

1
Document Composition Facility Program

Generalized Markup Language Product
Implementation Guide

~||||||||
el
"l II
..::H'
TQul||

SH35-0050-2

Program Number 5748-XX9 ‘ Release 3

This publication was produced using the IBM Document
Composition Facility (program number 5748-XX9).

Third Edition (March 1985)

This is a major revision of SH35-0050-1, which is now obsolete. Significant changes are summa-
rized under “Summary of Amendments” following the “List of Iustrations”.

This edition applies to Release 3 of the Document Composition Facility program product, Pro-
gram Number 5748-XX9, and to any subsequent releases until otherwise indicated in new editions
or technical newsletters.

Changes are periodically made to the information herein; before using this publication in con-
nection with the operation of IBM systems, consult the latest IBM System/370 and 4300 Process-
ors Bibliography , GC20-0001, for editions that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not available in your country. Such
references or information must not be construed to mean that IBM intends to announce such
products in your country.

Publications are not stocked at the address given below; requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Products Division, Box
1900, Department 580, Boulder, Colorado, U.S.A. 80301. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring any obligation what-
ever. You may, of course, continue to use the information you supply.

(c) Copyright International Business Machines Corporation 1984, 1985

ii DCF: GML Starter Set Implementation Guide

Preface

The Generalized Markup Language (GML) is a language for document description. It can be
used to describe the structure and text elements (parts) of a document without regard to the proc-
essing that may be required to format them. The GML starter set is an implementation of GML
written in the SCRIPT/VS formatting language. It is distributed with the Document Composi-
tion Facility program product (Program Number 5748-XX9) and is provided as an example of a
GML application for a general document.

The GML starter set consists of the following components:
e GML tags which describe a general document
® A macro library!

¢ A profile (DSMPROF3).2

Purpose of the Book

The purpose of this book is to assist text programmers who are responsible for maintaining, alter-
ing, or extending the GML starter set>. This book provides specific, detailed information about
how the starter set tags work. It should also be of substantial use to those who need to write
their own GML tags and Application Processing Functions (APFs) independent of the starter set.
(It is not intended for end users of either the GML starter set or SCRIPT/VS control words.)

Modifying the APFs requires an understanding of the way the starter set works, how and why it
was written the way it is, and the symbols and conventions used in writing the APFs.

Developing a GML application involves several basic steps. These include:
® Defining the type of document to which the GML applies

¢ Identifying the structure and text elements of the document

¢ Defining tag names for the text elements and structure of the document
¢ Defining any attributes required to fully describe the elements

¢ Identifying the formatting that should be performed for each document element

1 The name of the library is different for each operating environment. In CMS the library is named
DSMGML3 MACLIB. In TSO the library is a partitioned data-set named SCRIPT.R30.MACLIB. In
ATMS the macros reside in the GML SYSOP’s permanent storage and in DLF the macros reside in
public library 1314151.

2 In CMS the profile is in a file named DSMPROF3 SCRIPT. In the other operating environments the
profile is also named DSMPROF3 and is part of the macro library.

3 The GML starter sct is a fully supported part of the Document Composition Facility program product
provided that neither the profile nor the macro library have been modified in any way. What this
means is that you should be careful to not alter the base version of these files but rather should make
your own copies or user libraries.

Preface il

e Writing APFs and macros that will provide the desired formatting

e Writing a profile that establishes the formatting environment, associates the tags with the ap-
propriate APFs, and enables the GML services in SCRIPT/VS.

This book describes how we did the last two steps in the process described above for the starter
set. The other steps are discussed in the Document Composition Facility: SCRIPT|VS Text Pro-
grammer’s Guide and the Document Composition Facility: SCRIPT|VS Language Reference.

Prevequisites

This book assumes that the reader is familiar with the GML starter set distributed with the Docu-
ment Composition Facility (DCF) and the use of SCRIPT/VS control words. Knowledge of the
internal functions of the starter set or SCRIPT/VS is not required.

Particular arecas of SCRIPT/VS that the reader should be familiar with are:
¢ Conditional processing

¢ Using symbols

e Writing SCRIPT/VS macros

¢ GML support in SCRIPT/VS.

Each of these topics is the subject of a chapter in the Docwment Composition Facility:
SCRIPT|VS Text Programmer’s Guide. If you are not familiar with these subjects, you might
find it useful to review them before proceeding.

You should also consider reviewing the following topics:
e The control word modifier (")

e Word continuation.

How t;o Use this Book

Most APFs are discussed on a line-by-line basis. “Appendix C. Starter Set Macro Library
Listing” on page 181 contains a complete listing of the GML macro library and the DSMPROF3
profile for reference as you read.

The starter set uses many SCRIPT/VS control words. Because we do not explain all of them in
detail in this book, it’s a good idea to have a copy of the Document Composition Facility:
SCRIPT|VS Language Reference available as a reference.

At the end of most chapters in this book, there are some suggested modifications that can be
made to the APFs discussed in the chapter. We recommend that you try some of these changes
when you finish the chapter. This will help to clarify the way the APFs work together and will
give you experience in working with the starter set.

Once the general concepts and approach are clear, this book can probably be best used as a refer-
ence manual. When you want to modify a particular aspect of the starter set, just review the
chapter that pertains to it and check the index for the symbols you are interested in io see where
else they are used. You will want to be sure that if you change a symbol, that the change is
appropriate for all the uses of the symbol throughout the library.

iv DCF: GML Starter Set Implemeéntation Guide

Organization of this Book

The first two chapters of the book provide an introduction to GML, GML processing in
SCRIPTY/VS, special techniques used in the starter set and general information about how the
starter set was written.

The remainder of the book is divided into eleven major chapters, each one focusing on a specific
function provided by the starter set. The functional areas covered are:

o Starter Set Initialization
e Title page

e Document sections

¢ Headings
e Paragraphs
e Lists

¢ Examples and figures

* Quotes, notes, footnotes, and highlights
¢ Indexing

e Cross referencing

e Miscellaneous.

Behind each GML tag in the starter set is one or more macros and Application Processing Func-
tions (APFs). Each macro used is described in line-by-line detail in this book. Each chapter:

¢ Explains why each macro (APF) is constructed the way it is
¢ Explains how the macros relate to each other in the macro library

e Contains suggestions and examples of ways to modify the starter set and guides you through
illustrations for:

= Tailoring the starter set to an installation’s publications standards,
= Enhancing specific APFs to provide specialized formatting functions, and
» Designing new GML applications.

“Appendix A. Modifying the Macros” on page 171 reviews the steps necessary to update the
starter set macros in each of the environments that the Document Composition Facility works:
CMS, TSO, ATMS-111, and DLF.

“Appendix B. Migration from Release 2 to Release 3” on page 177 discusses some of the steps
that were necessary to update the starter set to support page printers. It is designed as a guide to
users who are converting their own GML application to use Release 3 of DCF and to format for
page printers.

“Appendix C. Starter Set Macro Library Listing” on page 181 contains a listing of all the macros
in the GML starter sct macro library.

The index at the back provides references for each global symbol used in the starter set, as well as
subject, macro, and tag entries. For all the APF entries, the first one listed is the page on which
the APF is described in detail. The other page numbers are secondary references.

Preface v

Related Publications

These are the publications you will want to have available to you that describe the SCRIPT/VS
control words:

¢ Document Composition Facility: SCRIPT|VS Text Programmer’'s Guide, SH35-0069
¢ Document Composition Facility: SCRIPT|VS Language Reference, SH35;0070

If you are using the Document Library Facility (DLF), you will also need to have the following
book available:

® Document Library Facility Guide, SH20-9165.

The end-user portion (the tags) of the starter set is described in these publications:

* Document Composition Facility: GML Starter Set User's Guvz;de, SH20-9186

® Document Composition Facility: GML Starter Set Reference Manual, SH20-9187.

vi DCEF: GML Starter Set Implementation Guide

Table of Contents

Introduction ...ttt i ittt i i it e s 1
Basic COMCe DS v v v vttt i e e e e e e e e 1
Document Types ..o v vttt et e e e e 1
A S oo e e e e e 1
AT BULES .« . i e e e e e e 2
Profile .. 2
Epifile ... e e e e e e 2
AP L e e e e 2
Control Words . ..ot i e e e e e e e 3
How Does GML Work? ... i e e S 3
Profile Processingot e e e 4
Scanning for Tags and Attributes i e . 5
Identifying AttribUtest i e e e 6
Identifying the Residual Text 7
FInding APEs . ..o e e e e 8
APF Processingottt e e e e e 8
Symbol Substitution and Residual Text Processingc.ivii v, 10
Symbol Substitution and Tagsttt e e 10
About the Starter Set L e e 10
APE Naming Conventions « ... v vttt it it ittt tie et tee e, 10
Symbol Naming Conventionsottt ettt ittt iieee e 11
The DSM@MAC@ Symbol e e e e 11
General Service Macros ...t it e e 11
Special Techniquesttt i i i i i ittt et n ittt 13
Validating Keywords it e e e e e 13
Check the Attribute Value i i e e e e e e e e 14
See if we Recognized the Value i 14
Reset SYSVARtoaKnown Value i i, 14
Self-Modifying Macros ... oo e e e 15
Reclaiming Space i i i e e e e e 15
Replacinga Line of a Macro it e e e e 16
Removinga Lineof a Macro ... it i i e e e e 16
Setting Caller’s Local Symbol e 17
Saving and Restoring Environments it 17
Setting Symbols e e 18
Enforcing Structurettt e e e 18
Starter Set Initialization S 19
L0 o T3 19
The DSMPROF3 Profile i e 20
Initialization Macrosttt e e 30
DSM@MACE ..ottt e e e e 30
DSMASE TV e e e 30
DSMASE TS . e e 31
D O MAS T Y L . e e e 32
DS MASE T . e e 34
Modifying Starter Set Initializationttt 36
Creating Your Own Profileand Epifile 36

Table of Contents vii

Changing the Format of the Date i, 37

Changing Default SYSVAR Values i e 37
Setting a Prefix for Level One Headings e 37
Changing the SYSVAR "W’ File Name it i ee e eins 38
Changing Spacing and Indention Settingsttt 38
Changing the Rules Used for Figures i 38
Changing Fonts for Figures it 39
Changing Font DefInitions i e e 40
Creating a New Highlight Level i e e e 40
Modifying the Running Heading or Footing 41
Changing the Page DImensionsottt 42
Creating Three Column Format e 42
Other Modifications to the Profile, o e 43
T S - 45
OV CIVIBW .« ettt e e e e e e e 45
Initialization P 46
DS M P ROES L e 46
D S MASE TS e e e 46
DS MASE TV o e 46
Title Page Tag Processing . . .o ottt e e e e 47
DS M T T LE P . e 47
DSM I L . o e e 47
DSM@ST T L .. e 48
DS M DA TE . e 48
DSMAUTHR .. e e e 48
DSMAD D R .o e e 48
DS MALINE . e 50
DS MEAD DR L e 50
DSM D CNUM . e e e e e e 50
DSM@SEC . vt v e et e e et e et 50
DS ME T T L . e e 50
Producing the Title Page i e e 51
DSMHA TP G . 51
Modifications to the Title Page e 52
Changing Default Title Page Formatting 52
Changing SpacinEottt e e e e e e 53
Adding a Box .. e e e 53
Adding Existing Information e e 53
Adding New Information i e 54
Printing Two Dates e 55
Document SeCtions .o v vttt i e e et it e e e 57
OV eTVIBW . ottt e e e e e e e e e e 57
Document Section Macros . ..ot ittt e 57
DSMGDOC .. e 57
DS M@ SEC e e e 58
DS M R ONT 58
DS MABS T R o e e 58
DS M P REE o e e e 59
D SM T O L e e 59
DS ME LIS T oo e e e e e 59
DSMBO DY .. e e e 60
DS MA PP D .o 61
DSMBACK M L e e e e 62
DSMEGDOC . e e e 62
Modifications to Document Sections . . .o\t i it e 62
Adding @ SectiOn . oo v i e e e e e 62
Changing the Section Label e 64
Changing the Layout e 64
Changing the Appendix Headings it 65

viii DCF: GML Starter Set Implementation Guide

Changing the Table of Contents Format 66

Creating a Table of Contents For Each Chapter 68
Preparation e 68
Saving the Table of Contents Information 68
Producing the Partial Table of Contents i 69
The New Macrosttt e e e e 71
Using SYSV AR W’ e e 72

Headingso i i i it ittt e e e e e 75
OVeIVIBW i 75

Head Level Definition e 75

Prefixing Level One Headings i . 75

Head Level Numbering e e e 76

Revision Codes for Headings i 76

Heading Macrosttt e e 77

DSMP RO L 77

DOMHS Y L e 78

DS M AP P D L e 79

DS MBACK M 79

D SMBO DY . 79

DSME R ONT L e e 79

DSMHEADO .. e e e 80

DSMHEAD L e e e e 80

DSM@SHD .. 81

DOMHEAD 2 e 81

DS MHEAD S 81

DSMHEADA e e e 82

DS MHEAD S e e 82

DSMIEADG . . 82

Modifications to Headings i 82

Capturing Heading Numbersottt 83

Changing Heading Fonts i e 84

Folio by Chapterttt e e e e e 84

Putting Level 2 Headings in the Running Footing 84

Formatting Special Characters in Headings i oL 85

Paragraphs . e e i e i e e e e e 87
OVETVIEW & .ttt it e et et e e e e 87
Paragraph Initialization e e e 87

DS M P RO L e e e 87

DSMABSTR and DSMPREF 87

DSMHEADO and DSMHEADL e 87

DSMHEAD2, DSMHEAD3 and DSMHEAD4 88

DSMHEADS and DSMHEADG 88

Paragraph Processingttt 89

DM P A R A e e 89

DSMPARAL and DSMPARAZ ... e 89

D M P AR A S e 89

DM P CONT . e 90

Modifications to Paragraphs it 90

Changing Indention and Spacing i 90

Using Large Initial Capitalso oo i e 90

Creating Numbered Paragraphst i e 94

0T £ 97
LISt PrOCESSIIE « v oottt e e 97
List Inttialization o e 98

DSM P RO 98

D O MASE T L e 98

Getting the List Started 98
D M LIS T M . e e e 99

Table of Contents ix

DSMALTYP e 101

DOMALINT . e e 102
Processing Items on the List 103
DSMLITEM e e e 103
DSMDTHD .. e e 104
DSMD D HD .. e e 104
DSM D T ERM L e e 104
DSMDDEF e e e 105
DSMG T ERM L e e 106
DSMGDEF . e e e 106
DSM L P AR T .o e e 106
Ending Lists ..ot i e e e e e e 107
DS ME LIS T . i e e e e e e 107

D SMARSET L e e e 108
Modifications to List Processingu it i e e 108
Changing the List Item Identifiers i i e i 108
Changing Spacing and Indention Settingst tiiiiiitnennnnn. 110
Changing the Highlight Defaults for Lists i i 110
Using Decimal Notation for Ordered Liststtt i e 110
Defining An Array for Item Numbers it 111
Incrementing and Printing the Item Numbers o L. 112
Adjusting the Indention for List Items L 113
Examplesand Figures ittt iiitintnenanneenonnenns 115
Example Processingottt e e e e 115
DM X M . e e e e 115
DM E X M P e e e 116
DSM P RO e e e e e 116
DS SMAR ST . e e 116
Figure Processingottt e e e e 116
DSMPROF3 e e 116
DS MASE T . e e e e 116
D OMEIG e e e 117
DM C AP e e 119
DSMEDESC . e e 120
DSMEFIG .. e e e e 120
DSM@ERME e e 121
DSM@PLCE .. e e 121
DSM @ WD T . e e e 122
#FIGLIST o e e e e 122
DSME LIS T . e e e 122
DS MARSE T . e 122
Modifications to Figures and Examples e, 122
Changing Figure Defaults i 122
Moving the Figure Caption Qutside the Frame 123
Changing the Example Defaults ittt 124
Quotes, Notes, Footnotes and Highlights it 125
QUOtE ProCessIIg . v vt it e e e e e 125
DS M P RO e e e e e 125
DS MASE T . e e e 125
DSMOQUOTE .. e e e e 125
DSMEQUOT . e e 126
D SML AU T e e e e e e 126
DSMEL QU e e e e e 127
DSMAR SET . e e e e 128
NOTES .« ottt et e e e e e e e 128
DSMNOTE . e e e e 128
Footnote Macros e e e e e 129
D SM P ROE e e e 129
DS MAR SE T o e e e 129

X DCF: GML Starter Set Implementation Guide

DSMAS T Y L e e e 129

DM T NT e e e 129
DSMASU PR e e e e 131
D SMEEF TNT . ettt et e e e 132
Highlights e e 133
DM I o e e e e 133
DOMECT T . e e e 133
DSMHE PO . e e e e 133
D SMH P o e e e e e e 133
DSMH P e e e e e e 133
DM P e e e e e e 133
DSMEHP ..o e e e 133
Modifications to Quotes, Notes, Footnotes and Highlights 134
Changing the Footnote Leader i it iie i 134
Printing Footnotes at the End of a Chapter 134
Using a Hanging Indent for Notes o i i i 135
IndeXing . ..ot i e et e et 137
Index Tag Macros . .. ov vttt ettt e e e e e e e s 137
DSMINDE X e e 137
DSMIND X L ot e e 138
DSMIND X 2 e e e e e 138
DSMIND X e e e 139
DSMIH DD e e 139
DSMIHD 2 .. 140
DSMIH DD e 141
DSMIREF e 141
DSMIDMMY . e e e 142
DSMIEH e e e e 142
Index Attribute and Support Macrosot e e 143
DSM@IDS . vont e et e 143
DSM@IP R T L e e 143
DSM@PGRE o e e 144
DSM@ RIDI L e e 144
DSM @ SEE .. e 145
DS SM@SEET .. e e 145
Modifications to Index Tags it et e e e 146
Cross-References ..ot ittt anasesnssnnennnaanss 147
OV IVIEW . . i e e e 147
Initialization for Cross Referencing it iee e 149
Processing ID Attributest e e e e 150
DM IDS o e e 150
Processing Cross Reference Tagso i it i 151
DSMHD REFE .. e e e e e 151
DSMFGREF. P 153
DSMLIREF e e e 154
DSMENREE 156
DSM@REID o 156
DSM#YESN PPN 157
Cross Reference Listing Macros o it i e eieee . 157
DSM#XLST e ee e s et e e e e e e e e e et e e 157
DSMASE L X o e e e 158
DSMAX REFE o e e 159
DS MAX REH . e e e 159
DSMAX REN e 159
DSMAX RED . e e e e 160
DSMHAX R L e 160
Producing the SYSVAR "W/ Id File it 161
DSMAW RIT . e e e e 161
DSMAWRTH o e e 162

Table of Contents xi

DSMAEWRTE e e e 162

DS MAW R TN L i i e e e e e 162
DSMAW R T D ..o e e 162
Modifications to Cross References i, 162
Default to Not Print the Cross Reference. 162
MiscellaneoUs .o v v ittt ittt i i i e e e e e 163
General Service Macros . .ottt i e e e e e 163
DS MACN T X i e e e 163
DSMADUPL .o 164
D SMAMS G Lt e e e e e e e 165
DSMARSET i e e e e e 165
DSM PSS C L e e e e e e 167
DSM@PROC . e e Lo 167
DS MM L e e e e 167
DSMEPSC .. e 169
Modifications to General Service Macros.o ittt 169
Adding New MeSSages . . oo v vt ittt et e e e 169
Eliminating the Imbed Trace' i i i e e et 170
Appendix A, Modifying the Macros i ettt 171
Modifying the DSMGML3 MACLIB (CMS) .. oot e i 171
Extracting a Member froma Maclib, 171
Editing the Macroottt i e e 172
Creating Your Own Maclibo 172
Using Your Own Maclib 173
Replacing the Macro in the Maclib i 173
Creating a New Macroottt e e e e e 173
Compressing the Maclib e e 173
Modifying SCRIPT.R30.MACLIB (TSO) ... oot e e 173
Using Your Own Machb 174
Creating a New Macro ..ottt it et et et e 174
Modifying DSMGML3 Macros (DLF) e 174
Modifying DSMGML3 Macros (ATMS) 175
Appendix B. Migration from Release 2toRelease 3 o o i 177
Font Support for Page Printers e 177
Using Device Unitsot i i e e e e e 178
Using System Symbolso e e 178
Appendix C. Starter Sct Macro Library Listing o v i, 181
GloSSarY it it i it i it e e it e e e et e e 231
1T L. < 237

xii DCF: GML Starter Set Implementation Guide

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

List of Illustrations

1. Processing Documents with GML JE 3
2. SCRIPT/VS GML Processing.vvvittttvn ittt naa e 5
3. Validating Keywords ittt e 14
4. Starter Set Initialization Macros i e 20
S. Indention and Skip Initialization L, 21
6. Heading, Highlight and Table of Contents Font Definitions 25
7. Initial Mapping for GML Tags e 27
8. Index Tag Mapping e 29
9. Sample Title Paget e 45
10. The Format of the Address Arrayst 49
11. Producingthe Title Page e 51
12, Sample Output . ..o 67
13, Heading Definitions e 77
14. Spacing Symbol Definitions for Headings 78
15. How Paragraph Tags are Mappedo e e 88
16. Formatting Large Initial Capitals for Paragraphs 91
17. Primary List Macrosottt et e e e 97
18. List Symbols e 99
19. List Indention e 100
20. Decimal Ordered List Example i e e e e, 110
21. Processing ID Attributes e 148
22. Macros and Symbol Arrays Used to Produce the Cross Reference Listing 149

List of Hiustrations: xiii

Summary of Amendments

Third Edition

This revision includes minor technical and editorial changes, and changes made to the GML
starter set to support the IBM 3820 Page Printer.

Second Edition

This revision includes minor technical and editorial changes, and changes made to the GML
starter set to support the 3800 Printing Subsystem Model 3.

A list of the technical changes follows in order by chapter.

Preface

In the section entitled “Related Publications” on page vi a reference to the Document Library
Facility Guide has been added.

Starter Set Initialization

In the section entitled “The DSMPROF3 Profile” on page 20 the mapping of APFs for the index
tags is more fully explained.

In the section entitled “DSM#STYL” on page 32 the processing for offset layout has been
changed.

Headings

A new section called “Formatting Special Characters in Headings” on page 85 has been added to
explain how to get special characters and font changes into headings.

Paragraphs

In the section called “DSMPARAS5” on page 89 the processing done by the DSMPARAS macro
has been expanded.

Quotes, Notes, Footnotes and Highlights

A new section called “Printing Footnotes at the End of a Chapter” on page 134 has been added
to explain a technique to place footnotes at the end of the chapter.

Summary of Amendments XV

Introduction

Basic Concepts

Before looking at the details of the starter set, let’s review some basic concepts of Generalized
Markup Language (GML) and then look at how it all works together when SCRIPT/VS proc-
esses GML markup.

Document Types

There are many diffcrent kinds of documents, such as:
e Memos

o Letters

* Insurance policies

s Novels

e Instruction manuals

e Recipe books

o General documents.

Each kind of document has its own types of text elements and its own document structure. Doc-
ument structure refers to how the document is put together into sections such as front matter,
body, back matter and so on. Some documents may not have a front matter section or back
matter sectton. Some may have only body matter.

It is the job of a text administrator to identify the document type and the text clements that go
with it. Once these have been defined, tags must be assigned to identify each element. The last
step is to write Application Processing Functions (APFs) to interpret the tags and perform the
formatting desired for the text element.

General Document: The GML starter set includes a set of tags that describe a general document.
These tags are not designed to meet all text processing needs or to describe all possible text ele-
ments. Additional tags will be necessary to produce different kinds of documents.

Because most documents contain basic text elements such as paragraphs, lists, and figures, the
starter set application can be used as a base upon which you can build your own GML applica-
tion.

Tags
A tag is a name for a particular text element or structure found in a document. Each different

type of document element should have a unique tag to identify it. For example, a paragraph is a
text element and should have a tag to identify it. An item in a list may also be a paragraph, but 1t

Introduction 1

is primarily a /st item. There may even be several paragraphs within a list item. The tag identify-
ing list items should be different from the tag identifying paragraphs.

The formatting to be performed for a specific text element is independent of the tag name. A
paragraph is a paragraph regardless of what part of the document it is in or whether it is indented,
hanging, or capitalized. The tag (:P in the starter set) simply identifies the text that follows as a

paragraph.

Attributes

Some text elements have changeable characteristics. In this case, rather than define two tags, at-
tributes can be used to further describe the text elements. Tags identify the text element and
attributes identify particular qualities or characteristics of the element. For example, a figure that
is set off from the text by a horizontal rule is essentially the same element as a figure with a box
around it. Therefore, there is only one tag for figures, :FIG, and the attribute, FRAME, identifies
the type of frame. It is important to understand that the attribute is not describing the formatting
of the frame, it is identifying the #ppe of frame to be used for the figure.

Profile

A profile is a file that contains general information about what processing is to be performed on
the source (text) document. The profile, which is specified on the SCRIPT command, is proc-
essed before the source file. Its primary purpose is to establish the formatting and processing
environments. The profile (along with macros it calls) defines the page layout for the document
and the style of formatting for such things as headings and lists. It also establishes the GML rules
for scanning for tags and defines the tags and APFs for the application.

DSMPROFS3 is the profile for the Document Composition Facility Release 3 starter set. We'll
look at the profile in more detail later.

Epifile

An epifile is processed after the source document has been processed. It is physically part of the
same file as the profile. The profile portion ends with a .EF [End of File] control word. What
follows the .EF [End of File] is, by definition, the epifile. The epifile can be used to provide any
processing necessary after the formatting of the document, or perhaps more significantly, between
the first and second formatting passes.

In the case of the starter set, the epifile produces the cross-reference listing of IDs, the imbed
trace, and the SYSVAR "W’ file of IDs if these have not already been produced by a :EGDOC
tag.

APFs

Application Processing Functions (APFs) provide the formatting and processing instructions that
are to be performed for a specific tag. The APF behind a tag can be a control word, a symbol or
a macro. In the starter set, the APFs are macros which reside

e In the DSMGML3 macro library in the CMS environment,

¢ [n the permanent storage of the GML SYSOP operator in ATMS-III,

® In a partitioned data-set in TSO, and

¢ In a public library in DLF.

In the profile, a tag is associated with an APF using the .AA [Associate APF] control word.
When a tag is encountered, SCRIPT/VS invokes the APF associated with it. If no APF has been

2 DCF: GML Starter Set Implementation Guide

Host

Source System
Document Profile Library
tag macro
. ces cee —> DSMHEAD1 APF
. —{—> H1 —> DSMHEAD1 - ——-r—
. H2 DSMHEAD2
:hl. Heading S Ce ch
. ~> SL —> DSMSLIST —
:p. Paragraph —|- ————-L Ce RN _l— ~> DSMSLIST APF
. —> P —> DSMPARA —

:sl. Simple list

o —> DSMPARA APF

Figure 1. Processing Documents with GML: The profile provides the mapping between tags, which
identify elements of text in the source document, and APFs, which provide formatting
functions.

associated with the tag, SCRIPT/VS searches for a macro or control word with the same namc?
as the tag, and if found, uses it. If neither a macro nor control word is found, an error message is
issued.

APFs can contain SCRIPT/VS control words, symbols text, and macro calls. The text that be-
longs to the tag is available to the APF for processing by using the .GS [GML Services] SCAN
control word. The macros to process the attributes can be invoked using the .GS [GML Services)
EXATT control word.

Control Words

Control words are specific instructions to SCRIPT/VS. They do not identify text elements, but
rather instruct SCRIPT/VS how the page is to be set up and how the text that follows is to be
formatted.

SCRIPT/VS control words are always two characters long (such as “SP” or “BX"). They are
always preceded by a period and need to start in column one of the input line.s

How Does GML Work?

Within SCRIPT/VS there are numerous mechanisms that make it possible to create and process
GML. The more you understand about how SCRIPT/VS processes GML tags, symbols and
macros, the better able you will be to understand and modify the starter set and write your own
GML tags.

4 Macro names are not case sensitive. In other words, DSMFIG is the same as dsmfig.

5 It is possible to create “logical” input lines by using the control word separator. See Document Compo-
sition Facility: SCRIPT|VS Text Programmer’s Guide for more details on control words.

Introduction B

Profile Processing

SCRIPT/VS allows a profile to be specified on the SCRIPT command with the PROFILE op-

tion.

SCRIPT GMLSSDOC (PROF(DSMPROF3)

By specifying a file that will be processed before our source document, we can get everything set
up the way we want it. This includes defining tags and telling SCRIPT/VS how to find the proc-
essing instructions for the tags.

The most important actions that the profile performs are:

¢ Defines the delimiters for tags () and end tags (:e)

4

.dc gml : : e

Defines the tags and their associated APFs, for example

.aa hl DSMHEAD1

defines a tag named “h1” and associates it with an APF named DSMHEADIL. Attribute
rules, which are discussed below, may also be given on the .AA [Associate APF] control
word.

Turns on scanning for tags.
. gs tag on
Defines the attribute rules for each tag.

.gs rules (att novat stop nomsg) (noatt)

where
att specifies that labelled attributes are allowed
novat specifies that no value attributes are allowed

stop specifies that when an invalid attribute is found during the scan, the scan is stopped
at that point

nomsg prevents a message from being issued when an invalid attribute is found
noatt specifies that no attributes are allowed on the end tag.

The list within the first set of parentheses on the .GS [GML Services] RULES control word
sets the rules for the start tags and the list within the second set of parentheses sets the rules
for the end tags. There are rarely attributes on an end-tag.

The definitions of the tags on the .AA [Associate APF] control word may override the gen-
eral attribute rules specified with the .GS [GML Services] control word. If a particular attri-
bute rule has been defined in the profile using the .GS [GML Services] RULES control word
and a contradictory rule is also defined with an .AA [Associate APF] control word, the .AA
[Associate APF} control word specification is used. For example, in the starter set the :OL
tag is defined as

.aa ol dsmlistm (vat) dsmelist

Since the general rules allow attributes (ATT), the :OL tag definition does not need to.
However, the general rules also specified that value attributes are not allowed (NOVAT) so

DCF: GML Starter Set Implementation Guide

the :OL tag has to do something to allow value attributes (VAT) in order to be able to proc-
ess the COMPACT and BREAK attributes on this tag.

The general rules for end-tags specify that there are no attributes on end-tags. There are no
end-tags in the starter set which have attributes so this rule is never over-ridden on the tag
definitions. See the portion of the DSMPROF3 profile which specifies the .AA [Associate
APF] control word definitions for the tags.

We'll look at what else DSMPROF3 does in “Starter Set Initialization” on page 19.

Scanning for Tags and Attributes

Let’s take a look at how tags and attributes are processed by SCRIPT/VS.

Profile

>! .aa H1 DSMHEAD1

Source Document

A Residuai';'zl'ext

:hl stitle='Introduction'
id ='intr’'. ———>] Introduction...
Introduction... Starter Set Starter Set

Regular Attributes

>| STITLE =
'Introduction’
>| ID = 'intr'
DSMHEAD1 APF ATTRIBUTE
MACROS
. S
—> . r> DSM@SHD APF
[]
—> . gs exatt stitle as dsm@shd _
°
—> .gs exatt id as dsm@ids > DSHM@IDS APF
[]
®

Figure 2. SCRIPT/VS GML Processing.: This figure shows the automatic processing that occurs
when SCRIPT/VS encounters a :H1 tag. v

. Introduction 5

As SCRIPT/VS reads each line of the input file, it looks for GML tags. It knows how to find
them because the profile defined the tag delimiters with

.dc gml @ : e

SCRIPT/VS can tell from the delimiter whether a tag is a start tag or an end tag. This is impor-
tant because they are usually processed differently. Notice that using “:e” as the end-tag delimiter
implies that there can be no tag names that start with “e.” If you did start a tag name with an
“e,” SCRIPT/VS would assume it was an end-tag and would always associate the tag with the
APF specified as the end-tag APF.

SCRIPT/VS also knows where the tag name ends and the attributes or text begin because the tag
name is followed by either a blank or a period.

:hl stitle='Introduction'
id="intr'.

Introduction to the GML Starter Set
:0l compact

:1i. Item one.

In the example above, the first tag SCRIPT/VS finds is the :H1 tag. This tag, its attributes and
its text will be completely processed before the line with the :OL tag is processed.

Once a tag has been found, SCRIPT/VS performs the following processing:
1. Finds the attributes for the current tag

2. Identifies the residual text associated with the tag

3. Figures out which APF to invoke to process the tag

4. Processes the instructions in the APF
5

Processes the residual text if the APF did not process it.

Identifying Attributes

When SCRIPT/VS finds a tag, it automatically checks the attribute rules for the tag to see if any
attributes are allowed. The :OL tag was defined as follows:

.aa ol dsmlistm (vat) dsmelist

In this case, value attributes (vat) are allowed. In the case of the :H1 tag, there are no attribute
rules on the .AA [Associate APF] control word, so SCRIPT/VS uses the general rules established
with the .GS {GML Services] RULES control word.

| If the tag being processed is not allowed to have any attributes, SCRIPT/VS does not scan the
rest of the line for attributes. It assumes everything following the tag is residual text.

If attributes are allowed, SCRIPT/VS scans the markup to find the attributes.

There are two different kinds of attributes that can be used—value attributes and labelled attri-

butes. Value attributes are single words which are either specified or not specified. For example,
COMPACT and BREAK on the :DL tag are value attributes. These attributes are passed di-
rectly into the APF for the tag in the &* symbol array.

Labelled attributes are specified using an attribute name, an equals sign and the value of the attri-
bute. For example, PAGE =yes is a labelled attribute. Labelled attributes are processed by the
APF for the tag using the .GS [GML Services] EXATT control word. During the scanning proc-

6 DCF: GML Starter Set-Implementation Guide

ess each labelled attribute (the kind with the equals sign) is saved along with its value in a special
attribute list.

SCRIPT/VS scans the line with the tag on it looking for attributes and residual text and contin-
ues to scan subscquent lines until it finds either a markup/content separator (.), another tag or
text if value attribuies are not allowed.® As soon as one of these is found, SCRIPT/VS stops
looking for attributes.

In our example above, the line with the :H1 tag on it is scanned. The STITLE attribute and its
value, “Introduction,” will be saved in a special attribute list. Because there is no markup/content
separator on this line, SCRIPT/VS will scan the next line also. The ID attribute and its value are
also saved in the list. The period following the 1D value is the markup/content separator and
automatically ends the scan for attributes.

The :OL tag has a value attribute (COMPACT) on it. When SCRIPT/VS gets to this tag, the
COMPACT attribute will be saved during the scan. Notice that there is no markup/content sep-
arator here. A separator is not necessary because there is no text associated with the :OL tag. It
is followed directly by another tag, :LI, which ends the scan for attributes.

Identifying the Residual Text

Once SCRIPT/VS has processed the markup for a tag, it identifies the text associated with the
tag. This is called the residual text. Not all of the tags in the starter set have residual text, but
SCRIPT/VS checks for it anyway.

All of the text on the line from the end of the markup, up to but not including the next tag, is
considered to be the residual text associated with the tag. In our example, the line that ends the
markup for the :H1 tag has nothing else on it. In this case, all of the text on the next line is
considered to be the residual text. “Introduction to the GML Starter Set” is the residual text for
the :H1 tag. The :OL tag has no residual text because it is followed by another tag.

The end of the residual text is defined as the end of the input line or the occurrence of another
tag. Since the residual text line is ended by the occurrence of another tag, it can not, by defi-
nition, contain any tags. For example,

:hl.The :hpl.starter set:ehpl. Profile

The residual text for the :HI tag is just the word “The.” The scan for residual text was ended by
the occurrence of the :HP1 tag. Similarly the residual text for the :HP1 tag is “starter set” and the
residual text for the :EHP1 tag is “Profile.” In the case of this last tag, the scan for residual text is
ended by the end of the line, rather than the occurrence of another tag.

Since residual text is a very important concept, let’s look at another example:

ttitlep
ttitle.
First Line
of the Title

In this example, there is no residual text at all for the :TITLEP tag. “First Line” is the residual
text for the :TITLE tag. Notice that the residual text for this tag includes only the first input line
following the tag. There was no text on the same line with the tag so the residual text is the next
input line.

Residual text is not important for all tags. For example, the first line of text after a paragraph tag
has no special meaning as residual text. If the residual text has special meaning, it must all be

6 If no markup/content separator is used and attributes are allowed on the tag, SCRIPT/VS may not be
able to tell what is text and what are attributes. This is why the markup/content separator is an impor-
tant part of the mark-up.

Introduction 7

entered on one line, such as with the :Hl-tag. In the starter set there are some tags which use
their residual text. These are:

:ALINE
:AUTHOR
:DATE
:DDID
:DOCNUM
DT
:DTHD
:FIGCAP
:GT

:HO-6
JH1-3
:11-3
TITLE

All other tags either don’t have any residual text or don’t use it.

Finding APFs

After checking for residual text, SCRIPT/VS checks to see if the tag has been associated with an
APE. In our example, the DSMHEADI macro, which has been associated with the :H1 tag, is
invoked because of the following .AA [Associate APF] control word:

.aa hl DSMHEAD1

If SCRIPT/VS encounters a tag that has not yet been associated with an APF, it attempts to find
a macro or control word with the same name as the tag. If there is one, it is processed. If neither
a macro nor control word is found, the user gets an error message and the tag appears as text in
the formatted output.

If SCRIPT/VS finds any value attributes when it scans the lines, they are passed as parameters to
the APF and are available in the local symbols &*1, &*2, and so on. In the case of the :OL tag,
the value attribute COMPACT is passed to the DSMOLIST APF which processes the :OL tag.

APF Processing

The APFs provide the specific formatting instructions for the particular text element or structure
identified by the tag. The APFs are made up of SCRIPT/VS control words, text, and calls to
other macros. They may do such things as cause a page eject, redefine the column definitions,
start indenting, change fonts, and so on—whatever is required to process the element.

Residual Text: 1f the APF wants to use the residual text of the tag (as in the case of headings), it
can use the .GS [GML Services] SCAN control word to get the text:

.gs scan @head

This control word will cause the residual text to be transferred into a symbol named & @head.
The name of the symbol used on the .GS [GML Services] SCAN control word line can be any-
thing you like—as long as it’s a valid symbol name.

The APF must then process it completely, because the .GS {GML Services] SCAN control word
causes SCRIPT/VS not to process the residual text.

On the other hand, if the APF just wants to look at the residual text, but still wants SCRIPT/VS
to process it automatically, it can use a .GS [GML Services] COPY control word. If the text is
not scanned, but is either ignored or copied, it will be processed automatically by SCRIPT/VS
after the APF has finished.

8 DCF: GML Starter Sct Implementation Guide

For example, an APF might simply want to know if there is any residual text. In this case you
would want to use the .GS [GML Services] COPY control word to get a copy of the residual text
and check its length using the &1 symbol attribute:

. gs copy @head
.if &L'&Rhead eq 0 .th
el ...,

If the length was zero you would now know that there wasn’t any residual text and could proceed
accordingly. If there was residual text, SCRIPT/VS will still process it automatically for you.

The automatic processing of residual text includes using literal mode (so that text is not misinter-
preted as controls) and automatic handling of word continuation. If you need to process the
residual text yoursclf in the APF, you will need to be concerned about such problems.

One special concern with word continuation is when the residual text scanning is ended by an-
other GML tag. If the APF for the first tag uses .GS SCAN, there may be continuation prob-
lems because the first APF does not have enough information to cause correct word continuation
in all possible situations. The first APF. cannot determine whether the residual text scanning was
ended by another GML tag, or the end of an input line. If the residual text scan was ended by
another GML tag, an extra blank may be incorrectly added at the end of the first GML tag’s
residual text. Continuation after the second GML tag may be incorrect also. To avoid this situ-
ation do one of the following: Use .GS COPY if you only need to look at the residual text,
allowing SCRIPT/VS to process the residual text. If .GS SCAN is necessary, cause breaks before
and after the residual text. If breaks before and after the residual text are inappropriate, do not
put any other GML tags on the same input line with your GML tag.

Attributes: The value attributes passed to the APF as parameters can be processed directly in the
APF. They are available in the local symbols &*1, &*2 and so on. For example, if the COM-
PACT attribute is specified on the :OL tag, the &*1 symbol will contain the word “compact”
when we get to the APF for the :OL tag. The attribute value is passed in exactly as it was speci-
fied. It is not folded to uppercase. If you had specified “Compact” the value of &*1 will be
“Compact.” If you had specificd “COMPACT” the value of &*1 will be “COMPACT.”

The labelled attributes (specified with an “="") are processed by APFs using the .GS {GML
Services] EXATT control word. For example, the APF for the :111 tag processes the ID attribute
using:

.gs exatt id as DSM@IDS

When this control word is executed, SCRIPT/VS checks the names of the attributes given on the
control word line (in this case “id”) against the special list of attributes that SCRIPT/VS created
when it scanned the markup. If a match is found, the macro specified on the .GS [GML Services]
EXATT control word is executed, and the value of the attribute (the right side of the equals sign)
is passed to the macro in &*1. If no macro name is given on the .GS [GML Services] EXATT
contrel word, the macro with the same name as the attribute is executed.

In our example, the DSM@IDS macro is invoked when the ID attribute is found in the markup.
If we don’t specify the macro name (DSM@IDS) on the control word line, then a macro named
ID is invoked. If there is no ID macro, a message is issued.

In the starter set, the attribute macros are almost always specified by name on the .GS |[GML
Services] EXATT control word lines. This is because all of our macro names must start with
DSM and this is never the same as the attributc name so it must be invoked by name on the .GS
[GML Services] EXATT control word.”

7 The exception to this rule is that several of the attribute macros in the starter set are defined by other
macros in the library. Since they are dynamically defined they don’t exist as macros in the library and
therefore do not have to have names beginning with “DSM.”

Introduction 9

If the .GS [GML Services] EXATT control word line includes an attribute that was not in the
markup, nothing happens. In other words, in our example, if no 1D attribute was specified on
the :H1 tag nothing happens when we get to the .GS [GML Services] EXATT control word.

Symbol Substitution and Residual Text Processing

Symbol substitution is performed on residual text before residual text is processed. This has im-
plications when the symbol in the residual text is reset by processing in the APF for the tag this
residual text is associated with. The following example illustrates this situation:

.se count = 0

.dm xxx on

.se count = &count + 1
. 8s scan *line

&*line

.dm off

%

: xxx. the count is &count

Symbol substitution is performed before the XXX APF is executed. During symbol substitution
the symbol “&count” is resolved to the value “0”. Therefore, after the GS SCAN 1is performed,
the symbol “&*line” contains the value “the count is 0” instead of “the count is &count”. To
avoid this situation, do not put symbols in residual text for tags, whose APFs may resct that
symbol.

Symbol Substitution and Tags

Do not put GML tags into symbols. Using GML tags in this manner may result in improper
processing of the GML tag, for example: .SE tag2= HI.

About the Starter Set

There are approximately 150 different macros in the starter set. In order to make it easier to
recognize symbol names and APF names, several naming conventions have been used in writing
the starter set.

APF Naming Conventions

All of the APFs stored in the macro library begin with DSM which indicates that they are part of
the Document Composition Facility program product.

The fourth character in the APF name indicates what kind of APF it is.

e DSM# indicates a service or initialization macro that is only called by other macros, APFs,
and the profile.

e DSM@ indicates a macro that processes an attribute.
¢ DSME indicates an APF for an end-tag.

¢ DSM followed by any letter other than E indicates an APF for a start tag.

10 DCF: GML Starter Set Implementation Guide

Symbol Naming Conventions

Several different symbol naming conventions are used in the starter set. Most of the starter set
symbols start with @. This is done to reduce the possibility that users will have symbols with the
same narmes.

All of the literal constants (text) used in the starter set are put into symbols that start with
&LL@. These symbols are defined by the DSM#SETS macro. For example, the DSM#SETS
macro defines a symbol named &LL@ToC to have a value of “Table of Contents.” This symbol
is then used on the .TC [Table of Contents] control word in the APF for the :TOC tag to specify
the heading to be put on the table of contents page.

The primary reason for this approach to handling text constants is to facilitate changing the con-
stants.

The symbol names are made as meaningful as possible without making them unnecessarily long.
For example, symbols that hold a value for white space to be skipped begin with “@sk” and
indention values begin with “@in.”

It is also generally true that “h” indicates headings, “f’—figures, “n”"—footnotes, “1"—lists?, and
“"—index. This is true, for example, in the &@sk@f and &@in@f symbols where the “f re-
presents figures.

The DSM@MAC@ Symbol

Symbols can also be stored individually in the macro library, There is one such symbol in the
GML macro library—the &DSM@MAC®@ symbol—that contains the name of the macro library.
'}’his symbol is used by the profile to verify that the correct macro library is available for process-
ing.

General Service Macros
Some of the macros that begin with DSM# can be especially useful to you in writing your own

APFs to extend the starter set. These macros are listed below and are described in detail in either
“Starter Set Initialization” on page 19 or “Miscellancous” on page 163.

8 Qccasionally we use “d” for lists instead of “I” to avoid duplicate symbol names.

Introduction 1t

APF
DSM#CNTX

DSM#DUPL

DSM#MSG

DSM#RSET

DSM#SETS

DSM#STYL

DSM#SUPR

DSM#YESN

Description

Invalid tags are mapped to this macro to produce a message that states that the
tag is out of context. The tag name is included in the message. It is used, for
example, as the mapping for the :ALINE tag when an address structure is not
currently in progress.

This macro ends the current page and prepares to start a new page. If duplexing
is in effect (with SYSVAR ‘D’), this macro will cause a page eject until it gets to
an odd-numbered page. It is used for processing document sections (abstract,
preface, index, and so on).

This macro issues all of the GML starter set messages. All messages are collected
here to facilitate translation to other languages.

This macro checks to see if any structures such as figures, examples, footnotes, or
lists are open. If any are found open, they are closed (ended) and a message is
issued.” This macro is used primarily by the heading APFs to perform house-
keeping functions before starting a new heading.

This macro defines all of the literal text strings used by the starter set. They are
collected here to facilitate translation into other languages. This macro also de-
fines the &date and &time symbols.

This macro sets up the page layout to be one column, two column or offset style.
It is used in the starter set to change the layout between the different document
sections, such as body and back matter. It accepts “one,” “two,” or “off” as a
parameter. If no parameter is given, the style system variable, &SYSVARS, is
used to determine the desired page layout. The default page layout is one col-
umn if SYSVAR ‘S’ is not specified on the SCRIPT/VS command line.

This macro produces superscripts. The parameters passed to the macro print as
superscripts for the 1403 printer and the IBM 3800 Printing Subsystem Model.
For page printers, superscripts are created by shifting the baseline up and printing
the number in a smaller font. For terminals and other line printers, the parame-
ters passed are printed enclosed in parentheses.

This macro analyzes attribute values that can be only “yes” or “no.” In the

“starter set it is used by the cross-reference APFs and is further described in detail

i “Cross-References” on page 147.

12 DCF: GML Starter Set Implementation Guide

Special Techniques

Much of the starter set processing is provided by fairly complex manipulations of symbols.
Rather than explain these techniques repeatedly for each of the APFs that uses them, a single
detailed explanation is given here for some of the techniques.

Validating Keywords

Some of the attributes and SYSVARSs accept only a limited number of values.? In these cases, we
need to ensure that the value the user specified is valid. This involves checking the value against a
list of valid values to sce if we recognize it. Then we reset the value specifically so we know
exactly what format it is in.

Let’s take a look at how the SYSVAR ‘D’ variable is handled. This system variable indicates
whether or not duplexing is to be done.

System variables are passed to SCRIPT/VS on the SCRIPT command using the SYSVAR op-
tion. The values given on the command for the various system variables are put into special
system symbols named &SYSVARA, &SYSVARB etc. The starter set uses only C, D, H, P, R,
S, T, W and X.

Most of these variables are analyzed in the DSM#SETV macro which is called from
DSMPROF3 during the starter set initialization process. The purpose of the processing is to es-
tablish fixed values. We know that the value of the SYSVAR will be uppercase if it was specified
on the command, because SCRIPT/VS translates it to uppercase. However, someone could set
the SYSVARSs in the profile, in which case we wouldn’t know if they are in upper- or lowercase.

There may also be synonyms that need to be converted to a single value. We need to be able to
count on these symbols being set to specific values so we can test them easily when we need to.

We're going to convert whatever comes in as the value for &SYSVARD to a lowercase “no” or
“yes.” If &SYSVARD is not set, we'll set it to “no” to indicate no duplexmng. Accomplishing
this requires three steps: ‘

1. Checking the specified values against a list of valid ones
2. Seceing if we found it on the list and if not, setting the default

3. Setting or resetting the symbol to a recognizable value.

9 For a description of what SYSVARSs are used in the starter set see the Document Composition Facility:
GML Starter Set User's Guide, SH20-9186 and the Document Composition Facility: GML Starter Set
Reference , SH20-9187.

Special Techniques 13

.se *a = index -NO-YES-DUPLEX-SIMPLEX-" -&U'&SYSVARD.’
M &*aeql.se *al
.s¢ SYSVARD = substr 'no yes yes no” &*a 3

Figure 3. Validating Keywords: The technique illustrated here is used to check a system variable
(SYSVAR) value or an attribute value against a specified list of valid values.

Check the Attribute Value

The first thing to do is check the value of &SYSVARD. In the first line shown in Figure 3, we
look up the uppercase value of &SYSVARD in a string made up of all the values we recognize.
In this case, the only ones we recognize are “NO,” “YES,” “DUPLEX,” and “SIMPLEX.”

Each possibility is prefixed with a dash so that, for example, a value of “plex” is not recognized as
valid. However, legitimate abbreviations such “y” for yes are recognized as valid.

We're using the uppercase attribute of the &SYSVARD symbol for comparison purposes and
have prefixed it with a dash also.

Suppose that &SYSVARD was specified on the command as “No.” Let’s examine how this line
will substitute:

.se *a = index '-NO-YES-DUPLEX-SIMPLEX-' '-&U'&SYSVARD.'
.se *a = index '-NO-YES-DUPLEX-SIMPLEX-' '-&U'No'
.se *a = index '-NO-YES-DUPLEX-SIMPLEX-' '-NO'

The right-hand string (or search argument) in the line above will resolve to “-NO” and &*a will
end up set to 1 because “-NO” starts in the first position of the string we're looking in.

See if we Recognized the Value

The next thing to do is determine whether we recognized the value by testing the value of &*a.
This is the second line in Figure 3.

If the uppercase value of &SYSVARD prefixed with a dash (-) was found in the string we looked
in, &*a would be set to the starting position. (See the INDEX parameter of the .SE [Set Symbol]
control word in the Document Composition Facility: SCRIPTIVS Text Programmer’s Guide for
more details.)

If &*a is zero, it means that &SYSVARD was none of the things we thought it could be, so we
will set &*ato 1. We'll see why later.

Reset SYSVAR to a Known Value

The next and last step is to get &SYSVARD set up the way we want it. It could have been
entered in either upper- or lowercase and four different words are valid with “duplex” equivalent
to “yes,” and “simplex” equivalent to “no.” In the third line in Figure 3, we reset &SYSVARD
using the substring function of the .SE [Set Symbol] control word. The source string is set up to
all “no”s and “yes”s in the samec positions as we had the corresponding terms in the .SE [Set
Symbol] INDEX control word line above.

14 DCF: GML Starter Set Implementation Guide

line 1: -NO-YES-DUPLEX-SIMPLEX
[l
1 4 8 15

line 3: no yes yes no

The &*a value is used as a starting point and we’ll always take three characters.

The “1” we used above as the default value for & *a translates here to taking the substring starting
at position 1 for three characters—in other words, “no.”

Notice that we had to leave extra spaces between the second yes and the second no. This is
necessary to make the two strings correspond exactly. If &*a is 4 after the index function because
&SYSVARD was “Yes,” then &SYSVARD will come out of the substring function set to “yes,”
because we’ll take three characters from the string starting with the fourth character.

.se SYSVARD = substr 'no yes yes no' &*a 3
.se SYSVARD = substr 'no yes yes no' 4 3
.se SYSVARD = 'yes

Self-Modifying Macros

Several of the macros in the starter set modify themsclves by redefining the entire macro, undefin-
ing the macro or changing one or more lines of the macro.

Reclaiming Space

When the macro is not going to be used again it is best to remove the definition from storage.
The macros in the starter set that reclaim their storage do so in one of two ways:

¢ the macro is undefined

.dm dsmifsets off

e the macro is redefined to a comment.

.dm dsmifsets /.*

In either case, the macro’s definition is deleted from storage. In the second method shown, the
definition is replaced with a comment line. There is one significant difference between these two
methods and that is what happens if the macro is called again. This could be on the second pass.

If the macro is in storage, SCRIPT/VS uses the copy that is in storage rather than the lLibrary
copy. If the macro has been undefined (with .DM [Define Macro] macro OFF), this means that
it is no longer in storage. In this case, the next time the macro is needed, SCRIPT/VS fetches it
from the library. This way the real macro, as it exists in the library, is always used even if it
defines itself to “off.”

Alternatively, if the macro has been redefined to be a comment, SCRIPT/VS finds the macro
definition (the comment line) in storage and processes it. The result is that the macro definition
in the library is totally bypassed on subsequent calls which may or may not be okay depending
on exactly what the macro does. If the macro only needs to be executed once during a formatting
run using the approach of redefining the macro to a comment is fine.

For this reason, the first method described—undefining the macro—is the method used in the
starter set. On the second pass, we want to use the real macro definition from the library again.
The only macros that do this are the initialization macros called from DSMPROF3 during initial-
ization.

Special Technigques 15

Replacing a Line of a Macro

Another example of macros which modify themselves involves a line of the macro replacing itself
with another line. The macros that do this, such as DSM#XLST and DSM#WRIT, do so to
make sure that the macro is executed only once. Both of these macros may be called either from
the :EGDOC tag or from the cpifile section of DSMPROT3. They redefine themselves to make
sure that they are not called by both :EGDOC and the epifile.

In both cases the first line of the macro is replaced with a new control word line which contains a
-ME [Macro Exit] control word. This means that the first time the macro is executed the first line
is changed to a .ME [Macro Exit] control word and the second time the macro is executed the
.ME [Macro Exit] control word is the first linec encountered and causes the macro to end imme-
diately.

For example, the first line of the DSM#XLST macro looks like this:

.dm DSM#XLST(&SINUM.) /.me

The &$L.NUM symbol resolves to the current macro line number which in this case is 10 because
this 1s the first line of the DSM#XLST macro. This causes the first line of the macro to be
redefined to the .ME [Macro Exit] control word.!® The next time the macro is executed it will end
immediately without further processing. '

Removing a Line of a Macro

Another technique that is used within the starter set involves a macro modifying itself by remov-
ing a line of the macro. This technique is used in the cross-reference listing macros
(DSM#XRFD, DSM#XRFN, DSM#XREH, DSM#XRFI, and DSM#XREN). These macros
are called repeatedly to produce onc line of the cross reference listing at a time. The first time
each of the macros is called it needs to call the DSM#SETX macro to gencrate a heading for the
id section such as “Heading IDs” or “Figure IDs.” Since this heading is produced only the first
time the macro is called and is not needed on subsequent calls, these macros redefine themselves
to remove the call to DSM#SETX after the first time. It looks like this:

.dm DSM#XRFH(&SINUM.) off &$CW..DSM#SETX H

The &$LNUM symbol resolves to the current macro line number. The line is constructed in two
parts separated by a control word separator (&$CW). The first time the line is processed, the
entire line is picked up and split into its two parts. Part one of the line is processed first and it
removes the original line from the macro by setting it “OFFE.” The second part of the line is then
processed and results in the DSM#SETX macro being called with “I1” as a parameter.

The next time the DSM#XRFH macro is executed, the line is not present at all and the
DSM#SETX macro i1s not called.

Another APF that uses this technique is the DSMLISTM APF. The first time DSMLISTM is

called, it removes its first three lines and defines three single-line macros.

.dm dsm#listm(&SILNUM.) off &$CW..dm R@termhi /.se @hi@l = &%1/
.dm dsm#listm(&SILNUM.) off &$CW..dm @tsize /.se @in@1 '&*1/
.dm dsm#listm(&SLNUM.) off &$CW..dm @headhi /.se @hi@hd '&*1/

10 Redefining the macro to end immediately is no different really than redefining the macro to be a com-
ment except that the macro is not removed from storage. The technique of redefining lines of macro is
used for various purposes, not just avoiding re-executing the macro.

16 DCF: GML Starter Set Implementation Guide

Each line defines a simple macro that is used to process an attribute of the list tags. Because
these macro definitions need be done only once—the first time we call the DSMLISTM
macro—the lines redefine themselves to off.

Setting Caller’s Local Symbol

There are several places in the starter set macros where a macro ends with a .ME [Macro Exit]
control word line that also has a .SE [Set Symbol] control word on the same line, as in:

.me .se ¥id '&*

The .ME [Macro Exit] control word ends the current macro. The .SE [Set Symbol] control word
line is exccuted after the macro has ended and will set a local symbol for the calling macro. In
the example shown above, the &*id local symbol belongs to the calling macro, not the macro
that is being ended. The &* represents the parameters that were passed as a local symbol into the
macro which is ending.

For example, the :HDREF tag is processed by the DSMHDREF APF. This APF calls the
DSM@RFID macro to process the REFID attribute on the :HDREF tag. The value of the
REFID attribute is passed to DSM@RFID in the &* symbol. This value is not available to the
DSMHDREF macro—only to the DSM@RFID macro. The DSM@RFID macro has just one
line in it:

.me .se *id '&*

The DSM@RFID macro ends immediately and stacks the .SE [Set Symbol] control word line to
be executed back in the DSMHDREF APF. The &*id symbol is local to the DSMHDREF
macro, not the DSM@RFID macro. The &* symbol, however, belongs to the DSM@RFID
ma to. In order to work correctly we want the &* symbol to resolve to the value it has for the
DSM@RFID macro. Since symbol substitution occurs before control word processing, the &*
symbol is resolved before the .ME [Macro Exit] control word ends the DSM@RFID macro
which is what we want to happen.

This technique is used because we make every attempt possible to use local symbols rather than
global symbols in order to avoid creating and maintaining unnecessary symbols. Many symbol
values only have meaning for the duration of the macro that is creating them.

Saving and Restorving Environments

The starter set frequently saves and restores the formatting environment using the .SA [Save
Status] and .RE [Restore Status] control words. The .SA {Save Status] control word saves a copy
of the current values of the active and page environments and the translate tables. The .RE
[Restore Status] control word restores the saved values of the active and page environments and
the translate tables.

The active environment contains formatting control values including such things as column lay-
out, baseline position, font save stack, centering, indention control, uppercase and underscoring,
and formatting mode (.FO). The page environment includes page dimension values such as page
length, line length, column line length and page margins. The translate tables that are saved and
restored includes the input translation table (.\T1) and the output translation table ((TR). The
contents of these environments are given in the Docwment Composition Facility: SCRIPTIVS
Language Reference.

The formatting environment (which includes all three of these areas) is also saved and restored by
keeps, floats, footnotes and named areas.

The starter set uses .SA [Save Status] and .RE [Restore Status] primarily in situations where many
changes are going to be made to the formatting environment. In these cases, where things such as

Special Techniques 17

formatting mode and indention are going to be changed, it is far easier to simply restore the previ-
ous environment than to reset each value with the appropriate control word.

Setting Symbols

Occasionally in the starter set it is necessary to set a number of symbols all at once. This could
be accomplished using a lot of .SE [Set Symbol] control words. However, there is a quicker way
to accomplish the same thing using the .GS [GML Services] ARGS and VARS control words.
For example, in DSMPROF3 the following line:

.8s args 123456 123 top page
.8s var @olistnest @ulistnest @figplace @figwdith

is totally equivalent to

.se @olistnest '123456
.se @ulistnest '123
.se @figplace 'top

1

.se @figwidth "page

The primary reason for using the .GS {GML Services] control word instead of a number of .SE
[Set Symbol] control words is performance. In two lines we can set many symbols rather than
just two symbols. This technique can not be used for quickly constructing arrays.

Note: Using the .GS [GML Services] ARGS control word destroys the &* array.

Enforcing Structure

There are several different techniques that are used in the starter set to enforce particular structure
among GML tags. For example, :FIGCAP and :FIGDESC tags are not allowed outside of a
figure because they would have no meaning. This relationship between the tags is enforced
through mapping and re-mapping the tags. The :FIGCAP and :FIGDESC tags are mapped to a
special macro named DSM#CNTX in the profile.!! If these tags are used outside of a figure, the
user will get a message that the tags are out of context. When the :FIG tag is processed it re-
maps :FIGCAP and :FIGDESC to the DSMFCAP and DSMFDESC macros, respectively.
When the :EFIG tag is processed, :FIGCAP and :FIGDESC are once more mapped to
DSM#CNTX because they are no longer valid tags.

A second technique is used to enforce some of the other restrictions which are built into the
starter sct. For example, footnotes are not allowed within figures or examples. This restriction
results from the fact that SCRIPT/VS does not allow footnotes to be processed within floats or
keeps. Therefore, the starter set keeps track of when a figure, example or footnote is currently
being processed and disallows the others from starting. This is done using the & @state symbol.
When none of the conflicting structures are in progress, &(@state has a value of “open.” When an
example is started, & @state is set to “Exmpl.” Before starting a footnote, figure or example the
value of &@state is checked to make sure it is “open.” If it isn’t, a warning message is issued and
the current tag is ignored. This avoids having the user get a message from SCRIPT/VS about
keeps, floats or footnotes. The starter set can avoid creating the situation and can issue a more
meaningful message that includes which tags caused the problem.

In the case of keeps, floats and footnotes, the relevant information is also available in the &$SENV
symbol. This symbol could be checked to see if a keep or float is in progress before starting the
footnote, and so on. However, & @state is also used to indicate when a title page is being proc-
essed so we would need a special symbol anyway.

11 See “Miscellaneous” on page 163 for details on the DSM#CNTX macro.

18 DCF: GML Starter Set Implementation Guide

Starter Set Initialization

Overview

When SCRIPT/VS is run with the DSMPROTY3 profile a sct of macros is invoked initially to set
up the appropriate formatting environment for the starter set. The initialization performed by the
profile and its related macros includes:

e Mapping tags

¢ Defining fonts

¢ Defining running headings, footings, and heading levels

e Initializing many symbols that will be used in the various APFs and macros, and
¢ Defining the page layout.

We have attempted to put as much formatting control into the profile as possible. There are a
large number of symbols which are set in DSMPROF3 which control the formatting that will
take place in the APFs. However, not everything can be standardized for the entire document.
Some things need to function off of the column layout style or the document section. Therefore,
some layout control exists in macros rather than in the profile. The figure below shows the
macros and the sequence in which they are called during initialization.

Starter Set Initialization 19

Figure 4. Starter Set Initialization Macros: This diagram shows the calling sequence during initial-

DSMPROF3 > | DSM#SETV

—> | DSM#SETS

—>1 DSM#SET [——————>|DSM#STYL

ization of the starter set.

¢ The DSM#SETV macro processes the SYSVARs specified on the SCRIPT com-
mand.

¢ The DSM#SLETS macro defines literal constant symbols for use in the starter set and
the &date and &time symbols.

¢ The DSM#SET macro initializes various counters and miscellancous symbols used in
the starter set. '

® The DSM{#STYL macro sets up the page layout. It is also called by the various
document section macros (DSMFRONT, DSMBODY, DSMAPPD, DSMBACKM
and DSMINDEX).

The DSMPROF3 Profile

DSMPROF3 is the profile for DCF Release 3 GML general documents. It must be specified on
the command line or be imbedded at the beginning of the primary input file in order to enable
starter set processing. DSMPROF3 performs the following functions:

1.

20

Determines whether Relcase 3 of the Document Composition Facility is being used. If not,
a severe error message 1s issued.

Retrieves the macro library name from the DSM@MAC@ symbol in the library. If the
maclib is not DSMGML3, a severe error message is issued and processing ends.

Defines the indention and skip amounts for lists, paragraphs, footnotes, figures, long quota-
tions and examples. The symbols for indention are named &@mn@x and the skip symbols
are named &@sk@x where “x” stands for some unique letter that is used to indicate each
particular text element. For example, for a figure the indention symbol is &@in@f and the
skip symbol is &@sk@f. See Figure 5 on page 21 for a complete listing of the indention
and skip symbol settings. The .GS J[GML Services] ARGS and VARS control word are used
as a quick, efficient method for setting many symbols all at once. See “Special Techniques”
on page 13 for more details on this technique of setting symbols.

DCF: GML Starter Set Implementation Guide

Description Letter Indent Skip
Definition Lists (d) 10 1
Ordered Lists (o) 4 5
Unordered Lists (u) 4 75
Simple Lists (s) 4 5
Glossary Lists (g) 0 75
Paragraphs (p) 0 5
Footnotes (n) none 1
Long Quotes (q) 3 1
Undefined Lists (2) 4 75
Examples (x) 2 1
Figures H 2 1

Figure 5. Indention and Skip Initialization

Note: Several of the skip values are set to .75. For page printers, this results in three-
quarters of a line space being used. For line printers, such as the 1403 or the 3800 Printing
Subsystem Model 1, this 1s rounded up to one line space.

4. Sets the default highlight fonts for lists. The default for definition terms (&@hi@d) and
glossary terms (&@hi@g) is highlight level 2. The default for definition list headings

(&@hi@h) is highlight level 3.
5. Sets the skip value for before and after lists (& @sk@]Is) to .75.

6. Defines & @olistnest and & @ulistnest to indicate the sequence of identifiers to be used in
ordered and unordered lists for list items. The identifier definitions are described below. The
list item identifiers can be changed by either changing the number sequence in & @olistnest
or &@ulistnest or by changing the definitions of the identifiers. Controlling the identifiers is
discussed in “Modifications to List Processing” on page 108.

7. Defines the default figure placement and width (& @figplace and & @figwidth) to be “top”
and “page” respectively. These are used by the DSMFIG macro when processing the :FIG
tag.

8. Turns macro substitution on. This is because the APFs for the starter set are macros. With-
out macro substitution on, SCRIPT/VS could not process any of the tags.

9. Enables use of the library for macros but not for symbols. Enabling the library for symbols
is expensive in terms of performance and serves no purpose because only one of the starter
set symbols is in the library.!2

10. Defines the GML delimiters as “:” for start tags and “:e” for end tags.
11. Turns on scanning for GML tags with the .GS [GML Services| TAG control word.
12. Defines the continuation character to be hexadecimal “03.”

13. Sets up the default GML attribute scanning rules (att novat stop and nomsg) for tags and
(noatt) for end tags. These scanning rules will be used for all tags unless over-ridden on the
AA [Associate APF] control word line for the tag. If a particular attribute rule has been
defined in the profile using .GS [GML Services] RULES control word and a contradictory
rule is also specified with a .AA [Associate APF] control word, the .AA [Associate APT]
control word rule is used.

12 The DSM@MAC@ symbol is explicitly defined as being in the library at the beginning of the profile.

Starter Set Initialization 21

14

15.

16.

. Defines the list item identifiers for ordered and unordered lists using the .DV [Define

Variable] control word. Symbol substitution is turned off for the definition of the ordered list
identifiers to prevent the symbol attributes, such as &a’, from resolving during the definition
of the identifiers. We want to save these symbol attributes and resolve them when we go to
use the identifier on a list item.

The names of the defined variables are constructed using “@id@1@" followed by the type of
list (u or o) and the list nesting level the identifier is to be used for. For example,

.dv @id@l@ul /&X'9f

defines the identifier for the first level of unordered list to be a hexadecimal “9F” which is a
bullet in the page printer fonts. Similarly,

.dv @id@1l@u2 font @pi@ul /&X' db

defines the second level unordered list identifier to be a hexadecimal “db” in the font named
@pi@ul. Sec the description of the .DV [Define Variable] control word in the Document
Composition Facility: SCRIPT|VS Language Reference for additional details.

Several sets of unordered list item identifiers are defined: one set if the output is going to a
printer (SYSOUT = PRINT), one set if the output is not going to a printer, and then a
special set for page printers (SYSOUT = PAGE). For list item identifiers for page printers,
the Pi font (@pi@ul) is defined. For the IBM 3820 Page Printer and 3800 Printing Subsys-
tem Model 3, the Pi font definition is slightly different because the typeface name and the
codepage name for the Pi font are slightly different. The @pi@ul font is used to obtain
various special characters for second and subsequent levels of unordered lists. Since there are
so many special characters available for the 4250 printer, IBM 3820 Page Printer, and 3800
Printing Subsystem Model 3 in the Pi font, the &@ulistnest symbol is redefined to use five
separate levels of identifiers before rcusing the first again.

For unordered lists, five levels of identifiers arc defined for all output types but only the first
three are specified (and therefore used) in & @ulistnest. Nine levels of identifiers are defined
for ordered lists but only 6 are used.’®

A single identifier (*) is defined for wndefined list types (z). The list type z is not docu-
mented. To produce a list where all the items are identified with an asterisk you can use the
:L tag.

01

Examples on changing list item identifiers are given in “Modifications to List Processing” on
page 108.

Defines symbols for the GML tag delimiter, the ampersand, and the semicolon. These are
the &gml, &, and &semi symbols respectively. The .DV [Define Variable] control word
is used to assign these symbols to the correct output character.

Uses the .DR [Define Rule] control word to define several rules for use in the starter set.
The first one is for figure rules. It has no parameters on it because we want to use the de-
fault rule which is .3mm. The rule definition is provided to make it easy for users to change
the rule.

The second rule is for the footnote leader. A weight is given that is slightly lighter (thinner)
than the default rule—2mm. The length of the footnote leader is also controlled from the
profile. See item 21. on page 23.

13

22

The reason we define more identifiers than we use is simply to facilitate user modifications to the list
item identifiers. It is a simple matter to change around which of the defined identifiers are actually used.
See “Modifications to List Processing” on page 108 for examples of how to do this.

DCF: GMIL Starter Set Implementation Guide

17.

18.

19.
20.

21.

22.
23.

24.

25.

Contains a .SE [Set Symbol] control word line that is commented out. It sets the
&@bodyheadl symbol to “Chapter.” This is provided to facilitate creating a prefix for level
one headings in the body of the document. If the comment (.*) is removed, headings will be
labelled “Chapter 1 ...,” “Chapter 2 ...,” and so on. The prefixing and numbering is handled
by the DSMHEAD!1 APF described in “Headings” on page 75.

Sets line spacing controls to permit skips, spaces and text lines to be increased by a factor of
1.1 or decreased by a factor of .9 when necessary for vertical justification.

Turns on vertical justification.

Turns on hyphenation. Specifies that the default dictionary will be used but not the algorith-
mic hyphenator. The range parameter on the .HY [Hyphenate] control word provides the
compression and expansion ranges. The ladder parameter specifies the number of consec-
utive lines that can be hyphenated. The MINPT, MAXPT and MINWORD values control
when and where hyphenation points can occur.

Defines several spacing values for footnotes in the profile to provide easy modifications. The
width of the gutter between the columns for two-column format is set in &@gutter to 4
spaces. The length of the footnote leader is set in & @fnldrlen to 16 spaces. A line spacing
value, & @ttllo, is also defined as 1.2 (or 120%) for use on the title page. This factor is used
to increase the line spacing for multiple title lines on page printers to provide greater visual
separation between the lines.

Calls DSM#SETV to process the SYSVARSs specified on the command line.

Calls DSM#SETS to define symbols for various literal strings (words) that are used through-
out the starter set. These literal strings are put into symbols and the symbol definitions are
collected into a single macro to facilitatc changing them.

Defines spacing values for all headings.

The &@hspbf symbol is used for the SPBF parameter on the .DH [Define Head Level] con-
trol word for head level zero and one. The value of &@hspbf is 0 for line printers and 1.3
inches for page printers.

Since skips before a heading are thrown away when they are on the top of a page, we used
spaces before the heading to “sink” the heading a little. This was done for stylistic rcasons to
set the level zero and one headings off a little from other headings. To remove this space
simply set the value of & @hspbf to zero.

The & @h0sp symbol is set to S lines and is used below for the SPAF parameter on the .DH
[Define Head Level] control word for head level zero.

The &@hlsp symbol is set to 3 lines and is used below for the SPAF parameter on the .DH
[Define Head Level] control word for head level one. This value is modified below if we are
formatting for a page printer.

For head levels two through four in Release 2 the amount of space around the headings was
a function of the style (SYSVAR ’S") of the document. Less space was provided around the
headings in offset style. Now, in Release 3, the spacing around these headings is set by de-
vice. The initial values are set here in the profile to be 3 skips before and 2 spaces after for
head 2 through 4. These values are put into the &@h2sk, &@h2sp, &@h3sk, &@h3sp,
&@hdsk and &@h4sp symbols. We alter these values further if it turns out that we are
formatting for a page printer.

Defines all of the fonts used in the starter set except for the Pi font used for unordered lists
for page printers. Each output device has its own particular characteristics and font capabili-
ties. Therefore, each has its own sct of font definitions.

Starter Set Initialization 23

The following device specific functions are performed:
Defines highlight level 0 to be the body or default font (&$CHARC(])).

b. Selects the style of superscript numbers and puts them into a symbol (& @suprstyl).
The three styles or formats available are:

¢ parentheses (&@suprstyl = parens)
¢ true superscript numbers (& @suprstyl = nums)

e superscripts created by shifting the baseline up and using a smaller font
(&@suprstyl = shifts)

The “nums” style is used for the 1403 and the IBM 3800 Printing Subsystem Model 1.
The baseline shift method is used for all page printers.

c. Defines a set of highlight, heading, and table of contents fonts for each combination of
output device (1403, 3800, and 2741) and the number of fonts given on the CHARS
option. These are shown in Figure 6 on page 25. For page printers, many more fonts
have been selected because of the greater range and number of fonts available for these
devices.

Note: The font definitions for the IBM 3820 Page Printer and 3800 Printing Subsystem
Model 3 are identical to those for the 4250 printer except for the example font
(xmpfont).

In many places in the starter set, font changes are performed only for page printers by
using the .BF [Begin Font] control word list capability. For example,

.bf fnt =

is used in footnotes where a font change is desired for the page printers only. For line
devices, “Int” is an undefined font. The “=" on the .BF [Begin Font] control word line
causes the current font to be restarted. This eliminates the need for defining a “fut” font
for each possible device.

In the case of heading and table of contents entries, it 1s not as simple. The .DH [Define
Head Level] control word accepts font names for headings and table of contents entries.
However, it does not have the same capability to accept a list of fonts to use. Therefore,
it was necessary to define the fonts for headings and table of contents entries for all pos-
sible devices. See “Headings” on page 75 for more details about headings and table of
contents processing.

Alternate highlight fonts are defined for page printers. This is done because the highlight
fonts are tppe defined fonts—that is, they simply change the current font into its italic or
bold version. It is possible to get into situations where there is no italic or bold equiv-
alent for page printers, such as in examples (:XMP) where the font used is Prestige or
Prestige Elite. There may be no italic prestige font available for use. In these cases,
alternative font definitions of underscore (althil), uppercase (althi2) and both (althi3) are
used for highlight fonts. There is no alternate highlight zero for “hi0” because this font
is either &$CHAR(1) for line devices or is defined as type normal for page printers.!*

The font definitions for page printers assume that the default body font is a 10-point
font. The typeface is not important to these definitions and is never specified. The only
two typefaces specified are for examples and for unordered list item identifiers.

14 Tt is possible to get into a situation where there is no “normal” font which will result in an error message
if :HPO is used.

24 DCF: GML Starter Set Implementation Guide

FONT 1403 3270 3800-3/
NAME 2741 3800(1) 3800(2) 3800(3) 3800(4) 3820/4250
HI1 US US CHAR(1) | CHAR(2) |CHAR(2) | italic
uUs
HI2 0S Up CHAR(2) | CHAR(3) | CHAR(3) | bold
HI3 OS US UP US CHAR(2) CHAR(3) CHAR(4) bold italic
UsS US
HDO OS UP UP US CHAR(2) CHAR(3) CHAR(4) bold 20
uUs UP US UP US upP italic
HDI 0S UP UP US CHAR(2) | CHAR(3) | CHAR(4) | bold 20
US UP US UP US UP
HD2 0S US UP US CHAR(2) | CHAR(3) | CHAR(4) | bold 18
UP UP US UP US [8)% italic
HD3 0S US UP US CHAR(2) | CHAR(3) | CHAR(4) | bold 14
uUs us
HD4 OS Uup CHAR(2) CHAR(3) CIHAR(3) bold 12
italic
HD5 OS up CHAR(2) CHAR(3) CHAR(3) bold
HD6 US US CHAR(1) | CHAR(2) |CHAR(2) | bold italic
Us
HDOTOC OS UP CHAR(2) CHAR(3) CHAR(3) bold 10
UP
HDITOC OS Uup CHAR(2) CHAR(3) CHAR(3) bold 10
HD2TOC | CHAR(l) [CHAR(1) | CHAR(1) | CHAR(1) | CHAR(l) |10
HD3TOC | CHAR(l) | CHAR(1) | CHAR(1) | CHAR(1) | CHAR(l) |[10

Figure 6. Heading, Highlight and Table of Contents Font Definitions

26.

27.

Key: OS = overstrike, US = underscore, UP = uppercase. The page printer
(3800-3/3820/4250) font definitions such as “bold 20 italic” indicate the bold italic version of
the body font in a pointsize of 20 points.

Calls DSM#SET to define various symbols for use in the starter set. The DSM#SET macro
is described in detail below.

Defines two symbols, &@oquote and & @cquote, to provide the appropriate open and close
quotation marks for each level of nested inline quotations. For page printers, typographical
style quotation mark character are used. These symbols are used by the APFs for the :Q and
:EQ tags.

Not all uses for quotation marks are handled by the :Q tags. It is often necessary to use just
single quotation marks. While it is possible to type these quotations marks directly, this wall
not always produce desirable results on page printers. Therefore, four additional symbols are
defined to generate quotations marks directly in text. These are

&oqq - double opening quotes
&oq - single opening quotes
&cqq - double closing quotes
&cq - single closing quotes

o o o o

Starter Set Initialization 25

28.

29.

30.

31.

26

These are defined separately for line printers and for page printers because different characters
must be used.

Defines heading characteristics and control symbols:

a. If the &@bodyheadl .SE [Set Symbol] control word line described above is not com-
mented out, the &@headl symbol is used to contain a special prefix for level one
headings. The &@headl symbol is set “off”’ initially because only headings in the body
and the appendix can be prefixed. The &@headl symbol will be set to the value of
&@bodyheadl by the DSMBODY APF when the :BODY tag is processed.

b. All headings are defined with no hyphenation permitted (NOHY).

c¢. Each heading level has its own font. IHeading levels zero through three also have a font
specified for table of contents entries.

d. On the .DH [Define Head Level] control words we need to specify whether or not the
headings are to be numbered. This depends on the value of &SYSVARH. If
&SYSVARH is not “no,” it means that headings are going to be numbered so we set a
local symbol, &*n, to “num.” We will use this local symbol in the .DH [Define Head
Level] control word lines. Additionally if we are going to number headings
&SYSVARH will contain the starting number for the first level one heading. We use
this value to initialize the heading counter with the .GS [GML Services] HCTR control
word.

e. The headings are all defined using the .DH [Define Head Level] control word. For the
level zero and one headings there are two separate .DH [Define Head Level] control
words simply because we couldn’t fit all of the parameters for these headings on a single
line.

More detailed information and explanation about heading processing is given in ‘“Headings”
on page 75.

Saves and then restores the line length value to the default setting. This is done so we can
tell if the user somehow got there first and changed the line length. If the default value is not
the same as the saved value, we know the user has reset it. If not, we set line length to 6.8i
for two-column and offset style formats. For one-column style the line length remains set to
the default value.

Calls the DSM#STYL macro to establish the appropriate column format as specified with
SYSVAR ’S’. This macro is described in detail below.

Defines the running heading and footing.

The running heading centers the security classification. The .CE [Center] control word has a
control word modifier on it because the &@sec symbol could start with a period or could
contain semicolons (;) both of which could be misinterpreted without the control word modi-
fier.

The running heading is formatted in highlight level 2 for line devices and in the “@rh” font
for page devices.

Some space 1s left at the bottom of the running heading to provide some separation between
the running heading and the body of the page.

There are threc running footing definitions. The running footing is formatted in the normal
body font or in the “@rf” font for page devices. Space is left at the top of the running
footing to provide separation from the body of the page.

The first footing definition, which is used if duplexing is not in effect (&SYSVARD is “no”),
formats the short heading (&@shead) on the left side of the page and the page number on
the right side. The & @shead symbol contains either

DCF: GVL Starter Set Implementation Guide

32.

a. The title of the document,

b. The short title of the document,

¢. The last level zero or one heading, or

d. The last level zero or one short title value,
whichever was encountered most recently.

The other two running footing definitions are used if duplexing is in effect. In this case, a
separate footing is defined for even pages and another for odd pages. The footing for odd
pages formats the short title for the heading (& @shead) and the page number on the right
margin. The even page footing formats the short title of the document (& @stitle) and the
page number on the left margin of the page. Sec the running footings in this book as an
example of the even and odd running footings used when preparing output for duplexing.

Maps the GML starter set tags to the appropriate APFs. Tags that are not valid initially
because they required some text structure to be started are mapped to the DSM#CNTX
APF. This APF, which is discussed in detail in “Miscellaneous” on page 163, issues a mes-
sage that the tag is “out of context.”

Tag APF Rules End APF
ABSTRACT | DSMABSTR noatt
ADDRESS DSMADDR noatt DSMEADDR
ALINE DSM#CNTX noatt
APPENDIX | DSMAPPD noatt
AUTHOR DSM#CNTX noatt
BACKM DSMBACKM noatt
BODY DSMBODY noatt
CIT DSMCIT noatt DSMECIT
DATE DSM#CNTX noatt
DD DSM#CNTX noatt
DDHD DSM#CNTX noatt
DL DSMDLIST vat DSMELIST
DOCNUM DSM#CNTX noatt
DT DSM#CNTX noatt
DTHD DSM#CNTX noatt
FIG DSMFIG DSMEFIG
FIGCAP DSM#CNTX noatt
FIGDESC DSM#CNTX noatt
FIGLIST DSMFLIST noatt
FIGREF DSMFGREF
FN DSMFTNT DSMEFTNT
FNREF DSMFNREF
FRONTM DSMFRONT noatt
GD) DSM#CNTX noatt
GDOC DSMGDOC DSMEGDOC
GL DSMGLIST vat DSMELIST

Figure 7. Initial Mapping for GML Tags (Part 1 of 2)

Starter Set Initialization

27

Tag APF Rules End APF
GT DSM#CNTX noatt
HDREF DSMHDREF
1p BF noatt DSMEIHP
HPO DSMHPO noatt DSMEHP
HP1 DSMHP1 noatt DSMEHP
HP2 DSMHP2 noatt DSMEHP
HP3 DSMHP3 noatt DSMEHP
HO DSMHEADO
H1 DSMHEADI
H2 DSMHEAD?2
H3 DSMHEAD?3
H4 DSMHEAD4
IS DSMHEADS
H6 DSMHEADS6
INDEX DSMINDEX noatt
L DSMLISTM vat DSMELIST
LI DSM#CNTX
LIREF DSMLIREF
LP DSM#CNTX noatt
LQ DSMLQUOT | noatt DSMELQU
NOTE DSMNOTE noatt
oL DSMOLIST vat DSMELIST
p DSMPARA noatt
PC DSMPCONT noatt
PREFACE | DSMPREF noatt
PSC DSMPSC DSMEPSC
Q DSMQUOTE | noatt DSMEQUOT
SL DSMSLIST vat DSMELIST
TITLE DSM#CNTX
TITLEP DSMTTLEP noatt DSMETTLP
TOC DSMTOC noatt
UL DSMULIST vat DSMELIST
XMP DSMXMP DSMEXMP

Figure 7. Initial Mapping for GML Tags (Part 2 of 2)

33. Maps the index tags. If no indexing is to be done the index tags are mapped to a dummy

28

APF that simply removes the tag and its residual text from the document. If indexing is
being done, the tags are mapped to their real APFs.

The .AA [Associate APF] control word lines for the index tags are constructed using symbols
whose values are determined by whether or not indexing has been requested. The .GS
[GML Services] ARGS control word defines the symbols used on the .AA [Associate APF]
control word line.

DCF: GML Starter Set Implementation Guide

When indexing has been requested the following .GS ARGs line is used:

.gsargs 1 2 3 dsmindx dsmihd dsmiref

which is the same as setting:

.se *1 =1
.se %2 = 2
.se ¥3 =3
.se %4 = dsmindx
.se #5 = dsmihd
.se %6 = dsmiref

When indexing has not been requested this .GS ARGs'line is used:

.gs args Yttt dsmidmmy dsmidmmy null

which the same as setting:

se *1 = ' '

.se %2 = ' !

se *3 = ' ' \
.se ¥4 = dsmidmmy

.se *5 = dsmidmmy

.se *6 = null

When the compound symbols on the .AA [Associate APF] control word lines are processed
the APF names are resolves as follows:

.aa il &%4,&*%1
.aa il &%4.1
.aa i1 dsmindx1l

when indexing has been requested. When indexing has not been requested, this same line
resolves as follows:

.aa il &%4.&%1
.aa i1 &*%4.
.aa i1 dsmiddmy

Figure 8 shows the resulting APF names used for both indexing and not indexing.

Tag Indexing Not Indexing
I1 DSMINDX1 DSMIDMMY
12 DSMINDX?2 DSMIDMMY
13 DSMINDX3 DSMIDMMY
IH1 DSMIHD1 DSMIDMMY
IH2 DSMIHD?2 DSMIDMMY
IH3 DSMIHD3 DSMIDMMY
IREF DSMIREF null

Figure 8. Index Tag Mapping

Starter Set Initialization

29

34. Resets the .GS [GML Scrvices] ARGS control word arguments to null to undefine the sym-
bols &*1, &*2 and so on. If we didn't so this these symbols would still contain the last
values we had set them to because local symbols used in a file are not true local symbols in
the sense of becoming undefined at the end of the file.

35. The profile ends. What follows the .EF [End of File] control word is the epifile.

36. The Epifile. This part of DSMPROF3 will be automatically invoked by SCRIPT/VS at the
end of all processing and is used to create the cross reference listing, the imbed trace and the
SYSVAR "W file.

If the profile is not specificd on the command but rather is imbedded by some user profile,
the eptfile described here may never get processed. In this case the epifile of the user profile
will be processed rather than the epifile of DSMPROF3. To get the DSMPROF3 epifile
processed, the user profile needs to imbed DSMPROF3 in its epifile.

37. Calls the DSM#WRIT macro to generate the SYSVAR "W file of IDs if SYSVAR "W’ was
specified and this is the last pass (& @lastpass is “yes”).

38. Calls the DSM#XLST macro to gencrate the cross reference listing and imbed trace if cross
referencing has been requested (&SYSVARX is “yes”) and this is the last pass (&@lastpass
is “yes”).

Initialization Macros

Several macros and the DSM@MAC@ symbol are used during the initialization process from
DSMPROF3. These are described below in the order in which they are used.

DSM@MAC@

The DSM@MAC@®@ symbol is set to “DSMGML3” and is used by DSMPROF3 to verify that
the correct macro library is available. This is a symbo/ stored in the macro library, not a macro.

DSM#SETV

The DSM#SETYV macro processes most of the the system variables (SYSVARSs) specified on the
SCRIPT command, resets them to standardized values for easy testing, and sets up defaults for
them if they were not specified on the command.’s

The technique used in this macro to validate the SYSVAR values and reset them is detailed in

“Validating Keywords” on page 13 and therefore is not explained here. The SYSVARSs processed
by DSM#SETYV are:

1. SYSVAR ’D’ controls whether or not the document is to be formatted for duplexing. This
macro sets &SYSVARD to either “no” or “yes” based on the value given on the command.
The default 1s no duplexing.

2. SYSVAR ’"H’ controls whether or not heading levels 0 through 4 are numbered in the body
of the document. The macro sets &SYSVARH to “no,” “1.0” or the value given on the
command. The default is no numbers for headings.

3. SYSVAR ’P’ sets up a value to control the inclusion or exclusion of text and controls in a
conditional section. This macro sets &SYSVARP to a null string if not given on the com-
mand.

15 The one SYSVAR which is not processed by this macro is SYSVAR "W’ which is processed at the end
of the formatting run by the DSM#WRIT macro.

30 DCF: GML Starter Set Implementation Guide

SYSVAR ‘R’ specifies a file of cross reference IDs that is imbedded at the beginning of the
formatting run to help resolve forward references more correctly.

For the CMS and TSO cnvironments, the DSMUTREF file is defined 1o be the file specified
with SYSVAR R’. This file is then imbedded. The SYSVAR 'R’ function is available only
in CMS and TSO. The name of the file varies, depending on the environment. See “Cross-
References” on page 147 for more details on the contents of this file and how the file is used.

SYSVAR S’ controls the column layout for the body of the document. This macro defines
&SYSVARS (style) to “one,” “two” or “off” based on the value given on the command.
(SYSVAR 'C’ is treated as synonymous with SYSVAR ‘S” for compatibility with the starter
set in Release 1 of DCF.) The default is “one” for single column formatting.

SYSVAR ‘T controls whether or not the title page will be formatted and if so, whether it
will be right aligned, left aligned or centered on the page. The macro defines &SYSVART
(title page) to “right,” “no,” “left,” or “center” bascd on the value given on the command.
The default is “right.”

SYSVAR "X’ controls whether or not the cross reference listing will be produced. The
macro defines &SYSVARX (cross reference) to either “yes” or “no” based on the value
given on the command. The default is “yes.”

DSM#SETYV redefines a comment to reclaim its space in storage and to avoid reexecution on
a second pass. This technique is explained in “Special Techniques” on page 13.

DSM#SETS

DSMPROF3 calls the DSM#SETS macro to initialize the &date and &time symbols and to de-
fine symbols for literal text strings. DSM#SETS performs the following processing:

1.

Defines all of the literals (text strings) used in the starter set except for those in the
DSM#MSG macro. All of the text strings are collected here to facilitate changing them.

Sets up the &date symbol to be of the form January 22nd, 1985 as follows:

a. Puts the months of the year into the &* symbol array.

b. Puts the endings for 1st, 2nd, and so on, into a local symbol, &*s.

c. Calculates the position of the correct ending for the current day of the month.

d. Selects the ending (st, nd, and so on) from the &*s symbol.

e. Adds zero to the current day of the month to eliminate the possible leading zero's.
f. Adds zero to the current month to eliminate the possible leading zero's.

g. Builds the &date symbol using the month number as an index into the &* array that
contains the months of the year. The statement that sets the &date symbol resolves as
follows for the cighteenth day of the eleventh month:

.se date = '&%&¥*c &%b.&%a, 19&SYSYEAR
.se date = '&*&*c &*b.&%a, 1983

.se date = '&*&¥c &*b.th, 1983

.se date = '&%&%*%c 18th, 1983

.se date = '&%*2 18th, 1983

.se date = 'November 18th, 1983

16 The day and the month will have a leading zero if they are less than 10. Performing arithmelic on the

value removes the leading zero so that “03" becomes “3.”

Starter Set Initialization 31

3. Sets up the &time symbol to be of the form 10:30 a.m. as follows:

a. Determines if the hour is less than twelve and sets the &*m symbol to “a.m..” If the
hour is twelve or greater than twelve &*m 1s set to “p.m..”

b. Eliminates the possible leading zero on the hour for .a.m. by adding zero to it.!6
c. Subtracts 12 from the hour for p.m. to convert it from 24 hour time to 12 hour time.
d. Sets the &time symbol.

4. This macro defines itself to “off” to reclaim its space in storage. This technique is explained
in “Special Techniques” on page 13.

DSM#STYL

Column layout is defined by the DSM#STYL macro. This macro is also called by DSMPROF3
during initialization. It is called by DSMEFRONT, DSMBODY, DSMAPPD, DSMBACKM and
DSMINDEX to establish the column layout appropriate for each document section.

One parameter (“one,” “two,” or “off”’) can be passed to the macro. The parameter determines
which of the 3 possible layouts will be set up. &SYSVARS, which defaults to “one,” controls the
layout of the body section. The DSM#STYL macro is also called by DSMBACKM and
DSMINDEX for two-column layout regardless of the value of &SYSVARS. Similarly, the
DSMFRONT macro requests one-column layout unless &SYSVARS is “offset,” in which case
offset layout is also used for the front matter.

If no parameters are passed, the value of &SYSVARS is used as the parameter. DSM#STYL
does the following:

1. For one-column layout:

a. Sets &@rcl and &@rc2 to null. These symbols are used to establish the location of the
revision codes around headings. See “Revision Codes for Headings” on page 76 for a
detailed discussion of revision codes around headings. In the case of one-column for-
mat, no adjustment needs to be made so the symbols are set to null. The symbols are
used in the APFs for heading levels two through four.

b. Sets &@inl to 0. This symbol controls the left indention for footnotes. In the case of
one-column layout no indention is desired.

The &@fn2 symbol controls the right indention for the footnote. It is set to zero be-
causc there is no right indention for footnotes. This symbol is always zero in the starter
set. It is provided exclusively to facilitate user modifications to footnotes.

¢. Defines a single column starting in position 0.

d. Resets column line length to the current line length.

e. Resets the .RC [Revision Code] ADJUST control word to the default.

f. Heading level zero and one are aligned on the outside of the page if duplexing is active.

g. Branches around the offset style definition to the footnote leader definition. See number
4. on page 34.

2. For two-column layout:

a. Sets &@rcl and &@rc2 to null. These symbols control the location of the revision
codes around headings. For two-column layout the default location is used so these
symbols are set to null. These symbols are used in the APFs for heading levels two
through four.

32 DCF: GML Starter Set Implementation Guide

Sets &@fnl to 0. This symbol controls the left indention for footnotes. Footnotes are
always formatted in one-column regardless of the column layout for the body of the

page.

The &@n2 symbol controls the right indention for the footnote. It is set to zero be-
cause there is no right indention for footnotes. This symbol is always zero in the starter
set. It is provided exclusively to facilitate user modifications to footnote.

Defines two-columns by:

1) Calculating column line length by taking half of the line length minus the gutter
space. The gutter amount is 4 spaces and is in thc &@gutter symbol sct in
DSMPROF3.

2) Calculating where the second column should start by adding the column line length
to the gutter.

3) Defining a two-column layout starting in position 0 and the position calculated
above.

4) Setting column line length. This will be 32 characters for line devices such as the
1403 and 3800 Printing Subsystem Model 1. For page printers, the column will be
approximately 3.25 inches wide.

Resets the .RC [Revision Code] ADJUST control word to the default.
Heading level zero and one are aligned on the outside of the page if duplexing is active.

Branches around the offsct style definition to the footnote leader definition. See number
4. on page 34.

For offset layout:

a.

Sets level zero and one headings to be left-aligned. This is necessary only if we have set
up two- or one-column format when duplexing and then gone to offset style.

Sets level two through four headings to cause section breaks.

Sets vertical formatting to “top.” This is done because we can’t vertically justify offset
style pages due to the numerous section breaks caused by headings.

Performs calculations to determine the starting position for the text column and the po-
sition of the revision codes. The calculations are done in both spaces and device units
because:

¢ Rounding errors can occur when calculating spaces for the 3800 Printing Subsystem
Model 1 in device units

* We need to perform the calculations in device units for page devices.
This is accomplished as follows:

1) Assumes we are calculating in device units and sets up a local symbol for line length
(&*11) and for the revision code adjustment (&*two).

2) Tests to see if we are formatting for a 3800 Printing Subsystem Model 1 and if so
redefines the &*ll and &*two local symbols to be in spaces rather than device units.

3) Calculates the width of one-fifth of the column—this will be the amount of offset.

4) Subtracts the offset from the line length value (&*11) to get the column line length
value.

5) Defines a local symbol, &*rc, to contain the revision code location. The revision
codes are supposed to go all the way to the left of the page. Since they are placed
relative to the beginning of the column, and we are going to offset the column, we

Starter Set Initialization 33

will need to move the revision codes to the left an amount equal to the offset plus
2.

6) Defines a local symbol, &*fn, to contain the starting position for footnote text. In
offset style, footnotes line up with the text of the page.

7) Tests if we are formatting for a 3800 Printing Subsystem Model 1 and if not, resets
the &*rc and & *fn local symbols to indicate that the values set are in device units.

Defines the &@rcl symbol to have a value of “rc adjust.” This symbol is used in the
APFs for level two through four headings to reset the location of the revision codes to
the default value of two spaces to the left of the heading.

Defines the &@rc2 symbol to contain a value of “rc adjust &*rc” which was calculated
above. This symbol is used in the APFs for level two through four headings just after
the heading control word is issued. It resets the revision code location relative to the left
margin of the column rather than relative to the location of the heading.

Sets &@fn1 to line up with the text column. The &@fnl symbol is used to create a left
indent for footnotes.

The &@f{n2 symbol controls the right indention for the footnote. It is set to zero be-
cause there is no right indention for footnotes. This symbol is always zero in the starter
set. It 1s provided exclusively to facilitate user modifications to footnote.

Defines one-column which starts one fifth of the way across the page. The space to the
left (roughly 1.2 inches) is used to outjustify headings!”. Column line length is set equal
to the difference between the offset amount calculated above and the line length.

Resets the .RC [Revision Code] ADJUST control word amount equal to the space to
the left of the text, roughly 1.2 inches 1"

For all layout formats, the footnote leader is defined using a horizontal rule ((HR [Horizontal
Rule] control word). The rule name (@fnldr) and its length (& @fnldrlen) are both defined
in DSMPROF3. The footnote leader is defined to start at the position saved in &@fnl.
This lines the footnote up with the beginning of the text corresponding to the column layout
that has been established.!®

DSM#SET

DSMPROF3 calls the DSM#SET macro to initialize some very useful symbols. It performs the
following functions:

1.

Uses the &$PASS system symbol to set the &@lastpass symbol to “yes” or “no,” respec-
tively. This variable is used primarily in cross reference processing to tell if this is the last
pass. The lines that define the &@lastpass symbol are somewhat complicated so a detailed
explanation follows:

a.

The &@lastpass symbol is set to one minus its existence, times the value of the

&$TWO system symbol, times three, plus one. This “magical incantation” results in a
value of 4 for the first pass and a value of 1 for the second pass if the TWOPASS option

was specified.

.se @lastpass = 1 - &E'&lastpass * &$TWO * 3 + 1

17 Since the calculations are donc in device units (the smallest amount of space the output device is capable

of moving) the exact amount of space will vary by device.

18 One of the implications of this is that if you use a .SC [Single Column Mode] control word to switch

34

from offset format to one-column format, the footnote leader and the footnotes will not move out to the
left margin. To change column style and keep the footnotes lined up, this macro, DSM#STYL, should
always be used.

DCF: GML Starter Set Implementation Guide

When “TWO” is specified on the SCRIPT command, this line resolves as follows on
the first pass

1-0%1%3+1
4

.se @lastpass
.se @Qlastpass

o

and as follows on the second pass

il

.se @lastpass =1 - 1% 1% 3+ 1
.se @lastpass = 1

When TWO is not specified on the command, this line resolves as follows on the first
(and only) pass:

.se @lastpass 1-0+%0%3+1
.se @lastpass = 1

Note: SCRIPT/VS evaluates arithmetic expressions from left to right without regard for
operator precedence.

Finally, & @lastpass is set to either “yes” or “no” based on the calculation shown above.
The “1” and “4” we calculated above refer to the position of the “yes” and “no” in the
substr argument shown bclow.

.se @lastpass = substr 'yesno' &Q2lastpass 3
1 4

Defines the &rbl symbol to be the required blank (&SRB).

Initializes various counters and strings.

a.

The &@nest@], &@nest@i and &@nest@q symbols are all set to 0. These are the
nesting level counters for lists, imbeds and quotations, respectively.

&@figh and &@In# are set to 1. These two symbols contain the number of the next
figure and footnote, respectively. They are incremented in the DSMFCAP and
DSMFTNT APFs.

& @state is set to “open.” This symbol is used to keep track of whether a footnote, list,
quotation, title page, example, or figure has been started and not yet finished. During
initialization it is set to “open” to indicate that nothing has been started yet.

The &@sk@]1 symbol is set equal to &@sk@ls. This symbol controls the amount of
skip before and after lists. The default value of &@sk@ls, set in DSMPROT3, is .75.

If cross referencing is in effect (&SYSVARX is “yes”):

a.

Defines a macro named IM to take over the function of the .IM [Imbed] control word.
The IM macro calls the DSMIM macro, passing it the parameters on the control word
line.

Initializes the &@xref@d, & @xref@f, &@xref@h, &@xref@i and &@xref@n symbol
arrays to a comment (.*). These symbol arrays are used to produce the cross reference
listing. They are initialized to a comment just in case no IDs are used. If these symbols
weren't set to a comment and there were no ids defined in the document, the symbols
would be unresolved when they were printed by the cross reference listing macro. Sece
“Cross-References” on page 147 for details on how these symbol arrays are used in cross
referencing.

Initializes the symbol arrays used to wrte out the SYSVAR "W’ file (&@writ@d,
&@writ@f, &@writ@h, &@writ@i, and &@writ@n) to a comment (.*) if SYSVAR "W’
has been specified. This is done just in case no IDs are saved for writing out. See “Cross-

[#4]

Starter Set Initialization 3

References” on page 147 for details on how these symbol arrays are used in saving the cross
reference information.

6. Defines &@it]l, &@it2 and &@it3 to null strings if indexing has been requested. This is
done to make sure that the symbols are not undefined when they are used on a .PI [Put
Index] control word. The &$INDX system symbol is used to determine whether indexing
has been requested or not.

7. Initializes the symbols used in the running heading and footing.

a. The &@sec variable is initialized to null. This symbol may contain the security classi-
fication of the document. It is used in the running heading and on the title page.

b. The &@stitle variable is initialized to null. This symbol is used in the running footing
and contains either the title of the document or the most recent level zero or one head-
ing.

c. The &@shead variable is set to “&@stitle.” The & @stitle symbol contains the most
recent level zero or one heading or short heading. Its value is set up by the heading
APFs.

8. Undefines itself to reclaim its space in storage. This technique is described in detail in “Spe-
cial Techniques” on page 13.

Modifying Starter Set Initialization

Many modifications can be made to the initialization process that will effect the formatting of
various elements throughout the document. A few of these are discussed below.

Creating Your Own Profile and Epifile

Instead of modifying the DSMPROF3 profile directly, you may want to create your own profile
to use on the SCRIPT command. In order to take advantage of the initialization performed in
DSMPROF3 you would want to start your profile by imbedding the starter set profile. Follow
this with any of your own modifications.

Note: There is one exception: if you are going to override the line length (&$LL) used in the
starter set, do so before imbedding DSMPROF3. The reason is that before DSMPROF3 changes
the line length it checks to see if you have modified the line length and, if so, doesn’t change it.
The page layout defined in the DSM#STYL macro called by DSMPROF3 uses the line length.
If you were to change the line length after processing DSMPROF3, you would need to call the
DSM#STYL macro again to reset the page layout. By changing the line length, then imbedding
DSMPROF3, you can avoid all this extra work.

To take advantage of the cross reference listing and imbed trace processing performed by the
epifile in DSMPROF3, you would necd to create an epifile in your own profile. Your epifile is
invoked automatically by SCRIPT/VS at the end of processing. To process the epifile in
DSMPROF3, imbed DSMPROF3 again. Your profile might look like this:

.11 70
. im DSMPROF3

.ef
. im DSMPROF3

The second imbed of the profile causes the second portion of DSMPROF;}_to be p:oszess;d; BT

36 DCF: GML Starter Set Implementation Guide

Changing the Format of the Date

The format of the &date symbol can be changed to the form “18 November 1983” instcad of
“November 18th, 1983” by rearranging the local symbols in the DSM#SETS macro.

.se date = "&b &*&*c 19&SYSYEAR

where
&*b contains the day of the month
&*c contains the number of the month

&*] to &*12 contain the names of the months

The &*1 to &*12 symbbls come into play when the &*c symbol is resolved to a number so that
&*&*c becomes &*11 or whatever.

Since we are no longer using the &*a symbol which produced the date ending (th, nd, and so on)
we can also delete the lines associated with defining &*a which includes the line sctting up the
&*s symbol.

Changing Default SYSVAR Values
The defaults for each of the SYSVARSs are built into the processing in the DSM#SETV macro
which is described in “Starter Set Initialization” on page 19. For a detailed explanation of how

the SYSVARS are processed and how the defaults are set up, see “Special Techniques” on page
13.

For example, the default for SYSVAR ‘D’ is “no” duplexing. If you wish to change this to de-
fault to “yes,” change the second line of the macro from

.if &%a eq 0 .se *a =1
to
.if &%a eq 0 .se *a = 4

You can change the default for most of the SYSVARS in exactly the same manner.

Setting a Prefix for Level One Headings

To set up a specific prefix for level one headings in the body simply activate a line that is com-
mented out in DSMPROJ3:

*. se @bodyheadl = 'Chapter

Set the symbol &@bodyheadl to the text you wish to use as the prefix, such as “Chapter” or
“Part” and remove the comment:

.se @bodyheadl = 'Chapter
The logic to perform the prefixing is already buiit into the DSMHEAD1 APF and the

DSMBODY APF. It is necessary to use a :BODY tag to activate the prefixing because only level
one headings in the body can be prefixed.

Starter Set Initialization 37

Alternatively you can define a symbol named LL@Chap in the DSM#SETS macro:

.se LL@Chap 'Chapter
and then use this as the value of & @bodyheadl.

.se @bodyheadl '&LL@Chap

This is a better choice for sctting &@bodyheadl than hard-coding the word “Chapter.”

Changing the SYSVAR ‘W’ File Name

The .DD [Define Data File-id] control words that define the name of the SYSVAR "W file are
located in the DSM#WRIT macro. There are several different .DD [Define Data File-id]
lines—one for each of the environments in which you can use SYSVAR "W’. Change the .DD
[Define Data File-id] control word to the new name for the environment you are interested in.
For example, to change the filetype from DSMREFS to IDFILE in the CMS environment,
change

.if &$SYS eq CMS .dd dsmutwtf &SYSVARW DSMREFS

to

.if &$SYS eq CMS .dd dsmutwtf &SYSVARW IDFILE

The same file names are built in the .DD [Define Data File-id] control words that define the
SYSVAR 'R’ file. These lines are located in the DSM#SETV macro where SYSVAR "R’ is proc-
essed.

.if &E'&SYSVARR ne 0 .an &$SYS eq CMS

.th .dd DSMUTREF &SYSVARR dsmrefs *

.if &E'&SYSVARR ne 0 .an &$SYS eq TSO

.th .dd DSMUTREF dsn &SYSVARR..DSMREFS

.if &3$SYS eq CMS .or &3$SYS eq TSO .an &E'&SYSVARR ne O .im DSMUTREF

It is important that you change both the DSM#WRIT and the DSM#SETV macros.

Changing Spacing and Indention Settings

Many of the starter set tags involve spacing and indention functions. For example, a space is
skipped before and after a long quotation and it is indented 3 spaces on both the left and the
right. The amount of space skipped and the amount of indention are controlled by symbols set
in DSMPROF3. By changing the value of the symbol you can change the amount of space or
indention. The defaults arc shown in Figure 5 on page 21. The symbols are set at the beginning
of the profile using .GS [GML Services] ARGS and .GS [GML Services] VARS control words.

.gs args 10 2 4 4 0 3 4 4 2 0
.gs vars @in@d @in@f @in@z @in@o @1n@p @in@q @in@s Q@in@u @in@x @in@g

To change the amount of indention for a long quotation to 4 characters all you would need to do
is change the “3” in the first hne shown above, to a “4.”

Changing the Rules Used for Figures

By default, figures are framed with rules at the top or the bottom or both, depending on where
the figure is placed. The rules are normally drawn in highlight font 2 or, for page printers, in the

38 DCF: GML Starter Set Implementation Guide

default rule. If a box is requested, it is also drawn in highlight font 2 or, for page printers, the
default rule.

If you arc using a monospaced body font and a proportional bold font for the 3800, this can
create problems. You will need to change the font used to draw rules and boxes because
SCRIPT/VS cannot use both kinds of fonts simultancously. To do this you need to activate the
.DR [Define Rule] control word that is in the profile.

.dr @figrule

The @figrule rule name is specified on both the .IIR [lorizontal Rule] control word line and
.BX [Box] control word line in the APF for :FIG. However, because of the way in which the
@figrule rule is defined (that is, with no parameters specified) it will use the default rule for page
printers and will use the current font for the 3800 Printing Subsystem Model 1. We change to
highlight font 2 before printing the box which produces bold rules on the 3800 Printing Subsys-
tem Model 1.

By specifying a definition on the .DR line in the profile you can change the rule that is drawn.
For example, to draw the boxes and rules in the body font for the 3800 change it to

.dr @figrule font &SCHAR(1)

To change it to a slightly thicker than normal rule for page printers, change the rule definition to:

.dr @figrule weight . 4mm

Both the font and weight parameters can be specified simultaneously on the .DR [Define Rule]
control word. If both are specificd, SCRIPT/VS will use the one that applies to the device that
we are formatting for.

.dr @figrule weight .4mm font &$CHAR(1)

If you specify both WEIGHT and FONT on the .DR [Define Rule} control word, and you are
using &$CHAR(2) as the font value, be careful to put the WEIGIIT parameter first. This is
necessary because when you format for a page printer the value of &$CHAR(2) may well be null
which will cause an error on the .DR [Definc Rule] control word line unless it is at the end of the
line.

Changing Fonts for Figures
The starter set figures do not perform a font change for the body of the figure. For page printer
output, you may wish to have figure text set in a monospaced font (as we have ‘donc¢ in this

book), depending on the content of the figure. To actomplish this all you have to do is activate
the font definition for the “figfont” font in DSMPROF3.

For example, change
.*df figfont

to

.df figfont type('prestige elite')

The initial definition is commented out, which will cause figure text to be set in the default font.
You may specify any font on the .DF [Define Font] control word. The font is started by the
DSMFIG macro and the previous font is restored by either the DSMFCAP, DSMFDESC or
DSMEFIG macro, whichever is processed first.

Starter Set Initialization 39

Note: There are two different “figfont” font definitions—one for the 4250 printer and one for the
IBM 3820 Page Printer and 3800 Printing Subsystem Model 3. You may want to change both of
these or just one.

Changing Font Definitions

All of the fonts for the starter set are defined in the profile. You can change the definitions by
changing the .DF [Define Font] control word line. You might want to refer to the description of
the .DF control word in Document Composition Facility: SCRIPT|VS Language Reference before
doing this. Notice, however, that the fonts are defined differently for each logical device. For
some devices the font definitions are further refined to be based on the number of fonts that were
specified on CHARS as well as the device.

For example, suppose you wanted to use a bold body size font for the running headings and
footings when formatting for a page printer. The default is to use a 9-point bold italic font for the
heading and a 9-point bold font for the footing:

.df @rh type(bold italic 9) up
.df @rf type(bold 9)

You could simply change these lines in DSMPROF3 to:

.df @rh type(bold)
.df @rf type(bold)

The profile, however, does not define what typefaces to use for the 4250 printer or for the 3800
Printing Subsystem Model 3. The typeface is set by the default font or by what is specified with
the CHARS option on the SCRIPT command. The default typeface is Monotype Times New
Roman!? for the 4250 printer, unless it has been changed by your installation. For the IBM 3820
Page Printer and 3800 Printing Subsystem Model 3, Sonoran Serif?® is the default typeface.

You may override the default font by simply specifying a different font on the SCRIPT command -
with the CHARS option. However, the starter set font definitions for page printers are set up
based on an assumption that the initial font is a typographical font which comes in many sizes
and styles.2! If you specify a typewriter font or some other font which does not come in the full
set of sizes and styles, you may get some SCRIPT/VS error messages regarding fonts.

Creating a New Highlight Level

The starter set provides three levels of highlighting (:HP1 through :HP3). This may not be
enough, especially if you are using a page printer. To create a fourth level of highlighting you will
need to do several things to create a new tag named :HP4.

1. Map the :HP4 tag to an appropriate APF.
.aa hp4 dsmhpé (noatt) dsmehp
We can use the same APF for the end tag as all the rest of the highlight tags —DSMEHP

because all this APF does is a .PF [Previous Font] control word and that’s all we will need
to do here.

1 Trademarks of The Monotype Corporation, Limited.
20 Data derived under license from The Monotype Corporation, Limited.
2! For the 4250 Printer, the Excelsior typographical font does not contain any bold italic versions, al-

though it does come in a full range of pointsizes. This means that it can not be used as the default font
for the starter set unless some modifications are made to the font definitions in the profile.

40 DCF: GML Starter Set Implementation Guide

2. Define a hi4 font for all devices that it applies to.

...38PP
.df hi4 type(apl 10) codepage tls0ael0

... 4250
.df hi4 type('light italic' italic) codepage aftc0293

These lines define hi4 to be the APL font (named “light italic” for the 4250 printer and
“APL” for the IBM 3820 Page Printer and 3800 Printing Subsystem Model 3). The
pointsize for the highlight font will come from the current font. The APL font only comes
in a few selected sizes which could result in an error message if it is used somewhere other
than in body text. The codepage names (AF1C0293 and T1SOAE10) also must be specified
because the APL fonts use a different codepage arrangement than the normal text fonts.
These codepages will not work with the text fonts which means that it is important to either
redefine all of the text fonts to specifically use the correct text codepage or to always start and
end the APL highlight font without nesting any other fonts inside of it.

3. Write a new APF named DSMHP4 to process the :HP4 tag.
.bf hi4 =

By putting the equal sign on the end of the .BF [Begin Font] control word line you instruct
SCRIPT/VS to restart the current font whenever the hi4 font isn’t defined or can’t be started.
This allows you to format to all devices without getting an error message and a real font
change will occur only for the page printers.

Modifying the Running Heading or Footing

One of the most common modifications that is made to the starter set involves changing the run-
ning heading or footing. The definitions for the heading and footing are in DSMPROF3. One
way to override these definitions is to create you own profile that imbeds DSMPROF3 and then
redefines the running heading and footing in your profile. You could also modify the profile (or a
copy of it) directly.?

Within the running heading and footing definitions you may perform almost any processing you
wish. Consult the Document Composition Facility: SCRIPT}VS Text Programmer’s Guide for
more information about headings and footings.

For the starter set the heading and footing definitions are the same for the entire document. De-
pending on your application you may find it necessary to vary your running heading or footing
according to what section of the body you are in. You will have to redefine the heading and
footing to be a function of the document section. You will have to add the definitions to the
DSMEFRONT, DSMBODY, DSMAPPD, DSMBACKM and DSMINDEX macros. This way
each of the definitions can be tailored to the document section. The basic running heading and
footing definition should remain in the profile and should reflect the style chosen for the body of
the document. This is recommended because when documents are created without any front
matter users rarely use the :BODY tag. In these cases you would want the profile to dcfine the
body style for running headings and footings. '

2 The GML starter set is a fully supported part of the Document Composition Facility program product
provided that neither the profile nor the macro library have been modified in any way. What this
means is that you should be careful to not alter the base version of these files but rather should make
your own copies or user libraries.

Starter Set Initialization 41

Changing the Page Dimensions

SCRIPT/VS has built into it a set of page dimensions that are a function of the logical device you
are formatting for. The starter set, with the exception of the line length and column line length
parameters, does not alter these dimensions in any way. The page margins will be a function of
either the default bind for the device or the value of the BIND option on the SCRIPT command.
The page width will be the default page width for the logicial device, as will be the top and bot-
tom margins for the page. You can find out more about the page dimension specifications in the
Document Composition Facility: SCRIPT|VS Text Programmer’s Guide.

Line length and column line length in the starter set are modified dependmg, on the column layout
(style) of the document. For one-column style, the default line length is used and column line
length defaults to line length. For two-column and offset style the line length is lengthened to 6.8
inches in DSMPROF3. Column line length is then set in the DSM#STYL macro to provide two
short columns or an offset one.

To change line length you can either modify the profile or create your own profile that modifies
line length before imbedding DSMPROF3. See “Creating Your Own Profile and Epifile” on
page 36 for more details on doing this.

Modifying column line length for two-column or offset style involves modifying the .CL [Column
Line Length] control word line in the DSM#STYL macro. For two-column style you can also
control the width of the gutter between the column by changing the value of the & @gutter sym-
bol that is defined in DSMPROF3.

Creating Three Column Format

The starter set provides easy access to one-column, two-column and offset style column layouts.
If we want to create a threc column layout we will need to make some decisions about how it
should look and then modify the DSM#STYL macro. For example, suppose that we wanted to
create columns that were 2 inches wide with a gutter of .4 inches between each of them. This
happens to coincide with a line length of 6.8 inches which is also the line length the starter set
uses for two-column formats. Suppose additionally that we wanted to be able to specify on
SYSVAR 'S’ that we wanted three columns. This means that we will also need to modify the
DSM#ASETV macro which is the macro that processes the SYSVARs. We will have to modify it
to recognize a value of “three.”

Let’s do this first, since it’s easier. SYSVAR ‘S’ is currently processed by the following lines in
DSM#SETV:

.se *a = index '-1---2---0FFSET-ONE-TWO-' '-&U'&SYSVARS.'
.if &%a eq 0 .se *a =1

.se SYSVARS = substr 'one two off one two' &¥a 3

These lines are explained in “Special Techniques” on page 13. The first line determines what the
value of SYSVAR 'S’ is. The second line sets up a default value of “1” if SYSVAR ‘S’ either was
specified or was invalid. The third line resets SYSVAR ‘S’ to a standard lower case value that
will be easy to test elsewhere in the starter set macros.

We will need to include “THREE” and “3” in line 1 as valid values.
.se ¥a = index '-1---2---3---0FFSET-ONE-TWO-THREE' '-&U'&SYSVARS.
Next we will have to include “thr” in the third line as a standard value for SYSVAR ’S’. We had

to use “thr” instead of “three” because we were using only the first three letters of each style as
the new value.

.se SYSVARS = substr 'one two thr off one two thr' &%a 3

42 DCF: GML Starter Set Implementation Guide

Notice that we had to add the “thr” to the third line in the same relative positions that we put
“3” and “THREE” in the first line.

The next part of the modification involves modifying the DSM#STYL macro to include a section
for defining the three column layout. The lines to do this will be very similar to the lines used to
set up two-column format. The label that precedes the section will be “thr” because we will get
there by branching to a label whose name is in &SYSVARS.

Lif &L'&*1 eq O . go &SYSVARS
.el .go &*1

The control word lines in the “thr” section should go after the end of the processing for two
column format and should look like this:

. two

.go fnldr

...thr

.gs args '' "' 0 0

.gs vars @rcl @rc2 @fnl @fn2

.cd 3 0 2.41 4,81

.cl 2i

.if &SYSVARD eq yes .dh 0 outside
.th .dh 1 outside

.go fnldx

This is exactly the same as the lincs used to set up two-column except that we've dropped the
calculation for the column line length and the column position. We’ve hard coded these instead.

Other Modifications to the Profile

You can modify just about anything in the profile. That’s why the profile is there. Some of the
other modifications that you can make include:

® Changing the heading definitions which is discussed in “Modifications to Headings” on page
82

¢ Changing the default figure placement and width which are described in “Modifications to
Figures and Examples” on page 122

¢ Changing the definition of the footnote leader which is discussed in “Modifications to
Quotes, Notes, Footnotes and Highlights” on page 134

¢ Changing list item identifier definitions which is discussed in “Modifications to List
Processing” on page 108.

Starter Set Initialization 43

Title Page

Overview

There is a set of macros that handles the tags to define and create the title page. Only the
‘TITLEP tag and the :ADDRESS tag® are associated with their respective APFs in
DSMPROYF3. The APFs for the :TITLEP tag enables the rest of the tags used to create the title
page. The actual title page is formatted by DSM#TIPG which is called from the DSMETTLP
APF.

Here’s how a typical title page would look:

Document Composition Facility:
GML Starter Set
Implemengation Guide

January 22nd, 1985

Me & My Shadow

Sun ‘n Sand
Arizona

Figure 9. Sample Title Page: This is a sample of what the default title page for the starter set looks
like. The default formatting is to align the text on the the right hand side of the page.

3 The :ADDRESS tag is enabled in DSMPROF3 because it can appear other than on the title page.

Title Page 45

The APFs described here are for the following nine tags, which together describe a title page:

: TITLEP

: TITLE

: AUTHOR

: ADDRESS

: ALINE

: EADDRESS

: DATE

: DOCNUM
:ETITLEP

With the exception of the APFs for the :TITLEP and :ETITLEP tags all of the APFs for these
tags save the residual text for processing later. This is why the title page appears the same, regard-
less of the order in which the individual tags are entered. This is also what makes it so easy to
add pieces of information to the title page. See “Modifications to the Title Page” on page 52 for
details about how to do this.

Initialization

During initialization, which is described in detail in “Starter Set Initialization” on page 19, several
things are done to allow the title page to be formatted correctly.

DSMPROF3

DSMPROF3 maps the :TITLEP and :ETITLEP tags to the DSMTTLEP and DSMETTLP
APFs, respectively. The :ADDRESS and :EADDRESS tags are also mapped to the
DSMADDR and DSMEADDR APFs, respectively. All other tags are enabled later.

The running heading is defined in DSMPROI3 and uses the & @sec symbol. The &(@sec sym-
bol contains the security classification as entered on the SEC attribute of the :GDOC tag. This
symbol is also used on the title page.

DSMHASETS

The DSM#SET macro defines symbols including &date and &LL@DocNm (“Document Num-
ber”) that can be used on the title page.

DSMH#SETV

The DSM#SETV macro processes the system variables (SYSVARS) given on the SCRIPT com-
mand. Two of these system variables are relevant to the title page:

1. SYSVAR ‘D’ Indicates whether or not the document is to be duplexed. It is not directly
used by the title page macros, but the setting of SYSVAR ‘D’ affects how the value of the
STITLE attribute of the :TITLE tag is used.

If duplexing is in effect, the short title given on the STITLE attribute is used in the running
footing on even pages. If we're not duplexing, the short title appears in the running footing
only when there has been no level zero or one heading entered.

2. SYSVAR ‘T’: Indicates whether or not the title page is to be printed, and, if so, whether or
not it should be left, right, or center aligned on the page. The value of the &SYSVART
symbol is set to “right,” “center,” “left,” or “no.”

46 DCF: GML Starter Set Implementation Guide

If SYSVAR ‘T” is not specified on the command, the default is to print a title page right

justified as in Figure 9 on page 45. See “Modifying Starter Set Initialization” on page 36 for

details about how to modify this default setting.

Title Page Tag Processing

DSMTTLEP

The DSMTTLEP APF processes the :TITLEP tag which is always the first tag for the title page.
It establishes the environment for the title page structure as follows:

L.

The &@state symbol is set to “TtlPg” to indicate that a title page is being defined. This
symbol is used repeatedly to determine if we are still within the title page structure defined by
‘TITLEP and :ETITLEP.

The title page tags are mapped to the appropriate APFs CAUTHOR to DSMAUTLHR,
:DATE to DSMDATE, :DOCNUM to DSMDCNUM and :TITLE to DSMTITLE).
These tags are valid only within the title page structure.

Various title page symbols and symbol arrays are initialized:

a. &@addctr array for counting addresses

b. &@author array for saving the authors’ names

c. &@address array for saving the names of the address arrays
d. &@docnum for saving the document number

e. &@docdate for saving the document date

f. & @title array for saving the document title lines.

These are 1nitialized to null values in case the user does not specify them. If this is not done,
the symbols will appear unresolved on the title page rather than as null (nothing).

DSMTITLE

The DSMTITLE APF processes the :TITLE tag. Multiple :TITLE tags can be used to enter
multiple lines of the title, but only one should have an STITLE attribute on it. The DSMTITLE
APF performs the following processing:

1.

Saves the residual text of the tag as the next element of the &@title array, which will be
printed on the title page.

Changes the symbol array separator to a blank because we may put the entire contents of the
&@title array into the &@stitle symbol for use in the running footing.

Determines whether or not &@stinit exists. &@stinit will exist only if an STITLE attribute
was specified on a previous :TITLE tag. If &@stinit does not exist, no short title was found
on a previous :TITLE tag.

If there 1s no short title, well need to use the full title. So we’ll set &@stitle to the entire
&@title array using a blank as the array separator. If this tag or a subsequent tag has an
STITLE attribute, & @stitle will end up getting reset to the short title.

Calls the DSM@STTL macro to process the STITLE attribute, if it is present. This resets
&(@stitle to the attribute’s value.

Title Page 47

DSM@STTL

The DSM@STTL macro processes the STITLE attribute of the :TITLE tag. It is called by the
DSMT ITLE APF only if the STITLE attribute is present. The value of the attribute is used in
the running footing for even pages, if duplexing, and for all pages if no level zero or one headings
are entered. DSM@STTL does the following:

1. Sets &@stinit to 1 to indicate that a short title attribute has been entered. This symbol is
used by the DSMTITLE APF to determine if an STITLE attribute was specified.

A separate variable (& @stinit) is required to indicate the existence of a short title because the
& @stitle variable must always exist. It was set to a null value in the DSM#SET macro
during initialization to prevent errors in the running footing if there were no STITLE attri-
butes or :TITLE tags. The DSMTITLE APF also sets &@stitle in case there is no STITLE
attribute.

2. Saves the attribute value in the &@stitle symbol.

It is possible to have more than one :TITLE tag. Hopefully, only one of them will have an
STITLE attribute. If there is more than one STITLE, they will all get processed, but the
value of the last STITLE is used.

DSMDATE

The DSMDATE APF processes the :DATE tag. If there is residual text on the tag, it means that
the user has supplied his own date rather than used the processing date. In this case the residual
text is saved in the &@docdate symbol and is also put into the &date symbol.

If there is no residual text, the current date (&date) is put into the &@docdate symbol, which will
be printed on the title page. The current date was defined in DSM#SETS during initialization.

Either way, &@docdate and &date end up the same if the :DATE tag is used.

DSMAUTHR

The DSMAUTHR APF processes the :AUTHOR tag. It saves residual text as the next element
of the &@author array, which will be printed on the title page. Since an array rather than a
simple symbol is used, more than one :AUTIOR tag may be use.

DSMADDR

The DSMADDR APF processes the :ADDRESS tag. Because this tag can appear on the title
page or in text, two different processes are required. DSMADDR does the following:

1. Maps the :ALINE tag to the DSMALINE APFE. This tag is not really valid or nccessary
when an address is being formatted inline with text rather than on the title page. The map-
ping is done anyway to prevent the user from getting an error message if he forgets this and
uses the :ALINE tag for an inline address.

2. Uses the .GS [GML Services] SCAN control word to obtain the residual text. If there is
residual text, it is considered to be the first ine of the address.

3. Checks the &@state symbol to determine if a title page is currently being defined.)

If we are on the title page, an array is set up for each address. The name of the array is
& @aline& @addctr where & @addctr i1s incremented each time we encounter an :ADDRESS
tag.

48 DCF: GML Starter Set Implementation Guide

Figure 10. The Format of the Address Arrays

&daddctr. —
\'
&Ralinel (™)

>| Joe Smith

100 Avenue A
3. Sp; &alinel(®) Anytown, USA
3. Sp; &aline2(%) —
3. sp; &aline3()

&Qaddress()

&Qaline2 ()

>] Susie Smith
110 Avenue A
Anytown, USA

&@addctr is incremented for each address, so the first address will be put in an array
named &@alinel(), the second will go into &@aline2(), and so on. See Figure 10 on
page 49.

The array is undefined first (set “off”) to get rid of any previous address.

The name of the array, preceded by a .SP [Space] control word, is saved in the
& (@address() array that will be printed by DSM#TIPG when the :ETITLEP tag is en-
countered. The .SP [Space] control word generates a blank line between each address on
the title page.

Any residual text from the :ADDRESS tag is put into the first element of the
&@aline&addctr array.

Formats the address as a simple compact list, if the :ADDRESS tag is found outside of the
title page. This is done as follows:

a.

b.

Skips &@sk@s (set by DSMPROF3 to .75).

Saves the current cnvironment because we're going to change the formatting mode and
we don’t want to have to specifically restore it.

Turns formatting off with .FO [Format Mode] OFF. This means that each input line
that follows, before the :EADDRESS tag, will become an output line. This is what
makes the :ALINE tag unnecessary for inline addresses.

Indents +&@in@s, which is set in DSMPROF3 to 4. We are using an incremental
indention value rather than an absolute value because we have no idea whether there is
any current indention or not.

Begins a kecp if &@state is “open,” indicating the middle of open text rather than in a
figure, a list, a footnote, and so on. If this is not open text, a keep should not be started
because there is probably a keep or float already in progress. Starting a keep within a
keep causes the user to get an error message.

Title Page 49

f. Exits the macro here, if there was no residual text. Otherwise, the residual text is for-
matted in literal mode. Literal mode is used so that initial periods and semi-colons are
treated as punctuation marks, rather than special delimiters for control words.

DSMALINE
The DSMALINE APF processes the :ALINE tag as follows:

1. This tag is not necessary outside of the title page. If we are not currently defining a title page
(& @state is not “TtlPg”), the macro ends because there is nothing to do. The residual text
is formatted in format “off” mode by SCRIPT/VS as a simple list. The environmental
changes to do this are set up by the DSMADDR APF. See number 4. under DSMADDR
for details.

2. If we are on the title page (& @state is “TtlPg”), the residual text is séved in the next element
of the current address array (& @aline& @addctr).

DSMEADDR

The DSMEADDR APF processes the :EADDRESS tag. It ends the address section as follows:

1. Remaps the :ALINE tag to the DSM#CNTX APF because :ALINE is not valid outside of
an address structure.

2. Ends the macro here if the address is being defined for the title page (& @state is “TtIPg”).

3. Ends the keep if we're not on the title page and the address is being formatted in open text
(not in a figure, footnote, or example).

4. Restores the formatting environment.

5. Performs a conditional skip.

DSMDCNUM

The :DOCNUM tag is processed by the DSMDCNUM APF which saves the residual text in
&@docnum, which will be printed on the title page.

DSM@SEC

This macro is not really part of the title page macros, but is included here because it saves the
security classification attribute value in the &@sec symbol that is used on the title page. It is
invoked by the DSMGDOC APF to process the SEC attribute of the :GDOC tag if it is present.

The security classification (&@scc), if entered, appears highlighted on the title page. It is also put
into the running heading.

DSMETTLP

The DSMETTLP APF processes the :ETITLEP tag. It ends the title page definition as follows:

1. Checks to see if a title page is currently being defined as indicated by & @state. If we're not
in a title page structure, a message is issued that a title page end tag was found outside of the
title page and the macro ends. .

2. Sets &@state to “open” to indicate that there is no current special structure being defined.

50 DCF: GML Starter Set Implementation Guide

DSMETITLE APF

tetitlep. >| . jidsmtipg >| DSM#TIPG

Figure 11. Producing the Title Page

3. Calls the DSMATIPG macro to format the title page unless the value of &SYSVART is
“no” indicating that no title page is wanted.

4. Remaps the :AUTHOR, :DATE, :DOCNUM and :TITLE tags to the DSM#FCNTX APFE.

Producing the Title Page

DSM#TIPG

The title page is formatted using the information saved by the title page APFs described above.
Because all of the variables we're going to use on the title page were initialized to null by the
DSMTTLEP macro, we don’t have to worry about whether or not the user specified them. If
they weren’t specified, they will appear as null (or nothing).

Each of the pieces of information that goes on the title page has a special font defined for it for
page printers. The font definitions are all in DSMPROF3. In most cases, there is no comparable
font change that we can do for a line printer, so we keep restarting the current font. DSM#TIPG
performs the following processing:

1. Suppresses running headings and footings as these would be undesirable on a title page.

2. Performs a conditional page eject with a .CP [Conditional Page Eject] control word because
we want an entire new page for the title page.

3. Saves the current formatting environment.

4. Rescts the line spacing ranges (.LS [Line Spacing] control word) for expansion and com-
pression for vertical justification to 1.0. In other words, we have turned off vertical justifica-
tion by eliminating the ranges on the .LS [Line Spacmg] control word. The original ranges
were established in the proﬁlc

5. Establishes a single column page layout. We did not use the DSM#STYL macro because it
would have done more than we wanted. All we needed to do was use the .SC [Single Col-
umn Mode] control word to get the desired results.

6. Turns off spelling checking because there might be some unusual things on the title page.
The text will have already been verified when the tags were first encountered.

7. Tumns off hyphenation because we wouldn’t want anything to be hyphenated on the title
page.

8. Restores the control word separator to the default setting (;) with the .DC [Define Character]
CW control word. We constructed the &{@address array using a semicolon as a control
word separator and we need to make sure that’s what it is when we process the array. See
Figure 10 on page 49 for a example of what the & @address array looks like. We won’t need
to worry about setting it back to whatever it was before this because we are going to restore
the entire environment when we're all done.

Title Page 51

10.
11.

12.
13.

14.

15.
16.

17.

18.

52

Uses the value of &SYSVART, which can be “right,” “left,” “center,” or “no” as the .FO
[Format Mode] parameter to set up the formatting mode. .FO [Format Mode] NO wouldn’t
work but we don’t need to worry about this combination because we won’t get this far if
“no” was specified.

Leaves two inches of space at the top of the page before the title.

Changes the symbol array separator to cause a break between the elements in the numerous
title page symbols. This is done in two steps because the array separator is limited to four
characters:

a. The &@ symbol is set up to be a .BR [Break] control word.

b. The characters used to construct the symbol are used as the array separator. This is
equivalent to setting the array separator to “;.br;”, but we cannot set it directly because
we can only use four characters.

Changes to the title font or the highlight level 2 font, if the title font is undefined.

Increases line spacing to some factor of normal. The factor is in &@ttllo which is set in
DSMPROTF3 to be 1.2. The reason we increase the line spacing here is that on page printers
when a large font is used, as is the default on the title page, the line spacing appears to be too
small. By increasing the line spacing by 20%, greater line separation is achieved. The factor
of 1.2 rounds down to 1.0 on line devices, so there is no conflict between devices here.

Formats the entire title array. Each element of the &@title éi‘fay contains one line of the
title of the document. All we want between them is a line break. This is why we defined the
array separator to be a .BR [Break] control word.

Resets line spacing and restores the previous font. Two inches of space is skipped.

Formats the following symbols and arrays with extra space between each one. Each one has
a special font for use on page printers and the current font is used for other devices. The
symbols and arrays are:

a. Document number (&@décnum) preceded by the words “Document Number”
(&LL@DocNm)

b. Document date (&@docdate)
c. Author array (& @author(*))

d. Address array (&@address(*)). Each element in the & @address array is the name of an

array that contains a set of address lines. See Figure 10 on page 49 to see exactly what
it will look like.

e. Security classification (&@sec). This is printed in literal mode for one line to protect
against semicolons getting treated as control word separators, and so on.

Restores the previous formatting environment along with the running heading and footing,
We have saved and restored the environment because we've changed things like the format-
ting mode, the array separator, and the control word separator, and we do not want to have
specifically reset them all. It is easier to restore the whole environment.

Undefines the macro. This has the effect of reclaiming the storage that has been used to hold
the macro lines. We do this because the DSM#TIPG macro is only used once. See “Special
Techniques” on page 13 for a full explanation of this technique.

DCF: GML Starter Set Implementation Guide

Modifications to the Title Page

Changing Default Title Page Formatting

Like everything else in the starter set, there are many things that can be modified for the title
page. You can modify the default value for &SYSVART from right justified to centered. This
requires a simple modification to DSM#SETV and is described in “Modifying Starter Set
Initialization” on page 36.

Changing Spacing

Another possible modification is to change the spacing between the various elements on the title
page. This requires changing the space unit values on the .SP [Space] and .SK [Skip] control
word lines in the DSM#TIPG macro.

Adding a Box

To put a box around the title page, we need to add a .BX [Box] control word at the beginning of
the DSM#TIPG macro to start the box. We can create the box in the first and last positions of
the line and indent the text for the title page to make sure that it will not overlap the box.

We don’t know if the text will be formatted on the right or left. We can either indent both sides
with .IN [Indent] and .IR {Indent Right] control words or we can test &SYSVART to figure out
which side it will be on and then adjust only that side. It’s much easier and quicker to adjust
both sides.

Here are the lines we would need to start the box:

.bx left right
.in 2
Lir 2

These three lines should be added to the DSM#TIPG macro rlght after the .CP [Conditional
Page Eject] control word at the beginning of the macro.

Then we need to close the box at the end of the DSM#TIPG macro—just after .SK 3, following
the security classification. We can use the &$LC system symbol to calculate how much space is
left before the bottom of the page. The &$LC symbol gives us an approximation of the number
of lines left on the page. Because we’ll want to put one more line on the page (the end of the
box), we’ll want to space down to one less than the number of lines left.

However, &S$LC isn’t always totally reliable because sometimes lines are partially processed and
we think they are already on the page, but they haven’t been counted yet and won't be reflected
in &$LC. In this case, if we do a break we can use &$LC fairly reliably. The break causes any
lines that are partially processed to be completed.

Here are the lines we would need to close the box.

.br

.se ¥a = &SLC - 1
.sp &*a

.bx off

We have calculated how much to space (&*a), spaced that amount and then ended the box.

Title Page 53

Adding Existing Information

Adding information that already exists to the title page is very easy because of the way the title
page is formatted. Suppose that we wanted to add the time to the page. This one is particularly
easy because the information we want is already available in a symbol (&time). All we would
need to do is decide where we wanted it and add it to the DSM#TIPG macro along with another
.SP [Space] control word to leave space around it.

You might also want to select a font for the time information if you were formatting for a page
printer. In this case we would need to also add .BF [Begin Font] and .PF [Previous Font] control
words to the DSM#TIPG macro and define the font in DSMPROF3.

Adding New Information

Suppose we wanted to add an entirely new piece of information, such as a reviewer’s name pre-
fixed with the word “REVIEWER:.” We would need to create a whole new tag. This involves
the following steps:

1. DPick a tag name (:REVIEWER).

2. Add it to DSMPROF3 mapped to the DSM#CNTX APF because we don’t want it used
except on the title page.

.aa reviewer dsmffcntx (noatt)

3. Create a symbol called &LL@revwr in the DSM#SETS macro and set it to “REVIEWER.:.”

.se Ll@revwr = 'REVIEWER:

We'll use this literal to prefix the text of the tag. We could just as easily use the actual word
instead of a symbol, but because all the other literal strings are kept together in one macro,
we should continue this practice.

4. Enable the :REVIEWER tag in the DSMTTLEP APF by mapping it to a APF named RE-
VIEWER.

.aa reviewer reviewer (noatt)

5. Disable the :REVIEWER tag in the DSMETTLP APF by mapping it back to the
DSM#CNTX APF.

.aa reviewer dsmjfcntx

6. Write an APF named REVIEWER and add it to the maclib. (See “Appendix A. Modifying
the Macros” on page 171 for more details on how to do this.) The APF only needs to be
one line long:

. gs scan Q@reviewr

This will save the residual text in a symbol named & @reviewr.

7. Add the lines necessary to format the reviewer information to the DSM#TIPG macro. This
involves testing if the & @reviewr symbol exists. If it does not, the symbol was not set and

we don’t want to print it. If the symbol has been set, we want to print it with the word
“REVIEWER:” before it.

.if &E'&@reviewr eq 1 &LLGrevwr &RQreviewr
.sp 2

54 DCE: GML Starter Set Implementation Guide

This allows for a single reviewer’s name on the title page. What would we need to do to handle
more than one reviewer? First of all we would have to create another literal constant which
would be “REVIEWERS:” in DSM#SETS

.se Ll@revws = 'REVIEWERS:

so we could label them properly. We would still want the other symbol (“REVIEWER:”) in case
we only had one name.

Then we would need the REVIEWER APF to scan for the residual text and put it into a local
symbol. Then this symbol is used to set up the next element of the & @reviewr array.

. gS scan *name
.'se @reviewr() = '&*name

The last thing we need to change is the DSM#TIPG macro. It would need to test element zero
of the &@reviewr array to see how many names we have. If it is one, we would use the literal
constant that represents REVIEWER:. If it is greater than one, we’d need the plural constant,
REVIEWERS:.

.if &Qreviewr(0) eq 1 &LLQrevwr. &Qreviewr(1l)
.if &@reviewr(0) gt 1 &LLGBrevws. &Breviewr(¥)

It might also be necessary to consider the amount of space that would normally be used here. It
might be a good idea to reduce the blank space in other parts of the page to prevent the text of
the title page from routinely exceeding a page.

Printing Two Dates

Another modification that you might want to do is to print both the current date and any docu-
ment date the user might have specified.

We want the current date to be preceded with “Formatted on” or “Printed on” and we want both
dates available to users in a symbol. We are going to have to do the following:

1. Create a symbol in DSM#SETS with the text we want.
.se LI@Prnt 'Printed on

2. Modify the date APF (DSMDATE) to keep the document date in the &@docdate symbol
and the formatting date in &date.

The APF currently looks like this:
. gs scan @docdate
.'if &L'&Qdocdate eq O . 'se @docdate '&date
.'el .'se date '&Rdocdate

We need to change it to:

. gs scan @docdate
.'if &L'&Rdocdate eq 0 . 'se @docdate '&date

This way we put the formatting date or the date the user gave us into the &@docdate sym-
bol and still maintain both dates when they are present.

Title Page 55

Alter the DSM#TIPG macro to print the &date symbol as well as the &@docdate symbol.
This is the last step. The basic approach to how to do this is described in “Adding Existing
Information” on page 53. However, we will have to include the & LL@Prmt symbol with the
&date symbol to indicate that the date shown is the date the document was printed on.

56 DCF: GML Starter Set Implementation Guide

Document Sections

Overview

A general document is composed of several different sections each of which contains different
types of material. Each section is also formatted somewhat differently.

The following tags identify these sections:

: GDOC
: FRONTM
: TITLEP
: ABSTRACT
: PREFACE
: TOC
: FIGLIST
: BODY
: APPENDIX
: BACKM
: INDEX
: EGDOC

The primary function of the APFs for these tags is to separate the sections of the document with
a page eject and perform any special processing necessary to begin that part of the document.
Sometimes this includes changing the page layout or redefining the way headings are handled.
These APFs also control the style of page numbering and the text of the running footing. Some-
times headings are generated for the sections. The section tags have no specific text associated
with them and, except for the :GDOC tag, there are no attributes.

The title pége section is slightly different from the others and involves many tags and macros. It
is discussed fully in “Title Page” on page 45.

The index section, which is produced by the :INDEX tag, is described in “Indexing” on page 137.

The remaining document section tags are described below.

Document Section Macros

DSMGDOC

The DSMGDOC APF processes the :GDOC tag. The SEC attribute is processed by the
DSM@SEC macro. The DSMGDOC APF then reclaims its own storage by undefining itself
because this macro is used only once. See “Special Techniques” on page 13 for details about how
storage is reclaimed.

Document Sections 57

DSM@SEC

The SEC attribute of the :GDOC tag is processed by the DSM@SEC macro. The value of the
attribute is saved in the & @sec symbol which is used on the title page and in the running head-
ing.

DSMFRONT

The DSMFRONT APF processes the :FRONTM tag. This macro establishes the basic format-
ting environment for the front matter section of the document including heading definitions and
column layout. The DSMFRONT APF performs the following processing;

1. Sets the &@headl symbol off. This symbol, if defined, is used as a prefix for level one
headings. Since prefixes can not be used in the front matter section, the & @headl symbol is
turned off.

2. Redefines heading levels zero through four so they will not be numbered and will not be in
the table of contents.

3. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

4. Calls the DSM#STYL macro to set up the column layout. The front matter section of a
general document is always formatted in either one-column style or offset style. If
&SYSVARS is “two,” indicating that the body of the document will be in two-column for-
mat, the front matter is formatted in one-column style. One column style is also used if the
body will be in one-column style. If &SYSVARS is “off,” offset style will be used for the
front matter. See “Starter Set Initialization” on page 19 for details on the DSM#STYL
macro.

5. Changes page numbering to roman numeral style.

DSMABSTR

The :ABSTRACT section tag is processed by the DSMABSTR APF. The abstract is part of the
front matter of the document. Page layout and heading definitions do not need to be changed
because these are governed by the front matter section macro. All the DSMABSTR APF needs
to do is to generate a new page with a level one heading of “ABSTRACT” on it. It also resets
the &@shead symbol which is used in the running footing. The DSMABSTR APF performs the
following processing: :

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellancous” on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

3. Resets &@shead to the value of &LL@Abstr which is “Abstract.” The &LL@Abstr symbol
is defined in DSM#SETS. The &@shead symbol is used in the running footing.

4. Creates a level one heading for the abstract using the &LL@Abstr symbol defined in
DSM#SETS to “Abstract” and the .H1 [Head Level 1] control word.

5. Remaps the paragraph tag to the DSMPARAI1 APF. This is because paragraphs following
level one headings have a slightly different format than other paragraphs. See “Paragraphs”
on page 87 for a complete explanation on why the :P tag is remapped.

58 DCF: GML Starter Set Implementation Guide

DSMPREF

The DSMPREF APF processes the :PREFACE tag. The preface is part of the front matter of
the document. Page layout and heading definitions do not neced to be changed because these are
governed by the front matter section macro. All this macro needs to do is generate a new page
with a level one heading of “PREFACE” on it. It also resets the short heading symbol
{&@shead) that is used in the running footing.

The DSMPREF APF performs the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

3. Resets the &@shead symbol to &LL@Pref which is defined in the DSM#SETS macro to
“Preface.” & @shead is used in the running footing.

4. Creates a level one heading for the preface using the &LL@Pref symbol which is “Preface”
and the .H1 [Head Level 1] control word.

5. Remaps the paragraph tag to the DSMPARAIL APF. This is because paragraphs following
level one headings may have a slightly different format than other paragraphs. See
“Paragraphs” on page 87 for an explanation on why the :P tag is remapped.

DSMTOC

The DSMTOC APF processes the :TOC tag and produces the table of contents section by per-
forming the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (Sce
“Miscellaneous” on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

3. Resets the &@shead symbol to &LL@ToC symbol which is defined in the DSM#SETS
macro to “Table of Contents.” This symbol is used in the running footing and is defined in
DSM#SETS

4. Uses the .TC [Table of Contents] control word to format the table of contents. &LL@ToC
is used as the title parameter on the . TC [Table of Contents] control word.

DSMFLIST

The :FIGLIST tag is processed by the DSMFLIST APF which produces the List of Itlustrations
section. The entries for the List of Illustrations are collected in the #FIGLIST macro by the
DSMECAP APF.

On the first pass the List of Ilustration section will normally be empty because no figures will
have been processed yet. On the second pass the #FIGLIST macro which has been created dur-
ing the first pass is printed out.

The DSMFLIST performs the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

Document Sections 59

Resets the &@shead symbol to &LL@Lstll symbol which is defined in the DSM#SETS
macro “List of Hlustrations.” The &@shead symbol is used in the running footing.

Prepares to cal]l the #FIGLIST macro. The #FIGLIST macro is defined one line at a time
as each captioned figure is encountered. It is not predefined in the macro library. See “Ex-
amples and Figures” on page 115 for more details on how #FIGLIST is created. In prepar-
ing the #FIGLIST macro, DSMFLIST:

a. Defines line number 1 of the #FIGLIST macro to create a level one heading for the list
of illustrations page. The entries to create the rest of the page will already be defined in
the #FIGLIST macro on the second pass. On the first pass the rest of the #FIGLIST
macro is empty as no figures will have been encountered yet.

b. Saves the formatting environment because the #FIGLIST macro changes the formatting
environment and we want to be able to completely restore it.

c. Restores the control word separator to the default setting (;) with the .DC [Define
Character] CW control word. We constructed the #FIGLIST macro as we processed
the figures on the first pass through the document and we used the semicolon as the
control word separator. Therefore, we have to make sure that it is a semicolon while the
#FIGLIST macro is being processed.

Calls the #FIGLIST macro to format the list. See the discussion of the :FIGCAP tag in
“Examples and Figures” on page 115 to see how the #FIGLIST macro is constructed.

Restores the previous formatting environment.

Ends the page with a .PA [Page Eject] NOSTART control word.

DSMBODY

The DSMBODY APF processes the :BODY tag. This macro starts a new section, adjusts the
style of headings and page numbers, and:

1.
2.

60

Clears the & @head symbol.

Sets the &@headl symbol equal to the & @bodyheadl symbol if the &bodyheadl symbol
was defined in DSMPROF3. The &@headl symbol is used as a prefix for level one
headings in the body.

The .SE [Set Symbol] control word line for setting &@bodyheadl is in the profile, but it is
commented out. If the user wants to set a prefix for the level one headings in the body, all
that needs to be done is remove the comment (.*) and fill in the prefix.

Sets up a local symbol if &SYSVARH is not “no” (it means that we’re numbering headings).
We'll use the symbol on the .DH [Define Head Level] control words that define the headings.
If &SYSVARH is “no,” we won't set &*a. When we use it on the .DH [Define Head Level]
control word line, &*a will resolve to a null (or nothing), which is fine, because the default
for .DH [Define Head Level} is NONUM, which is what we want.

Puts all level zero through four headings into the table of contents. All but level zero and
one headings will be numbered if &*a was set to “num.” Level zero headings are never num-
bered.

Tests the value of the &@headl symbol. The &@headl symbol may contain a prefix for
level one headings in the body of the document. It will have a value of something like
“Chapter” or “Part” and will have been set by the user in the profile. If there is a prefix for
level one headings (that is, the &@headl symbol exists), we will want to also number these
headings so that they will be labeled “Chapter 1.,” “Chapter 2.” and so on. When
SCRIPT/VS numbers headings it puts the number at the beginning. Since we want the
number to appear after the prefix we will have to number these headings ourselves instead of
letting SCRIPT/VS do it.

DCF: GML Starter Set Implementation Guide

The following line tests for the existence of the & @head! symbol

.an &E'&@headl eq 0 .dh 1 num

The line shown above, is still logically part of the .IF [If] control word line that is 6 lines
above it in the DSMBODY APF. We'll adjust the .DH [Define Head Level] control word
for H! to be numbered only if we’re numbering headings (&SYSVARH isn't “no”) and
we're not prefixing them (& @headl doesn’t exist). In this case, we'll change the H1 back to
be numbered and let SCRIPT/VS do the numbering.

6. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

7. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (Sce “Miscellaneous” on page 163.)

8. Calls DSM#STYL to reset page layout to the value of &SYSVARS. This may be one-
column, two-column or offset. See “Starter Set Initialization” on page 19 for details on the
DSMASTYL macro.

9. Sets page numbering to arabic and resets the page number to 1.

DSMAPPD

The :APPENDIX section tag is processed by the DSMAPPD APF. Aside from starting a new
document section, the primary purpose of this macro is to establish serial lettering and prefixing
for level one headings. The DSMAPPD APF performs the following processing:

L.

Resets the heading counter symbol, using the .GS [GML Services] HCTR control word to
start with A.0. This causes the level one heading numbers in the appendix to be letters—A,
B, C, and so on.

Sets the & @headl symbol to the value of &LL@Appdx which is “Appendix.” This symbol
is used as a prefix for level one headings and is defined in DSM#SETS.

Adjusts the heading definitions to turn numbering off for level one headings. This is done
because the numbering is handled by the DSMHEAD1 APF when headings are prefixed as
well as numbered.

Resets the definitions for level zero and level two through four headings to ensure that all of
these headings go into the table of contents and are numbered or not numbered according to
the value of &SYSVARH. If the appendix section follows the body, these redefinitions are
not really necessary.

If heading numbering is on (&SYSVARH isn't “no™), the level two headings will be num-
bered A.1, A.2, and so on. Level three and four headings will also be lettered and numbered.

Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

Calls DSM#STYL to reset page layout to the value of &SYSVARS. This may be one-
column, two-column or offset. See “Starter Set Initialization” on page 19 for details on the
DSM#STYL macro.

Resets page numbering to arabic style. If the appendix section follows the body section, this
isnt necessary because page numbers will already be arabic numerals.

Document Sections 61

DSMBACKM

The DSMBACKM APF processes the :BACKM tag. The primary characteristics of the back
matter section are that headings are not numbered and a two column layout is always used re-
gardless of the value of &SYSVARS. The DSMBACKM APF performs the following functions:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

2. Sets the &@headl symbol off. This symbol is used as a prefix for level one headings. Pre-
fixes may be in effect for either the body of the document or the appendix section, if there is
one. In either case, we want to get rid of the prefix.

3. Turns off head level numbering by redefining the headings.

4. Redefines head levels to place level 0 through 4 headings in the table of contents. This is
done just in case the previous document section heading definitions did not make entries into
the table of contents.

5. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

6. Calls the DSM#STYL macro to get a two-column layout regardless of the value of
&SYSVARS. See “Starter Set Initialization” on page 19 for details on the DSM#STYL
MAacro.

DSMEGDOC

The :EGDOC tag is processed by the DSMEGDOC APF. This APF produces the cross refer-
ence listing and writes out the SYSVARW file of 1Ds.

L.

It calls the DSM#XLST macro if this is the last pass (&@lastpass = “yes”) and a cross
reference listing has been requested (&SYSVARX = ‘“yes”). See “Cross-References” on
page 147 for details on how the cross reference listing is produced.

If &SYSVARW has been sct and this is the last pass, this macro calls DSMA#WRIT to write
out the file with the cross reference IDs in it. See “Cross-References” on page 147 for details
on how the IDs are collected, used, and written out.

Modifications to Document Sections

Adding a Section

Probably the most common change that people make to the document section macros is to add a
new document section. In order to do this, you need to first make some decisions.

62

What major section of the document does the new section belong in? Front matter, back
matter, body, or it is a major section itself?

What will the tag for it be called?
Are there any attributes for the tag?

Should the section be labelled and if so, how? Should it have a standard label like
“Abstract” or a variable label that the user supplies?

Do we want to change the running footing to match the new label?

DCF: GML Starter Set Implementation Guide

Let’s make some basic assumptions and try it. Suppose we want to add a new section to the
front matter called “Summary of Amendments.” It will always be labelled that way and we want
the running footing to reflect that heading. We'll call the tag :AMEND.

Now we need to do a few things to implement it. First, we have to enable the tag in
DSMPROF3. We'll map it to a macro named AMEND. Let’s assume that it will have no attri-
butes. So we’ll add

.aa amend amend (noatt)

to DSMPROF3 where all the other tag-to-APF mappings are.

Next we nced to write the APF for the :AMEND tag. We must first decide how we want to
process it. Let’s assume that we want it to be just like the abstract section—a new page (odd if
we're duplexing) with a level one heading at the top which says “Summary of Amendments,” and
a running footing that says the same thing.

.dsmffrset

. dsmffdupl

. 'se @shead '&LIL@Amend
. "h1 &LI@Amend

.aa p dsmparal

Let’s look a little closer at what we’ve done. The DSM#RSET macro will ensure that there are
no open text structures, such as lists or figures. The DSM#DUPL macro will end the current
page and get us to the beginning of the next page (odd if we're duplexing). These two macros are
explained in detail in “Miscellaneous” on page 163. ’

We've reset the value of &@shead to &LL.@Amend. Remember &@shead is used as the text in
the running footing. We've got open quotes on &LL@Amend because it will probably contain
blanks. We’ve used the .H1 [Head Level 1] control word to get the level one heading using the
standard text we've set up in &LL@Amend. We had to use the control word modifier on both
the .SE [Set Symbol] and .H1 [Head Level 1] control words so that we dont need to worry about
what’s in &LL@Amend (just in case someone changes it and puts a semi-colon in there).

The last line in the macro remaps the :P tag to the DSMPARA1 APF to get the right style of
paragraph after the level one heading.

The one remaining thing to do is define the & LL@Amend symbol. We need to set it to “Sum-
mary of Amendments” and the logical place to do this is in DSM#SETS where all the other
&LL@... symbols are set up.

.se LI@Amend 'Summary of Amendments

We could have just used “Summary of Amendments” rather than put it into a symbol and then
use the symbol. The reason we’ve done it this way is to facilitate changing it (or translating it).

Document Sections 63

Changing the Section Label

Let’s change one of our assumptions and modify the APF to use the residual text of the
:AMEND tag as the label for the page. All we have to do is add a .GS [GML Services] SCAN
control word to our macro and use the residual text instead of &LL@Amend. Here's what the
macro would look like: ‘

.dsmjfrset

. dsm#dupl

. 8s scan *title

. 'se @shead '&*title
.'hl &*title

.aa p dsmparal

We also might want to set it up so that if no text was given with the tag, the standard text,
&LL@Amend, will be used. Because every tag is considered to have residual text, it’s a little
difficult to tell if the text really belongs to the tag or not. However, because we are creating a
section tag, we could assume that the tag will always be followed immediately by a paragraph tag,
or some other text element tag. This is only a moderately risky assumption, but it s already been
made for some of the title page tags, such as :DATE.

In this case, we would need to modify our macro to be as follows:

. dsmffrset

. dsmjtdupl

. 8s scan *title

Jif &L'&*title eq 0 .'se *title '&LL@Amend
. 'se @shead '&*title

.'hl &*title

.aa p dsmparal

We've tested the length of the residual text that is in the &*title symbol. If there isn’t any, it
means that another tag was encountered immediately following the :AMEND tag, or that we are
at the end of the file. In these cases, we'll set the &*title symbol to the standard section label,
&LL@Amend.

Changing the Layout

Another modification we could make is to change the page layout style for one or more of the
document sections. Let’s keep going with the Summary of Amendments section we just created.
Suppose that even though it is in the front matter, which is always formatted with a one-column
page layout, we wanted it to always be formatted in two column style. All we need to do is add
one line to the AMEND macro we wrote above.

.dsmffstyl two

This is a call to the DSM#STYL macro. We're also passing it “two” as a parameter which will
cause it to set up a two-column format for us. That’s all there is to it.

That was simple, wasnt it? However, we've created a problem by doing this. If we assume that
the summary of amendments section is in the front matter, we need to be concerned about the
page layout style for the other sections in the front matter. If you remember, we said that the
abstract and preface sections didn’t need to establish their own page layout because the layout was
handled by the front matter tag. If we put the summary of amendments before either the abstract
or the preface, we will get the wrong page layout for the section that follows it.

There are several ways to handle this. We could put the summary of amendments before the
front matter, but that wouldn’t make much sense, because it really is part of the front matter. We

64 DCF: GML Starter Set Implementation Guide

could let the abstract section and the preface section handle their own page layout by calling the
DSM#STYL macro in the same manner that the front matter did.

Another approach would be to define an end tag for the summary of amendments section that
would reset the page layout.

Either of these last two methods will work fairly well. The best approach would be to let each
section set up its own page layout and remove the page layout lines from the DSMFRONT APF.
The reason this is better is that having different page layouts in the front matter means that the
page layout is no longer a function of front matter. It is a function of the section. This would
logically lead us to put the page layout in the each section rather than in the front matter.

Let’s work through creating the end tag solution, just for practice. First we will need to add the
name of the APF for the end-tag to the .AA [Associate APF] control word line we added to
DSMPROF3.

.aa amend amend (noatt) eamend

Next we need to write the EAMEND APEF. All this macro must do is restore the page layout.
The layout for the other sections in the front matter depends on the value of &SYSVARS. If
&SYSVARS is two, we will set up a one-column layout. Otherwise, we'll use the actual value of
&SYSVARS, which will be either “one” or “off.” Here’s what the EAMEND APF would look
like: :

.if &SYSVARS eq two .dsmffstyl one
.el .dsmistyl

Changing the Appendix Headings

Another thing we could do is to change the way level one headings in the appendix are labelled.
They are prefixed with “Appendix A:,” “Appendix B:,” and so on. There are a couple of things
we could do here. Suppose we wanted them numbered instead of labelled. All we would have to
do is change the .GS [GML Seivices] HCTR control word hine in the DSMAPPD APF.

.gs hctr 1.0
Suppose we wanted to change the prefix frofn “Appendix:” to “Supplement.” If you look back at
the DSMAPPD APF, you'll see that we've used the LL@Appdx symbol instead of the word
“Appendix.” We can either change the value of &LL@Appdx in the DSM#SETS macro to

“Supplement” or we can change the .H1 [Head Level 1] control word line. To accomplish the
task using the first method, we need to change

.se LI@Appdx 'Appendix
to

.se LI@Appdx 'Supplement

in the DSM#ASETS macro.
However, now we've got a symbol (&LL@Appdx) whose name does not accurately reflect its

value. It would be cleaner to add the name &LL@Supp and change the references in the
DSMAPPD APF from &LL@Appdx to &LL@Supp.

Document Sections 65

Changing the Table of Contents Format

The starter set formats all of the entries in the table of contents in the same size font for page
printers. The entries are all generated automatically by SCRIPT/VS from the heading control
words. The fonts to use for the entries are specified in DSMPRZE3 on the .DH [Decfine Head
Level] control words. The definitions for the fonts used are shown in Figure 6 on page 25.

It would be a simple matter to put different level headings in different size fonts for page printers
by just changing the font definitions. Although this works in terms of producing output, there is
a major problem with the way it looks. The table of contents entries are formatted using an
internally generated .SX [Split Text] control words which do not allow font changes. So if the
entry were in a larger font, the page number on the right side would also be in the larger font, as
well as the dot leader. Unfortunately this looks very strange. The numbers and leader dots do
not line up very well and the result is very unappealing.

In order to create a table of contents using different size fonts for page printers several changes
need to be made to the macro library including generating the entry ourselves using the .PT [Put
Table of Contents] control word. Let’s assume that there are no level zero headings in the docu-
ment and the only ones we are interested in changing are the level one headings.

First a larger font needs to be defined. The font definition is in DSMPROF3:
.df hdltoc type(10 bold) up
Let’s change this to:
.df hdltoc type(16 bold)
The next step is to not have SCRIPT/VS automatically generate the entry. This means changing
the .DH [Define Head Level] control word that is also in DSMPROF3. Actually there are 2 .DH

[Define Head Level] control words for level one headings because all of the parameters wouldn’t
fit on one line. These are:

.dh 1 nus nohy nup font hdl &*n spaf &3hlsp pa left sect tfont hdltoc
.dh 1 spbf &Zhspbf

We'll keep SCRIPT/VS from generating the entry by adding NTC to the second one.

.dh 1 spbf &@hspbf ntc

Now, that gets it set up correctly to start with, however, which headings go in the table of con-
tents changes as we go through the document. Headings in the front matter and the back matter
do not go in the table of contents. Headings in the body and the appendix do go in the table of
contents, The heading definitions are changed accordingly for each of these document sections.
(See Figure 13 on page 77.)

Therefore, we need to adjust the DSMBODY and DSMAPPD APFs to not change the level one
headings back to TC after we’ve changed them to NTC. In both APFs the line that reads:

.dh 1 tc nonum

needs to be changed to

.dh 1 ntc nonum

Now that we've stopped SCRIPT/VS from generating the entries, we will need to generate the
entries ourselves in the DSMHEADI1 APF. We will use a series of .PT [Put Table of Contents]
control words to put the appropriate control words and text into the table of contents file.
Figure 12 on page 67 shows the results we want.

66 DCF: GML Starter Set Implementation Guide

ts

INTRODUCTION 1

Basic Concepts 1
Document Types 1
Tags . 1
Attributes 1
Document Types 1

SPECTAL TECHNIQUES 12

Validating Keywords+13
Check the Attribute Value13

Figure 12. Sample Output: The format of the table of contents can be changed to look like this by
generating the table of contents entrics in the APF for the :H1 macro.

The following lines need to be added to the DSMHEAD1 APF:

. 'hl &@head

.se hdnum = &

.pt .sp 2

.pt .tp &dh'&$cl.dh right
.pt .bf hdltoc

.pt .1li &@head.&STAB
.pt .pf

.pt .bf hd2toc

.pt .ct &hdnum

.pt .hr left to right
.pt .sp 1

.pt .pf

These lines save the current page number in &hdnum and put the following lines into the table of
contents file:

1. Space 2 lines.

2. Set a right aligned tab at the right side of the page. Notice that this implementation uses the
tab rack. The starter set typically avoids using the tab rack whenever possible so as not to
mterfere with any possible user tabs that have been defined.

3. Begm the font for level one entries.
4. Format the heading text following by a tab character in literal mode.?

5. Restore the previous font.

24 The .LI [Literal] control word is necessary herc because if the contents of the .PT [Put Table of
Contents] control word is simple text it will automatically generate a .SX [Split Text] control word for it
and we don’t want that. By starting the line with a control word we get the line put in exactly as we
coded it.

Document Sections 67

6. Start the font that will be used for the level two headings in the table of contents (hd2toc).
We do this because we want to format the number in the same font as the rest of the entries
in the table.

7. Format the page number that is in &hdnum preceding it with a continuation character. We
also used literal mode here to avoid the .SX [Split Text] control word from being built by the
.PT [Put Table of Contents] control word. The &$CONT causes the line to be treated as a
line of text by .LI [Literal]

8. Draw a horizontal rule from the left to the right to provide extra visual separation.
9. Space 1 line.

10. Restore the previous font.

‘Creating a Table of Contents For Each Chapter

For some applications it is more appropriate to provide a table of contents for each chapter rather
than a single table of contents at the beginning of the document. The table of contents entries
would need to be collected during the first pass for each chapter of the book. On the second pass
the table of contents would need to be produced by the DSMHEADI1 APF.

While this is fairly easy to accomplish it does present one problem which is not easy to solve.
Since the table of contents for the chapter is inline after the heading, and since it is empty on the
first pass, text will shift on the second pass. This means that the page numbers from the first pass
will most likely be wrong on the second pass if we don’t reserve the correct amount of room for
the partial table of contents. We have no good way of guessing how much space to allow for the
table of contents on the first pass. The best we can do is use SYSVAR "W’ to save the table of
contents entries from one formatting run and use that as input to the next run.

Preparation

Let’s assume that only level 2 headings are going to be put into this partial table of contents and
that we won't disable the main table of contents. This means that we will need to modify the
DSMHEAD] APF and the DSMHEAD2 APF. We'll collect the level 2 entries in a separate
array for each chapter (level one heading). Therefore we’ll need to create a unique array name for
each chapter. As we will see below, we're also going to need a unique counter for each head 2.
To do this we’ll initialize some counters to zero in the profile.

.se @hdlctr

0
.se @hd2ctr 0

and we’ll increment the &@hdlctr symbol each time we encounter a head 1. This means adding

.se @hdlctr = &@hdlctr + 1

to the DSMHEADI APF right after the .H1 [Head Level 1] control word. Now we can use the
counter in the array name so we'll get a unique array for each chapter.

Saving the Table of Contents Information

Our next problem is how to save the entries in the array. The approach that we’ve taken here is
to save the information in an array in the form of .SX [Split Text] control words. The name of
the array will be keyed off of the level 1 heading number. For example, the entries for chapter 1
will be put in an array named &tocl, and the entries for chapter 2 will be put in an array named
&toc2, and so on. The heading number (&@hdlctr) symbol is used to construct the name of the
array.

We'll have to add some logic to the DSMHEAD2 APF to save the text of the heading and the
page number in the appropriate array. The best approach is probably to set up .SX [Split Text]

68 DCF: GML Starter Set Implementation Guide

control word lines in the array and then we can just dump out the array when it’s time to
produce the table of contents. The left hand side of the split text control will be the text of the
heading which we have in the &@head symbol. The middle part will be a period and a blank to
produce a dot leader. The right hand part needs to be the page number.

However, simply including the page number symbol (&) in the split text line won’t work because
SCRIPT/VS won't resolve it as a page number for us. What we are going to have to do is create
a unique symbol name to contain the page number for each level 2 heading and then use this
symbol in the split text line. That’s where the unique symbol name for each head 2 comes in.
The symbol that contains the page number for the head 2 needs to be unique because it has to
survive until it’s time to dump out the table of contents.

To do all this we’ll add:

.se @hd2ctr = &@hd2ctr + 1

.se *sx '.sx f /&@head./ ./&PG&@hdlctr.&@hd2ctr../
.se toc&Rhdlctr. (&@hd2ctr.) '&¥sx

. se PG&@hdlctr. &@hd2ctr = &

.se curr&@hdlctr = &curr&dhdlctr + 1

to the end of the DSMHEAD2 APF. Each time we come through the DSMHEAD2 APF we'll
increment the &@hd2ctr symbol by one to get a unique number. Well use the
&PG&@hdlctr.&@hd2ctr symbol to represent the page number and use this symbol in the .SX
[Split Text] line. Then we'll set the &PG&@hd lctr.& @hd2ctr symbol to be the page number.
We have to set this symbol after we use it in order to get the unresolved symbol name into the
.SX [Split Text] text. If the heading shifts to a different page due to widow zone or keep process-
ing we would have picked up the wrong page number if we had set &PG&@hdlctr.&@hdlctr
before we used it. This way the .SX text will contain the symbol name whmh will resolve to the
correct value of & PG&@hdlctr.&@hd2ctr when we use the array.

There’s one more thing we need to do in the DSMHEAD2 APF. We need to keep track of how
many entries we’ve put into the array. When we come around for the second pass the array
elements will still exist but the element counter (0) will have been set back to zero for the second
pass. In order to dump out the array, we will need to reset element zero of the array, so we nced
to know how many elements we put into it. We'll use the &curr& @hdlctr symbol for this and
increment it each time we put something into the array.

The delimiters we've used in the .SX [Split Text] line are a problem. Slashes won’t work if there
happen to be any slashes in the text of the heading. Therefore, we really should use some ob-
scure hexadecimal number as the delimiters instead. For example hexadecimal 17,

.se *sx '.sx f &X'01l.&Qhead. &X'01. .&X'01.&PG&Ahdlctr. &@hd2ctr. . &X' 01.

This way we don’t need to worry about a character in the heading text being interpreted as a
delimiter on the .SX [Split Text] control word.

Producing the Partial Table of Contents

The next step is get the DSMHEAD1 APF to produce the table of contents. We'll need to for-
mat the heading for the table of contents. Let’s use highlight font 2 to do this. We need to add
the following lines to the DSMHEAD!1 APF right after the heading is generating with the .H1
[Head Level 1} control word:

.bf hi2

.sx /&LLQ@ToC. //&L1LGPage. /
.pf

. Sp

We didn’t leave any extra space at the top because there is already space after the heading. We
did leave a space after the table of contents heading, just to make it look nice.

Document Sections 69

The next step is to check if there are any entries in the array before we bother to dump it. The
&curr& @hdlctr symbol is used to count entries. If it doesn’t exist we want to set it to zero.

.if &E'&curr&@hdlctr eq 0 .se curr&@hdlctr = 0

Then, if it is zero, there is nothing to dump so we can skip to the end of the lines we are adding.

. 1f &curr&@hdlctr eq 0 .go next
If the value of &curr&@hdlctr is not zero, it means that there are entries to be formatted. We
will need to transfer the number of entries from &curr&@hdlctr to element zero of the array.

Again, since element zero of the array is cleared for the second pass we need to reconstruct it in
order to print the array.

. if &toc&@hdlctr. (0) eq 0 .se toc&@hdlctr.(0) = &curr&@hdlctr

The next step is to set the array separator to be a .BR [Break] control word and then dump the
array out.

.dc asep & a .
.'se a=";br;'
&toc&@hdlctr(®)

Since we are incrementing &curr& @hdlctr for each level 2 heading and since it maintams its
value from the first to the second pass we have to initialize it to zero after we have used it.

.se curr&dhdlctr = 0

The last step is to reset the &@hd2ctr symbol to zero to start numbering level two headings again
with 1 in the next chapter.

...next
.se @hd2ctr = 0

70 DCF: GML Starter Set Implementation Guide

The New Macros

The new DSMIHEAD1 APF looks like this after our modifications:

* DSMHEAD1: Tag = H1 Attr = 1D, STITLE Format level 1 heading. ¥
.* Advances to next/odd page. Headl's are numbered in the body if *
* either head level numbering is on or &2headl exists. *
* Reset any open lists, etc. *
R e o e e e e e e e e e e e e e B e B et S o
. dsmffrset H. -1

. dsmftdupl

.gs scan RQhead

L PREFIX HEADING WITH &B@headl, IF IT EXISTS #*

.if &E'&Bheadl eq 1 .gs hctr 1

.'th . 'se @head '&Gheadl &B@xref(1l).. &Bhead

LF SET &@shead FOR THE RUNNING FOOTING TO HEADING OR STITLE *
. 'se @shead '&@head

. gs exatt stitle as dsm@shd

.* CREATE THE HEADING, PROCESS THE ID AND DON'T INDENT 1ST PARAGRAPH *
. 'hl &@head

.%* TORMAT THE PARTIAL TABLE OF CONTENTS

.se @hdlctr = &Ghdlctr + 1

.bf hi2

.sx [&LL@ToC.//&LLEPage./

.pf

.Sp

.if &E'&curr&@hdlctr eq 0 .se curr&@hdlctr = 0

.1f &curr&@hdlctr eq 0 .go next

.if &toc&@hdlctr.(0) eq 0 .se toc&Bhdlctr.(0) = &curr&@hdictr

.dc asep & a .

.'sea=";.br;'
&toc&@hdletr. (%)

.dc asep

.se curr&@hdlctr = 0
.. .next

.se @hd2ctr = 0

.se @tg = h

.gs exatt id as dsm@ids
.aa p dsmparal

Document Sections 71

The héw DSMHEADZ APF looks like this after our modifications:

. DSMHEADZ Tag = H2 Attr = ID Formats level 2 headlng *
.* Resets any open lists, etc. *
-41‘-"‘ s'ds’ ~L |¢J Y h"" L-lr wlant ka-LsL.LJ..L.L;'.J‘* wte J_ L-L.L.L-LJ-J-J -'c;l ' 1 ~l L.LJ ' J .l‘ Ls\‘ .L-L.L.!‘ l ..L.LJ J L.L-?..L-LJ. L-L Y.J‘-k-'r nte .’4

.dsm#rset H. -2

. gs scan @head

.* CREATE THE LEVEL 2 HEADING, PROCESS THE ID & DON'T INDENT 1ST PARA *
s@rcl

. "h2 &@head

&@rc2

;se @tg =

.gs exatt 1d as dsm@ids

.aa p dsmpara2

.Se @hchtr = &@hchtr + 1

.se *w =',sx f §X'01.8@head.&X'01. .&X'01.&PG.&@hdlctr&@hd2ctr..&X'01.
.se toc&@hdlctr (&@hd2ctr.) '&*w

.se PG&@hdlctr.&@hd2ctr = &

.se curr&@hdlctr = &curr&@hdlctr + 1

Using SYSVAR ‘W’

The modifications outlined above will work except that no space will be reserved for the partial
table of contents on the first pass. This means that on the second pass when the table is format-
ted, subsequent text will shift. This will, potennally, make the page numbers that we have saved
for the headings wrong.

The solution suggested here is to save the table of contents information in the SYSVAR ‘W’ file
and use it on subscquent runs. It important that the TWOPASS option always be used so that
the information in the SYSVAR ‘W’ file will be correct. This way the table will be filled in with
information from the previous run on the first pass. This is a fairly good way to approximate the
size of the real table which will be formatted on the second pass.

This means adding the following lines to the end of the DSM#WRIT macro:

L w SAVE THE PARTIAL TABLE OF CONTENTS INFORMATION FOR EACH HEADING
e *head =
.outer

.Wwf .se curr&*head = &curr&¥head

.se *elem = 1

... inner

.wf .'se toc&%head. (&*elem.) = '&toc&*head. (&Felem.)

.se *elem = &*elem + 1

.if &*elem le &toc&*head.(0) .go inner

.se *head = &head + 1

.1f &%*head le &Qhdlctr .go outer

These lines loop through all of the level 1 headings (up to the current value of &@hdlctr) the

contents of the &curr&@hd letr symbol. It also loops through the elements of the table of con-
tents arrays writing out .SE [Set Symbol] control word lines to set each element of the array.

72 DCF: GML Starter Set Implementation Guide

We’ve made this modification for this chapter. The partial table of contents looks like this:

Table of Contents Page
OV IVIEW .+ v vt e e e et e et e e e e 57
Document Section Macros v ot vt ittt et et e e e 57
Modifications to Document SECtions oot i e e 62

That’s all there is to it!

Document Sections 73

Headings

Overview

The APFs that process the heading tags (DSMHEADO-DSMHEADS6) perform formatting func-
tions not available on the .DH [Define Head Level] control word and then invoke the appropriate
heading control word. These functions include such things as:

¢ Revision code placement relative to headings

e Setting symbols for text of running headings and footings

¢ Making sure no lists, figures, footnotes and so on are currently in progress
e Handling ID attributes for cross references.

The head level definitions, however, are sprinkled throughout the APFs and are frequently
changed based on what document section we are in. Cross-referencing for headings, as well as the
ID attribute processing, are discussed scparately in “Cross-References” on page 147.

Head Level Definition

The head level definitions originate in the defaults established within SCRIPT/VS itself. Some,
such as “DOT” are never overridden by the starter set. Others such as “FONT” and “TFONT”
which originally are set to the default font by SCRIPT/VS, are changed just once in DSMPROF3
during initialization. For page printers, various sizes and styles of fonts have been selected for the
different heading levels both in the body of the document and in the table of contents. These are
described in “Starter Set Initialization” on page 19 in Figure 6 on page 25. :HS and : H6 are not
listed in the table of contents. :H4 headings will be listed in the table of contents only in the
body of the document (marked with :BODY.)

Prefixing Level One Headings

Level 1 headings in the body of the document can be prefixed by activating a .SE [Set Symbol]
control word line that is in DSMPROF3.

.%.se @bodyheadl 'Chapter

This symbol, &@bodyheadl, when set will cause level 1 headings to be prefixed with the word
“Chapter” when a :BODY tag is used. In other words, to prefix level one headings you need to:

1. Set &@bodyhead] to the prefix
2. Use a:BODY tag.
These prefixed headings will automatically be numbered regardless of the value of &SYSVARH.

The level one headings in the appendix are automatically prefixed and numbered.

Headings 75

Numbering and prefixing is done through the following processing sequence:

e The &@bodyheadl symbol is set in the profile to the value of prefix (“Chapter” or “Part”
for example).

e The &@headl symbol is defined to be “off” by DSMPROF3.

e The DSMBODY APF transfers the value of &@bodyheadl to &@headl if &@bodyheadl
exists.

¢ The DSMHEADI1 APF will number the level one headings and build the heading text from
the prefix (& @head1), the number, and the residual text of the :I1 tag.

Prefixing is specifically turned off in the back matter and the front matter by the DSMBACKM
and DSMFRONT APFs. It is also always turned on and set to “Appendix” for the appendix
section by the DSMAPPD APF.

Head Level Numbering

Numbering of head levels may appear somewhat confusing at first glance at the APFs. Number-
ing can be requested by using the SYSVAR 'H’ option of the SCRIPT/VS command. However,
numbering is specifically turned off by most of the section tags (FRONTM, :BACKM, and
:APPENDIX).

For level one headings numbering is manipulated depending on whether or not the user has speci-
fied a prefix for these headings. (See “Prefixing Level One Headings” on page 75 for more details
on prefixing.) If a prefix has been given, numbering 1s handled externally in the DSMHEADI1
APF for level one headings. Otherwise, it is handled automatically by the .H1 [Head Level 1]
control word. Since level one headings in the appendix are prefixed with the word “Appendix,”
they are always numbered and the numbering is done by the DSMHEADI APF. Level 2
through 4 headings in the appendix are numbered only if &SYSVARH is “yes.” Level 5 and 6
headings are never numbered.

See Figure 13 on page 77 for details on where heading numbering is turned off and on.

Revision Codes for Headings

Revision code placement is controlled with the .RC [Revision Code] ADJUST control word.
The default location is two characters to the left of the column and this is used for one- and
two-column formats in the starter set. However, in offset style, the revision code location is
changed by the DSM#STYL macro to be approximately 15 characters to the left of the column
margin. This works fine for revision codes around text, however, it presents a problem for re-
vision codes around headings.

Level 0 through 4 headings in offset style cause a section break which formats them at the left
margin of the page. A revision code placed 15 characters to the left of the heading falls off the
page. This is allowed to happen for level zero and level one headings.? For level two through
four headings, the heading APFs adjust the revision code location to be relative to the heading
just before issuing the heading control word. After the control word is processed, the revision
code location is adjusted back to be relative to the column text again.

These adjustments are accomplished by, setting up two symbols, &@rcl and &@rc2, whose value
depends on the column layout. These are defined in the DSM#STYL macro. For one- and
two-column format, the &@rcl and &@rc2 symbols are both null, in which case they do noth-

25 Since heading levels zero and one are sometimes right aligned, the revision code is not adjusted to ap-
pear as with heading levels two through four. This is done simply for aesthetic reasons because the
revisions would look odd on the left when the heading was right aligned.

76 DCF: GML Starter Set Implementation Guide

DSM#tSTYL Macro

one-column if duplexing, level 0 is aligned outside
& two-column if not duplexing, level 1 is aligned outside

offset - levels 2 - 4 cause section breaks (SECT)
- levels 0 and 1 is left aligned

DSMFRONT Macro

level 0-4 - do not appear in the table of contents (NTC)
level 1-4 - are not numbered (NONUM)

DSMBODY Macro
level 0-4 - do appear in the table of contents (TC)
level 1 - are numbered (NUM) if not prefixing

and &SYSVARH = yes
- are not numbered (NONUM) if not prefixing
or &SYSVARH = no
level 2-4 - are numbered (NUM) only if &SYSVARH = yes
otherwise they are not numbered (NONUM)

DSMBACKM Macro
level 0 - 4 - do appear in the table of contents (TC)
level 1 ~ 4 - are not numbered (NONUM)

DSMAPPD Macro
level 0 - 4 do appear in the table of contents (TC)
level 1 - are not numbered (NONUM)##¥
level 2 - 4 are numbered (NUM) only if &SYSVARH = yes

Figure 13. Heading Definitions: This figure lists all the macros that change the heading definitions
using the .DH [Define Head Level] control word and details what changes are made in
each case. The primary definitions for headings are given in DSMPROF 3, which is not
listed here. Additional heading formatiing is controlled by the default settings for
headings in SCRIPT/VS.

*** Note, when head level ones are prefixed, numbering is done by the DSMHEAD]1
APF instead of by SCRIPT/VS so the NONUM option is specified even though the
headings are numbered.

ing. For offset style, these two symbols have a value of “.RC ADJUST” and “.RC ADJUST n,”

6.9

where “n” is approximately 15.

Heading Macros

The document seétion macros and profile descn'bed below perform processing which alters the
formatting of the headings. The APFs for the heading tags and attributes are also described be-
low. #np.

DSMPROF3

DSMPROF3 initializes the heading definitions and some symbols which control heading process-
ing. DSMPROF?3 performs the following processing relevant to headings:

Headings 77

1. Decfines all the fonts for all output devices to be used for headings and for table of contents
entries. See Figure 6 on page 25 for details on what these font definitions are.

2. Sets the &@headl symbol to “off.” This symbol is the prefix for level one headings. A
:BODY tag is required in order to activate the prefixing of level one headings. The
:APPENDIX tag also uses this symbol to get each level one heading labelled “Appendix.”

3. Defines several symbols which are used as the valtues of the SKBF, SPBF and SPAF param-
eters on the .DH [Define Head Level] control words. These are defined initially with the
values for line devices and then are redefined for the page printers.

The symbols and values for skips and spaces around the headings are shown in the table
below:
Symbol Line Page
Name Devices Devices Description
@hspbf 0 1.31 SPBF headings 0-1
@h0sp 5 pl4 SPAF heading 0
@hlsp 3 pl4 SPAF heading 1
@h2sk 3 p20 SKBF heading 2
@h2sp 2 pll SPAF heading 2
@h3sk 3 pl8 SKBF heading 3
@h3sp 2 pll SPAF heading 3
@hdsk 3 pl4 SKBF heading 4
@hdsp 2 pll SPAF heading 4
Figure 14. Spacing Symbol Definitions for Headings

4. Defines level 0 and 1 headings to be left aligned. These headings will be changed to be out-
side aligned if duplexing is in effect (&SYSVARD is “yes”) and the column layout style is
one- or two-column. All other headings are left aligned.

5. Performs several actions, if heading numbers have been requested with SYSVAR "H’. Head
levels one through four are defined to be numbered. The heading counter is set to the value
of &SYSVARH.

6. Defines all headings not to be underscored or uppercase. However, because a heading font is
associated with each heading, underscoring and uppercasing may occur as a result of the font
specification rather than the head level definition. See Figure 13 on page 77 for heading defi-
nitions. See Figure 6 on page 25 for font definitions.

7. All headings are also defined to not be hyphenated using the NOHY parameter on the .DH
[Define Head Level] control word.

DSM#STYL

The DSM#STYL macro resets some of the heading definitions according to formatting style (one-
or two- column). The DSM#STYL macro performs the following processing relevant to

headings:

1. Defines head levels two through four to cause a section break for offset style. Heading level
zero 1s outside aligned for one and two column formats if duplexing is active.

2. Sets the &@rcl and &@rc2 symbols to null for one- and two-column layouts. These sym-
bols are set to “.RC ADJUST” and “.RC ADJUST n” for offset style. See “Revision Codes
for Headings” on page 76 for more details.

78 DCF: GML Starter Set Implementation Guide

DSMAPPD

The DSMAPPD APF resets some of the heading definitions as part of starting the appendix sec-
tion of the document.

The DSMAPPD APF performs the following processing for headings:

1. Sets the &@headl symbol to &LL@Appdx, which is “APPENDIX,” to cause level one
headings in the appendix to be prefixed with the word “APPENDIX.” See “Prefixing Level
One Headings” on page 75 for more an overview of prefixing headings.

2. See Figure 13 on page 77 for changes made to heading definitions.

DSMBACKM

The DSMBACKM APF resets some of the heading definitions as part of starting the back matter
section of the document. The DSMBACKM APF performs the following processing relevant to
headings:

1. Sets the &@headl symbol off to clear any level one heading prefixes that might have existed.
Level 1 headings may be prefixed only in the body and the appendix. See “Prefixing Level
One Headings” on page 75 for an overview of prefixing headings.

2. See Figure 13 on page 77 for changes made to heading definitions.

DSMBODY

The DSMBODY APF resets some of the heading definitions as part of starting the body section
of the document. The DSMBODY APF performs the following processing relevant to headings:

1. Sets the symbol &@hcadl to the value of &@bodyheadl. The &@bodyheadl may have
been set in the profile to provide a prefix for level one headings in the body. If the
&@headl symbol is not null, the DSMHEAD1 APF will prefix its value to the heading text
and number the headings even if numbering is not on. See “Prefixing Level One Headings”
on page 75 for an overview of prefixing headings.

2. Resets level one headings to not be numbered if the & @headl symbol exists. This is be-
cause the numbering is handled by the DSMHEAD1 APF for level one headings if a prefix
exists.

3. Resets level two to four headings to be numbered if numbering is on (&SYSVARH =
“yes™). This is necessary because if there was a :FRONTM tag, the headings are defined to
not be numbered. If head level numbering has been requested with SYSVAR ', only
headings in the body are numbered.?

4. See Figure 13 on page 77 for changes made to the heading definitions.

DSMFRONT

The DSMFRONT APF resets some of the heading definitions as part of starting the front matter
section of the document. The DSMFRONT APF performs the following processing relevant to
headings:

2% Head level ones in the appendix are also numbered because they are prefixed with the word
“Appendix.”

Headings 79

1. Sets the &@headl symbol off to clear any level one heading prefixes that might have existed.
Level 1 headings may be prefixed only in the body and the appendix.

2. See Figure 13 on page 77 for changes made to heading definitions.

DSMHEADO

The :HO tag is processed by the DSMHEADO APF which formats level zero headings in the fol-
lowing manner:

1.

Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellancous™ on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

3. Gets the residual text into the &@head symbol.

4. Puts the text of the heading into the & @shead symbol which is used in the running footing.

5. Processes the STITLE attribute with the DSM@SHD macro. If STITLE was specified, its
value becomes the value of & @shead. This will change the text that is formatted in the
running footing.

6. Uses the .HO [Head Level 0] control word to format the heading. The control word modifier

© is used here because we have no way of determining which characters might be in the text of
the heading.

7. Sets the &@tg symbol to “h” to indicate to the DSM@IDS macro that a heading id is being
processed and then calls DSM@IDS to process the ID attribute if the ID attribute is speci-
fied.

8. Remaps the :P tag to the DSMPARA1 APF. This permits special processing for the first
paragraph following a level zero heading. See “Paragraphs” on page 87 for more details
about paragraph formatiing.

DSMHEAD1

The :H1 tag is processed by the DSMHEAD1 APF which formats level one headings in the fol-
lowing manner:

1.

80

Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

Gets the residual text into the &@head symbol.

Tests the existcnce of the &@head!l symbol. It will exist if there is a prefix for level one
headings. It is set either in the DSMBODY APF if the &@bodyheadl symbol has been
defined or in the DSMAPPD APF. The &@bodyheadl symbol may have been defined in
DSMPROF3 and is a prefix for level one headings.

If &@headl exists, the heading number is incremented by 1 and the numbering of level one
headings is handled here. Otherwise, numbering is handled automatically by the .H1 [Head
Level 1] control word. The &@head symbol is reset to contain the prefix, the number and
the heading text.

Puts the text of the heading into &@shead for use m the running footing, just in case no
short title (STITLE) attribute was specified.

DCF: GML Starter Set Implementation Guide

6. Calls the DSM@SHD macro to save the short title in &@shead. if a short title (STITLE)
attribute was specified. This will change the text of the running footing.

7. Uses the .HI [Head Level 1] control word to process the heading. The control word modi-
fier is used here because we have no way of determining which characters might be in the
text of the heading.

8. Sets the &@tg symbol to “h” to indicate to DSM@]IDS that a heading id is being processed
and then calls DSM@IDS to process the ID attribute if the ID attribute is specified.

9. Remaps the :P tag to the DSMPARAL APF. This permits special processing for the first
paragraph following a level one heading. See “Paragraphs” on page 87 for more details
about paragraph formatting.

DSM@SHD

The DSM@SHD macro processes the STITLE attribute. All it does is save the attribute value in
the & @shead symbol which is used in the running footing.

DSMHEAD?2

The :H2 tag is processed by the DSMHEAD2 APF which formats level two headings in the fol-
lowing manner:

L.

Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

Gets the residual text in the &@head symbol.

Adjusts the location of the revision code. If offset style is being used, &@rcl will be .RC
ADJUST otherwise it has a null value which does nothing. See “Revision Codes for
Headings” on page 76 for a full explanation of revision code adjustment around headings.

Uses the .H2 [Head Level 2] control word to process the heading text that is in &@head.
The control word modifier 1s used here because we have no way of determining which char-
acters might be in the text of the heading.

Adjusts the revision code back to be placed relative to the column text. In number 3. above
we had moved the revision code to be relative to the heading text for offset style. Now we
are moving it back to be relative to the text. In offset style the &@rc2 symbol has a value of
.RC ADJUST n where n is approximately 15. For one- and two-column style, &@rc2 is
null.

Sets the &@tg symbol to “h” to indicate to DSM@IDS that a heading id is being processed
and then calls DSM@IDS to process the ID attribute if the ID attribute is specified.

Remaps the :P tag to the DSMPARA2 APF. This permits special processing for the first
paragraph following a level 2 heading. See “Paragraphs” on page 87 for more details about
paragraph formatting.

DSMHEAD3

The :H3 tag is processed by the DSMHEAD3 APF. The processing in this macro is exactly the
same as in the DSMHEAD2 APF except that the .H3 [Head Level 3] control word is used to
format the heading instead of the .H2 [Head Level 2] control word.

Headings 81

DSMHEAD4

The :H4 tag is processed by the DSMHEAD4 APF. The processing in this macro is exactly the
same as in the DSMHEAD2 APF except that the .H4 [Head Level 4] control word is used to
format the heading instead of the .H2 [Head Level 2] control word.

DSMHEADS

The :H5 tag is processed by the DSMHEADS APF which formats level five headings. These
headings are in-line with the text that follows and are produced with the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

2. Gets the residual text into the &@head symbol.

3. Uses the .HS5 [Head Level 5] control word to process the heading. The control word modi-
fier is used here because we have no way of determining which characters might be in the
text of the heading,

4. Sets the &@tg symbol to “h” to indicate to DSM@IDS that a heading id is being process
and then calls DSM@IDS to process the ID attribute if the ID attribute is specified.

5. Sets the &@hSline symbol to the page number followed by a slash, followed by the line
counter value. This symbol will be used in the paragraph APF to determine if any text has
been processed between the :HS tag and the next :P tag. Whether or not the :H5 is followed
immediately with a :P tag is significant because the :P tag will supply an ending colon to the
heading text only if there is no intervening text between the two tags.

6. Saves the heading level number (5) in the & @para5@fnt symbol. This symbols will be used
in the DSMPARAS APF to restart the appropriate font. See “DSMPARAS” on page 89 for
how and why this is necessary.

7. Remaps the :P tag to the DSMPARAS APF. This permits special processing for the first
paragraph following a level five heading. See “Paragraphs” on page 87 for more details about
paragraph formatting.

DSMHEADG6

The :H6 tag is processed by the DSMHEAD6 APF which formats level six headings. These
headings are in-line with the text that follows.

The processing in this macro is exactly the same as in the DSMHEADS APF except that the .H6
[Head Level 6] control word is used to format the heading instead of the .HS [Head Level 5] con-
trol word and the &@paraS@int symbol is set to “6” instead of “5.”

Modifications to Headings

Many things regarding headings can be modified simply by changing the heading definition (.DH
[Define Head Level]). Since there are several sets of heading definition control words in the
starter set macros, you will need to be careful as to where you change the definition. Figure 13
on page 77 shows which macros contain the .DH [Define Head Level] control words and what
changes are made in each case. For example, to manipulate the numbering of headings you need
to consider the fact that the NUM/NONUM parameters are reset in DSMPROF3, the
DSMFRONT APFE, the DSMBODY APF, the DSMBACKM APF and the DSMAPPD APF.
Depending on the nature of the change you want to make, you might have to modify the defi-
nitions in several places.

82 DCF: GML Starter Set Implementation Guide

Capturing Heading Numbers

The numbers that are used for headings are generated by SCRIPT/VS. These numbers can be
obtained from the &@xref symbol array for use in running headings and footings. &@xref is a
symbol array where the first element of the array contains the number that was used for the last
level one heading.?” The second element of the array contains the number of the last level two
headings and so on.

Heading numbers are included in the text of the running footing only if headings are also being
prefixed. However, suppose that you wanted to always include the heading number in the run-
ning footing even when level one headings aren’t being prefixed. This requires capturing the
number as well as the text of the heading.

When headings are being prefixed (the &@headl symbol contains the prefix), they are numbered
by the DSMHEADI number rather than by SCRIPT/VS.

.if &E'&@headl eq 1 .gs hctr 1
.'th . 'se @head '&Rheadl &@xref(1l).. &2head

The DSMHEAD1 APF puts the text of the heading into the & @shead symbol. The lines below
show how this is done:

. 'se @shead '&@head

The prefix, the number and the text of the headings are all put into the &@shead symbol and will
show up in the running footing.

Since the &@xref symbol is not normally incremecnted until after the heading has been produced
with the .H1 [Head Level 1} control word, we need to capture the number after the heading.
However, the .H1 [Head Level 1] control word starts the page which causes the running footing
to be formatted. Therefore, in order to get the heading number into the footing we need to both
capture the number and reformat the running footing. The number can be captured in the same
manner that is shown above when prefixing is being done by adding the following lines to the
DSMHEADI1 APF:

. 'hl &@head

.if &E'&@headl eq 0 .an &SYSVARH ne no
."th .'se @shead '&@xref(1).. &@shead
.th .rf execute

We check first that prefixing is not being done, because if it is we don't need to do anything
because the running footing will already contain the number. We use just the first element of the
& @xref array because we want only the level one heading number to show up in the footing.

An even simpler method of accomplishing the same task can be done by forcing the headings to
be numbered by the DSMHEAD! APF. When prefixing is in effect (that is, the & @bodyheadl
symbol exists) headings are numbered by DSMHEADI instead of by SCRIPT/VS. The prefix,
the number and the text of the heading are included in the running footing.

By setting the &@bodyheadl symbol to null (or to some value) the numbering is done by
DSMHEADI rather than SCRIPT/VS.

.se @bodyheadl = "'

27 The one exception to this is that the &@xref array is initialized to “1.0” and therefore is not incre-
mented for the very first level one heading in the document. Up to when the first level one heading is
encountered the first element of the array indicates a “1.” Thereafter it represents the number for the
last level one heading.

Headings 83

This line can be put into the profile or into one of the initialization macros. No other modifica-
tions are required if this technique is used to capture the heading number in the running footing.

Changing Heading Fonts

The fonts for the headings and for the table of contents entries are all defined in DSMPROF3.
There are several sets of font definitions—one for each logical device and the number of the fonts
available. Simply changing the font definitions will change the fonts that are used.

Folio by Chapter

For some documents it may be desirable to number the pages in each chapter independently. For
example, the pages in the first chapter of the document would be numbered starting with 1-1 and
the pages in chapter two would be numbered 2-1, and so on. The first number in the page num-
ber would be the level one heading number. This means that level one headings have to be num-
bered.

Depending on the application that this modification is to be used for, it might be desirable to
incorporate this function into a SYSVAR such that users could select page numbering by chapter
on the SCRIPT command. Since headings also need to be numbered we could incorporate the
page numbering option with the heading number option and use a value of “pnum” for SYSVAR
‘H’ to indicate both. Then all we need to do is modify the lines in DSM#SETV that process
SYSVAR 'H’. These are:

.if &E'&SYSVARH eq 0 .se SYSVARH = no
.se *a = index '-NO--YES-NUMBER-' '-&U'&SYSVARH.'
.if &*a ne O .se SYSVARH = substr 'no 1.0 1.0' &%*a 3

We need to change this to:

.if &E'&SYSVARH eq 0 .se SYSVARH = no

.se @pnum = no

.if &U'&SYSVARH eq PNUM .se @pnum = yes

.th .se SYSVARH = num

.se *a = index '-NO--YES-NUMBER-' '-&U'&SYSVARH.'

.if &%a ne 0 .se SYSVARH = substr 'mo 1.0 1.0' &%a 3

The second line initializes the &@pnum symbol to “no.” The next line tests if SYSVAR "H’ is
“pnum” and if so saves that fact in the &@pnum symbol. Then SYSVAR “H’ is changed to be
“num.”

The second part of the problem is to change the page numbering. The simplest way to do this is
to set the &@bodyhcadl symbol in DSMPROF3 so that it will exist. This will cause the

headings to be numbered by the DSMHEAD1 APF. The number can be picked up from the
& @xef(1) symbol and used to set the page number.

.gs exatt stitle as dsm@shd
.if &@pnum eq yes .pn pref &@xref(l).-
.th .pn 1

These lines should be put into the DSMHEAD!1 APF.

Putting Level 2 Headings in the Running Footing

The text of the document title and the last head 0 or head 1 are usually reflected in the running
footing of a gencral document. For specific document types you might need to change this to

84 DCF: GML Starter Set Implementation Guide

make the running footing reflect the last head 2. If so, the relationship between the level one
headings and the level 2 headings needs to be carcfully considered. If the current page has been
started by a head 1, we won't want to change the running footing to reflect a head 2. Only the
first head 2 on a page should affect the running footing, but subsequent head 2’s should be re-
membered and used for the running footing on the next page if there is no intervening head 1.

We are going to have to modify the DSMHEAD1 APF, the DSMHEAD2 APF, and the running
footing definition in the profile. We will need to set up several flags to remember the occurrence
of a head 1 and a head 2.

The running footing will need to know whether it was caused by a head 1 or not. Therefore we
will modify the DSMHEADI1 APF to set a flag just before the .H1 control word and then reset it
afterwards.

.se @hl@flag 'on
'hl ...
.se @hl@flag 'off

The DSMHEAD?2 APF will need to know whether or not the current page was started by a level
one heading. We have the running footing preserve this information in another symbol. We also
need the running footing to reset a flag so the DSMHEAD2 APF can tell if it’s already changed
the footing for the current page. We add the following lines to the running footing definition in
the profile:

.se @hlstart '&@hl@flag
.se @h2flag 'off

The DSMHEAD2 APF also necds to be changed. It will always change the value of the
& @shead symbol which is the symbol used in the running footing. If the current page wasn’t
started by a head 1 and this is the first head 2 on the page, we will want to re-execute the running
footing to change its contents for the current page. If the page was started by a head 1 or there
has already been a head 2 placed on the page, we won’t change the running footing for this page.
We need to add the following lines to the DSMHEAD2 APF right after the “&@rc2” line: :

&drc2.

.se @shead '&@head

.if &@h2flag eq off .an &Q@hlstart eq off .rf execute
.th .se @h2flag 'on

.se @tg =h

First we reset the symbol used in the footing to be the text of the head 2. The next step is to
decide if we should re-execute the footing. If the & @h]Istart symbol is “off” it means that this
page wasn'’t started by a head 1. If the &@h2flag is “off”” it means we haven't reset the footing
already for this page. Then we change the footing, if the symbol values indicated that it should be
changed. Next, we set the &@h2flag to “on” so that that the next time we come into this macro
we know that we’ve already changed the footing for this page. When the footing for the next
page is processed, the & @shead symbol contains the value of the last head 2 and the &@h2flag
will be set to “off”’ again and we’ll be free to change the footing in the DSMHEAD?2 APF.

Formatting Special Characters in Headings

The GML headings tags (and the SCRIPT/VS heading control words) use only a single line of
text. This presents problems when you need to include a special character from another font in
the text of the heading. For example, suppose you need to include an APL character or a Pi
character in your heading. You will need to change fonts, format the special character and restore
the previous font. Since the heading must be a single line of text, you can’t do this straight
forwardly with control words.

Headings 85

However, the .DV [Define Variable] control word provides a simple way to accomplish this.
With .DV you can define a variable to be a particular hexadecimal codepoint or string of text in a
particular font. The defined variable is then used very much like a symbol is used—with an am-
persand in front of the name and a period after the name.

For example, you can define a Pi character as a defined variable, as follows for the 4250 printef:

.df pifont type('pi font sans serif' 12) codepage aftc0363
.dv pi font pifont /&x'cé

or as follows for the 3800 Printing Subsystem Model 3:

.df pifont type('pi sans serif' 12) codepage tlgpi363
.dv pi font pifont /&x'cé

Then you can use &pi in the text of your heading.
:hl. The Character &pi
This same technique can be expanded to simply provide highlighted text within a heading:
.dv hdltext font hil /word

Then you can use &hdltext in the text of your heading to include “word” in highlight level 1.

Defined variables such as these can be used in the text for any GML tag. It is particularly useful
for those tags which take only a single line of text—such as definition terms (:DT) and titles
(:TITLE).

86 DCF: GML Starter Set Implementation Guide

Paragraphs

Overview

There are four different paragraph APFs in the starter set. The reason for this is that different
styles of paragraphs are wanted after headings. DSMPARA is the basic paragraph APF that han-
dles all paragraphs that do not directly follow a heading tag (:HO - :H6). The :P tag is mapped 1o
the DSMPARA APF in DSMPROF3.

The basic difference between the various paragraph APFs is the presence or absence of skips and
indents. The basic assumption is that the first paragraph after a heading should not be indented.
After an inline heading (level five and six headings), we want neither a skip nor an indent.

Because no paragraphs are indented in the starter set, you might wonder why we are concerned
about indenting or not indenting. The symbol that controls the amount of indention for para-
graphs is &@in@p and it is set to 0 in DSMPROF3. It is not difficult to change the amount of
indention for paragraphs and we expect that you might want to do so. Therefore, we set up the
macros to handle the indention, regardless of the fact that we’ve got it set to zero.

We could have incorporated all the paragraph variables into one APF that would test various
symbols set by the heading macros. The main problem with that approach is that all paragraphs
would then have to go through an elaborate series of tests and that would unnecessarily degrade
performance. Remapping the :P tag after the headings to a different APF is much faster. The
sequence of remapping the :P tag is described below and is illustrated in Figure 15 on page 88.

Paragraph Initialization

DSMPROF3
The profile, DSMPROF3, establishes the basic mapping for the :P tag to the DSMPARA APF.
It also defines the amount of indention (& @in@p) for paragraphs and the amount of space to be

skipped before the paragraph (&@sk@p). The indention is set to zero and the skip to .75. This
is rounded up to 1 line for line devices.

DSMABSTR and DSMPREF

The DSMABSTR and DSMPREF APFs remap the :P tag to the DSMPARA1 APF. This is
done because these macros also generate a level one heading and all paragraphs following level
one headings are processed with the DSMPARA1 APF. :#np.

DSMHEADO and DSMHEAD1

The DSMHEADO and the DSMHEAD1 APFs remap the :P tag to the DSMPARA1 APF.

Paragraphs 87

DSMPROF3
DSMPARA1 —> P —> DSMPARA
DSMPARA2
DSMPARAS

DSMHEADO —> P —> DSMPARA1
DSMHEAD1
DSMABSTR
DSMPREF

DSMHEAD2
DSMHEAD3 —> P —> DSMPARA2
DSMHEAD4

DSMHEADS —> P —> DSMPARAS
DSMHEAD6

Figure 15. How Paragraph Tags are Mapped

DSMHEAD2, DSMHEAD3 and DSMHEAD4

The DSMHEAD2, DSMHEAD3 and DSMHEAD4 APFs remap the :P tag to the DSMPARA?2
APFE.

DSMHEADS and DSMHEADG6

The DSMHEADS and DSMHEADG6 APFs remap the :P tag to the DSMPARAS APF.

These APFs also define a symbol, &@hSline, that is set to the page number, &$PN, followed by
a slash followed by the line number counter, &$L.C. This records, roughly, where we are on the
page when the level five or six heading is processed. &$PN resolves to the current page number
and &$LC resolves to the number of lines left on the page. These two together roughly mark the
spot on the page.

The &@hS5line symbol is used in the DSMPARAS APF to determine if there was any text be-
tween the heading and the next paragraph tag. If any text is processed in between the :H5 or :H6
tag and the next paragraph, one of these symbol values will probably have changed. We need to
know this because we need to know whether to generate the colon with the :P tag. If the :P tag
isn't directly after the heading, we don’t want a colon.

88 DCF: GML Starter Set Implementation Guide

Paragraph Processing

DSMPARA

Most paragraphs in a document are processed by the DSMPARA APF. The :P tag is mapped to
DSMPARA mitially by DSMPROF3. The DSMPARA APF performs the following processing:

1. Skips according to &@sk@p (set in DSMPROFE3 to 1).

2. Indents the first line of the paragraph according to + & @in@p (set in DSMPROF3 to 0).
This is an incremental indention over and above any indention currently in process. It is
incremental because we want paragraphs to work in list items, long quotes, and all elements
that cause indention.

DSMPARA1 and DSMPARA2

In the starter set, there is no difference at all between the DSMPARA1 APF and the
DSMPARA2 APF. There are two different APFs in order to facilitate making a difference be-
tween paragraphs following the different types of headings. As we’ll see in “Modifications to
Paragraphs” on page 90 below, this makes it easy to change the handling of the paragraph follow-
ing the level zero and one headings without disturbing paragraphs after other headings.

The first paragraph after a level zero or one heading (:HO or :H1 tag or document section tag,
such as :ABSTRACT or :PREFACE) is processed by the DSMPARA1 APF. The :P tag is
remapped to DSMPARAT1 when a :HO or :H1 heading is processed.

The DSMPARA2 APF is used to process the first paragraph after level two through four
headings (:H2, :H3 and :H4 tags). The :P tag is remapped to DSMPARA2 when a :H2-4 heading
is processed.

The DSMPARA1L and DSMPARA2 APFs perform the following processing:
1. Skips &@sk@p (set to 1 by DSMPROF3).
2. Does not indent (making it different from DSMPARA)

3. Remaps the :P tag to DSMPARA because after the first paragraph following a heading, we’ll
want normal style paragraphs.

DSMPARAS

Paragraphs that follow level five and six headings (:HS5 and :H6 tags) are processed by the
DSMPARAS APF. The primary purpose of this APF is to append a colon to the heading and
process the paragraph without any skips or indents.

The DSMPARAS APF performs the following functions:

1. The colon that follows the heading needs to be formatted in the same font as the heading.
Since both level six and level five headings are following by paragraphs produced by the
DSMPARAS APF, we nceded some way of telling which font to start—the “hd5” font or the
“hd6” font. The DSMHEADS and DSMHEAD6 APFs save the appropriate font number
in a symbol named & @para5@fnt, which when combined with “hd” yields the proper .BF
[Begin Font] control word:

.bf hd&@para5@fnt
.bf hd5 or .bf hdé

2. The page number (&$PN), followed by a slash, followed by the line count (&$LC) is com-
pared to the &@hSline symbol that was saved in the DSMHEADS or DSMHEADS6 APF.

Paragraphs 89

If text has been processed between the heading and the paragraph tag, the values of these two
symbols (&$PN and &$LC) will probably not be the same as they were when they were
saved in the &@hSline symbol. This doesn’t always work, because the line count value
(&$LC) is not always incremented directly after processing the text. However, we need some
way tg tell if the :P tag directly followed the heading, and this is the best approximation
available.

3. If there has been no intervening text:
The correct font is started.

b. A colon is appended to the text of the heading, using the .CT [Continued Text] control
word.

c. The previous font is restored.

4. If there has been intervening text, DSMPARA is called to finish processing the paragraph. If
text or other tags have been put between the heading and the paragraph tag, this indicates a
regular style paragraph—it no longer follows a heading. It is processed with the normal para-
graph APF, DSMPARA.

5. In cither case, the :P tag is remapped to the DSMPARA APF.

DSMPCONT

The DSMPCONT APF processes the :PC tag. A paragraph continuation occurs when a para-
graph is interrupted by an example (:XMP) or a figure (:FIG) and it is formatted by doing a skip
(&@sk@p) but not an indent.

Modifications to Paragraphs

Changing Indention and Spacing

The amount of indention for the first line of a paragraph and the amount of skip before it are
controlled by two symbols that are set in DSMPROF3—-&@in@p controls the indention and
&@sk@p controls the amount of space skipped. The original settings are 0 and .75 respectively.
To change these values all you need to do is change their settings in DSMPROF3.

Using Large Initial Capitals

Creating large display initials at the beginning of a paragraph involves using a large font for the
first letter of a paragraph. This is possible only on page printers, of course. First we need to
decide when to use it because we probably wouldn’t want every paragraph to have a display ini-
tial,

Let’s suppose that we are going to make only the paragraphs that directly follow a level zero or
one heading have large initial capitals. That means that all we have to do is alter the
DSMPARAL APF to do the job and we’re done. Suppose, furthermore that we are going to let
the user control whether he wants large initial caps or not by using a new SYSVAR on the
SCRIPT command.

Isolating the First Letter: First, let’s modify the DSMPARA1 APF to create the initial capital
letter. If we are not formatting for a page printer (SYSOUT is not PAGE), then we can end the
macro because there is no way to produce a large initial cap on a line printer. If we can create
the large initial caps, we start with a keep that should encompass the large initial capital, plus
some text. Next, we get the residual text into a local symbol so that we can pick the first charac-
ter out of it. Then we turn off symbol substitution so that we can use the SUBSTR function of
SE [Set Symbol] without worrying about whether there are blanks in the residual text line. Then

90 DCF: GML Starter Set Implementation Guide

we split the line into two separate symbols. The first symbol will contain the uppercase letter we
are going to put in the large font and the other symbol will contain the rest of the line.

. sk &@sk@p

.aa p dsmpara

.if SYSOUT ne PAGE .me

kp 1.2i

.gs scan *line

.su off

.se %*cap = substr &*line. 1 1
.se *cap = &U'&%cap

.se *rest = substr &*line. 2

Notice that we didn't specify the length parameter on the second substring function. This param-
eter defaults to the rest of the line if it isnt specified, and that’s what we want.

Calculating the Baseline Shift: The next step is to figure out how much we need to drop the
baseline to get the top of the large capital letter to line up with the rest of the line. Let’s look at
some dimensions that we have available and figure out how much we need to shift down.

A /\ /\ A
/\ /A
/ \ / \ height of the
/ \ / \ letter in the
/ \ [\ normal font
height / \ / \
of the / \ / \ 'V
letter / \ baseline
in the / \ A
large / \
font / \ amount we need
-/ -\ to shift down
/ A\
v/ \
v
< >
width of the letter in the
large font
Figure 16. Formatting Large Initial Capitals for Paragraphs

From Figure 16 you can see that the amount we want to shift down is the difference between the
height of the capital and the height of the rest of the letters on the line. To get the height of a
letter we can use the &DV symbol attribute and the “mv” space unit notation. We can’t simply
use the line spacing of the font because we don’t want to take into account any white space on
the top of the letters. The em-height (mv) space notation returns the actual height of the charac-
ters in the current font.

Paragraphs 91

The font we are using at the moment we do the calculation is important. We will need to use a
new font to format the capital and to calculate its height, but we must first calculate the height of
the rest of the line before we change fonts.

.se *basehgt = &DV'1lmv

.bf large

.se *shift = &V'lmv - &*basehgt
.sSu on

.sb -&*shift.dv

We've calculated the height of the letter in the normal font (&*baschgt), started the “large” font
and calculated the difference between the current height of the letter (in the large font) and the
height of the letter in the normal font. Then we use this value (&*shift) to shift the baseline
down using the .SB [Shift Baseline] control word.

Calculating the Indention: Now we need to figure out how much to indent the lines after the first
one. From Figure 16 on page 91 we can see that the amount the second line is indented is the
width of the capital letter. We can set up a delayed indent using the &W’ symbol attribute and
the AFTER parameter on the .IN [Indent} control word to avoid indenting the first line. We can
avoid indenting the first line by delaying the indent for a little—one device unit (1dv) will do just
fine.

We don’t want to indent for the rest of the paragraph, so we need to know how many lines will
need to be indented. We don’t know that, but we do know how much vertical space they
take—the same amount that we shifted down and that’s how long the indention should last.

Then we can set the indent:
.in +&DH'&W'&*cap..dh for &*shift.dv after 1dv
Now we need to format the capital.
&*cap
Then we:
1. Reset the baseline to what it was

2. Return to the original font
3. Complete the rest of the line, forcing continuation with the initial capital.
.sb +&*shift.dv

.pf
.ct &*rest

92 DCF: GML Starter Set Implementation Guide

The New DSMPARAI Macro: Here’s what the DSMPARA1 APF looks like when we are
through:

. sk &@sk@p

.aa p dsmpara

.if SYSOUT ne PAGE .me

kp 1.2i

.gs scan *line

.su off

.se *cap = substr &*line. 1 1
.se *cap = &U'&¥*cap

.se *rest = substr &*line. 2

.se *basehgt = &DV'lmv

.bf large

.se *shift = &DV'Imv - &*basehgt
.su on

.sb =&*shift.dv

.in &DH'&W'&*cap..dh for &*shift.dv after 1ldv
&*cap

.sb +&*shift.dv

.pf

.ct &*rest

Now, how do we handle the selectable portion of the problem? We want to do this fancy stuff
only when the user requests it with a SYSVAR. First, let’s make up a SYSVAR—“I"—for initial.

The lines we just added to the macro only apply if &SYSVARI is “yes.” f &SYSVARI isnt
“yes,” we just exit the APF.

. sk &@sk@p
.aa p dsmpara
.if &SYSVARI ne yes .me

That’s all we need to do to our new DSMPARA1 APF. Two more things remain to be done.
First, we must define the font named “large” that we have used in the new DSMPARA1 APF.
The font definition,

.df large type(24)

defined a 24 point font named “large.” Put this .DF [Define Font] control word in the profile.

The last step is to process the &SYSVARI value given on the command to make sure that
“YES” and “Yes” and “yes” all end up with &SYSVARI sct to “yes,” because that is what we
are testing for. We also need to establish the default value of &SYSVARI as “no.” This process-
ing needs to be done in the DSM#SETV macro:

.se *a = index '-YES-NO-' '-&U'&SYSVARI.'
.if &*a eq 0 .se *a =5
.se SYSVARI = substr 'yes no ' &%a 3

See “Validating Keywords” on page 13 for a detailed explanation of the technique used here.

Paragraphs 93

Creating Numbered Paragraphs

Paragraphs are not numbered in a general document. However, suppose we need to create a doc-
ument that contains numbered paragraphs that look like this:

1.01 Notice that the text of the

paragraph is indented for a
single line following the paragraph
number,

In order to create something like this, we have to make a few assumptions:
1. The paragraph numbers never go above 99.

2. The first digit of the number is derived from a level one heading.

3. There are also normal, non-numbered paragraphs in the document.

The last assumption means that we nced to create an entirely new tag, :PNUM, to mark up the
numbered paragraphs, leaving the ;P tag for the normal paragraphs.

Initialization: Since the numbered paragraphs are tied to the headings, the first thing we need to
do is define that relationship and modify the heading definitions (.DH [Define Head Level]) ac-
cordingly along with the DSMHEAD1 APF. First, we redefine the headings (probably in the
profile) to never be numbered. We're going to number the level one headings ourselves in the
DSMHEADI! APF and it would be undesirable to have the lower level headings numbered if the
paragraphs were numbered. We might also want to change the level one heading to not cause a
section break or a page eject and to have a skip before it. These kinds of decisions would be a
function of exactly how the headings were to look. By changing the level one heading in this
way, it becomes similar to a level two heading:

.dh 1 npa nosect nonum skbf 2
.dh 2 nonum
.dh 3 nonum
.dh 4 nonum

- We also need to initialize a paragraph number symbol and a headmg number syrynbollin"‘they pro- - .

.se pct =0
.se @hdnum = 0

Modifying the DSMHEADI APF: The next step is to do two things to the DSMHEAD1 APF:

1. Number the headings
2. Reset the paragraph number symbol to zero.

94 DCF: GML Starter Set Implementation Guide

The new DSMHEAD1 APF might look like this:

.dsmffrset H. -1

. dsmjidupl

. gs scan @head

.se @Ghdnum = &Chdnum + 1
.'se @head '&@headl &@hdnum. &@head
. 'se @shead '&@head

. gs exatt stitle as DSM@SHD
.'hl &@head

.se @tg =h

. gs exatt id as DSM@IDS

.se pct =0

.aa p dsmparal

We added several .SE [Set Symbol] control word lines to manipulate the heading number and the
paragraph number and to include the heading number in the text of the heading. We've also
deleted two lines from the DSMHEAD!1 APF which were used to increment the heading number
with the .GS [GML Services] HCTR control word. These lines are no longer needed because we
are going to handle the number ourselves.

Creating the New APF: The next step is to create a new APF to process the :PNUM tag. We'll
name it PNUM to simplify matters.?® Its function is to calculate the paragraph number and estab-
iish some indention to make the number stand out from the text of the paragraph. It will also
skip a space before the paragraph as the normal paragraph APF does.

. sk &@sk@p

.se pct = &pct + 1

.if &pct 1t 10 .se pct 'O&pct
. Se pnum '&@hdnum..&pct

.in 6 after 1 for 1

&pnum. &SRB, &$RB. &SCONT.

If we are formatting for a page printer, we need to be a little fancier about calculating the in-
dention. Instead of setting an indention of 6, we need to calculate the width of the number plus
the required blanks.

.sk &@sk@p

.8e pct = &pct + 1

.if &pct 1t 10 .se pct 'O&pct

.se pnum '&@hdnum. . &pct

.se *w = &DH'&W'&$RB * 2 + &DH'&W'&pnum
.in &*w.dh for 1 after 1

&pnum. &SRB, &SRB. &$CONT.

We could even get fancier and use a slightly larger font for the paragraph number for a page

printer. First we need to define a large font to use for the paragraph numbers. It could be some-
thing like this:

.df parafont type(18)

This line should be put in the profile along with all the other font definitions.

2 By naming the APF the same as the tag, we avoid having to include a .AA [Associate APF] control
word to associate the tag with the appropriate APF.

Paragraphs 95

Then we need to perform the calculations explained in the discussion about using large initial
capitals on a paragraph. This involves calculating the difference between the heights of the
normal text font and the large initial cap font. This difference represents the amount we need to
shift the baseline down in order to align the tops of the characters.

. sk &@sk@p

.se pct = &pct + 1

.if &pct 1t 10 .se pct 'O&pct

.se pnum '&@hdnum. .&pct

.se *basehgt = &DV'lmv

.bf parafont

.se *shift = &DV'lmv - &*basehgt

.sb =&*shift.dv

.se *y = &DH'&W'&SRB * 2 + &DH'&W'&pnum
&pnum. &SRB. &SRB, &SCONT

.sb +&*shift.dv

.pf

.in &*w.dh after 1 nobreak for &*shift.dv

In this case we shifted down the difference in line spacing between the two fonts we are using.
This more or less lines up the tops of the characters.

We have also changed the indent line and moved it. We have to be careful about what font we
arc using when we use the “after 1” parameter. The size of the “1” will be determined by the
current font. Therefore, we want to wait and not set the indention until after we have returned to
the body font with the .PF [Previous Font] control word. That is why we moved the indent
control word further down in the macro.

However, starting an indent when we have a partial output line (the partial line contains the para-
graph number and two required blanks) causes a line break to occur. To avoid breaking the line
after the number, we added the NOBREAK option to .IN [Indent].

There’s one more problem with our indention: If the value of &*shift is zero (which will always
be the case for line printers), the indention becomes permanent rather than temporary. In other
words, FOR 0 is just the same as not using the FOR parameter at all. To solve this problem we
need to check that &*shift is at least equal to one.

.if &%shift le 1 .se %shift = 1
.in &%w.dh after 1 nobreak for &*shift.dv

A Word of Caution: Numbered paragraphs as implemented here are fairly simple. They are also
of limited use. To really implement them and use them within the starter set, you need to decide
which heading level the numbers should function off of, which headings will be allowed in the
document and how they should look. The implementation outlined above has been greatly sim-
plified. Lower level headings have not been adjusted except to inhibit numbering. Other adjust-
ments might be necessary depending on the nature of the application.

96 DCF: GML Starter Set Implementation Guide

List Processing

Lists

There are many different macros which are called upon to process the various parts of a “list”
depending upon the type of list. The diagram below depicts the basic relationship between the
primary macros used. The DSM#LTYP and DSM#LINT macros, called from DSMLISTM, ini-
tialize the formatting environment for the list and the various parts of the list can be processed by
special APFs such as DSMLPART, DSMLITEM, DSMDDEF and so on. The DSMELIST
APF restores the normal formatting environment.

DSMSLIST
DSMGLIST
DSMOLIST
DSMDLIST
DSMULIST

TV v v e o Y

————————————

macros and APFs.

-=-> Defines:

#=--> Maps:

T e - -

-V

- -y

@TSIZE macro

@TERMHI macro
@HEADHI macro

- . -

e - -

i -

——————————

DSMLITEM

DSMDDHD
DSMDTHD
DSMDTERM
DSMDDEF

DSMGTERM
DSMGDEF

DSMLPART

Figure 17. Primary List Macros: This diagram shows the calling scquence among the primary list

Lists

97

List Initialization

DSMPROF3

The profile performs a great deal of initialization for lists, including;

1. The indention and space values pertaining to each type of list are défined (for example,
&@in@o and &@sk@o for ordered lists). See Figure 18 on page 99 for the list of control
symbols.

2. The default highlight levels for definition headings (&@hi@h) and definition terms
(&@hi@d) are set to 3 and 2, respectively. The default highlight level for glossary list terms
(&@hi@g) is 2.

3. The &@olistnest and & @ulistnest symbols are defined. These symbols control the sequence
of list item identifiers that are to be used for each level of list nesting.

4. The list item identifiers are defined in DSMPROF3. See “Starter Set Initialization” on page
19 for about how this works.

5. The list tags (:DL, :GL, :OL, :SL and :UL) are mapped to their appropriate APFs.

DSM#SET

This macro also performs some important initialization for lists, including:

1.

The list nesting symbol, & @nest@], is set to zero. This symbol is used to keep track of how
many levels of lists are open.

The &@sk@] symbol is set to &@sk@ls which is set in DSMPROF3 to .75. This symbol
governs the amount of space that is skipped before and after lists.

The &@nest@o and &@nest@u symbols are undefined. These two symbols keep track of
the current level of unordered and ordered lists.

Getting the List Started

There are five types of lists supported by the starter set. Each type of list has its own tag and is
mapped to its own APF. These are: ‘

definition (DSMDLIST) (:DL)
glossary (DSMGLIST) (:GL)
ordered (DSMOLIST) (:0L)
simple (DSMSLIST) (:SL)
unordered (DSMULIST) (:UL)

However, all five of the APFs for these tags do the same thing: immediately call the DSMLISTM
macro. The first parameter on the call to DSMLISTM is a single character which denotes what
kind of list this it. The possibilities are “*” for definition, “g” for glossary, “o” for ordered, “s”
for simple and “u” for unordered, The APFs also pass along to DSMLISTM the parameters
(value attributes) that were passed to them (&*).

98

DCF: GML Starter Set Implementation Guide

Nesting Controls Symbols

@olistnest - id sequence (OL)
@ulistnest - id sequence (UL)
@denest@o - denest sequence (OL)
@denest@u - denest sequence (UL)
@nest@o - nest level (OL)
@nest@u - nest level (UL)
@renest@o - renest sequence (OL)
@renest@u - renest sequence (UL)

Font Control Symbols

Formatting Control Symbols

@in - indention before list
@in@] - indent for current list
@in@o - default ordered indent
@in@u - default unordered indent
@in@s - default simple indent
@in@g - default glossary indent
@in@d - default definition
@li@tab - tab to start list item
@sk@!l - skip for current list
@sk@o - default ordered skip
@sk@u - default unordered skip
@sk@s - default simple skip
@sk@d - default definition skip
@sk@g - default glossary skip
@break - break attribute value

@hi@l - term highlight

@hi@hd - heading highlight

@hi@h - heading default

@hi@g - glossary default

@hi@d - definition term default

@nest@1- saves current list control symbols
Miscellaneous List Control Symbols

@item# - list item number

@ltype - current list type (o,u,s,d or g)

Figure 18. List Symbols: Many different symbols are used to control list nesting and list format-
ting. Some are initialized in the profile.
DSM#LTYP, and the DSMFLINT macros. They are used throughout the list macros to

determine what the situation is and to control the formatting.

DSMLISTM

The DSMLISTM macro sets up the formatting environment for list processing. It is called by
the DSMDLIST, DSMGLIST, DSMOLIST, DSMSLIST and DSMULIST APFs which process
the :DL, :GL, :OL, :SL and :UL tags, respectively. It is also the APF for the :L tag which is

mapped directly to DSMLISTM in DSMPROF3.#

The DSMLISTM macro performs the following processing:

l.

Defines macros to process the TERMHI, TSIZE and HEADHI attributes. These save the

attribute value in the & @hi@!}, &@in@! and &@hi@hd symbols, respectively.

The lines that define the macros are simultaneously removed from DSMLISTM. See “Spe-

cial Techniques” on page 13 for details on self-modifying macros.

Skips a line (&@sk@]l) conditionally.

Saves the values of several variables in an element of the & @nest@] symbol array. This is
done each time a list is started. This is particularly critical when there is already a list going
as these symbol values need to be restored when the outer list is restarted. The symbol val-

ues saved include:

2 The :L tag is not formally part of the starter set, which is why it is not documented. However, it is used

to create lists which use an asterisk as the list item identifier.

Some are initialized in the DSMLISTM,

¢ The list type (& @ltype),

e The current item number (& @item#),

¢ The indention values (&@in and &@in@1),

e The skip value (&@sk@1),

e The term highlight level (&@hi@}),

® The heading highlight level (&@hi@hd), and

e The current value of the BREAK attribute (& @break).

The indention for lists is done in two parts as is illustrated in Figure 19. The first indent is
to where the identifier or number goes and the second indent (which is incremental) is to
where the text starts.

Calculates the indention value. If this is not the first level of list, the &@in value contains
the base indention for the previous list level and the &@in@l symbol will contain the incre-
mental amount for the previous list. If these symbols exist, we indent their value. The total
amount of indention, now in &$IN, is saved in &@in which now represents the base in-
dention for the current list starts.

Calls DSM#LTYP to get the &@ltype and & @id @1 symbols set up.

Processes the parameters passed in (&*) to see if either COMPACT or BREAK was speci-
fied. If COMPACT is found, &@sk@] 1s set to 0 to cause no extra spaces between list items
and &*c is set to 0. If BREAK is found, the &@break symbol is set to BREAK. This
symbol will be used on the .IS [Inline Space] TO control word line in the definition list
macro. In other words the BREAK attribute function is nothing more than the BREAK
parameter on the .IS [Inline Space] control word.

Figure 19. List Indention: The indention for each level of list is calculated in two parts. The first

(&@in) plus an incremental
indention (&2in@1).

| 1. | This is a first level list item. The identifier
| | for the item is '1.'. The text of the item
|<====- >| starts at an indention of &@in@l.

|&@in@1 |

l I

I |

| | a. | This is a second level list item. The
[<====- >|<mmmmm- >| indention for its text is the sum of the
| &@in | &Rin@l1 | indention for the first level list (&Q@in)
| | | and the incremental amount (&@in@1).

I | I

| I |

| | 1) This is a third level list item.
RGEEEEL LR LR >|<mmm=- >| It's indention is the sum of the
| &Rin |

| |

| I

I
I
&@in@1 | first and second level indention
|
|

indention, &@in, represents where the list item identifier goes. It is the sum of the in-
dention for the previous levels of list. The second indention, &@in@l, is the incremental
indention necessary to get from where the identifier is placed to where the text of the item
should start.

100

DCF: GML Starter Set Implementation Guide

A detailed explanation of the technique used here to determine if the attributes were specified
or not can be found in “Special Techniques” on page 13.

7. Sets up the formatting environment for this list level.

a. Sets the item counter, &@item#, to 0. This will be incremented each time a :LI tag is
processed.

b. Sets the highlight font for terms, &@hi@]}, based on list type.

c. Sets &@in@] based on list type. This will be the incremental indention from where the
identifier or term is placed to where the list item text or description starts.

d. Sets the highlight font for headings (&@hi@hd) using the &@hj@h symbol that was
defined in DSMPROF3.

e. Sets &@sk@] based on list type and whether COMPACT was found. If COMPACT
was not specified, the &*c symbol will be null causing the & @sk@&@ltype value to be
used. If COMPACT was specified, the & *¢ value (0) will be used.

8. Processes the TSIZE attribute using the @TSIZE macro defined above. The TERMHI at-
tribute is processed using the @ TERMHI macro defined above and the HEADHI attribute
is processed using the @HEADHI macro defined above.®® These attributes will override the
&@hi@], &@hi@hd or &@in@1 symbols whose defaults were just set above.

9. Performs the base indention and incremental indention (&@in and &@in@1). The total in-
dention value is saved in &@li@tab. This value represents where the text of the list item or
the definition description starts. It is used on a .IS [Inline Space] TO control word by the list
item and definition description APFs.

10. Maps the :LP tag for list parts to its APF, DSMLPART.

11. For glossary lists, maps the :GD and :GT tags to their respective APFs, DSMGDEF and
DSMGTERM. For definition lists the :DTHD, :DDHD, :DT and :DD tags arc mapped to
DSMDTHD, DSMDDHD, DSMDTERM, and DSMDDEF.

12. For all other types of lists, maps the :LI tag to the DSMLITEM APF.

DSM#LTYP

The DSM#LTYP macro decides what type of list is being processed. It is called by the
DSMLISTM macro with a single character as a parameter in &*1. The character will be either g,

0,

s, u, or *. The asterisk is used to denote a definition list.

DSM#LTYP performs the following functions:

L.

Calls the DSM#LINT macro which defines the & @denest@u, &@denest@o, &@renest@u
and &@renest@o symbols. These symbols contain strings of numbers which will control
the way in which nested levels of lists are handled.

Determines from the single character® (g,0,s,u,*) that is passed to the macro what type of list
is being processed.

Picks out the first character of the first parameter.
Checks if it’s an O, U, S, G or *.

If none of the above, assumes it’s “undefined” (z).
Sets &@ltype to d, g, o, s, u or z (for undefined).

o op

30

31

“thi” is recognized as a synonym for the TERMHI attribute and “hhi” is recogmzed as a synonym for
the HEADHI attribute.

The asterisk (*) denotes definition lists.

Lists 101

3. For g lists, d lists, and s lists, sets the &@id@1 symbol to null. This symbol is supposed to
contain the necessary symbol function to produce the list item identifier. For glossary lists
and definition lists the identifier portion (left part) of the list is a term and for simple lists
there is no identifier.

4. For unordered lists DSMALTYP:

a. Makes sure that the &@nest@u symbol exists. This symbol indicates the level of nest-
ing of unordered lists. If there are no unordered lists open already, the symbol won't
exist and we set it to the length of & @ulistnest. This is the number of different identifi-
ers defined for each level of nested lists. We will use this value to select the correct
identifier to use for the list we are starting.

b. Resets &@nest@u to one of the values in the &@renest@u symbol. This symbol was
defined in DSM#LINT to be “234561.” For the first level of list, the & @nest@u sym-
bol will be 6, so we will select the sixth number, “1.” For the second level of unordered
list we will select the first number, “2” because the value of & @nest@u will be “1” indi-
cating that there is already one level of list going.

¢. Determines the identifier number. The &@ulistnest symbol contains the proper se-
quence in which we should use the item identifiers that have been defined. It will be
“123” for line printers and “12345” for page printers unless the profile has been modi-
fied. Using the &@nest@u symbol value calculated above, we select the proper identi-
fier value out of & @ulistnest. So for the first unordered list, we’d pick the first number,
and use it to construct the identifier number.

5. Performs the same processing as described above for ordered lists except that the
&@renest@o and &@olistnest symbols are used.

6. Determines the approprate item identifier using the number just calculated above, for both
unordered and ordered lists. The identifiers are in defined variables named &@id@I@ul,
&@id@1@u2, and so on. The number just calculated is the last part of the identifier symbol
name. The list type determined above is the next to last part of the symbol name

(&@ltype).
For example for the third level unordered list the identifier symbol, & @id@]l, is defined as

follows:
.se *a = §&@ltype.&*a
.se *a = &@ltype. 3
.se *a = u3

.se @id@1 '&V'&@idR1@&A1type. &¥a. .
.se @ide@l '&vV'&@id@lE@u&*Fa..'
.se @idR1 '&V'&@id@1Qu3. '

7. Issues a message if the identifier symbol isn’t defined. This indicates that the & @olistnest or
& @ulistnest symbols are out of sync with the identifier definitions in DSMPROF3.

8. Puts the value of the identifier symbol into &@id@!.

DSMH#LINT

The DSM#LINT macro defines the symbols which control the nesting and de-nesting of the vari-
ous kinds of lists. It is called by DSM#LTYP.

There are two denesting symbols and two renesting symbols—one set for ordered lists and one set
for unordered list. Their values are based on the setting of & @ulistnest and & @olistnest which
are defined in the profile.

102 DCF: GML Starter Set Implementation Guide

Suppose that the &@olistnest symbol is set to “123456” meaning that there are six list item iden-
tifiers defined which are numbered 1 through 6. These identifiers are to be used in the order given
in &@olistnest. You can change the sequence of the identifiers by simply reordered the numbers
in &@olistnest. The &@dencst@o symbol will be defined as follows:

.se @denest@o = substr &L'&Qolistnest.12345678 1 &L'&@olistnest
.se @denest@o = substr 612345678 1 6
.se @denest@o = 612345

The &@denest@o symbol will be used in the DSMELIST APF to figure out the proper level of
the previous ordered list when we are ending an ordered list.

Using the current level of nesting as a position in the &@denest@o symbol we can derive the
level of the previous list. For example, when the third level of list is being ended we can tell that
the second level needs to be restarted. That seems very straight forward, however, the levels actu-
ally wrap around such that the seventh level of list is the same as the first level in terms of which
identifiers are used. In this case the value we will pick out of &@denest@o will be “6” which is
what we want. See the discussion of the DSMELIST APF below for more details on how this all
works.

The &@renest@o symbol is used to figure out the proper level of the next level of ordered list
when we are starting one in the DSMLISTM macro. It is used in the DSM#LTYP macro to
select the proper list item identifier for an ordered list when it is started. It is set as follows in the
DSM#LINT macro:

.se @renest@o = substr &@denest@o.&L'&Qolistnest.1 3 &L'&Qolistnest
.se (@renest@o = substr 61234561 3 6
.se @renest@o = 234561

Using the current level of nesting as a position in the &@renest@o symbol we can derive the
level of the next list. For example, when the current list is the sixth level, we can tell that the
next level will be like the first level in terms of which identifiers are used. In this case the value
we will pick out of &@renest@o will be “1” which is what we want. See the discussion of the
DSM#LTYP macro above for more details on how this symbol is used.

Processing Items on the List

DSMLITEM

The DSMLITEM APF processes the :LI tag. It skips, indents and prints the item identifier (if
any), as follows:

1. Increments the list item counter (& @item#).

2. Skips and indents (&@sk@! and &@in@l—set in DSMLISTM). &@in is the base in-
dention for the current level of list. &@in@l is the incremental amount of indention we
need for the current list.

The indent is done in two parts—indent and then an incremental indent after 1. The first
indent controls the placement of the identifier and the second controls the placement of sub-
sequent lines of text. The initial line of text is placed with an immediate tab (IS {Inline
Space] TO n). If this is a second level list, &@in will be 4 due to the indention of the first
level and & @in@]1 will also be 4 representing the amount of indention for this level.

3. Sets the &@tg symbol to “d” to indicate that an ID for a list item is being processed. The
DSM@IDS macro is then called to process the ID attribute. This macro is described in
“Cross-References” on page 147.

Lists 103

4. Puts out the identifier that is in &@id@l. This symbol was also set up in the DSM#LTYP
macro when the list was started.

5. Moves over to where we want to start the text of the list item. The .IS [Inline Space] TO
control word is used to avoid using the tab rack. The position to move to is in &@lL@tab
which was defined in DSMLISTM when the list was started. It will get us to the same place
we defined with the delayed indention.

DSMDTHD

The :DTHD tag is processed by the DSMDTHD APF. The definition list headings are actually
produced by the DSMDDHD APF. The DSMDTHD APF saves the residual text of the tag in
& @dthead for processing later by the DSMDDHD APF. It also skips a line.

DSMDDHD
The :DDHD tag is processed as follows by the DSMDDHD APF:

1.

10.
11.

Determines whether or not a :DTHD tag was processed. IHf so, the &@dthead symbol will
exist and will contain the heading for the terms. If it doesn’t exist, we set it to null and there
won’t be any heading for the terms.

Starts a keep around the headings that will ensure that the headings are kept with the first
definition term. The size of the keep depends on whether or not we are producing a compact
list. The &@sk@l symbol will be zero if the list is compact. Otherwise it will be one. We
calculate the depth of the keep of 3 lines plus the depth of the skip.

Skips and indents (&@sk@! and &@mn@l—set in DSMLISTM). &@in is the base in-
dention for the current level of list. &@in@]1 is the incremental amount of indention we
need for the current list.

The indent is done in two parts—indent and then an incremental indent after 1. The first
indent controls the placement of the term and the second controls the placement of the de-
scription headings. The initial line of text is placed with an immediate tab (.IS [Inline Space]
TO n). If this is a second level definition list, &@in will be 10 due to the indention of the
first level and & @in@! will also be 10 representing the amount of indention for this level.

Obtains the residual text in the &*ddhead local symbol.

Starts the highlight font for definition list headings. The &@hi@hd symbol contains the
number of the highlight font to use. This is either the default (set to 3 in DSMPROF3) or it
has been set by the user with the HEADHI attribute.

Puts out the term heading using literal mode just in case it should start with a period.

Performs a .IS [Inline Space] TO control word to get to where the description heading should
start. The &@li@tab symbol was calculated in DSMLISTM and is the sum of the two
indentions described above.

Puts out the description heading using literal mode in case it happens to start with a period.
Restores the previous font.
Skips another line to separate the headings from the first term.

Undefines the & @dthead symbol because we don’t need it any more.

DSMDTERM

The :DT tag is processed by the DSMDTERM APF which saves the definition term for process-
ing later by the DSMDDEF APFE. DSMDTERM performs the following processing:

104

DCF: GML Starter Set Implementation Guide

Checks that there are no unprocessed definition terms left over from before. The term will
be put in the &@id@] symbol here. When it is placed on the page, the &@id@] symbol is
undefined. Therefore, if the &@id@] symbol exists it means that we've gotten two definition
terms without an intervening description. In this case, we issue an error message.

Checks if there is an unprocessed term heading. The & @dthead symbol is used for the term
heading and is undefined when the heading is placed on the page by the DSMDDHD APF.
If this symbol exists it means that a term heading has been processed but there was no de-
scription heading. In that case, rather than assume that that is an error we will put out the
term heading.

Calculate a keep of 3 lines plus the depth of &@sk@1.
Starts a keep.

Skips a line conditionally.

Indents to where the heading should start.

Starts the definition heading font (or the current font).
Starts literal mode for one line.

Formats the term heading.

Restores the previous font.

Skips a line.

Undefines the & @dthead symbol.

TrpE e pue ot

Skips a line conditionally before the term.

Scans to get the residual text of the :DT tag into the &@id@1 symbol. The term will be
placed on the page by the DSMDDEF APF.

DSMDDEF

The :DD tag is processed by the DSMDDEF APF which formats the definition term and sets up
the processing environment for the definition description with the following processing:

1.

Checks for a missing definition term, if so, inserts “?” for the term and calls DSM#MSG to
issue a message that a definition list term is missing.

Checks if there is an unprocessed term heading. The &@dthead symbol is used for the term
heading and is undefined when the heading is placed on the page by the DSMDDHD APF.
If this symbol still exists it means that a term heading has been processed but there was no
description heading and no definition term. In that case, rather than assume that that is an
error we will put out the term heading,

Calculates a keep of 3 lines plus the depth of &@sk@l.
Starts a keep.

Skips a line conditionally.

Indents to where the heading should start.

Starts the definition heading font (or the current font).
Starts literal mode for one line.

Formats the term heading.

Restores the previous font.

Skips a line conditionally.

Undefines the & @dthead symbol.

Skips conditionally (& @sk@]).
Indents the base indention (& @in) and the incremental delayed indention (& @in@1).

TR e e o

Starts the highlight font for definition terms. The &@hi@! symbol contains the number of
the highlight font to use. This is either the default (set to 2 in DSMPROF3) or it has been
set by the user with the TERMHI attribute

Formats the definition term which was put into the &@id@l symbol by the :DT tag.

Restores the previous font.

Lists 105

Inserts space to where the definition description should start. The &@li@tab symbol was
calculated in the DSMLISTM macro when the list was started. The &@break symbol may
be set to “break” or to null depending on whether or not the BREAK attribute was specified
on the :DL tag.

Sets &@id@1 to null.

DSMGTERM

The :GT tag is processed by the DSMGTERM APF which saves the glossary term specified with
the :GT tag, as follows:

1. Checks if there is already a glossary term defined which has not been fully processed and calls
DSM#MSG to issue a message if there is. This would happen only if there were two :GT
tags in a row with no intervening :GD tag.

2. Skips a line. The value of &@sk@1 may be zero if this is a compact glossary list.

3. Scans to get the term into the &@id @1 symbol.

DSMGDEF

The :GD tag is processed by the DSMGDEF APF which formats the glossary term and scts up
the processing environment for the glossary definition with the following processing:

1. Checks if there is a glossary term defined. If there isn’t, it means that there have been two
:GD tags in a row with no intervening :GT tag. If this is the case a message is issued and a
question mark is used as the term.

2. Skips a space.

3. Indents to where the term should be.

4. Begins the highlight font for glossary terms. This may be the default of 2 set in
DSMPROPF3 or it may have been overridden with the TERMHI attribute of the :GL tag.

5. Puts out the glossary term using literal mode just in case it happens to start with a period.
The term is followed by a colon and a continuation character to cause it to be continued
with whatever text follows it.

6. Restores the previous font.

7. Puts out a required blank to make sure that therc is at least one blank between the colon and
the following text. The required blank is put after the font is restored. This is done to avoid
getting an underscored blank in the event that someone used an underscored font for high-
lighting the terms.

8. Sets the &@id@] symbol to null to indicate that the term has been fully processed.

DSMLPART

The :LP tag is processed by the DSMLPART APF which performs a skip and an indent
(& @sk@] and &@in). Note that the &@in symbol is the amount of indention before the identi-
fier, not the total indention to the text of the list items.

106

DCF: GML Starter Sct Implementation Guide

Ending Lists

DSMELIST

The DSMELIST APF ends lists, restores the environment if this is the end of all lists, remaps
some tags, and resets nesting levels. DSMELIST processes the :EDL tag, the :EGL tag, the
:EOL tag, the :ESL tag and the :EUL tag as follows:

1. Checks that a list is open. The &@nest@] symbol array contains an entry for each level of
list that 1s open. If there are no elements in the array it means that there are no open lists
which means that we don’t need to be processing the DSMELIST APF. A message is issued
if this is the case and the macro ends.

2. If closing the last list (&@nest@1(0) = 1):

a.

Resets the skip amount for lists to &@sk@ls. The &@sk@l symbol will contain the
skip amount for the current list type. The default skip amount for lists is .75.

Resets the highlight level for definition headings to its default value of &@hi@h which
was defined in DSMPROF3.

Skips a line at the end of the list.

Indents &@in. The &@in symbol contains the base indention that was in effect before
the current level of list was started.

Resets &@nest@! array counter to zero and turns the &@nest@o and &@nest@u
symbols off. These two symbols are used to keep track of the number of ordered and
unordered lists that are open.

Remaps the :LI, :LP, :DT, :DD, :DTHD, :DDHD, :GT and :GD tags to the invalid tag
APF (DSM#CNTX) . This is done because these tags are not valid outside of a list.

3. If not closing the last list (&@nest@1(0) > 1):

a.

Adjusts the denesting symbols. The &@nest@] symbol counts the total number of lists
that are open. For ordered and unordered lists, there are two separate symbols which
keep track of these two types of lists. If we are ending an ordered or an unordered list
the &@nest@&@ltype symbol will exist and we need to adjust it carefully using the
denesting symbols (&@denest@&@ltype). The appropriate new value for the
&@nest@<ype symbol is a function of its current value and the denesting ring sym-
bol. The &@denest@&@ltype symbol contains the numbers of the identifiers to use
for each level of list. It acts as a ring, in that, when the level of nesting is deeper than
the length of &@denest@& @ltype, the next identifier number is selected from the be-
ginning of & @denest@& @ltype.

K mmmmm— e —————— *
| Femeemmemmeeees 4=
V V V-ememmememe Nk k)
if &@denest@&@ltype = 6 1 2 3 & 5 |||
A A A A A |||
level 2 list restores ---=% | | | | | | |
level 3 list restores =------- L
level 4 list restores =--==--=--- * 1]
level 5 list restores ===-=====w--- L B R
level 6 list restores =--====-=c------ L I
level 7 list restores ==-===---wcceeeneca- * 1|
level 8 list restores ==-=-===mcmccceeaco-- ¥ |
level 9 list restores =--=-=-=-sc-mmecccenoo- *

Lists 107

The denesting is done in this manner because the nesting is done in a similar manner.
The identifiers wrap around such that the seventh level of list uses the same identifiers as
the first level, and the eighth is the same as the second, and so on.

b. Skips a line to end the list.

c. Restores the previous list’s formatting environment from &@nest@]. This includes the
list type, the item counter, the indention amount, the incremental indention amount, the
skip amount, the highlight fonts, and the break value. (&@ltype, &@item#, &@in,
&@m@], &@sk@1, &@hi@], & @hi@hd, and & @break).

d. Decrements the list nesting level counter (&@nest@I1(0)) by one because now one less
level of list is open.

e. Indents for the level of list we are restarting (& @in) and the incremental value &@in{@l.

f. Redefines the &@li@tab symbol to be the total indention (&$IN) that will be per-
formed for this level of list. In other words, & @li@tab is sct to where the text of the
list item will start.

g. Resets the &@id@l to contain the symbol function needed to produce the list item
identifier for ordered and unordered lists. We need to know the appropriate number of
the identifier. This is calculated in &*a by selecting the nth character from the
& @olistnest or &@ulistnest symbol, where n is the value of &@nest@o or &@nest@u
calculated alone. The setting of &@1d@] resolves like this:

.se @id@1 '&V'&@idA1R&R1type.&%a. .
.se @id@1l '&V'&R@idR1lQo&*a..'
.se @id@1 '&V'&Rid@1@o2.'

h. Maps the appropriate tags for the list type to their respective APFs. For ordered, sim-
ple, and unordered lists, the :LI tag is mapped to the DSMLITEM APF. For definition
lists, the :DTHD, :DDHD, :DT and :DD tags are mapped to the appropriate APFs.
For glossary lists, the :GT and :GD tags are mapped to the DSMGTERM and
DSMGDEF APFs.

DSM#RSET

The DSM#RSET macro is used to close open text structures for headings and document sections.
This includes closing any lists that have been left open. This is done in the following manner:

1. Tests the list nesting counter, & @nest@]1, for greater than zero.

2. Issues a warning message if a list is open.

3. Calls the DSMELIST APF to close list(s).

DSM#RSET is called by many macros which require that the &@state symbol have a value of

“open.” If there is an example, a figure, a title page or a footnote currently in progress, & @state
will not have a value of “open.”

Modifications to List Processing

Changing the List Item Identifiers
The list item identifiers to be used for ordered and unordered lists are defined in the profile.

There are two parts to the definition—the selection of the actual identifier and the specification of
the sequence in which they are to be used.

108 DCF: GML Starter Set Implementation Guide

If you like the identifiers that have been sclected but would like to change the order in which they
are used for each level of nesting, the thing to do is change the value of &@olistnest and
&@ulistnest. These two symbols are set to “123456” and “123.” respectively. For page printers,
& @ulistnest is changed to “12345” because there are many more interesting sorts of identifiers to
choose from.

For ordered lists 9 different identifiers have been defined which have been assigned numbers from
1t0 9. The first six are used as the default identifiers for ordered lists.

LEVEL DEFINED VARIABLE EXAMPLE
1 /&Q@itemi. . 1.
2 /&a's@itemst. . a.
3 /&@itemit.) 1)
4 /&a'&Ritems.) a)
5 J&r'&@itemit. . i.
6 /&xr'&Ritems.) i)
7 /&R'&@1itemdt. . I.
8 /&A'&Ritemi. . A.
9 /. dsmifsupr &@Qitem# (superscript 1)

Suppose you need to create outline style identifiers instead of the usual ones. All of the identifiers
you need are already defined but you will need to respecify the order and identifier number in
which they are used. This means changing the value of &@olistnest from “123456” to “785264.”
This will produce lists that are numbered like this:

I.

i) ...
a) ...
Note: You may also want to increase the value of the indention symbol (& @in@o) for ordered
lists because of the greater number of characters in roman numerals. For example, 4 spaces are
allotted to the identifier, but the roman number for 8 is “viii.” When this is followed by a period

or a parentheses, the identifier will extend too far to the right. This can be remedied by simply
changing the value for &@in@o in the profile.

Suppose instead that you were only interested in three levels of nested ordered lists and that you
wanted to number your lists enclosing the numbers in parentheses like this:

(1 ...
(a) ...
(i) ...

To do this you would need to change the value of &@olistnest to be “123” to specify that only
three levels of identifiers are to be used. Then you would need to redefine the first three levels

.su off

.dv @id@1l@ol /(&Qitemf.)
.dv @idR1@o2 /(&a'&@itemft.)
.dv @id@1@o3 /(&r'&Qitem#.)

. Su on

You could, instead, specify that &@olistnest is “abc” and then define the identifiers as
@id@l@a, @id@l@b, and @id@I@c. This would allow you to leave all of the original defi-
nitions in place. You could even switch back and forth between the two sets of identifiers by
changing the value of &@olistnest within the document.

Lists 109

Changing Spacing and Indention Settings

Many of the starter set tags use spacing and indention values. For example, a space is skipped
before and after lists and each level of list is indented 4 characters to the right of the previous one.
The amount of vertical space skipped and the amount of indention are controlled by symbols set
in DSMPROF3. By changing the value of the symbol you can change the amount of space or
indention. The defaults are shown in Figure 5 on page 21. The symbols are set at the beginning
of the profile using the .GS [GML Services] ARGS and VARS control words.

.gs args 10 2 4 4 0 3 4 4 2 0
.gs vars @in@d @in@f @in@z @in@o @in@p @in@q @in@s @in@u @in@x @in@g
.gs args .75 1 .75 .75 .75 1 .75 .75 1 .75

. gs vars (@sk@d @sk@f @sk@z @sk@o @sk@p @sk@q @sk@s @sk@u @sk@x @sk@g

To change the amount of indention for any of the five types of lists simply change the value that
is right above the appropriate symbol. The &@in@ symbols control the indention and the
&@sk@ symbols control the spacing around the list. “d” stands for definition lists, “‘g” stands
for glossary lists, “o” stands for ordered lists, “s” stands for simple lists, and “u” stands for unor-

dered lists.

Changing the Highlight Defaults for Lists

A default highlight level is built into the profile for definition terms, glossary terms and definition
headings. These can be changed by simply changing the settings of the symbols &@hi@h,
&@hi@d and &@hi@g respectively to the new highlight level.

.gs args 1 3 2 2
. gs vars @sk@n @hi@h @hi@d @hiGg

So, for example, to make glossary terms appear in highlight level 1 instead of 2, change the last
number on the .GS [GML Services] ARGS control word line to “1.”

Using Decimal Notation for Ordered Lists

All of the list item identificrs that arc used for ordered lists consist of a single number or character
following by some punctuation characters. To create lists that are number in the following way,

1 Notice that the first level items are numbered with
simple numbers.

1.1 The second level items have decimal numbers. No-
tice that the indention keeps increasing for each
level of list.

1.1.1 The third level also has decimal numbers.

1.1.1.1 The fourth level is just more
of the same kind of thing.

Figure 20. Decimal Ordered List Example: This figure illustrates sample output after changing the
list item identifiers to decimal format for ordered lists.

110 DCF: GML Starter Set Implementation Guide

involves making several changes to the starter set macros and to DSMPROF3. This modification
is more complicated that most of the other ones that are documented in this book because it
requires changing some basic processing which has been built in to the starter set and it violates
some of the assumptions that are built into list processing. We will see what these are as we go
along developing the changes.

There are four separate areas of processing we need to change to created decimal lists:

1. We have to change the structure and definition of the list item identifier from a simple sym-
bol to a symbol array so that it can hold the separate item numbers for each level simultane-
ously.

2. We also have to change the way in which the item identifier is incremented and printed to
allow all the elements of the array to be printed separated by a period (.).

3. We also have to adjust the indention required for each level of list because the length of the
identifiers will increase for each level of list.

Defining An Array for Item Numbers

Before delving into the changes that are detailed here, you might find it useful to review the infor-
mation given in “Starter Set Initialization” on page 19 about how list item identifiers are defined
in DSMPROF3 with the .DV [Define Variable] control word. What needs to be done to change
the first level ordered list identifiers is to replace the following statement in DSMPROF3:

.su off
.dv @id@1@ol /&@itemif..
.su on

with an identifier definition that will create an array. The easiest way to do this is:

.su off
.dv @id@1@ol /&@itemff(*).

. Su on

Associated with this change is an additional change which must be made to the setting for
&@olistnest. Under normal circumstances, & @olistnest is “123456” indicating the identifier
numbers for the first six levels of ordered list. The seventh level identifier wraps around and starts
again using the same identifier as the first level list. With decimal numbering we can't let this
happen. Several solutions are possible.

The easiest is to simply define a value of “111111” for & @olistnest.

.se @olistnest '111111

We have redefined only the first level identifier to be of the array format we want. Since it is an
array, we want to use the same array for all levels of the list—just the elements of the array will

vary.

As many 1’s as you like can be put into &@olistnest, however, the number used will determine
how many levels of list will be properly numbered, because the list processing code automatically
wraps around when the level is greater than the number given in &@olistnest. Due to the large
amount of indention which is created for nested decimal number lists, in single column format
after about S levels of nested lists, the indention becomes wider than the page anyway, so the
restriction to six levels of list is not too severe.

Note: Changing the automatic wrap around function for identifiers is not simple and cannot be
done without affecting the identifiers for unordered lists also. The best way to handle this prob-
lem would be to put a test into DSM#LTYP to catch if the nesting level (& @nest@o) went over
6 and issue a message if so to warn users that the item numbers will be incorrect after that point.

Lists 111

Incrementing and Printing the Item Numbers

Now that the identifier is properly defined, we have to change the way in which it is processed in
order to get the appropriate element in the array incremented and to get all the elements printed
separated by periods. This involves changing the DSMLITEM APF to increment it properly.
DSMLITEM currently contains the following line:

.se Q@itemft = &@itemft + 1

which increments the item counter for the current level of list.

We need to replace this line with the following lines:

.if &Qltype eq O
h .se Qitemff(&@nest@o.) = &Ritem#(&@nest@o.) + 1

The &@nest@o symbol will contain the nesting level of the current list, such that for the first
level of list the first element of the & @item# array will be incremented, and the second element
will be incremented for the second level of list, and so on.

So far we’ve redefined the identifiers and gotten them properly incremented for each item. The
next step is to print the identifier, which currently is done by the following line of DSMLITEM:

&@id@l.

The &@id@] symbol has a value of “&@item#(*)” due to the changes we made above to
DSMPROF3. That’s what we want. However, we need to adjust the array separator to be a
period(.): :

.dc asep
&Qidal.

.dc asep

We also returned the array separator definition to its default value after we printed the identifier.

Now that we've got the item numbers correct for each level of the list, there’s one additional thing
we have to do to them. Since we're printing the whole array for each item, we have to get nid of
the element which pertains to nesting levels we’ve closed. The logical place to do this is in the
DSMELIST APF when we close the level.

When each level of list is started the & @item# number is saved. Since we’ve turned this symbol
into an array, what actually gets saved will be the element index counter (that is, element 0 of the
array). By reading in the element of the array in DSMELIST to restore the parameters for the
previous level of list, we will automatically reset element zero of the array. However, when we
print an array using (*), what we get is each element that exists, regardless of what the value of
element zero is.

For example, when the fourth level list is ended, & @item#(0) is set back to 3 automatically.
However, when we try to print & @item#(*) we get all four elements of the array.. Therefore, we
need to undefined or turn off the element of the array that refers to the level of list that is ended.
When no previous list is being started, this is done as follows:

. sk &@sk@l c

.in &@in

.if &Q1type eq o .se @item#(0) =
.th .se @item#(1) off

.se @nest@1(0) =

112 DCF: GML Starter Sct Implementation Guide

We have to decrement element zero of the list as well because the list control parameters are not
saved and restored for first level lists.

When a prior list is being restarted (that is, we are ending a second level or higher list), we need to
make the following adjustment:

.if &@1ltype eq o .se Qitem# (&Q@item#(0).) off
.gs args &V'&@nest@1(&@nest@1(0).)

This line has to be added to DSMELIST before the list control symbols are restored from
&@nest@] array.

Adjusting the Indention for List Items

The third part of the change to decimal ordered list involves adjusting the indention value for
each level of list. The number for the first level is only two characters long (1.). For the second
level it is three characters (1.1) and for the third it is five characters long (1.1.1). The indention
needs to increase by two characters for each nested list.

The easiest way to approach this problem is to look at the incremental adjustment for each level
of list as a separate value over and above the normal indentions applied to the list. The indention
value for the list is contained in &@m@o which is defined in DSMPROF3 as 4. This value is
moved into the &@in@! symbol when the list is started and it represents the incremental in-
dention from where the identifier is placed to where the text starts.

If we were to create a separate indention symbol, named & @incr, to represent the incremental
indention due to the identifier, it would need to be applied wherever we are currently applying the
&@in@! indention. This means we have to:

1. Define and increment &@incr in DSM#ALTYP.

Save and restore this value along with the other list control symbols.

Indent + &@incr in DSMLISTM to calculate the value of the &@li@tab symbol.
Indent + &@incr in DSMELIST when re-establishing a list.

Adjust the delayed indent set up in DSMLITEM for the second and subsequent lines of the
item.

T SN

First, we’ll define and increment the value in DSM#LTYP. For all list types except ordered list
(o), we want the value of & @incr to be zero:

.se @ltype = substr 'zdosug' &b 1
.se @incy = 0
.go list&R@ltype

For ordered list, we want to set the value of & @incr to 1 for first level ordered lists and we want
to increment it by 2 for each new level of list:

...listo

Lif ...

.se &E'&@nest@o ...
.se *a ...

.if &Bnest@o = 1 .se Q@inc

r=1
.el .se @incr = &@nest@o * 2 =

2
However, we want the value to be 1 for a first level list, 2 for a second level list, 4 for the third

level and so on. By taking the nesting level, multiplying it by 2 and subtracting 2 we get the right
value.

Lists 113

Now that &@incr has the correct value, we have to save and restore it. The various list control
symbols are saved in the & @nest@] symbol array by the DSMLISTM macro. These symbols
are restored by the DSMELIST APF. Therefore, we have to add &@incr to the following line in
DSMLISTM:

.se *g = '&RQ1type &Qitem# &in &Q@incr
and to the following line in DSMELIST:

.gs vars @ltype @item# @in @incr @in@l @sk@l @hi@1 @hi@hd @break

We need to make this same adjustment to the DSMLQUOT and DSMELQU APFs because
they also save and restore all these list control symbols. It doesn’t matter where in the list of
symbols you add &@incr. However, you must make sure that you always add it in the same
location in all cases. In other words, if you put it in after the &@in symbol, as we did in the
example above, then you must adjust all of the APFs to put it after &@in as these values are
saved and restored positionally.

The next step is to apply the new incremental indention to the list. When the list is started in
DSMLISTM, the total of the indentions for the previous level of list is saved in &@in which is
the base indention value for the new level being started. The new incremental indention needs to
be included in this calculation:

.1if &@nest@1(0) gt 1 .in &Qin
.th .in +&2in@1

.th .in +&@incr

.se @in = &DH'&S$IN.dh

The indention values of the current level of list are also added up to calculate the value of
&@li@tab. This symbol indicates where to insert space to after the identificr is placed to cor-
rectly position the first line of the list item text. The following lines need to change:

.in &Qin

.in +&@in@1

.in +&@incr

.se @li@tab = &$IN

The &@lLi@tab symbol is used by the DSMLITEM APF.

When a list is restarted in DSMELIST, we also need to correct the indention setting by the value
of &@incr:

.in &@in
.in +&@in@1

.in +&@incr

The last adjustment involves correctly setting the delayed indention which controls the placement
of the second and subsequent lines of the list item. This is calculated in the DSMLITEM APF
and requires the following change:

.in &Qin
.se *x = &Jh'&R@in@1 + &dh'&Rincr
.in +&%x.dh after 1

In this case, the two incremental values are added together using device units to make sure they
are in like units of space.

114 DCF: GML Starter Set Implementation Guide

Examples and Figures

Example Processing

Examples are processed as keeps with formatting turned off. Varous adjustments are also made
to line spacing, word spacing, and fonts for page printers.

DSMXMP

The DSMXMP APF processes the :XMP tag by preparing the formatting environment for the
example. It performs the following processing:

L.

10.
11.

12.
13.
14.

Checks that &@state is “open.” If &@state is not “open,” it issues a message and ends, ig-
noring the :XMP tag. The &@state symbol indicates whether there is a figure, footnote,
example, or title page currently open. If there is, we can’t process the example.

Sets & @state to “Exmpl” to indicate that an example is being processed.

Causes a break so that the text of the example will not be concatenated with the preceding
text.

Saves the environment because we're going to make some changes to it and it will be easier
to restore the environment than to reset everything we change.

Turns spelling verification, hyphenation, and formatting off.

Checks if a keep is in progress and if so, ends it. This is done to prevent the font stack from
being lost. When we start the keep for the current example, any previous keep will be ended.
Since the formatting environment (which includes the font save stack) is saved and restored
around a keep, the font change that we are about to do will be lost from the stack by the
restoration of the previous environment.

Starts the “xmpfont” font for page printers or restarts the current font (=) for all other de-
vices.

Indents for examples (&@in@x). (Set in DSMPROF3 to 2.)
Skips for examples (& @sk@x). (Set in DSMPROF3 to 1.)
Starts a keep.

Resets vertical line spacing factors to 1.0 to prevent line spacing from being expanded by
vertical justification.

Resets word spacing to its default value.
Resets extra spacing to its default value.

Processes the DEPTH attribute using the .SP [Space] control word. Remember that an Ap-
plication Processing Function (APF) can be a macro, a symbol or a control word in
SCRIPT/VS. In this case the value of the DEPTH attribute is simply a vertical space nota-
tion which needs to be issued with the .SP [Space] control word. The control word can be
used directly rather than constructing a macro which would issue the control word.

Examples and Figures 118

'DSMEXMP

The DSMEXMP APF processes the end tag for examples. It ends the example as follows:

1. Checks that &@state is “Exmpl.” If &@state is not “Exmpl,” it means that there is no ex-
ample going now and this macro issues a message and ends, because there is nothing to be
done.

2. Resets the & @state symbol to “open.”

3. Ends the keep.

4. Restores the previous font. A real font change will only have occurred for the page printers.
For all other devices, the current font will have been restarted.

5. Restores the previous environment.

6. Conditionally skips.

DSMPROF3

The profile maps the example tags to the APFs and defines the “xmpfont” font to be used for
examples for page printers. The amount of skip before and after the example is sct in &@sk@x
to I and the amount of indention during the example is set in &@in@x to 2.

DSM#RSET

The DSM#RSET macro calls DSMEXMP if &@state is “Exmpl” indicating that an example is
being processed.

Figure Processing

The various figure tags (:FIG, :FIGCAP, and :FIGDESC) are all processed by their own APFs.
Each attribute also has its own processing macro.

The defaults for figures are established during initialization of the starter set.

DSMPROF3

The profile defines the amount of space to skip before and after the figure (&@sk@f) as 1. It
also defines the amount of indention to be performed for the body of the figure (& @in@f) as 2.

The defaults for the PLACE and WIDTH attributes are established in DSMPROF3 as “top” and
“page,” respectively.

The fonts to be used for the figure caption and figure description for page printers are also defined
in DSMPROF3.

Only the figure tag (:FIG) is mapped to its APF. The other figure tags (:FIGCAP and
:FIGDESC) are mapped to their APFs when the figure is started.

DSM#SET

This macro, called during the initialization process by DSMPROF3, sets the figure number
(&@fig#) to 1. The figure number is incremented by the figure caption processing in the
DSMFEFCAP APF.

116 DCF: GML Starter Set Implementation Guide

DSMFIG

The DSMFIG APF processes the :FIG tag by performing the following functions:

L.

Checks that the &@state symbol is “open.” If it isn’t, a message is issued and the macro
ends. A figure involves either a float or a keep structure. If &@state is not “open,” it means
that there is some other conflicting structure already going. To start the figure anyway would
cause the user to get a SCRIPT/VS error message.

Sets &@state to “F” to indicate that a figure is being processed.
Executes a break so the text of the figure will not be concatenated with the preceding text.

Saves the current formatting environment. Because we are going to make some changes to
the environment, it is easier to restore the environment than change it back.

Establishes the default parameters that control the formatting of the figure:

a. &@figframe is sct to “rule.” This establishes the default frame for the figure. It can be
overridden if the FRAME attribute is specified.

b. &@fig@in is set to &@in@f which was set to 2 in DSMPROF3. This establishes the
default indention for the body of the figure. The default can be changed by changing the
value of &@in@f in DSMPROF3.

c.. &@figfo is sct to off. This symbol is simply used as a flag within the figure macros. It
is used by the DSMFDESC APF to tell if a figure caption has been processed.

d. &@figtype is set to “fl” which stands for float. This symbol controls whether the figure
is a keep or a float. The default is “f1” because the default placement of the figure is
“top.” The valuc of &@figtype can be changed if the PLACE attribute is specified.
This symbol will be “issued” as it is expected to contain a control word.

e. &@place is set to the value of &@figplace, which was set to “top” in DSMPROF3.
The value of &@place can be changed if the PLACE attribute is specified. This symbol
will be used as a parameter on the control word that was put into the &@figtype sym-
bol (either “kp” or “f1”).

f. &@width is set to &@figwidth. The &@width symbol is also used on the .KP [Keep]
or .FL [Float] control words. The &@figwidth symbol is set in DSMPROF3 to “page”
and specifies the default width of the figure.

g. &@efigpf is set to “off” to indicate that no font change has occurred yet for the figure.
This symbol will be used to determine when to restore the previous font at the end of
the figure.

h. &@figew is set up to issue a .HR [Horizontal Rule] control word. The default frame for
a figure is a rule from left to right. The value of this symbol can be overridden if the
FRAME attribute is specified. The @figrule on the .HR [Horizontal Rule] control
word line is a rule name. The rule definition is in the profile but it has no parameters
on it. This is done because the default we chose was the SCRIPT/VS default rule which
is either .3mm thick for page printers or the current font for all other devices. The rule
definition is provided in the profile and here on the .HR [Horizontal Rule] control word
to make it easy for users to alter the rule for figures.

Processes the FRAME, WIDTH, and PLACE attributes, which may change the values of
the & @figframe, &@place, and & @width symbols. See the descriptions of DSM@FRME,
DSM@WIDT, and DSM@PLCE below for more details.

Resets left and right indention to zero.

Turns formatting and spelling verification off.

Examples and Figures 117

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.
20.
2L

22.
23.
24,
25.

26.

118

Changes the &@figtype symbol to “kp” if the &@place symbol is “inline” as a result of the
PLACE attribute processing, because the figure will be formatted as an inline keep rather
than as a float.

Starts single column mode with the .SC [Single Column Mode] control word if &@width
equals “page” as a result of the WIDTH attribute.

Skips some space if the & @place symbol is “inline” to separate the figure from the text that
surrounds it. The amount of space is in &@sk@f which is set in DSMPROF3 to 1.

Processes the control word contained in &@figtype with parameters of “on, &@place,
&@width, and order.” &@figtype will contain either “f1” (float) or “kp” (keep). &@place
will be “top,” “bottom,” or null for inline figures & @width will be “page” or “column” de-
pending on the WIDTH attribute.

For example for a :FIG tag with no attributes specified this lines resolves as follows:
.&@figtype on &@place &@width order
&@figtype on &@place page order

.&Qafigtype on top page order
.f1 on top page order

For bottom figures (&@place is “bottom”), spaces &@sk@f. This is done because bottom
figures need to be separated from the body text at the beginning of the figure. If the figure is
to be placed at the top of the page, a skip will be performed at the end of the figure to sepa-
rate it from the text which follows it.

Adjusts the word spacing and extra spacing values back to their default settings. The vertical
justification factors on the .LS [Line Spacing] control word are reset to 1.0. We just want to
be absolutely sure that the spacing within the body of the figure is not justified in any way at
all.

Begins highlight font 2.

Draws a box top from left to right if &@figframe is “box.” &@figframe will only be “box” if
the FRAME attribute was specified with a value of “box.”

Uses the &@figew symbol to generate a frame if &@figframe exists and isn't “box” and if
&@place is not “top.” This symbol will either contain a split text control word (.SX [Split
Text]) for character rules or will be a horizontal rule control word ((HR [Horizontal Rule}).
Returns to the previous font because only the frame is drawn in the highlight font.

Indents the proper amount for figures, & @in@f, which was set to 2 in DSMPROF3.

Indents right the same amount.

Sets the &@tg symbol to “f” to indicate to the DSM@IDS macro that an ID for a figure is
being processed.

Processes the ID attribute using the DSM@IDS macro.
Processes the DEPTH attribute using the .SP [Space] control word.
Maps the :FIGCAP and :FIGDESC tags to their appropriate APFs.

Starts the “figfont” font for page printers or restarts the current font (=). In the starter set,
the “figfont” font is not defined which means the body font will be used for the text of the
figure. However, using the font in this macro makes it easy for you to specify a special font
for use in figures by defining one with the .DF [Define Font] control word. The APFs will
handle the font change.

Sets the & @efigpf symbol to “on” to indicate that a font change has been made.

DCF: GML Starter Set Implementation Guide

DSMFCAP

The DSMFCAP APF processes the :FIGCAP tag. This APF numbers the figure for entry into
the list of illustrations and for figure references. Therefore, if there is no :FIGCAP tag on the
figure, the figure will not appear in the list of illustrations and cannot be referred to by the
:FIGREF tag. The DSMFCAP APF performs the following processing:

1
2
3.
4

10.

11.

12.

13.
14.

Restores the previous font,
Sets the & @efigpf symbol to “off” to indicate that the font has been restored.
Scans to get the residual text to be used for the figure caption.

Indents left and right the appropriate amount (&@fig@in). & @fig@in is defined in the
DSMFIG APF when the FIG tag is processed.

Turns formatting and spelling verification on. These had been turned off for the body of the
figure.

Conditionally spaces 1 line.

Starts a special font for page printers named “figcap.” For all other output devices, the cur-
rent font is restarted.

Calculates, in device units, the proper amount of incremental indention for the second and
subsequent lines of the caption and description. The width of the figure number, plus the
width of the word “Figure” (&LL@F), plus three times the width of the character zero
(&*w), plus the width of a period (& *period) is used.

Performs the amount of indention calculated above, plus the current indention.

Uses the amount of indention calculated as an undent to get the first line back out to where
it should be relative to the left margin.

Formats the beginning of the figure caption which consists of: the word “Figure” from the
&LL@F symbol, a required blank, and the figure number.

Inserts space to where the text of the caption should start and puts out the text of the cap-
tion itself.

Restores the previous font.
Makes an entry in the list of illustrations.

a. Pads the figure number with a leading blank if the number is less than ten to make the
numbers in the list of illustrations line up properly (at least up to figure 99).

b. Defines a local symbol to contain “part” of a split text control.

e Hex 00’s are used as the delimiters in the .SX [Split Text] control word line.

¢ The leftmost part of the split text line is made up of the word “Figure” (&LL@F),
a required blank, the figure number (& @fig#), another required blank, and the text
of the caption (& *line).

e The middle portion of the split text line is a blank and a period which creates the
dot leader.

c. Defines a line of the #FIGLIST macro to contain a .OF [Offset] control word, a control
word separator, and a .SX [Split Text] control word consisting of the local symbol de-
fined above as the first part and the &@FN#& @fig# symbol as the second part.

The #FIGLIST macro does not exist in the macro library for the starter set. It is dy-
namically constructed in the DSMFCAP APF as each figure caption is processed. The
DSMEFELIST APF, which is called to process the :FIGLIST tag, will invoke the
#FIGLIST macro which will in turn produce the actual list of illustrations. See “Docu-
ment Sections” on page 57 for more information about the DSMFLIST macro.

Examples and Figures 119

d. Saves the page number in the & @FN#&@fig# symbol. Ideally what we want to do is
include the page number in the split text control word that we just entered into the
#FIGLIST macro. However, we can’t do this directly because the page number symbol
on a .DM [Define Macro] control word line is not treated as a page number symbol and
will remain as an ampersand.

The .SE [Set Symbol} control word is special in that the page number symbol on the
right hand side is recognized as the page number symbol and is replaced with the page
number, which is what we want here. So we can capture the page number by setting a
symbol to the page number symbol. The page number is remembered in a symbol
whose name includes the figure number (& @FN&@fig#). This symbol name is what
we used as the right hand side of the .SX [Split Text] control word that we put in the
#FIGLIST macro above. The name of this symbol is unique because the symbol will
not be resolved until the #FIGLIST macro is actually processed.

e. Increments the figure counter for the next figure.

f. Sets &@fig@fo to “on” to indicate to the DSMFDESC APF that a figure caption has
been processed.

DSMFDESC

The DSMFEFDESC APF processes the :FIGDESC tag and formats the figure description. This
macro performs different functions depending on whether or not a figure caption has been proc-
essed. The DSMFDESC APF functions as follows:

1. Checks to see if the formatting environment has already been set up by the DSMFCAP
APF. The &@fig@fo symbol will be “on” only if there has been a figure caption.

2. If a caption was processed, DSMFDESC:

a. Sets the &@fig@fo symbol to “oft” for the next figure.

b. Starts the “figcap” font for page printers or restarts the current font for all other devices.

c. Puts out a continue control word, followed by a colon (:), followed by two required
blanks, followed by a continuation character. This finishes off the caption.

d. Restores the previous font.

e. Starts the “figdesc” font for page printers or restarts the current font for all other devices.

3. If there was no figure caption, DSMFDESC:

a. Restores the previous font.

b. Sets the &@efigpf symbol to “off” to indicate that the font has been restored.

c. Spaces 1 line.

d. Resets left and right indention to & @fig@in which is 2.

e. Turns formatting and spelling verification back on. These had been turned off in the

DSMFIG APF when the :FIG tag was processed.

f. Starts the “figdesc” font for page printers or restarts the current font for all other devices.

DSMEFIG

The DSMEFIG APF processes the end tag for figures (EFIG). The figure is ended by
DSMEFIG with the following processing:

1. Checks that a figure is being formatted by checking that & @state is “F.” If & @state is not
“F,” a message is issued and the macro ends because there is nothing more to do.

2. Sets the &@state symbol to “open.”

3. Restores the previous font only if the & @efigpf is “on.” If there has been a figure caption or
a figure description & @efigpf will be “off” indicating that the font has already been restored.

4. Resets left and right indention to zero.

120 DCF: GML Starter Set Implementation Guide

5. Begins highlight font 2 in preparation for ending the figure frame.
6. Ends the box if &@figframe is “box.”

7. If the frame is not a box but does exist, and the figure placement is not bottom, generates a
frame by using the control word that is in the & @figew symbol. The frame will be either a
split text control word to generate a character frame or a horizontal rule control word.

8. Restores the previous font.
9. Skips the appropriate amount (&@sk@f) if &@place is “top.”

10. Executes the control word in & @figtype with the parameter “off.” &@figtype will be either
“kp” or “f1” depending on whether the figure was inline or not.

11. Spaces conditionally if &@place is “inline.”
12. Restores the formatting environment.

13. Remaps the :FIGCAP and :FIGDESC tags to the invalid tag APF, DSM#CNTX, because
these tags are valid only within a figure.

DSM@FRME

The DSM@FRME macro processes the FRAME attribute of the :FIG tag. It is called by the
DSMFIG APF if the FRAME attribute has been specified. The DSM@FRME macro performs
the following functions:

1. Gets the first character of the parameter into a local symbol. The first character will be used
to determine if the frame is to be omitted (N), a rule (R), or a box (B).

2. Saves the parameter in &@frame.

3. Sets up the &@figew symbol to assume that a character frame is going to be generated using
a .SX [Split Text] control word. The &@figew symbol is used to actually generate the frame
for the figure. If the & @figframe symbol ends up null, the .SX will be empty.

4. Sets the &@figframe symbol to null to generate an empty split text control if the first charac-
ter is “N” for none.

5. Sets the &@figframe symbol to “rule” and resets &@figew to a horizontal rule control word
if the first character is “R” for rule.

6. Sets the &@figframe symbol to “box” if the first character is “B” for box. For figures with
box frames, the indention to be applied to the body of the figure must not be allowed to be
zero. Ifitis 0, it is reset to 2. If the indention were allowed to be zero, the figure text would
be overlayed by the vertical rules of the box.

DSM@PLCE

The PLACE attribute of the :FIG tag is processed by the DSM@PLCE macro. It is called by
the DSMFIG APF only if the PLACE attribute has been specified on the :FIG tag. The tech-
nique used in this macro is discussed in “Special Techniques” on page 13.

The default placement for a figure is “top” and is established in the profile, rather than in this
macro. If the attribute value is not “top,” “bottom,” or “inline,” the macro ends because these
are the only values recognized.

The &@place symbol is set to either “top,” “bottom,” or “inline” depending on the value of the
attribute.

Examples and Figures 121

DSM@WIDT

The DSM@WIDT macro processes the WIDTH attribute of the FIG tag. It is called by the
DSMFIG APF. The technique used in this macro to validate the attribute value is discussed in
detail in “Special Techniques” on page 13. The DSM@WIDT macro performs the following
processing:

1. Checks to see if the uppercase of the attribute value is “PAGE” or “COLUMN.” If so, the
& @width symbol is set to lowercase “page” or “column” and the macro ends.

2. Assumes that the value has been given in horizontal space units if the value is neither place
nor column.

3. Sets &@width to “page” if the width given is greater than the current column line length
(&$CL); otherwise & @width is set to “column.”

H#FIGLIST

The #FIGLIST macro formats the list of illustrations. Only those figures that have figure cap-
tions will be listed, as these are the only ones that are numbered and labelled.

This macro is dynamically built by the DSMFCAP APF one line at a time for each entry. It is
called by the DSMFLIST APF which processes the :FIGLIST tag.

It contains a .OF [Offset] control word and a .SX [Split Text] control word for each entry. The
split text control word contains a symbol that resolves to the page number of the figure.

DSMFLIST
The DSMFLIST APF formats the list of illustrations. It processes the :FIGLIST tag. This
macro is described in “Document Sections” on page 57.

DSM#RSET

The DSM#RSET macro calls DSMEFIG if &@state is “F” indicating that a figure is still being
processed. This macro is described in “Miscellaneous” on page 163.

Modifications to Figures and Examples

Changing Figure Defaults

The :FIG tag has several defaults which are set in the profile.
The default placement for figures is “TOP.” The default width of figures is “PAGE.”

.gs args 123456 123 top page
.8s vars Qolistnest @ulistnest @figplace Q@figwidth

To change these defaults, for example, to BOTTOM and COLUMN, just change the .GS [GML
Services] ARGS control word to say “bottom” instead of “top” and “column” instead of “page.”
Make sure you specify these values are in lowercase because that’s the way the figure macro is
expecting them.

The font used for drawing the rules (or the weight of the rule for page printers) is controlled by

the .DR [Define Rule] @figrule line in the profile. Changing this is discussed in “Modifying
Starter Set Initialization” on page 36.

122 DCF: GML Starter Set Implementation Guide

The default spacing around figures and the indention of the body of the figure is controlled by the
value of &@sk@f and &@in@f which are set in the profile. How to change these is also dis-
cussed in “Modifying Starter Set Initialization” on page 36.

Moving the Figure Caption Outside the Frame

The style of figure chosen places the figure caption and description inside the figure frame. You
might want to change this to put the caption and description outside the frame. The only thing
that is tricky about ending the figure frame is whether to end it with the :FIGCAP tag, with the
:FIGDESC tag (when there’s no :FIGCAP), or with the :EFIG tag (when there’s no :FIGCAP
or :FIGDESC).

The easiest way to handle all three possibilities is to take the lines that end the frame out of
DSMEFIG and put them in a separate new macro. Then use flags to tell when we want to end
the frame:

1. Initialize a flag in the DSMFIG APF to show that the frame hasn’t been ended yet.

.se @endframe = off

2. Find the lines in DSMEFIG that end the frame. These are:

.in
Lir
.bf hi2
.1f &@figframe eq box .bx off
.th .go @frdone
.if &@place ne bottom .an &E' &@flgframe eq 1 .an /&@figframe ne /box
.th &R@figcw
.@frdone

. pf
3. Remove these lines and put them into a new APF named DSM@END.

4. Add one more line to the end of the DSM@END APF which sets the flag to “on” to indi-
cate we ended the frame.

.se @endframe = on

5. Fix up the DSMEFIG APF to only call DSM@END when the flag is off,

.1if &dendframe eq off .dsm@end

This test and possible call to DSM@END should go where the original lines were in
DSMEFIG.

6. Fix up the DSMFCAP APF to call DSM@END before any other processing.

. dsm@end

7. Fix up the DSMFDESC APF to call DSM@END only if there was no :FIGCAP tag. The
DSMFDESC APF is actually divided into two parts. The first part is used when there has
been a figure caption and the second part is used when there was no caption. The call to
DSM@END belongs only in the second part because if there was a caption the frame will
have already been ended.

Examples and Figures 123

Therefore, add

. dsm@end

right after the label “format.”

Now test it and make sure it works!

Changing the Example Defaults

The formatting of examples is controlled by several things that are set up in the profile. The
&@sk@x and &@in@x symbols are defined in DSMPROF3 and control the amount of space
skipped before and after the example and the amount of indention applied to the text of the ex-
ample. Changing these values is described in “Modifying Starter Set Initialization” on page 36.
We have also chosen to format the body of the example in a special font, “prestige elite.” This
font is defined with a name of “xmpfont” under the font definition section for the 4250 printer.

.df xmpfont type('prestige elite'

If you wish to change the font used for examples simply change the font definition:

.df xmpfont type('courier' expanded)

If you want examples set in the body font, simply delete the definition of the “xmpfont” font or
comment it out:

.*df xmpfont type('prestige elite')
For page printers, we have also chosen to format the body of the example in a special font—
“prestige elite” for the 4250 printer and “prestige” for the IBM 3820 Page Printer and 3800 Print-
ing Subsystem Model 3. These fonts are defined with a name of “xmpfont” in the profile under

the font definition sections for the 4250 printer, 3800 Printing Subsystem Model 3, and IBM 3820
Page Printer.

.df xmpfont type('prestige elite’
.df xmpfont type('prestige’

If you wish to change the font used for examples simply change the font definitions.

.df xmpfont type('courier' expanded)
.df xmpfont type('courier')

If you want examples set in the body font, simply delete the definitions of the “xmpfont” font or
comment them out.

124 DCF: GML Starter Set Implementation Guide

Quotes, Notes, Footnotes and Highlights
Quote Processing

DSMPROF3

The profile defines various symbols for use in formatting quotations (:Q) and long quotations
(:LQ). These include &@sk@q, the skip value before long quotations, and &@in@gq, the in-
dention for long quotations. It also defines the &@oquote symbol to contain the approprate
open quotation marks for each level of quotation. The &@cquote symbol contains the close
quotation marks. These symbols have a special definition for page printers because there are
typographical quotation marks available for these devices. This means that the quotation marks
typed in directly by the user aren’t the same characters that the quotation tags use. This can
produce unusual looking results.

The lengths of the &@oquote and & @cquote symbol values place a restriction on the number of
nested quotations you can have and still get quotation marks. However, because the limitation is
14 levels of quotations going at once, this is not a serious restriction for most users.

Additionally, four more symbols are defined:

&oq - for single open quote marks
&oqq - for double open quote marks
&cq - for single close quote marks
&cqq - for double close quote marks

These are provided for page printer users who wish to be able to make the correct typographical
quotation marks throughout their documents.

The profile also maps the quotation tags to their respective APFs.

DSMH#SET

The DSM#SET macro sets the footnote number to 1 during the initialization process.

DSMQUOTE

The :Q tag is processed by the DSMQUOTE APF which produces the appropriate opening quo-
tation marks (single or double depending on the nesting level). The DSMQUOTE APF performs
the following processing:

1. Substitution is turned off so that we can substring the quotation mark out of the &@oquote
~ symbol.

2. The quotation nesting level is tracked in the &@nest@q symbol. This symbol is incre-
mented each time a :Q tag is processed and is decremented by DSMEQUQOT each time a
:EQ tag is processed.

Quotes, Notes, Footnotes and Highlights 125

3. The &@oquote symbol, which is defined in DSMPROF3, contains a string of single and
double quotation marks. The appropriate quotation mark is selected from &@oquote using
the nesting level. For example, if &@nest@q is 1, the first character is sclected from
&@oquote and this is a double quotation mark. When the nesting level is 2, the second
character is selected which is a single quotation mark.

4. Substitution is turned back on.

5. The quotation mark is inserted into the document.

DSMEQUOT

The end quotation tag (:EQ) is processed by the DSMEQUOT APF which performs the follow-
ing functions:

1. If there are no quotations open, issues a message and the APF ends immediately because
there 1s nothing to do.

2. Turns substitution off so that we can substring the quotation mark out of the &@cquote
symbol.

3. Selects the proper closing quotation mark out of the &@cquote symbol using the nesting
level (&@nest@q) to pick the correct one.

4. Decrements the nesting level symbol & @nest@q by one.

5. Turns substitution back on.

6. Inserts the ending quotation mark into the document.

DSMLQUOT

The DSMLQUOT APF processes the :LQ tag. Long quotations are processed very much as if
they were a level of list nesting. This is because of the need to coordinate the indention between
lists and long quotations as they can occur inside of each other. The following processing is per-
formed:

L.
2.

126

Performs a conditional skip (&@sk@q).

Saves the current list control symbol values in the & @nest@l symbol array. These symbols
are used for nesting and denesting lists and quotations. Some of the symbols are first put in
the local &*h symbol simply because all of the symbol names won't fit on the next line
which sets the next element of the &@nest@l symbol array. See the discussion of list con-
trol symbols in “List Processing” on page 97 for more details on the &@nest@l] symbol.

Tests &@nest@l to determine if there are any open lists or open long quotations. The
&@nest@] element counter is greater than one if there are any lists or quotations in progress.
If the &@nest@] element counter is greater 1, we have to do a few things before we can set
up the proper indention for the long quotation.

The indention for each level of list and for long quotations is kept in two parts—the base
indention prior to starting the list or quotation and the incremental indention (&@in@]1) at-
tributable to the list or quotation. To achieve the proper indention, both values must be
used. The &@in symbol contains the amount of base indention for what is already open
and &@in@! contains the incremental amount for each level of list (usually 4). Since we are
starting a new level of indention for the long quotation, we need to get &@in and &@in@1
incremented to indicate the appropriate values for the long quotation.

The appropriate new value for the &@in symbol is the sum of the current value of &@in
and &@in@1. The easiest way to get this sum is to actually perform the indention and use
the value of &$IN. Then &$IN is used to reset the &@in symbol to the correct indention
for the current long quotation.

DCF: GML Starter Set Implementation Guide

4. Sets the control symbols for lists and long quotations as follows:

&@itemj# This is the item counter. It is set to zero for long quotations.

&@ltype 'This indicates the current type of list or quotation that is open. It is set to “q” to
indicate a long quotation is in progress.

&@hi@l This symbol controls the highlight level for the terms in the current list. For long
quotations it’s not needed so it is set to highlight level 0.

& @hi@hd This symbol controls the highlight level for the headings in the current list. For
long quotations it’s not needed so it is set to highlight level 0.

&@in This is the base indention value in effect prior to starting the long quotation. It is
set to the value of &$IN calculated in device units®2.

&@in@! This is the incremental indention valuc for the long quotation. It is set to the
value of &@in@q calculated in device units®2. &@in@q is defined as 3 in
DSMPROF3. 7

& @break This symbol indicates, when non-null, that the break option for definition lists
has been specified. It is not used for processing long quotations.

5. Adjusts the long quotation formatting environment which consists of a left and right in-
dention and possibly a font change. The left indention consists of the base indention (& @in)
plus the incremental indention for long quotations (&@in@q). The right indention is also
set to &@in@q which is set to 3 in the profile.

A long quotation font, which is slightly smaller than the body font, exists only if we are for-

matting for page printers. For page printers the “Igfont” font is started, otherwise the current
font is restarted.

DSMELQU

The DSMELQU APF processes the end tag for :LQ as follows:

1. Restores the previous font. The font is really only changed if we're formatting for a page
printer. In other cases, the current font has been restarted and is now restored.

2. Performs a conditional skip (&@sk@q).

3. Decrements the right indention by the amount we incremented it when we started the long
quotation (&@in@q).

4. Checks the &@nest@] element counter to make sure it indicates that a long quotation is
open. If the &@nest@! element counter is zero, it means that no long quotations or lists are
open and the macro ends because there is nothing more to be done.

5. If &@nest@] indicates that only the long quotation is open (that is, it is 1), ends the long
quotation by:

a. Setting the &@nest@] counter back to zero

b. Restoring the left indention to what it was previously, which is in the & @in symbol.

c. The macro ends.

6. If the long quotation occurred within either another long quotation or within a list, restores

the environment to where we were before.

a. The main list control symbol values are restored from the last elemient in the & @nest@1
array.

32 Device units have to be used here to avoid rounding errors when formatting for page printers.

Quotes, Notes, Footnotes and Highlights 127

The nesting level (&@nest@{0)) is decremented by 1. It was incremented when we
started the long quotation as these are kept track of very much like lists are. See the
discussion of the list control symbols in “List Processing” on page 97 for more details
on these symbols and what they do. The values being restored here were saved in
DSMLQUOT when the long quotation was started. They are simply being restored
here.

The &@id@]1 symbol, which contains the form for the list item identifier, is reset based
on the level of nesting for the particular list type being restarted. For example, if the
second level of unordered list is being started, the & @id@1 symbol will be set as follows:

.se @1d@1l '&V'&Aid@1@&A1ltype. &*a. . '
.se @id@1 '&V'&Rid@l@u&*a. .’
.se @id@1 '&V'&@id@1@u2.'

where &*a will be set to the level of list being started, &@ltype will be a single letter
indicating the type of list. The value of &V'&@id@I@u2 will be a defined variable
name whose value will be something like “&X’db.” See the discussion of the defining
the list item identifiers in “Starter Set Initialization” on page 19.

The correct left indention is restored using the &@in and &@in@l1 symbols. The
&@in symbol contains the base indention in effect when the list was started and the
&@in@! symbol contains the incremental indention attributable to the current list.

The &@li@tab symbol is restored to contain the current indention value for the list
items. This symbol will be used for list items to insert space to where the text of the
item should begin after the identifier is inserted.

DSM#RSET

This macro is used to ensure that there is no footnote, list, quotation, title page, figure, or exam-
ple currently in progress. If there is, DSM#RSET calls the appropriate APF to end the structure.
In the case of inline quotations, where & @nest@q is non-zero indicating that inline (short) quo-
tations are open, DSM#RSET calls DSMEQUOT to close them. Long quotations are included
in &@nest@] element counter which indicates the level of list nesting. If the & @nest@] element
counter is non-zero, DSM#RSET calls DSMELIST which performs the necessary action to close
the long quotation or list that is open.

Notes

DSMINOTE

The DSMNOTE APF processes the :NOTE tag as follows:

1. Skips as for a paragraph (&@sk@p).

2. Begins highlight level font 2.

3. Prints “Note:” followed by a colon.

4. Restores the previous font.

5. Produces the required blank. The required blank is added after the font has been restored to
avoid getting an underscored blank in case the definition of the highlight level 2 font is
changed to include underscoring.

128 DCF: GML Starter Set Implementation Guide

Footnote Macvros

DSMPROF3
The profile, DSMPROF3, initializes the following values for footnotes:

1. Sets &@sk@n to 1. This symbol determines the amount of white space preceding the foot-
note.

2. Defines a rule named “@fnldr” to be used for the footnote leader.
3. Sets &@fnldrlen to 16. This symbol determines the length of the footnote leader rule.

4. Determines the style of superscripting based on the physical device being used (&$PDEV)
and puts it in the &@suprstyl symbol. The three styles supported are:

e ‘“parens” to produce parentheses,
e “shifts” to use a small font shifted up, and
¢ ‘“nums” to use the available superscript numbers.

5. Maps the footnote tags to their respective APFs.

DSM#RSET

The DSM#RSET macro is used to ensure that there is no footnote, list, quotation, title page,
figure, or example currently in progress. If there is, it calls the appropriate APF to end the struc-
ture. In the case of footnotes, where & @state is found to be “N,” it calls DSMEFTNT.

DSM#STYL

The page layout style, which effects the way footnotes are formatted, is established by the
DSM#STYL macro. For footnotes, this macro performs the following actions:

1. Sets &@Ml and &@In2 (left and right indention amounts for footnotes) depending on col-
umn layout:

¢ For one and two column formats, &@fnl and &@fn2 are both set to zero.

e For offset style, &@fnl is set to the beginning column position so that the footnote will
line up with the offset text of the page and &@fn2 is set to 0.

2. Defines the footnote leader for all formats by:
a. Spacing 1 line.

b. Drawing a horizontal rule using the @fnldr rule defined in DSMPROF3. The rule starts
at the left indention (&@fn1) as calculated above, and extends for & @fnldrlen, which is
defined in DSMPROF?3 to be 16.

DSMFTNT

The :FN tag is processed by the DSMFTNT APF in the following way:
1. Checks that &@state is “open” indicating that there are no figures or examples under con-

struction. If there are, a message is issued and the APF ends immediately. We can’t process
a footnote while we're inside a figure or example because these are keeps or floats. To do so

Quotes, Notes, Footnotes and Highlights 129

10.

11.

would cause a SCRIPT/VS error message about keeps, floats and footnotes being mutually
exclusive.

Sets & @state to “N” to indicate a footnote is in progress.
Checks the attribute stack to see if an ID attribute was specified.

If none was given, assumes that the footnote reference goes right here in the text and the
DSM#SUPR macro is called with the footnote number as a parameter. This produces the
footnote reference in the text.

Issues the .FN [Footnote] ON control word to start the footnote.
Spaces & @sk{@n. This symbol is set in DSMPROF3 to 1.

Starts the footnote font (“fnt”) or restarts the current font. The footnote font, “fnt,” exists
only for page printers. '

Sets left indention for the footnote number to &@fnl. This symbol is set by DSM#STYL
based on the column layout being used. It is zero for one- and two-column layouts and
approximately 13 for offset style.’

Sets the &@tg symbol to “n” to indicate to the DSM@IDS macro that a footnote ID is
being processed.

If an ID attribute was specified, the DSM@IDS macro is called to process it. See “Cross-
References” on page 147 for details on ID processing.

Sets up the incremental left indention and the right indention for the footnote text:

a. If the superscripts are going to be produced by changing to a smaller font and shifting
the baseline up, the calculations must be done in the smaller font. This style of super-
script processing is indicated by the &@suprstyl symbol which will be “shifts.” The “su-
per” font is started for page printers and the current font is restarted for all other devices.

b. The &@fnis symbol is used in the DSM#SUPR macro to insert space to the location of
the beginning of the footnote text. Its value is based on the current indention (&$IN)
plus four figure spaces, calculated in device units. The existence of this symbol, & @fnis,
is also used by the DSM#SUPR macro to tell whether it is creating a footnote reference
or a footnote number.

c. Right indention is set to the value of &@fn2 which is set by the DSM#STYL macro.
This will be zero for all column styles.

d. The next step is to calculate the proper indention for the second and subsequent lines of
the footnotes. This is calculated to be four figure spaces in the superscript fonts.

e. The previous font is then restored.

f. A delayed incremental indention is set to the value that was calculated above. This will
control the placement of second and subsequent lines of the footnote.

g. The DSM#SUPR macro is called with the footnote number as a parameter.
h. The footnote number (& @fn#) is incremented by 1.

i.. The &@fnis symbol is undefined because we no longer need it. This symbol is used by
DSM#SUPR to tell if a footnote reference or a footnote number is to be created. We
need it to be undefined so that subsequent calls to DSM#SUPR by DSMFNREF will
be handled correctly.

33 The exact amount varies by device type.

130

DCF: GML Starter Set Implementation Guide

DSM#SUPR

The DSM#SUPR macro produces both the superscript footnote reference and the footnote num-
ber. It is called by both DSMFNREF and DSMEFTNT with a footnote number as a parameter.

There are three styles of superscription supported by the starter set:

¢ For terminals, no real superscripts are available so the best we can do is enclose the number
in parentheses. This style is labelled “parens.”

e For 1403 and 3800 Model 1 output, real superscript numbers are used. This style is labelled
“nums.”

¢ For page printers, superscripts need to be constructed by changing to a small font and shift-
ing the baseline up. This style is labelled “shifts.”

The superscript style to be used is determined in DSMPROF3 based on the physical device
(&$PDEYV) being used. It is stored in the &@suprstyl symbol.

The DSM#SUPR macro performs the following processing:
1. Substitution is turned off.

2. The appropriate section of the macro is branched to to produce the style of superscript speci-
fied in &@superstyl. This can be “nums,” “parens,” or “shifts” depending on the device.

nums For the 1403 and 3800 Model 1, each digit of the footnote number is converted to the
appropriate hexadecimal code to print the number as a superscript. In other words, a
“1” becomes a hex “bl,” a “2” becomes a hex “b2,” and so on. This is done using
the . TR [Translate Character] control word.

1. Defines the translations to convert numbers to superscripts.
2. Formats the number.

3. Cancels the previously defined translations.

4

Checks the existence of &@fnis. If this symbol exists, it indicates that we are
producing a footnote number rather than a footnote reference. In that case, we
need to insert some space after the number to position to where the text should
start. The position is in &@fnis so all we have to do is a .IS [Inline Space] con-
trol word.

parens For terminals, the best we can do for superscripting is put the number in parentheses.
This is done as follows:

1. Symbol substitution is turned back on.

2. I the &@fmnis symbols does not exist it means that we are generating a footnote
reference number. In that case, we simply put the parameter back out with pa-
rentheses around it and end the macro.

3. If &@ifnis does exist, we are generating a footnote number and we don’t use the
parentheses. Literal mode is used just to be safe.

4. We then insert space to where the text should start, and end the macro.

| shifts Creating superscripts for page devices is a little more complicated. We need to change
fonts and shift the baseline up to print a smaller font at the top of the line so that the
top of the number lines up with the top of the normal letters on the line. The calcu-
lations are as follows:

1. Substitution is turned back on.

2. First, we get the vertical height of the current font. This is 1 vertical em=-space.

Quotes, Notes, Footnotes and Highlights 131

3. Then we switch to the superscript font (“super”) which was defined in the profile
as a 6 point font.

If the “super” font is not defined, we restart the current font. This sequence can
only occur if the profile has been modified to not define a font named “super” or
has used the “shifts” superscript style for a device that doesn’t have a “super”
font defined.

4. We then get the vertical height of the characters in that font.

5. The difference between the two heights is the amount we will need to shift the
baseline up.

6. The difference between the two heights could be zero or less than zero. This can
happen only if the font definitions have been changed. However, it makes pro-
ceeding difficult because we are no longer working with a superscript font that is
smaller than the normal font. In this case, we

a. Restore the previous font
b. Produce the footnote number in parentheses
c¢. End the APF.

7. If the &@fnis symbol does not exist, it means we are producing a footnote refer-
ence rather than a footnote number. In that case, we

a. Shift the baseline up the amount we calculated above.

b. Produce the number continuing it with what preceding.

c. Shift the baseline down the amount we shifted it up. We don’t simply re-
store the baseline because it is possible that the baseline was not at 0 when
we shifted it up.

d. Restore the previous font.

e. [End the APF.

8. If the &@fnis symbol does exist we are producing a footnote number. This is
done in the following way:

a. Shift the baseline up the amount we calculated above.

b. Produce the number in literal mode. Literal mode is used here to prevent
the characters being formatted as the superscript from being interpreted by
SCRIPT/VS as control characters of any sort.

c. Shift the baseline down the amount we shifted it up. We don’t simply re-
store the baseline because it is possible that the baseline was not at 0 when
we started. ;

d. Restore the previous font.

e. Insert the required space to position to where the text of footnote should
start. The position is in the &@fnis symbol which was set by the

DSMFTNT macro.
DSMEFTNT
The DSMEFTNT APF ends formatting of a footnote when it processes the :EFN tag in the fol-
lowing way:
1. Checks that &@state is “N” indicating that a footnote is in progress. Issues a message and

132

ends immediately, if & @state is not “N.”
Sets & @state to “open.”

Restores the previous font because a font change to either a smaller font or the current font
has been done in the DSMFTNT APF.

Uses the .FN [Footnote] OFF control word to end the footnote definition.

DCF: GML Starter Set Implementation Guide

Highlights

DSMPROF3 defines all of the fonts used in the starter set, including the highlighting fonts which
are named hi0, hil, hi2, and hi3. The definition used depends on the device being used. In the
case of page printers, the highlight font definitions are all “type” defined fonts, meaning they in-
herit some characteristics from the current font at the time they are used. For example, highlight
level 2 is defined as bold for page printers. In a footnote, which is in 9-point, we get a 9-point
bold font when we use highlight level 2, but in the body of the document we get 10-point bold.

Because highlight level 2 always changes to the bold version of the current font, and it is possible
that there is no bold version available, there are 3 alternate highlight fonts defined. The alternate
highlights (althil, althi2, and althi3) use only uppercase and underscore definitions that will al-
ways work. They are used whenever the three main highlight fonts are not available.

DSMCIT

The :CIT tag is processed by the DSMCIT APF. This macro starts highlight level font 1 or
alternative highlight level font 1 if highlight level 1 font is not isn't available.

DSMECIT

The :ECIT tag is processed by the DSMECIT APF which ends highlighting by restoring the pre-
vious font.

DSMHPO

The DSMHPO APF begins the highlight level 0 font for the :HP0 tag. There is no alternate
highlight font for highlight level zero because the “hi0” font is defined to be the normal body font
which must always exists.

DSMHP1

The DSMHP1 APF processes the :HP1 tag by beginning the highlight level 1 font or the alter-
nate highlight level 1 font if the highlight level 1 font is not available.

DSMHP2

The DSMHP?2 tag processes the :HP2 tag by beginning the highlight level 2 font or the alternate
highlight level 2 font if the highlight level 2 font is not available.

DSMHP3

The DSMHP3 tag processes the :HP3 tag by beginning the highlight level 3 font or the alternate
highlight level 3 font if the highlight level 3 font is not available.

DSMEHP

The DSMEHP APF, which processes the :EHPO, :EHPI1, :EHP2, and :EHP3 tags, ends high-
lighting by restoring the previous font.

Quotes, Notes, Footnotes and Highlights 133

Modifications to Quotes, Notes, Footnotes and Highlights

Changing the Footnote Leader

The footnote leader is defined in the DSM#STYL macro which is called from DSMPROF3 dur-
ing initialization. Because the DSM#STYL macro is also called when changing document
sections (such as going from front matter to body) it is difficult to override the footnote leader
from within a document. It really needs to be changed in the DSM#STYL macro. For this
reason, the symbols for the most important footnote leader parameters are defined in
DSMPROF3 to make it easier to change them.

To change the length of the footnote leader horizontal rule, change the value of & @fnldrlen in
DSMPROF3:

.se @fnldrlen = 16
To change the size of the rule used, change the definition of the @fnldr rule that is in the profile:
.dr @Qfnldr w .2mm

To completely change the leader, we will have to modify the DSM#STYL macro. For example,
if we wanted to skip 2 lines instead of 1 and use a row of asterisks, we would need to change the
DSM#STYL macro to contain the following:

... fnldr
. fn leader
.sp 1

aleatentectantonlntoatoats
IR IWWIVRW

. fn off

Printing Footnotes at the End of a Chapter

Normally, footnotes are printed on the page on which they occur. Some applications, however,
require the printing of footnotes to be deferred until the end of a chapter. This can be accom-
plished by putting footnotes into a named section area and placing that area at the end of each
chapter.

The .DA [Define Area] control word can be used to define an area in which we can collect the
footnotes. An area is simply a column that can be placed anywhere on the page. See the chapter
entitled “Placing Text in Named Areas” in Document Composition Facility: SCRIPTIVS Text

Programmer’s Guide for more information on areas. The following control word should be
placed mnto DSMPROF3:

.da fnote@a 0 section width &dh'&S$LL..dh

The above .DA [Define Area] control word defines a section area named frote@a. We did not
specify a horizontal displacement for this area, so it will be placed starting at the left margin. We
have specified the width to be the current line length as defined with the .LL [Line Length] con-
trol word. If we are in a two column format, we want the footnotes to extent across both col-
umns, not just the first one.

We also need to modify the DSMFTNT APF to collect the footnotes in the area. The following
line should replace the .FN [Footnote] ON control word in the DSMFTNT APF:

.ar fnote@a on

134 DCF: GML Starter Set Implementation Guide

We also need to modify the DSMEFTNT APF to close the area at the end of the footnote text.
The following control word should replace the .FN {Footnote] OFF control word in the
DSMEFTNT APF:

.ar off

The above two changes will cause the footnotes to be collected in an area. The next step is to get
the area placed at the end of the chapter.

How do we know when we are at the end of a chapter? A head level 0 or head level 1 indicates
the end of a chapter and thc beginning of a new onc. The DSM#DUPL macro is called at the
start of the DSMHEADO and DSMHEAD!I APFs when the next chapter or part is started. If
there are footnotes to be placed, we need to eject to a new page and then print the footnotes.
The &ad” attribute can be used to determine if the area contains any text. We may also want to
put out a heading for the footnotes. We will assume the text for the heading is in a symbol
named &LL@Ftnt. Here’s what the DSM#DUPL macro looks like when we are through:

.if &$PN eq 0 .me

. £1 dump

.if &ad'fnote@a ne 0

.th .pa nostart

.th .h2 &LL@Ftnt

.th .ar put

.* DUPLEX - EJECT TO EVEN PAGE. NOT DUPLEX - REMOVE THE EJECT LINE
.dm dsm#dupl(&SLNUM.) off &SCW..se *a = &SLNUM + 20

.dm dsm#fdupl(&SLNUM.) off &S$SCW..if yes eq no .dm dsmjfdupl(&*a.) off
.1f SYSPAGE eq ODD .pa

. pa nostart

We need to make sure the footnotes for the last chapter of the document are also printed. We
can accomplish this by placing the same control words we added to the DSM#DUPL macro at
the beginning of the epifile in DSMPROF3. Here’s what the epifile in DSMPROTF3 looks like
when we are through:

.if &ad'fnote@a ne 0

.th .pa nostart

.th .h2 &LI@Ftnt

.th .ar put

.if &E'&SYSVARW ne 0 .an &Qlastpass eq yes .dsmffwrit
.if &SYSVARX eq yes .an &Q@lastpass eq yes .dsmffxlst

We also need to define the symbol & LL@Ftnt in the DSM#SETS macro. This symbol is used
in the head level 2 that prints out at the top of the footnote page. The following line needs to be
added to the DSM#SETS macro:

.se LIL@Ftnt 'Footnotes

Using a Hanging Indent for Notes

The :NOTE tag does not normally perform any indention at all. To indent notes to look like
this:

Note: This is what a hanging
note would look like if
we made the following
change to the
DSMNOTE APF.

Quotes, Notes, Footnotes and Highlights 135

Some changes need to made to the DSMNOTE APF.
The DSMNOTE APF looks like this:

. sk &@sk@p

.bf hi2
&LI@Note. : &SCONT
.pf

&S$RB. &$CONT

To change this to produce a hanging indent, all we need to do is add an incremental indention
delayed for one line. The indention needs to be incremental because we don’t want to be con-
cerned with whether or not there is any indention at the time of the note. The indention is de-
layed for one line so that the “NOTE:” line will not be indented. The amount of the indention
must be calculated as the width of the word “Note,” the colon, and the required blank.

To calculate the indention, we must first define a symbol to be a colon. We have to do this
because using a colon directly in the width calculation doesn’t work because it’s a special charac-
ter. Then we simply add up the device units of the width of the various pieces and use this value
in the .IN [Indent] control word.

. sk &@sk@p
.bf hi2
.se ¥c =

.se @in@note = &DH'&W'&LL@Note + &DH'&W'&*c + &DH'&W'&S$RB
.in +&@in@note.dh after 1

&LL@Note. : &§CONT

.pf

&SRB. &$CONT

This change to the DSMNOTE APF will causes the second and subsequent lines of the note text
to be indented the proper amount. However, it is now necessary to create an end tag for :NOTE
in order to cancel the indention for the next text item is processed.

This means the .AA [Associate APF] control word line in DSMPROF3 for the :NOTE tag needs
to be changed to include the name of an APF to process the end tag. Let’s assume the APF will
be named “ENDNOTE.” The new .AA [Associate APF] line is shown below:

. aa note dsmnote (noatt) endnote
The ENDNOTE APF simply needs to end the indention.

.in -&@in@note. dh
Note that we have decremented the indention rather than resct it to zero. This is because we
don’t know whether it was zero when we started or not. If we decrement it the same amount we

incremented 1t in the start tag then we don’t have to be concerned with any indention which may
have been going at the time of the :NOTE tag.

136 DCF: GML Starter Set Implementation Guide

Indexing

Index Tag Macros

The processing of ID attributes and cross references for the index tags is slightly different from
other types of cross references. Therefore, it is discussed here, rather than in the chapter on cross
referencing. The cross referencing of index ids is an important part of processing the index tags
themselves. For other types of cross referencing, the cross reference capability is separate from
the tags themselves and therefore the discussions can be separated.

The tag to APF mappings for all of the index tags is shown in Figure 8 on page 29. These APFs
are discussed in detail here.

DSMINDEX

The DSMINDEX APF processes the :INDEX tag and formats the index in the following man-
ner:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
“Miscellaneous” on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See “Miscellaneous” on page 163.)

3. Sets &@shead to the &LL@Index symbol whose value is “Index.” The & @shead symbol is
used in the running footing.

4. Defines an IEH macro to process the internally generated .IE [Index Entry] H control words.
All the IEH macro does is call the DSMIEH macro passing along the control word parame-
ters.

5. Loads the GML index header macro (DSMIEH) from the library. This is done because we
are going to turn the library search for macros off entirely. If we didn’t explicitly tell
SCRIPT/VS that the DSMIEH macro was in the library, SCRIPT/VS wouldn’t be able to
find the macro.

6. Saves the current formatting environment because we’re going to make some changes to it
and it will be easier to restore the environment than change it back.

7. Calls DSM#STYL to get a two column layout.

8. Turns formatting style to “left” as we don’t want any horizontal justification to occur within
the index.

9. Turns library look-up for macros off. This is done for performance reasons. Searching the
library for symbols and macros is very costly, if it turns out to be a control word, as it usu-
ally is with index processing. Since we know there are no symbols that need to be “fetched”
for index processing, we simply turn it off.

Indexing 137

10. Uses the .IX [Index] control word to format the index. The title of the index is obtained
from the &LL@Index symbol which is defined in the DSM#SETS macro during initializa-
tion.

11. Enables the library scarch for macros after the index is completely formatted.

12. Restores the previous environment.

DSMINDX1

DSMINDXI1 processes the :I1 tag in the following manner:

1. Scans to get the residual text for the tag into & @itl.

2. Sets &@ilevel to 1 to indicate to the attribute processing macros that a first level index entry
tag is being processed.

3. Sets &@it2 and &@it3 to null.

4. Sets &*t4 to the page number symbol, &$PS. This is how the page number gets into the
index. The user can specify his own fourth level entry to be something other than page num-
ber, by using the PAGEREF attribute.

5. Sets &@tg to “i” to indicate to the DSM@IDS macro that an id for an index entry tag is
being processed..

6. Processes the PG or PAGEREF attribute with DSM@PGRF. This may result in &*t4, the
fourth index term, being redefined to something other than the page number symbol. It may
also cause the &*x symbol to be set to “start,” “order” or “end.”

7. Processes the ID attribute with DSM@IDS.

8. If there was no text on the tag (&@itl has a length of 0), issues an error message and no
index entry is created.

9. If the entry exists, sets up the .PI [Put Index] control word such that &*x can provide addi-
tional control word parameters. See “DSM@PGREF” on page 144 for details. The
hexadecimal “01”s are the delimiters on the .PI [Put Index] control word line and the index
term itself is in &@it1.

DSMINDX2

DSMINDX2 processes the :12 tag in the following manner:

1. Moves the current first level index term from &@itl to &#itl

2. Scans to get the residual text for the tag into &@it2.

3. Sets &@ilevel to 2 to indicate to the attribute processing macros that a second level index
entry tag is being processed.

4. Sets &@it3 to null.

5. Sets &*t4 to the page number symbol, &$PS. This is how the page number gets into the
index. The user can specify his own fourth level entry to be something other than page num-
ber, by using the PAGEREF attribute.

6. Sets &@tg to “i” to indicate to the DSM@IDS macro that an id for an index entry tag is
being processed.

7. Processes PG or PAGEREF with DSM@PGRF. This may result in &*t4, the fourth index
term, being redefined to something other than the page number symbol. It may also cause
the &*x symbol to be set to “start,” “order” or “end.”

138 DCF: GML Starter Sct Implementation Guide

Processes the REFID attribute using the DSM@RIDI macro. This attribute process may

8.
change the first level term.

9. Processes the ID attribute with the DSM@IDS macro. ID processing is described in detail
in “Cross-References” on page 147.

10. If there was no text on the tag (&@it2 has a length of 0), or the first term (& @it1) is miss-
ing, issues an error message and no index entry is created.

11. If the entry exists, sets up the .PI [Put Index] control word such that &*x may contain addi-
tional control word parameters. The hexadecimal “01”s are the delimiters on the .PI [Put
Index] control word line and the index term itself is in &@it2. The first index term is in
&#it] and the fourth term or the page number symbol is in &*t4.

DSMINDX3

DSMINDX3 processes the :13 tag in the following manner:

1. Moves the current first level index term from &@itl to &#itl and moves the current second
level index term from &@it2 to &#it2. These two symbols, &#itl and &#it2 are the ones
actually used in generating the index entry. If there is a REFID attribute on the :I3 tag, it
may override those two symbols by linking the I3 term to a different set of level 1 and 2
terms.

2. Scans to get the residual text for the tag into &@it3.

3. Sets &@ilevel to 3 to indicate to the attribute processing macros that a third level index entry
tag is being processed.

4. Sets &*t4 to the page number symbol, &$PS. This is how the page number gets into the
index. The user can specify his own fourth level entry to something other than page number,
by using the PAGEREF attribute.

5. Processes PG or PAGEREF with DSM@PGRF.This may result in &*t4, the fourth index
term, being redefined to something other than the page number symbol. It may also cause
the &*x symbol to be set to “start,” “order” or “end.”

6. Sets &@tg to “i” to indicate to the DSM@IDS macro that an id for an index entry tag is
being processed.

7. Processes the REFID attribute using the DSM@RIDI macro. This attribute process may
change the first and second level terms.

8. Processes the ID attribute with the DSM@IDS macro. See “Cross-References” on page 147
for details on this macro.

9. If there was no text on the tag (&@it3 has a length of 0), or the first term (&#itl) or the
second level term (&#it2) are missing, issues an error message and no index entry is created.

10. If the entry exists, sets up the .PI [Put Index] control word such that &*x may contain addi-
tional control word parameters. The hexadecimal “01”s are the delimiters on the .PI [Put
Index] control word line and the index term itself is in &@it3. The first index term is in
&#itl. The second term is in &#it2 and the fourth term or the page number symbol is in
&*t4.

DSMIHD1

The DSMIHDI1 APF creates a primary index heading entry when it processes the :IHI1 tag as

follows:

1. Gets the residual text into &@itl and saves it in &#itl. The &#itl symbol is the one that

will actually be used to generate the index control word line.

Indexing 139

Sets &@ilevel to 1. This is done to indicate to the attribute processing macros that the tag

- being processed is a first level entry.

3. Sets &@it2 and &@it3 to null.

4. Sets &@tg to “1” to indicate the DSM@IDS macro that an id for an index entry is being
processed.

5. Processes the PRINT attribute with the DSM@IPRT macro.

6. Processes the ID attribute with the DSM@IDS macro. Sce “Cross-References” on page 147
for details on this macro.

7. Processes the SEE attribute with the DSM@SEE macro.

8. Processes the SEEID attribute with the DSM@SEEI macro.

9. Tests the existence of &*r. The &*r local symbol is set if either the DSM@SEE macro or
the DSM@SEEI macro is processed. If it does exist, &*x is set to “ref” to generate an index
reference rather than a real index entry. This is the .PI [Put Index] control word parameter
that suppresses the page number.

10. If there was no text on the tag (&@itl has a length of 0), issues an error message and no
index entry is created.

11. If there was text on the tag, sets up the .PI [Put Index] control word using &*k which may
have been set by the DSM@IPRT macro to provide a sort key parameter. The hexadecimal
“01”s are the delimiters on the .PI [Put Index] control word line and the index term itself is
in &#itl. The &*r symbol may contain an index reference in which case *x has been set to
“ref.” This combination creates the “Sce” and “See also” references.

DSMIHD?2

The DSMIHD2 APF creates a second level index heading entry. when it processes the :IH2 tag

as follows:

1. Gets the residual text into &@it2 and saves it in &#it2. The &#it2 symbol is the one that
will actually be used to generate the index control word line.

2. Sets &@ilevel to 2. This is done to indicate to the attribute processing macros that the tag
being processed is a second level entry.

3. Sets the &@it3 symbol to null.

4. Sects &@tg to “1” to indicate to the DSM@IDS macro that an id for an index tag is being
processed.

5. Processes the PRINT attribute with the DSM@IPRT macro.

6. Processes the ID attribute with the DSM@IDS macro. See “Cross-Refercnces” on page 147
for details on this macro.

7. Processes the SEE attribute with the DSM@SEE macro.

8. Processes the SEEID attribute with the DSM@SEEI macro.

9. Tests the existence of &*r which is set if either the DSM@SEE macro or the DSM@SEEI
macro has been used. If it does exist, &*x is set to “ref” to generate an index reference rather
than a real index entry.

10. If there was no text on the tag (& @it2 has a length of 0), or there is no active first level entry
(&@it] has a length of 0), issues an error message and no index entry is created.

11. If the entries exist, sets up the .PI [Put Index] control word where &*k may have been set by
the DSM@IPRT macro to provide a sort key parameter. The hexadecimal “01”s are the

140 DCF: GML Starter Set Implementation Guide

delimiters on the .PI [Put Index] control word line and the index term itself is in &#it2. The
first level index term is in &@itl. The &*r symbol may contain an index reference in which
case *x has been set to “ref.” This combination creates the “See” and “See also” references.

DSMIHD3

The DSMIHD3 APF creates a third level index heading entry. when it processes the :IH3 tag as
follows: '

1. Gets the residual text into &@it3 and saves it in &#it3. The &#it3 symbol is the one that

will actually be used to generate the index control word line. The primary and secondary
terms are in &@itl and &@it2.

2. Sets &@ilevel to 3. This is done to indicate to the attribute processing macros that the tag
being processed is a third level entry.

3. Processes the PRINT attribute with the DSM@IPRT macro.

4. Sets &@tg to “1” to indicate to the DSM@IDS macro that an id for an index tag is being
processed.

5. Processes the ID attribute with the DSM@IDS macro. See “Cross-References” on page 147
for details on this macro.

6. If there was no text on the tag (&@it3 has a length of 0), or there is no active first level entry
(&@it1 has a length of 0), or there is no active second level entry (&@it2 has a length of 0),
issues an error message and no index entry is created.

7. If the entries exist, sets up the .PI [Put Index] control word where &*k may have been set by
the DSM@IPRT macro to provide a sort key parameter. The hexadecimal “01”s are the
delimiters on the .PI [Put Index] control word line and the index term itself is in &#it3. The
first level index term is in & @itl and the second level index term is in &@1t2.

DSMIREF

The IREF tag is processed by the DSMIREF APF as follows:

1. Sets a local symbol, &*t4, to the page number symbol (&$PS).

2. Processes the REFID attribute using the DSM@RFID macro. The DSM@RFID macro
simply sets a local symbol for the DSMIREF macro, &*id, to the value of the REFID attri-
bute.

3. If the id is over seven characters long, issues a message and the id is truncated to seven char-
acters.

4. Tests the &I1@&*id symbol to determine if the id has been encountered before. If it has

been, the following processing is performed:

a. Sets the &@ilevel symbol to the sum of the existence of the three id symbols—I1@&*id,
I2@&*id and I3@&*id. This equates to setting it to 3, if all three exist, 2 if only the
first two exist and one if only the first one exists. This symbol is used in the attribute
processing macros to determine what level of index entry tag is being processed.

b. Puts the index terms themselves, which are in I1@&*id, and so on, into the &*t1, &*t2,
and &*t3 symbols. ’

c. Processes PG, PGREF, or PAGEREF using the DSM@PGRF macro. This may re-
sult in &*t4, the fourth index term, being redefined to something other than the page
number symbol. It may also cause the &*x symbol to be set to “start,” “order” or
“end.”

Indexing 141

d. For level 1 and 2 index terms only, processes the SEE and SEEID attributes with the
DSM@SEE and DSM@SEEI macro, respectively. This may set the &*r local symbol
to the text of the index refercnce.

e. Tests the existence of the &*r local symbol which is set to the reference text if either the
DSM@SEE macro or the DSM@SEEI macro has been used. If it does exist, & *x is set
to “ref” because we will be generating an index reference rather than a real index entry.
The index reference text is then moved into one of the local symbols &*t2 or &*t3 de-
pending on the level of the index term being generated by the tag.

f. Generates the index entry. The index terms are in &*tl, &*t2, &*3 and &*t4. An
additional .PI [Put Index] control word parameter may be in &*x. The hexadecimal
“01”s are the delimiters on the control word line.

g. Ends the macro if this is not the first pass (&$PASS) or cross referencing (&SYSVARX)
1s not in effect.

h. If cross referencing is in effect, adds the current page number to the &IX@&*id array.

5. Tests the existence of the &I1@&*id symbol. I &I1@&*1d doesn’t exist, it indicates that
the id being referenced has not been defined yet. This means we are dealing with a forward
reference to an index entry. If we aren’t cross referencing (&SYSVARX is not yes) or if this
1s the first pass, we don't need to do anything about saving the cross reference information
because either we don't need it or we save it on the second pass.

If we do need to save the cross reference information, the processing discussed below is per-
formed. See “Cross-References” on page 147 for additional information on how cross refer-
encing works.

a. If IF@&*d doesn’t exist (meaning we haven't encountered this id before at all) the 1D
is put into the cross reference array (& @xref@i). The & @xref@i array will be used to
produce the cross reference listing for index ids.

b. The element number from the cross reference array (&@xref@i) is remembered in
IL@&*id so it can be replaced when we know what file the id is in.

c. The page number is put into the next element of &IX @& *id.

d. IF@&*d is sct to “2.” This array is supposed to contain the name of the file where the
id was defined. If the id is never defined the file name will print out as “?” in the cross
reference listing.

e. If &IF@&*id alrecady exists, the current page number is put into the array &IX@&*id.

DSMIDMMY

The DSMIDMMY APF processes the :11-:13 tags when an index 1is not being produced It simply
consumes the residual text so it will not get printed.

DSMIEH

The DSMIEH macro processes the header information generated by the .IX [Index] control word.
This macro takes over the function provided by the intemally gencrated .IE [Index Entry] H con-
trol word. A macro named “IEH” is defined in the DSMINDEX macro and calls the DSMIEH
macro to process the index heading parameter.

The index headers are produced as follows:

3 A1 is added to the level of the index term (&@ilevel) to determine which symbol should be set.

142 DCF: GML Starter Set Implementation Guide

10.
11.
12.
13.
14.

Tests the first parameter passed to this macro. If it is before “a” in the sorting sequence, it
means that there are index entries beginning with special characters. In that case, the macro
ends immediate because this section of the index gets no header.

Skips p22 (22 points).

If &SENY indicates that there is a keep in progress, ends the keep. This is done so that we
can start a keep without being in danger of getting an error message from SCRIPT/VS that a
keep is already in progress.

Turns a keep on for 1.2 inches

Begins the “ieh” font for page printers or highlight font 2 for line devices. The altcrnate
highlight font is also specified on the .BF [Begin Font] control word just in case neither of
the other fonts can be started.

Indents 5.

Calculates the ending position of the box to be drawn as 7 plus the length of the heading to
be generated.

Draws a box at position 4 and the calculated ending position provided that SYSOUT is not
“PAGE,” indicating that we are formatting for a page printer.

For page printers, sets indention back zero because the style of index headers is different for
these devices.

Puts out the index heading using literal mode because we can’t be sure what’s in it.
Ends the box, if we had started one.

Skips 1 line.

Restores the previous font.

Restores indention to zero.

Index Attribute and Support Macros

DSM@IDS

See “Cross-References” on page 147 for the detailed discussion of the DSM@IDS macro.
DSM@IDS processes all of the ID attributes.

DSM @IPRT

The DSM@IPRT macro processes the PRINT attribute of the :IH1-3 tags. This attribute speci-
fies the text that is to be printed for the index term.

DSM@IPRT performs the following processing:

L.

Saves the text string giveh (to be printed in the index) in &#it&@ilevel, where & @ilevel is
1,2, or 3 depending on the level of the index tag being processed.

Constructs a .PI [Put Index] control word sort key parameter in the caller’s local symbol,
&*k. (See “Special Techniques” on page 13 for details on the technique of setting the caller’s
local symbol when exiting a macro.) The hexadecimal “01”s are delimiters and the index
term is placed in the first, second or third position based on the level of the index tag. If the
hexadecimal “01"s were slashes, the &*k symbol would be set as follows:

Indexing 143

.se *k 'key /term///
or

.se *k 'key //term//
or

.se *k 'key ///term/

DSM@PGRF

The DSM@PGRF macro processes the PAGEREEF attribute of the :11-:I3 tags. It may be used
to define a fourth index term, in which case the macro sets the caller’s local symbol &*t. This
attribute may also be used to specify additional index parameter information such as page ranges.
In this case, the macro sets the caller’s local symbol &*x.

See “Special Techniques” on page 13 for discussions on both the technique of examining the pa-
ramecter passed in and setting the caller’s local symbol.

DSM@PGREF performs the following functions:
1. Examines the parameter passed in for “start,” “begin,” “major,” or “end.”

2. If it is not any of the specific values tested for, sets the caller’s local symbol &*t4 to the
" parameter sent in. This means that the user has explicitly set the 4th level index term and it
will be used “as is.”

3. If the parameter is “start” or “begin,” sets the caller’s local symbol &*x to “start.” This
means that a range of pages is being specified.

4. Ifitis “major,” sets the caller’s local symbol &*x to “order.”

If it 1s “end,” sets the caller’s local symbol &*x to “end.”

DSM@RIDI

The DSM@RIDI macro processes the REFID attribute of the :12 and :13 tags and provides the
level one and level two index terms for creating the index entries. It performs the following proc-
essing;

1. Checks the length of the id parameter given. If the id is too long, it is truncated to 7 charac-
ters and a message is issued. Otherwise, the id’s value is put into the &*id symbol.

2. Checks to see if the id (&I1@&*id) already exists. If so,

a. Moves the saved index terms from &I11@&*id and &I2@&*id into the symbols &#itl
and &#it2. The &II@&*d and &I2@&*d symbols are set when the ID attribute of
the :I1 and :12 tags respectively. The &#itl and &#it2 symbols will be used to create the
actual index entry control word.

b. If cross referencing is in effect (&SYSVARX is “yes”) and this is the first pass
(&S$PASS), puts the current page number into the symbol array &IX@&*id. This sym-
bol is used only for the purposes of gencrating the cross reference listing at the end of
the document.

3. Tests the existence of the level 1 id (&I1@&*id). If it doesn’t exist it means we are dealing
with a forward reference to an index entry. If we aren’t cross referencing (&SYSVARX is
not yes) or this is the first pass, we don’t need to do anything about saving the cross refer-
ence information because either we don’t need it or we will save it on the second pass.

If we do need to save the cross reference information, the following processing is performed.
a. If &IF@&*id doesn’t exist, meaning we haven’t encountered this id before at all, the id

is put into the cross reference array (& @xref@1).

144 DCF: GML Starter Set Implementation Guide

1) The element number from the cross reference array (& @xref@i) is remembered in
&IL@&*id so that the cross reference entry can be replaced when we know what
file the id is in.

2) IF@&*id is set to “2.” This symbol is supposed to contain the name of the file
where the id was defined. If the id is never defined the file name will print out as
“?” in the cross reference listing.

3) The page number is put into &IX@&*id.

b. If &IF@&*id already exists, adds the current page number to the array &IX@&*id.

DSM@SEE
The DSM@SEE macro processes the SEE attribute on the index tags. (:I1-3 and :IREF).

Stacks a control word to be processed in the calling macro and assigns the attribute value to the
caller’s local symbol &*r. This technique is discussed in detail in “Special Techniques” on page

13.

DSM@SEEI

The DSM@SEEI macro processes the SEEID attribute of the index tags. The index reference
text is returned in the caller’s local symbol &*r. This technique is discussed in detail in “Special
Techniques” on page 13. DSM@SEEI performs the following functions:

1.

If the id name is over seven characters, it issues a message and and truncates it to scven char-
acters.

If the id isn’t over seven characters, saves the id in a local symbol, *id.

If [1@&*id exists (meaning that the id has been encountered before), the following process-
ing is performed.

The text of the index reference is put into a local symbol, &*r.

b. The id may have been defined at any of the 3 levels of indexing. The symbol &*r is
constructed of the first and/or second and/or third entries depending on what symbols
exist. For example, let’s assume the id referenced on the SEEID attribute was defined
on an :I3 tag for “rebates.” Let’s assume further that the the first and second level terms
were “housing” and “costs.” The &*r symbol would end up being set here to “housing,
costs, rebates.”

c. If cross referencing is in effect or this is the first pass (&$PASS is 1 and &SYSVARX is
“yes”) the current page number is added to &IX@&*id.

If the level | id (&I1@&*id) doesn’t exist it means we are dealing with a forward reference to
an index entry. If we aren’t cross refercncing (&SYSVARX is not yes) or this is the first
pass, we don't need to do anything about saving the cross reference information. We will
save it on the second pass or we don't need it.

If we do need to save the cross reference information, the following processing is performed:

a. If &IF@&*id doesn’t exist, meaning we haven’t encountered this id before at all, differ-
ent actions need to be taken:

1) An entry is made in the cross reference array (& @xref@i) for the id.

2) The element number from the cross reference array (&@xref@i) is remembered in
&IL@&*d so it can be replaced when we know what file the id is in.

3) &IF@&*id is set to “2.” This symbol is supposed to contain the name of the file
where the id was defined. If the id is never defined the file name will print out as
“?” in the cross reference listing.

b. The current page number is added to the array &IX@&*id.

Indexing 145

5. The caller’s local variable &*r is set to “?.” This technique is discussed in “Special
Techniques” on page 13.

Modifications to Index Tags

It is difficult to think of any modifications that can be made to the starter set index tags. How-
ever, there are several aspects of the native SCRIPT/VS index functions which can be altered.
The primary one is to change the words “See” and “See also” to something else—for example,
translating them into another language. This change is possible, however, it requires changing the
DSMCSPFR module of SCRIPT/VS. This module contains all of the literal constants that are
built into SCRIPT/VS, just as the DSM#SETS and DSM#MSG macros contain all of the literals
built into the starter set. See the chapter on tailoring SCRIPT/VS to your installation in the
Document Composition Facility: SCRIPT|VS Text Programmer’s Guide for details on how to
change DSMCSPFR.

There are two other modifications which are frequently requested. The first is the ability to alter
the sorting order for the index. The second is the ability to change the format of the index entries
such that the page numbers are lined up on the right hand side of the column. Unfortunately,
neither of these functions can be altered within SCRIPT/VS.

146 DCF: GML Starter Set Implementation Guide

Cross-References

Overview

The starter set provides the capability to cross reference headings, figures, list items, footnotes,
and index entries. The cross reference processing for the first four types of text elements is de-
scribed here. Index entry cross referencing is described in “Indexing” on page 137.

Cross reference processing occurs at different times in the starter set and at different levels. There
are four main types of activity:

e Processing ID attributes

e Resolving cross references within the document
e Printing a cross reference listing

¢ Creating and using a file of id information.

These activities arc highly interrelated. The cross reference material printed at the end of the doc-
ument is contained in several arrays and variables. These arrays and variables are created by the
macro that processes the ID attributes. These same variables are used to resolve the cross refer-
ences and produce the SYSVAR “W” id file at the end of the formatting run.

For example, cross referencing for a heading involves the following processing steps:

1. When an :H1 tag is encountered with an ID attribute on it, several processing steps are per-
formed:

a. The DSMHEAD! APF, which processes the heading, calls the DSM@IDS macro.
b. The DSM@IDS macro performs several processing functions:

1) The id, the text associated with it, and the page reference are saved in a set of vari-
ables which will be used to resolve any references to this heading.

2) The id, the file name, and the page reference are added to the array which produces
the cross reference listing.

3) The id, the text of the reference, and the page reference are added to the array which
will be used to produce the SYSVAR “W” id file.

See Figure 21 on page 148 for a picture of the relationships between these arrays and
macros. The names of the arrays that are built are shown on the right side of the figure.

2. When a :HDREF tag is encountered:

a. The variables set up by the DSM@IDS macro are used to resolve the cross reference
and insert the appropriate text into the document where the reference was made.

b. If the ID information has not been defined, but a SYSVAR “R” file of ids has been
used, the id information from that file will be used to resolve the cross reference.

Cross-References 147

Hmmm e ——— % e ——— *
| HO - 6 | == #*--> BUILDS -->| @xref@h |
|if ID given | | | | @Gwrit@h |
Hemmmmmm e &] l Hemmmmm == %
I |
L * l l K %
| FIG |--1 |--> BUILDS -->| @xref@f |
|if ID given | | F=-===-==--=-- #| | Gurit@f |
Hemmmommmmme * |->| DSMQRIDS || Hommmmmmme *
| Femmmmmmee- *|
e x I I Nmmmncm——— %
| FN |--1 |--> BUILDS -->| @xref@n |
|if ID given | | | | Qwrit@n |
R * I I T s e o k]
I |
SR & I I YV e .- %
| I(mM1-3 | == | --> BUILDS -->| @xref@i |
|if ID given | | | | CGurit@i |
L % l I [- *
I I
- % I | Hemmmmmn == %
| LI | -=% *--> BUILDS -->| @xref@d
|if ID given | | Gurit@d |
e K Nemem e W
Figure 21. Processing ID Attributes: All of the 1D attributes in the starter set are processed by the
DSM@IDS macro. It builds five different symbol arrays which contain the necessary
information to produce the cross reference listing for the five types of ids.

c. If the id cannot be found in either place, a standard message is used instead for the cross
reference.

d. The page number where the reference was made is added to the array of page numbers
to be used in the cross reference listing.

3. At the end of the document, the DSM#XLST macro will be called either by the :EGDOC
tag or by the epifile in DSMPROF3. This macro initiates the following processing:

a. Activates the &@xref@h array that has been built dynamically by DSM@IDS as ID
attributes were found. Each line of this array contains a call to the DSM#XRFH
macro.

1) The first time DSM#XRFH is called, it calls DSM#SETX which formats the ap-
propriate heading in the cross reference section.

2) The DSM#XRFH macro uses the variables set up by DSM@IDS to print the first
part of the cross reference line which includes the id, the file name, and the original
page number.

3) It uses the page number array to print the rest of the entry.

Figure 22 on page 149 shows the processing steps involved in printing the cross reference.
This will occur only if SYSVAR “X” was not set to “no” on the SCRIPT command.

4. Also at the end of the document, if SYSVAR “W?” has been specified, the processing neces-
sary to produce the id file is performed.

148 DCF: GML Starter Set Implementation Guide

| DSMEGDOG | ~*
f; - % ‘ [- % Hemmmwo- K Newmmmew- 3 e — - %
| -> | DSM#XLST| --->| @xref@h| -> | DSMYXRFH| - ---> | DSM#SETX |

Nemwwmmemem?y | Hecmememomwemed | Tacccmeemed Teaereecwceat | Fedmnmmwaa®

I I e e 1]

Figure 22. Macros and Symbol Arrays Used to Produce the Cross Reference Listing: The
&@xref@h, &@xref@f, &@xref@n, &@xref@i and &@xref@d symbol arrays contain
one line for each id used in the document. The DSM#XRFF, DSM#XRFH,
DSM#XRFI, DSM#XRFD, and DSM#XRFN macros produce the actual listing and
the DSM#SETX macro produces the section headings within the listing and is called only
once for each set of ids.

a. The DSM#WRIT macro is invoked which in turn labels the file and processes the
&@writ@d, &@writ@f, &@writ@h, and &@writ@n arrays which call the
DSM#WRTD, DSM#WRTF, DSM#WRTH, and DSM#WRTN macros.

b. These arrays were created dynamically by the DSM@IDS macro when the ids were
processed. These macros write .SE [Set Symbol] control word lines out to the SYSVAR
HW!’ ﬁlc'

Initialization for Cross Referencing

During initialization of the starter set in DSMPROF3 and the macros it calls, several functions
are performed relevant to cross referencing. These are:

1. The DSM#SET macro pre-defines the cross reference arrays (&@xref@d, &@xref@f,
& @xref@h, &@xref@i and & @xref@n) to be comments. This is done to prevent them
from being undefined symbols when we print out the cross reference listing. These arrays are
expected to contain information regarding the ids in the document. If there were, for exam-
ple, no index ids used in the document, the &@xref@i array wouldn't have anything in it
and it would print out as a undefined symbol if it weren’t pre-defined.

2. The symbol arrays used to write out the SYSVAR “W” file are also initialized by the
DSMH#SET macro starter set for the same reason.

3. The value of &SYSVARX is established as either “yes” or “no” by the DSM#SETV macro.

4. The SYSVAR “R” file, if one was specified on the command line, is imbedded by
DSM#SETYV to define symbol values to be used to resolve cross references that would be
otherwise unresolvable.

5. DSMPROF3 maps the cross reference tags to their appropriate macros.

Cross-References 149

Processing ID Attributes

All of the ID attributes in the starter set are processed by the DSM@IDS macro. It does three
things:

1.
2.
3.

Saves the ID information for use in cross referencing.
Creates the necessary arrays to produce the cross reference listing.

Creates the necessary arrays to produce the SYSVAR “W” file.

DSM@IDS

The DSM@IDS macro is used to process the ID attributes for the heading tags (:H0-H6), the list
item tag (:LI), the footnote tag (:FN), the figure tag (:FIG) and the index tags (:I1-3 and :IH1-3).

Its primary function is to create two symbols that contain the text of the reference and the page
on which it appears. These are used for resolving references to ids.

The DSM@IDS macro performs the following processing:

1.

150

The macro ends immediately if this is not the first pass (&$PASS) because 1D information is
collected only on the first pass.

The type of id being processed is indicated in the &@tg symbol. Its value may be “n” for
footnote, “h” for heading, “d” for list item, “1” for index, and “f” for figure. This symbol is
needed in both uppercase and lowercase format so it is initially set in lowercase by the calling
macro and then folded to uppercase here in &@TG.

The id name itself is in the &* symbol. Its length is checked to make sure it is not over 7
characters long and it is put into a local symbol, &*id. If the length of the id name is more
than 7 characters, it is truncated to 7 characters and a message is issued.

The existence of the id is tested by checking the symbol &@TG.1@&*id which for a head-
ing id of “intro” would resolve like this:

&Q@TG. 1@&*id
&QATG. 1@intro
&H1@intro

This symbbl will exist only if the id has already been defined by an ID attribute on a heading
tag. A message is issued if the id already exists (that is, it is a duplicate.) The macro ends
and this definition of the id is ignored.

If cross referencing was requested (&SYSVARX is “yes”) or we are going to produce a
SYSVAR “W” file, the next thing to do is create the appropriate cross reference array entries
for these. If we are not cross referencing or creating the ID file, we have fewer things we
need to remember about the ids.

a. The cross reference arrays are named & @xref@& @tg where &@tg resolves to d,f,h,i or
n depending on the type of id being processed. An entry is made in the appropriate
array. It contains a call to the appropriate macro (DSM#XRFD, DSM#XRFF,
DSM#XRFH, DSM#XRFI or DSM#XRFEN) with the id value as a parameter. This
will cause the id information to appear in the cross reference listing.

For example, for a heading ID with a value of “intro” the following line is put into the
& @xref@h array:

DCF: GML Starter Set Implementation Guide

.se @xref@s@tg. () '.dsmffxrf&@tg. &¥id
.se @xref@&@tg. () '.dsmffxrf&@tg. intro
.se @xref@Rtg. () '.dsmffxrfh intro

.se @xref@h() '.dsm#xrfh intro

b. The id file arrays are named &@writ@&@tg where &@tg resolves to d,fh,i or f de-
pending on the type of id. An entry is made in the appropriate array. It contains a call
to the appropriate macro (DSM#WRTD, DSM#WRTF, DSM#WRTH, DSM#WRTI
or DSM#WRTN) with the id value as a parameter. This will cause the id information
to be written out to the SYSVAR “W” file at the end of the formatting run.

Note: The id information for the index entries is written out to the &@writ@i array.
However, these are never processed because index id information is not saved in the
SYSVAR “W” file. This is done because it is easier to write out the information than to
not write it out, given the way the DSM@IDS macro processes the ids.

c. The next step is to define some special symbols whose names are dependent on the id
name (& *id) and the type of id (&@TG).

1) The &@TG.F@&*id will become &HF@intro for a heading id named “intro.” It
will contain the name of the file in which the id was defined. If this symbo! already
exists it means that the id has been referenced before but has not been defined until
now. If this is the case, an incomplete entry was made in the & @xref@ & @tg array
and it must now be replaced. Correcting it involves undefining the previous incom-
plete entry whose element number was saved at the time in &@TG.L@&*d. This
element is set to “off” because the correct element has just been defined above. It is
necessary to save element 0 of the array before resetting the element to “off” and
then restoring it in order to prevent it from being incorrect afterwards.

2) Then the file name (&$FNAM) is saved in the & TG.F@&*id symbol.

The page number is saved in a symbol whose name depends on the id type (& @TG) and the
id name (*id).

The next step is to save the text associated with the id. This is the text of the heading, the
figure number, the list item id, the footnote number, or the index term. The id name is part
of the symbol name to make it unique.

For index id’s this is a little more complicated. The & @ilevel symbol contains either a “1,”
a “2” or a “3” depending on the level of the index entry for which an id is being processed.
We need to remember all of the terms (up to 3) associated with this id. For third level en-
tries, we set a symbol for the second and first terms and for the current term. For second
level entries, we set a symbol for the first level and for the current term. For first level en-
tries, we set a symbol for the current term.

Processing Cross Reference Tags

DSMHDREF

The DSMHDREF APF processes references made to heading ids using the :HDREF tag. It
functions as follows:

1.

Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol &*id.

Processes the PAGE attribute using the DSM#YESN macro which will set the &*yesno
symbol to “no” or “yes’” depending on the value of the PAGE attribute.

Truncates the id name to 7 characters if it is longer than that and issues a message.

Cross-References 151

152

Determines if the real id information, generated during this formatting run, is available or if
the information read in from a SYSVAR “R” id file will have to be used. The only differ-
ence between the symbols used is in whether or not the first letter of the symbol name is a
capital H. Capital H denotes real id information saved during this run for headings. Lower-
case h names are information set by a SYSVAR “R” file. The SYSVAR “R” file, if any,
was imbedded during initialization by the DSM#SETV macro.

We assume first that well use real information. Then we test if the &HI@&*d or
&h1@&*id symbols exist. If neither one exists, we skip to the “unknown” label because we
have no information available to use. If the “real” symbol, &H1@&*id, doesn’t exist we
reset &*H to a lowercase “h” to use the id information set by the SYSVAR “R” file.

If the heading id exists:
a. Turn substitution off.

b. Save the value of the control word separator in a local symbol and then turn the control
word separator off. This is done because we don’t want SCRIPT/VS to get confused by
any semi-colons which happen to be in the heading text.

¢. Save the page number (&) in the &*p local symbol.

d. Selects the proper level of quotation marks to use around the heading. The “proper”
level depends on the current level of quotation nesting. The quotation nesting level is in
&@nest@q and the quotation marks are in the & @oquote and & @cquote symbols.

e. Sets up the local symbol &*r to contain the page reference part of the cross reference
but only if the PAGE attribute value was “yes” or the heading being referenced is not
on the current page. The page number of the reference is in &HP@&*id and the cur-
rent page number has been put into &*p. These two symbols are compared to deter-
mine if the heading occurred on the current page.

The page reference is constructed of the &LL@onpge symbol (which is set to “on page”
in the DSM#SETS macro) and the page number.

f. Turn substitution back on.

g. Insert the heading reference into the text. The first symbol, &*o0, contains the opening
quotation mark. The second symbol, &HI@&*d, contains the text of the heading.
The third symbol, & *c, contains the closing quotation mark and the fourth symbol, & *r,
may be null or may contain the page reference.

h. Restores the control word separator.

i. Saves the page number in the &HX @& *id symbol array. This is done only on the first
pass and only if we are going to produce a cross reference listing (&SYSVARX is yes).
The &HX@&*id array contains the page numbers of all the references to the heading.
If the array already exists, it means there have been other references made to this same
heading.

If the heading id information does not exist (unknown):
a. Spelling verification is turned off.

b. Inserts some standard text which includes the id value in place of the heading reference.
The &LL@H symbol is set to “Heading” in DSM#SETS. The &LL@unkn symbol is
set to “unknown” in DSM#SETS.

¢. Turn spelling verification back on.

d. If cross referencing (&SYSVARX is “yes”) is in effect and this is the first pass (&$PASS
is 1):

DCF: GML Starter Sct Implementation Guide

1) The &HF@&*id symbol is tested to see if this id has been encountered yet. If it
has, &HF@&*id will contain the name of the file in which it was defined. If it
hasn’t been defined yet, & HF @& *id will not exist, in which case:

a) An entry is made in the cross reference array (&@xref@h) for the id. The
&@xref@h array will be used to produce the cross reference listing. Each line
of this array contains a call to the DSM#XRFH macro with the id as the pa-
rameter.

b) HL@&*d is set to the element number just used in the &@xref@h array.
This is done because eventually we’ll encounter the id’s definition and we’ll
want to be able to update the entry we made in the array. This updating will
be done in the DSM@IDS macro when the ID is processed and will use the
element number we saved here in the &HL@&*id symbol.

¢) The &HF@&*id symbol is supposed to contain the name of the file where
the id was defined. For ID’s that haven’t been defined, we put a “?” in this
symbol so that something will print out in the cross reference listing.

2) The page number is saved in the &HX@&*id symbol array. The &HX @& *id ar-
ray contains the page numbers of all the references to the heading. If the array al-
ready exists, it means there have been other references made to this same heading.

DSMFGREF

The :FIGREF tag is processed by the DSMFGREF APF which inserts the appropriate reference
text. This tags works only for those figures which have an ID attribute and which have been
labelled with a figure number by the :FIGCAP tag. If the ID hasn’t been defined, the “Figure
Unknown” reference is used. If there was no :FIGCAP tag, the figure number in the reference
will be wrong because the id information will point to what the figure number would have been if
a figure number had been assigned to the figure.

The :FIGREF tag is processed in the following manner:

1.

Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol &*id.

Processes the PAGE attribute using the DSM#YESN macro which will set the &*yesno
symbol to “no” or “yes” depending on the value of the PAGE attribute.

Truncates the id name to 7 characters if it is longer than that and issues a message.

Determines is the real id information, generated during this formatting run, is available or if
the information read in from the SYSVAR “R” id file will have to be used. The only differ-
ence between the symbols used is whether or not the first letter of the symbol name is a
capital F. Capital F denotes real id information saved during this run. Lowercase f names
represent information set by a SYSVAR “R” file.

We assume first that we'll use the real information. Then we test if the &F1@&*id or
&f1@&*id symbols exist. If neither one exists, we skip to the “unknown” label because we
have no information available to use. If the “real” symbol, & F1@&*id, doesn't exist we
reset &*F to a lowercase f to use the id information set by the SYSVAR “R” file.

Tests if the figure id exists. If so:
a. Saves the page number in a local symbol, &*p.

b. Sets the local symbol &*r to contain the page reference part of the cross reference but
only if the PAGE attribute value was “yes” or the figure being referenced is not on the
current page. The page number of the figure being referenced is in &FP@&*d and the
current page number has been put into &*p. These two symbols are compared to deter-
mine if the figure occurred on the current page.

The page reference is constructed of the &LL@onpge symbol, which is set to “on page”
in the DSM#SETS macro, and the page number.

Cross-References 153

c. Inserts the figure reference into the text. The reference is constructed of the word “Fig-
ure” (&LL@F), a required blank, the figure number (&&*F.1@&*id) and a possible
page reference (& *r).

d. Saves the page number in the & FX@&*id symbol array. This is done only on the first
pass and only if we are going to produce a cross reference listing (&SYSVARX is “yes”).
The &FX@&*id array contains the page numbers of all the references to the figure. If
the array already exists, it means there have been other references made to this same
figure.

6. If the figure id information does not exist (unknown):
Spelling verification is turned off.

b. Inserts some standard text which includes the id value in place of the figure reference.
The &LL@F symbol is sct to “Figure” in DSM#SETS. The &LL@unkn symbol is set
to “unknown” is DSM#SETS.

c. Spelling verification is turned back on.
d. If cross referencing (&SYSVARX) is in effect and this is the first pass (&$PASS is 1):

1) The &FF@&*d symbol is tested to see if this id has been encountered yet. If it
has, &FF@&*id will contain the name of the file in which it was defined. If it
hasn't been defined yet, & FF@&*id will not exist, in which case:

a) An entry is made in the cross reference array (&@xref@f) for the id. The
&@xref@f array will be used to produce the cross reference listing. Each line
of this array contains a call to the DSM#XRFF macro with an id as a parame-
ter.

b) &FL@&*d is set to the element number just used in the & @xref@f array.
This is done because eventually we’ll encounter the id’s definition and we’ll
want to be able to update the entry we made in the array. This updating will
be done in the DSM@IDS macro when the ID is defined and will use the ele-
ment number we saved here in the & FL@& *id symbol.

¢) The &FF@&*id symbol is supposed to contain the name of the file where the
id was defined. For IDs that haven’t been defined, we put a “?” in this symbol
so that something will print out in the cross reference listing.

d) The page number is saved in the &FX@&*id symbol array. The & FX @& *id
array contains the page numbers of all the references to the figure. If the array
already exists, it means there have been other references made to this same fig-
ure.

DSMLIREF

The DSMLIREF APF process the :LIREF tag. The list item reference consists of the list item
identifier that is on the item. This means list item references are meaningful only for ordered list
items where the identifier is unique.

DSMLIREF performs the following functions:

1. Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol &*id.

2. Processes the PAGE attribute using the DSM#YESN macro which will set the &*yesno
symbol to “no” or “yes” depending on the value of the PAGE attribute.

3. Checks the length of the id name and truncates it to 7 characters if it is longer. A message is
issued if the value is too long.

4. Determine if the real id information generated during this formatting run is available for use,
or if the information read in from a SYSVAR “R” id file will have to be used. The only
difference between the symbols used is in whether or not the first letter of the symbol name

154 DCF: GML Starter Set Implementation Guide

is a capital D. Capital D denotes real id information saved during this run and lowercase d
names are information set by a SYSVAR “R” file.

We assume first that we’ll use real information. Then we test if the &DI@&*d or
&d1@&*id symbols exist. If neither one exists, we skip to the “unknown” label because we
have no information available to use. If the “real” symbol, &D1@&*id, doesn’t exist we
reset &*D to a lowercase d to use the id information set by the SYSVAR “R” file.

If the list item 1d exists DSMLIREF:
Turns substitution off.

b. Saves the control word separator in a local symbol and then turns the control word sep-
arator off.

c. Saves the page number in a local symbol, &*p.

d. Sets up the local symbol &*r to contain the page rcference part of the cross reference
but only if the PAGE attribute value was “yes” or the list item being referenced is not
on the current page. The page number of the reference is in &DP@&*id and the cur-
rent page number has been put into &*p. These two symbols are compared to deter-
mine if the list item occurred on the current page.

The page reference is constructed of the &LL@onpge symbol (which is set to “on page”
in the DSM#SETS macro) and the page number.

e. Turns substitution back on.

f. Inserts the list item reference into the text. The reference is constructed of the list item
identifier (&D1@&*id) and a possible page reference (&*r).

g. Restores the control word separator.

h. Saves the page number in the &DX@&*id symbol array. This is done only on the first
pass and only if we are going to produce a cross reference listing (&SYSVARX is “yes”).
The &DX@&*id array contains the page numbers of all the references to the list item.
If the array already exists, it means there have been other references made to this same
list itemn.

If the list item id information does not exist (unknown) DSMLIREF:
a. Spelling verification is turned off.

b. Inserts some standard text (which includes the id value) in place of the figure reference.
The &LL@LI symbol is set to “LI” in DSM#SETS.

c. Turns spelling verification back on.

d. If cross referencing (&SYSVARX is “yes”) is in effect and this is the first pass (&$PASS
is 1) DSMLIREF:

1) Tests the &DF@&*id symbol to determine if this id has been encountered yet. If it
has, &DF@&*id will contain the name of the file in which it was defined. If it
hasn’t been defined yet, & DF @& *id will not exist, in which case:

a) Adds an entry to the cross reference array (&@xref@d) for the id. The
&@xref@d array will be used to produce the cross reference listing. Each line
of this array contains a call to the DSM#XRFD macro with an id as a parame-
ter.

b) Sets &DL@&*id to the element number just used in the &@xref@d array.
This is done because eventually well encounter the id’s definition and we’ll
want to be able to update the entry we made in the array. This updating will
be done in the DSM@IDS macro when the ID is processed and will use the
element number we saved here in the &DL@&*id symbol.

Cross-References 155

c¢) Sets &DF&*d. The &DF@&*id symbol is supposed to contain the name of
the file where the id was defined. For ID’s that haven’t been defined, we put a
“?” in this symbol so that something will print out in the cross reference listing.

d) Saves the page number in the &DX@&*id symbol array. The &DX@&*1d
array contains the page numbers of all the references to the list item. If the
array already exists, it means there have been other references made to this
same list item.

DSMFNREF

The :FNREF tag is processed by the DSMFNREF APF. Processing footnote references is sim-
pler than processing other kinds of references. The reference itself is just the footnote number.

:FNREF is processed as follows:

L.

Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol &*id.

If the length of the id is longer than 7 characters, truncates it and issues a message.

Checks the existence of the id (&NI1&*id). If it already exists, it means that the footnote
which defines the id has already been encountered. In that case we call DSM#SUPR with
the footnote number (&N1@&*id) to produce the superscript footnote call-out.

Puts out a footnote call-out of “00” if the footnote number (&N1@&*id) doesn’t exist and
the id number from the SYSVAR “R” id file (&nl1@&*id) doesn’t exist. This is done by
calling the DSM#SUPR macro with “00” as the parameter.

If the SYSVAR “R” id value exists, calls DSM#SUPR with its value instead of &N1&*id.

Collects the cross reference listing information only on the first pass and only if &SYSVARX
is “yes.” If the id information exists (&N1@&*id) we save the page number in the
&NX@&*1d symbol. This array will contain an entry for each time the footnote was refer-
enced.

If the id information doesn’t exist, meaning that the footnote being referenced hasnt been
encountered yet, saves more cross reference information. This is because we need to be able
to correct the cross reference listing entries when the footnote is encountered.

If the file name isn’t known (&NF@4&*id) then we make an entry in the &@xref@n array.
The entry is a call to the DSM#XREFN macro with the id as a parameter. The &@xref@n
array is used to actually create the cross reference listing. The array element number is saved
in &NL@&*id so that we can replace it with the correct information when we know where
the footnote is actually defined.

The file name is supposed to be in &NF@&*id. This symbol is set to a question mark since
we don't know where the footnote is yet. The page number is then saved in the
EANX@&*id array.

DSM@RFID

DSM@RFID processes the REFID attributes of the :HDREF, :LIREF, :FIGREF, and
:FNREF tags. :

All this macro does is to put the attribute value passed in &* into the caller’s local symbol named
&*id by stacking a line on the .ME [Macro Exit] control word line. This technique, of setting the
caller’s local symbol, is described in detail in “Special Techniques” on page 13.

156

DCF: GML Starter Set Implementation Guide

DSMH#YESN

DSM#YESN processes various attributes which have yes/no values; specifically the PAGE attri-
bute of the :HDREF, :FIGREF, and :LIREF tags.

The DSM#YESN macro performs the following processing:

1. Searches the attribute value for yes or no. This technique is described in detail in “Special
Techniques” on page 13.

2. Returns an answer of either “yes” or “no” in the caller’s local symbol, & *yesno. This tech-
nique is explained in “Special Techniques” on page 13.

3. Sets &*yesno to “yes” if the attribute value was something other than “yes” or“no.”

Cross Reference Listing Macros

DSM#XLST

The DSM#XLST macro produces the cross reference listing. This macro is called only if
&SYSVARX is “yes” on the last pass. It may be called either from the epifile or from the
:EGDOC tag APF. The listing is produced as follows:

1. The first thing this macro does is redefine its first line to exit immediately. This is done to
prevent the cross referencing listing from being produced by both the :EGDOC tag and the
epifile. This technique is discussed in “Special Techniques” on page 13.

2. Any open lists, figures, quotations, and so on are ended by calling the DSM#RSET macro.
3. The DSM#DUPL macro is called to get to the next/odd page.

&

Running headings and footings are suppressed because we don’t particularly want them on
the cross reference listing pages.

The control word separator is reset to its default value (;).
The column layout is redefined to be a single column starting at the left hand margin.

Column length (&$CL) is reset to its default.

© N W

Formatting is set to “left” because we don’t want lines to be horizontally justified in the list-
ing.

9. The body font (hi0) is restarted just to make sure that’s what font we are in.

10. Spelling verification is turned off because there’s no need to check spelling here and it would
be inefficient.

11. Each of the five sections of the listing is formatted as folows:

a. If the array which contains the listing information doesn’t exist there is nothing to do
and we go on to the next section. The arrays are &@xref@d, & @xref@f, &@xref@h,
&@xref@i and &@xref@n.

b. The array separator is set to the control word separator. This is done by setting the
separator to be the three characters necessary to create a symbol name. The &@ sym-
bol is then defined to be a semi-colon.

c. The arrays are then called. Each line of the array contains a call to another macro with

an id as a parameter. The macros called are named DSM#XRFD, DSM#XRFF,
DSM#XRFH, DSM#XRFI and DSM#XRFN.

Cross-References 157

12. This macro also produces the imbed trace if there is something in the &@imtrace symbol.
a. Resets indention and offsct to 0.
b. Skips 4 lines.
¢. Performs a page eject if there isn’t 3 inches left on the page.

Begins highlight font 2 (hi2).

o

e. Formats the heading which consists of a box from left to right with the words “Imbed
Trace” centered inside it. The words are contained in the &LL@ImTrc symbol which is

defined in the DSM#SETS macro during initialization.

f. Spaces 2 lines.
g. Restores the previous font.
h. Turns off formatting and the overdraw option is changed to EXTEND.

Defines a tab at 12 ems.

[

j- Defines the array separator to cause a break. This is done by setting the array separator
to be the characters necessary to create a symbol name and then setting the symbol

(&@) to be a .BR [Break] control word.

k. The &@imtrace array is then called. This array was defined by the DSMIM macro with

information regarding each imbed being an element in the array.

DSM#SETX

The DSM#SETX macro is used to create the cross reference listing header only. This macro is
called once each by DSM#XRFD, DSM#XRFF, DSM#XRFH, DSM#XRFI, and
DSM#XRFN. Its purpose is to generate the heading for the section, which it does in the follow-

ing way:
1. Skips 4 lines.
Resets left and right indention to the zero.

2
3. Turns a keep on for 2 inches.
4

Sets the offset for the second and subsequent lines of the listing for each id to 32m. This
value is modified for the index cross reference listing because the format for these is slightly

different.

5. Establishes the tab positions for all devices in em-spaces.

6. Redefines the array separator to be a comma and a blank. The page numbers on which each
id has been referenced have been saved in an array. When they are printed out, they will be

separated by a comma and a blank.
7. Begin highlight font 2.
8. Starts a box for the full length of the line.

9. Centers the section heading. The parameter passed into this macro will be an D, F, H, I or
N which when combined with &LL@. will produce a symbol which resolves to “Heading,”
“List Item,” “Figure,” “Footnote” or “Index,” respectively. These symbols are defined in

the DSM#SETS macro.
10. Ends the box.
11. Spaces 2 lines.

158 DCI: GML Starter Set Implementation Guide

12. Prints the column headings using predefined literal symbols which are defined in the
DSM#SETS macro during initialization. &LL@File is set to “File.” &LL@Page is set to
“Page.” &LL@&*1, again, will resolve to “Ileading,” “Figure,” and so on depending on the
parameter passed in. &LL@Refs is set to “References.”

13. Restores the previous font.

14. Spaces 1 line.

DSM#XRFF

The DSM#XRFF macro formats the cross reference entry for a figure “id.” The cross reference
listing is produced by the DSM#XLST macro which issues the & @xref@f array. This array con-
tains a call to the DSM#XRFF macro for each figure id that has been defined or used.

DSM#XRFF performs the following processing:

1. If the id being formatted was referred to but never defined, &F1@&*id and &FP@&*id will
not exist and “?” will be printed instead of the text and the page number.

2. I it doesn’t exist the page number array &FX @& *id is set to null.

3. The first time through, it calls DSM#SETX to create the listing header. This technique of
performing some processing only the first time is explained in detail in “Special Techniques”
on page 13.

4. The cross reference entry is printed with an offset for potential wrap-around of page numbers
onto a second line. Tabs are used to move from column to column. The tabs were defined
in the DSM#XLST macro. The file name is in &FF@&*id. The text is in &F1@&*id and
the page numbers are in &FX @& *id.

DSM#XRFH

‘The DSM#XRFH macro formats the cross reference entry for a heading “id.” The cross reference
listing is produced by the DSM#XLST macro which issues the & @xref@h array. This array
contains a call to the DSM#XRFH macro for each heading id that has been defined or used.

DSM#XRFH performs the following processing:

1. If the id being formatted was referred to but never defined, &H1@&*d and &HP@& *id will
not exist and “?” will be printed instead of the text and the page number.

2. The first time through, it calls DSM#SETX to create the listing header. This technique of
performing some processing only the first time is explained in detail in “Special Techniques”
on page 13.

3. The cross reference entry is printed with an offset for potential wrap-around of page numbers
onto a second line. Tabs are used to move from column to column. The tabs were defined
in the DSM#XLST macro. The file name is in & HF@&*id and the page the heading was
formatted on is in &HP@&*id. The text of the heading is in &H1@&*id.

4. The &HX@&*d symbol contains the pages on which the heading was references. If
&HX@&*id contains any entries, they are printed out.

DSM#XRFN

The DSM#XRFN macro formats the cross reference entry for a footnote “id.” The cross refer-
ence listing is produced by the DSM#XLST macro which issues the &@xref@n array. This ar-
ray contains a call to the DSM#XRFN macro for each footnote id that has been defined or used.

Cross-References 159

DSM#XRFEN performs the following processing:

1. If the id being formatted was referred to but never defined, &N1@&*id and &NP@& *id will
not exist and “?” will be printed instead of the text and the page number.

2. The page number array (&NX@&*id) is set to null if it doesn’t exist.

3. The first time through, it calls DSM#SETX to create the listing header. This technique of
performing some processing only the first time is explained in detail in “Special Techniques”
on page 13.

4. The cross reference entry is printed with an offset for potential wrap-around of page numbers
onto a second line. Tabs are used to move from column to column. The tabs were defined
in the DSM#XLST macro. The file name is in &NF@&*id. The text is in &N1@&*id and
the page numbers are in &NX @& *id.

DSM#XRFD

The DSM#XRFD macro formats the cross reference entry for a list item “id.” The cross reference
listing is produced by the DSM#XLST macro which issues the & @xref@d array. This array
contains a call to the DSM#XRFD macro for each index id that has been defined or used.

DSM#XRFD performs the following processing:

L.

If the id being formatted was referred to but never defined, &D1@& *id and &DP@&*id will
not exist and “?”" will be printed instead of the text and the page number.

2. The page number array &DX@&*id is set to null if it doesn’t exist.

3. The first time through it calls DSM#SETX 1o create the listing header. This technique of
performing some processing only the first time is explained in detail in “Special Techniques”
on page 13.

4. The cross reference entry is printed with an offset for potential wrap-around of page num-
bers. Tabs are used to move from column to column. The tabs were defined in the
DSM#XLST macro.

The file name is in &DF@&*id. The text 1s in &DI1@&*id and the page numbers are in
&DX@&d.
DSM#XRFI

The DSM#XRFI macro formats the cross reference entry for an index “id.” The cross reference
listing is produced by the DSM#XLST macro which issues the & @xref@i array which contains a
call to the DSM#XRFI macro for each index id that has been defined or used.

DSM#XRFI performs the folowing processing:

1.

160

The first time through it calls DSM#SETX to create the listing header. This technique of
performing some processing only the first time is explained in dctail in “Special Techniques”
on page 13.

If the id being formatted was referenced but never defined, &11@&*id and &IP@&*id will
not exist and “?” will be printed instead of the text and the page number.

The cross reference entry is printed with an offset for potential wrap-around of page num-
bers. The offset, & @xref@of is set in DSM#SETX. In the case of index id’s the offset is
reduced a little because there’s so much more information to be listed.

Tabs are used to move from column to column. The tabs were defined in the DSM#XLST
macro. The file name is in &IF@&*id. For each index id there may one, two or three
levels of information to be listed depending on the level at which the id was defined. The

DCF: GML Starter Set Implementation Guide

existence of the information is tested before it is formatted. The text is in &Il@&*d,
&I2@&*id, &I3@&*id and the page numbers are in &IX@&*id.

Producing the SYSVAR ‘W’ Id File

The id information which will be written out to the SYSVAR “W” file is collected by the
DSM@IDS macro when it processes the ID attributes. The reference text and the page number
are both saved. The lines written out are actually .SE [Set Symbol] control word lines which
define symbols to contain the text and page number. When this file is read in as a SYSVAR “R”
file, the symbols are set and may be used to resolve forward cross references.

DSM#WRIT

The SYSVAR “W” file of id information is produced by the DSM#WRIT macro. This macro is
called either by the epifile or by the APF which processes the ‘EGDOC tag, DSMEGDOC. The
file is created with the following processing:

1.

The first thing this macro does is redefine its first line to exit immediately. This is done to
prevent the cross referencing listing from being produced by both the :EGDOC tag and the
epifile. This technique is discussed in “Special Techniques” on page 13.

The .DD [Define Data File-id] control word to define the DSMUTWTF file is different for
the CMS and the TSO environments. SYSVAR “W” files can only be created in these two
environments. The file name is in &SYSVARW.

The macro ends immediately if the operating system is not CMS or TSO because SYSVAR
"W’ and SYSVAR ‘R’ are valid only in these two environments.

The DSMUTWTF file is erased to make sure it is empty to start with.

The next step is to write some label information out to the file to record what the date is,
what file was being formatted®, and what parameters were specified on the SCRIPT com-
mand. The label lines are all comment lines starting with “.*.”

The first line written contains “SCRIPT/VS,” the release number (&$DCF), “DEVICE”
(&LL@device), and the logical device used (&$LDEV). The subsequent lines of the label
contain the parameters which were on the command line. These are contained in the
&$PARM symbol. Since &$PARM may be very long it is broken down into 64 character
segments for writing out.

Four sets of arrays have been used to contain the information to be written out. These are
the &@writ@d, &@writ@f, &@writ@h and &@writ@n arrays. Each line of the array
contains a call to a macro with an id as the parameter. The macros are DSM#WRTD,
DSM#WRTEF, DSM#WRTH and DSM#WRTN macro.

The array separator is redefined to be the characters necessary to construct a symbol name.
The &@ symbol is set to a semicolon which is the control word separator.

Each array is then “issued” to produce a section of the SYSVAR “W” file.

The array separator is reset to its default value.

35

The file name is extracted from &SPARM using the SUBSTR function of the .SE [Set Symbol] control
word. The trailing blanks are stripped from it by setting the symbol &@fnam to itself.

Cross-References 161

DSMA#WRTH

The DSM#WRTH macro writes out entries to the SYSVAR “W?” file. Each line written out is a
.SE [Set Symbol] control word. The parameter passed to this macro is a heading id.

Two lines are written out for each id—the first line will set the &h1@&*id symbol to the text of
the heading and the second line will set &hP@&*id to the page number of the heading.

DSM#WRTF

The DSM#WRTF macro writes out entries to the SYSVAR “W?” file. Each line written out is a
.SE [Set Symbol] control word. The parameter passed to this macro is a figure id.

Two lines are written out for each id—the first line will set the &fl@&*id symbol to the figure
number and the second line will set &fP@&*id to the page number of the figure.

DSM#WRTN

The DSM#WRTN macro writes out entries to the SYSVAR “W?” file. Each line written out is a
SE [Set Symbol] control word. The parameter passed to this macro is a footnote id.

The line written out for each id will set the &nl@&*id symbol to the footnote number. In the
case of footnote there is no need to save the page number as it is not used in references to the
footnote— only the number is.

DSM#WRTD

The DSM#WRTD macro writes out entries to the SYSVAR “W” file. Each line written out is a
.SE [Set Symbol] control word. The parameter passed to this macro is a list item id.

Two lines are written out for each id. The first line will set the &d1@&*id symbol to the list
item identificr. The second line will set &dP@&*id to the page number that the list item is on.

Modifications to Cross References

Default to Not Print the Cross Reference.

The default for the starter set is to print the cross reference listing and the imbed trace unless
specifically suppressed with &SYSVARX on the command. To change this default to not print
the cross reference listing, you will have to change the way SYSVAR “X” is processed in the
DSM#SETV macro. SYSVAR “X” is processed as follows:

.se *a = index '-YES-NO' '-&U'&SYSVARX.'
.if &%a eq 0 .se *a = 1
.se SYSVARX = substr 'yes no' &%a 3

The middle line is the one that establishes the default. If SYSVAR “X” wasn't specified on the
command or was specified as something other than “yes” or “no,” then the default is “yes” be-
cause we set &*a to 1 which will cause the last line to pick up the “yes” from the substring sub-
ject. To change the default, change the second line shown here to set *a to 5 instead of 1.

162 DCF: GML Starter Set Implementation Guide

Miscellaneous

General Service Macros

There are general service macros within the starter set that do not relate to a single functional
area. These macros provide various functions required by several other macros. They may also
be used by any user-written APFs or macros.

DSM#CNTX

Certain tags within the starter set are not valid unless particular text structures are going. For
example, the :FIGCAP and :FIGDESC tags are not valid unless a figure is open—meaning that a
:FIG tag has been encountered but the :EFIG tag has not been encountered yet. In cases such as
this we do not want to honor the tag.

One way to handle this would be to simply cancel the tag-to-APF mapping with another .AA
[Associate APF] control word. However, this would cause SCRIPT/VS to search for an APF
with the same name as the tag. If it cannot find one, an error message is issued indicating that
the APF for the tag cannot be found and the tag is treated as text.

The solution we chose to use in the starter set was to map these “invalid” tags to a special macro
named DSM#FCNTX. This way you will get a more meaningful message and the tag will not
appear as text.

The DSM#CNTX macro calls the DSM#MSG macro to issue a message. It passes two parame-
ters to DSM#MSG—the message number “2” and the &$TAG symbol which contains the GML
tag which caused the DSM#CNTX macro to be processed.

One of two error messages is issued. The most common message 1s that the tag found is “out of
context,” such as an :ALINE tag found outside of an ADDRESS structure. The message macro
(DSM#MSG) has logic built in to recognize the tags that the starter set maps to the
DSM#CNTX macro. If any other tags are mapped to DSM#CNTX and not recognized by the
DSM#MSG macro, a different message is issued that simply shows the tag and says it is unas-
signed.

Miscellaneous 163

DSM#DUPL

The DSM#DUPL macro is called from several macros to advance to the top of an “odd” page
without starting the page when duplexing or to the top of the rext page when not duplexing. It is
called by

DSMABSTR
DSMAPPD
DSMBACKM
DSMBODY
DSMFLIST
DSMFRONT
DSMHEADO
DSMHEAD1
DSMINDEX
DSMPREF
DSMTOC

to get to a new page.

The DSM#DUPL macro performs the following processing:

1.

164

If &$PN is zero, it means that the first page of the document has not been started yet and if
50, the macro ends immediately.

Any floats that are pending, such as top or bottom figures, are dumped out before starting a
new page.

The next two lines of the macro undefine themselves the first time they are performed. This
is a technique used to do something only once. -See “Special Techniques” on page 13 for
details on how it works. In this case, the first of the two lines sets a local symbol (&*a) to
the macro line number of the second line down from it. It points to the line that reads

.if SYSPAGE eq ODD .pa

The next line tests to see if duplexing is in effect (&§SYSVARD = yes). If it isn’t, the macro
line pointed to by &*a is deleted from the macro.

This permanently removes the line from the macro. The next time the macro is executed,
the line after

. f1 dump
will be
.pa nostart

because the two lines that start with the .DM [Define Macro] control word and the line that
starts with the .IF [If] control word are all removed from the macro.

If duplexing is in effect, the .IF [If] control word line remains in the macro.

If duplexing is in effect and SYSPAGE is “odd,” a page eject is performed to get to an even
page. Remember, we're trying to get to the beginning of an odd page. If we’re on an even
page, all we need to do is the one page eject at the end of the macro, but if we are on an odd
page, we must first get to an even page. Then when we do the final page eject, we’ll be at
the beginning of an odd page.

A page eject with the NOSTART parameter is executed to end the current page without
starting a new page.

DCF: GML Starter Set Implementation Guide

DSM#MSG

All starter set error messages are issued by the DSM#MSG macro. This macro expects various
parameters to be passed to it. The first parameter, which is required, is the message number. If
no message number is given, message 0 will be issued which states that there was an unassigned
error message. It also shows the tag (&$TAG) that prompted the message.

This macro contains the text of the messages. The variable portion(s) are passed in as parame-
ters. The specific parameters passed depend on which message is to be issued. For example,
message 3 expects 2 parameters—the type of list being ended and the name of the tag that is end-
ing it. Message 14 expects only one parameter—the index entry level number.

The DSM#MSG macro processes messages as follows:

1. Branches to the appropriate section based on the message number, which is always the first
parameter (&*1.)

2. Constructs the message in a local symbol, &*a.
3. Takes another branch to the last section of the macro which will issue the message.

4. Puts the page number into a local symbol and the message number is padded with leading
zeroes so that message 1 prints as message “001,” which looks better.

5. Issues the message using the .MG [Message] control word. &X'00 is used as a delimiter and
“DSMGML” is prefixed to the message number to make it conform to the SCRIPT/VS for-
mat. A “W” is appended to the message number to indicate that it is just a warning mes-
sage. The page number is included after the text of the message.

DSM#RSET

The DSM#RSET macro is called from many other macros to ensure that there is not an open
list, footnote, quotation, title page, figure, or example. It is used primarily by document section
macros and heading macros to get a “fresh start.”

The DSM#RSET macro is called with a single parameter which consists of the variable portion
of a constant literal symbol. For example, the DSMPREF macro calls DSM#RSET with a
parameter of “Pref.” The DSMTOC macro calls DSM#RSET with a paramcter of “ToC.” There
is a symbol named “LL@Pref” which has a value of “Preface.” There is also a symbol named
“LL@ToC” which has a value of “Table of Contents.” The parameter passed is the second part
of the symbol name, and the “LL@” portion is constant.

The DSM#RSET macro does not use these parameters or symbol names directly. However, if it
becomes necessary to issue an error message during the resetting process, the parameter is passed
to the DSM#MSG macro to enable it to construct the appropriate symbol name for the contents
of the message. '

If none of the elements listed above are currently “open” or “on,” the macro simply performs a
break (.BR [Break]) and ends. If one of these elements is open, we’ll have to find out what it is
and end it.

The DSM#RSET macro performs the following processing:
1. DSM#RSET causes a break.

2. The nesting level variables for quotations and lists are & @nest@q and &@nest@]. These
variables are incremented each time a list or quotation is begun and are decremented when
each is closed. If there is a quotation or list that hasn’t been ended yet, the appropriate
variable will be greater than one.

The &@state variable is used to indicate that a figure, footnote, example, or title page is cur-
rently open.

Miscellaneous 165

These three variables are checked for indications of a structure that needs to be closed or
ended before continuing. If &@nest@q, &@nest@l, and &@state are 0, 0, and open, re-
spectively, we are done with the macro.

Once we establish that something is open, we have to find out what it is and close it. First
the & @nest@q symbol is checked. If it is greater than zero, we issue message 3 and call the
DSMEQUOT macro to close the quotation. This will decrement the & @nest@q symbol,
but there may have been more than one level of quotation going, so we loop back and check
it again. This process will continuc until the & @nest@q symbol equals zero, indicating all
quotations have been closed.

If the list nesting level (&@nest@l) is greater than 0, message 3 is issued and the
DSMELIST macro is called. We'll keep looping through this until all levels of lists have
been ended (& @nest@l equals zero).

If & @state is not equal to “open,” it means that a figure, example, title page, or footnote has
not been ended. Message 3 is issued and the appropriate ending macro is called depending
on the specific value of &@state. These include the DSMEXMP, DSMEFIG,
DSMEFTNT, and DSMETTLP macros.

The value of & @state will have been set specifically by whatever structure is open. For ex-
ample, the macro that begins figures (DSMFIG) sets &@state to “F.” Because all these
structures are mutually exclusive, only one can be open at a time. Therefore, we do not need
to loop back and re-check & @state.

DSMPSC

The :PSC tag is processed by the DSMPSC APF. :PSC is used for conditional processing. It
always uses section number 9 on the .CS [Conditional Section] control word.

1. Turns off the conditional section (9) in case an :EPSC tag was omitted. If we don’t do this,
we may get a SCRIPT/VS message when we attempt to start section 9 because it may al-
ready be started. To avoid this, the section is ended first.

2. Includes conditional section (9). This is the default if there is no PROC attribute on the
:PSC tag.

3. Calls DSM@PROC to process the PROC attribute. There are also two pseudonyms for
“PROC” which are recognized. These are “PROCESS” and “P.” If none of these attribute
names are specified, section 9 stays included and is processed. If there is a PROC attribute
and it doesn’t match the specified process names, the section will be ignored. (See the de-
scription of the DSM@PROC macro below.)

4. Starts conditional section 9. The ON parameter on the .CS [Conditional Section] control
word is used to begin the definition of what is in the conditional section. The INCLUDE
and IGNORE parameters control whether or not what is in the section will be formatted.

DSM@PROC

The DSM@PROC macro processes the PROC attribute of the :PSC tag as follows:

1.

166

Because a list of process names may be passed to this macro, a loop is used to compare each
parameter against a list. The list used in the compare includes the logical device name
(&SLDEYV), the physical device name (&$PDEV), and the value of &SYSVARP which may
have been given on the SCRIPT command.

When a parameter matches up (&*@ is greater than 0), the macro ends.
If no match is found, a .CS [Conditional Section] IGNORE control word is issued to ignore
conditional section number 9. The DSMPSC macro, which calls DSM@PROC, set section

DCF: GML Starter Set Implementation Guide

If the list nesting level (&@nest@l) is greater than 0, message 3 is issued and the
DSMELIST macro is called. We'll keep looping through this until all levels of lists have
been ended (& @nest@l equals zero).

If & @state is not equal to “open,” it means that a figure, example, title page, or footnote has
not been ended. Message 3 is issued and the appropriate ending macro is called depending
on the specific value of &@state. These include the DSMEXMP, DSMEFIG,
DSMEFTNT, and DSMETTLP macros.

The value of &@state will have been set specifically by whatever structure is open. TFor ex-
ample, the macro that begins figures (DSMFIG) scts &@state to “F.” Because all these
structures are mutually exclusive, only one can be open at a time. Therefore, we do not need
to loop back and re-check & @state.

DSMPSC

The :PSC tag is processed by the DSMPSC APF. :PSC is used for conditional processing. It
always uses section number 9 on the .CS [Conditional Section] control word.

L

Turns off the conditional section (9) in case an :EPSC tag was omitted. If we don’t do this,
we may get a SCRIPT/VS message when we attempt to start section 9 because it may al-
ready be started. To avoid this, the section is ended first.

Includes conditional section (9). This is the default if there is no PROC attribute on the
:PSC tag.

Calls DSM@PROC to process the PROC attribute. There are also two pseudonyms for
“PROC” which are recognized. These are “PROCESS” and “P.” If none of these attribute
names are specified, section 9 stays included and is processed. If there is a PROC attribute
and it doesn’t match the specified process names, the section will be ignored. (Sec¢ the de-
scription of the DSM@PROC macro below.)

Starts conditional section 9. The ON parameter on the .CS [Conditional Section] control
word is used to begin the definition of what is in the conditional section. The INCLUDE
and IGNORE parameters control whether or not what is in the section will be formatted.

DSM@PROC
The DSM@PROC macro processes the PROC attribute of the :PSC tag as follows:

1.

Because a list of process names may be passed to this macro, a loop is used to compare each
parameter against a list. The list used in the compare includes the logical device name
(&SLDEV), the physical device name (&$PDEV), and the value of &SYSVARP which may
have been given on the SCRIPT command.

When a parameter matches up (&*@ is greater than 0), the macro ends.

If no match is found, a .CS [Conditional Section] IGNORE control word is issued to ignore
conditional section number 9. The DSMPSC macro, which calls DSM@PROC, set section
9 up to be included. We need to override this if a PROC attribute value is present but not
valid.

DSMIM

The DSMIM macro is used to process the .IM [Imbed] control word to imbed a file. It produces
a message stating that the file is being imbedded and saves the file name for the imbed trace that
is printed with the cross reference listing.

Miscellancous 167

The .IM [Imbed] control word is “mapped” to DSMIM by the DSM#SET macro during initial-
ization. This is done by defining a macro named “IM” that calls the DSMIM macro and passes
all the control word parameters along as macro parameters.

.dm im /.dsmim &%

Since .JM [Imbed] is a control word and not a GML tag, it can not be overridden except by a
macro which has the same name as the control word. All of the permanent macros included in
the starter set macro library must start with “DSM,” which means that we have had to dynam-
ically define a macro with the same name as the control word (IM). This IM macro simply
passes the control word parameters along to the DSMIM macro for processing. This additional
level of indirection is necessary to maintain the naming scheme for the macro library.

The file name is the first parameter passed to this macro. The DSMIM macro performs the im-
bed in the following way:

1. The file name is compared to the names of the utility files. If a match is found, the file is
imbedded and the macro ends. Utility files are not included in the imbed trace or in the
messages, so there is nothing else to be done.

2. The &@nest@i symbol indicates the level of nesting of imbedded files. The symbol is incre-
mented each time a file is imbedded. It will be decremented later as described below.

3. Then we define a local symbol (&*a) to be three times the level of imbed nesting. This will
be used to redefine &*a to be a string of dashes. Because &*a is used as the length parame-
ter in the substring function, the number of dashes will be the nesting level times 3. There-
fore, the names of files imbedded from other files will appear indented.

(Pass 1) Page 10: Imbedding file ---> First
(Pass 1) Page 10: Imbedding file ==-=--- > Second
(Pass 1) Page 10: Imbedding file ======--- > Third

4. The page number is put into a local symbol and padded with blanks so that it will always be
five spaces wide. This will be used in the imbed message.

5. If the system symbol &$TWO is 1, it indicates that we will be doing more than one pass.
This means we need to include the pass number in the message. The &*pass symbol is de-
fined to contain the following information enclosed in parentheses:

e The character string “Pass” which is in the &LL@Pass symbol
¢ The pass number, which is in the &$PASS symbol.

When only one formatting pass is been processed, the pass number is not necessary. We
don’t need to define the & *pass symbol because local symbols that havent been defined have
a null value in a macro.

6. A message is issued that includes the following pieces of information.

The word “Pass” and the pass number (& LL@ Pass &$PASS)
The word “Page” (& LL@Page) and the page number (& *page)
A colon (3)

The word “imbedding” (& LL@Imbdg)

Some dashes (*a)

An arrow end (>)

The full file name (&*) in uppercase letters.

® 6 & &6 0 0 0

168 DCF: GML Starter Set Implementation Guide

7. If this isn’t the last pass (indicated by & @lastpass not equal to “yes”), then we don’t need to
bother with saving the information for the imbed trace. This will be done on the last pass.
In this case, we skip over this code and go directly to imbedding the file. (See number 9.
below.)

8. If this is the last pass:

a. A local symbol (&*a) is defined to be two times the level of imbed nesting. Then it is
set up to be a string of blanks that is twice as long as the the nesting level.

b. An entry is made into the &@imtrace array. This array contains the imbed trace infor-
mation that will be printed along with the cross reference at the end of the document.
The entry includes:

The word “Page” (&LL@ Page)

The page number (&*p)

A tab character (&$TAB)

Some blanks (&*a)

The file name (&*) in uppercase letters.

9. The file requested is then imbedded. The imbed nesting counter & @nest@i is then decre-
mented to show that the imbed was completed.

DSMEPSC

The :EPSC tag is processed by the DSMEPSC APF which ends the conditional section that was
started by the :PSC tag. The section number is 9.

Modifications to General Service Macros.

Because the macros described in this chapter are used throughout the starter set to provide general
services to APFs, any modifications to them should be approached with caution. Some simple
modifications to incorporate local tags and structures can safely be done and are described below.

Adding New Messages

In adding your own tags and APFs to the starter set, you may find it necessary to generate warn-
ing messages for your users. These should be put in DSM#MSG to take advantage of the fact
that all messages are collected there. To add a new message, pick a number not already used and
add whatever lines are needed to generate the text of the message in the &*a local symbol. For
example, you could add the following DSM#MSG call to your APF:

.dsmffmsg 15 Part number

You would also need to add the following lines to DSM#MSG to actually issue the message:

...msgl5
.se *a "&%2 &*3 is invalid - truncated to 8 characters'

. g0 mg

Miscellaneous 169

Eliminating the Imbed Trace

Although most users find the imbed trace useful, you might want to disable it. If so, remove the
line in the DSM#SET macro that defines the IM macro that gets control instead of the .IM
[Imbed] control word.

.dm im /.dsmim &*

This disables both the trace at the end of the document and the messages that appcar on the
screen as the files are imbedded.

To disable only the trace, add a .ME [Macro Exit] control word to the DSM#XLST macro after
the “...imtr” label.

... imty
. me

See the discussion of producing the imbed trace in “Cross-References” on page 147 for more de-
tails on this process.

170 DCF: GML Starter Set Implementation Guide

Appendix A. Modifying the Macros

SCRIPT/VS and the starter set operate in several different operating system environments. If you
want to modify a macro or create a new macro, what you need to do depends on what environ-
ment you are operating in. The four sections that follow provide quick instructions on how to
modify the maclib in the four environments—CMS, TSO, DLF and ATMS.3

These instructions are not meant to be all inclusive. It is assumed that you have already mastered
the basic skills of working on the system you use. All that is provided here is some special infor-
mation you may need to work with the macros. You should consult the system documentation
for additional information and assistance.

Modifying the DSMGML3 MACLIB (CMS)

In the CMS environment the starter set macros are kept in a file named DSMGML3 MACLIB.
In order to modify it you must have write-access to the disk that it is stored on or you must copy
it to your own disk. The maclib cannot be modified directly by most editors.

In order to modify a macro you will need to:
1. Extract the member from the maclib

2. Editit

3. Replace it in the maclib.

Note: Several of the macros in the starter set contain the pound sign (#) character or the at-sign
(@) character. These are the default line-end and character-delete characters in CMS. When you
attempt to work on these macros you will need to change these terminal settings to use other
characters. For example, the following command changes the line-end character to a semicolon
(;) and the character-delete character to a (%):

term linend ; chardel %

Extracting a Member from a Maclib

There are several different ways to extract a member from a maclib. One way is:

1. Define two files one of which is the member of the maclib that you want extracted. The
other is the name of the file where you want it put.

filedef inmove disk dsmgml3 maclib a (member dsmlistm
filedef outmove disk dsmlistm copy a

36 The GML starter set is a fully supported part of the Document Composition Facility program product
provided that neither the profile nor the macro library have been modified in any way. This means that
you should be careful to not alter the base version of these files. Make your own copies or user libraries
instead.

Appendix A. Modifying the Macros 171

The last name on the first line is the name of the macro you are interested in. The file
named on the second line should have the same filename as the macro and should have a
filetype of "COPY’. “inmove” and “outmove” are the default file identifiers for the
MOVEFILE command?¥.

2. Next, request that the ‘inmove’ file be moved to the ‘outmove’ file.
movefile

This will create a file named '‘DSMLISTM COPY’ on your A-disk.

Make sure that before executing this step that you don't already have a file with the same
name as the ‘outmove’ file¥’

3. Then, using the editor of your choice, edit the new file
xedit dsmlistm copy
4. Copy files usually have special characteristics in CMS which you will have to work around.
The editor default is usually to put sequence numbers on the right-hand side of the lines. We

can’t let it do that, so before we do anything we need to inhibit the numbers. To prevent
sequence numbers in XEDIT, use the following command:

serial off

In other editors, the command may be different.

Also the default case for copy files is usually uppercase. The GML starter set macros are
written in mixed case. To avoid getting the file changed to uppercase, use the following com-
mand:

case mixed

Editing the Macro

Now edit the file to make the changes you want to make and file it away.

Creating Your Own Maclib

The first time you create a new macro or modify one of the ones in the starter set, you will need
to create a new macro library of your own. Be careful not to modify the starter set library in any
way.

You can generate your own library with the following command which generates a new maclib
named “USER” and puts the macro named “DSMLISTM” into it:

maclib gen user dsmlistm

The name of the CMS command is “MACLIB” and “GEN” is a parameter on the command.

37 See the CMS Command documentation for more information about the FILEDEF and MOVEFILE
command.

172 DCF: GML Starter Set Implementation Guide

Using Your Own Maclib

The LIB option of the SCRIPT command controls which libraries SCRIPT/VS will search for
macros and in what order. By specifying both the name of your own maclib and the starter set
maclib (DSMGML3) with the LIB option you can get SCRIPT/VS to use your macros ahead of
the starter set macros.

scriptvs mydoc (prof(dsmprof3) lib(user dsmgml3)
See Document Composition Facility: SCRIPT|VS Language Reference for additional explanation
of the LIB option.
Replacing the Macro in the Maclib
For subsequent modifications to macros or new macros you will need to use the MACLIB com-
mand again with a different parameter. The “ADD” parameter will add a new macro to your
library:

maclib add user dsmbody

The “REP” parameter will replace a macro that alrcady exists in the library with a new copy of it.

maclib rep user dsmbody

Creating a New Macro

To create a new macro, all you need to do is create a file whose filetype is “COPY.” Again, make
sure that it doesn’t have sequence numbers in it. To add a new macro to the macro library use
the following command:

maclib add user mymac

where “mymac” is the filename of the new macro and “user” is the name of the macro library.

Compressing the Maclib

Each time you replace a member in the maclib there will be some unused space left in the file
where the macro used to be. This means that the size of maclib will keep increasing each time
you replace a macro. There is a simple way to compress the maclib and eliminate all the extra
space in it.

maclib comp usex

That’s all you have to do.

Modifying SCRIPT.R30.MACLIB (TSO)

The GML starter set is stored in a partitioned data set (PDS) in TSO. Each macro is a separate
member of the PDS and as such can be created and edited in the same way that all PDS members
are edited using the editor of your choice. The starter set library is mnamed

Appendix A. Modifying the Macros 173

“SCRIPT.R30.MACLIB” and can be used as a source for macros which you wish to modify and
then save in your own library.3

New and modified macros should be placed in a separate macro library, not replaced or added to
the starter set macro library. The name of the new library should be different from the name for
the starter set library.

If you choose to modify the starter set library directly, make sure that you have saved a complete
starter set library elsewhere first. Any problems you report must be reproducible on an unmodi-
fied starter set library. It is generally a better idea to create a separate user library and format
using that library and the starter set library. How to do this is explained below.

Using Your Own Maclib

The LIB option of the SCRIPT command can be used to provide the name of a library for
SCRIPT/VS to search for macros and symbols before searching the SCRIPT.R30.MACLIB.

scriptvs mydoc (prof(dsmprof3) 1ib('user.script.maclib')

In the command shown above, SCRIPT/VS will automatically concatenate
SCRIPT.R30.MACLIB to the library that was specified with LIB.

See Document Composition Facility: SCRIPTIVS Language Reference for additional explanation
of the LIB option.

Creating a New Macro

To create a new macro, all you need to do is create a new member in your user maclib.

Modifying DSMGML3 Macros (DLF)

The GML starter set macros and profile are stored as documents in public library number
1314151 in the DLF environment.* To modify one of these documents:

1. EXPORT it from 1314151 into a partitioned data set in TSO
2. Edit it using your favorite editor (such as ISPF)

3. Filetit

4. IMPORT it back into DLF.

You can either import the file back into 1314151, if you are authorized to do so, or you can
import it into your own user library or your project library. In order to maintain support of the
macro library, it is better to create your own project or user library than to modify the 1314151
library.

To create a new macro, all you need to do is import a new document into your user library.

You don’t need to do anything else to format using your new macros. SCRIPT/VS will auto-
matically search your private library, your project library and the 1314151 library (in that order)
when it is searching for macros and symbols that are in a Library. See also Docwnent Library
Facility Guide for information about using the SCRIPT command in DLF,

38 This is the default library name which may have been changed by your installation.

39 This is the default library which may have been changed by your installation.

174 DCFE: GML Starter Set Implementation Guide

Modifying DSMGML3 Macros (ATMS)

In ATMS-III the GML macros and profile are stored in the permanent storage of the SYSOP
operator. The prefix for the documents is “DSM30” for the Document Composition Facility
Release 3 APFs and profile. The default SYSOP operator number is 5.

To modify one of the GML macros:

1. Obtain a copy of the macro from SYSOP's permanent storage:

gc; DSM30DSMLISTM: 5

Note: You can also create your own new macros and store them in your own permanent
storage.

2. Edit the macro and, using a prefix other than DSM30, store it in your own permanent stor-
age.

3. Build and connect an index for the prefix you use.

4. If you are going to use the GML starter set and your own macros at the same time, you will
also need to build and connect that library.

When the two libraries are connected, SCRIPT/VS will be able to search both for the macros it
needs. The order in which you build and connect the libraries is important. SCRIPT/VS will
search the indexes in the order you built them. So, if you are using your library (containing
copies of some of the starter set macros), build and connect your library first, then build and
connect the DSM30 library.

If the indexes are built in the wrong order, use the LIB option of the SCRIPT command to spec-
ify the search order.

LIB(opnum [...opnum'")

See the ATMS-III documentation for more details on how to do all this.

Appendix A. Modifying the Macros 175

Appendix B. Migration from Release 2 to Release 3

The purpose of this section is to describe the modifications made to the Release 2 starter set for
Release 3 of the Document Composition Facility. Here we provide some guidelines for updating
APFs and macros that you wrote for Release 2. If you do not plan to use a 4250 printer, IBM
3820 Page Printer, or a 3800 Printing Subsystem Model 3 in ali-points addressability mode, you
probably won’t have to change your GML.

All of the macros in the starter set macro library have been modified for Release 3 of Document
Composition Facility. In some cases the change is nothing more than changing the name of the
macro to begin with the letters “DSM.” In other cases substantial revisions were made to the
logic and function of the macros. Some macros have been deleted for Release 3 with their func-
tions absorbed by other macros or the profile. If you modified some of the Release 2 macros,
you need to carefully review each modification and compare the Release 2 macro to the Release 3
macro. Changes you made might work without modification in Release 3 or they might need to
be modified.

We had a number of reasons for changing the macros:

e To formally support the starter set, the naming convention for the macros was standardized
to include the three character prefix indicating DCF

¢ To make it casier for you to tailor the starter set, many functions (particularly definitional
things) were moved into the profile

e To support page printers, some processing functions were modified.

This last category of changes requires additional explanation and should be used as a guide to
reviewing your own GML. The functional areas where we made changes include:

® Providing font support for page printers (4250 printer, 3800 Printing Subsystem Model 3, and
IBM 3820 Page Printer)

¢ Working in device units rather than unqualified space units

¢ Using system symbols.

Font Support for Page Printers

Since a greater variety of fonts can be used with page printers we changed the starter set to take
advantage of the font capabilities of each machine. This meant reviewing each text element in the
starter set and selecting a suitable font for it. For example, each piece of information placed on
the title page was considered scparately; many were given special font definitions. These defi-
nitions were placed in DSMPROF3 to make it easy to override them. For example,

.df title type (24 bold) up

. df author type(12

.df address type(10)

.df date type(1ll italic)

.df docnum type(10 italic)

.df titlesec type(10 italic bold)

Appendix B. Migration from Release 2 to Release 3 177

When the title page is formatted, the .BF [Begin Font] control word is used to change fonts for
the page printers without disturbing the font that is used for line devices. For example:

.bf docnum =

starts a font named “docnum” that is defined for the page printers only. For all other devices, the
current font will be started again.

Using Device Units

In several instances in the starter set it was also necessary to adjust the space unit specifications.
Whenever space units were given in unqualified horizontal or vertical space unit notations such
as,

.sp 4
or
.in 6

each one needed to be carefully reviewed. For line devices, unqualified horizontal space units are
interpreted as ordinary word spaces which are the same width as all of the characters. However,
space unit notations of this type cause problems on page printers because unqualified space units
are interpreted as figure spaces in the default font (roughly the width of the character zero). These
spaces cannot be equated to a number of characters since each character in a font for page print-
ers has its own width. A figure space is far smaller than most of the characters in the font.
Therefore, if you set a delayed indent of 6 characters to indent the second line to after the sixth
character on the first line (just fine for a line device), it would not work out right on a page
printer.

In the starter set, some of the indention values were adjusted to provide the correct result for page
printers. In some cases the width of the indention had to be carefully measured. This was the
case in the DSMFCAP macro which in Release 2 used to set an indent of 10. The 10 was equiv-
alent to the width of “Figure 1. .” In Release 3 we had to measure this width exactly in device
units to set the indention. You can see the lines that perform the measurement and set the in-
dention in the DSMFCAP macro. These lines are explained in “Examples and Figures” on page
115.

Another example of where unqualified space notation had to be changed is in the DSM#SETX
macro. It sets up the tab rack for the cross reference listing. In Release 2 tabs were set like this:

.tb 9 19 27 32

In Release 3, these tab positions were too small for page printers. Since precision here was not
important as long as the lines all fit on the page, the tabs were changes to

.tb 9m 19m 27m 32m

to provide more space when formatting for page printers.

Using System Symbols

Another type of problem arises from using certain system symbols which can be set very pre-
cisely, but return rounded values.

The easiest way to explain the rounding problem is to look at what happens in Release 2 and
compare it to the Release 3 result. The Release 2 LIST macro (equivalent to the DSMLISTM
macro in Release 3) sets this symbol value:

178 DCF: GML Starter Set Implementation Guide

.se @in@]1 = &$IN

If the indention is “4”, the &@in@1 symbol is set to 4. However, suppose the indention was
“31.” In Release 2, the resulting value of &@in@! depends on what device you are formatting
for:

¢ For a terminal, a 1403, or a 3800 with 10-pitch fonts the answer is 3.
¢ For a 3800 with a 12-pitch font the answer is 4.
In either case, no rounding is done.

In Release 3, the problem is expressed in terms of what the result is for page printers. One-third
of an inch should result in 200 device units for a 4250 printer and 80 for a 3800 Printing Subsys-
tem Model 3 and IBM 3820 Page Printer. However, the value of system symbols is given in
figure spaces for page printers. And, since a figure space in a 10-point normal font is 42 device
units, the value of &$IN will be rounded to “7” which is off by 6 device units from the original
specification.

The way to avoid this rounding is to request the value of the system symbol in device units using
the &DH’ or &DV’ symbol attributes:

.se @in@1 = &dh'&$IN. dh

The value for line printers will be the same as before and the value for the 4250 printer will have
been properly set at 200 device units. For the 3800 Printing Subsystem Model 3 and IBM 3820
Page Printer, the value will be 80.

Appendix B. Migration from Release 2 to Release 3 179

Appendix C. Starter Set Macro Library Listing

MACRO NAME

DSM#CNTX
DSM#DUPL
DSM#LINT
DSM#LTYP
DSM#MSG
DSM#RSET
DSM#SET
DSM#SETS
DSM#SETV
DSM#SETX
DSM#STYL
DSM#SUPR
DSM#TIPG
DSM#WRIT
DSM#WRTD
DSM{#tWRTF
DSM#WRTH
DSM#WRTN
DSM#XLST
DSM#XRFD
DSM#XRFF
DSM#XRFH
DSM#XRFI
DSM#XRFN
DSM{#YESN
DSM@FRME
DSM@IDS
DSM@IPRT
DSM@MAC@
DSM@PGRF
DSM@PLCE
DSM@PROC
DSM@RFID
DSM@RIDI
DSM@SEC
DSM@SEE
DSM@SEEI
DSM@SHD
DSM@STTL
DSM@WIDT
DSMABSTR

PAGE MACRO NAME
182 DSMADDR
182 DSMALINE
182 DSMAPPD
183 DSMAUTHR
184 DSMBACKM
185 DSMBODY
185 DSMCIT
186 DSMDATE
187 DSMDCNUM
187 DSMDDEF
188 DSMDDHD
189 DSMDLIST
190 DSMDTERM
191 DSMDTHD
191 DSMEADDR
161 DSMECIT
191 DSMEFIG
191 DSMEFTNT
192 DSMEGDOC
193 DSMEHP
193 DSMELIST
193 DSMELQU
193 DSMEPSC
194 DSMEQUOT
194 DSMETTLP
194 DSMEXMP
195 DSMFCAP
195 DSMFDESC
195 DSMFGREF
195 DSMFIG
196 DSMFLIST
196 DSMFPNREF
196 DSMFRONT
196 DSMFTINT
196 DSMGDEF
196 DSMGDOC
197 DSMGLIST
197 DSMGTERM
197 DSMHDREF
197 DSMHEADO
197 DSMHEADI1

PAGE MACRO NAME
198 DSMHEAD2
198 DSMHEAD3
198 DSMHEAD4
198 DSMHEADS
199 DSMHEAD6
199 DSMHPO
199 DSMHPI
199 DSMHP2
199 DSMHP3
200 DSMIDMMY
200 DSMIEH
200 DSMIHD1
201 DSMIHD2
201 DSMIHD3
201 DSMIM
201 DSMINDEX
502 DSMINDXI
502 DSMINDX2
202 DSMINDX3
502 DSMIREF
503 DSMLIREF
504 DSMLISTM
504 DSMLITEM
504 DSMLPART
504 DSMLQUOT
%05 DSMNOTE
505 DSMOLIST
206 DSMPARAL
383 DSMPARA2

DSMPARAS
207 DSMPCONT
208 DSMPREF
ggg DSMPROF3

DSMPSC
209 DSMQUOTE
209 DSMSLIST
209 DSMTITLE
209 DSMTOC
210 DSMTTLEP
210 DSMULIST
211 DSMXMP

PAGE

211
211
211
212
212
212
212
212
212
212
213
213
213
214
214
214
215
215
213
216
2117
218
219
219
219
219
219
220
220
220
220
220
220
221
227
227
228
228
228
228
228
229

The following IBM copyrighted program code may be reproduced and distributed by the cus-
tomer to other IBM customers who are licensed to use the Document Composition Facility pro-

gram.

Appendix C. Starter Set Macro Library Listing

181

DSM#CNTX

.% DSMECNTX: Tag out of context are mapped here to give a message. %*
© NI NI I NI K I KK IR I N I FENIEH I I I IHIRH I KHIH N R KK IR EININN
.dsmitmsg 2 &$TAG

DSM#DUPL

.% DSM#DUPL: Advance to before an odd page (duplex} or next page. %*
% If no page started, exit, otherwise dump pending floats. *
« PR H TN NN HIN K I IR INIIEH I HIEIHIEIINNIENIHIE NN HIHIHHH NN HHH
.if &$PN eq 0 .me

.fl dump

.% DUPLEX - EJECT TO EVEN PAGE. NOT DUPLEX - REMOVE THE EJECT LINE *
.dm dsmidupl(&$LNUM.) off &S$CH..se Xa = &SLNUM + 20

Jdm dsm#dupl(&$LNUM.) off &$CH..if &SYSVARD eq no .dm dsmitdupl(éxa.) off
.if SYSPAGE eq ODD .pa

.pa nostart

DSMELINT

.% DSM#LINT: No parms. Internal service macro to define nesting

.%¥ control symbols for ordered and unordered list.

.% &ddenestdu and &3renestdu are ring counters for unordered lists.
.% &ddenestdo and &Irenestdo are ring counters for ordered list

2 FEINHH R IR IIIENIHHIIHHINH IR IINFRHIINHKHIHHN I IHIHIHHIEHHHHHHH KK FHIHK IR KN
.se ddenestdu = substr &L'&ulistnest.12345678 1 &L'&dulistnest

.se drenestdu = substr &ddenestdu.8&L’'&dulistnest.l 3 &L'&ulistnest

.se ddenestdo = substr &L'&Jolistnest.12345678 1 &L'&dolistnest

.se drenestdo = substr Idenestdo.&L'&olistnest.l 3 &L'&olistnest

X X K X

182 DCF: GML Starter Set Implementation Guide

DSMELTYP

.% DSM#LTYP: Parm = ALPHA, BULLET, NUMBERED,ORDERED,ROMAN, SIMPLE,

.% UNORDERED. Used by DSMLISTM macro to indicate the type of list to
.% be formatted. 8dltype is set to “s", "o", "u", or "1" to indicate
.* the type of list. &3idal is set to a string which will generate
.% the 'ids' for subsequent list items. This macro is self-modifying.
« FHHIII I H RN K H NI NI HINRIH KK IH NI KK I K H KN H IR I IHHE XK HHH KN
.dsm#lint

X X X X X

o % SET &3ltype TO THE TYPE OF LIST THAT SHOULD BE CREATED 3
.se ¥a = substr &x1 11
.se ¥ = index ' %0SUG' &U'&xa

.if &b eq 0 .se xb = 1

.se dltype = substr ‘zdosug' &xb 1

.go list&dltype

<% FOR DEFINITION LISTS AND SIMPLE LISTS, THE *"id" ID NULL *
oo listg

+oolistd

...lists

.se 9idal =

e

% &anestdu INDICATES THE NESTING LEVEL, AND drenestau CONTAINS A *
.%¥ RING COUNTER USED TO DETERMINE THE NESTING LEVEL OF THE NEXT UL
...1listu

Jif ZE'&Inestdu eq 0 .se destdu = &L'&Julistnest

.se dnestdu = substr &drenestdu &dnestdu 1

.se ¥a = substr &ulistnest &dnestdu 1

X

.go listz
% &dnestdo INDICATES THE NESTING LEVEL, AND drenestdo CONTAINS A *
.% RING COUNTER USED TO DETERMINE THE NESTING LEVEL OF THE NEXT OL *
+.0listo

.1f &E'&dnestdo eq 0 .se dnestdo = &L'&olistnest

.se anestdo = substr &drenestdo &dnestdo 1

.se *¥a = substr &olistnest &dnestdo 1

% &*a IS A ONE-LETTER KEY INDICATING THE TYPE OF LIST ITEMID TO USE *
L% &21ddl IS SET TO A STRING THAT WILL GENERATE THE PROPER IDENTIFIER
oo listz

.se ¥a = '<ype.&*a. :

.if E'891dd1d&*a eq 0 .dsmimsg 7 &*a

.se 21dadl '&V'&didaldgxa. .’

Appendix C. Starter Set Macro Library Listing 183

DSMEMSG

.% DSM#MSG: Parm = message ¥, variables Issues error messages with %
¥ the .MG control word. The lst parm is the GML msg #, subsequent
.% parms are variables to be substituted into the messages text. *
L FEENIH NI I NI FHHH I K H I I IR KR KRNI I I HIINRIHH KN H I KN
.go msg&xl

...msg

.. .msg0

.. .msgl

.se ¥a 'Unassigned error message ... tag is &$TAG

.go mg

.. .msg2

.if &%2 eq AUTHOR

.or &2 eq DATE

.or &*2 eq DOCNUM

.or &2 eq TITLE .se ¥a 'Title Page

.if &x2 eq ALINE .se ¥a 'Address

if &x2 eq DT

.or &%2 eq DD .se ¥a 'Definition List
.if &%2 eq GT
.or &*2 eq GD .se *a 'Glossary List

.1if &%2 eq FIGCAP

.or &%2 eq FIGDESC .se *a 'Figure

Jif &%2 eq LI

.or &%2 eq LP .se ¥a 'List

.if 8E'&*a eq 0 .go msgl

.se *a '&%2 tag found outside &xa

.go mg

.. msg3

.if &x2 eq listd .se *a 'Definition List

.if &2 eq listg .se ¥a 'Glossary List

.if &%2 eq listo .se *a 'Ordered List

.if &*2 eq lists .se *a 'Simple List

.1f &x2 eq listu .se ¥a ‘'Unordered List

.if &%2 eq listz .se *a 'List

Jif &E'&*a eq O .se *a '&LLIE*2

.se ¥a '&%a prematurely ended by &LL3&*3 tag
.go mg

.o msgh

.se ¥a '&x2 tag found within &LL&*3 and ignored
.go mg

.. .msgh

.se ¥a ‘Extraneous &LL2&%2 Term '&%3.' ignhored
.go mg

.. .Msgb

.se ¥a '&LLI&*2 Term tag missing

.go mg

...msg7

.se ¥a 'Unrecognized List type: &*2

.go mg

.. msg8

.se ¥a '&LLI&x2 id '&x*3.' truncated to seven characters
.go mg

.. .msg?

.se ¥a 'Duplicate &LL2&%2 id '&%3.' ignored
.go mg

...msgll

.se ¥a '&LL3&*2 end-tag found outside &LL3&%2 and ignored
.go mg

.. omsglé

.se ¥a 'Missing term for level &*2 index entry

.go mg

x3 PAD THE MSG # WITH LEADING ZEROES & ISSUE MSG WITH PAGE #
.vomg

.se ¥p = &
.se ¥b = substr '008&x1.' &L'&*1 3
.'mg &X'00.DSMGML&*b.W&X'00.38*a.. (Page &*p.)

184 DCF: GML Starter Sct Implementation Guide

DSM#RSET

.% DSM#RSET: Parm = message text. Used by heading and section tags to *

.% end open lists, quotes, figures or footnotes. Causes a break. *
e K o e e e e e e e e e e *
br

JAf &dnestdq. »&dnestdl. ,&dstate eq 0,0,0pen .me

% END ALL QUOTES BY ISSUING MSG & CALLING DSMEQUOT *
.. loopl

1f &nestdq eq 0 .go loop2

.dsm#fmsg 3 QtePh ‘'&x.°

.dsmequot

.go loopl

L% END ALL LISTS BY ISSUING MSG & CALLING DSMELIST %
.. .loop2

.1f &dnestdl(0) eq 0 .go state

.dsmitmsg 2 list&dltype '&%.°'

.dsmelist

.go loop2

% CHECK 3dstate FOR "open™ FIG, XMP, OR FN. ISSUE MSG & CLOSE IT
...state

.if &Jstate eq open .me

.dsmitmsg 3 &dstate '&x.°

.if &dstate eq Exmpl .dsmexmp

.if &dstate eq F .dsmefig

.if &dstate eq N .dsmefint

.if &dstate eq TtlPg .dsmettlp

X

DSM#SET

.% DSM#SET: Initialization of important symbols. *
+ FEHKHHFHHHHFIIFHHHFHHIHHR K HHHH KR K HHIEIIIH R KKK HIHRIEN K HHIHHHH NN K
.se dlastpass = 1 ~ RE'&lastpass % &STHO * 3 + 1

.se dlastpass = substr ‘yesno' &dlastpass 3

. % DEFINE SOME COMMON SYMBOLS TO GET SPECIAL CHARACTERS. *
.se rbl '&$RB

.% INITIALIZE VARIOUS COUNTERS & STRINGS: &3skdl = skip between litemsx

% &Inestdl - List nesting &dnestdi - Imbed nesting *
¥ &dnestdq - Quote nesting &afight - Figure number *
L% Zfn# - Footnote number &Istate - Fig/Fn/Xmp nesting *
.gs args 0 0 1] 1 1 open &askals

.gs vars dnestdl dnestdi Inestdq dfigh afnk Istate askal

.se dnestdo off

.se dnestdu off

. % INIT CROSS REFERENCE ARRAYS, TAKE OVER .IM, INIT SYSVARW ARRAYS
.1f &SYSVARX ne yes .go skip2

.dm im /.dsmim &%/

.se Ixrefaf() = * %'
.se Ixrefah() = ' *!
.se Ixrefdi() = *'.x%°
.se Ixrefan() = ' %!
.se Ixrefad() = '.»'

...skip2
.if XE'&SYSVARW eq 0 .go skip3

.se awritdf() = ' *!
.se awritdh() = ' .x*
.se dwritdi() = " .x%!
.se writant) = ', x!
.se awritdd() = *. %’

.¥IF INDEXING, DEFINE &itl, &dit2, AND &2it3, TO CONTAIN THE 1ST,2nd *
.% & 3RD INDEX TERMS, SO .PI WILL GENERATE A MSG IF ONE IS OMITTED *

...skip3

.if &$INDX eq 1 .th .gs args '' v v

.th .gs vars 2itl 2it2 31t3

. % DEFINE SYMBOLS TO USE IN RH/RF DEFINITIONS *
.se dstitle off

.gs args '' v '&dstitle.!

.gs vars dsec dstitle ashead
.dm dsmi#tset off

Appendix C. Starter Set Macro‘Library Listing 185

DSMASETS

.* DSM#SETS: Define symbols for general use in starter set. *
I H IR KNI I HIEII NI I I H IR HHIHE RN NN K I HIEHIIIIIIIHHIN RN
.se LLIAbstr 'Abstract-

.se LL3Appdx 'Appendix

.se LLaBkMtr 'Back Matter

.se LLaBody ‘'Body

.se LLICrsRf 'Cross Reference

.se LLIDef ‘Definition

.se LLdDocNm ‘Document Number

.se LLIExmpl ‘Example

.se LL3F 'Figure
.se LLO9File 'File

.se LLaN 'Footnote
.se LL3Gloss 'Glossary
.se LLOH 'Heading

.se LLdImbdg 'Imbedding
.se LLAImTrc 'Imbed Trace
.se LLdIndex 'Index

.se LL3aI 'Index

.se LLIList ‘'List

.se LLaLI ‘LY

.se LLaL 'List Item
.se LL3D ‘List Item

.se LLILstIl 'List of Illustrations

.se LLINote 'Note

.se LL3of ‘of

.se Llaonpge 'on page

.se LLaPage 'Page

.se LL3Part ‘Part

.se LLdPass 'Pass

.se LLIPref 'Preface

.se LLaQtePh 'Quoted Phrase

.se LLIRefs ‘'References

.se LLISpChr 'Special Characters

.se LLISyntx 'Syntax

.se LL3ToC 'Table of Contents

.se LLdTable 'Table

.se LLATtlPg 'Title Page

.se LLunkn ‘unknown

.se LL3device 'DEVICE

.se LLaformat 'Formatted with

.se LLaat ‘at

.se LlLdsaved ‘saved on

. % SET &date TO BE OF THE FORM "July 4th, 1776". %*
.gs args January February March April May June July August
.gs args &% September October November December

.se ¥s ‘'stndrdthththththththththththththththththstndrdthththththththst

.se ¥a = &SYSDAYOFM * 2 - 1
.se ¥a = substr '&%s.' &*a 2
.se ¥b = &SYSDAYOFM + 0
.se ¥c = &SYSMONTH + O

.se date '&%&%c &%b.&*a., 19&SYSYEAR

L% SET &time TO BE OF THE FORM “11:01 a.m.". *
.if &SYSHOUR 1t 12 .se *m = 'a.m.

.el .se *m = 'p.m.

.if &SYSHOUR le 12 .se %*h = &SYSHOUR + O

.el .se xh = &SYSHOUR - 12

.se time '&xh.:&SYSMINUTE &*m

.dm dsm¥sets off

186 DCF: GML Starter Set Implementation Guide

DSM#SETY

.% DSM#SETV: Process SYSVARs and set defaults. *
.* See Starter Set Implementation Guide on ‘'Initialization® *
+ FERFEIHN R FNIIH K H K I HIEIIIHNI NI F NN I KK N K I IHKIHIIN K I N KNI IR KKK RIHKR KK
.se ¥a = index '-NO-YES-DUPLEX-SIMPLEX-*' '-&U'&SYSVARD.'

.if &*a eq 0 .se *a = 1

.se SYSVARD = substr 'no yes yes no* &*a 3

.1if &E'&SYSVARH eq 0 .se SYSVARH = no

.se ¥a = index '-NO--YES-NUMBER-' '-&U'&SYSVARH."'
.if &*a ne 0 .se SYSVARH = substr '‘no 1.0 1.0' &*%a 3

.if RE'&SYSVARP eq O .se SYSVARP = '!

% *
.if &E'&SYSVARR ne 0 .an &3%SYS eq CMS

.th .dd DSMUTREF &SYSVARR dsmrefs *

.if &E'&SYSVARR ne 0 .an &5%SYS eq TSO

.th .dd DSMUTREF dsn &SYSVARR..DSMREFS

.if &$SYS eq CMS .or &$%SYS eq TSO .an &E‘'&SYSVARR ne O .im DSMUTREF

¥ *
.1f &E'&SYSVARS eq 0 .se SYSVARS = &SYSVARC
.se X*a = index '-1---2---OFFSET-ONE-TWO~' '-&U'&SYSVARS.'®

.if &%a eq 0 .se ¥a = 1

.se SYSVARS = substr ‘one two off one two' &*a 3

.se ¥a = index '-YES-~-NO----RIGHT-CENTER-LEFT-*' ‘'-&U'&SYSVART.'
.if &%a eq 0 .se ¥a = 1

.se SYSVART = substr ‘right no right center left' &*a 6

.Se ¥a = index '-YES-NO-' '-&U'&SYSVARX.'

if &a eq 0 .se ¥a = 1

.se SYSVARX = substr ‘'yes no' &a 3

.dim dsmitsetv off

DSM#SETX

.%¥ DSMHSETX: Parms= Figure, Heading, List item or Footnote *
.% Creates cross reference listing header for the type indicated %*
+ I I NI NI NI H IR HIIHIHKHHIH I HINHN KK FIOIINE RN NI HHR WK INN N 3
.sk ¢

.in

Jir

kp 21

.se Ixrefdof = 32m

.tb 9m 19m 27m 32m

.dc asep , 40

. % FORMAT A HEADING FOR THE CROSS-REFERENCE LISTING *
.bf hiz

bx 1 r

.ce &LL2&*1 ID's

bx off

.sp 2

.us 1d&$TAB.&LLIFile.&$TAB.&LLDPage. &$TAB. &LLD&*1 &LLARefs

pf

.sp 1

Appendix C. Starter Set Macro Library Listing 187

DSM#STYL

.% DSM#STYL: Parameters = ONE, TWO, OFF, or (null) *
.* Establishes page layout style. If no parameter, uses SYSVARS. %*
RN IEIENHI KNI HII I NI NI NI IIIIHIIH I NI RIHHHH I XK IIHHHKRHHKKKHKER
.if 8L'&*1 eq O .go &SYSVARS

.el .go &x1

.% 1 PAGE WIDTH COL. THE RC SPACE IS 2 IN BINDING. FNs ARE FULL PAGE x
.. .0Nne

.gs args "' ' 0 0

.gs vars drcl arc2 3fnl 3fn2

.cd10

cl

.rc adjust

.if &SYSVARD eq yes .dh 0 outside

.th .dh 1 outside

.go fnldr

% 2 EQUAL SIZED COLS. GUTTER = 4, FNs ARE FULL PAGE *
. . two

.se xcl = &DH'&SLL - &DH'&gutter / 2

.se ¥cd = &x%cl + &DH'&adgutter

.gs args "' ' o] 0

.gs vars arcl drc2 3fnl 3fn2

.cd 2 0 &xcd.dh

.cl &xcl.dh

.rc¢ adjust

.if &SYSVARD eq ves .dh 0 outside

.th .dh 1 outside

.go fnldr

.% OFFSET: 1 COL FILLING 4/5s OF PAGE, WITH H2-4 OFFSET. FNs MATCH *

% COLUMN, RC ARE IN GUTTER TO ALIGN WITH BINDING. %
off

dh 0 left

.dh 1 left

.dh 2 sect

.dh 3 sect

.dh 4 sect

fv top

.se %cd

.se %cl

.se ¥rc

&DH'&$LL /7 B

&DH' &SLL ~ &*cd

&xcd + &DH*'2

.se ¥rc &xrc.dh

.se *fn &*cd

.gs args '.rc adjust’ '.rc adjust &*rc.' &*fn.dh 0
.gs vars arcl drc2 ¥fnl ¥fn2
.cd 1 &xcd.dh

.cl &xcl.dh

.rc adjust &xrc

.% DEFINE FN LEADER FOR TWO COLUMN STYLE (OTHERS USE DEFAULT LEADER)
«..fnldr

.fn leader

.sp 1

b ?fnldr 23fnl for &3fnldrlen

.fn of f

188 DCF: GML Starter Sct Implementation Guide

DSM#SUPR

.% DSM#SUPR: Parameter = number(s) to be printed as superscript %
+ FEIEIFIEIEINIINHIH NN HH I I HINH IR K HIH I I HHHHHHHFINIIHHIIN NI NK N
.go &asuprstyl

. % FOR 1403 & 3800 OUTPUT WE CAN USE PROPER SUPERSCRIPTS *
.. .UMS

.tr 0 b0 1 bl 2 b2 3 b3 4 b4 5 b5 6 b6 7 b7 8 b8 9 b9

ct ax

.t fO fO f1 f1 f2 f2 f3 f3 f4 f4 f5 5 f6 fe f7 f7 f8 f8 f9 f9

.if &E'&Afnis ne 0 .is to &fnis min 1

.me

. % FOR TERMINALS, THE BEST WE CAN DO IS PUT IT IN PARENTHESES *
. .parens

if RE'&dfnis eq 0 .ct (&x,)

.th .me

.1i on

&%

11 off

.is to &3fnis min 1

.me

% FOR PAGE PRINTERS, WE HAVE TO CHANGE FONTS AND SHIFT UP %
...shifts
.se *hgtl
.bf super
.se ¥hgt2 = &dv'lmv

.se Xshift = &xhgtl - &xhgt2
.if &xshift le 0 .th .pf

.th .ct (&x%.)

.th .me

.if &E'&dfnis eq 0

.th .sb +&xshift.dv

.th .ct &x.

.th .sb -&xshift.dv

.th .pf

.th .me

.sb +&xshift.dv

.1i on

&%

.11 off

.sb -&xshift.dv

pf

.is to &dfnis min 1

&dv'imv

u nu

Appendix C. Starter Set Macro Library Listing 189

DSM#TIPG

.% DSMETIPG:

Creates a title page without rh or rf. %

o FEHRHIEIIEKR I IIEIEI K IEIER FIHIEHIIEIIIEINIENHK I I HIHIIEIHIEIE NI NI HHI N NI I FNIRNN

.rh
.rf
.cp
%

.sa
.1s
.sc
.SV
hy
.de
. fo
.sp
X% SET ARRAY SEPARATOR TO "BREAK"

.'se @ = '3.br;!

.dc asep & 2 .

% PLACE TITLE IN HIGHLIGHT 2 and DOCUMENT NUMBER, IF ANY
.bf title hi2

.1s by &3ttllo

gatitle(x*)
.1s by 1.0
.pf

.sk 21

.bf docnum
'if &L'&ddocnum gt 0 &LLIDocNm &ddocnum
.pf

.sk 2

L%

.bf date

&ddocdate
pf

.sk 1.5i

%

.bf author

&dauthor(x)
.pf

.sk

.bf address
&daddress(%)
.pf

.sk .51

3

bf titlesec
i1

&dsec

.pf
.sk
L%

.re
.rh
.rf
.dm

sup
sup

SINGLE COLUMN - NO SPELLCK - NO HYPHENATION

all 1.0

off

off

cw
&SYSVART
2i

PLACE DOCUMENT DATE

AUTHOR'S NAMES AND ADDRESSES

PLACE SECURITY CLASSIFICATION

3
RESTORE FORMATTING ENVIRONMENT & RH/RF. RECLAIM STORAGE

res
res
dsmittipg

off

190 DCF: GML Starter Set Implementation Guide

DSM#WRIT

L% DSMBWRIT : Write ids out to file. Define & erase the file first. x
2 FIEHIEIIER HHK I IR HIIIIIHNIEIINNHIHIINKH KNI HHHHHNH KK HH I N HIHH I K HIH KX HHHHN
.din dsmiwrit(&S$LNUM) /.me

.if &$SYS eq CMS .dd dsmutwtf &SYSVARW DSMREFS

Af 2$SYS eq TSO .dd dsmutwtf dsn &SYSVARH..DSMREFS catalog

.if &$SYS ne CMS .an &$SYS ne TSO .me

wf erase

. % LABEL THE FILE APPROPRIATELY *
.'wf . % SCRIPT/VS &3%DCF.: &lLL3device. &S$SLDEV.

wf o% &LLJRefs &LLIsaved. &date. &LLaat. &time.

.su off

.se ¥parm = substr &$PARM 1 B5é

.su on

wf .% glLoformat.: &*parm

.if &L'&%PARM le 56 .go writout

.se ¥a = b4

... loop

.su off

.se ¥parm = substr &$PARM &%a 64

.su on

wf o% &*parm

.se ¥a = &%a + 64

.if &L'&$PARM gt &*a .go loop

.. owritout

wf %

L% ARRAY dwritdh CONTAINS 1 LINE FOR EACH HEADING "id" 3
.dc asep & @ .

.'se @ = 3

&writadh(x*)

L% ARRAY dmritdl CONTAINS 1 LINE FOR EACH FIGURE "id" *
Emritafel

% ARRAY writdd CONTAINS 1 LINE FOR EACH LIST "id" *
&mritdd(*)

. % ARRAY dwritan CONTAINS 1 LINE FOR EACH FOOTNOTE "id" %
&writan(*)

.dec asep

DSMH#WRTD

.% DSM#WRTD: Write list ids out to file. *
KK R IR I H IR KK H NI FEH I F R HH N KR H R IR I FNINNH I N KKK
Suf L 'se dlagxl = &D19&x1
'wf L'se dPR&x1 = &DPR&*1

DSMEWRTF

% DSMEWRTF: MWrite figure ids out to file. *
» FIENR IR IR K I I K H KR HH IR FIHIIH I I I H K I HHHH K IR KN HIHRKH IR KN
wf L'se fl&x1 = &F19&%1
Cwf Jtse fPR&x1 &FP2&*1

DSM#WRTH

.% DSMEWRTH : HWrite heading ids out to file. %
+ FEHHEHHIERIIIH K HHI NI HIEIFH IR XK R K IHH KK HHRHHKIRIIH NN H A I KN IHHAHKKHIKK R
Cwf oL 'se hldgxl '&H19&x1
wf L 'se hPR&xl '&HPR&x1

DSM#WRTN

.% DSM#WRTN: Hrite footnote ids out to file. *
« IR R H R I INHHH IR I NI I IR K I HFN KK IIIHEIIINHIINIIN
Jwf L 'se nladxl = &N1d&Ex1

Appendix C. Starter Set Macro Library Listing

191

DSM#XLST

.dm dsmitxlst(&SLNUM.) /.me

.dsm¥rset CrsRf
.dsmitdupl

.rh sup

.rf sup

.de cw

.cd 1 0

.cl

.fo left

.bf hio0

.sv off

. % MACRO axrefah CONTAINS | LINE
.if &E'&xrefadh eq 0 .go fxref

.dc asep & @ .

.'se @ = 3

&Ixrefadhix)

X MACRO axrefdf CONTAINS 1 LINE
..o fxref

.1f &E'&Ixrefadf eq 0 .go nxref

.dc asep & @ .

.'se D = 3

&Axrefdf(*)

% MACRO axrefan CONTAINS 1 LINE
.. .nxref

.1f &E'&Ixrefdn eq 0 .go ixref

.dc asep & d .

.'se @ = 3

&axrefan(x)

. % MACRO axrefdi CONTAINS 1 LINE
... ixref '

Lif RE'&axrefdi eq 0 .go lxref

.dc asep & @ .

.'se @ = 3

&axrefdi(*)

% MACRO dxrefdd CONTAINS 1 LINE
oo Ixref

.if &E'&dxrefdd eq 0 .go imtr

.dc asep & @ .

.'se @ = 3

&Ixrefad(*)

oo Limtr

.1f &E'&dimtrace eq 0 .me
.in

.of

sk 4

.cp 31

bf hiz

bx 1 r

.ce &LLIImTrc
.bx off

.sp 2

.pf

.fo off extend
.th 12m

.dc asep & @ .
.'se @ = '3;.br;?
&dimtrace(*)

FOR

FOR

FOR

FOR

FOR

.% IF &dimtrace EXISTS, FILES WERE IMBEDDED, SO

.% DSM#XLST: No Parms. Internal Service Routine to format cross
.%* reference listings. Called by DSMEGDOC or by epifile
R R s T 2 St T T Ve s T BT I VEVEVE e SV IVEVEVEVEVEVEV IS

. % RESET OPEN LISTS, etc. ADVANCE TO NEXT/0DD PAGE

. % CLEAR RH/RF, MULTI-COL DEFINITION & PAGINATION FOR CROSS REF

EACH HEADING 'id"

EACH FIGURE "id"

EACH FOOTNOTE "id“

EACH INDEX "id"

EACH LIST ®id"

A TRACE IS FORMATTED

% FORMAT HEADING FOR IMBED TRACE

% FORMAT EACH ELEMENT IN IMBED TRACE ARRAY

%*
%*

%*

192 DCF: GML Starter Set Implementation Guide

DSM#XRFD

.% DSM#XRFD: Parm = List Item Id Formats cross reference for list %
% item 'id's. Defaults set to '?' and blank. *
NI NN IR NI N H I I I I HITI I HIEHIEIEIEHHIEH KNI HIENH WK K IHIHH I
.if &E'&D132*1 eq 0 .se D1a&x1 = ?

.1f &E'&DPR&*1 eq 0 .se DPR&*1 = 7

Lif QE'&DX3&*1 eq O .se DX&x1.(1) = **

% FORMAT ENTRY *
.dm dsm#xrfd(&SLNUM.) off &$CHW..dsmitsetx D

.of &axrefdof
&*1.&5TAB,&DF2&*1. . &$TAB, &DP&*1. . &STAB. '&D1&*L.. ' : &STAB. &DXD&*1, (%)

DSM#XRFF
.% DSMEXRFF: Parm = Figure “id" Formats cross reference listing *
.¥ entry for a figure 'id'. Set defaults of '?' and blank. *

o RN I RN H I KNI H I KN IHH I K HHHH N R NN R HH NI IR I INE NI IR H
.if &E'&F19&%1 eq 0 .se Flagxl = 7

.if RE'&FP3&*1l eq 0 .se FP&x*1 = ?

.if &E'&FX2&*1 eq 0 .se FX&x1.(1) = *°

¥ CREATE LISTING HEADER & ENTRIES *
.din dsm#xrff(&SLNUM.) off &$CH..dsmitsetx F

of &Ixrefdof

&%1.&$TAB. &FFQ&*1. . &$TAB. &FP&*1. . &STAB . &F12&*1. . : &$TAB. &FXQ&*1. (%)

DSM#XRFH
.% DSM#XRFH: Parm = Heading "id" Formats cross reference for *
.% heading 'id's. Se defaults to '?' and blank *

+ IR KNI I FH I K I H N H I NI HHHHHH K FIEN I NI NI HI NI HNNKR
Lif &E'&H1DE&X1 eq 0 .se H1&x1 = ?

.if QE'&HPA&*] eq O .se HPI&x1 = ?

.% CREATE CROSS REFERENCE HEADER AND ENTRIES *
.din dsm#txrfh(&$LNUM.) off &$CH..dsmitsetx H

.se ¥a = &dh'&dxrefdof - &dh'4¢

.of &xa.dh o

&%*1.&STAB. 8HFQ&*1..&STAB, &HPQ&*]1 . . &$TAB . &H1D&*1

of &xrefdof

Lif QE'EHXI&%1 eq 1 &$TAB.&STAB.&S$TAB.&STAB. &HXD&*1. (%)

DSM#XRFI

.% DSM#XRFI: Parms = Index entry ‘'id' Creates cross reference of *
% index 'id's. Defaults set to '?'. *
+ FEIIIEHIHIIEHH KK H IR HFIIEN KKK II KK IIINRH IR HHR K IIHN K IR KK K KHHHIHN IR KRR
.dm dsm¥xrfi(&$LNUM.) off &$CH..dsmitsetx I

.if 3E'27198%1 eq 0 .se I1dZXL = 7

if &E'&IPJ&%X]1 eq 0 .se IPJ&x1l = 7

. % FORMAT ENTRY *
.se ¥a = &dh'&xrefdof - &dh'4
.of &*a.dh

&%1.&5TAB.&IFD&*1, . &$TAB, &IPQ&*]. . &$TAB. (1)&%RB. &I19&*1
of &*a.dh
Lif QE'8I29&%) eq 1 RSTAB.&STAB.&S$STAB.(2)&$RB. &I29&%1
.of &*a.dh
Jif RE'&I3I&xL eq 1 &STAB.&STAB.&STAB.(3)&S$RB. 2I3&*1
.of &Ixrefdof

J1f QE'RIXDE*1 eq 1 &STAB.&STAB.&STAB.&STAB, &IXQ&X*L. (%)

Appendix C. Starter Set Macro Library Listing

193

DSM#XRFN

.% DSM#XRFN: Parm = Footnote "id". Formats cross reference for %*
% footnote 'id's. Defaults set to '?' and blank %
. I FIEIEN I I HTEH NI I H HHHN I HH I I I IH I HIHRIH K NN HHHIHHIHIHHKIHKR
Lif &E'E&N19EX) eq 0 .se N13&x1l = ?

Lif &E'&NPIE*1 eq 0 .se NP&x*1 = ?

Lif ZE'&NXJ&x1 eq 0 .se NXJ8&xl.(1) = '*

% FORMAT ENTRY %
.dn dsmitxrfn(&SLNUM.) off &$CH..dsmitsetx N

.of &Ixrefdof
&%1.&$TAB.ENFD&*1. . &$TAB . &NPD&*1 . .&STAB. &N1D&*1. . : &$TAB. ANXJ&*1. (*)

DSMI#YESN
.% DSMHYESN: Parm = "yes" or "no" Process various attributes *
% which accept only ‘'ves® or 'no'. Returns answer in &xyesno %*
+ FIEHHIEIIIERH R KRN X IR HIIKRHK I HHHH K HHH IR I IR K IR KK HHIRH KK IHHHKIHRHKHHN
.se 3 = index '-YES~-NO-' ‘'-&U'&xl.°'
Af & eq 0 .se d =1
.me .se ¥yesno = substr ‘yes no' &3 3

DSMaFRME

.%¥ DSMIFRME: Parm = BOX, NONE, RULE Process FRAME attribute on %
% FIG. Sets &3figframe to type of frame. %*
B e T T e S R T S T P T P P e T
.se ¥a = substr &U'&x1 1 1

.se figframe '&x

.se afigew = '.sx //&dfigframe.//

.if &a eq N .se dfigframe off

.if &*a eq R .se 3figframe = rule

.th .se dfigew = *'.hr dfigrule left to right

.if &*a eq B .se dfigframe = box

.an %figdin eq 0 .se afigdin = 2

194 DCF: GML Starter Set Implementation Guide

DSM21IDS

DSMRIDS: Parm = ‘id's Process all the ID attributes. Saves
file name, id, page # (and figure #, if applicable.) Creates
cross reference entries. 'id's are collected only on first pass.
dtg has been set by the caller to either 'h*','f';'n','d' or 'i’
L FEHHHIFIR KN HFIER NI HIEN K KK I IIEINHHIHHHI NN A FHINIIEHKHIHHH K F NN
.if &$PASS ne 1 .dm dsmdids /.me

.se ATG = &U'&dtg.

K3 TRUNCATE "ID"S OVER 7 CHARACTERS *
Jif &L'&*1 le 7 .se *id '&xl

el .se *id = substr '&¢1.' 1 7

el .dsmfmsg 8 &TG &*1

X X X X
X X X XK

L% IF &8&ATG.1. EXISTS, THE "id" IS A DUPLICATE *
Lif &E'&RATG.13&*id eq 1 .dsmiimsg 9 &ATG &x1

.th .me

k3 SET UP CROSS REFERENCE ARRAY &dxrefag&atg. %
.if &SYSVARX ne yes .an &E'&SYSVARW eq O

.th .go skip

.se Axrefa&dtg.() *'.dsmixrfe&dtg. &xid

.se Mmritdddtg.() '.dsmiwrtgdtg. &xid

.if &E'&&ITG.FI&*id eq 1 .se ¥a = &dxrefadgadtg.(0)

.th .se Ixref2&dtg.(&&ITG.LI&*id..) off

.th .se axrefa&atg.(0) = &xa

.se &JTG.FI&xid = &$FNAM

K3 SAVE TEXT FOR CROSS REFERENCE PURPOSES %
...skip

.se &TG.Pd&*id = &

.1if &T6 eq H .se H1a&*id °’&dhead

.th .me

.if 23TG eq N .se N19&xid = &¥fn#

.th .me

.if &TG eq F .se Fla&xid = &figh

.th .me

.1f &T6 eq D .se D1a&xid = '&diddl.

.th .me

.go indexiailevel

. % SET UP INDEX TERMS AND PAGE NUMBERS %*

...index3 .'se I22&*id '&fFit2
...index2 .'se I19&xid ‘'&#itl
...indexl .'se I&dilevel.2&*id '&dit&3ailevel

DSMQIPRT

.%¥ DSMRIPRT: Parm = index term string Process PRINT attribute on %
.% index header tags. Copies value to appropriate &#it.... symbol =
» FERHIEIH I HEIEI IR IR HIIIEH KNI KR F I HHIHHIN KK HHIH NN HHH I KK HRHKHH NN
.'se #it&dilevel '&*

. % CONSTRUCT A .PI SORT KEY PARAMETER FOR THE TAG *
.go key&dilevel

...keyl .'me .'se *K 'key &X'01.8U'&ditl.&X'010101

...key2 .'me .'se ¥K 'key &X'0101.8&U'&dit2.&X'0101

...key3 .'me .'se ¥k 'kKey &X'010101.8U'2&dit3.8&X'01

DSMaMAC2

DSMGML3

DSMaPGRF

.% DSMIPGRF: Parm = START, END, MAJOR, NONE Processes PAGEREF at- %

.% tribute for index tags. Set's caller's local symbol &xx. *
+ FEIEIIEH NI I I I I HH IR I H I I KK I NI I HHHH I HHHHHFHHHHH R K HHHH KK

.se @ = index '~START-BEGIN-MAJOR-END-' *'-8U'&*1."
L'if 8D eq O .'me .'se ¥tG ‘&% :
.me .se ¥x = substr 'start start order end' 8 5

Appendix C. Starter Set Macro Library Listing 195

DSMIPLCE

.% DSMIPLCE Parm = BOTTOM, COLUMN, INLINE, PAGE, TOP Processes %

.% the PLACE attribute of the FIG tag. *
» E NI I HIEIIIEIEN NI I KN H IR H NI I IIIINH IR KN NI NHHIEN
.se¢ @ = index '~TOP----BOTTOM-INLINE-' '-~-&U'&x*1.°'

.if & eq 0 .me

.se xb = substr 'top bottom inline' &3 6
.se ¥a = substr 'dplace dplace dplace’ & 6
.se &*a = &xb

DSMPROC

.% DSMAPROC: Parms = a list of process names Processes the PROCESS
.% attribute of the PSC tag. %
+ I NI IR IINIIEHHHINHHIH KK I I NI NI NI KN K HHIH KR IEHIHHHHHN
.se ¥i = 1

.+ .loop

.se @ = index '-&$LDEV.-&$PDEV.-&SYSVARP.-~' '-&U'&x&*i..-"'

if 39 gt 0 .me

.se *¥1 = &%1 + 1

Lif &%i le &*0 .go loop

.cs 9 ignore

DSMIRFID

.% DSMIRFID: Parameter = "id" Processed the REFID attribute of the
.* cross reference tags. Sets caller's local symbol *id to value %
» BRI H IR HR I IIH KKK KK K I KKK HIHHH B HIINI KR HHHHIIK IR FHAHRIIKNN
.me .se *id '&x*1

DSMRIDI

.% DSMARIDI: Parm = index-id Processes the REFID attribute of the x

% I2 and I3 tags. Provides first and second level index terms. *
+ O HIH IR HHHHH IR K IHHH NI N IR NI IIIHHI IR AN IIINHHHRH NN
. % TRUNCATE 'id's AT 7 CHARACTERS B

Lif &L'&x1 gt 7 .dsmitmsg 8 I &x*id
.th .se *id = substr '&x1.' 1 7
el .se xid = &x1

. % IF &I13.... EXISTS, WE CAN GENERATE AN INDEX ENTRY %
.if RE'&I138&%id eq 0 .go unknown
% SET #il1l and #i2 TO SAVED TERMS %®

.'se #1tl '&Ild&xid

J'se #it2 '&I29&*id

¥ SAVE PAGE # FOR CROSS REFERENCING %
.1f &$PASS ne 1 .or &SYSVARX ne yes .me

.se IX9&x%id.() = &

.me

% SAVE CROSS REFERENCE EVEN IF NOT KNOWN *
. « »unknown

.1f &$PASS ne 1 .or &SYSVARX ne ves .me

.if RE'&IF28&%*id eq 0 .se Ixrefdil() '.dsmixrfi &xid

.th .se IL3&xid = &xrefa1(0)

.th .se IF&%id = 7

.se IXagxid.() = &

DSMaSEC

.% DSMISEC: PARM = any string. Saves security classification %
« FEE NI HIIIHHIIENHHHIEIIHHIHIH I N K H IR I HIHHHHH IR HIN I HINH KKK

.'se dsec '"&*

DSMASEE

.% DSMJaSEE: Parms = index reference - Processes SEE attribute of
% :I1-3 and IREF tags. Assigns value to caller's local symbol &xr x*
NI HHI NI I I I NI I HH KN FI IR NI HHHIIIIIIHH NI FIHHNIIEIIEN
.'me .'se ¥r '&x%

196 DCF: GML Starter Sct Implementation Guide

DSMJSEEI

.% DSMASEEX: Parm = index~id Processes SEEID attribute of the :I1-3 %
.% & IREF tags. The index term is returned in the caller's symbol &*r.%
o FEIEIEIEIEIE I IEIEIEIEHIEIEIEIE I IE I IE 2636 I I I IEIEIET6 I6.I6 6 3636 I6 IE I IEIE I FE X 36 JE I IE I I IEIE I IE IEIEIEIEIEIE I I I I I I IEK I
Lif &L'&%1 gt 7 .dsmiimsg 8 I &x1
.th .se ¥id = substr '&x1.' 1 7

el .se x*id = &x1

o % IF &I1d.... EXISTS, WE CAN GENERATE AN INDEX *
.if &E'&I13&*id eq 0 .go unknown

. % CREATE AN INDEX REFERENCE FROM THE SAVED INDEX TERMS. *

.'se *¥r '&I13&xid

J'if RE'&I29&x1id eq 1 .'se ¥r '&I1d&xid.., &I29&x*id

Lif RE'&IZA&*id eq 1 .'se ¥r '&I1d&xid.., &I2d&x*id.., &IZD&x*id

¥ SAVE PAGE # IN &IX 23... %
.if &$PASS ne 1 .or &SYSVARX ne yes .go exit

.se IXdgxid.() = &

.go exit)

% IF "id" IS UNKNOWN, RETURN A "?" AS THE REFERENCED TEXT *
. « »unknown

.if &$PASS ne 1 .or &SYSVARX ne yes .me .se %r = 7

% REMEMBER 'ID' FOR CROSS REFERENCING *

.se ¥r = 7

.if RE'&IFA&*id eq 0 .se dxrefdi() *'.dsm¥xrfi &xid

.th .se ILd&*id = &Ixrefdi(0)

.th .se IFd&*id = ?

.se IXa&*id.() = &

% RETURN REFERENCE TEXT IN CALLER'S LOCAL SYMBOL &*r *
..o.exit

.'‘me .'se ¥r '&*r

DSMQSHD

.% DSMASHD: Parm = any string of text Processes STITLE attribute *
.%¥ for the Hl tag. *
+ FEIEHRFIIKHHHR I K HHIIEH IR HHH R RHHIIF NI IR HHHIIINH K KN KN KK INIH K HHHR
.'se dshead ‘'&x

DSMaSTTL

.%¥ DSMaSTTL: Parms = Any string of text Processes the STITLE *
.* attribute of the TITLE tag. *
» FEHIIEN IR NI NN HHNI NN HNIIHIRIIEIHIN R I HIEN K I KN KK IR K HH IR HHHHHHH
.se dstinit = 1

.'se dstitle '&*

DSMJHWIDT

.% DSMAOWIDT: Parms = COLUMN, PAGE, space-unit. Processes the WIDTH *

% attribute of the FIG tag. Sets &dplace to "column" or “page". *
KR FII KK HH NI K FIIINIE IR HIK IR KN IIENHH HHHH I HIH H K HIHHH I KKK H KKK HN N
.se @ = index '~PAGE---COLUMN-"' '-gU"&x."'

.1f & ne 0 .me .se width = substr 'page column' &3 6

X COMPARE SPACE AMOUNT TO COLUMN LINE LENGTH *

.if &DH'&x*1 gt &DH'&$CL .se awidth = page
el .se awidth = column

DSMABSTR

.% DSMABSTR: Tag = ABSTRACT No Attributes Sets up formatting *
.% environment for abstract. Generates and hl. Resets open lists, *
.* etc.. Advances to next/odd page. Sets &Ishead for running footing *
MK KN KN IIIHHIEIIHNHHIIN IR KK KK I I H IR NI R K K HHHHHHIIEH KK HINN
.dsmitrset Abstr

.dsmitdupl

.'se dshead '&LLIAbstr

.'hl &LL3Abstr

% FIRST PARAGRAPH IN ABSTRACT SHOULDN'T BE INDENTED *
.aa p dsmparal

Appendix C. Starter Set Macro Library Listing 197

DSMADDR

DSMADDR: Tag = ADDRESS No Attributes In title page, saves the %
lines of the address. Off title page, formats address as simple x
list. Enables ALINE tag and gets the residual text. %
%
*
*

XK K K K X

&daddctr counts # of addresses & is used to construct the name of
the array containing the address lines. &daddress contains the

name of each address line array (one address array per element].

o FFIEFEH KK FIEFIIHNHIEHHIEIEH I HHHIE I I I HHIEIE 2636 2 K6 X FHNIE K HHHHHH
.aa aline dsmaline

.gs scan *line

.if &dstate ne TtlPg .go inline

% SET UP daddctr and daddress ARRAY *
.se daddctr = &daddctr + 1

.se daline&daddectr off

.'se daddress() = ';.sp3&dalineddaddetr.(x).*

¥ RESIDUAL TEXT IS 1ST LINE OF ADDRESS *
.'1f &L'axline gt 0 .'se daline&daddctr.(} '&xline

.me

% ADDRESSES NOT ON TITLE PAGE, ARE FORMATTED AS A SIMPLE LIST *
eooinline

.sk &¥skas

.sa

.fo off

.in +&3inds

.if &dstate eq open .kp on
.if &L'&%line eq 0 .me
111

&xline

DSMALINE

.% DSMALINE: Tag = ALINE No Attributes On title page, saves line x
.* in symbol array. Outside a title page; the lines are formatted as %
.%¥ a compact simple list. *
o FHHIHRHHINIHHRHIHNIIEH IHIHH X RHHHIFRHINHH I IR HHH IR KN HII KK HHFK K HH IR XN HHHKKRR
.if 2dstate ne TtlPg .me

.gs scan ¥line

.'se daline&daddctr.() '&xline

DSMAPPD

.%¥ DSMAPPD: Tag = APPENDIX No Attributes Set up for appendices *

.%¥ Hls in Appendix are preceded w/ 'Appendix'’& a serial letter *
+ FEIHFRH NN IIIIEHH IR IHIH I I HHHHHIINHHHI IR HHHHHINHH AR IIHHIIHR KKK
.gs hetr A0

.se dheadl '&LLIAppdx

.1f &YSVARH ne no .se *¥a = num

.dh 0 tc

.dh 1 tc nonum

.dh 2 tc &xa

.dh 3 tc &xa

.dh ¢ tc &xa

X RESET ANY OPEN LISTS, ETC. ADVANCE TO NEXT/0DD PAGE *
.dsmitrset Appdx :

.dsmitdupl

% ESTABLISH SAME PAGE LAYOUT AS BODY & RESET NORMAL PAGE NUMBERS %
.dsmitstyl

.pn arabic

DSMAUTHR

.%* DSMAUTHOR: Tag = AUTHOR No Attributes Saves text in %*
.%¥ &author array. Valid only on title page. *
o IR FNIERHHIHHNHHHHKE R HIRHHHHHHHHHHH I HINHIER KR HH R HH I FN I IR INHHINNHKA KK
.gs scan ¥line

. 'se dauthor() ‘'&xline

198 DCF: GML Starter Set Implementation Guide

DSMBACKM

.% DSMBACKM: Tag = BACKM No Attributes Sets up for back matter. %*
.¥ Resets any open lists, etc. Headings are in toc but not %*
.% numbered. Advances to next/off page and sets up 2 column format. *
+ FEINIIIEH NI I I I I I IIIIININHH NN IR NI NN I N H I IR I HIINK
.dsmiirset BkMtr

.se dheadl off

.dh 0 tc

.dh 1 tc nonum

.dh 2 tc nonum

.dh 3 tc nonum

.dh 4 tc nonum

.dsmitdupl

.dsmitstyl two

DSMBODY

.% DSMBODY: Tag = BODY,No Attributes. Sets up for body section. Head- *
.%¥ ings are in toc and may be numbered. Resets any open lists, etc. %
.¥ Advances to next/odd page, sets up page layout, resets page to '1' %
+ FEENHIER NN HHIEH NI IIEN I IR KK H IR IR RN KK I NI FNRH AR KN XX XX OBAZG3I19
.se dshead =

.if &E'&dbodyheadl eq 1 .se dheadl '&3dbodyheadl

.if &SYSVARH ne no .se *a = num

.dh 0 tc

.dh 1 tc nonum

dh 2 tc &*a

.dh 3 tc &xa

.dh 4 tc &xa

.an &E'&headl eq 0 .dh 1 num

.dsmitrset Body

.dsmitdupl

.dsmitstyl

.pn arabic

.pn 1

DSMCIT

.%¥ DSMCIT: Tag = CIT No Attributes Starts highlight for citations »*
» FEEIEH NN IR HIH I K I HIH NI INHNH I I I I I I N H I I K HHH I I HHHIEHH KN

.bf hil althil

DSMBATE
.%¥ DSMDATE: Tag = DATE No Attributes Save text in 83docdate or *
.% sets it to the current date. Valid only in front matter. %

o FEIEIEHHHIEFIEIIEHIIENIEH IR NI I I 33 2 I J 2 I I H I HHH I HHHH I HIHKH
.gs scan ddocdate

Gif &L'&ddocdate eq 0 .'se ddocdate '&date

.'el .'se date ‘'&ddocdate

DSMDCNUM

.% DSMDCNUM: Tag = DOCNUM No Attributes Saves number in adocnum %
I I FIIEI I I HFH NI H I HIEH I I I FHF I MK HI K H NI HH K

.gs scan ddocnum

Appendix C. Starter Set Macro Library Listing

199

DSMDDEF

.% DSMDDEF: Tag = DD No Attributes Definition term is in &3iddl *
.% issue msg if not. Handles any definition headings left around. *
| FERIHIHI K KR HIEN HIIEH I NN HHIHHHIHEH KNI NI HINK K I IR H NN KK HINIENH K HNKRHH KRN
Jif &L'22iddl eq O .dsmitmsg 6 Def

.th .se didal = 7

.if &E'8&ddthead eq 0 .go desc

.se xk = &DV'3mv + &DV'&Iskdl

kp &xk.dv

.sk 8&dskdl ¢

.in &din

bf hi&hidhd =

Jdi 1

&adthead

.pf

.sk &skal ¢

.se ddthead off

X ESTABLISH FORMATTING ENVIRONMENT FOR DEFINITION LIST ITEMS %
...desc

.sk &3skdl ¢

Jin &@in

.in #&91ndl after 1 °

% FORMAT DEFINITION TERM IN THE APPROPRIATE FONT %
.bf hi&dhial =

di 1

gaidal.

.pf

.is to &1lidtab min 1 &3break

X SET &diddl TO NULL TO INDICATE A PAIR HAS BEEN PROCESSED *
.se ?idadl = ¢

DSMDDHD

.% DSMDDHD: Tag = DDHEAD No Attr. Text is heading for definition x
% descriptions. If &dthead is null, there was no heading for terms %
+ NI FHIEIEIIFH IR I I IR I HIHIIHHIHHINH HH K H I HH R NI NI H IR KN K HH KKK
.if &E'&ddthead eq 0 .se adthead = '!

.se ¥K = &DV'3mv + &DY'&Iskdl

kp &xk.dv

.sk &¥sk3al ¢

.1n &Jin

.in +&3indl after 1

. % GET THE DESCRIPTION HEADING & FORMAT IN CORRECT FONT %
.gs scan Xddhead

bf hi&dhidhd =

i1

&adthead.

.is to &1idtab min 1

Jdi 1

&xddhead

.pf

.sk &skal ¢

% ‘ SET &3dthead TO NULL TO INDICATE DONE *
.se ddthead off

DSMDLIST

.% DSMDLIST: Tag = DL No Attributes Calls DSMLISTM to process line %
L FRRR IR I HH IR H I I NI IR K IIHHR KR HRF KR HHHIIIHIRKRHIHHHHNKR
.dsmlistm * &x

200 DCF: GML Starter Set Implementation Guide

DSMDTERM

.% DSMDTERM: Tag = DT No Attr. Save text as term ro succeeding :DD *
% If &iddl 1s not null, 2 :DT tags have been found & 1lst is ignored *
» FEHHHIII K IHIIEI K IEHH I KNI H K I I HHIIHH KK IERIEIH N KKK I KK H IR K IR HHHHHH KKK
Lif &L'&Jidd1l ne 0 .dsmimsg 5 Def '&diddl.'

. % CHECK FOR UNPRINTED DEFINITION HEADINGS LEFT AROCUND *
.if &E'&ddthead eq 0 .go term

.se ¥k = &DV*'3mv + &DV'&Jskal

Kkp &xK.dv

.sk &dskdl ¢

.in &in

.bf higahiahd =

111

&ddthead

.pf

.sk &askal ¢

.se ddthead off

. % SAVE RESIDUAL TEXT IN &aidal. *
... term

sk &sk3l c

.gs scan d1dal

DSMDTHD

.% DSMDTHD: Tag = DTHEAD No attr. Saves residual text for %*
.%¥ succeeding :DDHD tag or :DT tag. *
o FEHFIHHHK I HIIEH KR HHH I I IR H NN R IHHHH IR RN HIHIEIININ K I HKKKNHKHHH K
.sk &dskal ¢

.gs scan ddthead

DSMEADDR
.% DSMEADDR: Tag = ADDRESS end No attr Disables the :ALINE *
% tag. If not on a title page, end the simple list with skip *

+ FEEHIH IR HHNHHIHHIIHHHHIEHHHINHN H IR AN H M XN IR NI KK HIIHHHRHHHHHH KK
.aa aline dsmicntx

.1f &dstate eq TtlPg .me

.if &dstate eq open .kp off

.re
.sk &skas ¢
DSMECIT
.% DSMECIT: Tag = CIT end tag No Attr. Ends highlighting %*

RN NI IR KR I R IR IR H NN N KN KK IR IR I HHHHHFIHR IR HHH KK
.pf

Appendix C. Starter Set Macro Library Listing 201

DSMEFIG

.%¥ DSMEFIG: Tag = FIG end-tag No Attr Restores environment *
+ FFIEIHH I I HIEN I IR K I H I N K HR I NI HH KR I I I IHH K HHHIEK KK KW HHIIHHHKHKEHHKX KK
.if &dstate ne F .dsmitmsg 11 F

.th .me

.se dstate = open

% CLEAR INDENTION AND FINISH THE FRAME *
.if &defigpf ne no .pf

.in

.ir

bf hi2

.if &dfigframe eq box .bx off

.th .go 3frdone

.if &dplace ne bottom .an &E‘'&Ifigframe eq 1 .an /&figframe ne /box
.th &figew
.+ .dfrdone
.pf

. % END KEEP OR FLOAT & RESTORE SAVED ENVIRONMENT %
.if &dplace eq top .sp &Iskaf

.&dfigtype off

.if &dplace eq inline .sp &Iskdf ¢

.re

o % :FIGCAP & ;FIGDESC TAGS ARE INVALID OUTSIDE A FIGURE *
.aa figcap dsmitcntx

.aa figdesc dsmitentx

DSMEFTNT

.% DSMEFTNT: Tag = FN end-tag No attr. ENDS FOOTNOTE %*
+ FEIEIE NN IEIIFHIN N IR I I IHHHII NI X I NI IIEN NI I I AN KN HH IR
.if &Istate ne N .dsm#msg 11 N

.th .me

.se dstate = open

.pf

.frn off

DSMEGDOC

.% DSMEGDOC: Tag = EGDOC No Attr Produces cross reference listing *
+ NI HIE IR HIHH NI NI NI I AR NN A HHNE

.if &SYSVARX eq yes .an &dlastpass eq yves .dsmitxlst
.if &E'&SYSVARH ne 0 .an &dlastpass eq yes .dsmiwrit

DSMEHP

.% DSMEHP: tag = HP end-tag No Attr ENDS HIGLIGHTING *
+ FHIESEIIHHIHHINHIHHIEH IR L XH IR KNI H I HHIH KX XHHHIHIH R HIIHNFHHHH K

.pf

202 DCF: GML Starter Set Implementation Guide

DSMELIST

.% DSMELIST: Tag = list end-tag No Attr. Restores formatting para-

%
L%

%

meters saved when the list was started. &dnestdl = current level =

of nesting. See Starter Set Implementation Guide for details.

%

o FEIEI NN IO I I I I IIEH I IEIEHEIH I IEIIEII I I I I IR HIEIH I I IENHIHHIEAKIEN NI NN KIN

Jif
.th
%

Jif
.se
.se
.sk
.in
.se
.se
.se
.aa
.aa
.aa
.aa
.aa
.aa
.aa
.aa
.me

%

Lif
.th
.sk
%

.gs
.gs
.se
.in
.in
.se
Jif
.th
.se
L%

.aa
af
.an

...denest

&Inestdl(0) eq 0 .dsm¥msg 11 List
.me
NESTING LEVEL 1 - RESTORE ENVIRONMENT TO OPEN TEXT
&Inestal(0) gt 1 .go denest
dskal = &askals
dhidhd = &dhiah
&dskal ¢
&din
dnestdl(o) = 0
dnestdo off
estdu off
11 dsm#tentx
1p dsmifcntx
dt dsmitcntx
dd dsm#fentix
dthd dsmitcntx
ddhd dsm¥cntx
gt dsmitcntx
gd dsmitentx

DECREMENT APPROPRIATE LIST NESTING COUNTER

&E '3dnestddltype eq 1
.se dnestd&Iltype = substr &ddenestd&dltype &Inestda&dltype 1
&askal ¢
RESTORE FORMATTING PARAMETERS FROM PREVIOUS LIST
args &V'&dnestal(&Inestdl(0l.)
vars dltype ditem#t din dindl Iskdl hidl dhidhd dbreak
destdl(0) = &dnestdl(o) - 1
&din
+8&2indl
?lidtab = &DH'&$IN.dh
&dlitype eq u .or <ype eq o
.se ¥a = substr &3&3dltype.listnest &dnestdsdltype 1
didal '&V'&IidI1J&Dltype.&¥*a. . "
REENABLE THE APPROPRIATE TAGS
1i dsmlitem
&dltype ne d
<ype ne g .th .me
11 dsm#tcnix

&dltype eq d

.aa dt dsmdterm
.aa dd dsmddef
.aa dthd dsmdthd
.aa ddhd dsmddhd
.aa gt dsmitentx
.aa gd dsmBcntx
.me

<ype eq g

.aa gt dsmgterm
.aa gd dsmgdef
.aa dt dsmicntx
.aa dd dsm#tcntx
.aa dthd dsmicnix
.aa ddhd dsmitentx

Appendix C. Starter Set Macro Library Listing

203

DSMELQU

% DSMELQU: Tag = LQ end-tag No Attr. ENDS LONG QUOTES *

© I I KK HIEH KK HHHIHHIHIIINR K HHHHHH K HHIHIHRIHHH I KKK I RHHHEHHIIHHKH K
.pf

.sk &skdq ¢

.ir -&Jindq

. % &dnestadl INDICATES CURRENT NESTING LEVEL *
1f &dnestldl(0) eq 0 .dsmitmsg 11 List

th .me

% RESTORE OPEN TEXT ENVIRONMENT IF NESTING LEVEL IS 1 *

.if 2Inestdl(0) gt 1 .go denest

.se dnestal(o) = 0

.in &din

.me

% RESTORE PRIOR LIST'S PARAMETERS FROM &dnestal *
...denest

.gs args &V'&dnestadl(&dnestal(0).)

.gs vars dltype ditem®t 3in 2inal dskal 3hiadl dhidhd dbreak

.se Inestdl(0) = &nestdl(0) - 1

.if <ype eq u .or <ype eq o

.th .se ¥a = substr 22&3ltype.listnest &adnestd&dltype 1

.se 9idal '&V'&I1dold&dltype.&x*a..’

. % REESTABLISH FORMATTING ENVIRONMENT FOR PRIOR LIST TYPE *
.in &in

.in +&9indl

.se dlidtab = &DH'&$IN.dh

DSMEPSC

¥ DSMEPSC: Tag = PSC end-tag No Attr. Ends condition section %*
+ I I NN I HHHN I NI HHHF HHHH K IH IR IR HFHIN AN IR FNIOEHINNHHNKR

.cs 9 off

DSMEQUOT

.%¥ DSMEQUOT: Tag = QUOTE end tag No Attr. Ends short quotes. *
« FEHIKRHHHHHH K HHHHHNRIFIHFHH NI H IR NN HINHIINIHKHHHHH AN IR IR HH K

.1f &Inestdq eq 0 .dsmitmsg 11 QtePh

.th .me
.su off
. % &dnestadq INDICATES THE CURRENT NESTING LEVEL *
X EXTRACT THE CORRECT QUOTATION DELIMITER FROM &cquote %*

.se ¥q = substr &3cquote &nestdq 1
.se dnestdq = &nestdq - 1

.SU on
.ct &xq
DSMETTLP
.%¥ DSMETTLP: Tag = ETITLEP No Attr. Calls DSM#TIPG to create *
.% title page *

+ NI HHHIEH KRNI NI H NI I NI HH K I HHIE I FH NI IR N KKK IR HHFIIINHIKNK
.if &dstate ne TtlPg .dsmi#msg 11 TtlPg

.th .me

.se astate = open

.1f &SYSVART ne no .dsm#ttipg

X TURN OFF TAGS NOT ALLOWED OFF OF TITLE PAGE %*
.aa author dsmitentx
.aa date dsmifentx

.aa docnum dsmifcntx
aa title dsmitentx

204 DCF: GML Starter Set Implementation Guide

DSMEXMP

% DSMEXMP: Tag = XMP end-tag No Attr. End the keep, restore for- x
.% matting environment . Reset &dnestdx to indicate example ended. %
« FEIEIIIIII NI NI I I N I NI I I IR K H VNN N H NI NI I I HINHHHIH I
.if &dstate ne Exmpl .dsmiimsg 11 Exmpl

th .me

.se dstate = open

kp off

pf

.re

.sk &dskax c

DSMFCAP

.% DSMFCAP: Tag = FIGCAP No Attr.Formats text w/ figure #. Puts %
% entries into SFIGLIST macro for list of illustrations. %
+ JEIEIIIEIIENIIINH NI K HIEHHIHIK H I IEH KN IR IH I N NI IIH R IR KRR XNAAXDBAZG 232
o3 ESTABLISH FORMATTING ENVIRONMENT FOR CAPTION AND DESCRIPTION %
pf

.se defigpf = no

.gs scan ¥line

.in &figdin

.ir 8dfigdin

.fo on

.SV on

.sp lc

. % PENDING INDENTION TO ALIGN FIGURE DESCRIPTION WITH CAPTION 3*
.bf figcap =

.se ¥y = 3 % &DH'EH'0

.se %period ',

.se ¥a = &DH'RW'&Ifigh + GDH'EW'ELLOF + &%w + &DH'&HW'&xperiod

.se ¥b = &*a + &DH'RSIN

.in &xb.dh

.un &*a.dh

% FORMAT FIGURE CAPTION PREFIXED WITH FIGURE NUMBER *
&LLIF, &SRB, &dfigk. .

.is to &*b.dh min 1

&*line.

.pf

X MAKE AN ENTRY FOR #FIGLIST *
.if &dfigh# 1t 10 .se %pad = &%RB

.'se %xsx '&X'00.&LLJF.&$RB.&*pad.&dfigk..&$RB.&*line.&X'00. .&X'00

dm #figlist() &X'01..of &L'XXXXXRLLIF 3.'sx f &%sx.&IFN#&dfigh

.se JFN#&figh = &

. % INCREMENT FIGURE COUNTER AND INDICATE CAPTION WAS FOUND %*
.se dfigh = &dfigh + 1

.se afigdfo = on

Appendix C. Starter Set Macro Library Listing

205

DSMFDESC

.% DSMFDESC: Tag = FIGDESC No Attr. Appends figure description to a *
.%¥ figure caption. Prepares environment only if there's no caption
» FEII R HHII I I I I HHIEHIIEHIH I KK HIEH R I HIHHH IR N KRN H NN XDBAZG 232
Jif &dfigdfo eq off .go format

.se afigdfo = off

.bf figcap =

.ct :&$RB.&$RB.&SCONT

.pf

.bf figdesc =

.me

3 NO FIGURE CAPTION - ESTABLISH ENVIRONMENT *
...format
.pf

.se defigpf
.sp

.in &figdin
.1r &figdin
.fo on

.SV on
.bf figdesc =

"

no

DSMFGREF

DSMFGREF: Tag = FIGREF Attr = PAGE, REFID Inserts text of
figure references. Includes figure number, and may include PAGE
ref &*yesno will be "no” if PAGE attribute was given.

The REFID attribute will set &xid.

« FEFEHHEHIHIH K RHIR KN HKHH KK IR HHHIH IR KK R KK I N IIEHHIHHI N IR KNI HHHHK
.gs exatt refid as dsmarfid page as dsmiivesn

LJif gL'&*id gt 7 .dsmiimsg 8 F &x*id

.th .se *id = substr '&xid.' 1 7

K ID &F13d.... EXISTS, WE CAN GENERATE A STRING W/ FIGURE # *
.se *¥F='F'

.if &E'&F19&%id eq 0 .an &E'&flag¥id eq 0 .go unknown

Lif RE'&F13&*id eq 0 .se %F = f

.se ¥p = &

¥ IF PAGE NOT SUPPRESS, GENERATE PAGE REFERENCE *
if /&%yesno eq Jyes .or &p ne &&*F.Pa&*id .an /&*xyespo ne /no

.th .se ¥r ' &LLdonpge &&*F.Pd&xid

&LLIF . &SRB. &&X*F . 1a8&x*1d. . &%r.&$CONT

% GENERATE CROSS REFERENCE PAGE NUMBER IN &FX93... *
.if &$PASS ne L «or &SYSVARX ne yes .me

.se FXa&*id.() = &

.

X X X X
X XK K XK

.

.me

¥ IF &F13.... DOES NOT EXIST YET, USE CANNED STRING %*
.« cUnKknown

.sv off

-- &LLF 1id '&xid.' &LL3unkn --&$CONT

.8V on

K3 GENERATE THE CROSS REFERENCE INFORMATION *

.1f &$PASS ne 1 .or &SYSVARX ne yes '.me

.if RE'&FF&xid eq 0 .se dxrefdf() '.dsmitxrff &*id
.th .se FL2&*id = gaxrefdf(0)

[+.th .se FFasxid = 7

sse- FXa&*id.() = &

206 DCF: GML Stafter Set. imglg:mentation Guide

DSMFIG

.% DSMFIG: Tag = FIG Attr = DEPTH, FRAME, ID, PLACE Start a %
% figure. Generates a keep or a float, depending on PLACE attri- *
.% bute. Generates a box or rule depending on FRAME attribute. *

BRI I KK I NI NI HH I NN I I H I I IIIEH KNI I H K HHIHH I
.if &dstate ne open .dsmimsg & &$TAG &Idstate

.th .me

.se dstate = F

% SAVE CURRENT FORMATTING ENVIRONMENT *
br

.sa

% ESTABLISH DEFAULT FRAME AND TYPE AND PROCESS THE ATTRIBUTES %
.gs args rule &dindf off fl &dfigplace &dfigwidth off
.gs vars 2figframe dfigdin dfigdofo afigtype Iplace midth efigpf
.se dfigew = '.hr 3figrule left to right

.gs exatt frame as dsmdfrme width as dsmawidt place as dsmaplce

% ESTABLISH FORMATTING ENVIRONMENT FOR FIGURE %
.in

.ir

.fo off

.sv off

¥ BEGIN KEEP OR FLOAT *
R

.if &place eq inline .se dfigtype = kp

.an &width eq page .sc

.1f &place eq inline .sp &dskaf

.&2figtype on &dplace damidth order

.if &dplace eq bottom .sp &dskadf

oK START FRAME *
.1s all 1.0

WS

.es

bf hi2

.if &dfigframe eq box .bx dfigrule new left right

.th .go 3frdone

.if &place ne top .an &E'&dfigframe eq 1 .an /&dfigframe. ne /box

.th &figew

. . .afrdone

.pf

. % ESTABLISH PROPER INDENTION FOR FIGURES *
.in &2figdin

.ir &figdin

.3 PROCESS ID AND DEPTH ATTRIBUTES AND ENABLE APPROPRIATE TAGS *
.se atg =

.gs exatt id as dsmdids depth as sp

.aa figcap dsmfcap

.aa figdesc dsmfdesc

.bf figfont
.se defigpf

yes

DSMFLIST

DSMFLIST: Tag = FIGLIST No Attr. Formats list of illustra-
tions. Resets any open lists, etc. Advances to next/odd page.
Sets dshead for the rumning footing. Puts an hl into DSM#FLIST.
.% The DSM#FLIST macro has been built by the FIGCAP tag.

ORI HHIH I I NI IIH NI R HHINIE N KKK IEHHHH IO NIINFINHHHHNR
.dsmiirset LstIl

.dsmitdupl

.'se dshead '&LLILstIL

.dm #figlist(l) /.'hl &LLALstIl

.sa

.dc cw

Bfiglist

.re

.pa nostart

X K K K

Appendix C. Starter Set Macro Library Listing 207

DSMFNREF

.% DSMFNREF: Tag = FNREF Attr = REFID GENERATE FN CALL-OUT %
» HHIER I NI IHIHIHHK F I I HIEHIN I HKHINIIR NI I KN R HHINNK H I KK IHHH KKK X KK
.gs exatt refid as dsmarfid

.if &L'&*id gt 7 .dsmitmsg 8 F &xid

.th .se %i1d = substr '&xid.* 1 7

. % IF &N13.... EXISTS, CALL DSM#SUPR TO INSERT SUPERSCRIPT
.if &E'&N12&xid eq 1 .dsm¥supr &N1d&*id

.if &E'&nld&xid eq 0 .an &E'&N13d&*id eq 0 .dsmisupr 00

Jif SE'anladdgxid eq 1 .an &E'&N1d&*id eq 0 .dsmitsupr &nla&xid

X IF CROSS REFERENCING, SAVE CURRENT PAGE # IN &NX3... *
.1f &$PASS ne 1 .or &SYSVARX ne yes .me

.if &E'&N1d&*id eq 0 .go unknown

.se NXa&xid.() = &

.me

% GENERATE CROSS REFERENCE INFORMATION %
.+ sunknown

.if RE'&NF&*id eq 0 .se dxrefdn() *.dsmitxrfn &*id

.th .se NL3&*id = &xrefan(0)

.th .se NFa&xid = ?

.se NXa&xid.() = &

X

DSMFRONT
.% DSMFRONT: Tag = FRONTM No Attr. Establishes formatting *
.¥ enviromment for front matter section. Heading don't go into %*
% toc and are not numbered *

o IR I N H I I I IR IR IHIEH I K HIEHHIEH I K IIEHHH I H KKK KKK
.se dheadl off

.dh 0 ntc

.dh 1 ntc nonum

.dh 2 ntc nonum
.dh 3 ntc nonum
.dh 4 ntc nonum
=3 ADVANCE TO THE NEXT/ODD PAGE. ESTABLISH OFFSET OR ONE COL SYTLE %

.dsmitdupl

.if &SYSVARS eq two .dsmitstyl one
el .dsmitstyl

.pn roman

208 DCF: GML Starter Set Implementation Guide

DSMFTNT

% DSMFTNT: Tag = FN Attr = ID Starts a footnote. Generates *
. % footnote call-out, if no ID given. *
+ NI IR K I I N HIHIEHIHH KN HIH NI R HHHH K IHINNH I IR H R IHIHIIHINKKHKR
.if &Idstate ne open .dsmiimsg 4 &S$TAG &dstate

.th .me

.se astate = N

% NO ID - ASSUME CALL-OUT GOES RIGHT HERE %
.gs gatt %q id

.if & '&*q ne 1 .go strifn

.dsmitsupr &dfn#
% START FOOTNOTE - PROCESS ID %
voestrtfn
.fn on

bf fnt =
.sp &d¥skdn
.in &fnl
.se dtg = n
Jif &E'&%q eq 0 .gs exatt id as dsmdids
.if &dsuprstyl eq shifts .bf super =

.se dfnis = &DH'&W'0 * 4 + &DH'&SIN
.se afnis = '&dfnis.dh
Jir &fn2

.se %1 = &DH'EH'0 * ¢

if &dsuprstyl eq shifts .pf
.in +&*1i.dh after 1
.dsmitsupr &fni

.se fntt = &fnit + 1

.se 3fnis off

DSMGDEF

.% DSMGDEF: Tag = GD No Attr. Processes glossary definition. *
.% The glossary term is in &3idal. *
o FEINIIIIHIIN H IO H R HHHHIH I HIHIIINHHH IR IR H I N HHHIIH AN HRINHIHIHA RN
.if &L'&d1iddl eq O .dsmimsg 6 Gloss

.th .se 2iddl = ?

% FORMAT THE GLOSSARY TERM IN A BOLD FONT %
sk &¥skal

.in &din

.bf higahiadl =

Jdi 1

&didal. : &$CONT

.pf

&$RB,

. % SET &3iddl TO NULL TO INDICATE WE DID IT *
.se diddl = **

DSMGBOC

.% DSMGDOC: Tag = GDOC Attr = SEC Processes SEC attribute *
© FIEINIEHI I IH K HFFIEH I HIH K H I IFK KKK IR I HHII I KK HHH I N HHHKRFIKR R

.gs exatt sec as dsmdsec
.dm dsmgdoc off

DSMGLIST

.% DSMGLIST: Tag = GL No Attr. Calls list macro to start glossary *
+ HEHEHIHIR I HIH K HHHII KK H I HHH IS IIIRH I IHIHFERH R I WK HHHHHHHK I KK

.dsmlistm g &

DSMGTERM

.% DSMGTERM: Tag = GT No Attr. Saves glossary term in &id3dl. %
L FEIEHIE I HH IR I I I KK HIHIH I K I H IR HIIHIHHK HHHHHIIINNHK
.if 8L'&iddl ne 0 .dsmimsg 5 Gloss '&didal.!

.sk &3skal ¢

.gs scan 9iddl

Appendix C. Starter Set Macro Library Listing 209

DSMHDREF

.% DSMHDREF: Tag = HDREF Attr = PAGE, REFID Inserts heading cross *
.% reference text (heading and perhaps page number) into document *
% If PAGE was given &%yesno will be 'no*. REFID will set &xid. *
+ FEHHIEH IR IR IR IHIHIIIR NI R HIK K H K KR HH IR KRR HIHNIIIIHNRKIHHKKEHNKR
.gs exatt refid as dsmdrfid page as dsmityesn

Jif &L'&xid gt 7 .dswmitmsg 8 H &xid

.th .se *id = substr '&%id.' 1 7

X% IF &H1d.... EXISTS, WE CAN GENERATE A CROSS REFERENCE %
.se XH ='H'

.if &E'&H13&xid eq 0 .an &E'8&hld&xid eq 0 .go unknown

.if 2E'2H19&*id eq 0 .se *H = h

.su off

.se ¥cw = &$CHW

.de ow off

.se ¥p = &

.se ¥n = &nestdq + 1

.se ¥o = substr &oquote &*n 1
.se ¥c = substr &cquote &n 1

% DECIDE WHETHER OR NOT TO GENERATE PAGE REF *®
.1f &*yesno eq yes .or &*p ne &&*H.Pa&*id .an &*yesno ne no

.th .se ¥r ' &LLdonpge &&xH.Pa&xid..'

% GENERATE THE TEXT OF THE HEADING REFERENCE %*
.su on

&%0.&&*H.198&x*id. . &*c. &*r.&$CONT

.dc cw &%cw

% SAVE CURRENT PAGE NUMBER IN &HX3...

.if &$PASS ne 1 .or &SYSVARX ne yes .me

.se HX9&*id.() = &

Jme

. % IF &H112.... DOES NOT EXIST, USE A CANNED STRING *
+ o cUNKNown

.sv off

-- &LLOH id '&*id.' &LLIunkn --&$CONT

.SV on

% SAVE CROSS REFERENCE INFORMATION *

.if &$PASS ne 1 .or &SYSVARX ne yes .me

if &E'&HFI&*id eq 0 .se dxrefdh() '.dsmixrfh &xid
.th .se HLA&xid = &dxrefdh(0)

.th .se HF9&xid = ?

.se HXo&xid.() = &

DSMHEADO

.% DSMHEADO: Tag = HO ATTR. = ID, STITLE Formats head 0 using res- *
.¥ idual text. Resets open lists, etc, advances to next/odd page %*
+ HEIEFIIHIEHIIIIIIENI K K HHHH KN E RN HIIH NN IR K IR KRR IR HH KN KR KKK
.dsm#trset H.-0

.dsmitdupl

.gs scan dhead

% SET &ashead FOR RUNNING FOOTING TO HEADING OR STITLE %*
. 'se dshead '&dhead

.gs exatt stitle as dsmashd

X CREATE HEAD 0, PROCESS ID ATTRIBUTE & DON'T INDENT PARAGRAPH *
. 'h0 &dhead

.se dtg = h

.gs exatt id as dsmdids

.aa p dsmparal

210 DCF: GML Starter Set Implementation Guide

DSMHEAD1

.% DSMHEAD1l: Tag = H1 Attr = ID, STITLE Format level 1 heading.
.%¥ Advances to next/odd page. Headl's are numbered in the body if
.% either head level numbering is on or &dheadl exists.

.% Reset any open lists, etc.

IR R HIH K I H I HHH I K H I K I XK HHH IR IIEN R H I HHHHHHNH
.dsm#rset H.-1

X X X K

.dsmitdupl
.gs scan dhead
3 PREFIX HEADING WITH &dheadl, IF IT EXISTS %*

.if &E'&headl eq 1 .gs hctr 1

.'th .'se dhead '&3dheadl &Ixref(l).. &dhead

% SET &dshead FOR THE RUNNING FCOTING TO HEADING OR STITLE %
. 'se dshead '&dhead

.gs exatt stitle as dsmadshd

.% CREATE THE HEADING, PROCESS THE ID AND DON'T INDENT 1ST PARAGRAPH *
.'hl &ahead

.se dtg = h

.gs exatt id as dsmdids

.aa p dsmparal

DSMHEAD2

.% DSMHEAD2: Tag = H2 Attr = ID Formats level 2 heading *
.%¥ Resets any open lists, etc. *
L NI II I I HI I HH I I HINIH I HFHRHIHRHH I HHIINIHIN IR K H KRN
.dsmftrset H.-2

.gs scan dhead

.% CREATE THE LEVEL 2 HEADING, PROCESS THE ID & DON'T INDENT 1ST PARA *
&arel

.'h2 &dhead
&drc2
.se tg = h

.gs exatt id as dsmdids
.aa p dsmpara2

DSMHEAD3
.% DSMHEAD3: Tag = H3 Attributes = ID *
.%¥ Formats a level three heading. Resets any open lists, etc. %*

» HHHIEHIEH R HIIIR I NI IR N K I I HHFHIHH RN I NI E K IIIN KN HHHIHHHIEHHH K HH KK
.dsm¥#rset H.-3

.gs scan dhead

.% CREATE THE LEVEL 3 HEADING, PROCESS THE ID, DON'T INDENT 1ST PARA X
&arcl

.'h3 &dhead
&Irc2
.se atg = h

.gs exatt id as dsmdids
.aa p dsmpara2

DSMHEAD4
.% DSMHEADG: Tag = H4 Attributes = ID *
.%¥ Formats a level four heading. Resets any open lists, etc. %*

» JERHIN NI IEIEIE I FIEIHIEIIIEIEIEH HIE I I3 JE I H I H I K HHH K I IR HH I
.dsm#trset H.-4

.gs scan dhead

.% CREATE THE LEVEL 4 HEADING, PROCESS THE ID, DON'T INDENT 1lst PARA
&arcl

. 'ha &dhead
&drc2
.se ?tg = h

.gs exatt id as dsmdids
.aa p dsmpara2

Appendix C. Starter Set Macro Library Listing 211

DSMHEADS

.% DSMHEAD5: Tag = H5 Attributes = 1D %*
.¥ Formats a level five heading in-line. Resets any open lists, etc. *
+ FHHIEI K HHHIEHHIHHHIEI IR HHHHN HHH K IENH NN HIHNH NI I I K AN I KN HH IR HNHH
.dsmitrset H.-5
.gs scan dhead

. % CREATE THE LEVEL 5 HEADING, PROCESS THE ID *
.'h5 &abhead

.se dtg = h

.gs exatt id as dsmdids

L% THE 1lst :P TAG WILL ADD A COLON TO THE HEADING %*

.se dhbline = '&$PN./&$LC."
.se dparabdfnt = 5
.aa p dsmparab

DSMHEAD6

.% DSMHEADG6: Tag = H6 Attributes = ID *
.%¥ Formats a level six heading in-line. Resets any open lists, etc. x
o I HIHEHIEHIEHI K HHH K I I I HIERIEHEHIH I I NI H I KK HIHEHNHHHFIHIHKH N K KR KKK K
.dsm#rset H.-6
.gs scan dhead

. % CREATE THE LEVEL 6 HEADING, AND PROCESS THE ID %
. 'hé &dhead

.se ?tg = h

.gs exatt id as dsmdids

. % THE 1st :P TAG WILL ADD A COLON *

.se dhBline = '&%PN./&s$LC.*
.se dparabadfnt = 6
.aa p dsmparab

DSMHPO

.% DSMHPO: Tag = HPO No Attr. Starts the body font *
o FEEIHHIEKHINIHI KN HHIH I I I N IHH NN A KK NIHHHHHHHHHHHEHHHHHHH KKK IR KKK H

.bf hio

DSMHP1

.% DSMHPl: Tag = HP1 No Atir. Start level 1 highlighting *
» FEHHHIHIN I IIINHIIIN I IR KNI IR FHH IR K H IR HH IR HIIHHI N HHH IR R IH IR KN HHHKKR

.bf hil althil

DSMHP2

.% DSMHP2: Tag = HPZ No Attr Start level 2 highlighting *
+ FENIFH IR HH NN H IR IIEIINIIIIEIINA H I H I I HN NI KN R H IR HHH IR HARHHHRKN

bf hiz althi2

DSMHP3

.% DSMHP3: Tag = HP3 No Attr Start level 3 highlighting. *
+ FIER K IEH K HHHIEHIEHHH NN I KK H I HINHIH I I F IR FHHHHHHHHIHHHHKIHHKR

.bf hi3 althi3

DSMIDMMY
.% DSMIDMMY: Parms = index term. Processes index tags when no *
.% index is being produced. Consumes residual text. *

o D6 I IEHIEIIEIEHIE I IEHIE NI F I I NI IEHH I N IEHF KN RN HIEIIEH KK NI NI NFNH IR
.gs scan ¥x

212 DCF: GML Starter Set Implementation Guide

DSMIEH

.% DSMIEH: Formats index headers . %
© HXAIEHIIIE NI IR I I H IR I FHHHIIHHIIEI I I HIE I H IR H M HHIEH A HIH KK FIEHHHKRKE
JAf 78%1 1t /Za cme

% INSERT WHITE SPACE, START A KEEP

.sk p22

.if &SENV eq KP .kp off

kp 1.21

.bf ieh hiz althiz

L% PRINT THE PARAMETER IN A BOLD FONT, SURROUNDED BY A BOX *
.in 5

.se ¥a = 7 + &L'&x*

.1f SYSOUT ne PAGE .bx 4 &xa

el .in 0

1i 1

&%

.1f SYSOUT ne PAGE .bx off

.sk 1

.pf

.in

DSMIHD1

.% DSMIHD1: Tag = IH1 Attributes = ID, PRINT, SEE, SEEID *
.% Creates an index header (an index entry w/ no page numbers) *
% Get residual text into &itl and copy it to &#itl. %
+ FER KKK KKK HINIER KNI R R I IHHHHHHR I HIHHHHHHRHHIIREHHHEHHHKHNKRKR
.gs scan itl

.'se #itl '&3itl

. % &d1t2 AND &3it3 ARE NULL FOR LEVEL ONE TERMS. *
.gs args 1 ' v

.gs vars dilevel itz 9it3

.%¥ THE PRINT ATTRIBUTE MAY RESET &#itl AND CREATE A SORT KEY IN &xK *
.%¥ THE SEE OR SEEID ATTRIBUTE MAY PROVIDE A CROSS-REFERENCE TERM IN &r
.se dtg = 1

.gs exatt print as dsmdiprt id as dsmdids

.gs exatt see as dsmdsee seeid as dsmdseei

.if RE'&*r eq 1 .se %x = ref

X CREATE AN INDEX ENTRY. %*
.if &L*'&Ditl eq O .dsmitmsg 14 ‘1(H)®

el Lt'pi &%x &*K &X'01.&#it1.&X'0L1.&¥*r.&X'010101

DSMIHD2
.% DSMIHD2: Tag =IH2 Attr = ID, PRINT, SEE, SEEID Creates an *
% index header (an index entry w/ no page numbers). *

% Gets the residual text into &1it2 and copies it also to a#itz2. %
PN HI I NI NI NI F I I IR K HH IR NI NI HHIH I HIHHHHHNIHHN
.gs scan ?1t2

.'se $it2 'eit2

% THE SYMBOL &9it3 IS NULL FOR LEVEL 2 TERMS %
.gs args 2 '

.gs vars dilevel 3it3

% THE PRINT ATTRIBUTE MAY RESET &#it2 and SEE or SEEID MAY %
% PROVIDE A CROSS REFERENCE TERM IN &*r %*
.se Atg = 1

.gs exatt print as dsmdiprt id as dsmdids

.gs exatt see as dsmasee seeid as dsmdseel

LAf QE'&*r eq 1 .se %*x = ref

% CREATE AN INDEX ENTRY 3
Lif &L'&J1itl eq 0 .or &L'&it2 eq O .dsmitmsg 14 '2(H)’

el Ltpl &%x &%K &X'01.2d1t1.&X'01,&#it2,&X'01.&%r.8X'0101

Appendix C. Starter Set Macro Library Listing 213

DSMIHD3

.% DSMIHD3: Attr = ID, PRINT Creates an index header (an index x
.%¥ entry with no page numbers). Gets the residual text into &it3 *
.* and copies it into &#it3 also. %*
+ FEFEHIEIH I I NI NI IR NN H NI X HNIEH IR IR NI N K RHHHIIIINHKINHHHN IR
.gs scan 9it3

.'se #1t3 '&it3

.se dilevel = 3

. % THE PRINT ATTRIBUTE MAY RESET &#it2 *
.se ?tg = 1

.gs exatt print as dsmdiprt id as dsmdids

. % CREATE AN INDEX ENTRY *

Lif 8L'8ditl eq O .or &L'29it2 eq O .or &L'22it3 eq O
.th .dsm#tmsg 14 ‘3(H)'
el J'pi &xK &X'01.&91t1.8X'01.8&91t2.8X'01.&#it3.8X'0101

DSMIM
.% DSMIM: Intercepts the .IM control word, issues a message and %*
.% saves the information for the imbed trace. Does not trace imbeds *
.% of SCRIPT/VS utility files. *
+ HIEHI IR I HIN IR NI HIEIIEHHHIIER I NI INHHIHIEN KN HHRIH I HIHH K HHNH KK
.se @ = index '-DSMUTTOC-DSMUTWTF-DSMUTDIM-' '-g&x1.-'
'if 89 ne O L 'im &%
.th .me ,
X &dnestdi IS THE IMBED FILE NESTING LEVEL *
.se dnestdi = &Inestdi + 1
X ISSUE MSG W/ CURRENT PASS & IMBED FILE NESTING LEVEL *
.se ¥a = 3 % &dnestdi
.se ¥a = substr o ' 1 &*a
.se ¥p = &
.se *page = substr &%p.*' &L'&*p 5

.if &$THO eq 1 .se *pass '(&LLJPass &$PASS.) °

.ty &*pass.&LLdPage.&x*page.: &LLIImbdg &*a.> &U'&x

% SAVE INFORMATION FOR THE IMBED TRACE *
.if &lastpass ne yes .go imbed

.se ¥a = 2 * &dnestdi

.se %a = substr ' ''1 &*a
.se dimtrace() 'ZLLIPage &*p.&$TAB.&%a.&U'&*

oK IMBED THE FILE *
...1imbed

Ltim &%

.se anestdi = &Inestdi - 1

DSMINDEX

.%¥ DSMINDEX: Tag = INDEX No Attr. Formats the index. Resets any *
.% open lists, etc. Advances to next/od page. *
+ FEH NI NI NI KNI I I KK HHHN KK IIRH I IR KKK HHHHHHIHHHHHIHRRHHHNH KRR
.dsmitrset Index

.dsmidupl

.'se dshead '3LLIIndex

% MAKE SURE THE GML INDEX HEADER MACRO IS PRESENT *
.dm ieh /.dsmieh &x/

.dm dsmieh lib

% USE THE .IX CONTROL WORD TO GENERATE THE INDEX *
.sa

.dsmitstyl two

.fo left

.1y off

. 'ix &LLIndex

.1y mac

.re

214 DCF: GML Starter Set Implementation Guide

DSMINDX1

.% DSMINDXl: Tag = Il Attr = ID, PAGEREF Produces a level 1 index %
% entry. &9itl contains the level one index term. &it2 and &3it3 *
.% are reset. &*t4 contains the page #, and is initialized to &%PSs *
o FEIEIIEHIEIEN IR HHIEI K H N HHIIN I IR IR NI I I IR IIIIIHHHIEHNANNH
.gs scan 2itl

.gs args 1 v v &$PS

.gs vars dilevel 2it2 2it3 *t4

.% PROCESS PAGEREF - MAY RESULT IN &%x, CONTAINING A .PI PARAMETER *
% OR IN THE SYMBOL &*T4 BEING NULLED OR RESET *
.se 9tg = i

.gs exatt pg as dsmdpgrf pageref as dsmdpgrf id as dsmdids

. % CREATE THE INDEX ENTRY %

Jif &L'8itl eq O .dsmitmsg 14 1
.'el .'pil &%x &X'01.&3itl1.&X'010101.3&xt4,.8X'01

DSMINDX2

DSMINDX2: Tag = I2 Attr = ID, PAGEREF, REFID Produces a *
level 2 index entry with the current page number unless PAGEREF %
specified &it2 contains the level two index term. &it3 is *
. reset. &xt4 contains the page number, and initialized to &$PS. %
+ F R HII IR I HHIIEHIHH R AN H NI IINHHIOERIE F IR HIINIIIIIHHH KKK HKR KN
.'se #itl '&itl

.gs scan dit2

.gs args 2 v &$PS

.gs vars dilevel it3 xt4

.

X X X X

.% PROCESS THE ATTRIBUTES - PAGEREF MAY RESULT IN &%x, CONTAINING %
.%¥ A .PI PARAMETER, OR IN THE SYMBOL &xt4 BEING NULLED OR RESET *
.% REFID and ID ATTRIBUTES ARE ALSO PROCESSED (MAY RESET &#itl) %
.se atg = 1

.gs exatt pg as dsmdpgrf pageref as dsmdparf

.gs exatt refid as dsmaridi id as dsmdids %*
K3 CREATE THE INDEX ENTRY

.se ditl ‘&¥itl
Lif &L'&%itl eq O .or &L'8&Jit2 eq O .dsmimsg 14 2
el J'pl o &%x &X'01.&#i1t1.&X'01.891t2.38X'010L.&*14.&X'01

DSMINDX3

.%¥ DSMINDX3: Tag = I3 Attr = ID, PAGEREF, REFID Produces a level %
% 3 entry using current page number unless PAGEREF was specified. %
% &d1t3 contains the level three index term. %
IR H IR K I HFHHIRH KN HK K HIEIHHKIHHHIN K HHRH N R IR K I NI INHKR
.'se #itl '&1tl

.'se #it2 '&it2

.gs scan 2it3

.gs args 3 &SPS

.gs vars dilevel *t4

¥ PROCESS PAGEREF - MAY RESULT IN &¥%x CONTAINING *
% A .PI PARAMETER, OR IN &%t4 BEING NULLED OR RESET %*
.gs exatt pg as dsmdpgrf pageref as dsmdpgrf

% PROCESS 1D AND REFID ATTRIBUTES - MAY RESET &xitl AND &xit2 *
.se dtg = 1

.gs exatt refid as dsmdridi id as dsmdids

g3 CREATE THE INDEX ENTRY %

.if 8L'&#itl eq O .or &L'&H#it2 eq 0 .or &L'&Rit3 eq O
.th .dsmimsg 14 3
el ('pi o #%x &X'01.&%It1.&X'0L1.8#112.8X'01.29113.&X"01.&x14.8%X'01

Appendix C. Starter Set Macro Library Listing

215

DSMIREF

.% DSMIREF: Tag = IREF Attr = REFID, PAGEREF, SEE, SEEID Creates x
.% an index entry from index terms saved for the 'id'. The page ref x* .
.*¥ is the current page, unless PAGEREF was specified. *
+ FEHIEHHIIHHH NI KK IHHHHIHHIHNHIEH KK HIEH KK I H N K HIEHHE KN HHH R IR HHHKHK
.se ¥t¢ = &$PS

.gs exatt refid as dsmadrfid

Lif &L'&xid gt 7 .dsmitmsg 8 I &xid

.th .se *id = substr '&xid.* 1 7

% IF &I13.... EXISTS, WE CAN GENERATE AN INDEX ENTRY *
IF &E*&I13&*id eq 0 .go unknown

.% DETERMINE WHAT LEVEL ENTRY WILL BE, & RECOVER &xitl, &xit2, &*ii3x
.se dilevel = ZE'&I13&*id + &E'&I2d&*id + &E'&I3J&xid

.go index&dilevel

...index3 .'se %t3 '8&I3&xid

..oindex2 L 'se *t2 '&I298&xid

...indexl .'se %tl1 *'&I19d&*id

% PROCESS THE PAGEREF, SEE, and SEEID ATTRIBUTES *
.gs exatt pg as dsmdpgrf pgref as dsmdpgrf pageref as dsmdpgrf

.1f &ilevel gt 2 .go skip

.gs exatl see as dsmdsee seeid as dsmidseei

.1f &E'&*r eq 0 .go skip

.se ¥x = ref

.se ¥a = &dilevel + 1

Lif &%a le 3 .'se ¥t&xa '&*r

...skip

% GENERATE THE INDEX ENTRY AND BE DONE WITH IT *
L'pl &%x &X'01.8%1L.&X'01.&%1t2.8X'01.&%t3,&X'01.,&%14.8X 01

¥ SAVE THE CURRENT PAGE NUMBER

.1f &$PASS ne 1 .or &SYSVARX ne yes .me

.se IXd&xid.(} = &

.me

. % SAVE THE CROSS REFERENCE INFORMATION *
.« «unknown

.if &$PASS ne 1 .or &SYSVARX ne yes .me

J1f ZE'RIFQ&*id eq 0 .se Axrefdi(]} '.dsmitxrfi &xid

.th .se IL9&%id = &Ixrefdil0)

.th .se IFd&xid = 7

.se IXa&xid.() = &

216 DCF: GML Starter Set Implementation Guide

DSMLIREF

.

X XK XK X

DSMLIREF: Tag = LIREF Attr = PAGE, REFID Inserts list item cross x
references into document. Includes item identifier & page refer~ x
ence unless PAGE attribute was specified. &*yesno will be "no" if *
PAGE attribute was given. the REFID attribute will reset &xid. *

« FEFIIIEHNRIEIIEIEH I I I HIENRIIHHHIH I I HHIEIHH I HEHIHH KN INR NI NI HNHIINIINHR XK

.gs exatt refid as dsmdrfid page as dsmityesn

Jif &L'&x*id gt 7 .dsmitmsg 8 D &xid

.th .se %id = substr '&xid.' 1 7

% IF &D13.... EXISTS, GENERATE A STRING CONTAINING THE IDENTIFIER %
.se ¥D = 'D*

.if &E'8&D13&*id eq O .an &E'&d13gxid eq 0 .go unknown

.if &E'&D1d&*id eq 0 .se *¥D = d

.su off

.se ¥cw = &SCHW

.dc cw off

.se ¥p = &

. % PERHAPS INCLUDE THE PAGE REFERENCE *
.if &*yesno eq yes .or &*p ne &&xD.P&xid .an &*yesno ne no

.th .se *r ' &LL3onpge &&xD.Pa&xid..'

X GENERATE THE TEXT OF THE LIST ITEM REFERENCE *
.su on

&&xD.138&*1d., . &*r.&$CONT.

.dc ow &%cw

. IF CROSS REFERENCING SAVE THE PAGE NUMBER *
.if &$PASS ne 1 .or &SYSVARX ne yes .me

.se DXa&xid.() = &

.me

% IF &D13.... DOES NOT EXIST, USE A CANNED STRING INSTEAD *
.. sunknown

.sv off

-~ &LLILI '&xid.' --&$CONT

.sv on

V% SAVE THE CROSS REFERENCE INFORMATION *
.if &S$PASS ne 1 .or &SYSVARX ne yes .me

Jif
.th
.th

.5e

&E'&DFa&*x1id eq 0 .se axrefadd() '.dsmixrfd &xid
.se DLI&xid = &Ixrefadd(0}

.se DFR&xid = 7

DXagxid.() = &

Appendix C. Starter Set Macro Library Listing

217

DSMLISTM

&3indl - indent for this list type &ditem# - list item counter
. &askdl - amount of skip before list item

L FEHHIEH I HIII K HFH I HIINI NI I HH NI NN NN IR NN K I I NN HIINN N
L% DEFINE ATTRIBUTE PROCESSORS FOR THE LIST TAGS *
.din dsmlistm{&SLNUM.) off &$CH..dm dtermhi /.se dhidl = &xl1/

.dm dsmlistm(&SLNUM.) off &X$CH..dm dtsize /.se dindl '&x/

.dim dsmlistm(&$SLNUM.) off &$CH..dm dbeadhi /.se 2hidhd '&x1/

.% CONDITIONAL SKIP IN CASE WE'RE GOING FROM UNCOMPRESSED TO COMPRESSED
.sk &skdl ¢

.% DSMLISTM: Tag = L Attr: TYPE, COMPACT,TERMHI,HEADHI,TSIZE *
.%x Sets up for all types of lists. Stacks current list parameters. x
.% &hidl - highlight for def term &din - current indention *
% &altype- list type &Jiddl - "id" for this list *
* *
* *

L% &anestal INDICATES CURRENT NESTING LEVEL AND CONTAINS *
% SAVED FORMATTING PARAMETERS OF NESTED LISTS. *
.se ¥g = '<ype &ditem#t &Jin

.se ¥h = '&3skal. &V'&dhidl. &V'&adhidhd.

.se dnestdl() '&xg '&Iinal.' &xh. &dbreak.

% &din DEFINES THE BASE INDENTION FOR THIS LEVEL OF LIST NESTING *
.if &nestdl(0) gt 1 .in &3din

.th .in +&3indl

.se ?din = &DH'&$IN.dh

.% DSM#LTYP RETURNS THE LIST TYPE IN 9ltype AND THE ITEM IDENTIFIER %

L% FOR THIS LEVEL OF NESTING. *
.dsmitltyp &1
% CHECK FOR COMPACT; IF PRESENT, &3skdl WILL BE ZEROED *

.se abreak = '!'

.se ¥a = index 'ICOMPACT1BREAK' '&E'&x2.8&U'&x*2.'
.if &a eq 1 .se ¥c = 0

.if &*a eq 9 .se dbreak = BREAK

.se ¥b = index '1COMPACTIBREAK' '&E'&x3.8&U'&x3."
.if &b eq 1 .se ¥ = 0

.if &b eq 9 .se dbreak = BREAK

X SET THE FORMATTING PARAMETERS FOR THIS LIST TYPE *
.gs args O &hidgdltype &ind&dltype &3hidh &xc &dskddltype
.gs vars ditem# 3hidl indl dhidhd askal

% PROCESS TSIZE AND TERMHI ATTRIBUTES TO RESET &2inal AND &2hial ES
.gs exatt tsize as dtsize thi as dtermhi termhi as dtermhi

.gs exatt bhi as dheadhi headhi as dheadhi

.se 2indl = &DH'&IinNdl.dh

% ESTABLISH A TAB STOP FOR THE FIRST LINE OF EACH LIST ITEM. *
.in &in

.in +8&31indl

.se ?lidtab = &DH'&$IN.dh

.% ENABLE LIST PART TAGS (LI OR DT, DD, DTHD AND DDHD OR GT AND GD *
.aa lp dsmlpart

.if <ype eq g

.th .aa gt dsmgterm

.th .aa gd dsmgdef

.th .me

.if <ype ne d .aa 1li dsmlitem

.el .aa dt dsmdterm

.el .aa dd dsmddef

.el .aa dthd dsmdthd

.el .aa ddhd dsmddhd

218 DCF: GML Starter Set Implementation Guide

DSMLITEM

.% DSMLITEM: Tag = LI No Attr Formats list items controlled by %
.% symbol by DSMLISTM: &2iddl - "id" for this list type %*
¥ &in - current indention &Jitem# - list item counter x
% &indl - indent for this list type &3skal - skip before item %
o FENMSEHF I HIH I K IEHIENHHHH K HH N HIEH I H K HHHIEH KA HHHH K HHHHHHHKKHKR
L% INCREMENT THE LIST ITEM COUNTER AND INSERT SOME WHITE SPACE *
.se QJitem# = LIitem¥ + 1

.sk &dskal

% FORCE PROPER INDENTION FOR THIS LEVEL OF LIST, THEN UNDENT 1st %
] LINE TO ALIGN WITH TEXT PRECEDING THE LIST %
.in &in

.in +&3indl after 1

X PROCESS THE 'ID' ATTRIBUTE, IF PRESENT *
.se dtg = d

.gs exatt id as dsmaids

% INSERT THE IDENTIFIER INTO THE GUTTER CREATED BY THE UNDENT *
&didal.

.is to &31lidtab min 1

DSMLPART
.% DSMLPART: Tag = LP No Attr. Format list parts just like *
.% list items with no identifier. *
L FHNIIKHH IR I IR I IR H K HIIH HHHHIIEH K H I NN KIHHHHFIFIHIHHH KKK K
.sk &skal
.1n &din

DSMLQUOT

.% DSMLQUOT Tag = LQ No Attr Establishes formatting environment x
% for long quoted phrases. dnestdl indicates current level of list x
.* nesting and contains the formatting parameters for previous list =x
+ FEHIEINIEIHH IR HHINIEHIEH IR HIE KR I HIIHH KK FHHHHHHHH KKK HHIEHAK KN KR KRN
.sk &skdq ¢

.se xh = '&3skal. &V'&dhidl. &v'&hidhd.’

.se dnestdl() '<ype &ditemdt &in '&Iindl.' &xh &dbreak

X &din IS THE BASE INDENTION FOR THE CURRENT LEVEL OF LIST NESTING x
JAf &nestdl(o) gt 1 .in &in

.th .in #+23indl

.gs args O q 0 0 &DH'&$IN.dh &DH'&3dindqg.dh

.gs vars ditem#t dltype 3hidl 3hidhd din inal

.se dbreak = '*

¥ ESTABLISH THE PROPER INDENTION FOR THE LCNG QUOTE %*
.in &in

.in +&dinaq

Lir #831ndq

.bf lgfont =

DSMNOTE

.% DSMNOTE: Tag = NOTE No Attr. Starts a note, which is a *
% paragraph with *NOTE' in front of 1it. *
o FERKHH KK H NI HIIKR IR NI N IHIINH IR IR I KNI R KNI IR N IR INHRNK
.sk &askap

.bf hi2

&LLANote. : &$CONT

.pf

&$RB . &$CONT

DSMOLIST

.% DSMOLIST: Tag = OL No Attr. Calls DSMLISTM macro for ordered list *
+ FEIIEIHIIEN IR HH NI H IR NI IIIOIOEI N IR HH IR I IR NI IR NI HNHHXHK

.dsmlistm o &%

Appendix C. Starter Set Macro Library Listing

219

DSMPARA

.% DSMPARA: Tag = P No Attr. Spaces between paragraphs and indents *

% first line. %*
+ FEIIH I HHNH I HK I I IR IR R HH IR R KNI XN H IR K INHIIINHHIN M IR KA HHHH
.sk &Iskdp
.11 +&1in3dp

DSMPARAL

.% DSMPARAl: Tag = P No Attr. For the lst paragraph after HO or H1 x
o PO HHHIEIEHIEIIIEIHFEFIEIHIEIIIEIIEIFHIEHHIIH I I N HHFHHK I I I IIIEIHIEIKIEIEIIIIIEIIIIEIFHAKIHR ¢
.sk &skap

.aa p dsmpara

DSMPARAZ2
.%¥ DSMPARA2: Tag = P No Attr. For the lst paragraph after H2-4 *
o FEIEIH I HHIEH I H I HHHH I RN H AN I NI KK H KRR HHIEHIIH K KKK IR HHIEHHRHHHHH N K
.sk &dskap
.aa p dsmpara

DSMPARAS
.% DSMPARA5: Tag = P No Attr. For 1lst paragraph after H5 or Hé6. %
.%¥ A colon is appended to the heading if no text has intervened. *

+ FEHHIHIRHI IR NIIEH IR HIEHHH K H NI KK I K KHIEHIIIHHRHHHHHHHH KKK HHHRHH KNI
.bf hd&aparabafnt

Lif &$PN./&SLC eq &hBline .ct :

.pf

.el .dsmpara

.aa p dsmpara

DSMPCONT

.% DSMPCONT: Tag = PC No Attr. Formats text as paragraph continuation x
© FHFAHHIIEHH NI KR HIIH IR IEHIIR KK IR NI HHHHIIE T HIEN K HIEHIIE K HHHHHF K KIHH KRN

.sk &Iskdp

DSMPREF

.%¥ DSMPREF: Tag = PREFACE No Attr. Establishes formatting envir- %
.% onment for the preface. Resets any open lists. Advances to %*
.* next/odd page, generates level 1 heading for preface. *
IR IINIHH IR HIINIII NI KKK INHH IR I HHNIIINIHI NN H I HIHHHHKRE KKK HHIHHRKR
.dsm¥rset Pref

.dsmitdupl

L% SETS &3dshead FOR THE RUNNING FOOTING *
.'se dshead '&LLIPref

.'hl &LLIPref

% NO INDENTION FOR 1ST PARAGRAPH AFTER IT *
.aa p dsmparal

220 DCF: GML Starter Set Implementation Guide

DSMPROF3

+ FHEHHIRHIEHH I KK HIIK H TN HHHH IR I I I N HIHHIEH KR IK HH X HIINHHHIHHH IR FHNK
.% COPYRIGHT: 5748-XX9 (c) COPYRIGHT IBM CORPORATION 1983 E
X THIS PRODUCT CONTAINS RESTRICTED MATERIALS OF IBM. %*
.% This Profile is for use with SCRIPT/VS and GML Starter Set REL 3 %

o BRI R HIHHH IR A K FFIEHIH I HIR KK I HIH IR HHH I IR KKK HHH I K IHKNKH

.if &$DCF 1t 3 .mg /S/The &$FNAM profile requires the use of Rel. 3

.se DSMOMAC? lib

.1f /7&DSMOMACD ne /DSMGML3

.th .mg /S/The &$FNAM profile requires DSMGML3 MACLIB/

+ FEHIIIEIIIH I HIHIENR K HHIINHHIEIH KK HIIEKH I IEHIEHHHHI I MK H I I K KN HHHKINFIHNH

.% The following symbols define the amount of white space and *
.%¥ indention surrounding various Kinds of text: *
% &dindd &dskdd - definition list terms *
L% Zindf &skaf - figures *
.% &3indo &dskdo - ordered list items *
% &Jindg &Iskdg - glossary *
% &indp &IskIp - paragraphs *
% &indq &Iskdq - long quotes *
% &iNds &IskIs - simple list items *
% gdindu &Iskdu - unordered list items *
L% &Jindx &IskIx - examples *
L% 8dindz &iskdz - list items *
% &dskan ~ footnote %
+ FEIIEIIEH NI NI HHIH I IIEHH IR HIIH HH RN IR HHH I H IR KRR R H KRN HHH K
.gs args 10 2 4 G 0 3 G [2 0

.gs vars 9indd 9indf 9indz JinNdo iNdp indg inds JiNdU Jindx a1nag
.gs args .75 1 .75 .75 .75 1 .75 .75 1 .75

.gs vars dskdd Iskadf Jskdz Iskao dskap askdqg dskas Iskau Askax dskag
+ FERFIHIIIOEH IR H I IIIINH I FH NI R HHHHHIHIIEIIRHHHHNH IR KNI I HHHIHA K HHHHH

.% The following symbols define the default highlight levels: *
.% 9hidd ~ definition list terms 3hidg - glossary list terms *
.% 9hidh - definition list headings %
+ FOEHIIH KKK B HH K HHINIINHH K HIEH K HIHH I HHHHHIEHHHHI IR K IR IR HIHHH KR HHH
.gs args .75 1 3 2 2

.gs vars Jskdls dskan dhidh dhiad dhiag
+ JEHIIEIHHIFRHHHIHN KK KW IR I HI N H KK HHHIEIE I HHHHIEIEI K HHHH IR I H NI NI

.% The symbols &dolistnest and &ulistnest indicate the sequence of *
% item identifiers for the items of ordered and unordered lists, *
.% respectively. The identifiers themselves are defined below using *
.% the .DV control word. The &olistnest and &dulistnest are treat- *
% ed as rings if lists are nested beyond the level defined in %
.% these symbols. The symbols &dfigplace and &dfigwidth give the *
.% default value for figure placement and width. *
+ K HIHHHHHIRIINFHIIHHIH N HHHHHIHHHH KR KKK IR H I IH I NI IIHAHHIIAHHINHIHKR
.gs args 123456 123 top page

.gs vars dolistnest aulistnest dfigplace dfigwidth
+ FEEHKIEH KK K FIHRIH NN FHAIIHIH I HIFI I HINHHH IR HHHHHNHH IR A IR IHHIINKN

.% Macro substitution, library lookup and tag processing must be *
.%¥ enabled for GML tag processing. The GML tag delimiter will be a x
.% colon (:) and the GML end-tag delimiter will be colon-e (:e). *

+ HHHIIH KR HHIIIH KNI HHHHHHHHHHHIEK K HHIIH N HHH K KKK IS H KKK H I H IR K HIOHEH R KRNI
.ms on

.ly mac

de gnl : : e

.gs tag on

.gs rules (att novat stop nomsg) (noatt)

.1f &L'&$CONT eq O .dc cont &X'03

+ IR KRN KHIOHH KK KKK KR KKK HIH KN HHIHIH KR KKK I K KKK HHHIEKRH K HHRHFHHHHHIN

.% Define the specific character bullets for unordered lists. *
.% FORM: .DV '?iddlaxy /symbol function to create dingbat *
. % or *
.% FORM: .DV 3iddlaxy FONT fontname /symbol function %
.% where: *
L% X is the list type - either ‘o', or 'u' or 'z' *
Y is the nesting level number for which identifiers are being *
% defined. (1 through 3) are normally used. *
.% symbol: the symbol function used to produce the character to be *
% used as the ‘dingbat'. (e.g. '&x''9f' or '&x''af') %
% Note: Remember to double any single quotes in the value *

*

.% fontname:The font that the dingbat is to be printed in.

Appendix C. Starter Sct Macro Library Listing

221

% Note: See .DV control word description for details. *
L FEHIEIE NI I K HIIEHIE X IEH KK I I I I I HIHH IR HNH H I H K I H NI IHIHK
.if SYSOUT eq PRINT

.th .dv 9idd1l3ul /&X‘'af

.th .dv 2id213u2z /8X'bf

.th .dv 2iddlau3 /&X'bfbf

.th .dv 21dd1dus /78X'9f

%

el .dv

el .dv

.el .dv

el .dv

%

.df dpidul typel(’pi font sans serif' 8) codepage aftc0363

%

.if &$PDEV eq 38PP .df 9pidul typel'pi sans serif' 8) codepage tlgpi3e3
.if SYSOUT eq PAGE .se Qulistnest '12345

idd1lul /o
diddlauz /-
idd1du3 /~-
diddldug /o

.th .dv 2iddlaul /78X 9f

.th .dv 2idd1au2 font pidul /&X'dh

.th .dv 921d2lau3 font Ipidul /&X'ed

.th .dv 3iddlaus font dpidul /8&X'4d

.th .dv 2iddlaus font Ppidul /7&X'da

%

el .dv 2idd1aub Vés

+ FEHHIEHIIR KA HIIIHIH R IR KR H IR K HHHHIFHIN N H KKK IIFHH KK I IR R AN HNHHHNKR
.* Define the style of the list item numbers for ordered lists. *
¥ The '&item#t.' symbol will resolve to correct item number. *

+ FEFIEFEHKIEIH N, HN I N A AN IEIE I I I IEIE I IIEIHIIEHKIIIHIE I I I W HHK HIIINHHNH XK
.su off

.dv 2idaldel /8&Jitemt. .

.dv 2iddldo2 /8&a'&ditenmit. .

.dv 91dd1303 /8&ditemt.)

.dv 2idd1d04 /&a'&ditemtt.)

.dv 2idd13o0b /8r'&ditemdt. .

.dv 2idalao6 /&r'&itemtt.) &

% ¢

.dv 3iddld07 /8R'&ditemit. .

.dv 2iddl208 /&A'&Iitemd. .

.dv 9idal309 / .dsm¥fsupr &ditem#.

%

.dv 9idadlaz0 /%

dv 91daldz1 /%

.su on

+ FH I K NI H IR I HIHIENH KN IHHIFH I HINIHHIIIHKRH NI R I HRIHH R AHHKK
.% Define some special variables: &mp., &semi., and &gml *

o FEFEKIEIEIEIEIEIE I IE I I I I IEIEIEIK I I IEIENEI I I IEIEFIEIEIEIE I I IEIEH I IEIK I I IEHIEIEIIE I I IIIENH
.dv amp text /&

.dv gnl text /:

.'dv semi text /3

© I K I FHH K IIIE I NI R K H N H I N KNI IR IR HHHIHH KRR H KK NN
.% Define some rules for use in the Starter Set *
+ FEHIEIEIEHIEIIIEIE AR IEIEIONNIFKIIENHHIE HIE I I I IEIEIEIIEIEIE I I IE I I I I I IR I IE NI N W IIHEHINEIN NN
.dr 3figrule

.dr fnldr w .2mm

.+ FEHIIEH NI HHINR NI FE IR H IR I NI IHINHHHHFIIHHHHHHH I HIHHH

.% If Headings are not to be numbered, but you want level 1 body *
% headings to be numbered (for example, "Chapter 1, Chapter 2, ...") %
.* set dbodyheadl to the string which should precede the number. *

+ R RHN NI H IR IIIEI IR I NI IIOIFWHHIIIHHH R KK H IR HNHIH AN
.%,se dbodyheadl = 'Chapter

+ RN IIIE R INIIIH I N HIINH L KNI I H IR N HHIIIIIINHHHHKNANN
.* Set linespacing, hyphenation and justification controls %
+ FIEIHIINIIEIH KN IR F IO I IIN I H I I IINHWIIIIINHH KN
.1s all .90 1.1

v Justify

.hy on minpt 2 maxpt 3 minword 5 ladder 2 range .8 1.2 noalg

» KNI I H IR K I H N IR HIH A KK I NI INHH NI KRNI R HKHHNHKIHKN
.% Parameterize some spacing values so they can be changed easily. %*
% (two column gutter amt, length of footnote leader, footnote in-
.%¥ dention and lead out amount for 4250 titles on the title page.) *
+ FIENA I NI NI IIIIEIIEI K KNI NI NI I NI NI I IR KNI IEHHIOHHHH I
.se agutter = ¢

.se dfnldrlen = 16

222 DCF: GML Starter Set Implementation Guide

.se attllo = '1.2
+ FEIIIIERIEH IR I I I I HIIHIEEIE K I HFEIE I I I I FEHHH K I I IIIE I I I I HH I HIEH I I

.% Perform various GML initialization tasks: %
% .dsmitsetv - Process SYSVAR variables *
W% .dsmitsets - Create symbols for all literal text strings *
IR KNI K IEN NI H K HHH I IR HHHHIE I H KKK HIEH I NI R I HHH I HKHHIHNH KK
.dsmitsetv

.dsmtsets

+ FEIIEIN I IEINH I FHIIEHHI KK IHIH KK I N H I NI HHHI NI I N HRHIIIIIHHH IR K
% Also set space around headings for line devices. *
+ FEHEIHIRIIFHIEIR I HIIEIIH R I FIHHIH NN KK H I B I NI HHFR NI I NN HINHIIIEHH K
.se dhspbf = 0

.se ?ahOsp = 5

.se dhlsp = 3

.se dh2sk = 3

.se dh2sp = 2

.se ?h3sk = 3

.se dh3sp = 2

.se dhdsk = 3

.se dhasp = 2

+ 36NN INIEIIENIEN I I KR I HIEN NI K H XK I HE I XK I IHH IR HHHFFHH K
% Define fonts and super script style for various output devices *

I H NI I HHHHIEH I H NN H I IR I IR IIH IR I HINH NN K
.df hi0 font &$CHAR(1)

.se dsuprstyl = parens

.se %¥go ‘f&$CHAR(O)

.if SYSOUT eq PAGE .se dsuprstyl = shifts

.th .se %go =' '

.if &S$PDEV eq 3800 .or &S$PDEV eq 1403 .se dsuprstyl = nums

.go &$PDEV. &*go

... 14031

.o 276111

.df hil us

.df hi2 os rpt 3

.df hi3 os rpt 3 us
.df hd0 os rpt 3 us up
.df hdl os rpt 3 us up
.df hd2 os rpt 3 us wp
.df hd3 os rpt 3 us
.df hd4 os rpt 3

.df hds os rpt 3

df hdé wus

.df hdotoc os rpt 3

.df hdltoc os rpt 3
.df hd2toc font &$CHAR(1)
.df hd3toc font &$CHAR(1)
.go endfont

...3270f1

..3800f1
.df hil us
.df hi2 up
.df hi3 us up
.df hd0 up us
.df hdl up us
.df hd2 up us
.df hd3 up us
.df hd4 up
.df hds up

.df hdé us

.df hd0toc up
.df hdltoc up
.df hd2toc font &$CHAR(1)
.df hd3toc font &$CHAR(1)
.go endfont
...3800f2
.df hil font &$CHAR(1)} us
.df hiz font &S$CHAR(2)
.df hi3 font &$CHAR(2} us
.df hd0 font &$CHAR(2) us up
.df hdl font &S$CHAR(23} us up
.df hd2 font &$CHAR(2Z) us up
.df hd3 font &$CHAR(2) us
.df hdd font &S$CHAR(2)

Appendix C. Starter Set Macro Library Listing 223

df hds font &S$CHAR(2)
.df hdé font &S$CHAR(1) us
.df hdotoc font &$CHAR(2)
.df hdltoc font &$CHAR(2)
.df hd2ztoc font &$CHAR(1)
.df hd3toc font &SCHAR(1}
.go endfont

...3800f3

.df hil font &$CHAR(2)
.df hi2 font &$CHAR(3)
.df hi3 font &SCHAR(3) us
.df hdo font &$CHAR(3) us
.df hdl font &$CHAR(3) us
.df hd2 font &$CHAR(3) us
.df hd3 font &$CHAR(3) us
.df hdg font &$CHAR(3)
.df hds font &$CHAR(3)
.df hdé font &$CHAR(2)
.df hdotoc font &$CHAR(3)
.df hdltoc font &$CHAR(3)
.df hd2toc font &$CHAR(1)
.df hd3toc font &$CHAR(1)
.go endfont

...3800f4

.df hil font &S$CHAR(2)
.df hiz font &$CHAR(3)
.df hi3 font &$CHAR(G)
.df hdo font &S$CHAR(4) up
.df hdl font &$CHAR(4]} up
.df hd2z font &$CHAR(4) up
.df hd3 font &$CHAR(4)
.df hdd font &$CHAR(3)
.df hds font &$CHAR(3)
.df hdé font &$CHAR(2)
.df hdotoc font &$CHAR(3)
.df hdltoc font &SCHAR(3)
.df hd2toc font &$CHAR(1)
.df hd3toc font &$CHAR(1)
.go endfont

%

... 38PP

L% 288PP DEFAULT FONTS ARE THE SAME AS 4250 BEFAULTS EXCEPT FOR THE
¥ EXAMPLE FONT.

df xmpfont type (prestige 9) codepage tldobase

xdf figfont

.go 4250same

.. 8250

df xmpfont type ('prestige elite*')

xdf figfont

§66

4250same

.

+ FEIIEH ORI H I X K HIEHIH KNI I HH I NI N HIHIN K I NI NN NI NN HRIIOHINNK
.%¥ Reset space around headings for page devices. *

+ FFIHIOEHIIIEIIIOIENIIIIIIN I HHHIEI IR HH IR I IR I HIEIH K HIEH H IR IININIHH
.se dhspbf = 1.3i

.se 2h0sp = pl4%
.se 2hlsp = pl4
.se dh2sk = p2o
.se dh2sp = pll
.se dh3sk = pl8
.se ah3sp = pll
.se dhask = pl4s
.se ahgsp = pll
L%

.df arh type (bold italic 9) up
.df arf type (bold 9)

.df ieh type(l4 bold

. % HIGHLIGHT FONTS

.df hi¢ type(normal

.df hil typelitalic)

.df hiz type(bold)

.df hi3 type(bold italic)

.df althil us

.df althi2 up

224 DCF: GML Starter Set Implementation Guide

.df althi3 uc

% FOOTNOTE FONTS

.df super type (6)

df fnt type (9)

% TITLE PAGE FONTS

.df title type (24 bold) up

.df author type(l2

.df address type(10)

.df date type(ll italic)

.df docnum type(10 italic)

.df titlesec type(1l0 italic bold)

% HEADING AND TABLE OF CONTENTS FONTS

.df hd0o type (20 bold italic

.df hdl type (20 bold

.df hd2 type (18 bold italic

.df hd3 type (14 bold

.df hdd type (12 bold italic

.df hds type (bold

.df hdé type (bold italic

.df hdotoc type (10 bold) up

.df hdltoc type (10 bold)

.df hd2toc type (10)

.df hd3toc type (10)

o X% FIGURE FONTS

.df figcap type (9 bold)

.df figdesc typel(9)

df lgfont type(9)

...endfont

.dsmitset

© RHHHHIHRIH IR KK HHIH KK INFIHF R I NI HHNIIH NN KN IR IENRHIHIIHKRHHHKRHNKNAH
% Set &oquote to contain the characters for open quote delimiters *
.% for successive levels of nested quotes; Set dcquote to contain *
.% the characters to be used as close quote delimiters. *
.%¥ Select appropriate quote marks for 4250 devices. *
I HHIIIEIIEHHH NI H K HIEHIN I IR KK I H NI I H I I I IR K HHHH I NN H
.se anUO{e ’l!vlllllllllllllllllll

.se acquote li'lllllllllllilllllll

.gs args [N1N] . 1t ans LI]

.gs vars oqq oq cqq cq

.if SYSOUT eq PAGE

.th .se doquote 'aX'bd.&X'bb.&X'bd.&X'bb.&X'bd.&X'bb.&X'bd.&x'bb."*

.th .se dcquote '&X'be.&X'bc.&X'be.&X'bc.&X'be.&X'be.&X'be.&x'bec. !

.th .gs args &x'bd &X'bb &x'be &x'bc

.th .gs vars oqq - oq cqq cq

o FFFHH R HIIH AN HHHIIHIN KNI I H I H I KK IR FH IR R KNI I HHH N E SR HRHIIRKHHH KR
.% Adjust head-level definitions. If duplexing, HO & 1, outjustified
NI HINIFH I RIEN KKK KK HIHIH KN K I IR H KK H K I H I KRHH KRR KR KHHKK
.se dheadl off

.if &SYSVARH ne no .se *n = num

.th .gs hctr &SYSVARH

el .se *n = nonum

.dh 0 nus nohy nup font hd0 spaf &hO0sp pa left sect tfont hd0toc ts nto
.dh 1 nus nohy nup font hdl &*n spaf &hlsp pa left sect tfont hdltoc ts
.dh 0 spbf &dhspbf

.dh 1 spbf &hspbf

.dh 2 nus nohy nup font hd2 &xn skbf &dh2sk spaf &dh2sp tfont hd2toc

.dh 3 nus nohy nup font hd3 &*n skbf &h3sk spaf &ah3sp tfont hd3toc

.dh 4 nus nohy nup font hdd &*n skbf &dh4sk spaf &ahgsp

.dh 5 nus nohy nup font hds nbr

.dh 6 nus nohy nup font hdé nbr

o BRI K HHHH KR HIEH I IH MR KNI I NN K I I KNI NINH NI R HHHAFIHHKN

.% Set line length to 6.8 inches unless user changad it or we're %

.% formatting for one column. %

+ NI I IIEH KK HH NN KA HH KR KR IHIEIH IR RN HIEHH K I W I I IINKRHK
.se ¥a = &$LL

.11

.1f &*a ne &$LL .11 &x*a

.el .if &SYSVARS ne one .1l 6.8i

.dem#styl
o FEIIIN NI I I I I HHH I I I I I KN RN HH NN I I F NI NI IIIIIIN KKK
.%¥ Define running heading and running footing *

+ HHRINENRIIEIIEIINHH I HIH I NI K HII NI K K HH I RN KK I I NI I NN R IO HHHN K
.rh on

Appendix C. Starter Set Macro Library Listing 225

.bf arh hi2

.'ce &%RB.&dsec.&$RB

.sp 2

.pf

.rh off

L%

.if &SYSVARD eq yes .go duplex

.rf on

.bf drf hio

.sp 2

'sx f &X'01.&3dshead. &X'01.8&8X'01.&5PS.&X'01
.rf off

.go assoc

R;

o oduplex

.rf odd

.bf arf hio

.sp 2

.fo right

&dshead. &$RB.&%RB.&$RB. &%RB. &$PS

V%

.rf even

bf arf hio

.fo left

.sp 2

&$PS.&%RB, &SRB, &%$RB.&%RB. &dstitle

rf off

D Tt T T TR I S SRR Y VT T T I VIV IV VIS VIV IVECELEVIVIVEVECETIVIVEVIVEVIVIVEVIVIVIVIVEVEVIVIVS
.% GML tag definitions and initial APF mapping. *
B R P T S R I T PRI ST 3 3 S T R VL S SV IRV VLV IV IVE ERT I VIVIVEVEVE PV SVIVEVIVEVEVEVIVIVE
.. .aSS0C

.aa abstract dsmabstr (noatt)

.aa address dsmaddr (noatt) dsmeaddr

.aa aline dsmitentx (noatt)

.aa appendix dsmappd (noatt)

.aa author dsmftentx (noatt)

.aa backm dsmbackm (noatt)

.aa body dsmbody (noatt)

.aa cit dsmeit {noatt) dsmecit
.aa date dsmitcntx (noatt)

.aa dd dsmitcntx (noatt)

.aa ddhd dsmitcntx (noatt)

.aa dt dsmitcntx (noatt)

.aa dihd dsmitentx (noatt)

.aa dl dsmdlist tvat) dsmelist
.aa docnum dsmitecntx (noatt)

.aa fig dsmfig dsmefig

.aa figcap dsm¥cnix (noatt)
.aa figdesc dsm#icntx (noatt)
.aa figlist dsmflist (noatt)
.aa figref dsmfgref

.aa fn dsmftnt dsmeftnt
.aa fnref dsmfnref

.aa frontm dsmfront (noatt)

.aa gdoc dsmgdoc dsmegdoc
.aa gd dsmitentx (noatt)

.aa gl dsmglist (vat) dsmelist
.aa gt dsmfentx (noatt)

.aa hdref dsmhdref

.aa hp bf tnoatt) dsmehp
.aa hpo dsmhp0 thoatt) dsmehp
.aa hpl dsmhpl (noatt) dsmehp
.aa hp2 dsmhp2 (noatt) dsmehp
.aa hp3 dsmhp3 (noatt) dsmehp
.aa ho dsmhead0

.aa hl dsmheadl

.aa h2 dsmhead2

.aa h3 dsmhead3

.aa h4 dsmhead4

.aa h6 dsmheads

.aa hé dsmheadé

.aa index dsmindex (noatt)

aa 1l dsmlistm (vat) dsmelist

226 DCFE: GML Starter Set Implementation Guide

aa li dsmitcntx

aa liref dsmliref

.aa lp dsmitcntx (noatt)

aa lq dsmlquot (noatt) dsmelqu

.aa note dsmnote (noatt)

aa ol dsmolist (vat) dsmelist

aa p dsmpara (noatt)

.aa pc dsmpcont (noatt)

.aa preface dsmpref (noatt)

.aa psc dsmpsc dsmepsc

.aa q dsmquote (noatt) dsmequot

.aa sl dsmslist (vat) dsmelist

.aa title dsmitentx

.aa titlep dsmttlep (noatt) dsmettlp

.aa toc dsmtoc (noatt)

.aa ul dsmulist (vat) dsmelist

.aa xmp dsmxmp dsmexmp

| FFIIINRFN KRR IR K HIREHRHHIHHHH HH KNI IEH KK H KN HIEHIE NI HHIH K I I KR HIHHHH N
% Index tag definitions (dependent upon INDEX option). *

+ FEIIEEHIEIEN I HIEH NI IIHI KN HHHH KK IEHHH KK HIHHIIHIIHIHHHKAIHHHH K I K HIH K
.if &INDX eq 1 .gs args 1 2 3 dsmindx dsmihd dsmiref

.el .gs args vror ot v dsmidmmy dsmidmmy null

aa 11 &x4, 8&x1

aa 12 &%, 8&%2

.aa 13 &%G, &x3

.aa ihl &%5, &1

.aa 1h2 &x5.8&%2

aa 1h3 &x5,&x3

.aa iref &xé

.gs args

o FEHHHIINNIH I I KA AN RN FIH KK HHH IR HIEH I HIHFH N IR I HIIEHHHHNH NI HHHHHH
.%¥ END of PROFILE. .EF will terminate profile processing. *
+ FHIINRHIIIIN KK IR HIEIRH NI IR HH I NI I I NI XN INHH KNI IR HH KN
.ef

» HFIEIHIRHHINHH K IR H NI R K I X FHIHIH K I I I I IR HIHHK K HHHIFHHNHNNKK
.% EPIFILE: The following is processed after the primary input
file has been completely processed. If SYSVARW was specified
the DSM#WRIT macro is called to write out the ids to the file.
If a cross reference has been requested, the DSM#XLST macro

. is called to generate the "id" cross references and imbed trace.
+ FFEIKKH I KRN INIIINFIEIIIEIERHH NI K FH NN I I NI K I HH KR I I H IR IHHHKH
if XE'&SYSVARH ne 0 .an &dlastpass eq yes .dsmiwrit

.if ASYSVARX eq yes .an &dlastpass eq ves .dsmixlst

%

X K XK X
X K X X X

DSMPSC

.% DSMPSC: Tag = PSC Attr = PROCESS Conditionally processes parts *
% of a document, based on the logical or physical device, or on the *
.%¥ value of SYSVARP. Starts a conditional section. %
+ I HHIHIHHHIIIEN IR HIEHHH NI K HH NI N K H I NI NI IR HHHA K IEHHHHIIN N
.cs 9 off

.¥ASSUME SECTION WILL BE INCLUDED, THEN PROCESS THE PROCESS ATTRIBUTE *
.cs 9 include

.gs exatt process as dsmdproc proc as dsmdproc p as dsmdproc

.cs 9 on

DSMQUOTE

.% DSMQUOTE: Tag = Quote No Attr. Establishes formatting envir-
.% onment for short in-line quotes.Surround text with quote marks.
% &dnestdq indicates the level of quoted phrase nesting, and is
.% used to select the character to be used as the quote delimter

« FERIIHHIENIK KN H I FIEH R F I TN H KK I RN R R KR K H NI NN H KNI K
.su off

.se dnestdq = &nestdqg + 1

.se ¥q = substr &doquote &Inestdq 1

.su on

&%q. &$CONT

X X X X

Appendix C. Starter Set Macro Library Listing

227

DSMSLIST

.% DSMSLIST: Tag = SL Attr = COMPACT Calls DSMLISTM to process list *
o FEER K NN NI I I KK RN IR FIENNI KR FIIN NI H NI N K I I N IH KNI RN IH RN

.desmlistm s &%

DSMTITLE
.% DSMTITLE: Tag = TITLE Attr = STITLE Saves text in 2atitle %*
% array. Sets 8dstitle to title or STITLE for RF %

+ FHHIIEIEHIHH K HHIEIH K HIHHIEFIEII HIHIHI I, K KNI H NI K H IR INHH IR KRR HIHHH KRR
.gs scan *line

.'se dtitle() '&xline

.dc asep 40

Jif &E'&astinit eq 0 .'se dstitle 'fatitle(x)

% PROCESS THE STITLE ATTRIBUTE *
.gs exatt stitle as dsmdsttl

DSMTOC
.%¥ DSMTOC: Tag = TOC No Attr Formats the table of contents. *
.% Reset any open lists, etc. Advance to next/odd page. *

» FEH R H KKK HIEH I INIE K HH I NN H K KK I HHIEHH NN H I IIIIINH NN R KIINH
.dsm¥rset ToC

. dsm#dupl

% SETS &dshead TO 'Table of Contents® FOR THE RUNNING FOOTING %*
.'se dshead '&LLIToC

. % THE .TC CONTROL WORD WILL GENERATE THE TABLE OF CONTENTS %*
tc &LLAToC

DSMTTLEP

.% DSMTTLEP: Tag = TITLEP No Attr. Establishes formatting environ- *
.% ment for collecting information for the title page. The title *
.% page is generated by the :ETITLEP tag through the DSM#TIPG macro. %
o NI FHHIE IR HIIE I H IR H IR NN IENHIH I KK I IR HHH W R IINIHHHH
.se dstate = TtlPg

X ENABLE THE TITLE PAGE TAG GROUP %*
.aa author dsmauthr
.aa date dsmdate

.aa docnum dsmdcnum
.aa title dsmtitle

% INITIALIZE THE FOLLOWING SYMBOLS IN CASE THEY AREN'T SET x
% BY A SUBSEQUENT TITLE PAGE TAG. *
. gs ar‘gs 0 t LI} e LI] s

.gs vars daddctr dauthor daddress ddocnum ddocdate dtitle

DSMULIST

.% DSMULIST: Tag = UL No Attr. Calls DSMLISTM to process the list =
» FEHI K NI I I HIEFHR I KK HIEIRHK K HHHHH K HHHHIEH I IIINNRIIIN N K H IR XK
dsmlistm u &

228 DCF: GML Starter Set Implementation Guide

DSMXMP

.% DSMXMP: Tag = XMP Attr = DEPTH Establishes the formatting envir-%
.% onment for an example. These are in-line text, kept together *
o JEIEIIE I HIEIEIH I I NHIIH NN IIEHHFFNN I NN H KNI HIH KN IR I IEI K IR H I
.if &dstate ne open .dsmitmsg 4 &$TAG &dstate

.th .me

.se dstate = Exmpl

.% BREAK TO FORCE UNPROMOTED TEXT INTO COLUMN AND SAVE ENVIROMNMENT
.br
.sa

% SPELLING CHECKING, HYPHENATION AND FORMATTING ARE ALL OFF %
.sv off

hy off

.fo off

.if &SENV eq KP .kp off

bf xmpfont =

Lin +&91ndx

.% START A KEEP TO PREVENT THE XMP FROM BEGIN BROKEN ACROSS COLUMNS
.sk &Jskdx

kp on

.1s all 1.0

WS

.es

.% PROCESS THE DEPTH ATTRIBUTE INSIDE THE KEEP *®
.gs exatt depth as sp

X

Appendix C. Starter Set Macro Library Listing 229

Glossary terms are defined as they are used in
this book. Element names and tags, and attri-
bute names and labels are, for the most part,
not included in the glossary. Descriptions of
them can be found in the body of this manual.
If you cannot find the term you are looking
for, refer to the index or to the Vocabulary for
Data Processing, Telecommunications, and Of-
fice Systems, GC20-1699.

all-points addressability: The capability to ad-
dress, reference, and position text, overlays,
and images at any defined point on the print-
able area of a sheet. Sec page device and con-
trast with line device.

ampersand: The “&” character.

When an ampersand begins a character string,
SCRIPT/VS assumes the character string is a
symbol name. If the symbol name is defined,
SCRIPT/VS replaces the symbol with its
value (unless symbol substitution is off).

APF: Application processing function.

application processing function (APF): In
GML processing, the processing that is per-
formed when a document element or attribute
is recognized.

attribute: A characteristic of a document (or
document element) other than its type or con-
tent. For example, the security level of a doc-
ument or the depth of a figure.

attribute label: In GML markup, a string of
letters and numerals that stands for the name
of an attribute. An attribute’s label is entercd
in the source document when specifying the
attribute’s value.

balancing: In multicolumn formatting, the
process of making column depths on a page
approximately equal.

baseline: An imaginary horizontal line upon
which most of the letters in a line of text ap-
pear to rest.

Glossary

binding edge: The edge of a page to be
bound, stapled, or drilled. Defined with the
BIND option of the SCRIPT command.

body: (1) Of a printed page, that portion be-
tween the top and bottom margins that con-
tains the text. (2) Of a book, that portion that
contains the main text.

boldface: A heavy-faced type. Also, printing
in this type.

break: An interruption in the formatting of
input lines so that the next input line is
printed on a new output line.

call: Used in reference to macros. It means

to invoke the macro.
caps: Capital letters. See also initial caps.
caption: Title of an illustration.

case sensitive: Whether a group of letters is
uppercase or lowercase has relevance. ABC is
different from Abc which is different from
ABc.

centimeter (cm): A measurement equal to
0.39inch. 100 cm = 1 meter (m).

character: A symbol used in printing. For
example, a letter of the alphabet, a numeral, a
punctuation mark, or any other symbol that
represents information.

cicero: In the Didot point system, a unit of
4.511 mm (0.1776 in.) used in measuring
typographical material.

CMS: An interactive processor that operators
within VM/370.

column balancing: The process of redistribut-
ing lines of text among a set of columns so
that the amount of text in each column is as
equal as possible.

column line length: The width of each text
column on a page. Specified with the .CL
[Column Line Length] control word. (In

Glossary 231

multicolumn formatting, all columns on the
page usually have the same line length.)

command: A request from a terminal or spec-
ification in a batch processing job for the per-
formance of an operation or the execution of a
particular program. For example, a request
given at a terminal for SCRIPT/VS to format
a document, or for an editor to edit a line of
text.

comment: A control word line that is ignored
by SCRIPT/VS. Such lines begin with either
* or the .CM [Comment] control word.

composition: The act or result of formatting a
document.

concatenation: The forming of an output line
that contains as many words as the column
line length allows, by placing the first words
from an input line after the last words from
the preceding input line. When words from
an input line would reach beyond the right
margin and hyphenation cannot be performed,
they are placed at the beginning of the next
output line, and so on.

control word: An instruction within a docu-
ment that tells SCRIPT/VS how to process
the document. {Sec also macro.)

control word line: An input line that contains
at least one control word.

default: A value assumed by a computer pro-
gram when a control word, command, or con-
trol statement with no parameters is
processed. In GML processing, the value as-
sumed for an attribute when none is specified.

dictionary: A collection of word stems that is
used with the spelling verification and auto-
matic hyphenation functions.

Didot point system: A standard printer’s
measurement system on which type sizes are
based. A Didot point is 0.3759 mm (0.0148
inch). There are 12 Didot points to a cicero.
(See also cicero and point.)

document: (1) A data medium and the data
recorded on it, that generally has permanence
and that can be read by man or machine. (2)
A unified collection of information pertaining
to a specific subject or related subjects. (3) In
word processing, a collection of one or more
lines of text that can be named and stored as a
separate entity. See also output document and
source document.

document library: A set of VSM data scts, ac-
cessible in a batch environment, which contain
documents and related files.

232 DCF: GML Starter Set Implementation Guide

document administrator: One who is respon-
sible for defining markup conventions and
procedures for an organization.

duplex: A mode of formatting appropriate for
printing on both sides of a sheet.

edit: To create or modify the contents of a
document or file. For example, to insert, de-
lete, change, rearrange, or copy lines.

editor: A computer program that processes
commands to enter lines into a document or
to modify it.

eject: In formatting, a skip to the next col-
umn or page.

element: Any part of a document: a single
character or a word or a sentence. Also refers
to any part of a document you can identify
with a GML tag (tagged element), such as a
paragraph or figure or heading.

em: A unit of measure for a particular font
that is equal to the point size of that font. In
a font that is not proportionally spaced, an em
is equivalent to a character.

enable: Used in reference to a tag. Means
that the tag is mapped to its appropriate APF.

fill character; The character that is used to
fill up a space; for example, blanks used to fill
up the space left by tabbing.

folio: Page number.

float: (1) (noun) A keep (group of input lines
kept together) whose location in the output
document and printed page may vary from its
location in the source document. (2) (verb)
To be formatted in a location different from
its location in the source file.

flush: Having no indention.

fold: (1) To translate the lowercase characters
of a character string into uppercase. (2) To
place that portion of a line that does not fit
within a column on the next output line.

font: An assortment of type, all of one size
and style.

footing: Words located at the bottom of the
text area. See also running footing

footnote: A note of reference, explanation, or
comment, placed below the text of a column
or page, but within the body of the page
(above the running footing).

format: (1) (noun) The shape, size, and gen-
eral makeup of a printed document. (2) (verb)
To prepare a document for printing in a speci-
fied format.

formatting mode: In document formatting,
the state in which input lines are
concatenated and the resulting output lines are
justified.

formatter: A computer program that prepares
a source document to be printed.

front matter: In a book, those sections (such
as preface, abstract, table of contents, list of il-
lustrations) that are placed before the main
chapters or sections.

general document: A type of document
whose description can apply to a varicty of
documents, from memoranda to technical
manuals. It can be used as a catch-all cate-
gory for documents that do not conform to
any other type description.

Generalized Markup Language (GML): A
language for describing the characteristics of a
document without respect to particular proc-
essing.

GML: Generalized Markup Language.

GML delimiter: A special character that de-
notes the start of GML markup. In the
starter set, it is initially a colon (:).

gutter: In multicolumn formatting, the space
between columns.

hanging indention: The indention of all lines
of a block of text following the first line
(which is not indented the same number of
space). Specified with the .OF [Offset] or .UN
[Undent] control word.

head-level: The typeface and character size
associated with the words standing at the be-
ginning of a chapter or chapter topic.

heading: Words located at the beginning of a
chapter or section or at the top of a page. See
also head-level and running heading.

hexadecimal: Pertaining to a number system
based on 16, using the sixteen digits 0 - 9, A -
F. For example, hexadecimal 1B equals deci-
mal 27.

highlighting: Emphasis associated with a doc-
ument element. In formatting, highlighting is
usually expressed by changing font, overstrik-
ing, underscoring, and/or capitalizing the high-
lighted element.

horizontal justification: The process of redis-
tributing the extira horizontal white space at
the end of the line of text in between the
words and letters of the line so as to exactly
fill the width of the column with the text.

indent: To set typographical material to the
right of the left margin.

indention: The action of indenting. The con-
dition of being indented. The blank space
produced by indenting. Specified with the .IN
[Indent], .IR [Indent Right], .IL {Indent Line},
.OF [Offset] and .UN [Undent] control words.
See also hanging indention.

initial caps: Capital letters occurring as the
first letter of each word in a phrase. To sct a
phrase in initial caps is to capitalize the first
letter of each word in the phrase.

initialize: This is a general programming term
which means to set everything up correctly at
the the beginning before you actually do any
processing/ For the starter set it means doing
things such as mapping tags to APFs and set-
ting up symbol names and values.

input device: A machine used to enter infor-
mation into a computer system (for example,
a terminal used to create a document).

input line: A line, as entered into a source
file, to be processed by a text processor.

interactive: Pertaining to an application in
which entries call forth a response from a sys-
tem or program, as in an inquiry system. An
interactive system might also be conversa-
tional, implying a continuous dialog between
the user and the system. Interactive systems
are usually communicated with via terminals,
and respond immediately to commands. (See
also foreground.)

interactive environment: The environment in
which an interactive processor operates.

italic: A typestyle with characters that slant
upward to the right.

JCL: Job control language.

job conirol statement: A statement that pro-
vides an operating system with information
about the job being run.

justification: The process of inserting extra
blank space between the words in an output
line to cause the last word in the line to reach
the right margin. As a result, the right-hand
edge of each output line is aligned with pre-
ceding and following output lines.

Glossary 233

justify: To insert extra blank space between
the words in an output line to cause the last
word in the line to reach the right margin. As
a result, the right-hand edge of each output
line is aligned with preceding and following
output lines.

keep: (noun) In a sourcé document, a col-
lection of lines of text to be printed in the
same column. When the vertical space re-
maining in the current column is insufficient
for the block of text, the text is printed in the
next column. (In the case of single-column
format, the next column is on the next page.)

layout: The arrangement of matter to be
printed. (See also format.)

leader: (1) Dots or hyphens (as in a table of
content) used to lead the eye horizontally. (2)
The divider between text and footnotes on a
page (usually a short horizontal rule).

left-hand page: The page on the left when a
book is opened; usually even-numbered.

line device: Any of a class of printer that ac-
cept one line of text from the host system at a
time. SCRIPT/VS supports such line devices
as the 1403, 2741 and 3800.

line space: The vertical distance between the
baseline of the current line and the baseline of
the previous line.

lowercase: Pertaining to small letters as dis-
tinguished from capitals; for example, a, b, g
rather than A, B, G.

maclib: See macro library
macro: See macro instruction.

macro library: A collection of macros. The
form the library takes will vary by environ-
ment, being a MACLIB in CMS, a PDS in
TSO and so on.

macro instruction: (1) An instruction in a
source language that is to be replaced by a de-
fined sequence of instructions in the same
source language. (2) In SCRIPT/VS, a macro
definition is a sequence of one or more input
lines that can contain control words, symbols,
text, and GML markup.

map: Associate a tap with an APF using the
AA [Associate APF] control word.

mark up: (verb) (1) To determine what infor-
mation should be added to a document that
would enable a person or system to process it.

234 DCF: GML Starter Set Implementation Guide

(2) To insert processing information intc a
source document.

markup: (noun) Information added to a doc-
ument that enables a person or system to
process it. Markup can describe the docu-
ment’s characteristics, or it can specify the ac-
tual processing to be performed. In
SCRIPT/VS, markup consists of GML tags,
attribute labels and values, and control words.

markup/content separator: A delimiter used
in GML markup which indicates the end of
the markup and the beginning of the text.
The default markup content separator for
SCRIPT/VS is a period (.).

meter (m): Basic unit of linear measurement.

millimeter (mm): One-thousandth of a meter.
There are 10 millimeters in one centimeter.
(25.4 millimeters = 1 inch.)

offset: (verb) To indent all lines of a block of
text, except the first line. (noun) The in-
dention of all lines of a block of text following
the first line.

option: Information entered with the
SCRIPT command to control the execution
of SCRIPT/VS.

output device: A machine used to print, dis-
play, or store the result of processing.

output document: A machinerecadable col-
lection of lines of text or images that have
been formatted or otherwise processed by a
document processor. The output document
can be printed or it can be filed for future
processing.

output line: A line of text produced by a text
processor.

paginate: To number pages.

page printer: Any of a class of printer that
accept composed pages, constructed of com-
posed text and images, among other things.
SCRIPT/VS supports the 4250 printer, IBM
3820 Page Printer, and the 3800 Printing Sub-
system Model 3, which are all page printers.

page segment: A datastream object contain-
ing composed text and images, prepared be-
fore formatting and included in a document
when it is printed.

paragraph unit: An element that has the
same structure as a paragraph. In a General
Document, the paragraph units are: paragraph,
note, and paragraph continuation.

parameter: Items of data, entered on the
same line as a control word, which govern the
control word’s behavior.

pel: (Picture element) The unit of horizontal
measurement for the IBM 3800 Printing Sub-
system, the IBM 3820 Page Printer, and the
4250 printer. One pel equals approximately
1/180th of an inch on the 3800 Model 1,
1/240th of an inch on the 3800 Printing Sub-
system Model 3 and 3820 Page Printer and
1/600th of an inch on 4250 printer.

pica: A unit of about 4.224 mm (0.1663 in.
used in measuring typographical material.
Similar to a Cicero in the Didot point system.

pitch: A number that represents the amount
of horizontal space a font’s character occupies
on a line. For example, 10-pitch means 10
characters per inch, or each is 0.1 (1/10)
inches wide. 12-pitch means 12 characters per
inch.

point: (1) A unit of about 0.3759 mm (1/72
m.) used in measuring typographical material.
There are twelve points to the pica. (2) In the
Didot point system, a unit of 0.3759 mm.
There are twelve Didot points to the Cicero.

profile; In SCRIPT/VS processing, a file that
1s imbedded before the primary file is proc-
essed. It can be used to control the formatting
of source documents. When processing GML
markup, the profile usually contains the asso-
ciation of GML with APFs, and the symbol
settings that define the formatting style.

proportional spacing: The spacing of charac-
ters in ‘a printed line so that each character is
allotted a space proportional to the character’s
width.

ragged right: The unjustified right edge of
text lines. See also justification.

required blank: A character that prints as a
blank, but does not act as a word scparator.

residual text: The line of text following the
markup/content separator of a GML tag

right-hand page: The page on the right when
a book is opened; usually odd-numbered.

rule: A solid black rectangle of a given width,
extending horizontally across the column or
vertically down the column.

running footing: A footing that is repeated
above the bottom margin area on consecutive
pages (or consecutive odd- or even-numbered
pages) in the page’s body (text area).

running heading: A hcading that is repeated
below the top margin area on consecutive
pages (or consecutive odd- or even-numbered
pages) in the page’s body (text area).

If the SEC attribute is specified on the
:GDOC tag, the starter set formats the security
line as a running heading.

SCRIPT/VS: The formatter component of
the Document Composition Facility.
SCRIPT/VS provides capabilities for text for-
matting and document management, macro
processing and symbol substitution, and GML
tag recognition and processing.

set: This term is used in reference to a sym-
bol. It implies the .SE [Set Symbol] control
word.

source document: A machine-readable col-
lection of lines of text or images that is used
for input to a computer program.

In this manual, the terms source document,
source file, and source data set all mean the
same thing.

space unit: A unit of measure of horizontal
or vertical space. In GML markup, the em is
used when a measure that is relative to the
current font size is required. When an abso-
lute measure is required, as in specifying the
depth of a figure, recommended space umts
are inches (nnl), millimeters (nnW),
picas/points (anPnn), or Ciceros/Didot points
(nnCnn), where nn is the number of units.
See also em, pica, point, Cicero, and Didot
point system.

starter sct: An example of GML support that
is provided with the Document Composition
Facility. It consists of a document type de-
scription for general documents, a profile, and
a library of APFs.

structure: A characteristic of a document (or
element) that expresses the type and relation-
ship of the elements of the content. (See also
content and element.)

symbol: A name in a source document that
can be replaced with something else. In
SCRIPT/VS, a symbol is replaced with a
character string. SCRIPT/VS may interpret
the character string as a numeric value, a char-
acter string, a control word, or another sym-
bol.

symbol substitution: During formatting, the

replacement of a symbol with a character
string that SCRIPT/VS can interpret as a

Glossary 238

value (numeric, character string, or control
word) or as another symbol.

SYSVAR: An option of the SCRIPT com-
mand that permits the user to specify values
for symbols. In the starter set, SYSVAR sym-
bol values determine whether certain process-
ing variations will occur, such as heading
numbering, duplex formatting, and two-
column printing.

tab: (1) (noun) A preset point in the typing
line of a typewriter-like terminal. A preset
point in an output line. (2) (verb) To advance
to a tab for printing or typing. (3) a tab char-
acter, hexadecimal code X’05".

tag: In GML markup, a name for a type of
document (or document element) which is en-
tered in the source document to identify it.
For example, “:p.” might be the tag used to
identify each paragraph.

terminal: A device, usually equipped with a
keyboard and some kind of display, capable of
sending and receiving information over a com-
munication channel.

text line:
text.

An input line that contains only

text programmer: One who implements
APFs that provide the processing specified by
the document administrator. In SCRIPT/VS,
this involves writing SCRIPT/VS macros and
organizing macro libraries and profile files so

236 DCF: GML Starter Set Implementation Guide

that the appropriate composition will be done
for each tag. “What type of document is
this?.” “Type” is sometimes referred to as
“document type,” “element type,” or “GML

type' »

typeface: (1) A specific type style, such as
Univers or Press Roman. (2) One of the
many attributes of a font, others for example,
being size and weight.

underscore: (1) (noun) A line printed under a
character. (2) (verb) To place a line under a
character. To underline.

unique identifier (ID): In a general document,
an attribute whose value serves as a name
which can be used to refer to the element.
(See also reference element.)

uppercase: Pertaining to capital letters, as dis-
tinguished from small letters; for example, “A,
B, G” rather than “a, b, g.”

widow: A single output line that is printed in
a different column from the text with which it
is associated so as to create a typographically
unacceptable effect. For example, a line of a
paragraph that is printed separately from the
rest of the paragraph, or a heading that is sep-
arated from the section it heads.

word space: The horizontal white space
placed between words. This is sometimes re-
ferred to as an interword blank.

$CIIARS 24

$CL 122

$DCF 20, 161

$FNAM 151

$IN 108, 126, 130

$INDX 36

$L.C 90

$LLDEV 161, 167

$PASS 34, 142, 144, 145, 150, 152, 154, 155,
168

$PDEV 24, 129, 131, 167

$PN 90, 164

$PS 138, 139

$TAB 169

$TAG 163, 165

$TWO 168

#FIGLIST macro 122, 60, 119

#it& @ilevel 143

#itl 138, 139, 140, 144

#it2 139, 140, 144

#it3 141

@addctr 47, 49, 50

@address 47, 49, 52

@aline 49, 50

@author 47, 52
@bodyheadl 23, 26, 37, 60, 79, 80
@break 100, 106, 127
@cquote 25, 125, 126, 152
@denest@o 101, 102, 107
@denest@u 101, 102
@docdate 47, 48, 52
@docnum 47, 50, 52
@dthead 104, 105
@efigpf 117

@fig# 35, 116, 119
@fig@fo 117,120
@hg@in 117, 119, 121
@figew 117, 118, 121
@figfo 120

@figframe 117, 118, 121
@figplace 21, 117
@figrule rule 117
@hgtype 117, 118, 121
@figwidth 21, 117

@fn# 35, 130
@FN#&@figé 120
@fnis 130, 131, 132
@fnldr rule 34, 129
@fnldrlen 23, 34, 129

Index

@il 32, 33, 129, 130

@2 32, 33, 34, 129, 130

@gutter 23, 33

@head 26, 80

@headhi macro 99, 101

@headl 58, 60, 61, 62, 78, 79, 80

@hi@d 21, 98

@hi@g 21,98

@hi@h 21, 98, 101, 107

@hi@hd 99, 100, 101, 104, 127

@hi@! 99, 100, 101, 105, 108, 127

@hspbf 23,78

@hOsp 23,78

@hlsp 23,78

@h2sk 23,78

@h2sp 23,78

@h3sk 23,78

@h3sp 23,78

@h4sk 23, 78

@h4sp 23, 78

@hSline 82, 88, 89

@id@l1 100, 102, 103, 105, 106, 108, 128

@ids macro 138, 139

@ilevel 138, 139, 140, 141

@imtrace 158, 169

@in 100, 101, 103, 104, 106, 107, 108, 126,
127, 128

@in@d 20

@in@f 20, 116, 117, 118

@in@g 20

@in@l 99, 100, 101, 103, 104, 105, 108, 126,
127, 128

@in@o 20

@in@p 20, 87, 89

@in@q 20, 125, 127

@in@s 20, 49

@in@u 20

@in@x 20, 115, 116

@in@z 20

@item# 100, 101, 103, 108, 127

@itl 36, 138, 139, 140, 141

@it2 36, 138, 139, 140, 141

@it3 36, 138, 139, 140, 141

@ll@&*id 141

@lastpass 30, 34, 62, 168

@li@tab 101, 104, 106, 108, 128

@ltype 100, 101, 102, 108, 127

@nes@to 98

@nest@i 35, 168, 169

Index 237

@nest@l 35, 98, 99, 100, 107, 108, 126, 127,

128, 165
@nest@o
@nest@q

107, 108

35, 125, 126, 128, 152, 165

@nest@u 98, 102, 107, 108

@olistnest 21, 98, 102

@oquote 25, 125, 152

@paraS@fnt 82

@pi@ul font 22

@place 117, 118, 121

@rcl 32,76, 78, 81

@rc2 32,76, 78, 81

@renest@o 102, 103

@renest@u 102

@sec 26, 36, 46, 50, 52, 57, 58

@shead 26, 36, 58, 59, 80, 81, 137

@sk@d 20

@sk@f 20, 116, 118, 121

@sk@g 20

@sk@l 35, 98, 99, 100, 103, 104, 1085, 106,
107, 108

@sk@n 20, 129, 130

@sk@o 20

@sk@p 20, 87, 89, 90, 128

@sk@q 20, 125, 126, 127

@sk@s 20, 49

@sk@u 20

@sk@x 20, 115, 116

@sk@z 20

@state 18, 35, 47, 49, 50, 108, 115, 116, 117,
120, 122, 129, 132, 165, 166, 167

@stinit 47, 48

@stitle 36, 46, 47, 48, 80
@suprstyl 24, 129, 130, 131
@termhi macro 99, 101

@tg 80, 81, 82, 103, 118, 130
@title 47

@tsize macro 99, 101

@ttlo 23

@ulistnest 21, 22, 98, 102, 108
@width 117, 118, 122
@writ@d 35, 161

@writ@f 35, 161

@writ@h 35, 161

@writ@i 35

@writ@n 35, 161

@xref@d 149, 155, 157, 160
@xref@f 35, 149, 154, 157, 159
@xref@h 35, 149, 153, 157, 159
@xref@i 35, 142, 145, 149, 157, 160
@xref@n 35, 149, 157, 159

238 DCF: GML Starter Set Implementation Guide

A

ABSTRACT tag 58

ADDRESS tag 48, 50

algorithmic hyphenator

ALINE tag 48, 50

all-points addressability
definition of 231

alternate highlight fonts

althil font 133

althi2 font 133

althi3 font 133

amp symbol 22

ampersand (&)
definition of 231

APF i, 1,2
definition of 231
naming conventions
processing 8
service macros 11

23

133

10

APPENDIX tag 61, 78, 79

Application Processing Function

See APF

array separator 47, 52, 157, 158, 161

attribute label
definition of 231

attributes 2
definition of 231
processing 3,9
scanning rules
value handling 8, 9

4,5,7

AUTHOR tag 47, 48, 51

B

BACKM tag 79
balancing

definition of 231
baseline

definition of 231

shifts
binding edge

definition of 231
body

definition of 231

24, 91, 92, 130, 131, 132

BODY tag 26, 60, 78, 79

boldface
definition of 231
boxes
break
definition of 231
BREAK attribute

38, 118, 121, 143, 158

100, 106

C

caps

definition of 231
character

definition of 231
ciceros

definition of 231
CIT tag 133
CMS

definition of 231
CMS maclib 171
column balancing

definition of 231
column definition 51
column format 61

column layout 23, 26, 31, 32, 33, 42, 78, 157

for document sections 32
impact on footnotes 130
column line length 32, 33, 34
definition of 231
command
definition of 232
command, SCRIPT
comment
definition of 232
COMPACT attribute 100
composition
definition of 232
concatenation
definition of 232
conditional
sections 167
conditional processing 30, 169
constants 23
continuation character 21
control word
definition of 232
control word line
definition of 232
control word separator 16, 51, 60, 119, 152,
155, 157, 161
control words 3
as APFs 115
cq symbol 25
cqq symbol 25
cross reference listing 2, 30, 31, 157, 168
initialization 149
cross referencing 30, 35, 62, 142, 143, 147
figures 153
footnotes 156
imbedding the SYSVAR 'R’ file 31
index entries 145
list items 154
overview of processing 147

D

date symbol 31, 46

changing the format 37
DATE tag 47, 48, 51
DD tag 101, 105, 107, 108
DDHD tag 101, 104, 108
default

definition of 232
definition descriptions 105
definition list headings 104
definition lists 98

See also lists
definition terms 104
delimiters 21, 22

tag delimiters 21
DEPTH attribute 115, 118

device
differences 12
devices
differences 22, 23, 25, 75, 102, 125, 129,
130, 131, 133
1403 24, 131
2741 24
3270 24
3800 24, 131

3800 Printing Subsystem Model 3 125,
131
4250 printer 125, 131

DF&*d 155
DF@&*id 156, 160
dictionary

definition of 232
Didot point system
definition of 232
DL tag 98, 106
DL@&*d 155
DOCNUM tag 47, 50, 51
document administrator
definition of 232
Document Composition Facility 1ii
document library
definition of 232
document number 46
document sections 1, 57-65
document structure 1
document types 1
general documents 1
DP@&*id 155, 160
DSM#CNTX macro 163, 12, 51, 107, 121
DSM#DUPL macro 164, 12, 58, 59, 61, 62,
80, 137, 157
DSM#ALINT macro 102, 101
DSM#LTYP macro 101, 100, 102, 103
DSM#MSG macro 165, 12, 163
DSM#RSET macro 59
DSM#RSET macro 165, 12, 58, 59, 61, 62,
80, 81, 82, 128, 129, 157
examples 116
figures 122

Index 239

index 137
lists 108
DSM#SET macro 34, 25, 48, 98, 116, 125,
149, 168
DSMH#SETS macro 31, 12, 23, 46, 48, 158
DSMH#SETV macro 30, 23, 32, 46, 149, 152
DSM#SETX macro 158, 159, 160
DSM#STYL macro 32, 12, 26, 58, 61, 62,
76, 78, 129, 130
DSM#STYP macro 21
DSM#SUPR macro 131, 12, 130
DSM#TIPG macro 51, 49
DSM#WRIT macro 16, 30, 161
DSM#WRTD macro 151, 161, 162
DSM#WRTF macro 151, 161, 162
DSM#WRTH macro 151, 161, 162
DSM#WRTI macro 151
DSM#WRTN macro 151, 161, 162
DSM#XLST macro 157, 16, 30, 62, 157
figure cross references 159
footnote cross references 159
heading cross references 159
index cross references 160
list item cross references 160
DSM#XRFD macro 160, 151, 157, 158, 160
cross reference listing
list item 160
DSM#XRFF macro 159, 151, 157, 158, 159
cross reference listing
figures 159
DSM#XRFH macro 159, 151, 157, 158, 159
cross reference listing
headings 159
DSM#XRFI macro 160, 151, 157, 158, 160
cross reference listing
index entries 160
DSM#XRFN macro 159, 151, 157, 158, 159
cross reference listing
footnotes 160
DSM#YESN macro 157, 151, 153, 154, 157
DSM@FRME macro 121
DSM@IDS macro 150, 80, 81, 82, 103, 118,
121, 130, 140, 141, 143
DSM@IPRT macro 143, 140, 141
DSM@MAC@ 30, 11, 20, 21
DSM@PGRF macro 144, 138, 139, 141,
144
DSM@PLCE macro 121
DSM@PROC macro 167, 167
DSM@RFID macro 156, 151, 153, 154, 156
DSM@RIDI macro 144, 139
DSM@SEC macro 58, 50, 57, 58
DSM@SEE macro 145, 140, 141, 142
DSM@SEEI macro 145, 142
DSM@SHD macro 81, 80, 81
DSM@STTL macro 48
DSM@WIDT macro 122
DSMABSTR macro 58, 87, 164
DSMADDR macro 48, 50
DSMALINE macro 50
DSMAPPD macro 32, 61, 79, 164

240 DCF: GML Starter Set Implementation Guide

DSMAUTHR macro 48
DSMBACKM macro 32, 62, 79, 164
DSMBODY macro 32, 60, 79, 164
DSMCIT macro 133

DSMDATE macro 48
DSMDCNUM macro 50
DSMDDEF macro 105, 101
DSMDDHD macro 104, 101, 104
DSMDLIST macro 98, 99
DSMDTERM macro 104, 101
DSMDTHD macro 104, 101
DSMEADDR macro 50

DSMECIT macro 133

DSMEFIG macro 120, 122, 167
DSMEFTNT macro 132, 129, 167
DSMEGDOC macro 62, 161
DSMEHP macro 133

DSMELIST macro 107, 108, 128, 167
DSMELQU macro 127

DSMEPSC macro 169

DSMEQUOT macro 126, 128, 166
DSMETTLP macro 50, 167
DSMEXMP macro 116, 121, 167
DSMFCAP macro 119, 120, 122
DSMFDESC macro 120, 120
DSMFGREF macro 153, 157
DSMFIG macro 117, 121, 122

DSMFLIST macro 59, 119, 122, 164
DSMFNREF macro 156, 130, 131
DSMFRONT macro 32, 58, 79, 164, 167
DSMFTNT macro 129, 131
DSMGDEF macro 106, 101, 108
DSMGDOC macro 50, 57, 58
DSMGLIST macro 98, 99
DSMGTERM macro 106, 101, 108
DSMHDREF macro 151, 157
DSMHEADO macro 50, 87, 164
DSMHEAD1 APF §0

DSMHEADI1 macro 60, 61, 87, 164
DSMHEAD2 APF 81

DSMHEAD2 macro 88

DSMHEAD3 APF 81

DSMHEAD3 macro 88

DSMHEAD4 APF 81

DSMHEAD4 macro 88

DSMHEADS5 macro 82, 88, 89
DSMHEADG®6 macro 82, 83

DSMHPO macro 133
DSMHPI macro 133
DSMHP2 macro 133
DSMHP3 macro 133
DSMIDMMY macro
DSMIEH macro
DSMIHDI1 macro
DSMIHD2 macro
DSMIHD3 macro 141, 30
DSMIM macro 168, 167
DSMINDEX macro 137, 32, 164
DSMINDX1 macro 138, 29
DSMINDX2 macro 138, 30
DSMINDX3 macro 139, 30

142, 29

142, 137
139, 30
140, 30

DSMIREF macro 141, 30, 145
DSMLIREF macro 154
DSMLISTM macro 99, 98, 101
DSMLITEM macro 103, 101, 108
DSMLPART macro 106, 101
DSMLQUOT macro 126
DSMNOTE macro 128, 128
DSMOLIST macro 98, 99
DSMPARA macro 89, 90

DSMPARA1 macro 58, 59, 80, 81, 87, 89,

90
DSMPARA?2 macro 81, 88, 89
DSMPARAS5 macro 82, 88, 89
DSMPCONT macro 90
DSMPREF macro 59, 87, 164

DSMPROF3 20, iii, 31, 34, 46, 77, 79, 87,
98, 108, 115, 116, 117, 118, 125, 129, 130,

131
DSMPSC macro 167
DSMQUOTE macro 125
DSMSLIST macro 98, 99
DSMTITLE macro 47, 48
DSMTOC macro 59, 164
DSMTTLEP macro 47
DSMULIST macro 98, 99
DSMUTREF 31
DSMXMP macro 115
DT tag 101, 104, 107, 108
DTHD tag 101, 104, 108
duplexing 26, 30, 32, 33, 47, 48, 164

definition of 232

DX@&*d 155, 160
DIi@&*id 160

E

EADDRESS tag 50
ECIT tag 133
edit
definition of 232
editor (computer program)
definition of 232
EDL tag 107
EFIG tag 120, 122
EFN tag 132
EGDOC tag 2, 16, 62, 157
EGL tag 107
EHPQ tag 133
EHPI tag 133
EHP2 tag 133
EHP3 tag 133
eject
definition of 232
EOL tag 107
epifile 2, 16, 30, 157
EPSC tag 169
EQ tag 126
error messages 12
ESL tag 107

ETITLEP tag

49, 50

EUL tag 107

examples
changing the defaults

115, 116, 165

indent 20
skip 20
EXMP tag 116
extra spacing 115, 118

F

FF&*id 154

FF@&*id
F1G tag

154, 159
116, 117, 121, 122

ID attribute 150

figcap font
FIGCAP tag
FIGDESC tag

figfont

119, 120

font 118

FIGLIST tag 59, 122

FIGREF tag

figures

153, 156
116, 122, 165

caption 231

changing defaults 122
changing rules and boxes
fonts for 39

frame

118, 121

indent 20
moving the caption 123

numbers

35, 116, 119

placement 21
rule definitions 22
skip 20
width 21
fill character
definition of 232
finding attributes 7
FL@&*d 154

float

17, 117, 118, 129, 164

definition of 232

flush

definition of 232
FNtag 129
FNREF tag 156
fnt font 130

fold"

definition of 232

folio

See also page numbers
definition of 232

font

definition of 232

font usage 22, 52
differences 22
IBM 3820 Page Printer.

3800 Printing Subsystem Model 3 22

4250 printer 22

fonts

23, 106, 158

changing definitions 40

116, 118, 119,
116, 118, 120, 121

124

121

38

22

Index

241

changing heading fonts 84
for cross reference listing 157
for definition descriptions 105
for definition list headings 21, 101, 104
for definition terms 21, 101, 105
for examples 115, 116
for figure captions 119
for figure descriptions 120
for figures 39, 116, 118, 121
for footnotes 130, 132
for glossary terms. 21, 106
for headings .. |75,.78
for highlighting 133
for index headers 143
for long quotations 127
for notes 128 -
for superscripts 132
for table of contents 78
for title citations 133
in cross reference listing 158
on the title page 51
support for page printers 177
footing
definition of 232
footnote leader 129
changing 134
definition 34
length 23
rule 22, 129
footnotes 129, 132, 165
definition of 232
indent 32, 33, 34
numbers 35, 130
references 130, 131, 156
skip 20
format
definition of 233
formatter
definition of 233
formatting environment 17
formatting mode
definition of 233
FP@&*id 153, 159
FRAME attribute 117, 121
FRONTM tag 79
FX@&*id 154, 159
Fl@&*id 159

G

GD tag 101, 106, 108
GDOC tag 46, 50, 57, 58, 161
Generalized Markup Language (GMI.)
definition of 233
Gl tag 98, 106
glossary 231
indent 20
skip 20
glossary definition 106

242 DCF: GML Starter Set Implementation Guide

glossary lists 98
See also lists
glossary terms 106
highlights 21
GML
definition of 233
developing il
how it works 3
processing documents with (diagram) 3
what is it il

GML delimiter
definition of 233

gml symbol 22

GT tag 101, 106, 108

gutter 23

definition of 233

H

hanging indention
definition of 233
HDREF tag 151, 156
head levels 75, 82
definition of 233
numbers 58, 60, 61, 62
prefix 58, 60, 61, 62
HEADHI attribute 101, 104
heading
definition of 233
heading definitions 61
headings
alignment 32, 33
fonts 26 °
hyphenation 26
numbering 26, 30, 76, 78
numbers 79
prefixing 23, 26, 37, 78, 79, 80
spacing 23
spacing values 78
hexadecimal
definition of 233
HF@&*d 153, 159
highlighting
definition of 233
highlights 24, 133
See also fonts
alternate font definitions 24
creating a new one 40
for definition headings 98
for definition terms 98, 101
for glossary terms 98, 101
hi0 font 24, 133, 157
hil font 133
hi2 font 133, 158
hi3 font 133
HL@&*d 153
horizontal justification 115
definition of 233
horizontal rules 121, 129

HP@&*d 152, 159
HPO tag 133
HPI1 tag 133
HP2 tag 133
HP3 tag 133
HX@&*d 152, 153, 159
hyphenation 23, 51, 115
dictionary 23
for headings 78
HO tag 80, 89
HO-6 tags
ID attribute 150
HI tag 80, 89
Hi@&*id 152, 159
H2 tag 81, 89
H3 tag 81, 89
H4 tag 81, 89
H5 tag 82, 89
H6 tag 82, 89

ID attribute 143, 150
figures 118
footnotes 130
for LI tags 103
head levels 80, 81, 82
index 138, 139, 140, 141
ids
saving them in a file 30
IEH macro 137
IF@&*d 142, 145
THI tag 29, 139, 143
1H1-3 tags
ID attribute 150
IH2 tag 29, 140, 143
I3 tag 29, 141, 143
IM macro 36, 168
imbed
nesting level counter 35
imbed macro 35
imbed trace 2, 30, 158
imbedding 167
indent
definition of 233
indention 103, 108, 158
changing defaults 38
definition of 233
for definition descriptions 105
for definition list headings 104
for examples 115
for figure captions 119
for figure descriptions 120
for figures 117, 118, 120
for footnotes 129, 130
for index headers 143
for list items 128
for lists 98, 100, 103, 110
changing defaults 110

for long quotations 126, 127
for paragraphs 89
left 49, 158
lists 101
right 158
index headings 137
index references 142
INDEX tag 137
indexing 36, 137-146
initialization 29
specifying a 4th term 144
specifying parameters 144
initialization 19-36
invalid tags 12, 163
IP@&*d 160
IREF tag 30, 141, 145
IX@&*id 142, 144, 145, 161
I1tag 29, 138, 143, 144
[1-3 tags
ID attribute 150
Il@&*d 142, 144, 145, 160
12tag 29, 138, 143, 144, 145
RE&*d 144
[3tag 29, 139, 143, 144, 145

J

justification
definition of 233

K

keep 17, 49, 104, 105, 115, 116, 117, 118,

129, 143, 158

L

Ltag 99
leader
definition of 234
left-hand page
definition of 234
Lltag 101, 103, 108

library 21

line device
-definition of 234
line length 26, 122
overriding starter set setting 36
line space
definition of 234
line spacing 23
adjustment 52, 115
LIREF tag 154, 156, 157
hist item
indention 128

Index

list item identifiers 22, 102, 128

defining 21, 22
definitions 98
_ sequencing 102
list item identifiers, changing
list nesting 126
list nesting counter 108
list of illustrations 60, 122
entries 119
page numbers 119
list parts 106
lists 97, 108, 165
decimal numbering 110
definition 21
heading highlights 21
indent 20
skip 20 '
term highlights 21
denesting 102
glossary 21
indent 20
skip 20
term highlights 21
items
counter 103
identifiers 103
indent 20
skip 20
nesting 102
ordered 21
indent 20
skip 20
simple 49
indent 20
skip 20
unordered 21
indent 20
skip 20
literal mode 50
literals 23, 31
LL@Abstr 58
LL@Appdx 61,79
LL@D 159
LL@device 161
LL@DocNm 46, 52
LL@F 119, 154, 159
LL@File 159
LL@H 152, 159
LL@I 159
LL@Imbdg 168
LL@ImTrc 158
LL@Li 155
LL@Lstll 60
LL@N 159
LL@onpge 152, 153, 155
LL@Page 159, 168, 169
LL@Pass 168
LL@Pref 59
LL@Refs 159
LL@ToC 59
LL@unkn 152, 154

244 DCF: GML Starter Set Implementation Guide

logical device name 161, 167
long quotations 126

font 127

indention 127
lowercase

definition of 234
LP tag 99, 101, 106, 107
LQ tag 126, 127
lgfont font 127

M

macro library iii, 2
creating your own 171
name 20

macro substitution 21

macros 2

used during initialization 30
mapping 47, 87, 98, 99, 101, 107, 108, 125,

129
initial 27
markup content/separator
definition 234
markup/content separator 7
messages 12
invalid tags 163
modifying macros, how to 171

N

NF@&*id 160
NOTE tag 128
notes 128
NP@&*d 160
NX@&*d 160
Nl@&*id 156, 160

O

offset 33, 78
definition of 234
offset layout
See column layout
OL tag 98
one-column layout
See column layout

operating system dependences iii

option

definition of 234
oq symbol 25
oqq symbol 25
ordered lists 98

See also lists
output device

See also logical device, physical device

definition of 234
output device differences
See devices
output line
definition of 234

P

Ptag 58, 59, 81, 82, 87, 88, 89, 90
remapping of 87
PAGE attribute
page dimensions, changing 42
page eject 51, 164
page layout 12
page number 156
page numbers 58, 61, 138, 139, 141, 145,
151, 152, 153, 155, 168
for error messages 165
page printer
definition of 234
page segment
definition of 234
PAGEREF attribute
pages, odd and even
running footing 27
paginate
definition of 234

138, 139, 141, 144

paragraphs 80, 81, 82, 87-93
indent 20
modifications 90
skip 20

PCtag 90

pel

definition of 235
physical device name 167

pica
definition of 235
pitch
definition of 235
PLACE attribute 117, 121
default value 116
points

See also picas, ciceros

definition of 235
PREFACE tag 59
PRINT attribute 140, 141
print keys for index terms 143
PROC attribute 167
processing

documents with GML (diagram) 3
processing section control 30
profile 2

See also &profile

See also DSMPROF3

definition of 235
PSC tag 167, 169

151, 152, 153, 154, 155, 157

Q

Qtag 125
quotation marks 25, 125, 152
quotations 125, 128, 152, 165
long ;
indent 20 "
skip 20
nesting 152

R

rbl symbol 35
REFID attribute
156
required blank 35
residual text 7
automatic processing 9
checking for 9
definition of 235
scanning for 8
revision code
location 76 :
revision codes 32, 33, 34
right indention 127
right-hand page
definition of 235
rule definitions 22
rules 121
running footing 26, 36, 48, 51, 52, 58, 59,
81, 137, 157
definition of 235
running heading - 26, 36, 46, 50, 51, 52, 58,
157
definition of 235

139, 144, 151, 153, 154,

S

saving page numbers 144
SCRIPT command 30
PROFILE option 4
SCRIPT/VS iii
definition of 235
SEC attribute 46, 50, 57, 58

80,

security classification 26, 36, 46, 50, 52, 57,

58

SEE attribute 140, 142, 145
SEEID attribute 140, 142, 145
semi symbol 22
service macros 163
short title 27
short titles 27, 47, 48, 80, 81
simple lists 98

See also lists
SLtag 98
source document

Index

245

definition of 235
spacing

changing defaults 38

for headings 78

for ist 110 .

changing defaults 110

special symbols

ampersand 22

date 48

GML 22

required blank 35

semi-colon 22
spelling checking 34, 51, 115, 117, 119, 120
Starter Set it
STITLE attribute 47, 48, 80, 81
super font 130, 132
superscripts 12, 131

device differences 24

styles 24, 131
symbols

definition of 235

naming conventions 11
SYSPAGE 164
system variables 30
SYSVAR 'C" 31
SYSVAR 'D’ 26, 30, 46, 78, 164
SYSVAR 'H" 26, 30, 60, 61, 78, 79
SYSVAR ‘P 30, 167
SYSVAR ‘R” 30, 152, 161
SYSVAR 'S” 26, 31, 32, 58
SYSVAR ‘T 31, 47, 50, 52
SYSVAR 'W

changing the file name 38
SYSVAR "W’ 2,30, 36, 62, 149, 150, 161
SYSVAR "X” 30, 31, 35, 62, 142, 144, 145,

149, 150, 152, 154, 155, 157

SYSVARs 23

changing the defaults 37

processing of 30

T

tab 169
table of contents
fonts 26
tabs 108
tag 145
definition of 236
tag delimiters 4, 6
tag names 6
tags 1
TERMHI attribute
terminal
definition of 236
text administrator 1
text programmer
definition of 236
text strings 31

58, 59, 60, 61, 62

101, 105, 106

246 DCF: GML Starter Set Implementation Guide

time symbol 31
title
line spacing for 23
title citations 133
title page 31, 45-55, 57, 58
modifications to 53
short title 36
spacing 23
TITLE tag 47, 48
TITLEP tag 47
TOC tag 59
TSIZE attribute 101
TSO macro library 173
two-column layout
See column layout

U

UL tag 98
unordered lists 98
See also lists
upper case
definition of 236
user profiles 30, 36

A%

vertical justification 23, 115, 118

W

WIDTH attribute 117, 122
default value 116
word spacing 115, 118

X

XMP tag 115

xmpfont font 115, 116

3

3800 Printing Subsystem Model 3
default fonts 40
initial font definitions for 24
superscripts 12

3820 Page Printer
default fonts 40
initial font definitions for 24
superscripts 12

125, 127

4

4250 Printer 127
default fonts 40
initial font definitions for 24
superscripts 12

Index 247

Document Composition Facility: READER'S
GML Starter Set Implementation Guide COMMENT
Order No. SH35-0050-2 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author’s department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

You may use this form to communicate your comments about this publication, its organization, or
subject matter with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or the IBM branch office serving your locality.

Yes No

« Does the publication meet your needs? O O
« Did you find the information:

Accurate? | O

Easy to read and understand? O O

Easy to retrieve? O O

Organized for convenient use? O a

Legible? O O

Complete? O O

Well illustrated? O O

Written for your technical level? 4 O
+ How do you use this publication:

As an introduction to the subject? O

For advanced knowledge of the subject? [J

To learn about operating procedures? O

As an instructor in class? O

As a student in class? O

As a reference manual? O

« What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH35-0050-2

Reader's Comment Form

Fold and tape Please Do Not Staple Folid and tape
Attention: Information Development NO POSTAGE
Department 580 NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

]
POSTAGE WILL BE PAID BY ADDRESSEE I
International Business Machines Corporation EEE——
Information Products Division S
P. 0. Box 1900 E———
Boulder, Colorado 80301 ——
]
SR
Fold and tape Please Do Not Staple Fold and tape

¢-0S00-SEHS 'V'S'N ul pauld apino uoijeluswaidwii 185 Jauels JND Aujioeq uonisodwo) uswnoog

Document Composition Facility: READER’'S
GML Starter Set Implementation Guide COMMENT
Order No. SH35-0050-2 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author’s department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

You may use this form to communicate your comments about this publication, its organization, or
subject matter with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or the IBM branch office serving your locality.

Yes No

O
O

+ Does the publication meet your needs?
« Did you find the information:

Accurate?

Easy to read and understand?
Easy to retrieve?

Organized for convenient use?
Legible?

Complete?

Well illustrated?

Written for your technical level?

oooooooao
OoooooOooo

« How do you use this publication:

As an introduction to the subject?

For advanced knowledge of the subject?
To learn about operating procedures?
As an instructor in class?

As a student in class?

As a reference manual?

OgOoooo

« What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH35-0050-2

Reader's Comment Form

EEE T oA

Fold and tape Please Do Not Staple Fold and tape
Attention: Information Development NO POSTAGE
Department 580 NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Products Division

P. O. Box 1900

Boulder, Colorado 80301

Z-0G00-GEHS "V'S'N Ul pajuld 9ping uonejusawsa|dwy 185 Jeuels TND Aujioed uomsodwo? uswnoog

Fold and tape Please Do Not Staple Fold and tape

Document Composition Facility: READER'S
GML Starter Set Implementation Guide COMMENT
Order No. SH35-0050-2 FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author’s department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

You may use this form to communicate your comments about this publication, its organization, or
subject matter with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM sysiem,
to your IBM representative or the IBM branch office serving your locality.

Yes No

« Does the publication meet your needs? 0O a
« Did you find the information:

Accurate? a O

Easy to read and understand? O |

Easy to retrieve? O O

Organized for convenient use? O O

Legible? O a

Complete? O O

Well illustrated? O O

Written for your technical level? O |
« How do you use this publication:

As an introduction to the subject? O

For advanced knowledge of the subject? [J

To learn about operating procedures? O

As an instructor in class? a

As a student in class? O

As a reference manual? O

» What is your occupation?

Comments:

If you would like a reply, please give your name and address. -

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH35-0050-2

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape
Attention: Information Development NO POSTAGE
Department 580 NECESSARY IF
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Products Division

P. O. Box 1900

Boulder, Colorado 80301

Z-0S00-GEHS 'V'S'N Ul pauld 8ping uonejuswaldw| 18 Jauels N9 Aupioeq uonisodwor) uawndog

Fold and tape Please Do Not Staple Fold and tape

Document Composition Facility File Number S370-20
Generalized Markup Language Printed in U.S.A.
Implementation Guide

SH35-0050-2

SH35-0050-2

oM

TN

