depend on the data 
content of the journal record and how it is to be 
used must be made in the application program. In 
any case, the full benefit of deferring journal output 
is obtained only when the load on the journal is 
high. 

The STARTIO option is used with JOURNAL 
output requests to specify that the journal output 
operation is to be initiated immediately. For 
asynchronous output requests, control returns 
directly to the requesting program. 

The STARTIO option should not be used 
unnecessarily because, if every journal request used 
STARTIO, no improvement over synchronous 
output requests, in terms of reducing the number of 
physical I/O operations and increasing the average 
block size, would be possible. 

If the journal buffer space available at the time of 
the request is not sufficient to contain the journal 
record, the NOJBUFSP exceptional condition 
occurs. If no HANDLE CONDITION command 
is active for this condition, the requesting task loses 
control, the contents of the current buffer are 
written out, and the journal record is built in the 
resulting freed buffer space before control returns to 
the requesting task. 

If the requesting task is not willing to lose control 
(for example, if some housekeeping must be 
performed before other tasks get control), a 
HANDLE CONDITION command should be 
issued. 

400 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



If the NOJBUFSP condition occurs, no journal 
record is built for the request, and control is 
returned directly to the requesting program at the 
location provided in the HANDLE CONDITION 
request. The requesting program can perform any 
housekeeping needed before reissuing the journal 
output request. 

Create a Journal Record 
(JOURNAL) 

JOURNAL 
JFILEIDCdata-value) 
JTYPEIDCdata-value) 
FROMCdata-area) 
[LENGTHCdata-value)] 
[REQIDCdata-area)] 
[PREFIXCdata-value) 

PFXLENGCdata-value)]] 
[STARTIO] 
[WAIT] 
[NOSUSPENDl 

Conditions: IOERR, JIDERR, LENGERR, 
NOJBUFSP, NOTAUTH, NOTOPEN 

This command is used to create a journal record. 
The request can be for synchronous or 
asynchronous output; defmitions of these tenns, 
and detailed infonnation regarding the 
synchronization of journal output, are contained in 
"Journal Output Synchronization" on page 400. 
The following options must be specified. 

• JFILEID specifies the journal to receive the 
data. (JFILEID(l) specifies the system log.) 

• JTYPEID specifies a two-character identifier 
for the journal record. 

• FROM specifies the user data to be included in 
the journal record. 

• LENGTH specifies the length of the user data. 
This length does not include anything reserved 

, for CICS. 

The following are optional: 

• PREFIX specifies the user prefix data for the 
journal record. 

• PFXLENG specifies the length of the prefix 
data. 

To request synchronous journal output the WAIT 
option must be specified. For asynchronous 
output, (WAIT option not specified), the REQID 
option can be included to provide an identifier for 
the journal record; the identifier can be used later in 
a WAIT JOURNAL command to synchronize the 
task with the creation of the journal record. 

The STARTIO option can be included in a 
synchronous or asynchronous request to specify 
that the journal output operation should start 
immediately. STARTIO reduces absolute waiting 
time at the expense of general system perfonnance 
and input/output load. 

The following example shows how to request 
synchronous journal output and wait for the 
output operation to be completed: 

EXEC CICS JOURNAL 
JFIlEID(2) 
JTYPEIDC'XX') 
FROMCKEYDATA) 
lENGTH(8) 
PREFIXCPROGNAME) 
PFXlENG(6) 
WAIT 

In this example, since ST ARTIO is not specified, 
the task will wait until the journal buffer is full or 
until output is initiated by a STAR TIO request in 
another task. CICS limits the wait to one second. 

The following example shows how to request 
deferred (asynchronous) journal output: 

EXEC CICS JOURNAL 
FROMCCOMDATA) 
lENGTHCIO) 
JFIlEIDCl) 
JTYPEIDC'SD') 
REQIDCENTRYID) 

Chapter 5.5. Journal Control 401 



Synchronize with Journal Output 
(WAIT JOURNAL) 

WAIT JOURNAL 
JFILEID(data-value) 
[REQID(data-value)] 
[STARTIO] 

Conditions: INVREQ, IOERR, JIDERR, 
NOTAUTH, NOTOPEN 

This command is used to synchronize the task with 
the output of one or more journal records that 
have heen created but whose output has been 
deferred; that is, with asynchronous jounlal output 
requests. 

The JFILEID option specifies the jounlal 
identifier, and the REQID option optionally 
specifies a particular journal record. If the REQID 
option is not specified, the task is synchronized 
with the output of the the last record created for 
the journal specified in the JFILEID option. 

The journal records in the journal buffer area may 
already be written out to auxiliary storage, or the 
journal record output operation may be in 
progr1ess. If the output operation has already been 
completed, control returns immediately to the 
requesting task; if not, the requesting task waits 
until the operation has been completed. If 
ST ARTIO is specified, output is initiatcd 
immediately. 

If the requesting program has made a succession of 
succe:ssful asynchronous output requests to the 
same journal, it is necessary to synchronize on only 
the last of these requests to ensure that all of the 
journal records have reached auxiliary storage. 
This lmay be done either by issuing a stand-alone 
WAIT JOURNAL command, or by making the 
last output command itself synchronous (by 
specifying the WAIT option in the JOURNAL 
comnland). 

The tollowing example shows how to request 
synchronization with the output of a journal 
record: 

EXEC CICS WAIT JOURNAL 
JFILEID(4) 
REQID(ENTRYID) 

Journal Control Options 

FROM(data-area) 
specifics the user data to be built into the 
journal record. 

.JFILEID( data-value) 
specifics a halfword numeric value in the 
range I through 99 to be taken as the journal 
identifier. The value I specifies that the 
system log data set is the journal for this 
operation. 

.JTYPEID( data-value) 
specifics a two-character identifier to be 
placed in the journal record to identify its 
origin. 

LENGTII( data-value) 
specifics, as a halfword binary value, the 
length in bytes of the user data to be built 
into the journal record. The minimum value 
is I and the maximum value is (buffer size -
72) minus PFXLENG. 

NOSUSPEND 
specifics that application program suspension 
for the NOJBUFSP condition is to be 
inhibited. This condition will be handled as 
described on page 31. 

PFXLENG( data-value) 
specifics, as a halfword binary value, the 
length in bytes of the user prefix data to be 
included in the journal record. The 
maximum value is (buffer size ~ 72) minus 
LENGTH. 

I)REFIX( data-value) 
specifics the user prefix data to be included in 
the journal record. A data area must be 
provided in COBOL programs. 

REQII)(parameter) 
specifies a fullword binary variable. For a 
JOURNAL command, the REQID option 

402 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



specifies that asynchronous output is 
required; the parameter must be a data area. 
CICS sets the variable to a number that 
depends upon the position in the data set of 
the record being created. 

When used with a WAIT JOURNAL 
command, the REQID option specifies a 
variable set to a number that refers to the 
journal record that has been created but 
possibly not yet written out; the parameter is 
a data value. 

STARTIO 
specifies that output of the journal record is 
to be initiated immediately. If WAIT is 
specified for a journal with a low utilization, 
STAR TIO should be specified also to prevent 
the requesting task waiting for the journal 
buffer to be filled. Very high utilization 
ensures that the buffer is flushed quickly, so 
that STARTIO is unnecessary. 

WAIT 
specifies that synchronous journal output is 
required. The journal record is written out; 
the requesting task waits until the record has 
been written. 

Journal Control Exceptional 
Conditions 

INVREQ 
occurs if a WAIT JOURNAL command is 
issued before any JOURNAL command has 
been issued in the same task. 

Default action: terminate the task abnormally. 

IOERR 
occurs if the physical output of a journal 
record was not accomplished because of an 
unrecoverable I/O error. 

Default action: terminate the task abnormally. 

.JII>ERR 
occurs if the specified journal identifier does 
not exist in the journal control table (JCT). 

Default action: terminate the task abnormally. 

LENGERR 
occurs if the computed length for the journal 
record exceeds the total buffer space allocated 
for the journal data set, as specified in the 
.JeT entry for the data set, or if the length 
specified for the prefix or for the data is 
negative. 

Default action: terminate the task abnormally. 

NO.JUUFSJ> 
occurs if the journal buffer space allocated by 
the system programmer is not sufficient to 
contain a journal record. 

Default action: write out the contents of the 
current buffer; suspend task activity until the 
JOURNAL command is satisfied. 

NOTAI)TH 
occurs if a resource security check has failed. 
The reasons for the failure are the same as for 
abend code AEY7, as described in the 
CICS/ DOS/ VS Messages and Codes manual. 

Default action: terminate the task abnormally. 

NOTOPEN 
occurs if the journal command cannot be 
satisfied because the specified journal was 
never opened, and is not available. 

Default action: terminate the task abnormally. 

Chapter 5.5. Journal Control 403 





Chapter 5.6. Recovery (Sync Points) 

To facilitate recovery in the event of abnormal 
termination of a CICS task or of failure of the 
CICS system, the system programmer can, during 
CICS table generation, define certain resources (for 
example, ftIes) as recoverable. If a task is 
terminated abnormally, these resources are restored 
to the condition they were in at the start of the 
task, which can then be rerun. The process of 
restoring the resources associated with a task is 
termed backout. 

If an individual task fails, backout is performed by 
the dynamic transaction backout program. If the 
CICS system fails, backout is performed as part of 
the emergency restart process. The CICS/DOS/VS 
Facilities and Planning Guide and the 
CICS/DOS/VS Customization Guide describe these 
facilities, which in general have no effect on the 
coding of application programs. 

However, for long-running programs, it may be 
undesirable to have a large number of changes, 
accumulated over a period of time, exposed to the 
possibility of backout in the event of task or system 
failure. This possibility can be avoided by using 
the SYNCPOINT command to split the program 
into logically separate sections termed logical units 
of work (LUWs); the end of an LUW is called a 
synchronization point (sync point). 

In addition to those defmed with the SYNCPOINT 
command, sync points also occur at the end of a 
task and at each DL/I termination or checkpoint 
(CHKP) call. For the purposes of backout, each 

of these sync points is treated as though it marked 
the end of a task. If failure occurs after a sync 
point but before the task has been completed, only 
changes made since the sync point are backed out. 

LUWs should be entirely logically independent, not 
merely with regard to protected resources, but also 
with regard to execution flow. Typically, an LUW 
would comprise a complete conversational 
operation bounded by SEND and RECEIVE 
commands. A browse is another example of an 
LUW. An ENDBR command must therefore 
precede the sync point. 

In addition to a DL/I termination call being 
considered to be a sync point, the execution of a 
SYNCPOINT command will cause CICS to issue 
a DL/I termination call. If a DL/I PSB is required 
in a subsequent LUW., it must be rescheduled by 
means of a PCB call. 

A B MS logical message started but not completed 
when a SYNCPOINT command is executed is 
forced to completion by an implied SEND PAGE 
command. However, you should not rely on this 
because a logical message whose frrst page is 
incomplete will be lost. You should also code an 
exp1icit SEND PAGE command before the 
SYNCPOINT command or before termination of 
the transaction. 

The system programmer should be consulted if 
sync points are to be issued in a transaction that is 
eligible for transaction restart. 

Chapter 5.6. Recovery (Sync Points) 405 



Establish a Sync Point 
(SYl'lCPO INT) 

I SVNCPOINT [ROLLBACK] 

Condition: ROLLEDBACK J 
lms command is used to divide a task (usually a 
long running one) into smaller LUWs. Each 
SYNCPOINT command causes a sync point to be 
established to mark the completion of an LUW. 

Sync Point Option 

ROLLUACK 
specifies that all changes to recoverable 
resources made by the task since its last sync 
point are to be backed out. 

TIus option can be used, for example, to tidy 
up in a HANDLE ABEND routine, or to 
revoke data base changes after the application 
program fmds unrecoverable errors in its 
input data. 

If the LUW updates remote recoverable 
resources using an MRO or LU6.2 session, 
the ROLLBACK option is propagated to the 
backend transaction. 

When a distributed transaction processing 
conversation is in use, the remote application 
program will have the EIB fields 
EIBSYNRB, EIBERR, and EIBERRCD set. 
Por the conversation to continue, the remote 
application program should execute a 
SYNCPOINT ROLLBACK command. 

When the mirror transaction is involved in 
the LOW using an MRO or LU6.2 session, 
thc mirror will honor the rollback request, 
revokc changes, and then tcrminate normally. 

This option is not supported across LU6.1 
VTA M sessions to the mirror or backend 
transactions. In these cases, the frontend 
transactions could be abcndcd to cause the 
backend transactions to back out. 

Sync Point Exceptional Condition 

ROI.,I.,EDOACK 
occurs when a SYNCPOINT command is 
drivcn into rollback by a remote system that 
is unablc to commit the sync point. All 
changes made to recoverable resources in the 
current LUW will have been backed out. 

Default action: terminate the task abnormally. 

406 C[CSjDOSjVS Application Programmer's Reference Manual (Comm<lnd Level) 



Part 6. The CICS Built-In Function Command 

Part 6. The CI("S Built-In Function Command 407 





Chapter 6.1. The Field Edit Built-In Function (BIF DEEDIT) 
Command 

The built-in function, DEEDIT, is provided by 
means of the BIF DEEDIT command. Note that 
BFP = YES must be specified in the DPHSIT 
system macro for this built-in function to work. 

BIF DEEDIT 
FI ElD( data-area) 
[lENGTH(data-value)] 

This command specifies that alphabetic and special 
characters are to be removed from an EBCDIC 
data field, the remaining digits being right justified 
and padded left with zeros as necessary. 

This field is specified by the FIELD option and its 
length, in bytes, by the LENGTH option. Note 
that a field of one byte will be returned unaltered, 
no matter what the field contains. 

If the field ends with a minus sign or a IC C R", a 
negative zone (X'D') is placed in the rightmost 
(low-order) byte. 

If the zone portion of the rightmost byte contains 
one of the hexadecimal characters X' A' through 
X'F', and the numeric portion contains one of the 

hexadecimal digits X'O' through X'9', the rightmost 
byte is returned unaltered (see the first example 
below). This permits the application program to 
operate on a zoned numeric field. The returned 
value is in the field that initially contained the 
unedited data. 

For example, execution of the command: 

EXEC CICS BIF DEEDIT 
FIElDCCONTG) 
lENGTH(9) 

removes all characters other than digits from 
CONTG, a nine-byte field, and returns the edited 
result in that field to the application program. Two 
examples of the contents of CONTO before and 
after execution of the command are: 

Original value 

l4-6704/B 

$25.68 

Returned value 

001467048 

000002568 

Note that a decimal point is an EBCDIC special 
character and as such is removed. 

There are no exceptional conditions with DEEDIT. 

Chapter 6.1. The Field Edit Built-In Function (DIF DEEDIT) Command 409 





Appendixes 

Appendix A .................. EXEC Intcrface Block 

Appendix B .................. Translation Tablcs for the 2980 

Appendix C .................. CICS Macros and Equivalent Commands 

Appendix D .................. Sample Programs (As..~embler Language) 

Appendix E .................. Sample Programs (COBOl,,) 

Appendix F .................. Sample Programs (PL/I) 

Appendix G .................. Report Controller Sample Programs 

Appendixes 411 





Appendix A. EXEC Interface Block 

This appendix describes the fields of the EXEC 
interface block (EIB) referred to in "Chapter 1.6. 
Access to System Information" on page 41. An 
application program can access all of the fields in 
the EIB of the associated task by name but m~st 
not change the contents of any of them. 

For each field, the contents and format (for each of 
the application programming languages ASM, 
COBOL, and PL/I) are given. All fields contain 
zeros in the absence of meaningful information. 
Fields are listed in alphabetical order. 

EIB Fields 

EIBAID 
contains the attention identifier (AID) 
associated with the last terminal control or 
basic mapping support (BMS) input 
operation from a display device such as the 
3270. 

ASM: 
COBOL: 
Pl/I I 

EIBATT 

ell 
PIC XCI) 
CHARCI) 

indicates that the R U contains attach header 
data (X'FF'). 

ASM: 
COBOL: 
Pl/II 

EIBCALEN 

Cli 
PIC XCI) 
CHARCI) 

contains the length of the communication 
area that has been passed to the application 
program from the last program, using the 
COMMAREA and LENGTH options. If no 
communication area is passed, this field 
contains zeros. 

ASM: 
COBOL: 
Pl/I: 

EIBCOMPL 

H 
PIC S9(4) COMP 
FIXED BINCIS) 

indicates, on a terminal control RECEIVE 
command whether the data is complete 
(X'FF'). If the NOTRUNCATE option has 
been used on the RECEIVE command, 
CICS will retain data in excess of the amount 
requested via the LENGTH or 
MAX LENGTH option. EIBRECV will be 
set indicating that further RECEIVE 
commands are required. EIBCOMPL will 
not be set until the last of the data has been 
retrieved. 

EIBCOMPL will always be set when a 
RECEIVE command without the 
NOTRUNCATE option is executed. 

ASM: 
COBOL: 
Pl/I: 

EIBCONF 

Cli 
PIC XCI) 
CHARCI) 

indicates that a CONFIRM request has been 
received (X'FF') for an LU6.2 conversation. 

ASM: 
COBOL: 
Pl/!: 

EIHCPOSN 

Cli 
PIC XCI) 
CHAR(I) 

contains the cursor address (position) 
associated with the last teoninal control or 
basic mapping support (BMS) input 
operation from a display device such as the 
3270. 

ASM: 
COBOL: 
Pl/I: 

H 
PIC 59(4) COMP 
FIXED BIN(IS) 

Appendix A. EXEC Interface Block 413 



EIBDATE 
contains the date the task is started (this field 
is updated by the ASKTIME command). 
The date is in packed decimal form 
(OOYYDDD + ). 

ASM: 
CIOBOL: 
PL/I: 

EIBDS 

PL4 
PIC S9(7) COMP-3 
FIXED DECC7,0) 

contains the symbolic identifier of the last 
data set referred to in a fue control request. 

ASM: 
COBOL: 
PIL/I: 

EIBEOC 

CL8 
PIC X(8) 
CHAR(8) 

indicates that an end -of-chain indicator 
appears in the RU just received (X'FF'). 

ASM: 
COBOL: 
Pl/I: 

EIBERR 

CLI 
PIC XCI) 
CHARCl) 

indicates that an error has been received 
(X'FF') on an LU6.2 conversation. 

ASM: 
COBOL: 
PIL/ I: 

EIBERlRCD 

CLI 
PIC XCI) 
CHARCl) 

when EIBERR is set, contains the error code 
that has been received. The following values 
can be returned in the f!fst two bytes of 
EIBERRCD: 

X'0889' Conversation error detected 

X'0824' SYNCPOINT ROLLBACK 
requested 

ASM: 
COBOL I 

·PI./I: 

EIBFMH 

CL4 
PIC X(4) 
CHAR(4) 

indicates that the user data just received or 
retrieved contains an FMH (X'FF'). 

ASM: 
COBOL I 

Pl./I: 

CLI 
PIC XCI) 
CHARCl) 

EI8FN 
contains a code that identifies the last CICS 
command to be issued by the task (updated 
when the requested function has been 
completed). 

Note: The INQUIRE and SET commands 
of the command level application program 
interface, together with the spool commands 
of the CICS interface to POWER, are 
primarily for the use of the system 
programmer; they are not described in this 
book. For details of the commands, refer to 
thc CICS/ DOS/ VS Cw·tomization Guide. 
Ilowever, the EIOFN codes for these 
commands are included in the following list. 

ASM: 
COBOL: 
PL/II 

Code 

0202 
0204 
0206 
0208 
020A 
020C 
020E 

0402 
0404 
0406 
0408 
040A 
040C 
040E 
0410 
0412 
0414 
0416 
0418 
04lA 
041C 
041E 
0420 
0422 
0424 
0426 
0428 
042A 
042C 
042E 
0430 
0432 
0434 
0436 

CL2 
PIC X(2) 
CHAR(2) 

Command 

ADDRESS 
HANDLE CONDITION 
HANDLE AID 
ASSIGN 
IGNORE CONDITION 
PUSH 
POP 

RECEIVE 
SEND 
CONVERSE 
ISSUE EODS 
ISSUE COpy 
WAIT TERMINAL 
ISSUE LOAD 
WAIT SIGNAL 
ISSUE RESET 
ISSUE DISCONNECT 
ISSUE ENDOUTPUT 
ISSUE ERASEAUP 
ISSUE ENDFIlE 
ISSUE PRINT 
ISSUE SIGNAL 
ALLOCATE 
FREE 
POINT 
BUILD ATTACH 
EXTRACT ATTACH 
EXTRACT TCT 
WAIT CONVID 
EXTRACT PROCESS 
ISSUE ABEND 
CONNECT PROCESS 
ISSUE CONFIRMATION 
ISSUE ERROR 

414 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



0438 ISSUE PREPARE lC02 DUMP 
043A ISSUE PASS 
043C EXTRACT LOGONMSG lE02 ISSUE ADD 

lE04 ISSUE ERASE 
0602 READ lE06 ISSUE REPLACE 
0604 WRITE lE08 ISSUE ABORT 
0606 REWRITE lEOA ISSUE QUERY 
0608 DELETE lEOC ISSUE END 
060A UNLOCK IEOE ISSUE RECEIVE 
060C STARTBR lEIO ISSUE NOTE 
060E READNEXT lE12 ISSUE WAIT 
0610 READPREV IE14 ISSUE SEND 
0612 ENDBR 
0614 RESETBR 2002 BIF DEEDIT 

0802 WRITEQ TD 2202 ENABLE 
0804 READQ TD 2204 DISABLE 
0806 DElETEQ TD 2206 EXTRACT EXIT 

OA02 WRITEQ TS 4A02 ASKTIME ABSTIME 
OA04 READQ TS 4A04 FORMATTIME 
OA06 DELETEQ TS 

4C02 INQUIRE DATASET 
OC02 GETMAIN 4C04 SET DATASET 
OC04 FREEMAIN 

4E02 INQUIRE PROGRAM 
OE02 LINK 4E04 SET PROGRAM 
OE04 XCTL 
OE06 LOAD 5002 INQUIRE TRANSACTION 
OE08 RETURN 5004 SET TRANSACTION 
OEOA RELEASE 
OEOC ABEND 5202 INQUIRE TERMINAL 
OEOE HANDLE ABEND 5204 SET TERMINAL 

5206 INQUIRE NETNAME 
1002 ASKTIME 
1004 DELAY 5402 INQUIRE SYSTEM 
1006 POST 5404 SET SYSTEM 
1008 START 
100A RETRIEVE 5602 SPOOL OPEN 
100C CANCEL 5604 SPOOL READ 

5606 SPOOLWRITE 
1202 WAIT EVENT 5610 SPOOlCLOSE 
1204 ENQ 5620 SPOOL OPEN REPORT 
1206 DEQ 5622 SPOOL OPEN MAPNAME 
1208 SUSPEND 5624 SPOOL OPEN ESCAPE 

5626 SPOOL OPEN RESUME 
1402 JOURNAL 5628 SPOOlWRITE REPORT 
1404 WAIT JOURNAL 562A SPOOLWRITE MAPNAME 

562C SPOOlClOSE REPORT 
1602 SYNCPOINT 

5802 INQUIRE CONNECTION 
1802 RECEIVE MAP 5804 SET CONNECTION 
1804 SEND MAP 
1806 SEND TEXT 5A02 INQUIRE MODENAME 
1808 SEND PAGE 5A04 SET MODENAME 
180A PURGE MESSAGE 
180C ROUTE EIHI'REE 180E RECEIVE PARTN 
1810 SEND PARTNSET indicates that the application program cannot 
1812 SEND'CONTROL continue using the facility. The application 

IA02 TRACE 
program should either free the facility or 

IA04 ENTER should terminate so that the facility is freed 
byCICS (X'PP'). 

Appendix A. EXEC Interface Block 415 



ASH. CL1 not described in this book. However, the 
COBOL. PIC XCI) conditions relating to the spool commands of Pi./I. CHAR(1) 

the CICS interface to POWER are included 

EIBNODAT 
in the list. For details of the commands, refer 

indicates that no data has been sent by the 
to the CICS/DOS/VS Customization Guide. 

relmote application (X'FF'). A message has rEIBFN CByte 0) 
be:en received from the remote system that I 
conveyed only control information. For I rByte Cof EIBRCODE) 

I I example, if the remote application executed a I I rEIBRCODE Value 
SEND command with the WAIT option, any I I I 
da.ta would be sent across the link. If the I I rcondition 
reltnote application then executed a SEND I I I 
INVITE command without using the FROM 02 0 EO INVREQ 
option to transmit data at the same time, it 
would be necessary to send the INVITE 04 0 04 EOF 
instruction across the link by itself. In this 04 0 10 EODS 

04 0 Cl EOF case, the receiving application fmds 04 0 C2 ENDINPT 
EIBNODAT set. The use of this field is 04 0 DO SYSIDERR.I 
restricted to application programs holding 04 0 D2 SESSIONERR.I 
conversations across LU6.2 links only. 04 0 D3 SYSBUSY 

04 0 D4 SESSBUSY 
ASH. CL1 04 0 DS NOTALLOC 
COBOL. PIC XCI) 04 0 EO INVREQ'i 
PL./I. CHARCl) 04 0 E1 LENGERR5 

04 0 E3 WRBRK 
04 0 E4 RDATT 

EIBRCODE 04 0 ES SIGNAL 
contains the CICS response code returned 04 0 E6 TERHIDERR 
after the function requested by the last CICS 04 0 E7 NOPASSBKRD 
command to be issued by the task has been 04 0 E8 NOPASSBKWR 

04 0 EA IGREQCD 
completed. For a normal response, this field 04 0 EB CBIDERR 
contains hexadecimal zeros (6X'OO'). 04 0 F1 TERMERR 

04 1 20 EOC 
Almost all of the information in this field can 04 1 40 INBFMH 

04 3 F6 NOSTART 
be used within application programs by the 04 3 F7 NONVAL 
HANDLE CONDITION command. 

06 0 01 DSIDERR 
ASM: CL6 06 0 02 ILLOGIC 1 
COBOL. PIC X(6) 06 0 08 INVREQ 
PL/I: CHAR(6) 06 0 OC NOTOPEN 

06 0 OD DISABLED 
The following list contains the values of the 06 0 OF ENDFILE 

06 0 80 IOERR1 
various bytes together with the names of the 06 0 81 NOTFND 
conditions associated with the return codes. 06 0 82 DUPREC 
For a complete list of response codes, refer to 06 0 83 NOSPACE 
the CICS/DOS/VS Problem Determination 06 0 84 DUPKEY 

06 0 DO SYSIDERR.I 
Guide. 06 0 D1 ISCINVREQ 

06 0 D6 NOTAUTH 
Note: The INQUIRE and SET commands 06 0 E1 LENGERR 
of the command level application interface, 08 0 01 QZERO 
together with the spool commands of the 08 0 02 QIDERR 
CICS interface to POWER are primarily for 08 0 04 IOERR 
tht;: use of the system programmer; they are 08 0 08 NOTOPEN 

416 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



08 0 10 NOSPACE 18 1 10 INVLDC 
08 0 CO QBUSY 18 1 20 UNEXPIN 
08 0 DO SYSIDERR3 18 1 40 IGREQCD 
08 0 Dl ISCINVREQ 18 1 80 TSIOERR 
08 0 D6 NOTAUTH 18 2 01 OVERFLOW 
08 0 El LENGERR 18 2 04 EODS 

18 2 08 EOC 
OA 0 01 ITEMERR 18 2 10 IGREQID 
OA 0 02 QIDERR 
OA 0 04 IOERR lA 0 EO INVREQ 
OA 0 08 NOSPACE 
OA 0 20 INVREQ IE 0 04 DSSTAT 
OA 0 DO SYSIDERR3 IE 0 08 FUNCERR 
OA 0 Dl ISCINVREQ IE 0 OC SELNERR 
OA 0 D6 NOTAUTH IE 0 10 UNEXPIN 
OA 0 El LENGERR IE 0 El LENGERR 

IE 1 11 EODS 
OC 0 El LENGERR IE 1 2B IGREQCD 
OC 0 E2 NOSTG IE 2 20 EOC 

OE 0 01 PGMIDERR 4A 3 01 ERROR 
OE 0 D6 NOTAUTH 
OE 0 EO INVREQ 56 3 OD , NOTFND 

56 3 10 INVREQ 
10 0 01 ENDDATA 56 3 11 IOERR 
10 0 04 IOERR 56 3 12 NOSPACE 
10 0 11 TRANSIDERR 56 3 14 ENDFILE 
10 0 12 TERMIDERR 56 3 IS ILLOGIC 
10 0 14 INVTSREQ 56 3 16 LENGERR 
10 0 20 EXPIRED 56 3 46 NOTAUTH 
10 0 81 NOTFND 56 3 49 WRONGSTAT 
10 0 DO SYSIDERR3 56 3 4A NAMEERROR 
10 0 Dl ISCINVREQ 56 3 4C CCERROR 
10 0 D6 NOTAUTH 56 3 4D MAPERROR 
10 0 El LENGERR 56 3 SO NOSPOOL 
10 0 E9 ENVDEFERR 
10 0 FF INVREQ The following notes apply to the above list of 

12 0 32 ENQBUSY conditions. 
12 0 EO INVREQ 

Note.r: 
14 0 01 JIDERR 
14 0 02 INVREQ 

!. When ILLOGIC or IOERR occurs during 14 0 OS NOTOPEN 
14 0 06 LENGERR file control operation.~, further information 
14 0 07 IOERR i.r provided in field EIBRCODE, as 
14 0 09 NOJBUFSP follow.~: 14 0 D6 NOTAUTH 

16 0 01 ROLLEDBACK bytes 1,2 = DAM response 
byte 1 = VSAM return code 

18 0 01 INVREQ byte 2 = VSAM error code 
18 0 02 RETPAGE 
18 0 04 MAPFAIL Details of these response codes are given 
18 0 08 INVMPSZ2 in the VSE/SP Messages and Codes 
18 0 20 INVERRTERM manual and in the VSE/VSAM Messages 18 0 40 RTESOME 
18 0 80 RTEFAIL and Codes manual. 
18 0 El LENGERR 
18 0 E3 WRBRK 2. When INVMPSZ occur.r during BMS 
18 0 E4 RDATT operation.r, byte 3 offield EIBRCODE 18 1 02 PARTNFAIL 
18 1 04 INVPARTN contains the terminal code; see "Terminal 
18 1 08 INVPARTNSET Code Table" on page 202. 

Appendix A. EXEC Interface Block 417 



3. When SESSIONERR or SYSIDERR 
occurs, further information is provided in 
byte 1 of EIBRCODE, as follows:' 

04 Name not that of system 
entry. 

OS Link out of service. 
OC Name unknown to CICS. 

Further information on SYSIDERR can 
be found in the CICS/DOS/VS Problem 
Determination Guide. 

4. When INVREQ occurs during terminal 
control operations, further information is 
provided in byte 3 of EIBRCODE as 
follows: 

04 ALLOCATE command - TCTTE 
already allocated. 

OS FREE command - TCTTE in 
wrong state. 

OC CONNECT PROCESS command -
SYNCLVL 2 has been requested 
but cannot be supported on 
the session in use. 

10 EXTRACT ATTACH command -
invalid data. 

14 SEND command - CONFIRM 
option has been specified 
but conversation is not 
SYNCLVL 1. 

IS EXTRACT TCT command -
invalid netname. 

Ie An invalid command has been 
issued for the terminal or 
logical unit in use. 

20 An invalid command has been 
issued for the LU6.2 
conversation type in use. 

2S GETMAIN failure on ISSUE 
PASS command. 

5. When LEN G ERR occurs during terminal 
control operations, further information is 
provided in byte 1 of EIBRCODE, as 
follows: 

00 Input data is overlong and 
has been truncated. 

04 On output commands, an 
invalid (FROM)LENGTH has 
been specified, either less 
than zero or greater than 
32767. 

OS On input commands, an 
invalid (TO)LENGTH has 
been specified, greater 
than 32767. 

OC Length error has occurred 
on ISSUE PASS command. 

EIBRECV 
indicates that the application program is to 
continue receiving data from the facility by 
executing RECEIVE commands (X'FF'). 

ASM: 
COBOLt 
PL/I: 

EIBREQII) 

CLI 
PIC X(l) 
CHAR(I) 

contains the request identifier assigned to an 
interval control command by CICS; this field 
is not used when a request identifier is 
specified in the application program. 

ASM, 
COBOL: 
PL/I: 

EIBRESP 

CLS 
PIC XeS) 
CHAR(S) 

contains a number corresponding to the 
condition that has been raised. These 
numbers are listed below in decinlal. 

Note: The INQUIRE and SET commands 
of the command level application interface, 
together with the spool commands of the 
CICS interface to POWER, are primarily for 
the use of the system programmer; they are 
not described in this book. For details of the 
commands, refer to the CICS/DOS/VS 
Customization Guide. However, the 
EIBRESP codes for these commands are 
included in the following list. 

418 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



ASM, 
COBOL, 
PL/I: 

F 
PIC S9(8) COMP 
FIXED BIN(31) 

No. Condition 

01 ERROR 
02 RDATT 
03 WRBRK 
04 EOF 
05 EODS 
06 EOC 
07 INBFMH 
08 ENDINPT 
09 NONVAL 
10 NOSTART 
11 TERMIDERR 
12 DSIDERR 
13 NOTFND 
14 DUPREC 
15 DUPKEY 
16 INVREQ 
17 IOERR 
18 NOSPACE 
19 NOTOPEN 
20 ENDFILE 
21 ILLOGIC 
22 LENGERR 
23 QZERO 
24 SIGNAL 
25 QBUSY 
26 ITEMERR 
27 PGMIDERR 
28 TRANSIDERR 
29 ENDDATA 
30 INVTSREQ 
31 EXPIRED 
32 RETPAGE 
33 RTEFAIL 
34 RTESOME 
35 TSIOERR 
36 MAPFAIL 
37 INVERRTERM 
38 INVMPSZ 
39 IGREQID 
40 OVERFLOW 
41 INVLDC 
42 NOSTG 
43 JIDERR 
44 QIDERR 
45 NOJBUFSP 
46 DSSTAT 
47 SELNERR 
48 FUNCERR 
49 UNEXPIN 
50 NOPASSBKRD 
51 NOPASSBKWR 
52 
53 SYSIDERR 
54 ISCINVREQ 
55 ENQBUSY 
56 ENVDEFERR 
57 IGREQCD 

58 SESSIONERR 
59 SYSBUSY 
60 SESSBUSY 
61 NOTALLOC 
62 CBIDERR 
63 INVEXITREQ 
64 INVPARTNSET 
65 INVPARTN 
66 PARTNFAIL 
67 
68 
69 
70 NOTAUTH 
71 
72 
73 WRONGSTAT 
74 NAMEERROR 
75 
76 CCERROR 
77 MAPERROR 
78 
79 
80 NOSPOOL 
81 TERMERR 
82 ROLLEDBACK 
83 END 
84 DISABLED 

EIBRESP2 
contains more detailed information that may 
help explain why the RESP condition has 
been raised. This field will contain 
meaningful values (as decimal numbers) only 
for the INQUIRE, SET, and spool 
commands. 

ASM: 
COBOL: 
PL/I I 

F 
PIC S9(8) COMP 
FIXED BIN(31) 

Note: The INQUIRE and SET commands 
of the command level application interface, 
together with the spool commands of the 
CICS interface to POWER, are primarily for 
the use of the system programmer; they are 
not described in this book. For details of 
these commands, refer to the CICS/DOS/VS 
Cuslomizalion Guide. For details of the 
commands that are used with the separately 
ordered feature called the report controller, 
see page 293. 

EIBRI..DBK 
indicates rollback 

ASM: 
COBOL: 
PL/I: 

CLI 
PIC X(I) 
CHAR(I) 

Appendix A. EXEC Interface Block 419 



EIBRSRCE 
contains the symbolic identifier of the 
resource being accessed by the latest executed 
command. For rue control commands this 
will be the name of the data set. For 
transient data and temporary storage 
commands it will be the name of the queue. 
For terminal control commands it will be the 
name of the terminal or logical unit, except 
for ISC commands when it will be the name 
of the LU6.1 session or the LUTYPE6.2 
conversation. 

Identifiers less than eight characters in length 
are padded on the right with blanks. 

ASH. 
COBOL a 
Pl/I. 

EIBSIG 

ClS 
PIC XCS) 
CHARCS) 

indicates that SIGNAL has been received 
(X'FF'). 

ASH. 
COBOL a 
Pl/I. 

EIBSYNC 

ClI 
PIC XCI) 
CHARCI) 

indicates that the application program must 
take a sync point or terminate. Before either 
is done, the application program must ensure 
that any other facilities, owned by it, are pU,t 
into the send state, or are freed (X'FF'). 

ASHa 
COBOle 
Pl/I. 

EIBSYNRB 

ClI 
PIC XCI) 
CHARCI) 

indicates that the application program should 
issue a SYNCPOINT ROLLBACK 

command (X'FF'). This field is only set in 
application programs holding a conversation 
on an LU6.2 or MRO link. 

ASMa 
COBOls 
Pl/I. 

EIBTASKN 

ClI 
PIC XCI) 
CHARCI) 

contains the task number assigned to the task 
by CICS. This number will appear in trace 
table entries generated while the task is in 
control. 

ASHs 
COBOls 
Pl/I. 

EIBTIME 

Pl4 
PIC S9(1) COMP-3 
FIXED DECC7,O) 

contains the time at which the task is started 
(this field is updated by the ASKTIME 
command). The time is in packed decimal 
form (OHHMMSS + ). 

ASMs 
COBOls 
Pl/Is 

EIBTRMII) 

Pl4 
PIC S9(7) COMP-3 
FIXED DECC7,O) 

contains the symbolic terminal identifier of 
the principal facility (terminal or logical unit) 
associated with the task. 

ASMI 
COBOla 
Pl/II 

EIBTRNII) 

Cl4 
PIC X(4) 
CHAR(4) 

contains the symbolic transaction identifier of 
the task. 

ASM. 
COBOL. 
Pl/I. 

Cl4 
PIC X(4) 
CHAR(4) 

420 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Appendix B. Translation Tables for the 2980 

This appendix contains translation tables for the 
components of the IBM 2980 General Banking 
Terminal System. The line codes and processor 

codes listed are unique to CICS and are represented 
as standard EBCDIC characters. 

Appendix B. Translation Tables for the 2980 421 



KEY ENGRAVING LINE PROCESSOR CODE HLL 
NCI. TopCLC) FrontCUC) Code NumericCLC) AlphaCUC) ID 

0 MSG ACK 1 Fl AA Fl 
1 SEND AGAIN Q D8 D9 D8 
2 CORR A Cl C3 Cl 
3 HOLD OVRDE 2 F2 C8 F2 
4 VOID Z E9 E5 E9 
5 ACCT INQ W E6 D8 E6 
6 ACCT TFR S E2 AB E2 2 
7 CIF 3 F3 AC F3 3 
8 MISC X E7 AD E7 4 
9 CLSD ACCT E C5 E7 C5 

10 NO BOOK D C4 AE C4 5 
11 MORT LOAN 4 F4 AF F4 6 
12 C C3 BO C3 7 
13 NEW ACCT R D9 Bl D9 8 
14 BOOK BAL F C6 B2 C6 9 
15 INST LOAN 5 F5 B3 F5 10 
16 SPEC TRAN V E5 B4 E5 11 
17 SAV BOND T E3 B5 . E3 12 
18 SAY G C7 B6 C7 13 
19 XMAS CLUB 6 F6 B7 F6 14 
20 • B C2 4B C2 
21 DDA Y E8 B8 E8 15 
22 00 H C8 B9 C8 16 
23 MON ORD 7 F7 BA F7 17 
24 0 N D5 FO D5 
25 7 U E4 F7 E4 
26 4. J Dl F4 Dl 
27 CSHR CHK 8 F8 BB F8 18 
28 1 M D4 Fl D4 
29 8 I C9 F8 C9 
30 5 K D2 F5 D2 
31 CASH RECD 9 F9 BC F9 19 
32 2 , 6B F2 6B 
33 9 0 D6 F9 D6 
34 6 L D3 F6 D3 
35 UTIL BILL 0 FO E4 FO 
36 3 • 4B F3 4B 
37 DEP + P D7 4E D7 
38 WITH - $ 5B 60 5B 
39 FEES - 60 C6 60 
40 TOTL / 61 E3 61 
41 CASH IN )( 5C BD 5C 20 
42 CASH CHK I 7B BE 7B 21 
43 VAL & 50 STATION ID 50 
44 TAB 05 05 05 TABCHAR 
45 ALPHA ENTRY 36 
46 NUM ENTRY 06 
47 SEND 26-ETB 

03-ETX 
48 RETURN 15 15 15 JRNLCR 
49 NUM ENTRY 06 
50 SPACE 40 40 40 
58 MSGLIGHT 17 17 17 MSGLITE 

Figure 22. 2980-1 Teller Station Character Set/Translate Table 

422 CICSjDOS/VS Application Programmerts Reference Manual (Command Level) 



KEY ENGRAVING LINE PROCESSOR CODE HLL 
No. TopCLC) FrontCUC) Code NumerieCLC) AlphaCUC) ID 

0 = 1 Fl Fl Cl) 7E C=) 
1 Q D8 98 (q) D8 (Q) 
2 A Cl 81 (a) Cl (A) 
3 2 F2 F2 (2) 4C «) 
4 Z E9 A9 (z) E9 (Z) 
5 W E6 A6 Cw) E6 (W) 
6 S E2 A2 (s) E2 (S) 
7 i 3 F3 F3 (3) SE ( i ) 
8 X E7 A7 (x) E7 (X) 
9 E CS 85 (e) C5 (E) 

10 D C4 84 (d) C4 (D) 
11 I 4 F4 F4 (4) 7A ( I) 

12 C C3 83 (e) C3 (C) 
13 R D9 99 (r) D9 (R) 
14 F C6 86 (f) C6 (F) 
15 Ye 5 F5 F5 (5) 6C (Ye) 
16 V E5 AS (v) E5 (V) 
17 T E3 A3 (t) E3 (T) 
18 G C7 87 (g) C7 (G) 
19 • 6 F6 F6 (6) 7D ( . ) 
20 D C2 82 (b) C2 (D) 
21 Y E8 A8 (y) E8 (Y) 
22 H C8 88 (h) C8 (H) 
23 > 7 F7 F7 (7) 6E (» 
24 N DS 95 Cn) D5 (N) 
25 U E4 A4 (u) E4 (U) 
26 J Dl 91 (j) Dl (J) 
27 JE 8 F8 F8 (8) 5C (JE) 
28 M D4 94 (m) D4 (M) 
29 I C9 89 (i) C9 (I) 
30 K D2 92 (k) D2 (K) 
31 ( 9 F9 F9 (9) 4D «) 
32 I ' 6D 6D ( , ) 4F (b) 
33 0 D6 96 (0) D6 ( ) 
34 L D3 93 (1) D3 (L) 
35 ) 0 FO FO (0) 5D (» 
36 -. 4D 4D ( . ) SF (-.) 

37 P D7 97 (p) D8 CP) 
38 ! $ 5B 5B (.L) SA ( ! ) 
39 - 60 60 (-) 6D ( ) 
40 1 / 61 61 (/) 6F (1) 
41 ~ 1 sc 70 (1) 4A (e) 
42 7B 7B ( ) 7F (II) 

43 + & 50 50 (A) 4E (+) 
44 TAB 05 05 05 
45 LOCK 36 36 36 
46 SHIFT 06 06 06 
47 BACKSPACE 16 10 16 DCKSPACE 
48 RETURN 15 15 15 
49 SHIFT 06 06 06 
50 (SPACE) 40 40 40 
53 SEND 26-ETB 

03-ETX 

Figure 23. 2980-2 Administrative Station Character Set/Translate Table 

Appendix n. Translation Tables for the 2980 423 



KEY' ENGRAVING LINE PROCESSOR CODE HLL 
No. Top(LC) . FrontCUC) Code NumericCLC) AlphaCUC) ID 

0 CK $ - D9 BC 60 19 
1 Q D3 D3 D8 
2 A Cl Cl Cl 
3 CK • 0 C9 B7 C9 14 
4 Z E9 4B E9 
5 W E6 5C E6 
6 S E2 5B E2 
7 IMD 2 1 5B 4F Fl 
8 X E7 AE E7 5 
9 E C5 C5 C5 

10 D C4 6F C4 
11 IMD 1 2 4B BF F2 
12 C C3 C3 C3 
13 R 60 60 D9 
14 F C6 C6 C6 
15 CODE 3 E8 BB F3 
16 V E5 AO E5 22 
17 T E3 Al E3 23 
18 G C7 C7 C7 
19 AMT 4 5C BE F4 21 
20 B C2 C2 C2 
21 Y 61 61 E8 
22 H D7 D7 C8 
23 OB 5 D8 B2 F5 9 
24 N D5 D5 D5 
25 U E4 AF E4 6 
26 J Dl Dl Dl 
27 ACCT • 6 C8 7B F6 
28 N D4 E7 D4 
29 I D6 D6 C9 
30 K D2 D2 D2 
31 7 7 F7 F7 F7 
32 ... . .. 6B BLANK 6B 
33 4 0 F4 F4 D6 
34 1 L Fl Fl D3 
35 8 8 F8 F8 F8 
36 0 FO FO 4B 
37 5 P F5 F5 D7 
38 2 $ F2 F2 5B 
39 9 9 F9 F9 F9 
40 ... . .. 7B BO 7B 7 
41 6 3( F6 F6 5C 
42 3 I F3 F3 7B 
43 VAL & 50 50 50 
44 TAB 05 05 05 
45 ALPHA 36 
46 NUMERIC 06 
47 SEND 26-ETB 

03-ETX 
48 RETURN 15 15 15 
49 NUMERIC 06 
50 SPACE 40 40 40 
51 FEED OPEN 04 OPENCH 

Figure :Z4. 2980-4 Teller Station Character Set/Translate Table 

424 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Appendix C. CICS Macros and Equivalent Commands 

This appendix provides a list of the macro LIST=SEGMENT DUMP FROM 
instructions available to the CICS application TVPE=TRANSACTION DUMP[TASKl 

programmer, and shows for each macro instruction 
the command that will perform the same function. DFHDI 
Command options may have different defaults or TVPE=ABORT ISSUE ABORT 
functions from macro-level operands having similar TVPE=ADD ISSUE ADD 

names. Some CICS macros do not have an 
TVPE=CHECK HANDLE CONDITION 
TVPE=END ISSUE END 

equivalent command; for example, there is only TVPE=ERASE ISSUE ERASE 
one CICS built-in function that can be invoked by TVPE=NOTE ISSUE NOTE 
a command. TVPE=QUERV ISSUE QUERV 

TVPE=RECEIVE ISSUE RECEIVE 
TVPE=REPLACE ISSUE REPLACE 

Although the TYPE = CHECK macro performs a TVPE=SEND ISSUE SEND 
similar function to the HANDLE CONDITION TVPE=WAIT ISSUE WAIT 
command, it is used in a completely different way. 

Macro Command DFHFC 
TVPE=CHECK HANDLE CONDITION 
TVPE=DELETE DELETE RIDFLD 

DFHBFTA CDL/I types) 
TVPE=ESETL ENDBR 
TVPE=GET READ 

DFHBIF TVPE=GET, 
TVPE=DEEDIT BIF DEEDIT TVPOPER=UPDATE READ UPDATE 

TVPE=GETAREA 
TVPE=GETNEXT READNEXT 

DFHBMS TVPE=GETPREV READPREV 
TVPE=CHECK HANDLE CONDITION TVPE=PUT, 
TVPE=IN RECEIVE MAP TVPOPER=DELETE DELETE 
TVPE=MAP RECEIVE MAP FROM TVPE=PUT, 
TYPE=OUT SEND TEXT TYPOPER=NEWREC WRITE 
TYPE=OUT,MAP= SEND MAP TYPE=PUT, 
TVPE=PAGEBLD SEND MAP ACCUM TYPOPER=UPDATE REWRITE 
TYPE=PAGEOUT SEND PAGE TVPE=RELEASE UNLOCK 
TVPE=PURGE PURGE MESSAGE TVPE=RESETL RESETBR 
TYPE=RETURN SEND{MAPITEXT} SET TVPE=SETL STARTBR 
TVPE=ROUTE ROUTE 
TVPE=STORE SEND{MAPITEXT} PAGING 
TYPE=TEXTBLD SEND TEXT ACCUM DFHIC 

TVPE=CANCEL CANCEL 
TVPE=CHECK HANDLE CONDITION 

DFHDC TVPE=GET RETRIEVE 
TYPE=CICS DUMP TABLES TVPE=GETIME ASKTIME 
TYPE=COMPLETE DUMP COMPLETE TYPE=INITIATE START 
TYPE=PARTIAL TVPE=POST POST 

LIST=PROGRAM DUMP PROGRAM TVPE=PUT START FROM 
LIST=TERMINAL DUMP TERMINAL TVPE=RETRV RETRIEVE 
LIST=TRANSACTION DUMP STORAGE TVPE=WAIT DELAV 

Appendix C. CICS Macros and Equivalent Commands 425 



DFHJC 
TYPE=CHECK 
TYPE=GETJCA 
TYPE=PUT 
TYPE=WAIT 
TYPE=WRITE 

DFHKC 
TYPE=ATTACH 
TYPE=CHAP 
TYPE=DEQ 
TYPE=ENQ 
TYPE=NOPURGE 
TYPE=PURGE 
TYPE=WAIT 
TYPE=WAIT,ECADDR 

DFHMDF 

DFHMDI 

DFHMSD 

DFHPC 
TYPE=,ABEND 
TYPE=ICHECK 
TYPE=ICOBADDR 
TYPE=.DEL ETE 
TYPE=tINK 
TYPE=LOAD 
TYPE=IRESETXIT 
TYPE=IRETURN 
TYPE=SETXIT 
TYPE=XCTL 

DFHSC 
TYPE=FREEMAIN 
TYPE=tGETMAIN 

DFHSP 
TYPE=USER 
TYPE=IROLL BACK 

DFHTC 
TYPE=CBUFF 
TYPE=CONVERSE 

HANDLE CONDITION 

JOURNAL WAIT 
WAIT JOURNAL 
JOURNAL 

DEQ 
ENQ 

SUSPEND 
WAIT EVENT 

ABEND 
HANDLE CONDITION 

RELEASE 
LINK 
LOAD 
HANDLE ABEND RESET 
RETURN 
HANDLE ABEND 
XCTL 

FREEMAIN 
GETMAIN 

SYNCPOINT 
SYNCPOINT ROLLBACK 

SEND CBUFF 
CONVERSE 

TYPE=COPY 
TYPE=DISCONNECT 
TYPE=EODS 
TYPE=ERASEAUP 
TYPE=GET 
TYPE=PAGE 
TYPE=PASSBK 
TYPE=PRINT 
TYPE=PROGRAM 
TYPE=PUT 
TYPE=READ 
TYPE=READB 
TYPE=READl 
TYPE=RESET 
TYPE=SIGNAl 
TYPE=WAIT 
TYPE=WRITE 
TYPE=WRITEl 

DFHTD 
TYPE=CHECK 
TYPE=FEOV 
TYPE=GET 
TYPE=PURGE 
TYPE=PUT 

DFHTR 
TYPE=ENTRY 
TYPE=OFF 
TYPE=ON 

DFHTS 
TYPE=CHECK 
TYPE=GETI 
TYPE=GETQ 
TYPE=PURGE 
TYPE=PUTI 
TYPE=PUTQ 
TYPE=RElEASE 

ISSUE COPY 
ISSUE DISCONNECT 
ISSUE EODS 
ISSUE ERASEAUP 
RECEIVE 

SEND PASSBK 
ISSUE PRINT 
ISSUE LOAD 
SEND WAIT 
RECEIVECWAIT assumed) 
RECEIVE BUFFER 
RECEIVE lEAVEKB 

. ISSUE RESET 
WAIT SIGNAL 
WAIT TERMINAL 
SEND 
SEND LEAVEKB 

HANDLE CONDITION 

READQ TD 
DELETEQ TD 
WRITEQ TD 

ENTER 
TRACE OFF 
TRACE ON 

HANDLE CONDITION 
READQ TS 
READQ TS 
DElETEQ TS 
WRITEQ TS 
WRITEQ TS 
DELETEQ T5 

1 Because single units of infonnation cannot be 
handled by the command level interface, data 
stored by a DFI-ITS TYPE= PUT macro cannot 
be retrieved by a READQ TS command or be 
deleted by a DELETEQ TS command. 
Conversely, data stored by a WRITEQ TS 
command cannot be retrieved by a DFHTS 
TYPE = GET macro. 

426 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Appendix D. Sample Programs (Assembler Language) 

The assembler language sample programs described 
in this appendix are included, in both source and 
executable form, on the CICS distribution tape. 
The CICS/DOS/VS Installation and Operations 
Guide describes how these sample pr~grams, and 
associated resources, can be defmed to CICS and 
how the programs can be executed online. 

This appendix describes six CICS sample 
application programs, written in assembler 
language, as follows: 

• Operator Instruction 
• Inquiry/Update 
• Browse 
• Order Entry 
• Order Entry Queue Print 
• Low Balance Report. 

These programs illustrate basic applications (such 
as inquire, browse, add, and update) that can serve 
as a framework for your installation's frrst 
programs. The programs operate using a VSAM 
HIe, known as FILEA, consisting of records 
containing details of individual customer accounts. 
Each program has a short description of what the 
program does, a listing of its source code, and a 
series of program notes. Numbered coding lines in 
the source listing correspond to the numbered 
program notes. 

All the sample programs are for use with the IBM 
3270 Information Display System. 

The sample BMS maps include examples of how 
the COLOR, EXTATT, and HI LIGHT attributes 
are specilled in the map defInition macros. 
However, due to production limitations, the 
associated screen layouts do not show you all the 
effects of these attributes. 

You can add attributes without changing the 
application program by specifying 
EXTATT= MAPONLY in the DFHMSD map set 
defmition macro. If you include an attribute that 
specifies a facility not available at the terminal, it 
will be ignored. 

The statements listed are those of the sample 
programs supplied with the initial release of CICS. 
Sample programs shipped with subsequent program 
temporary fixes (PTFs) may differ from these 
listings. 

The BMS maps (which are unaligned) and the fue 
record descriptions used by these sample programs 
are included at the end of the appendix. 

Once CICS is running, type AMNU onto a clear 
screen and press the enter key. The AMNU 
transaction identifier invokes the "Operator 
Instruction" sample program, which is a short 
program that produces a menu containing the 
transaction identifiers for two of the other sample 
programs, namely "Inquiry/Update" and "Browse" 

If you clear the screen, remember to reenter the 
transaction identifier, as no data is accepted from 
an unformatted screen. 

You can run the sample programs using EDF but, 
because the CEDF transaction is defmed with 
RSLC = YES, you must frrst sign on to CICS as an 
operator with an appropriate resource security level 
key. 

The menu, on a screen that is 40 characters wide 
by 12lines deep, is shown in the box below. The 
plus ( + ) sign in this and subsequent displays 
shows the position of the attribute byte. In an 
actual display, this position contains a blank. 

Appendix D. Sample Programs (Assembler Language) 427 



+OPERATOR INSTRUCTIONS 

+OPERATOR INSTR - ENTER AMNU 
+FILE INQUIRY - ENTER AINQ AND NUMBER 
+FILE BROWSE - ENTER ABRW AND NUMBER 
+FILE ADD - ENTER AADD AND NUMBER 
+FILE UPDATE - ENTER AUPD AND NUMBER 

+PRESS CLEAR TO EXIT 
+ENTER TRANSACTIONs+ 

To invoke any of the transactions AMNU i AINQ, 
ABRW, AADD, or AUPD, do as instructed, 
entering the 4-character transaction identifier and, 
when necessary, the 6-digit account number in the 
fields highlighted in the bottom line of the display. 
These 8pecial account numbers include the 
sequence 100000, 111111, 200000, 222222, ... , 
999999. 

These transaction identifiers give you access to the 
inquiry, add, and update functions of the 

Operator Instruction Program (ASM) 

Description 

+NUMBER+ 

"Inquiry/Update" program, and access to the 
"Browse" program. 

You can invoke the three remaining sample 
programs "Order Entry", "Order Entry Queue 
Print", and "Low Balance Report" separately by 
entering their transaction identifiers (AORD, 
AORQ, and AREP respectively) onto a clear 
screen. 

The operator instruction sample program displays map DFH$AGA in response to the EXEC CICS SEND 
MAP c=ommand. The map displays a menu that lists the transaction identifiers associated with two of the 
sample programs, II Inquiry/Update" , and "Browse", and gives instructions for the operator. 

Sourc:e Listing 

TITLE 'DFH$AMNU - CICS/VS SAMPLE FILEA OPERATOR INSTRUCTION ME* 
NU - ASSEMBLER' 

DFH$AMNU CSECT 
1 EXEC CICS SEND MAPC'DFH$AGA') MAPONLY ERASE 
2 EXEC CICS RETURN 

END 

Progl'am Notes 

1. The BMS command erases the screen and displays map DFII$AGA. 

2. The RETURN conunand ends the program. 

428 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Inquiry/Update Sample Program 
(ASM) 

Description 

The inquiry/update sample program lets you make 
an inquiry about, add to, or update records in a 
ftIe. You can select one of these by entering the 
appropriate transaction identifier (AINQ, AADD, 
or A UPD) in the menu that is displayed when you 
start operations by entering AMNU. 

To make an inquiry, enter AINQ and an account 
number into the menu. The program maps in the 
account number and reads the record from FILEA. 
The required fields from the ftIe area, and a title 
"FILE INQUIRY" are moved to the map dsect for 
DFH$AGB. DFH$AGB, containing the record 
fields, is displayed at your screen. 

To add a record, enter AADD and the account 
number into the menu. The account number and a 
title "FILE ADD" are moved to the map area of 
DFH$AGB. DFH$AGB, containing empty data 
fields, is displayed at your screen. The data fields 
entered are mapped into DFH$AGB and moved to 
the ftIe record area which is then written to FILEA. 

The addition is recorded on an update log 
(LOGA), which is a transient data queue. The 
operator instruction screen is displayed with the 
message "RECORD ADDED". 

To update a record, enter AUPD and the account 
number into the menu, as before. The program 
reads and displays the requested FILEA record. 
Modified data fields are mapped in to DFH$AGB 
and edited. The sample program only suggests the 
type of editing you might want to do. You should 
insert editing steps needed to ensure valid changes 
to the file. Those fields which have been changed 
are moved to the data record and the record is 
rewritten to FILEA. The update is recorded on 
LOGA. The message "RECORD UPDATED" is 
moved to the dsect for DFH$AGA, the operator 
instruction menu map, which is then displayed at 
your screen. 

This program is an example of 
pseudoconversational programming, in which 
control is returned to CICS together with a 
transaction identifier whenever a response is 
requested from the operator. Associated with each 
return of control to CICS is a storage area 
containing details of the previous invocation of the 
transaction. 

Source Listing for the Inquiry IUpdate Sample Program 

TITLE 'DFH$AALL ,- CICS/VS SAMPLE FILEA INQUIRY/UPDATE - ASSEMB* 
lER' 

DFHEISTG DSECT 

RETREG 
R06 
R07 
R08 
R09 
FILEDS 

COMPTR 

COPY 
COpy 
EQU 
EQU 
EQU 
EQU 
EQU 
DS 
COPY 
EQU 
COpy 
COpy 

MESSAGES DS 
KEYNUM DS 
COMLEN DS 
DFH$AALL CSECT 

1 CLC 
BE 
CLC 

DFH$AGA 
DFH$AGB 
2 
6 
7 
8 
9 
DC 
DFH$AFIL 
4 
DFH$ALOG 
DFHBMSCA 
CL39 
CL9 
IH 

MAP A 
MAP B 
SET UP REGISTER USAGE 

RECORD DESCRIPTION FOR FILEA 
POINTER TO COMMAREA 
lOG FILE RECORD DESCRIPTION 
BMS ATTRIBUTE BYTES 
TEMP STORE FOR MESSAGES 
TEMP STORE FOR FILE RECORD KEY 
LENGTH OF COMMAREA 

EIBTRNID,=CL(L'EIBTRNID)'AINQ' IS INVOKING T-ID 'AINQ'? 
OKTRANID OK HERE, SO CONTINUE 
EIBTRNID,=CL(L'EIBTRNID)'AUPD' IS IT 'AUPD'? 

Appendix D. Sample Programs (Assembler Language) 429 



Source Listing for the Inquiry/Update Sample Program (Continued) 

BE OKTRANID OK HERE, SO CONTINUE 
CLC EIBTRNID,=CL(L'EIBTRNID)'AADD' FINALLY, IS IT 'AADD'! 
BNE ERRORS IF NOT, GO TO ERROR ROUTINE 

OKTRANID DS OH CORRECT INVOKING TRANSACTION ID HERE 
2 LH COMPTR,EIBCALEN HAS A COMMAREA BEEN RETURNED! 

LTR COMPTR,COMPTR 
BNZ COMRETND ... YES, SO GO GET MAP 

3 EXEC CICS HANDLE CONDITION MAPFAIL(MFAIL) ERROR(ERRORS) 
4 EXEC CICS RECEIVE MAP('DFH$AGA') 
5 CLC KEYL,=H'O' IF ACCOUNT NUMBER NOT ENTERED 

BE BADLENG GO DISPLAY ERROR MS. 
TRT KEYI,CHEKTAB CHECK FOR NUMERIC ACCOUNT NUM, 
BNZ BADCHARS NO GOOD - DISPLAY ERROR MS. 
MVC KEYNUM,KEYI SAVE KEY TO FILE. 
XC DFH$AGBO(DFH$AGBE-DFH$AGBO),DFH$AGBO CLEAR MAP 
CLC EIBTRNID,=CL(L'EIBTRNID)'AADD' IS INVOKING T-ID 'AADD'! 
BNE INQUPD .. NO, SO GO TEST FOR OTHER ID'S 

6 MVC TITLEO,=CLCL'TITLEO)'FILE ADD' SET UP TITLE 
MVC MSG30,=CL(L'MSG30)'ENTER DATA AND PRESS ENTER KEY' 
MVC NUMB,KEYI PUT KEY IN COMMAREA 
MVC NUMBO,KEYI ... AND ON MAP ENTRY 
MVI AMOUNTA,DFHBMUNN ATTRIBUTE SET TO UNPROTECTED, * NUMERIC, DISPLAY, MDT BIT NOT SET 
MVC AMOUNTO,=C'$OOOO.OO' PROMPTING 'FIELD FOR MAP 
MVC COMLEN,=H'7' SET UP LENGTH OF COMMAREA TO BE RTND 

7 BAL RETREG,MAPSEND GO SEND MAP 
B CICSCONT GO RETURN CONTROL TO CICS 

INQUPD DS OH HERE INVOKING T-ID IS AINQ, OR AUPD 
8 EXEC CICS HANDLE CONDITION NOTFND(NOTFOUND) 
9 EXEC CICS READ DATASETC'FILEA') INTO(FILEA) RIDFLDCKEYNUM) 

CLC EIBTRNID,=CLCL'EIBTRNID)'AINQ' IS INVOKING T-ID AINQ! 
BNE UPDTSECT .. NO, SO BRANCH TO AUPD ROUTINE 

10 MVC TITLEO,=CLCL'TITLEO)'FILE INQUIRY' SET UP TITLE ON MAP 
MVC MSG30,=CLCL'MSG30)'PRESS ENTER TO CONTINUE' 
BAL RETREG,MAPBUILD GO BUILD MAP * PROTECT ALL FIELDS ON MAP 

11 MVI NAMEA,DFHBMPRO 
MVI ADDRA,DFHBMPRO 
MVI PHONEA,DFHBMPRO 
MVI DATEA,DFHBMPRO 
MVI AMOUNTA,DFHBMPRO 
MVI COMMENTA,DFHBMPRO 

12 BAL RETREG,MAPSEND GO SEND MAP 
EXEC CICS RETURN TRANSID('AMNU') 

UPDTSECT DS OH UPDATE ROUTINE 
13 MVC TITLEO,=CL(L'TITLEO)'FILE UPDATE' SET UP MAP TITLE 

MVC MSG30,=CLCL'MSG30J'CHANGE FIELDS AND PRESS ENTER' 
14 MVC COMLEN,=H'80' STORE LENGTH OF COMMAREA 
15 BAL RETREG,MAPBUILD GO BUILD MAP 

BAL RETREG,MAPSEND GO SEND MAP 
B CICSCONT GO RETURN CONTROL TO CICS 

*********************************************************************** 
* * HERE A COMMAREA HAS BEEN RETURNED, AND IS THEREFORE SECOND 

INVOCATION OF THIS PROGRAM 

*********************************************************************** 
COMRETND DS OH HERE COMMAREA HAS BEEN RETURNED 
16 L COMPTR,DFHEICAP GET ADDRESSABILITY TO COMMAREA 
17 EXEC CICS HANDLE CONDITION MAPFAIL(NOTMODF) ERRORCERRORS) * 

430 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Inquiry/Update Sample Program (Continued) 

18 

19 

20 

OKREC 
21 
22 

23 

DUPRECCDUPREC) NOTFNDCNOTFOUND) 
EXEC CICS RECEIVE MAPC'DFH$AGB') 
CLC EIBTRNID,=CLCL'EIBTRNID)'AUPD' IS INVOKING T-ID AUPD! 
BNE SECADD .. NO, SO BRANCH TO SECOND AADD ROUT 
EXEC CICS READ UPDATE DATASETC'FILEA') INTOCFILEA) 

RIDFLDCNUMB-FIlEDSCCOMPTR» 
CLC FILEREC,FILEREC-FILEDSCCOMPTR) RECORD CHANGED ON FILE! 
BE OKREC .. NO, SO BRANCH AND CONTINUE 
MVC MSGI0,=CLCL'MSGI0)'RECORD UPDATED BY OTHER USER, TRY AGA* 

IN' 
MVI MSGIA,DFHBMASB BRIGHTEN MESSAGE ON SCREEN 
MVI MSG3A,DFHPROTN DARK AND PROTECTED ATTRIBUTE 
BAL RETREG,MAPBUILD GO BUILD MAP 
EXEC CICS SEND MAPC'DFH$AGB') DATAONLY 
MVC COMLEN,=H'80' SET UP LENGTH OF COMMEREA 
B CICSCONT GO RETURN CONTROL TO CICS 
DS OH HERE RECORD IS OK FOR UPDATE 
BAL RETREG,CHECK GO TEST RECORD TO BE UPDATED 
MVI STAT,C'U' MOVE 'UPDATE' BYTE TO FILE RECORD 
BAL RETREG,FILESTUP GO SETUP FILE RECORD 
MVC MESSAGES,=CLCL'MESSAGES)'RECORD UPDATED' SET UP MESSAGE 
B AMNU COMPLETE, GO FINISH. 

SECADD DS OH SECOND ADD ROUTINE 
MVC NUMB,NUMB-FILEDSCCOMPTR) MOVE SAVED RECORD KEY TO FILE 

24 BAL RETREG,CHECK GO CHECK RECORD TO BE ADDED 
XC FILEDS,FILEDS RECORD IS OK HERE,SO CLEAR FILE AREA 

25 MVI STAT,C'A' MOVE 'ADDED' BYTE TO FILE RECORD 
BAL RETREG,FILESTUP GO WRITE RECORD ON FILE 

26 MVC MESSAGES,=CLCL'MESSAGES)'RECORD ADDED' SET UP MESSAGE 
B AMNU COMPLETE, GO FINISH. 

CICSCONT DS OH THIS ROUTINE RETURNS CONTROL TO CICS 
27 EXEC CICS RETURN TRANSIDCEIBTRNID) COMMAREACFILEDS) * 

AMNU 
28 

LENGTHCCOMLEN) 
DS OH ENDING ROUTINE 
XC DFH$AGAOCDFH$AGAE-DFH$AGAO),DFH$AGAO CLEAR MAP 
MVI MSGA,DFHBMASB BRIGHTEN MESSAGE FIELD ON MAP 
MVC MSGO,MESSAGES MOVE ANY MESSAGE TO MAP AREA 

29 EXEC CICS SEND MAPC'DFH$AGA') ERASE 
30 EXEC CICS RETURN 
*********************************************************************** 
* * GENERAL ROUTINES 
* * *********************************************************************** 
MAPBUILD DS OH ROUTINE TO BUILD MAP DFH$AGB 
31 MVC NUMBO,NUMB MOVE FILE KEY TO MAP AREA 

MVC NAMEO,NAME MOVE NAME TO MAP AREA 
MVC ADDRO,ADDRX MOVE ADDRESS TO MAP AREA 
MVC PHONEO,PHONE MOVE PHONE TO MAP AREA 
MVC DATEO,DATEX MOVE DATE TO MAP AREA 
MVC AMOUNTO,AMOUNT MOVE AMOUNT TO MAP AREA 
MVC COMMENTO,COMMENT MOVE COMMENT TO MAP AREA 
BR RETREG RETURN 

MAPSEND DS OH ROUTINE TO SEND MAP DFH$AGB 
32 EXEC CICS SEND MAPC'DFH$AGB') ERASE 

BR RETREG RETURN 
CHECK DS OH ANY INPUT FROM SCREEN! ROUTINE 
33 LA R06,DFH$AGBO R6 POINTS TO START OF MAP DFH$AGB 

LA R07,CDFH$AGBE-DFH$AGBO) R7 CONTAINS LENGTH OF MAP B 
LA R08,HEXZERO R8 POINTS TO HEXZERO 

Appendix D. Sample Programs (Assembler Language) 431 



Source Listing for the Enquiry/Update Sample Program (Continued) 

lA R09,l'HEXZERO R9 CONTAINS lENGTH OF HEXZERO 
ICM R09,B'1000',HEXZERO X'OO' INTO TOP BYTE OF R9 
ClCl R06,R08 DOES MAP CONTAIN ANY INPUT! 
BE NOTMODF .. NO, SO RAISE NOTMODIFIED 
ClC EIBTRNID,=ClCL'EIBTRNID)'AADD~ IS INVOKING T-ID 'ADDS'! 
BE ADNAMCHK .. YES, SO GO TO 'AADD' NAME CHECK 

UPNAMCHK DS OH UPDATE TRANSACTION HERE 
OC NAMEI,NAMEI HAS NAME BEEN CHANGED! 
BZR RETREG .. NO, SO DON'T CHECK IT 

ADNAMCHK TRT NAMEO,TAB .. YES, IS IT ALPHABETIC! 
BM DATAERR .. NO, SO RAISE ERROR 
BR RETREG .. YES, SO RETURN 

FILESTUP DS OH ROUTINE TO SET UP FILE RECORD 
34 OC NAMEI,NAMEI HAS NAME BEEN ENTERED! 

BZ ADRTST .. NO, BRANCH 
MVC NAME,NAMEI .. YES, PUT IN IN FILE AREA 

ADRTST OC ADDRI,ADDRI HAS ADDRESS BEEN ENTERED! 
BZ PHNTST .. NO, BRANCH 
MVC ADDRX,ADDRI .. YES, PUT IN IN FILE AREA 

PHNTST OC PHONEI,PHONEI HAS PHONE BEEN ENTERED! 
BZ DATTST .. NO, BRANCH 
MVC PHONE,PHONEI .. YES, PUT IN IN FILE AREA 

DATTST OC DATEI,DATEI HAS DATE BEEN ENTERED! 
BZ AMTTST .. NO, BRANCH 
MVC DATEX,DATEI .. YES, PUT IN IN FILE AREA 

AMTTST OC AMOUNTI,AMOUNTI HAS AMOUNT BEEN ENTERED! 
BZ CHEKTRAN .. NO, BRANCH 
TRT AMOUNTI,CHEKTAB IS AMOUNT NUMERIC 
BNZ DATA ERR NO, ASK FOR CORRECT AMOUNT 
MVC AMOUNT,AMOUNTJ[ .. YES, PUT IN IN FILE AREA 
B COMTST 

CHEKTRAN ClC EIBTRNID,=ClCL'EIBTRNID)'AADD' IS INVOKING T-ID 'ADDS'! 
BNE COMTST 

• PUT VALID AMOUNT IN NEW RECORD 
MVC AMOUNT,=Cl8'$OOOO.00' 

COHTST OC COMMENTI,COMMENTI HAS COMMENT BEEN ENTERED! 
BZ CONTINUE .. NO, CONTINUE 
MVC COMMENT,COMMENTI .. YES, PUT IN IN FILE AREA 

CONTINUE DS OH FILE RECORD IS NOW SET UP 
35 MVC lOGREC,FIlEREC MOVE FILE RECORD TO lOG AREA 

MVC lDAY,EIBDATE MOVE DATE TO lOG AREA 
MVC lTIME,EIBTIME MOVE TIME TO lOG AREA 
MVC lTERMl,EIBTRMID MOVE TERMINAl-ID TO lOG AREA 

36 EXEC CICS WRITEQ TD QUEUEC'lOGA') FROMClOGA) lENGTH(92) 
ClC EIBTRNID,=Cl(L'EIBTRNID)'AUPD' UPDATE REQUIRED! 
BNE ADDWRITE .. NO, SO BRANCH 

37 EXEC CICS REWRITE DATASETC'FIlEA') FROMCFIlEA) 
BR RETREG FINISHED, SO RETURN 

ADJ)WRITE DS OH ADD FUNCTION REQUIRED 
38 EXEC CICS WRITE DATASET('FIlEA') FROM(FIlEA) 

RIDFlDCNUMB-FIlEDSCCOMPTR» 
BR RETREG FINISHED, SO RETURN 

DATAERR DS OH GENERAL ROUTINES 
39 MVI NAMEA,DFHBMFSE PRESERVE CONTENTS OF SCREEN 

MVI ADDRA,DFHBMFSE BY SETTING THE MODIFIED DATA TAG 
MVI PHONEA,DFHBMFSE ON THE FIELDS ON THE SCREEN. 
MVI DATEA,DFHBMFSE 
MVI AMOUNTA,DFHUNNUM NUMERIC AND MODIFIED FLAGS 
MVI COMMENTA,DFHBMFSE 
MVI MSG3A,DFHBMASB BRIGHTEN ERROR MESSAGE 

432 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Inquiry/Update Sample Program (Continued) 

40 
41 

42 

MVI MSGIA,DFHPROTN DARK AND PROTECTED ATTRIBUTE 
MVC MSG30,=CLCL'MSG30)'DATA ERROR - CORRECT AND PRESS ENTER' 
EXEC CICS SEND MAPC'DFH$AGB') DATAONLY 
CLC EIBTRNID,=CLCL'EIBTRNID)'AUPD' UPDATE REQUIRED! 
BE UPDTERR .. YES, SO BRANCH 
MVC COMLEN,=H'7' .. NO,SET UP COMLEN 
B CICSCONT GO RETURN CONTROL TO CICS 

UPDTERR DS OH 
MVC COMLEN,=H'80' UPDATE, SET UP REQUIRED COMLEN 
B CICSCONT 

NOTMODF DS OH SCREEN NOT CHANGED 
43 MVC MESSAGES,=CLCL'MESSAGES)'RECORD NOT MODIFIED' MESSAGE 

B AMNU COMPLETE, GO FINISH 
DUPREC DS OH DUPLICATE RECORD 

MVC MESSAGES,=CLCL'MESSAGES)'DUPLICATE RECORD' MESSAGE 
B AMNU COMPLETE, GO FINISH 

BADLENG DS OH 
MVC MESSAGES,=CLCL'MESSAGES)'PLEASE ENTER AN ACCOUNT NUMBER' 
B AMNU 

BADCHARS DS OH 
MVC MESSAGES,=CLCL'MESSAGES)'ACCOUNT NUMBER MUST BE NUMERIC' 
B AMNU 

NOT FOUND DS OH RECORD NOT FOUND 
MVC MESSAGES,=CLCL'MESSAGES)'INVALID NUMBER - PLEASE REENTER' 
B AMNU COMPLETE, GO FINISH 

MFAIL DS OH 
MVC MESSAGES,=CLCL'MESSAGES)'PRESS CLEAR TO EXIT' 
B AMNU 

ERRORS DS OH GENERAL ERROR ROUTINE 
44 EXEC CICS DUMP DUMPCODEC'ERRS') 

MVC MESSAGES,=CLCL'MESSAGES)'TRANSACTION TERMINATED' 
B AMNU COMPLETE, GO FINISH 

HEXlERO DC X'OO' CONSTANT FOR COMPARISONS 
TAB DC 2S6X'FF' TRANSLATE TABLE FOR NAME 

ORG TAB+C" BLANK 
DC X'OO' 
ORG TAB+C' . ' 
DC X'OO' 
ORG TAB+C'-' 
DC X'OO' 
ORG TAB+C"" 
DC X'OO' 
ORG TAB+C'A' 
DC 9X'OO' 
ORO TAB+C'J' 
DC 9X'OO' 
ORG TAB+C'S' 
DC 8X'OO' 
ORG 

CHEKTAB DC 
ORG 
DC 
ORG 
DC 
ORG 
DC 
ORG 
DC 
ORG 
END 

2S6X'FF' 
CHEKTAB+C'O' 
X'OO' 
CHEKTAB+C' . ' 
X'OO' 
CHEKTAB+C'$' 
X'OO' 
CHEKTAB+C'O' 
10X'00' 

CHAR , . ' 
CHAR I_I 

CHAR QUOTE 

CHARS 'A' - I I ' 

CHARS 'J I - I R I 

CHARS'S' - 'l' 

TRANSLATE TABLE FOR AMOUNT 
ALTERNATE CURRENCY 

ALLOW FULL STOP 

AllOW CURRENCY 

NUMBERS 0-9 

Appendix D. Sample Programs (Assembler Language) 433 



Pronram Notes 

I. The possible invoking transaction identifiers are 
tested. 

2. The length of the CO MMAREA is tested. If 
not zero then this is the validation stage of an 
add or update. 

3. The program exits are set up. 

4. The menu map DFH$AGA is received. The 
account number, if entered, is mapped into 
KEYI in the dsect for DFH$AGA. 

5. The account number is validated and saved. 

6. If the program is invoked by AADD, a title 
and command message are moved to the . map 
area. The record key is moved to the map area 
and saved in COMMAREA. The amount field 
has the attribute byte set to numeric .. 

7. The add screen is displayed and the program 
tl~nninates to await a reply from the terminal. 

8. Por an inquiry or update the exit for the 
n:~cord-not-found condition is set up .. 

9. The ftIe control READ command reads the ftIe 
r~~cord into the ftIe area. 

10. If the program is invoked by AINQ, a title and 
command message are moved to the map area. 
The ftIe record fields are moved to the map 
area by a subroutine. 

11 .. All field attributes are set to protected. 

12. The inquiry screen is displayed and the 
program terminates. The TRANSID of 
AMNU causes the operator instruction 
program to be invoked when the next response 
is received from the tennina!. 

13. Uthe program is invoked by AUPD, a title and 
command message are moved to the map area. 

14. The length of the COMMAREA to be 
returned is set up. 

IS. Data is moved to the map dsect and displayed. 
Control is returned to CICS. 

16. Control is passed here when a test at 
OKTRANID fmds that a COMMAREA has 
been received. This part of the program maps 
in data for an add or update request, performs 
validation and updates FILEA. 

17. The error exits are set up. 

18. The RECEIVE MAP command maps in the 
variables from the screen. 

19. If this is an update request a ftIe control READ 
UPDATE command reads the existing record 
using the number stored in COMMAREA by 
the last invocation of this program. 

20. If the current me record is not the same as the 
one saved in COMMAREA then another user 
has updated the record. A warning message is 
displayed, with fields from the record read from 
FILEA, for reentry of the updates. 

21. A subroutine checks that updates are valid. 

22. The update flag is set in the modified record 
and the record is updated on FILEA. 

23. The message uRECORD UPDATED" is 
moved to the message area for display on the 
operator instruction screen. 

24. If this is an add request a subroutine is called 
to check that the entered data is valid. 

25. The add flag is set in the new record and the 
record is written to FILEA. 

26. The message uRECORD ADDED" is moved 
to the message area for display on the operator 
instruction screen. 

27. After the FILE ADD or FILE UPDATE 
screen has been displayed the program 
branches here to return to CICS awaiting a 
response from the terminal. The RETURN 
gives CICS the transaction identifier for the 

434 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



next transaction at this terminal together with a 
CO MMAREA containing all infonnation that 
the program needs to continue the update. 
The COMMAREA is passed to the next 
invocation of this program, see note 2 above. 

28. This code gets control when an add or update 
is complete. An infonnation or error message 
is in MESSAGES. The operator instruction 
map area is cleared. The message is moved to 
the map area and highlighted. 

29. The operator instruction map DFH$AGA is 
displayed on an erased screen. 

30. The program terminates by returning to CICS. 
No transaction identifier or COMMAREA is 
specified. 

31. This subroutine moves fields from the FILEA 
record to the map dsect for DFH$AGB. 

32. MAPSEND sends the map DFH$AGB to the 
screen specifying that the screen is to be erased 
before the map is displayed. 

33. Any required editing steps should be inserted 
here. A suitable fonn of editing should be used 
to ensure valid records are placed on the me. 

34. FILESTUP creates or updates the account 
record and writes it to FILEA; Any field 
which has been entered is moved to the 
account record. 

35. The record fields, the date, the time, and the 
termid are moved to the update log record area. 

36. The record is written to the update log which is 
a transient data queue. 

37. P or an update request the updated account 
record is rewritten to FILEA. 

38. Por an add request the new account record is 
written to the file. 

39. When a data error is detected the screen is 
redisplayed for errors to be corrected. The 
modified data tag is set on for all the data fields 
so that all data is received at the next 
RECEIVE MAP. 

40. An error message is moved to the map area. 

41. The contents of map DFH$AGB are sent to 
the screen. The constant infonnation on the 
screen is not refreshed as a result of the use of 
the DATAONLY option. 

42. The size of the COMMAREA is set to 7 for an 
add request or to 80 for an update request. 
Code at CICSCONT returns to CICS passing 
this value in the LENGTH operand. 

43. These short error routines set up an error 
message in MESSAGES and branch to 
AMNU to display the message in the operator 
instruction menu DFH$AGA. 

44. If a CICS command fails with the ERROR 
condition or if an unknown transaction 
identifier is used to invoke this program, a 
dump is taken and the message 
"TRANSACTION TERMINATED" is 
moved to MESSAGES for display on the 
operator instruction screen. 

Appendix D. Sample Programs (Assembler Language) 435 



Browse Sample Program (ASM) 

De8(:ription 

The browse program sequentially retriev€~s a page 
or set of records for display, starting at a point in a 
fue specified by the tenninal operator. 

To start a browse, type ABRW and an account 
number into the menu and press the enter key. If 

, Source Listing for the Browse Sample Program 

you omit the account number browsmg begins at 
the start of the fue. Pressing PF 1 or typing F 
retrieves the next page or pages forward. To 
reexamine the previous records displayed, press 
PF2 or type B. This lets you page backward. 

The browse program uses READNEXT to forward 
page to the end of the fue and READPREV to 
backward page to the start of the fue. 

TITLE 'DFH$ABRW - CICS/VS SAMPLE FIlEA BROWSE - ASSEMBLER' 

CONSTANT FOR CLEARING MAPS 
CURRENT OPERATION (F/BJ 
LAST OPERATION (F/B) 

DFHEISTG DSECT 
HE:XZERO DS 
CURROP DS 
LASTOP DS 
STATUS DS 
FLAGS DS 
PFIRST EQU 

X'OO' 
CLI 
Cli 
CLI 
X 
X'SO' 
OCLl8 
CL6 
CL6 
CL6 
CL80 

FILE STATUS - HI OR LO END OR NORMAL (H/l/N) 
FLAGS ... 

KE:YS DS 
RID DS 
RIDB DS 
RIDF DS 
MESSAGES DS 

COpy DFHBMSCA 
COPY DFH$AFIL 
COpy DFH$AGA 
COPY DFH$AGC 

JE 
DF'H$ABRW CSECT 

I MVI KEYS,X'FO' 

FIRST BROWSE IS BACKWARD. 

DATA-AREA FOR RIDFLD 
TO BUILD PREV BACK PAGE 
TO BUILD NEXT FWD PAGE 

STANDARD BMS ATTRIBUTES 
FILEA RECORD DESCRIPTION 
'GENERAL MENU' MAP 
'BROWSE FILEA' MAP 

MVC 
MVI 
MVC 

KEYS+I{L'KEYS-I),KEYS 
MESSAGES,X'40' 
MESSAGES+I(L'MESSAGES-I),MESSAGES 

'0' INTO TOP BYTE 
SET KEYS TO ZERO 
, , INTO TOP BYTE 
CLEAR MESSAGES 

JE 

EXEC CICS HANDLE AID 
CLEAR(SMSG) 
PFI(PAGEF) 
PF2(PAGEB) 

EXEC CICS HANDLE CONDITION 
ERROR(ERRORS) 
MAPFAIL(SMSG) 
NOTFND(NOTFOUND) 

4 EXEC CICS RECEIVE MAP('DFH$AGA') 
JE~JEJEJEJEJEJEJEJEJEJEJEJEJE*JEJEJEJEJE~JEJEJEJEJE****JEJEJEJEJEJE*JEJEJEJE.*****JE**JEJEJEJEJEJE~*JEJE*JE****JEJEJEJE 

JE SIMPLE CHECKS OF INPUT DATA JE 
JE~!JE**JE***JE**JE***JE************JEJEJEJEJEJEJEJEJEJE*JEJEJE**JE*******JEJE**************** 

Si eLC KEYL,=H'O' WAS ACCOUNT NUMBER OMITTED! 

JE 
6 

BE NOACCNUM YES - FRONT OF FILE BY DEFAULT. 

TRT KEYI,CHEKTAB 
BNZ BADCHARS 

CHECK ACCOUNT NUMBER IS NUMERIC, 
IT ISN'T - GO DISPLAY MESSAGE. 

436 CICSIDOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Browse Sample Program (Continued) 

MVC 
CLC 
BNE 
MVC 

IF ACCOUNT NUMBER IS MAXIMUM 
SET RECORD KEY HIGH TO 

BROWSE BACKWARD FIRST TIME. 
SETRID MVC 

RID,KEYI 
RID,=C'999999' 
SETRID 
RID,=6X'FF' 
RIDF,RID 
RIDB,RID 
BRWSNOW 

• 
MVC 
B 

BADCHARS MVC MESSAGES,=CLCL'MESSAGES)'ACCOUNT NUMBER MUST BE NUMERIC' 
B AMNU 

• NOACCNUM MVC 
MVC 
B 

RID,=C'080000' 
RIDF,=C'OOOOOO' 
BRWSNOW 

o DIGITS ENTERED 

* •••••••••••• *~ ••••••••••• )( •••• ~ •••••••••••• ~ •••••••••••••••••••••••••• 
• ESTABLISH START POINT • •• ~ •• * ••••••••• * ••• * ••••••••••••••••••••••••• * •••••••••••••••••• ~ •••••• 
BRWSNOW DS OH 

MVI STATUS,C'N' SET FILE STATUS NORMAL 
7 EXEC CICS STARTBR DATASETC'FILEA') RIDFLDCRID) 

CLC RID,=6X'FF' 
BNE PAGEF 

• TREAT AS HI-EOF, 
01 FLAGS,PFIRST SET FIRST BROWSE BACK FLAG. 
MVI STATUS,C'H' AND 
B PAGEB PAGE BACKWARDS 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• BUILD NEXT FORWARD PAGE )( ................................................................ ~ ..... . 
PAGEF DS OH 

MVI CURROP,C'F' IN CASE PFI WAS USED 
8 EXEC CICS HANDLE CONDITION )( 

• 

L,A 
LA 
LA 
LA 
LA 
ICM 
MVCL 

MVC 

ENDFILECTOOHIGH) 

4,1 
6,DFH$AGCO 
7,CDFH$AGCE-DFH$AGCO) 
8,HEXZERO 
9,L'HEXZERO 
9,B'lOO',HEXZERO 
6,8 

RID,RIDF 

NEXTLINE DS OH 
9 EXEC CICS READNEXT 

• 
10 

• NEXT2 

INTOCFILEA) 
DATASETC'FILEA') 
RIDFLDCRID) 

CH 4,=H'I' 
BNE NEXT2 
MVC NUMBERI0,NUMB 
MVC NAMEI0,NAME 
MVC AMOUNTI0,AMOUNT 
MVC RIDB,RID 
B NEXTCONT 

DS OH 

CLEAR MAP 
SET COUNTER TO 1 
R6->START OF MAP DFH$AGC 
R7-> LENGTH OF DFH$AGC 
R8-> X'OO' 
R9-> LENGTH OF HEXZERO 
X'OO' INTO TOP BYTE, OF R9 
MOVE X'OO' INTO DFH$AGCO 

RIDF->NEXT FORWARD PAGE 

FIRST LINE! 
.. NO, GO TEST FOR 2ND LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
RIDB->EXISTING A/C NO. 
GOTO NEXTCONT 

Appendix D. Sample Programs (Assembler Language) 437 



Source Listing for the Browse Sample Program (Continued) 

11 CH 4,=H'2' SECOND lINE? 
BNE NEXT3 .. NO, TEST FOR THIRD lINE 
MVC NUMBER20,NUMB MOVE NUMBER TO MAP AREA 
MVC NAME20,NAME MOVE NAME TO MAP AREA 
MVC AMOUNT20,AMOUNT MOVE AMOUNT TO MAP AREA 
B NEXTCONT GOTO NEXTCONT 

)( 

NEXT3 DS OH 
CH 4,=H'3' THIRD lINE! 
BNE NEXT4 .. NO, TEST FOR FOURTH lINE 
MVC NUMBER30,NUMB MOVE NUMBER TO MAP AREA 
MVC NAME30,NAME MOVE NAME TO MAP AREA 
MVC AMOUNT30,AMOUNT MOVE AMOUNT TO MAP AREA 
B NEXTCONT GOTO NEXTCONT 

)( 

NEXT4 DS OH 
CH 4,=H'4' FOURTH lINE! 
BNE NEXTCONT .. NO, GOTO NEXTCONT 
MVC NUMBER40,NUMB MOVE NUMBER TO MAP AREA 
MVC NAME40,NAME MOVE NAME TO MAP AREA 
MVC AMOUNT40,AMOUNT MOVE AMOUNT TO MAP AREA 

JE 
NEXTCONT DS OH 

lA 4,1(,4) INCREMENT COUNT 
CH 4,=H'S' FINISHED! 
BNE NEXTLINE .. NO, GO BUILD NEXTLINE 

* MVC RIDF,RID RIDF->NEXT FORWARD PAGE 
12 EXEC CICS SEND MAPC'DFHtAGC') ERASE 

B RECEIVE 
)(JEJE.JEJEJE)(JE)(JE)(.JEJE)(JEJEJE)(JEJE)(JEJE •• JE.JEJEJE)(.)(JE)(.)(JEJE.JE)(.JE ••••• JE •• )( ••••••••• JE •• JE.)(. 
JE BUILD PREVIOUS BACK PAGE • 
• )(JE.JE)(JE)()()(JE •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
PAGEB DS OH 

MVI CURROP,C'B' IN CASE PF2 WAS USED 
EXEC CICS HANDLE CONDITION )( 

ENDFIlE(TOOlOW) 
)( CLEAR MAP 

lA 4,1 SET COUNTER TO 1 
LA 6,DFH$AGCO R6->START OF MAP DFH$AGC 
lA 7, (DFH$AGCE-DFH$AGCO) R7-> LENGTH OF DFH$AGC 
lA 8,HEXZERO R8-> X'OO' 
lA 9,L'HEXZERO R9-> lENGTH OF HEXZERO 
ICM 9,B'100',HEXZERO X'OO' INTO TOP BYTE OF R9 
MVCl 6,8 MOVE X'OO' INTO DFH$AGCO 

MVC RID,RIDB RIDB->PREVIOUS BACK PAGE 
MVC RIDF,RIDB RIDF->NEXT FORWARD PAGE 

ClI lASTOP,C'B' SWITCHING DIRECTION! 
BE PREVlINE NO. - NO SPECIAL ACTION 

YES - DO EXTRA READPREV 
ClI STATUS,C'H' - UNLESS AT HI EOF 
BE PREVlINE 

PREII1XTRA DS OH 
EXEC CICS READPREV )( 

INTOCFIlEA) )( 

DATASET('FIlEA') )( 

RIDFlD(RID) 

438 CICS/DOSjVS Application Programmc~r's Reference Manual (Command Level) 



Source Listing for the Browse Sample Program (Continued) 

3E 
PREVLINE DS OH 
13 EXEC CICS READPREV 

INTO(FILEA) 
DATASET('FILEA') 
RIDFLD(RID) 

CH 4,=H'4' 
BNE PREV2 
MVC NUMBERI0,NUMB 
MVC NAMEI0,NAME 
MVC AMOUNTI0,AMOUNT 
B PREVCONT 

3E 
PREV2 DS OH 

CH 4,=H'3' 
BNE PREV3 
MVC NUMBER20,NUMB 
MVC NAME20,NAME 
MVC AMOUNT20,AMOUNT 
B PREVCONT 

3E 
PREV3 DS OH 

CH 4,=H'2' 
BNE PREV4 
MVC NUMBER30,NUMB 
MVC NAME30,NAME 
MVC AMOUNT30,AMOUNT 
B PREVCONT 

3E 
PREV4 DS OH 

CH 4,=H'I' 
BNE PREVCONT 
MVC NUMBER40,NUMB 
MVC NAME40,NAME 
MVC AMOUNT40,AMOUNT 

3E 
PREVCONT DS OH 

LA 4,1(,4) 
CH 4,=H'5' 
BNE PREVLINE 

3E 
MVC RIDB,RID 
TM FLAGS,PFIRST 
BO HIGHMSG 

PUT FIELDS IN ASCENDING ORDER 
FOURTH LINE! 
· .NO, GO TEST FOR 3RD LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
GOTO PREVCONT 

THIRD LINE! 
.. NO, TEST FOR 2ND LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
GOTO PREVCONT 

SECOND LINE! 
· .NO, TEST FOR FIRST LINE 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 
GOTO PREVCONT 

FIRST LINE! 
· . NO, PREVCONT 
MOVE NUMBER TO MAP AREA 
MOVE NAME TO MAP AREA 
MOVE AMOUNT TO MAP AREA 

INCREMENT COUNT 
FINISHED! 
· .NO, GO BUILD NEXT LINE 

RIDB->NEXT FORWARD PAGE 
DID WE START AT HI-EOF! 

YES TELL HIM. 
EXEC CICS SEND MAP('DFH$AGC') ERASE 

3E3E3E3E3E3E3E3EJE3EJE3EJEJEJEJEJE3EJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJE 
JE RECEIVE NEXT PAGING REQUEST JE 
JEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJE*JEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJE 
RECEIVE DS OH 

14 

NI FLAGS,X'FF'-PFIRST 
MVC LASTOP,CURROP 
EXEC CICS RECEIVE MAP('DFH$AGC') 
CLI DIRI,C'F' 
BE PAGEF 
CLI DIRI,C'B' 

SET OF FIRST TIME FLAG. 
REMEMBER LAST OPERATION 

PAGE FORWARD REQUIRED! 
· .YES, GO TO PAGEF ROUTINE 
PAGE BACK REQUIRED! 

BE PAGEB .. YES, GO TO PAGEB ROUTINE 
EXEC CICS SEND CONTROL FREEKB FRSET. IGNORE - RESET KEYBOARD. 

3E 
3E 
3E 

Appendix D. Sample Programs (Assembler Language) 439 



Source Listing for the Browse Sample Program (Continued) 

B RECEIVE 
JononnonnnnnnnnnnnnnnnnOEJnnnnnnnnE •••••••••••••••••••••••••• JUE •••••• lIE ••• 
• HANDLE END OF FILE CONDITIONS • 
•• n •••••• lIE •••••••••••••••••• * ••• lIE.lIE ••••• lIElIE.lIE.lIElIElIElIElIElIE ••• lIElIE •• lIE. lIElIE.lIE.lIE.lIE lIE lIE lIE 
TOOHIGH DS OH 
15 MVI STATUS,C'H' SET STATUS 'HI END' 

MVC RIDF,RID 
MVC RIDB,RID 
MVI DIRO,X'40' 

HIOHMSG MVC MSG10,=CLCL'MSG10)'HI END OF FILE' 

• 
TOOLON 
16 

MVI MSG1A,DFHBMASB MSG=BRT 
EXEC CICS SEND MAPCWDFH$AGC') ERASE 
B RECEIVE 

DS OH 
MVI STATUS~C'L' SET STATUS 'LO END' 
MVC RIDF,=C'OOOOOO' 
MVC RIDB,=C'OOOOOO' 
MVI DIRO,X'40' 
MVI MSG2A,DFHBMASB MSG=BRT 
MVC MSG20,=CLCL'MSG20)'LO END OF FILE' 
EXEC CICS SEND MAPC'DFH$AGC') ERASE 
B RECEIVE 

•• ~.lIE.lIElIE.lIE.lIElIElIE.lIE ••• lIE.lIElIElIElIElIElIElIE*lIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIE.lIE lIE. lIE lIE.lIElIE lIE lIE lIE. lIE lIE lIE lIE lIE 
lIE HANDLE GENERAL CONDITIONS lIE 
lIE.~[lIE.lIElIElIElIElIElIElIE.lIElIElIElIElIElIElIElIElIElIElIE •••• *lIElIE •• lIElIElIE •• lIElIElIE.lIE •• lIElIE.lIElIE.lIElIElIE ••• lIElIElIElIElIElIElIE lIElIE •• lIE lIE lIE 
MOTFOUND DS OH 
17 MVC MESSAGES,=CLCL.'MESSAGES)'END OF FILE - PLEASE RESTART' 

lIE 
SMSIG 
18 

• 
ERRORS 
19 

B AMNU 

DS 
MVC 
B 

OH 
MESSAGES,=CLCL.'MESSAGES)'PRESS CLEAR TO EXIT' 
AMNU 

DS OH 
EXEC CICS DUMP DUMPCODEC'ERRS') 
MVC MESSAGES,=CLCL'MESSAGES)'TRANSACTION TERMINATED' 

lIElIE~:lIE.lIElIElIElIElIElIElIElIE ••• lIElIElIElIE.lIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE 
lIE DISPLAY GENERAL MENU THEN EXIT lIE 
lIElIE_lIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIElIE.lIE.lIElIElIElIElIE.lIElIElIElIElIElIElIE lIElIElIElIElIElIE •• lIE.lIElIE lIE. lIE lIE 
AMNU DS OH 
20 XC DFH$AGAOCDFHtAGAE-DFH$AGAO),DFH$AGAO 

21 

MVI MSGA,DFHBMASB 
MVC MSGO,MESSAGES 
EXEC CICS SEND MAPC'DFH$AGA') ERASE 
EXEC CICS RETURN 

CLEAR MAP A 
BRIGHTEN MESSAGE 
MOVE MSGS TO MAP 

lIE lIE. lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE. lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE 
lIE DEFINE THE 256 BYTE TRANSLATE TABLElIE 
lIE lIE lIE lIE lIE lIE lIE lIElIElIE lIElIE.lIElIE.lIElIElIElIElIElIElIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE lIE. lIE lIE lIE lIE lIE lIE lIE.lIE lIE lIE lIE lIE lIE. lIE lIE lIE 
lIE FOR LOCATING NON-NUMERIC DIGITS BY 
lIE MEANS OF THE "TRT" INSTRUCTION 
CHEKTAB DC 256X'FF' 

ORG CHEKTAB+X'FO' 
DC 10X'OO' 
ORG 
END 

440 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Program Notes 

I. Work areas are initialized to begin the browse. 

2. The exits for CLEAR, PFI and PF2 are set 
up. 

3. The error exits are set up. 

4. This command maps in the account number 
from the operator instruction screen. 

5. If no account number is entered browsing 
begins at the start of the ftle. 

6. If the format of the account number is valid 
the number is used to set the program's browse 
pointers, otherwise an error message is 
displayed on the operator instruction menu. 
Entering the maximum value (999999) for the 
account number begins a backward browse 
from the end of the ftle. 

7. The STARTBR command establishes the 
browse starting point. 

8. The forward browse end of ftle exit is set up. 

9. The READNEXT reads the frrst record, and 
subsequently the next record, into the me area. 

10. The account number, name, and amount are 
moved to the frrst line of the browse map area. 

II. The same basic commands are repeated to read 
and set up the next three lines. The same me 
area is used for each read. 

12. The screen is erased and the full page is 
displayed at the terminal. 

13. Backward browsing uses the READPREV 
command to read the previous record and 

stores records in the map area starting at the 
bottom line. Note the need for an extra 
READPREV when changing from forward to 
backward browsing. 

14. When the RECEIVE command executes 
control will go to one of the HANDLE AID 
exits (see note 2) if CLEAR, PFI or PF2 is 
pressed. The program explicitly tests for F or 
n if no exit is taken. Any other terminal 
response is ignored. 

15. If the end of ftle is reached any records read to 
that point are displayed together with a 
highlighted message "HI END OF FILE". 

16. If the start of ftle is reached on a READPREV 
(backward browse) then the ENDFILE 
condition occurs and TOO LOW gets control. 
Any records read up to that point are 
displayed, together with a highlighted message 
"LO END OF FILE". 

17. If the NOTFND condition occurs at the start 
browse (note 7) the message "END OF FILE -
PLEASE RESTART" is moved to 
MESSAGES for display on the operator 
instruction screen. 

18. If the CLEAR key is pressed or when a 
MAPP AIL occurs a message "PRESS CLEAR 
TO EXIT" is moved to MESSAGES for 
display on the operator instruction screen. 

19. In some error situations a dump is taken and 
the message "TRANSACTION 
TERMINATED" is moved to MESSAGES 
for display on the operator instruction screen. 

20. This code displays the operator instruction 
menu with a message which has been stored in 
MESSAGES. 

21. The program terminates by returning to CICS. 

Appendix D. Sample Programs (Assembler Language) 441 



Ord€~r Entry Sample Program 
(ASM) 

Descrliption 

The order entry sample application program 
provides a data entry facility for customer orders 
for parts from a warehouse. Orders are recorded 
on a transient data queue which is defmed so as to 
start the order entry queue print transaction 
automatically when a fixed number of orders have 
been ac:cumulated. The queue print transaction 
sends the orders to a printer terminal at the 
warehouse. 

To begin order entry, type AORD onto a blank 
screen and press ENTER. The order entry 
prograrn displays the map DFH$AGK on the 
screen requesting the operator to enter order details, 
that is, customer number, part number, and the 
quantity of that part requited. The custonler 
number must be valid, that is, it must exist on 

, 

FILEA. The order details are mapped in and 
checked, an invalid order is redisplayed for 
correction. When valid an order is written to the 
transient data queue L860 and the order entry 
screen is redisplayed ready for the next order to be 
entered. If CLEAR is pressed the order entry 
program terminates. 

L860, the name of the transient data queue, is also 
the name of the terminal where the order entry 
queue print transaction is to be triggered when the 
number of items on the queue reaches 30. A 
defmition of the transient data queue is included in 
the sample destination control table listed in the 
CICS/DOS/VS Installation and Operations Guide. 

The trigger level may be changed using the CEMT 
command, as follows: 

CEMT SET QUEUECl860) TRIGGERCn) 

where n is the destination trigger level (any integer 
from 0 through 32767). 

Source Listing for the Order Entry Sample Program 

TITLE 'DFH$AREN - CICS/VS SAMPLE FILEA ORDER ENTRY - ASSEMBLER* , 
DFHIEISTG DSECT 

COPY DFH$AGK MAP DEFINITION 
COPY DFH$AL86 TD Q REC DESCRIPT 
COpy DFH$AFIL FILE OF ACCOUNTS 
COPY DFHBMSCA STD BMS ATTRIBUTE 

* 
FLAC3S DS IB ERROR FLAGS 
FLERR EQU X'40' FLERR-INPUTCHECKS 
* 
DFH~~AREN CSECT 

1 EXEC CICS HANDLE AID CLEARCENDA) 
* 

2 EXEC CICS HANDLE CONDITION MAPFAILCMAPFAIL) 
NOTFNDCNOTFOUND) ERRORCERRORS) 

* 
* CLEAR MAP VARS 

XC DFH$AGKOCDFH$AC3KE-DFH$AGKO),DFH$AGKO 
* 
* ERASE+DISPLAY MAP 

3 EXEC CICS SEND MAPC'DFH$AGK') ERASE 
***3E******************************************************************* 
* PROCESS THE INPUTTED FIELDS * 
***3E******************************************************************* 
RECEIVE DS OH 
* RECEIVE INPUTDATA 

442 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



4 

Source Listing for the Order Entry Sample Program (Continued) 

EXEC CICS RECEIVE MAPC'DFH$AGK') 

* 

* 

NI FLAGS,X'FF'-FLERR 

MVI 
MVI 
MVI 

5 TRT 
BZ 
MVI 
01 

CUSTNOA,DFHUNNUM 
PARTNOA,DFHUNNUM 
QUANTA,DFHUNNUM 

CUSTNOI,CHEKTAB 
TSTPART 
CUSTNOA,DFHUNINT 
FLAGS,FLERR 

TSTPART TRT PARTNOI,CHEKTAB 
TSTQUANT 
PARTNOA,DFHUNINT 
FLAGS,FLERR 

* 

BZ 
MVI 
01 

TSTQUANT TRT QUANTI,CHEKTAB 
BZ CHKFLERR 

SET FLERR TO 0 

SET MDT=1 IN CASE 
FIELDS NEED TO BE 
RE-ENTERED 

CHECK FOR NUMERIC 

ATTR=BRI+UNPROT'D+NUMERIC 
SET FLERR TO 1 

ATTR=BRI+UNPROT'D+NUMERIC 
SET FLERR TO 1 

MVI QUANTA,DFHUNINT ATTR=BRI+UNPROT'D+NUMERIC 
01 FLAGS,FLERR SET FLERR TO 1 

*****)()(*)()()()()()(*)(**)()(*)(**)()()()()()()(*)()()()()()()()()()()()()()()(**)(**)()()()(*)()()()()()()()()()()()()()( 

* SIMPLE VALIDATION OF INPUT DATA)( 
)(**)(**)()()()()()()()()()()()(*)()()()()()(**)()()()()()()()(*)()(*)()(*)(***)(**)()()()()()(*)()()()()()()()()()()()()()()( 

CHKFLERR TM FLAGS,FLERR 
BZ QBUILD 

6 MVI MSG2A,DFHBMASB 
ERASE+DISPLAY MAP 

EXEC CICS SEND MAPC'DFH$AGK') ERASE 
B RECEIVE 

***)(**)(*)(****)(*)(*)()(***)()(***)()(**)(***)()()()(*JEJEJEJEJEJE*JE*)(JEJEJE)(JEJE*JE)(JEJEJE*)(*JEJEJEJE*JE 
)( CHECK CUSTOMER NUMBER EXISTS * 
)(*)(**)()()()(*)(**)()()(*)()()(**)()()()()()(*)(*)()()()()(*)()()(*JE*JE*****)()()()()()(JE)()()(*JE)()(**)(*JE)(*)( 

7 
QBUILD 

8 
EXEC CICS READ DATASETC'FILEA') INTOCFILEA) RIDFLD(CUSTNOI) 
MVC CUSTNO,CUSTNOI 
MVC PARTNO,PARTNOI 
MVC QUANTITY, QUANTI 
MVC TERMID,EIBTRMID 

)()(**)(*)()(***)(*)(*)(**)()(**)()(*)(*)()()()(*)(*)()(*)(***JE)(****)(**************JE******** 
)( WRITE VALID ORDER TO TD QUEUE * 
**)(**)()()()()()(*)(***)(**)(*)(**)(**)(***)(******)(*)(**)()()(***)(****)(**)(*)(*)()()(**)(**)(* 

9 EXEC CICS WRITEQ TD QUEUE('L860') FROMCL860) LENGTH(22) 
10 EXEC CICS SEND MAPC'DFH$AGK') MAPONLY ERASE 

B RECEIVE GET MORE INPUT 
*)(*)()()()()()()()()()()()()(*)(*)()(*)()()()(*)()()()()(**)()()()(**)(*****)()(*)()(*)()(**)()()(*)(*)()()(****** 
)( HANDLE ERRORS AND RESTART )( 
)()()(*)()()()(*)()()()()()()()()()()()(*)()()()(*)()(*)()()()()()()()()()()(*)()(JE)()()()(*)()(*)()()()(**)(**)()()()()()(*)()( 

* NOT FOUND DS OH 
11 MVI CUSTNOA,DFHUNINT 

MVI PARTNOA,DFHUNNUM 
MVI QUANTA,DFHUNNUM 
MVI MSGIA,DFHBMASB 

INVALID CUSTOMER ACCOUNT NO. 
ATTR=BRI+UNPROT'D+NUMERIC 

MDT=1 TO PRESERVE 
.... THESE FIELDS 
ERROR MSG=BRIGHT 

EXEC CICS SEND MAPC'DFH$AGK') 
B RECEIVE GET MORE INPUT 

)( 

MAPFAIL DS OH NO DATA ENTERED IN INPUT FIELDS 

Appendix D. Sample Programs (Assembler Language) 443 



Source Listing for the Order Entry Sample Program (Continued) 

12 XC DFH$AGKOCDFH$AGKE-DFH$AGKO),DFH$AGKO CLEAR MAP 
MVI MSG2A,DFHBMASB ERROR MSG=BRIGHT 
EXEC CICS SEND MAPC'DFH$AGK') 
B RECEIVE GET MORE INPUT ••• *.* •••••••••••••••• * •••••• * •••••••••• * •• ** ••••••••• * ••••••• * ••••• * •• * EXIT PROGRAM • ••• * ••••••• ******~ •• **.******* •••••• ** •••• * ••••••••••• *~ •••• * •••••••••• 

ERRORS DS OH GENERAL ERROR CONDITIONS 
13 MVI MSG2A,DFHBMASB ERROR MSG=BRIGHT 

MVC MSG20,=C'TRANSACTION TERMINATED' 
EXEC CICS SEND MAPC'DFH$AGK') 
EXEC CICS DUMP DUMPCODEC'ERRS') 
B EXIT QUIT PROGRAM 

ENDJ!~ DS OH 
14 EXEC CICS SEND TEXT FROM CPRESMSG) ERASE 

SET INPUT INH OFF 
EXEC CICS SEND CONTROL FREEKB 

EXIT EXEC CICS RETURN 
PRESMSG DC CL20'PROCESSING COMPLETED' 
.* •• *~*********.*****~** •• *******.**********.******.**.***************-
• DEFINE THE 256 BYTE TRANSLATE TABLE • 
• FOR LOCATING NON-NUMERIC DIGITS BY * 
* MEANS OF THE "TRT" INSTRUCTION * 
.**~***********.*.***.** ••••• ****.* •••• *.**.****.*.*****.***.* ••• **.**~ 
CHEKTAB DC 256X'FF' 

ORG CHEKTAB+X'FO' 
DC 10X'00' 
ORG 
END 

Program Notes 

1. The: CLEAR key exit is set up 

2. The error exits are set up. 

3. The screen is erased and the order entry map is 
displayed at the terminal. 

4. This RECEIVE MAP causes a read from the 
temrinal and maps in the customer nunlber, 
part number, and quantity. The program 
remains in virtual storage until the tenninal 
response is received. Compare this technique 
with that used in the pseudoconversational 
inquiry/update sample program. If no data is 
received CICS branches to the MAPF AIL exit 
(note 2). 

5. The order details are checked, invalid orders are 
redisplayed for correction. The user should add 

further editing steps necessary to ensure only 
valid orders are accepted. 

6. The error message "DATA ERROR­
REENTER" is a constant in the map load 
module and is sent to the terminal, with any 
other constant information, unless 
DATAONLY is specified on the SEND MAP. 
The message is normally dark (non-display). 
This instruction overrides the dark attribute 
and the message appears in high intensity when 
the SEND MAP command is executed. 

7. The file control READ command attempts to 
read the customer record from FILEA. If no 
record exists for the customer CICS branches 
to the NOTFND exit (note 2). 

8. The order details are moved from the input 
map to the queue area. 

444 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



9. The WRITEQ TD command writes the order 
record to a sequential fde, a transient data 
queue. 

10. The order entry map is redisplayed ready for 
the next order. Only the map load module is 
used to build the screen display, MAPONL Y 
causes the data in the map dsect area to be 
ignored. 

11. If there is no record for the customer on 
FILEA, CICS raises the NOTFND condition 
and branches here. The modified data tags are 
set on all data fields and an error message 
"NUMBER NOT FOUND - REENTER'7 is 
set to display in high intensity (see note 6). 
The order is redisplayed for correction. 

12. If no fields are entered, the MAPFAIL 
condition occurs. TIle message "DATA 
ERROR-REENTER" is displayed in high 
intensity (see note 6). 

13. If an error occurs a dump is taken, and the 
message "TRANSACTION TERMINATED" 
is displayed in high intensity in the data error 
message area. The program tenninates leaving 
the order entry screen displayed. 

14. "'hen the CLEAR key is pressed the program 
terminates. The message "PROCESSING 
COMPLETED" is displayed on a blank 
screen, the keyboard is freed and control is 
returned to CICS. 

Appendix D. Sample Programs (Assembler Language) 445 



Ordf~r Entry Queue Print Sample 
Program (ASM) 

Descri.ption 

The order entry queue print sample program sends 
customer orders to a printer terminal at the 
warehouse. The order entry sample program, 
described earlier, records customer orders on a 
transient data queue which is read by this program. 

The queue print transaction can be invoked in one 
of three ways: 

• You can type the transaction identifier AORQ 
onto a clear screen. The program fmds that the 
tenninal identifier is not L860 and issues a 
START command to begin printing in one 
hOUlr. The message "PROCESSING 
COMPLETED" is displayed and your terminal 
is available for other work. 

• One hour after you enter AORQ, the queue 
print transaction is automatically invoked by 

CICS interval control. In this case the terminal 
identifier, specified by the START, is L860 so 
the program prints the orders at the warehouse. 

• The queue print transaction is "triggered" when 
the number of items (customer orders) on the 
transient data queue reaches 30. The trigger 
level is specified in the destination control table 
(OCT) entry for L860. In this case the 
terminal identifier is the same as the queue 
name (L860) and the program will print the 
orders. The trigger level may be changed using 
the command: 

CEMT SET QUEUECL860) TRIGGERCn) 

When invoked with a terminal identifier of L860 
the program reads each order, checks the 
customer's credit and either prints the order at the 
warehouse or writes the rejected order to LOGA, 
the same transient data queue as used by the 
inquiry /update sample program. When all the 
orders have been processed, or if there were no 
orders to process, the message "ORDER QUEUE 
IS EMPTY" is printed at the warehouse. 

Source Listing for the Order Entry Queue Print Sample Program 

TITLE 'DFH$ACOM - CICS/YS SAMPLE FILEA ORDER ENTRY QUEUE PRINT~ 
- ASSEMBLER' 

DFHEISTG DSECT 
COPY 
COpy 
COpy 

LOG(JIRD DS 
LDATE DS 
LTIME DS 
LITE:M DS 
COMf'1INT DS 
FILLER DS 
QLENIGTH DS 
DFH$ACOM CSECT 

DFH$AGL 
DFH$AL86 
DFH$AFIL 
OCL92 
PL7 
PL7 
CL22 
CL11 
CL51 
1H 

MAP 
Q·RECORD 
FILE RECORD 
RECORD TO BE WRITTEN ONTO LOGA 

SIZE OF Q RECORD 

MVC COMMNT,=C'ORDER ENTRY' 
MYI FILLER~X'40' 

1 
2 

QREAD 
3 
4 

MVC FILLER+1CL'FILLER-1),FILLER 
EXEC CICS HANDLE CONDITION ERRORCERRORS)QZEROCENDA) 
CLC EIBTRMID(4),=C'L860' TERMID='L860'! 
BNE TIME IF NOT START TRANSACTION LATER 
XC DFH$AGLOCDFH$AGLE-DFH$AGLO),DFH$AGLO CLEAR MAP 
MYC QLENGTH,=H'+22' INITIALIZATION 
DS OH 
EXEC CICS READQ TD INTOCL860)LENGTHCQLENGTH)QUEUEC'L860') 
EXEC CICS READ DATASETC'FILEA') INTOCFILEA) RIDFLDCCUSTNO) 

446 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Order Entry Queue Print Sample (Continued) 

5 CLC AMOUNTCS),=C'$0100.00' IS ORDER VALID! 
BNH LWRITE IF->100 BRANCH AND WRITE LOG 

6 MVC ADDRO,ADDRX SET UP MAP 
MVC NAMO,NAME 
MVC PARTO,PARTNO 
MVC NUMBO,CUSTNO 
MVC LITEM, ITEM 
MVC QUANTO,QUANTITY 

7 EXEC CICS SEND MAPC'DFH$AGL') ERASE PRINT LSO 
B QREAD GET NEXT RECORD 

LWRITE DS OH 
S MVC LDATE,EIBDATE SET UP LOG RECORD 

MVC LTIME,EIBTIME 
MVC LITEM, ITEM 

9 EXEC CICS WRITEQ TD QUEUEC'LOGA') FROMCLOGORD) LENGTH(92) 
B QREAD GET NEXT RECORD 

ERRORS DS OH 
10 EXEC CICS DUMP DUMPCODEC'ERRS') 

B FIN BRANCH TO END 
ENDA DS OH 

XC DFH$AGLOCDFH$AGLE-DFH$AGLO),DFH$AGLO CLEAR MAP 
11 MVC TITLEO,=CLCL'TITLEO)'ORDER QUEUE IS EMPTY' SET UP TITLE 

EXEC CICS SEND MAPC'DFH$AGL') DATAONLY ERASE LSO PRINT 
TIME DS OH * IF THE COMMENT DELIMITER IS REMOVED * FROM THE NEXT THREE ASSEMBL ER 
* INSTRUCTIONS, THE APPLICATION WILL * BE RESTARTED IN AN HOUR IF THE TIME * OF DAY RIGHT NOW IS NOT LATER THAN 
* 1400 HRS. * IF THE CODE IS LEFT UNCHANGED THE * APPLICATION'WILL BE RESTARTED * UNCONDITIONALLY AFTER AN HOUR HAS 
* ELAPSED * EXEC CICS ASKTIME 
* CP EIBTIME,=P'0140000' TIME AFTER 1400 HOURS! * BH FIN .. YES, SO STOP 
12 EXEC CICS START TRANSIDC'AORQ') INTERVALCI0000) TERMIDC'LS60') 
FIN DS OH 
13 EXEC CICS SEND TEXT FROM CPRESMSG) ERASE 

EXEC CICS SEND CONTROL FREEKB 
EXEC CICS RETURN 

PRESMSG DC CL20'PROCESSING COMPLETED' 
END 

Program Notes 

1. The error exits are set up. 

2. The tennid is tested to see whether this 
transaction is started from a terminal or at the 
printer. 

3. A queue item (customer order) is read into the 
program. 

4. The file control READ command reads the 
record into a record area so that the amount 
may be checked. 

5. The amount (bank balance) is tested. If it is 
over $100 then the order is acceptable, 
otherwise the order is rejected. This test is 
only a suggestion; a suitable form of editing 
should be inserted here to ensure valid orders 
are sent to the warehouse. 

Appendix D. Sample Programs (Assembler Language) 447 



6. TIle order details are moved to the map area 
foll' DFH$AGL. 

7. TIle order map is sent to the printer tenninal at 
thl~ warehouse. 

8. nle current date and time, and details of the 
rejected order, are moved to a log record area. 

9. The WRITEQ TD command writes details of 
thc~ rejected order to LOGA, a transieltlt data 
queue. 

10. If the ERROR condit.ion occurs on any CICS 
cOltnmand a dump is taken and the program 
terminates. 

II. When the queue is empty, the message 
"ORDER QUEUE IS EMPTY" is moved to 
the map area which is then sent to the printer 
terminal at the warehouse. 

12. The START command starts the AORQ 
transaction (this program), after a one hour 
delay, with a tenninal identifier of L860. (The 
time interval could be changed, for 
demonstration purposes, by changing the 
INTERVAL value.) If the comment delimiters 
are removed from the three preceding 
statements, EIBTIME is refreshed and, if the 
time is before 1400 hours, the transaction is 
started in one hour. If the comment delimiters 
are not removed, the transaction is started 
unconditionally in one hour. 

13. The message "PROCESSING 
COMPLETED" is sent to the terminal 
associated with this invocation of AORQ, 
either the printer at the warehouse or the 
screen on which AORQ was entered. The 
program tenninates by returning control to 
CICS. 

448 CICSjDOSjVS Application ProgramnH!rtS Reference Manual (Command Level) 



Low Balance Report Sample 
Program (ASM) 

Description 

The low balance report sample program produces a 
report that lists all entries in the data set FILEA for 
which the amount is less than or equal to $50.00. 

The program shows page building techniques and 
the use of the terminal paging facilities of B MS. 

The transaction is invoked by entering AREP onto 
a clear screen. The program does a sequential scan 
through the rue selecting each entry that obeys the 
search criterion. The pages are built from four 

maps which comprise map set DFH$AGD, using 
the paging option so that the data is not displayed 
immediately but instead is stored for later retrieval. 
The HEADING map is inserted at the head of 
each page. The detail map (DFHSAGD) is written 
repeatedly until the overflow condition occurs. The 
FOOTING map is then written at the foot of the 
page and the HEADING map written at the top of 
the next page. The command to write the detail 
map that caused overflow is then repeated. When 
all the data has been written.the FINAL map is 
written at the bottom of the last page and the 
transaction terminated. 

The terminal operator then enters paging 
commands to display the data, clearing the screen 
before entering each paging command. 

Source Usting for the Low Balance Report Sample Program 

TITLE 'DFH$AREP - CICS/VS SAMPLE FILEA LOW BALANCE INQUIRY - A* 
SSEMBLER' 

DFHEISTG DSECT 
KEYNUM DS CL6 KEY TO FILE 
TERMLENG DS H MAXIMUM LENGTH OF KEYED DATA 
TERMDATA DS CLI INPUT AREA FOR KEYED DATA 
* CIN PRACTICE LENGTH OF KEYED DATA 
* WILL BE ZERO AS OPERATOR WILL ONLY 
* PRESS ENTER) 
EDVAL DS CL3 PAGE NUMBER EDITING FIELD 
PAGEN DS CL2 PAGE NUMBER FIELD 
WORKREG EQU 7 
RETREG EQU 4 LINK REG 

COPY DFH$AGD OUTPUT MAP 
COPY DFH$AFIL FILEA'S RECORD DESCRIPTION 

DFH$AREP CSECT 
I MVC KEYNUM(6),=C'00000O' SET RECORD KEY TO ZERO 
2 EXEC CICS HANDLE CONDITION ERRORCERRORS) OVERFLOWCOFLOW) 

ENDFILECENDFILE) LENGERRCENDTASK) 
MVI PAGENA,X'OO' MOVE X'OO' TO ATTRIBUTE 
MVC PAGEN,PAGEI INITIALIZE PAGE NUMBER TO I 

3 BAL RETREG,MAPNUM MOVE PAGENUMBER TO MAP AREA 
4 EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$AGD') ACCUM PAGING * 

ERASE 
5 EXEC CICS STARTBR DATASETC'FILEA') RIDFlDCKEYNUM) 

REPEAT DS OH 
6 EXEC CICS READNEXT INTOCFILEA) DATASETC'FILEA') * 

RIDFLDCKEYNUM) 
7 CLC AMOUNT, LOWLIM COMPARE AMOUNT ON RECORD WITH LIM 

BH REPEAT .. OK, GREATER THAN $50, TRY NEXT 
XC DFHtAGDOCDFH$AGDE-DFH$AGDO),DFH$AGDO CLEAR MAP 

8 MVC AMOUNTO,AMOUNT MOVE AMOUNT ON FILE TO MAP 
MVC NUMBERO,NUMB MOVE ACOUNT NUMBER TO MAP 
MVC NAMEO,NAME MOVE NAME TO MAP 

Appendix D. Sample Programs (Assembler Language) 449 



Source Listing for the Low Balance Report Sample Program (Continued) 

9 EXEC CICS SEND MAPC'DFH$AGD') MAPSETC'DFH$AGD') ACCUM PAGING 
B REPEAT GO BUILD NEXT MAP 

***lE******************************************************************* * END ROUTINE AND GENERAL ROUTINES * 
***le******************************************************************* 
MAPNUM DS OH ROUTINE PUTS PAGE NUM IN CHAR FORM 

UNPK EDVAL,PAGEN 
01 EDVAL+L'EDVAL-l,X'FQ' ZERO FILL PAGE NUMBER 
MVC PAGENO,EDVAL MOVE PAGE NUMBER TO OUTPUT MAP 
BR RETREG RETURN 

ENDFILE DS OH END OF FILE CONDITION RAISED 
10 EXEC CICS SEND MAP C'FINAL') MAPSET C'DFH$AGD') MAPONLY * 

ACCUM PAGING 
11 EXEC CICS SEND PAGE 
12 EXEC CICS SEND TEXT FROM COPINSTR) ERASE 
13 EXEC CICS ENDBR DATASETC'FILEA') 
- A RECEIVE COMMAND IS ISSUED TO GIVE 
- THE TERMINAL OPERATOR A CHANCE TO 
- READ THE PROMPTING MESSAGE. 

14 
ENDTASK 
IS 
ERRORS 
16 

OFLOW 
17 

18 

19 

PAGEl 
LOWLIM 
OPINSTR 

LA WORKREG,1 
STH WORKREG,TERMLENG 

THE TRANSACTION WILL TERMINATE WHEN 
THE OPERATOR PRESSES THE ENTER KEY. 

PAGING COMMANDS CAN THEN BE ISSUED. 

NO HARM IS DONE IF THE OPERATOR 
TYPES IN DATA BEFORE PRESSING THE 
ENTER KEY. . 

EXEC CICS RECEIVE INTOCTERMDATA) LENGTHCTERMLENG) 
EQU * 
EXEC CICS RETURN 
DS OH 
EXEC CICS HANDLE CONDITION ERROR 
EXEC CICS PURGE MESSAGE 
EXEC CICS ABEND ABCODEC'ERRS') 
DS OH PAGE BUILT HERE 
EXEC CICS SEND MAPC'FOOTING') MAPSETC'DFH$AGD') 

MAPONLY ACCUM PAGING ERASE 
AP PAGEN,=P'I' INCREMENT PAGE COUNT 
MVI PAGENA,X'OO' MOVE X'OO' INTO ATTRIBUTE 
BAL RETREG,MAPNUM GO SET UP PAGE NUMBER ON MAP 
EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$AGD') ACCUM PAGING * 

ERASE 
EXEC CICS SEND MAPC'DFH$AGD') MAPSETC'DFH$AGD') ACCUM PAGING 
B REPEAT 
DC PL2'1' INITIAL PAGE NUM 
DC CL8'$00SO.00' LOWER LIMIT FOR OK AMOUNT 
DC CL52'PRESS THE ENTER KEY AND FOLLOW WITH PAGING COMMANDS-

, OPERATOR INSTRUCTION 
END 

450 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Program Notes 

1. The initial key value is set up for the ST AR T 
BROWSE command. 

2. The program exits are set up. 

3. A page number of 1 is moved to the heading 
map. 

4. This BMS command sets up the heading in the 
page build operation. BMS builds the pages in 
temporary storage. 

5. The STARTBR command sets up the fue 
browse to begin at the frrst record with a key 
equal to or greater than the RIDFLD, in this 
case the frrst record on fue. 

6. This command reads the next customer record 
from FILEA. 

7. The search criterion for creating the report is 
that the customer has a bank balance which is 
$50 or less. 

8. . Fields are moved from the selected customer 
record to the map area for the detail line. 

9. The customer detail map is set up for 
subsequent paging. 

10. When the ENDFILE condition is raised, the 
last map is sent to BMS. 

11. The SEND PAGE command makes all the 
pages of the report available for paging, at the 

terminal, when the current transaction 
terminates. 

12. A message is sent to the tenninal. This 
message will be displayed before the pages of 
the low balance report. 

13. The file browse is terminated. 

14. This RECEIVE MAP command reads from 
the terminal and allows the terminal operator 
to read the prompting message before the frrst 
page of the report is displayed. 

15. The program ends, the frrst page of the report 
will now be displayed. 

16. If the ERROR condition occurs on a CICS 
command this routine gains control. Handling 
of the ERROR condition is suppressed, any 
data sent to B MS so far is purged and the 
program terminates abnormally with a 
transaction dump. 

17. If the OVERFLOW condition occurs, when a 
detail line is sent to BMS, CICS branches here. 
This routine completes the current page and 
starts the next one. This BMS command sets 
up the footing for the current page. 

18. This BMS command sets up the heading for 
the next page. 

19. This BMS command sends the detail line 
which caused the OVERFLOW condition. 

Appendix D. Sample Programs (Assembler Language) 451 



Map!i and Screen Layouts for 
ASM[ Sample Programs 

lbe preceding sample programs assume that the 
following map sets have been cataloged with names 
the same as the map names. 

DFHSAGA Map Definition 

The names of the source maps are all of the form 
DFH$AMx, whereas output generated by the 
assembly of maps is in the form DFH$AGx. Use 
different names for the map source and the 
generated dsect only if you want to store both in 
the same source library. 

TITLE 'FIlEA - MAP FOR OPERATOR INSTRUCTIONS - ASSEMBLER' 
MAPSiETA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=CFREEKB,FRSET), * 

lANG=ASM,TIOAPFX=YES,EXTATT=MAPONlY,COlOR=BlUE 
DFH$AGA DFHMDI SIZE=C12,40) 

DFHMDF POS=(1,lO),lENGTH=21,INITIAl='OPERATOR INSTRUCTIONS', ~ 
HIlIGHT=UNDERLINE 

DFHMDF POS=C3,1),lENGTH=29,INITIAl='OPERATOR INSTR - ENTER AMN* 
U' 

DFHMDF POS=C4,1),lENGTH=38,INITIAl='FIlE INQUIRY - ENTER AIN* 
Q AND NUMBER' 

DFHMDF POS=CS,1),lENGTH=38,INITIAl='FIlE BROWSE - ENTER ABR* 
W AND NUMBER' 

DFHMDF POS=C6,1),lENGTH=38,INITIAl='FIlE ADD - ENTER AAD* 
D AND NUMBER' 

DFHMDF POS=C7,1),lENGTH=38,INITIAl='FIlE UPDATE - ENTER AUP* 
D AND NUMBER' 

MSG DFHMDF POS=Cll,1),lENGTH=39,INITIAl='PRESS CLEAR TO EXIT' 
DFHMDF POS=(12,1),lENGTH=18,INITIAl='ENTER TRANSACTION.' 
DFHMDF POS=C12,20),LENGTH=4,ATTRB=IC,COLOR=GREEN, * 

HIlIGHT=REVERSE 
DFHMDF POS=(12,2S),lENGTH=6,INITIAl='NUMBER' 

KEY DFHMDF POS=C12,32),lENGTH=6,ATTRB=NUM,COlOR=GREEN, * 
HIlIGHT=REVERSE 

DFHMDF POS=(12,39),lENGTH=1 
DFHMSD TYPE=FINAl 
END 

452 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



The assembler language DSECT produced as a result of the above statements would be as follows: 

DSECT generated by DFHSAGA 

DS DH 
DFHtAGAI DS 
DFH$AGAO DS 

OC . 
OC . 
12C . 

MSGL 
MSGF 
MSGA 
MSGI 
MSGO 

KEYL 
KEYF 
KEYA 
KEYI 
KEYO 

DS 
SPACE 
DS CL2. 
DS DC. 
DS C. 
DS DCL39. 
DS CL39. 
SPACE 
DS CL2. 
DS DC. 
DS C. 
DS DCL6. 
DS CL6. 
SPACE 

DFH$AGAE EQU * 
* ~ * END OF MAP DEFINITION * * * 

SPACE 3 
ORG 

ENSURE ALIGNMENT 
INPUT MAP ORIGIN 
OUTPUT MAP ORIGIN 

TIOA PREFIX 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

END OF MAP DEFINITION 

MAP~ETAT EQU * * END OF MAP SET 
* * * END OF MAP SET DEFINITION * * * 

SPACE 3 

DFH$AGA Screen Layout 

+OPERATOR INSTRUCTIONS 

+OPERATOR INSTR - ENTER AMNU 
+FILE INQUIRY 
+FILE BROWSE 
+FILE ADD 
+FILE UPDATE 

- ENTER AINQ AND NUMBER 
ENTER ABRW AND NUMBER 
ENTER AADD AND NUMBER 
ENTER AUPD AND NUMBER 

+PRESS CLEAR TO EXIT 
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+ 

Appendix O. Sample Programs (Assembler Language) 453 



DFHSAGB Map Definition 

TITLE 'FILEA - MAP FOR FILE INQUIRY/UPDATE - ASSEMBLER' 
MAF-SETB DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), 

LANG=ASM,TIOAPFX=YES,EXTATT=MAPONLY 
DFH$AGB DFHMDI SIZE=(12,40) 
TITLE DFHMDF POS=(1,lS),LENGTH=12 

DFHMDF POS=(3,1),LENGTH=8,INITIAL='NUMBERr',COLOR=BLUE 
NUMB DFHMDF POS=(3,lO),LENGTH=6 

DFHMDF POS=(3,17),LENGTH=1 
DFHMDF POS=(4,1),LENGTH=8,INITIAL='NAMEr ',COLOR=BLUE 

NAME DFHMDF POS=(4,lO),LENGTH=20,ATTRB=(UNPROT,IC) 
DFHMDF POS=(4,31),LENGTH=1 
DFHMDF POS=(S,1),LENGTH=8,INITIAL='ADDRESSr',COLOR=BLUE 

ADDR DFHMDF POS=(S,lO),LENGTH=20,ATTRB=UNPROT 
DFHMDF POS=(S,31),LENGTH=1 
DFHMDF POS=(6,1),LENGTH=8,INITIAL='PHONEI ',COLOR=BLUE 

PHONE DFHMDF POS=(6,lO),LENGTH=8,ATTRB=UNPROT 
DFHMDF POS=(6,19),LENGTH=1 
DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATEa ',COLOR=BLUE 

DATE DFHMDF POS=(7,lO),LENGTH=8,ATTRB=UNPROT 
DFHMDF POS=(7,19),LENGTH=1 
DFHMDF POS=(8,1),LENGTH=8,INITIAL='AMOUNTa ',COLOR=BLUE 

AMOUNT DFHMDF POS=(8,lO),LENGTH=8,ATTRB=NUM 
DFHMDF POS=(8,19),LENGTH=1 
DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENTr',COLOR=BLUE 

COMMENT DFHMDF POS=(9,IO),LENGTH=9,ATTRB=UNPROT 
DFHMDF POS=(9,20),LENGTH=1 

MSOI DFHMDF POS=(II,I),LENGTH=39 
MS03 DFHMDF POS=(12,1),LENGTH=39 

DFHMSD TYPE=FINAL 
END 

454 CICS/DOS/VS Application Programmer's Reference Manual (Command Level) 



The assembler language DSECT produced as a result of the above statements would be as follows: 

DSECT generated by DFHSAGB 

DS OH ENSURE ALIGNMENT 
DFH$AGBI DS OC . INPUT MAP ORIGIN 
DFH$AGBO DS OC . OUTPUT MAP ORIGIN 

DS 12C . TIOA PREFIX 
SPACE 

TITLEL DS CL2 . INPUT DATA FIELD LENGTH 
TITLEF DS OC . DATA FIELD FLAG 
TITLEA DS C . DATA FIELD ATTRIBUTE 
TITlEI DS OCl12 . INPUT DATA FIELD 
TITlEO DS Cl12 . OUTPUT DATA FIELD 

SPACE 
NUMBl DS Cl2 . INPUT DATA FIELD lENGTH 
NUMBF DS OC . DATA FIELD FLAG 
NUMBA DS C . DATA FIELD ATTRIBUTE 
NUMBI DS OCl6 . INPUT DATA FIELD 
NUMBO DS Cl6 . OUTPUT DATA FIELD 

SPACE 
NAMEl DS Cl2 . INPUT DATA FIELD lENGTH 
NAMEF DS OC . DATA FIELD FLAG 
NAMEA DS C . DATA FIELD ATTRIBUTE 
NAMEI DS OCl20 . INPUT DATA FIELD 
NAMEO DS Cl20 . OUTPUT DATA FIELD 

SPACE 
ADDRl DS Cl2 . INPUT DATA FIELD LENGTH 
ADDRF DS OC . DATA FIELD FLAG 
ADDRA DS C . DATA FIELD ATTRIBUTE 
ADDRI DS OCL20 . INPUT DATA FIELD 
ADDRO DS CL20 . OUTPUT DATA FIELD 

SPACE 
PHONEL DS CL2 . INPUT DATA FIELD LENGTH 
PHONEF DS OC . DATA FIELD FLAG 
PHONEA DS C . DATA FIELD ATTRIBUTE 
PHONEI DS OCL8 . INPUT DATA FIELD 
PHON EO DS CL8 . OUTPUT DATA FIELD 

SPACE 
DATEL DS Cl2 . INPUT DATA FIELD LENGTH 
DATEF DS OC . DATA FIELD FLAG 
DATEA DS C . DATA FIELD ATTRIBUTE 
DATEI DS OCL8 . INPUT DATA FIELD 
DATEO DS CL8 . OUTPUT DATA FIELD 

SPACE 
AMOUNTL DS CL2 . INPUT DATA FIELD LENGTH 
AMOUNTF DS OC . DATA FIELD FLAG 
AMOUNTA DS C . DATA FIELD ATTRIBUTE 
AMOUNTI DS OCL8 . INPUT DATA FIELD 
AMOUNTO DS CL8 . OUTPUT DATA FIELD 

SPACE 
COMMENTL DS CL2 . INPUT DATA FIELD lENGTH 
COMMENTF DS OC . DATA FIELD FLAG 
COMMENTA DS C . DATA FIELD ATTRIBUTE 
COMMENTI DS OCl9 . INPUT DATA FIELD 
COMMENTO DS CL9 . OUTPUT DATA FIELD 

SPACE 

Appendix D. Sample Programs (Assembler Language) 455 



DSECT generated by DFHSAGB (Continued) 

MSGIL DS CL2. 
MSGIF DS DC. 
MSGIA DS C. 
MSOII DS DCL39 
MSGIO DS CL39. 

MSG:SL 
MSG:SF 
MSO:SA 
MSG;SI 
MSG;SO 

SPACE 
DS 
DS 
DS 
DS 
DS 

CL2 . 
OC . 
C . 
OCL39 . 
CL39 . 

SPACE 
DFH$AOBE EQU * 
* * * END OF MAP DEFINITION * * * 

SPACE 3 
ORG 

MAPSETBT EQU ~ * END OF MAP SET 
* * * END OF MAP SET DEFINITION * * * 

SPACE 3 

DFH$AGB Screen Layout 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

END OF MAP DEFINITION 

r------------------------- --------1 
+XXXXXXXXXXXX 

+NUMBERt +XXXXXX+ 
+NAMEt +XXXXXXXXXXXXXXXXXXXX+ 
+ADDRESSI+XXXXXXXXXXXXXXXXXXXX+ 
+PHONEt +XXXXXXXX+ 
+DATEt +XXXXXXXX+ 
+AMOUNTI +XXXXXXXX+ 
+COMMENTt+XXXXXXXXX+ 

I 
I 

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI 
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXI __________________________ , _______ -J 

456 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



DFHSAGC Map Definition 

MAPSETC 

DFHtAGC 
DIR 

NUMBERI 
NAMEI 
AMOUNTI 
NUMBER2 
NAME2 
AMOUNT2 
NUMBER3 
NAME3 
AMOUNT3 
NUMBER4 
NAME4 
AMOUNT4 
MSGO 

MSGI 

MSG2 

TITLE 'FILEA - MAP FOR FILE BROWSE - ASSEMBLER' 
DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), 

LANG=ASM,TIOAPFX=YES,EXTATT=MAPONLY 
DFHMDI SIZE=(12,40) 
DFHMDF POS=(I,I),LENGTH=I,ATTRB=IC 
DFHMDF POS=(1,3),LENGTH=1 
DFHMDF POS=(I,IS),LENGTH=II,INITIAL='FILE BROWSE', 

COLOR=BLUE,HILIGHT=UNDERLINE 
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER',COLOR=BLUE 
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME',COLOR=BLUE 
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT',COLOR=BLUE 
DFHMDF POS=(4,1),LENGTH=6 
DFHMDF POS=(4,9),LENGTH=20 
DFHMDF POS=(4,30),LENGTH=8 
DFHMDF POS=(S,I),LENGTH=6 
DFHMDF POS=(S,9),LENGTH=20 
DFHMDF POS=(S,30),LENGTH=8 
DFHMDF POS=(6,1),LENGTH=6 
DFHMDF POS=(6,9),LENGTH=20 
DFHMDF POS=(6,30),LENGTH=8 
DFHMDF POS=(7,1),LENGTH=6 
DFHMDF POS=(7,9),LENGTH=20 
DFHMDF POS=(7,30),LENGTH=8 
DFHMDF POS=(IO,I),LENGTH=39,COLOR=BLUE, 

INITIAL='PRESS CLEAR TO END BROWSE OPERATION' 
DFHMDF POS=(II,I),LENGTH=39,COLOR=BLUE, 

INITIAL='PRESS PFI OR TYPE F TO PAGE FORWARD' 
DFHMDF POS=(12,1),lENGTH=39,COLOR=BLUE, 

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD' 
DFHMSD TYPE=FINAL 
END 

Appendix D. Sample Programs (Assembler Language) 457 



The assembler language DSEeT produced as a result of the above statements would be as follows: 

DSECT generated by DFHSAGC 

DS DH 
DFHI$AGCI DS DC . 
DFH$AGCO DS DC . 

DS 12C . 
SPACE 

DIR:l DS Cl2 . 
DIRF DS OC . 
DIRA DS C . 
DIRI DS OCLI . 
DIR.O DS Cli . 

SPACE 
NUMBERll DS CL2 . 
NUMBERIF DS OC . 
NUMBERIA DS C . 
NUMBERII DS OCl6 . 
NUMBERIO DS Cl6 . 

SPACE 
NAMEll DS Cl2 . 
NAMIEIF DS OC . 
NAMEIA DS C . 
NAMEII DS OCl20 . 
NAMEIO DS Cl20 . 

SPACE 
AMOUNTll DS Cl2 . 
AMOUNTIF DS OC . 
AMOUNTIA DS C . 
AMOUNTII DS OCl8 . 
AMOUNTIO DS Cl8 . 

SPACE 
NUMBER2l DS Cl2 . 
NUMBER2F DS OC . 
NUMBER2A DS C . 
NUMBER2I DS OCl6 . 
NUMBER20 DS Cl6 . 

SPACE 
NAMIE2l DS Cl2 . 
NAME2F DS OC . 
NAME2A DS C . 
NAME2I DS OCl20 . 
NAME20 DS CL20 . 

SPACE 
AMOUNT2l DS Cl2 . 
AMOUNT2F DS OC . 
AMOUNT2A DS C . 
AMOUNT2I DS OCL8 . 
AMOUNT20 DS Cl8 . 

SPACE 
NUMBER3l DS Cl2 . 
NUMBER3F DS OC . 
NUMBER3A DS C . 
NUMBER3I DS OCL6 . 
NUMBER30 DS CL6 . 

SPACE 
NAME3L DS CL2 . 

ENSURE ALIGNMENT 
INPUT MAP ORIGIN 
OUTPUT MAP ORIGIN 

TIOA PREFIX 

INPUT DATA FIELD lENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD lENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 

458 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



DSECT generated by DFHSAGC (Continued) 

NAME3F DS OC. 
NAME3A DS C. 
NAME3I DS OCL20. 
NAME30 DS CL20. 

SPACE 
AMOUNT3L DS 
AMOUNT3F DS 
AMOUNT3A DS 
AMOUNT3I DS 
AMOUNT30 DS 

SPACE 
NUMBcR4L DS 
NUMBER4F DS 
NUMBER4A DS 
NUMBER4I DS 
NUMBER40 DS 

NAME4L 
NAME4F 
NAME4A 
NAME4I 
NAME40 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
AMOUNT4L DS 
AMOUNT4F DS 
AMOUNT4A DS 
AMOUNT4I DS 
AMOUNT40 DS 

MSGOL 
MSGOF 
MSGOA 
MSGOI 
MSGOO 

MSGIL 
MSGIF 
MSGIA 
MSGII 
MSGIO 

MSG2L 
MSG2F 
MSG2A 
MSG2I 
MSG20 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 

CL2 . 
OC . 
C . 
OCL8 . 
CL8 . 

CL2 . 
OC . 
C . 
OCL6 . 
CL6 . 

CL2 . 
OC . 
C . 
OCL20 . 
CL20 . 

CL2 . 
OC . 
C . 
OCL8 . 
CL8 . 

CL2 . 
OC . 
C . 
OCL39 . 
CL39 . 

CL2 . 
OC . 
C . 
OCL39 . 
CL39 . 

CL2 . 
OC . 
C . 
OCL39 . 
CL39 . 

DFH$AGCE EQU * . 
* * * END OF MAP DEFINITION * * * 

SPACE 3 
ORG 

MAPSETCT EQU * * END OF MAP SET 
* * * END OF MAP SET DEFINITION * * * 

SPACE 3 

DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

END OF MAP DEFINITION 

Appendix D. Sample Programs (Assembler Language) 459 



DFllSAGC Screen Layout 

I +FILE BROHSE 
I 
I+NUMBER +NAME +AMOUNT 
I+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX 
I+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX 
, +XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXXXX 

I 
I+PRESS CLEAR TO END BROWSE OPERATION 
I+PRESS PFl OR TYPE F TO PAGE FORWARD 
I+PRESS PF2 OR TYPE B TO PAGE BACKWARD L--_____________________ _ ______ _ 

460 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



DFHSAGD Map Definition 

MAPSETD 

DFH$AOD 
NUMBER 
NAME 
AMOUNT 
HEADING 

PAGEN 

FOOTING 

FINAL 

TITLE 'FILEA - MAPSET FOR LOW BALANCE REPORT - ASSEMBLER' 
DFHMSD TYPE=&SYSPARM,MODE=OUT,CTRL=(FREEKB,FRSET), 

LANG=ASM,STORAGE=AUTO,EXTATT=MAPONLY,COLOR=BLUE 
DFHMDI SIZE=(1,40),COLOR=OREEN 
DFHMDF POS=(1,1),LENGTH=6 
DFHMDF POS=(1,9),LENGTH=20 
DFHMDF POS=(1,30),LENOTH=8 
DFHMDI SIZE=(3,40),HEADER=YES 
DFHMDF POS=(1,S),LENGTH=18,INITIAL='LOW BALANCE REPORT', 

HILIGHT=UNDERLINE 
DFHMDF POS=(1,30),LENGTH=4,INITIAL='PAGE' 
DFHMDF POS=(1,3S),LENGTH=3 
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER' 
DFHMDF POS=(3,17),LENOTH=4,INITIAL='NAME' 
DFHMDF POS=(3,32),LENOTH=6,INITIAL='AMOUNT' 
DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST 
DFHMDF POS=(2,1),LENGTH=38, 

INITIAL='PRESS CLEAR AND TYPE P/N TO SEE PAGE N' 
DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST 
DFHMDF POS=(2,lO),LENGTH=14,INITIAL~'END OF REPORT.' 
DFHMSD TYPE=FINAL 
END 

Appendix D. Sample Programs (Assembler Language) 461 



The a:~sembler language DSECT produced as a result of the above statements would be as follows: 

DSECT generated by DFHSAGD 

DFtttAGDO DS 
DS 

SPACE 

NUMBERA 
NUMBERO 

AMIJUNTA 
AMIJUNTO 

DS 
DS 
DS 

SPACE 
DS 
DS 
DS 

SPACE 
DS 

DS 
DS 

SPACE 

DS OH 
OC . 
12C . 

CL2 . 
C . 
CL6 . 

CL2 . 
C . 
CL20 . 

Cl2 . 
C . 
CL8 . 

DFHtAGDE EQU. . 
• ~ • END OF MAP DEFINITION 

SPACE 3 

HE~~DINGO DS 
DS 

SPACE 

PA(~ENA 
PAC~ENO 

DS 
DS 
DS 

SPACE 

DS OH 
OC . 
12C . 

CL2 . 
C • 
eL3 • 

HEADINGE EQU. . 
• ~ • END OF MAP DEFINITION 

SPACE 3 

FOIiTI NGO DS 
DS 

SPACE 

DS OH 
OC . 
12C . 

FOOTINGE EQU. . 
• ~ • END OF MAP DEFINITION 

SPACE 3 

FII.ALO DS 
DS 

SPACE 

DS OH 
OC . 

12C . 

FINALE EQU. . 
• ~ • END OF MAP DEFINITION • • • 

SPACE 3 
ORG 

ENSURE ALIGNMENT 

TIOA PREFIX 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

END OF MAP DEFINITION 

ENSURE ALIGNMENT 

TIOA PREFIX 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

END OF MAP DEFINITION 

ENSURE ALIGNMENT 

TIOA PREFIX 

END OF MAP DEFINITION 

ENSURE ALIGNMENT 

TIOA PREFIX 

END OF MAP DEFINITION 

MAI'SETDT EQU • • END OF MAP SET 
• ~ • END OF MAP SET DEFINITION • • • 

SPACE 3 

462 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



DFHSAGD Screen Layout 

+LOH BALANCE REPORT +PAGE+XXX 

+NUMBER +NAME +AMOUNT 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX xxxxxxxx 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 
+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

I+XXXXXX+XXXXXXXXXXXXXXXXXXXX XXXXXXXX 

+PRESS CLEAR AND TYPE P/N TO SEE PAGE N 

Appendix D. Sample Programs (Assembler Language) 463 



DFHSAGK Map Definition 

TITLE 'FILEA - MAP FOR ORDER ENTRY - ASSEMBLER' 
MAPSETK DFHMSD TYPE=8SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), 

TIOAPFX=YES, LANG=ASM, EXTATT=MAPONLY 
DFH$AGK DFHMDI SIZE=(12,40) 

DFHMDF POS=(Ol,lO),LENGTH=ll,ATTRB=(BRT,ASKIP), * 
INITIAL='ORDER ENTRY',COLOR=BLUE,HILIGHT=UNDERLINE 

MSGI DFHMDF POS=(03,04),LENGTH=26,ATTRB=(DRK,ASKIP), * 
INITIAL='NUMBER NOT FOUND - REENTER', * 
COLOR=RED,HILIGHT=BLINK 

MSG2 DFHMDF POS=(04,04),LENGTH=22,ATTRB=(DRK,ASKIP), * 
INITIAL='DATA ERROR - REENTER', * 
COLOR=RED,HILIGHT=BLINK 

DFHMDF POS=(05,04),LENGTH=09,ATTRB=PROT, * 
INITIAL='NUMBER I' 

CUSTNO DFHMDF POS=(05,14),LENGTH=06,ATTRB=(IC,NUM) 
DFHMDF POS=(05,21),LENGTH=Ol 
DFHMDF POS=(06,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, 

INITIAL='PART NO I' 
PARTNO DFHMDF POS=(06,14),LENGTH=06,ATTRB=NUM 

DFHMDF POS=(06,21),LENGTH=Ol 
DFHMDF POS=(07,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, 

INITIAL='QUANTITY.' 
QUANT DFHMDF POS=(07,14),LENGTH=06,ATTRB=NUM 

DFHMDF POS=(07,21),LENGTH=Ol 
DFHMDF POS=(09,Ol),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE, 

INITIAL='PRESS ENTER ,TO CONTINUE,CLEAR TO QUIT' 
DFHMSD TYPE=FINAL 
END 

464 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



The assembler language DSECT produced as a result of the above statements would be as follows: 

DSECT generated by DFHSAGK 

DFH$AGKI DS 
DFH$AGKO DS 

DS 

MSGIL 
MSGIF 
MSGIA 
MSGII 
MSGIO 

MSG2L 
MSG2F 
MSG2A 
MSG2I 
MSG20 

CUSTNOL 
CUSTNOF 
CUSTNOA 
CUSTNOI 
CUSTNOO 

PARTNOL 
PARTNOF 
PARTNOA 
PARTNOI 
PARTNOO 

QUANTL 
QUANTF 
QUANTA 
QUANTI 
QUANTO 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
DS 
DS 
DS 
DS 
DS 

SPACE 
DS 
DS 
DS 
DS 
DS' 

SPACE 

DS DH 
DC . 
DC . 
12C . 

CL2 . 
DC . 
C . 
DCL26 . 
CL26 . 

CL2 . 
DC . 
C . 
DCL22 . 
CL22 . 

CL2 . 
DC . 
C . 
DCL6 . 
CL6 . 

CL2 . 
DC . 
C . 
DCL6 . 
CL6 . 

CL2 . 
DC . 
C . 
DCL6 . 
CL6 . 

DFH$AGKE EQU * . 
* * * END OF MAP DEFINITION * * * 

SPACE 3 

ENSURE ALIGNMENT 
INPUT MAP ORIGIN 
OUTPUT MAP ORIGIN 

TIOA PREFIX 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD FLAG 
DATA FIELD ATTRIBUTE 

INPUT DATA FIELD 
OUTPUT DATA FIELD 

END OF MAP DEFINITION 

ORG 
MAPSETKT EQU * 
* * * END OF MAP 

SPACE 3 

* END OF MAP SET 
SET DEFINITION * * * 

Appendix D. Sample Programs (Assembler Language) 465 



DFlllSAGK Screen Layout 

r-------------------------- --. 
II +ORDER ENTRY I II 

+NUMBER NOT FOUND - REENTER 
I +DATA ERROR - REENTER I 

I
I +NUMBER a+XXXXXX+ I 

+PART NO a+XXXXXX+ 
I +QUANTITYa+XXXXXX+ I 
I II I+PRESS ENTER TO CONTINUE, CLEAR TO QUIT L--________________________________ ~I 

466 CICSjDOS/VS Application Programmer's Reference Manual (Command Level) 



DFHSAGL Map Definition 

TITLE 'FILEA - MAP FOR ORDER ENTRY QUEUE PRINT - ASSEMBLER' 
MAPSETL DFHMSD TYPE=&SYSPARM,MODE=OUT, * 

TIOAPFX=YES,LANG=ASM 
DFH$AGL DFHMDI SIZE=(OS,80) 
TITLE DFHMDF POS=(Ol,Ol),LENGTH=43, * 

INITIAL='NUMBER NAME ADDRESS' 
NUMB DFHMDF POS=(02,Ol),LENGTH=06 
NAM DFHMDF POS=(02,12),LENGTH=20 
AODR DFHMDF POS=(02,37),LENGTH=20 

DFHMDF POS=(03,Ol),LENGTH=09, 
INITIAL='PART NO I' 

PART DFHMDF POS=(03,11),LENGTH=06 
DFHMDF POS=(04,Ol),LENGTH=09, 

INITIAL='QUANTITY,' 
QUANT DFHMDF POS=(04,11),LENGTH=06 

DFHMDF POS=(OS,Ol),LENGTH=l, 
INITIAL=' , 

DFHMSD TYPE=FINAL 
END 

Appendix D. Sample Programs (Assembler Language) 467 



The assembler language DSECT produced as a result of the above statements would be as follows: 

DSECT generated by DFHSAGL 

DF~I$AGL 0 DS 
DS 

SPACE 

TITLEA 
TITLEO 

NUfw1IBA 
NUMBO 

NAMA 
NAMO 

ADDIRA 
ADDIRO 

PAR:TA 
PAR:TO 

DS 
DS 
DS 

SPACE 
DS 
DS 
DS 

SPACE 
DS 

DS 
DS 
SPACE 

DS 
DS 
DS 

SPACE 
DS 
DS 
DS 

SPACE 
DS 

DS 

DS OH 
OC . 
12C . 

CL2 . 
C . 
CL43 . 

CL2 . 
C . 
CL6 . 

CL2 . 
C . 
CL20 . 

CL2 . 
C . 
CL20 . 

CL2 . 
C . 
CL6 . 

CL2 . 

DS 
SPACE 

DFH$AGLE EQU ~ 

QUANTA 
QUANTO 

C . 
CL6 . 

~ ~ ~ END OF MAP DEFINITION ~ ~ ~ 
SPACE 3 

ENSURE ALIGNMENT 

TIOA PREFIX 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

INPUT DATA FIELD LENGTH 
DATA FIELD ATTRIBUTE 

DATA FIELD 

END OF MAP DEFINITION 

ORG 
MAPSETLT EQU ~ 
~ ~ ~ END OF MAP 

SPACE 3 

~ END OF MAP SET 
SET DEFINITION ~ •• 

DFH$AGL Print Fonnat 

+NUMBER NAME 
+XXXXXX +XXXXXXXXXXXXXXXXXXXX 
+PART NO I+XXXXXX 
+QUANTITY:+XXXXXX 
+X 

-------------------
ADDRESS 
+XXXXXXXXXXXXXXXXXXXX 

468 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Record Descriptions for ASM 
Sample Programs 

FILEA Record Description 

The sample programs use the FILEA record 
description. It is dermed in copy code DFH$AFIL 
and has the following format: 

FIlEA DS 
FIlEREC DS 
STAT DS 
NUMB DS 
NAME DS 
ADDRX DS 
PHONE DS 
DATEX OS 
AMOUNT DS 
COMMENT OS 

OCl80 
OCl80 
Cli 
Cl6 
Cl20 
Cl20 
Cl8 
Cl8 
Cl8 
Cl9 

LOGA Record Description 

The sample programs use the LOGA record 
description when an audit trail is written to a 
transient data file. It is dermed in copy code 
DFH$ALOG and has the following format: 

lOGA DS 
lOGHOR DS 
lDAY DS 
lTIME OS 
lTERMl DS 
lOGREC OS 

. lSTAT DS 
lNUMB DS 
lNAME DS 
lADOR DS 
lPHONE DS 
lDATE OS 
lAMOUNT DS 
lCOMMENT DS 

OCl92 
OCll2 
Pl4 
Pl4 
Cl4 
OCl80 
Cli 
Cl6 
Cl20 
Cl20 
Cl8 
Cl8 
Cl8 
Cl9 

L860 Record Description 

The Order Entry Queue Print sample program uses 
the L860 record description when it writes to the 
transient data queue 'L860'. It is dermed in copy 
code DFH$AL86 and has the following format: 

l860 DS 
ITEM DS 
CUSTNO DS 
PARTNO DS 
QUANTITY DS 
TERMID DS 

OCl22 
OCl22 
Cl6 
Cl6 
Cl6 
Cl4 

Appendix D. Sample Programs (Assembler Language) 469 





Appendix E. Sample Programs (COBOL) 

The COBOL sample programs described in this 
appendix are included, in source fonn, on the CICS 
distribution tape. The CICS/ DOS/ VS Installation 
and Operations Guide describes how these sample 
programs, and associated resources, can be defmed 
to CICS and how the programs can be executed 
online. 

This appendix describes six CICS sample 
application programs, written in COBOL, as 
follows: 

• Operator Instruction 
• Inquiry /Update 
• Browse 
• Order Entry 
• Order Entry Queue Print 
• Low Balance Report. 

These programs illustrate basic applications (such 
as inquire, browse, add, and update) that can serve 
as a framework for your installation's frrst 
programs. The programs operate using a VSAM 
fue, known as FILEA, consisting of records 
containing details of individual customer accounts. 
Each program has a short description of what the 
program does, a listing of its source code, and a 
series of program notes. Numbered coding lines in 
the source listing correspond to the numbered 
program notes. The programs contain COpy 
statements coded according to the 1968 COBOL 
standard. 

All the sample programs are for use with the IBM 
3270 Infonnation Display System. 

The sample BMS maps include examples of how 
the COLOR, EXTATT, and HILIGHT attributes 
are specified in the map defmition macros. 
However, due to production limitations, the 

associated screen layouts do not show you all the 
effects of these attributes. 

You can add attributes without changing the 
application program by specifying 
EXT ATT = MAPONLY in the DFHMSD map set 
defmition macro. If you include an attribute that 
specifies a facility not available at the terminal, it 
will he ignored. 

The statements listed are those of the sample 
programs supplied with the initial release of CICS. 
Sample programs shipped with subsequent program 
temporary fixes (PTFs) may differ from these 
listings. 

The BMS maps (which are unaligned) and the fue 
record descriptions used by these sample programs 
are included at the end of the appendix. 

Once CICS is running, type MENU onto a clear 
screen and press the enter key. The MENU 
transaction identifier invokes the "Operator 
Instruction" sample program, which is a short 
program that produces a menu containing the 
transaction identifiers for two of the other sample 
programs, namely "Inquiry /lJpdate" and "Browse". 

If you dear the screen, remember to reenter the 
transaction identifier, as no data is accepted from 
an unformatted screen. 

You can run the sample programs using BDF but, 
because the CEDF transaction is defmed with 
RSLC = YES, you must frrst sign on to CICS as an 
operator with an appropriate resource security level 
key. 

The menu, on a screen that is 40 characters wide 
by 12 lines deep, is as shown in the box below. 
The plus ( + ) sign in this and subsequent displays 

Appendix E. Sample Programs (COBOL) 471 



OPERATOR INSTRUCTIONS 

+OPERATOR INSTR - ENTER MENU 
+FILE INQUIRY - ENTER INQY AND NUMBER 
+FILE BROWSE - ENTER BRWS AND NUMBER 
+FILE ADD - ENTER ADDS AND NUMBER 
+FILE UPDATE - ENTER UPDT AND NUMBER 

+PRESS CLEAR TO EXIT 
+ENTER TRANSACTIONI+ 

shows the position of the attribute byte. In an 
actual display, this position contains a blank. 

To invoke any of the transactions MENU, INQY, 
BRWS, ADDS, or UPDT, do as instructed, 
entering the four-character transaction identifier and 
six-digjt account number in the fields highlighted in 
the bottom line of the display. These specific 
account numbers include the sequence 100000, 
111111, 200000, 222222, ... , 999999. 

+NUMBER+ 

These transaction identifiers give you access to the 
inquiry, add, and update functions of the 
"Inquiry/Update" program, and access to the 
"Browse" program. 

You can invoke the three remaining sample 
programs ClOrder Entry", "Order Entry Queue 
Print", and "Low Balance Report" separately by 
entering their transaction identifiers (OREN, 
OREQ, and REPT respectively) onto a clear 
screen. 

Operator Instruction Program (COBOL) 

DescJiption 

The operator instruction sample program (1) erases the screen and displays map DFH$CGA in response to 
the EXEC CICS SEND MAP command, then (2) ends the program using the RETURN command. 

The m.ap displays a menu that lists the transaction identifiers associated with two of the sample programs, 
"Inquiry/Update", and "Browse", and gives instructions for the operator. 

Source Listing 

***********************************~~~~~*~~~*~~~~**~*~~*~~~*~~*~~ * DFH$CMNU - CICS/VS SAMPLE FILEA OPERATOR INSTRUCTION MENU * 
**********************~**~***~*~~~~~~~~~~~~~~~*~***~******~****** 

* 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FILECMNU. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 

PROCEDURE DIVISION. 
1 EXEC CICS SEND MAP('MENU') MAPSETC'DFH$CGA') 

MAPONLY ERASE END-EXEC. 
2 EXEC eICS RETURN END-EXEC. 

GOBACK. 

472 CICS/DOS/VS Application Programmer's Reference Manual (Command Level) 



Inquiry/Update Sample Program 
(COBOL) 

Description 

The inquiry/update sample program lets you make 
an inquiry about, add to, or update records in a 
rde. You can select one of these by entering the 
appropriate transaction identifier (INQY, ADDS, 
or UPDT) in the menu that is displayed when you 
start operations by entering MENU. 

To make an inquiry, enter INQY and an account 
number into the menu. The program maps in the 
account number and reads the record from FILEA. 
The required fields from the fIle area, and a title 
"FILE INQUIRY" are moved to the map dsect for 
DFH$CGB. DFH$CGB, containing the record 
fields, is displayed at your screen. 

To add a record, enter ADDS and the account 
number into the menu. The account number and a 
title "FILE ADD" are moved to the map area of 
DFH$CGB. DFH$CGB, containing empty data 
fields, is displayed at your screen. The data fields 
entered are mapped into DFH$CGB and moved to 
the rde record area which is then written to FILEA. 

The addition is recorded on an update log 
(LOGA), which is a transient data queue. The 
operator instruction screen is displayed with the 
message "RECORD ADDED". 

To update a record, enter UPDT and the account 
number into the menu, as before. The program 
reads and displays the requested FILEA record. 
Modified data fields are mapped in to DFH$CGB 
and edited: The sample program only suggests the 
type of editing you might wish to do. You should 
insert editing steps needed to ensure valid changes 
to the file. Those fields which have been changed 
are moved to the data record and the record is 
rewritten to FILEA. The update is recorded on 
LOGA. The message "RECORD UPDATED" is 
moved to the dsect for DFH$CGA, the operator 
instruction menu map, which is then displayed at 
your screen. 

This program is an example of 
pseudo conversational programming, in which 
control is returned to CICS together with a 
transaction identifier whenever a response is 
requested from the operator. Associated with each 
return of control to CICS is a storage area 
containing details of the previous invocation of the 
transaction. 

Source Listing for the Inquiry IUpdate Sample Program 

***************************************************************** * DFH$CALL - CICS/VS SAMPLE FILEA INQUIRY/UPDATE - COBOL * 
***************************************************************** 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FILECALL. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE 
77 MESSAGES 

SECTION. 
PIC X(39). 
PIC X(20). 
PIC 9(6). 

77 TEMP-NAME 
77 KEYNUM 
77 COMLEN PIC S9(4) COMPo 

COPY DFH$CGA. 

* 01 

01 
01 

COPY DFH$CGB. 
NEXT FIELD TO VERIFY AMOUNT I 
AMOUNTN. 
03 AMOUNTNI PIC X. 
03 AMOUNTN2S PIC X(4). 
03 AMOUNTN6 PIC X. 
03 AMOUNTN78 PIC X(2). 
FILEA. COPY DFH$CFIL. 
LOGA. COpy DFH$CLOG. 

Appendix E. Sample Programs (COBOL) 473 



Source Listing for the Inquiry/Update Sample Program (Continued) 

COPY DFHBMSCA. 
01 COMMAREA. COpy DFH$CFIL. 
LINKAGE SECTION. 
01 DFHCOMMAREA. COPY DFH$CFIL. 
PROCEDURE DIVISION. 

1 IF EIBTRNID NOT = 'INQY' 
AND EIBTRNID NOT = 'ADDS' 
AND EIBTRNID NOT = 'UPDT' THEN GO TO ERRORS. 

2 IF EIBCALEN NOT = 0 THEN 
3 MOVE DFHCOMMAREA TO COMMAREA GO TO READ-INPUT. 
4 EXEC CICS HANDLE CONDITION MAPFAILCMFAIL) 

ERRORCERRORS) END-EXEC. 
S EXEC CICS RECEIVE MAPC'MENU') MAPSETC'DFH$CGA') END-EXEC. 

IF KEYL = ZERO THEN GO TO BADLENG. 
6 MOVE KEYI TO KEYNUM. 

IF KEYI IS NOT NUMERIC THEN GO TO BADCHARS. 
MOVE LOW-VALUES TO DETAILO. 

7 IF EIBTRNID = 'ADDS' THEN 
MOVE 'FILE ADD' TO TITLEO 
MOVE 'ENTER DATA AND PRESS ENTER KEY' TO MSG30 

8 MOVE KEYI TO NUMB IN COMMAREA, NUMBO 
9 MOVE DFHBMUNN TO AMOUNTA 

MOVE '$0000.00' TO AMOUNTO 
MOVE 7 TO COMLEN GO TO MAP-SEND. 

10 EXEC CICS HANDLE CONDITION NOTFNDCNOTFOUND) END-EXEC. 
11 EXEC CICS READ DATASETC'FILEA') INTOCFILEA) RIDFlDCKEYNUM) 

END-EXEC. 
IF EIBTRNID = 'INQY' THEN 

12 MOVE 'FILE INQUIRY' TO TITLEO 
MOVE 'PRESS ENTER TO CONTINUE' TO MSG30 * PROTECT ALL THE MAP FIELDS 
MOVE DFHBMPRO TO NAMEA 
MOVE DFHBMPRO TO ADDRA 

13 MOVE DFHBMPRO TO PHONEA 
MOVE DFHBMPRO TO DATEA 
MOVE DFHBMPRO TO AMOUNTA 
MOVE DFHBMPRO TO COMMENTA 

14 PERFORM MAP-BUILD THRU MAP-SEND 
IS EXEC CICS RETURN TRANSIDC'MENU') END-EXEC. 

IF EIBTRNID = 'UPDT' THEN 
16 MOVE 'FILE UPDATE' TO TITLEO 

MOVE 'CHANGE FIELDS AND PRESS ENTER' TO MSG30 
17 MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA 

MOVE 80 TO,COMlEN. 
MAP-BUILD. 

MOVE NUMB IN FIlEA TO NUMBO. 
MOVE NAME IN FIlEA TO NAMEO. 

18 MOVE ADDRX IN FIlEA TO ADDRO. 
MOVE PHONE IN FIlEA TO PHONEO. 
MOVE DATEX IN FIlEA TO DATEO. 
MOVE AMOUNT IN FIlEA TO AMOUNTO. 
MOVE COMMENT IN FIlEA TO COMMENTO. 

MAP-SEND. 
19 EXEC CICS SEND MAPC'DETAIl') MAPSETC'DFH$CGB') 

ERASE END-EXEC. 
FIN. 

GO TO CICS-CONTROl. 
:20 READ-INPUT. 
21 EXEC CICS HANDLE CONDITION MAPFAIlCNOTMODF) NOTFNDCNOTFOUND) 

474 CICSjDOSjVS Application Programmerts Reference Manual (Command Level) 



Source Listing for the Inquiry/Update sample Program (Continued) 

ERROR(ERRORS) DUPREC(DUPREC) END-EXEC. 
22 EXEC CICS RECEIVE MAP('DETAIL') MAPSET('DFH$CGB') END-EXEC. 

IF EIBTRNID = 'UPDT' THEN 
23 EXEC CICS READ UPDATE DATASET('FILEA') INTO(FILEA) 

RIDFLD(NUMB IN COMMAREA) END-EXEC 
24 IF FILEREC IN FILEA NOT = FILEREC IN COMMAREA THEN 

MOVE 'RECORD UPDATED BY OTHER USER, TRY AGAIN' TO MSGIO 
MOVE DFHBMASB TO MSGIA 
MOVE DFHPROTN TO MSG3A 
PERFORM MAP-BUILD 
EXEC CICS SEND MAP('DETAIL') MAPSET('DFH$CGB') END-EXEC 
MOVE 80 TO COMLEN 
MOVE FILEREC IN FILEA TO FILEREC IN COMMAREA 
GO TO CICS-CONTROL 

ELSE 
25 MOVE 'U' TO STAT IN FILEA 

PERFORM CHECK THRU FILE-WRITE 
MOVE 'RECORD UPDATED' TO MESSAGES GO TO MENU. 

26 IF EIBTRNID = 'ADDS' THEN 
MOVE LOW-VALUES TO FILEREC IN FILEA 
MOVE 'A' TO STAT IN FILEA 
PERFORM CHECK THRU FILE-WRITE 
MOVE 'RECORD ADDED' TO MESSAGES GO TO MENU. * CHECK FIELDS ADDED/UPDATED 

CHECK. 
IF NAMEI = LOW-VALUES AND 

ADDRI = LOW-VALUES AND 
27 PHONE I = LOW-VALUES AND 

DATEI = LOW-VALUES AND 
AMOUNTI = LOW-VALUES AND 
COMMENT I = LOW-VALUES GO TO NOTMODF. * INSP-NAME CHANGES ALL NON-ALPHABETIC CHARACTERS THAT ARE * VALID IN A NAME TO SPACES SO THAT AN ALPHABETIC TEST MAY * BE DONE ON THE NAME. THE CHANGED NAME IS RETURNED IN FIELD 

* TEMP-NAME. 
PERFORM INSP-NAME. 
IF EIBTRNID = 'ADDS' THEN 

IF TEMP-NAME NOT ALPHABETIC THEN GO TO DATA-ERROR. 
IF EIBTRNID = 'UPDT' THEN 

IF NAMEI NOT = LOW-VALUES 
AND TEMP-NAME NOT ALPHABETIC THEN GO TO DATA-ERROR. * AMOUNTI MUST BE IN FORMAT ~NNNN.NN OR $NNNN.NN 

IF AMOUNT I = LOW-VALUE THEN GO TO FILE-WRITE. 
MOVE AMOUNTI TO AMOUNTN. 
IF (AMOUNTNI = ,~, OR '.') AND 

(AMOUNTN25· IS NUMERIC) AND 
CAMOUNTN6 = '.') AND 
CAMOUNTN78 IS NUMERIC) 

THEN GO TO FILE-WRITE 
ELSE 

THEN GO TO DATA-ERROR. 
INSP-NAME. 

MOVE NAMEI TO TEMP-NAME 
INSPECT TEMP-NAME REPLACING ALL '.' BY SPACES. 
INSPECT TEMP-NAME REPLACING ALL ,-, BY SPACES. 
INSPECT TEMP-NAME REPLACING ALL QUOTES BY SPACES. 

FILE-WRITE. 
IF EIBTRNID = 'ADDS' THEN MOVE NUMB IN COMMAREA TO 

NUMB IN FILEA. 

Appendix E. Sample Programs (COBOL) 475 



Source Listing for the Inquiry /Uphtte Sample Program (Continued) 

IF NAMEI NOT = LOW-VALUE MOVE NAMEI TO NAME IN FILEA. 
28 IF ADDRI NOT = LOW-VALUE MOVE ADDRI TO ADDRX IN FILEA. 

IF PHONEI NOT = LOW-VALUE MOVE PHONEI TO PHONE IN FILEA. 
IF DATEI NOT = LOW-VAlUE MOVE DATEI TO DATEX IN FILEA. 
IF AMOUNT I NOT = LOW-VALUE MOVE AMOUNTI TO AMOUNT IN FIlEA. 
IF AMOUNT I = lOW-VALUE AND EIBTRNID = 'ADDS' THEN 

MOVE '$OOoo.rro' TO AMOUNT IN FIlEA. 
IF COMMENT I NOT = lOW-VALUE THEN 

MOVE COMMENT I TO COMMENT IN FILEA. 
MOVE FIlEREC IN FIlEA TO lOGREC. 
MOVE EIBDATE TO lDAY. 

29 MOVE EIBTIME TO LTIME. 
MOVE EIBTRMID TO LTERML. 

30 EXEC CICS WRITEQ TD QUEUEC'LOGA') FROMCLOGA) lENGTH(92) 
END-EXEC. 

IF EIBTRNID = 'UPDT' THEN 
31 EXEC CICS REWRITE DATASETC'FIlEA') FROMCFIlEA) END-EXEC 

ELSE 
32 EXEC CICS WRITE DATASETC'FILEA') FROMCFIlEA) 

DATA-ERROR. 
MOVE DFHBMASB TO MSG3A. 

RIDFLDCNUMB IN COMMAREA) 
END-EXEC. 

33 MOVE 'DATA ERROR - CORRECT AND PRESS ENTER' TO MSG30 * THE FIELD ATTRIBUTE IS SET TO * MODIFIED SO DATA WILL DISPLAY * AMOUNT IS SET NUMERIC ALSO 
MOVE DFHUNNUM TO AMOUNTA. 

34 MOVE DFHBMFSE TO NAMEA, ADDRA, PHONEA, DATEA, 
COMMENTA. 

35 EXEC CICS SEND MAPC'DETAIl') MAPSETC'DFH$CGB') 
DATAONlY END-EXEC. 

36 IF EIBTRNID = 'ADDS' THEN MOVE 7 TO COMLEN 
ELSE MOVE 80 TO COMLEN. 

CICS-CONTROL. 
37 EXEC CICS RETURN TRANSIDCEIBTRNID) COMMAREACCOMMAREA) 

LENGTHCCOMLEN) END-EXEC. 
38 NOTMODF'. 

MOVE 'RECORD NOT MODIFIED' TO MESSAGES. 
GO TO MENU. 

DUPREC. 
MOVE 'DUPLICATE RECORD' TO MESSAGES. 
GO TO MENU. 

BADLENG. 
MOVE 'PLEASE ENTER AN ACCOUNT NUMBER' TO MESSAGES. 
GO TO MENU. 

BADCHARS. 
MOVE 'ACCOUNT NUMBER MUST BE NUMERIC' TO MESSAGES. 
GO TO MENU. 

NOTFOUND. 
MOVE 'INVALID NUMBER - PLEASE REENTER' TO MESSAGES. 
GO TO MENU. 

MFAIL. 
MOVE 'PRESS CLEAR TO EXIT' TO MESSAGES. 
GO TO MENU. 

ERRORS. 
39 EXEC CICS DUMP DUMPCODE('ERRS') END-EXEC. 

MOVE 'TRANSACTION TERMINATED' TO MESSAGES. 
40 MENU. 

476 CICS/DOS/VS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Inquiry IUpdate Sample Program (Continued) 

MOVE LOW-VALUE TO MENUO. 
MOVE DFHBMASB TO MSGA. 
MOVE MESSAGES TO MSGO. 

41 EXEC CICS SEND MAPC'MENU') MAPSETC'DFH$CGA') ERASE END-EXEC. 
42 EXEC CICS RETURN END-EXEC. 

GOBACK. 

Program Notes 

1. The possible invoking transaction-ids are 
tested. 

2. The length of the COMMAREA is tested. If 
not zero then this is the validation stage of an 
add or update. 

3. If it has a length, the COMMAREA returned 
is moved to working storage in the program. 

4. The program exits are set up. 

5. The menu map DFH$CGA is received. The 
account number, if entered, is mapped into 
KEYI in the dsect for DFH$CGA. 

6. The account number is validated and saved. 

7. If program is invoked by 'ADDS', a title and 
command message are moved to the map area. 
The record key is moved to the map area and 
saved in COMMAREA. 

S. The record key is moved to the COMMAREA 
and to the map area. 

9. For the ADDS transaction, the amount field 
has the attribute byte set to numeric so only 
numeric data can be entered. 

10 .. For an inquiry or update the exit for the 
record-not-found condition is set up. 

11. The m.e control READ command reads the file 
record into the fue area. 

12. If program is invoked by 'INQY', a title and 
command message are moved to the map area. 

13. All field attributes are protected. 

14. The file record fields are moved to the map 
area, and the inquiry screen is displayed. 

15. This invocation of the program tenninates. The 
TRANSID of MENU causes the operator 
instruction program to be invoked when the 
next response is received from the terminal. 

16. If program is invoked by 'UPDT' a title and 
command message are moved to the map area. 

17. The file record is moved to the CO MMAREA 
and the length of the COMMAREA to be 
returned is set up. 

IS. The fields from the ftle area are moved to the 
map area. 

19. MAP-SEND sends the map DFH$CGB to the 
screen specifying that the screen is to be erased 
before the map is displayed. 

20. Control is passed here when the test of 
EIBCALEN, at the beginning of the program, 
finds that a COMMAREA has been received. 
This part of the program maps in data for an 
add or update request, performs validation and 
updates PILEA. 

21. The error exits are set up. 

22. The RECEIVE MAP command maps in the 
variables from the screen. 

23. If this is an update request a file control READ 
UPDATE reads the existing record using the 
number stored in COMMAREA by the last 
invocation of this program. 

Appendix E. Sample Programs (COBOL) 477 



24. If t.he current ftle record is not the same as the 
one saved in the CO MMAREA then another 
user has updated the record. A warning 
message is displayed, with fields from the 
record read from FILEA, for reentry of the 
updates. 

25. The update flag is set in the record area and the 
message "RECORD UPDATED" is rnoved to 
the message area ready for display of the 
oJX!rator instruction screen. 

26. If this is an add request the add flag is set in 
the new record and the message "RECORD 
ADDED" is moved to the message area ready 
for display of the operator instruction screen. 

27. Any required editing steps should be inserted 
here. A suitable form of editing should be used 
to ensure valid records are placed on the me. 

28. This code creates or updates the account 
record. Any field which has been entered is 
moved to the account record. 

29. The record fields, the date, the time, and the 
terrninal identification are moved to update log 
record area. 

30. The record is written to the update log which is 
a transient data queue. 

31. For an update request the updated account 
record is rewritten to FILEA. 

32. For an add request the new account record is 
written to FILEA. 

33. When a data error is detected the screen is 
redisplayed for errors to be corrected. An error 
me~~sage is moved to the map area and 
highlighted. 

34. The: modified data tag is set on for all the data 
fields so that all the data is received at the next 
RECEIVE MAP. 

35. The contents of map DFH$CGB are sent to 
the screen. The constant information on the 
screen is not refreshed as a result of the use of 
the DATAONLY option. 

36. The size of the COMMAREA is set to 7 for an 
add request or to 80 for an update request. 

37. After the FILE ADD or FILE UPDATE 
screen has been displayed the program 
branches here to return to CICS awaiting a 
response from the terminal. The RETURN 
gives CICS the transaction identifier for the 
next transaction at this terminal together with a 
COMMAREA containing all the information 
that the program needs to continue the update. 
The COMMAREA is passed to the next 
invocation of this program, see note 2 above. 

38. These short error routines set up an error 
message in MESSAGES and branch to MENU 
to display the message is the operator 
instruction menu DFH$CGA. 

39. If a CICS command fails with the ERROR 
condition or if an unknown transaction 
identifier is used to invoke this program, a 
dump is taken and the message 
IITRANSACTION TERMINATED" is 
moved to MESSAGES for display on the 
operator instruction screen. 

40. This code gets control when an add or update 
is complete. An information or error message 
is in MESSAGES. The operator instruction 
map area is cleared. The message is moved to 
the map area and highlighted. 

41. The operator instruction map DFH$CGA is 
displayed on an erased screen. 

42. The program terminates by returning to CICS. 
No transaction identifier or COMMAREA is 
specified. 

478 CICSjDOSjVS Application Programmerts Reference Manual (Command Level) 



Browse Sample Program 
(COBOL) 

you omit the account number browsing begins at 
the start of the me. Depressing the PF 1 key or 
typing F causes retrieval of the next page or paging 
forward. If you wish to reexamine the previous 
records displayed, press PF2 or type B. This lets 
you page backward. Description 

The browse program sequentially retrieves a page 
or set of records for display, starting at a point in a 
fue specified by the teoninal operator. 

The browse program uses READNEXT to forward 
page to the end of the me and READPREV to 
backward page to the start of the fue. 

To start a browse, type BRWS and an account 
number into the menu and press the enter key. If 

Source Listing for the Browse Sample Program 

~~~~~~~~~~~~~~~~~~~~~~~~~**~*~~~**~~**~*~~**M***~****~~~*~~*~~~~~ 
~ DFH$CBRW - CICS/VS SAMPLE FIlEA BROWSE - COBOL ~

1

~~~~*~***~~*~**********~*~~*~*~********~***~***********~********* 
IDENTIFICATION DIVISION. . 
PROGRAM-ID. FIlECBRW. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 I PIC 999 USAGE IS COMPo 
77 MESSAGES PIC X(39) VALUE • '. 

* GOING FWD OR BACK ... F/B, AT lO/HI END OF FILE 
77 CURROP PIC X(1) VALUE' , 
77 lASTOP PIC X(1) VALUE' , 
77 STATS PIC X(1) VALUE' , 

~ 

77 RID PIC 9(6) VALUE IS ZERO. 
~ 

77 RIDB PIC 9(6) VALUE IS ZERO. 
~ 

77 RIDF PIC 9(6) VALUE IS ZERO. 
~ 

~ 

COpy DFHBMSCA. 
~ 

01 FIlEA. COpy DFH$CFIl. 
~ 

COpy DFH$COA. 
~ 

COpy DFHtCOC. 
* ~ 

PROCEDURE DIVISION. 
EXEC CICS HANDLE CONDITION 

ERRORCERRORS) 
MAPFAIl CSMSG) 
NOTFNDCNOTFOUND) 

~ 

DATA-AREAS FOR RIDFlD 

BUILDS PREV BACK PAGE 

BUILDS NEXT FWD PAGE 

BMS STD ATTRIBUTES 

FIlEA RECORD DESCRIPT'N 

GENERAL MENU MAP 

BROWSE FIlEA MAP 

END-EXEC. 

2 EXEC CICS RECEIVE MAP('MENU') MAPSETC'DFH$COA') END-EXEC. 

3 EXEC CICS HANDLE AID 
CLEAR(SMSO) 
PF1 (PAGE-FORWARD) 
PF2 (PAGE-BACKWARD) END-EXEC. 

Appendix E. Sample Programs (COBOL) 479 



Source Listing for the Browse Sample Program (Continued) 

***************************************************************** * SIMPLE CHECKS OF INPUT DATA * 
***************************************************************** 

4 IF KEYL NOT = ZERO THEN 
IF KEYI IS NUMERIC THEN 

MOVE KEYI TO RID 
MOVE KEYI TO RIDF 
MOVE KEYI TO RIDB 

ELSE 

ELSE 

MOVE 
'ACCOUNT NUMBER MUST BE NUMERIC' 
TO MESSAGES 
GO TO MENU 

VALID INPUT 

NOT NUMERIC 

ACCOUNT NO OMITTED 
MOVE '000000' TO RID 
MOVE '000000' TO RIDF. 

***************************************************************** * ESTABLISH START POINT * 
***************************************************************** 

S EXEC CICS STARTBR DATASETC'FILEA') RIDFLDCRID) END-EXEC. 

6 IF RID NOT EQUAL '999999' THEN GO TO PAGE-FORWARD. 

MOVE 'H' TO STATS. 
GO TO PAGE-BACKWARD. 

***************************************************************** * BUILD NEXT FORWARD PAGE * 
***************************************************************** 

PAGE-FORWARD. 
MOVE 'F' TO CURROP. 

* TOP END OF FILE 
7 EXEC CICS HANDLE CONDITION 

ENDFILECTOOHIGH) END-EXEC. 
* RESET MAP 'e' 

MOVE LOW-VALUES TO BROWSEO. 

MOVE RIDF TO RID. 
MOVE 1 TO I. 

NEXT-LINE. 

RID>NEXT FPAGE 

* MOVE FIELDS>MAP 
8 EXEC CICS READNEXT INTOCFILEA) DATASETC'FILEA') 

RIDFLDCRIDl END-EXEC. 
* READ 4 RECORDS 

9 IF I = 1 THEN 
MOVE NUMB TO NUMBERIO 
MOVE NAME TO NAMEIO 
MOVE AMOUNT TO AMOUNTIO 

MOVE RID TO RIDB 
ELSE IF I = 2 THEN 

MOVE NUMB TO NUMBER20 
MOVE NAME TO NAME20 
MOVE AMOUNT TO AMOUNT20 

ELSE IF I = 3 THEN 
MOVE NUMB TO NUMBER30 
MOVE NAME TO NAME30 

RIDB NEEDS EXISTING A/C 

480 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Browse Sample Program (Continued) 

MOVE AMOUNT TO AMOUNT30 
ELSE IF I = 4 THEN 

ADD 1 TO I. 

MOVE NUMB TO NUMBER40 
MOVE NAME TO NAME40 
MOVE AMOUNT TO AMOUNT40. 

IF I NOT EQUAL 5 THEN GO TO NEXT-LINE. 
* RID>NEXT FPAGE 

MOVE RID TO RIDF. 
10 EXEC CICS SEND MAP('BROHSE') MAPSET('DFH$CGC') 

ERASE END-EXEC. 
• GET NEXT RQUEST 

GO TO PROMPT . 
••••••••••••• **.*.**.**********************************.*.**.**.* * BUILD PREVIOUS BACK PAGE * 
*****.*********************************************************** 

11 PAGE-BACKWARD. 
MOVE 'B' TO CURROP. 

EXEC CICS HANDLE CONDITION 
ENDFILE(TOOLOW) END-EXEC. 

MOVE LOW-VALUES TO BROWSEO. 

MOVE RIDB TO RID. 

MOVE RIDB TO RIDF. 

IF LASTOP EQUAL 'B' THEN GO TO PREVo 
IF STATS EQUAL 'H' THEN GO TO PREVo 
EXEC CICS READPREV INTO(FILEA) 

* PREVo 
MOVE 1 TO I. 

* PREV-LINE. 

DATASET('FILEA') 
RIDFLD(RID) END-EXEC. 

* MOVE FIELDS>MAP 
EXEC CICS READPREV INTO(FILEA) 

DATASET('FILEA') 
RIDFLD(RID) END-EXEC. 

LOW END OF FILE 

RESET MAP 'C' 

RID>PREV BPAGE 

RIDF>NEXT FPAGE 

* READ 4 RECORDS IN 
• ASCENDING ORDER 

IF I = 4 THEN 
MOVE NUMB TO NUMBER10 
MOVE NAME TO NAME10 
MOVE AMOUNT TO AMOUNT10 

ELSE IF I = 3 THEN 
MOVE NUMB TO NUMBER20 
MOVE NAME TO NAME20 
MOVE AMOUNT TO AMOUNT20 

ELSE IF I = 2 THEN 
MOVE NUMB TO NUMBER30 
MOVE NAME TO NAME30 
MOVE AMOUNT TO AMOUNT30 

ELSE IF I = 1 THEN 
MOVE NUMB'TO NUMBER40 
MOVE NAME TO NAME40 

Appendix E. Sample Programs (COBOL) 481 



Source Listing for the Browse Sample Program (Continued) 

MOVE AMOUNT TO AMOUNT40. 

ADD 1 TO I. 
IF I NOT EQUAL S THEN GO TO PREV-LINE. 

MOVE RID TO RIDB. 
EXEC CICS SEND MAPC'BROWSE') MAPSETC'DFH$CGC') 

ERASE END-EXEC. 

GO TO PROMPT. 

RID>NEXT BPAGE 

GET NEXT RQUEST 

***************************************************************** 
* PROMPT FOR NEXT PAGING REQUEST* 
***************************************************************** 

PROMPT. 
MOVE CURROP TO LASTOP. 

12 EXEC CICS RECEIVE MAPC'BROWSE') MAPSETC'DFH$CGC') END-EXEC. 
IF DIRI EQUAL 'F' THEN GO TO PAGE-FORWARD. 
IF DIRI EQUAL 'B' THEN GO TO PAGE-BACKWARD. 

* INVALID-RESEND 
EXEC CICS SEND MAP('BROWSE') MAPSETC'DFH$CGC') END-EXEC. 
GO TO PROMPT. 

***********************~***************************************** 
* HANDLE END OF FILE CONDITIONS * 
***************************************************************** 

13 TOOHIGH. 

Jl4 

* 

* 

MOVE 'H' TO STATS. 
MOVE RID TO RIDF. 
MOVE RID TO RIDB. 
MOVE' , TO DIRO. 
MOVE 'HI-END OF FILE' TO MSGIO. 

MOVE DFHBMASB TO MSGIA. 
EXEC CICS SEND MAPC'BROWSE') MAPSETC'DFH$CGC') 

ERASE END-EXEC. 
GO TO PROMPT. 

TOOLOW. 
MOVE 'L' TO STATS. 
MOVE '000000' TO RIDF. 
MOVE '000000' TO RIDB. 
MOVE , , TO DIRO. 
MOVE 'LO-END OF FILE' TO MSG20. 

MOVE DFHBMASB TO MSG2A. 
EXEC CICS SEND MAPC'BROWSE') MAPSET1'DFH$CGC') 

ERASE ENJ)-EXEC. 
GO TO PROMPT. 

BRT+PROT ATTR 

BRT+PROT ATTR 

***************************************************************** 
* HANDLE GENERAL CONDITIONS * 
***************************************************************** 

15 NOTFOUND. 
MOVE 'END OF FILE - PLEASE RESTART' TO MESSAGES. 
GO TO MENU. 

SMSG. 
MOVE 'PRESS CLEAR TO EXIT' TO MESSAGES. 
GO TO MENU. 

ERRORS. 
16 EXEC CICS DUMP DUMPCODEC'ERRS') END-EXEC. 

MOVE 'TRANSACTION TERMINATED' TO MESSAGES. 
***************************************************************** 

482 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Browse Sample Program (Continued) 

***************************************************************** * DISPLAY GENERAL MENU THEN EXIT * 
***************************************************************** 

MENU. 

MOVE LOW-VALUE TO MENUO. 
MOVE DFHBMASB TO MSGA. 
MOVE MESSAGES TO MSGO. 

RESET MAP 'A' 

17 EXEC CICS SEND MAPC'MENU') ~APSET('DFH$CGA') 
ERASE END-EXEC. 

18 EXEC CICS RETURN END-EXeC. 
GOBACK. 

Program Notes 

1. The error exits are set up. 

2. This command maps in the account number 
from the operator instruction screen. 

3. The exits for CLEAR, PF 1 and PF2 are set 
up. 

4. If the format of the account number is valid 
the number is used to set up the program's 
browse pointers. If no account number is 
entered browsing begins at the start of the me. 

5. The STARTBR command establishes the 
browse starting point. 

6. Entering the maximum value (999999) for the 
account number begins a backward browse 
from the end of ftle. 

7. The forward browse end of fue exit is set up. 

8. The READNEXT reads the ftrst record into 
the ftIe area. 

9. The screen is built with 4 records. 

10. The screen is erased and the page is displayed 
at the terminal. 

11. The backward browse is similar to the forward 
browse. Note the need for an extra 
READPREV when changing from forward to 
backward browsing. 

12. When the RECEIVE command executes 
control will go to one of the HANDLE AID 
exits (see note 3) if CLEAR, PFI or PF2 is 
pressed. The program explicitly tests for F or B 
if no exit is taken. Any other terminal response 
is ignored. 

13. If the end of me is reached, on a 
READNEXT, any records read to that point 
arc displayed, together with a highlighted 
message "HI-END OF FILE". 

14. If the start of fue is reached on a READPREV 
(backward browse) then the ENDFILE 
condition occurs and TOOLOW gets control. 
Any records read up to that point are displayed 
together with a highlighted message "LO-END 
OF FILE". 

15. If the NOTFND condition occurs at the start 
browse the message "END OF FILE -
PLEASE RESTART" is moved to 
MESSAGES for display on the operator 
instruction screen. 

16. In some error situations a dump is taken and 
the message "TRANSACTION 
TERMINATED" is moved to MESSAGES 
for display on the operator instruction screen. 

17. This code displays the operator instruction 
menu with a message which has been stored in 
MESSAGES. 

18. The program terminates by returning to CICS. 

Appendix E. Sample Programs (COBOL) 483 



Order Entry Sample Program 
(COBOL) 

Descliption 

The order entry sample application program 
provides a data entry facility for customer orders 
for Palts fro.m a warehouse. Orders are recorded 
on a transient data queue which is defmed so as to 
start the order entry queue print transaction 
automatically when a fixed number of orders have 
been accumulated. The queue print transaction 
sends the orders to a printer terminal at the 
warehouse. 

To begin order entry, type OREN onto a blank 
screen and press ENTER. The order entry 
program displays the map OFH$CGK on the 
screen requesting the operator to enter order details, 
that is" customer number, part number, and the 
quantity of that part required. The customer 
number must be valid, that is, it must exist on 
FILEA. The order details are mapped in and 

checked, an invalid order is redisplayed for 
correction. When valid an order is written to the 
transient data queue L860 and the order entry 
screen is redisplayed ready for the next order to be 
entered. If CLEAR is pressed the order entry 
program terminates. 

L860, the name of the transient data queue, is also 
the name of the terminal where the order entry 
queue print transaction is to be triggered when the 
number of items on the queue reaches 30. A 
definition of the transient data queue is included in 
the sample destination control table listed in the 
CICS/ DOS/ VS Installation and Operations Guide. 
Note that the TRANSIO specified in the OCT 
entry for L860 must be changed from AORQ to 
OREQ for the COBOL program to be triggered. 

The trigger level may be changed using CEMT, as 
follows: 

CEMT SET QUEUECL860) TRIGGERCn) 

where n is the destination trigger level (any integer 
from 0 through 32767). 

Source Listing for the Order Entry Sample Program 

**********************************~***********~****************** * DFH$CREN - CICS/VS SAMPLE FILEA ORDER ENTRY - COBOL * 
***************************************************************** 

* 
* 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FILECREN. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
77 ERROR-FLAG PIC 9. 
77 PRESMSG PICTURE Xt20) VALUE 'PROCESSING COMPLETED'. 

COPY DFH$CGK. 
01 FILEA. COPY DFH$CFIL. 
01 L860. COPY DFH$CL86. 

COPY DFHBMSCA. 

PROCEDURE DIVISION. 

* HANDLE CONDITIONS 
1 EXEC CICS HANDLE AID CLEARCENDA) END-EXEC. 
2 EXEC CICS HANDLE CONDITION MAPFAILCMAPFAIL) 

MOVE LOW-VALUES TO ORDERO. 

NOTFNDCNOTFOUND) 
ERRORCERRORS) END-EXEC. 

CLEAR MAP 

3 EXEC CICS SEND MAPC'ORDER') MAPSETC'DFH$CGK') 
ERASE END-EXEC. 

484 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



Source Listing for the Order Entry Sample Program (Continued) 

••••••••••••••••••••••••••••• * ••• * •• ***********.*.******.*****.*. 
• PROCESS INPUT * 
•••••••• * •••• ** •• **.*.*****.************************************* 

RECEIVM. 
4 EXEC eICS RECEIVE MAPC'ORDER') MAPSETC'DFH$CGK') END-EXEC. 

MOVE 0 TO ERROR-FLAG. 
MOVE DFHBMFSE TO CUSTNOA, PARTNOA, QUANTA. 

***************************************************************** 
* CHECK DATA * 
***.****.** •• ****.***** •• ****************** •• *****.**.**********. 
~ 

5 IF CUSTNOI NOT NUMERIC THEN 
MOVE DFHUNINT TO CUSTNOA MOVE 1 TO ERROR-FLAG. 

IF PARTNOI NOT NUMERIC THEN 
MOVE DFHUNINT TO PARTNOA MOVE 1 TO ERROR-FLAG. 

IF QUANTI NOT NUMERIC THEN 
MOVE DFHUNINT TO QUANTA MOVE 1 TO ERROR-FLAG. 

DATA ERROR-REENTER 
IF ERROR-FLAG = 1 THEN 

6 MOVE DFHBMASB TO MSG2A 
EXEC CICS SEND MAPC'ORDER') MAPSETC'DFH$CGK') END-EXEC 
GO TO RECEIVM. 

***************************************************************** 
* READ CUST RECORD* 
***************************************************************** 
* 7 EXEC CICS READ DATASETC'FILEA') INTOCFILEA) RIDFLDCCUSTNOI) 

END-EXEC. 
MOVE CUSTNOI TO CUSTNO. 

8 MOVE PARTNOI TO PARTNO. 
MOVE QUANTI TO QUANTITY. 
MOVE EIBTRMID TO TERMID. 

*********.******************************************************* 
* WRITE VALID ORDER* 
***************************************************************** 
* 9 EXEC CICS WRITEQ TD QUEUEC'L860') FROMCL860) LENGTH(22) 

END-EXEC. 
10 EXEC CICS SEND MAPC'ORDER') MAPSETC'DFH$CGK') 

MAPONLY ERASEAUP END-EXEC. 
GO TO RECEIVM. 

***************************************************************** 
* PROCESS ERRORS * 
**********.****************************************************** 

11 NOTFOUND. 

* 

MOVE DFHBMASB TO MSGIA. 
EXEC CICS SEND MAPC'ORDER') MAPSETC'DFH$CGK') END-EXEC. 
GO TO RECEIVM. 

12 MAPFAIL. 
MOVE LOW-VALUES TO ORDERO. 
MOVE DFHBMASB TO MSG2A. 
EXEC CICS SEND MAPC'ORDER') MAPSETC'DFH$CGK') END-EXEC. 
GO TO RECEIVM. 

Appendix E. Sample Programs (COBOL) 485 



Source Listing for the Order Entry Sample Program (Continued) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~ EXIT FROM PROGRAM~
~~~~~~~~~~~~~~~~~~~~~~~~~****~~*~~~*~***~*~~*~~*~~~~*~~*~~~~ •• ~~~ 
~ 

13 ERRORS. 
MOVE 'TRANSACTION TERMINATED' TO MSG20. 
MOVE DFHBMASB TO MSG2A. 
EXEC CICS SEND MAPC'ORDER') MAPSETC'DFHtCGK') END-EXEC. 
EXEC CICS DUMP DUMPCODEC'ERRS') END-EXEC. 

~ 

14 ENDA. 
EXEC CICS SEND TEXT FROM(PRESMSG) lENGTH(20) ERASE END-EXEC. 
EXEC CICS SEND CONTROL FREEKB END-EXEC. 
EXEC CICS RETURN END-EXEC. 
GOBACK. 

Program Notes 

1. The CLEAR key exit is set up. 

2. The error exits are set up. 

3. The screen is erased and the order entry map is 
displayed at the terminal. 

4. This RECEIVE MAP causes a read from the 
terminal and maps in the customer number, 
part number 3.!1d quantity. The program 
remains in virtual storage until the tenninal 
response is received. Compare this technique 
with that used in the pseudoconversational 
inquiry /update sample program. If no data is 
received CICS branches to the MAPlP AIL exit 
(note 2). 

5. The order details are checked, invalid orders are 
redisplayed for correction. Error fields are 
highlighted and have MDT set on. The user 
should add further editing steps necessary to 
ensure only valid orders are accepted. 

6. The error message "DATA ERROR -
REENTER" is a constant in the map load 
module and is sent to the terminal, with any 
other constant infonnation, unless 
DATAONLY is specified on the SEND MAP. 
TIle message is normally dark (non-display). 
This instruction overrides the dark attribute 
and the message appears in high intensity when 
the SEND MAP is executed. 

7. The file control READ command attempts to 
read the customer record from FILEA. If no 
record exists for the customer CICS branches 
to the NOTFND exit (note 2). 

8. The order details are moved from the input 
map to the queue area. 

9. The WRITEQ TD command writes the order 
record to a sequential me, a transient data 
queue. 

10. The order entry map is redisplayed ready for 
the next order. Only the map load module is 
used to build the screen display, MAPONL Y 
causes the data in the map dsect area to be 
ignored. ERASEAUP erases all the 
unprotected data on the screen, that is, the 
customer number, part number and quantity. 

II. If there is no record for the customer on 
I'll J~J\, CICS raises the NOTFND and 
branches here. The attribute for the customer 
number field is set to high intensity with MDT 
on and an error message "NUMBER NOT 
FOUND - REENTER" is set to display in 
high intensity (see note 6). The order is 
redisplayed for correction. 

12. If no fields are entered, the MAPF AIL 
condition occurs. The message reDA T A 
ERROR - REENTER" is displayed in high 
intensity (see note 6). 

486 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



13. If an error occurs a dump is taken, and the 
message "TRANSACTION TERMINATED" 
is displayed in high intensity in the data error 
message area. The program terminates leaving 
the order entry screen displayed. 

14. When the CLEAR key is pressed the program 
terminates. The message "PROCESSING 
COMPLETED" is displayed on a blank 
screen, the keyboard is freed and control is 
returned to CICS. 

Appendix E. Sample Programs (COBOL) 487 



Ordler Entry Queue Print Sample 
Program (COBOL) 

Description 

The order entry queue print sample program sends 
custOlner orders to a printer terminal at the 
warehouse. The order entry sample program, 
described earlier, records customer orders on a 
transient data queue which is read by this program. 

The queue print transaction can be invoked in one 
of three ways: 

• Yem can type the transaction identifier 0 REQ 
onto a clear screen. The program fmds that the 
terminal identifier is not L860 and issues a 
STAR T command to begin printing in one 
hour. The message "PROCESSING 
COMPLETED" is displayed and YOUlr terminal 
is available for other work. 

• One hour after you enter 0 REQ, the queue 
print transaction is automatically invoked by 
CICS interval control. In this case the terminal 

identifier, specified by the START, is L860 so 
the program prints the orders at the warehouse. 

• The queue print transaction is "triggered" when 
the number of items (customer orders) on the 
transient data queue reaches 30. The trigger 
level is specified in the destination control table 
(DCT) entry for L860. In this case the 
tenninal identifier is the same as the queue 
name (1,860) and the program will print the 
orders. Note that the TRANSID specified in 

. the DCT entry for L860 must be changed 
from AORQ to OREQ for the COBOL 
program to be triggered. The trigger level may 
be changed using CEMT, as follows: 

CEMT SET QUEUECL860) TRIGGERCn) 

When invoked with a terminal identifier of L860 
the program reads each order, checks the 
customer's credit and either prints the order at the 
warehouse or writes the rejected order to LOGA, 
the same transient data queue as used by the 
inquiry /update sample program. When all the 
orders have been processed, or if there were no 
orders to process, the message "ORDER QUEUE 
IS EMPTY" is printed at the warehouse. 

Source Listing for the Order Entry Queue Print Sample Program 

~~~~~~~~~~~~~~~~**~~*~*****~~********~***************~****~**~~~~ 
~ DFH$CCOM - CICS/VS SAMPLE FILEA ORDER ENTRY QUEUE PRINT ~

~~*~~~~~~*~**~******~*************************~************~~****
IDENTIFICATION DIVISION.
PROGRAM-ID. FILECCOM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 Q-LENGTH PIC 9(4) COMP VALUE 22.
77 PRESMSG PIC X(20) VALUE 'PROCESSING COMPLETED'.
01 LOGORD.

02 LOGTIME.
03 LDAY PIC S9(7) COMP-3.
03 LTIME PIC S9(7) COMP-3.

02 LITEM PIC X(22).
02 COMMENT PIC XCII) VALUE 'ORDER ENTRY'.
02 FILLER PIC XCSI) VALUE SPACES.

COpy DFH$CGL.
01 FIlEA. COPY DFH$CFIL.
01 L860. COpy DFH$CL86.

COPY DFHBMSCA.
PROCEDURE DIVISION.

1 EXEC CICS HANDLE CONDITION ERRORCERRORS)
QZEROCENDA) END-EXEC.

2 IF EIBTRMID NOT = 'L860' THEN

488 CICSjDOS/VS Application Programmer's Reference Manual (Command Level)

Source Listing for the Order Entry Queue Print Sample (Continued)

GO TO ASK-TIME.
MOVE LOW-VALUES TO PRINTO.

Q-READ.
3 EXEC CICS READQ TD INTOCl860) LENGTHCQ-LENGTH)

QUEUEC'L860') END-EXEC.
MAP-BUILD.

4 EXEC CICS READ DATASETC'FILEA') INTOCFILEA) RIDFLDCCUSTNO)

5 IF AMOUNT > '$0100.00' THEN
MOVE ADDRX TO ADDRO
MOVE NAME TO NAMO

6 MOVE PARTNO TO PARTO
MOVE CUSTNO TO NUMBO
MOVE ITEM TO LITEM
MOVE QUANTITY TO QUANTO

END-EXEC.

7 EXEC CICS SEND MAPC'PRINT') MAPSETC'DFH$CGL')
ERASE PRINT L80 END-EXEC

ELSE
MOVE EIBDATE TO LDAY

8 MOVE EIBTIME TO LTIME
MOVE ITEM TO LITEM

9 EXEC CICS WRITEQ TD QUEUEC'LOGA')
FROMCLOGORD) LENGTH(92) END-EXEC.

GO TO Q-READ.
ERRORS.

10 EXEC CICS DUMP DUMPCODEC'ERRS') END-EXEC.
GO TO FIN.

ENDA.
MOVE LOW-VALUES TO PRINTO

11 MOVE 'ORDER QUEUE IS EMPTY' TO TITLEO
EXEC CICS SEND MAPC'PRINT') MAPSETC'DFH$CGL')

DATAONLY ERASE PRINT L80 END-EXEC.
ASK-TIME.

~ IF THE COMMENT DELIMITER IS
~ REMOVED FROM THE NEXT TWO COBOL
~ STATEMENTS, THE APPLICATION WILL
~ BE RESTARTED IN AN HOUR IF THE
~ TIME OF DAY RIGHT NOW IS NOT LATER
~ THAN 1400 HRS.
~ IF THE CODE IS LEFT UNCHANGED THE
~ APPLICATION WILL BE RESTARTED
~ UNCONDITIONALLY AFTER AN HOUR HAS
~ ELAPSED
~ EXEC CICS ASKTIME END-EXEC.
~ IF EIBTIME NOT > 140000 THEN

12 EXEC CICS START TRANSIDC'OREQ') INTERVALCI0000)
TERMID('L860') END-EXEC.

FIN.
13 EXEC CICS SEND TEXT FROM(PRESMSG) lENGTH(20) ERASE END-EXEC

EXEC CICS SEND CONTROL FREEKB END-EXEC.
EXEC CICS RETURN END-EXEC.
GOBACK.

Appendix E. Sample Programs (COBOL) 489

Program Notes

1. The error exits are set up.

2. The terminal-id is tested to see whether this
tnmsaction was started from a terminal or at
the printer.

3. A queue item (customer order) is read into the
program.

4. The fue control READ command reads the
relcord into a record area so that the amount
may be checked.

5. TIle amount (bank balance) is tested. If it is
over $100 then the order is acceptable,
otherwise the order is rejected. This test is
only a suggestion; a suitable form of c:diting
should be inserted here to ensure valid orders
an.~ sent to the warehouse.

6. . TIle order details are moved to the map area
for DFH$CGL.

7. TIle order map is sent to the printer terminal at
thle warehouse.

8. TIle current date and time, and details of the
rejected order, are moved to a log record area.

9. lbe WRITEQ TO command writes details of
the rejected order to LOGA, a transient data
queue.

10. If the ERROR condition occurs on any CICS
command a dump is taken and the program
terminates.

11. When the queue is empty, the message
"ORDER QUEUE IS EMPTY" is moved to
the map area which is then sent to the printer
terminal at the warehouse.

12. The START command starts the OREQ
transaction (this progratn), after a one hour
delay, with a tetminal identifier of L860. (The
time interval could be changed, for
demonstration purposes, by changing the
INTERVAL value). If the comment delimiters
arc removed from the two preceding
statements, EIBTIME is refreshed and, if the
time is before 1400 hours, the transaction is
started in one hour. If the comment delimiters
are not removed, the transaction is started
unconditionally in one hour.

13. The message "PROCESSING
COMPLETED" is sent to the terminal
associated with this invocation of 0 REQ,
either the printer at the warehouse or the
screen on which OREQ was entered. The
program terminates by returning control to
CICS.

490 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Low Balance Report Sample
Program (COBOL)

Description

The low balance report sample program produces a
report that lists all entries in the data set FILEA for
which the amount is less than or equal to $50.00.

The program illustrates page building techniques
and the use of the terminal paging facilities of
BMS.

The transaction is invoked by entering REPT onto
a clear screen. The program does a sequential scan
through the ftle selecting each entry that obeys the

search criterion. The pages are built from four
maps which comprise map set DFH$CGD, using
the paging option so that the data is not displayed
immediately but instead is stored for later retrieval.
The HEADING map is inserted at the head of
each page. The detail map (DFH$CGD) is written
repeatedly until the overflow condition occurs. The
FOOTING map is then written at the foot of the
page and the HEADING map written at the top of
the next page. The command to write the detail
map that caused overflow is then repeated. When
all the data has been written the FINAL map is
written at the bottom of the last page and the
transaction tenninated.

The terminal operator then enters paging
commands to display the data, clearing the screen
before entering each paging command.

Source IJsting for the Low Balance Report Sample Program

******************************~*~~~*~~~~~~~*~~***~~**~~~*~~****** * DFH$CREP - CICS/VS SAMPLE FILEA LOW BALANCE INQUIRY *
**********~**

IDENTIFICATION DIVISION.
PROGRAM-ID. FILECREP.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE
77 LOWLIM

SECTION.
PIC X(8) VALUE '$0050.00'.
PIC 9(6) VALUE o.

* *
*
*

77 KEYNUM

77
77
77
77

TERMDATA
TERMLENG
PAGEN
OPINSTR

THE INPUT AREA FOR KEYED DATA AND THE
MAXIMUM LENGTH OF KEYED DATA FOLLOW.
IN PRACTICE THE OPERATOR WILL ONLY
PRESS ENTER.
PIC XCI).
PIC S9(4) COMPo
PIC 9(3) VALUE 1.
PIC X(52) VALUE 'PRESS THE ENTER KEY AND FOLLOW

'WITH PAGING COMMANDS.'.
COPY DFH$CGD.

01 FILEA. COpy DFH$CFIL.
PROCEDURE DIVISION.

1 EXECUTE CICS HANDLE CONDITION ERRORCERRORS) OVERFLOWCOFLOW)
ENDFILECENDFILE)LENGERRCENDTASK) END-EXEC

MOVE LOW-VALUE TO PAGENA
2 MOVE PAGEN TO PAGENO
3 EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$CGD') ACCUM

PAGING ERASE END-EXEC
4 EXEC CICS STARTBR DATASETC'FILEA') RIDFLDCKEYNUM) END-EXEC.

REPEAT.
5 EXEC CICS READNEXT INTOCFILEA) RIDFLDCKEYNUM)

DATASETC'FILEA') END-EXEC
MOVE AMOUNT TO AMOUNTO

6 IF AMOUNTO GREATER THAN LOWLIM GO TO REPEAT.
MOVE LOW-VALUE TO LINEO
MOVE AMOUNT TO AMOUNTO

Appendix E. Sample Programs (COBOL) 491

Source Listing for the Low Balance Report Sample Program (Continued)

7 MOVE NUMB TO NUMBERO
MOVE NAME TO NAMEO

8 EXEC CICS SEND MAPC'LINE') MAPSETC'DFH$CGD')
ACCUM PAGING END-EXEC

GO TO REPEAT.
ENDFILE.

9 EXEC CICS SEND MAPC'FINAL') MAPSETC'DFH$CGD')
MAPONLY ACCUM PAGING END-EXEC

10 EXEC CICS SEND PAGE END-EXEC
11 EXEC CICS SEND TEXT FROMCOPINSTR) LENGTHCS2) ERASE END-EXEC
12 EXEC CICS ENDBR DATASETC'FILEA') END-EXEC

~ A RECEIVE COMMAND IS ISSUED TO GIVE THE
~ TERMINAL OPERATOR A CHANCE TO READ THE
~ PROMPTING MESSAGE.
~ THE TRANSACTION WILL TERMINATE WHEN THE
~ OPERATOR PRESSES THE ENTER KEY.
~ PAGING COMMANDS CAN THEN BE ISSUED
~ NO HARM IS DONE IF THE OPERATOR TYPES IN
~ DATA BEFORE PRESSING THE ENTER KEY.

13 EXEC CICS RECEIVE INTOCTERMDATA) LENGTHCTERMLENG) END-EXEC.
ENDTASK.

14 EXEC CICS RETURN END-EXEC.
GOBACK.

ERRORS.
15 EXEC CICS HANDLE CONDITION ERROR END-EXEC

EXEC CICS PURGE MESSAGE END-EXEC
EXEC CICS ABEND ABCODEC'ERRS') END-EXEC.

OFLOW.
16 EXEC CICS SEND MAPC'FOOTING') MAPSETC'DFHtCGD')

MAPONLY ACCUM PAGING END-EXEC
ADD 1 TO PAGEN
MOVE PAGEN TO PAGENO

17 EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$CGD')
ACCUM PAGING ERASE END-EXEC.

18 EXEC CICS SEND MAPC'LINE') MAPSETC'DFH$CGD')
ACCUM PAGING END-EXEC

GO TO REPEAT.

Program Notes 5. This command reads the next customer record
from FILEA.

1. TI1e program exits are set up.
6. The search criterion for creating the report is

2. A page number of 1 is moved to the heading that the customer has a bank balance which is

map. $50 or less.

3. This BMS command sets up the heading in the 7. Fields are moved from the selected customer

page build operation. BMS builds the pages in record to the map area for the detail line.

te:mporary storage.
8. The customer detail map is set up for

4. The STARTBR command sets up the me subsequent paging.

browse to begin at the frrst record with a key
When the ENDFILE condition is raised, the equal to or greater than the RIDFLD, in this 9.

case the frrst record on rue. last map is sent to B MS.

492 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

10. The SEND PAGE command makes all the
pages of the report available for paging, at the
terminal, when the current transaction
terminates.

11. A message is sent to the terminal. This
message will be displayed before the pages of
the low balance report.

12. The file browse operation is terminated.

13. The RECEIVE MAP command reads from the
terminal and allows the terminal operator to
read the prompting message before the fIrst
page of the report is displayed.

14. The program ends, the frrst page of the report
will now be displayed.

15. If the ERROR condition occurs on a CICS
command this routine gains control. Handling
of the ERROR condition is suppressed, any
data sent to BMS is purged and the program
tenninates abnonnally with a transaction
dump.

16. If the OVERFLOW condition occurs, when a
detail line is sent to BMS, CICS branches here.
This routine completes the current page and
starts the next one. This BMS command sets
up the footing for the current page.

17. This B MS command sets up the heading for
the next page.

18. This BMS command resends the detail line
which caused the OVERFLOW condition.

Appendix E. Sample Programs (COBOL) 493

Ma]~s and Screen Layouts for
CO:OOL Sample Programs

The preceding sample programs assume that the
following map sets have been cataloged with names
the same as the map names.

OFHSCGA Map Definition

The names of the source maps are all of the form
DFH$CMx, whereas output generated by the
assembly of maps is in the form DFH$CGx. Use
different names for the map source and the
generated dsect only if you wish to store both in
the same source library.

TITLE 'FILEA - MAP FOR OPERATOR INSTRUCTIONS - COBOL'
DFH$CGA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET), ~

LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
MENU DFHMDI SIZE=(12,40)

DFHMDF POS=(1,lO),LENGTH=21,INITIAL='OPERATOR INSTRUCTIONS', ~
HILIGHT=UNDERLINE

DFHMDF POS=C3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER MEN~
U'

DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER INQ~
Y AND NUMBER'

DFHMDF POS=(S,1),LENGTH=38,INITIAL='FIlE BROWSE - ENTER BRW~
S AND NUMBER'

DFHMDF POS=(6,1),LENGTH=38,INITIAl='FIlE ADD - ENTER ADD~
S AND NUMBER'

DFHMDF POS=(7,1),LENGTH=38,INITIAL='FILE UPDATE - ENTER UPD~
T AND NUMBER'

MSO DFHMDF POS=(11,1),LENGTH=39,INITIAL='PRESS CLEAR TO EXIT'
DFHMDF POS=(12,1),lENGTH=18,INITIAl='ENTER TRANSACTION a ,
DFHMDF POS=(12,20),LENGTH=4,ATTRB=IC,COlOR=GREEN, ~

HILIGHT=REVERSE
DFHMDF POS=(12,2S),LENGTH=6,INITIAl='NUMBER'

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COlOR=GREEN, *
HILIGHT=REVERSE

DFHMDF POS=(12,39),LENGTH=1
DFHMSD TYPE=FINAL
END

494 CICS/DOSjVS Application Programmerts Reference Manual (Command Level)

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFHSCGA

01 MENUI.
02 FILLER PIC X(12).
02 MSGL COMP PIC 59(4).
02 MSGF PICTURE X.
02 FILLER REDEFINES MSGF.
< 03 MSGA PICTURE X.
02 MSGI PIC X(39).
02 KEYL COMP PIC 59(4).
02 KEYF PICTURE X.
02 FILLER REDEFINES KEYF.

03 KEYA PICTURE X.
02 KEYI PIC X(6).

01 MENUO REDEFINES MENUI.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 MSGO PIC X(39).
02 FILLER PICTURE X(3).
02 KEYO PIC X(6).

DFHSCGA Screen Layout

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER MENU
+FILE INQUIRY - ENTER INQY AND NUMBER
+FILE BROWSE - ENTER BRWS AND NUMBER
+FILE ADD - ENTER ADDS AND NUMBER
+FILE UPDATE - ENTER UPDT AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTIONr+XXXX+NUMBER+XXXXXX+

Appendix E. Sample Programs (COBOL) 495

DFHSCGB Map Definition

TITLE 'FIlEA - MAP FOR FILE INQUIRY/UPDATE - COBOL'
DFH$CGB DFHMSD TYPE=3SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),

lANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY
DETAIL DFHMDI SIZE=(12,40)
TITLE DFHMDF POS=(1,lS),LENGTH=12

DFHMDF POS=(3,1),lENGTH=8,INITIAL='NUMBER:',COLOR=BLUE
NUMB DFHMDF POS=(3,lO),lENGTH=6

DFHMDF POS=(3,11),lENGTH=1
DFHMDF POS=(4,1),lENGTH=8,INITIAl='NAME: ',COLOR=BLUE

NAME DFHMDF POS=(4,lO),LENGTH=20,ATTRB=(UNPROT,IC)
DFHMDF POS=(4,31),LENGTH=1
DFHMDF POS=(S,1),lENGTH=8,INITIAl='ADDRESSz',COLOR=BLUE

ADDR DFHMDF POS=(S,lO),lENGTH=20,ATTRB=UNPROT
DFHMDF POS=(S,31),LENGTH=1
DFHMDF POS=(6,1),lENGTH=8,INITIAL='PHONE: ',COLOR=BlUE

PHONE DFHMDF POS=(6,lO),LENGTH=8,ATTRB=UNPROT
DFHMDF POS=(6,19),lENGTH=1
DFHMDF POS=(7,1),LENGTH=8,INITIAL='DATEa ',COLOR=BlUE

DATE DFHMDF POS=(7,lO),LENGTH=8~ATTRB=UNPROT
DFHMDF POS=(7,19),LENGTH=1
DFHMDF POS=(8,1),lENGTH=8,INITIAL='AMOUNT: ',COLOR=BLUE

AMOUNT DFHMDF POS=(8,lO),LENGTH=8,ATTRB=NUM
DFHMDF POS=(8,19),LENGTH=1
DFHMDF POS=(9,1),LENGTH=8,INITIAL='COMMENT:',COLOR=BlUE

COMMENT DFHMDF POS=(9,lO),LENGTH=9,ATTRB=UNPROT
DFHMDF POS=(9,20),LENGTH=1

MSGI DFHMDF POS=(11,1),LENGTH=39
MSG3 DFHMDF POS=t12,1),LENGTH=39

DFHMSD TYPE=FINAl
END

The 8ymbolic storage defmition produced as a result of the above statements would be as follows:

496 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

DSECT generated by DFHSCGB

01 DETAILI. .
02 FILLER PIC X(12).
02 TITLEL COMP PIC 59(4).
02 TITLEF PICTURE X.
02 FILLER REDEFINES TITLEF.

03 TITLEA PICTURE X.
02 TITLEI PIC X(12).
02 NUMBL COMP PIC 59(4).
02 NUMBF PICTURE X.
02 FILLER REDEFINES NUMBF.

03 NUMBA PICTURE X.
02 NUMBI PIC X(6).
02 NAMEL COMP PIC 59(4).
02 NAMEF PICTURE X.
02 FILLER REDEFINES NAMEF.

03 NAMEA PICTURE X.
02 NAMEI PIC X(20).
02 ADDRL COMP PIC 59(4).
02 ADDRF PICTURE X.
02 FILLER REDEFINES ADDRF.

03 ADDRA PICTURE X.
02 ADDRI PIC X(20).
02 PHONEL COMP PIC 59(4).
02 PHONEF PICTURE X.
02 FILLER REDEFINES PHONEF.

03 PHONEA PICTURE X.
02 PHONEI PIC X(8).
02 DATEL COMP PIC 59(4).
02 DATEF PICTURE X.
02 FILLER REDEFINES DATEF.

03 DATEA PICTURE X.
02 DATEI PIC X(8).
02 AMOUNTL COMP PIC 59(4).
02 AMOUNTF PICTURE X.
02 FILLER REDEFINES AMOUNTF.

03 AMOUNTA PICTURE X.
02 AMOUNT I PIC X(8).
02 COMMENTL COMP PIC 59(4).
02 COMMENTF PICTURE X.
02 FILLER REDEFINES COMMENTF.

03 COMMENTA PICTURE X.
02 COMMENT I PIC X(9).
02 M5GIL COMP PIC 59(4).
02 M5GIF PICTURE X.
02 FILLER REDEFINES MSGIF.

03 MSGIA PICTURE X.
02 MSGII PIC X(39}.
02 MSG3L COMP PIC 59(4).
02 MSG3F PICTURE X.
02 FILLER REDEFINES M5G3F.

03 M5G3A PICTURE X.
02 MSG3I PIC X(39).

01 DETAILO REDEFINES DETAILI.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 TITLEO PIC X(12).
02 FILLER PICTURE X(3).
02 NUMBO PIC X(6).
02 FILLER PICTURE X(3).

Appendix E. Sample Programs (COBOL) 497

nSECT generated by nFHSCGB (Continued)

02 NAMEO PIC k(20).
02 FILLER PICTURE X(3).
02 ADDRO PIC X(20).
02 FILLER PICTURE X(3).
02 PHONEO PIC X(8).
02 FILLER PICTURE X(3).
02 DATED PIC XC!).
02 FILLER PICTURE X(3).
02 AMOUNTO PIC X(8).
02 FILLER PICTURE X(3).
02 COMMENTO PIC X(9).
02 FILLER PICTURE X(3).
02 MSGIO PIC X(39).
02 FILLER PICTURE X(3).
02 MSG30 PIC X(39).

DFHSCGB Screen Layout

r---------------------------------~

+XXXXXXXXXXXX

+NUMBERa +XXXXXX+
+NAMEI +XXXXXXXXXXXXXXXXXXXX+
+ADDRESSa+XXXXXXXXXXXXXXXXXXXX+
+PHONE. +XXXXXXXX+
+ DA lrE I + XXXXXXXX +
+AMOUNT. +XXXXXXXX+
+COMMENTI+XXXXXXXXX+

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX L---______________________________ ~

498 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DFHSCGC Map Definition

TITLE 'FILEA - MAP FOR FILE BROWSE - COBOL'
DFH$CGC DFHMSD TYPE=8SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),

LANG=COBOL,TIOAPFX=YES,EXTATT=MAPONLY
BROWSE DFHMDI SIZE=(12,40)
DIR DFHMDF POS=(I,I),LENGTH=I,ATTRB=IC

DFHMDF POS=(I,3),LENGTH=1
DFHMDF POS=(I,IS),LENGTH=II,INITIAL='FILE BROWSE',

COLOR=BLUE,HILIGHT=UNDERLINE
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER',COLOR=BLUE
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME',COLOR=BLUE
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT',COLOR=BLUE

NUMBERI DFHMDF POS=(4,1),LENGTH=6
NAMEI DFHMDF POS=(4,9),LENGTH=20
AMOUNTI DFHMDF POS=(4,30),LENGTH=8
NUMBER2 DFHMDF POS=(S,I),LENGTH=6
NAME2 DFHMDF POS=(S,9),LENGTH=20
AMOUNT2 DFHMDF POS=(S,30),LENGTH=8
NUMBER3 DFHMDF POS=(6,1),LENGTH=6
NAME3 DFHMDF POS=(6,9),LENGTH=20
AMOUNT3 DFHMDF POS=(6,30),LENGTH=8
NUMBER4 DFHMDF POS=(7,1),LENGTH=6
NAME4 DFHMDF POS=(7,9),LENGTH=20
AMOUNT4 DFHMDF POS=(7,30),LENGTH=8
MSGO DFHMDF POS=(IO,I),LENGTH=39,COLOR=BLUE, *

INITIAL='PRESS CLEAR TO END BROWSE OPERATION'
MSGI DFHMDF POS=(II,I),LENGTH=39,COLOR=BLUE, *

INITIAL='PRESS PFI OR TYPE F TO PAGE FORWARD'
MSG2 DFHMDF POS=(12,1),LENGTH=39,COLOR=BLUE, *

INITIAL='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHMSD TYPE=FINAL
END

The symbolic storage definition produced as a result of the above statements would be as follows:

Appendix E. Sample Programs (COBOL) 499

DSECT generated by DFHSCGC

01 BROWSEI.
02 FILLER PIC X(12).
02 DIRL COMP PIC S9(4).
02 DIRF PICTURE X.
02 FILLER REDEFINES DIRF.

03 DIRA PICTURE X.
02 DIRI PIC XCI).
02 NUMBERlL COMP PIC S9(4).
02 NUMBERlF PICTURE X.
02 FILLER REDEFINES NUMBERlF.

03 NUMBERlA PICTURE X.
02 NUMBERlI PIC X(6).
02 NAMElL COMP PIC S9(4).
02 NAMEIF PICTURE X.
02 FILLER REDEFINES NAMElF.

03 NAMElA PICTURE X.
02 NAMElI PIC X(20).
02 AMOUNTlL COMP PIC S9(4).
02 AMOUNTlF PICTURE X.
02 FILLER REDEFINES AMOUNTlF.

03 AMOUNTlA PICTURE X.
02 AMOUNTlI PIC XCS).
02 NUMBER2L COMP PIC S9(4).
02 NUMBER2F PICTURE X.
02 FILLER REDEFINES NUMBER2F.

03 NUMBER2A PICTURE X.
02 NUMBER2I PIC X(6).
02 NAME2L COMP PIC S9(4).
02 NAME2F PICTURE X.
02 FILLER REDEFINES NAME2F.

03 NAME2A PICTURE X.
02 NAME2I PIC X(20).
02 AMOUNT2L COMP PIC S9(4).
02 AMOUNT2F PICTURE X.
02 FILLER REDEFINES AMOUNT2F.

03 AMOUNT2A PICTURE X.
02 AMOUNT2I PIC XCS).
02 NUMBER3L COMP PIC S9(4).
02 NUMBER3F PICTURE X.
02 FILLER REDEFINES NUMBER3F.

03 NUMBER3A PICTURE X.
02 NUMBER3I PIC X(6).
02 NAME3L COMP PIC 59(4).
02 NAME3F PICTURE X.
02 FILLER REDEFINES NAME3F.

03 NAME3A PICTURE X.
02 NAME3I PIC X(20).
02 AMOUNT3L COMP PIC 59(4).
02 AMOUNT3F PICTURE X.
02 FILLER REDEFINES AMOUNT3F.

fr3 AMOUNT3A PICTURE X.
02 AMOUNT3I PIC xes).
02 NUMBER4L COMP PIC 59(4).
02 NUMBER4F PICTURE X.
02 FILLER REDEFINES NUMBER4F.

03 NUMBER4A PICTURE X.
02 NUMBER4I PIC X(6).
02 NAME4L COMP PIC 59(4).
02 NAME4F PICTURE X.

500 CICS/DOS/VS Application Programmer's Reference Manual (Command Level)

DSECT generated by DFHSCGC (Continued)

02 FILLER REDEFINES NAME4F.
03 NAME4A PICTURE X.

02 NAME4I PIC X(20).
02 AMOUNT4L COMP PIC S9(4).
02 AMOUNT4F PICTURE X.
02 FILLER REDEFINES AMOUNT4F.

03 AMOUNT4A PICTURE X.
02 AMOUNT4I PIC X(8).
02 MSGOL COMP PIC S9(4).
02 MSGOF PICTURE X.

01 BROWSEI.
02 FILLER REDEFINES MSGOF.

03 MSGOA PICTURE X.
02 MSGOI PIC X(39).
02 MSGIL COMP PIC S9(4).
02 MSGIF PICTURE X.
02 FILLER REDEFINES MSGIF.

03 MSGIA PICTURE X.
02 MSGII PIC X(39).
02 MSG2L COMP PIC S9(4).
02 MSG2F PICTURE X.
02 FILLER REDEFINES MSG2F.

03 MSG2A PICTURE X.
02 MSG2I PIC X(39).

01 BROWSEO REDEFINES BROWSEI.
02 FILLER PIC XCI2).
02 FILLER PICTURE X(3).
02 DIRO PIC XCI).
02 FILLER PICTURE X(3).
02 NUMBERI0 PIC X(6).
02 FILLER PICTURE X(3).
02 NAMEI0 PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNTI0 PIC X(8).
02 FILLER PICTURE X(3).
02 NUMBER20 PIC X(6).
02 FILLER PICTURE X(3).
02 NAME20 PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNT20 PIC X(8).
02 FILLER PICTURE X(3).
02 NUMBER30 PIC X(6).
C2 FILLER PICTURE X(3).
02 NAME30 PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNT30 PIC X(8).
02 FILLER PICTURE X(3).
02 NUMBER40 PIC X(6).
02 FILLER PICTURE X(3).
02 NAME40 PIC X(20).
02 FILLER PICTURE X(3).
02 AMOUNT40 PIC X(8).
02 FILLER PICTURE X(3).
02 MSGOO PIC X(39).
02 FILLER PICTURE X(3).
02 MSGI0 PIC X(39).
02 FILLER PICTURE X(3).
02 MSG20 PIC X(39).

Appendix E. Sample Programs (COBOL) 501

DFH$CGC Screen Layout

r- +FILE BROWSE I
+NUMBER +NAME +AMOUNT I
+xxxxxx +xxxxxxxxxxxxxxxxxxxx+XXXXXX
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX I
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX I
+XXXXXX +XXXXXXXXXXXXXXXXXXXX+XXXXXX I

I

I

+PRESS CLEAR TO END BROWSE OPERATION
+PRESS PFI OR TYPE F TO PAGE FORWARD I
~SS PF2 OR TYPE B TO PAGE BACKWARD ~

502 CIC'-SjOOSjVS Application Programmer's Reference Manual (Command Level)

DFHSCGD Map Definition

TITLE 'FILEA - MAPSET FOR lOW BALANCE REPORT - COBOL'
DFH$CGD DFHMSD TYPE=&SYSPARM,MODE=OUT,CTRL=(FREEKB,FRSET),

LINE
NUMBER
NAME
AMOUNT
HEADING

PAGEN

LANG=COBOL,STORAGE=AUTO,EXTATT=MAPONLY,COLOR=BLUE
DFHMDI SIZE=(I,40),COLOR=GREEN
DFHMDF POS=(I,I),LENGTH=6
DFHMDF POS=(I,9),LENGTH=20
DFHMDF POS=(I,30),LENGTH=8
DFHMDI SIZE=(3,40),HEADER=YES
DFHMDF POS=(I,S),LENGTH=18,INITIAL='LOW BALANCE REPORT',

HILIGHT=UNDERLINE .
DFHMDF POS=(1,30),LENGTH=4,INITIAL='PAGE'
DFHMDF POS=(1,3S),LENGTH=3
DFHMDF POS=(3,1),LENGTH=6,INITIAL='NUMBER'
DFHMDF POS=(3,17),LENGTH=4,INITIAL='NAME'
DFHMDF POS=C3,32),LENGTH=6,INITIAL='AMOUNT'

FOOTING DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST

FINAL

DFHMDF POS=C2,1),LENGTH=38,
INITIAL='PRESS CLEAR AND TYPE P/N TO SEE PAGE N'

DFHMDI SIZE=C2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=C2,10),LENGTH=14,INITIAL='END OF REPORT.'
DFHMSD TYPE=FINAL
END

The symbolic storage definition produced as a result of the above statements would be as follows:

DSECT generated by DFHSCGD

01 LINEO.
02 FILLER PIC XCI2).
02 FILLER PICTURE X(2).
02 NUMBERA PICTURE X.
02 NUMBERO PIC X(6).
02 FILLER PICTURE X(2).
02 NAMEA PICTURE X.
02 NAMEO PIC X(20).
02 FILLER PICTURE X(2).
02 AMOUNTA PICTURE X.
02 AMOUNTO PIC X(8).

01 HEADINGO.
02 FILLER PIC X(12).
02 FILLER PICTURE X(2).
02 PAGENA PICTURE X.
02 PAGENO PIC X(3).

01 FOOTINGO.
02 FILLER PIC X(12).

01 FINALO.
02 FILLER PIC XCI2).

Appendix E. Sample Programs (COBOL) 503

DFHSCGD Screen Layout

r----+LOW BALANCE REPORT +PAGE+XXX

+NUMBER +NAME +AMOUNT
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX +XXXXXXXX

+PRESS CLEAR AND TYPE P/N TO SEE PAGE N L---_____________________ _ ______ ~

504 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DFHSCGK Map Defillitlon

TITLE 'FIl~' - MAP FOR ORDER ENTRY - COBOL'
DFHtCGK DFHMSD TYPE:=8SYSPARM,MODE=INOUT ,CTRl=(FREEKB, FRSET),

TIOAPIFX=YES, lANG=COBOl, EXTATT=MAPONl Y
ORDER DFHMDI SIZE:=(12,40)

DFHMDF POS=:C 01,10), lENGTH=II, ATTRB= (BRT , ASKIP),)E

INITIj'l =' ORDER ENTRY', COL OR=Bl UE, HI l IGHT=UNDERl INE
MSGI DFHMDF POS={03,04),lENGTH=26,ATTRB=(DRK,ASKIP),)E

INITI,'l =' NUMBER NOT FOUND - REENTER',)E

COlOR=RED,HIlIGHT=BlINK
MSG2 DFHMDF POS=C04,04),lENGTH=22,ATTRB=(DRK,ASKIP),)E

INITI,'l='DATA ERROR - REENTER',)E

COlOR=RED,HIlIGHT=BlINK
DFHMDF POS=COS,04),lENGTH=09,ATTRB=PROT,)E

INITI,~l=' NUMBER I ' .
CUSTNO DFHMDF POS=COS,14),lENGTH=06,ATTRB=(IC,NUM)

DFHMDF POS=C05,21),lENGTH=OI
DFHMDF POS=C06,04),lENGTH=09,ATTRB=PROT,COlOR=BlUE,

INITI,"l =' PART NO I'
PARTNO DFHMDF POS=C06,14),lENGTH=06,ATTRB=NUM

DFHMDF POS=C06,21),lENGTH=01
DFHMDF POS=(07,04),lENGTH=09,ATTRB=PROT,COlOR=BlUE,

INITI"l='QUANTITYI'
QUANT DFHMDF POS=(07,14),lENGTH=06,ATTRB=NUM

DFHMDF POS=(07,21),lENGTH=01
DFHMDF POS=(09,01),lENGTH=38,ATTRB=ASKIP,COlOR=BlUE,

INITIAl='PRESS ENTER TO CONTINUE, CLEAR TO QUIT'
DFHMSD TYPE=FINAl
END

Appendix E. Sample Programs (COBOL) 505

The symbolic storage defmition produced as a result of the above statements would be as follows:

DSECT generated by DFHSCGK

01 ORDERI.
02 FILLER PIC X(12).
02 MSGIL COMP PIC S9(4).
02 MSGIF PICTURE X.
02 FILLER REDEFINES MSGIF.

03 MSGIA PICTURE X.
02 MSGII PIC X(26).
02 MSG2L COMP PIC S9(4).
02 MSG2F PICTURE X.
02 FILLER REDEFINES MSG2F.

03 MSG2A PICTURE X.
02 MSG2I PIC X(22).
02 CUSTNOL COMP PIC S9(4).
02 CUSTNOF PICTURE X.
02 FILLER REDEFINES CUSTNOF.

03 CUSTNOA PICTURE X.
02 CUSTNOI PIC X(6).
02 PARTNOL COMP PIC S9(4).
02 PARTNOF PICTURE X.
02 FILLER REDEFINES PARTNOF.

03 PARTNOA PICTURE X.
02 PARTNOI PIC X(6).
02 QUANTL COMP PIC S9(4).
02 QUANTF PICTURE X.
02 FILLER REDEFINES QUANTF.

03 QUANTA PICTURE X.
02 QUANTI PIC X(6).

01 ORDERO REDEFINES ORDERI.
02 FILLER PIC XCI2).
02 FILLER PICTURE X(3).
02 MSGIO PIC X(26).
02 FILLER PICTURE X(3).
02 MSG20 PIC X(22).
02 FILLER PICTURE X(3).
02 CUSTNOO PIC X(6).
02 FILLER PICTURE X(3).
02 PARTNOO PIC X(6).
02 FILLER PICTURE X(3).
02 QUANTO PIC X(6).

DFHSCGK SCREEN LAYOUT

r------------------------- 1 I +ORDER ENTRY I
I +NUMBER NOT FOUND - REENTER I
I +DATA ERROR -REENTER I

I
I +NUMBER :+XXXXXX+ I

+PART NO :+XXXXXX+ I +QUANTITY:+XXXXXX+ I
I+PRESS ENTER TO CONTINUE, CLEAR TO QUITI L---_____________________ _ ______ ~

506 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DFHSCGL Map Defil1lition

TITl E 'FI l Ej\ - MAP FOR ORDER ENTRY QUEUE PRINT - COBOL'
DFH$CGl DFHMSD TYPE::&SYSPARM, MODE=OUT ,

TIOAPI=X=YES, lANG=COBOl
PRINT DFHMDI SIZE::(OS,80)
TITLE DFHMDF POS=I(0I,OI),lENGTH=43, JE

INITIj'l =' NUMBER NAME ADDRESS'
NUMB DFHMDF POS=I(02,OI),lENGTH=06
NAM DFHMDF POS=I(02,12), lENGTH=20
ADDR DFHMDF POS= I(02, 37) , l ENGTH=20

DFHMDF POS=I(03,01), lENGTH=09,
INITIj\l =' PART NO I'

PART DFHMDF POS=I(03,11),lENGTH=06
DFHMDF POS=I(04,01), lENGTH=09,

INITI.\l='QUANTITYI'
QUANT DFHMDF POS='C04,11),lENGTH=06

DFHMDF POS=IC 05,01), lENGTH=I,
INITI.'l=' •

DFHMSD TYPE::FINAl
END

The symbolic storage defmitioHl produced as a result of the above statements would be as follows:

DSECT generated by]IJFHSCGL

01 PRINTO.
02 FIllER PIC X(12).
02 FIllEI~ PICTURE X(2).
02 TITl E,' PICTURE X.
02 TITl EIJ PIC X(43) •
02 FIllEI~ PICTURE X(2).
02 NUMBA PICTURE X.
02 NUMBO PIC X(6).
02 FI l l EI~ PICTURE X(2) •
02 NAMA PICTURE X.
02 NAMO PIC X(20).
02 FIllER PICTURE X(2).
02 ADDRA PICTURE X.
02 ADDRO PIC X(20).
02 FIllER PICTURE X(2).
02 PARTA PICTURE X.
02 PARTO PIC X(6).
02 FIllER PICTURE X(2).
02 QUANTA PICTURE X.
02 QUANTO PIC X(6).

DFHSCGL Print Layout

+NUMBER NAME
+XXXXXX +XXXXXXXXXXXXXXXXXXXX
+PART NO I+XXXXXX
+QUANTITY:+XXXXXX
+X

ADDRESS
+XXXXXXXXXXXXXXXXXXXX

Appendix E. Sample Programs (COBOL) 507

Record Descriptions for COBOL
Sample Programs

FILEA Record Description

The FllLEA record description is used by the
sample: programs. It is defmed in copy code
DFH$CFIL and has the following format:

02 F'ILEREC.
03 STAT
03 NUMB
03 NAME
03 ADDRX
03 PHONE
03 DATEX
03 AMOUNT
03 COMMENT

PIC X.
PIC X(6).
PIC X(20).
PIC X(20).
PIC X(8).
PIC X(8).
PIC X(8).
PIC X(9).

LOGA Record Description

The LOGA record description is used by the
sample programs when an audit trail is written to a
transient data file. It is defmed in copy code
DFH$CLOG and has the following format:

02 LOGHDR.
03 LDAY PIC S9(7) COMP-3.
03 LTIME PIC S9(7) COMP-3.
03 LTERML PIC X(4).

02 LOGREC.
03 LSTAT PIC X.
03 LNUMB PIC X(6).
03 LNAME PIC X(20).
03 LADDR PIC X(20).
03 LPHONE PIC X(8).
03 LDATE PIC X(8).
03 LAMOUNT PIC X(8).
03 LCOMMENT PIC X(9).

L860 Record Description

The L860 record description is used by the Order
Entry Queue Print sample program when it writes
to the transient data queue 'L860'. It is defmed in
copy code DPH$CL86 and has the following
fa nn at:

02 ITEM.
03 CUSTNO
03 PART NO
03 QUANTITY
03 TERMID

PIC X(6).
PIC X(6).
PIC X(6).
PIC X(4).

508 CICSjDOSjVS Application Programmc~r's Reference Manual (Command Level)

Appendix F. Sample Programs (PL/I)

The PL/I sample programs described in this
appendix are included, in source form, on the CICS
distribution tape. The CICS/DOS/VS Installation
and Operations Guide describes how these sample
programs, and associated resources, can be defmed
to CICS and how the programs can be executed
online.

This appendix describes six CICS sample
application programs, written in PL/I, as follows:

• Operator Instruction
• Inquiry/Update
• Browse
• Order Entry
• Order Entry Queue Print
• Low Balance Report.

These programs illustrate basic applications (such
as inquire, browse, add, and update) that can serve
as a framework for your installation's first
programs. The programs operate using a VSAM
fue, known as FILEA, consisting of records
containing details of individual customer accounts.
Each program has a short description of what the
program does, a listing of its source code, and a
series of program notes. Numbered coding lines in
the source listing correspond to the numbered
program notes.

All the sample programs are for use with the IBM
3270 Information Display System.

The sample BMS maps include examples of how
the COLOR, EXTATT, and HILIGIIT attributes
are specified in the map defmition macros.
However, due to production limitations, the
associated screen layouts do not show you all the
effects of these attributes.

You can add attributes without changing the
application program by specifying
EXTATT= MAPONLY in the DFHMSD map set
definition macro. If you include an attribute that
specifies a facility not available at the terminal, it
will be ignored.

The statements listed are those of the sample
programs supplied with the initial release of CICS.
Sample programs shipped with subsequent program
temporary fixes (PTFs) may differ from these
listings.

The BMS maps (which are unaligned) and the rue
record descriptions used by these sample programs
are included at the end of the appendix.

Once CICS is running, type PMNU onto a clear
screen and press the enter key. The PMNU
transaction identifier invokes the "Operator
Instruction" sample program, which is a short
program that produces a menu containing the
transaction identifiers for two of the other sample
programs, namely "Inquiry/Update" and "Browse".

If you clear the screen, remember to reenter the
transaction identifier, as no data is accepted from
an unformatted screen.

You can run the sample programs using EDF but,
because the CEDF transaction is defmed with
RSLC = YES, you must first sign on to CICS as an
operator with an appropriate resource security level
key.

The menu, on a screen that is 40 characters wide
by 12 lines deep, is as shown in the box below.
The plus (+) sign in this and subsequent displays
shows the position of the attribute byte. In an
actual display, this position contains a blank.

Appendix F. Sample Programs (PLJI) 509

+OPERATOR INSTRUCTIONS

+OPERATOR INSTR - ENTER PMNU
+FILE INQUIRY - ENTER PINQ AND NUMBER
+FILE BROWSE - ENTER PBRW AND NUMBER
+FILE ADD - ENTER PADD AND NUMBER
+FILE UPDATE - ENTER PUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION,+

To invoke any of the transactions PMNU, PINQ,
PBRW, PADD, or PUPD, do as instructed,
entering the four-character transaction identifier
and, when necessary, the six-digit account number
in the fields highlighted in the bottom line of the
display. These specific account numbers include
the sequence 100000, 111111, 200000, 222222 ... ,
999999.

These transaction identifiers give you access to the
inquiry, add, and update functions of the

Operator Instruction Program (PL/I)

Description

+NUMBER+

"Inquiry/Update" program, and access to the
"Browse" program.

You can invoke the three remaining sample
programs "Order Entry", "Order Entry Queue
Print", and "Low Balance Report" separately by
entering their transaction identifiers (PORD,
PORQ, and PREP respectively) onto a clear
screen.

The operator instruction sample program (1) erases the screen and displays map DFH$PGA in response to
the EXEC CICS SEND MAP command, then (2) ends the program using the RETURN command.

The map displays a menu that lists the transaction identifiers associated with two of the sample programs,
"Inquiry/Update", and "Browse", and gives instructions for the operator.

Sourc.~ Listing

/~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~*****~*~****************~**************/
/* DFH$PMNU CICS/VS SAMPLE FILEA OPERATOR INSTRUCTION MENU */

/**~~*~~~~************~*************************************~********/
MENU, PROC OPTIONSCMAIN);

1· EXEC CICS SEND MAPC'DFH$PGA') MAPONLY ERASE;
2 EXEC CICS RETURN;

END;

510 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Inquiry/Update Sample Program
(PL/I)

Description

The inquiry/update sample program lets you make
an inquiry about, add to, or update records in a
file. You can select one of these by entering the
appropriate transaction identifier (PINQ, PADD,
or PUPD) in the menu that is displayed when you
start operations by entering PMNU.

To make an inquiry, enter PINQ and an account
number into the menu. The program maps in the
account number and reads the record from FILEA.
The required fields from the me area, and a title
"FILE INQUIRY"
are moved to the map dsect for DFH$PGB.

DFH$PGB, containing the record fields, is
displayed at your screen.

To add a record, enter PADD and the account
number into the menu. The account number and a
title "FILE ADD" are moved to the map area of
DFH$PGB. DFH$PGB, containing empty data
field.s, is displayed at your screen. The data fields
entered are mapped into DFH$PGB and moved to

the file record area which is then written to FILEA.
The addition is recorded on an update log
(LOGA), which is a transient data queue. The
operator instruction screen is displayed with the
message "RECORD ADDED".

To update a record, enter PUPD and the account
number into the menu, as before. The program
reads and displays the requested FILEA record.
Modified data fields are mapped in to DFH$PGB
and edited. The sample program only suggests the
type of editing you might wish to do. You should
insert editing steps needed to ensure valid changes
to the file. Those fields which have been changed
are moved to the data record and the record is
rewritten to FILEA. The update is recorded on
LOe'A. The message "RECORD UPDATED" is
moved to the dsect for DFH$PGA, the operator
instruction menu map, which is then displayed at
your screen.

This program is an example of
pseudoconversational programming, in which
control is returned to CICS together with a
transaction identifier whenever a response is
requested from the operator. Associated with each
return of control to CICS is a storage area
containing details associated with the previous
invocation of this transaction.

Source Listing for the Inquiry IUpdate Sample Program

/**/
/* DFH$PALL - CICS/VS SAMPLE FILEA INQUIRY/UPDATE - PL/I . */

/**/
UPDATE: PROCCCOMPOINT) OPTIONSCMAIN);

DCL MESSAGES CHAR(39);
DCL COMLEN FIXED BINClS);
DCL KEYNUM PICTURE '(6)9';
XINCLUDE DFH$PGA;
XINCLUDE DFH$PGB;
XINCLUDE DFH$PFIl;
XINCLUDE DFH$PLOG;
XINCLUDE DFHBMSCA;
DCL CHSTR CHAR(256) BASED;
DCL COMPOINT PTR;
DCL COMMAREA LIKE FILEA BASEDCCOMPOINT);

1 IF EIBCALEN~=O THEN GO TO READ_INPUT;
2 EXEC CICS HANDLE CONDITION ERRORCERRORS) MAPFAILCMFAIL);

ALLOCATE COMMAREA;
3 EXEC CICS RECEIVE MAPC'DFH$PGA');
4 IF KEYL=O THEN GO TO BADLENG;

IF VERIFYCKEYI,'0123456789')~=O THEN GOTO BADCHARS;
/* KEYI CONTAINS 6 NUMERIC DIGITS */

KEYNUM=KEYI;

Appcndix F. Samplc Programs (PL/I) 511

Source Listing for the Inquiry IUpdate Sample Program (Continued)

SUBSTRCADDRCDFH$PGBO)->CHSTR,I,STGCDFH$PGBO»
=LOW(STG(DFH$PGBO»;

SELECTCEIBTRNID);
WHENC'PADD') DO;

5 TITLEO='FILE ADD';
MSG30='ENTER DATA AND PRESS ENTER KEY';
NUMBO,COMMAREA.NUMB=KEYI;
AMOUNTA=DFHBMUNN;
AMOUNTO='$OOOO.OO';
COMLEN =7;

6 CALL MAP SEND;
GO TO CICS CONTROL;

7
8

9

10

END; -
WHENC'PINQ',

'PUPD') DO;
EXEC CICS HANDLE CONDITION NOTFNDCNOTFOUND);
EXEC CICS READ DATASETC'FILEA') INTO(FILEA)

RIDFLDCKEYNUM);
IF EIBTRNID='PINQ' THEN

DO;
TITLEO='FILE INQUIRY';
MSG30 ='PRESS ENTER TO CONTINUE';
CALL MAP BUILD;

/* PROTECT ALL FIELDS ON MAP */
NAMEA,ADDRA,PHONEA,DATEA,AMOUNTA,

COMMENTA = DFHBMPRO;
11 CALL MAP SEND;

EXEC CICS RETURN TRANSIDC'PMNU');
END;

ELSE DO;
12 TITLEO='FILE UPDATE';

MSG30 ='CHANGE FIELDS AND PRESS ENTER';
13 COMMAREA.FILEREC=FILEA.FILEREC;
14 CALL MAP BUILD;

CALL MAP-SEND;
15 COMLEN=80;

GO TO CICS CONTROL;
END; -

END;
16 OTHERWISE GO TO ERRORS;

END;
MAP BUILD: PROC;

17 - NUMBO = FILEA.NUMB;

ENII;

NAMEO = FILEA.NAME;
ADDRO = FILEA.ADDRX;
PHONEO = FILEA.PHONE;
DATEO = FILEA.DATEX;
AMOUNTO = FILEA.AMOUNT;
COMMENTO = FILEA.COMMENT;
RETURN;

MAP SEND: PROC;
18 - EXEC eICS SEND MAP('DFH$PGB') ERASE;

RETURN;
ENEI;
REAID INPUT:

19 -
20

21

EXEC CICS HANDLE CONDITION MAPFAILCNOTMODF) DUPRECCDUPREC)
ERROR1ERRORS) NOTFNDCNOTFOUND);

EXEC CICS RECEIVE MAP('DFH$PGB');

512 CICSjDOSjVS Application Programmerts Reference Manual (Command Level)

Source Listing for the Inquiry/Update Sample Program (Continued)

SELECTCEIBTRNID);
WHENC'PUPD')

DO;
22 EXEC CICS READ UPDATE DATASETC'FILEA') INTOCFILEA)

RIDFLDCCOMMAREA.NUMB);
IF STRINGCFILEA.FILEREC)-=STRINGCCOMMAREA.FILEREC) THEN

DO;
23 MSGIO='RECORD UPDATED BY OTHER USER, TRY AGAIN';

MSGIA=DFHBMASB;
MSG3A=DFHPROTN;
CALL MAP BUILD;
EXEC CICS SEND MAPC'DFH$PGB') DATAONLY;
COMMAREA.FILEREC=FILEA.FILEREC;
COMLEN=80;
GO TO CICS CONTROL;

END; -
ELSE

DO;
24 FILEA.STAT='U';

MESSAGES='RECORD UPDATED';
END;

END;
WHENC'PADD') DO;

25 FILEA.STAT='A';
MESSAGES='RECORD ADDED';

END;
26 OTHERWISE GO TO ERRORS;

END;
27 IF NAMEL = 0 &

ADDRl = 0 &
PHONEL = 0 &
DATEL = 0 &
AMOUNTl = 0 &
COMMENTL = 0 THEN
GO TO NOTMODF;

28 SELECTCEIBTRNID);
WHENC'PADD') IF

VERIFYCNAMEI,'ABCDEFGHIJKlMNOPQRSTUVWXYZ .-"')-=0 THEN
GO TO DATA ERROR;

WHENC 'PUPD·') -
DO;

IF NAMEl-=O THEN
IF VERIFYCNAMEI,'ABCDEFGHIJKlMNOPQRSTUVWXYZ .-"')-=0

THEN
GO TO DATA ERROR;

IF AMOUNTl-=O-THEN
IF VERIFYCAMOUNTI,'0123456789.$¢')-=O THEN

GO TO DATA ERROR;

OTHERWISE;
END;

END;

29 IF EIBTRNID='PADD' THEN
FIlEA.NUMB=COMMAREA.NUMB;

IF NAMEl -= 0 THEN FIlEA.NAME=NAMEIi
IF ADDRl -= 0 THEN FIlEA.ADDRX=ADDRIi
IF PHONEl -= 0 THEN FIlEA.PHONE=PHONEIi
IF DATEl -= 0 THEN FIlEA.DATEX=DATEIi
IF AMOUNTl -= 0 THEN FILEA.AMOUNT=AMOUNTI;
ELSE IF EIBTRNID = 'PADD' THEN FIlEA.AMOUNT='$OOOO.OO';
IF COMMENTl-=O THEN FIlEA.COMMENT=COMMENTI;

Appendix F. Sample Programs (PLfI) 513

Source Listing for the Inquiry/Update Sample Program (Continued)

30 LOGREC=FILEA.FILEREC;
LDAY =EIBDATE;
LTIME=EIBTIME;
LTERML=EIBTRMID;

31 EXEC CICS WRITEQ TD QUEUEC'LOGA') FROM(LOGA) LENGTH(92);
IF EIBTRNID='PUPD' THEN

32 EXEC CICS REWRITE DATASETC'FILEA') FROMCFILEA);
ELSE

33 EXEC CICS WRITE DATASETC'FILEA') FROMCFILEA)

GO TO PMNU;
DA,T A ERROR:

34 - MSG3A=DFHBMASB;

RIDFLDCCOMMAREA.NUMB);

MSG30='DATA ERROR - CORRECT AND PRESS ENTER';
/* PRESERVE CONTENTS OF SCREEN BY SETTING MODIFIED DATA TAG*/
/* AMOUNT IS MADE NUMERIC AND MODIFIED*/

AMOUNTA=DFHUNNUM;
3S NAMEA, ADDRA, PHONEA, DATEA, COMMENTA=DFHBMFSE;
36 EXEC CICS SEND MAPC'DFH$PGB') DATAONLY;
37 IF EIBTRNID='PADD' THEN COMLEN=7;

ELSE COMLEN=80;
CICS CONTROL:

38 - EXEC CICS RETURN TRANSIDCEIBTRNID) COMMAREACCOMMAREA)
LENGTHCCOMLEN);

NOTMODFt
39 MESSAGES='RECORD NOT MODIFIED';

GO TO PMNU;
DUPREC:

BADLENG:

MESSAGES='DUPLICATE RECORD';
GO TO PMNU;

MESSAGES='PLEASE ENTER AN ACCOUNT NUMBER';
GOTO PMNU;

BADCHARS:
MESSAGES='ACCOUNT NUMBER MUST BE NUMERIC';
GO-TO PMNU;

NOTFOUND:

MF,AIL:

ERIRORS:
40

PMINU:
41

42
43

ENID;

MESSAGES='INVALID NUMBER - PLEASE REENTER';
GO TO PMNU;

MESSAGES='PRESS CLEAR TO EXIT';
GOTO PMNU;

EXEC CICS DUMP DUMPCODEC'ERRS');
MESSAGES='TRANSACTION TERMINATED';

SUBSTRCADDRCDFH$PGAO)->CHSTR,I,STGCDFH$PGAO»
=LOWCSTGCDFH$PGAO»;

MSGA=DFHBMASB;
MSGO=MESSAGES;
EXEC CICS SEND MAPC'DFH$PGA') ERASE;
EXEC CICS RETURN;

514 CICS/DOS/VS Application Programmer's Reference Manual (Command Level)

Program Notes

1. The length of the CO MMAREA is tested. If
not zero then this is the validation stage of an
add or update.

2. The program exits are set up.

3. The menu map DFH$PGA is received. The
account number, if entered, is mapped into
KEYI in the dsect for DFH$PGA.

4. The account number is validated and saved.

5. If the program is invoked by PADD, a title and
command message are moved to the map area.
The record key is moved to the map area and
saved in COMMAREA. The amount field has
the attribute byte set to numeric.

6. The add screen is displayed and the program
terminates to await a reply from the terminal.

7. For an inquiry or update the exit for the
record-not-found condition is set up.

8. The file control READ command reads the file
record into the ftIe area.

9. If the program is invoked by PINQ, a title and
command message are moved to the map area.
The ftIe record fields are moved to the map
area by a subroutine.

10. All field attributes are set to protected.

11. The inquiry screen is displayed and the
program terminates. The TRANSID of
PMNU causes the operator instruction
program to be invoked when the next response
is received from the terminal.

12. If the program is invoked by PUPD, a title and
command message are moved to the map area.

13. The ftIe record is saved in COMMAREA.

14. Data is moved to the map dsect and displayed.

15. The length of the COMMAREA to be
returned is set up and control is returned to
CICS.

16. An unknown transaction identifier is treated as
an error.

17. This subroutine moves fields from the FILEA
record to the map dsect for DFH$PGB ready
for display.

18. MAP_SEND sends the map DFH$PGB to the
screen specifying that the screen is to be erased
before the map is displayed.

19. Control is passed here when the test of
EIBCALEN, at the beginning of the program,
finds that a COMMAREA has been received.
This part of the program maps in data for an
add or update request, performs validation and
updates FILEA.

20. The error exits are set up.

21. The RECEIVE MAP command maps in the
variables from the screen.

22. If this is an update request a ftle control READ
UPDATE command reads the existing record
using the number stored in COMMAREA by
the last invocation of this program.

23. If the current ftle record is not the same as the
one saved in COMMAREA then another user
has updated the record. A warning message is
displayed, with fields from the record read from
FILEA, for reentry of the updates.

24. The update flag is set in the record area and the
message "RECORD UPDATED" is moved to
the message area ready for display on the
operator instruction screen.

25. If this is an add request the add flag is set in
the new record and the message "RECORD
ADDED" is moved to the message area ready
for display on the operator instruction screen.

26. An unknown transaction identifier is treated as
an error.

27. If an length fields in the input map are zero
then no data has been entered on the screen.

Appendix F. Sample Programs (PL/I) 515

28. Any required editing steps should be inserted
here. A suitable fonn of editing should be used
to ensure valid records are placed on tlhe file.

29. This code creates or updates the account
record. Any field which has been entered is
moved to the account record.

30. The record fields, the date, the time, and the
tennid are moved to the update log reeord area.

31. The record is written to the update log which is
a transient data queue.

32. For an update request the updated account
record is rewritten to FILEA.

33. For an add request the new account record is
written to the fIle.

34. When a data error is detected the screen is
redisplayed for errors to be corrected. An error
message is moved to the map area and

. highlighted.

35. The modilled data tag is set on for all the data
fields so that all data is received at the next
RECEIVE MAP.

36. The contents of map DFH$PGB are sent to
the screen. The constant information on the
screen is not refreshed as a result of the use of
the DATAONLY option.

37. The size of the COMMAREA is set to 7 for an
add request or to 80 for an update request.

38. After the PILE ADD or FILE UPDATE
screen has been displayed the program
branches here to return to CICS awaiting a
response from the terminal. The RETURN
gives CICS the transaction identiller for the
next transaction at this terminal together with a
COMMAREA containing all information that
the program needs to continue the update.
The COMMAREA is passed to the next
invocation of this program, see note 1 above.

39. These short error routines set up an error
message in MESSAGES and branch to PMNU
to display the message in the operator
instruction menu DFH$PGA.

40. If a CICS command fails with the ERROR
condition or if an unknown transaction
identifier is used to invoke this program, a
dump is taken and the message
"TRANSACTION TERMINATED" is
moved to MESSAGES for display on the
operator instruction screen .

41. This code gets control when an add or update
is complete. An information or error message
is in MESSAGES. The operator instruction
map area is cleared. The message is moved to
the map area and highlighted.

42. The operator instruction map DFH$PGA is
displayed on an erased screen.

43. The program terminates by returning to CICS.
No transaction identiller or COMMAREA is
specified.

516 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Browse Sample Program (PL/I)

Description

The browse program sequentially retrieves a page
or set of records for display, starting at a point in a
rue specified by the terminal operator.

To start a browse, type PBRW and an account
number into the menu and press the enter key. If

Source Listing for the Browse Sample Program

you omit the account number browsing begins at
the start of the me. Depressing the PF I key or
typing F causes retrieval of the next page or paging
forward. If you wish to reexamine the previous
records displayed, press PF2 or type B. This lets
you page backward.

The browse program uses READNEXT to forward
page to the end of the file and READPREV to
backward page to the start of the me.

/**/
/* DFH$PBRW - CICS/VS SAMPLE FIlEA BROWSE - PL/I */
/**/
BROWSE. PROC OPTIONSCMAIN);

XINClUDE DFHBMSCA;
XINClUDE DFH$PFIl;
XINClUDE DFH$PGA;
XINClUDE DFH$PGC;

DCl
CADDR,
HIGH,
lOW,
STG,
SUBSTR,
VERIFY) BUILTIN;

DCl I FIXED BINCl5);

DCl CRID,
RIDB,
RIDF)

PIC'999999' INITCO);

DCl CCURROP,
lASTOP,

STATUS) CHARCl) INITC");

DCl MESSAGES CHAR(39)
DCl STRING CHAR(256)

INITC");
BASED;

1 EXEC CICS HANDLE AID ClEARCSMSG)

/*STANDARD ATTRIBUTE CHARACTERS*/
/*FIlEA RECORD DESCRIPTION */
/*'GENERAl MENU'=MAP'A' */
/*'BROWSE FIlEA'=MAP'B' */

/*BUIlT IN FUNCTIONS

/*
/*
/*
/*

/*USED AS RIDFlD PARAM */
/*FOR BUILDING PREV PAGE*/
/*FOR BUILDING NEXT PAGE*/

NOTE CURRENT OPERATION */
lAST OPERATION */

F = GOING FORWARDS, */
B = GOING BACKWARDS. */

/*STATUS H = AT TOP OF FILE */
/* l = AT BOTTOM. */

PFlCPAGE FORWARD)
PF2CPAGE:BACKWARD);

2 EXEC CICS HANDLE CONDITION ERRORCERRORS)
MAPFAILCSMSG)
NOTFNDCNOTFOUND);

3 EXEC CICS RECEIVE MAPC'DFH$PGA'); /*READ FIRST A/C NO. */
/***/

Appendix F. Sample Programs (PLJI) 517

Source Listing for the Browse Sample Program (Continued)

/~:~~~~~~~~~~~~~~~~~~~~~~~~~~*~~~/

/~ SIMPLE CHECKS OF INPUT DATA ~/
/~*~~~~***~~~~~~*~~~~~~~~~~~**~~~~~~~~~************~**~****~**~~~~~*~~/

:5ElECTCKEYl);
WHENCO) DO; /~DEFAULT=OOOOOO ~/

4 RID =000000;

OTHERWISE

RIDF=OOOOOO;
END;

DO;
IF VERIFYCKEYI,'OI23456789')=O THEN

DO;
5 RID =KEYI; /~ NUMERIC A/C NO.~/

RIDF=KEYI;
RIDB=KEYI;

END;
ELSE

DO;
MESSAGES='ACCOUNT NUMBER MUST BE NUMERIC';
GOTO PMNU;

END;
END;

END;

6 EXEC CICS STARTBR DATASETC'FIlEA') RIDFlD(RID); /*ESTABlISH 'START'*/
IF RID-=999999 THEN

GOTO PAGE_FORWARD;
7 STATUS='H';

GOTO PAGE_BACKWARD;
/**~~~~~~*~~*~~~~*~*~~~~~~*~*~~~~~~~*~~~**********~~~~~~~*~~~~~~~~~~~~/
/~ HANDLE PAGING REQUESTS ~/

/***********~~**~*****~*~~**/
PAIGE FORWARD:

CURROP='F';
8 EXEC eICS HANDLE CONDITION ENDFIlECTOOHIGH);

SUBSTRCADDRCDFH$PGCO)->STRING,I,STG(DFH$PGCO» = lOWCSTGCDFH$PGCO»;
/*RESET FIELDS + ATTRB IN MAP C*/

RID =RIDF;
9 CAll BUIlDNEXT;

RIDF=RID;
10 EXEC CICS SEND MAP('DFH$PGC') ERASE

GOTO RECEIVE;

PAGE BACKWARD I

11 CURROP='B';

/*IF LAST REQUEST=BACKPAGE THEN*/
/*NEED RIDF FOR FORWARD PAGING */

/*USE RIDF FOR NEXT PAGE */

EXEC CICS HANDLE CONDITION ENDFILECTOOlOW);

SUBSTR(ADDRCDFH$PGCO)->STRING,I,STG(DFH$PGCO» = lOW(STGCDFH$PGCO»;
/*RESET FIELDS + ATTRB IN MAP C*/

RID =RIDB;
RIDF=RIDB;
IF lASTOP='B' THEN

IF STATUS='H' THEN
GOTO PREVlINE;

GOTO PREVlINE;

/*USE RIDB FOR BACKWARD PAGING */
/*SAVE RIDF FOR FORWARD PAGING */

518 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Sourcc Listing for the Browse Sample Program (Continucd)

PREVXTRAs
EXEC CICS READPREV INTOCFILEA) DATASETC'FIlEA') RIDFLDCRID);

PREVLINE:
CALL BUILDPREV;
RIDB=RID; /*SAVE RIDB FOR PREVIOUS PAGE */
EXEC CICS SEND MAPC'DFHtPGC') ERASE

RECEIVEs
LASTOP=CURROP;

12 EXEC CICS RECEIVE MAPC'DFHtPGC');
SELECTCDIRI);

WHENC'F') GOTO PAGE FORWARD;
WHENC'B') GOTO PAGE-BACKWARD;
OTHERWISE -

END;

DO;
EXEC CICS SEND MAPC'DFHtPGC');
GOTO RECEIVE;

END;

/***/
/* HANDLE END OF FILE CONDITIONS */
/***/
TOOHIGH:

13 STATUS='H';
RIDF = RID;
RIDB = RID;
DIRO =' ';
MSGI0='HI-END OF FILE';
MSGIA=DFHBMASB;
EXEC CICS SEND MAPC'DFHtPGC') ERASE;
GOTO RECEIVE;

TOOLOW:
14 STATUS='L';

RIDF = 000000;
RIDB = 000000;
DIRO =' ';
MSG20='LO-END OF FILE';
MSG2A=DFHBMASB;
EXEC CICS SEND MAPC'DFHtPGC') ERASE;
GOTO RECEIVE;

/***/
/* HANDLE GENERAL CONDITIONS */
/***/

NOTFOUND:
IS'MESSAGES='END OF FILE - PLEASE RESTART';

EXEC CICS ENDBR DATASETC'FIlEA');
GOTO PMNU;

, SMSG:
16 MESSAGES='PRESS CLEAR TO EXIT';

GOTO PMNU;

ERRORS:
17 EXEC CICS DUMP DUMPCODEC'ERRS');

MESSAGES='TRANSACTION TERMINATED';

Appendix F. Sample Programs (PL/I) 519

Source Listing for the Browse Sample Program (C()ntinucd)

/3E**/
/3E DISPLAY GENERAL MENU THEN EXIT*/
/3E**/

P~tNU a
18 SUBSTRCADDRCDFH$PGAO)->STRING,I,STGCDFH$PGAO» = LOWCSTGCDFH$PGAO»;

MSGA=DFHBMASB;
MSGO=MESSAGES;
EXEC CICS SEND MAPC'DFH$PGA') ERASE;

19 EXEC CICS RETURN;

/3£**/
/* INTERNAL PROCEDURES MOVE REQUIRED FIELDS TO MAP */
/~**/
BlJILDNEXTI PROC;

20
DO 1=1 TO 4;

21 EXEC CICS READNEXT INTOCFILEA)

22

23

SELECTCI);
WHEN(1)

WHEN(2)

WHEN(3)

WHEN(4)

END;
END;

DO;
NUMBERI0
NAMEI0
AMOUNTI0
RIDB

END;
DO;

NUMBER20
NAME20
AMOUNT20

END;
DO;

NUMBER30
NAME30
AMOUNT30

END;
DO;

NUMBER40
NAME40
AMOUNT40

END;

ENID BUILDNEXT;
BUILDPREVI PROC;

DO 1=1 TO 4; ,

= NUMB;
= NAME;
= AMOUNT;
= RID;

= ~IUMB;
= NAME;
= AMOUNT;

= NUMB;
= NAME;
= AMOUNT;

= NUMB;
= NAME;
= AMOUNT;

DATASETC'FILEA') RIDFLDCRID);

/*RIDB NEEDS AN EXISTING A/C NO.*/

24 EXEC CICS READPREV INTOCFILEA) DATASETC'FILEA') RIDFLDCRID);
SELECTC I);

WHEN(4) DO; /*PUT FIELDS IN ASCENDING ORDER*/
NUMBERI0
NAMEI0
AMOUNTI0

END;
WHEN(3) DO;

NUMBER20
NAME20
AMOUNT20

END;
WHEN(2) DO;

NUMBER30

= NUMB;
= NAME;
= AMOUNT;

= NUMB;
= NAME;
= AMOUNT;

= NUMB;

520 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Source Listing for the Browse Sample Program (Continued)

NAME30 = NAME;
AMOUNT30 = AMOUNT;

END;
WHEN(l) DO;

END;
END;

END BUILDPREV;

END BROWSE;

Program Notes

NUMBER40 = NUMB;
NAME40 = NAME;
AMOUNT40 = AMOUNT;

END;

1. The exits for CLEAR, PF I and PF2 are set
up.

2. The error exits are set up.

3. This command maps in the account number
from the operator instruction screen.

4. If no account number is entered browsing
begins at the start of the fIle.

5. If the format of the account number is valid
the number is used to set the program's browse
pointers, otherwise an error message is
displayed on the operator instruction menu.

6. The STARTBR command establishes the
browse starting point.

7. Entering the maximum value (999999) for the
account number begins a backward browse
from the end of the fIle.

8. The forward browse end of rue exit is set up.

9. A subroutine builds a page for display.

10. The screen is erased and the full page is
displayed at the terminal.

11. The backward browse procedure is similar to
the forward browse. Note the need for an extra
READPREV when changing from forward to
backward browsing.

12. When the RECEIVE command executes
control will go to one of the HANDLE AID
exits (see note 1) if CLEAR, PFI or PF2 is
pressed. The program explicitly tests for F or
B if no exit is taken. Any other terminal
response is ignored.

13. If the end of rtIe is reached, on a
READNEXT, any records read to that point
arc displayed together with a highlighted
message "HI-END OF FILE".

14. If the start of me is reached on a READPREV
(backward browse) then the ENDFILE
condition occurs and TOOLOW gets control.
Any records read up to that point are
displayed, together with a highlighted message
"LO-END OF FILE".

15. If the NOTFND condition occurs at the start
browse (note 6) the message "END OF FILE -
PLEASE RESTART" is moved to
MESSAGES for display on the operator
instruction screen.

16. If the CLEAR key is pressed or when a
MAPFAIL occurs a message "PRESS CLEAR
TO EXIT" is moved to MESSAGES for
display on the operator instruction screen.

17. In some error situations a dump is taken and
the message "TRANSACTION
TERMINATED" is moved to MESSAGES
for display on the operator instruction screen.

Appendix F. Sample Programs (PL/I) 521

18. This code displays the operator instruction
menu with a message which has been stored in
MESSAGES.

19. The: program terminates by returning to CICS.

20. BUILDNEXT browses forward through
FILEA building a screen, or page, of ac;counts
for display.

21. The: READNEXT reads the frrst record, and
subsequently the next record, into the file area.

22. The account number, name, and amount are
moved to the frrst line of the browse map area.

23. The same basic commands are repeated to read
and set up the next three lines. The same fue
area is used for each read.

24. Backward browsing uses the READPREV
command to read the previous record and
stores records in the map area starting at the
bottom line.

522 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Order Entry Sample Program
(PL/I)

Description

The order entry sample application program
provides a data entry facility for customer orders
for parts from a warehouse. Orders are recorded
on a transient data queue which is defined so as to
start the order entry queue print transaction
automatically when a fixed number of orders have
been accumulated. The queue print transaction
sends the orders to a printer terminal at the
warehouse.

To begin order entry, type PORD onto a blank
screen and press ENTER. The order entry
program displays the map DFH$PGK on the
screen requesting the operator to enter order details,
that is, customer number; part number, and the
quantity of that part required. The customer
number must be valid, that is, it must exist on
FILEA. The order details.are mapped in and

checked, an invalid order is redisplayed for
correction. When valid an order is written to the
transient data queue L860 and the order entry
screen is redisplayed ready for the next order to be
entered. If CLEAR is pressed the order entry
program terminates.

L860, the name of the transient data queue, is also
the name of the terminal where the order entry
queue print transaction is to be triggered when the
number of items on the queue reaches 30. A
definition of the transient data queue is included in
the sample destination control table listed in the
CICS/DOS/VS Installation and Operations Guide.
Note that the TRANSID specified in the DCT
entry for L860 must be changed from AORQ to
PO R Q for the PL/I program to be triggered.

The trigger level may be changed using the CEMT
command, as follows:

CEMT SET QUEUECl860) TRIGGERCn)

where n is the destination trigger level (any integer
from 0 through 32767).

Source Listing for the Order Entry Sample Program

/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*****~~**~***~~~~**~*~**~~*~****~*~*/
/* DFH$PREN - CICS/VS SAMPLE FIlEA ORDER ENTRY - Pl/I */
/~***/
ORDER. PROC OPTIONSCMAIN);

XINClUDE DFHBMSCA;
Y.INClUDE DFH$PFIl;
Y.INClUDE DFH$Pl86;
Y.INClUDE DFH$PGK;

DCl

DCl

DCl

(ADDR,
lOW,
STG,
SUBSTR,
VERIFY) BUILTIN;

CHSTR CHAR(256) BASED;

ERROR FLAG BIT(1) INITC'O'B);
DCl PRESMSG CHAR(20) STATIC

INITC'PROCESSING COMPLETED');

/*STANDARD ATTRIBUTE CHARACTERS*/
/*COllECTION OF ACCOUNTS */
/*RECORD DESCRIPTION FOR l860 */
/*MAP DEFINITION ~/

/*BUIlT IN FUNCTIONS

1 EXEC CICS HANDLE AID ClEARCENDPORD); /*EXIT FOR 'CLEAR'

Appendix F. Sample Programs (PL/I) 523

Source Listing for the Order Entry Sample Program (Continued)

2 EXEC CICS HANDLE CONDITION MAPFAILCMAPFAIL) /*EXITS FOR ERRORS */
ERROR CERRORS)
NOTFND CNOTFOUND);

/~E**/
/~E ZEROIZE PLI STRUCTURE=DFH$PGK*/
/***/

SUBSTRCADDRCDFH$PGKO)->CHSTR,I,STGCDFH$PGKO»=LOWCSTGCDFH$PGKO»,

3 EXEC CICS SEND MAPC'DFH$PGK') ERASE; /*ERASE SCREEN + DISPLAY MAP*/

RECEIVEa
4 EXEC CICS RECEIVE MAPC'DFH$PGK'); /*MAP IN CUSTNO,PARTNO & QUANT */

ERROR FLAG='O'B;
CUSTNOA,PARTNOA,QUANTA=DFtiBMFSE; /*MDT=1 IN CASE NEED TO REINPUT*/

/**************************3(**/
/* SIMPLE VALIDATION OF DATA */

/***/

S IF VERIFY(CUSTNOI,'1234S67890')-=O THEN
DO;

CUSTNOA = DFHUNINT,
ERROR FLAG = 'I'B;

END; -

IF VERIFY(PARTNOI,'1234S67890')-=O THEN
DO;

PARTNOA = DFHUNINT,
ERROR FLAG = 'I'B;

END; -

IF VERIFY(QUANTI,'1234S67890')-=O THEN
DO;

QUANTA = DFHUNINT;
ERROR FLAG = 'I'B;

END; -

IF ERROR FLAG THEN
DO; -

6 MSG2A=DFHBMASB;
EXEC CICS SEND MAPC'DFH$PGK') ERASE;
GOTO RECEIVE;

END;

/*DATA ERROR-REENTER */

/~e**/
/JE READ RECORD, CHECK CUSTNO EXISTS*/
/***/

7 EXEC CICS READ DATASETC~FILEA') INTOCFILEA) RIDFLDCCUSTNOI);
8 CUSTNO = CUSTNOI;

PARTNO = PARTNOI;
QUANTITY = QUANTI;
TERMID = EIBTRMID;

'------_._-------_._------

524 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Source Listing for the Order Entry Sample Program (Continued)

/~~~~~~~~~~~~~~~~~~~~*~~~~~~~~~~~~~~~.~~~~~~~~~~~~~~~~.~**~~~~~*~***~~/

/~ WRITE VALID ORDER TO TD QUEUE ~/

/~~~**/

9 EXEC CICS WRITEQ TD QUEUE ('l860') FROM Cl860) lENGTH(22);

10 EXEC CICS SEND MAPC'DFH$PGK') MAPONlY ERASEAUP;
GOTO RECEIVE;

/~*~**/
/~ HANDLE ERRORS THEN RESTART ~/

/*~*~******~~~~**~**/

11 NOTFOUNDz
CUSTNOA = DFHUNINT;
MSGIA = DFHBMASB;
EXEC CICS SEND MAPC'DFH$PGK');
GOTO RECEIVE;

12 MAPFAIlz

/*INVAlID ACCOUNT NO */

/*NUMBER NOT FOUND */

SUBSTR(ADDR(DFH$PGKO)->CHSTR,I,STG(DFH$PGKO»=lOWCSTGCDFH$PGKO»;

MSG2A=DFHBMASB;
EXEC CICS SEND MAPC'DFH$PGK');
GOTO RECEIVE;

/*DATA ERROR -REENTER*/

/***/
/* EXIT FROM PROGRAM */
/~~**********~**/

ERRORS:
13 MSG20='TRANSACTION TERMINATED';

MSG2A=DFHBMASB;
EXEC CICS SEND MAP('DFH$PGK');
EXEC CICS DUMP DUMPCODEC'ERRS');
GOTO EXIT;

ENDPORD:

/*GENERAl ERROR COND */

/*DATA ERROR -REENTER~/

14 EXEC CICS SEND TEXT FROM(PRESMSG) ERASE;
EXEC CICS SEND CONTROL FREEKB; /*SET INPUT-INHIB OFF*/
EXIT:
EXEC CICS RETURN;
END;

Program Notes

I. The CLEAR key exit is set up

2. The error exits are set up.

3. The screen is erased and the order entry map is
displayed at the terminal.

4. This RECEIVE MAP causes a read from the
terminal and maps in the customer number,
part number, and quantity. The program

remains in virtual storage until the tenninal
response is received. Compare this technique
with that used in the pseudoconversational
inquiry /update sample program. If no data is
received CICS branches to the MAPFAIL exit
(notc 2).

s. Thc order details are checked, invalid orders are
rcdisplayed for correction. Error fields are
highlighted and have MDT set on. The user
should add further editing steps necessary to
ensure only valid orders are accepted.

Appendix F. Sample Programs (PLJI) 525

6. The error message "DATA ERROR -
REENTER" is a constant in the map load
module and is sent to the tenninal, with any
other constant information, unless
DATAONLY is specified on the SEND MAP.
The message is normally dark (non-display).
This instruction overrides the dark attribute
and the message appears in high intensity when
the SEND MAP command is executed.

7. The fue control READ command attempts to
re:ad the customer record from FILEA. If no
re:cord exists for the customer CICS branches
to the NOTFND exit (note 2).

8. The order details are moved from the input
map to the queue area.

9. The WRITEQ TD command writes the order
re:cord to a sequential ftle, a transient data
queue.

10 .. The order entry map is redisplayed ready for
the next order. Only the map load filodule is
used to build the screen display, MAPONLY
causes the data in the map dsect area to be
ignored. ERASEAUP erases all the

unprotected data on the screen, that is, the
customer number, part number, and quantity.

II. If there is no record for the customer on
FILEA, CICS raises the NOTFND condition
and branches here. The attribute for the
customer number field is set to high intensity
with MDT on and an error message
"NUMBER NOT FOUND - REENTER" is
set to display in high intensity (see note 6).
The order is redisplayed for correction.

12. If no fields are entered, the MAPF AIL
condition occurs. The message UDA T A
ERROR-REENTER" is displayed in high
intensity (see note 6).

13. If an error occurs a dump is taken, and the
message "TRANSACTION TERMINATED"
is displayed in high intensity in the data error
message area. The program terminates leaving
the order entry screen displayed.

14. When the CLEAR key is pressed the program
terminates. The message "PROCESSING
COMPLETED" is displayed on a blank
screen, the keyboard is freed and control is
returned to CICS.

526 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Order Entry Queue Print Sample
Program (PL/I)

Description

The order entry queue print sample program sends
customer orders to a printer terminal at the
warehouse. The order entry sample program,
described earlier, records customer orders on a
transient data queue which is read by this program.

The queue print transaction can be invoked in one
of three ways:

• You can type the transaction identifier PO R Q
onto a clear screen. The program fmds that the
terminal identifier is not L860 and issues a
STAR T command to begin printing in one
hour. The message "PROCESSING
COMPLETED" is displayed and your terminal
is available for other work.

• One hour after you enter PORQ, the queue
print transaction is automatically invoked by
CICS interval control. In this case the terminal

identifier, specified by the START, is L860 so
the program prints the orders at the warehouse.

• The queue print transaction is "triggered" when
the number of items (customer orders) on the
transient data queue reaches 30. The trigger
level is specified in the destination control table
(DCT) entry for L860. In this case the
terminal identifier is the same as the queue
name (1.860) and the program will print the
orders. Note that the TRANSID specified in
the DCT entry for L860 must be changed
from AORQ to PORQ for the PLjI program
to be triggered. The trigger level may be
changed using the command:

CEMT SET QUEUECL860) TRIGGERCn)

When invoked with a terminal identifier of L860
the program reads each order, checks the
customer's credit and either prints the order a.t the
warehouse or writes the rejected order to LOGA,
the same transient data queue as used by the
inquiry jupdate sample program. When all the
orders have been processed, or if there were no
orders to process, the message "ORDER QUEUE
IS EMPTY" is printed at the warehouse.

Source Listing for the Order Entry Queue Print Sample Program

/***~*~/
/* DFH$PCOM - CICS/VS SAMPLE FILEA ORDER ENTRY QUEUE PRINT */

/***************************** ••• * ••••• **************************.***/
QPRINTr PROC OPTIONSCMAIN);

Y.INCLUDE DFH$PFIL;
Y.INCLUDE DFH$PL86;
Y.INCLUDE DFH$PGL;
DCL Q LENGTH FIXED BINClS) INIT(22);
DCL l-LOGORD,

2 LOGTIME,
3 LDATE FIXED DECC7,O),
3 LTIME FIXED DECC7,O),

2 LITEM CHAR(22),
2 COMMENT CHARCll) INITC'ORDER ENTRY'),
2 FILLER CHARCSl) INITC' ');

DCL CHSTR CHAR(2S6) BASED;
DCL PRESMSG CHAR(20) STATIC

INITC'PROCESSING COMPLETED');
1 EXEC CICS HANDLE CONDITION ERRORCERRORS) QZEROCENDA);
2 IF EIBTRMID-='L860' THEN

GO TO TIME;
SUBSTRCADDRCDFH$PGLO)->CHSTR,l,STGCDFH$PGLO»

=lOWCSTGCDFH$PGLO»;

Appendix F. Sample Programs (PL/I) 527

Source Listing for the Order Entry Queue Print Program (Cont)

3 EXEC CICS READQ TD INTO(L860) LENGTHCQ LENGTH) QUEUEC'L860');
MAP BUILDI -
4 - EXEC CICS READ DATASET('FILEA') INTOCFILEA) RIDFLDCCUSTNO);
S IF AMOUNT>'$0100.00' THEN DO;
6 ADDRO = ADDRX;

PARTO = PARTNO;
NAMO = NAME;
NUMBO = CUSTNO;
QUANTO = QUANTITY;

7 EXEC CICS SEND MAPC'DFH$PGL') ERASE PRINT L80;
END;
ELSE DO;

8 LDATE = EIBDATE;
LTIME = EIBTIME;
LITEM = STRING(ITEM);

9 EXEC CICS WRITEQ TD QUEUE('LOGA') FROMCLOGORD) LENGTH(92);
END;
GO TO Q_READ;

ERRORS.
10 EXEC CICS DUMP DUMPCODE('ERRS');

GO TO FIN;
EMDAa

SUBSTRCADDR(DFH$PGlO)->CHSTR,I,STGCDFH$PGLO»
=LOW(STG(DFH$PGlO»;

11 TITLEO='ORDER QUEUE IS EMPTY';
EXEC CICS SEND MAP('DFH$PGL') DATAONLY ERASE PRINT L80;

TIMEI
/~ IF THE COMMENT DELIMITERS ARE ~/
/* REMOVED FROM THE NEXT TWO PL/I */
/~ STATEMENTS, THE APPLICATION WIlL~/
/~ BE RESTARTED IN AN HOUR IF THE ~/
/~ TIME OF DAY RIGHT NOW IS NOT */
/* LATER THAN 1400 HRS. IF THE */
/* CODE IS lEFT UNCHANGED THE */
/* APPLICATION WILL BE RESTARTED ~/
/* UNCONDITIONALLY AFTER AN HOUR */
/~ HAS ELAPSED ~/

/* EXEC CICS ASKTIME; ~/
/~ IF EIBTIME->140000 lHEN */

12 EXEC CICS START lRANSID('PORQ') INTERVAL(10000)
TERMIDC'L860');

FXNa
13 EXEC CICS SEND TEXT FROM(PRESMSG) ERASE;

EXEC CICS SEND CONTROL FREEKB;

EXEC CICS RETURN;
EI~D;

Program Notes

1. The error exits are set up.

2. The termid is tested to see whether this
transaction is started from a terminal or at the
pJinter.

3. A queue item (customer order) is read into the
program.

4. The file control READ command reads the
record into a record area so that the amount
may be checked.

528 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

5. The amount (bank balance) is tested. If it is
over $100 then the order is acceptable,
otherwise the order is rejected. This test is
only a suggestion; a suitable fonn of editing
should be inserted here to ensure valid orders
are sent to the warehouse.

6. The order details are moved to the map area
for DFH$PGL.

7. The order map is sent to the printer terminal at
the warehouse.

8. The current date and time, and details of the
rejected order, are moved to a log record area.

9. The WRITEQ TD command writes details of
the rejected order to LOGA, a transient data
queue.

10. If the ERROR condition occurs on any CICS
command a dump is taken and the program
terminates.

II. When the queue is empty, the message
"ORDER QUEUE IS EMPTY" is moved to
the map area which is then sent to the printer
terminal at the warehouse.

12. The START command starts the PORQ
transaction (this program), after a one hour
delay, with a tenninal identifier of L860. (The
time interval could be changed, for
demonstration purposes, by changing the
INTERVAL value.) If the comment delimiters
are removed from the two preceding
statements, EIBTIME is refreshed and, if the
time is before 1400 hours, the transaction is
started in one hour. If the comment delimiters
are not removed, the transaction is started
unconditionally in one hour.

13. The message "PROCESSING
COMPLETED" is sent to the tenninal
associated with this invocation of PORQ,
either the printer at the warehouse or the
screen on which PORQ was entered. The
program tenninates by returning control to
CICS.

Appendix F. Sample Programs (PL/I) 529

Low Balance Report Sample
Pro~~ram (PL/I)

Descliption

The low balance report sample program produces a
report that lists all entries in the data set FILEA for
which the amount is less than or equal to $50.00.

The program illustrates page building techniques
and the use of the terminal paging facilities of
BMS.

The transaction is invoked by entering PREP onto
a clear screen. The program does a sequential scan
through the HIe selecting each entry that obeys the

search criterion. The pages are built from four
maps which comprise map set DFH$PGD, using
the paging option so that the data is not displayed
immediately but instead is stored for later retrieval.
The HEADING map is inserted at the head of
each page. The detail map (DFH$PGD) is written
repeatedly until the OVERFLOW condition
occurs. The FOOTING map is then written at the
foot of the page and the HEADING map written
at the top of the next page. The command to write
the detail map that caused overflow is then
repeated. When all the data has been written the
FINAL, map is written at the bottom of the last
page and the transaction terminated.

The terminal operator then enters paging
commands to display the data, clearing the screen
before entering each paging command.

Source Listing for the Low Balance Report Sample Program

/**/
/* DFH$PREP - CICS/VS SAMPLE FILEA LOW BALANCE INQUIRY - PL/I */

/**/
REPORT I PROC OPTIONSCMAIN);

DCl lOWLIM CHAR(8) INITC'$OOSO.OO');
DCL KEYNUM PIC'999999' INITCO);
DCL PAGEN PIC'999' INITCl);
DCl OPINSTR CHARCS2) STATIC

INITC'PRESS THE ENTER KEY AND FOLLOW WITH PAGING COMMANDS.')~
DCl TERM DATA CHARCl);
DCl TERM-LENG FIXED BINC l~»;
DCL STRING CHARC2S6) BASE));
XINClUDE DFH$PGD;
XINCLUDE DFH$PFIL;

1 EXEC 'eICS HANDLE CONDITION ERRORCERRORS) OVERFLOWCOFLOW)
ENDFILECENDFILE) LENGERRCEND_TASK);

PAGENA=LOWCl);
2 PAGENO=PAGENi
3 EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$PGD') ACCUM PAGING ERASE;
4 EXEC eICS STARTBR DATASET('FIlEA') RIDFlDCKEYNUM);

REPEAT I

5 EXEC CICS READNEXT INTOCFIlEA) DATASETC'FIlEA') RIDFlDCKEYNUM);
6 IF AMOUNT<=LOWLIM THEN

DO;
SUBSTRCADDRCDFH$PGDO)->STRING,l,STGCDFH$PGDO»=

lOWCSTGCDFH$PGDO»;
7 AMOUNTO = AMOUNT;

NUMBERO == NUMB;
NAMEO = NAME;

8 EXEC CICS SEND MAP('DFH$PGD') MAPSETC'DFH$PGD') ACCUM PAGING;
END;

GOTO REPEAT;

I:NDFILEI
9 EXEC CICS SEND MAPC'FINAL') MAPSETC'DFH$PGD') MAPONLY ACCUM PAGING;

530 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

Source Listing for the Low Balance Report Sample Program (Continued)

10 EXEC CICS SEND PAGE;
II EXEC CICS SEND TEXT FROMCOPINSTR) ERASE;
12 EXEC CICS ENDBR DATASETC'FILEA');

/~ A RECEIVE IS ISSUED TO GIVE THE
TERMINAL OPERATOR A CHANCE TO
READ THE PROMPTING MESSAGE.
THE TRANSACTION WILL TERMINATE
WHEN THE OPERATOR PRESSES THE
ENTER KEY K/

/K NO HARM DONE IF OPERATOR TYPES IN
DATA IN ADDITION TO PRESSING THE
ENTER KEY K/

TERM LENG=I;
13 EXEC-CICS RECEIVE INTOCTERM_DATA) LENGTHCTERM_LENG);

END TASK,
14 EXEC CICS RETURN;

ERRORS,
IS EXEC CICS HANDLE CONDITION ERROR;

EXEC CICS PURGE MESSAGE;
EXEC CICS ABEND ABCODEC'ERRS');

OFLOW,
16 EXEC CICS SEND MAPC'FOOTING') MAPSETC'DFH$PGD')

MAPONLY ACCUM PAGING;
PAGEN = PAGEN+I;
PAGENA = LOW(l);
PAGENO = PAGEN;

17 EXEC CICS SEND MAP('HEADING') MAPSETC'DFH$PGD')
ACCUM PAGING ERASE;

18 EXEC CICS SEND MAP('DFH$PGD') MAPSETC'DFH$PGD') ACCUM PAGING;
GOTO REPEAT;
END;

Program Notes

1. The program exits are set up.

2. A page number of 1 is moved to the heading
map.

3. This BMS command sets up the heading in the
page build operation. BMS builds the pages in
temporary storage.

4. The ST ARTBR command sets up the me
browse to begin at the rust record with a key
equal to or greater than the RIDFLD, in this
case the rust record on rue.

5. This command reads the next customer record
from FILEA.

6. The gearch criterion for creating the report is
that the customer has a bank balance which is
$50 or less.

7. Fields are moved from the selected customer
record to the map area for the detail line.

8. The customer detail map is set up for
subsequent paging.

9. When the ENDFILE condition is raised, the
lagt map is sent to B MS.

10. The SEND PAGE command makes all the
pages of the report available for paging, at the
tenninal, when the current transaction
terminates.

II. A message is sent the terminal. This message
will be displayed before the pages of the low
balance report.

Appendix F. Sample Programs (PL/I) 531

12. The ftle browse is tenninated.

13. This RECEIVE MAP command reads from
the terminal and allows the tenninal operator
to read the prompting message before the frrst
page of the report is displayed.

14. The program ends, the ftrst page of the report
will now be displayed.

15. If the ERROR condition occurs on a CICS
command this routine gains control. Handling
of the ERROR condition is suppressed, any
data sent to B MS so far is purged and the

program tenninates abnonnally with a
transaction dump.

16. If the OVERFLOW condition occurs, when a
detail line is sent to BMS, CICS branches here.
This routine completes the current page and
starts the next one. This BMS command sets
up the footing for the current page.

17. This B MS command sets up the heading for
the next page.

18. This OMS command resends the detail line
which caused the OVERFLOW condition.

532 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

Maps and Screen Layouts for
PL/I Sample Programs

The preceding sample programs assume that the
following map sets have been cataloged with names
the same as the map names.

DFHSPGA Map Definition

The names of the source maps are all of the fonn
DFH$PMx, whereas output generated by the
assembly of maps is in the fonn DFH$PGx.
Differing names are required for the map source
and the generated dsect only if you wish to store
both in the same source library.

TITLE 'FILEA - MAP FOR OPERATOR INSTRUCTIONS - PL/I'
MAPSETA DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
DFH$PGA DFHMDI SIZE=(12,40)

DFHMDF POS=(1,lO),LENGTH=21,INITIAL='OPERATOR INSTRUCTIONS', *
HIlIGHT=UNDERLINE

DFHMDF POS=(3,1),LENGTH=29,INITIAL='OPERATOR INSTR - ENTER PMN*
U'

DFHMDF POS=(4,1),LENGTH=38,INITIAL='FILE INQUIRY - ENTER PIN*
Q AND NUMBER'

DFHMDF POS=(S,1),LENGTH=38,INITIAL='FILE BROWSE - ENTER PBR*
W AND NUMBER'

DFHMDF POS=(6,1),LENGTH=38,INITIAL='FILE ADD - ENTER PAD*
D AND NUMBER'

DFHMDF POS=(7,ll,LENGTH=38,INITIAL='FILE UPDATE - ENTER PUP*
D AND NUMBER'

MSG DFHMDF POS=(11,1),LENGTH=39,INITIAl='PRESS CLEAR TO EXIT'
DFHMDF POS=(12,1),lENGTH=18,INITIAL='ENTER TRANSACTION.'
DFHMDF POS=(12,20),LENGTH=4,ATTRB=IC,COlOR=GREEN, *

HIlIGHT=REVERSE
DFHMDF POS=(12,2S),LENGTH=6,INITIAL='NUMBER'

KEY DFHMDF POS=(12,32),LENGTH=6,ATTRB=NUM,COLOR=GREEN, *
HILIGHT=REVERSE

DFHMDF POS=(12,39),lENGTH=1
DFHMSD TYPE=FINAl
END

Appendix F. Sample Programs (PL/I) 533

The synlbolic storage defmition produced as a result of the above statements would be as follows:

OSECT generated by DFHSPGA

DECLARE 1 DFH$PGAI AUTOMATIC UNALIGNED,
2 DFHMS1 CHARACTER (12),
2 MSGL FIXED BINARY (lS,O),
2 MSGF CHARACTER (1),
2 MSGI CHARACTER (39),
2 KEYL FIXED BINARY (lS,O),
2 KEYF CHARACTER (1),
2 KEYI CHARACTER (6),
2 FILLOOSS CHARACTER (1);

DECLARE 1 DFH$PGAO BASED(ADDR(DFH$PGAI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (lS,O),
2 MSGA CHARACTER (1),
2 MSGO CHARACTER (39),
2 DFHMS4 FIXED BINARY (lS,O),
2 KEYA CHARACTER (1),
2 KEYO CHARACTER (6),
2 FILLOOSS CHARACTER (1);

/. END OF MAP DEFINITION ./

DFHSPGA Screen Layout

r

+OPERATOR INSTRUCTION~

+OPERATOR INSTR - ENTER PMNU
+FILE INQUIRY - ENTER PINQ AND NUMBER
+FILE BROWSE - ENTER PBRW AND NUMBER
+FILE ADD - ENTER PADD AND NUMBER
+FILE UPDATE - ENTER PUPD AND NUMBER

+PRESS CLEAR TO EXIT
+ENTER TRANSACTION:+XXXX+NUMBER+XXXXXX+ L-__________________________ • ___________ J

534 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

DFHSPGB Map Definition

TITLE 'FIlEA - MAP FOR FILE INQUIRY/UPDATE - Pl/I'
MAPSETB DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET),lANG=PlI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONlY
DFH$PGB DFHMDI SIZE=(12,40)
TITLE DFHMDF POS=(1,lS),lENGTH=12

DFHMDF POS=C3,1),lENGTH=8,INITIAL='NUMBERs',COlOR=BlUE
NUMB DFHMDF POS=(3,lO),lENGTH=6

DFHMDF POS=(3,17),lENGTH=1
DFHMDF POS=C4,1),lENGTH=8,INITIAl='NAME: ',COlOR=BlUE

NAME DFHMDF POS=C4,lO),lENGTH=20,ATTRB=(UNPROT,IC)
DFHMDF POS=(4,31),lENGTH=1
DFHMDF POS=(S,1),lENGTH=8,INITIAl='ADDRESSs',COlOR=BlUE

ADDR DFHMDF POS=CS,lO),lENGTH=20,ATTRB=UNPROT
DFHMDF POS=(S,31),lENGTH=1
DFHMDF POS=C6,1),lENGTH=8,INITIAl='PHONE: ',COlOR=BlUE

PHONE DFHMDF POS=C6,lO),lENGTH=8,ATTRB=UNPROT
DFHMDF POS=C6,19),lENGTH=1
DFHMDF POS=C7,1),lENGTH=8,INITIAl='DATE: ',COlOR=BlUE

DATE DFHMDF POS=C7,lO),lENGTH=8,ATTRB=UNPROT
DFHMDF POS=C7,19),lENGTH=1
DFHMDF POS=C8,1),lENGTH=8,INITIAl='AMOUNTs ',COlOR=BlUE

AMOUNT DFHMDF POS=C8,lO),lENGTH=8,ATTRB=NUM
DFHMDF POS=C8,19),lENGTH=1
DFHMDF POS=C9,1),lENGTH=8,INITIAl='COMMENT:',COlOR=BlUE

COMMENT DFHMDF POS=C9,lO),lENGTH=9,ATTRB=UNPROT
DFHMDF POS=C9,20),lENGTH=1

MSGI DFHMDF POS=Cll,1),lENGTH=39
MSG3 DFHMDF POS=C12,1),lENGTH=39

DFHMSD TYPE=FINAl
END

The symbolic storage defmition produced as a result of the above statements would be as follows:

Appendix F. Sample Programs (PL/I) 535

DSECT generated by DFHSPGB

DECLARE 1 DFH$PGBI AUTOMATIC UNALIGNED,
2 DFHMS1 CHARACTER (12),
2 TITLEL FIXED BINARY (15,0),
2 TITLEF CHARACTER (1),
2 TITLEI CHARACTER (12),
2 NUMBL FIXED BINARY (15,0),
2 NUMBF CHARACTER (1),
2 NUMBI CHARACTER (6),
2 NAMEL FIXED BINARY (15,0),
2 NAMEF CHARACTER (1),
2 NAMEI CHARACTER (20),
2 ADDRL FIXED BINARY (15,0),
2 ADDRF CHARACTER (1),
2 ADDRI CHARACTER (20),
2 PHONEL FIXED BINARY (15,0),
2 PHONEF CHARACTER (1),
2 PHONEI CHARACTER (8),
2 DATEL FIXED BINARY (15,0),
2 DATEF CHARACTER (1),
2 DATEI CHARACTER (8),
2 AMOUNTL FIXED BINARY (15,0),
2 AMOUNTF CHARACTER (1),
2 AMOUNTI CHARACTER (8),
2 COMMENTL FIXED BINARY (15,0),
2 COMMENTF CHARACTER (1),
2 COMMENTI CHARACTER (9),
2 MSGIL FIXED BINARY (15,0),
2 MSGIF CHARACTER (1),
2 MSGII CHARACTER (39),
2 MSG3L FIXED BINARY (15,0),
2 MSG3F CHARACTER (1),
2 MSG3I CHARACTER (39),
2 FILL0092 CHARACTER (1);

DECLARE 1 DFH$PGBO BASED(ADDR(DFH$PGBI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,0),
2 TITLEA CHARACTER (1),
2 TITLEO CHARACTER (12),
2 DFHMS4 FIXED BINARY (15,0),
2 NUMBA CHARACTER (1),
2 NUMBO CHARACTER (6),
2 DFHMS5 FIXED BINARY (15,0),
2 NAMEA CHARACTER (1),
2 NAMEO CHARACTER (20),
2 DFHMS6 FIXED BINARY (15,0),
2 ADDRA CHARACTER (1),
2 ADDRO CHARACTER (20),
2 DFHMS7 FIXED BINARY (15,0),
2 PHONEA CHARACTER (1),
2 PHONEO CHARACTER (8),
2 DFHMS8 FIXED BINARY (15,0),
2 DATEA CHARACTER (1),
2 DATEO CHARACTER (8),
2 DFHMS9 FIXED BINARY (15,0),
2 AMOUNTA CHARACTER (1),
2 AMOUNTO CHARACTER (8),
2 DFHMSI0 FIXED BINARY (15,0),

536 CICSjDOS/VS Applicatio,n Programmer's Reference Manual (f'..ommand Level)

DSECT generated by DFHSPGB (Continued)

2 COMMENTA CHARACTER (I),
2 COMMENTO CHARACTER (9),
2 DFHMSII FIXED BINARY (IS,O),
2 MSGIA CHARACTER (1),
2 MSGIO CHARACTER (39),
2 DFHMSI2 FIXED BINARY (15,0),
2 MSG3A CHARACTER (I),
2 MSG30 CHARACTER (39),
2 FIl10092 CHARACTER (1);

/~ END OF MAP DEFINITION ~/

DFH$PGB Screen Layout

+XXXXXXXXXXXX

+NUMBERa +XXXXXX+
+NAMEa +XXXXXXXXXXXXXXXXXXXX+
+ADDRESSa+XXXXXXXXXXXXXXXXXXXX+
+PHONEa +XXXXXXXX+
+DATEa +XXXXXXXX+
+AMOUNTa +XXXXXXXX+
+COMMENTa+XXXXXXXXX+

+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
+XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Appendix F. Sample Programs (PL/I) 537

nFHSPGC Map Definition

TITLE 'FIlEA - MAP FOR FILE BROWSE - Pl/I'
MAPSETC DFHMSD TYPE=&SYSPARM,MODE=INOUT,CTRl=(FREEKB,FRSET),lANG=PlI, •

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONlY
DFHtPGC DFHMDI SIZE=(12,40)
DIR DFHMDF POS=(l,l),lENGTH=l,ATTRB=IC

DFHMDF POS=(1,3),lENGTH=1

NUr-IBERl
NAr-IEI
AM(JIUNTl
NUr-IBER2
NAr-IE2
AMOUNT2
NUMBER3
NAf'lIE3
AMOUNTS
NUMBER4
NAME4
AMOUNT4
MSGO

MSGI

MSG2

DFHMDF POS~(l,lS),lENGTH=ll,INITIAl='FIlE BROWSE',
COlOR=BlUE,HIlIGHT=UNDERlINE

DFHMDF POS=(3,1),lENGTH=6,INITIAl='NUMBER',COlOR=BlUE
DFHMDF POS=(3,17),lENGTH=4,INITIAl='NAME',COlOR=BlUE
DFHMDF POS=(3,32),lENGTH=6,INITIAl='AMOUNT',COlOR=BlUE
DFHMDF POS=(4,1),lENGTH=6
DFHMDF POS=(4,9),lENGTH=20
DFHMDF POS=(4,30),lENGTH=8
DFHMDF POS=(S,1),lENGTH=6
DFHMDF POS=(S,9),lENGTH=20
DFHMDF POS=(S,30),lENGTH=8
DFHMDF POS=(6,1),lENGTH=6
DFHMDF POS=(6,9),lENGTH=20
DFHMDF POS=(6,30),lENGTH=8
DFHMDF POS=(7,1),lENGTH=6
DFHMDF POS=(7,9),lENGTH=20
DFHMDF POS=(7,30),lENGTH=8
DFHMDF POS=(lO,1),lENGTH=39,COlOR=BlUE,

INITIAl='PRESS CLEAR TO END BROWSE OPERATION'
DFHMDF POS=(11,1),lENGTH=39,COlOR=BlUE,

INITIAl='PRESS PFl OR TYPE F TO PAGE FORWARD'
DFHMDF POS=(12,1),lENGTH=39~COlOR=BlUE,

INITIAl='PRESS PF2 OR TYPE B TO PAGE BACKWARD'
DFHMSD TYPE=FINAl
END

The symbolic storage definition produced as a result of the above statements would be as follows:

538 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

DSECT generated by DFHSPGC

DECLARE 1 DFH$PGCI AUTOMATIC UNALIGNED,
2 DFHMS1 CHARACTER (12),
2 DIRL FIXED BINARY (15,0),
2 DIRF CHARACTER (1),
2 DIRI CHARACTER (1),
2 NUMBER1L FIXED BINARY (15,0),
2 NUMBER1F CHARACTER (1),
2 NUMBER1I CHARACTER (6),
2 NAME1L FIXED BINARY (15,0),
2 NAME1F CHARACTER (1),
2 NAME1I CHARACTER (20),
2 AMOUNT1L FIXED BINARY (15,0),
2 AMOUNT1F CHARACTER (1),
2 AMOUNT1I CHARACTER (8),
2 NUMBER2L FIXED BINARY (15,0),
2 NUMBER2F CHARACTER (1),
2 NUMBER2I CHARACTER (6),
2 NAME2L FIXED BINARY (15,0),
2 NAME2F CHARACTER (1),
2 NAMElI CHARACTER (20),
2 AMOUNT2L FIXED BINARY (15,0),
2 AMOUNT2F CHARACTER (1),
2 AMOUNT2I CHARACTER (8),
2 NUMBER3L FIXED BINARY (15,0),
2 NUMBER3F CHARACTER (1),
2 NUMBER3I CHARACTER (6),
2 NAME3L FIXED BINARY (15,0),
2 NAME3F CHARACTER (1),
2 NAME3I CHARACTER (20),
2 AMOUNT3L FIXED BINARY (15,0),
2 AMOUNT3F CHARACTER (1),
2 AMOUNT3I CHARACTER (8),
2 NUMBER4L FIXED BINARY (15,0),
2 NUMBER4F CHARACTER (1),
2 NUMBER4I CHARACTER (6),
2 NAME4L FIXED BINARY (15,0),
2 NAME4F CHARACTER (1),
2 . NAME4I CHARACTER (20),
2 AMOUNT4L FIXED BINARY (15,0),
2 AMOUNT4F CHARACTER (1),
2 AMOUNT4I CHARACTER (8),
2 MSGOL FIXED BINARY (15,0),
2 MSGOF CHARACTER (1),
2 MSGOI CHARACTER (39),
2 MSG1L FIXED BINARY (15,0),
2 MSG1F CHARACTER (1)~
2 MSG1I CHARACTER (39),
2 MSG2t FIXED BINARY (15,0),
2 MSG2F CHARACTER (1),
2 MSG2I CHARACTER (39),
2 FILL0084 CHARACTER (1);

DECLARE 1 DFH$PGCO BASED(ADDR(DFH$PGCI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,0),
2 DIRA CHARACTER (1),
2 DIRO CHARACTER (1),
2 DFHMS4 FIXED BINARY (15,0),
2 NUMBER1A CHARACTER (1),
2 NUMBER10 CHARACTER (6),

Appendix F. Sample Programs (PL/I) 539

DSECT generated by DFHSPGC (continued)

2 DFHMS5 FIXED BINARY (I5~0),
2 NAMEIA CHARACTER (I),
2 NAMEIO CHARACTER (20),
2 DFHMS6 FIXED BINARY (15,0),
2 AMOUNTIA CHARACTER (1),
2 AMOUNTIO CHARACTER (8),
2 DFHMS7 FIXED BINARY (15,0),
2 NUMBER2A CHARACTER (1),
2 NUMBER20 CHARACTER (6),
2 DFHMS8 FIXED BINARY (15,0),
2 NAME2A CHARACTER (1),
2 NAME20 CHARACTER (20),
2 DFHMS9 FIXED BINARY (15,0),
2 AMOUNT2A CHARACTER (1),
2 AMOUNT20 CHARACTER (8),
2 DFHMSIO FIXED BINARY (15,0),
2 NUMBER3A CHARACTER (1),
2 NUMBER30 CHARACTER (6),
2 DFHMSII FIXED BINARY (15,0),
2 NAME3A CHARACTER (I),
2 NAME30 CHARACTER (20),
2 DFHMSI2 FIXED BINARY (15,0),
2 AMOUNT3A CHARACTER (1),
2 AMOUNT30 CHARACTER (8),
2 DFHMSI3 FIXED BINARY (15,0),
2 NUMBER4A CHARACTER (1),
2 NUMBER40 CHARACTER (6),
2 DFHMS14 FIXED BINARY (15,0),
2 NAME4A CHARACTER (I),
2 NAME40 CHARACTER (20),
2 DFHMSI5 FIXED BINARY (15,0),
2 AMOUNT4A CHARACTER (1),
2 AMOUNT40 CHARACTER (8),
2 DFHMS16 FIXED BINARY (15,0),
2 MSGOA CHARACTER (I),
2 MSGOO CHARACTER (39),
2 DFHMSI7 FIXED BINARY (15,0),
2 MSGIA CHARACTER (1),
2 MSGIO CHARACTER (39),
2 DFHMS18 FIXED BINARY (15,0),
2 MSG2A CHARACTER (1),
2 MSG20 CHARACTER (39),
2 FILL0084 CHARACTER (1);

/~ END OF MAP DEFINITION ./

540 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DFHSPGC Screen Layout

+FILE BROWSE

+NUMBER +NAME +AMOUNT
+xxxxxx +xxxxxxxxxxxxxxxxxxxx+xxxxxx
+xxxxxx +xxxxxxxxxxxxxxxxxxxx+xxxxxx
+xxxxxx +xxxxxxxxxxxxxxxxxxxx+XXXXXX
+xxxxxx +xxxxxxxxxxxxxxxxxxxx+xxxxxx

+PRESS CLEAR TO END BROWSE TRANSACTION
+PRESS PFI OR TYPE F TO PAGE FORWARD
+PRESS PF2 OR TYPE B TO PAGE BACKWARD

Appendix F. Sample Programs (PL/I) 541

][)FHSPGD Map Definition

TITLE 'FILEA - MAPSET FOR LOW BALANCE REPORT - PL/I'
MAPSETD DFHMSD TYPE=&SYSPARM,MODE=OUT,CTRL=(FREEKB,FRSET),LANG=PLI, •

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY,COLOR=BLUE
DFH$PGD DFHMDI SIZE=(I,40),COLOR=GREEN
NUMBER DFHMDF POS=(I,I),LENGTH=6
NAME DFHMDF POS=(I,9),LENGTH=20
AMOUNT DFHMDF POS=(I,30),LENGTH=8
HEADING DFHMDI SIZE=(3,40),HEADER=YES

DFHMDF POS=(I,S),LENGTH=I8,INITIAL='LOW BALANCE REPORT', •
HILIGHT=UNDERLINE

DFHMDF POS=(I,30),LENGTH=4,INITIAL='PAGE'
PAGEN DFHMDF POS=(I,3S),LENGTH~3

DFHMDF POS=(3,I),LENGTH=6,INITIAL='NUMBER'
DFHMDF POS=(3,I7),LENGTH=4,INITIAL='NAME'
DFHMDF POS=(3,32),LENGTH=6,INITIAL='AMOUNT'

FOOTING DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST
DFHMDF POS=(2,I),LENGTH=38, •

INITIAL='PRESS CLEAR AND TYPE P/N TO SEE PAGE N'
FINAL DFHMDI SIZE=(2,40),TRAILER=YES,JUSTIFY=LAST

DFHMDF POS=(2,IO),LENGTH=I4,INITIAL='END OF REPORT.'
DFHMSD TYPE=FINAL
END

The syrrlbolic storage defmition produced as a result of the above statements would be as follows:

]!)SECT generated by DFHSPGD

DECLARE 1 DFH$PGDO AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 DFHMS2 FIXED BINARY (15,0),
2 NUMBERA CHARACTER (1),
2 NUMBERO CHARACTER (6),
2 DFHMS3 FIXED BINARY (15,0),
2 NAMEA CHARACTER (1),
2 NAMEO CHARACTER (20),
2 DFHMS4 FIXED BINARY (15,0),
2 AMOUNTA CHARACTER (1),
2 AMOUNTO CHARACTER (8),
2 FILL0022 CHARACTER (1);

/. END OF MAP DEFINITION ./
DECLARE 1 HEADINGO AUTOMATIC UNALIGNED,

2 DFHMSS CHARACTER (12),
2 DFHMS6 FIXED BINARY (15,0),
2 PAGENA CHARACTER (1),
2 PAGENO CHARACTER (3),
2 FILL0043 CHARACTER (1);

/. END OF MAP DEFINITION ./
DECLARE 1 FOOTINGO AUTOMATIC UNALIGNED,

2 DFHMS7 CHARACTER (12),
2 FILL0049 CHARACTER (1);

/. END OF MAP DEFINITION ./
DECLARE 1 FINALO AUTOMATIC UNALIGNED,

2 DFHMS8 CHARACTER (12),
2 FILL0057 CHARACTER (1);

/. END OF MAP DEFINITION ./

542 CICS/DOSjVS Application Programmer's Reference Manual (Command Level)

DFHSPGD Screen Layout

+LOH BALANCE REPORT

+NUMBER +NAME
+xxxxxx+xxxxxxxxxxxxxxxxxxxx
+xxxxxx+xxxxxxxxxxxxxxxxxxxx
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX
+XXXXXX+XXXXXXXXXXXXXXXXXXXX

+PAGE+XXX

+AMOUNT
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

I+PRESS CLEAR AND TYPE P/N TO SEE PAGE N
l

Appendix F. Sample Programs (PL/I) 543

DFHSPGK Map Definition

TITLE 'FILEA - MAP FOR ORDER ENTRY - PL/I'
MAPSETK DFHMSD TYPE=8SYSPARM,MODE=INOUT,CTRL=(FREEKB,FRSET),LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES,EXTATT=MAPONLY
DFH$PGK DFHMDI SIZE=C12,40)

DFHMDF POS=COl,lO),LENGTH=11,ATTRB=CBRT,ASKIP), *
INITIAL='ORDER ENTRY',COLOR=BlUE,HILIGHT=UNDERlINE

MSGI DFHMDF POS=C03,04),LENGTH=26,ATTRB=CDRK,ASKIP), *
INITIAL='NUMBER NOT FOUND - REENTER', *
COLOR=RED,HILIGHT=BLINK

MSG2 DFHMDF POS=C04,04),LENGTH=22,ATTRB=(DRK,ASKIP), *
INITIAL='DATA ERROR - REENTER', *
COLOR=RED,HILIGHT=BLINK

DFHMDF POS=C05,04),LENGTH=09,ATTRB=PROT, *
INITIAL='NUMBER .'

CUSTNO DFHMDF POS=C05,14),LENGTH=06,ATTRB=CIC,NUM)
DFHMDF POS=C05,21),LENGTH=Ol
DFHMDF POS=C06,04),LENGTH=09,ATTRB=PROT,COlOR=BLUE, *

INITIAL='PART NO I'
PARTNO DFHMDF POS=C06,14),LENGTH=06,ATTRB=NUM

DFHMDF POS=C06,21),LENGTH=Ol
DFHMDF POS=C07,04),LENGTH=09,ATTRB=PROT,COLOR=BLUE, *

INITIAL='QUANTITYI'
QUANT DFHMDF POS=C07,14),LENGTH=06,ATTRB=NUM

DFHMDF POS=C07,21),LENGTH=Ol
DFHMDF POS=C09,Ol),LENGTH=38,ATTRB=ASKIP,COLOR=BLUE, *

INITIAL='PRESS ENTER TO CONTINUE,CLEAR TO QUIT'
DFHMSD TYPE=FINAL
END

The sytnbolic storage defmition generated as a result of the above statements would be as follows:

544 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DSECT generated by DFHSPGK

DECLARE 1 DFH$PGKI AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 MSGIL FIXED BINARY (15,0),
2 MSGIF CHARACTER (1),
2 MSGII CHARACTER (26),
2 MSG2L FIXED BINARY (15,0),
2 MSG2F CHARACTER (1),
2 MSG2I CHARACTER (22),
2 CUSTNOL FIXED BINARY (15,0),
2 CUSTNOF CHARACTER (1),
2 CUSTNOI CHARACTER (6),
2 PARTNOL FIXED BINARY (15,0),
2 PARTNOF CHARACTER (1),
2 PARTNOI CHARACTER (6),
2 QUANTL FIXED BINARY (15,0),
2 QUANTF CHARACTER (1),
2 QUANTI CHARACTER (6),
2 FILL0061 CHARACTER (1);

DECLARE 1 DFH$PGKO BASED(ADDR(DFH$PGKI» UNALIGNED,
2 DFHMS2 CHARACTER (12),
2 DFHMS3 FIXED BINARY (15,0),
2 MSGIA CHARACTER (1),
2 MSGI0 CHARACTER (26),
2 DFHMS4 FIXED BINARY (15,0),
2 MSG2A CHARACTER (1),
2 MSG20 CHARACTER (22),
2 DFHMS5 FIXED BINARY (15,0),
2 CUSTNOA CHARACTER (1),
2 CUSTNOO CHARACTER (6),
2 DFHMS6 FIXED BINARY (15,0),
2 PARTNOA CHARACTER (1),
2 PARTNOO CHARACTER (6),
2 DFHMS7 FIXED BINARY (15,0),
2 QUANTA CHARACTER (1),
2 QUANTO CHARACTER (6),
2 FILL0061 CHARACTER (1);

/* END OF MAP DEFINITION */

DFH$PGK Screen Layout

r--------------------------------'-.
+ORDER ENTRY

+NUMBER NOT FOUND - REENTER
+DATA ERROR - REENTER
+NUMBER r+XXXXXX+
+PART NO r+XXXXXX+
+QUANTITYs+XXXXXX+

+PRESS ENTER TO CONTINUE, CLEAR TO

I
I
I
I
I
I
I

QUITI ,

Appendix F. Sa"mplc Programs (PL/I) 545

I DFHSPGL Map Definition --.

I TITLE 'FILEA - MAP FOR ORDER ENTRY QUEUE PRINT - PL/I'
MAPSETL DFHMSD TYPE=&SYSPARM,MODE=OUT,LANG=PLI, *

STORAGE=AUTO,TIOAPFX=YES
DFH$PGL DFHMDI SIZE=(05,80)
TITLE DFHMDF POS=(OI,OI),LENGTH=43, *

INITIAL='NUMBER NAME ADDRESS'
NUMB DFHMDF POS=(02,OI),LENGTH=06
NAM DFHMDF POS=(02,12),LENGTH=20
ADDR DFHMDF POS=(02,37),LENGTH=20

DFHMDF POS=(03,OI),LENGTH=09,
INITIAL='PART NO :'

PART DFHMDF POS=(03,II),LENGTH=06
DFHMDF POS=(04,OI),LENGTH=09, *

INITIAL='QUANTITY:'
QUANT DFHMDF POS=(04,II),LENGTH=06

DFHMDF POS=(05,OI),LENGTH=I,
INITIAL=' ,

DFHMSD TYPE=FINAL
END

The symboHc storage definition generated as a result of the above statements would be as follows:

DSECT generated by DFIISPGIJ

DECLARE 1 DFH$PGLO AUTOMATIC UNALIGNED,
2 DFHMSI CHARACTER (12),
2 DFHMS2 FIXED BINARY (15,0),
2 TITLEA CHARACTER (I),
2 TITLEO CHARACTER (43),
2 DFHMS3 FIXED BINARY (15,0),
2 NUMBA CHARACTER (1),
2 NUMBO CHARACTER (6),
2 DFHMS4 FIXED BINARY (15,0),
2 NAMA CHARACTER (1),
2 NAMO CHARACTER (20),
2 DFHMS5 FIXED BINARY (15,0),
2 ADDRA CHARACTER (1),
2 ADDRO CHARACTER (20),
2 DFHMS6 FIXED BINARY (15,0),
2 PARTA CHARACTER (1),
2 PARTO CHARACTER (6),
2 DFHMS7 FIXED BINARY (15,0),
2 QUANTA CHARACTER (1),
2 QUANTO CHARACTER (6),
2 FILL0039 CHARACTER (1);

/* END OF MAP DEFINITION */

546 CICSjDOSjVS Application Programmer's Reference Manual (Command Level)

DFll$PG L Print Fonnat

+NUMBER NAME
+xxxxxx +xxxxxxxxxxxxxxxxxxxx
+PART NO :+xxxxxx
+QUANTITY:+xxxxxx
+x

ADDRESS
+xxxxxxxxxxxxxxxxxxxx

Appendix F. Samp]e Programs (PLfl) 547

Record Descriptions for PL/I
Sample Programs

FILEA Record Description

The FILEA record description is used by the
sample programs. It is defmed in copy code
DFH$PFIL and has the following format:

DCl 1 FIlEA,
2 FllEREC,

3 STAT CHARCl),
3 NUMB PIC'(6)9',
3 NAME CHAR(20),
3 ADDRX CHAR(20),
3 PHONE CHAR(8),
3 DATEX CHAR(S),
3 AMOUNT CHAR(S),
3 COMMENT CHAR(9);

LOGA Record Description

The LOGA record description is used by the
sample programs when an audit trait is written to a
transient data ftIe. It is defined in copy code
DFH$PLOG and has the following fonnat:

DCl 1 lOGA,
2 lOGHDR,

3 lDAY FIXED DEC C7,0),
3 lTIME FIXED DEC (7,0),
3 lTERMl CHAR(4),
2 lOGREC,
3 lSTAT CHARCl),
3 lNUMB CHAR(6),
3 lNAME CHAR(20),
3 lADDR CHAR(20),
3 lPHONE CHARCS),
3 lDATE CHARCS),
3 lAMOUNT CHARCS),
3 lCOMMENT CHAR(9);

L860 Record Description

The I J~60 record description is used by the Order
Entry Queue Print sample program when it writes
to the transient data queue IL860'. It is defined in
copy code DFH$PL86 and has the following
format:

DCl 1 l860,
2 ITEM,

3 CUSTNO CHAR(6),
3 PARTNO CHAR(6),
3 QUANTITY CHAR(6),
3 TERMID CHAR(4);

548 CICSjDOSjVS ApplicaHon Programmer's Reference Manual (Command Level)

I Appendix G. Report Controller Sample Programs

The report controller sample programs described in
this appendix are included in source form on the
report controller feature tape and are only
executable when the report controller feature is
installed.

The CICS! DOS! VS Installation and Operations
Guide describes how these sample programs, and
associated resources, can be defined to CICS and
how the programs can be executed online.

This appendix describes a CICS sample application
program based on the Low Balance Report sample
program in appendixes D, E, and F. The sample
program is presented in assembler language,
COBOL, and PL!I.

You can invoke the three versions of the sample
program by entering their transaction identifiers
(ARPS, FRPS, and PRPS respectively) onto a
clear screen.

Description

The low balance report sample program creates a
report called DFH$ARPS, DFH$CRPS, Of

DFH$PRPS respectively, which lists all entries in
the data set FILEA for which the amount is less
than or equal to $50.00.

The program shows page building techniques and
the usc of the terminal paging facilities of BMS.

The transaction is invoked by entering ARPS,
PRJ'S, Of PRPS onto a clear screen The program
docs a sequential scan through the file selecting
each entry that obeys the scarch criterion. The
pages arc built from four maps which comprise
map set DFII$AGD, using the paging option so
that the data is not displayed immediately but
instead is stored for later retrieval.

The I lEADING map is inserted at the head of
eaeh page. The detail map (DFH$AGD) is written
repeatedly until the overflow condition occurs.

The FOOTING map is then written at the foot of
the page and the HEADING map written at the
top of the next page. The command to write the
detail map that caused overflow is then repeated.
When all the data has been written the FINAL
map is written at the bottom of the last page and
the transaction terminated.

The terminal operator then enters paging
commands to display the data, clearing the screen
before entering each paging command.

Appendix G. Report Controller Sample Programs 549

Source for the Low Balance Report Sample Program (ASM)

* $SEGCDFH$ARPS),COMPCSAMPLES),PRODCCICS/DOS):
TITLE 'DFH$ARPS - CXCS/VS SAMPLE FILEA LOW BALANCE INQUIRY - -*

ASSEMBLER - WITH SPOOLER FEATURE'
DFtlEISTG DSECT
KEYNUM DS CL6 KEY TO FILE
TERMLENG DS H MAXIMUM LENGTH OF KEYED DATA
TERMDATA DS CLI INPUT AREA FOR KEYED DATA

* CIN PRACTICE LENGTH OF KEYED DATA

* WILL BE ZERO AS OPERATOR WILL ONLY

* PRESS ENTER)
EDVAL DS CL3 PAGE NUMBER EDITING FIELD
PAOEN DS CL2 PAGE NUMBER FIELD
WO~tKREG EQU 7
RETREG EQU 4 LINK REG

* I
TOK DS D TOKEN FIELD
PRlLINE DS OCLSO PRINT LINE
SPAICEI DS CLS' BLANK
PL~IUMB DS CL6 NUMBER
SPACE2 DS CLS' BLANK
PLNIAME DS CL20 NAME
SPACE3 DS CLS' BLANK
PLAMNT DS CL8 AMOUNT

* COPY DFH$AGD OUTPUT MAP
COPY DFH$AFIL FILEA'S RECORD DESCRIPTION

DFH$ARPS CSECT
MVC KEYNUM(6),=C'OOOOOO' SET RECORD KEY TO ZERO
EXEC CICS HANDLE CONDITION ERRORCERRORS) OVERFLOWCOFLOW)

ENDFILECENDFILE) LENGERRCENDTASK)
MVI PAGENA,X'OO' MOVE X'OO' TO ATTRIBUTE
MVC PAGEN,PAGEI INITIALIZE PAGE NUMBER TO I
BAL RETREG,MAPNUM MOVE PAGENUMBER TO MAP AREA
EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$AGD') ACCUM PAGING *

ERASE

* 2 EXEC CICS SPOOLOPEN REPORTC'DFH$ARPS') TOKENCTOK) * TITLEC'LOW BALANCE REPORT') HEADCHEAD) DATETIME * NOSEP NOCC HEADNUM
EXEC CICS STARTBR DATASETC~FILEA') RIDFLDCKEYNUM)

REPEAT DS OH
EXEC CICS READNEXT INTOCFILEA) DATASETC'FILEA') * RIDFLDCKEYNUM)
CLC AMOUNT,LOWLIM COMPARE AMOUNT ON RECORD WITH LIM
BH REPEAT .. OK, GREATER THAN $SO, TRY NEXT
XC DFH$AGDOCDFH$AGDE-DFH$AGDO),DFH$AGDO CLEAR MAP
MVC AMOUNTO,AMOUNT MOVE AMOUNT ON FILE TO MAP
MVC NUMBERO,NUMB MOVE ACOUNT NUMBER TO MAP
MVC NAMEO,NAME MOVE NAME TO MAP

* 3. MVC PLAMNT,AMOUNT MOVE AMOUNT ON FILE TO PRINT LINE
MVC PLNUMB,NUMB MOVE ACOUNT NUMBER TO PRINT LINE
MVC PLNAME,NAME MOVE NAME TO PRINT LINE

4 EXEC eICS SPOOLWRITE REPORTC'DFH$ARPS') TOKENCTOK) * FROMCPRTLINE) FLENGTHCSO)
JE

EXEC CICS SEND MAPC'DFH$AGD') MAPSETC'DFH$AGD') ACCUM PAGING

550 CICSjDOSjVS Application Programmer's Reference Manual (Comrmmd Level)

Source for the I.A>w Balance Report Sample Program (I\S1\1) (Cont'd)

B REPEAT GO BUILD NEXT MAP
.*.*.** •• ******
* END ROUTINE AND GENERAL ROUTINES *
•• ***********.* •• ************.**.* ••• *.* ••• * ••••• **.* •••• **.* •• **.*.***
MAPNUM DS OH ROUTINE PUTS PAGE NUM IN CHAR FORM

UNPK EDVAL,PAGEN
01 EDVAL+L'EDVAL-I,X'FO' ZERO FILL PAGE NUMBER
MVC PAGENO,EDVAL MOVE PAGE NUMBER TO OUTPUT MAP
BR RETREG RETURN

ENDFILE DS OH END OF FILE CONDITION RAISED

* 5

6

ENDTASK

ERRORS

OFLOW

PAGEl
LOWLIM
OPINSTR

EXEC CICS SEND MAP ('FINAL') MAPSET C'DFH$AGD') MAPONLY *
ACCUM PAGING

EXEC CICS SEND PAGE
EXEC CICS SEND TEXT FROM (OPINSTR) ERASE
EXEC CICS ENDBR DATASET('FILEA')

EXEC CICS SPOOLWRITE REPORTC'DFH$ARPS') TOKENCTOK)
FROMClASTLINE) FLENGTH(26)

EXEC CICS SPOOLCLOSE REPORTC'DFH$ARPS') TOKENCTOK) HOLD

LA WORKREG,I
STH WORKREG,TERMLENG

A RECEIVE COMMAND IS ISSUED TO GIVE
THE TERMINAL OPERATOR A CHANCE TO
READ THE PROMPTING MESSAGE.

THE TRANSACTION WILL TERMINATE WHEN
THE OPERATOR PRESSES THE ENTER KEY.

PAGING COMMANDS CAN THEN BE ISSUED.

NO HARM IS DONE IF THE OPERATOR
TYPES IN DATA BEFORE PRESSING THE
ENTER KEY.

EXEC CICS RECEIVE INTOCTERMDATA) LENGTHCTERMLENG)
EQU •
EXEC CICS RETURN
DS OH
EXEC CICS HANDLE CONDITION ERROR
EXEC CICS PURGE MESSAGE
EXEC CICS ABEND ABCODEC'ERRS')
DS OH PAGE BUILT HERE
EXEC CICS SEND MAPC'FOOTING') MAPSETC'DFH$AGD')

MAPONLY ACCUM PAGING ERASE
AP PAGEN,=P'I' INCREMENT PAGE COUNT
MVI PAGENA,X'OO' MOVE X'OO' INTO ATTRIBUTE
BAL RETREG,MAPNUM GO SET UP PAGE NUMBER ON MAP
EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$AGD') ACCUM PAGING *

ERASE
EXEC CICS SEND MAPC'DFH$AGD') MAPSETC'DFH$AGD') ACCUM PAGING
B REPEAT
DC PL2'1' INITIAL PAGE NUM
DC CL8'$0050.00' LOWER LIMIT FOR OK AMOUNT
DC CL52'PRESS THE ENTER KEY AND FOLLOW WITH PAGING COMMANDS*

, OPERATOR INSTRUCTION
HEAD DC
LASTLINE DC

END

CL132' NUMBER NAME
CL26'END OF LOW BALANCE REPORT'

AMOUNT '

Appendix G. Report Cont.roller Sample Programs 551

Source for the Low Balance Report Sample Program (COnOI..)

~ $SEGCDFH$CRPS),COMPCSAMPLES),PRODCCICS/DOS)r ~

~~~~~~~~~~~~~~~~~~~****~*~~~~~*~~*************~~*~*************** 
~ DFH$CRPS - CICS/VS SAMPLE FILEA LOW BALANCE INQUIRY * 
* - COBOL WITH SPOOLER FEATURE * 
*~**~************************************************************ 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FILECRPS. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

1 77 TOK PIC X(8) VALUE LOW-VALUES. 

2 

77 HEAD PIC X(132) VALUE 'NUMBER NAME 
, AMOUNT'. 

77 LASTLINE PIC X(26) VALUE 'END OF LOW BALANCE REPORT'. 
77 LOWLIM PIC X(8) VALUE '$0050.00'. 
77 KEYNUM PIC 9(6) VALUE O. 

* THE INPUT AREA FOR KEYED DATA AND THE * MAXIMUM LENGTH OF KEYED DATA FOLLOW. * IN PRACTICE THE OPERATOR WILL ONLY 
* PRESS ENTER. 

77 TERMDATA PIC XCI). 
77 TERMLENG PIC S9(4) COMPo 
77 PAGEN PIC 9(3) VALUE 1. 
77 OPINSTR PIC X(52) VALUE 'PRESS THE ENTER KEY AND FOLLOW 

'WITH PAGING COMMANDS.'. 

01 FILEA. 

* 

COpy DFH$CGD. 
COPY DFH$CFIL. 

* 

01 PRTLINE. 
02 FILLER 
02 PLNUMB 
02 FILLER 
02 PLNAME 
02 FILLER 
02 PLAMNT 

PIC XCS). 
PIC X(6). 
PIC XCS). 
PIC X(20). 
PIC XCS). 
PIC X(8). 

PROCEDURE DIVISION. 
EXECUTE CICS HANDLE CONDITION ERRORCERRORS) 

OVERFLOWCOFLOW) ENDFILECENDFILE) 
LENGERR(ENDTASK) END-EXEC 

MOVE LOW-VALUE TO PAGENA 
MOVE PAGEN TO PAGENO 
EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$CGD') ACCUM 

PAGING ERASE END-EXEC 

EXEC CICS SPOOLOPEN REPORTC'DFH$CRPS') TOKENCTOK) 
TITLEC'LOW BALANCE REPORT') HEADCHEAD) DATETIME 
NOSEP NOCC HEADNUM END-EXEC 

EXEC CICS STARTBR DATASETC'FILEA') RIDFLDCKEYNUM) END-EXEC. 
REPEAT. 

EXEC CICS READNEXT INTOCFILEA) RIDFLDCKEYNUM) 
DATASETC'FILEA') END-EXEC 

MOVE AMOUNT TO AMOUNTO 
IF AMOUNTO GREATER THAN LOWLIM GO TO REPEAT. 
MOVE LOW-VALUE TO LINEO 
MOVE AMOUNT TO AMOUNTO 
MOVE NUMB TO NUMBERO 
MOVE NAME TO NAMEO 

552 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



3 

4 

5 

6 

Source for the Low Balance Report Sample Program (COBOL) (Cont'd) 

MOVE NAME TO NAMEO 

MOVE AMOUNT TO PLAMNT 
MOVE NUMB TO PLNUMB 
MOVE NAME TO PLNAME 
EXEC CICS SPOOLWRITE REPORT('DFH$CRPS') TOKEN(TOK) 

FROMCPRTLINE) FlENGTHCSO) END-EXEC 

EXEC CICS SEND MAPC'lINE') MAPSET('DFH$CGD') 
ACCUM PAGING END-EXEC 

GO TO REPEAT. 
ENDFILE. 

EXEC CICS SEND MAP('FINAL') MAPSET('DFH$CGD') 
MAPONLY ACCUM PAGING END-EXEC 

EXEC CICS SEND PAGE END-EXEC 
EXEC CICS SEND TEXT FROMCOPINSTR) LENGTHCS2) ERASE END-EXEC 
EXEC CICS ENDBR DATASET('FILEA') END-EXEC 

EXEC CICS SPOOLWRITE REPORTC'DFH$CRPS') TOKEN(TOK) 
FROMCLASTLINE) FLENGTH(26) END-EXEC 

EXEC CICS SPOOLCLOSE REPORT('DFH$CRPS') TOKENCTOK) 
HOLD END-EXEC 

A RECEIVE COMMAND IS ISSUED TO GIVE THE 
TERMINAL OPERATOR A CHANCE TO READ THE 
PROMPTING MESSAGE. 

* THE TRANSACTION WILL TERMINATE WHEN THE * OPERATOR PRESSES THE ENTER KEY. 

* * PAGING COMMANDS CAN THEN BE ISSUED 
* * NO HARM IS DONE IF THE OPERATOR TYPES IN * DATA BEFORE PRESSING THE ENTER KEY. 

EXEC CICS RECEIVE INTO(TERMDATA) LENGTH(TERMLENG) END-EXEC. 
ENDTASK. 

EXEC CICS RETURN END-EXEC. 
GOBACK. 

ERRORS. 
EXEC CICS HANDLE CONDITION ERROR END-EXEC 
EXEC CICS PURGE MESSAGE END-EXEC 
EXEC CICS ABEND ABCODEC'ERRS') END-EXEC. 

OFLOW. 
EXEC CICS SEND MAPC'FOOTING') MAPSET('DFH$CGD') 

MAPONlY ACCUM PAGING END-EXEC 
ADD 1 TO PAGEN 
MOVE PAGEN TO PAGENO 
EXEC CICS SEND MAP('HEADING') MAPSETC'DFH$CGD') 

ACCUM PAGING ERASE END-EXEC. 
EXEC CICS SEND MAPC'LINE') MAPSETC'DFH$CGD') 

ACCUM PAGING END-EXEC 
GO TO REPEAT. 

Appendix G. Report Controller Sample Programs 553 



Source for the I..ow Balance Report Sample Program (ptfl) 

/* $SEGCDFH$PRPS),COMPCSAMPlES),PRODCCICS/DOS)I ~/ 

/*~*******~~***********************************~*********************/ 
/* DFH$PRPS - CICS/VS SAMPLE FILEA LOW BALANCE INQUIRY - PL/I ~/ 
/* .. PL I WITH SPOOL ER FEATURE ~/ 

/)E*********~~****~~**************************************************/ 
REPORT, P~OCOPTIONSCMAIN); 

1 DCL TOK CHAR(8) INITC' ')i 
Del HEAD CHAR(132) STATIC 

INITC' NUMBER NAME AMOUNT')i 
DCl lASTlINE CHAR(26) STATIC 

INITC'END OF lOW BALANCE REPORT')i 
DCl lOWlIM CHAR(8) INITC'$OOSO.OO'); 
DCl KEYNUM PIC'999999' INITCO); 
DCL PAGEN PIC'999' INITCl)i 
DCl OPINSTR CHARCS2) STATIC 

INITC'PRESS THE ENTER KEY AND FOllOW WITH PAGING COMMANDS.'); 
DCl TERM DATA CHARCl)i 
DCl TERM-lENG FIXED BINClS)i 
DCl STRING CHARC2S6) BASED; 
.XINClUDE DFH$PGDi 
Y.INClUDE DFH$PFIl; 
DCl 1 PRTLINE, 

2 FIllOl CHARCS) INITC' I), 
2 PlNUMB PIC'(6)9', 
2 FIl102 CHARCS) INITC' I), 
2 PlNAME CHAR(20), 
2 FIl103 CHARCS) INITC' I), 
2 PLAMNT CHAR(20); 

EXEC CICS HANDLE CONDITION ERRORCERRORS) OVERFlOWCOFlOW) 
ENDFIlECENDFIlE) lENGERRCEND_TASK); 

PAGENA=LOWCl); 
PAGENO=PAGEN; 
EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$PGD') ACCUM PAGING ERASEi 

2 EXEC CICS SPOOlOPEN REPORTC'DFH$PRPS') TOKENCTOK) 
TITlEC'lOW BALANCE REPORT') HEADCHEAD) DATETIME 
NOSEP NOCC HEADNUM; 

EXEC eICS STARTBR DATASETC'FIlEA') RIDFlDCKEYNUM); 
REPEAT: 
EXEC eICS READNEXT INTOCFIlEA) DATASETC'FIlEA') RIDFlDCKEYNUM); 

IF AMOUNT<=lOWlIM THEN 
DO; 

SUBSTRCADDRCDFH$PGDO)->STRING,l,STGCDFH$PGDO»= 

AMOUNTO = AMOUNT; 
NUMBERO = NUMB; 
NAMEO = NAMEi 

3 PlAMNT = AMOUNTi 
PlNUMB = NUMBi 
PlNAME = NAMEi 

LOWCSTGCDFH$PGDO»; 

4 EXEC CICS SPOOlWRITE REPORTC'DFH$PRPS') TOKENCTOK) 
FROMCPRTLINE) FLENGTHCSO); 

EXEC eICS SEND MAPC'DFH$PGD') MAPSETC'DFH$PGD') ACCUM PAGING; 
END; 

GOTO REPEAT; 

ENDFIlE: 
EXEC CICS SEND MAPC'FINAl') MAPSETC'DFH$PGD') MAPONlY ACCUM PAGING; 
EXEC CICS SEND PAGEi 
EXEC CICS SEND TEXT FROMCOPINSTR) ERASE; 
EXEC CICS ENDBR DATASETC'FIlEA'); 

554 CICSjDOSjVS AppJication Programmer's Reference Manual (Command Level) 



Source for the I..ow Balance Report Sample Program (PL/I) (Cont'd) 

5 EXEC CICS SPOOLWRITE REPORTC'DFH$PRPS') TOKENCTOK) 
FROMCLASTLINE) FLENGTH(26); 

6 EXEC CICS SPOOLCLOSE REPORTC'DFH$PRPS') TOKENCTOK) HOLD; 
/~ A RECEIVE IS ISSUED TO GIVE THE 

TERMINAL OPERATOR A CHANCE TO 
READ THE PROMPTING MESSAGE. 
THE TRANSACTION WILL TERMINATE 
WHEN THE OPERATOR PRESSES THE 
ENTER KEY ~/ 

/~ NO HARM DONE IF OPERATOR TYPES IN 
DATA IN ADDITION TO PRESSING THE 
ENTER KEY ~/ 

TERM LENG=I; 
EXEC-CICS RECEIVE INTOCTERM_DATA) LENGTH(TERM_LENG); 

END TASK: 
EXEC CICS RETURN; 

ERRORS, 
EXEC CICS HANDLE CONDITION ERROR; 
EXEC CICS PURGE MESSAGE; 
EXEC CICS ABEND ABCODEC'ERRS'); 

OFLOW: 
EXEC CICS SEND MAPC'FOOTING') MAPSET('DFH$PGD') 

MAPONLY ACCUM PAGING; 
PAGEN = PAGEN+I; 
PAGENA = LOWCI); 
PAGENO = PAGEN; 
EXEC CICS SEND MAPC'HEADING') MAPSETC'DFH$PGD') 

ACCUM PAGING ERASE; 
EXEC CICS SEND MAPC'DFH$PGD') MAPSET('DFH$PGD') ACCUM PAGING; 
GOTO REPEAT; 
END; 

'-----------------------------~-----'"- ---, 

Program Notes 

1. The TOKEN field is dermed on a word 
boundary. 

2. The SPOOLOPEN command opens a report 
on the POWER spool file, a report token is 
allocated and returned in the TO K field. You 
decide at this stage which options the report 
will have. 

In this case, the report will have a title of LOW 
BALANCE REPORT, will have a heading in 
each page consisting of NUMBER - NAME -
AMOUNT, with the page number, the date, 
and the time inserted on the right. 

3. I ;ields are moved from the selected customer 
record to the area that will be written to the 
report. 

4. The customer details line is written to the 
report. 

5. The end of report message is written to the 
report. 

6. The report is closed. At this stage the status of 
the report may be decided. In this case, the 
report called DFII$ARPS, DFH$CRPS, or 
DFII$PRPS will have been created and will be 
on the POWER spool file with a disposition of 
L. 

A.ppendix G. Report Controller Sample Programs 555 





Index 

I Special Characters I 
& (CL interpreter) b5 
&DFHEIMX (macro global bit) 15. 
*ASM statement (assembler language) 16 
*PROCESS statement (PL/I) 16 
? (eL interpreter) 62 

ABCODE option 43, 387 
ABEND (abnormal termination) exit 385 
ABEND command 387 
abend user task (EDF) 54 
abnormal termination 

exceptional condition 387 
options 387 
reactivate an exit 385 
recovery 385 

absolute expression 6 
ABSTIME option 346 
access to DL/I data base 

DL/I CALL statement 115 
EXEC DL/I command 105 

access to system information 
ADDRESS command 41 
ASSIGN command 42 
CICS storage areas 41 
EXEC interface block (EIB) 41 

ACCOUNT option 393 
ACCUM option 186, 229' 
activate an ABEND exit 385 
active partjtion 165, 168 
ACl'PARTN option 173, 230 
adding records 

to nDI dat.a set. 325 
to DAM data set 90 
to VSAM data set 82 

address 
cursor 253 
pcn 116 

ADDRESS command 41 
AID (see attention identifier) 
AIX (alternate index) 76 
ALARM option 153,230 
ALIGNED attribute (PL/I) 9 
ALL option 230 
ALLOCATE command 258, 261 
alternate facility 239 
alternate index (AIX) 76 
alternate index path 76 

alternat.e key 76 
alternate screen size 140 
1\., :rSCR N operand 221 
ampersand (CL interpreter) 65 
I\.NYKFYoption 156, 254 
I\.PI (application programming interface) 41 
I\. POST option 19 
application data area of screen 139 
application partition set 168, 172 
application program logical levels 355 
application program using commands and macros 15 
application programming interface (API) 41 
application-oriented information (LU6) 259 
I\.PPLIn option 43 
argument value 

assemhler language 6 
COBOL 7 
PL/I R 

ASA option 313 
AS IS option 

hasic mapping support 155, 230 
terminal control 283 

ASKTIME command 340 
assemhler language 

argument value 6 
coding conventions 5 
LENGTH option default 7 
program exit 12 
programming techniques 24 
register contentc; 12 
restrictions 24 
sample programs 427, 549 
translated code 12 

assemhling a map ] 45 
assenlhling a partit.ion set ] 7] 
ASSIGN command 42 
asynchronous interrupt 242 
asynchronous journal output 400 
asynchronollS page huild 158 
ATI (see automat.ic task initiation) 
A'ITA ell 1 D option 283 
attention condition (SIGNAL) 248 
attention identifier (AID) 

constants 224 
III\. NDLE AID command 156 
input without data 253 
list (DFI lAID) 254 
3270 input operation 136 

AITRB operand 207, 221 
attrihutc charactcr 136, 150 
attribute constants 150 
attribute control character list (DFHBMSCA) 222, 255 
attrihute. extended 162 
audihle alarm (MSR) 176 
Audio Response Unit (7770) 2R2 

Index 557 



audio terminal (2721) 282 
autoanswer transaction (3735) 276 
autocall transaction (3735) 276 
automated features of the spooler 301 
automatic task initiation (A TI) 368 
AUTOPAGE option 183,230 
autoskip field 137 
AUXILIARY option 376 
auxiliary storage temporary data 373 
auxiliary trace facility 392 

[!] 
background transparency 139 
back out of resources 405 
base color 137 
base locator for linkage (BLL) 

chained storage areas 26 
large storage areas 27 
OCCURS DEPENDING ON clauses 27 
optimization feature 27 
storage addressing 25 

BASE operand 208 
base state 169 
basic mapping support (BMS) 

anintroduction 131 
assembling maps 145 
block data format 179 
BMS and GDDM 143 
cataloging maps 145 
CIVISG message switching transaction 
completing a logical message 183 
coordinating BMS and another screen 

manager 154 
cumulative mapping 186 
cumulative output processing 186 
cursor position 153 
delet.ing a logical message 183 

201 

determining the actual input partition (RECEIVE 
PARTN) 225 

device control options 153 
exceptional conditions 157,236 
field data format 148, 149 
field definition macro 144, 206 
field group 144 
floating maps 186 
full function BMS 181 
GlDDM coordination 143, 154 
header and t.railer maps 186 
input field suffix 148 
input partition (RECEIVE PARTN) 173 
invalid data 150 
loading a partition set 172 
logical device components 175 
logical message 181 
map definition macro 142, 206 

map positioning 187 
map set definition macro 141, 205 
map sel suffixing 145 
map set termination 144 
map selc; 132 
map size 24 
mapping input data 154, 225 
mapping output data 150 
maps 147 
minimum function BMS 135 
null map 142 
options 229 
outboard formatting 179 
output field suffixes 149 
page overflow 186, 190 
partition definition macro 170, 220 
partition set definition macro 170, 220 
physical map 145 
pregcnerated versions 134 
printer support 163 
returning mapped data to a program 201 
routing a logical message (ROUTE) 195 
sec:; and non-3270 printers 164 
sending a user defined data stream (SEND TEXT 

NOFDIT) 203 
sending data previously mapped by BMS (SEND 
TEXT MAPPED) 203 

sending data to a display 150 
sending device controls without data (SEND 

CONTROL) 153 
sending text data (SEND TEXT) 162 
standard function BMS 161 
symbolic map 145, 147 
terminal code table 202 
terminal operator paging 184 
3270 printer using NLEOM 163 
3270 printer without NLEOM 163 

balch data interchange 323 
add record to data set 325 
delete a record from data set 326 
destination identification 323 
exceptional conditions 329 
interrogate a data set 324 
options 327 
read record from data set 324 
request next record number 326 
send data to output device 326 
terminate data set 326 
update a record in data set 325 
wait for function completion 327 

balch logical unit (3770) 278 
batch mode application (3740) 277 
OfF DEEDIT (built-in function) 409 
blank lines and 3270 printer 159 
OLL (see base locator for linkage) 
block data format (OMS) 179 
block reference 89 
blue parameter of COLOR operand 209 

558 CICS/DOSjVS AppJication Programmer's Reference Manual (Command Level) 



BMS (see basic mapping support) 
BMS logical message (see logical messages) 
BOTHNUM option 313 
BOTTOM command (CEBR) 70 
bracket protocol (LAST option) 248 
bright intensity field 137 
browse operation 

DAM 89 
ending 97 
read next record during 96 
read previous record 96 
reset starting point 97 
specify starting point 95 
VSAM 79 

browse temporary storage (EOF) 54 
browse transaction (CEBR) 69 
BT AM programmable device 250 
BTRANS option 43 
BUFFER option 283 
BUFSZE operand 221 
BUllO ATTACH command 259 
built-in function (BIF OEEOIT) 409 

CALL statement 24 
CALLDLI macro 115 
CANCEL command 345 
CANCEL option 387 
CARD option 327 
cataloging a map 145 
cataloging a partition set 171 
CBIOERR condition 290 
CBL statement (COBOL) 16 
CBUFF option 283 
CEBR (browse transaction) 69 
CECI (see command level interpreter) 61 
CEC..-S (see command level interpreter) 61 
CEDF transaction 51 
cell size for partitions 174 
chained storage area, CO BO L 26 
chaining of data 244, 246 
character attribute 162 
character cell size 169, 174 
CHARSZE operand 221 
checking a D LII call 119 
checkout, program 49 
CICS optiofl 17 
CLASS option 313 
CLEAR key 156, 165 
CLEAR option 156, 254 
CLEAR PARTITION key 165 
closing a report 299 
CLRPARTN option 254 
CMSG message switching transaction 201 
CNOTCOMPL option 283 

COBOl, 
argument value 7 
base locator for linkage (BtL) 25 
compilers supported 25 
program segments 28 
restrict.ions 24 
sample programs 471 
translated code 15 

CODEREG argument 14 
coding conventions 5 
CO 1,0 R operand 209 
CO to R option 43 
COLUMN command (CEnR) 70 
COLUMN operand 187,210 

. command 
argument values 6 
end-of-command delimiter 5 
execut.ion (CL interpreter) 64 
format 5 
macro equivalent 425 
printer spooling 311 
report controller 311 
syntax check 63 
syntax notation 4 

commilnd language translator 
dat.a set 11 
optional facilities ] 6 
translated code 12 

command level interpreter (CECI/CECS) 
an introduction 61 
command input area 62 
information area 63 
inst.alling 68 
invoking 61 
PI' key values area 66 
program control 67 
screen layout 62 
security rules 68 
status area 62 
t.erminal sharing 67 
variables 65 

COMMAREA option 363 
common huffer, out.put to (2980) 267 
communication area (DFIICOMMAREA) 26 
communication line, relinquishing 242 
compiler options 17 
compilers supported 

COBOL 25 
PL/I 29 

COMPLETE option 396 
conditions (exceptional conditions) 31 
CONFIRM option 283 
CONNECT PROCESS com'1land 261 
CONSOLE option 327 
constants 

AID values (OFIIAIO) 224 
attribute values (OFIIBMSCA) 222 
for examining EIBAID field 157,224 

Index 559 



for MSR control values 224 
for printer format controls 222 
for 3270 attributes 222 
MSR control (DFHMSRCA) 224 
printer control values (DFHBMSCA) 222 
3270 attributes 150 

control 
exclusive, DAM 91 
exclusive, VSAM 88 
pass with return 355 
pass without return 356 
rc;:turn 356 
trace 393 

control area, VSAM 76 
control interval, VSAM 76 
CONVERSE command 242 
CONVERSE option 283 
conve:rse with terminal or L U 242 
CONVID option 284 
COPIES option 313 
copy 

displayed information 253 
symbolic description map 147 

copy book 
DFHAID 224 
DFHBMSCA 150, 222 
DFHEIBLK 13 
DFHMSRCA 224 

copybook DFHAIo 157 
create a journal record 401 
CSA option 42 
CfLCHAR option 284 
CfRL operand 210 
cumullative output processing 186 
cumuHative text processing 192 
CURRENT option 230 
CURSOR option 153,230 
cursor position 

basic mapping support 153 
terminal control 253 

CURSOR SELECT key 157 
CW A option 42 
CWALENG option 44 

[~ 
DAM· 

browsing operations 89 
data sets 89, 90 
exclusive control 91 

data 
chaining 244 
temporary storage 373 

data communication operations 129 
data comparison 167 
data definition 22 

data fields on screen 139 
data initialization 22 
data integrity 77 
data interchange (see batch data interchange) 
DATA operand 210 
DATA option 366 
data set 

access from CIC..5 application programs 78 
hatch data interchange 323 
blocked 77 
DAM 89 
identification 78 
translator 11 
VSAM 87 

data-area argument 6 
data-value argument 6 
data, passing to other program 358 
DATAONLYoption 151,230 
DATAREG argument 14 
DATAS ET option 98 
DATASTR option 284 
date feature of the spooler 303 
date field of FIB 41 
DATE option 346 
DATEFORM option 346 
DATESEP option 346 
DATETIME option 313 
DA YCOUNT option 346 
DA YOFMONTI I option 346 
DAYOFWEEK option 346 
DCI' option 396 
DDMMYY option 346 
deadlock prevention 88 
DEBKEY option 98 
dehlocking argument 89 
DEBREC option 98 
DEBU(, option 17 
dehugging 49, 379 
default action for conditions 3 I 
default screen size 140 
deferred journal output 400 
deferred light pen field 157 
defining a map set 141 
defining partition sets 170 
definite response protocol 

hatch data interchange 324 
terminal control 247 

DEFRESP option 
hatch data interchange 327 
terminal control 247, 284 

DELAY command 340 
delay processing of task 340 
DELETE command 95 
DELETE option 313 
DELETE option, report controller 299 
DEI,ETEQ 'I'D command 370 
DELETEQ TS command 375 
deleting 

560 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



batch data interchange record 326 
file control record 95 
loaded program 358 
temporary storage queue 375 
transient data queue 370 

DELIMITER option 44 
delimiter, end-of-command 5 
DEQ command 353 
dequeue from resource 353 
DEST option 284 
DESTCOUNT option 44,201,229 
DESTID option 

ASSIGN command 44 
batch data interchange 327 

DESTIDLENG option 
ASSIGN command 44 
batch data interchange 327 

destination 
extrapartition 368 
identification 323 
indirect 368 
intrapartition 367 

destination for a report 307 
DESTINATION option 314 
detect an attention condition 248 
device control options (BMS) 153,194 
device dependent data stream 131 
DFHAID copy book 224,254 
DFHBMSCA copy book 150, 222, 255 
DFHCOMMAREA (communication area) 26 
DFHEAI interface processor 12 
DFHECALL macro 12 
DFHEIBLK copy book 13 
DFHEICAL macro - use DFHECALL 12 
DFHEIEND macro 12 
DFHEIENT macro 12 

CODEREG 14 
DATAREG 14 
defaults 14 
EIBREG 14 

DFHEIPLR symbolic register 14 
DFHEIRET macro 12 
DFHEISTG macro 12 
DFHMDF field definition macro 143, 206 
DFHMDI map definition macro 142, 206 
DFIIMSD map set definition macro 141,205 
DFI-IMSRCA copy book 176, 224 
DFI-IPDI partition definition macro 170, 220 
DFI-IPSD partition set definition macro 220 
DFHRESP builtin function 32 
DFH2980 structure 267 
DIB (DL/I interface block) 108 
direct terminal 197 
DISABLED condition 100 
disconnect a switched line 242 
display device operations 252 

attention identifier (AID) 253 
attention identifier list (DFHAIO) 254 
copy displayed information 253 

cursor address 253 
erase all unprotected fields 253 
input operation without data 253 
pass control on receipt of an A I D 254 
print displayed information 252 
standard attribute/printer control character list 

(DfIIBMSCA) 222, 255 
display partitioning 165 
display register (EDF) 55 
display trigger field 177 
disposition and message routing 197 
distributed report printing, report controller 300 
distributed transaction processing (DTP) 239 
DL/I 

access scheduling 115 
and EDF 59 
call check 119 
CALL statement ]] 5 
data hase access 116 
data hase call 118 
EXEC DLI command 105 
interface block (DIB) 108 
response codes 119 
sync pointe; 405 
work area 117 

DLI option 17 
DSA'ITS operand 211 
DSIDERR condition 100 
DSSTAT condition 329 
DTP (distrihuted transaction processing) 239 
dual screen mode (EDF) 51 
DUMP command 396 
dump control 396 
DUMPCODE option 396 
DUPKEY condition 100 
DUPREe condition 100 
dynamic program 23 
dynamic storage 12 

ECADDR option 347 
EDF (sec execution diagnostic facility) 
EDF option 17, 71 
EI option 393 
EIB (see EXEC interface block) 
EIBAID field 156,157,413 

examining contents 224 
EIBATI' field 413 
EIBCALEN field 413 
EIBCOMPL field 413 
EIBCONF field 413 
EIBCPOSN field 413 
EIBDATE field 340,414 
ElnDS field 414 
EIBEOC field 414 

Index 561 



EI8ERR field 414 
EIBERRCD field 414 
EIBFMH field 414 
EIBFN field 33 
EIBFREE field 415 
EI8NODAT field 416 
EIBRCODE field 33.416 
EIBRIECV field 418 
EIBRlEG argument 14 
EIBRIEQID field 418 
EIBRIESP field 418 
EIBRIESP2 field 320. 419 
EIBRILDBK.field 419 
EIBRSRCE field 420 
EIBSIG field 420 
EIBSYNC field 420 
EIBSYNRB field 420 
EIBTASKN field 420 
EIBTIME field 340. 420 
EIBTRMID field 420 
EIBTRNID ,field 420 
end browse operation 97 
end of message (EO M) order 163 
END-EXEC delimiter (COBOL) 5 
end-of-command delimiter 5 
ENDBR command 97 
ENDDATA condition 349 
ENDFILE condition 101 
ENDINPT condition 290 
ENQ command 353 
ENQBUSY condition 354 
enqueue upon resource 353 
ENTER command 392 
ENTER key 66.156 
ENTER option 156. 254 
ENTRY option 363 
entry point address 23 
entry point. trace 389 
entry to assembler program 12 
entry-sequenced data set (ESDS) 76 
ENTRYNAME option 393 
ENVDEFERR condition 350 
EOC condition 

basic mapping support 236 
terminal control 290 

EODS condition 
basic mapping support 236 
batch data interchange 329 
terminal control 290 

EO F condition 290 
EOM (end of message) order 163 
EPILOG option 17 
EQUAL option 98 
equated symbols 6 
erase all unprotected fields 253 
ERASE option 153. 231 

terminal control 284 
ERASEAUP option 153. 231 

ERROR condition 32 
error handling 22 
ERRTERM option 231 
ESCAPE option 306. 314 
ESDS (entry-sequenced data set) 76 
establish a sync point 406 
event 

control area. timer 341 
monitoring point 389 
waiting for 342 

exceptional conditions 
abnormal termination recovery 387 
basic mapping support 157, 236 
batch data interchange 329 
description 31 
file control 100 
IIANDLE CONDITION command 34 
IGNORE CONDITION command 35 
interval control 349 
journal control 403 
list of 35 
partitions 175 
program control 364 
storage control 366 
task control 354 
temporary storage control 377 
terminal control 290 
trace control 394 
transient data control 371 

exceptional conditions for the report controller 320 
exclusive control 

DAM 91 
releasing (UNLOCK) 95 
VSAM 88 

EX EC CI CS command format 5 
EXEC 1)1.1 command 59, 105 
EXEC interface block (EIB) 

description 41 
fields 413 

execution diagnostic facility (EDf') 
CE B R initiation 69 
CED ... transaction 51 
displays 52, 57 
dual screen mode 51 
EXEC DLI command 59. 105 
functions 49 
installing 51 
invoking 51 
program labels 58 
pseudoconversational program 58 
security rules 51 
single screen mode 51 
terminal sharing 54 

exit (sec abnormal termination recovery) 
exit from ASM program 12 
expanded area (Cl interpreter) 66 
expiration time 

notification when reached 341 

562 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



specifying 339 
EXPIRED condition 350 
EXTATT operand 211 
EXTDS option 44 
extended attribute 162 
extended color 137 
EXTRACr ATTACH command 259 
EXTRACT LOGONMSG command 249 
EXTRACT PROCESS command 261 
EXTRACr TCT command 259 
extrapartition destination 368 

FACILITY option 44 
facility, alternate 239 
facility, principal 239 
FCI option 44 
FC! option 396 
FE option 17 
field concepts, 3270 136 
field data format (BMS) 148, 149 
field definition macro (BMS) 144, 206 
field edit built-in function 409 
field group 144 
field of EIO 41 
FIELD option 409 
field outlining 139 
field separator operand 211 
fields, EIB 413 
file control 

an overview 75 
DAM data sets 89 
data set identification 78 
deleting VSAM records 95 
end browse operation 97 
exceptional conditions 100 
options 98 
read a record 93 
read next record 96 
read previous record 96 
release exclusive control 95 
reset start for browse 97 
specify start for browse 95 
update a record 94 
VSAM data sets 87 

. writing new record (WRITE) 94 
FIND command (CEBR) 70 
flag byte, route list 200 
FLAG option 17 
FLDSEP operand 211 
FLENGTH option 241, 314, 363, 366, 396 
FLENGTH option, report controller 298 
floating maps 186 
FMH (see function management header) 
FMH option 285, 347 

FMIIPARM option 231 
FOOT option 314 
footing feature of the spooler 302 
FOOTNUM option 315 
form feed control (BMS) 159 
format 

command 5 
data 131 
trnce table 390 

format conversion, report controller 300 
format of a report 300 
FORMA1TIME option 340 
FORMFEED option 153, 164,231 
FORMS option 315 
FREE command 250,259 
free main storage 365 
FREEKB option 153,231 
f'REEMAIN command 365 
FREEMAIN restriction 23 
FROM option 315 

basic mapping support 231 
batch data interchange 327 
dump control 396 
file control 98 
interval control 347 
journal control 402 
temporary storage control 376 
terminal control 285 
trace control 393 
transient data control 370 

FROM option, report controller 298 
FROMFLENGTH option 241 
FROMLENGTII option 285 
FRSET option 153, 231 
full function OMS 181 
full function logical unit (3790) 279 
fullword length option 241 
FUNCERR condition 329 
function management header (i;MII) 247 
function that is unsupported 33 

GCIIARS option 44 
GCODES option 45 
Gf)DM coordination (OMS) 

GDDM GSFLD call 154 
(JDDM PSRSRV call 143 
graphic hole 154 
restriction with partitions 175 

G DS option 1 7 
general banking terminal system (see 2980) 
generic key 78 
GENERIC option 98 
GET command (CEOR) 70 
get main st.orage 365 

Index 563 



GETMAIN command 365 
graphic hole 154 
green parameter of COLOR operand 209 
GRPNAME operand 144, 211 
GTEQ option 98 

HANDLE ABEND command 385 
HANDLE AID command 156, 178, 254 
HANDLE CONDITION command 34 
hardware print key 158 
HEAD option 315 
HEADER operand 187 

map definition macros 212 
HEADER option 192,231 
heading feature of the spooler 302 
HEADNVM option 315 
hhmmss argument 6 
highlighting 137 
HILIGHT operand 212 
HILIGlHT option 45 
HOLD option 315, 363 
HOLD option, report control1ci 299 
HONEOM option 231 
horizontal picture element 170 
host command processor LV (3650/3680) 273 
host conversational (3270) LV (3650) 274 
host conversational (3653) LV (3650) 
hpel (horizontal picture element) 170 
HTAB operand 212 

I/O work area in DL/I 117 
I C attribute 154 
identification 

DAM record 89 
data set 78 
destiination 323 
VSAM record 87 

IGNORE CONDITION command 35 
IGREQCD condition 

basic mapping support 236 
batch data interchange 329 
terminal control 290 

IGREQID condition 236 
ILLOGHC condition 101 
immediate light pen field 157 
INBFMH condition 290 
inbound FMH 247 
index, alternate (AIX) 76 
indicator lights (MSR) 176 

indirect destinat.ion 368 
INITIAL operand 212 
initialize main storage 365 
initiate a lask (see start a task) 
INITIMG option 366 
INPARTN option 45, 229, 232 
input data 

chaining of 244 
unsolicited 248 

input data set 11 
input operation without data 253 
input operations 135 
input partition 168, 173 
INQUIRE command 41 
inquiry logical unit (3790) 280 
insert-cursor indicator 139 
installing EDF 51 
installing the CI, interpreter 68 
integrity of data 77 
interactive logical units 278 
interface processor DFHEAI 12 
interleaving conversation with message routing 197 
interpreter 

installation 68 
invoking 61 
screen layout 62 
security rules 68 
variahles 65 

interpreter logical unit (3650) 275 
interrogate a data set 324 
interval control 

cancel interval conlrol command 345 
delay processing of task 340 
exceptional conditions 349 
expirat.ion time 339 
formal of date and lime 340 
notification when specified time expires 341 
oplions 346 
request current time of day 340 
retrieve data stored for task 344 
specifying request idenHfier 340 
start a task 342 
wait for event to occur 342 

INTERVAL opt.ion 
hasic mapping support 232 
interval cont.rol 347 

INTO opt.ion 
hasic mapping support 232 
hatch data interchange 327 
file control 98 
interval control 347 
temporary storage control 
terminal control 285 
transient data control 370 

367 

376 

intraparlition destination 
invalid characters 301 
INVERRTERM condition 
INVITE option 244, 285 

237 

564 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



INVLDC condition 237 
INVMPSZ condition 237 
invoking EDF 51 
invoking the CL interpreter 

CECI transaction 61 
CECS transaction 61 

INVPARTN condition 237 
INVPARTNSET operand 237 
INVREQ condition 

basic mapping support 237 
file control 101 
interval control 350 
journal control 403 
program control 364 
temporary storage control 377 
terminal control 290 
trace control 394 

INVTSREQ condition 350 
IOERR condition 

file control 101 
interval control 350 
journal control 403 
temporary storage control 377 
transient data control 371 

ISCINVREQ condition 
file control 102 
temporary storage control 377 
transient data 371 

ISSUE ABEND command 261 
ISSUE ABORT command 326 
ISSUE ADD command 325 
ISSUE CONFIRMATION command 261 
ISSUE COPY command 253 
ISSUE DISCONNECI' command 242, 248 
ISSUE END command 326 
ISSUE ENDFILE command 277 
ISSUE ENDOUTPUT command 277 
ISSUE EODS command 275 
ISSUE ERASE command 326 
ISSUE ERASEAUP command 253 
ISSUE ERROR command 261 
ISSUE LOAD command 275 
ISSUE NOTE command 326 
ISSUE PASS command 248 
ISSUE PREPARE command 249 
ISSUE PRINT command 158, 252 
ISSUE QUERY command 324 
ISSUE RECEIVE command 324 
ISSUE REPLACE command 325 
ISSUE RESET command 242 
ISSUE SEND command 326 
ISSUE SIGNAL command 242 
ISSUE WAIT command 327 
ITEM option 376 
ITEMERR condition 377 
IUTYPE option 285 

JeL option 315 
JFILEID option 402 
J1DERR condition 403 
JOURNAL command 401 
journal control 

crcate a journal record 401 
exceptional conditions 403 
journal records 399 
options 402 
output synchronization 400 

JTYPEID option 402 
JUSFIRST option 232 
JUSLAST option 232 
J USTI FY operand 

effect on map positioning 1 R7 
map definition macros 213 

JUSTIFY option 232 

KATAKANA option 45 
K E E P option, report controller 299 
key 

alternate (secondary) 76 
generic 78 
physical 89 

key-sequenced data set (KSDS) 75 
KEYLENGTII option 

batch data interchange 327 
file control 98 
remote data set 86 

KEYNUMBER option 328 
keyst.roke overlapping 166 
keyword fields on screen 139 
kcyword length 241 
KSDS (key-sequenced data sct) 75 

label argument 6 
LABEL option 387 
LANG operand 214 
tANGLVL option 17 
I,AST option 232 

bracket protocol 248 
terminal control 285 

LDC operand 214 
LDC option 

basic mapping support 232 

Index 565 



description of 272 
terminal control 285 

LOCMNEM option 45, 229 
LOCNUM option 45, 229 
LENGERR condition 238 

bat.ch data interchange 329 
file control 102 
intc~rval control 350 
journal control 403 
storage control 366 
temporary storage control 377 
terminal control 291 
transient data control 371 

LENGTH operand 214 
LENGTH option 

basic mapping support 233 
batch data interchange 328 
built-in function 409 
default (assembler language) 7 
default (PL/I) 9 
dump control 397 
file control 99 
interval control 347 
journal control 402 
program control 363 
storage control 366 
task control 354 
temporary storage control 376 
terminal control 286 
transient data control 370 

levels, application program logical 355 
LIBRARIAN (VSE/SP) library management, 

COBOL 15,28 
LIBRARIAN (VSE/SP) library management, PL/I 16, 

30 
library management, COBOL 

LIBRARIAN (VSE/SP) 15, 28 
MAINT (OOSjVS(E» 15, 28 

library management, PL/I 
LIURARIAN (VSE/SP) 16, 30 
MAINT (DOSjVS(E» 16, 30 

light pen 
detectable field 138 
handling in program 156 

light pen detectable field 156 
LIGHTPEN option 156, 254 
LINE command (CEBR) 70 
LINE operand 187, 214 
line width for printer 159 
line, communication 242 
LINEAODR option 286 
LINECOUNT option 18 
linelength feature of the spooler 302 
LINELENGTH option 316 
LIN ES option 316 
lines/page feature of the spooler 301 
LINK command 355 
link to !program anticipating return 355 

L 1ST option 
hasic mapping support 233 

listing data set 12 
literal constant 6 
load a map set 145 
load a program, table, or map 357 
LOA f) command 357 
load module size 23 
local copy key 158 
locality of reference 22 
locate-mode 

SERVICE RELOAD statement 28 
to minimize the workin set 22 

lockout (see deadlock prevention) 
LOG option 316 
LOG option, report controller 299 
log report 297 
logical device code (LOe option) 272 
logical device componenlc; 

basic support 175 
page overflow 191 

logical levels, application program 355 
logical messages (OMS) 

completing a logical message 183 
cumulative text processing 192 
device controls 194 
direct terminal output 183 
example of use 192 
floating maps 187 
introduction 181 
map positioning 187 
message recovery 182 
page overflow 190 
PAGING output 184 
purging a logical message 183 

LOGICAL option 316 
logical record presentation 246 
logical recovery 311 
logical unit of work (L UW) 405 
logical units 

hatch 278 
conversing with (CONVERSE) 242 
facilities for 244 
interactive 278 
f.UTYPE6.1 258 
L UTY PE6.2 260 
pipeline 272 
reading data from 324 

t.erminal control 241 
writing data to 325 

terminal control 241 
3270 Information Display System 269 
3270 SCS Printer 269 
3270-Djsplay (LUTYPE2) 270 
3600 (3601) 272 
3600 (3614) 273 
3600 pipeline 272 
3650 host conversational (3270) 274 

566 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



3650 host conversational (3653) 274 
3650 interpreter 275 
3650 pipeline 272 
3650/3680 host command processor 273 
3767 interactive 278 
3770 batch 278 
3770 interactive 278 
3790 (3270-display) 281 
3790 (3270-printer) 281 
3790 fult function 279 
3790 inquiry 280 
3790 SCS printer 280 

look aside query 167 
LUNAME option 286 
LUTYPE2 (3270-Display LU) 270 
LUTYPE4 

batch data interchange 323 
logical record presentation 246 
logical unit 257 

LUTYPE6.1 logical unit 258 
LUTYPE6.2 logical unit 260 
L UW (logical unit of work) 405 
L40 option 233 
L64 option 233 
L80 option 233 

macro global bit (&DFHEIMX) 15 
macro instruction 

command equivalent 425 
field definition, DFHMDF 143 
map definition, DFHMDI 142 
map set definition, DFHMSD 141 
partition definition (DFIIPDI) 170 
partition set definition (DFHPSD) 170 
used with commands 15, 23 

magnetic slot reader (MSR) 
audible alarm 176 
DFHMSRCA copy book 176 
DFHMSRCA set of constants 176 
indicator lights 176 
MSRCONTROL option 176 

MAIN option 376 
main storage 

dumping (DUMP) 396 
. initialize 365 
obtain 365 
releasing (FREEMAIN) 365 
temporary data 373 

MAINT (DOSjVS(E» library management, 
COBOL 15,28 

MAINT (DOSjVS(E» library management, PL/I 16, 
30 

map definition macro (BMS) 206 
map definition macro, BMS 142 

MAP option 233 
map positioning 187 
map set definition macro ] 4] 
map set definition macro (RMS) 205 
map set loading 145 
map set name 145 
map set suffixing 145 
map set suffixing and partitions 167 
map size 24 
MAPATJ"S operand 215 
MAPCOLUMN option 45,229 
MA PF A I L condition 157, 238 
MAPIIEIGHT option 45, 229 
MAPLINE option 45, 229 
MAPNAME option 317 
MAPONLYoption ] 51. 233, 317 
mapping input data (RECEIVE MAP) 154 
maps 

AS M sample programs 452 
assembling 145 
cataloging 145 
CO no L sample programs 494 
copying symbolic description 147 
physical 132 
PI,/I sample programs 533 
symbolic 132 
temporary modification 148 

MAPSET option 233, 317 
MAPSrX operand 221 
MAPWIDTII option 45, 229 
MARGINS option 18 
MASSINSERT option 99 
MAXFLENGTII option 241 
MAXLENGTII option 286 
MCC option 317 
MDT (modified data tag) 138 
message 

teletypewriter 251 
title 198 

message area of screen 140 
message length, teletypewriter 251 
message recovery (BMS) 182 
message routing 195 
message switching transaction, CMSG 201 
minimum runction RMS 135 
mixed mode application program 15, 23 
MMDDYYoption 
MODE operand 215 
modified data tag (M DT) 138 
modular program 22 
MONITOR option 394 
monitoring point (ENTER command) 389 
MONTIIOFYEAR option 347 
move-mode 22 
MSR (magnetic slot reader) 176 
MSR option 233 
MSRCONTROL option 45, 176 
multiple base registers 13 

Index 567 



multithreading 21 

name a.rgument 6 
naming restriction 15 
NETNAME option 46,286 
neutral parameter of CO LO R operand 209 
NEXT option 376 
NLEOM option 234 
NOAUTOPAGE option 183, 234 
NOCC option 317 
NOCHECK option 347 
NOCONV (no conversion) option, report 

controller 300 
NOCONVoption 317 
NOCONV option, report controller 304 
NODE option 318 
NODEBUG option 17 
NOEDF option 17 
NOEP1LOG option 17 
NOHANDLE option 32 
NOJBUFSP condition 403 
nondisplay field 138 
NONUM option 18, 318 
NONVAL condition 291 
NOOPSEQUENCE option 18 
NOOPT option 18 
NOOPTIONS option 18 
NOPASSBKRD condition 291 
NOPASSBKWR condition 291 
NOPROLOG option 18 
NOQUEUE option 286 
normal intensity field 137 
NOSEP option 318 
NOSEQ option 19 
NOSEQUENCE option 19 
NOSOlJRCE option 19 
NOSPACE condition 

file control 102 
temporary storage control 377 
transient data control 371 

NOSPIIE option 19 
NOSTART condition 291 
NOSTG condition 366 
NOSUSPEND option 33, 286 

ENQ command 354 
G ETMAIN command 366 
JOURNAL command 402 
READQ TD command 370 
WRITEQ TS command 376 

NOTALLOCcondition 291 
notation, syntax 4 
NOTA lJTH condition 33 

file control 102 
interval control 350 

journal control 403 
program control 364 
temporary storage control 377 
transient data control 37] 

NOTFND condition 
file control 102 
interval control 351 

NOTOPEN condition 
file control 102 
journal control 403 
transient data control 372 

NOTRUNC compiler option 28 
NOTRUNCATE option 286 
NOVBREF option 19 
NOW AIT option 328 
NOXREF option 19 
null1ines and 3270 printer 159 
null map 142 
NUM option 18 
numeric-only field (3270 attribute character) 136 
NUMITEMS option 376 
NUMREC option 

batch data interchange 328 
file control 99 

N U MTA B option 46 

OBFMT operand 215 
OCCURS operand 215 
OPCLASS option 

ASSIGN command 46 
hasic mapping support 234 

operator class codes 198 
operator identification card reader 156 
OPERID option 156,254 
OPERKEYS option 46 
OPERPURCiE option 183,234 
OPID opt.ion 46 
OPMARG INS opt.ion 18 
OPSECURITY option 46 
OPSEQUI:NCE option 18 
OPT option 1 8 
opt.imization feature (COBOL) 27 
option length 241 
options 

abnormal termination recovery 387 
ADD R ESS command 42 
ASS I G N command 43 
basic mapping support 229 
hatch data interchange 327 
dump control 396 
execution time (PL/I ST AE) 29 
file control 98 
HANDLE AID command 254 

568 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



HANDLE CONDITION command 34 
interval control 346 
journal control 402 
program control 363 
report controller 313 
ST AE (PLfl) 29 
storage control 366 
task control 354 
temporary storage control 376 
terminal control 283 
trace control 393 
transient data control 370 
translator 16 

OPTIONS option 18 
OPTIONS(MAIN) specification 16, 30 
outboard formatting 

basic mapping support 179 
effect of partitions 174 

outbound FMH 248 
OUTLINE operand 215 
OUTLINE option 46 
output control (2980) General Banking Terminal 

System 267 
output data set 11 
output data, chaining of 246 
output operations 136 
output partition 168 
output to common buffer (2980) 267 
OVERFLOW condition 190, 238 
overlapping keystroking 166 
overlays 23 
overtyping EDF displays 57 

PA (program access) key 156 
P A option 156, 254 
page buffer (3270) 163 
page fault 22 
page numbering feature of the spooler 302 
page overflow (BMS) 190 
page overflow example 192 
page width for printer 159 
PAGENUM option 46, 229 
paging (sec terminal operator paging) 184 
PAGING option 184,234 
partition definition macro (OMS) 170, 220 
PARTITION JUMP key 165 
partition set 167, 168 
partition set definition macro (BMS) 170, 220 
partition set suffixing 145 
partitions 

active partition . 165 
base state 169 
character cell 174 
cumulative processing 195 

cursor 165 
description 165 
display control 165 
ENTER key 165 
exceptional conditions 175 
G DDM restriction 175 
outboard format 195 
outboard formatting 174 
page overflow 191 
PARTITION JUMP key 165 
partition set 167 
presentation space 168 
terminal sharing 195 
transaction partitions 167 
un partitioned state ) 69 
viewport 168 
window 168 
within a map set 171 

P A RTN operand 215 
PA RTN option 

basic mapping support 235 
PARTNFAIL condition 238 
PARTNPAGE option 46, 229 
PARTNS option 46 
PARTNSET option 46, 229, 235 
PI\SSBK option 286 
passbook control (2980) 266 
passing 

session 248 
passing control 

anticipating return (LINK) 355 
on receipt of an AID (HANDLE AID) 254 
without return (XCTL) 356 

passing data 
to new tasks 344 
to other program 358 

PCB (program communication block) 115 
pcn address 116 
pel' option 397 
pel (picture clement) 174 
PERFORM option 394 
PF (program function) key 

BMS 156 
CL interpreter 66 
EDF 52 

PF (program function) key (CEClfCE('l;) 66 
PF option 1 56, 254 
PFXI,ENG option 402 
PGMIDERR condition 

abnormal termination recovery 387 
program control 364 

physical key 89 
physical map 132 
PIIYSICAL option 318 
physical recovery 311 
PICIN operand 215 
PICOUT operand 216 
picture element (pel) 174 

Index 569 



pink p21rameter of CO LO R operand 209 
pipelim, logical unit 272 
PIPLENGTH option 287 
PIPLIST option 287 
PLjl 

argument value 8 
compilers supported 29 
LENGTH option default 9 
OPTIONS(MAIN) specification 30 
PROCEDURE statement 16 
program segments 30 
restrictions 29 
sample programs 509 
ST AE option 29 
translated code 15 

POINT command 259 
pointer-·ref argument 6 
pointer-value argument 6 
POP HANDLE command 35 
POS operand 144. 216 
POST c:ommand 341 
posting timer event control area 341 
PPT option 397 
PREFIX option 402 
pregenerated modules 134 
present21tion space 168 
preiranslated code 

COBOL 15.28 
PLll 16. 30 

principal facility 239 
PRINSYSID option 46 
print displayed information 252 
PRINT option 153 

basic mapping support 235 
batch data interchange 328 

printer imd BMS text 164 
printer (:ontrol character list (DFHBMSCA) 222. 255 
printer destination 307 
printer spooling options 

ASA 313 
BOTHNUM 313 
CLASS 313 
COPIES 313 
DATETIME 313 
DELETE 313 
DESTINATION 314 
ESCAPE 306. 314 
FLENGTH 314 
FOOT 314 
FOOTNUM 315 
FORMS 315 
FROM 315 
HEAD 315 
HEADNUM 315 
HOLD 315 
JCL 315 
LINIELENGTH 316 
LINES 316 

LOG 316 
LOGICAL 316 
MAPNAME 317 
MAPONLY 317 
MAPSET 317 
MCC 317 
NOCC 317 
NOCONV 317 
NODE 318 
NONUM 318 
NOSEP 318 
PHYSICAL 318 
PRINTFAIL 318 
PRIORITY 318 
RELEASE 318 
REPORT 318 
RESUME 319 
RSL 319 
SCS 319 
SEP 319 
TITLE 319 
TOKEN 319 
1'3270 320 
USERDATA 320 
USERID 320 

printer spooling subsystem 294 
printers 

basic mapping support (BMS) 163 
device independence 164 
format conversion. report controller 300 
FORMFEEO option 164 
NLEOM option 163 
printing displayed data 158 
SC .. 'i and non-3270 printers 164 
starting a printer task 158 
3270 printer page width 158 
3270 printer using NLEOM 163 
3270 printer without NLEOM 163 
3270 printers and blank lines 158 

PRINTFAIL option 318 
printing contents of screen 158 
PRIORITY option 318 
PROCESS option 287 
PROCLENGTH option 287 
PROCNAME option 287 
PROFII ,E option 287 
program access (PA) key 156 
program communication block (PCB) 115 
program control 

CL interpreter 67 
deleting loaded program 358 
exceptional conditions 364 
linking to another program 355 
load a program. table. or map 357 
options 363 
passing data to other program 358 
program logical levels 355 
returning program control 356 

570 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



transfer program control 356 
program function key (see PF key) 
program labels in EDF 58 
PROGRAM option 

abnormal termination recovery 387 
dump control 397 
program control 363 
terminal control 288 

program segments 
COBOL 28 
PL/I 30 

program size 23 
program specification block (PSB) 115 
program testing 49 
programmed symbols 138 
programming techniques 

COBOL 24 
general 21 
PL/I 29 

programs 
checking out pseudoconversational 58 

programs, sample (ASM) 427 
programs, sample (COBOL) 471 
programs, sample (PL/I) 509 
programs, sample (report controller) 549 
PROLOG option 18 
PROTECT option 347 
protected field 137 
PS operand 217 
PS option 47 
PSB(program specification block) ll5 
PSB release 118 
PSB scheduling ll6 
PSEUDOBIN option 288 
pseudoconversational programming 58 
PURGE command (CEBR) 70 
PURGE MESSAGE command 183 
PUSH HANDLE command 35 
PUT command (CEBR) 70 

QBUSY condition 372 
QIDERR condition 

temporary storage control 378 
transient data control 372 

QNAME option 47 
quasi-reenterability 21 
question mark (CL interpreter) 62 
QUEUE command (CEBR) 69 
QUEUE option 288 

interval control 348 
temporary storage control 376 
transient data control 370 

queue, temporary storage 373 
QUOTE option 19 

QZERO condition 372 

RBA (relative byte address) 75 
RBA option 99 
RDA'IT condition 

basic mapping support 238 
terminal control 291 

reactivate an ABEND exit 385 
read ahead queueing feature 244 
read attention 264 
READ command 93 
reading 

batch data interchange record 324 
data from a display (RECEIVE MAP) 154 
data from temporary storage queue 375 
data from terminal or LU 241 
data from transient data queue 369 
file control record 93 
next record when browsing 96 
previous record in VSAM browse 96 

READNEXT command 96 
READPREV command 96 
READQ TO command 369 
REA DQ 1'S command 375 
RECEIVE command 241 
RECEIVE MAP command 154, 225 
RECEIVE PARTN command 173, 225 
RECFM option 288 
record 

deleting VSAM 95 
identification 87, 89 
journal 399 
rcading 93, 324 
requesting next number 326 
updating 94, 325 
writing new (adding) 94, 325 

record descriptions 
ASM sample programs 469 
CO no L sample programs 508 
PL/I sample programs 548 

recovery 
abnormal termination 385 
and debugging 379 
sequential terminal support 381 
sync point 405 

recovery level of report 
logical recovery 310 
no recovery 310 
physical recovery 310 

red parameter of COLOR operand 209 
reenterability 21 
register contents in ASM 12 
relative byte address (RDA) 75 
relative record data set (RRDS) 76 

Index 571 



relative record number (RRN) 76 
RELEASE command 358 
RELEASE option 183,235,318 
RELEASE option, report controller 299 
releasing 

a PSB 118 
area of main storage 365 
exclusive control (UNLOCK) 95 

relinquish communication line 242 
RELOAD operand of DFHPPT macro 358 
relocautble expression 6 
remote data set, KEYLENGTH option 86 
reopening a resumable report 298 
report controller 294 

NOCONVoption 304 
report name 295 
report title 295 
userdata 295 

report controller command 311 
report controller exceptional conditions 320 
report format 300 
report name, for report controller 295 
report number 296 
REPORT option 318 
REPORT option, report controller 298, 299 
REPORT option, SPOOL. .. commands 295 
report recovery 310 
report recovery level 310 
report title, for report controller 295 
report type 

log 296 
resumable 296 
standard 296 

REQID option 182 
bask mapping support 235 
file control 99 
interval control 348 
journal control 402 

request/response unit (R U) 244 
RESET option 387 
reset start for browse 97 
RESETBR command 97 
RESOURCE option 288, 354, 394 
resource scheduling 353 
RESP option 32 
RESP values 418 
response codes (DL/I) 119 
RESP2 option 32 
RESP2 values 320, 419 
RESTART option 47 
restrictions 

assembler language 24 
COBOL 24 
PL/I 29 

resumabRe report 296 
RESUME option 319 
RESUME option, report controller 298, 299 
RETAIN option 183, 235 

RETPAGE condition 238 
RETRIEVE command 344 
retrieve data stored for task 344 
RETURN command 356 
return facility to CICS 250 
return program control 356 
returning mapped data to a program 201 
REWRITE command 94 
REWRITE option 377 
RIDFLD option 

batch data interchange 328 
file control 99 

ROLLBACK option 406 
ROLLEDBACK condition 406 
ROUTE command 195 
route list (LIST option) 198, 199, 200 
routing messages (ROUTE) 197 
routing terminal 197 
RPROCESS option 288 
RRDS (relative record data set) 76 
RRESOURCE option 289 
RRN option 

batch data interchange 328 
file control 100 

RSLoption 319 
RTEFAIL condition 238 
RTERMID option 348 
RTESOME condition 238 
RTRANSID option 348 
R U (request/response unit) 244 

SA (set attribute) order 162 
sample program 

browse (ASM) 436 
browse (CanOL) 479 
browse (PLfl) 517 
inquiry/update (ASM) 429 
inquiry/update (COnaL) 473 
inquiry/update (PL/I) 511 
low balance report (ASM) 449 
low balance report (COBOL) 491 
low balance report (PL/I) 530 
low balance report, report controller 549 
operator instruction (ASM) 428 
operator instruction (COnaL) 472 
operator instruction (PL/I) 510 
order entry (ASM) 442 
order entry (COBOL) 484 
order entry (PL/I) 523 
order entry queue print (ASM) 446 
order entry queue print (COBOL) 488 
order entry queue print (PL/I) 527 

SBA (set buffer address) order 163 

572 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



schedule a PSB 116 
schedule access (DL/I) U5 
schedule use of resource by task 353 
Screen Definition Facility/CICS (SDF/CICS) 132 
screen layout (CL interpreter) 

command input area 62 
information area 63 
status area 62 

screen layout design 
application data area 139 
data fields 139 
input operations 135 
keyword fields 139 
message area 140 
output operations 136 
requirements 139 
stopper fields 139 
title area 139 

screen partitioning 165 
screen size 140 
SCRNHT option 47 
SCRNWD option 47 
scrolling 166 
SCS option 319 
SCS printer logical unit (3790) 280 
SDF/CICS (Screen Definition Facility/CICS) 132 
secondary key 76 
security of a report 310 

public 310 
security key 310 

security rules 
CL interpreter 68 
EDF 51 

segment search argument (SSA) 117 
segments, program 

COBOL 28 
PL/I 30 

SELNERR condition 329 
semicolon delimiter (PL/I) 5 
send asynchronous interrupt 242 
SEND command 241 
SEND CONTROL command 153, 227 
send data to output device 326 
SEND MAP command 150, 226 
SEND PAGE command 183 
SEND PARTNSET command 172 
SEND TEXT command 162,164,226 
SEND TEXT MAPPED command 203 
SEND TEXT NOEDIT command 203 
SEND/RECEIVE mode 244 
SEND/RECEIVE protocol 244 
SEP option 319 
SEQ option 19 
SEQUENCE option 19 
sequential retrieval (see browsing) 
sequential terminal support 381 
SERVICE RELOAD statement (COBOL) 27 
SESSBUSY condition 291 
SESSION option 289 

session-oriented information (LU6) 259 
SESSIONERR condition 291 
set attribute (SA) order 162 
set buffer address (SBA) order 163 
SET command 41 
SET option 201 

basic mapping support 235 
batch data interchange 328 
file control 100 
interval control 348 
program control 363 
storage control 366 
temporary storage control 377 
terminal control 289 
transient data control 371 

share option, VSAM 77 
SIGDATA option 47 
SIGNAL condition 248, 291 
SINGLE option 394 
single screen mode (EDF) 51 
single threading 21 
SIT option 397 
SIZE operand 217 
skip-sequential processing 80 
SO/SI creation 139 
SOSI operand 218 
SOS I option 47 
SOURCE option 19 
SPACE option 19 
spanned records 76 
SPIE option 19 
SPOOL commands 

TOKEN option 295 
SPOOL ... commands 

REPORT option 295 
SPOOLCLOSE command 312 
spooler automated feature 301 
spooler recovery 310 
SPOOLOPEN command 298, 311 

TITLE option 295 
USERDATA option 295 

SPOOLOPEN ESCAPE command 312 
SPOOLOPEN MAPNAME command 311 
SPOOLOPEN RESUME command 312 
SPOOLWRITE command 312 
SPOOLWRITE MAPNAME command 313 
SQL/nS (Structured Query Language) 

application programming 331 
SQL/nS publications vi 
SSA (segment search argument) 117 
ST A E option (PL/I) 29 
standard attribute/printer control character list 

(DFHDMSCA) 222, 255 
standard CICS terminal support 257 
standard function BMS 161 
standard report 296 
start a task 343 
START command 342 

Index 573 



STARTBR command 95 
STARTCODE option 47 
ST ARTIO option 403 
STATIONID option 47 
status flag byte, route list 200 
status of partition 169 
stopper fields on screen 139 
storage (see main storage) 
storage area length 43 
storage control 365 
STORAGE operand 218 
STORAGE option 397 
STRFIELD option 289 
Structured Query Language (see SQL/DS) 
stub (se:e interface processor) 
SUBADDR option 328 
subroudnes 22 
SUFFIX operand 145, 218, 221 
suffixing, map/partition sets 145 
supplied constants (DFHMSRCA) 176 
suspend a task 248, 353 
SUSPEND command 353 
switched line disconnection 242 
symbol set 169 
symbolic cursor positioning 154 
symbolic description map 

block data format 179 
copying 147 
definition 132 
field data format 148, 149 

symbolic register DFHEIPLR 14 
sync point 405 
sync point and the spooler 311 
sync points in reports 299 
synchronization level 260 
synchronizing 

journal output 400 
journal output (WAIT JOURNAL) 402 
terminal input/output 242 

SYNCLEVEL option 289 
SYNCPOINT command 406 
syntax notation 4 
syntax style 5 
SYSBUSY condition 292 
SYSID option 

ASS IGN command 47 
file Gontrol 100 
interval control 348 
temporary storage control 377 
terminal control 289 
transient data control 371 

SYSIDERR condition 372 
file control 103 
interval control 351 
temporary storage control 378 
terminal control 292 

system information, access to 41 
SYSTE~v1 option 394 

system trace entry point 389 
System/3 262 
System/370 262 
System/7 262 

tab character 164 
TABLES option 397 
task control 353 
task identification 243 
task initiation (sec start a task) 
TASK option 397 
task suspension 248 
Tel' option 398 
TCTUA option 42 
TCrUALENG option 47 
techniques, programming 21 
teletypewriter programming 251 
TELLERID option 48 
temporary storage 

auxiliary 373 
browse transaction (CEBR) 69 
exceptional conditions 377 
main 373 
options 376 
queue 373 

TERM operand 218 
TERMCODE option 48 
TERMERR condition 

terminal control 292 
TERMII) option 

interval control 349 
terminal control 289 

TERMIDERR condition 
interval control 351 
terminal control 292 

terminal code tahle 202 
TERMINAL command (CEBR) 69 
terminal control 

an overview 239 
bracket protocol (LAST option) 248 
BTAM programmable device 250 
chaining of input data 244 
chaining of output data 246 
converse with terminal or L U 242 
definite response 247 
dctect.ing att.ention condition (SIGNAL) 248 
disconnect a switched line 242 
display device operations 252 
exceptional conditions 290 
facilities for logical units 244 
facilities for terminals 242 
facilities for terminals and LUs 241 
FMH, inbound 247 

574 CICS/DOSjVS Application Programmer's Reference Manual (Command Level) 



FMH, outbound 248 
function management header (FMH) 247 
handle attention identifier 156 
interactive logical units 278 
logical record presentation 246 
LUTYPE2 (3270-Display LU) 270 
map input data (RECEIVE MAP) 154 
options 283 
passing a session 248 
pipeline logical unit 272 
print (ISSUE PRINT) 158 
read attention 264 
reading data from terminal or L U 241 
relinquish communication line 242 
standard CICS terminal support 257 
sync point processing 249 
synchronize terminal I/O 242 
System/3 262 
System/370 262 
System/7 262 
teletypewriter programming 250 
terminate a session 248 
unsolicited input 248 
VT AM logon data 249 
writing data to terminal or L U 241 
2260 Display Station 264 
2265 Display Station 264 
2741 Communication Terminal 264 
2770 Data Communication System 265 
2780 Data Transmission Terminal 266 
2980 General Banking Terminal System 266 
3270 (BT AM or TCAM supported) 268 
3270 field concept 136 
3270 Information Display System logical unit 269 
3270 SCS Printer logical unit 269 
3270-Display LU (LUTYPE2) 270 
3600 (3601) logical unit 272 
3600 (3614) logical unit 273 
3600 pipeline logical unit 272 
3650 host conversational (3270) LU 274 
3650 host conversational (3653) LU 274 
3650 interpreter logical unit 275 
3650 pipeline logical unit 272 
3650/3680 host command processor LU 273 
3660 275 
3735 276 
3740 277 
3767 interactive logical unit 278 
3770 batch logical unit 278 
3770 interactive logical unit 278 
3790 (3270-display) logical unit 281 
3790 (3270-printer) logical unit 281 
3790 full function logical unit 279 
3790 inquiry logical unit 280 
3790 SCS printer logical unit 280 
4700 Finance Communication System 282 
7770 Audio Response Unit 282 

terminal operator paging 
example of paging message 192 

initiating the paging transaction 183 
message recovery 182 
operator paging commands 185 
PAGING logical messages 184 

TERMINAL option 
basic mapping support 235 
dump control 398 

terminal sharing 
CL interpreter 67 
EDf7 54 

terminal-oriented task identification 243 
terminating 

map set definition 144 
processing of data set 326 
session 248 
task ahnormally (ABEND) 387 

testing using sequential devices 382 
text data format 131 
THEN clause (COBOL) 5 
time feature of the spooler 303 
time field of Eln 41 
time of day, requesting (ASKTIME) 340 
TIME option 

basic mapping support 235 
interval control 349 

time-initiated transaction (3735) 276 
timer event control area 341 
TI M ES E P option 349 
TIOA, mixed mode programs 23 
TIOA Pf7X operand 219 
title area of screen 139 
TITLE option 198,235, 319 
TITLE option, SPOOLOPEN command 295 
title, message 198 
TOf7LENGTH option 241 
TOKEN option 319 
TOKEN option, report controller 298, 299 
TOKEN option, SPOOL commands 295 
tokens, in report creation 295 
TOLENGTII option 289 
TOP command (CEBR) 70 
TRACE command 393 
t.race control 389 

auxiliary trace facility 392 
controlling trace facility 393 
exceptional conditions 394 
options 393 
trace entry format 392 
trace entry point 389 
trace facility control 390 
trace flags 390 
trace table format 390 
user trace entry point 392 

trace entry format 392 
trace entry point 389 
trace facility control 390 
trace tahle format 390 
TRACEIO option 394 

Index 575 



TRAILER operand 187,219 
TRAILER option 192, 235 
transaction identifier (CEDF) 49 
transaction partition 167 
transfer program control 356 
TRANSID option· 

basic mapping support 236 
int«~rval control 349 
program control 363 

TRANSIDERR condition 351 
transient data control 

automatic task initiation (A TI) 368 
delete intrapartition queue 370 
exceptional conditions 371 
extrapartition destination 368 
indirect destination 368 
intrapartition destination 367 
options 370 
read data from TD queue 369 
write data to TD queue 368 

translated code 
ASM 12 
CODOL 15 
PLjI 15 

translation tables for 2980 421 
translator data set 

input 11 
listing 12 
output 11 

translator options 16 
TRANSP operand 219 
trigger field 177 
TRIGGER option 254 
TSIOERR condition 238 
turquoise parameter of COLOR operand 209 
TWA option 42 
TW ALENG option 48 
TYPE operand 219 
T3270 option 320 

UID (user interface block) 116 
UNATTEND option 48 
UNEXPIN condition 

basic mapping support 238 
batch data interchange 329 

UNLOCK command 95 
unpartitioned state 169 
unprotE:cted field (3270 attribute character) 136 
unsolicited input 248 
unsupported function 33 
update a record 

batch data interchange 325 
file control 94 

UPDATE option 100 

upgrade set 76 
user interface block (UID) 116 
USER option 394 
user trace entry point 389, 392 
USERDATA option 320 
USERDATA option, SPOOLOPEN command 295 
userdata, for report controller 295 
USERID option 

ASSIGN command 48 
report controller 320 

validation 138 
VALIDATION option 48 
validity of reference 22 
VAUDN operand 178, 220 
values of arguments 6 
variable (eL interpreter) 65 
VBREF opLion 19 
vertical forms control 159 
vertical picture clement 170 
viewport I 68 
VIEWPOS operand 221 
VIEWSZE operand 221 
virtual storage environment 21 
VOLUME option 329 
VOLUMELENG option 329 
vpcl (vertical picture element) 170 
VSAM 

data set,; 87 
VSA M share option 77 
VrA B operand 220 
VrA M logon data, access to 249 

WAIT CONVID command 261 
\VAIT EVENT command 342 
WAIT JOURNAL command 402 
WAIT option 

hasic mapping support 236 
interval control 349 
journal control 403 
of SEND command 242 
terminal control 242, 290 

WAIT SIGNAL command 248 
WAIT TERMINAL command 242 
waiting 

batch data interchange 327 
for event to occur 342 
terminal control operation 242 

WIIERE clause in EXEC DL. command 

576 CICSjDOSjVS Application Programmer's Reference Manual (Command Level) 



literal string 108 
window 168 
working set 22 
WPMEDIA option 329 
WRITE command 94 
WRITEQ TO command 368 
WRITEQ TS command 374 
writing 

batch data interchange record 325 
data to temporary storage queue 374 
data to terminal or logical unit 241 
data to transient data queue 368 
file control record 94 

writing to a report 298 

XCTL command 356 
XINIT operand 212 
XOPTS keyword 16 
XREF option 19 

YEAR option 349 
yellow parameter of CO LO R operand 209 
YYD D D option 349 
YYDDMM option 349 
YYMMDD option 349 

zero length field 140 
zero parameter 213 

I Numericsl 

2260 Display Station 264 
2265 Display Station 264 
2721 Portable Audio Terminal 282 
2741 Communication Terminal 264 
2770 Data -Communication System 265 

2780 Data Transmission Terminal 266 
2980 General Banking Terminal System 266 

DI'1I2980 structure 267 
output control 267 
output to common buffer 267 
passbook control 266 
translation tables 421 

3270 Information Display System 
(llTAM or TCAM supported) 268 
attribute character 136 
field concepts 136 
input operations 135 
logical unit 269 
screen sizes 140 

3600 Finance Communication System 270 
pipeline logical unit 272 
3601 logical unit 272 
36] 4 logical unit 273 

3630 Plant Communication System 273 
3650 Store System 

host conversational (3270) LV 274 
host conversational (3653) LV 274 
interpreter logical unit 275 
pipeline logical unit 275 

3650/3680 Store System 
full function logical unit 275 
host command processor LV 273 

3660 Supermarket Scanning System 275 
3680 Programmable Store System 

host command processor LV 273 
3735 Programmable Buffered Terminal 276 
3740 Data Entry System 277 
3767 Communication Terminal 

interactive logical unit 278 
3770 Communication System 

batch logical unit 278 
full function logical unit 279 
interactive logical unit 279 

3780 Communications Terminal 279 
3790 Communication System 

full function logical unit 279 
inquiry logical unit 280 
SCS printer logical unit 280 
3270-display logical unit 281 
3270-print.er logical unit 281 

4700 Finance Communication System 282 
7770 Audio Response Vnit 282 
8775 Display Terminal 

field validation attribute character 136 
partition support 165 
trigger validation attribute 177 

Index 577 



word, except words beginning with H@"(X'20i) 
which are reserved by CICS. 

When the PSEUDOBIN option is specjed,'the 
length of the data area provided by t~e application 
program must be at least twice that df the data to 
be read. 

In the case of a System/? on a dial-up (switched) 
line, the System/? application program must, 
initially, transmit a four-character terminal 
identification. (This terminal identification is 
generated during preparation of the TCT through 
use of the DFHTCT TYPE = TERMINAL, 
TRMIDNT = parameter specification;) CICS 
responds with either a "ready" message, indicating 
that the terminal identifier is valid and that the 
System/? may proceed as if it were on a leased line, 
or an INVALID TERMINAL 
IDENTIFICATION message, indicating that the 
terminal identifier sent by the System/7 did not 
match the TRMIDNT = parameter specified. 

./' 1 

Whenever CICS initiates the connectionto a;::~ 
dial-up System/?, CICS writes a null message, 
consisting of three idle characters, prior to starting 
the transaction. If there is no program tesident in 

;.,' 

I 

, I~~ ~ 4 

the System/? capable of supporting the 
Asynchronous Communication Control Adapter 
(ACCA), DTAM error routines cause a data check 
message to be recorded on the CICS (host) system 
console. This is normal if the task initiated by 
CICS is to IPL the System/? Although the data 
check message is printed, CICS ignores the error 
and continues normal processing. If a program 
capable of supporting the ACCA is resident in the 
System/? at the time this message is transmitted, no 
data check occurs. 

When a disconnect is issued to a dial-up System/?, 
the "busy" bit is sometimes left on in the interrupt 
status word of the ACCA. If the line connection is 
reestablished by dialing from the System/? end, the 
'busy' condition of the ACCA prevents message 
transmission from the Systeml7. To overcome this 
problem, the System/? program must reset the 
ACCA after each disconnect and before message 
transmission is attempted. This can be done by 
issuing the following instruction: 

PWRI 0,8,3,0 RESET ACCA 

This procedure is not necessary when the line is 
reconnected by CICS (that is, by an automatically 
initiated transaction). 

Chapter 3.3. Terminal Control 263 



Ii) 
(5 
z 

Customer Information Control System 
CICS/DOS/VS Version 1 Release 7 
Application Programmer's Reference Manual (CL) 

Order No. SC33-0077-5 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or dis­
tribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and 
action, if any, are deemed appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your 
IBM representative or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ... 

If you want an acknowledgement, give your name and address below. 

Name ............................................................ . 

Job Title ........................... Company ...................... . 

Address ........................................................... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zip ....... . 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



SC33-00T7 -5 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and tape 

------------------------------------------------------~ 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

----------------~ 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 6R1 H, 
180 Kost Road, 
Mechanicsburg, PA 17055, USA 

Fold and tape Please Do Not Staple 

==..~==® - -------- - ---- - - -----------,-

NO POSTAGE 

NECESSARY 

IF MAILED 

IN THE 

UNITED STATES 

Fold and tape 



--..-­__ I~"'" - -~------ -. ---- -~ -------------,-
<I> 

SC33-0077 -5 
Version 1.7 

Program Number 
5746-XX3 (CICS/OOS/VS) 

Printed in U.S.A. 

SC33-0077-05 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	Tmp96872306
	replyA
	replyB
	xBack

