File No. S360-24
Order No. GC28-6394-6 | D OS

Systems Reference Library

IBM DOS Full American
National Standard COBOL

Program Numbers: (Versions 1 & 2) 360N-CB-482
(Version 3) 5736-CB2 (Compiler Only)

5736-LM2 (Library Only)

DOS/VS COBOL 5746-CB1 (Compiler & Library)
5746-LM4 (Library Only)

This publication gives the programmer the rules for
writing programs that are to be compiled by the IBM
DOS/VS COBOL and IBM Full American National Standard
COBOL compilers under the Disk Operating System. It is
meant to be used as a reference manual in the writing
of IBM Full American National Standard COBOL programs.

COBOL (COmmon Business Oriented Language) is a
programming language, similar to English, that is used
for commercial data processing. It was developed by
the Conference On DAta S¥stems Languages (CODASYL).

The Standard of the language is American National
Standard COBOL, X3.23-1968, as approved by the American
National Standards Institute (ANSI). American National
Standard COBOL is compatible with, and identical to
international standard IS0/R1989-1972, Programming
Language COBOL.

IBM DOS/VS COBOL and IBM DOS Full American National
Standard COBOL, Version 3, which include all the
features of earlier versions, incorporate the eight
processing modules defined in the highest level of the
American national standard. These modules include:

Nucleus

Table Handling
Sequential Access
Random Access
Sort

Report Writer
Segmentation
Library

A significant number of IBM extensions are implemented
as well; these extensions are printed on a shaded
background.

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

PREFACE

This publication descrikbes the IBM
implementation of Full American National
Standard COBOL, and all IBM extensions to
that standard. Some statements are
extensjons to either American National
Standard COBOL or to both American National
Standard COBOL and the complete definition
of CODASYL COBOL.

In this publication, the term standard
COBOL means American National Standard
COBOL; the term IBM Full American National
Standard COBOL means this IBM
implementation of American National
Standard COBOL and all extensions to that
standard. There are two types of
extensions:

1. Those that represent features not
specified by American National
Standard COBOL.

2. Those that represent an easing of the
strict American National Standard

Seventh Edition (April 1976)

COBOL rules and allow for greater
programming convenience.

All such extensions are printed on a shaded
background for the convenience of users who
wish strict conformance with the standard.
Use of features that are extensions to the
standard may result in incompatibilities
between the implementation rerresented by
this document and other implementations.

If a complete chapter is an extension, only
the page heading is shaded. These chapters
are:

This edition is a reprint of GC28-6394-5 incorporating changes released in Technical Newsletter

GN26-0801 (dated November 1, 1975).

This edition, as amended by Technical Newsletter GN26-0887, describes Version 2 of IBM DOS Full
American National Standard COBOL at the Release 26 level of the Disk Operating System. It also
describes the Program Product Version 3, Release 3, including amended System/370 device support, and

Release 2 of the Program Product DOS/VS COBOL.

Information in this publication is subject to significant change. Therefore. before using this
publication, consult the latest JBM System/360 Bibliography, GC20-0360. and IBM System/370
Bibliography, GC20-0001. and the technical newsletters that amend the bibliography, fo learn

which editions and technical newsletters are current and applicable.

Requests for copies of IBM publications should be made to your IBM representative or to the

IBM branch office serving your locality.

Forms for readers’ comments are provided at the back of the publication. If the forms have
been removed. comments may be addressed to IBM Corporation. P.O. Box 50020, Programming
Publishing, San Jose. California 95150. Comments and suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1968, 1969. 1970, 1971,1972. 1973

For the less experienced programmer, the
introduction summarizes the general
principles of COBOL, highlights features of
American National Standard COBOL, and,
through an example, illustrates the logical
sequence and interrelationship of commonly
used elements of a COBOL program. The
balance of the publication gives the
specific rules for correct programming in
IBM Full American National Standard COBOL,
as implemented by the System/360 Disk
Operating System. Appendixes provide
supplemental information useful in writing
CCBOL programs. Appendix A describes the
use of intermediate results in arithmetic
operations; Appendix B contains several
sample programs showing the use of mass
storage files; Appendix C lists all of the
formats and reserved words in IBM Full
American National Standard COBOL; Appendix
D is a file processing summary; Appendix E
gives considerations for the use of ASCII
encoded files; Appendix F explains the
symbolic debugging feature; Appendix G
explains combined function card processing.

Compiler output and restrictions,
programming examples, and information on
running an IBM American National Standard
COBOL program are found in the publication
IBM DOS Full American National Standard
COBOL Programmer's Guide, Order
No. GC28-6398 and in the Program Product
publications:

IBM DOS Full American National Standard
COBOL Compiler and Library, Version 3,
Programmer's Guide, Order No. SC28-6u44l

IBM DOS/VS COBOL Compiler and Library
Programmer's Guide, Order No. SC28-6478

These programmer's guides and this
language reference manual are corequisite
publications.

A knowledge of basic data processing
techniques is mandatory for the

understanding of this publication. Such
information, as it applies to System/360,
can be found in the following publications:

Introduction to IBM Data Processing
Systems, Order No. GC20-1684

Introduction to IBM System/360 Direct
Access Storage Devices and Crganization
Methods, Order No. GC20-1649

The reader should also have a general
knowledge of COBCL before using this
manual. Useful background information can
be found in the following publications:

American National Standard COBCL Coding:

Card And Tape Arplications Text, Order
No. SR29-0283

Coding Technigues And Disk Applications
Text, Order No. SR29-0284

Illustrations, Order No. SR29-0285

Student Reference Guide, Order
No. SR29-0286

Where information in the foregoing
publications conflicts with information in
this publication, the contents herein
supersede any other in the writing of COBOL
programs. Any violation of the rules
defined in this publication for using the
Disk Operating System is considered an
error.

A general knowledge of the IBM Disk
Operating System is desirable, although not
mandatory. The following publication gives
such information:

IBM System/360 Disk and Tape Operating
System: Concepts and Facilities, Order
No. GC24-5030.

ACKNOWLEDGMENT

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, usinag ideas taken from this report
as the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention 'COBOL' in
acknowledgment of the source, but need not gquote this entire section.

"COBOL is an industry language and is not the property of any company Or
group of companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of CORBOL.
Inguiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commerical Translator, Form

No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications."

Summary of Amendments Number 10

Date of Publication: December 3, 1976
Form of Publication: TNL GN26-0887 to GC28-6394-4,-5,-6

IBM DOS COBOL

Maintenance: Documentation

® Minor technical changes and additions have been made to the text.

Summary of Amendments Number 9

Date of Publication: March 15, 1974
Form of Publication: TNL GN28-1062 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

® SORT-OPTION clause for Sort and Merge Features
® 5425 MFCU Support

Maintenance: Documentation only

Minor technical changes and corrections to update the documentation to
Release 2

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

® 5425 MFCU support deleted

® Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 8

Date of Publication: October 15, 1973
Form of Publication: TNL GN28-1047 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

® Merge Facility

New: Documentation only

® Miscellaneous File Processing Considerations

Maintenance: Documentation only

Minor technical changes to update the documentation to the initial release level.
1BM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

.Summary of Amendments Number 9

Date of Publication: March 15, 1974
Form of Publication: TNL GN28-1062 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

® SORT-OPTION clause for Sort and Merge Features
® 5425 MFCU Support

Maintenance: Documentation only

Minor technical changes and corrections to update the documentation to
Release 2

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

® 5425 MFCU support deieted

® Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 8

Date of Publication: October 15, 1973
Form of Publication: TNL GN28-1047 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

® Merge Facility

New: Documentation only

® Miscellaneous File Processing Considerations

Maintenance: Documentation only

Minor technical changes to update the documentation to the initial release level.
IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 4

Date of Publication: May 15, 1972
Form of Publication: TNL GN28-0489 to GC28-6394-2

IBM DOS Full American National Standard COBOL, Version 3
New: Programming Features

® Added System/370 device support: 2319,3211, 3330, 3410, 3420, 3505,
3525

New: Documentation Only

e Symbolic Debug example

® 3525 Combined Function Processing

Miscellaneous Changes for Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections

Summary of Amendments Number 3

Date of Publication: Aprii 15, 1571
Form of Publication: TNL GN28-0436 to GC28-6394-2

IBM DOS Full American National Standard COBOL, Version 3

New: Programming Features

® ASCII Tape file processing
® SIGN clause implementation
® OBJECT-COMPUTER paragraph requests System/370 instructions

® ON statement enhancement
Miscellaneous Changes for Versions 2 and 3

Maintenance: Documentation only

® PICTURE clause description and table of precedence
® USAGE clause description
® Minor technical changes and corrections

® Added device support

Summary of Amendments Number 2

Date of Publication: January 1970
Form of Publication: Revision, GC28-6394-2

1BM DOS Full American National Standard COBOL, Version 2
Maintenance: Documentation only

Minor technical changes and corrections

Summary of Amendments Number 1

Date of Publication: July 1969
Form of Publication: Revision, GC28-6394-1

Miscellaneous Changes
New: Documentation only

® Table Handling clarifications
® Table Handling sample program

Maintenance: Documentation only

Minor technical changes and corrections

CONTENTS -- DOS/VS COBOL

DOS/VS COBOL CONSIDERATIONS « = « =« o o o = = « « o o « o o o o «
WHEN-COMPILED Special RegiSter . o o o ¢ @ = = o o o s o« o a o =
Configuration Section .« « o = o« ¢ o 4 o 4 = 5 6 o v 2 2 e . e = o
SOURCE-COMPUTER Paragraph « = o o« ¢ o o o o @ o & = o « = o o =«
OBJECT-COMPUTER Paragraph v« o « o « 2 o v o o « w « « « « a « o
SPECIAL-NAMES Paragraph « = o« = o = 2 o o o o « = o o o o o o =
VSAM File ProcesSSing . o« o = o o o =« o o« o « @ « o « « s © v o
Environment Division -- File-Control Paragraph o « « .« = « « «
SELECT ClAUS€ « « o « =« o w « o = o = ©» = @ o« « a a « = = o =
ASSIGN ClauSe « « « « « o v w u s v =« @« a = © o a o « n o o
RESERVE ClaUSE &« o o o = = o @ o @ o = o o s 0 o o« s« n « =« «
ORGANIZATION ClaAUSE o =« w © = « % = o = v © @« © =« o o » o o =
ACCESS MODE Clause . “« ¢ v o e m e w e w smoe v = om o=
RECORD KEY Clause (Format 2) e e o % 2 © @ e m e w m @ o e
PASSWORD ClaUS€ + o« o « « © 0 = = ©w = = @ »u a o a o = o « = o
FILE STATUS ClauS€ a o = = “ e m e e mw oew em oee oo o
Environment Division -- I- O—CONTROL Paragraph . « o = ¢ o « o =
RERUN ClAUSE « & o w = o @ =« o = »w v o o v s o o = a o = o =
SAME ClaUS€ v v o o« = o = o = @« w v © o o o o o= =« w = = =« = =
Data Division —— FD ENtIY ¢ o v« o o o o o =« o o « o o o« = o o =
IABEL RECORDS ClaUS€ w « = w o o o o w w o= o o o o o u »n « =
Procedure DiviSiOn .+ « « o o « @ = o a o ©« © o o » = « o = a «
common Processing Facilities .o o w v o o o o o o« o o o = o
EXCEPTION/ERROR Declarative . w « o 2« o = o o o 2 o 2 o o o =
OPEN Statement . o w « o o ¢ o« o o 0 o n = o o =« o « o o = =
START Statement . o« o o « o = o o o = o « © o« o o = o« » = =« =
READ Statement .« o« o o o @« o« o a o = 2 0o « © © o o o = o o
WRITE Statement « w o « o o o 2 =« 2 ¢ =« « 2 o « s w s ©« »w v
REWRITE Statement o o o o o « w s o = @ s« 5 s o « a « « « « =
DELETE Statement . o« o o o o 0 o o ®= o« o © « © o o « o a o =
CLOSE Statement . v o« v o o o o o o o o o @ o o6 = o o o = v =
ueI\chaCi.Li‘y--...----‘--.-n-.u‘n.--.-o
Environment Division . . = b e m e e e e em e weow .o
File-Control Entry for Merqe Flles e o m m e m e emomou =
I-0-COntrol PAragraph « o « « « o « o =« © = « @ « v o w s o =
Data DiviSiON o = + o 2 o = « @ = « o w o © 5 a a = 2 = = « »
Merge-File Description Entry . « o ¢ o o = 2 6 « 2 o« v =« = w
Procedure DivisSion . ¢ o o o 2 o 4 o 4 o @ @ 2 2 4 o = o a = =
MERGE Statement . o« o w « « « a « @ 2 % « o a 2« o o o = o =
3886 OCR PXOCESSING « o v = « © u o o o = = o a o« o o » s = = = =
FIPS FlaggeTr « o o o o w o o = o = % s = v o = @ © « w o« w =« = =
Miscellaneous File Processing Considerations . « « o« « <« o « « «
File Processing Summary -- New DevicesS w« o v o o o « v = o =
ASSIGN ClaUS€ o « o = = = « o « 2 o = = ©w ©w o o« = v = » o o =
ACTUAL KEY ClaUSe = 2 « 2 o o o = =« o o « = = s = « « a« = « =
APPLY WRITE-VERIFY ClAUSE « = v o © =« o # o © o « o = n = « =
APPLY CYL-OVERFLOW ClAUSE o « = 2 © =« ©« w o = » « =« = o = o =
BLOCK CONTAINS ClAUSE o « o « n « v =« ©= = o = = 2 =« a = = =« =
LABEL RECORDS ClaUSE€ 2 « o o © o o o =® « u a © =« o =« = « = =
ERROR DeclarativVe o« « o« = o o« = = o a = o = o o2 a = a = = « =
ACCEPT Literal Statement o a o o o = = © « = o « a o « + «
OPEN Statement .« ¢ o « o o « = ¢ = o =« o o o © o o o o = o
WRITE Statement . ¢« . o« o o o o o « o =« @ = = & o uw = = » o =
CLOSE Statement . . . o o o o o o 4 o a @ « = w o = = = « o =
SCrt FEALUYE v 4 o o = =2 = = ¢ o o a = s o = = = a o« =« = = =
5425 Combined Function ProCeSSing w « = « o o o 2 @ o w = =

FIGURES

Figure I.

Figure

II.

Systems/370

Figure
Figure
Figure
Figure
Figure
Figure

ITI.
Iv.
V.
VI.
VII.
VIII.

Moves and Comparisons -- System/360 vs. System/370 -

Shift And Round Decimal (SRP) -- System/360 vs.
Status Key Values and Thelr Meanlngs c % @ = = :
OPEN Statemént Options and Permissible I/O Statements
KEY Ttem Categories and Collating Sequences - - e .
The Four Levels oOf FIPS ProcesSSinNg . v « o o « = o
File Processing Summary -- DOS/VS COBOL Devices . .

Error Bytes for 3540 -- GIVING Option “« s 8 omoe ow

R §
- i
- ii
- ii
- ii
- iv
- iv
- v
- vi
vi

- vi
«vii
-vii
«vii
viii
viii
viii
- ix
- ix
- ix
- ix
- ix
- X
- xXi
xiii
-~ XV
- XVi
xvii
Xix
- XX
- XX1
- xxi
xxii
xxii
xxii
xxiii
xx1iii
XXiv
xxiv
XXVvii

xxviii

-

XXxXiv
XXXiv
XXxXiv
XXXV
XXXV
XXXV
XXXV
XXXV
XXXV
XxXxXvi
XXXVi
XXXVi
XXXVi
XXXVi
XXxXvi

CONTENTS —- AMERICAN NATTONAL STANDARD_ COBOL

FEATURES OF THE DOS FULL COBOL
PRODUCT COMPILERS . < < ¢ s o o « o»

INTRODUCTION v o « « o o s« = @« =« o «
Principles Of COBOL .+ v o « = « « «
A Sample COBOL Program . « « « « « =
Identification Division
Environment Division . - « « . -
Data Division .« ¢ o ¢ 4 o« o = =
Procedure Division « o = « « - &
Beginning the Program -- Input
Operations « « « o « o = o =« « =«
Arithmetic Statements . « <« « =
Conditional Statements . . - « =
Handling Possible Errors
Data-Manipulation Statements . .
Output Operations . . = « « « =
Procedure Branching Statements .
Ending the Program . « w o « « =
PART I -- LANGUAGE CONSIDERATIONS .
STRUCTURE OF THE LANGUAGE <« 2« « = =
COBOL Character Set .« « « o « = o =
Characters Used in WOrds o « « =
Characters Used for Punctuation
Characters Used for Editing . .
Characters Used in Arithmetic
EXPressions . « o « o o« o « « o
Characters Used for
Relation-conditions . . - <« < .
Types Of WOrds v o« o o o o v = = « =
Reserved WOXdS « « o « = « v « =
NamesS &« o @ o @ o o a o = o =« =
Special-NameS <« « o « o = o = =
Constants .« o o « « o @ © © a @ a
Literals « o « « o o w 2 = o « =
Figurative Constants . = « « « -
Special Registers . . .« « ¢« = =« « =

ORGANIZATION OF THE COBOL PROGRAM .
Structure of the COBOL Program .

METHODS OF DATA REFERENCE . < « + o

Qualification « « « ¢« o a = o o « =
SubsSCripting « « o« « o o « e o © « =
InNdexXing o« o w « =« v « o o @ a o « =

USE OF THE COBOL CODING FORM o w « =

Sequence NUMDEXS o o« « o o = o « =« =

Area A and Area B
Division Header . - - « « « « =
Section Header - . . - -
Paragraph-names and Paragraphs

@ @ 9o m W e e e =

Level Indicators and Level Numbers

of Lines 4+ . + -« - -
Continuation of Nonnumeric therals
Continuation of Words and Numeric

Literals . o o o o o o « = a o « «
Blank LInes 4 o a v « = = © = o = «
comment LINE€S .« « « w v = = =« = « o

Continuation

-

FORMAT NOTATION .« o ¢ o o o o « = =

PART II -- IDENTIFICATION AND
ENVIRONMENT DIVISIONS . &« o« « « o «

IDENTIFICATION DIVISION . . o« o o« o
PROGRAM-ID Paragraph « « « « w =
DATE-COMPILED Paragraph . . - .

ENVIRONMENT DIVISION -- FILE
PROCESSING SUMMARY v« « <« =« « « o o a
Data Organization . . « ¢« 2 o« @ o «
Sequential Data Organization . .
Direct Data Organization
Indexed Data Organization . . «
Access Methods « e m o
Accessing a Sequential Flle “ o .
Accessing a Direct File . ¢ « o
Sequential ACCESS .+ v o o « o
Random Access . . - e o w o
Accessing an Indexed F11e - e w o
Sequential ACCESS « o « = =« = «
Random ACCESS o o« o = « o « o

ORGANIZATION OF THE ENVIRONMENT
DIVISION & <« « =« o o = s = =« = = o =

ENVIRONMENT DIVISION -- CONFIGURATION

SECTION - . « o e o
SOURCE—COMPUTER Paragraph “« w =
OBJECT-COMPUTER Paragraph . . .
Program Product Information --
Version 3 . « e v o « o o » « =
SPECIAL-NAMES Paragraph . . . «

ENVIRONMENT DIVISICN -- INPUT-OUTPUT
SECTION 4 o ¢ o o w o a = @« = « =« =
FILE-CONTROL Paragraph « . . « <« < =
SELECT ClausS€ <« o« o « a « « «
ASSIGN ClauS€ . « w = o « « = =
Program Product Information --
version 3 . ¢ o o o+ « o o @
RCE and OMR Format Descrlptor « o -
RESERVE ClauS€ o« « o « o o « o «
Program Product Information --
Version 3 . 4 4 e 4 e o & ° @ =
FILE-LIMIT Clause o a o « o « =
ACCESS MODE ClauUS€ o w = o « < =
PROCESSING MODE Clause€ + « « o =
ACTUAL KEY Clause « o « o« « = =
NOMINAL KEY ClausSe « w « « « « =
RECORD KEY Clause .« o« « .
TRACK~AREA Clause .« « « «
I-O-CONTROL Paragraph . . . « « o
RERUN ClauSe€ v « o o & «
SAME ClausSe o « « » o = o . .
MULTIPLE FILE TAPE Clause - e =
APPLY ClauS€ « 2« v « = s o = = =

PART III -- DATA DIVISION . . o« « =

63

64
64
65

65
65

DATA DIVISION -- INTRODUCTION
Organization of External Data
Description of External Data . .

-

File SeCtion o w =« =« « a =

ORGANIZATION OF THE DATA DIVISION . .
Organization of Data Division Entries

Level Indicator .
Level NUMDEr & o o« « = © o = « « =
Special Level Numbers
Indentation « o o« o = o o « = o =

o B e w w e m -

3

- o e w e

File Description Entry
Record Description EntXy « « o » =

Working-Storage Section .« o« o« « ¢ o .

Data Item Description Entries . .
Record Description Entries - . . -

Linkage Section .« ¢« o« o o o © = =« = «
Report Section o v o o = o o o 2 = v o

FILE DESCRIPTION ENTRY ~-- DETAILS OF
CLAUSES 4 o « s o o = © @ m e e w oo

BLOCK CONTAINS Clause e ® © e w e
RECORD CONTAINS ClauSe€ o « = « w =
Recording MOAE o w w o o = u w o o
RECORDING MODE ClauS€ o o =« « = «
LABEL RECORDS ClauS€ = o o « o o «
VALUE OF ClauS€e <« o « v o @ o w «
DATA RECORDS Clause o « « < « =

REPORT ClausSe .« o« « v a v o « = =

DATA DESCRIPTION «. < & 4 <« o =« v o = =

DATA DESCRIPTION ENTRY -- DETAILS OF
CLAUSES & o« o = = = - “ e o o o =

Data-name or FILLER Clause . - e o=
REDEFINES Clause€ o« o o« o « o o
BLANK WHEN ZERO Clause o« « « « « =
JUSTIFIED ClauS€ o v o o v = =« o =
OCCURS ClausSe .« « w o = = ©« ©» = =
PICTURE Clause . « « = « @ = w o=
The Three Classes of Data . . s -
Character String and Item Size . .
Repetition of Symbols- -
Symbols Used in the PICTURE Clause
The Five Categories of Data . « =
Types of EJditing - « o w = =
Insertion Editing . « « o « « = -
Zero Suppression and Replacement
EQiting o v o a o o o o = @ =« = =
Program Product Information --
Version 3 . ¢« v o o 2 o « 0 e « a
SIGN ClausSe . o« =« © o o = o = o =
SYNCHRONIZED ClausS€ w w o « « o o
Slack Bytes . - . o & 2 4« o 4 - o
USAGE ClauS€ w o v« = = o = = = = =

“« o =

Display Option - e « = = =

The Computational Opt10ns « e o
Program Product Information --
Version 3 o . 4o 4 o « o = @« « =
VALUE ClauSe uw w 2 v« o « « a = o =
RENAMES ClauUSE€ o o o =« o @ = o = =

PART IV -- PROCEDURE DIVISICN

ORGANIZATION OF THE PROCEDURE DIVISION
Categories of Statements .
Conditional Statements . o« « = « o =

“ w o e e =

-100
100
-102
-103
-10U
.105
-106
-.106
.107

-.108

-111
-111
-112
-115
~116
-116
+116
-117
-118
-118
-118
-120
-125
-125

-128

-129
«129
.130
.132

12
-lJ

-137
-138

-139
142
- 1uh

- 147
-149

-150
-151

Imperative Statements . .
Compiler-Directing Statements

ARITHMETIC EXPRESSIONS . . .

Arithmetic Operators . .

CONDITIONS & v o o 2 o o
Test Conditions
Class Condition . .

-

Condition-Name Condltlon

Relation Condition .
Sign Condition . . =

Switch-Status Condition

Compound Conditions . .
Evaluation Rules . . .
Implied Subjects and
Relational-Operators .

Implied Subject . .

Implied Subject and Relatlonal

Operator « « o o o o
Implied Subject, and
Relational-Operator

CONDITIONAL STATEMENTS .
IF Statement
Nested IF Statements

DECLARATIVES ¢ & u » o o
Sample Label Declarative

ARITHMETIC STATEMENTS .
CORRESPONDING Option
GIVING Option . o =
ROUNDED Option - . .
SIZE ERROR Option .
Overlapping Operands
ADD Statement . . .
COMPUTE Statement .
DIVIDE Statement . .
MULTIPLY Statement .
SUBTRACT Statement .

-

-

Subject

°

-

-

PROCEDURE BRANCHING STATEMENTS

GO TO Statement . .
ALTER Statement . .
PERFORM Statement .
STOP Statement . o .
EXIT Statement . <

DATA-MANIPULATICN STATEMENTS

MOVE Statement . . .
EXAMINE Statement .
TRANSFORM Statement

INPUT/OUTPUT STATEMENTS
OPEN Statement . . -
START Statement .
SEEK Statement . . .
READ Statement . . .
WRITE Statement . .

Program Product Information

(Version 3) . . « =«
REWRITE Statement .
ACCEPT Statement .
DISPLAY Statement .
CLOSE Statement .

-

-

-«

-

-

Sequential File Processing
Random File Processing .

and

&

é

-151
-152

.153
.153

155
.155
.156
-157
.158
.162
.162
.162
-163

-164
.165

-165
-165

.166
-166
-167

-169
172

-179
.179
-179
-179
.180
.180
.181
.182
.183
-184
-185

.187
-187
.188
.189
-196
-196

.198
.198
-.201
.203

- 206
-206
.208
.210
. 211
.212

.216
.218
.219
.220
.221
. 222
- 224

SUBPROGRAM LINKAGE STATEMENTS . 4 o =
CALL Statement - v v v o = o« « = o
ENTRY Statement o« o o« o o ¢ o o
USING Option . « « =
Program Termination Con81derat10ns
EXIT PROGRAM Statement . . <« o o =
GOBACK Statement « v v o o v o = =
STOP RUN Statement « « « « « o = =

e © - ° e

COMPILER-DIRECTING STATEMENTS . « « -
COPY Statement = « = o o =« w o o =
ENTER Statement . « « o o = = o =
NOTE Statement « « v o« o « v « © =

PART V —-- SPECIAL FEATURES « o © o u =

SORT FEATURE o 4w ¢ o o o @« o« o = = o =
Elements of the Sort Feature . . o« -
Environment Division Considerations
for Sort .« & o « o . .
Input-Output Section .
File~Control Paragraph « « « « = =
Assignment of Sort Work Units . .
I-O-CONTROL Paragraph . « « - = =
RERUN Clause . . . - - e o =
SAME RECORD/SORT AREA Clause « o =
Data Division Considerations for Sort
File SectiOn w o o« ¢« « © v o « « = @
Sort-File Description o .
Procedure Division Considerations for
SOTt @ ¢ o o a @ a = @ ®« w =« = =« = o =
SORT Statement o« o« = w o o o o « =
RELEASE Statement o+ « o« o 2« =« o
RETURN Statement . . .
EXIT Statement « . - .
Special Registers for SOrt . « o« « o =

* o ® e e @ w -

© @ s e e W oo

3
s
L]
1]
:
L]

E
L]
8
.
L
°

Sample Program Using the Sort Feature

REPORT WRITER FEATURE . - o o 2 o « =
Data Division -- Overall Description .
Procedure Division -- Overall
Description . ¢« .« o « o o « = o o o =
Data Division Considerations for
Report Writer o« <« & o o o « o ¢ o = «
File Description « o« = v v = o o« u =
REPORT Clause . . « @ e e e om o=
RECORDING MODE Clause @ o e s uw =
DATA RECORDS Clause . o =
RECORD CONTAINS ClauSe w o o « = =
Report Section . « o« e« « o = o o o »
Report Description Entry -« -« + - «
CODE ClauUSe <« w o o = © = « < =
CONTROL ClauUSe « o « = © = o = « =
PAGE LIMIT ClauS€ « w = « o « o
Report Group Description
LINE ClauS€ « o o = « « o o = =
NEXT GROUP Clause o w« « = w o o =
TYPE ClauUS€ .« o« v o « ©w = = » o =
USAGE ClaUS€ « « o = o o « = v = =
COLUMN ClauS€ « o o « o« @ @« o =» =
GROUP INDICATE ClauS€ w o « « =« «
JUSTIFIED ClauSe « w o v o v = o =
PICTURE ClauUS€ « w « v w o « o = =
RESET ClaUSE v v« o o o w o = o = =
BLANK WHEN ZERO ClausSe . = « « o« »
SOURCE, SUM, or VALUE Claus€ « . «

E
1]
[}
&

=

=]

&+

H
L

s

s

«226
-226
w227
-228
- 231
.232
-232
~232

+233
-233
-233
- 233

« 235

- 237
- 237

- 238
-238
- 238
- 239
-239
- 240
- 240
- 241
.241
- 241

- 242
- 242
- 247
- 2u8
- 248
- 249

- 250

-252
- 252

- 253

. 254
- 254
- 254
. 255
- 255
- 255
- 256
- 256
- 256
« 257
-~ 258
- 261
-263
- 265
- 267
. 269
- 269
.270
-.270
- 270
- 270
- 271
- 271

Procedure Division Considerations . .
GENERATE Statement .« o w o« o« o w <
Detail Reporting o « o« « o o o « =
Summary Reporting . . . « . = -

. 273
.273
.273
.273

Operation of the GENERATE Statement 274

INITIATE Statement . . . - « o « =
TERMINATE Statement . « « « o « =
USE Sentence « « o« = « « - -
Special Registers: PuGE—COUNTER and
LINE-COUNTER @ « o w 2 o v o o o o « o
PAGE-COUNTER « 4w © = v « o = = =
LINE-COUNTER . .
Sample Report Writer Program . . o « =
Key Relating Report to Report
Writer Source Program . o« « o = o

o o ®w e ® o ® @ o

TABLE HANDLING FEATURE - . - = « & « =

Subscripting . o o ¢ ¢ ¢ 4 4 ¢ o o a
INdEXINg o« o « o o o © o o« » o o o =
Restrictions on Indexing,

Subscripting, and Qualification . .
Example of Subscripting and Indexing
Data Division Considerations for Table
Handling . . = e« o e ma e e e oa o
OCCURS Clause o e @ o m e s o e =
USAGE IS INDEX Clause . o o o = =
Procedure Division Considerations for
Table Handling o« « o« o © o v = o « o =
Relation Conditions . « o = o w =
SEARCH Statement o o« o o« o ¢« o v

SET Statement o+ o« « « = o « o = =
Sample Table Handling Program

SEGMENTATION FEATURE = « o« o = o o o =
Organization « « « o « o = o o « « =« =
Fix=2d Portion . <« o« o o o o o o « =
Independent Segments - . « o < o - .
Segment Classification - « o « « = « =
Segmentation Control . . < “ e e = =
Structure of Program Segments “ - e =
Priority Numbers - « « « « « o « o «
Segment Limit . o o o = « o « o <« =
Restrictions on Program Flow . . . o «
ALTER Statement .« « « ¢ « o o o =
PERFORM Statement - - .
Called Programs e « « « = o « = =

SOURCE PROGRAM LIBRARY FACILITY . . .
COPY Statement « o « o ¢ « o o o =«

Extended Source Program Library

Facility + o o o o o « o = = o o n o =
BASIS Card « « w w o o « + « « = =
INSERT Card o« o o o o « o =« o = =
DELETE Card . « o o o = « o o « =

DEBUGGING LANGUAGE . - - e o o =
READY/RESET TRACE Statement o o
EXHIBIT Statement . « « o « « -
ON (Count-conditional) Statement -
Program Product Information --
Version 3 . o a2 « « = - e e e o=

Compile-Time Debugging Packet « - e o=
DEBUG Ca¥d « o« o o o w « = o « = =

FORMAT CONTROL OF THE SOURCE PROGRAM

LISTING . 2o © o « © =« o v a s » a = =
EJECT Statement . . « « o w® @
SKIP1, SKIP2, and SKIP3 Statements

.275
. 275
.276

277
277
.278
-279

. 282

- 289
. 289
-290

.291
-291

-292
.292
.299

-300
- 300
.301
- 306
.307

-309
. 309
-309
.309
.310
-310
- 310
- 310
.311
.312
.312
.312
.312

.313
.313

. 316
.316
.316
. 316

-318
- 318
.318
.320

.321
.322
.322

.323
.323
.323

STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERATIONS v o « o - 324
Sterling Nonreport . « . o o = « « - 2325
Sterling Sign Representation . . - .326
Sterling REPOrt . « w o « 2 o = o = =327
Procedure Division Considerations . .330
International Considerations - - « « = 330

SUPPLEMENTARY MATERIAL « o « « =« = o - 2331

APPENDIX A: INTERMEDIATE RESULTS . . « -333
Compiler Calculation of Intermediate
ResultS .. . < ¢ = 2 o o o o« o o » w = «333

APPENDIX B: SAMPLE PROGRAMS .« v « « - <335
Creation of a Direct File a2 o« « = = w 336
Creation of an Indexed File . - . - - .338

Random Retrieval and Updating of an
Indexed Fil€ ¢« o 2+ o o o w o = « » o « 2339

APPENDIX C: AMERICAN NATIONAL STANDARD
COBOL FORMAT SUMMARY AND RESERVED WORDS 341

APPENDIX D: SUMMARY OF FILE-PROCESSING
TECHNIQUES AND APPLICABLE STATEMENTS
AND CLAUSES <« v 2 = o w w = = = = o = 2351

APPENDIX E: ASCII CONSIDERATIONS . - « =355
I -- Environment Division .+ o« « « « « 355
ASSIGN ClauSe 4 = « « v o « =« = = «355
RERUN ClausSe o v « w = v =« v o « o =356

II -— Data DivisSion < « o o o @ « o « »356
File Section o o « 2 o o o « o = = «» «356
BLOCK CONTAINS ClauS€ +« o =« o « = 356
LABEL RECORDS ClauUS€ « w « « o o =» <356
RECORDING MODE ClausSe o o w @ « « 357
Compiler Calculation of Recording
MOdE v o o v @ « o 2 = @ « o =« = = «357

. 357
- 357
- 357
- 357

Data Description Entries . . « o «
PICTURE ClauSe w « o o = o o o o «
SIGN ClausSe . o w o w = o o @ a =
USAGE ClaUS€ o« © o = » « 2 « o« = a

III -- Procedure Division . . . o « - <357
LABEL PROCEDURE Declarative358
Relation Conditions . « « « = « - =358

IV -- Sort Feature . « «o o « « « o » « =360

Environment Division . o « o« « « = « <360
ASSIGN ClausSe . « « =« « = « =« = « =360

RERUN ClaUS€ « a2 a2 « o = o « « « « 2361
Data DivisSion o « o « o = o « » = o =361
SIGN ClauSe@ 4 « w o o =« o =« a = =« 361

USAGE ClauS€ v o« w o « 2 o = u « » 2361

APPENDIX F: SYMBOLIC DEBUGGING FEATURE .363
Object-Time Control Cards .+ « - « .363
Sample Program -- TESTRUN 365

Debugging TESTRUN . v « « « o « = «366
APPENDIX G: COMBINED FUNCTION CARD
PROCESSING ¢« o o« @ o o @« « « o« « uw « « «379
I -- Environment Division
Considerations « ¢« v « « =« o o = o o « 379

SPECIAL~-NAMES Paragraph . . - + - .379

SELECT ClauSe & w o o « o « = o = 380

ASSIGN ClauS€ o o « o « = « o o « 380

RESERVE ClaUS€ 4 w « « « o « « o » =381
II -- Data Division Considerations . . .381
III -- Procedure Division
Considerations « « « o « o o « « o « - =382

OPEN Statement « o « o o o =« o o = «382

READ Statement o o « o « =« « = =« « .382

WRITE Statement —-- Punch Function

FileS < o « @ w o = o o a « s o = +382

WRITE Statement -- Print Function

FileS =« o @ 2 o o = o « =« « = « « <383

CLOSE Statement « « « = o « o w» » 384
IBM AMERICAN NATIONAL STANDARD COBOL
GLOSSARY 2« o © w o « @ o = =« « « a o o 385
TNDEX &« 2 o w o « o ©w = « « u s« = a = =399

FIGURES

Figure 1. Typical Ledger Records
Used for MASTER-RECORD o « o = o = o =
Figure 2. Typical DETAIL-RECORD . .
Figure 3. Illustration of Procedure
Branching . « o o« ¢ o o = - « u =
Figure 4. Complete UPDATING Program
(Part 1 of 2) o« ¢ J 4 a4 o « o w0 <« o =
Figure 5. Reference Format v e oo w
Figure 6. Summary of File-Processing
Techniques e o e e e s e e e e wom o
Figure 7. Choices of Function-name-1
and Action Taken e e o m e ® o = =
Figure 8. Values of Organization
Field for File Organization . - « - =«
Figure 10. Structure of the First
Eight Bytes of ACTUAL KEY -- Actual
Track Addressing « . 0w o m e e o
Figure 11. Level Indlcator Summary .
Figure 12. Areas REDEFINED without
Changes in Length . « « . . o
Figure 13. Areas REDEFINED and
Rearrang€d « « v =« a o« o o o « = v o =
Figure 14. Class and Category of
Elementary and Group Data Items . . «
Figure 15. Precedence of Symbols Used
in the PICTURE ClauS€ a« « o « o = = =
Figure 16. Editing Sign Control
Symbols and their Results . « o . « -«
Figure 17. Insertion of the
Intra-occurrence Slack Bytes « v = @
Figure 18. 1Insertion of
Inter-occurrence Slack Bytes - -
Figure 19. Internal Representation of
Numeric Items (Part 1 of 2) . . - . .
Figure 20. Permissible Symbol Pairs
-~ Arithmetic Expressions «- . « = « =
Figure 21. Valid Forms of the Class
Test « o = o o e o ® e © s = v W =

¢

- -

Figure 22. Relatlonal ~operators and

Their Meanings « v a2 e = = % = s w o
Figure 23. Permissible Comparisons .
Figure 24. Logical Operators and the

Resulting Values upon Evaluation . .
Figure 25. Permissible Symbol Pairs
-- Compound Conditions « e e e om e ow
Figure 26. Conditional Statements
with Nested IF Statements <« - o o « o
Figure 27. Logical Flow of Conditional
Statement with Nested IF Statements .
Figure 28. Errcr Byte Meaning for the
GIVING Option of an Error Declarative
Figure 29. File Processing Techniques
and Associated Error Declaratives
Capabilities « . e - o e e om o
Figure 30. Logical Flow of Cption &4
PERFORM Statement Varying One
Identifier e 6 e 6 e e o m oe o oe oo =
Figure 31, Logical Flow of Cption 4
PERFORM Statement Varying Two
Identifiers . . ¢ v 4 o0 4 o o v = o

-

21
22

29

33
50

62

66

72

80
95

-113

114

-117

-121

<126

.133

-.134

.140

-154

-156

-.158
-161

-163

-164

-167

.168

-176

-178

«193

-194

Figure 32. Logical Flow of Option 4
PERFORM Statement Varying Three
Identifiers o o« o o v ¢« w4 e . o =
Figure 33. Permissible Moves . . « .
Figure 34. Examples of Data
Examination . . o« « « o 4 o o 4 = «
Figure 35. Examples of Data
Transformation - o - © a
Figure 36. Comblnatlons of FROM and
TO Options (Part 1 of 2) « o 4 e = =
Figure 37. Action Taken for
Function-Names -- ADVANCING Option -
Figure 38. Values of Identifier-2 and
Their Interpretation —-- POSITIONING
Option .- . e e 2 m e e % e o = e =
Figure 39. Values of Integer and Their
Interpretations -- POSITIONING Option
Figure 40. Relationship of Types of
Sequential Files and the Options of
the CLOSE Statement . < o « - o -
Figure 41. Relationship of Types of
Random Files and the Options of the
CLOSE Statement . o « ¢ o« o ¢ o o o
Figure #42. Effect of Program
Termination Statements Within Main
Programs and Subprograms - .
Figure #43. SORT Collating Sequences
Used for Sort Keys c e % o m_ e e o
Figure 44. Sample Program Using the
SORT Feature (Part 1 of 2) o e wow e
Figure U45. Page Format When the PAGE
LIMIT Clause is Specified
Figure 46. Sample Program Using the
Report Writer Feature (Part 1 of 4) .

3

« @ o o

Figure 47. Report Produced by Report
Writer Feature (Part 1 of 5) “ b ow o=
Figure 48. Storage Layout for

PARTY-TABLE . v o o o ¢ « « « « = « =
Figure 49. Index-names and Index Data
Items -- Permissible Comparisons .« .
Figure 50. Format 1 SEARCH Operation
Containing Two WHEN Options . . - . .
Figure 51. Sample Table Handling
Program (Part 1 of 2) . « &4 ¢ o o = =
Figure 52. Sterling Currency Editing
Applications “ e e o s e e e e e o
Figure 53. Compiler Action on
Intermediate Results c o e e e o e
Figure 54. Using the TRANSFORM
Statement with ASCII Comparisons . - .
Figure 55. EBCDIC and ASCII Collating
Sequences for COBOL Characters -- in
Ascending Order . . . - - -
Flgure 56. Individual Type Codes Used
in SYMDMP Output « o e « e« e e =
Figure 57. Using the Symbollc
Debugging Features to Debug the
Program TESTRUN (Part 1 of 11) - e .
Figure 58. Identifier-2 Stacker Values
for WRITE AFTER POSITIONING .« o« o « «

.195
. 200

. 202
. 203
. 204

. 214

.215

.215

. 224

«225

.231
. 244
- 250
- 260
- 279
- 284
-292
.301
-304
- 307
. 329
.334

- 359

-360

-367

-367

-383

Special DOS/VS COBOL considerations are discussed in the foXlowing
pages. Implementation areas described are:

¢ WHEN-COMPILED Special Register

e The Configuration Section

e VSAM (Virtual Storage Access Method) Processing

e Merge Facility =-- with SORT-OPTION clause

e 3886 OCR (Optical Character Reader) Processing

e FIPS (Federal Information Processing Standard) Flagger

¢ Miscellaneous File Processing Considerations

DOS/VS COBOL supports all of the additional features described in
this chapter. Support for these features is provided through a subset
of the complete COBCL language as documented in CODASYL COBOL Journal Of
Development. IBM-specified language capabilities are also implemented.

All features of DOS Full American National Standard COBQL, Version 3,
continue to be supported.)

Compiler output and restrictions, programming examples, and
information on running an IBM DOS/VS COBOL program are found in the
following Program Product publication:

IBM DOS/VS COBOL Compiler and Library Programmer®s Guide, Order
No. SC28-6478

Additional information on DOS/VS can be found in the following
publications:

Introduction to DCS/VS, Order No. GC33-5370

DOS/VS Systems Management Guide, Order No. GC33-5371

DOS/VS Data Management Guide, Order No. GC33-5372

DOS/VS Access Method Services, Order No. GC33-5832

WHEN-COMPILED SPECIAL REGISTER

The WHEN-COMPILED special register is provided as a maintainability
aid for the user; it makes available to the object program the
date-and-time-compiled constant carried in the object module.

WHEN-COMPILED is a 16-byte alphanumeric field valid only as the
sending field in a MOVE statement. The format of these sixteen bytes is
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second) or DD/MM/YYhh.rm.ss
(DAY/MONTH/YEARhour.minute.second) .

This special register is a programmer aid that provides a means of

associating a compilation listing with both the object program and the
output produced at execution time.

DOS/VS COBOL Ccnsiderations i

CONFIGURATION SECTICN

The Configuration Section describes the computer on which the source
program is compiled, the computer on which the object program is
executed, and, optionally, SPECIAL-NAMES, which relate function-names
used by the compiler with user-specified mnemonic-names.

General Format
CONFIGURATION SECTION.
SOURCE-COMPUTER. coOmputer-name.
OBJECT-COMPUTER. computer-name
‘WORDS \
[MEMORY SIZF integer 5CHARACTERS]
2MODULES

[SEGMENT-LIMIT IS priority-numberl.

SPECIAL-NAMES. [function-name-1 IS mnemonic-namel] ...

[function-name-2 [IS mnemonic-name]
ON STATUS IS condition-name-1
{QEE STATUS IS condition-name-2
[OFF STATUS 1S condition-name-2]
[ON STATUS 1S conditionvname-ll} T

{CURRENCY SIGN IS literall [DECIMAL-POINT IS COMMAJ.

[e M ey . B o s B S M e . o St i it S T e, Rt Pl St . i, St o i e, s A ey

b i et i i] i BTN e Sl Bl B Wi Witnscl] i ottt SIS Bt St S B Ty s By Sl Bl et Sl Ut Wi kit s o s

The Configuration Section and its associated paragraphs are optional
in a COBOL source programe.

SOURCE~COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph describes the computer upon which the
source program is to be compiled. This paragraph is treated as
documentation.

Computer-name is a word in the form IBM-370[-model-numberl.

OBJECT~-COMPUTER PARAGRAPH
The OBJECT-CCMPUTER paragraph describes the computer upon which the
object program is to be executed.

Computer-name must be the first entry in the OBJECT-CCMPUTER
paragraph. Computer-name is a word in the form IBM-370[-model-numberl].

ii

System/370 instructions are provided automatically by DOS/VS COBOL.
(When IBM-360 is specified, the compiler generates System/370
instructions, and issues a warning message.) The Compiler generates
instructions from the System/370 set, including Move Long (MVCL),
Compare Logical Long (CLCL), and shift And Round Decimal (SRP) that are
particularly useful to COBOL. These System/370 instructions replace
object-time subroutines and instructions that former COBOL Compilers
generated under Systemn/360 including routines and instructions to handle
decimal arithmetic scaling (where operands have a different number of
decimal places) and rounding. System/370 support also gives much
improved processing of variable length fields.

Since System/370 does not require boundary alignment for
COMPUTATIONAL, COMPUTATIONAL-1, and COMPUTATIONAL-2 items, no moves are
generated for items that are not SYNCHRONIZED.

Performance Considerations:: Space occupied by a DOS/VS COBOL program
is decreased, particularly when calls to object-time subroutines, are no
longer necessary. Such calls dre always generated in System/360 for
variable-length moves and comparisons. If there is at least one
variable-length alphanumeric move in the source program, System/370
support reduces the size of the object program by at least 484 bytes; if
there is at least one variable-length alphanumeric comparison,
System/370 support reduces the size of the object program by at least an
additional 498 bytes.

r T T 1
| |For Each Alphanumeric |FFor Each Comparison (in a |
{ |Move: Object-program lconditional expression): |
| Number of | Instructions |Object-program Instructions|
|Bytes in Each ¢} T - +—— T —
|MOve or |System/360 |System/370 |System/360 |System/370 |
| Comparison |Bytes Needed |Bytes Needed |Bytes Needed |Bytes Needed |
% 1 -1 4— e 1
| Variable | | | |
| length | 26+u480% | 14-22 | 26+496%* | 16-24 |
L 1 i 1 1 ___|
r T T T T

| fixed length| | | |]
1-256	6-16	6-16	8-26	8-26
257-512	12-22	12-22	16-36	16-24
513-768	18-28 i 14-22	2L-46	16-24	
769-1024	24-34	14-22	32-56	16-24
1025-1280	30-40] 14-22] 40-66	16-24		
1281-1536	36-u6	14-22	48-76	16-24
cee	“eu	.es	e	...
>4096	26+480%	14-22	26+496%	16-24
lf L —_— L I L1 _l				
*Bytes needed to invoke object-time subroutine, plus size of				
subroutine itself.				
L —— 4

Figure I. Moves and Comparisons -- System/360 vs. System/370

Figure I gives comparative figures without right justification for
fixed-length and variable-length MOVE statements, and for fixed-lenath
and variable-length comaprisons.

Figure II gives comparative figures for Shift And Round Decimal
generation; the savings shown are made for each such operation in the
object program.

The MEMORY SIZE clause can be used to document the actual equipment
configuration needed to run the object program.

The SEGMENT-LIMIT clause is discussed in the Segmentation Chapter.

DOS/VS COBOL Considerations iii

Except for the computer-name entry and the SEGMENT-LIMIT clause, the
OBJECT-COMPUTER paragraph is treated as documentation.

6 + literal*
12

Left Scaling

6
6
Right Scaling 6

T I 25 1

] System/360] System/370 |

Function | Bytes wneeded | Bytes Needed |
e - - + ~- 1
Rounding | 39 + literal* | |
| I I

| [I

n 1

*As used for decimal point alignment the literal varies in length with|
size of data-item, number of decimal positions defined, and/or]
scaling positions defined.]

J

o — ey e — e e — s .

Figure II. Shift And Round Decimal (SRP) -- System/360 vs. System/370

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph as discussed in the Environment Division
chapter applies to DOS/VS COBOL without change.

VSAM FILE PROCESSING

VSAM (Virtual Storage Access Method) is a high-performance access
method of DOS/VS for use with direct access storage. VSAM provides
high-speed retrieval and storage of data, flexible data organization,
ease of conversion from other access methods, and ease of use --
including simplified job control statements, data protection against
unauthorized access, central control of data management functions,
device independence (freedom from consideration of block sizes, control
information, record deblocking, etc.), and cross-system compatibility.

Access Method Services, a multi-function utility program is used to
define a VSAM data set, and optionally load records into it, convert an
existing indexed or sequential data set to VSAM format, and perform
other tasks as well. Access Method Services is described in LOS/VS
Access Method Services, Order No. GC33-5832.

VSAM allows key-sequenced and entry-sequenced data sets; records can
be fixed or variable in length.

In a key-sequenced data set (KSDS), records are stored in the
ascending collating sequence of some embedded key field. For indexed
files of this type, records can be retrieved sequentially in key
sequence; they can also be retrieved randomly according to the
particular value of the key.

In an entry-sequenced data set (ESDS), the records are stored in the
order in which they are presented for inclusion in the data set. lew
records are stored at the end of the data set. In COBOL, record
retrieval for sequential files of this type must be sequential.

VSAM files may be written on the following mass storage devices:
2314, 2319, 3330, 3340.

Fo il rocessing in COBOL, there are special language
considerations in the Environment, pData, and Procedure Division.

iv

ENVIRONMENT DIVISION -- FILE-CONTROL PARAGRAPH

,-

The File-Control paragraph names the VSAM file, associates it with an
external medium, and allows specification of other file-related
information.

General Format 1 -- Sequential VSAM Files

FILE-CONTROL.

{SELECT [OPTIONAL] file-name

ASSIGN TO system—-name-1 [system-name-2] ...
AREA

[RESERVE integer]
AREAS

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[PASSWORD IS data-name-11]

[FILE STATUS IS data-name-2].1} ...

[o e —— e e e o e e e e e —

General Format 2 -- Indexed VSAM Files

FILE-CONTROL.

{SELECT file-name

ASSIGN TO system-name-1 [system-name-2] ...
AREA

[RESERVE integer 1
AREAS

ORGANIZATION IS INDEXED

SEQUENTIAL
[ACCESS MODE IS ¢ RANDOM]
DYNAMIC

RECORD KEY IS data—-name-3

[PASSWORD IS data-name-11
L e

[FILE STATUS IS data-name-2].} ...

|
1'
|
1
|
|
e e e e e et e~ e e e e e e e e e e e) b e e e e e e e e e e b e

[— e it e it e e e it e e e e . e e e e e g

Each file described by an FD entry or SD entry in the Data Divisiocn

must be described in gne and only one File-Coptrol entry.

The key word FILE-CONT may appear only once, at the beginning of
the File-Control paragraph. The word FILE-CONTROL must begin in Area A,

and be followed bx»aAggziog folloyed by a space.

DOS/VS COBOL Considerations v

Each File-Control entry must begin with a SEL:CT clause followed
inmediately Dy an ASSIGH clause. Tne order in wnich the other clauses
appear is not significant, except that for indexed VS&M files the
PASSWORD clause, if specified, must imrmediately follow the RECORDL KEY
clause. Each File-Control entry must end with a period followed by a
space.

Each data-name in the File-Control entry may be qualified; it may not
be subscripted or indexed. Each data-name must be at a fixed
displacement from the beginning of the data description entry in which
it appears; that is, it must not appear in the entry after an OCCURS
DEPENDING ON clause.

SELECT Clause

The SELECT clause is used to name each file in the program. Each
file described with an FD entry or SUL entry in the Data Division must be
named once and only once as a file-name following the key word SELECT.

FORMAT 1: The OPTICNAL clause must oe specified for input files that
are not necessarily present each time the object program is executed.

If file-name represents a sort file, only the ASSIGN clause may be
written following the SELECT clause. .

ASSIGH Clause

The ASSIGH clause associates the file with an external storage
medium.

System-name specifies a system logical unit, and, optionally, a
device class, a device number, the file organization, and the external
name. System—-name has the following structure: o

SyYsnnnl-class](-devicel] [-organizationl] [-name]

The SYSnnn field is required, and nnn must be a three-digit number
from 000 through 240 inclusive. This number represents the symbolic
unit to which the file is assiagned.

The class and device fields are included for compatibility only; for
VvsSaM files, these fields are treated as documentation.

The organization field is required for sequential VSaM files. The
entry must be AS.

The organization field must not be specified for indexed VSAM files.

The name field is an optional three-character through séven-character
field, specifying the external name by which the file is known to the
system. If name is not specified, the symbolic unit (S¥Snnn) is used as
the external name. The name field rust be specified if more than one
file is assigned to the same symbolic unit.

RESERVE Clause

The RESERVE clause is treated as documentation.

vi

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of the file.
The file organization is established at the time the file is defined and
cannot subsequently be changed.

FORMAT 1: If the ORGANIZATION clause i£ omitted, ORGANIZATION
SEQUENTIAL is assumed.

When ORGANIZATION SEQUENTIAL is specified or assumed, the records in
the file are positioned sequentially in the order they were created.
Once established, the position of the file records does not change.

FORMAT 2: When QRGANIZATION INDEXED is specified, each logical record

in the file contains an embedded RECORD KEY which is associated with an

index, and each record is identified through its RECORD XEY value.
After records have been updated, or have been added to or deleted fromw
the file, the position of the records may have changed.

ACCESS MODE Clause

The ACCESS MODE clause specifies the manner in which records in the
file are to be processed.

When the ACCESS MODE clause is omitted, ACCESS MODE SEQUENTIAL is
assumed.
ass e

-When ACCESS MODE SEQUENTIALSis specified or assumed, the records are
processed sequentially. That is, the next logical record in the file is
the nextisrocessed.‘ ‘ :

When GANT IAL is specified or assumed, the records

in the file are processed 1n the seaugngg_g5:abl;shed_mhan_;ﬁg_i;;gJﬂEi_
created or extended.

WhenagRGANIZATION IS INDEXED is spec1fled the records in the file

are proce £S.

FORMAT 2: For indexed VSAM files, ACCESS MODE RANDOM and ACCESS MODE
DYNAMIC can also be specified.

When ACCESS MODE RANDOM is specified, the sequence in which records
are processed is determined by the sequence in which record keys are

presented. The desired record is accessed by placing the value of its
key in the RECORD KEY data item before the associated input/output

statement is executed.

When ACCESS MODE DYNAMIC is specified, records in the file are
processed either sequentially and/or randomly. The form of the specific

input/output regnest determines the access mode.

RECORD KEY Clause (Format 2)

The RECORD KEY clause specifies the data_item within the record which
contains the key for that record. A RECORD KEY must be specified for an
indexed VsAaM file.

Data-name-3 is the RECORD KEY data item. Data-name-3 must be defined
as a fixed length alphanumeric or unsigned external-decimal numeric data
item within a record description entry associated with file-name.
Data-name-3 is treated as an alphanumeric item.

DOS/VS COBOL Considerations vii

VSAM PASSWORD/FILE STATUS Clauses/I-0-CONTROL (DOS/VS}

The value contained in data-name-3 must be unique among records in
the file.

The data description of data-name-3 and its relative location in the
record must be the same as that specified when the file was defined.

PASSWORD Clause

The PASSWORD clause controls object-time access to the file.

Data-name-1 is the password data item; it must be defined in the
wWorking-Storage Section as an alphanumeric item. The first 8 characters
are used as the password; a shorter field is padded with blanks to 8
characters. The password data item must be equivalent to the one
externally specified.

When the PASSWORD clause is specified, at object time the password
data item must contain the valid password for this VSAM file before the
file can be successfully opened. (See "Status Key" in the following
Common Processing Facilities description.)

FILE STATUS Clause

The FILE STATUS clause allows the user to monitor the execution of
each input/output request for the file.

Data-name-2 is_the Statug Kev data item. Data-name-2 must be defined
in the Data Division as a two-character ak¥phanumeric or unsigned
external-decimal numeric item. Data-name-2 must not be defined in the
File ction or the Report Section. Data-name-2 is treated as an
— —— S— .
alphanumeric Ttem.

When the FILE STATUS clause is specified, a value is moved into the
Status Key by the system after each input/output request that explicitly:
or implicitly refers to this file. The value indicates the status of
the execution of the statement. (See "Status Key" in the following
Common Processing Facilities description.)

ENVIRONMENT DIVISION -- I-O-CONTROL PARAGRAPH

The I-O-CONTROL paragraph specifies the special input/output
techniques to be used in the program. The I-O0-CONTROL paragraph and its
associated clauses are optional. .

General Format =-- VSAM Files

I-0-CONTROL.
[RERUN ON system-name EVERY integer RECORDS
OF file-name-1] ...
[SAME [RECORD] AREA

FOR file-name-2 [file-name-31 ...]

[o et e e s e g —
b s e e s i i s it i i e)

The key word I-O-CONTROL must begin in Area A and be followed by a
period and a space.

viii

RERUN Clause

System-name is specified as described in the Environment Division
chapter; the checkpoint file sequ i file (it may
not be a sequential VSAM file). The device field may not specify 3540.

File-name may specify a VSAM file.
SAME Clause
The SAME RECORD AREA clause for VSAM files is implemented as

described in the Environment Division chapter.

For VSAM files, the SAME AREA clause has the same meaning as the SAME
RECORD AREA clause.

DATA DIVISION -- FD ENTRY

In the FD entry for a VSAM file, the ON! NS clause i

implemented as described in the Data Division chapter.

The BLOCK CONTAINS, DATA RECORDRS, and VALUE OF clauses, are treated

as documentation for vsaM files.

The RECORDING MODE and REPORT clauses must not be specified for V§§§
files. . T - -

There are special considerations for the LABEL RECORDS clause.

The LABEL RECORDS clause specifies whether standard labels are
present or omitted, and serves only as documentation.

Format

RECORD IS STANDARD
LABEL } {

RECORDS ARE OMITTED

o s e it i B e oy
T

For VS files,

specified. Either option is treated as documentation.

The LABEL RECORDS clause is required in every FD entry.

PROCEDURE DIVISION

For VSAM files, there are several Common Processing Facilities that
apply to more than one input/output statement. These Common Processing
Facilities are discussed before the descriptions of the separate
input/output verbs.

DOS/VS COBCL Considerations ix

common Processing Facilities

—

14CURRENT RECORD POINTER: Conceptually, the Current Record Pointer
specifies the next record to be accessed by a sequential request. The
setting of the Current Record Pointer is affected only by the OPEN,
START, and READ statements. The concept of the Current Record Pointer
~phas qg_mggning for random access or for output files.

#STATUS KEY: If the FILE STATUS clause is specified in the File Control
Entry, a value is placed into the specified Status Key (the 2-character
data item named in the FILE STATUS clause) during execution of any
request on that file; the value indicates the status of that request.
The value is placed in the Status Key before execution of any Error
Declarative or INVALID KEY/AT END option associated with the request.

The first character of the Status Key is known as Status Key 1; the
second character is known as Status Key 2. Combinations of possible
values and their meanings are shown in Figure III. See the DOS/VS
Programmer"s Guide for more information.

1
Status Key 1 tatus Key 2 !
d" Value Meaning Value Meaning |
— fm :
] 0 | Sucecessful 1 P | 0 |No Further]
| Completion | Information
%] o0’] | 4
| 1 |At End (no next | 0 |No Further]
| |logical record, or i | Information 1
] |an OPTIONRL file not | |]
| |available at OPEN’ | |]
time) \ [
! ! c'ip’ | !]
I T - $ + J
{ 2 1Invalid Key ! i 1 | Sequence Error |
1 | : b T]
| | | 2 |Duplicate Key]
| | t + 4
{ | | 3 |No Record Found]
| i b + - :
| | | 1] | Boundary Violation]
| | | | (indexed vsSaM file)]
L 4 L i]
¥ T T T ki
| 3 | Permanent Error | 0 |No Further |
| | (data check, parity | | Information]
| | check, transmission } + i
| ferror) | b |Boundary Violation]
| | | | (sequential VSAM]
| l | |£ile) |
L 1 1 1 3
3 T . 1 1 B 1
| 9 | IBM-defined | 1 | Password Failure]
| | b T , i
| | | 2 |Logic Error]
i | 3 + : i
| | | 3 |Resource Not |
| | | |Available |
| | t + 4
| | | 4 |No Current Record |
] | | |Pointer For I
| | | | Sequential Request |
| | b + - .|
| | | 5]Invalid or Incomplete]
| |) |File Information }
| | t + : :
| | | 6 {No DLBL card]
L N 1 1 b |
T . T T 1
| 2 |User-defined | 1-9 |Reserved for user]
| | | A-Z | purposes |
L 4 1 L - J]

Figure III. 1Status Key Values and Their Meaningij‘

DOS/VS COBOL Considerations x.i

VSAM Common Processing Facilities (DOS/VS}

INVALID KEY CONDITION: The INVALID KEY condition can occur during
execution of a START, READ, WRITE, REWRITE, OR DELETE statement. (Fox
details of the causes Tor the condition, see documentation for those
statements.) When the INVALID KEY condition is recognized, the
following actions are taken in the following order:

1. If the FILE-STATUS clause is specified, a value is placed into the
Status Key to indicate an INVALID KEY condition.

2. If the INVALID KEY option is specified in the statement causing the
condition, control is transferred to the INVALID KEY
imperative-statement. Any EXCEPTION/ERBROR declarative procedure

specified for this file is not executed.
bo?

3. If the INVALID KEY option is no if3] , but én‘EXCEPTION/ERﬁOR
declarative procedure is specified for the file, _the

EXCEPTION/ZERRQR .praocedure is executed.

When an INVALID KEY condition occurs, the input/output statement whicn
caused the condition_is unsuccessful.

S —————

INTO/FROM IDENTIFIER OPTION: This optién is wvalid for READ, REWRITE,
and WRITE statements.

The INTC identifier option makes a REARD statement equivalent to

—

READ file-name
MOVE record-name TO identifier

After successful execution of the READ statement, the gurrent record
becomes available both in the record-name and identifier.

U RN | ee—————————ti

The FROM identifier option makes a REWRITE or WRITE statement
equivalent to

MOVE identifier TO record-name

REWRITE
record-name
WRITE

x

After successful execution of the WRITE or REWRITE statement, the

current record may no londer be available in record-name, but is Stlll

avallable 1n identifier.
w—.

In all cases, identifier must be the name of an entry in the
Working-Storage Section, the Linkage Section, or of a record description
for another previously opened file. Record-names/file-name and
identifier must not refer to the same storage area.

EXCEPTION/ERROR Declarative

The EXgEEE;ON;ERROE Declarative specifies procedures for input/output
exception or error handling that are to be executed in addition to the
standard system procedures.

DOS/VS COBOL Considerations xi

VSAM' EXCEPTION/ERROR. Dec¢larative (DOS/¥S)

P T T T T T T T T T T T T e - -1
| Format |
T 1
I (wl |
| USE AFTER STANDARD PROCEDURE |
| [ERROR |
I I
i file-name-1 [file-name-23 ...) i
| INPUT I
] ON ¢ OUTPUT . |
I 1-0 !
| EXTEND |
| I
L ¥

A USE statement, when present, must immediately follow a sedﬁjgna

header in_the Declaratives Section (see "Declaratives" 1in the Procedure
Division chapter). A USE statement must be follow€d by a period
followed by a space. The remainder of the $ection must consist of one
or more procedural paragraphs that specify the proccedures to be used.

The USEL statement itself is not an executable gtatement; it merely
défines the conditions for executlon oF the procedural paragraphs.

The words EXCEPTION and ERROR are synonymous and may be used
inte;changeably.

wWhen the file-name option is specified, the procedure is executed
only for the file(s) named. Appearance of a file-name must not cause
simultaneous requests for the execution of more than one EXCEPTION/EKROR
procedure. No file-name can refer to a sort file.

When the INPUT option is specified, the procedure is executed for all
files opened in INPUT mode.

When the QUIPUT option is svecified, the procedure is executed for
all files opened in the OUTPUT mode.

When the I-0O option is specified, the“*procedure is executed for all
files opened in I-0 mode.

When the EXTEND option is specified, the procedure is executed for
all files opened in EXTEND mode.

The EXCEPTION/ERROR procedure is_executed:
e Either after completing the standard system input/output error

routine, or

o Upon recognition of an IWVALID KLY or AT END condition when an
INVALID KEY or AT END option has not been specified in the
input/output ‘statement, or

s Upon recognition of an IBM-defined condition which causes status key
1 to be set to 9.

After execution of the EXCEPTION/ERROR procedure, control is returned

to _the invoking routine.
The EXCEPTION/ERROR procedures are activated when an input/output

error occurs during execution of a REAR, WRITE, REWRITE, START, or
DELETE statement.o R

If an_QPEN statement is issued for a_file already in _the open_ status,
the EXCEPTION/ERROR procedures are activated; when the execution of an
OPEN statement is unsuccessful due to any other cause, the
EXCEPTION/ERROR procedures are not activated.

xii

If a file is in the OPEN status, and the execution of a CLOSE
statement is unsuccessful, the EXCEPTION/ERROR procedures are activated.
If the file is in a closed status and a CLOSE statement is issued, the
EXCEPTION/ERROR procedures are not activated. ..

Within a declarative procedure, there must be no references to
nondeclarative procedures. In nondeclarative procedures, tnere must Dbe
no references to declarative procedures, except that PLRFORM statements
may refer to procedure-names associated with a declarative procedure.

OPEN Statement

The OPEN statement initiates the processinc of VSalk files.

0= B |

Format |

INPUT file-name-1 [file-name-21 ...

OPEN) OUTPUT file-name-1 I[file-name-2] ...{ ...
1-0 file-name-1 ([file-name-21 ...
EXTEND file-name-1 {file-name-2] ...

o e e oy =y

&

At least one of the options INPUT, OUTPUT, I-O, or EXTEND must be
specified; there may be not more than one instance of each option
specified in one OPEN statement, although more than one file-name may pe
specified with each option. The INPUT, OUTPUT, I-O, and EXTEND options
may appear in the any order.

Fach file-name designates a file upon which the OPEN statement is to
operate. Each file-name must be defined in an FD entry in the Data
Rivision, and must not name a, sort file. The FD entry for the file must
be equivalent to the information spe01f1ed when the file was defined.

The successful execution of an OPEN statement determines the
availability of the file and results in that file being in open mode.
Before successful execution of the OPEN statement for a given file, no
statement can be executed which refers explicitly or implicitly to that
file. The successful execution of the OPEN statement makes the
associated record area available to the program; it does not obtain or
release the first data record.

The INPUT option permits opening the file for input operations.

The I-O option permits opening the file for both input and output
operations.

The INPUT and I-O options are valid only for files which contain or
which have contained records, whether or not the files still contain any
records when the OPEN statement is executed. (That is, even if all the
recovrds jpn a fiie have been deleted, that file can still be opened INPUT
_or I=-0.) The INPUT and I-O options must not be specified when the file
has not been already created.

The OUTPUT option permits opening the file for output operations.
This option can be specified when the file is being created. (The
OUTPUT option must not be specified for a file which contains records,
or which has contained records that have been deleted.)

The EXTEND option permits opening the flle for output operatlons.
¢ ACCESS MODE SEQUE L must be icitly or . When
EXTEND is specified, execution of the OPEN statement prepares the file
for the addition of records immediately following the last record in the

DOS/VS COBOL Considerations =xiii

file. Subsequent WRITE statements add records to the file, as if the

file had been opened CUTPUT.

The EXTEND optjon can be specified when a

file is being created; it can also be specified for a file which
contains records, or which has contained records that have been deleted.

P The OPEN mode, the ACCESS MODE

NIZATION determine

the valid input/output statements for a given VSAM file. Figure IV
shows permissible combinations.

. . - T - T 1
| File Organization] | |
| nd OPEN mode | INDEXED I SEQUENTIAL I
I E" T A | T "—+—_°‘— T T T -_——'I
|ACCESS mode I I | ! I I I I I
land I/0 verb | INPUT |OUTPUT | I-O| EXTEND | INPUT | OUTPUT | I-O | EXTEND |
5] | i 1 P i) el | d
T i ¥ T T L] Ll T ™ 1
| SEQUENTIAL OPEN | P | P | P | | P | P | P | P |
! I I | I I I I | I

READ | P | - | P| 12 | = (B | - |

I WRITE | - [P | - | - I » (-1 P® |
| REWRITE | = | - | P| - 1 - 120 - |
| SIART | P |- | P| - 1 = 1-1 - |
I DELETE | =~ |- [P | N N e
L] 1 3 & 1 p— . | B— |
p— 1 T LY 1
| RANDOM OPEN | P | P | P |
| | | I |
| READ | P | - | P I
WRITE	-	P	P
REWRITE	-	-	P
START I - 1 -	-		
DELETE	-	-	P
1 1 1)] '			
g] ¥ 1			
DYNAMIC OPEN	P	P	P
	I	I	
READ	P	-	P
WRITE	-	P	P
REWRITE	-	-	P
I START { p	-	P [
I DELETE	-	-	P I
% 1 '} ! 3			
P indicates that this input/output statement is permissible for this			
] combination of File Organization, Access Mode and OPEN Mode			
- indicates that this input/output statement is not permissible for			
this combination of File Organization, Access Mode, and OPEN Mode			
L - J

Figure IV. OPEN Statement Options and Permissible I/0 Statements

A file may be opened for INPUT, OUTPUT, I-O, or EXTEND in the same
program. After the first execution of an OPEN statement for a given
file, each subsequent execution of an OPEN statement must be preceded by
the successful execution of a CLOSE statement without the LOCK option.

Execution of an OPEN INPUT or OPEN I-0O statement sets the Current
Record Pointer to the first record existing in the file.
files, the record with the lowest key value is considered the first
If no records exist in the file, the Current Record
Pointer is set so that the first Format 1 READ statement executed

record in the file.

results in an AT END

condition.

For indexed

If the PASSWORD clause is specified in the File-Control entry, the
password data item must contain the valid password before the OPEN
. If the valid password is not present, the OPEN

statement is executed
statement is unsucces

sful.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the OPEN statement is executed.

xiv

If an OPEN statement is issued for a file already in the open status,
the EXCEPTION/ERROR procedure (if specified) for this file is executed.

START Statement

The START statement provides a means for logical positioning within
an indexed file for subsequent segquential retrieval of records.

Format
EQUAL TO
GREATER THAN
START file-name [KEY IS data-namel
>

NOT LESS THAN
NOT <

{INVALID KEY imperative-statement]

o S dot o et . e 1 e St . . et i A b P A oy
L e Ll Y S P SIS

When the START statement is executed, the associated file must be

open_in INPUT or I-C mode.

File- must name an index ile with sequential or dynaric
access. File-name must be defined in an FD entry in the Data Division.
File-name must not be the name of a sgrt file.

A o W— Qu— p_— p— g~ ——

When the KEY option is not specified, the EQUAL TO relational
operator is implied. When the START statement is executed, the EQUAL TO
comparison is made between the current value in the RECORD KEY and the
corresponding key field in the file's records. The Current Record
Pointer is p051t10ned to the logical record in the file whose. key field
satisfies the comparison.

When the KEY option is specified, data-name may be either
e The RECORD KEY for this file, or

s Any alphanumeric data item subordinate to the RECORD KEY whose
leftmost character position corresponds to the leftmost character
position of the RECORD KEY (that is, a generic key).

When the START statement is executed, the comparison specified in the
KEY relational operator is made between data-name and the key field in
the file's records. If the operands are of unequal sjize, the comparison
proceeds as if the key field were truncated on the right to the length
of the data-name. All other numeric and nonnumeric compatrison rules
apply. The Current Record Pointer is positioned to the first logical
record in the file whose key field satisfies the comparison.

If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, and the position of the Current Record
Pointer is undefined. (See "INVALID KEY Condition"™ in the preceding
Common Processing Facilities Section.)

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the START statement is executed.

DOS/VS COBOL Considerations xv

READ Statemen

For sequential access, the READ statement makes available the next
logical record from a VSAM file. For random access, the READ statement
makes available a specified record from a VSAM file.

Format 1

READ file-name [NEXT] RECORD [INTO identifier]

[AT END imperative-statement]

- e e e i g e
b et 1t et st it i e o

Format 2

READ file-name RECORD [INTO identifier]

{INVALID KEY imperative-statement]

[e i ot e S e oy
L e e et et e S s

When the READ statement is executed, the associated file must be open
in INPUT or I-O mode.

File-name must be defined in an FD entry in the Data Division.
File-name npust not ke the name of a sort file.
N —————————. Sm— w—— on— n—— S p— —— aa———

The INTO identifier option is described in the preceding Common
Processing Facilities Section. .

Following the unsuccessful execution of a READ statement, the
contents of the associated record area and the position of the Current
Record Pointer are undefined.

If the FILE STATUS clause is specified in the File-Control entry, the

associated Status Key is updated when the READ statement is executed.
168 . . -

FORMAT 1;? When ACCESS MODE SEQUENTIAL is specified or assumed for a
[rpar— —_3 .
VSAM file, this format must be used. For such files the statement makes
available the next logical record from the file. For indexed VSAM
files, the NEXT option need not be specified; for sequential VSAM files
the NEXT option must not be specified.

When ACCESS MODE DYNAMIC is specified for indexed VSAM files, the
NEXT option must be specified for sequential retrieval. For such files,
the READ NEXT statement makes available the next logical record from the
file. '

Before a Format 1 READ statement is executed, the Current Record

Pointer must be positioned by the successful prior execution of an_OPEN,
START, or_READ statement. When the Format 1 READ statement is executed,

the record indicated by the Current Record Pointer is made available.
For sequential VSAM files, the next record is the succeeding record in
logical sequence. For a sequentially accessed indexed VSAM file, the
next record is that one having the next higher RECORD KEY in collating
sequence. :

If the position of the Current Record Pointer is undefined when a
Format 1 READ statement is issued, the execution of the staterment is
unsuccessful.

»
<
[

If, when a Format 1 READ statement is executed, no next logical
record exists in the file, the AT END condition exists. The execution
of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are
taken in the following order:

1. If the FILE-STATUS clause is specified in the File-Control entry,
the Status Key is updated to indicate the AT END condition.

2. If the AT END option of the READ statement is specified, control is
transferred to the AT END imperative-statement.

3. If the AT END option is not specified, and a USE AFTER

EXCEPTION/ERROR procedure for this flle is Spe01fied,.either
explicitly or implicitly, the USE procedure is executed.

For files with SEQUENTIAL organization, when the AT END condition has
been recognized, a READ statement for this file must not be executed
until a successful CLOSE statement followed by a successful OPEN

statement have been executed for this file,

For files with INDEXED organization, when the AT END condition is
recognized, a Format 1 READ statement for this file must not be executed
until one of the following has been successfully executed:

e A CLOSE statement followed by an OPEN statement
¢ A Format 2 READ statement (dynamic access)
¢ A START statement

If a sequential VSAM file with the OPTIONAL clause is not present at
the time the file is opened, execution of the first READ statement
causes the AT END condition to occur. Standard end-of-file procedures
are not performed.

FORMAT 2: This format must be used for indexed VSAM files in random
access mode, and for random record retrieval in the dynamic access mode.

Execution of a Format 2 READ statement causes the value in the RECCRD
KEY to be compared with the values contained in the corresponding key
field in the file's records until a record having an equal value is
found. The Current Record Pointer i5 positioned to this record, which’
is then made available.

If no record can be so identified, an INVALID KEY condition exists,

and execution of the READ statement is unsuccessful. (See "INVALID KEY
Ccondition" in the preceding Common Processing Facilities Section.)

The WRITE statement releases a logical record to an COUTPUT, I-O, or
EXTEND file.

Forpat

WRITE record-name [FROM identifier]

[INVALID KEY imperative-statement]

[———— e g
e | R ERpu——

DOS/VS COBOL Considerations xvii

when the WRITL statement is executed, the associated file must be open
in OUTPUT, I-O0, or EXTEND mode.

Record-name must pe the name of a logical record in the File Section
of the Data Division. Record-nare may be gqualified. Record-rame must
not be associatel with a sort file.

The maximun record size for the file is established at the time the
file is created, and must not subsequently be chanaged.

Execution of the WRITE statement releases a logical record to the
file associated with record-name.

69 After the WRITE statement is executed, tne logi ecord is no
longer available in record-name, s
- ——

———

;i) Tne associated file is named in a SAME RECORD ARkA clause (in which
case the record is also available as a record of the other files
named in the SAME RECORD AREA clause), or

;i)i The WRITE statement is unsuccessful due to a boundary violation. .

In either of these two cases, the logical record is still available in
record-name.

:%)If the FROM identifier option is specified, then after the WRITE
statement is executed, the information is still available in identifier,
even though it may not be in record-name. (See "INTO/FRCM Identifier
Option"™ in the preceding Common Processing Facilities Section.)

=
The Current Record Pointer is not affected by execution of the WRITE
statement

The number of character positions required to store the record in a
vsAM file may or may not be the same as the number of character
positions defined by the logical description of that record in the COBOL
program.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status key is updated when the WRITE statement is executed.

SEQUENTIAL VSAM FILES: The INVALID KEY option must not be specified.

When an attempt is made to write beyond the externally-defined
boundaries of the file, the execution of the WRITE statement is
unsuccessful, and an EXCEPTION/ERROR condition exists. The contents of
record-name are unaffected. If an explicit or implicit LXCEPTION/ERROR
procedure is specified for the file, the procedure is then executed; if
no such procedure is specified, the results are undefined.

INDEXED VSAM FILES: BRefore the WRITE statement is executed, the
contents of the RECORD KEY must be set to the desired value. Note that
the value contained in any specific RECORD KEY must be unique within the
records in the file.

When the WRITE statement is executed, the contents of the RECORD KEY
are utilized so that subsequent access to the record can ke based on tle
RECORD KEY.

If sequential gccss§ nede is specifjed or implied, records must be
released to the filé™Irmrascending order of RECORD- KEY.

If random or dynamic access is specified, records may be released in
any program-specified order.

INVALID KEY Option: The INVALID KEY condition exists when any of the
following conditions occur:

xviii

IVvALiO RE)
* For an OUTPUT or EXTEND file in sequential access mode, when the

value of the RECCRD KEY is not greater than the value of the RECORD
KEY for the previous record.

¢ For an I-0 or OUTPUT file in random or dynamic access mode, when the
value of the RECORD KEY is equal to the value of a RECORD KEY for an
already existing record.

e When an attempt is made to write beyond the externally-defined
boundaries of the file.

When the INVALID KEY condition is recoqnized the execution of the WRITE
statement is unsuccessful, the contents of record-naime are unaffected,
and the Status Key, if specified, is set to a value to indicate the
cause of the condition. (See "INVALID KEY Condition™ and "Status Key"
in the preceding Common Processing Facilities Section.)

REWRITE Statement

The REWRITE statement logically replaces an existing record in a VSAM
file.

r 1
| Format !
' - - e
i |
| REWRITE record-name [FROM identifier] i
| i
i [INVALID KEY imperative-statement] |
| l
i P —_— —_————

é;} When the REWRITE statement is executed, the associated file must be
open_in I-0 mode.

Record-name must be the name of a logical record in the File Section
of the Data Division. Record-name must not be associated with a sort
file. Record-name may be qualified.

Execution of .the REWRITE statement. replaces .an existing record in the
ile with the information contained in record-name. For a sequential
VSAM file, the number of character positions in record-name must equal
he number of character positions in the record being replaced. For an
indexed VSAM file, the number of character positions in record-name need
not _egual the number of character positions in the record being
replaced.

After successful execution of a REWRITE statement, the logical record
is no longer available in record-name unless the associated file is
named in a SAME RECORD AREA clause {in which case the record is also
available as a record of the other files named in the SAME RECORD AREA
clause).

The Current Record Pointer is not affected by execution of the
REWRITE statement.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the REWRITE statement is executed.

For files in the sequential access mode, the last prior input/output
statement executed for this file must be a successfully executed READ
statement. When the REWRITE statement is executed, the record retrieved
by that READ statement is logically replaced.

DOS/VS COBOL Considerations xix

SEQUENTIAL FILES: The INVALID KEY option must not be specified for this
type of file. An EXCEPTION/ERROR declarative procedure may be
specified.

INDEXED FILES: For an indexed file in the sequential access mode, the
record to be replaced by the REWRITE statement is identified by the
current value of the RECORD KEY. When the REWRITE statement is
executed, the RECORD KEY must contain the value of the RECORD KEY for
the last-retrieved record from the file.

For an indexed file in random or dynamic access mode, the record to be
replaced is the record identified by the value of the RECORD KEY.

The INVALID KEY condition exists when:

* The access mode is sequential, and the value contained in the RECCRD
KEY of the record to be replaced does not equal the RECORD KEY of
the last-retrieved record from the file.

e The value contained in the RECORD KEY does not egual that of any
record in the file.

If either condition exists, the execution of the REWRITE statement is
unsuccessful, the updating operation does not take place, and the data
in record-name is unaffected. (See "INVALID KEY Condition" in the
preceding Common Processing Facilities Section.)

DELETE Statement

The DELETE statement logically removes a record from an indexed VSZM
file.

r - ==
| Format |
L _ — e -
r

' . . N
| DELETE file-name RECORD |
| |
| [INVALID KEY imperative-statementl] [
]

_— _]

When the DELETE statement is executed, the gssoség;ed file must be

Qpen_in I1-O _mode,

————————

File-name must be defined in an FD entry in the Data Division and
must be the name of an indexed VSAM file.

For a file in sequential access mode, the INVALID KEY option must not
be specified. '

For a file in random or dynamic access mode, the INVALID KEY opticn
may be specified.

For a file in sequential access mode, the last prior input/output
statement must be a successfully executed READ statement. When the
DELETE statement is executed, the system logically removes the record
retrieved by that READ statement. The current record pointer is not
affected by execution of the DELETE statement.

For a file in random or dynamic access mode, when the DELETE
statement is executed, the system logically removes the record
identified by the contents of the associated RECORD KEY data item. If
the file does not contain the record specified by the key, an INVALID
KEY condition exists. (See "INVALID KEY Condition™ in the preceding
Common Processing Facilities section.)

XX

After successful execution of a DELETE statement, the record is
logically removed from the file and can no longer be accessed.
Execution of the DELETE statement does not affeéct the contents of the
record area associated with file-name.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the DELETE statement is executed.

< CLOSE Statement)

The CLOSE statement terminates the processing of vsSaM files.

Format

CLOSE file-name-1 [WITH LOCK]

[file-name-2 [WITH LOCK1l ...

fm o e o et it g e
b i s i e s b i

A CLOSE statement may be executed only for a file in an open mode.
After successful execution of a CLOSE statement, the record area
associated with the file-name is no longer available. Unsuccessful
execution of a CLOSE statement leaves availability of the record area
undefined.

Each file-name designates a file upon which the CLOSE statement is to
operate.

When the WITH LOCK option is not specified, standard system closing
procedures are performed. This file may be opened again during this
execution of the object program.

When the WITH LOCK option is specified, standard system closing
procedures are performed; the compiler ensures that this file cannot be
opened again during this execution of this object program.

After a CLOSE statement is successfully executed for the file, an
OPEN statement for that file must be executed before any other
input/output statement can refer explicitly or implicitly to the file.

If a CLOSE statement is not executed for an open file before a STOP
RUN statement is executed, results are unpredictable.

If an input sequential VSAM file is described in the File-Control
entry as OPTIONAL and the file is not present during this execution of
the object program, standard end-of-file processing is not performed.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE

statement is unsuccessful, the EXCEPTION/ERROR procedure (if specified)
for this file is executed.

The Merge Facility gives the COBOL user access to the merging
capabilities of the Program Product DOS/VS Sort-Merge (Program Number
5746-SM1). Through COBOL, the user can combine two or more identically

DOS/VS COBOL Considerations xxi

ordered input files into one output file according to key(s) contained
in each record. More than one merge operation can be performed during
one execution of the COBOL program. Special processing of output
records can also be specified.

There are special considerations in the Environment Division, the
Data Division, and the Procedure Division for the Merge Facility.

ENVIRONMENT DIVISION

Each input file and the resulting merged output file must be
described in a separate File-Control entry, and each must be a standard
sequential file, or a VSAM file with sequential access. The merge file
must have a separate File-Control entry, as described in the following
paragraphs.

File-Control EntrLforﬁ rge F1f_[e§

e
—

The File-Control entry names the merge file and associates it with a
storage medium.

General Format

{SELECT file-name

ASSIGN TO system-name-1 [system-name-2]}...

(o e e e e o ey e
b e s et i s et s o

Each File-Control entry for a merge file must begin with a SELECT
clause, and be immediately followed by an ASSIGN clause. There may ke
no other clauses.

SELECT Clause: The SELECT clause names each merge file in the program.
Each file described by an SD entry in the Data Division must be named
once and only once as a file-name following the key word SELECT.

ASSIGN Clause: The ASSIGN clause is required. System-name has the same
rules of formation as it has for sort work files; however, the fixed
SY¥Snnn and name fields (SYS001 and SORTWK1l, etc.) are treated as
documentation. (See "Assignment of Sort Work Units"™ in the Sort Feature
chapter.)

If an ASCII-collated merge is to be performed, C must be specified in
the organization field. (See "Appendix E: ASCII Considerations.")

I-0-Control Paragraph

The optional I-O-Control Paragraph specifies the storage area to be
shared by different files.

XxXii

General Format

SORT
SAME ¢ SORT-MERGE ; AREA FOR
RECORD

file-nawme-1 {file-name-2]

o e e e s it et s e e)
e e e e et e bt e e s

When the SAME SORT AREA or SORT-MERGE AREA clause is specified, at
least one file-name specified must name a sort or merge file. Files
that are not sort or merge files may also be specified. The following
rules apply:

e More than one SAME SORT AREA or SORT-MERGE AREA clause may be
specified; however, a sort or merge file must not be named in more
than one such clause.

e If a file that is not a sort or merge file is named in both a SAME
AREA clause and in one or more SAME SORT AREA or SORT-MERGE AREA
clauses, all of the files in the SAME AREA clause must also appear
in all of the SAME SORT AREA or SORT-MERGE AREA clauses.

¢ Files named in a SAME SORT AREA or SORT-MERGE AREA clause need not
have the same organization or access.

s Files named in a SAME SORT AREA or SCRT-MERGE AREA clause that are
not sort or merge files do not share storage with each other unless
the user names them in a SAME AREA or SAME RECORD AREA clause.

The SAME SORT AREA or SORT-MERGE AREA clause specifies one storage
area available for merge operations by each named merge file. That is,
the storage area allocated for one merge operation is available for
reuse in another merge operation.

The function of the SAME SORT AREA or SORT-MERGE AREA clause is to
optimize the assignment of storage areas to a given MERGE statement.
The system handles storage assignment automatically; hence, the SORT
AREA or SORT-MERGE AREA options, if specified, are treated as
documentation.

When the SAME RECORD AREA option is specified, the named files,
including any sort or merge files, share only the area in which the
current logical record is processed. Several of the files may be open
at the same time, kut the logical record of only one of these files can
exist in the record area at one time.

DATA DIVISION

In the Data Division, the user must include file desc¥iption entries
for each merge input file and for the merged output file, merge-file
description entries for each merge file, and record description entries
for each.

(Merée-File)Description Entry

A merge-file description entry must appear in the File Section for
each merge file named in a File-Control entry.

DOS/VS COBOL Considerations xxiii

SD Entry for Merge (DOS/VS)

General Format

SD merge-file-name
[RECORD CONTAINS [integer-1 TO]l integer-2 CHARACTERS]

RECORD IS
[DATA data-name~1 [data-name-2] ...]

RECORDS ARE

[SORT-OPTION IS data-name-3].

[e e e e o e e e g e
|
SIS S

The level indicator SD identifies the beginning of the merge-file
description, and must precede the merge-file-name.

The clauses following merge-file-name are optional, and their order
of appearance is not significant.

One or more record description entries must follow the merge-file
description entry, but no input/ocutput statements may be executed for
the merge file.

Merge-File-Name: The merge-file-name must be the same as that specified
in the merge file File-Control entry. It is also the name specified as
the first operand in the MERGE statement.

RECORD CONTAINS Clause: The size of each data record is completely
defined in the record description entry; therefore, this clause is never
required. When it is specified, the same considerations apply as in its
Data Division description.

DATA RECORDS Clause: This clause names the 0l-level data records
associated with this SD entry. This clause is never required, and the
compiler treats it as documentation. When it is specified, the same
considerations apply as in its Data Division description.

SORT-OPTION clause: This clause specifies that at object time an OPTION
control statement for the Sort/Merge program will be specified in the
data-name-3 area. Rules for specification are given in the D0S/VS Sort
Feature description later in this chapter.

PROCEDURE DIVISION

The Procedure Division contains a MERGE statement describing the
merge operation, and optional output procedures. The procedure-names of
the output procedures are specified within the MERGE statement. More
than one MERGE statement can be specified, appearing anywhere except in
the declaratives section or in an input or output procedure for a SORT
or MERGE statement.

Statement

The MERGE statement combines two or more identically sequenced files
using specified key(s), and makes records available to an output file in
merged order. . . :

Format

A

MERGE file-name-1
’

ASCENDING
ON KeY dJdata-name-1 [data-name-21 ...
DESCENDING

7

5 ASCENDING l
[ON KEY data-name-3 [data-name-41 ... 1 ...
| CEScENDING

USING file-name-2 file-name-3 [file-name-4] ...

OUTPUT PROCEDURE IS section-name-1 [THRU section-name-2]

{GIVING file-name-5 }

[—— i e e e e e - e e S . i, G S i, e

No file-name specified in the MFRGE statement nay be open at the time
the statement is executed. The files.are automatically opened and
closed by the merge operation; all implicit functions are performed,
such as execution of system procedures cr any associated declarative
procedures.

No file-name may be specified more than once in one MLERGE statement.

Cnly one file-name from a multiple file reel may appear in one MERGE
statement.

FILE-NAME-1: This file-name represents the merge file, and must be
described in an SD entry in the Data Division.

ASCENDING/DESCENDING KEY Option:. These options specify whether records
are to be merged in ascending or descending seguence, based on one or
more merge keys.

Each data-name represents a KEY data item, and must be described in
the record description(s) associated with the SD entry for file-name-1,
the merge work file. The following rules apply:

e if file-name-1 has more than one associated record description
entry, the KEY data items need be described in only one such record

description

e each data-name may be qualified; it may not oe subscripted or
indexed (that is, it may not contain or be contained in an entry
that contains an OCCURS clause)

e KEY data items must be at a fixed displacement from the beginning of
the record (that is, no KEY data item may follow an CCCURS DEPENDING
ON clause in the record description)

e a maximum of 12 keys may be specified; the total length of all keys
must not exceed 256 bytes

e all key fields must be located within the first #4092 bytes of the
logical record

The KEY data items are listed in order of Jdecreasing significance, no
matter how they are divided into KEY phrases. Using the format as an
example, data-name-1 is the most significant key, and records are mercged
in ascending or descending order on that key; data-name-2 is the next
most significant key; within data-name-1, records are merged on

DOS/VS COBROL Considerations Xxv

data-name-2 in ascending or descending order. Within data-name-2,
records are merged on data-name-3 in ascending or descending order;
within data-name-3, records are merged on data-name-4 in ascending or
descending order, etc.

When ASCENDING is specified, the merged sequence is from the lowest
to the highest value of the contents in the KEY data item according to
the collating sequence used.

When DESCENDING is specified, the merged sequence is from the highest
to the lowest value of the contents in the KEY data item according to
the collating sequence used.

Figure V gives the collating sequence used for each category of KEY
data item.

KEY Category Collating Sequence

ATy R—

Alphabetic
Alphanumeric
Alphanumeric Edited
Numeric Edited

EBCDIC (non-algebraic and unsigned)

Numeric

e e ek e e . e e e)

Algebraic (signed)

Figure V. KEY Item Categories and Collating Sequences

- oy — e - ——

The rules for comparison are those for the relation condition (see
"Relation Condition" in the Conditions chapter of the Procedure
Division). If two or more KEY data items test as equal, the merge
operation makes the records available in the order that the input
file-names are specified in the USING option.

USING Option: All file-names listed in the USING option represent
identically ordered input files that are to be merged. Two through
eight file-names may be specified.

GIVING Option: File-name-5 is the name of the merged output file. When
this option is specified, all merged records made available from the
merge operation are automatically written on the output file.

OUTPUT PROCEDURE Option: When this option is specified, all output
records from the merge operation are made available to the user (through
a RETURN statement) for further processing.

wWhen an output procedure is specified, control passes to the
procedure during execution of the MERGE statement. Before entering the
output procedure, the merge operation reaches a point at which it can
provide the next merged record when requested. The RETURN statement in
the output procedure is a request for the next merged record. (See the
RETURN statement description in the Sort Feature chapter.) An output
procedure must contain at least one RETURN statement to make merged
records available for further processing.

control may be passed to an output procedure only when a related
MERGE statement is being executed.

The output procedure must not form part of any other procedure.

If section-name-1 alone is specified, the output procedure must
consist of one contiguous Procedure Division section.

If section-name-1 THRU section-name-2 is specified, the output
procedure consists of two or more contiguous Procedure Division
sections; section-name-1 specifies the first such section;
section-name-2 specifies the last such section.

XXV1i

Control must not be passed to the output procedure unless a related
MERGE or SORT statement is being executed, because RETURN statements in
the output procedure have no meaning unless they are controlled by a
MERGE or SORT statement. The output procedure may consist of the
processing requests necessary to select, modify, or copy the records
being made available, one at a time, from the merge operation. The
following restrictions apply:

¢ There may be no explicit transfers of control outside the output
procedure. ALTER, GO TO, and PERFORM statements within the
procedure must not refer to procedure-names outside the output
procedure. However, an implicit transfer of control to a
declarative procedure is allowed.

e No SORT or MERGE statements are allowed.

e The remainder of the Procedure Division must not transfer control to
points inside the output procedure; that is, ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division must
not specify procedure-names within an output procedure.

The compiler inserts an end-of-processing transfer at the end of the
last output procedure section. When end-of-processing is recognized,
the merge operation is terminated, and control is transferred to the
next statement following the MERGE statement.

SEGMENTATION RESTRICTIONS: The MERGE statement may be specified in a
segmented program. However, the following restrictions apply:

e If the MERGE statement appears in the fixed portion, then any
associated output procedure must be:

- completely within the fixed portion, or
- completely within one independent segment

¢ If the MERGE statement appears in an independent segment, then any
associated output procedure must be:

- completely within the fixed portion, or

- completely within the same independent segment as the MERGE
statement

3886 OCR PROCESSING ‘4
D,cvmeml‘ resder

The IBM 3886 OCR (Optical Character Reader) Model 1 is a general
purpose online unit record device that satisfies a broad range of data
entry requirements. The 3886 OCR can significantly reduce time and ccst
factors, by eliminating input steps in both new and existing
applications; a keying process is no longer necessary, since the 3886
OCR can read and recognize data created by numeric hand printing,
nigh-speed computer printing, typewriters, and preprinted forms.

The IBM 3886 OCR uses several new technologies which make it a
compact, highly reliable, modular device. A powerful microprogrammed
recognition and control processor performs all machine control and
character recognition functions, and enables the 3886 OCR to perform
sophisticated data and blank editing.

The 3886 OCR accepts documents from 3 x 3 to 9 x 12 inches in size.
Under program control, it can read documents line-by-line, transmitting
their contents line-by-line to the CPU. Additional facilities, all
under program control, include: document marking, line marking,
document ejecting (with stacker selection), and line reading (of current
line).

DOS/VS COBOL Considerations xxvii

DOS/VS COBOL support for the 3886 OCK is through an object-time
subroutine in the COBCL library, invoked through COBOL CALL statements.
By means of parameters passed to the subroutine, the following
operations are provided: open and close the file, read a line, wait for
read completion, mark a line, mark the current document, eject the
current document, and load a format record. After each operation, a
status indicator is passed back to the COBOL program, so that any
exceptional condition can be tested.

Through a fixed format OCR file information area in the
Working-Storage or Linkage Section, the COBOL user defines storage for
the OCR parameters. Of these parameters, the COBOL programmer is
responsible for providing a file identifier, a format record identifier,
an operation code, and (depending on the operation) a line number, line
format number, mark code, and stacker number. After completion of each
operation a status indicator is returned; after completion of a read
operation, header and data records are also returned.

DOS/VS provides two macro instructions for defining documents. The
DFR macro instruction defines attributes common to a group of line
types. The DLINT macro instruction defines specific attributes of an
individual line type. The DFR and associated DLINT macro instructions
are used in one assenbly to build a format record module. The format
record must be link-edited into the core image library so that it can be
loaded into the 3886 OCR when the file is to be processed. The format
record indicates the line types to be read, attributes of the fields in
the lines, and the format of the data records to be processed.

Additional information on the IBM 3886 CCR can be found in the following
publications:

IBM DOS/VS COBOL Compiler and Library Programmer's Guide, Order
No. SC28-6478

IBM 3886 Optical Character Reader

General Information Manual, Order No. GA21-9146

Input Document Design Guide and Specifications, Order No. GA21-9148

.

DOS/VS Program Planning Guide for IBM 3886 Optical Character
Reader Model 1, Order No. GA21-5099

DOS/VS Supervisor and I/0 Macros, Order No. GC33-5373

FIPS FLAGGER

The FIPS (Federal Information Processing Standard) is a compatible
subset of full American National Standard COBOL, X3.23-1968. The FIPS
itself is subdivided into four levels: 1low, low-intermediate,
high~intermediate, and full. Any program written to conform to the FIPS
must conform to one of those levels of FIPS processing. Processing
modules included in Full American National Standard COBOL, and those
included in the four levels of the FIPS, are shown in Figure VI.

xxviii

American

National

Standard

COBOL |Full FIPS |High-intermediate]Low-intermediate|Low FIPS

Processing |Processing|FIPS Processing |FIPS Processing |Processing]

Modules |Modules |Modules]Modules {Modules
L

1
!

— it e 1]
P pR—
[

2NUC 1,2 2NUC 1,2 2NUC 1,2

(Nucleus)

2NUC 1,2 iNUC 1,2

3TBL 1,3 3TBL 1,3 2TBL 1,3 2TBL 1,3 1TBL 1,3
(Table

Handling)

2SEQ 1,2
(Sequential
Access)

2SEQ 1,2 2SEQ 1,2 28EQ 1,2 1SEQ 1,2

it Eoirt 3 it e it o e 0 i et it M i it et it 2t e

2RAC 0,2 2RAC 0,2
(Random

Access)

2RAC 0,2 2RAC 0,2

2SRT 0,2
(Sort)

2SRT 0,2 1SRT 0,2

ot i ot it €1 T sk i e i S i i et s et an

2RPW 0,2
(Report
Writer)

25EG 0,2
(Segmenta-
tion)

2SEG 0,2 1SEG 0,2] 1SEG 0,2

|
|
!
|
!
l
!
!
|
I
|
|
|
I
]
!
|
!
!
!
!
|
|
!
!
I
|

2LIB 0,2
(Library)

2LIB 0,2

[et ot e bt et s i o e Bt . T S o e e o A i, S o e i . e . e S e, et i

o e e e e i e e i e i et i ot e e ot s e e o e S . i s e
e e o e et i e . i e A i e o S ki AL A P el A i A Sl e et et et At o

o . s it et

1LIB 0,2 % 1LIB 0,2

1 4

Figure VI. The Four Levels of FIPS Processing

The FIPS Flagger identifies source clauses and statements that do not
conform to the Federal standard. Four levels of flagging, to conform to
the four levels of the FIPS, are provided. The following lists identify
COBOL source elements flagged for each level.

FULL FIPS FLAGGING: When flagging for the full FIPS level is specified,
the following elements of the COBOL source, if specified, are
identified.

GLOBAL ITEMS

Single quote instead of double
Floating Point Literals

Special Register LINE-COUNTER
Special Register PAGE-COUNTER
Special Register CURRENT-DATE
Special Register TIME-OF-DAY
Special Register COM-REG
Special Register SORT-RETURN
Special Register SORT-FILE-SIZE
Special Register SORT-CORE-SIZE
Special Register SORT-MODE-SIZE
Special Register NSTD-REELS
Special Register WHEN-COMPILED

Comment Lines with * in Column 7
The SUPPRESS option of the COPY statement

DOS/VS COBOL Considerations xxix

IDENTIFICATION DIVISION Items

ID abbreviation for IDENTIFICATION
Accepting Identification Division Paragraphs in any order
Accepting Program Name in quotes

ENVIRONMENT DIVISION Items

DATA

Optional CONFIGURATION SECTION and Paragraphs
S01 through S05 Function-names in SPECIAL-NAMES paragraph

Allowing any order for optional SELECT clauses

W, R, or I as Organization indicator in System=-name
Optional omission of IS in- ACCESS MODE IS Clause

Optional omission of IS in ACTUAL KEY IS Clause
ACTUAL-KEY clause for sequential access of a direct file
ACTUAL-KEY clause for sequential creation of a direct File
NOMINAL KEY Clause in FILE-CONTROL Paragraph

RECORD KEY Clause in FILE-CONTRCL Paragraph

TRACK~-AREA Clause in FILE-CONTROL Paragraph

The COPY statement in the FILE-CONTROL paragraph

Short form of RERUN ON Clause

Interchangeable use of REEL and UNIT in RERUN ON Clause
APPLY Clause in I-O-CONTROL paragraph

Allowing I-O-CONTROL paragraph clauses in any order

RESERVE integer AREAS clause (as distinguished from the RESERVE

ALTERNATE AREAS clause)
ORGANIZATION clause
ACCESS MODE DYNAMIC clause
PASSWORD clause
FILE STATUS clause
SAME SORT-MERGE AREA clause

DIVISION Items

REPORT SECTION of DATA DIVISION

RD level indicator

The DATA RECORDS clause for a REPORT FD
LINKAGE SECTICON of DATA DIVISION

Allowing unequal level numbers to belong to the same group
RECORDING MODE Clause of FD entry.

REPORT Clause of FD Entry

LABEL RECORDS CLAUSE on Sort File Description

SORT-OPTION clause on Sort File Description

Optional BLOCK CONTAINS for DIRECT Files when RECORDING MODE IS S
Accepting name of preceding entry when using multiple redefinition

External Floating-point picture

The SIGN Clause

Allowing the SYNCHRONIZED Clause at the 01 level
COMPUTATIONAL-1 option of the USAGE Clause
COMPUTATIONAL-2 option of the USAGE Clause
COMPUTATIONAL-3 option of the USAGE Clause
COMPUTATIONAL-4 option of the USAGE Clause

Nested OCCURS DEPENDING ON clauses

Allowing SYNCHRONIZED with USAGE IS INDEX

The COPY statement in the Working-Storage Section

DISPLAY-ST option of the USAGE Clause and associated PICTURE
Use of VALUE Clause as Comments in File Section for other than

Condition-name entries
COPY REDEFINES in Working-Storage Section

PROCEDURE DIVISION Items

USING clause on PROCEDURE DIVISION

THEN used to separate statements

Allowing omission of section header at beginning of Procedure
Division

The START statement

The REWRITE statement

The TRANSFORM statement

The GENERATE statement
The INITIATE statement
The TERMINATE statement

The DEBUG statement

The READY TRACE statement
The RESET TRACE statement
The ON statement

The EXHIBIT statement

The CALL statement

The ENTRY statement

The GOBACK statement

The EXIT PROGRAM statement

The USE AFTER STANDARD EXCEPTION sentence

The READ NEXT statement

The DELETE statement

The MERGE statement

The EXTEND option for the OPEN statement and Error Procedures
The SERVICE RELOAD statement

The unary plus operator

Allowing omission of the space following the unary operator

OTHERWISE in IF statements

The GO TO MORE~LABELS statement

GIVING option of USE sentence

USE BEFORE REPORTING sentence

Allowing omission of the INVALID KEY option for READ and WRITE
statements

The AT END-OF-PAGE or EOP option of the WRITE statement

The WRITE AFTER POSITIONING statement

The FROM SYSIPT or CONSOLE option of the ACCEPT statement

The UPON CONSOLE, SYSPUNCH, SYSPCH, or SYSLST option of the DISPLAY
statement

The BASIS statement
The INSERT statement
The DELETE statement

The EJECT statement
The SKIP1l statement
The SKIP2 statement
The SKIP3 statement

HIGH-INTERMEDIATE FIPS FLAGGING: When flagging for the
high-intermediate FIPS level is specified, all elements included in the
preceding list are flagged, plus the following additional COBOL source
elements:

GLOBAL ITEMS

The REPLACING option of the COPY statement

DOS/VS COBOL Considerations xxxi

ENVIRONMENT DIVISION

SEGMENT-LIMIT clause in OBJECT-COMPUTER paragragh
SORT option of SAME Clause

DATA DIVISION

The ASCENDING and DESCENDING KEY option of the OCCURS clause
The DEPENDING ON option of the OCCURS clause

PROCEDURE DIVISION

All sections with the same priority number must ke together
All segments with priority number 1-49 must be together

The SEARCH statement

More than one SORT statement

The FROM option of the RELEASE statement
The INTO option of the RETURN statement

LOW-INTERMEDIATE FIPS FLAGGING: When flagging for the low-intermediate
FIPS level is specified, all elements included in the preceding lists
are flagged, plus the following additional COBOL source elements:

ENVIRONMENT DIVISION

The OR option of the SELECT sentence

DATA DIVISION

SD level indicator

PROCEDURE DIVISION

One or more SORT statements

Only one STOP RUN statement in the non-declarative portion
The RETURN statement

The RELEASE statement

LOW FIPS FLAGGING: When flagging for the low FIPS level is specified,
all elements included in the preceding lists are flagged, plus the
following additional COBOL source elements:

GLOBAL ITEMS

Comma and semicolon .as punctuation
Datanames which kegin with non-alphabetic character
Continuation of words and numeric literals

Figurative constant ZEROES
Figurative constant ZEROS
Figurative constant SPACES
Figurative constant HIGH-VALUES
Figurative constant LOW-VALUES
Figurative constant QUOTES
Figurative constant ALL literal
The COPY statement

IDENTIFICATION DIVISION

DATE-COMPILED Paragraph

Xxxii

ENVIRONMENT DIVISION

DATA

RESERVE ALTERNATE AREAS Clause in File-Control Paragraph (SELECT
sentence)

OPTIONAL in SELECT Clause

ACTUAL KEY Clause in File-Control Paragraph

FILE-LIMITS ARE Clause

Data-name instead of literal in FILE-LIMIT IS clause

Multiple extents in FILE-LIMIT IS clause

RANDOM option in ACCESS MODE IS Clause

RECORD and file-name-2 option of SAME Clause
MULTIPLE FILE TAPE Clause in I-O-CONTROL Paragraph

DIVISION

Level numbers 11 - 49

Level numbers 1 - 9 (1-digit)

Level number 66 RENAMES clause

Level number 88 Condition Name

Nesting of REDEFINES Clause

VALUE Clause as Condition-name entry

Integer-1 TO option of BLOCK CONTAINS (RECORD or CHARACTER) Clause
Data-name option on LABEL RECORDS Clause

Data-name option of VALUE OF Clause

Multiple Index-names for OCCURS clause

PROCEDURE DIVISION

+, =, ¥, /, and **

>, <, and = in relationals

Connectives OF, IN, ', ", AND, OR, and NOT
DECLARATIVES, END DECLARATIVES and USE sentence
gualification of names

Priority number on Section header

The COMPUTE verkt

The SEEK Statement

The Sign condition (POSITIVE, NEGATIVE, or ZERO)
Ccondition-name condition

Compound conditions

Nested IF statements

CORRESPONDING option (ADD, SUBTRACT, and MOVE)
Multiple results of ADD and SUBTRACT statements
REMAINDER option of DIVIDE statement

GO TO without object (used with ALTER)

Multiple operands of ALTER statement

UNTIL Condition and VARYING form of PERFORM
REVERSED and NO REWIND options of OPEN statement
Multiple file-names in OPEN statement

INTO option of READ statement

INVALID KEY option of READ statement

FROM option of WRITE statement

ADVANCING identifier LINES/mnemonic/name form of WRITE
The FROM option of the ACCEPT statement

The UPON option of the DISPLAY statement

The WITH NO REWIND or LOCK option of the CLOSE statement
Multiple file-names in a CLOSE statement

Three levels of subscripting

Multiple Index-namess/identifier in SET statement
The UP BY and DOWN BY option of the SET statement

DOS/VS COBOL Considerations xxxiii

MISCELLANEOUS FILE PROCESSING CONSIDERATIONS

The following items, concerning standard sequential, direct, and

indexed file processing, as well as the sort feature, aprly only for

DOS/VS COBOL.

File Processing Summary -- New Devices

The file processing techniques available for the DOS/VS COBOL devices

are summarized in Figure VII.

r T T T 1
|DOS Organization | Device | ACCESS | Organization]
L 4 4

r T T T ""1
| DTFCD | 5425 | [SEQUENTIAL] | standard |
| | | | Sequential |
| [] I |
DTFPR] 3203/5203,	[SEQUENTIAL]	standard	
	5425		Sequential
I			
DTFDU	3540	[SEQUENTIALI	standard [
			Sequential 1
I ! I)			
DTFSD] 3340	[SEQUENTIALI]	standard]	
			Sequential
I		I	
DTFDA	3340	[SEQUENTIAL]	direct
		I]	
DTFDA	3340	RANDOM	direct]
	I]	
I DTFIS	3340	[SEQUENTIAL]	indexed]
I	I I]		
DTFIS	3340	RANDOM	indexed
L XL L L. d
Figure VII. File Processing Summary -~ DOS/VS COBOL Devices

ASSIGN Clause

For the new DOS/VS COBOL devices, system/name has the following

formats:
For the 3203/5203 printers:

3203
SYSnnn-UR- ~-S[~namel

5203
For the 5425 multifunction card unit:
S
T
A {[P]l

P
SYSnnn-UR-5425 {R} - [~name]

W

N

(See the ASSIGN Clause description for the 2560 MFCM for the meaning of

each field.)

XxXxiv

For the 3540 diskette input/output unit:

oT

SYSnnn- { } ~3540-S[~namel

DA

For the 3340 mass storage disk facility:
UT-3340-S

S

A

D

SYSnnn- () [-name]

DA-3340-~

U
W
I

DOS/VS COBOL Considerations xxxiv.i

CTUAL KEY Llause
e

When the 3340 device is specified for a direct file, and actual track
addressing is used, the first 8 bytes of the ACTUAL KEY may be specified
as follows:

r T T T T N
| PACK { CELL] CYLINDER | HEAD | RECORD |
| + + } + -4
| M | B B |C cl = H | R |
1 1 1 L 1 1
r T T T T H '
] Bytel| 1 ! 2 3 |4 51 6 7 1 8]
oion | b
Device
!r ; t } + + j
| 3340 | 0-221 | 0 0 | 0-347 | 0-11] 0=255 i
| (Mod 35) | : | | | |
b : } ¢ + 3 !
| 3340 | 0-221 | O 0 | 0-695] 0-11] 0-255 !
| (Mod 70) | | | | | }
L 1 L L L 1 y)

APPLY WRITE-VERIFY Clause

For the 3540 diskette input/output unit, this clause has no meaning,
and must not be specified.
APPLY CYL-OVERFLOW Clause
i DA — o e e

For a 3340 mass storage facility, when the APPLY CYL-OVERFLOW clause
is specified, the maximum number of tracks that can be reserved for
overflow records is 10. If the clause is not specified, 2 tracks are
reserved for overflow records.

BLOCK _CONTAINS Clause

For a file on the 3540 diskette input/loutput unit, when the BLOCK
CONTAINS clause is specified, the RECORDS option must be used.

LABEL RECORDS Clause
For a file on the 3540 diskette input/output unit, LABEL RECORDS ARE

STANDARD must be specified.

ERROR Declarative

When the GIVING option is specified for a file on the 3540 diskette
input/output unit, the error bytes in data-name-1l contain the
information shown in Figure VIII. (For the 3340 device, the contents of
the error bytes are the same as for other mass storage files.)

DOS/VS COBOL Considerations XXXV

Miscelldnecus Considerations (DOS/¥S)

r T B 1
| Error Byte ! Meaning]
i — 5 4
U T

| 1 | data check |
1 1 3
L 3 T . A
| 2 | equipment check]
1 1 _— 1
I T 1
| 3 thru 8] unused]
L L —_d
Figure VIII. Error Bytes for 3540 -- GIVING Option

ACCEPT Literal Statement

When FROM CONSOLFE is specified, the input data can ke typed in either
capital or small letters, or a combination of the two. The program
accepts the data as capital letters.

OPEN Statement

A file that resides on the 3540 diskette input/output unit may be
opened only in the INPUT or OUTPUT mode; the REVERSED and WITH NO REWIND
options may not be specified. -

WRITE Statement

For a file on the 3540 diskette input/output unit, the INVALID KEY
option must not be specified.

For a file on the 5425 MFCU, the System/370 Card Device
considerations as described in the WRITE Statement of the Procedure
Division chapter apply, with the following additional rules:

e For the print feature, the ADVANCING/POSITIONING options are not
allowed; single spacing is automatically provided.

e For the print feature, there may be only one WRITE statement issued
for each card.

*» The print feature allows a maximum of 32 characters per line and 3
or 4 lines per card, for a maximum of 128 characters.

e For the punch feature, in the WRITE AFTER ADVANCING staterent for
stacker selection, function-names S01 through S04 may be specified.

e For the punch feature, in the WRITE AFTER POSITIONING statement for
stacker selection, V, W, X, Y may be specified for stackers 1
through 4, respectively.

CLOSE Statement

For a file on the 3540 diskette input/output unit, only the CLOSE
file-name and CLOSE file-name WITH LOCK options are valid.

When the CLOSE statement is executed, standard close file procedures
are performed, and the diskette is fed out of the input/output unit.
When the WITH LOCK option is specified, the compiler ensures that this
file cannot be opened again during this execution of the object program.

XXXV

Page of GC28-6394-4, -5, -6 revised 12/Q3/76 by TNL GN26-0887

Sort Feature

The input and/or output file can be either a standard sequential file
or a sequentially accessed VSAM file. Up to 8 input files may be
specified in the USING option.

The sort-file-description entry may be specified as follows:

[SORT-OPTION IS data-name-3].

.
| Format

1

[3

] SD sort-file-name

|

] [gggggg;gg MODE IS model

|

! RECORD IS

| [DATA data-name-1 [data-name-2] ...]
| RECORDS ARE

|

| [ngggg CONTRINS [integer-1 TO] integer-2 CHARACTERS]

|

| RECORD IS §_E§ED_AB.9)

| {LABEL]

| RECORDS ARE (OMITTED f

]

!

L

The SORT-OPTION clause specifies that at object time an OPTION
control statement for the Sorts/Merge program will be specified in the
data-name-3 area.

Data-name-3 must be a field defined in the WORKING-STORAGE section.
A full description of the SORT-OPTION clause can be found in the
DOS/VS COBOL Programmer's Guide, SC28-6478.

The other clauses of the sort-file-description entry are implemented
as described in the Sort Feature chapter.

5425 Combined Function Processing

The descriptions in Appendix G apply, with the following special
considerations:

In the SPECIAL-NAMES paragraph, function-names S01 through S04 may be
specified for stacker selection of 5425 punched output.

ASSIGN clause considerations for the 2560 MFCM apply also for the
5425 MFCU.

For the 5425 print function WRITE statement, line control may not ke
specified, and there may be only one WRITE statement issued per card. A
maximum of 32 characters per line, and 3 or 4 lines per card may be
specified, for a maximum logical record size of 128 characters.

For the punch function, S01 through S04 (for stacker selection 1
through 4, respectively) may be specified in the WRITE ADVANCING

statement.

For the punch function, Vv, W, X, Y (for stacker selection 1 through
4, respectively) may ke specified in the WRITE AFTER POSITIONING

statement.

DOS/VS COBOL Considerations xxxvi.i

FEATURES OF THE DOS FULL COBOL PROGRAM PRODUCT COMPILERS

Features of the DOS Full COBOL Program Product Compilers 11

DOS FULL AMERICAN NATIONAL STANDARD COBOL VERSION 3: this Program
Product Compiler includes the following features:

Release 3: The following features are included in this release:

e Additional System/370 Device Support -- including the following:

(1) 2560 Multifunction Card Machine MFCM) -- for 80-column
cards. Read/punch/print/select features, and combined
function processing are supported. Without the combined
function processing feature, the 2560 MFCM can be used as a
backup reader or as a punch.

(2) 3504 Reader with OMR (Optical Mark Read) feature -- the
compiler can use the 3504 without the OMR feature as the
SYSIPT device.

(3) 3881 Optical Mark Reader (OMR) -- which reads hand-written
or machine-printed marks on paper documents. When equigpped
with the optional BCD feature, the 3881 OMR can also read
binary coding.

e Enhanced Compiler Output -- including date, start-time of
compilation and program-id on every source listing page.
Compiler statistics are also available, and the date and time of
compilation are carried as constants in the object module, so
that the object module can be associated with an output listing.

¢ Maintainability Improvements —-- the installation can set the
compiler default options by cataloging them into the source
statement library.

Base Compiler Features: the following features are continued from
Release 1 and Release 2.

B P

¢ Improvements in Object Code tO save main storage:

(1) Optimized Object Code -- which results, when specified, in
up to 30% space saving in object program generated code
and global tables as compared with Version 2. The space
saved depends on the number of referenced procedure-names
and branches, and on 0l-level data names.

(2) System/370 Support can be requested, to take advantage of

the System/370 instruction set. When such support is
requested, System/370 instructions particularly suited to
COBOL programming are generated to replace the equivalent
object-time subroutines and instructions needed when
running under System/360. The System/370 instructions
save up to 12% of cgenerated object program space, plus the
space no longer needed by the subkroutines. ’

(4) Improvements in the MOVE Statement and in Comparisons --
when a MOVE statement or a comparison involves a one-byte
literal, generated code for the move and the comparison
has been improved. This saves object program space.

¢ Alphabetized Cross-Reference Listing (SXREF) -- for easier
reference to user-specified names in a program. SXREF performs
up to 25 times faster than previous Version 2 source-ordered
cross-reference (XREF). Version 3 XREF performance is improved
by at least the same amount. The larger the source program, the
more that performance is improved. Total compilation time is up
to 2 times faster.

Features of the DOS Full COBOL Program Product Compilers 12.1

e Debugging Facilities that are more powerful and flexible

(1) Symbolic Debug Feature -- which provides a symbolic
formatted dump at abnormal termination, or a dynamic dump
during program execution.

(2) Flow_Trace Option -- a formatted trace can be requested
for a variable number of procedures executed before
abnormal termination.

(3) Statement Number Option -- provides information about the
COBOL statement being executed at abnormal termination.

(4) Expanded CLIST and SYM ~-- for more detailed information
about the Data Divisicon and Procedure Division.

(5) Relocation Factor -- can be regquested to be included in
addresses on the object code listing for easier debugging.

(6) Working-Storage Location and Size -- When CLIST and SYM
are in effect, the starting address and size of
Working-Storage are printed.

e System/370 Device Support -- the following devices can be
specified:
3211 -- 150-character printer
2319, 3330 -- mass storage (direct access) facilities

3410, 3420 -- tape utility devices
3505, 3525 -- advanced unit-record devices
e ASCII Support -- allows creation and retrieval of tape files

written in the American National Standard Code for Information
Interchange (ASCII).

The DOS Full American National Standard COBOL Compiler and
Library are packaged as two separate Program Products. The
Compiler is Program Product Number 5736-CB2; the Library is
Program Product Number 5736-LM2.

Features of the DOS Full COBOL Program Product Compilers 13

INTRODUCTION

In 1959, a group of computer professionals, representing the U.S.
Government, manufacturers, universities, and users, formed the
Conference On DAta S¥stems Language (CODASYL). At the first meeting,
the conference agreed upon the development of a common language for the
programming of commercial problems. The proposed language would be
capable of continuous change and development, it would be problem-
oriented and machine-independent, and it would use a syntax closely
resembliing English, avoiding the use of special symbols as much as
possible. The COmmon Business QOriented Language (COBOL) which resulted
met most of these requirements.

As its name implies, COBOL is especially efficient in the processing
of business problems. Such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
similar records in a relatively simple way. This means that COBOL
emphasizes the description and handling of data items and input/output
records.

In the years since 1959, COBOL has undergone considerable refinement
and standardization, and a standard COBOL has been approved by ANSI
(American National Standards Institute), an industry-wide association of
computer manufacturers and users; this standard is called American
National Standard COBOL, X3.23-1968.

This publication explains IBM Full American National Standard COROL,
which is compatible with the highest level of American National Standard
COBOL and includes a number of IBM extensions to it as well. The
compilér supports the processing modules defined in the standard. These
processing modules include:

NUCLEUS -- which defines the permissible character set and the basic
elements of the language contained in each of the four COBOL divisions:
Identification Division, Environment Division, Data Division, and
Procedure Division.

TABLE HANDLING -- which allows the definition of tables and making
reference to them through subscripts and indexes. A convenient method
for searching a table is provided.

SEQUENTIAL ACCESS ~-- which allows the records of a file to be read or
written in a serial manner. The order of reference is implicitly
determined by the position of the logical record in the file.

RANDOM ACCESS -- which allows the records of a file to be read or
written in a manner specified by the programmer. Specifically defined
keys, supplied by the programmer, control successive references to the
file.

SORT -- which provides the capability of sorting files in ascending
and/or descending order. This feature also includes procedures for
handling such files both before and after they have been sorted.

REPORT WRITER -- which allows the programmer to describe the format of a
report in the DATA DIVISION, thereby minimizing the amount of PROCEDURE
DIVISION coding necessary.

SEGMENTATION -- which allows large problem programs to be split into
segments that can then be designated as permanent or overlayable core
storage. This assures more efficient use of core storage at object
time.

Introduction 15

LIBRARY -- which supports the retrieval and updating of pre-written
source program entries from a user's library, for inclusion in a COBOL
program at compile time. The effect of the compilation of library text
is as though the text were actually written as part of the source
program.

In this publication, the features included in the HUCLEUS, SEQUENTIAL
ACCESS, and RANDOM ACCESS modules are presented as part of the
discussion of "Language Considerations" and of the four divisions of a
COBOL program. The other five modules -- TABLE HANDLING, SORT, REPORT
WRITER, LIBRARY, and SEGMENTATION -- are presented as separate features
of American National Standard COBOL.

This manual describes all versions of IBM System/360 Disk Operatinc
System Full American National Standard COBOL. All information relating
to the Program Product Version 3 compiler is presented within separate
paragraphs. Such paragraphs begin with the heading "Program Product
Information -- Version 3," and all following paragraphs pertaining to
such information are indented. Aall information relating to the DOS/VS
COBOL Compiler and Library Program Prcduct is included in the separate
chapter, ¥o S Vi =33 ;

T

This chapter gives the reader a general understanding of the
principles of IBM Full American National Standard COBOL (hereinafter
simply termed "COBOL"). It introduces the reader to COBOL and
demonstrates some of the ways in which the language can be used in the
solution of commercial problems. This discussion does not define the
rules for using COBOL, but rather attempts to explain the basic concepts
of the language through relatively simple examples.

The reader who has an understanding of the principleées of currently
implemented versions of COBOL may wish to go directly to "Language
Considerations." Other readers will find many concepts discussed in
this chapter of help in using the detailed instructions throughout the
rest of this manual.

PRINCIPLES OF COBOL

COBOL is one of a group of high-level computer languages. Such
languages are problem oriented and relatively machine independent,
freeing the programmer from many of the machine oriented restrictions of
assembler language, and allowing him to concentrate instead upon the
logical aspects of his problem.

COBOL looks and reads much like ordinary business English. The
programmer can use English words and conventional arithmetic symbols to
direct and control the complicated operations of the computer. The
following are typical COBOL sentences:

ADD DIVIDENDS TO INCOME.
MULTIPLY UNIT~PRICE BY STOCK-ON-HAND
GIVING STOCK-VALUE.
IF STOCK-ON-HAND IS LESS THAN ORDER-POINT
MOVE ITEM-CODE TO REORDER-CODE.

Such COBOL sentences are easily understandable, but they must be
translated into machine language -- the internal instruction codes --
before they can actually be used.

A special systems program, known as a compiler, is first entered into
the computer. The COBOL program (referred to as the source program) is
then entered into the machine, where the compiler reads it and analyzes
it. The COBOL language contains a basic set of reserved words and
symbols. Each combination of reserved words and symbols is transformed
by the compiler into a definite set of usable machine instructions. in

16 Introduction

effect, the programmer has at his disposal a whole series of
"prefabricated" portions of the machine-language program he wishes the
compiler to construct.

When he writes a COBOL program, he is actually directing the compiler
to bring together, in the proper sequence, the groups of machine
instructions necessary to accomplish the desired result. From the
programmer's instructions, the compiler creates a new program in machine
language. This program is known as an object program.

Once the object program has been produced, it may be used at once, or
it may be recorded on some external medium and stored for future use.
When it is needed, it can then be called upon again and again to process
data.

Every COBOL program is processed first when the compiler translates
the COBOL program into machine language (compile time), then when the
machine language program actually processes the data (execution time).

A simple example illustrates the basic principles of translating a
COBOL sentence. To increase the value of an item named INCOME -by the
value of an item named DIVIDENDS, the COBOL programmer writes the
following sentence:

ADD DIVIDENDS TO INCOME.

Before the compiler can interpret this sentence, it must be given
certain information. The programmer describes the Jdata .represented by
the names DIVIDENDS and INCOME in such a way that the compiler can
recognize it, obtain it when needed, and treat it in accordance with its
special characteristics.

First, the compiler examines the word ADD. It determines whether or
not ADD is one of the COBOL reserved words, that is, words that have
clearly defined meanings in COBOL (rather than a word like DIVIDENDS,
which is defined by the programmer). ADD is a special kind of reserved
word--a COBOL key word. Therefore, the compiler generates the machine
instructions necessary to perform an addition and inserts them into the
object program.

The compiler next examines the word DIVIDENDS. Because the
programmer has supplied data information about DIVIDENDS, the compiler
knows where and how DIVIDENDS information is to be placed in core
storage, and it inserts into the object program the instructions needed
in order to locate and obtain the data. ‘

When the compiler encounters the word TO, it again determines whether
or not this is a COBOL reserved word. It is such a word, and the
compiler interprets it to mean that the value represented by the name
following the word TO, in this case INCOME, must be increased as a
result of the addition.

The compiler next examines the word INCOME. Again, it has access to
data information about the word. BAs a result, it is able to place in
the object program the instructions necessary to locate and use INCOME
data.

The programmer placed a period after the word INCOME. The effect of
the period on the COBOL compiler is similar to its effect in the English
language. The period tells the compiler that it has reached the last
word to which the verb ADD applies, the end of the sentence.

The logical steps we have described are performed by the compiler in
creating the object program, although they might not be performed in
exactly this sequence. BAll these preparatory steps are required only in
creating the object program. Once created, the object program is used
for the actual processing and may be saved for future reference. The
source program is not required further, unless the programmer makes a

Introduction 17

change in it; in that case, it must be compiled again to create a new
object program.

When the machine-language instruction for ADD is actually performed
at execution time, the instruction is executed in either of two ways,
depending on the format of the data:

1. It directly adds the wvalue of DIVIDENDS to the value of the data
representing INCOME, thus giving the new value of INCOME.

or

2. It moves the data representing INCOME into a special work area, or
register; then DIVIDENDS is added to it to create the sum, after
which the new value of INCOME is returned to the proper area in
storage.

In this simple example, the object proagram could add the two specified
items with very few machine instructions. In actual practice, however,
some complex COBOL sentences produce dozens of machine instructions.
Then, too, a computer can be instructed to repeat a procedure any number
of times. A few COBOL sentences can start the computer on operations
that could process millions of data records rapidly and accurately.

A SAMPLE_COBOL PROGRAM

COBOL is based on English; it uses English words and certain syntax
rules derived from English. However, because it is a computer language,
it is much more precise than English. The programmer must, therefore,
learn the rules that govern COBOL and follow them exactly. These rules
are detailed later, beginning in the next chapter. The rest of this
chapter gives a general picture of how a COBOL program is put together.

The basic unit of COBOL is the word -- which may be a COBOL reserved
word or a programmer-defined word. Reserved words have a specific
syntactical meaning to the COBOL compiler, and must be spelled exactly
as shown in the reserved word list (see Appendix C). Programmer-defined
words are assigned by the user to such items as data-names and
procedure-names; they must conform to the COBOL rules for the formation
of names.

Reserved words and programmer-defined words are combined by the
programmer into clauses (in the Environment and Data Divisions) and
statements (in the Procedure Division); clauses and statements must be
formed following the specific syntactical rules of COBOL. A clause or a
statement specifies only one action to be performed, one condition to be
analyzed, or one description of data. Clauses and statements can be
combined into sentences. Sentences may be simple (one statement or one
clause), or they may be compound (a combination of statements or a
combination of clauses). Sentences can be combined into paragraphs,
which are named units of logically related sentences, and paragraphs can
be further combined into named sections. Both paragraphs and sections
can be referred to as procedures, and their names can be referred to as
procedure names. Procedures (sections and paragraphs) are combined into
divisions.

There are four divisions in each COBOL program. Each is placed in
its logical sequence, each has its necessary logical function in the
program, and each uses information developed in the divisions preceding
it. The four divisions and their sequence are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

18 Introduction

To illustrate how a COBOL program is written, let us create a
simplified procedure to record changes in the stocks of office furniture
offered for sale by a manufacturer. We will need such data items as an
item code to identify each type of product, an item name corresponding
to the code, the unit price of each item of stock, the reorder point at
which the manufacturer replaces each item, and the amount of stock on
hand plus its value for each item. Our procedure will update a
MASTER-FILE of all stocks the manufacturer carries by reading a
DETAIL-FILE of current transactions, performing the necessary
calculations, and placing the updated values in the MASTER-FILE. We
will also create an ACTION-FILE of items to be reordered. The
MASTER-FILE resides on a direct access (mass storage) disk device; the
DETAIL-FILE and ACTION-FILE reside on tape devices.

Many of the examples used in the following discussion have been
simplified for greater clarity. Figure 4, at the end of this chapter,
shows how the entire UPDATING program would actually be written.

Identification Division

First we must assign a name to our program, presenting the
information like this:

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.
PROGRAM-ID informs the compiler that we have chosen the unique name
UPDATING for the program we have written.
In addition to the name of the program, the Identification Division

allows us to list the name of the programmer, the date the program was
written, and other information that will serve to document the program.

Environment Division

Although COBOL is, to a large degree, machine independent, there are
some aspects of any program that depend on the particular computer being
used and on its associated input/output devices. In the Environment
Division, the characteristics of the computer used may be identified.
The location of each file referenced in the program, and how each one of
them will be used, must be described.

First we will describe the source computer (the one the compiler
uses) and the object computer (the one the object program uses) as
follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.

This tells us that both computers will be an IBM System/360 model F50.
Next we must identify the files to be used in our program, and assign

them to specific input/output devices. This is done in the Input-Output
Section.

Introduction 19

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MASTER-FILE, ASSIGN TO ...
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.
SELECT DETAIL-FILE, ASSIGN TO ...
ACCESS MODE IS SEQUENTIAL.
SELECT ACTION-FILE, ASSIGN TO ...

.
-

-

The ellipses (...) in the three foregoing ASSIGN clauses indicate the
omission of system-name, an item too complex to illustrate here.
System-name is in a special format, and it tells the compiler on which
symbolic unit the file will be found, on what kind .of device the file
resides, and in what way the data is organized within the file.

Our MASTER-FILE resides on a disk pack, which is a mass storage
device. Access for these devices can be either RANDOM or SEQUENTIAL.
I1f ACCESS MODE IS RANDOM, then each record within the file can be
located directly through the use of a key (identified in the statement
ACTUAL KEY IS FILEKEY). For our program we have named this key FILEKLY,
and later in the Data Division we will describe it fully. During the
processing of our object program, each record will be made available to
the user in the sequence that the keys are presented to the system.

Our DETAIL-FILE and our ACTION-FILE reside on tape. This means that
ACCESS MODE must be sequential. On tape it is necessary to refer to
each successive record in the file in order to find any individual
record we might wish to access. Since the compiler assumes that the
ACCESS MODE is seguential unless specified otherwise, the ACCESS MODE
clause is never needed in describing a tape file.

Data Division

The Data Division of the COBOL program gives a detailed description
of all the data to be used in the program -- whether to be read into the
machine, used in intermediate processing, or written as output. To
simplify this discussion, we will describe only the two most important
aspects of data description.

1. We will inform the compiler that we intend to work with one kind of
input record, our detail record; one kind of update record, our
master record; and one kind of output record, our action record.

2. We will assign data-names to each of the items of data to be used.

First, we must organize the two input records -- a MASTER-RECORD and
a DETAIL-RECORD. The MASTER-RECORD will be derived from ledger records
that look like those shown in Figure 1.

20 Introduction

~- T T T T T 1
		Stock	Unit	Stock	
Item		on	Price	Value	Order
Code	Item Name	Hand	sy 1)	Point	
-t - -1 1 + t {					
ja10	2-drawer file cabinets	100	50	5,000	50
a11	3-drawer file cabinets	175	.80	14,000	80
A12	4-drawer file cabinets	200	110	22,000	150
	I I	I			

IB10 | Secretarial desks | 150 | 200 | 30,000 | 120 {
|B11 | Salesmen's desks i 50 | 175 | 8,750 | 50 |
|B12 | Executive desks | 75 | 500 | 37,500 | 60 |
| | I I | I I
1C10 | Secretarial posture chairs | 125 | 50 | 6,250 | 140]
|Cl1 | side chairs | 50 | 40 | 2,000 | 60 |
[cl1l2 | Executive swivel chairs | 25 | 150 | 3,750 | 20 |
L L L 1 R 1 J

Figure 1. Typical Ledgér Records Used for MASTER-RECORD

There will be a MASTER-RECORD for each item in this list. 1In
defining the data for the compiler, we will make sure that each record
is in the same format as all the others. Thus, if we specify the
characteristics of a single record, we will have specified the
characteristics of the whole set. 1In this way, all of the master
records can be organized into a data set, or file, that we will name
MASTER-FILE. Each complete record within the file we will name the
MASTER-RECORD, with the individual items of data grouped within it.
Accordingly, we will begin our Data Division as follows:

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE DATA RECORD IS MASTER-RECORD...

01 MASTER-RECORD.
02 ITEM-CODE...
02 ITEM-NAME...
02 STOCK-ON-HAND...
02 UNIT-PRICE...
02 STOCK-VALUE...
02 ORDER-POINT...

The FILE SECTION entry informs the COBOL compiler that the items that
follow will describe the format of each file and of each record within
each file to be used in the program. The level indicator FD (File
Description) introduces the MASTER-FILE itself, and tells the compiler
that each entry within MASTER-FILE will be referred to as MASTER-RECORD.
The entry with level number 01 identifies the MASTER-RECORD itself, and
the subordinate entries with level number 02 describe the subdivisions
within the complete MASTER-RECORD. The concept of levels is a basic
attribute of COBOL. The highest level is the FD, the next highest level
is 0l1. Level numbers from 02 through 49 may subdivide the record, and
the subdivisions themselves can be further subdivided if need be. The
smaller the subdivision, the larger the level number must be.

Each of the data items would actually be described more fully than is
shown here. 1In an actual program, for example, we would inform the
compiler that each of the items identified as STOCK-ON-HAND, UNIT-PRICE,
STOCK-VALUE, and ORDER-POINT would represent positive numeric values of
a specific size in a specific form, and so forth. At this point, we
need not concern ourselves with these details.

Introduction 21

The MASTER-FILE is the main record of current inventory. Changes to
this record are made by entering the details of individual transactions
or groups of transactions. Thus, receipts of new stocks and shipments
to customers will change both STOCK-ON-HAND and STOCK-VALUE. These
changes are summarized in the detail record for each item. A typical
record would appear in a ledger as shown in Figure 2.

Item

Code Item Name Receipts Shipments

- ——

Salesmen's desks 25

I e
pm e o s e o]
= ——
. S p——

|B11
L

Figure 2. Typical DETAIL-RECORD

15

We will therefore organize a DETAIL-FILE, made up of individual items
to be referred to as DETAIL-RECORD. DETAIL-FILE will be arranged by
ITEM~CODE in ascending numerical orgder.

FD DETAIL-FILE DATA RECORD IS DETAIL-RECORD...
01 DETAIL-RECORD.

02 ITEM-CODE...

02 ITEM-NAME...

02 RECEIPTS...

02 SHIPMENTS...

The ACTION-FILE will contain a list of items to be reordered, plus
relevant data:

FD ACTION-FILE DATA RECORD IS ACTION-RECORD...
01 ACTION-RECORD.

02 ITEM-CODE...

02 ITEM-NAME...

02 STOCK-ON-HAND...

02 UNIT-PRICE...

02 ORDER-POINT...

This completes the description of the files we will use.

Note that the names of data items contained within the files are in
many cases identical. Yet each name within each file must be unique, or
ambiguities in references to them will occur. Since identical names are
used in our data descriptions, we must use a special means of
distinguishing between them. The COBOL naming system, with its concept
of levels, allows us to make this distinction by reference to some
larger group of data of which the item is a part. Thus, ITEM~CODE OF
MASTER-RECORD, and ITEM-CODE OF DETAIL-RECORD, and ITEM-CODE OF
ACTION-RECORD can be clearly differentiated from each other. The use of
a higher level name in this way is called qualification. gQualification
is required in making distinctions between otherwise identical names.

Now we must construct the Working-Storage Section of our Data
Division. This section_describes records and data items that are not
part of the files, but are used during the processing of the object
program.

For our program, we will need several entries in our Working-Storage
Section. Among them will be several items constructed with level
numbers, similar to those used to describe the file records.

WORKING-STORAGE SECTION.

77 QUOTIENT...

01 THE-KEY...
02 FILLER...
02 FILEKEY...

01 ERROR-MESSAGE.
02 ERROR-MESSAGE-1...
02 ERROR-MESSAGE-2...
02 ERROR-MESSAGE-3...

We will use THE-KEY record in constructing the FILEKEY. The
ERROR-MESSAGE record we will use to create warning messages when errors
are encountered during object time processing. The data item named
QUOTIENT we have assigned the level number 77. This level number
informs the compiler that QUOTIENT is a noncontiguous data item -- that
is, that this item has no relationship to any other data item described
in the Working-Storage Section. Note that the data items related to
each other must be listed after all the noncontiguous data items.

Procedure Division

The Procedure Division contains the instructions needed to solve our
problem. To accomplish this, we will use several types of COBOL
statements. In constructing our sample program, we will discover how
each type of statement can be used to obtain the results we want.

Beginning the Program -- Input Operations

Our first step in building the Procedure Division is to make the
records contained in the MASTER-FILE and the DETAIL-FILE available for
processing. If we write the statements:

PROCEDURE DIVISION.

OPEN INPUT DETAIL-FILE.
OPEN I-O MASTER-FILE.

the system establishes a line of communication with each file, checks to
make sure that each is available for use, brings the first record of the
DETAIL~FILE file into special areas of internal storage known as
buffers, and does other housekeeping.

Introduction 23

The files can now be accessed. Our next statements will therefore
be:

READ DETAIL-FILE AT END GO TO END-ROUTINE.

READ MASTER~FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-ROUTINE-1.

At this point in our program, these two statements make available for
processing the first record from each file. (Note that the AT END
phrase and the INVALID KEY phrase are necessary in these sentences.
Their use will be explained later.) We are now able to begin arithmetic
operations upon the data.

Arithmetic Statements

We have already seen that the COBOL language contains the verb ADD.
Using this verb, we can add RECEIPTS to STOCK-ON-HAND by writing the
COBOL statement:

ADD RECEIPTS TO STOCK-ON-HAND.

This instructs the program to find the value of RECEIPTS in the
DETAIL-RECORD and add it to the wvalue of STOCK-ON-HAND in the
MASTER-RECORD. (For the sake of brevity, this example and the ones
following have been simplified by omitting the name qualification which
would be necessary in actual coding. Figure 4, at the end of this
chapter, shows the actual coding necessary.)

Next we must reduce the new value of STOCK-ON-HAND by the amount of
SHIPMENTS. The COBOL verb SUBTRACT will accomplish this result for us,
and so we write:

SUBTRACT SHIPMENTS FROM STOCK-~ON-HAND.

These two statements, carried out in succession, will produce a current
value for STOCK-ON-HAND.

Actually, there is a more concise way to perform this particular
calculation. We have broken it into two steps, but COBOL provides
another verb which allows us to specify more than one arithmetic
operation in a single statement. This is the verb COMPUTE.

COMPUTE STOCK-ON-HAND = STOCK-ON-HAND + RECEIPTS - SHIPMENTS.

A COMPUTE statement is always interpreted to mean that the value on
the left of the equal sign will be cnanged to equal the value resulting
from the calculation specified on the right. The calculation on the
right of the equal sign is evaluated from left to right. That is, in
our example, the addition is performed first and then the subtraction.

The name STOCK-ON-HAND occurs twice in this sentence, but this causes
no difficulty. The expression to the right is calculated first; thus,
it is the current value of STOCK-ON-HAND that is used as the basis for
computing the new value. When this new value has been calculated, it
replaces the old value of STOCK-ON-HAND in the MASTER-RECORD.

24 Introduction

Sc far we have brought only the value of STOCK-ON-HAND up to date,
but a change in this value will also cause a change in STOCK-VALUE. Wwe
will assume that this figure does not include allowances for quantity
discounts, damage to stock, or other such factors, and that STOCK-VALUE
is nothing more than the unit price multiplied by the number of items
currently in stock. COBOL provides us with a MULTIPLY verb, which
permits us to accomplish this:

MULTIPLY STOCK-ON-HAND BY UNIT-PRICE GIVING STOCK-VALUE.

The result of the multiplication will be placed in the MASTER-RECORD as
the new value of STOCK-VALUE. Within the program, this statement must
be executed after the COMPUTE statement we wrote earlier, since
STOCK-ON-HAND must be the updated, not the original, value.

Conditional Statements

There are instructions in COBOL that examine data to determine
whether or not some condition is present and, depending on what is
found, to carry out an appropriate course of action.

The MASTER-RECORD contains an item called ORDER-POINT. An item is to
be reordered when its stock has been reduced either to or below its
order point. Let us assume that we have written a procedure for
jnitiating such an order, and that we have given the name
REORDER-ROUTINE to this procedure. We then write the following two
sentences:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT
PERFORM REORDER-1...

IF STOCK-ON-HAND IS EQUAL TO ORDER-POINT
PERFORM REORDER-1...

in order to compare the present value of STOCK-ON-HAND with the value of
ORDER-POINT. If STOCK-ON-HAND is a smaller value, the COBOL verb
PERFORM causes a transfer of control to the paragraph named REORDER-1.
If STOCK-ON-HAND is not less than ORDER-POINT, our next instruction is
evaluated. If the values are equal, control is transferred to
REORDER-1. If the values are not equal, control is transferred to the
next instruction.

It is permissible, in COBOL, to combine the two tests into one:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT OR EQUAL TO
ORDER-POINT PERFORM REORDER-1...

Here we are writing a compound condition with an implied subject.
STOCK-ON-HAND, the subject of the first condition, is understood to be
the subject of the second condition as well. Compound conditions
increase the flexibility of COBOL and make the handling of many kinds of
problems easier.

In this example, we tested successively for two conditions out of
three. Unless the programmer has some need to distinguish between these
two conditions (and he might), it would be simpler to test for the third
condition instead:

IF STOCK-ON-HAND IS GREATER THAN ORDER-POINT NEXT SENTENCE
ELSE PERFORM REORDER-1...

Introduction 25

The words NEXT SENTENCE have a special meaning in COBOL. When IF
STOCK-ON-HAND IS GREATER THAN ORDER-POINT is true, NEXT SENTENCE takes
effect. Every instruction in the balance of the IF sentence is ignored,
and control is transferred to the sentence following.

The test can be simplified even further, since COBOL allows us to
express negation:

IF STOCK-ON-HAND IS NOT GREATER THAN ORDER-POINT
PERFORM REORDER-1...

If the value of STOCK-VALUE is less than or equal to that of
ORDER~-POINT, control is transferred to REORDER-1. If the value is
greater, control automatically passes to the next successive sentence.

The actual rules for specifying tests and comparisons will be given
in a subsequent chapter.

Handling Possible Exrors

Let us write one more conditional statement:

IF STOCK-ON~-HAND IS LESS THAN ZERO...
GO TO ERROR-WRITE.

One would expect that the smallest wvalue STOCK-ON-HAND could assume
would be zero. If a negative record were processed, the values found
would probably be completely erroneous. To prevent this, the programmer
could anticipate the possibility of error and write a special routine to
be executed whenever the value of STOCK-ON-HAND was found to be
negative. Such a routine could stop the processing of this record,
print out the erroneous data, and proceed automatically to process the
records following. The more comprehensive a programmer makes his error
checking, the less likely it is that inaccurate information will pass
through without being marked for special attention.

Data-Manipulation Statements

We saw in the foregoing that if the value of STOCK-ON-HAND fell below
a certain point, control would be passed to a special sequence of
instructions named REORDER-1. Our output ACTION-FILE has been set up
for just this purpose. The bulk of REORDER-1 could consist of
data-manipulation statements; that is, instructions which move the
necessary data items from the MASTER-RECORD area in storage to that area
reserved for the ACTION-FILE records. The COBOL verb MOVE can be used
to accomplish this. We must explain here that the verb MOVE does not
mean an actual physical movement of data. Instead, it means that the
data items from MASTER-RECORD are copied into ACTION-RECORD. Items
within MASTER-RECORD are not destroyed when a MOVE statement is
executed, and are available for further processing. Individual items

26 Introduction

contained in ACTION-RECORD before the operation, however, are replaced
when the statement is executed. Our MOVE statements will be written:

MOVE ITEM-CODE OF MASTER-RECORD TO ITEM-CODE
OF ACTION-RECORD.

MOVE ITEM-NAME Of MASTER-RECORD TO ITEM-NAME
OF ACTION-RECORD.

MOVE STOCK-ON-HAND OF MASTER-RECORD TO
STOCK-ON-HAND OF ACTION-RECORD.

MOVE UNIT-PRICE OF MASTER-RECORD TO UNIT-PRICE
OF ACTION-RECORD.

MOVE ORDER-POINT OF MASTER-RECORD TO ORDER-POINT
OF ACTION-RECORD.

With these five statements, we have set up the ACTION-RECORD to be
written in the ACTION-FILE. However, there is another and easier method
for the programmer to specify the five MOVE operations by taking
advantage of the qualification system in naming:

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.

The word CORRESPONDING indicates that those data items with names which
are identical in both records are to be copied from MASTER~-RECORD into
ACTION-RECORD. Thus, five MOVE statements are replaced by one.

Output Operations

When all arithmetic and data-manipulation statements have been
executed, we will write the results in some form. COBOL allows us to do
this with a WRITE instruction.

WRITE MASTER-RECORD INVALID KEY ...
GO TO ERROR-WRITE.
Or, if we were to indicate that an item was to be reordered, we could
write the following:
WRITE ACTION-RECORD.
In either case, the record would be recorded on the output device

specified for the file in the Environment Division; its format would be
determined by the Data Division description of the file.

Introduction 27

Procedure Branching Statements

In our inventory problem, there will be as many master records as
there are kinds of furniture in stock, and there will be a varying
number of detail records. We must read each successive DETAIL-RECORD in
DETAIL~FILE, until every one of the records in the file has been
processed.

Each time a DETAIL-RECORD is read, we will perform calculations upon
its ITEM-CODE in order to produce our FILEKEY. FILEKEY will then be
used to find a matching record in MASTER-RECORD. If a matching record
cannot be found, either the DETAIL-RECORD is in error, or the
MASTER-RECORD is missing from the file and we must mark that record for
special processing. Consider the series of statements in Figure 3.

You will note that several new elements have been added to the
arithmetic statements and conditional phrases we have already discussed.
First, there are the elements that extend to the left of the other
statements. These elements are the procedure-names we described
earlier. Each procedure-name indicates the beginning of a paragraph or
a section within the program, and each indicates a reference point for
programmer-specified transfer of control. When a procedure is entered,
each logically successive instruction is processed in turn.

The procedure-names give us a means of controlling the processing of
successive items in our DETAIL-FILE. If, for example, we have finished
processing one complete DETAIL-RECORD and wish to begin processing the
next, control must be transferred to NEXT-DETAIL-RECORD-ROUTINE. This
is accomplished through the use of the COBOL verb GO TO, which transfers
control to the procedure indicated, as in the statement:

GO TO NEXT-DETAIL-RECORD-ROUTINE.

Processing then continues with the first sentence following the
procedure name NEXT-DETAIL-RECORD-ROUTINE. Note the many other examples
of the GO TO statement in our program. Each gives us the means of
transferring control from one procedure to another.

Another way in which to control the processing of a series of records
is through the use of the COBOL verb PERFORM. Like the verb GO TO, the
verb PERFORM specifies a transfer to the first sentence of a routine.

In addition, PERFORM provides various ways of determining the manner in
which the procedure is to be processed.

Within the COMPUTATION-ROUTINE, there is a statement which uses the
COBOL verb PERFORM:

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

When STOCK-ON-HAND is computed to be less than zero, an error condition
has occurred. . First, the compiler is instructed to transfer control to
a procedure named DATA-ERROR. Within DATA-ERROR, there is a MOVE
statement which copies the characters within quotation marks ("DATA
ERROR ON INPUT ") into the area of storage reserved for ERROR-MESSAGE-1.
(The characters within quotation marks are what is known as a literal --
because they literally mean themselves. When ERROR-MESSAGE is
displayed, these words will be an actual part of the error message.)
Control is now transferred back to the next statement following the
PERFORM statement, which is the GO TO ERROR-WRITE statement.

28 Introduction

-

NEXT-DETAIL-RECORD-ROUTINE.
READ DETAIL-FILE AT END GO TO END-ROUTINE-1.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERC
PERFORM DATA-ERROR GO TO ERROR-WRITE.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
THRU REORDER-2.
WRITE-MASTER-ROUTINE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
REORDER-1.
GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.
ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.
OPEN OUTPUT ACTION-FILE.
REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.
ERROR-WRITE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
INPUT-ERROR.
MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.

-

DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.

END-ROUTINE-1.
GO TO END-ROUTINE-2.
END-ROUTINE-3.
CLOSE ACTION-FILE.
END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.
STOP RUN.

[o T e o e e . . — it _— b —— . — . — . e e . . o e ot .t . i S e S e i, . e s i s . grosam P v St . oo s . et e

b o o e e . e i s (o . . o e S e S . . i, GRS e S . TS e S s . e o O . S e o e e g AR oot e s e vt . it S . o .]

Figure 3. Illustration of Procedure Branching

Introduction

29

Note that within COMPUTATION-ROUTINE there is another PERFORM
statement that is processed in a similar manner:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-1 THRU REORDER-2.

This time, the PERFORM statement instructs the object program to
process several paragraphs before returning control to the next
successive statement. Thus, when this PERFORM statement is executed,
control is transferred to REORDER-1. This paragraph is executed, the
next paragraph, SWITCH-ROUTINE, is also executed, and then all the
statements contained in REORDER-2 are executed, at which point control
is returned to the first statement in WRITE-MASTER-ROUTINE -- the next
successive statement after the PERFORM statement.

A PERFORM statement may specify that a single section or paragraph be
processed, or, if the desired procedure consists of more than one
section or paragraph, it can specify two names that identify the
beginning and the end of the procedure.

GO TO and PERFORM statements may seem to do much the same job. Yet
there are specific reasons that will cause the programmer to choose one
over the other. On the one hand, the programmer may wish to transfer
control to the same procedure from two entirely different sections of
the program. In this case, PERFORM offers the most convenient method of
returning to the point from which the transfer was made. On the other
hand, if the programmer wishes to proceed to a portion of the program
without specifying a return to the current routine, a GO TO statement
will provide the best method of making the transfer.

In addition to the GO TO and PERFORM statements, there is another
COBOL statement that affects procedure branching: the ALTER statement.

In any given execution of our object program, we may or may not use
our ACTION-FILE. Only if some item in STOCK-ON-HAND has fallen below
REORDER-POINT will it be necessary to create an ACTION-RECORD.
Therefore, depending upon the data that is being processed, we will open
ACTION-FILE only if and when such an operation is necessary.

Suppose that for the first time in a particular execution of our
object program we have encountered a value for STOCK-ON-HAND that
indicates it must be reordered. The statement:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-1 THRU REORDER-2.

instructs the compiler, when STOCK-ON-HAND is not greater than
ORDER-POINT, to transfer control to the first sentence in REORDER-1.
REORDER-1 consists of but one statement:

GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE, as it happens, is the next paragraph, and it contains
an ALTER statement:
ALTER REORDER-1 TO REORDER-2

END-ROUTINE-1 TO END-ROUTINE-3.

This statement instructs the compiler to substitute the words
REORDER-2 for SWITCH-ROUTINE (within REORDER-1), and END-ROUTINE-3 for
END-ROUTINE-2 (within END-ROUTINE-1). Since, at the time the ALTER
statement is executed, we are already beyond the point at which the

30 Introduction

substitution is to be made in REORDER-1, we continue processing each
sequential statement until we reach the end of REORDER-2. We open
ACTION-FILE, and so forth, until we return control to the next statement
following the PERFORM statement.

However, in this execution of our object program, the next time we
must reorder an item, a different sequence of statements is performed.
The program transfers control to REORDER-1, but now the GO TO statement
within REORDER-1 has a different operand. Instead of SWITCH-ROUTINE,
the program is now instructed to transfer control to the paragraph named
REORDER-2. Through use of the ALTER statement, we have created a switch
that bypasses -the OPEN ACTION-FILE statement in subsequent processing of
reordered items, since the OPEN statement need be executed but once in
any execution of our object program.

Similarly, if ACTION-FILE was never opened in this execution of our
object program, it is not necessary to close it. Therefore, the second
part of the ALTER statement:

END-ROUTINE-1 TO END-ROUTINE-3
allows alternate paths of program flow, depending on whether or not this
ALTER statement was ever executed. The precise rules for programming

the ALTER statement are given later in this publication; note, however,
the increased programming flexibility it offers.

Ending .the Program

One last step in the logic of our inventory program must now be
taken. We have obtained the update information from a record, performed
the needed arithmetic calculations, moved the data from one area of
storage to another, and written the decision-making and procedure-
branching instructions necessary to take care of special cases and to
process each succeeding record. Then we have written the updated
information into the MASTER~FILE, and, when necessary, have written the
ACTION-FILE. We must now terminate the program after all records have
been acted upon. Remember that we wrote our first READ statement as
follows:

READ DETAIL-FILE AT END GO TO END-ROUTINE-1.

END-ROUTINE-1 will consist of the few instructions necessary to
terminate operations for this program.

Just as the programmer made all the files available to the system
with a set of OPEN instructions, he must now disconnect these same files
with another series:

END-ROUTINE-1.

GO TO END-ROUTINE-2.
END-ROUTINE-3.

CLOSE ACTION-FILE.
END-ROUTINE-2.

CLOSE DETAIL-FILE.

CLOSE MASTER-FILE.

Introduction 31

These instructions initiate necessary housekeeping routines. (Note here
that, in our program, ACTION-FILE will be closed only if REORDER-1 THRU
REORDER-2 has been performed and the ALTER statement has been executed.)
Once a file has been closed, it cannot be accessed by the program again.
The programmer now writes one last COBOL instruction, and it must be at
the logical end of his processing:

STOP RUN.

At this point, COBOL ending procedures are initiated, and the execution
of the program is halted.

This is only a general picture of the way in whicn a COBOL program
works. The following chapters in this manual give detailed descriptions
of all four divisions within a COBOL program, with explicit instructions
for correct programming in IBM Full American National Standard COBOL.

32 Introduction

;
| IDENTIFICATION DIVISION.
| PROGRAM-ID. UPDATING.
|REMARKS. THIS IS A SIMPLIFIED UPDATE PROGRAM, USED AS AN
i EXAMPLE OF BASIC COBOL TECHNIQUES. THE PROGRAM IS
| EXPLAINED IN DETAIL IN THE INTRODUCTION TO THIS MANUAL.
| ENVIRONMENT DIVISION.
| CONFIGURATION SECTION.
| SOURCE-COMPUTER. IBM-360-F50.
| OBJECT-COMPUTER. IBM-360-F50.
| INPUT-OUTPUT SECTION.
| FILE-CONTROL.
| SELECT MASTER-FILE ASSIGN TO SYS015-DA-2311-2a-MASTER
| ACCESS MODE IS RANDOM
| ACTUAL KEY IS FILEKEY.
| SELECT DETAIL-FILE ASSIGN TO SYS007-UT-2400-S-INFILE
I ACCESS IS SEQUENTIAL. ,
| SELECT ACTION-FILE ASSIGN TO SYS008-UT-2400-S-OUTFILE.
| DATA DIVISION.
|FILE SECTION.
|FD MASTER-FILE LABEL RECORDS ARE STANDARD
DATA RECORD IS MASTER-RECORD.
01 MASTER-RECORD.

02 ITEM-CODE PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK~ON-HAND PICTURE S9(6) USAGE COMP SYNC.
02 UNIT-PRICE PICTURE S999V99 USAGE COMP SYNC.
02 STOCK-VALUE PICTURE S9(9)V99 USAGE COMP SYNC.
02 ORDER-POINT PICTURE S9(3) USAGE COMP SYNC.
FD DETAIL-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS DETAIL-RECORD.
01 DETAIL-RECORD.
02 ITEM-CODE PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 RECEIPTS PICTURE S9(3) USAGE COMP SYNC.
02 SHIPMENTS PICTURE S9(3) USAGE COMP SYNC.

FD ACTION-FILE LABEI. RECORDS ARE OMITTED
DATA RECORD IS ACTION-RECORD.
01 ACTION-RECORD.

02 ERROR-MESSAGE-1 PICTURE X(20).
02 ERROR-MESSAGE-2 PICTURE X(36).
02 ERROR-MESSAGE-3 PICTURE X(46).

02 ITEM-CODE PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK-ON-HAND PICTURE S9(6) USAGE COMP SYNC.
02 UNIT-PRICE PICTURE S999V99 USAGE COMP SYNC.
02 ORDER-POINT PICTURE S9(3) USAGE COMP SYNC.
| HORKING-STORAGE SECTION.
|77 SAVE PICTURE S9(10) USAGE COMP SYNC.
|77 QUOTIENT PICTURE S9999 USAGE COMP SYNC.
|01 KEY-ACTUAL.
| 02 M PICTURE S999 COMP SYNC VALUE ZEROS.
| 02 BB PICTURE S9 COMP SYNC VALUE ZEROS.
I 02 ccC PICTURE S999 COMP SYNC VALUE ZEROS.
| 02 HH PICTURE 5999 COMP SYNC.
| 02 R PICTURE X VALUE LOW-VALUE.
I 02 RECORD-ID PICTURE X(29).
|01 THE-KEY REDEFINES KEY-ACTUAL.
| 02 FILLER PICTURE X.
| 02 FILEKEY PICTURE X(37).
{01 TRACK1 PICTURE 9(4).
|01 TRACK2 REDEFINES TRACK1 COMP.
| 02 CYL PICTURE S999.
I 02 HEAD PICTURE S9.
|01 ERROR-MESSAGE.
|
|
|
L

e s e S e T et S — . G o . (. e, M S, W e, O i Wt . e, B e S e, . e S o i e, i S e S St — . M— . S . S g B S S . ST s, S . ot S, St S e, . s S e]

Figure 4. Complete UPDATING Program (Part 1 of 2)

Introduction

33

r -
| PROCEDURE DIVISION.
| OPEN-FILES-ROUTINE.
| OPEN INPUT DETAIL-FILE.
| OPEN I-O MASTER-FILE.
| NEXT-DETAIL-RECORD-ROUTINE.
| READ DETAIL-FILE AT END GO TO END-ROUTINE-1.
| NEXT-MASTER-RECORD-ROUTINE.
MOVE ITEM-CODE IN DETAIL-RECORD TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT
REMAINDER TRACK1.
ADD 1020 TO TRACK1.
MOVE ITEM-NAME IN DETAIL-RECORD TO RECORD-ID.
MOVE HEAD TO HH. MOVE CYL TO CC.
READ MASTER-FILE INVALID KEY
PERFORM INPUT-ERROR GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.
COMPUTE STOCK-ON-HAND IN MASTER~-RECORD = STOCK-ON-HAND
IN MASTER-RECORD + RECEIPTS - SHIPMENTS.
IF STOCK-ON-HAND IN MASTER-RECCRD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.
MULTIPLY STOCK-ON-HAND IN MASTER-RECORD BY UNIT-PRICE
IN MASTER-RECORD GIVING STOCK-VALUE
IN MASTER-RECORD.
IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
. THRU REORDER-2.
WRITE-MASTER-ROUTINE.
WRITE MASTER-RECORD INVALID KEY
PERFORM GUTPUT-ERROR GO TO ERROR-WRITE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.
REORDER-1. GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.
ALTER REORDER-1 TO REORDER-2

DISPLAY "ACTION FILE UTILIZED".
OPEN OUTPUT ACTION-FILE.
REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.
ERROR-WRITE.
MOVE DETAIL-RECORD TO ERROR-MESSAGE-2.
DISPLAY ERROR-MESSAGE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.
INPUT-ERROR.
MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.

MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE MASTER-RECORD TO ERROR-MESSAGE-3.
OUTPUT-ERROR.
MOVE "KEY ERROR ON OUTPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.
END-ROUTINE-1.
GO TO END-ROUTINE-2.
END-ROUTINE-3.
CLOSE ACTION-FILE.
END-ROUTINE~-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.
STOP RUN.

|
|
|
-

e et e . e o e e e e . oo e, S e e e . et e e e e e S . e e e o e

I
|
I
I
|
[
!
I
I
!
!
[
I
I
!
I
|
I
I
I
I
I
|
I
:
I END-ROUTINE-1 TO END-ROUTINE-3.
I
I
|
I
I
I
|
[
|
I
I
I
|
I
|
I
|
|
|
|
|
|
I
|
I
I
L

Figure 4. Complete UPDATING Program (Part 2 of 2)

34 Introduction

STRUCTURE OF THE LANGUAGE

ORGANIZATION OF THE COBOL PROGRAM

METHODS OF DATA REFERENCE

USE OF THE COBOL CODING FORM

FORMAT NOTATION

PART I -- LANGUAGE CONSIDERATIONS

Language Considerations

35

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Character Set

STRUCTURE OF THE LANGUAGE

The COBOL language is so structured that the programmer can write his
individual problem program within a framework of words that have
particular meaning to the COBOL compiler. The result is the performance
of a standard action on specific units of data. For example, in a COBOL
statement such as MOVE NET-SALES TO CURRENT-MONTH, the words MOVE and TO
indicate standard actions to the COBOL compiler. NET-SALES and
CURRENT-MONTH are programmer-defined words which refer to particular
units of data being processed by his problem program.

COBOL_CHARACTER SET

The complete character set for COBOL consists of the following 51
characters:

Character Meaning
0,1,..+,9 digit
A,B,...,2 letter
space
+ plus sign
- minus sign (hyphen)
* asterisk
/ stroke (virgule, slash)
= equal sign
S currency sign
. comma
; semicolon
. period (decimal point)
" or ' quotation mark
(left parenthesis
) right parenthesis
> "greater than™ symbol
< "less than" symbol

If conformance with the standard character
. programmer must specify the quotation mark (")
through a CBL card at compile time. If the gquotation mark is thus
specified, the apostrophe (') may not be used.

Note: In addition to these 51 characters, the COBOL compiler will
process (e.g., in a VALUE IS clause or in an IF statement) those
multiple characters which function as return codes for CICS.

Characters Used in Words

The characters used in words in a COBOL source program are the
following:

0 through 9
A through Z
- (hyphen)

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

Structure of the Language 37

Character Set

Characters Used for Punctuation

The following characters are used for punctuation:

Character Meaning

space

comma

semicolon

period

gquotation mark
left parenthesis
right parenthesis

The following general rules of punctuation apply in writing a COBCL
source program:

1. When any punctuation mark is indicated in a format 1in this
publication, it is required in the program.

2. A period, semicolon, or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed immediately by a space; a
right parenthesis must not be preceded immediately by a space.

4., At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successive
spaces are treated as a single space, except within nonnumeric
literals.

5. An arithmetic operator or an egqual sign must always be preceded by
a space and followed by a space. A unary operator may be preceded
by a left parenthesis.

6. A comma may be used as a separator between successive operands of a
statement. An operand of a statement is shown in a format as a
lower-case word.

7. A comma or a semicolon may be used to separate a series of clauses.
For example, DATA RECORD IS TRANSACTION, RECORD CONTAINS 80
CHARACTERS.

8. A semicolon may be used to separate a series of statements. For
example, ADD A TO B; SUBTRACT B FROM C.

Character Set

Characters Used for Editing

Editing characters are single characters or specific two-character
combinations belonging to the following set:

Character Meaning
B space
0 zZero
+ plus
- minus
CR credit
DB debit
Z zero suppression
* check protection
$ currency sign
P comma

period (decimal point)

(For applications, see the discussion of alphanumeric edited and numeric
edited data items in "Data Division.™)

Characters Used in Arithmetic Expressions

The characters used in arithmetic expressions are as follows:

Character Meaning
+ addition
- subtraction
* multiplication
/ division
** exponentiation

Arithmetic expressions are used in the COMPUTE statement and in
relation conditions (see "Procedure Division" for more details).

Characters Used for Relation-conditions

A relation character is a character that belongs to the following
set:

Character Meaning
> greater than
< less than
= equal to

Relation characters are used in relation-conditions (discussed in
"Procedure Division").

TYPES OF WORDS

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

Structure of the Language 39

Words

The space (blank) is not an allowable character in a word; the space
is a word separator. Wherever a space is used as a word separator, more
than one may be used.

A word is terminated by a space, or by a period, right parenthesis,
comma, oOr semicolon.

Reserved Words

Reserved words exist for syntactical purposes and must not appear as
user-defined words. However, reserved words may appear as nonnumeric
literals, i.e., a reserved word may be enclosed in gquotation marks.
When used in this manner, they do not take on the meaning of reserved
words and violate no syntactical rules.

There are three types of reserved words:

1. Key Words. A key word is a word whose presence is required in a
COBOL entry. Such words are upper case and underlined in the
formats given in this publication.

Key words are of three types:

a. Verbs such as ADD, READ, and ENTER.

b. Required words, which appear in statement and entry formats,
such as the word TO in the ADD statement.

c. Words that have a Spegific functional meaning, such as ZERO,
NEGATIVE, SECTION, TALLY, etc.

2. Optional Words. Within each format, upper case words that are not
underlined are called optional words because they may appear at the
user's option. The presence or absence of each optional word in
the source. program does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another word
of any kind, is not allowed.

3. Connectives. There are three types of connectives:

a. Qualifier connectives, which are used to associate a data-name
or paragraph-name with its qualifier. The qualifier
connectives are OF and IN (see "Methods of Data Reference").

b. Series connectives, which link two or more consecutive
operands. The series connective is the comma (,).

c. Logical connectives that are used in compound conditions. The
logical connectives are AND, OR, AND NOT, and OR NOT (see
"Conditions").

Note: Abbreviations (such as PIC for PICTURE) are allowed for some
reserved words; the abbreviation is the equivalent of the complete word.
For the formats in which they are allowable, such abbreviations are
shown in the format. The reserved words THRU and THROUGH are
equivalent. In statement formats, wherever the reserved word THRU
appears, the word THROUGH is also allowed.

40 Part I -- Language Considerations

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Names

There are three types of names used in a COBOL program:

1. A data-name is a word that contains at least one alphabetic
character and identifies a data item in the Data Division. The
following are formed according to the rules for data-names:

file-names
index-names
mnemonic-names
record-names
report-names
sort-file-names
sort-record-names

2. A condition-name is a name given to a specific value, set of
values, or range of values, within the complete set of values that
a particular data item may assume. The data item itself is called
a conditional variable. The condition-name must contain at least
one alphabetic character (see "Data Division" and the discussion of
"Special-Names" in "Environment Division").

3. A procedure-name is either a paragraph-name or a section-name. 2
procedure-name may be composed solely of numeric characters. Two
numeric procedure-names are equivalent if, and only if, they are
composed of the same number of digits and have the same value (see
"Procedure Division™). The following are formed according to the
rules for procedure-names:

library-names
program-names

Note: The first 8 characters of a file-name must be unique to
avoid duplicate names.

Special-Names

Special-names are used in the SPECIAL-NAMES paragraph of the
Environment Division. The term special-name refers to a mnemonic-name.
A mnemonic-name is a programmer-defined word that is asscciated in the
Environment Division with a function-name: function-names are names
with a fixed meaning, defined by IBM.

In the Procedure Division, mnemonic-name can be written in place of
its associated function-name in any format where such substitution is
valid. The formation of a mnemonic-name follows the rules for formation
of a data-name (see "Special-Names" in "Environment pDivision").

CONSTANTS

A constant is a unit of data whose value is not subject to change.
There are two types of constants: literals and figurative constants.

Literals

A literal is a string of cnaracters whose value is determined by tne
set of characters of which the literal is composed. Every literal
belongs to one of two categories, numeric and nonnumeric.

Structure of the Language 41

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Literals

NUMERIC _LITERALS: There are two types of numeric literals: fixed-point
and floating-point.

A fixed-point numeric literal is defined as a string of characters
chosen from the digits 0 through 9, the plus sign, the minus sign, and
the decimal point. The literal -0 is treated by the compiler as a +0.
Every fixed-point numeric literal:

1. must contain from 1 through 18 digits.

2. must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. 1If the
literal is unsigned, the literal is positive.

3. must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere in the
literal except as the rightmost character. 1If the literal contains
no decimal point, the literal is an integer.

(See discussion of fixed-point numeric items in "Data Division.")

If the literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal.

NONNUMERIC LITERALS: A nonnumeric literal is defined as a string of any
allowable characters in the Extended Binary Coded Decimal Interchange
Code (EBCDIC) set, excluding the quotation mark character. A nonnumeric
literal may be composed of from 1 through 120 characters enclosed in
quotation marks. Any spaces within the quotation marks are part of the
nonnumeric literal and, therefore, are part of the value. Aall non-
numeric literals are in the alphanumeric category.

Figurative Constants

Figurative Constants

A fiqurative constant is a constant to which a specific data-name has
been assigned. These data-names are reserved words. Such a data-name
must not be enclosed in quotation marks when used as a figurative
constant. The singular and plural forms of a figurative constant are
eguivalent and may be used interchangeably.

A figurative constant may be used in place of a literal wherever a
literal appears in a format. There is cone exception to this rule: if
the literal is restricted to numeric characters,; only the figurative
constant ZERO (ZEROES, ZEROS) is allowed.

The fixed data-names and their meanings are as follows:

ZERO Represents the value 0, or one or more

ZEROES occurrences of the character 0, depending on

ZEROS context.

SPACE Represents one or more blanks or spaces.

SPACES

HIGH-VALUE Represents one or more occurrences of the

HIGH-VALUES character that has the highest value in the computer's

collating sequence. The character for HIGH-VALUE is
the hexadecimal ‘FF'.

LOW-VALUE Represents one or more occurrences of the

LOW-VALUES character that has the lowest value in the computer's
collating sequence. The character for LOW-VALUE is
the hexadecimal '00°'.

QUOTE Represents one or more occurrences of the
QUOTES quotation mark character. The word QUOTE (QUOTES)

cannot be used in place of a quotation mark to enclose
a nonnumeric literal.

ALL literal Represents one or more occurrences of the string of
characters composing the literal. The literal must be
either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative
constant is used, the word ALL is redundant and is
used for readability only.

Structure of the Language 43

Special Registers

SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store

information produced with the use of special COBOL features; these
storage areas are called special registers.

TALLY

The word TALLY is the name of a special register whose implicit
description is that of an integer of five digits without an
operational sign, and whose implicit USAGE is COMPUTATIONAL. The
primary use of the TALLY register is to hold information produced by
the EXAMINE statement. References to TALLY may appear wherever an
elementary data item of integral value may appear (see the "EXAMINE
Statement" in "Procedure Division").

LINE-COUNTER

LIJE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.")

PAGE-COUNTER

PAGE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.™)

CURRENT-~DATE

CURRENT-DATE is an 8-byte alphanumeric field, valid only as the
sending field in a MOVE statement. The format of these eight bytes
is MM/DD/YY (montns/day/year) or DD/MM/YY (day/month/year).

TIME-OF-DAY

TIME-OF-DAY is a 6-byte external-decimal field} valid only as the
sending field in a MOVE statement. The format is HHMMSS (hour,
minute, second). :)

COM-REG

COM-REG is an ll-byte alphanumerlc fleld. This field:corresponds
to bytes 12 through 22 of the DOS Communication Region. COM-REG is
valid only as the sending or rece1v1ng field in a MOVE. statement:
When COM-REG is used as the rece1v1ng field in a MOVE statement, the
sending field must be 11 bytes in length. :

(The use of CURRENT DATE, TIME~0F-DAY, and COM-REG is explalned in
the Programmer's Guides' (as 01ted in "Preface").)

sORT-RETORN

Structure cf the Language Uu45

COBOL Program Structure

ORGANIZATION OF THE COBOL_ PROGRAM

Every COBOL source program is divided into four divisions. Each
division must be placed in its proper sequence, and each must begin with
a division header.

The four divisions, listed in sequence, and their functions are:
s IDENTIFICATION DIVISION, which names the program.

s ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

e DATA DIVISION, which defines the nature and characteristics of data
to be processed.

s PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

Note: 1In all formats within this publication, the required clauses and
optional clauses (when written) must appear in the sequence given in the
format, unless the associated rules explicitly state otherwise.

Structure of the COBOL Program

{

PROGRAM-ID. program-name.

IDENTIFICATION DIVISION.}

[AUTHOR. [(comment-entryl...]
(INSTALLATION. [comment-entryl...]
[DATE-WRITTEN. [comment-entryl...]

[DATE-COMPILED. [comment-entryl...]

[SECURITY. [comment-entryl...]
[REMARKS. [comment-entryl...]

ENVIRONMENT DIVISION.

iCONFIGURATION SECTION.

SQURCE-COMPUTER. entry

OBJECT-COMPUTER. entry

[SPECIAL-NAMES. entrylg

[INPUT-OQUTPUT SECTION.

FILE-CONTROL. {entrylt...

({I-0-CONTROL. entryll

46 Part I -- Language Considerations

COBOL Program Structure

DATA DIVISION.

[FILE SECTION.
{file description entry
{record description entryl}...}...1}

[WORKING-STORAGE SECTION.

[data item description entryl...

[record description entryl...]

.k

[REPORT SECTION.

{report description entry

{report group description entry}...}...]
} I

PROCEDURE DIVISION

[[DECLARATIVES.

{section-name SLCTION. USE Sentence.
{paragraph-name. {sentence}...}...}...
END DECLARATIVES.]

{section-name SECTION [priorityl.]

{paragraph-name. {sentence}...}...}...

Organization of the COBOL Program 47

Qualification

METHODS OF DATA REFERENCE

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or because it is made
unique through qualification, subscripting, or indexing.

an identifier is a data-name, unique in itself, or made unique by the

syntactically correct combination of gualifiers, subscripts, and/or
indexes.

QUALIFICATION

L name may be made unique if the name exists within a hierarchy of
names and the name can be singled out by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called
qualifiers. Qualification is the process by which such a name is made
unique.

Qualification is applied by placing after a data-name or a
paragraph-name one Or more phrases, each composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent. Only one
qualifier is allowed for a paragraph-name.

Enough qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, yet there is but one file whose records are named
MASTER-RECORD, EMPLOYEE-NO OF MASTER-RECORD would sufficiently qualify
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but
unnecessary (see discussion of level indicators and level numbers in
"Data Division").

The name associated with a level indicator is the highest level
qualifier available for a data-name. (A level indicator (FD, SD, RD)
specifies the beginning of a file description, sort file description, or
report description.) A section-name is the highest (and the only)
qualifier available for a procedure-name (see discussion of procedure-
names in "Procedure Division"). Thus, level indicator names and
section-names must be unique in themselves since they cannot be
qualified.

The name of a conditional variable can be used as a qualifier for any
of its condition-names. In addition, a conditional variable may be
qualified to make it unique.

The rules for qualification follow:

1. Each qualifier must be of a successively higher level, and must be
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than one
data item in a source program, the data-name or condition-name must
be qualified each time reference is made to it in the Procedure,
Environment, or Data Division (except in the REDLFINES clause
where, by definition, qualification is unnecessary). (See the
REDEFINES clause in "Data Division.")

48 Part I -- Language Considerations

Subscripting/Indexing

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can be used.

Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:
1. No duplicate section-names are allowed.
2. No data-name can be the same as a section-name or a paragraph-name.

3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual
element within a list or table of elements that nave not been assigned
individual data-names (see "Table Handling").

INDEXING

References can be made to individual elements witnin a table of
elements by specifying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY clause 1is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

Methods of Data EKeference 49

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Reference Format

USE

OF THE COBOL CODING_FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler only accepts
source programs written in 80-column reference format (see Figure 5)
and produces an output listing of the source program in the same
reference format. 81-column input is not accepted.

IBM COBOL Coding Form

1
1
|
-

SYSTEM PUNCHING INSTRUCTIONS i PAGE OF

i
T ; T

PROGRAM ' GRAPHIC H
+ } + i CARD FORM #

PROGRAMMER DATE PUNCH R E i !

1 k]

8 COBOL STATEMENT & IDENTIFICATION

Tha B . R . M 7 ®) £}) 52 EY B0 B4 BE

HTTTTTTTT
10
!

Columns 1-6 1represent the sequence number area.
Column 7 is the continuation area.

Columns 8-11 represent Area A} Used for writing COBOL source statements.

Columns 12-72 represent Area B
Columns 73-80 are used to identify the program.

Figure 5. Reference Format

50

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

If sequence numbers are present, they must be in ascending order. An
error message is issued when source language input is out of sequence
S

AREA A .AND AREA B

Area A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Area B occupies columns 12 through 72.

Part I -- Language Considerations

e e e e e e e e ———— — ——— ——— —_— — — —— —

]
|
!

Subscripting/Indexing

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can pe used.

Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:
1. No duplicate section-names are allowed.
2. No data-name can be the same as a section-name Or a paragraph-namre.

3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual
element within a list or table of elements that have not been assigned
individual data-names (see "Table Handling").

INDEXING

References can be made to individual elements witnin a table of
elements by specifying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

Methods of Data Reference 49

Reference Format

USE_OF THE COBOL_ CODING_FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terxrms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (see Figure 5) and produces an
output listing of the source program in the same reference format.

!
]
|
-

Columns 73-80 are used to identify the program.

r
|
I
: IBM COBOL Coding Form
' SYSTEM PUNCHING INSTRUCTIONS PAGE OF
| PROGRAM GRAPHIC CARD FORM # *
i PROGRAMMER | pate PUNCH
| SEQUENCE E}A s COBOL STATEMENT I IDENTIFICATION
' 718 12 20 H 28 6 a0) a8 52 [} Ll 7% .
| - th
| ;
'I B EEER ! | EEANINRERARERERARENE
I
b S _
| Columns 1-6 represent the sequence number area.
1 Column 7 is the continuation area.
| Columns 8-11 represent Area A Used for writing COBOL source statements.
olumns - represen rea
Col 12-72 p t A B
|

L—-—- —

Figure 5.

50

Reference Format

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

An
put is out of sequence.
n e PR B A

i e

If sequence numbers are present, they must be in ascending order.
error message

AREA A AND AREA B

Area A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Area B occupies columns 12 through 72.

Part I -- Language Considerations

— s —— i, Sl S ——— — —. T——— T—— ————— — ——— —

|
|
]
-

Division Header

The division header must be the first line in a division. The
division header starts in Area A with the division-name, followed
space and the word DIVISION, and a period. !

&8

No other text may appear on the same line as the division

header.

Section Header

The name of a section starts in Area A of any line following the
division header. The section-name is followed by a space, the word
SECTION, and a period. If program segmentation is desired, a space and
a priority number may follow the word SECTION. No other text may appear
on the same line as the section-header, except USE and COPY sentences.

Note: Although USE and COPY may appear in the Declaratives portion of

the Procedure Division, only USE is restricted to the Declaratives
portion. COPY may be used elsewhere in the COBOL program.

Paraagraph-names and Paragraphs

The name of a paragraph starts in Area A of any line following the
division header. It is followed by a period followed by a space.

A paragraph consists of one or more successive sentences. The first
sentence in a paragraph begins anywhere in Area B of either the same
line as paragraph-name or the immediately following line. Each
successive line in the paragraph starts anywhere in Area B.

Level Indicators and Level Numbers

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A followed in Area B by its associated
file-name and appropriate descriptive information.

In those data description entries that begin with a level number 01
or 77, the level number begins in Area A followed in Area B by its
associated data-name and appropriate descriptive information.

In those data description entries that begin with level numbers 02
through 49, 66, or 88, the level number may begin anywhere in Area A or
Area B, followed in Area B by its associated data-name and descriptive
information.

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued
by starting subsequent line(s) in Area B. These subsequent lines are
called continuation lines. The line being continued is called the
continued line. If a sentence or entry occupies more than two lines,
all lines other than the first and last are both continuation and
continued lines.

Use of the COBOL Coding Form 51

Reference Format

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a
hyphen is placed in column 7 of the continuation line, and a quotation
mark preceding the continuation of the literal may be placed anywhere in
Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal.

CONTINUATION OF WORDS AND NUMERIC LITERALS

When a word or numeric literal is continued from one line to another,
a hyphen must be placed in column 7 of the continuation line to indicate
that the first nonblank character in Area B of the continuation line is
to follow the last nonblank character on the continued line, without an
intervening space. 1In the case of numeric literals the last nonblank
character of the continued line must not be a period or comma.

BLANK LINES

A blank line is one that contains nothing but spaces from column 7
through column 72, inclusive. A blank line may appear anywhere in the
source program, except immediately preceding a continuation line.

comm 1S

Explanatnry cnments ma
program by placiag an aste ii
Any combination of the - “uw
Areas A and B of that:] ; ‘ - : eharaet.ers ‘wikl be’’
produced on the source lis exrve no’ o’chlet purpese. (Also, see
tne NOTE statement in "Compiler Directing Statements™ in "Procedure
Division").

52 Part I -~ Language Considerations

Format Notation

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various

elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs.
Although it is not part of COBOL, this notation is useful in describing
COBOL.

1.

All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings in COBOL. In all
formats, words in capital letters represent an actual occurrence of
those words. If any such word is incorrectly spelled, it will not
be recognized as a reserved word and may cause an error in the
program.

211 underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key

words. If any such word is missing or is incorrectly spelled, it

is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
programmer. These words are used only for the sake of readability;
they are called optional words and, when used, must be correctly
spelled.

The characters +, -, <, >, =, when appearing in formats, although
not underlined, are required when such formats are used.

211 punctuation and other special characters (except those symbols
cited in the following paragraphs) represent the actual occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the ruies for
punctuation specified in this publication.

Words that are printed in lower-case letters represent information
to be supplied by the programmer. All such words are defined in
the accompanying text.

In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause"™ or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

Square brackets ([1) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

Braces ({ }) enclosing vertically stacked items indicate that one
of the enclosed items is obligatory.

53

Format Notation

10.

11.

The ellipsis (...) indicates that the immediately preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it

is a part must be repeated when repetition is specified.

Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

54 Part I -- Language Considerations

PART II -- IDENTIFICATION AND ENVIRONMENT DIVISIONS

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

ORGANIZATION OF THE ENVIRONMENT DIVISION

ENVIRONMENT DIVISION -- CONFIGURATION SECTION

ENVIRONMENT DIVISION ~- INPUT-OUTPUT SECTION

55

PROGRAM-ID Paragraph

IDENTIFICATION DIVISION

The Identification Division is the first division of a COBOL program.
It identifies the source program and the object program. A source
program is the initial problem program; an object program is the output
from a compilation.

In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished, etc., in
the paragraphs shown.

Structure of the Identification Division

{IDENTIFICATION DIVISION.}
E 73]

PROGRAM-ID. program—-name.

[AUTHOR. [comment-entryl...]
[INSTALLATION. [comment-entryl...]
[DATE-WRITTEN. [comment-entryl...]

[DATE-COMPILED. ({comment-entryl...]

[SECURITY. [comment-entryl...]

[REMARKS. [comment-entryl...]

Specific paragraph-names identify the type of information contained
in the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are
optional. If included, they must be presented in th order shown.

» "

o
:>;§

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period. Each comment-entry may be
any combination of characters from the EBCDIC set, organized to conform
to sentence and paragraph structure. ; 6t ‘ o) ' i

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is
identified.

Format

PROGRAM-ID. program-name.

o ——— oy oy

(R S S ——

(6]
~J

Identification Division

DATE-COMPILED Paragraph

The PROGRAM-ID paragraph contains the name of the program and must be
present in every program.

Program-name identifies the object program to the control program.
Program—name must conform to the rules for formation of a
procedure-name. ¢

The first eight characters of progfam—name are
used as the identifying name cf the program and should therefore be
unique as a program-name.

Since the system expects the first character of program-name to be
alphabetic, the first character, if it is numeric, will be converted as
follows:

0 to g
1-9 to A-I

Since the system does not include the hyphen as an allowable
character, the hyphen is converted to zero if it appears as the second
through eighth character of the name.

Note: For additional information concerning program-name when using the

Sort feature, the Segmentation feature, or the CATALR option, see the
Programmer's Guide.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date on the
source program listing.

Format

DATE-COMPILED. [comment-entryl

- ——— -y -
|
|

e st s s s e e

The paragraph-name DATE-COMPILED causes the current date to be
inserted during program compilation. If a comment-entry is present,
even though it spans lines, it is replaced in its entirety with the
current date.

58 Part II -- Identification and Environment Divisions

Data Organization

ENVIRONMENT DIVISION —-- FILE PROCESSING SUMMARY

In COBOL, all aspects of the total data processing problem that
depend on the physical characteristics of a specific computer are given
in one portion of the source program known as the Environment Division.
Thus, a change in computers entails major changes in this division only.
The primary functions of the Environment Division are to describe the
computer system on wnich the object program is run and to establish the
necessary links between the other divisions of the source program and
the characteristics of the computer.

The exact contents of the Environment Division depend on the method
used to process files in the COBOL program. Before the language
elements used in the Environment Division can be discussed meaningfully,
some background in the file processing techniques available to the COBOL
user must be given.

Each combination of data organization and access method specified in
the COBOL language is defined as a file-processing technique. The
file-processing technique to be used for a particular file is determined
by the data organization of that file and whether the access method is
sequential or random. Figure 6 summarizes the file-processing
techniques.

DATA ORGANIZATION

Three types of data organization are made available to Disk Operating
System COBOL users: sequential, directj .. The means of
creating or retrieving logical records in a file differ, depending on
which type of data organization exists (organization being the structure
of data on a physical file). Each type of data organization is
incompatible with the others. Organization of an input file must be the
same as the organization of the file when it was created.

Sequential Data Organization

When sequential data organization is used, the logical records in a
file are positioned sequentially in the order in which they axe created
and are read sequentially in the order in which they were created (or in
sequentially reversed order if the REVERSED option of the OPEN statement
is written for tape files). Such a file organization is referred to in
this publication as standard sequential organization.

This type of data organization must be used for tape or unit-record

files and may be used for files assigned to mass storage devices. No
key is associated with records on a sequentially organized file.

Direct Data Organization

When direct data organization is used, the positioning of the logical
records in a file is controlled by the user through the specification of
an ACTUAL KEY defined in the Environment Division. The ACTUAL KEY has
two components. The first is a track identifier which identifies the
relative or actual track at which a record is to be placed or at which
the search for a record is to begin. The second component is a record

Environment Division -- File Processing Summary 59

Access Methods

identifier, which serves as a unique logical identifier for a specific
record on the track. Files with direct data organization must be
assigned to mass storage devices.

ACCESS METHODS

Two access methods are available to users of DOS COBOL: sequential
access and random access.

Sequential access is the method of reading and writing records of a
file in a serial manner; the order of reference is implicitly determined
by the position of a record in the file.

Random access is the method of reading and writing records in a
programmer-specified manner; the control of successive references to the
file is expressed by specifically defined keys supplied by the user.

ACCESSING A SEQUENTIAL FILE

A standard sequential file may be accessed only sequentially, i.e.,
records are read or written in order. Records can be created and
retrieved; for standard sequential files on mass storage devices,
records can also be updated.

ACCESSING A DIRECT FILE

Direct files may be accessed both sequentially and randomly. Records
can be retrieved sequentially; they can be created, retrieved, updated,
or added randomly.

Sequential Access

When reading a direct file sequentially, records are retrieved in
logical sequence; this logical sequence corresponds exactly to the
physical sequence of the records.

reco#b§q1}l be Eé§¢¥§§§? 2
for each READ statement’

”executed,

60 Part II -- Identification and Environment Divisions

Access Methods

Random Access

When accessing a direct file randomly, the ACTUAL KEY clause is
required.

The system uses the ACTUAL KEY to determine which track a particular
record is on and to locate the record on that track. If the record is
found, the data portion of the record is read, or, for a rewrite
operation, replaced by a new record. If during a READ operation, the
desired record cannot be found on the specified track, an invalid key
condition is said to exist.

For a write operation, the system, after locating the track, searches
for the last record on the track, and writes the new record (with
control fields, including a key field equal to the identifier found
within the ACTUAL KEY field) after the last record.

When a direct file is being created, OPEN initializes the capacity
records (RO) on.all the tracks of the file. Therefore, a WRITE
statement issued for an output file is processed in the same manner as a
WRITE statement that adds a record to an input-output file.

ulndexed flle, the RECORD KEY dlaqs uﬁt,hegege i
.‘indicate the location of the key within ithe ﬂﬁfrri“'g e Lt
TKLY'dlause may Dbe spec1f1ed ‘,Réngq§iarq,%qganeQ it

'oxder 1n whlch tney‘are ertteﬁ.z

_ - To retrleve or update an 1ndexed f e .sequen a
.clause must Dé specitied.", Records. are~ ead,Ln %F
are arranged in the file. . Lpglcallj,gth;s nrq :
-of: keys, which must be in collating sequence at bhq mf._ ' © s
‘created. If record retrieval is to oeglnja"oﬂnek’th&nfﬂ first |8
record, the NOMINAL KEY clause must. né spec fled bqq 2 ‘STAI taitement I
must be executed before the first REA% ooeratibm gq ;ﬁth T?ﬁq.ff f

P O s T »;r,;t-«l&)l(hlvvlélv;‘lls&k[
) A ; : A

Random Access

LR B I A A

To retrieve or update an indexed flld randdMly,‘qddhftﬂéfﬁomqgku I
and RECORD KEY clauses are required. A record is aomaﬂdened "found" | |
when the value associated with the data-name specifijed iin the NQMIMMD'a%
KEY clause is equal to the value of the RECORD KEY for the recomd.,1ﬁheﬂv

Environment Division -- File Processing Summary 61

Access Methods

aAppendix B contains three sample COBOL programs that illustrate:

1. Creation of a direct file

(Figure 4 contains a sample COBOL program illustrating random
retrieval and updating of a direct file.)

| T T T 1
| DOS Organization] Device Type | Access | Organization |
[N 4 1 1 J
3 T T] 1
| DTFCD | Reader | [SEQUENTIALI | standard |
| | | | sequential |
| [I | I
| DTFCD | Punch | [SEQUENTIAL]J | standard |
| | | | sequential |
| | [| I
DTFPR	Printer	(SEQUENT1ALI]	standard
]		sequential	
		[
DTFMT	Tape	(SEQUENTIALI	standard
			sequential
DTFSD	Mass Storage	[SEQUENTIAL]	standard
			sequential
DTFDA	Mass Storage	[SEQUENTIALI]	direct
i]	
DTFDA	Mass Storage	RANDOM	direct
(o			
[e			
D			
Lo J

Figure 6.

62 Part II ~--

Summary of File-Processing Techniques

Identification and Environment Divisions

Environment Division -- Structure

ORGANIZATION OF THE ENVIRONMENT DIVISION

The Environment Division must begin in Area A with the heading
ENVIRONMENT DIVISION followed by a period.

The Environment Division is divided into two sections: the

Configuration Section and the Input-Output Section. When written, the
sections and paragraphs must be in the sequence shown.

structure.of the Environment Division

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SQURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph

[SPECIAL-NAMES paragraphl

[INPUT-QUTPUT SECTION.

FILE-CONTROL paragraph

[I-O-CONTROL paragraphll

Organization of the Environment Division 63

SOURCE-COMPUTER Paragraph

ENVIRONMENT DIVISION -- CONFIGURATION SECTION

The Configuration Section deals with the overall specifications of
computers. It is divided into three paragraphs: the SOURCE-COMPUTER
paragraph, which describes the computer on which the source program is
compiled; the OBJECT-COMPUTER paragraph, which describes the computer on
which the object program (the program produced by the COBOL compiler) is
executed; and, optionally, the SPECIAL-NAMES paragraph which relates the
function-names used by the compiler to user-specified mnemonic-names.

General Format

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry
OBJECT-COMPUTER. object-computer-entry
[SPECIAL-NAMES. special-names-entryl

[———— e ——— e g —
b v e s s e e i e)

Section-names and paragraph-names must begin in Area A.

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph serves only as documentation, and
describes the computer upon which the program is to be compiled.

Format

SOURCE-COMPUTER. coOmputer-name.

o e s s ey
e e — s e)

Computer-name may be specified as IBM~360[-model-number] or as
IBM-370([-model-numberl].

The SOURCE-COMPUTER paragraph is treated as comments by the COBOL
campiler.

64 Part II -- Identification and Environment Divisions

OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

Format

OBJECT-COMPUTER. computer-name

WORDS
{MEMORY SIZE integer CHARACTERS]
MODULES

[SEGMENT-LIMIT IS priority-numberl.

[—— - s e
g UG S S S——

Computer-name is a word of the form IBM-360[-model-number].
Computer-name must be the first entry in the OBJECT-COMPUTER paragraph.

If the configuration implied py computer-name comprises more or less
equipment than is actually needed by the object program, the MEMORY SIZE
clause permits the specification of the actual subset (or superset) of
the configuration.

The MEMORY STZE clause is treated as comments by the COBOL compiler.

The SEGMENT-LIMIT clause is discussed in "Segmentation."

Program Product Information -- Version 3

Computer-name may also be specified as IBM-370[-model-numberl. If
IBM-370 is specified, System/370 instructions are generated by the
compiler. When IBM-370 is specified, the object program must be
executed on a System/370 machine.

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph provides a means of relating
function-names to user-specified mnemonic-names. The SPECIAL-NAMES
paragraph can also be used to exchange the functions of the comma and
the period in the PICTURE character string and in numeric literals. In
addition, the user may specify a substitution character for the currency
symbol ($) in the PICTURE character string.

Environment Division -- Configuration Section 65

SPECIAL-NAMES Paragraph

|

General Format

SPECIAL~-NAMES.

[function-name-1 IS mnemonic-namel...
[function-name-2 [IS mnemonic-namej
ON STATUS IS condition-name-1
{QEE STATUS IS condition-name-2
[OFF STATUS 1S condition-name-2]
[ON STATUS IS condition-name-1il } s

[CURRENCY SIGN IS literall [DECIMAL-POINT IS COMMAI].

s e p—

e e —————————— —— . e)

When the SPECIAL-NAMES paragraph is specified, the comma or the
semicolon may optionally be used to separate successive entries; there
must be one, and only one, period, placed at the end of the paragraph.

Function-name-1 may be chosen from the following list:

SYSLST

SYSPCH

SYSPUNCH
SYSIPT

CONSOLE

€01 through C12
CSP

llteral

If SYSLST, SYSPCH, SYSPUNCH, SYSIPT, or CONSOLE are specified, the
associated mnemonic-names may be used in ACCEPT and DISPLAY statements.
Each of these function-names may appear only once in the SPECIAL-NAMES
paragraph.

If €01 through C12, CSP are specified, the
associated mnemonic-names may be used in a WRITE statement with the
BEFORE/AFTER ADVANCING option. These function-names are the carriage
control characters shown in Figure 7.

r T 1
] Function-name-1 | Action Taken]
L 1 —_ d
v I 1
| Csp | suppress spacing |
L ___+ ______ — J
r 1
| C01l through €09 | skip to channel 1 through 9, |
| | respectively i
b~ ---- -~ -- 1
| C10 through C12, | skip to channel 10, 11, |
| | 12, respectively |
pom e e s 1
| SOl through b05 l. |
[|
I I
I : I
L L - J
Figure 7.

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

SPECIAL-NAMES Paragraph

The use of a literal indicates that function-name-1 identifies Report
Writer output. The mnemonic-name should appear in a CODE clause in a
report description entry (RD) (see "Report Writer"). One such
SPECIAL-NAMES entry may be given for each report defined in a program.
The specified literal must be a one-character nonnumeric literal.

Function-name-2 is used to define a one-byte switch and may be
specified as UPSI-0 through UPSI-7. These switches represent the User
Program Status Indicator bits in the DOS communications region (see IBM
System/360 Disk Operating System: System Control and System Service
Programs, Form C24-5036). The status of the switch is specified by a
condition-name and interrogated by testing it. One condition-name may
be associated with the ON status; another may be associated with the OFF
status (see "Switch-Status Condition®). One condition-name must be
associated with function-name-2. A mnemonic-name, a second
condition-name, or both may be associated with the function-name-2 as
well. The condition-names represent the equivalent of level-88 items
where UPSI-n or mnemonic-name may be considered the conditional
variable.

To use UPSI switches #2, you could code your program as follows:

SPECIAL NAMES.

UPSI-2 IS SWITCH-02
ON STATUS IS TAPE-FILE
OFF STATUS IS DISK-FILE.

PROCEDURE DIVISION.
TEST-SWITCH-02.
IF TAPE-FILE
THEN GO TO OPEN-TAPE.
IF DISK-FILE
THEN GO TO OPEN-DISK.
(1) // UPSI 00100000
(2) // UPSI 00000000
When executing your program with the first UPSI card you would

go to OPEN-TAPE; when executing it with the second UPSI card
you would go to OPEN-DISK.

The literal which appears in the CURRENCY SIGN clause is used in the
PICTURE clause to represent the currency symbol. The literal must be
nonnumeric and is limited to a single character which must not pe any of
the following characters:

1. digits 0 through 9
2. alphabetic characters &, B, C, D, P, R, &, V, X, Z, or the space

3. special characters * + ~ R R H () * or '

If the CURRENCY SIGii clause is not present, only the $ can be used as
the currency symbol in the PICTURE clause.

Environment Division -- Configuration Section 67

FILE-CONTROL Paragraph

The clause DECIMAL-POINT IS COMMA means that the function of the
comma and the period are exchanged in PICTURE character strings and in
numeric literals.

ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

The Input-Output Section deals with the definition of each file, the
identification of its external storage media, the assignment of the file
to one or more input/output devices and with information needed for tne
most efficient transmission of data between the media and the object
program. The section is divided into two paragrarhs: the FILE-CONTROL
paragraph, which names and associates the files used in the program with
the external media; and the I-O-CONTKOL paragraph, which defines special
input/output techniques.

General Format

[INPUT-OUTPUT SECTION.
FILE-CONTROL. {file-control-entry} ...
[I-O-CONTROL. input~output-control-entryl]

AU SO pR——

FILE-CONTROL PARAGRAPH

Information that is used or developed by the program may be stored
externally. File description entries in the Data Division name the
files into which information is placed and specify their physical
characteristics. The FILE-CONTROL paragraph assiagns the files (by the
names given in the file description entries) to input/output devices.

General Format

FILE-CONTROL.

{SELECT Clause

ASSIGN Clause

[RESERVE Clause]
[FILE-LIMIT Clausel
[ACCESS MODE Clausel
[PROCESSING MODE Clausel
[ACTUAL KEY Clausel
[NOMINAL KEY Clausel]
[RECORD KEY Clausel
[TRACK-AREA Clausel.}...

o e o — s o . e T oy e
e e e e ——— e ———— e ——be e

Each SELECT sentence must begin with a SELECT clause followed
immediately

Part II -- Identification and Environment Divisions

68

SPECIAL-NAMES Paragraph

The use of a literal indicates that function-name-1 identifies Report
Writer output. The mnemonic-name should appear in a CODE clause in a
report description entry (RD) (see "Report Writer™). One such
SPECIAL-NAMES entry may be given for each report defined in a program.
The specified literal must be a one-character nonnumeric literal.

Function-name-2 is used to define a one-byte switch and may be
specified as UPSI-0 through UPSI-7. These switches represent the User
Progr m Status Indicator bits in the DOS communications region (see 1BM
System/360 Disk Operating System: System Control and System Service
Programs, Form C24-5036). The status of the switch is specified by a
condition-name and interrogated by testing it. One condition-name may
be associated with the ON status; another may be associated with the OFF
status (see *Switch-Status Condition"). One condition-name must be
associated with function-name-2. A mnemonic-name, a second
condition-name, or both may be associated with the function-name-2 as
well. The condition-names.represent the eguivalent of level-88 items
where UPSI-n or mnemonic-name may be considered the conditional

variable.

The literal which appears in the CURRENCY SIGN clause is used in the
PICTURE clause to represent the currency symbol. The literal must be
nonnumeric and is limited to a single character which must not be any of
the following characters:

1. digits 0 through 9

2. alphabetic characters a, B, ¢, D, P, R, S, V, X, Z, or the space

3. special characters * + - . . ; ()

If the CURRENCY SIGN clause is not present, only the $ can be used as
the currency symbol in the PICTURE clause.

The clause DECIMAL-POINT IS COMMA means that the function of the
comma and the period are exchanged in PICTURE character strings and in

numeric literals.

Environment Division -- Configuration Section 67

FILE-CONTROL Paragraph

ENVIRONMENT DIVISION —-- INPUT-OUTPUT SECTION

The Input-Output Section deals with the definition of each file, the
identification of its external storage media, the assignment of the file
to one or more input/output devices and with information needed for the
most efficient transmission of data between the media and the object
program. The section is divided into two paragraphs: the FILE-CONTROL
paragraph, which names and associates the files used in the program with
the external media; and the I-O-CONTROL paragraph, which defines special
input/output techniques.

General Format

{INPUT-OQUTPUT SECTION.
FILE-CONTROL. {file-control-entry} ...
[I-0-CONTROL. input-output-control-entryl]

,_._._____..‘,__.;
I
|

e e e e e — e —

FILE-CONTROL PARAGRAPH

Information that is used or developed by the program may be stored
externally. File description entries in the Data Division name the
files into which information is placed and specify their physical
characteristics. The FILE-CONTROL paragraph assigns the files (by the
names given in the file description entries) to input/output devices.

General Format

FILE-CONTROL.

{SELECT Clause
ASSIGN Clause
[RESERVE Clausel
[FILE-LIMIT Clausel
[ACCESS MODE Clausel
[PROCESSING MODE Clausel
[ACT sel

TS ; S o
2 T €

o e e e — e — o —
b e e s . . —— . i e s . 7 e

Each SELECT sentence must begin with a SELECT clause followed
immediately by an ASSIGN cl

ave writthn is not' signs

68 Part II -- Identification and Environment Divisions

SELECT/ASSIGN Clauses

SELECT Clause

The SELECT clause is used to name each file in a program.

Format

SELECT [OPTIONALl file-name

e - ——

Each file used in the program must be named once and only once as a
file-name following the key word SELECT.

Each file named in a SELECT clause must have a File Description (FD)
entry or Sort File Description (SD) entry in the Data Division.

The key word OPTIONAL may be specified only for input files accessed
sequentially. It is required for input files that are not necessarily
present each time the object program is executed. When a file is not
present at object time, the first READ statement for that file causes
the imperative-statement following the key words AT END to be executed.

echifed pnd will be tre

ASSIGN Clause

The ASSIGN clause is used to assign a file to an external medium.

Format

ASSIGN TO [integer] system-name-1 [system-name-2] ...

REEL
[FOR MULTIPLE 1
UNIT

b e e s s e i e

fr e e e e

Integer indicates the number of input/output units for a given medium
assigned to file-name. Since the number of units is determined at
program execution time (see IBM System/360 Disk Operating System:

System Control and System Service Programs, Order No. GC24-5036), the
standard definition given above is not the action taken by this
compiler.

When specified for files with standard labels or for unlabeled output
tape files, the integer option is treated as comments. When integer is
specified as greater than one for unlabeled input tape files, then at
the end of every reel a message is issued to the operator asking whetner
or not end-of-file has been reached. It is the user's responsibility to
provide the operator with correct information as to the number of reels
in the file.

Environment Division -- Input-Output Section 69

ASSIGN Clause

For multivolume input files with nonstandard labels, the integer
option is required. For such files, the compiler is unable to
distinguish between end-of-volume and end-of-file and, therefore, cannot
determine the number of reels in the file. Therefore, for input files
with nonstandard labels, the integer option is used to determine the
number of reels in the file.

N

ontained

on one reel.

All files used in a program must be assigned to an external mediun.
System-name specifies a device class, a particular device, the
organization of data upon this device, and the external name of the
file. Any system-names beyond the first are treated as comments.

FOR MULTIPLE REEL/UNIT is applicable whenever the number of tape
units or mass storage devices assigned might be less than the number of
reels or units in the file. However, this clause need not be specified.
The system will automatically handle volume switching for sequentially
accessed files. All volumes must be mounted for randomly accessed
files. Therefore, when this clause is specified, it. is treated as
comments.

System-name has the following structure:
SYsnnn-class-device-organization[-namel

where:

nnn is a three-digit number from 000 through 240 inclusive. This field
represents the symbolic unit to which the file is assigned.

class is a two-digit field that represents the device class. The
allowable combinations of characters are:

DA for mass storage
UT for utility
UR for unit record

Files assigned to DA devices may have standard sequential or direct
organization. Wnen organization is direct, access may be either
sequential or random.

Files assigned to UT or UR devices must have standard sequential
organization.

device is a four- or five-digit field that represents a device number.
Device number is used to specify a particular device within a device
class.

The allowable devices for any given device class are as follows:
Mass storage (DA) 2311, 2314, 2321
Utility (UT) 2400, 2311, 2314, 2321

Unit record (UR) 1442R, 1442P, 1403, 1404 (continuous forms only), 1443,
2501, 2520R, 2520P, 2540R, 2540P

(k indicates reader, P indicates punch)

70 Part II -- Identification and Environment Divisions

ASSIGN Clause
Note: Sort input, output, and work files may be assigned to any utility
device except a 2321 {(see "Sort").

organization is a one-character field that specifies file organization.
The letters that may be specified for each type of file are as follows:

S for standard sequential files
A for direct files -- actual track addre551ng
D i t files -~ r latlve

Figure 8 can be used to determine the correct choice of the organization
field in system-names.

name is a three- through seven-character field specifying the
external-name by which the file is known to the system. If specified,
it is the name that appears in the file-name field of the VOL, DLBL, cr
TLBL job control statement (see the appropriate Programmer's Guide). 1If
name is not specified, the symbolic unit (S¥Snnn) is used as the
external-name. The field must be specified if more than one file is
assigned to the same symbolic unit.

Note: An INPUT file must have the same file characteristics as it had
when created. That is, file-dependent descriptions for the INPUT file
-- such as the device and organization fields of the System-name, OPEn
and CLOSE mode, record description pages

be consistent with those specified when the file was created.

Environment Division -- Input-Output Section 71

ASSIGN Clause (Version 3}

r T T T T 1
| Device | | File | Track | Organization Field |
| Type | ACCESS | Organization| Addressing | in System-name |
F t + - + 1 i
| tape, | [SEQUENTIAL]} standard] --] S |
| punch, | | sequential | |]
| reader, |]] |]
| printer] | | ! !
1 1 1] .l J
r T T T T 1
mass	[SEQUENTIAL]] standard	--] S	
storage]	sequential		
device	1	1	
I 1 4 1 1 4			
r T E . 1 T i			
mass	[SEQUENTIAL]	direct	actual] A
storage		b + 4	
device]	relative	D]
} 4 ___+ 1 i d			
r T . T T 1			
mass	RANDOM direct	actual] A	
storage	b + :		
device		relative] D	
L 1

) pe p i3

Figure 8. Values of Organization Field for File Organization

Program Product Information -- Version 3

Note: ASCII considerations for the ASSIGN clause are given in
Appendix E.

For Version 3, the following additional system devices are

allowable:

Mass storage (DAa) 2319, 3330

Utility (UT) 2319, 3330, 3410, 3420

Unit Record (UR) 2560P, 2560R, 2560W, 3211, 3504, 3505, 3525P,

3525R, 3525W, 3525M, 3881

For the Version 3 DA and UT devices (2319, 3330, 3410, 3420), as
well as for the UR 3211 and 3881 devices, these numbers can be
specified in the device field of system-name. For these devices,
the valid entries for the other fields in system-name are unchanged.

For the 3504 and 3505 card readers, system—name has the following
format:

3504 SI[R]
SYSnnn-UR- - [-namel
3505 [¢]

The SYSnnn and name fields have the same valid entries as other
devices.

72 Part II -- Identification and Environment Divisions

ASSIGN Clause (Version 3)

For the 2560 MFCM, system—-name has the following format:

[P}
[-name]l
S

The name field has the same valid entries as for other devices.

S
T
P A
SYSnnn-UR-2560 {R} -

W

[N

The S¥Snnn field, for card files that do not utilize combined
function processing, has the same valid entries as othexr devices.

The SYSnnn field has special considerations when comtined function
card processing is used. For each associated logical file within
the combined function structure there must be a separate SELECT
sentence; each such associated logical file must be specified with
the same SYSnnn field. (See Appendix G: Combined Function Card
Processing for a more detailed discussion.)

For the device field, the following entries are valid:

2560R, 3525R for a card read file

2560P, 3525P for a card punch file

2560W, 3525W for a 1 to 6 line card print file
3525M for a multiline card print file

For the organization field, depending on the device field, the following
entries are valid:

S[R] for sequential card read files
3525R VIR] for read/print associated files
{reader) jX[Ri for read/punch/print associated files
(Y[R] for read/punch associated files

Note: the optional R field specifies RCE (Read
Column Eliminate) card reading. (See "RCE and
OMR Format Descriptor"™ for further discussion.)

S[pPl for sequential card read files, primary input
hopper
Ss for sequential card read files, secondary input
hopper
VIP] for read/print associated files, primary input
hopper
Vs for read/print associated files, secondary input
hopper
2560R X[P] for reads/punch/print associated files, primary
(reader) input hopper
Xs for read/punch/print associated files, secondary
input hopper
Y[P] for reads/punch associated files, primary input

for read/punch associated files
for punch/print associated files

hopper
¥S for read/punch associated files, secondary input
hopper
S for sequential card punch files
3525p T for punch-and-interpret files (see Note)
(punch) X for read/punch/print associated files
Y
2

Environment Division -- Input-Output Section 73

ASSIGN Clause (Version 3}

2560P
(punch)

2560W
(1 to 6
line
print)

3525W
(2-1ine
print)

3525M

(multi-
line
print)

sipl
SS

TP}
TS

X[P]
Xs
Y[P]
Ys
z[P]

YA

for sequential card punch files, primary input
hopper

for sequential card punch files, secondary input
hopper

for punch-interpret files, primary input hoprer
for punch-interpret files, secondary input
hopper

for read/punch/print associated files, primary
input hopper

for read/punch/print associated files, secondary
input hopper

for read/punch associated files, primary input
hopper

for read/punch associated files, secondary input
hopper

for punch/print associated files, primary input
hopper

for punch/print associated files, secondary
input hopper

Note: The T field denotes a normal punched
output file for which the graphically printable
punched characters are also printed on print
lines 1 and 3 of the card. Line 1 contains the
first 64 characters, left justified; line 3
contains the last 16 characters, right

justified.

S{P] for sequential print files, primary input hopper

Ss for sequential print files, secondary input
hopper

VIP] for read/print associated files, primary input
hopper

VS for read/print associated files, secondary input
hopper

X[P] for read/punch/print associated files, primary
input hopper

XS for read/punch/print associated files, secondary
input hopper

Z[P] for punch/print associated files, primary input
hopper

Zs for punch/print associated files, secondary
input hogper

W for sequential 2-line print files

v for read/print associated files

X for read/punch/print associated files

Z for punch/print associated files

S sequential multiline print files

\Y for read/print associated files

X for read-punch-print associated files

2 for punch/print associated files

Note: All input hopper specifications for one
associated file must be identical.

74 Part II -- Identification and Environment Divisions

! Figure 9 has been deleted.

Environment Division -- Input-Output Section 75

RCE/OMR Format Descriptor (Version 3)

RCE AND OMR FORMAT DESCRIPTOR

When the user specifies O (for Optical Mark rRead) or R (for Read
Column Eliminate) in the organization field of system-name, then at
object time he must provide a format descriptor as the first card(s) in
his data deck. If the format descriptor is missing for such files, a
message is issued to the operator, and the job is terminated.

The format descriptor must be the first card(s) in the data deck.
Column 1 of the first card must be blank. The keyword FORMAT must be
punched in columns 2 through 7. Column 8 must be blank. Columns 9
through 71 can contain the parameters that specify which columns of the
data cards are to be read in OMR or RCE mode. Continuation cards are
valid. A continuation code must be placed in column 72 of the preceding
card. Parameters may then be continued, beginning in column 16 of the
continuation card. Comments, if used, must follow the last operand on
each card by at least one blank space, and continuation card
restrictions must be observed.

The format of the format descriptor is as follows:

Col.

- s eccescsesone

12....
P
Il
I

9.
[

I

I
v

Qe ——

\A%
FORMAT (N1,N2)[, (N3,N4)1...

N1, N2, N3, and N4 may be any decimal integers from 1 through 80.
However, N2 must be greater than or egual to N1l. N4 must be greater
than or equal to N3. 1In addition, for OMR processing, N1 and N2 must be
both even or both odd, N3 and N4 must be both even or both odd, and N3 -
N2 must be greater than or equal to 2.

In OMR mode, the user establishes which columns are to be read in OMR
mode. For example, if the user wishes to xread columns 1, 3, 5, 7, 9 and
10, 72, 74, 76, 78, 80 in OMR mode, the following format descriptor is

valid:
FORMAT (1,9),(70,80)

In RCE mode, the user specifies those columns which are not to be
read. For example, if the user chooses to eliminate columns 20 through
30, and columns 52 through 73, the following format descriptor is wvalid:

FORMAT (20,30),(52,73)

76 Part II -- Identification and Environment Divisions

RESERVE/FILE-LIMITS Clauses

RESERVE Clause

The RESERVE clause allows tne user to modify the number of
input/output areas (buffers) allocated by the compiler for a standard
sequential file or (Version:3'only)ia:sequentially.accesgsed indexed
file. o MY

r 1
| Format |
b !
i . !
] integer AREA |
| RESERVE ALTERNATE |
| NO AREAS |
[|
L - — ———— —_—— J

This clause may be specified only for a standard sequential file.
Integer must have a value of 1.

A minimum of one buffer is required for a file. 1If this clause is
omitted or if 1 is specified, one additional buffer is assumed.

If NO is specified, no additional buffer areas are reserved aside
from the minimum of one.

deguent
Combined function file processing considerations for the RESERVE
clause are given in Appendix G.

FILE-LIMIT Clause

The FILE-LIMIT clause serves only as documentation, and is used to
specify the beginning and the end of a logical file on a mass storage
device.

Format

r
[
S— _

jFILE-LIMIT Is data-name-1 data-name-2
THRU

1FILE-LIMITS ARE literal-1 (literal-2

|

|

|

| data-name-3 data-name-4

| [{ }HR{ -
|

|

L

literal-3 literal-u

b e e ———— —— s o e e

Environment Division -- Input-Output Section 77

ACCESS MODE/PROCESSING MODE Clauses

The logical beginning of a mass storage file is the address specified
as the first operand of the FILE-LIMiT clause; the logical end of a mass
storage file is the address specified as the last operand of the
FILE-LIMIT clause. Because file boundaries are determined at execution
time from the control cards, this clause need not be specified and will
be treated as comments.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which records of a file
are to be accessed.

| Format

ACCESS MODE IS {

SEQUENTIAL
| RANDOM

e e e — e

= —— — e —

If this clause is not specified, ACCESS IS SEQUENTIAL is assumed.
For ACCESS IS SEQUENTIAL, records are placed or obtained sequentially.
That is, the next logical record is made available from the file when
the READ statement is executed, or the next logical record is placed
into the file when a WRITE statement is executed. ACCESS IS SEQUENTIAL
may be applied to files assigned to tape, unit-record, or mass storage
devices.

ACCESS IS RANDOM, storage and retrieval are based on an ACTUAL

o assoe1ated with each record. When the RANDOM option
is spe01f1ed the file must be assigned to a mass storage device.
ACCESS IS RANDOM may be specified when file organization is direct fﬁi

be specified.

PROCESSING MODE Clause

The PROCESSING MODE clause serves only as documentation, and
indicates the order in which records are processed.

- - === 1

Format |

I
-
| I
I
[
L

PROCESSING MODE IS SEQUENTIAL

78 Part II -- Identification and Environment Divisions

. ACTUAL KEY Clause

This clause is treated as comments, and may be omitted.

ACTUAL KEY Clause

An ACTUAL KEY is a key that is directly usable by the system to
locate a logical record on a mass storage device. The ACTUAL KEY is
made up of two components.

1. The track identifier, which expresses a track address at which the
search for a record, or for a space in which to place a new record,
is to begin.

2. The record identifier, which serves as a unique identifier for the
record and is associated with the record itself.

When processing a randomly accessed direct file, the programmer is
responsible for providing the ACTUAL KEY for each record to be
processed.

Format

ACTUAL KEY IS data-name

(o —— — o — -

(R S SR

Records are accessed randomly and are processed in the order in which
they are accessed.

The ACTUAL KEY clause must be specified for direct files when ACCESS
IS RANDOM is specified.

bAL RS hahes DA

When a SEEK statement is executed, the contents of data-name are used
to locate a specific mass storage record area.

When a READ statement is executed, a specific logical record (located
by the system using the contents of data-name) is made available from
the file.

When a WRITE statement is executed, the given logical record is
written at a specific location in the file.

At file creation time, when no more room remains on a given track, a
standard error occurs, and the user must provide a USE AFTER STANDARD
ERROR declarative routine to update the track address.

The keyword IS must be specified.

The location of a particular logical record must be placed in
data-name before the execution of the SEEK statement (or if no SEEK
statement is present, the READ and WRITE statements).

Data-name must be a fixed-length item. be defined in the
File Section, the Working-Storage SectionfigektinrRtErrEREEEriy.
However, if data-name is specified in the File Section it may not be
contained in the file for which it is the key. Data-name is made up of
two components: the track identifier, and the record identifier.

Environment Division -- Input-Output Section 79

ACTUAL KEY Clause

TRACK IDENTIFIER: 1une track identifier may be expressed in two ways --
throuch relative track addressing, or through actual track addressing.

relative Track Addressing: The track identifier is used to specify tne
relative track address at which a record is to be placed, or at which
the search for a record is to begin.

Track identifier must be 4 bytes in length, and must be defined as a:
8-integer binary data item wnose maximum value does not exceed
10,777,215.

Actual Track Addressing: The track identifier is used to specify the
actual track address at which a record is to be placed, or at which the
search for a record is to begin.

Track identifier must be a binary data item eight bytes in length.
No conversion is made by the compiler when determining the actual track
address. The structure of these eight bytes and the permissible
specifications are shown in Figure 10.

Before beginning processing, it is the user's responsibility to
initialize R to the figurative-constant LOW-VALU&. The user need not
concern himself further with this field.

T == T -7 - -7 1

| PACK | CELL | CYLINDER | HEAD | RECORD |

b $ e A I + 1

| M | B B | C cC| H H | R |

pmmm e $-—- + - -4 1 {

| Byte| O | 1 2 | 3 4 5 6 | 7 |

| Device |] | | I

________ 1 i -4 1 I 4

T T T T T Al

| 2311 | 0-221 | O 0 | © 0-199] 0 0-9 | 0-255 |

frmmmm e Fmmmmmmmm foommm e - == + e

| 2314 | 0-221 | © 0 | o 0-199] ¢ 0-19 | 0-255 |

————————————— i -t e B -

| 2321 | 0-221 | ¢ 0-9 | .0-19 0-9 l 0-4 0-19 | 0-255 |
—— —_— I — Y U RS 1 ———

T L) + L] T - "

| 2319 | 0-221 | O 0 | 0 0-199] 0 0-19 | 0-255 |

| (Version 3) | | | | |

R o ¥ e + .

| 3330 | 0-221 | O o | 0-u03 | 0-18 | 0-255 |

| (Version 3) | | | | | |

L Y B L L | J
Figure 10. Structure of the First Eight Bytes of ACTUAL KEY -- Actual

Track Addressing

RECORD IDENTIFIER: The symbolic portion of ACTUAL KrY used to identify
a particular record on a track is the record identifier.

Record identifier must be from 1 through 255 pytes in length. Data
within these bytes is treated exactly as specified.

A record is considered "found" when, for a given track, the record
identifier at retrieval time matches the record identifier of a record
in the file being searched.

ACTUAL KEY EXAMPLES: Two examples fcllow, to represent the coding
necessa;y“té specify the data-name in the ACTUAL KEY clause.

80 Part II -- Identification and Envirconment Divisions

ACTUAL KEY Clause

Relative Track Addressing: The following example shows an ACTUAL KEY
using relative track addressing:

ENVIRONMENT DIVISION.

ACTUAL KEY IS THE-ACTUAL-KEY.

-

DATA DIVISION.

WORKING-STORAGE SECTION.
01 THE ACTUAL-KEY.
02 RELATIVE-TRACK-KEY USAGE COMPUTATIONAL PICTURE IS S9(8)
VALUE IS 10 SYNCHRONIZED.
02 EMPLOYEE-NO PICTURE IS X(6) VALUE IS LOW-VALUE.

Actual Track Addressing: The following example shows an ACTUAL KEY
using actual track addressing:

ENVIRONMENT DIVISION.

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING~STORAGE SECTION.
01 BINARY-FIELD-1.
05 TRACK-ID.
10 M USAGE COMPUTATIONAL PICTURE S999 VALUE IS 0.
10 BB USAGE COMPUTATIONAL PICTURE S9 VALUE IS 0.
10 CC USAGE COMPUTATIONAL PICTURE S999 VALUE Is 10.
10 HH USAGE COMPUTATIONAL PICTURE S999 VALUE IS 0.

10 R PICTURE IS X VALUE IS LOW-VALUE.
05 EMPLOYEE-NO PICTURE XXXXXX VALUE IS LOW-VALUES.
01 ACTUAL-FIELD-1 REDEFINES BINARY-FIELD-1.
05 FILLER PICTURE IS X.
05 THE-ACTUAL-KEY PICTURE IS X(14).

Although the track identifier field must consist of eight bytes, nine
bytes are defined within TRACK-ID. This is because the entry

10 M USAGE COMPUTATIONAL PICTURE S999
necessarily defines two bytes. However, as Figure 4 shows, the M field
must be one byte in length. Therefore, BINARY-FIELD-1 must be redefined
as ACTUAL-FIELD-1. 1In this way the superfluous high-order M byte can be
stripped off from THE-ACTUAL-KEY through specification of the entry
05 FILLER PICTURE IS X
in ACTUAL-FIELD-1. The first eight bytes of THE-ACTUAL-KEY thus

represent the track identifier, and the last six bytes represent the
record identifier.

Environment Division -- Input-Output Section 81

! NOMINAL KEY Clause

NOMINAL KEY Clause

‘A NOMINAL KEY is used with indexed files. The clause spec1f1esga
S:SYWbO¢lv identity for a specific logical record. .
Hi » ,

»

5-Format

s s s s i o,

| NOMINAL KEY IS data-name

il

f| A NOMINAL KEY clause is required when an 1ndexed f11e is accessed -
‘randomly, or when an indexed file is accessed Sequentlally and. a ‘START
;'statement is used.

- When the NOMINAL KEY clause is spe01f1ed for an 1ndexed flle that 1sif
iccessed randomly:

Data-name may specify any fixed-length Working-Storage item from 1
- through 255 bytes in length.

Data-name must be at a fixed displacement from the beginning of the
record description in which it appears; that is, it may not appear ' |
in the entry subsequent to an OCCURS clause with a DEPENDING ON
option.

The symbolic identity of the record must be placed in data-name }ﬁ
before the execution of the READ, WRITE, or REWRITE statement. S

‘The symbolic identity is used when retrieving or updating a record.
‘to locate the logical record with a matching RECORD KEY, or, wheh
adding a record, to create the key that will be associated with the i
record. :

-When a READ statement is executed a specxflc logical record is- ma&e‘
=ava11able from the file, u31ng the contents of data-name.;)

~\>

‘When a WRITE or REWRITE statement is executed the symbolic. 1dent1tyr
of the record specified by data-name is used to determlne the ;
physxcal locatlon at whlch the record is wrltten..

4When the NOMINAL KEY 1s‘spec1f1ea ﬁor an 1ndexed flle ‘that 15
‘essed sequentlalky.;. ;4, Cali L

‘réoord désdrlptldm” Whldh 1t.agpeqrs, that
‘in ‘the: edtr% Subsbque it £o an‘ﬁCCURS clause

may ngt appear
DE ENDING oN

! s& must: be. sgecifled if the
' Whe the STKRT statement is execut

82 Part II -- Identification and Environment Divisions

‘ Thms clause may ‘be optlcnarly used when records are to be added to
1ndexed file in the random access mode. EfflClency in- addlng a record

‘is 1mproved when thls clause is: spe01f1ed.._:‘;‘ RO b e

. Format .

o e e i e e i

TRACK-AREA IS integer CHARACTERS

be defined to hold from one to all the

The size of the area may
their count and key fields.

Jblocks on a track including

: Integer must be at least 24 + N (40 + RECORD KEY length + block
.8ize), where N is any number from 2 to the maximum number of blocks on
track. If N equals 1, then integer must be 24 + 50 + RECORD KEY length
+ block size. Integer must not exceed 32,767. (See IBM System/360 Disgk

Operating System- Data Management Concepts, Form cza 3427). ;

Environment Division -- Input-Output Section 83

RERUN Clause

I-O0-CONTROL_ PARAGRAPH

The I-O-CONTROL paragraph defines some of the special techniques to
be used in the program. It specifies the points at which checkpoints
are to be established, the core storage area which is to be shared by
different files, the location of files on multiple-file reels, and
optimization techniques. The I-O-CONTROL paragraph and its associated
clauses are an optional part of the Environment Division.

r 1
| General Format |
b —- -1
[|
| 1-0-CONTROL. |
| [RERUN Clause] ... |
| [SAME AREA Clausel] ... |
I [MULTIPLE FILE TAPE Clausel ... |
| AP ol LARH |
l I
L —]

RERUN Clause

The presence of a RERUN clause specifies that checkpoint records are
to be taken. A checkpoint record is a recording of the status of a
problem program and main storage resources at desired intervals. The
contents of core storage are recorded on an external storage device at
the time of the checkpoint and can be read back into core storage to
restart the program from that point.

Format 1

RERUN ON system-name

EVERY integer RECORDS OF file-name

[y —
e e e e . e e

The system-name in the RERUN clause specifies the external medium for
the checkpoint file, the file upon which checkpoint records are to be
written. It has the following structure:

SYSnnn-class-device-organization(-namel

84 Part II -- Identification and Environment Divisions

SAME Clause

The SY¥Snnn and name fields in the system-name for the checkpoint file
cannot be the same as any specified in any ASSIGN clause.

Checkpoint records are written sequentially, and may be assigned to
any utility or mass storage device (except the 2321). Only one RERUN
clause in a program may use a mass storage device for writing checkpoint
records. (A complete list of utility and mass storage devices is given
in the description of system-name in the ASSIGN clause.)

Format 1 specifies that checkpoint records are to be written on the
unit specified by system-name for every integer records of file-name
that are processed. The value of integer must not exceed 16,777,215.

More than one Format 1 RERUN clause may be included in a program. If
multiple RERUN clauses are specified, they may be specified either for
the same or for different checkpoint files.

Note: ASCII considerations for the RERUN clause are given in

Appendix E.

SAME Clause

The SAME clause specifies that two or more files are to use the same
core storage during processing.

Format

SORT
SAME AREA FOR file-name-1 {file-name-2} ...
RECORD

[—— — g —
L e S |

A SAME clause with the SORT option is described in "Sort." The
following discussion pertains only to the SAME AREA and SAME RECORD AREA
clauses.

The SAME RECORD AREA clause specifies that two or more files are to
use the same main storage for processing the current logical record.
All of the files may be open at the same time. A logical record in the
shared storage area is considered to be:

* a logical record of each opened output file in this SAME RECORD AREA
clause, and

* a logical record of the most recently read input file in this SAML
RECORD AREA clause.

If the SAME clause does not contain the RECORD option, the area being
shared includes all storage areas assigned to the files; therefore, it
is not valid to have more than one of these files open at one time.

Environment Division -- Input-Output Section 85

MULTIPLE FILE TAPE Clause

More than one SAME clause may be included in a program; however:
1. A file-name must not appear in more than one SAME AREA clause.

2. A file-name must not appear in more than one SAME RECORD AREA
clause.

3. 1If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in that SAME RECORD AREA clause. However, that SAME
RECORD AREA clause may contain additional file-names other than
those that appear in that SAME AREA clause.

The SAME RECORD AREA clause implicitly redefines the logical records
of each file named. This allows the user to write the same record to
more than one file, or to write a record he has just read without any
extra MOVE statement. An extra record area is generated for this
purpose.

The SAME AREA clause saves space generated for record areas.

However, files named in a SAME AREA clause cannot be open at the same
time, thus limiting processing possibilities.

MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause is used to indicate that two or more
files share the same physical reel of tape.

Format |

MULTIPLE FILE TAPE CONTAINS file-name-1

e el
—

|
[POSITION integer-1] [file-name-2 [POSITION integer-21]1 ...]
|
d

The MULTIPLE FILE TAPE clause is required when more than one file
_the‘same phy51calvreel of tape : ,

The MULTIPLE FILE TAPE clause is pertinent only when the tape has
nonstandard lakels, or when labels are omitted. It is treated as
comments for a tape that has standard labels.

Regardless of the number of files on a single reel, only those files
that are used in the object program need be specified.

For purposes of positioning, a physical file is considered to be that
segment of a tape that is terminated by a tape mark. Note that two
consecutive tape marks are considered to terminate two physical files.

If all file-names refer to single physical files and have been listed
in consecutive order, the POSITION option need not be given.

The POSITION integer relative to the beginning of the tape must be
given if any file on the tape is not listed, or if a tape contains more
than one physical file, i.e., more than one tape mark. Therefore, if a
tape contains two files, each having one nonstandard header label

86 Part II ~-- Identification and Environment Divisions

Page of GC28-6394-4, ~-5. -6 revised 12/03/76 by TNL GN26-0887
APPLY Clause

terminated by a tape mark, their positions would be 1 and 3. If the
labels are not to be processed, the positions may be specified as 2 and
4, and the LABEL RECORDS clause must specify OMITTED.

The compiler will position the tape by skipping past a number of tape

marks equal to POSITION number minus one.
Caution: POSITION should be used only for input files. If POSITION is
used for output files, overlay may occur.

More than one MULTIPLE FILE clause may be included in a program.

87

Environment Division -- Input-Cutput Section

88 rart II -~ Identification and Environment bivisions

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Environment Division -- Input-Output Section 89

PART I1I -- DATA DIVISION

DATA DIVISION -- INTRODUCTION

ORGANIZATION OF THE DATA DIVISION

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

DATA DESCRIPTION

DATA DESCRIPTION -- DETAILS OF CLAUSES

91

External Data =-- Description

DATA DIVISION -- INTRODUCTION

The Data Division of a COBOL source program contains the description
of all information to be processed by the object program. Two types of
data may be processed by a COBOL program: information recorded
externally on files and information created internally. The second
type, which exists only during the execution of a program, will be
discussed later in this chapter in "Working-Storage Section.™

ORGANIZATION OF EXTERNAL DATA

A file is a collection of records. There are two types of records:
physical records and logical records. A physical record is a group of
characters or records which is treated as an entity when moved into or
out of core storage. A logical record is a number of related data
items. It may itself be a physical record, i.e., contained within a
single physical unit, or it may be .one of several logical records
contained within a single physical unit, or it may extend across two or
more physical units.

COBOL source language statements provide the means of describing the
relationship between pnysical and logical records. Once this
relationship is established, only logical records are made available to
the COBOL programmer. Hence, in this publication, a reference to
records means logical records unless the term "physical records" is
used.

DESCRIPTION OF EXTERNAI. DATA

In the discussion of data description, a distinction must first be
made between a record's external description and its internal content.

External description refers to the physical aspects of a file, i.e.,
the way in which the file appears on an external medium. For example,
the number of logical records per physical record describes.the grouping
of records in the file. The physical aspects of a file are specified in
File Description entries.

A COBOL record usually consists of groups of related information that
are treated as an entity. The explicit description of the contents of
each record defines its internal characteristics. For example, the type
of data to be contained within each field of a logical record is an
internal characteristic. This type of information about each field of a
particular record is grouped into a Record Description entry. '

Data Division -- Introduction 93

Data Division -- Structure

ORGANIZATION OF THE DATA DIVISION

The Data Division is divided
the Working-Storage Section,
Section.

se tlons~ the File Section,
nii and the Report

All data that is stored externally, for example, on magnetic tape,
must be described in the File Section before it can be processed by a
COBOL program. Information that is develope
described in the Worklng Storage Sect10n.§

ip T TR

content and format of all reports that ‘are to be generated by the Report
Writer feature must be described in the Report Section.

The Data Division is identified by, and must begin with, the header
DATA DIVISION. The File Section is identified by, and must begin with,
the header FILE SECTION. The header is followed by one or more file
description entries and one or more associated record description
entries. The Working-Storage Section is identified by, and must begin
with, the header WORKING-STORAGE SECTION. The header is followed by
data item description entr1e§ for _noncontiguous items, followed by

The Report Sectlon is identified by, and must
he header REPORT SECTION. The header is followed by one or
more report description entries, and one or more report group
description entries.

For the proper formats of Division and Section headers, see "Use of
the COBOL Coding Form" in "Language Considerations."”

Structure of the Data Division

DATA DIVISION.

FILE SECTION.
{file description entry
{record description entryl}...}...

WORKING-STORAGE SECTION.

[data item description entryl...

[record description entryl...

REPORT SECTION.

{report description entry
{report group description entryl...}...
Each of the sections of the Data Division is optional and may be

omitted from the source program when the section is unnecessary. When
used, the sections must appear in the foregoing sequence.

94 Part III -- Data Division

Level Indicator/Number

ORGANIZATION OF DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level
number, followed by one or more spaces, followed by the name of a data
item (except in the Report Section), followed by a sequence of
independent clauses describing the data item. The last clause is always
terminated by a period followed by a space.

Level . Indicator

The level indicator FD is used to specify the beginning of a file
description entry. When the file is a sort-file, the level indicator SD
must be used instead of FD (see "Sort"™). When a report is to be
generated by the Report Writer feature, the level indicator RD,
specifying the beginning of a report description entry must be provided
for each report in addition to the FD for the file on which the report
is generated (see "Report Writer"). Figure 11 summarizes the level
indicators.

v R T 1
| Indicator | Use |
L 4 4
v T - - . 1
| FD | File description entries |
| SD | Sort-file description entries i
| RD | Report description entries |
L 4 J

Figure 11. Level Indicator Summary

Each level indicator must begin in Area A and be followed in Area B
by its associated file-name and appropriate descriptive information.

Level indicators are illustrated in the sample COBOL programs found
in Appendix B.

Level Number

Level numbers are used to structure a logical record to satisfy the
need to specify subdivisions of a record for the purpose of data
reference. Once a subdivision has been specified, it may be further
subdivided to permit more detailed data reference.

The basic subdivisions of a record, that is, those not further
subdivided, are called elementary items; consequently, a record may
consist of a sequence of elementary items, or the record itself may be
an elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. A group item consists of a named sequence of
one or more elementary items. Groups, in turn, may be combined into
larger groups. Thus, an elementary item may belong to more than one

Organization of the Data Division 95

Level Number

group. In the following example, the group items MARRIED and SINGLE are
themselves part of a larger group named RETIRED-EMPLOYEES:

02 RETIRED-EMPLOYEES.
03 MARRIED.
04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).
03 SINGLE.
04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).

A system of level numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items, the
level number for a record must be 1 or 01. Less inclusive data items
are assigned higher (not necessarily successive) level numbers not
greater than 49. There are special level numbers -- 66, 77, and 88 --
which are exceptions to this rule. Separate entries are written in the
source program for each level number used.

A group includes all group and elementary items following it until a
level number less than or equal to the level number of that group is
encountered. The level number of an item which immediately follows the
last elementary item of the previous group must be equal to the level
number of one of the groups to which a prior elementary item belongs.

Standard
01 A.
05 c-1.

06 D PICTURE X.
06 E PICTURE X.
05 c-2.

Level numbers 01 and 77 must begin in Area A, followed in Area B by
associated data names and appropriate descriptive information. Aall
other level numbers may begin in either Area A or in Area B, followed in
Area B by associated data names and appropriate descriptive information.

A single-digit level number is written either as a space followed by
a digit or as a zero followed by a digit. At least one space must
separate a level number from the word following the level number.

Special Level Numbers

Three types of data exist whose level numbers are not intended to
structure a record. They are:

66: Names of elementary items or groups described by a RENAMES clause
for the purpose of regrouping data items have been assigned the
special level number 66. For an example of the function of the
RENAMES clause, see "Data Description."

77: Noncontiguous Working-Storage items, which are not subdivisions of

other items and are not themselves subdivided, have been assigned
the special level number 77.

96 Part III ~- Data Division

File Section

88: Entries that specify condition-names to be associated with
particular values of a conditional wvariable have been assigned the
special level number 88. For an example of level-88 items, see
"Data Description."”

Indentation

Successive data description entries may have the same format as the
first such entry or may be indented according to level number.
Indentation is useful for documentation purposes, and does not affect
the action of the compiler.

FILE SECTION

The File Section contains a description of all externally stored data
(FD), and a description of each sort-file (SD) used in the program.

The File Section must begin with the header FILE SECTION followed by
a period. The File Section contains file description entries and
sort-file description entries, each one followed by its associated
record description entry (or entries).

General Format

FILE SECTION.
{file description entry

{record description entry} ...}...

o o o —— e e g e oy
b o e e e s e e e e)

File Description Entry

In a COBOL program, the File Description Entries (FD and SD)
represent the highest level of organization in the File Section. The
File Description entry provides information about the physical structure
and identification of a file, and gives the record-name(s) associated
with that file.

For a complete discussion of the sort-file-description entry, see
"sort."

Record Description Entry

The Record.Description -Entry consists of a set of data description
entries which describe the particular record(s) contained within a
particular file. For a full discussion of the format and the clauses
required within the Record Description entry, see "Data Description.”

Organization of the Data Division 97

Working~Storage Section

WORKING-STORAGE SECTION

The Working-Storage Section may contain descriptions of records which
are not part of external data files but are developed and processed
internally.

The Working-Storage Section must begin with the section header
WORKING~-STORAGE SECTION followed by a period. The Working-Storage
Section contains data description entries for noncontiguous items and
record description entries, in that order.

r
| General Format
- - — -—-

WORKING-STORAGE SECTION.

[data item description entryl ...

[record description entryl ...

e e et e |

|
|
|
|
|
{

Data Item Description Entries

Noncontiguous items in Working-Storage that bear no hierarchical
relationship to one another need not be grouped into records, provided
they do not need to be further subdivided. Instead, they are classified
and defined as noncontiguous elementary items. Each of these items is
defined in a separate data item description entry that begins with the
special level number 77.

Record Description Entries

Data elements in Working-Storage that bear a definite hierarchical
relationship to one another must be grouped into records structured by
level number.

vLLNKAGE‘SECTION :

98 Part III -~ Data Division

hReport Sections

REPORT_ SECTION

The Report Section contains Report Description entries and report
group description entries for every report named in the REPORT clause.
The Report Section is discussed in "Report Writer."

Organization of the Data Division 99

FD Entry/BLOCK CONTAINS Clause

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The file description entry consists of level indicator (FD), followed
by file-name, followed by a series of independent clauses. The entry
itself is terminated by a period.

General Format

FD file-name

[BLOCK CONTAINS Clausel

[RECORD CONTAINS Clausel

LABEL RECORDS Clause
[VALUE OF Clausel
[DATA RECORDS Clausel

[REPORT Clausel.

o e e et e e e B e e e . e —
e i e e e o it . B s . e, e s . e i e o

The level indicator FD identifies the beginning of a file description
entry and must precede the file-name. The clauses that follow the name
of the file are optional in many cases, and their order of appearance is
not significant.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause is used to specify the size of a physical
record.

Format

SCHARACTERS
BLOCK CONTAINS [integer-1 IOl integer-2

|RECORDS

[———— e — -
S U Ep—

The BLOCK CONTAINS clause is unnecessary when a physical record
contains one and only one complete logical record. In all other
instances, this clause is required.

100 Part III -- Data Division

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause need not be specified for:

e direct files with F, U, or V mode records

i

e files containing U-mode records

For these types of files, the compiler accepts the clause and treats it
as comments.

The RECORDS option may be used unless one of the following situations
exists, in which case the CHARACTERS option should be used:

1. The physical record contains padding (areas not contained in a
logical record)

2. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied. Such would be the case
where the user describes a mode V record of 100 characters, yet
each time he writes a block of 4, he writes a 50-character record
followed by three 100-character records. Had he used the RECORDS
option, the compiler would have calculated the block length as 420.

3. Logical records extend across physical records; that is, recording
mode is S (spanned).

When the RECORDS option is used, the compiler assumes that the
blocksize provides for integer-2 records of maximum size and then

provides additional space for any regujred control bytes.

When the CHARACTERS option is used, the physical record size is
specified in Standard Data Format, i.e., in terms of the number of bytes
occupied internally by its characters, regardless of the number of
characters used to represent the item within the physical record. The
number of bytes occupied internally by a data item is included as part
of the discussion of the USAGE clause. Integer-l and integer-2 must
include slack bytes and control bytes contained in the physical record.

When the CHARACTERS option is used, if only integer-2 is shown, it
represents the exact size of the physical record. If integer-1 and
integer-2 are both shown, they refer to the minimum and maximum size of
the physical record, respectively.

Integer-1 and integer-2 must be positive integers.

If this clause is omitted, it is assumed that recocrds are not
blocked.

When neither the CHARACTERS nor the RECORDS option is specified, the
CHARACTERS option is assumed.

Note: ASCII considerations for the BLOCK CONTAINS clause are given in
Appendix E.

File Description Entry -- Details of Clauses 101

RECORD CONTAINS Clause

RECORD CONTAINS Clause

The RECORD CONTAINS clause is used to specify the size of a file's
data records.

Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

[——— e ———
T S ——

Since the size of each data record is completely defined within the
record description entry, this clause is never required. When the
clause is specified, the following notes apply:

1. If both integer-1 and integer-2 are shown, they refer to the number
of characters in the smallest data record and the number in the
largest data record, respectively.

2. Integer-2 should not be used by itself unless all the data records
in the file have the same size. In this case, integer-2 represents
the exact number of characters in the data record.

3. The size of the record must be specified in Standard Data Format,
i.e., in terms of the number of bytes occupied internally by its
characters, regardless of the number of characters used to
represent the item within the record. The number of bytes occupied
internally by a data item is discussed in the description of the
USAGE clause. ' The size of 'a record is determined according to the
rules for obtaining the size of a group item.

Normally, whether this clause is specified or omitted, the record
lengths are determined by the compiler from the record descriptions.
When one or more of the data item description entries within a record
contains an OCCURS clause with the DEPENDING ON option, the compiler
uses the maximum value of the varlable to calculate the record length.

However, if more than one entry in a given record description
contains an OCCURS clause with the DEPENDING ON option, and the maximum
values of the variables in these OCCURS clauses do not occur
simultaneously, integer-2, as specified . by the user, may indicate a
maximum record size other than the size calculated by the compiler from
the maximum values of the OCCURS clause variables. In this case, the
user-specified value of integer-2 determines the amount of storage set
aside to contain the data record.

For example, in a school whose total enrollment is 500, an unblocked
file of collective attendance records is being created, each record of
which is described as follows:

01 ATTENDANCE-RECORD.

02 DATE PICTURE X(6).

02 NUMBER-ABSENT PICTURE S999 USAGE IS COMP SYNC.

02 NUMBER-PRESENT PICTURE S999 USAGE IS COMP SYNC.

02 NAMES-OF-ABSENT OCCURS 0 TO 500 TIMES DEPENDING ON
NUMBER-ABSENT PICTURE A(20).

02 NAMES-OF-PRESENT OCCURS 0 TO 500 TIMES DEPENDING ON
NUMBER-PRESENT PICTURE A(20).

102 Part III -- Data Division

Recording Mode

The programmer can save storage by taking advantage of the fact that
NUMBER-ABSENT plus NUMBER-PRESENT will never exceed the school's total
enrollment. Unless the programmer writes RECORD CONTAINS 10,010
CHARACTERS in the FD entry for the file, the compiler calculates the
record size to be almost twice as large.

Recording Mode

s potiuged: to specify. thé recording
C £i] COBOL compiler scans each record
description to determine it. The recording mode may be F (fixed),

U (undefined), V (variable), or S (spanned).

Recording Mode F -- All of the records in a file are the same length and
each is wholly contained in one block. Blocks may contain more than one
record, and there is usually a fixed number of records per block. 1In
this mode, there are no record-length or block-descriptor fields.

Recording Mode U -- The records may be either fixed or variable in
length. However, there is only one record per block. There are no
record-length or block-descriptor fields.

Recording Mode V -- The records may be either fixed or variable in
length, and each must be wholly contained in one block. Blocks may
contain more than one record. Each data record includes a record-length
field and each block includes a block-descriptor field. These fields
are not described in the Data Division; provision is automatically made
for them. These fields are not available to the user.

Recording Mode S -- The records may be either fixed or variable in
length and may be larger than a block. If a record is larger than the
remaining space in a block, a segment of the record is written to fill
the block. The remainder of the record is stored in the next block (or
blocks if required). Only complete records are made available to the
user. Each segment of a record in a block, even if it is the entire
record, includes a segment-descriptor field, and each block includes a
block-descriptor field. These fields are not described in the Data
Division; provision is automatically made for them. These fields are
not available to the user.

For standard sequential files, thé compiler determines the recording
mode for a given file to be:

F if all the records are defined as being the same size and the
size is smaller than or equal to the block size

Vv if the records are defined as variable in size, or if the RECORD
CONTAINS clause specifies variable size records and the longest
record is less than or egqual to the maximum block size

S if the maximum block size is smaller than the largest record
size

For direct files, the compiler determines the recording mode for a
given file to be:

F if all the records are defined as being the same size, and the
size is smaller than or equal to the block size

U if the records are defined as being variable in size, or if the

RECORD CONTAINS clause specifies variable size records and the
longest record is less than or egual to the maximum block size

File Description Entry -- Details of Clauses 103

RECORDING MODE Clause
S if the maximum block size is smaller than the largest record
size

Files assigned to the card reader and files with indexed organization
must be F mode (fixed format).

Note: ASCII considerations for compiler calculation of recording mode
are given in Appendix E.

REcoéDING MdDE clause

“The RECORDING MODE clause 1s used to spec1;y the. format of: the
'loclcal records ‘in tne file.:

I : C » - Format
e e
i o .
. RECORDING MODE IS mode
8

[_— — - i e e

Mode may be specified as F, V, U, or S. If this clause is not o
spec1F1ed the recordlng mode is determlned as described in ”Recordlng
Mode. ;

The F _mode (flxed lengith format) may be spe01fled when all the
logical records in a file are the same length and each is wholly .
contained in one physical block. ' This implies that no OCCURS clause '
with the DEPENDING ON option is associated with an entry in any recoﬁd‘
description for the file. If more than one record description entry 1s
given following the FD entry, all record lengths calculated from the
record descriptions must be equal. Files a851gned to the card.reader»
and files with indexed organlzatlon must be in F mode.

The V_mode (variable- length format) may be spec1f1ed for any
combination of record descriptions if each record is wholly contalned
within one physical block. & mode V record is preceded by a control
field containing the lengith of the logical record. Blocks of -
variable-length records include a block-descriptor control field.. v -
mode may be specified only for standard sequentlal files. .

The U mode (undefined format) may be specified for any combination oﬁ
record descrlptlons if each record is wholly contained within one v
physical block. It is comparable to V mode with the exception that U . =
mode records are not blocked and have no preceding control field. - U :
mode may be specified only for direct files or standard sequential
files. .

The S mode (spanned format) may be specified for any combination of’
record descriptions. A record that cannot fit into the remaining Space
in a block appears as multiple segments, one segment per block. = A .
‘record that can be completely contained in a block .appears as a blnglelf
segment. An S-mode segment is preceded by a control field containing 7
the length of the segment and indicating whether it is the first andsoxi
last or an intermediate segment. Blocks of S-mode segments include a -
block-descriptor control field. S mode may be specified for standard
sequential or direct files. -

Note: ASCII- cons1derat10ns for the RECORDING MODE clause are given in
Appendlx E.

104 Part III -- Data Division

LABEL RECORDS Clause

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present, and if
present, identifies the labels.

r —_— _—
| Format /T
b e e - 4
r 1
| | \ |
| RECORD IS ‘OMITTED i i
| LABEL STANDARD (|
| RECORDS ARE data-name-1 [data-name-2]} ...; |
] I _ e

The LABEL RECORDS clause is required in every FD.

The OMITTED option specifies either that no explicit labels exist for
the file or that the existing labels are nonstandard and the user does
not want them to be processed by a label declarative (i.e., they will be
processed as data records). The OMITTED option must be specified for
files assigned to unit record devices. [t may be specified for files
assigned to magnetic tape units. Use of the OMITTED option does not
result in automatic bypassing of nonstandard labels on input. It is the
user's responsibility either to process or to bypass nonstandard labels
on input and create them on output.

STANDARD specifies that labels exist for the file and the labels
conform to system specification. The system will bypass user labels
appearing in the file if the STANDARD option is specified.

st be specified for fileés with indexed.

In the discussion that follows, all references to data-name-1 apply
egually to c¢ata-name-2.

The data-name-1 option indicates either the presence of user labels
in addition to standard labels, or the presence of nonstandard labels.
Data-name-1 specifies the name of a user label record. Data-name-1 must
appear as the subject of a record description entry associated with the
file, and must not appear as an operand of the DATA RECORDS clause for
the file.

If user labels are to be processed, data-name-1 may be specified for
direct files, or for standard sequential files with the exception of
files assigned to unit-record devices.

A user label is 80 characters in length. A user header label must
have UHL in character positions 1 through 3. A user trailer label must
have UTL in character positions 1 through 3. Both header and trailer
labels may be grouped and each label must show the relative position (1,
2, ...) of the label within the user label group, in character position
4. The remaining 76 characters are formatted according to the user's
choice. User header labels follow standard beginning file labels but
precede the first data record; user trailer labels follow standard
closing file labels.

If nonstandard labels are to be processed, data-name-1 may be
specified only for standard sequential files, with the exception of
files assigned to unit-record devices. The length of a nonstandard
label may not exceed 4,095 character positions.

File Description Entry -- Details of Clauses 105

VALUE OF/DATA RECORDS Clauses

211 Procedure Division references to data-name-1, or to any item
subordinate to data-name-1, must appear within label processing
declaratives.

Note: ASCII considerations for the LABEL RECORDS clause are given in
Appendix E.

VALUE OF Clause

The VALUE OF clause particularizes the description of an item in the
label records associated with a file, and serves only as documentation.

Format

data-name—2l
VALUE OF data-name-1 IS
literal-1 j

5data—name—ul
[data-name-3 IS ‘] ...

lliteral-Z

[e e e —
R S RS Sp——

To specify the required values of identifying data items in the label
records for the file, the programmer must use the VALUE OF clause.

However, this compiler treats the VALUE OF clause as comments, since
for standard labels this function is performed by the system through the
TLBL or DLBL control statement as described in the Programmer's Guides
(as cited in "Preface"), and through the Label Declarative procedures
for user standard labels and nonstandard labels.

DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation, and identifies
the records in the file by name.

Format

RECORD IS
data-name-1 [data-name-2] ...

DATA
RECORDS ARE

[— — —— — y—— -
RS R SRp——

The presence of more than one data-name indicates that the file
contains more than one type of data record. That is, two or more record
descriptions for a given file occupy the same storage area. These
records need not have the same description. The order in which the
data-names are listed is not significant.

106 Part III -- Data Division

REPORT Clause

Data-name-1, data-name-2, etc., are the names of data records and
each must be preceded in its record description entry by the level
number 01.

This clause is never required.

REPORT Clause

The REPORT clause is used in conjunction with the Report Writer
feature. A complete description of the REPORT clause can be found in

"Report Writer."®

File Description Entry -- Details of Clauses

107

Data Description -- General Formats

DATA DESCRIPTION

In COBOL, the terms used in connection with data description are:

Data Description Entry -- the clause, or clauses, that specify the
characteristics of any particular noncontiguous data item, or of any
data item that is a portion of a record. The data description entry
consists of a level number, a data-name (or condition-name), plus any
associated data description clauses.

Data Item Description Entry -- a data description entry that defines
a noncontiguous data item. It consists of a level number (77), a
data-name plus any associated data description entries. Data item
description eng;ies are valid in the Working-Storage Sectioni

Record Description Entry -- the term used in connection with a
record. It consists of a hierarchy of data description entries. Record
description entries are valid in the File, Working-Storage
Sections.

Note: For the 3881 optical mark reader, the first 6 bytes of the record
description entry should be described as a FILLER item; these 6 bytes
are reserved for control information and are not available to the COBOL
program.

The maximum length for a data descriptio
except for a fixed-length Working-Storage §
which may be as long as 131,071 bytes.

entry is 32,767 bytes,
Hiikilc? Section group item,

General Format 1

data-name
level number

FILLER

[REDEFINES Clausel
[BLANK WHEN ZERO Clausel
[JUSTIFIED Clause]
[OCCURS Clausel
[PICTURE Clausel

i |

TSYNCHRONIZED Clausel)
[USAGE Clausel
[VALUE Clausel.

o e e . — e . e
e e e e s — — — —— — — — o — . oo S o}

—
General Format 2

|
}_-_- _____________________
|
|
!

66 data-name-1 RENAMES Clause.

SN S——

108 Part III -- Data Division

Data Description -- General Formdts

General Format 3

88 condition-name VALUE Clause.

~——— - — -
——— e

General Format 1 is used for record description entries in the File,
Working-Storagej and Linkayé Sections and for data item description
ntries in the Working-Storage .gndiLinkdge Sections. The following
rules apply:

1. Level number may be any number from 1 through 49 for record
description entries, or 77 for data item description entries.

2. The clauses may be written in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the data-name.

3. The PICTURE clause must be specified for every elementary 1tem,
”w1th the exception of index data 1temsu§ﬁ&
: . 1Index data items are described in "Table Handllng.

4. Each entry must be terminated by a period.

5. Semicolons or commas may be used as separators between clauses.

General Format 2 is used for the purpose of regrouping data items.
The following rules apply:

1. A level-66 entry cannot rename another level-66 entry, nor can it
rename a level-77, level-88, or level-0l1 entry.

2. All level-66 entries associated with a given logical record must
immediately follow the last data description entry in the record.

3. The entry must be terminated by a period.

The RENAMES clause is discussed in detail later in this chapter.

General Format 3 is used to describe entries that specify
condition-names to be associated with particular values of a conditional
variable. A condition-name is a name assigned by the user to a specific
value that a data item may assume during object program execution. The
following rules apply:

1. The condition-name entries for a particular conditional variable
must immediately follow the conditional variable.

2. A condition-name can be associated with any elementary data
description entry except another condition-name, or an index data
item.

3. A condition-name can be associated with a group item data
description entry. In this case:

e The condition value must be specified as a nonnumeric literal or
figurative constant.

¢ The size of the condition value must not exceed the sum of the
sizes specified by the pictures in all the elementary items
within the group.

Data Description 109

Data Description -- General Formats

6.

e No element within the group may contain a JUSTIFIED or
SYNCHRONIZED clause.

e No USAGE other than USAGE IS DISPLAY may be specified within the
group.

The specification of a condition-name at the group level does not
restrict the specification of condition-names at levels subordinate
to that group.

The relation test implied by the definition of a condition-name at
the group level is performed in accordance with the rules for
comparison of nonnumeric operands, regardless of the nature of
elementary items within the group.

Each entry must be terminated by a period.

Examples of both group and elementary condition-name entries are
given in the description of the VALUE clause.

Part III -- Data Division

Data-name/FILLER Clause

DATA DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The data description entry consists of a level number, followed by a
data-name, followed by a series of independent clauses. The clauses may
be written in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name. The entry must be
terminated by a period.

Data-name or FILLER Clause

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary B ¥ item of the logical record that
is never referred to and therefore need not be named.

Format

jdata—name
level numberx
(FILLER)

[ey —
L e Sp——

In the Working-Storage, & i or File Sections, a data-name or the
key word FILLER must be the flrst word following the level number in
each data description entry.

4 data-name is a name assigned by the user to identify a data item
used in a program. A data-name refers to a kind of data, not to a
particular value; the item referred to may assume a number of different
values during the course of a program.

The key word FILLER is used to specify an elementary e
item that is never referred to in the program, and therefore need not be
named. Under no circumstances may a FILLER item be referred to
directly. In a MOVE, ADD, or SUBTRACT statement with the CORRESPONDING
option, FILLER items are ignored.

Note: Level-77 and level-0l1 entries in the Working-Storage gy ;
Section must be given unique data-names, since neither can be quall ied.
Subordinate data-names, if they can be gqualified, need not be unique.

Data Description Entry -- Details of Clauses 111

REDEFINES Clause

REDEFINES Clause

The REDEFINES clause allows the same computer storage area to contain
different data items or provides an alternative grouping or descripticn
of the same data. That is, the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the
area.

Format |

- —_—— —_— - _._--{

level number data-name-1 REDLFINES data-name-2

- — ey — -

The level numbers of data-name-1 and data-name-2 must be identical,
but must not be 66 or 88. Data-name-2 is the name associated with the
previous data description entry. Data-name-l is an alternate name for
the same area. When written, the REDEFINES clause must be the first
clause following data-name-1.

The REDEFINES clause must not be used in level-01 entries in the File
Section. Implicit redefinition is provided when more than one level-01
entry follows a file description entry.

Redefinition starts at data-name-2 and ends when a level number less
than or equal to that of data-name-2 is encountered. Between the data
descriptions of data-name-2 and data-name-1, there may be no entries
having lower level numbers (numerically) than the level number of
data-name-2 and data-name-1. Example:

02 A.
03 A-1 PICTURE X.
03 A-2 PICTURE XXX.
03 &A-3 PICTURE 99.

02 B REDEFINES A PICTURE X(6).

In this case, B is data-name-1, and A is data-name-2. When B redefines
A, the redefinition includes all of the items suoordinate to A (A-1,
A-2, and A-3).

The data description entry for data-name-2 cannot contain an OCCURS
clause, nor can data-name-2 be subordinate to an entry which contains an
OCCURS clause. A&n item subordinate to data-name-2 may contain an OCCURS
clause without the DEPENDING ON option. Data-name-1 or any items
subordinate to data-name-1 may contain an OCCURS clause without the
DEPENDING ON option. Neither data-name-2 nor data-name-1 nor any of
their subordinate items may contain an OCCURS clause with the DEPENDING
ON option.

When data-name-1 has a level number other than 01, it must specify a
storage area of the same size as data-name-2.

If data-name-1 contains an OCCURS clause, its size is computed by
multiplying the length of one occurrence by the number of occurrences.

Note: In the discussion that follows, the term "computational" refers
to COMPUTATIONAL, COMPUTATIONAL-1, and: COMPUTATIONAL-2 items.

112 Part III -- Data Division

REDEFINES Clause

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 a PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

wWwhen the SYNCHRONIZED clause is specified for a computational item
that is subordinate to an item that contains a REDEFINES clause, the
computational item must not require the addition of slack bytes.

Except for condition-name entries, the entries giving the new
description of the storage area must not contain any VALUE clauses.

The entries giving the new description of the storage area must
follow the entries describing the area being redefined, without
intervening entries that define new storage areas. Multiple
redefinitions of the same storage area should all
‘the entry that originally defined the area. Howe

et Eean A .%f»umgmgﬁgﬁm
.. For example, both of the fo
use:

bﬁ

firsipoveins vt whyomi Lber o
of the REDEFINES cla

02 A PICTURE 9999.
02 B REDEFINES A PICTURE 9V999.
02 C REDEFINES A PICTURE 99V99.

o2 %

Data items within an area can be redefined without thelr lengths
being changed; the following statements result in the storage layout
shown in Figure 12.

02 NAME-2.

03 SALARY PICTURE XXX.

03 SO-SEC-NO PICTURE X(9).

03 MONTH PICTURE XX.

02 NAME-1 REDEFINES NAME-2.

03 WAGE PICTURE XXX.

03 MAN-NO PICTURE X(9).

03 YEAR PICTURE XX.
[} 1
| SALARY SO-SEC-NO MONTH |
l r’\l_’\'l"‘-;' T T T T T 1 T T T T a1 l
| I T T N N e e |
I NAME-2 | | | | |
| | A T AN T AN T H (R AR S N N !
[Ll 44 4 _ 4 _L__ 4 _b__ A __1__N__A__] |
| |
I [
] WAGE MAN-NO YEAR |
| e — e et~ I
I I T Ll T T T 1 T T 1 T T T T ™1 I
| [T Y T A A T T R D T N A B |
[NAME-1 | | | | |
| Y Y T A N A (R N N R R A |
‘ L L L L L L L L4 __ L L L L L J l
L J

Figure 12. Areas REDEFINED without Changes in Length

Data Description Entry -- Details of Clauses 113

REDEFINES Clause

Data items can also be rearranged within an area; the following
statements result in the storage layout shown in Figure 13.

02 NAME-2.

03 SALARY PICTURE XXX.

03 SO-SEC-NO PICTURE X(9).

03 MONTH PICTURE XX.

02 NAME-1 REDEFINES NAME-2.

03 MAN-NO PICTURE X(6).

03 WAGE PICTURE 999V999.

03 YEAR PICTURE XX.
r = - I |
| SALARY SO-SEC-NO MONTH |
I N TN T TN I e P I
| =T "TT T T~ 7T~ T Y T 1T~ 7T~ T T |
I I O A e I T A R T R B [
I NAME-2 | | | | |
| [S Y I T R R T e I O I
| L f__L__L__A4__a__t__ 84 A X _L__d__t__d__1 |
| |
| I
| MAN-NO WAGE YEAR |
| I
| T T~ "7T~°7 T 777 T-°T°T T R i i |]
| N A K (R R A R R A I R T |
| NAME-1 | | I I I
I [N R N S R N R O R N I R I |
] L 1 i__L__4__1 1 L Lo d_ 44 __31__1__1 |
e e e 4

Figure 13. Areas REDEFINED and Rearranged

When an area is redefined, all descriptions of the area remain in
effect. Thus, if B and C are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO C could be executed at any point in the program. In the
first case, B would assume the value of X and take the form specified by
the description of B. In the second case, the same physical area would
receive Y according to the description of C. It should be noted, how-
ever, that if both of the foregoing statements are executed successively
in the order specified, the value Y will overlay the value X. However,
redefinition in itself does not cause any data to be erased and does not
supersede a previous description.

The usage of data items within an area can be redefined.

Altering the USAGE of an area through redefinition does not cause any
change in existing data. Consider the example:

02 B PICTURE 99 USAGE DISPLAY VALUE IS 8.
02 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL.
02 A PICTURE S9999 USAGE COMPUTATIONAL.

Assuming that B is on a halfword boundary, the bit configuration of
the value 8 is 1111 0000 1111 1000, because B is a DISPLAY item.
Redefining B does not change its appearance in storage. Therefore, a
great difference results from the two statements ADD B TO A and ADD C TO
A. In the former case, the value 8 is added to A, because B is a
display item. In the latter case, the value -3,848 is added to A,
because C is a binary item (USAGE IS COMPUTATIONAL), and the bit
configuration appears as a negative number.

ii4 Part III -- Data Division

BLANK WHEN ZERO Clause

Moving a data item to a second data item that redefines the first one
(for example, MOVE B TO C when C redefines B), may produce results that
are not those expected by the programmer. The same is true of the
reverse (MOVE B TO C when B redefines C).

A REDEFINES clause may be specified for an item within the scope of
an area being redefined, that is, an item subordinate to a redefined
item. The following example would thus be a valid use of the REDEFINES
clause:

02 REGULAR-EMPLGCYEE.

03 LOCATION PICTURE A(8).
03 STATUS PICTURE X(4).
03 SEMI-MONTHLY-PAY PICTURE 9999v99.

03 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY PICTURE 999V999.
02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

03 LOCATION PICTURE A(8).
03 FILLER PICTURE X(6).
03 HOURLY-PAY PICTURE 99V99.

REDEFINES clauses may also be specified for items subordinate to
items containing REDEFINES clauses. For example:

02 REGULAR-EMPLOYEE.

03 LOCATION PICTURE A(8).

03 STATUS PICTURE X(4).

03 SEMI-MONTHLY-PAY PICTURE 999V999.

02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

03 LOCATION PICTURE A(8).

03 FILLER PICTURE X(6).

03 HOURLY-PAY PICTURE 99V99.
03 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

BLANK WHEN ZERO Clause

This clause specifies that an item is to be set to blanks whenever
its value is zero.

Format

BLANK WHEN ZERO

-y

e

When the BLANK WHEN ZERO clause is used, the item will contain only
blanks if the value of the item is zero.

The BLANK WHEN ZERO clause may be specified only at the elementary
level for numeric edited or numeric items. When this clause is used for
an item whose PICTURE is numeric, the category of the item is considered
to be numeric edited.

This clause may not be specified for level-66 and level-88 data
items.

Data Description Entry -- Details of Clauses 115

JUSTIFIED Clause

JUSTIFIED Clause

The JUSTIFIED clause is used to override normal positioning of data

within a receiving alphabetic or alpnanumeric data item.

Format

r
|
[

JUSTIFIED
RIGHT

|
|
| lgust
I
L

b s e — e it —)

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

e The data is aligned in the receiving field, beginning at the
leftmost character position within the receiving field. Unused
character positions to the right are filled with spaces. If
truncation occurs, it will be at the right.

The JUSTIFIED clause affects the positioning of data in the receiving

field as follows:

e When the receiving data item is described with the JUSTIFIED clause
and the data item sent is larger than the receiving data item, the

leftmost characters are truncated.

¢ When the receiving data item is described with the JUSTIFIED clause
and is larger than the data item sent, the data is aligned at the

rightmost character position in the data item. Unused character
positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary items.

This clause must not be specified for level-66 or level-88 data
items.

OCCURS Clause

The OCCURS clause is used to define tables and other homogeneous sets

of data, whose elements can be referred to by subscripting or indexing.

The OCCURS clause is described in "Table Handling."

PICTURE Clause

The PICTURE clause describes the general characteristics and editing

requirements of an elementary item.

116 Part III -- Data Division

PICTURE Clause

Format

PICTURE
IS character string
PIC

e ———— o ——
b e e e s

The PICTURE clause can be used only at the elementary level.

The character string consists of certain allowable combinations of
characters in the COBOL character set. The maximum number of characters
allowed in the character string is 30. The allowable combinations
determine the category of the elementary item.

There are five categories of data that can be described with a
PICTURE clause. They are:

1. Alphabetic

2. Numeric

3. Alphanumeric

4. Alphanumeric edited
5. Numeric edited

The Three Classes of Data

The five categories of data items are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the
class and the category are synonymous. The alphanumeric class includes
the categories of alphanumeric (without editing), alphanumeric edited,
and numeric edited.

Every elementary item belongs to one of the three classes and to one
of the five categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of the elementary items
subordinate to that group item.

Figure 14 shows the relationship of the class and category for
elementary and group data items.

r T T i
| Level of Item | Class | Category]
b t -- } i
| | Alphabetic | Alphabetic |
I b + i
| Elementary | Numeric | Numeric |
| 'r t {
		Alphanumeric
	Alphanumeric	Alphanumeric Edited
		Numeric Edited
R 4 4 4		
L T T 4		
		Alphabetic
i		Numeric
Group	Alphanumeric	Alphanumeric
		Alphanumeric Edited
		Numeric Edited i
L 4 L 4

Figure 14. Class and Category of Elementary and Group Data Items

Data Description Entry -- Details of Clauses 117

PICTURE Clause

Character String and Item Size

In the processing of data through COBOL statements, the size of an
elementary item is determined through the number of character positions
specified in its PICTURE character string. In core storage, however,
the size is determined by the actual number of bytes the item occupies,
as determined by its PICTURE character string, and also by its USAGE
(see "USAGE Clause").

Normally, when an arithmetic item is moved from a longer field into a
shorter one, this compiler will truncate the data to the number of
characters represented in the PICTURE character string of the shorter
item.

For example, if a sending field with PICTURE 599999, and containing
the value +12345, is moved to a COMPUTATIONAL receiving field with
PICTURE S99, the data is truncated to +45.

'Repetition of Symbols

An integer which is enclosed in parentheses following one of the
symbols

a . X 9 P Z * B 0 + - $

indicates the number of consecutive occurrences of the symbol. For
example, if the programmer writes

A(40)

the four characters (40) indicate forty consecutive appearances of the
symbol A. The number within parentheses may not exceed 32,767.

Note: The following symbols may appear only once in a given PICTURE
clause:

S v . CR DB

Symbols Used in the PICTURE Clause

The functions of the symbols used to describe an elementary item are:

A Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B in the character string represents a character position into
which the space character will be inserted.

118 Part III -- Data Division

PICTURE Clause

The P indicates an assumed decimal scaling position and is used to
specify the location of an assumed decimal point when the point is
not within the number that appears in the data item. The scaling
position character P is not counted in the size of the data item.
Scaling position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items or in items
that appear as operands in arithmetic statements.

The scaling position character P may appear only to the left or
right of the other characters in the string as a continuous string
of P's within a PICTURE description. The sign character S and the
assumed decimal point V are the only characters which may appear to
the left of a leftmost string of P's. Since the scaling position
character P implies an assumed decimal point (to the left of the
P's if the P's are leftmost PICTURE characters and to the right of
the P's if the P's are rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the leftmost or
rightmost character within such a PICTURE description.

The symbol S is used in a PICTURE character string to indicate the
presence (but not the representation nor, necessarily, the
position) of an operational sign, and must be written as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol S 1s not counted in determlnlng
the“51ze f the elementary 1tem¢;' /

The V is used in a character string to indicate the location of the
assumed decimal point and may appear only once in a character
string. The V does not represent a character position and,
therefore, is not counted in the size of the elementary item. When
the assumed decimal point is to the right of the rightmost symbol
in the string, the vV is redundant.

Each X in the character string represents a character position
which may contain any allowable character from the EBCDIC set.

Each Z in the character string represents a leading numeric
character position; when that position contains a zero, the zero is
replaced by a space character. Each Z is counted in the size of
the item.

Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

Each zero in the character string represents a character position
into which the numeral zero will be inserted. The 0 is counted in
the size of the item.

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. The comma insertion character cannot be the
last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.

In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the
item. The period insertion character cannot be the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause.

Data Description Entry -- Details of Clauses 119

PICTURE Clause

+ These symbols are used as editing sigh control symbols. When

- used, each represents the character position into which the

CR editing sign control symbol will be placed. The symbols are

DB mutually exclusive in one character string. Each character used in
the symbol is counted in determining the size of the data item.

* Each asterisk (check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a zero. Each *
is counted in the size of the item.

$ The currency symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol $§ or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division.
The currency symbol is counted in the size of the item.

Figure 15 shows the order of precedence of the symbols used in the
PICTURE clause.

The Five Categories.of Data

The following is a detailed description of the allowable combinations
of characters for each category of data.

ALPHABETIC ITEMS: An alphabetic item is one whose PICTURE character
string contains only the symbol A. Its contents, when represented in
Standard Data Format, must be any combination of the 26 letters of the
Roman alphabet and the space from the COBOL character set. Each
alphabetic character is stored in a separate byte.

If a VALUE clause is specified for an alphabetic item, the literal
must be nonnumeric.

ALPHANUMERIC ITEMS: An alphanumeric item is one whose PICTURE character
string is restricted to combinations of the symbols A, X, and 9. The
jtem is treated as if the character string contained all X's. Its
contents, when represented in Standard Data Format, are allowable
characters from the EBCDIC set.

A PICTURE character string which contains all A's or all 9's does not
define an alphanumeric item.

If a VALUE clause is specified for an alphanumeric item, the literal
must be nonnumeric.

120 Part III -- Data Division

PICTURE Clause

SECOND
SYMBOL

(%}
|
2
OB
Z 0
HN + = > > >
%Mm - e e —
e e e o = e em o o e o e
HE |~ | 3
Fy Y SR ol >
% o L. = = —
e e e o em o e o e = — o
= = |
ol N >4 “" Mo
e e e e e e o e e e e e e e e
« {
n]
4] L > b
1|||T|4||-|T|11l|1||..
[I}
= [ONa} |
28 FoSd— bt
SRS SRR S SV BSOS SO
HE |~ |
(SR + 0 i
§Y Loz
- —— —_ — e e e —
-2 Nontnt !
J._m + 1 > __ b > e
——
ZH b — o — - —
Ol |~ i1 i
Gl e e o e e e e e e
%) xR
Z e e e e e e — e e
H =} Moo > >
b e e e e e e e
m Moy b o]
lllll o e e e e ——f ——

1
t
!
t
l
(s

NON-FLOATING}
INSERTION
SYMBOLS

r
|
4
1
!
[R
r
|
I.
!
!
r
|
!
L

r
|
[
i
|
|
I
I
|
|
I
]
[
|
!
I
t
|
|
|
!
|
|
|
|
|
|
|
k

b ——

-

SYMBOLS

r

The

Z, 9, or *, or at least two of the symbols +, -, or

X,
The second appearance of the symbol in the table represents

given character-string, appear anywhere to the left of the symbol(s) at the left of the

leftmost column and uppermost row for each symbol represents its use to the left of the

an X at an intersection indicates that the symbol(s) at the top of the column may, in a
decimal point position.

Non-floating insertion symbc¢ls + and -, floating insertion symbols Z, *, +, -, and cs,
and other symbol P appear twice in the above PICTURE character precedence table.

cs must bé present in a PICTURE string.
its use to the right of the decimal point position.

At least one of the symbols A,

Braces ({}) indicate items that are mutually exclusive

Precedence of Symbols Used in the PICTURE Clause

Figure 15.

Data Description Entry ~-- Details of Clauses

121

PICTURE Clause

NUMERIC ITEMS: There are two types of numeric items: fixed-point items
and: floating-point items.

Fixed-Point Numeric Items: There are.three types of fixed-point numeric
items: external decimal, binary, ehd“internal- decimdl. See the
discussion of the USAGE clause for details concerning each.

The PICTURE of a fixed-point numeric item may contain a valid
combination of the following symbols:

9 v P S

Examples of fixed-point numeric items:

PICTURE Valid Range of Values
9999 0 through 9999

S99 -99 through +99
S999v9 -999.9 through +999.9
PPP999 0 through .000999
S999PPP -1000 through -999000 and

+1000 through +999000 or zero

The maximum size of a fixed-point numeric item is 18 digits.

The contents of a fixed-point numeric item, when represented in
Standard Data Format, must be a combination of the Arabic numerals 0
through 9; the item may contain an operational sign. If the PICTURE
contains an S, the contents of the item are treated as positive or
negative values, depending on the operational sign; if the PICTURE does
not contain an S, the contents of the item are treated as absoclute
values.

Note: ASCII considerations for the PICTURE clause are given in
Appendix E.

"Floating-Point Numeric Items: These items define data whose potential
‘range of value is too grgat for fixed-point presentation. The magni
‘'of the number represented by a floating-point item must be greater
5.4 x 10-79 but must not exceed .72 x 1078, .

. There are two types oﬁ floatlng-901nt items: 1nternal flu&ﬁ ng*pomﬂﬁﬁ
‘and external floating- pog t.* See the discussion of the qsaga qkewsq :
3detalls concernlng each. !

{ ; ‘ 3 b O
No PICTURL clause may be assoczated with an. 1nternal flpij"
- 1tem.’ ' . : ;

CIf a VALUE clause is spec1fled for an elementary nume'
literal must be numeric. . If a VALUE clause is spe01fié&a
'ltem con81st1ng of elementary numerlc ltems, ‘the group 13

'An ‘external floatlng—g A
follow1ng form: : ;

122 pPart III -- Data Division

PICTURE Clause

;gPICTURE clause.,ﬁ"’

- Examples of external floating-point items: = .
”EPICTQREv _‘""Fd:&ét’df”ﬁgternal'ba£3"f Value Expressed -
~9V99E-99 - 540E-79 +5.40 x 10 79

+999.99E+99 . +123.45E-14 v +123.45 x 10 %

-V9(6)E+99 565656E+45 o +.565656 x 1045
+.9(10)E-99 +.7200000000E 76 +.72 x 1076

(Note that any of the above PICTURE representations can express thegz
full range of possible values.) §§

No VALUE clause may be- associated with an external floating-point
1tem.,,

e+ S 2 e e i e e e et e e A

Data Description Entry -- Detalls of Clauses 123

PICTURE Clause

ALPHANUMERIC EDITED ITEMS: An alphanumeric edited item is one whose
PICTURE character string is restricted to certain combinations of the
following symbols:

A X 9 B 0

To qualify as an alphanumeric edited item, one of the following
conditions must be true:

1. The character string must contain at least one B and at least one
X.

2. The character string must contain at least one 0 and at least one
X.

3. The character string must contain at least one 0 (zero) and at
least one A. Its contents, when represented in Standard Data
Format, are allowable characters chosen from the EBCDIC set.

USAGE IS DISPLAY is used in conjunction with alphanumeric edited
items.

If a VALUE clause is specified for an alphanumeric edited item, the
literal must be nonnumeric. The literal is treated exactly as
specified; no editing is performed.

Editing Rules: Alphanumeric edited items are subject to only one type
of editing: simple insertion using the symbols 0 and B.

Examples of alphanumeric edited items:

PICTURE Value of Data Edited Result
000x(12) ALPHANUMERO1 000ALPHANUMERO1
BBBX(12) ALPHANUMERO1 ALPHANUMERO1
000A(12) ALPHABETIC 000ALPHABETIC
X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC

NUMERIC EDITED ITEMS: A numeric edited item is one whose PICTURE
character string is restricted to certain combinations of the symbols:

B P v Z 0 9 . . * + - CR DB $
The allowable combinations are determined from the order of
precedence of symbols and editing rules.

The maximum number of digit positions that may be represented in the
character string is 18.

The contents of the character positions that represent a digit, in
Standard Data Format, must be one of the numerals.

USAGE IS DISPLAY is used in conjunction with numeric edited items.

If a VALUE clause is specified for a numeric edited item, the literal
must be nonnumeric. The literal is treated exactly as specified; no
editing is performed.

The maximum length of a numeric edited item is 127 characters.

Editing Rules: All types of editing are valid for numeric edited items.

124 Part III -- Data Division

PICTURE Clause

Types of Editing

There are two general methods of performing editing in the PICTURE
clause: by insertion or by suppression and replacement.

There are four types of insertion editing:

1. simple insertion
2. special insertion
3. fixed insertion
4. floating insertion

There are two types of suppression and replacement editing:

1. zero suppression and replacement with spaces
2. zero suppression and replacement with asterisks

Insertion Editing

Simple insertion editing is performed using the following insertion
characters:

. (comma) B (space) 0 (zero)

The insertion characters are counted in the size of the item and
represent the position in the item into which the character will be
inserted.

Examples of simple insertion editing:

PICTURE Value of Data Edited Result
99,999 12345 12,345
9,999,000 12345 2,345,000
99B999B000 1234 01 234 000
99B999B000 12345 12 345 000
99BBB999 123456 23 456

Special insertion editing is performed using the period (.) as the
insertion character. The result of special insertion editing is the
appearance of the insertion character in the item in the same position
as shown in the character string.

In addition to being an insertion character, the period represents a
decimal point for alignment purposes. The insertion character used for
the actual decimal point is counted in the size of the item.

The use of both the assumed decimal point, represented by the symbol
V, and the actual decimal point, represented by the period insertion
character, in one PICTURE character string is not allowed.

Examples of special insertion editing:

PICTURE Value of Data Edited Result
999.99 1.234 001.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50

Data Description Entry -- Details of Clauses 125

PICTURE Clause

Fixed insertion editing is performed by using the following insertion

characters:

currency symbol

editing sign control symbols + -

Only one currency symbol and only cne of the editing sign control

CR DB

symbols can be used in a given PICTURE character string.

Fixed insertion editing results in the insertion character occupying
the same character position in the edited item as it occupied in the

PICTURE character string.

s The currency symbol must be the leftmost character position to

be counted in the size of the item,

either a + or a - symbol.

+ or - When either symbol is used, it must represent the leftmost or
rightmost character position to be counted in the size of the

item.

CR or DB When either symbol is used, it represents two character
positions in determining the size of the item and must

represent the rightmost character positions that are counted

in the size of the item.

unless it is preceded by

Editing sign control symbols produce results depending upon the value
of the data item as shown in Figure 16.

r L} 1
| | Result |
| k- T i
| Editing Symbol in PICTURE | Data Item | Data Item |
| Character String | Positive or Zero | Negative |
t + t 1
| + | + | - |
[- [space | - |
| CR | 2 spaces | CR]
| DB | 2 spaces | DB |
L i L J

Figure 16. Editing Sign Control Symbols and their Results

Examples of fixed insertion editing:

PICTURE
999.99+
+9999.99
9999.99-
$999.99
-$999.99
$9999.99CR
$9999.99DB

Part III -- Data

[y
N
[~}

value of Data

Edited Result

+6555.556

-5555.555

+1234.56
-123.45
-123.456
+123.45
-123.45

Division

555.55+
-5555.55
1234.56
$123.45
-$123.45
$0123.45
$0123.45DB

PICTURE Clause

Flecating insertion editing is indicated in a PICTURE character string
by using a string of at least two of the allowable insertion characters
§ + or - to represent the leftmost numeric character positions into
which the insertion characters can be floated.

The currency symbol ($) and the editing sign symbols (+ or -) are
mutually exclusive as floating insertion characters in a given PICTURE
character string.

Any of the simple insertion characters (, B 0) embedded in the string
of floating insertion characters, or to the immediate right of this
string, are part of the floating string.

In a PICTUGRE character string, there are only two ways of
representing floating insertion editing:

1. Any or all leading numeric character positions to the left of the
decimal point are represented by the insertion character.

2. All of the numeric character positions in the PICTURE character
string are represented by the insertion character.

The result of floating insertion editing depends upon the
representation in the PICTURE character string:

1. If the insertion characters are only to the left of the decimal
point, a single insertion character is placed into the character
position immediately preceding the first nonzero digit in the data
represented by the insertion symbol string or the decimal point,
whichever is farther to the left of the PICTURE character string.

2. If all numeric character positions in the PICTURE character string
are represented by the insertion character, the result depends upon
the value of the data. If the value is zero, the entire data item
will contain spaces. If the value is not zero, the result is the
same as when the insertion characters are only to the left of the
decimal point.

To avoid truncation when using floating insertion editing, the
programmer must specify the minimum size of the PICTURE character string
for the receiving data item to be:

1. The number of characters in the sending item, plus

2. The number of insertion characters (other than floating insertion
characters) being edited into the receiving data item, plus

3. One character for the floating insertion character.

Examples of floating insertion editing:

PICTURE Value of Data Edited Result

$555.99 .123 §.12

$654$9.99 .12 $0.12
5.55%$,999.99 -1234.56 $1,234.56
+4,++4+,999.99 -123456.789 -123,u456.78
$5.555.,555.99CR -1234567 $1,234,567.00CR
$5,555,585.99DB +1234567 $1,234,567.00
++, 444, FE4 Y 0000.00

Data Description Entry -- Details of Clauses 127

PICTURE Clause

Zero Suppression and Replacement Editing

Zero_suppression and replacement editing means the suppression of
leading zeros in numeric character positions and is indicated by the use
of the alphabetic character Z or the character * in the PICTURE
character string. If Z is used, the replacement character will be the
space; if * is used, the replacement character will be *.

The symbols + - * Z and $ are mutually exclusive as floating
replacement characters in a given PICTURE character string.

Each suppression symbol is counted in determining the size of an
item.

Zero suppression and replacement editing is indicated in a PICTURE
character string by using a string of one or more of either allowable
symbol to represent leading numeric character positions, which are to be
replaced when the associated character position in the data contains a
zero. Any of the simple insertion characters embedded in the string of
symbols or to the immediate right of this string are part of the string.
Simple insertion or fixed insertion editing characters to the left of
the string are not included.

In a PICTURE character string, there are only two ways of
representing zero suppression:

1. Any or all of the leading numeric character positions to the left
of the decimal point are represented by suppression symbols.

2. All of the numeric character positions in the PICTURE character
string are represented by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which appears in a character
position corresponding to a suppression symbol in the string is replaced
by the replacement character. Suppression terminates at the first
nonzero digit in the data or at the decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character string
are represented by suppression symbols, and the value of the data is not
zero, the result is the same as if the suppression characters were only
to the left of the decimal point.

If the value of the data is zero, the entire data item will be spaces
if the suppression symbol is Z, or it will be asterisks (except for the
actual decimal point) if the suppression symbol is *.

If the value of the data is zero and the asterisk is used as the
suppression symbol, zero suppression editing overrides the function of
the BLANK WHEN ZERO clause, if specified.

Examples of Zero Suppression and Replacement Editing:

PICTURE Value of Data Edited Result
222Z2.722 0000.00
kkkk kxk 0000.00 *kkkk kik
Z222Z.99 0000.00 .00
k, 99 0000.00 *¥x*x (00
Z7299.99 00000.00 00.00
Z,222.272+ +123.456 123.45+
* kkk, k¥t -123.45 **123,.45-
*k kkk KEk_Kk+ +12345678.9 12,345,678.90+
$2,222,22%2.22ZCR +12345.67 $ 12,345.67
$B#* ,*%* ***_ **xBBDB -12345.67 $ **x*¥12,345.67 DB

Part III -- Data Division

[
[
o

;SIGNgCiauééZ(Versiéhv3)f

Program Product Information -- Version 3

ion’ ana mode of representatlon of;
numerlc &ata descrlptlon entry. S

The- operatlonal ign 15 presumed to be assoc1ated w1th the
“ LEADING or TRAILING dlglt ‘pesition, whichever is-specified,- of
2 the elementary numeric data item. . (In this instance,

- .specification .of SIGN IS TRAILING is- the equlvalent of the
*ttstandard action of the compller) N ,

~;ﬁﬁfThe character s in the PICTURE character strlng is not counted ;
L odin determlnlng “the: size of the 1tem (1n terms of Standard Data
Format characters).. : ’

If the SEPARATE CHARACTER optlon is spec1f1ed then.-“
¢ The Operatlonal s1gn is presumed to be the LEADING or TRAILING
character position, whichever is specified, of the elementary
numeric data item. This character position is not a digit
position.

® The character S in the PICTURE character string is counted in
determining the size of the data item (in terms of Standard Data
Format characters).

e + is the character used for the positive operational sign.

¢ - is the character used for the negative operational sign.

Data Description Entry -- Details of Clauses 129

SYNCHRONIZED Clause

e At object tlme if one of the characters + or - is not present in
the data an error occurs, and the program will terminate :
L abnormally.

¢ B L

&3

Everyﬂnumermc data‘desorlptlon entry whose PICTURE cantalns the

SR

&,

e

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item
on one of the proper boundaries in core storage.

Format

SYNCHRONIZED LEFT
SYNC RIGHT

[— — — e o = ———
TRV S S ——

The SYNCHRONIZED clause is used to ensure efficiency when performing
arithmetic operations on an item.

The SYNCHRONIZED clause may appear only at the elementary level wript

Sk i ¥ levery Telbgontalcy iten withi

If either the LEFT or the RIGHT option is specified, it is treated as
comments.

The length of an elementary item is not affected by the SYNCHRONIZED
clause.

When the SYNCHRONIZED clause is specified for an item within the
scope of an OCCURS clause, each occurrence of the item is synchronized.

When the item is aligned, the character positions between the last
item assigned and the current item are known as "slack bytes." These
unused character positions are included in the size of any group to
which the elementary item preceding the synchronized elementary item
belongs.

The proper boundary used to align the item to be synchronized Jepends
on the format of the item as defined by the USAGE clause.

II -- Data Division

’_A
w
o
o)
Q
[*
o
1

SYNCHRONIZED Clause

When the SYNCHRONIZED clause is specified, the following actions are
taken:
For a COMPUTATIONAL item:

1. If its PICTURE is in the range of S9 through S9(4), the item is
aligned on a halfword (even) boundary.

2. If its PICTURE is in the range of S9(5) through S9(18), the item is
aligned on a fullword (multiple of 4) boundary.

Fnr a COMPUTATION&L‘l 1tem,

j(multlple of 8) boundary. fo
For a DISPLAY 6r COMPUTATIONAL-3 item, the SYNCHRONIZED clause is

treated as comments.

Note: In the discussion that follows, the term “computatlonal" refers
to COMPUTATIONAL, COMPUTATIONAL—l, and CQMPUTATIOXH ?2 items.

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 a PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

When the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item subordinate to an item that contains a
REDEFINES clause, the computational item must not require the addition
of slack bytes.

When SYNCHRONIZED is not specified for binary or internal
floating-point items, no space is reserved for slack bytes. However,
when computation is done on these fields, the compiler generates the
necessary instructions to move the items to a work area which has the
correct boundary necessary for computation.

In the File Section, the compiler assumes that all level-01 records
containing SYNCHRONIZED items are aligned on a doubleword boundary in
the buffer. The user must provide the necessary inter-record slack
bytes to ensure alignment.

In the Working-Storage Section, the compiler will align all level-01
entries on a doubleword boundary.

) . ! I W &Qr”V e’
jLSSUes a CELL stdquent heémusbxensure i@at such
clause within it are conresponﬂlngly allgdedn‘ '

Data Description Entry -- Details of Clauses 131

Slack Bytes

Slack Bytes

There are two types of slack bytes: intra-record slack bytes and
inter-record slack bytes.

Intra-record slack bytes are unused character positions preceding
each synchronized item in the record.

Inter-record slack bytes are unused character positions added between
blocked logical records.

INTRA-RECORD SLACK BYTES: For an output file, or in the Working-Storage
Section, the compiler inserts intra-record slack bytes to ensure that
all SYNCHRONIZED items are on their proper boundaries. For an input
file, or in the Linkage Section, the compiley expects intra-record slack
bytes to be present when necessary to assure the proper alignment of a
SYNCHRONIZED item.

Because it is important for the user to know the length of the
records in a file, the algorithm the compiler uses to determine whether
slack bytes are required and, if they are required, the number of slack
bytes to add, is as follows:

¢ The total number of bytes occupied by all elementary data items
preceding the computational item are added together, including
any slack bytes previously added.

e This sum is divided by m, where:

m 2 for COMPUTATIONAL items of four-digit length or less

m

4 for COMPUTATIONAL items of five-digit length or more

5o e

e If the remainder (r) of this division is equal to zero, no
slack bytes are required. If the remainder is not equal to
zero, the number of slack bytes that must be added is equal to
m - r.

These slack bytes are added to each record immediately following the
elementary data item preceding the computational item. They are defined
as if they were an item with a level number equal to that of the
elementary item that immediately precedes the SYNCHRONIZED item, and are
included in the size of the group which contains them.

For example:

01 FIELD-A.

02 FIELD-B PICTURE X(5).
02 FIELD-C.
03 FIELD-D PICTURE XX.
[03 Slack-Bytes PICTURE X. Inserted by compiler]
03 FIELD-E PICTURE S9(6) COMP SYNC.
01 FIELD-L.
02 FIELD-M PICTURE X(5).
02 FIELD-N PICTURE XX.
[02 Slack-Bytes PICTURE X. Inserted by compilerl
02 FIELD-O.
03 FIELD-P PICTURE S9(6) COMP SYNC.

132 Part III -- Data Division

Slack Bytes

Slack bytes may also be added by the compiler when a group item is
deflned with an OCCURS clause and contalns within it a SYNCHRONIZED data

To determine whether slack bytes are to be added,
ow1ng ‘action is taken:

the

¢ The compiler calculates the size of the group, including all the
necessary intra-record slack bytes.

¢ This sum is divided by the largest m required by any elementary

item within the group.

e« If r is equal to zero, no slack bytes are required.

If r is not

equal to zero, m - r slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the
group item containing the OCCURS clause.
defined as follows:

01 WORK-RECORD.

02 WORK-CODE PICTURE

02 COMP-TABLE OCCURS 10 TIMES.
03 COMP-TYPE PICTURE
[03 TIa-Slack-Bytes PICTURE
03 COMP-PAY PICTURE
03 COMP-HRS PICTURE
03 COMP-NAME PICTURE

For example, if a record is

X.

X.

XX. 1Inserted by compilerl
S9(4)V99 COMP SYNC.

S9(3) COMP SYNC.
X(5).

The record will appear in storage as shown in Figure 17.

I COMP-

HOURS

|s#———————First Occurrence of COMP—TABLE—————Ol

1

D = doubleword boundary
F = fullword boundary
H = halfword boundary

=x
x

Figure 17.

Insertion of the Intra-occurrence Slack Bytes
\

In order to align COMP-PAY and COMP-HRS upon their proper boundaries,
thé compiler has added two intra-occurrence slack bytes (shown above as

IA-SLACK-BYTES).

However, without further adjustment, the second occurrence of
COMP-TABLE would now begin one byte before a doubleword boundary, and
the alignment of COMP-PAY and COMP-HRS would not be valid for any
occurrence of the table after the first.
add inter-occurrence slack bytes at the end of the group, as though the
record had been written:

Data Description Entry -- Details of Clauses

Therefore, the compiler must

133

Slack Bytes

01 WORK-RECORD.

02 WORK-CODE PICTURE X.
02 COMP-TABLE OCCURS 10 TIMES.
03 COMP-TYPE PICTURE X.
[03 TIa-Slack-Bytes PICTURE XX. Inserted by compiler]
03 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
03 COMP-HRS PICTURE S9(3) COMP SYNC.
03 COMP-NAME PICTURE X (5).

{03 Ie-Slack-Bytes PICTURE XX. Inserted by compiler]

so that the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first
occurrences of COMP-TABLE will now appear as shown in Figure 18.

| i
le—————First Occurrence of COMP-TABLE -le Second Occurrence of COMP-TABLE——-——————bg
, | ! |
¥ ul | | | (- | | | |
09|, ! | | | | | ' I
20d [| i (13 i [| | I
’g§ SIUCk I comp- | | Slack | | | | | | [
JO &} Bytes 1 COMP-PAY IHOURs| COMP-NAME | Bytes | i i ! | I [
I I | | | | | | 1
B A S DU Y N O N N | TR VO W N S N N U R B |) I —
H H H H H H H H
F F F F
D D D D D
'
D = doubleword boundary
F = fultword boundary
H = halfword boundary

Figure 18. Insertion of Inter-occurrence Slack Bytes

Each succeeding occurrence within the table will now begin at the same
relative position to word boundaries as the first.

Where SYNCHRONIZED data 1tems defined as COMPUTATIONAL,
COMPITERTTIONNELRIE loh ! UNAL<Z follow an entry containing an OCCURS
clause with the DEPENDING oN option, slack bytes are added on the basis
of the field occurring the maximum number of times. If the length of
this field is not divisible by the m required for the computational
data, only certain values of the data-name that is the object of the
DEPENDING ON option will give proper alignment of the computational
fields. These values are those for which the length of the field times
the number of occurrences plus the slack bytes that have been calculated
based on the maximum number of occurrences is divisible by m.

For example:

01 FIELD-A.

02 FIELD-B PICTURE 99.

02 FIELD-C PICTURE X OCCURS 20 TO 99 TIMES
DEPENDING ON FIELD-B.

{02 slack-Byte PICTURE X. Inserted by compilerl

02 FIELD-D PICTURE S99 COMP SYNC.

i34 pPart III -- Data Division

Slack Bytes

In this example, when references to FIELD-D are required, FIELD-B is
restricted to odd values only.

01 FIELD-A.

02 FIELD-B PICTURE 999.

02 FIELD-C PICTURE XX OCCURS 20 TO. 99 TIMES
DEPENDING ON FIELD-B.

[02 sSlack-Byte PICTURE X. Inserted by compiler]

02 FIELD-D PICTURE S99 COMP SYNC.

In this example all values of FIELD-B give proper references to
FIELD-D.

INTER-RECORD SLACK BYTES: If the file contains blocked logical records
that are to be processed in a buffer, and any of the records contain
entries defined as COMPUTATIONAL,# o 2
for which the SYNCHRONIZED clause is spec1f1e ' the user must add any

dnter-record glack bytes needed for proper alignment.

The lengths of all the elementary data items in the record, including
all intra-record slack bytes, are added. For _mode V_re s, it J

necessary to add he count field. The total is then
ivided by the highest value of m for any one of the elementary items in

the record.

If r (the remainder) is equal to zero, no inter-record slack bytes
are required. If r is not equal to zero, m - r slack bytes are
required. These slack bytes may be specified by writing a level-02
FILLER at the end of the record.

Example: The following example shows the method of calculating both
intra-record and inter-record slack bytes. Consider the following
.record description:

01 COMP-RECORD.

02 a-1 PICTURE X(5).

02 A-2 PICTURE X(3).

02 a-3 PICTURE X(3).

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

02 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
02 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 total 11. B-1 is a #-digit
COMPUTATIONAL item and, therefore, one intra-record slack byte must be
added before B-1l. With this byte added, the number of bytes preceding
B-2 total 14. Sihce B-2 is a COMPUTATIONAL item of 5 digits in length,
two intra-record slack bytes must be added before it. No slack bytes
are needed before B-3.

The revised record description entry now appears as:

01 COMP-RECORD.

02 A-1 PICTURE X(5).

02 A-2 PICTURE X(3).

02 A-3 PICTURE X(3).

[02 sSlack-Byte-1 PICTURE X. Inserted by compiler]

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
[02 sSlack-Byte-2 PICTURE XX. Inserted by compilerl

02 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.
02 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There are a total of 22 bytes in COMP-RECORD, but from the rules
given in the preceding discussion, it appears that m = 4 and r = 2.

Data Description Entry -- Details of Clauses 135

USAGE Clause

Therefore, to attain proper alignment for blocked records, the user must
add two inter-record slack bytes at the end of the record.

The final record description entry appears as:

01 COMP-RECORD.

02 A-1 PICTURE X(5).

02 A-2 PICTURE X(3).

02 A-3 PICTURE X(3).

[02 Slack-Byte-1 PICTURE X. Inserted by compiler]

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

[02 sSlack-Byte-2 PICTURE XX. Inserted by compiler]

02 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.

02 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

02 FILLER PICTURE XX. [inter-record slack bytes added by
user]

USAGE Clause P

The USAGE clause specifies the manner in which a data item is
represented in core storage. - .

Format 1

DISPLAY
COMPUTATIONAL
COMP
COMPUTATIONAL-1]
[USAGE ISl COoMP-1 }
COMPUTATIONAL-2
lcomp-2 N 5
{COMPUTATIONAL431
coMP-3 ¢

- DISPLAY-ST: ' i
INDEX

e e s e
U U S U I VSD I Nup——

[— e ey ——
e -

The USAGE clause can be specified at any level of data description.
However, if the USAGE clause is written at a group level, it applies to
each elementary item in the group. The usage of an elementary item
cannot contradict the usage of a group to which an elementary item
belongs.

This clause specifies the manner in which a data item is represented
in core storage. However, the specifications for some statements in the
Procedure Division may restrict the USAGE clause of the operand referred
to.

136 Part III -- Data Division

USAGE Clause

If the USAGE clause is not specified for an elementary item, or for
any group to which the item belongs, it is assumed that the usage is
DISPLAY.

Note: ASCII considerations for the USAGE clause are given in
Appendix E.

DISPLAY OPTION

The DISPLAY option can be explicit or implicit. It specifies that
the data item is stored in character form, one character per eight-bit
byte. This corresponds to the form in which information is represented
for initial card input or for final printed or punched output. USAGE IS
DISPLAY is valid for the following types of items:

e alphabetic

e alphanumeric

s alphanumeric edited
¢ numeric edited

¢ external decimal

il floating point

The alphabetic, alphanumeric, alphanumeric edited, and numeric edited
items are discussed in the description of the PICTURE clause.

External Decimal Items: These items are sometimes referred to as zoned
decimal items. Each digit of a number is represented by a single byte.
The four high-order bits of each byte are zone bits; the four high-order
bits of the low-order byte represent the sign of the item. The four
low-order bits of each byte contain the value of the digit. When
external decimal items are used for computations, the compiler performs
the necessary conversions.

The maximum length of an external decimal item is 18 digits.

Examples of external decimal items and their internal representation
are shown in Figure 19.

¢£loag}n onint‘lteﬁ is 1n thé £

-')41-1& vsv‘ ‘,.x;<X4vy¢"‘.~,.¢“e.:.;;«-1";

i
;E The mantlssawls the dec1mal‘part of the number._
P

s The exEonent spec1f1es a power of ten that is use& as a mdltlpller.¢
i

s il s

The value of an external floatlng—p01nt number is the mantisgda ‘v
multlplled by the power of ten expressed by the exponent. The magnitude
‘.of a number represented by a floating-point item must be greater than
{5.4 X (10-79) but must not exceed .72 X (1078).

1

i When used as a numeric OQerand an external floatlng point number is
iscanned at object time, and converted to the equivalent internal
Efloatlng point wvalues. In this form, the number is used in arithmetic
‘operations. (See COMPUTATIONAL-1 and COMPUTATIONAL-2 options.)

Data Description Entry -- Details of Clauses 137

USAGE Clause

E 1tem represents a2 value to be used in arithmetic
Operatlons and must be numeric. If the USAGE of any group item is

described with any of these options, it is the elementary items within

this group which have that USAGE. The group item itself cannot be used
in computations.

COMPUTATIONAL OPTICN: This option is specified for pinary data items.
Such items have a decimal equivalent consisting of the decimal digits 0
through 9, plus a sign.

The amount of storage occupied by a binary item depends on the number
of decimal digits defined in its PICTURE clause:

Digits in PICTURE Clause Storage Occupied
1 througn & 2 bytes (halfword)
5 through 9 4 pytes (fullword)
10 througn 18 8 bytes (2 fullwords --

not necessarily
a doubleword)

The leftmost bit of the storage area is the operational sign.

The PICTURE of a CCMPUTATIONAL item may contain only 9's, the
cperational sign character S, the implied decimal point V, and cne or
roxre P's.

An examrple of a kinary item is shown in Figure 19.

Note: The COMPUTATIONAL cption is system dependent and normally is
assigned to representations that yield the greatest efficiency when
perfocrming arithmetic operations on that system; for tnis compiler, the
CCMPUTATIONAL option is pinary.

‘COMPULATIONAL-1, COMPUTATION4L-2 OPTIONS: These options are specifie
for internal floating-point- 1tems._ ‘Such .an item is equlvalent to. ay
‘external floating-=pcint item in capaolllty and purp0ae.’ Such ‘ite
i@Ccupy elther i QﬁJB bytes 6% storaQe." L

-prea;éldn in

n »esrigth“

138 Part III -- Data Division

USAGE Clause

YO PICTURE clause may be assoc1ated w1th an 1nterna1 Floatlnu'“3””'
jltem.'v) . . . v et

anmples of 1nternal floatlng—901nt 1tems, and thelf lnternal
_reoresentatlon, are anOWn 1n quure 19.3;'.. .

Data Description Entry -- Details of Clauses 13§.1

USAGE Clause

COMPUTATIONAL-B OPTION: ' This option is speclfled fcrj’nternal'
‘items..: -Such.an item appears in storage in packed. decim
.are two digits pér byte, with the sign contalned anthe 1ow-order
‘bits of the rightmost byte.’ ‘Such . an item may contaln any of 'the ¢
0 through’ 9,,olus a slgn,_representlng a value not exceedlughl

:dlglts.

For 1nternal de01mal 1tems wnose PICTURE does not contaln an 84 the :
'31gn position is occupled by -a bit: conflguratlon that 1s 1nterpreted as «
,posxt1ve, but - that does not represent an overpunch. e :

The PLCTURE of a COMPUTAT‘ NAL43 item’ ﬁqx buntaxﬂ Oulj “’s, t. g
“operatlonal Slgn character S)&the assumed &ec1mal poxnt V, nd one or1

]?fééréﬁfﬁrédﬁcﬁ*in otmation:

COMPUTATIONAL-4 -OPTION: =TI
system-independent binary 1tem~
;equlvalent of COMPUTATIONAL.;

ff USAGE DISPLA!—ST is dlscussed in the chapter on- Stﬁrllng Currencys:.
USAGE INDEX is discussed in the chapter on Table Handling.

Data Description Entry -- Details of Clauses 133

USAGE Clause

r T T 1
| Item | Value lDescrlptlon | Internal Representation* |
t -t - e 1
External Decimal	{ -1234	DISPLAY		21} 22	23	F4]
]	PICTURE 9999	l—~L-—l——{:;j				
I			byte			
		I !				
		DISPLAY		21]Z2	23	D4]
		PICTURE S9999] Lt __1__1				
	I	-				
			byte			
		I				
			Note that, internally,			
			the D4, which represents			
			-4, is the same bit			
			configuration as the			
			EBCDIC character M.			
L 4 4 } J						
r] v . - = v 3 1						
		{Version 3). §L)				
		DISPLAY : +f	D1	Z2[Z3{Z’4] .		
I	'PICTURE S9999 s S S	[
		© SIGN LEADING				
[. ! I				
I	, I					
I .						
	B [
	I I					
		[
[[I						
		4¥ [
[| | i

| | I

| | I

|] |

t + + + 1
|Binary | -1234 |[COMPUTATIONAL | 11111|1011|0010|1110|

		PICTURE S9999{ R	
l l	I		
			S byte
l [o I		
		.¢} ..l Note that, internally,	
!		€ .	negative binary numbers
]	5 9	appear in two's	
			complement form.]
% L -4 i —_ {			
¥Codes used in this column are as follows: -			
Z = zone, equivalent to hexadecimal F, bit configuration 1111			
Hexadecimal numbers and their equivalent meanings are:			
F = nonprinting plus sign (treated as an absolute value)			
C = internal equivalent of plus sign, bit configuration 110C			
D = internal equivalent of minus sign, bit configuration 1101			
S = sign position of a numeric field; internally,]			
1 in this position means the number is negative			
0 in this position means the number is positive			
b = a blank			
t ——d
Figure 19. Internal Representation of Numeric Items (Part 1 of 2)

140 Part

III -- Data Division

USAGE Clause

Value

[
R
B

Erurartrte piuaienbaail aleestrnirmnioasieb b S

ol a

i

*Codes used in this column are as follows:
7 = zone, equivalent to hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:
F = nonprinting plus sign (treated as an absolute value)
c internal equivalent of plus sign, bit configuration 1100
D internal equivalent of minus sign, bit configuration 1101

0
1

sign position of a numeric field; intermnally,
1 in this position means the number is negative
0 in this position means the number is positive

o) a blank

o o e e e e e e ey e
IS e S — o — — — V—— T— . St . iy

Figure 19. 1Internal Representation of Numeric Items (Part 2 of 2)

Data Description Entry -- Details of Clauses 141

VALUE Clause

VALUE Clause

The VALUE clause is used to define the initial value of a
Working-Storage item or the value associated with a condition-name.

There are two formats of the VALUE clause:

[b)
| Format 1 |
L Jd
] h
| VALUE IS literal |
| [
L S 1
- - 1
| Format 2 |
[- i |
| |
| (VALUE IS I
| literal-1 [THRU literal-2] |
| |VALUES ARE [
I |
| [literal-3 [THRU literal-#4]]...]
! _ !

The VALUE clause must not be stated for any item whose size, explicit
or implicit, is variable.

A figurative constant may be substituted wherever a literal is
specified.

Rules governing the use of the VALUE clause differ with the
particular section of the Data Division in which it is specified.

1. 1In the File Section a&n& ithie Luﬂéaig%ef Siesc*tn.om the VALUE clause must

2. In the Working-Storage Section, the VALUE clause must be used in
condition-name entries, and it may also be used to specify the
initial value of any data item. It causes the item to assume the
specified value at the start of execution of the object program.
If the VALUE clause is not used in an item's description, the
initial value is unpredictable.

3. In the Report Section, the VALUE clause causes the report data item
to assume the specified value each time its report group is
presented. This clause may be used only at an elementary level in
the Report Section. The Report Section is discussed in detail in
the "Report Writer" chapter.

The VALUE clause must not be specified in a data description entry
that contains an OCCURS clause or in an entry that is subordinate to an
entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

Within a given record description, the VALUE clause must not be used
in a data description entry that is subsequent to a data description
entry which contains an OCCURS clause with a DEPENDING ON phrase.

142 Part II1I -- Data Division

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887
VALUE Clause

The VALUE clause must not be specified in a data description entry
which contains a REDEFINES clause or in an entry which is subordinate to
an entry containing a REDEFINES clause. This rule does not apply to
condition-name entries.

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal. The
VALUE clause then cannot be specified at subordinate levels within
this group.

The VALUE clause cannot be specified for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other
than USAGE IS DISPLAY).

The following rules apply:

1. If the item is numeric, all literals in the VALUE clause must be
numeric literals. If the literal defines the value of a
Working-Storage item, the literal is aligned according to the rules
for numeric moves, except that the literal must not have a value
that would require truncation of nonzero digits.

2. If the item is alphabetic or alphanumeric (elementary or group),
all literals in the VALUE clause must be nonnumeric literals. The
literal is aligned according to the alignment rules (see "JUSTIFIED
Clause™), except that the number of characters in the literal must
not exceed the size of the item.

3. All numeric literals in a VALUE clause of an item must have a value
that is within the range of values indicated by the PICTURE clause
for that item. For example, for PICTURE 99PPP, the literal must be
within the range 1000 through 99000 or zero. For PICTURE PPP99,
the literal must be within the range .00000 through .00099.

4. The function of the editing characters in a PICTURE clause is
ignored in determining the initial appearance of the item
described. However, editing characters are included in determining
the size of the item.

Format 1 of the VALUE clause must not conflict with other clauses
either in the data description of the item or in the data descriptions
within the hierarchy of this term.

Format 2 of the VALUE clause is used to describe a condition-name.
Each condition-name requires a separate level-88 entry. A Format 2
VALUE clause associates a value, values, or range of values with the
condition-name. In a condition-name entry, the VALUE. clause is required
and is the only clause permitted in the entry.

A condition-name is a name assigned by the user to the values a data
item may assume during object program execution. A condition-name must
be formed according to the rules for data-name formation. The
condition-name entries for a particular conditional variable must follow
the conditional variable. Hence, a level-88 entry must always be
preceded either by the entry for the conditional variable or by another
level-88 entry (in the case of several consecutive condition-names
pertaining to a given item).

Data Description Entry -- Details of Clauses 143

RENAMES Clause

The THRU option assigns a range of values to a condition-name.
Wherever used, literal-1 must be less than literal-2, literal-3 less
than literal-4, etc.

The type of literal in a condition-name entry must be consistent with
the data type of the conditional variable. 1In the following example,
CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables; the
associated condition-names immediately follow the level-number 88. The
PICTURE associated with COUNTY~NO limits the condition-name value to a
2-digit numeric literal. The PICTURE associated with CITY limits the
condition-name value to a 3-character nonnumeric literal. Any values
for the condition-names associated with CITY-COUNTY-INFC cannot exceed 5
characters, and the literal (since this is a group item) must be
nonnumeric:

05 CITY-COUNTY-INFO.,

88 BRONX VALUE "O03NYC".
86 BROOKLYN VALUE "24NYC".
88 MANHATTAN VALUE "31NYC".
88 QUEENS VALUE "U41NYC".
88 STATEN-ISLAND VALUE "W3NYC".
10 COUNTY-NGC PICTURE 99.
88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW-YORK VALUE 31.
88 RICHMOND VALUE 43.
10 CITY PICTURE X(3).
88 BUFFALO VALUE "BUF".
88 NEW-YORK-CITY VALUE "NYC".
88 POUGHKEEPSIE VALUE "POK".

05 POPULATION ...

Every condition-name pertains to an item in such a way that the
condition-name may be qualified by the name of the item and the item's
qualifiers. The use of condition-names in conditions is described in
"Conditions."

A condition-name may pertain to an item (a conditional variable)
requiring subscripts. In this case, the condition-name, when written in
the Procedure Division, must be subscripted according to the require-
ments of the associated conditional variable.

A condition-name can be associated with any elementary or group item
except the following:

1. A level-66 item

2. A group containing items with descriptions which include JUSTIFIED,
SYNCHRONIZED, or USAGE other than DISPLAY

3. An index data item (see "Table Handling™)

RENAMES Clause

The RENAMES clause permits alternate, possibly overlapping, groupings
of elementary data.

_____ —_—— J— —_——— ————

e e e e e e 2 o e o e e % o . . . e 2 . e e e e e e e e e e e e e .'

[— e ——

RENAMES Clause

One or more RENAMES entries can be written for a logical record.

All RENAMES entries associated with a given logical record must
immediately follow its last data description entry.

Data-name-2 and data-name-3 must be the names of elementary items or
groups of elementary items in the associated logical record and cannot
be the same data name. Data-name-3 cannot be subordinate to
data-name-2.

wWhen data-name-3 is not specified, data-name-2 can be either a group
item or an elementary item. When data-name-2 is a group item,
data-name-l is treated as a group item, and when data-name-2 is an
elementary item, data-name-1 is treated as an elementary item.

When data-name-3 is specified, data-name-1 is a group item that
includes all elementary items:

1. starting with data-name-2 (if it is an elementary item); or
starting with the first elementary item within data-name-2 (if it
is a group item), and

2. ending with data-name-3 (if it is an elementary item); or ending
with the last elementary item within data-name-3 (if it is a group
item).

A level-66 entry cannot rename another level-66 entry nor can it
rename a level-77, level-88, or level-0l1 entry.

Data-name-1 cannot be used as a qualifier and can be qualified only
by the names of the level-01 or FD entries.

Both, data-name~2 and data-name-3 may be qualified.

Neither data-name-2 nor data-name-3 may have an OCCURS clause in its
data description entry nor may either of them be subordinate to an item
that has an OCCURS clause in its data description entry.

Data-name-2 must precede data-name-3 in the record description; after
any associated redefinition, the beginning point of the area described
by data-name-3 must logically follow the beginning point of the area
described by data-name-2.

For example, the following Working-Storage record is incorrect:

01 ERR-REC.
02 GROUP-A.
03 FIELD-1A.
04 ITEM-1A PICTURE XXXX.
04 ITEM-2A PICTURE XXX.
03 FIELD-2A.
04 TITEM-3A PICTURE XXX.
04 ITEM-4A PICTURE XXX.
02 GROUP-B REDEFINES GROUP-A.
03 FIELD-1B.
04 ITEM-1B PICTURE XX.
04 ITEM-2B PICTURE XXX.
04 ITEM-3B PICTURE XX.
03 FIELD-2B.
o4 ITEM-4B PICTURE XX.
o4 ITEM-5B PICTURE XX.
04 ITEM~-6B PICTURE XX.
66 NEW-ERR-REC RENAMES ITEM-3A THRU ITEM-2B.

Although ITEM-3A precedes ITEM-2B in the record description, ITEM-2B
logically precedes ITEM-3A in storage. Thus, this example is incorrect.

Data Description Entry -- Details of Clauses 145

RENAMES Clause

The following shows the corrected

01 CORRECTED-RECORD.

66

02 GROUP-A.

Working-Storage record:

03 FIELD-1A.
04 ITEM-1A PICTURE XX.
04 ITEM-2A PICTURE XXX.
04 ITEM-3A PICTURE XX.
03 FIELD-2A.
04 ITEM-4A PICTURE XX.
04 ITEM-5A PICTURE XX.
04 ITEM-6A PICTURE XX.
02 GROUP-B REDEFINES GROUP-A.
03 FIELD-1B.
04 ITEM-1B PICTURE XXXX.
04 ITEM-2B PICTURE XXX.
03 FIELD-2B.
04 ITEM-3B PICTURE XXX.
04 ITEM-4B PICTURE XXX..

NEW-REC RENAMES ITEM-2A THRU

ITEM-3B.

In this example ITEM-2A precedes ITEM-3B both in the record

description and logically in storage.

The following example shows how the RENAMES clause might be used
an actual program:

01 OUT-REC.
02 FIELD-X.
03 SUMMARY-GROUPX.
04 FILE-1 PICTURE X.
04 FILE-2 PICTURE X.
04 FILE-3 PICTURE X.
02 FIELD-Y.
03 SUMMARY-GROUPY.
04 FILE-1 PICTURE X
04 FILE-2 PICTURE X.
04 FILE-3 PICTURE X.
02 FIELD-7Z.
03 SUMMARY-GROUPZ.
04 FILE-1 PICTURE X.
04 FILE-2 PICTURE X.
04 FILE-3 PICTURE X.
66 SUM-X RENAMES FIELD-X.
66 SUM-XY RENAMES FIELD-X THRU FIELD-Y.
66 SUM-XYZ RENAMES FIELD-X THRU FIELD-Z.

in

In the Procedure Division, the programmer may wish, for example, to
do a complete tally of files in each field of the foregoing record.
all active files are represented by an A and all inactive files are

repre

would

(SUM-X and SUM-XY) allow a less inclusive tally, if desired.

sented by an I, the statement

EXAMINE SUM-XYZ TALLYING ALL "A"

accomplish this purpose.

The two additional RENAMES entries

(The

EXAMINE statement is discussed in "Procedure Division.")

146

Part III -- Data Division

I1f

ORGANIZATION OF THE PROCEDURE DIVISION

ARITHMETIC EXPRESSIONS

CONDITIONS

CONDITIONAL STATEMENTS

DECLARATIVES

ARITHMETIC STATEMENTS

PROCEDURE BRANCHING STATEMENTS

DATA-MANIPULATION STATEMENTS

INPUT/OUTPUT STATEMENTS

COMPILER-DIRECTING STATEMENTS

PART IV -- PROCEDURE DIVISION

147

Procedure Division =-- Description

ORGANIZATION OF THE PROCEDURE DIVISION

The Procedure Division contains the specific instructions for solving
a data processing problem. COBOL instructions are written in state-
ments, which may be combined to form sentences. Groups of sentences may
form paragraphs, and paragraphs may be combined to form sections.

The Procedure Division must begin with the header PROCEDURE DIVISION

The Procedure Division header is followed, optionally, by Declarative
Sections, which are in turn followed by procedures, each made up of
statements, sentences, paragraphs, and/or sections, in a syntactically
valid format. The end of the Procedure Division (and tne physical end
of the program) is that physical position in a COBOL source program
after which no further procedures appear.

The statement is the basic unit of the Procedure Division. A
statement is a syntactically valid combination of words and symbols
beginning with a COBOL verb. There are three types of statements:
conditional statements containing conditional expressions (that is,
tests for a given condition), imperative statements consisting of an
imperative verb and its operands, and compiler-directing statements
consisting of a compiler-directing verb and its operands.

A sentence is composed of one or more statements
optionally be separated by semicolons
be terminated by a period followed by a space.

The statements may
A sentence must

Several sentences that convey one idea or procedure may be grouped to
form a paragraph. A paragraph must begin with a paragraph-name followed
by a period. A paragraph may be composed of one or more successive
sentences. A paragraph ends immediately before the next paragraph-name
or section-name, at the end of the Procedure Division, or, in the
Declarative portion, at the key words END DECLARATIVES.

One or more paragraphs form a section. A section must begin with a
section header (section—-name followed by the word SECTION, followed by a
period; if program segmentation is desired, a space and a priority
number followed by a period may be inserted after the word SECTION).

The general term procedure-name may refer to both paragraph-names and
section-names.

The Procedure Division may contain both declaratives and procedures.

Declarative sections must be grouped at the beginning of the
Procedure Division, preceded by the key word DECLARATIVES followed by a
period and a space. Declarative sections are concluded by the key words
END DECLARATIVES followed by a period and a space. (For a more complete
discussion of declarative sections, see "Declaratives.™)

A procedure is composed of a paragraph or group of successive
paragraphs, or a section or group of successive sections within the
Procedure Division. Paragraphs need not be grouped into sections.

If sections are used within the Procedure Division, a section header
should immediately follow the Procedure Division header, except when a
declarative section is included, in which case the section header should
immediately follow END DECLARATIVES. ' ' i ' S

Organization of the Procedure Division 149

Procedure Division -- Structure

A section ends immediately before the next section-name or at the end
of the Procedure Division, or, in the Declarative portion of the
Procedure Division, immediately before the next section-name or at the
words END DECLARATIVES, where END must appear in Area A.

If program segmentation is used, the programmer must divide the
entire Procedure Division into named sections. Program segmentation is
discussed in "Segmentation."

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in
which they are presented for compilation, except where the rules in this
chapter indicate some other order.

Structure of the Procedure Division

PROCEDURE DIVISION

[[DECLARATIVES.

{section-name SECTION. USE Sentence.
{paragraph-name. {sentence}...}...}...
END DECLARATIVES.]

{section-name SECTION ([priorityl.]

{paragraph-name. {sentence}...}...}...

CATEGORIES OF STATEMENTS

There are three categories of statements used in COBOL: conditional
statements, imperative statements, and compiler-directing statements.

A conditional statement is a statement containing a condition that is
tested (see "Conditions®) to determine which of the alternate paths of
program flow is to be taken.

An imperative statement specifies that an unconditional action is to
be taken by an object program. An imperative statement may also consist
of a series of imperative statements.

A compiler-directing statement directs the compiler to take certain
actions at compile time.

150 Part IV -- Procedure Division

Statement Categories
CONDITIONAL STATEMENTS

COBOL statements used as conditional statements are:

IF

o]

ADD

COMPUTE

SUBTRACT {ON SIZE ERROR)
MULTIPLY

DIVIDE

GO TO {DEPENDING ON}
READ

SEARCH } (AT END)

RETURN

WRITE (AT END-OF-PAGE)
READ
‘ (INVALID KEY)

(UNTIL)

The options in parentheses cause otherwise imperative statements to
be treated as conditionals at execution time. A discussion of these
options is included as part of the description of the associated
imperative statement.

IMPERATIVE STATEMENTS

COBOL verbs used in imperative statements can be grouped into the
following categories and subcategories:

A. DECLARATIVES

USE
B. PROCEDURAL

1. Arithmetic
ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

2. Procedure Branching
GO TO
ALTER
PERFORM
STOP
EXIT

3. Data-Manipulation
MOVE
EXAMINE

Organization of the Procedure Division 151

Statement Categories

4. Input/Output

ACCEPT
DISPLAY
CLOSE

5. Report Writer
GENERATE
INITIATE
TERMINATE

6. Table Handling
SEARCH
SET

7. Sort
SORT

RETURN
RELEASE

Note: ' ‘il Report Writer, Table Handling, and Sort statements
are discussed in separate chapters.

COMPILER-DIRECTING STATEMENTS

COBOL verbs used in compiler-directing statements are:

COPY
ENTER

152 Part IV -- Procedure Division

Arithmetic Operators

ARITHMETIC EXPRESSIONS

Arithmetic expressions are used as operands of certain conditional
and arithmetic statements.
!
An arithmetic expressién may consist of any of the followinag:
1. an identifier described as a numeric elementary item
2. a numeric literal

3. identifiers and literals, as defined in items 1 and 2, separated py
arithmetic operators

4., two arithmetic expressions, as defined in items 1, 2, and/or 3,
separated by an arithmetic operator

5. an arithmetic expression, as defined in items 1, 2, 3, and/or 4,
enclosed in parentheses

Any arithmetic expression may be preceded by

ARITHMETIC OPERATORS

There are five arithmetic operators that may be used in arithmetic
expressions. Each is represented by a specific character or character
combination that must be preceded by a space and followed by a space,
except that a unary operator must not be preceded b space when it
£ renthesi : :

Arithmetic Operator Meaning
+ addition
- subtraction
* multiplication
/ division
*¥ exponentiation

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated.

Expressions within parentheses are evaluated first. When expressions
are contained within a nest of parentheses, evaluation proceeds from the
least inclusive to the most inclusive set.

When parentheses are not used, or parenthesized expressions are at
the same level of inclusiveness, the following hierarchical order is
implied:

1.

2. k=%
3. * and /
4. + and -
When the order of consecutive operations on the same hierarchical

level is not completely specified by parentheses, the order of operation
is from left to right.

Arithmetic Expressions 153

Arithmetic Symbol Pairs

Figure 20 shows permissible symbol pairs. A symbol pair in an
arithmetic expression is the occurrence of two symbols that appear in
sequence.

T T T T T 1
! Second | | i i i i
symbol				[
	vVariable		{		
First	(identifier				
Symbol	or literal)	#* / ** + -		()
L] + 1 4 J					
T	T T +				
variable	-	P	[- 1 p		
(identifier					
or literal)					
L [l 1l 4 3					
T T T T T L] 1					
* /7 ** + -	p	-	P Il I -		
L I i I 4 1 4 d					
r T T T 1 T 1					
&					
	P	-	- I 1 -		
I8 1 4 1 1 4 ¥					
r] T 1 i L)	1				
(P	=	p I p	- I	
L L 4 4 I 4 4					
r T T T 1					
)	-	p 1l ><T 1 -	p		
} p— 1 L %					
p indicates a permissible pairing					
- indicates that the pairing is not permitted					
L —_— J
Flgure 20. Permissible Symbol Pairs -- Arithmetic Expressions

An ar;thmetlc expression may begin only with a left parenthesis, a
f Bl unary -, or a variable, and may end only with a right
parenthe31s or a variable.

There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression.

154 Part IV -- Procedure Division

Test Conditions

CONDITIONS

A condition causes the object program to select between alternate
paths of control depending on the truth value of a test. Conditions are
used in IF, PERFORM, and SEARCH statements.

A condition is one of the following:

e class condition
e condition-name condition
e relation condition

e sign condition

e switch-status condition

In addition, there are two constructions that affect the evaluation
of conditions. These are:

1. (condition)

Parentheses may be used to group conditions (see "Compound
Conditions").

2. NOT condition
The construction -- NOT condition -- (where condition is one of

the five conditions listed above) is not permitted if the condition
itself contains a NOT.

Conditions may be combined through the use of logical operators to
form compound conditions (for a full discussion, see "Compound
conditions").

TEST CONDITIONS

A test condition is an expression that, taken as a whole, may be
either true or false, depending on the circumstances existing when the
expression is evaluated.

There are five types of simple conditions which, when preceded by the
word IF, constitute one of the five types of tests: class test,
condition-name test, relation test, sign test, and switch-status test.

The construction -- NOT condition -- may be used in any simple test
condition to make the relation specify the opposite of what it would
express without the word NOT. For example, NOT (AGE GREATER THAN 21) is
the opposite of AGE GREATER THAN 21.

Each of the previously mentioned tests, when used within the IF
statement, constitutes a conditional statement (see "Conditional
Statements").

Conditions 155

Class Condition

Class Condition

The class test determines whether data is alphabetic or numeric.

Format

NUMERIC
identifier IS [NOTI]

ALPHABETIC

[m o ——
PSS S S ——]

The operand being tes

21 d must be described implicitly or explicitly
as USAGE DISPLAY B s :

Hrei T

A numeric data item consists of the digits 0 through 9, with or
without an operational sign.

The identifier being tested is determined to be numeric only if the
contents consist of any combination of the digits 0 through 9. If the
PICTURE of the identifier being tested does not contain an operational
sign, the identifier being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present. If its
PICTURE does contain an operational sign, the identifier being tested is
determined to be numeric only if the contents are numeric and a valid
operational sign is present. Valid operational signs are hexadecimal F,
C, and D.

Program Product Information -- Version 3

it

The NUMERIC test cannot be used with an identifier described as
alphabetic.

An alphabetic data item consists of the space character and the
characters A through 2.

The identifier being tested is determined to be alphabetic only if
the contents consist of any combination of the alphabetic characters A
through Z and the space.

The ALPHABETIC test cannot be used with an identifier described as
numeric.

Figure 21 shows valid forms of the class test.

r T A
| Type of Identifier | Valid Forms of the Class Test |
L R J
T T T 1
| alphabetic | ALPHABETIC | NOT ALPHABETIC I
L 4 4 J
¥ T T 1
| alphanumeric, | ALPHABETIC | NOT ALPHABETIC |
| Alphanumeric Edited, | NUMERIC | NOT NUMERIC |
| or Numeric Edited | |]
t + 1 J
r i H i
| External-Decimal l [|
| g m@gmw‘ | NUMERIC | NOT NUMERIC |
L . - 4 i 1

Figure 21. Vvalid Forms of the Class Test

156 Part IV -- Procedure Division

Condition-name Condition
condition-Name Condition

The condition-name condition causes a conditional variable to be
tested to determine whether or not its value is equal to one of the
values associated with condition-name.

Format

condition-name

[s o e oy e sy
e Y

An example of the use of the condition-name condition follows:

02 MARITAL-STATUS PICTURE 9.
88 SINGLE VALUE 1.
88 . MARRIED VALUE 2.
88 DIVORCED VALUE 3.

MARITAL-STATUS is the conditional variable; SINGLE, MARRIED, and
DIVORCED are condition-names. Only one of the conditions specified by
condition-name can be present for individual records in the file. To
determine the marital status of the individual whose record is being
processed, IF SINGLE ... can be coded, and its evaluation as true or
false determines the subsequent path the object program takes.

A condition-name is used in conditions as an abbreviation for the
relation condition, since the associated condition-name is equal to only
one of the values (or ranges of values) assigned to that conditional
variable. That is, to determine whether the condition SINGLE is
present, IF MARITAL-STATUS = 1 ... would have the same effect as using
the condition-name test IF SINGLE

If the condition-name is associated with a range of values (or with
several ranges of values), the conditional variable is tested to
determine whether or not its value falls within the range(s), including
the end values. The result of the test is true if one of the values
corresponding to the condition-name equals the value of its associated
conditional variable.

(An example of both group and elementary condition-name entries is
given in the description of the VALUE clause in "Data Division".)

Conditions 157

Relation Condition

Relation Condition

A relation condition causes a comparison of two operands, either of
which may be an identifier, a literal, or an arithmetic expression.

Format

identifier-1
literal-1 relational-operator
arithmetic-expression-1

literal-2

identifier-2
arithmetic-expression-2

e

b e o o s e s . . s i e 2]

The first operand is called the subject of the condition; the second
operand is called the object of the condition.

.

The subject and object may not both be literals.

The subject and object must have the same USAGE, except when two
numeric operands are compared.

A relational-operator specifies the type of comparison to be made in
a relation condition. The meaning of the relational operators is shown
in Figure 22.

r ! H
|Relational-operator | Meaning |
e |
|IS [NOT]1 GREATER THAN |Greater than or not greater than |
|Is [NOT1 > | |
=== t {
]IS [NOT1 LESS THAN |Less than or not less than |
|Is [NOTI < | |
¢ : t 1
|IS [NOT] EQUAL TO |Equal to or not equal to |
|IS [NOT1 = | [
L 1]

Figure 22. Relational-operators and Their Meanings

~ The word TO in the EQUA

e T

L TO relational operator is required§}

-"‘4" o 43 A

The relational-operator must be preceded by, and followed by, a
space.

158 Part IV -- Procedure Division

Relation Condition

COMPARISON OF NUMERIC OPERANDS: For operands whose class is numeric, a
comparison is made with respect to the algebraic value of the opeérands.

Zero is considered a unigue value, regardless of sign.

Comparison of numeric operands is permitted regardless of the manner
in which their USAGE is described.

Unsigned numeric operands are considered positive for purposes of
comparison.

COMPARISON OF NONNUMERIC OPERANDS:” For nonrmumeric operands, or for one
numeric and one nonnumeric operand, a comparison is made with respect to
the binary collating sequence of the characters in the EBCDIC set.

The EBCDIC collating sequence, in ascending order, is:

1. (space)

2. . (period or decimal point)
3. < ("less than" symbol)

4. ((left parenthesis)

5. + (plus sign)

6. $ (currency symbol)

7.'* (asterisk)

8.) (right parenthesis)

9. ; (semicolon)
10. - (hyphen or minus symbol)
11. / (stroke, virgulie, slash)
12. , (comma)

13. > ("greater than" symbol)

15. (equal sign)
16. " (gquotation mark)
17-42. A thru Z

43-52. ¢ thru 9

(The complete EBCDIC collating sequence is given in the publication
IBM System/360 Reference Data, Order No. X20-1703.)

If one of the operands is described as numeric, it is treated as
though it were moved to an alphanumeric data item of the same size and
the contents of this alphanumeric data item were then compared to the
nonnumeric operand (see "MOVE Statement").

The size of an operand is the total number of characters in the
operand.

All group items are treated as nonnumeric operands.

Numeric and nonnumeric operands may be compared only when their USAGE
is the same, implicitly or explicitly.

There are two cases of nonnumeric comparison to consider: operands
of equal size and operands of unequal size.

Conditions 159

Relation Condition

1. Comparison of Operands of Equal Size

Characters in corresponding character positions of the two operands
are compared from the high-order end through the low-order end.

The high-order end is the leftmost position; the low-order end is
the rightmost character position.

If all pairs of characters compare equally through the last pair,
the operands are considered equal when the low-order end is
reached.

If a pair of unequal characters is encountered, the two characters
are compared to determine their relative position in the collating
sequence. The operand that contains the character higher in the
collating sequence is considered to be the greater operand.

2. Comparison of Operands of Unequal Size

If the operands are of unequal size, comparison proceeds as though
the shorter operand were extended on the right by a sufficient
number of spaces to make the operands of equal size.

COMPARISONS INVOLVING INDEX-NAMES AND/OR _INDEX DATA ITEMS: The
comparison of two index-names is equivalent to the comparison of their
corresponding occurrence numbers.

In the comparison of an index data item with an index-name or with
another index data item, the actual values are compared without
conversion.

The comparison of an index-name with a numeric item is permitted if
the numeric item is an integer. The numeric integer i