Program Product

$C28-6478-3

IBM DOS/VS COBOL
Compiler and Library
Programmer’s Guide

Program Numbers: 5§746-CB1 (Compiler and Library)
5746-LM4 (Library)

Fourth Edition (February 1979)

This is a major revision of, and obsoletes, SC28-6478-0, -1, and -2. It also obsoletes their
technical newsletters SN28-1063, SN20-9121, SN20-9141, SN20-9180, and SN20-9235.

This edition corresponds to Release 2 of the IBM DOS/VS COBOL Compiler and Library,
program numbers §746-CB1 and 5746-LM4.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-0001, for the editions that are applicable and current.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, P.O. Box 50020, Programming Publishing,
San Jose, California U.S.A. 95150. IBM may use or distribute any of the information you
supply in any way it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1973, 1979

PREFACE

This publication describes how to
compile a COBOL program using the Progranm
Product IBM DOS/VS COBOL Compiler. It also
describes how to link edit the resulting
object module, and execute the program.
Included is a description of the output
from each of these three steps: compile,
link edit, and execute. This publication
explains features of the DOS/VS Compiler
and Library, and available options of the
operating system.

This publication is logically and
functionally divided into four parts.
I contains information useful to
programmers who are running COBOL programs
compiled on the DOS/VS Compiler, under the
control of the IBM Disk Operating System
Virtual Storage. Part I covers such topics
as job control language, library usage, and
interpreting output.

Part

Part II contains supplemental
information on the use of the language as
specified in the publication IBM DOS Full
American National Standard COBOL,
GC28-6394, and should be used in
conjunction with this publication for
coding COBOL programs. Part II covers
in detail such topics as file organization,
file label handling, and record formats.
Part II is intended as reference material
for language features that are primarily
system-dependent.

Part III contains information on
programming technigues useful to the
programmer running COBOL programs compiled
on the DOS/VS Compiler. Topics such as
coding considerations, table handling
considerations, and formatting data are
covered in Part III.

Part IV contains error determination
information. This part covers such topics
as program debugging and program testing.

Diagnostic messages generated by the
DOS/VS Compiler and Library and their
accompanying documentation can be found in
this publication.

Information on installing the DOS/VS
Compiler and Library can be found in the
following publication:

IBM DOS/VS COBOL Compiler and library,
Installation Reference Material,
SC28-6479

Wider ranging and more detailed
discussions of the DOS/VS System are given
in the following publications:

Introduction to DOS/VS,
GC33-5370

DOS/VS System Generation,
GC33-5377

DOS/VS System Management Guigde,
GC33-5371

DOS/VS Data-Management-Concepts,
GC24-5138

DOS/VS Supervisor and I/0 Macro
Reference, GC33-5373

DOS/VS_System Control Statements,
GC33-5376 '

DOS/VS Access Method Services,
GC33-5382

DOS/VS System Utilities Reference,
GC33-5381

DOS/VS Messages, GC33-5379

The following publications provide
detailed information on the IBM 3886
Optical Character Reader:

IBM 3886 Optical Character Reader
General Information Manual,
GA21-9146

IBM 3886 Optical Character Reader Input
Document Design _and Specifications,
GA21-9148

DOS/¥S Planning Guide for the IBM 3886
Optical Character Reader, Model 1,
GC21-5059

The following publications provide
information on the IBM DOS/VS Sort/Merge
Program Product, Program Number 5746-SM1,
and the DOS Sort/Merge Program Product,
Program Number 5743-SM1:

IBM DOS/¥S Sort/Merge General
Information, GC33-4030

IBM DOS/VS Sort/Merge Program Product
Design Objectives, GC33-4027

IBM_DOS/V¥S_Sort/Merge Installation
Reference Materjal, SC33-4026

IBM DOS Sort/Merge Programmer's Guide,
SC33-4018

The titles and abstracts of related
publications are listed in IBM_ System/360
and System/370 Bibliography, GA22-6822.

Summary of Amendments Number 5

Form of Publication: Revision SC28-6478-3
New: Programming Function

Support for fixed block devices is provided under DOS/VSE with
VSE/Advanced Function, Release 1.

Maintenance: Documentation
Clarifications and corrections have been made in various areas
of the text.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 4

Form of Publication: TNL SN20-9235 to SC28-6478-0, -1, -2

New: Programming Function

Support has been added for the 3330-11 Disk Storage and 3350
Direct Access Storage devices.

Maintenance: Documentation

Minor technical changes and additions have been made to
the text.

Summary of Amendments Number 3

Date of Publication: December 3, 1976
Form of Publication: TNL SN20-9180 to SC28-6478-0, -1, -2
1BM DOS/VS COBOL

Maintenance: Documentation

Minor technical changes and additions have been made to
the text.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Sumniary of Amendments Number 2

Date of Publication: January 9, 1976
Form of Publication: SN20-9141 to SC28-6478-0, -1

Support has been added to run DOS/VS COBOL under control of VM/370 CMS Release 3.

DOS/VS COBOL programs can be compiled in CMS and then executed in a DOS virtual machine, or
under a DOS system.

The following restrictions apply to execution of DOS/VS COBOL programs in CMS:

1. Indexed files (DTFIS) are not supported. Various clauses and statements are therefore invalid:
RECORD KEY, APPLY CYL-OVERFLOW, NOMINAL KEY, APPLY MASTER/CYL-INDEX,
TRACK-AREA, APPLY CORE-INDEX, and START.

2. Creating direct files is restricted as follows:

—For U or V recording modes, access mode must be sequential.
—For ACCESS IS SEQUENTIAL, track identifier must not be modified.

3. None of the user label-handling functions are supported. Therefore, the label-handling format of
USE is invalid. The data-name option of the LABEL RECORDS clause is invalid.

4. There is nc Sort or Segmentation feature.

ASClI-encoded tape files are not supported.

6. Spanned records (S-mode) processing is not available. This means that the S-mode default (block
size smaller than record size) cannot be specified, and that the RECORDING MODE IS S clause
cannot be specified.

w

In addition, multitasking, multipartition operation, and teleprocessing functions are not supported
when executing under CMS.

For a more detailed description of VM/370 CMS for DOS/VS COBOL, see IBM VM/370 CMS User’s
Guide for COBOL, order number SC28-6469.

Summary of Amendments Number 1

Date of Publication: March 22, 1974
Form of Publication: TNL SN28-1063 to SC28-6478-0

New: Additional Compiler Capabilities
Lister feature

Execution Statistics and
Verb summary feature

SORT-OPTION

Maintenance: Documentation Only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

FEATURES OF THE PROGRAM PRODUCT DOS/VS
COMPILER ¢« v 2 o o o o o o o o s o « =

PART I @ ¢ ¢ o 4 o o o « o o o = o « =

INTRODUCTION o 2 2 o o o o o « o o « =
Control Program .« « « « o o o o o = =
SUPEYVISOY o o o o « o o = = « « o =
Job ControOl PrOCeSSOY o« o o« o« « « o
Initial Program Loader « -« « « « - =
Processing ProgramsS « « « « = o « « =
System Service ProgramsS . « - « « =
Application Programs .« . o « « « = =
IBM-Supplied Processing Programs . .
Data Management . « <« « o « « « « «
Multiprogramming « « « o« o o « o o « =
Background vs. Foreground Programs .

JOB DEFINITION v o « o « o = o = 2 = =
Job Steps . . - « o e e e = =
Compilation Job Steps « o * o « =
Multiphase Program Execution . . .
Types of Jobs e« e e e e =
Job Definition Statements « e e e o
Other Job Control Statements

JOB PROCESSING v « o « 2 o = « « o = =
Compilation . « « « o o o =« = « =« =
EAiting . o 4 o ¢ ¢ o 4 4 ¢ o e - =
Phase Execution . . « o« o & « « = =

Multiphase Programs .« « « « « « « « =

PREPARING COBOL PROGRAMS FOR PROCESSING
Assignment of Input/Output Devices . .
JOb Control . . v ¢ ¢ 4 4 o o o o o =
Job Control Statements « « o« « « o «
Ccomments in Job Control Statements
Statement Formats . . . o % e e
Sequence of Job Control Statements
Description and Formats of Job
Control Statements . <« « « . + . . «
JOB Statement . . ¢ ¢ 2 4 2 + o =
ASSGN Statement . ¢ ¢ o 4 ¢ « o =
CLOSE Statement .
DATE Statement « . o« « 2 « « « =
TLBL Statement . o« o o « o = ¢ « =«
DLBL Statement « o« « o o o o « o =
EXTENT Statement « . o« ¢ o o « « «
VOL, DLAB, TPLAB and XTENT Statements
LBLTYP Statement . . o 2 & ¢ o « =
LISTIO Statement « « « « o o o = «
MTC Statement . . o o« ¢ o « o o «
OPTION Statement . o« o « <« « &
PAUSE Statement . « <« « « - .
RESET Statement . « « « « « «
RSTRT Statement . . o « « =
UPSI Statement .
EXEC Statement . . o o o =

.
]
.
.
.
.
L
L]

L]
| 'Y

[

.

.

1]

s

[

1]
[T)
LN T)

CBL Statement -- COBOL Option
Control Card « ¢ o ¢ o « o« o« = + « =
LST Statement -- New Compiler

Option Card o+ o o = o o 2« o o < =

CONTENTS

Mutually Exclusive Options . . .
Changing the Installation Defaults
Significant Characters for Various
OPtionsS =« < o o ¢ ¢ o 4 o « o o .
Job Control Commands . . « « . « . .
Linkage Editor Control Statements . .
control Statement Placement . . .
PHASE Statement . .« « « « .« . « .
INCLUDE Statement . . .
ENTRY Statement
ACTION Statement « « o« o « « « « .
Autolink Feature . . . « « o« « « « =
Relocating Loader Feature

LIBRARIAN FUNCTIONS ¢ « o « o o « « =
Planning the Libraries . . . «
Librarian . « ¢ ¢ ¢ o 2 o « ¢ ¢ w o =
Core Image Library « « o « « o« o o = =
Cataloging and Retieving Program
Phases -- Core Image Library . . .
Relocatable Library . « « « « « « .« .
Maintenance Functions

Cataloging a Module -- Relocatable

Library « « o ¢« ¢ o a o o o = « =
Scurce Statement Library - - - <« - - .
Maintenance Functions
Cataloging a Book -- Source
Statement Library . . . - . « . .
Updating Books -- Source Statement
LiDrary =« « o o o o o o = o o « =
UPDATE Function -- Invalid Operand
Defaults « « ¢ v & o @ ¢ ¢ ¢ o o &
The Procedure Library
MAINT, Procedure Library - . . . - - =
Catalog o e o o ® e s e e e
PSERV, Procedure lerary « e e e e a
Calling Cataloged Procedures
Private Libraries . « « ¢« « o« ¢ = = .
Determining the Location of the
Libraries . .
Source Language Considerations . . .
Extended Source Program Library
FAcility o o o o o o o o o o o o o o o
Reformatted Source Deck

e« @ e e @ @ o =+ ® e

INTERPRETING OUTPUT .+ « « o o « = « «
Compiler Output .
Object Module . & o o o « « <« o « =
Linkage Editor Output
Comments on the Phase Map . . .« -
Linkage Editor Messages -

DOS ANS COBOL Unresolved External
References . . . « @ e e e e e o=
COBOL Execution Output -
Operator MeSSages « « « « « « « =« =«
STOP Statement . « « « « « « & «
ACCEPT Statement « « « « « « <« =« &
System Cutput . « « o . .

« @ @ ® e @ e @ =

CALLING AND CALLED PROGRAMS . . . - .
Linkage . & o ¢ @ ¢ o 4 o o e o « o =
Linkage In A Calling Program . . . -

Linkage In A Called Program . « « - -«
Entry Points - . o e =
Correspondence of Arguments and
Parameters . « o« « o o o @ o o o a o o
Link Editing Without Overlay . . .
Assembler Language Subprograms . . « . -
Register USe -« « « v o & o o« = «
SaVe AY€A .+ o« 2 o o o o o = o
Argument List 4 . e 4 4 4 .
File-Name and Procedure-Name
Arguments .« 4 4 ¢ ¢« o @ o * o o e o
In-Line Parameter List . . .«
Lowest Level Program « « « « = « « @« =
OVerlays « ¢ o o o« = o o o = - e ® e
Special cCconsiderations When U51ng
Overlay Structures « . « « o o o = o « =
Assembler Language Subroutine for
Accomplishing Overlay .
Link Editing with Overlay . « . < .
Job Control for Accomplishing Overlay

e © ® e e ®= e

USING THE SEGMENTATION FEATURE «
Operation .« « ¢ « ¢ o ¢ o o @ o = o o
Output From a Segmented Program . - - «
Compiler Output . . v o o o « « =« « =
Linkage Editor Output -« . .
Cataloging a Segmented Program . . .
Determining the Priority of the
Last Segment Loaded into the
Transient Area . . o v o« ¢ o « « « =
Sort in a Segmented Program . « « . =
Using the PERFORM Statement in a
Segmented Program . « « « = « « « =

PART II & ¢ ¢ @ o o o o o o = = = = = =

PROCESSING COBOL FILES ON MASS STORAGE
DEVICES @« v o o o« o o o « o o =w = = = =
File Organization
Sequential Organization « < «
Direct Organization . « « « o« « = « «
Indexed Organization « « <« « « o« = « «
Data Management Concepts . . . « e e =
Sequential Organization (DTFSD) « . - o
Processing a Sequentially Organized
File - . -
Direct Organlzatlon (DTFDA) « o o o =
Accessing a Directly Organized File .
ACTUAL KEY ClauUSe . « o = o = o = = =
Randomizing Techniques . . « « « . -
Actual Track Addressing
Considerations for Specific Devices .
Randomizing for the 2311 Disk Drive
Randomizing for the 2321 Data Cell .
Indexed Organization (DTFIS) . . « « . -
Prime AYa « o o o o ¢ o @« o o = o w =
INAEXES .+ o o o o o o« = o o o« « = o «
Track INd€X =« « « « o o =« s = w « =
Cylinder Index « . « ¢ w o« « « =« « =
Master IndeX « « « = « « = o « =
Overflow Area a e e o=
Cylinder Overflow Arpa s s e s e o=
Independent Overflow Area . . . -
Adding Records to an Indexed File .
Accessing an Indexed File (DTFIS) . .«
Key ClauSes « « a « =« « « o o« o « =
Improving Efficiency . = « « . o . .

® % % e w e =

. e s ®w = -

929
99
100
101
102

116
116
117
118
118
119
119
119

119

119

110

s

119
120
121
121
122

PROCESSING 3540 DISKETTE UNIT FILES .
File ProcesSSing . « a « « o« = o = o
DIFDU &« o 2 o o o = o « = « « = « « =
Job Control Requirements . . . -
DLBL Statement . « ¢ « ©« o« « « « <
EXTENT Statement
3540 File v v 4 o o o o o o o = =

VIRTUAL STORAGE ACCESS METHOD (VSAM) .
File Organization . « . « « « « «
Key-Sequenced Files« « 2 =
Entry-Sequenced Files - =
Data Organization . .« ¢ « ¢ o 4
Data ACCESS « o o o o o 2 =« « « =
VSAM Catalog - . « - « . - - .
File and Volume Portablllty « .
Service Programs . . « « + o 2 & &
Device Support . «. « « < & « o o
SECUrity o o v o @ o o w o = = =
EXror ProCeSsSing .« « « « o« « « « =
VSAM MeSSAgeS 4« o o « = o o = « =

Access Method Services« < <« .
Functional Commands .« « « « + « «
The DEFINE Command . . . -
Specification of the
Defining a VSAM Master Catalog:
DEFINE MASTERCATALOG « o « « « = =«
Defining a VSAM Data Space: DEFINE
SPACE . . . - - - a - -
Defining a VSAM Flle- DEFINE
CLUSTER @« « « o « « o @« « = o =
File Processing Techniques . . .
Current Record Pointer

Error Handling « e e e e o
Record Formats for JSAM Files . .
Initial Loz?ing of Recc.as into a
Fil€ o« v ¢ o o o o o o o o« o = » =
File Status Initialization . . .
Opening a VSAM File

Writing Records into a VSAM File . .
Entry-Sequenced File
considerations for the WRITE
Statement . . 4 . o . . 0
Key-Sequenced File Considerations
for the WRITE Statement

Rewriting Records on a VSAM File . .
Entry-Sequenced File
Considerations for the REWRITE
Statement . . . < . 4 . 4 . o -
Key-Sequenced File Considerations
for the REWRITE Statement

Reading Records on a VSAM File . . .
Entry-Sequenced File
Considerations for the READ
Statement 4 e e s e e
Key-Sequenced File Con51derat10ns
for the READ Statement
READ NEXT Statement < .
READ Statement . . . « . « . . -

Using the START Verb
DELETE Statement
COBCL Language Usage With VSAM . .
Creating a VSAM File
Retrieving a VSAM File . . . -
Job Control Language for a VSAM
File v 4 4 ¢ o ¢ o o o o o o o = =

.123
.123
«124
.124
.125
.125
-125

.127
-127
-127
127
-128
-128
-~128
.130
.130
-130
<130
.130
-130
-130
.130
-.130

DEFINE Command 131

-.131
-132

.133
.134
17"
-130
.136

.137
-137
-137
-139

-139

-139
.139

-139

-140
- 140

-~140

-140
- 140
- 141
<141
141
141
-141
-143

. 144

Converting Non-VSAM Files to VSAM
Fil€S @ 2 2 o o a @ « = = =« « « =
Using ISAM Programs to Process

VSAM FileS w o o o o ¢ o o o o = =

DETAILED FILE PROCESSING CAPABILITIES
COBOL VSAM Control blocks . . « + « =
Control Blocks For VvsaM . . . -
VSAM File Information Block (FIB) -
VSAM File Control Block
DTF TableS v« v o ¢ o« o o o o = a « a =
Pre-DTF Switch - .
Error Recovery for Non-VSAM Flles - o
Volume and File Label Handling . . - .
Tape Labels .+ ¢ =« « 2 o o o o o = =
Volume LabelS .« v o o o o o o « =
Standard File Labels . o« o o « « =
User Standard Labels
Nonstandard Labels « o o o = o « «
Label Processing Considerations . .
Sample Programs . « « o =« « « = =
Mass Storage File labels « « o« « « .
Volume Labels . o« o« o« o o o o « «
Standard File LabelsS « o o o o « «
User Labels . . o o o« o o « = « =
Label Processing Considerations . .
Files on Mass Storage Device
Opened as INPUt < = « o « « « » =
Files on Mass Storage Devices
Opened as OUtPUL & o o« o « o « = =
Unlabeled File€éS « v o« « o o o« o = =

PROCESSING ASCII TAPE FILES . o« <« « =
COBOL Language Considerations
File Handling .« o« o« ¢ = o o 2 = o =« =
Operational Considerations . . - . . .
Obtaining an ASCII Collating Sequence
ON @ SOYE 4 ¢ 2 o o o = = a =« =« = = =

RECORD FORMATS FOR NON-VSAM FILES . .
Fixed-length (Format F) Records . . .
Undefined (Format U) Records . . . - =
Variable-Length Records . - . « « - .
APPLY WRITE-ONLY ClauS€ « « « - «
Spanned (Format S) Records
S-Mode Capabilities . . « -
Sequentially Organized S-Mode Flles
on Tape or Mass Storage Devices .
Source Language Considerations . =
Processing Sequentially Organized
S-Mode Files - o o e =
Directly Organized S- Mode Flles . -
Source Language Considerations . .
Processing Directly Organized
S-Mode FileS v v v o o o o o o = =

PART IIT @ ¢ a o o o o o s o o« o « = @

PROGRAMMING TECHNIQUES o o o o « « < «
Coding Considerations for DUS/V3 . . .
General Considerations « ¢« « « « « o
COPY « « . . e s s 8 = @ @ o @ @ = =
Syntax Checklng “ e e e e e e .
Formatting the Source Program
Listing o 2 o o o o o « o o « = =
Environment Division « « « 2 « « & o =
RESERVE Clause . . . e o o o e =
APPLY WRITE-ONLY Clause e« o o = =

-l44
-144

-145
-145
-146
-146
.1u48
-150
.155
.155
-162
-162
-162
.162
.162
-162
-165
.166
<174
-174
-.174
<174
.174

-174

-175
-175

<177
-177
-177
-178

-178

-179
-179
-180
.180
.183
-.183
-184

2185
-185

-185
-187
-187

-188
-189

.191
-191
.191
-191
-191

-191
-192
~192
-192

Data DivisSion =« « o « o« « « « « =
Overall Considerations
FD ENtries o« o« o « o o « o « =
Prefixes o ¢« o « o ¢ o o o« o
Level Numbers . . . o o « « »
File Section « o e o = =
RECORD CONTAINS Clause e« o .o o = =
BLOCK CONTAINS Clause . . . - « «
Working-Storage Section
Separate Modules . « o« « « « « a «
Locating the Working-Storage
Section in DUmMps « « « o « « o - =«
REDEFINES ClauSe . o o o o o« « « =«
PICTURE ClaUS€ « v = = « = « = =
USAGE ClauS€ . o o « « = = o « « =
SYNCHRONIZED ClauUS€ + o « « o = «
Special Considerations for DISPLAY
and COMPUTATIONAL Fields «
Data Formats in the Computer . . .
Procedure Division . . .« « . . ¢ . o .
Modularizing the Procedure Division
Main-Line Routine . .« <« o .« o & .
Processing Subroutines . . . « + o
Input/Output Subroutines
Overall Considerations . . « . - . .
OPTIMIZE Option . o« o o o = = « =
Intermediate Results < o« o « = « « «
Intermediate Results and Binary
Data Items .« « ¢« o o o « « o o « =
Intermediate Results and COBOL
Library Subroutines
Intermediate Results Greater Than
30 DigitsS & & o v o 2 o .
Intermediate Results and
Floating-point Data Items .
Intermediate Results and the ON
SIZE ERROR Option .« v v o « = + -
Exponentiation 4 <« 4 ¢ . <
Optimization Based on Execution
Frequency =« = = = = = = o o = o =
Procedure Division Statements . . .
COMPUTE Statement . . . <« ¢« =« o .
IF Statement « o« o « = « « « o « =
MOVE Statement . « « « « « « « « o
NOTE Statement . . « o o o o = =
PERFORM Statement . « « « « « = =
READ INTO and WRITE FROM Options . . .
TRANSFORM Statement - « «

L]
L]

. ® -

USING THE SORT/MERGE FEATURE . . . « «
Sort/Merge Job Control Requirements .
Sort Input and Output Control
Statements
Sort Work File Control Statements -
Amount of Intermediate Storage
REQUITEA v o « o o « = = « s = s =
Improving Performance
SORT-OPTION ClauS€ o« « « = =« = « =
PRINT Option « « <« «w « ¢ o ¢ = « =
LABEL Option . - « « = 4 o « = = =
STORAGE OpPtion <« « « « « o & = « =
ALTWK Option « « o o o = o « = « &
ERASE Option v« o« « o o o o o =« o =
ROUTE OptiOn o = = « = = = = = = =
SORTWK Option . e e e aa .
SORT-OPTION Clause Examples - e -
Output File Statements « .
Sort Diagnostic Messages . . - « - . .

e ®» o o = - =

.193
-193
-193
.193
-193
.194
.194
.194
.194
-194

.194

.194
196

LI R ho]

-197
. 200

. 200
- 200
.202
. 202
-203
- 203
- 203
- 203
- 203
-203

. 203
.203
. 204
- 204

. 204
.204

. 204
. 204
- 204
. 205
- 205
- 205
- 205
- 205
. 206

- 207
- 207

. 207
. 208

. 208
. 208
- 208
- 208
-208
. 208
. 208
- 208
-.208
- 208
- 208
. 208
-209

Linkage With the Sort/Merge Feature .
Completion CodeS « 2 « « = o o « =
Cataloging a Sort Program . . « .

Checkpoint/Restart During a Sort . . .

Using Sort in a Multiphase Environment

USING THE REPORT WRITER FEATURE . . .
REPORT Clause in a File
Description (FD) Entry
Summing Techniques . . o . . . =
Use Of SUM v v v ¢ ¢ o a o o o =
SUM ROULINES +. o v o o o« « o = =
Output Line Overlay =« « « o o = =
Page BreakS . o o w o o o o = =
Control Footings and Page Format .
WITH CODE ClauSe€ « v « o = = « = =
NEXT GROUP ClauSe <« « o « o =« « =
Floating First Detail . « o o « -
Report Writer Routines . - « . - =

)

TABLE HANDLING CONSIDERATIONS . .« - «
SUDSCriptsS o« @ o o a o o = « o «
TNAEX-NAMES < 2 o =» o = o o s = =
Index Data ItemS o« o« o o o o « o =
OCCURS Clause . o « =« o « o o = «
DEPENDING ON Option . . « = -

OCCURS Clause with the DEPENDING

OPtion o ¢ o o o a a o o o » o« o o a =
SET Statement . o« o« « o o o o « =
SEARCH Statement o« « o o « o o o =
SEARCH ALL Statement . « o« o« « o «
Building Tables . - =« « « o « o =

PART IV . & 4 2 o o o o = a2 s a o = =

LISTER FEATURE « a me e
Overall Operation of the Lister . . .
The Listing . o« v o« v o o o« o = =
The Output Deck . . . -« -« . . o .
Reformatting of Identification
Environment Divisions - «
Data Division Reformatting
Procedure Division Reformatting .
Summary Listing . . + « « & & - .
Source Listing . -« « « «.a o = = =
General AppearancCe . « « « « « =
Format Conventions . « o « « « o« =
Type Indicators . . « o o« o« « = =
Summary Listing . « « =« « « .« « <
General AppPearancCe . . « « o « «
The Output Deck . o o v o o o = « = =
Using the Lister « .« ¢ « v o a « o o =
Options =« o v @ o o o o o o o = =
Programming Considerations - . « . -

The

The

SYMBOLIC DEBUGGING FEATURES . o « « -
Use of the Symbolic Debugging Features
Statement Number Option o« « o « o« «
Flow Trace Option . « « « « o « «
Symbolic Debug Option . . « . -
Object-Time Control Cards « o = =
Overall Considerations .- . . - . . -
Sample Program -- TeStrun .« o« . - « «
Debugging TESTRUN . <« o @« o = « «

3

PROGRAM CHECKOUT v ¢ o o ¢ o =« o o = =
Syntax-Checking Compilation «
Identification of Program Versions . -

-209
-209
-209
=210
-210

-211

- 211
-211
. 211
-212
-213
.213
-213
- 214
- 214
- 215
- 215

. 217
- 217
- 217
. 217
- 217
- 217

. 218
221
- 2204
- 224
- 225

<227

-228
- 228
- 228
- 228

.228
- 228
-228
.228
. 228
.228
-228
.228
-228
-228
-228
~.228
- 228
- 228

-229
- 229
- 229
229
- 229
-230

232

-232
- 233

. 247
- 247
- 247

Debug Language . « « = » o =«
Flow of Control « o .
Displaying Data Values Durlng
Execution .« o w o o « o o« o« o o
Testing a Program Selectively . .

Testing Changes and Additions to

PrOgramsS « « o« o « ©» = o« a « « o o =

DUNMDPS 2 o « « o o o« = o« =« = o s o =
How to Use a DUMP o =« o « o « o «
Errors That Can Cause a Dump . - .
Locating @ DTF o o o « o o o « o «
Locating Data « ¢« o o« o o o « = =

e e a =

EXECUTICN STATISTICS o o « o o « o =
Obtaining Execution Statistics . .
Debugging and Testing
Optimization Methods
Resequencing the Program . . - .
Insight into SYMDMP Output . . .
Common Expression Elimination .
Backward Movement o .
Unrolling . o ¢ 4 4 & ¢ o o« o =
JamMMing o« o o o o « = o o « o =
Unswitching . . & o o & &« o o =
Incorporating Procedures Inline
Tabling . « o o o o o o o « = «
Efficiency Guidelines
Diagnostic MessagesS .« « o« « o« o« o =
Working with Diagnostic Messages .
Generation of Diagnostic Messages
Linkage Editor Output . « = o . + =
Execution Time MessSages « « o« « « «
Recording Program Status . . . « - .
RERUN Clause . « o o = 2 o o o = =
Taking a Checkpoint . -
Restarting a Program « « - « - « = =
APPENDIX A:

SAMPLE PROGRAM OUTPUT .

APPENDIX B:

APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS . o o « « ¢ « o o« « =«

APPENDIX D: TRACK FORMATS FOR
DIRECT-ACCESS STORAGE DEVICES . . .

APPENDIX E: COBOL LIBRARY SUBROUTINES

Input/Output Subroutines -
Printer Spacing . . o« a -
Tape and Sequential DlSk Labels
CLOSE WITH LOCK Subroutine . . .
WRITE Statement Subroutines . .
READ Statement Subroutines . . .
REWRITE Statement Subroutines .
DISPLAY (EXHIBIT and TRACE)
Subroutines . .« & « « & .« . . .
ACCEPT and STOP
Subroutines . .« < 4 @ @ o . o =
CLOSE Subroutine < & .
Multiple File Tape Subroutine .
Tape Pcinter Subroutine
Input/Output Error Subroutines .
Disk Extent Subroutines
3886 OCR Subroutine
VSAM Subroutines
Auxiliary Subroutines

ASCII Support Subroutines

STANDARD TAPE FILE LABELS

-

(literal) Statement

-

. 247
- 247

. 248
.250

- 250
- 251
- 251
. 252
.252
- 253

. 260
-260
- 260
- 260
- 260
- 260
-260
- 260
- 260
- 260
- 260
- 260
- 260
- 260
. 260
- 260
- 260
- 261
. 261
-262
-262
~262
- 263

- 265

- 279

- 281

- 287

. 289
. 289
. 289
. 289
-289
. 289
- 289
290

- 290

- 290
- 290
- 290
- 290
- 290
- 290
. 290
. 290
. 291
.291

Separately Signed .Numeric Retrieving and Updating a Direct

Subroutine . . . ¢ 4 ¢ 2@ ¢ 4 - .o - 2291 File @ v 4 ¢ 4 ¢ e v o o o o = =« = 2304
Conversion Subroutines o 2291 Indexed FileS « o o w « « = « = - « 2305
Arithmetic Verb Subroutines293 Creating an Indexed File305
Sort/Merge Feature Interface Routine .293 Retrieving and Updating an Indexed
Checkpoint (RERUN) Subroutine293 File @ 4 ¢« ¢« ¢ o o o o o = « = = « 2306
Segmentation Feature Subroutine . . .293 Files Used in a Sort Operation306
Other Verb Routines . . o . « 2 = - 2293 Sorting an Unlabeled Tape File . . .306

Compare Subroutines . . <. - - - - 293

MOVE Subroutines . « o o « o « « = =294 APPENDIX I: DIAGNOSTIC MESSAGES307
TRANSFORM Subroutine . o « « « - - .29%4 Compile-Time MeSSageS + « « « « - « 307
Class Test Subroutine 294 Operator MeSSagesS . + o « =« « « « « <307
SEARCH Subroutine . . . « <« « & . 294 Object-Time Messages o « - « = o « - .309
Main Program or Subprogram COBOL Cbject Preogram Unnumbered

Subroutine o « 4 a4 . o - o294 MESSAGES o o o o o o = o« n o = o = « » <318
Object-Time Debugging Subroutlnes . -2904

Debug Control Subroutine . . . - - 294 APPENDIX J: COBOL 3886 OPTICAL

Statement Number Subroutine294 CHARACTER READER SUPPORT =« « « « - « = 319

Flow Trace Subroutine - .295 3886 OCR ProcesSSing . o = « « = - - =319
Symbolic Debug Subroutines295 Implementing an OCR Operation319
Object-Time Execution Statistics Document Design « « o« « « « o « « 319
Subroutines ¢ ¢« 4 o = - = . 2295 Document Description320
COUNT Initialization Subroutine . .295 COBOL SUPPOLt « = « « =« o « « = o 2320
COUNT Frequency Subroutine295 File Description o « o « « o « = - .320
COUNT Termination Subroutine295 Record Description . . « «320
COUNT Print Subroutine - .295 Procedural Code - . .321
Optimizer Subroutines . o . . - - . .295 JCL Considerations o = - 321
GO TO ... DEPENDING ON Subroutine .295 Subprogram Interface321
Optimizer DISPLAY Subroutine296 Statements for Invoking 3886 1I/0
Transient Subroutines296 Functions “ . a . - - - <324
Symbolic Debug Subroutines296 OPEN Function (Equ1va1ent to OPEN
SYMDMP Error Message Subroutine . .296 MacCroO) . o « o o o o a « «.e = = = 3204
Error Message Subroutine296 CLOSE Function (Equivalent to DOS
Error Message Print Subroutine . . .296 CLOSE Macro) . « « o = “ o e s = 324
Reposition Tape Subroutine296 READ Function (Equlvalent to DOS
READ and WAITF Macros) . « . « = o «324
APPENDIX F: SYSTEM AND SIZE READO Function (Equivalent to DUS
CONSIDERATIONS v o o o o o o = « =« = o <297 READ Macro) . - « . = - o - - <324
Minimum Machine Requirements for the WAIT Function (Equlvalent to DOS
COMPLler o o o o o o o o = o « « =« = =297 WAITF MacrYO) « o o o o o o « « =« o =324
Source Program Size Considerations . .297 MARKL Function (Equivalent to DOS
compiler Capacity « « « o o « o - «297 CNTRL Macro with LMK Option)324
Effective Storage Considerations . .298 MARKD Function (Equivalent to DOS
Execution Time Considerations . . . 299 CNTRL Macro with DMK Option)325
Multiprogramming Considerations . . .300 EJECT Function (Equivalent to DOS
Sort Feature Considerations300 CNTRL Macro, with ESP Option) . . .325
SETDV (Set Device by Loading a
APPENDIX G: COMMUNICATION REGION301 Format Record) Function
Communication Region . « +. wu . « . = - 301 (Equivalent to DOS SETDEV Macro) . .325
COBOL 3886 Library Routine325
APPENDIX H: SAMPLE JOB DECKS303 Processing Tapes from the OCR 3886,
Direct File€S e v o 2 o o o o« o o« = - o304 Model 2 . . & 4 ¢ 4 ¢ 4 o« o o = & = 2326

Creating a Direct File -304
INDEX . o o o «c @ = = o o = « =« = = = 2333

ILLUSTRATIONS

TABLES

Table 1. Job Control Statements . .
Table 2. Symbolic Names, Functions,
and Permissible Device Types . - - . -
Table 3. Significant Characters for
vVarious Options . <« <« o 2 o 2 « o = .
Table 4. Glossary Definition and
USAEe =« v o o o o o o a2 o @« = =« = =« =
Table 5. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information . . . «
Table 6. System Message
Identification Codes - . = -
Table 7. Conventional Use of Linkage
Registers . . o o o o o o « - - -
Table 8. Save Area Layout and WOrd
CONLENLS « o o o o o = o o = « o = =
Table 9. Recording Capacities of Mass
Storage Devices . o v 2 o o o o o o
Table 10. Partial List of Prime
NUMDEYS &« o o « « o = @ @« = o « « = =
Table 11. File Status Values and
Error Handling =« « « v = o = o o « « =
Table 12. File Status Key Values at
OPEN . @ o @ ¢ o o o = o o @« a = = = =
Table 13. File Status at Action
Request Time - « - . e e =
Table 14. COBOL Statements for
Creating a VSAM File e - -
Table 15. COBOL Statements for
Retrieving a VSAM File “- o =
Table 16. Fields Preceding DTFMT and
DTFSD o« o o - « o o = e w =
Table 17. Fields Preceding DTFDA --
ACCESS IS RANDOM -- Actual Track
Addressing « o o = - - .
Table 18. Fields Precedlng DTFDA --
ACCESS IS RANDOM -- Relative Track
Addressing “ o o = “ . -
Table 19. Fields Precedlng DTFDA -
ACCESS IS SEQUENTIAL -- Actual Track
AdAreSSing v « 2 « a « 2 o = 2 « « o

- 16
- 21
- 40

. 65

- 66
- 73
- 78
- 79
. 97
-105
.136
-138
-138
-141
-143

.151

-151

.152

-153

Table 20. Fields Preceding DTFD
ACCESS IS SEQUENTIAL -- Relative Track

AJdAYESSING « o «o o &+ o =« = « o« « o « - 2154
Table 21. Fields Preceding DTFIS . . .154
Table 22. Fields Preceding DTFDU . . .155
Table 23. Meaning of Pre-DTF Switch . .155
Table 24. Errors Causing an Invalid

Key Condition . . . « . 4 ¢ o « « . . .156
Table 25. Meaning of Error Bytes for
GIVING Option of Error Declarative

(Part 1 of 2) . 4 ¢ @ ¢ a = ¢ o o =« o 2157
Table 26. Location and Meaning of

Error Bits for DTFMT - . < « « . « - - .159
Table 27. Location and Meaning of

Error Bits for DTFSD v v =« 2 o« « = « - <159
Table 28. Location and Meaning of

Error Bits for DTFDA « « o o« « . . - <160
Table 29. Location and Meaning of

Error Bits for DTFIS . . -« - .160
Table 30. Location and Meaning of

Error Bits for DTFDU . . <« =« « « - - - .161
Table 31. Data Format Conversion

(Part 1 of 2) - . e - 198
Table 32. Relationship of PICTURE to
Storage Allocation . - « « o o« < 2 « o .202
Table 33. Rules for the SET Statement .223
Table 34. Individual Type Codes Used

in SYMDMP Output - - «234
Table 35. Functions of COBOL L1brary
Conversion Subroutines - - =292
Table 36. Functions of CUBOL lerary
Arithmetic Subroutines293
Table 37. OCR Status Key Values and

User Actions e e e e + w = e <322
Table 38. Possible Status Key Values,

By Operation . . « o« o o « o o« « o o - .322

Table 39. User Responses to Status Key 323
Table 40. CALL Statements for

Invoking 3886 I/O Functions326

Figure 1. Sample Structure ot Job Deck
for Compiling, Link Editing, and
Executing a Main Program and Two
SUDPYOGYAMS o o o o o = = © = o « = =
Figure 3. Possible Specifications for
X*ss' in the ASSGN Control Statement
Figure 4. Sample Label and File
Extent Information for Mass Storage
FileS o o « o o o o o = o =« s « = « =
Figure 5. Job Definition -- Use of
the Librarian . « « o o a o « « & = =
Figure 6. Options Available During
Link-Editing e e a e e s e e e s e
Figure 7. The Relative Location of
the Four System Libraries
Figure 8. Sample Coding to Calculate
FICA e o = ® @ o s ® o = @ ®= @ @« = @
Figure 9. Altering a Program from
the Source Statement Library Using
INSERT and DELETE Cards . . . - o
Figure 10. Effect of INSERT and
DELETE Cards “ 4 » e a @ & o w o o
Figure 11. Examples of Compiler
Output (Part 1 of 4) “ e e = e w o= =
Figure 12. A Program that Produces
COBOL Compiler Diagnostics “ e e - =
Figure 13. Linkage Editor Output . .
Figure 14. Output from Execution Job
Step e e e e @ a 2 a s = ®w 4 @ @« = =
Figure 15. Calling and Called
Programs “ e % e e e s e e e e e e =
Figure 16. Example of Data Flow Logic
in a Call Structure . « .« o« « = « « =
Figure 17. Sample linkage Routines
Used with a Calling Subprogram

Figure 18. Sample In-line Parameter
List “ = % % 2 = s e @ e @ = v o = =
Figure 19. Sample Linkage Routines

Used with a Lowest Level Subprogram .
Figure 20. Example of an Assembler
Language Subroutine for Accomplishing
OVErlay =« o o o o o o = = © =« o « o« =
Figure 21. Flow Diagram of Overlay
LOGIiC @ ¢ 4 o o o o @ o « o o o o = =
Figure 22. Job Control for
Accomplishing Overlay =« « « « « = «
Figure 23. Calling Sequence to Obtain
Overlay Between Three COBOL
Subprograms (Part 1 of 3)
Figure 24. Segmenting the Program
SAVECORE e & ® 2 = e« s s @ ® & @ o =
Figure 25. Storage Layout for SAVECORE
Figure 26. Compiler Output for
SAVECORE e o % s+ 8 a4 4 o = @ @ e - =
Figure 27. Link Editing a Segmented
PrOgram o o o = o o o o« o = = = =« « =
Figure 28. Location of Sort Program
in a Segmentation Structure
Figure 29. Structures of the Actual

KEY ¢ o 2o o o o o 2o o o o u o o « = «

13
25

30
41
Ly
56

58

58
58
60

69
70

72
75
78
80

81

81

82
84y
84

85

89
91

0
£

\O
E~

.102

FIGURES

Figure 30. Permissible Specifications
for the First Eight Bytes of the
Actual Key e 4 e e e e e e e e e e .
Figure 31. Creating a Direct File
Using Method B (Part 1 of 4) « = = =
Figure 32. Creating a Direct File
with Relative Track Addressing Using
Method B {(Part 1 of 4) . . o o
Figure 33. Formats of Blocked and
Unblocked Records . . ¢ « « « % a & «
Figure 34. Adding a Record to a Prime
Track “ e o o o o w o = o a v o = =
Figure 35. VSAM Data Organization -
Figure 36. Defining a VSAM Master
Catalog o o o ¢ ¢ 2 v « = o o o = = =
Figure 37. Defining a VSAM Data Space
Figure 38. Defining a Key-Sequenced
Suballocated VSAM File - e e e e =
Figure 39. Standard Tape File Label
and TLBL Card (Showing Maximum
Specifications) . . @ « « « ¢ « = .
Figure 40. Standard Tape File Label
and TLBL Card (Showing Minimum
Requirements) . . « « « =« « w =« -
Figure 41. Standard, User Standard,
and Volume Labels . . . ¢ « -« « < .
Figure 42. Nonstandard Labels
Figure 43. Processing an Unlabeled
Multifile Volume (Part 1 of 2) « o -
Figure 44. Readifig a Multivolume File
with Standard Labels; Creating a
Multifile Volume with Standard Labels
(Part 1 of 2) ¢ v v 4 ¢ 4 o ¢« ¢ o o .
Figure 45. Creating an Unlabeled
Multivolume File (Part 1 of 2) « - =
Figure 46. Fixed-Length (Format F)
RECOYAS « o o o o = w « = « = o « « =
Figure 47. Undefined (Format U)
RECOTAS &« v v o o o o o = o = o « = =

é

Figure 48. Unblocked V-Mode Records
Figure #49. Blocked V-Mode Records -
Figure 50. Fields in Unblocked V-Mode

RECOYAS w o o o o @« o o = a = =« = = =
Figure 51. Fields in Blocked V-Mode
RECOLAS o ¢ o o a o o = = =« o =« = = =
Figure 52. First Two Blocks of
VARIABLE-FILE-2 . . - - - =
Figure 53. Control FleldS of an
S-Mode Record . o« o v o o o o o o « =
Figure 54. ©One Logical Record
Spanning Physical Blocks .« . . o -
Figure 55. First Four Blocks of
SPAN-FILE &« o « @ o o o = o o« =« = = =
Figure 56. Advantage of S-Mode
Records Over V-Mode Records . . « . =
Figure 57. Direct and Sequential
Spanned Files on a Mass Storage Device
Figure 58. Treatment of Varying
Values in a Data Item of PICTURE S9 .
Figure 58.1. OPTION Control Statement
tO SORT/MERGE ¢ 4 2 4 o o o o o = « =

-102

120
129,

.131
132

-133
-163

-164

.165
.165

-168

.170
.172
-179
-180
.180
-181
.182
.182
.183
-184
.185
.186
-.186

187
.202

- 208

Figure 58.2. File Name and Default

Symbolic Unit Names . . <« « « o <« « - 208
Figure 58.3. SUMMARY OF SORT-OPTION
Operands “ e m 2 e o a = a w = o o = 208
Figure 59. Sample of GROUP INDICATE
Clause and Resultant Execution Output .213
Figure 60. Format of a Report Record
When the CODE Clause is Specified . . .214
Figure 61. Activating the NEXT GROUP
Clause o @ e m e e a s e m e = o = = «215
Figure 62. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON ODtion o+ o o o o = « « = 2220

Figure 63.
Storage o .« « o o o o o o =
Figure 64. Using the Symbolic
Debugging Features to Debug the
Program TESTRUN (Part 1 of 12) . a
Figure 65. Sample Output of EXHIBIT
Statement With the CHANGED NAMED
Option a e e e o e = = e e e oa
Figure 66.
Abnormal Termination (Part 1 of 6)
Figure 67. Track Format e e e e .
Figure 68. Communication Region in
the Supervisor e e e o s e o o omom
Figure 69. Sample OCR Program (Part
Of 5) ¢ 4 v i i e e e e e e e e ea

Sample Dump Resulting from

Table Structure in Virtual

-

-

.221

.235

. 249

- 254
. 288

.302

- 327

FEATURES OF THE PROGRAM PRODUCT DOS/VS COMPILER

The IBM DOS/VS COBOL Compiler includes

the following features:

¢ Object Code:

(1) Optimized Object Code -- which
results, when specified, in up to
30% space saving in object program
generated code and global tables
as compared with Version 2 of the
IBM DOS Full American National

tandard COBOL Compiler. The
space saved depends on the number
of referenced procedure-names and
branches, and on 0l-level data
names.

(2) Double-Buffered ISAM -- allows
faster sequential processing of
indexed files.

(3) The MOVE Statement and Comparisons
-- when a MOVE statement or a
comparison involves a one-byte
literal, generated code for the
move and the comparison saves
object program space and
compilation time.

(4) DISPLAY Routines -- the DISPLAY
routine has been split into
subsets for efficient object
program code.

e Alphabetized Cross-Reference Listing
(SXREF) -- for easier reference to
user-specified names in a program.
SXREF performs up to 25 times faster
than the source-ordered cross-reference
(XREF) feature of Version 2 of the IBM
DOS Full American National Standard
COBOL Compiler. The larger the source
program, the more that performance is
improved. Total compilation time is up
to 2 times faster.

e Debugging Facilities:

(1) Symbolic Debug Feature -- which
provides a symbolic formatted dump
at abnormal termination, or a
dynamic dump during program
execution.

(2) Flow Trace Option -- a formatted
trace can be requested for a
variable number of procedures
executed before abnormal
termination.

(3) Statement Number Option --
identifies the COBOL statement
being executed at abnormal
termination.

(4) Expanded CLIST and SYM -- for
detailed information about the
Data Division and Procedure
Division.

(5) Relocation Factor -- can be
requested to be included in
addresses on the object code
listing, for easier debugging.

(6) Working-Storage Location and Size
-~ When CLIST and SYM are in
effect, the starting address and
size of Working-Storage are
printed.

(7) syntax-Check Feature -- optionally
provides a quick scan of the
source program without producing
object code. Syntax checking can
be conditional or unconditional.

(8) WHEN-COMPILED Special Register --
makes the date-and-time-compiled
constant carried in the object
module available to the object
program. This special register is
a programmer aid that provides a
means of associating a compilation
listing with both the object
program and the output produced at
execution time.

e Device Support -- the following devices

can be specified in addition to devices
supported by the IBM DOS Full American
National Standard COBOL compilers:

5203,3203 -- line printers
3211 -- 150-character printer
3330,3340,3350 -- mass storage

(direct access) facilities

Fixed block direct access storage
devices

3540 -- Diskette input/output unit
3410,3420 -- tape utility devices

2560,3504,3505,3525,3881,3886,5u25 -~
advanced unit-record devices

ASCII Support -- allows creation and
retrieval of tape files written in the
American National Standard Code for
Information Interchange {(ASCII).

VSAM {(Virtual Storage Access Method)
Support -- provides fast storage and

Features of the Program Product DOS/VS Compiler 7

retrieval of records, password
protection, centralized and simplified
data and space management, advanced
error recovery facilities, plus system
catalog. COBOL supports indexed
(key-sequenced) files and sequential
(entry-sequenced) files. Records can
be fixed or variable in length.

FIPS (Federal Information Processing
Standard) Flagger -- issues messages
identifying nonstandard elements in a
COBOL source program. The FIPS Flagger
makes it possible to ensure that COBOL
clauses and statements in a DOS/VS
COBOL source program conform to the
Federal Information Processing
Standard.

Lister -- provides a specially
formatted source listing with embedded
cross-references for increased
intelligibility and ease of use. A
reformatted source deck is available as
an option.

Generic Key Facility for ISAM Files --
sequential record retrieval can be

requested using a search argument
comprised of a user-specified number of
high-order characters (generic portion)
of the NOMINAL KEY. The user need not
specify a full or exact search key.
This feature is supported via the START
verb.

¢ MERGE Support -- combines from two to
eight identically sequenced files on a
set of specified keys and makes records
available, in merged order, to an
output procedure or a sequential output
file.

e Verb profiles -- facilitates
identifying and locating verbs in the
COBOL source program. Options provide
a verb summary or a verb
cross-reference listing which includes
the verb summary.

s Execution~time statistics -- maintains
a count of the number of times each
verb in the COBOL source progrdm is
executed during an individual program
execution.

PART I

A 4

INTRODUCTION

\ 4

JOE DEFINITION

JOB PROCESSING

PREPARING COBOL PROGRAMS FOR PROCESSING

LIBRARIAN FUNCTIONS

y

INTERPRETING OUTPHT

\ 4

CALLING AND CALLED PROGRAMS

v

d \L
o a aaAanAAA

USING THE SEGMENTATION FEATURE

D

COBOL has undergone considerable
refinement and standardization since 1959.
A standard COBOL has been approved by the
American National Standards Institute, an
industry-wide association of computer
manufacturers and users. This standard is
called American National Standard COBOL.
IBM Full American National Standard COBOL
is compatible with American National
Standard COBOL and includes a number of
extensions to it as well.

An IBM COBOL program may be processed by
the IBM DOS/VS System. Under control of
the operating system, a set of COBOL source
statements is translated to form a module.
In order to be executed, the module in turn
must be processed to form a phase. The
reasons for this will become clear later.
For now it is sufficient to note that the
flow of a COBOL program through the
operating system is from source statements
to module to phase.

The DOS/VS System consists essentially
of a control program and a number of
processing programs, and data management.

CONTROL PROGRAM

The components of the contrel program
are: the Supervisor, Job Control
Processor, and the Initial Program Loader.

SUPERVISOR

The main function of the Supervisor is
to provide an orderly and efficient flow of
jobs through the operating system. (2 job
is some specified unit of work, such as the
processing of a COBOL program.) The
Supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates between the Supervisor and the
processing program. The Supervisor, for
example, handles all requests for
input/output operations.

The primary function of the Job Control
Processor is the processing of job control

INTRODUCTION

statements. Job control statements
describe the jobs to be performed and
specify the programmer's reguirements for
each job. Job control statements are
written by the programmer using the job
control lanquage. The use of job control
statements and the rules for specifying

B R -
them are discussed later.

INITIAL PROGRAM LCADER

The Initial Program Loader (IPL) routine
loads the Supervisor into storage when
system operation is initiated. Detailed
information about the Initial Progran
Loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication DOS/VS System Management Guide.

PROCFSSING_PROGRRAMS

The processing programs include the
COBOL compiler, service programs, and
application programs.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of generating the systen,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. Linkage Editor. The Linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
linked together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. 1In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

Introduction 11

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched
output from the libraries. The systen
libraries are: the core image
library, the relocatable library, the
source statement library, and the
procedure library. In addition, the
Librarian supports private core image,
relocatable, and source statement
libraries. Detailed information on
the Librarian is given later.

APPLICATION PROGRAMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System/Virtual Storage are
executed under the supervision of the
control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., DOS/VS
COBOL, which translate source programs
written in various languages into
machine (or object) language.

2. Sort/Merge

3. Utilities

DATA MANAGEMENT

A third important class of components is
data management routines. These are
available for inclusion in problem programs
to relieve the programmer of the detailed
programming associated with the transfer of
data between programs and auxiliary
storage.

MULTIPROGRAMMING

Multiprogramming refers to the ability
of the system to control more than one

12

program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since
the virtual address space is divided into a
fixed number of partitions. Each progranm
occupies a contiguous area of storage. The
amount of virtual storage allocated to
programs to be executed may be determined
when the system is generated, or it may be
determined by the operator when the program
is loaded into storage for execution.

BACRKGROUND VS. FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background and foreground
programs are initiated by the Job Control
Processor from batched-job input streams.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and four
foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs normally having
priority over background programs. Control
is taken away from a high priority progran
when that program encounters a condition
that prevents continuation of processing,
until a specified event has occurred.
Control is taken away from a lower priority
program when an event for which a higher
priority program was waiting has been
completed. Interruptions are received and
processed by the Supervisor.

In a multiprogramming environment, the
DOS/V¥S COBOL compiler can execute either in
the background or the foreground. 1In
systems that support the batched-job
foreground and private core image library
options, the Linkage Editor can execute in
any foreground partition as well as in the
background partition. To execute the
DOS/VS COBOL compiler for the linkage
editor in any foreground partition, a
private core-image library is required.
Additional information on executing the
compiler and linkage Editor in the
foreground is contained in "Appendix F:
System and Size Considerations." COBOL
program phases can be executed as either
background or foreground programs.

R job is a specified unit of work to be
performed under control of the operating
system. A typical job might be the
processing of a COBOL program -- compiling
source statements, editing the module
produced to form a phase, and then
executing the phase. Job definition -- the
process of specifying the work to be dome
during a single job -- allows the
programmer considerable flexibility. A job
can include as many or as few job_steps as
the programmer desires.

JOB STEPS

A job step is exactly what the name
implies -- one step in the processing of a
job. Thus, in the job mentioned above, one
job step is the compilation of source
statements; another is the link editing of
a module; another is the execution of a
phase. 1In contrast to a job definition,
the definition of a job step is fixed.

Each job step involves the execution of a
program, whether it be a program that is
part of the Disk Operating System/Virtual
Storage or a program that is written by the
programmer. A compilation requires the
execution of the DOS/VS COBOL compiler.
Similarly, an editing implies the execution
of the Linkage Editor Finally, the
execution of a phase is the execution of
the problem program itself.

Compilation Job Steps

The compilation of a COBOL program may
necessitate more than one job step (more
than one execution of the DOS/VS COBOL
compiler). 1In some cases, a COBOL program
consists of a main program and one or more
subprograms. To compile such a program, a
separate job step must be specified for the
main program and for each of the
subprograms. Thus, the DOS/VS COBOL
compiler is executed once for the main
program and once for each subprogranm.
execution of the compiler produces a

Each

module. The separate modules can then be
combined into one phase by a single job
step —-- the execution of the Linkage
Editor.

For a COBOL program that consists of a
main program and two subprograsms,
compilation and execution require five

JOB DEFINITION

steps: (1) compile (main program), (2)
compile (first subprogram), (3) compile
(second subprogram), (4) link edit (three
modules combined into one phase), and (5)
execute (phase). Figure 1 shows a sample

structure of the job deck for these five

job steps. Compilation and execution in
three job steps -- compile, limk edit, and
execute -- is applicable only when the

COBOL source program is a single main
progran. ‘

r

|// JOB PROG1

l.

l.

l.

1// EXEC FCOBOL

| {source deck - main program}
1/*

|.

I.

.

l// EXEC FCOBOL

| {source deck - first subprogram}
1/*

.

le

l.

\// EXEC FCOBOL

| {source deck - second subprogram}
I/*

l.

Pe

|-

i// EXEC LNKEDT

|

|-

l.

\// EXEC

[

lo ot cve v v o o e e — — — o ——— " — o M m— -0 ——e v S— v]

Figure 1. Sample Structure of Job Deck
for Compiling, Link Editing,
and Executing a Main Progran

and Tvwo Subprograms

Multiphase Program_Execution

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
program is known as a multiphase program.

By definition, a phase is that portion
of a program that is loaded into virtual
storage by a single operation of the
Supervisor. A COBOL program can be

Job Definition 13

executed as a single phase only if there is
an area of virtual storage available to
accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technigque that enables the programmer
to use subprograms that do not fit into
virtual storage (along with the main
program) is called overlay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. 2As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs reguire only one execution job
step. Phase execution is the execution of
all phases that comstitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute thenm,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler.
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subseguent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all podules be combimed to
form one, phase; or he can specify that some
modules Rorm one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

14

Compile and Fdit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing. ’

Execute-Only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a
COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL progranm
is to be executed.

Edit and Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It reguires the
execution of both the Linkage Editor and
the resulting phase(s).

Compile, Edit, and Execute: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is cancelled
during execution, the entire job is
terminated; any_remaining job steps_are
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single~-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

JOB DEFINITION STATEMENTS

Once the programmer has decided the work
to be done within his job and how many job
steps are required to perform the job, he
can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job control statements is referred to as a
job deck. 1In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for

the COBOL compiler -- the COBOL program to
be compiled ~- can be placed in the job
deck.

The inclusion of input data in the job
deck depends upon the manner in which the
installation has assigned input/output
devices. Job control statements are read
from the unit named SYSRDR (system reader),
which can be either a card reader, a
magnetic tape unit, or a disk extent.

Input to the processing programs is read
from the unit named SYSIPT (system input),
which also can be either a card reader, a
magnetic tape unit, or a disk extent. The
installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDK and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that are used for job definition: the JOB
statement, the EXEC statement, the
end-of-data statement (/%), and the
end-of-job statement (/&). In this
chapter, the discussion of these job
control statements is limited to the
function and use of each statement. The
rules for writing each statement are given
in the chapter "Preparing COBOL Programs
for Processing."”

The JOB statement indicates the
beginning of control information for a job.
The specified job name is stored in the
communications region of the corresponding
partition and is used by job accountina and
to identify listings produced during
execution of the job.

The JOB statement may be omitted, in
which case the job name NONAME is stored in
the communications region. If the JOB
statement is present, it must contain a job
name; otherwise, an error condition occurs.

The JOB statement is always printed in
positions 1 through 72 on SYSLST and
SYSLOG. The time-of-day and date are also
printed. The JOB statement causes a skip
to a new page before printing is started on
SYSLST.

When a JOB statement is encountered, the
job control program stores the job name
from the JOB statement into the
communications region. If the /& statement
was omitted, the next JOB statement will
cause control to be transferred to the
end-of-job routine to simulate the /§
statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the /% (slash asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COBOL
source statements would be placed
immediately after the EXEC statement for
the COBCL compiler; a /% statement would
follow the last COBOL source statement.

Note: For an input file on a 5425 MFCU,
the /* card must be followed by a blank
card.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a /* statement, the
source statements for the second
compilation followed by a /* statement, any
input data for the Linkage Editor followed
by a /* statement, and perhaps some input
data for the problem program followed by a
/* statement.

The end-of-job statement, also referred
to as the /& (slash ampersand) statement,
defines the end of the job. A /& statement
must appear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS Table 1. Job Control Statements

- T == -1
| Statement| Function |
The four job definition statements form b + 4
the framework of the job deck. There are a |7/ ASSGN | Input/output assignments. [
number of other job control statements in | |
the job control language; however, not all |// CLOSE | Closes a logical unit assigned|
of them must appear in the job deck. The | | to magnetic tape. |
job control statements are summarized |] |
briefly in Table 1. |77/ DATE | Provides a date for the |
| | Communication Region. |
| | |
|77 DLAB | Disk file label information. |
The double slash preceding each | | |
statement name identifies the statement as |77 DLBL | Disk file label information |
a job control statement. Most of the | | and VSAM file processing. |
statements are used for data management -- |] |
creating, manipulating, and keeping track |77 EXEC | Execute program. |
of data files. (Data files are externally | | |
stored collections of data from which data | // EXTENT| Disk file extent. |
is read and onto which data is written.) |] |
|77 JOB | Beginning of control |
| | information for a job. |
| | |
|77 LBLTYP| Reserves storage for label]
|] information. |
| | |
|77/ LISTIO| Lists input/output |
| | assignments. |
| | |
|77 MTC | Controls operations on |
] | magnetic tape. |
| | |
|77 OPTION| Specifies one or more job |
| | control options. |
| [|
| /7 PRUSE | Creates a pause for operator |
| | intervention. |
| I |
|// RESET | Resets input/output |
| | assignments to standard |
| | assignments.]
| | |
|77/ RSTRT | Restarts a checkpointed |
| | programe. |
| | |
|7/ TLBL | Tape label information. |
| I I
|7/ TPLAB | Tape label information. |
| | |
|77/ UPSI | Sets user-program switches. |
| | |
|7/ VOL | Disk/tape label information. |
! | |
|7/ XTENT | Disk file extent. |
| I I
|// ZONE | Sets the zone for the date. |
|7* | End-of-data-file or |
| | end-of-job-step. |
| | |
176 | End-of-job. i
| | |
| * | Comments.]
L 1 —-_—d

(

This chapter describes in greater detail
the three types of job steps involved in
processing a COBOL program. Once the
reader becomes familiar with the
information presented here, he should be
able to write control statements by
referring only to the next chapter,
npreparing COBOL Programs for Processing.®

COMPILATION

Compilation is the execution of the
COBOL compiler. The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the program
name FCOBOL, the name of the DOS/VS COBOL
compiler. This is the EXEC FCOBOL
statement. If the compiler is loaded
from a user program, that program must be
a cataloged phase. The name of the phase
must have as its first four characters
'FCOB'.

Input to the compiler is a set of COBOL
source statements, consisting of either a
main program or a subprogram. Source
statements must be punched in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). The COBOL source statements are
read from SYSIPT. The job deck is read
from SYSRDR. If SYSRDR and SYSIPT are
assigned to the same unit, the COBOL source
statements should be placed after the EXEC
FCOBOL statement in the job deck.

Output from the COBOL compiler is
dependent upon the options specified when
the system is generated. This output may
include a listing of source statements
exactly as they appear in the input deck.
The source listing is produced on SYSLST.
In addition, the module produced by the
compiler may be written on SYSLNK, the
linkage editor input unit, and punched on
SYSPCH. Separate Data and/or Procedure
Division maps, a symbolic cross-reference
list, and diagnostic messages can also be
produced. The format of compiler output is
discussed and illustrated in the chapter
"Interpreting Output.”

The programmer can override any of the
compiler options specified when the system
was generated, or include some not
previously specified, by using the OPTION
control statement in the compile job step.
Compiler options are discussed in detail in
the chapter "Preparing COBOL Programs for
Processing."”

JOE PROCESSING

EDITING

Editing is the execution of the Linkage
Fditor. The programmer regquests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNX.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a program
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases).

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be catalocged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just link
edited is to be executed in the next job
step, it need not have been cataloged. An
EXEC statement will cause the phase to be
brought in from the temporary part of the

Job Processing 17

core image library and will begin
execution. However, the next time such a
module is to be executed, the linkage
editor job step is required since the phase
was not cataloged in the core image
library.

1f a private core image library is
assigned, output from the Linkage Editor is
placed in the private core image library
(either permanently or temporarily) rather
than in the resident system core image
library. When execution of a program is
requested and a private core image library
is assigned, this library is searched first
for the requested phase name and then the
system core image library is searched.

In addition to the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The contents of the phase map are
discussed and illustrated in the chapter
"Interpreting Output.®

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
Control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

18

The phase (s) to be executed must be
contained in the core image library. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is
written in the temporary part of the core
image library by the Linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged) in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However, if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTIPHASE_PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
virtual storage available to accommodate
it. This area, known as the problem
program_area, must be large enough to
contain the main program and all called
subprograms. When a program is too large
to be executed as a single phase, it must
be structured as a multiphase program.

The overlay structure available to the
COBOL programmer for multiphase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main progranm)
and, as such, remains in the problem
program area throughout the execution of
the entire program. The other phases in
the program -~ subordinate phases -~ are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in storage
with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

This chapter provides information about
preparing COBOL source programs for
compilation, link editing, and execution.

ASSIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
input/output statements calling for data to
be read from or written into data files
stored on external devices. COBOL programs
do not reference input/output devices by
their actual physical address, but rather
by their symbolic names. Thus, a COBOL
program is dependent on the device type but
not on the actual device address. Using
VSaM, it is not even dependent on the
device type. The COBOL programmer need
only select the symbolic name of a device
from a fixed set of symbolic names. At
execution time, as a job control function,
the symbolic name is associated with an
actual physical device. The standard
assignment of physical addresses to
symbolic names may be made at system
generation time. However, job control
statements and operator commands can alter
the standard device assignment before
program execution. This is discussed later
in this chapter.

Using DOS/VS, a logical unit may also be
assigned to another logical unit or a
general device class or specific device
type. For more information on this, see
DOS/VS System Management Guide and DOS/VS
System Control Statements.

The symbolic names are divided into two
classes: system logical units and
programmer logical units.

PREPARING COBOL PROGRAMS FOR PROCESSING

The system logical units are used by the
control program and by IBM-suprlied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly
referenced by certain COBOL procedural
statements. Two additional names, SYSIN
and SYSOUT, are defined for background
program assignments. The names are valid
only to the Job Contrcl Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST and SYSPCH are assigned to the
same magnetic tape unit. A complete
discussion of the assignment of the logical
unit SYSCLB can be found in the publication
DOS/VS System Control Statements.

Programmer logical units are those in
the range SYS000 through SYS240 (depending
on the number of partitions in the system)
and are referred to in the COBOL source
language ASSIGN clause.

A COBOL programmer uses the source
language ASSIGN clause to assign a file
used by his problem program to the
appropriate symbolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may alter these assignments at
execution time by means of the ASSGN
control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Preparing COBOL Programs for Processing 19

Table 2. Symbolic Names, Functions, and Permissible Device Types

T i 1 L
|Symbolic | Function | Permissible |
|Name | i Device Types |
= + + i
| SYSRDR iInput unit for control statements or commands. | Card reader |
| | | Magnetic Tape unit {
! 1 | Disk extent |
| | | 3540 diskette |
'S } t 1
|SYSIPT |Input unit for programs. | Card reader |
|] | Magnetic tape unit |
] | | Disk extent |
i i I 3540 diskette 1
ISYSPCH |¥ain unit for punched output. | Card punch |
i i | Magnetic tape unit |
] | | Disk extent |
| | | 3540 diskette 1
t + } al
SYSLST	Main unit for printed output.	Printer
		Magnetic tape unit
		Disk extent
		3540 diskette
SYSLOG	Receives operator messages and logs in job control	Printer keyboard
	statements.	Printer
	i Display operator consolej}	
t + + 4		
SYSLNK	Input to the Linkage Editor.	Disk extent
		' I
t + —t —		
SYSRES	Contains the operating system, the core image	Disk extent
	library, relocatable library, source statement	
	library, and procedure library.	
H +- t —
ISYSCLB |2 private core image library. | Disk extent |
. 3 1 -
] T S 1
}SYSSLE |A private source statement library. | Disk extent 1
- + —t —
|SYSRLB |2 private relocatable library. | Disk extent |
L. 3] 4
] 1 1 L}
|SYSIN [Must be used when SYSRDR and SYSIPT are assigned toj Disk |
| |the same disk extent. May be used when they are | Magnetic tape unit |
| |same disk extent. May be used when they are | Card reader |
| lassigned to the same card reader or magnetic tape. | 3540 Diskette 1
—_ 1 1 g
] L 1 L
|SYSouT |This name must be used when SYSPCH and SYSLST are | Magnetic tape unit i
| |assigned to the same magnetic tape unit. It must | |
| |be assigned by the operator ASSGN conmmand. | |
¢ —1 —t 1
|SYSmax |These units are available to the programmer as work| Any unit |
i lfiles or for storing data files. They are called | |
| |programmer _logical units as opposed to the above- | |
| Imentioned names which are always referred to as | |
i Isyster logical units. The largest number of | |
I jprogrammer logical units available in the system is| |
| |240 (SYS000 through S¥YS240, depending on number of | |
| |partitions) . The value of SYSmax is determined by | |
| |the distribution of the programmer logical units i |
| |among the partitions. | I
} } —t 4
|SYSVIS |Bolds virtual storage page data set. | Disk extent I
L. i 1 4
L] L T 1
|SYSCAT |Holds the VSAM catalog. | Disk extent |
= 1 } 4
ISYSREC |Logs error records. | Disk extent |
T - L J

Preparing COBOL Programs for Processing 21

JOB_CONTROL

The Job Control Processor for the Disk
Operating System/Virtual Storage prepares
the system for execution of programs in a
batched job environment. Input to the Job
Control Processor is in the form of job
control statements and job control
commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an 80-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. Name. Two slashes (//) identify the
statement as a job control statement.
They must be in coluans 1 and 2. At
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data-file statement contains /%
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. Operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blark or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4. Comments. Optional programmer
comments must be separated from the
operand by at least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

211 job control statements are read from

the device identified by the symbolic name
SYSRDR.

Comments_in_Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere

22

in the job deck. The remainder of the card
may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console output unit, SYSLOG, in addition to
being written on SYSLST. If followed by a
PAUSE control statement, the comment
statement can be used to request operator
action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type] indicates that the
programmer's replacement for the
generic term, type, may or may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
ind icate that a choice of one itenm
must be made by the programmer. For
example:

SYS
PROG
ALL
SYSxxx

indicates that either SYS, PROG, ALL,
or SYSxxx must appear in the actual
statement.

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer. For example:

X'ss’
+ALT

indicates that either ,X'ss' or ,ALT
but not both, may appear in the actual
statement, or the specification can be
omitted entirely.
7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes pericds,
commas, and parentheses. For example,
, [date]l means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown.

8. The ellipsis (...) indicates where
repetition may occur at the
programmer's option. The portion of
the format that may be repeated is
determined as follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. Continue scanning right to left
and determine the logically
matching bracket or brace
delimiter.

c. The ellipsis applies to the words

and punctuation between the pair
of delimiters.

Sequence of Job Control Statements

The job deck for a specific job always
begins with a JOB statement and ends with a
/& (end-of-job) statement. A specific job
consists of cone or more job steps. The
beginning of a job step is indicated by the
appearance of an EXEC statement. When an
EXEC statement is encountered, it initiates
the execution of the job step, which
includes all preceding control statements
up to, but not including, a previous EXEC
statement.

The only limitation on the sequence of
statements within a job step is that which
is discussed here for the label information
statements.

The label statements must be in the
order:

DLBL
EXTENT (one for each area or file in
the volume)

or
TLBL

and must immediately precede the EXEC
statement to which they apply.

DESCRIPTION AND FORMATS OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /%, /&, and *, contain two
slashes in columns 1 and 2 to identify
them.

JOB Statement

The JCB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
following format:

r
|7/ JOB jobname
L

— —

jobname
is a programmer-defined nare
consisting of from one to eight
alphanumeric characters. Any user
comments can appear on the JOB control
statement following the jobname
(through column 72). The time of day
and date appear in columns 73 to 80
when the JOB statement is printed on
SYSLST. The time of day and date are
also printed in columns 1 through 8 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

Preparing COBOL Programs for Processing 23

The ASSGN control statement assigns a
logical input/output unit to a physical
device. An ASSGN control statement must be
present in the job deck for each data file
assigned to an external storage device in
the COBOL program where these assignments
differ from those established at system
generation time. Data files are assigned
to programmer logical units in COBOL by
means of the source language ASSIGN clause.
An ASSGN statement or command can also be
used

e to unassign a logical unit to free it
for assignment to another partition

e to ignore the assignment of a logical
unit, that is, program references to
the logical unit are ignored (useful in
testing and certain rerun situations)

» to specify an alternate tape unit to be
used when the capacity of the original
is reached.

The assignment routines check the
operands of the ASSGN statement/command for
the relationship between the physical
device, the logical unit, the type of
assignment (permanent or temporary), etc.
The following list summarizes the most
pertinent items to remember when making
assignments:

1. Assignments are effective only for the
partition in which they are issued.

2. ©No physical device except DASD can be
assigned to more than one active
partition at the same time.

3. All system input and output file
assignments to disk or diskette must
be permanent.

4. SYSIN must be assigned if both SYSRDR
and SYSIPT are to be assigned to the
same extent.

5. SYSOUT cannot be assigned to disk or
diskette; it must be a permanent
assignment if assigned to tape.

6. SYSLNK must be assigned kefore issuing
the LINK or CATAL option in the OPTION
statement; otherwise, the option is
ignored and the message 'PLEASE ASSIGN
SYSLNK' is issued to the operator.

7. If SYSRDR, SYSIPT, 3SYSLST, or SYSPCH

is assigned to tape or diskette, or

disk when the system is generated, it
will be unassigned by IPL. Such
assionments can be made effective only
with the job control ASSGN statement or

2u

Ct
fiie.

8. Before a tape unit is assigned to
SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit
must be permanently unassigned. This
may be done by using a DVCDN command
instead.

9. The assignment of SYSLOG cannot be
changed while a foreground partition
is active.

10. SYSRES, SYSCAT, and SYSVIS can never
be assigned by an ASSGN statement or
command. An IPL is required to change
these assignments.

The ASSGN control statement may also be
used to change a system standard assignment
for the duration of the job.

The format of the ASSGN control
statement is as follows:

¥

| ,X!'ss?t
| // ASSGN SYSxxx,device-address

|

L

e e e

»ALT

SYSxxx
is one of the logical devices listed
in Table 2.

Exception: SYSOUT must be assigned
using the ASSGN job control command.
Job control commands are described in
detail in the publication DOS/VS
System Control Statements.

device-address
allows four different formats:

cuu (Rel.
or

X*cuu'
where ¢ is the channel number and uu
the unit number in hexadecimal
notation. The values of *cuu' are
determined by each installation.

35 and up)

¢ = 0 for multiplexor channel,
1 through 6 for selector
channels 1 through 6.

uua = 00 to FE (0 to 254) in

hexadecimal.

4

indicates that the logical unit is
to be unassigned. Any source
language input/output operation
attempted on this device causes
cancellation of the job.

IGN
indicates that the logical unit is
to be unassigned. Each time a READ
statement for the file assigned to
IGN is encountered, control will be
transferred to the
imperative-statement following the
AT END option. The 1IGN option is
not vaiid for SYSRDR, SYSIPT, and
SYSIN. This option is useful in
program debugging since source
language references to input files
residing on symbolic units for which
IGN has been specified are ignored.
Any file for which the IGN option is
used must be a sequential input
file. Output files assigned with
the IGN option are not supported by
DOS/VS COBOL object programs.

X'ss"
is the device specification. It is
used for specifying mode settings for
7-track and dual density 9-track
tapes. If X'ss' is not specified, the
system assumes the value specified at
system generation for 7-track tapes
and X'C0' for 9-track tapes. The
possible specifications for X'ss' are
shown in Figure 3.

ALT
must be specified in the control
statement that assigns an alternate
magnetic tape unit which is used when
the capacity of the original
assignment is reached. The
specifications for the alternate unit
must be the same as those of the
original unit, since X'ss' cannot be
specified. The characteristics of the
alternate unit must be the same as
those of the original unit. Multiple
alternates can be assigned to a
symbolic unit.

H1
indicates input hopper one for 2560 or
5425.

H2
indicates input hopper two for 2560 or
5425. H2 may only be assigned to
SYSRDR, SYSIPT or SYSPCH.

Device assignments made by the ASSGN
control statement are considered temporary.
They are in effect until another ASSGN
control statement or a RESET statement for
that logical unit, or the next /& or JOB
statement is read, whichever occurs first.
If a RESET, /&, or JOB statement is
encountered, the assignment reverts to the
standard assignment established at system
generation time plus any modification by an
ASSGN cormand.

The COBOL programmer may assign only the
programmer logical units (SYS000 through
SYS240, depending on the number of
partitions) to data files used in his
program. For example, if the following
ASSIGN clause is used,

SELECT IN-FILE ASSIGN TO SYSOOU-DA-2314-S

an ASSGN control statement must appear in
the job deck which assigns SYS004 to a
physical device if the physical device
differs from the permanent assignment. In
this case, the physical device must be a
2314 direct access device. An example of
such a control statement is:

//7 ASSGN SYS004,X'00C*

Physical unit X'00C' was permranently
assigned to a 2314 direct access device at
system generation time.

Note: The ASSGN control statement is
necessary only when the symbolic unit
assignment is being made to a physical
device address which differs from that
established at system generation time.

"Appendix H: Sample Job Decks" contains
illustrations of ASSGN statement usage.

T T T 3
| | | 7-Track Tape |
| | Bytesi- . T 1
| | per | | Translate | Convert]
| ss | Inch | Parity | Feature | Feature]
t + + 1 + -1
10	200	odd	off	on
20	200	even	off 1 off	
28	200	even 1 on	off	
30	200	odd	off	off
38] 200	odd	on	off	
50	556	odd	off 1 on	
60	556	even	off	off
68	556	even	on	off
! 70	556	odd	off	off
78	556	odd	on] off	
90	800	odd	off	on
AO	800	even	off	off
B8	800	even	on	off
BO	800	odd] off	off	
B8	800	odd	on	off
I	t i L i			
		9-Track Tape		
	t 1			
{ CoO	800	single density 9-track		
] €O	1600	single density 9-track		
] €O	1600	dual density 9-track		
] ¢8	800	dual density 9-track i		
DO	6250	single density 9-track		
i DO | 6250 | dual density 9-track |
L L 1 4

Possible Specifications for
X'ss' in the ASSGN Control
Statement

Figure 3.

Preparing COBOL Programs for Processing 25

CLOSE Statement

The CLOSE control statement is used to
close either a system or programmer logical
unit assigned to tape. As a result of the
CLOSE control statement, a standard
end-of-volume label set is written and the
tape is rewound and unloaded. The CLOSE
statement applies only to a temporarily
assigned logical unit, that is, a logical
unit for which an ASSGN control statement
has been specified within the same job.
The format of the CLOSE control statement
is as follows:

, X' cuu"
+UA

// CLOSE SYSxxx|,IGN
¢ALT

[,X'ss"])

[e e e e
I

The logical unit can optionally be
reassigned to another device, unassigned,
or switched to an alternate unit.

Note that when SYSxxx is a system
logical unit, one of the optional
parameters must be specified. When closing
a programmer logical unit, no optional
parameter need be specified.

SYSxxx
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SYS000 through SYS240,
depending on the number of partitions.

cuu (Rel. 35 and up)

or

X'cuu'
specifies that after the logical unit
is closed, it will be assigned to the
channel and unit specified. (See
"ASSGN control Statement" for an
explanation of 'cuu'.) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

X'ss!
represents device specification for
mode settings on 7-track and 9-track
tape. (See "ASSGN Control Statement”
for an explanation of 'ss'.) If X'ss'
is not specified, the mode settings
remain unchanged.

UA

specifies that the logical unit is to
be closed and unassigned.

26

IGN
specifies that the logical unit is to
be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.

ALT
specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units (SYSPCH, SYSLST, or SYSOUT)
currently assigned to a magnetic tape
unit.

DATE Statement

The DATE control statement contains a
date that is put in the Communication
Region of the Supervisor. A complete
description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." The DATE
statement is in one of the following
formats:

T
|77 DATE mm/dd/yy |
L

t i
|7/ DATE dd/mm/yy I
L ———t
[

where:

mm = month (01 to 12)

dd = day (01 to 31)

yy = year (00 to 99)

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current jok being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
given in the last SET command. The SET
command is discussed in detail in the
publication DOS/VS System Control
Statements.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

The DATE statement should be used at
compile time so that the DATE-CCMPILED
paraaraph is accurate and the WHEN-COMPILED
special register is effective. ‘

TLBL Statement

The TLBL control statement replaces the
YOL and TPLAB combination used in previous
versions of the system. BHowever, the
current system will continue to support
these statements. The TLBL control
statement contains file label information
for tape label checking and writing. Its
format follows:

-
|\// TLBL filenanme,
[,'file-identifier'] [,date]
[,file-serial-number]

[,volume-sequence-number]
[,file-sequence~number]
[,generation-number]
[,version-number]

po s o — o —
e e o o e ——)

filename
identifies the file to the control
program. It can be from three to
seven characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S-OUTFILE

the filename operand on control
statements for this file must be
OUTFILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S

the filename operand on the control
statement for the file must be SYS003.

tfile-identifier*
consists of from 1 to 17 characters,
contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filename will be used. If this
operand is omitted on input files, no
checking will be done.

date
consists of from one to six
characters, in the format yy/ddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this
operand is omitted, a 0-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is

onitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If
omitted on input files, no checking is
done.

file-sequence-number
consists of from one to four
characters in ascending order for each
file of a multifile volume. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If it
is omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is
used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to two numeric
characters that modify the generation
nunber. If this operand is omitted on
output files, BCD 01 will be used. 1If
it is omitted on input files, no
checking will be done.

Note: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

Preparing COBOL Programs for Processing 27

DLBL Statement

The DLBL control statement, in
conjunction with the EXTENT statement,
replaces the VOL, DLAB, and XTENT
combination used in previous versions of
the Disk Operating System. The DLEL
statement has the following format:

r
i// DLBL filename
| [*file-identifert],[date],[codes]

| : , [BLKSIZE=n], (CISIZE=n)

L =

filename
identifies the file to the control
program. It can be from three to
seven characters long. If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A-INPUTA

the filename operand on control
statements for this file must be
INPUTR. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A

the filename operand on control
statements for the file must be
SY¥s005.

*file-identifiert
is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version-
number of generation. If fewer than
44 characters are used, the field is
left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

date
consists of from one to six characters
indicating either the retention period
of the file in the format 4 through
dddd (0-9999), or the absolute
expiration date of the file in the
format yys/ddd. When the d through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
date is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as
90,200, the file will be retained
through the 200th day of the year 1990.

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present

28

for a file ¢

is ignored.

codes

is a 2 to 4 character field indicating
the type of file label, as follows:

SD = Seguential Disk
DA = Direct Access
ISC = Indexed Sequential using Load
Create
ISE = Indexed Sequential using Load
Extension, Add, or Retrieve
DU 3540 Diskette

VSAM = VSAM file

If code is omitted, SD is assumed.

BLKSIZE=n
specifies the number of bytes in a
physical record. n must be less
than 32,768. This parameter is
valid for the 3330-11 and 3350 devices
only, and its use is limited to
sequential files. If specified, it
overrides the BLKSIZE specification
in the definition of the file (DTF).
It permits reblocking of existing
files to a new physical record size
when they are transferred to a
3330~11 or 3350 device, without
requiring recompilation of the DTF.
If the BLKSIZE parameter is not
specified in the DLBL statement, the
new files are assumed to have the
blocksize specified in the DTF. This
parameter is not valid for the compilen
workfiles.

For further information, see DOS/VS
System Control Statements.

CISIZE=n
specifies the control interval size
for SAM files on fixed block devices,
and improves space allocation_on such
devices. The size specified must
be a multiple of the value specified
in the BLKSIZE=n operand. This
operand is valid only for a DLBL
statement with the code SD. It is
not valid for compiler workfiles.

"Appendix H: Sample Job Decks"™ contains
illustrations of DLBL statement usage.

See the section "Processing 3540
Diskette Unit Files" for the use of DLBL
Cards for 3540 and the section "virtual
Storage RAccess Method" for use of DLBL
cards for VSAM.

EXTENT Statement

The EXTENT control statement defines
each area (or extent) of a DASD file -- a
file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLEL statement. ‘

The EXTENT control statement replaces
the XTENT statement used in previous

versions of the Disk Operating System. For

more information on the XTENT statement,
see DOS/VS System_Control Statements.

The format of the EXTENT control
statement is:

r 1
|// EXTENT [symbolic-unit],[serial-number]|
| ([type],[sequence—-nunber] |
ys[relative-track],[number-of-tracks] |
[split-cylinder-track],[B=bins] I

l
|
- 1

sysbolic-unit

is a 6-character field indicating the
symbolic unit (SYSxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTENT
statement will be used. When
specified, symbolic-unit may be any
SYSxxx assigned to the device type
indicated in the SELECT sentence for
the file. For example, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYS004-DA-2314-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2314 disk pack. The
symbolic unit operand is not required
for an IJSYSxx filename, where xx is
iN, PH, LS, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

serial-number
consists of from one to six characters
indicating the volume serial number of
the volume for which this extent is
effective. 1If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the programmer's responsibility if
files are destroyed as a result of
mounting the incorrect volume.

type
consists of one character indicating
the type of the extent, as follows:

1 -- Data area (no split cylinder)

2 -- Overflow area (for an indexed
file)

4 -- Index area (for an indexed file)

8 -- Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number

consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with 0.

If this operand is omitted for the
first extent of ISAM files, the extent
will not be accepted. For SD or DA
files, this operand is not required.
For DA files this operand should be
specified when using more than one
EXTENT for a file. Direct files can
have up to five extents. Indexed
files can have up to eleven data
extents {(nine prime, one cylinder
index, one separate overflow).

relative-track

consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an IsSaM file,
the extent will not be accepted. This
field is not required for DA input or
for SD input files (the extents from
the file labels will be used).

For fixed block devices, this operand
is a number from 2 to 2,147,483,645
that specifies the physical block
at which the extent should start.

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
number = RT

2314 20 x cylinder number + track
or number = RT
2319

2321 1000 x subcell number + 100 x
strip number + 20 x block
number + track number = RT

3330 19 x cylinder number + track
number = RT

3340 12 x cylinder number + track
numper = RT

3350 30 x cylinder number + track
number = RT

Preparing COBOL Programs for Processing 29

Relative to Actual:

2311 RT = quotient is cylinder

10 remainder is track
2314 RT = quotient is cylinder,
or 20 remainder is track
2319

3330 RT = quotient is cylinder,
19 remainder is track

2321 RT = guotient is subcell,
1000 remainderl

remainderl = quotient is strip,

100 remainder?2

remainder2 = quotient is block,

20 remainder is track
3340 RT = quotient is cylinder,

12 remainder is track

3350 RT quotient is cylinder,
30 remainder is track
number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SD input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

-

For fixed block devices, this operand
is a number from 1 to 2,147,483,645
that specifies the number of physical
blocks in the extent.

split-cylinder~-track
consists of from one to two
characters, with a value of 0 through
19, indicating the upper track number
for the split cylinder in SD files.

bins
consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.

There is no need to specify a creating
bin for SD or iISAM files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Appendix H: Sample Job
Decks" contains illustrations of EXTENT
statement usage.

VOL, DLAB, TPLAB AND XTENT STATEMENTS

These statements have been replaced by
the DLBL, TLBL, and EXTENT statements, and,
although they are still supported by the
Disk Operating System, they cannot be used
for 3330 or 3340 disk files, or for VSAM
files. Details as to their usage can be
found in DOS/VS System Control Statements.
For their use with respect to COBOL, see
IBM DOS Full American National Standard
COBOL Programmer®s Guide. When new label
information statements are prepared, DLBL,
TLBL, and EXTENT should be used.

LBLTYP Statement

The LBLTYP control statement defines the
amount of storage to be reserved at linkage
edit time in the problem program area of
storage in order to process tape and
nonsequential DASD file labels. It applies
to both background and foreground object
programs, and is required if the file
contains standard labels.

The LBLTYP control statement immediately
precedes the // EXEC LNKEDT statement in
the job deck, with the exception of
self-relocating programs for which it is
instead submitted immediately preceding the
// EXEC statement for the program. The
format of the LBLTYP control statement is:

TAPE[(nn)]
// LBLTYP 2
NSD(nn)

o o s e ety
o s e e

r
|Direct file:

| The following DLBL and EXTENT statements describe a direct file occupying 840

|tracks, beginning on relative track 10.
| // DLBL MASTER,,75/001,Da

] // EXTENT S¥s015,111111,1,0,10,840
|Indexed file:

| The following DLBL and EXTENT statements describe an indexed file on a 2314
|occupying 100 tracks, beginning on relative track 1100. 1o
The second EXTENT allocates a 80-track data area.

| 20-track cylinder index.
| // DLBL MASTER,,75/001,ISC

] // EXTENT S¥s015,111111,4,1,1100,20
| // EXTENT S¥s015,111111,1,2,1120,80
L

The first EXTENT allocates a

e o e e e e e et s e i s o e o}

Figure 4.

Sample Label and File Extent Information for Mass Storage Files

TAPE((nn)]
is used only if tape files reguiring
label information are to be processed
and if no nonsequential DASD files are
to be processed. nn is optional and
is present only for future expansion.
It is ignored by the Job Control
Processor.

NSD(nn)
is used if any nonsegquential DASD
files are to be processed, regardless
of other type files that are used. nn
specifies the largest number of
extents to be used for a single file.

LISTIO Statement

The LISTIO control statement causes the
system to print a list of input/output
assignments on SYSLST. The format of the
LISTIO control statement is:

r
| SYs

] PROG

I BG

l F1

| F2

i F3

[Fu

|7/ LISTIO ALL

i SYSxxx

| UNITS

| DOWN

] UA

i cuu

| X'cuu'

| ASSGN (Rel. 35 and up)
L i

o ot s e W e e Bt it P 4t St st St it sttt

SYS
causes the physical units assigned to
all system logical units to be listed.

PROG
causes the physical units assigned to
all background programmer logical
units to be listed.

BG
lists the physical units assigned to
all logical units of the background
partition.

F1
causes the physical units assigned to
all foreground-one logical units to be
listed.

F2
causes the physical units assigned to
all foreground-two logical units to be
listed.

F3
causes the physical units assigned to
all foreground-three logical units to
be listed.

Fu
causes the physical units assigned to
all foreground-four logical units to
be listed.

ALL
causes the physical units assigned to
all logical units to be listed.

SYSxxx
causes the physical units assigned to
the logical unit specified to be
listed.

UNITS
causes the logical units assigned to
all physical units to be listed.

DOWN
causes all physical units specified as
inoperative to be listed.

va

causes all physical units not
currently assigned to a logical unit
to be listed.

| cuu (Release 35 and up)

or
X'cuu'
causes the logical units assigned to
the physical unit specified to be
listed.

ASSGN
causes all system and program logical
units assigned to the current partition
to be listed.

MTC Statement

The MTC control statement controls 2400
and 3400 series magnetic tape operations.
The format is as follows:

| ahaintesiatnbshstab ettt bbbkl ettt ai i =
! // MTC opcode, {i?%%ﬁ’f}[,nn] :
' AR 1
AR ok LSS 4
opcode

specifies the operation to be

performed. opcode can be chosen from
the following:

BSF -- Backspace to tapemark

BSR -- Backspace to interrecord gap
ERG -- Erase gap (write blank tape)
FSF -- Forward space to tapemark

FSR -- Forward space to interrecord
gap

RUN -- Rewind and unload

Preparing COBOL Programs for Processing 31

REW -- Rewind
WTM -- Write tapemark

SYSxxx
represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

X'cuu'
represents any physical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

{,nnl
is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted, the
operation is performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

The order in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/& statement.

The options are:

LOG
causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

NOLOG
suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

DUMP
causes a dump of the registers and
virtual storage to be printed on
SYSLST in the case of an abnormal
program termination (such as a program
check). Using the compiler SYMDMP,
FLOW, or STATE features, it may not be
necessary to use this option.

32

NODUMP
suppresses the DUMP option.

LINK
indicates that the object mddule is to
be link edited. When the LINK option
is used, the output of the COBOL
compiler is written on SYSLNK. The
LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground unless the private core
image library option is supported and
a private core image library is
assigned.

NOLINK
suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program,
or if SYNTAX is in effect, or if
CSYNTAX is in effect and an E-level
error is encountered.

DECK
causes the COBOL compiler to punch an
object module on SYSPCH. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.?1

NODECK
suppresses the DECK option. The DECK
option is also suppressed if SYNTAX is
in effect, or if CSYNTAX is in effect
and E-level errors exist.

LIST
causes the compiler to write the COBOL
source statements on SYSLST. If
lister is in effect, the LIST option
is overridden; LISTER causes a listing
regardless of whether LIST or NOLIST
is specified.

NOLIST
suppresses the LIST option.

LISTX
causes the COBOL compiler to write a
Procedure Division map on SYSLST. 1In
addition, glokal tables, literal
pools, register assignments, and
procedure block assignments will be
provided. You may want to use the CBL

1The //option card options pertaining to
the compiler will be suppressed if the
"LISTER CONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

option CLIST (condensed list) in place
of this.?*

NCLISTX
suppresses the LISTX option, as do the
same conditions as cause DECK to be
suppressed.

XREF
causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST. You may want to use the CBL
option SXREF in place of this, or the
lister cross-reference information for
large COBOL programs.

NOXREF
suppresses the XREF option. SXREF
also suppresses XREF, as do the same
conditions as cause DECK to be
suppressed.

SYM
causes the COBOL compiler to write a
Data Division map on SYSLST. 1In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided.?t

NOSYM
suppresses the SYM option.

ERRS
causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.?1

NCERRS
suppresses the ERRS option.
not suppress FIPS messages.

It does

CATAL
causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment unless the private core
image library option is supported and
a private core image library is
assigned.

STDLABEL
causes the standard label track to be
cleared and all DASD or tape labels
-submitted after this point to be

iThe //option card options pertaining to
the compiler will be suppressed if the
FLISTER ONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard
file definition statements is
submitted. STDLABEL is not accepted
by the Job Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL
are included in the standard file
definition set until one of the
following occurs:

s End-of-job step

¢ End-of-job

e OPTION USRLABEL is specified
e OPTION PARSTD is specified

USRLABEL
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLAEREL
option at end-of-job or end-of-job
step. BAll file definition statements
submitted after the PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. All file
definition statements submitted after
OPTICN PARSTD will be included in the
standard file definition set until one
of the following occurs:

¢ End-of-job step

s End-of-job

e OPTION USRLABEL is specified
e OPTION STDLABEL is specified

For a given filename, the sequence of
search for lakel information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

Note: TIf NOLINK and NODECK are requested

on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYMDMP or OPT specification is ignored.

Preparing COBOL Programs for Processing 33

The coptions specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two
options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

PAUSE Statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

T
| 7/ PAUSE [comments]
L

e

The PAUSE control statement is effective
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and mount
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, processing is
stopped in the partition until a response
is given. The end/enter key causes
processing to continue.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET command is
discussed in detail in the publication
DOS/VS System Control Statements. The
format of the RESET statement is:

34

r ittt |
! SYS |
|// RESET | PROG 1
I ALL |
I SYSxxxS |
L -1
SYS

resets all system logical units to
their standard assignments.

PROG
resets all programmer logical units to
their standard assignments.

ALL
resets all system and programmer
logical units to their standard
assignments.

SYSxxx

resets the logical unit specified to
its standard assignment.

RSTRT Statement

A restart facility is availakle for
checkpoint programs. A programmer can use
the source language RERUN clause in his
program to cause checkpoint records to be
written. This allows sufficient
information to be stored so that program
execution can be restarted at a specified
point. The checkpeint information includes
the registers, tape positioning
information, a dump of virtual storage, and
a restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

r
|// RSTRT SYSxxx,nnnn[,filename]
L

SYSxxx
is the symbolic unit name of the 2400,
3410, 3420, 2311, 2314, 2319, 3330,
3340, 3350, or fixed block devices
checkpoint file used for restarting.
This unit must have been assigned
previously.

nnnn
is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

filename
is the symbolic name of the disk
checkpoint file used for restarting.
It must be identical to the SYSxxx of
the system-name specified in the
RERUN clause.

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
Restarting can be done from any checkpoint
record, not just the last. The jobname
specified in the JOB statement must be
identical to the jobname used when the
checkpoint was taken. The proper
input/output device assignments must
precede the RSTRT control statement.

Assignment of input/output devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

See the chapter "Program Checkout" for
further details on taking checkpoints and
restarting a program for which checkpoints
have been taken.

UPSI Statement

The UPSI control statement allows the
programmer to set program switches that can
be tested by problem programs at execution
time. The UPSI control statement has the
following format:

r
|// UPSI nnnnnnnn
L

(Y

nannnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Regicn of the Supervisor. 2
complete description of the fields of the
Communication Regicn is given in "Appendix
G: Communication Region." The Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each job. Wwhen the UPSI control statement
is read, the Job Control Processor sets
these bits to the programmer's
specifications. Any combination of the
eight bits can be tested in the COBOL
source program at execution time by means
of the source language switches UPSI-0
through UPSI-T.

EXEC Statement

The EXEC statement (Execute Program orxr
Procedure) indicates the end of control
information for a job step and the
beginning of execution of a program, in
which case it must be the last command or
statement processed before a job step is
executed.

// EXEC [[PGM=]lprogramnamel [,REAL][,SIZE]
[PROC=procedurenare]

PGM=programname
represents the name of the program in
the core image library to be executed.
The program name corresponds to the
first or only phase of the program in
the library. The program name can be
one to eight alphameric characters
{(0-9, A-2, #, $, a). The first
character must not be numeric.

If the program to be executed has just
been processed by the linkage editor,
the program name is omitted and the
PGM keyword cannot be used.

REAL
indicates that the job step started by
EXEC will be executed in real mode.
If REAL is not specified the job step
is always executed in virtual mode.
RERL cannot be specified for progrars
using VSAM, the 3886, for ISaM
programs using the ISAM interface
program or, for programs compiled with
the CBL option count.

SIZE=size
Size can be nK, AUTO or (AUTO, nK).

(a) If specified with REAL, it indicates
the size of that part of the real
partition that will be needed by the
job step's associated EXEC. The
remaining part of the real partition
is given to the page pool.

Preparing COBOL Programs for Processing 35

If SIZE is omitted and REAL is
specified, the whole real partition is
used by the djob step.

In Release 35 (DOS/VS) and up, if the
COBOL compiler is executed in a real
partition, a SIZE parameter must be
specified. Also, make sure there is
enough real GETVIS space available.

(b) If used without REAL, it specifies

that the virtual partition to be used
by the job step is divided into two
parts: the lower part with a size of
nK will contain the program initiated
with EXEC; the upper part serves as
additional storage pool for other
modules (for example, VSAM) required
by the program in that partition. The
program reserves the upper storage
part for its needs by issuing GETVIS
macros with the required amount of
storage as parameter; it releases the
storage by issuing FREEVIS macros.

I1f SIZE is omitted, the whole virtual
partition is used for the job
initiated with EXEC.

SIZE (without REAL) must always be
specified for VSAM programs or for
ISAM programs, using the ISAM Interface
Program (IIP), as well as for 3886
processing, and for programs compiled
with the CBL option count.

If you specify SIZE=AUTO, the system
automatically uses the information in
the core image directory to calculate
the size of the program to be loaded.
If you specify SIZE=(AUTO,nK). The
system adds nK bytes to the calculated
length.

The following restrictions apply to n:

* n must not be larger than the size
of the partition it refers to.

* n must be greater than zero.

e if n is not a multiple of 2, n+l is
used

Note: If you specify SIZE=AUTO, a
part of the partition is allocated

to the page pool. The storage space
left is not sufficient for the
compiler program. Thus you should not
specify SIZE=AUTO in an EXEC FCOBOL
statement (for more detailed
information, refer to System Control
Statements).

Note: If CBL option SYMDMP is used,
see Appendix F: "System and Size
Considerations."

PRCC=procedurename

36

represents the name of the procedure
to be retrieved from the procedure
library. The procedure name can be
from one to eight alphanumeric

characters, the first of which must be
alphabetic.

For more information on cataloged
procedures, as well as the use of
overwrite statements and the rules
that apply to temporary procedure
modification, refer to the DOS/VS
System Management Guide and the
chapter "Librarian Functions" in this
book.

CBL STATEMENT -- COBOL OPTION CONTROL CARD

Although some ortions for compilation
are specified either at system generation
time or in the OPTICN control statement,
the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL card must be placed between the
EXEC FCOBOL statement and the first
statement in the CCBOL program. The CBL
card cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL cards may be used.

The options shown in the following
format may appear in any order. No comment
should appear in the operand field.
Underscoring indicates the default case. To
change the defaults for your installation,
see "Changing the Installation Defaults."

lf 1
|
] : «SEQ «FLAGW I
] CBL [BUF=nnnnn)] | ,NOSEQ « FLAGE |
|]
| , SUPMAP {,SPACEn] [,CLIST |
| | NOSUPMAP NOCLIST]
| |
| [,STXIT ,QUOTE 7 [, TRUNC } [,ZWB] I
| | (NOSTXIT || ,APOST || ,NOTRUNC | | ,NOZWB J |
] I
i [,SXREF [,PMAP=h] [,OPTIMIZE |
| ,NOSXREF] +NCOPTIMIZE | |
| ,OPT |
| | » NCOPT I
| I
| [,FLOW(=nnl1[,STATE ", SYNTAX I
| NOSTATE ,CSYNTAX |
| | NOSYNTAX |
| I
| (,sYMmDMPI[=filenamel] [,VERBSUM |
| :HQ!EBEéQM] [
| I
| [+ VERBREF] « COUNT I
| L+ NOVERBREF [,NOCOUNT |
' I
I
| a7l
| r By
| [CATALR ,LIB ,VERB LLVL= YC (|
{ ,NOCATALR][,NOLIB][,NOVERB] DY i
| . NOLVL |
L — Jd

<
:

{

CBL
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

BUF=nnnnn
the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer. nnnnn is a
decimal number from 512 to 32,767. If
this option is not specified, 512 is
assumed. The BUF option should be
used to specify an optional blocksize
(which will depend on the device type)
for the workfiles. Usually, a larger
blocksize will enhance the performance
of the compiler. However, for any
given BUF specification, the compiler
space requirements (over 64K) are
increased by a factor of
6x (nnnnnn-512) . 6x(nnnnnn-512K)+ 64K
=partition size.

SEQ

NOSEQ
indicates whether or not the compiler
is to check the sequence of source
statements. If SEQ is specified and a
statement is not in sequence, it is
flagged. If the lister feature is
invoked, the source statements are
resequenced automatically before the
sequence check is performed.

FLAGW

FLAGE
determines which diagnostics the
compiler will list. FLAGW indicates
that all diagnostics will be listed
(severity levels W, C, E, and D).
FLAGE indicates that only those
diagnostics with severity levels C, E,
and D will be listed. This has no
effect on FIPS messages.

SUPMAP

NOSUPMAP
causes the CLIST and LISTX options to
be suppressed if an E-level diagnostic
message is produced by the compiler.
For the DECK option, refer to OBJECT
MODULE in the chapter "Interpreting
Output."

SPACEn
indicates the type of spacing to be
used on the output listing. n can be
specified as either 1 (single
spacing), 2 (double spacing), or 3
(triple spacing). If the SPACEn
option is omitted, single spacing is
provided. Single spacing is always in
effect if the lister feature is
invoked.

CLIST

NOCLIST _
indicates that a condensed listing is
to be produced. The condensed listing
will contain only the address of the

first generated instruction for each
verb in the Procedure Division. In
addition, glokal taples, literal
pools, register assignments, and
procedure block assignments will be
provided. The CLIST opticn overrides
the LISTX or NOLISTX options. The
LISTX or NCLISTX options are either
estakblished at system generation time
or specified in the OPTION control
statement.

STXIT

NOSTXIT

enables a USE AFTER STANDARD ERROR
declarative to receive control when an
input/output error occurs on a unit
record device. The use of STXIT
precludes the use of SYMDMP, STATE,
and FLOW in the compiled program and
in any other program link-edited with
the compiled program, and vice versa.

QUOTE
APOST

QUOTE indicates to the compiler that
the double guotation marks (") should
be accepted as the character to
delineate literals; APOST indicates
that the apostrophe (") should be
accepted instead. The compiler will
generate the specified character for
the figurative constant QUOTE(S).

TRUNC
NOTRUNC

applies only to COMPUTATIONAL
receiving fields in MOVE statements
and arithmetic expressions. If TRUNC
is specified, extra code is generated
to truncate the final intermediate
result of the arithmetic expression,
or the sending field in the MOVE
statement, to the nuwber of digits
specified in the PICTURE clause of the
COMPUTATIONAL receiving field. If
NOTRUNC is specified, the compiler
assumes that the data being
manipulated conforms to PICTURE and
USAGE specifications. The compiler
then generates code to manipulate the
data based on the size of the field in
storage (halfword, etc.). TRUNC
conforms to the American National
Standard, while NOTRUNC leads to more
efficient processing. This will
occasionally cause dissimilar results
for various sending fields because of
the different code generated to
perform the oreration.

NOZWB

determines if the compiler will
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZWB is in effect, the signed external

Preparing COBOL Programs for Processing 37

SXREF

decimal field is moved to an
intermediate field and has its sign
stripped before being compared to the
alphanumeric field. 2zWB conforms to
the ANS standard, while NOZWB allows
the user to test input numeric fields
for SPACES to prevent aknormal
termination.

one may be in effect during a given

compilation. In addition, FLOW and
STXIT are mutually exclusive at
execution time. Additional
information on the flow trace option
can be found in the chapter "Symbolic
Debugging Features.”

STATE

NOSXR

PMAP=

EF

causes the compiler to write an
alphabetically-ordered cross-reference
list on SYSLST. You may want to use
the lister cross-reference information
in place of this option for large
COBOL programs, to decrease run time.

h .
enables the programmer to request a
relocation factor "h". If the PMAP
option is specified, the relocation
factor is included in the addresses of
the object code listing. The
relocation factor "h" is a hexadecimal
number of from one to eight digits.

If the PMAP option is not specified,
the relocation factor is assumed to be
zero. When PMAP is specified in a
segmented program, the listing for
segments of priority higher than the
segment limit (49, if the SEGMENT-
LIMIT clause is not specified), will

NOSTATE

STATE provides the prograrmer with
information about the statement being
executed at the time of an abnormal
termination of a job. It identifies
the program containing the statement
and provides the number of the
statement and of the verlk being
executed. STATE and STXIT, STATE and
SYMDMP, and STATE and OPT are mutually
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE automatically exist
with SYMDMP.) In addition, STATE and
STXIT are mutually exclusive at
execution time. Additional
information on the statement number
option can be found in the chapter
"Symbolic Debugging Features."

SYNTAX, CSYNTAX, NOSYNTAX,

not be relocated. The PMAP option

has meaning only when LISTX or CLIST
and/or SYM (for the location of WORKING-
STORAGE) is in effect.

OPTIMIZE
NCOPTIMIZE

OPT

NOOPT

OPTIMIZE (OPT) causes optimized object
code to be generated by the compiler.
The more efficient code generated con-
siderably reduces the amount of space
required by the object program. If
neither LINK nor DECK is specified in
the OPTION statement, then optimized
code is not generated by the compiler.

This option cannot be used if either the
symbolic debug option (SYMDMP), the state-
ment number option (STATE), or the flow
trace option (FLOW[=nn]) is requested.

FLOV [=nn]

provides the programmer with a formatted
trace (i.e., a list containing the pro-
gram identification and statement
numbers) corresponding to a variable
number of procedures executed prior to
an abnormal termination. The value "nn
may range from 0 through 99. If "nn" is
not specified, a value of 99 is assumed.

¥

FLOW and STXIT, and FLOW and OPT are
mutually exclusive options, i.e., only

indicates whether the source text is
to be scanned for syntax errors only
and appropriate error messages are to
be generated. For conditional syntax
checking (CSYNTAX), a full compilation
is produced so long as no messages
exceed the C level. If one or more
E-level or higher severity messages
are produced, the compiler generates
the messages kut does not generate
object text.

Notes:

1. When the SYNTAX option is in
effect, all of the following
compile-time options are
suppressed:

OPTION control statement:
DECK, XREF

LINK,

CBL statement: SXREF, CLIST,
COUNT, VERBREF, VERBSUM

2. When CSYNTAX is requested and one
or more D- or E-level messages
occur,; then the preceding options
are suppressed and the CBL option
FLAGE is made active.

3. Unconditional syntax checking is
assumed if all of the following
compile-time options are
specified:

OPTION control statement: NOLINK,
NOXREF, NODECK

CBL statement: SUPMAP.(and CLIST,
SXREF, VERBSUM, and VERBREF are
not specified)

4. Some compiler diagnostics do not
appear when SYNTAX or CSYNTAX is
in effect. These are listed in
"Program Checkout."”

SYMDMP [=filename]
indicates to the compiler that
execution-time dumps might be
requested for the program currently
being compiled. If dumps are desired,
the programmer must provide the
required control cards at execution
time. For storage considerations at
execution time, see Appendix F:
"System and Size Considerations."

Use of the symbolic debug option
necessitates the presence of an
additional work file, SYS005, at
compile time. The "filename"
parameter enables the programmer to
specify a name for the SY¥S005 file
that he can retain. If no filename is
specified, IJSYS05 will be used. When
several COBOL programs are link edited
together, the "filename" parameter
enables each to have a unique SYMDMP
name. Compile and execution must be
done in the same job stream. The
SYS005 file is deleted at end of job.
For a tape file, only unlabeled tapes
may be used, and the filename in

the SYMDMP=filename parameter is
ignored. '

SYMDMP and STXIT, SYMDMP and STATE,
and SYMDMP and OPT are mutually
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE are automatically
included with SYMDMP.) In addition,
SYMDMP and STXIT are mutually
exclusive at execution-time.
Additional information on the symbolic
debug option and the required
execution-time control cards can’ be
found in the chapter "Symbolic
Debugging. Features."

Note: If NODECK and NOLINK are requested

on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYMDMP or OPT specification is ignored.

CATALR

NOCATALR
causes the compiler to generate CATALR
card images on the SYSPCH file if
OPTION DECK is in effect during
compilation. This will allow
cataloging of the compiler produced
object modules into the relocatable
library. The module names in the
CATALR cards adhere to the same rules
as the phase names in the compiler

LIB

produced PHASE cards according to the
segmentation and sort phase naming
conventions (see the sections on Sort
and Segmentation Features).

NOLIB

VERB

indicates that BASIS and/or COPY
statements are in the source prograrm.
If either COPY or BASIS is present,
LIB must be in effect. If COPY and/or
BASIS statements are not present, use
of the NOLIB option yields more
efficient compiier processing.

NOVERB

LVL=

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
LISTX, CLIST, VERBSUM, VERBREF, COUNT
or READY TRACE are in effect. NOVERB
yields more efficient compilation.

A

B
Cc
D

NOLVL

indicates whether the compiler should
identify COBOL clauses and statements
in a DOS/VS COBOL source program that
do not conform to the Federal
Information Processing Standard. FIPS
recognizes four language levels: 1low,
low-intermediate, high-intermediate
and full. The FIPS Flagger provides
four levels of flagging from low (A)
to high (D) to conform to the four
levels of the FIPS.

Note: The FIPS Flagger needs a disk
workfile to be assigned to S¥S006.

VERBSUM

NOVERBSUM

provides a brief summary of verbs used
in the program and a count of how
often each verb was used. This option
provides the user with a quick search
for specific types of statements.
VERBSUM implies VERB.

VERBREF
NOVERBREF

provides a cross reference of all
verbs used in the program. This
option provides the programmer with a
quick index to any verb used in the
program. VEREREF implies VERB and
VERBSUM.

COUNT
NCCOUNT

generates code to produce verb
execution summaries at the end of
problem program execution. Each verb
is identified by procedure-name and by

Preparing COBOL Programs for Processing 39

statement number, and the number of
times it was used is indicated. 1In
addition, the percentage of verb
execution for each verb with respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is
provided. COUNT implies VERB.

Note: If COUNT and STXIT are desired,
then either STXIT must be requested in
the program unit requesting COUNT, or
the program unit requesting COUNT must
be entered before the program unit
requesting STXIT. See the chapter
entitled "Execution Statistics" for
additional information on the COUNT
option.

LST Statement -- New Compiler Option Card

The LST statement is used to invoke the
lister, a portion of the compiler that
processes programs written in American
National Standard COBOL to produce a
reformatted source code listing containing
embedded cross-reference information, and
uniform indenting conventions.

The LST option card can be placed
anywhere between the EXEC statement and the
first statement of the COBOL program. It
may be placed between any other compiler
option cards. The options shown in the
following format may appear in any order.
Underscoring indicates the default case.

- 1

NODECK || NOCOPYPCH | | LSTONLY 2col ||
l

4

r

]

|[DECK,][COPYPCH, LSTCOMP,] [PROC=1col,]|
! .

|

L

LST
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

DECK

NODECK
indicates whether an updated source
deck is to be produced as a result of
the lister reformatting and/or the
update BASIS library.

COPYPCH

NCCOPYPCH

will punch updated and reformatted
copy libraries as a permanent part of
the source when DECK is specified.
When no updated source deck is

40

requested, an updated and reformatted
COPY library will be punched out.

LSTONLY

LSTCOMP
when LSTONLY is specified, the prograr
will not be compiled, but a
reformatted listing will be produced
along with a deck if DECK has been
specified. LSTCOMP will provide a
source listing and will compile the
program as part of the job step.
LSTCOMP does not suppress CLIST.

PROC=1col
2col
will list the Procedure Division in
either single- or double-column
format. At least 132 print positions
are required on the printer for the
double-column format.

For more details on the lister program,

see the chapter entitled "Using the Lister
Feature".

Mutually Exclusive Options

In some of the preceding descriptions of
the CBL card options, restrictions have
been placed on the use of one ortion in
conjunction with others. It should be
noted that if these restrictions are
violated, the compiler ignores all but the
last of the conflicting options specified.
For this reason, if after a CBL card is
coded the programmer decides to use a new
option that is mutually exclusive with an
option on the original CBL card, a new CBL
card can be added rather than changing the
original card.

Changing the Installation Defaults

In order to change the compiler default
options to suit your installation, a new
member, C.CBLOPTNS, must be added to the
source statement library. This module must
contain CBL option cards specifying the
desired defaults. Resultant defaults may
be overridden at compilation time by
supplying a CBL card in the compiler input
stream.

significant Characters for Various Options

The DOS/VS COBOL compiler selects the
valid options for processing by looking for
three significant characters of each key-

option word. When the keyword is
identified, it is checked for the presence
or absence of the prefix NO, as
appropriate. The programmer can make the
most efficient use of the CBL card by using
the significant characters instead of the
entire option. Table 3 lists the
significant characters for each option.

Table 3. Significant Characters for
Various Options

r ! H
i ! Significant !
] Option | Characters |
F —————1 3
i SEQ ! SEQ !
l FLAGE (W) | LAG,LAGW l
| BUF] BUF]
i SPACE | ACE |
| PMAP | PMA I
| SUPMAP ! SUP |
| CLIST | CLI I
| TRUNC | TRU |
| APOST | APO |
] QUOTE 1 QUO |
i SXREF [SXR |
| STATE | STA |
| FLOW] FLO]
| LIB] LIB |
I SYMDMP] SYM |
| OPTIMIZE | OPT [
| SYNTAX | SYN I
| CSYNTAX | csY |
[VERB | VER I
| ZWB | ZWB |
! LVL | LVL]
| COUNT | cou |
| VERBSUM | VERBSUM |
] VEREREF | VERBREF |
I STXIT i STX i
| DECK i DEC |
[COPYPCH] COP l
| LSTCOMP | STC |
| LSTONLY | STO |
| PROC 1 PRO |
) L 4
Note: SYM on the CBL card should not be

confused with SYM on the OPTION card.

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to
{1) communicate to the system that a device
is unavailable, or (2) designate a
different device as the standard for a
given symbolic unit. Therefore, these
commands normally are not a part of the

regular job deck for a job. Jobk control
commands tend tc be effective across jobs,
whereas job control statements are confined
within a job.

Job control commands are discussed in
detail in the publication DOS/VS System
Control Statements.

LINKAGE EDITOR CONTROL STATEMENTS

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present on SYSIPT or
in the relocatable library. B2ll four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

The Linkage Editor is executed as a
distinct job step. Fiqure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. Catalog Programs in Core Image
Library. The linkage editor function
is performed immed’ately preceding the
operaticn that catilogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the lLinkage Editor are
cataloged in the core image library by
the Librarian after the editing
function is performed. The sequence
of this operation is shown in Part A
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the modulel(s)
to be copied from the relocatable
library in an INCLUDE statement.

Preparing COBOL Programs for Processing 40.1

40.2

Load~and-Execute. The sequence of
this operation 1s shown in Part B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
Control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom-
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been link edited and temporarily
stored in the core image library is to
be executed.

Compile-and-Execute. Source modules

can be compiled and then executed in a

single sequence of job steps. 1In
order to do this, the COBOL compiler
is directed to write the okject module
directliy on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage
editor function is performed. The
program is link edited and tem-
porarily stored in the core image
library. The sequence of this
operation is shown in Part C of Figure
5.

In each of the operations described in
Figure 5, if a private core image library
is assigned, output from the Linkage Editor
will be placed (either permanently or
temporarily) in the private core image
library rather than in the system core
image library. If the Linkage Editor is
executed in a batched-job foreground
partition, a private core image library
must be assianed. Private core image
libraries are a system generation option.

@ CATALOG AS PERMANENT PROGRAM

Source COBOL Object SYSLNK
Modu] . Compller Module
//// 4 — 7
{ | k_) {
EXEC FCOBOL -————————-} OPTION CATAL ! |
! PHASE PROGA, * H |
INCLUDE be EXEC PROGA
1

{ object module}
ENTRY
EXEC LNKEDT

® LOAD AND EXECUTE

%/// Core
Source System "
SYSLNK Storage
v /// Loader Execution
|
OPTION LINK 1
' EXEC FCOBOL | INCLUDE H
L {object module} !
h ENTRY -
EXEC LNKEDT
EXEC
© COMPILE AND EXECUTE
P
Source SYSLNK System g“‘
Module Looder torage
Execution
|
OPTION LINK :
EXEC FCOBOL i
ENTRY .
EXEC LNKEDT]
EXEC
Figure 5. Job Definition -- Use of the Librarian
control Statement Placement ACTION and ENTRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
The placement of linkage editor control SYSRDR, SYSIPT, or in the relocatable
statements is subject to the following library.
rules:

1. The ACTION statement must be the first PHASE Statement
linkage editor control statement
encountered in the input stream;

otherwise, it is ignored. The PHASE statement must be specified
the output of the Linkage Editor is to

consist of more than one phase cr if the
2. The PHASE statement must precede each program phase is to be cataloged in the
object module that is to begin a core image library. Each object module

phase. that begins a phase must be preceded by a

PHASE statement. Any object module not
preceded by a PHASE statement will be

3. The INCLUDE statement must be included in the current phase.
specified for each object module that
is to be included in a program phase. The statement provides the Linkage

Editor with a phase name and an origin
point for the phase. The PHASE statement
4. A single ENTRY statement should follow is in the following format:
the last object module when multiple

if

object modules are processed in a r
single linkage editor run. | PHASE name,originl(,NOAUTO]

Preparing COBOL Programs for Processing

41

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of the source
program and, in the case of
segmentation and/or sort, it should
not be the same. It must consist of
from one to eight alphanumeric
characters. Phases that are to be
executed in a segmentation and/or sort
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name. If no phase name is
specified, a dummy phase name of
PHASE*** is used and execution stops
at end of compilation. The job is
then cancelled.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up overlay structures. See
the chapter "calling and Called
Programs"™ for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck o» object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

r 1
| INCLUDE [module-namel [, (namelist)] |

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

42

operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPT.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one.
to eight alphanumeric characters.

(namelist)
causes the Linkage Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to the
description of the INCLUDE statement
in the publication DOS/VS System
Control Statements.

ENTRY Statement

The ENTRY statement is required only if
the programmer wishes to provide a specific
entry point in the first phase produced by
the Linkage Editor. When no ENTRY
statement is provided, the Job Control
Processor writes an ENTRY statement with a
blank operand on SYSLNK to ensure that an
ENTRY statement will be present to halt
link editing. The transfer address will be
the load address of the first phase. The
ENTRY statement is described further in the
publication DOS/VS System Control

Statements.

ACTION Statement

The ACTION statement is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

CLEAR
MAP
NOMAP
NOAUTO
NOREL
CANCEL
BG

F1l

F2

F3

Fu

ACTION

[— i o e e i S St b S By
b s e i e —— — ———— —— —]

CLEAR
indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor
function. CLEAR is a time-consuming
function and should be used only when
necessary.

MAP
indicates that SYSLST is available for
diagnostic messages. In addition, a
storage map is output on SYSLST.

NOMAP
indicates that SYSLST is unavailable
when performing the 1link edit
function. The mapping of storage is
not performed, and all linkage editor
diagnostic messages are listed on
SYSLOG.

NOAUTO
suppresses the AUTOLINK function for
both the private and systen
relocatable libraries during the link
editing of the entire program.
AUTOLINK is discussed later in this
chapter.

CANCEL
causes an automatic cancellation of
the job if any of the linkage editor
errors 2100I through 2170I occur.
These diagnostic messages can be found

in the publication DOS/VS System
Control Statements.

BG, F1, F2, F3, and Fii
are options used to link edit a
program for execution in a partition
other than that in which the link edit
function is taking place. See the

publication DOS/VS_System Control

Statements.

NOREL
suppresses the relocating loader.

Link editing for a specific address is
performed.

AUTOLINK FEATURE

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each
unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSRLB has been
assigned) and the system relocatable
library for module names identical to the
unresolved names and includes these modules
in the program phase. This feature should
not be suppressed (via PHASE or ACTION
statements) in linkage editor job steps
which include COBOL subroutines cataloged
in the relocatable library. See the
chapter "Calling and Called Programs" for
additional details.

RELOCATING LOADER FEATURE

The relocating loader feature allows
users to load single-phase and multi-phase
programs at any valid problem program
address in the system. Under this option,
the linkage editor catalogs relocatable
phases into the core image library, and the
relocating loader in the supervisor assigns
the absolute machine addresses that are
necessary for program exXecution. This
means the user need retain only one copy of
the program in the core image library.

The relocating loader is an optional
feature, and must be specified at systenm
generation time.

Figure 6 illustrates options available
during link-editing.

Preparing COBOL Programs for Processing 43

1S
ACTION = NOREL
SPECIFIED AT LINK=-
EDIT TIME
?

YES

'

LINKAGE—-EDITING FOR A
SPECIFIC PARTITION

— Default: Addresses will be
adjusted for the specified
virtual partition.

— Option: User may
specify linking for

LINKAGE EDITOR the associated real
PRODUCES i partition..
RELOCATABLE
PHASES

WAS
SYSTEM GENERATED
WITH
RELOCATING LOADER

NO

'

This supervisor cannot
load relocatable phases.
The user should specify
ACTION=NOREL at
link-edit time,.or generate
another supervisor with
relocating loader.

System retains flexibility of
loading in any partition.

Program may be included in
job stream for any partition
when program is loaded.

— Default: Program runs
in virtual mode.

— Option: User may specify
execution in associated
real partition.

Figure 6. Options Available During Link-Editing

44

DOS/VS supports four libraries: the
ore image library, the relocatable
library, the source statement library, and
the procedure library. The core image,
relocatable, and source statement libraries
are classified as system libraries and
private libraries. The procedure library
exists only as a system library. The
system residence device (SYSRES) contains
the system libraries. Private libraries
can be contained on separate disk packs.
These libraries are discussed under
nprivate Libraries" in this chapter.
Executable programs (core image format) are
stored in the core image library;
relocatable object modules are stored in
the relocatable library; source language
routines are stored in the source statement
library; catalogued procedures are stored
in the procedure library.

PLANNING THE LIBRARIES

The components of the DOS/VS system are
shipped in three system libraries: the
core image library, the relocatable
library, and the source statement library.
A fourth library -- the procedure library
~- is available but it does not contain any
information when the system is shipped.
Most programs and procedures developed and
used by your installation will also be
stored in these libraries. In addition to
the system libraries, DOS/VS supports
private libraries which you can use to
either substitute for or supplement the
corresponding system libraries.

Planning the size, contents, and
location of these libraries according to
the needs of your installation is an
essential part of the system generation
procedure. Such detailed planning will
ensure that:

e No disk space is wasted by components
not required in your installation.

e The libraries are large enough to allow
for future additioms. '

e The libraries are accessed by the
system with maximum efficiency.

LIBRARIAN FUNCTIONS

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance
2. Service
3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the four libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement and
procedure libraries.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

Oonly the catalog maintenance function of
the Librarian is discussed in this
publication for the four system libraries.
In addition, the update function of the
source statement library is discussed. A
complete description of librarian functions
can be found in the publication DOS/¥S
System Control Statements.

CORE_IMAGE_ LIBRARY

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloging and Retieving Program Phases --
Core Image Llibrary

If a program is to be cataloged in the
core image library, the job control
statement // OPTION with the CATAL option

Librarian Functions 45

must be specified prior to the first
linkage editor control card, and must
precede the first PEASE card of the progranm
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the Linkage Editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4., SYSLOG -- Printer keyboard

5. SYSLNK -- Disk extent

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.)

// JOB CATALOG

// OPTION CATAL
PHASE FOURA,*
INCLUDE

fobject deck}
/*
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/&

To compile, link edit, and catalog the
phase FOURA into the core image library in
the same job, the following job deck could
be used:

// JOB CATALOG

// OPTION CATAL
PHASE FOURA,*

// EXEC FCOBOL

46

/*
// EXEC LNKEDT
/*
/8

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FOURA,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// EXEC FOURA
/&

Phases can be in either non-relocatable
or relocatable format. The non-relocatable
phases are loaded at the address computed
at link-edit time into a real or virtual
partition. The load addresses and address
constants of relocatable phasecs can be
modified by the relocating loader. These
phases can be loaded at a yirtual address
different from the one for which it was
link-edited.

RELOCATABLE LIBRARY

The relocatable library contains any
number of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the programmer to maintain
frequent 1y used routines in residence and
combine them with other modules without
recompiling.

Associated with the relocatahle library
is the relocatable directory. The
directory contains a unicue, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

MAINTENANCE FUNCTIGNS

To request a maintenance function for
the relocatable library, the following
control statement is used:

// EXEC MDINT

Catalogin

a Module -- Relocatable Librarv

The catalog function adds a module to
the relocatable library. 1A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
function. Thus, if a module exists in the
relocatable library with the same name as a
module to be cataloged, the module in the
library is deleted by deleting reference to
it in the relocatable directory.

The CATALR control statement is required
to add a module to the relocatable library.
The format of the CATALR control statement
is:

CATALR module-name [,v.m]

= =
1
..

module-name
is the name by which the module is
known to the control program. The
module-name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. v may
be any decimal number from 0 through
127. m may be any decimal number from
0 through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
catalog an object module must be read from
SYSIPT.

Note: If SYSRDR and/or SYSIPT are assigned
to a tape unit, the MAINT program assumes
that the tape is positioned to the first
input record. The tape is not rewound at
the end of the job. If a tape mark is
found, MAINT assumes end-of-job.

The following is an example of compiling
a source program and cataloging the
resultant module in the relocatable
library. The job deck is read from SYSIPT.

// JOB NINE
// OPTION DECK
// EXEC FCOBOL

{source deck}
J*
// PAUSE PLACE DECK AFTER CATALR CARD
// EXEC MAINT
CATALR MOD9

{punched deck goes here)

In the above example, as a result of the
compile step, the object module is written

on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

// JOB EIGHT
/7 EXEC MAINT
CATALR MODS8A

{object deck}
CATALR MODS8B

{object deck}
Vg
/6

An additional capability of the system
permits a programmer to compile a program
and to catalog it to the system
relocatable, or private relocatakle,
library in one continuous run. The
programmer inserts a CATALR statement in
his job control input stream preceding the
compiler execute statement. The CATALR
statement will be written on the SYSPCH
file (tape or mass storage device) ahead of
the compiler output when OPTION DECK is in
effect. The programmer then reassigns the
SYSPCH file as SYSIPT and executes the
MAINT program to perform the catalog
function. The output of the corpilation
{on tape or mass storage device) may be
cataloged immediately or it may be
cataloged at some later time. It can also
be held after cataloging as backup of the
compilation.

The preceding method is recormmended for
single-module object decks. 1In programs
for which the compiler produces multimodule
object decks (when segmentation and/or SORT
are being used), it is necessary to use the
CBL card CATALR option. This option causes
a CATALR card to precede each object
module.

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of books. Each book in the
source statement library is composed of a
sequence of source language statements.

The purpose of the source statement library
is to allow the CORCL prograrmer to
initiate the compilation of a book into the
source program by using the COPY statement
or BASIS card.

Librarian Functions 47

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for three programming languages:
Assembler, PL/I, and COBOL. 1Individual
books are classified by sublibrary names.
Therefore, books written in each of these
languages may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

// EXEC MAINT

Cataloging a Book =-- Source Statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r -1
| CATALS sublib.library-namel,v.ml,Cl1] |
L - 3

ug

The operation field contains CATALS.

sublib
represents the sublibrary to which a
book is to be cataloged and can be:

Any alphanumeric character (0-9, A-Z,
#, $, and @) representing source
statement libraries. The characters
A, C, E, and P have special uses:

A and E are used for the Assembler
sublibrary

C is used for the COBOL sublibrary
P is used for POWER in PL/I

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name
represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COPY
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. v may be
any decimal number from 0 through 127;
m may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The v.m operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
discussed later in this chapter, for its
relationship to the v.m and C operands of
the CATALS control statement.

In addition to the CATALS control
statement, a control statement of the
following form must precede and follow the
book to be cataloged:

1
BKEND [sublib.library-name J,[SEQNCE], |
[count],[CMPRSD] |

J

o ——

All operand entries are optional. When
used, the entries must be in the prescribed
order and need appear only in the BKEND
statement preceding the book to be
cataloged.

The first entry in the operand £field is
identical to the operand of the CATALS
control statement.

SEQNCE
specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the seguence checking, an error mes-
sage is printed. The error can be
corrected, and the book can be
recataloged.

count
specifies the number of card images in
the book. When the count operand is
used, the card input is counted,
beginning with preceding BXEND
statement and including the subseguent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

CMPRSD
indicates that the book to be
cataloged in the library is in
compressed format as a result of
CMPRSD having been specified when
performing a PUNCH or DSPCH service
function. These functions are
described in the publication DOS/VS
System Control Statements.

Card input for the catalog function is
from the device assigned to SYSIPT. The
CATALS control statement is also read from
the device assigned to SYSIPT.

Frequently used Environment Division,
Data Division, and Procedure Division
entries can be cataloged in the COBOL
sublibrary of the source statement library.
A book in the source statement library
might consist, for example, of a file

-

description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

// JOB ANYNAME
// EXEC MAINT
CATALS C.FILER
BXKEND C.FILERA
BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.
BKEND
/*
/&

Retrieving a Cataloged Book -- COBOL COPY
Statement: The preceding file description
can be included in a COBOL source progran
by writing the following statement:

FD FILEB COPY FILEA.

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COPY statement. However,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COPY statement. In this cace, all
information about the library data-name is
copied from the library and all references
to the l.brary data-name are replaced by
the data-name in the program if the
REPLACING option is specified. The change
is made only for this program. The entry
as it appears in the library remains
unchanged. PFor example, assume the
following data entry is cataloged under the
library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9
OCCURS 1 DEFENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COPY DATAR REPLAZING PAYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CRLC PICTURE 99.
02 GRADE PICTORE 9
OCCURS 1 DEPENDING ON CALC OF
GROSS.

Librarian Functions 49

Note also that the library-mame is used
to identify the book in the library. 7Tt
has no other use in the COBOL program.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COPY statement is discussed in

detail in the section "Extended Source
Program Library Facility."

Updating Books -- Source Statement Library

The update function is used to make
changes to properly identified statements
within a book in the source statement
library. Statements are identified in the
identification field, columns 73 through
80, which is fixed in format as follows:
Columns 73-76 Program identification
which must be constant
throughout the book.

Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.m) of the
book

3. Adding or removing the change level
requirement

4. Copyinag a book with optional retention
of the old book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

1
UPDATE sublib.library-name,{s.book1],]
[v.mn],[nn] |

-

-1

The operation field contains UPDATF,

sublib
represents the sublibrary that
contains the book toc be updated. It
may be any of the characters 0 through
9, A through 2, #, $, or 2.

50

s.book1

nn

.change level

provides a temporary update option.
The o0ld book is renamed s.bookl and
the updated book is named
sublib.library-name. s indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters 0 through 9, AR through Z,
#, $, or @. If this operand is not
specified, the old book is deleted.

represents the change level of the
book to be updated. y may be any
decimal number from 0 through 127; m
may be any decimal number from 0
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cataloged in the library determines
whether change level verification is
required before updating. If the
directory entry specifies that change
level verification is not recguired
before updating, the change level
operand in the UPDATE control
statement is ignored.

If the change level is verified, the
in the book's directory
entry is increased by 1 by the systen
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to 0
and the value of ¥y is increased by 1.
If both v and m are at their maximun
values and an update is processed,
both v and m are reset to 0.

represents the resequencing status
reguired for the update. nn may be a
1- or 2-character decimal number from
1 through .0, or it may be the word
NO. If nn is a decimal number, it
represents the increment that will be
used in resequencing the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. Por example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1007 with increments
of 5 for each statement:

and nn is not specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ... etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence numbers.

and nn is specified as 2, the book is
resequenced with numbers 0000, 0002,
0004, ... etc., regardless of the
original sequencing of the book in the
library or the segquence numbers of the
added or replacement cards.

The UPDATE control statement is followed
by ADD, DEL (delete), and/or REP (replace)
control statements as required, followed by
the terminating END statement. The ADD,
DEL, REP, and END statements are identified
as update control statements by a right
parenthesis in the first position (column 1
in card format). This is a variation from
the general librarian control statement
format; thus, it clearly identifies these
control statements as part of the update
function.

ADD Statement: The ADD statement is used
for the addition of source statements to a
book. The format is:

r 1

|) ADD seg-no I

L. g

ADD indicates that source statements
following this statement are to be added to
the book.

seqg-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

DEL Statement: The DEL statement causes
the deletion of source statements from the
book. The format is:

|) DEL first-seq-no[,last-segq-no] !
L.

DEL indicates that statements are to be
deleted from the book.

first-seg-no

last-seq-no
represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-sedq-no is
not specified, the statement
represented by first-seq-no is the
only statement deleted.

REP Statement: The REP statement is used
when replacement of source statements is
required in a book. The format is:

|) REP first-seq-nof ,last-seg-no]]

[} J

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seg-no

last-seg-no
represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not equal the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement sequence numbers have ™wrapped
around™ (progressed from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and CO001.

END Statement: This statement indicates
the end of updates for a givem book. The
format is:

|) END [v.m[,C]]

represents the change level to be
assigned to the book after it is
updated; v may be any decimal number
from 0 through 127. m may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the v.m
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If v.m is specified and C is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,

the change level in the book's directory
entry is increased as a result of the

Librarian Functions 51

update, and the verification requirement
remains unchanged.

Control Statement Placement: Control
statement input for the update function,
read from the device assigned to SYSIN,
must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.
4. The DPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6.) END statement.
7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Facility" in this
chapter, and in the publication IBM_ DOS
Full American National Standard COBOL.

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. 1If the resequencing operand is

invalid, resequencing is done in
increments of 1.

52

ADD, DEL, or RFP Statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All optionms
of the UPDATE and END statements are
ignored.

3. All updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The
first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADD
statement must be equal to or greater
than the last operand of the preceding
control statement. Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END Statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specified. If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

out-of-Sequence_ Updates: If the source
statements to be added to a book are not in

sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the book will be
out of sequence, and subseguent updating
may not be possible.

The Procedure Library

The procedure library is a new system
library that may be used to store -- in
card image format --

e Frequently used sets, procedures, of
job control and linkage editor
statements (basic support).

e Procedures additionally containing
inline SYSIPT data, especially control
statements for system utility and
service programs (extended support).
The inline SYSIPT data must be
processed under control of the
device-independent sequential IOCS or
by IBM-supplied service programs and
language translators.

The procedure library is part of SYSRES,
so the maintenance and service functions
available for the other DOS/VS libraries
will also support the procedure library.

Cataloged procedures may be included in
the job control input stream by a job
control statement and temporarily modified
by overwrite statements. For more details
on cataloged procedures, see DOS/VS System
control Statements.

MAINT, PROCEDURE LIBRARY

TO request a maintenance function for
the procedure library, use the following
EXEC control statement:

// EXEC MAINT

One or more of the maintenance functions
(catalog, delete, rename, condense, set
condense limit, or reallocate) can be
requested within a single run. Any number
of procedures within the procedure library
can be acted upon in this run. Further,
one or more of the maintenance functions
for either of the other three libraries
(core image, source statement, or
relocatable) can be requested within this
run, for the same MAINT program maintains
all four libraries.

Catalog

The control statement required to add a
procedure to the procedure library is the
CATALP statement. Any number of procedures
may be cataloged in a single run. Each
procedure must immediately follow the
respective CATALP statement.

Statement Format:

CATALP procedurenamel,VM=v.m] [,EOP=yy]
NO
. DATA=YES

Each control statement in the procedure
library should have a unique identity.
This identity is required to modify the job
stream at execution time. Therefore, when
cataloging, identify each control statement
in columns 73-79 (blanks may be embedded).

A
procegurename

represents the name of the procedure
to be cataloged. The procedurename
consists of cne tc eight alphameric
characters, the first of which must be
alphabetic. It must not be ALL.

VM=v.m
specifies the change level at which
the procedure is to be cataloged. v
may be any decimal number from 0-127.
m may be any decimal number from
0-255. 1If this operand is omitted, a
change level of 0.0 is assumed.

A change level can be assigned only
when a procedure is cataloged. The
change level is displayed and punched
by the service functions.

EOP=yy
specifies a two-character
end-of-procedure delimiter. The EOP
parameter can be any combination of
characters except /*, /&, //; it must
not contain a blank or a comma. The
system assumes /+ as default
end-of-procedure delimiter. Otherwise
you can omit the EOP parameter.

DATA=YES
specifies that a procedure contains
SYSIPT inline data.

These procedures can only be executed
in the extended procedure support.

A procedure to be cataloged into the
procedure library may consist of Job
Control and linkage editor statemwents and,
if the supervisor was generated with the
SYSFIL option, additional control
statements for IBM-supplied control and
service programs and data processed under
control of the device-independent
sequential IOCS. The end of a procedure is
indicated by the /+ end-of-procedure
delimiter or by the end-of-procedure
delimiter as specified in the EQP
parameter.

If SYSIN is assigned to a tape unit, the
MAINT program assumes that the tape is
positioned to the first input record. The
tape is not rewound at the end of job.

Librarian Functions 53

Control statement input for the catalog

function, read from the properly assigned
device (usually SYSIN), is:

1. the JOB control statement, followed by

2. the ASSGN control statements, if the
current assignments are not those
required. The ASSGN statements that
can be used are SYSIN, SYSLST, and
SYSLOG. The ASSGN statements are
followed by

3. the EXEC MAINT control statement,
followed by

4. the CATALP control statement(s),
followed by

5. the module to be cataloged, followed
by

6. the /* control statement if other job

steps are to follow, or

7. the /& control statement, which is the

last control statement of the job.

For example:

// JOB CATPROC

ASSGN control statements,
if required

// EXEC MAINT
CATALP PROCA,EOP=AA,DATA=YES

control statements

SYSIPT inline data

/* END OF SYSIPT DATA

control statements

AA END OF PROCEDURE

The following restrictions apply when
you catalog procedures to the procedure
library:

1. A cataloged procedure cannot contain
contrcl statements or SYSIPT data for
more than one job.

2. If the cataloged control statements
include the JOB statement, you must
not have a JOB statement when you
retrieve the procedure through the

54

EXEC statement. Conversely, if the
JOB statement is not cataloged, a JOB
statement must precede the EXEC
statement that retrieves the
procedure.

3. A cataloged procedure must not include
any of the following control
statements because they are not
accepted when the procedure is
processed:

// ASSGN SYSRDR,X'cuu'
/7 RESET SY¥S

// RESET BALL

/7 RESET SYSRDR

// CLOSE SYSRDR,X'cuu'
/7 ASSGN SYSIPT,X'cuu'
/7 RESET SYSIPT only if SYSIPT
data is
included

// CLOSE SYSIPT,X'cuu®

4. cCataloged procedures cannot be nested,
that is, a cataloged procedure cannot
contain an EXEC statement that invokes
another cataloged procedure.

Note: Maintenance cannot be performed in
the background partition on the procedure
library while a foreground partition is
using the library.

PSERV, PROCEDURE LIBRARY

N
To request a service function for the
procedure library, use the following EXEC
control statement:

// EXEC PSERV

One or more of the three service
functions can be requested within a single
run. Any number of procedures within the
procedure library can be acted upon in this
run.

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream or via an
operator command. The job must consist of
a JOB statement and an EXEC statement that
specifies the cataloged procedure name.

For example:

/7 EXEC PROC=VCOBCLG

The programmer can write cataloged
procedures which incorporate job control he
used frequently. For example, the
programmer may wish to catalog a procedure

for compiling, link-editing, and executing
a program. It is particularly useful for
compiling in a low-priority test partition
to which no card reader has been assigned.
Using cataloged procedures, the operator
can execute via the EXEC statement a
cataloged procedure from the console.

PRIVATE LIBRARIES

Private libraries are desirable in the
system to permit some libraries to be
located on a disk pack other than the one
used by SYSRES.

Private libraries are supported for the
core image library, the relocatable
library, and the source statement library,
on the 2311, 2314, 2319, 3330, 3340, fixed
block devices, and mass storage devices.
However, the following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES;
the private core-image library can be
on a type of device other than the one
SYSRES is on.

2. Reference may be made to a private
core image library only if SYSCLB is
assigned. If SYSCLB is assigned, the
system core image library cannot be
changed.

3. Reference may be made to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

4. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSLB is
assigned, the system source statement
library cannot be changed.

5. Private libraries cannot be
reallocated.

6. The COPY function is not effective for
private libraries except when they are
being created.

An unlimited numrber of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
DOS/VS System Control Statements.

Determining the Location of the Libraries

Having decided which libraries you want
in your system, you must determine where on
the available devices these litraries are
to be placed. All system libraries must
reside in the SYSRES extent of the system
disk pack in a predefined sequence (Figure
7). Although it is theoretically possible
to have private libraries on the system
pack (outside the SYSRES extent), this is
not recommended because it involves
increased movement of the disk arm.

Librarian Functions 55

Page of SC28-6478-0, revised 3/22/74 by TNL:

Cylinder 0

Core Image Library

Relocatable Library

Source Statement Library

Procedure Library

Label Information

Figure 7.

The directory area for each library is
not shown in the Figure 7. By definition,
all system libraries reside on the system
residence file (SYSRES). If you have
additional disk drives, you can define
private core image, relocatakle, and/or
source statement libraries on the extra
volumes. These volumes must be of the same
type as the SYSRES pack. The system
relocatable and system source statement
libraries can be removed from SYSRES and
established as private libraries; the
system core image library, however, must
always be present on SYSRES. It can be
supplemented but not replaced by a private
core image library. The procedure library
is supported only as a system library; you
cannot create a private procedure library.

56

SN28-1063

- end of SYSRES extent

The Relative Location of the Four System Libraries

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
liprary for COPY, BASIS, INSERT, and
DELETE(see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLEL, and EXTENT control statements that
define this private library must be present
in the job deck for compilation (unless
they are permanently set up by the
installation). When present, a search for
the book is made in the private library.

If it is not there, the system library is
searched. 1If the staterents for the
private library are not present, the system
library is searched. A programrmer may
create several private libraries, but only
one private library can be used in a given
job.

EXTENDED SOURCE PROGRAM LIBRARY FACILITY

A complete program may be included as an
entry in the source statement library by
using the catalog function. This program
can then be retrieved by a BASIS card and
compiled in a subsequent job.

The following control statements would
be used to catalog the program SAMPLE as a
book in the COBOL sublibrary of the source
statement library:

// JOB CATALOG

// EXEC MAINT
CATALS C.SAMPLE
BKEND C.SAMPLE

{source program}

BKEND
/*
/&

When compiling a program that has been
cataloged in the COBOL sublikrary of the
source statement library, a BASIS card
brings in an entire source program. The
following control statements could be used
to compile the cataloged program SAMPLE:

// JOB PGM1
// OPTION LOG,DECK,LIST,LISTX,ERRS
// EXEC FCOBOL
CBL LIB
BASIS SAMPLE
/*
/8

INSERT or DELETE cards may follow the
BASIS card if the user wishes to modify the
book SAMPLE before it is processed by the
compiler. The original source program must
have been coded with sequence numbers in
columns 1 through 6 of each source card.

The INSERT statement will add new source
statements after the specified sequence
numbers. The DELETE statement will delete
the statements indicated by the sequence
numbers, or will delete more than one
statement when the first and last sequence
numbers to be deleted are specified,
separated by a hyphen. Source program
cards may follow a DELETE card for
insertion before the card following the
last one deleted. The sequence numbers in
columns 1 through 6 are used to update
COBOL source statements at compilation
time, and are in effect for the one run
only.

Assume that a company runs its payrocll
program each week as a source program taken

from the source statement library. The
name of the program is PAYROLL. During a
particular year, the old age insurance tax
(FICA) is deducted at the rate of #4-2/5%
each week for all personnel until earnings
exceed $7800. The coding to accomplish
this is shown in Figure 8.

Now, however, due to a change in the 014
age tax laws, tax is to be taken out until
earnings exceed $10800 and a new percentage
is to be placed. The programmer can code
these changes as shown in Figure 9.

The altered program will contain the
coding shown in Figure 10.

Reformatted Source Deck

By specifying the DECK option on the LST
card, a new COBOL source deck can be
produced that reflects the reformatted
source listing. This deck may be saved in
a BASIS library, used directly as input to
the compiler, or punched onto cards.
Because of reformatting, the new deck may
contain more cards than the original, but
the difference is not great enough to cause
any appreciable increase in compilation
time. The output deck differs from the
listing as follows:

1. References, footnotes, and blank lines
are omitted.

N
i

Literals will be repositicned, if
needed, to assure proper continuation.

3. Statement numkers are converted to
card numbers.

a. The statement number is multiplied
by 10, and leading zeros are added
as necessary to fill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

c. Statement-beginning cards are
given the higher of the two
numbers produced by the first two
rules.

The use of this feature avoids having to
resequence cards for permanent updating
after they have been tested by temporary
updating using the BASIS feature; it also
avoids the errors incurred during that
resequencing process.

Librarian Functions 57

r

1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. }
|000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA. |
1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .0u44 |
1000745 MOVE TAX-PAY TO OUTPUT-TAX. |
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-RASE. i
] 000755 ADD BASE-PAY TO ANNUAL-PAY. |
- . |
| - . |
|- . |
1000850 STOP RUN. I
L]
Figure 8. Sample Coding to Calculate FICA

13
|77 JOB PGM2

|7/ OPTION LOG,DECK,LIST,LISTX,ERRS

|77/ EXEC FCOBOL
| CBL QUOTE, LIB
| BASIS PAYROLL

| DELETE 000730-000740
IF ANNUAL-PAY GREATER THAN 10800
IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TU LAST-TAX.

| 000730
1000735
| 000740 TAX-PAYR.
|7*

L

GO TO PAY-WRITE.

COMPUTE TAX-PAY = BASE-PAY * .0585

e e e e R

Figure 9. Altering a Program from the Source Statement Library Using INSERT and DELETE
Cards

r

1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE.

1000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TO LAST-TAX.

] 000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY* .0585.

] 000750 MOVE TAX-PAY TO OUTPUT-TAX.

| 000760 PAY-WRITE.
] 000770

[s e e

000850

MOVE BASE-PAY TO OUTPUT-BASE.
ADD BASE-PAY TO ANNUAL-PAY.

STOP RUN.

Figure 10. Effect

58

U |

of INSERT and DELETE Cards

The DOS/VS COBOL compiler, COBOL object
module, Linkage Editor, and other system
components can produce output in the form
of printed listings, punched card decks,
diagnostic or informative messages, and
data files directed to tape or to mass
storage devices. This chapter gives the
format of and describes this output. The
same COBOL program is used for each
example. "Appendix A: Sample Program
Output™ shows the output formats in the
context of a complete listing generated by
the sample program.

COMPILER OUTPUT

The output of the compilation job step
may include:

e A printed listing of the job control
statements

e A printed listing of the statements
contained in the source program

¢ A glossary of compiler-generated
information about data

¢ Global tables, register assignments,
and literal pools

¢ A printed listing of the object code

¢ A condensed listing containing only the
relative address of the first generated
instruction for each verb

e Compiler statistics

e Compiler diagnostic messages
e Cross-reference listings

¢ System messages

¢ En object module

¢ FIPS diagnostic messages

-
.

The presence or absence of the
above-mentioned types of compiler output is
determined by options specified at system
generation time. These options can be
overridden or additional options specified
at compilation time by using the OPTIO!
control statement and the CBL card.

INTERPRETING OUTPUT

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. If SYSLST
is assigned to a magnetic tape, COBOL will
treat the file as an unlabelled tape. Line
spacing of the source listing is contrclled
by the SPACEn option of the CBL card and by
SKIP 1/2/3 and EJECT in the COBOL source
program. (The lister feature ignores these
commands.) The number of lines per page
can be specified in the SET command. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO control statement.

On each page of the output, there is a
header which contains the PROGRAM-ID, date
and time of compilation, as well as an
indication of the modification level of the
compiler which produced this listing.

Figure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program Output." Each type of output is
numbered, and each format within each type
is lettered. The text below and that
following the figure is an exrlanation of
the figure.

C) The listing of the job control
statements associated with this job
step. These statements are listed
because the LOG option was specified
at system generation time.

(:) Compiler options. The CBL card, if
specified, is printed on SYSLST unless
the LIST option is suppressed.

C) The source module listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source language TRACE statement (if
NOVERB is in effect). The source
module is not listed when the NOLIST
option is specified.

Interpreting Output 59

// JCE SAMPLE

'// OFTIOI NODECK, LINK,LIS
// EXEC FCOBOL

IBM DOS VS COBOL

CEL QUOTE, CPT,SXREF,LVL=A
IDENTIFICATION DIVISION.

¢0001
€0002
€0003
ccoou
06005
0006
00007
¢ooos8
0009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

00056
€0057
00058
00059
C0060

€0073
C€0074
00075
0076
00077
00078
00079
00080

60

000010
000020

000100
000110
000120
000130
000140
000150
000160
000170
000180
000190

000550

000570
000580
000590

000720
000730
000740
000750
000760
000770
000780
000790

PROGRAM-ID. TESTRUN.

1,LISTX,SYM,ERRS } (z)

REL 1.0 PP NO. 5746-CBl

BAUTHOR. PROGRAMMER NAME., .
INSTALLATION. NEW YORK DEVELOEMENT CENTER
DATE-WRITTEN. _FEBRUARY 18, 1974

DATE-COMPILED. 03/u3/74

REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK

AS INPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOQURCE-COMPUTER. IBM-370,

OBJECT-COMPUTER. IBM-37
INPUT-OUTPUT SECTION.
FILE-CONTROL.

0.

SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S.
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.

PROCEDURE DIVISION.
BEGIN.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.
LE-1. MOVE ZERO TO KOUNT, JUMBER.

STEP-1. OPEN OUTPUT FI

STEP-5. CLOSE FILE-1. OPEN IN.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES

OUT EMPLOYEES WITH

NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK~RECORD AT END GO TO STEP-8.
STEP-7. 1F NO-OF-DEPENDENTS IS ECUAL TO "0 MOVE "1" TO
-NO-CF-DEPENDENTS. EXHIBIT NAMED WORK-KECORD. GO TC STEP-6.

STEP-8. CLOSE FILE-2.
STCP RUN.

07.43.04

03/03/74

IBM DOS VS COBOL RED 1.0 PP NO. 5746-CBl 07.43.04 10/03/73

ONENONNNO; ® O ® ® ® ®

INTRND NAME NANE BASE DISPL INTRNL NAME DEFINITION JSAGE R 0OC M
DNM=1~148 FD FILE-1 DNM=1-148 DIFMT P
DNM=1-179 01 RECORD-1 000 DS 0CL2C GROUP
DNM=1-200 02 FIELD-A 000 DS 20C DISP
DNM=1-217 FD FILE-2 DTFMT F
DNM=1-248 01 RECORD-2 000 DS 0CL20 GROUP
DNM=1-269 02 FIELD-A 000 DS 20C DISP
DNM=1-289 01 FILLER 000 DS 0CL56 GROUP
02 KOUNT BL=3 000 DS 18 comp
02 ALPHABET 002 DS 26C DISP
02 ALPHA 002 DS 1C DISP R O @
02 NUMBR 01c DS 18 coMP
02 DEPENDENTS o1E DS 26C DISP
DNM=1-394 02 DEPEND 01 ps 1¢ DISP P
DNM=1-410 01 WORK-RECORD 038 DS 0CL20 GROUP
DNM=1-438 02 NAME-FIELD 038 Ds 1€ DISP
DNM=1-454 02 FILLER 039 DS 1¢ DISP
DNM=1-473 02 RECORD-NO 03a DS 4c DISP-N
02 FILLER 03E DS 1C DISP
02 LOCATION 03F DS 3¢ DISP
02 FILLER ou2 ps 1¢ DISP
02 NO-OF-DEPENDENTS 043 Ds 2¢ D1sP
DNN=2-063 02 FILLER 085 DNM=2-063 Ds 7C DIsE j
MEMORY MAP
T6T 003F8
SAVE AREA 003F8
SWITCH 00840
TALLY 00444
SORT SAVE cons
ENTRY-SAVE 008uC
SORT CORE SIZE 00450
NSTD-REELS 00454
SORT RET 00456
WORKING CELLS 00458
SORT FILE SIZE 00588
SORT MODE SIZE 0058C
PGT-VN TBL 00590
TGT-VN TEL 00594
SORTAB ADDRESS 00598
LENGTH OF VN TEL 0059¢C
LNGTH OF SORTAB 0059E
PGM ID 00540
A(INITL) 00528
UPSI SWITCHES 005AC
DEBUG TABLE PTR 00584
CURRENT PRIORITY 005B8
TA LENGTH 005E9
PRBL1 CELL PTR 005EC
UNUSED 005¢0
RESERVED 005Ct
VSAM SAVE AREA ADDRESS 005C8
UNUSED 005¢C
RESERVED 00504
OVERFLOW CELLS 005EC
BL CELLS 00SEC
DTFADR CELLS 00SE8
FIB CELLS 00600
TEMP STCRAGE 00608
TEMP STORAGE-2 00610
TEMP STORAGE-3 00610
TEMP STORAGE-4 00610 @
BLL CELLS 00610
VIE CELLS 00614
SBL CELLS 00614
INDEX CELLS 00614
SUBADR CELLS 00614
ONCTIL CELLS 0061C
PFMCTL CELLS 0061C
PFMSAV CELLS 0061C
VN CELLS 00620
SAVE AREA =2 00622
XSASW CELLS 00624
LITERAL POOL (HEX) @
00640 (LIT+0) 00000001 Q01ASB5E C2D6DTCS D54QSBSB C€2C3D3D6 E2C55B5B

00658 (LIT+24) C2c6C3p4 ELD35B5B 0000000
DISPLAY LITERALS (BCD)

00664 (LTL+36) ' WORK~RECORD"

BGT 00628
DEBUG LINKAGE AREA 00628
OVERFLCW CELLS 00628
VIRTUAL CELLS 0062C
PROCEDURE NAME CELLS 00638
GENERATED NAME CELLS 00638
SUBDTF ADDRESS CELLS 0063C
VNI CELLS 0063C
LITERALS 00640
DISPLAY LITERALS 00664
PROCEDURE BLOCK CELLS 00670

Fiqure 11. Examples of Compiler Output (Part 2 cf #4)

Interpreting Output 61

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.43.04 10/03/72

REGISTER ASSIGNMENT

REG 6 BL =3 @

REG 7 BL =1
REG 8 BL =2

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00050. @

PROCEDURE BLOCK ASSIGNMENT @
PBL = REG 11
PBL =1 STARTS AT LOCATION 000674 STATEMENT 60 @ @
57
000674 PN=02 EQU *
60
000674 PN=03 EQU *
60
000674 START EQU *
000674 58 BO C 048 L 11,048(0,12) PBL=1
000678 58 20 D 1F4 L 2,1F4(0,13) BL =1
00067C 41 10 C O1E LA 1,01E(0,12) LIT+6
000680 58 00 D 200 L 0,200(0,13) DIF=1
000684 18 40 LR 4,0
000686 05 FO BALR 15,0
000688 50 00 F 008 ST 0,008(0,15)
00068C 45 00 F 00C BAL 6,00C(0,15)
000690 000000600 BC X'00000000"
000694 0A 02 svc 2
000696 41 00 D 200 1A 0,200(0,13) DTF=1
000692 58 FO C 008 L 15,008(0,12) V(ILBDIMLG)
00069E 05 EF BALR 14,15
0006A0 58 10 D 200 L 1,200(0,13) DTF=1
0006A4 96 10 1 020 o1 020(1),X"10"
0006A8 50 20 D 1F4 ST 2,1F4(0,13) BL =1
0006AC 58 70 D 1F4 L 7,1F4¢0,13) BL =1
60
0006B0 D2 01 6 000 C 018 MVC 000(2,6),018(12) DNM=1-308 LI1+0
0006B6 D2 01 6 01C C 018 @ MVC 01C(2,6),018(12) DNM=1-359 LIT+0
64
0006BC PN=04 EQU *
64
0006BC 48 30 C 01A Ld 3,014(0,12) LIT+2
0006C0 4A 30 6 000 AH 3,000(0,6) DNM=1-308
0006C4 UE 30 D 210 cvD 3,210(0,13) TS=01
0006C8 D7 05 D 210 D 210 Xc 210(6,13),210(13) TS=01 TS=01
0006CE 94 OF D 216 NI 216(13) ,X"OF" IS=01+6
0006D2 4F 30 D 210 CcVB 3,210(0,13) TS=01
0006D6 40 30 6 000 STH 3,000(0,6) DNM=1-308
0006DA 48 30 C 01A LH 3,01a(0,12) | LIT+2
0006DE 4A 30 6 01C 2AH 3,01C(0,6) DNM=1-359
0006E2 UE 30 D 210 cvD 3,210(0,13) TS=01
0006E6 D7 05 D 210 D 210 Xc 210(6,13),210(13) TS=01 TS=01
0006EC 94 OF D 216 NI 216(13),X*0F' TS=01+6
0006F0 U4F 30 D 210 cVB 3,210(0,13) TS=01
0006F4 40 30 6 01C STH 3,01C(0,6) DNM=1-359
64
0006F8 41 40 6 002 1A 4,002(0,6) CNM=1-341
0006FC 48 20 6 000 La 2,000¢0,6) DNM=1-308
000700 4C 20 C 01A MH 2,01A(0,12) 1IT+2
000704 1A 42 AR 4,2
000706 5B 40 C 018 s 4,018(0,12) LIT+0
00070A 50 40 D 21cC sT 4,21C(0,13) sBS=1
00070E 58 EQ D 21C L 14,21C(0,13) SBS=1
66 000712 D2 00 6 038 E 000 MVC 038(1,6),000(14) DNM=1-434 DNM=1-341
000718 41 40 6 O1E LA 4,01E(0,6) DNM=1-394
00071C 48 20 6 000 Ld 2,000(0,6) DNM=1-308
000720 4C 20 C Q1A MH 2,01A(0,12) LIT+2
000724 1A 42 AR 4,2
000726 5B 40 C 018 s 4,018(0,12) LIT+0
00072A 50 40 D 220 ST 4,220(0,13) SBS=2
00072E 58 FO D 220 L 15,220(0,13) SBS=2
000732 D2 00 6 043 F 000 MVC 043(1,6),000(15) DNM=2-37 DNM=1-394
000738 92 40 6 044 MVI ~ 044(6),X'640" DNM=2-37+1
STATISTICS SOURCE RECORDS = 80 DATA ITEMS = 22 NC OF VERBS = 28
STATISTICS PARTITION SIZE = 655176 LINE COUNT = 56 BUFFER SIZE = 512
OPTIONS IN EFFECT PMAP RELOC ADR = NCNE SPACING = 1 FLOW = NONE
OPTIONS IN EFFECT# LISTX QUOTE SYM NOCATALR LIST LINK NCSTXIT NCL1B
*OPTICNS IN EFFECT# NOCLIST FLAGW ZWB NOSUPMAP XREF ERRS SXREF OPT
*CETICNS IN EFFECT# NOSTATE TRUNC SEQ NOSYMDMP NCDECK NCVERE NOSYNTAX LVL=3

~—

W
Q
Hh

Figure 11. Examples of Compiler Output {Part

62

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.43.04 03/03/74

@ CROSS~REFERENCE DICTIONARY
DATA NAMES DEFN REFERENCE

ALPHA 000042 000064

ALPHABET 000041

DEPEND 000045 000066

DEPENDENTS 000044

FIELD-A 000029

FIELD-A © 000037

FILE-1 000017 000066 000068 000073

FILE-2 000018 000073 000076 000079 .

KCUNT 000040 000060 000064 000066 000070

LCCATION 000051

NAME-FIELD 000047 000064 .

NC-CF-DEPENDENTS 000053 000066 000077

NUMBR 000043 000060 000064 000067

RECCRD-NO 000049 ' 000067

RECORD-1 000028 000068 ' ®
RECORD-2 000036 000076

WORK-RECORD 000046 0CC068 00007E 000078

PROCEDURE NAMES DEFN REFERENCE
BEGIN 060057

STEP-1 000060

STEP-2 000064 000070
STEP-3 000068 000070
STEP-4 000070

STEP-5 000073

STEP-6 000076 000078
STEP-7 800077

STEP-8 000079 000076

CARD OR MESSE:(:@ @
®;306u LA5011I-W HIGH ORDER TRUNCATION MIGHT GCCUR- @

00064 ILA5011I-W HIGH ORDER TRUNCATION MIGHT OCCUR.
FEDERAL INFORMATICN PROCESSING STANDARDS (FIPS) DIAGNOSTIC MESSAGES PAGE 1
®LINE@B& (%) rEssacE @
g } -
0006~ TLAS003I-W DATE-COMPILED PARAGRAPH IS AN EXTENSION TG FIPS LEVEL A.
00025 ILAS002I-W RECORDING MODE IS CLAUSE IS AN EXTENSION TO ALL FIPS LEVELS.
0034 ILAS002I-W RECORDING MODE IS CLAUSE IS AN EXTENSION TO ALL FIPS LEVELS.
OG54 ILABO03I-W SPACES IS AN EXTENSION TO FIPS LEVEL A.
C0060 ILAS0O3I-W COMMA OR SEMICOLON AS PUNCTUATION IS AN EXTENSION TO FIPS LEVEL A.
C0C62 ILABO03I-W COMMA OR SEMICOLON AS PUNCTUATION IS AN EXTENSION TO FIPS LEVEL A.
C0062 ILASO03I-W COMMA OR SEMICOLON AS PUNCTUATION IS AN EXTENSION TO FIPS LEVEL A. ®
0064 ILASOO3I-W COMMA OR SEMICOLON AS PUNCTUATION IS AN EXTENSION TO FIPS LEVEL A.
00064 ILAS003I-W MULTIPLE RESULTS IN ADD STATEMENT IS AN EXTENSION TO FIPS LEVEL A.
00068 ILAS003I-W UPON OPTION OF DISPLAY STATEMENT IS AN EXTENSION TC FIPS LEVEL A.
0068 ILAS002I-W UPON CONSOLE OFTION OF DISPLAY STATEMENT IS AN EXTENSION TC ALL LEVELS.
0068 ILABOO3I-W FROM OPTION OF WRITE STATEMENT IS AN EXTENSLON TO FIPS LEVEL A.
C0070 ILAS003I-W UNTIL OPTION OF PERFORM STATEMENT IS AN EXTENSION TO FIPS LEVEL A.
€0076 ILAB0OO3I-W INTO OPTION OF READ STATEMENT IS AN EXTENSION TO FIPS LEVEL A.
C0078 ILA8002I-W EXHIBIT STATEMENT IS AN EXTENSION TO ALL FIPS LEVELS.
END CF COMPILATION }

Figure 11. Examples of Compiler Qutput (Part 4 of u)

Interpreting Output 63

The following notations may appear on
the listing:

C Denotes that the statement was inserted
with a COPY statement.

** Denotes that the card is out of
sequence. NOSEQ should be specified on
the CBL card if the sequence check is
to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification Division, any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation

time.

DATE-COMPILED. month/day/year or

DATE-COMPILED. day/month/year

@

64

Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

@and@ The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and 88,
and FD, SD, and RD indicators
are not changed.

(:) The data-name that is used in
the source module.

Note: The following Report Writer
internally-generated data-names
can appear under the SOURCE NAME
column:

CTL.LVL Used to coordinate
control break
activities.

GRP.IND Used by coding for GROUP
INDICATE clause.

TER.COD Used by coding for
TERMINATE clause.

FRS.GEN Used by coding for
GENERATE clause.

-nnnn Generated report record
associated with the file
on which the report is
to be printed.

RPT.RCD Build area for print
record.

CTL-.CHR First or second position
of RPT.RCD. Used for
carriage control
character.

RPT.LIN Beginning of actual
information which will
be displayed. Second or
third position of

RPT.RCD.
CODE- Used to hold code
CELL specified.

E.nnnn Name generated from
COLUMN clause in
02-level statement.

S.nnnn Used for elementary
level with SUM clause,
but not with data-name.

N.nnnn Used to save the total
number of lines used by
a report group when
relative line numbering
is specified.

@and@ For data-names, these columns

contain information about the
address in the form of a base and
displacement. For file-names, the
column contains information about
the associated DTF or FIB (for
VSAM). An indication is also
given here if the FD is invalid.

This column defines storage for
each data item. It is represented
in assembler-like terminology.
Table 4 refers to information in
this column.

Usage of the data-name. For FD
entries, either VSAM is specified,
or the DTF type is identified
(e.g., DTFDA). For group items
containing a JSAGE clause, the
usage type is printed. For group
items that do not contain a USAGE
clause, GROUP is printed. For
elementary items, the information
in the USAGE clause is printed.

Table 4. Glossary Definition and Usage

r T T 1
| Type | Definition | Usage |
¢ 1 1 4
Group Fixed-Length	DS OCLN	GROUP
Alphabetic	Ds NC i DISP	
Alphanumeric] DS NC	DISP	
Alphanumeric Edited) DS NC] AN-EDIT		
Numeric Edited	DS NC ! NM-EDIT	
Index-Name	DS 1H] INDEX-NM	
Group Variable-Length	DS VLI=N	GROUP i
Sterling Report	DS NC	RPT-ST
External Decimal	DS NC	DISP-NM
i External Floating-Point ! DS NC	DISP-FP	
Internal Floating-Point	Ds 1F	COMP-1
I	Ds 1D	COMP-2
i Binary ! Ds 1H, 1F, OR 2F ! COMP		
Internal Decimal	DS NP	COMP-3
Sterling Non-Report	DS NC	DISP-ST
Index-Name	BLANK] INDEX-NAME	
File (FD)	BLANK	DTF TYPE I
Condition (88)	BLANK I BLANK	
Report Definition (RD)	BLANK] BLANK	
Sort Definition (SD)	BLANK	BLANK
t -1 : 1		
Note: Under the definition column, N = size in bytes, except in group variakle-length		
where it is a variable cell number.		
L 3
(:) A letter under column: encountered, or CSYNTAX is specified
and an E-level error is encountered.
R - Indicates that the data-name A global table contains easily
redefines another data-name. addressable information needed by the
object program for executicn. For
O - Indicates that an OCCURS example, in the Procedure Division
clause has been specified for output coding (3), the address of the
that data-name. first instruction under STEP-1 (OPEN
OUTPUT FILE-1) is found in the
Q - Indicates that the data-name PROCEDURE NAME CELLS portion of the
is or contains the DEPENDING Program Global Table (PGT).
ON object of the OCCURS
clause.
(:) The Task Global Table (TGT). This
M - Indicates the record format. table is used to record and save
This field is not applicable information needed during the
to VSAM. The letters which execution of the object program.
may appear under column M are: This information includes
switches, addresses, and work
F - fixed-length records areas.
U - undefined records The Literal Pool. This lists all
literals used in the program, with
V - variable-length records duplications removed. These
literals include those specified
S - spanned reccrds by the programmer (e.g., MOVE
"ABC" TO DATA-NAME) and those
(:) The location and length of WORKING- generated by the compiler (e.qg.,
STORAGE are noted here when CLIST, to align decimal points in
SYM or LSTX is specified, except under arithmetic computations). The
the same conditions as noted below. literals are divided into two

groups: those that are referenced
by instructions (marked "LITERAL

(E) Global tables and literal pool: POOL") and those that are
Global tables and the literal pool are parameters to the display object
listed when the CLIST, SYM, or LISTX time subroutine (marked "DISPLAY
option is specified, unless SUPMAP is LITERALS").

specified and an E-level error is

Interpreting Output 65

66

The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names,
generated procedure-names, and
procedure block locators
referenced by Procedure Division
instructions.

Register assignment: This lists the
permanent register assigned to each
base locator in the object program.
The remaining base locators are given
temporary register assignments but are
not listed. Register assignments are
listed when CLIST, SYM, or LISTX is

specified, and output is not overridden

by the same conditions as above.

Procedure block assignments:

Procedure block assignments are
printed when OPT is specified. The
procedure block assignments give the
location within the object program for
each block of code addressed by
register 11.

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-level error is
encountered, or unless CSYNTAX is
specified and an E-level error is
encountered. The actual object code
listing contains:

®

The compiler-generated card
number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C. When VERB is specified,
the actual verk or paragraph-name
is listed with the generated card
number.

The relative locaticn, in
hexadecimal notation, of the
object code instruction in the
module.

The actual object code instruction
in hexadecimal notation.

The procedure-name number. A
number is assigned only to
procedure-names referred to in
other Procedure Division

statements.

The object code instruction in the
form that closely resembles
assembler language. (Displacements
are in hexadecimal notation.)

Corpiler-generated information
apbout the operands of the
generated instruction. This
includes names and relative
locations of literals. Table 5
refers to information in this

column.

Table 5. Symbols Used in the Listing and
Glossary to Define
Compiler~-Generated Information

T T 1

| Symbol | Meaning |

t + }

| DM | SOURCE DATA NAME [

sav	SAVE AREA CELL
SWT	SWITCH CELL
TLY	TALLY CELL

JWe | WORKING CELL |

|Ts | TEMPORARY STORAGE CELL]

| VLC | VARIABLE LENGTH CELL i

| SBL | SECONDARY BASE LOCATOR |

| BL | BASE LOCATOR |

{ BLL | BASE LOCATOR FOR LINKAGE |

| | SECTION |

ON	ON COUNTER
PFM	PERFORM COUNTER
Psv	PERFORM SAVE
VN	VARIABLE PROCEDURE NAME
SBS	SUBSCRIPT ADDRESS
XSW	EXHIBIT SWITCH

1 Xsa | EXHIBIT SAVE AREA |

| PRM | PARAMETER |

| PN | SOURCE PROCEDURE NAMF |
| PBL | Procedure Rlock Locator |

e | GENERATED PROCEDURE NAME |

| DTF | DTF ADDRESS |

|FIB | File Information Block |
| | (for vsaM) |
| VNI } VARIAELE NAME INITIALIZATION |

JLIT | LITERAL |

| TS2 | TEMPORARY STORAGE [

[| (NON-ARITHMETIC) I

| RSV | REPORT SAVE AREA |

SDF	Secondary DTF Pointer
TS3	TEMPORARY STORAGE
	(SYNCERONIZATION)
TSu	TEMPORARY STORAGE

] | (SYNCHRONIZATICN) |

] INX | INDEX CELL |

| V(BCDNAME) | ADDRESS CONSTANT |

|VIR | VIRTUAL i

| OVF | Overflow Cell |

L 4L 4

Statistics: The compiler statistics

list the options in effect for this
run, the number of Data Division
statements specified; and the
Procedure Division size. Each level
number is counted as one statement in
the Data Division. The Procedure
Division size is approximately the
number of verks in the Procedure
Division.

An indicator is also given here if
dictionary spill occurred during
compilation. If spill occurred, the
amount of storage assigned to the
compiler may be increased for better
performance. Statistics are not
listed if SYNTAX (or CSYNTAX and an
E-level or higher error occurred) was
in effect.

Cross-reference dictionary: The
cross-reference dictionary is produced
when the XREF or SXREF option is
specified. It is suppressed if
CSYNTAX is in effect and an E-level
error is encountered. It consists of
two parts:

C) The cross-reference dictionary for
data~-names consists of data-names

followed by the generated card
number of the statement which
defines each data-name, and the
generated card number of state-
ments on which the referenced
statement begins. For MOVE
CORRESPONDING, the data items
actually moved are referenced.
Report Writer data-names, with
the exception of data-names in
the form "-nnn", are defined
with the generated card number
of their respective RD's.

The cross-reference dictionary for
procedure-names consists of the
procedure-names followed by the
generated card number of the
statement where each
procedure-name is used as a-
section-name or paragraph-name,
and the generated card number of
statements where each
procedure-name is referenced.

A reference will appear to a procedure
name if there is a reference to a
logically equivalent procedure-name; a
reference will also appear to a
procedure name, if, in a segmented
program, an implied branch to a
segment entry is made.

If XREF is specified, the names are
presented in the order in which they
appear in the source program. If
SXREF is specified, the names are
presented alphabetically. The number
of references appearing in the
cross-reference dictionary for a given
name is based upon the number of times
the name is referenced in the code
generated by the compiler.

Since a SEARCH verb results in the

examination of the individual elements

in the named table, the XREF or SXREF

for a SEARCH will reference the

element name for the table rather than

the table itself. LISTER could
provide the source cross-reference
material that might be desired.

Diagnostic messages: The diagnostic
messages associated with the

compilation are always listed. The
format of the diagnostic ressage is:

(:) Compiler-generated card number.
This is the number of a line in
the source program related to the
error.

Message identification. The
message identification for the
DOS/VS COBOL compiler always
begins with the symbols ILA.

(:) The severity level. There are
four severity levels as follows:

(W) Warning
This level indicates that an
error was made in the source
program. However, it is not
serious enough to interfere
with the execution of the
program. These warning
messages are listed only if
the FLAGW option is specified
in the CBL card or chosen at
system generation time.

(C) conditional
This level indicates that an
error was made but the
compiler usually makes a
corrective assumption. The
statement containing the error
is retained. Execution can be
attempted.

(E) Error
This level indicates that a
serious error was made.
Usually the compiler makes no
corrective assumrption. The
statement or option containing
the error is dropped.
Compilation is completed, but
execution of the program
should not be attempted.

(D) Disaster
This error indicates that a
serious error was made.
Compilation is not completed.
Results are unpredictable. If
this is a compiler error, the
job will terminate via the

Interpreting Output 67

CANCEL macro and produce a
dump.

(:) The message text. The text
identifies the condition that
caused the error and indicates the
action taken by the compiler.

Since Report Writer generates a
number of internal data items and
procedural statements, some error
messages may reflect internal
names. In cases where the error
occurs mainly in these geénerated
routines, the error messages may
indicate the card number of the RD
entry for the report under
consideration. 1In addition, there
are errors that may indicate the
number of the card upon which the
statement containing the error
-ends rather than the card upon
which the error occurs. Internal
name formats for Report Writer are
discussed under "“Glossary"
(heading 4, item C). Statement
numbers are generated when a verb
or procedure name is encountered.

The COBOL compile-time message that follows
serves as—an example of the format of COBOL
compiler messages:

CARD ERROR MESSAGE

00105 ILA10Q2I-W **#*** SECTION HEADER
MISSING.
ASSUMED PRESENT.

e The code "00105" at the left is the
card number of the statement in which
the error has occurred. (Some errors
may not be discovered until information
from various sections of the program is
combined. For this reason, the source
card number in the error message may
not be exact.)

e ILA identifies this as a DOS/VS COBOL
compiler message.

e The numeral "1002" represents the
identifying number of the message; the
first digit of this identifier
indicates the phase in which the error
was detected. In this case the message
was generated by phase 1.

e The symbol "I" means that this is a
message to the programmer for his
action.

e "W" (warning) is a level of severity in
the error codes descriked in item C.

e The five asterisks (****%) indicate
words in a message that vary according
to the program being compiled.

The message text is usually composed of
two sentences. The first descrikes the
error; the second describes what the
compiler has done as a result cf the error.

Note: By specifying a PROGRAM-ID of ERRMSG
in any source program, the user can
generate a complete listing of compiler
diagnostics and problem determination aids.
(See Figure 12.) 1In this case, a normal
compilation never takes place. Only a list
of all error messages and problem
determination information is produced. The
link option is reset if it was in effect.

Some messages are not given if CSYNTAX
or SYNTAX is in effect. See "Program
Checkout" for the list of these messages.
(:) FIPS Diagnostic Messages: The

diagnostic messages associated with
FIPS are listed separately from the
compiler diagnostic messages, with a
header identifying them as FIPS
diagnostics. The format cf the FIPS
diagnostic messages is:

@ Compiler-generated line number.
This is the nurber offa line in
the source program containing a
nonstandard element.

Message identification. The
message identification for FIPS
diagnostic messages always begins
with the symbols ILA. The
identifying numbers of the
messages will always be 8001,
8002, 8003, or 8004, where:

1 indicates an extension to a
certain level of the FIPS

2 indicates an extension to all
levels of the FIPS

3 indicates an extension to one
or all levels of the FIPS, or
an unusual condition;

4 indicates that there are no
FIPS diagnostic messages.

(:) The severity level. All FIPS
diagnostic messages have a
severity level of W (warning).
This level indicates that
something in the source program
does not conform to the FIPS, but
the compilation of the program
will not ke interrupted.

(:) The message text. The text
identifies the condition or
element that does not conform to
the FIPS. The FIPS level is also
desianated.

| 1
\// JOB ERRORMSG GUser information |
\// EXEC FCOBOL |
| IDENTIFICATION DIVISION.]
] PROGRAM-ID. ERRMSG. i
| REMARKS. COMPILATION OF THIS PROGRAM WILL RESULT IN ALL COMPILER |
| DIAGNOSTICS BEING PRODUCED. NO OBJECT MODULE AND NO COMPILE- |
| TIME STATISTICS RRE PRODUCED. |
| ENVIRONMENT DIVISION. |
I DATA DIVISION. 1
] PROCEDURE DIVISION. |
| * THE SAME RESULTS CAN EE ACHIEVED BY CEANGING TEE PROGRAM-ID OF |
i * ANY PROGRAM TO 'ERRMSG'. |
] STOP RUW. i
L -

Figure 12.

OBJECT MODULE

The object module contains the external
symbol dictionary, the text of the program,
and the relocation dictiomary. It is
followed by an END statement that marks the
end of the module. TFor additional
information about the external symbol
dictionary and the relocation dictionary,
see the publication DOS/VS System_Control
Statements.

An object deck is punched if the DECK
option is specified, unless an E-level
diagnostic message is generated. The
object module is written on SYSLNK if the
LINK option is specified, unless an E-level
diagnostic message is generated. No deck
is punched if CSYNTAX is in effect and
E-level errors are encountered, or if
SYNTAX is in effect.

LINKAGE _EDITOR_QUTPUT

The output of the link edit step may
inclugde:

e B printed listing of the job control
statements

3 Program that Produces COBOL Compiler Diagnostics

e A map of the phase after it has been
processed by the Linkage Editor

e Diagnostic messages

A listing of the linkage editor control
statements

e A phase which may be assigned to the
core image library

Any diagnostic messages associated with
the Linkage Editor are automatically
generated as ocutput. The other forms of
output may be requested by the OPTION
control statement. All output to be listed
is printed on the device assigned to
SYSLST.

Figure 13 is an example of a linkage
editor output listing. It shows the job
control statements and the phase map. The
different types of output are numbered and
each type to be explained is lettered. The
text following the figure is an explanation
of the figure.

Interpreting Output €9

// EXEC LNKEDY (:)

®

PHASE

PHASE***

DOS LINKAGE EDITOR DIAGNOSTIC OF INPUT @

IJFFBZIN
ILBDDSPO
IJJICPDV

ILBDDSSO

13JCPDV

ILBDIMLO
ILBDMNSO
ILBDSAE(Q

JOB SAMPLE
ACTION TAKEN MAP REL
LIST AUTOLINK
LIST AUTOLINK
LIST AUTOLINK
LIST AUTOLINK
LIST INCLUDE
LIST AUTOLINK
LIsT AUTOLINK
LIST AUTOLINK
LIST ENTRY

® ® ® ©

XFR-AD LOCORE HICORE DSK-AD

07D878 07D878 (Q7F1FF O05F OF 4

* UNREFERENCED SYMBOLS

002 UNRESOLVED ADDRESS CONSTANTS

Figure 13.

70

Linkage Editor Output

®

ESD TYPE
CSECT

CSECT

* ENTRY
* ENTRY
* ENTRY

CSECT
ENTRY

CSECT
CSECT

CSECT
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
* ENTRY

WXTRN
WXTRN

LABEL
TESTRUN

IJFFBZZN
IJFF2ZIN
IJFFBZ2Z
IJFFZZ2Z

ILBDSAEC
ILBDSAElL

ILBDMNSO
ILBDIMLO

ILBDDSPO
ILBDDSP1

ILBDDSSO
ILBDDSS1
ILBDDSS2
ILBDDSS3
ILBDDSS4
ILBDDSSS
ILBCDSS6
ILBDDSS7
ILBDDSSS

IJJCPDV
IJJCPDV1
IJJCPDV2

STXITPSW
ILBDDBG2

LOADED
07D878

07E1C8
07E1CE
07E1C8
07E1C8

07F078
07F0CO

07F070
07F018

07E578
07E978

07ECFO
07EFS50
07EF48
07F008
07ED16
07EDC2
07EE22
07EDEC
07ED46

07EARS
07ERA8
07ERA8

0)

REL-FR
070878

07E1C8

07F078

07F070
07F018

07E578

07ECFO

07EAAS8

RELOCATAELE

@

@

©

The juu control statements. These
statements are listed because the LOG
option is specified.

Disk linkage editor diagnostic message

of input. The ACTION statement is not
required. If the MAP option is

specified, SYSLST must be assigned.

If the statement is not used and
SYSLST is assigned, MAP is assumed and
a storage map and any error diagnostic
messages are considered output on
SYSLST.

Map of virtual storage. A phase map
is printed when MAP is specified (or
assumed) during linkage editor
processing. The following information
is contained in the storage map:

®

The name of each phase. This is
the name specified in the phase
statement.

The transfer address of each
phase.

®

The lowest virtual storage
location of each phase.

The highest virtual storage
location of each phase.

The hexadecimal disk address where
the phase begins in the core image
library.

® ® @ ©

The names of all CSECT's belonging
to a phase.

©)

All defined entry points within a

CSECT. If an entry point is not
referenced, it is flagged with an
asterisk (¥).

The address where each CSECT is
loaded.

®

The relocation factor of each
CSECT.

@)

The number of unresolved weak
external references. This
indication need not concern the
programmer. An unresolved weak
external reference does not cause
the Linkage Editor to use the
automatic library call mechanism.
Instead, the reference is left
unresolved, and the load module is
marked as executable. The number
of unresolved address constants
will not necessarily be the same
as the number of unreferenced
symbols listed in the Linkage
Editor output.

®

Comments con the Phase Map

The severity of linkage editor
diagnostic messages may affect the
production of the phase map. Since various
processing options affect the structure of
the phase, the text of the phase map will
sometimes provide additional information.
For example, the phase may contain an
overlay structure. In this case, a map
will be listed for each segment in the
overlay structure.

Linkage Editor NMessages

The Linkage Editor may generate
informative or diagnostic messages. A
complete list of these messages is included
in the publication DOS/VS System Control
Statements.

DOS ANS COBOL Unresolved External
References

When the Linkage Editor encounters a
weak external reference (WXTRN),
autolinking is suppressed and the V-type
address constant is either resolved from
those modules included into the load module
or it remains unresolved. Unresolved
WXTRNs will not cause the Linkage Editor to
cancel the link step if ACTION CANCEL is in
effect.

The DCS/VS COBOL object time subroutine
library utilizes WXTRNs not only as address
constants but also as switches to determine
at object time whether certain options are
in effect. It is a very convenient feature
which can lead to tight and efficient code.

Unresolved WXTRNs are normally
intentional but unresolved EXTRNs are
normally unintenticnal and an error.

Any of the following unresolved WXTRNs
may appear when link editing an object
module produced by an ANS COBCL ccmpiler:

STXITPSW ILBCFLW2 ILBDMRGO
I1LBDDBG2 ILBDSRTO ILEDFLW3
ILBDADR1 ILBDRELO ILEDTCOG
ILBDDBGO ILBDTEFO ILBDTCG1
SORTEP ILBDDSS1 ILBDDEG7
ILBDSTNO ILBLDSS3 ILEDDBGS
ILBDFLWO ILBDVOC1 ILBDTC30

Interpreting Output 71

COBOL EXECUTION OQUTPUT

The output generated by program
execution (in addition to data written on
output files) may include:

Data displayed on the console or on the
printer

Diagnostic messages to the programmer
Messages to the operator
System informative messages

SYMDMP, STATE, FLOW, and/or COUNT

output
System diagnostic messages
¢ A system dump

Appendix I contains the full list of
execution time diagnostic messages.

A dump and system diagnostic messages
are generated automatically during program
execution only if the program contains
errors that cause abnormal termination.

SYMDMP output is generated upon request,
or upon abnormal termination. STATE and
FLOW output are generated upon abnormal

termination. The output of these features
// BSSGN SYS008,X*'483"* @
// EXEC

WORK-RECORD = A 0001 NYC 2
WORK-RECORD = B 0002 NYC 1
WORK-RECORD = C 0003 NYC 2
WORK-RECCRD = D 0004 NYC 3
WORK-RECORD = E 0C(G5 NYC 4
WORK-RECORD = F 0006 NYC 2
WORK-RECORD = G 0007 NYC 1
WORK-RECCRD = H 0008 NYC 2
WORK-KECORD = I 0009 NYC 3
WORK-RECORD = J 0010 NYC 4
WORK-RECORD = K 0011 NYC Z
WCRK-RECORD = L 0012 NYC 1
WORK-RECORD = M 0013 NYC 2 @
WCRK-RECORD = N 0014 NYC 3
WORK~RECORD = O 0015 NYC &
WCRK-RECORD = P 0016 NYC 3
WORK-RECORD = ¢ 0017 NYC 1
WORK-RECORD = R 0018 NYC 2
WORK-RECORD = S 0019 NYC 3
WCRK-RECORD = T 0020 NYC &
WORK-RECORD = U 0021 WYC 2
WCRK~-RECORD = V 0022 NYC 1
WORK-RECORD = W 0023 NYC 2
WCRK-RECORD = X 0024 NYC 3
WORK-RECORD = Y 0025 NYC 4
WCRK-RECORD = 2 0026 NYC 2

Figure 14. oOutput from Execution Job Step

72

BG

is discussed in the chapter entitled
"Symbolic Debugging Features".

COUNT output is generated upon normal or
abnormal terminaticn of the program.
Output from this feature is described in
the chapter "Execution Statistics".

Figure 14 is an example of ocutput from
the execution job step. The following text
is an explanation of the illustration.

(:) Job control statements. These
statements are listed because the LOG
option is specified.

@

Program output on printer. The
results of execution of the EXHIBIT
NAMED statement appear on the program
listing.

©)

Console output. Data is printed on
the console output unit as a result of
the execution of DISPLAY UPON CONSOLE.

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In the message, XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
o1z
001y
6015
0016
0017
0018
0019
0020
0021
0022
0023
002%
0025 NYC
0026 NYC

EOJ SAMPLE //

00.56.19,DURATION 00.03.42

NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC
NYC

O-P\NMD—IQ-F‘\.NNHQ-P\NrJHO-P\NNb—A@-P\NMHO

STOP Statement

The following message is generated by
the STOP statement with the literal option:

XX C110A STOP ®literal®

Explanation: This message is issued at the
programmer's discretion to indicate
possible alternative action to be taken by
the operator.

Cperator Respense: Follo the

tor Respense Follows the
instructions given both by the message and
on the job request form supplied by the
programmer. If the job is to be resumed,
hit the end/enter key.

ACCEPT Statement

The following message is generated by an
ACCEPT statement with the FROM CONSOLE
option:

XX Ci11A "AWAITING REPLY"

Explanation: This message is issued by the
object program when operator intervention
is required.

Operator Response: Enter the reply and hit
the end/enter key. (The contents of the
text field should be supplied by the
programmer on the job request form.)
Alphabetic characters may be entered lower
case.

SYSTEM CUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message to indicate the portion of the
operating system that generated the
message. Table 6 lists these ccdes,
together with identification for each.

Table 6. System Message Identification
Codes

r T . . . ——1

|Code Identification

bt -

0 | An on-line conscle message from
i the Supervisor

A message from the Job Control
Processor

A message from the Linkage Editor

A message from the Librarian

A message from LIOCS

A message from the Sort program

A message from COBOL object-time
subroutines

[P e oy e g e i (et g . ot i . Gy . e
w

o o e i s o e e i e ot e

T e e e o ob s o i b e i e e — e e ——

Interpreting Output 73

This chapter describes the accepted
linkage conventions for calling and called
programs and discusses linkage methods when
using an assembler language program. In
addition, this chapter contains a
description of the overlay facility which
enables different called programs to occupy
the same area in virtual storage at
different times. It also contains a
suggesfed assembler language program to be
used im conjunction with the overlay
feature.

A COBOL source program that passes
control to another program is a calling
program. The program that receives control
from the calling program is referred to as
a called program. Both programs must be
compiled (or assembled) in separate job
steps, but the resulting object modules
must be link edited together in the same
phase.

A called program can also be a calling
program; that is, a called program can, in
turn, call another program. In Figure 15
for instance, program A calls program B;
program B calls program C. Therefore:

1. A is considered a calling program by B
2, B is considered a called program by A
3. B is considered a calling pragram by C

4. C is considered a called program by B

CALLING AND CALLED PROGRAMS

Compiler-generated switches, e.g., ON
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

Note: It is necessary for an American
National Standard COBOL program to know
whether it is the main or the called
program. For this reason, any non-American
National Standard COBOL program calling an
American National Standard program nust
first call the subroutine ILBDSETO. The"
function of this subroutine is to set a
switch to X*FF' in subroutine ILBDMNSO,
which is the indication to the COBOL
program that it is a called program.
Standard linkage conventions should be
observed when calling ILBDSETO; there are
no parameters to be passed.

LINKAGE

Whenever a program calls another
program, linkage must be-established
between the two. The calling program must
state the entry point of the called program
and must specify any arguments to be
passed. The called program must have an
entry point and must be able to accept the
arguments. Further, the called program
must establish the linkage for the return
of control to the calling program.

r 3
| . B C | LINKAGE IN A CALLING PROGRAM
| r r 1 I 1 '
| |Calling | |Called | |Called | |
| |program | [program | |program | | A calling COBOL program must contain the
| lof B | jof A | |lof B | following statement at the point where
[|—>1 | ——> | ! another program is to be called:
(| | {Calling | 1 I
1 | |program | | (| r nl
(I | jJof C | | 11 JCALL literal-1 [USING identifier-1 |
I v 4 L + L 4 I [identifier-2]...1] |
L g L 1
Figure 15. Calling and Called Programs

literal-1

By convention, a called program may call
to an entry point in any other progranm,
except one on a higher level in the "path®
of that program. That is, A may call to an
entry point in B or C, and B may call C;
hovwever, C should not call A or B.

Instead, C transfers control only to B by
issuing the EXIT PROGRAM or GOBACK
statements in COBOL (or its equivalent in
another language). B then returns to A.

is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When.the called
program is to be entered at the
beginning of the Procedure Division,
literal-1 is the name of the program
being called. When the called progranm
is to be entered at some point other
than the beginning of the Procedure

Calling and Called Programs 75

Division, literal-1 should not be the
same as the name specified in the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry

point, this entry point name would not

be uniquely defined as an external
reference.

If the first character of PROGRAM-ID
is numeric, the correspondence
algorithm is as follows:

0 becomes J
1-9 become A-I

Since the system does not include the
hyphen as an allowable character, the
hyphen is converted to zero if it
appears as the second through eigbth
character of the nanme. :

identifier-1 [identifier-2]...
are the arguments being passed to the
called program. Each identifier
represents a data item defined in the
File, Working-Storage, or Linkage
Section of the calling program and
should contain a level number 01 or
77. ¥When passing identifiers from the
File Section, the file should be open
before the CALL statement is executed.
If the called program is an assembler
language program, the arguments may
represent file-names and procedure-
names in addition to data-names. If
no arguments are to be passed, the
USING option is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

-
|PROCEDURE DIVISION [USING
| identifier-1 [identifier-2]...].

I pe——

-

If the entry point of the called
program is not the first statement of
the Procedure Division:

76

[identifier-2]...]

b e e ——

F
i
I
| ENTRY literal-1 [USING identifier-1
|
L

literal-1
is the name of the entry point in
the called program. It is the
same name that appears in the
CALL statement of the program
that calls this program.

literal-1 must not be the name of
any other entry point or
program-name in the rum unit.

jdentifier-1 [identifier-2]...]
are the data items representing
parameters. They correspond to
the arquments of the CALL
statement of the calling program.
Fach data item in this parameter
list must be defined im the
Linkage Section of the callead
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to the calling program:

EXIT PROGRAM.

GOBACK.

o - ——
e o dey e

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling
program immediately following the
calling sequence.

ENTRY POINTS

Fach time an entry point is specified in
a called program, an external-name is
defined. An external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
BEach time an entry name is specified in a
calling program, an external reference is
defined. An external reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase.

(

Note: Several different entry points may
be defined in one COBOL source module.
Different CALL statements in any module of
the phase may specify the same entry point,
but each definition of an entry pocint must
be unique in the same phase.

CORRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of identifiers in the
argument list of the calling program should
be #the same as the number of identifiers in
the parameter list of the called program.
If the number of identifiers in the
argument list of the calling program is
greater than the number of identifiers in
the parameter list of the called progranm,
only those specified in the parameter list
of the called program may be referred to by
the called program. There is a one-for-omne
correspondence. The correspondence is
positional and not by name. An identifier
must not appear more than once in the same
USING clause.

Only the address of an argument is
passed. Conseguently, both the identifier
that is an argument and the identifier that
is the corresponding parameter refer to the
same location in storage. The pair of
identifiers need not be identical, but the
data descriptions must be equivalent. For
example, if an argument is a level-77
data-name representing a 30-character
string, its corresponding parameter could
also be a level-77 data-name representing a
character string of length 30, or the
parameter could be a level-01 data item
-with subordinate items representing
character strings whose combined length is
30.

Although all parameters in the ENTRY
statement must be described with level
numbers 01 or 77, there is no such
restriction made for arguments in the CALL
statement. An argument may be a qualified
name or a subscripted name. When a group
item with a level number other than 01 is
specified as an argument, proper boundary
word alignment is required if subordinate
items are described as COMPUTATIONAL,
COMPUTATIONAL-1, or COMPUTATIONAL-2. 1If
the argument corresponds to an 01-level
parameter, doubleword alignment is
required.

LINK FEDITING WITEOUT OVERLAY

Assume that a COBOL main program
(COBMAIN), at one or more points in its
logic executes CALL statements to COBOL
programs SUEPRGA, SUBPRGE, SUBPRGC, and

SUBPRGD. Also assume that the module sizes
for the main program and subprograms are:

Module Size

Program (in_bytes)
COBMAIN 20,000
SUBPRGR 4,000
SUBPRGB 5,000
SUBPRGC 6,000
SUBPRGD 3,000

Through the linkage mechanism, all
called programs plus COBMAIN must be link
edited together to form one module of
38,000 bytes. Therefore, COBMAIN would
require 38,000 bytes of storage in order to
be executed. No overlay structure need be
specified at link edit time if 38,000 bytes
of virtual storage are available.

The following is an example of the job
control statements needed to link edit
these calling and called programs without
specifying an overlay structure. The
source decks for COBMAIN and SUEPRGA are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

// JOB NOVERLAY
// OPTION LINK,LIST,DUMP
ACTION MAP
PHASE EXAMP1,%
INCLUDE

{object module COBMAIN}
/*

INCLUDE SUEBPRGB

INCLUDE SUBPRGC

INCLUDE SUBPRGD

INCLUDE

{object module SUBPRGA}

/*

ENTRY
// EXEC LNKEDT
// EXEC

{data for program}
Ve
/&

Figure 16 is an example of the ta flo
logic of this call structure where all the
programs fit into virtual storage.

Calling and Called Programs 77

Prom these combinations, more
SYSIPT complicated structures can be formed.
Main Program
In a COBOL program, the expansions of
the CALL and GOBACK or EXIT PROGRAM
statements provide the save and return
coding that is necessary to establish

SUBPRG B [~ SUBPRG A linkage between the calling and called
> programs in accordance with the linkage
Relocatable conventions of the system. Assembler
N SUBPRG C o~ :
Library language programs must be prepared in
accordance with the same linkage
r conventions. These conventions include:
SUBPRG D Job Control 1. Using the proper registers to
Execute establish linkage.
LNKEDT
2. Reserving, in the calling program, a
. storage area for items contained in
» é;ﬁ?’ the argument list. This storage area
SYSLNK can be referenced by the called
program.

3. Reserving, in the calling program, a
save area in which the contents of the
registers can be saved.

\
MAIN PROGRAM
Object Module

SUBPRG B
SUBPRG C

SUBPRG D

SUBPRG A
Object Module

The Disk Operating System has assigned

\\\\~_—<£:i—_ functions to certain registers used in
linkages. Table 7 shows the conventions

Figure 16. Example of Data Flow Logic in a for using general registers as linkage
Call Structure registers. The calling program must load

the address of the return point into

register 14, and it must load the address
Note: For the example given, it is assumed of the entry point of the called program

Storage
Layout REGISTER USE

that SYSLNK is a standard assignment. The into register 15.
flow diagram illustrates how the various
program segments are link edited into Table 7. Conventional Use of linkage
storage in a sequential arrangement. Registers
I T T 1
|Reqg. |Reg. | |
|No. |[Name | Function 1
ASSEMBLER LANGUAGE SUBPROGRAMS 3 { } 4
| 1T |JjArgument| Address of the argument |
] jlist] list passed to the called |
R main program written in COBOL can call | |register| progranm.)
programs written in other languages that — } } 4
use the same linkage conventions. Whenever 113 [Save | Address of the area re- i
a COBOL program calls an assembler language] jarea | served by the calling pro-|
program, certain conventions and techniques | jregister| gram in which the contents|
must be used.] | | of certain registers are |
I | | stored by the called |
There are three basic ways to use | | | program. i
assembler-written called programs with a [+ + 4
main program written in COBOL: |14 |JReturn | Address of the location in|
| |register| the calling program to |
1. A COBOL main program or called program | | | which control is returned |
calling an assembler-writtem progranm. H | i after execution of the i
| | | called progranm. |
2. BAn assembler-written program calling a } + } - —q
COBOL program. 115 |Entry | Address of the entry point|
i jpoint | in the called program. 1
3. An assembler-written program calling | lregister| |
another assembler-written progranm. L 1 i !

78

SAVE AREA

A calling assembler language program
must reserve a save area of 18 words,
beginning on a fullword boundary, to be
used by the called program for saving
registers; it must load the address of this
area into register 13. Table 8 shows the
layout of the save area and the contents of
sach word.

A called COBOL program does not save
floating-point registers. The programmer
is responsible for saving and restoring the
contents of these registers in the calling
program.

Table 8. Save Area Layout and Word

Contents

L

IThis word is a part of the
{standard linkage convention
|established under the DOS/VS
|System. The word must be
{reserved for proper
jaddressing of the subsequent
jentries. However, an
|assemnbler subprogram may use
Jthe word for any desired
|parpose.

1.

AREA
(wvord 1)

4

|The address of the previous
|save area, that is, the save
jarea of the subprogram that
jcalled this one.

L
AREA+8 |The address of the next save
(

AREA+4
(word 2)

r

|

|

I

|

|

|

f

(

|

I

|

|

{

|

i

|

|

|

|} (word 3) |area, that is, the save area
i lof the subprogram to which
| |this subprogram refers.

l [

|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
i
|
i

AREA+12
(word &)

r
IThe contents of register 14,
fthat is, the return address.
L

1
AREA+16 {The contents of register 15,
(word 15) |that is, the entry address.
[

AREA+20 [The contents of register 0.
(word 6) |

T
AREA+24 |The contents of register 1.

(word 7)

-
. -

3
=
[

AREA+68
(word 18)

contents of register 12.

\..._..—..._._.——._.-L.—.—-b——_-—_..«b_...._—AL.—_.._.._.-E_._._——_.___._-J

o — — e —— —

br e o o — S — —— — —— ——— T W - W - — S — ———— VEAn D — e — — A — o — v v—

ARGUMENT LIST

The arqument list is a group of
contiguous fullwords, beginning on a
fullword boundary, each of which is an
address of a data item to be passed to the
called program. If the program is to pass
arguments, an argument list must be
prepared and its address loaded into
register 1. The high-order bit of the last
argument, by convention, is set to 1 to
indicate the end of the list.

Any assembler-written program must be
coded with a detailed knowledge of the data
formats of the arguments being passed.

Most coding errors occur because of the
data format discrepancies of the arguments.

If one programmer writes both the
calling program and the called program, the
data format of the arguments should not
present a problem when passed as
parameters. However, when the programs are
written by different programmers, the data
format specifications for the arguments
must be clearly defined for the programmer.

The linkage conventions used by an
assembler program that calls another
program are illustrated in Figqure 16. The
linkage should include:

1. The calling sequence.

2. The save and return routines.
3. The out-of-line parameter list. (&n
in-line parameter list may be used.)

4., 1A save area on a fullword boundary.

FILE-NAME AND PROCEDURE-NANME ARGUHEﬁTS

A calling COBOL program that calls an
assembler-~language program can pass
file-names and procedure-names, in addition
to data-names, as identifiers. In the
actual identifier-list that the compiler
generates, the procedure-name is passed as
the address of the procedure. For a file,
the address of the DTFP is passed, and the
user must ensure that the file is already
open. A VSAM file-name may not be passed.

Care must be taken when using these
options. The user must be thoroughly
familiar with the generated coding for each
option and statement, as well as the
structure of the object program.

Calling and Called Programs 79

deckname START O
*
*
ENTRY nameq
FXTRN namez
USING namey,15
* SAVE ROUTINE
name , STH 14,r,,12(13)
*
*
*
LR I3,15
DROP 15
USING name,,T,
LR 1’.'2,13
*
*
LA 13,AREA
*
ST 13,8(r,)
%
*
ST T,,4(13)
*
*
%*
BC 15,prob,
AREA DS 18F
*
prob,
L 15,VCON
BALR 14,15
* CALLING SEQUENCE
LA 1,ARGLST
L 15,ADCON
BALR 14,15

INITIATES PROGRAM ASSEMBLAGE AT FIRST
AVAILABLE LOCATION. ENTRY POINT TO THE
PROGRAMN.

THE CONTENTS OF REGISTERS 14, 15, AND

0 THROUGH r, ARE STORED IN THE SAVE

AREA OF THE CALLING PROGRAM (PREVIOUS

SAVE AREA). r, IS ANY NUMBER FROM 0 THROUGH 12.

WHERE r3 AND r, HAVE BEEN SAVED

LOADS REGISTER 13, WHICH POINTS TO THE
SAVE AREARA OF THE CALLING PROGRAM, INTO
ANY GENERAL REGISTER, r,, EXCEPT O AND 13.
LOADS THE ADDRESS OF THIS PROGRAM'S

SAVE AREA INTO REGISTER 13.

STORES THE ADDRESS OF THIS PROGRAM'S SAVE
ARER INTO WORD 3 OF THE SAVE ARER OF THE
CALLING PROGRAHN.

STORES THE ADDRESS OF TEE PREVIOUS SAVE
ARER (I.E., THE SAME AREA OF THE CALLING
PROGRAM) INTO WORD 2 OF THIS PROGRAM'S
SAVE AREA.

RESERVES 18 WORDS FOR THE SAVE AREA
THIS IS LAST STATEMENT OF SAVE ROUTINE.

{User-written program statements}

INDICATE COBOL PROGRAM IS
A SUBPROGRAM

{Remainder of user-written program statements}

* RETURN ROUTINE

L

LM

L

MVI
*
*

BCR
VCON DC
ADCON bC

* PARAMETER LIST

ARGLST DC
DC

13,4 (13)
2,r,,28(13)
14,12 (13)

12 (13) ,X'FF!

15,14
V(ILBDSETO)
A (name,)

ALY (arg,)
ALY (arg,)

Xr80"*
AL3 (argy,)

LOADS THE ADDRESS OF THE PREVIQUS SAVE
AREA BACK INTO REGISTER 13.

THE CONTENTS OF REGISTER 2 THROUGH r, ARE
RESTORED FROM THE PREVIOUS SAVE AREA.
LOADS THE RETURN ADDRESS, WHICH IS IN
WORD 4 OF THE CALLING PROGRAM'S SAVE ARER,
INTO REGISTER 14.

SETS FLAG FF IN THE SAVE AREA OF THE
CALLING PROGRAM TO INDICATE THAT CONTROL
HAS RETURNED TO THE CALLING PROGRAM.

LAST STATEMENT IN RETUKN ROUTINE

CONTAINS THE ADDRESS OF SUEPROGRAM name,.

FIRST STATEMENT IN PARAMETER AREA SETUP

FIRST BYTE OF LAST ARGUMENT SETS BIT 0 TO 1
LAST STATEMENT IN PARRAMETER AREA SETUP

e o e o o — — e — . — —— - — — . S s s S S W W o — N — = — | T — —— — T — e —— S — - — — o o} o— o]

T [e eem o - s - — — ————————— ——— —— — 7 — ——— — o —t——— " — o — o —— o — . — o S s oo)

80

—

1
ADCON BC A (prob,)
i .
LA 14 ,RETURN]
L 15, ADCON {
CNCP 2,4
BALR 1,15 I
DC RLY4 (arg,)
BC ALY (arg,)
I -
. .
bDC X'80¢"
i oc AL3 {aTgp)
RETURN EQU *
L M §
Figure 18. Sample In-line Parameter List

In-Line Parameter List

The assembler programmer may establish
an in-line parameter list instead of an
out-of-line list. 1In this case, he may
substitute the calling sequence and
parameter list illustrated in Figure 18 for
that shown in Pigure 17.

LOWEST LEVEL PROGRAM

If an assembler called program does not
call any other program (i.e., if it is at
the lowest level), the programmer should
omnit the save routine, calling sequence,
and parameter list shown in Figure 17. If
the asseambler called program uses any
registers, it must save them. Figure 19
illustrates the appropriate linkage
conventions used by an assembler program at
the lowest level.

T
|deckname START O
| ENTRY name
|
USING *,15
name STH 14,r,,12(13)

User-written program statements

I
|
|
|
|
i
| .
|
|
|
i
|

LM 2,r,,28(13)
MVI 12(13) ,X'FP*
BCR 15, 14

: If registers 13 and/or 14 are used
in the called subprogram, their contents
Ishc- 2.4 be saved and restored by the
|called subprogram.

b o e e e e —— - ——— —— ———]

Figure 19. Sample Linkage Routines Used

with a Lowest Level Subprogram

OVERLAYS

If a program is too large to be
contained in the number of bytes available
in virtual stgoerdage, it can still be
executed by means of an overlay_ structure.
An overlay structure permits the re-use of
storage locations previously occupied by
another program. In order to use an
overlay structure, the programmer must plan
his program so that one or more called
programs need not be in storage at the same

+*3 +h +
time as the rest of the program phase. The

programmer should reassess, when going to
¥S, whether programs which used to require
an overlay structure still do.

The following is a diagram of the basic
form of a program to be overlaid:

ROOT PHASE

le e o ——— — ———

SUBA SUBE

The root phase consists of the COBOL
main program and an assembler language
subroutine which handles the overlay
structures. SUBA and SUBB are the called
programs that are to be overlaid in
storage.

In using the overlay technique, the
programmer specifies to the lLinkage Editor
which programs are to overlay each other.
These programs are processed by the Linkage
Editor so they can be placed automatically
in storage for execution when called by the
main program. The resulting output of the
Linkage Editor is called an overlay
structure.

SPECTAL_ CONSIDERATIONS WHEN USING_OVERLAY
STRUCTURES

There are three areas of special concern
overlay feature. These problems concern
the use of the assembler language
subroutine, proper link editing, and job
control statements.

Calling and Called Programs 81

ASSEMELER LANGUAGE SUBROUTINE FOR
ACCOMPLISHING OVERLAY

The CALL statement is used for "direct"™
linkage; that is, the assistance of the
Supervisor is not required (as it is when
loading or fetching a phase). There are no
COBOL statements that will generate the
equivalent of the LOAD or FETCH assembler
macro instructions. For this reason, one
must call an assembler prodgram to effect an
overlay of a COBOL program. This routine
nust be link edited as part of either a
root phase or permanently resident phase.

The sample overlay subroutine shown in
Pigure 20 is governed by the following
restrictions:

1. The example is a suggested technique,
and is not the only technique.

It can be used for assembler overlays
if the programmer has a desired entry
point in his END card and the first
statement at that entry point is 'STH
14,12,12(13) *.

This subroutine can be used for a
COBOL program which contains an ENTRY
statement immediately following the
Procedure Division header. It will
not work with a COBOL subprogram
compiled with a Procedure Division
USING statement or for entry points in
a COEOL subprogram which appear
anywhere other than as the first
instruction of the Procedure Division.
A suggested technique for diverse
entry points is a table look-up using
V-type constants.

T |
| STHMNT SOURCE STATEMENT]
I |
} 00601 OVERLAY START O |
| 0002 ENTRY OVRLAY |
] 0003 * AT ENTRY TIME |
| 0004 * R1=PCINTER TO ADCON LIST OF USING ARGUMENTS |
| 0005 = FIRST ARGUMENT IS PHASE OR SUBROUTINE NAME |
| 0006 * MUST BE 8 BYTES 1
| 0007 =* R13=ADDRESS OF SAVE AREA |
| 0008 =* R14=RETURN POINT OF CALLING PROGRAM i
| 0009 = R15=ENTRY POINT OF OVFRLAY PROGRAM {
| 0010 * AT EXIT |
{ 0011 = R1=POINTER TO SECOND ARGUMENT OF ADCON LIST 1
I 0012 =* OF USING ARGUMENTS [
| 0013 =* R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG [
| 0014 * R15=ENTKY POINT OF PHEASE OR SUBPROGRAM |
| 0015 =* |
| 0016 USING *,15 |
| 0017 OVRLAY sTM 0,1,SAVE SAVE WORK REGS I
{ 0018 L 1,0(N) POINT R1 TO PHASE NAME |
| 0019 CLC CORSUB,0(N IN CORE? |
| 0020 BE SUBIN YES,BR |
| 0021 MYC CORSUEB(8),0(1) SET COURRENT PHASE I
| 0022 SR 0,0]
| 0023 SVC 4 LOAD PHASE I
| 0024 SEARCH1 13 1,4(1 STEP SEARCH POINT |
| 0025 CLC 0(3,1),=C'COB? END OF INIT1? |
I 0026 BNE SEARCHI1 NO, LOOP i
| 0027 s 1,=F'§" POINT TO WSTART"™ ADCON |
| 0028 L 1,0(NH LOAD "START" |
| 0029 LA 1,8(1) INCREMENT TO “ENTRY" [
| 0030 ST 1,ASUB SAVE ENTRY ADDRESS |
| 0031 SUBIN 1M 0,1,SAVE RELOAD WORK REGS |
| 0032 LA 1,48(1) POINT TO PARAMETERS I
| 0033 L 15,ASUB |
| 0034 BR 15 BRANCH TO ENTRY POINT |
!} 0035 CORSUB DS ocL i
| 0036 DC 8X'FF* |
| 0037 ASUB DS F |
| 0038 SAVE DS 2F |
| 0039 END [
L. J

Figure 20.

82

Example of an Assembler Language Subroutine for Accomplishing Overlay

Note: Care should be taken with the
technigues used in statements 0019 and
0020. Only when the COBOL program is
loaded are altered GO TO statements
reinitialized. A better technigque would be
to load the called programs each time they
are required.

The examples given in Figures 20, 21, and
22 require that all overlay modules be linked
together, .To permit linkage to and return
from modules, compiled and link edited
separately, the following changes to
Figure 20 are necessary:

Replace lines 25 through 28

CLC COBCON,20(1) END OF INIT?
BNE SEARCH1 NO, LOOP
LR 0,1 SAVE ADDR ADCON INIT1
L 1,0(1) GET INIT1 ADDR
MVC NOP+3(1),139(1l) GET DISP OF VIRT CELL
LR 1,0 RESTORE ADDR OF ADCON INIT1
L 1,4(1) GET ADDR OF PGT
NOP L 1,0(1) LOAD ADDR OF ILBDMNSO
MVI 0(l),X'FF' SET 'CALLED PROGR' FLAG
LR 1,0 RESTORE ADDR OF ADCON INIT1
L 1,12(1) LOAD 'START' ADDRESS

Insert after line 38

COBCON DC CL3'COB'

LINK EDITING WITE OVERLAY

In a linkage editor job step, the
programmer specifies the overlay points in
a program by using PHASE statements. 1In
the Working-Storage Section, a level-01 or
level-77 constant must be created for each
phase to be called at execution time.
These constants have a PICTURE of X (8) and
a VALUE clause containing the same name as
that appearing on the PEASE card for that
segment in the link edit run.

In addition, each argument to be passed
to the called program must have an entry in
the Linkage Section. Remember, also, that
the ENTRY statement should not refer to the
program-nanme. (Use of the program-name
will result in incorrect execution.)

When more than one subprogram in the
overlay structure requires the same COBOL
subroutine, the // EXEC LNKEDT statement
must be preceded by INCLUDE cards for each
of these subroutines. The names of these
subroutines can be determined by requesting
LISTX at compile time.

When preparing the control cards for the
Linkage Editor, the programmer should be
certain to include the assembler language
subroutine with the main (root) phase.

3lso, to achieve maximum overlay, the phase
names for the called programs should be
different from the names of the called
programs specified in the PROGRAM-ID
paragraphs.

Figure 21 is a flow diagram of the
overlay logic. The PHASE cards indicate
the beginning address of each phase. The
phases OVERLAYC and OVERLAYD will have the
same beginning address as OVERLAYB. The
sequence of events is:

1. The main program calls the overlay
routine.

2. The overlay routine fetches the
particular COBOL subprogram and places
it in the overlay area.

3. The overlay routine transfers control
to the first instruction of the called
progranm.

4, The called program returns to the

COBOL calling program (not to the
assembler language overlay routine).

If OVERLAYE were known to be in storage,
the CALL statement would be:

T 1
{ CALL "OVERLAYB"™ USING PARAM-1, PARAM-2Z.|

L 4

But when using the assembler language
cverlay routine ({OVRLRY), it becomes:

CALL "OVRLAY"™ USING PROCESS-LABEL,
PARM-1, PARM-2.

where PROCESS-LABEL contains the
external-name OVFRLAYE of the called
program.

However, the ENTRY statement of the
called program is the same for both cases,
i.e., ENTRY "“OVERLAYB® USING PARAM-1,
PARAM-2, whether it is called indirectly by
the main program through the overlay
program or called directly by the main
progranm.

Note: An ENTRY which is to be called by
OVRLAY must precede the first executable
statement in the called program.

Calling and Called Programs 83

JOB CONTROL FOR ACCOMPLISBEING OVERLAY

::AS.E\O; Root The job control statements reguired to
C) C) accomplish the overlay illustrated in

Overlay Routine Figure 21 are shown in Figure 22. The
()[: C) PHASE statements specify to the Linkage

Overlay Area |—d Pditor that the overlay structure to be

established is one in which the called
programs OVERLAYE, OVERLAYC, and OVERLRYD

overlay each other when called during
<:::::::::::::::q execution.

g)\égf:;:ms JOID Note: The phase name specified in the
)‘ PUASE card must be the same as the value
OVERLAY C contained in the first argument for CALL
Subprogram "OVRLAY", i.e., PROCESS-LABEL, COMPUTE-T2X,
OVERLAY D etc., contain OVERLAYE, OVERLERYC,
respectively, which are the names given in

“Subprogram Y
v the PHASE card.

It is the programmer'*s responsibility to
write the entire overlay, i.e., the COEOL
main (or calling) procram and an assenmbler
language subroutine (for which a sample
program is given in this chapter) that
fetches and overlays the called programs.

A calling seguence to obtain an overlay
structure between three COBOL suvbprogranms
Figure Z1. Flow Diagram of Overlay LlLogic is illustrated in Figure 23.

\ // JOB CVERLAYS

| // OPTION LINK

| FZASE OVERLAY,ROOT

| // ®BYEC ¥*COBOL

i {COEQL Source for Main Program MAINLINE}
P /*

| // EXEC ASSEXBLY

| [Source deck for Bssembler Landuage Routine OVERLAY]
b /*

i PHASE OVERLAY3B,*

| // EXEC FCOEOL

| {COBOL Source for Called Program OVERLAYEH}
P /*

| PEASE OVERLAYC,OVEERLAYE
| // EXEC FCOEOL

| {COBOL Source for Called Program OVERLAYC}
v /*

| PXASE OVERLAYD,OVERLAYC

| // EXEC FCOBOL

| {COBOL Source for Called Program OVERLAYD}
I /%

| // EXEC LWNKEDT

| // EXEC

1 /*

| /&

L
F

e e e = . ——— . - T —— —— - — oy =]

igure 22. Job Control for Accomplishing Overlay

e

COBOL_ Program Main (Root or Main Program)

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINLINE.

ENVIRONMENT DIVISION.

.
.
.
DATA DIVISION.
.
.

WORKING-~STORAGE SECTION.

77 PROCESS-LABEL PICTURE IS X (8) VALUE IS "OVERLAYB".
77 PARAM-1 PICTURE IS X.

77 PARAM-2 PICTURE IS XX.

77 COMPUTE-TAX PICTORE IS X(8) VALUE IS ®OVERLAYC".

¥

|

{

!

1

i

|

1

|

|

|

|

|

i

|

1

i

|

|

|

|

|

|

| 01 NAMET.

| 02 EMPLY-NUMB PICTURE IS 9(5) .

| 02 SALARY PICTURE IS 9(4)V99.

| 02 RATE PICTURE IS 9(3)Vv99.

| 02 HOURS-REG PICTURE IS 9(3)V99.

I 02 HOURS-OT PICTURE IS 9(2)V99.

| 01 COMPUTE-SALARY PICTURE IS X (8) VALUE IS "OVERLAYD"™.
| 07 NAMES.

i 02 RATES PICTURE IS 9(6).

| 02 HOURS PICTURE IS 9(3)Vv99.

| 02 SALARYX PICTURE IS 9(2)Vv99.

|
|
|
|
|
!
|
|
1
]
!
i
I
|
|
|
!
1
I
L

PROCEDURE DIVISION.
CALL "™OVRLAY"™ USING PROCESS-LABEL, PARAM-1, PARAM-2.
CALL "OVRLAY"™ USING COMPUTE-TAX, NAMET.

CALL "OVRLAY"™ USING COMPUTE-SALARY, NAMES.

——— — —— —— - — — — — — —— — —— — —— o _—— — —— — {— — T — — — — — — — o—— " —— — " ——— — o — ——— - —]

3
Figure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms (Part 1 of

Calling and Called Programs 85

COBOL_ Subprogram_B

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAYT.

ENVIRONMENT DIVISION.
DATA DIVISION.

LINKAGE SECTION.

01 PARAM-10 PICTURE X.
01 PARAM-20 PICTURE XX.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYB" USING PARAM-10, PARAM-20.

.
.

GOBACK.

COBOL Subprogram C

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAYZ2.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9 (4) V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYCY™ USING NAMEX.

———— — —— — — —— — — T ——- S — — — . — — — — — — ——— ——— — W — A _— W — N . —— — G ——— — — — — —— —— ——— — — T — —— -

GOBACK.

| -

Lt o o e e - —— o ——— — — — — —— —— —— —— — .- — —— —— T — — — — — —— — — —— — — _— — (w —— — — ——— — . o ot o o o]

Figqure 23. Calling Segquence to Obtain Overlay Between Three COBOL Subprograms
{Part 2 of 3)

86

COBOL_Subprogram_ D

IDENTIFICATION DIVISION.
PROGRAM~ID. OVERLAY3.

ENVIRONMENT DIVISION.
DATA DIVISION.

LINRAGE SECTION

01 NAMES.
02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYD"™ USING NRAMES.

GOBACK.

.____________“__ﬂ___________,
o

Pigure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 3 of 3)

Calling and Called Programs 87

COBOL segmentation permits the user to
subdivide logically and physically the
Procedure Division of a COBOL object
program. A1l source sections which contain
the same segment-number in their section
headers will be considered at object time
to be one segment. Since segment-numbers
can range from 00 through 99, it is
possible to subdivide any object program
into a maximum of 100 segments.

Program segments may be of three types:
fixed permanent, fixed overlayable, and
independent as determined by the
programmer's assignment of segment numbers.

Segmentation of a program would be used
when virtual storage is limited. In a real
storage system, the following would apply:

1. Fixed segments are always in real
storage during the execution of the
entire program, that is, they cannot
be overlayed except when the systenm
itself is executing another program,
in which case fixed segments may be
"rolled out."

2. Fixed overlayable segments may be
overlayed during program execution,
but any such overlaying is transparent
to the user, that is, they are
logically identical to fixed segments,
but physically different from thenm.

3. Independent segments may be overlayed,
but such overlaying will result in the
initialization of that segment.
Therefore, independent segments are
logically different from fixed
permanent/fixed overlayable segments,
and physically different from fixed
segments.

In a virtual storage system, all
logically "fixed" segments, that is, fixed
permanent and fixed overlayable, are
treated the same. They are both "paged in
and out™ as required for execution.

In the same manner, independent segments
are paged in and out; when they are paged
in, however, they are broucht back in the
initial state.

In DOS/VS COBOL, segments that are
overlayed are not actually "paged out".
A1l the variable data items asscciated with
the segment are contained in one segment,
which is considered the root segment. When
a segment is "paged in", all the fields
vhich must be reinitialized are contained

USING_THE SEGMENTATION FEATURE

in the root segment. Thus no fields in
other than the root segment are modified.

The program SAVECORE could be segmented
as illustrated in Figure 24,

¥

IDENTIFICATION DIVISION.

'U

ROGRAM~-TID. SAVECORE.

NVIRONMENT DIVISION.

OBJECT-COMPUTER. IBM-370.
SEGMENT-LIMIT IS 15.

DATR DIVISION.

|
1
!
I
I.
1E
|
|
|
1
|
1
|
l.

| PROCEDURE DIVISION.

|

1

|

!

|

|

I

|

|

|

I

|

!

1

1

|SECTION-T1 SECTION 8. |
I !
. |
|SECTION~-2 SECTION 8. |
1. |
l. |
|SECTION-3 SECTION 16. |
l L4 l
I. i
ISECTION-4 SECTION 8. |
I. |
. |
|SECTION-5 SECTION 50. |
l. |
l. |
ISECTION-6 SECTION 16.]
l. |
I |
|SECTION-7 SECTION 50. I
I. |
1. |
k. " 3
Figure 24. Segmenting the Program SRAVECORE

Assuming that 12K of virtual storage is
available for the program SAVECORE, Figure
25 shows the manrer in which storage would
be utilized. It is apparent from the
illustration that SECTION-3, SECTION-6, and
SECTION-7 cannot be in storage at the same
time, nor can SECTION-3, SECTION-5 and
SECTION-7 be in storage simultaneously.

Sections in the permanent segment
(SECTION-1, SECTION-2., and SECTION-4) are
those which must be available for reference
at all times, or which are referenced:
frequently. They are distinguished here by
the fact that they have been assigned

Using the Segmentation Feature 89

priority numbers less than the segment
limit.

Sections in the overlayable fixed
segment are sections which are less
frequently used. They are always made
available in the state they were in when
last used. They are distinguishable here
by the fact that they have been assigned
priority numbers greater than the segment
limit but less than 49.

Sections in the independent segment can
overlay, and be overlaid by, either an
overlayable fixed segment or another
independent segment. Independent segments

are those assigned priority numbers greater

than 49 and less than 100, and they are
always given control in their initial
state.

OPERATION

Execution of the object program begins
in the root segment. The first segment in
the permanent segment is considered the
root segment. If the program does not
contain a permanent segment, the compiler
generates a dummy segment which will
initiate the execution of the first
overlayable or independent segment. All

global tables, literals, and data areas are

part of the root segment. Called object
time subroutines are also part of the root
segment. When CALL statements appear in a
segmented program, subprograms are loaded
with the fixed portiom of the main program
as if they had a priority of zero.

90

Segmented programs must not be called by
another program (segmented or not
segmrented) . If a segmented program calls a
subprogram, the CALL statement may appear
in any segment. However, the object module
associated with the subprogram must be
included in the root segment prior to the
execution of the main program. This can be
accomplished in either of two ways as
follows:

1. Produce object decks for both programs
and place the one for the subprogram
in the root segment:

PHASE,ROOT
ESD card for the root segment

{object deck for the main progranm}
{object deck for the subprogranm}

followed by a // EXEC LNKEDT and a //
EXEC.

2. Catalog the object module for the
subprogram in the relocatable library
prior to link editing the main
program. Insert an INCLUDE card for
the subprogram and an ENTRY card for
the root phase into the linkage editor
control cards for the root phase of
the main program. The ENTRY card will
cause the linkage editor to pass
control to the main program at
execution time. The Linkage Editor
will search the relocatable library
for the subprogram and include it with
the root phase.

- card.

data-buffers, global

permanent segment
(segment limit < 15)

SECTION-5 (2K)

SECTION-7 (1K)

e o o e — v —— —

é
i

r 1
| 1
| table, etc., (1K) i
1 N |
L 1
| SECTION-1 (2K) I
i |
L 1
| SECTION-2 (2K) |
— 4
| SECTION-4 (2K) |
[& 1
¥
fixed portion | SECTION-3 (3K) |
(12K) | |
| |
i !
i |
5K | |
i !
1]
I |
| SECTION-6 (2K) |
SECTION-3 and SECTION-6
are overlayable fixed segments
(14 < segment limit < 50)
Figure 25. Storage Layout for SAVECORE
OUTPUT FROM A SEGMENTED PROGRAM a.

COMPILER OUTPUT

The output produced by the compiler is
an overlay structure consisting of multiple
object modules preceded by linkage editor
control statements. Segments whose
priority is greater than the segment limit c.
(or 49, if no SEGMENT-LIMIT clause is
specified) consist of executable
instructions only.

The compiler generates each segment as a
separate object module preceded by a PHASE
The names appearing on these PHASE
cards (segment-names) conform to the
following naming conventions:

1. The name of the root segment is the
same as the program-name specified in
the PROGRAM-ID clause. d.

2. The name of each overlayable and
independent segment is a combination
of the program-name and the priority
number of the segment. These names
are formed according to the following
rules:

SECTION-5 and SECTION-7 are
independent segments
(49 < segment limit < 100)

If the program-name is 6, 7, or 8
characters in length, the
segment-name consists of the first
6 characters of program-name plus
the 2-character priority number.

If the program-name is less than 6
characters in length, the priority
number is appended after the
program-name.

Since the system expects the first
character of PROGRAM-ID to be
alphabetic, the first character,
if numeric, is converted as
follows:

0 ->Jd
1-9 -> A-I

The hyphen is converted to zero if
it appears as the second through
eighth character.

When DECK is specified, the
punched object deck is sequenced
according to segments. Columns
73-74 contain the first two
characters of the program-id,
columns 75-76 contain the priority
number of the segment, and columns
77-80 contain the sequence number

Using the Segmentation Feature 91

of the card. The priority of the
root segment is punched as 00.

e. When the compiler option CATALR is
in effect, the PHASE card for each
segment is preceded by a CATALR
card with the same name. This
will enable direct cataloging of
the compiler-produced object
module into the relocatable
library from which a load module
may be link edited into the
core-image library.

Note: Single-digit priority numbers
are preceded by a zero.

Warning: In order to avoid duplicate
names, the programmer must be aware of the
above naming conventions. If the last two
characters of an 8-character PROGRAM-ID are
numeric, these same two characters may not
appear in the source program as a segment
number.

Figure 26 is an illustration of the
compiler output for the skeleton program
shown in Figure 24.

PHASE SAVECORE,ROOT
{object module for the root segment
(sections with priority-numbers less
than the segment limit) including any
programs called by SAVECORE}

PHASE SAVECO16,*
{fobject module for segments with a
priority of 16 (two sections)}

PHASE SAVECO50,SAVECO16

{object module for segments with a
priority of 50 (two sections)}

o e —— ——— — - ———— — —— —— —)
Lo ot e e G e . e —— - o — v " — —

Figure 26. Compiler Output for SAVECORE

LINKAGE EDITOR OUTPUT

Figure 27 is an illustration of the
input to the Linkage Editor and the phase
map produced by the linkage Editor
resulting from the compilaticn and editing
of the segmented program BIGJOB. The
following text is an explanation of the
figure.

PHASE card generated by the compiler
for the root segment BIGJOE.

92

AUTOLINK card for the Segmentation
subroutine.

PHASE cards generated by the compiler
for segments of priority 10, 4#7-50, 60,
62, and 63.

Control card generated for the Sort
Peature. This card is explained in
®*Sort in a Segmented Program."

Location of the entry point CURSEGH.
Item 5 is explained in "Determining the
Priority of the last Segment Loaded
into the Transient Area."

Load address of phase BIGJOBOO. Item 6
is explained in "Sort in a Segmented
Program."™

®@ © 6 OO

Note: 1If the CATALR option of the CBL card
is specified, the compiler generates CATALR
cards in front of PHASE cards.

Cataloging a Segmented Progranm

When the CATAL option is used to catalog
a segmented program, the following points
should be observed:

1. To avoid duplicate names, the
programmer must be aware of the naming
conventions used by the compiler (see
"Compiler Output") because a
segment-name may be the same as a
phase-name already existing in the
core image library.

2. Since the PHASE card is generated by
the compiler, the programmer must not
specify a PHASE card for the program.

To invoke a previously cataloged
segmented program, the programmer must use
the following control statement:

// EXEC nanme

where name is the program-name specified in
the PROGRAM-ID clause.

Determining the Priority of the_ Last
Segment Loaded into_the Transient Area

If a segmented program is abnormally
terminated during execution, and the SYHDNP
option has been specified, the CURRENT
PRIORITY cell in the Task Global Table
contains the priority of the last segment
loaded into the transient area. If SYMDMP
has not been specified, the priority of
this segqment can be determined as follows:

1. In the map of virtual storage
gewerated by the Linkage Editor, under
the column LABEL, look for the name
fCURSEGM' (see item 5 in Figure 27).

2. BAssociated with this label, in the
column LOADED, is an address.

3. At this location is stored the
priority (one byte) of the segment
current in the transient area. If
this byte is X'00', no segment has
been loaded into the transient area.
This indicates that the error causing
the dump occurred in the root segment.

SORT IN A SEGMENTED PROGRAM

If a segmented program contains a SORT
statement, the sort program will be loaded
above the largest overlayable or
independent segment as shown in Figure 28.

The compiler accomplishes this by
providing the following control statement
at the end of the overlay structure:

PHASE BIGJOB(OO,transient area + L

This card is illustrated in Pigure 27, item
4. The value of "LY in the figure is
X*002F2* which is the length of the longest
segment, BIGJOB47, rounded to the next
halfword boundary. Note that Linkage
Editor relocates the phase BIGJOEBOO to the
next doubleword boundary (see Figure 27,
item 6).

Using the PERFORM Statement in a Seqmented
Program

When the PERFORM statement is used in a
segmented program, the programmer should be
avare of the following:

¢« A PERFORM statement that appears in a

section whose priority-number is less
than the segment limit can have within
its range only (&) sections with
priority-numbers less than 50, and (b)
sections wholly contained in a single
segment whose priority-number is
greater than 49.

Note: As an extension to American
National Standard COBOL, DOS/¥S COBOL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

A PERFORM statement that appears in a
section whose priority-number is equal
to or greater than the segment limit
can have within its range only (a)
sections with the same priority-number
as the section containing the PERFORH
statement, and (b) sections with
priority-numbers that are less than the
segment limit.

Note: As an extension to American
National Standard COBOL, DOS/VS COROL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

When a procedure-name in a permanent
segment (priority-number less than
segment limit) is referred to by a
PERFORM statement in an independent
segment (priority-number greater than
49), the independent segment is
reinitialized upon exit from the
PERFORM, When a PERFORM statement

in the overlayable-fixed segment
(priority-number greater than segment
limit and less than 50) refers to a
procedure-name in a permanent segment,
the overlayable-fixed segment is not
reinitialized upon exit from the
PERFORM.,

Using the Segmentation Feature 93

L
|JOB BIGJ

|
JACTION TAKEN

MAP

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

J

S g g W

|LIST PHASE BIGJOB,ROOT*——(:)

|-

|

|-

[LIST AUTOLINK ILEDSEMO

|LIST AUTOLINK ILBDSRTO

l.

i

JLIST PHASE BIGJOB10,*

JLIST PHASE BIGJOB47,BIGJOB10

JLIST PHASE BIGJOBUS ,BIGJOBUT7

|LIST PHASE BIGJOB49,BIGJOBU4S

|LIST PHASE BIGJOBS0,EIGJOBU4Y 4-—-@

{LIST PHASE BIGJOB60,BIGJOBS0

|LIST PHASE BIGJOB62,BIGJOB60

[LIST PHASE BIGJOB63,BIGJOB62

ILIST ~ PEASE BIGJOBOO,BIGJOB63+X100272* <—(4)

L.

'

| PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOADED REL-FR

|

|ROOT BIGJOB 003000 003000 0075A3 64 04 1 CSECT BIGJOB 003000 003000

I .

| .

| .)

| CSECT ILBDSEMO 006268 006268 ’

i *+ ENTRY CORSEGN 00637D<—-——-@

| CSECT ILBDSRTO 006B38 (006B38

I .

| .

| . :

| BIGJOB10 007528 0075A8 O0075E9 64 09 2 CSECT BIGJOB10 0075a8 007528

| BIGJOB47 O0075A8 0075A8 007899 65 00 1 CSECT BIGJOB47 0075A8 0075A8

I BIGJOB48 0075A8 0075A8 0075DB 65 00 2 CSECT BIGJOB48 0075A8 O0075A8

I BIGJOB4Y9 0075A8 0075A8 0075D3 65 01 1 CSECT BIGJOB49 0075a8 0075A8

| BIGJOB50 0075A8 (0075A8 O0075F1 65 01 2 CSECT BIGJOB50 O0075A8 0075A8

| BIGJOB60 0075A8 0075A8 O0076ED 65 02 1 CSECT BIGJOB60 0075A8 007518

i BIGJOB62 0075a8 0075A8 0075D1 65 02 2 CSECT BIGJOB62 O0075A8 O0075A8

| BIGJOB63 (0075A8 007538 007621 65 03 1 CSECT BIGJOB63 0075A8 007518

I BIGJOBOO 0078A0 O0078A0 0078A1 65 03 2 CSECT ILBDDUMO 0078A0_ 0078A0 ‘:)
| - J
Figure 27. Link Editing a Segmented Program

] Ll
I |
| f 2 |
I | ROOT | Including COBOL subroutines and called programs]
| F 4 |
{ | TRANSIENT | |
1 L) ARER | Overlayable and independent segments |
I F al I
| | SORT PROGRAM| |
| L - |
| 1
] L = length of the largest segment in bytes. !
i J
Figure 26. Location of Sort Program in a Segmentation Structure

9y

PART II

PROCESSING 3540 DISKETTE FILES —>

VSan —>

DETAILEb FILE PROCESSING CAPABILITIES

¥

\J

PROCESSING ASCII TAPE FILES

RECORD FORMATS —>

95

A mass storage device is one on which
records can be stored in such a way that
the location of any one record can be
determined without extensive searching.
Records can be accessed directly rather
than serially.

The recording surface of a mass storage
device is divided into many tracks. B °
track is defined as a circumference of the
recording surface. The number of tracks
per recording surface and the capacity of a
track for each device are shown in Table 9.

Table 9. Recording Capacities of Mass
Storage Devices
r T !
|Device | Capacity i
[N 13 .
3 T L)
12311 {200 tracks per surface; 3625]
| | bytes per track. |
— 1 —t
12314, 1200 tracks per surface; 7294 i
12319 | bytes per track.]
[i 4
¥ T L}
12321 | 100 tracks per strip; 2000 |
i] bytes per track. i
1 (] N) |
I T 1
13330 1404 tracks per surface; 13030 |
: : bytes per track. l
I T
|3330-11% |808 tracks per surface; 13030 |
: ! bytes per track. :
13340 1348 tracks per surface; 8368 |
% Model 35i bytes per track. !
|]
13340 1696 tracks per surface; 8368 !
| Model 70: bytes per track. I
L
13350 l555 tracks per surface; 19069 |
{ : bytes per track. !
*¥In the COBOL ASSIGN statement the 3330-11

is specified as 333B.

Each device has some type of access
mechanism through which data is transferred
to and from the device. The mechanisms are
different for each device, but each
mechanism contains a number of read/write
heads that transfer data as the recording
surfaces rotate past them. Only one head
can transfer data (either reading or
writing) at a time.

FILE ORGANIZATIOR

Records in a file must be logically
organized so that they can be retrieved
efficiently for processing. Four methods
of organization for mass storage devices
are supported by the DOS/VS COBOL compiler:

PROCESSING COBOL_FILES ON MASS STORAGE DEVICES

sequential, direct, indexed, and VSAM. VSAM
is discussed in the chapter entitled "Virtual
Storage Access Method (VSAM)."

SEQUENTIAL ORGANIZATION

In a sequential file, records are
organized solely on the basis of their
successive physical location in the file.
The records are read or updated in the same
order in which they appear.

Individual records cannot be located
quickly. Records usually cannot be deleted
or added unless the entire file is
rewritten. This organization is used when
most of the records in the file are
processed each time the file is used.

DIRECT ORGANIZATION

A file with direct organization is
characterized by some predictable
relationship between the key of a record
and the address of that record on a mass
storage device. This relationship is
established by the programmer.

Direct organization is generally used
for files where the time required to locate
individual records must be kept to an
absolute minimum, or for files whose
characteristics do not permit the use of
sequential or indexed organization.

This organization method has
considerable flexibility. The accompanying
disadvantage is that although the Disk
Operating System/Virtual Storage provides
the routines to read or write a file of
this type, the programmer is largely
responsible for the logic and programming
required to locate the key of a record and
its address on a mass storage device.

Note: Direct organization is not supported
on fixed block devices.

INDEXED ORGANIZATION

An indexed file is similar to a
sequential file in that rapid sequential
processing is possible. The indexes
associated with an indexed file also allow
quick retrieval of individual records
through random access. Moreover, a
separate area of the file is set aside for
additions; this eliminates the need to
rewrite the entire file when adding
records, a process that would usually be
necessary with a sequentially organized
file. Although the added records are not

Processing COBOL Files on Mass Storage Devices 97

physically in key sequence, the indexes are
constructed in such a way that the added
records can be quickly retrieved in key
sequence, thus making rapid sequential
access possible.

In this method of organization, the
system has control over the location of the
individual records. Since the
characteristics of the file are known, most
of the mechanics of locating a particular
record are handled by the system.

Note: Indexed organization is not supported
on fixed block devices.

DATA MANAGEMENT CONCEPTS

The data management facilities of the
Disk Operating System Virtual Storage are
provided by a group of routines that are
collectively referred to as the
Input/Output Control System (IOCS). A&
distinction is made between two types of
routines:

1. Physical IOCS_ (PIOCS) -- the physical

input/output routines included in the
Supervisor. PIOCS is used by all
programs run within the system. It
includes facilities for scheduling
input/output operations, checking for
and handling error conditions related
to input/output devices, and handling
input/output interruptions to maintain
maximum input/output speeds without
burdening the programmert's problem
program.

2. Logical JOCS (LIOCS) -- the logical
input/output routines linked with the

programmer's problem program. These
routines provide an interface between
the programmer's file processing
routines and the PIOCS routines.

LIOCS performs those functions that a
progranmer needs to locate and access
a logical record for processing. A
logical record is one unit of
information in a file of similar
units, for example, one employee's
record in a master payroll file, one
part-number record in an inventory
file, or one customer account record
in an account file. One or more
logical records may be included in one
physical record. 1I10CS refers to the
routines that perform the following
functions:

a. Blocking and deblocking records
b. Switching between input/output

areas when two areas are specified
for a file

98

c. Handling end-of-file and
end-of-volume conditions

d. Checking and writing labels

A brief description of functions
performed by LYIOCS and their relationship
to a COBOL program follows.

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input/output of
records in a file, that file must be
defined by a DTF (Define The File) or, for
VSAM, an ACB (Access Method Control Block).
A DTF or ACB is created for each file
opened in a COBOL program from information
specified in the Environment Division, FD
entry, and input/output statements in the
source program. The DTF for each file is
part of the object module that is generated
by the compiler. The ACB is generated at
object time. They describe the
characteristics of the logical file,
indicate the type of processing to be used
for the file, and specify the storage areas
and routines used for the file. Further
and more detailed onformation in VSAM is to
be found in the chapter "VSAM."

One of the constants in the DTF table is
the address of a logic module that is to be
used at execution time to process that
file. A logic _module contains the coding
necessary to perform data management
functions required by the file such as
blocking and deblocking, initiating label
checking, etc.

Generally, these logic modules are
assembled separately and cataloged in the
relocatable library under a standard name.
At link edit time, the Linkage Editor
searches the relocatable library using the
virtual reference to locate the logic
module. The logic module is then included
as part of the program phase. Note that
since the Autolink feature of the Linkage
Editor is responsible for including the
logic modules, the COBOL programmer need
not specify any INCLUDE statements.

The type of DTF table prepared by the
compiler depends on the organization of the
file and the device to which it is
assigned. The DTF's used for processing
files assigned to mass storage devices are
as follows:

DTFSD -- Seguential orgamnization,
sequential access

DTFDA -- Direct organization,
sequential or random access

DTFIS -- Indexed organization,

For a 3540 diskette unit, the DTPF is
DTFDU. More detail on this is given in the
chapter "Processing 3540 Diskette Unit
Piles."

The remainder of this chapter provides
information about preparing programs which
process files assigned to mass storage
devices. Included are general descriptions
of the organization, the COBOL statements
that must be specified in order to build
the correct DTF tables, and coding
examples.

SEQUENTIAL ORGANIZATION (DTFSD)

In a sequential file on a mass storage
device, records are written one after
another -- track by track, cylinder by
cylinder -- at successively higher
addresses.

Records may be fixed-length, spanned, or
variable-length, blocked or unblocked, or
undefined. Since the file is always
accessed sequentially, it is not formatted
with keys.

Processing a sequentially organized file
for selected records is inefficient. If it
is done infrequently, the time spent in
locating the records is not significant.
The slowest way is to read the records
sequentially until the desired one is
located. On the average, half of the file
must be read to locate one record.

Additions and deletions require a
complete rewrite of a sequentially
organized file on a mass storage device.
Sequential organization is used on mass
storage devices primarily for tables and
intermediate storage rather than for master
files.

Sequentially organized files formatted
vith keys cannot be created using DTFSD.
DTFDA may be used to create and access
(sequentially or randomly) such files.

PROCESSING A SEQUENTIALLY ORGANIZED FILE

To create, retrieve, or update a DTPSD
file, the following specifications should
be made in the source program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

2
2
232
uT 231
- 3
3

ASSIGN TO SYSnnn- {
DA

Optional clauses:

RESERVE Clause

FILE-LIMIT Clause

ACCESS MODE IS SEQUENTIAL

PROCESSING MODE IS SEQUENTIAL

RERUN Clause

SAME Clause

APPLY WRITE-ONLY Clause . {create only)

APPLY WRITE-VERIFY Clause (create or
update only)

Invalid clauses:

ACCESS MODE IS RANDOM

ACTUAL KEY Clause

NOMINAL KEY Clause

RECORD KEY Clause

TRACK-AREA Clause

MULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause
APPLY CYL-OVERFLOW Clause

MASTER-INDEX

APPLY
CYL-INDEX

} Clause

APPLY CORE-INDEX Clause

DIFSD files may be opened as INPUT,
OUTPUT, or I-O. When creating such a file,
an INVALID KEY condition ‘occurs when the
file limit has been reached and an attempt
is made to place another record on the mass
storage device. The file limit is
determined from the EXTENT control
statements.

When a DTFSD file is opened as OUTPUT,
each WRITE statement signifies the creation
of a new record. When opened as I-0, each
WRITE statement signifies that the record
just read is to be rewritten.

DIRECT ORGANIZATION (DTFDA}

With direct organization, there is a
definite relationship beteween the key of a
record and its address. This relationship
permits rapid access to any record if the
file is carefully organized. The
programmer develops a record address that
randges from zero to some maximum by
converting a particular field in each
record to a track address. Each byte in
the address is a binary number. To

Processing COBOL Files on Mass Storage Devices 99

reference a particular record, the
programmer must supply both the track
address and the identifier that makes each
record unique on its track. Both the track
address and the identifier are supplied by
the programmer in the ACTUAL KEY clause.
This will be discussed in detail later in
this chapter.

With direct organization, records may be
fixed length, spanned or undefined. The
records must be unblocked. RO (record
zero) of each track is used as a capacity
record. It contains the address of the
last record vwritten on the track, and is
used by the system to determine whether a
new record will fit on the track. The
capacity records are updated by the system
as records are added to the file. The
capacity records do not account for
deletions: as far as the system is
concerned, once a track is full it remains
full (even if the programmer deletes
records) until the file is reorganized.

often, more records are converted to a
given track address than will actually fit
on the track. These surplus records are
known as overflow records and are usually
written into a separate area known as an
overflow area.

As already noted, the programmer has an
unlimited choice in deciding where records
are to be located in a directly organized
file. The logic and programming are his
responsibility.

When creating or making additions to the
file, the programmer must specify the
location for a record (track address) and
the identifier that makes each record on
the track unique. If there is space on the
track, the system writes the record and
updates the capacity record. If the
specified track is full, a standard error
condition occurs, and the programmer may
specify another track address in his USE
AFPTER STANDARD ERROR declarative routine.

In the case of one maximum size record
per track (when spanned records are not
specified), the data length plus the length
of the symbolic key cannot exceed the
following values:

2311 -- 3605 bytes
2314, 2319 -- 7249 bytes
2321 -- 1984 bytes
3330 -- 12974 bytes
3340 -- 8293 bytes
3350 ~- 18987 byvtes

When reading or updating the file, the
programmer must supply the track address
and the unique identifier on the track for
the specific record being sought. The
system locates the track and searches that
track for the record with the specified

100

identifier. If the record is not found,

COBOL indicates this to the programmer by
raising an INVALID KEY condition. Only the
track specified by the programmer is
searched. If EXTENDED-SEARCH is applied,
the search for a specified record key begins
on the track specified and continues until
one of two conditions occurs:

1. The record is found.

2. The end of the specified cylinder
is reached.

In the second case, the INVALID-KEY option
of the READ or REWRITE is executed. To
ensure file integrity, the upper limit of
each extent of a file using EXTENDED-SEARCH
must be the last track of a cylinder.

Brror recovery from a DTFDA file is
described in detail in -the chapter
"Advanced Processing Capabilities."

ACCESSING A DIRECTLY ORGANIZED FILE

A directly organized file (DTFDA) may be
accessed either sequentially or randomly.

ACCESSING A DIRECTLY ORGANI2ZED PILE
SEQUENTIALLY: When reading a direct file
sequentially, records are retrieved in
logical sequence; this logical sequence
corresponds exactly to the physical
sequence of the records. To retrieve a
DTFDA file sequentially, the following
specifications are made in the source
program: ‘

ENVIRONMENT DIVISION

Required clauses:
SELECT [OPTIONAL] file-name

2311
2321

2310 |,
2319 _ }
3330 {)p

333B
3340
3350

ASSIGN TO SYSnnn-DA-

Optional clauses:

FILE-LIMIT Clause

ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY Clause

RERUN Clause

SAME Clause

Invalid clauses:

RESERVE Clause

BCCESS MODE IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPF Clause
APPLY WRITE-ONLY Clause

Processing COBOL Files on Mass Storage Devices 100.1

APPLY CYL-OVERFLOW Clause
APPLY EXTENDED- SEARCH Clause
APPLY WRITE-VERIFY Clause

MASTER-INDEX

APPLY } Clause
CYL-INDEX)

APPLY CORE-INDEX Clause

When DTFDA records are retrieved
sequentially, the file may be opened only
as INPUT. The AT END conditiomn occurs when
the last record has been read and execution
of another READ is attempted.

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a D must be specified
for files with relative track addressing.

ACCESSING A DIRECTLY ORGANIZED FILE
RANDOMLY: To create a directly organized
file randomly, the following specificatiomns
are made in the source program:

ENVIRONMENT DIVISION

Regquired clauses:

SELECT file-name 2311

2321

2314
2319\ _|?
3330

'333B
3340
3350

ASSIGN TO SYSnnn-DA-

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Optional clauses:

FILE-LIMIT Clause

PROCESSING MODE IS SEQUENTIAL
RERUN Clause

SAME Clause

APPLY WRITE-VERIPY Clause

Invalid clauses:

RESERVE Clause

RCCESS HODE IS SEQUENTIAL
NOMINAL KEY Clause

RECORD KEY Clause

TRACK-AREA Clause

MULTIPLE FPILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY WRITE-VERIFY Clause
APPLY CYL-OVERFLOW Clause

MASTER-INDEX
APPLY Clause

CYL-INDEX

APPLY CORE-INDEX Clause

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a D must be specified

for files with relative track addressing.

To retrieve or update a directly
organized file randomly, the following
specifications must be made in the source
progran.

ENVIRONMENT DIVISION

"Required clauses:

2311
2314
2321
2319
ASSIGN TO SYSnnn-DA 3330
333B
3340
3350

SELECT file-name

=g

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Note that in the ASSIGN clause an A must
be specified for files with actual track
addressing, a D must be specified for files
with relative track addressing, a U must be
specified for files with actual track
addressing when the REWRITE statement is
used, and W must be specified for files
with relative track addressing when the
REWRITE statement is used.

The optional and invalid clauses are the
same as those specified previously for
creating a directly organized file.

Exception: APPLY EXTENDED-SEARCH is
optional when retrieving or updating a
directly organized file randomly.

BCTUAL KEY CLAUSE

Note that the ACTUAL KEY clause is
required for DTFDA files when ACCESS IS
RANDOM, is optional for DTFDA files when
ACCESS IS SEQUENTIAL, and is not used for
DTFSD files.

The actual key consists of two
components. One component expresses the
track address at which the record is to be
placed for an output operation, or at which
the search is to begin for an input
operation. The track address can be
expressed either as an actual address or as
a relative address, depending upon the
addressing scheme chosen when the file was
created. The other component is associated
with the record itself and serves as its
unique identifier. The structures of both
actual keys are shown in Figure 29.

Processing COBOL Files on Mass Storage Devices 101

| |
| r 1 |
| } Actual Key 11
f t T 1 |
1 JActual Track JRecord Identifier| |
| |Address | |
I L L J '
|Byte 1 8 9 263 |
| |
' 1 L '
| | Actual Key P
| F T |
| |Relative |Record Identifier| |
I |Track Address| |
' L | 4] '
|Byte 1 4 5 258 |
L g
Figure 29. Structures of the Actual Key

The format of the ACTUAL KEY clause is:
ACTUAL KEY IS data-name

When actual track addressing is used,
data—name may be any fixed item from 9
through 263 bytes in length. It must be
defined in the Working-Storage, File, or
Linkage Section. The first eight bytes are
used to specify the actual track address.
The structure of these bytes and
permissible specifications for the mass
storage devices are shown in Figure 30.
The programmer may select from 1 to 255
bytes for the record identifier portion of
the actual key field.

Note: If a SEEK statement is used when
retrieving a direct file randomly, actual
track addressing is required.

When relative track addressing is used,
data-name may be any fixed item from 5

through 258 bytes in length. It must be
defined in the File Section, the Working-
Storage Section, or the Linkage Section.
The first four bytes of data-name are the
track identifier. The identifier is used
to specify the relative track address for
the record and must be defined as an
8-integer binary data item whose maximum
value does not exceed 16,777,215. The
remainder of data-name, which is 1 through
254 bytes in length, is the record
identifier. It represents the symbolic
portion of the key field used to identify a
particular record on a track.

Por a complete discussion.of the ACTUAL
KEY clause, see the publication IBM_DOS
Full American National Standard COBOL.

Randomizing Techniques

One method of determining the value of
the track address portion of the field
defined in the ACTUAL KEY clause is
referred to as indirect addressing.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
possible 9999 numbers are currently
assigned. Indirect addressing is also used
for nonnumeric keys. Key, in this
discussion, refers to that field of the
record being written that will be converted
to the track address portion.

Indirect addressing signifies that the
key is converted to a value for the actual
track address by using some algorithm
intended to limit the range of addresses.

T L L4 T L] L}
| Pack | Cell | Cylinder | Head | Record]
F + ¥ t - t T 1)
| L | | B I B | C | C | | B | R |
i t t } + t } t |
i | | | | | 1 | | |
I . i | | 1 I | i | |
| Device] 0 1 1 | 2 13] 4 | 5 | 6 | 7]
= } } } I t i + i 2l
I 2311 | 0-221 | 0 I 0 10 | 0-199 | 0] 0-9 | 0-255 |
k + + + } } t + t 1
[2314 | 0-221 | O { 0 | 0 | 0-199 | 0| 0-19 | 0-255 |
t + t + } + + + i 4
| 2321 | 0-221 | 0 }] 0-9 | 0-19 | 0-9 { 0-4 | 0-19 | 0-255 |
i 1 i 'l L 4 [l i 4 3
¥ L L ¥ L] T Ll 1 1
| 3330 | 0-221 | O | o 0-u403 | 0] 0-18 | 0-255 1
F } S -+ + } t + |
I 3330-11 [0-221 o 1 o | 0-807 ! I o-1g | 0-255 !
e } } + t } + } 1
| 3340 Model 35| 0-221 | O i 0 | 0-347 | 01 0-11 | 0-255]
L A L [L 1 1 i]
v] L) T L 1 1 1 L
] 3340 Model 70} 0-221 { 0 i 0 | 0-695 | 01 0-11 | 0-255 |
1 1 J 4 L 1 L L 1 b
| T T T T N T T —
| 3350 l 0-221 ! 0 [0 ! 0-554 ! 0 { 0-29 | 0-255 !
Figure 30. Permissible Specifications for the Pirst Eight Bytes of the Actual Key

102

Such an algorithm is called a randomizing
technique. Randomizing techniques need not
produce a unique address for every record
and, in fact, such techniques usually
produce synonyms. Synonyms are records
whose keys randomize to the same address.

Two objectives must be considered in
selecting a randomizing technique:

1. Every possible key in the file must
randomize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as possible.

Note that one way to minimize synonyms
is to allocate more space for the file than
is actually required to contain all the
records. For example, the percentage of
locations that are actually used might be
80% to 85% of the allocated space.

When actual track addressing is used,
the first eight bytes of the ACTUAL KEY
field can be thought of as a "discontinuous
binary address.™ This is significant to
the programmer because he must keep two
considerations in mind. First, the
cylinder and head number must be in bimary
notation, so the results of the randomizing
formula must be in binary format. Second,
the address is "discontinuous"™ since a
mathematical overflow from one element
(e.g., head number) does not increment the
adjacent element (e.g., cylinder number).

DIVISION/REMAINDER METHOD: One of the
simplest ways to indirectly address a
directly organized file is by using the
division/remainder method. (For a
discussion of other randomizing techniques,
see the publication Introduction_to IBM
Direct Access_Storage_ Devices and

Organization Methods, Order No.
GC20-1649.)

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20% of the total
space allocated to contain the data
file.

2. Select, from the prime number table,
the nearest prime number that is less
than the total of step 1. A prime
number is a number divisible only by
itself and the integer 1. Table 10 is
a partial list of prime numbers.

3. Clear any zones from the first eight
bytes of the actual key field. This

can be accomplished by moving the key
to a field described as COMPUTATIONAL.

4. Divide the key by the prime number
selected.

5. Ignore the quotient; utilize the
remainder as the relative location
within the data file.

6. (Por actual track addressing only)
Locate the beginning of the space
available and manipulate the relative
address, to the actual device address
if necessary.

For example, assume that a company is
planning to create an inventory file on a
2311 disk storage device. There are 8000
different inventory parts, each identified
by an 8-character part number. Using a 20%
packing factor, 10,000 record positions are
allocated to store the data file.

Method A: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the zones
we have 25463514. Dividing by 9973 we get
a quotient of 2553 and a remainder of 2445,
2445 is the relative location of the record
within the data file corresponding to part
number 25DF3514. The record address can be
determined from the relative location as
follows:

1. (For actual track addressing only)
Determine the beginning point for the
data file (e.g., cylinder 100, track
0).

2. Determine the number of records that
can be stored on a track (e.g., twelve
per track on a 2314 disk pack,
assuming each inventory record is 200
bytes long).

Because each data record contains
non—-data components, such as a count
area and interrecord gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
interrecord gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various sizes on a track. These
formulas can be found in the
publications IBM Component
Descriptions, Order Nos.
and GA26-3599.

GA26-5988

3. Divide the relative number (2445) by
the number of records to be stored on
each track.

Processing COBOL Files on Mass Storage Devices 103

4.

4B.

Method B:

(For actual track addressing only) 1.
The result, quotient = 203, is now

divided into cylinder and head

designation. Since the 2311 disk pack

has ten heads, the quotient of 203 is
divided by 10 to show:

Cylinder or CC = 20 2.
Head or HR = 03 (high-order zero
added)

(For relative track addressing only) 3.
The result, quotient = 203, now

becomes the track identifier of the

actual key.

Utilizing the same exanmple,

another approach will also provide the
relative track address:

104

The number of records that may be
contained on one track is twelve.
Therefore, if 10,000 record locatioms
are to be provided, 834 tracks must be
reserved.

The prime number nearest, but less
than 834, is 829.

Divide the zone-stripped key by the
prime value. (In the example,
25463514 divided by 829 provides a
quotient of 30715 and a remainder of
779. The remainder is the relative
address.)

Table 10. Partial lList of Prime Numbers Table 10. Partial List of Prime Numbers

(Part 1 of 2) (Part 2 of 2)
| 1 | I 1 T
| a] B | 1 A | B |
| (Number) | (Nearest Prime Number} { {(Number) | (Nearest Prime Number|
1 | Less Than B) { } | Less Than 1) |
— } 4 F + {
| 500 { 499 | i 5600 | 5591 |
1 600 i 599 | | 5700 | 5693 I
| 700 | 691) i 5800 { 5791 |
} 800 | 797 | | 5900 | 5897 i
| 900 | 887 | | 6000 i 5987 {
I 1000 | 997 | | 6100 | 6091 I
! 1100 ! 1097 1 1 6200 i 6199 I
| 1200 | 1193 i | 6300 | 6299 |
| 1300 | 1297) | 6400 | 6397 {
! 1400 { 1399 { | 6500 | 6491 |
| 1500 { 1499 | 1 6600 1 6599 |
1 1600 | 1597 | | 6700 | 6691 |
I 1700 | 1699 { | 6800 | 6793 i
| 1800 | 1789 | | 6900 | 6899 1
| 1900 | 1889 i | 7000 1 6997 i
1 2000 i 1999 | | 7100 | 7079 |
| 2100 | 2099 } I 7200 | 7193 I
I 2200 i 2179 | { 7300 | 7297 |
I 2300 { 2297 | i 7400 | 7393 |
| 2400 | 2399 | I 7500 | 7499 I
i 2500 i 2477 i | 7600 i 7591 |
| 2600 1 2593 | | 7700 | 7699 |
| 2700 | 2699 | | 7800 | 7793 i
i 2800 I 2797 | 1 7900 l 7883 |
| 2900 | 2897 | | 8000 | 7993 |
| 3000 i 2999 | | 8100 | 8093 I
1 3100 | 3089 | } 8200 | 8191 I
| 3200 1 3191 | | 8300 | 8297]
| 3300 | 3299 | | 8400 | 8389 |
1 3400 | 3391 | | 8500 | 8467 i
I 3500 | 3499 | | 8600 | 8599 |
| 3600 | 3593 I | 8700 | 8699 1
] 3700 | 3697 | | 8800 | 8793 I
| 3800 | 3797 i i 8900] 8899 i
] 3900 [3889 | | 3000 I 8899]
| 4000 | 3989 | 1 9100 | 9091 I
I 4100 | 4099 | i 9200 i 3199 |
] 4200 I 4177 I | 9300 | 9293 {
I 4300 | 4297 1 { 9u00 | 9397 |
] 4400 | 4397 | | 9500 1 9497 1
i 4500 { 4493 I | 3600 1 9587 |
| 4600 | 4597 | 1 9700 i 9697 |
i 4700 } 4691 i | 9800 1 9791 |
4800	4799		9900 { 9887	
4900 } 4889		10,000 I 9973		
5000 i 4999 i f 10,100	10,099			
5100	5099		10,200	10,193
5200 i 4197 i	10,300	10,289 i		
! 5300 ! 5297		10,400 I 10,399		
5400 i 4399	i 10,500	10,499 I		
5500	5483		10,600	10,597
L - - | L | & J

Processing COBOL FPiles on Mass Storage Devices 105

4, (For actual track addressing only) To
convert the relative address to an
actual device address, divide the
relative address by the number of
tracks in a cylinder. The quotient
will provide the cylinder number and
the remainder will be the track
number. For example, the 2311 disk
pack would utilize 779 as:

Cylinder or CC = 77
Track or HH = 9

Figure 31 is a sample COBOL program
which creates a direct file with actual
track addressing using Method B and
provides for the possibility of synonym
overflow. Synonym overflow will occur if a
record randomizes to a track that is
already full. The following description
highlights the features of the example.
Circled numbers on the program listing
correspond to the numbers in the text.

(:) The value 10 is added to TRACK-1 to
ensure that the problem program does
not write on cylinder 0. Cylinder 0
must be reserved for the Volume Table
of Contents.

e Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828. adding 10 to
TRACK-1 adjusts the largest possible
remainder to 838.

(:) If synonym overflow occurs, control is
given to the error procedure
declarative specified in the first
section of the Procedure Division.

The declarative provides that:

e Any record which cannot fit on a
track (i.e., tracks 0 through 8 of
any cylinder) will be written in the
first available position on the
following track(s).

e Any record which cannot fit within a
single cylinder will be written on
cylinder 84 (i.e., the cylinder
overflow area).

106

e I1f a record cannot £it on either
cylinders 1 through 83, or on
cylinder 84, the job is terminated.

The standard error condition "no roon
found" is tested before control is
given to the synonym routine. Other
standard error conditions as well as
invalid key conditions result in job
termination.

ERROR-COND is the identifier which
specifies the error condition that
caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST. They are printed before the
execution of each WRITE statement.
This output has been provided in order
to facilitate an understanding of the
logic involved in the creation of
D-FILE.

The first twelve records which
randomize to cylinder 002 track 8 are
actually written on track 8.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 002 track 9.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 84 track 0 (i.e.,
the overflow cylinderj.

The last two records which randomize
to cylinder 002 track 8 are adjusted
by the SYNONYF-ROUTINE and written on
cylinder 84 track 1 (i.e., the
overflow cylinder).

// JOB METHODBA
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
7/ EXEC FCOBOL

1 1IBM DOS VS COBOL REL 1.0 PP NO. 5746-CEl 08.47.u44 10/04/73

IDENTIFICATION DIVISIOWN.
PROGRAM-ID. METHOD-B.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT D-FILE ASSIGN SYS015-DA-2314-A-MASTER
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELECT C-FILE ASSIGN TO SYS007-UR-2540k-S.
DATA DIVISION.
FILE SECTION.

FD D-FILE
LABEL RECORDS ARE STANDARD.
01 D-REC.

02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4).
02 PRICE PIC 9(5)V99.
02 FILLER PIC X(181).

FD C-FILE
LABEL RECORDS ARE OMITTED.
01 C-REC.

02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4)9.
02 PRICE PIC 9(5)V99.
WORKING-STORAGE SECTION.
77 HD PIC 9 VALUE ZERO.
77 SAVE PIC S.(8) COMP SYNC.
77 QUOTIENT PIC S9(5) COMP SYNC.
01 ERROR-COND.
02 FILLER PIC 99 VALUE ZERO.
02 ERR PIC 9 VALUE ZERO.
02 FILLER PIC 9(5) VALUE ZERC.
01 TRACK-1 PIC 9999.
01 TRACK-ID REDEFINES TRACK-1.
02 CYL PIC 999. ’
02 HEAD PIC 9.
01 KEY-1.
02 M PIC 5999 COMP SYNC VALUE ZEROES.
02 BB PIC S9 COMP SYNC VALUE ZERO.
02 CC PIC S999 COMP SYNC.
02 HH PIC 5999 COMP SYNC.
02 R PIC X VALUE LOW-VALUE.
02 REC-ID PIC X(8).
01 KEY-2 REDEFINES KEY-1.
02 FILLER PIC X.
02 ACT-KEY PIC X(16).

Pigure 31. Creating a Direct File Using Method B (Part 1 of 4)

Processing COBOL Files on Mass Storage Devices 107

REL 1.0 FP NO.

PROCEDURE DIVISION.

DECLARATIVES.

ERRCR-PROCEDURE SECTION. USE AFTER STANDARD ERROR PROCEDURE
ON D-FILE GIVING ERROR-COND.

ERROR-ROUTINE.
EXHIBIT NAMED ERROR-COND.

IF ERR = 1 GO TO SYNONYM-ROUTINE ELSE (:)
DISPLAY 'OTHER STANDARD ERROR' REC~ID
GO TO EOJ.

SYNONYM-ROUTINE.
IF CC = 84 AND HD = 9 DISPLAY 'OVERFLOW AREA FULL'
GO TO EOJ.
IF CC = 84 ADD 1 TO HD GO TO ADJUST-HD.
IF HH = 9 GO TO END-CYLINDER.
ADD 1 TO HH.
GO TO WRITES.
END~CYLINDER.
MOVE 84 TO CC.
ADJUST-HD.
MOVE HD TO HH.
GO TO WRITES.
END DECLARATIVES.
FILE-CREATION SECTION.
OPEN INPUT C~FILE
OUTPUT D-FILE.
READS.
READ C-FILE AT END GO TO EOJ.
MOVE CORRESPONDING C-REC TO D-REC.
MOVE PART-NUM OF C-REC TO REC-ID SAVE.

ADD 10 TO TRACK-1.
MOVE CYL TO CC.
MOVE HEAD TO HH.
WRITES.
EXHIBIT NAMED TRACK-ID C-REC CC HH.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.
INVALID-KEY.
DISPLAY 'INVALID KEY' REC-ID.
EOJ. ~
CLOSE C-FILE D-FILE.
STOP RUN.

DIVIDE SAVE BY 829 GIVING QUOTIENT REMAINDER TRACK—I.} (:)

// LBLTYP NSD(01)

// EXEC LNKEDT

Figure 31.

108

5746-CB1

©)

Creating a Direct File Using Method B (Part 2 of 4)

08.47.44

10/04/73
|

IBM DOS VS COBOL REL 1.0 PP NO.5746-CBl 08.47.44 10/04/73

// BSSGN SYS007,X'0CC’

.// ASSGN SYS015,X"231°

// DLBL MASTER,,99/365,DA

// EXTLNT SYs015,111111,1,0,20,840

/7 EXEC
TRACK-ID = 0010 C-REC = 82900000 €C = 001 HE = 000
TRACK-ID = 0011 C-REC = 82900001 CC = 001 HH = 001
TRACK-ID = 0028 C-REC = 8290001801 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001802 ¢C = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001803 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001804 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001805 CC = 002 HH = 008 (:)
TRACK-ID = 0028 C-REC = 8290001806 cC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001807 ¢C = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001808 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001809 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290061810 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001811 CC = 002 Hi = 008
TRACK-ID = 0028 C-REC = 8290001812 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001813 CC = 002 EH = 008
TRACK-ID = 0028 C-REC = 8290001814 ¢C = 002 HH = 008
TRACK-ID-= 0186 C-REC = 290001815 CC = 018 HH = 006
TRACK-ID = 0186 C-REC = 290001816 CC = 018 HH = 006
TRACK-ID = 0028 C-REC = 8290001817 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001818 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001819 €C = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001820 CC = 002 HH = 008 (:)
TRACK-ID = 0028 C-REC = 8290001821 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001822 CC = 002 HH = 008
TRACK-ID = 0028 C-REC = 8290001823 CC = 002 HH = 008
ERROR-COND = 00100000

TRACK-ID = 0028 C-REC = 8290001823 cc = 002 HH = 009
TRACK-ID = 0028 C-REC = 8290001824 CC = 002 HH = 008
ERROR-COND = 00100000

TRACK-ID = 0028 C-REC = 8290001824 cc = 002 HH = 009

Figure 31. Creating a Direct File Using Method B (Part 3 of 4)

Processing COBOL Files on Mass Storage Devices 109

Vs COROL

TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0011 C-REC
TRACK-ID = 0011 C-REC
TRACK~-ID = 0011 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
EXRROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC
TRACK-ID = 0028 C-REC
ERROR-COND = 00100000
TRACK-ID = 00628 C-REC
Figure 31.

110

] [/ (1 I T won

(] o] [{I] (]|

o

8290001825

8290001825
8290001826

8290001826
8290001827
8290001828
8290001829

8290001830

8290001830
8290001831

8290001831
8290001832

8290001832
8290001833

8290001833
8290001834

8290001834
8290001835

8290001835
8290001836

8290001836
8290001837

8290001837
8290001838

8290001838

REL 1.0

CcC = 002
cC = 002
cC = 002
CcC = 002
cC = 001
CC = 001
CC = 001
CC = 002
cC = 002
cC = 002
CC = 002
CcC = 002
CcC = 002
CC = 002
cC = 002
CcC = 002
cC = 002
CC = 002
CC = 002
cC = 002
CcC = 002
CC = 002
CC = 002
CcC = 002
CC = 002

H

Hil
HH

HH
hH

HH
HH

HH
HH

qd
Hd

HH
HA

a4
HH

hH
HH

HH
HH

HH
HH

HH
Hd

HH

ot

(]

[t}

H

PP NO.

008

009
008

009
001
001
001
008

009
008

009
008

009
008

009
008

009
008

009

5746-CBL

008

009
008

009
008

009

Creating a Direct File Using Method B (Part 4 of 4)

08.47.44

10/04/73

Figure 32 is a sample COBOL program
which creates a direct file with relative
track addressing using Method B. The
sample program provides for the possibility
of synonym overflow. Synonym overflow will
occur if a record randomizes to a track
which is already full. The following
discussion highlights some basic features
Circled numbers on the program listing
correspond to numbers in the text.

(:) Since the prime number used as a

divisor is 829, the largest possible

remainder will be 828.

CoSslDAe

(:) 1f synonym overflow occurs, control is
given to the USE AFTER STANDARD ERROR
declarative specified in the first
section of the Procedure Division.

The declarative provides that any
record that cannot fit on the track to
which it randomizes will be written on
the first subsequent track available.

(:) The standard error condition "no room
found" is tested before control is
given to the SYNONYM-ROUTINE. Other
standard error conditions as well as
invalid key conditions result in job
termination (EOJ).

ERROR-COND is the identifier which
specifies the error condition that

@

caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST before execution of each WRITE
statement. This output has been
provided in order to facilitate an
understanding of the logic involved in
the creation of D-FILE.

-3
b
(
I
"5
1
n
"
-’-
£
L]
Jowed
]
D
)
o]
0
o
~
oT]
N
=
i~
|2
0
=3

ndomlze to relatlve track 18 are
actually written on relative track 18.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
19.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYN-ROUTINE and
are actually written on relative track
20.

The last two records which randomize
to relative track 18 are adjusted by
the SYNONYM-ROUTINE and are actually
written on relative track 21.

Processing COBOL Files on Mass Storage Devices 111

// JOB METHODBR
// OP1ION NODECK,LINK,LIST,LISTX,SYM,rRRS

// EXEC FCOBOL

1 IBM DOS VS COBCL

CEL (UOTL

Figure 32

112

IDENTIFICATION DIVISIONW.
PROGRAM-ID. METHODB.
ENVIRONMENT DIV1ISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IEM-370.
OBJECT-COMPUTER. IEM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT D-FILE ASSIGN TO SYS015-DA-2314-D-MASTER

FD

01

FD

o1

ACCESS IS RANDCM
ACTUAL KEY IS ACT-KEY.

REL 1.0

SELECT C-FILE ASSIGN TO SYS007-UR-2540R-S.
DATA DIVISION.
FILE SECTION.

D-FILE

LABEL RECORDS ARE STANDARD.
D-REC.

05 PART-NUM PIC X(8).

05 NUM-ON-HAND PIC 9(4).
05 PRICE PIC 9(5)V99.

05 FILLER PIC X(181).
C-FILE

LABEL RECORDS ARE OMITTED.
C-KREC.

05 PAKT-NUm PIC X(8).

05 NUM-ON-HAND PIC 9(4).
05 PRICE PIC 9(5)V99.

05 FILLER PIC X(61).

WORKING-STORAGE SECTION.

77
77
01

01

SAVE PIC S9(8) COMP SYNC.
QUOTIENT PIC S9(8) COMP SYNC.
ACT-KEY.

02 TRACK-ID PIC S9(8) COMP SYNC.
02 REC-ID PIC X(8).

ERROR-COND.

02 FILLER PIC 99 VALUE ZERO.

02 ERR PIC 9 VALUE ZERO.

02 FILLER PIC 9(5) VALUE ZERO.

Creating a Direct File with

of 4)

PP NO. 5746-CB1

08.40.53

10/04/73

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 08.40.53 10/04/73

PROCEDURE DIVISION.

DECLARATIVES.

ERROk-PROCEDURE SECTION. USE AFTER STANDAKD ERROR PROCEDURE
ON D-FILE GIVING ERROR-COND.

ERROR-ROUTINE.

EXHIBIT NAMED ERROR-COND.

IF ERR = 1 GO TO SYNONYM-ROUTINE ELSE (:) (:)
DISPLAY "OTHER STANDARD ERROR " REC-ID
GO TO £0J.

SYNONYM-ROUTINE.
IF TRACK-IL IS LESS THAN 834, ADD 1 TO TRACK-ID. GO TO
WRITES.
END DECLARATIVES.
OPEN INPUT C-FILE
OUTPUT D-FILE.
READS.

READ C-FILE AT END GO TO EOJ.

MOVE CORRESPONDING C-REC TO D-REC.

MOVE PART-NUM OF C-REC TC REC-ID, SAVE. /T\
DIVIDE SAVE BY 829 GIVING QUOTIENT REMAINDER TRACK-ID. U

WRITES.
EXHIBIT NAMED TRACK-ID C-REC.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.
INVALID-KEY.
DISPLAY "INVALID KE&Y " REC-ID.
EOJ .
CLOSE C-FILE D-FILE.
STOP RUN.

// LBLTYP NSD(81)
// EXEC LNKEDT

Figure 32. Creating a Direct File with Relative Track Addressing Using Method B
{Part 2 of 4)

Processing COBOL Files on Mass Storage Devices 113

IBM DOS VS COBOL

// 45564 SYS007,X'00C*
// ASSGN SYS015,%'231"
// DLBL MASTER,,99/365,DA
// EXTeNT SYS015,111111,1,0,20,840

// EXEC
TKACK-ID = 000000G0 C-REC = 82900000
TRACK-ID = 00000001 C-REC = 82900001
TRACK-ID = 00000018 C-REC = §290001801
TRACK-ID = 00000018 C-REC = 8290001802
TRACK-ID = 00000018 C-REC = 8290001803
TRACK-ID = 00000018 C-REC = 8290001804
TRACK-ID = 00000018 C-REC = 8290001805 (:)
TRACK-ID =.00000018 C-REC = 8290001806
TRACK-ID = 00000018 C-REC = 8290001807
TRACK-1D = 00000018 C-REC = 8290001808
TRACK-ID = 00000018 C-REC = 8290001809
TRACK-1ID = 00000018 C~-REC = 829000181.
TKACK-ID = 00000018 C-REC = 8290001811
TKACK-ID = 00000018 C-REC = 8290001812
TKACK-ID = 00000018 C-REC = 8290001813
TRACK-IC = 00000018 C~REC = 8290001814
TRACK-ID = 00000018 C-REC = 8290001815
TRACK-ID = 00000018 C~-REC = 8290001816
TKACK-ID = 00000018 C-REC = 8290001817
TRACK-ID = 00000018 C~REC = 8290001818
TRACK-1D = 00000018 C-REC = 8290001819
TRACK-ID = 00000018 C-REC = 8290001820
TRACK-ID = 00000018 C-REC = 8290001821
ERROR-COWD = 00100000 (:)
TRACK-ID = 00000019 C-REC = 8290001821
TRACK-ID = 00000018 C-KEC = 8290001822
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001822
TRACK-ID = 00000018 C~REC = §290001823
ERKROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001823
TRACK-ID = 00000018 C-REC = 8290001824
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001824
Figure 32. C(Creating a Direct File with
(Part 3 of 4)

114

1.0 PP NO.

5746-CBl

08.40.53

10/04/73‘

IBM DOS VS COBOL

TRACK-1ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR~-COND
TRACK-IL =
TRACK-ID =
ERROR~-COND
TRACK-ID =
TRACK-ID =
ERROR-COLD
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-1ID =
TRACK-1ID =
ERROR~COND
TRACK-ID =
TRACK-ID =
BRROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-1ID =
TRACK-ID =
ERROR-COND
TRACK-ID =
TRACK-ID =
ERROR-COND
TRACK-1ID =

Figure 32.

00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
¢0000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00006019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00600018 C-REC
= 00100000
000060019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC
00000018 C-REC
= 00100000
000600019 C-REC
00000018 C-REC
= 00100000
00000019 C-REC

nonw o

o non ([t} non

8290001825

8290001825
8290001826

8290001826
8290001827

8290001827
8290001828

8290001828
8290001829

8290001829
8290001830

8290001830
8290001831

8290601831
8290001832

8290001832
8290001833

8290001833
8290001834

8290001834
8290001835

8290001835
8290001836

8290001836
8290001837

8290001837
8290001838)

8290001838

Creating a Direct File with Relative Track Addressing Using Method B

(Part 4 of u)

Processing COBOL Files on Mass Storage Devices

10/04/73.

115

ACTUAL TRACK ADDRESSING CONSIDERATIONS FOR
SPECIFIC DEVICES

D AT S 1 SR X AL

When randomizing for the 2311 Disk
Drive, it is possible to circumvent the
discontinous binary address by coding the
randomizing formula in decimal arithmetic
and then converting the results to binary.
This can be done by setting aside a decimal
field with the low-order byte reserved for
the head number, and the high-order bytes
reserved for the cylinder number. &
mathematical overflow from the head number
will now increment the cylinder number and
produce a valid address. The low-order
byte should then be converted to binary and
stored in the HH field, and the high-order
bytes converted to binary and stored in the
CC field of the actual key field.

Randomizing to the 2311 Disk Drive
should present no significant problems if
the programmer using direct organization is
completely aware that the cylinder and head
number give him a unique track number. To
illustrate, the 2311 could be thought of as
consisting of tracks numbered as follows:

Cylinder 0 Cylinder 1 Cylinder 2

- | -

Track | O 110 120
Numbers —q — —
| | |
— — —
I | i
— — —
| | |
— - —
[| |
— — —
| | 1
— — —
I i 1
— — —

I 9 119 129

If the randomizing formula resulted in
an address of cylinder 001, head 9:

Cylinder | Head
Number | Number
-
)
001 | 9

this would be a reference to track 19.

This fact allows the programmer to ignore
the discontinuous cylinder and head number.
If his formula resulted in an address of
0020, this would result in accessing
cylinder 2, head 0, the location of track
20.

116

The programmer can make another use of
this decimal track address. He may wish to
reserve the last track of each cylinder for
synonyms. If this is the case, he is in
effect redefining the cylinder to consist
of nine tracks rather than ten tracks. The
2311 cylinder could then be thought of as
consisting of track numbers, as follows:

Cylinder 0 Cylinder 1 Cylinder 2
| -/ I
Track |1 0 19 118
Numbers —4 — -—
| | [19
— — —
| { 120
— — —
|] |
~—1 — —
i i
— — —
I 1 |
— — —
| | |
— — —
| 8 117 126

If the programmer randomizes to relative
track number 20, he can access it by
dividing the track address by the number of
tracks (9) in a cylinder. The quotient now
becomes the cylinder number, and the
remainder becomes the head number.

N
"

cylinder number

N
]

head number

To simplify randomizing, an algorithm
must be developéd to generate a decimal
track address. This track address can then
be converted to a binary cylinder number
and head number. In addition, tracks can
be reserved by dividing the track address
by the number of tracks in a cylinder. The
same concepts will hold true for devices
such as the 2314, 3330, or 3340. For
example, an algorithm can be developed
using 20 tracks per cylinder and dividing
by the closest prime number less than 20.

Randomizing for the 2321 Data Cell

The track reference field for the 2321
Data Cell is composed of the following
discontinuous binary address:

sub
cell cell strip cyl. head record
1 3 L L] T T] ¥ L] 1
| l 1 | | | | | |
IutB}!B | C | C |H {H | R |
L [. i L L A L 3
0-9 0-19 0-9 0-4 0-19

At first glance, this presents an almost
impossible randomizing task; but since each
strip includes 100 tracks that are
accessible through cylinder and head
number, the 2321 Data Cell can be
considered to consist of consecutively
numbered tracks.

Tracks

19
100

199

1999

It can be seen that relative track 20 is
located on cylinder 1, head 0 of some
particular strip. Its address can be
calculated by dividing by 20.

1
20)20
20

0 = head number

cylinder number

Thus, relative track number 120 will be
located on strip 1, cylinder 1, head 0 of
some subcell. Note that the strip number
is given by the hundreds digit, and the
cylinder and head number are derived by
dividing the two low-order digits by 20.

The same relationship holds true for
relative track number 900. It is located
on strip 9, cylinder 0, track 0. Again,
the hundreds digit gives the strip number,
and dividing the two low-order digits by 20

results in a quotient and remainder of
Zero.

This relationship holds true through a
relative track number of 19999, which is
the number of tracks that can be contained
on one cell of a data cell array. By
applying the foregoing rules, an address of
subcell 19, strip 9, cylinder 4, head 19 is
derived.

Thus, by randomizing to a 5-digit
decimal track number, the programmer will
be able to access the 20,000 tracks
(40,000,000 characters) contained in a
cell.

The thousands digits would represent the
subcell number, the hundreds digit the
strip number, and the quotient and
remainder of the two low-order digits
divided by 20 would represent the cylinder
and head number. Each one of these
resulting decimal digits would then be
converted to binary and placed in the
appropriate location in the track reference
field.

There is a total of 200,000 tracks per
data cell array. To derive valid addresses
that cross cell boundaries, the programmer
should randomize to a 6-digit decimal track
address. The highest address possible
should be 199,999. To convert this to a
data cell address, similar rules apply. 1In
this case, the programmer must divide the
three high-order digits by 20:

9 = cell
—
20 /199
180
19 = subcell

The quotient becomes the cell number and
the remainder becomes the subcell number.
The hundreds digit is still the strip
nunber, and the cylinder and head number
can be derived as previously illustrated.
The resulting address is 0091994190 and
would appear in the first eight bytes of
the actual key field as follows:

sub
cell cell strip cyl.head
f 1 T b F L L L L
Ii® B | B | C | C {8 | H | R |
L 1] 1 4 1 1 1 4 o 1
v) ¥ J Ll L] T T i
10 10 9 11919 14 11910 |
L 1 i L i i |8 g . |

Randomizing to the data cell can be
accomplished by developing an algorithm to
generate decimal track addresses. The use
of the foregoing rules makes it possible to

Processing COBOL Files on Mass Storage Devices 117

convert these generated track addresses to
the appropriate discontinuous binary
address.

INDEXED ORGANIZATION (DTFIS)

An indexed file is a sequential file
with indexes that permit rapid access to
individual records as well as rapid
sequential processing. Error recovery from
a DTFIS file is described in detail in the
chapter "Advanced Processing Capabilities.™
An indexed file has three distinct areas:

a prime area, indexes, and an overflow
area. Each area is described in detail
below.

PRIME AREA

When the file is first created, or when
it is subsequently reorganized, records are
written in the prime area. Until the prime
area is full, additions to the file may
also be written there. The prime area may
span multiple volumes. Wote that the last
track of the prime area may not be used by
the COBOL programmer.

The records in the prime area must be
formatted with keys, and must be positioned
in key sequence. The records may be
blocked or unblocked. If records are
blocked, each logical record within the
block centains its key, and the key area
for the block contains the key of the
highest record in the block. The Disk
Operating System Virtual Storage permits
fixed-length records only. Figure 33 shows
the formats of blocked and unblocked
records on a track.

Unblocked Records

T L
| XEY NUMBER

L 1 L i i

T T] ¥ L]

| COUNT | KEY | DATA | I

A 1 L A ¥

A
1
1
1
!
|
1

——————— -

L——Highest key on track

Blocked Records

A
|
|
|
L_Logical record (key embedded)

t—Key of logical record

————— v - ——— - — — — o~ m— —— — —_ —— — — — — —— —— T — — " —— a— — —— - —

L Highest key on track
| _—

L Key of last logical record in block

¥ ¥ LS v 1 T T T Bl - 1
|KEY NUMBER| | COUNT | KEY | DATAR | DATA | DATa | []
L A L i - 1 L i L -3

A A

I | A

I I I

| | |

| I 1

| i t—Logical records with embedded keys

1 |

! !

|

|

|

e e o e — . — — — — G —— — T — T R mows S MM G A i e — — . - W vame wwn

Figure 33.

118

Formats of Blocked and Unblocked Records

INDEXES

There are three possible levels of
indexes for a file with indexed
organization: a track index, a cylinder
index, and a master index. They are
created and written by the system when the
file is created or reorganized.

Track Index

This is the lowest level of index and is
always present. There is cne track irndex
for each cyiinder in the prime area. It is
always written on the first track of the
cylinder that it indexes.

The track index contains a pair of
entries for each prime data track in the
cylinder: a normal entry and an overflow
entry. The normal entry contains the home
address of the prime track and the key of
the highest record on the track. The
overflow entry contains the highest key
associated with that track and the address
of the lowest record in the overflow area.
If no overflow entry has yet been made, the
address of the lowest record in the
overflow area is the dummy entry X'FF*.

Cylinder Index

The cylinder index is a higher level of
index and is always present. Its entries
point to track indexes. There is one)
cylinder index for the file. It is written
on the device specified in the APPLY
CYL-INDEX clause. If this clause is not
specified, the cylinder index is written on
the same device as the prime area.

Master Index

The master index is the highest level
index and is optional. It is used when the
cylinder index is so long that searching it
is very time consuming. It is suggested
that a master index be requested when the
cylinder index occupies more than four
tracks. (2 master index consists of one
entry for each track of the cylinder
index.)

The DOS/VS System permits one level of
master index for the file and requires that
it be written immediately before the
cylinder index. 1If a master index is
desired, the APPLY MASTER-INDEX clause must

be specified in the source program. When
this clause is specified, the cylinder
index is placed on the same device as the
master index.

Note: The indexes are terminated by a
dummy entry containing a key composed of
all ones (bits). To avoid any possibility
of errors, the user should not specify a
key of all ones (EIGE YALUES) for any of
his records.

OYERFLOW ARER

There are two types of overflow areas:
a cylinder overflow area and an independent
overflow area. BEither or both may be
specified for an indexed file. Records are
written in the overflow area(s) as
additions are made to the file.

Cylinder Overflow Area

A certain number of whole tracks are
reserved in each cylinder for overflow
records from the prime tracks in that
cylinder. The programmer may specify the
number of tracks to be reserved by means of
the APPLY CYL-OVERFLOW clause. If he
specifies 0 as the number of tracks in this
clause, no cylinder overflow area is
reserved. If the clause is omitted, 20% of
each cylinder is reserved for overflow.

For the 3330, three tracks of each cylinder
will be reserved for overflow. For the
3340, two tracks of each cylinder will be
reserved for overflow. When an ISAM file
has been created with the APPLY CYL-OVERFLOW
clause all FD's, which use the same file,
must specify the same number of cylinder
overflow tracks.

Independent Overflow Area

Overflow records from anywhere in the
prime area are placed in a certain number
of cylinders reserved soley for this
purpose. The size and location of the
independent overflow area can be specified
if the programmer includes the proper job
control EXTENT cards. The area must,
however, be on the same mass storage device
type as the prime area.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflow records caused
by additions and an independent overflow
area to be used as the cylinder overflow
areas are filled.

Processing COBOL Files on Mass Storage Devices 119

PRIME DATA_ AREA

A
|

L Record removed from

r 1
I !
l i
I Track No. !
| 1
l LS r L] L} L ¥ r 1 '
| 0001 100001} {00003 cese j00009] 100010} 00011} |
| 3] | - J [N J L] L J |
i A A |
I I I |
| ! 1 1
| | | |
| New record—m ——F | |
! | |
| original record moved up 4 |
] !
| r L [1 ¥ L r L '
i 0002 100016 100017] eeeecenceccsccscaceasas [00025] 100027} |
' L J L] L J L i] I
| |
I |
| |
| |
| OVERFLOW_AREA i
] I
| |
I — |
| 100014 eesecene [
' —_— |
{]
I |
| I
L . |

Track 0001

Figure 34.

Adding Records to an Indexed File

A new record added to an indexed file is
placed into a location on a track inm the
prime area determined by the value of its
key field. If records in the file were
placed in precise physical sequence, the
addition of a new record would require the
shifting of all records with keys higher
than that of the one inserted. However,
indexed organization allows a record to be
inserted into its proper position on a
track, with the shifting of only the
records on that track. Any records for
which there is no space on that track are
then placed in an overflow area, and become
overflow records. Overflow records are
always fixed-length, unblocked records,
formatted with keys.

As records are added to the overflow
area, they are no longer in key segquence.
The system ensures, however, that they are
always in logical sequence.

Figure 34 illustrates the addition of a
record to a prime track.

The new record (00010) is written in its

proper sequential location on the prime
track. The rest of its prime records are

120

Adding a Record to a Prime Track

moved up one location. The bumped record
(00014) is written in the first available
location in the overflow area. The record
is placed in the cylinder overflow area for
that cylinder, if a cylinder overflow area
exists and if there is space in it;
otherwise, the record is placed in the
independent overflow area. The first
addition to a track is always handled in
this manner. Any record that is higher
than the original highest record on the
preceding track, but lower than the
original highest record on this track, is
written on the prime track. Record 00015,
for example, would be written as the first
record on track 0002, and record 00027
would be bumped into the overflow area.

Subsequent additions are written either
on the prime track where they belong or as
part of the overflow chain from that track.
If the additiom belongs between the last
prime record on a track and a previous
overflow from that track (as is the case
with record 00013), it is written in the
first available location in the overflow
area on an empty track, or on a track whose
first record has a numerically lower key.

If the addition belongs on a prime track
(as would be the case with record 00005),
it is written in its proper seguential
location on the prime track. The bumped
record (record 00011) is written in the
overflow area.

A record with a key higher than the
current highest key in the file is placed
on the last prime track containing data
records. If that track is full, the record
is placed in the overflow area.

ACCESSING AN INDEXED FILE (DTFIS)

An indexed file may be accessed both
sequentially and randomly.

ACCESSING AN INDEXED FILE SEQUENTIALLY: An
indexed file may only be created
sequentially. It can also be read and
updated in the sequential access mode. The
following specifications may be made in the
source program.

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

2311
2314
ASSIGN TO SYSnnn-DA-)2321\- I
2319
3330
3340
RECORD KEY Clause
NOMINAL KEY Clause (when reading, if the
START statement is used)

Optional clauses:

FILE-LIMIT Clause

ACCESS HCODE IS SEQUENTIAL

PROCESSING MODE IS SEQUENTIAL

RERUN Clause

SAME Clause

APPLY WRITE-VERIFY Clause (create and
update)

APPLY CYL-OGVERFLOW Clause {create)

(MASTER-INDEX)
APPLY i ;Clause

CYL-INDEX

RESERVE Clause

Invalid clauses:

ACCESS MODE IS RANDONM

ACTUOAL KEY Clause

TRACK-AREA Clause

MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY CORE-INDEX Clause

ACCESSING AN INDEXED FILE RANDOMLY: A
randomly-accessed indexed file may be read,
updated, or added to. The following
specifications may be made in the source
progranm:

ENVIRONMENT DIVISION

Reguired clauses:

SELECT [OPTIONAL] file-name

2311
2314
2321\ -1
2319
3330
3340

ASSIGN TO SYSnnn-DA-

ACCESS IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause

Optional clauses:

FILE LIMIT Clause

PROCESSING MODE IS SEQUENTIAL
TRACK-AREA Clause

RERUN Clause

SAME Clause

APPLY WRITE VERIFY Clause
APPLY CYL-OVERFLOW Clause
APPLY CORE-INDEX Clause

MASTER~-INDEX
APPLY Clause

CYL-INDEX
Invalid clauses:

RESERVE Clause

ACCESS HODE IS SEQUENTIAL
ACTUAL KEY Clause

MULTIPLE FILE TAPE Clause
APPLY EXTENDED~SEARCH Clause

Key Clauses

When creating an indexed file, the only
key clause required is the RECORD KEY
clause. The data-name specified in this
clause is the name of the field within the
record that contains the key. Keys must be
in ascending numerical order when creating
an indexed file.

Processing COBOL Files on Mass Storage Devices 121

If a START statement is used when
retrieving an indexed file sequentially,
the NOMINAL KEY clause is required.

When accessing an indexed file randomly,
both the NOMINAL KEY and RECORD KEY clauses
are required. When reading the file, the
data-name specified in the NOMINAL KEY
clause is the key of the record which is
being retrieved. The data-name specified
in the RECORD KEY clause is the name of the
field within the record that contains this
key.

When adding records to an indexed file,
the data-name specified in the NOMINAL KEY
clause is the key for the record being
written and is used to determine its
physical location. The data-name specified
in the RECORD KEY clause specifies the
field in the record that contains the key.

Note: If an INVALID XEY exit is taken on a

START statement, the key value in the
NOMINAL KEY data-name should be corrected

122

and another START statement issued to
ensure correct retrieval of blocked
records.

Improving Efficiency

When processing an indexed file, the
following source language Environment
Division clauses may be used to improve
efficiency:

TRACK-AREA Clause
APPLY CORE-INDEX Clause

For additional details, see the
publication IBM DOS Full Rmerican National
Standard CORBOL.

The DOS/VS Compiler supports 3540
Diskette unit file management. This device
is quite different from standard direct
access devices as it does not access data
randomly. The medium used for reading and
writing is a diskette which can be easily
mailed from one location to another.

Data can be recorded on the 3540
diskette in two ways:

1. Keypunching on the diskette via the
3740 processing device.

2. Writing sequential data sets on the
diskette via the 3540 Diskette unit
attached to a System/370.

DOS/VS COBOL processing applies only to
the processing of data on the diskette by
the 3540 Diskette unit.

For the use of system files on diskette,
see DOS/VS System Management Guide.

FILE PROCESSING

File processing for the 3540 is
sequential only. Only fixed-length
physical records can reside on the
diskette. Logical blocking of records is
an available function and will be discussed
in the section entitled "Cobol Language
Considerations."®

The system interfaces with the COBOL
object module through DTPDU, (generated as
part of the object module), and DUMOD logic
modules (used to perform actual I-O
processing). The generated DTFDU will
correspond to a DTFDU generated by the
DTFDU macro (described in DOS/VS Supervisor
and I-O0 Macros) with the exceptions
specified later in this section.

The physical considerations of the 3540
diskette include:

e The diskette is divided into character
sectors with each sector containing 128
characters.

& Each record may occupy no more than one
sector, and may be from 1 to 128
characters long.

e Each record in a file must be the same
size.

PROCESSING 3540 DISKETTE UNIT FILES

s Blocking factors can be only 1, 2, 13,
or 26 records.

Files may be extended to additional
diskettes if one diskette is too small.
This is done automatically by LIOCS if DLBL
and EXTENT cards are provided for
additional processing. There is no user

program control to force end of volume for
this device.

File labels exist on the 3540 Diskette
for each file, but no user control or
processing of these labels is provided by
the DOS/VS system. Label management will
be handled strictly by LIOCS. The user
will only have to provide the name for the
file in the DLBL control card.

COBOL_LANGUAGE CONSIDERATIONS

ENVIRONMENT DIVISION

The following format of the SELECT
statement applies to the 3540:

Required clauses:
SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn%STF3540—S[—name]
.1

Sort work files may not be assigned to
the 3540. A 3540 may not be a checkpoint
device.

Optional clauses:

RESFRVE clause

ACCESS MODE IS SEQUENTIAL Clause

PROCESSING MODE IS SEQUENTIAL clause

RERUN ON system-name EVERY integer
RECORDS OF file-name

(System-name cannot specify 3540;
file-name can refer to 3540 file;
checkpoint records cannot be taken on
a diskette, but a diskette can be used
to control when checkpoints are
taken.)

SAME clause

FILE LIMIT clause

Invalid Clauses:

APPLY WRITE-ONLY clause (only
fixed-length records allowed)

APPLY WRITE-VERIFY clause (function not
supported)

ACCESS MODE IS RANDOM clause

ACTUAL KEY clause

Processing 3580 Diskette Unit Files 123

DAT

NOMINAL KEY clause

RECORD KEY clause

TRACK-AREA clause

MULTIPLE FILE TAPE clause

RERUN clause (see restrictions above)
ARPPLY EXTENDED-SEARCH clause

APPLY CYL-OVERFLOW Clause

MASTER-INDEX

APPLY { }clause

CYL-INDEX
APPLY CORE-INDEX clause

A_DIVISION

FD

The following restrictions apply to the
and record description for a 3540 file:

Recording mode must be F.
Label records must be standard.

RECORD CONTAINS clause cannot specify
more than 128 characters, or "integer-1
to integer-2" CHARACTERS.

The BLOCK CONTAINS clause must specify
the RECORDS option only. Blocking is
permitted for the most efficient usage
of the 3540. If this clause is
specified, only 1, 2, 13, or 26, will
be accepted as the blocking factor.
Any other number will cause a
diagnostic.

In the record description, a maximum of
128 characters will be allowed for a
3540 file.

The record description for a 3540 file
must not include any items with the
OCCURS DEPENDING ON clause, as variable
records are not allowed.

Procedure Division -— Special

Con

siderations

124

OPEN Statement. 3540 files may be
opened for input or output only.
updating is not permitted for a 3540
file, OPEN I-0 is not allowed.

Oonly one 3540 file per diskette may be
open simultaneously.

The REVERSED and NO REWIND options of
the OPEN statement are not valid for a
3540 file.

WRITE Statement. The INVALID KEY

option may not be used for a 3540 file.

If the end of the diskette is reached

and additional diskette information has
not been supplied via additional EXTENT

control cards, the operator will be

queried to either supply an EXTENT
through the console or cancel the job.

Standard errors can be handled in a USE
ARFTER STANDARD ERROR Declarative. Two
types of errors will cause control to
return to an error declarative for 3540
files:

1. Data check
2. Equipment check

If the GIVING option is specified, byte
1 will indicate a data check, and byte
2 will indicate an equipment check.

In either case, the error procedure is
used to continue processing or to close
the file. 1If processing continues and
the file is blocked, the remaining
records in the block after the record
causing the error may be lost when the
next READ or WRITE statement is
executed.

If no error declarative is specified, a
message will be issued describing the
type of error, and the job will be
canceled.

CLOSE Statement. When a CLOSE
statement is executed for a 3540 file,
the present diskette will be fed out
into the output hopper. CLOSE UNIT may
not be used as no forced end-of-volume
support is included for the 3540
Diskette unit. CLOSE NO REWIND may not
be used. The LOCK option will be
supported for 3540 files.

DTFDU

The compiler will generate DTFDU with

Since

the following defaults:
1. No write protection
2., Feed = yes
3. Volume sequencing will be checked.

4. ©No read/write security.

Job_Control Requirements

Normal job control DLBL and EXTENT
statements for the 3540 are shown below.

DLBL Statement

The format of the DLBL statement is:
// DLBL filename,[*file-ID*],[date],[code]

filename —- is a unigue filename of 3 to 7
characters identical to the symbolic name
of the DTF that identifies the file.
Supported in the same way as for current
devices. This corresponds to the "name"
field of system—name in the SELECT
statement if specified, or to SY¥Snnn in the
system-nane.

file-ID' —-- only the first 8 characters
will be used. Supported in the same manner
as for current devices.

date -- provides the expiration date for
the file. Supported in the same way as for
current devices.

code -- is a field indicating the type of
file label. DU for diskette unit is
supported. It is supported in the same way
as for current devices. '

EXTENT_ Statement

The format of the EXTENT statement is:

// EXTENT [symbolic-unit],
[serial-number],[1]

symbolic unit -- indicates the symbolic
unit (SY¥Sxxx) of the volume for which the
extent is effective. It is supported in
the same way as for current devices.

serial number —-- indicates the volume
serial number of the volume for which this
extent is effective. It is supported in
the same way as for other devices. The
serial number is optional. If omitted, the
volume that is mounted is assumed to be the
correct volume.

type -- indicates the type of extent. 1
*1t indicates *data area.' No other types
are supported.

3580 File

The following DLBL and EXTENT statements
describe a file that resides on a 3540
diskette.

// DLBL MASTER,,75/001,DU
// EXTENT S¥S015,111111,1

In the following example, the progranm
CREATES creates a diskette (DU) file named
SALES that is to be retained until the end
of 1975. The file comprises up to three
diskettes. The diskettes have the volume
serial numbers 111111, 111112, and 111113,
and are mounted on the drive assigned to
the symbolic device name SYS005.

// JOB EXAMPLE
// BSSGN SYS005,X'060°7

// DLBL SALES,'ANNUAL',75/365,DU
// EXTENT SYS005,111111,1

// EXTENT SYS005,111112,1

// EXTENT SYS005,111113,1

// EXEC CREATE

/5

The COBOL statements which correspond to
this are:

SELECT SALES-FILE ASSIGN
TO SYS005-DA-3540-S-SALES.

.

FD SALES-FILE

RECORDING MODE IS F

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS.

01 DISKETTE-RECORD.
02

Processing 3540 Diskette Unit Files 125

VSAM is a new access method for direct
or sequential processing of fixed and
variable length records on direct-access
devices. It has more functions, generally
better performance, better data integrity
and security, improved data organization,
and is easier to use and control than the
DOS/VS DAM and ISAM access methods.

VSAM files can be processed only by the
VYSAM file processing technique. The
programmer can convert SAM and ISAM files
to VSAM files by using the method described
in the section entitled "Converting
Non-VSAM Files to VSAM Files." The
following topics related to VSAM are
discussed in this chapter:

VSAM File processing

Access Method Services
Error Handling

File Organization

The records in a VSAM file can be
organized either in logical sequence by a
key field (key-sequence) or in the physical
sequence in which they are written on the
file (entry-sequence).

A key-sequenced file has an index, like
ISAM; the records in a key-sequenced file
can be accessed by key, either randomly or
sequentially. An entry-sequenced file does
not have an index, and records can be
accessed sequentially only.

Key-Sequenced Files

Like ISAM files, key-sequenced files
are ordered according to a user-defined key
field in each record. That 'is, they are
ordered according to the collating sequence
of the key field in each record. Each
record has a unique value in the key field,
such as employee number or invoice number.
VSAM uses the key associated with each
record to insert a new record in the file or
to retrieve a record from the file. The
order of access can be random or sequential.
Key-sequenced files, however, can generally
be processed faster than ISAM files because
VSAM has a more efficient index and does
not use chained record overflow.

VIRTUAL STORAGE ACCESS METHOD (VSAHM)

When a key-sequenced file is created,
certain portions can be left empty, that
is, free space can be distributed
throughout the file. This free space is
used when inserting new records or
lengthening existing records. This
eliminates the need for overflow chains
and overflow areas; it also minimizes
data movement. Thus performance does
not degrade substantially as records
are added and the file does not have to
be reorganized as often as an ISAM file.
VSAM reclaims space when a record is
deleted or shortened, and the space
released becomes free space.

The index of a key-sequenced VSAM file
is more efficient than an ISAM index
because it generally requires less direct-
access space and less updating of index
entries. Space is saved in three ways:
by eliminating redundant key information
(key compression), by having fewer keys
in the index than there are records in
the file (non-dense index), and by
blocking index records. A shorter index
requires less time to search and update.
Updating is infrequent, because index
entries are not usually modified when
records are added to or deleted from
the file.

A key-sequenced file is defined in COBOL
by specifying:

SELECT file-name ASSIGN TO
SYSnnn[-class J[-device]J[~nane]
ORGANIZATION IS INDEXED....
RECORD KEY IS...

Entry-Sequenced Files

Records are stored in entry-sequenced
files in the order they are presented for
inclusion on the file (that is, their
entry-sequence), and without respect to the
contents of the records. WNo keys are
recognized and, consequently, no indexes

Virtual Storage Access Method (VSAM) 127

are built. The order of records is fixed:
they are not moved. Thus, free space is
not distributed throughout the file and new
records are placed at the end. Records
cannot be shortened, deleted, or
lengthened. Since there is no index, the
user must access the file sequentially (in
the order the records were written).

An entry-sequenced file is defined in
COBOL by specifying:

SELECT file-name ASSIGN TO
S¥Snnn[—class J[-device]-AS[-nane]
ORGANIZATION IS SEQUENTIAL....

Data Organization

The data organization of ISAM is based
on the physical units of disk cylinder and
disk track, while the data organization of
VSAM is based on logical units called
control inteér $-and _co areas. A
control interval is the unit of
direct-access storage that is transferred
to and from virtual storage. It can
contain one or more records in one or more
blocks. Each entry in the lowest index
level of a key-sequenced VSAM file points
to a control interval. Free space in a
kev-sequenced file is distributed in terms
of the percent of total space. A per-
centage of each control interval can be
free space and some control intervals can
be entirely free space. Indexes are also
organized in control intervals. Each
contains a single index record which can
have manyv index entries. A control area
is a group of control intervals. VSAM
data organization provides for device
independence by reducing the programmer's
concern about the physical characteristics
of the data and the index. Figure 35
illustrates VSAM data and index structure.

128

Data Access

Key sequenced files can be accessed
either sequentially, or directly by key.
The key used can be either the full key or
a generic key (any front part of the full
kev) .

The COBOL user can retrieve, add,
update or delete records from a VSAM file
by means of the READ, WRITE, REWRITE and
DELETE verbs. Also, by means of the START
verb he can position himself to anv record
in the file and begin sequential retrieval
from that record.

VSAM Catalog

VSAM keeps central control over the
creation, access, and deletion of files and
over the management of direct-access
storage space allocated to those files.
This is done by keeping information on file
and space characteristics in one place, the
VSAM catalog. The catalog, which is unique
to VSAM, makes it easier to (1) keep track
of files and available direct-access
space, (2) write job control statements to
create and process VSAM files, and (3) move
VSAM files to other DOS/VS systems or to
0S/VS systems. There can be more than one
VSAM catalog. However, only one catalog
at a time can be connected to the system.
Each catalog can keep track of VSAM files
on many volumes; it is not necessary to
mount a volume to determine whether or
not it has space available for a VSAM file,

1) New records are physically
inserted where they logically
belong with only local record
movement required. Thus, new
records are retrieved in the
same fashion as are o0ld records.

Figure 35 shows the structure of the
data and index in a VSAM file. It
does not represent accurate propor-
tions in terms of the number of
records in a control interval, etc.
In the example, if the user wanted to 2)
add a record whose record key was 1048,
it logically belongs between records
1024 and 1068. This is where VSAM
would insert the record physically.

The record with key 1068 would be
moved over in the control interval

of records is done in core before any di;etl?n and upgaging takes
writing takes place. P poc In core, be ore any /0
takes place, thus improving

data integrity.

Since the index pointers are
non-dense (one for each control
interval rather than one for
each record), the insertion of
the record requires no change
to the index.

This example illustrates several
points:

L ' Index
r]] L 1 094J Records
] l Y —_—
—— e

breeSpacel 1994 | 1001 | 1068 | | i

Pointer —— el ——

— | e — —— — — —— — — — — — — — a— ———

1072 1 1085

collected into

$ Data records
control intervals

Note: The numbers
represent RECORD KEY
values for the records

Pigure 35. VSAM Data Organization

Virtual Storage Access Method (VSAM) 129

Pile and Volume Portability

A significant feature of VSAM is that
files can be moved from one DOS/VS system
to another or to an 0S/VS system. This
is possible because VSAM data format is
identical under both DOS/VS and 0S/VS.

Service Programs

VSAM has an extensive service program
package, called Access Method Services,
which can be used to:

e Define, print, copy , or
reorganize VSAM files.

e Add, alter, delete, or print catalog
entries.

e Convert ISAM and SAM files to VSaAM
files.

e Export and import files from one
svstem to another.

Device Support

vsaM files can be written on 2314, 3330,
3340, 3350, and fixed block devices.

Security

Through COBOL, access to the file can be
restricted by use of the PASSWORD clause in
the SELECT statement.

Error Processing

VSAM provides exits to a user-supplied
routine to handle I/0 and/or logical errors
or exeception conditions. This is done in
COBOL via the USE APTER STANDARD ERROR
declarative and the INVALID KEY and AT END
clauses. A STATUS KEY may be specified,
and the details of the condition
determined.

VSAM Messages

Like other access methods, VSAM issues
messages to the operator, if for example,
the incorrect volume is mounted. etc.

These messages are described in DOS/VS
Messaqes. VSAM Access Method Services also
issues messages to the programmer which are
documented in DOS/VS_Access Method
Services. COBOL issues VSAM messages to

130

These are
Diagnostic

the operator and/or programmer.
listed in "Appendix I:
Messages.™

For more detail on VSAM, refer to DOS/¥S
Access Method Services.

ACCESS METHOD SERVICES

Access Method Services is a utility
program. A number of user-entered
commands, either modal or functional,
initiate the Access Method Services
programs. The functional scommands
invoke the desired Access Method
Services function while the modal
commands control the sequence of exe-
cution of the functional commands. In
this chapter, only certain commands
and parameters are discussed. For
complete details on the use of
commands see DOS/VS Utilities Access
Method Services.

Functional Commands

There are nine functional commands:
DEFINE, ALTER, DELETE, LISTCAT, REPRO,
PRINT, IMPORT, EXPORT, and VERIFY. The
commands DEFINE, ALTER, and DELETE are
used to create, modify, and remove VSAM
catalogs and files. LISTCAT is used to
list the contents of a VSAM catalog.
The REPRO and PRINT commands reproduce
files either as new files or as printed
output. The IMPORT and EXPORT commands
provide for transfers of files from one
system to another. The VERIFY command
provides a file recovery service for
VSAM files by ensuring that the end of
the file indicated in the catalog is
the same as the actual file end.

The DEFINE Command

All VSAM files must be cataloged in a
VSAM catalog. This catalog must be defined
and allocated by Access Method Services.
is the first step which must be taken by a
user who plans to use VSAM.

The DEFINE command is used to define a
VSAM object. In VSAM terminology, an object
is either a VSAM catalog, a VSAM data space,

A YTOOANM £207
CY a voan Liie,.

This

VSAM files must be cataloged. in a VSAM
catalog. Non-VSAM files may also be cata-
loged in a VSAM catalog. All VSAM files
are introduced to the system through the
DEFINE command.

There are two steps in the creation of
an object: defining the object in the
catalog, and generating the contents of
that object. The DEFINE command simply

makes an entry in the catalog, it does not
generate any content.

Specification of the DEFINE Command

T ¥
1 Format {
k 1
| DEFINE object parameters |
L. -1
The definable objects are:
e MASTERCATALOG -- specifies that the
VSAM master catalog is to be defined.
e SPACE -- specifies that a VSAM data
space is to be defined.
e CLUSTER -- specifies that a file is to

be defined.

For each file there is an associated
valid parameter list.

Defining a_ VSAM Master Catalog: DEFINE
MASTERCATALOG

The DEFINE MASTERCATALOG command must
be used to set up the master catalog. It
is the first Access Method Services com-
mand used since without a master catalog
other objects cannot be defined. Defining
a master catalog is somewhat different
from defining a file. When the user de-
fines a file he need not necessarily allo-
cate space as part of the define operation.
However, the process of defining catalog
always involves the allocation of space
for that catalog. Entries for both the
master catalog itself and the volume con-
taining the data space automatically
created are placed in the master catalog.

The following is an example of defining
a VSAM master catalog.

r

i1// JOB DEFINF A VSAM CATALOG

|// DLBL IJSYSCT,'VSAMCAT',,VSAM

\// EXTENT SYSCAT,321940,1,,100,250

|// EXEC IDCAMS,SIZE=26K

| DEFINE MASTERCATALOG (NAME (VSAMCAT) -
i VOLUME (321940) TRACKS (250) -
| FILE (IJSYSCT) UPDATEPW (SECRET) -
] READPW (NOSECRET))

1 /*

1/6

—

FPiqure 36. Defining a VSAM Master Catalog

The DLBL statement must be used to
specify the filename and the code which
identifies VSEM. The filename must be
specified as IJSYSCT.

The logical unit in the EXTENT statement
must be SYSCAT. The user must decide which
volumes and which extents will contain the
catalog. Note that the VOLUMES parameter
and the space allocation parameter
(CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINE command, and must
agree with the information in the EXTENT
statement. If the CYLINDERS parameter is
used, each extent must begin on a cylinder
boundary.

The following parameters were used in
the above example:

NAME (VSAMCAT)
The name of the VSAM master catalog
is VSAMCAT. All future references to
the catalog are made using this name.

VOLUME (321940)
The volume serial number on which the
catalog is to reside is 321940.

TRACKS (250)
The number of tracks allocated to the
catalog is 250. This must agree with
the information on the EXTENT card.

Note that every key-sequenced file
requires three catalog entries: one
each for the cluster, data component,
and index component. Every
entry-sequenced file recuires two
catalog entries: one for the cluster
and one for the data component.

FILE (IJSYSCT)
This parameter identifies the
filename of the DLBL statement
that specifies the device and
volume for allocation. The
filename must be specified as
IJSYSCT.

Virtual Storage Access Method (VSAM) 131

UPDATEPW (SECRET)
The update level password is SECRET.
This is an optional parameter.
However, if any file which is
cataloged in the VSAM catalog is to
be password protected, the catalog
itself must also be password
protected.

READPW (NOSECRET)
The read level password is NOSECRET.
This is an optional parameter. If
specified, all reading of the catalog
requires this password.

There are 4 levels of password pro-
tection for a VSAM catalog or file. They
are: fmaster level (this is the highest
level of protection), the CI level (this is
a special case and should not be used with
COBOL), the update level and the read level
(the lowest level of protection).

If password protection is not speci-
fied at a higher level, but is specified at
a lower level, then the lower level pass-
word becomes the password for the higher
levels which are not specified. 1If
password protection is not specified for
the lowest level (read level) then there is
no password protection for that lowest
level or for the higher levels which
are not specified.

So in the example, SECRET is the mas-
ter level password as well as the update
level password, since the master level
password was not specified.

The update level password of the
catalog is required in order to change
the content of the catalog, for example to
DEFINE or DELETE a file in that catalog.

Defining a VSAM Data Space: DEFINE SPACE

VSAM data space is space which is
owned and managed by VSAM. When space on a
volume is defined in a VSAM catalog then
that volume is said to be owned by that
VSAM catalog. This means that no other
VSAM catalog can own space on that volume.
It does not mean that there can be no
non-VSAM space on the volume.

VSAM data space can contain the
records for one file or for many files,
but all the files occupying a VSAM data
space must be cataloged in the same VSaM
catalog as is the space.

Since the process of defining VSAM
data space necessarily requires the allo-
cation of space, JCL is required for ex-
tent information.

132

Figure 37 is an example of defining a
VsSaM data space:

1 L
\// JOB DEFINE A VSAM DATA SPACE |
\// ASSGN SYS001,X'130° |
|\// DLBL VFILENM,, ,VSAM I
\// EXTENT SYS001,321942,1,,800,400 i
1// EXEC IDCAMS,SIZE=26XK |
I DEFINE SPACE (FILE (VFILENN) - |
i TRACKS (400) - f
| VOLUMES (321942)) - |
| CATALOG (VSAMCAT/SECRET) I
L/*]
/&]
L.]
Figure 37. Defining a VSAM Data Space

The DLBL statement must be used to
specify the filename and the code which
identifies VSAM files. The filename
(VFILENM) is the same as the FILE parameter
and connects the job control statements to
the DEFINE command. The EXTENT statement
must be used to specify the symbolic unit
name, the volume serial number, and the
space parameters. The VOLUMES parameter
and the space allocation parameter
(CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINF command, and must
agree with the information in the EXTENT
statements. If the CYLINDERS parameter is
used, each.extent must begin on a cylinder
boundary.

The following parameters were used in
FPigure 37.

FILE (VFILENM)
This required parameter identifies the
filename of a DLBL statement that
specifies the devices and volumes to
be used for space allocation.

TRACKS (40D)
This parameter specifies the amount
of space to be allocated in terms of
tracks. The number used to specify
the tracks to be allocated to the
data space must agree with the
information in the extent statements.

VOLUMES (321942)

This required parameter specifies the
volumes to contain the data spaces.
If more than one volume is specified,
each volume will contain a data space
of the same size. Note that the
YOLUNES parameter must agree with the
information in the EXTENT statements.
The volume serial number of the
volume (s) containing the data space (s)
is substituted for volser.

CATALOG (VSAMCAT/SECRET)
This is a required parameter if the
master catalog is password protected.
It specifies the name of the catalog
which is to own the space, and the
update password for that catalog.

Defining a VSAM File: DEFINE CLUSTER

DEFINE CLUSTER is used to define all
attributes of all VSAAX files and to catalog
the files in a VSAM catalog.

Note: This command cannot be used to add
records to the VSaM file.

VSA4 files can be sub-allocated or
unicue. A sub-allocated f£ile is one which
is defined using space from one or more
existing data spaces. For such a file, DLBL
and EXTENT statements are not reguired.
Label processing is not performed since
information needed to set up the file is in
the DEFINE command, and information about
the data spaces to be used for the file is
in the VSAM catalog.

A unique VSAM file is one which
occupies data space uniquely allocated
to it, not to be shared by other files.
The data and the index of a key-
sequenced unicque file must occupy
separate data spaces; each requires
DLBL and EXTENT statements.

Figure 38 is an example of defining a
suballocated key-sequenced file.

r
1// JOB DEPINE
|// BXEC IDCAMS,SIZE=26%K
DEFINE CLUSTER (NAME (ASTRPILE) -
RECORDS (100,10) -
VOLUME (231942)
KECORDSIZE (40 55) -
FREESPACE (10 5)
SUBALLOCATICON -
INDEXED -
KEYS (8 2) UPDATEPW (WRITEFL) -
ATTEXPTS (0)) -
CATALOG (VSAMCAT/SECRET)

[o v -
be e e vt o e o ——— —— ——]

Figure 38. Defining a Key-Sequenced

Suballocated VSAM File

The following parameters are used in
Figure 38.

* NAME (MSTRFILE) -- This parameter is
required and specifies the name to be
given to the file being defined.

e VOLUME (231942) -- This required
parameter is used to specify the
volume on which the defined object is
to be placed.

® RECORDS (primary [secondary]) -- This
parameter specifies the amount of
space to be suballocated in terms of

the number of records the space is to
hold.

e RECORDSIZE (sizel size2) -- This
reguired parameter specifies the length
attributes of the logical records in
the file. The size specified can be
from 1 to 32,761. sizel is the average
length of all logical records. size2
is the maximum lencth of any logical
record.

¢ FREESPACE (percent 1 [percent 2]) —--
This parameter specifies the percen-
tage of space that is to be reserved
during initial and subsequent alloca-
tions. percent 1 specifies the amount
of unused space to be left in each
control interval. percent 2 specifies
the amount of unused control intervals
be left in each control area.

Note: This parameter is valid for
key-sequenced files only.

¢ UNIOUF/SUBALLOCATION —-- This parameter
specifies whether the object is
allocated@ a space of its own, or
whether a portion of an already defined
VSAM data space is suballocated to the
object.

UNIOUE
specifies that the object being
defined is allocated a space of its
own. An object with the UNIQUE
attribute appears in the VTGC of
its volume under itc own name.

SUBALLOCATION
specifies that a portion of an
already defined VSA¥ data space is
suballocated to the object. Objects
with the SUBALLOCATION attribute do
not appear in the VTOC. Only the
nage of the data space that
contains the object appears there.
If the object has the SUBALLOCATION
attribute, there must be a VSAHA
data space defined on the volume on
which the object is being defined.

Virtual Storage Access Method (VSAM) 133

e INDEXED/NONINDEXED
specifies the type
defined.

-—- This parameter
of cluster being

INDEXED
specifies that
defined is for
file. This is

the cluster being
a key-sequenced
the default.

NONINDEXED
specifies that
defined is for
file.

the cluster being
an entry-sequenced

e KEYS (length positiom) -- This
parameter specifies the length and the
starting position of the key field
within each logical record. (Position
0 is the first byte in the logical
record.) The key field with this
specified length, and startlng in the
spec1f1ed position, is in all logical
records in a key-sequenced file. The
sum of length and position must be
egual to or less than the length of the
logical record.

¢ UPDATEPW (password) =-- This parameter
specifies the update level password
for the file being defined. The
update level password permits input
and output operations (READ, START,
DELETE, WRITE, REWRITE) against the
logical records of the file.

Note that this file has no read-level
protection and that its master level
password is WRITEFL.

ATTEMPTS (count)
specifies the maximum number of
times the operator can try to enter
the password in response to a
prompting message. Count can be
any number from 0 through 7. The
value O prevents any password
prompting.

CATALOG (catalog name/password)
specifies the catalog and its update
level password that is to contain the
entries for the cluster.

Pile Processing_Techniques

The COBOL user has three different file
processing techniques available to him;
sequential, random, and a combination of
sequential and random. The technique to be
used is specified through the ACCESS clause
of the SELECT statement.

134

g ——

Entry-Sequenced File Processing: 2an
entry-sequenced file can only be processed
sequentially; therefore, since the default
is sequential, the ACCFESS clause need not
be specified.

Rey-Sequenced File Processing: &
; key-sequenced file can be processed

i sequentially, randomly, or both

sequentially and randomly. To process
sequentially, ACCESS IS SEQUENTIAL is
specified. To process randomly, ACCESS IS
RANDOM is specified. To process both
sequentially and randomly, ACCESS IS
DYNAMIC is specified.

e

ACCESS IS DYNAMIC provides the greatest
flexibility since all the capabilities of
both sequential and random processing are
supported. Processing can be switched
from sequential to random and vice-versa,
as many times as desired.

Current Record Pointer

The current record pointer (CRP), a
conceptual pointer, is applicable only to
key-sequenced files. The current record
pointer indicates the next record to be
accessed by a sequential request; the CRP
has no meaning for random processing. The
CRP is affected only by the OPEN, START and
READ statements, it is not used or affected
by the WRITE, REWRITE, or DFLETE
statements. The following are examples of
how the CRP is affected by various COBOL
statements.

Example 1:

Assuming a file has records with keys
from 1 to 10, if the sequence of I/0
operations on the file with ACCESS IS
DYNAMIC and opened I-0 is:

MOVE 7 TO RECORD-XEY
READ filename

MOVE 44 TO RECORD-KEY
WRITE record-name

READ filename NEXT RECORD

the READ NEXT reads record 8 if the
previous READ was successful. If the
previous READ was not successful, the
STATUS XEY will be set to 94 (No Current
Record Pointer) when the READ NEXT is
attempted. This occurs independently of
the successful intervening WRITE.

Generally, the last request on a file
which establishes a CRP (OPEN, READ, or
START) must have been successful in order
for a sequential read to be successful.

Example 2:

In this example, ACCESS IS SEQUENTIAL is
specified; therefore, records are retrieved
in ascending key sequence starting at the
position indicated by the CRP. (Assume
this file has records with keys from 1 to
10.)

(CRP is at first
record on the
file)

OPEN INPUT filename

MOVE 10 TO RECORD-KEY

(CRP is now at
record 10)

START filename

(record 10 is
read)

READ filename

MOVE 5 TO RECORD-KEY

(CRP is now at
record 5)

START filename

(record 5 is read
CRP is set to
record 6)

READ filename

(record 6 is read
CRP is set to
record 7)

READ filename

Note that the CRP can be changed randomly
through the use of the START statement.
All reading is then done sequentially from
that point. In this example, if the START
request for record key 5 had failed with
no record found (File Status=23), the
three READ statements following would have
failed with no current record pointer
(File Status=94).

Example_ 3:

In this example ACCESS IS DYNAMIC is
specified. Therefore, records are accessed
randomly if READ is specified and
sequentially if READ MEXT is specified.
(Assume this file has records with Kkeys
from 1 to 44.)

OPEN INPUT (CRP is set to first

recoxré on file)
MOVE 5 TO RECORD-KEY
READ filename

(record 5 is read, CRP
is set to record 6)

READ filename

NEXT RECORD

(or indent a couple
of spaces)

(record 6 is read, CRP
is set to record 7)

Move U1 TO RECORD-KEY

READ filename

NEXT RECORD

(or indent a couple
of spaces)

(record 7 is read, CRP
is set to record 2)

The last READ---NEXT RECORD does not read
record U1 even though the record key field
contained 41. This is true because a
sequential read does not use the contents
of the record key to determine which record
to read, it uses the position of CRP as
established by a previous request. If the
last READ had been a random read (no NEXT)
then record 41 would have been read.

Example 4:

In this updating example, ACCESS IS
DYNAMIC is specified; the REWRITE statement
does not affect the CRP. (Assume this file
has records with keys from 1 to 44.)

OPEN I-O (CRP is at first
record on file)

MOVE 10 TO RECORD-KEY

READ filename (record 1C¢ is read,
CRP is set at record

11)
MOVE 44 TO RECORD-KEY

REWRITE reccrd-name (record U4 is updated,

CRP is set at record 11)

READ filename
NEXT RECORD

(record 11 is read, CRP
is set at record 12)

MOVE 74 TO RECORD-KEY

REWRITE (fails, record not
found in this file)
READ NEXT (record 12 is read,

CRP is set at record 13)

Note that although the last REWRITE failed,
the following READ NEXT was successful.

Virtual Storage Access Method (VSAM) 135

Table 11. File Status Values and Error Handling

n L T - Bl i
| | No USE Declarative | UOSE Declarative i
| = - t - —
| | |No AT END or | |No AT END or {
|First Character|AT END or INVALID|INVALID KEY JAT END or INVALID |INVALID KEY i
jof FILE STATUS |KEY clause [clause IKEY clause |clause I
— + s + + -1
| 0 |Return to next | Return to next |Return to next [Return to next |
| {sentence |sentence | sentence | sentence |
t + + —+ + —
| 1 | Return to AT END |Return to next |Return to AT END |Return to next |
| | address | sentence |address |sentence after USE|
{ i | i jdeclarative is I
| 1 | i |executed |
H + + = — 1
1 2 |Return to INVALID|Return to next |Return to INVALID |Return to next |
| | KEY address | sentence | KEY address |sentence after USE|
1 | i i |declarative is |
{ | | I |executed i
t } —t { i 4
| 3 |[Write message and|Write message |[Return to next fReturn to next]
| |return to next jand return to |sentence after USE|sentence after USE|
i |sentence |next sentence |declarative is |declarative is |
| | | |executed |executed 1
F + t } t {
9	Return to next JReturn to next	Return to next	Return to next	
	sentence	sentence	sentence after USE	sentence after USE
I] jdeclarative is	declarative is			
		jexecuted Jexecuted		
L i i i L g

ERROR HANDLING

A1l errors on a VYSAM file, whether logic
errors caused by the COBOL programmer (for
example, reading an unopened file), or I1-0
errors on the external storage media,
return control to the COBOL program. The
contents of FILE STATUS indicate the status
of the last request on the file. It is
strongly recommended that all files have a
file status associated with them, and that
the COBOL programmer check the contents of
FILE STATUS after each request.

Table 11 describes the actions taken for
all the combinations of AT END, INVALID
KEY, and error declaratives for each value
of FILE STATUS.

Note: Return is always to NEXT STATEMENT
unless the request that caused the error
contained an AT END or INVALID KEY clause.
By omitting both the AT END and INVALID KEY
clauses and the USE ERROR/EXCEPTION for the
file, any type of error for the file can be
intercepted by checking the FILE STATUS
data name following each I/0 request
(including OPEN and CLOSE) for the file.
This will simplify the exception-condition
handling in the COBOL program.

136

Record Formats for VSAN Files

For VSAM files, processing is
independent of whether or not the records
on a file are fixed-length (that is, all
records in the file are the same length)
or of variable-length format.

Thus for example, the considerations
which are discussed in "Record Formats For
Non-VSAM Files"™ generally do not apply.

However, the following points should
be considered:

e For record handling purposes, the
records are considered to be
fixed-length when

1. All the records in the file are the
same size (or there is only one
record description).

2. V¥No record contains an OCCURS clause
with the DEPENDING ON option.

Otherwise, the records are
considered to be variable length.

e For variable length records, without
OCCURS DEPENDING ON clauses, the
following applies:

Wwhen a READ INTC statement is used, the
size of the longest record for the file
is moved to the input area. Coding
considerations for records with the
OCCURS DEPENDING ON option are
discussed in "Table Handling
Considerations.”

Initial Loading of Records into a File

A non-loaded file is one which has
been defined but has never contained
any records. An unloaded file is one
which has contained records but from
which all records have been deleted.

A loaded file is one which contains

records.

Initial loading is the process of
writing records into a non-loaded file.

It is strongly recommended that initial
loadx Feécords into a key-sequenced
—file be done sequentially:—ff—the Initial
TToadi i randomly, performance will
be slower, not only for the initial loading
Process, but also for all processing done.
on that file later on. Random loading of
“Tecords does 1ot reserve free space in the
file; therefore, the file will be
dynamically reorganized when any subsequent
records are inserted.

The following table illustrates which OPEN
options are allowed for each file state.

, FILE !

\\.STATE |

N [}

\\ 1

OPEN SN

OPTION INON-LOADED UNLOADED LOADED

S
| | | |
INPUT I NO | YES | YES |
I i [} 1
OUTPUT | yES I NO Ino !
i ! i [}
1-0 R \(¢) | YES | YES |
t 1 | [}
EXTEND | YES i yes | YEs |
| | [t

From this table it can be seen that opening
a file with the OUTPUT option is valid only
when the file is new (has never contained
any records). Also, opening a file with
the INPUT or I-0O option is valid only when
the fiie is not new. If such a file
contains no records (is in the unloaded
state) the first READ reguest results in

an AT END condition (if ACCESS IS
SEQUENTIAL) or an INVALID KEY condition

(if ACCESS IS RANDOM or DYNAMIC).

File Status Initialization

The value of "Z' in Status Key 1 is
reserved for the programmer's use. This
permits his determining whether a request
was made against his file. For example, if
he initializes Status Key 1 to the value 2
before attempting to OPEN his file he can
then determine if his program actually
attempted the OPEN by checking the contents
of Status Key 1. 1If it is %, the OPEN
statement was not executed; if it is a
value other than Z, the statement was
executed. This same technique can be used
for any request against the file (CLOSE,
READ, etc.) to determine if such a request
was attempted in his program.

Cpening a VSAM File

If any of these rules are violated, the
file is not opened and the FILE STATUS key
is set to the appropriate value. Refer to
Table 12 for FILE STATUS key values at open
time. Table 13 describes file status at
action request time.

A loaded file can be opened EXTEND,
INPUT, or I-O. If such a file is
opened EXTEND and it is a key-sequenced
file, the first record to be added must
have its record key higher than the
highest record key on the file when
it was opened. If it is not higher, a
logic error results, and the FILE
STATUS key is equal to 92. For an
entry-sequenced file, the records are
,added after the last record.

Since the USE declarative is executed
only for files that are in open status, the
only OPEN error which can cause the USE
DECLARATIVE to be invoked is trying to open
a file which is already in the open status.
This is a logic error and causes filse
status to be set to 92. The open status of
the file is not affected. However, if the
file is defined as ACCESS IS DYNAMIC, the
illegal OPEN statement causes the current
record pointer to ke undefined.

Virtual Storage Access Method (vsaM) 137

Y0

Table 12. File

Tk e Lpentd LIppt GO LT

Status Key Values at OPEN

T
File Status | Prokaktle Cause
i
- o _—

30 | I-0 error
1 p—
i

91 | Incorrect password. Either an incorrect password was specified or a
| required password was not specified. If a file 'is opened OUTPUT,
| EXTEND, or I-O, the UPDATE password is required.
4
T

92 | Logic error caused by opening an opened file, cr by opening a locked
| file.
1[,

93 | Resource not available. Caused by insufficient virtual storage, or the
| file is not available for the type of processing requested.?
4
T

95 | Invalid or incomplete information in the ASSGN card, or the file was not
| found in the catalog.?
L
)

96 | Missing DLBL card
L

vice versa.

I
F
!
b
|
|
|
F
|
|
k
I
|
k
I
!
F
|
|f
I
|
|
I
|
|
!
|
I
|
I
I
!
L

iIndicates that the file was already opened by someone else and opening it for this
request would violate the share options specified for the file.

2FILE STATUS 95 can also ke caused by the following:
- an attempt to open a key-sequenced file as if it were an entry-sequenced file or

- an attempt to open a non-loaded file with the INPUT or I-O option.

- an attempt to open OUTPUT a file not in the non-loaded state.

- record key length or displacement specification that does not match what was
specified when the file was defined.

b e e e e e —— e — s e v e i e el et e b s i e e i e e e e e ke e

Table 13. File Status at Action Request Time

24

30

34

92

93

94

e - > o =P o S et Bt i i i S o i e St i . i it . e i et . e, O et ey

99

key-sequenced
23 file only

!
|
!
[
I
!
|
|
!
!
I
I
I
!
I
I
I
|
!
|
]
I
I
I
2
|
I
I
I
|
|
!

File Status Prokable Cause

00 Successful

i6 A sequential READ statement encountered EOF.

21 A request was issued to change the record key during execution of
a REWRITE statement, or a sequence error occurred for a
sequentially-accessed key-sequenced file.

22 A request was issued to add a record whose record key was a

duplicate of a record already on the file.

Either a READ statement was_issued for a record whose record.key

does Tiot_match oc on the Fil&, Of @ REWRITE GF¥ DELETE
€
e

Q\iﬁfﬁiﬁiﬂzii issued for a record Tot on the file.
A requést was issued to write a record'BeYBﬂd”fﬁg

externally-defined boundaries of the file.
An I-O error occurred.

A request was issued to write a record beycnd the
externally-defined boundaries of an entry-segquenced file.

A logic error occurred. (See Note below.)

Resource not available. Insufficient virtual storage or volume,
extent unavailable, or data already in exclusive control.

No current record pointer for a sequential READ statement.

Abnormal termination (subroutine error).

e ot e e o S St o T — —— — . S S (ot S il S i . S S S e, . st St b e Sl .)

[y
(%)
o)

Note: Pile Status = 92 can be caused by
the following:

s Any request issued against an unopened
file.

e Any request issued which is not allowed
for the OPEN option; for example,
issuing a READ statement for a file
opened - OUTPUT, or a REWRITE statement
for a file opened INPUT.

s /_\\\\
fe Any attempt to write or rewrite a }

! record lomger than the maximuz record !
| g i

\ size specified when the file was
\. defined.

e Any action taken on a file after EOF _
has been encountered (entry- sequenced
or key-sequenced file). If EOF is
encountered on a key-sequenced file, a
START or a READ statement can be issued
to reset the CRP and continue
processing. For example, a
key-sequenced file with ACCESS IS
SEQUENTIAL specified:

OPEN

READ successful

READ EOF encountered
READ logic error
START reset CRP

READ successful

or, a key-sequenced file with ACCESS IS
DYNAMIC specified:

" OPEN

READ NEXT successful

READ NE NEXL_M_W_,EOF encountered

READ WEXT logic' error

READ reset CRP (random READ)
READ NEXT successful

e An attempt to rewrite when ACCESS IS
SEQUENTIAL has been specified if 'the
preceding action was not a successful
READ operation.

* An attempt to delete when ACCESS IS
SEQUENTIAL was specified if the
preceding action was not a successful
READ operation (key-sequenced file
only) .

*+ An attempt to read with improper
length specified.

WRITING RECORDS INTO A VSAM FILE

The COBOL WRITE statement is used to add
a record to a file. (Existing records in
the file are not replaced with this
_Statement.; The record to be written must
wot be larger than the maximum record size
specified when the file was defined.

Entry-Sequenced File Considerations for the
¥RITE Statement

Entry-sequenced file records are
written sequentially. If the file
is not opened OUTPUT or EXTEND, FILE
STATUS is set to 92 and the recorgd
is not written.

Key-Sequenced PFile Considerations for the
WRITE Statement

When ACCESS IS SEQUENTIAL is specified,
the file must be opened OUTPUT or EXTEND.
If not, the WRITE statement 1s not executed
and FILE STATUS is set to 92.

The records must be written in ascending
key sequence. If the file is opened
EXTEND, the record keys of the records to
be added must be higher than the highest
record key on the file when it was opened.
The following example shows the action and
resultant FILE STATUS when a file
containing records whose keys are 2, 4, 6,
8, and 10 is opened EXTEND. (Refer to
Table 13 explanations of FILE STATUS values
at action request time.)

ACTION FILE STATUS
WRITE (record key = 8) 52
WRITE (record key = 9) 92
WRITE (record key = 12) 00
WRITE (record key = 11) 21
WRITE (record key = 6) 21

Note that the first two WRITE requests
result in a logic error (FILE STATUS=92)
because their key values are not higher
than the highest key on the file when

it was opened. Once a successful WRITE

has taken place all subsequent WRITE ‘
requests are handled as though the file
were opened OUTPUT. This is why the

WRITE of record key 6 causes a sequence
error, not a logic error.

1f many records are to be added to a
f11e7‘”f is strongly, reconmended that'
segpentlal ‘access be used. Performancenls
improved both for the process of adding. the
records and for Iater retr;eval of ‘then.

When ACCESS IS RANDOM or ACCESS IS

DYNAMIC is specifie be
opened 1-0 or OUTPUT. If not, the WRITE

=tatewent~IS 1ot executed and FILE STATUS

is set to 9Z. The records can be written

in any order.

Virtual Storade Access Method (VSAM) 139

\

\
1

|
/

REWRITING RECORDS ON A VSAM FILE

The COBOL REWRITE statement is used to
replace existing records on the file.

Entry-Sequenced Pile Considerations for the

REWRITE Statement

For successful REWRITE statement
execution, the file must be opened I-0.
The record to be rewritten must first be
read by the COBOL program, then updated by
the REWRITE statement. (The length of the
record being rewritten cannot be changed.)
If there was no preceding READ statement,
or if the preceding READ statement was not
successful (EOF vas Leached), the REWRITE
statement is_not éxecuted aﬂH“PiLE STATUS
is-set to-92. T,

N,
Key-Sequenced File Considerations for the™
REWRITE Statement

For successful REWRITE statement

’ execution, the file must be opened I-O.
' The length of the record can be changed,

but the value of the record key cannot be
changed.

When ACCESS IS SEQUENTIAL is specified,
the record to be rewritten must first be
read by the COBOL program, then updated by
the REWRITE statement. The REWRITE
statement is not successful if the
preceding statement for the file was not a
successful READ of this record. This
causes file status to be set to 92.

When ACCESS IS RANDOM or ACCESS IS
DYNAMIC is specified, the record does not
need to be read by the COBOL program. The
record is updated by moving its key to
the record key field and doing the REWRITE.

e

READING RECORDS ON A VSAM.FILE.

T et

The COBOL READ statement is used to
access records on a file. If the file is
not opened INPUT or I-O, the READ statement
is not executed and FILE STATUS is set to
92.

Entry-Sequenced File Considerations for the
READ Statement

Records are read sequentially, in the
order in which they were written.

Key—-Sequenced File Considerations for the
READ Statement

When ACCESS IS SEQUENTIAL is specified,
records are read sequentially, beginning at
the position of the current record pointer.
If the current record pointer is undefined
when the READ is executed, FILE STATUS is
set to 94. The following example shovws

140

successful and unsuccessful READ and START
executions. (Assume this file has records |
with keys 1 through 8 and 20.)

OPEN I-0 CRP at first record on
filename file

READ (first record on file is
file name read)

MOVE 10 TO
RECORD-KEY

START (fails-no record found)

file name

READ
file name

(fails-no CRP)

"4 MOVE 20 TO
, RECORD-KEY

$TART (successful)

file name

READ
file name

(record 20 is read)

i When ACCESS IS RANDOM is specified, ‘
records are read in the order specified by
'the program. To read records whose record
key is 10, move 10 to the RECORD KEY field

in the record area and issue a READ
statement.

When ACCESS IS DYNAMIC is specified,

‘records can be read randomly or

sequentially. The READ NEXT statement is
used for sequential accessing, and the READ
statement is used for random accessing.

READ NEXT Statement

Records are read sequentially beginning
at the position of the current record
pointer. 1If the current record pointer is
not defined when the READ NEXT statement is
issued, FILE STATUS is set to 94 as a result
of the READ. The current record pointer is
considered undefined if the preceding START
or READ statement.was not successful.

For details on the effect of COBOL
statements on the position on the current
record pointer, refer to the section
entitled "Current Record Pointer."

P i
v ‘!
%

READ Statement

The READ statement reads records
randomly using the value placed in the
record key field.

USING THE START VERB

-».‘..,//
: The START statement is only valid for
i key- sequenced files but not when ACCESS IS

RANDOM is specified or when the file is
ngfned GUTPUT or EXTEND.

In some of the preceding examples, the
START verb was used to position the CRP.
Then the READ (for ACCESS IS SEQUENTIAL)
and READ NEXT (for sequential processing
when ACCESS IS DYNAMIC) retrieves the
record pointed to by the CRP as established
by ‘the START.

Example:

05 RECORD-KEY.
10 GEN11.
15 GEN12 PIC 99.
15 GEN13 PIC 99.
10 GEN14 PIC9.

In this example, GEN12, GEN11, or
RECORD-KEY could be used as the data-name
in the ®KEY IS relational data-name™ option
of the START statement. The lengths would
be 2, 4, and 5 respectively. GEN13 and
GEN14 could not be used as they are not in
the leftmost part of RECORD-KEY.

Assume that the value of RECORD-KEY is
01472:

e START filename KEY = GEN11 would
position the CRP to the first record on
the file whose key has 0147 as the
first 4 characters.

¢ START file-name KEY > GEN12 would
position the CRP to the first record in
the file whose key has the first two
characters greater than 01.

o i

DELETE Statement

The DELETE is valid only for a
key-sequenced File. The same
considerations discussed under

"Key-Sequenced File Considerations for the’,

REWRITE Statement™ apply to the DELETE
statement.

COBOL_Langquage Usage With VSAM

The COBOL language statements which are
directly related to VSAM processing are in
the section "DOS/VS COBOL Considerations®
in the publication IEM DOS Full American
National Standard COBOL. The following
paragraphs are intended only to highlight
and summarize the basic language statements
used in writing a VSAM-file-processing
COBOL progranm.

<
o]
Y}
3
S
D
<
J'l

AM in three

A COBQL programmer In U
basic ways: to create a fll ’ to retrieve
a file, and to update a file. However,
prior to processing a VSAM file, it is an
absolute necessity that the previously
discussed Access Method Services functions
be performed. Most significant to the
COBOL programmer is whether the file is
defined as an entry-sequenced file or as a
key-sequenced file.

Creating a_ VSAM File

The minimum COBOL language statements
required to create a VSAM file are
summarized in Table 14.

Table 14. COBOL Statements for Creating a
¥SAM File
L T ¥ DL
i | | l
| |Entry-Sequenced [Key-Sequenced |
| | File | File 1
H— } t)
|Environment | SELECT | SELECT |
| Division |ASSIGN {ASSIGN |
] | |ORGANIZATION |
i i { IS INDEXED |
| | |RECORD KEY I
= i + 2|
|Data |FD entry |FD entry |
| Division |LABEL RECORDS |LABEL RECORDS |
F } + i
{Procedure |OPEN OUTPUT |OPEN OUTPUT |
{ Division | or | or |
] |OPEN EXTEND |OPEN EXTEND |
] |WRITE |WRITE {
| |CLOSE |CLOSE |
L A - H

Tne following discussion illustrates the
steps wnich must be taken to create an
entry-sequenced file. Assume the VSAM
catalog and VSAM data space have been
created as previously illustrated. The
next thing a user must do is define the
entry in the catalog for the VSAM file.

// JOB DEFINE FILE
// EXEC IDCAMS,SIZE=100K
DEFINE CLUSTER (HAME (TRANFILE) -

VOLUME (321942) RECORDS (50 5) -
RECORDSIZE (S0 80) READPW(R0104) -
UPDATEPW (W0104) ATTEMPTS (0) -
NONINDEXED SUBALLOCATION) -

p CATALOG (VSAMCAT/SECRET)

Virtual Storage Access Method (VSAM) 141

The meaning of the parameters is:

NAME This is the data set name.

(TRANFILE)

VOLUME This is the volume on which

(321942) the space for the data set
resides.

RECORDS Primary allocation is for

(50 5) 50 records, secondary
allocation is for 5 records.

RECORDSIZE The average and maximum

(80 80) record size is 80 characters.

READPW The password R0O104 must be

(RO104) supplied to open the file
with the INPUT option.

UPDATEPW The password W0104 must be

(WO104) supplied to open the file

with the OUTPUT, EXTEND or
I-0 option.

ATTEMPTS (0) The operator is not to be
prompted for the password

when the file is opened.

NONINDEXED The file is an entry-
sequenced file.
SUBALLOCATION Space for this file is to
be suballocated from exist-
ing VSAM data space on the
volume.
CATALOG The name of the catalog into
(vsamcat/ which this file is cataloged
SECRET) is VSAMCAT and its update
password is SECRET.
Note: When the user gains update access

to the file (by supplying the update level
of the password) he has also gained read
access. In general, when a user gains
access to a file at a given level of
protection, he has gained access to that
file for all lower levels. This means that
the above file could be opened INPUT by
supplying the update level of the password.
However, it could not be opened OUTPUT,
EXTEND or I-O by supplying the read level
password.

42

The COBOL program to access such a fiie
would include the following statements.

FILE-CONTROL.
SELECT VSAMSEQ

ASSIGN TO SYS010-AS-TESTFL
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
PASSWORD IS VSAMPW
FILE STATUS IS STATKEY,
L}

DATA DIVISION.
FILE SECTION.
FD VSAMSEQ
LABEL RECORDS ARE OMITTED.
01 VSAMREC.
05 FIELD1 PICTURE X(8).
05 FIELD2 PICTURE X (72).

T
|
T

WORKING-STORAGE SECTION.

77 STATKEY
77 VSAMPW
'

PICTURE 99.
PICTURE X (5).

PROCEDURE DIVISION.
BUILD-PASSWORD.
PERFORM PASSWORD-BUILDER.
PERFORM PASSWORD-SCRAMBLER,
1

OPEN OUTPUT VSAMSEQ.
IF STATKEY NOT = 0
GO TO ERROR-HANDLER.
BUILD-A-RECORD.
t

WRITE VSAMREC.
IF STATKEY NOT = 0
GO TO ERROR-HANDLER.

GO TO BUILD-A-RECORD.
T

1
1

In this sample program the routines
PASSWORD-BUILDER and PASSWORD-SCRAMBLER
construct the update level password so
that the file can be opened OUTPUT. These
routines can be written in such a way
that they are difficult to follow, thus
improving security.

Note that the FILE-STATUS is checked
after each request on the file. This
ensures that unexpected conditions will

be detected.

The JCL needed to execute the program is

// JOB
// ASSGN SYS010 X'130'
// DLBL TESTFL, ' TRANFILE', ,VSAM

// EXTENT SYS010,321942
// EXEC program-name, SIZE=nnnk

Example 2:

This example shows the creation of a
COBOL key-sequenced VSAM file. This
program performs the same function as
example 1 except that now a key-sequenced
file is being created. The records in the
file "INREC"™ are in ascending key order.

IDENTIFICATION DIVISION.

-

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INREC
ASSIGN TO SYS005-UR-2540R-CARDIN.
SELECT OUTREC
ASSIGN TO SYSO10—OUTMAST
ORGANIZATION IS INDEXED
RECORD KEY IS ARG-1
FILE STATUS IS CHK.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE OMITTED
DATA RECORD IS INMASTER
01 INMASTER PIC X (80).
FD OUTREC LABEL RECORDS ARF STANDARD
DATA RECORD IS OUTMASTER.
01 OUTMASTER.
05 PILLER PIC X.
05 ARG-1 PIC XXX.
05 REM PIC X (76).
WORKING-STORAGE SECTION.
77 CHK PIC XX.

PROCEDURE DIVISION.
PARAT.
OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = *00"™ GO TO CHKRTN.
PARAZ.
READ INREC INTO OUTMASTER
AT END GO TO PARAL4.
PARA3.
WRITE OUTMASTER.
IF CHK IS NOT = ™00" GO TO CHKRTN.
GO TO PARAZ2.
PARAL.
CLOSE INREC OUTREC.
IF CEK IS NOT = "00" GO TO CHKRTN.
FINIT.
CLOSE INREC OUTREC.
STOP RUN.
CHKRTN.
DISPLAY "ERROR. STATUS KEY VALUE
Is™ CHK
GO TO FINIT.

Note that in this example any Status Key

.return other than 00 causes transfer of

control to paragraph CEKRTN. This routine
can determine the exact cause of the error
by checking the Status Key. Once the cause
is determined, instructions can be issued
according to the user's desired response to
each type of error.

Retrieving a VSAM File

The minimum COBOL language statements
required to retrieve a VSAM file are
summarized in Table 15.

Table 15. COBOL Statements for Retrieving
a VSAM File

L

i
! |
1
{

Entry-Sequenced | Key-Sequenced

-
|

|

| File | File |
i { 1 4
|Environment|SELECT | SELECT |
] Division [ASSIGN |ASSIGN |
|] |ORGANIZATION |
| | { IS INDEXED |
| | | RECORD KEY i
k —+ 4 al
[Data |FD entry |FD entry |
| Division |LABEL RECORDS | LABEL RECORDS|
%* 4 + 4
|Procedure |OPEN INPUT {OPEN INPUT |
{ Division |READ ... |READ |
| | AT END | |
J JCLOSE | CLOSE |
L A A —

Vvirtual Storage Access Method (VSAM) 143

The following examples show the
retrieval of records from VSAM files.

Example 4:

This example shows the retrieval of
records from the key-sequenced file created
in example 2. ©Note that in the Procedure
Division there is a switch from sequential

Example 3:

This example shows the retrieval of
records from the entry-seaquenced file

created in example 1. The records are then

printed.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.
FILE-CONTROL
SELECT INREC
ASSIGN TO SYS010-AS-INMAST
FILE STATUS IS CHK.
SELECT PREC
ASSIGN TO SYS005-UR-1403-S-PRNTR

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 TINMASTER PIC X (80).
FD PREC LABEL RECORDS ARE OMITTED
DATR RECORD IS POUT.
01 DPOUT PIC X (80).
WORKING-STORAGE SECTION.
77 CHE PIC XX.
PROCEDURE DIVISION.
PARAT.
OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = "00" GO TO CHEKRTN.
PARAZ.
READ INREC INTO POUT AT END GO TO
PARAL.
IF CHK IS NOT = "00" GO TC CHEKRTN
PARA3. '
WRITE POUT.
GO TO PARA2.
PARAL.
CLOSE OUTREC PREC.
IF CHX IS NOT = "00" GO TO CHKRTN.
FINIT.
STOP RUN.
CHKRTN.
DISPLAY 'ERROR. STATUS KEY VALUE
IS*' CHK.
GO TO FINIT.

Note that in this example any Status Key
return cother than 00 causes transfer of

processing to random processing; this is
permitted since ACCESS IS DYNAMIC is
specified in the ENVIRONMENT Division.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INREC
ASSIGN TO SYSO10-INMAST
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS ARG-1
PILE STATUS IS CHK.
SELECT PREC
ASSIGN TO SYSO05-UR-1403-S-PRINTR

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE STANDARD
DATA RECORD IS INMASTER.
01 INMASTER.
05 FILLER PIC X.
05 <ARG-1 PIC XXX.
05 ARG-2 PIC XX.
05 ARG-3 PIC XX.
05 PILLER PIC X(72).
FD PREC LABEL RECORDS ARE OMITTED
‘DATA RECORD IS POUT.
01 POUT PIC X(80).
WORKING-STORAGE SECTION.
77 CHK PIC XX.
PROCEDURE DIVISION.
PARA1.
OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = "00%" GO TO CEKRTN.
PARAZ2.
MOVE "003" TO ARG-1.
START INREC.
PARA3.
READ INREC NEXT RECORD AT END GO TO
PARAL.
IF CHK IS NOT = "00"™ GO TO CHKRTN.
IF ARG-2 IS = ™02" GO TO PARAW.
IF ARG-3 IS NOT = "73" GO TO PARA3.
WRITE POUT PROM INMASTER.
GO TO PARA3.
PARAL.
MOVE "101" TO ARG-1.

control to paragraph CHKRIN. This routine READ INREC INVALID KEY GO TO CHKRTN.

can determine the exact cause of the error WRITE POUT FROM INMASTER.

by checking the Status Key. Once the cause MOVE "103"™ TO ARG-1.

is determined, instructions can be issued READ INREC INVALID KEY GO TC CHKRTN.
according to the user's desired response to WRITE POUT FROM INMASTER.

each type of error.

144

PARAS.
CLOSE INREC PREC.
IF CHK IS NOT = "0Q" GO TO CHKRTN.
FINIT.
STOP RUN.
CHKRTN.
DISPLAY *ERROR. STATUS KEY VALUE
IS' CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of

+a :r:grap‘k CHERTN. This routine

~andral
Wil VL VA W ek A £ Nradiiiy & PR N P

can determine the exact cause of the error
by checking the Status Key. Once the cause
is determined, instructions can be issued
according to the user'®s desired response to

each type of error.

Job Control lLanguage for a VSAM File

JCL is simplified for VSAM since all

iISAM files must be cataloged through Access

fethod Services.

The JCL to execute the program in
sxample 1 is

// JOB

// ASSGN SYS010,X'233*

// DLBL OUTMAST, 'PAYFILE®,, VSAM
'/ EXTENT SYS010,VSAMVOL

// EXEC EXAMPLE,SIZE=50K

Fhe volume on which the VSAM file was
iefined is mounted at address 233, the
volume ID is VYSAMVOL, and the file was

jiven the name PAYFILE when it was defined.

The SIZE parameter is required on the
IXEC card for VSAM programs.

converting Non-VSAM Files to VSAM Files

ISAM files can be converted to VSAM
files so that they may be processed by a

COBOL program using VSAN. The conversion

is done through Access Method Services.

Essentially, the conversion'process
consists of defining a VSAM file as the

target for the file being converted. Then
through the appropriate JCL and the REPRO

command, the conversion is accomplished.

For a complete description of the
conversion process, see DOS/VS UOtilities
VSAM Access Method Services, and DOS/¥S

Data Management Guide.

Using ISAM Programs to Process VSAM Files

Once the file is converted the
programmer can process the new VSAMX file
with his old ISAM program by converting his
ISAM JCL to VSAM JCL. For more details on
this procedure see DOS/VS Data Management
Guide.

Virtual Storage Access Method (VSAM) 144.1

DETAILED FILE PROCESSING CAPABILITIES

The following topics are discussed the Environment Division (SELECT, RERUN,
within this chapter: and SAME statements) and the Data Division

(FD and associated records). The File

COBOL VSAM Control Blocks Ccontrol Block (FCB) is generated
dynamically at execution time by the VSAM

DTF Tables library subroutines. The user may wish to
refer to fields in these blocks for

Exror Recovery for Non-VSAM Files debugging. The format of the VSAM control
block (Access Method Control Block =-- ACP)

Volume and File lLabel Handling is not given here, as the knowledge of its

contents is not needed by the COBOL user.

COBOL_VSAM CONTROL BLOCKS

The compiler generates a File
Information Block (FIB) from information in

Detailed File Processing Capaktilities 145

The following two control blocks are required to process input/output requests for
VSAM files. ’

VSAM FILE INFORMATION BLOCK (FIB)

The file information block, a portion of the completed object module, is used at
execution time by the ILBDINTO, ILBDVOCO, and ILBDVIOO COBOL library subroutines for
processing input/output verbs used with VSAM files. The FIB is built by phase 21.

Fixed Portion:

Displacement No. of
Hex Decimal Field Bytes Description
0 0 IFIBID 1 FIB identification code: X'I°
1 1 IFIBLVL 1 FIB level number
2 2 INAMED 7 External name
9 9 INAMEDB 1 External name
A 10 1 Reserved
B 11 IORG 1 ORGANIZATION
Code:
Equate Bit
Bits Name Settings Meaning
0-7 IORGVPS 1000 1000 VSAM ALDRESSED
SEQUENTIAL
IORGVIX 0100 1000 VSAM INDEXED
C 12 IACCESS 1 ACCESS MODE
Code:
Equate Bit
Bits Name Settings Meaning
0~-7 IACCSEQ 1000 0000 SECUENTIAL
IACCRAN 0100 0000 RANDOM
IACCDYN 0010 0000 DYNAMIC
D 13 1 Reserved
E 14 ISwWl 1 Miscellaneous switches
Code:
Equate Bit
Bits Name Settings Meaning
0-7 ISOPTNL 1000 0000 OPTIONAL specified
ISSAMREC 0010 0000 SAME RECORD AREA
specified
F 15 1 Reserved
10 16 6 Reserved
16 22 IRECLEN 2 Number of bytes in longest 0Ol-entry
18 24 IRECDBL 2 Displacement in TGT of record's first base locator cell
1A 26 IRECNBL 1 Number of base locators for RECORD AREA
1B 27 1 Reserved
ic 28 ISTATDBL 2 Displacement in TGT of base locator for STATUS data-nare
iE 30 ISTATDDN 2 Displacement from base locator of STATUS data-name
20 32 ISTATLDN 2 Length of STATUS data-name
22 34 1 Reserved
23 35 IKEYNO 1 Number of entries in key list

146

24 36 IKEYFNTL
26 38 IPSWISW
27 39 IPSWNO
28 40 IPSWENTL
27 42

38 56 IMISCAD
3C 60 ILABELAD
40 64 IKEYLSTA
44 68 IPSWLSTRA
48 72

Yariable Length Portion:

EEN- LN

N EEE

Length of each entry in key list
Miscellaneous switches

Number of entries in password list
Length of each entry in password list
Reserved

Address in variable length portion of FIB for
miscellaneous clauses

Reserved

Address of first key list entry
Address of first password list entry
Reserved

Supplementary information for miscellaneous clauses (one for each clause):

Displacement No.
Hex Decimal Field

0 0 IMSH1

2 2 TRERUNI

6 6

8 8 IRERUNN

Key List Entry: (one per user-defined key-—-RECORD/ALTERNATE/RELATIVE)

Displacement
Hex