GY26-3741-3

DOS Emulator Logic
Systems (on IBM System.”370 under OS)

Program Number 360C-EU-738 for OS/MFT or OS/MVT
Program Number 5744-AS1 for 0S/VS1

BV

Fourth Edition (July 1972)

This edition apglies to Version 2, Level 1, of the TIBM DOS Emulator program
and to all subsequent versions and modifications until otherwise indicated
in new editions or technical newsletters.

Changes are continually made to the information herein. Therefore, before
using this puklication, consult the latest IBM System/360 and System/370 SRL
Newsletter, GN20-0360, for the editions that are applicable and current.

Copies of this and other IBM rublications can be obtained through IEM branch
offices.

A form is provided at the back of this puklication for readers' comments.

If this form has been removad, address corments to IBM Corporation, Programming
Publications, Derartment 813 LGP, 1133 Westchester Avenue, White Plains,

New York 10604.

(©) copyright Tnternational Business Machines Corporation 1971, 1972

PREFACE

This publication describes the internal logic of the DOS Emulator program,
which runs under the contrcl of the Operating System on IBM System/370 Models
135, 145, and 155. DOS emulation is a comkination of the DOS Emulator program
and the System/370 DOS Compatibility Feature.

The relationship of the program logic to the logic of the DOS Compatibility
Feature is discussed.

DOS emulation enables DOS problem programs to run under control of 0OS without
program conversion. The [OS Emulator program executes as an 0S prchklem program
under a nonzero storage protecticn kev.

This publication is intended for use by persons involved in program maintenance,
and system programmers who are altering the prograr design.

HOW TO USE THIS PUBLICATION

This program logic manual surplements the DOS Emulator program listing. The
same labels are used on the PLM flowcharts, on the program listing, and within
the module descrirtions.

Effective use of this publication requires an understanding of the:

. Organization of the puklication as a whcle

° Organization of the DOS Emulator program into major orerations

. Use of the Emulator mcdule directory as a key for locating items related
to each module

. Prerequisite and related publications

. Notational conventions used to describe the syntax (or format) of control
statements

These topics are discussed below.

Organization of the Publication

In addition to the preface, a table of contents, a list of figures, and a list
of abbreviations used in this manual, this puklication has these major parts:

. "Summary of Changes," which summarizes the major technical changes reflected
for version 2, level 1 and version 2, level 0.

. "Introduction," which briefly describes the capabilities of the DOS Emulator
program, program linkages, and the interaction between the Emulator and
os.

. "Method of Operation," which describes the internal logic of the DOS

Emulator prcgram and the function of each routine.

. "Program Organization," which consists of the flowcharts for each routine
and a summary of the function(s) of each module. (The summary always
appears on the page preceding the first flowchart for the module.)

Page of GY26-3741
Revised July 25, 1972

By TNL GN26-8021

. "Directories," which lists the Emulator program labels alphabetically with
their flowchart identifications and the section of the manual in which
each label is discussed. In addition, there is a module directory, which
can be used to locate key items about each module, a data area directory
with information about each data area, lists of Emulator macros and field
names.

. "Data Areas," which gives detailed layouts of control blocks, tables, and
words to help identify information in storage dumps.

. "Diagnostic Aids," which gives debugging hints, Emulator dependencies on
0s, DOS, and hardware, general register assignments, Emulator service aids,
and message-to-module relationshirps.

o "Appendix," which describes the functions and formats of the two hardware
instructions and associated lists used by the DOS Compatibility Feature.

o "Glossary," which defines new terms and, for quick recall, some terms
defined in prerequisite reading.

. "Index," which is a subject index to this publication.

Organization into Categories

DOS Emulator program operations, defined in the first part of the "Method of
Operation" section, fall into the following categories; initialization,
synchronous interruptions, asynchronous interruptions, direct-access volume
sharing, abnormal end conditions, and service aids.

The seccond part of the "Method of Operation" section (module descriptions)

and "Program Organizaticn" section (module summaries and flowcharts) are
arranged in the same sequence for easy cross-reference.

Use of the Emulator Module Directory

The Emulator module directory in the "Directories" section can be used to find
the location of the verbal descrirtion of each Emulator module, the flowchart (s)
for each module, the summary of each module's functions, and other key
information ccncerning that module.

Prerequisite and Related Literature

Fffective use of this PLM requires a familiarity with DOS and an understanding
of both the IBM System/370 Models 135, 145, and 155 and 0S. A working knowledge
of System/370 status switching, interrurtion mechanism, and input/output
operations is also helpful. The following publications provide necessary
background information or are referenced in the text:

Concepts and Facilities for DOS and TOS, GC24-5030

DOS IPL and Job Contrcl Prcgrams, Program Logic Manual, GY24-5086

DOS Logical IOCS, Volume 3: Sequential and Direct Access DASD Files, GY2u4-
5088

DOS Logical Transient Programs, GY2#4-5152

DOS Supervisor and Physical Transients, GY24-5151

DOS System Programrmer's Guide, GC24-5073

iv

Emulating DOS Under OS on IBM System/370, GC26-3777

IBM System/360 and System/370 SRL Newsletter, GN20-0360

IBM System/360 Principles of Operation, GA22-6821

IBM System/370 Principles of Operation, GA22-7000

OS Data Management for System Programmers, GC28-6550

0S Data Managerent Macro Instructions, GC26-3794

0S JCL Reference, GC28-6704

0S Master Index to Logic Manuals, GY28-6717

0S Storage Estimates, GC28-6%551

0S Supervisor Services and Macro Instructions, GC28-66u46

OS System Control Blocks, GC28-6628

0S/VS Data Management Macro Ynstructions, GC26-3793

0S/VS Data Management for System Programmers, GC28-0631

0S/VS JCL Reference, GC28-0618

0S/VS Master Index of Logic, GY28-0603

0S/VS Supervisor Services and Macros, GC27-6979

0S/VS1 Storage Estimates, GC24-5094

0S/VS1 Svstem Data Areas, SY28-0605

Notational Conventions

A uniform system of notation is used to describe the syntax (or format) of
utility control statements. This notation describes which parameters are
required and which are optional, the options available in expressing values,
and the required punctuation.

Capital Letter Type

In the notation, capital letter type (LIST) is used to indicate specific values
that must be coded exactly as shown.

Punctuation

The period (.), comma (,), semicolon (;), equal sign (=), and apostrophe (')
are used for punctuation and must be coded as shown. These punctuation marks
serve to separate the parameters of a utility control statement.

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

Brackets
Brackets ([]) indicate that the elements and punctuation they enclose are '
optional. The brackets themselves are for descriptive purposes only, and are

not to be coded. For instance

value=element1,element2,element3{ ,elementd]
indicates that "value=" must be fcllowed by three required parameters (elementil,
element2, and element3) serarated by commas. As indicated by the brackets,
elementl is cortional and need not be coded. 1If elementls is coded, however,
the comma that immediately precedes it must also be coded.

When choices are available for an optional value, the choices appear in
brackets, one choice above another, as follows:

value=elementOf ,element1])
[,element2]
{,element3]

in the above example, "value=" must be followed by element0. Optionally,
element1, element2, or element3 can be coded.

Braces

Braces ({}) indicate a required choice. The kraces themselves are for
descriptive purposes only and are not to be coded. TFor example:

value={element1}

{element2}]
indicates that "value=" must ke fcllowed by either element1 or element2.
Underscoring
Underscoring indicates a default value -- a value assumed by the program if

no value is coded. For example, given that no optional value is coded in the
following:

value=[element1]
[element2]

Element1 is assumed.

Ellipsis

An ellipsis (...) is used to indicate that one or more additional rarameters

or sets of parameters, each identically fcrmatted, optionally can be added

to the operand. For example, given the following:
value=element1,element2...

the ellipsis indicates that everything preceding the ellipsis and followina
the equal sign can ke repeated.

vi

CONTENTS

iii

PREFACE

xvii SUMMARY OF CHANGES FOR VERSION 2, LEVEL 1

Xix

xxi

COWOINNdIANAANANAEEFWN 2 aaa

—

SUMMARY OF CHANGES FOR VERSION 2, LEVEL 0

ARBREVIATIONS USFD IN THIS BOOK

INTRODUCTION
DOS Emulation
Environmental Characteristics
Resource Requirements
Dedicated Resources
Staged Resources
Shared Resources
Emulator/0S Interaction
0S Macros
Fmulator Appendages
Requesting Bypass Lakel Processing (BLP)
Operational Considerations
Staged Output Considerations
Printer Overflow Simulation
Emulator Separator Feature
Data Set Requirements
Phvsical Characteristics
Main-Storage Requirements

METHOD OF OPERATICN
Initialization
Verifying Parameters
Estaklishing the DOS Storage Area
Initializing Emulator Tables
DOS IPL

Interruption Action When CPU is in Local Execution Mode

Synchronous Interrurticns
Asynchronous Interruptions
Direct-Access Volume Sharing
End-of-Extent Processing
Input Processing
Workfile Processing
Direct-Access File Processing
DOS Release 27 Processing
DOS Release 27 Output Processing
0S Indexed Sequential Data Set Sharing
Example of Processing
Close Processing
SETL Processing
Shared DOS System Residence File
Abnormal End Conditions
Detailed Routine Descriptions

DOS Emulator Entry Routine (IIVENT) -- Flowchart 1A

Initialization First-Load Routine (IIVINT)

-- Flowcharts 2A-2M

47 Initialization Second-Load Routine (IIVIN2) -- Flowcharts 3a-3F

51 IPL, Add Routine (IIVADD) -- Flowcharts 4A-4D

51 Open Routine (IIVOPN) -- Flowcharts 5A-5D

53 OS PUB Table Build Routine (IIVPUB) -- Flowcharts 6A-6F '
54 GETMAIN/FREEMAIN Routine (IIVGET) -- Flowchart 73,

45 Program Check Executive Routine (IIVPCE) -- Flowcharts 8A-8U

61 Check I/0O Routine (IIVCHK) -- Flowcharts 9A-9D

62 Interpretive SYSIOG Routine (IIVLOG) -- Flowcharts 10A-10E

64 Staged I/0 Routine (IIVSTG) -- Flowcharts 11A-11N

68 CAW Verification Routine (IIVAWV) -- Flowchart 12A

68 CCW Verification Routine (ITVCWV) -- Flowchart 13A

69 Printer Overflow Routine (IIVPOV) -- Flowchart 14A

69 Adjust CCWw Data Address Routine (IIVCCW) -- Flowcharts 15A-15F

71 CCW Adjustment Routine (IIVADJ) -- Flowcharts 16A-163

72 Supervisor Call Routine (IIVSVC) -- Flowchart 17A

73 Start I/0, End-of-Extent, Charnel End, and Abnormal End

Appendage (IGG019SA) -- Flowcharts 18A-18B

74 Abnormal End/Channel End Appendage (IGG019S1) -- Flowchart 19A

T4 Asynchronous Interrupt Exit Routine (IIVRTE) -- Flowcharts 20A-20G

78 Promrt Reply Processor Routine (IIVPRP) -- Flowcharts 21A-21E

79 SVC Monitor Routine (IIVGR2) -- Flowcharts 22A-22D

80 Device Sharing Simulation Routine (IIVDVS) ~-- Flowcharts 23A-23J

88 ISAM Mapping Routine (IIVIS) -- Flowcharts 24A-24L

96 VTOC I/0 Simulation Routine (TIVVIO) ~- Flowcharts 25A-25E

101 Exit-ABEND Error Routine (ITIVABN) -- Flowcharts 26A-26B
101 Message Writer Routine (IIVMSG) -- Flowchart 27A

104 Service Aids Initialization Routine (IIVRAS) ~- Flowcharts 28A-28B
105 Cormand Processor Routine (IIVRCP) -- Flowcharts 29A-29P

105 Snap Dump and Trace Formatting Routine (IIVSNP) -- Flowcharts 30A-30K
107 Program Check Intercept Routine (IIVPCI) -- Flowcharts 31A-31C
107 Supervisor Call Intercept Routine (ITVSCI) ~-- Flowchart 32A
108 Asynchronous Intercept Routine (IIVACI) -- Flowcharts 33A-33H

108 Service Aids Adjust CCW Data Address Routine (IIVRCW) -- Flowcharts 34A-34H
111 PROGRAM ORGANIZATION V)

112 Functional Organization of Emulator Interruption Handling
112 Flowcharts

116 Initialization

161 Synchronous Interruptions
235 Asynchronous Interrurtions
252 Direct-Access Volume Sharing
290 Abnormal End Conditions

295 Message Writer

298 Emulator Service Aids

357 DIRECTORIES

358 Emulator Mcdule Directory
360 Data Area Directory

363 Emulator Macros

365 Symbol Table

381 Field Name Table

391 DATA AREAS
392 Data Area Relationships
396 Data Area Layouts

397 Adjust CCW List

400 Beginning and End Block (BEBLK)
402 Charnel Address Word

402 Charnel Command Word

404 Channel Status Word

405 Command Control Block

406 Communications Table

viii

409
410
414
417
418
420
421
421
424
425
434
435
436
437
443
uusg
450
452
452
454
457
458
458
460
460
461
463
465
466
467
468
469

471
472
473
473
478
488
439
489
500
506
509
517
518

521
522
522
530
533

541

Page of GY26-3741
Revised July 25, 1972

By TNL GN26-8021

COMTAB Extension

DASD
Data
Data
Data
Data
Data
Data

Label (DLBL)

Control Block

Event Control Block - BISAM

Extent Blcck

Set Control Block -- Identifier (Format 1)
Set Control Block -- Extension (Format 3)

Set Control Block -- VTOC (Format 4)

Diagnostic Block (DIAG Block)

DTFIS ATLD-RETRVE-ALDRTR and DTFIS Load Tables
Event Control Blcck

ECB Pointer Table

File

ID Block

ITVCON
TIVRCN
Input/Output Blcck

ISAM

Block (ISBLK)

ISK/SSK Table

Job File Control Block
Local Execution List
Logical Tnit Block

Open

Table

Physical Unit Block

Post

ECB List

Program Information Block
Program Status Word
Staged I/0 Constants Block

Tape
Tape
Task
Unit

Error Rlock

Error ty Volume
Input/Output Table
Ccntrol RBlock

Volume Label

DIAGNOSTIC AICS

Hints for Debuaging

Emulator Dependencies on DOS, 0S, and Hardware
Dependence on DOS

Dependence on 0S

Dependence on Hardware

Emulator Service Aids

Use of the Emulator Service Aids

The Debug Statement

Examples of Service Aids Usage to Diagnose Problems
Interpreting Dumgs

Emulator General Register Assignments
Message-to-Module Relationship

APPEN

DIX

DOS compatitility Feature
Execute Local Instruction
Adjust CCW String Instruction

GLOS S

INDEX

ARY

LIST OF FIGURES

2 Figure 1. The FEmulator's Main-Storage Environment
5 Figure 2. Methods of Accessing CASD Data Sets
9 Figure 3. Two Programs Accessing a Data Set Refore and After
Conversion
11 Figure 4. Overlay Structure and Load Modules of IIVEMU
12 Figure 5. Storage Estimates for ISAM
13 Figure 6. Storage Estimates for QSaM
17 Figure 7. IPL of DOS Supervisor During Initialization
22 Figure 8. System/370 Machine Interruption Logic
27 Figure 9. Staged I/O0 Control Program Flow
31 Figure 10. Example of Cpen/Close Processing for a Sequential
Disk Output File
33 Figure 11. Data Areas Affected by Open Processing (IIVDVS)
38 Figure 12. Data Areas Affected by Orpen Processing (IIVIS)
39 Figure 13. Example of Processing OPEN and I/0 Macros for an
0S Indexed Sequential Data Set
45 Figure 14. DOS Storage in Emulator Region
48 Figure 15. Relationship of CCMTAB to COMTAB Extension
50 Figure 16. OS Region at Beginning of DOS IPL
52 Figure 17. Oren Subrocutine Gross Flow
81 Figure 18. General Flow cf ITIVDVS
89 Figure 19. Sources of Input to DCB Fields at 0OS Indexed
Sequential Data Set Creation
90 Figure 20. Source of Input to Supported DTFIS Fields at Open
of ADD, RETRVE, and AIDRTR
91 Figure 21. Mapping of DCS SETL to OS SETL
95 Figure 22. Mapping of DCB Fields to DTIFIS Fields After
Processing of Each I/O Macro
113 Figure 23. Functional Organization of Emulator Interruption
Handling
114 Figure 24. Emulator Module Relationshig
254 Figure 25. DCS SVC Tables
284 Figure 26, Ccmmand and Type Code Tables for the VTOC I/0
Simulation Routine
305 Fiqgure 27. Ccmmand Processor Routine Dictionaries
358 Figure 28. Enrmulator Mcdule Directory
360 Figure 29. Data Area Directory
363 Figure 30. Emulator Macros
366 Figure 31. Symkol Table
381 Figure 32. Field Name Table
393 Figure 33. Data Area Relationships (When Resources are Dedicated
or Staged)
394 FTigure 34. Data Area Relationships (When Direct-Access Data Sets/Files,
Cther Than 0S Indexed Sequential are Shared)
395 Figure 35. Data Area Relationships (When 0S Indexed Sequential,
Cirect-Access Data Sets are Shared)
398 Figure 36. Adjust CCW List
400 Figure 37. Beginning and End Block (BEBLK)
402 Figure 38. Channel Address Word
403 Figure 39. Channel Command Word
404 Figure 40. Charnnel Status Word
406 Figure 41. Command Ccntrol Block Field Used by the Emulator
407 Figure 42. Ccmmunications Table
410 Figure 43. COMTARBR Extension
411 Pigure 44. DASD Label
414 Figure U45. Data Ccntrxol Block Fields Used by the Emulator

417 migure 46. Data Event Control Block -- BISAM Fields Used by the
Emrulator

419 Figure 47. Data Extent Block (Ordinary) Fields Used by the
Erulator

420 Figure 48. Data Set Control Block -- Identifier (Format 1) ¥ields
Used ty the Emulator

xi

422

425
426
u28
434
435
436
438

439
buy

bys
u4s
450
453
usy
457
458
459
ueo
461
461
uey
466
ues
467
u68
469
474
475
475

476
479
484
491
496
497
502
509
517
518
523
530

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figqure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

49.

50.
51.
52.
53.
54.
55.
56.

57.
58.

59.
60.
61.
62.
63.
6u4.
65.
€6.
67.
68.
69.
70.
71.
72.
73.
4.
75.
76.
77.
78.

79.
80.
81.
82.
83.
84,
85.
86.
87.
88.
89.
90.

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

Data Set Control Block -- VTOC (Format 4) Fields Used
by the Emulator

Diagnostic Block

DIFIS ACLD-RETRVE-ADDRTR Takle

DIFIS Load Table

Event Control Block

ECB Pointer Table

File ID Block

Relationship of IIVCON to Other Major Emulator Data
Areas

Emulator Common Data Area

Relationship of IIVRCN to Other Service Aids Modules,
Cther Emulator Modules, IIVCON, and User Routines
Emulator Service Aids Common Data Area

Input/Output Block Fields Used by the Emulator
ISAM Block (ISBLK)

Job File Control Block Fields Used by the Emulator
Lccal Execution List Fields Used by the Emulator
Logical Unit Block Table

Orpen Table Fields Used by the Emulator

OS PUB and DOS PUB Tables

First Part of Program Information Rlock Table
Second Part of Program Information Block Table
Program Status Word

Staged I/0 Constants Block (STGCON)

Tape Error Block

Tape Error by Vclume Fields Used by the Emulator

Task Input/Output Table Fields Used by the Emulator
Unit Control Block Fields Used by the Emulator
Voclume Label Fields Used by the Emulator

DOS Low Storage

DOS Communications Region Fields Used by the Emulator
LOS Background Communications Region Extension Fields
Used by the Emulator

DOS Control RBRlocks

CS Macros Used by the Emulator

0S Ccntrol Blocks

How to Code a Debug Statement

How to Locate the Trace Table

Internal Trace Table Format

Ccntrol Flcw of the Emulator Service Aids

Service Aids Snap Dump

General Register Assignments

Message-to-Module Relationship

Local Execution List

ACCW List

xii

FLOWCHARTS

Initialization

118
121
122
123
124
125
126
127
128
129
130
131
132
135
136
137
138
139
140
142
143
144
145
148
149
150
151

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
*lowchart

153
154
155
156
157
158

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

160 Flowchart

1A.
2A.
2B.
2C.
2D.
2E.
2F.
2G.
2H.
2J.
2K.
2L.
2M.
3a.
3B.
3C.
3D.
3E.
3F.
ua.
4B.
uc.
4Dp.
5A.
SB.
5C.
5D.
6A.
6R.
6C.
6D.
6E.
6F.
TA.

DOS Emulator Entry Routine (IIVENT)

Synchronous Interruptions

165
166
167

Flowchart
Flowchart
Flowchart

168
169
170
171
172
173
174
175
176
177
178
179
180
181

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

8A.
en.
8C.

8D.
8E.
8F.
8G.
8H.
8.
8K.
8L.
8M.
8N.
8p.
80.
AR.
8s.

Initialization First-Load Routine (IIVIN™ Part 1 of 12)
Initialization First-Load Routine (IIVINT Part 2 of 12)
Initialization First-Load Routine (IIVINT Part 3 of 12)
Initialization First-Load Routine (IIVINT Part 4 of 12)
Initialization First-Load Routine (IIVINT Part 5 of 12)
Initialization First-Load Routine (IIVINT Part 6 of 12)
Initialization First-Load Routine (IIVINT Part 7 of 12)
Initialization First-Load Routine (IIVINT Part 8 of 12)
Initialization First-Load Routine (IIVINT Part 9 of 12)
SCAN and YESORNO Subroutines (TIVINT Part 10 of 12)
ASKOPR and CHKCUU Subroutines (IIVIN™ Part 11 of 12)
DDSCAN Subroutine (TIVINT Part 12 of 12)

Initialization Second-Load Routine (IIVIN2 Part 1 of 6)
Initialization Second-Load Routine (IIVIN2 Part 2 of 6)
Initialization Second-Load Routine (IIVIN2 Part 3 of 6)
Initialization Second-Load Routine (IIVIN2 Part 4 of 6)
Initialization Second-Load Routine (YIVIN2 Part 5 of 6)
Initialization Second~Load Routine (IIVIN2 Part 6 of 6)
I®L Add Routine (IIVADD Part 1 of #)

IPL Add Routine (TIVADD Part 2 of 4)

IPL Add Routine (IIVADD Part 3 of 4)

IPL AAdd Routine {(IIVADD Part 4 of 4)

Open Routine (IIVOPN Part 1 of #)

Open Routine (IIVCPN Part 2 of 4)

Open Routine (IIVOPN Part 3 of 4)

OPEN60 Routine (TIVOPN Part 4 of 4)

O0S PUB Table Build Routine (IIVPUB Part 1 of 6)

0S PUB Table Build Routine (IIVPYB Part 2 of 6)

O0S PUB Table Build Routine (TIVPUB Part 3 of 6)

OS PUB Table Build Routine (IIVPUE Part 4 of 6)

OS PUB Table Build Routine (IIVPUB Part S5 of 6)

O3 PUR Table Build Routine (TIVPUR Part 6 of 6)
GETMAIN/FREEMAIN Routine (IIVGET)

Program Check Executive Routine (IIVPCE Part 1 of 19)
Program Check Executive Routine (ITIVPCE Part 2 of 19)

SSK, €SM, and
Part 3 of 19)

LPSW Simulation Subroutine (ITIVPCE Part 4 of 19)

mCH
TTIO
TIO
HIOo
STO
STO
STO
SIO
STO

SEEKDVS Subroutine

Simulation Subroutine (IIVPCE Part 5
Simulation Subroutine (IIVPCE Part 6
Simulation Subroutine (IIVPCE Part 7
Simulation Subroutine (IIVPCE Part 8
Subroutine (IIVPCE Part 9 of 19)
and SEEKTEST Subroutines (ITVPCE Part 10 of 19)
Subroutine (TIVPCE Part 11 of 19)
Subroutine (IIVPCE Part 12 of 19)
Subroutine (IIVPCE Part 13 of 19)
{IIVPCE Part 14 of 19)

of 19)
of 19)
of 19)
of 19)

FINDCHAN Subroutine (IIVPCE Part 15 of 19)
FINDATDR Subroutine (TIVPCE Part 16 of 19)
FINDKEY and Store CPU ID Subroutines (IIVPCE

Part 17 of 19)

xiii

ISX Simulation Subroutines (IIVPCE

182
183

186
187
188
189
192
193
194
195
196
199
200
201
202
203
204
205
206
207
208
209
210
211
213
215
217
219
220
221
222
223
224
226
227
229
231

232

234

Flowchart
Flowchart

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

Flowchart

Flowchart

8.

9A.

9B.

9C.

aD.
10A.
10B.
10cC.
10D.
10E.
11A.
11B.
11cC.
11n.
11E.
11F.
11aG.
11H.
117.
11K.
11L.
11M.
11N.
12A.
13A.
14A.
15A.
15B.
15C.
15D.
15E.
1SF.
16A.
16B.
17a.
18A.

18B.

19a.

Load/Store Control Pegister Subroutine (IIVPCE
Part 18 of 19)
Set Clock, Store Clock Subroutines (IIVPCE
Part 19 of 19)
Check I/0 Routine (TTVCHK Part 1
Check I/0 PRoutine (IIVCHK Part 2
Check I/0 Routine {(ITIVCHK Part 3
Check I/0 Routine (ITVCHK Part U4
Interpretive SYSLOG
Interpretive SYSLOG
IIVLOGR1 Subroutine
LOGOUT1 and LOGOUT2
TIVLOGR2 Subroutine

of &)

of u)

of W)

of)

Routine (IIVLOG Part 1 of %)
Routine (ITVLOG Part 2 of 5)
(TIVLOG Part 3 of 5)

Subroutines (IIVLOG Part 4 of 5)
(IIVIOG Part 5 of 5)

staged I/0 Routine (ITVSTG Part 1 of 13)
Staged I/0 Routine (IIVSTG Part 2 of 13)
Staged I/0 Routine (IIVSTG Part 3 of 13)
Staged I/0 Routine (IIVSTG Part 4 of 13)
Staged I/0O Routine (IIVSTG Part 5 of 13)
Sstaged I/0 Routine (IIVSTG Part 6 of 13)
Staged I/0 Routine (TIIVSTG Part 7 of 13)
Staged I/0 Routine (TIVSTG Part 8 of 13)
Staged I/0 Routine (IIVSTG Part 9 of 13)
Staged I/0 Routine (IIVSTG Part 10 of 13)

Read FCE Subroutine (IIVSTG Part 11 of 13)
Load FCB Subroutine (IIVSTG Part 12 of 13)

EODAD and SYNAD Subroutines (IIVSTG Part 13 of 13)
CAW Verification Routine (IIVAWV)

CCW Verification Routine (T IVCWV)

Printer Overflow Routine (IIVPOV)

Adjust CCW Data Address Routine (IIVCCW Part 1 of 6)
Adjust CCW Data Address Routine (IIVCCW Part 2 of 6)
Adjust CCW Data Address Routine (TIVCCW Part 3 of 6)
Adjust CCW Data Address Routine (IIVCCW Part U4 of 6)
Adjust CCW Data Address Routine (IIVCCW Part 5 of 6)
Combine and COMBO4A Subroutines (IIVCCW Part 6 of 6)

CCW Adjustment Routine (IIVADJ Part 1 of 2)
CCW Adjustment Routine (IIVADJ Part 2 of 2)
Supervisor Call Routine (ITVSVC)

Start 1I/0, End-of-Extent, Channel End,
End Appendage (IGG019SA Part 1 of 2)
Start I/0, End-of-Extent, Channel End,
End App=sndage (IGG019SA Part 2 of 2)
Abnormal End/Channel End Appendage (IGG019S1)

and Abnormal

and Abnormal

Asynchronous Interruptions

238

239
240
241

242
243

244
247
248
249
250
251

Flowchart

Flowchart
Flowchart
Flowchart

Flowchart
Flowchart

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

20A.

20B.
20cC.
20D.

20E.
207,

20G.
21A.
21B.
21C.
21D.
21E.

Asynchronous Interrupt and STAE Exit Routines
(ITVRTE Part 1 of 7)
Route Routine (IIVRT™E Part 2 of 7)
Select and STAE Retry Routines (IIVRTE Part 3 of 7)
Timer Interrupt Check and Timer Interrupt Subroutines
(IIVRTE Part 4 of 7)
Asvnchronous Interrupt Check Subroutine (IIVRTE
Part 5 of 7)
Asynchronous Interrupt Check Subroutine (ITVRTE
Part 6 of 7)
End-of-Job Routine (ITIVRTE Part 7 of 7)
Prompt Reply Processor Routine (IIVPRP
Prompt Reply Processor Routine (IIVPRP
Prompt Reply Processor Routine (IIVPRP Part 3 of 5)
Prompt Reply Processor Routine (IIVPRP Part 4 of 5)
PRPMAPA and PRPMAP1 Subroutines (IIVPRP Part 5 of 5)

Part 1
Part 2

of %)
of 5)

Xiv

Direct-Access Volume Sharing

256 Flowchart 22A. SVC Monitor Routine (IIVGR2 Part 1 of #)
257 Flowchart 22B. SVC Monitor Routine (JIVGR2 Part 2 of 4)
258 Flowchart 22C. SVYC Monitor Routine (IIVGR2 Part 3 of 4)
259 Flowchart 22D. SVC Monitor Routine (TIVGR2 Part U4 of 4)

262 Flowchart 23A. Device Sharing Simulation Routine (IIVDVS Part 1 of 8)
263 Flowchart 23B. Device Sharing Simulation Routine (IIVDVS Part 2 of 8)
264 Flowchart 23C. Device Sharing Simulation Routine (TIVDVS Part 3 of 8)
265 Flowchart 23D. Device Sharing Simulation Routine (IIVDVS Part 4 of 8)
266 Flowchart 23E. Device Sharing Simulation Routine (IIVDVS Part 5 of 8)
267 Flowchart 23F. Device Sharing Simulation Routine (IIVDVS Part 6 of 8)
268 Tlowchart 23G. Device Sharing Simulation Routine (IIVDVS Part 7 of 8)
269 Flowchart 23Y. Device Sharing Simulation Routine (IIVDVS Part 8 of 8)

272 Flowchart 28A. Main Task Control Executive Routine (ITVIS Part 1 of 11)
273 Flowchart 24B. Open Mapping Routine (IIVIS Part 2 of 11)
274 Flowchart 24C. Close Mapping Routine {(IIVIS Part 3 of 11)
275 Flowchart 24D. SETL Mapping Routine (IIVIS Part 4 of 11)
276 Flowchart 24E. Subtask Control Executive Routine (IIVIS Part S of 11)
277 Flowchart 2UF. Get Mapping Routine (IIVIS Part 6 of 11)
278 Flowchart 24G. Put and ESETL Mapping Routine (TIVIS Part 7 of 11)
279 Flowchart 249, Read Key and Write Key Mapping Routines (IIVTS
Part 8 of 11)
280 Flowchart 24J. Write NEWKEY Mappring Routine (IIVIS Part 9 of 11)
281 Flowchart 24K. WAITF Mapping Routine (IIVIS Part 10 of 11)
282 Flowchart 24L. EODAD, SYNAD, and Status Mapping Routines (IIVIS
Part 11 of 11)

285 Flowchart 25A. VTOC I/0 Simulation Routine (IIVVIO Part 1 of 5)
286 Flowchart 25B. VTOC T/0 Simulation Routine (TIIVVIO Part 2 of ¥5)
287 Flowchart 25C. VTOC I/0 Simulation Routine (IIVVIO Part 3 of 5)
288 Flowchart 25D. VTOC I/0 Simulation Routine (IIVVIO Part 4 of 5)
289 Flowchart 25E. VTOC I/O Simulation Routine (IIVVIO Part 5 of %)

Abnormal End Conditions

293 Flowchart 26A. Exit-ABEND Error Routine (IIVABN Part 1 of 2)
294 Flowchart 26B. Exit-ABEND Error Routine (TIVABN Part 2 of 2)

Message Writer

297 Flowchart 27A. Messadge Writer Routine (IIVMSG)

Emulator Service Aids

301 Flowchart 28A. Service Aids Initialization Routine (IIVRAS Part 1 of 2)

302 Flowchart 28B. TIVRASPC, IIVRASVC, and IIVRASYN Subroutines
(ITVRAS Part 2 of 2)

307 *lowchart 29aA. Command Processor Routine (IIVRCP Part 1 of 14)

308 Flowchart 29B. Command Processor Routine (IIVRCP Part 2 of 14)

309 Flowchart 29C. GETWORD Subroutine (IIVRCP Part 3 of 14)

310 Flowchart 29D. CVT and RCPPRINT Subroutines (ITVRCP Part 4 of 14)

311 Flowchart 29E. Trace Subroutines (IIVRCP Part 5 of 14)

312 Flowchart 29F. Trace Subroutines (IIVRCP Part 6 of 14)

313 Flowchart 29G. Snap Subroutines (ITVRCP Part 7 of 14)

314 Flowchart 29H. Snap Subroutines (IIVRCP Part 8 of 14)

315 Flowchart 29J. Snap Subroutines (IIVRCP Part 9 of 14)

316 Flowchart 29K. Storage Subroutines (JIIVRCP Part 10 of 14)

317 Flowchart 29L. Diagnostic Subroutines (IIVRCP Part 11 of 14)

318 Flowchart 29M. Exit Subroutines (IIVRCP Part 12 of 14)

Xv

319
320
322

323
324
325

326
327
328
329
330
331
333
334
335
337
339
340
341
342
343
364
345
346
348

349
350
351
352
353
354

355

Flowchart
Flowchart
Flowchart

Flowchart
Flowchart
Flowchart

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

Flowchart
Flowchart
Flowchart
Flowchart
Flowchart
Flowchart

Flowchart

29N.
29P.
30A.

30B.
30C.
30D.

30E.
30F.
30G.
304.
30J.
30K.
31A.
31B.
31C.
32A.
33A.
33B.
33cC.
33D.
33E.
33F.
33G.
33H.
34A.

34B.
34cC.
34D.
34E.
34F.
34G.

3u4H.

End Subroutine (TIVRCP Part 13
End Subroutine (ITIVRCP Part 14
Snap Dump and Trace Formatting

Part 1 of 10)

Snap Dump and Trace Formatting

Part 2 of 10)

Snap Dump and Trace Formatting

Part 3 of 10)

Snap Dump and Trace Formatting

Part 4 of 10)
Trace

Table Subroutine (ITVSNP
Trace Table Subroutine (ITVSNP

of 14)
of 14)
Routine
Routine
Routine

Routine

Part 5 of 10)
Part 6 of 10)

(ITVSNP
(ITTVSMP
(IIVSNP

(TIVSNP

J

Trace Takle and EBCDIC Conversion Subroutines (IIVSNP Part 7 of 10)
Write Subroutines (ITVSNP Part 8 of 10)

Write

Snap Subroutine (IIVSNP Part 10 of 10)

Program Check Intercept Routine (IIVPCI Part 1 of 3)
Program Check Intercept Routine (IIVPCI Part 2 of 3)
Program Check Intercept Routine (IIVPCI Part 3 of 3)

Supervisor Call Intercept Routine (TIIVSCI)

Asynchronous
Asynchronous
Asynchronous
Asynchronous
Asvnchronous
Asynchronous
Asynchronous
Asvnchronous Intercept
Service Aids Adjust CCW
(ITVRCW Part 1 of 8)
Service Aids Adjust CCW
(IIVRCW Part 2 of 8)
Service Aids Adjust CCW
(ITVRCW Part 3 of 8)
Service Aids Adjust CCW
(TIVRCW Part 4 of 8)
Service Aids Adjust CCW
(IIVRCW Part 5 of 8)
Service Aids Adjust CCW
(ITVRCW Part 6 of 8)
Service Aids Adjust CCW
(TIVRCW Part 7 of 8)
Service Aids Adjust CCW
(IIVRCW Part 8 of 8)

Intercept
Intercept
Intercept
Intercept
Intercept
Intercept
Intercept

xvi

Routine
Routine
Routine
Routine
Routine
Routine
Routine
Routine

Data

Data

Data

Data

Data

Data

Data

Data

Address
Address
Address
Address
Address
Address
address

Address

(IIVACI
{(ITVACI Part
(TIVACI Part
(ITIVACI Part
(ITIVACI Part
(ITVACT
(IIVACI Part
(IIVACI

Part

Part

Part
Routine

Routine
Routine
Routine
Routine
Routine
Routine

Routine

OdONEWN =

of
of
of
of
of
of
of
of

and Data Formatting Subroutines (IIVSNP Part 9 of 10)

SUMMARY OF CHANGES FOR VERSION 2, LEVEL 1

New

Programming Support

New

Release 27 of DOS is supported.

The DOS residence file (SYSRES) can be shared (two or mors Emulators may
share the residence file).

The DOS residence volume can be shared (0OS data sets may reside on the
DOS residence volume).

The Emulator service aids provide a new debug command (DTAG) that causes

a diagnostic message to be printed when the DOS program restriction
(modifying CCWs after an I/0 request and before I/0 completing) is violated.
The service aids also provide a new TRACE command parameter (NOWRAP) that
causes the trace table to be dumped each time it is full.

Device Support

The

Emulator now supports the following TBM devices:
the 3420 Magnetic Tape unit

the 3230 Disk Storage

the 3505 Card Reader

the 3525 Card Punch

xvii

SUMMARY OF CHANGES FOR VERSION 2, LEVEL 0

Direct-Access Volume Sharing

With the removal of the Version 1 requirement for private volumes, DOS and
0S data sets can now reside on the same DASD volume. Use of this function
is optional for one or more volumes in an Emulator job step. The DOS systems
residence volume cannot be shared.

ISAM Compatibility

Unmodified DOS programs running under the Emulator can access 0S format indexed
sequential data sets. By changing their DOS indexed sequential files to 0S
format, Emulator users can process them using either their old DOS programs

or newly-written OS programs.

BTAM Support -

The Tmulator supports DOS BTAM and permits the use of the HIO instruction for
BTAM only.

Improved Initialization

Optionally available are an automatic DOS IPL and abbreviated emulator prompt.
Use of these can speed up and simplify the operator action required when an
emulation partition is initiated.

Improved Printer Sunport

Tf the format of printed output is such that the standard forms tape does not
apply, the operator may change forma*t. A new subparameter is provided in the
DD statement to call a carriage tape image from the OS image libraryv. This
image specifies the phyvsical carriage tave to be mounted on an IBM 1403 Printer.

Service pids

The Emulator opticnally provides routines for use as an aid to debugging.

|

xviii

ABBREVIATIONS USED IN THIS BOCK

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

Note that field names of data areas created, modified cr interrogated by the
Emulator ("Field Name Takle") and symbolic routine names ("Emulator Module

Directory") appear in the "Directories" section.

abn - abnormal

ACCW list - adjust CCW list

ADCONS - address constants

ADDR - address

AJF - adjustment factor

ASYN - asvnchronous interruption address
async. - asynchronous

ASYNEXIT - user asynchroncus routine name
ATTN - attention

BDDD - base/displacement

BEBLK - begirning and end block

BG - background (DOS partition)

BISAM - basic indexed sequential access method
BLP - bypass lakel processing

BOF - beginning of file

BSAM - basic sequential access method

BTAM - basic telecommunications access method
BTR - DOS B-transient phase

c - character

CAW - charnel address word
cc - condition code

CCB - command control block
cchh - cylinder/head

ce - channel end

CCW - channel command word (also, in listings, CCW address)

COMP - compare

COMREG - communications region (DOS)
COMTAB - communications table

cond. - conditions

CPU - central processing unit

CRnn - register contents compare
CSECT - control section

CSW - channel status word

CTEXT - COMTAB extension

cuu - channel and unit

DA - direct access

DADSM - direct-access device space management
LASD - direct-access storage device

DCB - data control block

DD - data definition

DEB - data extent block

LCECB - data event control blcck

DIAG block - diagnostic block

DLBL - DASD label

DOS - disk operating system

DOSCOM - DOS communication region (see also COMREG)

DOSLOG - DOS system log
DRILIST - local execution list
DSCB - data set control block
DSECT - dummy section

DSN - data set name

DTF - define the file

DTFDA - DTF direct access

DTFIS - DTF ISAM
DTFPH - DTF physical
DTFSD - DTF sequential disk

xix

EBCDIC - ex*tended binary coded decimal interchange code

ECB -

event ccntrol block

EMBLKS - Emulator and I/0 control blocks

EMU -

Emulator region

EMUCONS - Emulator constants area

EOF -
EOV -
EOX -
ERP -

end of file

end of volume

end of extent

error recovery procedure

EXCP - execute channel grcgram

EXT -

external

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

F - format (used in context with DSCB); foreground (used in context with
DOS partitions; also PIB)

FCB - forms ccntrxcl kuffer
FDAD - full direct-access address
FICL - first in class

FID - file ID

FIDBLX - file ID block

hex - hexadecimal

HIO - halt I/0

ID - identification

Init - initialization

Int. - interrupt

TI/0 - input/output

JOB - I/0 block

TOCS - I/0 centrol system

IPL -

initial program loader

IPSW - PSW at interrupt
IS - indexed sequential
ISsAM - indexed sequential access method

ISBLK
ISFMS
ISK -

JCL -

- ISAM block
- indexed sequential file management system
insert storage key

job control language

JFCB - job file ccntrcl block

KEY -

storage protection key

LCTL - load contrcl
ILDMD - DOS load module
EX list - local execution list

LIOCS

LMAD -
LOGIOB - constants and pointers associated with DOS system log

- logical I/O control system
limit address

LPSW - load PSW

LTK -
LUB -

MFT -
MOD -
MVT -

logical transient key
logical unit block

multiprogramming with a fixed number of tasks
module name
multiprogramnming with a variable number of tasks

n -~ decimal nurber

N/A -

not applicable

NICL - number in class

NODOS
NOP -

- DOS storage area omitted
no operation

opcode - operation code
OP/0OPCD - CCW operation code

OPR -

operation pcinter

0S - operating system

XX

9

C

p - page number

PC - program check (also, in listings, program interruption address)
PCEXIT - user PC exit routine name

PCIL - private core image library

PIB - program information block

PIK - program interrupt key

PRPGM - problem program

PSW - program status word

PUB - physical unit block

O0ISAM - queued indexed sequential access method
QSAM - queued sequential access method

R - register

RC - return code

RCCWLIST - adjust CCW data address list
Rnn - register number

RPSW - resume PSW

RTN - routine

SCK - set clock

SD - sequential disk

SEEK - seek address for DASD

shar. - sharing

SIDE - search ID equal

SIO - start I/0

SKE - search key equal

SLI - suprpression of possible incorrect length indication

SNS - IOB sense bytes

SSK - set storage key

SSM - set system mask

STCTL - store control

STGCON - constants and pointers associated with staged devices

STIDC - store channel ID

STIDP - store CPU ID

SVC - supervisor call (also, in listings, SVC interruption address)

SVCEXIT - user SVC exit rcutire name

sync. - synchronous

SYSEMcuu - an Emulator DDname (SYSEM) associated with a
DOS channel and unit number (cuu)

SYSLLOG - DOS systenr log

SYSREC - system recorder file

t - time (hour, minute, second)
TBL - table

TCB - task ccntrol block

TCH - test channel

TCU - terminal control unit
TEB - tape error tlock

TEBV - tape error Lty volume
TIC - transfer in channel (also, in listings, TIC address)
mTIO - test I/O

TIOT - task input/output table
TRKEBAL - track kalance

UCB - unit ccntrol klock
UCS - universal character set

VOL - volume

VS - virtual storage

VTOC - volume table of contents
WLR - wrong length record

X - hexadecimal

XX1i

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

INTRODUCTION

The DOS Emulator program, IIVEMU, executes as a problem program under 0OS with
an MFT, MVT, or VS1 contrxcl program. The DOS Emulator program (hereafter
called the Erulator) works in conjunction with the DOS Compatibility Feature.
The functional result is that DOS and DOS problem programs are able to execute
successfully under control of the Operating System.

DOS EMULATION

DOS emulation is a combination of programring techniques and special machine
features that permit DOS tc operate under 0S. The Emulator and, subsequently,
DOS are loaded into an OS partiticn or region. When the Emulator or OS programs
are in control of the CPU, the system is said to be in norral mode, that is,
operating with true main-storage addresses.

When DOS programs are executing, the system is in local execution mode, that
is, by means of a microrrcgram and/or hardware, DOS or lccal addresses are
automatically adjusted to program addresses. When DOS is given control by

the Emulator, the DOS Compatikility Feature effects the changeover to local
execution mode. It does this by adding an adjustment factor (beginning address
of DOS) to all addresses contained in each instruction as that instruction

is processed (excert for instructions that address channels and units). DOS
and its problem programs execute in this mode unaided by the Emulator until

a hardware interrurtion occurs.

Since DOS operates in local execution mode, supervisor calls and program
interruptions must be intercepted by the DOS Compatibility Feature (a detailed
discussion of this feature is in the Appendix) in order to bypass the 0S_
interruption-handling mechanism.

In addition to interruption handling, DOS emulation performs most of the
functions normally performed by hardware. 1I/0 operations car.not ke performed
by DOS emulation and are accomplished by use of 0S macros and data management
services. Asynchronous interruptions (I/0, external, and machine check) are
handled by O0S in the usual manner except that control is returned to the
Emulator before passing tack to DOS. (See "Interrurtion Action “hen CPU is
in Local Execution Mode" fcr more details.)

ENVIRONMENTAL CHARACTERISTICS

The Emulator is loaded into an OS partition or region (hereafter called the
Emulator region). One of the Emulator's initializaticn routines (IIVGET)
issues the GETMAIN macro instruction to oktain space within its region for
DOS and for Emulator and OS control blocks to be used in I/0 operations.

DOS is subsequently loaded into the Emulator region, beginning at a 4K boundarv.
The Emulator and OS control blocks occupy available space between the Emulator
and DOS and/cr between DOS and the end of the region. Figure 1 shows the
Emulator's main-storage environment after DOS has keen loaded.

Introduction 1

At a minimum, the Disk Operating System consists of a DOS supervisor and a
background partition (BG). The two optional foreground partitions (F1 and
F2) are shown in Figure 1.

0s
Location
0 |'<7 Emulator Region ——.-I
- T T T
OS and 1 1 | OS and
Emulator 1 | | Emulator
1/0 Control DOS : 1 | 1/0 Control
Emulator Blocks and s sor | BG | F2 | F1 Blocks and
Emulator upervisor | ! Emulator
Load | : : Load
Modules : | H Modules
1]
H— DOS Area ——3pm

Figure 1. The Emulator's Main-Storage ®nvironment

RESOURCE REQUIREMENTS

"Resource" is defined here as any input/output device, volume, or data set

required by the Emulator. A resource may be dedicated, staged, or shared.

If a resource is dedicated, it is reserved for the duration of an Emulator

job step. If a resource is staged, input/output is placed in the 0OS input

or output stream. If it is shared, OS job steps executing concurrently may
access it.

There are three tvpes of input/output devices: wunit record, tape, and direct
access. The DD statements for a DOS emulation run can specify whether a unit-
record device is to be dedicated or whether its input/output is to be staged.
A tape device by its very nature must be dedicated to the processing job.

A direct-access device cannot be dedicated as such to an Emulator job. It

is evident, however, that if a private volume is mounted on a direct-access
device, the device is, in effect, dedicated to that volume. Direct-access
volumes and data sets may be shared with other processing jobs, or data sets
may be dedicated to an Emulator jobstep.

In terms of access method techniques and data set formats, private volumes

must be requested in DD statements for a DOS emulation run involving DOS indexed
sequential files since they have a different format from OS indexed sequential
data sets and are unrecognizable to the 0S indexed sequential access method.

OS ISAM volumes can be shared with other OS regions, but O0S indexed sequential
data sets should be shared for read only type operations.

0S sequential DASD and direct-access data sets and DOS sequential DASD and
direct-access files are compatible, so they may be shared by more than one
0S region for read only type operations.

To sum up, the DD statements for a DOS emulation run can specify:

° A group of 0S devices to be dedicated for the duration of an Emulator
jobstep,

o Volumes to be dedicated for the duration of an Emulator jobstep,

. Volumes that can be accessed by concurrent OS jobsteps,

2 DOS Emulator Logic

o Files (data sets) to be dedicated for the duration of an Emulator jobstep,
. Files (data sets) that can be accessed by concurrent OS jobsteps, or

. DOS I/O requests for DOS unit record devices to be staged (spooled) into
the 0S I/0 stream.

Dedicated Resources

Unit-record and tape devices. Where a dedicated device is of the same type
as that used by DOS in its stand-alone environment, COMTAB (communications
table) maps (assigns an 0OS device for each DOS device specified in a DD
statement) the DOS device address to a corresponding, but not necessarily the
same, OS device address. 1In most instances, identical device types are
required, but some exceptions are:

Unit Specified on DD Statement Unit Allowed in PUB Table
3211 14030
3420 2400
3505 2540R
3525 2540P

In the example
//SYSEM180 DD UNIT=2400, data set parameters

COMTAB associates the DOS device address 180 with the address of the device
that was allocated to the Emulator job. If the absolute unit address, such

as UNIT=282 were coded, OS would assign the device at that address, if it were
available.

Direct-access volumes. OS can be prevented from allocating temporary data

sets on a DOS Emulator volume if the volume is defined as private in the PRESRES
member of the library SYS1.PARMLIB, or the volume is offline until OS allocates
it for the Emulator, and a DD statement in the following format is specified:

//SYSEM190 DD VOL= (PRIVATE,SER=111111) ,UNTT=2311,DISP= {OLD}
{SHR}

where 111111 is the volume serial number of a private pack mounted on an IBM
2311 Disk Storage Drive. Because of the absence of the DSN parameter, this
statement allows DOS access to any valid address on the entire volume by means
of the Emulator end-of-extent appendage. See the module description for
IGG019sA for further details.

Other DOS Emulators are prevented from using space on that volume by the use
of ENQ and DEQ macro instructions. Other 0OS regions are unable to access or
create any data sets on that volume, unless that volume is specifically
requested in the VOL parameter of a DD statement.

Note: Two or more DCBs should never be opened concurrently for output to the
same data set on a direct-access device. If exclusive control of the data
set is not maintained and another DCB is opened before the current DCB is
closed, the updated records can become permanently inaccessible.

DASD data sets. DASD data sets can be made private when the DISP parameter
is coded as shown in this example:

{OLD}
//SYSEM190 DD VOL=SER=222222,UNIT=2311,DSN=A,DISP= {NEW}
{MOD}

Introduction 3

In the above example, if data set A were on a volume with multiple data sets,
it would be the only data set on that volume inaccessible to other 0OS regions.
The ‘DISP parameter does not apply to DOS indexed sequential files because these
files must always be processed on a private volume.

Staged Resources

Unit-record devices need not be dedicated to DOS emulation. Instead, a DOS
emulation jobstream can request the use of the 0S input stream and/or the use
of the 0S output stream. To take advantage of the former option, DOS program
input is inserted between a //SYSEMcuu DD DATA card and a /* card in the DOS
emulation jobstream. (The channel and unit (cuu) must represent a DOS PUB
(physical unit block) table entry associated with a card reader assignment.
The result of staging DOS input is that the 0OS reader/interpreter spools DOS
program input to a DASD from which it can later be read.

DOS output can be staged if this card is inserted in the DOS emulation
jobstream:

//SYSEMcuu DD SYSOUT=output class
(The cuu must represent a DOS PUB table entry associated with a card punch
or printer assignment, and SYSOUT must indicate an output class.) OS will
then provide the following services:

. When the Emulator is initiated, space will be reserved for DOS program
output on a DASD.

. After DOS processing has ended, the output will be transcribed by a SYSoOUT
writer to an appropriate output device.

Shared Resources

In addition to being able to designate private volumes (discussed in "Dedicated
Resources"), the Emulator is able to designate public volumes, to dedicate
data sets to a particular DOS emulation run (also discussed in "Dedicated
Resources") and to share data sets with other 0OS regionms.

Since unit record and tape devices cannot be shared, this section will discuss
only direct-access devices and, more specifically, DASD volumes and data sets.
The discussion will not include DOS indexed sequential files, which must be
processed on private volumes.

Both O0S and DOS data sets can reside on the same volume. During emulation,
OS performs data-set spac2 allocation and DOS is prevented from performing
space allocation. A data set, with the exception of 0OS indexed sequential
data sets, must reside on one volume.

Figure 2 shows the Emulator methods of accessing DASD data sets. If a volume
is not shared, the program may access any OS sequential DASD or direct-access
data set, any DOS sequential DASD or direct-access file, or any DOS indexed
sequential file. If a volume is shared, the Emulator program takes one of
two paths. Tf an OS sequential DASD or direct-access data set or a DOS
sequential DASD or direct-access file is being accessed, it is routed through
Emulator module IIVDVS; if an OS indexed sequential data set, it is routed
through Emulator module IIVIS. (For more details, see "Direct-Access Volume
Sharing.™)

4 DOS Emulator Logic

J

DOS
Problem el
Program

DASD

0S and DOS Sequential DASD and
Direct Access; DOS Indexed Sequential
Shared 9

Volume

‘ Data Set

Sequential
DASD or

Direct
Access

Emulator

Module —ﬁ
11VDVS

Type of
Data Set

OS Indexed

Sequential Emulator

Module
HVIS

Figure 2. Methods of Accessing DASD Data Sets

0S direct-access and sequential DASD data sets and DOS direct-access and
sequential DASD files. One DD statement must be provided for each data set
or file on a shared volume. The DD statement must include a nontemporary data
set name (dsname). The first DD statement must indicate the cuu contained

in the DOS PUB table for that data set. Subsequent DD statements describe
other data sets located on the volume defined by the first DD statement. DOS
control statements (such as DLBL, EXTENT, and ASSGN) are still required for
these files, but the extent information in the EXTENT statement need not be
valid (however, it must be syntactically correct) since the Emulator overrides
this information with the extents supplied by OS.

Typical DD statements for specific volumes are:

//SYSEM132 DD DSNAME=DOS.FILE.IDA,UNIT=2314,VOL=SER=123456
//anything DD DSNAME=DOS.FILE.IDB,UNIT=2314,VOL=REF=*.SYSEM132

Typical DD statements for nonspecific volumes are:

//SYSEM132 DD DSNAME=DOS.FILE.IDA,UNIT=2314,DISP= (NEW,DELETE) , SPACE=(CYL, (&,2))
//anything DD DSNAME=DOS.FILE.IDB,UNIT=2314,VOL=REF=#*,SYSEM132,
DISP=(NEW, DELETE) , SPACE= (TRK, (10, 3))

Note that DSNAME= must be followed by the name of the data set which must be
the same name as coded in the file ID field of the DLBL statement. In addition,
if DISP=SHR is coded, data sets may be shared. (If a data set is shared with
another 0S task, both tasks can read onlvy.)

Introduction 5

If two or more data sets on the same volume are used in a job step (see last
example), the SYSEM ddname must be coded for the first data set; thereafter,
a unique ddname not beginning with SYSEM must be codad for subsequent data
sets. The DD statements are tied together when thev specify the same volume
serial number, when the SYSEM ddname is referred to, or when a SYSEM ddname
with a nonspecific volume request is referred to.

0S indexed sequential data sets. The Emulator allows DOS problem programs
to create and access 0S indexed sequential data sets through 0S indexed
sequential access methods. (See "File Requirements" for a possible

The 0OS volume (s) on which an OS indexed sequential data set resides is described
to the Emulator by the SYSEMcuu DD statement for the volume. The dsname is
used to map to the proper O0S data set by means of the Emulator ISAM mapping
routine (IIVIS). The same DOS control statements mentioned in the discussion
of direct-access and sequential DASD data sets are also required for 0OS indexed
sequential data sets.

Typical DD statements for specific volumes for indexed sequential data sets
are:

//SYSEM132 DD DSN=DOS.ISAM.FILEA (INDEX) ,UNIT=2314,DISP=NEW,

/77 VOL=SER=111111, DCB3=DSORG=I1S, SPACE= (CYL, 2)

/77 DD DSN=DOS.ISAM.FILEA(PRIME) ,UNIT=2314,

/77 VOL=SER=222222,DCB=*.SYSEM132, SPACE= (CYL, 20)
//SYSEM133 DD DSN=DOS.ISAM.FILEB,UNIT=2314,DISP=0LD,

V4 VOL=SER=333333, DCB=DSORG=IS

//anything DD DSN=DOS.ISAM.FILEC,UNIT=2314,DISP=0OLD,

/77 VOL=REF=%*.SYSEM133, DCB=DSORG=1IS

Typical DD statements for nonspecific volumes for indexed sequential
data sets are:

//SYSEM132 DD DSN=DOS.ISAM.FILEA (INDEX) ,UNIT=2314,

77 DISP=NEW, DCB=DSORG=IS, SPACE= (CYL, 2)
Vo4 DD DSN=DOS.ISAM.FILEA(PRIME) ,UNIT=2314,
77 DCB=DSORG=TS, SPACE= (CYL, 20)

//anything DD DSN=DOS.ISAM.FILEB,UNIT=2314,DISP=0LD,
VOL=REF=%*.SYSEM132, DCB=DSORG=1S

EMULATOR/0S INTERACTION

This section discusses parts of 0S that are used by the Emulator.
0S Macros
The Emulator communicates its service requests to 0OS with the 0S macros listed

in "Diagnostic Aids."

Emulator Appendages

To circumvent certain automatic functions and restrictions imposed by 0OS (see
the module descriptions for IGG019SA and IGG019S1 for more details), two
input/output appendages are required by the Emulator. Both appendages operate
in the supervisor state under a protection key of 0. These modules

6 DOS Emulator Logic

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

in the supervisor state under a protection key of 0. These modules
automatically gain control at the appropriate time if the last 2 characters
of their 8-character names are specified in the DCB macro instruction.

Requesting Bypass Lakel Processing (BLP)

The O0S open routine, which is called when the Emulator issues an OPEN macro,
must not process DOS tape labels. (DOS does its own label processing.) To
prevent OS from processing DOS labels, BLP must be coded in the LABEL parameter
of every DD card for a DOS tape volume. The OS Open routine will then find
that the BLP bit is cn in every JFCB for tape volumes, and it will bypass label
processing.

Note: JFCBs are built by the 0S reader/interpreter. 2All IBM reader procedures
specify that the reader/intercreter is to ignore BLP if it is encountered on

a DD card. Consequently, the BLP bit will not be on in a tape JFCB unless
the user has modified the IBM reader procedure or written his own.

OPERATIONAL CCNSICERATIONS

Staged Output Considerations

The staged output of DOS jobs in a given erulation run is transcribed from

a DASD to a printexr or punch not piecemeal, but all at once, after the emulation
run has terminated. Enough space to receive the combined output cf the emulated
DOS jobs should ke reserved on the LCASD. If more space than the system's
default is needed, the SPACE parameter can be coded on the appropriate DD
statements. The Emulator job is abnormally terminated if insufficient space

is allotted.

Printer Overflow Simulation

DOS receives no indication that staged outrut to a printer is really output

to a DASD with a later transcription to an OS printer. The Fmulator, therefore,
must simulate printer overflow indications when DOS output is staged to a
printer.

The user may specify the length and format of the physical forms-contrcl tape
that will be mounted cn nonFCB printers, such as the 1403, at the time the
system output writer transcribes the hard copy to the printer. To do so, the
user must allocate and catalog the image as a member of SYS1.IMAGELIB. The
user forms-ccntrol image must be assembled and link-edited into SYS1.IMAGELIB
before executing the Emulator. See the SETPRT macro in Data Management for
System Programmers for 0OS or 0S/VS for details.

The Emulator creates a forms-ccntrcl image from the 0S 3211 FCB image. If
the DD statement FCB parameter is not specified, the Emulator standard forms-
control image apglies.

Additionally, a DOS dynamic load of the FCB will override user specifications.
Special commands other than READ FCB and LOAL FCB will ke rejected.

The printer overflow default image describes a standard-size vage of 66 lines.

The image is formatted with five lines of space at the top and bottom and 12
channels in tetween, distributed four lines arart. 1If, for a nonFCB printer,

Introduction 7

a printer overflow indication is required by a DOS problem program, the physical
carriage tape should conform to this format or the printed results will be
unpredictable,

Emulator Separator Feature

The user may stage the output of a Disk Operating System being emulated that
has more than cne rrinter or card punch assigned to it by coding a DD statement
for each DOS printer or punch assignment for which output will be staged.

For example:

//SYSEMOOE DD SYSOUT=A
//SYSEMO1E DD SYSOUT=A
//SYSEMCOD DD SYSOUT=B
//SYSEMO1D DD SYSOUT=B

The Emulator's separator feature writes three separator cards before the punched
output in each stacker of each staged runch and a separator page before the
printed output of each staged printer. At the top of a separator page is the
message:

IIV275I SYSEMcuu
where cuu identifies the channel and unit of the DOS staged printer.
Each separator card is punched in the following format:

Columns 1-34 hexadecimal FFs (12-11-0-7-8-9 punches)

Columns 35-36 blanks

Columns 37-44 +the DOS address of the staged device (SYSEMcuu)

Columns 45-46 blanks

Columns 47-80 hexadecimal FFs

Note: The coding technique shown above for multiple printers and punches is
also used to stage multiple card readers.

Data Set Requirements

DOS indexed sequential files. Only DOS indexed sequential files must be
converted from DOS to OS format to allow them to be shared with other 0S
regions. Other types of DCS files need not be converted (see "Sequential DASD
and direct-access data sets").

The left side of Figure 3 shows two DOS programs accessing a DOS data set

before any conversion takes place. Program A is recoded to be run under 0OS

(see right) and is now able to access any OS or OS-compatible data set, that

is, an OS or DOS sequential DASD or direct-access or an OS indexed sequential
data set. Program B, still in DOS format, may access an OS or OS-compatible
data set only with the intervention of the Emrulator. The DOS file may also

be converted to 0S format; in fact, a DOS indexed sequential file must be
converted to allow O0S and DOS volume sharing. If DOS indexed sequential files
are changed to OS format, they can be processed by either their o0ld DOS programs
or newly-written OS programs.

8 DOS Emulator lLogic

Before conversion After conversion of
- of program and/or program A and/or
data set data set

DOS data set

OS or OS-compatible
data set
Emulator
Program A Program B Program A Program B
(DOS) (DOS) (0S) (DOS)

Figure 3. Two Programs Accessing a Data Set Before and After
Cconversion

Note: For more details concerning program and/or data set conversion, see
Emulating DOS Under OS on IBM System/370, GC26-3777.

0S_indexed sequential data sets. The Emulator contains a module (IIVIS) to
allow a DOS program executing under the Emulator access to an O0S indexed
sequential data set if its logical record format is compatible with the design
of the DOS problem program. In general, the only limitations on indexed
sequential Jata sets relate to OS capabilities that do not exist in DOS.

An operational consideration when accessing OS DASD data sets with a DOS program
under the Emulator is that OS optionally supports record deletion and also
dummy records for formatted fixed-length records with keys. Dummy records

must be recognized and record deletion handled by the DOS program.

Sequential DASD and direct-access data sets. Sequential DASD and direct-access
data sets need not be converted. Module IIVDVS allows a DOS program executing
under the Emulator to access an OS sequential DASD or direct-access data set
or DOS sequential DASD or direct-access file on a shared volume.

The only limitations in a DOS program accessing an OS data set relate to OS
capabilities that do not exist in DOS. For example, DOS does not maintain

some identifier (format 1) DSCB data set descriptor fields used by an OS
sequential DASD data set. For normal OS processing, this information can be
supplied on the DD statement; however, utility functions such as those performed
by IEHMOVE ignore information supplied in this manner. 1In addition, DOS FORTRAN
unformatted records may not be acceptable to OS FORTRAN or data management.

Introduction 9

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

Another problem that might be encountered by a DOS direct-access file is that
nonpreformatted DOS files must be processed as undefined under 0S. 1In addition,
a DOS user cannot allocate data sets on a DASD (that is, code a physical address
as a constant) under OS as OS does its own space allocation. (However, physical
addresses mav be used if absolute track allocation is used under 0S.) Also,

the 'M' of 'YMBBCCHHR' (where M = extent, B = bin, C = cylinder, ¥ = head, and

R = record number) is defined differently in 0S and DOS and will be compatible
only for single-extent volumes.

BTAM. BTAM operates without change under emulation as a DOS access method,
using DOS I/0 error recovery and statistical recording procedures. Since the
Emulator runs as an OS job, OS jobs running independently may include OS RTAaM.
Line groups are defined at the DOS level. To 0S, each line is a line group
consisting of one line. One OS DD statement must ke included for each line
to define the device (line) to the Emulator. The user must define to OS the
same type, attributes, and features for the lines, control units, and devices
that DOS has defined for its corresponding lines. For example,

//SYSEM068 LD UNIT=069

relates DOS line 068 to OS line 069. All characteristics of line 069, including
device type, adapter type, TCU (terminal control unit) type and features, and
line tvpe, must be the same as those DOS expects for line 068. Lines used

in the emulated DOS job must ke dedicated to that job.

PHYSICAL CHARACTERISTICS

The basic Emulator module (IIVEMU) resides on the system program litrary
(SYS1.LINKLIB) or on a private library containing an overlay structure and

load modules (see Figure 4). (For further information concerning private
libraries, refer to Supervisor Services and Macro Instructions (ATTACH macro),
Data Management for System Programmers, and the JCL Reference, for OS or 0S/VS.)
The overlay structure is composed of a root segment and five overlay segments.
The root segment is loaded first and given control by 0S. TIIVINT is the first
module in the overlay segment to be loaded. When there is need for one of

the other modules in the overlay segment, it is loaded over IIVINT, and so

on.

MAIN-STORAGE REQUIREMENTS

The minimum MFT or OS/VS1 storage requirement for a DOS emulation run is 23K
bytes plus the size of the Disk Operating System to be emulated. An additional
6K bytes are required with an MVT control rrogram because of the way MVT storage
is managed. (Refer to Storage Estimates for 0OS or 0S/VS for 0OS region
requirements.)

Main-storage requirements are further increased by each of the following
conditions that applies:

J If more than ten devices are used, add 250 bvtes for each additional device
(for I/0 tables such as the DCB, IOB, COMTAB entry, etc.).

Note: Do not include the 96 bytes required for the DCB. This value is
already accounted for in the 250 bytes specified above.

10 DOS Emulator Iogic

C

/
-

Overlay Structure

Overlay Alpha

Root Segment

HVENT
lHvewv
HIVAWV
1IVPCE
HHVRTE
lIVSVC
1IVLOG
1IVMSG
HVGET

Overlay Segments

HVINT

|

HHVADD 11VPUB Overlay Beta 1HVPRP
Overlay Gamma' IIVABN II'VADJ
11VOPN ||V(1CW
IIVCHK
Load Modules
Loaded By Module Names Required For
11IVOPN IIVFCB HVPU1 HVRD2 Staged 1/0
1IVPOV 11VPU2 IIVRD3
IIVPR1 1IVRD1 1IVRP1
11VIN2 IIVRAS Service Aids
1HHVSDT 1IVSTG Staged 1/0
lveuB 11VDVS VIS Shared Resource
HHVGR2 Hvvio Allocation
1IVMSG HVMG1 1HVMG2 1IVMG3 Message Output
IIVPRP IIVRAS Service Aids
IIVRAS 1IVRCP IIVSNP Service Aids
1IVRCP 1IVACI 11VPCI 11VSCi Service Aids
OS at Open IGGO19SA 1GG019S1 Appendages

1Overlay gamma occupies the region immediately following the largest overlay segment of overlay alpha.

Figure 4.

Overlay Structure and Load Modules of IIVEMU

Introduction 11

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

. If a direct-access file other than indexed sequential on a shared device
is specified, 7.2K bytes are required. This figure includes space for
up to five files. Add 175 bytes for each file that exceeds five files.

. If an indexed sequential data set is specified, 6.8K bytes are required
for the data set (2.4K bytes for volume sharing and 4.4K bytes for ISAM),
plus 400 tytes for each ADD or LOAD type DTF specified and 625 bytes for
each RETRVE or ADDRTR type DTF specified. In addition, add the number
of bytes required for the DCB parameters used for each data set. (See
Storage Estimates for 0S or 0S/VS, and the information in Figure 5 to
determine the number of bytes needed for the DCB parameters used.)

Number of Bytes Required for Indexed Sequential Data Sets

Modules for ADD RETRVE DCB Parameters ﬁ,%?;;%n; ential
Volume Sharing ISAM or or Used qu a
LOAD | ADDRTR Data Sets.
R4 N .Y
2.4K + 44K + 400 + 625 + n Bytes + n Bytes
Number of Bytes Required for Files on a Shared Volume and Indexed Sequential Data Sets
Additional Additional
Moduies for Modules for Files SAM ADD |RETRVE ECB " Indexed Files on
Volume Sharing on Shared volume ! trOAD ADDOF;TR Uari-:dme ers Sequential Shared
se Data Sets Volume
\ N/ —~N/ \/ \/ — \/
24K + 4.8K + 44K + 400 + 625 + n Bytes + n Bytes + n Bytes
DTF Type DCB Parameters Used
MACRF=PM, RECFM=F or FB, KEYLEN, LRECL (RKP take their
LOAD values from the DTFIS)
ADD MACRF=WAC, RECFM=F or FB
DCB1: DCB2:
RETRVE MACRF=GL, PU, and SK or SI MACRF=RUSC, WUC
DCB1: DCB2:
ADDRTR MACRF=GL, PU, and SK or Sl MACRF=RUSC, WUAC

Notes:

Parameters that do not affect storage requirements have been omitted.

Two DCBs are used for the RETRVE and ADDRTR DTF types. DCB1 uses QISAM, DCB2 uses BISAM.
BLKSIZE takes its value from the DTFIS in all cases.

BUFNO=2 (the default value) in all cases.

Figure 5. Storage Estimates for ISAM

12 DOS Emulator TLogic

'

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

° If files on a shared device and indexed sequential data sets are specified,
7.2K bytes are required for device sharing plus 4.4K bytes for ISAM plus
the number of bytes needed for DTF type and DCB parameters used.

. If any DD statement specifies DD DATA, DD *, or DD SYSOUT, add 1850 bytes
(for the staged I/O routines).

. For each unique device type defined by a DD DATA, DD *, or DD SYSOUT
statement, add 256 bytes (for the device command code translate table).

o If any DD statement srecifies DD DATA, DD *, or DD SYSOUT, add the number
of bytes used by QSAM. This number is variable and depends upon which,
if any, 0SAM modules are resident in the particular Operating System being
used. Refer to Storage Estimates for 0S or 0S/VS, and the information
in Figure 6 to arrive at this figure.

. If the service aids are used, 14K should be added to the storage estimates
for the Fmulator.

Number of Bytes Required for QSAM Data Sets Used in the Emulator

QSAM Modules of OS DCB Parameters of DCB Parameters of Additional DCB
Input Stream Output Stream Parameters of 1/O Stream
\ \
—~/ —\/ A A%
n Bytes + n Bytes + n Bytes + n Bytes
OS Stream Used DCB Parameters Used
OS Input Stream DSORG=PS, RECFM=FB, MACRF=GL
0S Output Stream DSORG=PS, RECFM=VBA, MACRF=PL
Notes:
BUFNO=2 for output. For input, the reader procedure value is used.
For output, BLKSIZE=9 plus the maximum number of bytes that can be transferred to the unit record device. The
reader procedure value is used for input,
Buffering is simple. Scheduling is normal.

Figure 6. Storage Estimates for ¢saM

Introduction 13

METHOD OF OPERATION

To become completely familiar with the method of operation of the Fmulator,
the user of this manual must have a working knowledge of System/370 status
switching, interruption mechanism, and input/output operations. Aan
understanding of the DOS Compatibilitv Feature is also helpful. (See the
Appendix for a complete description of this feature.) This section describhes
2ach of the four major operations of the Emulator and each Emulator module.

Method of Operation

15

One of the four major operations of the Emulator is to initialize the 0S region
in which it resides. It accomplishes this by verifying parameters given on
the DD statements, establishing the DOS storage area, initializing Emulator
tables, and doing an initial program load of DOS. It concludes basic
initialization procedures by passing control to DOS.

The second major operation of the Emulator is to deal with interruptions that
occur during operation of DOS programs. These include synchronous (supervisor
call and program check) and asynchronous (input/output, external, and machine
check) interruptions.

The third major operation of the Emulator allows the user additional
capabilities on an optional basis:

. Ability of multiple 0OS regions to concurrently access the same direct-
access volume.

] Ability of unmodified DOS programs to access OS-formatted indexed sequential
data sets.

The final major operation of the Emulator is to either terminate a job running
in a given DOS partition or terminate any operations being performed by the
Emulator, Termination takes place when serious user Or program errors are
detected.

These major operations are required (except the third, which is optional) to
achieve the Emulator's single functional objective, which is to enable DOS
problem programs to be run on a System/370 under 0S. Refer to Figure 23 for
an overall functional diagram of the Emulator.

INITIALIZATION

The Emulator is an OS problem program invoked by OS JCL. It receives control
at entry point IIVENT. The address of the user parameter area (which contains
operands from the PARM parameter of the Emulator EXEC statement) is passed

to the Emulator at this time. Initialization routines verify parameters,
establish DOS storage, initialize Emulator tables, and perform DOS initial
program load.

Figure 7 shows the major steps in initializing the Emulator region and shows
control passing from one routine to another. (Figure 16 entitled "OS Region
at Beginning of DOS IPL" shows a map of the Emulator region before
initialization. Figure 1 entitled "The Emulator's Main-Storage Environment"
shows a map of the Emulator region after initialization.)

16 DOS Emulator Logic

IIVENT (Entry Point)

1HVIN2

Saves registers

Branches to [IVIN2

IIVCON (CSECT)

Emulator common data
area (see Figure 57-
Emulator Common
Data Area)

_—

- — — —a» Change of a Value
————— Transfer of control

————— Functions within
CSECT

Control sections

II'VADD

Builds IPL control
statement

11VPUB

Validates COMTAB
entries and builds OS
PUB table (see Figure
66-0OS PUB and DOS
PUB Tables)

Figure 7.

Brings the DOS IPL phases into
DOS storage

Zeroes out the op code of the
first instruction of the DOS
IPL clear storage routine

Gives control to DOS via IIVRTE

11VPCE

DOS

IPL Bootstrap records
($$ASIPLT)

\
\
\
\
\
DOS IPIN

Begins

FIRSTPC Subroutine

Places DOS system size in
register 11 for DOS

Returns to DOS via IIVRTER2

1IVPCE

LPSWRTN Subroutine
F INTRPT Subroutine

Simulates an interruption from
the DOS |PL device

Returns to DOS via IIVRTER2

First load of a DOS
IPL phase ($$AS$IPL2)

x'00 |

— J DOS IPL clear
storage routine
Program check occurs
when zero op code is
executed

LPSW(WAIT)

1VSvC

Label SVC300
DOSIPL # AUTO
DOSIPL = AUTO

Returns to DOS via IIVRTER?2

l—

11VSvC

Label SVC200
Determines if first SVC 14

Returns to DOS via IVRTER2

$$IPLRT2 DOS Phase

Reads IPL control
statement

- —— —

SVC 14 (EOQJ)

L

DOS IPL

DOS Supervisor

Completed

IPL of DOS Supervisor During Initialization

Method of Operation

_—

17

Verifying Parameters

The user parameter area is inspected to ensure that all required parameters
have been specified. The values of the parameters are saved for use during
the initialization operation. If parameter values are missing or invalid,
the Emulator issies a WTOR +to oktain them from the system operator. (See
"Dependence on 03" in the section "Diagnostic Aids" for an exovlanation of the
WTOR macro.)

Establishing the DOS Storage Area

The value specified by the DOSSYS parameter vlus a U4K-byte boundary alignment
factor is used in an 0S GETMAIN macro +0 obtain the storage area into which

DOS will later ke loaded. The starting address is rounded up to the nearest
4K-byte boundarv and the entire area is initialized to bhinarv zeros. A FREEMAIN
is then issued to release the extra 4K bytes at the beginning and end of the
area. Subsegquent GETMAINsS obtain parts of this area for Emulator and OS I/O
control blocks.

Initializing Emulator Tables

The following Emulator tables are built during the initialization operation.

Communications Table (COMTAB)

The communications table provides pertinent information about 0S and DOS device
correspondences. (See the section, "Data Areas" for the COMTAB format.)

One COMTAB entry is created for the DOSLOG svystem log (DOSLOG) and one for
each device defined by a DD statement that contains a ddname beginning with
the characters SYSE. After the table has been ereated, the entries are sorted
in ascending order by their DOS channel and unit (cuu) numbers. The starting
storage address of COMTAB is placed in the Emulator constants area (IIVCON).

COMTAB Extension

If a JFCB indicates a shared volume (contains a nontemporary dsname), a COMTAB
extension entry is temporarily built and chained to the COMTAB entry. This
temporary COMTAB extension consists of the ddname and dsname. The open flag
{(bit 7 in CTFLAG) and the shared volume flag (bit 1 in CTFLAG3) in COMTAR are
set to indicate the presence of a temporary COMTAB extension.

The ddnames in the TIOT that do not begin with the characters SYS (or JOBLIB

or STEPLIB) are counted; the resulting number is the number of data sets that
reside on shared direct-access storage devices. The count is used to compute
the storage needed for the COMTAB extension.

18 DOS Emulator Logic

ISK/SSK Table

This table is used to record the keys that would be set by the SSK instruction
if the DOS problem program were run under stand-alone DOS. When an ISK
instruction is issued, the Emulator sets the storage key in conformance with
the way in which it was set by the previous SSK instruction; the Emulator
obtains the information from this table. This method of simulating storage
protection does not provide true storage protection, which is provided by
hardware under normal circumstances. It does, however, allow the DOS supervisor
to check the location of control blocks to assure that they are in the proper
task's area.

ECB Pointer Table

There is one event control block (ECB) for each DOS device. The ECB is located
in a COMTAB entry. The Operating System uses this 4-byte control block to
indicate the completion of an event (such as input, output, or timing) to the
Emulator.

This table is a list of addresses of each ECB in the Emulator: one entry for
a WTOR, one for the operator prompt, one for the timer, and one for each ECB
contained in COMTAB.

Post ECB List

This list contains a 2-byte entry for each completed interruption not yet
simulated to DOS and, therefore, outstanding to DOS. Each entry consists of
the byte offset to the associated COMTAB entry and the completion code from
the ECB. The list is used to ensure that I/O interruptions are simulated to
DOS on a first-in, first-out basis.

0S Physical Unit Block (PUB) Table

The OS PUB table provides a one-to-one correspondence between a DOS device
(whether dedicated or staged) and its associated OS device. Each 1-byte entry
contains a byte offset to the corresponding COMTAB entry. An entry that
contains X'FF! indicates the absence of an OS assignment.

Data Control Block (DCB)

One DCB is associated with each dedicated resource, except the DOS system log
(DOSLOG) device, and one DCB is associated with every data set on a shared
volume.

When DOS issues its first I/0 request for a dedicated resource, IIVOPN obtains
storage area for the DCB, initializes the DCB, and opens the DCB. The storage
address for the dedicated resource DCB is placed in the corresponding COMTA3B
entry.

When DOS issues an OPEN for a shared data set, IIVDVS obtains storage area

for the DCB, initializes the DCB, and opens the DCB. The storage address for
the shared data set DCB is placed in the corresponding COMTAB extension entry.

Method of Operation 19

o

Input/Output Block (IOB)

Each COMTAB entry, including the COMTAB entry for DOSLOG, contains an IOB.

The IOB is initialized when the DCB is created (see "Data Control Block (DCB)").
The format and contents of the IOB varies, depending on whether the device

is to be staged, is the DOSLOG device, or is neither.

DOS IPL

After the first part of initialization has been completed, the DOS IPL phases
must be read into the DOS main-storage area. The Emulator builds channel
programs and issues EXCPs to read the DOS bootstrap records into storage.

The Emulator adjusts the CCW data addresses in the bootstrap records and again
issues an EXCP. When the DOS bootstrap channel program is successfully
completed, the DOS IPL phase $3A$IPL2 has been read into the DOS area of the
Emulator region.

One of the functions of S$$ASIPL2 is to clear main storage by moving zeros
throughout main storage until a program interruption (addressing exception)
occurs. This function cannot be performed in an emulated environment since
it would destroy Emulator tables and control blocks. To bypass this function,
the operation code of a move character (MVC) instruction in the clear storage
loop of $$ASIPL2 is set to 0. When the DOS phase ($3A%$IPL2) executes, the
zeroed operation code causes a program interruption (operation exception) ;
then the Emulator simulates the expected program interruption (addressing
exception) to DOS. Control then passes to the DOS IPL routine.

Passing Control to DOS

control is passed to DOS when the Emulator issues the execute local instruction.
Conceptually, this instruction is much like an LPSW. (See the Appendix for
a complete description of the execute local instruction.)

Before an execute local instruction can be issued for the first time, however,
a PSW must be built in the first doubleword of the local execution list which
effectively becomes the current PSW. Only the 3 low-order halfwords of the
PSW are used by the execute local instruction. The instruction address portion
of the local execution PSW contains the local (unadjusted) DOS instruction
address. This address plus the adjustment factor (origin address field in

the local execution list) points to an area in storage where the next DOS
instruction to be executed resides.

When the execute local instruction is executed, the following sequence of
events occurs:

. The 3 low-order halfwords of the current PSW are replaced by the
corresponding fields of the local execution PSW.

. The contents of registers 14 and 15 are replaced by the third and fourth
words of the local execution list.

. The CPU enters local execution mode.

. The next instruction to be executed is fetched by the CPU from the storage
location specified by the DOS instruction address plus the adjustment
factor.

DOS then retains control until a hardware interruption occurs, at which time

the CPU leaves local execution mode.

20 DOS Emulator Logic

J

INTERRUPTION ACTION WHEN CPU IS IN LOCAL EXECUTION MODE

The System/370 interruption mechanism, which stores the current PSW as an old
PSW and fetches a new PSW, functions in a special fashion when the CPU is in
local execution mode. To follow the machine interruption logic used by
System/ 370, refer to Figure 8.

In general, the current PSW is stored in the first doubleword of the local
execution list (local execution PSW) and the instruction address portion of
the current PSW is replaced by one of the three possible interruption addresses
located in the local execution list (see the "Data Areas" section for the
format of the local execution list). ITf the cause of the interruption was
asynchronous (I/0, external, or machine check), the current PSW is then stored
as an old (0S) PSW and a new (0OS) PSW is fetched. 1If the cause of the
interruption was synchronous (SVC or program), the current PSW with the new
instruction address remains current and the normal interruption mechanism of
the CPU, and therefore the Operating System, is bypassed.

Synchronous Interruptions

Supervisor Call (SVC) Interruptions

The SVC instruction address field (bytes 28-31) of the local execution list
contains the address of module IIVSVC. This module automatically gains control
if an SVC interruption occurs while the CPU is in local execution mode.

The main function of ITVSVC is to simulate the interruption action normally
performed by hardware in a stand-alone system. The local execution (DOS
current) PSW is moved from the local execution list into the DOS SVC old PSW,
and the DOS SVC new PSW is moved into the local execution PSW.

When the execute local instruction is eventually issued, the local execution
PSW becomes the current PSW and the interruption action will have been
simulated. Refer to "Passing Control to DOS" and the Appendix for further
details.

An additional function of IIVSVC is to check the SVC number for the first SVC
4 and SVC 14. The first SVC 4 (DOS LOAD) signals that the DOS supervisor is
in storage and ready to begin processing IPL input. The first SVC 14 (DOS
EOJ) is assumed to signal the end of DOS IPL and initialization. If an OS
indexed sequential or an 0OS or DOS sequential DASD or direct-access data set
is being accessed, control is passed to module ITVGR2 to monitor the DOS-
initiated supervisor call interruption.

Program Interruptions

The program interruption address field (bytes 32-35) of the local execution

list contains the address of module ITVPCE. This module automatically gains
control if a program interruption occurs while the CPU is in local execution
mode. The different ways in which program interruptions are handled are divided
into the following categories:

First program interruption

Store clock program interruption
IPL interruption

Normal program interruption
Privileged operation

Method of Operation

21

Local Execution List

vt
T 0000000

Current PSW

ppppprr A

Local Execution
PSW @

SVC Interruption

J

g

®

(L) J'\
- ‘P
A(lIVSVC)
A(I1VPCE)
A(lIIVRTE)

@ The three low-order hal

Program interruption

_

00

Instruction
Address

Current PSW

Synchronous (program or SVC) interruptions when the CPU is in local execution mode:

fwords of the current PSW are stored in the iocal execution list,

@ Then, depending on the type of interruption, the appropriate address from the local execution list is
placed in the instruction address portion of the current PSW.

Local Execution List

G,
00000

N

P4

)

A(lIVSVC)
A(IIVPCE)
A(lIVRTE)

System/370 Permanent
Storage Assignment

Current PSW

(L

-

Local Execution

PSW

Asynchronous Interruption

N

r——

YA,

Instruction
Address

Current PSW

Current PSW

1/0, External or Machine
Check New PSW

i/

7

®
"—~———-__________________Jir“
®

1/0, External or Machine
Check Old PSW

@ The instruction address

@ The appropriate new PS

Asynchronous (input/output, external, or machine check) interruptions when the CPU is in local execution mode:

@ The three low-order halfwords of the current PSW are stored in the local execution list.

portion of the current PSW is replaced by the asynchronous interruption address

in the local execution list.

@ The current PSW is stored in the permanent storage location of the I/O (or external or machine check,
depending on the type of interruption) old PSW.

W is moved from permanent storage to the current PSW.

Figure 8. System/370 M

22 DOS Emulator Logic

achine Interruption Logic

C

First Program Interruption

The first program interruption the Emulator expects to receive from DOS is
an operation exception occurring in the Emulator-modified clear storage loop
in DOS IPL phase $$ASIPL2.

Store Clock Program Interruption

The System/370 store clock instruction is executed. The 0S clock value is
then adjusted by a value which was computed by the set clock routine in module
ITVPCE.

IPL Interrupntion

The DOSIPL parameter passed to the Emulator in the PARM field of the EXEC
statement specifies the DOS unit that will contain the DOS IPL statements.
An I/0 interruption from the device specified in the DOSIPL parameter is
simulated to DOS when the Emulator encounters the first PSW with channel
interruptions enabled and the wait bit set to 1.

Normal Program Interruption

Except for the first program interruption, IPL interruptions, and DOS
supervisor-initiated privileged operations, the Emulator simulates the action
of the hardware in a DOS stand-alone syvstem by moving the local execution PSW
to the DOS program old PSW and the DOS program new PSW to the local execution
PSW. When the execute local instruction is eventually issued, the interruption
action will have been simulated.

Privileged Operation

If the interruption code portion of the local execution PSW indicates that

the program interruption was caused by a privileged operation exception, the
local execution PSW is further examined to determine whether the problem program
bit (bit 15) had been set by the DOS supervisor. Tf this bit is set to 1
(problem program state), the program interruption is passed cn to DOS. (See
"Normal Program Interruption" for details on how this type of interruption

is handled.) 1If this bit is set to 0 (supervisor state), the instruction that
caused the privileged operation exception determines the action taken by the
Emulator.

Note: The first halfword of the local execution PSW is ignored by the execute
local instruction. The contents of the fields within this area are maintained
only to preserve the continuity of functions either not supported or simulated
by the Emulator (such as status switching, storage protection, etc.)

The following privileged operations are simulated by the Emulator:

. ISK - insert storage key
° SSK - set storage key

. SSM - set system mask

(] LPSW - load PSW

. LCTL - load control

. STCTL- store control

. STIDP- store CPU ID

° STIDC- store channel IDx
) SCK - set clock*

0 TCH - test channel

L] TIO - test I/0

(] HIO - halt I/O

L] STIO0 - start I/0

- e - ——-——— -

*The functions of these instructions are ignored, the condition code is set to
zero and control is returned to DOS.

Method of Operation 23

Privileged instructions RDD, WRD, and DIAGNOSE, and the DOS Compatibility
Feature instructions (execute local and adjust CCW string) are treated as
program interruptions. (See "Normal Program Interruption" for procedure.)
The System/370 privileged instructions (LCTL, STCTL, STIDP, STIDC, SCK) are
simulated only when a DOS Release 27 system is being emulated.

Insert storage key (ISK): The contents of the first operand register of the
ISK instruction are replaced by the entry in the ISK/SSK table associated with
the 2K block of storage specified in the second operand.

Set storage key (SSK): The key specified in the first operand register of
the SSK instruction replaces the entry in the ISK/SSK table associated with
the 2K block of storage svecified in the second operand address.

Set system mask (SSM): The mask located at the storage address specified in
the operand of the SSM instruction is placed in the first byte of the local
execution PSW.

Load program status word (LPSW): The program status word located at the address
specified in the LPSW instruction is moved into the local execution PSW. An
additional function of the LPSW simulation subroutine is to intercept the first
LPSW that specifies a PSW with interruptions enabled and the wait bit set to

1 during IPL. When this condition is met, an I/0 interruption is simulated

to DOS. (See "IPL Interruption" for procedure.)

Load control (LCTL): Control register information (starting at the DOS main-
storage address specified in the LCTL instruction and continuing through as
many storage words as the number of control registers specified) is moved into
the control register field labeled CTLREGS in EMUCONS.

Store control (STCTL): Control register information is moved from the control
register field labeled CTLREGS in EMUCONS to the DOS main-storage address
specified by the STCTL instruction and continuing through as many storage words
as the number of control registers specified.

Store CPU ID (STIDP): Eight bytes of CPU identification information are moved
from a field (labeled CPUID) in EMUCONS to the DOS main-storage address
specified in the STIDP instruction. The CPUID field in EMUCCNS is initialized
by the Emulator start I/0 appendage. (See "I/O0 Appendages" in this section.)

Store channel ID (STIDC): The condition code field of the local execution PSW
is set to zexro (channel ID correctly stored). Control is returned to DOS.

Set clock (SCK): The resulting values of the difference between the 0S time-
of-day clock and the DOS time-of-day clock is computed and saved in EMUCONS.
The DOS GETIME routine (SVC 34) is searched for the store clock instruction
(SCK) and the opcode is set to zero. The condition code field of the local
execution PSW is set to zero (clock value set). Control is returned to DOS.

Test channel (TCH): This instruction is simulated when the TCH simulation
subroutine tests the device-busy flag in COMTAB. All COMTAB entries associated
with DOS devices on the specified DOS channel are tested. 1If any of the devices
are found to be busy, the condition code portion of the local execution PSW

is set to 2 (channel busy). Otherwise, the condition code is set to 0 (channel
available).

Test I/0 (TIO): This instruction is simulated when the TIO simulation

subroutine tests various fields in the COMTAB entry that corresponds to the
device addressed in the TTIO instruction.

24 DOS Emulator Logic

The following TIO condition codes may be set in the local execution PSW and
passed back to DOS to indicate which of the following conditions exists:

Condition
Code Meaning
0 Device not busy
1 CSW stored (CSW is moved from associated IOB
into CSW area of DOS storage when I/O is complete)
2 Device busy (I/0 not complete)
3 Not operational (no COMTAB entry found or CTFLAG,

nonoperational flag, is set to 1)

Halt I/0 (HIO): The OS macro IOHALT is issued to perform an HIO instruction.
A condition code of 1 (CSW stored) with a CSW status of 0, is posted to the
DOS supervisor, indicating the operation has been halted.

Start I/0 (SIO): Because the Emulator executes as an OS problem program, a
DOS request for input or output can be satisfied only with the assistance of
0S data management. How the I/0 request is actually handled is determined
by the following criteria:

° If the I/0 request is made to the DOS console device (DOSLOG), the request
is interpreted and reissued in the form of an 0OS WTO or WTOR (see 1 below).

. If the I/0 request is made to a unit-record device that is to be spooled
from or to a temporary data set, the request is interpreted and reissued
in the form of an 0S GET or PUT (see 2 below).

° For all other I/0 requests, the channel command word data addresses are
adjusted and the request is reissued by means of 0S channel programming

(EXCP) techniques (see 3 below). B’ F v / r v

1. I/0 operations - DOS system console. The\gnly)}way a problem program,
executing under 0S, can communicate with the operator is to issue a WTO
or a WTOR macro instruction by means of module IIVLOG. The parameters
supplied to these macros will provide the message length, the storage
address of the message to be issued and, in the case of a WTOR, the reply
length and storage address.

IIVLOG gains control at DOS SIO from module IIVPCE., DOS CCWs are located
and checked for validity. If the CCW command code is for a write, the
request is reissued as a WTO. If the command code is for a read or for

a read chained to a write, a WTOR is issued. The WTO or WTOR length
parameters are modified, as required by the Emulator. Data is moved to
or from the DOS storage area.

2. 1I/0 operations - staged unit-record devices. In a multiprogramming system,
when the interpreter task of the Operating Svstem encounters a DD * or
DD DATA statement, a temporary data set is created on a direct-access
device. Input data that follows the DD statement is spooled (temporarily
written) to that data set until the /* _delimiter is encountered. The data
for any subsequent input requests is‘retrieved from the temporary data

DLmMm =

A DD statement specifying a SYSOUT class (for example, DD SYSOUT=A) causes
0S to create a temporary data set on a DASD. All subsequent output data
for that class is spooled to that temporary data set. At job termination,
the data in the temporary data set is routed by the 0S system writer to
the unit-record device specified in the JCL.

set.

Method of Operation

25

26

Staged I/0 receives control at DOS SIO. DOS CCWs are located, checked
for validity, and interpreted. A QSAM GET or PUT macro is issued and the
data is moved to or from the DOS area. Machine control characters (DOS
CCW command codes) are placed in the output records to cause printer
skipping and spacing and punch stacker selection. Unit-record device
operations are simulated to DOS. A CSW and sense byte are maintained for
each staged device. These indicators simulate unusual device conditions
such as unit check or incorrect length as well as the usual channel
end/device end condition.

If errors are discovered by staged I/0 modules in the DOS CAW or in the
CCW addressed by the CAW, the CSW stored (CC=01) condition is set in the
local execution (current) PSW, the CSW is moved into the DOS low storage
area, and control is returned to DOS. Under all other conditions, the
DOS STIO condition code is set to 0 (successful). DOS does not receive
the simulated interruption until it enables channel interruptions through
an LPSW. The CSW built during the previously staged SIO simulation is
now moved into the DOS low storage area.

Printer overflow is handled by module IIVPOV, which simulates the printer
carriage tape operation to DOS. This function provides channel 9 and 12
indications for DOS in the same manner as the hardware does. (See "Printer
overflow Simulation" for more details.)

Staged I/0 uses the following modules (see Figure 9):
ITIVSTG - contains the main logic for staging both input and output.

IIVAWV - verifies the validity of the DOS CAW and locates the first
CCW for the I/O operation.

IIVCWV - verifies the validity of the CCW being processed and follows
the channel program logic by replacing the addresses of
the TIC (transfer in channel) CCWs with the CCW addresses
to which the TICs point.

IIVEOV - supports printer overflow. This module may be omitted from
the Emulator linkage editor at the system programmer's
discretion by coding PARM.LKED=LET.

IIVFCB - is the FCB image that resides in SYS1.IMAGELIB. Module
IIVSTG converts this image to an Emulator format forms-
control image (FCB2EMO1).)

TIVPR1 - contains the command code translate table for 1403 and 1443
Printers.
IIVRP1 - contains the command code translate table for a 2540 Card

Read Punch.

IIVRD1 - contains valid reader commands in the command code translate
table for a 1442 card Read Punch.

IIVPU1 - contains valid punch commands in the command code translate
table for a 1442 card Read Punch.

IIVRD2 - has the same function as IIVRD1 for a 2520 Card Read Punch.

IIVPU2 - has the same function as ITVPU1 for a 2520 Card Read Punch.

IIVRD3 - contains the command code translate table for a 2501 Card
Reader.

IIVPU3 - contains a command code translate table for a 3525 punch.

DOS Emulator Logic

uot3zezado JO poOYISH

Le

D

g 9anbta

moTd wexboxd Toazuod o, pabeas

(\

MDIHIN

N

Routme (IIVAWV)

DOS Storage
(DOSCORE)

Local
Execution
List

\\\\

|
|
i

Entered from |IVPCE when
staging is requested

Communications
Table (COMTAB)

(

1403/1443 Printer
Translate Table
(IIVPR1)

2540 Reader Punch
Translate Table
(IIVRP1)

1442 Reader
Commands Translate
Table (IIVRD1)

1442 Punch
Commands Translate
Table (IIVPU1)

e By Emulator default
({IVFCB)

Emulator Forms

1

\Q
o | Staged I/O
Constants

Staged
L Routme (IIVSTG) \\\\\\\\ {(STGCON)
\Pr e Overtl \ Dummy 10B
inter Overflow
*'—Qme(uvpow > Are

N ‘

2520 Reader
Commands Translate
Table {[IVRD2)

—— e = e]

e By user-supplied image
(FCB on DD statement

* Dynamic FCB load
from DOS

DN

ML

CCW Verification
Routine (IIVCWV)

N

Control Image

NN

D

Emulator routines

Control blocks, tables, and work areas

Inspection of control blocks, tables,
ana work areas

— — - Transfer of control

2520 Punch
Commands Translate
Table (I1VPU2)

2501 Reader
Translate Table
(IIVRD3)

3525 Punch
Translate Table
(IIVPU3)

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

3. T/0 operations - all other I/0 requests. 1In general, by issuing the EXCP

macro instruction, the Emulator requests the execution of the channel

program specified in the IOB. To initiate execution of the channel program, |‘:'
the Operating System oktains its address from the IOB, places thi ddress

in the CAW, and issues an SIO instruction. (For further informati n i 17/1)
concerning channel rrogram execution, see Data Management for System ’ 2[9.

Programmers for OS or 0OS/VS.)

The channel rrogram is sugrlied by DOS and is composed of CCWs on doukleword
boundaries. Each CCW specifies a command to be executed and, for commands
that initiate data transfer, the area to or from which the data is to be
transferred.

Before issuing the EXCP macro instruction, the Emulator must adjust the
data addresses in each CCW through the use of adjust CCW string, a DOS
Compatibility Feature instruction. (See the Appendix for a detailed
description of this instruction.) When the input/output operation is
complete, the CCW data addresses are readjusted to their original values.

The DOS channel program is then executed with the following exceptions:

° For direct-access devices, the DOS initial CCW sequence of SEEK-TIC
or SEEK-SET FILE MASR-TIC is bypassed by the Emulator so that the
0S functicn is not surpressed.

o For magnetic-tape devices, the DOS initial SET MODE-TIC sequence,
if present, is bypassed by the Emulator. If the set mode opcode is
different than that contained in the OS DEB, a stand-alone set mode
is issued so that the Emulator start I/0 appendage can move the new
set mode opcode to the DEB. The remainder of the DOS user's channel
proagram is then executed.

I/0 Appendages

A start I/0, end-of-extent, channel end, and abnormal end appendage (IGG019SA)
and an abnormal end/channel end appendage (IGG019S1), both of which reside
on SYS1.SVCLIB, are used by the Emulator.

Start I/0, End-of-Extent, Channel End, and Abnormal End Aprendage

The Emulator issues an OPEN macro to open the VTOC of each dedicated direct-
access volume to be used in an emulation run. OS OPEN builds a DEB in protected
storage for each direct-access device, reflecting the upper and lower bounds

of each VTOC data set. Any subsequent attempt to gain access to data outside

of these boundaries results in an extent violation and termination of the I/0
operation.

Since DOS problem rrograms must ke able to refer to any location on a dedicated
DOS volume, and not just the VTOC, the extent limits in each DEB must be changed
to specify the extents of the cylinder being accessed each time an extent
violation occurs. The Emulator's end-of-extent appendage, running with a
protect key of 0, is able to enter protected storage and make this change

before an SIO instruction is issued. This appendage is used only for DOS
private volumes.

This does not hold true for data sets on shared volumes since the data set
defined in the DD statement is opened and not the VTOC.

28 DOS Emulator Logic

Prior to execution of the 0S SIO and after the Emulator EXCP is issued, the
start I/0 appendage is entered to modify the DASD volume's file mask in the
DEB. The file mask is modified in conformance with the DOS SFM command. If
DOS does not issue an SFM command, the file mask is set to X'00'. The start
I/0 appendage is also entered to modify the tape set mode opcode in the DEB
to conform to the mode requested by the DOS I/0 supervisor.

Abnormal End/Channel End Appendage

The Emulator uses the abnormal end appendage to byrass the OS error recovery
procedures for an end-of-cylinder condition on a direct-access device and a
rewind-unload condition for tape or channel 9 is encountered for printer
devices. When one of these conditions is detected, the abnormal end appendage
resets the IOB exception flag to prevent the 0S error recoverv procedures from
being entered. A normal return to the 0S I/0 supervisor is made and the I/O
operation is posted complete.

The channel end appendage is entered for all tape and unit record devices at
channel end. Uron receiving an incorrect length unit exceptior indication,

the appendage turns off the IOB exception flag to prevent the OS I/O supervisor
from loading error recovery routines. Otherwise, the I/0 supervisor performs
its normal processing. For chaining checks on tape, this appendage turns on
the data chain bit in IOBFLAG1 to inform the tape error recovery procedures

not to retry the channel program.

Asynchronous Interruptions

The asynchronous interruption address field (bytes 36-39) of the local execution
list contains the storage address of module IIVRTE. This module gains control
from 0OS after the processing of an asynchronous interruption that occurred

while DOS was in control.

The main functions of this module are to process DOS-initiated asynchronous
interruptions and to pass control to DOS by issuing the execute local
instruction. (See "Passing Control to DOS" for details.)

Input/Output Interruptions

The ECBs that are pointed to by entries in the ECB pointer table are tested
and a post ECB list entry is created for each ECB indicating I/O completion.
When the system mask portion of the local execution PSW is set so that I/0
interruptions are enabled and one or more post ECB list entries exist, a
hardware interruption is simulated to DOS.

The CSW is moved from the IOB to DOS location 64. The local execution PSW

is moved to the DOS T/0 o0ld PSW and the DOS channel and unit address is placed
in the interruption code portion of the DOS I/O o0ld PSW. The DOS I/O new PSW
is then moved to the local execution PSW. TIf the interruption was initiated
by a reply of ATTN to the Emulator prompt, the attention bit in the status
portion of the DOS CSW is set to 1. When the execute local instruction is
issued, the interruption is simulated.

Method of Operation 29

Interval Timer Interruptions

The 2S supervisor macro instruction STIMER is issued at 1-second intervals
when the Emrulator parameter DOSTIM=YES has been specified in the PARM field
of the EXEC statement. This ensures the ¢tontinuous maintenance of the DOS
interval timex. Accuracy of the DOS interval timer will depend upon the
priority of the Emulator ijobh. w 5

When the ECB associated with the expiratfion of a 1-second interval has been
posted, DOS location 80 is decreased by and the STIMER is reissued. When
the DOS timer value becomes negative and the system mask portion of the local
execution PSW is set so that external interruptions are enabled, a timer
(external) interruption is simulated to DOS.

The local execution PSW is moved +o the DOS external old PSW and the DOS
external new PSW is moved to the local execution PSW. When the execute local
instruction is issued, the interruption is simulated.

External Interruption Simulation

When an operator-initiated external interruption is required bv a DOS problem
program, the operator replies EXT to the Emulator prompt. If the system mask
portion of the local execution PSW is set so that external interruptions are
enabled, the local exacution PSW is moved to the DOS external o0ld PSW and the
DOS external new PSW is moved to the local execution PSW. When the execute
local instruction is issued, the interruption is simulated.

DIRECT-ACCESS VOLUME SHARING

With the removal of the Version 1 requirement for private volumes, DOS and
0S data sets can now reside on the same DASD volume. This is optional for
one or more volumes in an Emulator job step. DOS indexed sequential files,
however, carnot be shared and must be accessed from dedicated volumes.

A data set located on a shared volume is defined through OS I'D statements,
and its allocation and maintenance in the VTOC is done through 0S JCL by the
0S direct-access device space management (DADSM) routines.

When DOS wants to allocate a file, as specified by DOS DLBL and EXTENT
statements, the open routines maintain the VTOC of the DOS file to its
corresponding volume by using the information in the DTF (type of file, extent
sequence number) and the DLBL/EXTENT card image {location of the file on the
volume, total number of extents, type of extents).

The volume-sharing simulation routines, TIIVGR2, IIVDVS, and ITVVIO, update

the DOS DTF and DLBL/EXTENT image to reflect the status of the file as allocated
by 0S. They also simulate a DOS access to the VTOC, either by issuing an OS
OBTAIN macro when DOS issues a read to the volume label or an identifier (format
1) or extension (format 3) DSCB or by bypassing the I/0 operation when DOS
issues a write to the VTOC. In addition, module IIVDVS changes the flow of

DOS B-transient phases so that some will be bypassed.

This section explains in more detail the flow of control between [OS B-transient
phases and the Emulator, and outlines the relationship between the Emulator
routines and the Emulator control blocks involved. Figure 10 gives an example
of open/close processing for a sequential disk output file.

30 DOS Emulator Logic

J

DOS DLBL/EXTENT
statements

ﬂl@
I

| Dpos.JcL

*Emulator receives
control as an OS

problem program

DADSM

prd

OS DD Statements

Allocates space for the
data set

NT/IIVINT‘ @

IIVE

Creates label cylinder
entry from DLBL/
EXTENT statements

e 1o

Label cylinder

Builds various
Emulator control
blocks

[——

volume
DOS SYSRES

DOS Problem | @

Program
e Starts processing
¢ Issues a DOS OPEN

$$BOPEN *

$$BOSD04

Initializes Open table

123456

11VVIO

e Finds FOin VTOC
and searches for FO

$$BOSD00
$$BOSDOT{

e Builds F1 label and
writes F1
® Posts extent limits

Reads first
DLBL/EXTENT
into sotrage

e Puts F1 address in DTF

e Gives actual F1 address
and builds FO
e Bypasses write F1

[——]

H

Program

1HVSVC

v

Intercepts SVC 2

1IVGR2 1 ®

e Locates DOS file ID
and symbolic unit
number in DLBL/
EXTENT

e Locates DOS PUB
entry and points to
COMTAB entry

« Searches each CTEXT
for DSname identi-
cal to DOS file ID

11VDVS } @ OPEN

¢ Creates and opens
DCB

* Obtains F1 and F3
from OS; builds VOL 1

® Updates DLBL with
OS limits from DEB

DOS Problem‘

e Continues processing
¢ |ssues DOS Close

$$BOSDC1 }. CLOSE

1IVVIO

e |nitializes close
® Reads VOL 1

® Reads F1

* Writes F1

® Updates DTF

¢ Gives VOL 1
as created
* Gives F1
¢ Bypasses write F1

1IVGR2 ‘ @)

Locates DTF in FID

1IVDVS ‘ @

* Frees FID space
* Closes OS data set
s Frees DCB space

DOS Problem
Program

Continues processing

eCreates FID

Figure 10.
Output File

— —# 1/0 for the Open
routines

——» Flow of control for
the Open/Close
routines

Example of Open/Close Processing for a Sequential Disk

Method of Operation 31

Notel: 1In order to understand the following, familiarity with DOS open/close
processing is essential. See DOS Logical IOCS Volume 1: Introduction, GY24-
5020, and Volume 3: Sequential and Direct Access DASD Files, GY2u4-5088, for

details.

Note2: The encircled pumbers correspond to the encircled numbers in the figure.
Numbers through (js apply to OS sequential DASD and direct-access shared
data sets™and to DOS séquential DASD and direct-access shared files. Indexed
sequential shared data sets are discussed in "OS Indexed Sequential Data Set
Sharing" later in this section.

(:) The Emulator is called with the following OS control statements:

//EMU JOB ACT#,name, MSGLEVEL=1

/77 EXEC PGM=IIVEMU, PARM= (' XXXXXX')
//SYSEM191 DD UNIT=2314,VOL=SER=123456,

Vs DSN=DOSFILA,DISP= (NEW,KEEP) ,
V4 SPACE= (CYL, (1))

0S JCL reads the DD statements and builds the corresponding JFCBs.

The O0S initiator uses the JFCBs to perform space management on the requested
volume as follows:

(a) Determine whether volume 123456 is mounted and, if not, look for an
available device and issue a MOUNT message to the operator

(b) Allocate auxiliary storage space on the volume by searching the VTOC
for an identifier (format 1) DSCB to be created and a free cylinder
extent to be allocated to file DOSFILA

The VroC of 123456 volume will then contain an identifier (format 1) DSCB
describing DOSFILA file.

(:) The Emulator initialization routines read the JFCBs and build the Emulator
control blocks. One COMTAB extension containing SYSEM191 in the CTDDNAME
field and DOSFILA in the CTDSNAME field is created and chained to the
COMTAB entry for DOSCUU=191. Refer to Figure 11 for the relationship of
control blocks affected by IIVDVS.

(:) The DOS problem program is then called with the following control
statements:

// JOB DOS, e«

// DLBL DTF1, *DOSFILA',99/365
// EXTENT S¥s001,,,10,10
// ASSGN SYS001,X'191*

// EXEC PROGRAM
/%

DOS JCL reads the DLBL and EXTENT statements and creates a DLBL/EXTENT
record in the label cylinder of the DOS system-residence pack. Logical
unit SYsS001 is then assigned to physical unit 191.

32 DOS Emulator Logic

EMUCONS COMTAB

AlIVOBT / 190
——
DSFIDBLK N\ ACOMTAB 191 123456
FID 192
oo |
COMTAB Extension
! e
—e 1 T SYSEM151 DOSFILA
o | 4
OBTAIN AREA
VOL1-123456
F1—-DOSFILA DTF DCB DEB
(no F3)
Legend
ACOMTAB—Pointer to COMTAB EMUCONS—Emulator Constants Area DSECT
AlIVOBT—Pointer to Obtain Area FID—File ID
COMTAB—Communications Table F1—Format 1 (DSCB)
DCB—Data Control Block F3—Format 3 DSCB
DEB—Data Extent Block SYSEM191—-DD(data definition) Name
DOSFILA—Data Set Name VOL1-Volume 1
DSFIDBLK—Pointer to FID 123456—Volume Serial Number
DTF—Define the file 190, 191, 192—DOS Device Addresses

®

Figure 11. Data Areas Affected by Open Processing (IIVDVS)

The DOS problem program issues an OPEN macro for DTF1. After the DOS B-
transient phases $$BOPEN and $$BOSD00 have been executed, phase $$BOSD01
locates, in the label cylinder, the DLBL/EXTENT record associated with
DTF1, and builds the DLBL/EXTENT image in the open table, which is located
in the DOS B-transient area. $$BOSDO1 releases control by issuing an SVC
2 instruction to load $$BOSDO1.

The Emulator supervisor call routine (IIVSVC) traps this SVC 2 and passes
control to module IIVGR2 to monitor the call.

IIVGR2 then locates the DOS file ID and logical unit number (here DOSFILA

and SYsS001) in the DLBL/EXTENT image, locates the DOS PUB entry associated
with the logical unit (here 191), locates the corresponding COMTAB entry,

and searches each associated COMTAB extension for a DSname identical to

Method of Operation

33

34

the DOS file ID. When a match indicating a volume-shared file is found,
module YIVGR2 sets the COMTAB extension address, open code, DTF address,
and DOS LTK in the PARMLST field in EMUCONS. Then control is passed to
module IIVDVS to perform OS open processing for the file described in the
COMTAB extension entry.

Module IIVDVS creates a FID containing a pointer to the COMTAB extension
entry in the FIDCTXTN field. The name of the DTF is placed in the FIDTFNME
field of the FID. IIVDVS then attaches this FID to the FID chain pointed
to by DSFIDBLK in EMUCONS. The use count located in the COMTAB extension
is increased by 1.

If the value of the use count equals 1, a DCB is created and opened, and
its address is moved into the COMTAB extension. At this point, module
ITVDVS issues an OS OBTAIN macro to get the identifier (format 1) DSCB
address and contents from the VTOC and builds a volume 1 image, format

1 image, and format 3 image (if a format 3 DSCB was created) in the obtain
work area pointed to by EMUCONS. The actual identifier (format 1) DSCB
address is moved into the open table (see Section V for the format of the
open table). Other indicators ('format 4 indicator!' and *'return message
indicator') are set in the open table to reflect the fact that DOS phases
$$BOSDO1, 3BOSDO2, $$BOSDO3, and $$BOSDO8 have been bypassed.

IIVDVS last updates the DLBL/EXTENT image in the B-transient area to reflect
the type of extents and location of the extents as given by the 0OS DEBRB.
IIVDVS returns control to IIVGR2 after setting $$BOSDO4 in NXTBTR in
EMUCONS. TIIVGR2 then updates the B-transient phase name with $$BOSDO4

and control is given to DOS B-transient phase $$BOSDOU.

Note that DOS open phases $$BOSDO1, $$BOSDO2, $$BOSDO3, and $$BOSDO8, which
deal with space allocation in the VTOC, are not executed.

$$BOSDO4 searches the VTOC to find a free DSCB by issuing the following
channel program:

. 'Seek, search on ID equal, TIC' to locate the beginning of the VTOC
(address found in the open table)

° 'Read count, search on key equal to 0, TIC' to find the first free
VTOoC record (format 0) DSCB

Module IIVPCE intercepts the SIO and determines that the seek address is

not contained in any of the DEBs attached to the COMTAB extension entries
for this DOS cuu. IIVPCE then passes control to IIVVIO, which identifies
the DOS channel program as a search DSCB, format 0 type, and simulates

it by passing to DOS the count field of the actual identifier (format 1)

DSCB as found in the obtain work area.

The same processing is done for the write identifier (format 1) DSCB channel
program issued by $$BOSD04, which is recognized and bypassed by module
IIVVIO.

$$BOSDO4 then updates the DTF (with extent limits) or initializes it (with
record number and identifier (format 1) DSCB address).

Note that the extent limits are obtained from the DLBL/EXTENT image in
the DOS B-transient area. They are, therefore, the actual limits as
determined by the 0OS space allocation routine because they were moved to
the DLBL/EXTENT image by IIVDVS (see step <>). Open processing is now
complete. The DOS problem program will eveflitually issue a CLOSE macro
for DTF1 and control will then be given to DOS B-transient phase $$BOSDC1.

$$BOSDC1 updates the format 1 DSCB to indicate the file has been
successfully created. The three channel programs issued (read volume 1,
read format 1 DSCB, rewrite format 1 DSCB are intercepted by IIVPCE, and
recognized and simulated by IIVVIO as explained in step ‘) .

DOS Emulator Logic

$$BOSDC1 releases control by issuing an SVC 11 instruction, which is trapped
by IIVSVC and recognized by IIVGR2 as the end of a DOS close operation.

C) Module IIVGR2 identifies the file as a volume-shared file by searching
the FID chain addressed by DSFIDBLK for a matching DTF name and LTK. A
match indicates a volume-shared file, and control is passed to module
ITVDVS to close the 0S file.

C:) Module ITIVDVS deletes the FID associated with the file from the FID chain.
The use count in the corresponding COMTAB extension entry is decreased
by 1. If the new use count is greater than 0, more than one DTF is
accessing the same file and at least one DTF is still open.

A use count of 0 indicates that no more DTFs for the file remain open.
An OS CLOSE macro is then issued, and the storage space occupied by the
DCB is released.

Control is eventually returned to modules IIVGR2 and IIVSVC, and the latter
issues an SVC 11 instruction.

End-of-Extent Processing

Upon reaching the end of an extent for an output file, the DOS problem program
calls $$BOPEN to open the next extent.

The processing is like open processing except for two steps:

1. In updating the DLBL/EXTENT image (step), module IIVDVS obtains the
current extent sequence number from the DTF and searches the associated
DEB for this extent. TIf this extent is not found, an OS BOV SVC is issued
to obtain secondary allocation, if any is specified in the DD statement.
Module IIVDVS then moves the limits of the current extent from the DEB
to the DLBL/EXTENT image in the DOS B-transient area. If at the time the
data set was created no secondary allocation was specified in the DD
statement or if more than 16 extents have already been allocated, a message
is issued and the DOS step is canceled.

2. In the next DOS phase to be executed (step) . IIVDVS sets $$BOSDOS in
the NXTBTR field of EMUCONS. This phase, when executed, issues a channel
program to read the identifier (format 1) DSCB from the VTOC, and then
tries to rewrite the DSCB with an additional extent. Both channel programs
are intercepted by module IIVVIO and simulated.

Input Processing

Steps (:) through (:) are identical. TIIVGR2 takes control when $$BOSDI1 is
called, and IIVDVS moves $$BOSDI2 into the NXTBTR field in EMUCONS. $$BOSDI2
then attempts to read the identifier (format 1) DSCB. This attempt is
intercepted by module IIVVIO, which gives back the actual 0S identifier (format
1) DSCB.

Workfile Processing

Emulator, in step , moves to the DLBL/EXTENT image the actual limits of

The first call for(f;BOSDw1 is similar to the open for an output file. The
the first extent as found in the DEB, replaces $$BOSDW1 and 3BOSDW2 in the

Method of Operation 35

NXTBTR field of EMUCONS, and sets the indicators "extent open" and "SYSxxx
in DTF" in the DTF.

A test is made to determine whether this extent is the last one allocated,
and the bit indicating "last extent" is set on in the DLBL.

$3BOSDW2 updates the DTF to reflect the limits of the first ‘extent (as set
in the DLBL/EXTENT image) and calls $$BOSDW1 again. This second call for
$$BOSDW1 is then trapped by module IIVGR2 and control is passed to module
IIVDVS. 1If the "last extent" bit is on, control is returned to DOS, which
terminates the open processing.

If the "last extent" bit is off, module IIVDVS moves the limits of the next
extent from the DEB to the DLBL/EXTENT image. Note that for workfiles, module
IIVDVS never issues an OS EOV SVC. Specification of the secondary space
parameter in the DD statement will, therefore, not be useful.

End-of-extent processing for a workfile is similar to open processingg for
an input file, because all the extents have been allocated when the file was
opened and have already been created in the DSCB.

Module IIVVIO intercepts the "read format 1 DSCB" or "read format 3 DSCB"

channel program issued by $$BOSDW3 and simulates it by returning the actual
format 1 DSCB or format 3 DSCB as set in the obtain work area.

Direct-Access File Processing

Direct-access file processing is very similar to the open of a sequential disk
input file or sequential disk output file. The main difference is that the
DLBL/EXTENT image for a direct-access file contains all the extents for the
output file.

For an output file, module IIVDVS (step (:)) obtains all the extents from the

DEB and moves their limits to the DLBL/EXTENT image. Note that module IIVDVS
never issues an 0S EOV SVC for a direct-access file.

DOS Release 27 Processing

When emulating a DOS release 27 system, module IIVGR2 traps the SVC 2 for
$$BOPEND and moves $$BOPEN in place of $$BOPEND in NXTBTR. Phase $$BOPEND,
which initializes the system recorder file records by reading the VOL1 record
for all assigned LUBs to Adisks, will then be bypassed.

DOS Release 27 Output Processing

Since $$BOSDO4 has been divided into two different open phases ($%BOSDO4 and
$$BOSD09) in DOS release 27, IIVDVS will bypass $$BOSDO4. IIVDVS moves 3BOSDO9
in place of NXTBTR and simulates $$BOSDO4 by setting DOS register 0 with the
appropriate device type control factor and updating the volume sequence number
in the DTF.

36 DOS Emulator Logic

0S Indexed Sequential Data Set Sharing

Unmodified DOS programs running under the Emulator can gain access to and
create OS-format data sets. However, the DOS user must comply with OS
restrictions and requirements.

A volume-shared 0OS indexed sequential data set is defined through OS DD cards,
and its allocation and maintenance in the VTOC of the corresponding volume
is made at 0S JCL time via OS DASD space management routines.

When DOS wants to access an 0S indexed sequential data set, as defined by DOS
DLBL/EXTENT statements, the Emulator gets the user to the proper data set by
matching the DLBL file ID to the data set name in the DD statement.

The 0S indexed sequential data set sharing simulation routine, IIVIS, updates
the DOS DTF that reflects the status of the data set as allocated by 0S. The
open routine in IIVIS replaces the DOS ISFMS open B-transient phases.

The following section explains in more detail the flow of control between -the
Emulator and DOS, and outlines the relationship between the Emulator routines
and the data areas affected by open processing (see Figure 12). Figure 13

is an example of processing OPEN and I/0 macros for an OS indexed sequential
data set.

Example of Processing

See numbers (;) through (:) in Figure 10 and steps (:) through (:) in the text
under the heading "Direct-access Volume Sharing." These steps are identical
to those taken when processing a shared 0S indexed sequential data set, except

. $$BOPEN and $$BOPEN2 do the processing for indexed sequential data sets
in the box showing $$BOSD00 and $%BOSD01 as processing phases,

D a match (COMTAB extension flag byte = 0) must indicate a shared 0OS indexed
sequential data set, and

. control must be passed to module IIVIS to perform an OS open.

Method of Operation

37

DOS Register 15+
1192 offset

/ COMTAB
190
DOS Logical Transient Area
191
— — T 7 192
4- Open Table
/1| SYSEM191 DD DSN = | DOSFILA
DLBL/EXTENT Image
File
SYSnnn e . Byte 0 = X'80' for
/ Identification COMTAB indexed sequential
S extension data set
< ISBLK
(Lus 1|7 pointer| SYSEM191 ¢ DOSFILA
! NS—
/ —~—
P ISBLK ~
(pus Vg) N
sed to searcl Reai A
191 COMTAB for egister Save Area
device addresses
DOS COMREG FIDBLK
LTK
DOS Register /r DTFNAME |LTK
2+ adjustment
factor / ~ Control Information
[L~ g
1 DCB
[) \
A
EMUCONS 1
7 1.7
1| PARMLST ~___ 1. — // DECB
7]
ISFIDBLK / | DCB (Maximum of 2)
a
/
DTFIS // JFCB
/ (Load only) L
s
DTFNAME - —— Pointer
— — _p» Information passed during
Open processing by 11VIS
Information passed before
Open processing
Figure 12. Data Areas Affected by Open Processing (IIVIS)
38 DOS Emulator Logic

C

*Emulator receives

yd control as an OS
problem program

@ DADSM @

DOS DLBL/EXTENT

0S DD statements
statements

Allocates space for the —

data set G—I
|
|

|
I DOS JCL IIVENT/IIVINT+ @
i Creates label cylinder

Builds various

- entry from DLBL/ Emulator control L]
- EXTENT statements blocks
';gf’:;}‘éyl'"der DOS Problem ‘ @ Volume
DOS SYSRES Program Emulator Task 123456
= Starts processing
= Issues a DOS OPEN
DOS Probiem 1/0 Macro
$$BOPEN ‘ Program Processing

* Issues DOS ISAM

itiali open le
Initializes open tab 1/O macro to OS

Indexed Sequential
$$BOPEN2 + data set
Reads first * Gets forced program DOS Problem
DLBL/EXTENT check Program
into storage
Subtk e IIVPCE + @ Enters wait state
1IVSVC + » Stores ISBLK address

and 1/O macro code in
Traps SVC 2and 4 CCw

- from DOS * Resets local execution
« Initializes registers

+ @ PSW to DOS wait
« Enters wait state 1IVGR2 » Translates PC to SVC 0

i ol *Locates DOS file ID * Switches PSWs

¢ Regains contro nd symbolic unit .

* Loads DTFIS address ?\umt}ler in DOS Supervisor *
* Determines function DLBL/EXTENT

(GET, PUT, etc.) * Locates DOS PUB
* Executes mapping entry and points to

routine COMTARB entry
» Loads address of *Searches each

DOS Supervisor {

Gives control to other
DOS tasks if any are
ready to run; if not,
DOS enters enabled wait

IIVRTE * ©®

Checks for 1/O
complete; if none,
Emulator task enters
wait state until [/O

11VIS01

Queues 1/0 request
for processing

DOS Problem
Program & @

COMTAB entry from

CTEXT for DSname Enters wait state completior
ISBLK _ identical to DOS ‘
* Creates CSW in file ID IIVCHK
COMTABMI‘I('):B » Identifies data set DOS Supervisor+ @ Simulates 1/0
« Posts ’CO as Indexed Sequential interruption to DOS
entry ; ECB @ Issues SIO
. t t
Sranches to wai 1vis + OPEN DOS Supervisor+
e Determines function 11'VPCE ‘ @ « Posts traffic bit for
from code in EMUCONS = Determines if request DOS program
* Obtains pointers to is for an OS Indexed = Sets indicatiors to
@ DTFIS and to CTEXT Sequential data set dispatch task when
from PARMLST in « Sets DTFIS and it has highest priority
-(E:M;SSQSBLK chains COMTAB entry
it to ISEIDBLK addresses and 1/O code

into ISBLK

*Opens data set * Posts subtask

*Moves data from DCB

* Posts ECB in ISBLK
to DTFIS .
*Resets ISMOD pointer » Activates subtask (29
in DTFIS oos j
e Attaches subtask upervisor
¢ Returns to DOS } Gives control back
problem program to interrupted task ——- /O for the Open
@ Routines
—— Flow of control for
Open and ISAM
e processing of an Indexed
Sequential data set

Figure 13. Example of Processing OPEN and I/0 Macros fOr an 0S
Indexed Sequential Data Set

Method of Operation 39

The following text is keyed to the encircled numbers in Figure 13.

®

@EOG

®

40

IIVIS determines the function (OPEN here, but it could also be CLOSE or
SETL) to be performed by examining the code in EMUCONS. It also obtains
the pointers to the DTFIS and to the COMTAB extension from EMUCONS, TIIVIS
creates a work area called the ISBLK, adds it to the ISFIDBLK chain, and
opens the data set.

IIVIS then moves data from the DCB to the DTFIS and resets the ISMOD address
pointer in DTFIS to trap I/0 macro requests. It then attaches a subtask
to perform I/0 macro mapping and returns to the calling routine (IIVGR2).

The subtask, at entry point IIVIS01, initializes registers and (:B goes
into a wait state until the SIO subroutine (module IIVPCE) posts the ECB
in the ISBLK.

The DOS problem program gets a forced program check when it issues an I/0
macro for the 0S indexed sequential data set.

IIVPCE, recognizing the program check as a special type, puts the address
of the ISBLK associated with the DTFIS and the code of the I/0 macro to

be performed into a NOP CCW. It sets the local execution PSW address to

a DOS WAIT macro contained in the DTFIS. IIVPCE then translates the forced
program check to an SVC 0 interrupt, switches PSWs, and returns to the

DOS supervisor.

The DOS supervisor queues the I/0 request for processing.
The DOS problem program then executes the DOS WAIT macro.
The DOS supervisor isseus a start I/0.

The SIO subroutine (module IIVPCE) determines that the request is for an
0S indexed sequential data set, loads the ISBLK address from the CCW, and
moves the code from the CCW to the ISBLK control information field. It
also moves the addresses of the DTFIS and the COMTAB entry associated with
the I/0 request into the ISBLK control information field.

The SIO subroutine then posts the ISBLK ECB to activate the subtask,
increments the I/0 count, and returns to the DOS supervisor at the
instruction following the SIO.

The activated subtask interprets the I/0 macro code byte in the ISBLK
control information field and goes to the related mapping routine. After
executing the 0S macro and moving the logical record to or from DOS storage,
it maps pertinent information from the DCB to the DTFIS, indicates
successful completion in the COMTAB I0B, posts the ECB in the COMTAB entry
associated with the I/0 device, and reenters the wait state.

The Emulator task determines that input/output operations are completed

on the device associated with the COMTAB entry and simulates an I/O
interruption to the DOS supervisor.

DOS Emulator Logic

Close Processing

After ex=cuting steps (;) +hrough (:) indicated above, IIVIS determines that

the close function is the one to be performed. Tt detaches the subtask, resets

the DTFIS to its former state, closes the 0S indexed sequential data set,
removes ISBLK from the ISFIDBIX chain, frees the space, and returns to the
DOS problem program.

SETL Processing

After executing steps (:) through (:) indicated above, TIVIS determines that
the SETIL function is the one to be performed, maps the DOS SETL to an OS SETL,
and returns to the DOS problem prcgram.

Shared DOS Svstem Residence File

The DOS sVstem residence file must reside on a standard DOS system residence
volume.

The option is selected by coding the DOS system residence file ID as the DSN
parameter in the SYSEMcuu DD statement that defines the volume for the DOS

cuu sp=acified in the DOSRES=cuu varameter of the EXEC statement. If DISP=0LD
is coded, the DOS system residence file will not be shared although the DOS
system residence volume will be treated as a device shared volume (mav contain
0S data sets). DISP=SHR must be coded on the DD statement in order to share
the DOS system residence file.

When the DOS system residence file is being shared by two or more Emulator
vartitions, a sevarate cyvlinder on the DOS system residence volume must be
provided for each Emulator partition to use for the DOS label cylinder.

A DD statement with the special ddname SYSEMLBL is required to define a single
cylinder OS data set to be used for the DOS label cylinder. 1If this DD
statement is missing, the standard DOS label cylinder contained within the

DOS System residence file will be used. The DSN parameter may specify anv
valid data set name. Space allocation must be for one cylinder when the data
set is created (DISP=NEW specified on the DD statement) and initialization

of the data set must be performed with the DOS STDLABEL and PARSTD procedures.

DOS DLBL and EXTENT statements are not required in the DOS job stream for the
DOS system residence file and DOS label cylinder data sets.

Method of Operation

41

ABNORMAL END CONDITIONS

Serious user or program errors can cause the termination of either a DOS job
or the Emulator itself. Each of the following error conditions will cause
the cancellation of a DOS job requesting the specific I/0 or DTF processing:

Invalid ccwW

Emulator CCW chain table (BERLK) overflow

No seek or bin number for a 2321 Aata cell drive

Invalid DOS logical unit

DOS logical unit unassigned or assigned IGN for a shared device
DTF points to a null DOS PUB table entry

Cannot match file ID with dsname

Incompatible file organization

DCB and DTF device types incompatible

DOS POINT MACRO not within extents of a given file

Invalid DOS seek address

Insufficient extent space in DOS DLBL/EXTENT image for DTF
User labels specified in DTF but not in LSCB

Cannot get more extents for file

Cannot obtain F1 for file

Emulator termination will be caused by any of the following conditions:

. An attempt by DOS to load a hard wait PSW

. An invalid or undefined DOS IPL or DOSLOG device

. Insufficient storage for emulation

U Open for DOSRES was unsuccassful

. Could not find PU® entry in the DOS PUB table during DCS IPL
(When DOSIPL # AUTO)

A DOS PUB entry did not exist for the DOSIPL device

Device not supported by the Emulator

. DOS device address in DD statement not compatible with 0S
device type

Invalid DOS device address specified in DD statement (when DOSTIPL
AUTO)

Syntax errors in DEBUG statement when using card input
Duplicate DOS device addresses

Could not IPL DOS for DOS emulation

Permanent I/0 error while loading IPL routines

Invalid automatic ADD request

®rror while canceling the Emulator

A dump of the contents of the DOS storage area and registers is taken only
if a SYSSNAP DD statement is present and the error return code is other than
16, 20 or 24. Control is then returned to OS.

42 DOS Emulator Logic

DETAILED ROUTINE DESCRIPTIONS

Each Emulator routine description consists of the following parts:
. A statement of the general function (s)
° A narrative description of the function(s)

o Operational diagrams when necessary

DOS Emulator Entry Routine (IIVENT) -- Flowchart 1A

IIVENT, the controlling routine during Emulator initialization, passes control
to IIVINT and ITVIN2 so that these modules can perform initialization functions
for the Emulator.

ITVENT saves the contents of the general purpose registers and the pointer

to the user parameter area. The CSECT, IIVCON, which is used for communication
between the modules of the Emulator, is defined in this module.

Initialization First-T.oad Routine (IIVINT) -- Flowcharts 2A-2M

IIVINT performs four functions in initializing the Emulator:

Verifies rarameters

Establishes DOS storage
Builds COMTAB :
Builds COMTAB extension

On entry to this module, the local execution list and adjust CCW data address
list are aligned to 64-byte boundaries within the CSECT containing the Fmulator
constants. The Emulator rase registers are initialized as follows:

. Register 9 contains the address of the local execution list.
o Register 10 contains the address of DCS storage.
o Register 11 contains the address of the Emulator constants area.

Verifies Parameters

The address of the user parameter area is obtained from IIVENT. The parameter
area is scanned for the DOS channel and unit number of the DOS resident file
(DOSRES=) , the DOS IPL unit (DOSIPL=), the DOS console (DOSLOG=), and the DOS
system size (DOSSYS=). These parameters are validated and checked to ensure

that required parameters have been specified correctly. If a reauired parameter

was not provided on the EXEC statement, a message is issued to the operator
requesting the information.

Method of Operation

43

ITVINT also looks for three other parameters:

[,AUTOEOJ={YES}] specifies whether automatic ending of emmlation is
[{No} 1 desired

[,POSTIM={YES}] specifies whether timer survort is desired
r {Noy]

[,APROMPT= {YES]}] requests an abbreviated initial rrompt
r fNoy]

AUTOEOJ defaults to NO, DOSTIM defaults to YES, and APROMPT defaults to NO.

Fstablishes DOS Storage

DOS operates in the first block of storage obtained by the Emulator (Figure
14) . The DOS storage size parameter is used to determine the amount of storage
needed. The value specified in the DOSSYS parameter is increased by U4X bvtes
and the Emulator GETMAIN routine (IIVGET) is called. The extra UK bvtes are
used to adjust DOS storage to a 4K boundary. After DOS storage is adjusted,
the beginning address is saved and the remaining storage at each end of the

DOS area is freed. All of DOS storage is initialized to zeros.

Builds COMTAB

The ddnames in the TIOT that begin with the characters SYSE are counted to
calculate the number of devices allocated to DOS. The count is used to compute
the size of COMTAB and is placed in the Emulator constants area (IIVCON) for
future use in computing the size of other tables. The size of COMTAB is the
DD entry count plus 1 for SYSLOG times the size of one COMTAB entry. Storage
area is obtained for COMTAB by the Emulator GETMAIN routine (IIVGET).

Each COMTAB entry is initialized to 0 and the following data is entered:
. The DOS channel and unit address is entered from the TIOT ddname.

. The 0S channel and unit address is entered from the UCB channel and unit
address field.

. The 0S device type is entered from the UCB.

. The CTFLAG fields are used to flag the entry for DOSLOG. They are also
used to flag staged and shared devices. The JFCB is checked to determine
whether a device is staged (JFCBTSDM set to X'20') or shared.

] If the JFCB indicated a staged device, CTFLAG2 is set to indicate whether
the staging is for an input or output device (determined from byte 18 of
the data set name).

. If the JFCB indicates a shared device, a COMTAB extension entrv is
temporarily built in the CCMTAB entry. This temporary COMTAB extension
consists of the ddname and dsname. The shared device flag in COMTAB is
set to indicate the presence of a temporary COMTAB extension.

o The DOS SYSRES flag is set in the COMTAB entry associated with the DOS
system residence volume.

44 DOS Emulator Iogic

High High High

A Leftover Storage 4 %

Aligned DOS Aligned DOS
DOS Storage + 4K Storage Storage
4K — 4K — 7
Boundary Boundary /
Leftover Storage

7 %

Low Low Low
Storage is obtained for DOS storage is aligned to Leftover storage is freed.
DOS + 4K bytes. 4K boundary
: Dynamic storage owned by the Emulator
,/I/// Free dynamic storage

Figure 14. DOS Storage in Emulator Region

Builds COMTAB Extension

The number of ddnames in the TIOT that begin with three characters other than
'SYS', plus the DD statement labeled 'SYSEMLBL' if present, are counted to
find out the number of data sets that reside on shared direct-access devices.
The count is used to compute the storage needed for the COMTAB extension.
This storage is obtained by means of module IIVGET.

An appropriate error message is issued followed by Emulator termination if:

® The 0S cuu associated with the SYSEMLBL DD statement does not match the
0S cuu for the DOS system residence volume.

° DISP=SHR was specified in the SYSEMLBL DD statement.
Each COMTAB extension is formatted with:

. The UCB channel and unit address (used during Emulator initialization only
and not present in the COMTAB extension after initialization)

o The data set name from the JFCB
L The ddname from the TIOT entry
° A flag is set in the flag byte if the ddname is SYSEMLBL

IIVINT then returns to IIVENT.

Method of Operation

us

Initialization Subroutines

The following Emulator subroutines are used by ITIVINT:

SCAN Subroutine (Flowchart 2K). This subroutine is used by IIVINT to scan
the user parameter area for a blank or comma. When entered, this subroutine
computes the address and length of the next user parameter.

This subroutine has two returns to the user., One return indicates that the
end of the area being scanned has been reached (scan completed). The other
return gives the beginning address of a field in register 3 and the length
of the user parameter in register 4.

YESORNO Subroutine (Flowchart 2K). This subroutine is used to check the
validity of parameters that require YES or NO responses. Its return is into
a branch table:

. Return address + 0 - parameter missing
. Return address + 4 - parameter = YES

L Return address + 8 =~ parameter = NO

. Return address + 12 - parameter invalid

CHKCUU_ Subroutine (Flowchart 2L). CHRCUU checks the parameter value given

on the Emulator EXEC statement. It verifies the validity of a channel and
unit address. This routine has two returns. It returns to the address in
register 14 plus 4 if the cuu checked was missing, had an invalid length, or
had an invalid range. If the cuu checked was valid, it returns to the address

in register 14.
3066

ASKOPR Subroutine (Flowchart 2L). \This common subroutine is used by IIVINT
to request required parameters from\the operator from the operation that were
omitted or correcti arameters from the operator. It issues a
WTOR to the console and waits on the reply. The reply is checked.

If it was CANCEL, ASKOPR kranches to the common emulation termination routine;
otherwise, it returns to the calling routine.

JDSCAN Subroutine (Flowchart 2M). This subroutine scans the ™Dnames in the
TIOT for entries with DDnames beginning with SYSE. If register 2 contains
zeros, this subroutine gets the address of the TIOT from the Emulator constants
area (ITVCON) and starts scanning the TIOT for an SYSE entry. If register

2 does not contain zeros, the address it contains is assumed to be the starting
address within the TIOT for the scan.

There are three exits from this initialization subroutine. A return to the
address in register 14 denotes that all TIOT entries have been examined. Tf
this subroutine returns to the address in register 14 plus 4, the address of

an SYSE entrv is in register 2. When it returns to the address in register

14 plus 8, register 2 contains the address of a TIOT DDname that does not begin
with SYS.

46 DOS Emulator Logic

Initialization Second-Load Routine (IIVIN2) -- Flowcharts 3A-3F

The second-load initialization routine performs the following initialization:
. Moves temporary COMTAB extensions from COMTAB to available COMTAB extension

. Chains COMTAB entries to COMTAB extensions and chains together COMTARB
extension entries

. Sorts COMTAB entries

o Builds and initializes other Emulator tables, such as the ISX/SSK table,
the ECB pointer table, and the post ECB list

. Performs IPL from DOS resident volume

Moves Temporary COMTAB Extension

The COMTAB takle is searched for temporary COMTAB extension entries. All
temporary COMTAB extensions are moved to available COMTAB extension entries.

Chains COMTAB Entries and COMTAB Extensions

One COMTAB entry exists for every DOS PUB table entrvy being used. TIf a COMTAB
entry is marked for direct-access device sharing, then there exists at least
one COMTAB extension that is related to the COMTAB entry. A COMTAB extension
entry describes a data set residing on a DASD shared volume. <Chaining is
required since there may hbe a group of related COMTAB extensions associated
with one or more CCMTAB entries.

Each COMTAB entry is chained to the first related COMTAB extension entry and
all associated COMTAB extension entries are forward chained together (Figure
15).

Sorts COMTAB Entries

The COMTAB entries are sorted by the DOS channel and unit address and placed
in ascending order.

This section of initialization is enqueued by means of a master ENQ to ensure
that only one DOS Fmulator will be building a COMTAB at any given time. To
prevent more than one DOS Emulator from using the same OS direct-access device,
the 0S channel and unit address is also enqueued by means of a device ENQ.

At the end of the device enqueueing routine, a master DEQ is performed. Other
DOS Emulators may not use directraccess devices reserved by the device ENQ

for this Emulator unless both Emulators specify DISP=SHR in their DD statements.

Method of Operation 47

Communications Table COMTAB Extension

COMTAB
Extension
COMTAB Entry / Entry
\

\

\
/ |
|
N

Y
/\
|
I
)

/

I’/

" L
J/ ~ ’,-JJ s
fr/ ,/
One entry for every data set residing
on a shared direct-access device

One entry for every DOS PUB table entry used

———® COMTAB pointers to
COMTAB extension entries

————— B Pointers from one COMTAB
extension entry (CTEXT) to
related CTEXT (in the case of
2 data sets on the same volume)

Figure 15. Relationship of COMTAB to COMTAB Extension

48 DOS Emulator Logic

Builds and Initializes Other Emulator Tables

This section of initialization code obtains storage area and initializes the
ISK/SSK table, the ECB pointer table, and the post ECB list.

L One byte for every 2K byvtes of DOS storage is obtained for the ISX/SSK
table. This table is initialized to zeros.

. The size of the ECB pcinter table is the number of entries in COMTAR plus
3, times the length of one entry. Each entry consists of a 4-byte address.
Storage is obtained for this table; the first entry is initialized with
the address of the prompt ECB, the second with the address of the WTOR
ECB, and the third with the address of the timer ECB. The rest of the
entries are initialized sequentially with the addresses of the ECBs entered
in COMTAB.

. Storage is obtained for the post ECR list so that the list contains a list
of 2-bvte entries, each representing a COMTAB entry. The table is
initialized to zeros.

Performs IPL from DOS Resident Volume

The initialization second-load routine builds and opens a DCB for the DOS
system residence volume or the DOS system residence file if the shared DOS
system residence option has been selected. The COMTAB entry for the DOS
resident volume is modified to reflect that the volume is open and to contain
the address of the DCB. The data set specified in the SYSEMLBL DD statement
is opened if present.

DOS IPL is a two-phase.prcgram consisting of two DOS programs:
. $$ASIPL1, 64-byte bootstrap records, and
. $$ASTPL2, the first load of a DOS IPL phase of fewer than u096 bytes.

The DOS $8A$IPL1 bootstrar records are located on DOS SYSRES at 00 00 1 (cCe

HH R) and 00 00 2 (CC FH R). The Emulator builds the necessary channel programs
to read the bootstrap records into DOS storage at DOS location 0. The bootstrap
r2cords consists of a PSW at DOS location 0, followed by seven CCWs. The
Fmulator adjusts the data addresses in the last three CCWs. When these three
CCWs are executed, the DOS IPL phase ($%AIPL2) is loaded at location 12K in

DOS storage.

At this point, $$AS$IPL2 in the DOS storage area is ready for executing its
own IPL. TITIVIN2 scans the $3A$IPL2 phase for the first DOS instruction in
the loop that zeros the DOS storage area in search of the DOS system size.
When the initialization second-load routine finds that instruction (an MVC)
in $$AS$IPL2, it replaces the operation code with zeros.

Later, when DOS executes this instruction, it gets a program check. Control

is given to the Emulator program check executive routine (IIVPCE). The Emulator
simulates a program interruption for addressing, places the DOS storage area
ending address in register 11, and reenters local execution mode at the location
pointed to by the DOS program new PSW.

If staged I/O support has been requested, module ITVIN2 loads IIVSTG and IIVSDT.
If a //SYSDEBUG DD statement was present, module IIVIN2 calls IIVRAS to read
debugging parameters. The initialization second-load routine gives control

to module IIVRTE or, if error conditions were detected, module IIVENT. Figure
16 is a map of the Emulator region at this time.

Method of Operation

49

High
Storage
—
(
_____________ $SABIPL2
A (loaded at
DOS Clear Storage Routine] location 12K
DOS Storage _ _: in DOS
———————————— storage)
DOS Emulator <
——— —— — g — - e ——— — — = = — — — — = Bootstrap
PSW | cCcw | CCW String to Read $$A$IPL2 > records
N ! ' $SASIPL1
DOS Emulator Modules and Tables
.
Low
Storage

1 The Emulator zeroes out the op code of the first DOS instruction in the DOS clear storage routine.

Figure 16. O0S Region at Beginning of DOs IPL

50 DOS Emulator

Logic

TPL Add Routine (IIVADD) -- Flowcharts UA-4D

Module IIVADD is entered only when the DOSIPL parameter is coded with the AUTO
option. When IIVSVC calls this routine, it provides a pointer to a DOS channel
proagram that reads in the IPL control statements. When entered for the first
time, it finds the DOS temporary PUB table and fetches the beginning address

of COMTAB. Thereafter, processing begins with the next COMTAB entryv in the
table.

This routine checks the cuu entrv in the DOS PUB table against the cuu entry
in COMTAB and if a corresponding entrvy does not exist in COMTARB, the DOS PU3
table entry is deleted. The routine also provides an automatic set date and
time function during TPL.

The COMTAB is checked for D0OS cuu's that are not in the DOS PUB table. TIf

any are missing, this routine adds them to the table. To add a device to the
DOS PUB table, this routine builds a DOS ADD control statement image and places
it in the DOS innut area. Upon return to DOS, the IPL control statement image
provided by this routine will be processed.

When it is determined that all COMTAB entries have corresponding DOS PUB table

entries, a set date and time IPL control statement is built and passed to DOS.
The 0S date and time are used.

Open Routine (ITIVOPN) -- Flowcharts 5A-5D

This routine is called to open Emulator-allocated devices dynamically. The
caller suprlies a pointer to the COMTAB entry requiring the open. The open
routine gets dynamic storage for the DCB, initializes it, and places its address
in the COMTAB entry. The device is then opened to permit accessing.

Five major types of devices are opened by this routine (Figure 17):

. New volume mount

. Direct-access device

. Sequential device

. Staged device

. Teleprocessing device

Initialization

The calling routine places the address of the Emulator COMTAB entry for the
device to be opened in register 0. Register 15 is initialized with the entry
point to the open routine. The CTFLAG fields in the COMTAB entry indicate
whether the open request is for a new volume mount or for a DASD, a sequential
device, a teleprocessing device, or a staged device.

Method of Operation

51

11VOPN

Initialization

¢
' L ' ' '

New Volume Direct-Access . . . Teleprocessing
Mount Device (DASD) Sequential Device Staged Device Device

Y

Common QOpen

Figure 17. Open Subroutine Gross Flow

New Volume Mount

To perform an open operation for the purpose of mounting a new volume, this
subroutine gets the address of the existing DCB from the COMTAB entry. It
reads the JFCB into storage and changes the volume serial number. The new
volume serial number is retrieved from the Emulator CSECT IIVCON, where it
was placed by the prompt reply processor routine (IIVPRP).

Direct~-Access Device

Storage is obtained for the DCB, which is formatted to describe a direct-access
data set. The JFCB for this COMTAB entry is altered so that the data set name
is the same as that of the VTOC data set (X'0404......"').

Sequential Device

Dynamic storage is acquired and formatted to describe a sequential data set.
The JFCB is read into storage and modified for the bypassing of label
processing.

52 DOS Emulator Logic

Staged Device

storage is established for the staged Y/O DCB, it is formatted for either an
input or output direct-access data set, depending on the settings of CTFLAG2
bits 3 and 4. The IOB for staged I/O is a dummy IOB (STGCON) and is used as

a parameter area by the staged I/0 processing modules. It is formatted by
the open routine according to the DOS device type. Fcr more information on
the staged I/0 dummy IOB, see the staged I/0 routine (ITIVSTG). If the DCB

was initialized to reflect an output data set, the open operation is pexrformed
within the staged I/0 portion of the open routine; otherwise, the common open
for input issues the open request.

When module IIVOPN is entered to open a staged printer, print overflow
processing is invoked. Module YIIVOPN loads the correct FCB image from
SYS1.IMAGELIB and calls module IIVSTG to verify the image format and content.
If module YIVSTG returns a unit check in the staged IOB CSW, an invalid FCB
image has been obtained and emulation is terminated. TIf the SYS1.IMAGELIR
data set could not be opened, the open routine issues a WTOR (IIVJO40D) to let
the operator decide whether to continue without printer overflow support.

Teleprocessing Device

Dvnamic storage for a DCB is acquired and formatted to describe a sequential
data set.

Common Open

A common open operation for input is executed for most types of open requests
by this portion of the open routine. TIf the data set (file) is opened
successfully, this subroutine flags the COMTAB entry (CTFLAG=X'01'). If the
open operation terminated unsuccessfully, an error code is returned to the
caller in register 15. ¥X'04' indicates a successful open, and X'00' indicates
an error in opening the device.

When a direct-accass device other than a staged T/0 device is opened, the open
routine issues an EXCP to read the format 4 DSCB record from the VTOC. This
EXCP also allows the STIO arpendage to extend the DEB extents. By analyzing

the format 4 DSCB, the open routine determines whether the VTOC overlaps
cylinder boundaries and issues a message if it does. This subroutine scans

the VTOC for OS password data sets and does not permit use of volumes containing
such data sets.

OS PUB Table Build Routine (IIVPUR) =-- Flowcharts 6A-6F

This routine mapvs DOS I/0O control blocks *o 0S I/0 control blocks Ly means
of the Emulator 0OS PUB table. (Storage is obtained by module IIVGET.) An
OS PUB table entrv points to a COMTAB entry, which contains addresses of 0S
control blocks needed for I/0 operations.

This routine checks the DOS PUB table for a match of each COMTAB entry in the
DOS channel and unit address field. TIf a corresvonding DOS PUB table entrv
is not found, the Emulator is terminated. When a DOS PUB table entry for a
COMTAB entry is found, the COMTAB entry offset (X'00' for the first

Method of Operation

(S}
w

entry) is placed in the OS PUB table entry that corresponds to the DOS PUR
entry. An X'FF! in an OS PUB entry indicates that no COMTAB entry existed
for a DOS PUB table entrv.

This routine also establishes a pointer to the DOS CE serviceability routines

if these are surported (the CE table address field in the DOS background
communications region extension points to these routines). Tf the timer
function was requested by the user and is supported by DOS, the first STIMER

is issued. The addresses of the DOS background SYSRDR LUB (logical unit block),
background PIB (program information block), foreground 1 PIB, foreground 2

PIB, and beginning and ending addresses of the DOS B-transient area are
obtained. These addresses are adjusted to true addresses and saved in ITVCON,

If an abbreviated prompt was requested by the user, the one-line initial
Emulator prompt is formatted and issued. Otherwise, the standard three-line
injitial Erulator grompt is given.

If the Emulator JCL indicated a need for direct~vaccess volume sharing or indexed
sequential data set sharing, Emulator modules ITIVDVS, IIVGR2, IIVVIO, and TIVIS
are loaded.

If the shared DOS system residence option has been selected, the address of
the cylinder used for DOS labels is saved in EMUCONS.

IIVPUB exits to the caller (ITVSV(Q).

GETMAIN/FRFEMAIN Routine (IIVGET) -~ Flowchart 7A

This routine performs OS GETMAINs and FREEMAINSs.

GETMAIN

The caller provides ITIVGET with the amount of storage needed. The 0S GETMAIN
macro is issued and the return codes checked. 1If storage was successfully
obtained, this routine returns to the caller with the new storage address in
register 1. If dyrnamic storage was unavailable, a message is issued to the
console printer and emulation is terminated.

FRFEMAIN

The caller provides IIVGET with the amount of storage (register 0) and the
address of the first byte of the storage (register 1) to be freed. TIIVGET
issues an OS FREEMAIN macro and returns to the caller.

Ffor all errors during a GETMAIN or FREEMAIN operation, other than storage not

available, the operating system terminates the Emulator with a system completion
code.

Program Check Executive Routine (IIVPCE) -- Flowcharts 8a-8U

All program interruptions that occur in the DOS area are routed to this routine.
Upon entry, the 16 DOS general registers are saved in the EMUCONS save area
and program addressability is established.

54 DOS Emulator Logic

C

A check is made for a privileged operation interruption code in the current
DOS PSW. When the program interruption is caused by an attempt to execute
a privileged operation, control is passed to PCPRIVOP for further checking.

The first program interruption during IPL is intercepted, and control is passed
to the FIRSTPC subroutine for processing. All other program interruptions

are handled by a routine that causes the DOS current (local &xecution) PSW

to be moved to the DOS program old PSW (location 40 in the DOS area) and the
DOS program new PSW (location 104 in the DOS area) to be moved to the DOS
current (local execution) PSW location to simulate a program interruption.

At the common exit point for all simulation routines (PC20), the routine loads
the address of the Emulator asynchronous interrupt exit routine and exits to
that point. A reentry point (PC10) for program interruption simulation is
provided.

FIRSTPC Subroutine (Flowchart 8A)

To simulate the program interruption that normally occurs while main storage
is being set to binary zeros during DOS supervisor IPL, module IIVIN2 places
a 0 operation code in the DOS routine that performs this function. The

resulting program interruption is the first one to be intercepted by the program

check executive routine.

When given control, this subroutine checks for an operation exception
interruption code in the current PSW; if the check is negative, control is
returned to the program check executive routine at PC10 to simulate the program
interruption. Otherwise, the interruption code is changed to addressing, the
ending address of DOS main storage is placed in register 11 of the EMUCONS

DOS register save area, and the FRSTPC bit in the IPLSW switch is set to 0.
Control is then returned to the program check executive routine (entry point
PC10) to simulate the program interruption.

PCPRIVOP Subroutine (Flowchart 8Aa)

All privileged operation interruptions are checked to determine if they are

to be simulated. For such an interruption to qualify for simulation, the local
execution PSW must show the DOS partition to be operating in the supervisor
state (see Note in "Privileged Operation"), and the privileged operation must
be one of the following which are either supported or bypassed by the Emulator.

. ISK - Insert storage key, operation code X'09¢
. SSK - Set storage key, operation code X'08°"

. SSM - Set system mask, operation code X'80¢

. LPSW - Load PSW, operation code X'82¢

U TCH - Test channel operation code X'9F!

. TIO - Test I/0, operation code X*'9D!

U HTIO - Halt I/0, operation code X'9E' (BTAM only)
. SI0O - Start 1/0, operation code X'9C!

] ICTL - Load control, operation code X'B7!

. STCTL- Store control, operation code X'B6!'

. STIDP- Store CPU ID, operation code X'B202¢?

. STIDC- Store channel ID, operation code X'B203¢
. SCK - Set clock, operation code X'B204?

When both conditions are met, control passes to the proper simulation routine.
If both are not met, the routine exits to the program check executive routine
(entry point PC10) to simulate a program interruption.

Method of Operation

55

The condition code in the local execution PSW is set to 0 and control is passed
to entry point PC20 if the privileged operation is to be bypassed. Two
privileged instructions fall into this category; store channel ID (STIDC) and
set clock (SCK).

TISK Simulation Subroutine (Flowchart 8C)

This subroutine simulates the ISK instruction. A branch and link to the FINDKEY
subroutine is done to get the address of the R1 register of the ISK from the

DOS register save area of EMUCONS. The FINDKEY subroutine also gives the
address of the storage key in the ISK/SSK table for the block represented by
the address in the R2 register. The storage key is moved from the table into
bits 24-31 of the R1 register. Control is returned to the program check
executive routine (entry point PC20).

SSK Simulation Subroutine (Flowchart 8C)

This subroutine simulates the SSK instruction. A branch and link to the FINDKEY
subroutine is done to get the address of the R1 register in the DOS register
save area of EMUCONS and the address in the ISK/SSK table of the storage key

for the block represented by the address in the R2 register. Bits 24-31 of

the R1 register are moved into the table. Control is returned to the program
check executive routine (entry point PC20).

SSM Simulation Subroutine (Flowchart 8C)

This subroutine simulates the SSM instruction. The address of the new system
mask is obtained with the FINDADDR subroutine and the byte at the address is
moved into the first byte of the local execution PSW. Control is returned

to the program check executive routine (entry point PC20).

LPSW Simulation Subroutine (Flowchart 8D)

This subroutine simulates the LPSW instruction. The FINDADDR subroutine is
used to find the address of the new PSW. The eight bytes of data at that
address in the DOS area are moved to the local execution PSW.

Before the routine exits, a check is made to see if this is the first LPSY
during TPL. If not, exit is made to the program check executive routine (entrvy
point PC20). The first LPSW during TIPL should ke an =@nabled wait for the TIPL
interruption. Contxol is passed to entrv point INTRPT and the subroutine
checks the first PSW loaded bv the DOS IPIL routines. When the wait bit is

1 and interruptions are enabled, the expected interruption is simulated
according to the rarameter on the EXEC statement. If these conditions are
not met, control is returned to the program check executive routine at entry
point PC20. When they are met, the first LPSW bit switch in IPLSW is set to
0 and the interruption type is determined by examination of the DOSIPIL
parameter.

When DOSIPL=EXT, an external interruption is simulated. The DOS current (local
execution) PSW is moved to the external old PSW (location 24 in the DOS area),
and the external new PSW (location 88 in the DOS area) is moved to the local
execution PSW location.

56 DOS Emulator Logic

>

When the DOSIPL value contains a DOS channel and unit address, that address

is moved to the interrurtion code portion of the local execution PSW and an

I/0 interruption is simulated. The local execution PSW is moved to the I/O
0ld PSW (location 56 in the DOS area), and the I/0 new PSW (location 120 in

the DOS area) is moved to the local execution PSW location in the local
execution list. The CSW is set to 0 and the device end bit is turned on.

If the DOSIPL device is the DOS console, the attention bit in the CSW is also
turned on. Control is returned to the program check executive routine at entry
point PC20.

TCH Simulation Subroutine (Flowchart 8E)

This subroutine simulates the TCH instruction. The FINDCHAN subroutine is
used to obtain the channel and unit address from the instruction and the index
and absolute address of the first device entry on the channel in COMTAB.

The CTFLAG device busy bit in COMTAB is tested to see if any of the devices

on the channel are busy. TIf none are found to be busy, the condition code

in the local execution PSW is set to 0 (channel available). If one is found
to be busy, the NOP issued bit in CTFLAG3 is tested to determine if a device
end status is being awaited. If this bit is set, the next device is checked
for a busy condition; otherwise, the condition code is set to 2 (charmel busy).
Control is returned to the program check executive routine at entry point PC20.

TIO Simulation Subroutine (Flowcharts 8F-8G)

This subroutine simulates the TIO instruction. The FINDCHAN subroutine is
usad to obtain the channel and unit address from the instruction and the index
and absolute address of the first device entry on the channel from COMTAR.

The COMTARB entries are scanned, starting with the first device on the channel,
for the device being tested. If no match is found, the condition code in the
local execution PSW is set to 3 (device not operational). When a match is
made, a further test for device operational is made by testing the
nonoperational tit in the CTFLAG byte of COMTAB. If it is 1, the device is
not operational and the condition code is set to 3.

The CTFLAG device busy bit in COMTAB is tested for a value of 1 to determine
whether it is busy. W%When the bit is 0, the device is not busy unless the
device is a 2321 DASD unit {all 2321 bins used by DOS must be checked). ™hen
the device is not a 2321 or all bins are not busy, the current PSW condition
code is set to 0 (device available). When the device is busy, further testing
is required to determine if an interrurticn is pending.

The first check for interrupt pending is made on the ECB completion code.

During IPL, the ECPR is waited upon if i+ has not already been posted in order
to save going through a TIO loop until T/0 completion. Other times, the pending
I/0 table is scanned for an entry for the device. TIf the I/N is not complete,
the local execution PS% condition code is set to 2 (device busv).

When an I/ aperation has been completed, the ECR code, the COMTAR index, and
the address of the device entry are passed to the check subroutine (at entry
point CHECK2) to get the stored channel status word. Tpon return, the condition
code is set to 1 (CSVW stored).

Control is returned to the program check executive routine at entry point PC20.

Method of Nperation

57

HIO0 Simulation Subroutine (Flowchart 84)

This routine receives control when the privileged operation code HIO is
intercepted. The routine simulates the YIN instruction to DOS. The FINDCHAN
subroutine is used to oktain the channel and unit address from the instruction
and the index and absolute address of the first device on th2 channel from
COMTAB.

The COMTAB entries are scanned, starting with the first device on the channel,
for the device being tested. If no match is found, the condition code in the
local execution PSW is set to 3 (device not operational). When a match is

made, the routine tests the nonoperational bit in the CTFLAG bvte of COMTAB.

Tf i+ is 1, the device is not operational and the condition code is set to

3. The CTFLAG device busy bit in COMTAR is tested for a value of 1 to determine
whether it is busv or not. TIf the device is active, a halt I/0O operation is
performed.

This routine returns to thz calling routine at the address specified in the
return register of the calling routine. The return register is increased by
a value that determines the proper branch instruction in a branch table. The
calling sequence is as follows:

e Device not operational - Return to the program check executive routine
at entry point PC20.

o Device not busv (flagged 'not in use' by the Emulator) -~ Set CSWV status
to 0, set current (local execution) PSW condition code to 'CSW stored,!
and return to the program check executive routine at entrv point PC20.

SIO Subroutine (Flowcharts 8J-8N)

The SIO routine issues an 0S EXCP macro for the intercepted DOS SIO. DOS CCWs
are used, the addresses being adjusted from local to true addresses. The STO
routine is given control by the program check executive routine when the
privileged operation code is recognized as STIO.

The proper COMTAB entry is selected. (The COMTAB entries contain the various
Emulator parameters requir=2d for each device.) Norrally, the entry is found
bv means of DOS register 3, which contains a pointer to the appropriate DOS
PUB entry at SIO. The position of the current PUB in the DOS PUR table is
used as an index to an 0S PUB table created in the Emulator's initialization
phase. The indexed 0OS PUB entry contains an index of the proper COMTAB entry.

During IPL, before the DOS PUBs exist, and for CE serviceabilitv routine
operations (where DOS register 3 does not point to a PUB entry), the COMTAR
entry is determined by a search for channel and unit address in COMTAB. The
cuu is found by the FINDADDR subroutine. The DOS CAW local address is adijusted
to its true address.

If the device is a 2321 Data Cell Drive, the COMTAB entry, determined as
described above, is for the highest defined DOS bkin number. The entry for

the actual bin nurker to be used is determined by a search of all COMTAR entries
having the same DOS cuu for the bin number contained in the DASD seek address.
If a seek does not precede the channel rrogram, the address of the last 2321
COMTAB entry for the device is loaded from its save position in the last COMTAB
entry.

DOS is given a condition code of X'00' unless the device is busy (X'02') or
the device is flagged as not operational (X'03'). If the data set has not
been opened, the open routine (IIVOPN) is called.

If the device is a staged I/0 device, the SIO count is increased and control
is passed to module IIVSTG. If the device is DOSLOG, control is passed to
module IIVLOG. TIf the I/0 request was for a shared 0S indexed sequential data
set, the ECB in the associated TISBLK is posted and a branch is made to STOCNT.

58 DOS Emulator Logic

J

For direct-access I/0 operations, the SEEXTEST subroutine is called to determine
if the CCW operation code is seek. This routine also moves the correct DCB
address from the COMTAB extension to the IOB for shared volumes (see SEEKTEST
subroutine description for further details). The seek address is then moved

to the IOB. The initial CCW sequence of SEEK-TIC or SEEK-S®T FILE MASK-TIC

is bypassed. That is, the IOB CCW start address is set to point to the address
immediately after these cormands.

For direct-access devices only, flags are set for the stand-alone sense
operation or the stand-alone seek, since these commands do not have their
addresses adjusted to true addresses by ITIVCCW and, hence, must not be
readjusted when the I/O interruption occurs. The stand-alone seek is not
passed on to 0S, but is posted complete to DOS. That is, the ECB is posted
complete and the IOB CSW is posted.

For tape operations, the DOS initial SE™ MODE, if present, is moved to a save
area in the device's COMTAB entrv. This is necessary so that the DOS set mode
opcode can be moved to the OS DEB. The CCW addresses are adjusted to true
addresses beginning with the CCW immediately after these initial CCWs. 1If

a rewind-unload is issued by DOS, an 'intervention required' message is printed
by the Emulator if any further I/0 is requested on that tape drive.

Module IIVCCW is called to adjust CCWs. The IIVCCW routine returns to the
address in register 14 plus 0 (error) or 4 (normal). The error return indicates
that an error condition was detected during CCW adjustment. The program check
bit is set in the DOS CSW status, the condition code is set to 'CSW stored:?,

and a return to entry point PC20 is made.

SEEKTEST Subroutine (Flowchart 8K)

This subroutine gains control to determine if the operation code of a DASD
CCW is seek. If it is found to be seek, the address of the DASD seek is
returned to the caller. Control is returned to the caller.

SEEKDVS Subroutine (Flowchart 8P)

The DASD seek address is then compared with each lower and upper read or write
track address in the DEB. If the seek address does €all within a set of DEB
extents, the associated DCB address is moved from the COMTAB extension to the
I0B and control is returned to the caller. Otherwise, the next COMTAR extension
is checked. If no match is found, control is agiven to module IIVVIO to
determine whether the seek (and channel program) is for a DOS access to VOL1,
F1, or F3. TIVVIO returns a condition code of 0 when the I/O has to be issued,
a condition code of 4 when the I/0 has to be simulated, or a condition code

of 8 when the seek address is invalid. 1In the last case, the routine exits

to the exit-ABEND error routine (TIVABN) after issuing the INVALID SEEK message.

FINDCHAN Subroutine (Flowchart 8Q)

This subroutine is used by the TCH, HIO, and TIO instructions to obtain the
channel and unit address, the device entryv index into COMTAB, and the absolute
address of the device entry in COMTAB. The channel and unit address is obtained
from the FINDADPDR subroutine and stored at CHANUNIT in EMUCONS. The channel
number is used to index into the CHNINDX table to determine whether the channel
is supported bv the Emulator. When the channel is not supported, the condition
code in the local execution PSW is set to 3 (not operational) and exit is made
to the program check executive routine entrv point PC20.

Method of Operation

59

The index into COMTAB for supported channels is obtained from the CHNINDX table
and multiplied by the COMTABR entry length. The resul+ plus the starting address
of COMTAR is returned to the caller in register RWU4EU. The channel index value
is returned in register RWOEU. Return is to the address in register RBOCN.

TINDACDR Subroutine (Flowchart 8R)

This subroutine is used to determine the absolute value of the BLDD portion

of a DOS privileged operation instruction. The base register bits are used

as an index to locate the register value in the register save area. The 1
1/2-byte displacement value is added to the value contained in the register
save area to oktain the effective address. Tf the instruction has an I/0 code
(™ for X'9C'), the address adjustment factor is not added; it is in all other
cases. The resulting value is returned in register RY2EU and return is made
to the caller bv a branch to the address in register RLOEU.

FINDKEY Subroutine (Flowchart 8S)

This subroutine analyzes the YSK or SSK instruction to oktain the address of
the R1 register in the instruction and the address of the entry in the TSK/SSK
table that corresponds to the address value in the R2 register. When a main-
storage address larger than the DOS area is specified in R2, an addressing
program interruption is simulated.

The address of the R1 register is retirned in register RWUEU and the address
of the 1-byte entry in the ISK/SSK table is returned in register RW3EU.

Load/Store Control Redister Subroutine (Flowchart 8T)

The two instructions (load control and store control) are simulated only to
+the extent that control register information is preserved in EMUCONS for
retrieval by DOS.

Load Control Register. Control register information (starting at the DOS main-
storage address specified in the LCTL instruction and continuing through as
many storage words as the number of control registers specified) is moved into
the control register field labeled CTLREGS in EMUCONS.

Store Control Register. Control register information is moved from the control
register field labeled CTLREGS in EMUCONS to the DCS main-storage address
specified by the STCTL instruction and continuing through as many storage words
as the number of control registers specified.

Store CPU ID Subroutine (Flowchart 8S)

Eight bytes of CPU identification information are moved from a field (labeled
CPUID) in EMUCONS to the DOS main-storage address specified in the STIDP
instruction. The CPUID field in EMUCONS is initialized by the Emulator start
I70 appendage.

60 DOS Emulator Logic

Set Clock Subroutine (Flowchart 8U)

The Emulator set clock subroutine gains control when an SCK instruction
(operation code is X'B20u4') is executed by DOS. This routine has two major
functions:

. Compute and save in EMUCONS the absolute value of the difference between
the 0S time-of-day clock and the value addressed by the SCK instruction

) Locate and invalidate the STCK instruction (store clock) in the DOS SVC
34 routine. The main-storage address of the STCK instruction is saved
in EMUCONS so that the program check (oreration exception) can later be
identified as the STCK instruction. No action is taken if the STCK
instruction is not found.

control is passed to entry point PC20 in IIVPCE for return to DOS.

Store Clock Subroutine (Flowchart 8U)

The Emulator store clock subroutine gains control after the program check
caused by the DOS invalidated STCK instruction occurs. The address contained
in the operation pointer field in the local execution list is compared with
the address saved in EMNCONS by the set clock subroutine. A program check
will be passed back to DOS if these addresses are not equal.

An B8-byte field in FMUCONS labeled TD®LTA will contain the absolute value of
the difference between the 0S time-of-dav value and the DOS time-of-day value.
A switch labeled S370SW (in EMUCONS) will have bit 4 set to one if TDELTA is
to be subtracted from the 0S time-of-day value. The result is stored in DOS
main storaage addressed by the STCK instruction. Control is passed to entry
point PC20 in IIVPCE for return to DOS.

Check I/0 Routine (ITVCHK) -- Flowcharts 9A-9D

T™he main function of this routine is to post the DOS CSW when an I/0
interruovtion occurs. The information posted is obtained from the TIOB CSW.

The routine receives ccntrcl from module ITVRTE when an outstanding posted
I/0 interruption is recognized. The routine is also entered by the TIO
simulation subroutine (module ITVPCE) to post the DOS CSW.

The routine readjusts the CCW addresses to their local values. This is not
required for operations flagged by module TIVPCE at STO as being a stand-alone
sense or seek.

For the shared DOS residence option, a DOS read to record 1 of the DOS svstem
directory (CCHHR=X'0006000101') will cause the DOS lakel cvlinder address to
be moved from EMUCONS to the related field in the TOS input area. This is
done to ensure that the proper label cylinder is being accessed.

For BTAM devices, the CCW chain issued is tested to determine if it is the

chain used in polling with an autopcll wrarclist. TIf it is, the fifth and sixth

(and for start/stop devices, the seventh) CCWs are readjusted without using
module ITVCCW. This is necessary since NOS BTAM modifies these CCW chains,
causing the readjustment module JIVCCW +o0 lose a path to these cormands.

The routine issues a NOP operation to the device if the operation completes
normally (completion code X'7F') and a channel-end only has been posted. This
is performed to obtain device end conditions to be passed to DOS if the NOP

is intercepted. If it is not intercepted, a CSW with only a device end
condition is passed to DOS.

Method of Overation

61

is performed to obtain device end conditions to be passed to DOS if the NOP
is intercepted. TIf it is not intercepted, a CSW with only a device end
condition is passed to DOS.

For all devices except DOS BTAM, if OS has posted a permanent I/0 error for
other than a rewind-unload operation, the routine posts a high error count
to DOS to prevent DOS retries. The count is stored in the DOS PUB table.
For tape, if TEBs are present, the count is stored in the TEB. If no TEBs
are present, the count is stored in the TEBV if TEBVs are present.

For rewind-unload operations, two situations exist. In one case, an operator
intervention is required, in which event the Emulator again issues a NOP as
it does to force device end. The object of this NOP is to force 0S to wait
for the device to be readied, which will result in the Emulator simulating
an unsolicited device end to DOS. The FPSW flag is on to indicate this
situation. In the other case, intervention may not be required at all;
therefore, the Emulator arbitrarily simulates an unsolicited device end to
DOS. This is done as DOS has no indication of an actual unsolicited device
end and may be waiting for one. The DEON flag is turned on to indicate both
situations and the simulated interruption is queued in the post ECB list.

The routine transfers control to module IIVABN to post a channel end program

check to DOS if module IIVCCW returns indicating an invalid CCW. This causes
DOS to cancel the partition in which the error occurred.

Interpretive SYSLOG Routine (IIVLOG) =-- Flowcharts 10A«10E

This routine interprets IBM 1052 Printer Keyboard CCW chains and issues WTO

or WTOR as required by the channel program. All alarm commands are translated
to NOP. Both data and command chaining are supported. Control is passed to
this routine by the program check executive routine (ITVPCE).

Initialization

The dAummy IOB for SYSLOG and the codes and flags used by the routine are
initialized. The CAW verification routine (IIVAWV) and CCW verification routine
(IIVCWV) are called to validate the DOS CAW and CCWs, respectively. If the

CAW or a CCW is invalid and it was the first CCW of a chain, the PSW condition
code is set to 01 and control is given to the exit subroutine. If the CAW
and/or CCW is wvalid, the command code is validated and translated to an index
value to be used with a branch table to go to the proper processing subroutine.
The index values are:

00 - Invalid command code
04 - NOP/alarm
08 - Sense
10 - Write with automatic carriage return
14 - Write with no automatic carriage return
0C - Read
Invalid Command Code. This subroutine sets either the cormand reject bit in

the sense byte and the unit check bit in the status byte or, if the 4 low-order
bits of the command code are 0, the program check bit in the status byte.

62 DOS Emulator Logic

NOP/Alarm. TIf the CCW is the first in a chain, the PSW condition code is set
to 01. Control is given to the exit subroutine, bypassing the first CCW check
in exit.

Sense. The sense byte is moved to the data area specified in the CCW and
control is given to the exit subroutine.

Read. If a previous WTO is still outstanding, the WTO message is moved to

the output area of the WITOR. The total reply length is obtained from the CCW
and placed in the output area of the WTOR. The WTOR is then issued, the route
switch is set on, and control is passed to the asynchronous interrupt exit
routine (IIVRTE).

When the ECB associated with the WTOR is posted, control is passed to the
remainder of the read subroutine. The reply is moved to the storage area
specified by the data address in the CCW. If a continuation was requested

in the reply, the data address and reply length are modified and control is
passed to the read subroutine to issue another WTOR. If the reply is complete,
control is passed to the exit subroutine.

Write. Tests are made to determine if data chaining or no automatic carriage
return was specified in the previous CCW. If not, and the previous CCW was

a write, the previously assembled WTO is issued. After the length and addresses
of the current message are determined, a check is made to see if the length

is greater than the maximum allowed for a WTo. If so, the message is broken
into successive WTOs until the length of the remaining message is less than

or equal to the maximum. One pending WTO is always left. Control is then
passed to the exit subroutine.

Exit. If the CCW is the first in a chain, the PSW condition code is set to
00. The sense byte is cleared for the next command and the CCW address is
increased to point to the next CCW.

D) If the current chaining flags are on, control is returned to the
initialization subroutine at the point where module IIVCWV is called.

) If no chaining flags are on, the device end and channel end bits in the
status byte are set on.

. If a WTO is pending, the WTO is issued.

. If the route switch is on, the SYSLOG interruption pending flag is set
on and control is passed to entry point IIVRTER2 in the route routine.

. If the route switch is off and the PSW condition code is 00, the SYSLOG
interruption pending flag is set on.

. If the PSW condition code is 01, the DOS CSW is posted.

The routine exits to the asynchronous interrupt exit routine (IIVRTE) at entry
point IIVRTER2.

control will be returned to the IIVLOGR1 or IIVLOGR2 subroutines by the select
routine if the SYSLOG interruption pending flag is on.

Dummy SYSLOG I/O Interruption

Control is passed to the IIVLOGR1 or the IIVLOGR2 subroutine by the select
routine (ITVRTESL) when the SYSLOG interruption pending flag is on.

Method of Operation 63

The SYSLOG interruption pending flag is set off, the DOS CSW is posted, and
the DOS I/O interruption action is performed. Control is passed to the
asynchronous interrupt exit routine (IIVRTER2). ,

Staged I/0 Routine (IIVSTG) -- Flowcharts 11A-11N

Module IIVSTG contains the main logic required to stage input and output
devices. During Emulator initialization, an IOB for each device defined in

a DD statement is created. In the case of staged I/0, this area contains
information that describes the unique characteristics of the device being
staged, that is, print size, valid command codes, etc. This area also contains
switches that indicate the function to be performed. (See STGCON in 'Data
Areas' for format.)

Module IIVSTG receives control from module IIVPCE at DOS SIO. The contents
of all registers are saved, and the channel status word in STGCON is reset
to 0. STGSEN1 is moved to STGSENO and set to 0. STGSENO is given to DOS
whenever a sense command is issued.

ITVAWY is called to validate the DOS CAW and initialize the CCW pointer in
STGCON (STGCCW) . Module IIVAWV sets the program check bit in the CSW contained
in STGCON if it encountered any errors. TUpon return from IIVAWV, a test is
made to see if the program check bit was set. If it was, the CSW in STGCON

is moved into location 64 in DOS storage, the condition code in the local
execution PSW is set to CSW stored (01), and control is given to IIVRTER2.

If no errors were encountered, IIVCWV is called. This module checks the

validity of the CCW addressed by STGCCW in STGCON. If the CCW is a TIC, the

CCW pointer (STGCCW) is altered to point to the CCW addressed by the TIC.

If any errors are encountered, the program check bit is set in the CSW contained

in STGCON (STGCSW). Upon return from IIVCWV, a test is made to see if the '
program check bit was set. If it was, the following action is taken.

1. If the erroneous CCW is the first CCW in a chain (the CCW addressed by
the CAW), the CSW is moved from STGCON to location 64 of DOS storage.
The condition code in the local execution PSW is set to CSW stored (01),
and control is given to IIVRTER2.

2. In all other cases, a hexadecimal 7F is moved into the high-order byte
of the ECB for the device being staged. The pending interruption is later
given to DOS in the same manner as for nonstaged devices. Control is given
to IIVRTER2.

If no errors were discovered by IIVCWV, the data chaining bit is checked in
the DOS CCW. If it is set, the program check bit is set in the CSW in STGCON
and the same action is then taken as if the program check bit were set by
module IIVCWV.

If the 4 low-order bits of the CCW command code are 0, the program check bit
in the CSW is set to 1 and control is passed to IIVRTER2. Otherwise, the CCW
operation code is translated according to the translate table whose address

is contained in the STGOPCD field in STGCON. If the result of the translation
is 0, the unit check bit in the CSW is set, the command reject bit in the
current sense byte in STGCON (STGSEN1) is set, the ECB for the device being
staged is posted, and control is given to IIVRTER2.

If the CCW command code is valid, it is checked for being a sense command.

If it is a sense command, the sense information is taken from STGSENO and moved

to the address contained in the DOS CCW plus the adjustment factor. STGSENO

is then set to 0. If no errors were encountered up to this point, the command

chaining bit is checked. 1If it is set, STGCCW is increased by 8 and the next

CCW is processed. (If it is not set, refer to "Staged Output.") ,

(Y] DOS Emulator Logic

If the command code is NOP, the command chaining bit is checked, If it is set,
STGCCW is increased by 8 and the process is repeated for the next CCW.

STGMAX in STGCON contains the maximum number of bytes that can be transmitted
to or from the unit-record device that is being staged. If the count field

in the DOS CCW contains a value greater than the value in STGMAX, the residual
count is computed and stored in the residual count field in the CSW. The
incorrect length bit is also set in the CSW in STGCON if the SLI bit in the
CCW being processed is not set.

Staged Input

If the first command to a staged reader is a feed-stacker select, the unusual
sequence bit in STGSEN1 in STGCON is set (to simulate hardware procedures),

the unit check bit is set in the status portion of the CSW in STGCON, the ECB
for the device being staged is posted, and control is given to IIVRTER2. The
same thing is done for any unusual sequence of commands. Successive commands
specifying read without feed cause the same input record to be passed to DOS.

If EODAD (bit 5) in STGFLG is set, a /& is generated within the DOS input area
and EOD is set in STGFLG to pass back a unit exception for the next input
request. A GET is issued using get locate mode. A test is made for the SYNAD
flag in STGFLG to see if there was a permanent error. If there was an error,
the unit check bit is set in the CSW in STGCON and control is given to IIVRTER2.

If there were no errors and the suppress data transfer bit in the CCW is set,
no data is moved into the DOS input area. Otherwise, the number of bytes
specified in the count field of the CCW or STGMAX, whichever is less, is moved
into the DOS input area. The first 2 bytes of the input data record are saved
in STGDLM in STGCON. The EODAD subroutine uses this information to determine
whether to generate a /*, /&, or both before sending back a unit exception.
Control is then given to STGIO110 to check for command chaining.

Staged Output

If the output device being staged is a printer, the initial output request
causes a skip-to-channel-1 command to be issued, followed by the DDname of

the data set being written and by another skip to channel 1. If the device

is a punch, the stacker bits in the command address portion of the CCW are
examined to determine whether that particular stacker has been selected during
this emulation run for the device being staged. If not, three separator cards
that contain the DDname of the data set being staged are written before the
output request is staged.

Print commands for the 3525 punch are compared with the last print command
issued by DOS. Control is given to CMNDREJ if the line number indicated in
the current command is not greater than the line number in the last command,
otherwise, the last print command field in STGCON (labeled STGLCMD) is updated
with the current print command.

The DCBLRECL field of the DCB is modified to reflect the length of the current
output record. A PUT is issued and the buffer address is obtained from register
1. The SYNAD bit in STGFLG is tested to determine whether a permanent I/O

error had occurred. TIf this bit is set, the unit check bit is set in the

status portion of the CSW in STGCON and the device not operational bit (X'02')
is set in the CTFLAG field of COMTAB. This, in effect, causes the DOS device

to be permanently disabled for the remainder of the Emulator run. If no I/O
error had occurred, the record descriptor word in the output buffer (which
contains variable length records) is set with the value that was placed in
CCEBLRECL.

Method of Operation

65

If the staged device is a printer and if module IIVPOV was included during

the Emulator link-edit, a branch and link to that module is issued to simulate
the carriage tape operation normally performed by the printer. This routine
aids DOS printer overflow by simulating channel 9 and 12 interruptions to DOS.

When control is regained from IIVPOV, the status portion of the CSW in STGCON
is tested for unusual conditions that might have occurred, such as unit check
or incorrect length.

If any unusual conditions had occurred or if no command chaining is specified,
the ECB for the staged device is posted and control is given to IIVRTER2.

If command chaining is specified, the CCW pointer in STGCON (STGCCW) is
increased by 8 and the routine starts processing the next CCW in the chain.

If the FIRSTCCW flag in STGFLG is not set after entry at CSWSTOR, a branch

to INTPEND is issued. Otherwise, the staged device cuu is moved into the
interruption field of the local execution PSW. The condition code in the local
execution PSW is set to 1 (CSW stored). The CCW address is readjusted,
increased by 8, and stored in the command address portion of the CSW in STGCON
(address 68). Control is passed to the route routine (IIVRTER2).

After entry at INTPEND, the address of the last CCW processed is readjusted,
increased by 8, and stored in the command address portion of the STGCON CSW.
The condition code in the local execution PSW is set to 0, channel end and
device end in the STGCON CSW are set, the ECB in COMTAB is posted, and control
is given to the route routine (IIVRTER2).

SENSE is entered if the CCW being processed is a sense command (op code X'04').
The SYNAD bit in STGFLG is tested to determine whether a permanent input error
had previously occurred. (IIVSTG does not receive control after a permanent
output error.) TIf the SYNAD bit is set, the unit check bit in the CSW in
STGCON is set to 1 and the SYNAD bit is reset to 0. This causes an 'error-
on-recovery'! condition when DOS regains control, and the DOS problem program
that issued the erroneous read is terminated.

If there were no input errors, the residual count is computed and stored in

the CSW in STGCON. The CCW data address is adjusted by the adjustment factor
in the local execution list. The simulated sense byvte (STGSENO) is moved to
the adjusted data address only if the suppress data-transfer bit in the CCW

is set to 1. The incorrect length (TLC) bit is set in the CSW in STGCON if

the SLI bit in the CCW is not set to 1 and if there is a residual count greater
than 0 in the CSW. Control is then given back to the main routine to check

for error conditions and CCW command chaining (see "Staged Output").

After entry at CMNDREJ, the command reject bit (bit 0) in STGSEN1 is set.
The unit check bit is set to 1 in the status portion of the CSW in the dummy
IOB area (STGCON). Control is passed to entry point INTPEND.

Read FCB Subroutine (Flowchart 11L)

This routine gains control at STGIO300 when a read FCB command is encountered
by module IIVSTG. The data area is initialized to 0 up to the length specified
in the count field of the CCW or 180 bytes, whichever is less. The Emulator
forms-control image is converted to its FCB format, one line image at a time.
The lines-per-inch flag is set in the first byte of the FCB if it is present
in STGCHFLG in STGCON; the end-of-forms flag in the last byte of the FCB is
set if the count in the CCW was equal to or greater than the length, in bytes,
of the FCB image. The residual count, if it exists, is computed and placed
in the CSW in STGCON, and the incorrect length bit is set if the SLI bit in
the CCW is not set to 1. Control is then passed to STGIO110 to check for
command chaining.

66 DOS Emulator Logic

Load FCB Subroutine (Flowchart 11M)

This routine gains control at entry point STGI0200 when a load FCB command
is encountered at the beginning of staged I/0 or when module IIVOPN passes
it control because an Emulator forms-control image must be created.

A FREEMAIN is issued to release the main-storage area where the existing image
resides. A GETMAIN is then issued to obtain main storage for the new image.

The unit check bit is set in the status portion of the CSW in STGCON and a
load check is set in the sense byte under the following conditions:

o The absence of the end-of-forms flag in the last position of the FCB data
° A value greater than X'0C' in any line position in the FCB data

The lines-per-inch flag, if present, is saved in STGCHFLG so that when an FCB

is built by module IIVSTG when a read FCB command is issued, the FCB will be
identical to that loaded previously. The STGCHFLG, STGCTP, STGLNPTR, and
STGLNCNT fields in STGCON are reinitialized. Control is returned to the caller
after the new Emulator forms-control image is built. See the module description
for IIVPOV for further discussion of forms control.

EODAD Subroutine (Flowchart 11N)

This subroutine (entry point EODA) is given control by QSAM when an end-of-
file (EOF) condition is encountered.

The STGDLM field in STGCON contains the first two characters of the input
record from the last read operation. If STGDLM contains a /&, the unit
exception bit in the status portion of the STGCON CSW is set. The EOD bit

in STGFLG is set to 1 so that any future input request will result in a unit
exception condition. The ECB for the device being staged is posted and control
is given to the route routine (IIVRTER2).

If STGDLM contains a /*, a /& is generated at the address contained in the
data address portion of the CCW being processed. The EOD switch in STGFLG
is then set to 1 and the command chaining flag in the CCW is tested. If no
command chaining was specified, the ECB is posted and control is given to
IIVRTER2.

If STGDLM contains neither a /& nor a /*, the EODAD bit in STGFLG is set to
1. (This will cause a /& to be generated during the next input request.) A
/* is generated at the address contained in the data address portion of the
CCW being processed. If no command chaining was specified, the ECR is posted
and control is given to IIVRTER2.

EODAD contains a secondary entry point (EOF010) used to blank out the DOS input
area whenever a /* or a /& is to be generated.

SYNAD Subroutine (Flowchart 11N)

This subroutine (entry point SYNA) is given control by QSAM when a permanent
input or output error is encountered. The SYNAD bit in STGFLG is set to 1
and control is returned to O0S. The main routine, in turn, regains control
from OsS.

Method of Operation

67

CAW Verification Routine (ITVAWV) =-- Flowchart 12A

Module IIVAWV validates the DOS CAW and initializes the CCW pointer in STGCON.
If the CAW is found to contain errors, the CSW program check bit is set and
control is returned to the caller.

The following conditions will cause the program check bit in the CSW to be
set:

. A nonzero value found in bits 4-7 of the CAW
. A command address not on a doubleword boundary

. A command address greater than the limit address in the local execution
list

The following fields in STGCON may be modified by this routine:
e The status portion of the CSW maintained for this device (SCSWST?2)
o The CCW pointer maintained for this device (STGCCW)

e The work byte in STGCON for this device (STGWK1)

CCW Verification Routine (IIVCWV) -- Flowchart 13A

Module IIVCWV validates and interprets DOS CCWs for IIVSTG and ITVLOG. Tf
a CCW is found to be in error, the CSW program check bit is set and control
is returned to the caller.

The following conditions will cause the program check bit in the CSW to be
set:

. A nonzero value in bits 37-39 of the CCW

. A TIC as the first CCW (that is, the CCW addressed by the CAW)
. T™wo TICs with no intervening CCW

. A 0 in the count field of non-TIC CCWs

. A data address greater than the value in the limit address in the local
execution list minus the count

. A command address in a TIC greater than the limit address in the local
execution list

° A command address in a TIC not on a doubleword boundary

If the command code in the CCW being interpreted is a TIC, the CCW pointer
in STGCON (STGCCW) is altered to point to the cCW addressed by the TIC.

The following fields in STGCON may be modified by this routine:
. The status portion of the CSW that is maintained for this device (SCSWST2)
J The CCW pointer that is maintained for this device (STGCCW)

J The work byte in STGCON for this device (STGWK1)

68 DOS Emulator Logic

Printer Overflow Routine (IIVPOV) -- Flowchart 14A

Module IIVPOV maintains the simulated sense byte and status portion of the
CSW for staged printers. IIVPOV simulates the carriage tape operation that
is normally performed by the printer during output staging.

The in-storage, forms-control table defines to the Emulator the presence and
position of forms-control channels for staged printers. Each entry in this
table, addressed by STGFCT in STGCON, is a halfword in length. Only the low
order 12 bits are utilized to represent one of 12 possible channels. Channels
are ascending from left to right. The pointer is updated according to the
CCW operation code. Within each entry, a 1 bit indicates a punch and a 0 bit
indicates no punch.

Module IIVSTG issues as its first PUT for staged printers a skip to channel

1. In order to calibrate the forms-control pointer to the printed output,
module IIVPOV receives control from IIVSTG with a dummy-skip-to-channel=«1
command (only if channel 1 was defined in the FCB). The forms-control pointer
is initially defined to point to the first entry in the table. The dummy skip
to channel 1 causes the forms-control pointer to point to the first channel

1 entry in the table. Each DOS output request thereafter changes the value

of the pointer. When the pointer reaches the end of the table, it is
reinitialized and the process is repeated.

Upon entry, IIVPOV determines whether the operation code indicates a space

command or skip command. If it is a space command, a branch to entry point
SPACE is performed. Within SPACE, the line pointer is retrieved from STGCON
and updated. If it points to the end of the table, it is reinitialized. A
branch and link to entry point FETCH is performed. RWI1EU contains the tape

image for the current line upon return from FETCH. The image is right-adjusted.

A test for channel 12 is performed. 1If that bit is present, the unit exception
bit is turned on in the simulated channel status word.

A test for channel 9 is performed. If that bit is present, the channel 9
indication (bit 7 in the simulated sense byte) and unit check bit in the
simulated channel status word is set.

Multiple spaces are simulated one space at a time. Control is returned to
retrieve the line pointer again if the command was a double or triple space.
This process continues until all the spaces are simulated. Control is then
returned to the main routine.

If the command code indicated a skip was to be performed, SKIP is entered.
Within SKIP, the channel number is converted from its binary value to its

storage format. A 12-bit constant (STGCHFLG) is tested. This constant contains

a 1 bit if the corresponding channel is present in the in-storage carriage
tape, and a 0 bit if not. The line pointer remains unchanged if there is a
skip to a nonexistent channel. If the staged device has the FCB feature, a
unit check and data check are passed back to DOS.

A branch and link to FETCH is performed. Upon return from FETCH, RW1EU contains

the in-storage tape image for this line. The in-storage tape image is compared
with the channel to be skipped to. Control is returned to the calling routine
if the two are equal. Otherwise, the line pointer is updated and the next
entry is checked. This process continues until a match is found.

Adjust CCW Data Address Routine (IIVCCW) ~-- Flowcharts 15A-15F

A basic knowledge of the format and function of the CCW is needed to become
familiar with the operation of this routine. See System/360 Principles of
Operation, GA22-6821, for this information.

Method of Operation

69

The following input information must bte passed to this routine by the calling
routine: the address of the CCW string to be adjusted, the adjustment factor
to be used, and the limit address of the emulated DOS program. This data is
passed through the adjust CCW data address list. (See the Appendix for the
format and function of this list.)

This routine adds an adjustment factor to the data address of each CCW in a
string passed to this routine by the calling routine. When an SIO is issued
bv DOS with this string of CCWs, the data addresses in the CCWs will be local
addresses. The adjustment factor passed to this routine will be positive.
When this positive adjustment factor is added to the local data addressed in
the CCWs, these addresses will be changed to true addresses that can be used
by 0S.

When 0S finishes processing the SIO, the same string of CCWs is returned to
this routine with a negative adjustment factor. When this factor is added
to the CCW data addresses, the true data addresses will be changed to local
data addresses that the emulated DOS program can use.

This routine uses two tables in its operation.

The first is called the beginning and end block (BE3LK) and consists of 30
8-byte entries. The first 4 bytes of an entry contain the true beginning
address of the continuous group of CCWs in the CCW string being adjusted.
The second U4 byvtes contain the true end address of the continuous group of
CCWs. The first bit of each entry is used as a completion indicator to show
whether that grour of CCWs has been processed. If the bit is 1, the group
has been processed; if 0, it has not been processed.

When this routine encounters two different paths in the CCW string being
processed, it continues processing one path and builds an entry in BEBLF
indicating which path has not yet been processed. This entrv is called an
incomplete BEBLK entrv. As each incomplete BEBIX entry is created, it is
placed in BEBLK, starting at the end and working backward. The normal BEBLX
entries start at the beginning of BEBL¥ and work forward. In the incomgplete
entry, the first 4 bytes are the TIC address, the fifth byte is the operation
bvte, and the last 3 bytes are the operation vointer. All of these wvalues
are taken from the adjust CCW data address list.

The other table used by this routine is called the status modifier table.

This is a 256-byte translate and test table that contains the CCW command codes
for the devices supvorted by the Emulator that cause the channel to return

a status modifier condition when a CCW's condition is met.

Because it is possible to add the adjustment factor to a single CCW more than
once, this routine uses a two-ster method to adjust the data addresses in the
CCW string. It is possible to add the adjustment factor more than once because
the CCW string uses a CCW more than once in perforring its operation.

During the first step, this routine adjusts the data address portion of each
CCW in a string of CCWs with an adjustment factor of zero. This is Aone so
that BEBLK entries can be created for each contiguous group of CCWs in the
CCW string. As =ach BEBLK entry is created, this routine will branch to the
combine subroutine to have duplicate groups of CCWs eliminated from BEBLK.

After the entire groups of CCW string has been processed and all duplicate
groups of CCWs have been eliminated from BEBLK, the second step of this routine
is performed. The data addresses of the CCWs defined by each entry in the
BEBLK table are adjusted. The CCWs within each group that is represented bv

a BEBLK entry have their data addresses adjusted by an adjustment factor that
is passed by the calling routine. Therefore, if this adjustment factor is
positive, the CCW data addresses are changed from local to true addresses;

if the adjustment factor is negative, the CCW data addresses are changed from
true to local addresses.

70 DOS Emulator Logic

If anv addressability, protection, or specification errors are detected by
the adjust CCW string instruction or BEBLK is filled, this routine returns
control to the calling routine's return point.

If the byte count of a CCW in the CCW string being processed by this routine
is added to the true address created for that CCW by this routine and the
resultant address exceeds the emulated DOS program's limit address (passed
to this routine by the calling routine), the SLI bit in this CCW is tested.
If the SLI bit is on, this routine assumes that the storage area addressed
by this CCW will not exceed the emulated DOS program's storage area and
continues processing this CCW string.

Upon normal completion of this routine's operation, control is returned to
the address 4 bytes bevond the calling routine's return point.

This routine sets the ABEND interception switch before adjusting CCWs. Tt
then resets the switch after the adjustment is complete. If the ABEND
interception is taken, the caller's registers are restored and control is
passed to IIVAB4. At this time an ABEND error code of 16 is set in register
1 and control is returned to the caller.

Combine Subroutine (Flowchart 15F)

This routine eliminates any duplicate CCWs from the BEBLX table by combining

an entrv with a begirning and/or ending address that falls within the beginning
and/or ending address of ancther entry, into the same entry. The routine also

tests the last CCW of the current BEBLK entry to see if it is a TIC. If it

is a TIC, this routine tests all BEBLK entries to see if the MIC command address

is in BEBLK.

If this routine is able to corbine the current BEBLK entry into any of the

other entries, it turns the combine switch on to indicate to the calling routine

that it has done so.

If this routine found the TIC command address in BEBLK, it turns the TIC-TO
switch on to indicate to the calling routine that the TIC command address has
already been procassed by the adjust CCW data address routine.

If this routine is able to combine the current BFEBLK entry into BEBLK, the
CCW string being adjusted has lcoped into an area of itself that has already
been processed. If this cccurs and there are no incomplete paths of the CCW
string to be processed, the theoretical end of the CCW string being adjusted
has been reached.

CCW Adjustment Routine (TIVADJ) -- Flowcharts 16A-16B

This routine gains control from the ITIVCCW or IIVRCW module and returns control

to the IIVCCW or IIVRCW module upon completion of its function. Refer to the
Appendix (Adjust CCW String Instruction) for a description of the function
of this module.

Method of Operation

71

Supervisor Call Routine (ITIVSVC)

-=- Flowchart 17a

All supervisor calls that originate within the DOS region are
intercepted prior to the execution of the DOS SVC
instruction, and control is given to the Emulator supervisor
call routine (I1VSVC). Upon entry, this routine stores all
DOS general registers in EMUCONS and establishes
program addressability.

. . When a DOS SVC 0 that meets the
When the first DOS SVC 4 is intercepted, After first following conditions is intercepted,
this routine modifies the DOS IPL DOS SVC 4. | 11VSVC gives control to the Emulator | peets
monitor switch (IPLSW) in EMUCONS Before first automatic IPL routine (IIVADD), requirements
to indicate that DOS IPL phase DOS SVC 14.] which builds DOS IPL control state-
i First DOS If AUTO IPL.| ments: RC+#0
$SASIPL2 has completed processing SvC 4 is requested e The DOS SVC 0 was not issued by
and DOS phase $$IPLRT2 is in d
- > the DOS supervisor. Not
control. o * The DOS CCB symbolic unit is for lified
A DOS SVC interrupt is simulated for SYSUSE. qualitie
DOS. e The DOS channel program RC 2'0
operation code is a read command
(X'02').
A DOS fetch (SVC 2) of $$BUFLDR A 0 return code from |IVADD requests
is bypassed. < a DOS SVC interrupt to be simulated.
(After first DOS SVC 4 and before
first DOS SVC 14.)
After first IfaDOSSVC 1, 2,4,0r 11 is intercepted,
The first DOS SVC 14 (EOJ) inter- DOS SVC 14 |control is transferred to the Emulator
cepted indicates that DOS IPL is if volume DOS SVC monitor (IIVGR2). A RC+0 ;
finished. The DOS IPL monitor switch ;o pog sharing is return code will be passed back from
(IPLSW) in EMUCONS is modified to SVC 14 requested 1IVGR2
indicate that DOS IPL has completed. < g ! > N -0 X
Control is then transferred to the OS Return code = 0: a DOS SVC interrupt
PUB table build routine (I1VPUB), is simulated to DOS. RC=0
which validates the OS to DOS unit Return code £ 0: no DOS SVC 8
relationship. A DOS SVC interrupt is interrupt is simulated and the DOS
simulated for DOS. SVC instruction will not be executed.
y
Simulate DOS‘ After first
SVC interrupt DOS sVC 14
if volume
sharing was not
requested.
A DOS SVC interrupt is simulated to
DOS by moving the PSW field from the
local execution list to the DOS old The local execution list PSW field is Sypass DOS
SVC PSW (location 32) in the DOS left unmodified. DOS receives orocessing
storage area and moving the DOS SVC control at the next sequential instruc- -
new PSW (location 96) from the DOS tion following the DOS SVC instruction.
storage area into the PSW field in the The DOS SVC instruction is not executed.
local execution list. This means that
upon return to DOS, the DOS SVC
will be executed.
Return ‘

DOS Emulator Logic

Return to DOS v

ia IIVRTE.

Start 1I/0, End-of-Extent, Channel End, and Abnormal End Appendage (IGG019SA)
-- Flowcharts 18A-18B

The appendages are used to maintain (modify/restore) the DEBs for DASD and
tape devices used by DOS. The DEB is built during open in protected storage
(key of zero); it contains the file mask and extent information for direct-
access devices and the set mode command for tape devices that are maintained
by these appendages.

When the DEB is built by open, the initial entry address is in the DEB appendage

address table for the start I/0 and end-of-extent appendages if the device

is direct access, and for the start I/0 appendage if the device is tape. The
initial entry modifies the addresses in the DEB appendage address table to
point to the respective routines within the module.

The CPU ID is stored when this appendage is entered for the first time. CPU
ID information will then be obtained from EMUCONS when the STIDP instruction
is issued by DOS.

The addresses modified in a DEB are:

DASD DEB:

. End-of-extent address - EOERTO000
. Start I/0 address - SIORT000

. Channel end address - CERT000

. Abnormal end address - AERT000

TAPE DEB:
. Start I/0 address - SIORTS500

After initializing the DEB appendage address table, control is passed to the
appropriate routine.

End-of-Extent Subroutine (EODERT000 - Flowchart 18A)

If the user label flag is on in the COMTAB (CTFLAG3 bit 0), the extent
information in the DEB is saved and replaced with the user label extent from
the COMTAB. Return is made to 0S for a retry of the I/0 request. Otherwise,
the normal return is made to 0S, which results in an out-of-extent condition
to be posted in the event control block.

Start I/0 (Tape) Subroutine (SIORTS500) - Flowchart 183)

The DOS set mode command is moved from the COMTAB to the DEB.

Start I/0 (DASD) Subroutine (SIORT000 - Flowchart 18B)

The extent information in the DEB is saved and replaced with an extent limit
of one cylinder (based on the cylinder in the IOB secek address) so that OS
cylinder switching at end of extent will be inhibited. If the shared volume
flag (CTFLAG3 bit 4) is not on, the DOS file mask is set in the DEB. Return
to 0S is always normal.

Method of Operation

73

Abnormal End (DASD) Subroutine (AERTO000 - Flowchart 18B)

The event control block in the IOB is tested to see if 0OS error recovery is
completed. If not, the normal return is made so OS error recovery will be
performed. Otherwise, control is passed to the restore subroutine (RSTOR000)
to restore the extent in the DEB.

Channel End (DASD) Subroutine (CERT000 - Flowchart 18B)

The condition code is tested to see if an error condition has been detected
at channel end. If an error condition is present, the normal return is made
so 0OS error recovery will be performed. Otherwise, control is passed to the
restore subroutine (RSTOR000) to restore the extent in the DEB.

Restore DEB Extent Subroutine (RSTOR000 - Flowchart 18B)

The extent saved by SIORT000 or EOERT000 is moved into the DEB. The return
to 0S is always normal.

Abnormal End/Channel End Appendage (IGG019S1) -- Flowchart 19A

This Emulator module does double duty as an abnormal end appendage for
teleprocessing devices and a channel end and abnormal end appendage for tape
and unit-record devices.

The abnormal end appendage bypasses 0S error recovery procedures for
teleprocessing I/O errors. When a magnetic tape, unit record, or teleprocessing
(BTAM) error is detected, control is given to the appropriate section of the
appendage. The appendage turns off the IOB exception bit and returns to the

I/0 supervisor (0 displacement from the address in register 14) to bypass the

0S error recovery procedures. If the appendage receives control for an error
other than those mentioned above, it immediately returns to the I/O supervisor,
allowing the OS error recovery procedures to handle the error processing.

The abnormal end appendage also routes error conditions for Emulator-initiated
I/0 (as opposed to DOS-initiated I/0) to the 0OS error recovery procedures.

In the role of channel end appendage, this module routes all incorrect length
and unit exception conditions for tape and unit record devices at channel

end to DOS. (DOS does not consider incorrect length a permanent error
condition.) It does this by turning off the exception bit in the IOB and
returning to the 0S I/0 supervisor, which then posts the I/O operation complete.

After a tape rewind-unload has been issued or a BTAM intervention required
condition occurs, the not ready bit is turned on in the UCB and a not ready
flag is set in the COMTAB entry. For unit-record devices, if a unit exception
occurs, the IOB esception flag is turned off, suppressing OS error recovery
procedures.

Asynchronous Interrupt Exit Routine (IIVRTE) -- Flowcharts 20A-20G

When the OS supervisor has completed processing any asynchronous interruption
that occurred while DOS was operating in local execution mode, it gives control
to this routine at entry point IIVRTE. When this routine finishes processing,
it returns control to DOS by issuing the execute local instruction which returns
the CPU to local execution mode.

If the one-second STIMER interval has expired, this routine branches to the
timer interrupt check routine to process the interruption. Tf the interval
has not expired, the routine branches to the asynchronous interrupt check
routine to see if any of the Emulator ECBs pointed to by the ECB pointer table

T4 DOS Emulator Logic

9

<

are posted. If one or more of the Emulator ECBs are posted, this routine
branches to the select routine, which passes control to the appropriate Emulator
routine to process the interruption.

If the interruption was not for the Emulator, DOS is checked to see if it is
in the wait state. If DOS is in the wait state and interruptions are disabled
(hard wait), control is given to the ABEND error routine (IIVABN) to cancel
the Emulator job. If DOS is in the wait state and the AUTOEOJ option has been
specified, control is passed to the end of job routine to see if DOS has any
more work to do.

If DOS is in the wait state, this routine goes into the wait state until
completion of an outstanding I/O operation. When this occurs, control is given
to the appropriate Emulator routine to simulate completion of the I/0 operation
to DOS.

If DOS is not in the wait state and the timer option has been specified, the
fourth byte (local address X'53') of the emulated DOS timer is increased bv

1. When this byte reaches a value of 256, it is reset to 0. The purpose of
this operation is to show DOS a constantly changing timer value when the timer
is tested to see if it is operational. This has no real effect on the actual
time.

After the DOS interval timer has been updated, or if the timer option was not
specified, control is given to DOS through the execute local instruction, thus
placing the CPU in local execution mode. For an explanation of the operation
of this instruction, see the "DOS Compatibility Feature" in the Appendix.

STAE Exit Routine (Flowchart 20Aa)

This routine gains control for a scheduled OS ABFND. The primary function

of this routine is to determine whether further ABEND processing is to he
allowed or bypassed. ABEND processing is bypassed only if the bypass ABEND
switch (OPTFLGR2 in TTVCON=X'02') is on or a //SYSABEND DD statement is present
in the 0S jobstream. The switch is set on by TIV0PN before opening a nonshared
volume and by IIVCCW before CCW address adjustment takes place. The STAF retrv
routine is scheduled to receive contrcl and the routine returns to the 0OS ABEND
processing routines.

Route Routine (Flowchart 20B)

The entry point for this routine is IIVRTER2, Following completion of their
operations, the interpretive SYSLOG (IIVLOG), staged I/O (IIVSTG), asynchronous
interrupt exit (IIVRTE), and program check executive (IIVPCE) routines return
to this routine at entry point ITIVRTER2 to return control to DOS. The LPSW
simulation, SSM simulation, ISK simulation, SSK simulation, TIO simulation,

TCH simulation, SIO, and Check I/0 routines return to the IIVRTER2 entry point
by means of the program check executive routine. Module IIVRAS also exits

to IIVRTER2.

At entry point IIVRTER2, this routine tests to see if any more interruptions
can be processed before control is given to DOS. If any further interruptions
can be processed, control is given to the appropriate Emulator routine. If
not, control is given to DOS through the execute local instruction.

Method of Operation

75

Select Routine (Flowchart 20C)

This routine routes control to the appropriate Emulator routine that handles
pending asynchronous interruptions of the emulated DOS program.

The routine first tests to see if the system mask portion of the local execution
PSW is enabled for external interruptions. If it is, a test is then made to

see if a timer interruption is pending. If a timer interruption is pending,
control is passed to the timer interrupt check routine.

" The routine next tests to see if there is an interruption for the Emulator
prompt WTOR. If there is, control is passed to the prompt reply processor
routine (IIVPRP).

If DOS was disabled for external interruptions, or none of the above
interruptions was pending, the system mask portion of the local execution PSW
is tested to see if I/0 interruptions are enabled. TIf the mask is enabled

for I/0 interruptions, a test is then made to see if the operator has responded
to the last WTOR issued by the interpretive SYSLOG routine. If he has
responded, control is passed to the interpretive SYSLOG routine. If he has

not responded, this routine tests to see if the interpretive SYSLOG routine
had issued a WTO to the operator and is waiting for DOS to enable for I/O
interruptions. If so, control is passed to the interpretive SYSLOG routine.

A test is then made to see if there are any I/O interruptions to be handled
for the emulated DOS program. If there are, control is passed to the check
I/0 routine. If there were no asynchronous interruptions pending, control
is passed to the route routine at entry point TIVRTER2.

STAE Retry Routine (Flowchart 20C)

This routine gains control from the OS AREND processing routines when the STAE
exit routine determines that a bypass is to be affected. The STAE retry routine
reissues the 0S STAE macro to reactivate the ABEND interception procedure.

Since any outstanding WTORs are canceled by the 0OS ABEND routines before passing
control to the STAE retry routine, the WTORs are reestablished. Control is
passed to the program setting the bypass switch to an address stored in STAERTN
(IIVCON) by the program. Each module that sets the bypass ABEND switch and

the action taken by the module is as follows:

Modules Requesting ABEND Interception

Function being performed when Action taken upon regaining
Module name requesting interception control
ITIVCCW Adjusting CCW data addresses Channel program check returned
ITVRCW to DOS
IIVDVS Opening a file Cancel DOS job; issue message
ITV2561
Reading the VTOC using an OS Cancel DOS job; issue message
OBTAIN macro ITV261T
Issuing an OS EOV macro to get an | Cancel DOS job; issue message
additional extent IIV260T
IIVOPN Opening a dedicated device for A 'device not operational!
STIO processing indication is returned to DOS;

message IIV0O18I is issued

76 DOS Emulator Logic

J

I

Timer Interrupt Check Subroutine (Flowchart 20D)

This subroutine is entered from the select routine (IIVRTESL) to check for

a DOS timer external interruption. The timer pending switch is set off and
the DOS timer is tested for a value greater than 0. If the value is greater
than 0, the time indicator switch is set on.

The DOS timer is then decreased by 1 second and again tested for a value greater
than 0. If the value is less than 0 and the time indicator switch is on, the
time indicator switch is set off, the interruption code in the local execution
PSW is set to indicate a timer external interruption, the local execution PSW
is moved to the DOS external old PSW, and the DOS external new PSW is moved

to the local execution PSW.

An OS STIMER for 1 second is issued, and control is given to the route routine
at entry point IIVRTER2.

Timer Interrupt Subroutine (Flowchart 20D)

This routine is the STIMER completion exit routine for the STIMER macro issued
by the Emulator. It gains control from OS when the interval specified by the
STIMER macro instruction, issued in the timer interrupt check routine, has
expired.

The timer interrupt pending switch is set to 1 to indicate that the STIMER
interval has expired. The DRI switch is turned off, and the timer ®CB is
posted so that if the Emulator was in the wait state, it receives control from
OS to indicate expiration of the STIMER interval.

The timer ECB is one of the ECBs pointed to by the ECB pointer table and thus
is one of the ECBs waited on by the asynchronous interrupt exit routine when
it enters the wait state. After the timer ECB is posted, this routine passes
control back to the 0S control program that called it.

Asynchronous Interrupt Check Subroutine (Flowcharts 20E-20F)

This routine tests all Emulator ECBs to see if any of them have been posted
by 0S as complete. As each posted ECB is found, this routine sets a switch
on or increases a counter to indicate to other Emulator routines that an
asynchronous interruption is pending and must be processed.

Except for SYSLOG, a 2-byte entry is created in the post ECB list when an ECB
for an I/0 device has been found posted. The first byte contains the offset
value of the I/0 device in COMTAB. The second byte contains the status byte
of the posted ECB. After all Emulator ECBs have been tested, this routine
returns control to the calling routine.

End-of-Job Routine (Flowchart 20G)

This routine gains control from IIVRTE when DOS tries to load a wait PSW with
interruptions enabled and the end-of-job switch (EOJSW) is set to 1. It also
gains control from the prompt reply processor (IIVPRP) at the time the operator
command EOJ is received. 1If it is determined that all DOS processing is
complete, the Emulator is terminated.

Method of Operation 77

The following conditions are checked to determine if all DOS processing is
complete:

. The number of outstanding I/0 operations must be equal to zero.

° The first byte of the background PIB must contain X'82' to indicate that
the DOS background partition is waiting for an interruption to restart.

. In a multiprogramming system, both foreground PIBs must contain X'80' to
indicate that they are both active.

° The DOS SYSRDR LUB must be valid.

] The IOB CSW unit exception bit for the background SYSRDR device must be
1 to indicate end-of-file on the device. ’

o The background SYSRDR device IOB address is found by mapping the SYSRDR
LUB index for the DOS PUB associated with it to the COMTAB entry for the
device. This mapping is done through the 0OS PUB table.

If all of these conditions are met, emulation is ended by a return to 0OS by
means of the Exit ABEND error routine (IIVABN).

Prompt Reply Processor Routine (IIVPRP) -- Flowcharts 21A-21E

This module receives control from the select routine (IIVRTESL) when the console
operator replies to the operator prompt message issued by the Emulator. The
following Emulator commands are recognized:

EOJ The operator wishes to terminate the Emulator region after all DOS
partitions become inactive. The end-of-job switch (EOJSW) is set
to notify the end-of-job routine that emulation may be ended when
all DOS partitions are inactive.

EXT A DOS external interruption is desired. The interruption code is
set, and a DOS external interruption is simulated.

ATTN The DOS attention routines are desired. The interruption code is
set, and a DOS I/0 interruption is simulated.

MAPIO The operator requires the corresponding channel and unit numbers of
the DOS and O0S I/0 units. The operand is tested to determine whether
the request is for all or selected DOS cuu's, and messages to the
operator are constructed accordingly.

MOUNT The operator wishes to mount a new DASD volume. The operand is tested
for the DOS cuu and new volume serial number. An OS CLOSE macro for
the DCB that corresponds to the DOS cuu is issued, the new volume
serial number is inserted in the JFCB, and an OPENJ macro is issued.

DEBUG The operator wishes to snap dump Emulator control blocks when certain
events occur in DOS. See "Emulator Service Aids" for information
about the modules that perform trace and snap functions.

All commands and their operands, if any, are verified and appropriate error
messages are issued if errors are detected. The error message becomes the
text of the subsequent prompt. See Emulating DOS Under OS on IBM System/370,
GC26-3777, for more information about prompts.

Control is always returned to the select routine (IIVRTESL).

78 DOS Emulator Togic

SVC Monitor Routine (IIVGR2) -- Flowcharts 22A-22D

This module monitors svC 1, 2, 4, and 11 calls from DOS, recognizes OS
sequential DASD and direct-access shared data sets, DOS sequential DASD and
direct-access shared files, or 0S indexed sequential shared data sets, and
passes control to the volume-sharing simulation routine (IIVDVS) or the IsSaM
mapping routine (IIVIS), as the case may be. IIVGR2 is entered from module
IIVSVC when a DOS SVC is trapped and sequential DASD or direct-access shared
or OS indexed sequential shared data sets are specified by the DD statement.

If the shared DOS svyster residence option is in effect or a shared DOS PCIL

is being used, and the SVC number is 1 or 4, the phase name is checked for

a call from MAINT, SLNKEDT, or CORGZ. If equal, an * is placed in the last
position of the phase names to cause DOS to issue the 'phase not found' message
0S06T. An Emulator message, ITV2(83, is also issued. This will protect the
core image library from being accidentallv updated.

The routine calls TIIVDVS when an OPEN or CLOSE macro or an end-of-extent
condition is identified for a sequential DASD or direct-access shared data
set (file). It calls IIVIS when an OPEN, CLOSE, SETL, SETFL, or ENDFL macro
is identified for an O0S indexed sequential shared data set.

IIVGR2 uses a five-character table to identify the B-transient phase being
called by DOS, after which the data set must be identified as sequential DASD
or direct-access shared, 0S indexed sequential shared, or DOS dedicated. The
two phases are:

Open Phase

DOS provides a *'file ID' field in the DLBL/EXTENT image, and a SYS number in
the DTF or DLBL/EXTENT image.

By using the SYS number and the DOS cuu pointed to by the LUB, the routine
identifies the corresponding COMTAB entry. This entry indicates either a DOS
dedicated file, in which case control returns to IIVSVC to let DOS process
the OPEN macro, or a sequential DASD or direct-access shared or 0OS indexed
sequential shared data set (file), in which case the COMTAB extension is
searched for a match between the DOS program DTF name and the DTF name in the
FID.

If a match is not found, the message MISSING DD STATEMENT is issued and control

is given to DOS, which issues an SVC 6 (cancel). If a match is found, the
routine sets the code, the COMTAB extension address, the DTF address, and the
LTK in the parameter list located in EMUCONS before calling IIVDVS or IIVIS
to perform the open.

Nonopen Phase

The routine searches a FID for a match between the DTF names. If a match is
not found, it returns to IIVSVC to let DOS execute the phase. If a match is
found, it sets the DTF and FID addresses in the parameter list located in
EMUCONS before calling IIVDVS or IIVIS as before.

After calling ITVDVS or IIVIS, the routine checks register 15 for an error
code. If there is one, it issues an SVC 6 and returns to module IIVsSvCc. If
there is not an error code, it determines from the NXTBTR field in EMUCONS
which B-transient phase has to be executed. If none is specified, the routine
returns to module IIVSVC, which gives control to DOS by means of module IIVRTE
to execute the instruction following the SVC instruction. If a B-transient

Method of Operation

79

name is given, the routine moves it in place of the existing one and returns
to module ITVSVC, which then returns control to DOS to execute the SVC 2
instruction.

To sum up, IIVGR2 returns to ITVSVC (and later to DOS) to execute:

. the svC 2, 4, or 11 when a sequential DASD or direct-access shared or 0S
indexed segquential shared data set (file) is not being processed

. or the instruction following the SVC instruction when the supervisor call
has been simulated by the Emulator

In case of an error, the routine returns to module IIVSVC in order to execute
a DOS svC 6, which cancels the DOS step.

Device Sharing Simulation Routine (IIVDVS) -- Flowcharts 23A-23H

The routines in this module move the extent limits from OS (DEBR) to DOS
(PLBL/EXTENT card image) so that DOS will use the actual extent limits of the
file as determined from OS JCL.

In addition, the following control blocks are created or updated to reflect
the fact that an 0S file is being processed:

. DCB - created and opened when DOS requests that a
file be opened; closed when DOS requests
that a file be closed or at the end of a
DOS job step (except for DOS svstem files)

. DTF - maintained to reflect the status of the file as
determined by 0S

U Open table updated to reflect the actual seek addresses in
the VTOC and some specific indicators (see

open table below)

. COMTAB - maintained for the Fmulator to identify
extension and sequential DASD and direct-access shared
FID data sets (files)

. EMUCONS - maintained as a communication area between

IIVDVS, IIVGR2, and ITVPCE

° Obtain area - created and maintained for IIVVIQO to return
VOL1, identifier and extension DSCBs to DOS

Processing of a sequential DASD or direct-access shared data set (file) is
divided into seven routines, all iancluded in TIIVDVS (Figure 18).

IIVDVS expects the following control blocks and registers to be set by DOS
open phases:

. Register 7 points to DOS communication region.

. Register 2 points to the current DTF.

. Open table indicators (X'8BA3' of B-transient phase) set for special open.
. Address of DLBL (X'4A8' of B-transient phase).

. The image of the first DLBL/EXTENT statement should have been read into

storage (open/end of extent cnly) at address ¥ '378' of B-transient phase
(for sequential disk) or in label area (direct access).

80 DOS Emulator Logic

9

Control Routine
(Passes Control to

the Open, Close, or
End-of-Extent
Routine)

Close Routine Open Routine

End-of-Extent
Routine

Obtain Routine d

Build DLBL
Routine

— Return Routine

Figure 18. General Flow of IIVDVS

ITIVDVS updates the following control blocks and DOS registers
fact that some DOS open phases have been bypassed:

DOS register
o Register 6 is set to point to the DLBL/EXTENT card image.
Open table

. Open table indicator (X'4A3!' of B-transient phase) is set
open for SYSLNK.

. Message indicator (X'6A1!' of B-transient phase) is set to
of DTF being processed.

to reflect the

to show special

show the type

Method of Operation

81

. VTOC in-storage indicator (X'4A0' of B-transient phase) is set to show
that the VTOC has been read into.

° VTOC lower and upper limit (X'3EO' of B-transient phase) are set with the
identifier (format 1) DSCB address (sequential disk only).

° Seek bucket (X'3FC' of B-transient phase) will contain the address of
identifier (format 1) DSCB in VTOC.

. Logical unit in VTOC CCB (X'3E8' of B-transient phase) will contain the
logical unit of the file (input sequential only).

° Search argument (X'409') will contain the file ID of the file (input
sequential only).

o Open communications byte in DTF will reflect current status.

. Volume sequence number in DTF will contain X'0001' when opening a sequential
output file.

° DTF flag 1 (X'15' of DTF) indicators such as DELETFL=NO will be turned
on for work files.

. VTOC address (X'020' of DTF) will contain the identifier (format 1) DSCB
address in VTOC for work file.

. User label address (X'05C* of DTF) will contain the disk address of user
label extent for DTFDA.

DLBL

° User label seek address (X'30' of DTF) will contain the disk address of
user label when $$BOSDO6 is called.

. Search argument (X'3C') and LIOCS search argument (X'4C') will contain
the actual disk address of the first extent when $$BOSDO6 is called.

. DLBL/EXTENT card image will contain the extent limits, extent type, extent
sequence number, logical unit, volume serial number, expiration and creation
dates, and DLBL indicator according to the OS information about the file.

Control Routine (Flowchart 23Aa)

This routine gains control from IIVGR2 and examines a parameter list (PARMLST)
located in EMUCONS. PARMLST contains the address of the DTF to be processed
(PARMDTFA), the key of the partition owning the DTF (PARMLTK), a code indicating
the operation to be performed (PARMCODE), and (in PARMFDCS) a pointer to the
associated COMTAB extension for an open function or a pointer to the associated
FID for an end of extent or close function.

The routine sets standard linkage conventions (save area and registers), and
then initializes registers to point to COMTAB extension, FID, DTF, and DLBL.

According to PARMCODE, the routine exits to the open, end-of-extent, or close
routines in this module.

82 DOS Emulator Logic

Open Routine (Flowcharts 23A-23B)

This routine is entered from the control routine when PARMCODE indicates an
open function is to be performed. EMUCONS should contain the following DOS
phase names in the fields indicated:

NXTBTR after

Type OLDBTR NXTBTR Open routine
Sequential output $$BOSDO1 3BOSDO1 $$BOSDO1
Sequential input $$BOSDO1 $$BOSDI $$BOSDIN
Sequential work $$BOSDO1 $SROSDW1 $$BOSDW2
Direct access ¥ $BOPEN2 $$BODAIN $$BODAIN

The routine obtains storage for a new FID by means of module IIVGET, attaches
this FID to the chain of FIDs pointed to by DSFIDBLK in EMUCONS, and sets in
it the COMTAB extension pointer (FIDCTXTN), the DTF name (FIDTFNME), and the
key (FIDLTK) .

If the file is not yet opened (CTDCBUC=0), the routine obtains storage for
a DCB by calling IIVGET and initializes the DCB with the following:

L] DSORG=PS

L] MACRF= (E)

L] DEVD=DA

. Appendages (same as for dedicated volumes)

. DDname from CTDDNAME

. Exit list to point to an inactive exit list

An OS OPEN for output is issued for the data set associated with this DCB,
and the DCB is checked for a successful open. If an error occurs, message
CANNOT OPEN is transmitted and the routine branches to the return routine.

If no error occurs during the open, CTDCBPTR is set in the COMTAB extension,
the track balance (DCBTRKBAL) is set to 0, and the address of the last record
(DCBFDAD) is set to point to the last track of the last extent so that 0S will
not try to write an EOF record at close.

The use count for this file (contained in the CTDCBUC field of the COMTAB
extension) is increased by one. The device types, as specified in the DOS
DTF and OS DCB, are checked for identity. If not identical, the message NO
MATCHING DEVICE TYPE is issued and control is given to the return routine.

For direct-access files, control is given to the obtain routine. For sequential
disk files, register 6 is set to point to the DLBL/EXTENT card image.

Depending upon the type of file as indicated by the name of the DOS phase to
be fetched, the following control blocks are updated:

sequential input (DOS calling $$BOSDI1)
L The volume sequence number in the DTF is set to 1.
. The LIOCS switches in the DTF are reset for DTFSD.

. The message code in the open table is set to 3.

Method of Operation 83

sequential output (DOS calling $$BOSDO1)
. The new volume switch is reset in the DTF.
o The open bit in the DTF is reset for a system file.

. The volume and extent sequence numbers are set to their values in the
DLBL/EXTENT card image.

. The message code in the open table is set to #.
sequential work file (DOS calling $$BOSDW1)

) Indicators 'DELETFL=NO', 'SYSxxx in DTF', and 'extent open' are set in
the DTF.

o The message code in the open table is set to 9.
L] The NXTBTR in EMUCONS is set to $$BOSDW2.

Control is then given to the obtain routine.

End-of-Extent Routine (Flowcharts 23C-23D)

This routine is entered from the control routine when PARMCODE specifies EOX.
The end-of-extent routine's main purpose is to give an additional extent to
DOS for sequential input or output files.

However, the meaning of ZOX has been extended to cover all cases where DOS
calls the B-transient phases for a file that is already opened, except for
close conditions, which are processed in the close routine. These cases can
be divided into four main categories as fcllows:

Obtain Only Cases. The DOS B-transient phase to be executed next will access
+he VTOC.,

Tvpe OLDBTR NXTBTR
Anv Any $$30MSG1
Direct access in-

put, user label $$BODAIN1 $$BODAU1
Direct access

user label $SSBOFLPT $$BODAU1
Sequential disk

output, trailer label *$30SDC1 $$BOSDO6
Sequential disk

input, trailer label $$BOSDC $$30SNT3
Sequential disk
. input header label $¥BOSDI1 S$BOSDI3
Direct access

input $$SBODAIN S$RODATA

The end-of-extent routine will indicate that an obtain is to be performed anAd
branch to the oktain routine. Control eventually returns to DOS, and the
access to the VTOC will be routed and handled by module IIVVIO.

84 DOS Emulator Logic

User Labels Cases. The DOS B-transient phases to be executed next will create
the user label track.

NXTBTR NXTBTR
Type OLDBTR before after
Sequential disk 3BOSDOU $$BOSDO6 F$BOSDO6
output $$BOSDO9 S $BOSDO6 £$BOSDO6

For sequential disk output files with user labels (when running with DOS release
26), the routine sets the appropriate user label track address and data track
address in the DTF prior to branching to the obtain routine. When running

DOS release 27, the correct user label and data track address in the DTF have
already been set by the obtain routine.

End-of-Extent Cases. The DOS problem program calls the B-transient phases
in order to open (or, rather get the next extent for the file.

NXTBTR NXTBTR
Type OLDBTR before after
Sequential disk
output $$BOSDC1 $$BOSDO1 $$BOSDOS
Sequential disk
outoput 3BOSDO1 £$B0SDO1 $$BOSDOS
Sequential disk
input $$BOSDO1 $$BOSDIN $$BOSDI2
Sequential disk
work file $$BOSDO1 $$BOSDW3 £$BOSDW3
Sequential disk
work file $$B80OSDC1 $$BOSDW3 $£$BOSDW3

The routine checks whether the required extent is present in the DEB; if it
is, the routine branches to the obtain routine, which updates the DTF and

branches to the build DLBL routine to create a DLBL/EXTENT card image reflecting
the extent.

If the required extent is not present in the DEB, the routine issues a message
and eventually the DOS job step is canceled; for an output file only, the
routine issues an OS EOV to get secondary allocation from 0S if any was
specified in the 0S DD statement.

Other Cases

NXTBTR NXTBTR
Type OLDBTR before after
Work file $$BOSDW2 $$BOSDW1 ¥ $BOSDW2
$$BOFLPT $$BOSDW1 $FSROSDW?2
Direct access
output $$BODAIN $$BODAO1 XXXXXXXX

where XXXXXXXX = $$BODAUI or $$BOFLPT or F$BOPEN.

$$BOSDW1 is called to get the next DLBL/EXTENT statement, if any. This DOS
phase will be bypassed by moving $$BOSDW2 in NXTBTR, except when the routine
reaches the last extent as indicated in the DEB, in which case NXTBTR will
not be updated and $$BOSDW1 will complete the DOS open processing for the work
file. For direct access output, NXTBTR is updated as described above and the
routine branches to the return routine.

Method of Operation 85

Other special cases are:

o Call for B-transient phase for sequential input at EOF ($$BOSDI1 is called
by $$BOSDO1). The end-of-extent routine will then let DOS execute $$BOSDI1
by branching to the return routine.

° Call for a B-transient phase for sequential output at the end-of-extent
time ($$BOSDO1 is called by 3BOSD01) whenever the end-of-extent address
is specified in the DTF. The end-of-extent routine will then let DOS
execute $$BOSDO1 by branching to the return routine.

° Call for a B-transient phase for sequential work file when a DOS POINT
macro is issued ($$BOSDW3 is called by $$BOSD01). The end-of-extent routine
will first check the validity of the given seek address prior to branching
to the current work file end-of-extent case and issue a message if the
seek address does not fit into any extent in the DEB.

Close Routine (Flowchart 23E)

This routine is entered from the control routine, and the following DOS program
names must be set in the indicated fields of EMUCONS:

Tvype OLDBTR field NXTBTR field
Sequential disk $$BCLOSE F$BOSDC1
Sequential disk $$BOSDC1 . $$BCLOSE
Sequential disk $$BOSDC2 $$BCLOSE
Sequential output

user label $$BOSDI3 $$BCLOSE
Sequential input user

label $$BOSDO6 $$BCLOSE
Sequential disk $$BOSDC1 PRPGM
Sequential disk $$BOSDC2 PRPGM
Sequential input user

label $$BOSDI3 PRPGM
Sequential output user

label $$30SDO6 PRPGM
End of job -- $$BEOJ
Direct access $$BCLOSE $$BODACL

When OLDBTR contains $$BCLOSE, this routine branches directly to the obtain
routine in order to build VOL1 (volume 1), identifier (format 1) and extension
(format 3) DSCB images, so that the next DOS phases can read from the VTOC

if needed.

When NXTBTR contains PRPGM, which indicates that DOS is issuing an SVC 11
instruction, the routine identifies a time close condition (¥%BOSDI3 or $$BOSDO6
issuing an SVC 11 may be for header labels at open). When a time close
condition is recognized, the use count (CTDCBUC) is decreased and tested for

a 0. TIf the use count is not 0, control is given to the return routine to

free the current FID and return to module IIVGR2, If the use count is 0, the
routine issues an OS CLOSE for the file, frees the storage used by the DCB,
resets the pointer to the DCB in the CTDCBPTR field of EMUCONS, and branches

to the return routine to free the current FID.

86 DOS Emulator ILogic

J

Obtain Routine (Flowcharts 23F-23G)

This routine is entered from the open, end-of-extent, or close routines. It
initializes a constant area (IIVOBTE1), which is pointed to by ATIVOBE1 in
EMUCONS, with all of the VTOC information needed by DOS. The following fields
in the obtain work area are initialized:

OBVOL1 21 characters of a VOL1 label

OBF1LBL identifier (format 1) DSCB for the data set

OBF3LBL extension (format 3) DSCB for the data set, if needed
OB1COUNT format 1 count information

OB 3COUNT format 3 count information

OBF1LBL and OBF3LBL are built by means of the OBTAIN macro. The obtain routine
then updates the following control blocks:

Direct-Access Files

The user label address is moved into DTFDA.

Sequential Work Files

The VTOC address is moved from the obtain area into DTFSD in the form CEHR
for DOS releases 25 and 26, and CCHR for DOS release 27.

Sequential Input Files

In order to simulate the bypassing of the DOS phase $$BOSDI1 for both open
and end-of-extent cases, the following control blocks are updated:

o Logical unit (SYS number) in the open table

. Binary number in the open table and DTF
Identifier (format 1) DSCB address in the open table seek bucket and limt
bucket

. File ID (dsname) in the open table
NXTBTR (in EMUCONS) to be $$BOSDI2

Sequential Output Files

The first three control blocks described for sequential input files are updated
to simulate the bypass of $$BOSDO1 and $$BOSDO2. In addition:

. 'VTOC read!' indicator in the open table is set on

. *Special open' indicator in the DTF is reset if not a system file (filename
must start with IJSYS)

. NXTBTR in EMUCONS is set to contain $$BOSDO5 at end-of-extent time, $$BOSDO4
at open time (if not release 27), $$BOSDO9 at open time (for release 27)

When running DOS release 27 only, the bypass of $%$BOSDO4 is simulated by:

Setting DOS register 0 with the appropriate control factor

Increasing the volume sequence number in the DTF

Moving identifier (format 1) DSCB address in the DTF

Moving the actual user label address in the DTF and setting the 'header
user label' indicator in the DTF

The obtain routine then exits to the build DLBL routine after setting the 'last
extent!' indicator in the DLBL/EXTENT card image if the extent being processed
is the last one in the DEB.

Method of Operation

87

In case of sequential output files, the 'last extent' indicator is set only
if the extent is the last one in the DEB and if there is no secondary allocation
in the DD statement.

Return Routine (Flowchart 23H)

This routine is entered from the other routines in IIVDVS when the function
to be performed is completed. If evervthing is in order, a completion code
of 0 is set in register 15 bhefore returning to IIVGR2.

When an error must be indicated to IIVGR2, a value of 1 is set in register
15 and a message is issued to the operator by means of module IIVMSG.

Control returns to IIVGR2 after its registers have been restored.

Build DLBL Routine (Flowchart 23H)

This routine is entered from the obtain routine. Registers DCBREG, DTFREG,
DLBLREG, DEBREG, and CTXTNREG must previously have been set. The routine first
sets the following indicators in the DLRL/EXTENT card image:

Extent limits converted to DASD address on
Next extent on a new pack on a new volume off
New volume on same unit off
Bypass extent off
No extent card off

The volume serial number is then moved from the OS UCB into the DLBL volume
serial and file serial. 1If the file is a sequential disk file, the extent
type and extent upper and lower limits are moved into DLBL from the
corresponding extent in the DEB, and the routine exits to the return routine.

If the file is a direct-access file, the same processing is repeated for every
extent found in the DEB. When there is not enough space in the DLBL/EXTENT
card image to contain all the extents described in the DCB, a message
INSUFFICIENT EXTENT SPACE is transmitted, and control is given to the return
routine.

ISAM Mapping Routine (IIVIS) -- Flowcharts 2UA-24L

Main Task Control Executive Routine (Flowchart 2U4A)

This routine is the entry point for mapping OPEN, CLOSE, SETFL ENDFL, and SETL
functions. Control is passed by module IIVGR2 when a B-transient phase is
required to process an OS indexed sequential data set. The required function
is mapped from the DOS request to the equivalent OS request.

When this routine is entered, the following information is supplied:

. Register 11 contains the address of the EMUCONS area in which a parameter
list for this module is contained

. Register 10 contains the address of DOS storage

88 DOS Emulator Logic

9

C

o The 2-word parameter list contains the following:

- The first byte of the first word is the function code (OPEN, CLOSE,
SETL, etc.)

- The last 3 bytes of the first word contain the DTFIS table address

- The second word contains the address of the COMTAB extension (CTEXT)
for OPEN, or the file ID block (FIDBLK) address at all other times

After checking for a valid function code, control is passed to the proper
mapping routine or an error message is issued and control is returned to DOS.

Open Mapping Routine (Flowchart 24B)

This routine is entered each time a DOS OPEN is issued for an OS indexed
sequential data set. Main storage is obtained in which to build the ISBLK,
which is added to the chain of ISBLKs. The starting ISBLK address is contained
in the ISFIDBLK field in EMUCONS. Each ISBLK holds an OS register save area,
control information area, DCB(s) area, and a DECB area. A RDJFCB macro
instruction is issued to obtain JCL information.

The type of DTFIS that is being opened determines the additional work still
required.

LOAD Open Mapping Subroutine (Flowchart 2u4B)

For a LOAD DTFIS table (type X'24') where the DLBL open code is C for create,
the DCB is completed from one of three sources: the DTFIS, the JFCB, or by
default value. The priority of input varies by field as indicated in Figure
19.

Mapped to OS Mapped from DOS Mapped from Default
DCB field DTFIS field JFCB field value
DCBBLKSI TJIJHKBKLN (2) JFCBLKSI(1) N/A
DCBLRECL TJHKLGLN (1) N/A N/A
DCBKEYLE IJTHKLGLN+2 (1) N/A N/A
DCBRECFM IJHKOPCO N/A N/A
DCBRKP TIJHKNRCD+12 (1) N/A N/A
DCBMACR N/A N/A (PM) (1)
DCBCYLOF Number of tracks JFCCYLOF (1) 3(3)

per cylinder
(IJHKHNDV+4) (2)

DCBOPTCD IJHKOPCD (2) JFCOPTCD (1) Always R (3)
reorganiza-
tion criteria

DCBBUFNO N/A JFCBUFNO (1) 2(2)

DCBNTM N/A JFCNTM (1) 3(2)

Figure 19. Sources of Input to DCB Fields at 0OS Indexed
Sequential Data Set Creation

When these values have been initialized, an OPEN TYPE=J macro instruction is
issued. If the open fails, the DOS task is terminated upon return of control
to DOS. If the data set is successfully opened, the IJHKLPDR and- IJHKPRCT
fields in the DTFIS table are loaded from the DCBLPDA and DCBNRFC fields,
respectively, of the DCB.

Method of Operation

89

For a LOAD DTFIS table (type X'24') where the DLBL open code is E for extension
load, only the OPEN TYPE=J macro instruction is issued and, if the data set

is successfully opened, the IJHKLPDR and IJHKPRCT fields of the DTFIS table

are loaded.

When the data set has been successfully opened for a LOAD DTFIS, the code us=24
to trap and map Y/0 macro instructions is moved into the DTFIS talkle in the
CCW build area (TIJHKRDWR) and the ISMOD address in the DTFIS is modified to
point to this code. Control is passed to the subtask attaching routine.

ADD, RETRVE, ADDRTR Open Mapping Subroutine (Flowchart 2UB)

This subroutine opens an 0S indexed seaquential data set for ADD, RETRVE, or
ADDRTR DTFIS tatles, types X'25', ¥X'26', and X'27', respectively. When the
data set has been successfully opened, an 0OS work area is obtained to support
the add function of ADD or ADDRTR type DTFIS taltles.

The DTFIS table fields significant to the Emulator are completed from the
information contained in the 0OS ISAM DCB (see Figure 20).

Mapped to DGCS Mapped from OS
DTFIS field DCB field
IJHCRES?Z DCELRECL
IJHCKYSZ CCBKEYLE
IJHCBLS?Z DCBBLKST
TJHCKYLC CCBRKP
JJHACPRC CCENREC
TIHACOTC DCBRORG3
IJHACOFC DCBRORG1
TJHACORC DCBNOREC
IJHCCLPA CCBLPCA

Figure 20. Source of Input to Supported DTFIS Fields at Open of
ADD, RETRVE, and ADDRTR

Control is passed to the subtask attaching routine.

Subtask Attaching Routine (Flowchart 2uB)

This routine's primary function is to attach an 0OS suktask to perform the DOS
ISAM macro marping. A subtask is used so that other DOS tasks can continue
to run when it is necessary to await the completion of the I/0 required to
access the 0S indexed sequential data set.

m™he entry point for the subtask is at TIVISO01 within the IIVIS CSECT. This
entry point is established by issuing an IDENTIFY macro instruction upon the
first entry into the open mapping routine and setting a swtich in the first
byte of ATIVIS in EMUCONS to indicate this macro has been issued. Also upon
first entry, a CHAP macro instruction is issued to reduce the dispatching
priority of the Emulator task by an order of 1 so that the subtask(s) can run
at a higher priority when attached.

After the IDENTIFY and CHAP macro instructions have been issued, the address
of the ISBLK is placed in register 1 and all 16 of the 0OS registers are stored
in the register save area of the ISBLK. An ATTACH macro instruction is then
issued to create the subtask.

90 DOS Emulator Logic

The open mapping routine has completed its function at this point and control
is returned to the calling routine.

Close Mapping Routine (Flowchart 24C)

This routine is entered each time a DOS CLOSE macro is issued to an OS indexed
sequential data set. Any work area obtained to support the add function of
ADD or ADDRTR DTFIS tables is released. The subtask that was attached to
handle the DOS ISAM macro instructions to the 0S indexed sequential data set
is removed by issuance of an 0OS DETACH macro instruction. The data set is
closed by issuing a CLOSE macro instruction. The ISBLK is unchained from the
string of other ISBLKS and the area is released. Control is returned to the
calling routine.

SETL Mapping Routine (Flowchart 24D)

This subroutine maps a DOS SETL macro instruction to an OS SETL macro
instruction. The DTFIS must be for either RETRVE or ADDRTR, and IOAREAS must
be nonzero to allow execution. If execution is not possible, the DOS task

is abnormally terminated with an SVC 50 instruction.

If an OS SETL macro instruction is outstanding, an OS ESETL macro instruction
must be issued to clear the SETL status in the DCB. ' If the DCB is not open
to support the type of 0S SETL macro, the DCB is closed, the DCBMACR field

is respecified, and the DCB is reopened. Then the 0S SETL macro instruction
corresponding to the DOS SETL is issued. The mapping is performed as follows
in Fiqure 21:

DOS SETL 0OS SETL
Type BOF Type B
Type KEY Type K
Type GKEY Tvpe KC
Type ID Type I

Figure 21. Mapping of DOS SETL to OS SETL

Control is passed to the status mapping routine so that any error conditions
can be returned to the DOS problem program by means of the DTFIS status byte.

SETFL and ENDFL Mapping Routine. No function in 0OS corresponds to the DOS
functions of SETFL and ENDFL, so any attempt to map them results in a NOP and
control returns to the DOS problem program.

Subtask Control Executive Routine (Flowchart 24E)

This routine is entered when the open mapping routine issues the ATTACH macro

instruction. The OS supervisor registers are saved and the routine's registers

are loaded from the ISBLK register save area (pointed to by register 1). The
subtask control executive routine then issues a WAIT macro instruction and
enters the wait state until called upon to dispatch an ISAM macro instruction
mapping request.

Method of Operation

91

“Then the ECR in the ISBLK is posted by the SIO routine in module IIVPCE, the
subtask control executive routine gets control, determines the validitv of

the request, and passes control to the proper mapping routines. After mapping
is complete, the subtask control executive routine is reentered and again goes
into the wait state until the next request.

Get “apping Routine (Flowchart 24F)

This routine maps the DOS ISAM GET macro instruction to the O0S ISAM GET macro
instruction. Prior to issuing the G¥T, a check is made to ensure that a SETL
was oreviously issued. If a SET™L had not previously been issued, the DCB is
checked to ensure it is open for QISAM; if not, the DOS task is terminated

by an SVC 50. Tf the DCB is open for QISAM, the GET macro is issued and the
0S ISAM module issues a SETL for the beginning of file.

When a SETL has been issued, the 0S GET is issued. A successful completion
allows this routine to move the logical record from the 0S buffer into the

DOS area reserved for it (specified by the IOAREAS parameter of the DTFIS
macro). The key for unblocked files is also moved. The DOS address of the
logical record is stored in the DTFIS table and the record is moved into the
VIORKS area, if the WORKS area is specified. The DASD address of the block

is obtained from the DCB work table and stored in the DTFIS table for reference
by the problem program. If the record is to be processed in TOAREAS, then

code is created so that the addresss is loaded when the DOS task is reentered,

Final status is mapped to the DTFIS table by the status mapping routine.

Put Mapping RPoutine (FTlowchart 24G)

This routine maps the DOS ISAM PUT macro to the OS ISAM PUTX macro. If a GET
macro has not been issued to this data set by the problem program pricr to
the PUT, the DOS prohlem program is abnormally terminated by means of an SVC
50 instruction.

When the record is processed in the VORKS area, it is first moved to the TIOARFEAS
logical record location. The logical record is moved from IOAREAS into the
0S buffer logical record location, and an OS PUTX macro is issued.

Upon return from the PUTX, the status information is mapped from +he DCB to
the DTFIS takle by the status mapping routine.

ESETL Mapping Routine (Flowchdrt 24G)

This routine maps the DOS ISAM ESETL macro to the OS ESETL macro. If a SETL
macro has not been issued for the data set prior to the ESETL, +the routine
returns to the suktask control executive routine. Otherwise, an 0S ESETL is
issued. Control is passed to the status mapping routine.

92 DOS Emulator Logic

Read Key Mapping Routine (Flowchart 24H)

This routine maps the DOS READ KEY macro to the OS READ macro, type KU. The
DTFIS must be built for random retrieval before mapping is possible. If the
TOAREAR address is zero, the problem program is abnormally terminated with
an SVC 50 instruction.

A check is made to determine that a DCB is open for BISAM macro processing.

The key argument is obtained from the DTFIS table and used in an OS READ type
KU macro instruction. Upon return from 0S, final status is mapped from the
DECB to the DTFIS table by the status mapping routine.

Write Key Mapping Routine (Flowchart 2UuH)

This routine maps the DOS WRITE KEY macro to the OS WRITE macro, tvpe K. The
DTFIS must provide for random retrieval and a DOS READ KEY must have been
issued to the file before mapping is possible. If these conditions are not
met, the DOS problem program is abnormallv terminated by an SVC 50 instruction.

Any error on the previous READ KEY will not allow the WRITE KEY to be performed,
so control is returned to the DOS problem program. When all restrictions have
been met, the updated record is moved from the WORKR area (when specified)

into the IOAREAR logical record location. The record is then moved from IOAREAR
in DOS to the OS buffer. An 0S WRITE type K macro instruction is issued to
write the logical record back into the file.

Final status is mapped to the DTFIS table by passing control to the status
mapping routine.

Write NEWKEY Mapping Routine (Flowchart 24J)

This routine maps the DOS WRITE NEWKEY macro to the OS WRITE type KN macro.

The DTFIS table must provide for random adding of logical records before mapping
can be accomplished. Tf this condition is not met, the DOS problem program

is abnormally terminated by an SVC 50 instruction.

The key argument is moved to the save area in the DTFIS table, its address
is stored in the DECB, and an OS WRITE type KN macro instruction is issued.

Final status is mapped to the DTFIS table by the status mapping routine.

WAITF Mapping Routine (Flowchart 24K)

This routine simulates the DOS WAITF macro instruction for DOS WRITE NEWKEY,
READ KEY, and WRITE KEY processing. If one of these macro instructions has
not been issued, the problem program is abnormally terminated by an SVC 50
instruction.

For either WRITE macro instruction, a CHECK macro instruction is issued to

determine if the I/0O operation has finished. This routine exits to the status
mapping routine.

Method of Operation

93

Wwhen the I/O is a READ KEY, an OS CHECK macro instruction is issued and the
DASD address and logical record are moved to the DOS problem program storage
locations. The logical record is moved into the WORKR area, if specified.
If IOREG is specified, code is created in the DTFIS CCW build area to load
the register with the address when the DOS problem program regains control.
This routine exits to the status mapping routine.

ISAM Mapping Subroutines

SVC 50 Subroutine (Flowchart 24L)

This subroutine causes an SVC 50 instruction to be the next instruction issued
when the DOS task acquires control after the I/0 operation has been completed.
This is done so that the DOS task will be canceled for violating a DOS
restriction. The user must check his program logic to determine the cause.

OPENFAIL Subroutine (Flowchart 24L)

This subroutine causes the DOS OPEN message writer to be the next B-transient
phase called because of errors that have occurred during the process of opening
an OS indexed sequential data set. This causes the DOS task to terminate.

SYNAD Subroutine (Flowchart 24L)

This subroutine is entered from the 0S ISAM logic modules when error conditions
have been detected while performing OS ISAM macro instruction requests.

The DCBMACRF field is interrogated so that the proper status mapping routine
can be called.

Status Mapping Subroutine (Flowchart 241L)

This subroutine is the common exit point for all subtask I/0 mapping routines
and the SETL mapping routine. Its function is to map the statistics fields
and last prime data record address from the DCB to the DTFIS. This subroutine
also maps completion status from either the DECB or the DCB exceptional
condition bytes, fields DECBEXC1-DECBEXC2 and DCBEXCD1-DCBEXCD2, respectively,
to the DTFIS exception condition status byte, field IJHCSTBY (see Figure 22).

Entry is at one of three entry points, depending on whether the 0S ISAM DCB

is used for QISAM load, QISAM scan, or BISAM mode. Each entry point contains
instructions to set up registers to point to the proper OS exceptional condition
bytes and the corresponding 0S-to-DOS mapping table. The mapping table consists
of a DOS bit, which is set on in byte IJHCSTBY in the DTFIS table, if the
corresponding bit is on in one of the 0OS exception bytes.

Each 0S exceptional condition byte is checked independently for a value of

0. TIf both are 0, IJHCSTBY in the DTFIS table is set to 0 and the status
mapping subroutine exit is entered. If a byte is found to be nonzero, the
proper point in the map table is set and the byte is scanned from left to right
a bit at a time until all 8 bits have been checked. When a bit is found to

be 1, the corresponding bit configuration byte in the mapping table is ORed
into the DTFIS status byte (IJHCSTBY).

9y DOS Emulator logic

When both bytes have been interrogated, the status mapping subroutine exit
is entered. This section of the subroutine determines whether the Emulator
task or a subtask is in control by interrogating a control byte, TAFLAG3, in
the ISBLK. When TAFLAG3 is 0, the Emulator task is in control and a branch
is made to the main task control executive routine.

When a subtask is in control, the completion of the 0S ISAM I/0 request must
be signaled to the Emulator task. This is accomplished by loading the address
of the COMTAB entry for the request from the ISBLK, creating a CSW in the IOB
in the COMTAB entry, and issuing a POST macro instruction for the ECB in the
COMTAB entry. Control is then passed to the subtask control executive routine
which will zero TAFLAG3 in ISBLK and enter the wait state.

Mapped to DOS Mapped from OS
DTFIS field DCB field -
TJHACRRC DCBNREC Prime data record count
IJHACOTC DCBRORG3 Number of independent over-
flow records
IJHACOFC DCBRORG1 Number of cylinder overflow
area full
IJHACORC DCBNOREC overflow record count
IJHCCLPA DCBLPDA Address of last prime
data record
IJHCSTBY QISAM (Load mode)
DCBEXCD1
X120 X'20°"
X180 XTour
DCBEXCD2
X102 X180
X'04r x40
X180° X120
X140 X108
QISAM (Scan mode)
DCBEXCD1
X'10°" X80
X'08? X400
X*'10" Xt10°*
X'80¢ X'08?
X'80° X104
X'10° X102
Xt10° X'01*
DCBEXCD2
X180 X'20°*
X101 X'10¢
BISAM
DECBEXC1
X'10°" X'80"
XT40¢ X140
Xx'02! X' 20!
X'80°" X110
X'80° X' 08"
X'10! X104
X'01°" X'02!'
X104t X'01*

Figure 22. Mapping of DCB Fields to DTFIS Fields After Processing of
Each I/0 Macro

Method of Operation 95

VTOC I/0 Simulation Routine (IIVVIO) -- Flowcharts 25A-25E

The VTOC I/0 simulation routines are used to provide VTOC label information
and actual user label extent information to DOS when a data set (file) on a
shared volume is being opened.

When the SIO subroutine (IIVPCE) detects a request for I/O on a shared volume
and the seek address cannot be matched with the extents in the DEB for that
volume, the request is assumed to be for the accessing of VTOC labels or user
labels for the data set (file) by a DOS open routine. Control is passed to
ITVVIO to verify the assumption and provide the requested I/O.

Routines VIOA through VIOJ are used to determine the type of access requested.
Routines VIOIO through VIOIOF provide the I/O simulation.

VIOA - Analvze CCW Command Code Routine (Flowchart 2SA)

The CCW command code is matched with a table containing the acceptable commands,
and the appropriate processing routine is executed. If no match is found,
control is passed to VIOERRX.

Each entry in the command code table is a fullword, containing the command
code in the high order byte and the address of the routine to be executed in
the 3 low order bytes.

Command Code Routine
03 Nop VIOB
07 sSeek VIoC
08 TIC VIOD
31 Search ID equal VIOE
29 Search key equal VIOF
12 Read count VIOG
06 Read data VIOH
0E Read keys/data VIOoY
05 Write data VIOoJ
0D Write key/data VIOJ

Note: The multitrack bit is ignored.
The type byte is set by routines VIOB through VIOJ to indicate the type of
access requested.

Flag Values Request

80 Search ID equal for VOL1 label

40 Search ID equal for (format 1) label
20 Search ID equal for (format 3) 1label
10 Read count

08 Search key equal

ou NOP

02 Read data

01 Read keyrs/data

FF Write

96 DOS Emulator Logic

J

VIOB - NOP Command Code Routine (Flowchart 25B)

The NOP flag is set on in the type byte. Control is passed to VIONXT.

VIOC - Seek Command Code Routine (Flowchart 25B)

If the user label extent is present in the obtain work area and the seek address

is for the user label CCHH, the user label flag is set on in the COMTAB
(CTFLAG3) and the extent is moved to the COMTAB for use by the end-of-extent
appendage. The return code is set to 00 to notify the calling routine an EXCP
is to be issued, and return is made to the calling routine.

If the seek address is for CCHH 0000 or for the CCHH of the VTOC, control is
passed to VIONXT.

Otherwise, the return code is set to 08 to notify the calling routine that
an error condition has been detected and return is made to the calling routine.

VIOD - TIC Command Code Routine (Flowchart 25B)

It is assumed that the TIC is one that follows a search. Control is passed
to VIONXT.

VIOE - Search ID Equal Command Code Routine (Flowchart 25B)

If the ID is for the VOL1 label (CCHFR = 00003), the VOL1 flag is set on in

the type byte. If the ID is equal to the format 1 label ID, the format 1 flag
is set on in the type byte. If the ID is equal to the format 3 label ID, the
format 3 flag is set on in the type bvte. Control is always passed to VIONXT.

VIOF - Search Key Equal Command Code Routine (Flowchart 25B)

The search kev equal flag is set on in the type bvte. Control is passed to
VIONXT.

VIOG - Read Count Command Code Routine (Flowchart 25C)

The read count flag is set on in the type byte, and the count address is saved.
Control is passed to VIONXT.

VIOH - Read Data Command Code Routine (Flowchart 25C)

The read data flag is set on in the type byvte, and the data address is saved.
control is passed to VIONXT.

Method of Operation

97

VIOI - Read Key/Data Command Code Routine (Flowchart 25C)

The read key/data flag is set on in the type byte, and the data address is
saved. Control is passed to VIONXT.

VIOJ - Write Data and Write Key/Data Command Codes Routine (Flowchart 25C)

The type byte is set to X'FF' to indicate no data is to be transferred. DOS
will be writing the VTOC label so only simulation of the I/O interruption is
required. Control is passed to VIONXT.

VIONXT - Get Next CCW Routine (Flowchart 25C)

If the current CCW command code is a TIC and if the command chain bit is on

in the cCW, the CCW pointer is increased to point to the next CCW in the chain.
Ccontrol is then passed to VIOA. Otherwise, control is passed to VIOIO to
select the correct simulation routine.

The following routines determine the type of I/0 requested and provide any
data required by the DOS open routine request. The type byte flags are tested
for the combinations set by the command code routines VIOB through VIOJ. The
data transferred to the DOS data areas is the real VToC label data built by
the obtain subroutine within module IIVDVS. The obtain work area containing
the VTOC labels is in module IIVDVS starting at label IIVOBTE1. The address
of IIVOBTE1 is in EMUCONS at label AIIVOBE1.

The type byte must indicate one of the following CCW chains or the I/0 request
is considered invalid.

VIOWKD - Write a VTOC label

(1) Seek (CCFH equal obtained format 1 CCHH)
(2) Search ID equal

(3) TIC to search (2)

(4) Write key/data

(5) Search ID equal

(6) TIC to search (5)

(7) Read keysdata skip on

VIORDV1 - Read VOL1 label

(1) Seek (CCFH 0000)

(2) Search ID equal (CCHHR 00003)
(3) TIC to search (2)

(4) Read kev/data

VIORDV12 - Read VOL1 label data only
(1) Seek (CCHH 00C0)

(2) Search ID equal (CCFHR 00003)

(3) TIC to search (2)

(4) Read data

VIORDF3 - Read format 3 label

(1) Seek (CCHH equal obtained format 1 or 3 CCFH)

(2) Search ID equal (CCFHR equal obtained format 3 CCHHR)
(3) TIC to search (2)

(4) Read key/data

98 DOS Emulator Logic

VIORDF1K - Read format 1 label data only

(1) Seek (CCFH equal obtained format 1 CCHH)

(2) Search ID equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)

(4) Search key equal multi-track

(5) TIC to search (4)

(6) Read data

VIORDF1C = Read format 1 label count and data

(1) Seek (CCHH equal obtained format 1 CCHH)

(2) Search ID equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)

(4) Read count multi-track

(5) Search key equal

(6) TIC to read count (U4)

(7) Read data

VIORDF1D - Read format 1 label key and data

(1) Seek (CCFH equal obtained format 1 CCHH)

(2) Search ID equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)

(4) Read key/data

VIORDF0O - Read format 0 count field

(1) Seek (CCHH equal obtained format 1 CCHH)

(2) Search ID equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)

(4) Read count multi-track

(5) Search key equal

(6) TIC to read count (4)

(7) NoP

VIOIO - VTOC I/O Simulation Selection (Flowchart 25C)

The type byte is matched with a table containing the combined type codes, and
the appropriate processing routine is executed. If no match is found, control
is passed to VIOERRX. Each entry in the type code table is a fullword
containing the combined type code in the high order byte and the address of
the routine to be executed in the 3 low order bytes.

Combined Type Code Routine
FF Write VIOIOA
81 Read VOL1 key/data VIOIOB
82 Read VOL1 data VIOIOB1
21 Read F3 key/data VIOIOoC
4A Read F1 data VIOIOD
SA Read F1 count/data VIOIOD
41 Read F1 key/data VIOIOE
1C Read FO0 count VIOIOF
SC Read FO0 count VIOIOF

VIOIOA - Write Simulation Routine (Flowchart 25D)

Control is passed to VIOIOSIM.

Method of Operation

929

VIOIOB - Read VOL1 Label Simulation Routine (Flowchart 25D) ,
VIOIOB1

The VOL1 label is moved from the obtain work area to the address specified J
in the read CCW. Control is then passed to VIOIOSIM.

VIOIOC - Read Format 3 Label Simulation Routine (Flowchart 25D)

The F3 label in the ottain work area is moved to the address specified in the
read CCW. Control is then passed to VIOICSIM,

VIOIOD - Read Format 1 Label (Data) Simulation Routine (Flowchart 25D)

The data area of the F1 label in the obtain work area is moved t+o the address
specified in the read CCW. Control is then passed to VIOICSIM.

VIOTOE - Read Format 1 Label (Key/Data) Simulation Routine (Flowchart 25E)

The F1 label in the oktain work area is moved to the address specified in the
read CCW. Control is then passed to VIOTIOSIM.

VIOIOF - Read Format 0 Count Field Simulation Routine (Flowchart 25E)]

The count field of the F1 label in the obtain work area is moved to the address
specified in the read count CCW. Control is then passed to VIOIOSIM.

VIOERRX - Error Exit Routine (Flowchart 25E)

The return code 0% is set in register 15, and return is made to the calling
routine.

VIOIOSIM - Simulation Exit Routine (Flowchart 25F)

The return code 04 is set in register 15, and return is made to the calling
routine.

100 DOS Emulator Iogic

Exit ABEND Error Routine (IIVABN) ~-- Flowcharts 26A-26B

This routine is entered when simulation of some error condition to DOS or
termination of the Emulator is required.

The routine examines the error code passed from the module in which the error
was found. The proper message is printed if the calling routine has not already
printed it. The error codes are:

04 - Return to OS (any queued devices are dequeued by means of
the DEQ macro)

08 - DOS hard wait

12 - Invalid or no IPL device defined

16 - Invalid cCW found by IIVCCW

20 - Emulator CCW chain table size exceeded

24 - No seek or no bin number for IBM 2321 Data Cell Drive

If a DOS partition is being canceled, the channel end and program check bits

in the DOS CSW are turned on to force DOS to cancel the partition. Partition
cancelation occurs for errors found by the IIVCCW routine, for example, invalid
CCW data address or CCW not on a doubleword boundary (error code 16), if the
Emulator CCW chain table size is exceeded (error code 20), or if the IIVPCE
SIO routine finds invalid 2321 CCWs (error code 24). Exit is made to the
caller for return to DOS if the Emulator region is to be canceled. CCWs for
active devices are adjusted to local addresses, and an OS snap dump of DOS
registers 0 through 15 and DOS storage is taken if the JCL statement //SYSSNAP
DD SYSOUT=A was included for the Emulator job step. A service aid printout
instead of the snap dump will be taken if the DEBUG option is specified. The
routine returns to OS. The Emulator is canceled if the DOS supervisor attempts
to enter a hard wait (error code 08), if there is insufficient main-storage
space to run the Emulator (error code 04) , or if an invalid or no IPL device

is defined (error code 12).

Message Writer Routine (IIVMSG) -- Flowchart 27A

This routine prints all messages issued by the Emulator. See Figure 88 entitled
"Message-to-Module Relationship" for specific message codes, message numbers,
and module names. Emulator routines can request a message to be printed by
issuing an Emulator macro called EMUMSG. This macro generates the code required
to pass control to this routine. The parameters passed to ITVMSG are used

to select the message text to be printed, complete the message with any
supplemental text provided by the caller, and determine if the request is for

a WTO or WTOR.

Emulator messages are contained within three text modules: IIVMG1, IIVMG2,
and ITVMG3. These modules contain messages appropriate for issuance by the
Emulator during initialization (IIVMG1), after initialization (IIVMG2), and
when volume and data set sharing has been requested (IIVMG3).

Each message is identified with a unique message code. Within each text module,
messages are assigned sequential numbers from 1 to 99. These numbers are added
to the appropriate module identifier to form the message code used in the
EMUMSG macro call. The module identifier for IIVMG1 is 0, for ITVMG2 is 100,
and for IIVMG3 is 200. The module identifier determines both the message and
the required module.

Method of Operation

101

Two Emulator macros, MGTXT and MSGCOD™, are used to create the message text

modules.
modules.

MGTXT is issued for every message contained in each of the text
The macro generates control bvtes used for supplemental text and

the constants for the text itself. MSGCODT is issued once in each module,
and it must be issued after all the MG™XT calls. MSGCOD™ generates a message
index table.

The three macros, EMUMSG, MGTXT, and MSGCCD™, are described below.

EMUMSSG

MSGCODE= {code}
{(req)}

{data address}
[,FILL={D(data address)})]

{(req)}

{reply address}
[\REPLY={D(reply address)}
{(reqg)}

{ecb address}
+ECB={D(ecb address)}

{(req)}

+REPLEN= {reply length}]
{(r=9)}

where MSGCCDE is a regquired parameter:

FILL

code is the message code described above (IIVMG1, 1-99; ITVMG2, 101~
199; IIVMG3, 201-299).

(req) is one of registers 0 through 12, which contains the message
code in the low-order hyte.

is an optional parameter:

data address is the symbclic address of the supplemental text.

D(data address) is the same as data address except the symbolic address
is in a DSECT.

(req) is one of registers 1 through 12, which contains the text
address.

REPLY (see note helow):

reply address is the address of the reply area.

D(reply address) is the same as reply address, except the address
is a DSECT label.

(req) is one of register 1 through 12, which contains the reply
address.

ECB (see note below):

ecb address is the address of the ECB.
D(ech address) is the DSECT address of the ECB.

(reg) is one of registers 1 through 12, which contains the ECB address.

102 DOS Emulator Logic

9

REPLEN (see note below):
reply length is the length of the required reply.

(reg) is one of registers 1 through 12, which contains the reply
length in its low-order byte.

Note: The parameters REPLY, ECB, and REPLEN must all be present or all
omitted. Any parameter not enclosed Ly brackets must be opresent.

MGTXT {*text"}
{(eeeyttext!,..o,n,...)}

where 'text' is the message text in quotes; use this form when no
suprlemental text is required. {(eeap'text',..o,n,...) is used
when supplemental text is required. The information within the
parentheses represents any combination of 'text' and n, separated
by commas. The n represents a field length for the supplemental
data. The placement of the n relative to the *'text' determines
the displacement of the field to be filled.

For example, MGTXT ('THIS IS AN', 8) generated code would be:

DC AL2(8) Length of suprlemental data

DC AL1(128) Last entry indicator

DC ALT1(11) Bvte rosition within the message text
DC C'THIS IS AN !

DC CL8* '

Assuming the above macro call is the fifth issuance of MGTXT in module
IIVMG2, then the message code is module identifier (100) + 5 = 105.

To print this message, the requesting routine issues the macro EMUMSG:
EMUMSG MSGCODE=105, FILL=DATA
where DATA LCC CL8'EXAMPLE. !
The resulting message will be:
THIS IS AN EXAMPLE.
Actually the message text must contain the message identifier (IIVxxxT)
and space for an 8-byte job name, which the message writer always fills

in. All MGTXT macro calls must, therefore, begin as follows:

MGTXT 'IIVxxxT Jjobname ...!
(jokname=space for 8-byte Emulator job name)

or ('ITVxxxT jokname ...',...)

where xxx = message ID and T = message type.

Method of Operation 103

MSGCODT WNo required parameters.

This macro is issued once in each message text module. It must he
issued after all the MGTXT calls. Global values in the MGTXT macro
are used to generate a table containing the following information:

DC A (maximum message number)
or
DC A (number of MGTXT calls)
DC AL1(length of message 1)
DC AL3 (address of message 1 including any control
bytes for supplemental text)

Repeat for message 2, and so on.

Service Aids Initialization Routine (IIVRAS) -- Flowcharts 28A-28B

The major function of module IIVRAS is to control the program flow of the
service aids modules IIVRCP and IIVSNP.

At entry to this routine, the DCB for SYSSNAP is opened and address constants
in CSECTs IIVRCN and IIVCON are initialized. 1If register 0 contains zero at
the time of entry, the service aids command processor IIVRCP is loaded into
main storage. Control is then passed to IIVRCP to process a debug statement.
Module IIVRCP is deleted after control is returned. Module IIVSNP is then
loaded, and its main-storage address is placed in CSECT IIVRCN. CcControl is
then returned to the caller.

If register 0 contained a value of 4 at entry time, the Emulator snap dump
routine IIVSNP is loaded into main storage. Control is then passed to module
ITVSNP to snap the Emulator wraparound trace table. This will normally happen
at Emulator end-of-job time. Control is returned to the caller after the trace
table is snapped.

If register 0 contained a value greater than 4, register 1 must contain a main-
storage address of a two-byte length field. This field contains the length
minus one of a character string that describes the cause of the snap dump
(OPTION IN EFFECT gives the cause of the snap dump). The character string
immediately follows the length field. Control is passed to module IIVSNP to
snap Emulator control blocks. After the Emulator storage is snapped, control
is returned to the caller.

The following routines in IIVRAS gain control depending on the type of
interruption that occurs:

IIVRASPC - Program Check Intercept Initialization Routine (Flowchart 28B)

Control is gained at this entry point after the occurrence of a program check
interruption when the CPU is in local execution mode. DOS registers are saved
and Emulator registers are restored. This subroutine exits to module IIVPCI,
which further interrogates the program check interruption.

104 DOS Emulator Logic

J

IIVRASVC - Supervisor Call Intercept Initialization Routine (Flowchart 28B)

Control is gained at this entry point after the occurrence of a supervisor
call interruption when the CPU is in local execution mode. DOS registers are
saved and Emulator registers are restored. This subroutine exits to module
ITVsCI, which will further interrogate the supervisor call interruption.

ITVRASYN - Asynchronous Intercept Initialization Routine (Flowchart 28B)

Control is gained at this entry point after the occurrence of an asynchronous
interruption when the CPU is in local execution mode. DOS registers are saved
and Emulator registers are restored. Tf requested, control is passed to a
user asynchronous exit routine. Control will then be passed to module IIVSNP
if an optional snap dump is indicated. DOS registers are then restored and

- this routine exits to the Emulator module IIVRTE.

command Processor Routine (ITIVRCP) -- Flowcharts 29A-29p

This routine gains control from IIVRAS in order to read a DEBUG statement from
card input or a DEBUG console reply to the Emulator prompt.

Each command of the DEBUG statement is checked for syntax validity. Each
keyword or parameter is then analvzed and corresponding indicators are set

in RASCONS to be used by the service aids modules. These modules (IIVACI,
IIVPCI, IIVSCI) are loaded by IIVRCP with user exit modules (if any) when an
END command is encountered. Control then returns to IIVRAS, which will delete
ITIVRCP and resume emulation.

Snap Dump and Trace Formatting Routine (ITVSNP) -- Flowcharts 30A-30K

The major function of module IIVSNP is to format the Emulator control blocks
and trace table. A nonzero value in register 0 at entry to this routine will
cause only the trace table to be printed. The main line code consists of calls
to subroutines that convert main storage data to EBCDIC and write the formatted
data.

Trace Table Subroutine (Flowchart 30E)

The entry point label of the trace table subroutine is RAS14000. Control is
returned to the caller if the number of active trace table entries is zero.
Otherwise, each entry is converted from its internal format (see Figure 84,
Internal Trace Table Format) to its printed format (see Figure 86 (Part 6 of
7). Service Aids Snap Dump). Trace table entries are printed starting with
the most recent entry. Each succeeding line represents an older entry. The
trace table pointers are reset immediately after snapping SO no two snaps will
reflect the same events.

Method of Operation

105

Write Subroutine (Flowchart 30H)

The entry point label of the write subroutine is RAS15000. When this subroutine
is entered, register 1 contains the address of a two-byte length field, which
contains the length in bvtes minus one of a character string; the character
string immediately follows the length field. Each line is blocked until the
buffer is filled, at which time the entire buffer is written out. A secondary
entry point (RAS15200) will cause the buffer to be truncated and written.
Control is returned to the caller.

Snap Subroutine (Flowchart 30K)

The entry point label of the snap subroutine is RAS16000.
Register contents upon entry to this subroutine are:

. Register 0 - the length in bytes of main storage to be snapped
e Register 1 - the starting address of the main storage to be snapped

Control is first passed to the EBCDIC conversion subroutine (entry point is
RAS17000) to convert hexadecimal data to EBCDIC. The EBCDIC data is then
formatted in fullword sections for readability bv the data formatting subroutine
(entry point is RAS18000). Control is then passed to the write subroutine
(entry point is PAS15000). Data is snapped 32 bytes at a time until the length
(passed in register 0) is reached. Only the first line of a set of duplicate
lines is printed so that the volume of output is minimized.

EBCDIC Conversion Subroutine (Flowchart 30G)

The entry point label of the EBCDIC conversion subroutine is RAS17000.
The register contents upon entrv to this subroutine are:

. Register 0 - the number of bytes to convert
. Register 1 - the main~storage address of the hexadecimal data to be
converted

The number of bytes contained in register 0 is rounded to the next fullword.

A maximum of 72 bytes can be converted at anv one time. Output data is placed
in a work area labeled BUFF1. 2After conversion, control is returned to the
caller.

Data Formatting Subroutine (Flowchart 30J)

The entrv point label of the data formatting subroutine is RAS18000.

The register contents upon entry to this subroutine are:

: Register 0 - the number of bytes to format

. Register 1 - the beginning of main-storage address to contain the formatted

output

Input data is found in a work area labeled BUFF1. EBCDIC data is formatted
in fullword segments for readability. Control is returned to the caller.

106 DOS Emulator Logic

J

Program Check Intercept Routine (IIVPCI) -- Flowcharts 31A-31C

The major function of module IIVPCI is to intercept DOS program check
interruptions. IIVPCI receives control from module IIVRAS (entry point is
IIVRASPC) after DOS registers have been saved and Emulator registers have been
restored. Control will be passed to module IIVSNP to snap Emulator control
blocks if a snap for DOS program checks was requested and if a nonprivileged
operation program check or if a nonEmulator supported privileged operation
exception is encountered. Snap dumps during DOS IPL are bypassed unless
specifically requested because of the number of program checks that occur
during that time.

The first of two snaps of the Emulator control blocks and main storage will

be taken for user selected privileged operations that are issued by DOS. This
dump will be a picture of the Emulator region before instruction simulation
by the Emulator. The second snap will be issued by module IIVACI. This dump
will contain a picture of the Emulator region after the instruction is
simulated.

User selected privileged operations will be entered into the Emulator trace
table if a trace table was requested. Since all required trace information

is not available at program check time, a flag is set in IIVRCN (RASCONS) to
indicate that that entry must be completed by module IIVACYX. Just before
passing control to Emulator module IIVPCE, control will be passed to a program
check user exit routine if one was specified. An optional snap dump will be
taken if the exit routine returns to the address in register 14 plus a
displacement of four.

Supervisor Call Intercept Routine (IIVSCI) =-- Flowchart 32A

Module IIVSCI receives control from module IIVRAS (entry point is IIVRASVC)
after the occurrence of a supervisor call interruption while the CPU is in
local execution mode.

If an SVC snap dump was requested, a four byte field at hexadecimal location
1A8 in CSECT TIVRCN will contain the starting main-storage address of a chain
of SVC control blocks. Each entry in the chain is 12 bytes in length and has
the following format:

[svc Points to next entry | module name |
0 1 4

control is passed to module IIVSNP to snap Emulator control blocks if the
interruption field in the local execution PSW matches the SVC number in byte

0 of an entry. A value of zero in the next entry field (byte. 1) indicates

the last entry in the chain. In the case of SVC numbers 2 and 4, the main-
storage address contained in DOS register 1 is adjusted and compared with the

8 character module name in byte 4 of the entry if that field contains a nonzero
value. An equal compare will cause a snap dump to be taken.

If SVC or ALL were specified for trace, the trace table will be updated.

The supervisor call interruption will then be partially recorded in the trace
table if SVC or ALL are specified for TRACE. Just before exiting to module
IIVSVC, control will be passed to a supervisor call user exit routine if one
was specified. An optional snap dump will be taken if the user exit routine
returns to the address contained in register 14 plus a displacement of four.
This routine restores DOS registers and exits to the Emulator module IIVSVC
to process the SVC instruction.

Method of oOperation

107

Asynchronous Intercept Routine (IIVACI) -- Flowcharts 33A-33H

Module IIVACT receives control from the various Emulator modules when control

is to be returned to DOS. The address constant ART20 (which ordinarily contains
the main-storage address of ITVRTER2) is replaced ky module TIVRCP with the
entry point address of IIVACI.

Since this routine gains control from other Emulator modules, it is assumed
that registers are set up with standard Emulator values. If the current trace
entry is flaaged incomplete, it is completed according to the type of
interruption it represents. The trace table pointers are then updated.
Asynchronous interruptions (I/0, EXT, TIMER) are then checked and entered if
requested.

Control is passed to module ITVSNP to issue the second of two snap dumps if
indicated by module IIVPCI. This snap dump will reflect Emulator main storage
after a valid DOS privileged operation was simulated by the Emlator.

The PSW and COMP snap functions are also handled in module ITIVACI. If these
options are specified, a snapr dump will be taken whenever the conditions are
satisfied. Asynchronous interruptions (I/0, EXT, TIMER) are checked and a
snap dump is taken if requested. The local execution user exit routine is
given control just before passing control to module IIVRTE at entry point
IIVRTER2. An ortional snap dump is taken if control is returned to the address
in register 14 plus a displacement of four.

Service Aids Adjust CCW Data Address Routine (JIVRCW) -~ Flowcharts 34A-34H

The main function of IIVRCW is the same as IJIVCCW. The DOS local addresses

in the data address portion of the CCWs will be adjusted to 0S true addresses
or readjusted from OS true addresses to DOS local addresses.

The first path of IIVRCW is similar to TIVCCW. BEFLK entries are created
according to the channel program to be processed. The BEBLK entries contain
pointers to the begirning and ending addresses of each consecutive set of CCWs
found in the channel program.

The second step of ITVPCW is slightlyv different from TIVCCW in that the CCWs
will not be adjusted or readjusted in the DOS area, but will leave the DOS
channel programs unchanged.

Start I/O0 Time

IIVRCW copies the DOS channel program into a buffer located in the DTAG block
(the block is created by ITIVRCP when the DIAG command routine is entered).
The data address portions of the CCWs in the buffer are then adjusted to OS
true addresses and the TIC addresses will pcint to the corresponding CCW in
the buffer. The IOB is then modified to reflect that the OS EXCP should be
issued on the channel prcgram located in the DIAG block.

108 DOS Emulator Logic

J

I/0 Completion Time

IIVRCW is called by IIVCHK when the OS EXCP is complete. The data address
portions of the CCWs in the buffer are readjusted to DOS local addresses.

The TIC addresses will point to the corresponding CCW in the DOS area. When
readjustment is complete, the channel program located in the DIAG block should
be identical to the channel program located in the DOS area. A check is made
on each CCW and message IIV281I is issued if the CCWs do not match. The IOB

is then modified to reflect that the I/O is completed on the DOS channel program
(the CSW will be pointing to the corresponding CCW in the DOS area).

Method of Operation 109

PROGRAM ORGANIZATION

(v Functional Organization of Emulator Interruption Handling

Flowcharts

Program Organization 111

FUNCTIONAL ORGANIZATION OF EMULATOR INTERRUPTION HANDLING

In Figure 23, the major Emulator interruption handling functions are grouped
relative to the modules that perform them.

FLOWCHARTS
This section contains flowcharts of Emulator routines. In general, the
flowcharts have the following characteristics:

o Symbols, or labels, are used where possible to aid readers in locating
instruction sequences in listings.

. Where CPU control passes from one routine or subroutine to another, terminal

blocks are always used. Off page connectors are used only when a single
routine or subroutine extends over two or more pages.

o Information necessary to understand a module and its interaciton with the
rest of the Emulator is given in text preceding each major module.

) Redundancy is sometimes used to avoid excessive cross-referencing; the

same function may sometimes be shown in two or more flowcharts, even though,

in each case, it is performed with the same set of instructions.

. Each flowchart identifier begins with a numerical value ranging from one
to two digits. The numerical prefix is unique for each module. The
flowchart identifiers end with an alphabetic character ranging from A-2Z,
omitting the letters I and O to avoid confusion with the digits 1 and 0.
The alphabetic character following the numerical prefix of the flowchart
identifier, starts with the letter A and progresses alphabetically for
each flowchart of a module.

The flowcharts are divided into seven categories:

o Initialization

o Synchronous interruptions

. Asynchronous interruptions

° Direct-acces volume sharing

. Abnormal end conditions

. Message writer

. Emulator service aids

Figure 24 shows the module relationships of the Emulator.

112 DOS Emulator Logic

J

Program
check in DOS
Program Check Interrupt Handler (11VPCE)
Other SSK
Program (o]
Checks TCH
SSM
[A
ISK
W
EXCP LPS
| TIO j HIO]
‘—lh,
\ \
v 9 ! \ After
CCW Staged Add/delete 1/0 interrupt asynchronous
(ISAM) (SYSLOG) (adjust > (1/0) ((auto—lPL)) (Simulation interrupt
in DOS
Y Y \
Asynchronous Interrupt Handler and Route Routine (IIVRTE)
Post I/O . Interrupt Wait 1/0
Completion Timer “| Selection EOJ Completion

';':;Tp' SYSLOG 1/0 Interrupt
Processor Simulation

DEBUG ATTN MAPIO EXT Mount
[
Y \
Service? OPEN/
Aids CLOSE

Return
to DOS

SVC Interrupt

in DOS

SVC Interrupt Handler (11IVSVC)

SVC 2

Figure 23.

SVC 2

Volume

Processor

. Depending on the DEBUG options ‘taken, service aids may first receive control

Sharing

2. Service aids can also be activated during initialization if a //SYSDEBUG DD statement is present

Functional Organization of Emulator Interruption Handling

Program Organization

113

(O]

Emulator

VAWV

IIVCAW
1HHVSTG 11'VOPN

1 3

| 1IVVio l

IIVPCE 1IVCCW
‘ Program Check
Interruption
IIVPRP E
s il
IHVCHK = DOS w
| Dispatch — =
Asynchronous Interruption / 5
. =
10S
- — SVC Interruption
| Machine [————" [TIiva0D -
External p 11VSVC —
| 11IVPUB
1NVGR2 1IVIN2
N—]

|
=

| nvent

uvis | | uvovs |

Initiator

Note: Module IIVRAS functions are not included in this diagram (see “Emulator Service Aids'' for information concerning the
relationship of 11VRAS to other Emulator modules).

Figure 24.

114 DOS Emulator Logic

Emulator Module Relationship

f— — ——y

Initialization

C

Program Organization 115

DOS Emulator Entry Routine (Flowchart 1A)

Module name: TIIVENT

Entry point name: IIVENT

Major functions:

. Saves registers

. Saves pointer to user parameter area

] Establishes a CSECT of constants (EMUCONS) at assembly time
Entered from: OS

Modules called: IIVINT

Exits to:
. TIIVIN2
. IIVABN

0S macros issued: SAVE

Input: Register 1 points to the pointer to the user parameter area
Output: Register 7 points to the user parameter area

Return codes: X'04' on exit to IIVABN

Tables/work areas: None

Errors detected: None

Messages requested: None

Program Organization

117

Flowchart

1A.

118

DOS Emulator Entry Routine (IIVENT)

[1 VENT
ENTRY

FROM 0S

SAVE REGISTERS

SAVE POINTER
TO PARAMETER
AREA

D3
TIVINT 2A/AL
EMULATOR
NITIALIZATION
FIRST-LOAD
E3
YES
ERROR RETURN
NO
E3
1 1IVIN2 3A/A3
I IVIN2 RETURNS
TO 1IVENT ONLY |----] SECOND PHASE OF
ON ERROR INITIALIZATION
CONDITIONS
EXIT

TO 11VABN (CHART 26A

CONDITION CODE = X'

DOS Emulator Logic

)
04°

Initialization First-Load Routine (Flowcharts 2a-2M)

Module name: TIIVINT

Entry point name:r TIIVINT

Major functions:

Verifies parameters
Establishes DOS storage area
Initializes CCMTAB
Initializes COMTAB extension

Entered by: TIIVENT

Modules called:

. IIVGET
(] IIVMSG
Exits to:

. Caller
. TIVABN

0S macros issued:

WAIT
EXTRACT
SAVE
RDJFCB
RETURN

Input: Register 7 points +o the user parameter area

Output:

. Register 9 points to local execution list
° Register 10 points to DOS storage area
J Register 11 points to ITIVCON

Return codes: None

Tables/work areas:

TIOT

COMTAB

UCB

JFCR

Local execution list

Adjust CCW data address list
EMUCONS

COMTAB extension

Errors detected:

Invalid Emulator paramreters

No DOSRES DD statement

Invalid device assigned to Emulator

Invalid Emulator DDname

DISP=SHR specified in SYSEMLBL DD statement

file

0S cuu from SYSEMLBL not the same as 0S cuu from DOS system residence

Program Organization

119

Messages requested:

IIV002D
ITV003D
ITIVO04D
ITIV0O0S5SD
IIVO06D
IIVCO07D
IIV008D
ITIVO11I
IIV0191
IIV0221
IIV025I
IIV0261

120 DOS Emulator Logic

Flowchart 2A. Initialization First-Load Routine (IIVINT Part 1 of 12)

IIVINT

ENTRY

FROM 1[VENT (CHART 1A) @

Bl B3
SCAN 2K/A!

GET ADDRESS OF
TIOT SCAN_FOR
PARAMETER ENTRY

C3

GET ADDRESS OF
PARAMETER TABLE

TI0OT ADDRESS

D3
DI D4
IS
ALIGN LISTS ON PARAMETER SAVE_PARAMETER
4-BY’ LISTED IN ADDRESS IN
BOUNDARIES TABLE PARAMETER TABLE
El
INITIALIZE GET NEXT TABLE END OF
LISTS ENTRY PARAMETER
AREA
El
END OF
INITIALIZE PARAMETER
EMULATOR BASE TABLE
REGISTERS
Gl

GET ADDRESS OF
PARAMETER AREA

SYMBOL TABLE

LISTS - LOCAL
Hi EXECUTION L1ST AND
ADJUST CCw DATA
ADDRESS LIST
INITIALIZE SCAN

TABLE SCAN TABLE - A
PARAMETER _BIT
DEF INING THE AREA
TO BE SCANNED

PARAMETER EABLE - A

1DCOMP ARE TO APPEAR IN THE
all USER PARAMETER AREA
ON THE EXEC CARD

UPDATE TO FIRST
OF PARAMETERS

Program Organization 121

Flowchart 2B.

122

SET AUTO _IPL
INDICATOR

SET _IPL_EXT
INDICATOR

CHKRES

2B
B3,

FROM 2A/E4

Initialization First-Load Routine (IIVINT Part 2 of

B3

CHKCUU 2L /A4

VAL IDATE CuU

CHK I PL

c3

RESCUU VALID

DOSIPL=AUTQ

DOSIPL=EXT

L4

ASKOPR 2L /A1

GET _NEW
PARAMETER FROM
OPERATOR

CHKCUU 2L /A4

VALIDATE CuU

DOS Emulator Logic

G3
G4
NO ASKOPR 2L/Al
IPLCUU VALID GET NEW
PARAMETER FROM
OPERATOR
YES
CHKLOG
H3
CHKCUU 2L /A4
VALIDATE Cuy
J3
a4
ASKOPR 2L/Al
NO
GET_NEW
PARAMETER FROM
OPERATOR
YES

12)

Flowchart

2C.

CHKEOJ

FROM 28/J3

Initialization First-Load Routine (IIVINT

Part 3 of 12)

CHKSIZ B3

—Bs

ASKOPR 2L/Al

GET NEW
PARAMETER FROM
OPERATOR

HKT LM C3

YESORNO 2K/A4

CHECK FOR VALID
PARAMETER

SAVE DOS
TIMER INDICATOR

D4

ASKOPR 2L/A I

GET NEW
PARAMETER FROM
OPERATOR

E3

YESORNO 2K/A4

CHECK FOR VALID
AUTOEOJ
PARAMETER

SAVE AUTQEOJ
INDICATOR

K2

ASKOFR 2L /A1

GET NEW
PARAMETER FROM
OPERATOR

CHKEMT Nkl

G4

ASKCPR 2L /Al

GET NEW
PARAMETER FROM
OPERATOR

YESORNO 2K/A4

CHECK FOR VALID
APROMPT
PARAMETER

APROMPT
PARAMETER
VALID

SAVE APROMPT
INDICATOR

Program Organization

123

Flowchart 2D. Initialization First-L.oad Routine (IIVINT Part 4 of 12)

Y,

FROM 2C/K4

CALCULATE DOS
STORAGE +4K

L3

1 IVGET TA/A3

OBTAIN DOS
STORAGE

D3

ALIGN DOS
STORAGE ON 4K
BOUNDARY

E3
LIVGET TA/A3
RELEASE EXCESS
STORAGE

&

124 DOS Emulator Logic

Flowchart 2E.

D2

ADD 1 _TO COMTAB
COUNT

Initialization First-Load Routine (IIVINT Part S5 of

FROM 2D/E3

SET FIRST
ENTRY INDICATOR

CNIENTIOQ C3
DDSCAN 2M/A1
GET TIOT ENTRY

YES

E2

ADD 1 TQO COMTAB
EXTENS ION COUNT

SYSE ENTRY

YES NOTEA SYSE

NTRY

SET NEXT
NTRY INDICATOR,

e

11VMSG 2TA/Al
SYSEM DD
FOR DOSRES ISSUES MESSAGE
SPECIF I1ED rivoazl
RETURN

CALCULATE
STORAGE NEEDED
FOR COMTAB

ERROR CONDITION

3
1 1VGET TA/A3
OBTAIN_ STORAGE
FOR COMTAB

&

Program Organization

12)

125

Flowchart 2F.

FROM 2E/J3
INLICT B2
GET _COMTAB
ADDRESS
[oF-4
UPDATE TO NEXT FORMAT DOSLOG
COMTAB ENTRY COMTAB ENTRY
SET NEXT SET FIRST
ENTRY INDICATOR ENTRY INDICATOR
E2

DDSCAN 2M/A1
GET TIOT ENTRY

El
I11VGET TA/A3

FREE _EXCESS
COMTAB SPACE

126 DOS Emulator Logic

Initialization First-Load Routine

SET
FLAG

TAGED

SYSIN DATA
SET

NO

SET SYSOUT
FLAG IN COMTAB

S
IN COMTAB

READ JFCB

SET SYSIN
FLAG IN COMTAB

INLICT 14 E3

CHKCUU 2L /A4

VALIDATE DOS
cuu

INLICTLS H3

G4

| IVMSG 27A/A!

ISSUES MESSAGE
11vo191

PLACE DOS Ccuu
IN COMTAB

%

RETURN

ERROR RETURN

(IIVINT Part 6 of 12)

TEMPORARY
DSNAME

DATA SET

YES

SET 1SAM_FLAG
IN COMTAB

J
N
o

SET SHARED
VOLUME FLAG

N
A4

ADD 1 TO
COMTAB
EXTENS ION COUNT,

N

HS

PLACE DSNAME
AND DDNAME IN
TEMPORARY

COMTAB
EXTENSION

Flowchart 2G.

FROM 2F /H3

B!

[S 1T
DOSRES VOLUME

SET DOSRES
FLAG IN COMTAB

SET ENQUE
XCLUSIVE _FLAG
IN COMTAB

1S 1T A
SHARED VOLUME

SET ENQUE
SHARED FLAG IN
COMTAB

INITCT20 F1

STAGED DEVICE

GET B ADDRESS

ucl
FROM TIOT

H2

CLEAR COMTAB
ENTRY

SAVE 0S
NUMBER
COMTAB

B3

TRANSLATE OS
DEVICE TYPE_TO
DOS DEVICE TYPE

INLICT23 L3

SAVE 0S _CUU IN
COMTAB

INITCT30

INLICT40

SAVE DOS DEVICE
TYPE IN COMTAB

i}

GET UCB
BEGINNING
ADDRESS

INITCT35 D4

SET TP DEVICE
FLAG IN COMTAB

J4

WAS DOS BIN
NUMBER IN DD
NAME

Tnitialization First-Load Routine (IIVINT Part 7 of 12)

RS

11VMSG 2TA/AI

ISSUES MESSAGE
rivortt

RETURN

ERROR RETURN

SET 2702
DEVICE TYPE
COMTAB

SET 2701
DEVICE TYPE
COMTAB

2F
cit

N

I IVMSG 2TA/Al

ISSUES MESSAGE
11vot19l

SAVE DOS B
NUMBER |
COMTAB

RETURN

ERROR RETURN

Program Organization 127

Flowchart 2H.

F

BI

INITCTSI

ARE DEVICE
SHARE INDD] -
CATORS ON

ROM 2G/E3

Initialization First-lLoad

Routine (IIVINT Part 8 of 12)

CE_SHARE
CATORS IN
OMTAB

O—=—
x

C3

DECREMENT
COMTA
EXTENSION COUNT

INITCT5A D1

“'Ill%li}ll}a"’No
YES

SET TAPE_FLAG
IN COMTAB

F1
“'IIIEiiiI""NO
YES

SET 7 TRACK
FLAG IN COMTAB

INITCTSD H1

3400 TAPE
UNIT

INITCTS52 D2

YES

SET OCR FLAG
IN COMTAB

INITCTS54 D3

NO NO
1403 PRINTER

NO

SET 1403V
DEVICE TYPE IN
COMTAB

INITCT60 D4

PUNCH ONLY NO
DEVICE

YES
E4
YES SET 2520P
DEVICE TYPE IN
COMTAB
NO
F4
YES SET 1442P
NO
G4
YES SET 3525P
NO

128

3410 TAPE
UNIT

NO

K2

L1VMSG 27A/Al

1SSUES MESSAGE
rivornd

RETURN

ERROR RETURN

DOS Emulator Logic

2F
ct

rlowchart 2J.

@ FROM 2F/F1

COMPUTE SIZE OF
EXTENSION

L2

11VGET TA/A3

GET_COMTAB
EXTENS [ON
STORAGE

D2

GET ADDRESS OF
col B
EXTENSION

SET FIRST
NTRY INDICATOR

E2

DDSCAN 2M/A|

GET TIOT ENTRY

RETURN
+4

NORMAL
RETURN

SET NEXT
NTRY INDICATOR

B4

READ JFCB

DDNAME =
SYSEMLBL

Tnitialization First-Load Routine (IIVINT Part 9 of 12)

RS

1 1VMSG 2TA/AI

ISSUES _MESSAGE [
rrvoast

ES

11 VMSG 2TA/Al

15 _UCB_SAME
AS FOR DOSRES

SET LABEL
CYLINDER FLAG
ON_IN COMTAB
EXTENSION

G4

INDEXED
SEQUENT AL
DATA SET

ISSUES MESSAGE
Irvozel

RETURN

ERROR RETURN

SET ISAM
INDICATORS

NO
4

PLACE DATA SET

NAME IN COMTAB

EXTENSION
23 NE3 ol
PLACE _DDNAME IN UPDATE TO NEXT GET UCB
GET UCB ADDRESS BEG INNING
EXTENS ION EXTENSION ENTRY ADDRESS

K3

SAVE DEVICE
ADDRESS IN

COMTAB
EXTENSION

2321 DEVICE

SAVE BIN NUMBER

Program Organization

Flowchart 2K.

130

SCAN

ENTRY

FROM [IVINT (CHART 2A)

SCAN FOR COMMA
OR BLANK

£l

RESET_SCAN
TABLE

RETURN

DOS Emulator Logic

SCAN and YESORNO Subroutines (IIVINT Part 10 of 12)

YESORNO

FROM [1VINT (CHART 2C)

RETURN

PARAMETER
MISSING

RETURN
+4

RETURN
+8

INVALID PARAMETER

Flowchart 2L. ASKOPR and CHKCUU Subroutines

A
ENTRY
FROM [IVINT
(CHARTS 2B AND 2C) N
Bl
110020
1 1YMSG 27A/AIL 11voo30
[1v004D
I SSUE WTOR 11v005D
- - - = |11v0o0&D
11v007D
11v008D
Cl
WAIT FOR REPLY

TO 11VABN {CHART 26A)

El

SAVE NEW
PARAMETERS

RETURN

(IIVINT Part 11 of 12)

FROM 11VINT
{CHARTS 2B, 2F)

RETURN+4

NO

C4

RETURN+4

RETURN+4

E4

TRANSLATE CUU
TO HEXADECIMAL

' RETURN '

Program Organization

131

Flowchart 2M. DDSCAN Suhroutine (IIVINT Part 12 of 12)

DDSCAN1O

132

Ad
SET SNAP
PRESENT FLAG —
FROM [1VINT
(CHARTS 2E, 2F,
2J)
B4
SET DEBUG
FIRST ENTRY PRESENT BIT

YES
DDSCANZ24
Cl C4
GET TI10T DDNAME = SET SWITCH FOR
ADDRESS SYSABEND ABEND DD —
PRESENT

DOSCANZ25

NON SYS
DDNAME

RETURN + 8

opscaNzo Y E3

UPDATE TO_NEXT
T10T ENTRY

RETURN

DDNAME =
SYSEMLBL

RETURN +8

DDNAME =
SYSEM

RETURN + 4

RETURN +4

DOS Emulator Logic

Initialization Second-lLoad Routine (¥lowcharts 3A-3F)

Module name: TIVIN2
Entry point name: TIIVIN2
Major functions:

Performs COMTAB and COMTAB extension chaining
Sorts COMTAB table

Builds other Emulator tables

IPLs DOS from the DOS resident volume

Saves store CPU ID results (STIDP)

Entered by: TIVENT
Modules called:

IIVOPN
ITVGET
ITVMSG
JIVRAS
JIVRTE

Exits to:

[TIVRTE
. Returns to caller cn exrror conditions

0S macros issued:

EXCP
ENQ
WAIT
LOAD
DEO
SAVE
RETURN
DCBD
OPEN

Input:

. Register 9 roints to local execution list
J Register 10 points to DOS storage
. Register 11 points to TIVCON

Output: None
Return codes: None
Tables/work areas:

COMTAB

COMTAB extension
ISK/SSK table

ECB pointer table
Post ECB list

Local execution list
EMUCONS

DOS storage

Program Ordanization 133

Errors detected:

Duplicate DOS device address

Could not IPL DOS for DOS emulation

Could not open DOS SYSRES DCB

I/0 error on DOS SYSRES

Missing DD statement for DOS SYSRES volume
DDname does not map to a DOS device
Invalid device sharing request

Invalid starting address for DOS SYSRES
DOSRES label cylinder in use

Messages requested:

IIV012I
ITV013I
IIV0151
ITVv0201
ITV0221
ITV027I
IIV028T
IIV0331
IIVO34T

134 DOS Emulator Logic

C

Flowchart 3A.

FROM 11VENT
(CHART 1A)

ANY
TEMPORARY
EXTENSION

YES

C3
GET_ADDRESS OF

MOVE TEMPORARY
CTEX R
COMTAB TO CTEXT

£3

GET NEXT
EXTENSION

G3

GET NEXT COMTAB
ENTRY

LAST COMTAB
ENTRY

Initialization Second-Load Routine (IIVIN2 Part 1 of 6)

Program Organization

135

Flowchart 3B.

GET CTEXT
ADDRESS

CLEAR CTEXT
MAPS FLAG

£l

GET ADDRESS OF
COMTAB

IS COMTAB
FLAGGED
SHARED

Initialization Second-load Routine

UPDATE_TO_NEXT
CTEXT

(IIVIN2

A3

IS CTEXT
MAPS FLAG ON

Part 2 of 6)

AS

| IVMSG 27A/A1

3B
B3/ FROM
3A/B3

[of £40 B3

GET NEW CTEXT
ENTRY

O G

THIS UNCHAINED
COMTAB EXTENS1ON
Y 1S NOwW

CURRENT
COMTAB EXTENSION

ENTRY

UPDATE TO NEXT
COMTAB ENTRY

LAST COMTAB
ENTRY

SET CTEXT
MAPS FLAGS

IS CURRENT
CTEXT OS CUU=NEW
0S cuu

CHAIN COMTAB
PLACE ADDRESS EXTENS ION

OF _NEW CTEXT --| TABLE ENTRIES
TOGETHER

INTO CURRENT

E3

NEW CTEXT
BECOMES CURRENT
CTEXT

NO
Hl ~Ha
I 1VMSG 2TA/Al PLACE ADDRESS
OF CURRENT CHAIN COMTAB
ISSUES MESSAGE CTEXT INTO -—|EXTENSION_TO
11v0341 COMTAB ENTRY COMTAB ENTRY
RETURN

136

DOS Emulator Logic

ISSUES MESSAGE
11v0331

RETURN

Flowchart 3C. Initialization Second-load Routine (IIVIN2 Part 3 of 6)

GET ADDRESS OF
COMTAB

cz2 C3

C4

ENTRIES

IS_DEVICE COMTAB UPDATE TO NEXT
2321 ENTRY=ENTRY+1 COMTAB ENTRY

ENTRY+1
(LOW)
R2 R3
1 IVMSG 27A/A1
SWAP_COMTAB
I SSUES MESSAGE ENTRIES
rivotrzi
RETURN SET _ENTRY

SWAP FLAG

PLACE COMTAB
NUMBER IN
CHNINDX

GET CHANNEL
INDEX ADDRESS

ES

GET COMTAB
ADDRESS

Program Organization

G4 [

UPDATE CHANNEL INITIAL I ZE
COUNTER CHANNEL COUNT

TO ZERO

H4 HS

GET NEXT COMTAB INITIALIZE
ENTRY COMTAB ENTRY

COUNTER

J5

COMTAB FOR
CHANNEL
COUNTER

137

Flowchart 3D.

FROM
3C/J4
ENQDYC Bl JIQFEST40Y B2
ENQ MASTER UPDATE TO NEXT
RESOURCE COMTAB ENTRY

GET ADDRESS OF
COMTAB

LAST COMTAB
ENTRY

DEDICATED
DASD DEVICE
OR DOSRES

ENQ DEVICE
RESOURCE
EXCLUSIVE

£2

£4

GET ADDRESS OF
COMTAB

itialization Second-Load Routine (IIVIN2 Part 4 of 6)

C3 C4 ELEEC (o1}
DEQ MASTER PLACE ECB CALCULATE SIZE
RESOURCE ADDRESS IN ECB OF POST ECB
POINTER TABLE LIST
LDISK
R3
1 1VGET 7A/A3

CALCULATE SI1ZE
OF ISK/SSK
TABLE

E3

GET STORAGE FOR
POST ECB LIST

£S

ENQ DEVICE
RESOURCE MAY BE
SHARED

1 1VGET T7A/A3

GET STORAGE FOR
ISK/SSK TABLE

UPDATE TO NEXT
COMTAB ENTRY

FORMAT POST ECB
LIST

138

ENQDVC20 GI

COMTAB FOR
DOSRES

COMTAB
OFFSET

COMTAB
OFFSET

COMTAB
OFFSET

GETECE Y F3

CALCULATE S1ZE
OF ECB POINTER
TABLE

G3

11VGET 7A/A3

GET STORAGE FOR
ECB_POINTER
TABLE

DOS Emulator Logic

H3

INITIALIZE
FIRST THREE ECB
ADDRESSES

ES

INITIALIZE _POST
ECB LIST
POINTERS

Flowchart 3E.

FROM 3D/F5

IPLDOS
B2
11VMSG 2TA/A(
1S THERE A
COMTAB FOR ISSUES MESSAGE
DOSRES rivozeal
C2
COMPUTE ADDRESS RETURN

OF DOSRES
COMTAB ENTRY

ERROR RETURN

Initialization Second-Load Routine

(IIVIN2 Part 5 of 6)

D2 R4
»)
11VOPN 5A/A2 1 IVMSG 2TA/Al
DOSRES A
SHARED VOLUME OPEN DOSRES OPEN GOOD ISSUES, MESSAGE RETURN
ERROR RE TURN
GET FIRST
COMTAB
EXTENSTON
Fi F2 |
E3
DDNAME = LAST_COMTAB GET_NEXT COMTAB
*SYSEM' EXTENSION EXTENSION
Gl G3
11VGET 7A/A3
NO ENQUE
GET STORAGE FOR 0SCUU/RLBL
A DASD DCB EXCLUSIVE
H3
Hi
NITIALIZE A YES
DASD_DCB AND
OPEN 1T
NO
o3
1 1VMSG 27A/At
DCB_FOR
DOSRES ISSUES_ MESSAGE [
11v0281
K3
11VMSG 27A/A! DEB LOW 11VMSG 2TA/A
LIMIT VALID
1SSUES MESSAGE FOR DOSRES ISSUES. MESSAGE RETURN
T1voT151 11v0271

ERROR RETURN

Program Organization

139

Flowchart 3F. 1Initialization Second-lLoad Routine (IIVIN2 Part 6 of 6)

FROM_3E/D3
3E/H3, 3E/&2

A2

BUILD CHANNEL
PROGRAM

B2 B3

| SSUE_EXCP ADJUST DOS CCw
AND WAIT TO GET, ADDRESSES
DOS PSw

| SSUE_EXCP
EXCP GOOD AND WAIT TO GET,
$$ASIPL2

D3

SAVE RESULTS
STORE CPU ID"
INSTRUCT ION

EXCP GOOD

PLACE DOS PSW
IN_LOCAL
EXECUTION LIST

E3 E4
SET PROGRAM
SET MODEL 135 FIND DOS CLEAR CHECK CONDITION
CPU SWITCH ON STORAGE ROUT INE IN_DOS CLEAR
STORAGE ROUT INE

G2 G5
CLEAR
CHANGE CHANNEL STORAGE STAGED LOAD 11VSTG AND
PROGRAM ROUT INE FOUND SUPPORT 11VSDT
REQUESTED
NO
H2 H4
1 IVMSG 2TA/A1
| SSUE_EXCP
AND WAIT TO GET, ISSUES MESSAGE | IVRTE_20C/H4
DOS CCW TIv0 131 ISSUE STAE MACRO IF
/TSYSABEND PRESENT
5
1| IVRAS 28A/A|
RETUFN
EXCP GOOD READ DEBUG
PARAMETERS
ERROR ROUT INE
K3
11VMSG 27A/A! n
ISSUES MESSAGE RETURN EXIT
T1v0201
ERROR RETURN NORMAL END 10

| IVRTE (CHART
20A)

140 DOS Emulator Logic

IPL Add Routine (Flowcharts 4A-4D)

Module name:

ITVADD

Entry point name: IIVADD

Major functions: Performs automatic add, delete,

Entered bv:

ITVSVC

Modules called: IIVMSG

Exits to: TIIVSVC

0S macros issued:

e TIME
e SAVE
Input:

. Register
. Register
. Register

] Register

1 points to the DOS CCW
9 points to the local execution list
10 points to DOS storage

11 points to IIVCON

set date and time

Output: An add, delete, or set date and time statement is placed
in the DOS input area.

Return codes:

None

Tables/work areas:

° DOS PUB
L] COMTA3
° EMUCONS

Errors detected: Invalid automatic add regeust

Messages requested: 1IIV032T

Program Organization

141

Flowchart UA.

142

DOS Emulator Logic

11VADD

FROM

FIRST TIME
IN ADD
ROUTINE

SAVE DOS cCB
ADDRESS

D3

GET ADDRESS OF
DOS PUB TABLE

E3

GET LENGTH OF
DOS PUB TABLE

PUB-X
B ENTRY,

Q3

SET
ADDRESS TO LAST,
DOS PUI

GET ADDRESS OF
COMTAB

SET DOS DATA
AREA TO BLANKS

IPL Add Routine (IIVADD Part 1 of 4)

(CHART 17A)

PUB-X 1S THE
ADI

DRESS OF
THE PRESENT
PUB ENTRY

BEING
PROCESSED

COMTAB-X IS
THE ADDRESS OF
THE _PRESENT
COMTAB ENTRY

BE ING
PROCESSED

Flowchart 4B. IPL Add Routine (IIVADD Part 2 of 4)

FROM 4A/K3

DELETIONS
COMPLETED

DELPUB c3

GET ADDRESS OF
COMTAB

D3

DECREMENT _PUB-X
BY | ENTRY

WHEN PUB-X HAS
BEEN
DECREMENTED TO
THE

TABLE BEGINNING
ADDRESS,
DELETIONS HAVE
BEEN COMPLETED.

END OF DOS
PUB TABLE

COMPLETE

YES 1S THIS A

NULL PUB

G4

COMTAB CUU
= TO_PUB-X
cuu

NO UPDATE TO NEXT
COMTAB ENTRY

LAST COMTAB
ENTRY

DEL]

FORMAT DOS DEL
STATEMENT FOR
PUB-X

il

MOVE DEL
STATEMENT TO
DOS STORAGE

RETURN

Program Organization 143

Flowchart 4cC.

IPL Add Routine (IIVADD Part 3 of 4)

FROM_4B/B3,
4B/E2

ADRDCHK Bl

GET COMTAB-X
ADDRESS

(o]

GET DOS PUB
TABLE ADDRESS

ADDCHK20 Dt

NULL DOS
PUB ENTRY

END OF DOS
PUB TABLE

COMTAB=-X
CUU = DOS PUB
cuu

GET_NEXT DOS
= PUB TABLE ENTRY

£2

GET NEXT
COMTAB-X ENTRY

144 DOS Emulator Logic

~SEIDAT __F4

GET 0S DATE AND
TIME

G4

CONVERT_0S
JULIAN DATE TO
DOS MM/DD/YY

H4

FORMAT _DOS SET
STATEMENT

ML)

PLACE SET
STATEMENT IN
DOS STORAGE

K4

RETURN

Flowchart U4D. IPL AAd Routine

FROM 4C/D1,

4C/E!

(IIVADD Part 4 of 4)

ADDSTG C4

NEW DEVICE
CARD READER

STAGED DEVICE

2400 DEVICE

Fi1

3420 DEVICE

H

GET ADDRESS OF
DEVICE TABLE

ADD2400

D2

TRACK

7 POINT TO
TAPE UNIT

2400T7T DEVICE
TABLE ENTRY

POINT TO
240079 DEVICE
TABLE ENTRY

ADD3420

F2

7 _TRACK POINT TO
TAPE UNIT 3420T7 DEVICE
TABLE ENTRY

NEW DEVICE
CARD PUNCH

NEW DEVICE
PRINTER

POINT TO
2540R _DEVICE
TABLE ENTRY

POINT TO
2540P _DEVICE
TABLE ENTRY

POINT TO 1403
DEVICE TABLE
ENTRY

POINT TO
3420T9 DEVICE
TABLE ENTRY

(o)—

A| 20 H3

H4

FORMAT DOS ADD
STATEMENT FROM

PLACE ADD

DEVICE_TABLE
ENTRY

STATEMENT IN
DOS STORAGE

DOsSPUBI 0 Ji

COMTAB
DEVTYP =
TABLE DEVICE
TYPE

N}

J3

GET NEXT DEVICE YES

RETURN

N}

11VMSG 2TA/Al

END OF
TABLE ENTRY DEVICE TABLE

ISSUES MESSAGE
rivoes2l

RETURN

ERROR RETURN TO
TERMINATE

Program Organization

145

Open Routine (Flowcharts 5A-5D)

Module name: IIVOPN
Entry point name: IIVOPN, OPEN95

Major functions: Opens Emulator-allocated dedicated resources

dynamically
Entered by:
° IIVPCE
o TIVIN2
. IIVPRP
. JIVRTE
Modules called:
. IIVGET
L] TIIVMSG
Exits to:
. IIVABN
. Returns to caller
° ITIVSTG

0S macros issued:

DCB

EXCP

WAIT

OPEN TYPE=J
LOAD

RDJFCB
IMGLIB

SAVE

DELETE

DCBD

® & 006 0 0 0 0 6 o0

Input:

o Register 0 points to the COMTAB entrv to be processed
. Register 9 points to the local execution list
o Register 10 points to DOS storage

o Register 11 points to IIVCON

Output:

° COMTAB CTFLAG bit 7 is set on

. Opened DCB

° Formatted YOB/formatted STGCON

Return codes:

. X' 00! =unsuccessful open

L] X*'0u4r'=successful open

. X'04'=exit to IIVABN

146 DOS Emulator Logic

Tables/work areas:

COMTAB

IOB

JFCB

DEB

PUB

EMUCONS

DOS COMREG

DOS low storage area
DSCBs in VTOC

Errors detected:

Device not stageable
Open was unsuccessful

VTOC overlaps cylinder boundary

Could not find PUB entry in the DOS PUB table during DOS IPL

Volume contains 0OS password data sets
Invalid FCB image

OPEN for SYS1.IMAGELIB failed

Messages requested:

TIVO18T
IIV0211
IIV0231
IIVO24T
IIVO 40D
IIVO41Y
IIVO50D

Program Organization

147

Flowchart 5A.

148

Oopen Routine

1 IVOPN

ENTRY

B2

GET ADDRESS OF
COMTAB ENTRY

cz2

OPEN BIT ON

OPEN2S D2

GET ADDRESS OF
DCB

11VIN2 (CHART 3E),
C),

(CHART 21
(CHART 8J)

c3

(IIVOPN Part 1 of 4)

C4

TELEPROCESS ING
DEVICE

PEN20 (DASD
DEYICE) (ol

GET DASD DCB
LENGTH

D2

GET ADDRESS OF
BASIC DASD DCB

&

DOS Emulator Logic

OPEN40
(TELEPROCESS -~ OPE|
NG IEVICE) (SE
£E2 E3 DEY. E4 ES
OPEN60 5D/A3
GET GET SEQUENTIAL
READ JFCB TELEPROCESS ING DCB LENGTH GET DCB_STORAGE
DCB LENGTH AND FORMAT
E2 E3 £4 ES
CHANGE VOLUME GET _ADDRESS OF GET ADDRESS OF SET JFCB DSNAME
SERTAL NUMBER TELEPROCESS ING BASIC TO X'0404..."
DCB SEQUENTIAL DCB

Q3

G4

OPEN60 5D/A3

OPEN60 5D/A3

GET DCB STORAGE
AND FORMAT

GET DCB STORAGE
AND FORMAT

5C
B2,

FCB SPECIFIED

MOVE_FCB
DEFAULT INTO —
JFCB

&

HE

SET ALIGN BIT

1 IN JFCUCSOP

FIELD OF JFCB

SET BLP BIT
ON IN JFCB

OPEN12 J5 C

Flowchart 5B.

Cl

GET_ADDRESS OF

GET STAGED DCB
LENGTH

ROM 5A/C3

INPUT OR

[okc]

Open Routine (IIVOPN Part 2 of 4)

C4

GET ADDRESS OF

OPEN
SYS1.IMAGELIB

s
OUTPUT STAGED OUTPUT INPUT_STAGED SYS1. IMAGELIB
DCB DCB OPEN

! oz
OPEN60 5D/A3
GET DCB_STORAGE LOAD 11VPOV
AND FORMAT
El E3 ES
PLACE _DOS CUU YES GET PUB TABLE BUILD FCB IMAGE
IN_ STGCON 1PL COMPLETED ADDRESS FROM NAME
DOS COMREG
F3
El E4 ES
1 IVMSG 27A/Al
GET_ADDRESS OF LAST PUB LOAD FCB IMAGE
11VSDT_ (STAGED TABLE ENTRY ISSUES MESSAGE FROM
DEVICE TABLE) 11v0231 SYS|. IMAGELIB
! []
Gl
G2 G4 Gs
11VSTG 1 1A/A2
COMTAB UPDATE_TO NEXT EXIT
DVC=[1VSDT PUB TABLE ENTRY VERIFY FCB
pvc IMAGE
TO IIVABN
(CHART 26A)
GET NEXT_IIVSDT PLACE PUB_TABLE DELETE FCB
DEV ICE ENTRY «—— DEVICE CODE IN TMAGE
CoMTAB
Jt
—ll NE3
1 IVMSG 2TA/Al 1 1VMSG 27A/Al
YES IS _FcB
ISSUES MESSAGE EXIT 1SSUES_MESSAGE IMAGE GOOD
Tivozil T1vo41]
TO TIVABN (CHART 26A)
NO
EXIT
TO TIVABN (CHART 26A)

Program Organization

149

Flowchart 5C.

&

FROM 5B/BS,
58/J5

PEN3TT Bl

LOAD STAGED
TRANSLATE TABLE

(o]

FINISH_STGCON
FORMATTING

INPUT OR
OUTPUT

OUTPUT

SET ABEND
BYPASS SWITCH

£l

OPEN DCB_FOR
OUTPUT

O

5C

I

FROM 5B/D4

Hi

11VMSG 27A/A1

150

1SSUES MESSAGE
11v040D

Ji

REPLY CONT
OR CANCEL

TO | IVABN
(CHART 26A)

Open

Routine (IIVOPN Part 3 of #4)

INPUT

SET ABEND
BYPASS SWITCH

ROM 5A/JS

QPENTQ B3

TURN OFF

OPEN DCB_FOR
INPUT ABEND BYPASS
SWITCH

OPENBO

OPEN
SUCCESSFUL

[}

YES PLACE VTOC

STAGED DEVICE ADDRESS IN
CHANNEL PROGRAM

QPENSS Y Do -
11VMSG 27A/A1 | FROM CHART CAUSES SI0
20C IF AN APPENDAGE _TO ISSUE_EXCP
ISSUES MESSAGE | ABEND EXTEND THE AND WATT
TIVO (81 OCCURRED EXTENTS AND_READS
THE VTOC _(FORMAT
4) DSCB_RECORD
O INTO STORAGE
SET_ERROR SET_ OPENED
RETURN COND 1 TIONS EXCP GOOD
CONDITION
E4
11VMSG 27A/A!
RETURN VTOC WITHIN
ISSUES MESSAGE CYL INDER
11v050D BOUNDARY

‘ : , NO YES

ANY MORE

REPLY USE
OR NO DSCB'S

SET EXCP_AND WAIT
IONOPERAT 1 ONAL TO READ NEXT
IT IN COMTAB, DsCB

DOS Emulator Logic

SECURED
DATA SET

IDENTIFIER
(FORMAT 1) EXCP GOOD
DSCB

K4

11VMSG 2TA/Al

ISSUES MESSAGE
11vo241

Flowchart 5D. OPEN60 Routine (IIVOPN Part U4 of 4)

o]
ENTRY
FROM | IVOPN
(CHARTS 5A,5B)
B3
LIVGET 7A/A3

GETMAIN FOR DCB

£3

FORMAT NEW DCB
WITH BASIC DCB

D3

PLACE DD NAME
IN DCB

E3

YES
STAGED DEVICE

NO

E3

PLACE ECB
ADDRESS IN 10B

G3

PLACE DCB
ADDRESS IN 108

H3

PLACE 108
ADDRESS IN DCB

RETURN

Program Organization 151

OS PUB Mable Build Routine (Flowcharts 6A-6F)

Module name: IIVPUB
Entry point name: IIVPUB
Major functions:

. Maps DOS I/O control blocks to Emulator I/O control blocks by
means of the 0S PUB table

. Issues initial Emulator prompt
Entered by: IIVSVC

Modules called: IIVGET, IIVMSG
Exits to:

. Caller
) Return+4 to caller on error condition

0S macros issued:

. LOAD

o STIMER
o SAVE

L RETURN
Input:

. Register 9 points to local execution list
. Register 10 points to DOS storage
. Register 11 points to IIVCON

Output: Initial prompt
Return codes: None
Tables/work areas:

Local execution list
EMUCONS

COMTAB

DOS communications region
DOS PUB table

DOS storage

0OS PUB table

Errors detected:

. A DOS PUB entry did not exist
° Devices not compatible

. Device not stageable

Messages requested:

o IIVO09I
L ITIVOo17I
. IIV021I
. IIV100E

152 DOS Emulator Logic

Flowchart 6A. OS PUB Table Build Routine (IIVPUB Part 1 of 6)

1 1VPUB

ENTRY

FROM 11VSVC (CHART 17A)

B3

GET DOS PUB
ADDRESS

SAVE _DOS PUB
ADDRESS

R3

INITIALIZE DOS
PUB ENTRY COUNT

£4 ES

ADD 1 TO DOS GET NEXT PUB
PUB COUNTER ENTRY

CALCULATE
STORAGE NEEDED
FOR 0S PUB

S3
11VGET TA/A3

OBTAIN 0OS PUB
TABLE STORAGE

H3

1ZE_OS

Al
ABLE

z
22
ca
&2
ar

Program Organization 153

Flowchart 6B. OS PUB Table Build Routine

éB
B1

FROM 6A/H3

Bl

GET _COMTAB
ADDRESS

—0

10BCHK30 ¥ Ci

GET _DOS PUB
TABLE ADDRESS

Dt 1OBCHK &0 D2 D3

COMTAB
DEVTYP =
PUB_DEVICE
TYPE

COMTAB CUU COMTAB

= DOS PUB CUU

DOSLOG

1OBCHK65

GET NEXT _DOS COMT
PUB ENTRY

LAST PUB
TABLE ENTRY

YES

(e¥]
| IVMSG 2TA/AI

ENTRY FOR

AB_FOR
STAGED DEVICE

(ITIVPUB Part 2 of 6)

6B
D5/FROM 6C/B4

6C/F4, 6C/E4,
6D/G3, 6D/G5
1QBCHK e D8
YES COMPUTE PUB
ENTRY NUMBER

SAVE PUB
NTRY NUMBER I[N,
COMTAB

-1
COMPUTE COMTAB
ENTRY NUMBER

SAVE COMTAB
BER IN,

PUB_T TRACK
DEVICE

[SSUES MESSAGE
11voo091

Ll

RETURN

ERROR RETURN

154 DOS Emulator Logic

PUB

Ha

UPDATE TO NEXT
COMTAB ENTRY

LAST COMTAB
ENTRY

Flowchart 6C.

0S PUB Table Build Routine (IIVPUB

YES DOS DEVICE
A 3410

6B
E2,

N

DOS DEVICE
A 2400

-

FROM

éB/Gz,
6B/J2

Fl

DEVICE A
3505

NO

ROM 6B/E3

DOS DEVICE
A 1403

Part 3 of 6)

6B
D5,

G3

I IVMSG 2T7A/At

ISSUES MESSAGE
1vorTi

RETURN+4

ERROR RETURN

Program Organization

155

Flowchart 6D.

156

6D
B

Bl

FROM 6B/E3

MOVE PUB DEVICE
TYPE TO COMTAB

SYSOUT
SPECIFIED

SET 3525P
DEVICE TYPE IN
TAB

SET 2520P
COMTAB

E2

GET ADDRESS OF
11vsSDT

G2

11VSDT
DEVICE_TYPE

= COMTAB

DEVTYP

GET NEXT 11VSDT
ENTRY

NO,

DOS Emulator Logic

G3

COMTAB
FLAGGED OPEN

OS PUB Table Build Routine (IIVPUB Part 4 of 6)

G4

(1]

LOAD STAGEI

D
TRANSLATE TABLE

PLACE STAGED
TRANSLATE TABLE
ADDRESS IN
COMTAB

6B
D5,

N}

| IVMSG 27A/Al

ISSUES MESSAGE
1ivozii

RETURN

Flowchart 6E. O0S PUB Table Build Routine (IIVPUB Part 5 of 6)

FROM eB/J5

10BCHKT0 B2 10BCHK75

DOS_COMREG
EXTENSION

C2 C4

SAVE CE_AIDS YES ISSUE SET TIM
ADDRESS FOR SIO
ROUTINES

DOES _DOS E
SUPPORT TIMER FOR ONE SECOND

[} HKIT D3

GET BG SYSRDR
LUB ADDRESS
FROM DOS COMREG

SAVE BG LUB
LOAD 11VGR2 ADDRESS

E3
DEVICE NO GET AR PIB
SHARING ADDRESS
REQUESTED
Q3
LOAD 11VDVYS AND GET ADDRESS OF
1ivvio B-TRQE?IENT

| NDEXED
SEQUENT 1AL

SUPPORT
REQUESTED

SAVE
BEGINNING AND
B-TRANSIENT

ADDRESSES
YES
sl N
GET BG PIB
LOAD 11VIS ADDRESS

® &

Program Organization 157

Flowchart 6F.

B2

IS DOS
SYSTEM AN MPS

FROM 6E/J3

GET F1 AND F2
PIB ADDRESSES

SAVE F1 AND
F2 PIB
ADDRESSES

B3

GET DOSRES
COMTAB

0OS PUB Table Build Routine (ITIVPUB Part 6 of

GET FIRST
COMTAB
EXTENS ION

SAVE BG PIB
ADDRESS

E2

GET ADJUSTMENT
FACTOR

SYSEMLBL

£4

T LOW LIMIT

COMREG LABEL
CYL INDER ADDRESS

G2
| IVMSG 2TA/Al
GET_NEXT COMTAB
| SSUE FIRST EXTENSION

LINE OF PROMPT
1 1VIOOE

WAS A
PROMPT = YES

1 IVMSG 2TA/A!

ISSUE REPLY
OPTIONS [1VIOOE

158 DOS Emulator Logic

RETURN

GETMAIN/FREEMAIN Routine (Flowchart 7A3)

Module name: IIVGET
Entry point name: IIVGET
Major functions:

J Obtains dynamic storage
. Frees storage

Entered by:

IIVINT
IIVIN2
IIVPUB
IIVOPN
IIVDVS
IIVis

Modules called: IIVMSG
Exits to:

. Returns to caller :
. IIVABN on error conditions

0S macros issued:

° GETMAIN
. FREEMAIN

L] SAVE
Input:
GETMAIN
. Register 0 - amount .

of storage needed

. Register 1 - zeros .

Output: None

Return codes: X'04' on exit to

Tables/work areas: EMUCONS

FREEMAIN

Register 0 - length of
storage to be released

Register 1 - address of
storage to be released

IIVABN

Errors detected: Storage not available

Messages requested: TIV0O14T

Program Organization

159

Flowchart 7A. GETMAIN/FREEMAIN Routine (IIVGET)

I VGET

FROM_I1VINT (CHARTS 2D, 2E,
2F, 2J), [IVINZ (CHARTS 3D,
3E)}, | IVOPN (CHARTS 5D,

I IVPUB (CHART 6A}s | 1VDvS
(CHARTS 23A, 23E, 23J),
T1VIS (CHARTS 248, 24C)

B4
TYPE
OPERAT ION 1SSUE FREEMAIN RETURN
ISSUE GETMAIN
D4

STORAGE

AVAILABLE

INITIALIZE_NEW
STORAGE TO RETURN
EROS

11VMS5G 2TA/A!

ISSUES MESSAGE
1ivoi4]

EXIT

TO 1IVABN (CHART 26A)

160 DOS Emulator Logic

Synchronous Interruptions

Program Organization 161

Program Check Executive Routine (Flowcharts 8A-80U)

Module name: IIVPCE

Entry point name: IIVPCE

Major functions:

162

Checks for privileged operation interruption to determine if
it is simulated.

Checks for first program interruption to determine if it is an
operation exception interruption.

Simulates all other program interruptions.

SSMRTN simulates the SSM instruction.

SSKRTN simulates the SSK instruction.

ISKRTN simulates the ISK instruction.

LPSWRTN simulates the LPSW instruction.

Checks for first LPSW that causes control to pass to INTRPT.

INTRPT checks for wait bit = 1 and enabled interruptions; if
these conditions are met, INTRPT simulates the expected interruption.

TCHRTN simulates the TCH instruction.

TIORTN simulates the TIO instruction.

HIORTN simulates the HIO instruction.

CTLRTN simulates the LCTL and STCTL instructions.

STIDPRTN simulates the STIDP instruction.

If the DOS device is not staged or is not the DOS system

console device, ITIVPCE issues an OS EXCP macro for the intercepted
DOS SIO, using DOS CCWs with adjusted addresses (from local to true).

Initial DOS CCWs for seek and set file mask are not passed to OS.

Stand-alone seek and sense operations are simulated as complete
to DOS but not given to OS.

Obtains the channel and unit address, the device entrv index into
COMTAB, and the absolute address of the device entry in COMTAB.

Determines the absolute value of the BDDD portion of an instruction
within the DOS partition or determines channel and unit address*
from I/0 instruction.

Dissects the ISK or SSK instruction to obtain corresponding
addresses of R1 register and entry in ISK/SSK Table.

STIDC instruction is ignored.

SCKRTN simulates the DOS SCK instruction. Disables STCK instruction in the
DOS SVC 34 routine.

STCKRTN simulates the STCK instruction for DOS SVC 34.

DOS Emulator Logic

Entered by:

DOS via a program interruption

IIVPCY

Modules called:

IIVCCW
ITVMSG
IIVOPN
IIVABN
IIVVIO
JIVCHK
IIVRCW

Exits to:

IIVLOG
IIVSTG
IIVRTE
IIVABN

0S macros issued:

WAIT
EXCP
IOHALT
POST

Input:

DOS registers

Local execution list

DOS program new PSW

Pointer to instruction

Pointer to local execution list

Pointer to Emulator constants

Pointer to DOS area

Base register

Pointer to current PUB in location REG3

Pointer to CCB in location REG1

Output:

DOS program old PSW

Base register

Pointer to instruction

Pointer to local execution list
Pointer to DOS area

Pointer to Emulator constants

Program Organization

163

° System mask in current PSW

o Storage key value in ISK/SSK table

. Storage key value in instruction register
. Pointer to COMTAB entry for channel

° Index of channel within COMTAB

. Channel and unit address

. Absolute address of location in DOS area or channel and unit
address from I/0O instruction

Return codes: Error code 12 for IIVABN
Tables/work areas:

] Local execution list

. Current PSW

o ISK/SSK table

° COMTAB
. DCB
. ECB
. CswW
o CaAW
. I0B
o CCwW

. DOS I/0 old PSW

L DOS I/0O new PSW

J Post ECB list

. TEB

° PUB

Exrrors detected:

. For nondedicated device - invalid seek address
. Invalid or no IPL device specified

] For IBM 2321 - no seek or no bhin number defined
Messages requested:

. IIV160A
L ITV2631

164 DOS Emulator Logic

Flowchart 8A. Program Check Executive Routine (IIVPCE Part 1 of 19)

ENTRY

FROM DOS VIA A
PROGRAM CHECK;
I'1VPCIl (CHART 31C)

LOAD ADDRESS OF
PRIVILEGED OP
CODE

o1}
LPSWRTN 8D/A2

IS PROGRAM TURN FIRST PC 0P CODE

CHECK FOR SWITCH OFF AND LPSW x'82°* SIMULATE LPSW r———
PRIVILEGED CHANGE CONDITION

OPERAT |ON CODE _IN PSW TO

ADDRESS ING

R3

—DR5
SIORTN® 8U/A1
SIMULATE SI0 [

MOVE DOS ENDING
STORAGE ADDRESS
TO DOSI$EGISTER

ES
TCHRTN 8E/A2
SIMULATE TCH "

ADDRESS ING
EXCEPTION

£3
STCKRTN 8U/A3

STORE CLOCK
SUBROUT INE

ES
SSMRTN 8C/A3
SIMULATE SSM —

YES
G5
TIORTN#® 8F /A2
SET TO
PRIVILEGED SIMULATE TIO
OPERAT 10N
FROM 8S/F3,
8u/B3,
8B/B1,
8B/G1
PC1O ¥ HI HE
MOVE PSW TO DOS HIORTN 8H/A2
PROGRAM_OLD PSW
LOCATED IN SIMULATE HIO |—
X728' OF DOS
AREA

YES

all NK] NL
MOVE DOS MOVE INTO DTF SSKRTN 8C/A2
PROGRAM NEW PSW FROM_8B/C2 1/0 CODE. FID
8B/D2, 8B/E2, ADDRESS, DOS SIMULATE SSK
EXECUTION LIST 8B/F2, 8B/G2, REGISTER 0
LOCATION gP;E?, 8N/E4,

PC20 1 K3 K&
. ISKRTN 8C/A4
LOAD_ADDRESS AT MAP PROGRAM CODE 15K
TIVRTE ROUT INE EXIT CHECK TOQ SVC 0: X705° SIMULATE 15K |—f

SWAP SVC PSW'S

-

0 _TIVRTE AT
IVRTER2 (CHART
08)

CE 1S _A CONSOLE, K1
Tollviac,” It AN

VA

LECTED, EXIT

Program Organization 165

Flowchart 8B. Program Check Executive Routine (ITVPCE Part 2 of 19)

8B
l'g’
F

B1

ROM 8A/K4

DOS RELEASE
27

2

CTLRTN BT/Al

SIMULATE LOAD
CONTROL

OP CODE
LCTL (X*BT*)

D2
CTLRTN 8T/Al
SIMULATE STORE
CONTROL

OP CODE
STCTL (X'Bé*)

E2.
STIDPRTN 8S/A4
SIMULATE STORE
CPU ID

OP_CODE
STIDP
(Xx*B202")

E2
SCKRTN 8U/A1

OP CODE 5CK
{X*B204")

SET CLOCK
SUBROUT INE

g2

OP_CODE
STIDC
{X'B203")

SET CONDITION
CODE TO ZERO

166 DOS Emulator Logic

Flowchart 8C. SSK, SSM, and ISK Simulation Subroutines (IIVPCE Part 3 of 19)

SSKRTN SSMRTN |
ENTRY ENTRY ENTRY
FROM 11VPCE FROM 11VPCE FROM | 1VPCE
(CHART BA) (CHART B8A) . (CHART 8A)
B2 B3 B4

FINDKEY 8S/A2

F INDADDR 8R/A2

FINDKEY 8S/A2

>

GET ADDRESS OF RI
REGISTER _AND

DDRESS OF ENTRY IN
ISK/SSK TABLE

2

GET_ADDRESS OF
BYTE TO BE NEW
SYSTEM MASK

C3

ADDTESS OF ENTRY I[N

GET _ADDRESS OF RI
REGISTER_AND

SK/SSK TABLE

[of 3

MOVE STORAGE
KEY_VALUE FROM
4TH BYTE OF
REGISTER TO
ISK/SSK TABLE

MOVE NEW SYSTEM
TO FIRST

BYTE OF CURRENT
PSw

MOVE STORAGE
KEY FROM
1SK/SSK TABLE
TO 4TH BYTE OF
REGISTER

RETURN

RETURN

RETURN

Program Organization

167

Flowchart 8D. LPSW Simulation Subroutine (IIVPCE Part 4 of 19)

LPSWRTN
ENTRY

FROM 11VPCE
(CHART 8A)

B4

INTRPT
F INDADDR 8R/A2

GET_ADDRESS OF
PSW TO BE
LOADED

WAIT BIT ON

c2

MOVE PSW T

0 0 INTERRUPTS
LIST CURRENT ENABLED

URN OFF

TURI RETURN
FIRST_LPSW
SWITCH

FIRST LOAD
PsSW

INTRPTEX

RETURN MOVE CURRENT PSW TO
DOS STORAGE AND
MOVE DOS EXTERNAL
NEW PSW ;g'CURRENT

EXTERNAL
INTERRUPT_TO BE
S1MULATED

MOVE DOS IPL
ADDRESS TO RETURN
CURRENT PSW

INTERRUPT CODE

BYTES

G4

MOVE CURRENT PSW TO
DOS STORAGE AND
MOVE DOS 1/0_NEW

PSW TO CURRENT PSW

SYMBOL TABLE

ZERO CSW_AND
LIST-LOCAL JURN ON DEVICE
EXECUTION LIST END BIT

TURN _ON
ATTENTION BIT
IN Csw

RETURN

RETURN

168 DOS Emulator Logic

Flowchart 8E.

TCH Simulation Subroutine

ENTRY

FROM

B2

I | VPCE

F INDCHAN 8Q/A3

OF FIRST DEVICE ON
CHANNEL [N COMTAB

cz2
CHANNEL
SUPPORTED 2

YES

D2
DEVICE BUSY

NO

NO

YES

(CHART 8A)

RETURN

D3

WAITING FOR
DEVICE END

YES

E2

INCREMENT INDEX
AND ADDRESS
REGISTERS TO
NEXT _ENTRY IN
COMTAB

F2

MORE
DEVICES ON
CHANNEL

NO

RETURN

NO

(IIVPCE Part 5 of

SET CURRENT
PSW CONDITION
CODE TO CHANNEL,
BUSY (CC=2)

RETURN

Program Organization

19)

169

Flowchart 8F.

TIO Simulation Subroutine (IIVPCE Part 6 of 19)

ENTRY

FROM | IVPCE
(CHART 8A)

B2
F INDCHAN 8Q/A3

CONDITION CODE
INIT

GET INDEX AND 1ALIZED TO
ADDRESS OF FIRST —-== NOT OPERATIONAL
UNIT ON CHANNEL IN (CC=03)
COMTAB
cz2

SET CURRENT

CHANNEL NO PSW _CONDITION
SUPPORTED RETURN CODE TO
AVA[LABLE
(CC=00)
YES
TI10SRCH D2 D3 D4

YES DEVYICE YES YES 8G
OPERATIONAL B2,

e NO NO NO
Tiox2321 § E2 E4
YES YES e
'NO 'NO
Fa
E2

STEP _[NDEX AND RETURN DEVICE DOS
SYSLOG

ADDRESS TO NEXT
UNIT IN COMTAB

NO
RETURN

YES

TI10XLOG G4

YES

LOG 1/0 IN
PROCESS

NO
RETURN

H3

SET CURRENT
PSW CONDITION
CODE _TOQ CSW
STORED

WTO READY
TO PROCESS

YES

(CC=01)
TO I
[I1VLOGR2
NO (CHART 10E)
TIOXLQ
SET CURRENT
PSW _CONDITION
CODE_TO BUSY EXIT
(CC=02)

0 1IVLOG AT
I IVLOGR1
{CHART 10C)

RETURN

170 DOS Emulator Logic

Flowchart 8G. TIO Simulation Subroutine (IIVPCE Part 7 of 19)

8G
B2,

FROM 8F /D4

B2

WAIT FOR 1/0

IS 1/0
COMPLETION

POSTED
COMPLETE

TI1QPQSTD C4

DECREMENT NUMBER OF
S10'S, MOVE ECB
CODE_TO PARAMETER
REGISTER, CLEAR ECB

YES 'III'

AN D2 R4

SCAN POST ECB I IVCHK 9A/A2
TABLE FOR AN
GET 1/0 CSW

ENTRY FOR
DEVICE PROCESSED

DEVICE
ENTRY FOUND

RETURN

HAS IT
ALREADY BEEN
PROCESSED

MOVE ECB _CODE
TO_PARAMETER
REGISTER

Program Organization 171

Flowchart 8H.

172

HIORTN
ENTRY
FROM_11VPCE
{CHART 8A)
82

FINDCHAN 8Q/A3

GET INDEX TO FIRST
DEVICE ON CHANNEL
IN COMTAB

CHANNEL
SUPPORTED

RETURN

DI

STEP_TO NEXT
UNIT AND_TO NO
NEXT COMTAB

ENTRY

YES

El
£E2

HIOTST 8H/A4

END OF NO SET _CONDITION

CHANNEL TEST DEVICE STATUS;]--| CODE TO ZERO IF

ISSUE _I0HALT IF OPERATIONAL
NEEDED

YES

RETURN

RETURN

Gl

SET CONDIT
CODE _*01* |
TORED)

Hi

SET_CSW_STATUS
TO ZEROS

adl

RETURN SET CONDITION
CODE '03' (NOT
OPERATIONAL)

DOS Emulator Logic

HIO Simulation Subroutine (IIVPCE Part 8 of 19)

8H/E2

DEVICE
OPERAT I ONAL RETURN

ISSUE

I10HALT

RETURN

Flowchart 8J. SIO Subroutine (IIVPCE Part 9 of 19)

FROM |1 VPCE
{CHART 8A}

B3
PUB OBTAIN INDEX TO)
IND I CATES NO COMTAB VIA
NOT OPER- CURRENT PUB
AT | ONAL INDEX
c3
cl

FINDCHAN B8Q/A3
GET CUU FROM
DOS S10

1S DEVICE
2321

D1

GET INDEX TO ADJUST POINTER
COMTAB VIA TO _COMTAB ENTRY
SEARCH ON CUU FOR BIN NUMBER

E4

HAD MATCH SET ERROR CODE
ON BIN NUMBER = 24

|-
SET ERROg CODE EXIT
= |
TO |1VABN
(CHART 26A)
S103 G3
G4
1 [VOPN 5A/A2
NOT OPERATIONAL EXIT IS DATA SET NO
(CC_= OBéwTO OPEN OPEN DATA SET
TO 11VABN
{CHART 26A)
RETURN

SIOBLSY S

SET _PSW
| COND1TION_CODE
TO ‘02

RETURN

TGO 11VLOG
{CHART 10A)

Program Organization 173

Flowchart B8K.

SIO and SEEKTEST

8K
B1
FROM 8J/J4

B2

COUNT NUMBER OF
START 1/0'S

SAVE DOS KEY IN
COMTAB

DIl

SET 10B FOR
DATA CHAINING

HAVE A CCB

USER ERROR
RECOVERY

Subroutines (IIVPCE Part 10 of 19)

COMMAND
CHAIN RETRY

174

SET_10B FOR
DATA AND SET _10B FOR
COMMAND COMMAND
CHAINING CHAINING
WAIT MACRO
NF
CANCEL NOP

TURN _OFF NOP
FLAG, CLEAR
ECB, DECREMENT
NUMBER OF SIO'S

DOS Emulator Logic

slox10Be

S10XDASD

SENSE COMMAND

H3

NOP FLAG ON

FROM 8K /J4

SEEK COMMAND

YES

C4

SET_ADJUSTED
POINTER TO SEEK
ADDRESS (10B)

B

SET NULL RETURN

RETURN

rnou
8N/DI,

8N/K4

J4
SEEKTEST 8K/A4

TEST IF FIRST
CCW IS SEEK

8L
B1

Flowchart 8L. SIO Subroutine (TIVPCE Part 11 of 19)

ROM 8K/J4

8L
B4/ FROM 8M/J1,
8N/D5

B3 SIQCNT B4

MOVE MACRO TYPE SIOCNT = |
AND DTF ADDRESS POINTS TO_NEXT
TO 1SAM TABLE SI10CNT

DATA SET

CLEAR 108 RETURN
SENSE AND &SW
s
SEEKDVS 8P/A2
SHARED DEV ICE
SEEK
LOSASK ! F3
CCW_ADDRESS + 8
TO 10B CSW, SEEK ADDRESS TO
*OR" 108
CHANNEL . DEVICE
END staTus
G3
Gl G4
TURN_*NORELOC’ YES SET FILE_MASK
FLAG ON TO COMTAB
NO [7
H3
Hi He
SET_NORMAL YES POINT TO USER'S
COMPLETION TIC-TO ADDRESS
(XYTF*) IN ECB
NO

) &)

Program Organization 175

Flowchart 8M.

8K/J3

SET MODE
COMMAND

SLOSTART Cl

CCW POINTER TO
CAW

D2

oT

*NOT_READY ' TURN _'N
BIT ON READY' FLAG OFF

NO
E2
1 1VMSG 2TA/A!
I SSUES MESSAGE
TIVI6OA
S1010 El
I IVCCW I5A/A1 OR 11VRCW 34A/Al
ADJUST CCW
ADDRESSES TO
REAL ADDRESSES
E2

PSW CONDITION
CODE SET TO CSW
STORED (01)

Hl H2

TURN OFF IFLGS 1 IVABN 26A/A2
IN DCB OVE

M
CHAINING BITS ABNORMAL END
TO 10B ROUT INE

RETURN
EXCP

8L
B4,

176 DOS Emulator Logic

B3

STORE SET MODE
COMMAND _IN
COMTAB

YES

NO

SIO Subroutine (IIVPCE Part 12 of 19)

C4

SET POINTER
BACK TO 'SET
MODE"* CCW

FIRST USER
CCW_A CONTROL
COMMAND

USER MODE =

RS

SET 10B
CHAINING TO
DATA AN

COMMAND

DEB MODE/
NO

WAIT

EXCP FOR
STAND-ALONE SET,
MODE

O

Flowchart 8N.

8N
Bl
Bl

SET SENSE
LENGTH TO 2 AND
ADDRESS TO
I0BSENSE

SI10SNO

10BSENSE
EQUAL ZERO

SI10SN1

FILE
PROTECT OR
NOT CAPABLE

SET
INTERVENTION
BIT IN COMTAB,

Subroutine (IIVPCE Part 13 of 19)

c2

SET_I10BSENSE TO
INTERVENT I1ON
REQUIRED

2. all

T NSE
LENGTH TO & AND

RESS TO

UCBSENSE

UCB_SPECIFY
EXTENDED
SENSE

B3

SIOSNT 84

SET_SENSE
LENGTH_AND
ADDRESS TO UCB
VALUES

STORE CCW +8 IN
COMCAW

()——=

SI10SN3 Cc3

0S LENGTH >
DOS LENGTH

LOAD DOS LENGTH
IN REGISTER

S10SN4 E3

DOS_SENSE YES
LENGTH ZERO

NO

E3

CLEAR DOS SENSE
AREA

G3

0S _SENSE
LENGTH ZERO

MOVE SENSE TO
DOS AREA

alQoNe ¥ 3
ZERO_ | OBSENSE

BYTES

K3

SENSE
COMMAND
CHATNED

SET_SENSE
SWITCH IN
COMTAB

CREATE POST ECB
TABLE $7BRY FOR

D3

POST ECB
COMPLETE

K4

INCREMENT PASS
SENSE OPCODE

N~

Program Organization

8L
B4,

177

Flowchart 8P, SEEKDVS Subroutine (IIVPCE Part 14 of 19)

SE|
ENTRY
FROM_| | VPCE
(CHART 8L}
SEEK0500 __ B4
B2 EKQ509 BS
11VVIO 25A/A1
POINT TO FIRST MORE COMTAB_YES
COMTAB EXTENS 1ONS CHECK FOR 1/0
EXTENSION ENTRY To vToc
F2
NO
Ccz2 cs4
5|
EXTENT NUMBER YES DOS OPEN YES
To 108 SEEK ISAM ENTRY FLAG ON
NO
D4
Dl
DCB ADDRESS TO NO YES ”DOS_CAW KEY' TEST RETURN
COMTAB DCB PRESENT ZERO CODE=4
NO NO
E4
I E3 SEEKQE10 V E5
11VMSG 2TA/Al
ECB ADDRESS TO SPLIT SET SPLIT IS _SEEK FOR™NNO
108 CYL INDER CYL INDER CCHHG000 ISSUES MESSAGE
TND I CATOR T1v2e31
(::) l YES
SEEK0400
SEEKQ501 ¥ Fa ES
SEEK CHECK TO
RETURN GET FIRST 10BSNS, UNIT
EXTENS 10N EXCEPTION TO
ADDRESS STATUS
G4
(el
SET CC=1 IN
IS ADDRESS LOCAL EXECUTION
ZERO LIST PSW; SET
DEVICE 'NOT IN
USE "

8A
K1
FEKQ504 HD
15 INITIAL I ZE
EXTENS 10N COMTAB TO ALLOW
FOR_DOSRES ACCESS OF THIS
FILE DASD ™ ADDRESS

GET NEXT
— EXTENS 1ON
ADDRESS

178 DOS Emulator Logic

Flowchart 8Q. FINDCHAN Subroutine (IIVPCE Part 15 of 19)

FIN

ENTRY

FROM 11VPCE
(CHARTS 8E, BF,
8H, 8J)

B3
F INDADDR 8R/A2
GET CUU VALUE

FROM BDDD PART
OF INSTRUCTION

c3

SAVE CUU VALUE
FOR CALL ING
ROUTINE AND GET
CHAN NUMBER TO
USE AS INDEX

D3

CHANNEL
SUPPORTED FOR
EMULATION

RETURN +0

GET _INDEX INTO
COMTAB FOR
FIRST DEVICE ON
THIS CHANNEL

E3

MULTIPLY INDEX BY
ENTRY S1ZE AND
GENERATE ADDRESS OF
FIRST DEVICE ON
HANNEL

RETURN +4

Program Organization 179

Flowchart 8R.

FINDADDR Subroutine

FINI

ENTRY

FROM | | VPCE
(CHARTS BC, 8D
8a, 85, 8T, 8uf

B2

ISOLATE BASE
REGISTER NUMBER AND
USE AS INDEX INTO
DOS REGISTER SAVE
AREA

ca

| SOLATE
DISPLACEMENT

PORT ION_OF
INSTRUCT ION

BASE
REGISTER YES

1
NUMBER = ZERO

(IIVPCF Part 16 of 19)

B4

I SOLATE INDEX
REGISTER NUMBER AND
USE AS INDEX INTO
DOS REGISTER SAVE
AREA

INDEX
REG | STER
NUMBER = ZERO

ADD_INDEX VALUE TO

NO

ADD BASE
REGISTER

CONTENTS TO
DI SPLACEMENT

BASELEGO F2

IS THIS
AN 1/0
INSTRUCT ION

RETURN

ADD RELOCAT ION
FACTOR TO SUM OF
BASE REGISTER

CONTENTS AND
DISPLACEMENT

WAS
PRIVILEGED
OPERAT ION
PERFORMED VIA

EXECUTE

RETURN

180 DOS Emulator Logic

+RELOCATION FACTOR

Flowchart 8S. TFINDKEY and Store CPU ID Subroutines (IIVPCE Part 17 of 19)

Fi STI
ENTRY ENTRY
FROM_ 11 VPCE
FROM_1 | VPCE (CHART 8B
(CHART BC)
B2 B4

F INDADDR 8R/A2 .
SEPARATE R1 AND
R2 REGISTER GET DOS MAIN
NUMBERS STORAGE ADDRESS

(o7 of. 3
MOVE CPU [D
GET_ADDRESS [N FROM _EMUCONS TO
REGISTER_SAVE AREA DOS MAIN
OF REGISTER R1 [INTO STORAGE

PARAMETER REGISTER

D

GET_ADDRESS IN RETURN
REGISTER SAVE AREA
OF REGISTER R2 TO
LOAD REGISTER VALUE

E2
USS REGISTER

ALUE TO
GENERATE [INDEX
INTO _1SK/SSK
TABLE

1S_ADDRESS
LOCATION IN DOS
STORAGE

GENERATE ADDRESS OF
STORAGE RETURN
ENTRY FOR_THI1S

BLOCK OF STORAGE

RETURN

Program Organization 181

Flowchart 8T. Load/Store Control Register Subroutine (IIVPCE Part 18 of 19)

ENTRY

FROM | IVPCE (CHART 8B) e

B3

ADJUST DOS MAIN
STORAGE POINTER
RESET_WRAP
SWITCH

| SOLATE RI
AND R3 FIELD OF,
INSTRUCTION

c1
ca
WRAP AROUND YES SET WRAP_SWITCH ISOLATE R3
(R1>R3) D
REGISTER 15 INSTRUCTION
NO
o] D3
F INDADDR 8R/A2
SET R1 TO
GET DOS MAIN CONTROL.
STORAGE ADDRESS REGISTER ZERO
El

COMPUTE NUMBER
OF BYTES TO
MOVE

£l

POINT_TO R1
REGISTER IN
CTLREGS
(EMUCONS)

LCTL
INSTRUCTION

YES

Hi

MOVE_DATA FROM
DOS TO EMUCONS

all

MOVE DATA FROM
EMUCONS TO DOS

RETURN

182 DOS Emulator Logic

Flowchart 8U. Set Clock, Store Clock Subroutines (IIVPCE Part 19 of 19)

ENTRY

FROM [1VPCE

FROM | IVPCE
(CHART 88B)

(CHART 8A)}

Bl
SET CONDITION
CODE_TO 0 IN
LEX PS
[o2] C3
F INDADDR 8R/A2 ADJUST LEX PSW
INSTRUCTION
GET_DOS ADDRESS TO NEXT
MA IN-STORAGE INSTRUCTION
ADDRESS
Rl D3
F INDADDR 8R/A2
STORE CLOCK GET_DOS
MAIN-STORAGE
ADDRESS

E3

STORE CLOCK 1IN
DOS AREA

F3
El E4

SAVE_IN EMUCONS CLOCK NO SET STCK
{TDELTA) SUCCESSFULLY CONDITION CODE
STORED IN LEX PSW

YES

ADJUST DQOS
CLOCK

DOS_STCK
ALREADY
D1SABLED

DOS STCK RETURN
FOUND

YES

ol

MOVE ZERO [INTO
STCK OF CODE

Kl

SAVE MA|IN-
STORAGE ADDRESS
INSTRUCTION

RETURN

Program Organization 183

Check I/0 Routine (Flowcharts 9A-9D)

Module name: TIVCHK

Entry point name: IIVCHX

Major functions:

] Posts the CSW to DOS at I/O interruption

. If permanent error occurs, posts high error count to DOS to
bypass DOS error recovery procedures

. Readjusts DOS CCWs from true to local addresses

. Provides DOS label cylinder address when DOS system residence volume
is shared

Entered from:

. IIVRTE
. IIVPCE

Modules called:

1IVCCW
IIVABN (if invalid CCW)
IIVMSG
ITIVRCW

Exits to:
. Caller

0S macros issued: EXCP (to issue NOP)

Input:

. Local execution list
. Pointer to EMUCONS

. Pointer to DOS area
. Base register
Output:

. DOS CSW posted

. High error count (254) posted to DOS PUB table (or TEB or TEBV,
if appropriate)

. I0OB sense bytes
) IOB status bits

. DOS label cylinder address in DOS input area when DOS system directory
record 1 read

Return codes:

Register 15 - 0 simulate I/O interruption

u

[}

ignore current entry in post ECB list and get next entry

184 DOS Emulator Logic

Tables/work areas:

TEB

COMTAB

IOB

Local execution list

DOS communications region
DOS PUB

Errors detected: An error detected by IIVCCW or IIVRCW causes this module to pass
control to IIVABN.

Messages requested: IIV160A

Program Organization 185

Flowchart 9A. Check I/0O Routine (IIVCHK Part 1 of 4)

ENTRY

ESTABL I SH
ADDRESSABILITY

CHEQKADRE _ C8

MOVE CSW WITH
DEVICE END BIT
ON TO DOS CORE

CHECKO001

TURN DEVICE
END_AND NOP
BITS OFF

DEVICE IN
USE BIT ON

TURN DEVYICE SET RETURN CODE
IN USE BIT OFF OF 0 IN
REGISTER 15

CHECKO000

TURN NOP
SWITCH OFF

CLEAR_[0OB SENSE
BYTES

&/

TURN SENSE
SWITCH OFF

186 DOS Emulator Logic

Flowchart 9B. <Check I/0 Routine (IIVCHK Part 2 of 4)

9B
B2,
FROM 9A/G3

11VCCW I5A/A1 OR 11 VRCW 34A/Al

ADJUST CCW
ADDRESSES TO
LOCAL

IIVABN 26A/A2
ERROR ROUTINE

AUTO-POLL
WRAP LIST CCw
CHAIN

READJUST FIFTH
SIXTH ADDRESSES
TO LOCAL

START/STOP
DEVICE CHAIN

READJUST
SEVENTH CCW
ADDRESS TO

LOCAL

&

Program Organization 187

Flowchart 9cC.

POSTCSW

D1

LOAD FIRST DOS

CCW _ADDRESS

ADD EI1GHT BY1ES
TO 1T

PQSTCSWI £l

ADJUST CSW
ADDRESS T0
LOCAL . INSERT
KEY_IN H1GH

POSTCONS El

MOVE LOCAL
ADDRESSES (ON_ZERO)
TO FIRST HALF DOS
CSW MOVE STATUS AND

RES1DUAL

STAGED DEVICE

188

DOSRES VOLUME

DOSRES SHARED

WAS 1/0 A

MOVE LABEL
CYL INDER
ADDRESS TO DOS
INPUT AREA

&

DOS Emulator Logic

Check I/0 Routine (IIVCHK Part 3 of 4)

CHANNEL END
ONLY

SET _NOP AND
DEVICE IN USE
BI1TS ON

CHECKOO04 D3

DASD DEVICE

QUEUE UP AN
INTERRUPT IN
FIFO TABLE

N

YES

FROM 9A/G5

RWUCHK

WAS LAST
CCW A REWIND-
UNLOAD

SET DEVICE
END BIT ON.

SET
REW | ND-UNLOAD,
BIT OFF

1S "WAITING FOR
DEVICE EEADY“ BIT

SET NOP BEIT ON

Flowchart 9D.

Check I/0 Routine

9D
B2,
F

B2

ROM 9C/B5

CHECK040

BTAM DEVICE

CHECKO050

(IIVCHK Part 4

DOS _HAVE
TEB'S

DOS HAVE
TEBV'S

ECB CODE ‘'7F°*

H1GH_ERROR
COUNT TO PUB TO
BYPASS DOS ERPS

of 4)

B4

H1GH_ERROR
COUNT TO TEB TO
BYPASS DOS ERPS

c4

HIGH ERROR
COUNT TO TEBVY

TO BYPASS DOS |—*
ERPS

TURN_*'NOT
READY* BIT OFF,
TURN NOP BIT ON

FROM 9C/K5
9D
E3,
CHECK090 Y E3 CHECK 100 _ E4 90,
FROM_9A/C5
NO NO 9A/H2, 9B/¢3,
NOP BIT ON SC/HT, 9C/K%
YES
CHE, HECK110 ¥ F5
1| SSUE_NOP TURN_NOT SET_RETURN CODE
OCR DEVICE EXCP TO DEVICE READY BIT OFF OF FOUR IN
REGISTER 15
NO @
k2 4 PECKI20 168 o ¥
11VMSG 27A/A1 9A/D3
SET_DEVICE INCREMENT S10 RESTORE CALLERS
END BIT ON IN COUNTER — 1SSUE_ MESSAGE REG I STERS
DOS CSW 11V160A
c H2
GET_ADJUSTED RETURN

(TRUE) ADDRESS
OF PUB

Program Organization

189

Interpretive SYSLOG Routine (Flowcharts 10A-10E)

Module name: IIVLOG

Entry point name:

. IIVLOG

o JIIVLOGR1
. TIVLOGR2
o IIVLOGR3

Major functions: Interprets keyboard-printer CCW chains and issues
WTO or WTOR macros as required

Entered from:

. IIVPCE
. ITIVRTE

Modules called:

° IIVAWV
L] ITVCWV
Exits to:

L] IIVPCE
L] IIVRTE

0S macros issued:

[WTO
. WTOR
Input:

. Pointer to DOSCORE

. Pointer to Emulator constants (IIVCON)

. Pointer to local execution list

. Replies to WTOR issued by this module

Output:

. WTO/WTOR messages requested by DOS supervisor and/or problem programs
. Updated DOS PSW in local execution list

e - Updated DOS CCW data areas

. Updated DOS CSW

Return codes: None

190 DOS Emulator Logic

Tables/work areas:

. DOSCORE:
CAW
I/0 old PSW
I/0 new PSW
CCW strings

CCW data areas
CCW

. COMTAB for DOSLOG: LOGIOB (dummy IOB for DOS SYSLOG device)
. Local execution list: DOS current PSW

Errors detected: CAW/CCW errors as detected by IIVAWV and ITVCWV ¢
Messages issued:

. IIVO0O0A
. IIV000I

Program Organization 191

Flowchart 10A. Interpretive SYSLOG Routine (IIVLOG Part

1 of 5)

ENTRY

FROM 1 1VYPCE
{CHART 8J)

Bl B2
.
I IVAWV 12A/A2
GET 10B ADDRESS CAW CHECK
ROUT INE

192

CLEAR 10B
STATUS BYTE

SET ROUTE
SWITCH OFF

PC BIT IN
10B STATUS ON

NO

LOGIQ1 R2 FROM 10E/Jt
11VCWV 13A/A1

CCW CHECK
ROUTINE

PC BIT IN
108 STATUS ON

PREV|0US
DATA CHAIN
FLAG ON

SET CURRENT
LOG CODE TO
X*00*

|_H2

TRANSLATE
CURRENT LOG
CODE

SET CURRENT
LOG FLAGS

DOS Emulator Logic

LOGIOS

SET PROGRAM

CHECK BIT IN

|1 0B STSTUS BYT
N

LOw
ORDER BITS
OF COMMAND

ZERO

SET COMMAND
REJECT BIT IN
10B SEgaE BYTE

H5

SET UNIT

PREV 1 0US
LOG_FLAGS
ZERO

SET CURRENT

T CCw
IN I PSW_CONDITION
CODE TO 1

oB

Flowchart 10B. Interpretive SYSLOG Routine (IIVLOG Part 2 of 5)

10B
Bl/ FROM 10A/E4

LOG1O(0 Y BI LOGIOI5
ROGIOID B85
PREV 10US YES MOVE DATA TO
DATA CHAIN OQUTPUT AREA
FLAG ON
NO
ct 13
NO PREV 1 OUS SET_CONT INUE NO
WTO FLAG ON FLAG ON
YES YES
D3 D5
LOGOUT! 10D/A3
SET PREV10US SAVE_MESSAGE
WTO FLAG OFF LENGTH AT OLD WTO ROUTINE
LENGTH MESSAGE 11V0001
El
ES
SET MESSAGE
PREV | 0US YES LENGTH_TO GET QUTPUT AREA
CODE NO AUTO MAXTMUM LENGTH ADDRESS
NO
LOGIOI6 Y F3
0Gigi2 ¥ Fy QG101 Fs
LOGOUT! 10D/A3 SUBTRACT
MESSAGE LENGTH ADD MESSAGE
WTO ROUTINE FROM_MAX TMUM LENGTH TO DATA
MESSAGE 11V0001 LENGTH ADDRESS
G2
QGI013 ¥ gi
GET QUTPUT AREA YES SUBTRACT | FROM SET_MESSAGE
ADDRESS MESSAGE LENGTH LENGTH TO OLD
LENGTH
NO
Hi
GET_MAX [MUM
LENGTH
GI1Q14 ¥ i
SET MESSAGE
GET DATA SET CURRENT LENGTH TQ
ADDRESS FROM WTO FLAG ON MAXTMUM LENGTH

Kl

QGIO17 K3

GET MESSAGE SUBTRACT
LENGTH FROM CCW MESSAGE LENGTH
FROM OLD LENGTH

Program Organization 193

Flowchart 10C.

@ FROM 10A/D4

0G1020 B1

GET TOTAL
LENGTH FROM CCW

Cl

GET DATA
ADDRESS FROM
CCw

SET CURRENT
WTOR FLAG ON

PREV [QUS

SET PREYIOUS
WTO FLAG ON

WTO FLAG OFF

L0G102) ¥ Fl

1061022 ¥ G|

MOVE ROUTE AND
DESCRIPTOR
CODES TO OUTPUT
AREA

i

MOVE REPLY
LENGTH
QUTPUT AREA

1SSUE WTOR
MESSAGE 11VO0O00A,

194 DOS Emulator Logic

IIVLOGR1 Subroutine (IIVLOG Part 3 of 5)

11V
ENTRY
FROM TIVRTE (CHART 20C)
I'IVPCE {(CHART 8F)
B3
COMPUTE REPLY
LENGTH

REPLY EOB

SET CURRENT
{NO REPLY)

CHAIN FLAGS OFF,

LOG10RS

REPLY
INDICATE

SET_CONT INUE
FLAG ON
CONTINUE

E4

SUBTRACT 2 FROM
REPLY LENGTH

LOG1027

SET CURRENT

E H <
TOTAL LENGTH CHAIN FLAGS OFF,

LOGIOD28

MOVE REPLY TO
DATA AREA

LG1029 3

SUBTRACT REPLY
LENGTH FROM
TOTAL LENGTH

10D
B2

Flowchart 10D.

LOGOUT1 and LOGOUT2 Subroutines (ITVLOG Part 4 of

LO LO:
ENTRY ENTRY
FROM FROM_11VLOG
1 1 VLOG (CHART 10E)
FROM 10C/J3 {CHART
10B)
B2
B3 B4
TOTAL MOVE CONT INUE MOVE DESCRIPTOR
LENGTH ZERO CHARACTER TO AND ROUTE CODES
MESSAGE TO MESSAGE
C3 ca
D1
ADJUST MESSAGE
LENGTH FOR COMPUTE TOTAL
ADD REPLY CONT INUE — MESSAGE LENGTH
LENGTH TO DATA CHARACTER
ADDRESS
% SET _MESSAGE
LENGTH IN WTO
AREA
E4
SAVE RETURN
SET ILC BIT ADDRESS
ON 10B_STATUS
BYTE ON
DCIO3 L E2
MOVE TOTAL
L H TO ISSUE WTO
RES IDUAL COUNT
IN 10B
i GET_RETURN
ADDRESS
RETURN
Program Organization 195

Flowchart 10E. IIVLOGR2 Subroutine (IIVLOG Part 5 of 5)

FROM 10A/C4 FROM 10A/B4

QCIQ50 Bl

SET CURRENT

MOVE |0B_SENSE CODE AND ENTRY

BYTE TO CCW FLAGS TO
DATA ADDRESS PREV10US CODE,
AND FLAGS
FROM 11VRTE
(CHART 20C)
10E | IVPCE (CHART
ci BF)
LOGI060 [o]
FROM LOG FROM 10A/H5,
10B/C5, 10A/J5
10c/J1,
10D/F2 PREV10US PREVI0US NO SET CE BIiT_IN
LOG_FLAGS LOG FLAGS |0B STATUS BYTE,
ZERO ZERO ON
D3
Ch
SET CURRENT SET _CURRENT PREV 10US YES POST DOS CSW
PSW CONDITION PSW CONDITION WTO FLAG ON FROM 10B
CODE TO 0 CODE TO !
LOGI06! El
0GlQ64 ES5 D5
LOGOUTZ2 (0D/A4
YES MOVE DOS
WTO ROUTINE CURRENT PSW TO
DOS 1/0 OLD PsSw

LOG1065

ES

SET_SYSLOG
INTERRUPT
PENDING FLAG ON,

LEAR 10B

[MOVE DOS 1/0
SENSE BYTE

NEW PSW TO DOS
CURRENT PSW

ROUTE
SWITCH ON

Gl

GET NEXT CCW PSW
ADDRESS CONDITION
CODE 01

H3

CURRENT POST DOS CSW
CHAIN FLAGS FROM 10B
OFF
LO!
SET PREVIOUS EXIT
LOG CODE AND
LOG FLAGS
TO 11VRTE AT
| IVRTERZ
(CHART 20B)

196 DOS Emulator Logic

Staged I/0 Routine (Flowcharts 11A-11N)

Module name: TIIVSTG
Entry point names:

IIVSTG
EODA
SYNA
STGIO300

Major functions:

o Furnishes the interface between the DOS Emulator and the spooling
facilities (temporary data sets) provided for unit record devices by 0S

. During initialization creates an Emulator forms-control image for
staged printers from an OS FCB image

. Intercepts DOS FCB load for 3211 and recreates the Emulator
forms control image

. Intercepts the DOS READ FCB channel command and builds an FCB in DOS main
storage from the Emulator forms control image

o Intercepts the DOS CHECK READ channel command and computes and places the
value of the FCB address register in DOS main storage

Entered by:

IIVPCE

IIVOPN

0S (QSAM) upon end of data

0S (QSAM) upon occurrence of synchronous error

Modules called:

. IIVAWV
(] ITVCWV
[IIVPOV
. ITIVMSG
Exits to:

. IIVRTE

e 0S (QSAM)
OS macros issued:

PUT

DCBD
GET

SAVE
RETURN
GETMAIN
FREEMAIN

Program Organization 197

Input:

Data is passed to DOS following an input request

Register 0 contains the entry number into COMTAB for this I/0
request. Zero indicates the first entry.

Register 10 contains the starting address of DOS
Register 11 contains the address of IIVCON
Register 14 contains the address of ITIVRTER2

The 0S FCB image is passed from the SYS1.IMAGELIB

Output:

Output data from DOS that is written out to temporary data
sets that are later processed by the Operating System's output writer

Emulator forms-control image

Operator information messages that indicate unusual occurrences
(such as SYNAD conditions)

Return codes: None

Tables/work areas:

DOSCORE -~ DOS low storage area
Local execution 1list

COMTAB

STGCON - dummy IOB area

DOS CCWs

Emulator forms-control image

Errors detected:

SYNAD subroutine is entered after a permanent I/0 error
Program check bit set in CSW

Unit check bit set in CSW if error detected in 0S FCB image
Invalid command sequences for staged 2540 Reader

command reject condition for all staged devices

Messages requested or issued:

198

IIV140T
IIV2751

DOS Emulator Logic

Flowchart 11A. Staged I/0 Routine (IIVSTG Part 1 of 13)

ENTRY

FROM 11VPCE
{CHART 8K)
11YOPN (CHART
58)

B2

SAVE_REGISTERS
PERFORM
HOUSEKEEP ING

L2

MOVE _STGSENI TO
STGSENO

RESET STGCSW
AND STGSENI

BUILD
EMULATOR
FORMS CONTROL
IMAGE

1 IVAWY 12A/A2

VALIDATE DOS CAW
AND INITIALIZE CCW
POINTER IN STGCON

ECK B
IN STGCSW SET

FROM 11E/D3

NO
11AISTG10000
H2,
H2
1IVCWY 13A/Al

VAL IDATE AND
INTERPRET DOS
CCw's

K3

CCW BITS
4-7 ZERO

SET PROGRAM
CHECK BIT IN
STGCSW

&

Program Organization 199

Flowchart 11B. Staged I/0 Routine (ITVSTG Part 2 of 13)

NO-OF COMMAND

1S SLI BIT
IN CCW ON

COMPUTE AND
STORE RESIDUAL
COUNT IN STGCSW

X

200 DOS Emulator Logic

Flowchart 11C. Staged I/0 Routine (IIVSTG Part 3 of 13)

FROM 11B/E2,
11B/G3
SIGL0020 B2,

ADJUST CCW DATA
ADDRESS
cz2
READER YES
STAGED READER COMMAND
NO

D2

STAGED
PRINTER

READER
COMMAND

Program Organization 201

Flowchart 11D. Staged I/O Routine (IIVSTG Part 4 of 13)

FROM I1I1C/F2, 11C/C3

STG10040

READ- YES
FEED-STACKER
SELECT

NO
D1
NO

READ NO FEED

SET UNUSUAL
SEQUENCE IN
SENSE

MOVE IN SYNAD
AND EODAD
ADDRESSES

SYMBOL TABLE
Ha

AA-READ, FEED, SELECT STACKER POINT TO LAST
REREAD INPUT BUFFER
AB-READ (NO FEED)
BA-FEED, SELECT STACKER
REFER TO 2540 CHANNEL

COMMAND CODES, SYSTEM/
3¢0 REFERENCE DATA

SYNAD _(CHART 11{N)
ENTERED IN CASE OF
PERMANENT 1/0 ERROR

202 DOS Emulator Logic

Flowchart 11E. Staged I/0 Routine (IIVSTG Part 5 of

7

FROM 11D/D3,
fIN/CH

RESET /& SWITCH,

SET UNIT
EXCEPTION
SWITCH

SUPPRESS
DATA TRANSFER
IN CCw

ADJUST CCW DATA
ADDRESS

El

PROPAGATE
BLANKS 1IN DOS
1/0 AREA

Gl

MOVE IN /&

FROM 11B/D2, 11D/C2
11E/Cl, TIE}F1, 11GIK3,
11F/D2, 11K/G2) 11G/K4)
{IN/ELs TIN/HT) 11G/KS,
11N/B3, 11L/E4, 1{L/B3.
11L/G4, 11L/H4, 11L/D3.
14A/B1, 14A/HI, 1{L/E3.
14A/D3, 14A/J3,

14A/B4, 14A/B5

UNUSUAL CSW
CONDITIONS

D3

INCREMENT CCW
ADDRESS BY 8

g

13)

Program Organization

Flowchart 11F. Staged I/O Routine (IIVSTG Part 6 of 13)

FROM (1D/J3

El

MOVE FIRST 2
BYTES OF RECORD
TO STGDLM

El

MOVE_INPUT DATA
TO DOs

204 DOS Emulator Logic

Flowchart 11G. Staged

Ll

MOVE SYNAD
ADDRESS TO DCB

I/0 Routine

STGIO10%

SET SELECTED
SWITCH FOR_THIS
DATA SET

WRITE 3
SEPARATOR CARDS,

3525 PUNCH

IS _COMMAND
LOAD FCB

I'S_COMMAND READ
FCB ADDRESS
REGISTER

ERROR

G3

MOVE DATA FROM
DOS AREA

H3

CLEAR OUT
RECORD
DESCRIPTOR WORD

Nk

MOVE LRECL INTO
RDW

SYMBOL TABLE

RDW-RECORD
DESCRIPTOR_WORD
{VARIABLE LENGTH

RECORDS)

STAGED
PRINTER

S
1
I
Pi
El

Y|
1
N
El
R

N
N
R
R

(IIVSTG Part 7 of 13)

AD _(CHART
ENTERED

SE OF
ANENT 1/0

oxoO—
aAr>

RESET

=F-]

UPDATE LAST
PRINT COMMAND [
IN STGCON

K2

1 1IVPOV (4A/Al
SIMULATES
PRINTER
OVERFLOW

| | VPOV
PRESENT

Program Organization

205

Flowchart 11H. Staged I/0 Routine (IIVSTG Part 8 of 13)

SIGIOL2S B2

MOVE DD_NAME TO
WTO

C2
1 IVMSG 2TA/Al
WTO PERMANENT
| /0 _ERROR
MESSAGE 11Vi401

ON
FLAG
MTAB

SET UNIT
CHECK IN CsSWw

206 DOS Emulator Logic

Flowchart 11J. Staged I/O Routine (ITVSTG Part 9 of 13)

1y
B3
FROM 11A/G2
VIA/J2, LIAJK3 FROM 11D/F2, 1ID/E4
11E/c2, (1EJD2, I1FlB2,
11H/E2, 11K/C2, 11K/C4
CSWSTOR 1 BI
ANTPEND ¥ B3
|NCREM
FIRST CCW COMMAND ADDRESS

IN CHAIN

YES

SET PSW
CONDITION
CODE TO ZERO
SUCCESSFUL)

RESET 'FIRST
CCW' SWITCH

Dl
MOVE DOS Cuu TO SET DEVICE
LOCAL EXECUTION ND CHANNEL END,
PSW IN CSW

DEVICE
AND CHANNEL
ON _IN

END
STGCON CSW

POST ECB IN
COMTAB

£l

MOVE STORAGE
PROTECT KEY TO
DOS CSW

Gl

READJUST
COMMAND ADDRESS

Hi

COMMAND ADDRESS
BY B8 AND STORE
IN Csw

2l
DECREMENT
NUMBER OF

OUTSTANDING
slo's

RETURN

TO 11VRTE AT 1I1VRTER2
{(CHART 20

ENTERED BY [IVPCE

Program Organization 207

Flowchart 11K. Staged I/O Routine (IIVSTG Part 10 of 13)

FROM 11B/C2

1/0 ERROR

DECREMENT CCW SET UNIT
COUNT BY ONE CHECK [N CSW
Dt
1y
B3
NO
YES
£l

DECREMENT CCW
COUNT BY 5 MORE

El

STORE RES IDUAL
COUNT IN CSWw

RESET SENSE
BYTE TO ZERO

MOVE SENSE BYTE
TO DOS AREA

FCB LINE
POSITION
CHECK

K2

SET_FCB LINE
POSITI|ON CHECK RESET LINE
IN DOS SENSE POSITION CHECK
AREA SWITCH

208 DOS Emulator lLogic

Flowchart 11L.

Y

SIGL10300 Bl

FROM 11G/C3

ZERO _CCW DATA
AREA FOR LENGTH
N3 Ns'gguN <

NO

[}

CONVERT CHANNEL
NUMBER FROM FCB
TO_EMULATOR
FORMAT

SET LINES/INCH
FLAG IN FIRST
BYTE OF FCB

G

1
1S COUNT >
FCB LENGTH

S

YE

all

RESET STGLNPTR

BUILD FgB FROM

EMULATO!
CARR | AGE
CONTROL

IMAGE

Read FCB Subroutine (IIVSTG Part 11 of 13)

&

FROM 11G/D3

SIG10400 B4

RESET_INCORRECT
LENGTH
INDICATOR IN
CSW IF ON

STORE_RE
COUNT |

D4

PLACE IN DOS
STOR

AGE

SET INCOMPLETE
LENGTH IN CsSw

X

E4

RES IDUAL NO
COUNT

YES

E4

STORE_RES IDUAL
COUNT IN CSW

sLI
i

G4

N CCW

SET INCORRECT
LENGTH IN CSW

X

Program Organization

209

Flowchart 11M.

Y

FROM {1A/EZ2,
11G/B3

NO

Cl

FREE MAIN
STORAGE FROM
OLD EMULATOR

IMAGE

Dl

GET MAIN
STORAGE FOR NEW
EMULATOR [MAGE

END-OF -
FORMS FLAG
SET IN FCB

Load FCB Subroutine

(ITVSTG Part 12 of 13)

B3 B4
UPDATE SET LOAD CHECK
STGCHFLG, IN SENSE AND

STGCTP
STGLNPTR AND
STGLNCNT

UNIT CHECK IN
CsSw

RES IDUAL
COUNT

SET RES |DUAL
COUNT IN CSW

E3
YES
NO
E3

E2
SET _FLAG FOR SET INCORRECT
READ_FCB LENGTH IN CSw
ROUT INE

VALID FCB
DATA

CONVERT _TO
EMULATOR FORMAT

LAST_LINE
POSITION

POINT TO NEXT
INE IMAGE

210 DOS Emulator Logic

G3

REQUEST
FROM
INITIALIZA-
TION

1I1VPOV (4A/A1

CAL IBRATE FORMS
CONTROL
POINTERS

' RETURN '

RETURN

Flowchart 11N, EODAD and SYNAD Subroutines (IIVSTG Part

13 of 13)
ENTRY
FROM 0S (QSAM) M OS
UPON END OF DATA (QSAM) UPON
OCCURRENCE OF
SYNCHRONOUS
ERROR
'IE’ “
ENTERED IF GET
OR PUT 1SSUED SET_SYNAD
(CHARTS 11D AND |-~ SWITCH IN
11G) AND STGFLG

RETURN

ADJUST CCW DATA
ADDRESSES

Gl

PROPAGATE
i/

Hl

MOVE */¥' INTO
DOS INPUT AREA

&

Program Organization

211

CAW Verification Routine (Flowchart 12a)

Module name: IIVAWV
Entry point name: TIIVAWV

Major functions: Validates the DOS CAW and initializes the CCW
pointer in STGCON for modules IIVSTG and IIVLOG

Entered by:

. IIVSTG
° ITIVLOG

Modules called: None
Exits to: Caller

0S macros issued: None
Input: DOSCORE (DOS CAW)
Ooutput:

. COMTAB (storage protection key)
e STGCON (CCW pointer, CSW)

Return codes: None

Tables/work areas:

° STGCON - dummy IOB area

. DOSCORE - DOS low storage

. Local execution list

.. COMTAB

Errors detected:

. Nonzero value in bits 4-7 of DOS CAW

° Command address not on a doubleword boundary

o Ccommand address greater than the limit address in local
execution list

Messages requested: None

212 DOS Emulator Logic

Flowchart

12a.

CAW Verification Routine

ENTRY
(CHART
(CHART
g2
TURN ON FIRST
CCW SWITCH
c2

MOVE DOS CAW

STORAGE PROTECT

KEY TO COMTAB
FIELD

BITS 4-7 OF NO

DOS CAW ZERO

DOS CAW ON
DOUBL EWORD
BOUNDARY

CAW _CCwW
ADDRESS
WITHIN LIMIT
ADDRESS

FROM 11VSTG

ADD ADJUSTMENT
FACTOR TO CAW
ADDRESS

H2

STORE _ADJUSTED
CAW_ADDRESS IN
STGCON_CCW
POINTER

SET PROGRAM
CHECK _CONDITION,
N STGCON CSW,

RETURN

(IIVAWY)

Program Organization

213

CCW Verification Routine (Flowchart 133)

Module name: IIVCWV

Entry point name: IIVCWV

Major functions:

° Validates and interprets DOS CCWs for modules IIVSTG and IIVLOG
° Changes pointers from TIC CCWs to TIC~TO-CCWs

Entered by:

L IIVSTG
. ITIVLOG

Modules called: None

Exits to: Caller

0S macros issued: None

Input:

e STGCON: STGFLG (first CCW), STGCCW (CCW pointer)

L] DOS: CCW

° Local execution list: DRILIMAD (limit address of DOS)
Output:

STGCON: STGCCW (CCW pointer), STGCSW (channel status word)
Return codes: None

Tables/work areas:

o STGCON (dummy IOB area)
° Local execution list

Errors detected:

. Nonzero value is contained in bits 37-39 of CCW
(] First CCW (CCW addressed by CAW) is a TIC

o Count field in CCW is zero

. TIC/TIC sequence of CCWs was encountered

. Data address and count greater than the limit address in the
local execution list

] Command address in a TIC CCW is greater than the limit
address in the local execution list

° Command address in a TIC CCW is not on a doubleword boundary

Messages requested: None

214 DOS Emulator Logic

Flowchart 13A. CCW Verification Routine (TIIVCWV)

ENTRY

FROM _11VSTG
(CHARTS 11A)
AND |1VLOG
(CHART {(0A)

Bl

LOAD CC!
POINTER FROM
STGCON (STGCCW}

ARE BITS
37-3% OF CCW

SET PROGRAM
CHECK BIT

ON I[N
STGCON CsW

Dl

STORE CCW OP RETURN
CODE _IN STGCON
(STGWK 1)

IS_CCW TIC-TO-CCW
COUNT FIELD ON_DOUBLEWORD
ZERO BOUNDARY

TI1C-TO-CCW DATA
ADDRESS >LIMIT
ADDRESS

CCW DATA

ADDRESS +

COUNT-! >LIMIT
ADDRES

STORE
TIC-TO-CCW
RESS_IN
STGCON (STGCCW)

Hl

H3
ADJUST CCW DATA
ADDRESS

RETURN

Program Organization 215

Printer Overflow Routine (Flowchart 1U43)

Module name: IIVPOV
Entry point name: IIVPOV
Major functions:

. Maintains the simulated sense byte and status portions of the
CSW for staged printer devices

. Simulates the carriage tape operation normally performed by the
printer during output staging

Entered by:

° ITIVSTG

Modules called: None

Exits to: Caller

0S macros issued: None

Input: CCW operation code (STGCCW)
Output:

. Status portion of CSW
. Sense byte (STGSEN1)

Return codes: None

Tables/work areas:

° Emulator forms-control image created by IIVSTG

. STGLNPTR index into Emulator forms-control image created by IIVSTG
] STGCSW channel status word (STGCON)

e STGSEN1 sense byte (STGCON)

. STGLNCNT lines/page (STGCON)

) STGCHFLG printer carriage tape channel flags (STGCON)

. STGCTP address of Emulator forms-centrol image created bv ITVSTG
Errors detected: None

Messages requested: None

216 DOS Emulator Logic

Flowchart 14A. Printer Overflow Routine (TIIVPOV)

ENTRY
FROM_11VSTG
(CHART 11G,
1 1M)
e 3
SUPP- —
PRESS
NOP SPECIAL CCW YES FCB TYPE SET UNIT/DATA
READ --(_COMMAND CODE RETURN DEVICE CHECK IN CSW
[o] AND SENSE BYTE
LOAD
FCB c3
NO NO
(3] SKIP cz2
EEICH C3 L4
YES 1S _CHANNEL YES FETCH CARRIAGE RETURN
SK1P COMMAND ON TAPE TAPE LINE IMAGE
NO NO
D1
D2
INITIALIZE_ L INE
1S LINE YES POINTER TO
POINTER ZERO MAX|MUM FOR RETURN
CARRIAGE TAPE
NO
£l
DECREMENT L INE
POINTER AND LOAD STGLNPTR
SAVE IN INTO REGISTER}
STGLNPTR DECREMENT BY |

EETCH EL F4

INITIALIZE
STGLNPTR WITH
MAXIMUM FOR
CARRIAGE TAPE

FETCH CARRIAGE

IS STGLNPTR
TAPE LINE IMAGE ZERO

G4

SAVE CURRENT
LINE POSITION
IN STGLNPTR

SET_UNIT
EXCEPTION IN
STGCON CsW

SET BIT IN

ANY MORE
SPACES TO GO SENSE BYTE

NO

RETURN

Program Organization 217

Adjust CCW Data Address Routine (Flowcharts 15A-15F)

Module name: IIVCCW
Entry point name:

L] IIVCCW
° RCCWABUY

Major functions: Adjusts data addresses in a string of CCWs prior to
their being passed to 0S for an I/0 operation and
after completion of the CCW function in OS

Entered by:

L] IIVRTE
L) IIVPCE
. IIVCHK

Modules called: IIVADJ

Exits to:
o IIVPCE
L] IIVCHK

] Caller
0S macros issued: SAVE
Input:

Adjustment factor

Pointer to a CCW string

Pointer to the local execution list

Pointer to the Emulator constants area (IIVCON)
Pointer to COMTAB

Local limit address

Output: Adjusted CCW string
Return codes:

. Error code 16 for IIVABN
. Error code 20 for IIVABN

Tables/work areas:

Adjust CCW data address list (located in IIVCON)

BEBLK CCW addresses for adjusting

Status modifier table used to find status modifier-type CCWs
RCCWSAVE register save area

Errors detected:

o Adjusted addresses not within DOS storage area
. BEBLK is filled and CCW adjusting cannot proceed

Messages requested: None

218 DOS Emulator Logic

Flowchart 15A. Adjust CCW Data Address Routine (IIVCCW Part 1 of 6)

ENTRY
I IVPCE (CHART 8M) AND
1 IVCHK (CHART 9B)
MOVE CCW SET ERROR
INITIALIZE ADDRESS FROM CODE TO 16
LIST TO BEBLK
FROM
I15C/F2,
15E/B5
RCCWAB! c5
_RCCWO4 c4
SAVE CCW RESTORE LIST 1S
ADDRESS FROM LEMIT ADDRESS ADJUSTMENT
LIST FACTOR O
NO

TURN OFF ABEND
BYPASS SWITCH;

RESTORE
REGISTERS

SWITCHES TO O,

SET FIRST~- RETURN
CCW-A-TIC
SWITCH ON

£l

SAVE ACTUAL
ADJUSTMENT
FACTOR

SET ABEND
BYPASgNSWITCH

Gl

BCCWORA G4
1 1VADJ 16A/A2

| ADJUST CCW DATA
ADDRESS ROUTINE

ADJUST LIST
LIMIT ADDRESS

SET LIST ISSUE_ADJUST
ADJUSTMENT CCW_STRING
FACTOR TO 0 INSTRUCT I ON

RCCWO05B J3

TO
START OF BEBLK

SYMBOL TABLE

LIST-ADJUST CCW
DATA ADDRESS
LIST

K1

ZERO OUT BEBLK

Program Organization 219

Flowchart 15B.

BYPASS SWITCH

(o]

D2

UPDATE BEBLK
POINTER

WAS LAST SET_STATUS
MO

DIF [ER

CCW DATA
COUNTER TO 2

CHAINED

CODE _IN
LIST OPERATION
BYTE

COMBINE |5F/A2

COMBINE ROUTINE

RCCWO08A

SET CODE FOR
ABEND ERROR
ROUTINE 20

RCCwo8B

1S _COMBINE

SWITCH ON

NI

PASS ADDRESS OF
LAST CCW_IN

STRING TO
CALLING ROUTINE

220 DOS Emulator Logic

Adjust CCW Data Address Routine (IIVCCW Part 2 of 6)

SUBTRACT 1 FROM
STATUS MODIF |ER
COUNTER

(o]

POINT TO NEXT
PREVIOUS CCW

RCCWI12 E3

DASD-TYPE
DEVICE

COMMAND
CODE = X '92°'

RCCW13B

STATUS
MODIF 1ER
COUNTER >1

STATUS
MODIF IER ADD 8 TO LIST
COUNTER >1 ccw

POINTER

SYMBOL TABLE

LIST -- ADJUST CCW
DATA ADDRESS LIST

Flowchart 15C. Adjust CCW Data Address Routine (IIVCCW Part 3 of 6)

RC
ENTRY
FROM
158/Gl,
18B/HI,
15B/H3, FROM STAE
15B8/J2, R
158/J3, ROUTINE IN
15D/B4, | IVRTE
15E/C4 (CHART 20C)
RESTORE
SET_COMBINE COMPLETE BIT ON REGISTERS; TURN SET ERROR
SWITCH OFF N ALL BEBLK OFF _ABEND CODE TO 16
ENTRIES BYPASS SWITCH
c2
MOVE [NCOMPLETE PUT ACTUAL
SET FIRST BEBLK ENTRY TQ ATION RETURN EXIT
CCW-A-TIC CURRENT BEBLK IN LIST
SWITCH OFF ENTRY
TO IIVPCE (CHART
8M) OR I IVCHK
(CHART 9B)
D3
MOVE CCW
ADDRESS FROM READJUST LIMIT
BEBLK TO LIST ADDRESS IN LIST
W POINTER
E2 RCCW16 ¥ E3
MOVE_OPERATION VE
BYTE AND ADDRESS FROM
OPERAT |ON BEBLK TO LIST
POINTER _FROM CCW POINTER
BEBLK TO LIST
E2 RC
ADD 8 TO
INCOMPLETE SET_ABEND
BEBLK ENTRY BYPASS SWITCH
POINTER
@ 63
RCCWLTE G4
11VADJ 1 6A/A2
EXECUTE
T1VADJ ADJUST CCW DATA
ADDRESS ROUT INE
ISSUE_ADJUST
CCW _STRING
INSTRUCT ION ¢
SET ABEND
BYPASS SWITCH
RCCWITC | J3
SYMBOL TABLE
CONDITION
LIST - ADJUST CODE
ADDRESS LIST
FROM
15A/F5
K5
K4
ADD_8_TO LAST BEBLK
CURRENT POINTER ENTRY
ADDRESS

Prodram Organization 221

Flowchart 15D. Adjust CCW Data Address Routine (IIVCCW Part 4 of 6)

3

FROM (5A/J3,
15A/G5

SET COMPLETE
BIT ON IN BEBLKj
TURN OFF ABEND
BYPASS SWITCH

(03]

MOVE CCW
POINTER FROM
LIST TO BEBLK

DI

1S
ADJUSTMENT NO
FACTOR
NEGATIVE

ADD ADJUSTMENT
FACTOR TO TIC
ADDRESS IN LIST

RCCWI19 Fi1
RCCWIQA E2
COMBINE 15F/A2
ONLY NO
ENTRY IN COMBINE ROUTINE
BEBLK
YES
Gl

ADD 8 TO_BEBLK
POINTER

BCCWISA ¥ HY
COMBO4A 15F /A4
COMBINE ROUTINE

RCCW20

SET CODE _FOR
ABEND ERROR
ROUTINE 20

BEBLK FULL

SYMBOL TABLE
LIST -- ADJUST
C T
ADDRESS LIST

222 DOS Emulator Logic

RCCW20A

1S COMBINE
SWITCH ON

IS TIC-TO

SWITCH ON
NO
D4
MOVE TIC-TO
ADDRESS FROM
LIST TO BEBLK
RCCW21 E4

RCCw21C

‘TP DEVICE

COMMAND
CODE = X'92°'

Flowchart 15E.

Adjust CCW Data Address Routine

Fl

B2

RCCw22B

LAST
INCOMPLETE
ENTRY IN

BEBLK

TI1C-TO ADDRESS=
INCOMPLETE ENTRY
ADDRESS

ROM 15D/J4

YES SUETRAC; 8_FROM

INCOMPLETE
ENTRIES POINTER

D3
BEBLK

E3

UPDATE

INCOMPLETE
ENTRIES POINTER

MOVE OPERATION BYTE
AND OPERATION
POINTER FROM LIST

TO INCOMPLETE END
ADDRESS

3

SYMBOL TABLE

LIST - ADJUST
ADDRESS LIST

(IIVCCW Part 5 of 6)

=5

MOVE CURRENT
BEBLK START

| ADDRESS TO LIST
CCW POINTER

Program Organization

223

Flowchart 15F. Combine and COMBO4A Subroutines (IIVCCW Part 6 of 6)

COl [ofs]

ENTRY ENTRY

FROM_[IVCCW
(CHARTS 15B
AND 15D}

FROM_11VCCW
(CHART 15D)

B2

MOVE BEBLK

BEGINNING

ADDRESS TO
COMBINE POINTER

RETURN

COMBO1I ca

MOVE BEBLK
BEG INNING

ADDRESS TO
COMBINE POINTER

I'S CURRENT
START

ADDRESS<COMB INE
END ADDRESS

COMB05S
~LOMBOs D3

COMPARE
TIC-TO ADDRESS
TO COMBINE START
ADDRESS

1S CURRENT END
ADDRESS<COMBINE
START ADDRESS

ADD 8 TO
COMBINE POINTER

1S CURRENT IS COMBINE
START POINTER= IS TIC-TO
ADDRE SS<COMB INE CURRENT ADDRESS<COMB INE
START ADDRESS POINTER END ADDRESS

REPLACE COMB INE
START ADDRESS ADD 8 TO
W1TH_CURRENT CURRENT POINTER
START ADDRESS

SET CURRENT
EBLK ENTRY TO

ADD 8 TO RETURN
COMBINE POINTER

1S COMBINE
POINTER=

CURRENT
PO INTER,

SET COMB INE
SWITCH ON

RETURN

224 DOS Emulator Logic

CCW Adjustment Routine (Flowcharts 16A-16B)

Module name: IIVADJ

Entry point name: IIVADJ

Major functions: Adjusts CCW data addresses
Entered by:

. IIVCCW
. IIVRCW

Modules called: None

Exits to: Caller

0S macros issued: None
Input:

Adjustement factor
Pointer to a CCW string

Pointer to the local execution list
Local limit address

Output: Adjusted CCW string
Return codes: None
Tables/work areas:

. Adjust CCW data address list (located in IIVCON)
° ADJSAVE register save area

Errors detected:

. Adjusted addresses not within DOS storage area
o CCW not on doubleword boundary

. Invalid CCW address

Messages reguested: None

Program Organization 225

Tlowchart 16A.

226

ENTRY

INITIALIZE

SET PROGRAM
MASK

SET_RETURN
CONDITION CODE
TO ZERO

FIRST CCW
ON_DOUBLEWORD
BOUNDARY

CCW ADDRESS
A _LOCAL
ADDRESS

ADD _ADJUSTMENT
FACTOR TO CCw
DATA ADDRESS

CCW _COMMAND
CODE A TIC

DATA
CHAINING IN
PROCESS

DOS Emulator Logic

CW (CHARTS
, | IVRCW
4A, 34C, 34D

CCW Adjustment Routine (IIVADJ Part 1 of 2)

C4

UPDATE
OPERATION-BYTE AND
OPERATION-POINTER

REGISTERS

IS
ADJUSTMENT
FACTOR MINUS

MOVE CCW LOCAL
DATA ADDRESS

INTO
TIC-TO-ADDRESS
REGISTER

ADJOS F4

IS CCW
COUNT glELD L]

SUBTRACT CCW
COUNT FIELD-1
FROM CCW _LOCAL
DATA ADDRESS

1S DATA
ADDRESS MINUS

Flowchart 16B. CCW Adjustment Routine (IIVADJ Part 2 of 2)

16B 16B
B2 B3,

FROM 16A/G4 FROM 16A/J4 FROM 16A/H2 FROM_16A/E2,
16A/F2,
16A/C4

ADRJOSE B2
ADD CCW_COUNT
FIELD-1 TO_CCW SET CONDITION SET CONDITION
LOCAL DATA CODE TO 2 CODE TO 3
ADDRESS
FROM
16A/F4,
16A/J4
ADJO7 c2

PUT TIC CCwW
DATA ADDRESS IN
REGISTER

SET_OPERATION-
BYTE_REGISTER
TO 0

DATA
CHAINING BIT
ON IN CCW

NO

SET OPERATION
BYTE_REGISTER
TO 0

ADJOE G2

UPDATE_ACCW
LIST

SET CONDITION
CODE FOR CALLER

RETURN

Program Organization 227

Supervisor Call Routine (Flowchart 17A)

Module name: IIVSVC

Entry point name: IIVSVC

Major functions: Directs DOS SVCs to proper Emulator modules
Entered from:

. DOS when DOS issues a supervisor call
L ITVSCI

Modules called:

. IIVADD
L JIVPUB
. ITVGR2

Exits to:

° JIVRTE (normal exit)
. IIVABN (error exit)

0S macros issued: None

Input: DOS registers

Output: Manipulates PSWs for supervisor calls
Return codes: X'04' to ITVABN for termination
Tables/work areas:

EMUCONS

DOS storage

DOS CCB

DOS COMREG
Local execution list

Errors detected: None

Messages requested: WNone

228 DOS Emulator Logic

Flowchart 17A.

SVC300

AUTOMATIC
IPL REQUESTED

DOS
SUPERV I SOR
1/0 REQUEST

SYC320

GET DOS CCB
ADDRESS

Gl

GET_DOS CCw
ADDRESS

DOS_CCB_FOR
SYSUSE

K1

I IVADD 4A/A3

BUILD DOS IPL
CONTROL
STATEMENT

Supervisor

Call Routine (TIVSVCQ)

ENTRY

rrvsci

FROM DOS WHEN DOS
EXECUTES AN

SvC;
(CHART 32A)

svcis0 c2 c3 SVC400 _ C4
NO $ IPLRT4 $SASIPL YES SET 8IPLRT2
DOS SVC 2 LOADED
YES COMPLETE NO
D2 D3
YES DEVICE NO
$$BUFLDR SHARING
REQUESTED
NO e YES
svca00 Y E2 E3 SVC450
NO YES ZERQ RETURN
CODE
@ YES NO NO
Lo
~=YC500 ¥V F2
SET DOS_IPL MOVE _CURRENT
COMPLETE PSW TO DQS _SVC
oLD PSW
Qo

| 1VPUB

G2

6A /A3

BUILD 0S_PuUB
TABLE

H2

ERROR
CONDITION

F3
“'Illglliillll"YEs
NO
G3
YES
NO
H3
NO
NO
DOSRES SHARED
YES

J3
NO
DOS SVC 1
Y0100 1 K3
1 IVGR2 22A/A1

SVC MONITOR

MOVE DOS SvC
NEW PSW TO
CURRENT PSW

EXIT

TO 1IVRTE (CHART 20A)

Program Organization 229

Start I/0, End-of-Extent, Channel End, and Abnormal ®nd Appendage
(Flowchart 18A-18B)

Module name: IGGO19SA

Entry point name:

. IGG019sA
] SIORTO000
° AERT000
. CERTO000

Major functions:

Maintains (modifies/restores) DEB information so that DOS I/O
requests may be done by OS IOCS

Uses the DOS mode set command for all tape I1/0

Uses the DOS file mask for all I/0 on dedicated DASD volumes
Inhibits automatic cylinder switching for all DASD I/0

Makes the user label track associated with a shared volume data
set accessible to the DOS OPEN/EOF routines

¢ o 0 o

Entered by: O0S input/output supervisor routines
Modules called: None
Exits to: Caller

OS Macros issued: None

Input:

o Pointer to DEB
- Pointer to DCB
. Pointer to TCB
. Pointer to IOB

Output: Modified DEB extent and/or device modifier fields as required
to support DOS I/0 requests

Return codes: None
Tables/work areas: COMTAE, DEB
Errors detected: None

Messages requested: None

230 DOS Emulator Logic

Flowchart 18A. Start I/0, End-of-Extent, Channel End, and Abnormal
“nd Appendage (IGG019SA Part 1 of 2)

FROM 0S (FIRST DASD,
TAPE S10, OR_DASD
END OF EXTENT)

S10INOS B

S10

RETURN 0 +
REGISTER 14 ENTRY

FROM _0OS
{TAPE S10}

SET END-OF -
EXTENT
SUBROUT INE
ADDRESS IN

DEB

SET START
1/0

SUBROUT INE
ADDRESS IN
DEB

EQE]

SET START
1/0

SUBROUT INE
ADDRESS IN
DE

4

+
1

RETURN 0
ENTRY REGISTER

FROM 0S (END
OF EXTENT)

USER LABEL
FLAG ON

Gt S10INO6 G4

SWAP FIRST

OBTAIN CPU 1D

COMTAB

all
STORE CPU
IDENTIFICATION
FOR EMULATOR
USE

RETURN 8 +
REGISTER 14

RETURN 0 +
REGISTER 14

Program Organization 231

Flowchart 18B.

232

Start 1/0, End-of-Extent, Channel End,

End Appendage (IGG019SA Part 2 of 2)

SI10RTO0O

FROM OS (DASD
18A/

S10) AND E2

BI

B2

RESTORE
FLAG ON

SET_1QEDEXCP
BIT OFF

C2

COMPUTE ADDRESS
OF DEB EXTENT
TO BE USED

NO

i

USE_ADDRESS OF
FIRST DEB
EXTENT

SIQRTQ10 Y Ei

SAVE DEB EXTENT
IN COMTAB

SET_RESTORE
FLAG

MOVE 10B_SEEK
CCH TO DEB LOW
LIMIT CCH

DEB LOW AND
HIGH LIMIT
CCH EQUAL

LIMIT CCH

DOS Emulator

RETURN 0 +
REGISTER 14

Logic

1S DEB
SPLIT
CYLINDER FLAG
ON

RETURN 0 +
REGISTER 14

SIORTOIS

SET DEB HIGH
LIMIT gEAD TO
1

SET DEB HIGH
LIMITlgEAD TO

E; DEB HIGH

S
LIMIT HEAD TO
18

RETURN

+
1

0
REGISTER

4

RETURN 0 +
REGISTER 14

CHANNEL END

COMPUTE ADDRESS
WITH ERROR OF DEB EXTENT

0 BE USED

MOVE SHARED

RETURN 0
R EXTENT_FROM

+
REGISTER |

4

and Abnormal

AERT000

FROM 0OS (DASD
ABNORMAL END)

B5

END OF
CYL INDER

ESTABL [SH
ADDRESSABILITY

RESTORE
FLAG ON

J5

SHARED
VOLUME FLAG
ON

USE_ADDRESS OF
FIRST DE

COMTAB TO DEB,

DEB
EXTENT

Abnormal End/Channel End Appendage (Flowchart 19A)

Module name: IGG019S1

Entry point name: IGG019S1

Major functions:

o Flags device 'not ready' condition after rewind-unload has been
issued

. Prevents OS error recovery procedures from being loaded for
incorrect length conditions on tape and unit record devices

. Prevents 0S error recovery procedures from being entered for BTAM
'intervention required! condition

. Prevents OS error recovery procedures from being entered for unit
record 'unit exception' conditions

Entered from: OS input/output supervisor interruption handler

Modules called: None

Exits to: Caller

0S macros issued: None

Input:

. Pointer to DCB
. Pointer to DEB
. Pointer to UCB
. Pointer to IOR

Output:

. IOB exception condition bit
. ECB completion code in TOB

. UCB interception bit

. UCB 'not readv'! bit

. COMTARB entry 'not ready' bit

Return codes: None

Tables/work areas:

. IOB
° UCB
. COMTAB

Errors detected: None

Messages requested: None

Program Organization 233

Flowchart 19A.

1GGQ

ENTRY

FROM 0S

1/0 SUPERVISOR

RETURN

INTERVENT ION
REQUIRED

OTHER

STATUS THAN CE

DE, UE, [NCORREET
LENGTH

RETURN

Abnormal End/Channel End Appendage (IGG019S1)

LAST CCW
ADDRESS ZERO

LAST
CCW_OPFCODE
REWIND-
UNLOAD

YES

@

SETIBLIS E4

TURN ON_UCB AND
COMTAB *NOT
READY*' BITS

PERMERR

PERMANENT
ERROR ALREADY
SET

ECB CODE
X*'7E"

YES

SET ECB CODE SET ECB CODE
TO X'44° TO X*41°

SET ECB CODE
TO X*44°'

234 DOS Emulator logic

RETURN

Asvnchronous Interruptions

C

Program Organization 235

Asynchronous Interrupt Exit Routine (Flowcharts 20A-20G)

Module name: IIVRTE

Entry point names:

® & 0 0 0 0 O

ITVRTE

IIVRTER2
JIVRTETM
IIVRTEOJ
IIVRTEST
ITVRTESR
IIVRTESY

Major functions:

First routine to gain control following asynchronous interruptions

in local execution mode

Serves as central routine for all asynchronous interruption handlers

Serves as central return point for all Emulator routines

Determines if anv interruptions are pending for DOS and gives

control to the proper routine to process them

Checks for end-of-job conditions

Issues the STIMER macro, decrements the DOS timer, and simulates

timer interruptions

Issues the DOS compatibility instruction (see execute local

instruction in Appendix) to return to adjusted DOS storage area

Issues WAIT macro when DOS-requested input/output operations

are not completed

Issues STAE macro if a //SYSABEND DD statement is not present, schedules STAE
retry routine, reissues any STAE retrv routine, reissues any canceled WTORs

Entered from:

0S supervisor, OS abend processing routines
IIVINT
TIVPCE
ITVSTG
ITVLOG
TIVIN2
JTVSYIC
TIVRAS
IIVACI

Modules called:

L]
L]
L]

IIVPRP
ITVMSG
ITVCHK

Exits to:

236

Caller
NDOos

IIVABN
JTIVLOG
IIVCCwW
TIVOPN
TIVRCW

DOS Emulator Logic

0S macros issUed:

POST
STAE
WAIT
STIMER

Input: Except for rostasynchronous interruption entries, pointer to

ITIVCON
Output:

. Post ECB list entries for IIVPCE
. Updated DOS timer value
. Local execution list with contents required by 0S

Return codes: 16 = DOS entered a hard wait
Tables/work areas:

Local execution list (located in IIVCON)

COMTAB

ECBLIST (dynamic storage) - ECB list to scan
PENDSN (ITVCON) - interruption pending switch
BREGSAVE (IIVCON) - register save area

Post ECB List - index and condition codes of ®ECRs
BASEREGS (IIVCON) - Emulator bhase registers
DOSCORE - access DOS timer

found posted

Errors detected: Detects ABEND condition signified bv DOS hard wait

PSw

Messages requested: TIIV1501

Program Organization

237

Flowchart 20A. Asynchronous Interrupt and STAE Exit Routines
(IIVRTE Part 1 of T)

1y 11VB
ENTRY
FROM 0S SUPERVISOR, FROM 0S ABEND
11VIN2 (CHART 3F) PROCESS ING ROUTINES
I 1VSVCE (CHART 17A}
B4
11VR
DOS IPL
INITIALIZATION COMPLETE
ca
cs
TIME YES SET RETURN C
INTERRUPT ETURN CODE
PENDING
NO
1 I VRTECK 20E/A2
TURN ABEND
ASYNCHRONQUS BYPASS SWITCH RETURN
INTERRUPT CHECK FF
ROUTINE
ROUTE10 § E2
E4
1IVMSG 27A/Al
YES
DRI SWITCH ON ISSUES MESSAGE
1Tv1501
208 NO
E3
ROU E4
SET DRI SCHEDULE STAE
SWITCH ON RETRY ROUTINE
?pursnv G2 G4
1 IVRTESL 20C/Al
SET RETURN CODE
SELECT ROUTINE oF 4

RETURN

238 DOS Emulator Logic

Flowchart 20B.

1 1VRTER2

ENTRY FROM | IVPCE (CHART
8A), 11VLOG (CH
10E], IIVRTE (CHARTS
20A ;2 11VSTG
(CHART 11J}, INVRAS
(CHART 28B), 1IVACI
(CHART 33H), 20C/C4

Bl ROUTEZ22 B2

UTEQS C2

| IVRTECK 20E/A2
WTO OR WTOR
INTERRUPTS AS YNCHRONOUS
PEND ING INTERRUPT CHECK
ROUTINE

ROUTE10

DR1 SWITCH ON

ROUTELT ¥ F2

I IVRTESL 20C/A!

SELECT ROUTINE

FROM 20A/E2

DOS SYSTEM
D1SABLED

Route Routine (TIVRTE Part 2 of 7)

ROUTE 12

IS _DOS
TIMER ON

£S

UPDATE DOS
TIMER BY | BIT

ROUTE 1 1

EOJ SWITCH ON

G4

1 1VRTEOJ 20G/A2

REINITIALIZE

SET CODE FOR ISSUE _EXECUTE
ABEND ROUTINE END-OF -JOB LOCAL
ROUT INE
ROWIELLA H4
ISSUE MULTIPLE
WAIT AGAINST
EXIT ECBS POINTED TO EXIT
BY ECB POINTER
TABLE
TO LIVABN (CHART 26A) TO DOS

Program Organization

239

Flowchart 20C. Select and STA

I IVRTESL
ENTRY
FROM_| |VRTE
(CHARTS 20A
AND 20B

INITIALIZATION

ci

EXTERNAL
MASK ENABLED

E Retrv Routines

(ITIVRTE Part 3 of 7)

STAERTRY
A3 A4
GET ADDRESS OF I IVCHK 9A/A2
ENTRY
COMMUNICATIONS CHECK 1/0
REGION
FROM_0S ABEND
PROCESS ING
ROUTINES
B3 B4
CHECK 1
15
ANY 1/0°'S CHECK RETURN FROM ISSUE 0S STAE
PEND ING | 1VCHK TQ MACRO
CHECK1 OR
Dos
[o1:}
C3
DECREMENT WAS
NUMBER OF SWAP DOS_1/0 EMULATOR

POSTED ECBS TO
BE PROCESSED

DRILIST PSW

R3

D
TIMECHK 20D/A2
TIMER [INTERRUPT

CHECK ROUTINE

INCREMENT TO
NEXT ECB ENTRY
TO BE PROCESSED

|

SEL INTI £2
IIVPRP 21A/Al
PROMPT
INTERRUPT PROMPT REPLY
PEND ING PROCESSOR
ROUT INE

WTOR
INTERRUPT
PEND ING

OG AT
1 (CHART

TO 11VLOG AT
11VLOGR2 (CHART
10E)

YES

)

RETURN

240 DOS Emulator Logic

E3

1S THIS END YES

OF POST ECB

GET ADDRESS OF
POST ECB LIST

Q3

GET POST ECB
ENTRY

H3

UPDATE POINTER
TO POST ECB
LIST

J3

HAS TI0
PROCESSED 1/0

CLEAR ECB CODE
IN POST ECB
LIST

TO 1IVRTER2 (CHART 20B)
FOR RETURN TO DOS

PROMPT [SSUED

REISSUE PROMPT

ES

WAS
READ-TO-LOG
I SSUED

REISSUE WTOR
FOR READ-TO-LOG

G5

REGISTERS
RESTORED

I IVRTESR
LS
ENTRY RESTORE
REGISTERS
FROM_11VIN2
(CHART 3F)
NE3 N
ISSUE 0S STAE SET RETURN REGISTER
MACRO TO _CONTENTS OF

g ‘ RETURN ’

EXIT
[IVCCW AT RCCWAB4
15Cy, VRCW

(CHART
34C) ITOPN_AT
OPENS5 (CHART 5C)

Tlowchart 20D. Timer Interrupt Check and Timer Interrupt Subroutines
{(TIVRTE Part U4 of 7)

TIMECHK I IVRTETM

ENTRY ENTRY

J

FROM SELECT

FROM 0S
ROUT INE
(CHART 20C)

SET MER YES NEW DOS SET TIME
ENDINg EWITCH TIMER >0 ENDING SWITCH
2]

NN

v U Y

SET TIME FOR SET DRI
| SECOND RETURN SWITCH OFF
YES
D2
GET DOS TIMER SET TIME
VALUE IND I CATOR 0ST TIMER ECB
SWITCH OFF
E2
SET_PSW
NO INTERRUPT RETURN
DOS TIMER >0 1 CODE _FOR_TIMER
INTERRUPT
YES
E4
MOVE DOS
SET TIME CURRENT _PSW TO
INDICATOR DOS_EXTERNAL
SWITCH ON LD PSW
TIMECHKI ¥ G2 G4
MOVE DOS
SUBTRACT EXTERNAL _NEW
SECOND FROM DOS PSW_TO_DOS
TIMER VALUE CURRENT PSW
H2
RESTORE DOS
TIMER VALUE EXIT
TO TIVRTE AT
1TVRTER2
(CHART 20B)

Program Organization 241

Flowchart 20E. Asynchronous Interrupt Check Subroutine (IIVRTE Part S5 of 7)

ENTRY

FROM [IVRTE
(CHARTS 20A
AND 20B)

INITIALIZATION

ce

PROMPT ECB SET PROMPT CLEAR_PROMPT
POSTED PENDINgNSWITCH ECB

ASCHCKO4

ASCHCK10
D

WTOR_ECB
POSTED

SET WTOR SET DRI
PENDINgNSNlTCH CLEAR WTOR ECB SWITCH OFF

wTO
INTERRUPT
PEND ING

YES

SET DRI
SWITCH OFF

ASCHCKOT

H2
FROM NOS 10 YES
20F/E3 COUNTER >0

>
NO

ASCHCKO, 20F

RETURN

242 DNOS Emulator Logic

Tlowchart 20F.

ECBSCN

INITIA

SET OF

ECBSCNO1

ECB

LIZATION

FSET TO O,

POSTED

YES

E2

MOVE E!
BYTE
ECB

CB STATUS
TO POST
L1ST

2

MOVE Ol
POS

T ECB LIST

FFSET TO

CLE
STAT

AR ECB
Us BYTE

FROM 20E/H2

ECBSCNO4
D3

POINT TO NEXT
ENTRY IN
EMULATOR COMTAB

UPDATE OFFSET
BY 1

Asynchronous Interrupt Check Subroutine

UPDAT
ECB
POI

END O
ECB

SET POST_ECB
IST POINTER TO,
START

ECBSCN10

E POST
LIST
NTER

F POST
LIST

£4

ADD 1 T
PEND ING

0 NOSIO0
COUNTER

E4

SUBTRAC
NOS10

T 1 FROM
COUNTER

SET
SWITC

ET DRI
H O

FF

Program Organization

(IIVRT™E Part 6 of 7)

243

Flowchart 20G.

£l

End-of-Jok Routine (IIVRTE Part 7 of

L1VRTEOJ
ENTRY
FROM | IVRTE
{CHART 20B)
AND | IVPRP
(CHART 21A)
B2

ESTABL ISH
ADDRESSABILITY

LOAD_ADDRESS OF
Ft PIB

LOAD ADDRESS OF
BG PIB

244

E2

NO NO
YES
E2

LOAD ADDRESS OF
FOREGROUND |
Fl) PIB

G2
NO
ADDRESS 0

YES

H2

LOAD ADDRESS OF
FOREGROUND 1
(F1) PIB

LOAD ADDRESS OF
FOREGRQ?SD (F2)

DOS Emulator Logic

F2 P1B FLAG
= X'80"

Q3

LOAD ADDRESS OF
BG SYSRDR LUB
DRESS

E3
USE_SYSRDR_PUB
TO MAP_TO

SYSRDR DEVICE
COMTAB _ENTRY
VIA 0S PUB

NULL 0OS PuB
INDEX

NO

G3
LOAD ADDRESS OF
SYSRDR DEVICE

7

J3
CSW _STATUS YES
SHOW UNTT
EXCEPT 10N
No ! K3)
RETURN

T
¢
(

9]
CH.
ER

EXIT

11VABN
ART 26A)
ROR CODE=04}

Prompt Reply Processor Routine (Flowcharts 21A-21E)

Module name: TIIVPRP
Entry point name: TIVPRP

Major functions: Gets control when console operator replies to an
operator prompt message from the Fmulator

Entered by: TIIVRTE
Modules called:
TIVOPN

TIIVMSG

ITIVRAS
TIVRTEOJ

Exits to: Caller

0S macros issued:

L] SAVE

L] CLOSE

. LOAD

(] RETURN

Input:

. Pointer to DOS storage area

. Pointer to IIVCON

. Pointer to local execution list

o Reply to previous prompt WTOR

Output:

. Prompt for further operator communication
. Messages to operator dependent on prompt reply being processed
. Todated DOS CSW

. Updated DOS PSW in local execution list

U Updated external and I/O0 PSWs in DOSCORE

Return codes: None
Tables/work areas:

o JIVCON (constants and addresses)
. Local execution list (DOS current PSW)
L] DOSCORE:

External old PSW

External new PSUW

I/0 0ld PSW

I/0 new PSW

PUB

CSW

COMTAB

Errors detected:
. Replies are checked for a valid Emulator command (FEOJ,EXT,ATTN,

MAPIO, MOUNT, DEBUG)
. Invalid operands for MOUNT™ and MAPIO

Program Organization 245

Messages requested:

IIVIO1E
IIV102E
ITIVI103E
IIVI104LE
IIV105E
IIV106E
IIVIOTE
IIV108E
IIV109E

® 06 6 6 0 0 0 & 0

246 DOS Emulator logic

Flowchart 21A.

SET SCAN
SWITCH OFF

_PRPOI ¥ DI

SCAN REPLY FOR
BLANK, COMMA OR
stoFPER

£l

COMPUTE_REPLY
LENGTH

REPLY
CHARACTER A
STOPPER

FROM 11VRTE
(CHART 20C) e

B2

UPDATE REPLY
ADDRESS WITH
REPLY LENGTH

Prompt Reply Processor Routine

GET FIRST ENTRY
FROM REPLY
TABLE

c2

GET NEXT REPLY
TABLE ENTRY
ADDRESS

END OF
REPLY TABLE

SET_REPLY

1
REPLY TABLE

IN
REPLY TABLE

REPLY
LENGTH 3 OR 4

REPLY DEBUG

NO

H3

11VMSG 27A/A1

ISSUES MESSAGE
IIVIOIE

(TIVPRP Part 1 of 5)

LAST ENTRY
IN_REPLY
TABLE

SET END
SWITCH ON

25

1 1VRTEOJ 20G/A2

END-OF -J0B
ROUTINE

Co

I IVMSG 2T7A/ A1

ISSUES MESSAGE
11VI02E

MOVE EXTERNAL
INTERRUPT CODE
TO PsSw

ES

MOVE CURRENT
PSW TO DOS
EXTERNAL OLD
PSW

G5

MOVE ZEROES TO
DOS CSW_COMMAND
ADDRESS

MOVE DOS
EXTERNAL NEW

S 0S
CURRENT PSW

H4

POST DEVICE END
AND ATTENTION
TO DOS Csw

ML)

MOVE_DOS SYSLOG
CUU TO DOS Psw

K4

K&

MOVE DOS
CURRENT PSW TO
DOS 1/0 OLD PsSw

MOVE DOS 1/0
NEW PSW TO DOS
CURRENT PSW

Program Organization 247

Flowchart 21B. Prompt Reply Processor Routine (IIVPRP Part 2 of 5)

21B
v (=) (=)
FROM 21A/E3

Bl ERE4S B3 ERPSQ B4
PRPMAPA 21E/A2
TURN FIRST GET _DQS PuUB
SWITCH OFF ASSEMBLE WTO ADDRESS
MESSAGE

PRP46& c3

PRESL C4

MOVE_DQOS CUU TO
QUTPUT AREA

LAST ENTRY
IN_REPLY
TABLE

LAST ENTRY
IN_REPLY
TABLE

2 D4
PRPMAPA 21E/A2
GET NEXT_REPLY GET NEXT _REPLY
TABLE _ENTRY TABLE ENTRY ASSEMBLE WTO
ADDRESS ADDRESS MESSAGE
E4

REPLY GET NEXT_DOS
LENGTH 3 PUB_ENTRY
ADDRESS
NO
—ERPS2 Y F3
11VMSG 27A/A1
END OF DOS
REPLY ALL ISSUES MESSAGE PUB
I IVIO4E
NO YES
PRP4 Gl Q4
MOVE REPLY TO GET END OF
CUU WORK AREA OQUTPUT AREA
H1
—PRP42 _ H2 H4
MOVE ROUTE AND
CONVERT CUU TO DESCRIPTOR
VALID Cuu HEXADEC IMAL CODES TQ QUTPUT
AREA
L3
11VMSG 2TA/A!
MOVE INVALID MOVE NOT IN_PUB
INDICATOR TO INDICATOR_TO ISSUES MESSAGE
OUTPUT AREA QUTPUT AREA IIVIO3E

el @

PRPMAP| Z21E/A4
ASSEMBLE WTO
MESSAGE

2u8 DOS Emulator Logic

Flowchart 21C.

LAST ENTRY
IN_REPLY
TABLE

GET NEXT REPLY

a
>
>0
or
om
m
z
(L=
x
>

£l

MOVE REPLY TO
CUU WORK AREA

Prompt Reply

FROM 21A/F3

—ERPes EQ
1 IVMSG 2TA/Al

S

I SSUES MESSAGE
11VI04E

Ft

NO

YES

Gl

CONVERT CUU TO
HEXADEC IMAL

cuy

IN COMTAB

Processor Routine

LAST ENTRY
IN_REPLY
TABLE

GET NEXT REPLY
TABLE ENTRY
DRESS

LAST ENTRY

—CRECS P4
11VMSG _27A/ Al

IN_REPLY
TABLE

MOVE REPLY TO
VOLUME SERIAL
WORK AREA

DCB OPEN

GET DCB ADDRESS

ISSUES MESSAGE
11VI05E

N

~CRPETA _ Hi
1 1VMSG 2TA/Al

ISSUES MESSAGE f—
1IVI0TE

NE3

1 IVMSG 27A/Al

ISSUES MESSAGE
11VI06E

(ITVPRP Part 3 of 5)

B2

CLOSE DCB
031

I'1VOPN 5A/A2

OFEN ROUT INE

N/

Program Organization

249

Flowchart 21D.

250

1IVMSG 27A/Af

B4

ISSUES MESSAGE
I1v108E

| IVMSG 27A/A1

ISSUES MESSAGE
[IVIOTE

(o]

CLEAR _REPLY
AREA

D2

SET PROMPT
PENDING BIT OFF

PRES2 E2

GET RETURN
ADDRESS 1IN LINK
REGISTER

RETURN

DOS Emulator Logic

Prompt Reply Processor Routine (IIVPRP Part 4 of %)

BS

SNAP DD
CARD PRESENT

ISSUE LOAD
FOR 11VRAS

| IVRAS 28A/A1
TRACE AND SNAP
ROUT INE

ROM 21A/G3

Flowchart 21E. PRPMAPA and PRPMAP1 Subroutines (IIVPRP Part 5 of 5)

PRE)
ENTRY
FROM | 1VPRP FROM_| 1VPRP
(CHART 21B) (CHART 21B)
B2
GET COMTAB
ADDRESS AND SET_FIRST
NUMBER OF SWITCH ON
TRIES
PRPMAPB | C2
c3 PRPMAP3 PRPMAP2 Y G5
DOS _cuu MOVE NOT IN_OS GET MESSAGE SET UP NEW
COMTAB PUB INDICATOR | LINE_ADDRESS AT MESSAGE LINE
TO QUTPUT AREA LAST MESSAGE
PRPMAPC
D3 PRPMAP4 ¥ D4
MOVE SYSLOG GET MESSAGE
INDICATOR 70 [~ LINE_ADDRESS OF
OUTPUT AREA NEXT MESSAGE
E4
E3 ES
11VMSG 2TA/A1
MOVE STAGE MESSAGE YES
DEVICE STAGED INDICATOR 70 [~ LINE FULL | 1ssues messace |—
OUTPUT AREA 1Tv1091

NO NO
PREMAPD ¥ F2 PREMAPS Y F4
MOVE_0S_CUU_TO MOVE OUTPUT
OUTPUT AREA AREA [0 MESSAGE

@
RETURN

Program Organization 251

Direct~Access Volume Sharing

252 DOS Emulator Logic

SVC Monitor Routine (Flowcharts 22A-22D)

Module name: TIIVGR2

Entry point name: TIIVGR2

Major functions:

. Monitors sve¢ 1, 2, &, and 11 calls from DOS

L Tnhibits DOS execution of library maintenance programs when DOS system
residence volume is a shared volume

] Recognizes volume-shared files or OS indexed sequential shared data sets

o Calls TIVDVS or IIVIS to perform the needed functions

Entered by: TIVSVC

Modules called:

° IIVIS
] IIVMSG
. IIVDVS

Fxits to: cCaller
0S macros issued: RETURN
Input:

) Register 9 must contain a pointer to the local execution list.
. Register 10 must contain a pointer to DOS storage,
U Register 11 must contain a pointer to IIVCON.

Output: None
Return codes: Contained in register 15
Tables/work areas:

Local execution list
JIVCON

DLBL

DTF

FID

COMTAB

COMTAB extension

Errors detected:

Invalid logical unit

Unit unassigned or assigned in error
Invalid physical unit

No DD card or invalid DLBL

Messages requested:

IIV208T
IIV250T
IIV251T
TIV252T
IIV253T
IIV254T
IIV2551

Program Organization

253

DOS SVC Tables. Figure 25 shows the DOS SVC tables. Whenever DOS issues an
SVC 2, the Emulator traps the SVC and determines which routine in IIVGR2 gains
control from SVC2TAB or SVC2PP. The factors that affect which routine in
IIVGR2 gains control are the caller that issues the SVC 2 and the B-transient
phase called.

The SVC11TAB lists the B-transients that issue an SVC 11. The Emulator traps
this SVC to determine which phase issued the SVC so control can be passed to
routine GR2CLS in ITIVGR2.

The SVCU4TAB shows which B~transient phase issues an SVC 4 and the phase it
calls. The Emulator traps this SVC 4 and gives control to GR2EOJ in IIVGR2.

SVC2TAB (when SVC 2 is issued)

CALLER CALLED ROUTINE IN TIIVGR2 CHART
$$BOSDO0 1 $$BOSDO1 TSTOPN 22B/B2
$$BOSDO7 GR2EOX 22¢/B1
$$BOSDIN TSTOPN 22B/B2
$$BOSDW1 GR20PN 22B/B1
$$BOSDW3 GR2EOX 22¢C/B1
$$BOSDOU $$BOSDO6 GR2EOX 22C/B1
$$BOSDO6 $$BCLOSE GR2CLS 22C/B2
$$BOSDO09 $$BOSDO6 GR2EOX 22C/B1
$$BOSDIN $$BOSDI3 GR2EOX 22C/B1
$$BOSDI3 $$BCLOSE GR2CLS 22C/B2
$$BOSDIU $$BOSDI3 GR2EOX 22¢c/B1
$$BOSDW2 $$BOSDW1 GR2EOX 22c/B1
$$BOPEN2 $$BODAIN GR20PN 22B/B1
$$BOISO1 GR20PN 22B8/B1
$$BORTV1 GR20OPN 22B/B1
$$BODAIN $$BODAO1 GR2EOX 22C/B1
$$BODATI1 GR2EOX 22c/B1
$$BODAIN $$BODAU1 GR2EOX 22C/B1
$$BOFLPT $$BOSDW1 GR2EOX 22¢/B1
3BODAU1 GR2EOX 22c/B1
$$BOPEN $$BOPEND RMSRESET 22D/B4
$$BCLOSE $$BODACL GR2CLS 22C/B2
$$BOSDC1 GR2CLS 22C/B2
$$BCISOA GR2CLS 22C/B2
$$BOPEND GR2CLS 22C/B2
$$BOSDC1 $$BOSDO1 GR2EOX 22C/B1
$$BOSDW3 GR2EOX 22¢C/B1
3BCLOSE GR2CLS 22C/B2
$$BOSDO6 GR2EOX 22¢/B1
$$BOSDI3 GR2EOX 22C/B1

Figure 25 (Part 1 of 2). DOS SVC Tables

254 DOS Emulator Logic

SVC2TAB (when SVC 2 is issued) (continued)
CALLER CALLED ROUTINE IN IIVGR2 CHART
$$BOSDC2 $$BCLOSE GR2CLS 22C/B2
$ $BOMSG2 $$BODSPV GR2DPV 22D/B5S
| $ $BOVDMP GR2DPV 22D/B5
$$BODSPV GR2DPV 22D/BS
$$BOSDMW $$BOVDMP GR2DPV 22D/B5
SVC2PP (when SVC 2 issued for SETFL, ENDFL, or SETL)
CALLER CALLED ROUTINE IN ITVGR2 CHART
I Problem $$BSETFL ISSETFL 22D/B1
program $$BENDFL ISENDFL 22D/B2
$$BSETL ISSETL 22D/B3
SVC11TAB (when SVC 11 is issued)
CALLER ROUTINE IN IIVGR2 CHART
$$BOSDC1 GR2CLS 22C/B2
$$BOSDC2 GR2CLS 22C/B2
$$BOSDI3 GR2CLS 22C/B2
$$BOSDO06 GR2CLS 22C/B2
SVCUTAB (When SVC 4 is issued) B
CALLER CALLED ROUTINE IN ITIVGR2 CHART
3BEOJ $JOBCTLA GR2EOJ 22C/B3

Figure 25 (Part 2 of 2).

DOS SVC Tables

Program Organization 255

Flowchart 22A.

ENTRY
FROM_LIVSvVC
(CHART 1(7A)
81 R200010 B2
GET DOS PHASE
NAME AND LOCK
—]

STANDARD
LINKAGE FROM
11vsvc

PHASE NAME
TABLE ADDRESS

NO

256

DOSRES SHARED

GR200012 cz

DOS PHASE =
TABLE PHASE

END OF TABLE

R200014

GET_NEXT TABLE
ENTRY ADDRESS

SVC Monitor Routine (IIVGR2 Part 1 of 4)

Mok SEe svczPP
(FIGURE 25)

GR200050

| SSUED BY A
B-TRANSIENT

22
22A] 22C
BS,

R299999 ¥ BS

CLEAR RESTORE
CODE
FROM
22D/F2,
22C/E4,
R200059 C4 220104 CS

RESET SWITCH
*OK _FOR_ACCESS
ON vTOC'

STANDARD
LINKAGE BACK TO
11vsve

D4

E4
MOVE NXTBTR

OLDBTR;MOVE NEW
PHASE INTO
NXTBTR

NO ‘:E'

RETURN

F5

GR200016 F5

1S IT $LNKEDT

NO

Qo

SVC2TAB%

400000 H2

GET NAME OF
PHASE FROM DOS
REGISTER 1

LOCATE CALLER
AND CALLED-IN
TABLE

SET # IN LAST
CHARACTER OF
DOS PHASE NAME

GR11 H3
MOVE NXTBTR
INTO OLDBTR}

MOVE_PRPGM IN
NXTBTR

N4

23

SVC4TAB *

SVC11TAB¥

LOCATE CALLER
AND CALLED-IN
TABLE

LOCATE CALLER *
AND CALLED-IN SEE_SVC2TAB,
TABLE SVC4TABé OR

DOS Emulator Logic

SVCIITA
(FIGURE 25)

HS

11VMSG 2TA/Al

ISSUES MESSAGE
I1vaosl

YES

Flowchart 22B.

FROM 22A/G4

TSTOPN

TAKE DTF
ADDRESS FROM
DOS REGISTER 2

IS DTF OPENED

Cl

TAKE DLBL
ADDRESS FROM
DOS OPEN TABLE

NO |S_LOGICAL

UNIT IN DLBL

MOVE_LOGICAL
UNIT IN DTF

SVC Monitor Routine

o]

FROM 22D/B5

0200 D3

SAVE_LTK AND
POINT TO NICL

VALID
LOGICAL UNIT

YES

E3

POINT _TO
CURRENT LUB

G3

LuB
UNASS IGNED

POINT_TO
CURRENT PUB

(IIVGR2 Part 2 of 4)

COMTAB
ENTRY FOUND

OPNO0O0800

DEDICATED
VOLUME

E4
INITIAL | ZE ANALYZE CTEXT
MESSAGE [1V2501 CHAIN_FROM
COMTAB
E4
INITIALIZE FOUND
MESSAGE 11V2531 MATCHING DSN
G4
INITIAL [ZE FILE FORMAT
MESSAGE 11V2541 COMPATIBLE
0
SET DTF, LTK,
AND_ctexT
POINTERS IN
PARAMETER LIST
OPEN FOR [SAM
K4
11VDVS 23A/Al LIVIS 24A/Al

PROCESS OPEN PROCESS OPEN
FUNCTION FUNCT ION

| 1 | 1

22C 22C
B4, B4,
Program Organization 257

Flowchart 22C. SVC Monitor Routine (IIVGR2 Part 3 of 4)

FROM 22A/F4,

22A/G4,

22B/B2
GR2EOX 81

SET CODE IN
PARAMETER L1ST
FOR END_OF
XTENT

FROM FROM 22B/K4,
22A/G4 22B/K5

GR290000 B4

POINT TO FID
CHAIN FOR
VOLUME SHARING

YES FROM
22D /D5
c3

C4
290201 Co
1 1VMSG 27A/A1
YES
ISSUES MESSAGE
TO OPERATOR
NO
D4 R220202 DS

LIZE FOR
G MESSAGE

ZERO RETURN
CODE

z>

SET CODE IN
PARAMETER LIST
FOR CLOSE

O

500000 Cl

DOS KEY OUT OF
COMREG; DTF OUT
OF DOS gEGISTER

MORE FIDS

CLS0005Q DI
TAKE FID CHAIN MOVE NXTBTR_IN CHANGE SVYC_IN
FOR NON-I1SAM OR r— PLACE OF BTR LOCAL EXECUTION
I SAM NAME LIST TO SvCeé

E2

SET CODE, DTF,
AND FID IN
PARAMETER LI1ST
FOR CLOSE

{) NO
2 £E3
| IVDVS 23A/A1

TAKE NEXT FID

OR_11VIS 24A/AI IN CHAIN

PERFORM CLOSE
FUNCTION

— @

MOVE PRPGM INTO
NXTBTR [

SAME LTK

<&

OTHER F 1D
IN CHAIN

ClS00200 G4

SET DTF_ADD AND
FID _ADD IN
PARAMETER LIST

H4
No
22A
BS,

DIRECT-ACCESS/
SEQUENTIAL DASD
SHARED VOLUMES

SUPPORTED

J3 J4
11VDVS 23A/Al 1IVIS 24A/A1
SET CODE FOR
OPEN_IN PERFORM _END _OF PERFORM CLOSE
PARAMETER LIST EXTENT, CLOSE, OR FUNCT I GN
MESSAGE FUNCTlON

On

258 DOS Emulator Logic

Flowchart 22D.

FROM 22A/G4

SCANFID 22D/E4

FROM 22A/G4

ISENDFL ¥ B2

FROM 22A/G4

1SSETL B3 R

SCANFID 22D/E4

SCANFID 22D/E4

BYPASS OPEND

SVC Monitor Routine (IIVGR2 Part 4 of #)

FROM 22A/G4 FROM 22A/G4

SET _INDICATOR

IF DISPLAY

FOR
IDENTIFY DTF IN IDENTIFY DTF IN IDENTIFY OTF IN REQUIRED VTOC;POINT TO
ISAM F1D CHAIN ISAM FID CHAIN ISAM FID CHAIN OPEN CCB
ci c2 c3
NO NO NO
22A
BS5,
YES YES YES FROM 22B/D5
GR2DPV1! Y D5
DI D2 D3
SET_CODE FOR SET CODE FOR SET_CODE FOR 1S _$$BODSPV
SETFL_IN ENDFL _IN SETL_IN CALLED
PARAMETER LIST PARAMETER LIST PARAMETER LIST
ISSMULAT Y E2 sC
11VIS 24A/A1L
ENTRY IF_8BODSMW
PERFORM_SETFL, CALLING, SET RETURN
ENDFL, OR SETL TO_ $$BOSMW;
FUNCT 10N OTHERWISE SET
FROM RETURN TO $$BOSMGI
220/B1,
22D/B2,
22D/B3
E2 E4 ES
INDICATE BYPASS
OF sv GET_LTK OF SET INDICATOR
INTERRUPT PARTITION FROM TO *OK FOR
SIMULATION PSW ACCESS ON VvTOC*
G4 G5
POINT TO 1SAM MOVE NXTBTR IN
FID CHAIL PLACE OF
B-TRANSENT NAME
INITIAL1ZE MESSAG
T1V2551
H4

RETURN NO

MOR

23

SET_RETURN FOR
F 1D FOUND

E FID'S

POIN
FID

T TO NEXT
IN CHAIN

Program Organization 2

59

Device Sharing Simulation Routines (Flowcharts 23A-~23H)

Module name: TIIVDVS

Entry point name: IIVDVS

Major functions:

Moves the actual limits of the current extent allocated by 0S into
the DLBL/EXTENT card image

Creates (in the obtain routine) VOL1 (volume 1) identifier (format
1), and extension (format 3) DSCB images to be used by module IIVVIO
Controls the flow of DOS B-transient phases to be executed for open,
end-of-extent, and close operations

Entered from: TIVGR2

Modules called:

IIVGET
TIIVMSG

Exits to: TIIVGR2

0OS macros issued:

o OPEN

(] EFOV

L] CLOSE

. OBTAIN

L] DCBD

Input:

o DTF address, LTK, COMTAB extension pointer (at open time) or FID
pointer (at end of extent or close), and PARMCODE in the PARMLST
field of EMUCONS.

. COMTAB extension with dsname, ddname, and DCB pointer (at end of
extent or close).

o FID with forward and backward pointers, COMTAB extension pointer,
DTF name, and DOS LTK (at end of extent or close).

. OLDBTR and NXTBTR fields in EMUCONS.

o Register 10 points to DOS storage.

o Register 11 points to EMUCONS.

[Register 14 contains the return address.

° Register 15 points to module IIVDVS.

Output:

° Register 15 contains return code.

o NXTBTR field in EMUCONS contains next B-transient phase to be executed.

. FID created (at open time) or suppressed (at close).

L)

COMTAB extension updated with DCB pointer and use count (at open and close).

Return codes:

260

0 = gives control to next B-transient phase pointed to by the
NXTBTR field in EMUCONS.
0 = cancels DOS partition.

DOS Emulator Logic

Tables/work areas:

COMTAB extension

FID

DTF

DLBL

Open table

DOS communication region
EMUCONS

Errors detected:

Open failure for a data set

DCB and DTF device tvpes incompatible

Insufficient extent space in DOS DLBL/EXTENT image for DTF
User labels specified in DTF but not in DSCB

Cannot get more extents for file

Cannot obtain identifier (format 1) DSCB for a data set
Point outside extents cf a data set

Messages requestad:

IIV2561
IIV2571
ITV258T
ITV2591
JIV260T
TIIV2611
IIV2621

Program Organization 261

Flowchart 23A. Device Sharing Simulation Routine (IIVDVS Part 1 of 8)

ENTRY

FROM_[1VGR2
(CHARTS
22B AND 22C)

Bl QPENQA B3
PLACE COMTAB
SET STANDARD EXTENS [ON SET_DCB_FDAD ON
LINKAGE WITH ADDRESS_IN LAST_TRACK ON
MODULE I [VGR2 REGISTER LAST EXTENT
Cl c2 o) cs
| IVGET TA/A3
SET ADDRESS OF BUILD A DUMMY ZERO_TRACK
OBTAIN AREA IN VOLI LABEL IN ISSUE GETMAIN BALANCE IN DCB
EMUCONS OBTATN AREA FOR A FID
Dl D2 D3 op DS
PLACE
DLBL /EXTENT SET_SWITCH 'OK ATTACH FID TO DCB_ALREADY CHECK_0S AND
ADDRESS _IN FOR ™ ACCESS ON EXISTING CHAIN OPEN DOS_DEV [CE
REGISTER vToc? TYPES
NO
£l E3 —QPENQ ¥ E£¢
11VGET TA/A3
PLACE DTF MOVE DTF FILE
ADDRESS_IN NAME AND DOS ISSUE GETMAIN
REGISTER LTK INTO FID FOR A DCB
E3 F4
MOVE COMTAB STORE_DCB
EXTENS [ON ADDRESS_IN
POINTER_INTO MTAB
Fip EXTENS ION
G3 238
G4 BI
PLACE FID DOS_SYSTEM NO INITIALIZE DCB
ADDRESS_IN FILE FROM DADCB IN
REGISTER EMUCONS
YES
Hi H3 H4
PLACE_COMTAB
ENS | ON SET_FLAG
ADDRESS_IN *SYSTEM FILE" OPEN DCB
REGISTER IN FID
J4
Nk} J5
|'S PARMCODE INCREMENT USE NO INITIALIZE
EOX COUNT_IN_COMTAB | MESSAGE TiV2561
EXTENS ION

() o (&

262 DOS Emulator Logic

Flowchart 23B.

238
FROM 23A/ES,
23A/F5

Bl

GET_DEB ADDRESS
FROM DCB

ﬂ}EEN@ C2

NO TURN_OFF *LAST
DOS DTFDA EXTENT" IN
DLBL/EXTENT
YES
Rl D2

SET DOS
MOVE LOGICAL REGISTER_& TO
UNIT OF FIRST POINT TO
DLBL/EXTENT

EXTENT IN DTFDA

E2 E3

E4

Device Sharing Simulation Routine (IIVDVS Part 2 of 8)

ES

RESET *NEW_VOL*
BIT IN DTF

PUT _VOLUME
SEQUENCE AND

EXTENT SEQUENCE —'@
IN DTF

PENS

SET VOLUME

MOVE $$BOSDW2
XTBTR SEQUENCE_NUMBER
IN DTF

IN N

G2

G4

TURN ON
*DELETFL=NO, '
SYS_IN DTF,
*EXTENT OPEN®

DOS DTFPH

SET SYSLNK OQOPEN
BIT_IN OPEN
TABLE

RESET OPEN BIT
IN DTF

NO
H2 H3
RESET COBOL RESET L10OCS
IGNORE SWITCHES IN DTF

OPEN4B J3

ald

ONLY ¢ YES
EXTENT IN DEB

TURN _ON ‘*LAST
EXTENT® 1IN
DLBL/EXTENT

POINT TO FIRST
EXTENT IN DEB

Program Organization

N

263

Flowchart 23C.

ROM

EOX
Bl

NDevice Sharing Simulation Routine (IIVDVS Part 3 of 8)

23A/J1

SET DCBREG AND
DEBREG

264

N

FUNCTION IS
'OBTAIN ONLY'

&

1S _$$BOSDW3 1S _$$BOSDW!
CALLED CALLED

(011

AFTER A DOS

TURN ON
'DELETFL=NO' IN
DTF

DOS Emulator Logic

POINT MACRO
EOX20A D5
D4
PICK YES
CORRESFOND ING
EXTENT IN DEB
NO
ES
MOVE $$BOSDW2
FROM $$B0SD04 IN NXTBTR
—E0X08 Y F2 E3
MOVE USER LABEL RESET L10CS INITIAL 1 ZE
TRACK_ADDRESS SWITCHES IN DTF MESSAGE 11V2621
IN DTFSD
G2
MOVE DATA TRACK
ADDRESS IN
DTFSD
H4
ADD 1_TO NUMBER OF
USER_LABEL RELAT I VE RELAT IVE TRACKS:
SPECIFIED IN TRACK ADDRESS SUBTRACK | FROM
DTFDA SPECIFIED BEGINNING ADDRESS
IN FIRST EXTENT
EOXI1A ¥ U3 4
MOVE $$BODAUI MOVE_'DAUIL' IN
IN NXTBTR DOS REGISTER 0
EQX2 K3 KS
MOVE $$BOPEN IN MOVE_ZERQ IN MOVE $$BOFLPT
NXTBTR DOS REGISTER 0 IN NXTBTR

Flowchart 23D.

ROM 23C/B5

EOV FORCED

FROM

N

EOX30C

B2

23C/F3,
23C/E3

STORE DLBL
ADDRESS _IN DOS
REGISTER 6

c2

TAKE EXTENT
SEQUENCE NUMBER
FROM DTF

FROM
23C/E

X322 D2

23c/c4,
5

ADD 1 TO EXTENT
SEQUENCE NUMBER

Device Sharing Simulation

IS EXTENT
IN DEB

CAN EOV BE
[SSUED

Routine (IIVDVS Part 4 of 8)

LAST EXTENT

ol
TURN_ON *LAST
EXTENT® IN DLBL

D4

SET DEBREG ON
CURRENT EXTENT

E2
STORE EXTENT
SEQUENCE _NUMBER EQV FOR
IN DTFSD SECONDARY
(OUTPUT) ALLOCATION

EQX33A E3

UPDATI

E NEW
TRKBAL AND FDAD
IN DCB

G3

DID EQV
G1VE MORE
EXTENTS

NO

EOX34

&

Program Organization

265

Flowchart 23E. Device Sharing Simulation Routine (IIVDVS Part S of 8)

23A/J1

CLOSEO
B3
CALLED BY YES DECREMENT USE
$$BEOJ COUNT _IN COMTAB
EXTENS ION

CLOSE1
C4

CALLED BY
$8BCLOSE

GET DCB ADDRESS
FROM _COMTAB
EXTENS ION

ZERO USE
COUNT

NO

23E
E4,

SVC11 ISSUED 0S CLOSE

FROM 23A/J5

CLOSEILA E4

I IVGET 7A/A3

FREE SPACE OF
bes

FROM $8B0OSDOé&

Y

FROM $$BOSD13

266 DOS Emulator Logic

Flowchart 23F.

SET SWITCH *'OK
FOR ACCESS ON
vTOoC*

WAS OPEN OR
EOV ISSUED

B2

MOVE F! ADDRESS
IN VOL1 IMAGE

[oFd

MOVE F ! COUNT
FIELD 1
1 1VOBE 1

OBTNO4 D2

MORE DSCB'S

YES
_QBTNOO ¥ | E2
BUILD A voOL1 OBTAIN NEXT
IMAGE IN DsSCB
11 VOBE(
F2
El
INITIALIZE F1
IMAGE IN F3 DsSCB
I1VOBE1
OBTNOS
NO USER LABEL
OBTAIN F1 ROUTINE IN
DTF
Hi1

RETURN CODE 0

all

I 1VMSG 2TA/AI

ISSUES MESSAGE
rivaelti

D3

MOVE DISK
ADDRESS_OF VTOC
IN DTFSD

Y

G3

OBTAINO

Device Sharing Simulation Routine (IIVDVS Part 6 of 8)

25

1 IVMSG 27A/A|

PREVY10OUS
ERROR

ISSUES MESSAGE
1tv2e!ll OR
11v2591

OBTAIN!

DOS DIRECT
ACCESS

OBTAIN2

DOS WORK FILE

DTFPH
MOUNTED = ALL

SEQUENT 1AL
D1SK INPUT

MOVE USER LABEL
TRACK ADDRESS
IN DTFDA

QETAINS _ES

MOVE LOGICAL
UNIT AND BIN
NUMBER IN DTF
AND OPEN TABLE

YES

G4

QS

ANALYZE EXTENT
TYPE IN F1

MOVE LOGICAL
UNIT_IN OPEN
TABLE

MOVE FIDsSCB

ANY USER
LABEL EXTENT
FOUND

s,

MOVE BIN NUMBER
IN OPEN TABLE
AND DTF

NFd wld
1 IVMSG 2TA/A1 MOVE F1DSCB
SET USER LABEL D1SK ADDRESS IN
1SSUES MESSAGE TRACK ADDRESS OPEN_TABLE SEEK
11v2591 IN 1T1VOBE! BUCKET

@

L4

1JSYS' NAME

KS

MOVE FIDSCB
DISK ADDRESS_IN
OPEN TABLE VTOC

LIMITS

RESET SPECIAL
OPEN BIT

&

Program Organization

23G
B3,

267

Flowchart 23G.

N

Device Sharing Simulation Routine

FROM 23F /K5 FROM 23F /K5
B4
Bl
MOVE LOGICAL
MOVE LOGICAL UN D BIN NO
UNIT_IN OPEN NUMBER IN DTF
E AND OPEN TABLE
YES
cl c2 C4

MOVE BIN NUMBER
IN OPEN TABLE
AND DTF

MOVE F1DSCB
DISK ADDRESS IN
OPEN TABLE SEEK
BUCKET AND VTOC

LIMITS

TURN OFF LAST
EXTENT BIT

PUT USER LABEL
ADDRESS IN DTF

Dl

MOVE FIDSCB
DISK ADDRESS IN
OPEN_TABLE SEEK

BUCKET

El

MOVE FIDSCB
DISK ADDRESS_IN
OPEN TABLE vTOC

LIMITS

El

SPECIAL OPEN

MOYE FILE ID IN
OPEN TABLE

RESET SPECIAL
OPEN BIT

Gl

$8B0SD12
NXTBTR

OBTAIN4A G2

SYSLNK OPEN

OBTAIN4B G3

TAIN4C

G4

MOVE $$B0OSDO4
IN NXTBTR

MOVE DEVICE_TYPE
CONTROL FACTOR IN
DOS REGISTER 0
$$B0S09 TO NXTBIR

J3
MOVE $$BOSD0O5 YES
IN NXTBTR
NO
K2 K3
MOVE SEEK PUT VOLUME
BUCKET TO DTF SEQU?“CETyUMBER

DOS Emulator Logic

(ITIVDVS Part 7 of 8)

Flowchart 23H.

WTNMooOmMoOo
OdRrW—-OIW

SPLIT
CYLINDER IN
DEB

Cl

INDICATE SPLIT
CYLINDER TYPE

—LRLELO ¥ DI

RESEB VARI0OUS
INDICATORS %

ADD | TO EXTENT
SEQUENCE NUMBER

El
NO SET VOLSER_AND
DIRECT-ACCESS FILE-SER FROM
FILE VOL | IMAGE
YES
£l £2
SET DUMMY
ET LENGTH OF CREAT[ON AND COMPUTE ADDRESS
LABEL AREA FROM EXPIRATION OF NEXT EXTENT
DOS COMREG DATES DLBL
G!
—RLBL2 T G2
YES SET LOGICAL SPACE_FOR
IS LENGTH 0 UNIT FROM DTF NEW EXTENT
NO
Hl H2

COMPUTE MAX IMUM
DLBL LENGTH

SET EXTENT TYPE
AND SEQUENCE
NUMBER

I [VMSG 27A/Al
ISSUES MESSAGE
11vas81

DIRECT-ACCESS
BYTE

ol a2
TURN ON_EXTENT
CONVERTED 1IN SET EXTENT

LOWER AND UPPER
LIMITS FROM DEB

DIRECT-ACCESS
FILE

UPDATE NEXT AND
PREVIOUS FID
BLOCKS [N CHAIN

C4
[1VGET TA/A3

FREE SPACE OF
CURRENT FID

Device Sharing Simulation Routine (ITVDVS Part 8 of 8)

23H
C5,

NNNNTOR NN T
WWWWWWWWWWWWD
oOTMTMMoOO000Om>»Q0
SN ———S————~=ZX
CODWMMIODTNOOO0
S—OANWOBWWON

2
o

SET RETURN CODE

* NEXT EXTENT ON NEW PACK

BYPASS

NEW VOLUME

NO EXTENT CARD
EXTENTS OMITTED

Program Organization

RS
RESTORE
REGISTERS
STANDARD
L INKAGE
RETURN

ISAM Mapping Routine (Flowcharts 24A-241)

Module name: TIVIS
Entry point names:

. IIVIsS
° TIVISO1

Major function: To map regquested DOS ISAM I/0O macro instructions to
enable accessing 0S indexed sequential data sets.

Entered from:

. TIVGR2
. By sSpecifving entry point in ATTACH macro instruction in IIVIS
open mapping routine

Modules called: TIIVGET
Exits to:

® Caller
. By issuing DETACH macro instruction in IIVIS close mapping routine

0S macros issued:

OPEN
OPEN TYPE=J
CLOSE
SETL
RDJFCB
ATTACH
DETACH
IDENTIFY
CHAP
ESETL
GET

PUT

PUTX
READ X7
WRITE
CHECK
SAVE
RETURN
VAIT
DCBD
POST

DCB
WRITE K
WRITE KN

Tnput:

Pointer to DOS low storage (DOSCORE)

Pointer to EMUCONS (DSECT for IIVCON)

Parameter list in EMUCONS (ISAMCODE, ISAMDTFA, TISAMFDCX)

Pointer to local execution list

Return acddress

Register 1 roints to ISBLK (obtained by IIVIS open mapping routine)
which contains base registers in register save area section.

. When removed from wait state by POST macro instruction issued by
SIO routine (module IIVPCE), ISBLK control information contains
I/0 macro code, address of DTFIS table, and address of COMTAB
entry

270 DOS Emulator Logic

Output:

ISBLK and OPEN DCB

Error code

Logical records to DOS problem program from OS indexed sequential data set
Logical records to OS indexed sequential data set from DOS problem program

Return codes:
. 0 in register 15 - switch SVC PSWs
Tables/work areas:

COMTAB extension
FIDBLK

EMUCOMS

TISBLK

DOS DTFIS

DCB

Errors detected: OPEN macro instruction failure

Messages requested: None

Program Organization 271

Flowchart 28A. Main Task Control Executive Routine (IIVIS Part 1 of 11)

1ivis
ENTRY

FROM 11VGR2 (CHARTS
22B, 22C, 22D)

Bl

SAVE CALLER'S
REGISTERS

(o]

LOAD FIDBLK
DTFIS TABLE
ADDRESSES

LOAD 1SBLK
ADDRESS

RETURN

272 DOS Emulator Logic

Flowchart 24B.

24B
Bl

FROM 24A/D!

OPENRTN 81
SET $$BOPEN AS

B'TRANSIENT TO
BE CALLED

C1

c2

OPEN FOR

DATA SET OPEN SAME DTF

FROM
24B | 24C/K3
DI

QPEN00Q ! DI

I IVGET TA/A3
GET AREA FOR
I SBLK

Bl

INITIAL I ZE
FIRST _DCB IN

OPENQ02

SECOND DCB
REQUIRED

PENQO3

INITIALIZE
SEC CB IN
ISELK

PENQQOS Hi
INITIALIZE
FIDELK AND

EXTENSTON; ADD
1SBLK TO CHAIN

Open Mapping Routine

B3

(ITVIS Part 2 of 11)

LOADOO A4

DLBL OPEN
CODE CREATE

ISSUE RDJFCB
MACRO

DTFIS_FOR
LOAD

ISSUE OPEN
MACRO FOR
B(S)

OPEN ERROR

ADD ING
RECORDS
SUPPORTED

MAP JFCB DCB
INFORMATION TO
DCB

[oF:

MAP DTFIS
INFORMATION TO
DCB

OPEN DCB

OPEN ERROR

SET_TRAP CODE

IN_ DTFIS AND
SET_1SMOD
POINTER TO CODE

MAP DATA SET
INFORMATION
FR E 8 TO

23

G3 G4
11VGET TA/A3 MAP _DATA_ SET
INFORMAT 10N
GET_WORK _AREA FROM_DCB TO
FOR ADD
ERIFLIS ¥ H3

o4

SET_TRAP CODE
IN DTF1S AND

ISSUE CHAP AN
IDENTIFY MACROS

SET_1SMOD
POINTER TO MODE INDICATOR
OPENATCH K3
OPENATO] K4

YES

ATTACH A

SUBTASK FOR
DATA SET 1/0

HANDL ING

%

THE SUBTASK IS
ACTIVATED (CHART
24E) AND EXECUTES
PARALLEL WITH THE
EMULATOR TASK

IN

Program Organization

273

Flowchart 24C. Close Mapping Routine (IIVIS Part 3 of

%

FROM 24B/C2,
24A/F |

B3

TERMINATE
SUBTASK

WORK AREA
FOR_ADD
PRESENT

YES

D3

1IVGET TA/A3

RELEASE WORK
AREA

CL,

CLOSE DCB(S)

F3

DTF PRESENT

$$BCLOSE TO
NEXT BTRAN

H3
REMOVE ISBLK
FROM 1SBLK

CHAIN;
DECREMENT ' CTEXT
USE COUNT

Nic]

| IVGET TA/A3

RELEASE 1SBLK
AREA

ENTERED
FROM OPEN

274 DOS Emulator Logic

Flowchart 24D. SETL Mapping Routine (IIVIS Part 4 of 11)

FROM 24A/G1

SETLRTN

QISAM SCAN
SUPPORTED

D1

UPDATE LAST
PRIME RECORD
ADDRESS

El
0S_SETL NO
OUTSTANDING
YES

ISSUE 0S ESETL

Gl
DOS ;:::\\\\

ISSUE 0OS SETL
SPECIFY BOF TYPE=B

H3
CLOSOPEN 24L /G2

GET DCB OPEN
FOR SETL TYPE=K

ISSUE 0OS SETL
TYPE=K

Nk}
CLOSOPEN 24L /G2

GET DCB OPEN
FOR SETL TYPE=K

DOS SETL ISSUE OS SETL
SPECIFY GKEY TYPE=KC

K3
CLOSOPEN 24L /G2

GET DCB OPEN
FOR SETL TYPE=1

DCB OPEN

ISSUE_0S SETL
FOR_1D TYPE TYPER |
SETL

Program Organization 275

Flowchart 2UFE. Subtask Control Executive Routine (IIVIS Part 5 of 11)

SUBTASK [S ENTERED
ENTRY J=----- FROM 0OS

ATTACH IS |SSUED
(CHART 24B/K4)

FROM 11VIS
(CHART 24B)

B2

SAVE CALLER'S
REGISTERS

X

FROM
24L/J5

_ISWALT ¥ D2

WAIT FOR WORK

E2

VALID _ENTRY
CODE

NO

276 DOS Emulator Logic

Flowchart 24F. Get Mapping Routine (IIVIS Part 6 of 11)

\

FROM 24E/J2

GETRTN

QISAM SCAN
SUPPORTED

SETL ISSUED

ISSUE 0S GET SET SETL BIT
MACRO IN ISBLK

D2

MOVE _RECORD TO
DOS 10
ADDRESS, SAVE

ADDRESS FOR PUT

SET GET BIT
IN 1SBLK

MOVE RECORD TO
WORKS ADDRESS

FROM
24F | 24G/J2
H2,
GELIOREG V 12
NOP _LOAD |0OREG
INSTRUCTION IN
TRAP CODE
J2

10REG
SPECIFIED

CREATE CODE IN
DTFI1S_TO LOAD
REGISTER UPON
RETURN TO DOS

N

Program Organization

277

Flowchart 24G. Put and ES®ETL Mapping Routine (ITIVIS Part 7 of 11)

FROM 24E/B4 FROM 24E/D4

PUTRTN B2 ESETLRTN B4

GET MACRO
I SSUED

SETL [SSUED

TURN OFF GET
BIT IN ISBLK

CLEAR QISAM
B1TS IN ISBLK

WORKS
SPECIF IED

BLOCKED
RECORDS

NO

£2

INCREMENT TO
DATA PORTION OF
RECORD

PUTBLKDR ¥ G2

MOVE RECORD
M_WORKS

ADDRESS TO
I0AREAS ADDRESS

PUTNOWKS ¥ H2

MOVE RECORD
FROM_10AREAS
ADDRESS TO OS

BUFFER

ISSUE 0S PUTX
MACRO

278 DOS Emulator Logic

Flowchart 24H.

Read Key and Write Key Mapping Routines

(TIVIS Part 8 of 11)

%

FROM 24E/E4

B2

READRTN

BISAM
SUPPORTED

10AREAR=0

YES

2

LOAD ADDRESS OF
KEY VALUE FOR
READ SEARCH

SET READ BIT
IN ISBLK

|SSUE OS_READ
MACRO TYPE=KU

24H
B4,
F

WRTKRTN

ROM 24E/C4

YES

D4
MOYE RECORD
WORKR

ESS TO
IOAREAR ADDRESS

E4

MOYE RECORD
FROM_10AREAR
ADDRESS TO OS

BUFFER

E 0S
MACRO
=K

o—
—“=u

<=0

L

CLEAR READ
BIT AND SET
WRITE KEY BIT
IN 1SBLK

Program Organization 279

Flowchart 24J. Write NEWKEY Mapping Routine (IIVIS Part 9 of

WRTKNRTN

ROM 24E/G2

WRTKN100O B2 B3 WRTKN200 B4

DCB OPEN

DTFIS FOR
FOR Q1 SAM LOAD
LOAD

£2
LOAD WORKL DATA
MOVE KEY VALUE
ADDRESSES FROM TO DTFI1S KEY
DTFIS SAVE AREA
R4
DATA SET LOAD WORKL
BLOCKED ADDRESS _INTO
REGISTER
E4

MOVE KEY
ADDRESS TG DATA BLOCKED
ADDRESS DATA SET
REGISTER
WRT
ISSUE 0S PUT INCREMENT PAST
MACRO KEY IN WORKL
G2 WKNBLKD ¥ G4
MAP_LAST PRIME
RECORD DASD MOVE RECORD TO
ADDRESS AND 0S WORK AREA +
RECORD_COUNT TO
DTFIS

%

| SSUE 0S
WRITE MACRO
TYP N

SET WRITE
NEWKEY BIT IN
1SBLK

280 DOS Emulator Logic

Flowchart 24K, WAITF Mapping Routine (IIVIS Part 10 of 11)

F

ROM 24E/H2

NO

WALTF FOR
READ KEY

WAITF FOR

WAITF FOR
WRITE KEY WRITE NEW KEY

ERROR_ON
WRITE

CHECK

ERROR ON READ

UE 0S CLEAR ALL 1/0
CHECK MACRO BITS IN ISBLK

SET_READ
COMPLETE BIT [N,
1SBLK

E2

MOYE RECORD TO
10AREAR ADDRESS

MOVE RECORD TO
WORKR ADDRESS

RP.N.Q.I.Q.BL(N
NOP_LOAD 10REG

INSTRUCTION [N
TRAP CODE

K3

CREATE CODE TO
DTF1S_TO LOAD
REGISTER UPON
RETURN TO DOS

Program Organization 281

24L.

Flowchart

EODAD,

SYNAD, and

(TIVIS Part 11 of 1

24L/G1
B1

ADDING
RECORDS
SUPPORTED

YES

Cl

MOVE STATISTICS
TO DTFIS

Dl
MOVE _LAST PRIME
DATA RECORD
ADDRESS TO
DTF1S

' RETURN '
EOD.

ENTE$_ ENTRY

D - -

END OF

FILE —J \\~______

Gl
MAPSTSTC 24K/Al
MAP STATISTICS
FROM_DCB TO
DTFis

ZERQ OPEN CODE
IN [SBLK

SYN

DCB OPEN
FOR QlSAM
LOAD MODE

DCB OPEN
FOR QISAM
SCAN MODE

SROM 24D/B

24H/B4, 24
240/B4, 24

SEISYCS0 £2

CREATE _SVC 50
INSTRUCTION 1IN
DTFIS TO BE
EXECUTED UPON
RETURN TO DOS

N

EMULATOR TASK O
SUBTASK

ENTERED WHEN AN 1/0
-| ERROR_OCCURS INRTHE

FROM
24J/G2
ADSTAT B3

INITIALIZE
POINTERS FOR

Status Mapping Routines

22

INITIALIZE BYTE

LOAD STATUS
MAPP | NG

FROM 24D/G2,
24F [J2, 24F /K2,
24G/D4, 24D/K5

MSTAT C3 (o2 3
INITIALIZE MAPSTSTC 24L /A1
POINTERS FOR
QISAM STATUS MAP STATISTICS
MAPP ING FROM_DCB TO
DTFIS

—

FROM 24H/F2, 24J/J4,
24H/G4, 24K]D4,
24K/K2, 24K/K3

STAT D3

D4

LOOP COUNT TO 2

0s
EXCEPTION
BYTE 0

INITIAL I ZE
POINTERS FOR

MAPSTSTC 24L /A1

BISAM STATUS
MAPP I NG

MAP _STATISTICS
FROM_DCB TO
DTF1S

SCAN 0S BYTE

BIT BY BIT AND

MAP STATUS TO

DTFIS STATUS
BYTE

FROM
24K/C2,
24K/C3
24G/B4

ES

DECREMENT BYTE

LOOP COUNT AND

SET POINTER FOR
NEXT LOOP

BYTE LOOP
COUNT 0

CLO,
ENTRY
FROM 11VIS
{CHART 24D)
H2 H3
CLOSE QISAM OPEN QlSAM DCB
DCB TO I1SBLK IN ISBLK

SET _DCBMACR
FIELD FOR
ACCESS METHOD

PE_OF MACR
INSTRUCTION

282

DOS Emulator Logic

RETURN

SETRTRN

SUBTASK IN
CONTROL

COMPLETE 10B
CSW_FIELD_IN
COMTAB ENTRY

ISSUE POST
MACRO FOR
COMTAB ECB

V™OC I/0 Simulation Routines (Flowcharts 25A-25E)

Module name: IIVVIO
FEntry point name: ITVVIO
Major functions (for shared volumes only):

. Provides simulation of VTOC I/0O from DOS open phases
. Provides user label extent information from actual user label I/0

Entered from: TIIVPCE
Modules called: None
Exits to: caller
OS macros issued:

o SAVE
o RETURN

Input:

. Pointer to DOS CCWs for I/0 request
. Pointer to the COMTAB for the volume on which I/0 is requested

Output:

- Updated DOS CCW data areas (VTOC labels)
. User label switch set to specify user label I/0 requested

Return codes:

o C0 - EXCP to be issueqd

o 04 - I/0 completely simulated

. 08 - CCW chain (channel program) not recognized

Tables/work areas:

o DOSCORE (CCW strings, CCW data areas)

J Obtain work area (F0, F1 and F3 label values for the volume)

. COMTAB (entrv for the volume on which I/0 is requested)

Errors detected: 1Invalid seek address (unrecognizable CCW string
or seek address not within VTOC limits or user label
extent)

Messages requested: WNone

Program Organization

283

command and Type Code Tables for the VTOC I/O Simulation Routine. The address
of the routine to be executed, when exiting from the VTOC I/0 simulation routine
(ITVVIO chart 25A), is in the branch register. This address depends on the ,

table (see Figqure 26) used at entry to VIOA2.

COMMAND CODE TABLE TYPE CODE TABLE

Code Routine Chart Code Routine Chart
X103 VIOB 258/B1 X'FF* VIOIOA 25D/B1
X'07t vIoC 25B/E1 Xt81¢ VIOTOB 25D/ EA1
xXepge VIOD 25B/B2 X182¢ VIOIOB1 25D/G2
X*31¢ VIOE 25B/B3 X121t VIOIOoC 25D/B3
X291 VIOF 25B/E2 XrTynt VIOIOD 25D/B5S
X112 VIOG 25C/B1 X151 VIOIOD 25D/B5
X106 VIOH 25C/B2 Xty VIOIOE 25E/B1
X'OE" VIOT 25C/B3 Xr1ce VIOIOF 25E/B3
Xt105! VIOJ 25C/B4 X'5Ct VYIQTOF 25E/B3
XtQD! VIOJ 25C/B4 X0 VIOERRX 25E/F74
X100 VIOERRX 25E/F4

Figure 26. Command and Type Code Tables for the VTOC 1/0 simulation
Routine

284 DOS Emulator Logic

Flowchart 25A. VTOC I/0 Simulation Routine (IIVVIO Part 1 of 5)

ENTRY

FROM | 1VPCE
{CHART 8P)

Bl

SAVE CALLER'S
REGISTERS

(o8]

EXECUT ING
DOS _OPEN OR
CLOSE

SET TYPE BYTE
T0 0

SET _COMMAND

FROM 25C/F4

REGISTER

CCW COMMAND
CODE A TIC

DOES TYPE
BYTE I[INDICATE
WRITE

25A
FROM 25C/F5

SET _CCW
COMMAND CODE
IN WORK
REGISTER 0

LOAD_BRANCH
REGISTER WITH
TABLE ENTRY

Cc3

LAST_ENTRY
IN TABLE

CODE _IN
REGISTER 0
EQUAL TABLE

CODE

£3

% SEE TABLES IN FIGURE 26
INCREMENT
WORK REGISTER
1 TO POINT TO
NEXT TABLE
ENTRY

Program Organization

285

Flowchart 25H.

SET NOP _FLAG

ON IN TYPE BYTE,
X'04*

FROM
25A/C3,
25A/D3

Y10C £l

GET DOS SEEK
ADDRESS AND
ADJUST TO TRUE
ADDRESS

NO USER _LABEL
EXTENT PRESENT

OBTAIN AREA

IN

IS SEEK _FOR
USER LABEL
TRACK

IS SEEK FOR
VOL1 CCHH

1S_SEEK FOR
VTOC CCHH

286

(ITVVIO Part 2 of

VTOC I/0 Simulation Routine
258 258
B2/ FROM B3
25A/C3, FROM
25A/D3, 25A/C
25A/F 1 25A/D
YIiQD B YI1QE B3
GET DOS ID
NO PROCESSING ADDRESS AND
DONE ADJUST TO TRUE
ADDRESS

c3

1S
SEARCH_ 1D
EQUAL FOR

VOL |
LABEL

IS SEARCH
ID_EQUAL FOR
F1 LABEL

IS F3
PRESENT IN
OBTAIN AREA

SET SKE FLAG

ON IN TYPE BYTE,
X*o08"*

IS SEARCH
ID_EQUAL FOR
F3 LABEL

X'80

SET F1 FLAG
ON IN TYPE BYTE,
X'40"

SET F3 FLAG

SET USER
LABEL FLAG ON
IN COMTAB

COMTAB

MOVE DCB
POINTER TO
COMTAB 10B

K2

SET RETURN
CODE X'00°*
REGISTER

DOS Emulator Logic

5)

Flowchart 25C.

SET READ
TYPE BYT
X

IN

Cl

VTIOC I/0 Simulation Routine (IIVVIO Part 3 of 5)

SET READ DATA
FLAG _ON IN TYPE,
BYTE x'02°*

C2

C3

GET DOS DATA
ADDRESS, ADJUST
T0 TRUE
ADDRESS, AND
SAVE

GET DOS DATA
ADDRESS, ADJUST
70 1RUE

ADDRESS, AND
SAVE

GET DOS DATA
ADDRESS, ADJUST
70 tRUE

ADDRESS, AND
SAVE

l

l

SET ALL FLAGS
ON"IN_TYPE BYTE
X'FF?

NNNNNNN NN T
QOO NT
OODDDDLO>O
R . 4
TOOTNMMCIDO
AEAWWN————

FROM
25B/B2

CHAIN FLAG ON IN

VIONXT E4

SET TYPE
CODE TABLE

REGISTER

IS COMMAND

CURRENT CCW

INCREMENT CCW
POINTER TO NEXT,
CCw

SET TYPE BYTE
REGISTER 0

Program Organization

287

Flowchart 25D.

YIQIQA Bl

NO PROCESSING
DONE

SET DATA
ADDRESS

£l

MOVE VOL1 KEY
TO DOS DATA
AREA

INCREMENT
DATA ADDRESS BY,
KEY LENGTH

VTOC I/O0 Simulation

SET DATA
ADDRESS

Hi

MOVE VOL! DATA
TO DOS DATA
AREA

%

288 DOS EFmulator Logic

C3
VI0I10X2 25E/A5
CHECK EXTENTS

E3
V1010X2 25E/A5

CHECK EXTENTS

SET DATA
ADDRESS

G3

MOVE F3 LABEL
TO DOS _DATA
ADDRESS

Routine (IIVVIO Part 4 qf 5)

(o]
V1010X2 25E/AS

CHECK EXTENTS

GET DATA
ADDRESS

£S5

MOVE F1_DATA TO
DOS DATA AREA

READ COUNT
FLAG ON IN
TYPE BYTE

Flowchart 25E.

FROM
25A/C3,
25A/D3

Cl

V1010X2 25E/A5

CHECK

EXTENTS

GET

DATA

ADDRESS

£l

MOVE_F1
DAT

A
DATA A

KEY AND

VTOC I/0 Simulation Routine (IIVVIO Part 5 of 5)

SET DATA
ADDRESS

C3

MOVE F | COUNT
TO DOS DATA
AREA

TO _DOS
REA

viol

SET_SIMULATE
RETURN CODE
X*'04°*

FROM
25B/K2

SET EXTENT
TYPE TO 01

BS
IS _EXTENT NO
TYPE 81

YES

D5

POINT _TO NEXT
EXTENT LAST EXTENT

RETURN

SET_ERROR
RETURN CODE
x'o8"

G3

RESTORE
CALLER'S
REGISTERS

RETURN

Program Organization

289

Abnormal End Conditions

290 DOS Emulator Logic

Exit-ABEND Frror Routine (Flowcharts 26A-26B)

Module name: ITVABN
Entry point name: TIVABN
Major functions:

. Determines if the return to 0S at the end of emulation is normal
. Examines the error code passed from the module in which the error
was found and prints the proper message if the calling routine

has not already done so

. Dequeues any queued resources

° Posts 'CSW stored!'! condition code and status bits for channel
end-program check to DOS if error concerns only one DOS partition

. Snaps DOS registers and storage usinag SNAP macro if module ITVRAS
not present; if TIVRAS is present, an IIVRAS printout is given

. Returns to OS if emulation ending

Entered bv:

IIVINT
IIVPCE
JTIVOPN
ITVRTE
JIVENT
IIVGET
JIVCHK
IIVSVC
TIVSNP
IIVRCP

Modules called:

. IIVRAS
. TITVMSG

Exits to:

. Caller
. 0s

0S macros issued:

SNAP
DEOQ
L.OAD
SAVE
RETURN
DCB
OPEN

Input:
. Error code in register RP1EU
. Addressability in register RBOCD
. Addressability to COMTAB in RPOEU if entered from IIVCCW at SIO time
Output:
. Snap of contents of DOS registers and storage area at abnormal
end of emulation
. DOS CSW and condition code if DOS should end a partition

Return codes: None

Program Organization 291

Tables/work areas:

Ccsw

COMTAB

CCW

DCB for SNAPs

ITIVCON - Emulator constant area
Local execution list

ITVRAS constants

Errors detected: None
Messages requested:

IIV202T (IIVPCE detected error)
IIV203X
IIV204T (TIVCCW detectedl erxrror)
JIV2051 (IIVPCE detected error)
IIV207I

292 DOS Emulator Logic

Tlowchart 26A. Exit-ABEND Error Routine (TIVABN Part 1 of 2)

1 1VABN
FROM 11VENT (CHART ENTRY
1A), IIVINT (CHART
2L) "11VOPN (CHARTS
58, 5C), |IVGET
(CHART 1A}, IIVPCE FROM 122/J2 FROM 26B/C2
(CHARTS 8J: 8M) 26B/c3, 26B/D3
1IVCHK ™ (CHART 98)
[IVRTE (CHARTS 208
20G), I1VSVC (CHAR
T7A) . IIVRCP (CHART ABSNAP 1 B4
29C) . IIVSNP (CHART B2
30A)
11VMSG 123A1
ESTABL I SH SNAP DD NO
ADDRESSABILITY ISSUES_ MESSAGE STATEMENT
T1v2011 PRESENT
c2
ERROR CODE
WRITE SNAP 1D,
DOS STORAGE
SNAP, DOS
REGISTERS SNAP
ERR3 E3
1 IVMSG 2TA/Al
[SSUES_MESSAGE
11v2031
ERR4 F4
SET PSW _CC_TO
Y01' AND CSW
ERROR CODE STATUS TO
CHANNEL END
PROGRAM CHECGK
— ERRS Q3 G4
1 IVMSG 27A/Al
TURN OFF BUSY
ISSUES MESSAGE [—=1 BIT [N COMTAB
11v2041
ERRG _ H3 He
LIVMSG 27A/Al
POST 108 CAW +
ISSUES MESSAGE 8 TO DOS CSW RETURN
T1v2051
3 u 4
1 IVRAS 28A/Al
SERV|CE
AIDS ACTIVE LOAD 1 IVRAS TRACE_AND SNAP |——
ROUT INE
NO
K2
K3
DEQUEUE
NON-DASD
COMTAB BUILT NON-STAGED RETURN
RESOURCES
70 05
NO

Program Organization 293

Flowchart 26B.

294

268

B2,

FROM 26A/D2
B2

11VMSG 27A/Al
ISSUES MESSAGE
I1vaozl

TESTS TO

DOS SVC 14 -
OCCURRED

D3

Fxit~-ABEND Error Routine (ITVABN Part 2 of

I 1VMSG 27A/Al

ISSUES MESSAGE
Iivao7

26A
B4,

DOS Emulator Logic

Message Writer

Program Organization 295

Message Writer Routine (Flowchart 273a)

Module name: TIIVMSG
Entry point name: TIIVMSG

Major function: Prints messages using OS WTO or WTOR services.
The messages are on behalf of all the Emulator modules.

Entered by:

IIVINT
TIVIN2
TIIVPUB
IIVCHK
ITVADD
ITIVPRP
IIVGET
IIVOPN
IIVSTG
IIVRTE
ITVABN
IIVPCE
TIIVRCP
IIVGR2
JTIVDVS
JIIVRCW

Modules called:

. ITVMGH
(] ITVMG2
° IIVMG3

Exits to: Caller
0OS Macros issued:

WTO
LOAD
SAVE
WTOR
DELETE
RETURN

e o0 ©® 0 o

Input:
Message code
Supplemental data, if applicable
Parameter list with reply address, length, and ECR, if
applicable

Output: Message printed to the console

Return codes: None

Tables/work areas:

. MSGINDX table in each of the message text modules, IIVMG1,
IIVMG2, and ITVMG32

(] EMUCONS

Errors detected: None

Messages requested: WNone

296 DOS ®Emulator Logic

Flowchart 27A. Message Writer Routine (ITIVMSG)

FROM_| IVINT (CHARTS 2E,

(X
ENTRY 1 1IH),
| IVRTE (CHART 20A)
| IVPRP (CHARTS 21A
218, 21C, 210, 2IEf,
11V&R2 (EHARTS 224 53
22C), 11VDVS (CHARTS
23F,"'23H), |1VABN
(CHARTS 26A, 26B)
1TVRCP (CHART 29c}
I IVRCW (CHART 34D)
| IVRAS (CHART 28A)
GET_MESSAGE
STANDARD INDEX_TABLE
REGISTER POINTER_AND
LINKAGE MESSAGE TEXT
cl
INITIALIZE SET_FOR_WTO
REG | STERS ENT
MESSAGE WRITER

DETERM I NE INPUT
REQUIRED MODULE REGISTER _FOR
FILL HOLD

[S_ANY
MODULE LOADED

IS MODULE
THE ON

YES SET FOR WTOR
ENTR
REQUIRED

TRY TO
MESSAGE WRITER

DOES
1SSUE DELETE REGISTER
FOR _LOADED POINT TO FILL

MODULE " DATA

REGISTER MUST

1SSUE LOAD POINT TO WTOR

FOR REQUIQED LIST; MOVE IF
MODULE IN wtoR AREA

SAVE _MODULE
NUMBER _ AND
ENTRY POINT

‘:E" *

FILL DATA
REQUIRED

COMEUTE NUMBER

(o] 0
BYTES PRECEDING
MESSAGE TEXT

MOVE THE
MESSAGE TEXT TO
WTOR AREA

MOVE FILL DATA
INTO WTOR AREA

MOVE MESSAGE
TH

LENGTH,
DESCRIPTOR, AND
ROUTE CODE_INTO

WTOR AREA

MOVE JOB NAME
INTO_MESSAGE
TEXT

ISSUE WTO

RETURN TO
CALLER

*SEE "DIAGNOSTIC_AIDS"
FOR MESSAGES CONTAINED
IN MODULES 1|VMG I
11VMG2, AND I |VMG3.

Program Organization

297

Tmulator Service Aids

298 DOS Emulator logic

Service Aids Initialization Routine (Flowcharts 28A-28B)

Module name: TIVRAS
Entrv point names:

ITVRAS

TIVRASPC
JIVRASVC
ITVRASYM

Major functions:

. Initializes fields in IIVRCN
o Establishes addressability after program checks, supervisor
calls, and asynchronous interruptions during local execution mode

Entered by:

TIVIN2

JTIVABN

TIVPRP

Hardware (ITVRASVC, IIVRASPC, and ITIVRASYN addresses placed in
SvC, PC, and ASYNC interruption fields respectively in the LEX
list)

Modules called:

TIIVRCP
Asvnchronous user exit routine (TTVRASnn)
ITVSNP
TIVMSG

Exits to:

. Caller
. IIVPCI
L] TIVSCI
. ITVRTE

0S macros issued:

SAVE
DELETE
RETURN
TIME
LOAD
OPEN

Input:

. Fields in TTIVRCN (RASCONS)
. Register 0 - 0 caller from IIVPRP or IIVIN2

4 = snap out trace table, caller from IIVABN
8 = snap DOS hard wait, caller from IIVABN
. Register 1 - contains option in effect if register 0 contains 8

Output: Initializes fields in IIVRCN

Return codes: None

Prodram Organization 299

Tables/work areas:

L] ITVRCN (RASCONS)

° Local execution list
L JIVCON (EMUCONS)
Errors detected: None

Messages requested: TIV273T

300 DOS Emulator Logic

Flowchart 28A.

ENTRY

Bl

SAVE REGISTERS
AND PERFORM
HOUSEKEEP ING

IS CALLER
11VABN

TRACE TABLE
SNAP

SET UP OPTION
IN EFFECT FROM
CALLER

S

N2 (CHART
RP ({CHART
AB
A)

ET UP_OPTION
IN_EFFECT
*TRACE®

1 84

OPEN DCB _FOR
SYSSNAP |IF NOT
ALREADY OPENED

F1
£2
HAS | 1VSNP NO LOAD MODULE
BEEN LOADED I 1VSNP

c4
OPEN
SUCCESSFUL

YES

INITIALIZE
ADCONS 1IN
11VRCN_AND PAGE,
HEADER FOR
11VRCP

E4

IS MODULE
I IVSNP 1IN
STORAGE

NO

NO

Service Aids Initialization Routine (IIVRAS Part 1 of 2)

(o]}

1 IVMSG 27A/A1

YES

ISSUES MESSAGE
[ivarzi

ES

DELETE MODULE
1 1VSNP

E4

YES

Gl

SWAP INTERRUPT
ADDRESSES

Hi
11VSNP 30A/Al

SNAP EMULATOR
CONTROL BLOCKS

LOAD MODULE
I'1VRCP

G4

1 IVRCP 29A/Al1

PROCESS SERVICE
AIDS COMMANDS

H4

DELETE MODULE
LIVRCP

LOAD 11VSNP

YES

K4

KS

LOAD MODULE
11VSNP

Program Organization

RETURN

301

Flowchart 28B. TIVRASPC, IIVRASVC, and ITIVRASYN Subroutines
(TIVRAS Part 2 of 2)

L1yl Ly 11Vl
ENTRY ENTRY ENTRY
FROM DOS VIA FROM DOS FROM OS VIA AN
A PROGRAM VIA AN ASYNCHRONOUS
CHECK INTERRUPTION
Bl B2 B3
SAVE DOS SAVE DOS SAVE DOS
REGISTERS REGISTERS REGISTERS
[oh]
SET UP SET UP SET
EMULATOR EMULATOR EMULATOR
REGISTERS REGISTERS REGISTERS
Ra D3
1 1 VRASNN
EXIT EXIT
USER
ASYNCHRONOUS
TO [IVPCI TO [IVYSCI EXI[T ROUTINE
(CHART 31A} {CHART 32A}

OPTIONAL SNAP

SWAP_[INTERRUPT
ADDRESSES

G3
1IVSNP 30A/A|

SNAP EMULATOR
CONTROL BLOCKS

H3

SWAP _[NTERRUPT
ADDRESSES AGAIN

RESTORE _DOS
REGISTERS

EXIT

TO 11VRTE
(CHART 20B)

302 DOS Emulator Logic

Command Processor Routine (Flowcharts 29A-29P)

Module name: ITIVRCP

Entry point name: TIIVRCP

Major functions:

Reads a debug statement from card input or console reply
Checks the validitv of the statement

Sets adequate indicators in RASCONS
Loads service aids processor IIVACI, TIVPCI, TIVSCI

Entered by: ITVRAS
Modules called: TIVMSG
Exits to:

o ITIVABN
. Caller

0OS macros issued:

OPEN
CHECK
DELETE
FREEMAIN
WRITE
LOAD
GETMAIN
GET
CLOSE
WATIT
DCBD
DCB
SAVE

Input:

. Pointer to local execution list

. Pointer to Emulator constants

. Service aids constants

Output: Indicators and switches in RASCONS

Return ¢odes: 1In register 15

Tables/work areas:

. Local execution list
. EMUCONS

L] RASCONS

®

DCB for SYSDEBUG data set

Errors detected: Syntax errors in debug statement
Messages requested or issued:

IIV270I (on console)

IIV271I (on console)

ITIV274T (on console)
ITV2761

Program Organization 303

Dictionaries for IIVRCP. The CMDDICT (Figure 27) lists each command, the
routine that initializes each command, the routine that resets each command
after an error is detected, and the associated dictionary to handle the
parameters or keyword parameters of each command.

The SNPDICT (Figure 27) lists each parameter or keyword parameter (under heading
'Name of Keyword') of the SNAP command and the name and chart number of the
routine to process each parameter.

The TRCDICT (Figure 27) lists each parameter or keyword parameter (under heading
'Name of Keyword') of the TRACE command and the name and chart number of the
routine to process each parameter.

The STODICT (Figure 27) lists each parameter or keyword parameter (under heading
*Name of Keyword') of the STORAGE command and the name and chart number of
the routine to process each parameter.

The EXIDICT (Figure 27) lists each keyword parameter (under heading 'Name of
Keyword') of the EXIT command and the name and chart number of the routine
+o process each keyword parameter.

The DIAGDICT (Figure 27) lists the kevword parameter of the DIAG command and
the name and chart number of the routine to process the parameter.

304 DOS Emulator Logic

CMDDICT

- Command Dictionary

Name of | Routine to Routine to Associated
Command | Initialize Reset Reyword
Dictionary
Name Chart Name Chart
DIAG DIAGINIT | 29L/A1 DIAGINV 29L/A1 DIAGDICT
END ENDINIT 29N7A1
EXIT EXIINIT 29M/A1 EXTIINV 29M/a1 EXIDICT
SNAP SNPINIT 29G/Aa1 SNPINV 29G/A2 SNPDICT
STORAGE | STOINIT 29K/A1 STOINV 29K/a1 STODICT
TRACE TRCINIT 29E/A1 TRCINV 29E/A2 TRCDICT
SNPDICT - Snap Dictionary
Name of Routine to Process
Keyword
Name Chart
ALL SNPALL 293/G3
ATTN SNPATTN 298/D4
COMP* SNPCOMP 29H/A1 note1
CUU* SNPCUUD 293/A1
EXT SNPEXT 298/A5
HIO SNPHIO 29J/A5
INT SNPINT 29H/DS
10 SNPTIO 29J/G2
ISK SNPISK 293/D3
LPSW SNPLPSW 29J3/D5S
PC* SNPPC 29H4/G4
PSWx* SNPPSW 29G/C2
SIO SNPSIO 293/A2
SSK SNPSSK 293/D4
SSM SNPSSM 29J/D2
SVC* SNPSVC 29G/A3 note2
TCH SNPTCH 293/A4
TIMER SNPTIMER 29H/A4
TIO SNPTIO 293/A3
note1l If COMP=A111111=khhhhhhh is specified, the routine name to process
hhkhhhhh is SNPCPSUB. {See chart 29H/A3.)
note2 T1f SVC=PHASE= (modnamel,modname2) is specified, the routine name to

process modnamel cr modname2 is SNPSUBOP. {See chart 29G/H5.)

* This indicates a keyword parameter. All others are called parameters.

Figqure 27 (Part 1 of 2). Command Processor Routine Dictionaries

Program Organization

305

TRCDICT - Trace Dictionarv

Name of Routine to Process
Keyword

Name Chart
ALL TRCALL 29F7/H5
ATTN TRCATTN 29F/G3
CUU* TRCCUN 29F/n2
EXT TRCEXT 29F/Aa4
HIO TRCHTIO 29E/CS5
INT TRCINT 29F/D3
I0 TRCIO 29F/A1
ISK TRCISK 29E/F3
L.pSwW TRCLPSW 29E/F5
NOWRAP TRCNWRAP| 29F/E1
WRAP TRCWRAD 29F/HA1
NUMBER* TRCNUMBR | 29F/D4
STO TRCSIO 29E/C2
SSK TRCSSK 29E/F4
SSM TRCSSM 29E/F2
SVC TRCSVC 29F/AS5
TCH TRCTCH 29E/CH
TIMER TRCTIMER | 29F/A3
TIO TRCTIO 29E/C3
WRAP TRCWRAP 29F /411

STODICT - St

orage Dictionary

Name of Routine to Process
Keyword

Name Chart
ALL STOALL 29K/A5
DOS STODOS 29K/E2
EMBLKS STOEMBLK | 29K/A3
EMU STOEMU 29K/al
NODOS STONODOS | 29K/E3
NUMBER* STONUMBR | 29K/EU4

EXIDICT - Exit Dictionary

Name of Routine to Process
Kevword

Name Chart
AS* E¥IAS 29M/AS
LEX* EXILEX 29M/A4
PC* EXIPC 29M/A3
SVC* EXISvC 29M/A2
DIAGDICT -- Diagnostic Dictionary
Name of Routine to Process
Keyword

Name Chart
CCWCHK DIASCCW 29L/Aa4

* This ind

icates a keyword parameter. All others are called parameters.

Figure 27 {(Part 2 of 2). Command Processor Routine Dictionaries

306 DOS Emulator Logic

Flowchart 29A.

ENTRY

FROM

__CMDOO

LEVEL EQUAL 0

Cl

1 IVRAS
(CHART 28A)

Command Processor

FROM 29B/E2

FROM 29B/E2

KEYOQ0 C2

Routine

FROM 29B/D2

QPROQ C3

CLEAR
PARENTHES IS
COUNTERS

LEVEL EQUAL |

LEVEL EQUAL 2

BUILD MESSAGE
11v271_*ERROR
AT POSITION..."
FROM 29B/C2
Co

{ITVRCP Part 1 of 14)

29B/D5

LEVEL EQUAL 3

RCPPRINT 29D/A5
PRINT LINE ON
SYSSNAP

D2

R3

D4

GETWORD 29C/A1l

GETWORD 29C/A1

GETWORD 29C/A1

GETWORD 29C/Al

GET NEXT NAME

GET NEXT NAME

GET NEXT NAME

GET NEXT NAME

SET FLAG TO
HAVE NEW CARD
AND ERROR

El E2
E3 E4
* KEYWORD * susop
NO NAME FOUND NAME _FOUND
IN CMDDICT % IN KEYDICT* GO _PROCESS KEYWORD GO PROCESS COMP
PARAMETER AND VALUE AND_SVC
(OPERAND) (SUBOPERAND)
‘:E" YES
298
El B2
HINIT
MUST HAVE A
INITIAL | ZE KE YWORD
COMMAND SUBPARAME TER
(SUBOPERAND)
% SYMBOL TABLE
G NOTE: SEE FIGURE 27. NAMES
IN_PARENTHESES ARE THOSE
USED IN LISTING.
MUST HAVE A CMDDICT - = COMMAND
DEL IMITER VALUE DICTIONARY (S
(OPERAND) FIGURE 27)
KEYDICT - KEYWORD
DICTION. ES THE
KEYWORD AT TACHED WITH TrE
COMMAND IN CMDDICT (SEE
FIEURE 27)
KEYWORD -- KEYWORD AND
* NAME _OF ROUTINE_TO BE
KE YWORD PROCESSED_(SEE_TRCDICT,
MUST HAVE TODICT, EXIDICT
KE YWORD GO PROCESS piacpict, snepict, FIGURE 27
PARAME TER
(KEYWORD) INIT -- ROUTINES TO
INITIALIZE EACH COMMAND
(SEE CMDDICT FIGURE 27
SUBOP -- ADDRESS OF THE
ROUTINE IS STORED BY THE
298 ROUTINE_THAT PROCESSES
B2 THE OPERAND (SEE F |GURE
274 SNPDICT (COMP AND

Program Organization 307

Flowchart 29B. Command Processor Routine (TIVRCP Part 2 of 14)

FROM
FROM 298 | 29A/H1
29A/HZ, BS,

29A/F3,

29A/E4

DELIMITER RIGHT
PARENTHES IS

C4

DECREMENT LEVEL
BY ONE

ANY
PARENTHESES
IN COUNTER
FOR LEVEL

E3
DECREMENT RESET ALL
NUMBER OF FLAGS, CLOSE
PARENTHESES IN SYSDEBUG 1F
COUNTER FOR PRESENT
LEVEL
£4 £ES
BUMP_POINTER TO RESTORE
INPUT BUFFER BY CALLER'S
ONE REGISTERS
RETURN

NEXT CHARACTER
1S RIGHT
PARENTHES IS

BUMP_PQINTER TO MOVE THIS
INPUT BUFFER BY CHARACTER INTO
ONE RCPDEL

NZ3

BUMP_POINTER TO
INPUT BUFFER BY
ONE

308 DOS Emulator Logic

Flowchart 29C.

GETNORD A
ENTRY

NEEE A NEW NO

FROM 29A/D1,
29A/D3, 29A/D4

GETWORD Subroutine (IIVRCP Part 3 of 14)

CLEAR RCPCUR,
INITIALIZE

ARD/
YES

Cl

RESET NEW CARD
SWITCH

GETWO

[s]]
INPUT FROM

SYSDEBUG

R3

CLEAR CONSOLE

PREVY10US
CARD IN ERROR

FIRST TIME
THROUGH

REPLY BUFFER

E3

11VMSG 27A/A1

ISSUES MESSAGE
11v2701 OR 2711

SWITCHES,
LENGTH

ca

CHARACTER RIGHT
PARENTHES 1S

CHARACTER
X*'FF* (END OF
CARD)

YES YES
El E2 E3 E4
1 1VMSG 27TA/Al
MOVE CHARACTER
ISSUES MESSAGE OPEN SYSDEBUG WAIT FOR REPLY IN RCPCUR
Gl G2 G3 G4 l G5

(o1

BUMP POINTER TO
STRING BY ONE

RS

BUMP
PARENTHES IS
COUNTER BY ONE

SET RETURN TO
L IVABN

GET A CARD

EXIT

TO 11VABN
(CHART 26A)

CVTUPP 29D/AI

CONVERT INTO
UPPER CASE

BUMP POINTER TO
STRING BY ONE

CHECK RCPCUR IS
ALPHANUMERIC

REAR1QO Y H2

RCPPRINT 29D/A5

PRINT CARD ON
SYSSNAP

H4

SPECI1AL
CHARACTER

ANY INVALID

CHARACTERS

RCPLNG +1
POINTER IN
RCPCUR +1

+

CALLER +4

I

RETURN

TO CALLER

Program Nrganization

Flowchart 29D.

CVT and RCPPRINT Subroutines

310

(IIVRCP Part 4 of 14)

DOS Emulator Logic

C C CY CVy RCPP)
ENTRY ENTRY ENTRY ENTRY ENTRY
FROM FROM _29F /D5, FROM FROM FROM
29C/G3 29F /E4, 29F/F2, 29G/F2, 29A/C5,
29G/F3, 29H/G2, 29H/D3 29C/H2
29H/J2, 29J/ET1,
29K /F 4, 29L/C4
29M/C3 BS
Bl CYTQQ B3 B4
CONVERT SET FLAG FOR PROPAGATE FO IN SET FLAG FOR MORE L INES YES
CHARACTER TO NUMERIC CVTSTR MASK CONVERSION ON PAGE
UPPER CASE CONVERS 1ON
NO
Cl CYI02 C3 c4 [0}
ADD 1 TO PROPAGATE 'FF* PROPAGATE * IN COMPUTE PAGE
POINTER INTO IN CVTWORK2 CVTSTR NUMBER, RESET
STRING LINE COUNT
D2 D4 DS
MOVE NAME AND MASK MOVE NAME AND WRITE PAGE
PAD LEFT IN CONVERSION PAD RIGHT IN HEADING
CVTSTR CVTSTR
l £3
INITIALIZE
RETURN POINTER TO WRITE 11v2761
CVTSTR AND OR 11V2T11 LINE
CVTWORK?2
TO CALLER
CVT11 F3
CYI20 E4 £S5
CHARACTER PACK CVTSTR IN RETURN
IN CVTSTR 1S CVTWORK
BLANK
TO CALLER
G2 CYTI30 [e1]
BUMP_POINTER TO YES CHARACTER CONVERT INTO
CVTSTR AND IN CVTSTR IS BINARY, STORE |
CVTWORK?2 DIGIT IN cviwork
HS
SHIFT RESULT
ACCORDING TO
LENGTH WANTED
2 CYT40 ML NL}
REPLACE _BY 'FO'
IN CVTSTR; MOVE YES CHARACTER PACK_CVTWORK?2 SET RETURN TO
I 'FO* IN CVTSTR IS AND STORE BACK CALLER +4
CVTWORK2 * IN CVTWORK2
CYT18 K2
REPLACE
CHARACTER IN YES CHARACTER NO
CVTSTR BY FA IS CVTSTR 1S RETURN +4
THROUGH FF A THPOUGH
TO CALLER

Flowchart 29E.

Trace Subroutines (IIVRCP Part 5 of 14)

TR T
ENTRY ENTRY
FROM EROM
29A/F1 29N/C5
Bl B2
TURN ON_'TRACE TURN OFF _*TRACE
WANTED* WANTED'®
RASTRSW2 RASTRSW2
Cl T b T 1
N 0
RASTRSWI , ENTRY ENTRY ENTRY ENTRY
RASTRSW3,
RASTRSW4
FROM FROM FROM OM
29A/H2, 29A/H2, 29A/H2, 29A/H2,
25A/E3 29A/E3 29A/E3 29A/E
Dt D2 -D3 D4 D5
CLEAR OP CODE MOVE S10 OP MOVE TIO OP MOVE TCH OP MOVE HIO QP
TABLE CODE [N _OP CODE CODE IN OP CODE CODE IN OP CODE CODE IN OP CODE
TABLE TABLE TABLE TABLE
El
RETURN RETURN RETURN RETURN
CLEAR CUU TABLE
El T Tl TRCSS TR
DEFAULT IN ENTRY ENTRY ENTRY ENTRY
TRACE_TABLE
STZE
FROM M
29A/H2, 29A/H2, FROM FROM
25A/E3 /E3 29A/H2, 29A/H2,
29A/E3 29A/E3
Gl G2 G3 G4
RETURN MOVE SSM QP MOVE I1SK OP MOVE SSK OP MOVE LPSW OP
CODE IN_OP CODE CODE [N OP CODE CODE IN 0P CODE CODE IN OP CODE
TABLE TABLE TABLE TABLE

RETURN

RETURN

RETURN

Program Organization

RETURN

in

Flowchart 29F.

Trace Subroutines

{(ITVRCP Part 6 of 14)

TRC T T
ENTRY ENTRY ENTRY ENTRY
FROM FROM FROM FROM
29A/H2, 29A/H2, 29A/H2, 29A/H2,
29A/E3 29A/E3 29A/E3 29A/E3
Bl B3 B4 Bs
TURN ON_*1/0 TURN ON *TIMER® TURN ON_‘EXT' TURN ON_*svC*
WANTED' IN RASTRSW3 IN RASTRSW3 IN RASTRSW3
RASTRSW1
cs
Cl
MOVE ALL [/Q OP RETURN RETURN OPERAND NO
CODES _IN OP CLEAR CUU TABLE SPECIF IED
CODE TABLE
YES
D2
T TRC D5
CVTNUM 29D /A2
RETURN ENTRY ENTRY
EMPTY CUU CONVERT SVC
INTO
HEXADEC | MAL
FROM
29A/H2, 29A/H2,
29A/E3 29A/E3,
29D/ A2
TRCNNRAP E E3 E4 ES
TURN ON *INT* CVTNUM 129A2 MOVE X'FF* IN
ENTRY GET POINTER TO IN_RASTRSW3 CORRE SPOND | NG
FIRST AVAILABLE MOVE T10 IN &P CONVERT_BINARY, —] POSITION OF SVC
cuu col LENGTH 2 TABLE
FROM
29A/H2,
29A/E3
El E2 E4 ES
CVTHEX 29D/A3
TURN ON *NO RETURN TEST AT LEAST PROPAGATE X'FF*
WRAP' SWITCH CONVERT, RESULT ONE TRACE IN SVC TABLE fe—
2 BYTES
Gl G2 TR G4
RETURN MOVE CUU IN Cuu ENTRY MOVE TRACE RETURN
TABLE ENTRIES NUMBER
IN TRCTBLNO
FROM
29A/H2,
29A/E3
TR H2. H3 Ha T
ENTRY RETURN TURN ON RETURN ENTRY
*ATTENTION' IN
RASTRSW3
FROM FROM
29A/H2, 29A/H2,
29A/E3 29A/E3
Ll 5
TURN OFF *NO RETURN TURN ON_*ALL'
WRAP* SWITCH IN RASTRSW4
Kl K&
RETURN RETURN

312 DOS Emulator Logic

Flowchart 29G. Snap Subroutines (IIVRCP Part 7 of 14)
SNP, S
ENTRY ENTRY
FROM 29A/F 1 FROM
29N/C5
Bl B2
TURN ON_*SNAP TURN OFF *SNAP
WANTED * WANTED*
RASNPSW2 RASNPSW2
Cl S|
CLEAR COMPARE ENTRY TURN ON 'SvC* POINT TO NEXT
BLOCKS | AND 2 IN RASNPSW3 SVC BLOCK
FROM
29A/H2,
29A/E3
D5
o}| R2 R3
CLEAR SVC TURN ON °'PSW* CLEAR SVC GETMAIN FOR A NO
CHAIN, SVC SWITCH CHAIN, SVC NEW SVC BLOCK
POINTER POINTER
YES (B2)
E3
£l E2 E4 ES
MOVE SVC NUMBER
CLEAR PSW VALUE MOVE EBCDIC NAME IS YES IN BLOCK, 0 IN TURN ON
AND MASK CHARACTERS I[N "PHASE " 6 IN * SUBOPERAND
RASCONS MODNAME REQUIRED"'
No @
El E2 E3 E4 ES
CVTMSK 29D/ A4 CVTNUM 29D/ A2 GIVE SNPSUBOP
CLEAR SNAP SAVE ADDRESS OF ADDRESS FOR
SWITCHES 1,3,4 CONVERT UP TO 8 CONVERT SVC IN THIS SVC BLOCK SUBOPERAND -
RASNPSHI.Q.4 BYTES AND MASK BINAI;_{_é ONE PROCESS ING
B
G4
Gl G2 G3
CLEAR 1/0 OP MOVE MASK IN NO AFTER A RETURN
CODE TABLE RASCONS SAVE SVC NUMBER SUBOPERAND
(: ’ YES
Hi Ha SNPSY1Q Y H3 SNPSY30 Y H4 SNP

CLEAR_SNAP CUU
TABLE

MOVE HEX
ADDRESS VALUE
IN RASCONS

LOCATE
BEGINNING OF
CHAINSIN

adl

CLEAR PC AND
IPL SWITCHES

RETURN

RETURN

MOVE MODULE
NAME IN SVC
BLOCK ™

x4

CLEAR ADDRESS
OF SVC BLOCK

K4

FROM
29A/E4

J5

0 _IN
ADDRESS OF
SVC BLOCK

RETURN

RESTORE ADDRESS
OF CURRENT SVC
BLOCK

Program Organization

313

Flowchart 29H.

Snap Subroutines (IIVRCP Part 8 of 14)

SNP.
ENTRY ENTRY
FROM FROM FROM
29A/E4 29A/H2, 29A/H2,
29A/E3 29A/E3
B4 BS
MOVE HEX IS THIS
ADDRESS VALUE REG I STER TURN ON *TIMER® TURN ON *EXT®
IN_COMPARE COMPARE (CR) IN RASNPSW3 IN RASNPSW3
BLOCK |
YES
c2 c3
CLEAR COMPARE SET SWITCH PAD LEFT WITH RETURN RETURN
BL | * SUBOPERAND ZEROS UP_TO 4
COMPARE BLOCK 2 REQUIRED* BYTES
D2 D3 SN| S|
STORE ADDRESS CVTMSK 29D/A4
OF ROUTINE TO ENTRY ENTRY
PROCESS KEYWORD CONVERT HEX
SUBPARAMETER ADDRESS PLUS
(SUBOPERAND) MASK, 4 BYTES
FROM FROM
29A/H2, 29A/H2,
29A/E3 29A/E3
E2 E3 E4 ES
VE TURN ON *INT®
POINT TO NEXT RETURN ADDRESS VALUE TURN ON IN_RASNPSW3,
COMPARE BLOCK 2 [— IN_COMPARE *ATTENTION® IN MOVE H10 IN
BLOCK 1 RASNPSW3 OPCODE TABLE
El E3
COMPUTE MOVE MASK IN
__J CORRESPOND I NG COMPARE BLOCK RETURN RETURN
COMPARE BLOCK | {, EBCDIC IN
ADDRESS COMPARE BLOCK 2
GI G2
G3 NPP
CVTHEX 29D/A3
YES CONVERT AND CHECK RESET SWITCH ENTRY
DOS ADDRESS, MOVE " SUBOPERAND
EBCDIC IN COMPARE REQUIRED'
BLOCK 2
FROM
29A/H2,
NO 29A/E3
H2 H5
MOVE NAME IN RETURN TURN ON_*ALL®

Kl

COMPARE BLOCK 2

22
CVTNUM 29D/A2
CONVERT AND

TEST
REGISTER

K2

MOVE NAME

SUPPRESS CR

IN
COMPARE BLOCK 2

CHARACTERS

314 DOS Emulator Logic

IN RASFLGI

N5}

TURN OFF _‘*ALL*
IN RASFLGI

RETURN

Flowchart 29J.

TIME

Snap

Subroutines

(ITVRCP Part 9 of 14)

s, 5 S| 5|
ENTRY ENTRY ENTRY ENTRY
FROM FROM FROM FROM
29A/H2, 29A/H2, 29A/H2, 29A/H2,
29A/E3 29A/E3 29A/E3 29A/E3
B3 B4 BS

MOVE_S10 _OPCODE
IN OPCODE TABLE

MOVE T10 OPCODE
IN OPCODE TABLE

MOVE TCH OPCODE
IN OPCODE TABLE

MOVE HI10 OPCODE
IN OPCODE TABLE

Cl
RETURN RETURN RETURN RETURN
CLEAR CUU TABLE
o} S S S SN
POINT TO FIRST ENTRY ENTRY ENTRY ENTRY
AVAILABLE Cuu
FROM CHART FROM CHART FROM CHART FROM CHART
29A/H2, 29A/E3 29A/H2, 29A/E3 29A/H2, 29A/E3 29A/H2, 29A/E3
El £2 E3 E4 ES
CVTHEX 29D/A3
MOVE _SSM_OPCODE MOVE |SK OPCODE MOVE SSK OPCODE MOVE LPSW
CONVERT AND IN OPCODE TABLE IN OPCODE TABLE IN OPCODE TABLE OPCODE IN
CHECK HEX OPCODE TABLE
ADDRESS 4 BYTES

IS FIRST RETURN RETURN
HALF BYTE
ZERO
S
MOVE CUU [N cuu ENTRY ENTRY
TABLE
FROM CHART FROM CHA
29A,H2, 29A/E3 29A/H2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>