
II •

"

. - -

--------- ... ------- - ---- - - ----------_.- Document Composition Facility
Generalized Markup Language
Implementation Guide

SH35-0050-2

Program Number 5748-XX9

Program
Product

Release 3

This publication was produced using the IBM Document
Composition Facility (program number 5748-XX9).

Third Edition (l\larch 1985)

This is a major revision of SH35-0050-1, which is now obsolete. Significant changes are summa­
rized under "Summary of Atnendments" following the "List of Illustrations".

This edition applies to Release 3 of the Document Composition Facility program product, Pro­
gram Number 5748-XX9, and to any subsequent releases until otherwise indicated in new editions
or technical newsletters.

Changes are periodically made to the information herein; before using this publication in con­
nection with the operation of IBI\'I systems, consult the latest lEAf System/370 and 4300 Process­
ors Bibliography , GC20-000 1, for editions that are applicable and CUtTent.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not available in your country. Such
references or information must not be construed to mean that IBlV! intends to announce such
products in your country.

Publications are not stocked at the address given below; requests for IBM publications should be
made to your IBM representative or to the 1131\'1 branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Products Division, Box
1900, Departlnent 580, Boulder, Colorado, U.S.A. 8030l. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring any obligation what­
ever. You tnay, of course, continue to use the information you supply.

(c) Copyright International Business lVlachines Corporation 1984, 1985

ii DCF: Gl\lL Starter Set Implementation Guide

Preface
The Generalized l'vlarkup Language (GML) is a language for document description. It can be
used to describe the structure and text elements (parts) of a document without regard to the proc­
essing that may be required to format them. The G~1L starter set is an implernentation of GlYIL
written in the SCRIPT /VS formatting language. It is distributed with the Document Composi­
tion Facility program product (Program Number 5748-XX9) and is provided as an example of a
GML application for a general document.

The GML starter set consists of the following components:

• GML tags which describe a general document

• A macro li braryl

• A proftle (DS~1PROF3).2

Purpose of the BOO/i

The purpose of this book is to assist text programrners who are responsible for maintaining, alter­
ing, or extending the GML starter set3• This book provides specific, detailed information about
how the starter set tags work. It should also be of substantial use to those who need to write
their own Gl\tlL tags and Application Processing Functions (APFs) independent of the starier set.
(It is not intended for end users of either the GML starter set or SCRIPT/VS control words.)

Modifying the APFs requires an understanding of the way the starter set works, how and \vhy it
was written the way it is, arld the syrnbols and conventions used in writing the APFs.

Developing a Gl'v1L application involves several basic steps. These include:

• Defining the type of document to which the GML applies

• Identifying the structure and text elements of the document

• Defming tag names for the text elements and structure of the document

• Defming any attributes required to fully describe the elelnents

• Identifying the formatting that should be performed for each document element

1 The name of the library is different for each operating environment. In CMS the library is named
DSMGML3 MACLIB. In TSO the library is a partitioned data-set named SCRIPT.R30.l'vlACLIB. In
ATMS the macros reside in the GML SYSOP's permanent storage and in DLF the macros reside in
public library 1314151.

2 In CMS the profile is in a file named DSIVIPROF3 SCRIPT. In the other operating environments the
profile is also named DSMPROF3 and is part of the macro library.

3 The GML starter set is a fully supported part of the Document Composition Facility program product
provided that neither the profile nor the macro library have been modified in any way. \Vhat this
means is that you should be careful to not alter the base version of these files but rather should make
your own copies or user libraries.

Preface iii

• Writing APFs and macros that will provide the desired formatting

• \Vriting a profile that establishes the formatting environment, associates the tags with the ap-
propriate APFs, and enables the GML services in SCRIPTjVS.

This book describes how we did the last two steps in the process described above for the starter
set. The other steps are discussed in the Document Composition Facility: SCRIPTjVS Text Pro­
grammer's Guide and the Document Composition Facility: SCRIPTjVS Language Reference.

Prerequisites

This book assumes that the reader is familiar with the GML starter set distributed with the Docu­
ment Composition Facility (DCF) and the use of SCRIPTjVS control words. Knowledge of the
internal functions of the starter set or SCRIPT jVS is not required.

Particular areas of SCRIPT jVS that the reader should be familiar with are:

• Conditional processing

• U sing symbols

• Writing SCRIPTjVS macros

• GML support in SCRIPT/VS.

Each of these topics is the subject of a chapter in the Document Composition Facility:
SCRfPT/VS Text Programmer's Guide. If you are not fatniliar with these subjects, you might
fmd it useful to review them before proceeding.

You should also consider reviewing the following topics:

• The control word modifier (')

• \Vord continuation.

HOH' to Use this Boolf-

l'viost APFs are discussed on a line-by-line basis. "Appendix C. Starter Set Macro Library
Listing" on page 181 contains a conlplete listing of the Gl\IL macro libraty and the DSl\1PROF3
profile for reference as you read.

The starter set uses many SCRIPT /VS control words. Because we do not explain all of them in
detail in this book, it's a good idea to have a copy of the Document Composition Facility:
SCRf PTj VS Language Reference available as a reference.

At the end of nlost chapters in this book, there are some suggested modifications that can be
made to the APFs discussed in the chapter. \Ve recommend that you try some of these changes
when you fmish the chapter. This will help to datuy the way the APFs work together and will
give you experience in working with the starter set. .

Once the general concepts and approach are clear, this book can probably be best used as a refer­
ence lnanual. 'Vhen you want to modify a particular aspect of the starter set, just review the
chapter that pertains to it and check the index for the symbols you are interested in to see where
else they are used. You will want to be sure that if you change a symbol, that the change is
appropriate for all the uses of the symbol throughout the library.

iv DCF: GML Starter Set Implementation Guide

Orgallizatioll of this Book

The fust two chapters of the book provide an introduction to GML, GML processing in
SCRIPT/VS, special techniques used in the starter set and general information about how the
starter set was written.

The remainder of the book is divided into eleven major chapters, each one focusing on a specific
function provided by the starter set. The functional areas covered are:

• Starter Set Initialization

• Title page

• Document sections

• Headings

• Paragraphs

• Lists

• Examples and figures

• Quotes, notes, footnotes, and highlights

• Indexing

• Cross referencing

• Miscellaneous.

Behind each GML tag in the starter set is one or more macros and Application Processing Func­
tions (APFs). Each macro used is described in line-by-line detail in this book. Each chapter:

• Explains why each macro (APP) is constructed the way it is

• Explains how the macros relate to each other in the macro library

• Contains suggestions and examples of ways to modify the starter set and guides you through
illustrations for:

• Tailoring the starter set to an installation's publications standards,

• Enhancing specific APFs to provide specialized formatting functions, and

• Designing new GML applications.

"Appendix A. Modifying the l\facros" on page 171 reviews the steps necessary to update the
starter set macros in each of the environments that the Document Composition Facility works:
Cl\1S, TSO, ATMS-III, and DLF.

"Appendix B. Migration from Release 2 to Release 3" on page 177 discusses some of the steps
that were necessary to update the starter set to support page printers. It is designed as a guide to
users who are converting their own Gl'vlL application to use Release 3 of DCF and to fannat for
page printers.

"Appendix C. Starter Set Macro Library Listing" on page 181 contains a listing of all the Inacros
in the GlVIL starter set macro library.

The index at the back provides references for each global symbol used in the starter set, as well as
subject, Inacro, and tag entries. For all the APF entries, the flfst one listed is the page on which
the APF is described in detail. The other page numbers are secondary references.

Preface v

Related PllhlicatiollS
These are the publications you will want to have available to you that describe the SCRIPT /VS
control words:

• Document Composition Facility: SCRIPT/VS Text Programmer's Guide, SH35-0069

• Document Composition Facility: SCRIPT/ VS Language Reference, SH35-0070

If you are using the Document Library Facility (DLF), you will also need to have the followini
book available:

• Document Library Facility Guide, SH20-9165.

The end-user portion (the tags) of the starter set is described in these publications:

• Document Composition Facility: GA4L Starter Set User's Guide, SH20-9186

• Document Composition Facility: GML Starter Set Reference Alanual, SH20-9187.

vi DCF: Gi\'IL Starter Set Implementation Guide

Table of Contents
Introduction .. t
Basic Concepts .. 1

Document rfypes ... 1
Tags .. 1
Attributes .. 2
Profile .. 2
Epifile ... 2
APFs ... 2
Control Words .. 3

How Does Gl'vlL \Vork? ... 3
Profile Processing ..:....... 4
Scanning for Tags and Attributes ... 5
Identifying Attributes .. 6
Identifying the Residual Text .. 7
Finding APFs ... 8
APF Processing .. 8
Symbol Substitution and Residual Text Processing 10
SYInbol Substitution and Tags .. 10

About the Starter Set .. 10
APF Naming Conventions ... 10
Symbol Naming Conventions .. 11
The DSM@MAC@ Symbol ... 11
General Service Macros ... 11

Special Techniques .. 13
Validating KeYW'ords ... 13

Check the Attribute Value ... 14
See if we Recognized the Value ... 14
Reset SYSVAR to a Known Value .. 14

Self-Modifying Macros ... 15
Reclaiming Space ... 15
Replacing a Line of a Macro ... 16
Removing a Line of a l'vlacro ... 16

Setting Caller's Local Symbol .. 17
Saving and Restoring Environments .. 17
Setting Symbols .. 18
Enforcing Structure .. 18

Starter Set Inithtlization .. 19
Overview ... 19
The DSMPROF3 ProfIle ... 20
Initialization Macros ... 30

DSl'vl@MAC@ .. 30
DSM#SETV ... 30
DSM#SETS ... 31
DSM#STYL ... 32
DSM#SET .. 34

Modifying Starter Set Initialization ... 36
Creating Your Own Profile and Epifile 36

Table of Contents vii

Changing the Fonnat of the Date .. 37
Changing Default SYSVAR Values .. 37
Setting a Prefix for Level One Headings 37
Changing the SYSVAR 'w' File Name 38
Changing Spacing and Indention Settings ~ .. 38
Changing the Rules Used for Figures 38
Changing Fonts for Figures ,.................................. 39
Changing Font Definitions ... 40
Creating a New Highlight Level ... 40
Modifying the Running Heading or Footing 41
Changing the Page Dimensions ... 42
Creating Three C01UIIlll Format ... 42
Other I\10difications to the Profile ... 43

l'itlc Page .. 45
Ov~rview ... 45
Initialization '.. 46

DSIVIPI{OF3 .. 46
DSI'vl#SETS ... 46
DSl\1#SE'fV ... 46

Title Page Tag Processing ... 47
DSl'vl'rTLEI) .. 47
DSlVf1'I'[LE ... 47
DSl\1@STTL .. 48
DSl'v1D.t'\ TE ... 48
DSlVfAU'I'I-IR .. 48
DSl'vlADDR ... 48
DSl'vf/\LINE ... 50
DSl'vIEADDR .. 50
DSMDCNUM ... 50
DSM@SEC ... 50
DSl'vlETTLP .. 50

Producing the Title Page .. 51
l)SM#TIPG ... 51

l'v10difications to the Title Page ... 52
Changing Default Title Page Formatting 52
Changing Spacing ... 53
,t'\dding a Box .. 53
Adding Existing Infonnation ... 53
Adding New Infonnation .. 54
PrintUlg Two Dates .. 55

DocurTIcnt Sections .. 57
Overview ... 57
Document Section l'vlacros .. 57

DSl\1GDOC ... 57
DSl\I@SEC ... 58
DSl\lFRONT .. 58
DSl'vli\BS1'R .. 58
DSl'vlPI{EF ... 59
DSl\1'rOC .. 59
DSl'vlFLIST ... 59
DSl'vlBODY ... 60
DSl'vl1\PPD ... 61
DSl\1BACKM ... 62
DSMEGDOC ... '........... 62

Modifications to Document Sections ... 62
Adding a Section .. 62
Changing the Section Label .. 64
Changing the Layout ... 64
Changing the Appendix Headings .. 65

viii DCF: Gl\'IL Starter Set Implementation Guide

Changing the Table of Contents Format 66
Creating a Table of Contents For Each Chapter 68

Preparation .. 68
Saving the Table of Contents Information 68
Producing the Partial Table of Contents 69
The New Macros .. 71
Using SYSV AR I\V1

•• 72

Headings ... 75
Overvic\v ... 75

Head Level Deftnition .. 75
Preftxing Level One Headings .. 75
Head Level Numbering ... 76
Revision Codes for Headings ... 76

Heading rv1acros .. 77
DSlYII)RO }:;'3 "'"... 77
DSM#S1~YL ,'... 78
DSM.l\I)PD ... 79
DSlVIBi\.CKM ... 79
DSMI301)Y ... 79
DSMFIZONT .. 79
OS1\1111:'AOO ,'.. 80
OS M I-lEAD 1 .. 80
DSM@SI~ID 81
DS?vlI1EAD2 .. 81
DSMI~IEAD3 .. 81
DSlYII-IEAD4 ,............................... 82
DSMI~IEf\05 .. 82
OSIvl11EAD6 .. 82

Modifications to Headings ... 82
Capturing Heading Nunlbers ... 83
Changing Heading Fonts .. 84
Folio by Chapter .. 84
Putting Level 2 Headings in the RUIlning Footing 84
Fonnatting Special Characters in Headings 85

Paragraphs .. 87
Overview ... 87
Paragraph Initialization ... 87

OSlVl1)ROF3 .. 87
DSl\1ABSTR and DSl\1PREF .. 87
DSl'vlHEADO and DSlYIHEAD 1 .. 87
DSrvUIEAD2, DSMHEA03 and OSrvUIEAD4 88
DSl'vlHEAD5 and DSlVIHEAD6 .. 88

Paragraph Processing .. 89
DSl\t1P ARA ... 89
DSlYIPARA1 and DSMPARA2 ... 89
DSl'vlI) AIZA5 .. 89
DSlYIPCON1' .. 90

l'vlodiftcations to Paragraphs ... 90
Changing Indention and Spacing .. 90
Using Large Initial Capitals .. 90
Creating Numbered Paragraphs ... 94

Lists ... 97
List Processing ... 97
List Initialization ... 98

DSlYIPIZOF3 .. 98
DSlYl#SET .. 98

Getting the List Started ... 98
DSMLIS'rM ... 99

Table of Contents ix

DSM#LTYP ... 101
DSM#LINT .. 102

Processing Items on the List .. 103
,DSMLITEM ... 103
DSMDrrI-ID .. 104
DSlYIDDI-ID .. 104
DSrvlDl'EI{M .. 104
DSlYfDDEF ~ .. 105
DSMGTERlVl .. 106
DSMGDEF .. 106
DSlYfLI:lART ... 106

Ending Lists .. 107
DSMELIST .. 107
DSM#RSET .. 108

Modifications to List Processing ... 108
Changing the List Item Identifiers .. 108
Changing Spacing and Indention Settings 110
Changing the Highlight Defaults for Lists 110
Using Decimal Notation for Ordered Lists 110

Defming An Array for Item Numbers III
Incrementing and Printing the Item Numbers 112
Adjusting the Indention for List Items 113

Exanlpies ~lnd Figures ... 115
Example Processing .. 115

DSMXMP ... 115
DSrvfEXMP .. 116
DSrviPROF3 ... 116
DSlYf#RSET .. 116

Figure Processing .. 116
DSMPROF3 ... 116
DSlYl#SET ... 116
DSMFIG .. 117
DSl\1FCAP .. 119
DSI\;IFDESC ... 120
DSlYfEFIG ... 120
DSIVI@FRlYIE .. 121
DSl\1@PLCE ... 1:21
DS IV!@ \VIDT ... 122
#FIGLIST ... ' -................................ 122
DSlYfFLIST .. 122
DSlVI#RSET .. 122

Modifications to Figures and Examples 122
Changing Figure Defaults .. 122
lVfoving the Figure Caption Outside the Frame 123
Changing the Example Defaults .. 124

Quotes, Notes, Footnotes and Highlights 125
Quote Processing .. 125

DSlVIPROl::;'3 ... 125
DSlYf#SE'r ... 125
DSMQUOTE ... 125
DSMEQUO'r ..•.............. 126
DSlYfLQUOT ... 126
DSl\'fELQU .. 127
DSNf#RSET .. 128

Notes ... 128
DSMNOTE ,..................... 128

Footnote Macros .. 129
DSlVIPROF3 ... 129
DSM#RSET \.. 129

x DCF: GIVIL Starter Set Implementation Guide

DSM#S'rYL .. 129
DSMFTNT .. 129
DSl'vl#SUPR ... 131
DSMEFTNT ... 132

l-liglliigllts .. 133
DSl'vlCIT .. 133
DSlVIECIT ... 133
DSMI-IPO .. 133
DSMIIPI .. 133
DSMHP2 .. 133
DSMI-IP3 .. 133
DSMEI-IP .. 133

Modifications to Quotes, Notes, Footnotes and Highlights 134
Changing the Footnote Leader ... 134
Printing Footnotes at the End of a Chapter 134
Using a Hanging Indent for Notes .. 135

Indexing ... 137
Index Tag Macros 137

DSl'vlINDEX ... 137
DSl'vlINDX 1 .. 138
DSMINDX2 .. 138
DSMINDX3 .. 139
DSMII-ID1 ... 139
DSMII-ID2 ... 140
DSMII-ID3 ... 141
DSMIREF .. 141
DSl'vlIOMMY .. 142
DSlYIIEI-I .. 142

Index Attribute and Support Macros .. 143
DSM@IDS .. 143
OSJ\tl@IPRT ... 143
DSM@PGRF .. 144
DSM@RIOI ... 144
OSM@SEE .. 145
DSIvl@SEEI .. 145

Modifications to Index Tags .. 146

Cross-References ... 147
Overview .. 147
Initialization for Cross Referencing ... 149
Processing 10 Attributes ... 150

DSM@IDS .. 150
Processing Cross Reference Tags ... 151

DSMI-IDREF ... 151
DSl'vlFGREF•... 153
DSlVILIREF .. 154
DSl'vlFNREF ... 156
DSl'vl@I{FID ... 156
DSlVl#YESN ... 157

Cross Reference Listing Macros .. 157
DSM#XLST ... 157
DSM#SErrX .. 158
DSM#XRFF ... 159
DSM#XRFH ... 159
DSl'vl#XRFN ... 159
DSl'vl#XRFO ... 160
DSl'vl#XRFI .. 160

Producing the SYSV AR '\V' Id File .. 161
DSl'vl#\VRIT ... 161
DSlvl#\VRTII ... 162

Table of Contents xi

DSM#\\TRTF ... 162
DSlYl#\VR'fN ... 162
DSlYl#\VRTD :................................... 162

Modifications to Cross References .. 162
Default to Not Print the Cross Reference. 162

l\1isccllancous ... 163
General Service Macros .. 163

DSlYl#CNTX ... 163
DSM#DUPL ... 164
DSM#MSG .. 165
DSM#RSET .. 165
DSMPSC .. 167
DS;\tl@PROC .. 167
DSl'vlIM ... 167
DSMEPSC ... 169

Modifications to General Service lYlacros. 169
Adding New Messages ... 169
Elilninating the Iz:nbed Trace \ .. 170

Appendix A. l\fodifying the ~Iacros ... 171
fvlodifying the DSMGML3 MACLIB (Cl'vlS) 171

Extracting a fvlember from a MaClib 171
Editing the lVlacro .. 172
Creating Your Own Maclib ... 172
Using Your Own Mac1ib ... 173
Replacing the Macro in the Maclib 173
Creating a New Macro .. 173
COIllpressing the Mac1ib ... 173

Modifying SCRIPT.R30.lYIACLIB (TSO) 173
U sing Your Own lVlaclib ... 174
Creating a New Macro .. 174

tv10difying DSMGl'vlL3 Macros (DLF) 174
lVlodifying DSMGML3 Macros (ATMS) 175

Appendix B. IVligration from Release 2 to Release 3 177
Font Support for Page Printers .. 177
Using Device Units ... 178
Using System Symbols .. 178

Appendix C. Starter Sct Macro Library Listing 181

Glossary ... 231

Index ...•............. 237

xii DCF: Gl\lL Starter Set Implementation Guide

List of Illustrations
Figure 1. Processing Documents with GML 3
Figure 2. SCRIPT/VS GML Processing, 5
Figure 3. Validating Keywords .. 14
Figure 4. Starter Set Initialization lVlacros 20
Figure 5. Indention and Skip Initialization 21
Figure 6. Heading, Highlight and Table of Contents Font Definitions 25
Figure 7. Initial Mapping for Gl\1L Tags 27
Figure 8. Index Tag Mapping ... 29
Figure 9. Sample Title Page .. 45
Figure 10. The Format of the Address Arrays 49
Figure 11. Producing the Title Page ... 51
Figure 12. Sample Output .. 67
Figure 13. Heading Definitions ... 77
Figure 14. Spacing Symbol Defmitions for Headings 78
Figure 15. How Paragraph Tags are Mapped 88
Figure 16. Formatting Large Initial Capitals for Paragraphs 91
Figure 17. Primary List Macros .. 97
Figure 18. List Symbols .. 99
Figure 19. List Indention .. 100
Figure 20. Decimal Ordered List Example 110
Figure 21. Processing ID Attributes .. 148
Figure 22. lVlacros and Symbol Arrays Used to Produce the Cross Reference Listing 149

List of Illustrations xiii

Summary of AmeIldments

Third Edition
This revision includes minor technical and editorial changes, and changes made to the GML
starter set to support the IBM 3820 Page Printer.

Second Edition
This revision includes minor technical and editorial changes, and changes made to the G ~1L
starter set to support the 3800 Printing Subsystem Model 3.

A list of the technical changes follows in order by chapter.

Preface

In the section entitled "Related Publications" on page vi a reference to the Document Library
Facility Guide has been added.

Starter Set Initialization

In the section entitled "The DSl\t1PROF3 Profile" on page 20 the Inapping of APFs for the index
tags is more fully explained.

In the section entitled "DSM#STYL" on page 32 the processing for offset layout has been
changed.

Headings

A new section called "Formatting Special Characters in Headings" on page 85 has been added to
explain how to get special characters and font changes into headings.

Paragraphs

In the section called "DSMPARA5" on page 89 the processing done by the DSl'v1PARA5 111aCrO
has been expanded.

Quotes, Notes, Footnotes and Highlights

A new section called "Printing Footnotes at the End of a Chapter" on page 134 has been added
to explain a technique to place footnotes at the end of the chapter.

Summary of Amendments xv

Introduction

Basic Concepts
Before looking at the details of the starter set, let's review some basic concepts of Generaliied
Markup Language (GML) and then look at how it all works together when SCRIPT/VS proc­
esses GML Inarkup.

DOCUIllent Types

There are many different kinds of documents, such as:

• Men10S

• Letters

• Insurance policies

• Novels

• Instruction manuals

• Recipe books

• General documents.

Each kind of document has its own types of text elements and its own document structure. Doc­
ument structure refers to how the docUInent is put together into sections such as front matter,
body, back matter and so on. Some documents may not have a front matter section or back
matter section. Some may have only body matter.

It is the job of a text administrator to identify the document type and the text clements that go
with it. Once these have been defined, tags must be assigned to identify each element. The last
step is to write Application Processing l:;'unctions (APFs) to interpret the tags and perform the
formatting desired for the text elen1ent.

General Document: The GML starter set includes a set of tags that describe a general document.
These tags are not desif,'11ed to meet all text processing needs or to describe all possible text ele­
ments. Additional tags will be necessary to produce different kinds of documents.

Because most documcnts contain basic text elements such as paragraphs, lists, and figures, the
starter set application can be used as a base upon which you can build your own GlVIL applica­
tion.

Tags

A tag is a name for a particular text element or structure found in a document. Each different
type of document elclnent should have a unique tag to identify it. For example, a paragraph is a
text element and should have a tag to identify it. An item in a list lnay also be a paragraph, but it

Introduction

is primarily a list item. There may even be several paragraphs within a list item. The tag identify­
ing list items should be different from the tag identifying paraf,'faphs.

The formatting to be perfonned for a specific text element is independent of the tag name. A
paragraph is a paragraph regardless of what part of the document it is in or whether it is indented,
hanging, or capitalized. The tag (:P in the starter set) sirnply identifies the text that follows as a
paragraph.

Attributes

Some text elements have changeable characteristics. In this case, rather than define two tags, at­
tributes can be used to further describe the text elements. Tags identify the text element and
attributes identify particular qualities or characteristics of the element. For example, a figure that
is set off from the text by a horizontal rule is essentially the same element as a figure with a box
around it. Therefore, there is only one tag for figures, :FIG, and the attribute, FRAlVIE, identifies
the type of frame. It is important to understand that the attribute is not describing the formatting
of the frame, it is identifying the type of frame to be used for the figure.

Profile

A proflle is a file that contains general information about what processing is to be perfonned on
the source (text) document. The profIle, which is specified on the SCRIPT command, is proc­
essed before the source fIle. Its primary purpose is to establish the formatting and processing
enviromnents. The profIle (along with macros it calls) defInes the page layout for the document
and the style of formatting for such things as headings and lists. It also establishes the GML rules
for scanning for tags and defines the tags and APFs for the application.

DSl'vlPROF3 is the proflle for the Document Composition Facility Release 3 starter set. We'll
look at the proftle in lnore detail later.

Epifile

An epifile is processed after the source document has been processed. It is physically part of the
same ftle as the profile. The profile portion ends with a .EF [End of File] control word. What
follows the .EF lEnd of File] is, by definition, the epiflle. The epiflle can be used to provide any
processing necessary after the formatting of the document, or perhaps more significantly, between
the first and second formatting passes.

In the case of the starter set, the epifile produces the cross-reference listing of IDs, the imbed
trace, and the SYSVAR \V' file of IDs if these have not ah'eady been produced by a :EGDOC
tag.

APFs

Application Processing Functions (APFs) provide the formatting and processing instructions that
are to be performed for a specific tag. The APF behind a tag ,can be a control word, a symbol or
a macro. In the starter set, the APFs are macros which reside

• In the DSMGML3 macro library in the CMS environment,

• In the permanent storage of the G ML SYSO P operator in A TIvlS-III,

• In a partitioned data-set in TSO, and

• In a public library in D LF.

In the proftle, a tag is associated with an APF using the .AA [Associate APF] control word.
When a tag is encountered, SCRIPT /VS invokes the APF associated with it. If no APF has been

2 DCF: GML Starter Set Implementation Guide

Source
Document

•
•
•

: hl. Heading
•

:p.Paragraph ---
•

: s 1. Simple list
•
•
•

Profile

tag macro

Host
System

Library

. r- -> DSMHEAD 1 APF
-> Hl --> DSMHEADl - ~

H2 DSMHEAD2

-> S1 --> DSHSLIST - ---,
... L-- -> DSHSLIST APF

-> ~.-. -> DSMPARA -lr---------"
-> DSMPARA APF

Figure 1. Processing Documents ,,,ith GML: The profile provides the mapping between tags, which
identify elements of text in the source document, and APFs, which provide formatting
functions.

associated with the tag, SCRIPT jVS searches for a macro or control word with the same name4

as the tag, and if found, uses it. If neither a macro nor control word is found, an error message is
issued.

APFs can contain SCRIPTjVS control words, symbols text, and macro calls. The text that be­
longs to the tag is available to the APF for processing by using the .GS [GlYIL Services] SCAN
control word. The Inacros to process the attributes can be invoked using the .GS [Gl"vlL Services}
EXA TT control word.

Control Words

Control words are specific instructions to SCRIPT JVS. They do not identify text elements, but
rather instruct SCRIPT /VS how the page is to be sct up and how the text that follows is to be
formatted.

SCRIPTjVS control words are always two characters long (such as "SP" or "BX"). They are
always preceded by a period and need to start in column one of the input line.s

HOJV Does GML Wor/(?

Within SCRIPTjVS there are numerous mechanisms that make it possible to create and process
GML. The Illore you understand about how SCRIPTjVS processes GML tags, symbols and
macros, the better able you will be to understand and modify the starter set and write your own
GML tags.

4 Macro names are not case sensitive. In other \vords, DSMFIG is the same as dsmfig.

5 It is possible to create "logical" input lines by using the control word separator. See Document Compo­
sition Facility: SeRf PTj VS Text Programmer's Guide for more details on control words.

Introduction ';:

Profile Processing

SCRIPT/VS allows a profile to be specified on the SCRIPT command with the PROFILE op­
tion.

SCRIPT GMLSSDOC (PROF(DSMPROF3)

By specifying a file that will be processed before our source document, we can get everything set
up the way we want it. This includes deftning tags and telling SCRIPT /VS how to ftnd the proc­
essing instructions for the tags.

The most important actions that the profile perfonns are:

• Defmes the delimiters for tags (:) and end tags (:e)

· de gm1 : : e

• Defmes the tags and their associated APFs, for example

· aa hI DSMHEAD1

defines a tag named "hI" and associates it with an APF named DSMHEADI. Attribute
rules, which are discussed below, may also be given on the .AA [Associate APF) control
word.

• Turns on scanning for tags.

· gs tag on

• Deftnes the attribute rules for each tag .

. gs rules (att novat stop nomsg) (noatt)

where

att specifies that labelled attributes are allowed

novat specifies that no value attributes are allowed

stop specifies that when an invalid attribute is found during the scan, the scan is stopped
at that point

nomsg prevents a message from being issued when an invalid attribute is found

noatt specifies that no attributes are allowed on the end tag.

The list within the flfst set of parentheses on the .GS [GML Services] RULES control word
sets the rules for the start tags and the list within the second set of parentheses sets the rules
for the end tags. There are rarely attributes on an end-tag.

The definitions of the tags on the .AA [Associate APF) control word tnay override the gen­
eral attribute rules specified with the .GS [GML Services) control word. If a patticular attri­
bute rule has been deftned in the proftle using the .GS [Gl'vlL Services] RULES control word
and a contradictory rule is also defined with an .AA [Associate APF] control word, the .AA
[Associate APF] control word specification is used. For exatnple, in the starter set the :OL
tag is defmed as

.aa 01 dsm1istm (vat) dsme1ist

Since the general rules allow attributes (ATT) , the :OL tag defmition does not need to.
However, the general rules also specified that value attributes are not allo\ved (NOV AT) so

4 DCF: Gi\lL Starter Set Implementation Guide

the :0 L tag has to do something to allow value attributes (VAT) in order to be able to proc­
ess the COMPACT and BREAK attributes on this tag.

The general rules for end-tags specify that there are no attributes on end-tags. There are no
end-tags in the starter set which have attributes so this rule is never over-ridden on the tag
definitions. See the portion of the DSMPROP3 profIle which specifies the .AA [Associate
APF] control word defmitions for the tags.

We'll look at what else DSl\1PROF3 does in "Starter Set Initialization" on page 19.

Scanning for Tags and Attributes

Let's take a look at how tags and attributes are processed by SCRIPT/VS.

Profile

r------------> . aa Hl DSMHEADl

Source Document

v

:hl stitle=' Introduction'
id =' intr' . I---

Introduction ... Starter Set

DSMHEAD 1 APF

•
-> •

•

Residual Text

> Introduction ...
Starter Set

Regular Attributes

~----> STITLE =
'Introduction'

~----------> ID = 'intr'

ATTRIBUTE
MACROS

> I DSM@SHD APF

-> . gs exatt stitle as dsm@shd
•

I -> . gs exatt id as dsm@ids > DSM@IDS APF
•
•

I

I

Figure 2. SCRIPT /VS GML Processing.: This figure shows the automatic processing that occurs
when SCRIPTjVS encounters a :1-11 tag.

Introduction 5

As SCRIPT/VS reads each line of the input file, it looks for Gl'v1L tags. It knows how to fmd
them because the profile defmed the tag delimiters with

. dc grnl : : e

SCRIPT /VS can tell from the delimiter whether a tag is a start tag or an end tag. This is impor­
tant because they are usually processed differently. Notice that using ":e" as the end-tag delimiter
implies that there can be no tag names that start with "e." If you did start a tag name with an
"e," SCRIPT /VS would assume it was an end-tag and would always associate the tag with the
APF specified as the end-tag APF.

SCRIPT /VS also knows where the tag name ends and the attributes or text begin because the tag
name is followed by either a blank or a period.

:hl stitle=' Introduction'
id=' intr'.
Introduction to the GML Starter Set
: 01 compact
: Ii. Item one.

In the example above, the flrst tag SCRIPT /VS fmds is the :H 1 tag. This tag, its attributes .and
its text will be completely processed before the line with the :0 L tag is processed.

Once a tag has been found, SCRIPT /VS performs the following processing:

1. Finds the attributes for the current tag

2. Identifies the residual text associated with the tag

3. Figures out which APF to invoke to process the tag

4. Processes the instructions in the APF

5. Processes the residual text if the APF did not process it.

Identifying Attributes

Vv'hen SCRIPT/VS fmds a tag, it automatically checks the attribute rules for the tag to see if any
attributes are allowed. The:O L tag was defmed as follows:

.aa 01 dsmlistrn (vat) dsmelist

In this case, value attributes (vat) are allowed. In the case of the :Hl tag, there are no attribute
rules on the .AA [Associate APF] control word, so SCRIPT/VS uses the general rules established
with the .GS [GML Services] RULES control word.

If the tag being processed is not allowed to have any attributes, SCRIPT/VS does not scan the
rest of the line for attributes. It assumes everything following the tag is residual text.

If attributes are allowed, SCRIPT/VS .scans the markup to find the attributes.

There are two different kinds of attributes that can be used-value attributes and labelled attri­
butes. Value attributes are single words which are either specified or not specified. For example,
COl'vIPACT and BREAK on the :DL tag are value attributes. These attributes are passed di­
rectly into the APF for the tag in the & '" symbol array.

Labelled attributes are specified using an attribute name, an equals sign and the value of the attri­
bute. For eXaJnple, PAGE = yes is a labelled attribute. Labelled attributes aJ'e processed by the
APF for the tag using the .GS [Gl\tlL Services] EXATT control word. During the scanning proc-

6 DCF: G]\1L Starter Set 'Implementation Guide

ess each labelled attribute (the kind \vith the equals sign) is saved along with its value in a special
attribute list.

SCRIPT /VS scans the line with the tag on it looking for attributes and residual text and contin­
ues to scan subsequent lines until it fmds either a markup/content separator (.), another tag or
text if value attributes are not allowed.6 As soon as one of these is found, SCRIPT/VS stops
looking for attributes.

In our example above, the line with the :H I tag on it is scarmed. The STITLE attribute and its
value, "Introduction," will be saved in a special attribute list. Because there is no markup/content
separator on this line, SCRIPT/VS will scan the next line also. The ID attribute and its value are
also saved in the list. The period following the ID value is the markup/content separator and
automatically ends the scan for attributes.

The :OL tag has a value attribute (COMPACT) on it. 'Vhen SCRIPT/VS gets to this tag, the
COMPACT attribute will be saved during the scan. Notice that there is no markup/content sep­
arator here. A separator is not necessary because there is no text associated with the :0 L tag. It
is followed directly by another tag, :LI, which ends the scan for attributes.

Identifying the Residual Text

Once SCRIPT jVS has processed the markup for a tag, it identifies the text associated with the
tag. This is called the residual text. Not all of the tags in the starter set have residual text, but
SCRIPT/VS checks for it anyway.

All of the text on the line from the end of the markup, up to but not including the next tag, is
considered to be the residual text associated with the tag. In our example, the line that ends the
markup for the :H I tag has nothing else on it. In this case, all of the text on the next line is
considered to be the residual text. "Introduction to the GlYIL Starter Set" is the residual text for
the :H I tag. The:O L tag has no residual text because it is followed by another tag.

The end of the residual text is defined as the end of the input line or the occurrence of another
tag. Since the residual text line is ended by the occurrence of another tag, it can not, by defi­
nition, contain any tags. For example,

:hl.The :hpl.starter set:ehpl. Profile

The residual text for the :HI tag is just the word "The." The scan for residual text was ended by
the occurrence of the :HPI tag. Similarly the residual text for the :HPI tag is "starter set" and the
residual text for the :EHP 1 tag is "Profile." In the case of this last tag, the scan for residual text is
ended by the end of the line, rather than the occun'ence of another tag.

Since residual teAi is a very important concept, let's look at another example:

: titlep
: title.
First Line
of the Title

In this example, there is no residual text at all for the :TITLEP tag. "First Line" is the residual
text for the :TITLE tag. Notice that the residual text for this tag includes only the first input line
following the tag. There was no text on the same line with the tag so the residual text is the next
input line.

Residual text is not important for all tags. For example, the frrst line of text after a paragraph tag
has no special meaning as residual text. If the residual text has special meaning, it must all be

6 If riO markup/content separator is used and attributes are allowed on the tag, SCRIPT;VS may not be
able to tell what is text and what are attributes. This is why the markup/content separator is an impor­
tant part of the mark-up.

Introduction 7

entcred all one line, such as with the :H 1· tag. In the starter set there are some tags which use
thcir residual text. These are:

:ALINE
:AUTI-IOR
:DATE
:DDIID
:DOCNUlYI
:DT
:DTHD
:FIGCAP
:GT
:HO-6
:IHl-3
:Il-3
:TITLE

All other tags either don't have any residual text or don't usc it.

Findina APFs b

After checking for residual text, SCRIPT /VS checks to see if the tag has been associated with an
APF. In our example, the DSMHEADI Inacro, which has been associated \vith the :Hl tag, is
invoked because of the following .AA [Associate APF] control word:

. aa hI DSMHEADI

If SCRIPTjVS encounters a tag that has not yet been associated with an APF, it attempts to find
a macro or control word with the same name as the tag. If there is one, it is processed. If neither
a rnacro nor control word is found, the user gets an error message a...~d the tag appears as tex.t in
the formatted output.

If SCRIPT /VS finds any value attributes when it scans the lines, they are passed as parameters to
the APF and are available in the local symbols & >I< 1, &*2, and so on. In the case of the :OL tag,
the value attribute COI'vIPACT is passed to the DSlVIOLIST APF which processes the :OL tag.

APF Processing

The APFs provide the specific fornlattinginstructiollS for the particular text element or structure
identified by the tag. l'he APFs are made up of SCRIPT/VS control words, text, and calls to
other macros. They may do such things as cause a page eject, redefine the colunln defmitions,
start indenting, change fonts, and so on-whatever is required to process the element.

Residual Text: If the APF wants to use the residual text of the tag (as in the case of headings), it
can use the .GS [GlVIL Services] SCAN control word to get the text:

. gs scan @head

This control word will cause the residual text to be transferred into a symbol natned &@head.
The name of the symbol used on the .GS [GI'vlL Services] SCAN control word line can be any­
thing you like-as long as it's a valid symbol name.

The APF ll1ust then process it completely, because the .GS [GML Services] SCAN control word
causes SCRIPTjVS not to process the residual text.

On the other hat1d, if the APF just wants to look at the residual text, but still wants SCRIPT/VS
to process it automatically, it can use a .GS [G1\:lL Services] COpy control word. If the text is
not scanned, but is either ignored or copied, it will be processed automatically by SCRIPT /VS
after the APF has finished.

8 OCF: Gl\tL Starter Sct Implementation Guide

For example, an APF Inight simply want to know if there is any residual text. In this case you
would want to use the .GS [GML Services] COpy control word to get a copy of the residual text
and check its length using the &L' symbol attribute:

· gs copy @head
· if &L' &@head eq 0 . th
· el

If the length was zero you would now know that there wasn't any residual text and could proceed
accordingly. If there was residual text, SCRIPT /VS will still process it autOlnatically for you.

The automatic processing of residual text includes using literal mode (so that text is not lnisinter­
preted as controls) and automatic handling of word cOl:ltinuation. If you need to process the
residual text yourself in the APr I you will need to be concerned about such problems.

One special concern with word continuation is when the residual text scanning is ended by an­
other GML tag. If the APr' for the fITst tag uses .GS SCAN, there may be continuation prob­
lems because the first APF does not have enough information to cause correct word continuation
in all possible situations. The ftrst APE camlot detennine whether the residual text scanning \vas
ended by another Gl\lL tag, or the end of an input line. If the residual text scan was ended by
another GI\ilL tag, an extra blank may be incorrectly added at the end of the first G?vlL tag's
residual text. Continuation after the second GI\lL tag may be incorrect also. To avoid this situ­
ation do one of the following: Use .GS COpy if you only need to look at the residual text,
allowing SCRIPT/VS to process the residual text. If .GS SCAN is necessary, cause breaks before
and after the residual text. If breaks before and after the residual text are inappropriate, do not
put any other Gl\rlL tags on the same input line with your GML tag.

A ttributes: The value attributes passed to the APF as parameters can be processed directly in the
APF. They are available in the local symbols &*1, &*2 and so on. For example, if the COM­
PACT attribute is specified on the :OL tag, the &*1 symbol will contain the word "compact"
when we get to the APF for the :OL tag. T'he attribute value is passed in exactly as it was speci­
fied. It is not folded to uppercase. If you had specified "Compact" the value of & * 1 will be
"Compact." If you had specified "COl'vlPACT" the value of &*1 \-vill be "COMPACT."

The labelled attributes (specified with an "=") arc processed by APFs using the .GS [Gl\lL
Services} EXA TT control word. For example, the API' for the :H 1 tag processes the ID atiribute
usmg:

. gs exatt id as DSH@IDS

\Vhen this control word is executed, SCRIPT /VS checks the names of the attributes given on the
control word line (in this case "id") against the special list of attributes that SCRIPT/VS created
when it scanned the markup. If a match is found, the macro specified on the .GS [GIVIL Services]
EXATT control word is executed, and the value of the attribute (the right side of the equals sign)
is passed to the macro in &*1. If no macro name is given on the .GS [Gl\lL Services] EXATT
control word, the macro with the same name as the attribute is executed.

In our example, the DS1\1@IDS macro is invoked when the ID attribute is found in the markup.
If we don't specify the macro murre (DSM@IDS) on the control word line, then a macro nalned
ID is invoked. If there is no ID macro, a message is issued.

In the starter set, the attribute macros are almost always specified by name on the .GS [Gl'vIL
Services} EXATT control word lines. This is because all of our macro names must staIt \vith
DSl'vl and this is never the same as the attribute name so it must be invoked by name on the .GS
[Gl\1L Services] EXATT control word.?

7 The exception to this rule is that several of the attribute macros in the starter set are defined by other
macros in the library. Since they are dynamically defined they don't exist as macros in the library and
therefore do not have to have names beginning with "DSM."

Introduction 9

If the .GS [GML Services] EXATT control word line includes an attribute that was not in the
markup, nothing happens. In other words, in our example, if no ID attribute was specified on
the :H 1 tag nothing happens when we get to the .GS [G1VIL Services] EXATT control word.

Symbol Substitution and Residual Text Processing

Symbol substitution is performed on residual text before residual text is processed. This has im­
plications when the symbol in the residual text is reset by processing in the APF for the tag this
residual text is associated with. The following example illustrates this situation:

.se count = 0
· dm xxx on
.se count = &count + 1
· gs scan "'(line
&·'''line
· dm off

: xxx. the count is &count

Symbol substitution is performed before the XXX APF is executed. During symbol substitution
the symbol "&count" is resolved to the value "0". Therefore, after the GS SCAN is perfOlmed,
the symbol "& *line" contains the value "the count is 0" instead of "the count is &count". To
avoid this situation, do not put symbols in residual text for tags, whose APFs may reset that
symbol.

Synlbol Substitution and Tags

Do not put GML tags into symbols. Using GI\1L tags in this manner may result in inlproper
processing of the G1VIL tag, for example: .SE tag2 = :H 1.

About the Starter Set

There are approximately 150 different macros in the starter set. In order to make it easier to
recognize symbol nalnes and APF names, several naming conventions have been used in writing
the starter set.

APF Nanling Conventions

All of the APFs stored in the macro library begin with DSM which indicates that they are part of
the Document Composition Facility program product.

The fOUlth character in the APF name indicates what kind of APF it is.

• DSM# indicates a service or initialization macro that is only called by other macros, APFs,
and the proftle.

• DSI\1@ indicates a macro that processes an attribute.

• DSl\lE indicates an APF for an end-tag.

• DSM followed by any letter other than E indicates an APF for a start tag.

10 DCF: Gl\fL Starter Set Implementation Guide

Symbol Naming Conventions

Several different symbol naming conventions are used in the starter set. Most of the starter set
symbols start with @. This is done to reduce the possibility that users will have symbols with the
same names.

All of the literal constants (text) used in the starter set are put into symbols that start with
&LL@. These sytnbols are defined by the DSM#SETS macro. For example, the DSlYl#SETS
macro defmes a symbol natned &LL@ToC to have a value of "Table of Contents." This symbol
is then used on the .TC [Table of Contents] control word in the APF for the :TOC tag to specify
the heading to be put on the table of contents page.

The primary reason for this approach to handling text constants is to facilitate changing the con­
stants.

The symbol names are made as meaningful as possible without making theln unnecessarily long.
For example, symbols that hold a value for white space to be skipped begin with "@sk" and
indention values begin with "@in."

It is also generally true that "h" indicates headings, "f'-figures, "n"-footnotes, "I "-lists8 , and
"i"-index. This is true, for example, in the &@sk@f arid &@in@f symbols where the "f" re­
presents figures.

The DSM@1VlAC@ Symbol

Symbols can also be stored individually in the macro library, There is one such symbol in the
GML macro library-the &DSlVl@IYlAC@ symbol-that contains the name of the macro library.
This symbol is used by the profile to verify that the correct macro library is available for process­
ing.

General Service Macros

Some of the macros that begin with DSlYl# can be especially useful to you in writing your own
APF s to extend the starter set. These macros are listed below and are described in detail in either
"Starter Set Initialization" on page 19 or "Miscellaneous" on page 163.

8 Occasionally we use "d" for lists instead of 44}" to avoid duplicate symbol names.

Introduction 11

AP F Description

DSl\I#CNTX Invalid tags are mapped to this macro to produce a message that states that the
tag is out of context. The tag name is included in the message. It is used, for
example, as the mapping for the :ALINE tag when an address structure is not
currently in progress.

DSl\I#DUPL This macro ends the current page and prcparcs to start a new page. If duple xing
is in effect (with SYSVAR 'D'), this macro will cause a page eject until it gets to
an 9dd-nuI11bered page. It is used for processing document sections (abstract,
preface, index, and so on).

DSl\I#l\,ISG This macro issues all of the GML starter set messages. All messages are collected
here to facilitate translation to other languages.

DSl\rl#RSET This macro checks to see if any structures such as figures, examples, footnotes, or
lists are open. If any are found open, they are closed (ended) and a message is
issued.' This macro is uscd primarily by the heading APFs to perform house­
keeping functions bcfore starting a ncw heading.

DSl\I#SETS This macro defines all of thc literal text strings used by the startcr set. They are
collectcd hcre to facilitate translation into other languages. This macro also de­
fines the &date and &time symbols.

DSl\I#STYL This macro sets up the page layout to be one column, two column or offset style.
It is used in the starter set to change the layout between the different document
sections, such as body and back matter. It accepts "one," "two," or "off" as a
parameter. If no paraIncter is given, the style system variablc, &SYSVARS, is
used to determine the dcsircd page layout. The default page layout is one col­
umn if SYSVAR IS' is not specified on the SCRIPTjVS cOI111nand line.

DSi\I#SUPR This macro produces superscripts. The parameters passed to thc macro print as
superscripts for the 1403 printer and the IBM 3800 Printing Subsystem Model.
For, pagc printcrs, superscripts arc created by shifting the baseline up and printing
the number in a slnaller font. For terminals and othcr line printers, the parame­
ters passcd are printed enclosed in parenthcses.

DSl\I#YESN This macro analyzes attribute values that can be only "yes" or "no." In the
startcr set it is used by the cross-reference APFs and is further described in detail
in "Cross-References" on page 147.

12 DCF: G:\'IL Starter Set Implementation Guide

Special Techniques
Much of the starter set processing is provided by fairly complex manipulations of symbols.
Rather than explain these techniques repeatedly for each of the APFs that uses them, a single
detailed explanation is given here for some of the techniques.

Validatillg [(eYJvords
Some of the attributes and SYSVARs accept only a litnited number of values.9 In these cases, we
need to ensure that the value the user specified is valid. This involves checking the value against a
list of valid values to see if we recognize it. Then we reset the value specifically so we know
exactly what format it is in.

Let's take a look at how the SYSVAR 'D' variable is handled. This system variable indicates
whether or not duplexing is to be done.

System variables are passed to SCRIPT jVS on the SCRIPT command using the SYSV AR op­
tion. The values given on the command for the various system variables are put into special
system synlbols named &SYSVARA, &SYSVARB etc. The starter set uses orily C, D, H, P, R,
S, T, \V and X.

Most of these variables are analyzed in the DSI\1#SETV macro which is called frOlll
DSl\1PROF3 during the starter set initialization process. The purpose of the processing is to es­
tablish fixed value-s. We know that the value of the SYSV AR will be uppercase if it was specified
on the command, because SCRIPTjVS translates it to uppercase. However, SOlneone could set
the SYSV ARs in the profile, in which case we wouldn't know if they are in upper- or lowercase.

There may also be synonyms that need to be converted to a single value. \Ve need to be able to
count on these symbols being set to specific values so we can test them easily when we need to.

We're going to convert whatever comes in as the value for &SYSVARD to a lowercase "no" or
"yes." If &SYSVARD is not set, we'll set it to "no" to indicate no duplexing. AccOlnplishing
this requires three steps:

1. Checking the specified values against a list of valid ones

2. Seeing if we found it on the list and if not, setting the default

3. Setting or resetting the symbol to a recognizable value.

9 For a description of what SYSVARs are used in the starter set see the Document Composition Facility:
Gj\llL Starter Set User's Guide, SH20-9186 and the Document Composition Facility: GML Starter Set
Reference, SH20-9187.

Special Techniques 13

.se *a = index '-NO-YES-DUPLEX-SI~IPLEX-' '-&U'&SYSVARD.'

.if &*a eq 0 .se *a 1

.se SYSVARD = substr 'no yes yes no' & *a 3

Figure 3. Validating Keywords: The technique illustrated here is used to check a system variable
(SYSV AR) value or an attribute value against a specified list of valid values.

Check the Attribute Value

The fITst thing to do is check the value of &SYSVARD. In the fITst line shown in Figure 3, we
look up the uppercase value of &SYSV ARD in a string made up of all the values we recognize.
In this case, the only ones we recognize are "NO," "YES," "DUPLEX," and "SIMPLEX."

Each possibility is prefixed with a dash so that, for example, a value of "plex" is not recognized as
valid. However, legitimate abbreviations such "y" for yes are recognized as valid.

We're using the uppercase attribute of the &SYSVARD SYlllbol for comparison purposes and
have prefixed it with a dash also.

Suppose that &SYSVARD was specified on the conlilland as "No." Let's examine how this line
will substitute:

se a
se "'''a
se *a

=
=
=

index r -NO-YES-DUPLEX-SIHPLEX-' r -&U' &SYSVARD. r

index '-NO-YES-DUPLEX-SIMPLEX-' '-&U'No'
index '-NO-YES-DUPLEX-SIMPLEX-' '-NO'

The right-hand string (or search arf,'Ument) in the line above will resolve to "-NO" and & *a will
end up set to I because "-NO" starts in the fITst position of the string \ve're looking in.

See if \ve Recognized the Value

The next thing to do is determine whether we recognized the value by testing the value of & *a.
This is the second line in Figure 3.

If the uppercase value of &SYSVARD prefixed with a dash (-) was found in the string we looked
in, & *a would be set to the starting position. (See the INDEX parameter of the .SE [Set Symbol)
control word in the Docurnent Composition Facility: SCRIPT/VS Text Programmer's Guide for
more details.)

If & *a is zero, it means that &SYSV ARD was none of the things we thought it could be, so we
will set & *a to 1. \Ve'll see why later.

Reset SYSV AR to a Known Value

The next and last step is to get &SYSV ARD set up the way we want it. It could have been
entered in either upper- or lowercase and four different words are valid with "duplex" equivalent
to "yes," and "simplex" equivalent to "no." In the third line in Figure 3, we reset &SYSVARD
using the substring function of the .SE [Set Symbol] control word. The source string is set up to
all "no"s and "ycs"s in the same positions as we had the corresponding terms in the .SE [Set
Symbol] INDEX control word line above.

14 DCF: Gl\tL Starter Set Implementation Guide

line 1: -NO-YES-DUPLEX-SIMPLEX
I I I I
1 4 8 15
I I I I

line 3: no yes yes no

The & *a value is used as a starting point and weill always take three characters.

The" 1" we used above as the default value for & *a translates here to taking the substring starting
at position 1 for three characters-in other words, "no."

Notice that we had to leave e}.1ra spaces between the second yes and the second no. This is
necessary to make the two strings correspond exactly. If & *a is 4 after the index function because
&SYSVARD was "Yes," then &SYSVARD will come out of the substring function set to "yes,"
because weill take three characters from the string starting with the fourth character.

.se SYSVARD = substr t no yes yes

.se SYSVARD = substr 'no yes yes

.se SYSVARD = 'yes

Self-ModiJJ7illg Macros

no' &~'''a 3
no' 4 3

Several of the macros in the starter set modify themselves by redefining the entire macro, undefm­
ing the macro or changing one or more lines of the macro.

ReclaiIning Space

When the macro is not going to be used again it is best to remove the defll1ition from storage.
The ll1acros in the starter set that reclaim their storage do so in one of two ways:

• the macro is undefmed

. dm dsm#sets off

• the macro is redefmed to a comment.

. dm dsm#sets /. *
In either case, the macrols definition is deleted from storage. In the second method shown, the
defmition is replaced with a comment line. There is one significant difference between these two
methods and that is what happens if the macro is called again. TIlls could be on the second pass.

If the macro is in storage, SCRIPT jVS uses the copy that is in storage rather than the library
copy. If the ll1acro has been undefined (with .Dl'vl [Defme l'vlacro} macro OFF), tms ll1eans that
it is no longer in storage. In this case, the next time the Inacro is needed, SCRIPTjVS fetches it
from the library. This way the real macro, as it exists in the library, is always used even if it
defmes itself to "off."

Alternatively, if the macro has been redefmed to be a comment, SCRIPTjVS finds the macro
defmition (the comment line) in storage and processes it. The result is that the macro definition
in the library is totally bypassed on subsequent calls which lnay or may not be okay depending
on exactly what the macro does. If the macro only needs to be executed once during a formatting
run using the approach of redefining the macro to a comment is fme.

For this reason, the fITst method described-undefmillg the macro-is the method used in the
starter set. On the second pass, we want to use the real macro defmition from the library again.
The only macros that do this are the initialization macros called from DSlvlPROF3 during initial­
ization.

Special Techniques 15

Replacing a Line of a lVlacro

Another example of nlacros which modify themselves involves a line of the macro replacing itself
with another line. The macros that do this, such as DSIv1#XLST and DSM#\VRIT, do so to
make sure that the macro is executed only once. Both of these macros may be called either from
the :EGDOC tag or from the epifile section of DSlY1PROF3. They redefme themselves to make
?ure that they are not called by both :EGDOC and the epifile.

In both cases the flrst line of the macro is replaced with a new control word line which contains a
.1\1E [Iv1acro Exit] control word. This means that the fITst time the macro is executed the fITst line
is changed to a .l'vIE [Macro Exit 1 control word and the second time the nlacro is executed the
~l\lE [I'vlacro Exit] control word is the fITst line encountered and causes the Inacro to end unme­
dia~ely.

For example, the flrst line of the DSM#XLST macro looks like this:

· dm DS~1fJXLST(&$LNUH.) I. me

The &$LNUIYl sYl11bol resolves to the current macro line number which in this case is 10 because
tllls is the flrst line of the DSM#XLST Inacro. TIllS causes the flrst line of the m(l.cro to be
redefmed to the .ME [Macro Exit] control word.1O The next tune the macro is executed it will end
immediately without further processulg.

Reilloving a Line of a Macro

Another technique that is used within the starter set involves a Inacro modifying itself by relnov­
ing a line of the macro. This technique is used in the cross-reference listing rnacros
(DSl'vl#XRFD, DSM#XRFN, DSl\tl#XRliH, DS1\1#XRFI, and DS1Vl#XRFN). These macros
are called repeatedly to produce one line of the cross reference listing at a time. The flrst time
each of the macros is called it needs to call the DSlv1#SETX macro to generate a heading for the
id section such as "Heading IDs" or "Figure IDs." Since this heading is produced only the first
time the macro is called and is not needed on subsequent calls, these Inacros redefme thelnselves
to remove the call to DSl\l#SETX after the flrst time. It looks like this:

· dm DSH/lXRFH(&$LNUM.) off &$CW .• DS~1iISETX H

The &$LNUIYl symbol resolves to the current macro line number. The line is constructed in two
p3.1is separated by a control word separator (&$C\V). The fITst time the line is processed, the
entire line is picked up and split Ulto its two parts. Part one of the line is processed first and it
removes the original line from the macro by setting it "OFF." The second part of the line is tpen
processed and results in the DSM#SETX macro being called \vith "H" as a parameter.

The next time the DSIVl#XRFH macro is executed, the line is not present at all and the
DSl'vl#SETX macro is not called.

Another APF that uses this technique is the DSMLIST~l APF. The ftrst tinle DSrvlLISTM is
called, it removes its first three lines and deflnes three single-line macros.

· dm dsmfFlistm(&$LNUM.) off &$C\v .. dm @termhi I. se @hi@l = &~'~11
.drn dsmfFlistm(&$LNUH.) off &$CW .. dm @tsize I.se @in@l '&';~11
· dm dsmfFlistm(&$LNUM.) off &$CW .• dm @headhi I. se @hi@hd '&';'(11

10 Redefining the macro to end immediately is no difIerent really than redefining the macro to be a com­
ment except that the macro is not removed from storage. The technique of redefining lines of macro is
used for various purposes, not just avoiding re-executing the macro.

16 DCF: GI\IL Starter Set Implementation Guide

Each line defines a simple macro that is used to process an attribute of the list tags. Because
these macro definitions need be done only once-the frrst time we call the DSl'vlLISTM
macro-the lines redef111e themselves to off.

Settillg Calle ,/ s Local Synlbol
There are several places in the starter set macros where a macro ends with a .ME [Macro Exit]
control word line that also has a .sE [Set Sytnbol] control word on the same line, as in:

• me • se ')\-id '&~I(

The .ME [lYlacro Exit] control word ends the current macro. The .SE [Set Symbol] control word
line is executed after the macro has ended and will set a local symbol for the calling macro. In
the example shown above, the & *id local symbol belongs to the calling macro, not the macro
that is being ended. The & '" represents the parameters that were passed as a local symbol into the
macro which is ending.

For example, the :HDREF tag is processed by the DSMHDREF APF. This API:" calls the
DSM@RFID macro to process the REFID attribute on the :HDREF tag. The value of the
REFID attribute is passed to DSM@RFID in the & '" symbol. This value is not available to the
DSl'vlHDREF macro-only to the DSIYl@RFID macro. The DSl'vl@RFID macro has just one
line in it:

. me . se *id t&" ...

The DSM@RFID macro ends immediately and stacks the .SE [Set Symbol] control word line to
be executed back in the DSMHDREF APF. The & *id symbol is local to the DSl'vlHDREF
macro, not the DSM@RFID macro. The &:1< symbol, however, belongs to the DSM@RFID
rna roo In order to work correctly we want the & * symbol to resolve to the value it has for the
DS1\1@RFID macro. Since symbol substitution occurs before control word processing, the &:1<
symbol is resolved before the .1\1E [Macro Exit] control word ends the DSM@RFID Inacro
which is what we want to happen.

This technique is used because we make every attempt possible to use local sytnbols rather than
global symbols in order to avoid creating and rnaintaining unnecessary symbols. IYlany symbol
values only have meaning for the duration of the macro that is creating them.

Saving and Restoring EllViroll11lents
The starter set frequently saves and restores the formatting environment using the .SA [Save
Status] and .RE [Restore Status] control words. The .SA [Save Status] control word saves a copy
of the current values of the active and page environments and the translate tables. The .RE
[Restore Status] control word restores the saved values of the active and page environments and
the translate tables.

The active environment contains formatting control values including such things as column lay­
out, baseline position, font save stack, centering, indention control, uppercase and underscoring,
and formatting mode (.FO). The page envirorunent includes page dimension values such as page
length, line length, column line length and page margins. The translate tables that are saved and
restored includes the input translation table (.TI) and the output translation table (.TR). The
contents of these environments are given in the Document Composition Facility: SCRIPT/VS
Language Reference.

The formatting environment (which includes all three of these areas) is also saved and restored by
keeps, floats, footnotes and named areas.

The starter set uses .SA [Save Status] and .RE [Restore Status] primarily in situations where many
changes are going to be made to the formatting environment. In these cases, where things such as

Special Techniques 17

fonnatting rnode and indention are going to be changed, it is far easier to simply restore the previ­
ous environment than to reset each value with the appropriate control word.

Setting SYlnbols
Occasionally in the starter set it is necessary to set a number of symbols all at once. This could
be accomplished using a lot of .SE [Set Symbol] control words. However, there is a quicker way
to accOlnplish the same thing using the .GS [GML Services] ARGS and VARS control words.
For example, in DSlVIPROF3 the following line:

.gs args 123456 123 top page

.gs var @olistnest @ulistnest @figplace @figwdith

is totally equivalent to

.se @olistnest '123456

.se @ulistnest '123

.se @figplace 'top

.se @figwidth 'page

The primary reason for using the .GS [GIVIL Services] control word instead of a number of .SE
[Set Sytnbol] control words is performance. In two lines we can set many sYlnbols rather than
just two symbols. This technique can not be used for quickly constructing arrays.

Note: Using the .GS [GML Services] ARGS control word destroys the & * array.

Enforcing Strllcture
There are several different techniques that are used in the starter set to enforce particular structure
among GML tags. For example, :FIGCAP and :FIGDESC tags are not allowed outside of a
figure because they would have no llleaning. This relationship between the tags is enforced
through mapping and re-lnappmg the tags. The :FIGCAP and :FIGDESC tags are Inapped to a
special macro namcd DSIVI#CNTX in the proftle. l1 If these tags are used outside of a figure, the
user will get a message that the tags are out of contc},.'!. \Vhen the :FIG tag is processed it re­
maps :FIGCAP and :FIGDESC to the DSl\tlFCAP and DSlVIFDESC macros, respectively.
\Vhen the :EFIG tag is processed, :FIGCAP and :FIGDESC are once more mapped to
DSl'vl#CNTX because they are no longer valid tags.

A second technique is used to enforce SOlne of the other restrictions which are built into the
starter set. For example, footnotes are not allowed within figures or examples. TIllS restriction
results from the fact that SCRIPT /VS does not allow footnotes to be processed within floats or
keeps. Therefore, the starter set keeps track of when a figure, exatnple or footnote is currently
being processed and disallows the others from starting. This is done using the &@state symbol.
\Vhen none of thc conflicting structures are in progress, &@state has a value of "open." \Vhen an
example is startcd, &@state is set to "Exmpl." Before starting a footnote, figure or example the
value of &@state is checked to make sure it is "open." If it isn't, a warning message is issued and
the current tag is ignored. This avoids having the user get a message from SCRIPT /VS about
keeps, floats or footnotes. The starter set can avoid creating the situation and can issue a more
meaningful message that includes which tags caused the problem.

In the case of keeps, floats and footnotes, the relevant information is also available in the &$EN'V
symbol. This sYlnbol could be checked to see if a keep or float is in progress before starting the
footnote, and so on. However, &@state is also used to indicate when a title page is being proc­
essed so we \vould need a special symbol any\vay.

11 See "Miscellaneous" on page 163 for details on the DS:vl#CNTX macro.

18 DCF: Gl\lL Starter Set Implementation Guide

Starter Set Initialization

OvervielV
\Vhcn SCRIPT/VS is run with the DSlYIPROF3 profile a set of macros is invoked initially to set
up the appropriate formatting enviromnent for the starter set. The initialization performed by the
profile and its related macros includes:

• Mapping tags

• Defming fonts

• Defming running headings, footings, and heading levels

• Initializing many symbols that will be used in the various APFs and macros, and

• Defming the page layout.

We have atternpted to put as much formatting control into the profile as possible. There are a
large number of symbols which are set in DSl'vlPROF3 which control the fonnatting that will
take place in the APFs. However, not everything can be standardized for the entire document.
Some things need to function off of the column layout style or the document section. Th~.'reforc,
some layout control eyists in macros rather than in the profile. The figure below shows the
macros and the sequence in which they are called during initialization.

Starter Set Initialization 19

I DSMPROF31t----r---> I DSM/lSETV J

-> I DSMffSETS

-> I DSMIfSET .--.---> I DSM/iSTYL

Figure 4. Starter Set Initialization Macros: This diagram shows the calling sequence during initial­
ization of the starter set.

• The DSl'vl#SETV macro processes the SYSVARs specified on the SCRIPT com­
mand.

• The DSM#SETS macro defines literal constant symbols for use in the starter set and
the &date and &time symbols.

• The DSM#SET macro initializes various counters and miscellaneous symbols used in
the starter set.

• The DSM#STYL macro sets up the page layout. It is also called by the various
document section macros (DS],VIFRONT, DS/,vIBODY, DSMAPPD, DSMBACKrvI
and DSMINDEX).

1"11e DSMPROF3 Profile
DSNIPROF3 is the profIle for DCF Release 3 GI\lL general documents. It JllUst be specified on
the command line or be imbedded at the beginning of the primary input ftle in order to enable
starter set processing. DSl'vlPROF3 performs the following functions:

1. Determines whether Release 3 of the Document Composition Facility is being used. If not,
a severe error message is issued.

2. Retrieves the macro library name from the DSlVl@IVlAC@ symbol in the library. If the
maclib is not DSIVIGl\1L3, a severe error message is issued and processing ends.

3. Defines the indention and skip amounts for lists, paragraphs, footnotes, figures, long quota­
tions and examples. The symbols for indention are named &@in@x and the skip symbols
are natned &@sk@x where "x" stands for SOlne unique letter that is used to indicate each
particular text element. For example, for a figure the indention symbol is &@in@f and the
skip symbol is &@sk@f. See Figure 5 on page 21 for a complete listing of the indention
and skip symbol settings. The .GS [GIVIL Services] ARGS and VARS control word are used
as a quick, efficient method for setting many symbols all at once. See "Special Techniques"
on page 13 for more details on this technique of setting symbols.

20 DCF: G~\-IL Starter Set Implementation Guide

Description Letter Indent Skip

Definition Lists (d) 10 1

Ordered Lists (0) 4 .75

Unordered Lists (u) 4 .75

Simple Lists (s) 4 .75

Glossary Lists (g) 0 .75

Paragraphs (p) 0 .75

Footnotes (n) none 1

Long Quotes (q) 3 1

Undefined Lists (z) 4 .75

Examples (x) 2 1

Figures (f) 2 1

Figure 5. Indention and Skip Initialization

Note: Several of the skip values are set to .75. For page printers, this results in three­
quarters of a line space being used. For line printers, such as the 1403 or the 3800 Printing
Subsystem Model 1, this is rounded up to one line space.

4. Sets the default highlight fonts for lists. The default for defmition terms (&@hi@d) and
glossary terms (&@hi@g) is highlight level 2. The default for defmition list headings
(&@hi@h) is highlight level 3.

5. Sets the skip value for before and after lists (&@sk@ls) to .75.

6. Defmes &@olistnest and &@ulistnest to indicate the sequence of identifiers to be u~ed in
ordered and unordered lists for list iteITIs. The identifier defmitions are described below. The
list item identifiers can be changed by either changing the nmnber sequence in &@olistnest
or &@ulistnest or by changing the definitions of the identifiers. Controlling the identifiers is
discussed in "lVlodifications to List Processing" on page 1 08.

7. Defmes the default figure placement and width (&@figplace and &@figwidth) to be "top"
and "page" respectively. These are used by the DSMFIG macro when processing the :FIG
tag.

8. Turns macro substitution on. This is because the APFs for the starter set are macros. With­
out macro substitution on, SCRIPT /VS could not process any of the tags.

9. Enables use of the library for macros but not for symbols. Enabling the library for symbols
is expensive in temlS of performance and serves no purpose because only one of the starter
set symbols is in the library.12

10. Defmes the Gf'v1L delimiters as ":" for start tags and ":e" for end tags.

11. Turns on scanning for GlVIL tags with the .GS [Gl\IL Services] TAG control word.

12. Defmes the continuation character to be hexadecimal "03."

13. Sets up the default GML attribute scanriing rules (att novat stop and nomsg) for tags and
(noatt) for end tags. These scanning rules will be used for all tags unless over-ridden on the
.AA [Associate APF] control word line for the tag. If a particular attribute rule has been
defined in the profile using .GS [GI\1L Services] RULES control word and a contradictory
rule is also specified with a .Ai\. [Associate APF] control word, the .M lAssociate APf1
control word rule is used.

12 The DSM@l\1AC@ symbol is explicitly defined as being in the library at the beginning of the profile.

Starter Set Initialization 21

14. Defmes the list item identifiers for ordered and unordered lists using the .DV [Define
Variable] control word. Symbol substitution is turned off for the defmition of the ordered list
identifiers to prevent the symbol attributes, such as &a', from resolving during the defmition
of the identifiers. \Ve want to save these sYlnbol attributes and resolve them when we go to
use the identifier on a list item.

The names of the defmed variables are constructed using "@id@l@" followed by the type of
list (u or 0) and the list nesting level the identifier is to be used for. For example,

.dv @id@l@ul /&X'9f

defmes the identifier for the fIrst level of unordered list to be a hexadecimal "9F" which is a
bullet in the page printer fonts. Similarly,

.dv @id@1@u2 font @pi@ul /&X'db

defInes the second level unordered list identifier to be a hexadecimal "db" in the font named
@pi@ul. See the description of the .DV [Defme Variable] control word in the Document
Composition Facility: SCRIPT/ VS Language Reference for additional details.

Several sets of unordered list iten1 identifiers are defmed: one set if the output is going to a
printer (SYSOUT = PRINT), one set if the output is not going to a printer, and then a
special set for page printers (SYSOUT = PAGE). For list item identifiers for page printers,
the Pi font (@pi@ul) is defmcd. For the IBM 3820 Page Printer and 3800 Printing Subsys­
tenl l'vlodcl 3, the Pi font dcfmition is slightly different because the typeface name and the
codepage name for the Pi font are slightly different. The @pi@ul font is used to obtain
various special characters for second and subsequent levels of unordered lists. Since there are
so many special characters available for the 4250 printer, IBM 3820 Page Printer, and 3800
Printing Subsystem Model 3 in the Pi font, the &@ulistnest symbol is redefmed to use fIve
separate levels of identifiers before reusing the first again.

For unordered lists, five levels of identifiers arc defined for all output types but only the first
three are specified (and therefore used) in &@ulistnest. Nine levels of identifIers are defmed
for ordered lists but only 6 are usedP

A single identifier (*) is defIned for undefined list types (z). The list type z is not docu­
mented. To produce a list where all the items are identified with an asterisk you can use the
:L tag.

: 1

Examples on changing list item identifIers are given in "Modifications to List Processing" on
page 108.

15. Defmes symbols for the GrvlL tag dclimiter, the ampersand, and the semicolon. These are
the &gml, &aInp, and &semi symbols respectively. The .DV [Defme Variable] control word
is used to assign these symbols to the correct output character.

16. Uses the .DR [Defme Rule] control word to define several rules for use in the starter set.
The fIrst one is for figure rules. It has no parameters on it because we want to use the de­
fault rule which is .3rrun. The rule definition is provided to make it easy for users to change
the rule.

The second rule is for the footnote leader. A weight is given that is slightly lighter (thinner)
thaIl the default rule-.2mm. The length of the footnote leader is also controlled from the
profile. See item 21. on page 23.

13 The reason we define more identifiers than we use is simply to facilitate user modifications to the list
item identifiers. It is a simple matter to change around which of the defined identifiers are actually used.
See "Modifications to List Processing" on page 108 for examples of how to do this.

22 DCF: G\lL Starter Set Implementation Guide

17. Contains a .SE [Set Sytnbol] control word line that is commented out. It sets the
&@bodyheadl symbol to "Chapter." This is provided to facilitate creating a prefix for level
one headings in the body of the dOCUlnent. If the comment (. *) is removed, headings will be
labelled "Chapter 1 ... ," "Chapter 2 ... ," and so on. The prefixing and numbering is handled
by the DSl\rlHEAD I APF described in "Headings" on page 75.

18. Sets line spacing controls to permit skips, spaces and text lines to be increased by a factor of
1.1 or decreased by a factor of .9 when necessary for vertical justification.

19. Turns on vertical justification.

20. Turns on hyphenation. Specifies that the default dictionary will be used but not the algorith­
mic hyphenator. The range parameter on the .HY [Hyphenate] control word provides the
compression and expansion ranges. The ladder parameter specifies the number of consec­
utive lines that can be hyphenated. The MINPT, MAXPT and MI~'"WORD values control
when and where hyphenation points can occur.

21. Def1l1es several spacing values for footnotes in the profile to provide easy modifications. The
width of the gutter between the columns for two-column format is set in &@gutter to 4
spaces. The length of the footnote leader is set in &@fnldrlen to 16 spaces. A line spacing
value, &@Ullo, is also defmed as 1.2 (or 120°1£)) for use on the title page. TIlls factor is used
to increase the line spacing for multiple title lines on page printers to provide greater visual
separation between the lines.

22. Calls DSM#SETV to process the SYSVARs specified on the command line.

23. Calls DSl\rl#SETS to defme symbols for various literal strings (words) that are used through­
out the starter set. These literal strings are put into symbols and the symbol defmitions are
collected into a single lnacro to facilitate changing them.

24. Defmes spacing values for all headings.

The &@hspbf symbol is used for the SPBF parameter on the .DB [Defme Head Level] con­
trol word for head level zero and one. The value of &@hspbf is 0 for line printers and 1.3
inches for page printers.

Since skips before a heading are thrown away when they are on the top of a page, \ve used
spaces before the heading to "sink" the heading a little. This was done for stylistic reasons to
set the level zero and one headings off a little from other headings. To remove this space
simply set the value of &@hspbfto zero.

The &@hOsp symbol is set to 5 lines and is used below for the SPAF parameter on the .DH
[Defme Head Level] control word for head level zero.

The &@hlsp symbol is set to 3 lines and is used below for the SPAF parameter on the .DB
[Define Head Level] control word for head level one. This value is modified below if we are
formatting for a page printer.

For head levels two through four in Release 2 the amount of space around the headings was
a function of the style (SYSV AR 'S') of the document. Less space was provided around the
headings in offset style. Now, in Release 3, the spacing around these headings is set by de­
vice. The initial values are set here in the profile to be 3 skips before and 2 spaces after for
head 2 through 4. These values are put into the &@h2sk, &@h2sp, &@h3sk, &@h3sp,
&@h4sk and &@h4sp sytnbols. We alter these values fmther if it turns out that we are
formatting for a page printer.

25. Defmes all of the fonts used in the starter set except for the Pi font used for unordered lists
for page printers. Each output device has its o\vn particular characteristics and font capabili­
ties. Therefore, each has its own set of font definitions.

Starter Set J nitialization 23

The following device specific functions are performed:

a. Defmes highlight level 0 to be the body or default font (&$CHAR(I)).

b. Selects the style of superscript numbers and puts them into a symbol (&@suprstyl).
The three styles or formats available are:

• parentheses (&@suprstyl = parens)

• true superscript nUlnbers (&@suprstyl = nums)

• superscripts created by shifting the baseline up and using a smaller font
(&@suprstyl = shifts)

The "nums" style is used for the 1403 and the IBM 3800 Printing Subsystem Modell.
The baseline shift method is used for all page printers.

c. Defines a set of highlight, heading, and table of contents fonts for each combination of
output device (1403, 3800, and 2741) and the number of fonts given on the CHARS
option. These are shown in Figure 6 on page 25. For page printers, many more fonts
have been selected because of the greater range and number of fonts available for these
devices.

Note: The font definitions for the IBM 3820 Page Printer and 3800 Printing Subsystem
1'v10del 3 are identical to those for the 4250 printer except for the example font
(xmpfont).

In many places in the starter set, font changes are performed only for page printers by
using the .BF [Begin Font] control word list capability. For example,

. bf fnt =

is used in footnotes where a font change is desired for the page printers only. For line
devices, "fnt" is an undefmed font. The" =" on the .BF [Begin Font] control word line
causes the current font to be restaried. This eliminates the need for defming a "fnt" font
for each possible device.

In the case of heading and table of contents entries, it is not as simple. The .DH [Define
Head Level] control word accepts font names for headings and table of contents entries.
However, it does not have the same capability to accept a list of fonts to use. Therefore,
it was necessary to defme the fonts for headings and table of contents entries for all pos­
sible devices. See "Headings" on page 75 for lnore details about headings and table of
contents processing.

Alternate highlight fonts are defmed for page printers. This is done because the highlight
fonts are type defmed fonts-that is, they simply change the current font into its italic or
bold version. It is possible to get into situations where there is no italic or bold equiv­
alent for page printers, such as in examples (:XMP) where the font used is Prestige or
Prestige Elite. There Inay be no italic prestige font available for use. In these cases,
alternative font definitions of underscore (althil), uppercase (althi2) and both (althi3) are
used for highlight fonts. There is no altenlate highlight zero for "hiO" because this font
is either &$CHAR(1) for line devices or is defmed as type normal for page printers.14

The font definitions for page printers assume that the default body font is a 10-point
font. The typeface is not important to these defmitions and is never specified. The only
two typefaces specified are for examples and for unordered list item identifiers.

14 It is possible to get into a situation where there is no "normal" font which will result in an error message
if :HPO is used.

24 DCF: GIVtL Starter Set Implementation Guide

FONT 1403 3270 3800-3/
NAME 2741 3800(1) 3800(2) 3800(3) 3800(4) 3820/4250

Hll US US CHAR(I) CI-IAR(2) CHAR(2) italic
US

EI2 as UP CHAR(2) CHAR(3) CHAR(3) bold

HI3 as US UP US CHAR(2) CHAR(3) CHAR(4) bold italic
US US

HDO as UP UP US CHAR(2) CHAR(3) CI-IAR(4) bold 20
US UP us UP us UP italic

HDI as UP UP US CHAR(2) CHAR(3) CHAR(4) bold 20
US UP US UP Us UP

HD2 as US UP US CHAR(2) CHAR(3) CHAR(4) bold 18
UP UP lJS UP US UP italic

HD3 as us UP US CHAR(2) CHAR(3) CHAR(4) bold 14
US US

HD4 as UP CHAR(2) CHAR(3) ClIAR(3) bold 12
italic

ED5 as UP CI-IAR(2) CHAR(3) CHAR(3) bold

HD6 US US CHAR(l) CHAR(2) CHAR(2) bold italic
US

HDOTOC as UP CHAR(2) CHAR(3) CHAR(3) bold 10
UP

HD1TOC OS UP CHAR(2) CHAR(3) CHAR(3) bold 10

HD2TOC CHAR(I) CHAR(l) CHAR(I) CHARtl) CHAR(l) 10

HD3TOC CHAR(l) CI-IAR(l) CHAR(l) CHAR(I) CI-IAR(l) 10

Figure 6. Heading, Highlight and Table of Contents Font Definitions

Key: OS = overstrike, US = underscore, UP = uppercase. The page printer
(3800-3/3820/4250) font definitions such as "bold 20 italic" indicate the bold italic version of
the body font in a point size of 20 points.

26. Calls DSlVl#SET to defme various symbols for use in the starter set. The DSI\-1#SET macro
is described in detail below.

27. Defmes two symbols, &@oquote and &@cquote, to provide the appropriate open and close
quotation marks for each level of nested inline quotations. For page printers, typographical
style quotation Inark character are used. These symbols are used by the APFs for the :Q and
:EQ tags.

Not all uses for quotation marks arc handled by the :Q tags. It is often necessary to use just
single quotation marks. While it is possible to type these quotations marks directly, this will
not always produce desirable results on page printers. Therefore, four additional synlbols are
defmed to generate quotations Inarks directly in text. These are

• &oqq - double opening quotes
• &oq - single opening quotes
• &cqq - double closing quotes
• &cq - single closing quotes

Starter Set Initialization 25

These are defined separately for line printers and for page printers because different characters
must be used.

28. Defines heading characteristics and control symbols:

a. If the &@bodyheadl .SE [Set Symbol] control word line described above is not com­
mented out, the &@headl symbol is used to contain a special prefix for level one
headings. The &@headl symbol is set "off" initially because only headings in the body
and the appendix can be prefixed. The &@headl symbol will be set to the value of
&@bodyheadl by the DSIVIBODY APF when the :BODY tag is processed.

b. All headings are defined with no hyphenation pennitted (KOB¥).

c. Each heading level has its own font. I-leading levels zero through three also have a font
specified for table of contents entries.

d. On the .DH [Define Head Level1 control words we need to specify whether or not the
headings are to be numbered. This depends on the value of &SYSV ARB. If
&SYSVARH is not "no," it means that headings are going to be numbered so we set a
local symbol, & *n, to "num." \Ve will use this local symbol in the .DH [Define Head
Level] control word lines. Additionally if we are going to nUInber headings
&SYSVARH will contain the starting number for the first level one heading. \Ve use
this value to initialize the heading counter with the .GS [GlVIL Services] HCTR control
word.

e. The headings are all defined using the .DH [Define Head Level] control word. For the
level zero and one headings there are two separate .DH [Defme Head Level] control
words simply because we couldn't fit all of the parameters for these headings on a single
line.

l'v10re detailed information and explanation about heading processing is given in "Headings"
on page 75.

29. Saves and then restores the line length value to the default setting. This is done so we can
tell if the user somehow got there first and changed the line lenbrth. If the default value is not
the same as the saved value, we lmow the user has reset it. If not, We set line length to 6.8i
for two-COlUIl1l1 and offset style formats. For one-colutnn style the line length remains set to
the default value.

30. Calls the DSI\1#STYL macro to establish the appropriate column format as specified with
SYSV AR 'S'. This macro is described in detail below.

31. Defines the running heading and footing.

The running heading centers the security classification. The .CE [Center] control word has a
control word modifier on it because the &@sec symbol could start with a period or could
contain semicolons (;) both of which could be misinterpreted without the control word modi­
fier.

The running heading is fonnatted in highlight level 2 for line devices and in the "@rh" font
for page devices.

Some space is left at the bottom of the running heading to provide some separation between
the running heading and the body of the page.

There are three running footing defmitions. The running footing is formatted in the normal
body font or in the "@rf' font for page devices. Space is left at the top of the running
footing to provide separation from the body of the page.

The first footing defrnition, which is used if duplexing is not in effect (&SYSVARD is "no"),
formats the short heading (&@shead) on the left side of the page and the page number on
the right side. The &@shead symbol contains either

26 DCF: Gi\lL Starter Set Implementation Guide

a. The title of the document,
b. The short title of the document,
c. The last level zero or one heading, or
d. The last level zero or one short title value,
whichcver was encountered most recently.

The other two running footing definitions are used if duplexing is in effect. In this case, a
separate footing is defmed for even pages and another for odd pages. The footing for odd
pages formats the sh01t title for the heading (&@shead) and the page number on the right
margin. The even page footing fonnats the short title of the docuI11ent (&@stitle) and the
page number on the left rnargin of the page. Sec the running footings in this book as an
example of the even and odd running footings used when preparing output for duplcxing.

32. Maps the GML starter set tags to the appropriate APFs. Tags that are not valid initially
because they required some text structure to be started are mapped to the DSM#CNTX
APF. This APF, which is discussed in detail in "Miscellaneous" on page 163, issues a mes­
sage that the tag is "out of context."

Tag APF Rules End APF

ABSTRACT DSMABSTR noatt

ADDRESS DSMADDR noatt DSlvlEADDR

ALINE DSrvl#CNTX noatt

APPENDIX DSlYIAPPD noatt

AUTHOR DS1\l#CNTX noatt

BACKM DSlVlBACKM noatt

BODY DSlVIBODY noatt

CIT DSlYICIT noatt DSl\IECIT

DATE DSlVl#CNTX noatt

DD DSlVl#CNTX noatt

DDHD DSI\tl#CNTX noatt

DL DSl'vlDLIST vat DSMELIST

DOCNUM DSlYl#CNTX noatt

DT DSl'vl#CNTX noatt

DTHD DSrvl#CNTX noatt

FIG DSl'vlFIG DSMEFIG

FIGCAP DSrvl#CNTX noatt

FIGDESC DSl'vl#CNTX noatt

FIGLIST DSl'vlFLIST noatt

FIGREF DSMFGREF

FN DSMFTNT DSMEFTNT

FNREF DSl'vlFNREF

FRONTlYl DSl\1FRONT noatt

GD DSM#CNTX noatt

GDOC DS1'vlGDOC DSMEGDOC

GL DS1\lGLIST vat DSfVIELIST

Figure 7. Initial Mapping for GfVIL Tags (Part 1 of 2)

Starter Set Initialization 27

Tag APF Rules End APF

GT DSl\tl#CNTX noatt

HDREF DSl\tlHDREF

HP BF noatt DSMEIIP

HPO DSlVIHPO noatt DSMEHP

HPI DSlYIHPI noatt DSIVIEHP

HP2 DSiVIHP2 noatt DSMEHP

HP3 DSMHP3 noatt DSMEHP

HO DSiVIHEADO

HI DSlYIHEADI

H2 DS l'vHIEAD2

H3 DSIVIHEAD3

H4 DSMHEAD4

lIS DS7vlHEADS

H6 DSl\1HEAD6

INDEX DSlYIINDEX noatt

L DSlYILISTIVl vat DSI\1ELIST

LI DSl'vt#CNTX

LIREF DS:vtLIREF

LP DSM#CNTX noatt

LQ DS7vlLQUOT noatt DSiYIELQU

NOTE DS1\;I1\OTE noatt

OL DSl\10LIST vat DSl'vtELIST

P DSiVIPARA noatt

PC DSlVIPCONT noatt

PREFACE DSlYIPREF noatt

PSC DSI\1PSe DSMEPSe

Q DSl'vlQUOTE noatt DSlVIEQUOT

SL DSlYlSLIST vat DSMELIST

TITLE DSl'vl#CNTX

lTfLEP DSlVITTLEP noatt DSMETTLP

TOe DSIVIToe noatt

UL DSlVIULIST vat DSMELIST

XMP DSMXMP DSMEXlVIP

Figure 7. Initial rYlapping for GML Tags (Part 2 of 2)

33. Maps the index tags. If no indexing is to be done the index tags are mapped to a dummy
APF that simply relnoves the tag and its residual text fronl the document. If indexing is
being done, the tags are mapped to their real APFs.

The .AA [Associate APF} control word lines for the index tags are constructed using symbols
whose values are determined by whether or not indexing has been requested. The .GS
[GlVIL Services] ARGS control word defmes the sytnbols used on the .AA [Associate APF]
control word line.

28 DCF: GlYIL Starter Set Implementation Guide

When indexing has been requested the following .GS ARGs line is used:

. gs args 1 2 3 dsmindx dsmihd dsmiref

which is the same as setting:

.se -.'--1 = 1

.se '1·2 = 2

.se -",3 = 3

.se -/(4 = dsmindx

.se "1,5 = dsmihd

.se 1r6 = dsmiref

When indexing has not been requested tIlls .GS ARGs~line is used:

· gs args , t t , t t dsmidmmy dsmidmmy null

which the same as setting:

.se *1 = ,
,

.se 4'~2 =
, ,

.se -;'~3 = t ,

.se 'k4 = dsmidmmy

.se *5 = dsmidmmy

.se 7(6 = null

When the compound symbols on the . A.A. [Associate APF] control word lines are processed
the APF names are resolves as follows:

· aa i1 &-.'·4. & ... ·1
· aa il & .. '·4. 1
· aa i1 dsmindxl

when indexing has been requested. \Vhen indexing has not been requested, this same line
resolves as follows:

· aa il
· aa il
· aa il

&-.'·4. &""·1
&""·4.
dsmiddmy

Figure 8 shows the resulting APF nalnes used for both indexing and not indexing.

Tag Indexing Not Indexing

11 DSIVlINDXI DSMIDMlVIY

12 DSlVlINDX2 DSl'vlIDMMY

13 DSlYlINDX3 DS1VlIDIvlIvlY

IHI DSMIHDI DS1VIIDlVll\1Y

IH2 DSlVlIHD2 DSI'vIIDMMY

IH3 DS1VlIHD3 DSIVIIDMMY

IREF DSl'vlIREF null

Figure 8. Index Tag l\1apping

Starter Set Initialization 29

34. Resets the .GS [GlYIL Services] ARGS control word argUlnents to null to undefme the syln­
boIs &*1, &*2 and so on. If we didn't so this these symbols would still contain the last
values we had set them to because local symbols used in a file are not true local symbols in
the sense of becOIning undefined at the end of the ftle.

35. The profile ends. \Vhat follows the .EF [End of File] control word is the epiftle.

36. The Epifile. This part of DSlYlPROF3 will be automatically invoked by SCRIPT /VS at the
end of all processing and is used to create the cross reference listing, the imbed trace and the
SYSV AR 'W' file.

If the proftle is not specified on the command but rather is imbedded by some user profile,
the epifl1e described here may never get processed. In this case the epifile of the u.<;er profIle
will be processed rather than the epifile of DSMPROF3. To get the DSMPROF3 epifue
processed, the user profile needs to imbed DSMPROF3 in its epifile.

37. Calls the DSIvl#\VRIT macro to generate the SYSV AR '\\1' ftle of IDs if SYSVAR ,\V' was
specified and this is the last pass (&@lastpass is "yes").

38. Calls the DSM#XLST macro to generate the cross reference listing and imbed trace if cross
referencing has been requested (&SYSVARX is "yes") and this is the last pass (&@lastpass
is "yes").

Illitializatioll Nl acros

Several rnacros and the DSM@MAC@ symbol are used during the initialization process from
DS1'vlPROF3. These are described below in the order in which they are used.

DSM@lVIAC@

The DSM@MAC@ sYlnbol is set to "DSlYIGlVIL3" and is used by DSlYIPROF3 to verify that
the correct macro library is available. This is a symbol stored in the macro library, not a macro.

DSM#SETV

The DSlYl#SETV macro processes most of the the system variables (SYSVARs) specified on the
SCRIPT cOInmand, resets th;;m to standardized values for easy testing, and sets up defaults for
them if they were not specified on the command. IS

The technique used in this macro to validate the SYSVAR values and reset them is detailed in
"Validating Keywords" on page 13 and therefore is not explained here. The SYSVARs processed
by DSI\1#SETV are:

1. SYSV AR 'D' controls whether or not the document is to be formatted for duplexing. This
macro sets &SYSVARD to either "no" or "yes" based on the value given on the cOInmand.
The default is no duplexing.

2. SYSVAR 'H' controls whether or not heading levels 0 through 4 are numbered in the body
of the document. The macro sets &SYSVARH to "no," "1.0" or the value given on the
command. The default is no numbers for headings.

3. SYSVAR 'P' sets up a value to control the inclusion or exclusion of text and controls in a
conditional section. This nlacro sets &SYSVARP to a null string if not given on the C0111-

mand.

15 The one SYSVAR which is not processed by this macro is SYSVAR '\V' which is processed at the end
of the formatting run by the DSM#\VRIT macro.

30 DCF: GIHL Starter Set Implementation Guide

4. SYSVAR 'R' specifics a me of cross reference IDs that is imbedded at the beginning of the
formatting run to help resolve forward references more correctly.

For the CMS and TSO environments, the DSivlUTREF file is defmcd to be thc file specified
with SYSVAR 'R'. This ftIe is then imbedded. The SYSVAR 'R' function is available only
in Cl'vtS and TSO. The name of the me varies, depending on the environment. See "Cross­
References" on page 147 for more details on the contents of this file and how the flie is used.

5. SYSV AR 'S' controls the colUlnn layout for the body of the document. This macro defines
&SYSVARS (style) to "one," "two" or "off" based on the value given on the command.
(SYSVAR 'C' is treated as synonymous with SYSVAR 'S' for compatibility with the starter
set in Release 1 of DCF.) The default is "one" for single column fonnatting.

6. SYSVAR 'T' controls whether or not the title page will be formatted and if so, whether it
w,ill be right aligned, left aligned or centered on the page. The macro defines &SYSVART
(title page) to "right," "no," "left," or "center" based on the value given on the command.
The default is "right."

7. SYSVAR 'X' controls whether or not the cross reference listing will be produced. The
macro defines &SYSVARX (cross reference) to either "yes" or "no" based on the value
given on the cOlnmand. The default is "yes."

DSl\I#SETV redefines a comment to reclaim its space in storage and to avoid reexecution on
a second pass. This technique is explained in "Special Techniques" on page 13.

DSM#SETS

DSMPROF3 calls the DSI\1#SETS macro to initialize the &date and &time symbols and to de­
fme symbols for literal text strings. DSI\1#SETS perfOlms the following processing:

1. Defmes all of the literals (text strings) used in the starter set except for those in the
DSl\tl#MSG macro. All of the text strings are collected here to facilitate changing them.

2. Sets up the &date symbol to be of the form January 22nd, 1985 as follows:

a. Puts the months of the year into the & * symbol array.

b. Puts the endings for 1st, 2nd, and so on, into a local symbol, & *s.

c. Calculates the position of the correct ending for the current day of the month.

d. Selects the ending (st, nd, and so on) froin the & *s sYlnbol.

e. Adds zero to the current day of the month to eliminate the possible leading zero16.

f. Adds zero to the current month to eliminate the possible leading zero16.

g. Builds the &date symbol using the month number as an index into the & * array that
contains the months of the year. The statement that sets the &date symbol resolves as
follows for the eighteenth day of the eleventh month:

.se date = t &-.'.&"kc &-.'·b. &-."a, 19&5YSYEAR

.se date = t &'k&-.',C &-.'·b. &';"a, 1983

.se date = t &-.'.&-.'.c &-.'·b. th, 1983

.se date = t &-"'&'kC 18th, 1983

.se date = '&"1>2 18th, 1983

.se date = 'November 18th, 1983

16 The day and the month will have a leading zero if they are less than 10. Performing arithmetic on the
value removes the leading zero so that "03" becomes "3."

Starter Set Initialization 31

3. Sets up the &time symbol to be of the form 10:30 a.m. as fonows:

a. Detemunes if the hour is less than twelve and sets the &*m symbol to "a.m .. " If the
hour is twelve or greater than twelve &*m is set to "p.m .. "

b. Eliminates the possible leading zero on the hour for .a.m. by adding zero to it. 16

c. Subtracts 12 from the hour for p.m. to convert it frOln 24 hour time to 12 hour time.

d. Sets the &tilne symbol.

4. This macro defines itself to "oW' to reclaim its space in storage. This technique is explained
in "Special Techniques" on page 13.

DSM#STYL

Column layout is defmed by the DSM#STYL macro. This macro is also called by DSl'vlPROF3
during initialization. It is called by DSMFRONT, DSMBODY, DSl\1APPD, DSlYIBACKM and
DSl\lINDEX to establish the column layout appropriate for each document section.

One parameter ("one," "two," or "oW') can be passed to the macro. The parameter determines
which of the 3 possible layouts will be set up. &SYSVARS, which defaults to "one," controls the
layout of the body section. The DSM#STYL macro is also called by DSMBACKlVl and
DSlVUNDEX for two-column layout regardless of the value of &SYSV ARS. Similarly, the
DSl\1FRONT macro requests one-column layout unless &SYSVARS is "offset," in which case
offset layout is also used for the front matter.

If no parameters are passed, the value of &SYSVARS is used as the parameter. DSM#STYL
does the following:

1. For one-column layout:

a. Sets &@rcl and &@rc2 to null. These syrnbols are used to establish the location of the
revision codes around headings. See "Revision Codes for Headings" on page 76 for a
detailed discussion of revision codes around headings. In the case of one-column for­
mat, no adjustInent needs to be made so the symbols are set to null. The symbols are
used in the APFs for heading levels two through four.

b. Sets &@fnl to O. This symbol controls the left indention for footnotes. In the case of
one-column layout no indention is desired.

The &@fn2 symbol controls the right indention for the footnote. It is set to zero be­
cause there is no right indention for footnotes. This symbol is always zero in the starter
set. It is provided exclusively to facilitate user modifications to footnotes.

c. Defines a single column starting ill position O.

d. Resets column liIle length to the current line length.

e. Resets the .RC [Revision Code] ADJUST control word to the default.

f. Heading level zero and one are aligned on the outside of the page if duplexing is active.

g. Branches around the offset style dcfmition to the footnote leader definition. See number
4. on page 34.

2. For two-column layout:

a. Sets &@rcl and &@rc2 to null. These symbols control the location of the revision
codes around headings. For two-colutnn layout the default location is used so these
symbols arc set to null. These sYlnbols are used in the APFs for heading levels two
through four.

32 DCF: GML Starter Set Implementation Guide

b. Sets &@fnl to O. This symbol controls the left indention for footnotes. Footnotes are
always formatted in one-column regardless of the column layout for the body of the
page.

The &@fn2 symbol controls the right indention for the footnote. It is set to zero be­
cause there is no right indention for footnotes. This symbol is always zero in the starter
set. It is provided exclusively to facilitate user modifications to footnote.

c. Defines two-columns by:

1) Calculating column line length by taking half of the line length minus the guttcr
space. The gutter amount is 4 spaces and is in the &@gutter symbol set in
DSl\1PROF3.

2) Calculating where the second column should start by adding the column line length
to the gutter.

3) Dcfining a two-column layout starting in position 0 and the position calculated
above.

4) Setting column line length. This \vill be 32 characters for line devices such as the
1403 and 3800 Printing Subsystem Model 1. For page printers, the column will be
approximately 3.25 inches \vide.

d. Resets the .RC [Revision Code] ADJUST control word to the default.

e. I-leading level zero and one are aligned on the outside of the page if duplexing is active.

f. Branches around the offset style definition to the footnote leader definition. See number
4. on page 34.

3. For offset layout:

a. Sets level zero and one headings to be left-aligned. This is necessary only if we have set
up two- or one-column fonnat when duplexing and then gone to offset style.

b. Sets level two through four headings to cause section breaks.

c. Sets vertical fonnatting to "top." 11lis is done because we can't vertically justify offset
style pages due to the nUInerous section breaks caused by headings.

d. Performs calculations to determine the starting position for the text column and the po­
sition of the revision codes. The calculations are done in both spaces and device units
because:

• Rounding errors can occur when calculating spaces for the 3800 Printing Subsystclu
~10del 1 in device units

• "VvT e need to perform the calculations in device units for page devices.

This is accomplished as follows:

1) Assumes we are calculating in device units and sets up a local sYlnbol for line length
(&*11) and for the revision code adjustment (&*two).

2) Tests to see if we are formatting for a 3800 Printing Subsystem Model 1 and if so
redefines the & *11 and & *two local symbols to be in spaces rather than device units.

3) Calculates the width of one-futh of the column-this will be the amount of offset.

4) Subtracts the offset from the line length value (&*11) to get the colurrm line length
value.

5) Defines a local symbol, & "'rc, to contain the revision code location. The revision
codes are supposed to go all the way to the left of the page. Since they are placed
relative to the beginning of the column, and we are going to offset the column, we

Starter Set Initialization 33

will need to move the revision codes to the left an aInount equal to the offset plus
2.

6) Defines a local syrnbol, & *fn, to contain the starting position for footnote text. In
offset style, footnotes line up with the text of the page.

7) Tests if we are formatting for a 3800 Printing Subsystem Model I and if not, resets
the & *rc aIld & *fn local symbols to indicate that the values set ,are in device units.

e. Defines the &@rcl sYlnbol to have a value of ".rc adjust. II This symbol is used in the
APFs for level two through four headings to reset the location of the revision codes to
the default value of two spaces to the left of the heading.

f. Defines the &@rc2 symbol to contain a value of" .rc adjust & *rc" which was calculated
above. This symbol is used in the APFs for level two through four headings just after
the heading control word is issued. It resets the revision code location relative to the left
Inargin of the column rather than relative to the location of the heading.

g. Sets &@fnl to line up with the text column. The &@fnl sYlnbol is used to create a left
indent for footnotes.

The &@fn2 symbol controls the right indention for the footnote. It is set to zero be­
cause there is no right indention for footnotes. This symbol is always zero in the starter
set. It is provided exclusively to facilitate user Inodificatiolls to footnote.

h. Defmes one-column ~hich starts one fifth of the way across the page. The space to the
left (roughly 1.2 inches) is used to outjustify headil1gs17. Column line length is set equal
to the difference between the offset amount calculated above and the line length.

1. Resets the .RC [Revision Code] ADJUST control word amount equal to the space to
the left of the text, roughly 1.2 inches 17.

4. For all layout fonnats, the footnote leader is defmed using a horizontal rule (.HR [Horizontal
Rule] control word). The rule name (@fnldr) and its length (&@fnldrlen) are both defined
in DSlVIPROF3. The footnote leader is defined to start at the position saved in &@fn1.
This lines the footnote up with the beginning of the text corresponding to the column layout
that has been established. I8

DSlVI#SET

DS1\lPROF3 calls the DSM#SET nlacro to initialize S0111e very useful symbols. It performs the
following functions:

1. Uses the &$PASS systeIll symbol to set the &@lastpass sY111bol to "y~s" or "no," respec­
tively. This variable is used primarily in cross reference processing to tell if this is the last
pass. The lines that defme the &@lastpass symbol are somewhat complicated so a detailed
explanation follows:

a. The &@lastpass symbol is set to one minus its existence, times the value of the
&$T\VO system symbol, times three, plus one. This "magical incantation" results in a
value of 4 for the flrst pass and a value of I for the second pass if the T\VOPASS option
was specified .

. se @lastpass = 1 - &E' &@lastpass -J~ &$1'\10 .'~ 3 + 1

17 Since the calculations are done in device units (the smallest amount of space the output device is capable
of moving) the exact amount of space will vary by device.

18 One of the implications of this is that if you use a .SC [Single Column Mode] control word to switch
from offset format to one-column format, the footnote leader and the footnotes will .not move out to the
left margin. To change column style and keep the footnotes lined up, this macro, DSM#STYL, should
always be used.

34 DCF: GML Starter Set Implementation Guide

When "T\VO" is specified on the SCRIPT command, this line resolves as follows on
the first pass

.se @lastpass == 1 - 0 ~'\ 1 ~': 3 + 1

.se @lastpass == 4

and as follows on the second pass

.se @lastpass == 1 - 1 i'\ 1 i'~ 3 + 1

.se @lastpass == 1

When T\VO is not specified on the command, this line resolves as follows on the first
(and only) pass:

.se @lastpass == 1 - 0 * 0 * 3 + 1

.se @lastpass == 1

Note: SCRIPT/VS evaluates arithrnetic expressions from left to right without regard for
operator precedence.

b. Finally, &@lastpass is set to either "yes" or "no" based on the calculation shown above.
The" 1" and "4" we calculated above refer to the position of the "yes" and "no" in the
substr argument shown below .

. se @lastpass == substr 'yesno' &@lastpass 3
1 4

2. Defines the &rbl symbol to be the required blank (&SRB).

3. Initializes various counters and strings.

a. The &@nest@l, &@nest@i and &@nest@q synlbols are all set to O. These are the
nesting level counters for lists, imbeds and quotations, respectively.

b. &@fig# and &@fn# are set to 1. These two symbols contain the number of the next
figure and footnote, respectively. They are incremented in the DSlVlFCAP and
DSlYIFTNT APFs.

c. &@state is set to "open." This sYlnbol is used to keep track of whether a footnote, list,
quotation, title page, e xarnp Ie , or figure has been started and not yet finished. During
initialization it is set to "open" to indicate that nothing has been started yet.

d. The &@sk@l symbol is set equal to &@sk@ls. This symbol controls the amount of
skip before and after lists. The default value of &@sk@ls, set in DS~lPROr3, is .75.

4. If cross referencing is in effect (&SYSVARX is "yes"):

a. Defines a macro named 1M to take over the function of the .Hvl [Imbed] control "vord.
The Il'vl macro calls the DSl'vlI1Vi macro, passing it the parameters on the control word
line.

b. Initializes the &@xref@d, &@xref@f, &@xref@h, &@xref@i and &@xref@n symbol
arrays to a comment (. *). These symbol arrays are used to produce the cross reference
listing. They are initialized to a comment just in case no IDs are used. If these symbols
weren't set to a comment and there were no ids defmed in the document, the SYlllbols
would be unresolved when they were printed by the cross reference listing lnacro. See
"Cross-References" on page 147 for details on how these symbol arrays are used in cross
referencing.

5. Initializes the symbol arrays used to write out the SYSVAR 'W/ fIle (&@writ@d,
&@writ@f, &@writ@h, &@writ@i, and &@writ@n) to a comment (. *) if SYSVAR '\V'
has been specified. This is done just in case no IDs are saved for writing out. See "Cross-

Starter Set Initialization 35

References" on page 147 for details on how these symbol arrays are used in saving the cross
reference information.

6. Defmes &@itl, &@it2 and &@it3 to null strings if indexing has been requested. This is
done to make sure that the symbols are not undefmed when they are used on a .PI [Put
Index] control word. The &$1 N D X system sYlnbol is < used to determine whether indexing
has been requested or not ..

7. Initializes the symbols used in the running heading and footing.

a. The &@sec variable is initialized to null. This symbol may contain the security classi­
fication of the document. It is used in the running heading and on the title page.

b. The &@stitle variable is initialized to null. This symbol is used in the running footing
and contains either the title of the document or the most recent level zero or one head­
ing.

c. The &@shead variable is set to "&@stitle." The &@stitle symbol contains the most
recent level zero or one heading or short heading. Its value is set up by the heading
APFs.

8. Undefines itself to reclaim its space in storage. This technique is described in detail in "Spe­
cial Techniques" on page 13.

Modifying Starter Set Illitialization
Many modifications can be made to the initialization process that will effect the formatting of
various elements throughout the document. A few of these are discussed below.

Creating Your Q'wn Profile and Epifile

Instead of modifying the DSl\1PROF3 proftle directly, you may want to create your own proftle
to use on the SCRIPT cornmand. In order to take advantage of the initialization performed in
DSl\tlPROF3 you would want to start your proftle by imbedding the starter set proftle. Follow
this with any of your own modifications.

Note: There is one exception: if you are going to override the line length (&$LL) used in the
starter set, do so Defore imbedding DSMPROF3. The reason is that before DSl\1PROF3 changes
the line length it checks to see if you have modified the line length and, if so, doesn't change it.
The page layout defined in the DSM#STYL macro called by DSl\:IPROF3 uses the line length.
If you were to change the line length after processing DSMPROF3, you would need to call the
DSl\tl#STYL Inacro again to reset the page layout. By changing the line length, then imbedding
DSMPROF3, you can avoid all this extra work.

To take advantage of the cross reference listing and imbed trace processing perfonned by the
epiflie in DSlVIPROF3, you would need to create an epiflie in your own profile. Your epifile is
invoked automatically by SCRIPT /VS at the end of processing. To process the epiflie in
DSl\tlPROF3, inlbed DSl\tlPROF3 again. Your proftle might look like this:

.11 70

. im DSHPROF3

. ef

.im DSHPROF3

The second imbed of the profIle causes the second portion of DSMPROF3to beprocess~d:

36 DCF: GiVIL Starter Set Implementation Guide

Changing the Fonnat of the Date

The fonnat of the &date sYInbol can be changcd to the fonn "18 November 1983" instcad of
"November 18th, 1983" by rearranging the local symbols in the OSM#SETS macro.

· se date = '&,'''b &,'"&·',,c 19&5YSYEAR

where

&*b

&*c

contains the day of the Inonth

contains the nUll1ber of the month

& >I< 1 to & >I< 12 contain the names of the months

The &*1 to &*12 symbols come into play when the &*c symbol is resolved to a number so that
& * & *c becomes & * 11 or whatever.

Since we are no longer using the & *a symbol which produced the date ending (th, nd, and so on)
we can also delete the lines associated with defining & *a which includes the line setting up the
&*s symbol.

Changing Default SYSVAR Values

The defaults for each of the SYSVARs are built into the processing in the OSlVl#SETV macro
which is described in "Starier Set Initialization" on page 19. For a detailed explanation of how
the SYSVARs are processed and how the defaults are set up, see "Special Techniques" on page
13.

For example, the default for SYSVAR '0' is "no" duplexing. If you wish to change this to de­
fault to "yes," change the second line of the n1acro from

· if &*a eq 0 .se *a = 1

to

· if &*a eq 0 .se *a = 4

You can change the default for most of the SYSVARs in exactly the same manner.

Setting a Prefix for Level One Headings

To set up a specific prefix for level one headings in the body simply activate a line that is com­
mented out in OSMPROF3:

· ,~. se @bodyheadl = 'Chapter

Set the symbol &@bodyheadl to the text you wish to use as the prefix, such as "Chapter" or
"Pari" and remove the comment:

.se @bodyheadl = 'Chapter

The logic to perform the prefixing is already built into the OSMHEAD I APF and the
OSNIBOOY APF. It is necessary to use a :BOOY tag to activate the prefixing because only level
one headings in the body can be prefixed.

Starter Set Initialization 37

Alternatively you can defme a symbol named LL@Chap in the DSM#SETS macro:

.se LL@Chap 'Chapter

and then use this as the value of &@bodyheadl.

.se @bodyhead1 '&LL@Chap

This is a better choice for setting &@bodyheadl than hard-coding the word "Chapter."

Changing the SYSV AR '''V' File N alne

The .DD [Defme Data File-id] control words that defIne the name of the SYSVAR W' file are
located in the DSM#\VRIT macro. There are several different .DD [Defme Data File-id1
lines-one for each of the environments in which you can use SYSVAR 'W'. Change the .DD
[Defme Data File-id] control word to the new name for the environment you are interested in.
For example, to change the filetype fronl DsrvlREFS to IDFILE in the CI'vIS environment,
change

. if &$8Y8 eq CM8 .dd dsmutwtf &8Y8VARW D8MREF8

to

. if &$8Y8 eq CMS . dd dsmutwtf &8Y8VAR\v IDFILE

The same file names are built in the .DD [Defme Data File-id] control words that defme the
SYSVAR 'R' file. These lines are located in the DSM#SETV macro where SYSVAR 'R' is proc­
essed .

. if &E' &8Y8VARR ne 0 . an &$8Y8 eq C~18
.th .dd DSMUTREF &SYSVARR dsmrefs *
.if &E'&8Y8VARR ne 0 .an &$8Y8 eq T80
.th .dd DSMUTREF dsn &SYSVARR .. DSMREFS
. if &$SYS eq CMS .or &$SYS eq TSO .an &E'&SYSVARR ne 0 . im DSMUTREF

It is iInportant that you change both the DSM#\VRIT and the DSlYl#SETV macros.

Changing Spacing and Indention Settings'

l\1any of the starter set tags involve spacing and indention functions. For example, a space is
skipped before and after a long quotation and it is indented 3 spaces on both the left and the
right. The amount of space skipped and the amount of indention are controlled by sYlnbols set
in DSMPROF3. By changing the value of the symbol you can change the atnount of space or
indention. The defaults are shown in Figure 5 on page 21. The symbols are set at the beginning
of the profile using .GS [GML Services] ARGS and .GS [G~1L Services] VARS control words .

. gs args 10 2 4 4 0 3 4 4 2 0

.gs vars @in@d @in@£ @in@z @in@o @in@p @in@q @in@s @in@u @in@x @in@g

To change the amount of indention for a long quotation to 4 characters all you would need to do
is change the "3" in the flrst line shown above, to a "4."

Changing the Rules Used for Figures

By default, flgures are framed with rules at the top or the bottom or both, depending on where
the flgure is placed. The rules are nonnally drawn in highlight font 2 or, for page printers, in the

38 DCF: GML Starter Set Implementation Guide

default rule. If a box is requested, it is also drmvn in highlight font 2 Of, for page printers, the
default rule.

If you are using a monospaced body font and a proportional bold font for the 3800, this can
create problems. You will need to change the font used to draw rules and boxes because
SCRIPT/VS cannot use both kinds of fonts simultaneously. To do this you need to activate the
.DR [Defme Rule] control word that is in the profile .

. dr @figrule

The @figrule rule name is specified on both the .HR [Horizontal Rule] control word line and
.BX [Box] control word line in the APF for :FIG. However, because of the way in which the
@figrule rule is defmed (that is, with no paranleters specified) it will use the default rule for page
printers and 'will use the current font for the 3800 Printing Subsystern l'v10del 1. \Ve change to
highlight font 2 before printing the box which produces bold rules on the 3800 Printing Subsys­
tenl Model 1.

By specifying a definition on the .DR line in the profile you can change the rule that is drawn.
For example, to draw the boxes and rules in the body font for the 3800 change it to

.dr @figrule font &$CHAR(l)

To change it to a slightly thicker than norrnal rule for page printers, change the rule definition to:

.dr @figrule weight .4mm

Both the font and weight parameters can be specified simultaneously on the .DR [Defme Rule]
control word. If both are specified, SCRIPT /VS will usc the one that applies to the device that
we are formatting for.

.dr @figrule weight .4mm font &$CHAR(l)

If you specify both \VEIGHT and FONT on the .DR [Defme Rule] control word, and you are
using &$CHAR(2) as the font value, be careful to put the WEIGHT parameter first. This is
necessary because when you format for a page printer the value of &$CHAR(2) may well be null
which will cause an error on the .DR [Defme Rule] control word line unless it is at the end of the
line.

Changing Fonts for Figures

The starter set figures do not perforrn a font change for the body of the figure. For page printer
output, you may wish to have figure text set in a monospaced font (as we have done in this
book), depending on the content of the figure. To accOtnplish this all you have to do is, activate
the font defmition for the "figfont" font in DSl\'1PROF3.

For exarnple, change

.*df figfont

to

.df figfont type('prestige elite')

The initial defmition is commented out, which will cause figure text to be set in the default font.
You may specify any font on the .DF [Defme Font] control word. The font is started by the
DSMFIG macro and the previous font is restored by either the DSI\'1FCAP, DSl'vlFDESC or
DSMEFIG macro, whichever is processed ftrst.

Starter Set Initialization 39

Note: There are two different "figfont" font defrnitions-one for the 4250 printer and one for the
IBM 3820 Page Printer and 3800 Printing Subsystem Model 3. You tnay want to change both of
these or just one.

Changing Font Definitions

All of the fonts for the starter set are defIned in the proftle. You can change the defInitions by
changing the .DF [DefIne Font] control word line. You might want to refer to the description of
the .DF control word in Document Composition Facility: SCRIPT/ VS Language Reference before
doing this. Notice, however, that the fonts are defmed differently for each logical device. For
some devices the font definitions are further refmed to be based on the number of fonts that were
specified on CHARS as well as the device.

For example, suppose you wanted to use a bold body size font for the running headings and
footings when fonnatting for a page printer. The default is to use a 9-point bold italic font for the
heading and a 9-point bold font for the footing:

.df @rh type(bold italic 9) up

.df @rf type(bold 9)

You could simply change these lines in DSl\1PROF3 to:

.df @rh type(bold)

.df @rf type(bold)

The proftle, however, does not defme what typefaces to usc for the 4250 printer or for the 3800
Printing Subsystem Model 3. The typeface is set by the default font or by what is specified with
the CHARS option on the SCRIPT command. The default typeface is IYlonotype Times New
Roman19 for the 4250 printer, unless it has been changed by your installation. For the 1131\1 3820
Page Printer and 3800 Printing Subsysteln Ivlodel 3, Sonoran SeriF° is the default typeface.

You Inay override the default font by simply specifying a different font on the SCRIPT command
with the CHARS option. However, the starter set font definitions for page printers are set up
based on an assumption that the initial font is a typographical font which comes in many sizes
and stylcS.21 If you specify a typewriter font or some other font which does not come in the full
set of sizes and styles, you may get some SCRIPT/VS error messages regarding fonts.

Creating a N e\v Highlight Level

The starter set provides three levels of highlighting (:HP 1 through :HP3). This may not be
enough, especially if you are using a page printer. To create a fourth level of highlighting you will
need to do several things to create a new tag named :HP4.

1. Map the :HP4 tag to an appropriate APF .

. aa hp4 dsmhp4 (noatt) dsmehp

\Ve can use the same APF for the end tag as all the rest of the highlight tags -DSIYIEHP
because all this APF does is a .PF [Previous Font] control word and that's all we will need
to do here.

19 Trademarks of The Monotype Corporation, Limited.

20 Data derived under license from The Monotype Corporation, Limited.

21 For the 4250 Printer, the Excelsior typographical font does not contain any bold italic versions, al­
though it does come in a full range of pointsizes. This means that it can not be used as the default font
for the starter set unless some modifications are made to the font definitions in the profile.

40 DCF: Gi\UJ Starter Set Implementation Guide

2. Define a hi4 font for all devices that it applies to .

••• 38PP
.df hi4 type(apl 10) codepage t1s0ae10

... 4250

.df hi4 type('light italic' italic) codepage aftc0293

These lines defme hi4 to be the APL font (named "light italic" for the 4250 printer and
"APL" for the IBM 3820 Page Printer and 3800 Printing Subsystem Model 3). The
pointsize for the highHght font will come fronl the current font. The APL font only comes
in a few selected sizes which could result in an error message if it is used somewhere other
than in body text. The codepage names (AFTC0293 and TlSOAElO) also must be specified
because the APL fonts use a different codepage arrangement than the normal text fonts.
These codepages will not work with the text fonts which means that it is important to either
redefme all of the text fonts to specifically use the correct text codepage or to always start and
end the APL highlight font without nesting any other fonts inside of it.

3. Write a new APF named DSl\1HP4 to process the :HP4 tag .

. bf hi4 =

By putting the equal sign on the end of the .BF [Begin Font] control word line you instruct
SCRIPT /VS to restart the current font whenever the hi4 font isn't defmed or can't be statted.
This allows you to format to all devices without getting an error message and a real font
change will occur only for the page printers.

Modifying the Running Heading or Footing

One of the most common modifications that is made to the starter set involves changing the run­
ning heading or footing. The defmitions for the heading and footing are in DSMPROF3. One
way to override these definitions is to create you own profile that imbeds DSIVIPROF3 and then
redefines the running heading and footing in your profIle. You could also modify the profile (or a
copy of it) directly.22'

Within the running heading and footing defmitions you may perform almost any processing you
wish. Consult the Document Composition Facility: SCRIPT/ VS Text Programmer's Guide for
more information about headings and foo,tings.

For the starter set the heading and footing defmitions are the same for the entire document. De­
pending on your application you may find it necessary to vary your running heading or footing
according to what section of the body you are in. You will have to redefme the heading and
footing to be a fllllction of the document section. You will have to add the defmitions to the
DSMFRONT, DSNIBODY, DSI\1APPD, DSMBACKM and DSMINDEX macros. This way
each of the definitions can be tailored to the document section. The basic running heading and
footing defmition should remain in the profile and should reflect the style chosen for the body of
the docunlent. TIllS is recommended because when documents are created without any front
matter users rarely use the :BODY tag. In these cases you would want the profile to defme the
body style for running headings and footings.

22 The GfvIL starter set is a fully supported part of the Document Composition Facility program product
provided that neither the profile nor the macro library have been modified in any way. \Vhat this
means is that you should be careful to not alter the base version of these files but rather should make
your own copies or user libraries.

Starter Set Initialization 41

Changing the Page Dinlensions

SCRIPT /VS has built into it a set of page dimensions that are a function of the logical device you
are fomlatting for. The starter set, with the exception of the line length and COlUnlI1 line length
paralneters, does not alter these dimensions in any way. The page margins will be a function of
either the default bind for the device or the value of the BIND option on the SCRIPT command.
The page width will be the default page width for the logicial device, as will be the top and bot­
tom margins for the page. You can fmd out more about the page dimension specifications in the
Document Composition Facility: SCRIPT/VS Text Programmer's Guide.

Line length and column line length in the starter set are nlodified depending on the column layout
(style) of the document. For one-column style, the default line length is used and column line
length defaults to line length. For two-colunm and offset style the line length is lengthened to 6.8
inches in DSMPROF3. ColUlnn line length is then set in the DSl\1#STYL macro to provide two
short columns or an offset one.

To change line length you can either modify the profIle or create your own proftle that modifies
line length before imbedding DSIV1PROF3. See "Creating Your Own Profile and Epiftle" on
page 36 for lllore details on doing this.

Modifying column line length for two-column or offset style involves modifying the .CL [Column
Line Length] control word line in the DSM#STYL rllacro. For two-colunln style you can also
control the width of the gutter between the column by changing the value of the &@gutter sym­
bol that is defIned in DSMPROF3.

Creating Three COIUIlUl Fonnat

The starter set provides easy access to one-column, two-column and offset style colUInn layouts.
If we want to create a three column layout we will need to make some decisions about how it
should look and then modify the DSM#STYL macro. For example, suppose that we wanted to
create columns that were 2 inches wide with a gutter of .4 inches between each of them. This
happens to coincide with a line length of 6.8 inches which is also the line length the starter set
uses for two-colUInn formats. Suppose additionally that we wanted to be able to specify on
SYSVAR 'SI that we wanted three columns. This means that we will also need to 1l10dify the
DSl'vl#SETV macro which is the macro that processes the SYSVARs. \Ve will have to lllodify it
to recognize a value of "three."

Let's do this fust, since it's easier. SYSVAR 'S' is currently processed by the following lines in
DSl\/l#SETV:

.se *a = index '-1---2---0FFSET-ONE-TWO-' '-&U'&SYSVARS.'
· if &*a eq 0 .se *a = 1
· se SYSVARS = substr 'one two off one two' &"i'.-a 3

These lines are explained in "Special Techniques" on page 13. The ftrst line detennines what the
value of SYSVAR 'S' is. The second line sets up a default value of" 1" if SYSVAR 'S' either was
specified or was invalid. The third line resets SYSV AR 'S' to a standard lower case value that
will be easy to test elsewhere in the starter set macros.

We \vi11 need to include "THREE" and "3" in line 1 as valid values.

· se "i'.-a = index '-1---2-~-3---0FFSET-ONE-TI10-THREE' '-&U'&SYSVARS. t

Next \ve \vill have to include "thr" in the third line as a standard value for SYSVAR 'S'. \Ve had
to use "thr" instead of "three" because we were using only the ftrst three letters of each style as
the new value .

. se SYSVARS = substr 'one two thr off one two thr' &*a 3

42 DCF: Gl\'1L Starter Set Implementation Guide

Notice that we had to add the "thr" to the third line in the same relative positions that we put
"3" and "THREE" in the fIrst line.

The next part of the modification involves modifying the DSM#STYL macro to include a section
for defining the three column layout. The lines to do this will be veIY similar to the lines used to
set up two-column fonnat. The label that precedes the section will be "thr" because we will get
there by branching to a label whose name is in &SYSVARS.

· if &L' &';\'1 eq 0 I. go &SYSVARS
· el . go &,;'''1

The control word lines in the "thr" section should go after the end of the processing for two
colUInn fonnat and should look like tlus:

... two

· go fnldr
... thr
· gs ar gs t, , , 0 0
.gs vars @rel @re2 @fnl @fn2
.ed 3 0 2.4i 4.8i
· el 2i
· if &SYSVARD eq yes .dh 0 outside
.th .dh 1 outside
· go fnldr

This is exactly the same as the lines used to set up two-column except that we've dropped the
calculation for the column line length and the COlUIIDl position. \Ve've hard coded these instead.

Other lVIodifications to the Profile

You can modify just about anything in the proftle. That's why the proftle is there. Some of the
other modifications that you can make include:

• Changing the heading defInitions which is discussed in "Modilications to Headings" on page
82

• Changing the default fIgure placement and width \vluch are described in "l\10difications to
Figures and Examples" on page 122

• Changing the defInition of the footnote leader which is discussed in "Modifications to
Quotes, Notes) Footnotes and Highlights" on page 134

• Changing list item identifIer defmitions which is discussed in "Modilic~rtions to List
Processing" on page 1 08.

Sta.rter Set Initialization 43

Title Page

OvervielV
There is a set of macros that handles the tags to defme and create the title page. Only the
:TITLEP tag and the :ADDRESS tag23 are associated with their respective APFs in
DSMPROF3. The APFs for the :TITLEP tag enables the rest of the tags used to create the title
page. The actual title page is fonnatted by DSM#TIPG which is called frOln the DSMETTLP
APF.

Here's how a typical title page would look:

Document Conlposition Facility:
GML Starter Set

Implelnen~tion Guide

January 22nd, 1985

Me & lVly Shadow

Sun In Sand
Arizona

Figure 9. Sample Title Page: TIlis is a sample of what the default title page for the starter sel looks
like. The default formatting is to align the text on the the right hand side of the page.

23 The :ADDRESS tag is enabled in DSMPROF3 because it can appear other than on the title page.

Title Page 45

The APFs described here are for the following nine tags, which together describe a title page:

: TITLEP
: TITLE
: AUTHOR
: ADDRESS

: ALINE
: EADDRESS
: DATE
: DOCNUM

: ETITLEP

\Vith the exception of the APFs for the :TITLEPand :ETITLEP tags all of the APFs for these
tags save the residual text for processing later. This is why the title page appears the same, regard­
less of the order in which the individual tags are entered. This is also what makes it so easy to
add pieces of infonnation to the title page. See "Modifications to the Title Page" on page 52 for
details about how to do this.

Initialization
During initialization, which is described in detail in "St31ier Set Initialization" on page 19, several
things are done to allow the title page to be fonnatted correctly.

DSlVIPROF3

DSl\lPROF3 maps the :TITLEP and :ETITLEP tags to the DSrYITTLEP and DSlVIETTLP
APFs, respectively. The :ADDRESS and :EADDRESS tags are also mapped to the
DS~lADDR and DSlVIEADDR APFs, respectively. All other tags are enabled later.

The running heading is defmed in DSrv1PROF3 and uses the &@sec symbol. The &@sec syrn­
bol contains the security classification as entered on the SEC attribute of the :GDOC tag. This
symbol is also used on the title page.

DSlVl#SETS

The DS:Yl#SET macro defines symbols including &date and &LL@DocNm ("Document Num­
ber") that can be used on the title page.

DSIVI#SETV

The DS~l#SETV macro processes the system variables (SYSV ARs) given on the SCRIPT COln­
mand. '1\vo of these systenl variables arc relevant to the title page:

1. SYSV AR 'D': Indicates whether or not the document is to be duplexed. It is not directly
used by the title page macros, but the setting of SYSV AR 'D' affects how the value of the
STITLE attribute of the :TITLE tag is used.

If duplexing is in effect, the short title given OIl the STITLE attribute is used in the running
footing on even pages. If we're not duplexing, the short title appears in the running footing
only when there has been no level zero or one heading entered.

2. SYSV AR 'T': Indicates whether or not the title page is to be printed, and, if so, whether or
not it should be left, right, or center aligned on the page. The value of the &SYSVART
sYlnbol is set to "right," "center," "left," or "no."

46 DCF: Gi\lL Starter Set Implementation Guide

If SYSV AR 'T' is not specified on the comnland, the default is to print a title page right
justified as in Figure 9 on page 45. See "Modifying Starter Set Initialization" on page 36 for
details about how to modify this default setting.

Title Page Tag Processing

DSMTTLEP

The DSMTTLEP APF processes the :TITLEP tag which is always the first tag for the title page.
It establishes the enviromnent for the title page structure as follows:

1. The &@state symbol is set to "TtlPg" to indicate that a title page is being defIned. This
symbol is used repeatedly to determine if we are still within the title page structure defmed by
:TITLEP and :ETITLEP.

2. The title page tags are mapped to the appropriate APFs (:AUTHOR to DSIvIAUTHR,
:DATE to DSMDA TE, :DOCNUM to DSMDCNUIvI and :TITLE to DSl\1TITLE).
These tags are valid only within the title page structure.

3. Various title page symbols and symbol arrays are initialized:

a. &@addctr array for counting addresses

b. &@author array for saving the authors' names

c. &@address array for saving the names of the address arrays

d. &@docnum for saving the document number

e. &@docdate for saving the docUInent date

f. &@title array for saving the document title lines.

These are initialized to null values in case the user does not specify them. If this is not done,
the symbols will appear unresolved on the title page rather than as null (nothing).

DSMTITLE

The DSlVITITLE APF processes the :TITLE tag. l'v1ultiple :TITLE tags can be used to enter
multiple lines of the title, but only one should have an STITLE attribute on it. The DSl\:lTITLE
APF performs the following processing:

1. Saves the residual text of the tag as the next clement of the &@title alTay, which will be
printed on the title page.

2. Changes the symbol array separator to a blanl<. because we may put the entire contents of the
&@title array into the &@stitle symbol for use in the running footing.

3. Detennines whether or not &@stinit exists. &@stinit will exist only if an STITLE attribute
was specified on a previous :TITLE tag. If &@stinit does not exist, no short title was found
on a previous :TITLE tag.

If there is no short title, we'll need to use the full title. So we'll set &@stitle to the entire
&@title array using a blank as the array separator. If tIllS tag or a subsequent tag has an
STITLE attribute, &@stitle will end up getting reset to the short title.

4. Calls the DSM@STTL macro to process the STITLE attribute, if it is present. This resets
&@stitle to the attribute's value.

Title Page 47

PSM@STTL

Tpc DSM@STTL macro processes the STITLE attribute of the :TITLE tag. It is called by the
DS1VITITLE APF only if the STITLE attribute is present. The value of the attribute is used in
the running footing for even pages, if duplexing, and for all pages if no level zero or one headings
are entered. DS1Vl@STTL does the following:

1. Sets &@stinit to 1 to indicate that a short title attribute has been entered. This symbol is
used by the DSMTITLE APF to determine if an STITLE attribute was specified.

A separate variable (&@stinit) is required to indicate the existence of a short title because the
&@stitle variable must always exist. It was set to a null value in the DSlVl#SET macro
during initialization to prevent errors in the running footing if there were no STITLE attri­
butes or :TITLE tags. The DSMTITLE APF also sets &@stitle in case there is no STITLE
attribute.

2. Saves the attribute value in the &@stitle symbol.

It is possible to have more than one :TITLE tag. Hopefully, only one of them will have an
STITLE attribute. If there is more than one STITLE, they will all get processed, but the
value of the last STITLE is used.

DSlVIDATE

The DS1VI0ATE APF processes the :DA TE tag. If there is residual text on the tag, it means that
the user has supplied his own date rather than used the processing date. In this case the residual
text is saved in the &@docdate symbol and is also put into the &date symbol.

If there is no residual text, the current date (&date) is put into the &@docdate symbol, which will
be printed on the title page. The current date was defmcd in OS1Vl#SETS during initialization.

Either way, &@docdate and &date end up the same if the :OATE tag is used.

DSlVIAUTHR

The DSI\1AUTHR APF processes the :AUTl-IOR tag. It saves residual text as the next element
of the &@author array, which will be printed on the title page. Since an array rather than a
simple symbol is used, more than one :AUTHOR tag Inay be use.

DSMADDR

The DSrvlADDR APF processes the :ADDRESS tag. Because this tag can appear on the title
page or in text, two different processes are required. DSrvlAODR does the following:

1. tv1aps the :ALINE tag to the DS:vlALINE APF. This tag is not really valid or necessary
when an address is being formatted inline with text rather than on the title page. The map­
ping is done anyway to prevent the user from getting an error message if he forgets tlus and
uses the :ALINE tag for an inline address.

2. Uses the .GS [GIVIL Services] SCAN control word to obtain the residual text. If there is
residual text, it is considered to be the ftrst line of the address.

3. Chccks the &@state symbol to dctermine if a title page is currently being defrned.

If we are on the title page, an array is set up for each address. The name of the array is
&@aline&@addctr where &@addctr is incremented each time we encounter an :ADDRESS
tag.

48 DCF: G:\fL Starter Set Implementation Guide

&@addctr.---,
V

&@aline1(7\-)

&@address() J> Joe Smith
100 Avenue A

; . sp; &aline1(~I\,) Any town , USA
; . sp; &aline2(~I\,) -
; . sp; &aline3(~I,,)

&@aline2("''')

~> Susie Smith
110 Avenue A
Any town , USA

Figure 10. The Format of the Address Arrays

a. &@addctr is incremented for each address, so the [lIst address will be put in an atTay
named &@alinelO, the second will go into &@aline20, and so on. See Figure 10 on
page 49.

b. The array is undefmed first (set "off') to get rid of any previous address.

c. The name of the array, preceded by a .SP [Space} control word, is saved in the
&@addressO array that \vill be printed by DSl\1#TIPG when the :ETITLEP tag is en­
countered. The .SP [Space} control word generates a blank line between each address on
the title page.

d. Any residual text from the :AD 0 RESS tag is put into the [lIst element of the
&@aline&addctr array.

4. Formats the address as a simple compact list, if the :ADDRESS tag is found outside of the
title page. This is done as follows:

a. Skips &@sk@s (set by DSl'vlPROF3 to .75).

b. Saves the current environment because we're going to change the fonnatting mode and
we don't want to have to specifically restore it.

c. Turns formatting off \\lith .FO [Format l'vlode] OFF. This means that each input line
that follows, before the :EADDRESS tag, will becOIne an output line. This is what
makes the :ALINE tag unnecessaty for inline addresses.

d. Indents + &@in@s, which is set in DSMPROF3 to 4. \Ve are using an incremental
indention value rather than an absolute value because we have no idea whether there is
any CUtTent indention or not.

e. Begins a keep if &@state is "open," indicating the middle of open text rather thatl in a
figure, a list, a footnote, and so on. If this is not open text, a keep should 110t be started
because there is probably a keep or float already in progress. Starting a keep \vithin a
keep causes the user to get an error message.

Title Page 49

f. Exits the macro here, if there was no residual text. Otherwise, the residual text is for­
matted in literal mode. Literal mode is used so that initial periods and selm-colons are
treated as punctuation marks, rather than special delimiters for control words.

DSlVIALINE

The DSMALINE APF processes the :ALINE tag as follows:

1. This tag is not necessary outside of the title page. If we are not currently defming a title page
(&@state is not "TtlPg"), the macro ends because there is nothing to do. The residual text
is fOlmatted in format "off' mode by SCRIPT /VS as a simple list. The environmental
changes to do this are set up by the DSMADDR APr. See number 4. under DSMADDR
for details.

2. If we are on the title page (&@state is "TtlPg"), the residual text is saved in the next element
of the current address array (&@aline&@addctr).

DSMEADDR

The DSMEADDR APF processes the :EADDRESS tag. It ends the address section as follows:

1. Remaps the :ALINE tag to the DSM#CNTX APF because :ALINE is not valid outside of
an address structure.

2. Ends the macro here if the address is being defmed for the title page (&@state is "TtlPg").

3. Ends the keep if we're not on the title page and the address is being fomlatted in open text
(not in a figure, footnote, or example).

4. Restores the fonnatting environment.

5. Performs a conditional skip.

DSlVIDCNUM

The :DOCNUl'v1 tag is processed by the DSl\'IDCNUM APF which saves the residual text in
&@docnum, which will be printed on the title page.

DSM@SEC

This macro is not really part of the title page macros, but is included here because it saves the
security classification attribute value in the &@sec symbol that is used on the title page. It is
invoked by the DSl'vlGDOC APF to process the SEC attribute of the :GDOC tag if it is present.

The security classification (&@sec), if entered, appears highlighted on the title page. It is also put
into the running heading.

DSMETTLP

The DSMETTLP APr processes the :ETITLEP tag. It ends the title page defmition as follows:

1. Checks to see if a title page is currently being defined as indicated by &@state. If we're not
in a title page stlucture, a message is issued that a title page end tag was found outside of the
title page and the Inacro ends. ,

2. Sets &@state to "open" to indicate that there is no current special structure being defined.

50 DCF: Gl\'fL Starter Set Implementa.tion Guide

DSHETITLE APF

: etitlep. ------>1 .#dsmtipg /---> 1 DSMtlTIPG

Figure 11. Producing the Title Page

3. Calls the DSl\1#TIPG macro to fornlat the title page unless the value of &SYSVART is
"no" indicating that no title page is wanted.

4. Remaps the :AUTHOR, :DATE, :DOCNUM and :TITLE tags to the DSl\,I#CNTX APF.

Producing the Title Page

DSM#TIPG

The title page is formatted using the information saved by the title page APFs described above.
Because all of the variables we're going to use on the title page were initialized to null by the
DSl\ilTTLEP macro, we don't have to worry about whether or not the user specified them. If
they weren't specified, they will appear as null (or nothing).

Each of the pieces of information that goes on the title page has a special font defmed for it for
page printers. The font definitions are all in DSl'v1PROF3. In most cases, there is no cOlnparable
font change that we can do for a line printer, so we keep restarting the current font. DSM#TIPG
performs the following processing:

1. Suppresses running headings and footings as these would be unde.sirable on a title page.

2. Performs a conditional page eject with a .cr [Conditional Page Eject] control word because
we want an entire new page for the title page.

3. Saves the cunent formatting environment.

4. Resets the line spacing ranges (.LS [Line Spacing] control word) for expansion and com­
pression for vertical justification to 1.0. In other words, we have turned off vertical justifica­
tion by eliminating the ranges on the .LS [Line Spacing] control word. The original ranges
were established in the profile.

5. Establishes a single COlUilll1 page layout. \Ve did not use the DSlVl#STYL macro because it
would have done more than \ve wanted. All we needed to do was use the .SC [Single Col­
umn Mode] control word to get the desired results.

6. Turns off spelling checking because there might be some unusual things on the title page.
The text will have already been verified when the tags were fITst encountered.

7. Turns off hyphenation because we wouldn't want anything to be hyphenated on the title
page.

8. Restores the control word separator to the default setting (;) with the .DC [Defme Character]
C\V control word. \Ve constructed the &@address anay using a semicolon as a control
word separator and we need to nlake sure that's what it is when we process the array. See
Figure lOon page 49 for a example of what the &@address alTay looks like. \Ve won't need
to worry about setting it back to whatever it was before this because we are going to restore
the entire environment when we're all done.

Title Page 51

9. Uses the value of &SYSVART, which can be "right," "left," "center," or "no" as the .FO
[Fonnat Mode] parameter to set up the formatting mode .. FO [Fonnat Mode] NO wouldn't
work but we don't need to worry about this combination because we won't get this far if
"no" was specified.

10. Leaves two inches of space at the top of the page before the title.

11. Changes the symbol array separator to cause a break between the elements in the numerous
title page symbols. This is done in two steps because the array separator is limited to four
characters:

a. The &@ symbol is set up to be a .BR [Break) control word.

b. The characters used to construct the symbol are used as the array separator. This is
equivalent to setting the array separator to ";.br;", but we cannot set it directly because
we can only use four characters.

12. Changes to the title font or the highlight level 2 font, if the title font is undefmed.

13. Increases line spacing to some factor of nonnal. The factor is in &@ttllo which is set in
DS~1PROF3 to be 1.2. The reason we increase the line spacing here is that on page printers
when a large font is used, as is the default on the title page, the line spacing appears to be too
small. By increasing the line spacing by 200/0, greater line separation is achieved. The factor
of 1.2 rounds down to 1.0 on line devices, so there is no conflict between devices here.

14. Fonnats the entire title array. Each element of the &@title array contains one line of the
title of the document. All we want between them is a line break. This is why we defmed the
array separator to be a .DR [Break] control word.

15. Resets line spacing and restores the previous font. Two inches of space is skipped.

16. Fonnats the following synlbols and arrays with extra space between each one. Each one has
a special font for use on page printers and the current font is used for other devices. The
symbols and arrays are:

a. Document number (&@docnum) preceded by the words "Document Number"
(&LL@DocNm)

b. Document date (&@docdate)

c. Author array (&@author(*))

d. Address array (&@address(*)). Each element in the &@address array is the name of an
array that contains a set of address lines. See Figure lOon page 49 to see exactly what
it will look like.

e. Security classification (&@sec). This is printed in literal mode for one line to protect
against semicolons getting treated as control word separators, and so on.

17. Restores the previous formatting envirorunent along with the rullIling heading and footing.
\Ve have saved and restored the environment because we've changed things like the format­
ting mode, the array separator, and the control word separator, and we do not want to have
specifically reset them all. It is easier to restore the whole envirorunent.

18. Undefmes the macro. This has the effect of reclaiming the storage that has been used to hold
the macro lines. We do this because the DSM#TIPG macro is only used once. See "Special
Techniques" on page 13 for a full explanation of this technique.

52 DCF: Gl\1L Starter Set Implementation Guide

Modificatiolls to the Title Page

Changing Default Title Page Formatting

Like everything else in the starter set, there are many things that can be modified for the title
page. You can modify the default value for &SYSV ART from right justified to centered. This
requires a simple modification to DSM#SETV and is described in "Modifying Starter Set
Initialization" on page 36.

Changing Spacing

Another possible modification is to change the spacing between the various elements on the title
page. This requires changing the space unit values on the .SP [Space] and .SK [Skip] control
word lines in the DSM#TIPG macro.

Adding a Box

To put a box around the title page, we need to add a .BX [Box] control word at the beginning of
the DSM#TIPG macro to start the box. We can create the box in the first and last positions of
the line and indent the text for the title page to make sure that it will not overlap the box.

We don't know if the text will be formatted on the right or left. \Ve can either indent both sides
with .IN [Indent] and .IR [Indent Right] control words or we can test &SYSVART to figure out
which side it will be on and then adjust only that side. It's much easier and quicker to adjust
both sides.

Here are the lines we would need to start the box:

.bx left right
· in 2
· ir 2

These three lines should be added to the DSM#TIPG macro right after the .CP [Conditional
Page Eject] control word at the beginning of the macro.

Then we need to close the box at the end of the DSM#TIPG macro-just after .SK 3, following
the security classification. We can use the &$LC system symbol to calculate how much space is
left before the bottom of the page. The &$LC sYlnbol gives us an approximation of the nUlnber
of lines left on the page. Because we'll want to put one more line on the page (the end of the
box), we'll want to space down to one less than the number of lines left.

However, &$LC isn't always totally reliable because sometimes lines are partially processed and
we think they are already on the page, but they haven't been counted yet and won't be reflected
in &$LC. In this case, if we do a break we can use &$LC fairly reliably. The break causes any
lines that are partially processed to be completed.

Here are the lines we would need to close the box .

. br

.se *a = &$LC - 1
• sp &7>'a
.bx off

We have calculated how much to space (& *a), spaced that amount and then ended the box.

Title Page 53

Adding Existing Infornlation

Adding information that already exists to the title page is very easy because of the way the title
page is formatted. Suppose that we wanted to add the time to the page. This one is particularly
easy because the infonnation we want is already available in a syrnbol (&time). All we would
need to do is decide where we wanted it and add it to the DSM#TIPG macro along with another
.SP [Space] control word to leave space around it.

You might also want to select a font for the time information if you were formatting for a page
printer. In this case we would need to also add .BF [Begin Font1 and .PF [Previous Font] control
words to the DSM#TIPG macro and defme the font in DSMPROF3.

Adding N elV Infonnation

Suppose we wanted to add an entirely new piece of information, such as a reviewer's name pre­
fixed with the word "REVIEWER:." \Ve would need to create a whole new tag. This involves
the following steps:

1. Pick a tag name (:REVIE\VER).

2. Add it to DSMPROF3 mapped to the DSM#CNTX APF because we don/t want it used
except on the title page .

. aa reviewer dsm#cntx (noatt)

3. Create a symbol called &LL@revwr in the DSM#SETS macro and set it to "REVIE\VER:."

.se 11@revwr = 'REVIEWER:

\Ve'll use this literal to prefix the text of the tag. \Ve could just as easily use the actual word
instead of a symbol, but because all the other literal strings are kept together in one macro,
we should continue tlus practice.

4. Enable the :REVIE\VER tag in the DSlVITTLEP APF by mapping it to a APF named RE­
VIE\VER .

. aa reviewer reviewer (noatt)

5. Disable the :REVIE\VER tag in the DSlYIETTLP APF by mapping it back to the
DSlY1#CNTX APF .

. aa reviewer dsm#cntx

6. \Vrite an APF named REVIE\VER and add it to the mac1ib. (See "Appendix A. lYIodifying
the IV1acros" on page 171 for more details on how to do this.) The APF only needs to be
one line long:

.gs scan @reviewr

This will save the residual text in a symbol named &@reviewr.

7. Add the lines necessary to format the reviewer infofll1ation to the DSM#TIPG macro. This
involves testing if the &@reviewr symbol exists. If it does not, the sYlnbol was not set and
we don't want to print it. If the symbol has been set, we want to print it with the word
"REVIE\VER:" before it .

. if &E'&@reviewr eq 1 &11@revwr &@reviewr

.sp 2

54 DCF: G;\tL Starter Set Implementation Guide

This allows for a single reviewer's name on the title page. What would we need to do to handle
more than one reviewer? First of all we would have to create another literal constant which
would be "REVIE\VERS:" in DSM#SETS

· se L~revws = 'REVIE\>lERS:

so we could label theln properly. We would still want the other symbol ("REVIE\VER:") in case
we only had one name.

Then we would need the REVIEWER APr to scan for the residual text and put it into a local
symbol. Then this symbol is used to set up the next element of the &@reviewr array.

· gs scan ?'>-name
· 'se @reviewr() = '&·"name

The last thing we need to change is the DSl\tl#TIPG macro. It would need to test element zero
of the &@reviewr array to see how many names we have. If it is one, we would use the literal
constant that represents REVIE\VER:. If it is greater than one, we'd need the plural constant,
REVIE\VERS:.

· if &@reviewr(O) eq 1 &L~revwr. &@reviewr(l)
· if &@reviewr(O) gt 1 &L~revws. &@reviewr("':)

It might also be necessary to consider the amount of space that would nornlally be used here. It
might be a good idea to reduce the blank space in other parts of the page to prevent the text of
the title page from routinely exceeding a page.

Printing Two Dates

Another modification that you might want to do is to print both the current date and any docu­
ment date the user might have specified.

\Ve want the current date to be preceded with "Fomlatted on" or "Printed on" and we \vant both
dates available to users in a symbol. \Ve are going to have to do the following:

1. Create a symbol in DSM#SETS with the text we want.

.se L~Prnt 'Printed on

2. Modify the date APF (DSl\tlDATE) to keep the document date in the &@docdate symbol
and the formatting date in &date.

The APr currently looks like this:

.gs scan @docdate
· 'if &Lt&@docdate eq 0 . t se @docdate '&date
· tel. tse date '&@docdate

\Ve need to change it to:

.gs scan @docdate
· tif &Lt&@docdate eq 0 . tse @docdate t&date

This way we put the formatting date or the date the user gave us into the &@docdate syln­
bol and still maintain both dates when they are present.

Title Page 55

3. Alter the DSM#TIPG macro to print the &date symbol as well as the &@docdate symbol.
TIlls is the last step. The basic approach to how to do this is described in "Adding Existing
Information" on page 53. However, we will have to include the &LL@Pmt symbol with the
&date symbol to indicate that the date shown is the date the document was printed on.

56 DCF: G1VIL Starter Set Implementation Guide

Document Sections

A general document is composed of several different sections each of which contains different
types of material. Each section is also formatted somewhat differently.

The following tags identify these sections:

: GDOe
:FRONTM

: TITLEP
: ABSTRACT
: PREFACE
: Toe
: FIGLIST

: BODY
: APPENDIX
:BACKM

: INDEX
: EGDOC

The primary function of the APFs for these tags is to separate the sections of the document with
a page eject and perform any special processing necessary to begin that part of the document.
Sometimes this includes changing the page layout or redefming the way headings are handled.
These APFs also control the style of page numbering and the text of the lUnning footing. SOlne­
times headings are generated for the sections. The section tags have no specific text associated
with them and, except for the :GDOC tag, there are no attributes.

The title page section is slightly different from the others and involves many tags and macros. It
is discussed fully in "Title Page" on page 45.

The index section, which is produced by the :INDEX tag, is described in "Indexing" on page 137.

The remaining document section tags are described below.

Document Sectioll Macros

DSMGDOC

The DSMGDOC APF processes the :GDOC tag. The SEC attribute is processed by the
DSM@SEC macro. The DSMGDOC APF then reclaims its own storage by unclefming itself
because this macro is used only once. See "Special Techniques" on page 13 for details about how
storage is reclaimed.

Document Sections 57

DSlVl@SEC

The SEC attribute of the :GDOC tag is processed by the DSl\1@SEC macro. The value of the
attribute is saved in the &@sec symbol which is used on the title page and in the running head­
ing.

DSMFI{ONT

The DSlVIFRONT APF processes the :FRONTM tag. This macro establishes the basic fonnat­
ting environment for the front matter section of the document including heading defm.itions and
column layout. The DSlVIFRONT APF perfonns the following processing:

1. Sets the &@head 1 symbol off. This symbol, if defined, is used as a prefix for level one
headings. Since prefixes can not be used in the front matter section, the &@headl symbol is
tunled off.

2. Redefmes heading levels zero through four so they will not be numbered and will not be in
the table of contents.

3. Calls the DSI\1#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "l\:liscellaneous" on page 163.)

4. Calls the DSM#STYL macro to set up the column layout. The front matter section of a
general document is always formatted in either one-column style or offset style. If
&SYSVARS is "two," indicating that the body of the document will be in two-column for­
mat, the front matter is formatted in one-column style. One column style is also used if the
body will be in one-column style. If &SYSVARS is "off," offset style will be used for the
front nlatter. See "Starter Set Initialization" on page 19 for details on the DSM#STYL
macro.

S. Changes page numbering to roman numeral style.

DSl\lABSTR

The :ABSTRACT section tag is processed by the DSlVIABSTR APF. The abstract is part of the
front matter of the document. Page layout and heading defmitions do not need to be changed
because these are governed by the front matter section macro. All the DSlVIABSTR APF needs
to do is to generate a new page with a level one heading of "ABSTRACT" on it. It also resets
the &@shead symbol which is used in the running footing. The DSI\tlABSTR APF performs the
following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

3. Resets &@shead to the value of &LL@Abstr which is "Abstract." The &LL@Abstr symbol
is defined in DSl\1#SETS. The &@shead symbol is used in the running footing.

4. Creates a level one heading for the abstract using the &LL@Abstr symbol defmed ill

DSM#SETS to "Abstract" and the .Hl [I-lead Levell] control word.

S. Remaps the paragraph tag to the DSMP ARAI APF. This is because paragraphs following
level one headings have a slightly different fonnat than other paragraphs. See "Paragraphs"
on page 87 for a complete explanation on why the :P tag is remapped.

58 DCF: Gi\'lL Starter Set Implementation Guide

DSMPREF

The DSMPREF APF processes the :PREFACE tag. The preface is part of the front rnatter of
the document. Page layout and heading deflllitions do not need to be changed because these are
governed by the front matter section macro. All this macro needs to do is generate a new page
with a level one heading of "PREFACE" on it. It also resets the short heading symbol
(&@shead) that is used in the running footing.

The DSMPREF APF performs the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

2. Calls the DS1'vl#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

3. Resets the &@shead symbol to &LL@Pref which is deftned in the DSM#SETS macro to
"Preface." &@shead is used in the running footing.

4. Creates a level one heading for the preface using the &LL@Pref symbol which is "Preface"
and the .H1 [Head Levell] control word.

5. Remaps the paragraph tag to the DSl\tlPARAl APF. This is because paragraphs following
level one headings may have a slightly different format than other paragraphs. See
"Paragraphs" on page 87 for an explanation on why the :P tag is renlapped.

DSMTOC

The DSMTOC APF processes the :TOC tag and produces the table of contents section by per­
forming the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"lvliscellaneous" on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

3. Resets the &@shead symbol to &LL@ToC symbol which is defined in the DSlYl#SETS
macro to "Table of Contents." This synlbol is used in the running footing and is defmed in
DSM#SETS

4. Uses the .TC [Table of Contents] control ,vord to format the table of contents. &LL@ToC
is used as the title parameter on the .TC [Table of Contents] control word.

DSMFLIST

The :FIGLIST tag is processed by the DSMFLIST APF which produces the List of Illustrations
section. The entries for the List of Illustrations are collected in the #FIGLIST macro by the
DSl\lFCAP APF.

On the first pass the List of Illustration section will normally be empty because no figures will
have been processed yet. On the second pass the #FIGLIST macro which has been created dur­
ing the frrst pass is printed out.

The DSI\1FLIST performs the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"1'vliscellaneous" on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

Document Sections 59

3. Resets the &@shead symbol to &LL@LstIl symbol which is defmed in the DSM#SETS
Inacro "List of Illustrations." The &@shead symbol is used in the running footing.

4. Prepares to call the #FIGLIST macro. The #FIGLIST macro is defmed one line at a tinle
as each captioned figure is encountered. It is not predefined in the macro library. See "Ex­
amples and Figures" on page 115 for more details on how #FIGLIST is created. In prepar­
ing the #FIGLIST macro, DSwlFLIST:

a. Defmes line number 1 of the #FIGLIST macro to create a level one heading for the list
of illustrations page. The entries to create the rest of the page will already be defmed in
the #FIGLIST macro on the second pass. On the first pass the rest of the #FIGLIST
macro is empty as no figures will have been encountered yet.

b. Saves the formatting environment because the #FIGLIST macro changes the formatting
environment and we want to be able to completely restore it.

c. Restores the control word separator to the default setting (;) with the .DC [Defme
Character) C\V control word. We constructed the #FIGLIST macro as we processed
the figures on the first pass through the document and we used the semicolon as the
control word separator. Therefore, we have to make sure that it is a semicolon wIllie the
#FIGLIST macro is being processed.

5. Calls the #FIGLIST macro to format the list. See the discussion of the :FIGCAP tag in
"Examples and Figures" on page 115 to see how the #FIGLIST macro is constructed.

6. Restores the previous formatting environment.

7. Ends the page with a .PA [Page Eject] NOSTART control word.

DSMBODY

The DSwlBODY APF processes the :BODY tag. This macro starts a new section, adjusts the
style of headings and page numbers, and:

1. Clears the &@head sYlnbol.

2. Sets the &@headl sYlnbol equal to the &@bodyheadl sYlllbol if the &bodyheac.11 symbol
was defined in DSwlPROF3. The &@headl symbol is used as a prefix for level one
headings in the body.

The .SE [Set Symbol] control word line for setting &@bodyheadl is in the profIle, but it is
commented out. If the user wants to set a prefix for the level one headings in the body, all
that needs to be done is remove the comment (. *) and fill in the prefix.

3. Sets up a local synlbol if &SYSVARH is not "no" (it means that we're numbering headings).
We'll use the symbol on the .DH [Defme Head Level] control words that defme the headings.
If &SYSVARH is "no," we won't set &*a. \Vhen we use it on the .DB [Defme Head Level]
control word line, &*a will resolve to a null (or nothing), which is fme, because the default
for .DB [Defme Head Level] is NONUM, which is what we want.

4. Puts all level zero through four headings into the table of contents. All but level zero and
one headings will be numbered if & *a was set to "num." Level zero headings are never num­
bered.

5. Tests the value of the &@headl symbol. The &@headl symbol may contain a prefix for
level one headings in the body of the document. It will have a value of something like
"Chapter" or "Part" and will have been set by the user in the profile. If there is a prefix for
level one headings (that is, the &@headl symbol exists), we will want to also number these
headings so that they will be labeled "Chapter 1.," "Chapter 2." and so on. When
SCRIPT/VS nUlnbers headings it puts the number at the beginning. Since we want the
number to appear after the prefix we will have to number these headings ourselves instead of
letting SCRIPT /VS do it.

60 DCF: Gl\1L Starter Set Implementation Guide

The following line tests for the existence of the &@headl syrnbol

.an &E'&@headl eq 0 .dh 1 num

The line shown above, is still logically part of the .IF [If] control word line that is 6 lines
above it in the DSMBODY APF. \-Ve'll adjust the .DB [Defme Head Level] control word
for HI to be numbered only if we're numbering headings (&SYSVARH isn't "no") and
we're not prefixing them (&@headl doesn't exist). In this case, we'll change the HI back to
be numbered and let SCRIPT /VS do the numbering.

6. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

7. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

8. Calls DSM#STYL to reset page layout to the value of &SYSVARS. This may be one­
column, two-column or offset. See "Starter Set Initialization" on page 19 for details on the
DSM#STYL macro.

9. Sets page numbering to arabic and resets the page number to 1.

DSMAPPD

The :APPENDIX section tag is processed by the DS~1APPD APF. Aside from starting a new
document section, the primary purpose of this macro is to establish serial lettering and prefixing
for level one headings. The DSMAPPD APF performs the following processing:

1. Resets the heading counter symbol, using the .GS [GML Services] HCTR control word to
start with A.O. This causes the level one heading numbers in the appendix to be letters-A,
B, C, and so on.

2. Sets the &@headl symbol to the value of &LL@Appdx which is "Appendix." This symbol
is used as a prefix for level one headings and is defined in DSM#SETS.

3. Adjusts the heading defmitions to tum numbering off for level one headings. This is done
because the numbering is handled by the DSMHEADI APF when headings are prefixed as
well as numbered.

4. Resets the definitions for level zero and level two through four headings to ensure that all of
these headings go into the table of contents and are numbered or not numbered according to
the value of &S YSV ARH. If the appendix section follows the body, these redefinitions are
not really necessary.

If heading numbering is on (&SYSVARH isn't "no"), the level two headings \vill be num­
bered A.I, A.2, and so on. Level three and four headings will also be lettered and numbered.

5. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

6. Calls the DSlVl#DUPL macro to get to the beginning of the next odd page if duple xing is
active. (See "Miscellaneous" on page 163.)

7. Calls DSM#STYL to reset page layout to the value of &SYSVARS. This may be one­
column, two-column or offset. See "Starter Set Initialization" on page 19 for details on the
DSM#STYL macro.

8. Resets page numbering to arabic style. If the appendix section follows the body section, this
isn't necessary because page numbers will already be arabic numerals.

Document Sections 61

DSMBACKM

The DSl'vlDACKM APF processes the :DACKM tag. The primary characteristics of the back
matter section are that headings are not numbered and a two column layout is always used re­
gardless of the value of &SYSVARS. The DSMBACKM APF pelforms the following functions:

1. Calls the DSl\1#RSET macro to end any open lists, footnotes, and so on. (See
"l\tliscellaneous" on page 163.)

2. Sets the &@headl symbol off. This symbol is used as a prefix for level one headings. Pre­
fixes may be in effect for either the body of the document or the appendix section, if there is
one. In either case, we want to get rid of the prefix.

3. Turns off head level numbering by redefining the headings.

4. Redefmes head levels to place level 0 through 4 headings in the table of contents. This is
done just in case the previous document section heading defmitions did not Inake entries into
the table of contents.

5. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

6. Calls the DSM#STYL macro to get a two-column layout regardless of the value of
&SYSVARS. See "Starter Set Initialization" on page 19 for details on the DSM#STYL
macro.

DSIVIEGDOC

The :EGDOC tag is processed by the DSl\tlEGDOC APF. This APF produces the cross refer­
ence listing and writes out the SYSV AR \V file of IDs.

1. It calls the DSM#XLST macro if this is the last pass (&@lastpass = "yes") and a cross
reference listing has been requested (&SYSVARX = "yes"). See "Cross-References" on
page 147 for details on how the cross reference listing is produced.

2. If &SYSVAR\V has been sct and this is the last pass, this macro calls DSM#\VRIT to write
out the file with the cross reference IDs in it. See "Cross-References" on page 147 for details
on how the IDs are collected, used, and written out.

M odificatiollS to Document Sections

Adding a Section

Probably the most common change that people make to the docunlent section macros is to add a
new doculnent section. In order to do this, you need to first Inal{e some decisions.

• What major section of the document does the new section belong in? Front matter, back
matter, body, or it is a major section itself?

• What will the tag for it be called?

• Are there any attributes for the tag?

• Should the section be labelled and if so, how? Should it have a standard label like
"Abstract" or a variable label that the user supplies?

• Do we want to change the running footing to match the new label?

62 DCF: Gl\'lL Starter Set Implementation Guide

Let's make some basic assumptions and try it. Suppose we want to add a new section to the
front matter called "Summary of Amendments." It will always be labelled that way and we want
the running footing to reflect that heading. We'll call the tag :AMEND.

Now we need to do a few things to implement it. First, we have to enable the tag in
DSlVIPROF3. We'll map it to a macro named AlVIEND. Let's assume that it will have no attri­
butes. So we'll add

.aa amend amend (noatt)

to DSl'vlPROF3 where all the other tag-to-APF mappings are.

Next we need to write the APF for the :Al'vIEND tag. \Ve must first decide how we want to
process it. Let's assume that we want it to be just like the abstract section-a new page (odd if
we're duple xing) with a level one heading at the top which says "Summary of Amendments," and
a rumling footing that says the same thing.

· dsm#rset
· dsm#dupl
· 'se @shead '&LL@Amend
· ' hI &LL@Amend
· aa p dsmpar al

Let's look a little closer at what we've done. The DSM#RSET macro will ensure that there are
no open text structures, such as lists or figures. The DSJ\;l#DUPL macro will end the current
page and get us to the beginning of the next page (odd if we're duplexing). These two macros are
explained in detail in "l'vIiscellaneous" on page 163. v

We've reset the value of &@shead to &LL@Amend. Remember &@shead is used as the text in
the running footing. \Ve've got open quotes on &LL@Amend because it will probably contain
blanks. We've used the .HI [I-lead Level 1] control word to get the level one heading using the
standard text we've set up in &LL@Amend. \Ve had to use the control word modifier on both
the .SE [Set Symbol] and .HI [Head Levell] control words so that we don't need to worry about
what's in &LL@Amend (just in case someone changes it and puts a senu-colon in there).

The last line in the macro remaps the :P tag to the DSMPARA I APF to get the right style of
paragraph after the level one heading.

The one remaining tlling to do is deftne the &LL@Amend symbol. \Ve need to set it to "Sum­
mary of Arnendments" and the logical place to do this is in DSM#SETS where all the other
&LL@ ... symbols are set up .

. se LL@Amend 'Summary of Amendments

We could have just used "Summary of Arnendments" rather than put it into a sY1l1boi and then
use the symbol. The reason we've done it this \vay is to facilitate changing it (or translating it).

Document Sections 63

Changing the Section Label

Let's change one of our assumptions and modify the APF to use the residual text of the
:Al'v1END tag as the label for the page. All we have to do is add a .GS [GlVIL Services] SCAN
control word to our macro and use the residual text instead of &LL@Amend. Here's what the
macro would look like:

· dsmllrset
· dsmlldupl
· gs scan ""title
· 'se @shead '&7~title
· 'hI &,,'--title
· aa p dsmparal

We also might want to set it up so that if no text was given with the tag, the standard text,
&LL@Amend, will be used. Because every tag is considered to have residual text, it's a little
difficult to tell if the text really belongs to the tag or not. However, because we are creating a
section tag, we could assume that the tag will always be followed immediately by a paragraph tag,
or some other text element tag. This is only a moderately risky assumption, but it s already been
made for some of the title page tags, such as :DA TE.

In this case, we would need to modify our macro to be as follows:

· dsmllrset
· dsmlldupl
· gs scan 7~title
· 'if &1 ' &*title eq 0 .'se *title '&11@Amend
· 'se @shead '&*title
· 'hI &"'~title
· aa p dsmparal

We've tested the length of the residual text that is in the &*title symbol. If there isn't any, it
means that another tag was encountered immediately following the :AlVIEND tag, or that we are
at the end of the ftle. In these cases, we'll set the & *title symbol to the standard section label,
&LL@Anlend.

Changing the Layout

Another modification we could mal(e is to change the page layout style for one or more of the
docunlent sections. Let's keep going with the Summary of Amendments section we just created.
Suppose that even though it is in the front matter, which is always formatted with a one-column
page layout, we wanted it to always be fOlmatted in two column style. All we need to do is add
one line to the AMEND macro we wrote above.

· dsm/lstyl two

This is a call to the DSlVl#STYL macro. We're also passing it "two" as a parameter which will
cause it to set up a two-column format for us. That's all there is to it.

That was silnple, wasn't it? However, we've created a problem by doing this. If we assume that
the summary of amendments section is in the front matter, we need to be concelned about the
page layout style for the other sections in the front matter. If you remember, we said that the
abstract and preface sections didn't need to establish their own page layout because the layout was
handled by the front matter tag. If we put the summary of amendments before either the abstract
or the preface, we will get the wrong page layout for the section that follows it.

There are several ways to handle this. We could put the summary of amendments before the
front matter, but that wouldn't mal<e much sense, because it really is part of the front matter. \Ve

64 DCF: GML Starter Set Implementation Guide

could let the abstract section and the preface section handle their own page layout by calling the
DSlVl#STYL macro in the same manner that the front matter did.

Another approach would be to define an end tag for the summary of amendlnents section that
would reset the page layout.

Either of these last two methods \vill work fairly well. The best approach would be to let each
section set up its own page layout and remove the page layout lines from the DSMFRONT APF.
The reason this is better is that having different page layouts in the front matter means that the
page layout is no longer a function of front matter. It is a function of the section. This would
logically lead us to put the page layout in the each section rather than in the front matter.

Let's work through creating the end tag solution, just for practice. First we will need to add the
name of the APF for the end-tag to the .AA [Associate APF] control word line we added to
DSMPROF3 .

. aa amend amend (noatt) eamend

Next we need to write the EAMEND APF. All this macro Inust do is restore the page layout.
The layout for the other sections in the front matter depends on the value of &SYSVARS. If
&SYSVARS is two, we will set up a one-column layout. Otherwise, we'll use the actual value of
&SYSVARS, which will be either "one" or "off." Here's what the EAMEND APF would look
like:

· if &SYSVARS eq two .dsm#styl one
· el . dsmflstyl

Changing the Appendix I-Ieadings

Another thing we could do is to change the way level one headings in the appendix are labelled.
They are prefixed with "Appendix A:," "Appendix B:," and so on. There are a couple of things
we could do here. Suppose we wanted theln numbered instead of labelled. All we would have to
do is change the .GS [Gl\1L Services] HeTR control word line in the DSl\1APPD APF.

· gs hctr 1. 0

Suppose we wanted to change the prefix from "Appendix:" to "Supplement." If you look back at
the DSMAPPD APF, you'll see that we've used the LL@Appdx symbol instead of the word
"Appendix." We can either change the value of &LL@Appdx in the DSl\1#SETS macro to
"Supplement" or we can change the .H I [Head Level l} control word line. To accomplish the
task using the fITst method, we need to change

.se L1@Appdx 'Appendix

to

.se L1@Appdx 'Supplement

in the DSM#SETS macro.

However, now we've got a symbol (&LL@Appdx) whose name does not accurately reflect its
value. It would be cleaner to add the name &LL@Supp and change the references in the
DSMAPPD APF from &LL@Appdx to &LL@Supp.

Document Sections 65

Changing the Table of Contents Format

The starter set fonnats all of the entries in the table of contents in the sanle size font for page
printers. The entries are all generated automatically by SCRIPT/VS from the heading control
words. The fonts to use for the entries are specified in DSMPROF3 on the .DH [Defme Head
Level] control words. The defInitions for the fonts used are shown in Figure 6 on page 25.

It would be a simple matter to put different level headings in different size fonts for page printers
by just changing the font definitions. Although this works in terms of producing output, there is
a major problem with the way it looks. The table of contents entries are fonnatted using an
internally generated .SX [Split Text] control words which do not allow font changes. So if the
entry were in a larger font, the page number on the right side would also be in the larger font, as
well as the dot leader. Unfortunately this looks very strange. The numbers and leader dots do
not line up very well and the result is very unappealing.

In order to create a table of contents using different size fonts for page printers several changes
need to be made to the macro library including generating the entry ourselves using the .PT [Put
Table of Contents] control word. Let's assume that there are no level zero headings in the docu­
ment and the only ones we are interested in changing are the level one headings.

First a larger font needs to be defmed. The font defmition is in DSMPROF3:

.df hdltoc type(lO bold) up

Let's change this to:

.df hdltoc type(16 bold)

The next step is to not have SCRIPT jVS automatically generate the entry. This means changing
the .DH [DefIne Head Level] control word that is also in DSMPROf,,'3. Actually there are 2 .DB
[Defme Head Level] control words for level one headings because all of the parameters wouldn't
fit on one line. These are:

. dh 1 nus nohy nup font hdl &~'(n spaf &@hlsp pa left sect tfont hdl toc ts

.dh 1 spbf &@hspbf

We'll keep SCRIPT/VS from generating the entry by adding NTC to the second one .

. dh 1 spbf &@hspbf nte

Now, that gets it set up correctly to start with, however, which headings go in the table of con­
tents changes as we go through the document. Headings in the front matter and the back matter
do not go in the table of contents. Headings in the body and the appendix do go in the table of
contents. The heading def111itions are changed accordingly for each of these document sections.
(See Figure 13 on page 77.)

Therefore, we need to adjust the DSlYIBODY and DSlVIAPPD APFs to not change the level one
headings back to TC after we've changed them to NTC. In both APFs the line that reads:

. dh 1 tc nonum

needs to be changed to

. dh 1 nte nonum

Now that we've stopped SCRIPTjVS from generating the entries, we will need to generate the
entries ourselves in the DSMHEADI APF. \Ve will use a series of .PT [Put Table of Contents]
control words to put the appropriate control words and text into the table of contents me.
Figure 12 on page 67 shows the results we want.

66 DCF: GML Starter Set Implementation Guide

INTRODUCTION

Basic Concepts
Document Types
Tags
Attributes
Document Types

SPECIAL TECHNIQUES

Validating Keywords
Check the Attribute Value

1

1
1
1
1
1

12

.... 13
.. 13

Figure 12. Sample Output: The format of the table of contcnL<; can be changed to look like this by
generating Lhe tahle of contents entries in the APF for the :lll macro.

The following lines need to be added to the DSNIHEAD1 APF:

. 'h1 &@head
.se hdnum = &
.pt .sp 2
.pt .tp &dh'&$cl.dh right
.pt .bf hd1toc
.pt .Ii &@head.&$TAB
.pt .pf
.pt .bf hd2toc
.pt .ct &hdnum
.pt .hr left to right
.pt .sp 1
.pt .pf

These lines save the current page number in &hdnum and put the following lines into the table of
contents file:

1. Space 2lines.

2. Set a right aligned tab at the right side of the page. Notice that this liTIplementation uses the
tab rack. The starter set typically avoids using the tab rack whenever possible so as not to
interfere with any possible user tabs that have been defined.

3. Begin the font for level aIle entries.

4. Fonnat the heading text following by a tab character in literal mode.24

5. Restore the previous font.

24 The .LI [Literal] control word is necessary here because if the contents of the .PT [Put Table of
Contents] control word is simple text it \vill automatically generate a .SX [Split Text] control word for it
and we don't want that. By starting the line with a control word we get the line put in exactly as we
coded it.

Document Sections 67

6. Start the fontthat will be used for the level two headings in the table of contents (hd2toc).
We do this because we want to format the number in the same font as the rest of the entries
in the table.

7. Format the page number that is in &hdnum preceding it with a continuation character. We
also used literal mode herc to avoid the .SX (Split Text] control word from being built by the
.PT [Put Table of Contents] control word. The &$CONT causes the lineto be treated as a
line of text by .LI [Literal]

8. Draw a horizontal rule from the left to the right to provide extra visual separation.

9. Space 1 line.

10. Restore the previous font.

Creating a Table of Contents For Each Chal)ter

For some applications it is more appropriate to provide a table of contents for each chapter rather
than a single table of contents at the beginning of the document. The table of contents entries
would necd to be collected during the ftrst pass for each chapter of the book. On the second pass
the table of contents would need to be produced by the DSMHEADI APF.

While this is fairly easy to accomplish it does present one problem which is not easy to solve.
Since the table of contcnts for the chapter is inline after the heading, and since it is empty on the
ftrst pass, text will shift on the second pass. This means that the page numbers from the ftrst pass
will most likely be wrong on the second pass if we don't reserve the correct amount of room for
the partial table of contents. \Ve have no good way of guessing how much space to allow for the
table of contents on the ftrst pass. The best we can do is use SYSV AR 'W' to save the table of
contents entries from one fonnatting run and use that as input to the next run.

Preparation

Let's aSSUlne that only level 2 headings are going to be put into this partial table of contents and
that we won't disable the main table of contcnts. This ITIeanS that we will need to modify the
DSMHEADI APF and the DSMHEAD2 APF. \Ve'll collect the level 2 entries in a separate
array for each chapter (level one heading). Therefore we'll need to create a unique array name for
each chapter. As we will see below, we're also going to need a unique counter for each head 2.
To do this we'll initialize some counters to zero in the profile .

. se @hdlctr = 0

. se @hd2ctr = 0

and we'll increment the &@hdlctr symbol each time we encounter a head 1. This means adding

.se @hdlctr = &@hdlctr + 1

to the DSMHEAD 1 APF right after the .H 1 [Head Level I] control word. Now we can use the
counter in the array name so we'll get a unique array for each chapter.

Savillg the Table 0/ Contents In/orlnatioll

Our next problem is how to save the entries in the array. The approach that we've taken here is
to save the information in an array in the form of .SX [Split Text] control words. The name of
the array will be keyed off of the level I heading number. For example, the entries for chapter I
will be put in an array named &tocl, and the entries for chapter 2 will be put in an array named
&toc2, and so on. The heading number (&@hdlctr) sYlnbol is used to construct the name of the
array.

We'll have to add some logic to the DSlVIHEAD2 APF to save the text of the heading and the
page nurnber in the appropriate array. The best approach is probably to set up .SX [Split Text]

68 DCF: Gl\-tL Starter Set Implementation Guide

control word lines in the array and then we can just dump out the array when it's time to
produce the table of contents. The left hand side of the split text control will be the text of the
heading which we have in the &@head symbol. The middle part will be a period and a blank to
produce a dot leader. The right hand part needs to be the page number.

However, simply including the page number symbol (&) in the split text line won't work because
SCRIPTjVS won't resolve it as a page number for us. What we are going to have to do is create
a unique sYlnbol name to contain the page number for each level 2 heading and then use this
symbol in the split text line. That's where the unique symbol name for each head 2 comes in.
The symbol that contains the page number for the head 2 needs to be unique because it has to
survive until it's time to dump out the table of contents.

To do all this we'll add:

.se @hd2ctr = &@hd2ctr + 1

.se *sx '.sx f /&@head./ ./&PG&@hdlctr.&@hd2ctr .. /

. se toc&@hdlctr. (&@hd2ctr.) '&-"'-sx

.se PG&@hdlctr.&@hd2ctr = &

.se curr&@hdlctr = &curr&@hdlctr + 1

to the end of the DSMHEAD2 APF. Each time we come through the DSMI-IEAD2 APF we'll
increment the &@hd2ctr symbol by one to get a unique number. \Ve'll use the
&PG&@hd1ctr.&@hd2ctr symbol to represent the page number and use this symbol in the .SX
[Split Text] line. Then we'll set the &PG&@hdlctr.&@hd2ctr symbol to be the page number.
We have to set tIus symbol after we use it in order to get the unresolved symbol name into the
.SX [Split Text] text. If the heading shifts to a different page due to widow zone or keep process­
ing we would have picked up the wrong page number if we had set &PG&@hdlctr.&@hd1ctr
before we used it. This way the .SX text will contain the symbol name which will resolve to the
correct value of &PG&@hd1ctr.&@hd2ctr when we use the array.

There's one more thing we need to do in the DSlVIHEAD2 APF. \Ve need to keep track of how
many entries we've put into the array. \Vhen we come around for the second pass the array
elements will still exist but the element counter (0) will have been set back to zero for the second
pass. In order to dump out the array, we will need to reset element zero of the array, so we need
to know how many elements we put into it. \Ve'll use the &curr&@hd1ctr symbol for this and
increment it each time we put something into the array.

The deliIniters we've used in the .SX [Split Text1line are a problem. Slashes won't work if there
happen to be any slashes in the text of the heading. Therefore, we really should usc some ob­
scure hexadecimal number as the deliIniters instead. For example hexadecimal l's,

.se *sx '.sx f &X'Ol.&@head.&X'Ol .. &X'Ol.&PG&@hdlctr.&@hd2ctr .. &X'Ol.

This way we don't need to worry about a character in the heading text being interpreted as a
delimiter on the .SX [Split Text] control word.

Producing the Partial Table of Contents

The next step is get the DSlVIHEADl APF to produce the table of contents. \Ve'll need to for­
mat the heading for the table of contents. Let's use highlight font 2 to do this. We need to add
the following lines to the DSMHEAD 1 APF right after the heading is generating with the .H I
[Head Level 1] control word:

. bf hi2

.sx /&LL@ToC.//&LL@Page./

.pf

.sp

We didn't leave any extra space at the top because there is already space after the heading. \Ve
did leave a space after the table of contents heading, just to make it look IDee.

Document Sections 69

The next step is to check if there are any entries in the array before we bother to dump it. The
&curr&@hdlctr sYInbol is used to count entries. If it doesn't exist we want to set it to zero .

. if &E'&eurr&@hdletr eq 0 .se eurr&@hdletr = 0

Then, if it is zero, there is nothing to dump so \ve can skip to the end of the lines we are adding .

. if &eurr&@hdletr eq 0 .go next

If the value of &curr&@hdlctr is not zero, it means that there are entries to be formatted. \Ve
will need to transfer the number of entries frotll &curr&@hdlctr to element zero of the array.
Again, since element zero of the array is cleared for the second pass we need to reconstruct it in
order to print the array .

. if &toe&@hdletr.(O) eq 0 .se toe&@hdletr.(O) = &eurr&@hdletr

The next step is to set the array separator to be a .BR [Break} control word and then dump the
array out.

. de asep & a .
• I se a = '; br; ,
&toe&@hdletr(~, ..)

Since we are incrementing &curr&@hd 1 ctr for each level 2 heading and since it maintains its
value from the first to the second pass we have to initialize it to zero after we have used it.

.se eurr&@hdletr = 0

The last step is to reset the &@hd2ctr symbol to zero to start numbering level two headings again
with 1 in the next chapter .

... next

.se @hd2etr = 0

70 DCF: Gl\,tL Starter Set Implementation Guide

The New Macros

The new DSMHEAD 1 APF looks like this after our modifications:

* DSMHEAD1: Tag = H1 Attr = ID, STITLE Format level 1 heading. *
* Advances to next/odd page. Headl's are numbered in the body if *
* either head level numbering is on or &@head1 exists. *
* Reset any open lists, etc. *

· dsmf/rset H. -1
· dsm/ldupl
· gs scan @head
· * PREFIX HEADING \oJITH &@headl, IF IT EXISTS *
.if &E'&@head1 eq 1 .gs hctr 1
· 'th . 'se @head '&@head1 &@xref(1) .. &@head
.* SET &@shead FOR THE RUNNING FOOTING TO HEADING OR STITLE *
· 'se @shead '&@head
.gs exatt stitle as dsm@shd
.* CREATE THE HEADING, PROCESS THE ID AND DON'T INDENT 1ST PARAGRAPH *
· 'h1 &@head
* FORMAT THE PARTIAL TABLE OF CONTENTS

.se @hd1ctr = &@hd1ctr + 1

.bf hi2

.sx /&L1@ToC.//&L1@Page./

.pf

.sp

.if &E'&curr&@hd1etr eq 0 .se eurr&@hdletr = 0

.if &eurr&@hdlctr eq 0 .go next

.if &toe&@hdlctr.(O) eq 0 .se toc&@hdlctr.(O) = &eurr&@hdletr

.de asep & a .

. 'se a = ';. br; ,
&toe&@hdletr. (of e)
.de asep
.se eurr&@hdlctr = 0
... next
.se @hd2ctr = 0
.5e @tg = h
.gs exatt id as dsm@ids
· aa p dsmpara1

Document Sections 71

The hew DSMHEAD2 APF looks 'like this after our modifications:

.* PSMHEAD2: Tag = H2 Attr = ID Formats level 2 heading · * Resets any open lists, etc.
*
*

· dsmlfrset H. -2
· gs scan @head · * CREATE THE LEVEL 2 HEADING, PROCESS THE ID & DON'T INDENT 1ST PARA *
&@rc1
· 'h2 &@head
&@rc2
• se @tg == h
.gs exatt id as dsm@ids
· aa p dstnpara2
.se @hd2ctr = &@hd2ctr + 1
.se ~~ =I.SX f &XIOl.&@head.&XIOl •• &X IOl.&PG.&@hdlctr&@hd2ctr •. &X IOl •
• se toc&@hd1ctr.(&@hd2ctr.) I&~~ •
• se PG&@hd1ctr.&@hd2ctr = &
.se curr&@hd1ctr = &curr&@hdlctr + 1

USblg SYSVAR 'WI

The modifications outlined above will work except that no space will be reserved for the partial
table bf contents on the fIrst pass. This means that ort the second pass when the table is format­
ted, subsequent text will shift. TIlls will, potentially, mal<e the page numbers that we have saved
for the headings wrong.

The solution. suggested here is to save the table of contents infonnation in the SYSV AR 'VV' fIle
and use it on subsequent runs. It important that the T\VO PASS option always be used so that
the information in the SYSV AR 'w' file will be correct. This way the table will be filled in with
infonnation from the previous run on the first pass. This is a fairly good way to approximate the
size of the real table which will be formatted on the second pass.

This means adding the following lines to the end of the DSrvl#\VRIT macro:

* SAVE THE PARTIAL TABLE OF CONTENTS INFORMATION FOR EACH HEADING
· se i'-head = 1
· .. outer
· wf . S6 curr&~'~head = &curr&7\"head
· se ~''-elem = 1
· .. irtner
· wf • 'se toc&i\"head. (&i\"elem.) = '&toc&'i"·head. (&i'elem.)
· se elem = &'i'''elem + 1
· if &*eIem Ie &toc&ii"head. (0) . go inner
.se *head = &*head + 1
· if &"i';-head Ie &@hd1ctr . go outer

These lines loop through all of the level 1 headings (up to the current value of &@hdlctr) the
contents of the &curr&@hdlctr symbol. It also loops through the elements of the table of con­
tents arrays writing out .SE [Set Symbol] control word lines to set each elelnent of the array.

72 DCF: GML Starter Set Implementation Guide

We've lllade this modification for this chapter. The partial table of contents looks ijke this:

Table of Contents Page

Overview ... 57
Document Section IVlacros .. 57
Modifications to Document Sections 62

That's all there is to it!

Document Sections 73

Headings

Overv;eJV
The APFs that process the heading tags (DSI'vHIEADO-DSMHEAD6) perform fonnatting func­
tions not available on the .DB [Define Head Level] control word and then invoke the appropriate
heading control word. These functions include such things as:

• Revision code placement relative to headings

• Setting symbols for text oJ running headings and footings

• Making sure no lists, figures, footnotes and so on are currently in progress

• Handling ID attributes for cross references.

The head level defmitions, however, are sprinkled throughout the APFs and are frequently
changed based on what document section we are in. Cross-referencing for headings, as well as the
ID attribute processing, are discussed separately in "Cross-References" on page 147.

Head Level Definition

The head level defll1.itions originate in the defaults established within SCRIPT /VS itself. Some,
such as "DOT" are never overridden by the starter set. Others such as "FONT" and "TFONT"
which originally are set to the default font by SCRIPT/VS, are changed just once in DSl\1PROF3
during initialization. For page printers, various sizes and styles of fonts have been selected for the
different heading levels both in the body of the docUlnent and in the table of contents. These are
described in "Starter Set Initialization" on page 19 in Figure 6 on page 25. :H5 and: H6 are not
listed in the table of contents. : H 4 headings will be listed in the table of contents only in the
body of the document (marked with :BODY.)

Prefixing Level One Headings

Level I headings in the body of the docUlnent can be prefixed by activating a .SE [Set Symboll
control word line that is in DSl'v1PROF3 .

. *.se @bodyheadl 'Chapter

This symbol, &@bodyheadl, when set will Cause level 1 headings to be preftxed with the word
"Chapter" when a :BODY tag is used. In other words, to prefix level one headings you need to:

1. Set &@bodyheadl to the prefix

2. Use a :BODY tag.

These prefixed headings will automatically be numbered regardless of the value of &SYSVARH.
The level one headings in the appendix are automatically prefixed and numbered.

Headings 75

Numbering and prefixing is done through the following processing sequence:

• The &@bodyheadl syrnbol is set in the proflle to the value of prefix ("Chapter" or "Part"
for example).

• The &@headl symbol is defIned to be "off" by DSl\1PROF3.

• The DSMBODY APF transfers the value of &@bodyheadl to &@headl if &@bodyheadl
exists.

• The DSMHEAD I APF will number the level one headings and build the heading text from
the prefix (&@headl), the number, and the residual text of the :HI tag.

Prefixing is specifically turned off in the back matter and the front matter by the DSMBACKM
and DSMFRONT APFs. It is also always turned on and set to "Appendix" for the appendix
section by the DSMAPPD APF.

Head Level Numbering

Nunlbering of head levels may appear somewhat confusing at fust glance at the APFs. Number­
ing can be requested by using the SYSVAR 'H' option of the SCRIPT/VS command. However,
numbering is specifically turned off by most of the section tags (:FRONTM, :BACKl\i, and
:APPENDIX).

For level one headings numbering is manipulated depending on whether or not the user has speci­
fied a prefix for these headings. (See "Prefixing Level One Headings" on page 75 for more details
on prefixing.) If a prefix has been given, numbering is handled externally in the DSl\1HEADI
APF for level one headings. Otherwise, it is handled automatically by the .HI [Head Level IJ
control word. Since level one headings in the appendix are prefixed with the word "Appendix,"
they are always numbered and the numbering is done by the DSMI-IEADI APF. Level 2
through 4 headings in the appendix are numbered only if &SYSVARH is "yes." Level 5 and 6
headings are never numbered.

See Figure 13 on page 77 for details on where heading numbering is turned off and on.

Revision Codes for Headings

Revision code placement is controlled with the .RC [Revision CodeJ ADJUST control word.
The default location is two characters to the left of the column and this is used for one- and
two-column formats in the starter set. However, in offset style, the revision code location is
changed by the DSM#STYL macro to be approximately 15 characters to the left of the column
margin. This works fme for revision codes around text, however, it presents a problem for re­
vision codes around headings.

Level 0 through 4 headings in offset style cause a section breal<: which formats them at the left
margin of the page. A revision code placed 15 characters to the left of the heading falls off the
page. This is allowed to happen for level zero and level one headings.25 For level two through
four headings, the heading APFs adjust the revision code location to be relative to the heading
just before issuing the heading control word. Mter the control word is processed, the revision
code location is adjusted back to be relative to the colUlllll text again.

These adjustments are accomplished by setting up two symbols, &@rcl and &@rc2, whose value
depends on the colUlnn layout. These arc defmed in the DSM#STYL macro. For one- and
two-column format, the &@rcl and &@rc2 symbols are both null, in which case they do noth-

25 Since heading levels zero and one are sometimes right aligned, the revision code is not adjusted to ap­
pear as with heading levels two through four. This is done simply for aesthetic reasons because the
revisions would look odd on the left when the heading was right aligned.

76 DCF: GML Starter Set Implementation Guide

DSMIFSTYL Macro
one-column
& two-column

offset

DSMFRONT Macro
level 0-4
level 1-4

DSMBODY Macro
level 0-4
level 1

level 2-4

DSMBACKM Macro
level 0 - 4.
level 1 - 4

DSMAPPD Macro
level 0 - 4
level 1
level 2 - 4

- if duplexing, level 0 is aligned outside
if not duplexing, level 1 is aligned outside

- levels 2 - 4 cause section breaks (SECT)
- levels 0 and 1 is left aligned

- do not appear in the table of contents (NTC)
- are not numbered (NONUM)

- do appear in the table of contents (TC)
- are numbered (NOM) if not prefixing

and &SYSVARH = yes
- are not numbered (NONUM) if not prefixing

or &SYSVARH = no
- are numbered (NUM) only if &SYSVARH = yes

otherwise they are not numbered (NONUM)

- do appear in the table of contents eTC)
- are not numbered (NONUM)

- do appear in the table of contents (TC)
- are not numbered (NONUi-I) -.'(*,,'(
- are numbered (NUM) only if &SYSVARH = yes

Figure 13. Heading Definitions: This figure lists all the macros that change the heading definitions
using the .DH (Define Head Level] control word and details what changes are made in
each case. The primary definitions for headings are given in DSMPROF3, which is not
listed here. Additional heading formatting is controlled by the default settings for
headings in SCRIPT /VS.

*** Note, when head level ones are prefixed, numbering is done by the DSMHEADI
APF instead of by SCRIPT;VS so the NONUM option is specified even though the
headings are numbered.

ing. For offset style, these two symbols have a value of ".RC ADJUST" and ".RC ADJUST n,"
where "n" is approximately 15.

Heading MacJ~os
The document section macros and profile described below perform processing which alters the
formatting of the headings. The APFs for the heading tags and attributes are also described be­
low. :#np.

DSMPROF3

DSlVIPROF3 initializes the heading defmitions and some sYlnbols which control heading process­
ing. DSMPROF3 performs the following processing relevant to headings:

Headings 77

1. Defines all the fonts for all output devices to be used for headings and for table of contents
entries. See Figure 6 on page 25 for details on what these font definitions are.

2. Sets the &@headl symbol to "off." This symbol is the prefix for level one headings. A
:BODY tag is required in order to activate the prefixing of level one headings. The
:APPENDIX tag also uses this symbol to get each level one heading labelled "Appendix."

3. Defines several symbols which are used as the values of the SKBF, SPBF and SPAF param­
eters on the .DH [Defme Head Level] control words. These are defined initially with the
values for line devices and then are redefmed for the page printers.

The symbols and values for skips and spaces around the headings are shown in the table
below:

Symbol lJne Page
Name Devices Devices Description

@hspbf 0 1.3i SPBF headings 0-1

@hOsp 5 p14 SPAF heading 0

@hlsp 3 pI4 SPAF heading 1

@h2sk 3 p20 SKBF heading 2

@h2sp 2 p 11 SP AF heading 2

@h3sk 3 pI8 SKBF heading 3

@h3sp 2 pll SPAF heading 3

@h4sk 3 p14 SKBF heading 4

@h4sp 2 pll SP AF heading 4

Figure 14. Spacing Synlbol Definitions for Headings

4. Defines level 0 and 1 headings to be left aligned. These headings will be changed to be out­
side aligned if duplexing is in effect (&SYSVARD is "yes") and the column layout style is
one- or two-column. All other headings are left aligned.

5. Performs several actions, if heading numbers have been requested with SYSVAR 'H'. Head
levels one through four are defmed to be numbered. The heading counter is set to the value
of &SYSV ARH.

6. Defines all headings not to be underscored or uppercase. However, because a heading font is
associated with each heading, underscoring and uppercasing may occur as a result of the font
specification rather than the head level definition. See Figure 13 on page 77 for heading defi­
nitions. See Figure 6 on page 25 for font definitions.

7. All headings are also defined to not be hyphenated using the NOl-IY parameter on the .DH
[Dcfme Head Level] control word.

DSM#STYL

The DSM#STYL macro resets some of the heading defmitions according to formatting style (one­
or two- column). The DSM#STYL macro performs the following processing relevant to
headings:

1. Defines head levels two through fbur to cause a section break for offset style. Heading level
zero is outside aligned for one and two colurnn formats if duplexing is active.

2. Sets the &@rcl and &@rc2 symbols to null for one- and two-column layouts. These sym­
bols are set to ".RC ADJUST" and ".Re ADJUST n" for offset style. See "Revision Codes
for Headings" on page 76 for more details.

78 DCF: Gl\U.I Starter Set Implementation Guide

DSMAPPD

The DSMAPPD APF resets some of the heading defmitions as part of starting the appendix sec­
tion of the document.

The DSMAPPD APF performs the following processing for headings:

1. Sets the &@head1 symbol to &LL@Appdx, which is "APPENDIX," to cause level one
headings in the appendix to be prefixed with the word "APPENDIX." See "Prefixing Level
One Headings" on page 75 for more an overview of prefixing headings.

2. See Figure 13 on page 77 for changes made to heading definitions.

DSMBACKM

The DSMBACKM APF resets some of the heading defmitions as part of starting the back matter
section of the docUInent. The DSMBACKM APF performs the following processing relevant to
headings:

1. Sets the &@head1 symbol off to clear any level one heading prefixes that might have existed.
Level 1 headings may be prefixed only in the body and the appendix. See" Prefixing Level
One Headings" on page 75 for an overview of prefixing headings.

2. See Figure 13 on page 77 for changes made to heading defmitions.

DSMBODY

The DSMBODY APF resets some of the heading definitions as part of starting the body section
of the document. The DSMBODY APF performs the following processing relevant to headings:

1. Sets the sytnbol &@hcadl to the value of &@bodyheadl. The &@bodyheadl may have
been set in the profile to provide a prefix for level one headings in the body. If the
&@headl symbol is not null, the DSMIIEADI APF will prefix its value to the heading text
and number the headings even if numbering is not on. See "Prefixing Level One Headings"
on page 75 for an overview of prefixing headings.

2. Resets level one headings to not be numbered if the &@hcad1 symbol exists. This is be­
cause the numbering is handled by the DSrvlHEAD 1 APF for level one headings if a prefix
exists.

3. Resets level two to four headings to be numbered if numbering is on (&SYSVARH =
"yes"). This is necessary because if there. was a :FRONTlVl tag, the headings are defined to
not be numbered. If head level numbering has been requested with SYSV AR 'H', only
headings in the body are nUlllbered.26

4. See Figure 13 on page 77 for changes made to the heading defmitions.

DSMFRONT

The DSMFRONT APF resets some of the headingdefmitions as part of starting the front matter
section of the document. The DSMFRONT APF performs the following processing relevant to
headings:

26 Head level ones in the appendix are also numbered because they are prefixed with the word
"Appendix."

Headings 79

1. .Sets the &@headl symbol off to clear any level one heading preflXes that might have existed.
Level 1 headings may be prefixed only in the body and the appendix.

2. See Figure 13 on page 77 for changes made to heading defmitions.

DSl\tIHEADO

The :110 tag is processed by the DSMHEADO APF which formats level zero headings in the fol­
lowing manner:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

2. Calls the DSl\1#DUPL macro to get to the beginning of the next odd page if quplexing is
active. (See "Miscellaneous" on page 163.)

3. Gets the residual text into the &@head symbol.

4. Puts the text of the heading into the &@shead symbol which is used in the running footing.

S. Processes the STITLE attribute with the DSM@SHD macro. If STITLE was specified, its
value becomes the value of &@shead. This will change the text that is formatted in the
running footing.

6. Uses the .lIO [I-lead Level 0] control word to format the heading. The control word modifier
is used here because we have no way of determining which characters might be in the text of
the heading.

7. Sets the &@tg symbol to "h" to indicate to the DSl\I@IDS macro that a heading id is being
processed and then calls DSl\I@IDS to process the ID attribute if the ID attribute is speci­
fied.

8. Remaps the :P tag to the DSlVIPARAI APF. This permits special processing for the first
paragraph following a level zero heading. See "Paragraphs" on page 87 for more details
about paragraph fonnatting.

DSl\1HEADl

The :Hl tag is processed by the DSl\;lHEADI APF which formats level one headings in the fol­
lowing manner:

1. Calls the DSl\I#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

3. Gets the residual text into the &@head symbol.

4. Tests the existence of the &@headl symbol. It \vill exist if there is a prefix for level one
headings. It is set either in the DSMBODY APF if the &@bodyheadl symbol has been
defined or in the DS~IAPPD APF. The &@bodyheadl symbol may have been defined in
DSMPROF3 and is a prefix for level one headings.

If &@headl exists, the heading number is incremented by 1 and the numbering of level one
headings is handled here. Otherwise, numbering is handled automatically by the .H 1 [Head
Level 1] control word. The &@head symbol is reset to contain the prefix, the number and
the heading text.

S. Puts the text of the heading into &@shead for use in the running footing, just in case no
short title (STITLE) attribute was specified.

80 DCF: GI\'lL Starter Sct Implementation Guide

6. Calls the DSrv1@SHD macro to save the short title in &@shead. if a short title (STITLE)
attribute was specified. This will change the text of the running footing.

7. Uses the .HI [Head Levell] control word to process the heading. The control word modi­
fier is used here because we have no way of determining which characters might be in the
text of the heading.

8. Sets the &@tg symbol to "h" to indicate to DSM@IDS that a heading id is being processed
and then calls DSM@IDS to process the ID attribute if the ID attribute is specified.

9. Remaps the :P tag to the DSMPARAI APF. This pennits special processing for the first
paragraph following a level one heading. See "Paragraphs" on page 87 for more details
about paragraph formatting.

DSM@SHD

The DSM@SHD macro processes the STITLE attribute. All it does is save the attribute value in
the &@shead symbol which is used in the running footing.

DSMHEAD2

The :H2 tag is processed by the DSIVIHEAD2 APF which fOlmats level two headings in the fol­
lowing manner:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"IVliscellaneous" on page 163.)

2. Gets the residual text in the &@head symbol.

3. Adjusts the location of the revision code. If offset style is being used, &@rcl will be .RC
ADJUST otherwise it has a null value which docs nothing. See "Revision Codes for
Headings" on page 76 for a full explanation of revision code adjustment around headings.

4. Uses the .H2 [Head Level 2J control word to process the heading text that is in &@head.
The control word modifier is used here because we have no way of detennining which char­
acters might be in the text of the heading.

5. Adjusts the revision code back to be placed relative to the column text. In number 3. above
we had moved the revision code to be relative to the heading text for offset style. Now we
are moving it back to be relative to the text. In offset style the &@rc2 symbol has a value of
.RC ADJUST n where n is approximately 15. For one- and two-column style, &@rc2 is
null.

6. Sets the &@tg symbol to "h" to indicate to DSM@IDS that a heading id is being processed
and then calls DSlYl@IDS to process the ID attribute if the ID attribute is specified.

7. Remaps the :P tag to the DSIVIPARA2 APF. This permits special processing for the first
paragraph following a level 2 heading. See "Paragraphs" on page 87 for more details about
paragraph fonnatting.

DSMHEAD3

The :H3 tag is processed by the DSIvlHEAD3 APF. The processing in this macro is exactly the
same as in the DSl\1HEAD2 APF except that the .H3 [Head Level 3] control word is used to
format the heading instead of the .H2 [Head Level 2] control word.

Headings 81

DSMI-IEAD4

The :H4 tag is processed by the DSMHEAD4 APF. The processing in this macro is exactly the
same as in the DSMHEAD2 APF except that the .H4 [Head Level 4] control word is used to
fonnat the heading instead of the .H2 [Head Level 2] control word.

DSlVIHEAD5

The :HS tag is processed by the DSl\1HEADS APF which fonnats level five headings. These
headings are in-line with the text that follows and are produced with the following processing:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"lYliscellaneous" on page 163.)

2. Gets the residual text into the &@head symbol.

3. Uses the .HS [Head Level S] control word to process the heading. The control word modi­
fier is used here because we have no way of detennining which characters might be in the
text of the heading.

4. Sets the &@tg symbol to "h" to indicate to DSM@IDS that a heading id is being process
and then calls DS:rvl@IDS to process the ID attribute if the ID attribute is specified.

S. Sets the &@hSline symbol to the page number followed by a slash, followed by the line
counter value. This symbol will be used in the paragraph APF to detelmine if any text has
been processed between the :HS tag and the next :P tag. Whether or not the :HS is followed
imrnediately with a :P tag is significant because the :P tag will supply an ending colon to the
heading text only if there is no intervening text between the two tags.

6. Saves the heading level number (S) in the &@paraS@fnt symbol. This symbols will be used
in the DSMPARAS APF to restart the appropriate font. See "DSlYIPARAS" on page 89 for
how and why this is necessary.

7. Remaps the :P tag to the DSMPARAS APF. TIllS permits special processing for the first
paragraph following a level five heading. See "Paragraphs" on page 87 for more details about
paragraph formatting.

DSl\1HEAD6

The :H6 tag is processed by the DSMHEAD6 API' which formats level six headings. These
headings are in-line with the text that follows.

The processing in this macro is exactly the same as in the DSI'vlHEADS APF except that the .H6
[Head Level 6] control word is used to format the heading instead of the .HS [Head Level S] con­
trol word and the &@paraS@fnt symbol is set to "6" instead of "S."

Modifications to Headings
IVlany things regarding headings can be modified simply by changing the heading definition (.DH
[Define Head Level}). Since there are several sets of heading defmition control words in the
starter set macros, you will need to be careful as to where you change the definition. Figure 13
on page 77 shows which macros contain the .DH [Defme Head Level] control words and what
changes are made in each case. For example, to manipUlate the numbering of headings you need
to consider the fact that the NUM/NONUM parameters are reset in DSMPROF3, the
DSMFRONT APF, the DSl'vlBODY APF, the DSMBACKM APF and the DSMAPPD APF.
Depending on the nature of the change you want to make, you might have to modify the defi­
illtions in several places.

82 DCF: Gl\1L Starter Set Implementation Guide

Capturing Heading Numbers

The numbers that are used for headings are generated by SCRIPT/VS. These numbers can be
obtained from the &@xref symbol array for use in running headings and footings. &@xref is a
symbol array where the ftrst element of the array contains the number that was used for the last
level one heading.27 The second element of the array contains the number of the last level two
headings and so on.

Heading numbers are included in the text of the running footing only if headings are also being
preftxed. However, suppose that you wanted to always include the heading number in the run­
ning footing even when level one headings aren't being prefixed. This requires capturing the
number as well as the text of the heading.

\Vhen headings are being preftxed (the &@headl symbol contains the preftx), they are numbered
by the DSMHEAD 1 number rather than by SCRIPT/VS.

· if &E'&@headl eq 1 .gs hctr 1
· 'th . 'se @head '&@headl &@xref(l) .. &@head

The DSMHEAD I APF puts the text of the heading into the &@shead symbol. The lines below
show how this is done:

· 'se @shead '&@head

The preftx, the number and the text of the headings are all put into the &@shead symbol and will
show up in the running footing.

Since the &@xref symbol is not nomlally increrncnted until after the heading has been produced
with the .HI [Head Level 1] control word, we need to capture the number after the heading.
However, the .HI [Head Level IJ control word starts the page which causes the running footing
to be formatted. Therefore, in order to get the heading number into the footing we need to both
capture the nUInber and refornlat the running footing. The number can be captured in the same
manner that is shown above when preftxing is being done by adding the following lines to the
DSMHEADI APF:

· 'hI &@head
.if &E'&@headl eq 0 .an &SYSVARH ne no
.'th .'se @shead t&@xref(l) .. &@shead
.th .rf execute

We check flfst that prefixing is not being done, because if it is we don't need to do anything
because the running footing will already contain the number. \Ve use just the ftrst elenlent of the
&@xref array because we want only the level one heading number to show up in the footing.

An even simpler method of accomplishing the same task can be done by forcing the headings to
be numbered by the DSlY1HEAD 1 APF. \Vhen preftxing is in effect (that is, the &@bodyhead 1
symbol exists) headings are numbered by DSrvlHEADI instead of by SCRIPT/VS. The prefix,
the number and the text of the heading are included in the running footing.

By setting the &@bodyheadl symbol to null (or to some value) the numbering is done by
DSMHEAD I rather than SCRIPT/VS .

. se @bodyheadl = "

27 The one exception to this is that the &@xref array is initialized to "1.0" and therefore is not incre­
mented for the very first level one heading in the document. Up to when the first level one heading is
encountered the first element of the array indicates a "1." Thereafter it represents the number for the
last level one heading.

Headings 83

This line can be put into the proftle or into one of the initialization macros. No other modifica­
tions are required if this technique is used to capture the heading number in the running footing.

Changing Heading Fonts

The fonts for the headings and for the table of contents entries are all defmed in DSMPROF3.
There are several sets of font defmitions-one for each logical device and the nUlnber of the fonts
available. Simply changing the font defmitions will change the fonts that are used.

Folio by Chapter

For some documents it may be desirable to number the pages in each chapter independently. For
example, the pages in the fIrst chapter of the document would be numbered starting with I-I and
the pages in chapter two would be numbered 2-1, and so on. The ftrst number in the page num­
ber would be the level one heading number. This means that level one headings have to be num­
bered.

Depending on the application that this modillcation is to be used for, it might be desirable to
incorporate this function into a SYSV AR such that users could select page nurnbering by chapter
on the SCRIPT command. Since headings also need to be numbered we could incorporate the
page nun1bering option with the heading number option and use a value of "pnum" for SYSV AR
IHI to indicate both. Then all we need to do is modify the lines in DSM#SETV that process
SYSV AR lIT. These arc:

· if &E'&SYSVARH eq 0 .se SYSVARH = no
· se *a = index '-NO--YES-NillIBER-' '-&U' &SYSVARH. '
· if &~';a ne 0 . se SYSVARH = substr 'no 1. 0 1. 0' &~"'a 3

\Ve need to change this to:

· if &E'&SYSVARH eq 0 .se SYSVARH = no
. se @pnum = no
.if &U'&SYSVARH eq PNUM .se @pnum = yes
.th .se SYSVARH = num
.se *a = index '-NO--YES-~~MBER-' '-&U'&SYSVARH.'
· if &~'(a ne 0 . se SYSVARH = substr 'no 1. 0 1. 0' &*a 3

The second line initializes the &@pnum symbol to "no." The next line tests if SYSVAR Ill' is
"pnum" and if so saves that fact in the &@pnum symbol. Then SYSVAR IHI is changed to be
"nun1."

The second part of the problem is to change the page nunlbering. The simplest way to do this is
to set the &@bodyheadl symbol in DSl\tlPROF3 so that it will exist. TIlls will cause the
headings to be numbered by the DSl'vlHEAD I APF. The number can be picked up from the
&@xef(l) symbol and used to set the page number.

.gs exatt stitle as dsm@shd
.if &@pnum eq yes .pn pref &@xref(l).­
.th .pn 1

These lines should be put into the DSl\1HEADI APF.

Putting Level 2 Headings in the Running Footing

The text of the document title and the last head 0 or head I are usually reflected in the running
footing of a general document. For speciftc document types you lnight need to change this to

84 DCF: GML Starter Set Implementation Guide

make the running footing reflect the last head 2. If so, the relationship between the level one
headings and the level 2 headings needs to be carefully considered. If the current page has been
started by a head I, we won't want to change the running footing to reflect a head 2. Only the
flrst head 2 on a page should affect the running footing, but subsequent head 2's should be re­
membered and used for the running footing on the next page if there is no intervening head 1.

We are going to have to modify the DSMHEAD 1 APF, the DSMHEAD2 APF, and the running
footing deflnition in the proftle. \Ve will need to set up several flags to remember the occurrence
of a head 1 and a head 2.

The running footing will need to know whether it was caused by a head 1 or not. Therefore we
will modify the DSMHEADI APF to set a flag just before the .Hl control word and then reset it
afterwards .

. se @hl@flag 'on

. 'hI

. se @hl@flag 'off

The DSMHEAD2 APF will need to knoW' whether or not the current page was stat1ed by a level
one heading. \Ve have the running footing preserve this information in another symbol. We also
need the running footing to reset a flag so the DSMHEAD2 APF can tell if it's already changed
the footing for the current page. \Ve add the following lines to the running footing defmition in
the proftle:

.se @hlstart '&@hl@flag

.se @h2flag 'off

The DSMHEAD2 APF also needs to be changed. It will always change the value of the
&@shead symbol which is the sYlnbol used in the running footing. If the current page wasn't
started by a head 1 and this is the ftrst head 2 on the page, we will want to re-execute the running
footing to change its contents for the current page. If the page was started by a head I or there
has already been a head 2 placed on the page, we won't change the running footing for this page.
We need to add the following lines to the DS1\1HEAD2 APF right after the "&@rc2" line:

&@rc2 .
. se @shead '&@head
.if &@h2flag eq off .an &@hlstart eq off .rf execute
.th .se @h2flag 'on
. se @tg = h

First we reset the symbol used in the footing to be the text of the head 2. The next step is to
decide if we should re-execute the footing. If the &@hlstart symbol is "off" it means that this
page wasn't started by a head 1. If the &@h2flag is "off" it means we haven't reset the footing
already for this page. Then we change the footing, if the symbol values indicated that it should be
changed. Next, we set the &@h2flag to "on" so that that the next time we come into tIlls macro
we know that we've already changed the footing for tllls page. \\Then the footing for the next
page is processed, the &@shead symbol contains the value of the last head 2 and the &@h2flag
will be set to "off" again and we'll be free to Chatlge the footing in the DSMHEAD2 APF.

Formatting Special Characters in Headings

The GML headings tags (and the SCRIPT/VS heading control words) use only a single line of
text. This presents problems when you need to include a special character from another font in
the text of the heading. For example, suppose you need to include an APL character or a Pi
character in your heading. You will need to change fonts, format the special character and restore
the previous font. Since the heading must be a single line of text, you can't· do this straight
forwardly with control words.

Headings 85

However, the .DV [DefUle Variable} control word provides a simple way to accomplish this.
\Vith .DV you can defme a variable to be a particular hexadecimal codepoint or string of text in a
particular font. The defined variable is then used velY much like a symbol is used-with· an am­
persand in front of the name and a period after the name.

For example, you can define a Pi character as a defmed variable, as follows for the 4250 printer:

.df pifont type('pi font sans serif' 12) codepage aftc0363

.dv pi font pifont /&x'c6

or as follows for the 3800 Printing Subsystem Model 3:

.df pifont type('pi sans serif' 12) codepage t1gpi363

.dv pi font pifont /&x'c6

Then you can use &pi in the text of your heading.

:h1.The Character &pi

This Sanle technique can be expanded to simply provide highlighted text within a heading:

.dv hd1text font hi1 /word

Then you can use &hdltext in the te:x1: of your heading to include "word" in highlight level 1.

Defmed variables such as these can be used in the text for any GML tag. It is particularly useful
for those tags which take only a single line of text-such as defmition terms (:DT) and titles
(:TITLE).

86 DCF: GML Starter Set Implementation Guide

Paragraphs

Overview
There are four different paragraph APFs in the starter set. The reason for this is that different
styles of paragraphs are wanted after headings. DSMPARA is the basic paragraph APF that han­
dles all paragraphs that do not directly follow a heading tag (:HO - :H6). The:P tag is mapped to
the DSMPARA APF in DSMPROF3.

The basic difference between the various paragraph APFs is the presence or absence of skips and
indents. The basic assumption is that the fIrst paragraph after a heading should not be indented.
After an inline heading (level five and six headings), we want neither a skip nor an indent.

Because no paragraphs are indented in the starter set, you Inight wonder why we are concenled
about indenting or not indenting. The symbol that controls the amount of indention for para­
graphs is &@in@p and it is set to 0 in DSMPROF3. It is not difficult to change the amount of
indention for paragraphs and we expect that you tnight want to do so. Therefore, we set up the
macros to handle the indention, regardless of the fact that we've got it set to zero.

We could have incorporated all the paragraph variables into one APF that would test various
symbols set by the heading macros. The main problem with that approach is that all paragraphs
would then have to go through an elaborate series of tests and that would unnecessarily degrade
performance. Remapping the :P tag after the headings to a different APF is much faster. The
sequence of remapping the :P tag is described below and is illustrated in Figure 15 on page 88.

ParagJ·aph I1litialization

DSMPROF3

The profile, DSMPROF3, establishes the basic mapping for the :P tag to the DSl'vlPARA APF.
It also defmes the amount of indention (&@in@p) for paragraphs and the amount of space to be
skipped before the paragraph (&@sk@p). The indention is set to zero and the skip to .75. This
is rounded up to 1 line for line devices.

DSMABSTR and DSlVlPREF

The DSMABSTR and DSMPREF APFs remap the :P tag to the DSMPARAI APF. This is
done because these macros also generate a level one heading and all paragraphs following level
one headings are processed with the DSMPARAI APF. :#np.

DSMHEADO and DSMHEADI

The DSMHEADO and the DSMHEADI APFs remap the:P tag to the DSMPARAI APF.

Para.graphs 87

DSMPROF3 }> DSMPARAI P -> DSMPARA
DSMPARA2
DSMPARA5

DSMHEADO J> P -> DStv1PARAl
DSMHEADI
DSMABSTR
DSMPREF

DSMHEAD2 }> DSHHEAD3 P -> DSMPARA2
DSt-lliEAD4

DSMHEAD5 ~> P -> DSMPARA5
DSMHEAD6

Figure 15. How Paragraph Tags are Mapped

DS]\tlHEAD2, DSMHEAD3 and DSlVIHEAD4

The DSMI-IEAD2, DSlYIHEAD3 and DSMHEAD4 APFs remap the :P tag to the DSMPARA2
API'.

DSMHEADS and DSl\1HEAD6

The DSMHEAD5 and DSMHEAD6 APFs remap the:P tag to the DSMPARA5 APF.

These APFs also defme a synlbol, &@h51ine, that is set to the page number, &$PN, followed by
a slash followed by the line number counter, &$LC. This records, roughly, where we are on the
page when the level five or six heading is processed. &$PN resolves to the current page nmnber
and &$LC resolves to the nurnber of lines left on the page. These two together roughly mark the
spot on the page.

The &@h5line symbol is used in the DSlYIP ARA5 APF to determine if there was any text be­
tween the heading and the next paragraph tag. If any text is processed in between the :H5 or :H6
tag and the next paragraph, one of these symbol values will probably have changed. \Ve need to
know this because we need to lmow whether to generate the colon with the :P tag. If the :P tag
isn't directly after the heading, we don't want a colon.

88 DCF: Gl\1L Starter Set Implementation Guide

Pal·agrapll Processillg

DSMPARA

Most paragraphs in a document are processed by the DSIVtPARA APF. The:P tag is mapped to
DSMPARA initially by DSMPROF3. The DSMPARA APF performs the following processing:

1. Skips according to &@sk@p (set in DSMPROF3 to 1).

2. Indents the first line of the paragraph according to + &@in@p (set in DSMPROF3 to 0).
This is an incremental indention over and above any indention currently in process. It is
incremental because we want paragraphs to work in list items, long quotes, and all elements
that cause indention.

DSMP ARAI and DSMP ARA2

In the starter set, there is no difference at all between the DSMPARA1 APF and the
DSMP ARA2 APF. There are two different APFs in order to facilitate making a difference be­
tween paragraphs following the different types of headings. As we'll see in "Modifications to
Paragraphs" on page 90 below, this makes it easy to change the handling of the paragraph follow­
ing the level zero and one headings without disturbing paragraphs after other headings.

The first paragraph after a level zero or one heading (:HO or :H1 tag or document section tag,
such as :ABSTRACT or :PREFACE) is processed by the DSl'vtPARAl APF. The:P tag is
remapped to DSMPARA1 when a :HO or :H1 heading is processed.

The DSMPARA2 APF is used to process the frrst paragraph after level two through four
headings (:H2, :H3 and :H4 tags). The:P tag is remapped to DSMPARA2 when a :H2-4 heading
is processed.

The DSMPARA1 and DSMPARA2 APFs perform the following processing:

1. Skips &@sk@p (set to 1 by DSMPROF3).

2. Does not indent (making it different from DSlYIP ARA)

3. Remaps the :P tag to DSMP ARA because after the frrst paragraph following a heading, we'll
want norrnal style paragraphs.

DSMPARA5

Paragraphs that follow level five and six headings (:H5 and :H6 tags) are processed by the
DSlVIP ARA5 APF. The pritnary purpose of this APF is to append a colon to the heading and
process the paragraph without any skips or indents.

The DSMP ARA5 APF performs the following functions:

1. The colon that follows the heading needs to be formatted in the same font as the heading.
Since both level six and level five headings are following by paragraphs produced by the
DSMPARA5 APF, we needed some way of telling which font to start-the "hd5" font or the
"hd6" font. The DSMI-lEAD5 and DSMHEAD6 APFs save the appropriate font number
in a symbol named &@para5@fnt, which when combined with "hd II yields the proper .BF
[Begin Font] control word:

.bf hd&@paraS@fnt

. bf hdS or . bf hd6

2. The page number (&$PN), followed by a slash, followed by the line count (&$LC) is com­
pared to the &@h5line symbol that was saved in the DSMHEAD5 or DSMHEAD6 APF.

Paragraphs 89

If text has been processed between the heading and the paragraph tag, the values of these two
symbols (&$PN and &$LC) will probably not be the same as they were when they were
saved in the &@h5line symbol. This doesn't always work, because the line count value
(&$LC) is not always incremented directly after processing the text. However, we need some
way to tell if the :P tag directly followed the heading, and this is the best approximation
available.

3. If there has been no intervening text:

a. The correct font is started.

b. A colon is appended to the text of the heading, using the .CT [Continued Text] control
word.

c. The previous font is restored.

4. If there has been intervening text, DSMP ARA is called to finish processing the paragraph. If
text or other tags have been put between the heading and the paragraph tag, tIlls indicates a
regular style paragraph-it no longer follows a heading. It is processed with the normal para­
graph APF, DSlVIPARA.

5. In either case, the :P tag is remapped to the DSMP ARA APF.

DSlVIPCONT

The DSI\1PCONT APF processes the :PC tag. A paragraph continuation occurs when a para­
graph is interrupted by an example (:XMP) or a figure (:FIG) and it is formatted by doing a skip
(&@sk@p) but not an indent.

Modifications to Paragraphs

Changing Indention and Spacing

The amount of indention for the f1[st line of a pa.ragraph and the amount of skip before it are
controlled by two symbols that are set in DSMPROF3-&@in@p controls the indention and
&@sk@p controls the amount of space skipped. The original settings are 0 and .75 respectively.
To change these values all you need to do is change their settings in DSMPROF3.

Using Large Initial Capitals

Creating large display initials at the beginning of a paragraph involves using a large font for the
first letter of a paragraph. This is possible only on page printers, of course. First we need to
decide when to use it because we probably wouldn't want every paragraph to have a display ini­
tial.

Let's suppose that we are going to make only the paragraphs that directly follow a level zero or
one heading have large initial capitals. That means that all we have to do is alter the
DSlVIPARAI APF to do the job and we're done. Suppose, furthennore that we are going to let
the user control whether he wants large initial caps or not by using a new SYSV AR on the
SCRIPT command.

Isolating the First Letter: First, let's modify the DSMPARAI APF to create the initial capital
letter. If we are not fonnatting for a page printer (SYSO UT is not PAGE), then we can end the
macro because there is no way to produce a large initial cap on a line printer. If we can create
the large initial caps, we start with a keep that should encompass the large initial capital, plus
some text. Next, we get the residual text into a local symbol so that we can pick the first charac­
ter out of it. Then we turn off symbol substitution so that we can use the S UBSTR function of
.SE [Set Symbol] without worrying about whether there are blanks in the residual text line. Then

90 DCF: GlVIL Starter Set Implementation Guide

we split the line into two separate symbols. The first symbol will contain the uppercase letter we
are going to put in the large font and the other symbol will contain the rest of the line .

. sk &@sk@p
• aa p dsmpara
.if SYSOUT ne PAGE .rne
.kp 1.2i
.gs scan *line
.su off
.se *cap = substr &*line. 1 1
.se *cap = &U'&*cap
.se *rest = substr &*line. 2

Notice that we didn't specify the length parameter on the second substring function. This param­
eter defaults to the rest of the line if it isn't specified, and that's what we want.

Calculating the Baseline Shift: The next step is to figure out how much we need to drop the
baseline to get the top of the large capital letter to line up with the rest of the line. Let's look at
some dimensions that we have available and figure out how rnuch we need to shift down.

Figure 16. Formatting Large Initial Capitals for Paragraphs

From Figure 16 you can see that the amount we want to shift down is the difference between the
height of the capital and the height of the rest of the letters on the line. To get the height of a
letter we can use the &DV symbol attribute and the "mv" space unit notation. \Ve can't simply
use the line spacing of the font because we don't want to take into account any white space on
the top of the letters. The em-height (mv) space notation returns the actual height of the charac­
ters in the current font.

Paragraphs 91

The font we are using at the moment we do the calculation is itnportant. \Ve will need to use a
new font to fonnat the capital and to calculate its height, but we must fIrst calculate the height of
the rest of the line before we change fonts .

. se *basehgt = &DV'lmv
· bf large
· se shift = &DV'lmv - &-I"basehgt
.su on
· sb -& shift. dv

We've calculated the height of the letter itl the nonna! font (&*basehgt), started the "large" font
and calculated the difference between the current height of the letter (in the large font) and the
height of the letter in the normal font. Then we use this value (& * shift) to shift the baseline
down using the .SB [Shift Baseline] control word.

Calculating the Indention: Now we need to fIgure out how much to indent the lines after the fIrst
one. From Figure 16 on page 91 we can see that the amount the second line is indented is the
width of the capital letter. We can set up a delayed indent using the & 'V' symbol attribute and
the AFTER parameter on the .IN [Indent] control word to avoid indenting the fIrst line. \Ve can
avoid indenting the fITst line by delaying the indent for a little-one device unit (ldv) will do just
fIne.

We don't want to indent for the rest of the paragraph, so we need to know how many lines will
need to be indented. We don't know that, but we do know how much vertical space they
take-the same amount that we shifted down and that's how long the indention should last.

Then \ve can set the indent:

· in +&DH' &W' & cap .. dh for &"''-shift. dv after Idv

Now we need to fonnat the capital.

Then we:

1. Reset the baseline to what it was

2. Return to the original font

3. Complete the rest of the line, forcing continuation with the initial capital.

· sb +&"'-shift. dv
.pf
· ct & rest

92 DCF: GML Starter Set Implementation Guide

The New DSMPARAI Jl!/acro: Here's what the DSrvlPARA1 APF looks like when we are
through:

· sk &@sk@p
· aa p dsropara
.if SYSOUT ne PAGE .me
.kp 1.2i
.gs scan *line
.su off
.se *cap = substr &*line. 1 1
.se *cap = &U'&*cap
.se *rest = substr &*line. 2
.se *basehgt = &DV'lmv
.bf large
.se *shift = &DV'lmv - &*basehgt
.su on
· s b -&~"'shi ft. dv
.in &DH'&W'&*cap .. dh for &*shift.dv after ldv
&*cap
• sb +&')':shift. dv
.pf
.ct &*rest

Now, how do we handle the selectable portion of the problem? \Ve want to do this fancy stuff
only when the user requests it with a SYSVAR. First, let's make up a SYSV AR-"I"-for initial.

The lines we just added to the macro only apply if &SYSVARI is "yes." If &SYSVARI isn't
"yes," we just exit the APF.

· sk &@sk@p
· aa p dsropar a
.if &SYSVARI ne yes .me

That's all we need to do to our new DSMPARA1 APF. Two more things remain to be done.
First, we must defme the font named "large" that we have used in the new DSMPARA1 APF.
The font defmition,

.df large type(24)

defmed a 24 point font natned "large." Put this .DF [Defme Font] control word in the proftle.

The last step is to process the &SYSV ARI value given on the command to make sure that
"YES" and "Yes" and "yes" all end up with &SYSVARI set to "yes," because that is what we
are testing for. We also need to establish the default value of &SYSVARI as "no." This process­
ing needs to be done in the DSM#SETV macro:

.se *a = index '-YES-NO-' '-&U'&SYSVARI.'

.if &*a eq 0 .se *a = 5
· se SYSVARI = substr 'yes no ' &~f:a 3

See "Validating Keywords" on page 13 for a detailed explanation of the technique used here.

Paragraphs 93

Creating N unlbered Paragraphs

Paragraphs arc not numbered in a general document. However, suppose we need to create a doc­
ument that contains numbered paragraphs that look like this:

1.01 Notice that the text of the
paragraph is indented for a

single line following the paragraph
number.

In order to create something like this, we have to make a few assumptions:

1. The paragraph numbers never go above 99.

2. The fust digit of the number is derived from a level one heading.

3. There are also normal, non-numbered paragraphs in the document.

The last assumption means that we need to create an entirely new tag, :PNUM, to mark up the
numbered paragraphs, leaving the :P tag for the nOfInal paragraphs.

Initialization: Since the numbered paragraphs are tied to the headings, the fust thing we need to
do is defme that relationship and modify the heading defmitions (.DH [Define Head Level]) ac­
cordingly along with the DSMHEAD 1 APF. First, we redefme the headings (probably in the
proftle) to never be numbered. \Ve're going to number the level one headings ourselves in the
DS J\;1 HEAD 1 APF and it would be undesirable to have the lower level headings numbered if the
paragraphs were numbered. We might also want to change the level one heading to not cause a
section break or a page eject and to have a skip before it. These kinds of decisions would be a
function of exactly how the headings were to look. By changing the level one heading in this
way, it becomes similar to a level two heading:

.dh 1 npa nosect nonum skbf 2
· dh 2 nonum
· dh 3 nonum
· dh 4 nonum

We also need to initialize a paragraph number symbol and a he)ad.ingn,uIJ:lq~rsymbolin""",the,pro-
ftIe: ' , " , ," , ,

· se pct = 0
· se @hdnum = 0

Alodifying the DSltlIIEADl APE: The next step is to do two things to the DSMHEADI APF:

1. Number the headings
2. Reset the paragraph number symbol to zero.

94 DCF: GML Starter Set Implementation Guide

The new DSMHEAD 1 APF might look like this:

.dsm/Frset H.-1
· dsmfJdupl
· gs scan @head
.se @hdnum = &@hdnum + 1
• t se @head t &@head1 &@hdnum. &@head
· 'se @shead '&@head
.gs exatt stitle as DSM@SHD
· 'h1 &@head
· se @tg = h
.gs exatt id as DSM@IDS
.se pet = 0
· aa p dsmpara1

We added several .SE [Set Symbol] control word lines to manipulate the heading number and the
paragraph number and to include the heading number in the text of the heading. We've also
deleted two lines from the DSMHEAD 1 APF which were used to increment the heading number
with the .OS [OML Services] HeTR control word. These lines are no longer needed because we
are going to handle the number ourselves.

Creating the New APE: The next step is to create a new APF to process the :PNUM tag. We'll
name it PNUM to simplify nlatters.28 Its function is to calculate the paragraph number and estab­
lish some indention to make the number stand out from the text of the paragraph. It will also
skip a space before the paragraph as the normal paragraph APF does .

. sk &@sk@p

.se pet = &pet + 1
· if &pet It 10 .se pet 'O&pct
.se pnum '&@hdnum .. &pct
.in 6 after 1 for 1
&pnum.&$RB.&$RB.&$CONT.

If we are formatting for a page printer, we need to be a little fancier about calculating the in­
dention. Instead of setting an indention of 6, we need to calculate the width of the number plus
the required blanks .

. sk &@sk@p

.se pet = &pet + 1
· if &pet It 10 .se pet 'O&pet
.se pnum '&@hdnum .. &pet
.se ~~ = &DH'&Wt&$RB * 2 + &DHt&W'&pnum
.in &*w.dh for 1 after 1
&pnum.&$RB.&$RB.&$CONT.

We could even get fancier and use a slightly larger font for the paragraph number for a page
printer. First we need to deftne a large font to use for the paragraph numbers. It could be some­
thing like this:

.df parafont type(18)

This line should be put in the proflle along with all the other font defmitions.

28 By naming the APF the same as the tag, we avoid having to include a .AA [Associate APF] control
word to associate the tag with the appropriate APF.

Paragraphs 95

Then we need to perform the calculations explained in the discussion about using large initial
capitals on a paragraph. This involves calculating the difference between the heights of the
normal text font and the large initial cap font. This difference represents the amount we need to
shift the baseline down in order to align the tops of the characters.

· sk &@sk@p
.se pet = &pet + 1
.if &pet It 10 .se pet 'O&pet
.se pnum '&@hdnum .. &pet
.se *basehgt = &Dy'lmv
.bf parafont
.se *shift = &Dy'lmv - &*basehgt
· s b -&'1"shi ft • dv
.se *w = &DH'&W'&$RB * 2 + &DH'&W'&pnum
&pnum.&$RB.&$RB.&$CONT
· s b +&'kshi ft . dv
.pf
.in &~~.dh after 1 nobreak for &*shift.dv

In this case we shifted down the difference in line spacing between the two fonts we are using.
This more or less lines up the tops of the characters.

\Ve have also changed the indent line and moved it. We have to be careful about what font we
are using when we use the "after 1" parameter. The size of the "1" will be determined by the
current font. Therefore, we want to wait and not set the indention until after we have returned to
the body font with the .PF [Previous Font] control word. That is why we moved the indent
control word further down in the macro.

However, starting an indent when we have a partial output line (the partial line contains the para­
graph number and two required blanks) causes a line break to occur. To avoid breaking the line
after the number, we added the NOBREAK option to .IN [Indent].

There's one more problem with our indention: If the value of & * shift is zero (which will always
be the case for line printers), the indention becomes permanent rather than temporary. In other
words, FOR 0 is just the same as not using the FOR parameter at all. To solve this problem we
need to check that & * shift is at least equal to one.

· if &*shift Ie 1 .se *shift = 1
· in &<"w. dh after 1 nobreak for &·'''shift. dv

A Word of Caution: Numbered paragraphs as implemented here are fairly simple. They are also
of limited use. To really implement them and use them within the starter set, you need to decide
which heading level the numbers should function off of, which headings will be allowed in the
document and how they should look. The implementation outlined above has been greatly sim­
plified. Lower level headings have not been adjusted except to inhibit numbering. Other adjust­
ments might be necessary depending on the nature of the application.

96 DCF: G1\1L Starter Sct Implementation Guide

Lists

List Processillg
There are many different macros which are called upon to process the various parts of a "list"
depending upon the type of list. The diagram below depicts the basic relationship between the
primary macros used. The DSM#LTYP and DSl\1#LINT macros, called from DSl\1LISTM, ini­
tialize the formatting environment for the list and the various parts of the list can be processed by
special APFs such as DSMLPART, DSMLITEM, DSMDDEF and so on. The DSlV1ELIST
APF restores the normal formatting environment.

i'\ - - - - - - - - - --!,

I
I *----------* ·l~--------_-_;~ *----------*

DSMSL1ST
DSHGL1ST
DSHOL1ST
DSHDL1ST
DSHUL1ST

1-->1 DSHL1STM 1--->1 DSMIfoLTYP 1--->1 DSM#L1NT 1
1

1
*----------.,~

-/,-----------!r 7(----------'4" 4~----------*

I
\
\-->
\
I
I

Defines:

.. ~--> Maps:

@TS1ZE macro
@TERMH1 macro
@HEADH1 macro

: L1 ----------> DSMLITEM

:DDHD -------->
:DTHD
:DT ---------->
:DD ---------->
: GT - - - - - - - - - ->
:GD ---------->
: LP - - - - - - - - - ->

DSMDDHD
DSMDTHD
DSMDTERM
DSMDDEF

DSMGTERH
DSMGDEF

DSMLPART

Figure 17. Primary List Macros: This diagram shows the calling sequence among the primary list
macros and APFs.

Lists 97

List Initialization

DSMPROF3

The proftle performs a great deal of initialization for lists, including:

1. The indention and space values pertaining to each type of list are defined (for example,
&@in@o and &@sk@o for ordered lists). See Figure 18 on page 99 for the list of control
symbols.

2. The default highlight levels for deflnition headings (&@hi@h) and defInition terms
(&@hi@d) are set to 3 and 2, respectively. The default highlight level for glossary list terms
(&@hi@g) is 2.

3. The &@olistnest and &@ulistnest symbols are defmed. These symbols control the sequence
of list item identiliers that are to be used for each level of list nesting.

4. The list item identifiers are defmed in DSMPROF3. See "Starter Set Initialization" on page
19 for about how this works.

5. The list tags (:DL, :GL, :OL, :SL and :UL) are mapped to their appropriate APFs.

DSM#SET

This macro also performs some important initialization for lists, including:

1. The list nesting sYlnbol, &@nest@l, is set to zero. This symbol is used to keep track of how
many levels of lists are open.

2. The &@sk@l symbol is set to &@sk@ls which is set in DSMPROF3 to .75. This symbol
governs the aInount of space that is skipped before and after lists.

3. The &@nest@o and &@nest@u symbols are undefmed. These two symbols keep track of
the current level of unordered and ordered lists.

Gettillg the List Started

There are flve types of lists supported by the starter set. Each type of list has its own tag and is
mapped to its own APF. These are:

definition
glossary
ordered
simple
unordered

(DSMDLIST)
(DSMGLIST)
(DSMOLIST)
(DSMSLIST)
(DSMULIST)

(: DL)
(: GL)
(: OL)
(:SL)
(: UL)

However, all flve of the APFs for these tags do the same thing: immediately call the DSMLISTM
macro. The flrst parameter on the call to DSMLISTM is a single character which denotes what
kind of list this it. The possibilities are "*,, for defmition, "g" for glossary, "0" for ordered, "s"
for simple and "u" for unordered, The APFs also pass along to DSMLISTM the parameters
(value attributes) that were passed to them (& *).

98 DCF: GI\lL Starter Set Implementation Guide

Nesting Controls Symbols

@olistnest - id sequence (OL)
@ulistnest - id sequence (UL)
@denest@o - denest sequence (OL)
@denest@u - denest sequence (UL)
@nest@o - nest level (OL)
@nest@u - nest level (UL)
@renest@o - renest sequence (OL)
@renest@u - renest sequence (UL)

Font Control Symbols

term highlight
heading highlight
heading default
glossary default
defmition term default

Formatting Control Symbols

@in - indention before list
@in@l - indent for current list
@in@o - default ordered indent
@in@u - default unordered indent
@in@s - default simple indent
@in@g - default glossary indent
@in@d - default definition
@li@tab - tab to start list item
@sk@l - skip for current list
@sk(cyo - default ordered skip
@sk@u - default unordered skip
@sk@s - default simple skip
@sk@d - default deflllition skip
@sk@g - default glossary skip
@break - break attribute value

@hi@l
@hi@hd -
@hi@h -
@hi@g -
@hi@d -
@nest@l- saves current list control symbols

Miscellaneous List Control Symbols

@item# -
@ltype

list item number
current list type (o,u,s,q or g)

Figure 18. List Symbols: Many different symbols are used to control list nesting and list format­
ting. Some are initialized in the profile. Some are initialized in the DSMLlSTM,
DSl\:l#L TYP, and the DSM#LINT macros. They are used throughout the list macros to
determine what the situation is and to control the formatting.

DSMLISTlVI

The DSMLISTl\tl macro sets up the formatting environment for list processing. It is called by
the DSMDLIST, DSMGLIST, DSMOLIST, DSMSLIST and DSMULIST APFs which process
the :DL, :GL, :OL, :SL and :UL tags, respectively. It is also the APF for the :L tag which is
mapped directly to DSMLISTM in DSl'v1PROF3.29

The DSMLISTM macro performs the following processing:

L Def1l1es macros to process the TERMHI, TSIZE and HEADHI attributes. These save the
attribute value in the &@hi@l, &@in@l and &@bi@hd symbols, respectively.

The lines that defme the macros are simultaneously removed from DSMLISTl\1. See "Spe­
cial Techniques" on page 13 for details on self-tnodifying macros.

2. Skips a line (&@sk@l) conditionally.

3. Saves the values of several variables in an element of the &@nest@l symbol array. This is
done each time a list is started. This is particularly critical when there is already a list going
as these symbol values need to be restored when the outer list is restarted. The symbol val­
ues saved include:

29 The:L tag is not formally part of the starter set, which is why it is not documented. However, it is used
to create lists which use an asterisk as the list item identifier.

Lists 99

• The list type (&@ltype),

• The current item number (&@item#),

• The indention values (&@in and &@in@l),

• The skip value (&@sk@l),

• The ternl highlight level (&@hi@l),

• The heading highlight level (&@hi@hd), and

• The current value of the BREAK attribute (&@break).

The indention for lists is done in two parts as is illustrated in Figure 19. The frrst indent is
to where the identifier or number goes and the second indent (which is incremental) is to
where the text starts.

4. Calculates the indention value. If this is not the frrst level of list, the &@in value contains
the base indention for the previous list level and the &@in@1 symbol will contain the incre­
mental amount for the previous list. If these symbols exist, we indent their value. The total
amount of indention, now in &$IN, is saved in &@in which now represents the base in­
dention for the current list starts.

5. Calls DSM#L TYP to get the &@ltype and &@id@l symbols set up.

6. Processes the parameters passed in (&*) to see if either COMPACT or BREAK was speci­
fied. If COMPACT is found, &@sk@l is set to 0 to cause no extra spaces between list items
and &*c is set to O. If BREAK is found, the &@break symbol is set to BREAK. This
symbol will be used on the .IS [Inline Space) TO control word line in the definition list
macro. In other words the BREAK attribute function is nothing more than the BREAK
parameter on the .IS [Inline Space) control word.

1. This is a first level list item. The identifier
for the item is 'I. '. The text of the item

<-----> starts at an indention of &@in@l.
&@in@l

a. I This is a second level list item. The
<-----> <------>/ indention for its text is the sum of the

&@in &@in@l / indention for the first level list (&@in)
/ and the incremental amount (&@in@l).
/

/
/ 1) / This is a third level list item.

<-------------->/<----->1 It's indention is the sum of the
/ &@in I&@in@l I first and second level indention
I / I (&@in) plus an incremental
I I I indention (&@in@l).

Figure 19. List Indention: The indention for each level of list is calculated in two parts. The first
indention, &@in, represents where the list item identifier goes. It is the sum of the in­
dention for the previous levels of list. The second indention, &@in@l, is the incremental
indention necessary to get from where the identifier is placed to where the text of the item
should start.

100 DCF: GML Starter Set Implementation Guide

A detailed explanation of the technique used here to determine if the attributes were specified
or not can be found in "Special Tecluliques" on page 13.

7. Sets up the fonnatting environment for this list level.

a. Sets the item counter, &@item#, to O. This will be incremented each time a :LI tag is
processed.

b. Sets the highlight font for terms, &@hi@l, based on list type.

c. Sets &@in@l based on list type. This will be the incremental indention from where the
identifier or term is placed to where the list item text or description starts.

d. Sets the highlight font for headings (&@hi@hd) using the &@hi@h symbol that was
defmed in DSlVIPROF3.

e. Sets &@sk@l based on list type and whether COMPACT was found. If CON1PACT
was not specified, the & *c symbol will be null causing the &@sk@&@ltype value to be
used. If COMPACT was specified, the &*c value (0) will be used.

8. Processes the TSIZE attribute using the @TSIZE macro def1l1ed above. The TERl\1HI at­
tribute is processed using the @TERlVIHI macro defllled above and the HEADHI attribute
is processed using the @HEADHI macro defined above.30 These attributes will override the
&@hi@l, &@hi@hd or &@in@l symbols whose defaults were just set above.

9. Performs the base indention and incremental indention (&@in and &@in@l). The total in­
dention value is saved in &@li@tab. This value represents where the text of the list item or
the defmition description starts. It is used on a .IS [Inline Space] TO control word by the list
item and definition description APFs.

10. Maps the :LP tag for list parts to its APF, DSMLPART.

11. For glossary lists, Inaps the :GD and :GT tags to their respective APFs, DSMGDEF and
DSlY1GTERlY1. For defmition lists the :DTHD, :DDHD', :DT and :DD tags are mapped to
DSlV1DTHD, DSMDDHD, DS~1DTERIv1, and DSI\1DDEF.

12. For all other types of lists, maps the :LI tag to the DSI\lLITElYl APF.

DSM#LTYP

The DSM#L TYP macro decides what type of list is being processed. It is called by the
DSMLISTI\1 macro with a single character as a parameter in & * 1. The character will be either g,
0, s, u, or >1<. The asterisk is uscd to denote a definition list.

DSM#LTYP performs the following functions:

1. Calls the DSM#LINT macro which defmes the &@denest@u, &@denest@o, &@renest@u
and &@renest@o sYlnbols. These symbols contain strings of nUlnbers which will control
the way in which nested levels of lists are handled.

2. Determines from the single character31 (g,o,s,u, *) that is passed to the macro what type of list
is being processed.

a. Picks out the fIrst character of the fIrst parameter.
b. Checks if it's an 0, U, S, G or *.
c. If none of the above, assumes it's "undefined" (z).
d. Sets &@1type to d, g, 0, s, u or z (for undefined).

30 "thi" is recognized as a synonym for the TERMHI attribute and "hhi" is recognized as a synonym for
the HEADHI attribute.

31 The asterisk (*) denotes definition lists.

Lists 101

3. For g lists, d lists, and s lists, sets the &@id@l symbol to null. This symbol is supposed to
contain the necessary symbol function to produce the list item identifier. For glossary lists
and definition lists the identifier pOltion (left part) of the list is a term and for simple lists
there is no identifier.

4. For unordered lists DSM#LTYP:

a.Makes sure that the &@nest@u symbol exists. This symbol indicates the level of nest­
ing of unordered lists. If there are no unordered lists open already, the symbol won't
exist and we set it to the length of &@ulistnest. This is the number of different identifi­
ers defrned for each level of nested lists. We will use this value to select the correct
identifier to use for the list we are starting.

b. Resets &@nest@u to one of the values in the &@renest@u symbol. This symbol was
defmed in DSl'vl#LINT to be "234561." For the frrst level of list, the &@nest@u sym­
bol will be 6, so we will select the siAih number, "1." For the second level of unordered
list we will select the frrst number, "2" because the value of &@nest@u will be "I" indi­
cating that there is already one level of list going.

c. Determines the identifier number. The &@ulistnest symbol contains the proper se­
quence in which we should use the item identifiers that have been defmed. It will be
" 123" for line printers and "12345" for page printers unless the proftle has been modi­
fied. Using the &@nest@u symbol value calculated above, we select the proper identi­
fier value out of &@ulistnest. So for the frrst unordered list, we'd pick the frrst number,
and use it to construct the identifier number.

5. Performs the same processing as described above for ordered lists except that the
&@renest@o and &@olistnest symbols are used.

6. Determines the appropriate item identifier using the number just calculated above, for both
unordered and ordered lists. The identifiers are in defmed variables named &@id@l@ul,
&@id@l@u2, and so on. The number just calculated is the last part of the identifier symbol
name. The list type determined above is the next to last part of the symbol name
(&@ltype).

For example for the third level unordered list the identifier symbol, &@id@l, is defmed as
follows:

.se ""'a = &@ltype. &'#'''a

.se ""'a = &@ltype.3

.se a = u3

.se @id@l t &V' &@id@l@&@ltype. &'#'''a .. t

.se @id@l '&V'&@id@l@u&*a .. t

.se @id@l '&V'&@id@1@u3. t

7. Issues a message if the identifier symbol isn't defmed. This indicates that the &@olistnest or
&@ulistnest symbols are out of sync with the identifier defmitions in DSMPROF3.

8. Puts the value of the identifier synlbol into &@id@l.

DSM#LINT

The DSlYl#LINT .macro defmes the symbols which control the nesting and de-nesting of the vari­
ous kinds of lists. It is called by DSl'vI#LTYP.

There are two denesting sytnbols and two renesting symbols-one set for ordered lists and one set
for unordered list. Their values are based on the setting of &@ulistnest and &@olistnest which
are defmed in the proftle.

102 DCF: GML Starter Set Implementation Guide

Suppose that the &@olistnest sYlnbol is set to "123456" mcaning that there are six list item idcn­
tifiers defined which are numbered 1 through 6. These identifiers are to be used in the order given
in &@olistnest. You can change the sequence of the identifiers by simply reordered the numbers
in &@olistnest. The &@dencst@o symbol will be defmed as follows:

.se @denest@o = substr &L'&@olistnest. 12345678 1 &L'&@olistnest

.se @denest@o = substr 612345678 1 6

.se @denest@o = 612345

The &@denest@o symbol will be used in thc DSMELIST APF to figure outthe proper level of
the previous ordered list when weare ending an ordered list.

Using the current level of nesting as a position in the &@denest@o symbol we can derive the
level of the previous list. For example, when the third level of list is being cndcd we can tell that
the second level needs to be restarted. That seems very straight forward, however, the levels actu­
ally wrap around such that the seventh level of list is the same as the frrst level in terms of which
identifiers are used. In this case the value we will pick out of &@denest@o will be "6" which is
what we want. See the discussion of the DSMELIST APF below for more details on how this all
works.

The &@renest@o symbol is used to figure out the proper level of the next level of ordered list
when we are starting one in the DSMLISTM macro. It is used in the DSM#LTYP macro to
select the proper list item identifier for an ordered list when it is started. It is set as follows in the
DSM#LINT macro:

.se @renest@o = substr &@denest@o.&L'&@olistnest. 1 3 &L'&@olistnest

.se @renest@o = substr 61234561 3 6

.se @renest@o = 234561

Using the current level of nesting as a position in the &@renest@o symbol we can derive the
level of the next list. For example, when the current list is the sixth level, we can tcll that the
next level will be like the flfst level in terms of which identifiers are used. In this case the value
we will pick out of &@renest@o will be "1" which is what we want. See the discussion of the
DSM#LTYP macro above for more details on how this symbol is used.

Processing Itelns on the List

DSMLITElVI

The DSMLITEM APF processes the :LI tag. It skips, indents and prints the item identifier (if
any), as follows:

1. Increments thc list item counter (&@item#).

2. Skips and indents (&@sk@l and &@in@l-set in DSMLISTlV1). &@in is the base in­
dention for the current level of list. &@in@l is the incremental amount of indention we
need for the current list.

The indent is done in two parts---'indent and then an incremental indent after 1. The first
indent controls the placement of the identifier and the second controls the placement of sub­
sequent lines of text. The initial line of text is placed with an immediate tab (.IS [Inline
Space] TO n). If this is a second level list, &@in will be 4 due to the indention of the flfst
level and &@in@l will also be 4 representing the amount of indention for this level.

3. Sets the &@tg symbol to "d" to indicate that an ID for a list item is being processed. The
DSM@IDS macro is then called to process the ID attribute. This macro is described in
"Cross-References" on page 147.

Lists 103

4. Puts out the identifier that is in &@id@l. This symbol was also set up in the DSlVl#LTYP
macro when the list was started.

5. Moves over to where we want to start the text of the list item. The.IS [Inline Space] TO
control word is used to avoid using the tab rack. The position to move to is in &@li@tab
which was defmed in DSMLISTM when the list was started. It will get us to the same place
we defmed with the delayed indention.

DSMDTHD

The :DTHD tag is processed by the DSMDTHD APF. The defmition list headings are actually
produced by the DSMDDHD APF. The DSMDTHD APF saves the residual text of the tag in
&@dthead for processing later by the DSMDDHD APF. It also skips a line.

DSMDDHD

The :DDHD tag is processed as follows by the DSMDDHD APF:

1. Determines whether or not a :DTHD tag was processed. If so, the &@dthead symbol will
exist and will contain the heading for the terms. If it doesn't exist, we set it to null and there
won't be any heading for the terms.

2. Starts a keep around the headings that will ensure that the headings are kept with the ftrst
deftnition term. The size of the keep depends on whether or not we are producing a compact
list. The &@sk@l symbol will be zero if the list is compact. Otherwise it will be one. We
calculate the depth of the keep of 3 lines plus the depth of the skip.

3. Skips and indents (&@sk@l and &@in@l-set in DSMLISTM). &@in is the base in­
dention for the current level of list. &@in@l is the incremental amount of indention we
need for the current list.

The indent is done in two parts-indent and then an incremental indent after 1. The ftrst
indent controls the placement of the term and the second controls the placement of the de­
scription headings. The initial line of text is placed with an immediate tab (.IS [Inline Space}
TO n). If this is a second level defmition list, &@in will be 10 due to the indention of the
first level and &@in@l will also be 10 representing the amount of indention for this level.

4. Obtains the residual text in the & *ddhead local symbol.

5. Starts the highlight font for deftnition list headings. The &@hi@hd symbol contains the
number of the highlight font to use. This is either the default (set to 3 in DSMPROF3) or it
has been set by the user with the HEADHI attribute.

6. Puts out the term heading using literal mode just in case it should start with a period.

7. Performs a .IS [Inline Space] TO control word to get to where the description heading should
start. The &@li@tab symbol was calculated in DSMLISTM and is the sum of the two
indentions described above.

8. Puts out the description heading using literal mode in case it happens to start with a period.

9. Restores the previous font.

10. Skips another line to separate the headings from the flIst term.

11. Undefmes the &@dthead symbol because we don't need it any more.

DSMDTERM

The :DT tag is processed by the DSMDTERM APF which saves the defmition term for process­
ing later by the DSMDDEF APF. DSMDTERM performs the following processing:

104 DCF: GML Starter Set Implementation Guide

1. Checks that there are no unprocessed definition terms left over from before. The tenn will
be put in the &@id@l synlbol here. When it is placed on the page, the &@id@l sYlnbol is
undefmed. Therefore, if the &@id@l symbol exists it means that we've gotten two defmition
terms without an intervening description. In this case, we issue an error message.

2. Checks if there is an unprocessed term heading. The &@dthead symbol is used for the term
heading and is undefmed when the heading is placed on the page by the DSMDDHD APF.
If this symbol exists it means that a tenn heading has been processed but there was no de­
scription heading. In that case, rather than assume that that is an error we will put out the
term heading.

a. Calculate a keep of 3 lines plus the depth of &@sk@l.
b. Starts a keep.
c. Skips a line conditionally.
d. Indents to where the heading should start.
e. Starts the defll1ition heading font (or the current font).
f. Starts literal mode for one line.
g. Formats the term heading.
h. Restores the previous font.
1. Skips a line.
J. Undefmes the &@dthead symbol.

3. Skips a line conditionally before the term.

4. Scans to get the residual text of the :DT tag into the &@id@1 symbol. The term will be
placed on the page by the DSMDDEF APF.

DSMDDEF

The :DD tag is processed by the DSMDDEF APF which fonnats the defmition term and sets up
the processing environment for the defmition description with the following processing:

1. Checks for a missing definition term, if so, inserts "?" for the term and calls DSM#MSG to
issue a message that a defmition list term is missing.

2. Checks if there is an unprocessed term heading. The &@dthead sytnbol is used for the term
heading and is undefined when the heading is placed on the page by the DSMDDHD APF.
If this symbol still exists it means that a term heading has been processed but there was no
description heading and no defmition term. In that case, rather than assume that that is an
error we will put out the term heading.

a. Calculates a keep of 3 lines plus the depth of &@sk@l.
b. Starts a keep.
c. Skips a line conditionally.
d. Indents to where the heading should start.
e. Starts the defmition heading font (or the current font).
f. Starts literal mode for one line.
g. Formats the term heading.
h. Restores the previous font.
1. Skips a line conditionally.
j. Undefmes the &@dthead symbol.

3. Skips conditionally (&@sk@l).

4. Indents the base indention (&@in) and the incremental delayed indention (&@in@l).

5. Starts the highlight font for definition terms. The &@hi@l symbol contains the number of
the highlight font to use. This is either the default (set to 2 in DSMPROF3) or it has been
set by the user with the TERMHI attribute

6. Formats the definition term which was put into the &@id@l symbol by the :DT tag.

7. Restores the previous font.

Lists 105

8. Inserts space to where the defmition description should start. The &@li@tab symbol was
calculated in the DSl'vlLISTM macro when the list was started. The &@break symbol may
be set to "break" or to null depending on whether or not the BREAK attribute was specified
on the :DL tag.

9. Sets &@id@l to null.

DSMGTERM

The :GT tag is processed by the DSMGTERM APF which saves the glossary term specified with
the :GT tag, as follows:

1. Checks if there is already a glossary telID defmed which has not been fully processed and calls
DSM#MSG to issue a message if there is. This would happen only if there were two :GT
tags in a row with no intervening :GD tag.

2. Skips a line. The value of &@sk@l may be zero if this is a compact glossary list.

3. Scans to get the term into the &@id@l symbol.

DSMGDEF

The :GD tag is processed by the DSMGDEF APF which formats the glossary term and sets up
the processing environment for the glossary defInition with the following processing:

1. Checks if there is a glossary term defmed. If there isn't, it means that there have been two
:GD tags in a row with no intervening :GT tag. If this is the case a message is issued and a
question mark is used as the term.

2. Skips a space.

3. Indents to where the tenn should be.

4. Begins the highlight font for glossary terms. This may be the default of 2 set in
DSl\1PROF3 or it may have been overridden with the TERMHI attribute of the :GL tag.

5. Puts out the glossary term using literal mode just in case it happens to start with a period.
The term is followed by a colon and a continuation character to cause it to be continued
with whatever text follows it.

6. Restores the previous font.

7. Puts out a required blank to make sure that there is at least one blank between the colon and
the following text. The required blank is put after the font is restored. This is done to avoid
getting an underscored blank in the event that someone used an underscored font for high­
lighting the terms.

8. Sets the &@id@l symbol to null to indicate that the term has been fully processed.

DS~ILPART

The :LP tag is processed by the DSl\1LP AR T APF which performs a skip and an indent
(&@sk@l and &@in). Note that the &@in symbol is the amount of indention before the identi­
fier, not the total indention to the text of the list items.

106 DCF: Gl\-lL Starter Set Implementation Guide

Ending Lists

DSMELIST

The DSMELIST APF ends lists, restores the environment if this is the end of all lists, remaps
some tags, and resets nesting levels. DSMELIST processes the :EDL tag, the :EGL tag, the
:EOL tag, the :ESL tag and the :EUL tag as follows:

1. Checks that a list is open. The &@nest@l symbol array contains an entry for each level of
list that is open. If there are no elements in the array it means that there are no open lists
which means that we don't need to be processing the DSMELIST APF. A message is issued
if this is the case and the macro ends.

2. If closing the last list (&@nest@l(O) = 1):

a. Resets the skip amount for lists to &@sk@ls. The &@sk@l symbol will contain the
skip amount for the current list type. The default skip 3.Inount for lists is .75.

b. Resets the highlight level for deflnition headings to its default value of &@hi@h which
was defmed in DSMPROF3.

c. Skips a line at the end of the list.

d. Indents &@in. The &@in symbol contains the base indention that was in effect before
the current level of list was started.

e. Resets &@nest@l array counter to zero and turns the &@nest@o and &@nest@u
symbols off. These two symbols are used to keep track of the number of ordered and
unordered lists that are open.

f. Remaps the :LI, :LP, :DT, :DD, :DTHD, :DDHD, :GT and :GD tags to the invalid tag
APF (DSM#CNTX). This is done because these tags are not valid outside of a list.

3. If not closing the last list (&@nest@I(O) > 1):

a. Adjusts the denesting symbols. The &@nest@l symbol counts the total number of lists
that are open. For ordered and unordered lists, there are two separate symbols which
keep track of these two types of lists. If we are ending an ordered or an unordered list
the &@nest@&@ltype SYlllbol will exist and we need to adjust it carefully using the
denesting symbols (&@denest@&@Itype). The appropriate new value for the
&@nest@<ype symbol is a function of its current value and the denesting ring sym­
bol. The &@denest@&@ltype symbol contains the numbers of the identiliers to use
for each level of list. It acts as a ring, in that, when the level of nesting is deeper than
the length of &@denest@&@ltype, the next identifier number is selected from the be­
ginning of &@denest@&@ltype.

I *--------------+-*
V V V-----------+-+-*

if &@denest@&@ltype = 612 345 I I I
A A A A A III

level 2 list restores ----* I I I I I I I

level 3 list restores -------* I I I I I I

level 4 list restores ----------* I I I I I

level 5 list restores -------------* I I I I
level 6 list restores ----------------* I I I
level 7 list restores -------------------* I I
level 8 list restores ---------------------* I
level 9 list restores -----------------------*

Lists 107

The denesting is done in this manner because the nesting is done in a similar manner.
The identifiers wrap around such that the seventh level of list uses the same identifiers as
the fITst level, and the eighth is the same as the second, and so on.

b. Skips a line to end the list.

c. Restores the previous list's formatting environment from &@nest@l. This includes the
list type, the item counter, the indention amount, the incremental indention amount, the
skip amount, the highlight fonts, and the break value. (&@ltype, &@item#, &@in,
&@in@l, &@sk@l, &@hi@l, &@hi@hd, and &@break).

d. Decrements the list nesting level counter (&@nest@I(O)) by one because now one less
level of list is open.

e. Indents for the level of list we are restarting (&@in) and the incremental value &@in@l.

f. Redefmes the &@li@tab symbol to be the total indention (&$IN) that will be per­
formed for this level of list. In other words, &@li@tab is set to where the text of the
list item will start.·

g. Resets the &@id@l to contain the symbol function needed to produce the list item
identifier for ordered and unordered lists. \Ve need to know the appropriate number of
the identifier. This is calculated in & *a by selecting the nth character frDln the
&@olistnest or &@ulistnest symbol, where n is the value of &@nest@o or &@nest@u
calculated alone. The setting of &@id@l resolves like this:

. se @id@l '&V' &@id@l@&@ltype. &-"'"a .. '

. se @id@l t &V' &@id@l@o&-.'\,a .. '

.se @id@l '&V'&@id@1@o2.'

h. Maps the appropriate tags for the list type to their respective APFs. For ordered, sim­
ple, and unordered lists, the :LI tag is mapped to the DSMLITEM APF. For defInition
lists, the :DTHD, :DDI-ID, :DT and :DD tags are mapped to the appropriate APFs.
For glossary lists, the :GT and :GD tags are mapped to the DSMGTERl\1 and
DSMGDEP APFs.

DSl\Il#RSET

The DSM#RSET macro is used to close open text structures for headings and document sections.
This includes closing any lists that have been left open. This is done in the following manner:

1. Tests the list nesting counter, &@nest@l, for greater than zero.

2. Issues a warning message if a list is open.

3. Calls the DSI\1ELIST APF to close list(s).

DSlY1#RSET is called by many macros which require that the &@state symbol have a value of
"open." If there is an example, a figure, a title page or a footnote currently in progress, &@state
will not have a value of "open."

Modificatio1ls to List Processi1lg

Changing the List Item Identifiers

The list item identifiers to be used for ordered and unordered lists are defmed in the profile.
There are two parts to the definition-the selection of the actual identifier and the specification of
the sequence in which they are to be used.

108 DCF: GML Starter Sct Implementation Guide

If you like the identifiers that have been selected but would like to change the order in which they
are used for each level of nesting, the thing to do is change the value of &@olistnest and
&@ulistnest. These two symbols are set to "123456" and "123." respectively. For page printers,
&@ulistnest is changed to "12345" because there are many more interesting sorts of identifiers to
choose from.

For ordered lists 9 different identifiers have been defmed which have been assigned numbers from
1 to 9. The frrst six are used as the default identifiers for ordered lists.

LEVEL DEFINED VARIABLE EXAMPLE
1 /&@itemfl .. 1.
2 /&a t &@itemtf .. a.
3 /&@itemf/.) 1)
4 /&at&@item#.) a)
5 /&r t &@itemlF .. i.
6 /&r t &@itemlF.) i)
7 /&R t &@item# .. I.
8 /&A t &@item# .. A.
9 /.dsm#supr &@item# (superscript 1)

Suppose you need to create outline style identifiers instead of the usual ones. All of the identifiers
you need are already defmed but you will need to respecify the order and identifier number in
which they are used. This means changing the value of &@olistnest from" 123456" to "785264."
This will produce lists that are numbered like this:

I.
A.

i.
a.

i)
a) ...

Note: You may also want to increase the value of the indention symbol (&@in@o) for ordered
lists because of the greater nUlnber of characters in roman numerals. For example, 4 spaces are
allotted to the identifier, but the roman nUlnber for 8 is "viii." \Vhen this is followed by a period
or a parentheses, the identifier will extend too far to the right. This can be remedied by simply
changing the value for &@in@o in the profile.

Suppose instead that you were only interested in three levels of nested ordered lists and that you
wanted to number your lists enclosing the numbers in parentheses like this:

(1)
(a)

(i)

To do this you would need to change the value of &@olistnest to be "123" to specify that only
three levels of identifiers are to be used. Then you would need to redefine the frrst three levels

.su off

.dv @id@1@01 /(&@item#.)

.dv @id@1@o2 /(&at&@item#.)

.dv @id@1@03 /(&r'&@item#.)

. su on

You could, instead, specify that &@olistnest is "abc" and then defIne the identifiers as
@id@l@a, @id@l@b, and @id@l@c. This would allow you to leave all of the original defi­
nitions in place. You could even switch back and forth between the two sets of identifiers by
changing the value of &@olistnest within the document.

Lists 109

Changing Spacing and Indention Settings

l\1any of the starter set tags use spacing and indention values. For example, a space is skipped
before and after lists and each level of list is indented 4 characters to the right of the previous one.
The amount of vertical space skipped and the amount of indention are controlled by symbols set
in DSlVIPROF3. By changing the value of the symbol you can change the amount of space or
indention. The defaults are shown in Figure 5 on page 21. The symbols are set at the beginning
of the profile using the .GS [GIVIL Services] ARGS and VARS control words .

. gs args 10 2 4 4 0 3 4 4 2 0

.gs vars @in@d @in@f @in@z @in@o @in@p @in@q @in@s @in@u @in@x @in@g

. gs ar gs . 75 1 . 75 . 75 . 75 1 . 75 . 75 1 . 75

.gs vars @sk@d @sk@f @sk@z @sk@o @sk@p @sk@q @sk@s @sk@u @sk@x @sk@g

To change the anl0unt of indention for any of the five types of lists simply change the value that
is right above the appropriate symbol. The &@in@ symbols control the indention and the
&@sk@ symbols control the spacing around the list. "d" stands for defmition lists, "g" stands
for glossary lists, "0" stands for ordered lists, "s" stands for sinlple lists, and "u" stands for unor­
dered lists.

Changing the I-lighlight Defaults for Lists

A default highlight level is built into the profile for defmition temlS, glossary terms and definition
headings. These can be changed by sUllply changing the settings of the symbols &@hi@h,
&@hi@d and &@hi@g respectively to the new highlight level.

.gs args 1 3 2 2

.gs vars @sk@n @hi@h @hi@d @hi@g

So, for example, to mal<e glossary terms appear in highlight level 1 instead of 2, change the last
number on the .GS [GlVIL Services] ARGS control word line to "I."

Using Deciinal Notation for Ordered Lists

All of the list item identifiers that are used for ordered lists consist of a· single number or character
follo\vu1g by some punctuation characters. To create lists that are number in the following way,

1 Notice that the first level items are numbered with
simple numbers.

1. 1 The second level items have decimal numbers. No­
tice that the indention keeps increasing for each
level of list.

1. 1. 1 The third level also has decimal numbers.

1.1.1.1 The fourth level is just more
of the same kind of thing.

Figure 20. Decimal Ordered List Example: This figure illustrates sample output after changing the
list item identifiers to decimal format for ordered lists.

110 DCF: GML Starter Set Implementation Guide

involves making several changes to the starter set macros and to DSMPROF3. This modification
is more complicated that most of the other ones that are documented in this book because it
requires changing some basic processing which has been built in to the starter set and it violates
some of the assumptions that are built into list processing. We will see what these are as we go
along developing the changes.

There are fOlJr separate areas of processing we need to change to created decimal lists:

1. We have to change the structure and definition of the list item identifier from a simple sym­
bol to a symbol array so that it can hold the separate item numbers for each level simultane­
ously.

2. We also have to change the way in which the item identifier is incremented and printed to
allow all the elements of the array to be printed separated by a period C.).

3. We also have to adjust the indention required for each level of list because the length of the
identifiers will increase for each level of list.

Defining All Array for Itelll Nllluhers

Before delving into the changes that are detailed here, you might find it useful to review the infor­
mation given in "Starter Set Initialization" on page 19 about how list iteln identifiers arc defined
in DSIVIPROF3 with the .DV [Define Variable] control word. What needs to be done to change
the ftrst level ordered list identifiers is to replace the following statement in DSMPROF3:

.su off
.dv @id@l@ol /&@item# ..
· su on

with an identifier definition that will create an array. The easiest way to do this is:

· su off
· dv @id@l@ol /&@item#("k) .
. su on

Associated with this change is an additional change which must be made to the setting for
&@olistnest. Under nonnal circumstances, &@olistnest is "123456" indicating the identifier
numbers for the first six levels of ordered list. The seventh level identifier wraps around and starts
again using the same identifier as the fust level list. With decimal numbering we can't let this
happen. Several solutions are possible.

The easiest is to simply define a value of" 111111" for &@olistnest .

. se @olistnest '111111

We have redeftned only the first level identifter to be of the array format we want. Since it is an
array, we want to use the same array for all levels of the list-just the elelnents of the array \vill
vary.

As many l's as you like can be put into &@olistnest, however, the nUlnber used will determine
how many levels of list will be properly nUlnbered, because the list processing code automatically
wraps around when the level is greater than the number given in &@olistnest. Due to the large
amount of indention which is created for nested decimal number lists, in single column fonnat
after about 5 levels of nested lists, the indention becomes wider than the page anyway, so the
restriction to six levels of list is not too severe.

Note: Changing the automatic wrap around function for identifiers is not simple and cannot be
done without affecting the identifiers for unordered lists also. The best way tohandle this prob­
lem would be to put a test into DSM#LTYP to catch if the nesting level C&@nest@o) went over
6 and issue a message if so to warn users that the iteIll numbers will be incorrect after that point.

Lists III

InCrelllellting and Printing the Item Numhers

Now that the identifier is properly defmed, we have to change the way in which it is processed in
order to get the appropriate elenlent in the array incremented and to get all the elements printed
separated by periods. This involves changing the DSl\lLITEM APF to increment it properly.
DSlVILITEM cUlTently contains the following line:

.se @item# = &@item# + 1

which increments the itenl counter for the current level of list.

\Ve need to replace this line with the following lines:

. if &@l type eq 0

.th .se @item#(&@nest@o.) = &@item#(&@nest@o.) + 1

The &@nest@o symbol will contain the nesting level of the current list, such that for the first
level of list the fITst element of the &@item# array will be incremented, and the second element
will be incremented for the second level of list, and so on.

So far we've redefmed the identifiers and gotten thcln properly incremented for each item. The
nex"! step is to print the identifier, which cUlTently is done by the following line of DSMLITEM:

&@id@l.

The &@id@l symbol has a value of "&@item#(*)" due to the changes we made above to
DSlVIPROF3. That's what we want. However, we need to adjust the array separator to be a
period(.):

.de asep
&@id@l.
.de asep

\Ve also returned the array separator defmition to its default value after we printed the identifier.

Now that we've got the item numbers correct for each level of the list, there's one additional thing
we haye to do to them. Since we're printing the whole array for each item, we have to get rid of
the e1clnent which pertains to nesting levels we've closed. The logical place to do this is in the
DSl\1ELIST APF when we close the level.

\Vhen each level of list is started the &@itenl# number is saved. Since we've turned tlus symbol
into an array, what actually gets saved will be the element index counter (that is, element 0 of the
array). By reading in the element of the array in DSI'vlELIST to restore the parameters for the
previous level of list, we will automatically reset element zero of the array. However, when we
print an array using (*), what we get is each element that exists, regardless of what the value of
element zero is.

For example, when the fourth level list is ended, &@item#(O) is set back to 3 automatically.
However, when we try to print &@item#(*) we get all four elements of the array. Therefore, we
need to undefmed or turn off the element of the array that refers to the level of list that is ended.
\Vhen no previous list is being started, this is done as follows:

. sk &@sk@l c

. in &@in

.if &@ltype eq 0 .se @item#(O) = 0

.th .se @item#(l) off
.se @nest@l(O) = 0

112 DCF: G1VIL Starter Set Implementation Guide

We have to decrement element zero of the list as well because the list control parameters are not
saved and restored for ftrst level lists.

When a prior list is being restarted (that is, we are ending a second level or higher list), we need to
make the following adjustment:

.if &@ltype eq 0 .se @item#(&@item#(O).) off
.gs args &V'&@nest@l(&@nest@l(O).)

This line has to be added to DSMELIST before the list control symbols are restored from
&@nest@l array.

Adjusting the Indention for List Items

The third part of the change to decimal ordered list involves adjusting the indention value for
each level of list. The number for the fIrst level is only two characters long (1.). For the second
level it is three characters (1.1) and for the third it is five characters long (1.1.1). The indention
needs to increase by two characters for each nested list.

The easiest way to approach this problem is to look at the incremental adjustment for each level
of list as a separate value over and above the normal indentions applied to the list. The indention
value for the list is contained in &@in@o which is defmed in DSMPROF3 as 4. This value is
moved into the &@in@l sYlnbol when the list is started and it represents the incremental in­
dention from where the identifier is placed to where the text starts.

If we were to create a separate indention symbol, named &@incr, to represent the incremental
indention due to the identifier, it would need to be applied wherever we are currently applying the
&@in@l indention. This means we have to:

1. Define and increment &@incr in DSM#LTYP.

2. Save and restore this value along with the other list control symbols.

3. Indent + &@incr in DSMLISTM to calculate the value of the &@li@tab symbol.

4. Indent + &@incr in DSMELIST when re-establishing a list.

5. Adjust the delayed indent set up in DSl\1LITElvl for the second and subsequent lines of the
item.

First, we'll define and increment the value in DSM#LTYP. For all list types except ordered list
(0), we want the value of &@incr to be zero:

. se @ltype = substr 'zdosug' &~'''b 1
.se @incr = 0
. go list&@ltype

For ordered list, we want to set the value of &@incr to 1 for first level ordered lists and we want
to increment it by 2 for each new level of list:

· .. listo
· if
.se &E'&@nest@o
· se *a ...
. if &@nest@o = 1 .se @incr = 1
.el .se @incr = &@nest@o * 2 - 2

However, we want the value to be 1 for a ftrst level list, 2 for a second level list, 4 for the third
level and so on. By taking the nesting level, multiplying it by 2 and subtracting 2 we get the right
value.

Lists 113

Now that &@incr has the correct value, we have to save and restore it. The various list control
symbols are saved in the &@nest@l symbol array by the DSMLISTlVl macro. These symbols
are restored by the DSMELIST APF. Therefore, we have to add &@incr to the following line in
DSMLISTM:

· se *g = r &@ltype &@item# &@in &@incr

and to the following line in DSMELIST:

.gs vars @ltype @item# @in @incr @in@l @sk@l @hi@l @hi@hd @break

We need to make this same adjustment to the DSMLQUOT and DSMELQU APFs because
they also save and restore all these list control symbols. It doesn't matter where in the list of
symbols you add &@incr. However, you must make sure that you always add it in the same
location in all cases. In other words, if you put it in after the &@in symbol, as we did in the
example above, then you must adjust all of the APFs to put it after &@in as these values are
saved and restored positionally.

The next step is to apply the new incremental indention to the list. \Vhen the list is started in
DSMLISTM, the total of the indentions for the previous level of list is saved in &@in which is
the base indention value for the new level being started. The new incremental indention needs to
be included in this calculation:

· if &@nest@l(O) gt 1 . in &@in
.th . in +&@in@l
· th .in +&@incr
.se @in = &DH'&$IN.dh

The indention values of the current level of list are also added up to calculate the value of
&@li@tab. This symbol indicates where to inseli space to after the identifier is placed to cor­
rectly position the fITst line of the list item text. The following lines need to change:

· in &@in
· in +&@in@l
.in +&@incr
.se @li@tab = &$IN

The &@li@tab symbol is used by the DSl\1LITEM APF.

When a list is restarted in DSMELIST, we also need to correct the indention setting by the value
of &@incr:

· in &@in
· in +&@in@l
.in +&@incr

The last adjustment involves correctly setting the delayed indention which controls the placement
of the second and subsequent lines of the list item. This is calculated in the DSMLITEM APF
and requires the following change:

. in &@in

.se *x = &dht&@in@l + &dh'&@incr
.in +&*x.dh after 1

In this case, the two incremental values are added together using device units to mal<e sure they
are in like units of space.

114 DCF: GML Starter Set Implementation Guide

Examples and Figures

Exalnpie Processillg
Examples are processed as keeps with formatting turned off. Various adjushnents are also made
to line spacing, word spacing, and fonts for page printers.

DSMXMP

The DSMXMP APF processes the :XT\1P tag by preparing the formatting envirorunent for the
example. It performs the following processing:

1. Checks that &@state is "open." If &@state is not "open," it issues a message and ends, ig­
noring the :Xl\lP tag. The &@state symbol indicates whether there is a figure, footnote,
example, or title page currently open. If there is, we can't process the example.

2. Sets &@state to "Exmpl" to indicate that an example is being processed.

3. Causes a break so that the text of the example will not be concatenated with the preceding
text.

4. Saves the environment because we're going to make smne changes to it and it will be easier
to restore the environment than to reset everything we change.

5. Turns spelling verification, hyphenation, and formatting off.

6. Checks if a keep is in progress and if so, ends it. This is done to prevent the font stack from
being lost. \¥hen we start the keep for the current example, any previous keep will be ended.
Since the formatting envirmunent (which includes the font save stack) is saved and restored
around a keep, the font change that we are about to do will be lost from the stack by the
restoration of the previous environment.

7. Starts the "xmpfont" font for page printers or restarts the current font (=) for all other de­
VIces.

8. Indents for ex~p1es (&@in@x). (Set in DSl\1PROF3 to 2.)

9. Skips for examples (&@sk@x). (Set in DSrvlPROF3 to 1.)

10. Starts a keep.

11. Resets vertical line spacing factors to 1.0 to prevent line spacing frOIn being expanded by
vertical justification.

12. Resets word spacing to its default value.

13. Resets extra spacing to its default value.

14. Processes the DEPTH attribute using the .SP [Space] control word. Remember that an Ap­
plication Processing Function (APF) can be a Inacro, a syrnbol or a control word in
SCRIPT /VS. In this case the value of th,e DEPTH attribute is sinlply a vCliical space nota­
tion which needs to be issued with the .SP [Space] control word. The control word can be
used directly rather than constructing a macro which would issue the control word.

Examples and Figures 115

DSMEXMP

The DSMEXMP APF processes the end tag for examples. It ends the example as follows:

1. Checks that &@state is "Exmpl." If &@state is not "Exmpl," it means that there is no ex­
ample going now and this macro issues a message and ends, because there is nothing to be
done.

2. Resets the &@state symbol to "open."

3. Ends the keep.

4. Restores the previous font. A real font change will only have occurred for the page printers.
For all other devices, the current font will have been restarted.

5. Restores the previous environment.

6. Conditionally skips.

DSMPROF3

The prof11e maps the example tags to the APFs and defines the "xmpfont" font to be used for
examples for page printers. The amount of skip before and after the example is set in &@sk@x
to 1 and the amount of indention during the exatnple is set in &@in@x to 2.

DSM#RSET

The DSM#RSET macro calls DSMEXMP if &@state is "Exmpl" indicating that an example is
being processed.

Figure Processing
The various figure tags (:FIG, :FIGCAP, and :FIGDESC) are all processed by their own APFs.
Each attribute also has its own processing macro.

The defaults for figures are established during initialization of the starter set.

DSMPROF3

The profile defmes the amount of space to skip before and after the figure (&@sk@f) as 1. It
also defines the amount of indention to be performed for the body of the figure (&@in@f) as 2.

The defaults for the PLACE and \VIDTH attributes are established in DSwlPROF3 as "top" and
"page," respectively.

The fonts to be used for the figure caption and figure description for page printers are also defmed
in DSMPROF3.

Only the figure tag (:FIG) is mapped to its APF. The other figure tags (:FIGCAP and
:FIGDESC) are mapped to their APFs when the figure is started.

DSM#SET

This macro, called during the initialization process by DSMPROF3, sets the figure number
(&@fig#) to 1. The figure number is incremented by the figure caption processing in the
DSwlFCAP APF.

116 DCF: Gl\1L Starter Set Implementation Guide

DSMFIG

The DSMFIG APF processes the :FIG tag by performing the following fUllctions:

1. Checks that the &@state symbol is "open." If it isn't, a message is issued and the macro
ends. A figure involves either a float or a keep structure. If &@state is not "open," it Ineans
that there is some other conflicting structure already going. To stat1 the figure anyway would
cause the user to get a SCRIPT /VS error tnessage.

2. Sets &@state to "F" to indicate that a figure is being processed.

3. Executes a break so the text of the figure will not be concatenated with the preceding text.

4. Saves the current formatting environment. Because we are going to make some changes to
the environment, it is easier to restore the environment than change it back.

S. Establishes the default parameters that control the formatting of the figure:

a. &@figframe is set to "rule." This establishes the default frame for the figure. It can be
overridden if the FRAlVIE attribute is specified.

b. &@fig@in is set to &@in@f which was set to 2 in DSMPROF3. This establishes the
default indention for the body of the figure. The default can be changed by changing the
value of &@in@f in DSMPROF3.

c. &@figfo is set to off. This symbol is simply used as a flag within the figure macros. It
is used by the DSMFDESC APF to tell if a figure caption has been processed.

d. &@figtype is set to "fl" which stands for float. This symbol controls whether the figure
is a keep or a float. The default is "fl" because the default placement of the figure is
"top." The value of &@£igtype can be changed if the PLACE attribute is specified.
This symbol will be "issued" as it is expected to contain a control word.

e. &@place is set to the value of &@figplace, which was set to "top" in DSl'vlPROF3.
The value of &@place can be changed if the PLACE attribute is specified. This symbol
will be used as a parameter on the control word that was put into the &@figtype synl­
bol (either "kp" or "fi").

f. &@width is set to &@figwidth. The &@width symbol is also used on the .KP [Keep]
or .FL [Float] control words. The &@figwidth symbol is set in DSMPROF3 to "page"
and specifies the default width of the figure.

g. &@efigpf is set to "off" to indicate that no font change has occurred yet for the figure.
This symbol will be used to determine \vhen to restore the previous font at the end of
the figure.

h. &@figcw is set up to issue a .HR [Horizontal Rule] control word. The default frame for
a figure is a rule frmn left to right. The value of this symbol can be overridden if the
FRAME attribute is specified. The @figrule on the .HR [Horizontal Rule] control
word line is a rule name.. The rule defmition is iil the profile but it has no paratneters
on it. Tilis is done because the default we chose was the SCRIPT jVS default rule which
is either .3mm thick for page printers or the cun'ent font for all other devices. The rule
defmition is provided in the profile and here on the .HR [Horizontal Rule] control word
to make it easy for users to alter the rule for figures.

6. Processes the FRAME, \VIDTH, and PLACE attributes, which may change the values of
the &@figframe, &@place, and &@\vidth symbols. See the descriptions of DSl'vl@FRME,
DSM@\VIDT, and DSM@PLCE below for more details.

7. Resets left and right indention to zero.

8. Turns formatting and spelling verification off.

Examples and Figures 117

9. Changes the &@figtype symbol to "kp" if the &@place symbol is "iuline" as a result of the
PLACE attribute processing, because the figure will be formatted as an inline keep rather
than as a float.

10. Starts single column mode with the .SC [Single Column Mode] control word if &@width
equals "page" as a result of the WIDTH attribute.

11. Skips some space if the &@place symbol is "inline" to separate the figure from the text that
surrounds it. The amount of space is in &@sk@f which is set in DSMPROF3 to 1.

12. Processes the control word contained in &@figtype with paralneters of "on, &@place,
&@width, and order." &@figtype will contain either "fl" (float) or "kp" (keep). &@place
will be "top," "bottom," or null for inline figures &@width will be "page" or "column" de­
pending on the \VIDTH attribute.

For example for a :FIG tag with no attributes specified this lines resolves as follows:

.&@figtype on &@place &@width order

.&@figtype on &@place page order

.&@figtype on top page order

. fl on top page order

13. For bottom figures (&@place is "bottom"), spaces &@sk@f. This is done because bottom
figures need to be separated from the body text at the begin.rling of the figure. If the figure is
to be placed at the top of the page, a skip \vill be performed at the end of the figure to sepa­
rate it from the text which follows it.

14. Adjusts the word spacing and extra spacing values back to their default settings. The vertical
justification factors on the .LS [Line Spacing] control word are reset to 1.0. \Ve just want to
be absolutely sure that the spacing within the body of the figure is not justified in any way at
all.

15. Begins highlight font 2.

16. Draws a box top from left to right if &@figframe is "box." &@figframe will only be "box" if
the FRAl'vIE attribute was specified with a value of "box."

17. Uses the &@figcw symbol to generate a frame if &@figframe exists and isn't "box" and if
&@place is not "top." TIllS symbol will either contain a split text control word (.SX [Split
Text]) for character rules or will be a horizontal rule control word (.HR [Horizontal RuleD.

18. Returns to the previous font because only the frame is drawn in the highlight font.

19. Indents the proper amount for figures, &@in@f, which was set to 2 in DSl'vIPROF3.

20. Indents right the same amount.

21. Sets the &@tg symbol to "f' to indicate to the DSM@IDS macro that an ID for a figure is
being processed.

22. Processes the ID attribute using the DSl'vl@IDS macro.

23. Processes the DEPTH attribute using the .SP [Space) control word.

24. Maps the :FIGCAP and :FIGDESC tags to their appropriate APFs.

25. Starts the "figfont" font for page printers or restarts the current font (=). In the starter set,
the "figfont" font is not defmed which means the body font will be used for the text of the
figure. However, using the font in this macro makes it easy for you to specify a special font
for use in figures by defining one with the .DF [Define Font] control word. The APFs will
handle the font change.

26. Sets the &@efigpf symbol to "on" to indicate that a font change has been made.

J 18 DCF: GML Starter Sct Implementation Guide

DSMFCAP

The DSMFCAP APF processes the :FIGCAP tag. This APF numbers the figure for entry into
the list of illustrations and for figure references. Therefore, if there is no :FIGCAP tag on the
figure, the figure will not appear in the list of illustrations and cannot be referred to by the
:FIGREF tag. The DSMFCAP APF performs the following processing:

1. Restores the previous font.

2. Sets the &@cfigpf symbol to "off" to indicate that the font has been restored.

3. Scans to get the residual text to be used for the figure caption.

4. Indents left and right the appropriate amount (&@fig@in). &@fig@in is defined in the
DSMFIG APF when the FIG tag is processed.

5. Turns formatting and spelling verification on. These had been turned off for the body of the
figure.

6. Conditionally spaces 1 line.

7. Starts a special font for page printers named "figcap." For all other output devices, the cur­
rent font is restarted.

8. Calculates, in device units, the proper amount of incremental indention for the second and
subsequent lines of the caption and description. The width of the figure number, plus the
width of the word "Figure" (&LL@F), plus three times the width of the character zero
(&*w), plus the width of a period (&*period) is used.

9. Performs the anl0unt of indention calculated above, plus the current indention.

10. Uses the amount of indention calculated as an undent to get the first line back out to where
it should be relative to the left margin.

11. Fonnats the beginning of the figure caption which consists of: the word "Figure" from the
&LL@F symbol, a required blank, and the figure number.

12. Inserts space to where the text of the caption should start and puts out the text of the cap­
tion itself.

13. Restores the previous font.

14. Makes an entry in the list of illustrations.

a. Pads the figure number with a leading blank if the number is less than ten to make the
numbers in the list of illustrations line up properly (at least up to figure 99).

b. Defines a local symbol to contain "part" of a split text control.

• Hex OO's are used as the delimiters in the .SX [Split Text] control word line.
• The leftmost part of the split text line is made up of the word "Figure" (&LL@F),

a required blank, the figure number (&@fig#), another required blank, and the text
of the caption (& * line).

• The middle portioIl of the split text line is a blank and a period which creates the
dot leader.

c. Defines a line of the #FIGLIST macro to contain a .OF [Offset] control word, a control
word separator, and a .SX [Split Text) control word consisting of the local sYInbol de­
fined above as the first part and the &@FN#&@fig# symbol as the second part.

The #FIGLIST macro does not exist in the macro library for the starter set. It is dy­
namically constructed in the DSl\1FCAP APF as each figure caption is processed. The
DSMFLIST APF, which is called to process the :FIGLIST tag, will invoke the
#FIGLISTmacro which will in tum produce the actual list of illustrations. See "Docu­
ment Sections" on page 57 for more information about the DSl\1FLIST macro.

Examples and Figures 119

d. Saves the page number in the &@FN#&@fig# symbol. Ideally what we want to do is
include the page number in the split text control word that we just entered into the
#FIGLIST macro. However, we can't do this directly because the page number symbol
on a .DM [Defme Macro] control word line is not treated as a page number symbol and
will remain as an ampersand.

The .SE [Set Symbol1 control word is special in that the page number symbol on the
right hand side is recognized as the page number symbol and is replaced with the page
number, which is what we want here. So we can capture the page number by setting a
symbol to the page number symbol. The page number is relnembcred in a symbol
whose name includes the figure number (&@FN&@fig#). This symbol name is what
we used as the right hand side of the .SX [Split Text] control word that we put in the
#FIGLIST macro above. The narne of this symbol is unique because the symbol will
not be resolved until the #FIGLIST macro is actually processed.

e. Increments the figure counter for the next figure.

f. Sets &@fig@fo to "on" to indicate to the DSMFDESC APF that a figure caption has
been processed.

DSMFDESC

The DSMFDESC APF processes the :FIGDESC tag and formats the figure description. This
macro perfOlms different functions depending on whether or not a figure caption has been proc­
essed.The DSl\1FDESC APF fUllctions as follows:

1. Checks to see if the formatting environment has already been set up by the DSMFCAP
APF. The &@fig@fo symbol will be "on" only if there has been a figure caption.

2. If a caption was processed, DSMFDESC:

a. Sets the &@fig@fo symbol to "off" for the next figure.
b. Starts the "figcap" font for page printers or restarts the current font for all other devices.
c. Puts out a continue control word, followed by a colon (:), followed by two required

blan1(s, followed by a continuation character. This fmishes off the caption.
d. Restores the previous font.
e. Starts the "figdesc" font for page printers or restarts the current font for all other devices.

3. If there was no figure caption, DSMFDESC:

a. Restores the previous font.
b. Sets the &@efigpf symbol to "off" to indicate that the font has been restored.
c. Spaces I line.
d. Resets left and right indention to &@fig@in which is 2.
e. Turns formatting and spelling verification back on. These had been turned off in the

DSlYIFIG APF when the :FIG tag was processed.
f. Starts the "figdesc" font for page printers or restarts the current font for all other devices.

DSlVIEFIG

The DSMEFIG APF processes the end tag for figures (:EFIG). The figure is ended by
DS~vlEFIG with the following processing:

1. Checks that a figure is being formatted by checking that &@state is "F." If &@state is not
"F," a message is issued and the macro ends because there is nothing more to do.

2. Sets the &@state synlbol to "open."

3. Restores the previous font only if the &@efigpf is "on." If there has been a figure caption or
a figure description &@efigpf will be "off" indicating that the font has already been restored.

4. Resets left and right indention to zero.

120 DCF: GML Starter Set Implementation Guide

5. Begins highlight font 2 in preparation for ending the figure frame.

6. Ends the box if &@figframe is "box."

7. If the frame is not a box but does exist, and the figure placelnent is not bottom, generates a
frame by using the control word that is in the &@figcw sYlnbol. The frame will be either a
split text control word to generate a character frame or a horizontal rule control word.

8. Restores the previous font.

9. Skips the appropriate amount (&@sk@f) if &@place is "top."

10. Executes the control word in &@figtype with the parameter "off." &@figtype will be either
"kp" or "fl" depending on whether the figure was inline or not.

11. Spaces conditionally if &@place is "inline."

12. Restores the formatting environment.

13. Remaps the :FIGCAP and :FIGDESC tags to the invalid tag APF, DSl\'I#CNTX, because
these tags are valid only within a fibrure.

DSM@FRME

The DSM@FRME macro processes the FRAME attribute of the :FIG tag. It is called by the
DSMFIG APF if the FRAME attribute has been specified. The DSM@FRME macro performs
the following functions:

1. Gets the fIrst character of the parameter into a local symbol. The fIrst character will be used
to deterrnine if the frame is to be omitted (N), a rule (R), or a box (B).

2. Saves the paratneter in &@frame.

3. Sets up the &@figcw symbol to assume that a character frame is going to be generated using
a .SX [Split Text] control word. The &@figcw symbol is used to actually generate the frame
for the figure. If the &@figframe symbol ends up null, the .SX will be empty.

4. Sets the &@figframe symbol to null to generate an empty split text control if the fIrst charac­
ter is "N" for none.

5. Sets the &@figframe symbol to "rule" and resets &@figcw to a horizontal rule control word
if the fIrst character is "R" for rule.

6. Sets the &@figfratne symbol to "box" if the fIrst character is "B" for box. For figures with
box frames, the indention to be applied to the body of the figure must not be allowed to be
zero. If it is 0, it is reset to 2. If the indention were allowed to be zero, the figure text would
be overlayed by the vertical rules of the box.

DSM@PLCE

The PLACE attribute of the :FIG tag is processed by the DS;YI@PLCE 111acro. It is called by
the DSMFIG APF only if the PLACE attribute has been specified on the :FIG tag. The tech­
nique used in this rnacro is discussed in "Special Techniques" on page 13.

The default placement for a figure is "top" and is established in the profile, rather thar! in this
macro. If the attribute value is not "top," "bottom," or "inline," the 111acro ends because these
are the only values recognized.

The &@place symbol is set to either "top," "bottom," or "inline" depending on the value of the
attribute.

Examples and Figures 121

DSM@WIDT

The DSM@WIDT macro processes the \VIDTI-I attribute of the FIG tag. It is called by the
DSMFIG APF. The technique used in this macro to validate the attribute value is discussed in
detail in "Special Techniques" on page 13. The DSM@\VIDT macro performs the following
processing:

1. Checks to see if the uppercase of the attribute value is "PAGE" or "COLUMN." If so, the
&@width symbol is set to lowercase "page" or "column" and the macro ends.

2. Assumes that the value has been given in horizontal space units if the value is neither place
nor column.

3. Sets &@width to "page" if the width given is greater than the current column line length
(&$CL); otherwise &@width is set to "column."

#FIGLIST

The #FIGLIST macro formats the list of illustrations. Only those figures that have figure cap­
tions will be listed, as these are the only ones that are numbered and labelled.

This macro is dynamically built by the DSMFCAP APF one line at a time for each entry. It is
called by the DSlVIFLIST APF which processes the :FIGLIST tag.

It contains a .OF [Offset] control word and a .SX [Split Text] control word for each entry. The
split text control word contains a symbol that resolves to the page number of the figure.

DSMFLIST

The DSI\1FLIST APF formats the list of illustrations. It processes the :FIGLIST tag. This
macro is described in "Document Sections" on page 57.

DSM#RSET

The DSM#RSET macro calls DSMEFIG if &@state is "F" indicating that a figure is still being
processed. This macro is described in "Miscellaneous" on page 163.

Modifications to Figures and Exalnples

Changing Figure Defaults

The :FIG tag has several defaults which are set in the profile.

The default placement for figures is "TOP." The default width of figures is "PAGE."

. gs args

. gs vars
123456 123
@olistnest @ulistnest

top
@figplace

page
@figwidth

To change these defaults, for example, to BOTTOlVl and COLUlYIN, just change the .GS [Gl\1L
Services] ARGS control word to say "bottom" instead of "top" and "column" instead of "page."
Mal<:e sure you specify these values are in lowercase because that's the way the figure macro is
expecting them.

The font used for drawing the rules (or the weight of the rule for page printers) is controlled by
the .DR [Defme Rule] @figrule line in the profile. Changing this is discussed in "Modifying
Starter Set Initialization" on page 36.

122 DCF: GML Starter Set Implementation Guide

The default spacing around figures and the indention of the body of the figure is controlled by the
value of &@sk@f and &@in@f which are set in the profile. How to change these is also dis­
cussed in "Modifying Starter Set Initialization" on page 36.

Moving the Figure Caption Outside the Franle

The style of figure chosen places the figure caption and description inside the figure frame. You
might want to change this to put the caption and description outside the frame. The only thing
that is tricky about ending the figure frame is whether to end it with the :FIGCAP tag, with the
:FIGDESC tag (when there's no :FIGCAP), or with the :EFIG tag (\',:hen there's no :FIGCAP
or :FIGDESC).

The easiest way to handle all three possibilities is to take the lines that ehd the frame out of
DSMEFIG and put them in a separate new macro. Then use flags to tell when we want to end
the frame:

1. Initialize a flag in the DSMFIG APF to show that the frame hasn't been ended yet.

.se @endframe = off

2. Find the lines in DSMEFIG that end the frame. These are:

· in
· ir
· bf hi2
· if &@figframe eq box .bx off
.th .go @frdone
· if &@place ne bottom .an &E'&@figframe eq 1 .an I&@figframe ne Ibox
· th &@figcw
· .. @frdone
.pf

3. Remove these lines and put them into a new APF named DSM@END.

4. Add one more line to the end of the DSM@END APF which sets the flag to "on" to indi­
cate we ended the frame .

. se @endframe = on

5. Fix up the DSlVIEFIG APF to only call DSlVl@END when the flag is off.

· if &@endframe eq off .dsm@end

This test and possible call to DSM@END should go where the original lines were ill

DSMEFIG.

6. Fix up the DSMFCAP APF to call DSM@END before any other processing .

. dsm@end

7. Fix up the DSMFDESC APF to call DSM@END only if there was no :FIGCAP tag. The
DSMFDESC APF is actually divided into two parts. The first part is' used when there has
been a figure caption and the second part is used when there was no caption. The call to
DSM@END belongs only in the second part because if there was a caption the frame will
have already been ended.

Examples and Figures 123

Therefore, add

. dsm@end

right after the label "format."

Now test it and make sure it works!

Changing the Example Defaults

The fonnatting of examples is controlled by several things that are set up in the proftle. The
&@sk@x and &@in@x symbols are defmed in DSMPROF3 and control the amount of space
skipped before and after the example and the amount of indention applied to the text of the ex­
ample. Changing these values is described in "Modifying Starter Set Initialization" on page 36.
We have also chosen to fonnat the body of the example in a special font, "prestige elite." This
font is defmed with a name of "xmpfont" under the font defmition section for the 4250 printer .

. df xmpfont type('prestige elite'

If you wish to change the font used for examples simply change the font defmition:

.df xmpfont type('courier' expanded)

If you want examples set in the body font, simply delete the defmition of the "xmpfont" font or
comment it out:

.*df xmpfont type('prestige elite')

For page printers, we have also chosen to fonnat the body of the example in a special font­
"prestige elite" for the 4250 printer and "prestige" for the 1131\1 3820 Page Printer and 3800 Print­
ing Subsystem Model 3. These fonts are defmed with a name of "xmpfont" in the proftle under
the font defmition sections for the 4250 printer, 3800 Printing Subsystem Model 3, and 1131\;1 3820
Page Printer.

.df xmpfont type('prestige elite'

.df xmpfont type(tprestige'

If you wish to change the font used for examples simply change the font defmitions .

. df xmpfont type('courier' expanded)

.df xmpfont type('courier')

If you want examples set in the body font, simply delete the defmitions of the "xmpfont" font or
comment them out.

124 DCF: GlVlL Starter Set Implementation Guide

Quotes, Notes, Footnotes and Highlights

Quote Processillg

DSMPROF3

The profile dermes various symbols for use in formatting quotations (:Q) and long quotations
(:LQ). These include &@sk@q, the skip value before long quotations, and &@in@q, the in­
dention for long quotations. It also dermes the &@oquote symbol to contain the appropriate
open quotation marks for each level of quotation. The &@cquote symbol contains the close
quotation marks. These symbols have a special defmition for page printers because there are
typographical quotation marks available for these devices. This means that the quotation marks
typed in directly by the user aren't the same characters that the quotation tags use. This can
produce unusuallo0kir:g results.

The lengths of the &@oquote and &@cquote symbol values place a restriction on the nUInber of
nested quotations you can have and still get quotation nlarks. However, because the lirnitation is
14 levels of quotations going at once, this is not a serious restriction for most users.

Additionally, four more symbols are dermed:

&oq - for single open quote marks
&oqq - for double open quote marks
&cq - for single close quote marks
&cqq - for double close quote marks

These are provided for page printer users who wish to be able to Blake the correct typographical
quotation marks throughout their documents.

The proflle also maps the quotation tags to their respective APFs.

DSM#SET

The DSM#SET macro sets the footnote number to 1 during the initialization process.

DSMQUOTE

The :Q tag is processed by the DSMQUOTE APF which produces the appropriate opening quo­
tation marks (single or double depending on the nesting level). The DSMQUOTE APF performs
the following processing:

1. Substitution is turned off so that we can substring the quotation mark out of the &@oquote
symbol.

2. The quotation nesting level is tracked in the &@nest@q symbol. This symbol is incre­
mented each time a :Q tag is processed and is decremented by DSrvlEQUOT each time a
:EQ tag is processed.

Quotes, Notes, Footnotes and Highlights 125

3. The &@oquote symbol, which is deflned in DSNIPROF3, contains a string of single and
double quotation marks. The appropriate quotation mark is selected from &@oquote using
the nesting leveL For example, if &@nest@q is I, the flrst character is selected from
&@oquote and this is a double quotation mark. When the nesting level is 2, the second
character is selected which is a single quotation Inark.

4. Substitution is turned back on.

5. The quotation mark is inserted into the document.

DSlVIEQUOT

The end quotation tag (:EQ) is processed by the DSMEQUOT APF which performs the follow­
ing functions:

1. If there are no quotations open, issues a message and the APF ends inunediatcly because
there is nothing to do.

2. Turns substitution off so that we can substring the quotation mark out of the &@cquote
symboL

3. Selects the proper closing quotation mark out of the &@cquote symbol using the nesting
level (&@nest@q) to pick the correct one.

4. Decrements the nesting level symbol &@nest@q by one.

5. Turns substitution back on.

6. Inserts the ending quotation mark into the document.

DSMLQUOT

The DSMLQUOT APF processes the :LQ tag. Long quotations are processed very lnuch as if
they were a level of list nesting. This is because of the need to coordinate the indention between
lists and long quotations as they C,ill occur inside of each other. The following processing is per­
formed:

1. Performs a conditional skip (&@sk@q).

2. Saves the current list control synlbol values in the &@nest@l symbol array. These sYlnbols
are used for nesting and denesting lists and quotations. Some of the symbols are ftrst put in
the local & *h symbol simply because all of the symbol names won't flt on the next line
which sets the next element of the &@nest@l symbol array. See the discussion of list con­
trol symbols in "List Processing" on page 97 for more details on the &@nest@l synlbol.

3. Tests &@nest@l to determine if there are any open lists or open long quotations. The
&@nest@l element counter is greater than one if there are any lists or quotations in progress.
If the &@nest@l element counter is greater I, we have to do a few things before we can set
up the proper indention for the long quotation.

The indention for each level of list and for long quotations is kept in two parts-the base
indention prior to starting the list or quotation and the incremental indention (&@in@l) at­
tributable to the list or quotation. To achieve the proper indention, both values must be
used. The & @in symbol contains the amount of base indention for what is already open
and &@in@l contains the incremental amount for each level of list (usually 4). Since we are
starting a new level of indention for the long quotation, we need to get &@in and &@in@l
incremented to indicate the appropriate values for the long quotation.

The appropriate new value for the &@in symbol is the sum of the current value of &@in
and &@in@l. The easiest way to get this sum is to actually perform the indention and use
the value of &$IN. Then &$IN is used to reset the &@in symbol to the correct indention
for the current long quotation.

126 DCF: GML Starter Set Implementation Guide

4. Sets the control sYlnbols for lists and long quotations as follows:

&@itcm# This is the item counter. It is set to zero for long quotations.
&@ltype 'This indicates the current type of list or quotation that is open. It is set to "q" to

indicate a long quotation is in progress.
&@hi@1 This symbol controls the highlight level for the terms in the cunent list. For long

quotations it's not needed so it is set to highlight level O.
&@hi@hd This symbol controls the highlight level for the headings in the current list. For

long quotations it's not needed so it is set to highlight level O.
&@in This is the base indention value in effect prior to starting the long quotation. It is

set to the value of &$IN calculated in device units32•

&@in@1 This is the incremental indention value for the long quotation. It is set to the
value of &@in@q calculated in device units32

• &@in@q is defmed as 3 in
DSMPROF3.

&@brcak This syrnbol indicates, when non-null, that the break option for definition lists
has been specified. It is not used for processing long quotations.

5. Adjusts the long quotation formatting enviromnent which consists of a left and right in­
dention and possibly a font change. The left indention consists of the base indention (&@in)
plus the incremental indention for long quotations (&@in@q). The right indention is also
set to &@in@q \vhich is set to 3 in the profile.

A long quotation font, which is slightly smaller than the body font, exists only if we are for­
matting for page printers. For page printers the "lqfont" font is started, otherwise the current
font is restarted.

DSMELQU

The DSMELQU APF processes the end tag for :LQ as follows:

1. Restores the previous font. The font is really only changed if we're formatting for a page
printer. In other cases, the current font has been restarted and is now restored.

2. Perfonns a conditional skip (&@sk@q).

3. Decrements the right indention by the amount we incremented it when we started the long
quotation (&@in@q).

4. Checks the &@nest@l element counter to make sure it indicates that a long quotation is
open. If the &@nest@l element counter is zero, it means that no long quotations or lists are
open and the macro ends because there is nothing more to be done.

5. If &@nest@l indicates that only the long quotation is open (that is, it is 1), ends the long
quotation by:

a. Setting the &@nest@l counter back to zero
b. Restoring the left indention to what it was previously, which is in the &@in symbol.
c. The macro ends.

6. If the long quotation occurred within either another long quotation or within a list, restores
the environment to where we were before.

a. The main list control symbol values are restored from the last element in the &@nest@l
array.

32 Device units have to be used here to avoid rounding errors when formatting for page printers.

Quotes, Notes, Footnotes and Highlights 127

b. The nesting level (&@nest@I(O)) is decremented by 1. It was incremented when we
started the long quotation as these are kept track of very much like lists are. See the
discussion of the list control symbols in "List Processing" on page 97 for more details
on these symbols and what they do. The values being restored here were saved in
DSMLQ UOT when the long quotation was started. They are simply being restored
here.

c. The &@id@l symbol, which contains the form for the list item identifier, is reset based
on the level of nesting for the particular list type being restarted. For example, if the
second level of unordered list is being started, the &@id@l symbol will be set as follows:

.se @id@l '&V'&@id@l@&@ltype.&*a .. '

. se @id@l '&V' &@id@l@u&~"a .. f

.se @id@l '&V'&@id@1@u2.'

where & *a will be set to the level of list being started, &@ltype will be a single letter
indicating the type of list. The value of & VI &@id@l@u2 will be a defmed variable
name whose value will be something like "&X/db." See the discussion of the defining
the list item identifiers in "Starter Set Initialization" on page 19.

d. The correct left indention is restored using the &@in and &@in@l symbols. The
&@in symbol contains the base indention in effect when the list was started and the
&@in@l syn1bol contains the incremental indention attributable to the current list.

e. The &@li@tab symbol is restored to contain the current indention value for the list
items. TIllS symbol will be used for list iteITIS to insert space to where the text of the
item should begin after the identifier is inserted.

DSl\1#RSET

This macro is used to ensure that there is no footnote, list, quotation, title page, figure, or exam­
ple currently in progress. If there is, DSM#RSET calls the appropriate APF to end the structure.
In the case of inline quotations, where &@nest@q is non-zero indicating that inline (short) quo­
tations are open, DSM#RSET calls DSl'vlEQUOT to close them. Long quotations arc included
in &@nest@l element counter wlllch indicates the level of list nesting. If the &@nest@l element
counter is non-zero, DSM#RSET calls DSrvlELIST which performs the necessary action to close
the long quotation or list that is open.

l\Totes

DSMNOTE

The DSI'vlNOTE APF processes the :NOTE tag as follows:

1. Skips as for a paragraph (&@sk@p).

2. Begins highlight level font 2.

3. Prints "Note:" followed by a colon.

4. Restores the previous font.

5. Produces the required blank. The required blank is added after the font has been restored to
avoid getting an underscored blank in case the defmition of the highlight level 2 font is
changed to include underscoring.

128 DCF: Gi\'IL Starter Set Implementation Guide

Footnote Macros

DSMPROF3

The profile, DSMPROF3, initializes the following values for footnotes:

1. Sets &@sk@n to 1. This symbol detennines the amount of white space preceding the foot­
note.

2. Defmes a rule named "@fnldr" to be used for the footnote leader.

3. Sets &@fnldrlen to 16. This symbol determines the length of the footnote leader rule.

4. Determines the style of superscripting based on the physical device being used (&$PDEV)
and puts it in the &@suprstyl symbol. The three styles supported are:

• "parens" to produce parentheses,

• "shifts" to use a small font shifted up, and

• "nums" to use the available superscript numbers.

5. Maps the footnote tags to their respective APFs.

DSlVI#RSET

The DSM#RSET macro is used to ensure that there is no footnote, list, quotation, title page,
figure, or example currently in progress. If there is, it calls the appropriate APF to end the struc­
ture. In the case of footnotes, where &@state is found to be "N," it calls DSMEFTNT.

DSM#STYL

The page layout style, which effects the way footnotes are formatted, is established by the
DSl'vl#STYL macro. For footnotes, this macro perfonns the following actions:

1. Sets &@fnl and &@fn2 (left and right indention amounts for footnotes) depending on col­
umn layout:

• For one and two column fonnats, &@fnl and &@fn2 are both set to zero.

• For offset style, &@fnl is set to the beginning column position so that the footnote will
line up with the offset text of the page and &@fn2 is set to O.

2. Defines the footnote leader for all formats by:

a. Spacing I line.

b. Drawing a horizontal rule using the @fnldr rule defmed in DSlVIPROF3. The rule starts
at the left indention (&@fnl) as calculated above, and extends for &@fnldrlen, which is
defmed in DSlVIPROF3 to be 16.

DSMFTNT

The :FN tag is processed by the DSMFTNT APF in the following way:

1. Checks that &@state is "open" indicating that there are no figures or examples under con~
struction. If there are, a message is issued and the APF ends irrunediately. \Ve can't process
a footnote while we're inside a figure or example because these are keeps or floats. To do so

Quotes, Notes, Footnotes and Highlights 129

would cause a SCRIPT /VS error message about keeps, floats and footnotes being mutually
exclusive.

2. Sets &@state to "N" to indicate a footnote is in progress.

3. Checks the attribute stack to see if an ID attribute was specified.

4. If none was given, assumes that the footnote reference goes right here in the text and the
DSM#SUPR macro is called with the footnote number as a parameter. This produces the
footnote reference in the text.

5. Issues the .FN [Footnote] ON control word to start the footnote.

6. Spaces &@sk@n. This symbol is set in DSMPROF3 to 1.

7. Starts the footnote font ("fnt") or restarts the current font. The footnote font, "fnt," exists
only for page printers.

8. Sets left indention for the footnote number to &@fnl. This symbol is set by DSM#STYL
based on the column layout being used. It is zero for one- and two-column layouts and
approximately 13 for offset style.33

9. Sets the &@tg symbol to "n" to indicate to the DSM@IDS macro that a footnote 1D is
being processed.

10. If an 1D attribute was specified, the DSM@IDS macro is called to process it. See "Cross­
References" on page 147 for details on ID processing.

11. Sets up the incremental left indention and the right indention for the footnote text:

a. If the superscripts are going to be produced by changing to a smaller font and shifting
the baseline up, the calculations must be done in the smaller font. This style of super­
script processing is indicated by the &@suprstyl synlbol which will be "shifts." The "su­
per" font is started for page printers and the current font is restarted for all other devices.

b. The &@fnis symbol is used in the DSM#SUPR macro to insert space to the location of
the beginning of the footnote text. Its value is based on the current indention (&$IN)
plus four figure spaces, calculated in device units. The existence of this symbol, &@fnis,
is also used by the DSlYl#SUPR macro to tell whether it is creating a footnote reference
or a footnote number.

c. Right indention is set to the value of &@fn2 which is set by the DSM#STYL macro.
This will be zero for all column styles.

d. The next step is to calculate the proper indention for the second and subsequent lines of
the footnotes. This is calculated to be four figure spaces in the superscript fonts.

e. The previous font is then restored.

f. A delayed incremental indention is set to the value that was calculated above. This will
control the placement of second and subsequent lines of the footnote.

g. The DSM#SUPR macro is called with the footnote number as a parameter.

h. The footnote number (&@fn#) is incremented by 1.

1. The &@fnis symbol is undefllled because we no longer need it. This symbol is used by
DSM#SUPR to tell if a footnote reference or a footnote number is to be created. We
need it to be undefllled so that subsequent calls to DSl'vl#SUPR by DSMFNREF will
be handled correctly.

33 The exact amount varies by device type.

130 DCF: GMLStarter Set Implementation Guide

DSM#SUPR

The DSM#SUPR macro produces both the superscript footnote reference and the footnote num­
ber. It is called by both DSJ\;IFNREF and DSMFTNT' with a footnote number as a parameter.

There are three styles of superscription supported by the starter set:

• For terminals, no real superscripts are available so the best we can do is enclose the number
in parentheses. This style is labelled "parens."

• For 1403 and 3800 Model 1 output, real superscript nun1bers are used. This style is labelled
"nums."

• For page printers, superscripts need to be constructed by changing to a small font and shift-
ing the baseline up. Tllls style is labelled "shifts."

The superscript style to be used is determined in DSMPROF3 based on the physical device
(&$PDEV) being used. It is stored in the &@suprstyl symbol.

The DSl\1#SUPR macro performs the following processing:

1. Substitution is turned off.

2. The appropriate section of the macro is branched to to produce the style of superscript speci­
fied in &@superstyl. This can be "nurns," "parens," or "shifts" depending on the device.

nums

parens

I shifts

For the 1403 and 3800 Iv10del 1, each digit of the footnote nun1ber is converted to the
appropriate hexadecimal code to print the number as a superscript. In other words, a
" 1" becomes a hex "b l," a "2" becOlnes a hex "b2," and so on. This is done using
the .TR [Translate Character] control word.

1. Defmes the translations to convert numbers to superscripts.

2. Formats the number.

3. Cancels the previously defmed translations.

4. Checks the existence of &@fnis. If this symbol exists, it indicates that we are
producing a footnote number rather than a footnote reference. In that case, we
need to insert some space after the number to position to where the text should
start. The position is in &@fnis so all we have to do is a .IS [Inline Space] con­
trol word.

For terminals, the best we can do for superscripting is put the number in parentheses.
This is done as follows:

1. Symbol substitution is turned back on.

2. If the &@fnis symbols does not exist it means that we are generating a footnote
reference number. In that case, we simply put the parameter back out with pa­
rentheses around it and end the rnacro.

3. If &@fnis does exist, we are generating a footnote number and we don't use the
parentheses. Literal mode is used just to be safe.

4. We then insert space to where the text should start, and end the macro.

Creating superscripts for page devices is a little more complicated. We need to change
fonts and shift the baseline up to print a smaller font at the top of the line so that the
top of the number lines up with the top of the normal letters on the line. The calcu­
lations are as follows:

1. Substitution is turned back on.

2. First, we get the vertical height of the current font. This is 1 vertical em:'space.

Quotes, Notes, Footnotes and Highlights 131

3. Then we switch to the superscript font ("super") which was defmed in the profIle
as a 6 point font.

If the "super" font is not defmed, we restart the current font. This sequence can
only occur if the profIle has been modified to not defme a font named "super" or
has used the "shifts" superscript style for a device that doesn't have a "super"
font defmed.

4. We then get the vertical height of the characters in that font.

S. The difference between the two heights is the amount we will need to shift the
baseline up.

6. The difference between the two heights could be zero or less than zero. This can
happen only if the font defmitions have been changed. However, it makes pro­
ceeding difficult because we are no longer working with a superscript font that is
smaller than the nonnal font. In this case, we

a. Restore the previous font
b. Produce the footnote number in parentheses
c. End the APF.

7. If the &@fnis symbol does not exist, it means we are producing a footnote refer­
ence rather than a footnote number. In that case, we

a. Shift the baseline up the amount we calculated above.
b. Produce the number continuing it with what preceding.
c. Shift the baseline down the amount we shifted it up. 'rVe don't simply re­

store the baseline because it is possible that the baseline was not at 0 when
we shifted it up.

d. Restore the previous font.
e. End the APF.

8. If the &@fnis symbol does exist we are producing a footnote number. This is
done in the following way:

a. Shift the baseline up the amount we calculated above.
b. Produce the number in literal mode. Literal mode is used here to prevent

the characters being fomlatted as the superscript from being interpreted by
SCRIPT /VS as control characters of any sort.

c. Shift the baseline down the amount we shifted it up. We don't simply re­
store the baseline because it is possible that the baseline was not at 0 when
we started.

d. Restore the previous font.
e. Insert the required space to position to where the text of footnote should

start. The position is in the &@fnis symbol which was set by the
DSlYIFTNT macro.

DSMEFTNT

The DSMEFTNT APF ends formatting of a footnote when it processes the :EFN tag in the fol­
lowing way:

1. Checks that &@state is "N" indicating that a footnote is in progress. Issues a message and
ends immediately, if &@state is not "N."

2. Sets &@state to "open."

3. Restores the previous font because a font change to either a smaller font or the current font
has been done in the DSMFTNT APF.

4. Uses the .FN [Footnote] OFF control word to end the footnote defmition.

132 DCF: GJ\rIL Starter Set Implementation Guide

Ifighlights
DSl'vlPROF3 defmes all of the fonts used in the starter set, including the highlighting fonts which
are named hiO, hil, hi2, and hi3. The definition used depends on the device being used. In the
case of page printers, the highlight font defmitions are all "type" defmed fonts, meaning they in­
herit SaIne characteristics from the current font at the tirne they are used. For example, highlight
level 2 is defmed as bold for page printers. In a footnote, which is in 9-point, we get a 9-point
bold font when we use highlight level 2, but in the body of the document we get lO-point bold.

Because highlight level 2 always changes to the bold version of the current font, and it is possible
that there is no bold version available, there are 3 alternate highlight fonts defmed. The alternate
highlights (ahhil, althi2, and althi3) use only uppercase and underscore definitions that will al­
ways work. They are used whenever the three main highlight fonts are not available.

DSMCIT

The :CIT tag is processed by the DSMCIT APF. This macro starts highlight level font 1 or
alternative highlight level font I if highlight level 1 font is not isn't available.

DSMECIT

The :ECIT tag is processed by the DSMECIT APF which ends highlighting by restoring the pre­
vious font.

DSMHPO

The DSMHPO APF begins the highlight level 0 font for the :HPO tag. There is no alternate
highlight font for highlight level zero because the "hiO" font is defmed to be the normal body font
which must ahvays exists.

DSMHPI

The DSl'vlHP I APF processes the :HP I tag by beginning the highlight level 1 font or the alter­
nate highlight level 1 font if the highlight level 1 font is not available.

DSMHP2

The DSMHP2 tag processes the :HP2 tag by beginning the highlight level 2 font or the alternate
highlight level 2 font if the highlight level 2 font is not available.

DSMHP3

The DSMHP3 tag processes the :HP3 tag by beginning the highlight level 3 font or the alternate
highlight level 3 font if the highlight level 3 font is not available.

DSMEHP

The DSMEHP APF, which processes the :EHPO, :EHPI, :EHP2, and :EHP3 tags, ends high­
lighting by restoring the previous font.

Quotes, Notes, Footnotes and Highlights 133

Modifications to Quotes, Notes, Footllotes and Highlights

Changing the Footnote Leader

The footnote leader is defmed in the DSM#STYL macro which is called from DSl'v1PROF3 dur­
ing initialization. Because the DSM#STYL macro is also called when changing document
sections (such as going from front matter to body) it is difficult to override the footnote leader
from within a document. It really needs to be changed in the DSM#STYL macro. For this
reason, the symbols for the most important footnote leader parameters are defmed in
DSlVIPROF3 to make it easier to change them.

To change the length of the footnote leader horizontal rule, change the value of &@fnldrlen in
DSlVIPROF3:

.se @fnldrlen = 16

To change the size of the rule used, change the defmition of the @fnldr rule that is in the profile:

.dr @fnldr w .2mm

To completely change the leader, we will have to modify the DSM#STYL macro. For exatnple,
if we wanted to skip 2 lines instead of 1 and use a row of asterisks, we would need to change the
DSl\l#STYL macro to contain the following:

· .. fnldr
· fn leader
· sp 1

· fn off

Printing Footnotes at the End of a Chapter

Normally, footnotes are printed on the page on which they occur. Some applications, however,
require the printing of footnotes to be deferred until the end of a chapter. This can be accom­
plished by putting footnotes into a named section area and placing that area at the end of each
chapter.

The .DA [Defme Area] control word can be used to defme an area in which we can collect the
footnotes. An area is simply a column that can be placed anywhere on the page. See the chapter
entitled "Placing Text in Named Areas" in Document Composition Facility: SCRf PTj VS Text
Programmer's Guide for more information on areas. The following control word should be
placed into DSMPROF3:

.da fnote@a 0 section width &dh'&$LL .. dh

The above .DA [Defme Area] control word defmes a section area named Jnote@a. We did not
specify a horizontal displacement for this area, so it will be placed starting at the left margin. We
have specified the width to be the current line length as defined with the .LL [Line Length] con­
trol word. If we are in a two column format, we want the footnotes to extent across both col­
umns, not just the first one.

\Ve also need to modify the DS?vlFTNT APF to collect the footnotes in the area. The following
line should replace the .FN [Footnote] ON control word in the DSl\tlFTNT APF:

.ar fnote@a on

134 DCF: GML Start,er Set Implementation Guide

\Ve also need to Inodify the DSMEFTNT APF to close the area at the end of the footnote text.
The following control word should replace the .FN [Footnote] OFF control word in the
DSlVIEFTNT APF:

· ar off

The above two changes will cause the footnotes to be collected in an area. The next step is to get
the area placed at the end of the chapter.

How do we know when we are at the end of a chapter? A head level 0 or head level 1 indicates
the end of a chapter and the beginning of a new one. The DSIV1#DUPL macro is called at the
start of the DSMHEADO and DSMHEADI APFs when the next chapter or part is started. If
there are footnotes to be placed, we need to eject to a new page and then print the footnotes.
The &ad' attribute can be used to detennine if the area contains any text. \Ve may also want to
put out a heading for the footnotes. \Ve will assume the te}..1. for the heading is in a symbol
nanled &LL@Ftnt. Here's what the DSlVl#DUPL macro looks like when we are through:

· if &$PN eq 0 .me
· f1 dump
.if &ad'fnote@a ne 0
.th .pa nostart
.th .h2 &L1@Ftnt
.th .ar put
.",(DUPLEX - EJECT TO EVEN PAGE. NOT DUPLEX - REMOVE THE EJECT LINE 7~

· dm dsm#dupl(&$LNDM.) off &$CW .. se a = &$LNUM + 20
· dm dsm#dupl(&$LNUM.) off &$CW .. if yes eq no . dm dsm#dupl(&"'~a.) off
· if SYSPAGE eq ODD .pa
· pa nostart

We need to make sure the footnotes for the last chapter of the document are also printed. \Ve
can accomplish this by placing the same control \vords we added to the DSlVl#DUPL macro at
the beginning of the epifile in DSlVIPROF3. Here's what the epifue in DS~1PROF3 looks like
when we are through: .

• if &ad'fnote@a ne 0
.th .pa nostart
.th .h2 &L1@Ftnt
.th .ar put
· if &E'&SYSVARW ne 0 .an &@lastpass eq yes .dsm#writ
· if &SYSVARX eq yes .an &@lastpass eq yes .dsm#xlst

\Ve also need to define the symbol &LL@Ftnt in the DSIVl#SETS macro. This symbol is used
in the head level 2 that prints out at the top of the footnote page. The following line needs to be
added to the DSIVl#SETS macro:

.se LL@Ftnt 'Footnotes

Using a Hanging Indent for Notes

The :NOTE tag does not nonnally perfonn any indention at all. To indent notes to look like
this:

Note: This is what a hanging
note would look like if
we made the following
change to the
DSlVINOTE APF.

Quotes, Notes, Footnotes and Highlights 135

Some changes need to made to the DSMNOTE APF.

the DSIvlNOTE APF looks like this:

.sk &@sk@p

. bf hi2
&LL@Note.:&$GONT
.pf
&$RB.&$GONT

To change this to produce a hanging indent, all we need to do is add an incremental indention
delayed for one line. The indention needs to be incremental because we don't want to be con­
cerned with whether or not there is any indention at the time of the note. The indention is de­
layed for one line so that the "NOTE:" line will not be indented. The amount of the indention
must be calculated as the width of the word "Note," the colon, and the required blank.

To calculate the indention, we must fIrst defIne a symbol to be a colon. We have to do this
because using a colon directly in the width calculation doesn't work because it's a special charac­
teL Then we simply add up the device units of the width of the various pieces and use this value
in the .IN [Indent] control word .

. sk &@sk@p

. bf hi2
. se "'(c = :
.se @in@note = &DH'&W'&L1@Note + &DH'&W'&*c + &DH'&W'&$RB
.in +&@in@note.dh after 1
&LL@Note. :&$GONT
.pf
&$RB.&$GONT

This change to the DSMNOTE APF will causes the second and subsequent lines of the note text
to be indented the proper amount. However, it is now necessary to create an end tag for :NOTE
in order to cancel the indention for the next text iteln is processed.

Tlus means the .AA [Associate APF] control word line in DSMPROP3 for the :NOTE tag needs
to be changed to include the name of an APF to process the end tag. Let's assume the APF will
be named "ENDNOTE." The new .AA [Associate APF] line is shown below:

.aa note dsmnote (noatt) endnote

The ENDNOTE APF simply needs to end the indention .

. in -&@in@note.dh

Note that we have decremented the indention rather than reset it to zero. This is because we
don't know whether it was zero when we started or not. If we decrement it the same arnount we
increlnented it in the start tag then we don't have to be concem~ with a,py indention wluch may
have been going at the time of the :NOTE tag.

136 DCF: GML Starter Set Implementation Guide

Indexing

I1ldex Tag Macros
The processing of ID attributes and cross references for the index tags is slightly different from
other types of cross references. Therefore, it is discussed here, rather than in the chapter on cross
referencing. The cross referencing of index ids is an irnportant part of processing the index tags
themselves. For other types of cross referencing, the cross reference capability is separate from
the tags themselves and therefore the discussions can be separated.

The tag to APF mappings for all of the index tags is shown in Figure 8 on page 29. These APFs
are discussed in detail here.

DSMINDEX

The DSMINDEX APF processes the :INDEX tag and formats the index in the following man­
ner:

1. Calls the DSM#RSET macro to end any open lists, footnotes, and so on. (See
"Miscellaneous" on page 163.)

2. Calls the DSM#DUPL macro to get to the beginning of the next odd page if duplexing is
active. (See "Miscellaneous" on page 163.)

3. Sets &@shead to the &LL@Index symbol whose value is "Index." The &@shead symbol is
used in the running footing.

4. Defines an IEH macro to process the internally generated .IE [Index Entry} H control words.
All the IEH macro does is call the DSMIEH macro passing along the control word pararne­
ters.

5. Loads the GML index header macro (DSMIEH) from the library. This is done because we
are going to tum the library search for macros off entirely. If we didn't explicitly tell
SCRIPT/VS that the DSMIEH macro was in the library, SCRIPT/VS wouldn't be able to
fmd the macro.

6. Saves the currerit formatting environment because we're going to make some changes to it
and it will be easier to restore the environment than change it back.

7. Calls DSM#STYL to get a two column layout.

8. Turns formatting style to "left" as we don't want any horizontal justification to occur within
the index.

9. Turns library look-up for macros off. This is done for pelformance reasons. Searching the
library for sYlnbols and macros is very costly, if it turns out to be a control word, as it usu­
ally is with index processing. Since we know there are no symbols that need to be "fetched"
for index processing, we simply turn it off.

Indexing 137

10. Uses the .IX [Index) control word to format the index. The title of the index is obtained
from the &LL@Index symbol which is dermed in the DSM#SETS macro during initializa­
tion.

11. Enables the library search for macros after the index is completely fonnatted.

12. Restores the previous environment.

DSMINDXl

DSMINDX 1 processes the :I1 tag in the following manner:

1. Scans to get the residual text for the tag into &@itl.

2. Sets &@i1evel to 1 to indicate to the attribute processing macros that a fIrst level index entry
tag is being processed.

3. Sets &@it2 and &@it3 to null.

4. Sets & *t4 to the page number symbol, &$PS. This is how the page number gets into the
index. The user can specify his own fourth level entry to be something other than page num­
ber, by using the PAGEREF attribute.

5. Sets &@tg to "i" to indicate to the DSM@IDS macro that an id for an index entry tag is
being processed.

6. Processes the PG or PAGEREF attribute with DSM@PGRF. This may result in &*t4, the
fourth index term, being redeftned to something other than the page number symbol. It may
also cause the & *x symbol to be set to "start," "order" or "end."

7. Processes the ID attribute with DSM@IDS.

8. If there was no text on the tag (&@itl has a length of 0), issues an error message and no
index entry is created.

9. If the entry exists, sets up the .PI [Put Index] control word such that & *x can provide addi­
tional control word parameters. See "DSl\/1@PGRF" on page 144 for details. The
hexadecimal "01 "s are the delimiters on the .PI [Put Index] control word line and the index
term itself is in &@it 1.

DSMINDX2

DSlVlINDX2 processes the :12 tag in the following manner:

1. l\10ves the current first level index term froll1 &@itl to &#itl

2. Scans to get the residual text for the tag into &@it2.

3. Sets &@i1evel to 2 to indicate to the attribute processing macros that a second level index
entry tag is being processed.

4. Sets &@it3 to null.

5. Sets & *t4 to the page number symbol, &$PS. TIllS is how the page nUInber gets into the
index. The user can specify his own fourth level entry to be sonlething other than page num­
ber, by using the PAGEREF attribute.

6. Sets &@tg to "i" to indicate to the DSM@IDS macro that an id for an index entry tag is
being processed.

7. Processes PG or PAGEREF with DSM@PGRF. This may result in & *t4, the fourth index
tenn, being redefmed to something other than the page number symbol. It may also cause
the & *x symbol to be set to "start," "order" or "end."

138 DCF: Gl\1L Starter Sct Implementation Guide

8. Processes the REFID attribute using the DSM@RIDI macro. This attribute process may
change the [ust level term.

9. Processes the ID attribute with the DSM@IDS macro. ID processing is described in detail
in "Cross-References" on page 147.

10. If there was no text on the tag (&@it2 has a length of 0), or the first term (&@itl) is miss­
ing, issues an error message and no index entry is created.

11. If the entry exists, sets up the .PI [Put Index] control word such that & *x may contain addi­
tional control word parameters. The hexadecimal "OI"s are the delimiters on the .PI [Put
Index] control word line and the index term itself is in &@it2. The [ust index term is in
&#it 1 and the fourth term or the page number symbol is in & *t4.

DSMINDX3

DSMINDX3 processes the :13 tag in the following manner:

1. Moves the current first level index term from &@itl to &#itl and moves the CUtTent second
level index term from &@it2 to &#it2. These two symbols, &#itl and &#it2 are the ones
actually used in generating the index entry. If there is a REFID attribute on the :13 tag, it
may override those two symbols by linking the I3 term to a different set of level 1 and 2
tenns.

2. Scans to get the residual text for the tag into &@it3.

3. Sets &@i1evel to 3 to indicate to the attribute processing macros that a third level index entry
tag is being processed.

4. Sets & *t4 to the page number symbol, &$PS. This is how the page number gets into the
index. The user can specify his own fourth level entry to something other than page number,
by using the PAGEREF attribute.

5. Processes PG or PAGEREF with DSM@PGRF.This may result in &*t4, the fourth index
term, being redefrned to something other than the page nunlber symbol. It may also cause
the & *x symbol to be set to "start," "order" or "end."

6. Sets &@tg to "i" to indicate to the DSl'v1@IDS macro that an id for an index entry tag is
being processed.

7. Processes the REFID attribute using the DSM@RIDI macro. This attribute process may
change the first and second level telms.

8. Processes the ID attribute with the DSM@IDS macro. See "Cross-References" on page 147
for details on this macro.

9. If there was no text on the tag (&@it3 has a length of 0), or the fust term (&#itl) or the
second level term (&#it2) are missing, issues an error Inessage and no index entry is created.

10. If the entry exists, sets up the .PI [Put Index] control word such that &*x may contain addi­
tional control word parameters. The hexadecimal "0 l"s are the delimiters on the .PI [Put
Index] control word line and the index term itself is in &@it3. The fust index term is in
&#itl. 111e second term is in &#it2 and the fourth term or the page number symbol is in
&*t4.

DSMIHDI

The DSMIHD 1 APF creates a primary index heading entry when it processes the :IH 1 tag as
follows:

1. Gets the residual teA1. into &@itl and saves it in &#it1. The &#itl symbol is the one that
will actually be used to generate the index control word line.

Indexing 139

2. Sets &@ileve1 to 1. This is done to indicate to the attribute processing macros that the tag
being processed is a fIrst level entry.

3. Sets &@it2 and &@it3 to null.

4. Sets &@tg to "i" to indicate the DSM@IDS macro that an id for an index entry is being
processed.

5. Processes the PRINT attribute with the DSM@IPRT macro.

6. Processes the ID attribute with the DSM@IDS macro. See "Cross-References" on page 147
for details on this macro.

7. Processes the SEE attribute with the DSM@SEE macro.

8. Processes the SEEID attribute with thc DSl\1@SEEI macro.

9. Tests the existence of &*r. The &*r local symbol is set if either the DSM@SEE macro or
the DSIVl@SEEI macro is processed. If it does exist, & *x is set to "ref' to generate an index
reference rather than a real index entry. This is the .PI [Put Index] control word parameter
that suppresses the page number.

10. If there was no text on the tag (&@itl has a length of 0), issues an error message and no
index entry is created.

11. If there was text on the tag, sets up the .PI [Put Index] control word using & *k which may
have been set by the DSM@IPRT macro to provide a sort key parameter. The hexadecimal
"01 "s are the delimiters on the .PI [Put Index] control word line and the index term itself is
in &#it 1. The & *r symbol may contain an index reference in which case *x has been set to
"ref." This conlbination creates the "See" and "See also" references.

DSl\lIHD2

The DSl\lIHD2 APF creates a second level index heading entry. when it processes the :IH2 tag
as follows:

1. Gets the residual text into &@it2 and saves it in &#it2. The &#it2 symbol is the one that
will actually be used to generate the index control word line.

2. Sets &@ilevel to 2. This is done to indicate to the attribute processing macros that the tag
being processed is a second level entry.

3. Sets the &@it3 symbol to null.

4. Sets &@tg to "i" to indicate to the DSM@IDS Inacro that an id for an index tag is being
processed.

5. Processes the PRINT attribute with the DSl\1@IPRT macro.

6. Processes the ID attribute with the DSM@IDS macro. See "Cross-References" on page 147
for details on this macro.

7. Processes the SEE attribute with the DSM@SEE macro.

8. Processes the SEEID attribute with the DSIVl@SEEI macro.

9. Tests the existence of &*r which is set if either the DSl'vl@SEE macro or the DSlYl@SEEI
macro has been used. If it does exist, & *x is set to "ref' to generate an index reference rather
than a real index entry.

10. If there was no text on 'the tag (&@it2 has a length of 0), or there is no active first level entry
(&@itl has a length of 0), issues an error message and no index entry is created.

11. If the entries exist, sets up the .PI [Put Index] control word where & *k may have been set by
the DSM@IPRT macro to provide a sort key parameter. The hexadecimal "OI"s are the

140 DCF: Gl\1L Starter Set Implementation Guide

delimiters on the .PI [Put Index] control word line and the index term itself is in &#it2. The
fITst level index term is in &@itl. The & *r symbol may contain an index reference in which
case *x has been set to "ref." This combination creates the "See" and "See also" references.

DSMIHD3

The DSMIHD3 APF creates a third level index heading entry. when it processes the :IH3 tag as
follows:

1. Gets the residual text into &@it3 and saves it in &#it3. The &#it3 symbol is the one that
will actually be used to generate the index control word line. The primary and secondary
terms are in &@itl and &@it2.

2. Sets &@ilevel to 3. This is done to indicate to the attribute processing macros that the tag
being processed is a third level entry.

3. Processes the PRINT attribute with the DSlVl@IPRT macro.

4. Sets &@tg to "i" to indicate to the DSM@IDS macro that an id for an index tag is being
processed.

5. Processes the ID attribute with the DSM@IDS rnacro. See "Cross-References" on page 147
for details on this macro.

6. If there was no text on the tag (&@it3 has a length of 0), or there is no active fITst level entry
(&@itl has a length of 0), or there is no active second level entry (&@it2 has a length of 0),
issues an error message and no index entry is created.

7. If the entries exist, sets up the .PI [Put Index1 control word where &*k may have been set by
the DSM@IPRT macro to provide a SOli key pararneter. The hexadecimal "OI"s are the
delimiters on the .PI [Put Index) control word line and the index term itself is in &#it3. The
fITst level index term is in &@itl and the second level index term is in &@it2.

DSMIREF

The :IREF tag is processed by the DSMIREF APF as follows:

1. Sets a local symbol, & *t4, to the page number symbol (&$PS).

2. Processes the REFID attribute using the DSlVl@RFID macro. The DSl\1@RFID macro
simply sets a local symbol for the DSMIREF macro, & *id, to the value of the REFID attri­
bute.

3. If the id is over seven characters long, issues a message and the id is truncated to seven char­
acters.

4. Tests the &1 I @& *id symbol to determine if the id has been encountered before. If it has
been, the following processing is performed:

a. Sets the &@ilevel symbol to the sum of the existence of the three id symbols-I1@&*id,
12@&*id and I3@&*id. This equates to setting it to 3, if all three exist, 2 if only the
first two exist and one if only the [list one exists. This symbol is used in the attribute
processing macros to detennine what level of index entry tag is being processed.

b. Puts the index terms themselves, which are in I I @& *id, and so on, into the & *t 1, & *t2,
and &*t3 symbols. .

c. Processes PG, PGREF, or PAGEREF using the DSM@PGRF macro. This may re­
sult in & *t4, the fourth index term, being redefmed to something other than the page
number symbol. It may also cause the & *x symbol to be set to "start," "order" or
"end."

Indexing 141

d. For level I and 2 index terms only, processes the SEE and SEEID attributes with the
DSM@SEE and DSl\1@SEEI macro, respectively. This may set the &*r local symbol
to the text of the index reference.

e. Tests the existence of the & *r local symbol which is set to the reference text if either the
DSl'vl@SEE macro or the DSM@SEEI macro has been used. If it does exist, &*x is set
to "ref' because we will be generating an index reference rather than a real index entry.
The index reference text is then moved into one of the local symbols & *t2 or & *t3 de­
pending on the level of the index term being generated by the tag.34

f. Generates the index entry. The index terms are in & *t l, & *t2, & *t3 and & *t4. An
additional .PI [Put Index] control word parameter may be in &*x. The hexadecinlal
"0 1 "s are the delinllters on the control word line.

g. Ends the macro if this is not the fIrst pass (&$PASS) or cross referencing (&SYSVARX)
is not in effect.

h. If cross referencing is in effect, adds the current page number to the &IX@& *id array.

S. Tests the existence of the &1 1 @& *id syrnbol. If &11 @& *id doesn't exist, it indicates that
the id being referenced has not been defmed yet. This means we are dealing with a forward
reference to an index entry. If we aren't cross referencing (&SYSVARX is not yes) or if this
is the frrst pass, we don't need to do anyihing about saving the cross reference infonnation
because either we don't need it or we save it on the second pass.

If we do neec! to save the cross reference information, the processing discussed below is per­
formed. See "Cross-References" on page 147 for additional information on how cross refer­
encing works.

a. If IF @& *id doesn't exist (meaning we haven't encountered this id before at all) the ID
is put into the cross reference array (&@xref@i). The &@xref@i array will be used to
produce the cross reference listing for index ids.

b. The element number from the cross reference array (&@xref@i) is remembered in
IL@& *id so it can be replaced when we know what ftle the id is in.

c. The page number is put into the next element of &IX@& *id.

d. IF@&*id is set to "?" This array is supposed to contain the name of the me where the
id was defined. If the id is never defined the me name will print out as "?" in the cross
reference listing.

e. If &IF@&*id already exists, the current page number is put into the array &IX@&*id.

DSl\1IDl\1MY

The DSl\lIDlVllVlY APF processes the :11-:13 tags \vhen an index is not being produced It simply
COnSUlTIeS the residual text so it will not get printed.

DSlVIIEH

The DSJ'vIIEH macro processes the header information generated by the .IX [Index] control word.
This macro takes over the function provided by the internally generated .IE [Index Entry] H con­
trol word. A macro named "lEI-I" is defined in the DSlVIINDEX macro and calls the DSMIEH
macro to process the index heading parameter.

The index headers are produced as follows:

34 A 1 is added to the level of the index term (&@ilevel) to determine which symbol should be set.

142 DCF: Gl\'lL Starter Set Implementation Guide

1. Tests the first parameter passed to tills macro. If it is before "a" in the sorting sequence, it
means that there are index entries beginning with special characters. In that case, the macro
ends immediate because this section of the index gets no header.

2. Skips p22 (22 points).

3. If &$ENV indicates that there is a keep in progress, ends the keep. This is done so that we
can start a keep without being in danger of getting an error message from SCRIPTjVS that a
keep is already in progress.

4. Turns a keep on for 1.2 inches

5. Begins the "ieh" font for page printers or highlight font 2 for line devices. The alternate
highlight font is also specified on the .BF [Begin Font] control word just in case neither of
the other fonts can be started.

6. Indents 5.

7. Calculates the ending position of the box to be drawn as 7 plus the length of the heading to
be generated.

8. Draws a box at position 4 and the calculated ending position provided that SYSOUT is not
"PAGE," indicating that we are fonnatting for a page printer.

9. For page printers, sets indention back zero because the style of index headers is different for
these devices.

10. Puts out the index heading using literal mode because we can't be sure what's in it.

11. Ends the box, if we had started one.

12. Skips 1 line.

13. Restores the previous font.

14. Restores indention to zero.

Index Attribute and Support Macros

DSM@IDS

See "Cross-References" on page 147 for the detailed discussion of the DSM@IDS macro.
DSM@IDS processes all of the ID attributes.

DSl\1@IPRT

The DSM@IPRT macro processes the PRINT attribute of the :IHl-3 tags. This attribute speci­
fies the text that is to be printed for the index tenn.

DSM@IPRT perfonns the following processing:

1. Saves the text string given (to be printed in the index) in &#it&@ilevel, where &@ilevcl is
1,2, or 3 depending on the level of the index tag being processed.

2. Constructs a .PI [Put Index] control word sort key parameter in the caller's local symbol,
&*k. (See "Special Techniques" on page 13 for details on the technique of setting the caller's
local symbol when exiting a macro.) The hexadecimal "01 "s are delimiters and the index
term is placed in the first, second or third position based on the level of the index tag. If the
hexadecimal "01 "s were slashes, the & *k symbol would be set as follows:

Indexing 143

.se -/,k 'key /term///
or

.se *k 'key //term//
or

.se ~"'k 'key ///term/

DSM@PGRF

The DSIVI@PGRF macro processes the PAGEREF attributb of the :11-:13 tags. It may be used
to defme a fourth index term, in which case the macro sets the caller's local symbol & *t. This
attribute may also be used to specify additional index parameter information such as page ranges.
In this case, the macro sets the caller's local symbol & *x.

See "Special Techniques" on page 13 for discussions on both the technique of exatnining the pa­
rameter passed in and setting the caller's local symbol.

DSl\1@PGRF performs the following functions:

1. Examines the parameter passed in for "start," "begin," "major," or "end."

2. If it is not any of the specific values tested for, sets the caller's local symbol & *t4 to the
parameter sent in. This means that the user has explicitly set the 4th level index term and it
will be used "as is."

3. If the parameter is "start" or "begin," sets the caller's local symbol & *x to "start." This
means that a range of pages is being specified.

4. If it is "major," sets the caller's local symbol & *x to "order."

5. If it is "end," sets the caller's local symbol &*x to "end."

DSl\1@RIDI

The DST\1@RIDI macro processes the REFID attribute of the :12 and :13 tags and provides the
level one and level two index telms for creating the index entries. It performs the following proc­
essing:

1. Checks the length of the id parameter given. If the id is too long, it is truncated to 7 charac­
ters and a message is issued. Otherwise, the id's value is put into the & *id symbol.

2. Checks to see if the id (&I1@&*id) already exists. If so,

a. Moves the saved index tenns from &11 @& *id and &I2@& *id into the symbols &#it 1
and &#it2. The &11 @& *id and &I2@& *id symbols are set when the ID attribute of
the :I1 and :12 tags respectively. The &#itl and &#it2 symbols will be used to create the
actual index entry control word.

b. If cross referencing is in effect (&SYSVARX is "yes") and this is the first pass
(&$PASS), puts the current page number into the syrnbol array &IX@&*id. This sym­
bol is used only for the purposes of generating the cross reference listing at the end of
the document.

3. Tests the existence of the level 1 id (&11 @& *id). If it doesn't exist it means we are dealing
with a forward reference to an index entry. If we aren't cross referencing (&SYSVARX is
not yes) or this is the first pass, we don't need to do anything about saving the cross refer­
ence information because either we don't need it or we will save it on the second pass.

If we do need to save the cross reference information, the following processing is performed.

a. If &IF@& *id doesn't exist, meaning we haven't encountered this id before at all, the id
is put into the cross reference array (&@xref@i).

144 DCF: GML Starter Set Implementation Guide

,1) The element number from the cross reference array (&@xref@i) is remembered in
&IL@& *id so that the cross reference entry can be replaced when we know what
fue the id is in.

2) IF@&*id is set to "?" This symbol is supposed to contain the name of the fue
where the id was defmed. If the id is never defIned the fue naIne will print out as
"?" ill the cross reference listing.

3) The page number is put into &IX@& *id.

b. If &IF@&*id already exists, adds the current page number to the array &IX@&*id.

DSM@SEE

The DSM@SEE macro processes the SEE attribute on the index tags. (:11-3 and :IREF).

Stacks a control word to be processed in the calling macro and assigns the attribute value to the
caller's local symbol & *r. This technique is discussed in detail in "Special Techniques" on page
13.

DSl\1@SEEI

The DSM@SEEI macro processes the SEEID attribute of the index tags. The index reference
text is retulned in the caller's local symbol & *r. This technique is discussed in detail in "Special
Techniques" on page 13. DSM@SEEI peliorms the following functions:

1. If the id name is over seven characters, it issues a message and and truncates it to seven char­
acters.

2. If the id isn't over seven characters, saves the id in a local symbol, *id.

3. If II@&*id exists (meaning that the id has been encountered before), the following process­
ing is performed.

a. The text of the index reference is put into a local symbol, & *r.

b. The id may have been defined at any of the 3 levels of indexing. The symbol & *r is
constructed of the first and/or second andior third entries depending on what symbols
exist. For example, let's assume the id referenced on the SEEID attribute was defined
on an :13 tag for "rebates." Let's assume further that the the f1[st and second level tenns
were "housing" and "costs." The & *r symbol would end up being set here to "housing,
costs, rebates."

c. If cross referencing is in effect or this is the f1[st pass (&$PASS is I and &SYSVARX is
"yes") the current page number is added to &IX@& *id.

4. If the level 1 id (&11 @& *id) doesn't exist it means we are dealing with a forward reference to
an index entry. If we aren't cross referencing (&SYSVARX is not yes) or this is the first
pass, we don't need to do anyihing about saving the cross reference information. We will
save it on the second pass or we don't need it.

If we do need to save the cross reference infonnation, the following processing is perfonned:

a. If &IF@& *id doesn't exist, meaning we haven't encountered this id before at all, differ­
ent actions need to be taken:

1) An entry is made in the cross reference array (&@xref@i) for the id.
2) The element nunlber from the cross reference array (&@xref@i) is remembered in

&IL@& *id so it can be replaced whcn we know what ftle the id is in.
3) &IF@&*id is set to "?" This symbol is supposed to contain the name of the file

where the id was defined. If the id is never defmed the fue name will print out as
"?" in the cross reference listing.

b. The current page number is added to the array &IX@&*id.

Indexing 145

5. The caller's local variable & *r IS set to "?" This technique IS discussed m "Special
Techniques" on page 13.

Modificatiolls to Illdex Tags
It is difficult to think of any modifications that can be made to the starter set index tags. How­
ever, there are several aspects of the native SCRIPT/VS index functions which can be altered.
The primary one is to change the words "See" and "See also" to something else-for example,
translating them into another language. This change is possible, however, it requires changing the
DSMCSPFR module of SCRIPT/VS. This Inodule contains all of the literal constants that are
built into SCRIPT/VS, just as the DSM#SETS and DSlVl#MSG macros contain all of the literals
built into the starter set. See the chapter on tailoring SCRIPT/VS to your installation in the
Document Composition Facility: SCRIPT/VS Text Programmer's Guide for details on how to
change DSMCSPFR.

There are two other modifications which are frequently requested. The first is the ability to alter
the sorting order for the index. The second is the ability to change the format of the index entries
such that the page numbers are lined up on the right hand side of the column. Unfortunately,
neither of these functions can be altered within SCRIPT /VS.

146 DCF: G!\'1L Starter Set Implementation Guide

Cross-References

The starter set provides the capability to cross reference headings, figures, list items, footnotes,
and index entries. The cross reference processing for the first four types of tcxt elements is. de­
scribed here. Index entry cross referencing is described in "Indexing" on page 137.

Cross reference processing occurs at different times in the starter set and at different levels. Thcre
are four main types of activity:

• Processing ID attributes

• Resolving cross references within the document

• Printing a cross reference listing

• Creating and using a me of id information.

These activities arc highly interrelated. The cross reference material printed at the end of the doc­
ument is contained in several arrays and variables. These arrays and variables are created by the
macro that processes the ID attributes. These same variables are used to resolve the cross refer­
ences and produce the SYSVAR "W" id flie at the end of the fonnatting run.

For example, cross referencing for a heading involves the following processing steps:

1. \Vhen an :H 1 tag is encountered with an ID attribute on it, several processing steps arc per­
formed:

a. The DSl\1HEADl APF, which processes the heading, calls the DSj\1@IDS macro.

b. The DSM@IDS Inacro performs several processing functions:

1) The id, the text associated with it, and the page reference are saved in a set of vari­
ables which will be used to resolve any references to this heading.

2) The id, the flie name, and the page reference are added to the array which produces
the cross reference listing.

3) The id, the text of the reference, and the page reference are added to the array which
will be used to produce the SYSV AR "W" id flie.

See Figure 21 on page 148 for a picture of the relationships between these arrays and
macros. The names of the arrays that are built are shown on the right side of the figure.

2. When a :HDREF tag is encountered:

a. The variables set up by the DSIVI@IDS macro are used to resolve the cross reference
and insert the appropriate text into the document where the reference was made.

b. If the ID information has not been defined, but a SYSVAR "R" flie of ids has been
used, the id information from that ftle \vill be used to resolve the cross reference.

Cross-References 147

-I~------------*

I HO - 6 1--*
lif ID given I I
------------ I

1
------------ 1
1 FIG 1--1
I if ID given 1 I *----------*
------------ ->/ DSM@IDS

4~ - - - - - - - - - - __ *
1 FN 1--
lif ID given 1

.,,, - - - - - - - - - ---*

.,'(- - - - - - - - - ---*
I I(H)1-3 1--
lif ID given 1

,'(_ - - _ - _ - - - __ --;(

.,'~ - - - - - - - - - - _ -'4'(

I LI 1--"/,
lif ID given 1

7, - - - - - - - - - - _ -'4'\

*--> BUILDS -->1 @xref@h I

I @writ@h I

--> BUILDS -->1 @xref@f I

I @writ@f I
"/(- - - - - - - - -*

~~ - - - - - - - --*
--> BUILDS -->1 @xref@n I

I @writ@n I *---- _____ 7~

--> BUILDS -->1 @xref@i I

1 @writ@i I
"';'c - - - - - - - --*

*--- ______ 4~
*--> BUILDS -->1 @xref@d I

1 @writ@d 1
"I~ - - - - - - - - -,'(

Figure 21. Processing ID Attributes: All of the I D attributes in the starter set are processed by the
DSl\1@IDS macro. It builds five different symbol arrays which contain the necessary
information to produce the cross reference listing for the five types of ids.

c. If the id cannot be found in either place, a standard message is used instead for the cross
reference.

d. The page number where the reference was made is added to the array of page numbers
to be used in the cross reference listing.

3. At the end of the document, the DSl\tI#XLST macro will be called either by the :EGDOC
tag or by the epiflle in DSMPROF3. This macro initiates the following processing:

a. Activates the &@xref@h array that has been built dynamically by DSlVI@IDS as ID
attributes were found. Each line of tllls array contains a call to the DSM#XRFH
macro.

1) The fITst time DSlVl#XRFH is called, it calls DSM#SETX which formats the ap­
propriate heading in the cross reference section.

2) The DSM#XRFH macro uses the variables set up by DSlVl@IDS to print the first
part of the cross reference line which includes the id, the me name, and the original
page number.

3) It uses the page number array to print the rest of the entry.

Figure 22 on page 149 shows the processing steps involved in printing the cross reference.
This will occur only if SYSVAR "X" was not set to "no" on the SCRIPT command.

4. Also at the end of the document, if SYSV AR "W" has been specified, the processing neces­
sary to produce the id ftle is performed.

] 48 DCF: Gi\IL Starter Set Implementation Guide

*--------~'(
\ DSMEGDOC I -.. ~
-------- I *--------* *-------* *--------* *---------*

\->IDSMflXLST\--->I@xref@hl->IDSMIIXRFHI---->IDSMflSETX 1
-------- \ *--------* *-------* *--------* 1 *---------*
IDSMPROF31-* *-------* *--------* I
-------- ->I@xref@hl->IDSMflXRFFI--1

------- *--------* 1
------- *--------* I

->I@xref@hl->IDSMIIXRFNI--I
------- *--------* I
------- *--------* 1

->I@xref@hl->IDSMflXRFII--1
------- *--------* 1
------- *--------* I

.,-> I@xref@hl--I DSMflXRFD 1--*
------- *--------*

Figure 22. Macros and Symbol Arrays Used to Produce the Cross Reference Listing: The
&@xref@h, &@xrcf@f, &@xref@n, &@xref@i and &@xref@d symbol arrays contain
one line for each id used in the document. The DSM#XRFF, DSM#XRFH,
DSM#XRFI, DSM#XRFD, and DSM#XRFN macros produce the actual listing and
the DSM#SETX macro produces the section headings within the listing and is called only
once for each set of ids.

a. The DSl'vl#\VRIT macro is invoked which in turn labels the ftle and processes the
&@writ@d, &@writ@f, &@writ@h, and &@writ@n arrays which call the
DSM#\VR TD, DSlVl#\VR TF, DSM#\VR TH, and DSM#\VR TN macros.

b. These arrays were created dynamically by the DSM@IDS macro when the ids were
processed. These macros write .SE [Set Symbol] control word lines out to the SYSVAR
"\V" file.

Initialization for Cross Referellcillg

During initialization of the starter set in DSl'vlPROF3 and the Inacros it calls, several functions
are performed relevant to cross referencing. These are:

1. The DSM#SET macro pre-defmes the cross reference arrays (&@xref@d, &@xref@f,
&@xref@h, &@xref@i and &@xref@n) to be comments. This is done to prevent them
from being undefmed symbols when we print out the cross reference listing. These arrays are
expected to contain information regarding the ids in the document. If there were, for exam­
ple, no index ids used in the document, the &@xref@i array wouldn't have anything in it
and it would print out as a undefined symbol if it weren't pre-defined.

2. The symbol arrays used to write out the SYSVAR "\V" flle are also initialized by the
DSM#SET macro starter set for the same reason.

3. The value of &SYSVARX is established as either "yes" or "no" by the DSM#SETV macro.

4. The SYSVAR "R" ftle, if one was specifted on the command line, is imbedded by
DSM#SETV to defme symbol values to be used to resolve cross references that would be
otherwise unresolvable.

5. DSMPROF3 maps the cross reference tags to their appropriate macros.

Cross-References 149

Processing ID Attl·ibutes

AIl of the ID attributes in the starter set are processed by the DSM@IDS macro. It does three
things:

1. Saves the ID information for use in cross referencing.

2. Creates the necessary arrays to produce the cross reference listing.

3. Creates the necessary arrays to produce the SYSV AR "\V" ftle.

DSM@IDS

The DSI\1@IDS macro is used to process the ID attributes for the heading tags (:HO-H6), the list
item tag (:LI), the footnote tag (:FN), the ftgure tag (:FIG) and the index tags (:11-3 and :IHl-3).

Its prin1ary function is to create two symbols that contain the text of the reference and the page
on which it appears. These are used for resolving references to ids.

The DSlVl@IDS macro perfonns the following processing:

1. The macro ends immediately if this is not the flrst pass (&$P ASS) because ID information is
collected only on the fITst pass.

2. The type of id being processed is indicated in the &@tg sYlnbol. Its value may be "n" for
footnote, "h" for heading, "d" for list item, "i" for index, and "r' for ftgure. This symbol is
needed in both uppercase and lowercase format so it is initially set in lowercase by the calling
macro and then folded to uppercase here in &@TG.

3. The id name itself is in the & * symbol. Its length is checked to make sure it is not over 7
characters long and it is put into a local symbol, & *id. If the length of the id name is more
than 7 characters, it is truncated to 7 characters and a message is issued.

4. The existence of the id is tested by checking the symbol &@TG.I@&*id which for a head­
ing id of "intra" would resolve like this:

&@TG. l@&~'\id
&@TG. l@intro
&Hl@intro

This syn1bol will exist only if the id has already been dcfmed by an ID attribute on a heading
tag. A message is issued if the id already exists (that is, it is a duplicate.) The macro ends
and this defmition of the id is ignored.

5. If cross referencing was requested (&SYSVARX is "yes") or we are going to produce a
SYSV AR "\V" fIle, the next thing to do is create the appropriate cross reference array entries
for these. If we are not cross referencing or creating the ID fue, we have fewer things we
need to remember about the ids.

a. The cross reference arrays are named &@xref@&@tg where &@tg resolves to d,f,h,i or
n depending all the type of id being processed. An entry is made in the appropriate
array. It contains a call to the appropriate macro (DSM#XRFD, DSM#XRFF,
DSI\1#XRFH, DSM#XRFI or DSiVl#XRFN) \vith the id value as a parameter. This
will cause the id information to appear in the cross reference listing.

For example, for a heading ID with a value of "intra" the following line is put into the
&@xref@h array:

150 DCF: Gl\'IL Starter Set Implementation Guide

.se @xref@&@tg. () '.dsm#xrf&@tg. &*id

.se @xref@&@tg. () '.dsm#xrf&@tg. intra

.se @xref@&@tg.() '.dsm#xrfh intra

.se @xref@h() '.dsm#xrfh intra

b. The id file arrays are named &@writ@&@tg where &@tg resolves to d,f,h,i or f de­
pending on the type of id. An entry is made in the appropriate array. It contains a call
to the appropriate macro (DSM#\VRTD, DSlYl#\VRTF, DSM#\VRTH, DSMHWRTI
or DSM#WRTN) with the id value as a parameter. This will cause the id information
to be written out to the SYSV AR "\V" fIle at the end of the formatting run.

Note: The id information for the index entries is written out to the &@writ@i array.
However, these are never processed because index id information is not saved in the
SYSV AR "W" flie. This is done because it is easier to write out the information than to
not write it out, given the way the DSM@IDS macro processes the ids.

c. The next step is to defme sonle special symbols whose names are dependent on the id
name (& *id) and the type of id (&@TG).

1) The &@TG.F@&*id will become &HF@intro for a heading id named "intro." It
will contain the name of the flle in which the id was defIned. If this symbol already
exists it means that the id has been referenced before but has not been defined until
now. If this is the case, an incomplete entry was made in the &@xref@&@tg array
and it must now be replaced. Correcting it involves undefming the previous incom­
plete entry whose element number was saved at the tinle in &@TG.L@&*id. This
element is set to "off" because the correct element has just been defmed above. It is
necessary to save element 0 of the array before resetting the element to "off" and
then restoring it in order to prevent it from being incorrect afterwards.

2) Then the flie name (&$FNAM) is saved in the &TG.F@&*id symbol.

6. The page number is saved in a symbol whose naIne depends on the id type (&@TG) and the
id name (*id).

7. The next step is to save the text associated with the id. This is the text of the heading, the
fIgure number, the list item id, the footnote number, or the index term. The id naIne is part
of the symbol name to make it unique.

F or index id' s this is a little more complicated. The &@ilevel symbol contains either a "1,"
a "2" or a "3" depending on the level of the index entry for which an id is being processed.
We need to remember all of the terms (up to 3) associated with this id. For third level en­
tries, we set a symbol for the second and fIrst tenns and for the current term. For second
level entries, we set a syrnbol for the frrst level and for the current term. For fIrst level en­
tries, we set a symbol for the current term.

Processing C'''OSS Referellce Tags

DSMHDREF

The DSMHDREF APF processes references made to heading ids using the :HDREF tag. It
functions as follows:

1. Processes the REFID attribute using the DSM@RFID nlacro to get the id into the local
syrnbol & *id.

2. Processes the PAGE attribute using the DSM#YESN macro which will set the &*yesno
symbol to "no" or "yes" depending on the value of the PAGE attribute.

3. Truncates the id name to 7 characters if it is longer than that and issues a message.

Cross-References 151

4. Determines if the real id information, generated during this formatting run, is available or if
the information read in from a SYSVAR "R" id ftle will have to be used. The only differ­
ence between the symbols used is in whether or not the fITst letter of the symbol name is a
capital H. Capital H denotes real id infoflnation saved during this run for headings. Lower­
case h names are information set by a SYSVAR "R" me. The SYSVAR "R" ftle, if any,
was imbedded during initialization by the DSM#SETV macro.

We assume fITst that we'll use real information. Then we test if the &H I @& *id or
&h 1 @& *id symbols exist. If neither one exists, we skip to the "unknown" label because we
have no information available to use. If the "real" symbol, &H 1 @& *id, doesn't exist we
reset & *H to a lowercase "h" to use the id information set by the SYSVAR "R" fIle.

5. If the heading id exists:

a. Tum substitution off.

b. Save the value of the control word separator in a local synlbol and then tum the control
word separator off. This is done because we don't want SCRIPTjVS to get confused by
any semi-colons which happen to be in the heading text.

c. Save the page number (&) in the & *p local symbol.

d. Selects the proper level of quotation marks to use around the heading. The "proper"
level depends on the current level of quotation nesting. The quotation nesting level is in
&@nest@q and the quotation marks are in the &@oquote and &@cquote symbols.

e. Sets up the local symbol & *r to contain the page reference part of the cross reference
but only if the PAGE attribute value was "yes" or the heading being referenced is not
on the current page. The page number of the reference is in &HP@&*id and the cur­
rent page number has been put into & *p. These two symbols are compared to deter­
mine if the heading occurred on the current page.

The page reference is constructed of the &LL@onpge symbol (which is set to "on page"
in the DSM#SETS macro) and the page number.

f. Tum substitution back on.

g. Insert the heading reference into the text. The flrst symbol, & *0, contains the opening
quotation mark. The second sytubol, &H 1 @& *id, contains the text of the heading.
The third symbol, & *c, contains the closing quotation mark and the fourth symbol, & *r,
may be null or may contain the page reference.

h. Restores the control word separator.

1. Saves the page number in the &HX@& *id symbol array. This is done only on the flrst
pass and only if we are going to produce a cross reference listing (&SYSVARX is yes).
The &HX @& *id array contains the page numbers of all the references to the heading.
If the array already exists, it means there have been other references made to this same
heading.

6. If the heading id information does not exist (unknown):

a. Spelling veriftcation is turned off.

b. Inserts sonle standard text which includes the id value in place of the heading reference.
The &LL@H symbol is set to "Heading" in DSM#SETS. The &LL@unkn symbol is
set to "unknown" in DSI\1#SETS.

e. Tum spelling veriftcation back on.

d. If cross referencing (&SYSVARX is "yes") is in effect and this is the fITst pass (&$PASS
is 1):

152 DeF: GlVIL Starter Set Implementation Guide

I) The &HF@& >l<id symbol is tested to see if this id has been encountered yet. If it
has, &HF@& *id will contain the name of the fue in which it was defmed. If it
hasn't been defmed yet, &HF@& *id will not exist, in which case:

a) An entry is made in the cross reference array (&@xref@h) for the id. The
&@xref@h array will be used to produce the cross reference listing. Each line
of this array contains a call to the DSM#XRFH macro with the id as the pa­
rameter.

b) HL@&>I<id is set to the element number just used in the &@xref@h array.
This is done because eventually we'll encounter the id's defmition and weIll
want to be able to update the entry we made in the array. This updating will
be done in the DSl\1@IDS macro when the ID is processed and will use the
element number we saved here in the &HL@& >l<id symbol.

c) The &HF@&*id symbol is supposed to contain the name of the file where
the id was defined. For ID/s that haven't been defmed, we put a "?" in this
symbol so that something will print out in the cross reference listing.

2) The page number is saved in the &HX@&*id symbol array. The &HX@& *id ar­
ray contains the page numbers of all the references to the heading. If the array al­
ready exists, it rneans there have been other references made to this same heading.

DSMFGREF

The :FIGREF tag is processed by the DSMFGREF APF which inserts the appropriate reference
text. This tags works only for those figures which have an ID attribute and which have been
labelled with a figure number by the :FIGCAP tag. If the ID hasn't been defmed, the "Figure
Unknown" reference is used. If there was no :FIGCAP tag, the figure number in the reference
will be wrong because the id information will point to what the figure number would have been if
a figure number had been assigned to the figure.

The :FIGREF tag is processed in the following manner:

1. Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol & *id.

2. Processes the PAGE attribute using the DSM#YESN macro which will set the & *yesno
symbol to "no" or "yes" depending on the value of the PAGE attribute.

3. Truncates the id name to 7 characters if it is longer than that and issues a message.

4. Determines is the real id infonnation, generated during tllls formatting lun, is available or if
the information read in from the SYSVAR "R" id file will have to be used. The only differ­
ence between the symbols used is whether or not the first letter of the symbol name is a
capital F. Capital F denotes real id information saved during this run. Lowercase f nalnes
represent information set by a SYSVAR "R" fIle.

\Ve assume fITst that we III use the real information. Then we test if the &F 1 @& *id or
&fl @& *id symbols exist. If neither one exists, we skip to the "unknown" label because we
have no information available to use. If the "real" symbol, &F I @& *id, doesn't exist we
reset & *F to a lowercase f to use the id information set by the SYSVAR "R" file.

5. Tests if the figure id exists. If so:

a. Saves the page number in a local sYlnbol, & *p.

b. Sets the local symbol & *r to contain the page reference part of the cross reference but
only if the PAGE attribute value was "yes" or the figure being referenced is not on the
current page. The page number of the figure being referenced is in &FP@& *id and the
current page number has been put into & *p. These two symbols are compared to deter­
mine if the figure occurred on the current page.

The page reference is constructed of the &LL@onpge symbol, which is set to "on page"
in the DSM#SETS macro, and the page number.

Cross-References 153

c. Inserts the figure reference into the text. The reference is constructed of the word "Fig­
ure" (&LL@F), a required blank, the figure number (&&*F.1@&*id) and a possible
page reference (&*r).

d. Saves the page number in the &FX@&*id symbol array. This is done only on the fust
pass and only if we are going to produce a cross reference listing (&SYSVARX is "yes").
The &FX@& *id array contains the page numbers of all the references to the figure. If
the array already exists, it means there have been other references made to tllls same
figure.

6. If the figure id information does not exist (unknown):

a. Spelling verification is turned off.

b. Inserts some standard text which includes the id value in place of the figure reference.
The &LL@F symbol is set to "Figure" in DSj\tl#SETS. The &LL@unkn symbol is set
to "unknown" is DSM#SETS.

c. Spelling verification is turned back on.

d. If cross referencing (&SYSVARX) is in effect and tills is the fust pass (&$PASS is 1):

1) The &FF@&*id symbol is tested to see if this id has been encountered yet. If it
has, &FF@&*id will contain the name of the file in which it was defmed. If it
hasn't been defmed yet, &FF@&*id will not exist, in which case:

a) An entry is made in the cross reference array (&@xref@f) for the id. The
&@xref@f array will be used to produce the cross reference listing. Each line
of this array contains a call to the DSM#XRFF macro with an id as a parame­
ter.

b) &FL@&*id is set to the element number just used in the &@xref@f array.
Tllls is done because eventually we'll encounter the id's definition and we'll
want to be able to update the entry we made in the array. This updating will
be done in the DSlYl@IDS macro when the ID is defmed and will use the ele­
ment number we saved here in the &FL@& *id symbol.

c) The &FF@&*id symbol is supposed to contain the name of the fue where the
id was defined. For IDs that haven't been defmed, we put a "?" in this symbol
so that something will print out in the cross reference listing.

d) The page nUlllber is save~ in the &FX@&*id syrnbol array. The &FX@&*id
array contains the page numbers of all the references to the figure. If the array
already exists, it means there have been other references made to this same fig­
ure.

DSMLIREF

The DSIvILIREF APF process the :LIREF tag. The list item reference consists of the list item
identifier that is on the item. This means list item references are meaningful only for ordered list
items where the identifier is unique.

DS MLIREF performs the following functions:

1. Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol &*id.

2. Processes the PAGE attribute using the DSj\tl#YESN macro which will set the & *yesno
symbol to "no" or "yes" depending on the value of the PAGE attribute.

3. Checks the length of the id name and truncates it to 7 characters if it is longer. A message is
issued if the value is too long.

4. Detennine if the real id information generated during this formatting run is available for use,
or if the information read in from a SYSVAR "R" id fue will have to be used. The only
difference between the symbols used is in whether or not the fust letter of the symbol name

154 DCF: GML Starter Set Implementation Guide

is a capital D. Capital D denotes real id information saved during this run and lowercase d
names are information set by a SYSVAR "R" ftle.

We assume ftrst that we1l use real information. Then we test if the &D 1 @& *id or
&d 1 @& *id symbols exist. If neither one exists, we skip to the "unknown" label because we
have no information available to use. If the "real" symbol, &D 1@&*id, doesn't exist we
reset & *D to a lowercase d to use the id information set by the SYSVAR "R" ftie.

5. If the list item id exists DSi\1LIREF:

a. Turns substitution off.

b. Saves the control word separator in a local symbol and then turns the control word sep­
arator off.

c. Saves the page number in a local symbol, & "'p.

d. Sets up the local symbol & *r to contain the page reference part of the cross reference
but only if the PAGE attribute value was "yes" or the list item being referenced is not
on the current page. The page Ilurnber of the reference is in &DP@& *id and the cur­
rent page nunlber has been put into & *p. These two symbols are compared to deter­
mine if the list item occurred on the current page.

The page reference is constructed of the &LL@onpge symbol (which is set to "OIl page"
in the DSM#SETS macro) and the page nunlber.

e. Turns substitution back on.

f. Inserts the list item reference into the text. The reference is constructed of the list item
identifier (&DI@&*id) and a possible page reference (&*r).

g. Restores the control word separator.

h. Saves the page number in the &DX@&*id symbol array. This is done only on the ftrst
pass and only if we are going to produce a cross reference listing (&SYSVARX is "yes").
The &DX@&*id array contains the page numbers of all the references to the list item.
If the array already exists, it means there have been other references made to this same
list item.

6. If the list item id information does not exist (unknown) DSlVILIREF:

a. Spelling verification is turned off.

b. Inserts some standard text (which includes the id value) in place of the figure reference.
The &LL@LI symbol is set to "LI" in DSM#SETS.

c. Turns spelling verification back on.

d. If cross referencing (&SYSVARX is "yes") is in effect and this is the ftrst pass (&$PASS
is I) DSMLIREF:

1) Tests the &DF@&*id symbol to determine if this id has been encountered yet. Ifit
has, &DF@&*id will contain the name of the ftle in which it was defmed. If it
hasn't been deftned yet, &DF@&*id will not exist, in which case:

a) Adds an entry to the cross reference array (&@xref@d) for the id. The
&@xref@d array will be used to produce the cross reference listing. Each line
of this array contains a call to the DSl\l#XRFD macro with an id as a parame­
ter.

b) Sets &DL@&*id to the element number just used in the &@xref@d array.
This is done because eventually we'll encounter the id's defuution and we'll
want to be able to update the entry we made in the array. This updating will
be done in the DSM@IDS macro when the ID is processed and will use the
element number we saved here in the &DL@&*id sytnbol.

Cross-References 155

c) Sets &DF&*id. The &DF@&*id symbol is supposed to contain the name of
the file where the id was defmed. For ID's that haven't been defmed, we put a
"?" in this symbol so that something will print out in the cross reference listing.

d) Saves the page number in the &DX@&*id symbol array. The &DX@&*id
array contains the page numbers of all the references to the list item. If the
array already exists, it means there have been other references made to this
same list item.

DSMFNREF

The :FNREF tag is processed by the DSMFNREF APF. Processing footnote references is sim­
pler than processing other kinds of references. The reference itself is just the footnote number.

:FNREF is processed as follows:

1. Processes the REFID attribute using the DSM@RFID macro to get the id into the local
symbol & *id.

2. If the length of the id is longer than 7 characters, truncates it and issues a message.

3. Checks the existence of the id (&N 1& *id). If it already exists, it means that the footnote
which defmes the id has already been encountered. In that case we call DSM#SUPR with
the footnote number (&Nl@&*id) to produce the superscript footnote call-out.

4. Puts out a footnote call-out of "00" if the footnote number (&Nl@&*id) doesn't exist and
the id number from the SYSVAR "R" id file (&nl@&*id) doesn't exist. This is done by
calling the DSM#SUPR Inacro with "00" as the parameter.

5. If the SYSVAR "R" id value exists, calls DSl\1#SUPR with its value instead of &Nl&*id.

6. Collects the cross reference listing information only on the fIrst pass and only if &SYSV ARX
is "yes." If the id information exists (&N 1 @& *id) we save the page number in the
&NX@&*id symbol. This array will contain an entry for each time the footnote was refer­
enced.

7. If the id information doesn't exist, meaning that the footnote being referenced hasn't been
encountered yet, saves more cross reference information. This is because we need to be able
to correct the cross reference listing entries when the footnote is encountered.

If the flie name isn't known (&NF@& *id) then we make an entry in the &@xref@n array.
The entry is a call to the DSM#XRFN macro with the id as a parameter. The &@xref@n
array is used to actually create the cross reference listing. The array element number is saved
in &NL@&*id so that we can replace it with the correct information when we know where
the footnote is actually defIned.

The file name is supposed to be in &NF@& *id. This symbol is set to a question mark since
we don't know where the footnote is yet. The page number is then saved in the
&NX@&*id array.

DSlVI@RFID

DSwl@RFID processes the REFID attributes of the :HDREF, :LIREF, :FIGREF, and
:FNREF tags.

All this macro does is to put the attribute value passed in & * into the caller's local symbol named
& *id by stacking a line on the .lVIE [Macro Exit} control word line. This technique, of setting the
caller's local symbol, is described in detail in "Special Techniques" on page 13.

156 DCF: GML Starter Set Implementation Guide

DSM#YESN

DSM#YESN processes various attributes which have yes/no values; specifically the PAGE attri­
bute of the :HDREF, :FIGREF, and :LIREF tags.

The DSM#YESN macro performs the following processing:

1. Searches the attribute value for yes or no. This technique is described in detail in "Special
Techniques" on page 13.

2. Returns an answer of either "yes" or "no" in the caller's local symbol, &*yesno. This tech­
nique is explained in "Special Techniques" on page 13.

3. Sets & *yesno to "yes" if the attribute value was something other than "yes" or"no."

Cross Reference Listing Macros

DSM#XLST

The DSl'vl#XLST macro produces the cross reference listing. This macro is called only if
&SYSVARX is "yes" on the last pass. It may be called either from the epifile or from the
:EGDOC tag APF. The listing is produced as follows:

1. The first thing this nlacro does is redefme its first line to exit unmediately. This is done to
prevent the cross referencing listing from being produced by both the :EGDOC tag and the
epiftle. This technique is discussed in "Special Techniques" on page 13.

2. Any open lists, figures, quotations, and so on are ended by calling the DSM#RSET macro.

3. The DSM#DUPL macro is called to get to the next/odd page.

4. Running headings and footings are suppressed because we don't particularly want them on
the cross reference listing pages.

5. The control word separator is reset to its default value (;).

6. The column layout is redefmed to be a sUlgle column starting at the left hand margin.

7. Column length (&$CL) is reset to its default.

8. Formatting is set to "left" because we don't want lines to be horizontally justified in the list­
ing.

9. The body font (hiO) is restarted just to make sure that's what font we are in.

10. Spelling verification is turned off because there's no need to check spelling here and it would
be inefficient.

11. Each of the five sections of the listing is formatted as follows:

a. If the array which contains the listing information doesn't exist there is nothing to do
and we go on to the next section. The arrays are &@xref@d, &@xref@f, &@xref@h,
&@xref@i and &@xref@n.

b. The array separator is set to the control word separator. This is done by settulg the
separator to be the three characters necessary to create a symbol name. The &@ sym­
bol is then defmed to be a semi-colon.

c. The arrays are then called. Each line of the array contains a call to another macro with
an id as a parameter. The macros called are named DSM#XRFD, DSM#XRFF,
DSM#XRFH, DSM#XRFI and DSM#XRFN.

Cross-References 157

12. Tlus macro also produces the imbed trace if there is something in the &@imtrace symbol.

a. Resets indention and offset to O.

b. Skips 4 lines.

c. Performs a page eject if there isn/t 3 inches left on the page.

d. Begins highlight font 2 (1ll2).

e. Formats the heading which consists of a box from left to right with the words "Imbed
Trace" centered inside it. The words are contained in the &LL@ImTrc symbol wIllch is
defmed in the DSM#SETS macro during initialization.

f. Spaces 2 lines.

g. Restores the previous font.

h. Turns off formatt~g and the overdraw option is changed to EXTEND.

1. Defines a tab at 12 ems.

J. Defines the array separator to cause a break. This is done by setting the array separator
to be the characters necessary to create a symbol name and then setting the symbol
(&@) to be a .BR [Break] control word.

k. The &@imtrace array is then called. TIlls array was defmed by the DSlVlIM macro with
information regarding each imbed being an clement in the array.

DSM#SETX

The DSl\1#SETX macro is used to create the cross reference listing header only. Tlus macro is
called once each by DSl\1#XRFD, DSM#XRFF, DSM#XRFH, DSM#XRFI, and
DSlVl#XRFN. Its purpose is to generate the heading for the section, wlllch it docs in the follow­
ing way:

1. Skips 4 lines.

2. Resets left and right indention to the zero.

3. Turns a keep on for 2 inches.

4. Sets the offset for the second and subsequent lines of the listing for each id to 32m. This
value is modified for the index cross reference listing because the format for these is slightly
different.

5. Establishes the tab positions for all devices in em-spaces.

6. Redefines the array separator to be a comma and a blank. The page numbers on willch each
id has been referenced have been saved in an array. "Vhen they are printed out, they will be
separated by a comma and a blank.

7. Begin lllghlight font 2.

8. Starts a box for the full length of the line.

9. Centers the section heading. The pararneter passed into tills macro will be an D, F, H, I or
N wluch when combined with &LL@. will produce a symbol wlllch resolves to "Heading,"
"List ltem/' "Figure," "Footnote" or "Index," respectively. These symbols are defined in
the DSwl#SETS macro.

10. Ends the box.

11. Spaces 2 lines.

158 DCF: Gl\'IL Starter Set Implementation Guide

12. Prints the column headings using predefined literal symbols which are defmed in the
DSM#SETS macro during initialization. &LL@File is set to "File." &LL@Page is set to
"Page" &LL@& '" 1 aoain will resolve to "Heading" "Figure" and so on dependino on the • 'b , " b

parameter passed in. &LL@Refs is set to "References."

13. Restores the previous font.

14. Spaces 1 line.

DSM#XRFF

The DSM#XRFF macro formats the cross reference entry for a figure "id." The cross reference
listing is produced by the DSM#XLST macro which issues the &@xref@f array. This array con~
tains a call to the DSM#XRFF macro for each figure id that has been defmed or used.

DSM#XRFF performs the following processing:

1. If the id being formatted was referred to but never defined, &F 1 @& *id and &FP@& *id will
not exist and "?" will be printed instead of the text and the page number.

2. If it doesn't exist the page number array &FX@& *id is set to null.

3. The fITst tinle through, it calls DSM#SETX to create the listing header. This technique of
perfonning some processing only the fITst time is explained in detail in "Special Techniques"
on page 13.

4. The cross reference entry is printed with an offset for potential wrap~around of page numbers
onto a second line. Tabs are used to move from column to column. The tabs were defined
in the DSM#XLST macro. The file name is in &FF@&*id. The text is in &Fl@&*id and
the page numbers are in &FX@& *id.

DSM#XRFH

The DSrvl#XRFH macro forrnats the cross reference entry for a heading "id." The cross reference
listing is produced by the DSM#XLST macro which issues the &@xrcf@h array. This array
contains a call to the DSrvl#XRFH nlacro for each heading id that has been defined or used.

DSM#XRFH performs the following processing:

1. If the id being formatted was referred to but never defined, &Hl@&*id and &HP@&*id wiH
not exist and "?" will be printed instead of the text and the page number.

2. The fITst time through, it calls DSM#SETX to create the listing header. This technique of
performing some processing only the fITst titne is explained in detail in "Special Techniques"
on page 13.

3. The cross reference entry is printed with an offset for potential wrap-around of page numbers
onto a second line. Tabs are used to move from column to column. The tabs were defmed
in the DSM#XLST macro. The flie name is in &HF@&*id and the page the heading was
fonnatted on is in &HP@& *id. The text of the heading is itl &H 1 @& *id.

4. The &HX@& *id symbol contains the pagcs on which the heading was references. If
&HX@&*id contains any entries, they are printed out.

DSM#XRFN

The DSM#XRFN macro formats the cross reference entry for a footnote "id." The cross refer­
ence listing is produced by the DSM#XLST macro which issues the &@xref@n array. This ar­
ray contains a call to the DSM#XRFN macro for each footnote id that has been defmed or used.

Cross-References 159

DSlVl#XRFN perfonns the following processing:

1. If the id being formatted was referred to but never defined, &N 1 @& *id and &NP@&*id will
not exist and "?" "vill be printed instead of the text and the page number.

2. The page nutnber array (&NX @& *id) is set to null if it doesn't exist.

3. The frrst time through, it calls DSM#SETX to create the listing header. This technique of
performing some processing only the frrst time is explained in detail in "Special Techniques"
on page 13.

4. The cross reference entry is printed with an offset for potential wrap-around of page numbers
onto a second line. Tabs are used to move froIn column to column. The tabs were defmed
in the DSrvl#XLST macro. The flie name is in &NF@&*id. The text is in &Nl@&*id and
the page nutnbers are in &NX@&*id.

DSM#XRFD

The DSI\1#XRFD macro fonnats the cross reference entry for a list item "id." The cross reference
listing is produced by the DSlVl#XLST macro which issues the &@xref@d array. Tllls array
contains a call to the DSM#XRFD macro for each index id that has been defined or used.

DSl\l#XRFD performs the following processing:

1. If the id being formatted was referred to but never defined, &DI@&*id and &DP@&*id will
not exist and "?" will be printed instead of the text and the page number.

2. The page number array &DX@&*id is set to null if it doesn't exist.

3. The frrst time through it calls DSM#SETX to create the listing header. This technique of
performing some processing only the frrst time is explained in detail in "Special Techniques"
on page 13.

4. The cross reference entry is printed with an offset for potential wrap-around of page num­
bers. Tabs are used to move from colulnn to column. The tabs were defmed in the
DSlVl#XLST macro.

The file name is in &D F@& *id. The text is in &D 1 @& *id and the page numbers are in
&DX@&*id.

DSM#XRFI

The DSj\;lHXRFI macro formats the cross reference entry for an index "id." The cross reference
listing is produced by the DSj\;l#XLST Inacro which issues the &@xref@i array which contains a
call to the DSM#XRFI macro for each index id that has been defmed or used.

DSj\;lHXRFI performs the following processing:

1. The first tinle through it calls DSrvl#SETX to create the listing header. This technique of
perfomling some processing only the frrst time is explained in detail in "Special Techniques"
on page 13.

2. If the id being formatted was referenced but never defmed, &11 @& *id and &IP@& *id will
not exist and "?" will be printed instead of the text and the page number.

3. The cross reference entry is printed with an offset for potential wrap-around of page num­
bers. The offset, &@xref@of is set in DSJ\;l#SETX. In the case of index id's the offset is
reduced a little because there's so Inuch more infornlation to be listed.

Tabs are used to move from column to column. The tabs were defined in the DSj\;l#XLST
macro. The me name is in &IF@&*id. For each index id there may one, two or three
levels of infonnation to be listed depending on the level at which the id was defmed. The

160 nCF: Gl\fL Starter Sct Implementation Guide

existence of the information is tested before it is formatted. The text is in &11 @& *id,
&I2@&*id, &I3@& *id and the page numbers are in &iX@&*id.

PrOtilicing the SYSV AR I W'lli File

The id information which will be written out to the SYSV AR "\V" flie is collected by the
DSM@IDS macro when it processes the ID attributes. The reference text and the page nurhber
are both saved. The lines written out are actually .SE [Set Symbol}· control word lines which
defme symbols to contain the text and page number. \Vhcn this flie is read in as a SYSVAR "R"
file, the symbols are set and may be used to resolve forward cross references.

DSM#WRIT

The SYSVAR "'N" file of id information is produced by the DSM#WRIT macro. This macro.is
called either by the epifue or by the APF which processes the :EGDOC tag, DSlVIEGDOC. The
file is created with the following processing:

1. The first thing this macro does is redefine its first line to exit immediately. This is done to
prevent the cross referencing listing from being produced by both the :EG DOC tag and the
epifile. This technique is discussed in "Special Techniques" on page 13.

2. The .DD [Define Data File-id] control word to defme the DSMUT\VTF fue is different for
the CMS and the TSO environments. SYSVAR "W" flies can only be created in these two
environments. The flie name is in &SYSVAR\V.

The n1acro ends immediately if the operating system is not CMS or TSO because SYSVAR
'WI and SYSVAR IR' are valid only in these two envirorunents.

3. The DSI\lUT\VTF file is erased to make sure it is empty to start with.

4. The next step is to write some label information out to the me to record what the date. is,
what me was being formatted35 , and what parameters were specified on the SCRIPT com­
mand. The label lines are all comment lines starting with ". * ."

The frrst line written contains "SCRIPT/VS," the release number (&$DCF), "DEVICE"
(&LL@device), and the logical device used (&$LDEV). The subsequent lines of the label
contain the parameters which Were on the command line. These are contained in the
&$PARlVl symbol. Since &$PARM may be very long it is broken down into 64 character
segments for \vriting out.

S. Four sets of arrays have been used to contain the information to be written out. These are
the &@writ@d, &@writ@f, &@writ@h and &@writ@n arrays. Each line of the array
contains a call to a macro with an id as the parameter. The macros are DSM#\VRTD,
DSlYl#\VRTF, DSM#WRTH and DSM#\VRTN macro.

The array separator is redefmed to be the characters necessary to construct a syrnbol natl1e.
The &@ symbol is set to a selnicolon which is the control word separator.

Each array is then "issued" to produce a section of the SYSVAR "\V" flie.

The array separator is reset to its default value.

35 The file name is extracted from &$PARM using the SUllSTR function of the .SE [Set Symbol] control
word. The trailing blanks are stripped from it by setting the symbol &@fnam to itself.

Cross-References 161

DSM#WRTH

The DSM#\VRTH macro writes out entries to the SYSVAR "W" fIle. Each line written out is a
.SE [Set Symbol] control word. The parameter passed to this macro is a heading id.

Two lines are written out for each id-the first line will set the &h I @& *id sYlnbol to the text of
the heading and the second line will set &hP@& *id to the page number of the heading.

DSM#WRTF

The DSM#\VR TF macro writes out entries to the SYSV AR "\V" fIle. Each line written out is a
.SE [Set Symbol} control word. The parameter passed to this macro is a figure id.

Two lines are written out for each id-the first line will set the &£1 @& "'id symbol to the figure
number and the second line will set &fP@&>I<id to the page number of the figure.

DSM#WRTN

The DSM#WRTN macro writes out entries to the SYSVAR "'tV" file. Each line written out is a
.sE [Set Symbol] control word. The parameter passed to this macro is a footnote id.

The line written out for each id will set the &n1 @&*id symbol to the footnote number. In the
case of footnote there is no need to save the page number as it is not used in references to the
footnote- only the number is.

DSl\1#WRTD

The DSl'vl#\VRTD macro writes out entries to the SYSV AR "'tV" fIle. Each line written out is a
.SE [Set SYlnbol] control word. The parameter passed to this macro is a list item id.

Two lines are written out for each id. The first line will set the &d1 @& *id symbol to the list
itelll identifier. The second line will set &dP@&*id to the page number that the list item is on.

Modifications to Cross References

Default to Not Print the Cross Reference.

The default for the starter set is to print the cross reference listing and the imbed trace unless
specifically suppressed with &SYSVARX on the command. To change this default to not print
the cross reference listing, you will have to change the way SYSVAR "X" is processed in the
DSl'vl#SETV macro. SYSVAR "X" is processed as follows:

.se *a = index '-YES-NO' '-&U'&SYSVARX.'

. if &,,'--a eq 0 . se *a = 1

. se SYSVARX = substr 'yes no' &--'--a 3

The middle line is the one that establishes the default. If SYSV AR "X" wasn't specified on the
command or was specified as something other than "yes" or "no," then the default is "yes" be­
cause we set & *a to 1 which will cause the last line to pick up the "yes" from the substring sub­
ject. To change the default, change the second line shown here to set *a to 5 instead of 1.

162 DCF: Gl\tfL Starter Set Implementation Guide

Miscellaneous

General Service Macros
There are general service macros within the starter set that do not relate to a single functional
area. These macros provide various functions required by several other macros. They lnay also
be used by any user-written APFs or macros.

DSM#CNTX

Certain tags within the starter set are not valid unless particular text stnlctures arc going. For
example, the :FIGCAP and :FIGDESC tags are not valid unless a figure is open-meaning that a
:FIG tag has been encountered but the :EFIG tag has not been encountered yet. In cases such as
this we do not want to honor the tag.

One way to handle this would be to simply cancel the tag-to-APF mapping with another .AA
[Associate APF] control word. However, tilis would cause SCRIPT/VS to search for an APF
with the SaIne nan1e as the tag. If it cannot find one, an error message is issued indicating that
the APF for the tag cannot be found aIld the tag is treated as text.

The solution we chose to use in the starter set was to map these "invalid" tags to a special n1acro
named DSlYl#CNTX. This way you will get a more meaningful message and the tag will not
appear as text.

The DSlVl#CNTX macro calls the DSM#I'vfSG macro to issue a message. It passes two parame­
ters to DSM#lVlSG-the message number "2" and the &$TAG symbol wllich contains the GlVIL
tag wIDch caused the DSM#CNTX macro to be processed.

One of two error messages is issued. The most common message is that the tag found is "out of
context," such as an :ALINE tag found outside of an ADDRESS structure. The message macro
(DSl\tl#MSG) has logic built in to recognize the tags that the starter set maps to the
DSlVl#CNTX macro. If any other tags are mapped to DSI'vl#CNTX and not recognized by the
DSM#lVlSG macro, a different message is issued that simply shows the tag and says it is unas­
signed.

lYlisceIlaneous 16.:'-

DSlVl#DUPL

The DSl\1#DUPL macro is called from several macros to advance to the top of an "odd" page
without starting the page when duplexing or to the top of the next page when not duplexing. It is
called by

DS1VIABSTR
DSMAPPD
DSl\1BACKM
DSMBODY
DSMFLIST
DSMFRONT
DSMHEADO
DSMHEADI
DSMINDEX
DSMPREF
DSMTOC

to get to a new page.

The DSM#DUPL macro perfonns the following processing:

1. If &$PN is zero, it means that the frrst page of the document has not been started yet and if
so, the macro ends immediately.

2. Any floats that are pending, such as top or bottom figures, are dumped out before starting a
new page.

3. The next two lines of the macro undefme themselves the frrst time they are performed. This
is a technique used to do something only once. -See "Special Techniques" on page 13 for
details on how it works. In this case, the frrst of the two lines sets a local symbol (& *a) to
the macro line number of the second line down from it. It points to the line that reads

. if SYSPAGE eq OnD .pa

The next line tests to see if duple xing is in effect (&SYSVARD = yes). If it isn't, the macro
line pointed to by & *a is deleted from the macro.

This permanently removes the line from the macro. The next time the macro is executed,
the line after

. fl dump

will be

.pa nostart

because the two lines that start with the .DIY! [Define Macro] control word and the line that
starts with the .IF [If] control word are all removed from the macro.

If duplexing is in effect, the .IF [If] control word line remains in the macro.

4. If duplexing is in effect and SYSPAGE is "odd," a page eject is performed to get to an even
page. Remember, we're trying to get to the beginning of an odd page. If we're on an even
page, all we need to do is the one page eject at the end of the macro, but if we are on an odd
page, we must first get to an even page. Then when we do the fmal page eject, we'll be at
the beginning of an odd page.

S. A page eject with the NOST ART parameter is executed to end the current page without
starting a new page.

164 DCF: GIVtL Starter Set Implementation Guide

DSM#MSG

All starter set error messages are issued by the DSM#MSG macro. This macro expects various
parameters to be passed to it. The first parameter, which is required, is the message number. If
no message number is given, n1essage 0 will be issued which states that there was an unassigned
error message. It also shows the tag (&$TAG) that prompted the message.

This macro contains the text of the messages. The variable portiones) are passed in as parame­
ters. The specific parameters passed depend on which message is to be issued. For example,
message 3 expects 2 parameters-the type of list being ended ,md the name of the tag that is end­
ing it. Message 14 expects only one parameter-the index entry level number.

The DSM#MSG macro processes messages as follows:

1. Branches to the appropriate section based on the message number, which is always the first
parameter (& * 1.)

2. Constructs the message in a local symbol, & *a.

3. Takes another branch to the last section of the macro which will issue the message.

4. Puts the page number into a local symbol and the message number is padded with leading
zeroes so that message 1 prints as message "001, " which looks better.

5. Issues the message using the .1\.:1G [Message] control word. &X'OO is used as a delimiter and
"DSMGML" is prefixed to the luessage number to make it confonn to the SCRIPTjVS for­
mat. A "w" is appended to the lues sage nurnber to indicate that it is just a warning mes­
sage. The page number is included after the text of the message.

DSM#RSET

The DSl\1#RSET macro is called from many other macros to ensure that there is not an open
list, footnote, quotation, title page, figure, or example. It is used primarily by document section
macros and heading macros to get a "fresh start."

The DSM#RSET macro is called with a single parameter which consists of the variable portion
of a constant literal symbol. For example, the DSMPREF macro calls DSlVl#RSET with a
parameter of "Pref." The DSlYITOC macro calls DSM#RSET with a parameter of "ToC." There
is a symbol named "LL@Pref" which has a value of "Preface." There is also a symbol named
"LL@ToC" which has a value of "Table of Contents." The parameter passed is the second part
of the symbol name, and the "LL@" portion is constant.

The DSM#RSET macro does not use these parameters or synlbol names directly. However, if it
becomes necessary to issue an error message during the resetting process, the parameter is passed
to the DSM#1\.:1SG macro to enable it to construct the appropriate symbol name for the contents
of the message.

If none of the elements listed above are currently "open" or "on," the macro simply perfonns a
breal< (.BR [Break]) and ends. If one of these elements is open, we'll have to find out what it is
and end it.

The DSlYl#RSET macro performs the following processing:

1. DSM#RSET causes a break.

2. The nesting level variables for quotations and lists are &@nest@q and &@nest@l. These
variables arc incremented each time a list or quotation is begun and arc decremented when
each is closed. If there is a quotation or list that hasn't been ended yet, the appropriate
variable will be greater than one.

The &@state variable is used to indicate that a figure, footnote, example, or title page is cur­
rently open.

:Misccllaneous 165

These three variables are checked for indications of a structure that needs to be closed or
ended before continuing. If &@nest@q, &@nest@l, and &@state are 0, 0, and open, re­
spectively, we are done with the macro.

3. Once we establish that something is open, we have to fmd out what it is and close it. First
the &@nest@q symbol is checked. If it is greater than zero, we issue message 3 and call the
DSMEQUOT macro to close the quotation. This will decrement the &@nest@q symbol,
but there may have been more than one level of quotation going, so we loop back and check
it again. This process will continue until the &@nest@q symbol equals zero, indicating all
quotations have been closed.

4. If the list nesting level (&@nest@l) is greater than 0, message 3 is issued and the
DSNIELIST macro is called. \Ve'll keep looping through this until all levels of lists have
been ended (&@nest@l equals zero).

5. If &@state is not equal to "open," it means that a figure, example, title page, or footnote has
not been ended. Message 3 is issued and the appropriate ending macro is called depending
on the specific value of &@state. These include the DSMEXMP, DSMEFIG,
DSlYIEFTNT, and DSMETTLP macros.

The value of &@state will have been set specifically by whatever structure is open. For ex­
ample, the macro that begins figures (DSMFIG) sets &@state to "F." Because all these
structures are mutually exclusive, only one can be open at a time. Therefore, we do not need
to loop back and re-check &@state.

DSlVIPSC

The :PSC tag is processed by the DSI\1PSC APF. :PSC is used for conditional processing. It
al\vays uses section number 9 on the .CS [Conditional Section] control word.

1. Turns off the conditional section (9) in case an :EPSC tag was omitted. If we don't do this,
we may get a SCRIPT /VS message when we attempt to start section 9 because it may al­
ready be started. To avoid this, the section is ended first.

2. Includes conditional section (9). This is the default if there is no PROC attribute on the
:PSC tag.

3. Calls DSM@PROC to process the PROC attribute. There are also two pseudonyms for
"PROC" which are recognized. These are "PROCESS" and "P." If none of these attribute
names are specified, section 9 stays included and is processed. If there is a PROC attribute
and it doesn't match the specified process names, the section will be ignored. (See the de­
scription of the DSIVl@PROC macro below.)

4. Starts conditional section 9. The ON parameter on the .CS [Conditional Section] control
word is used to begin the definition of what is in the conditional section. The INCLUDE
and IGNORE parameters control whether or not what is in the section will be formatted.

DSM@PROC

The DSIVl@PROC macro processes the PROC attribute of the :PSC tag as follows:

1. Because a list of process names may be passed to this macro, a loop is used to compare each
parameter against a list. The list used in the compare includes the logical device name
(&$LDEV), the physical device name (&$PDEV), and the value of &SYSVARP which may
have been given on the SCRIPT command.

2. When a parameter matches up (&*@ is greater than 0), the macro ends.

3. If no match is found, a .CS [Conditional Section] IGNORE control word is issued to ignore
conditional section number 9. The DSIVIPSC macro, which calls DSIYl@PROC, set section

166 DCF: GML Starter Set Implementation Guide

4. If the list nesting level (&@nest@l) is greater than 0, message 3 is issued and the
DSMELIST macro is called. \Ve'll keep looping through this until all levels of lists have
been ended (&@nest@l equals zero).

5. If &@state is not equal to "open," it Incans that a figure, example, title page, or footnote has
not been ellded. l\1essage 3 is issued and the appropriate ending macro is called depending
on the specific value of &@state. These include the DSrvlEXl\tlP, DSMEFIG,
DSl'vlEFTNT, and DSMETTLP macros.

The value of &@state will have been set specifically by whatever structure is open. For ex­
ample, the macro that begins figures (DSMFIG) sets &@state to "F." Because all these
structures are mutually exclusive, only one can be open at a time. Therefore, we do not need
to loop back and re-check &@state.

DSMPSC

The :PSC tag is processed by the DSMPSC APF. :PSC is used for conditional processing. It
always uses section number 9 on the .CS [Conditional Section] control word.

1. Turns off the conditional section (9) in case an :EPSC tag was OInitted. If we don't do this,
we may get a SCRIPT /VS message when we attempt to start section 9 because it may al­
ready be started. To avoid this, the section is ended first.

2. Includes conditional section (9). This is the default if there is no PROC attribute on the
:PSC tag.

3. Calls DSM@PROC to process the PROC attribute. There are also two pseudonyms for
"PROC" which are recognized. These are "PROCESS" and "P." If none of these attribute
names are specified, section 9 stays included and is processed. If there is a PROC attribute
and it doesn't match the specified process names, the section will be ignored. (See the de­
scription of the DSM@PROC macro below.)

4. Starts conditional section 9. The ON parameter on the .CS [Conditional Section] control
word is used to begin the definition of what is in the conditional section. The INCLUDE
and IGNORE parameters control whether or not what is in the section will be formatted.

DSM@PROC

The DSM@PROC macro processes the PROC attribute of the :PSC tag as follows:

1. Because a list of process names may be passed to this macro, a loop is used to compare each
parameter against a list. The list used in the compare includes the logical device name
(&$LDEV), the physical device name (&$PDEV), and the value of &SYSVARP which may
have been given on the SCRIPT command.

2. When a parameter matches up (& *@ is greater than 0), the macro ends.

3. If no match is found, a .CS [Conditional Section] IGNORE control word is issued to ignore
conditional section number 9. The DSMPSCmacro, which calls DSM@PROC, set section
9 up to be included. We need to override tlus if a PROC attribute value is present but not
valid.

DSMIM

The DSMIM macro is used to process the .1M [Imbed] control word to imbed a me. It produces
a message stating that the file is being imbedded and saves the file name for the imbed trace that
is printed with the cross reference listing.

Miscellaneous 167

The .1M [Imbed] control word is "mapped" to DSIVlIM by the DSI\1#SET macro during initial­
ization. This is done by defining a macro named "1M" that calls the DSIVlIM macro and passes
all the control word parameters along as macro parameters .

. dm im /.dsmim &*

Since .I~1 [Imbed] is a control word and not a GML tag, it can not be ovenidden except by a
macro which has the same naIne as the control word. All of the permanent macros included in
the starter set rnacro library must start with "DSM," which means that we have had to dynam­
ically defme a macro with the same name as the control word (IlY!). This 1M macro simply
passes the control word parameters along to the DSMIM macro for processing. This additional
level of indirection is necessary to maintain the naming scheme for the macro library.

The me name is the first parameter passed to this macro. The DSl\lIM macro performs the im­
bed in the following way:

1. The me name is compared to the names of the utility files. If a match is found, the file is
imbedded and the macro ends. Utility files are not included in the imbed trace or in the
messages, so there is nothing else to be done.

2. The &@nest@i symbol indicates the level of nesting of imbedded files. The symbol is incre­
mented each time a file is imbedded. It will be decremented later as described below.

3. Then we define a local symbol (& *a) to be three times the level of imbed nesting. This will
be used to redefme & *a to be a string of dashes. Because & *a is used as the length parame­
ter in the substring function, the nunlber of dashes will be the nesting level times 3. There­
fore, the names of files imbedded from other files will appear indented.

(Pass 1)
(Pass 1)
(Pass 1)

Page
Page
Page

10: Imbedding file ---> First
10: Imbedding file ------> Second
10: Imbedding file ---------> Third

4. The page number is put into a local symbol and padded with blanks so that it will always be
five spaces wide. This will be used in the imbed tnessage.

5. If the system symbol &$T\VO is 1, it indicates that we will be doing more than one pass.
This means we need to include the pass number in the message. The & *pass symbol is de­
fmed to contain the following infonnation enclosed in parentheses:

• The character string "Pass" which is in the &LL@Pass symbol
• The pass number, which is in the &$P ASS symbol.

\Vhen only one formatting pass is been processed, the pass nUlnber is not necessary. \Ve
don't need to define the & *pass synlbol because local symbols that haven't been defmed have
a null value in a macro.

6. A message is issued that includes the following pieces of information.

• The word "Pass" and the pass number (&LL@Pass &$PASS)
8 The word "Page" (&LL@Page) and the page number (&*page)
• Acolon (:)
• The word "imbedding" (&LL@ Imbdg)
• Some dashes (*a)
• An arrow end (>)
• The full file name (&*) in uppercase letters.

168 DCF: GML Starter Set Implementation Guide

7. If this isn't the last pass (indicated by &@lastpass not equal to "yes"), then we don't need to
bother with saving the information for the irnbed trace. This will be done on the last pass.
In this case, we skip over this code and go directly to imbedding the file. (See number 9.
below.)

8. If this is the last pass:

a. A local symbol (&*a) is defined to be two times the level of imbed nesting. Then it is
set up to be a string of blanks that is twice as long as the the nesting level.

b. An entry is made into the &@imtrace array. This array contains the imbed trace infor­
mation that will be printed along with the cross reference at the end of the document.
The entry includes:

• The word "Page" (&LL@Page)
• The page number (& *p)
• A tab character (&$TAB)
• Some blanks (& *a)
• The file name (& *) in uppercase letters.

9. The file requested is then imbedded. The imbed nesting counter &@nest@i is then decre­
mented to show that the imbed was cornpleted.

DSMEPSC

The :EPSC tag is processed by the DSMEPSC APF which ends the conditional section that was
started by the :PSC tag. The section number, is 9.

Modifications to General Service Macros.
Because the macros described in this chapter are used throughout the starter set to provide general
services to APFs, any modifications to thetn should be approached with caution. Some simple
modifications to incorporate local tags and structures can safely be done and are described below.

Adding Ne,v Messages

In adding your own tags and APFs to the starter set, you may find it necessary to generate warn­
ing messages for your users. These should be put in DSl'vl#?v1SG to take advantage of the fact
that all messages are collected there. To add a new message, pick a number not already used and
add whatever lines are needed to generate the text of the message in the & *a local symbol. For
example, you could add the following DSM#lYlSG call to your APF:

.dsm#msg 15 Part number

You would also need to add the following lines to DSM#lV1SG to actually issue the message:

· .. msg15
· se ')'-"a t &')'''2 &,;'''3 is invalid - truncated to 8 characters t
· go mg

Miscellaneous 169

Elinlinating the Inlbed Trace

Although most users fmd the imbed trace useful, you might want to disable it. If so, reIllove the
line in the DSM#SET macro that defines the 1M macro that gets control instead of the .IIVI
[Imbed] control word .

. dm im /. dsmim &"k

This disables both the trace at the end of the document and the messages that appear on the
screen as the files are imbedded.

To disable only the trace, add a .lYlE [Macro Exit] control word to the DSM#XLST nlacro after
the " ... imtr" label.

... imtr
• me

See the discussion of producing the imbed trace in "Cross-References" on page 147 for more de­
tails on this process.

170 DCF: G]\IL Starter Sct Implementation Guide

Appendix A. Modifying the Macros
SCRIPT /VS and the starter set operate in several different operating system environments. If you
want to modify a macro or create a new macro, what you need to do depends on what environ­
ment you are operating in. The four sections that follow provide quick instructions on how to
modify the maclib in the four environments-CMS, TSO, DLF and ATMS.36

These instructions are not meant to be all inclusive. It is assumed that you have already mastered
the basic skills of working on the system you use. All that is provided here is some special infor­
mation you may need to work with the macros. You should consult the system documentation
for additional infonnation and assistance. >,

Modifying the DSMGML3 MACLIB (eMS)
In the CMS environment the starter set macros are kept in a file named DSMGML3 MACLIB.
In order to modify it you must have write-access to the disk that it is stored on or you must copy
it to your own disk. The maclib cannot be modified directly by most editors.

In order to modify a macro you will need to:

1. Extract the member from the maclib

2. Edit it

3. Replace it in the maclib.

Note: Several of the macros in the starter set contain the pound sign (#) character or the at-sign
(@) character. These are the default line-end and character-delete characters in CMS. \Vhen you
attempt to work on these macros you will need to change these terminal settings to use other
characters. For example, the following command changes the line-end character to a semicolon
(;) and the character-delete character to a (0/0):

term linend ; chardel %

Extracting a l\1clnber froln a Maclib

There are several different ways to extract a member from a maclib. One way is:

1. Defme two files one of which is the member of the maclib that you want extracted. The
other is the name of the file where you want it put.

filedef inmove disk dsmgm13 maclib a (member dsmlistm
filedef outmove disk dsmlistm copy a

36 The G~lL starter set is a fully supported part of the Document Composition Facility program product
provided that neither the profile nor the macro library have been modified in any way. This means that
you should be careful to not alter the base version of these files. Make your own copies or user libraries
instead.

Appendix A. l\,lodifying the Macros 171

The last name on the ftrst line is the name of the macro you are interested in. The file
named on the second line should have the same filename as the macro and should have a
ft1etypeof 'COPY'. "inmove" and "outmove" are the default file identifters for the
MOVEFILE command37 •

2. Next, request that the 'inmove' file be moved to the 'outmove' me.

movefile

This will create a file named 'DSlVILISTM COpy' on your A-disk.

Make sure that before executing this step that you don't already have a fIle with the same
name as the 'outmove' file37

3. Then, using the editor of your choice, edit the new file

xed it dsmlistm copy

4. Copy files usually have special characteristics in CMS which you will have to work around.
The editor default is usually to put sequence numbers on the right-hand side of the lines. We
can't let it do that, so before we do anything we need to inhibit the numbers. To prevent
sequence numbers in XEDIT, use the following cormuand:

serial off

In other editors, the command may be different.

Also the default case for copy files is usually uppercase. The GML starter set macros are
written in mixed case. To avoid getting the fue changed to uppercase, use the following com­
mand:

case mixed

Editing the Macro

Now edit the file to make the changes you want to make and file it away.

Creating Your Own MacIib

The ftrst time you create a new macro or modify one of the ones in the statter set, you will need
to create a new macro library of your own. Be careful not to modify the starter set library in any
way.

You can generate your own library with the following command which generates a new maclib
named "USER" and puts the macro named "DSl'v1LISTlY1" into it:

rnaclib gen user dsmlistrn

The name of the CMS command is "MACLIB" and "GEN" is a parameter on the command.

37 See the CMS Command documentation for more information about the FILEDEF and MOVEFILE
command.

172 DCF: Gi\IL Starter Set Implementation Guide

Using Your Own Maclib

The LIB option of the SCRIPT command controls which libraries SCRIPT jVS will search for
macros and in what order. By specifying both the name of your own nlaclib and the starter set
maclib (DSMGML3) with the LIB option you can get SCRIPT jVS to use your macros ahead of
the starter set macros.

scriptvs mydoc (prof(dsmprof3) lib(user dsmgm13)

See Document Composition Facility: SCRIPTj VS Language Reference for additional explanation
of the LIB option.

Rel)lacing the Macro in the Maclib

For subsequent modifications to macros or new macros you will need to use the MACLIB com­
mand again with a different parameter. The "ADD" parameter will add a new macro to your
library:

maclib add user dsmbody

The "REP" parameter will replace a macro that already exists in the libraty with a new copy of it.

maclib rep user dsmbody

Creating aNew Macro

To create a new macro, all you need to do is create a fue whose fuetype is "COPY." Again, make
sure that it doesn't have sequence numbers in it. To add a new macro to the macro library use
the following command:

maclib add user mymac

where "mymac" is the filename of the new macro and "user" is the name of the macro library.

Compressing the Maclib

Each time you replace a member in the maclib there will be some unused space left in the fue
where the macro used to be. This Ineans that the size of maclib will keep increasing each time
you replace a macro. There is a simple way to compress the maclib and eliminate all the extra
space in it.

mac lib comp user

That's all you have to do.

Modifyillg SCRIPT.R30.MACLIB (TSO)

The GML starter set is stored in a pat.titioned data set (PDS) in TSO. Each macro is a separate
member of the PDS and as such can be created and edited in the same way that all PDS members
are edited using the editor of your choice. The starter set library is named

Appendix A. Modifying the J\tlacros 173

"SCRIPT.R30.MACLIB" and can be used as a source for lllacros which you wish to modify and
then save in your own library. 38

New and modified macros should be placed in a separate macro library, not replaced or added to
the starter set macro library. The name of the new library should be different from the name for
the starter set library.

If you choose to modify the starter set library directly, Inake sure that you have saved a complete
starter set library elsewhere first. Any problems you report must be reproducible on an unmodi­
fied starter set library. It is generally a better idea to create a separate user library and format
using that library and the starter set library. How to do this is explained below.

Using Your Own Maclib

The LIB option of the SCRIPT command can be used to provide the name of a library for
SCRIPT/VS to search for macros and symbols before searching the SCRIPT.R30.MACLIB.

scriptvs mydoc (prof(dsmprof3) lib('user.script.maclib')

In the cOinmand shown above, SCRIPT /VS will automatically concatenate
SCRIPT.R30.MACLIB to the library that was specified with LIB.

See Document Composition Facility: SCRIPT/VS Language Reference for additional explanation
of the LIB option.

Creating a New Macro

To create a new macro, all you need to do is create a new member in your user maclib.

Modifying DSMGllfL3 Macros (DLF)
The GIYIL starter set macros and profile are stored as documents in public library number
1314151 in the DLF environment.39 To modify one of these documents:

1. EXPORT it from 1314151 into a partitioned data set in TSO

2. Edit it using your favorite editor (such as ISPF)

3. File it

4. IMPORT it back into DLF.

You can either import the flie back into 1314151, if you are authorized to do so, or you can
import it into your own user library or your project library. In order to maintain support of the
macro library, it is better to create your own project or user library than to modify the 1314151
library.

To create a new macro, all you need to do is import a new docunlent into your user library.

You don't need to do anything else to format using your new macros. SCRIPT/VS will auto­
matically search your private library, your project library and the 1314151 library (in that order)
when it is searching for macros and symbols that are in a library. See also Document Library
Facility Guide for information about using the SCRIPT command in DLF.

38 This is the default library name which may have been changed by your installation.

39 This is the default library which may have been changed by your installation.

174 DCF: GML Starter Set Implementation Guide

Modifying DSMGML3 Macros (A TMS)
In ATMS-III the GML macros and profile are stored in the pennanent storage of the SYSOP
operator. The preflX. for the documents is "DSM30" for the Document Composition Facility
Release 3 APFs and profile. The default SYSOP operator number is 5.

To modify one of the GML nlacros:

1. Obtain a copy of the macro from SYSOP's permanent storage:

gc;DSM30DSMLISTM:5

Note: You can also create your own new macros and store them in your own permanent
storage.

2. Edit the macro and, using a prefix other than DSI\130, store it in your own permanent stor­
age.

3. Build and connect an index for the prefix you use.

4. If you are going to use the GML starter set and your own macros at the same time, you will
also need to build and connect that library.

When the two libraries are connected, SCRIPT/VS will be able to search both for the macros it
needs. The order in which you build and connect the libraries is iInportant. SCRIPT /VS will
search the indexes in the order you built them. So, if you are usmg your library (containing
copies of some of the starter set macros), build and connect your library fITst, then build and
connect the DSl'v130 library.

If the indexes are built in the wrong order, use the LIB option of the SCRIPT command to spec­
ify the search order.

LIB(opnum [... opnum")

See the A TMS-III documentation for more details on how to do all this.

Appendix A. l\:lodifying the l\rlacros 175

Appendix B. Migration from Release 2 to Release 3
The purpose of this section is to describe the modifications made to the Release 2 starter set for
Release 3 of the Document Composition Facility. Here we provide some guidelines for updating
APFs and macros that you wrote for Release 2. If you do not plan to use a 4250 printer, 113M
3820 Page Printer, or a 3800 Printing Subsystem IVlodel 3 in all-points addressability lllode, you
probably won't have to change your GlVIL.

All of the macros in the starter set lllacro library have been modified for Release 3 of Document
Composition Facility. In some cases the change is nothing more than changing the name of the
macro to begin with the letters "DSM." In other cases substantial revisions were made to the
logic and function of the macros. Some macros have been deleted for Release 3 with their func­
tions absorbed by other lllacros or the profile. If you modified some of the Release 2 macros,
you need to carefully review each modification and compare the Release 2 macro to the Release 3
macro. Changes you made might work without tllodification in Release 3 or they might need to
be modified.

\Ve had a number of reasons for changing the macros:

• To formally support the starter set, the naming convention for the macros was standardized
to incl~de the three character prefix indicating DCF

• To make it easier for you to tailor the starter set, many functions (particularly definitional
things) were moved into the profile

• To support page printers, some processing functions were modified.

This last category of changes requires additional explanation and should be used as a guide to
reviewing your own GML. The functional areas where we made changes include:

•
•

Providing font support for page printers (4250 printer, 3800 Printing Subsystem Model 3, and
IBM 3820 Page Printer)

Working in device units rather than unqualified space units

Using system symbols.

Font Support for Page Printers

Since a greater variety of fonts can be used with page printers we changed the starter set to take
advantage of the font capabilities of each machine. TIllS meant reviewing each text element in the
starter set and selecting a suitable font for it. For exanlple, each piece of information placed on
the title page was considered separately; many were given special font defmitions. These defi­
nitions were placed in DSIVIPROF3 to make it easy to oveni.de them. For exatnple,

.df title type (24 bold) up

.df author type(12

.df address type(lO)

.df date type(ll italic)

.df docnum type(lO italic)

.df titlesec type(lO italic bold)

Appendix B. 1\'1 igration from Release 2 to Release 3 177

When the title page is formatted, the .BF [Begin Font] control word is used to change fonts for
the page printers without disturbing the font that is used for line devices. For example:

. bf docnum =
starts a font named "docnum" that is defined for the page printers only. For all other devices, the
current font will be started again.

Using Device Units

In several instances in the starter set it was also necessary to adjust the space unit specifications.
Whenever space units were given in unqualified horizontal or vertical space unit notations such
as,

.sp 4

or

. in 6

each one needed to be carefully reviewed. For line devices, unqualified horizontal space units are
interpreted as ordinary word spaces which are the same width as all of the characters. However,
space unit notations of this type cause problems on page printers because unqualified space units
are interpreted as figure spaces in the default font (roughly the width of the character zero). These
spaces cannot be equated to a number of characters since each character in a font for page print­
ers has its own width. A figure space is far smaller than most of the characters in the font.
Therefore, if you set a delayed indent of 6 characters to indent the second line to after the sixth
character on the first line (just fme for a line device), it would not work out right on a page
printer.

In the starter set, some of the indention values were adjusted to provide the correct result for page
printers. In some cases the width of the indention had to be carefully measured. This was the
case in the DSMFCAP macro which in Release 2 used to set an indent of 10. The 10 was equiv­
alent to the width of "Figure 1. ." In Release 3 we had to measure this width exactly in device
units to set the indention. You can see the lines that perform the measurement and set the in­
dention in the DSMFCAP macro. These lines are explained in "Examples and Figures" on page
115.

Another example of where unqualified space notation had to be changed is in the DSM#SETX
macro. It sets up the tab rack for the cross reference listing. In Release 2 tabs were set like this:

. tb 9 19 27 32

In Release 3, these tab positions were too small for page printers. Since precision here was not
important as long as the lines all fit on the page, the tabs were changes to

.tb 9m 19m 27m 32m

to provide more space when formatting for page printers.

Using SystenlSymbols

Another type of problenl arises from using certain system symbols which can be set very pre­
cisely, but return rounded values.

The easiest way to explain the rounding problem is to look at what happens in Release 2 and
compare it to the Release 3 result. The Release 2 LIST macro (equivalent to the DSlVILISTlV1
macro in Release 3) sets this symbol value:

178 DCF: GJ\;fL Starter Set Implementation Guide

.se @in@l = &$IN

If the indention is "4", the &@in@l symbol is set to 4. However, suppose the indention was
".3i." In Release 2, the resulting value of &@in@l depends on what device you are formatting
for:

• For a terminal, a 1403, or a 3800 with 10-pitch fonts the answer is 3.

• For a 3800 with a l2-pitch font the answer is 4.

In either case, no rounding is done.

In Release 3, the problem is expressed in terms of what the result is for page printers. One-third
of an inch should result in 200 device units for a 4250 printer and 80 for a 3800 Printing Subsys­
tem Model 3 and IBM 3820 Page Printer. However, the value of system symbols is given in
figure spaces for page printers. And, since a figure space in a 10-point normal font is 42 device
units, the value of &$IN will be rounded to "7" which is ofT by 6 device units from the original
specification.

The way to avoid this rounding is to request the value of the system symbol in device units using
the &DH' or &DV' symbol attributes:

.se @in@l = &dh'&$IN.dh

The value for line printers will be the same as before and the value for the 4250 printer will have
been properly set at 200 device units. For the 3800 Printing Subsystem Model 3 and IBlVl 3820
Page Printer, the value will be 80.

Appendix B. Migration from Release 2 to Release 3 179

Appendix C. Starter Set Macro Library Listing

MACRO NAME PAGE MACRO NAME PAGE MACRO NAME PAGE

DSM#CNTX 182 DSMADDR 198 DSMI-IEAD2 211
DSM#DUPL 182 DSMALINE 198 DSMHEAD3 211
DSM#LINT 182 DSMAPPD 198 DSMHEAD4 211
DSM#LTYP 183 DSMAUTHR 198 DSMHEAD5 212
DSM#MSG 184 DSMBACKM 199 DSMHEAD6 212
DSM#RSET 185 DSMBODY 199 DSMHPO 212
DSM#SET 185 DSMCIT 199 DSMHP1 212
DSM#SETS 186 DSMDATE 199 DSMHP2 212
DSM#SETV 187 DSMDCNUM 199 DSMHP3 212
DSM#SETX 187 DSMDDEF 200 DSMIDMl\1Y 212
DSM#STYL 188 DSMDDHD 200 DSMIEH 213
DSM#SUPR 189 DSMDLIST 200 DSMIHD1 213
DSM#TIPG 190 DSMDTERM 201 DSMIHD2 213
DSM#WRIT 191 DSMDTHD 201 DSMIHD3 214
DSM#WRTD 191 DSMEADDR 201 DsrvllM 214
DSM/lWRTF 191 DSMECIT 201 DSMINDEX 214
DSM#WRTH 191 DSMEFIG 202 DSMINDXl 215
DSM#\VRTN 191 DSMEFTNT 202 DSMINDX2 215
DSMitXLST 192 DSMEGDOC 202 DSMINDX3 215
DSM#XRFD 193 DSMEHP 202 DSMIREF 216
DSM#XRFF 193 DSMELIST 203 DSMLIREF 217

DSM#XRFH 193 DSMELQU 204 DSMLISTM 218

DSM#XRFI 193 DSMEPSC 204 DSMLITEM 219

DSM#XRFN 194 DSMEQUOT 204 DSMLPART 219
DsrvILQUOT 219 DSMtfYESN 194 DSMETTLP 204 DSMNOTE 219 DSM@FRME 194 DSMEXMP 205 DSMOLIST 219 DSM@IDS 195 DSMFCAP 205 DSMPARA 220

DSM@IPRT 195 DSMFDESC 206 DSMPARA1 220
DSM@MAC@ 195 DSMFGREF 206 DSMPARA2 220
DSM@PGRF 195 DSMFIG 207 DSMPARA5 220
DSM@PLCE 196 DSMFLIST 207 DSMPCONT 220
DSM@PROC 196 DSMFNREF 208 DSMPREF 220
DSM@RFID 196 DSrvlFRONT 208 DSMPROF3 221
DSM@RIDI 196 DSMFTNT 209 DSMPSC 227
DSM@SEC 196 DSMGDEF 209 DSIVIQUOTE 227
DSM@SEE 196 DSMGDOC 209 DSMSLIST 228
DSM@SEEI 197 DSMGLIST 209 DSMTITLE 228
DSM@SHD 197 DSMGTERM 209 DSrvlTOC 228
DSM@STTL 197 DSMHDREF 210 DsrvITfLEP 228
DSM@\VIDT 197 DSMHEADO 210 DSMULIST 228
DSMABSTR 197 DSMHEAD1 211 DSMXMP 229

The following IBM copyrighted program code may be reproduced and distributed by the cus­
tomer to other IBI'vl customers who are licensed to use the Document -Composition Facility pro­
gram.

Appendix C. Starter Set Macro Library Listing 181

DSM#CNTX

.* DSM#CNTX: Tag out of context are mapped here to give a message. *

.**

.dsm#msg 2 &$TAG

DSM#DUPL

.* DSM#DUPL: Advance to before an odd page (duplex) or next page. *

.* If no page started, exit, otherwise dump pending floats. *

.**

.if &$PN eq 0 .me

.fl dump

.* DUPLEX - EJECT TO EVEN PAGE. NOT DUPLEX - REMOVE THE EJECT LINE *

.dm dsm#dupl(&$LNUM.) off &$CW .. se *a = &$LNUM + 20

.dm dsm#dupl(&$LNUM.) off &$CW .. if &SYSVARD eq no .dm dsm#dupl(&*a.) off

.if SYSPAGE eq ODD .pa

.pa nos tart

DSM#LINT

.* DSM#LINT: No parnts. Internal service macro to define nesting *

.* control symbols for ordered and unordered list. *

.* &~denest~u and &~renest~u are ring counters for unordered lists. *

.* &~denest~o and &~renest~o are ring counters for ordered list *

.**

.se ~denest~u = substr &L·&~ulistnest.12345678 1 &L"&~ulistnest

.se ~renest~u = substr &~enest~u.&L·&~ulistnest.l 3 &L'&~ulistnest

.se ~denest~o = substr &L·&~olistnest.12345678 1 &L'&~olistnest

.se ~renest~o = substr &~denest~o.&L·&~olistnest.l 3 &L'&~olistnest

182 DCF: GlVIL Starter Set Implementation Guide

DSM#LTYP

.* DSM#LTYP: Parm = ALPHA, BULLET, NUMBERED,ORDEREO,ROMAN, SIMPLE, *

.* UNORDERED. Used by DSMLISTM macro to indicate the type of list to *

.* be formatted. &~ltype is set to "5", "0", IIU", or "111 to indicate *

.* the type of list. &~id~l is set to a string which will generate *

.* the "ids" for subsequent list items. This macro is self-modifying. *

.**

.dsm#lint

.* SET &~ltype TO THE TYPE OF LIST THAT SHOULD BE CREATED *

.se *a = substr &*1 1 1

.se *b = index I *OSUG" &U"&*a

.if &*h eq 0 .se *b = 1

.se ~ltype = substr "zdosug" &*b 1

.go list&~ltype

.* FOR DEFINITION LISTS AND SIMPLE LISTS, THE "id" 10 NULL *

... listg

..• listd

... lists

.se ~id~l = I I

.me

.* &@nest~u INDICATES THE NESTING LEVEL, AND ~renest~u CONTAINS A *

.* RING COUNTER USED TO DETERMINE THE NESTING LEVEL OF THE NEXT UL *

... listu

.if &E"&@nest~u eq 0 .se ~nest~u = &L"&~ulistnest

.se ~nest~ = substr &~renest~u &~nest~u 1

.se *a = substr &~ulistnest &~nest~u 1

.go listz

.* &~st~o INDICATES THE NESTING LEVEL, AND ~renest~o CONTAINS A *

.* RING COUNTER USED TO DETERMINE THE NESTING LEVEL OF THE NEXT OL *
•.. listo
.if &E"&~st~o eq 0 .sa ~nest~o = &L"&~olistnest
.se ~nest~ = substr &~renest~o &~nest~o 1
.se *a = substr &~olistnest &~nest~o 1
.* &*a IS A ONE-LETTER KEY INDICATING THE TYPE OF LIST ITEMID TO USE *
.* &~id~l IS SET TO A STRING THAT HILL GENERATE THE PROPER IDENTIFIER *
... listz
.se *a = "&~ltype.&*a .
. if &E"&~id~l~&*a eq 0 .dsm#msg 7 &*a
.se ~id~l ·&V"&~id~l~&*a .. •

Appendix C. Starter Set 1\1acro Library Listing 183

DSMI'MSG

.* DSM#MSG: Parm = message #, variables Issues error messages with *

.* the .MG control word. The 1st parm is the GML msg #, subsequent *

.* parms are variables to be substituted into the messages text. *

.**

.go msg&*l

... msg

.•. msgO

... msg1

.se *a 'Unassigned er'ror message ... tag is

. go 109

... msg2

.if &*2 eq AUTHOR

.or &*2 eq DATE

.or &*2 eq DOCNUM

.or &*2 eq TITLE .se *a 'Title Page

.if &*2 eq ALINE .se *a 'Address

.if &*2 eq DT

.or &*2 eq DO .se *a 'Defini hon List

.if &*2 eq

.or &*2 eq

.if &*2 eq

.or &*2 eq

.if &*2 eq

.or &*2 eq

.if &E'&*a

.sa *a '&*2

.go 109

... msg3

. if &*2 eq

.if &*2 eq

.if &*2 eq

.if &*2 eq

.if &*2 eq

.if &*2 eq

.if &E'&*a

.se *a

.go 109

... msg4

'&*a

GT
GD .se *a 'Glossary List
FIGCAP
FIGDESC .se *a 'Figure
LI
LP .se *a 'List
eq 0 .go msg1

tag found outside &*a

listd .se *a 'Definition List
1istg .se *a 'Glossary List
listo .se *a 'Ordered List
lists .se *a 'Simple List
1istu .se *a 'Unordered List
listz .se *a 'List
eq 0 .se *a '&LL@&*2
prematurely ended by &LL@&*3 tag

&$TAG

.se *a '&*2 tag found within &LL@&*3 and ignored

.go 109

... msg5

.se *a 'Extraneous &LL@&*2 Term '&*3.' ignored

.go 109

... ms96

.se *a '&LL@&*2 Term tag missing

.go 109

... msg7

.se *a 'Unrecognized List type: &*2

.go mg

..• msg8

.se *a '&LL@&*2 id '&*3.' truncated to seven characters

.go 109

•.. m5g9
.se *a 'Duplicate &LL@&*2 id '&*3.' ignored
.go 109
••• 105 9 11
.se *a '&LL@&*2 end-tag found outside &LL@&*2 and ignored
.go 109
... m5g14
.se *a 'Missing term for level &*2 index entr-y
.go 109

.*
•.. mg
.se *p = &

PAD THE MSG# WITH LEADING ZEROES & ISSUE MSG WITH PAGE # *

.se *b = substr '00&*1.' &L'&*l 3

. 'lOg &X'OO.DSMGML&*b.W&X'OO.&*a .. (Page &*p.)

J 84 DCF: G;\lL Starter Set Implementation Guide

DSM#RSET

.* DSM~RSET: Parm = message text. Used by heading and section tags to *

.* end open lists, quotes, figures or footnotes. Causes a break. *

.*--*

.br

.if &~nest~q.,&~nest~l.,&~state eq O,O,open .me

.* END ALL QUOTES BY ISSUING MSG & CALLING DSMEQUOT *

... loopl

.if &~st~q eq 0 .go loop2

.dsm#msg 3 QtePh 1&*.1

.dsmequot

.go loopl

.* END ALL LISTS BY ISSUING HSG & CALLING DSMELIST *

... loop2

.if &~nest~l(O) eq 0 .go state

.dsm#msg 3 list&~ltype 1&*.1

.dsmelist

.go loop2

.* CHECK ~state FOR "open" FIG, XMP, OR FN. ISSUE MSG & CLOSE IT *

... state

.if &~state eq open .me

.dsm#msg 3 &~state '&*.1

.if &~state eq Exmpl .dsmexmp

.if &~state eq F .dsmefig

.if &~state eq N .dsmeftnt

.if &~state eq TtlPg .dsmettlp

DSM#SET

. * DSM#SET: Initialization of important symbols . *

.**

.se ~lastpass = 1 - &E'&~lastpass * &$TWO * 3 + 1

.se ~lastpass = substr Iyesnol &~lastpass 3

.* DEFINE SOME COMMON SYMBOLS TO GET SPECIAL CHARACTERS. * .se rbl '&$RB

.* INITIALIZE VARIOUS COUNTERS &

.* &~nest~l - List nesting
STRINGS: &~sk~l = skip between litems*

.* &~nest~q - Quote nesting

.* &~fn# - Footnote number

.gs args 0 0 0

.gs vars ~nest~l ~nest~i ~nest~q

.se ~nest~o off

.se ~nest~u off

&~nest~i - Imbed nesting
&~fig# - Figure number
&~state - Fig/Fn/Xmp nesting

1 1 open &~sk~ls

~fig# ~fn# ~state ~sk~l

*
*
*

.* INIT CROSS REFERENCE ARRAYS, TAKE OVER .IM, INIT SYSVARW ARRAYS *

.if &SYSVARX ne yes .go skip2

.dm im /.dsmim &*/

.se ~xref~f() '.*1

.se ~xref~h() = 1.*1

.se ~xref~i() = '.*'

.se ~xref~n() = '.*1

.se ~xref~d() = 1.*1

... skip2

.if &E'&SYSVARH eq 0 .go skip3

.se ~rit~f() = 1.*1

.se ~rit~h() 1.*1

.se ~rit~i() = '.*1

.se ~rit~n() '.*'

.se ~rit~d() '.*1

.*IF INDEXING, DEFINE &~itl, &~it2, AND &~it3, TO CONTAIN THE IST,2nd *

.* & 3RD INDEX TERMS, SO .PI HILL GENERATE A MSG IF ONE IS OMITTED *

... skip3

.if &$INDX eq 1 .th .gs args

.th .gs vars ~itl ~it2 ~it3

.* DEFINE SYMBOLS TO USE IN RH/RF DEFINITIONS * .se ~stitle off

.gs args 1 I '&~sti tIe. 1

.9S vars ~sec ~stitle ~shead

.dm dsm#set off

Appendix C. Starter Set Macro Library Listing 185

DSM#SETS

.* DSM#SETS: Define symbols for general use in starter set. *

.**

.se ll@Abstr 'Abstract

.se LL@Appdx 'Appendix

.se LL@BkMtr 'Back Matter

.se LL@Body 'Body

.se LL@CrsRf 'Cross Reference

.se LL@Def 'Definition

.se LL@DocNm 'Document Number

. se LL@Exmpl 'Example

.se LL@F 'Figure

.sa LL@File 'File

.se LL@N 'Footnote

.se LL@Gloss

.se LL@H

.se LL@Imbdg

.se LL@ImTrc

.se LL@Index

.se LL@I

.se LL@List

.se LL@LI

'Glossary
'Heading
'Imbedding
'Imbed Trace
'Index
'Index
'list
'LI

.se LL@L 'List Item

.se LL@D 'List Item

.se LL@Lstll 'List of Illustrations

.se LL@Note 'Note

.se LL@of 'of

.se LL@onpge Ion page

.se LL@Page 'Page

.se LL@Part 'Part

.se LLQ)Pass

.se LLQ)Pref

.se LLQ)QtePh

.se LLQ)Refs

.se LL@SpChr

.se LLQ)Syntx

.se LLQ)ToC

'Pass
'Preface
'Quoted Phrase
'References
'Special Characters
'Syntax
'Table of Contents

.se LL@Table 'Table

.se LLQ)TtlPg 'Title Page

.se LL@Unkn 'unknown

.se LL@device 'DEVICE

.se LL@format 'Formatted with

.se LLQ)at 'at

.se LL@saved 'saved on

.* SET &date TO BE OF THE FORM "July 4th, 1776". *

.gs args January February March April May June July August

.gs args &* September October November December

.se *s 'stndrdthththththththththththththththththstndrdthththththththst

.se &SYSDAYOFM * 2 - 1 *a =

.se substr '&*s.' &*a 2 *a =

.se &SYSDAYOFM + 0 *b =

.se &SYSMONTH + 0 *c =
date .se '&*&*c &*b.&*a., 19&5YSYEAR

.* SET &time TO BE OF THE FORM "11:01 a.m.".

.if &SYSHOUR It 12 .se *m 'a.m .

. el .se *m = 'p.m .

. if &SYSHOUR Ie 12 .se *h = &SYSHOUR + 0

.el .se *h = &SYSHOUR - 12

.se time '&*h.:&SYSMINUTE &*m

.drn dsm#sets off

186 DCF: G!\rtL Starter Sct Implementation Guide

*

OSM#SETV

.* OSM#SETV: Process SYSVARs and set defaults.

.* See Starter Set Implementation Guide on 'Initialization'
*
*

.**

.se *a = index '-NO-YES-OUPLEX-SIMPLEX-' '-&U'&SYSVARO.'

.if &*a eq 0 .se *a = 1

.se SYSVARO = substr 'no yes yes no' &*a 3

.if &E'&SYSVARH eq 0 .se SYSVARH no

. se *a = index '-NO--YES-NUMBER-' '-&U' &SYSVARU. '

.if &*a ne 0 .se SYSVARH = substr 'no 1.0 1.0' &*a 3

.if &E'&SYSVARP eq 0 .se SYSVARP = "

.* *

.if &E'&SYSVARR ne 0 .an &$SYS eq CMS

.th .dd OSMUTREF &SYSVARR dsmrefs *

.if &E'&SYSVARR ne 0 .an &$SYS eq TSO

.th .dd OSMUTREF dsn &SYSVARR .. OSMREFS

.if &$SYS eq CMS .or &$SYS eq TSO .an &E'&SYSVARR ne 0 .im OSMUTREF

.* *

.if &E'&SYSVARS eq 0 .se SYSVARS = &SYSVARC

.se *a = index '-1---2---0FFSET-ONE-THO-' '-&U'&SYSVARS.'

.if &*a eq 0 .se *a = 1

.se SYSVARS = substr 'one two off one two' &*a 3

.se *a = index '-YES---NO----RIGHT-CENTER-LEFT-' '-&U'&SYSVART.'

.if &*a eq 0 .se *a = 1

.se SYSVART = substr 'right no right center left' &*a 6

.se *a = index '-YES-NO-' '-&U'&SYSVARX.'

.if &*a eq 0 .se *a = 1

.se SYSVARX = substr 'yes no' &*a 3

.dm dsm#setv off

OSM#SETX

OSM#SETX: Parms= Figure, Heading, List item or Footnote
Creates cross reference listing header for the type indicated *

*
.**
.sk 4
.in
.ir
.kp 2i
.se (i)xref(i)of = 32m
.tb 9m 19m
.dc asep
.*
.bf hi2
.bx 1 r

,
27m 32m
40

FORHAT A HEADING FOR THE CROSS-REFERENCE LISTING

.ce &LL(i)&*l 10's

.bx off

.sp 2

.us id&$TAB.&LL(i)File.&$TAB.&LL(i)Page.&$TAB.&LL(i)&*l &LL(i)Refs

.pf

.sp 1

*

Appendix C. Starter Set IVlacro Library Listing 187

DSM#STYL

.* DSM#STYL: Parameters = ONE, TWO, OFF, or (null) *

.* Establishes page layout style. If no parameter, uses SYSVARS. *

.**

.if &L'&*1 eq 0 .go &SYSVARS

.el .go &*1

.* 1 PAGE WIDTH COL. THE RC SPACE IS 2 IN BINDING. FNs ARE FULL PAGE *
••• one
.gs args " 0 0
.gs vars ~rc1 ~rc2 ~fn1 ~fn2
.cd 1 0
.cl
.rc adjust
.if &SYSVARD eq yes .dh 0 outside
.th .dh 1 outside
.go fnldr
.* 2 EQUAL SIZED COLS. GUTTER = 4, FNs ARE FULL PAGE
... two
.se *cl = &DH'&$ll - &DH'&@gutter / 2
.se *cd = &*c1 + &DH'&~gutter
.gs args " 0 0
.gs vars ~rcl ~rc2 ~fnl ~fn2
.cd 2 0 &*cd.dh
.cl &*cl.dh
.rc adjust
.if &SYSVARD eq yes .dh 0 outside
.th .dh 1 outside
.go fnldr

*

.* OFFSET: 1 COL FILLING 4/5s OF PAGE, HITH H2-4 OFFSET. FNs MATCH *

.* COLUMN, RC ARE IN GUTTER TO ALIGN WITH BINDING. *

... off

.dh 0 left

.dh 1 left

.dh 2 sect

.dh 3 sect

.dh 4 sect

.fv top

.se *cd = &DH'&$LL / 5

.se *cl = &DH'&$LL - &*cd

.se *rc = &*cd + &DH'2

.se *rc = &*rc.dh

.se *fn = &*cd

.gs args I.rc adjust I

.gs vars ~rcl

.cd 1 &*cd.dh

.cl &*cl.dh

.rc adjust &*rc

I.rc adjust &*rc. I &*fn.dh
~rc2 ~fn1

o
~fn2

.* DEFINE FN LEADER FOR THO COLUMN STYLE (OTHERS USE DEFAULT LEADER) *

... fnldr

.fn leader

.sp 1

.hr ~fnldr &~fn1 for &~fnldrlen

.fn off

188 DCF:'GI\1L Starter Sct Implementation Guide

DSM#SUPR

.* DSM#SUPR: Parameter = number(s) to be pl'ini:ed as superscr ipt *

.**

.go &Q)suprstyl

.* FOR 1403 & 3800 OUTPUT HE CAN USE PROPER SUPERSCRIPTS *

.•. nums

.tr 0 bO 1 bl 2 b2 3 b3 4 b4 5 b5 6 b6 7 b7 8 b8 9 b9

.ct &*

.tr fO fO f1 f1 f2 f2 f3 f3 f4 f4 f5 f5 f6 f6 f7 f7 f8 f8 f9 f9

.if &E"&Q)fnis ne 0 .is to &Q)fnis min 1

.me

.* FOR TERMINALS, THE BEST HE CAN DO IS PUT IT IN PARENTHESES *

... parens

.if &E"&Q)fnis eq 0 .ct (&*.)

.th .me

.Ii on
&*
.Ii off
.is to &Q)fnis min 1
.me
.* FOR PAGE PRINTERS, HE HAVE TO CHANGE FONTS AND SHIFT UP *
... shifts
.se *hgtl = &dv'lmv
.bf super =
.se *hgt2 = &dv"lmv
.se *shift = &*hgtl - &*hgt2
.if &*shift Ie 0 .th .pf
. th . ct (&*.)
.th .me
.if &E'&Q)fnis eq 0
.th .sb +&*shift.dv
.th .ct &* .
• th .sb -&*shift.dv
.th .pf
.th .me
. sb +&*shift.dv
.Ii on
&*
.Ii off
.sb -&*shift.dv
.pf
.is to &Q)fnis min 1

Appendix C. Starter Set 1\1acro Library Listing 189

DSM#TIPG

• * DSMtJ:TIPG: Creates a title page without rh or rf .
.**
.rh sup
.rf sup
.ep
.* SINGLE COLUMN - NO SPELLCK - NO HYPHENATION
.sa
.1s all 1. 0
.se
.sv off
.hy off
.de cw
.fo &SYSVART
.sp 2i

· 'se Q') = ';. br; ,
.de asep & Q') .

SET ARRAY SEPARATOR TO "BREAK"

. * PLACE TITLE IN HIGHLIGHT 2 and DOCUMENT NUMBER> IF ANY

.bf title hi2

.ls by &Q')itllo
&Q')title(*)
.1s by 1.0
.pf
.sk 2i
.bf docnum =
· 'if &L'&@doenum gt 0 &LLQ')DoeNm &@doenum
.pf
.sk 2
.*
.bf date =
&@doedate
.pf
.sk 1.5i
.*
.bf author =
&@author(*)
.pf
.sk
.bf address =
&@address(*)
.pf
.sk .5i
.*
.bf titlesec =
.Ii 1
&@see
.pf
.sk 3

PLACE DOCUMENT DATE

AUTHOR'S NAMES AND ADDRESSES

PLACE SECURITY CLASSIFICATION

.* RESTORE FORMATTING ENVIRONMENT & RH/RF. RECLAIM STORAGE *

.re

.rh res
· rf res
.dm dsm#tipg off

190 DCF: Gl\IL Starter Set Implementation Guide

DSM#WRIT

.* DSM#WRIT: Write ids out to file. Define & erase the file first. *

.**

.dm dsm#writ(&$lNUM) /.me

.if &$SYS eq CMS .dd dsmutwtf &SYSVARW DSMREFS

.if &$SYS eq TSO .dd dsmutwtf dsn &SYSVARW .. DSMREFS catalog

.if &$SYS ne CMS .an &$SYS ne TSO .me

.wf erase

.* LABEL THE FILE APPROPRIATELY

.'wf .* SCRIPT/VS &$DCF.: &ll~device. &$lDEV .

. 'wf .* &LL~Refs &LL~saved. &date. &LL~at. &time .

. su off

.s~ *parm = substr &$PARM 1 56

.su on

.'wf .* &LL~format.: &*parm

.if &L'&$PARM Ie 56 .go writout

.se *a = 54

... loop

.su off

.se *parm = substr &$PARM &*a 64

.su on
· 'wf .* &*parm
.se *a = &*a + 64
.if &L'&$PARM gt &*a .go loop
· .. wri tout
.wf .*
.* ARRAY Q)writQ)h CONTAINS 1 LINE FOR EACH HEADING "id"
.de asep & ~ .
· 'se ~ = ;
&Q)writ~h(*)

*

.* ARRAY Q)writQ)l CONTAINS 1 LINE FOR EACH FIGURE "id" *
&Q)writQ)f(*)
.* ARRAY Q)writQ)d CONTAINS 1 LINE FOR EACH LIST "id" *
&Q)writQ)d(*)
.* ARRAY Q)writ~n CONTAINS 1 LINE FOR EACH FOOTNOTE "id" *
&Q)writQ)n(*)
.de asep

DSM#WRTD

.* DSM#WRTD: Write list ids out to file. *

.**

.'wf .'se dlQ)&*l = &DIQ)&*l

.'wf .'se dpQ)&*l = &DPQ)&*l

DSM#WRTF

.* DSM#WRTF: Write figure ids out to file. *

.***~~***********************

.'wf .'se flQ)&*l = &FIQ)&*l

.'wf .'se fpQ)&*l = &FPQ)&*l

DSM#WRTH

.* DSM~WRTH : Write heading ids out to file. *

.**

.'wf .'se hlQ)&*l '&HIQ)&*l

.'wf .'se hpQ)&*l '&HPQ)&*l

DSM#WRTN

.* DSM#WRTN: Write footnote ids out to file. * .xxxxxxx***xxxxxxxxxx

.'wf .'se nlQ)&*l = &NIQ)&*l

Appendix C. Starter Set l\'1acro Library Listing 191

DSM#XLST

.* DSM#XLST: No Parms. Internal Service Routine to format cross *

.* reference listings. Called by DSMEGDOC or by epifile *

.**

.dm dsm#xlst(&$LNUM.) /.me

.* RESET OPEN LISTS, etc. ADVANCE TO NEXT/ODD PAGE *

.dsmtt:rset CrsRf

.dsm#dupl

.* CLEAR RH/RF, MULTI-COL DEFINITION & PAGINATION FOR CROSS REF *

.rh sup

.rf sup

.de cw

.ed 1 0

.cl

.fo left

.bf hiD

.sv off

.* MACRO <i>xref<i>h CONTAINS I LINE FOR EACH HEADING "id" *

.if &E'&<i>xref<i>h eq 0 .go fxref

.de asep & <i> .
· 'se <i) = ;
&<i)xref<i>h(*)
.* MACRO <i>xref<i>f CONTAINS 1 LINE FOR EACH FIGURE "id" *
..• fxref
.if &E'&<i>xref<i>f eq 0 .go nxref
.de asep & <i> .
· 'se <i> = ;
&@xref<i>f(*)
.* MACRO <i>xrefQ)n CONTAINS 1 LINE FOR EACH FOOTNOTE "id" *
... nxref
.if &E'&<i>xref<i>n eq 0 .go ixref
.dc asep & <i> .
· 'se <i) = ;
&<i>xref@n(*)
.* MACRO <i>xref<i>i CONTAINS 1 LINE FOR EACH INDEX "id" *
... ixref
.if &E'&<i>xref<i>i eq 0 .go lxref
.de asep & <i> .
· 'se @ = ;
&<i>xref@i(*)
.* MACRO <i>xref<i>d CONTAINS 1 LINE FOR EACH LIST "id"
•.. lxref
.if &E'&Q)xref<i>d eq 0 .go imtr
.de asep & <i> .
· 'se <i> = ;
&<i>xref@d(*)

*

.* IF &<i>imtrace EXISTS, FILES WERE IMBEDDED, SO A TRACE IS FORMATTED *

... imtr

.if &E'&<i>imtrace eq 0 .me

.In

.of

.sk 4

.cp 3i

.* FORMAT HEADING FOR IMBED TRACE

.bf hi2

.bx 1 r

.ce &LL<i>ImTrc

.bx off

.sp 2

.pf

.* FORMAT EACH ELEMENT IN IMBED TRACE ARRAY

.fo off extend

.tb 12m

.de asep & @ .
· 'se (i) = ';. br ; ,
&<i>imtrace(*)

192 DCF: GIVIL Starter Set Implementation Guide

*

DSM#XRFD

.* DSM#XRFD: Parm = List Item Id Formats cross reference for list *

.* item 'id's. Defaults set to '1" and blank. *

.**

.if &E"&Dl~&*l eq 0 .se Dl@&*l = 1

.if &E"&DP~&*l eq 0 .se DP@&*l = 1

.if &E"&DX~&*l eq 0 .se DX@&*l.(l) - II

. * FORMAT ENTRY *

.dm dsm#xrfd(&$LNUM.) off &$CH .. dsm#setx D

.of &~xref~of
&*l.&$TAB.&DF~&*l .. &$TAB.&DP~&*l .. &$TAB. "&Dl~&*l .. ":&$TAB.&DX~&*l.(*)

DSM#XRFF

.* DSM#XRFF: Parm = Figure "id" Formats cross reference listing *

.* entry for a figure "id". Set defaults of "1" and blank. *

.**

.if &E"&Fl~&*l eq 0 .se Fl~&*l = 1

.if &E"&FP~&*l eq 0 .se FP@&*l = 1

.if &E'&FX~&*l eq 0 .se FX~&*l.(l) - II

.* CREATE LISTING HEADER & ENTRIES *

.dm dsm#xrff(&$LNUM.) off &$CH .. dsm#setx F

.of &~xrefG>of
&*l.&$TAB.&FF~&*l .. &$TAB.&FPG>&*l .. &$TAB.&Fl~&*l .. :&$TAB.&FXG>&*l.(*)

DSM#XRFH

.* DSM#XRFH: Parm = Heading "id" Formats cross reference for *

.* heading "id"s. Se defaults to "1' and blank *

.**

.if &E'&Hl@&*l eq 0 .sa Hl~&*l = ?

.if &E"&HPG>&*l eq 0 .se HPG>&*l = ?

.* CREATE CROSS REFERENCE HEADER AND ENTRIES *

.dm dsm#xrfh(&$LNUM.) off &$CH .. dsm#setx H

.se *a = &dh"&G>xrefG>of - &dh'4

.of &*a.dh
&*l.&$TAB.&HFG>&*l .. &$TAB.&HPG>&*l .. &$TAB.&HIG>&*l
.of &~xrefG>of
.if &E'&HXG>&*l eq 1 &$TAB.&$TAB.&$TAB.&$TAB.&HXG>&*l.(*}

DSM#XRFI: Parms = Index entry "id"
index "idis. Defaults set to '1".

DSM#XRFI

Creates cross reference of *

*
.**
.dm dsm#xrfi{&$LNUM.) off &$CH .. dsm#setx I
.if &E'&Il~&*l eq 0 .se IIG>&*l = 1
.if &E'&IP~&*l eq 0 .se IPG>&*l = 1
.* FORMAT ENTRY *
.se *a = &dh'&~xrefG>of - &dh'4
.of &*a.dh
&*l.&$TAB.&IFG>&*l .. &$TAB.&IPG>&*l .. &$TAB.{l)&$RB.&IIG>&*1
.of &*a.dh
."if &E"&I2G>&*1 eq 1 &$TAB.&$TAB.&$TAB.(2)&$RB.&I2~&*1
.of &*a.dh
."if &E ' &I3G>&*1 eq 1 &$TAB.&$TAB.&$TAB.(3)&$RB.&I3@&*1
.of &G>xrefG>of
.if &E"&IXG>&*l eq 1 &$TAB.&$TAB.&$TAB.&$TAB.&IXG>&*l.{*)

Appendix C. Starter Set 1\1acro Lihrary Listing 193

DSM#XRFN

DSM#XRFN: Parm = Footnote "id". Formats cross reference for
footnote "id's. Defaults set to "1" and blank *

*
.**
.if &E"&Nl~&*l eq 0 .se Nl~&*l = ?
.if &E"&NP~&*l eq 0 .se NP~&*l = ?
.if &E"&Nx~&*l eq 0 .se NX~&*l.(l) - II

.* FORMAT ENTRY *

.dm dsm#Xrfn(&$lNUM.) off &$CH .. dsm#setx N

.of &~xref~of
&*l.&$TAB.&NF~&*l .• &$TAB.&NP~&*l .. &$TAB.&Nl~&*l .. :&$TAB.&NX~&*l.(*)

.*

.*

DSM#YESN

DSMif:YESN: Parm = "yes" or "no" Process various attributes
which accept only "yes" or 'no'. Returns answer in &*yesno *

*
.**
.se ~ = index "-YES-NO-" 1-&U'&*l."
.if &~ eq 0 .se ~ = 1
.me .se *yesno = substr "yes no" &~ 3

DSM~FRME

.* DSM@FRME: Parm = BOX, NONE, RULE Process FRAME attribute on *

.* FIG. Sets &~figframe to type of frame. *

.**

.se *a = substr &U"&*l 1 1

.se ~figframe "&*

.se @figcw = i. SX //&~figframe.//

.if &*a eq N .se ~figframe off

.if &*a eq R .se ~figframe = rule

.th .se ~figcw = ".hr ~figrule left to right

.if &*a eq B .se ~figframe = box

.an &@fig@in eq 0 .se @fig~in = 2

194 DCF: GlVIL Starter Set Implementation Guide

OSMo)!DS

.* OSM~IDS: Parm = 'id's Process all the 10 attributes. Saves *

.* file name, id, page # (and figure #, if applicable.) Creates *

.* cross reference entries. 'id's are collected only on first pass. *

.* ~tg has been set by the caller to either 'h','f','n','d' or 'i' *

.**

.if &$PASS ne 1 .dm dsm~ids /.me

.se ~TG = &U'&~tg .

. * TRUNCATE "IO"S OVER 7 CHARACTERS *

.if &L'&*1 Ie 7 .se *id '&*1

.el .se *id = substr '&*1.' 1 7

.el .dsm#msg 8 &~TG &*1

.* IF &&~TG.l. EXISTS, THE "id" IS A DUPLICATE *'

.if &E'&&~TG.1~&*id eq 1 .dsm#msg 9 &~TG &*1

.th .me

.*

.if
SET UP CROSS REFERENCE ARRAY &~xref~&~tg.

&SYSVARX ne yes .an &E'&SYSVARH eq 0
.th .go skip
.se
.se
.if
.th
.th

~xref~&~tg.() '.dsm#xrf&~tg. &*id
@writ~&~tg.() '.dsm#wrt&~tg. &*id
&E'&&~TG.F~&*id eq 1 .se *a = &~xref~&~tg.(O)
.se ~xref~&~tg.(&&~TG.L~&*id ..) off
.se ~xref~&~tg.(O) = &*a
&~TG.F~&*id = &$FNAM .se

.* SAVE TEXT FOR CROSS REFERENCE PURPOSES

... skip

.se &~TG.P~&*id = &-

.if &~TG eq H .se H1~&*id '&~head

.th

.if

.th

.if

.th

. if

.me
&~TG

.me
&~TG

.me
&~TG

.th .me

eq N .se

eq F .se

eq D .se

.go index&~ilevel

N1~&*id = &~fn#

F1~&*id = &~fig#

01~&*id = '&~id~l .

.* SET UP INDEX TERMS AND PAGE NUMBERS

... index3 .'se I2~&*id '&#it2

... index2 .'se I1~&*id '&#itl
, .. index1 ,'se I&~ilevel.~&*id '&~it&~ilevel

DSMQ)IPRT

*

*

*'

.* DSM@IPRT: Parm = index term string Process PRINT attribute on *

.* index header tags. Copies value to appropriate &#it symbol *

.**

. 'se #it&~ilevel '&*

.* CONSTRUCT A .PI SORT KEY PARAMETER FOR THE TAG *

.go key&~ilevel

... key1 .'me .'se *k 'key &X'01.&U'&~itl.&X'010101

... key2 .'me .'se *k 'key &X'OlOl.&U'&Q)it2.&X'Ol01

... key3 .'me .'se *k 'key &X'010101.&U'&~it3.&X'01

IDSMGML3

DSMQ)MACQ)

OSMQ)PGRF

.* OSM~PGRF: Parm = START, END, MAJOR, NONE Processes PAGEREF at- *

.* tribute for index tags. Set's caller's local symbol &*x. *

.**

.se Q) = index '-START-BEGIN-MAJOR-END-' '-&U'&*l.'

.'if &~ eq 0 .'me .'se *t4 '&*

.me .se *x = substr 'start start order end' &~ 5

Appendix C. Starter Set IVI aero Library Listing 195

.*

. *

DS~PLCE

DSH~PLCE Parm = BOTTOM, COLUMN, INLINE, PAGE, TOP
the PLACE attribute of the FIG tag •

Processes *
*

.**

.se ~ = index '-TOP----BOTTOH-INLINE-' '-&U'&*1.'

.if &Q) eq 0 .me

.se *b = substr 'top bottom inline' &Q) 6

.se *a = substr 'Q)place Q)place Glplace' &~ 6

.se &*a = &*b

DSHQ)PROC

.* DSH~PROC: Parms = a list of process names

.* attribute of the PSC tag.
Processes the PROCESS *

*
.**
.se *i = 1
... loop
.se ~ = index '-&$LDEV.-&$PDEV.-&SYSVARP.-' '-&U'&*&*i •. -'
.if &~ gt 0' .me
.se *i = &*i + 1
.if &*i Ie &*0 .go loop
.cs 9 ignore

DSH~RFID

.* DSM~RFID: Parameter = "id" Processed the REFID attribute of the *

.* cross reference tags. Sets caller's local symbol *id to value *

.**

.me .se *id '&*1

DSH~RIDI

.* DSM~RIDI: Parm = index-id Processes the REFID attribute of the *

.* 12 and 13 tags. Provides first and second level ipdex terms. *

.**
· * TRUNCATE 'id' s AT 7 CHARACTERS *
.if &L'&*1 gt 7 .dsm.msg 8 I &*id
.th .se *id = substr '&*1.' 1 7
.el .se *id = &*1
.* IF &I1~ .•.. EXISTS, HE CAN GENERATE AN INDEX ENTRY *
.if &E'&I1~&*id eq 0 .go unknown
.* SET #i1 and .i2 TO SAVED TERMS *
.'se #it1 '&I1~&*id
.'se #it2 '&I2~&*id
.* SAVE PAGE # FOR CROSS REFERENCING
.if &$PASS ne 1 .or &SYSVARX ne yes .me
.se IX~&*id.() = &
.me
.* SAVE CROSS REFERENCE EVEN IF NOT KNOHN
... unknown
.if &$PASS ne 1 .or &SYSVARX ne yes .me
.if &E'&IF@&*idOeq 0 .se Glxref~i() '.dsm#xrfi &*id
.th .se ILGl&*id = &Glxref@ilO)
.th .se IFGl&*id = ?
.se IX~&*id.() = &

DSM~SEC

*

*

.* DSM@SEC: PARH = any string. Saves security classification *

.**

.'se @sec '&*

DSM@SEE

.* DSM@SEE: Parms = index reference Processes SEE attribute of *

.* :11-3 and IREF tags. Assigns value to caller's local symbol &*r *
· **
• 'me • 0' se *r '&*

196 DCF: GML Starter Set Implementation Guide

DSMQ)SEEI

.* DSMQ)SEEI: Parm = index-id Processes SEEID attribute of the :Il-3 *

.* & IREF tags. The index term is returned in the caller's symbol &*r.*

.**

.if &L'&*I gt 7 .dsm#msg 8 I &*1

.th .se *id = substr '&*1.' 1 7

.el .se *id = &*1

.* IF &I1Q) EXISTS, HE CAN GENERATE AN INDEX *

.if &E'&I1Q)&*id eq 0 .go unknown

.* CREATE AN INDEX REFERENCE FROM THE SAVED INDEX TERMS. *

.'se *r '&I1Q)&*id

.'if &E'&I2Q)&*id eq 1 .'se *r '&IIQ)&*id .. , &I2Q)&*id

.'if &E'&I3Q)&*id eq 1 . 'se *r '&IIQ)&*id .. , &I2Q)&*id .. , &I3Q)&*id

.* SAVE PAGE # IN &IX Q)... *

.if &$PASS ne 1 .or &SYSVARX ne yes .go exit

.se IXQ)&*id.() = &

.go exit

.* IF "id" IS UNKNOHN, RETURN A "?,. AS THE REFERENCED TEXT *

... unknown

.if &$PASS ne 1 .or &SYSVARX ne yes .me .se *r = ?

.* REMEMBER '10' FOR CROSS REFERENCING *

.se *r = ?

.if &E'&IFQ)&*id eq 0 .se Q)xrefQ)i() '.dsm#xrfi &*id

.th .se ILQ)&*id = &Q)xrefQ)iIO)

.th .se IFQ)&*id = ?

.se IXQ)&*id.() = &

.* RETURN REFERENCE TEXT IN CALLER'S LOCAL SYMBOL &*r *

... exit
· 'me. 'se *r '&*r

DSMQ)SHD

.* DSMQ)SHD: Parm = any string of text Processes STITLE attribute *

.* for the HI tag. *

.**
· 'se Q)shead '&*

DSMQ)STTL

.* DSMQ)STTL: Parms = Any string of text

.* attribute of the TITLE tag.
Processes the STITLE *

*
.**
· se Q)stini t = 1
.'se Q)stitle '&*

DSMo)HIDT

.* DSMQ)HIDT: Parms = COLUMN, PAGE, space-unit. Processes the HIDTH *

.* attribute of the FIG tag. Sets &Q)place to "column" or "page". *

.**

.se Q) = index '-PAGE---COLUMN-' '-&U'&*.'

.if &Q) ne 0 .me .se Q)width = substr 'page column' &0) 6

.* COMPARE SPACE AMOUNT TO COLUMN LINE LENGTH *

.if &DH'&*I gt &DH'&$CL .se Q)width = page

.el .se Q)width = column

DSt-1ABSTR

.* DSMABSTR: Tag = ABSTRACT No Attributes Sets up formatting *

.* environment for abstract. Generates and hI. Resets open lists, *

.* etc .. Advances to next/odd page. Sets &Q)shead for running footing *

.**

.dsm#rset Abstr

.dsm#dupl

.'se Q)shead '&LLQ)Abstr
· 'hI &LLQ)Abstr
.* FIRST PARAGRAPH IN ABSTRACT SHOULDN'T BE INDENTED *
.aa p dsmparal

Appendix C. Starter Set l\1acro Library Listing 197

DSMADDR

.* DSMADDR: Tag = ADDRESS No A~~ribu~es In title page, saves the *

.* lines of the address. off ti~le page, formats address as simple *

.* list. Enables ALINE tag and gets the residual text. *

.* &~addctr counts # of addresses & is used to construct the name of *

.* the array containing the address lines. &~address con~ains the *

.* name of each address line array (one address array per element). *

.**

.aa aline dsmaline

.gs scan *line

.if &~s~ate ne TtlPg .go inline

.* SET UP ~addctr and ~address ARRAY *

.se ~addctr = &~addctr + 1

.se ~aline&~ddctr off

.'se ~address() = ';.sp;&~aline&~addctr.(*).'

.* RESIDUAL TEXT IS 1ST LINE OF ADDRESS *

.'if &L'&*line gt 0 . 'se ~aline&~addctr.() '&*line

.me

.* ADDRESSES NOT ON TITLE PAGE, ARE FORMATTED AS A SIMPLE LIST *

... inIine

.sk &~sk~s

.sa

.fo off

.in +&~in~s

.if &~state eq open .kp on

.if &L'&*line eq 0 .me

.Ii 1
&*line

DSMALINE

.* DSMALINE: Tag = ALINE No Attributes On ~itle page, saves line *

.* in symbol array. Outside a title page, the lines are formatted as *

.* a compact simple list. *

.**

.if &~state ne TtlPg .me

.gs scan *line

.'se ~aline&~addctr.() '&*line

DSMAPPD

.* DSMAPPD: Tag = APPENDIX No Attributes Set up for appendices *

.* HIs in Appendix are preceded w/ 'Appendix' '& a serial letter *

.**

.gs hctr A.O

.se ~headl '&LL~Appdx

.if &SYSVARH ne no .se *a = num

.dh 0 ~c

.dh 1 tc nonum

.dh 2 tc &*a

.dh 3 tc &*a

.dh 4 ~c &*a

.* RESET ANY OPEN LISTS, ETC. ADVANCE TO NEXT/ODD PAGE *

.dsm#rset Appdx

.dsm#dupl

.* ESTABLISH SAME PAGE LAYOUT AS BODY & RESET NORMAL PAGE NUMBERS *

.dsm#styl

.pn arabic

DSMAUTHR

.* DSMAUTHOR: Tag = AUTHOR No Attributes Saves text in

.* &~author array. Valid only on title page.
*
*

.**

.gs scan *line

. 'se ~author() '&*line

198 DeF: GML Starter Set Implementation Guide

DSMBACKH

.* DSMBACKM: Tag = BACKH No Attributes Sets up for back matter. *

.* Resets any open lists, etc. Headings are in toc but not *

.* numbered. Advances to next/off page and sets up 2 column format. *

.**

. dsm#rset BkHh"

.se Q)headl off

.dh 0 tc

.dh 1 tc nonum

.dh 2 tc nonum

.dh 3 tc nonum

.dh 4 tc nonum

.dsm#dupl

.dsm#styl two

DSMBODY

.* DSMBODY: Tag = BODY,No Attributes. Sets up for body section. Head- *

.* ings are in toc and may be numbered. Resets any open lists, etc. *

.* Advances to next/odd page, sets up page layout, resets page to 'l' *

.**Q)BA343l9

.se Q)shead =

.if &E'&Q)bodyheadl eq 1 .sa Q)headl '&Q)bodyheadl

.if &SYSVARH ne no .sa *a = num

.dh 0 tc

.dh 1 tc nonum

.dh 2 tc &*a

.dh 3 tc &*a

.dh 4 tc &*a

.an &E'&Q)headl eq 0 .dh 1 num

.dsm#rset Body

.dsm#dupl

.dsm1J:styl

.pn arabic

.pn 1

DSMCIT

.* DSHCIT: Tag = CIT No Attributes Starts highlight for citations *

.**

.bf hil althil

DSMDATE

.* DSMDATE: Tag = DATE No Attributes Save text in &@docdate or *

.* sets it to the current date. Valid only in front matter. *

.**

.gs scan Q)docdate

.'if &L'&Q)docdate eq 0 .'se Q)docdate '&date

.'el .'se date '&Q)docdate

DSMDCNUH

.* DSMDCNUM: Tag = DOCNUM No Attributes Saves number in Q)docnutn *

.**

. gs scan Q)docnurn

Appendix C. Starter Set]\!lacro Library Listing 199

DSMDDEF

.* DSMDDEF: Tag = DD

.* issue msg if not .
No Attributes Definition term is in &~id~l *

Handle~ any definition headings left around. *
. **
.if &L'&~id~l eq 0 .dsm#msg 6 Def
.th .se ~id~l = ?
.if &E'&~dthead eq 0 .go desc
.se *k = &DV'3mv + &DV'&~sk~l
.kp &*k.dv
.sk &~sk~l c
.in &~iri
.bf hi&~hi~hd =
.li 1
&~dthead
.pf
.sk &~sk~l c
.se ~dthead off
.* ESTABLISH FORMATTING -ENVIRONMENT FOR DEFINITION LIST ITEMS *
... desc
.sk &~sk~l c
.in &Q)in
.in +&Q)in@l after 1
.* FORMAT DEFINITION TERM IN THE APPROPRIATE FONT
.bf hi&a>hiQ)l =
.li 1
&@idQ)l.
.pf
.is to &@li@tab min 1 &@break

*

.* SET &Q)id@l TO NULL TO INDICATE A PAIR HAS BEEN PROCESSED *

.se ~id@l = "

DSMDDHD

.* DSMDDHD: Tag = DDHEAD No Attr. Text is heading for definition *

.* descriptions. If &Q)dthead is null, there was no heading for terms *

.**

.if &E'&@dthead eq 0 .se ~dthead = "

.se *k = &DV'3mv + &OV'&~skQ)1

.kp &*k.dv

.sk &@skGil c

.in &@in

.in +&Q)inQ)1 after 1

.* GET TtiE DESCRIPTION HEADING & FOR~1AT IN CORRECT FONT

.gs scan *ddhead

.bf hi&~hiQ)hd =

.Ii'l
&~dthead .
. is to &@li~tab min 1
.Ii 1
&*ddhead
.pf
.sk &~sk@l c
.* SET &~dthead TO NULL TO INDICATE DONE
.se @dthead off

DSMDLIST

*

*

.* DSMDLIST: Tag = DL No Attributes Calls DSMLISTM to process line *

.**

.dsmlistm * &*

200 DCF: GML Starter Set Implementation Guide

DSMDTERt1

.* DSMDTERM: Tag = DT No Attr. Save text as term ro succeeding :00 *

.* If &~id~l is not null, 2 :DT tags have been fOLnd & 1st is ignored *

.**

.if &L'&~id~l ne 0 .dsm#msg 5 Def '&~id~l.'

.* CHECK FOR UNPRINTED DEFINITION HEADINGS LEFT AROUND *

.if &E'&~dthead eq 0 .go term

.se *k = &DV'3mv + &DV'&~sk~l

.kp &*k.dv

.sk &~sk~l c

.in &~in

.bf hi&~hi~hd =

.Ii 1
&~dthead

.pf

.sk &~sk~l c

.se ~dthead off

.* SAVE RESIDUAL TEXT IN &~id~l.

... term

.sk &~sk~l c

.gs scan ~i~l

.* DSHDTHD: Tag = DTHEAD

.* succeeding :DDHD tag or

DSMDTHD

No attr. Saves residual
:DT tag.

*

text for *
*

.**

.sk &~sk~l c

.gs scan ~dthead

DSMEADDR

.* DSMEADDR: Tag = ADDRESS end No attr Disables the :ALINE *

.* tag. If not on a title page, end the simple list with skip *

.**

.aa aline dsm#Cntx

.if &~state eq TtlPg .me

.if &~state eq open .kp off

.re

.sk &~sk~s c

DSMECIT

.* DS~'ECIT: Tag = CIT end tag No Attr. Ends highlighting *

.**

.pf

Appendix C. Starter Set Macro Library Listing 201

DSMEFIG

.* DSMEFI~: Tag = FIG end-tag No Attr Restores environment *

.**

.if &~state ne F .dsm#msg 11 F

.i:h .me

.sa ~state = open

.* CLEAR INDENTION AND FINISH THE FRAME *

.if &~efigpf ne no .pf

.in

.ir

.bf hi2

.if &~figframe eq box .bx off

.i:h .go (i)frdone

.if &(i)place ne bottom .an &E'&(i)figframe eq 1 .an /&(i)figframe ne /box

.i:h &(i)figcw
••• (i)frdone
.pf
.* END KEEP OR FLOAT & RESTORE SAVED ENVIRONMENT
.if &(i)place eq top .sp &(i)sk(j)f
.&(i)figtype off
.if &(i)place eq inline .sp &(i)sk(j)f c
.re

:FIGCAP & :FIGDESC TAGS ARE INVALID OUTSIDE A FIGURE
.aa figcap dsm#cntx
.aa figdesc dsm#cntx

DSMEFTNT

.* DSMEFTNT: Tag = FN end-tag No attr. ENDS FOOTNOTE

*

*

*
.**
.if &(j)state ne N .dsm#msg 11 N
.th .me
.se (i)state = open
.pf
.fn off

DSMEGDOC

.* DSMEGDOC: Tag = EGDOC No Attr Produces cross reference listing *

.**

.if &SVSVARX aq yes .an &(i)lastpass eq yes .dsm#xlst

.if &E'&SVSVARH ne 0 .an &(j)lastpass eq yes .dsm#Writ

DSMEHP

.* DSMEHP: tag = HP end-tag No Attr ENDS HIGLIGHTING *

.**

.pf

202 DCF: G~IL Starter Set Implementation Guide

DSMELIST

.* DSMELIST: Tag = list end-tag No Attr. Restores formatting para- *

.* meters saved when the list was started. &@nest@l = current level *

.* of nesting. See Starter Set Implementation Guide for details. *

.**

.if &@nest@l(O) eq 0 .dsm#msg 11 List

.th .me

.* NESTING LEVEL 1 - RESTORE ENVIRONHENT TO OPEN TEXT *

.if &@nest@l(O) gt 1 .go denest

.se @sk@l = &@sk@ls

.se @hi@hd = &@hi@h

.sk &@sk@l c

.in &@in

.se @nest@l(O) = 0

.se @nest@o off

.se @nest@u off

.aa Ii dsm#cntx

.aa lp dsm#cntx

.aa dt dsm#cntx

.aa dd dsm#cntx

.aa dthd dsm#cntx

.aa ddhd dsrn:V:cntx

.aa gt dsm#cntx

.aa gd dsm#cntx

.me

.* DECREMENT APPROPRIATE LIST NESTING COUNTER *

... denest

.if &E'&@nest@&@ltype eq 1

.th .se @nest@&@ltype = substr &@denest@&@ltype &@nest@&@ltype 1

.sk &@sk@l c

.* RESTORE FORMATTING PARAMETERS FROM PREVIOUS LIST *

.gs args &V'&@nest@l{&@nest@l(O).)

.gs vars @ltype @item# @in @in@l @sk@l @hi@l @hi@hd @break

.se @nest@l(O) = &@nest@l(O) - 1

.in &@in

.in +&@in@l

.se @li@tab = &DH'&$IN.dh

.if &@ltype eq u .or &@ltype eq 0

.th .se *a = substr &@&@ltype.listnest &@nest@&@ltype 1

.se @id@l '&V'&@id@l@&@ltype.&*a .. '

.* REENABLE THE APPROPRIATE TAGS

.aa Ii dsmlitem

.if &@ltype ne d

.an &@ltype ne 9 .th .me

.aa Ii dsm#cntx

.*

.if &@ltype eq d

.th .aa dt dsmdterm

.th .aa dd dsmddef

.th .aa dthd dsmdthd

.th .aa ddhd dsmddhd

.th .aa gt dsm#cntx

.th .aa gd dsm#cntx

.th .me

.*

.if &@ltype eq 9

.th .aa gt dsmgterm

.th .aa gd dsmgdef

.th .aa dt dsm#cntx

.th .aa dd dsm#cntx

.th .aa dthd dsm#cntx

.th .aa ddhd dsm#cntx

*

Appendix C. Starter Set IVlacro Library Listing 203

DSMELQU

.* DSMELQU: Tag = LQ end-tag No Attr. ENDS LONG QUOTES *

.**

.pf

.sk &Q)skQ)q c

.ir -&Q)inQ)q

.* &@nestQ)l INDICATES CURRENT NESTING LEVEL *

.if &Q)nest@l(O) eq 0 .dsm#msg 11 List

.th .me

.* RESTORE OPEN TEXT ENVIRONMENT IF NESTING LEVEL IS 1 *

.if &Q)nest@l(O) gt 1 .go denest

.se @nest@l(O) = 0

.in &Q)in

.me

.* RESTORE PRIOR LIST'S PARAMETERS FROM &@nest@l *

... denest

.gs args &V'&@nest@l(&@nest@l(O).)

.gs vars Q)ltype @item# @in @inQ)l @sk@l @hiQ)1 @hiQ)hd Q)break

.se @nestQ)I(O) = &@nestQ)I(O) - 1

.if &Q)ltype eq u .or &@ltype eq 0

.th .se *a = substr &@&@ltype.listnest &@nestQ)&@ltype 1

.se @id@l '&V'&@id@l@&@ltype.&*a .. '

.* REESTABLISH FORMATTING ENVIRONMENT FOR PRIOR LIST TYPE *

.in &@in

.in +&@in@l

.se @li@tab &DH'&$IN.dh

DSMEPSC

.* DSMEPSC: Tag = PSC end-tag No Attr. Ends condition section *

.**

.cs 9 off,

DSMEQUOT

.* DSMEQUOT: Tag = QUOTE end tag No Attt'. Ends short" quotes. *

.**

.if &Q)nestQ)q eq 0 .dsm#msg 11 QtePh

.th .me

.su off

.* &Q)nest@q INDICATES THE CURRENT NESTING LEVEL *

.* EXTRACT THE CORRECT QUOTATION DELIMITER FROM &Q)cquote *

.se *q = substr &Q)cquote &@nest@q 1

.se Q)nest@q = &Q)nestQ)q - 1

.su on

.ct &*q

DSMETTLP

.* DSMETTLP: Tag = ETITLEP No Attr. Calls DSM#TIPG to create *

.* title page *

.**

.if &Q)state ne TtlPg .dsm#msg 11 TtlPg

.th .me

.se @state = open

.if &SYSVART ne no .dsm#tipg

.* TURN OFF TAGS NOT ALLOWED OFF OF TITLE PAGE *

.aa author dsm#cntx

.aa date dsm#cntx

.aa docnum dsm#cntx

.aa title dsm#cntx

204 nCF: Gl\lL Starter Set Implementation Guide

DSMEXMP

.* DSMEXMP: Tag = XMP end-tag No Attr. End the keep, restore for- *

.* matting envi~ent . Reset &~nest~x to indicate example ended. *

. *** xx x x x xx x*****

.if &~state ne Exmpl .dsm#msg 11 Exmpl

.th .me

.se ~state = open

.kp off

.pf

.re

.sk &~sk~x c

DSMFCAP

.* DSMFCAP: Tag = FIGCAP No Attr.Formats text w/ figure I. Puts *

.* entries into IFIGLIST macro for list of illustrations. *

.**~BA34232

.* ESTABLISH FORMATTING ENVIRONMENT FOR CAPTION AND DESCRIPTION *

.pf

.se ~efigpf = no

.gs scan *line

.in &~fig~in

. ir &~fig(j)in

.fo on

.svon

.sp 1 c

.* PENDING INDENTION TO ALIGN FIGURE DESCRIPTION HITH CAPTION *

.bf figcap =

.se XW = 3 * &DH'&H'O
'. se *period ' •
. se *a = &DH'&H'&~fig# + &DH'&H'&LL~F + &xw + &DH'&H'&Xperiod
.se *b = &*a + &DH'&$IN
.in &*b.dh
.un &*a.dh
.* FORMAT FIGURE CAPTION PREFIXED HITH FIGURE NUMBER
&LL~F.&$RB.&~fig# .•
• is to &*b.dh min 1
&xline •
. pf

*

.x MAKE AN ENTRY FOR #FIGLIST *

.if &~fig# It 10 .se xpad = &$RB

.'se Xsx '&X'OO.&LL~F.&$RB.&xpad.&~fig# .. &$RB.&*line.&X'OO .. &X'OO

.'dm #figlist() &X'Ol .. of &L'XXXXX&LL~F ;.'sx f &xsx.&~FN#&~fig#

.sa ~FN#&(j)fig# = &

.* INCREMENT FIGURE COUNTER AND INDICATE CAPTION HAS FOUND x

.sa ~fig# = &~fig# + 1

.sa ~fig~fo = on

Appendix C. Starter Set l\1acro Library Listing 205

DSMFDESC

.* DSMFDESC: Tag = FIGDESC No Attr. Appends figure description to a *

.* figure caption. Prepares environment only if there's no caption *

.**~BA34232

.if &~fig~fo eq off .go format

.se ~fig@fo = off

.bf figcap =

.ct :&$RB.&$RB.&$CONT

.pf

.bf figdesc =

.me

.* NO FIGURE CAPTION - ESTABLISH ENVIRONMENT

... format

.pf

.se ~efigpf = no

.sp

.in &@fig~in

.ir &@fig~in

.fo on

.sv on

.bf figdesc =

DSMFGREF

*

.* DSMFGREF: Tag = FIGREF Attr = PAGE, REFID Inserts text of *

.* figure references. Includes figure number, and may include PAGE *

.* ref &*yesno will be "no" if PAGE attribute was given. *

.* The REFID attribute will set &*id. *

.**

.gs exatt rafid as dsm~rfid page as dsm#yesn

.if &L'&*id gt 7 .dsm#msg 8 F &*id

.th .se *id = substr '&*id.' 1 7

.* 10 &Fl~ EXISTS, HE CAN GENERATE A STRING H/ FIGURE # *

.se *F='F'

.if &E'&Fl~&*id eq 0 .an &E'&fl@&*id eq 0 .go unknown

.if &E'&Fl@&*id eq 0 .se *F = f

.sa *p = &

.* IF PAGE NOT SUPPRESS, GENERATE PAGE REFERENCE *

.if /&~yesno eq /yes .or &*p ne &&*F.P@&*id .an /&*yesoo ne /no

.th .se *r ' &LL~onpge &&*F.P@&*id
&LL@F.&$RB.&&*F.l@&*id .. &*r.&$CONT
.* 'GENERATE CROSS REFERENCE PAGE NUMBER IN &FX@. ~. *
.if &$PASS ne 1 <Q.r &SYSVARX ne yes .me
.se FX~&*id.() = &
.me
.* IF &Fl~ DOES NOT EXIST YET, USE CANNED STRING *
... unknown
.sv off
-- &LL~F id '&*id.' &LL@unkn --&$CONT
.sv on
.* GENERATE THE CROSS REFERENCE INFORMATION
. if &$PASS ne 1 .or &SYSVARX ne yes '.l11e

.if &E'&FF~&*id eq 0 .se ~xref~f() '.dsm#xrff &*id

.th .se FL@&*id = &@xref~f(O)
·;.th . se FF@&*id = ?

. ,\58 FX@&*id. () = &
'f ", \. . ~\

206 DCF: GML Stai"ter :Set hJJ~mentation Guide

*

DSMFIG

.* DSMFIG: Tag = FIG Attr = DEPTH, FRAME, ID, PLACE start a *

.* figure. Generates a keep or a float, depending on PLACE attri- *

.* buteo Generates a box or rule depending on FRAME attribute. *

. **************************************xx xxxxxx************************

.if &~state ne open .dsm#msg 4 &$TAG &~state

.th .me

.se ~state = F

.* SAVE CURRENT FORMATTING ENVIRONMENT * .br

.sa

.* ESTABLISH DEFAULT FRAME AND TYPE AND PROCESS THE ATTRIBUTES *

.gs args rule &~in~f off fl &~figplace &~figwidth off

.gs vars ~figframe ~fig~in ~fig~fo ~figtype ~place @width ~efigpf

.se ~figcw = '.hr ~figrule left to right

.gs exatt frame as dsm~frme width as dsm~idt place as dsm~plce

.* ESTABLISH FORMATTING ENVIRONMENT FOR FIGURE *

.in

.ir

.fo off

.sv off

.*

.*
BEGIN KEEP OR FLOAT

.if &~place eq inline .se ~figtype = kp

.an &~idth eq page .sc

.if &~place eq inline .sp &~sk~f

.&~figtype on &~place &~idth order
· i f &~place eq botton1 . sp &~sk~f
.* START FRAME
.ls all 1.0
.ws
.es
.bf hi2
.if &~figframe eq box .bx ~figrule new left f'ight
.th .go ~frdone
.if &~place ne top .an &E'&~figframe eq I .an /&~figframe. ne /box
.th &~figcw
· .. ~frdone
.pf

.in &~fig~in
· ir &~fig~in

ESTABLISH PROPER INDENTION FOR FIGURES

*

*

*

.* PROCESS ID AND DEPTH ATTRIBUTES AND ENABLE APPROPRIATE TAGS *

.se ~tg = f

.gs exatt id as dsm~ids depth as sp

.aa figcap dsmfcap

.aa figdesc dsmfdesc

.bf figfont =

.se ~efigpf = yes

DSMFLIST

.* DSMFLIST: Tag = FIGLIST No Attr. Formats list of illustra- *

.* tions. Resets any open lists, etc. Advances to next/odd page. *

.* Sets ~shead for the running footing. Puts an hI into DSM#FLIST. *

.* The DSM#FLIST macro has been built by the FIGCAP tag. *

.**

.dsm#rset LstIl

.dsm#dupl

.Ise ~shead '&LL~LstIl

.dm #figlist(l) /.Ihl &LL~LstIl

.sa

.dc cw

.#figlist

.re

.pa nostart

Appendix C. Starter Set Macro Library Listing 207

DSMFNREF

.* DSMFNREF: Tag = FNREF Attr = REFID GENERATE FN CALL-OUT *

.**

.gs exatt refid as dsm~rfid

.if &L'&*id gt 7 .dsm#msg 8 F &*id

.~h .se *id = substr '&*id.' 1 7

.* IF &Nl~ EXISTS, CALL DSM#SUPR TO INSERT SUPERSCRIPT *

.If &E'&Nl~&*id eq 1 .dsm#supr &Nl~&*id

.if &E'&nl~&*id eq 0 .an &E'&Nl~&*id eq 0 .dsm#supr 00

.if &E'&nl~&*id eq 1 .an &E'&Nl~&*id eq 0 .dsm#supr &nl~&*id

.* IF CROSS REFERENCING, SAVE CURRENT PAGE # IN &NX~... *
~if &$PASS ne 1 .or &SYSVARX ne yes .me
.if &E'&Nl~&*id eq 0 .go unknown
.~e NX~&*id.() = &
.me
.* GENERATE CROSS REFERENCE INFORMATION
... unknown
.if &E'&NF~&*id eq 0 .se ~xref~n() '.dsm#xrfn &*id
.th .se NL~&*id = &~xref~n(O}
.th .se NF~&*id = ?
.se N~&*id.() = &

DSMFRONT

*

.* DSMFRONT: Tag = FRONTM No Attr. Establishes formatting *

.* environment for front matter section. Heading don't go into *

.* toc and are not numbered *

.**

.se ~headl off

.dh 0 ntc

.dh 1 ntc nonum

.dh 2 ntc nonum

.dh 3 ntc nonum

.dh 4 ntc nonum

.* ADVANCE TO THE NEXT/ODD PAGE. ESTABLISH OFFSET OR ONE COL SYTLE *

.dsm:tt:dupl

.if &SYSVARS eq two .dsm#styl one

.el .dsm#styl

.pn roman

208 DCF: GML Starter Set Implementation Guide

DSMFTNT

.* DSMFTNT: Tag = FN Attr = 10 starts a footnote. Generates *

.* footnote call-out, if no 10 given. *

.**

.if &~state ne open .dsm#msg 4 &$TAG &~state

.th .me

.se ~state = N

.* NO 10 - ASSUME CALL-OUT GOES RIGHT HERE *

.gs qatt *q id

.if &E'&*q ne 1 .go strtfn

.dsm#supr &~fn#

.* START FOOTNOTE - PROCESS 10

... strtfn

.fn on

.bf fnt =

.sp &~sk~n

.in &~fnl

.se ~tg = n

.if &E'&*q eq 0 .gs exatt id as dsm~ids

.if &~suprstyl eq shifts .bf super =

.se ~fnis = &DH'&H'O * 4 + &DH'&$IN

.se ~fnis = '&~fnis.dh

. ir &~fn2

.se *i = &DH'&H'O * 4

.if &~suprstyl eq shifts .pf

.in +&*i.dh after 1

.dsm#supr &~fn#

.se ~fn# = &~fn# + 1

.se~fnis off

DSMGDEF

*

.* DSMGDEF: Tag = GD No Attr. Processes glossary definition. *

.* The glossary term is in &~id~l. *

.**

.if &L'&~id~l eq 0 .dsm#msg 6 Gloss

.th .se ~id~l = ?

.*

.sk &~sk~l

.in &~in

.bf hi&~hi~l =

.li 1
&~id~l.:&$CONT
.pf
&$RB.
.*
.se ~id~l = II

FORMAT THE GLOSSARY TERM IN A BOLD FONT *

SET &~id~l TO NULL TO INDICATE HE DID IT *

DSMGDOC

.* DSMGDOC: Tag = GDOC Attr = SEC Processes SEC attribute *

.**

.gs exatt sec as dsm~sec

.dm dsmgdoc off

DSMGLIST

.* DSMGLIST: Tag = GL No Attr. Calls list macro to start glossary *

.**

.dsmlistm g &*

DS~1GTERM

.* DSMGTERM: Tag = GT No Atfr. Saves glossary term in &~id~l. *

.**

.if &L'&~id~l ne 0 .dsm#msg 5 Gloss '&~id~l. I

.sk &~sk~l c

.gs scan ~id~l

Appendix C. Starter Set Macro Library Listing 209

DSHHDREF

.* DSHHDREF: Tag = HDREF Attr= PAGE, REFID Inserts heading cross *

.* reference text (heading and perhaps page number) into document *

.* If PAGE was given &*yesno will be 'no', REFID will set &*id. *

.**

.gs exatt refid as dsm~rfid page as dsm#yesn

.if &l'&*id gt 7 .dsm#msg 8 H &*id

.th .se *id = substr '&*id.' 1 7

.* IF &Hl~ EXISTS, HE CAN GENERATE A CROSS REFERENCE *

.se *H ='H'

.if &E'&Hl~&*id eq 0 .an &E'&hl~&*id eq ~ .go unknown

.if &E'&Hl~&*id eq 0 .se *H = h

.su off

.se *cw = &$CH

.dc cw off

.se *p = &

.se *n = &~nest~q + 1

.sa *0 = substr &~oquote &*n 1

.se *c substr &~cquote &*n 1

.* DECIDE HHETHER OR NOT TO GENERATE PAGE REF

.if &*yesno eq yes .or &*p ne &&*H.p~&*id .an &*yesno ne no

.th .se *r ' &Ll~onpge &&*H.P~&*id .. '

.* GENERATE THE TEXT OF THE HEADING REFERENCE

.su on
&*o.&&*H.l~&*id .. &*c.&*r.&$CONT
.dc cw &*cw
.* SAVE CURRENT PAGE NUMBER IN &HX~ .•.
. if &$PASS ne 1 .or &SYSVARX ne yes .me
.se HX~&*id.() = &
.me
.* IF &Hll~ DOES NOT EXIST, USE A CANNED STRING
... unknown
.sv off
-- &ll~H id '&*id.' &ll~unkn --&$CONT
.sv on
.* SAVE CROSS REFERENCE INFORMATION
.if &$PASS ne 1 .or &SYSVARX ne yes .me
.if &E'&HF~&*id eq 0 .se ~xref@h() '.dsm#xrfh &*id
.th .se Hl~&*id = &~xref@h(O)
.th .se HF~&*id = ?
.se HX~&*id.() = &

DSHHEADO

*

*

*

*

.* DSMHEADO: Tag = HO ATTR. = 10, STITlE Formats head 0 using res- *

.* idual text. Resets open lists, etc, advances to next/odd page *

.**

.dsm#rset H.-O

.dsm#dupl

.gs scan ~head

.* SET &G>shead FOR RUNNING FOOTING TO HEADING OR STITlE *

.'se @shead '&G>head

.gs exatt stitle as dsm4)shd

.* CREATE HEAD 0, PROCESS 10 ATTRIBUTE & DON'T INDENT PARAGRAPH *

. 'hO &~head

.se 4)tg = h

.gs exatt id as dsm~ids

.aa p dsmparal

210 DCF: Gl\1L Starter Set Implementation Guide

DSMHEADI

.* DSMHEAOl: Tag = HI Attr = IO, STITLE Format level 1 heading. *

.* Advances to next/odd page. Headl's are numbered in the body if *

.* either head level numbering is on or &Q)head1 exists. *

.* Reset any open lists, etc. *

.**

.dsm#rset H.-I-

.dsm#dupl

.gs scan Q)head

.* PREFIX HEADING HITH &@head1, IF IT EXISTS *

.if &E'&@headl eq 1 .gs hctr 1

.'th .'se Q)head '&@headl &Q)xref(I) .. &@head

.* SET &Q)shead FOR THE RUNNING FOOTING TO HEADING OR STITLE *

.'se @shead '&@head

.gs exatt stitle as dsm@shd

.* CREATE THE HEADING, PROCESS THE 10 AND DON'T INDENT 1ST PARAGRAPH *
· 'hI &Q)head
.sa @tg = h
.gs exatt id as dsm@ids
.aa p dsmparal

DSMHEAD2

.* DSMHEAD2: Tag = H2 Attr = ID Formats level 2 heading

.* Resets any open lists, etc. *
*

.**

.dsm#rset H.-2

.gs scan Q)head

.* CREATE THE LEVEL 2 HEADING, PROCESS THE 10 & DON'T INDENT 1ST PARA *
&Q)rcl
· 'h2 &@head
&Q)rc2
.se @tg = h
.gs exatt id as dsmQ)ids
.aa p dsmpara2

OSf'1HEAD3

.* DSMHEAD3: Tag = H3 Attributes = 10

.* Formats a level three heading. Resets any open lists, etc. *
*

.**

.dsm#rset H.-3

.gs scan Q)head

.* CREATE THE LEVEL 3 HEADING, PROCESS THE 10, DON'T INDENT 1ST PARA *
&@rcl
· 'h3 &@head
&Q)rc2
.se @tg = h
.gs exatt id as dsm@ids
.aa p dsmpara2

DSMHEAD4

.* DSMHEA04: Tag = H4 Attributes = ID

.* Formats a level four heading. Resets any open lists, etc. *
*

.**

.dsm#rset H.-4

.gs scan @head

.* CREATE THE LEVEL 4 HEADING, PROCESS THE IO, DON'T INDENT 1st PARA *
&Q)rcl
· 'h4 &Q)head
&@rc2
.se @tg = h
.gs exatt id as dsm@ids
.aa p dsmpara2

Appendix C. Starter Set l\lacro Library Listing 211

DSMHEAD5

.* DSMHEAD5: Tag = H5 Attributes = 1D *

.* Formats a level five heading in-line. Resets any open lists> etc. *

.**

.dsm#rset H.-5

.9s scan Q)head

.* CREATE THE LEVEL 5 HEADING> PROCESS THE 10 * . 'h5 &Q)head

.se Q)tg = h

.gs exatt id as dsmQ)ids

.* THE 1st :P TAG WILL ADD A COLON TO THE HEADING * .se Q)h5line = '&$PN./&$LC.'

.se Q)para5Q)fnt = 5

.aa p dsmpara5

DSMHEAD6

.* DSMHEAD6: Tag = H6 Attributes = 10 *

.* Formats a level six heading in-line. Resets any open lists, etc. *

.**

.dsm#rset H.-6

.gs scan Q)head

.* CREATE THE LEVEL 6 HEADING> AND PROCESS THE 10 *

. 'h6 &Q)head

.se Q)tg = h

.gs exatt id as dsmQ)ids

.* THE 1st :P TAG HILL ADD A COLON *

.se Q)h5line = '&$PN./&$LC.'

.se Q)para5Q)fnt = 6

.aa p dsmpara5

DSMHPO

.* DSMHPO: Tag = HPO No Attr. Starts the body font *

.**

.bf hiO

DSMHPl

. * DSMHPl: Tag = HPI No AHr . Start level 1 highlighting *

.**

.bf hil althil

DSMHP2

.* DSMHP2: Tag = HP2 No Attr Start level 2 highlighting *

.**

.bf hi2 althi2

DSMHP3

.* DSMHP3: Tag = HP3 No AHr Start level 3 highlighting. *

.**

.bf hi3 althi3

DSMIDMMY

.* DSMIDMMY: Parms = index term. Processes index tags when no *

.* index is being produced. Consumes residual text. *

.**

.gs scan *x

212 DCF: GiVIL Starter Set Implementation Guide

DSMIEH

. * DSMIEH: Formats index headers . *

.**

.if /&*1 It /a .me

.* INSERT HHITE SPACE, START A KEEP

.sk p22

.if &$ENV eq KP .kp off

.kp 1.2i

.bf ieh hi2 althi2

.* PRINT THE PARAMETER IN A BOLD FONT, SURROUNDED BY A BOX *
· in 5
.se *a 7 + &L'&*
.if SYSOUT ne PAGE .bx 4 &*a
.el . in 0
.Ii 1
&*
.if SYSOUT ne PAGE .bx off
.sk 1
.pf
.In

DSf1IHDl

.* DSMIHDl: Tag = IHI Attributes = 10, PRINT, SEE, SEEID *

.* Creates an index header (an index entry w/' no page numbers) *

.* Get residual text into &~itl and copy it to &#it1. *

.**

.gs scan ~itl

.'se #it1 '&~itl

.* &~it2 AND &~it3 ARE NULL FOR LEVEL ONE TERMS. *

.gs args 1

.gs vars ~ilevel ~it2 ~it3

.* THE PRINT ATTRIBUTE MAY RESET &~#it1 AND CREATE A SORT KEY IN &*k *

.* THE SEE OR SEEID ATTRIBUTE MAY PROVIDE A CROSS-REFERENCE TERM IN &*r

.se @tg = i

.gs exatt print as dsm~iprt id as dsm~ids

.gs exatt see as dsm~see seeid as dsm@seei

.if &E'&*r eq 1 .se *x = ref

.* CREATE AN INDEX ENTRY. *

.if &L'&~itl eq 0 .dsm#msg 14 'l(H)'

.'el .'pi &*x &*k &X'Ol.&#it1.&X'Ol.&*r.&X'OlOlOl

DSMIHD2

.* DSMIHD2: Tag =IH2 Attr = 10, PRINT, SEE, SEEIO Creates an *
· * index header (an index entry w/ no page numbers). *
.* Gets the residual text into &~it2 and copies it also to &#it2. *
.**
.gs scan ~it2
· 'se #it2 '&~it2

.* THE SYMBOL &@it3 IS NULL FOR LEVEL 2 TERMS *

.gs args 2

.gs vars @ilevel @it3

.* THE PRINT ATTRIBUTE MAY RESET &#it2 and SEE or SEEID MAY *

.* PROVIDE A CROSS REFERENCE TERM IN &*r *

.se @tg = i

.gs exatt print as dsm~iprt id as dsm~ids

.gs exatt see as dsm~see seeid as dsm@seei

.if &E'&*r eq 1 .se *x = ref

.* CREATE AN INDEX ENTRY

.if &L'&~it1 eq 0 .or &L'&~it2 eq 0 .dsm#msg 14 '2(H)'

.'el .'pi &*x &*k &X'Ol.&@it1.&X'Ol.&#it2.&X'Ol.&*r.&X·0101

Appendix C. Starter Set Macro Library Listing 213

DSMIHD3

.* DSMIHD3: Attr = ID, PRINT Creates an index header (an index *

.* entry with no page numbers). Gets the residual text into &~it3 *

.* and copies it into &#it3 also. *

.**

.gs scan ~it3
· 'se #it3 '&~it3

· se ~ilevel = 3
.* THE PRINT ATTRIBUTE MAY RESET &#it2
.se ~tg = i
.gs exatt print as dsm~iprt id as dsm~ids
.* CREATE AN INDEX ENTRY
.if &L'&~itl eq 0 .or &L'&~it2 eq 0 .or &L'&~it3 eq 0
.th .dsm#msg 14 '3(H)'
· 'el . 'pi &*k &X'OI.&~itl.&X'OI.&~it2.&X'Ol.&#it3.&X'OlOI

DSMIM

*

*

.* DSMIM: Intercepts the .IM control word, issues a message and *

.* saves the information for the imbed trace. Does not trace imbeds *

.* of SCRIPT/VS utility files. *

.**

.se ~ = index '-DSMUTTOC-DSMUTHTF-DSMUTDIM-' '-&*1.-'

.'if &~ ne 0 .'im &*

.th .me

.* &~est~i IS THE IMBED FILE NESTING LEVEL *

.se ~nest~i = &~nest~i + 1

.* ISSUE MSG H/ CURRENT PASS & IMBED FILE NESTING LEVEL *

.se *a = 3 * &~nest~i

.se *a = substr ,---, 1 &*a

.se *p = &

.se *page = substr' &*p.' &L'&*p 5

.if &$THO eq 1 .se *pass '(&LL~Pass &$PASS.)

.ty &*pass.&LL~Page.&*page.: &LL~Imbdg &*a.> &U'&*

.* SAVE INFORMATION FOR THE IMBED TRACE *

.if &~lastpass ne yes .go imbed

.se *a = 2 * &~nest~i

.se *a = substr ' , 1 &*a

.se ~imtrace() '&LL~Page &*p.&$TAB.&*a.&U'&*

.* IMBED THE FILE *

... imbed
· 'im &*
.se ~nest~i = &~nest~i - 1

DSMINDEX

.* DSMINDEX: Tag = INDEX No Attr. Formats the index. Resets any *

.* open lists, etc. Advances to next/od page. *

.**

.dsm#rset Index

.dsm#dupl

.'se ~shead '&LL~Index

.* MAKE SURE THE GML INDEX HEADER MACRO IS PRESENT *

.dm ieh /.dsmieh &*/

.dm dsmieh lib

.*

.sa

.dsm#styl two

.fo left

.ly off

.'ix &LL~Index

.ly mac

.re

USE THE .IX CONTROL HORD TO GENERATE THE INDEX

214 DCF: GML Starter Set Implementation Guide

*

DSMINDXl

.* DSMINDXl: Tag = II Attr = 10, PAGEREF Produces a level 1 index *

.* entry. &@itl contains the level one index term. &~it2 and &@it3 *

.* are reset. &*t4 contains the page I, and is initialized to &$PS *

.**

.gs scan o>itl

.gs args 1 II &$PS

.gs vars ~ilevel o>it2 o>it3 *t4

.* PROCESS PAGEREF - MAY RESULT IN &*x, CONTAINING A .PI PARAMETER *

.* OR IN THE SYMBOL &*T4 BEING NULLED OR RESET *

.se Q)tg = i
· gs exatt pg as dShl~pgrf pageref as dsmo>pgrf id as dsm~ids
.* CREATE THE INDEX ENTRY *
.if &L'&O>it1 eq 0 .dsm#msg 14 1
· leI .'pi &*x &X'OI.&~itl.&X'OIOlOI.&*t4.&X'OI

DSMINDX2

.* DSMINDX2: Tag = 12 Attr = 10, PAGEREF, REFID Produces a *

.* level 2 index entry with the current page number unless PAGEREF *

.* specified &@it2 contains the level two index term. &~it3 is *

.* reset. &*t4 contains the page number, and initialized to &$PS. *

.**
· Ise litl '&o>itl
.gs scan o>it2
.gs args 2 &$PS
.gs vars @ilevel o>it3 *t4
.* PROCESS THE ATTRIBUTES - PAGEREF MAY RESULT IN &*x, CONTAINING *
.* A .PI PARAMETER, OR IN THE SYMBOL &*t4 BEING NULLED OR RESET *
.* REFID and 10 ATTRIBUTES ARE ALSO PROCESSED (MAY RESET &#itl) *
.se O>tg = i
.gs exatt pg as dsmo>pgrf pageref as dsm@pgrf
.gs exatt refid as dsm@ridi id as dsm@ids *
.* CREATE THE INDEX ENTRY
.se @it1 '&#itl
.if &L'&#itl eq 0 .or &L'&@it2 eq 0 .dsmlmsg 14 2
.'el .'pi &*x &X'OI.&#itl.&X'Ol.&@it2.&X'OlOl.&*t4.&X'Ol

DSMINDX3

.* DSMINDX3: Tag = 13 Attr = ID, PAGEREF, REFID Produces a level *

.* 3 entry using current page number unless PAGEREF was specified. *

.* &O>it3 contains the level three index term. *

.**

.Ise litl '&o>itl
· Ise #it2 '&Ci>it2
.gs scan O>it3
.gs args 3 &$PS
.gs vars o>ilevel *t4
.* PROCESS PAGEREF - MAY RESULT IN &*x CONTAINING *
.* A .PI PARAMETER, OR IN &*t4 BEING NULLED OR RESET *
.gs exaH: pg as dsmCi>pgrf pageref as dSIn@pgrf
.* PROCESS 1D AND REFID ATTRIBUTES - MAY RESET &*itl AND &*it2 *
.se O>tg = i
.gs exatt refid as dsm@ridi id as dsm@ids
.* CREATE THE INDEX ENTRY *
.if &L'&#itl eq 0 .or &L'&#it2 eq 0 .or &L'&@it3 eq 0
.th .dsm#msg 14 3
· 'el .'pi &*x &X'Ol.&#itl.&X'OI.&#it2.&X'OI.&@it3.&X'OI.&*t4.&X'OI

Appendix C. Starter Set Macro Lihrary Listing 215

DSMIREF

.* DSMIREF: Tag = IREF Attr = REFID, PAGEREF, SEE, SEEID Creates *

.* an index entry from index terms saved for the 'id'. The page ref *

.* is the current page, unless PAGEREF was specified. *

.**

.se *t4 = &$PS

.gs exatt refid as dsm~rfid

.if &L'&*id gt 7 .dsm#msg 8 I &*id

.th .se *id = substr '&*id.' 1 7

.* IF &Il~ EXISTS, HE CAN GENERATE AN INDEX ENTRY *

.IF &E'&Il~&*id eq 0 .go unknown

.* DETERMINE HHAT lEVEL ENTRY HILL BE, & RECOVER &*itl, &*it2, &*ii3*

.se ~ilevel = &E'&Il~&*id + &E'&I2~&*id + &E'&I3~&*id

.go index&~ilevel

... index3 .'se *t3 '&I3~&*id

... index2 .'se *t2 '&I2~&*id
•.. indexl . 'se *tl '&Il~&*id
.* PROCESS THE PAGEREF, SEE, and SEEID ATTRIBUTES
.gs exatt pg as dsm~pgrf pgref as dsm~pgrf pageref as dsm~grf
.if &~ilevel gt 2 .go skip
.gs exatt see as dsm~see seeid as dsm~seei
.if &E'&*r eq 0 .go skip
.se *x = ref
.se *a = &~ilevel + 1
.'if &*a Ie 3 .'se *t&*a '&*r
... skip
.* GENERATE THE INDEX ENTRY AND BE DONE HITH IT
. 'pi &*x &X'Ol.&*tl.&X'Ol.&*t2.&X'OI.&*t3.&X'Ol.&*t4.&X'Ol
.* SAVE THE CURRENT PAGE NUMBER
.if &$PASS ne 1 .or &SYSVARX ne yes .me
.se IX~&*id.() = &
.me
.* SAVE THE CROSS REFERENCE INFORMATION
... unknown
.if &$PASS ne 1 .or &SYSVARX ne yes .me
.if &E'&IF~&*id eq 0 .se @xref~i(} '.dsm#xrfi &*id
.th .se Il~&*id = &~xref~i(O)
.th .se IF~&*id = ?
.se IX~&*id.() = &

216 DCF: GNfL Sfarter Set Implementation Guide

*

*

DSMLIREF

.* DSMLIREF: Tag = LIREF Attr = PAGE, REFID Inserts list item cross *

.* references into document. Includes item identifier & page refer- *

.* ence unless PAGE attr~ibute was specified. &*yesno will be "no" if *

.* PAGE attribute was given. the REFID attribute will reset &*id. *

.**

.gs exatt refid as dsm~rfid page as dsm#yesn

.if &L"&*id gt 7 .dsm#msg 8 D &*id

.th .se *id = substr "&*id. I 1 7

.* IF &Dl~ EXISTS, GENERATE A STRING CONTAINING THE IDENTIFIER *

.se *D = IDI

.if &E"&Dl~&*id eq 0 .an ~EI&dl~&*id eq 0 .go unknown

.if &EI&Dl~&*id eq 0 .se *0 = d

.su off

.se *cw = &$CH

.dc cw off

.se *p = &

.* PERHAPS INCLUDE THE PAGE REFERENCE

.if &*yesno eq yes .or &*p ne &&*D.P~&*id .an &*yesno ne no

.th .se *r I &LL~onpge &&*D.P~&*id .. I

.* GENERATE THE TEXT OF THE LIST ITEM REFERENCE

.su on
&&*D.l~&*id .. &*r.&$CONT .
. dc cw &*cw

*

*

.* IF CROSS REFERENCING SAVE THE PAGE NUMBER *

.if &$PASS ne 1 .or &SYSVARX ne yes .me

.se DX~&*id.() = &

.me

.* IF &Dl~ DOES NOT EXIST, USE A CANNED STRING INSTEAD *
•.• unknown
.sv off
-- &LL~LI "&*id. 1 --&$CONT
.svon
.* SAVE THE CROSS REFERENCE INFORMATION *
.if &$PASS ne 1 .or &SYSVARX ne yes .me
.if &E"&DF~&*id eq 0 .se ~xref~d() I.dsm#xrfd &*id
.th .se DL~&*id = &~xref~d(O)
.th .se DF~&*id = ?
.se D~&*id.() = &

Appendix C. Starter Set l\1acro Library Listing 217

DSMLISTM

.* DSMLISTM: Tag = L Attr: TYPE, COMPACT,TERMHI,HEADHI,TSIZE *

.* Sets up for all types of lists. Stacks current list parameters. *

.* &@hi@l - highlight for def term &@in - current indention *

.* &@ltype- list type &Q)idQ)1 - "id" for this list *

.* &Q)inQ)l - indent for this list type &Q)item# - list item counter *

.* &@skQ)1 - amount of skip before list item *

.**

.* DEFINE ATTRIBUTE PROCESSORS FOR THE LIST TAGS *

.dm dsmlistml&$LNUM.) off &$CH .. dm Q)termhi /.se (i)hiQ)l = &*1/

.dm dsmlistm(&$LNUM.) off &$CH .. dm @tsize /.se @i~l '&*/

.drn dsmlistml&$LNUM.) off &$CH .. dm Q)headhi /.se Q)hi@hd '&*1/

.* CONDITIONAL SKIP IN CASE ~E'RE GOING FROM UNCOMPRESSED TO COMPRESSED

.sk &@sk@l c

.* &@nestQ)l INDICATES CURRENT NESTING lEVEL AND CONTAINS *

.* SAVED FORMATTING PARAMETERS OF NESTED LISTS. *

.se *g = '&Q)ltype &@item# &Q)in

.se *h = '&Q)skQ)l. &V'&@hiQ)l. &V'&Q)hi@hd .

. se @nestQ)l() '&*g '&Q)inQ)l.' &*h. &@break .

. * &@in DEFINES THE BASE INDENTION FOR THIS LEVEL OF LIST NESTING *

.if &@nest@l(O) gt 1 .in &@in

.th .in +&Q)in@l

.se @in = &DH'&$IN.dh

.* DSM#LTYP RETURNS THE LIST TYPE IN Q)ltype AND THE ITEM IDENTIFIER *

.* FOR THIS LEVEL OF NESTING. *

.dsm#H:yp &*1

.* CHECK FOR COMPACT; IF PRESENT, &Q)skQ)l ~ILL BE ZEROED *

.se @break = "

.se *a = index 'lCOMPACTIBREAK' '&E'&*2.&U'&*2.'

.if &*a eq 1 .se *c = 0

.if &*a eq 9 .se @break = BREAK

.se *b = index 'lCOMPACTIBREAK' '&E'&*3.&U'&*3.'

.if &*b eq 1 .se *c = 0

.if &*b eq 9 .se @break = BREAK

.* SET THE FORMATTING PARAt'1ETERS FOR THIS LIST TYPE *

.gs args 0 &@hi@&@ltype &@in@8@ltype &@hi@h &*c &Q)skQ)&@ltype

.gs vars @item# @hiQ)l @in@l @hi@hd @sk@l

.* PROCESS TSIZE AND TERMHI ATTRIBUTES TO RESET &@in@l AND &@hi@l *

.gs exatt tsize as @tsize thi as @termhi terrnhi as @termhi

.95 exatt hhi as @headhi headhi as @headhi

.se Q)in@l = &DH'&@in@l.dh

.* ESTABLISH A TAB STOP FOR THE FIRST LINE OF EACH LIST ITEM. *

.in &@in

.in +&@in@l

.se @li@tab = &DH'&$IN.dh

.* ENABLE LIST PART TAGS (LI OR DT, DO, DTHD AND DDHD OR GT AND GD *

.aa lp dsmlpart

.if &@ltype eq 9

.th .aa gt dsmgterm

.th .aa gd dsmgdef

.th .me

.if &@ltype ne d .aa Ii cismlitem

.el .aa dt dsmdterm

.el .aa dd dsmddef

.el .aa dthd dsmdthd

.el .aa ddhd dsmddhd

218 DCF: GML Starter Set Implementation Guide

DSMLITEM

.* DSMLITEM: Tag = LI No AH:r Formats list items controlled by *

.* symbol by DSMLISTM: &Q)idQ)l - "id" for this list type *

.* &Q)in - current indention &Q)item# - list item counter *

.* &Q)inQ)l - indent for this lis-t: type &Q)skQ)l - skip before item *

.**

.* INCREMENT THE LIST ITEM COUNTER AND INSERT SOt-IE HHITE SPACE *

.se Q)item# = &Q)item# + 1

.sk &Q)skQ)l

.* FORCE PROPER INDENTION FOR THIS LEVEL OF LIST, THEN UNDENT 1st *

.* LINE TO ALIGN WITH TEXT PRECEDING THE LIST *

.in &Q)in

.in +&Q)inQ)l after 1

.* PROCESS THE '10' ATTRIBUTE, IF PRESENT * .se Q)tg = d

.9s exatt id as dsm@ids

.* INSERT THE IDENTIFIER INTO THE GUTTER CREATED BY THE UNDENT *
&Q)idQ)l.
.is to &Q)liQ)tab min 1

DSMLPART

.* DSMLPART: Tag = LP No Attr. Format list parts just like

.* list items with no identifier. *
*

.**

.sk &Q)skQ)l

.in &Q)in

DSMLQUOT

.* DSMLQUOT Tag = LQ No Attr Establishes formatting environment *

.* for long quoted phrases. Q)nestQ)l indicates current level of list *

.* nesting and contains the formatting parameters for previous list *

.**

.sk &Q)skQ)q c

.se *h = '&Q)skQ)l. &V'&Q)hiQ)l. &V·&Q)hiQ)hd.'
· se Q)nestQ)l() '&Q)l type &Q)i tem# &Q)in '&Q)inQ)l.· &*h &Q)break
.* &Q)in IS THE BASE INDENTION FOR THE CURRENT LEVEL OF LIST NESTING *
.if &Q)nestQ)l(O) gt 1 .in &Q)in
· th • in +&Q)inQ)l
.gs args 0 q 0 0 &DH'&$IN.dh &DH'&Q)inQ)q.dh
.gs vars Q)item# Q)ltype Q)hiQ)l Q)hi@hd Q)in Q)inQ)l
· se Q)break = "
.* ESTABLISH THE PROPER INDENTION FOR THE LONG QUOTE
· in &Q)in
.in +&Q)inQ)q
.ir +&Q)inQ)q
.bf lqfont =

DSMNOTE

.* DSMNOTE: Tag = NOTE No Attr. Starts a note, which is a

.* paragraph with • NOTE , in front of it. *
*

.**

.sk &Q)skQ)p

.bf hi2
&LLQ)Note.:&$CONT
.pf
&$RB.&$CONT

DSMOLIST

.* DSMOLIST: Tag = OL No Attr. Calls DSMLISTM macro for ordered list *

.**

.dsmlistm 0 &*

Appendix C. Starter Set]\;iacro Library Listing 219

DSMPARA

.* DSMPARA: Tag = P No Attr. Spaces between paragraphs and indents *

.* first line. *

.**

.sk &<ilsk<ilp

.il +&<ilin<ilp

DSMPARA1

.* DSMPARA1: Tag = P No Attr. For the 1st paragraph after HO or HI *

.**

.sk &<ilsk<ilp

.aa p dsmpara

DSMPARA2

.* DSMPARA2: Tag = P No Attr. For the 1st paragraph after H2-4 *

.**

.sk &<ilsk<ilp

.aa p dsmpara

DSMPARA5

.* DSMPARA5: Tag = P No Attr. For 1st paragraph after H5 or H6. *

.* A colon is appended to the heading if no text has intervened. *

.**

.bf hd&<ilpara5<ilfnt

.if &$PN'/&$LC eq &<ilh5line .ct :

.pf

.el .dsmpara

.aa p dsmpara

DSMPCONT

.* DSMPCONT: Tag = PC No A'Hr. Formats text as paragraph continuation *

.**

.sk &<ilsk<ilp

DSMPREF

.* DSMPREF: Tag = PREFACE No Attr. Establishes formatting envir- *

.* onment for the preface. Resets any open lists. Advances to *

.* next/odd page, generates level 1 heading for preface. *

.**

.dsm#rset Pref

.dsm#dupl

.* SETS &<ilshead FOR THE RUNNING FOOTING *

. 'se <ilshead '&LL<ilPref

. 'hI &LL<ilPref

.* NO INDENTION FOR 1ST PARAGRAPH AFTER IT * .aa p dsmpara1

220 DCF: GML Starter Set Implementation Guide

DSMPROF3

.** .* COPYRIGHT: 5748-XX9 (c) COPYRIGHT IBM CORPORATION 1983 *

.* THIS PRODUCT CONTAINS RESTRICTED MATERIALS OF IBM. *

.* This Profile is for use with SCRIPT/vS and GML Starter Set REL 3 *

.**

.if &$DCF It 3 .mg /S/The &$FNAM profile requires the use of ReI. 3

.se DSM@MAC@ lib

.if /&DSM@MAC@ ne /DSMGML3

.th .mg /S/The &$FNAM profile requires DSMGML3 MACLIB/

.**

.* The following symbols define the amount of white space and *

.* indention surrounding various kinds of text: *

.* &@in@d &@sk@d - definition list terms *

.* &@in@f &@sk@f - figures *

.* &@in@o &@sk@o - ordered list items *

.* &@in@g &@sk@g - glossary *

.* &@in@p &@sk@p - paragraphs *

.* &@in@q &@sk@q - long quotes *

.* &@in@s &@sk@s - simple list items *

.* &@in@u &@sk@u - unordered list items *

.* &@in@x &@sk@x - examples *

.* &@in@z &@sk@z - list items *

.* &@sk@n - footnote *

.**

. gs args 10 2 4 4 0 3 4 4 2 0

.gs vars @in@d @in@f @in@z @in@o @in@p @in@q @in@s @in@u @in@x @in@g

.gs args .75 1 .75.75.75 1 .75.75 1 .75

.gs vars @sk@d @sk@f @sk@z @sk@o @sk@p @sk@q @sk@s @sk@u @sk@x @sk@g

.** .* The following symbols define the default highlight levels: *

.* @hi@d - definition list terms @hi@g - glossary list terms *

.* @hi@h - definition list headings *

.**

.gs args .75 1 3 2 2

.gs vars @sk@ls @sk@n @hi@h @hi@d @hi@g

.**

.* The symbols &@olistnest and &@ulistnest indicate the sequence of *

.* item identifiers for the items of ordered and unordered lists, *

.* respectively. The identifiers themselves are defined below using *

.* the .DV control word. The &@olistnest and &@ulistnest are treat- *

.* ed as rings if lists are nested beyond the level defined in *

.* these symbols. The symbols &@figplace and &@figwidth give the *

.* default value for figure placement and width. *

.**

.gs args 123456 123 top page

.gs vars @olistnest @ulistnest @figplace @figwidth

.**

.* Macro substitution, library lookup and tag processing must be *

.* enabled for GML tag processing. The GML tag delimiter will be a *

.* colon (:) and the GML end-tag delimiter will be colon-e (:e). *

.**

.ms on

.ly mac

.dc gml : : e

.gs tag on

.gs rules latt novat stop nomsg) (noatt)

.if &L'&$CONT eq 0 .dc cont &X'03

.**

.* Define the specific character bullets for unordered lists. *

.* FORM: .DV @id@l@xy /symbol function to create dingbat *

.* or *

.* FORM: .DV @idQ)lQ)xy FONT fontname /symbol function * .* where: *

.* x is the list type - either '0', or 'u' or 'z' *

.* y is the nesting level number for which identifiers are being *

.* defined. (1 through 3) are normally used. *

.* symbol: the symbol function used to produce the character to be *

.* used as the 'dingbat'. (e.g. '&x" 9f' or '&x' 'af') *

.* Note: Remember to double any single quotes in the value *

.* fontname:The font that the dingbat is to be printed in. *

Appendix C. Starter Set l\1acro Library Listing 221

.* Note: See .DV control word description for details. *

.**

.if SYSOUT eq PRINT

.th .dv ~id~1~u1 /&X'af

.th .dv ~id~1~u2 /&X'bf

.th .dv ~id~1~u3 /&X'bfbf

.th .dv ~id~1~u4 /&X'9f

.*

.el .dv ~id~1~u1 /0

.el .dv ~id~1~u2 /­

.el .dv ~id~1~u3 /-­

.el .dv ~id~l@u4 /0

.*

.df ~pi~ul type('pi font sans serif' 8) codepage aftc0363

.*

.if &$PDEV eq 38PP .df ~pi~ul type('pi sans serif' 8) codepage t1gpi363

.if'SYSOUT eq PAGE .se ~ulistnest '12345

.th .dv ~i~1~u1 /&X'9f

.th .dv ~id~l~u2 font ~pi~ul /&X'dh

.th .dv ~id~1~u3 font ~pi@ul /&X'ed

.th .dv ~id~1~u4 font ~pi~ul /&X'4d

.th .dv ~id@1~u5 font @pi~ul /&X'da

.*

.el .dv ~id@1~u5

.**

.* Define the style of the list item numbers for ordered lists. *

.* The '&~i tem:;.' symbol will resolve to correct item number. *

.**

.su off

. dv ~id@l~ol

.dv ~id@1~02

. dv ~id@1~03

.dv ~id@1~04

.dv ~idQ)1(i)o5

. dv (i)idQ)1(i)o6

.*

.dv ~id@l~07

. dv @id@1(i)o8

. dv ~id@1(i)o9

. *

.dv ~id@l(i)zO

.dv (i)idQ)l~zl

/&Ci>i temt!: ..
/&a' &(i)i teml ..
/&@i tern:;.)
/&a' &Ci>i tern#.)
/&r' &Ci>i teml ..
/&r' &Ci>i teml.)

/&R' &Ci>i teml ..
/&A' &@item# ..
/.dsm#supr &Ci>item# •

.su on

.**

.* Define some special variables: &., &semi., and &gml *

.**

.dv amp text /&

.dv gml text /:

.'dv semi text /;

.**

.* Define some rules for use in the starter Set *

.**

.dr ~figrule

.dr @fnldr w .2mm

.**

.* If Headings are not to be numbered, but you want level 1 body *

.* headings to be numbered (for example, "Chapter 1, Chapter 2, ... ") *

.* set ~bodyhead1 to the string which should precede the number. *

.**

.*.se ~bodyhead1 = 'Chapter

.**

.* Set linespacing, hyphenation and justification controls *

.**

.ls all .90 1.1

.fv justify

.hy on minpt 2 maxpt 3 minword 5 ladder 2 range .8 1.2 noalg

.***************XXXXXXX**

.* Parameterize some spacing values so they can be changed easily. *

.* (two column gutter amt, length of footnote leader, footnote in- *

.* dention and lead out amount for 4250 titles on the title page.) *

.**

.se ~gutter = 4

.se ~fnldrlen = 16

222 DCF: GML Starter Set Implementation Guide

.se ~ttllo = '1.2

.**~***************

.* Perform various GML initialization tasks: *

.* .dsm#setv - Process SYSVAR variables *

.* .dsm#sets - Create symbols for all literal text strings *

.**

.dsm#setv

.dsm#sets

.**

.* Also set space around headings for line devices. *

.**

.se ~hspbf = 0

.se ~hOsp = 5

.se ~h1sp = 3

.se ~h2sk = 3

.se Q)h2sp = 2

.se Q)h3sk = 3

.sa Q)h3sp = 2

.se ~h4sk 3

.sa Q)h4sp = 2

.**

.* Define fonts and super script style for various outpui: devices *

.**

.df hiO font &$CHAR(l)

.se Q)suprstyl = parens

.se *go 'f&$CHAR(O)

.if SYSOUT eq PAGE .se ~suprsi:yl = shifts

. th . se *go =' ,

.if &$PDEV eq 3800 .or &$PDEV eq 1403 .se Q)suprstyl = nums

.go &$PDEV.&*go

... 1403f1

... 2741f1

.df hi1 us

.df hi2 os rpt 3

.df hi3 os rpt 3 us

.df hdO os rpt 3 us up

.df hdl os rpt 3 us up

.df hd2 os rpt 3 us up

.df hd3 os rpi: 3 us

.df hd4 os rpi: 3

.df hd5 os rpt 3

.df hd6 us

.df hdOi:oc os rpi: 3

.df hd1toc os rpi: 3

.df hd2i:oc font &$CHAR(l)

.df hd3i:oc foni: &$CHAR(l)

.go endfoni:

... 3270f1

... 3800fl .

. df hi1 us

.df hi2 up

.df hi3 us up

.df hdO up us

.df hdl up us

.df hd2 up us

.df hd3 up us

.df hd4 up

.df hd5 up

.df hd6 us

.df hdOi:oc up

.df hdltoc up

.df hdZtoc foni: &$CHAR(l)

.df hd3i:oc foni: &$CHAR(l)

.go endfoni:

... 3800fZ

.df hi1 foni: &$CHAR(l) us

.df hiZ font &$CHAR(2)

.df hi3 foni: &$CHAR(Z) us

.df hdO foni: &$CHAR(Z) us

.df hd1 foni: &$CHAR(Z) us

.df hdZ foni: &$CHAR(Z) us

.df hd3 foni: &$CHAR(Z} us

.df hd4 foni: &$CHAR(Z}

up
up
up

Appendix C. Starter Set Macro Library Listing 223

.df hdS font &$CHAR(2)

.df hd6 font &$CHAR(l) us

.df hdotoc font &$CHAR(2)

.df hditoc font &$CHAR(2)

.df hd2toc font &$CHAR(l)

.df hd3toc font &$CHAR(I)

.go endfont

..• 38oof3

.df hil font &$CHAR(2)

.df hi2 font &$CHAR(3)

.df hi3 font &$CHAR(3) us

.df hdO font &$CHAR(3) us up

.df hdl font &$CHAR(3) us up

.df hd2 font &$CHAR(3) us up

.df hd3 font &$CHAR(3) us

.df hd4 font &$CHAR(3)

.df hd5 font &$CHAR(3)

.df hd6 font &$CHAR(2)

.df hdotoc font &$CHAR(3)

.df hdltoc font &$CHAR(3)

.df hd2toc font &$CHAR(I)

.df hd3toc font &$CHAR(I)

.go end font

... 3800f4

.df hil font &$CHAR(2)

.df hi2 font &$CHAR(3)

.df hi3 font &$CHAR(4)

.df hdO font &$CHAR(4) up

.df hdl font &$CHAR(4) up

.df hd2 font &$CHAR(4) up

.df hd3 font &$CHAR(4)

.df hd4 font &$CHAR(3)

.df hd5 font &$CHAR(3)

.df hd6 font &$CHAR(2)

.df hdotoc font &$CHAR(3)

.df hdltocfont &$CHAR(3)

.df hd2toc font &$CHAR(I)

.df hd3toc font &$CHAR(I)

.go endfont

.*

..• 38PP

.* 388PP DEFAULT FONTS ARE THE SAME AS 4250 DEFAULTS EXCEPT FOR THE

.* EXAMPLE FONT •

. df xmpfont type (prestige 9) codepage tldObase

.*df figfont

.go 4250same

... 4250

. df xtnpfont type (I pres t ige el i te I)

.*df figfont

.•. 4250same

.**

.* Reset space around headings for page devices. *

.**

.se @hspbf = l.3i

. se @hOsp = pItt

.se (j)hlsp pl4

.se @h2sk = p20

.se @h2sp = pll

.se @h3sk pI8

.se @h3sp = pll

.se @h4sk = p14

.se @h4sp = pil

.*

.df @rh type (bold italic 9) up

.df @rf type (bold 9)

.df ieh type(14 bold

.* HIGHLIGHT FONTS

.df hiO type(normal

.df hil type(italic)

.df hi2 type(bold)

.df hi3 type{bold italic)

.df althil us

.df althi2 up

224 DCF: GlVIL Starter Set Implementation Guide

.df aH:hi3 uc

.* FOOTNOTE FONTS

.df super type (6)

.df fnt type (9)

.* TITLE PAGE FONTS

.df title type (24 bold) up

.df author type(12

.df address type(lO)

.df date type(ll italic)

.df docnum type(10 italic)

.df titlesec type(10 italic bold)

.* HEADING AND TABLE OF CONTENTS FONTS

.df hdO type (20 bold italic

.df hdl type (20 bold

.df hd2 type (18 bold italic

.df hd3 type (14 bold

.df hd4 type (12 bold italic

.df hdS type (bold

.df hd6 type (bold italic

.df hdOtoc type (10 bold) up

.df hdltoc type (10 bold)

.df hd2toc type (10)

.df hd3toc type (10)

.* FIGURE FONTS

.df figcap type (9 bold)

.df figdesc type(9)

.df lqfont type(9)
•.. endfont
.dsm#set
.**
.* Set &@oquote to contain the characters for open quote delimiters *
.* for successive levels of nested quotes; Set ~cquote to contain *
.* the characters to be used as close quote delimiters. *
.* Select appropriate quote marks for 4250 devices. *
.**
. se Cloquote '"', II , II , II , .. , .. , II ,

.se ~cquote ,i,,","''''"'"'"'

.gs args '"'

.gs vars oqq oq cqq cq

.if SYSOUT eq pAGE

.th .se ~oquote '&X'bd.&X'bb.&X'bd.&X'bb.&X'bd.&X'bb.&X'bd.&x'bb.'

.th .s~ ~cquote '&X'be.&X'bc.&X'be.&X'bc.&X'be.&X'bc.&X'be.&x'bc.'

.th .g~ args &x'bd &X'bb &x'be &x'bc

.th .gs vars oqq oq cqq cq

.**

.* Adjust head-level definitions. If duplexing, HO & 1, out justified *

.**

.se ~headl off

.if &SYSVARH ne no .se *n = num

.th .gs hctr &SYSVARH

.el .se *n = nonum

.dh 0 nus nohy nup font hdO spaf &~hOsp pa left sect tfont hdotoc ts nto

.dh 1 nus nohy nup font hdl &*n spaf &@hlsp pa left sect tfont hdltoc ts

.dh 0 spbf &@hspbf

.dh 1 spbf &@hspbf

.dh 2 nus nohy nup font hd2 &*n skbf &@h2sk spaf &@h2sp tfont hd2toc

.dh 3 nus nohy nup font hd3 &*n skbf &~h3sk spaf &@h3sp tfont hd3toc

.dh 4 nus nohy nup font hd4 &*n skbf &@h4sk spaf &~h4sp

.dh 5 nus nohy nup font hd5 nbr

.dh 6 nus nohy nup font hd6 nbr

.**

.* Set line length to 6.8 inches unless user changed it or we're *

.* formatting for one column. *

.**

.se *a = &$LL

.11

.if &*a ne &$LL .11 &*a

.e1 .if &SYSVARS ne one .11 6.8i

.dsm#sty1

.**

.* Define running heading and running footing *

. ***x xx xxx xxx)(***

.rh on

Appendix C. Starter Set lVlacro Library Listing 225

.bf (i.)rh hi2

. 'ce &$RB.&(i.)sec.&$RB

.sp 2

.pf

.rh off

.*

.if &SYSVARD eq yes .go duplex

.rf on

.bf (i.)rf hiO

.sp 2

. 'sx f &X'01.&(i.)shead.&X'01.&X'01.&$PS.&X'Ol

.rf off

.go assoc

.*

... duplex

.rf odd

.bf (i.)rf hiO

.sp 2

.fo right
&(j)shead.&$RB.&$RB.&$RB.&$RB.&$PS

.*

.rf even

.bf (j)rf hiO

.fo left

.sp 2
&$PS.&$RB.&$RB.&$RB.&$RB.&(j)stitle
.rf off
.** .* GML tag definitions and initial APF mapping. *
.********************~**
•.. assoc
.aa abstract dsmabstr (noatt)
.aa address dsmaddr (noatt) dsmeaddr
.aa aline dsm#cntx (noatt)
.aa appendix dsmappd (noaH:)
.aa author dsm#cntx (noatt)
.aa backm dsmbackm (noatt)
.aa body dsmbody (noatt)
.aa cit dsmcit (noatt) dsmecit
.aa date dsm#Cntx (noatt)
.aa dd dsm#cni:x (noatt)
.aa ddhd dsm#cntx (noatt)
.aa dt dsm#cntx (noatt)
.aa dthd dsm1tcntx (noatt)
.aa d1 dsmdlist (vat) dsmelist
.aa docnum dsm#cntx (noatt)
.aa fig dsmfig dsmefig
.aa figcap dsm#Cntx (noatt)
.aa figdesc dsm#cntx (noatt)
.aa figlist dsmf1ist (noatt)
.aa figref dsmfgref
.aa fn dsmftnt dsmeftnt
.aa fnref dsmfnref
.aa frontm dsmfront (noatt)
.aa gdoc dsmgdoc dsmegdoc
.aa gd dsm#cntx (noatt)
.aa gl dsmglist (vat) dsmelist
.aa gt dsm#cntx (noatt)
.aa hdref dsmhdref
.aa hp bf (noatt) dsmehp
.aa hpO dsmhpO (noatt) dsmehp
.aa hpi dsmhpi (noatt) dsmehp
.aa hp2 dsmhp2 (noatt) dsmehp
.aa hp3 dsmhp3 (noaH:) dsmehp
.aa hO dsmheadO
.aa hI dsmheadl
.aa h2 dsmhead2
.aa h3 dsmhead3
.aa h4 dsmhead4
.aa h5 dsmhead5
.aa h6 dsmhead6
.aa index dsmindex (noatt)
.aa 1 dsmlistm (vat) dsmelist

226 DCF: GML Starter Set Implementation Guide

.aa Ii dsm#cntx

.aa liref dsmliref

.aa lp dsm#cntx (noatt)

.aa lq dsmlquot (noatt) dsmelqu

.aa note dsmnote (noatt)

.aa 01 dsmolist (vat) dsmelist

.aa p dsmpara (noatt)

.aa pc dsmpcont (noatt)

.aa preface dsmpref (noatt)

.aa psc dsmpsc dsmepsc

.aa q dsmquote (noaH:) dsmequot

.aa sl dsmslist (vat) dsmelist

.aa title dsm#cntx

.aa titlep dsmttlep (noatt) dsmettlp

.aa toe dsmtoc (noatt)

.aa ul dsmulist (vat) dsmelist

.aa xmp dsmxmp dsmexmp

.**

. * Index tag def ini hons (dependent upon INDEX option) . *

.**

.if &$INDX eq 1 .gs args 1 2 3 dsmindx dsmihd dsmiref

.el .gs args I I I I I I dsmidmmy dsmidmmy null

.aa i1 &*4.&*1

.aa i2 &*4.&*2

.aa i3 &*4.&*3

.aa ih1 &*5.&*1

.aa ih2 &*5.&*2

.aa ih3 &*5.&*3

.aa iref &*6

.gs args

.**

.* END of PROFILE .. EF will terminate profile processing. *

.**

.ef

.**

.* EPIFIlE: The following is processed after the primary input *

.* file has been completely processed. If SYSVARW was specified *

.* the DSM#WRIT macro is called to write out the ids to the file. *

.* If a cross reference has been requested, the DSM#XLST macro *

.* is called to generate the "id" cross references and imbed trace. *

.**~*********************

.if &E'&SYSVARW ne 0 .an &~lastpass eq yes .dsm#writ

.if &SYSVARX eq yes .an &~lastpass eq yes .dsm#xlst

.*
DSMPSC

.* DSMPSC: Tag = PSC Attr = PROCESS Conditionally processes parts *

.* of a document, based on the logical or physical device, or on the *

.* value of SYSVARP. Starts a conditional section. *

.**

.cs 9 off

.*ASSUME SECTION WILL BE INCLUDED, THEN PROCESS THE PROCESS ATTRIBUTE *

.cs 9 include

.gs exatt process as dsm~proc proc as dsm~proc p as dsm~proc

.cs 9 on

DSMQUOTE

.* DSMQUOTE: Tag = Quote No Attr. Establishes formatting envir- *

.* onment for short in-line quotes.Surround text with quote marks. *

.* &~nest~q indicates the level of quoted phrase nesting, and is *

.* used to select the character to be used as the quote delimter *

.**

.su off

.se ~nest~q = &~nest~q + 1

.se *q = substr &~oquote &~est~q 1

.su on
&*q.&$CONT

Appendix C. Starter Set Macro Library Listing 227

DSMSLIST

.* DSMSLIST: Tag = SL Attr = COMPACT Calls DSHLISTH to process list *

.**

.dsmlistm s &*

DSHTITLE

.* DSMTITLE: Tag = TITLE Attr = STITLE Saves text in &~title *

.* array. Sets &~stitle to title or STITLE for RF *
· **
.gs scan *line
.'se ~title() '&*line
:dc asep 40
· 'if &E'&~stinit eq 0 . Sse ~stitle ·&~title(*)
.* PROCESS THE STITLE ATTRIBUTE *
.gs exatt stitle as dsm~sttl

DSMTOC: Tag = TOC No Attr
Reset any open lists, etc.

DSHTOC

Formats the table of contents.
Advance to next/odd page. *

*
.**
.dsm#rset ToC
.dsm#dupl
.* SETS &~shead TO 'Table of Contents' FOR THE RUNNING FOOTING *
· sse ~shead '&LL~ToC
.* THE .TC CONTROL HORD HILL GENERATE THE TABLE OF CONTENTS *
· 'tc &lL~ToC

DSMTTLEP

.* DSMTTLEP: Tag = TITLEP No Attr. Establishes formatting environ- *

.* ment for collecting information for the title page. The title *

.* page is generated by the :ETITLEP tag through the DSM#TIPG macro. *

.**

.se ~state = TtlPg

.* ENABLE THE TITLE PAGE TAG GROUP *

.aa author

.aa date

.aa docnum

.aa ti·He

.*

.*

.gs args 0

dsmauthr
dsmdate
dsmdcnum
dsmtitle
INITIALIZE THE FOLLO~ING SYMBOLS IN CASE THEY AREN'T SET *

BY A SUBSEQUENT TITLE PAGE TAG. * , ,
.gs vars ~addctr ~author ~ddress ~docnum ~docdate ~title

DSMULIST

.* DSMULIST: Tag = UL No Attr. Calls DSMLISTM to process the list *
· **
.dsmlistm u &*

228 DCF: GlVIL Starter Set Implementation Guide

DSMXMP

.* DSMXMP: Tag = XMP Attr = DEPTH Establishes the formatting envil'-*

.* onment for an example. These are in-line text, kept together *

.**

.if &~state ne open .dsm#msg 4 &$TAG &~state

.th .me

.se ~state = Exmpl

.* BREAK TO FORCE UNPROMOTED TEXT INTO COLUMN AND SAVE ENVIRONMENT *

.br

.sa

.* SPELLING CHECKING, HYPHENATION AND FORMATTING ARE ALL OFF *

.sv off

.hy off

.fo off

.if &$ENV eq KP .kp off

.bf xmpfont

.in +&~in~x

.* START A KEEP TO PREVENT THE XMP FRm1 BEGIN BROKEN ACROSS COLUMNS *

.sk &~sk~x

.kp on

.ls all 1.0

.ws

.es

.* PROCESS THE DEPTH ATTRI~UTE INSIDE THE KEEP

.gs exatt depth as sp *

Appendix C. Starter Set 1\1acro Library Listing 229

Glossary terms are defmed as they are used in
this book. Element names and tags, and attri­
bute names and labels are, for the most part,
not included in the glossary. Descriptions of
them can be found in the body of this nlanual.
If you cannot fInd the term you are looking
for, refer to the index or to the Vocabulary for
Data Processing, Telecommunications, and Of
flee Systems, GC20-l699.

all-points addrcssability: The capability to ad­
dress, reference, and position text, overlays,
and images at any defmed point on the print­
able area of a sheet. See page device and con­
trast with line device.

am persand: The" &" character.

\¥hen an ampersand begins a character string,
SCRIPT /VS aSSUInes the character string is a
symbol name. If the symbol name is defmed,
SCRIPT jVS replaces the symbol with its
value (unless sytnbol substitution is oft).

APF: Application processing function.

application processing function (APF): In
GML processing, the processing that is per­
formed when a document element or attribute
is recognized.

attribute: A characteristic of a document (or
docUInent element) other than its type or con­
tent. For example, the security level of a doc­
ument or the depth of a fIgure.

attribute label: In GML markup, a string of
letters and numerals that stands for the name
of an attribute. An attribute's label is entered
in the source document when specifying the
attribute's value.

balancing: In multicolumn formatting, the
process of making column depths on a page
approximately equal.

baseline: An imaginary horizontal line upon
which most of the letters in a line of text ap­
pear to rest.

Glossary
binding edge: The edge of a page to be
bound, stapled, or drilled. Defined with the
BIND option of the SCRIPT command.

body: (1) Of a printed page, that portion be­
tween the top and bottom margins that con­
tains the text. (2) Of a book, that portion that
contains the main text.

boldface: A heavy-faced type. Also, printing
in this type.

break: An interruption in the formatting of
input lines so that the next input line is
printed on a new output line.

call: Used in reference to macros. It means
to invoke the nlacro.

caps: Capital letters. See also initial caps.

caption: Title of an illustration.

case sensitive: \Vhether a group of letters is
uppercase or lowercase has relevance. ABC is
different from Abc which is different from
ABc.

centimeter (COl): A measurement equal to
0.39 inch. 100 em = 1 meter (m).

chanlcter: A symbol used in printing. For
example, a letter of the alphabet, a numeral, a
punctuation mark, or any other symbol that
represents information.

cicero: In the Didot point system, a unit of
4.511 mm (0.1776 in.) used in measuring
typographical material.

Cl\rlS: An interactive processor that operators
within VM/370.

column balancing: The process of redistribut­
ing lines of text among a set of columns so
that the amount of text in each colUlnn is as
equal as possible.

column line length: The width of each text
column on a page. Specilied with the .CL
[Column Line Length] control word. (In

Glossary 231

multicolumn formatting, all columns on the
page usually have the same line length.)

command: A request from a terminal or spec­
ification in a batch processing job for the per­
fonnance of an operation or the execution of a
particular program. For example, a request
given at a terminal for SCRIPT/VS to format
a document, or for an editor to edit a line of
text.

comment: A control word line that is ignored
by SCRIPT/VS. Such lines begin with either
. '" or the .CM [Comment] control word.

composition: The act or result of formatting a
document.

concatenation: The forming of an output line
that contains as many words as the colUlnn
line length allows, by placing the fITst words
frorn an input line after the last words from
the preceding input line. When words from
an input line would reach beyond the right
margin and hyphenation cannot be performed,
they are placed at the beginning of the next
output line, and so on.

control word: An instruction within a docu­
ment that tells SCRIPT /VS how to process
the docull1ent. (See also macro.)

control word line: An input line that contains
at least one control word.

default: A value assumed by a computer pro­
gram when a control word, cOIlllnand, or con­
trol statement with no parameters is
processed. In GML processing, the value as­
sumed for an attribute when none is specified.

dictionary: A collection of word stems that is
used with the spelling verification and auto­
matic hyphenation functions.

Didot point system: A standard printer's
Ineasurement system on which type sizes are
based. A Didot point is 0.3759 mm (0.0148
inch). There are 12 Didot points to a cicero.
(See also cicero and point.)

document: (1) A data medium and the data
recorded on it, that generally has permanence
and that can be read by man or machine. (2)
A unified collection of information pel1aining
to a specific subject or related subjects. (3) In
word processing, a collection of one or more
lines of text that can be named and stored as a
separate entity. See also output document and
source document.

document library: A set of VSM data sets, ac­
cessible in a batch environment, which contain
documents and related ftles.

232 DCF: Gl\-IL Starter Set Implementation Guide

document administrator: One who is respon­
sible for defllling markup conventions and
procedures for an organization.

duplex: A tTIode of formatting appropriate for
printing on both sides of a sheet.

edit: To create or modify the contents of a
document or flie. For example, to insert, de­
lete, change, rearrange, or copy lines.

editor: A computer program that processes
commands to enter lines into a document or
to modify it.

eject: In formatting, a skip to the next col­
umn or page.

element: Any part of a document: a single
character or a word or a sentence. Also refers
to any part of a document you can identify
with a GlVIL tag (tagged element), such as a
paragraph or figure or heading.

em: A unit of measure for a particular font
that is equal to the point size of that font. In
a font that is not proportionally spaced, an em
is equivalent to a character.

enable: Used in reference to a tag. Means
that the tag is mapped to its appropriate AP F.

fill character: The character that is used to
fill up a space; for example, blanks used to fill
up the space left by tabbing.

folio: Page number.

float: (1) (noun) A keep (group of input lines
kept together) whose location in the output
document and printed page may vary from its
location in the source document. (2) (verb)
To be fonnatted in a location different from
its location in the source fue.

flush: Having no indention.

fold: (1) To translate the lowercase characters
of a character string into uppercase. (2) To
place that portion of a line that does not fit
within a column on the next output line.

font: An assortment of type, all of one size
and style.

footing: Words located at the bottom of the
text area. See also running footing

footnote: A note of reference, explanation, or
comment, placed below the text of a column
or page, but within the body of the page
(above the running footing).

format: (1) (noun) The shape, size, and gen­
eral makeup of a printed document. (2) (verb)
To prepare a document for printing in a speci­
fied fonnat.

formatting mode: In document formatting,
the state in which input lines are
concatenated and the resulting output lines are
justified.

formatter: A computer prograrn that prepares
a source document to be printed.

front matter: In a book, those sections (such
as preface, abstract, table of contents, list of il­
lustrations) that are placed before the Inain
chapters or sections.

general document: A type of document
whose description can apply to a variety of
docUInents, from memoranda to technical
manuals. It can be used as a catch-all cate­
gory for documents that do not confonn to
any other type description.

Generalized Markup Language (Gl\'IL): A
language for describing the characteristics of a
document without respect to particular proc­
essing.

GML: Generalized Markup Language.

Gl\IL delimiter: A special character that de­
notes the start of GlVIL markup. In the
starter set, it is initially a colon (:).

gutter: In multi column formatting, the space
between columns.

h,anging indention: The indention of all lines
of a block of text following the first line
(which is not indtJnted the same number of
space). Specified with the .OF [Offset] or .UN
[Undent] control word.

head-level: The typeface and character size
associated with the words standing at the be­
ginning of a chapter or chapter topic.

heading: \Vords located at the beginning of a
chapter or section or at the top of a page. See
also head-level and running heading.

hexadecimal: Pertaining to a nurnber system
based on 16, using the sixteen digits 0 - 9, A -
F. For example, hexadecimal lB equals deci­
mal 27.

highlighting: Emphasis associated with a doc­
ument element. In formatting, highlighting is
usually expressed by changing font, overstrik­
ing, underscoring, and/or capitalizing the high­
lighted element.

horizontal justification: The process of redis­
tributing the extra horizontal white space at
the end of the line of text in between the
words and letters of the line so as to exactly
ftll the width of the column with the text.

indent: To set typographical material to the
right of the left margin.

indention: The action of indenting. The con­
dition of being indented. The blank space
produced by indenting. Specified with the .IN
[Indent], .IR [Indent Right], .IL [Indent Line],
.OF [Offset] and .UN [Undent] control words.
See also hanging indention.

initial caps: Capital letters occurring as the
first letter of each word in a phrase. To set a
phrase in initial caps is to capitalize the fIrst
letter of each word in the phrase.

initialize: This is a general programming tenn
which means to set everything up correctly at
the the beginning before you actually do any
processing/ For the starter set it means doing
things such as mapping tags to APFs and set­
ting up symbol names and values.

input device: A machine used to enter infor­
mation into a computer system (for example,
a terminal used to create a document).

input line: A line, as entered into a source
flie, to be processed by a text processor.

interactive: Pertaining to an application in
which entries call forth a response frOtn a sys­
tem or program, as in an inquiry systern. An
interactive system might also be conversa­
tional, implying a continuous dialog between
the user and the system. Interactive systems
are usually communicated with via tenninals,
and respond immediately to commands. (See
also foreground.)

interactive environment: The environment in
which an interactive processor operates.

italic: A typestyle with characters that slant
upward to the right.

JCL: Job control language.

job cOIHrol statement: A statement that pro­
vides an operating system with infonllation
about the job being run.

justification: The process of inserting extra
blank space between the words in an output
line to cause the last word in the line to reach
the right margin. As a result, the right-hand
edge of each output line is aligned with pre­
ceding and following output lines.

Glossary 233

justify: To insert extra blank space between
the words in an output line to cause the last
word in the line to reach the right nlargin. As
a result, the right-hand edge of each output
line is aligned with preceding and following
output lines.

keep: (noun) In a sour~~' document, a col­
lection of lines of text to be printed in the
same column. When the vertical space re­
maining in the current column is insufficient
for the block of text, the text. is printed in the
next column. (In the case of single-column
format, the next column is on the next page.)

layout: The arrangement. of matter to be
printed. (See also format.)

leader: (1) Dots or hyphens (as in a table of
content) used to lead the eye horizontally. (2)
The divider between text and footnotes on a
page (usually a short horizontal rule).

left-hand page: The page on the left when a
book is opened; usually even-nunlbered.

line device: Any of a class of printer that ac­
cept one line of text from the host system at a
time. SCRIPT /VS supports such line devices
as the 1403, 2741 and 3800.

line space: The vertical distance between the
baseline of the current line and the baseline of
the previous line.

lowercase: Pertaining to small letters as dis­
tinguished from capitals; for example, a, b, g
rather than A, B, G.

maclib: See macro library

macro: See macro instruction.

macro library: A collection of macros. The
form the library takes will vary by environ­
ment, being a MACLIB in ClViS, a PDS in
TS 0 and so on.

macro instruction: (1) An instruction in a
source language that is to be replaced by a de­
frned sequence of instructions in the same
source language. (2) In SCRIPT/VS, a macro
defrnition is a sequence of one or more input
lines that can contain control words, symbols,
text, and G l\1L markup.

map: Associate a tap with an APF using the
. AA [Associate APF] control word.

mark up: (verb) (1) To determine what infor­
mation should be added to a document that
would enable a person or system to process it.

234 DCF: GML Starter Set Implementation Guide

(2) To insert processing infonnation into a
source docunlent.

markup: (noun) Information added to a doc­
ument that enables a person or system to
process it. Markup can describe the docu­
ment's characteristics, or it can specify the ac­
tual processing to be perfonned. In
SCRIPT/VS, markup consists of GML tags,
attribute labels and values, and control words.

markup/content separator: A delimiter used
in GML markup which indicates the end of
the markup and the beginning of the text.
The . default markup content separator for
SCRIPT/VS is a period (.).

meter (m): Basic unit of linear measurement.

millimeter (mm): One-thousandth of a meter.
There are 10 millimeters in one centimeter.
(25.4 millimeters = 1 inch.)

offset: (verb) To indent all lines of a block of
text, except the fITst line. (noun) The in­
dention of all lines of a block of text following
the fITst line.

option: Information entered with the
SCRIPT command to control the execution
of SCRIPT/VS.

output device: A machine used to print, dis­
play, or store the result of processing.

output document: A machinereadable col­
lection of lines of text or images that have
been formatted or othcnvise processed by a
document processor. The output document
can be printed or it can be flIed for future
processing.

output line: A line of text produced by a text
processor.

paginate: To number pages.

page printer: Any of a class of printer that
accept composed pages, constructed of com­
posed text and images, among other things.
SCRIPT/VS supports the 4250 printer, IBM
3820 Page Printer, and the 3800 Printing Sub­
system Model 3, which are all page printers.

page segment: A data stream object contain­
ing composed text and images, prepared be­
fore formatting and included in a document
when it is printed .

paragraph unit: An element that has the
SaIne structure as a paragraph. In a General
Document, the paragraph units are: paragraph,
note, and paragraph continuation.

parameter: Items of data, entered on the
same line as a control word, which govern the
control word's behavior.

pel: (Picture element) The unit of horizontal
measurement for the IBl\tl 3800 Printing Sub­
system, the IBM 3820 Page Printer, and the
4250 printer. One pel equals approximately
1/180th of an inch on the 3800 Model 1,
1/240th of an inch on the 3800 Printing Sub­
systeIll Model 3 and 3820 Page Printer and
1/600th of an inch on 4250 printer.

pica: A unit of about 4.224 nun (0.1663 in.
used in measuring typographical material.
Similar to a Cicero in the Didot point system.

pitch: A number that represents the amount
of horizontal space a font's character occupies
on a line. For example, 10-pitch means 10
characters per inch, or each is 0.1 (1/10)
inches wide. 12-pitch means 12 characters per
inch.

point: (1) A unit of about 0.3759 mm (1/72
in.) used in measuring typographical material.
There are twelve points to the pica. (2) In the
Didot point system, a unit of 0.3759 mm.
There are twelve Didot points to the Cicero.

profile: In SCRIPT/VS processing, a file that
is imbedded before the primary file is proc­
essed. It can be used to control the formatting
of source documents. \Vhen processing GlYIL
markup, the profile usually contains the asso­
ciation of GML with APFs, and the symbol
settings that defme the formatting style.

proportional spacing: The spacing of charac­
ters in a printed line so that each character is
allotted a space proportional to the character's
width.

ragged right: The unjustified right edge of
text lines. See also justification.

required blank: A character that prints as a
blank, but does not act as a word separator.

residual text: The line of text following the
markup/content separator of a Gl\tlL tag

right-hand page: The page on the right when
a book is opened; usually odd-numbered.

rule: A solid black rectangle of a given width,
extending horizontally across the column or
vertically down the column.

running footing: A footing that is repeated
above the bottOIll margin area on consecutive
pages (or consecutive odd- or even-numbered
pages) in the page's body (text area).

running heading: A heading that is repeated
below the top margin area on consecutive
pages (or consecutive odd- or even-numbered
pages) in the page's body (text area).

If the SEC attribute is specified on the
:GDOC tag, the starter set formats the security
line as a running heading.

SCRIPT /VS: The formatter component of
the Document Composition Facility.
SCRIPT /VS provides capabilities for text for­
matting and docuillent management, macro
processing and symbol substitution, and GML
tag recognition and processing.

set: This term is used in reference to a sym­
bol. It implies the .SE [Set Symbol] control
word.

source document: A machine-readable col­
lection of lines of text or images that is used
for input to a computer program.

In this Illanual, the terms source document,
source me, and source data set all mean the
same thing.

space unit: A unit of measure of horizontal
or vertical space. In G l\tlL nlarkup, the em is
used when a measure that is relative to the
current font size is required. \Vhen an abso­
lute measure is required, as in specifying the
depth of a figure, recommended space units
are inches (nnl) , millimeters (nn \V),
picas/points (nnPnn) , or Ciceros/Didot points
(nnCnn) , where nn is the number of units.
See also em, pica, point, Cicero, and Didot
point system.

starter sct: An eXarilple of Gl\tlL support that
is provided with the Document Composition
Facility. It consists of a document type de­
scription for general documents, a profile, and
a library of APFs.

structure: A characteristic of a docuillent (or
element) that expresses the type and relation­
ship of the elements of the content. (See also
content and element.)

symbol: A name in a source document that
can be replaced with sonlething else. In
SCRIPT /VS, a symbol is replaced with a
character string. SCRIPT /VS may interpret
the character string as a numeric value, a char­
acter string, a control word, or another sym­
bol.

symbol substitution: During formatting, the
replacement of a symbol with a character
string that SCRIPT /VS can interpret as a

Glossary 235

value (numeric, character stting, or control
word) or as another symbol.

SYSV AR: An option of the SCRIPT com­
mand that permits the user to specify values
for symbols. In the starter set, SYSV AR sym­
bol values determine whether c~rtain process­
ing variations will occur, such as heading
numbering, duplex formatting, and two­
column printing.

tab: (1) (noun) A preset point in the typing
line of a typewriter-like terminal. A preset
point in an output line. (2) (verb) To advance
to a tab for printing or typing. (3) a tab char­
acter, hexadecimal code X/OSlo

tag: In G ML markup, a name for a type of
document (or document element) which is en­
tered in the source document to identify it.
For example, ":p." might be the tag used to
identify each paragraph.

terminal: A device, usually equipped with a
keyboard and some kind of display, capable of
sending and receiving information over a com­
munication channel.

text line: An input line that contains only
text.

text programmer: One who implements
APFs that provide the processing specified by
the document administrator. In SCRIPT/VS,
this involves writing SCRIPT /VS macros and
organizing macro libraries and profile files so

236 DCF: GML Starter Sct Implementation Guide

that the appropriate composition will be done
for each tag. "What type of document is
tllls?" "Type" is sometimes referred to as
"document type," "element type," or "GwlL
type."

typeface: (1) A specific type style, such as
Univers or Press Roman. (2) One of the
many attributes of a font, others for example,
being size and weight.

underscore: (1) (noun) A line printed under a
character. (2) (verb) To place a line under a
character. To underline.

unique identifier (ID): In a general document,
an attribute whose value serves as a name
which can be used to refer to the element.
(See also reference element.)

uppercase: Pertaining to capital letters, as dis­
tinguished from small letters; for example, "A,
B, G" rather than "a, b, g."

widow: A single output line that is printed in
a different column from the text with which it
is associated so as to create a typographically
unacceptable effect. For example, a line of a
paragraph that is printed separately from the
rest of the paragraph, or a heading that is sep­
arated from the section it heads.

word space: The horizontal white space
placed between words. This is sometimes re­
ferred to as an interword blank.

$CHARS 24
$CL 122
$DCF 20, 161
$FNAM 151
$IN 108, 126, 130
$INDX 36
$LC 90
$LDEV 161, 167
$PASS 34, 142, 144, 145, 150, 152, 154, 155,

168
$PDEV 24, 129, 131, 167
$PN 90, 164
$PS 138, 139
$TAB 169
$TAG 163, 165
$TWO 168
#FIGLIST macro 122,60, 119
#it&@ilevel 143
#itl 138, 139, 140, 144
#it2 139, 140, 144
#it3 141
@addctr 47,49, 50
@address 47, 49, 52
@aline 49, 50
@author 47, 52
@bodyhcadl 23, 26, 37, 60, 79, 80
@brcak 100, 106, 127
@cquote 25, 125, 126, 152
@denest@o 101, 102, 107
@denest@u 101, 102
@docdate 47, 48, 52
@docnurn 47, 50, 52
@dthead 104, 105
@efigpf 117
@fig# 35, 116, 119
@fig@fo 117, 120
@fig@in 117, 119, 121
@figcw 117,118,121
@figfo 120
@figframe 117, 118, 121
@figplace 21, 117
@figrule rule 117
@figtype 117, 118, 121
@figwidth 21, 117
@fn# 35, 130
@FN#&@fig# 120
@fnis 130, 131, 132
@fnldr rule 34, 129
@fnldrlen 23, 34, 129

@fnl 32, 33, 129, 130
@fn2 32, 33, 34, 129, 130
@gutter 23, 33
@head 26,80
@headhimacro 99, 101
@headl 58,60,61,62,78,79, 80
@hi@d 21,98
@hi@g 21,98
@hi@h 21, 98, 101, 107
@hi@hd 99, 100, 101, 104, 127
@hi@l 99, 100, 101, 105, 108, 127
@hspbf 23, 78
@hOsp 23,78
@hlsp 23,78
@h2sk 23,78
@h2sp 23,78
@h3sk 23,78
@h3sp 23,78
@h4sk 23,78
@h4sp 23,78
@h51ine 82, 88, 89

Index

@id@l 100, 102, 103, 105, 106, 108, 128
@ids macro 138, 139
@ilevel 138, 139, 140, 141
@imtrace 158, 169
@in 100, 101, 103, 104, 106, 107, 108, 126,

127, 128
@in@d 20
@in@f 20,116,117,118
@in@g 20
@in@1 99, 100, 101, 103, 104, 105, 108, 126,

127, 128
@in@o 20
@in@p 20, 87, 89
@in@q 20, 125, 127
@in@s 20,49
@in@u 20
@in@x 20, 115, 116
@in@z 20
@item# 100, 101, 103, 108, 127
@itl 36, 138, 139, 140, 141
@it2 36, 138, 139, 140, 141
@it3 36, 138, 139, 140, 141
@Il@&*id 141
@lastpass 30, 34, 62, 168
@li@tab 101, 104, 106, 108, 128
@ltype 100, 101, 102, 108, 127
@nes@to 98
@nest@i 35, 168, 169

Index 237

@nest@l 35, 98, 99, 100, 107, 108, 126, 127,
128, 165

@nest@o 107, 108
@nest@q 35, 125, 126, 128, 152, 165
@nest@u 98, 102, 107, 108
@olistnest 21,98, 102
@oquote 25, 125, 152
@para5@fnt 82
@pi@ul font 22
@place 117, 118, 121
@rc1 32, 76, 78, 81
@rc2 32, 76, 78, 81
@renest@o 102, 103
@renest@u 102
@sec 26, 36, 46, 50, 52, 57, 58
@shead 26, 36, 58, 59, 80, 81, 137
@sk@d 20
@sk@f 20, 116, 118, 121
@sk@g 20
@sk@l 35,98,99, 100, 103, 104, 105, 106,

107, 108
@sk@n 20, 129, 130
@sk@o 20
@sk@p 20,87, 89,90, 128
@sk@q 20, 125, 126, 127
@sk@s 20,49
@sk@u 20
@sk@x 20, 115, 116
@sk@z 20
@state 18,35,47,49,50,108,115,116,117,

120, 122, 129, 132, 165, 166, 167
@stinit 47, 48
@stitle 36, 46, 47, 48, 80
@suprstyl 24, 129, 130, 131
@termhi macro 99, 101
@tg 80,81,82, 103, 118, 130
@title 47
@tsize macro 99, 101
@ttllo 23
@ulistnest 21, 22, 98, 102, 108
@width 117, 118, 122
@writ@d 35, 161
@writ@f 35, 161
@writ@h 35, 161
@writ@i 35
@writ@n 35, 161
@xref@d 149, 155, 157, 160
@xref@f 35, 149, 154, 157, 159
@xref@h 35, 149, 153, 157, 159
@xref@i 35, 142, 145, 149, 157, 160
@xref@n 35, 149, 157, 159

238 DCF: GML Starter Set Implementation Guide

A

ABSTRACT tag 58
ADDRESS tag 48,50
algorithmic hyphenator 23
ALINE tag 48, 50
ali-points addressability

defmition of 231
alternate highlight fonts 133
althi 1 font 133
althi2 font 133
althi3 font 133
amp symbol 22
ampersand (&)

defrnition of 231
APF iii, 1, 2

defmition of 231
naming conventions 10
processing 8
service macro s 11

APPENDIX tag 61,78,79
Application Processing Function

See APF
array separator 47, 52, 157, 158, 161
attribute label

defmition of 231
attributes 2

dcfmition of 231
processing 3, 9
scanning rules 4, 5, 7
value handling 8, 9

AUTHOR tag 47,48; 51

B

BA CKl\1 tag 79
balancing

defrnition of 231
baseline

defmition of 231
shifts 24, 91, 92, 130, 131, 132

binding edge
deftnition of 231

body
defmition of 231

BODY tag 26, 60, 78, 79
boldface

defmition of 231
boxes 38,118,121,143,158
break

defInition of 231
BREAK attribute 100, 106

c

caps
definition of 231

character
defmition of 231

Clceros
defmition of 231

CIT tag 133
ClVIS

definition of 231
CMS Inac1ib 171
column balancing

defmition of 231
column defmition 51
column format 61
column layout 23, 26, 31, 32, 33, 42, 78, 157

for document sections 32
impact on footnotes 130

column line length 32, 33, 34
defmition of 231

corrunand
defmition of 232

command, SCRIPT
corrunent

defmition of 232
COMPACT attribute 100
composition

definition of 232
concatenation

defmition of 232
conditional

sections 167
conditional processing 30, 169
constants 23
continuation character 21
control word

defmition of 232
control word line

definition of 232
control word separator 16, 51,60, 119, 152,

155, 157, 161
control words 3

as APFs 115
cq symbol 25
cqq symbol 25
cross reference listing 2, 30, 31, 157, 168

initialization 149
cross referencing 30, 35, 62, 142, 143, 147

figures 153
footnotes 156
imbedding the SYSVAR 'R' ftle 31
index entries 145
list items 154
overview of processing 147

D

date symbol 31,46
changing the format 37

DATE tag 47,48, 51
DO tag 101, 105, 107, 108
DOHD tag 101, 104, 108
default

definition of 232
defInition descriptions 105
definition list headings 104
defmition lists 98

See also lists
definition tenns 104
delimiters 21, 22

tag delimiters 21
DEPTH attribute 115, 118
device

differences 12
devices

differences 22,23,25,75, 102, 125, 129,
130, 131, 133

1403 24, 131
2741 24
3270 24
3800 24, 131
3800 Printing Subsystem Model 3 125,

131
4250 printer 125, 131

DF&*id 155
DF@&*id 156, 160
dictionary

defmition of 232
Didot point system

definition of 232
DL tag 98, 106
DL@&*id 155
DOCNUM tag 47,50, 51
document adm.inistrator

definition of 232
Document Composition Facility ill

doculnent library
definition of 232

document nUInber 46
document sections I, 57-65
document structure 1
document types 1

general documents
DP@& *id 155, 160
DSlVl#CNTX macro 163, 12, 51, 107, 121
DSlVl#DUPL macro 164, 12, 58, 59,61,62,
80, 137, 157

DSlVl#LINT macro 102, 101
DSl\rl#LTYP macro 101, 100, 102, 103
DSM#]VISG macro 165, 12, 163
DSM#RSET macro 59
DSM#RSET macro 165, 12, 58, 59,61,62,

80, 81, 82, 128, 129, 157
examples 116
figures 122

Index 239

index 137
lists 108

DSM#SET macro 34, 25, 48, 98, 116, 125,
149, 168

DSlVl#SETS macro 31, 12, 23,46,48, 158
DSM#SETV macro 30,23,32,46, 149, 152
DSM#SETX macro 158, 159, 160
DSlVl#STYL macro 32, 12,26, 58, 61, 62,
76, 78, 129, 130

DSl\l#STYP macro 21
DSl'vl#SUPR macro 131, 12, 130
DSlVl#TIPG macro 51, 49
DSM#\VRIT Inacro 16, 30, 161
DSl\f#\VRTD macro 151, 161, 162
DSlVl#\VRTF macro 151, 161, 162
DSM#\VRTH macro 151, 161, 162
DSlVl#\VR TI macro 151
DSl\l#\VRTN macro 151, 161, 162
DSlVl#XLST macro 157, 16,30,62, 157

figure cross references 159
footnote cross references 159
heading cross references 159
index cross references 160
list item cross references 160

DSlYl#XRFD macro 160, 151, 157, 158, 160
cross reference listing

list item 160
DSlVl#XRFF macro 159, 151, 157, 158, 159

cross reference listing
figures 159

DSM#XRFH macro 159, 151, 157, 158, 159
cross reference listing

headings 159
DSlVI#XRFI macro 160, 151, 157, 158, 160

cross reference listing
index entries 160

DSlVl#XRFN macro 159, 151, 157, 158, 159
cross reference listing

footnotes 160
DSlVl#YESN macro 157,151,153,154,157
DSM@FRME macro 121
DSj\l@IDS macro 150, 80, 81, 82, 103, 118,

121, 130, 140, 141, 143
DSlYl@IPRT macro 143, 140, 141
DSM@l\1AC@ 30, 11, 20, 21
DSlVl@PGRF macro 144, 138, 139, 141,

144
DSM@PLCE macro 121
DSM@PROC macro 167, 167
DSlYl@RFID macro 156, 151, 153, 154, 156
DSlYl@RIDI macro 144, 139
DSl\'l@SEC macro 58, 50, 57, 58
DSlYl@SEE macro 145, 140, 141, 142
DSl\l@SEEI macro 145, 142
DSlVl@SHD macro 81, 80, 81
DSlVI@STTL macro 48
DSlYl@\VIDT macro 122
DSlVlABSTR macro 58, 87, 164
DSMADDR macro 48, 50
DSlVlALINE macro 50
DSlVIAPPD macro 32, 61, 79, 164

240 DCF: GML Starter Set Implementation Guide

DSMAUTHR ma~ro 48
DSMBACKM macro 32, 62, 79, 164
DSMBODY macro 32, 60, 79, 164
DSMCIT macro 133
DSMDATE macro 48
DSMDCNUM macro 50
DSMDDEF macro 105,101
DSMDDHD macro 104, 101, 104
DSMDLIST macro 98, 99
DSMDTERM macro 104, 101
DSl\1DTHD macro 104, 101
DSMEADDR macro 50
DSl\IECIT macro 133
DSMEFIG macro 120, 122, 167
DSMEFTNT macro 132, 129, 167
DSlVIEGDOC macro 62, 161
DSMEHP macro 133
DSl\lELIST macro 107, 108, 128, 167
DSMELQU macro 127
DSMEPSC macro 169
DSl\IEQUOT macro 126, 128, 166
DSMETTLP macro 50, 167
DSMEXMP macro 116, 121, 167
DSMFCAP macro 119, 120, 122
DSlVIFDESC macro 120, 120
DSlVIFGREF macro 153, 157
DSMFIG macro 117, 121, 122
DSMFLIST macro 59, 119, 122, 164
DSl'VlFNREF macro 156, 130, 131
DSMFRONT macro 32, 58, 79, 164, 167
DSMFTNT macro 129, 131
DSlYlGDEF macro 106, 101, 108
DSMGDOC macro 50, 57, 58
DSMGLIST macro 98, 99
DSMGTERM macro 106, 101, 108
DSl\;IHDREF macro 151, 157
DSMHEADO macro SO, 87, 164
DSl'VIHEAD 1 APF 80
DSMHEADI macro 60,61, 87, 164
DSrvlHEAD2 APF 81
DSMHEAD2 macro 88
DSlVIHEAD3 APF 81
DSl\tIHEAD3 macro 88
DSlYIHEAD4 APF 81
DSMHEAD4 macro 88
DSlVIHEAD5 macro 82, 88, 89
DSlYIHEAD6 macro 82, 88
DSl\tlHPO macro 133
DSl\tlHP 1 macro 133
DSlYIHP2 m'acro 133
DSMHP3 macro 133
DSMIDMMY macro 142, 29
DSl\lIEH nlacro 142, 137
DSl\tIIHDI macro 139, 30
DSlVIIHD2 macro 140, 30
DSlVIIHD3 macro 141,30
DSlVIIM macro 168, 167
DSMINDEX macro 137,32, 164
DSlYIINDX 1 macro 138, 29
DSl\tIINDX2 macro 138, 30
DSMINDX3 macro 139, 30

DS~lIREF macro 141, 30, 145
DSMLIREF macro 154
DSMLISTM macro 99,98, 101
DSMLITEM macro 103, 101, 108
DSMLPART macro 106, 101
DSlVILQUOT macro 126
DSMNOTE macro 128, 128
DSMOLIST macro 98, 99
DSMPARA macro 89,90
DSMPARA1 macro 58, 59,80, 81, 87, 89,
90

DSMPARA2 macro 81, 88, 89
DSMP ARA5 macro 82, 88, 89
DSMPCONT Inacro 90
DSMPREF macro 59,87, 164
DSMPROF3 20, iii, 31, 34,46, 77, 79, 87,
98, 108, 115, 116, 117, 118, 125, 129, 130,
131

DSMPSC macro 167
DSl\;lQUOTE macro 125
DSMSLIST macro 98, 99
DSMTITLE macro 47, 48
DSlVITOC macro 59, 164
DSMTTLEP macro 47
DSMULIST macro 98, 99
DSlVIUTREF 31
DSMXMP macro 115
DT tag 101, 104, 107, 108
DTHD tag 101, 104, 108
duplexing 26, 30, 32, 33, 47, 48, 164

definition of 232
DX@&*id 155, 160
Dl@&*id 160

E

EADDRESS tag 50
ECIT tag 133
edit

definition of 232
editor (computer program)

definition of 232
EDL tag 107
EFIG tag 120, 122
EFN tag 132
EGDOC tag 2, 16, 62, 157
EGL tag 107
EHPO tag 133
EHPI tag 133
EHP2 tag 133
EHP3 tag 133
eject

definition of 232
EOL tag 107
epiftle 2, 16, 30, 157
EPSC tag 169
EQ tag 126
error messages 12
ESL tag 107

ETITLEP tag 49,50
EUL tag 107
examples 115, 116, 165

changing the defaults 124
indent 20
skip 20

EXMP tag 116
extra spacing 115, 118

F

FF&*id 154
FF@&*id 154, 159
FIG tag 116, 117, 121, 122

10 attribute 150
figcap font 119, 120
FIGCAP tag 116, 118, 119, 121
FIGDESC tag 116, 118, 120, 121
figfont font 118
FIGLIST tag 59, 122
FIGREF tag 153, 156
figures 116, 122, 165

caption 231
changing defa1jlts 122
changing rules and boxes 38
fonts for 39
frame 118, 121
indent 20
moving the caption 123
numbers 35, 116, 119
placement 21
rule defmitions 22
skip 20
width 21

fill character
defmition of 232

finding attributes 7
FL@&*id 154
float 17, 117, 118, 129, 164

definition of 232
flush

definition of 232
FN tag 129
FNREF tag 156
fnt font 130
fold·

definition of 232
folio

See also page numbers
defmition of 232

font
definition of 232

font usage 22, 52
differences 22
IBM 3820 Page Printer. 22
3800 Printing Subsystem l\1odel 3 22
4250 printer 22

fonts 23, 106, 158
changing defmitions 40

Index 241

changing heading fonts 84
for cross reference listing 157
for definition descriptions 105
for defmition list headings 21, 101, 104
for defmition terms 21, 101, 105
for examples 115, 116
for figure captions 119
for figure descriptions 120
for figures 39, 116, 118, 121
for footnotes 130, 132
fat glossary terms 21, 106
for heading~ ... :,;7 5,:.~78
for highlighting 133
for index headers 143
for long quotations 127
for notes 128
for superscripts 132
for table of contents 78
for title citations 133
in cross reference listing 158
on the title page 51
support for page printers 177

footing
defmition of 232

footnote leader 129
changing 134
deflnition 34
length 23
rule 22, 129

footnotes 129, 132, 165
defmition of 232
indent 32, 33, 34
numbers 35, 130
references 130, 131, 156
skip 20

format
defrnition of 233

formatter
defrnition of 233

formatting environment 17
formatting mode

definition of 233
FP@& *id 153, 159
FRAME attribute 117, 121
FRONTl\I tag 79
FX@&*id 154, 159
Fl@&*id 159

G

GD tag 101, 106, 108
GDOC tag 46, 50, 57, 58, 161
Generalized Markup Language (Gl"vIL)

defrnition of 233
GL tag 98, 106
glossary 231

indent 20
skip 20

glossary defmition 106

242 DCF: GiYIL Starter Set Implementation Guide

glossary lists 98
See also lists

glossary terms 106
highlights 21

GML
defmition of 233
developing iii
how it works 3
processing documents with (diagram) 3
what is it iii

G ML delimiter
defmition of 233

gml symbol 22
GT tag 101, 106, 108
gutter 23

defmition of 233

H

hanging indention
defrnition of 233

HDREF tag 151, 156
head levels 75, 82

defmition of 233
numbers 58, 60, 61, 62
prefix 58, 60, 61, 62

HEADHI attribute 101, 104
heading

defrnition of 233
heading defmitions 61
headings

alignment 32, 33
fonts 26
hyphenation 26
nUlnbering 26, 30, 76, 78
numbers 79
prefixing 23, 26, 37, 78, 79, 80
spacing 23
spacing values 78

hexadecimal
defmition of 233

HF@&*id 153, 159
highlighting

defrnition of 233
highlights 24, 133

See also fonts
alternate font defmitions 24
creating a new one 40
for defmition headings 98
for definition terms 98, 101
for glossary terms 98, 101

hiO font 24, 133, 157
hil font 133
hi2 font 133, 158
hi3 font 133
HL@&*id 153
horizontal justification 115

defmition of 233
horizontal rules 121, 129

HP@&*id 152,159
HPO tag 133
HPI tag 133
HP2 tag 133
HP3 tag 133
HX@&*id 152, 153, 159
hyphenation 23, 51, 115

dictionary 23
for headings 78

HO tag 80, 89
HO-6 tags

10 attribute 150
HI tag 80, 89
Hl@&*id 152, 159
H2 tag 81, 89
H3 tag 81, 89
H4 tag 81,89
H5 tag 82, 89
H6 tag 82, 89

I

10 attribute 143, 150
figures 118
footnotes 130

ids

for LI tags 103
head levels 80, 81, 82
index 138, 139, 140, 141

saving them in a file 30
IEH macro 137
IF@&*id 142, 145
IH 1 tag 29, 139, 143
IH 1-3 tags

10 attribute 150
IH2 tag 29, 140, 143
IH3 tag 29, 141, 143
IT\'1 macro 36, 168
imbed

nesting level counter 35
imbed macro 35
imbed trace 2, 30, 158
imbedding 167
indent

definition of 233
indention 103, 108, 158

changing defaults 38
definition of 233
for definition descriptions 105
for definition list headings 104
for examples 115
for figure captions 119
for figure descriptions 120
for figures 117, 118, 120
for footnotes 129, 130
for index headers 143
for list items 128
for lists 98, 100, 103, 110

changing defaults 110

for long quotations 126, 127
for paragraphs 89
left 49, 158
lists 101
right 158

index headings 137
index references 142
INDEX tag 137
indexing 36, 137-146

initialization 29
specifying a 4th term 144
specifying parameters 144

initialization 19-36
invalid tags 12, 163
IP@&*id 160
IREF tag 30, 141, 145
IX@&*id 142, 144, 145, 161
II tag 29, 138, 143, 144
II-3 tags

10 attribute 150
Il@& *id 142, 144, 145, 160
I2 tag 29, 138, 143, 144, 145
12@&*id 144
I3 tag 29, 139, 143, 144, 145

J

justification
definition of 233

K

keep 17,49,104,105,115,116,117,118,
129, 143, 158

L

L tag 99
leader

defmition of 234
left-hand page

defmition of 234
LI tag 101, 103, 108
,library 21
line device

defmition of 234
line length 26, 122

overriding starter set setting 36
line space

defmition of 234
line spacing 23

adjustment 52, 115
LIREF tag 154, 156, 157
list iteln

indention 128

Index 243

list item identifiers 22, 102, 128
defming 21, 22
defmitions 98
sequencing 102

list item identifiers, changing 108
list nesting 126
list nesting counter 108
list of illustrations 60, 122

entries 119
page numbers 119

list parts 106
lists 97, 108, 165

decimal numbering 110
definition 21

heading highlights 21
indent 20
skip 20
term highlights 21

denesting 102
glossary 21

indent 20
skip 20
term highlights 21

items
counter 103
identifiers 103
indent 20
skip 20

nesting 102
ordered 21

indent 20
skip 20

simple 49
indent 20
skip 20

unordered 21
indent 20
skip 20

literaltnode 50
literals 23, 31
LL@Abstr 58
LL@Appdx 61,79
LL@D 159
LL@device 161
LL@DocNm 46, 52
LL@F 119, 154, 159
LL@File 159
LL@H 152, 159
LL@I 159
LL@Imbdg 168
LL@ImTrc 158
LL@Li 155
LL@LstIl 60
LL@N 159
LL@onpge 152, 153, 155
LL@Page 159, 168, 169
LL@Pass 168
LL@Pref 59
LL@Refs 159
LL@ToC 59
LL@unkn 152, 154

244 DCF: GlVlL Starter Set Implementation Guide

logical device name 161, 167
long quotations 126

font 127
indention 127

lowercase
definition of 234

LP tag 99, 101, 106, 107
LQ tag 126, 127
lqfont font 127

M

macro library iii, 2
creating your own 171
name 20

macro substitution 21
macros 2

used during initialization 30
mapping 47, 87,98,99, 101, 107, 108, 125,

129
initial 27

markup content/separator
defmition 234

markup/content separator 7
messages 12

invalid tags 163
modifying macros, how to 171

N

NF@&*id 160
NOTE tag 128
notes 128
NP@&*id 160
NX@&*id 160
Nl@&*id 156, 160

o
offset 33, 78

defmition of 234
offset layout

See column layout
OL tag 98
one-cblumn layout

See column layout
operating system dependences ill

option
definition of 234

oq symbol 25
oqq symbol 25
ordered lists 98

See also lists
output device

See also logical device, physical device

defmition of 234
output device differences

See devices
output line

defmition of 234

p

P tag 58, 59, 81, 82, 87, 88, 89, 90
remapping of 87

PAGE attribute 151, 152, 153, 154, 155, 157
page dimensions, changing 42
page eject 51, 164
page layout 12
page number 156
page numbers 58, 61, 138, 139, 141, 145,

151, 152, 153, 155, 168
for error messages 165

page printer
defmition of 234

page segment
defmition of 234

PAGEREF attribute 138, 139, 141, 144
pages, odd and even

running footing 27
paginate

defmition of 234
paragraphs 80, 81, 82, 87-93

indent 20
modifications 90
skip 20

PC tag 90
pel

defmition of 235
physical device name 167
plca

defmition of 235
pitch

defmition of 235
PLACE attribute 117, 121

default value 116
points

See also picas, ciceros
deftnition of 235

PREFACE tag 59
PRINT attribute 140, 141
print keys for index tenns 143
PROC attribute 167
processing

documents with G ML (diagram) 3
processing section control 30
proftle 2

See also &profile
See also DSl\1PROF3
defmition of 235

PSC tag 167, 169

Q

Q tag 125
quotation marks 25, 125, 152
quotations 125, 128, 152, 165

long
indent 20 .. : '
skip 20

nesting 152

R

rbl symbol 35
REFID attribute 139, 144, 151, 153, 154,

156
required blank 35
residual text 7

automatic processing 9
checking for 9
defmition of 235
scanning for 8

revision code
location 76

revision codes 32, 33, 34
right indention 127
right-hand page

defmition of 235
rule defInitions 22
rules 121
running footing 26,36,48, 51, 52, 58, 59, 80,

81, 137, 157
defmition of 235

running heading 26, 36, 46, 50, 51, 52, 58,
157

defmition of 235

s

saving page numbers 144
SCRIPT command 30

PROFILE option 4
SCRIPT iVS iii

definition of 235
SEC attribute 46, 50, 57, 58
security classification 26, 36, 46, 50, 52, 57,

58
SEE attribute 140, 142, 145
SEEID attribute 140, 142, 145
semi symbol 22
service macros 163
short title 27
short titles 27, 47, 48, 80, 81
simple lists 98

See also lists
SL tag 98
source document

Index 245

defInition of 235
spacing

changing defaults 38
for headings 78
for list 110

changing defaults 110
special symbols

ampersand 22
date 48
GML 22
required blank 35
semi-colon 22

spelling checking 34, 51, 115, 117, 119, 120
Starter Set iii
STITLE attribute 47,48, 80, 81
super font 130, 132
superscripts 12, 131

device differences 24
styles 24, 131

symbols
defInition of 235
naming conventions 11

SYSPAGE 164
system variables 30
SYSVAR 'e' 31
SYSVAR'D' 26,30,46,78, 164
SYSVAR 'H' 26, 30, 60, 61, 78, 79
SYSVAR 'P' 30, 167
SYSVAR 'R' 30, 152, 161
SYSV AR 'S' 26, 31, 32, 58
SYSVAR'T' 31,47,50,52
SYSVAR '\V

changing the ftle name 38
SYSV AR '\V' 2, 30, 36, 62, 149, 150, 161
SYSVAR 'X' 30,31,35,62,142,144,145,

149, 150, 152, 154, 155, 157
SYSVARs 23

T

changing the defaults 37
processing of 30

tab 169
table of contents 58, 59,60,61, 62

fonts 26
tabs 108
tag 145

defInition of 236
tag delimiters 4, 6
tag names 6
tags 1
TERMHI attribute 101, 105, 106
terminal

defmition of 236
text administrator 1
text programmer

defInition of 236
text strings 31

246 DCF: Gl\IL Starter Set Implementation Guide

time symbol 31
title

line spacing for 23
title citations 133
title page 31, 45-55, 57, 58

modilications to 53
short title 36
spacing 23

TITLE tag 47, 48
TITLEP tag 47
TOe tag 59
TSIZE attribute 101
TSO macro library 173
two-column layout

See column layout

u

UL tag 98
unordered lists 98

See also lists
upper case

definition of 236
user profIles 30, 36

v

vertical justification 23, 115, 118

\tV

WIDTH attribute 117, 122
default value 116

word spacing 115, 118

x

XIVIP tag 115
xmpfont font 115, 116

3

3800 Printing Subsystem l\lodcl 3 125, 127
default fonts 40
initial font defInitions for 24
superscripts 12

3820 Page Printer
default fonts 40
initial font dcfmitions for 24
superscripts 12

4

4250 Printer 127
default fonts 40
initial font definitions for 24
superscripts 12

Index 247

Document Composition Facility:
GML Starter Set Implementation Guide
Order No. SH35-0050-2

READE~fS

COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to cOhlinunicate your views
about this -publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

You may use this form to communicate your comments about this publication, its organization, or
subject matter with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or the IBM branch office serving your locality.

Yes No

• Does the publication meet your needs? D D

• Did you find the information:

Accurate? D D
Easy to read and understand? D D
Easy to retrieve? D D
Organized for convenient use? D D
Legible? D 0
Complete? D D
Well illustrated? D D
Written for your technical level? D D

• How do you use this publication:

As an introduction to the subject? D
For advanced knowledge of the subject? D
To learn about operating procedures? D
As an instructor in class? D
As a student in class? D
As a reference manual? D

• What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH35-0050-2

Reader's Comment Form

Fold and tape Ple •• e Do Not Staple Fold and tape

Attention: Information Development
Department 580

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Products Division
P. O. Box 1900
Boulder, Colorado 80301

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

o
o
(')
c:
3
CD
:::l
.-+

(")
o
3

"C
o en ;::+.

o·
:::l

"T1 m
Q.
~.

G')

s:
r-
OO
.-+ m
;:\.
CD ..,
00
CD
.-+

3
'0
CD
3
CD
:::l
.-+ m
.-+ o·
:::l

G')
c: a:
CD

'"C ..,
:5'
.-+
CD

- --a.

Fold and tape Ple •• e Do Not Staple Fold and tape

:5'
c
en
~
00
:::I:
CAl
0'1
I

o o
0'1 o
I

I\.)

Document Composition Facility:
GML Starter Set Implementation Guide
Order No. SH3S-00S0-2

READER'S
COMMENl
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

You may use this form to communicate your comments about this publication, its organization, or
subject matter with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM r~presentative or the IBM branch office serving your locality.

Yes No

• Does the publication meet your needs? D 0

· Did you find the information:

Accurate? D 0
Easy to read and understand? D 0
Easy to retrieve? D 0
Organized for convenient use? D 0
Legible? D 0
Complete? D 0
Well illustrated? D 0
Written for your technical level? D 0

• How do you use this publication:

As an introduction to the subject? D
For advanced knowledge of the subject? D
To learn about operating procedures? D
As an instructor in class? D
As a student in class? 0
As a reference manual? D

• What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH35-0050-2

Reader's Comment Form

Fold and tape Please Do Not Staple

Attention: I nformation Development
Department 580

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Products Division
P. O. Box 1900
Boulder, Colorado 80301

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

o
o
(')
c::
3
CD
::J
.-+

(')
o
3
'0
o
CJ)
;::t:
o·
::J

."
Q)

Q.
~.

G)

s:
r
en
.-+
Q)

;:::l.
CD ..,
en
CD
.-+

3
'0
CD
3
CD
::J
.-+
Q)
.-+ o·
::J

G)
c::
~
CD

-0 ..,
:;-
.-+
CD

- --0..

Fold and tape Please Do Not Staple

--- ------ - ---- ---- - ---- - - ----------_.-

Fold and tape

::J

C
en
~
en
:::I:
w
(J'1
I
o
o
(J'1
o
I

N

Document Composition Facility:
GML Starter Set Implementation Guide
Order No. SH35-0050-2

READER'S
COMMENl
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

You may use this form to communicate your comments about this publication, its organization, or
subject matter with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM r~presentative or the IBM branch office serving your locality.

Yes No

• Does the publication meet your needs? 0 0

• Did you find the information:

Accurate? 0 0
Easy to read and understand? 0 0
Easy to retrieve? 0 0
Organized for convenient use? 0 0
Legible? 0 0
Complete? 0 0
Well illustrated? 0 0
Written for your technical level? 0 0

• How do you use this publication:

As an introduction to the subject? 0
For advanced knowledge of the subject? 0
To learn about operating procedures? 0
As 'an instructor in class? 0
As a student in class? 0
As a reference manual? 0

• What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH35-0050-2

Reader's Comment Form

Fold and tape Please Do Not Staple

Attention: Information Development
Department 580

BUSINESS REPLY MAil
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Products Division
P. O. Box 1900
Boulder, Colorado 80301

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

o
o
(')
c:
3
CD
:l
~

()
o
3
"0
o
(J)
;::::t:
o·
:l

."
Q)

Q;
~.

G>
s:
r
en
~
Q)

:4
CD
~

en
CD
~

3
"0
CD
3
CD
:l
~
Q)
~ o·
:l

G>
c:
is:
CD

'"tJ
::::!.
:l
~
CD

- --0.

Fold and tape Please Do Not Staple Fold and tape

--- -----
~::f~1

:l

C
en
~
en
:J:
w
0"1
I

8
0"1 o
I

I\.)

