
"
Systems

GY26-3741-3

DOS Emulator Logic

(on IBM System/370 under OS)

Program Number 360C-EU-738 for OS/MFT or OS/MVT

Program Number 5744-AS1 for OS/VS1

Fourth Edition (July 1972)

This edition apFlies to Version 2, Level 1, of the IBM DOS Emulator program
and to all subsequent versions and modifications until otherwise indicated
in new editions or technical newsletters.

Changes are continually made to the information herein. Therefore, before
using this publication, consult the latest IBM System/360 and ~stem/370 SRL
Newsletter, GN20-0360, for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained through IBM branch
offices.

A form is provided at the back of this publication for readers' comments.
If this form has been removed, address corrments to IBM corporation, Prograrnming
Publications, Department 813 LGP, 1133 Westchester Avenue, White Plains,
New York 10604.

~ copyright International Business Machines corporation 1971, 1972

J

L
PREFACE

This publication describes the internal logic of the DOS Emulator program,
which runs under the control of the operating System on IBM System/370 Moo.els
135, 145, and 155. DOS emulation is a coml::ination of the DOS Emulator proqram
and the System/37 0 DOS Compatibility Feature.

The relationship of the program logic to the logic of the DOS compatibility
Feature is discussed.

DOS emulation enables DOS problem programs to run under control of OS without
program conversion. The ros Emulator program executes as an OS problem program
under a nonzero storage protection key.

~his publication is intended for use by persons involved in program maintenance,
and system prograwmers who are altering tbe prograrr design.

HOW TO USE THIS PUBLICATION

This program logic manual surrlements the DOS Emulator program listing. The
same labels are used on the PLM flowcharts, on the program listin1, and within
the module descrirtions.

Effective use of this publication requires an understanding of the:

• Organization of the publication as a whcle

• organization of the DOS Emulator program into major operations

• Use of the Emulator module directory as a key for locating items relate'l
to each module

• prerequisite and related publications

• Notational conventions used to describe the syntax (or format) of control
statements

~hese topics are discussed below.

Organization of the Publication

In addition to the preface, a table of contents, a list of figures, and a list
of abbreviations used in this manual, this pul::lication has these major parts:

• "Summary of Changes," which summarizes the major technical changes reflected
for version 2, level 1 and version 2, level O.

• "Introduction," which briefly describes the capabilities of the DOS Emulator
program, program linkages, and the interaction between the Emulator and
OS.

• "Method of Operation," which describes the internal logic of the DOS
Emulator prcgram and the function of each routine.

• "Program organization," which consists of the flowcharts for each routine
and a summary of tbe function(s) of each module. (The summary always
appears on the page preceding the first flowchart for the module.)

iii

Page of GY26-3741
Revised July 25, 1972

By TNL GN26-8021

• "Directories," which lists the Emulator program labels alphabetically with
their flowchart identifications and the section of the manual in which
each label is discussed. In addition, there is a module directory, which
can be used to locate key items about each module, a data area directory
with information about each data area, lists of Emulator macros and field
names.

• "Data Areas," which gives detailed layouts of control blocks, tables, and
words to help identify information in storage dumps.

• "Diagnostic Aids," which gives debugging hints, Emulator depende':1cies on
OS, DOS, and hardware, general register assignments, Emulator service aids,
and message-to-module relationships.

• "Appendix," which describes the functions and formats of the two hardware
instructions and associated lists used by the DOS compatibility Feature.

• "Glossary," which defines new terms and, for quick recall, some terms
defined in prerequisite reading.

• "Index," which is a subject index to this publication.

Organization into Categories

DOS Bmulator program operations, defined in the first part of the "Method of
Operation" section, fall into the following categories; initialization,
synchronous interruptions, asynchronous interruptions, direct-acc"!ss volume
sharing, abnormal end conditions, and service aids.

The second part of the "Method of Operation" section (module descriptions)
and "Program Organizaticn" section (module summaries and flowcharts) are
arranged in the same sequence for easy cross-reference.

Use of the Emulator Module Directory

The Emulator module directory in the "Directories" section can be used to find
the location of the verbal description of each Emulator module, the flowchart(s)
for each module, the summary of each module's functions, and other key
information ccncerning that module.

Prereguisite and Related Literature

Effective use of this PLM requires a familiarity with DOS and an understanding
of both the IEM System/370 Models 135, 1Q5, and 155 and OS. A working knowledge
of system/370 status switching, interruption mechanism, and input/output
operations is also helpful. The following publications provi1e necessary
background information or are referenced in the text:

Concepts and Facilities for DOS and ~OS, GC24-5030

DOS IPL and Job Control Prcgrams, Program Logic Manual, GY2Q-5086

DOS Logical IOCS, Volume 3: Seguential and Direct Access DASD Files, GY24-
5088

DOS Logical Transient Programs, GY24-S1S2

DOS Supervisor and Physical Transients, GY2Q-5151

DOS System PrograFmer's Guide, GC24-5073

iv

Emulating DOS Under OS on IBM System/310, GC26-3711

IB~ System/360 and System/310 SRL Newsletter, GN20-0360

IBM syst.em/360 Principles of operation, GA22-6821

IBM System/370 Principles of Operation, GA22-7000

OS Data Management for System Programmers, GC28-6550

OS Data Managewent Macro Instructions, GC26-3194

OS JCL Reference, GC28-6704

OS Master Index to Logic Manuals, GY28-6717

os storage Estimates, GC28-6551

os supervisor Services and Macro Instructions, GC28-6646

os System Control Blocks, GC28-6628

OS/VS Data Management Macro Instructions, GC26-3793

as/vs Data Management for~tem Programmers, GC28-0631

OS/VS JCL Reference, GC28-0618

OS/VS Master Index of Logic, GY28-0603

OS/VS Supervisor Services and Macros, GC21-6919

OS/vS1 Storage Estimates, GC24-5094

OS/vS1 Svstem Data Areas, SY28-0605

Notational Conventions

A uniform system of notation is used to describe the syntax (or format) of
utility control statements. This notation describes which parameters are
required and which are optional, the options available in expressing values,
and the required punctuation.

capital Letter Type

In the notation, capital letter type (LIST) is used to indicate specific values
that must be coded exactly as shown.

Punctuation

The period (.), cowma (,), semicolon (;), equal sign (=), and apostrophe (Il
are used for punctuation and must be coded as shown. These punctuation marks
serve to separate the parameters of a utility control statement.

v

Brackets

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

Brackets «(]) indicate that the elements and punctuation they enclose are
optional. The brackets themselves ar~ for descriptive purposes only, and are
not to be coded. For instance

value=element1,element2,element3(,element~]

indicates that "value=" must be fcllowed by three required parameters (element1,
element2, and element3) separated by commas. As indicated by the brackets,
element4 is optional and need not be coded. If element4 is coded, however,
the comma that immediately precedes it must also be coded.

When choices are available for an optional value, the choices appear in
brackets, one choice above another, as follows:

value=elementO[,element1]
[,element2]
[, element3]

in the above example, "value=" must be followed by elementO. optionally,
element1, element2, or element3 can be coded.

Braces

Braces ({}) indicate a required choice. The braces themselves are for
descriptive purposes only and are not to be coded. For example:

value={element1}
{element2}

indicates that "value=" must be fcllowed by either element1 or element2.

Underscoring

Underscoring indicates a default value -- a value assumed by the program if
no value is coded. For example, given that no optional value is coded in the
following:

value=(element11
[element2]

Element 1 is assumed.

Ellipsis

An ellipsis (••.) is used to indicate that one or more additional parameters
or sets of parameters, each identically fcrmatted, optionally can be added
to the operand. For example, given the following:

value=element1,element2 •••

the ellipsis indicates that everything preceding the ellipsis and following
the equal sign can be repeated.

vi

CONTENTS

iii PREFACE

xvii SUfJ:MARY OF CHANGES FOR VERSION 2, LEVEL 1

xix SUM.MARY OF CHANGES FOR VERSION 2, LEVEL 0

xxi APBRgvIATIONS USED IN THIS BOOK

1 INTRODUCTION
1 DOS Emulation
1 Environmental Characteristics
2 Resource Requirements
3 Dedicated Resources
U Staged Resources
4 Shared Resources
6 Emulator/OS Interaction

OS Macros
Emulator Appendages

6
6
7
7
7
7
8
8

Requesting Bypass Label Processing (BLP)

10
10

operational Considerations
Staged output considerations
Printer Overflow Simulation
Emulator Separator Feature
Data set Requirements

Physical Characteristics
Main-Storage Requirements

15 METHOD OF OPERATION
16 Initialization
18 Verifying Parameters
18 Estatlishing the DOS Storage Area
18 Initializing Emulator Tables
20 DOS IPL
21 Interruption Action When CPU is in Local Execution Mode
21 Synchronous !nterrurticns
29 Asynchronous Interruptions
30 Direct-Access Volume Sharing
35 End-of-Extent Processing
35 Input Processing
35 Workfile Processing
36 Direct-Access File Processing
36 DOS Release 27 Processing
36 DOS Release 27 Outrut processing
37 OS Indexed Sequential Data Set Sharing
37 Examrle of Processing
41 Close Processing
41 SETL Processing
41 Shared DOS System Residence File
42 Abnormal End conditions
43 Detailed Routine Descriptions
43 DOS Emulator Entry Routine (IIVENT) -- Flowchart 1A
43 Initialization First-Load Routine (IIVINT) -- Flowcharts 2A-2M

vii

47 Initialization Second-Load Routine (IIVIN2) -- Flowcharts 3A-3F
51 IPL Add Routine (IIVADD) -- Flowcharts 4A-4D
51 Open Routine (IIVOPN) -- Flowcharts 5A-5D
53 OS ~UB Table Build Routine (ITVPUB) -- Flowcharts 6A-6F
54 GETMAIN/FREEMAIN Routine (IIVGET) -- Flowchart 7A.
45 Program Check Executive Routine (IIVPCE) -- Flowcharts 8A-8U
61 Check 1/0 Routine (IIVCHK) -- Flowcharts 9A-9D
62 Interpretive SYSLOG Routine (IIVLOG) -- Flowcharts 10A-10E
64 Staged I/O Routine (IIVSTG) -- Flowcharts 11A-11N
68 CAW Verification Routine (IIVAWV) -- Flowchart 12A
68 CCW Verification Routine (ITVCWV) -- Flowchart 13A
69 Printer overflow Routine (IIVPOV) -- Flowchart 14A
69 Adjust CCW Data Address Routine (IIVCCW) -- Flowcharts 15A-15F
71 CCW Adjustment Routine (IIVADJ) -- Flowcharts 16A-16B
72 Supervisor Call Routine (IIVSVC) -- Flowchart 17A
73 Start I/O, End-of-Extent, Channel End, and Abnormal End

Appendage (IGG019SA) -- Flowcharts 18A-18B
74 Abnormal End/Channel End Appendage (IGG019S1) -- Flowchart 19A
74 Asynchronous Interrupt Exit Routine (IIVRTE) -- Flowcharts 20A-20G
78 Prompt Reply Processor Routine (IIVPRP) -- Flowcharts 21A-21E
79 SVC Monitor Routine (IIVGR2) -- Flowcharts 22A-22D
80 Device Sharing Simulation Routine (IIVDVS) -- Flowcharts 23A-23J
88 ISAM Mapping Routine (IIVIS) -- Flowcharts 24A-24L
96 VTOC I/O Simulation Routine (TIVVIO) -- Flowcharts 25A-25E

101 Exit-ABEND Error Routine (IIVABN) -- Flowcharts 26A-26B
101 Message Writer R.outine (IIVMSG) -- Flowchart 27A
104 Service Aids Initialization Routine (IIVRAS) -- Flowcharts 28A-28B
105 Corrmand Processor Routine (IIVRCP) -- Flowcharts 29A-29P
105 Snap Dump and Trace Formatting Routine (IIVSNP) -- Flowcharts 30A-30K
107 Program Check Intercept Routine (IIVPCI) -- Flowcharts 31A-31C
107 Supervisor Call Intercept Routine (IIVSCI) -- Flowchart 32A
108 Asynchronous Intercept Routine (IIVACI) -- Flowcharts 33A-33H
108 Service Aids Adjust CCW Data Address Routine (IIVRCW) -- Flowcharts 34A-34H

111 PROGRAM ORGANIZATION
112 Functional Organization of Emulator Interruption Handling
112 Flowcharts
116 Initialization
161 Synchronous Interruptions
235 Asynchronous Interruptions
252 Direct-Access Volume Sharing
290 Abnormal End conditions
295 Message writer
298 Emulator ~ervice Aids

357 DIRECTORIES
358 Emulator Mcdule Directory
360 Data Area Directory
363 Emulator Macros
365 Symbol Table
381 Field Name Table

391 DATA AREAS
392 Data Area Relationships
396 Data Area Layouts
397 Adjust CCW List
400 Beginning and End Block (BEBLK)
402 Channel Aodress Word
402 Channel Command Word
404 Channel Status Word
405 Command Control Block
406 Communications Table

viii

409 COMTAB Extension
410 DASD Label (DLBL)
414 Data Control Block
417 Data Event Control Block - BISAM
418 Data Extent Bleck
420 Data Set Control Block Identifier (Format 1)
421 Data Set Control Block Extension (Format 3)
421 Data Set Control Block VTOC (Format 4)
424 Diagnostic Block (DIAG Block)
425 DTFIS ADD-RETRVE-ADDRTR and DTFIS Load Tables
434 Event Control Blcck
435 ECB Pointer Table
436 File ID Block
437 I IVCON
443 1 IVFCl\l
448 Input/Output Block
450 ISAM Block (ISBLR)
452 ISRISSR Table
452 Job File control Block
454 Local Execution List
457 Logical Unit Block
458 Open Table
458 Physical Unit Block
460 Post ECE List
460 Program Information Block
461 Program Status Word
463 Staged I/O Constants Block
465 Tape Error Elock
466 ~ape Error ty Volume
467 Task Input/Output Table
468 Unit Central Elock
469 Volume Label

471 DIAGNOSTIC AILS
472 Hints for Debugging
473 Emulator Dependencies on DOS, OS, and Hardware
473 Dependence on DOS
478 Dependence on OS
488 Dependence on Rardware
489 Emulator Service Aids
489 Use of the Emulator Service Aids
500 The Debug Statement
506 Examples of Service Aids Usage to Diagnose Problems
509 Interpreting Dumps
517 Emulator General Register Assignments
518 Message-to-Module Relationship

521 APPENDIX
522 DOS COmpatitility Feature
522 Execute Local Instruction
530 Adjust CCW String Instruction

533 GLOSSARY

541 INDEX

ix

Page ofGY26-3741
Revised July 25, 1972

By TNL GN26-8021

LIST OF FIGURES

2 Figure 1.
5 Figure 2.
9 Figure 3.

11 Figure q.
12 Figure 5.
13 Figure 6.
17 Figure 7.
22 Figure 8.
27 Figure 9.
31 Figure 10.

33 Figure 11.
38 Figure 12.
39 Figure 13.

1.15 Figure 11.1.
1.18 Figure 15.
50 Figure 16.
52 Figure 17.
81 Figure 18.
89 Figure 19.

90 Figure 20.

91 Figure 21.
95 Figure 22.

113 Figure 23.

111.1 Figure 24.
251.1 Figure 25.
28q Figure 26.

305 Figure 27.
358 Figure 28.
360 Figure 29.
363 Figure 30.
366 Figure 31.
381 Figure 32.
393 Figure 33.

391.1 Figure 31.1.

395 Figure 35.

398 Figure 36.
1.100 Figure 37.
402 Figure 38.
1.103 Figure 39.
401.1 Figure 40.
406 Figure 1.11.
407 Figure 1.12.
410 Fig"J.re 43.
411 Figure 44.
414 Figure 45.
417 H'igure 46.

419 Figure 47.

420 Figure 48.

The Emulator's Main-Storage Environment
Methods of Accessing ~ASD Data Sets
Two Programs Accessing a Data Set Eefore and After

Conversion
overlay Structure and Load Modules of IIVEMU
Storage Estimates for ISAM
Storage Estimates for QSAM
IPL of DOS Supervisor During Initialization
System/370 Machine Interruption Logic
Staged I/O Control Program Flow
Example of Open/Close Processing for a Sequential

Disk Output File
Data Areas1\ffected by Open processing (IIVDVS)
Data Areas Affected by Open Processing (IIVIS)
Example of Processing OPEN and I/O Macros for an

OS Indexed Sequential Data Set
DOS Storage in Emulator Region
Relationship of COMTAB to COMTAB Extension
OS Region at Beginning of DOS IPL
open Subroutine Gross Flow
General Flow ef IIVDVS
Sources of Input to DCB Fields at OS Indexed
Sequential Data Set Creation

Source of Input to supported DTFIS Fields at Open
of ADD, RETRVE, and AVDRTR

Mapping of DOS SETL to OS SETL
Mapping of DCB Fields to DTFIS Fields After

Processing of Each I/O Macro
Functional Organization of Emulator Interruption

Handling
Emulator Module Relationshir::
DOS S~7C 'T'ables
Command and Type Code Tables for the VTOC I/O

Simulation Routine
Cemmand Processor Routine Dictionaries
Errulator Medule Directory
Data Area Directory
"Emulator Macros
Symbol Table
Field Name ~able
Data Area Relationships (When Resources are Dedicated
or Staged)

Data Area Relationships (When Direct-Access Data Sets/Files,
ether Than OS Indexed sequential are Shared)

Data Area Relationships (When OS Indexed sequential,
tirect-Access Data Sets are Shared)

Adjust CCw List
Begirning and End Block (BEBIK)
Channel Address Word
Channel command Word
Chavnel Status Word
Command Control Block Field Used by the Emulator
cemmunications Table
COM TAB Extension
DASD Label
Data Centrol Block Fields Used by the Emulator
Data Event Control Block -- BISAM Fields Used by the

Emulator
Data Extent Block (Ordinary) Fields Used by the

Emulator
Data Set Control Block -- Identifier (Format 1, Fields

Used by the Emulator

xi

422 Figure 49.

425 Figure 50.
426 Figure 51.
428 Figure 52.
434 Figure 53.
435 Figure 54.
436 Figure 55.
438 Figure 56.

439 Figure 57.
444 Figure 58.

445 Figure 59.
448 Figure 60.
450 Figure 61.
453 Figure 62.
454 Figure 63.
457 Figure 64.
458 Figure 65.
459 Figure 66.
460 Figure 67.
461 Figure 68.
461 Figure 69.
464 Figure 70.
466 Figure 71.
466 Figure 72.
467 Figure 73.
468 Figure 74.
469 Figure 75.
474 Figure 16.
415 Figure 11.
475 Figure 18.

476 Figure 19.
479 Figure 80.
484 Figure 81.
491 Figure 82.
496 Figure 83.
491 Figure 84.
502 Figure 85.
509 Figure 86.
517 Figure 81.
518 Figure 88.
523 Figure 89.
530 Figure 90.

Data Set Control Block -- VTOC (Format 4) Fields Used
by the Emulator

Diagnostic Block
D~FIS ArD-RETRVE-ADDRTR Table
D'IFIS Load Table
Event Control Block
ECB Pointer Table
File ID Block
Relationship of IIVCON to Other Major Emulator Data

Areas
Emulator Common Data Area
Relationship of IIVRCN to Other Service Aids Modules,
ether Emulator Modules, IIVCON, and User Routines

Emulator Service Aids Common Data Area
Input/Output Block Fields Used by the Emulator
ISAM Block (ISBLK)
Job File Control Block Fields Used by the Emulator
Lecal Execution List Fields Used by the Emulator
Logical Unit Block Table
Open Table Fields Used by the Emulator
OS PUB and DOS PUB Tables
First Part of Program Information Elock Table
Second Part of Program Information Block Table
Program Status Word
Staged I/O Constants Block (STGCON)
Tape Error Block
Tape Error by Volume Fields Used by the Emulator
Task Input/Output Table Fields Used by the Emulator
Unit Control Block Fields Used by the Emulator
Volume Label Fields Used by the Emulator
DOS Low Storage
DOS Communications Region Fields Used by the Emulator
DOS Background Communications Region Extension Fields

Used by the Emulator
DOS Control Blocks
CS Macros Used by the Emulator
OS Control Blocks
How to Code a Debug Statement
How to Locate the Trace ~able
Internal Trace Table Format
centrol Flew of the Emulator Service Aids
Service Aids Snap Dump
General Register Assignments
Message-to-Module Relationship
Local Execution List
ACCW List

xii

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

FLOWCHARTS

Initialization

118 Flowchart 1A.
121 Flowchart 2A.
122 Flm¥chart 213.
123 Flowchart 2C.
124 Flowchart 2D.
125 Flowchart 2E.
126 Flowchart 2F.
127 Flowchart 2G.
128 Flowchart 2H.
129 Flowchart 2J.
130 Flowchart 2K.
131 Flowchart 2L.
132 Flowchart 2M.
135 Flowchart 3A.
136 Flowchart 313.
137 Flowchart 3C.
138 Flowchart 3D.
139 Flowchart 3E.
140 Flowchart 3F.
142 Flowchart 4A.
143 Flowchart 4B,
144 Flowchart 4C.
145 Flowchart 4D.
148 Flowchart 5A.
149 Flowchart 513.
150 Flowchart 5C.
151 Flowchart 5D.
153 Flowchart 6A.
154 Flowchart 613.
155 Flowchart 6C.
156 Flowchart 6D.
157 Flowchart 6E.
158 Flowchart 5F.
160 Flowchart 7A.

DOS Emulator Entry "Routine (IIVENT)
Initialization First-Load Routine (IIVIN~ Part 1 of 12)
Initialization First-Load Routine (IIVINT Part 2 of 12)
Initialization First-Load Routine (IIVINT Part 3 of 12)
Initialization First-Load Routine (IIVINT Part 4 of 12)
Initialization First-Load Routine (IIVINT Part 5 of 12)
Initialization First-Load Routine (IIVINT Part 6 of 12)
Initialization First-Load Routine (IIVINT Part 7 of 12)
Initialization First-Load Routine (IIVINT Part 8 of 12)
Initialization First-Load Routine (IIVINT Part 9 of 12)
SCAN and YESORNO Subroutines (TIVINT Part 10 of 12)
ASKOPR and CHKCUU Subroutines (IIVINfT' Part 11 of 12)
DDSCAN Subroutine (TIVINT Part 12 of 12)
Initialization Second-Load Routine (IIVIN2 Part 1 of 6,
Initialization Second-Load Routine (IIVIN2 Part 2 of 6)
Initialization Second-Load Routine (IIVIN2 Part 3 of 6)
Initialization Second-Load Routine (IIVIN2 Part 4 of 61
Ini tiali.zation Second-Load Routine (TIVIN2 Part 5 of 5,
Initialization Second-Load Routine (IIVIN2 Part 6 of 6)
IUL Add Routine (IIVADD Part 1 of 4)
IPL Add Poutine (TIVADD Part 2 of 4)
IPL Add Routine (IIVADD Part 3 of 4)
IPL Add Routine {IIVr"DD Part 4 of Iq
Open "Routine (IIVOPN Part 1 of 4)
Open Routine (IIVCPN Part 2 of 4)
Open Routine (IIVOPN Part 3 of 4)
OPEN60 Routine (TIVOPN Part 4 of 4)
as PUB Table Build Routine (IIVPUB Part 1 of 6)
as PUB Table Build Routine (IIVPTJB Part 2 of 6)
OS PUB 'Table Build Routine (TIVPUB Part 3 of 6)
as PUR Table Bui ld Routine (IIVPTJB Part 4 of 6)
OS PUB Table Builc Routine (IIVPUB Part 5 of 6)
OS PUB Table Build Routine (IIVPUB Part 6 of 6)
GETMAIN/FREEMAIN Routine (IIVGET)

Synchronous Interruptions

165 Flowchart 8A.
166 Flowchart 8~.
167 Flowchart 8C.

168 Flowchart 8D.
169 Flowchart SE.
170 Flowchart SF.
171 Flowchart 8G.
172 Flowchart BH.
173 Flowchart 8J.
174 Flowchart 8K.
175 Flowchart SL.
176 Flowchart 8M.
177 Flowchart 8N.
178 Flowchart 8P.
179 Flowchart 8Q.
180 Flowchart RR.
181 Flowchart 8S.

Program Check Executive Routine (IIVPCE Part 1 of 19)
Program Check Executive Routine (IIVPCE Part 2 of 19)
SSK, SSM, and ISK Simulation Subroutines (IIVPCE

Part. 3 of 19)
LPm"l Simulation Subroutine (IIVPCE Part 4 of 19)
'::'CB Simulation subroutine (IIVPCE ?art 5 of 19)
TIO Simuldtion Subroutine (IIVPCE Part 6 of 19)
TIO Simulation Subroutine (IIVPCE Part 7 of 19)
~IO Simulation Subroutine (IIVPCE Part 8 of 19)
SIO Subroutine (II~.7PC'E Part q of 19)
SIO and SEEKTES'T Subroutines (IIVPCE Part 10 of 19}
SIO Subroutine rUVPCE Part 11 of 19)
SIO Subroutine (IIVPCE Part 12 of 19)
SIO Subroutine (IIVPCE Part 13 of 19)
SFEKDVS Subroutine (IIVPCE Part 14 of 19)
FINDC~AN Subroutine (IIVPCE Part 15 of 19)
FINDArDR Subroutine (ID7PCE Part 16 of 19)
FINDKEY and Store CPU ID Subroutines (IIVPCE
Part 17 of 19)

xiii

182 Flowchart ST.

183 Flowchart 8·).

186 Flowchart 9A.
187 Flowchart 9B.
188 Flowchart 9C.
189 Flowchart 9D.
192 Flowchart 10A.
193 Flowchart 10B.
194 Flowchart 10C.
195 Flowchart 10D.
196 Flowchart 10E.
199 Flowchart 11A.
200 Flowchart 11B.
201 Flowchart 11C.
202 Flowchart 11D.
203 Flowchart 11E.
204 Flowchart 11F.
205 Flowchart 11G.
206 Flowchart 11H.
207 Flowchart 11J.
208 Flowchart 11K.
209 Flowchart 11L.
210 Flowchart 11M.
211 Flowchart 11N.
213 Flowchart 12A.
215 Flowchart 13A.
217 Flowchart 14A.
219 Flowchart 15A.
220 Flowchart 15B.
221 Flowchart 15C.
222 Flowchart 15D.
223 Flowchart 15E.
224 Flowchart 15F.
226 Flowchart 16~.
227 Flowchart 16B.
229 Flowchart 17A.
231 Flowchart 18A.

232 Flowchart 1BB.

234 Flowchart 19A.

Load/Store control Register Subroutine (IIVPCE
Part 18 of 19)

Set Clock, Store Clock Subroutines (IIVPCE
Part 19 of 19)

Check I/O Routine (ITVCHK Part 1 of 4)
Check I/O Routine (IIVCHK Part 2 of 4)
Check I/O Routine (IIVCHK Part 3 of 4)
Check I/O Routine (IIVCHK ~art 4 of 4)
Int~rpretive SYSLO~ ~outine (IIVLOG Part 1 of 5)
Interpretive SYSLOG Routine (IIVLOG Part 2 of 5)
I I VLOr;R1 Subroutine (IIVLOG Part 3 of 5)
LOGOUT1 and LOGOU'!'2 Subroutines (IIVLOG Part 4 of 5)
!IVLOGR2 subroutine (IIVI.OG Par~ 5 of 5)
Staged I/O Routine (IIVSTG Part 1 of 13)
Staged I/O Routine (IIVSTG Part 2 of 13}
Staged I/O Routine (IIVSTG Part 3 of 13,
Staged I/O Routine (IIVSTG Part 4 of 13)
Staged I/O Routine (IIVSTG Part 5 of 13)
staged I/O Routine (IIVSTG Part 5 of 13)
Staged I/O Routine (IIVSTG Part 7 of 13)
Staged I/O Routine (TIVSTG Part 8 of 13)
Staged I/O Routine (IIVSTG Part 9 of 13)
staged I/O Routine (IIVSTG Part 10 of 13)
Read FCE Subroutine (IIVSTG Part 11 of 13)
Load FCB Subroutine (TIVSTG Part 12 of 13)
~ODAD and SYNAD Subroutines (IIVSTG Part 13 of 13)
CAW verification Routine (IIVAr,..nn
CCH Verification Routine (!IVCWV)
Printer Overflow Routine (I IVPOV)
Adjust CCW Data Address Routine (IIVCCW Part 1 of 6)
Ad just CC"1 Data Address Routine (IIVCCt-l Part 2 of 6)
Adjust CCW Data Address Routine (TIVCCvl Part 3 of 6)
Adjust CCW Data Address Routine (IIVCCW Part 4 of 6)
Adjust CCf"l Data Address Routine (ITVCCH Part 5 of 6)
Combine and COMB04A Subroutines (IIVC~N Part 6 of 6)
CCW Adjustment Routine (IIVADJ Part 1 of 2)
CCH Adjustment Routine (IIVADJ Part 2 of 2)
Supervisor Call Routine (IIVSVC)
Start I/O, End-of-Extent, Channel End, and Abnormal

End Appendage (IGG019SA Part 1 of 2)
Start I/O, End-of-~xtent, Channel End, and Ahnormal

End Appendage (IGG019SA Part 2 of 2)
Abnormal End/Channel End Appendage (IGG019S1)

Asynchronous Interruptions

238 Flowchart 20A.

239 Flowchart 20B.
240 Flowchart 20C.
241 Flowchart 20D.

242 Flowchart 20E.

243 Flowchart 20F.

244 Flowchart 20G.
247 Flowchart 21A.
248 Flowchart 21B.
249 Flowchart 21C.
250 Flowchart 21D.
251 Flowchart 21E.

Asynchronous Interrupt and STAE Exit Routines
(IIVR~~ Part 1 of 7)

Route Routine (IIVR~E Part 2 of 7)
Select and STAE Retrv Routines (IIVRTE Part 3 of 7)
~imer Interrupt Check and Timer Interrupt Subroutines

(IIVRTE Part 4 of 7)
Asynchronous Interrupt Check Subroutine (IIV~~E
Part 5 of 7)

Asynchronous Interrupt Check Subroutine (IIVRTE
Part 6 of 7)

End-of-Job Routine (IIVRTE Part 7 of 7)
Prompt Reply Processor Routine (TIVPRP Part 1 of 5)
Prompt Reply Processor Routine (IIVPRP Part 2 of 5)
Prompt Reply Processor Routine (IIVPFP Part 3 of 5)
prompt Reply processor Routine (IIVPRP Part 4 of 5)
PRPMAPA and PRPMAP1 Subroutines (IIVPRP Part 5 of 5)

xiv

Direct-~ccess Volume Sharing

256 Flowchart 22A.
257 Flowchart 22B.
258 Flowchart 22C.
259 Flowchart 22D.
262 Flowchart 23A.
263 Flowchart 23B.
264 Flowchart 23C.
265 Flowchart 23D.
266 Flowchart 23E.
261 Flowchart 23F.
268 Flowchart 23G.
269 Flowchart 23~.
272 Flowchart 24A.
213 Flowchart 24B.
214 Flowchart 24C.
215 Flowchart 24D.
276 Flowchart 24E.
277 Flowchart 24F.
278 Flowchart 24G.
279 Flowchart 24~.

280 Flowchart 24J.
281 Flowchart 24K.
282 Flowchart 24L.

285 Flowchart 25A.
286 Flowchart 25B.
287 Flowchart 25C.
288 Flowchart 25D.
289 Flowchart 25E.

SVC ~onitor Routine (11VGR2 Part 1 of 4,
SVC ~onitor Routine (TIVGR2 Part 2 of 4)
SVC 1I.tonitor Routine (T1VGR2 Part 3 of 4)
SVC Monitor Routine (JIVGR2 Part 4 of 4)
Device Sharina Simulation Routine (1IVDVS Part 1 of 8)
Device Sharing Simulation R.outine (I1VDVS Part 2 of 8)
Device Sharing Simulation Routine (I1VDVS Part 3 of 8)
Device Sharing Simulation R.outine (IIVDVS Part 4 of 8)
Device Sharing Simulation R.outine (11VDVS Part 5 of 8)
Device Sharing Simulation R.outine (11VDVS Part 6 of 8)
Device Sharing Simulation Routine (1IVDVS Part 1 of 8)
Device Sharing Simulation Routine (11VDVS Part 8 of 8)
Main ~ask Control Executive Routine (11V18 Part 1 of 11)
Open ~apping Routine (11V1S Part 2 of 1 H
Close Mapping Routine (I1VIS Part 3 of 11)
SETL ~apping Routine (1TVIS Part 4 of 11)
Subtask Control Executive Routine (11V1S Part 5 of 1',
Get Mapping Routine (1IV1S Part 6 of 11)
Put and ESETL Mapping Routine (11V1S Part 1 of 11,
Read Key and write Key Mapping Routines (11VTS
Part 9 of 11)

Write NEWKEY Mapping Routine (11V1S Part 9 of 11)
WA1TF Mapping Routine (11VIS Part 10 of 11)
EODAD, SYNAD, and status ~apping Routines (I1V1S
Part 11 of 11)

VTOC I/O Simulation
VTOC TIO Simulation
\~OC IIO Simulation
VTOC I/O Simulation
VTOC IIO Simulation

Routine
Routine
Routine
Routine
Routine

(I 1VVIO
(IIVV10
(IIVVIO
(IIVV10
(I 1VV10

Part
Part
Part
Part
Part

1 or 5)
2 of "l
"3 of 5)
4 of 5,
5 of 5)

~bnormal End conditions

293 Flowchart 26A.
2q4 Flowchart 26B.

Message Hriter

Exit-ABEND Error Routine (I1VABN Part 1 of 2\
Exit-ABEND Error Routine (T1V~BN Part 2 of 2)

297 Flowchart 21A. Messaae Writer Routine (I IVMSG)

Emulator Service Aids

301 Flowchart 2BA. Service Aids Initialization Routine (11~~S Part 1
302 Flowchart 28B. 11VRASPC, I1VRASVC, and IIVRASYN Subroutines

(1IVRAS Part 2 of 2)
30"7 'l<'lowchart 29A. command processor Routine (IIVRCP Part 1 of U,
308 Flowchart 29B. Command Processor Poutine (IIVRCP Part 2 of 14)
309 Flowchart 29C. GETWORD Subroutine (11VRCP Part 3 of 14)
310 Flowchart 29D. CV~ and RCPPRINT Subroutines (11VRCP Part 4 of 14)
311 Flowchart 29E. Trace Subroutines (11VRCP Part 5 .of 14)
312 Flowchart 29F. Trace Subroutines (IIVPCP Part 6 of 14)
313 Flowchart 29G. Snap Subroutines (IT'IlRCP Part 7 of 14)
314 Flowchart 29H. Snap Subroutines (1DTRCP Part 8 of 14)
315 Flowchart 29J. Snap Subroutines (I1VPCP Part 9 of 14)
316 Flowchart 29K. Storage Subroutines (ITVPCP Part 10 of 14)
317 Flowchart 29L. Diagnostic Subroutines (IT'llRep Part 11 of 14)
318 Flowchart 29M. Exit Subroutines (IIVRCP Part 12 of 11q

xv

of 2)

319 Flowchart 29N.
320 Flowchart 29P.
322 Flowchart 30A.

323 Flowchart 30B.

324 Flowchart 30C.

325 Flowchart 300.

326 Flowchart 30E.
327 Flowchart 30F.
328 Flowchart 30G.
329 Flowchart 30g.
330 Flowchart 30J.
331 Flowchart 30K.
333 Flowchart 31A.
334 Flowchart 31B.
335 Flowchar~ 31C.
337 Flowchart 32A.
339 Flowchart 33A.
340 Flowchart 33B.
341 Flowchart 33c.
342 Flowchart 33D.
343 Flowchart 33E.
344 Flowchart 33F.
345 Flowchart 33G.
346 Flowchart 33H.
348 Flowchart 34A.

349 Flowchart 34B.

350 Flowchart 34C.

351 Flowchart 34D.

352 Flowchart 34E.

353 Flowchart 34F.

354 Flowchart 34G.

355 Flowchar~ 34~.

End Subroutine (TIVRCP Part 13
End Subroutine (IIVRCP Part 14
Snap Dump and Trace Formatting
Part 1 of 10)

of 14)
of 14)
Routine (IIVSNP

Snap Dump and Trace Formatting Routine (IIVSFP
Part 2 of 10)

Snap Dump and Trace Formatting Routine (IIVSNP
Part 3 of 10)

Snap Dump and Trace Formatting Routine (IIVSNP
Part 4 of 10)

Trace Table Suhroutine (ITVSNP Part 5 of 10)
Trace Table Subroutine (IIVSNP Part 6 of 10)
Trace Table and EBCDIC Conversion Subroutines
Write subroutines (IIVSNP Part 8 of 10)

(IIVSNP Part 7 of 10)

Part 9 of 10) write and Data Formatting Subroutines (IIVSNP
Snap Subroutine (IIVSNP Part 10 of 10)
Program Check Intercept Routine (IIVPCI Part
Program Check Intercept Routine (IIVPCI Part
Program Check Intercept Routine (IIVPCI Part
supervisor Call Intercept Routine (!IVSCI)
Asynchronous Intercept Routine (IIVACI Part 1
Asynchronous Intercept Routine (IIVACI Part 2
Asynchronous Intercept Routine (IIVACI Part 3
Asynchronous Intercept Routine (IIVACI Part 4
Asynchronous Intercept Routine (IIVACI Part 5
Asynchronous Intercept Routine (IIVACI Part 6
Asynchronous Intercept Routine (IIVACI Part 7
Asynchronous Intercept Routine (IIVACI Part 8
Service Aids Anjust CCW Data Address Routine

1 of 3)
2 of 3)
3 of 3)

(IIVRCH Part 1 of 8)
Service Aids Adjust CCW Data Address Routine

(IIVRCW Part 2 of 8)
Service Aids Adjust CCW Data Address Routine
(I!VRC~oJ Part 3 of 8)

Service Aids Adjust ccr.J Data Address Routine
(JIVRCW Part 4 of 8)

Service Aids Adjust CCW Data Address Routine
{IIVRCW Part 5 of 8)

Service Aids Adjust CCW Data Address Routine
(ITvRCH Part 6 of 8)

Service Ains Adjust CCW Data Address Routine
(IIVRC".J Part 7 of 8)

Service Aids Adjust CCW Data Address Routine
(IIVRCW Part 8 of 8)

xvi

of 8)
of 8)
of 8)
of
of
of
of
of

8)
8)
8)
8)
8)

SUMMARY OF CHANGES FOR VERSION 2, LEVEL 1

New Urogramming Support

• Release 27 of DOS is supported.

• The DOS residence file (SYS~ES) can be shared (~wo or more Emulators may
share the residence file).

• The DOS residence volume can be shared (OS nata sets may reside on the
DOS residence volume) •

• The Emulator service aids provide a new debug command (D!AG) that causes
a diagnostic message to be orinted when the DOS program restriction
(modifying CC~ls after an I/O request and before I/O completing) is violated.
The service aids also provide a new ~RACE command parameter (NO~rnAP) that
causes the trace table to be dumped each time it is full.

New Device Support

The Emulator now supports the following IBM devices:

• the 3420 Maqnetic Tape unit

• the 3330 Disk storage

• the 3505 Card Reader

• the 3525 Carel punch

xvii

SUMMARY OF CHANGES FOR VERSION 2, LIDTEL 0

Direct-Access Volume Sharing

With the removal of the Version 1 requirement for private volumes, DOS and
OS data sets can now reside on the same DASD volume. Use of this function
is optional for one or more volumes in an Emulator job step. The DOS systems
residence volume cannot be shared.

ISAM Compatibilitv

Unmodified DOS programs running under the Emulator can access OS format indexed
sequential data sets. By changing their DOS indexed sequential files to OS
format, Emulator users can process them using either their old DOS programs
or newly-written OS programs.

BTAM Support

The ~mulator supports DOS BTAM and permits the use of the HIO instruction for
BTAM only.

lmproved Initialization

Optionally available are an automatic DOS IPL and abbreviated emulator prompt.
Use of these can speed up and simplify the operator action required when an
emulation partition is initiated.

Improved Printer Sunport

If the format of printed output is such that the standard forms tape does not
apply, the operator may change format. A new subparameter is provided in the
DD statement to call a carriage tape image from the OS image library. This
image specifies the physical carriage taoe to be mounted on an IBM 1403 Printer.

service Aids

The Emulator optionally provides routines for use as an aid to debugging.

xviii

ABBREVIATIONS USED TN THIS BOCK

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

Note that field names of data areas created, modified Cr interrogated by the
Emulator (fiField Name Table") and symbolic routine names ("Emulator Module
Directory") appear in the "Dil:ectories" s€ction.

abn - abnormal
ACCH list - adjust CCT~ list
ADCONS - address constants
ADDR - addre£'s
AJF - adjustment factor
ASYN - asynchronous interruption address
async. - asynchronous
ASYNEXIT - user asynchroncus routine name
ATTN - attention

BDDD - base/displacement
BEBLK - begif'.ning and end block
BG - background (DOS partition)
BIS~~ - basic indexed seauential access method
BLP - bypass lacel processing
BOF - beginning of file
BSkM - basic sequential access method
BTAM - basic telecommunications access method
BTR - DOS B-transient phase

c - character
CAW - charcnel address word
cc - condition code
CCB - coromand control block
cchh - cylinder/head
ce - channel end
CCW - channel command word (also, in listings, CCW address)
COMP - compare
COMREG - communications region (DOS)
COMTAB - communications table
condo - conditions
CPU - central processing unit
CRnn - register contents compare
CSECT - control section
csw - channel status word
CTEXT - COMTAB extension
cuu - channel and unit

DA - direct access
DADSM - direct-access device space management
[ASD - direct-access storage device
DCE - data control block
DD - data definition
DEB - data extent block
[ECB - data event control blcck
DIAG block - diagnostic block
DLBL - DASD label
DOS - disk operating system
DOSCOM - DOS communication region (see also COMREG)
DOSLOG - DOS system log
DRILIST - local execution list
DSCB - data set control block
DSECT - dummy section
DSN - data set name
DTF - define the file
DTFDA - DTF direct access
DTFIS - DTF ISAM
DTFPH - DTF physical
DTFSD - DTF sequential disk

xix

EBCDIC - ex~€nd€d binary coded decimal interchange code
ECB - event central block
EMBLKS - Emulator and I/O control blocks
BMU - Emulator region
EMUCONS - Emulator constants area
EOF - end of file
EOV - end of volume
EOX - end of extent
ERP - error recovery procedure
EXCP - execute channel r:rcgram
EX'I' - external

Page of GY26-3741
Revised July 2S, 1972
By TNL GN26-8021

F - format (used in context with DSCB); foreground (used in context with
DOS partitions; also PIB)

FCB - forms ccntrcl cuffer
FDAD - full direct-access address
FICL - first in class
FID - file ID
FIDBLK - file ID block

hex - hexadecimal
HIO - halt I/O

ID - identification
Init - initialization
Int. - interrupt
I/O - input/output
lOB - I/O block
IOCS - I/O control system
IPL - initial r:rogram loader
IPSW - PSW at interrupt
IS - indexed sequential
1SAM - indexed sequential access method
ISBLK - ISAM block
ISFMS - indexed sequential file management system
18K - insert storage key

JCL - job control language
JFCB - job file central block

KEY - storage protection key

LCTL - load control
LDMD - DOS load module
LEX list - local execution list
LIOCS - logical I/O control system
LMAD - limit address
LOGIOB - constants and pointers associated with DOS system log
LPSW - load PS'".'1
LTK - logical transient key
LUB - logical unit block

MFT - multiprogramming with a fixed number of tasks
MOD - module name
MVT - multiprogramming with a variable number of tasks

n - decimal nurrber
N/A - not applicable
NICL - number in class
NODOS - DOS storage area omitted
NOP - no operation

opcode - operation code
OP/OPCD - ccw operation code
OPR - operation fcinter
OS - operating system

xx

p - page number
PC - program check (also, in listings, program interruption address)
PCEXIT - user PC exit routine name
PCIL - private core image library
PIB - program information block
PIK - program interrupt key
PRPGM - problem program
PSW - program status word
PUB - physical unit block

QISAH - queued indexEd sequential access method
QSAM - queued sequential access method

R - register
RC - return code
RCCr,qLIST - adjust CCW data address list
RTIQ - reqister number
RPSW - resume PSW
RTN - routine

SCK - set clock
SD - sequential disk
SEEK - seek address for DASD
share - sharing
SlDE - search ID equal
SIO - start 1/0
SKE - search key equal
SLI - sUFpression of possible incorrect length indication
SNS - lOB sense bytes
SSK - set storage key
SSM - set system mask
STCTL - store control
STGCON - constants and pointers associated with staged devices
STIDC - store channel TD
STIDP - store CPU ID
SVC - supervisor call (also, in listings, SVC interruption address)
SVCEXIT - user SVC exit rcutine name
sync. - synchronous
SYSEMcuu - an Emulator DDname (SYSEMl associated with a

DOS channel and unit number (cuu)
SYSLOG - DOS systerr log
SYSREC - system recorder file

t - time (hour, minute, second)
TBL - table
TeB - task central block
TCH - test channel
TCU - terminal control unit
TEB - tape error bloc~
TEBV - tape error by volume
TIC - transfer in channel (also, in listings, TIC address)
'1:'10 - test 1/0
TIOT - task inputloutput table
TRKEAL - track talance

UCB - unit central block
ucs - universal character set

VOL - volume
'IS - virtual storage
VTOC - volume table of contents

WLR - wrong length record

x - hexadeciI!'al

xxi

INTRODUCTION

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

The DOS Emulator program, IIVEMU, executes as a problem program under OS with

I an ~FT, MVT, or VS1 contrcl program. The DOS Emulator program (hereafter
called the Emulator) works in conjunction with the DOS Compatibility Feature.
The functional result is that DOS and DOS problem programs are able to execute
successfully under control of the Operating system.

OOS EMULATION

DOS emulation is a combination of programrring techniques and special machine
features that permit DOS to operate under OS. The Emulator and, subsequently,
DOS are loaded into an OS partition or region. When the Emulator or OS programs
are in control of the CPU, the system is said to be in norrral mode, that is,
operating with true main-storage addresses.

When DOS programs are executing, the system is in local execution mode, that
is, by means of a microprogram and/or hardware, DOS or local addresses are
automatically adjusted to program addresses. When DOS is given control by
the Emulator, the DOS Compatibility Feature effects the changeover to local
execution mode. It does this by adding an adjustment factor (beginning address
of DOS) to all addresses contained in each instruction as that instruction
is processed (except for instructions that address channels and units). DOS
and its problem programs execute in this rrode unaided by the Emulator until
a hardware interruption occurs.

Since DOS operates in local execution mode, supervisor calls and program
interruptions must be intercepted by the DOS Compatibility Feature (a detailed
discussion of this feature is in the Appendix) in order to bypass the OS
interruption-handling mechanism.

In addition to interruption handling, DOS emulation performs most of the
functions normally performed by hardware. I/O operations ca~not be performed
by DOS emulation and are accomplished by use of OS macros and data management
services. Asynchronous interruptions (I/O, external, and machine check) are
handled by OS in the usual manner except that control is returned to the
Emulator before passing back to DOS. (See "Interruption Action Fhen CPU is
in Local Execution Mode" fer more details.)

ENVIRONMENTAL CHARACTERIS1ICS

The Emulator is loaded into an OS partition or region (hereafter called the
Emulator region). One of the Emulator's initialization routines (IIVGET)
issues the GETMAIN macro instruction to obtain space within its region for
DOS and for Emulator and OS control blocks to be used in I/O operations.

DOS is subsequently loaded into the Emulator region, beginning at a 4K boundary.
The Emulator and OS control blocks occupy available space between the Eroulator
and DOS and/or between DOS and the end of the region. Figure 1 shows the
Emulator's main-storage environment after DOS has been loaded.

Introduction 1

At a minimum, the Disk operating System consists of a DOS supervisor and a
background partition (BG). The two optional foreground partitions (F1 and
F2) are shown in Figure 1.

OS
Location

o

Emulator

os and
Emulator

I/O Control
Blocks and
Emulator

Load
Modules

Emulator Region

BG
Supervisor I

I

DOS

I

..... 1--- DOS Area

Figure 1. The Emulator's Main-Storage Bnvironment

RESOURCE REQUIREI-1EN':S

F2 F1

OS and
Emulator

I/O Control
Blocks and
Emulator

Load
Modules

"Resource" is defined here as any input/output device, volume, or data set
required by the Emulator. A resource may be dedicated, staged, or shared.
If a resource is dedicated, it is reserved for the duration of an Emulator
job step. If a resource is staged, input/output is placed in the OS input
or output stream. If it is shared, OS job steps executing concurrently may
access it.

There are three types of input/output devices: unit record, tape, and direct
access. The. DD statements for a DOS emulation run can specify whether a uni t­
record device is to be dedicated or whether its input/output is to be staged.
A tape device by its very nature must be dedicated to the processing job.
A direct-access device cannot be dedicated as such to an Emulator job. It
is evident, however, that if a private volume is mounted on a direct-access
device, the device is, in effect, dedicated to that volume. Direct-access
volumes and data sets may be shared with other processing jobs, or data sets
may be dedicated to an Emulator jobstep.

In terms of access method techniques and data set formats, private volumes
must be requested in DD statements for a DOS emulation run involving DOS indexed
sequential files since they have a different format from OS indexed sequential
data sets and are unrecognizable to the OS indexed sequential access method.

OS ISAM volumes can be shared with other OS regions, but OS indexed sequential
data sets should be shared for read only type operations.

OS sequential DASD and direct-access data sets and DOS sequential DASD and
direct-access files are compatible, so they may be shared by more than one
OS region for read only type operations.

To sum up, the DD statements for a DOS emulation run can specify:

• A group of OS devices to be dedicated for the duration of an Emulator
jobstep,

• Volumes to be dedicated for the duration of an Emulator jobstep,

• Volumes that can be accessed by concurrent OS jobsteps,

2 DOS Emulator Logic

• Files (data sets) to be dedicated for the duration of an Emulator jobstep,

• Files (data sets) that can be accessed by concurrent OS jobsteps,. or

• DOS I/O requests for DOS unit record devices to be staged (spooled) into
the OS I/O stream.

Dedicated Resources

Unit-record and tape devices. Where a dedicated device is of the same type
as that used by DOS in its stand-alone environment, COMTAB (communications
table) maps (assigns an OS device for each DOS device specified in a DO
statement) the DOS device address to a corresponding, but not necessarily the
same, OS device address. In most instances, identical device types are
required, but some exceptions are:

Unit Specified on DO Statement

3211
3420
3505
3525

In the example

Unit Allowed in PUB Table

1403U
2400
2540R
2540P

//SYSEM180 DO UNIT=2400, data set parameters

COMTAB associates the DOS device address 180 with the address of the device
that was allocated to the Emulator job. If the absolute unit address, such
as UNIT=282 were coded, OS would assign the device at that address, if it were
available.

Direct-access volumes. OS can be prevented from allocating temporary data
sets on a DOS Emulator volume if the volume is defined as private in the PRESRES
member of the library SYS1.PARMLIB, or the volume is offline until OS allocates
it for the Emulator, and a DO statement in the following format is specified:

//SYSEM190 DO VOL=(PRIVATE,SER=111111) ,UNIT=2311,DISP=(OLD}
(SHR}

where 111111 is the volume serial number
2311 Disk Storage Drive. Because of the
statement allows DOS access to any valid
of the Emulator end-of-extent appendage.
IGG019SA for further details.

of a private pack mounted on an IBM
absence of the DSN parameter, this
address on the entire volume by means

See the module description for

Other DOS Emulators are prevented from using space on that volume by the use
of ENQ and DEQ macro instructions. Other OS regions are unable to access or
create any data sets on that volume, unless that volume is specifically
requested in the VOL parameter of a DO statement.

Note: Two or more DCBs should never be opened concurrently for output to the
same data set on a direct-access device. If exclusive control of the data
set is not maintained and another DCB is opened before the current DCB is
closed, the updated records can become permanently inaccessible.

DASD data sets. DASD data sets can be made private when the DISP parameter
is coded as shown in this example:

{OLD}
//SYSEM190 DO VOL=SER=222222,UNIT=2311,DSN=A,DISP={NEW}

{MOD}

Introduction 3

In the above example, if data set A were on a volume with multiple data sets,
it would be the only data set on that volume inaccessible to other os regions.
TheODISP parameter does not apply to DOS indexed sequential files because these
files must always be processed on a private volume.

Staged Resources

Unit-record devices need not be dedicated to DOS emulation. Instead, a DOS
emulation jobstream can request the use of the OS input stream and/or the use
of the OS output stream. To take advantage of the former option, DOS program
input is inserted between a //SYSEMcuu DO DATA card and a /* card in the DOS
emulation jobstream. (The channel and unit (cuu) must represent a DOS PUB
(physical unit block) table entry associated with a card reader assignment.
The result of staging DOS input is that the OS reader/interpreter spools DOS
program input to a DASD from which it can later be read.

DOS output can be staged if this card is inserted in the DOS emulation
jobstream:

//SYSEMcuu DO SYSOUT=output class

(The cuu must represent a DOS PUB table entry associated with a card punch
or printer assignment, and SYSOUT must indicate an output class.) OS will
then provide the following services:

• When the Emulator is initiated, space will be reserved for DOS program
output on a DASD.

• After DOS processing has ended, the output will be transcribed by a SYSOUT
writer to an appropriate output device.

Shared Resources

In addition to being able to designate private volumes (discussed in "Dedicated
Resources"), the Emulator is able to designate public volumes, to dedicate
data sets to a particular DOS emulation run (also discussed in "Dedicated
Resources") and to share data sets with other OS regions.

Since unit record and tape devices cannot be shared, this section will discuss
only direct-access devices and, more specifically, DASD volumes and data sets.
The discussion will not include DOS indexed sequential files, which must be
processed on private volumes.

Both OS and DOS data sets can reside on the same volume. During emulation,
OS performs data-set spac~ allocation and DOS is prevented from performing
space allocation. A data set, with the exception of OS indexed sequential
data sets, must reside on one volume.

Figure 2 shows the Emulator methods of accessing DASD data sets. If a volume
is not shared, the program may access any OS sequential DASD or direct-access
data set, any DOS sequential DASD or direct-access file, or any DOS indexed
sequential file. If a volume is shared, the Emulator program takes one of
two paths. If an OS seque,ntial DASD or direct-access data set or a DOS
sequential DASD or direct-access file is being accessed, it is routed through
Emulator module IIVDVS; if an OS indexed sequential data set, it is routed
through Emulator module IIVIS. (For more details, see "Direct-Access Volume
Shari ng. tt) .

4 DOS Emulator Logic

DASD

DOS
Problem
Program

No

OS and DOS Sequential DASD and
Direct Access; DOS Indexed Sequential

Sequential
DASDor ,-------------,

OS Indexed
Sequential

Emulator
Module
IIVDVS

Emulator
Module
IIVIS

Figure 2. Methods of Accessing DASD Data Sets

OS direct-access and sequential DASD data sets and DOS direct-access and
seguential DASD files. One DD statement must be provided for each data set
or file on a shared volume. The DD statement must include a nontemporary data
set name (dsname). The first DD statement must indicate the cuu contained
in the DOS PUB table for that data set. Subsequent DD statements describe
other data sets located on the volume defined by the first DD statement. DOS
control statements (such as DLBL, EXTENT, and ASSGN) are still required for
these files, but the extent information in the EXTENT statement need not be
valid (however, it must be syntactically correct) since the Emulator overrides
this information with the extents supplied by OS.

Typical DD statements for specific volumes are:

//SYSEM132 DD DSNAME=DOS.F1LE.1DA,UN1T=2314,VOL=SER=123456
//anything DD DSNAME=DOS.F1LE.IDB,UN1T=2314,VOL=REF=*.SYSEM132

Typical DD statements for nonspecific volumes are:

//SYSEM132 DD DSNAME=DOS.F1LE.1DA,UN1T=2314,D1SP=(NEW,DELETE) , SPACE= (CYL, (4,2»
//anything DD DSNAME=DOS.F1LE.1DB,UN1T=2314,VOL=REF=*.SYSEM132,

D1SP=(NEW,DELETE) ,SPACE=(TRK, (10,3»

Note that DSNAME= must be followed by the name
the same name as coded in the file 1D field of
if DISP=SHR is coded, data sets may be shared.
another OS task, both tasks can read only.)

of the data set which must be
the DLBL statement. In addition,

(If a data set is shared with

Introduction 5

If two or more data sets on the same volume are used in a job step (see last
example), the SYSEM ddname must be coded for the first data set; thereafter,
a unique ddname not beginning with SYSEM must be coded for subsequent data
sets. The DD statements are tied together when they specify the same volume
serial number, when the SYSE~ ddname is referred to, or when a SYSEM ddname
with a nonspecific volume request is referred to.

os indexed sequential data sets. The Emulator allows DOS problem programs
to create and access os indexed sequential data sets through os indexed
sequential access methods. (See "File Requirements" for a possible

The OS volume{s) on which an os indexed sequential data set resides is described
to the Emulator by the SYSEMcuu DD statement for the volume. The dsname is
used to map to the proper OS data set by means of the Emulator ISAM mapping
routine (IIVIS). The same DOS control statements mentioned in the discussion
of direct-access and sequential DASD data sets are also required for OS indexed
sequential data sets.

Typical DD statements for specific volumes for indexed sequential data sets
are:

//SYSEM132
//
//
//
//SYSEM133
//
//anything
//

DD

DD

DD

DD

DSN=DOS. I SAM. FILEA (INDEX) , UNIT=2314 ,DISP=NEr~,
VOL=SER=,'11'1,DC3=DSORG=IS,SPACE=(CYL,2)
DSN=DOS.ISAM.FILEA(PRIME) ,UNIT=2314,
VOL=SER=222222,DCB=*.SYSEM132,SPACE=(CYL,20)
DSN=DOS.IS~1.FILEB,UNIT=2314,DISP=OLD,

VOL=SER=333333,DCB=DSORG=IS
DSN=DOS.ISAM.FILEC,UNIT=2314,DISP=OLD,
VOL=REF=*.SYSEM133,DCB=DSORG=IS

Typical DD statements for nonspecific volumes for indexed sequential
data sets are:

//SYSEM132
//
//
//
//anything

DD DSN=DOS.ISAM.FILEA(INDEX) ,UNIT=2314,
DISP=NEW,DCB=DSORG=IS,SPACE=(CYL,2)

DD DSN=DOS.IS&~.FILEA(PRIME) ,UNIT=2314,
DCB=DSORG=IS,SPACE=(CYL,20)

DD DSN=DOS.ISAM.FILEB,UNIT=2314,DISP=OLD,
VOL=REF=*.SYSEM132,DCB=DSORG=IS

EMULATOR/OS INTERACTION

This section discusses parts of OS that are used by the Emulator.

OS Macros

The Emulator communicates its service requests to OS with the OS macros listed
in "Diagnostic Aids."

Emulator Appendages

To circumvent certain automatic functions and restrictions imposed by OS (see
the module descriptions for IGG019SA and IGG019S' for more details), two
input/output appendages are required by the Emulator. Both appendages operate
in the supervisor state under a protection key of O. These modules

6 DOS Emulator Logic

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

in the supervisor state under a protection key of O. These modules
automatically gain control at the appropriate time if the last 2 characters
of their 8-character names are specified in the DCB macro instruction.

Reguesting Bypass Label Processing (BLP)

The as open routine, which is called when the Emulator issues an OPEN macro,
must not process DOS tape labels. (DOS does its own label processing.) To
prevent OS from processing DOS labels, BLP must be coded in the LABEL parameter
of every DD card for a DOS tape volume. 'Ihe as Open routine will then find
that the BLP bit is en in every JFCB for tape volumes, and it will bypass label
processing.

Note: JFCBs are built by the OS reader/interpreter. All IBr-1 reader procedures
specify that the reader/interpreter is to ignore BLP if it is encountered on
a DD card. Consequently, the BLP bit will not be on in a tape JFCB unless
the user has modified the IBM reader procedure or written his own.

OPERATIONAL CCNSIDERA'IIONS

Staged Output Considerations

The staged output of DOS jobs in a given emulation run is transcribed from
a DASD to a printer or punch not piecemeal, but all at once, after the emulation
run has terminated. Enough space to receive the combined output of the emulated
DOS jobs should be reserved on the DASD. If more space than the system's
default is needed, the SPACE parameter can be coded on the appropriate Dn
statements. The Emulator job is abnormally terminated if insufficient space
is allotted.

Printer overflow Simulation

DOS receives no indication that staged output to a printer is really output
to a DASD with a later transcription to an OS printer. The F,~ulator, therefore,
must simulate printer overflow indications when DOS output is staged to a
printer.

The user may specify the length and format of the physical forms-control tape
that will be mounted en nonFCB printers, such as the 1403, at the time the
system output writer transcribes the hard copy to the printer. To do so, the
user must allocate and catalog the image as a member of SYS1.IMAGELIB. The
user forms-centrol image must be assembled and link-edited into SYS1.IMAGELIB
before executing the Emulator. See the SETPRT macro in Data Management for
~yste~ Programmers for as or OS/VS for details.

The Emulator creates a forms-contrel image from the Os 3211 FCB image. If
the DD statement FeB parameter is not specified, the Emulator standard forms­
control image applies.

Additionally, a DOS dynamic load of the FCB will override user specifications.
Special commands other than READ FCB and LOAD FCB will be rejected.

The printer overflow default image describes a standard-size page of 66 lines.
The image is formatted with five lines of space at the top and bottom and 12
channels in between, distributed four lines apart. If, for a nonFCB printer,

IntroduCtion 7

a printer overflow indication is required by a DOS problem program, the ohvsical
carriage tape should conform to this format or the printed results will be"
unpredictable.

Emulator separator Feature

The user may stage the output of a Disk operating System being emulated th3t
has more than cne printer or card punch assigned to it by coding a DD statement
for each DOS printer or punch assignment for which output will be staged.
For example:

//SYSEMOOE DD SYSOUT=A
//SYSEM01E DD SYSOU~=A
//SYSEMCOD DD SYSOUT=B
//SYSEM01D DD SYSOUT=B

The Emulator's separator feature writes three separator cards before the punched
output in each stacker of each staged punch and a separator page before the
printed output of each staged printer. At the top of a separator page is the
message:

IIV2751 SYSEMcuu

where cuu identifies the channel and unit of the DOS staged printer.

Each separator card is punched in the following format:

Columns 1-3q
Columns 35-36
Columns 37-qq
Columns 45-46
Columns Q7-80

hexadecimal FFs (12-11-0-7-8~9 punches)
blanks
the DOS address of the staged device (SYSEMcuu)
blanks
hexadecimal FFs

Note: The coding technique shown above for multiple printers and punches is
also used to stage multiple card readers.

Data Set Requirements

DOS indexed sequential files. Only DOS indexed sequential files must be
converted from DOS to OS format to allow them to be shared with other OS
regions. Other types of DOS files need not be converted (see "Sequential DASD
and direct-access data sets").

The left side of Figure 3 shows two DOS programs accessing a DOS data set
before any conversion takes place. Program A is recoded to be run under os
(see right) and is now able to access any OS or OS-compatible data set, that
is, an OS or DOS sequential DASD or direct-access or an OS indexed sequential
data set. Program B, still in DOS format, may access an OS or OS-compatible
data set only with the intervention of the Errulator. The DOS file may also
be converted to OS format; in fact, a DOS indexed sequential file must be
converted to allow OS and DOS volume sharing. If DOS indexed sequential files
are changed to OS format, they can be processed by either their old DOS programs
or newly-written OS programs.

8 DOS Emulator Logic

Before conversion
. of program and/or

data set

Program A
(DOS)

Program B
(DOS)

After conversion of
program A and/or
data set

OS or OS-compatible
data set

Program A
(OS)

Figure 3. Two Programs Accessing a Data Set Before and After
Conversion

Emulator

Program B
(DOS)

Note: For more details concerning program and/or data set conversion, see
Emulating DOS Under OS 2n IBM System/370, GC26-3777.

OS indexed sequential data sets. The Emulator contains a module (IIVIS) to
allow a DOS program executing under the Emulator access to an OS indexed
sequential data set if its logical record format is compatible with the design
of the DOS problem program. In general, the only limitations on indexed
sequential jata sets relate to OS capabilities that do not exist in DOS.

An operational consideration when accessing OS DASD data sets with a DOS program
under the Emulator is that OS optionally supports record deletion and also
dummy records for formatted fixed-length records with keys. Dummy records
must be recognized and record deletion handled by the DOS program.

Sequential DASD and direct-access data sets. sequential DASD and direct-access
data sets need not be converted. Module IIVDVS allows a DOS program executing
under the Emulator to access an OS sequential DASD or direct-access data set
or DOS sequential DASD or direct-access file on a shared volume.

The only limitations in a DOS program accessing an OS data set relate to OS
capabilities that do not exist in DOS. For example, DOS does not maintain
some identifier (format 1) DSCB data set descriptor fields used by an OS
sequential DASD data set. For normal OS processing, this information can be
supplied on the DD statement; however, utility fUnctions such as those performed
by IEHMOVE ignore information supplied in this manner. In addition, DOS FORTRAN
unformatted records may not be acceptable to OS FORTRAN or data management.

Tntroduction 9

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

Another problem tbat might be encountered by a DOS direct-access file is that
nonpreformatted DOS files must be processed as undefined under as. In addition,
a DOS user cannot allocate data sets on a DASD (that is, code a physical address
as a constant) under as as as does its own space allocation. (However, physical
addresses may be used if absolute track allocation is used under as.) Also,
the 'M' of 'MBBCCHHR' (where M = extent, B = bin, C = cylinder, B = head, and
R = record number) is defined differently in as and DOS and will be compatible
only for single-extent volumes.

BTAM. BTAM operates ~ithout change under emulation as a DOS access method,
uS1ng DOS I/O error recovery and statistical recording procedures. Since the
Emulator runs as an as job, as jobs running independently may include as BTAM.
Line groups are defined at the DOS level. To as, each line is a line group
consisting of one line. One as DD statement must ce included for each line
to define the device (line) to the Emulator. The user must define to as the
same type, attributes, and features for the lines, control units, and devices
that DOS has defined for its corresponding lines. For example,

//SYSEM068 rD UNIT=069

relates DOS line 068 to as line 069. All characteristics of line 069, including
device type, adapter type, TeU (terminal control unit) type and features, and
line type, must be the same as those DOS expects for line 068. Lines used
in the emulated DOS job must ce dedicated to that job.

PHYSICAL CHARACTERISTICS

The basic Emulator module (IIVEMU) resides on the system program library
(SYS1.LINKLIB) or on a private library containing an overlay structure and
load modules (see Figure 4). (For further information concerning private
libraries, refer to Supervisor Services and Macro Instructions (ATTACH macro),
Data Management for system Programmers, and the JCL Reference, for as or OS/VS.)
The overlay structure is composed of a root segment and five overlay segments.
The root segment is loaded first and given control by as. IIVINT is the first
module in the overlay segment to be loaded. When there is need for one of
the other modules in the overlay segment, it is loaded over IIVINT, and so
on.

MAIN-STORAGE REQUIREMENTS

The minimum MFT or OS/VS' storage requirement for a DOS emulation run is 23K
bytes plus the size of the Disk Operating System to be emulated. An additional
6K bytes are required with an MVT control program because of the way MVT storage
is managed. (Refer to Storage Estimates for OS or OS/vS for as region
requirements.)

Main-storage requirements are further increased by each of the following
conditions that applies:

• If more than ten devices are used, add 250 bytes for each additional device
(for I/O tables such as the DCB, lOB, COMTAB entry, etc.).

Note: Do not include the 96 bytes required for the DCB. This value is
already accounted for in the 250 bytes specified above.

10 DOS EmUlator Logic

J

Overlay Structure

Overlay Alpha

IIVINT IIVIN2

Overlay Gamma 1

IIVOPN

Loaded By

IIVOPN

IIVIN2

IIVPUB

IIVMSG

IIVPRP

IIVRAS

IIVRCP

OS at Open

IIVFCB
IIVPOV
IIVPRl

IIVRAS
IIVSDT

IIVDVS
IIVGR2

IIVMGl

IIVRAS

IIVRCP

IIVACI

Root Segment

IIVENT
IIVCWV
IIVAWV
IIVPCE
IIVRTE
IIVSVC
IIVLOG
IIVMSG
IIVGET

Overlay Segments

IIVADD

Load Modules

Module Names

IIVPUl IIVRD2
IIVPU2 IIVRD3
IIVRDl IIVRPl

IIVSTG

IIVIS
IIVVIO

IIVMG2 IIVMG3

IIVSNP

IIVPCI IIVSCI

IGGOl9SA IGGOl9S1

IIVPUB

1 Overlay gamma occupies the region immediately following the largest overlay segment of overlay alpha.

Figure q. OVerlay Structure and Load Modules of IIVEMU

Overlay Beta

IIVABN

Required For

Staged I/O

Service Aids
Staged I/O

Shared Resource
Allocation

Message Output

Service Aids

Service Aids

Service Aids

Appendages

IIVPRP

IIVADJ

IIVCCW
IIVCHK

Introduction 11

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

• If a direct-access file other than indexed sequential on a shared device
is specified, 1.2K bytes are required. This figure includes space for
up to five files. Add 115 bytes for each file that exceeds five files.

• If an indexed sequential data set is specified, 6.8K bytes are required
for the data set (2.~K bytes for volume sharing and 4.~K bytes for ISAM),
plus 400 bytes for each ADD or LOAD type DTF specified and 625 bytes for
each RETRVE or ADDRTR type DTF specified. In addition, add the number
of bytes required for the DeB parameters used for each data set. (See
Storage Estimates for OS or oS/VS, and the information in Figure 5 to
determine the number of bytes needed for the DCB parameters used.)

Number of Bytes Required for Indexed Sequential Data Sets

Modules for ADD RETRVE DCB Parameters
Additional

Volume Sharing ISAM or or
Used

Indexed Sequential
LOAD ADDRTR Data Sets.

'--v---" '--.v-" ~
2.4K + 4.4K + 400 + 625 + n Bytes + n Bytes

Number of Bytes Required for Files on a Shared Volume and Indexed Sequential Data Sets

ADD RETRVE DCB
Additional

Modules for Modules for Files Files on
Volume Sharing on Shared volume ISAM or or Parameters Shared

LOAD ADDRTR Used Volume

2.4K + 4.8K + 4.4K + 400 + 625 + n Bytes + n Bytes + n Bytes

DTF Type DCB Parameters Used

LOAD
MACRF=PM, RECFM=F or FB, KEY LEN, LRECL (RKP take their
values from the DTFIS)

ADD MACRF=WAC, RECFM=F or FB

DCB1: DCB2:
RETRVE MACRF=GL, PU, and SK or SI MACRF=RUSC, WUC

,

ADDRTR
DCB1: DCB2:
MACRF=GL, PU, and SK or SI MACRF=RUSC, WUAC

Notes:
Parameters that do not affect storage requirements have been omitted.
Two DCBs are used for the RETRVE and ADDRTR DTF types. DCBl uses OISAM, DCB2 uses BISAM. ..
BLKSIZE takes its value from the DTFIS in all cases.
BUFNO=2 (the default value) in all cases.

Figure 5. Storage Estimates for ISAM

12 DOS Emulator Logic

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

• If files on a shared device and indexed sequential data sets are specified,
7.2K bytes are required for device sharing plus 4.4K bytes for ISAM plus
the number of bytes needed for D'r'F type and DCB parameters used.

• If any DD statement specifies DD DATA, DD *, or DD SYSOUT, add 1850 bytes
(for the staged I/O routines) •

• For each unique device type defined by a DD DATA, DD *, or DD SYSOUT
statement, add 256 bytes (for the device command code translate table).

• If any DD statement specifies DD DATA, DD *, or DD SYSOUT, add the number
of bytes used by QSAM. This number is variable and depends upon which,
if any, QSAM modules are resident in the particular operating System being
used. Refer to Storage Estimates for os or OS/VS, and the information
in Figure 6 to arrive at this figure.

• If the service aids are used, 14K should be added to the storage estimates
for the Emulator.

Number of Bytes Required for QSAM Data Sets Used in the Emulator

OSAM Modules of OS
DCB Parameters of DCB Parameters of Additional DCB
I nput Stream Output Stream Parameters of I/O Stream

V'

n Bytes + n Bytes + n Bytes + n Bytes

OS Stream Used DCB Parameters Used

OS I nput Stream DSORG=PS, RECFM=FB, MACRF=GL

OS Output Stream DSORG=PS, RECFM=VBA, MACRF=PL

Notes:
BUFNO=2 for output. For input, the reader procedure value is used.
For output, BLKSIZE=9 plus the maximum number of bytes that can be transferred to the unit record device. The

reader procedure value is used for input.
Buffering is simple. Scheduling is normal.

Figure 6. storage EstimateS for QSAM

Introduction 13

METHOD OF OPERATIO~

To become completely familiar wit~ the method of operation of the Emulator,
the user of this manual must have a working knowledge of System/370 status
switching, interruption mechanism, and input/output operations. An
understanding of the DOS Compatibility Feature is also helpful. (See the
Appendix for a complete description of this feature.) This section describes
each of the four major operations of the Emulator and each Emulator module.

Method of operation 15

One of the four major operations of the Emulator is to initialize the OS region
in which it resides. It accomplishes this by verifying parameters given on
the DD statements, establishing the DOS storage area, initializing Emulator
tables, and doing an initial program load of DOS. It concludes basic
initialization procedures by passing control to DOS.

The second major operation of the Emulator is to deal with ~nterruptions that
occur during operation of DOS programs. These include synchronous (supervisor
call and program check) and asynchronous (input/output, external, and machine
check) interruptions.

The third major operation of the Emulator allows the user additional
capabilities on an optional basis:

• Ability of multiple OS regions to concurrently access the same direct­
access volume.

• Ability of unmodified DOS programs to access OS-formatted indexed sequential
data sets.

The final major operation of the Emulator is to either terminate a job running
in a given DOS partition or terminate any operations being performed by the
Emulator. Termination takes place when serious user or program errors are
detected.

These major operations are required (except the third, which is optional) to
achieve the Emulator's single fUnctional objective, which is to enable DOS
problem programs to be run on a System/370 under OS. Refer to Figure 23 for
an overall functional diagram of the Emulator.

INITIALIZATION

The Emulator is an OS problem program invoked by OS JCL. It receives control
at entry point IIVENT. The address of the user parameter area (which contains
operands from the PARM parameter of the Emulator EXEC statement) is passed
to the Emulator at this time. Initialization routines verify parameters,
establish DOS storage, initialize Emulator tables, and perform DOS initial
program load.

Figure 7 shows the major steps in initializing the Emulator region and shows
control passing from one routine to another. (Figure 16 entitled "OS Region
at Beginning of DOS IPL" shows a map of the Emulator region before
initialization. Figure 1 entitled "The Emulator's Main-Storage Environment"
shows a map of the Emulator region after initialization.)

16 DOS Emulator Logic

II VENT (Entry Point) IIVIN2 DOS

Saves registers V Brings the DOS IPL phases into
_ _ _ _ _ _ _ _ _ _ _ DOS storage

Branches to IIVIN2 - - - - - - - - -

I P L Bootstrap records
($$A$IPL 1)

IIVCON (CSECT)

Emulator common data

area (see Figure 57-
Emulator Common
Data Area)

- - - -. Change of a Value

------. ... Transfer of control

- - - -- Functions within
CSECT

----- Control sections

IIVADD

IIVPUB

Builds IPL control
statement

Validates COMTAB
entries and builds OS
PUB table (see Figure
66-0S PUB and DOS
PUB Tables)

Zeroes out the op code of the

first instruction of the DOS V
I PL clear storage routine \

\ f---------- \
Gives control to DOS via IIVRTE \\

First load of a DOS
I P L phase ($$A$I PL2)

L.-----------~DOSIPL' ---.-------

Begins ~ x·oo· I
,-II_V_P_C_E _________,.. ------ ___ J DOS I PL clear

FIRSTPC Subroutine

Places DOS system size m
register 11 for DOS

1-------- ---
Returns to DOS via IIVRTER2

IIVPCE

LPSWRTN Subroutine

1----------
INTRPT Subroutine

Simulates an interruption from
the DOS IPL device

f-----------
Returns to DOS via IIVRTER2

IIVSVC

Label SVC300
DOSI PL 4 AUTO
DOSIPL = AUTO

1----------
Returns to DOS via IIVRTER2

IIVSVC

storage routme
Program check occurs
when zero op code is
executed v -----------

LPSW(WAIT)

$$IPLRT2 DOS Phase

f----___ *------- --

SVC 14 (EOJ)

Figure 7. IPL of DOS Supervisor During Initialization

Method of Operation 11

verifying Parameters

The user parameter area is inspected to ensure that all required parameters
have been soecified. ~he values of the oarameters are saved for use curing
the initialization operation. If parameter values are missing or invalid,
the Emulator is SOles a wrOR to obtain them from the system operator. (See
"Dependence on OS" in the section "Diagnostic Aids" for an exolanation of the
H'T'OR macro.)

Establishing the DOS Stor~e Area

The value specified by the DOSSYS parameter plus a ~K-byte boundary alignment
factor is used in an OS GE~MAIN macro to obtain the storage area into which
DOS will later be loaded. ~he starting address is rounded up to the nearest
~K-byte boundary and the entire area is initialized to binary zeros. A ~REEMAIN
is then issued to release the extra 4K bytes at the heginning and end of the
area. Subsequent GE~~~INs obtain parts of this area for Emulator ~nd OS I/O
control blocks.

Initializing Emulator Tables

The following Emulator tables are built during the initialization operation.

Communications Table (COMTAB)

The communications table provides pertinent information about OS and DOS device
correspondences. (See the section, "Data Areas" for the COMTAB format.)

One COMTAB entry is created for the DOSLOG system log (~OSLOGl and one for
each device defined by a DD statement that contains a ddname beginning with
the characters SYSE. After the table has been created, the entries are sorted
in ascending order by their DOS channel and unit (cuu) numbers. The starting
storage ao.dress of COMTAB is placed in the Emulator constants area (IIVCON).

COMTAB Extension

If a JFCB indicates a shared volume (contains a nontemporary dsname), a COMTAB
extension entry is temporarily built and chained to the COMTAB entry. This
temporary COMTAB extension consists of the ddname and dsname. The open flag
(bit 7 1n CTFLAG) and the shared volume flag (bit' in CTFLAG3) in COMTAB are
set to indicate the presence of a temporary COMTAB extension.

The ddnames in the TIOT that do not begin with the characters SYS (or JOBLIB
or STEPLIB) are counted; the resulting number is the number of data sets that
reside on shared direct-access storage devices. The count is used to compute
the storage needed for the COMTAB extension.

,8 DOS Emulator Logic

ISK/SSK Table

This table is used to record the keys that would be set by the SSK instruction
if the Dos problem program were run under stand-alone DOS. When an ISK
instruction is issued, the Emulator sets the storage key in conformance with
the way in which it was set by the previous SSK instruction; the Emulator
obtains the information from this table. This method of simulating storage
protection does not provide true storage protection, which is provided by
hardware under normal circumstances. It does, however, allow the DOS supervisor
to check the location of control blocks to assure that they are in the proper
task I s area.

ECB Pointer Table

There is one event control block (ECB) for each DOS device. The ECB is located
in a COMTAB entry. The Operating System uses this 4-byte control block to
indicate the completion of an event (such as input, output, or timing) to the
Emulator.

This table is a list of addresses of each ECB in the Emulator: one entry for
a WTOR, one for the operator prompt, one for the timer, and one for each ECB
contained in COMTAB.

Post ECB List

This list contains a 2-byte entry for each completed interruption not yet
simulated to DOS and, therefore, outstanding to DOS. Each entry consists of
the byte offset to the associated COMTAB entry and the completion code from
the ECB. The list is used to ensure that I/O interruptions are simulated to
DOS on a first-in, first-out basis.

OS Physical Unit Block (PU~ Table

The OS PUB table provides a one-to-one correspondence between a DOS device
(whether dedicated or staged) and its associated OS device. Each 1-byte entry
contains a byte offset to the corresponding COMTAB entry. An entry that
contains X'FF' indicates the absence of an OS assignment.

Data Control Block (DCB)

One DCB is associated with each dedicated resource, except the DOS system log
(DOSLOG) device, and one DCB is associated with every data set on a shared
volume.

When DOS issues its first I/O request for a dedicated resource, IIVOPN obtains
storage area for the DCB, initializes the DeB, and opens the DeB. The storage
address for the dedicated resource DCB is placed in the corresponding COMTAB
entry.

When DOS issues an OPEN for a shared data set, IrVDVS obtains storage area
for the DCB, initializes the DCB, and opens the DeB. The storage address for
the shared data set DeB is placed in the corresponding COMTAB extension entry.

Method of operation 19

Input/Output Block (lOB)

Each COMTAB entry, including the COMTAB entry for DOSLOG, contains an lOB.
The lOB is initialized when the DCB is created (see "Data Control Block (DCB)").
The format and contents of the lOB varies, depending on whether the device
is to be staged, is the DOSLOG device, or is neither.

DOS IPL

After the first part of initialization has been completed, the DOS IPL phases
must be read into the DOS main-storage area. The Emulator builds channel
programs and issues EXCPs to read the DOS bootstrap records into storage.
The Emulator adjusts the CC~~ data addresses in the bootstrap records and again
issues an EXCP. When the DOS bootstrap channel program is successfully
completed, the DOS IPL phase $$A$IPL2 has been read into the DOS area of the
Emulator region.

One of the functions of $$A$IPL2 is to clear main storage by moving zeros
throughout main storage until a program interruption (addressing exception)
occurs. This function cannot be performed in an emulated environment since
it would destroy Emulator tables and control blocks. To bypass this function,
the operation code of a move character (MVC) instruction in the clear storage
loop of $$A$IPL2 is set to O. When the DOS phase ($$A~IPL2) executes, the
zeroed operation code causes a program interruption (operation exception) ;
then the Emulator simulates the expected program interruption (addressing
exception) to DOS. Control then passes to the DOS IPL routine.

Passing Control to DOS

Control is passed to DOS when the Emulator issues the execute local instruction.
Conceptually, this instruction is much like an LPSW. (See the Appendix.for
a complete description of the execute local instruction.)

Before an execute local instruction can be issued for the first time, however,
a PSW must be built in the first doubleword of the local execution list which
effectively becomes the current PSW. Only the 3 low-order halfwords of the
PSW are used by the execute local instruction. The instruction address portion
of the local execution PSW contains the local (unadjusted) DOS instruction
address. This address plus the adjustment factor (origin address field in
the local execution list) points to an area in storage where the next DOS
instruction to be executed resides.

When the execute local instruction is executed, the following sequence of
events occurs:

• The 3 low-order halfwords of the current PSW are replaced by the
corresponding fields of the local execution ~SW.

• The contents of registers 14 and 15 are replaced by the third and fourth
words of the local execution list.

• The CPU enters local execution mode.

• The next instruction to be executed is fetched by the CPU from the storage
location specified by the DOS instruction address plus the adjustment
factor.

DOS then retains control until a hardware interruption occurs, at which time
the CPU leaves local execution mode.

20 DOS Emulator Logic

INTERRUPTION ACTION WHEN CPU IS IN LOCAL EXECUTION MODE

The Syst~m/370 interruption mechanism, which stores the current PSW as an old
PSI>'1 and fetches a new PSW, functions in a special fashion when the CPU is in
local execution mode. To follow the machine interruption logic usea by
Syst~m/370, refer to Figure 8.

In general, the current PSW is stored in the first doubleword of the local
execution list (local execution PSW) and the instruction address portion of
the current PSW is replaced by one of the three possible interruption addresses
located in the local execution list (see the "Data Areas" section for the
format of t~e local execution list). If the cause of the interruption was
asynchronous (I/O, external, or machine check), the current PSW is then stored
as an old (OS) PSW and a new (OS) PSW is fetched. If the cause of the
interruption was synchronous (SVC or program), the current PSW with the new
instruction address remains current and the normal interruption mechanism of
the CPU, and therefore the Operating System, is bypassed.

~ronous Interruptions

Supervisor Call (SVC) Interruptions

The SVC instruction address field (bytes 28-31) of the local execution list
contains the address of moaule IIVSVC. This module automatically gains control
if an SVC interruption occurs while the CPU is in local execution mode.

The main function of IIVSVC is to simulate the interruption action normally
performed by hardware in a stand-alone system. The local execution (DOS
current) PSW is moved from the local execution list into the DOS SVC old psw,
and the DOS SVC new PSW is moved into the local execution PSH.

When the execute local instruction is eventually issued, the local execution
PSW becomes the current PSW and the interruption action will have been
simulated. Refer to "Passing Control to DOS" and the Appendix for further
details.

An additional function of IIVSVC is to check the SVC number for the first SVC
4 and SVC 14. The first SVC 4 (DOS LOAD) signals that the DOS supervisor is
in storage and ready to begin processing IPL input. The first SVC 14 (DOS
EOJ) is assumed to signal the end of DOS IPL and initialization. If an OS
indexed sequential or an OS or DOS sequential DASD or direct-access data set
is being accessed, control is passed to module IIVGR2 to monitor the DOS­
initiated supervisor call interruption.

Program Interruptions

The program interruption address field (bytes 32-35) of the local execution
list contains the address of module IIVPCE. This module automatically gains
control if a program interruption occurs while the CPU is in local execution
mode. The different ways in which program interruptions are handled are divided
into the following categories:

• First program interruption
I. Store clock program interruption

• IPL interruption
• Normal program interruption
• Privileged operation

Method of operation 21

First Program Interruption

The first program interruption the Emulator expects to receive from DOS is
an operation exception occurring in the Emulator-modified clear storage loop
in DOS IPL phase $$A~IPL2.

Store Clock Program Interruption

The System/370 store clock instruction is executed. The OS clock value is
then adjusted by a value which was computed by the set clock routine in module
IIVPCE.

IPL Interruption

The DOSIPL parameter pass~d to the Emulator in the PARM field of the EXEC
statement specifies the DOS unit that will contain the DOS IPL statements.
An I/O interruption from the device specified in the DOSIPL parameter is
simulated to DOS when the Emulator encounters the first PSW with channel
interruptions enabled and the wait bit set to 1.

Normal Program Interruption

Except for the first program interruption, IPL interruptions, and DOS
supervisor-initiated privileged operations, the Emulator simulates the action
of the hardware in a DOS stand-alone system by moving the local execution PSW
to the DOS program old PSW and the DOS program new PSW to the local execution
PSW. When the execute local instruction is eventually issued, the interruption
action will have been simulated.

Privileged operation

If the interruption code portion of the local execution PSW indicates that
the program interruption was caused by a privileged operation exception, the
local execution PSW is further examined to determine whether the problem program
bit (bit 15) had been set by the DOS supervisor. If this bit is set to 1
(problem program state), the program interruption is passed on to OOS. (See
"Normal Program Interruption" for details on how this type of interruption
is handled.) If this bit is set to 0 (supervisor state), the instruction that
caused the privileged operation exception determines the action taken by the
Emulator.

Note: The first halfword of the local execution PSW is ignored by the execute
local instruction. The contents of the fields within this area are maintained
only to preserve the continuity of functions either not supported or simulated
by the Emulator (such as status switching, storage protection, etc.)

The following privileged operations are simulated by the Emulator:

• ISK - insert storage key
• SSK - set storage key
• SSM - set system mask
• LPSW - load PSW
• LCTL - load control
• STCTL- store control
• STIOP- store CPU ID
• STIDC- store channel 10*
• SCK - set clock*
• TCH - test channel
• TIO - test I/O
• HIO - halt I/O
• SIO - start I/O

*The functions of these instructions are ignored, the condition code is set to
zero and control is returned to DOS.

Method of Operation 23

Privileged instructions RDO, WRO, and DIAGNOSE, and the DOS Compatibility
Feature instructions (execute local and adjust CCW string) are treated as
program interruptions. (see "Normal Program Interruption" for procedure.)
~he system/370 privileged instructions (LCTL, STCTL, STIDP, STIDC, SCK) are
simulated only when a DOS Release 27 system is being emulated.

Insert storage key (ISK): The contents of the first operand register of the
ISK instruction are replaced by the entry in the ISK/SSK table associated with
the 2K block of storage specified in the second operand.

Set storage key (SSK): The key specified in the first operand register of
the SSK instruction replaces the entry in the ISK/SSK table associated with
the 2K block of storage specified in the second operand address.

Set system mask (SSM): ~he mask located at the storaqe address specified in
the operand of the SSM instruction is placed in the first byte of the local
execution PSW.

Load program status word (LPSW): The program status word located at the address
soecified in the LPSW instruction is moved into the local execution PSW. An
additional function of the LPSW simulation subroutine is to intercept the first
LPSW that specifies a PSW with interruptions enabled and the wait bit set to
1 during IPL. When this condition is met, an I/O interruption is simulated
to DOS. (See "IPL Interruption" for procedure.)

Load control (LCTL): Control register information (starting at the DOS main­
storaqe address specified in the LCTL instruction and continuing through as
many storage words as the number of control registers specified) is moved into
the control register field labeled CTLREGS in EMUCONS.

Store control (STCTL): Control register information is moved from the control
register field labeled CTLREGS in EMUCONS to the DOS main-storage address
specified by the STCTL instruction and continuing through as many storage words
as the number of control registers specified.

Store CPU ID (STIOP): Eight bytes of CPU identification information are moved
from a field (labeled CPUID) in EMUCONS to the DOS main-storage address
specified in the STIOP instruction. The CPUID field in EMUCC~S is initialized
by the Emulator start I/O appendage. (See "I/O Appendages" in this section.)

Store channel 10 (STIOC): The condition code field of the local execution PSW
is set. to zero (channel ID correctly stored). Control is returned to OOS.

Set clock (SCK): The resulting values of the difference between the OS time­
of-day clock and the DOS time-of-day clock is computed and saved in EMUCONS.
The DOS GETIME routine (SVC 34) is searched for the store clock instruction
(SCK) and the opcode is set to zero. The condition code field of the local
execution PSW is set to zero (clock value set). Control is returned to ~OS.

Test channel (TCH): This instruction is simulated when the TCH simulation
subroutine tests the device-busy flag in COMTAB. All COMTAB entries associated
with DOS devices on the specified DOS channel are tested. If any of the devices
are found to be busy, the condition code portion of the local execution PSW
is set to 2 (channel busy). Otherwise, the condition code i~ set to 0 (channel
available) .

Test I/O (TIO): This instruction is simulated when the TIO simulation
subroutine tests various fields in the COMTAB entry that corresponds to the
device addreEsed in the TIO instruction.

24 DOS Emulator Logic

The following TIO condition codes may be set in the local execution PSW and
passed back to DOS to indicate which of the following conditions exists:

condition
Code Meaning

o
,
2

3

Device not busy

CSW stored (CSW is moved from associated lOB
into CSW area of DOS storage when I/O is complete)

Device busy (I/O not complete)

Not operational (no COMTAB entry found or CTFLAG,
nonoperational flag, is set to 1)

Halt I/O (HIO): The OS macro IOHALT is issued to perform an HIO instruction.
A condition code of 1 (CSW stored) with a CSW status of 0, is posted to the
DOS supervisor, indicating the operation has been halted.

Start I/O (SIO): Because the Emulator executes as an OS problem program, a
DOS request for input or output can be satisfied only with the assistance of
OS data management. How the I/O request is actually hand~ed is determined
by the following criteria:

•

•

•

, .

2.

If the I/O request is made to the DOS console device (DOS LOG) , the request
is interpreted and reissued in the form of an OS WTO or WTOR (see 1 below).

If the I/O request is made to a unit-record device that is to be spooled
from or to a temporary data set, the request is interpreted and reissued
in the form of an OS GET or PUT (see 2 below).

For all other I/O requests, the channel command word data addresses are
adjusted and the request is reissued by means of OS channel programming
(EXCP) techniques (see 3 below). 8 j r V I r V

I/O operations - DOS system console. The~ a problem program,
executing under OS, can communicate with the operator is to issue a WTO
or a WTOR macro instruction by means of module IIVLOG. The parameters
supplied to these macros will provide the message length, the storage
address of the message to be issued and, in the case of a WTOR, the reply
length and storage address.

IIVLOG gains control at DOS SIO from module IIVPCE. DOS CCWs are located
and checked for validity. If the CCW command code is for a write, the
request is reissued as a WTO. If the command code is for a read or for
a read chained to a write, a WTOR is issued. The WTO or ~~TOR length
parameters are modified, as required by the Emulator. Data is moved to
or from the DOS storage area.

I/O operations - staged unit-record devices. In a multiprogramming system,
when the interpreter task of the operating System encounters a DD * or
DD DATA statement, a temporary data set is created on a direct-access
device. Input data that follows the DD statement is spooled (temporarily
written) to that data set until the~* elimiter is encountered. The data
for any subsequent input requests is retrieved from the temporary data
set. D L- M ~

A DD statement specifying a SYSOUT class (for example, DD SYSOUT=A) causes
OS to create a temporary data set on a DASD. All subsequent output data
for that class is spooled to that temporary data set. At job termination,
the data in the temporary data set is routed by the OS system writer to
the unit-record device specified in the JCL.

Method of Operation 25

staged I/O receives control at DOS SIO. DOS CCWs are located, checked
for validity, and interpreted. A QSAM GET or PUT macro is issued and the
data is moved to or from the DOS area. Machine control characters (DOS
ccw command codes) are placed in the output records to cause printer
skipping and spacing and punch stacker selection. Unit-record device
operations are simulated to DOS. A CSW and sense byte are maintained for
each staged device. These indicators simulate unusual device conditions
such as unit check or incorrect length as well as the usual channel
end/device end condition.

If errors are discovered by staged I/O modules in the DOS CAW or in the
CCW addressed by the CAW, the CSW stored (CC=01) condition is set in the
local execution (current) PSW, the CSW is moved into the DOS low storage
area, and control is returned to DOS. Under all other conditions, the
DOS SIO condition code is set to 0 (successful). DOS does not receive
the simulated interruption until it enables channel interruptions through
an LPSW. The CSW built during the previously staged SIO simulation is
now moved into the DOS low storage area.

Printer overflow is handled by module IIVPOV, which simUlates the printer
carriage tape operation to DOS. This function provides channel 9 and 12
indications for DOS in the same manner as the hardware does. (See "Printer
Overflow Simulation" for more details.)

Staged I/O uses the following modules (see Figure 9) :

IIVSTG

IIVAWV

IIVCWV

II VP OV

IIVFCB

IIVPR1

IIVRP1

IIVRD1

IIVPU1

IIVRD2

IIVPU2

IIVRD3

IIVPU3

contains the main logic for staging both input and output.

verifies the validity of the DOS CAW and locates the first
CCW for the I/O operation.

verifies the validity of the CCW being processed and follows
the channel program logic by replacing the addresses of
the TIC (transfer in channel) CCWs with the CCW addresses
to which the TICs point.

supports printer overflow. This module may be omitted from
the Emulator linkage editor at the system programmer's
discretion by coding PARM.LKED=LET.

is the FCB image that resides in SYS1.IMAGELIB. Module
IIVSTG converts this image to an Emulator format forms­
control image (FC92EM01).

contains the command code translate table for 1403 and 1443
Printers.

contains the command code translate table for a 2540 Card
Read Punch.

contains valid reader commands in the command code translate
table for a 1442 Card Read punch.

contains valid punch commands in the command code translate
table for a 1442 Card Read Punch.

has the same function as IIVRD1 for a 2520 Card Read Punch.

has the same function as ITVPU1 for a 2520 Card Read Punch.

contains the command code translate table for a 2501 Card
Reader.

contains a command code translate table for a 3525 punch.

26 DOS Emulator Logic

~
rt

5
0-

o
HI

o
'0

c1l
11
III
rt
o ::s

tv
-..J

r
"%j

<.Q
s=
11
ro
'.D

CIJ
rt
III

<.Q
c1l
0-

H
......
0

()

g
rt
Ii
0
I-'

"d
~

-8
Ii
III
S
"tj
I-'
0
~

Local
Execution
List

DOS Storage
(DOSCORE)

Communications
Table (COMTAB)

("

Entered from IIVPCE when
staging is requested

• By Emulator default
(lIVFCB)

• By user-supplied image
(FCB on DD statement

• Dynamic FCB load
from DOS

Emulator Forms
Control I mage

~ Emulator routines

Staged 1/0
Constants

(STGCON)

Dummy lOB
Area

D Control blocks, tables, and work areas

--. Inspection of control blocks, tables,

ana work areas

- - Transfer of control

("

1403/1443 Printer
Translate Table
(lIVPR1)

2540 Reader Pu nch
Translate Table
(1IVRP1)

1442 Reader
Commands Translate
Table (lIVRD1)

1442 Punch
Commands Translate
Table (lIVPU1)

2520 Reader
Commands Translate
Table (lIVRD2)

2520 Punch
Commands Translate
Table (1IVPU2)

2501 Reader
Translate Table
(1IVRD3)

3525 Punch
Translate Table
(lIVPU3)

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

3. I/O operations - all other I/O requests. In general, by issuing the EXCP
macro instruction, the Emulator requests the execution of the channel
program specified in the lOB. To initiate execution of the channel program,
the operating System obtains its address from the lOB, places t~ddress
in the CAW, and issues an SIO instruction. (For further informati~ ~ J
concerning channel program execution, see Qata Management for System r, , 7
Programmers for OS or OS/VS.) .

The channel program is supplied by DOS and is composed of CCWs on doucleword
boundaries. Each C~~ specifies a cornrrand to be executed and, for commands
that initiate data transfer, the area to or from which the data is to be
transferred.

Before issuing the EXCP macro instruction, the Emulator must adjust the
data addresses in each CCW through the use of adjust ccw string, a DOS
Compatibility Feature instruction. (See the Appendix for a detailed
description of this instruction.) When the input/output operation is
complete, the CCW data addresses are readjusted to their original values.

The DOS channel program is then executed with the following exceptions:

• For direct-access devices, the DOS initial CCW sequence of SEEK-~IC
or SEEK-SET FILE MASK-TIC is bypassed by the Emulator so that the
OS functicn is not suppressed.

• For magnetic-tape devices, the DOS initial SET MODE-TIC sequence,
if present, is bypassed by the Errulator. If the set mode opcode is
different than that contained in the OS DEB, a stand-alone set mode
is issued so that the Emulator start I/O appendage can move the new
set mode opcode to the DEB. The remainder of the DOS user's channel
program is then executed.

I/O Appendages

A start 1/0, end-of-extent, channel end, and abnormal end appendage (IGG019SAl
and an abnormal end/channel end appendage (IGG019S1), both of which reside
on SYS1.SVCLIB, are used by the Emulator.

Start I/O, End-of-Ext~nt, Channel End, and Abnormal End Appendage

The Emulator issues an OPEN macro to open the VTOC of each dedicated direct­
access volume to be used in an emulation run. OS OPEN builds a DEB in protected
storage for each direct-access device, reflecting the upper and lower bounds
of each VTOC data set. Any subsequent attempt to gain access to data outside
of these boundaries results in an extent violation and termination of the I/O
operation.

Since DOS problem programs must be able to refer to any location on a dedicated
DOS VOlume, and not just the VTOC, the extent limits in each DEB must be changed
to specify the extents of the cylinder being accessed each time an extent
violation occurs. The Emulator's end-of-extent appendage, running with a
protect key of 0, is able to enter protected storage and make this change
before an SIO instruction is issued. This appendage is used only for DOS
private volumes.

This does not hold true for data sets on shared volumes since the data set
defined in the DD statement is opened and not the VTOC.

28 DOS Emulator Logic

Prior to execution of the os SIO and after the Emulator EXCP is issued, the
start I/O appendage is entered to modify the DASD volume's file mask in the
DEB. The file mask is modified in conformance with the DOS SFM command. If
DOS does not issue an SFM command, the file mask is set to X'OO'. The start
I/O appendage is also entered to modify the tape set mode opcode in the DEB
to conform to the mode requested by the DOS I/O supervisor.

Abnormal End/Channel End Appendage

The Emulator uses the abnormal end appendage to bypass the OS error recovery
procedures for an end-of-cylinder condition on a direct-acce~s device and a
rewind-unload condition for tape or channel 9 is encountered for printer
devices. When one of these conditions is detected, the abnormal end appendage
resets the lOB exception flag to prevent the OS error recovery procedures from
being entered. A normal return to the OS I/O supervisor is made and the I/O
operation is posted complete.

The channel end appendage is entered for all tape and unit record devices at
channel end. U~on receiving an incorrect length unit exception indication,
the appendage turns off the lOB exception flag to prevent the OS I/O supervisor
from loading error recovery routines. otherwise, the I/O supervisor performs
its normal processing. For chaining checks on tape, this appendage turns on
the data chain bit in IOBFLAG1 to inform the tape error recovery procedures
not to retry the channel program.

Asynchronous Interruptions

The asynchronous interruption address field (bytes 36-39) of the local execution
list contains the storage address of module IIVRTE. This module gains control
from OS after the processing of an asynchronous interruption that occurred
while DOS was in control.

The main functions of this module are to proce~s DOS-initiated asynchronous
interruptions and to pass control to DOS by issuing the execute local
instruction. (See ""assing Control to DO~" for details.)

Input/Output Interruptions

The ECBs that are pointed to by entries in the ECB pointer table are tested
and a post ECB list entry is created for each ECB indicating I/O completion.
Hhen the system mask portion of the local execution PSW is set so that I/O
interruptions are enabled and one or more post ECB list entries exist, a
hardware interruption is sirrulated to DOS.

The CSW is moved from the lOB to DOS location 64. ~he local execution PSW
is moved to the DOS 1/0 old PSW and the DOS channel and unit address is placea
in the interruption code portion of the DOS IIO old PSW. The DOS I/O new PSP
is then moved to the local execution PSW. If the interruption was initiaten
by a reply of A~TN to the Emulator prompt, the attention bit in the status
portion of the DOS CSW is set to 1. When the execute local instruction is
issued, the interruption is simulated.

Mpthod of operation 29

Interval Timer Interruptions

The OS sup~rvisor macro instruction STIMER is issued at 1-second intervals
when the Eroulator parameter DCSTIM=YES has been specified in the FARM field
of the EXEC statement. This ensures the continuous maintenance of the DOS
interval timer. Accuracy of the DOS interval timer will depend upon the
priority of the Eroulator job. f.7 ~
When the ECB associated with the eXPira+~of a 1-second interval has been
posted, DOS location 80. is decreased hyJ!)~nd the STIMER is r~issued. Hhen
the DOS timer value becomes negative and the system mask portion of the local
exe~ution PSW is set so that external interruptions are enabled, a timer
(external) interruption is simulated to DOS.

The local execution PSW is moved to the DOS external old PSW and the DOS
external new PSW is moved to the local execution PSW. When the execute local
instruction is issued, the interruption is simulated.

External Interruption Simulat.ion

When an operator-initiated external interruption is required by a DOS problem
program, the operator replies EXT to the Emulator prompt. If the system mask
portion of the local execution PSW is set so that external interruptions are
enabled, the local execution PSW is moved to the DOS external old PSH and the
DOS external new PSW is moved to the local execution PSW. When the execute
local instruction is issued, the interruption is simulated.

DIRECT-ACCESS VOLUME SHARING

r,Yith the removal of the Version 1 requirement for private volumes, OOS and
OS data sets can now reside on the same DASD volume. This is optional for
one or more volumes in an Emulator job step. DOS indexed sequential files,
however, car.not be shared and must be accessed from dedicated volumes.

A data set located on a shared volume is defined through OS rD statements,
and its allocation and maintenance in the VTOC is done through OS JCL by the
OS direct-access device space management (DADSM) routines.

When DOS wants to allocate a file, as specified by DOS DLBL and EXTENT
statements, the open routines maintain the VTOC of the DOS file to its
corresponding volume by using the information in the DTF (type of file, extent
sequence number) and the DLBL/EXTENT card image (location of the file on the
volume, total number of extents, type of extents, •

The volume-sharing simulation routines, IIVGR2, IIVDVS, and lIVVIO, update
the DOS DTF and DLBL/EXTENT image to reflect the status of the file as allocated
by OS. They also simulate a DOS access to the VTOC, either by issuing an OS
OBTA.IN macro when DOS issues a read to the volume label or an identifier (format
1) or extension (format 3) DSCB or by bypassing the I/O operation when DOS
issues a write to the VTOC. In addition, module IIVDVS changes the flow of
DOS B-transient phases so that some will be bypassed.

This section exolains in more detail the flow of control between 80S B-transient
phases and the Emulator, and outlines the relationship between the Emulator
routines and the Emulator control blocks involved. Figure 10 gives an example
of open/close processing for a sequential disk output file.

30 DOS Emulator Logic

/
DOS DLBL/EXTENT
statements

IIVGR2

• Locates DOS file 10
and symbolic unit
number in DLBL/
EXTENT

• Locates DOS PUB
entry and points to
COMTAB entry

• Searches each CTEXT
for DSname identi­
cal to DOS file 10

IIVDVS ® OPEN

- Creates and opens
DCB

-Obtains Fl and F3
from OS; builds VOL 1

- Updates DLBL with
OS limits from DEB

• Creates FlO

*Emulator receives
control as an OS
problem program
f.j\ /

r;..=..:;.,;;,,;_---lL-__ \V=-_..., OS DO Statements

$$BOSD04

• Finds FO in VTOC
and searches for FO

• Builds Fl label and
writes F 1

• Posts extent limits
• Puts F 1 address in DTF

DOS Problem
Program

• Initializes close
• Reads VOL 1
• Reads F 1
• Writes F 1
• Updates DTF

---;

IIVVIO

.... I--__ ~ • Gives actual F 1 address
and builds FO I----~ . Bypasses write F 1

IIVVIO

.... r--__ -.j.Gives VOL 1
as created

• Gives Fl
1-41----101- Bypasses write F 1

- -. I/O for the Open
routines

--. Flow of control for
the Open/Close
routines

Figure 10. Example of Open/Close Processing for a Sequential Disk
Output File

Method of Operation 31

Note 1 : In order to understand the following, familiarity with DOS open/close
processing is essential. . See DOS Logical loes Volume 11 Introduction, GY24-
5020, and Volume 3: sequential and Direct Access DASD Files, GY24-5088, for
details.

Note 2 : The encircled~umbers correspond to the encircled numbers in the figure.
Numbers C!2 through ~ apply to os sequential D~SD and direct-access shared
data sets and to DOS sequential DASD and direct-access shared files. Indexed
sequential shared data sets are discussed in "OS Indexed Sequential Data Set
Sharing" later in this section.

The Emulator is called with the following OS control statements:
//EMU JOB ACT#, name, MSGLEVEL=1
// EXEC PGM=IIVEMU,PARM=('XXXXXX')

//SYSEM191
//
//

DD UNIT=2314,VOL=SER=123456,
DSN=DOSFILA,DISP=(NEW,KEEP) ,
SPACE= (CYL, (1»

OS JCL reads the DD statements and builds the corresponding JFCBs.

The OS initiator uses the JFCBs to perform space management On the requested
volume as follows:

(a) Determine whether volume 123456 is mounted and, if not, look for an
available device and issue a MOUNT message to the operator

(b) Allocate auxiliary storage space on the volume by searching the VTOC
for an identifier (format 1) DSCB to be created and a free cylinder
extent to be allocated to file DOSFI~

The VTOC of 123456 volume will then contain an identifier (format 1) DSCB
describing DOSFILA file.

The Emulator initialization routines read the JFCBs and build the Emulator
control blocks. One COMTAB extension containing SYSEM191 in the CTDDNAME
field and DOSFILA in the CTDSN~ME field is created and chained to the
COMT~B entry for DOSCUU=191. Refer to Figure 11 for the relationship of
control blocks affected by IIVDVS.

The DOS problem program is then called with the following control
statements:

// JOB DOS, •••

// DLBL DTF1,'DOSFlLA',99/365
// EXTENT SYS001",10,10
// ~SSGN SYS001,X'191'

// EXEC
/*

PROGRAM

DOS JCL reads the DLBL and EXTENT statements and creates a DLBL/EXTEN~
record in the label cylinder of the DOS system-residence pack. Logical
unit SYS001 is then assigned to physical unit 191.

32 DOS EmUlator Logic

EMUCONS

AIIVOBT

DSFIDBLK

OBTAIN AREA

VOL 1-123456

F1-DOSFILA

(no F3)

Legend

ACOMTAB-Pointer to COMTAB

AIIVOBT -Pointer to Obtain Area

COMTAB-Communications Table

DCB-Data Control Block

DEB-Data Extent Block

DOSF I LA-Data Set Name

DSFIDBLK-Pointer to FID

DTF-Define the file

COMTAB

190

ACOMTAB 191

DTF DCB

EMUCONS-Emulator Constants Area DSECT

FID-File ID

F1-Format 1 (DSCB)

F3-Format 3 DSCB

SYSEM191-DD(data definition) Name

VOLl-Volume 1

123456-Volume Serial Number

190, 191, 192-DOS Device Addresses

DEB

Figure 11. Data Areas Affected by Open Processing (IIVDVS)

The DOS problem program issues an OPEN macro for DTF1. After the DOS B­
transient phases $$BOPEN and $$BOSDOO have been executed, phase $$BOSD01
locates, in the label cylinder, the DLBL/EXTENT record associated with
DTF1, and builds the DLBL/EXTENT image in the open table, which is located
in the DOS B-transient area. $$BOSD01 releases control by issuing an SVC
2 instruction to load ~$BOSD01.

The Emulator supervisor call routine (IIVSVC) traps this SVC 2 and passes
control to module IIVGR2 to monitor the call.

IIVGR2 then locates the DOS file ID and logical unit number (here DOSFILA
and SYS001) in the DLBL/EXTENT image~ locates the DOS PUB entry associated
with the logical unit (here 191), locates the corresponding COMTAB entry,
and searches each associated COMTAB extension for a DSname identical to

Method of Operation 33

34

the DOS file ID. When a match indicating a volume-shared file is found,
module IIVGR2 sets the COMTAB extension address, open code, DTF address,
and DOS LTK in the PARMLST field in EMUCONS. Then control is passed to
module IIVDVS to perform OS open processing for the file described in the
COMTAB extension entry.

Module IIVDVS creates a FID containing a pointer to the COMTAB extension
entry in the FIDCTXTN field. The name of the DTF is placed in the FIDTFNME
field of the FID. IrVDVS then attaches this FID to the FID chain pointed
to by DSFIDBLK in EMUCONS. The use count located in the COMTAB extension
is increased by 1.

If the value of the use count equals 1, a DCB is created and opened, and
its address is moved into the COMTAB extension. At this point, module
IIVDVS issues an OS OBTAIN macro to get the identifier (format 1) DSCB
address and contents from the VTOC and builds a volume 1 image, format
1 image, and format 3 image (if a format 3 DSCB was created) in the obtain
work area pointed to by EMUCONS. The actual identifier (format 1) DSCB
address is moved into the open table (see Section V for the format of the
open table). Other indicators ('format 4 indicator' and 'return message
indicator') are set in the open table to reflect the fact that DOS phases
$$BOSD01, $$BOSD02, $$BOSD03, and $$BOSD08 have been bypassed.

IIVDVS last updates the DLBL/EXTENT image in the B-transient area to reflect
the type of extents and location of the extents as given by the OS DEB.
IIVDVS returns control to IIVGR2 after setting $$BOSD04 in NXTBTR in
EMUCONS. TIVGR2 then updates the B-transient phase name with $$BOSD04
and control is given to DOS B-transient phase $$BOSD04.

Note that DOS open phases $$BOSD01, $ $BOSD02 , $$BOSD03, and $ $BOSD08 , which
deal with space allocation in the VTOC, are not executed.

$$BOSD04 searches the VTOC to find a free DSCB by issuing the following
channel program:

• 'Seek, search on ID equal, TIC' to locate the beginning of the VTOC
(address found in the open table)

• 'Read count, search on key equal to 0, TIC' to find the first free
VTOC record (format 0) DSCB

Module TIVPCE intercepts the SIO and determines that the seek address is
not contained in any of the DEBs attached to the COM TAB extension entries
for this DOS cuu. IIVPCE then passes control to TIVVIO, which identifies
the DOS channel program as a search DSCB, format 0 type, and simulates
it by passing to DOS the count field of the actual identifier (format 1)
DSCB as found in the obtain work area.

The same processing is done for the write identifier (format 1) DSCB channel
program issued by $$BOSD04, which is recognized and bypassed by module
IIVVIO.

$$BOSD04 then updates the DTF (with extent limits) or initializes it (with
record number and identifier (format 1) DSCB address).

Note that the extent limits are obtained from the DLBL/EXTENT image in
the DOS B-transient area. They are, therefore, the actual limits as
determined by the OS space allocation rout~' e because they were moved to
the DLBL/EXTENT image by IIVDVS (see step 7). Open processing is now
complete. The DOS problem program will eve tually issue a CLOSE macro
for DTF1 and control will then be given to DOS B-transient phase $$BOSDC1.

$$BOSDC1 updates the format 1 DSCB to indicate the file has been
successfully created. The three channel programs issued (read volume 1,
read format 1 DSCB, rewrite format 1 DSCB are intercepted by IIVPCE, and
recognized and simulated by IIVVIO as explained in step ~.

DOS Emulator Logic

$$BOSDC1 releases control by issuing an SVC 11 instruction, which is trapped
by IIVSVC and recognized by IIVGR2 as the end of a DOS close operation.

Module IIVGR2 identifies the file as a volume-shared file by searching
the FlD chain addressed by DSFlDBLK for a matching DTF name and LTK. A
match indicates a volume-shared file, and control is passed to module
llVDVS to close the OS file.

Module lIVDVS deletes the FlD associated with the file from the FlO chain.
The use count in the corresponding COMTAB extension entry is decreased
by 1. If the new use count is greater than 0, more than one DTF is
accessing the same file and at least one OTF is still open.

A use count of 0 indicates that no more DTFs for the file remain open.
An OS CLOSE macro is then issued, and the storage space occupied by the
DCB is released.

Control is eventually returned to modules IIVGR2 and IIVSVC, and the latter
issues an SVC 11 instruction.

End-of-Extent Processing

Upon reaching the end of an extent for an output file, the DOS problem program
calls $$BOPEN to open the next extent.

The processing is like open processing except for two steps:

1. In updating the DLBL/EXTENT image (step (1), module IIVDVS obtains the
current extent sequence number from the JYi;F and searches the associated
DEB for this extent. If this extent is not found, an OS EOV SVC is issued
to obtain secondary allocation, if any is specified in the DD statement.
Module IIVDVS then moves the limits of the current extent from the DEB
to the DLBL/EXTENT image in the DOS B-transient area. If at the time the
data set was created no secondary allocation was specified in the DD
statement or if more than 16 extents have already been allocated, a message
is issued and the DOS step is canceled.

2. In the next DOS phase to be executed (step ®), IIVDVS sets UBOSD05 in
the NXTBTR field of EMUCONS. This phase, when executed, issues a channel
program to read the identifier (format 1) DseB from the VTOC, and then
tries to rewrite the DSCB with an additional extent. Both channel programs
are intercepted by module IIVVIO and simulated.

Input Processing

steps (I) through ~ are identical. IIVGR2 takes control when $$8OSDI1 is
called, and IIVDVS moves $$8OSDI2 into the NXTBTR field in EMUCONS. $$8OSDI2
then attempts to read the identifier (format 1) DSCB. This attempt is
intercepted by module IIVVIO, which gives back the actual OS identifier (format
1) OSCB.

Workfile processing

The first call for~Bosow1 is similar to the open for an output file. The
Emulator, in step \2) , moves to the DLBL/EXTENT image the actual limits of
the first extent as found in the DEB, replaces $$BOSDW1 and $$BOSO~2 in the

Method of Operation 35

NXTBTR field of EMUCONS, and sets the indicators "extent open" and "SYSxxx
in DTF" in the DTF.

A test is made to determine whether this extent is the last one allocated,
and the bit indicating "last extent" is set on in the DLBL.

$$BOSDW2 updates the DTF to reflect the limits of the first-extent (as set
in the DLBL/EXTENT image) and calls ~$BOSDW1 again. This second call for
$$BOSDW1 is then trapped by module IIVGR2 and control is passed to module
IIVDVS. If the "last extent" bit is on, control is returned to DOS, which
terminates the open processing.

If the "last extent" bit is off, module IIVDVS moves the limits of the next
extent from the DEB to the DLBL/EXTENT image. Note that for workfiles, module
IIVDVS never issues an OS EOV SVC. Specification of the secondary space
parameter in the D~ statement will, therefore, not be useful.

End-of-extent processing for a workfile is similar to open processingg for
an input file, because all the extents have been allocated when the file was
opened and have already been created in the DSCB.

Module IIVVIO intercepts the "read format 1 DSCB" or "read format 3 DSCB"
channel program issued by $$BOSDW3 and simulates it by returning the actual
format 1 DSCB or format 3 DSCB as set in the obtain work area.

Direct-~ccess File processing

Direct-access file processing is very similar to the open of a sequential disk
input file or sequential disk output file. The main difference is that the
DLBL/EXTENT image for a direct-access file contains all the extents for the
output file.

For an output file, module IIVDVS (step (V, obtains all the extents from the
DEB and moves their limits to the DLBL/EXTENT image. Note that module IIVDVS
never issues an OS EOV SVC for a direct-access file.

DOS Release 27 Processing

When emulating a DOS release 27 system, module IIVGR2 traps the SVC 2 for
$$BOPEND and moves $$BOPBN in place of $$BOPEND in NXTBTR. Phase $$BOPEND,
which initializes the system recorder file records by reading the VOL1 record
for all assigned LUBs to disks, will then be bypassed.

DOS Release 27 Output Processing

Since $$BOSD04 has been divided into two different open phases ($$BOSD04 and
$$BOSD09) in DOS release 27, IIVDVS will bypass $$$OSD04. IIVDVS moves $$BOSD09
in place of NXTBTR and simulates $$BOSD04 by setting DOS register 0 with the
appropriate device type control factor and updating the volume sequence number
in the DTF.

36 DOS Emulator Logic

OS Indexed seguential Data Set Sharing

Unmodified DOS programs running under the Emulator can gain access to and
create OS-format data sets. However, the DOS user must comply with OS
restrictions and requirements.

A volume-shared OS indexed sequential data set is defined through OS DD cards,
and its allocation and maintenance in the VTOC of the corresponding volume
is made at OS JCL time via OS DASD space management routines.

When DOS wants to access an OS indexed sequential data set, as defined by DOS
DLBL/EXTENT statements, the Emulator gets the user to the proper data set by
matching the DLBL file I~ to the data set name in the DD statement.

The OS indexed sequential data set sharing simulation routine, IIVIS, updates
the DOS DTF that reflects the status of the data set as allocated by OS. The
open routine in IIVIS replaces the DOS ISFMS open B-transient phases.

The following section explains in more detail the flow of control between-the
Emulator and DOS, and outlines the relationship between the Emulator routines
and the data areas affected by open processing (see Figure 12). Figure 13
is an example of processing OPEN and I/O macros for an OS indexed sequential
data set.

Example of Processing

See numbers (j') through @ in Figure 10 and steps
under the hea'c1ing "Direct-access Volume Sharing."
to those taken when processing a shared OS indexed

G) through G)
These steps are
sequential data

in the text
identical
set, excl'!pt

• ~$BOPEN and $$BOPEN2 do the processing for indexed sequential data sets
in the box showing ~~BOSDOO and $$BOSD01 as processing phases,

• a match (COMTAB extension flag byte = 0) must indicate a shared OS indexed
sequential data set, and

• control must be passed to module IIVIS to perform an OS open.

Method of operation 37

191

File
Identification

I Used to search
COMTAB for

L..-_---'-_______ ---' device addresses

ISFIDBLK

DTFNAME

COMTAB

190

DD DSN =

Byte 0 = X'BO' for
indexed sequential
data set

'-. ---------. -...
F---~---------------------------------~

Register Save Area

FIDBLK

DCB

DECB

DCB (Maximum of 2)

"-
\

\
\
\
I
/

/
/

\
\
\
\
I
/

/
JFCB /

I (Load only) 1/ L...-_______ ----Ir

---.... Pointer
__ Information passed during

Open processing by II VIS :=:::::c> Information passed before
Open processing

Figure 12. Data Areas Affected by open Processing (IIVIS)

38 DOS Emulator Logic

l ®
I
I
I

i

Subtask

IIVISOl ~~_-..L-__,q;;..
• Initializes registers \!.2J
• Ente~wait stat=- _ ®
• Regains control
• Loads DTFIS address
• Determines function

(GET, PUT, etc.!
• Executes mapping

routine
• Loads address of

COMT AB entry from
ISBLK

• Creates CSW in
COMTAB lOB

• Posts COMT AB
entry's ECB

• Branches to wait
state

@
• Locates DOS file I D
and symbolic unit
number in
DLBLlEXTENT

• Locates DOS PUB
entry and points to
COMTAB entry

• Searches each
CTE XT for DSname
identical to DOS
file ID

• I dentifies data set
as I ndexed Sequential

IIVIS ® OPEN

• Determines function
from code in EMUCONS

• Obtains pointers to
DTFIS and to CTEXT
from PARMLST in
EMUCONS

-Creates ISBLK, chains
it to ISFIDBLK

- Opens data set
• Moves data from DCB
to DTFIS

• Resets ISMOD pointer
in DTFIS

-Attaches subtask
• Returns to DOS
problem program

Emulator Task

DOS Problem
Program

®
I/O Macro
Processing

• Issues DOS ISAM
I/O macro to OS
I ndexed Sequential
data set

• Gets forced program
check

IIVPCE ®
- Stores ISBLK address

and I/O macro code in
CCW

- Resets local execution
PSW to DOS wait

• Translates PC to SVC 0
• Switches PSWs

~------(/

L-____ --vi/

IIVRTE

Checks for I/O
complete; if none,
Emulator task enters
wait state until I/O
completion

• Posts traffic bit for
DOS program

• Sets indicatiors to
dispatch task when
it has highest priority

-- ... I/O for the Open
Routines

______ Flow of control for
Open and ISAM
processing of an Indexed
Sequential data set

Figure 13. Examnle of Processing OPEN and I/O Macros for an OS
Indexed Sequential Data Set

Method of Operation 39

The following text is keyed to the encircled numbers in Figure 13.

@

IIVIS determines the function (OPEN here, but it could also be CLOSE or
SETL) to be performed by examining the code in EMUCONS. It also obtains
the pointers to the DTFIS and to the COMTAB extension from EMUCONS. IIVIS
creates a work area called the ISBLK, adds it to the ISFIDBLK chain, and
opens the data set.

IIVIS then moves data from the DCB to the DTFIS and resets the ISMOD address
pointer in DTFIS to trap I/O macro requests. It then attaches a subtask
to perform I/O macro mapping and returns to the calling routine (IIVGR2).

The subtask, at entry point IIVIS01, initializes registers and ~ goes
into a wait state until the SIO subroutine (module IIVPCE) posts the ECB
in the ISBLK.

The DOS problem program gets a forced program check when it issues an I/O
macro for the as indexed sequential data set.

IIVPCE, recognizing the program check as a special type, puts the address
of the ISBLK associated with the DTFIS and the code of the I/O macro to
be performed into a NOP CCW. It sets the local execution PSW address to
a DOS WAIT macro contained in the DTFIS. rIVPCE then translates the forcefr
program check to an SVC 0 interrupt, switches PSWs, and returns to the
DOS supervisor.

The DOS supervisor queues the I/O request for processing.

The DOS problem program then executes the DOS WAIT macro.

The DOS supervisor isseus a start I/O.

The SIO subroutine (module IrVPCE) determines that the request is for an
OS indexed sequential 1ata set, loads the ISBLK address from the CCW, and
moves the code from the ccw to the ISBLK control information field. It
also moves the addresses of the DTFIS and the COMTAB entrv associated with
the I/O request into the ISBLK control information field.·

The SIO subroutine then posts the ISBLK ECB to activate the subtask,
increments the I/O count, and returns to the DOS supervisor at the
instruction following the SIO.

The activated subtask interprets the I/O macro code byte in the ISBLK
control information field and goes to the related mapping routine. After
executing the OS macro and moving the logical record to or from DOS storage,
it maps pertinent information from the DCB to the DTFIS, indicates
successful completion in the COMTAB lOB, posts the ECB in the COMTAB entry
associated with the I/O device, and reenters the wait state.

The Emulator task determines that input/output operations are completed
on the device associated with the COMTA3 entry and simulates an I/O
interruption to the DOS supervisor.

40 DOS Emulator Logic

Close processing

After ex~cuting steps (4) ":hrough ® indicated above, IIVIS determines that
the close function is ~ one to be performed. It detaches the subtask, resets
the ~TFIS to its former state, closes the OS indexed sequential data set,
removes ISBLK from the ISFIDBIT< chain, frees the space, and returns to the
DOS problem program.

SETL Processing

After executing steps @ through ® indicated above, IIVIS rJ.etermines that
the SETL function is the one to be performed, maps the DOS SETL ":0 an OS SETL,
and returns to the DOS problem program.

Shared DOS Svstem Residence File

The DOS sYstem residence file must reside on a standard DOS system residence
volume.

The option is selected by coding the DOS system residence file ID as the DSN
parameter in the SYSEMcuu DD statement that defines the volQ~e for the DOS
cuu specified in the DOSRES=cuu parameter of the EXEC statement. If DISP=OLD
is coded, the DOS system residence file will not be shared although the DOS
system residence volume will be treated as a device shared volume (may contain
OS data sets). DISP=SHR must be coded on the DD statement in order to share
the DOS system residence file.

When the DOS system residence file is being shared by two or more Emulator
oartitions, a separate cylinder on the DOS system residence volume must be
provided for each Emulator partition to use for the DOS label cylinder.

A DD statement with the special ddname SYSEMLBL is required to define a single
cylinder OS data set to be used for the DOS label cylinder. If this DD
statement is missing, the standard DOS label cylinder contained within the
DOS System residence file will be used. The DSN parameter may specify any
valid data set name. Space allocation must be for one cylinder when the data
set is created (DISP=NEW specified on the DD statement) and initialization
of the data set must be performed with the DOS STDLABEL and P1\RSTD procedures.

DOS DLBL and EXTENT statements are not required in the DOS job stream for the
DOS system residence file and DOS label cylinder data sets.

Method of Operation 41

ABNORMAL END CONDITIONS

Serious user or program errors can cause the termination of either a DOS job
or the Emulator itself. Each of the following error conditions will cause
the cancellation of a DOS job requesting the specific I/O or DTF processing:

• Invalid CC~'7
• Emulator ccw chain table (BEBLK) overflow
• No seek or bin number for a 2321 1ata cell drive
• Invalid DOS logical unit
• DOS logical unit unassigned or assigned IGN for a shared device
• DTF points to a null DOS PUB table entry
• Cannot match file ID with dsname
• Incompatible file organization
• DCB and DTF device types incompatible
• DOS POINT MACRO not within extents of a given file
• Invalid DOS seek address
• Insufficient extent space in DOS DLBL/EXTENT image for DTF
• User labels specified-in DTF but not in :CSCB
• Cannot get more extents for file
• Cannot obtain F1 for file

Emulator termination will be caused by any of the following conditions:

•
•
•
•
•

•
•
•
•

•
•
•
•
•
•

An attempt by DOS to load a hard wait PSW
An invalid or undefined DOS IPL or DOSLOG device
Insufficient storage for emulation
Open for DOSRES was unsuccessful
Could not find PUB entry in the DOS PUB table during DOS IPL
(When DOSIPL ~ AUTO)
A DOS PUB entry did not exist for the DOSIPL device
Device not su~ported by the Emulator
DOS device address in DD statement not compatible with OS
device type
Invalid DOS device address specified in DD statement (when DOSIPL
~ AUTO)
Syntax errors in DEBUG statement when using card input
Duplicate DOS device addresses
Could not IPL DOS for DOS emulation
Permanent I/O error while loading IPL routines
Invalid automatic ADD request
~rror while canceling the Emulator

A dump of the contents of the DOS storage area and registers is taken only
if a SYSSNAP DD statement is present and the error return code is other than
16, 20 or 24. Control is then returned to OS.

42 DOS Emulator Logic

DETAILED ROUTINE DESCRIPTIONS

Each Emulator routine description consists of the following parts:

• A statement of the general function(s)

• A narrative description of the function(s)

• Operational diagrams when necessary

DOS Emulator Entry Routine j1IVENT} -- Flowchart 1A

IIVENT, the controlling routine during Emulator initialization, passes control
to IIVINT and II"IN2 so that these modules can perform initialization functions
for the Emulator.

IIVENT saves the contents of the general purpose registers and the pointer
to the user parameter area. The CSECT, IIVCON, which is used for communication
between the modules of the Emulator, is defined in this module.

Initialization First-Load Routine (IIVINT) -- Flowcharts ?A-2~

IIVINT performs four functions in initializing the Emulator:

• Verifies parameters
• Establishes DOS storage
• Builds COM~AB
• Builds CO~AB extension

On entry to this module, the local execution list and adjust CCW data address
list are aligned to 64-byte boundaries within the CSECT containing the Emulator
constants. The Emulator rase registers are initialized as follows:

• Register 9 contains the address of the local execution list.
• RAgister 10 contains the address of DOS storage.
• Register 11 contains the address of the Emulator constants area.

Verifies Parameters

The address of the user parameter area is obtained from IIVENT. The parameter
area is scanned for the DOS channel and unit number of the DOS resident file
(DOSRES=), the DOS IPL unit (DOSIPL=), the DOS console (DOSLOG=), and the DOS
system size (DOSSYS=). These parameters are validat~d and checkea to ensure
that required parameters have been specified correctly. If a required parameter
was not provided on the EXEC statement, a message is issued to the operator
requesting the information.

Method of Operation 43

IIVINT also looks for three other parameters:

(, AUTOEOJ= {YES}]
[{NO} 1

[, 1)()STDI= {YES}]
r {NO}]

(, A PROMPT= {YES) J
r (~O}]

specifies whether automatic ending of emulation is
desired

specifies whether timer su~port is desired

requests an ahbreviated initial prompt

AUTOEOJ defaults to NO, DOSTIM defaults to YES, and AP~OMPT default.s to NO.

Establishes DOS Storage

DOS operates in the first block of storage obtained by the Emulator (Figure
14). The DOS storage size parameter is used to determine the amount of storage
needed. The value specified in the DOSSYS parameter is increased by 4R bytes
and the Emulator GET~AIN routine (IIVGET) is called. The extra 4K bytes are
used to adjust DOS storage to a 4K boundary. After DOS storage is adjusted,
the heginning address is saved and the remaining storage at each end of the
DOS area is freed. All of DOS storage is initialized to zeros.

Builds COM TAB

~he ddnames in the TIOT that begin with the characters SYSE are counted to
calculate the number of devices allocated to DOS. ~he count is used to compute
the size of COMTAB and is placed in the Emulator constants area (IIVCON) for
future use in computing the size of other tables. The size of COMTAB is the
DD entry count plus 1 for SYSLOG times the size of one COMTAB entry. storaae
area is obtained for COMTAB by the Emulator GETMAIN routine (IIVGET).

Each COMTAB entry is initialized to 0 and the following data is entered:

• The DOS channel and unit a0dress is entered from the TIOT ddname.

• The OS channel and unit address is entered from the UCB channel and unit
address field.

• The OS device type is entered from the UCB.

• The CTFLAG fields are used to flag the entry for DOSLOG. They are also
used to flag staged and shared devices. The JFCB is checked to determine
whether a device is staged (JFCBTSDM set to X'20') or shared.

• If the JFCB indicated a staged device, CTFLAG2 is set to indicate whether
the staging is for an input or output device (determined from byte 18 of
the data set name).

• If the JFCB indicates a shared device, a COMTAB extension entry is
temporarily built in the CCMTAB entry. ~his temporary COMTAB extension
consists of the ddname and dsname. The shared device flag in COMTAB is
set to indicate the presence of a temporary COMTAB extension.

• The DOS SYSRES flag is set in the COMTAB entry associated with the DOS
system residence volume.

44 DOS Emulator Logic

High

Low

DOS Storage + 4K

Storage is obtained for
DOS + 4K bytes.

High

Leftover Storage

Aligned DOS
Storage

4K ____ ~----------------_;
Boundary

Low

Leftover Storage

DOS storage is aligned to
4K boundary

Dynamic storage owned by the Emulator

I2/7A Free dynamic storage

Figure 14. DOS Storage in Emulator Region

Builds COMTAB Extension

High

Aligned DOS
Storage

4K ~ j.,..P"'7'.,....,,....,...,..,..,....,r7'.,....,,...,.,..,~

Boundary

Low

Leftover storage is freed.

The number of ddnames in the TIOT that begin with three characters other than
'SYS', plus the DD statement labeled 'SYSEMLBL' if present, are counted to
find out the number of data sets that reside on shared direct-access devices.
The count is used to compute the storage needed for the COMTAB extension.
This storage is obtained by means of module IIVGET.

An appropriate error message is issued followed by Emulator termination if:

• The OS cuu associated with the SYSEMLBL DD statement does not match the
OS cuu for the DOS system residence volume.

• DISP=SHR was specified in the SYSEMLBL DD statement.

Each COMTAB extension is formatted with:

• The UCB channel and unit address (used during Emulator initialization only
and not present in the COMTAB extension after initialization)

• The data set name from the JFCB

• The ddname from the TIOT entry

• A flag is set in the flag byte if the ddname is SYSEMLBL

IIVINT then returns to IIVENT.

Methoo of Operation 45

Initialization Subroutines

The following Emulator subroutines are used by IIVINT:

SCAN Subroutine (Flowchart 2K). This subroutine is used by IIVINT to scan
the user parameter area for a blank or comma. When entered, this subroutine
computes the andress and length of the next user parameter.

This subroutine has two returns to the user. One return indicates that the
end of the area being scanned has been reached (scan completed). ~he other
return gives the beginning address of a field in register 3 a"nd the length
of the user parameter in register 4.

Y~SORNO subroutine (Flowchart 2K). This subroutine is used to check the
validity of parameters that require YES or NO responses. Its return is into
a branch table:

•
•
•
•

Return address + 0
Return address + 4
Return address + 8
Return address + 12

- parameter missing
- parameter = YES
- parameter = NO
- parameter invalid

CHKCUU Subroutine (Flowchart 2L). CHRCUU checks the parameter value given
on the Emulator EXEC statement. It verifies the validity of a channel and
unit address. This routine has two returns. It returns to the address in
register 14 plus 4 if the cuu checked was missing, had an invalid length, or
had an invalid range. If the cuu checked was valid, it returns to the address
in register 14.

ASROPR Subroutine (Flowchart 2L). ~his common subroutine is used by IIVINT
to request required parameters from the operator from the operation that were
omitted or correcti if invali arameters from the operator. It issues a
WTO~ to the console r and waits on the reply. The reply is checked.
If it was CANCEL, AS OPR cranches to the common emulation termination routine;
otherwise, it returns to the calling routine.

~DSCAN Subroutine (Flowchart 2M). This subroutine scans the DDnames in the
TIOT for entries with DDnames beginning with SYSE. If register 2 contains
zeros, this subroutine gets the address of the TIO~ from the Emulator constants
area (IIVCON) and starts scanning the TIO~ for an SYSE entry. If register
2 does not contain zeros, the address it contains is assumed to be the starting
address within the TIOT for the scan. "

There are three exits from this initialization subroutine. ~ return to the
address in register 14 denotes that all TIOT entries have been examined. If
this subroutine returns to the address in register 14 plus 4, the address of
an SYSE entry is in register 2. When it returns to the address in register
14 plus 8, register 2 contains the address of a TIOT DDname that does not begin
with SYS.

46 DOS Emulator LOgic

,

Initialization Second-Load ~outine (IIVIN2) -- Flowcharts 3A-3F

The second-load initialization routine performs the following initialization:

• Moves temporary COM~AB extensions from COMTAB to availabl9 COMTAB extension

• Chains COMTAB entries to COMTAB extensions and chains together COMTAB
extension entries

• Sorts COM~AB entries

• Builds and initializes other Emulator tables, such as the ISK/SSK table,
the ECB pointer table, and the post ECB list

• Performs IPL from DOS resident volume

Moves Temporary COMTAB Extension

The COMTAB table is searched for temporary COMTAB extension entries. All
temporary COMTAB extensions are moved to available COMTAB extension entries.

Chains COMTAB Entries and COMTAB Extensions

One COMTAB entry exists for every DOS PUB table entry being used. If a COMTAB
entry is marked for direct-access device sharing, then there exists at least
one COMTAB extension that is related to the OOMTAB entry. A COMTAB extension
entry describes a data set residing on a DASD shared volume. Chaining is
required since there may be a group of related COMTAB extensions associated
with one or more CCMTAB entries.

Each COMTAB entry is chained to the first related COM~AB extension entry and
all associated COMTAB extension entries are forward chained together (Figure
15) •

Sorts COM TAB Entries

The COMTAB entries are sorted by the DOS channel and unit address and placed
in ascending order.

This section of initialization is enqueued by means of a master ENQ to ensure
that only one DOS Emulator will be building a COMTAB at "any given time. To
prevent more than one DOS Emulator from using the same OS direct-access device,
the OS channel and unit address is also enqueued by means of a device ENQ.
At the end of the device enqueueing routine, a master DEQ is performed. Other
DOS Emulators may not use direct~acc9ss devices reserved by the device ENQ
for this Emulator unless both Emulators specify DISP=SHR in their DD statements.

Method of Operation 47

Communications Table

COMTAB Entry

One entry for every DOS PUB table entry used

-----I~~ COMTAB pointers to
COMT AB extension entries

- - - - -. Pointers from one COMT AB
extension entry (CTEXT) to
related CTEXT (in the case of
2 data sets on the same volume)

1

COMT AB Extension

COMTAB
Extension
Entry

\ ,
\
\
I

\ I

r

'I
1\

I

I
I
I

I

One entry for every data set residing
on a shared direct-access device

Figure 15. Relationship of COMTAB to COMTAB Extension

48 DOS Emulator Logic

J

Builds and Initializes Other Emulator Tables

This section of initialization code obtains storage area and initializes the
ISK/SSK table, the ECB pOinter table, and the post ECB list.

• One byte for every 2K bytes of DOS storage is obtained for the IS~/SSK
table. This table is initialized to zeros.

• ~he size of the ECB pointer table is the number of entries in COMTAB plus
3, times the length of one entry. Each entry consists of a 4-byte address.
Storage is obtainen for this table; the first entry is initialized with
the address of the prompt ECB, the second with the address of the WTO~
ECB, and the third with the address of the timer ECB. The rest of the
entries are initialized sequentially with the addresses of the ECBs entered
in COMTAB.

• Storage is obtained for the post ECB list so that the list contains a list
of 2-byte entries, each representing a COMTAB entry. The table is
initialized to zeros.

Performs IPL from DOS Resident Volume

The initialization second-load routine builds and opens a DCB for the DOS
system residence volume or the DOS system residence file if the shared DOS
system residence option has been selected. The COMTAB entry for the DOS
resident volume is modified to reflect that the volume is open and to contain
the address of the DCB. The data set specified in the SYSEMLBL DD statement
is opened if presp.nt.

DOS IPL is a two-phase program consisting of two DOS programs:

• $$A$IPL1, 64-byte bootstrap records, and

• $$A$IPL2, the first load of a DOS IPL phase of fewer than 4096 bytes.

The DOS $~A$IPL1 bootstra~ records are located on DOS SYSRES at 00 00 1 (CC
HH R) and 00 00 2 (CC PH R). The Emulator builds the necessary channel programs
to read the bootstrap records into DOS storage at DOS location O. The bootstrap
r~cords consists of a PSW at DOS location 0, followed bv seven CCWs. The
Emulator adjusts the data addresses in the last three cCws. When these three
CCWs are executed, the DOS IPL phase ($$AIPL2) is loaded at location 12K in
DOS storage.

At this point, $$A$IPL2 in the DOS storage area is ready for executing its
own IPL. IIVIN2 scans the $$A$IPL2 phase for the first DOS instruction in
the loop that zeros the DOS storage area in search of the DOS system size.
When the initialization second-load routine finds that instruction (an MVC)
in $$A$IPL2, it replaces the operation code with zeros.

Later, when DOS executes this instruction, it gets a program check. Control
is given to the Emulator program check executive routine (IIVPCE). The Emulator
simulates a program interruption for addressing, places the DOS storage arp.a
ending address in register 11, and reenters local execution mode at the location
pointed to by the DOS ~rogram new PSW.

If staged I/O su~port has been requested, modnle IIVIN2 loads IIVSTG and IIVSDT.
If a //SYSDEBUG DD statement was present, module IIVIN2 calls IIVRAS to read
debugging parameters. The initialization second-load routine gives control
to module IIVRTE or, if error conditions were detected, module IIVENT. Figure
16 is a map of the Emulator region at this time.

Method of operation 49

DOS Storage ..

DOS Emulator ~

High
Storage

Low

~--------------------------~

r--------------,
DOS Clear Storage Routi ne 1 I

I
I-------------.J
~------------- - -----------~

DOS Emulator Modules and Tables

StorageL-__ ~

$$A$IPL2
(loaded at
location 12K
in DOS
storage)

1 The Emulator zeroes out the op code of the first DOS instruction in the DOS clear storage routine.

Figure 16. OS Region at Beginning of DOS IPL

50 DOS Emulator Logic

IPL Add Routine (IIVADD) -- Flowcharts 4;11.-4D

~odule IIVADD is entered only when the DOSIPL parameter is coded with the AUTO
option. When IIVSVC calls this routine, it provides a pointer to a DOS channel
proaram that reads in the IPL control statements. Hhen entered for the first
time, it finds the DOS temporary PUB table and fetches the beginning address
of COMTAB. Thereafter, processing begins with the next COMTAB entry in the
table.

This routine checks the cuu entry in the DOS PUB table against the cuu entry
in COMTAB and if a corres~onding entry does not exist in COMTAB, the DOS PU~
table entry is deleted. The routine also provides an automatic set date and
time function during IPL.

The COMTAB is checked for ,)OS cuu's that are not in the DOS PUB table. If
any are missing, this routine adds them to the table. To add a device to the
DOS PUB table, this routine builds a DOS ADD control statement image and places
it in the DOS input area. Upon return to DOS, the IPL control statement imaae
provided by this routine '''ill be processed.

When it is determined that all COMTAB entries have corresponding DOS PUB table
entries, a set date and time IPL control statement is built and passed to DOS.
The OS date and time are used.

open Routine (IIVOPN) -- Flowcharts 5A-5D

This routine is called to open Emulator-allocated devices dynamically. The
caller supplies a pointer to the COMTAB entry requiring the open. The open
routine gets dynamic storage for the DCB, initializes it, and places its address
in the COMTAB entry. The device is then opened to permit accessing.

Five major types of devices are opened by this routine (Figure 11):

• New volume mount

• Direct-access device

• Sequential device

• Staged device

• Teleprocessing device

Initialization

The calling routine places the address of the Emulator COMTAB entry for the
device to be opened in register O. Register 15 is initialized with the entry
point to the open routine. The CTFLAG fields in the COMTAB entry indicate
whether the open request is for a new volume mount or for a DASD, a sequential
device, a teleprocessing device, or a staged device.

Method of Operation 51

IIVOPN

(Entry

Initialization

+ + + +
New Volume Direct-Access

Sequential Device Staged Device
Teleprocessing

Mount Device (DASD) Device

I I I I

Common Open

Exit

Figure 17. Open Subroutine Gross Flow

New Volume Mount

To perform an open operation for the purpose of mounting a new volume, this
subroutine gets the address of the existing DCB from the COMTAB entry. It
reads the JFCB into storage and changes the volume serial number. The new
volume serial number is retrieved from the Emulator CSECT IIVCON, where it
was placed by the prompt reply processor routine (IIVPRPl.

Direct-Access Device

storage is obtained for the DCB, which is formatted to describe a direct-access
data set. The JFCB for this COMTAB entry is altered so that the data set name
is the same as that of the VTOC data set (X'O~04 ••.••• ').

sequential Device

Dynamic storage is acquired and formatted to describe a sequential data set.
The JFCB is read into storage and modified for the bypassing of label
process ing.

52 OOS Emulator LOgic

staged Device

storage is established for the staged IIO DCB, it is formatted for either an
input or output direct-access data set, depending on the settings of CTFLAG2
bits 3 and 4. The lOB for staged I/O is a dummy lOB (STGOoN) and is used as
a parameter area by the staged I/O processing modules.· It is formatted by
the open routine according to the DOS device type. ~or more information on
the staged IIO dummy IOB, see the staged I/O routine (IIVSTG,. If the DCB
was initialized to reflect an output data set, the open operation is performed
within the staged I/O portion of the open routine; otherwise, the common open
for input issues the open request.

~hen module IIVOP~ is entered to open a staged printer, print overflow
processing is invoked. Module IIVOPN loads the correct FCB image from
SYS1.IMAGELIB and calls module IIVSTG to verify the image format and content.
If module IIVSTG returns a unit check in the staged lOB CSW, an invalid FCB
image has been obtained and emulation is terminated. If the SYS1.IMAGELIB
data set could not be opened, the open routine issues a WTOR (IIV040D) to let
the operator decide whether to continue without printer overflow support.

~eleprocessing Device

Dynamic storage for a DCB is acquired and formatted to describe a sequential
data set.

Common Open

A common open operation for input is executed for most types of open requests
by this portion of the open routine. If the data set (file) is opened
successfully, this subroutine flags the COMTAB entry (C~FLAG=X'01'l. If the
open operation terminated unsuccessfully, an error code is returned to the
caller in register 15. X'04' indicates a successful open, and X'OO' indicates
an error in opening the device.

when a direct-access device other than a staged I/O device is opened, the open
routine issues an EXCP to read the format 4 DseB record from the VTOC. This
EXCP also allows the SIO afpendage to extend the DEB extents. By analyzing
the format 4 DSeB, the open routine determines whether the ~oc overlaps
cylinder boundaries and issues a message if it does. This subroutine scans
the VTOC for OS password data sets and does not permit use of volumes containing
such data sets.

OS PUB Table Build Routin~IVPUB) -- Flowcharts 6A-6F

This routine maps DOS I/O control blocks to OS I/O control blocks ty meanS
of the Emulator OS PUB table. (Storage is obtained by module IIVGET.) An
OS PUB table entry points to a COMTAB entry, which contains a~dresses of OS
control blocks n~eded for I/O operations.

~his routine checks the DOS PUB table for a match of each COM~AB entry in the
DOS channel and unit address field. If a corresponding DOS PUB table entry
is not found, the Emulator is terminated. When a DOS PUB table entry for a
COMTAB entry is found, the COMTAB entry of=set (X'eO t for the first

Method of operation 53

entry) is placed in the OS PUB table entry that corresponds to the DOS pu?
entry. An X'FF' in an OS PUB entry indicates that no COMTAB entry existed
for a DOS PUB table entry.

This routine also establishes a pointer to the DOS CE serviceability rou~ines
if these are sut:ported (the CE table adrlress field in the DOS background
communications region extension points to these routines). Tf the timer
function was requested by the user and is supported by DOS, the first STI~R
is issued. The addresses of the DOS background SYSRDR LUB (logical unit block),
background PIB (program information block), foreqround 1 PIB, foreground 2
PIB, and beginning and ending addresses of the DOS 3-transient area are
obtained. These addresses are adjusted to true addresses and saved in ITVCON.

If an abbreviated ~rompt was requested by the user, the one-line initial
Emulator prompt is formatted and issued. Otherwise, the standard three-line
initial Errulator prompt is given.

Tf the Emulator JCL indicated a need for direct~access volume sharing or indexed
sequential data set sharing, Emulator modules II~7DVS, IIVGR2, lIVVIO, and IIVIS
are loaded.

If the shared DOS system residence option has been selected, the address of
the cYlinder used for DOS labels is saved in EMUCONS.

IIVPUB exits to the caller (IIVSVC).

GETMAIN/FRFEMAIN Routine (IIVGET) -~ Flowchart 7A

This routine performs OS GETMAINs and FREEMAINs.

GET'1AIN

The caller provides IIVGET with the amount of storage needed. The OS GETM.AIN
macro is issued and the return codes checked. If storage was successfully
obtained, this routine returns to the caller with the new storage address in
reqister 1. If dynamic storaqe was unavailable, a message is issued to the
console printer and emulation is terminated.

FRFEMAIN

The caller provides IIVGET with the amount of storage (register 0) and the
address of the first byte of the storage (register 1) to be freed. IIVGET
issues an OS FREEMAIN macro and returns to the caller.

For all errors during a GETMAIN or FREE'1AIN operation, other than storage not
available, the operating system te~minates the Emtllator with a system completion
code.

Program Check Executive Routine (IIVPCE) -- Flowcharts 8A-BU

All program interruptions that occur in the DOS area are routed to this routine.
Upon entry, the 16 DOS general registers are saved in the EMUCONS save area
and program addressability is established.

54 DOS Emulator Logic

A check is made for a privileged operation interruption code in the current
DOS PSW. When the program interruption is caused by an attempt to execute
a privileged operation, control is passed to PCPRIVOP for further checking.

The first program interruption during IPL is intercepted, and control is passed
to the FIRSTPC subroutine for processing. All other program interruptions
are handled by a routine that causes the DOS current (local execution) PSW
to be moved to the DOS program old PSW (location 40 in the DOS area) and the
DOS program new PSW (location 104 in the DOS area) to be moved to the DOS
current (local execution) PSW location to simulate a program interruption.

At the common exit point for all simulation routines (PC20), the routine loads
the address of the Emulator asynchronous interrupt exit routi'ne and exits to
that point. A reentry point (PC10) for program interruption simulation is
provided.

FIRSTPC Subroutine (Flowchart SA)

To simulate the program interruption that normally occurs while main storage
is being set to binary zeros during DOS supervisor IPL, module IIVIN2 places
a 0 operation code in the DOS routine that performs this function. The
reSUlting program interruption is the first one to be intercepted by the program
check executive routine.

When given control, this subroutine checks for an operation exception
interruption code in the current psw; if the check is negative, control is
returned to the program check executive routine at PC10 to simulate the program
interruption. Otherwise, the interruption code is changed to addressing, the
ending address of DOS main storage is placed in register 11 of the EMUCONS
DOS register save area, and the FRSTPC bit in the IPLSW switch is set to O.
Control is then returned to the program check executive routine (entry point
PC10) to simulate the program interruption.

PCPRIVOP Subroutine (Flowchart SA)

All privileged operation interruptions are checked to determine if they are
to be simulated. For such an interruption to qualify for simulation, the local
execution PSW must show the DOS partition to be operating in the supervisor
state (see Note in "Privileged Operation"), and the privileged operation must
be one of the following which are either supported or bypassed by the Emulator.

• ISK - Insert storage key, operation code X'09'
• SSK - Set storage key, operation code X'OS'
• SSM - Set system mask, operation code X'80'
• LPSW - Load PSW, operation code X'82'
• TCH - Test channel operation code X'9F'
• TIO - Test I/O, operation code X'9D'
• HID - Halt I/O, operation code X'9E' (BTAM only)
• SID - Start I/O, operation code X'9C'
• LCTL - Load control, operation code X'B~'
• STCTL- Store control, operation code X'B6'
• STIDP- Store CPU ID, operation code X'B202'
• STIDC- Store channel ID, operation code X'B203'
• SCK - Set clock, operation code X'B204'

When both conditions are met, control passes to the proper simUlation routine.
If both are not met, the routine exits to the program check executive routine
(entry point PC10) to simulate a program interruption.

Method of Operation 55

The condition code in the local execution PSW is set to 0 and control is passed
to entry point PC20 if the privileged operation is to be bypassed. Two
privileged instructions fall into this category; store channel 1D (STIDC) and
set clock (SCK).

TSK Simulation Subroutine (Flowchart 8C)

This subroutine simulates the ISK instruction. A branch and link to the F1NDKEY
subroutine is done to get the address of the R1 register of the 1SK from the
DOS register save area of EMUCONS. ~he FINDKEY subroutine also gives the
address of the storage key in the 1SK/SSK table for the block represented by
the address in the R2 register. The storage key is moved from the table into
bits 2ij-31 of the R1 register. Control is returned to the program check
executive routine (entry point PC20).

SSK Simulation Subroutine (Flowchart 8C)

This subroutine simulates the SSK instruction. A branch and link to the F1NDKEY
subroutine is done to get the address of the R1 register in the DOS register
save area of EMUCONS and the address in the ISK/SSK table of the storage key
for the block represented by the address in the R2 register. Bits 2ij-31 of
the R1 register are moved into the table. Control is returned to the program
check executive routine (entry point PC20).

SSM Simulation Subroutine (Flowchart 8C)

This subroutine simulates the SSM instruction. The address of the new system
mask is obtained with the F1NDADDR subroutine and the byte at the address is
moved into the first byte of the local execution PSW. Control is returned
to the program check executive routine (entry point PC20) •

LPSW Simulation Subroutine (Flowchart 8D)

This subroutine simulates the LPSW instruction. The F1NDADDR subroutine is
used to find the address of the new PSW. The eight bytes of data at that
address in the DOS area are moved to the local execution PSW.

Before the routine exits, a check is made to see if this is the first LPS~,'1
during TPL. If not, exit is made to the program check executiv~ routine (entry
pOint PC20). The first LPSW during IPL should be an enabled wait for the IPL
interruption. Control is passed to entry point IN'!.'RPT and the subroutine
checks the first PSW loaded by the DOS IF!. routines. Hhen the wait bit is
1 and interruptions are enabled, the expected interruption is simulated
according to the farameter on the EXEC statement. If these conditions are
not met, control is returned to the program check executive routine at entry
point PC20. When they are met, the first LPSW bit switch in IPLS~ is set to
o and the interruption type is determined by examination of the DOSIPL
parameter.

When DOSIPL=EXT, an external interruption is simulated. The DOS current (local
execution) PSW is moved to the external old PSW (location 2ij in the DOS area),
and the external new PSW (location 88 in the DOS area) is moved to the local
execution PSW location.

56 DOS Emulator Logic

When the DOSIPL value contains a DOS channel and unit address, that address
is moved to the interruption code portion of the local execution PSW and an
I/O interruption is simulated. The local execution PSH is moved to the I/O
old ~SW (location 56 in the DOS area" and the 1/0 new PSW (location 120 in
the DOS area) is moved to the local execution PSW location in the local
execution list. The CSW is set to 0 and the device end bit is turned on.
If the DOSIPL device is the DOS console, the attention bit in the CSW is also
turned on. Control is returned to the program check executive routine at entry
point PC20.

TCH Simulation Subroutine (Flowchart BEl

This subroutine simulates the TCH instruction. The FINDCHAN subroutine is
used to obtain the channel and unit andress from the instruction and the index
and absolute address of the first device entry on the channel in COMTAB.

The CTFLAG device busy bit in COMTAB is tested to see if any of the devices
on the channel are busy. If none are found to be busy, the condition code
in the local execution PSW is set to 0 (channel available). If one is found
to be busy, the Nap issued bit in CTFLAG1 is tested to determine if a device
end status is being awaited. If this bit is set, the next device is checked
for a busy condition; otherwise, the condition code is set to 2 (channel busy).
Control is returned to the program ch~ck executive routine at entry point PC20.

TIO Simulation Subroutine (Flowcharts 8F-8m

This subroutinF> simulates the TIO instruction. The FTNDCHAN subroutine is
used to obtain the c~annel and unit address from the instruc~ion and the in1ex
and absolute andress of the first device entry on the channel from COMTAE.

The COMTAB ent.ries are scanned, starting with the first device on the channel,
for the device being tested. If no match is found, the condition code in the
local execution Psr,1 is set to 3 (device not operational). Hhen a match is
made, a further test for device operational is made by testing the
nonoperational rit in the CTFLAG byte of COMTAB. If it is 1, the device is
not operational and the condition code is set to 3.

The CTFLAG device husy bit in cm~TAB is tested for a value of 1 to determine
whether it is busv. When the bit is a, the device is not busy unless the
device is a 2321 DASD unit (all 2321 bins used by DOS must be checked). r,1h.en
the device is not a 2321 or all bins are not busy, the current PSW condition
code is set to 0 (device available). When the device is busy, further testing
is required to determine if an interruption is penning.

The first check for interrupt pending is made on the EC3 completion code.
During IPL, the ECl? is waited upon if it has not already been posted in orc"1er
to save going through a TIO loop until ~/O completion. Other tirn~s, the pending
I/O table is scanned for an entrv for the device. If the I/O is not complete,
the local execution PSt'1 conditio; co~e is set to 2 (device busyl.

When an 1/0 operation has been completed, the ECB coile, the -:OMTA13 inl]ex, and
the address of the device entry are passed to the check subroutine (atel:try
point CHECK2, to get the stored channel status word. Upon return, the condition
code is set to 1 (CS~ stored) •

Control is returned to the program check executive routine at entry pointPC20.

Methoo of oper~tion 57

~IO Simulation Subroutine (Flowchart A~'

This routine receives control when the privileged operation code ~IO is
intercepted. The routine simulates the ~IO instruction to DOS. The FINDCHA~
subroutine is used to obtain the channel and unit address from the instruction
and ~he index and ahsolut~ address of the first device on the channel from
COM'::'AB.

The COM~AB entries are scanned, starting with the first device on the channel,
for the device beinq tested. If no match is found, the condition code in the
local execution PSW is set to 3 (device not operational). When a match is
made, the routine tests the nonoperational bit in the CTFLAG byte of COMT~B.
If it is 1, the dEvice is not operational and the concH tion code is set to
3. 'T'he CTFLAG device busy bit in CO!>1'T'AB is tested for a value of 1 to determine
whether it is busy or not. If the device is active, a halt I/O operation is
performed.

This routine returns to the calling routine at the address specified in the
return register of the calling routine. The return register is increased by
a value that 1etermines the proper branch instruction in a branch tahle. 'T'he
calling sequence is as follows:

• Device not operational - Return to the program ch~ck executive routine
at entry point PC20.

• Device not busy (flagged 'not in use' by the ~mulator, - Set CSP status
to 0, set current (local execution) pm'! condition code to 'CSf-J stored,'
and return to the program check executive routine at entry point. PC20.

SIO Subroutine (Flowcharts 8J-8N)

The SIO routine issues an OS EXCP macro for the intercepted DOS SIO.
are used, the addresses being adjusted from local to true addresses.
routine is given control by the program check executive routine when
privileged operation code is recognized as SIO.

DOS C~Js
Th"" STO

the

The proper CO~TAB entry is selected. (The COMTAB entries contain the various
Emulato:r parameters required for each device.) Norrrally, the entry is found
by means of DOS register 3, which contains a pointer to the appropriate DOS
PUB entry at SIO. The position of the current PUB in the 1)OS PUB table is
used as an index to an O~ PUB table created in the Emulator's initialization
phase. The indexed OS PUB entry contains an index of the proper COMTAB ~ntry.

During IPL, before the DOS PUBs exist, and for CE serviceability routine
operations (where DOS register 3 does not point t.O a PUB entry), the COM'I'AB
entry is determined by a search for channel and unit address in COM'T'AB. ~he
cuu is found bv the FINDADDR subroutine. The DOS CAW local address is acjllsted
to its true address.

If the device isa 2321 D~ta cell Drive, the COM~AB entry, determined as
described above, is for the highest defined DOS bin number. The entry for
the actual bin nurrber to be used is <'!.etermined bv a search of all COMTAB entries
having the same DOS cuu for the bin number contained in the DASD seek address.
If a seek does not precede the channel Frogram, the address of the last 2321
COMTAB entry for the device is loaded from its save position in the last COMTAB
entry.

DOS is given a condition code of X'OO' unless the device is busy (X'02') or
the device is flagged as not operational (X'03'). If the data set has not
been opened, the open routine (Inrop~, is called.

If the device is a staqed I/O device, the SIO count is increased and control
is passed to module IIVS~G. If the device is DOSLOG, control is passed to
module IIVLOG. If the I/O request was for a shared.OS indexed sequential data
set, the ECB in the associated TSBLK is posted and a branch is made to STOCNT.

58 DOS Emulator Logic

For direct-access I/O operations, the SEEKTEST subroutine is called to determine
if the CCW operation code is seek. This routine also moves the correct DCB
address from the COMTAB extension to the lOB for shared volumes (see SEEKTEST
subroutine description for further details). The seek address is then moved
to the lOB. The initial CCW sequence of SEEK-TIC or SEEK-SBT FILE MASK-TIC
is bypassed. That is, the lOB CCW start address is set to point to the address
immediately after these corrmands.

For direct-access devices only, flags are set for the stand-alone sense
operation or the stand~alone seek, since these commands do not have their
addresses adjusted to true addresses by ITVCCW and, hence, must not be
readjusted when the I/O interruption occurs. ~he stand-alone seek is not
passed on to OS, but is posted complete to DOS. That is, the ECB is posted
complete and the lOB CSW is posted.

For tape operations, the DOS initial RE~ MODE, if present, is moved to a save
area in the device's COMTAB entry. This is necessary so that the DOS set mooe
opcode can be moved to the OS DEB. ~he ccw addresses are adjusted to true
addresses beginning with the CCW immediately after these initial CCWs. If
a rewind-unload is issued by DOS, an 'intervent.ion required' message is printed
by the Emulator if any further I/O is requested on that tape drive.

Module IIVCCW is called to adjust CCWs. The IrVCCW routine returns to the
address in register 14 plus 0 (error) or 4 (normal). The error return indicates
that an error condition was detected during CCH adjustment. The program check
bit is set in the 1::0S CSW status, the condition code is set to 'CST.) stored',
and a return to entry point PC20 is made.

SEEKTF.ST Subroutine (Flowchart 8K)

This subroutine gains control to determine if the operation code of a DASD
CCW is seek. If it is found to be seek, the address of the DASD seek is
returned to the caller. Control is returned to the caller.

SEEKryVS Subroutine (Ylowchart AP)

The DASD seek address is then compared with each lower and upper read or write
track address in the DEB. If the seek address noes ~all within a set of DEB
extents, the associated DCB address is moved from the COMTAB extension to the
lOB and control is returned to the caller. Otherwise, the next COMTAB extension
is c'lecked. If no match is found, control is aiven to module II'\"V10 to
determine whether the seek (and channel proqram) is for a DOS access to VOL1,
F1, or F3. IIVVTO returns a condition code-of 0 when the I/O has to be issued,
a condition code of 4 when the I/O has to be simulated, or a condition code
of 8 when the seek address is invalid. In the last case, the routine exits
to the exit-ABEND error routine (I IV;t',B"iIl after issuing the IN'TALID SEEK message.

FINDeHAN subroutine (Flowchart 8Q)

This subroutine is used hy the TCH, HIO, and TID instructions to obtain the
channel and unit address, the device entry index int.o COMTAB, and the absolute
address of the device entry in COMTAB. The channel and unit address is obtained
from the FINDi\DDR subroutine and stored at CHANUNIT in EIVIUCO"'lS. The channel
number is used to index into the CHNINDX table to determine whether the channel
is supported hy the Emulator. When the channel is not supporteo, the condition
code in the local execution PSvl is set to :3 (not operational) and exit is made
to the program check executive routine entry point PC20.

Method of operation 59

The index into CO~AB for supported channels is obtained from the CHNINDX table
and ;TIultiplied by the C(lM'I'AB entry length. The result plus the starting address
of COMTAB is returned to the caller in register FW4EU. The channel index value
is returned in register RWOEU. Return is to the aco.ress in r~gister RBOCT).

FIND~I\DDR Subroutine (Flowchart J:l'R)

This subroutine is used to determine the absolute value of the BrDD portion
of a DOS privileged operation instruction. 'I'he base register bits are used
as an index to locate the register value in the register save area. The 1
1/2-byte displacement value is added to the value contained in the register
save area to ottain the effective addr€ss. If the instruction has an I/O code
('I'M for X'9C'), the address adjustment factor is not added; it is in all other
cases. The res11lting value is returned in register ?'·12EU and return is made
to the caller by a branch to the address in register RLOEU.

FINDKEY Subroutine (~lowchart 88)

This subroutine analyzes the TSK or SSK instruction to obtain the address of
the 'R1 register in the instruction ana the address of the entry in the TSK/88K
table that corresponds to the address value in the 'R2 register. When a main­
storage aodress larger than the DOS area is specified in R2, an addressing
program interruption is simulated.

The address of the R1 register is ret'lrned in register 'R~J4EU and the address
of the 1-byte entry in the ISK/8SK table is returned in register RW3ffil.

Load/Store Control Register Subroutine (Flowchart 8T)

The two instructions (load control and store control) are simulated only to
the extent that control register information is preserved in EMUCONS for
retrieval by DOS.

Load Control Register. Control register information (starting at the DOS main­
storage address specified in the LCTL instruction and continuing through as
many storage words as the number of control registers specified) is moved into
the control register field labeled CTLREGS in EMUCONS.

Store Control R~ister. Control register information is movej from the control
register field laheled CTLREG8 in EMUCONS to the DOS main-storage address
specified by the STCTL instruction and continuing through as many storage words
as the number of control registers specified.

Store CPU ID Subroutine (Flowchart 85)

Eight bytes of CPU identification information are moved from a field (labeled
CPUID) in EMUCONS to the DOS main-storage address specified in the 8TIDP
instruction. The CPUID field in EMUCONS is initialized by the Emulator start
I/O appendage.

60 DOS Emu13tor Logic

Set Clock Subroutine (Flowchart aU)

The Emulator set clock subroutine gains control when an SCK instruction
(operation code is X'B20~') is executed by DOS. This routine has two major
functions:

• Compute and save in EMUCONS the absolute value of the difference between
the OS time-of-day clock and the value addressed by the SCK instruction

• Locate and invalidate the STCK instruction (store clock) in the DOS SVC
3~ routine. The main-storage aC!dress of the· STCK instruction is saved
in EMUCO~S so that the program check (operation exception) can later be
identified as the STCK instruction. No action is taken if the STCK
instruction is not found.

Control is passed to entry point PC20 in rIVPCE for return to DOS.

store Clock Subroutine (Flowchart aU)

~he Emulator store clock subroutine qains control after the program check
caused by the DOS invalidated STCK instruction occurs. ~he address contained
in the operation pointer field in the local execution list is compared with
the address saved in E!1TJCONS by the set clock subroutine. A program check
will be passed back to DOS if these addresses are not equal.

An 8-byte field in E!1UCOT-1S labeled TD'SLTA will contain the absolute value of
the difference between the OS time-of-dav value and the DOS time-of-day value.
A switch labeled S370ST,J (in EMUCONS) '~ili have bit ~ set to one if TDELTA is
to be subtracted from the OS time-of-day value. The result is stored in DOS
main storage addressed by the STCK instruction. Control is passed to entry
point PC20 in IIVPCE for return to DOS.

Check I/O Routine (IIVe~K) -- Flowcharts 9A-9D

~he main function of this routine is to post the nos csw when an I/O
interruotion occurs. The information posted is obtained from the IOB csw.

~he routine receives centrol from module II\lRTE when an outstanding posted
I/O interruption is recognized. "'he routine is also entered by the TIO
simulation subroutine (module IIVPCE) to post the DOS CSW.

The routine readjusts the ccw addresses to their local values. This is not
requirEd for operations flaqged by module IIV'PCE at SIO as being a stand-alone
sense or seek.

For the shared DOS residence option, a DOS read to record 1 of the DOS system
directory (eCHHR=x'OOOCOC0101') will cause the DOS label cvlinder address to
be moved from Ef1UC'ONS to the related field in the COS input area. This is
done to ensure that the proper label cylinder is being accessed.

For BTAH devices, the ecw chain issued is tested t.o determine if it is the
chain used in polling with an autopcll wraplist. Lf it is, the fifth and sixth
(an~ for start/stop devices, the seventh) eews are readjusted without usincr
module I IVCCrlil • This is necessary since T)OS BTAM modi fies these C~'1 chains,
causing the readjustment module rrVCCH to lose a path to these con:mands.

The routine issues a NOP operation to the device if the operation completes
normally (completion code X'7F') and a channel-end only has been posted. This
is performed to obtain device end conditions to be passed to DOS if the NOP
is intercepted. If it is not intercepted, a CSW with only a device end
condition is passed to DOS.

~ethod of ooeration 61

is performed to obtain device end conditions to be passed to DOS if the NOP
is intercepted. If it is not intercepted, a CSW with only a device end
condition is passed to DOS.

For all devices except DOS BTAM, if OS has posted a permanent I/O error for
other than a rewind-unload operation, the routine posts a high error count
to DOS to prevent DOS retries. The count is stored in the DOS PUB table.
For tape, if TEBs are present, the count is stored in the TEE. If no TEBS
are present, the count is stored in the TEBV if TEEVs are present.

For rewind-unload operations, two situations exist. In one case, an operator
intervention is required, in which event the Emulator again issues a NOP as
it does to force device end. The object of this NOP is to force OS to wait
for the device to be readied, which will result in the Emulator simulating
an unsolicited device end to DOS. The FPSW flag is on to indicate this
situation. In the other case, intervention may not be required at all;
therefore, the Emulator arbitrarily simulates an unsolicited device end to
DOS. This is done as DOS has no indication of an actual unsolicited device
end and may be waiting for one. The DEON flag is turned on to indicate both
situations and the simulated interruption is queued in the post ECB list.

The routine transfers control to module IIVABN to post a channel end program
check to DOS if module IIVCCH returns indicating an invalid CCW. This causes
DOS to cancel the partition in which the error occurred.

Interpretive SYSLOG Routine (IIVLOG) -- Flowcharts 10A-10E

This routine interprets IBM 1052 Printer Keyboard CCW chains and issues WTO
or T~OR as required by the channel program. All alarm commands are translated
to NOP. Both data and command chaining are supported. control is passed to
this routine by the program check executive routine (IIVPCE).

Initialization

The dummy lOB for SYSLOG and the codes and flags used by the routine are
initialized. The CAW verification routine (IIVAWV) and CCW verification routine
(IIVCWV) are called to validate the DOS CAW and CCWs, respectively. If the

CAW or a CCW is invalid and it was the first ccw of a chain, the PSW condition
code is set to 01 and control is given to the exit subroutine. If the CAW
and/or CCW is valid, the command code is validated and translated to an index
value to be used with a branch table to go to the proper processing subroutine.
The index values are:

00 - Invalid command code

O~ - ~OP/alarm

08 - Sense

10 - write with automatic carriage return

1~ - write with no automatic carriage return

DC - Read

Invalid Command Code. This subroutine sets either the corrmand reject bit in
the sense byte and the unit check bit in the status byte or, if the q low-order
bits of the command code are 0, the program check bit in the status byte.

62 DOS Emulator Logic

NOP/Alarm. If the CCW is the first in a chain, the PSW condition code is set
to 01. Control is given to the exit subroutine, bypassing the first CCW check
in exit.

Sense. The sense byte is moved to the data area specified in the CCW and
control is given to the exit subroutine.

Read. If a previous ~TO is still outstanding, the WTO message is moved to
the output area of the WTOR. The total reply length is obtained from the CCW
and placed in the output area of the WTOR. The WTOR is then issued, the route
switch is set on, and control is passed to the asynchronous interrupt exit
routine (IIVRTE).

When the ECB associated with the WTOR is posted, control is passed to the
remainder of the read subroutine. The reply is moved to the storage area
specified by the data address in the CCW. If a continuation was requested
in the reply, the data address and reply length are modified and control is
passed to the read subroutine to issue another WTOR. If the reply is complete,
control is passed to the exit subroutine.

Write. Tests are made to determine if data chaining or no automatic carriage
return was specified in the previous CCW. If not, and the previous CCW was
a write, the previously assembled WTO is issued. After the length and addresses
of the current message are determined, a check is made to see if the length
is greater than the maximum allowed for a WTO. If so, the message is broken
into successive WTOs until the length of the remaining message is less than
or equal to the maximum. One pending WTO is always left. Control is then
passed to the exit subroutine.

Exit. If the CCW is the first in a chain, the PSW condition code is set to
O~ The sense byte is cleared for the next command and the CCW address is
increased to point to the next ccw.

• If the current chaining flags are on, control is returned to the
initialization subroutine at the point where module IIVCWV is called.

• If no chaining flags are on, the device end and channel end bits in the
status byte are set on.

• If a INTO is pending, the WTO is issued.

• If the route switch is on, the SYSLOG interruption pending flag is set
on and control is passed to entry point IIVRTER2 in the route routine.

• If the route switch is off and the PSW condition code is 00, the SYSLOG
interruption pending flag is set on.

• If the'PSw condition code is 01, the DOS CSW is posted.

The routine exits to the asynchronous interrupt exit routine (IIVRTE) at entry
point IIVRTER2.

Control will be returned to the IIVLOGR1 or IIVLOGR2 subroutines by the select
routine if the SYSLOG interruption pending flag is on.

Dummy SYSLOG I/O Interruption

Control is passed to the IIVLOGR1 or the IIVLOGR2 subroutine by the select
routine (IIVRTESL) when the SYSLOG interruption pending flag is on.

Method of Operation 63

The SYSLOG interruption pending flag is set off, the DOS CSW is posted, and
the DOS I/O interruption action is performed. Control is passed to the
asynchronous interrupt exit routine (IIVR~ER2).

Staged I/O Routine (IIVSTG) -- Flowcharts 11A-11N

Module IIVSTG contains the main logic required to stage input and output
devices. During Emulator initialization, an lOB for each device defined in
a DD statement is created. In the case of staged I/O, this area contains
information that describes the unique characteristics of the device being
staged, that is, print size, valid command codes, etc. This area also contains
switches that indicate the function to be performed. (See STGCON in 'Data
Areas' for format.)

Module IIVSTG receives control from module IIVPCE at DOS SIO. The contents
of all registers are saved, and the channel status word in STGCON is reset
to O. STGSEN1 is moved to STGSENO and set to O. STGSENO is given to DOS
whenever a sense command is issued.

IIVA~V is called to validate the DOS CAW and initialize the CCW pointer in
STGCON (STGCCW). Module IIVAWV sets the program check bit in the CSW contained
in STGCON if it encountered any errors. Upon return from IIVAWV, a test is
made to see if the program check bit was set. If it was, the CSW in STGCON
is moved into location 64 in DOS storage, the condition code in the local
execution PSW is set to CSW stored (01), and control is given to IIVRTER2.

If no errors were encountered, IIVCWV is called. This module checks the
validity of the CCW addressed by ST3CCW in STGCON. If the CCW is a TIC, the
CCW pointer (STGCC~ is altered to point to the CCW addressed by the TIC.
If any errors are encountered, the program check bit is set in the CSW contained
in STGCON (STGCSW). Upon return from IIVCYN, a test is made to see if the
program check bit was set. If it was, the following action is taken.

1. If the erroneous CCW is the first CCW in a chain (the CCW addressed by
the CAW), the CSW is moved from STGCON to location 64 of DOS storage.
The condition code in the local execution PSW is set to CSW stored (01),
and control is given to IIVRTER2.

2. In all other cases, a hexadecimal 7F is moved into the high-order byte
of the ECB for the device being staged. The pending interruption is later
given to DOS in the same manner as for nonstaged devices. Control is given
to IIVRTER2.

If no errors were discovered by IIVCWV, the data chaining bit is checked in
the DOS CCW. If it is set, the program check bit is set in the CSW in STGCON
and the same action is then taken as if the program check bit were set by
module I IVCt'N •

If the 4 low-order bits of the ccw command code are 0, the program check bit
in the CSW is set to 1 and control is passed to IIVRTER2. Otherwise, the CCW
operation code is translated according to the translate table whose address
is contained in the STGOPCD field in STGCON. If the result of the translation
is 0, the unit check bit in the CSW is set, the command reject bit in the
current sense byte in STGCON (STGSEN1) is set, the ECB for the device being
staged is posted, and control is given to IIVRTER2.

If the CCW command code is valid, it is checked for being a sense command.
If it is a sense command, the sense information is taken from STGSENO and moved
to the address contained in the DOS CCW plus the adjustment factor. STGSENO
is then set to O. If no errors were encountered up to this P9int, the command
chaining bit is checked. If it is set, STGCCW is increased by 8 and the next
CCW is processed. (If it is not set, refer to "Staged Output.")

64 DOS Emulator Logic

If the command code is NOP, the command chaining bit is checked, If it is set,
STGCCW is increased by 8 and the process is repeated for the next ccw.

STGMAX in STGCON contains the maximum number of bytes that can be transmitted
to or from the unit-record device that is being staged. If the count field
in the DOS CCW contains a value greater than the value in STGMAX, the residual
count is computed and stored in the residual count field in the csw. The
incorrect length bit is also set in the CSW in STGCON if the SLI bit in the
C~N being processed is not set.

Staged Input

If the first command to a staged reader is a feed-stacker select, the unusual
sequence bit in STGSEN1 in STGCON is set (to simulate hardware procedures),
the unit check bit is set in the status portion of the CSW in STGCON, the ECB
for the device being staged is posted, and control is given to IIVRTER2. The
same thing is done for any unusual sequence of commands. Successive commands
specifying read without feed cause the same input record to be passed to DOS.

If EOD~D (bit 5) in STGFLG is set, a /& is generated within the DOS input area
and EOD is set in STGFLG to pass back a unit exception for the next input
request. A GET is issued using get locate mode. A test is made for the SYN~D
flag in STGFLG to see if there was a permanent error. If there was an error,
the unit check bit is set in the CSW in STGCON and control is given to IIVRTER2.

If there were no errors and the suppress data transfer bit in the CCW is set,
no data is moved into the DOS input area. Otherwise, the number of bytes
specified in the count field of the CCW or STGMAX, whichever is less, is moved
into the DOS input area. The first 2 bytes of the input data record are saved
in STGDLM in STGCON. The EODAD subroutine uses this information to determine
whether to generate a /*, /&, or both before sending back a unit exception.
Control is then given to STGI0110 to check for command chaining.

staged output

If the output device being staged is a printer, the initial output request
causes a skip-to-channel-1 command to be issued, followed by the DDname of
the data set being written and by another skip to channel 1. If the device
is a punch, the stacker bits in the command address portion of the CCW are
examined to determine whether that particular stacker has been selected during
this emulation run for the device being staged. If not, three separator cards
that contain the DDname of the data set being staged are written before the
output request is staged.

Print commands for the 3525 punch are compared with the last print command
issued by DOS. Control is given to CMNDREJ if the line number indicated in
the current command is not greater than the line number in the last command,
otherwise, the last print command field in STGCON {labeled STGLCMD, is updated
with the current print command.

The DCBLRECL field of the DCB is modified to reflect the length of the current
output record. A PPT is issued and the buffer address is obtained from register
1. The SYNAD bit in STGFLG is tested to determine whether a permanent I/O
error had occurred. If this bit is set, the unit check bit is set in the
status portion of the CSW in STGCON and the device not operational bit (X'02')
is set in the CTFLAG field of COMTAB. This, in effect, causes the DOS device
to be permanently disabled for the remainder of the Emulator run. If no I/O
error had occurred, the record descriptor word in the output buffer (which
contains variable length records) is set with the value that was placed in
DCBLRECL.

~ethod of Oper~tion 6S

If the staged device is a printer and if module IIVPOV was included during
the Emulator link-edit, a branch and link to that module is issued to simulate
the carriage tape operation normally performed by the printer. This routine
aids DOS printer overflow by simulating channel 9 and 12 interruptions to DOS.

When control is regained from IIVPOV, the status portion of the CSW in STGCON
is tested for unusual conditions that might have occurred, such as unit check
or incorrect length.

If any unusual conditions had occurred or if no command chaining is specified,
the ECB for the staged device is posted and control is given to IIVRTER2.
If command chaining is specified, the CCW pointer in STGCON (STGCCW) is
increased by 8 and the routine starts processing the next CCW in the chain.

If the FIRSTCCW flag in STGFLG is not set after entry at CS~.ySTOR, a branch
to INTPEND is issued. Otherwise, the staged device cuu is moved into the
interruption field of the local execution PSW. The condition code in the local
execution PSW is set to 1 (CSW stored). The CCW address is readjusted,
increased by 8, and stored in the command address portion of the CSW in STGCON
(address 64). Control is passed to the route routine (IIVRTER2).

After entry at INTPEND, the address of the last CCW processed is readjusted,
increased by 8, and stored in the command address portion of the STGCON CSW.
The condition code in the local execution PSW is set to 0, channel end and
device end in the STGCON CSW are set, the ECB in COMTAB is posted, and control
is given to the route routine (IIVRTER2).

SENSE is entered if the CCq being processed is a sense command (op code X'04').
The SYNAD bit in STGFLG is tested to determine whether a permanent input error
had previously occurred. (IIVSTG does not receive control after a permanent
output error.) If the SYNAD bit is set, the unit check bit in the CSW in
STGCON is set to 1 and the SYNAD bit is reset to O. This causes an 'error­
on-recovery' condition when DOS regains control, and the DOS problem program
that issued the erroneous read is terminated.

If there were no input errors, the residual coun't. is computed and stored in
the CSW in STGCON. The COW data address is adjusted by the adjustment factor
in the local execution list. The simulated sense byte (STGSENO) is moved to
the adjusted data address only if the suppress data-transfer bit in the ccw
is set to 1. The incorrect length (ILC) bit is set in the CSW in STGCON if
the SLI bit in the ccw is not set to 1 and if there is a residual count greater
than 0 in the csw. Control is then given back to the main routine to check
for error conditions and COW command chaining (see "Staged Output").

After entry at CMNDREJ, the command reject bit (bit 0) in STGSEN1 is set.
The unit check bit is set to 1 in the status portion of the CSW in the dummy
lOB area (STGCON). control is passed to entry point INTPEND.

Read FCB Subroutine (Flowchart 11L)

This routine gains control at STGI0300 when a read FCB command is encountered
by module IIVSTG. The data area is initialized to 0 up to the length specified
in the count field of the C~N or 180 bytes, whichever is less. The Emulator
forms-control image is converted to its FCB format, one line image at a time.
The lines-per-inch flag is set in the first byte of the FCB if it is oresent
in STGCHFLG in STGCON; the end-of-forms flag in the last byte of the FCB is
set if the count in the ccw was equal to or greater than the length, in bytes,
of the FCB image. The residual count, if it exists, is computed and placed
in the CSW in STGCON, and the incorrect length bit is set if the SLI bit in
the CCW is not set to 1. Control is then passed to STGI0110 to check for
command chaining.

66 DOS Emulator Logic

Load FCB Subroutine (Flowchart 11M)

This routine gains control at entry point STGI0200 when a load FCB command
is encountered at the beginning of staged I/O or when module IIVOPN passes
it control because an Emulator forms-control image must be created.

A FREEMAIN is issued to release the main-storage area where the existing image
resides. A GETMAIN is then issued to obtain main storage for the new image.

The unit check bit is set in the status portion of the CSW in STGCON and a
load check is set in the sense byte under the following conditions:

• The absence of the end-of-forms flag in the last position of the FCB data

• A value greater than X'OC' in any line position in the FCB data

The lines-per-inch flag, if present, is saved in STGCHFLG so that when an FCB
is built by module IIVSTG when a read FCB command is issued, the FCB will be
identical to that loaded previously. The STGCHFLG, STGCTP, STGLNPTR, and
STGLNCNT fields in STGCON are reinitialized. Control is returned to the caller
after the new Emulator forms-control image is built. See the module description
for IIVPOV for further discussion of forms control.

EODAD Subroutine (Flowchart 11N)

This subroutine (entry point EODA) is given control by QSAM when an end-of­
file (EOF) condition is encountered.

The STGDLM field in STGCON contains the first two characters of the inout
record from the last read operation. If STGDLM contains a /&, the unit
exception bit in the status portion of the STGCON CSW is set. The BOD bit
in STGFLG is set to 1 so that any future input request will result in a unit
exception condition. The ECB for the device being staged is posted and control
is given to the route routine (IIVRTER2l.

If STGDLM contains a /*, a /& is generated at the
data address portion of the CCW being processed.
is then set to 1 and the command chaining flag in
command chaining was specified, the BCB is posted
IIVRTER2.

address contained in the
The EOD switch in STGFLG
the CCW is tested. If no
and control is given to

If STGDLM contains neither a /& nor a /*, the EODAD bit in STGFLG is set to
1. (This will cause a /& to be generated during the next input request.) A
/* is generated at the address contained in the data address portion of the
CCW being processed. If no command chaining was specified, the ECR is posted
and control is given to IIVRTER2.

EODAD contains a secondary entry point (EOF010) used to blank out the DOS input
area whenever a /* or a /& is to be generated.

SYNAD Subroutine (Flowchart 11Nl

This subroutine (entry point SYNA) is given control by QSAM when a permanent
input or output error is encountered. The SYNAD bit in STGFLG is set to 1
and control is returned to OS. The main routine, in turn, regains control
from OS.

Method of Operation 67

CAW Verification Routine (IIVAWV) -- Flowchart 12A

Module IIVAWV validates the DOS CAW and initializes the CCW pointer in STGCON.
If the CAW is found to contain errors, the CSW program check bit is set and
control is returned to the caller.

The following conditions will cause the program check bit in the CSW to be
set:

• A nonzero value found in bits 4-7 of the CAW

• A command address not on a doubleword boundary

• A command address greater than the limit addre~s in the local execution
list

The following fields in STGCON may be modified by this routine:

• The status portion of the CSW maintained for this device (SCSWST2)

• The CCW pointer maintained for this device (STGCC~

• The work byte in STGCON for this device (STGHK1)

CCW Verification Routine (IIVCWV) -- Flowchart 13A

Module IIVCWV validates and interprets DOS CCWs for IIVSTG and IIVLOG. If
a CCW is found to be in error, the CSW program check bit is set and control
is returned to the caller.

The following conditions will cause the program check bit in the CSW to be
set:

• A nonzero value in bits 37-39 of the CCW

• A TIC as the first cc~ (that is, the CCW addressed by the CAW)

• Two TICs with no intervening CCW

• A 0 in the count field of non-TIC CCWs

• A data address greater than the value in the limit address in the local
execution list minus the count

• A command address in a TIC greater than the limit address in the local
execution list

• A command address in a TIC not on a doubleword boundary

If the command code in the CCt-1 being interpreted is a TIC, the CCW pointer
in STGCON (STGCCW) is altered to point to the CCW addressed by the TIC.

The following fields in STGCON may be modified by this routine:

• The status portion of the CSW that is maintained for this device (SCSWST2)

• The CCW pointer that is maintained for this device (STGCCW)

• The work byte in STGCON for this device (STGWK1)

68 DOS Emulator Logic

Printer Overflow Routine (IIVPOYl -- Flowchart 14A

Module IIVPOV maintains the simulated sense byte and status portion of the
CSW for staged printers. IIVPOV simulates the carriage tape operation that
is normally performed by the printer during output staging.

The in-storage, forms-control table defines to the Emulator the presence and
position of forms-control channels for staged printers. Each entry in this
table, addressed by STGFCT in STGCON, is a halfword in length. Only the low
order 12 bits are utilized to represent one of 12 possible channels. Channels
are ascending from left to right. The pointer is updated according to the
CCW operation code. within each entry, a 1 bit indicates a punch and a 0 bit
indicates no punch.

Module IIVSTG issues as its first PUT for staged printers a skip to channel
1. In order to calibrate the forms-control pointer to the printed output,
module IIVPOV receives control from IIVSTG with a dummy-skip-to-channel-1
command (only if channel 1 was defined in the FCB). The forms-control pointer
is initially defined to point to the first entry in the table. ~he dummy skip
to channel 1 causes the forms-control pOinter to point to the first channel
1 entry in the table. Each DOS output request thereafter changes the value
of the pointer. When the pointer reaches the end of the table, it is
reinitialized and the process is repeated.

Upon entry, IIVPOV determines whether the operation
command or skip cowmand. If it is a space command,
SPACE is performed. Within SPACE, the line pointer
and updated. If it points to the end of the table,
branch and link to entry point FETCH is performed.
image for the current line upon return from FETCH.

code indicates a space
a branch to entry point
is retrieved from STGCON
it is reinitialized. A
RW1EU contains the tape
The image is right-adjusted.

A test for channel 12 is performed. If that bit is present, the unit exception
bit is turned on in the simulated channel status word.

A test for channel 9 is performed. If that bit is present, the channel 9
indication (bit 7 in the simulated sense byte) and unit check bit in the
simulated channel status word is set.

Multiple spaces are simulated one space at a time. Control is returned to
retrieve the line pointer again if the command was a double or triple space.
This process continues until all the spaces are simulated. Control is then
returned to the main routine.

If the command code indicated a skip was to be performed, SKIP is entered.
Within SKIP, the channel number is converted from its binary value to its
storage format. A 12-bit constant (STGCHFLG) is tested. This constant contains
a 1 bit if the corresponding channel is present in the in-storage carriage
tape, and a 0 bit if not. The line pointer remains unchanged if there is a
skip to a nonexistent channel. If the staged device has the FCB feature, a
unit check and data check are passed back to DOS.

A branch and link to FETCH is performed. Upon return from FETCH, RW1EU contains
the in-storage tape image for this line. The in-storage tape image is compared
with the channel to be skipped to. Control is returned to the calling routine
if the two are equal. Otherwise, the line pointer is updated and the next
entry is checked. This process continues until a match is found.

Adjust CCW Data Address Routine (I IVCCW) -- Flowcharts 15A-15F

A basic knowledge of the format and function of the CCW is needed to become
familiar with the operation of this routine. See System/360 principles of
Operation, GA22-6821, for this information.

Method of Operation fiq

~he following input information must be passed to this routine by the calling
routine: the address of the CCW string to be adjusted, the adjustment factor
to be used, and the limit address of the emulated DOS program. This data is
passed through the adjust C~p data address list. (See the Appendix for the
format and function of this list.)

~his routine adds an adjustment factor to the data address of each CCW in a
string passed to this routine by the calling routine. When an SIO is issued
bv DOS with this string of CCWs, the data addresses in the CCc~s will be local
addresses. The adjustment factor passed to this routine will be positive.
When this positive adjustment factor is added to the local data addressed in
the ccws, these addresses will be changed to true acdresses that can be used
by OS.

~-1hen OS finishes processing the SIO, the same string of CCY-ls is returned to
this routine with a negative adjustment factor. ~'lhen this factor is added
to the CCW data addresses, the true data addresses will be changed to local
data addresses that the emulated DOS program can use.

This routine uses two tables in its operation.

The first is called the beginning and end block (BE~LK) and consists of 30
8-byte entries. The first 4 bytes of an entry contain the true beginning
address of the continuous group of CCV1s in the CCH string being adjusted.
The second 4 bytes contain the true end address of the continuous group of
CCf'1s. The first bit of each entry is used as a completion indicator to show
whether that group of CCWs has been processed. If the bit is 1, the group
has been processed~ if 0, it has not been processed.

Hhen this routine encounters two different paths in the CCV1 string being
processed, it continues processing one path and builds an entry in BEBLY
indicating which path has not yet been processed. This entry is called an
incomplete BEBLK entry. As each incomplete BEBLK entry is created, it is
placed in BEBLK, starting at the end and working backward. The normal BEBLK
entries start at the beginning of BEBLY awl work forward. In the incomplete
entry, the first 4 hytes are the TIC address, the fifth byte is the operation
byte, and the last 3 bytes are the operation pointer. All of these values
are taken from the adjust CCW data acdress list.

The other table used by this routine is called the status modifier table.
This is a 256-byte translate and test table that contains the CCY-1 command codes
for the devices supported by the Emulator that cause the channel to return
a status modifier condition when a CCH's condition is met.

Because it is possible to add the adjustment factor to a single ccw more than
once, this routine uses a two-step method to adjust the data addresses in the
CCW string. It is possible to add the adjustment factor more than once because
the CCH string uses a CCH more than once in perforrring its operation.

During the first step, this routine adjusts the data address portion of each
CCW in a string of CCT,1s with an adjustment factor of zero. This is rlone so
that BEBLK entries can be created for each contiguous group of CCWs in the
CCW string. As each BEBLK entry is created, this routine will branch to the
combine subroutine to have duplicate groups of CCHs eliminated from BEBLK.

After the entire groups of CCW string has been processed and all duplicate
groups of C~NS have been eliminated from BEBLK, the second step of this routine
is performed. The data addresses of the CCWs defined by each entry in the
BEBLK table are adjusted. The CCWs wii:hin each group that is represented by
a BEBLK entry have their data addresses adjusi:ed by an adjustment factor that
is passed by the calling routine. Therefore, if this adjustment factor is
positive, the CCH data addresses are changed from local to true addresses;
if the adjustment factor is negative, the CCV1 data addresses are changed from
true to local addresses.

70 DOS Emulator Logic

If any addressability, protection, or specification errors are detected by
the adjust ccw string instruction or BEBLK is filled, this ~outine returns
control to the calling routine's return point.

If the byte count of a CCW in the CCW string being processed by this routine
is added to the true address created for that CCW by this routine and the
resultant address exceeds the emulated DOS program's limit address (passed
to this routine by the calling routine}, the SLI bit in this CCW is tested.
If the SLI bit is on, this routine assumes that the storage area addressed
by this CCW will not exceed the emulated DOS program's storage area and
continues processing this CCW string.

Upon normal completion of this routine's operation, control is returned to
the address ~ bytes beyond the calling routine's return point.

This routine sets the ABEND interception switch before adjusting CCWs. It
then resets the switch after the adjustment is complete. If the ABEND
interception is taken, the caller's registers are restored and control is
passed to IIVAB~. At this time an ABEFD error code of 16 is set in register
1 and control is returned to the caller.

Combine Subroutine (Flowchart 15F)

~his routine eliminates any duplicate CCws from the BEBL~ table by combining
an entrv with a beginning and/or ending address that falls within the beginning
and/or ending address of another entry, into the same entry. The routine also
tests the last CCW of the current BEBLK entry to see if it is a ~IC. If it
is a TIC, this routine tests all BEBI,K entries to see if the ~IC command address
is in BEBLK.

If this routine is able to corrbine the current BEBLK entry into any of the
other entries, it turns the combine switch on to indicate to the calling routine
that it has done so.

If this routine found the ~IC command address in BEBLK, it turns the Trc-~o
switch on to indicate to the calling routine that the TIC command address has
already been proc~ssed by the adjust CCW data address routine.

If this routine is able to combine the current BFBLK entry into BEBLK, the
ccw string being adjusted has looped into an area of itself that has already
been processed. If this cccurs and there are no incomplete paths of the CCW
string to be processed, the theoretical end of the CCW string being adjusted
has been reached.

CCW Adjustment Routine (TIVADJ) -- Flowcharts 16A-16B

This routine gains control from the IIVCCW or IIVRCW module and returns control
to the rIVCCW or IIVRCH module upon completion of its function. ~efer to the
Appendix (Adjust CCW String Instruction) for a description of the function
of this module.

Method of Operation 71

Supervisor Call Routine (IIVSVC) -- Flowchart 17A

All supervisor calls that originate within the DOS region are
intercepted prior to the execution of the DOS SVC
instruction, and control is given to the Emulator supervisor
call routine (lIVSVC). Upon entry, this routine stores all
DOS general registers in EMUCONS and establishes
program addressabi I ity.

When the first DOS SVC 4 is intercepted,
this routine modifies the DOS IPL
monitor switch (iPLSW) in EMUCONS
to indicate that DOS IPL phase
$$A$IPL2 has completed processing
and DOS phase $$IPLRT2 is in
control.
A DOS SVC interrupt is simulated for
DOS.

A DOS fetch (SVC 2) of $$BUFLDR
is bypassed.
(After first DOS SVC 4 and before
first DOS SVC 14.)

The first DOS SVC 14 (EOJ) inter­
cepted indicates that DOS IPL is
finished. The DOS IPL monitor switch
(lPLSW) in EMUCONS is modified to
indicate that DOS I PL has completed.
Control is then transferred to the OS
PUB table build routine (IIVPUB),
which validates the OS to DOS unit
relationship. A DOS SVC interrupt is
simulated for DOS.

Simulate DOS I
SVC interrupt,

A DOS SVC interrupt is simulated to
DOS by moving the PSW field from the
local execution list to the DOS old
SVC PSW (location 32) in the DOS
storage area and moving the DOS SVC
new PSW (location 96) from the DOS
storage area into the PSW field in the
local execution list. This means that
upon return to DOS, the DOS SVC
will be executed.

72 DOS Emulator Logic

First DOS
SVC4

After first
DOSSVC4.
Before first
DOSSVC 14.
If AUTO IPL
is requested_

First DOS
SVC14

After first
DOSSVC14
if volume
sharing is
requested.

Return

After first
DOS SVC 14
if volume
sharing was not
requested.

Return to DOS via IIVRTE.

When a DOS SVC 0 that meets the
following conditions is intercepted,
II VSVC gives control to the Emulator
automatic IPL routine (lIVADD),
which builds DOS IPL control state­
ments:

• The DOS SVC 0 was not issued by
the DOS supervisor.

• The DOS CCB symbolic unit is for
SYSUSE.

• The DOS channel program
operation code is a read command
(X'02'1.

A 0 return code from IIVADD requests
a DOS SVC interrupt to be simulated.

The local execution list PSW field is
left unmodified. DOS receives
control at the next sequential instruc-
tion following the DOS SVC instruction.
The DOS SVC instruction is not executed.

Meets
requirements

Not
qualified

RC = 0

Bypass DOS
SVC
orocessing

start I/O, End-of-Extent, Channel End, and Abnormal End APpendage (IGG019SA)
-- Flowcharts 18A-18B

The appendages are used to
tape devices used by DOS.
(key of zero); it contains
access devices and the set
by these appendages.

maintain (modify/restor~ the DEBs for DASD and
The DEB is built during open in protected storage
the file mask and extent information for direct­
mode command for tape devices that are maintained

When the DEB is built by open, the initial entry address is in the DEB appendage
address table for the start I/O and end-of-extent appendages if t~e device
is direct access, and for the start I/O appendage if the device is tape. The
initial entry modifies the addresses in the DEB appendage address table to
point to the respective routines within the module.

The CPU ID is stored when this appendage is entered for the first time. CPU
ID information will then be obtained from EMUCONS when the STIDP instruction
is issued by DOS.

The addresses modified in a DEB are:

DASD DEB:

• End-of-extent address - EOERTOOO
• start I/O address - SIORTOOO
• Channel end address - CERTOOO
• Abnormal end address - AERTOOO

TAPE DEB:

• start I/O address - SIORT500

After initializing the DEB appendage address table, control is passed to the
appropriate routine.

End-of-Extent Subroutine (EOERTOOO - Flowchart 18A)

If the user label flag is on in the COMTAB (CTFLAG3 bit 0), the extent
information in the DEB is saved and replaced with the user label extent from
the COMTAB. Return is made to os for a retry of the I/O request. otherwise,
the normal return is made to os, which results in an out-of-extent condition
to be posted in the event control block.

Start I/O (Tape) Subroutine (SIORT500) - Flowchart 18A)

The DOS set mode command is moved from the COMTAB to the DEB.

Start I/O (DASD) Subroutine (SIORTOOO - Flowchart 18B)

The extent information in the DEB is saved and replaced with an extent limit
of one cylinder (based on the cylinder in the lOB seek address) so that OS
cylinder switching at end of extent will be inhibited. If the shared volume
flag (CTFLAG3 bit q) is not on, the DOS file mask is set in the DEB. Return
to OS is always normal.

Method of Operation 73

Abnormal End (DASD) Subroutine (AERTOOO - Flowchart 18B)

The event control block in the lOB is tested to see if OS error recovery is
completed. If not, the normal return is made so OS error recovery will be
performed. Otherwise, control is passed to the restore subroutine (RSTOROOO)
to restore the extent in the DEB.

Channel End (DASD) Subroutine (CERTOOO - Flowchart 18B)

The condition code is tested to see if an error condition has been detected
at channel end. If an error condition is present, the normal return is made
so OS error recovery will be performed. Otherwise, control is passed to the
restore subroutine (RSTOROOO) to restore the extent in the DEB.

Restore DEB Extent Subroutine (RSTOROOO - Flowchart 18B)

The extent saved by SIORTOOO or EOERTOOO is moved into the DEB. The return
to OS is always normal.

Abnormal End/Channel End Appendage (IGG019S1) -- Flowchart 19A

This Emulator module does double duty as an abnormal end appendage for
teleprocessing devices and a channel end and abnormal end appendage for tape
and unit-record devices.

The abnormal end appendage bypasses OS error recovery procedures for
teleprocessing 1/0 errors. When a magnetic tape, unit record, or teleprocessing
(BTAM) error is detected, control is given to the appropriate section of the
appendage. The appendage turns off the lOB exception bit and returns to the
1/0 supervisor (0 displacement from the address in register 1q) to bypass the
OS error recovery procedures. If the appendage receives control for an error
other than those mentioned above, it immediately returns to the 1/0 supervisor,
allowing the OS error recovery procedures to handle the error processing.
The abnormal end appendage also routes error conditions for Emulator-initiated
1/0 (as opposed to DOS-initiated 1/0) to the OS error recovery procedures.

In the role of channel end appendage, this module routes all incorrect length
and unit exception conditions for tape and unit record devices at channel
end to DOS. (DOS does not consider incorrect length a permanent error
condition.) It does this by turning off the exception bit in the lOB and
returning to the OS 1/0 supervisor, which then posts the 1/0 operation complete.

After a tape rewind-unload has been issued or a BTAt-1 intervention required
condition occurs, the not ready bit is turned on in the UCB and a not ready
flag is set in the COMTAB entry. For unit-record devices, if a unit exception
occurs, the lOB esception flag is turned off, suppressing OS error recovery
procedures.

Asynchronous Interrupt Exit Routine (IIVRTE) -- Flowcharts 20A-20G

When the OS supervisor has completed processing any asynchronous interruption
that occurred while DOS was operating in local execution mode, it gives control
to this routine at entry pOint IIVRTE. When this routine finishes processing,
it returns control to DOS by issuing the execute local instruction whiCh returns
the CPU to local execution mode.

If the one-second STIMER interval has expired, this routine branches to the
timer interrupt check routine to process the interruption. If the interval
has not expired, the routine branches to the asynchronous interrupt check
routine to see if any of the Emulator ECBs pointed to by the ECB pointer table

7q DOS Emulator Logic

are posted. If one or more of the Emulator ECBs are posted, this routine
branches to the select routine, which passes control to the appropriate Emulator
routine to process the interruption.

If the interruption was not for the Emulator, DOS i$ checked to see if it is
in the wait state. If DOS is in the wait state and interruptions are disabled
(hard wait), control is given to the ABEND error routine (I IVABN) to cancel
the Emulator job. If DOS is in the wait state and the AUTOEOJ option has been
specified, control is passed to the end of job routine to see if DOS has any
more work to do.

If DOS is in the wait state, this routine goes into the wait state until
completion of an outstanding I/O operation. When this occurs, control is given
to the appropriate Emulator routine to simulate completion of the I/O operation
to DOS.

If DOS is not in the wait state and the timer option has been specified, the
fourth byte (local address X'53') of the emulated DOS timer is increased by
1. When this byte reaches a value of 256, it is reset to O. The purpose of
this operation is to show DOS a constantly changing timer value when the timer
is tested to see if it is operational. This has no real effect on the actual
time.

After the DOS interval timer has been updated, or if the timer option was not
specified, control is given to DOS through the execute local instruction, thus
placing the CPU in local execution mode. For an explanation of the operation
of this instruction, see the "DOS Compatibility Feature" in the Appendix.

STAE Exit Routine (Flowchart 20A)

This routine gains control for a sche~uled OS ABE~D. The primary function
of this routine is to determine whether furtner AB~D processing is to be
allowed or bypassed. ABEND processing is bypassed only if the bypass ABEND
switch (OPTFLGR2 in TTVCON=X'02') is on or a //SY~ABEND DD statement is present
in the OS jobstream. The switch is set on by JIUOPN before opening a nonshared
volume and by I1VCCW before ccw address adjustment takes place. The STAF retrv
routine is scheduled to receive control and the routine returns to the OS ABEND
processing routines.

Route Routine (Flowchart 20B)

The entry point for this routine is I1VRTER2. Following completion of their
operations, the interpretive SYSLOG (IIVLOG), staged I/O {IIVSTG), asynchronous
interrupt exit (IIVRTE), and program check executive (IIVPCE) routines return
to this routine at entry point IIVRTER2 to return control to DOS. The LPSW
simulation, SSM simulation, 1SK simulation, SSK simulation, TIO simulation,
TCH simulation, SIO, and check I/O routines return to the IIVRTER2 entry point
by means of the program check executive routine. Module IIVRAS also exits
to IIVRTER2.

At entry point IIVRTER2, this routine tests to see if any more interruptions
can be processed before control is given to DOS. If any further interruptions
can be processed, control is given to the appropriate Emulator routine. If
not, control is given to DOS through the execute local instruction.

Method of Operation 75

Select Routine (Flowchart 20C)

This routine routes control to the appropriate Emulator routine that handles
pending asynchronous interruptions of the emulated DOS program.

The routine first tests to see if the system mask portion of the local execution
PSW is enabled for external interruptions. If it is, a test is then made to
see if a timer interruption is pending. If a timer interruption is pending,
control is passed to the timer interrupt check routine.

The routine next tests to see if there is an interruption for the Emulator
prompt WTOR. If there is, control is passed to the prompt reply processor
routine (IIVPRP).

If DOS was disabled for external interruptions, or none of the above
interruptions was pending, the system mask portion of the local execution PSW
is tested to see if I/O interruptions are enabled. If the mask is enabled
for I/O interruptions, a test is then made to see if the operator has responded
to the last WTOR issued by the interpretive SYSLOG routine. If he has
responded, control is passed to the interpretive SYSLOG routine. If he has
not responded, this routine tests to see if the interpretive SYSLOG routine
had issued a WTO to the operator and is waiting for DOS to enable for I/O
interruptions. If so, control is passed to the interpretive SYSLOG routine.

A test is then made to see if there are any I/O interruptions to be handled
for the emulated DOS program. If there are, control is passed to the check
I/O routine. If there were no asynchronous interruptions pending, control
is passed to the route routine at entry point IIVRTER2.

STAE Retry Routine (Flowchart 20C)

This routine gains control from the OS ABEND processing routines when the STAE
exit routine determines that a bypass is to be affected. The STAE retry routine
reissues the OS STAE macro to reactivate the ABEND interception procedure.
Since any outstanding WTORs are canceled by the OS ABEND routines before passing
control to the STAE retry routine, the WTORs are reestablished. Control is
passed to the program setting the bypass switch to an address stored in STAERTN
(IIVCON) by the program. Each module that sets the bypass ABEND switch and
the action taken by the module is as follows:

Modules Requesting ABEND Tnterception

Function being performed when Action taken upon regaining
Module name requesting interception control

IIVCCW Adjusting CCW data addresses Channel program check returned
IIVRCH to DOS

IIVDVS Opening a file cancel DOS job; issue message
IIV256I

Reading the VTOC using an OS Cancel DOS job; issue message
OBTAIN macro IIV2611

Issuing an OS EOV macro to get an Cancel DOS job; issue message
additional extent IIV260I

I IVOPN Opening a dedicated device for A 'device not operational'
SIO processing indication is returned to DOS;

message IIV0181 is issued

76 DOS Emulator Logic

Timer Interrupt Check Subroutine (Flowchart 200)

This subroutine is entered from the select routine (TIV~TESL) to check for
a DOS timer external interruption. The timer pending switch is set off and
the DOS timer is tested for a value greater than O. If the value is greater
than 0, the time indicator switch is set on.

The DOS timer is then decreased by 1 second and again tested for a value greater
than O. If the value is less than 0 and the time indicator switch is on, the
time indicator switch is set off, the interruption code in the local execution
PSW is set to indicate a timer external interruption, the local execution PSW
is moved to the DOS external old PSW, and the DOS external new pst" is moved
to the local execution PSH.

An OS STIMER for 1 second is issued, and control is given to the route routine
at entry point IIVRTER2.

Timer Interrupt Subroutine (Flowchart 200)

This routine is the STIMER completion exit routine for the STIMEP macro issued
by the Emulator. It gains control from OS when the interval specified by the
STIMER macro instruction, issued in the timer interrupt check routine, has
expired.

The timer interrupt pending switch is set to 1 to indicate that the STIMER
interval has expired. The DRI switch is turned off, and the timer ECB is
posted so that if the Emulator was in the wait state, it receives control from
OS to indicate expiration of the STIMER interval.

The timer ECB is one of the ECBs pointed to by the ECB pointer table and thus
is one of the ECBs waited on by the asynchronous interrupt exit routine when
it enters the wait state. After the timer ECB is posted, this routine passes
control back to the OS control program that called it.

Asynchronous Interrupt Check Subroutine (Flowcharts 20E-20F)

This routine tests all Emulator ECBs to see if any of them have been posted
by OS as complete. As each posted ECB is found, this routine sets a switch
on or increases a counter to indicate to other Emulator routines that an
asynchronous interruption is pending and must be processed.

Except for SYSLOG, a 2-byte entry is created in the post ECB list when an ECB
for an I/O device has been found posted. The first byte contains the offset
value of the I/O device in COMTAB. The second byte contains the status byte
of the posted ECB. After all Emulator ECBs have been tested, this routine
returns control to the calling routine.

End-of-Job Routine (Flowchart 20G)

This routine gains control from IIVRTE when DOS tries to load a wait PSW with
interruptions enabled and the end-of-job switch (EOJSW) is set to 1. It also
gains control from the prompt reply processor (IIVPRP) at the time the operator
command EOJ is received. If it is determined that all DOS processing is
complete, the Emulator is terminated.

Method of Operation 77

The following conditions are checked to determine if all DOS processing is
complete:

• The number of outstanding I/O operations must be equal to zero.

• The first byte of the background PIB must contain X'82' to indicate that
the DOS background partition is waiting for an interruption to restart.

• In a multiprogramming system, both foreground PIBs must contain X'80' to
indicate that they are both active.

• The DOS SYSRDR LUB must be valid.

• The lOB CSW unit exception bit for the background SYSRDR device must be
1 to indicate end-of-file on the device.

• The background SYSRDR device lOB address is found by mapping the SYSRDR
LUB index for the DOS PUB associated with it to the COMTAB entry for the
device. This mapping is done through the OS PUB table.

If all of these conditions are met, emulation is ended by a return to OS by
means of the Exit ABEND error routine (IIVABN).

Prompt Reply Processor Routine (IIVPRP) -- Flowcharts 21A-21E

This module receives control from the select routine (IIVRTESL) when the console
operator replies to the operator prompt message issued by the Emulator. The
following Emulator commands are recognized:

EOJ

EXT

ATTN

MAPIO

MOUNT

DEBUG

The operator wishes to terminate the Emulator region after all DOS
partitions become inactive. The end-of-job switch (EOJSW) is set
to notify the end-of-job routine that emulation may be ended when
all DOS partitions are inactive.

A DOS external interruption is desired. The interruption code is
set, and a DOS external interruption is simulated.

The DOS attention routines are desired. The interruotion code is
set, and a DOS I/O interruption is simulated.

The operator requires the corresponding channel and unit numbers of
the DOS and OS I/O units. The operand is tested to determine whether
the request is for all or selected DOS cuu's, and messages to the
operator are constructed accordingly.

The operator wishes to mount a new DASD volume. The operand is tested
for the DOS cuu and new volume serial number. An OS CLOSE macro for
the DCB that corresponds to the DOS cuu is issued, the new volume
serial number is inserted in the JFCB, and an OPENJ macro is issued.

The operator wishes to snap dump Emulator control blocks when certain
events occur in DOS. See "Emulator service Aids" for information
about the modules that perform trace and snap functions.

All commands and their operands, if any, are verified and appropriate error
messages are issued if errors are detected. The error message becomes the
text of the subsequent prompt. See Emulating DOS Under OS on IBM system/370,
GC26-3777, for more information about prompts.

Control is always returned to the select routine (IIVRTESL).

78 DOS Emulator Logic

L

SVC Monitor Routine (IIVGR2) -- Flowcharts 22A-22D

This module monitors SVC 1, 2, 4, and 11 calls from DOS, recognizes OS
sequential DASD and direct-access shared data sets, DOS sequential DASD and
direct-access shared files, or os indexed sequential shared data sets, and
passes control to the volume-sharing simulation routine (IIVDVS) or the ISAM
mapping routine (IIVIS), as the case may be. IIVGR2 is entered from module
IIVSVC when a DOS SVC is trapped and sequential DASD or direct-access shared
or OS indexed sequential shared data sets are specified by the DD statement.

If the shared DOS systeIT residence option is in effect or a share1 DOS PCTL
is being used, an~ the SVC number is 1 or 4, the phase name is checked for
a call from MAIN'!, ~LNKED'T', or CORGZ. If equal, an * is placed in the last
position of the phase name to cause DOS to issue the 'phase not found' message
OS061. An Emulator message, IIV208A, is also issued. "'his '"il1 protect the
core image library from being accidentally update~.

The routine calls IIVDVS when an OPEN or CLOSE macro or an end-of-extent
condition is identified for a sequential DASD or direct-access shared data
set (file). It calls IIVIS when an O~EN, CLOSE, SETL, SETFL, or ENDFL macro
is identified for an OS indexed sequential shared data set.

IIVGR2 uses a five-character table to identify the B-transient phase being
called by DOS, after which the data set must be identified as sequential DASD
or direct-access shared, OS indexed seauential shared, or DOS dedicated. ~he
two phases are:

Open Phase

DOS provides a 'file ID' field in the DLBL/EXTENT image, and a SYS number in
the DTF or DLBL/EXTENT image.

By using the SYS number and the DOS cuu pOinted to by the LUB, the routine
identifies the corresponding COMTAB entry. This entry indicates either a DOS
dedicated file, in which case control returns to IIVSVC to let DOS process
the OPEN macro, or a sequential DASD or direct-access shared or Os indexed
sequential shared data set (file), in which case the COMTAB extension is
searched for a match between the DOS program DTF name and the DTF name in the
FID.

If a match is not found, the message MISSING DD STATEMENT is issued and control
is given to DOS, which issues an SVC 6 (cancel). If a match is found, the
routine sets the code, the COMTAB extension address, the DTF address, and the
LTK in the parameter list located in EMUCONS before calling IIVDVS or IIVIS
to perform the open.

Nonopen Phase

The routine searches a FID for a match between the DTF names.
not found, it returns to IIVSVC to let DOS execute the phase.
found, it sets the DTF and FID addresses in the parameter list
EMUCONS before calling IIVDVS or IIVIS as before.

If a match is
If a match is
located in

After calling IIVDVS or IIVIS, the routine checks register 15 for an error
code. If there is one, it issues an SVC 6 and returns to module I.IVSVC. If
there is not an error code, it determines from the NXTBTR field in EMUCONS
which B-transient phase has to be executed. If none is specified, the routine
returns to module IIVSVC, which gives control to DOS by means of module rIVRTE
to execute the instruction following the SVC inst~uction. If a B-transient

Method of Operation 79

name is given, the routine moves it in place of the existing one and returns
to module IIVSVC, which then returns control to DOS to execute the SVc 2
instruction.

To sum up, IIVGR2 returns to IIVSVC (and later to DOS) to execute:

• the svc 2, IJ, or 11 when a sequential DASD or direct-access shared or os
indexed sequential shared data set (file) is not being processed

• or the instruction following the SVC instruction when the supervisor call
has been simulated by the Emulator

In case of an error, the routine returns to module IIVSVC in order to execute
a DOS SVC 6, ,which cancels the DOS step.

Device Sharing Simulation Routine (IIVDVS) -- Flowcharts 23A-23H

'rhe routines in this module move the extent limits from OS (DEB) to DOS
(DLBL/EXTENT card image) so that DOS will use the actual extent limits of the
file as determined from OS JCL.

In addition, the following control blocks are created or updated to reflect
the fact that an OS file is being processed:

•

•

•

•

•

•

DCB

D"T'F

Open table

COMTAB
extension and
FID

EMUCONS

Obtain area

- created and opened when DOS requests that a
file be opened; closed when DOS requests
that a file be closed or at the end of a
DOS job step (except for DOS system files)

- maintained to reflect the status of the file as
determined by OS

updated to reflect the actual seek addresses in
the VTOC and some specific indicators (see
open t.able below)

- maintained for the Fmulator to identify
sequential DASO and direct-access shared
data sets (files)

- maintained as a communication area between
IIVOVS, IIVGR2, and IIVPCE

- created and maintained for IIVVIO to return
VOL1, identifier and extension OSCBs to DOS

Processing of a sequential DASD or direct-access shared data set (file) is
divided into seven routines, all included in TIVDVS (""igure 18).

IIVDVS expects the following control blocks and registers to be set by DOS
open phases:

• Register 7 pOints to DOS communication region.

• Register 2 points to the current DTF.

• Open table indicators (X'4A3' of B-transient phase) set for special open.

• Address of DLBL (X'4A8' of B-transient phase).

• The image of the first DLBL/EXTEN':.' statement should have been read int.o
storage (open/end of extent only) at address X'378' of B-transient phase
(for sequential disk) or in label area (direct access).

80 DOS Emulator Logic

Control Routine
(Passes Control to
the Open, Close, or
End-ot-Extent
Routine)

Close Routine Open Routine End-ot-Extent
Routine

Obtain Routine

Build DLBL
Routine

- Return Routine .

Figure 18. General Flow of IIVDVS

IIVDVS updates the following control blocks and DOS registers to reflect the
fact that some DOS open phases have been bypassed:

DOS register

• Register 6 is set to point to the DLBL/EXTENT card image.

open table

• Open table indicator (X'QA3' of B-transient phase) is set to show special
open for SYSLNK.

• Message indicator (X'6A1' of B-transient phase) is set to show the type
of DTF being processed.

Method of Operation 81

• VTOC in-storage indicator (X'4AD' of B-transient phase) is set to show
that the VTOC has been read into.

• VTOC lower and upper limit (X'3EO' of B-transient phase) are set with the
identifier (format 1) DSCB address (sequential disk only) •

• Seek bucket (X'3FC' of B-transient phase) will contain the address of
identifier (format 1) DSCB in VTOC.

• Logical unit in VTOC CCB (X'3E8' of B-transient phase) will contain the
logical unit of the file (input sequential only) •

• Search argument (X'409') will contain the file ID of the file (input
sequential only).

DTF

• Open communications byte in DTF will reflect current status.

• Volume sequence number in DTF will contain X'0001' when opening a sequential
output file.

• DTF flag 1 (X'15' of DTF) indicators such as DELETFL=NO will be turned
on for work files.

• VTOC address (X'020' of DTF) will contain the identifier (format 1) DSCB
address in VTOC for work file.

• User label address (X'OSC' of DTF) will contain the disk address of user
label extent for DTFDA.

DLBL

• User label seek address (X'30' of DTF) will contain the disk address of
user label when $$BOSD06 is called.

• Search argument (X'3C') and LIOCS search argument (X'4C') will contain
the actual disk address of the first extent when $$BOS006 is called.

• DLBL/EXTENT card image will contain the extent limits, extent type, extent
sequence number, logical unit, volume serial number, expiration and creation
dates, and DLBL indicator according to the OS information about the file.

Control Routine (Flowchart 23A)

This routine gains control from IIVGR2 and examines a parameter list (PARMLST)
located in EMUCONS. PARMLST contains the address of the DTF to be processed
(PARMDTFA), the key of the partition owning the DTF (PARMLTK), a code indicating
the operation to be performed (PARMCODE), and (in PARMFDCS) a pointer to the
associated COMTAB extension for an open function or a pointer to the associated
FID for an end of extent or close function.

The routine sets standard linkage conventions (save area and registers), and
then initializes registers to point to COMTAB extension, FID, DTF, and DLBL.

According to PARMCODE, the routine exits to the open, end-of-extent, or close
routines in this module.

82 DOs Emulator Logic

Open Routine (Flowcharts 23A-23B)

This routine is entered from the control routine when PARMCODE indicates an
open function is to be performed. EMUCONS should contain the following nos
phase names in the fields indicated:

NXTBTR after
Type OLDBTR NXTBTR Open routine

Sequential output $~BOSD01 $$BOSD01 $$BOSD01
Sequential input $$BOSD01 $$BOSDI1 $$BOSD11
sequential work $$BOSD01 $$BOSDW1 $$BOSDW2
Direct access r$BOPEN2 $ $ BODAIN $$BODAIN

The routine obtains storage for a new FlD by means of module IIVGET, attaches
this FID to the chain of FlDs pointed to by DSFIDBLK in EMUODNS, and sets in
it the COMTAB extension pointer (FIOCTXTN), the DTF name (FIDTFNME), and the
key (FlDLTK).

If the file is not yet opened (CTDCBUC=O), the routine obtains storage for
a DCB by calling"lIVGET and initializes the DCB with the following:

• DSORG=PS

• MACRF=(E)

• DEVD=DA

• Appendages (same as for dedicated volumes)

• DDname from CTDDNAME

• Exit list to point to an inactive exit list

An OS OPEN for output is issued for the data set associated with this DCB,
and the DCB is checked for a successful open. If an error occurs, message
CANNOT OPEN is transmitted and the routine branches to the return routine.
If no error occurs during the open, CTDCBPTR is set in the COMTAB extension,
the track balance (DC BTRKBAL) is set to 0, and the address of the last record
(DCBFDAD) is set to point to the last track of the last extent so that OS will
not try to write an EOF record at close.

The use count for this file (contained in the CTDCBUC field of the COMTAB
extension) is increased by one. The device types, as specified in the DOS
DTF and os DCB, are checked for identity. If not identical, the message NO
MATCHING DEVICE TYPE is issued and control is given to the return routine.

For direct-access files, control is given to the obtain routine. For sequential
disk files, register 6 is set to point to the DLBL/EXTENT card image.

Depending upon the type of file as indicated by the name of the DOS phase to
be fetched, the following control blocks are updated:

sequential input (DOS calling $$BOSDI1)

• The volume sequence number in the DTF is set to 1.

• The LIOCS switches in the DTF are reset for D~FSD.

• The message code in the open table is set to 3.

Method of Operation 83

sequential output (DOS calling $$BOSD01)

• The new volume switch is reset in the DTF.

• The open bit in the DTF is reset for a system file.

• The volume and extent sequence numbers are set to their values in the
DLBL/EXTENT card image.

• ~he message cod~ in the open table is s~t to ~.

sequential work file (DOS calling $$BOSDW1)

• Indicators 'DELETFL=NO'. 'SYSxxx in DTF'. and 'extent open' are set in
the DTF.

• The message code in the open table is set to 9.

• The NXTBTR in EMUCONS is set to $~BOSryW2.

Control is then given to the obtain routine.

End-of-Ext~nt ~outine (Flowcharts 23C-23D)

This routine is entered from the control routine when PARMCODE specifies BOX.
The end-of-extent routine's main purpose is to give an additional extent to
DOS for sequential input or output files.

However. the meaning of BOX has been extended to cover all cases where DOS
calls the B-transient phases for a file that is already opened. except for
close conditions. which are processed in the close routine. These cases can
be divided into four main categories as fellows:

Obtain Only Cases. The DOS B-transient phase to be executed n€!xt will access
the VTOC.

Tvpe OLDBTR NXTBTR

Any Any $$'90MSG1
Direct access in-
put. user label $$BODAI1 $$BODAU1
Direct access
user label "i'SBOFLPT $:!;aOryAU1
sequential disk
output. trailer label '1i1i30SDC1 $~BOSD06
Sequential disk
input, trailer label UBOSDC1 $$~OSDT3

sequential disk
input header label $'!:BOSDI1 ~$BOSDI3

Direct access
input $$BODAIN ~$BODAT1

The end-of-extent routine will indicate that an obtain is to be performed an~
branch to the obtain routine. Control eventually returns to DOS. and the
access to the VTOC will be routed and handled by module TIVVIO.

8~ DOS Emulator Logic

User Labels Cases. The DOS B-transient phases to be executed next will create
the user label track.

sequential disk
output

OLDBTR

$$BOSDOq
UBOSD09

NXTBTR
before

UOOSD06
~$BOSD06

NXTBTR
after_

UBOSD06
$$BOSD06

For sequential disk output files with user labels (when running with DOS release
26), the routine sets the appropriate user label track address and data track
address in the DTF prior to branching to the obtain routine. When running
DOS release 27, the correct user label and data track address in the DTF have
already been set by the obtain routine.

End-of-Extent Cases. The DOS problem program calls the B-transient phases
in order to open (or, rather get the next extent for the file.

NXTB'?'R NXTBTR
~ OLDBTR before after

Sequential disk
output UBOSDC1 $$BOSD01 $$BOs005
Sequential disk
output $$BOSD01 $ 1; BO SOO 1 $$BOSD05
Sequential disk
input $$BOSD01 UBOSDI1 $'I;OOSDI2
sequential disk
work file UBOSD01 $$BOSDW3 $$BOSDV13
Sequential disk
work file UBOSDC1 UBOSDW3 $$BOSD~73

The routine checks whether the required extent is present in the DEB; if it
is, the routine branches to the obtain routine, which updates the DTF and
branches to the build DLBL routine to create a DLBL/EXTENT card image reflecting
the extent.

If the required extent is not present in the DEB, the routine issues a message
and eventually the DOS job step is canceled; for an output file only, the
routine issues an OS EOV to get secondary allocation from OS if any was
specified in the os DD statement.

Other Cases

NXTBTR NXTBTR
~ OLDBTR before after

Work file $$BOSDW2 $$BOSDW1 $$BOSDW2
$$BOFLPT $$BOSDW1 $$BOSDW2

Direct access
output $$BODAIN $$BODA01 XXXXXXXX

where XXXXXXXX = $$BODAUI or $$BOFLPT or $$BOPEN.

$$BOSDW1 is called to get the next DLBL/EXTENT statement, if any. This DOS
phase will be bypassed by moving $$BOSDW2 in NXTBTR, except when the routine
reaches the last extent as indicated in the DEB, in which case NXTBTR will
not be updated and $$BOSDW1 will complete the DOS open processing for the work
file. For direct access output, NXTBTP is updated as described above and the
routine branches to the return routine.

Method of Operation 85

other special cases are:

• Call for B-transient phase for sequential input at EOF ($$BOSDI1 is called
by $$BOSD01). The end-of-extent routine will then let DOS execute $$BOSDI1
by branching to the return routine.

• Call for a B-transient phase for sequential output at toe end-of-extent
time ($$BOSD01 is called by $$BOSD01) whenever the end-of-extent address
is specified in the DTF. The end-of-extent routine will then let DOS
execute $$B08oo1 by branching to the return routine.

• Call for a B-transient phase for sequential work file when a DOS POINT
macro is issued ($$BOSDW3 is called by $$BOSD01). The end-of-extent routine
will first check the validity of the given seek address prior to branching
to the current work file end-of-extent case and issue a message if the
seek address does not fit into any extent in the DEB.

Close Routine (Flowchart 23E)

This routine is entered from the control routine, and the following DOS program
names must be set in the indicated fields of EMUCONS:

~

Sequential disk
Sequential disk
Sequential disk
Sequential output
user label
Sequential input user
label
Sequential disk
Sequential disk
Sequential input user
label
Sequential output user
label
End of job
Direct access

OLDBTR field

$$BCLOSE
UBOSDC1
UBOSDC2

UBOSDI3

$$BOS006
UBOSDC1
UBOSDC2

$$BOSDI3

$$80SD06

$$BCLOSE

NXTBTR field

UBOSDC1
UBCLOSE
$$BCLOSE

$$BCLOSE

$$BCLOSE
PRPGM
PRPGM

PRPGM

PRPGM
$$BEOJ
$$BODACL

When OLDBTR contains $$BCLOSE, this routine branches directly to the obtain
routine in order to build VOL1 (volume 1), identifier (format 1) and extension
(format 3) DSCB images, so that the next DOS phases can read from the VTOC
if needed.

When NXTBTR contains PRPGM, which indicates that DOS is issuing an SVC 11
instruction, the routine identifies a time close condition ($~BOSDI3 or $$BOSD06
issuing an SVC 11 may be for header labels at open). When a time close
condition is recognized, the use count (CTDCBUC) is decreased and tested for
a O. If the use count is not 0, control is given to the return routine to
free the current FID and return to module IIVGR2. If the use count is 0, the
routine issues an OS CLOSE for the file, frees the storage used by the DCB,
resets the pointer to the DCB in the CTDCBPTR field of EMUCONS, and branches
to the return routine to free the current FID.

86 DOS Emulator Logic

Obtain Routine (Flowcharts 23F-23G)

This routine is entered from the open, end-of-extent, or
initializes a constant area (IIVOBTE1), which is pointed
EMUCONS, with all of the VTOC information needed by DOS.
in the obtain work area are initialized:

21 characters of a VOL1 label

close routines. It
to by ATIVOBE1 in

The following fields

OBVOL1
OBF1LBL
OBF3LBL
OB1COUNT
OB3COUNT

identifier (format 1) DSCB for the data set
extension (format 3) DSCB for the data set, if needed
format 1 count information
format 3 count information

OBF1LBL and OBF3LBL are built by means of the OBTAIN macro. The obtain routine
then updates the following control blocks:

Direct-Access Files

The user label address is moved into DTFDA.

Sequential Work Files

The VTOC address is moved from the obtain area into DTFSD in the form CHHR
for DOS releases 25 and 26, and CCHR for DOS release 27.

Sequential Input Files

In order to simulate the bypassing of the DOS phase $$BOSDI1 for both open
and end-of-extent cases, the following control blocks are updated:

• Logical unit (SYS number) in the open table
• Binary number in the open table and DTF
• Identifier (format 1) DSCB address in the open table seek bucket and limt

bucket
• File ID (dsname) in the open table
• NXTBTR (in EMUCONS) to be $$BOSDI2

Sequential Output Files

The first three control blocks described for sequential input files are updated
to simulate the bypass of $$BOSD01 and $$BOSD02. In addition:

• 'VTOC read' indicator in the open table is set on
• 'special open' indicator in the DTF is reset if not a system file (filename

must start with IJSYS)
• NXTBTR in EMUCONS is set to contain $$BOSD05 at end-of-extent time, $$BOSD04

at open time (if not release 27), $$BOSD09 at open time (for release 27)

When running DOS release 27 only, the bypass of $$BOSD04 is simulated by:

• setting DOS register 0 with the appropriate control factor
• Increasing the volume sequence number in the DTF
• Moving identifier (format 1) DSCB address in the DTF
• Moving the actual user label address in the DTF and setting the 'header

user label' indicator in the DTF

The obtain routine then exits to the build DLBL routine after setting the 'last
extent' indicator in the DLBL/EXTENT card image if the extent being processed
is the last one in the DEB.

Method of Operation 87

In case of sequential output files, the 'last extent' indicator is set only
if the extent is the last one in the DEB and if there is no secondary allocation
in the DD statement.

Feturn Routine (Flowchart 23H)

This routine is entered from the other routines in IIVDVS when the function
to be performed is completed. If everything is in order, a completion code
of 0 is set in register 15 before returning to IIVGR2.

When an error must be indicated to IIVGR2, a value of 1 is set in register
15 and a message is issued to the operator by means of module IIVMSG.

Control returns to IIVGR2 after its registers have been restored.

Build DLBL Routine (Flowchart 23H)

This routine is entered from the obtain routine. Registers DCBREG, DTFFEG,
DLBLREG, DEBREG, and CTXTNREG must previously have been set. The routine first
sets the following indicators in the DLBL/EXTENT card image:

Extent limits converted to DASD address on
Next extent on a new pack on a new volume off
New volume on same unit off
Bypass extent off
No extent card off

The volume serial number is then moved from the OS UCB into the DLBL volume
serial and file serial. If the file is a sequential disk file, the extent
type and extent upper and lower limits are moved into DLBL from the
corresponding extent in the DEB, and the routine exits to the return routine.

If the file is a direct-access file, the same processing is repeated for every
extent found in the DEB. When there is not enough space in the DLBL/EXTENT
card image to contain all the extents described in the DCB, a message
INSUFFICIENT EXTENT SPACE is transmitted, and control is given to the return
routine.

ISAM Mapping Routine (IIVIS) -- Flowcharts 24A-24L

Main Task Control Executive Routine (Flowchart 24A)

This routine is the entry point for mapping OPEN, CLOSE, SETFL ENDFL, and SETL
functions. Control is passed by module IIVGR2 when a B-transient phase is
required to process an OS indexed sequential data set. The required fUnction
is mapped from the DOS request to the equivalent OS request.

When this routine is entered, the following information is supplied:

• Register 11 contains the address of the EMUCONS area in which a parameter
list for this module is contained

• Register 10 contains the address of DOS storage

88 DOS Emulator Logic

• The 2-word parameter list contains the following:

The first byte of the first word is the function code (OPEN, CLOSE,
SETL, etc.)

The last 3 bytes of the first word contain the DTFIS table address

The second word contains the address of the COMTAB extension (CTEXT)
for OPEN, or the file ID block (FIDBLK) address at all other times

After checking for a valid function code, control is passed to the proper
mapping routine or an error message is issued and control is returned to DOS.

open Mapping Routine (Flowchart 24B)

This routine is entered each time a DOS OPEN is issued for an os indexed
sequential data set. Main storage is obtained in which to build the ISBLK,
which is added to the chain of ISBLKs. The starting ISBLK address is contained
in the ISFIDBLK field in EMUCONS. Each ISBLK holds an OS register save area,
control information area, DCB(S) area, and a DECB area. A RDJFCB macro
instruction is issued to obtain JCL information.

The type of DTFIS that is being opened determines the additional work still
required.

LOAD Open Mapping Subroutine (Flowchart 24B)

For a LOAD DTFIS table (type X'24') where the DLBL open code is C for create,
the DCB is completed from one of three sources: the DTFIS, the JFCB, or by
default value. The priority of input varies by field as indicated in Figure
19.

Mapped to OS
DCB field

DCBBLKSI
DCBLRECL
DCBKEYLE
DCBRECFM
DCBRKP
DCB1>1ACR
DCBCYLOF

DC BOPTCD

DCBBUFNO
DCBNTM

Mapped from DOS
DTFIS field

IJHKBKLN(2)
IJHKLGLN (1)
IJHKLGLN+2 (1)
IJHKOPCO
IJHKNRCD+ 12 (1)
N/A
Number of tracks
per cylinder
(IJHKHNDV+4) (2)
IJHKOPCD (2)

N/A.
N/A

Mapped from
JFCB field

JFCBLKS I (1)
N/A
N/A
N/A
N/A
N/A
JFCCYLOF (1)

JFCOPTCD (1)

JFCBUFNO (1)
JFCNTM (1)

Figure 19. Sources of Input to DCB Fields at OS Indexed
Sequential Data Set Creation

Default
value

N/A
N/A
N/A
N/A
N/A
(P"'1) (1)
3 (3)

Always R (3)
reorganiza­
tion criteria
2 (2)
3 (2)

When these values have been initialized, an OPEN TYPE=J macro instruction is
issued. If the open fails, the DOS task is terminated upon return of control
to DOS. If the data set is successfully opened, the IJHKLPDR and-IJHKPPCT
fields in the DTFIS table are loaded from the DCBLPDA and DCBNRFC fields,
respectively, of the DCB.

Method of Operation 89

For a LOAD DTFIS table (type X'2~') where the DLBL open code is E for extension
load, only the OPEN TYPE=J macro instruction is issued and, if the data set
is successfully opened, the IJHKLPDR and IjHKPRCT fields of the nTFI~ table
are loaded.

When the data set has been successfully opener! for a LOAD DTFIS, the code used
to trap and map I/O macro instructions is moved into the DTFIS ta~le in the
CCW build area (IJI~RDWR) and the ISMOD address in the DTFIS is modified to
point to this code. Control is passed to the subtask attaching routine.

ADD, RETRVE, ADDRTR Open Mapping Subroutine (Flowchart 2~B)

This subroutine opens an OS indexed sequential data set for ADD, ?E'T'R"E, or
ADDRTR DTFIS tables, types X'25', X'26', and X'27', respectively. When the
data set has been successfully openEd, an OS work area is obtained to support
the add fUnction of ADD or ADDR'T'R type DTFIS tables.

The DTFIS table fields significant to the Emulator are completed from the
information contained in the OS ISAM DCB (see Figure 20).

Mapped to DOS
DTFIS field

IJHCRESZ
IJHCKYSZ
IJHCBLSZ
IJHCKYLC
IJHA.CPRC
1JHACOTC
IJHACOFC
IJHACORC
IJHCCLPA

I-1apped from OS
DCB field

DCELRECL
JjCBKEYLE
DCBBLKSI
DCBRKP
r::CEN~EC

DCBRORG3
DCBRORG1
DCBNOREC
DCBLPI:A

Figure 20. Source of Input to supported DTFIS Fields at Open of
ADD, RETRVE, and ADDRTR

Control is passed to the subtask attaching routine.

Subtask Attaching Routine (Flowchart 2~B)

This routine's primary function is to attach an as subtask to perform the DOS
ISruM macro mapping. A subtask is used so that other DOS tasks can continue
to run when it is necessary to await the completion of the I/O required to
access the OS indexed sequential data set.

~he entry point for the subtask is at IIVIS01 within the IIVIS CSECT. This
entry point is establishe1 by iss'.ling an IDENTIFY macro instruction upon the
first entry into the open mapping routine and setting a swtich in the first
byte of AIIVIS in EMUCONS to indicate this macro has been issued. Also upon
first entry, a CHAP macro instruction is issued to reduce the dispatching
priority of the Emulator task by an order of 1 so that the subtask(s) can run
at a higher priority when attached.

After the IDENTIFY and CHAP macro instructions have been issued, the address
of the ISBLK is placed in register 1 and all 16 of the OS registers are stored
in the register save area of the ISBLK. An ATTACH macro instruction is then
issued to create the subtask.

90 DOS Emulator Logic

The open mapping routine has completed its function at this point and control
is returned to the calling routine.

Close Mapping Routine (Flowchart 24C)

This routine is entered each time a DOS CLOSE macro is issued to an os indexed
sequential data set. Any work area obtained to support the add function of
ADD or ADDRTR DTFIS tables is released. The subtask that was attached to
handle the DOS ISAM macro instructions to the OS indexed sequential data set
is removed by issuance of an OS DETACH macro instruction. The data set is
closed by issuing a CLOSE macro instruction. The ISBLK is unchained from the
string of other ISBLKS and the area is released. Control is returned to the
calling routine.

SETL Mapping Routine (Flowchart 24D)

This subroutine maps a DOS SETL macro instruction to an OS SETL macro
instruction. The DTFIS must be for either RETRVE or ADDRTR, and IOAREAS must
be nonzero to allow execution. If execution is not possible, the DOS task
is abnormally terminated with an SVC 50 instruction.

If an OS SETL macro instruction is outstanding, an OS ESETL macro instruction
must be issued to clear the SETL status in the DeB •. If the DCB is not open
to support the type of OS SETL macro, the DeB is closed, the DCBMACR field
is respecified, and the DCB is reopened. Then the OS SETL macro instruction
corresponding to the DOS SETL is issued. The mapping is performed as follows
in Figure 21:

DOS SETL OS SETL

Type BOF T~e B
Type KEY Type K
T~e GKEY Type KC
Type ID T~e I

Figure 21. Mappipg of DOS SETL to OS S~L

Control is passed to the status mapping routine so that any error conditions
can be returned to the DOS problem program by means of the DTFIS status byte.

SETFL and ENDFL Mapping Routine. No function in OS corresponds to the DOS
functions of SETFL and ENDFL, so any attempt to map them results in a NOP and
control returns to the DOS problem program.

Subtask Control Executive Routine (Flowchart 24E)

This routine is entered when the open mapping routine issues the ATTACH macro
instruction. The OS supervisor registers are saved and the routine's registers
are loaded from the ISBLK register save area (pointed to by register 1). The
subtask control executive routine then issues a WAIT macro instruction and
enters the wait state until called upon to dispatch an ISAM macro instruction
mapping request.

Method of Operation 91

f'~hen the ECB in the ISBI,K is posted by the SIO routine in module IIVPCE, the
subtask control executive routine gets control, determines the validity of
the request, and passes control to the proper mapping routines. After mapping
is complete, the subtask control executive routine is reentered and again goes
into the wait state until the next request.

Get". 'Ilapping Routine (Flowchart 211Fl

This routine maps the DOS ISAM GET macro instruction to the OS ISAM GET macro
instruction. Prior to issuing the G!'7T', a check is made to ensurp that a SETL
was oreviously issued. If a SE~L had not previously been issued, the DCB is
checked to ensure it is open for QISAM; if not, the DOS task is terminated
by an SVC 50. T.f the DCB is open for QIS.AM, the GET macro is issued and the
OS ISAM module issues a SBTL for the beginning of file.

when a SETL has been issued, the os GET is issuEd. A successful completion
allows this routine to move the logical record from the OS buffer into the
DOS area reserved for it (specified by the IOAREAS parameter of the DTFIS
macro). The kev for unblocked files is also moved. The DOS address of the
logical record is stored in the DTFIS table and t".he record is moved into the
HORKS area, if the \-10RKS area is specified. The DASD address of the block
is obtained from the DCB work table and stored in the DTFIS table for reference
hy the problem program. If the record is to be processed in IOAREAS, then
code is created so that the address is loa,ied when the OOS tasl<. is reentered.

Final status is mapped to the DTFIS table by the status mapping routinp.

Put". ~1apping Poutine (Flowchart 211G)

This routine maps the DOS ISAM PUT macro to the OS ISAM PUTX macro. If a GET
macro has not been issued to this data set by the problem program pricr to
the PUT, the OOS problem program is abnormally terminated by means of an SVC
50 instruction.

ftlhen the record is processed in the HORKS area, it is first moved to the rmmFAS
logical record location. The logical record is moved from IOAREAS into the
os buffer logical record location, and an OS PUTX macro is issued.

Upon return from the PUTX, the status information is mapped from ~he DCB to
the DTFIS tatle by the status mapping routine.

ESETL Mapping Routine (Flowchart 211G)

This routine maps the DOS ISAM ESETL macro to the as ESETL macro. If a SET!.
macro has not been issued for the data set prior to the ESETL, ~he routine
returns to the suctask control executive routine. Otherwise, an OS ESE~L is
issued. Control is passed to the status mapping routine.

92 DOS Emulator Logic

Read Key Mapping Routine (Flowchart 24H)

This routine maps the DOS READ KEY macro to the OS READ macro, type KU. The
DTFIS must be built for random retrieval before mapping is possible. If the
IOAREAR address is zero, the problem program is abnormally terminated with
an SVC 50 instruction.

A check is made to determine that a DCB is open for BISAM macro processing.

The key argument is obtained from the DTFIS table and used in an OS READ type
KU macro instruction. Upon return from OS, final status is mapped from the
DECB to the DTFIS table bV the status mapping routine.

Write Key Mapping Routine (Flowchart 24H)

This routine maps the DOS WRITE KEY macro to the OS WRITE macro, type K. The
DTFIS must provide for random retrieval and a DOS READ KEY must have been
issued to the file before mapping is possible. If these conditions are not
met, the DOS problem program is abnormally terminated by an SVC 50 instruction.

Any error on the previous READ KEY will not allow the WRITE KEY to be performed,
so control is returned to the DOS problem program. When all restrictions have
been met, the updated record is moved from the WORKR area (when specified)
into the IOAREAR logical record location. The record is then moved from IOARE&~
in DOS to the OS buffer. An OS WRITE type K macro instruction is issued to
write the logical record back into the file.

Final status is mapped to the DTFIS table by passing control to the status
mapping routine.

Write NEWKEY Mapping Routine (Flowchart 24J)

ThiS routine maps the DOS WRITE NEWKEY macro to the OS WRITE type KN macro.
The DTFIS table must provide for random adding of logical records before mapping
can be accomplished. If this condition is not met, the DOS problem program
is abnormally terminated by an SVC 50 instruction.

The key argument is moved to the save area in the DTFIS table, its address
is stored in the DECB, and an OS WRITE type KN macro instruction is issued.

Final status is mapped to the DTFIS table by the status mapping routine.

WAITF Mapping Routine (Flowchart 24K)

This routine simulates the DOS WAITF
READ KEY, and WRITE KEY processing.
not been issued, the problem program
instruction.

macrO instruction for DOS WRITE NEWKEY,
If one of these macro instructions has
is abnormally terminated by an SVC 50

For either WRITE macro instruction, a CHECK macro instruction is issued to
determine if the I/O operation has finished. This routine exits to the status
mapping routine.

Method of Operation 93

When the I/O is a READ KEY, an OS CHECK macro instruction is issued and the
DASD address and logical record are moved to the DOS problem program storage
locations. The logical record is moved into the WORKR area, if specified.
If IOREG is specified, code is created in the DTFIS CCW builn area to load
the register with the address when the DOS problem program regains control.
This routine exits to the status mapping routine.

ISAM Mapping Subroutines

SVC 50 Subroutine (Flowchart 24L)

This subroutine causes an SVC 50 instruction to be the next instruction issued
when the DOS task acquires control after the I/O operation has been completed.
This is done so that the DOS task will be canceled for violating a DOS
restriction. The user must check his program logic to determine the cause.

OPENFAIL Subroutine (FlowChart 24L)

This subroutine causes the DOS OPEN message writer to be the next B-transient
phase called because of errors that have occurred during the process of opening
an OS indexed sequential 1ata set. ~his causes the DOS task to terminate.

SYNAD Subroutine (Flowchart 24L)

This subroutine is entered from the OS ISAM logic modules when error conditions
have been detected while performing OS ISAM macro instruction requests.

The DCBMACRF field is interrogated so that the proper status mapping routine
can be called.

Status Mapping Subroutine (Flowchart 24L)

This subroutine is the common exit point for all subtask I/O mapping routines
and the SETL mapping routine. Its function is to map the statistics fields
and last prime data record address from the DeB to the DTFIS. This subroutine
also maps completion status from either the DECB or the DCB exceptional
condition bytes, fields DECBEXC1-DECBEXC2 and DCBEXCD1-DCBEXCD2, respectively,
to the DTFIS exception condition status byte, field IJHCSTBY (see Figure 22).

Entry is at one of three entry points, depending on whether the OS ISAM DCB
is used for QIS~M load, QISAM scan, or BISAM mode. Each entry point contains
instructions to set up registers to point to the proper OS exceptional condition
bytes and the corresponding OS-to-DOS mapping table. The mapping table consists
of a DOS bit, which is set on in byte IJHCSTBY in the DTFIS table, if the
corresponding bit is on in one of the os exception bytes.

Each OS exceptional condition byte is checked independently for a value of
O. If both are 0, IJHCSTBY in the DTFIS table is set to 0 and the status
mapping subroutine exit is entered. If a byte is found to be nonzero, the
proper point in the map table is set and the byte is scanned from left to right
a bit at a time until all 8 bits have been checked. When a bit is found to
be 1, the corresponding bit configuration byte in the mapping table is ORed
into the DTFIS status byte (IJHCSTBY).

94 DOS Emulator Logic

When both bytes have been interrogated, the status mapping subroutine exit
is entered. This section of the subroutine determines whether the Emulator
task or a subtask is in control by interrogating a control byte, TAFLAG3, in
the ISBLK. When TAFLAG3 is 0, the Emulator task is in control and a branch
is made to the main task control executive routine.

When a subtask is in control, the completion of the os ISAM I/O request must
be signaled to the Emulator task. This is accomplished by loading the address
of the COMTAB entry for the request from the ISBLK, creating a CSW in the lOB
in the COMTAB entry, and issuing a POST macro instruction for the ECB in the
COMTAB entry. Control is then passed to the subtask control executive routine
which will zero TAFLAG3 in ISBLK and enter the wait state.

Mapped to DOS
DTFIS field

IJHACRRC
IJHACOTC

IJHACOFC

IJHACORC
IJHCCLPA

IJHCSTBY

X'20'
X'80'

X' 02'
X' 04'
X'80'
X'40'

X' 10'
X'08'
X' 10'
X' 80'
X'80'
X'10'
X' 10'

X'80'
X'01'

X' 10'
X'40'
X'02'
X' 80'
X'80'
X'10'
X'01'
X'04'

Mapped from OS
DCB field

DCBNREC Prime data record count
DCBRORG3 Number of independent over­

flow records
DCBRORG1 Number of cylinder overflow

area full
DCBNOREC Overflow record count
DCBLPDA Address of last prime

data record
QISAM (Load mode)
DCBEXCD1
X'20'
X' 04'
DCBEXCD2
X'80'
X'40'
X'20'
X' 08'
QISAM (Scan mode)
DCBEXCD1
X' 80'
X' 40'
X' 10'
X'08'
X'04'
X'02'
X' 01'
DCBEXCD2
X'20'
X' 10'
BISAM
DECBEXC1
X' 80'
X' 40'
X' 20'
X, 10'
X' 08'
X' 04'
X' 02'
X' 0 1 '

Figure 22. Mapping of DCB Fields to DTFIS Fields After Processing of
Each I/O Macro

Method of Operation 95

VTOC I/O Simulation Routine (IIVVIO) -- Flowcharts 25A-25E

The VTOC I/O simulation routines are used to provide VTOC label information
and actual user label extent information to DOS when a data set (file) on a
shared volume is being opened.

When the SIO subroutine (IIVPCE) detects a request for I/O on a shared volume
and the seek address cannot be matched with the extents in the DEB for that
volume, the request is assumed to be for the accessing of VTOC labels or user
labels for the data set (file) by a DOS open routine. Control is passed to
IIVVIO to verify the assumption and provide the requested I/O.

Routines VIOA through VIOJ are used to determine the type of access requested.
Routines VIOIO through VIOIOF provide the I/O simulation.

VIOA - Analyze CCW Command code Routine (Flowchart 25A)

The ccw command code is matched with a table containing the acceptable commands,
and the appropriate processing routine is executed. If no match is found,
control is passed to VIOERRX.

Each entry in the command code table is a fullword, containing the command
code in the high order byte and the address of the routine to be executed in
the 3 low order bytes.

Command Code Routine

03 NOP VIOB
01 Seek VIOC
08 TIC VIOD
31 Search ID equal VIOE
29 Search key equal VIOF
12 Read count VIOG
06 Read data VIOH
OE Read key/data VIOl
05 Write data VIOJ
OD Write key/data VIOJ

Note: The multitrack bit is ignored.
The type byte is set by routines VIOB through VIOJ to indicate the type of
access requested.

Flag Values

80
40
20
10
08
04
02
01
FF

Request

Search ID equal for VOL1 label
Search ID equal for (format 1) label
Search ID equal for (format 3) label
Read count
Search key equal
NOP
Read data
Read key/data
Write

96 DOS Emulator Logic

VIDB - NDP Command Code Routine (Flowchart 25B)

The NDP flag is set on in the type byte. Control is passed to VLONXT.

VIDC ~ Seek Command Code Routine (Flowchart 25B)

If the user label extent is present in the obtain work area and the seek address
is for the user label CCHH, the user label flag is set on in the COMTAB
(CTFLAG3) and the extent is moved to the COMTAB for use by the end-of-extent
appendage. The return code is set to 00 to notify the calling routine an EXCP
is to be issued, and return is made to the calling routine.

If the seek address is for CCHH 0000 or for the CCRH of the VTOC, control is
passed to VLONXT.

Otherwise, the return code is set to 08 to notify the calling routine that
an error condition has been detected and return is made to the calling routine.

VIOD - TIC Command Code Routine (Flowchart 25B)

It is assumed that the TIC is one that follows a search. Control is passed
to VIONXT.

VIDE - Search 10 Equal Command Code Routine (Flowchart 25B)

If the 10 is for the VOL' label (CCHHR = 00003), the VOL' flag is set on in
the type byte. If the 10 is equal to the format , label 10, the format , flag
is set on in the type byte. If the 10 is equal to the format 3 label 10, the
format 3 flag is set on in the type byte. Control is always passed to VLONXT.

VIOF - Search Key Equal Command Code Routine (Flowchart 25B)

The search key equal flag is set on in the type byte. Control is passed to
VLONXT.

VIOG - Read Count Command Code Routine (Flowchart 25C)

The read count flag is set on in the type byte, and the count address is saved.
Control is passed to VIONXT.

VIOH - Read Data Command Code Routine (Flowchart 25C)

The read data flag is set on in the type byte, and the data address is saved.
Control is passed to VIONXT.

Method of operation 97

VIOl - Read Key/Data Command Code Routine (Flowchart 25C)

The read key~data flag is set on in the type byte, and the data address is
saved. Control is passed to VIONXT.

VIOJ - Write Data and Write Key/Data Command Codes Routine (Flowchart 25C)

The type byte is set to X'FF' to indicate no data is to be transferred. DOS
will be writing the VTOC label so only simulation of the I/O interruption is
required. Control is passed to VIONXT.

VlONXT - Get Next CCW Routine (Flowchart 25C)

If the current CCH command code is a TIC and if the command chain bit is on
in the CCW, the CCW pOinter is increased to point to the next CCW in the chain.
Control is then passed to VlOA. Otherwise, control is passed to VIOIO to
select the correct simulation routine.

The following routines determine the type of I/O requested and provide any
data required by the DOS open routine request. The type byte flags are tested
for the combinations set by the command code routines VIOB through VIOJ. The
data transferred to the DOS data areas is the real VTOC label data built by
the obtain subroutine within module IIVDVS. The obtain work area containing
the VTOC labels is in module IIVDVS starting at label IIVOBTE1. The address
of IIVOBTE1 is in EMUCONS at label AIIVOBE1.

The type byte must indicate one of the following CCW chains or the I/O request
is considered invalid.

VIOWKD - Write a VTOC label
(1) Seek (CCRH equal obtained format 1 CCHH)
(2) Search ID equal
(3) TIC to search (2)
(4) Write key/data
(5) Search ID equal
(6) TIC to search (5)
(7) Read key/data skip on

VIORDV1 - Read VOL1 label
(1) Seek (CCPH 0000)
(2) search ID equal (CCHHR 00003)
(3) TIC to search (2)
(4) Read key/data

VIORDV12 - Read VOL1 label data only
(1) Seek (CCHH 0000)
(2) search ID equal (CCPHR 00003)
(3) TIC to search (2)
(4) Read data

VIORDF3 - Read format 3 label
(1) Seek (CCHH equal obtained format 1 or 3 CCPH)
(2) Search ID equal (CCPHR equal obtained format 3 CCHHR)
(3) TIC to search (2)
(4) Read key/data

98 DOS Emulator Logic

VIOROF1K - Read format 1 label data only
(1) Seek (CCFH equal obtained format 1 CCHE)
(2) Search IO equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)
(4) Search key equal multi-track
(5) TIC to search (4)
(6) Read data

VIOROF1C - Read format 1 label count and data
(1) Seek (CCHH equal obtained format 1 CCHH)
(2) Search IO equal (CCHHR equal obtained format 1 CCHHRl
(3) TIC to search (2)
(4) Read count multi-track
(5) Search key equal

. (6) TIC to read count (4)
(7) Read data

VIOROF10 - Read format 1 label key and data
(1) Seek (CCFH equal obtained format 1 CCHH)
(2) Search IO equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)
(4) Read key/data

VIOROFO - Read format 0 count field
(1) Seek (CCHH equal obtained format 1 CCHH)
(2) Search IO equal (CCHHR equal obtained format 1 CCHHR)
(3) TIC to search (2)
(4) Read count multi-track
(5) Search key equal
(6) TIC to read count (4)
(7) NOP

VIOIO - VTOC I/O Simulation Selection (Flowchart 25C)

The type byte is matched with a table containing the combined type codes, and
the appropriate processing routine is executed. If no match is found, control
is passed to VIOEFRX. Each entry in the type code table is a fullword
containing the combined type code in the high order byte and the address of
the routine to be executed in the 3 low order bytes.

combined Type Code Routine

FF Write VIOIOA
81 Read VOL1 key/data VIOIOB
82 Read VOL1 data VIOIOB1
21 Read F3 key/data VIOIOC
4A Read F1 data VIOIOO
5A Read F1 count/data VIOIOO
41 Read F1 key/data VIOIOE
1C Read FO count VIOIOF
5C Read FO count VIOIOF

VIOIOA - Write Simulation Routine (Flowchart 250)

Control is passed to VIOIOSIM.

Method of Operation 99

VIOIOB - Read VOL1 Label Simulation Routine (Flowchart 25D) .
VIOIOB1

The VOL1 label is moved from the obtain work area to the address specified
in the read CCW. Control is then passed to VIOIOSIM.

VIOIOC - Read Format 3 Label Simulation Routine (Flowchart 250)

The F3 label in the obtain work area is moved to the address specified in the
read CCW. Control is then passed to VIOICSIM.

VIOIOO - Read Format 1 Label (Data) Simulation Routine (Flowchart 250)

The data area of the F1 label in the obtain work area is moved to the address
specified in the rea~ CCW. Control is then passed to VIOICSIM.

VIOTOE - Read Format 1 Label (Key/Data) Simulation Routine (Flowchart 25E)

The F1 label in the ottain work area is moved to the address specified in the
read CC~-7. Control is then passed to ~7!OTOSIM.

VIOIOF - Read Format 0 Count Field Simulation Routine (Flowchart 2~E)

The count field of the F1 label in the obtain work area is moved to the address
specified in the rea1 count CCW. Control is then passed to VIOIOSIM.

VIOERRX - Error Exit Routine (Flowchart 25E)

The return co0.e O'l is set in register 15, and return is made to the calling
routine.

VIOIOSIM - Simulation Exit Routine (Flowchart 25E)

The return code O~ is set in register 15, and return is made to the calling
routine.

100 DOS Emulator Iogic

Exit ABEND Error Routine (IIVABN) -- Flowcharts 26A-26B

This routine is entered when simulation of some error condition to DOS or
termination of the Emulator is required.

The routine examines the error code passed from the module in which the error
was found. The proper message is printed if the calling routine has not already
printed it. The error codes are:

04 - Return to OS (any queued devices are dequeued by means of
the DEQ macro)

08 - DOS hard wait
12 - Invalid or no IPL device defined
16 - Invalid CCW found by IIVCCW
20 - Emulator CCW chain table size exceeded
24 - No seek or no bin number for IBM 2321 Data Cell Drive

If a DOS partition is being canceled, the channel end and program check bits
in the DOS CSW are turned on to force DOS to cancel the partition. Partition
cancelation occurs for errors found by the IIVC~1 routine, for example, invalid
CCW data address or CCW not on a doubleword boundary (error code 16), if the
Emulator CCW chain table size is exceeded (error code 20), or if the IIVPCE
SIO routine finds invalid 2321 CCWs (error code 24). Exit is made to the
caller for return to DOS if the Emulator region is to be canceled. CCWs for
active devices are adjusted to local addresses, and an OS snap dump of DOS
registers 0 through 15 and DOS storage is taken if the JCL statement //SYSSNAP
DD SYSOUT=A was included for the Emulator job step. A service aid printout
instead of the snap dump will be taken if the DEBUG option is specified. The
routine returns to OS. The Emulator is canceled if the DOS supervisor attempts
to enter a hard wait (error code 08), if there is insufficient main-storage
space to run the Emulator (error code 04), or if an invalid or no IPL device
is defined (error code 12).

Message Writer Routine (IIVMSG) -- Flowchart 27A

This routine prints all messages issued by the Emulator. See Figure 88 entitled
"Message-to-Module Relationship" for specific message codes, message numbers,
and module names. Emulator routines can request a message to be printed by
issuing an Emulator macro called EMUMSG. This macro generates the code required
to pass control to this routine. The parameters passed to IIVMSG are used
to select the message text to be printed, complete the message with any
supplemental text provided by the caller, and determine if the request is for
a WTO or WTOR.

Emulator messages are contained within three text modules: IIVMG1, IIVMG2,
and IIVMG3. These modules contain messages appropriate for issuance by the
Emulator during initialization (IIVMG1), after initialization (IIVMG2), and
when volume and data set sharing has been requested (IIVMG3).

Each message is identified with a unique message code. Within each text module,
messages are assigned sequential numbers from 1 to 99. These numbers are added
to the appropriate module identifier to form the message code used in the
EMUMSG macro call. The module identifier for IIVMG1 is 0, for ITVMG2 is 100,
and for IIVMG3 is 200. The module identifier determines both the message and
the required module.

Method of Operation 101

Two Emulator macros, MGTXT and MSGCOD~, are used to create the message text
modules. MGTXT is issued for every messaqe contained in each of the text
modules. The macro generates control bytes used for supplemental text and
the constants for the text itself. MSGCODT is issued once in each module,
and it must be issued after all the MGmx~ calls. MSGConm. generates a message
index table.

The three macros, EMUMSG, MGTXT, and MSGCCnm , are described below.

EMUHS3 MSGCODE= {code}
{ (reg}}

{data address}
(,FILL= {D (data address)}]

{(reg) }

{reply address}
(,REPLY={D(replyaddress)}

{ (reg}}

{ecb address}
,ECB={D(ecb address}}

{ (reg}}

,REPLEN= {reply length}]
{(reg) }

where MSGCODE is a required parameter:

code is the message code described above (IIVMG1, 1-99; TTVMG2, 101-
199; TIVMG3, 201-299).

(reg) is one of registers 0 through 12, which contains the message
code in the low-order hyte.

FILL is an optional parameter:

data address is the symbolic address of the supplemental text.

D(data address} is the same as data address except the symbolic address
is in a DSECT.

(reg) is one of registers 1 through 12, which contains the text
address.

REPLY (see note below):

reply address is the address of the reply area.

D(reply address} is the same as reply address, except the address
is a DSECT label.

(reg) is one of register 1 through 12, which contains the reply
address.

BeB (see note below):

ecb address is the address of the ECB.

O{ecb address) is the DSECT address of the ECB.

(reg) is one of registers 1 through 12, which contains the ECB address.

102 DoS Emulator LogiC

REPLEN (see note below) :

reply length is the length of the required reply.

(reg) is one of registers 1 through 12, which contains the reply
length in its low-order byte.

Note: The parameters REPLY, ECB, and REPLEN must all be present or all
omitted. Any parameter not enclosed by brackets must be present.

MGTXT {'text'}
{ (••• , 'text' , ••• , n, •••) }

where 'text' is the message text in quotes; use this form when no
supplemental text is required. (••• ,'text', ••• ,n, •••) is used
when supplemental text is required. The information within the
parentheses represents any combination of 'text' and n, separated
by commas. The n represents a field length for the supplemental
data. The placement of the n relative to the 'text' determines
the displacement of the field to be filled.

For example, MGTXT ('THIS IS AN', 8) generated code would be:

Length of supplemental data
Last entry indicator

DC AL2 (8)
DC AL 1 (12 8)
DC AL1 (11' Byte position within the message text
DC C'THIS IS AN '
DC CLe' ,

Assuming the above macro call is the fifth issuance of MGTXT in module
TIVMG2, then the message code is module identifier (100) + 5 = 105.

To print this message, the requesting routine iss11es the macro EMUMSG:

EMUMSG MSGCOryE=10~,FILL=DATA

where DATA DC CL8'EXAMPLE.'

The resulting message will be:

THIS IS AN EXAMPLE.

Actually the message text must contain the message identifier (IIVxXXTl
and space for an 8-byte job name, which the message writer always fills
in. All MGTXT macro calls must, therefore, begin as follows:

MGTXT'IIVxxxT jobname ••• '
(jotname=space for 8-byte Emulator job name)

or ('IIVxxxT jol:::name ••• ', ••• ,

where xxx = message ID and T = message type.

Method of Operation 103

MSGCODT No required parameters.

This macro is issued once in each message text module. It must be
issued after all the MGTXT calls. Global values in the MGTXT macro
are used to generate a table containing the following information:

DC A(maximum message number)
or

DC A(number of MGTXT calls)
DC AL1 (length of message 1)
DC AL3(address of message 1 including any control

bytes for supplemental text)

Repeat for message 2, and so on.

Service Aids Initialization Routine (IIVRAS) -- Flowcharts 28A-28B

The major function of module IIVRAS is to control the program flow of the
service aids modules IIVRCP and IIVSNP.

At entry to this routine, the DCB for SYSSNAP is opened and address constants
in CSECTs IIVRCN and IIVCON are initialized. If register 0 contains zero at
the time of entry, the service aids command processor IIVRCP is loaded into
main storage. Control is then passed to IIVRCP to process a debug statement.
Module IIVRCP is deleted after control is returned. Module IIVSNP is then
loaded, and its main-storage address is placed in CSECT IIVRCN. control is
then returned to the caller.

If register 0 contained a value of 4 at entry time, the Emulator snap dump
routine IIVSNP is loaded into main storage. Control is then passed to module
IIVSNP to snap the Emulator wraparound trace table. This will normally happen
at Emulator end-of-job time. Control is returned to the caller after the trace
table is snapped.

If register 0 contained a value greater than 4, register 1 must contain a main­
storage address of a two-byte length field. This field contains the length
minus one of a character string that describes the cause of the snap dump
(OPTION IN EFFECT gives the cause of the snap dump). The character string
immediately follows the length field. Control is passed to module IIVSNP to
snap Emulator control blocks. After the Emulator storage is snapped, control
is returned to the caller.

The fOllowing routines in IIVRAS gain control depending on the type of
interruption that occurs:

IIVRASPC - Program Check Intercept Initialization Routine (Flowchart 2BB)

Control is gained at this entry point after the occurrence of a program check
interruption when the CPU is in local execution mode. DOS registers are saved
and Emulator registers are restored. This subroutine exits to module IIVPCI,
which further interrogates the program check interruption.

104 DOS Emulator Logic

IIVRASVC - Supervisor Call Intercept Initialization Routine (Flowchart 28B)

control is gained at this entry point after the occurrence of a supervisor
call interruption when the CPU is in local execution mode. DOS registers are
saved and Emulator registers are restored. This subroutine exits to module
IIVSCI, which will further interrogate the supervisor call interruption.

IIVRASYN - Asynchronous Intercept Initialization Routine (Flowchart 28B)

Control is gained at this entry point after the occurrence of an asynchronous
interruption when the CPU is in local execution mode. DOS registers are saved
and Emulator registers are restored. If requested, control is passed to a
user asynchronous exit routine. Control will then be passed to module IIVSNP
if an optional snap dump is indicated. DOS registers are then restored and
this routine exits to the Emulator module IIVRTE.

Command Processor Routine (IIVRCP) -- Flowcharts 29A-29P

This routine gains control from IIVRAS in order to read a DEBUG statement from
card input or a DEBUG console reply to the Emulator prompt.

Each command of the DEBUG statement is checked for syntax validity. Each
keyword or parameter is then analyzed and corresponding indicators are set
in RASCONS to be used by the service aids modules. These modules (IIVACI,
IIVPCI, IIVSCI) are loaded by IIVRCP with user exit modules (if any) when an
END command is encountered. Control then returns to IIVRAS, which will delete
IIVRCP and resume emulation.

Snap Dump and Trace Formatting Routine (IIVSNP) -- Flowcharts 30A-30K

The major fUnction of module IIVSNP is to format the Emulator control blocks
and trace table. A nonzero value in register 0 at entry to this routine will
cause only the trace table to be printed. The main line code consists of calls
to subroutines that convert main storage data to EBCDIC and write the formatted
data.

Trace Table Subroutine (Flowchart 30E)

The entry point label of the trace table subroutine is RAS14000. Control is
returned to the caller if the number of active trace table entries is zero.
Otherwise, each entry is converted from its internal format (see Figure 84,
Internal Trace Table Format) to its printed format (see Figure 86 (Part 6 of
7). Service Aids Snap Dump). Trace table entries are printed starting with
the most recent entry. Each succeeding line represents an older entry. The
trace table pointers are reset immediately after snapping so no two snaps will
reflect the same events.

Method of operation 105

Write subroutine (Flowchart 30H)

The entry point label of the write subroutine is RAS15000. When this subroutine
is entered, register 1 contains the address of a two-byte length field, which
contains the length in bytes minus one of a character string; the character
string immediately follows the length field. Each line is blocked until the
buffer is filled, at which time the entire buffer is written out. A secondary
entry point (RAS15200l will cause the buffer to be truncated and written.
Control is returned to the caller.

Snap Subroutine (Flowchart 30K)

The entry point label of the snap subroutin~ is RAS16000.
Register contents upon entry to this subroutine are:

• Register 0 - the length in bytes of main storage to be snapped

•. Register - the starting address of the main storage to be snapped

control is first passed to the EBCDIC conversion subroutine (entry point is
RAS17000l to convert hexadecimal data to EBCDIC. ~he EBCDIC data is then
formatted in fullword sections for readability by the data formattinq subroutine
(entry point is RAS18000l. Control is then passed to the write subroutine
(entry point is RAS15000l. Data is snapped 32 bytes at a time until the lenqth
(passed in register 0) is reached. Only the first line of a set of duplicate
lines is printed so that the volume of output is minimized.

EBCDIC Conversion subroutine (Flowchart 30Gl

The entry point label of the EBCDIC conversion subroutine is RAS17000.
The register contents upon entry to this subroutine are:

• Register 0 - the number of bytes to convert
• R~gister 1 - the main-storage address of the hexadecimal data to be

converted

The number of bytes contained in register 0 is rounded to the next fullword.
A maximum of 72 bytes can be converted at anyone time. Output data is placed
in a work area labeled BVFF1. After conversion, control is returned to the
caller.

Data Formatting subroutine (Flowchart 30Jl

The entry point label of the data formatting subroutine is RAS18000.
The register contents upon entry to this subroutine are:

8 Register 0 - the number of bytes to format
• Register 1 - the beginning of main-storage address to contain the formatted

output

Input data is found in a work area labeled BUFF1. EBCDIC data is formatted
in fullword segments for readability. Control is returned to the caller.

106 DOS Emulator Logic

program Check Intercept Routine (IIVPCI) -- Flowcharts 31A-31C

The major function of module IIVPCI is to intercept DOS program check
interruptions. IIVPCI receives control from module IIVRAS (entry point is
IIVRASPC) after· DOS registers have been saved and Emulator registers have been
restored. Control will be passed to module IIVSNP to snap Emulator control
blocks if a snap for DOS program checks was requested and if a nonprivileged
operation program check or if a nonEmulator supported privileged operation
exception is encountered. Snap dumps during DOS IPL are bypassed unless
specifically requested because of the number of program checks that occur
during that time.

The first of two snaps of the Emulator control blocks and main storage will
be taken for user selected privileged operations that are issued by DOS. This
dump will be a picture of the Emulator region before instruction simulation
by the Emulator. ~he second snap will be issued by module IIVACI. This dump
will contain a picture of the Emulator region after the instruction is
simulated.

User selected privileged operations will be entered into the Emulator trace
table if a trace table was requested. Since all required trace information
is not available at program check time, a flag is set in IIVRCN (RASCONS) to
indicate that that entry must be completed by module IIVACI. Just before
passing control to Emulator module IIVPCE, control will be passed to a program
check user exit routine if one was specified. An optional snap dump will be
taken if the exit routine returns to the address in register 14 plus a
displacement of four.

supervisor Call Intercept Routine (IIVSCI) -- Flowchart 32A

Module IIVSCI receives control from module IIVRAS (entry point is IIVRASVC)
after the occurrence of a supervisor call interruption while the CPU is in
local execution mode.

If an SVC snap dump was requested, a four byte field at hexadecimal location
1A8 in CSECT rIVRCN will contain the starting main-storage address of a chain
of SVC control blocks. Each entry in the chain is 12 bytes in length and has
the following format:

Isvc IPoints to next entry module name
o 1

Control is passed to module IIVSNP to snap Emulator control blocks if the
interruption field in the local execution PSW matches the SVC number in byte
o of an entry. A value of zero in the next entry field (byte. 1) indicates
the last entry in the chain. In the case of SVC numbers 2 and 4, the main­
storage address contained in DOS register 1 is adjusted and compared with the
8 character module name in byte 4 of the entry if that field contains a nonzero
value. An equal compare will cause a snap dump to be taken.

If SVC or ALL were specified for trace, the trace table will be updated.

The supervisor call interruption will then be partially recorded in the trace
table if SVC or AIL are specified for TRACE. Just before exiting to module
IIVSVC, control will be passed to a supervisor call user exit routine if one
was specified. An optional snap dump will be taken if the user exit routine
returns to the address contained in register 14 plus a displacement of four.
This routine restores DOS registers and exits to the Emulator module IIVSVC
to process the SVC instruction.

Method of operation 107

-- -_._--- -----------------------------------

Asynchronous Intercept Routine (IIVACIL-=- Flowcharts 33A-33H

Module IIVAcr receives control from the various Emulator modules when control
is to be returned to DOS. The address constant ART20 (which ordinarily contains
the main-storage address of IIVRTER2) is replaced by module lIVRCP with the
entry point address of IIVACI.

Since this routine gains control from other Emulator modules, it is assumed
that registers are set up with standard Bmulator values. If the current trace
entry is flaaged incomplete, it is completed according to the type of
interruption it represents. The trace table pointers are then updated.
Asynchronous interruptions (I/O, EXT, ~IMER) are then checked and entered if
requested.

Control is passed to module lIVSNP to issue the second of two snap dumps if
indicated by module IIVPCI. This snap dump will reflect Emulator main storage
after a valid DOS privileged operation was simulated by the Emulator.

The PSH and CaMP snap functions are also handled in module IIVACI. If these
options are specified, a snap dump will be taken whenever the conditions are
satisfied. Asynchronous interruptions (I/O, EXT, TIMER) are checked and a
snap dump is taken if requested. The local execution user exit routine is
given control just before passing control to module IIVRTE at entry point
IIVRTER2. An optional snap dump is taken if control is returned to the address
in register 14 plus a displacement of four.

service Aids Adjust ca'7 Data Address Routine (JIVRC~~) -- Flowcharts 34A-34H

The main function of rIVR~~ is the same as IIVCCW. The DOS local addresses
in the data address portion of the CCWs will be adjusted to as true addresses
or readjusted from as true addresses to DOS local addresses.

The first path of lIVRe,) is similar to lIVCCW. BEELK entries are created
according to the channel program to be processed. The BEBLK entries contain
pointers to the begiT'ning and ending addresses of each consecutive set of CCT.1s
found in the channel program.

The second step of lIVPcv.1 is slightly different from rrvccw in that the CCHs
will not be adjusted or readjusted in the DOS area, but will leave the DOS
channel programs Unchanged.

Start I/O Time

IlVRCW copies the DOS channel program into a buffer located in the DrAG block
(the block is created by rIVRC? when the DrAG command routine is entered).
~he data address portions of the CCWs in the buffer are then adjusted to as
true addresses and the TIC addresses will point to the corresponding C~H in
the buffer. ~he lOB is then modified to reflect that the as EXCP sho~ld be
issued on the channel program located in the DlAG block.

108 DOS Emulator Loqic

i

I/O Completion Time

IIVRCW is called by IIVCHK when the Os EXCP is complete. The data address
portions of the CCWs in the buffer are readjusted to DOS local addresses.
The TIC addresses will point to the corresponding CCW in the DOS area. When
readjustment is complete, the channel program located in the DIAG block should
be identical to the channel program located in the DOS area. A check is made
on each CCW and message IIV281I is issued if the CCWs do not match. The lOB
is then modified to reflect that the I/O is completed on the DOS channel program
(the CSW will be pointing to the corresponding CCW in the DOS area).

Method of Operation 109

PROGRAM ORGANIZATION

Functional organization of Emulator Interruption Handling

Flowcharts

program Organization 111

FUNCTIONAL ORGANIZATION OF EMULATOR INTERRUPTION HANDLING

In Figure 23, the major Emulator interruption handling functions are grouped
relative to the modules that perform them.

FLOWCHARTS

This section contains flowcharts of Emulator routines. In general, the
flowcharts have the following characteristics:

• Symbols, or labels, are used where possible to aid readers in locating
instruction sequences in listings.

• Where CPU control passes from one routine or subroutine to another, terminal
blocks are always used. Off page connectors are used only when a single
routine or subroutine extends over two or more pages.

• Information necessary to understand a module and its interaciton with the
rest of the Emulator is given in text preceding each major module.

• Redundancy is sometimes used to avoid excessive cross-referencing; the
same function may sometimes be shown in two or more flowcharts, even though,
in each case, it is performed with the same set of instructions.

• Each flowchart identifier begins with a numerical value ranging from one
to two digits. The numerical prefix is unique for each module. The
flowchart identifiers end with an alphabetic character ranging from A-Z,
omitting the letters I and 0 to avoid confusion with the digits 1 and O.
The alphabetic character following the numerical prefix of the flowchart
identifier, starts with the letter A and progresses alphabetically for
each flowchart of a module.

The flowcharts are divided into seven categories:

• Initialization

• Synchronous interruptions

• Asynchronous interru?tions

• Direct-acces volume sharing

• Abnormal end conditions

• Message writer

• Emulator service aids

Figure 24 shows the module relationships of the Emulator.

112 DOS Emulator Logic

J

check in DOS p",,~ ,~

Program Check Interrupt Handler (IIVPCEI

Other SSK
Program SIO
Checks TCH

I SSM

ISK

I EXCP I
LPSW

I TIO l HIO I
I I

• t C? M,,,
ISAM SYSLOG

CCW Staged Add/delete I/O interrupt OS 1 asynchron
adiust I/O (auto-IPLI Simulation Interrupt

in DOS

t t t

ous

Asynchronous Interrupt Handler and Route Routine (lIVRTEI

I Post I/O I I Timer Interrupt

II EOJ I I Wait I/O I
Completion Selection Completion

(Prompt) (~ /0 Interrupt 8"""'" Reply SYSLOG
Simulation

to DOS
Processor

I oL-11 A;TN II ~~,: II ES 11- M~", J SVC Interrupt
in DOS

~ (Service2) (OPEN/) Aids CLOSE

SVC Interrupt Handler (IIVSVCI

I SVC 2 I
• t

ISAM
SVC2 Volume
Processor Sharing

1. Depending on the DEBUG options 'taken, service aids may first receive control.

2, Service aids can also be activated during initialization if a //SYSDEBUG DO statement is present.

Figure 23. Functional organizatio~ of Emulator Interruption Handling

Program organization 113

Dispatch

lOS

Machine

External

OS

Emulator

IIVGET

Program Check
Interruption

----,

l::i~rJ

Note: Module IIV RAS functions are not included in this diagram (see "Emulator Service Aids" for information concerning the
relationship of IIVRAS to other Emulator modules).

Figure 24. Emulator Module Relationship

114 DOS Emulator Logic

Initialization

Program Organization 115

DOS Emulator Entry Routine (Flowchart 1A)

Module name: IIVENT

Entry point name: IIVENT

Major functions:

• Saves registers

• Saves pointer to user parameter area

• Establishes a CSECT of constants (EMUCONS) at assembly time

Entered from: OS

Modules called: I IVINT

Exits to:

• IIVIN2
• I IVABN

OS macros issued: SAVE

Input: Register 1 points to the pointer to the user parameter area

Output: Register 7 points to the user parameter area

Return codes: X'04' on exit to IIVABN

Tables/work areas: None

Errors detected: None

Messages requested: None

Program Organization 117

Flowchart 1A. DOS Emulator Entry Routine (I IVENT)

I I V I N2 RETURNS
TO I I VENT ONLY
ON ERROR
CONOITIONS

118 DOS Emulator Logic

I I VENT

IIVINT 2A/AI

EMULATOR
INITIALIZATION

FIRST-LOAO

FROM OS

SECONO PHASE OF
I NI T I ALI ZATION

TO IIVABN (CHART 2&AI
CONDITION CODE = X'04'

Initialization First-Load Routine (Flowcharts 2~-2Ml

Module name: IIVINT

Entry point name: IIVINT

Major functions:

• verifies parameters
• Establishes DOS storage area
• Initializes CCMTAB
• Initializes CO~4TAB extension

Entered by: IIVENT

Modules called:

• IIVGET
• IIVMSG

Exits to:

• Caller
• IIVABN

OS macros issued:

• WAIT
• EXTPACT
• SAVE
• RDJFCB
• RETURN

Input: Register 7 points to the user parameter area

Output:

• Register 9 points to local execution list
• Register 10 points to DOS storage area
• Register 11 points to IIVCON

Return codes: None

Tables/work areas:

• TIOT
• COMTAB
• UCB
• JFCB
• Local execution list
• Adjust CCW data address list
• EMUCONS
• COM TAB extension

Errors detected:

• Invalid Emulator pararreters
• No DOSRES DD statement
• Invalid device assigned to Emulator
• Invalid Emulator DDname
• DISP=SHR specified in SYSEMLBL DD statement
• OS cuu from SYSEMLBL not the same as OS cuu from DOS system residence

file

Program Organization 119

Messages requested:

• lIVOO2D
• lIVOO 3D
• IIV004D
• IIVOOSD
• IIV006D
• IIVOO7D
• IIVOO8D
• lIV011I
• IIV019I
• IIV022I
• IIV02SI
• IIV026I

120 DOS Emulator Logic

Flowchart 2A. Initialization First-Load Routine (IIVINT Part 1 of 12)

I I V INT

I DCOMP

GET ADDRESS OF
TIOT

ALIGN LISTS ON
64-BYTE

BOUNDARIES

INITIALIZE
LISTS

INITIALIZE
EMULATOR BASE

REGISTERS

GET ADDRESS OF
PARAMETER AREA

FROM IIVENT (CHART IAI

INITIALIZE SCAN
TABLE

UPDATE TO FIRST
OF PARAMETERS

NO

SCAN FOR
PARAMETER ENTRY

GET ADDRESS OF
PARAMETER TABLE

SYMBOL TABLE

LISTS - LOCAL
EXECUTION LIST ANO
ADJUST CCW DATA
ADDRESS LI ST

SCAN TABLE - A
PARAMETER BIT
DEFINING THE AREA
TO BE SCANNED

PARAMETER TABLE - A
LIST OF THE
PARAMETERS AS THEY
ARE TO APPEAR IN THE
USER PARAMETER AREA
ON THE EXEC CARD

Program Organization 121

Flowchart 2B. Initialization First-Load Routine (IIVINT Part 2 of 12)

2A/E4

CHKCUU 2L/A4

VAL I DATE CUU

V ALI OA TE CUU

NO

VALIDATE CUl,I

NO

122 DOS Emulator Logic

ASKOPR 2L/AI

GET NEW
PARAMETER FROM

OPERATOR

ASKOPR 2L/AI

GET NEW
PARAMETER FROM

OPERATOR

ASKOPR 2L1 AI

GET NEW
PARAMETER FROM

OPERATOR

Flowchart 2C. Initialization First-Load Routine (IIVINT Part 3 of 12)

A SKOPR 2L1 A 1

GET NEW
PARAMETER FROM

OPERATOR

YESORNO 2K/A4

CHECK FOR VALID
DOSTIM

PARAMETER

CHKEOJ

YESORNO 2K/A4

CHECK FOR VALID
AUTOEOJ

PARAMETER

C.fII"'~_"".w..._..,

NO

YESORNO 2K I A4

CHECK FOR VALID
APRDMPT

PARAMETER

ASKOPR 2L1 A I

GET NEW
PARAMETER FROM

OPERATOR

ASKOPR 2L1 A 1

GET NEW
PARAMETER FROM

OPERATOR

ASKCPR 2L1 AI

GET NEW
PARAMETER FROM

OPERATOR

Program Organization 123

Flowchart 20. Initialization First-Load Routine (IIVINT Part 4 of 12)

124 DOS Emulator Logic

CALCULATE DOS
STORAGE +4K

BYTES

IIVGET 1A1A3

OBTAIN DOS
STORAGE

ALIGN DOS
STORAGE ON 4K

BOUNDARY

IIVGET 1A/A3

RELEASE EXCESS
STORAGE

2C/K4

Flowchart 2E. Initialization First-Load Routine (IIVINT Part 5 of 12)

ADD , TO COMT A8 YES
COUNT

DDSCAN 2M/A'

GET T1 OT ENTRY

CALCULATE
STORAGE NEEDED

FOR COMTA8

IIVGET TA/A3

08TAIN STORAGE
FOR COMTA8

',VMSG 2TA/A'

ISSUES MESSAGE
II V0221

ERROR COND I 1"1 ON

Program Organization 125

Flowchart 2F. Initialization First-Load Routine (IIVINT Part 6 of 12)

FROM 2G/H5,
2G/F1, 2G/H4,
2G/G5, 2H/Jl,
2H/E2 t 2H/F3 I

2H/D4, 2H/E5,
2H/G5. 2H/E3,
2G/F5, 2H/~3,
2H/HI. 2H/G4,
2H/B2. 2H/F5,

2F
CI

UPDATE TO NEXT
COMTAB ENTRY

IIVGET7A1A3

FREE EXCESS
COMTAB 5PACE

GET COMTA8
ADDRESS

FORMAT DOS LOG
COMTA8 ENTRY

GET TIOT ENTRY

126 DOS Emulator Logic

2E/~3

VALIDATE DOS
CUU

PLACE DOS CUU
IN CDMTA8

NO

READ ~FC8

IIVM5G27A/AI

ISSUES MESSAGE
II VOl91

ERROR RETURN

PLACE DSNAME
AND DONA ME IN

TEMPORARY
COMTAB

EXTENSION

Flowchart 2G.

GET UC8 ADDRESS
FROM TIOT

Initialization First-Load Routine (IIVINT Part 7 of 12)

CLEAR COMTA8
ENTRY

TRANSLATE OS
DEV I CE TYPE TO
DOS DEVICE TYPE

SAVE as CUU IN
COMTAB

SAVE
TYPE

GET UC8
BEGINNING

ADDRESS

SAVE DOS BIN
NUMBER IN

COMTAB

NO

IIVMSG 21A/AI

ISSUES MESSAGE
I I VO 1 1 I

IIVMSG 21A/Al

I SSUES MESSAGE
IIV0191

Program Organization 127

Flowchart 2H. Initialization First-Load Routine (IIVINT Part 8 of 12)

2G/E3

ISSUES MESSAGE
I I VO 1 "

DECREMENT
COMTA8

EXTENSION COUNT

128 DOS Emulator Logic

2.
CI

Flowchart 2J. Initialization First-Load Routine (IIVINT Part 9 of 12)

2J
82

FROM 2F/FI

COMPUTE SIZE OF
COMTA8

EXTENSION

IIVGET TAlA3

GET COMTA8
EXTENSION

STORAGE

GET ADDRESS OF
COMTA8

EXTENSION

CiET riOT ENTRY

PLACE DDNAME IN
COMTAB

EXTENSION

UPDATE TO NEXT
COMTA8

EXTENSION ENTRY

READ JFCB

PLACE DATASET
NAME IN COMTA8

EXTENSION

GET UCB ADDRESS

IIVMSG 2TAlAI

I SSUES MESSAGE
IIV0251

11VMSG 21A/A!

ISSUES MESSAGE
IIV0261

ERROR RETURN

GET UCB
BEGINNING

ADDRESS

Program Organization 129

Flowchart 2K. SCAN and YESORNO Subroutines (IIVINT Part 10 of 12)

SCAN FOR COMMA
OR BLANK

RESET SCAN
TABLE

FROM IIVINT (CHART 2AI

130 DOS Emulator Logic

YESORNO

FROM II VI NT (CHART 2CI

B4

INVALIO PARAMETER

Flowchart 2L. ASKOPR and CHKCUU Subroutines (IIVINT Part 11 of 12)

FROM IIVINT
(CHARTS 29 AND 2CI

IIVMSG 27A1AI

ISSUE WTOR

WAIT FOR REPLY

SAVE NEW
PARAMETERS

II V0020
IIV0030
IIV0040
I I V0050
I I V0060
IIV0070
II V0080

94

TRANSLATE CUU
TO HEXADECIMAL

FROM II VINT
(CHARTS 29, 2FI

Program Organization 131

Flowchart 2M. DDSCAN Suhroutine (IIV!NT Part 12 of 12)

132

FROM IIV tNT
(CHARTS 2E, 2F,
2Ji

B 1

GET TIOT
ADDRESS

DOS Emulator Logic

UPDATE TO NEXT
TIOT ENTRY

SET SNAP
PRESENT FLAG

SET DEBUG
PRESENT 81T

SET SWITCH FOR :>----1 ABEND DO
PRESENT

Initialization Second-Load Routine (Flowcharts 3A-3F)

"1odule name: 1IilIN2

Entry point name: IIV1N2

Major functions:

• Performs COMTAB and COMTAB extension chaining
• sorts COMTAB table
• Builds other Emulator tables
• IPLs DOS from the DOS resident volume
• Saves store CPU 1D results (STIDP)

Entered by: I IVENT

Modules called:

• I IVOPN
• I IVGE'l'
• IIVMSG
• IIVRAS
• TIVRTE

Exits to:

• IIVRTE
• Returns to caller en error conditions

OS macros issued:

• EXCP
• ENQ
• WAIT
• LOAD
• DEO
• SAVE
• RETURN
• DCBD
• OPEN

Input:

• Register 9 points to local execution list
• Register 10 points to DOS storage
• Register 11 points.to TIVCON

Output: None

Return codes: None

Tables/work areas:

• COMTAB
• COMTAB extension
• ISK/SSK table
• ECB pointer table
• Post ECB list
• Local execution list
• EMUCONS
• DOS storage

Program Organization 133

Errors detected:

• Duplicate DOS device address
• could not IPL DOS for DOS emulation
• Could not open DOS SYSRES DCB
• I/O error on DOS SYSRES
• Missing DD statement for DOS SYSRES volume
• DDname does not map to a DOS device
• Invalid device sharing request
• Invalid starting address for DOS SYSRES
• DOSRES label cylinder in use

Messages requested:

• IIV0121
• IIV0131
• IIVO 1 SI
• IIV0201
• IIV0221
• IIV027I
• IIV0281
• IIV0331
• IIV0341

134 DOS Emulator Logic

Flowchart 3A. Initialization Second-Load Routine (IIVIN2 Part 1 of 6)

FROM I I VENT
(CHART IAi

83

GET ADDRESS OF
FIRST COMTA8

AND PRESENT
CTEXT

MOVE TEMPORARY
CTEXT FROM

COMTA8 TO CTEXT

GET NEXT
EXTENSION

GET NEXT COMTA8
ENTRY

Program Organization 135

/

Flowchart 3B. Initialization Second-Load Routine (IIVIN2 Part 2 of 6)

136

GET CTEXT
ADDRESS

IIVMSG27A/AI

ISSUES MESSAGE
IIV0341

UPDATE TO NEXT
CTEXT

TH I S UNCHA I NED
COMTA8 EXTENSION
ENTRY IS NOW
REFERRED TO AS
THE CURRENT
CDMTAB EXTENSION
ENTRY

PLACE ADDRESS
OF CURRENT
CTEXT INTO

COMT AB ENTRY

DOS Emulator Logic

PLACE ADDRESS
OF NEW CTEXT
INTO CURRENT

NEW CTEXT
BECOMES CURRENT

CTEXT

CHAIN COMTA8
EXTENS I ON TO
COMT AB ENTRY

FROM
3A/B3

CHA I N COMT AB
EXTENSION
TABLE ENTR I ES
TOGETHER

IIVMSG 27A/AI

I SSUES MESSAGE
IIv0331

Flowchart 3C. Initialization Second-Load Routine (IIVIN2 Part 3 of 6)

IIVMSG 27AtAI

I SSUES MESSAGE
I I VO 121

GET ADDRESS OF
COM TAB

SWAP COMTAB
ENTRIES

G4 r---.

UPDATE CHANNEL
COUNTER

GET NEXT COMTAB
ENTRY

GET CHANNEL
I NDEX ADDRESS

GET COMTAB
ADDRESS

INITIALIZE
CHANNEL COUNT

TO ZERO

INITIALIZE
COMTAB ENTRY

COUNTER

Program Organization 137

Flowchart 3D. Initialization Second-Load Routine (IIVIN2 Part 4 of 6)

138

ENQ MASTER
RESOURCE

GET ADDRESS OF
COMTAB

ENQ DEVICE
RESOURCE
EXCLUS I VE

UPDATE TO NEXT
COMTAB ENTRY

YES ENQ DEVICE >-=--1 RESOURCE MA Y BE
SHARED

DOS Emulator Logic

YES OEQ MASTER
RESOURCE

BLDISK

CALCULATE SIZE
OF ISK/SSK

TABLE

IIVGET 7A/A3

GET STORAGE FOR
ISK/SSK TABLE

CALCULATE 5 I ZE
OF Eca POINTER

TABLE

GET STORAGE FOR
Eca POINTER

TABLE

INITIALIZE
FIRST THREE ECB

ADDRESSES

GET ADDRESS OF
COMTAB

PLACE ECB
ADDRESS IN Eca

POINTER TABLE

UPDATE TO NEXT
COMTAB ENTRY

CALCULATE SIZE
OF POST Eca

LI ST

IIVGET 7A/A3

GET STORAGE FOR
POST ECB LI ST

FORMAT POST ECB
LIST

INITIALIZE POST
EC8 LIST
POINTERS

Flowchart 3E.

COMPUTE ADDRESS
OF DOSRES

COMTAB ENTRY

GET FIRST
COMTAB

EXTENSION

GET STORAGE FOR
A DASD DCB

INITIALIZE A
DASO DCB AND

OPEN IT

ISSUES MESSAGE
I I VO 1 51

NO

NO

Initialization Second-Load Routine (IIVIN2 Part 5 of 6)

IIVMSG 27A/AI

I SSUES MESSAGE
IIV0221

ERROR RETURN

IIVOPN 5A/A2

OPEN DOSRES

NO GET NEXT COMTAB

NO

EXTENSION

ENQUE
OSCUU/RL8L

EXCLUSIVE

ISSUES MESSAGE
IIV0281

IIVMSG 27A/AI

ISSUES MESSAGE
IIV0271

NO
IIVMSG 27A/AI

I SSUES MESSAGE
IIVO 151

Program Organization 139

Flowchart 3F. Initialization Second-Load Routine (IIVIN2 Part 6 of 6)

140

BUILD CHANNEL
PROGRAM

CHANGE CHANNEL
PROGRAM

DOS Emulator Logic

AD-JUST DOS CCW
ADDRESSES

PLACE DOS PSW
IN LOCAL

EXECUTION LIST

FIND DOS CLEAR
STORAGE ROUTINE

IIVMSG 27AIAI

ISSUES MESSAGE
J I VO 131

IIVt,tSG 27A/AI

ISSUES MESSAGE
J J V020 I

SET PROGRAM
CHECK CONDITION

IN DOS CLEAR
STORAGE ROUTINE

YES LOAD J J V5TG AND
r---t I I VSDT

IIVRTE 20C/H4
ISSUE STAE MACRO IF
II S YSABEND PRESENT

YES
J J VRAS 28A I A 1

READ DEBUG
PARAMETERS

NORMAL END TO
(IVRTE (CHART
20A I

~.

IPL Add Routine (Flowcharts 4A-4D)

Module name: I IVADD

Entry point name: I IVADD

Major functions: Performs automatic add, delete, set date and time

Entered by: IIVSVC

Modules called: IIVMSG

Exits to: IIVSVC

OS macros issued:

• TIME
• SAVE

Input:

• Register 1 points to the DOS CCW

• Register 9 points to the local execution list

• Register 10 points to DOS storage

• Register 11 points to I IVCON

Output: An add, delete, or set date and time statement is placed
in the DOS input area.

Return codes: None

Tables/work areas:

• OOS PUB
• COMTA.'3
• EMUCONS

Errors detected: Invalid automatic add reqeust

Messages requested: IIV0321

Program Organization 1q1

Flowchart 4A. IPL Add Routine (IIVADD Part 1 of 4)

142 DOS Emulator Logic

II VADD

FROM IIVSVC (CHART l1A)

NO

B3

SAVE DOS eGa
ADDRESS

GET ADDRESS OF
DOS PUB TABLE

GET LENGTH OF
DOS PUB TABLE

GET ADDRESS OF
COMTAB

PUB-X IS THE
ADDRESS OF
THE PRESENT
PUB ENTRY
BEING
PROCESSED

COMTAB-X IS
THE ADDRESS OF
THE PRESENT

--------- COMTAB ENTRY
BEING
PROCESSED

Flowchart 4B. IPL Add Routine (IIVADD Part 2 of 4)

GET ADDRESS OF
COMTAB

DECREMENT PUB-X
BY I ENTRY

G,~

WHEN PUB-X HAS
BEEN
DECREMENTED TO

--------- THE DOS PUB
TABLE BEGINNING
ADDRESS,
DELETI ONS HAVE
BEEN COMPLETED.

FORMAT DOS DEL
STATEMENT FOR

PUB-X

MOVE DEL
STATEMENT TO

DOS STORAGE

Program organization 143

------ ~- ,--, ------------ -----------------------------------

Flowchart 4C. IPL Add Routine (IIVADD Part 3 of 4)

FROM 48183,
4BIE2

GET COMTAB-X
ADDRESS

GET DOS PUB
TABLE ADDRESS

GET NEXT
.>----1 COMTAB-X ENTRY

GET NEXT DOS
PUB TABLE ENTRY

DOS Emulator Logic

NO

YES GET OS DATE AND
'>-~--I TIME

CONVERT OS
JULIAN DATE TO

DOS MMIDDIYY

FORMAT DOS SET
STATEMENT

PLACE SET
STATEMENT IN

DOS STORAGE

Flowchart 4D. IPL Add Routine (IIVADD Part 4 of 4)

SAVE COMTAB-X
ADDRESS

4C/O!, 4CtE!

GET ADDRESS OF
DEV ICE TABLE

H3 r---l

FORMAT DOS ADD
STATEMENT FROM

DEVICE TABLE
ENTRY

:>-N:.::O __ ~ GEfA~E@TE~~~~CE I-__ ~

PLACE ADD
STA TEMENT IN

DOS STORAGE

IIVMSG 21A/Al

ISSUES MESSAGE
I I V0321

ERROR RETURN TO
TERMINATE

Program Organization 145

Open Routine (Flowcharts SA-50)

Module name: IIVOPN

Entry point name: IIVOPN, OPEN9S

Major functions: Opens Emulator-allocated dedicated resources
dynamically

Entered by:

• IIVPCE
• IIVIN2
• IIVPRP
• IIVRTE

Modules called:

• IIVGET
• IIVMSG

Exits to:

• IIVABN
• Returns to caller
• IIVSTG

Os macros issued:

• DeB
• EXCP
• WAIT
• OPEN TYPE=J
• LOAD
• RDJFCB
• IMGLIB
• SAVE
• DELETE
• DCBD

Input:

• Register 0 points to the COMTAB entry to be processed

• Register 9 points to the local execution list

• Register 10 points to DOS storage

• Register 11 points to IIVCON

Output:

• COMTAB CTFLAG bit 7 is set on

• Opened DeB

• Formatted lOB/formatted STGCON

Return codes:

• X'OO'=unsuccessful open

• X'04'=successful open

• X'04'=exit to IIVABN

146 DOS Emulator Logic

Tables/work areas:

• COMTAB
• lOB
• JFCB
• DEB
• PUB
• EMUCONS
• DOS COMREG
• DOS low storage area
• DSCBs in VTOC

Errors detected:

• Device not stageable

• Open was unsuccessful

• VTOC overlaps cylinder boundary

• Could not find PUB entry in the DOS PUB table during DOS IPL

• Volume contains OS password data sets

• Invalid FCB image

• OPEN for SYS1.IMAGELIB failed

Messages requested:

• IIV0181
• IIV021I
• IIV0231
• IIV0241
• IIV040D
• IIV041I
• IIV050D

L
program Organization 147

------------------------ ----------------------~--------------------------

Flowchart SA. Open Routine (IIVOPN Part 1 of 4)

IIVOPN

...... _-...,.--- j~~~R~ I i t~~R+ c~~~T . 3E I •

GET ADDRESS OF
COMT AB ENTRY

GET OF

READ JFCB

CHANGE VOLUME
SER I AL NUMBER

IIVPCE (CHART 8JI

OPEN40
(TELEPROCESS­
NG I EV I CEI

GET
TELEPROCESS I NG

DCB LENGTH

GET ADDRESS OF
TELEPROCESS I NG

DCB

OPEN60 5D/A3

GET DCB STORAGE
AND FORMAT

148 DOS Emulator Logic

GET SEQUENT I AL
DCB LENGTH

GET ADORES S OF
BASIC

SEQUENT I AL DCB

OPEN60 5D/A3

GET DCB STORAGE
AND FORMAT

MOVE FCB
DEFAULT INTO

... IFeB

OPEN20 IDASD
DfoLLl.iI;"J,,_ _-,

GET DASD DCB
LENGTH

GET ADDRESS OF
BASIC DASD DCB

OPEN60 501 A3

GET DCB STORAGE
AND FORMAT

SET JFCB DSNAME
TO X'0404 ••• '

SET ALIGN BIT
IN JFCUCSOP

FIELD OF JFCB

Flowchart 5B.

GET ADDRESS OF
OUTPUT STAGED

DCB

PLACE DOS CUU
IN STGCON

GET ADDRESS OF
IIVSOT ISTAGED
DEVICE TABLE)

GET NEXT IIVSDT
DEV I CE ENTRY

Open Routine (IIVOPN Part 2 of 4)

OUTPUT

YES

5A/C3

GET STAGED DCB
LENGTH

OPENbO 5DI A3

GET DCB STORAGE
AND FORMAT

IIVMSG 27AJAI

ISSUES MESSAGE
I I V021 1

I NPUT GET ADDRESS OF >-----1 INPUT STAGED

NO

OCB

GET PUB TABLE
ADDRESS FROM

DOS COMREG

PLACE PUB TABLE
DEVICE CODE IN

COMTAB

YES

TO IIVABN ICHART 2bAI

OPEN
SYS I. I MAGELIB

IIVMSG 27A/AI

ISSUES MESSAGE
IIV0231

TO IIVABN
ICHART 2bAI

IIVMSG- 27A/AI

ISSUES MESSAGE
11 V0411

LOAD IIVPQV

BUILD FCB IMAGE
NAME

LOAD FeB IMAGE
FROM

SYSI. (MAGELIS

VER IFY FCB
IMAGE

DELETE FCB
IMAGE

Program Organization 149

Flowchart 5C. open Routine (IIVOPN Part 3 of q)

150

5C
BI

FROM 5B/B5,
5B/.J5

LOAD STAGED
TRANSLATE TABLE

FINISH STGCON
FORMATTING

OPEN DCB FOR
OUTPUT

5B/D4

ISSUES MESSAGE
IIV040D

5C
B3

FROM 5A/.J5

OPEN DCB FOR
INPUT

~~I~IV~M~S~G~2~1~A~/~A~I~ ~~gMI~H~~T
ISSUES MESSAGE ABEND

IIVOl81 OCCURRED

DOS Emulator Logic

CAUSES SIO
APPENDAGE TO
EXTEND THE DEB
EXTENTS AND READS
THE VTOC {FORMAT
41 DSCB RECORD
INTO STORAGE

IIVMSG 21A/AI

ISSUES MESSAGE
II V050D

IIVMSG 21A/AI

ISSUES MESSAGE
IIV0241

YES PLACE VTOC
ADDRESS IN

CHANNEL PROGRAM

J

Flowchart 5D. OPEN60 Routine (IIVOPN Part ~ of 4)

FROM II VOPN
(CHARTS 5A,5BI

IIVGET 1A/A3

GETMAIN FOR DCB

FORMAT NEW DCB
WITH BASIC DCB

PLACE DO NAME
IN DCB

PLACE ECB
ADDRESS I N I DB

PLACE DCB
ADDRESS IN 108

PLACE lOB
ADDRESS IN DCB

YES

Program Organization 151

OS PUB ~able Build Routine (Flowcharts 6A-6n

Module name: IIVPUB

Entry point name: IIVPUB

Major functions:

• Maps DOS I/O control blocks to Emulator I/O control blocks by
means of the OS PUB table

• Issues initial Emulator prompt

Entered by: IIVSVC

Modules called: IIVGET, IIVMSG

Exits to:

• Caller
• Return+4 to caller on error condition

OS macros issued~

• LOAD
• STIMER
• SAVE
• RETURN

Input:

•
•
•

Register 9 points to local execution list
Register 10 points to DOS storage
Register 11 points to IIVCON

Output: Initial prompt

Return codes: None

Tables/work areas:

• Local execution list
• EMUCONS
• COMTAB
• DOS communications region
• DOS PUB table
• DOS storage
• OS PUB table

Errors detected:

• A DOS PUB entry did not exist
• Devices not compatible
• Device not stageable

Messages requested:

• IIV009I
• IIV0171
• IIV021I
• IIV100E

152 DOS EmUlator Logic

Flowchart 6A. OS PUB Table Build Routine (IIVPUB Part 1 of 6)

FROM IIVSVC ICHART 17AI

GET DOS PUB
ADDRESS

I NIT I ALI ZE DOS
PUB ENTRY COUNT

CALCULATE
STORAGE NEEDED

FOR OS PUB

OBTAIN OS PUB
TABLE STORAGE

INITIALIZE OS
PUB TABLE

NO ADD I TO DOS
PUB COUNTER

GET NEXT PUB
ENTRY

Program Organization 153

Flowchart 6B. OS PUB Table Build Routine (IIVPUB Part 2 of 6)

154

GET COMTAB
ADDRESS

6A1H3

i-___ -l CI

GET DOS PUB
TABLE ADDRESS

ISSUES MESSAGE
IIV0091

OOS Emulator T..ogic

COMPUTE PUB
ENTRY NUMBER

COMPUTE COMT AB
ENTRY NUMBER

UPDATE TO NEXT
COMTAB ENTRY

Flowchart 6e. OS PUB Table Build Routine (IIVPUB Part 3 of 6)

YES

6C
G3

FROM
68/G2,
68/,)2

IIVMSG 27A/AI

ISSUES MESSAGE
II YO 171

6B/E3

Program organization 155

Flowchart 6D. OS PUB Table Build Routine (IIVPUB Part 4 of 6)

156

6B/E3

MOVE PUB DEVICE
TYPE TO COMTAB

GET ADDRESS OF
IIVSDT

DOS Emulator Logic

IIVMSG 27A/AI
YES

ISSUES MESSAGE
IIV0211

PLACE STAGED
TRANSLA TE TABLE

ADDRESS IN
CDMTAB

Flowchart 6E. OS PUB Table Build Routine (IIVPUB Part 5 of 6l

SAVE CE AIDS
ADDRESS FDR SIO 1----<

ROUTINES

NO

LOAD I I VGR2

LOAD I I VDVS AND
IIVVIO

LOAD IIVIS

GET BG S Y SRDR
LUB ADDRESS

FROt.< DOS COt.<REG

GET AR PIB
ADDRESS

GET ADDRESS OF
B-TRANSIENT

AREA

GET BG PIB
ADDRESS

Program Organization 157

Flowchart 6F. OS PUB Table Build Routine (IIVPUB Part 6 of 6)

158

GET Fl ANO F2
PIB ADDRESSES

GET ADJUSTMENT
FACTOR

ISSUE FIRST
LINE OF PROMPT

IIVIOOE

ISSUE REPLY
OPTIONS IIVIOOE

DOS Emulator Logic

GET DOSRES
COMTAB

GET FIRST
COMTAB

EXTENSION

GET NEXT COMTAB
EXTENSION

NO

GET LOW LIMIT

F~6~ I ~~~R A~gD~M SIN I------.J
COMREG LABEL

CYLINDER ADDRESS

GETMAIN/FREEMAIN Routine (Flowchart 7A)

Module name: IIVGET

Entry point name: I IVGET

Major functions:

• Obtains dynamic storage
• Frees storage

Entered by:

• IIVINT
• IIVIN2
• IIVPUB
• IIVOPN
• I IVDVS
• IIVIS

Modules called: IIVMSG

Exits to:

• Returns to caller
• IIVABN on error conditions

OS macros issued:

• GETMAIN
• FREEMAIN
• SAVE

Input:

GETMAIN

•

•

Register 0 - amount
of storage needed

Register - zeros

Output: None

•

•

FREEMAIN

Register 0 - length of
storage to be released

Register 1 - address of
storage to be released

Return codes: X·Oq· on exit to IIVABN

Tables/work areas: EMUCONS

Errors detected: Storage not available

Messages requested: IIV01qI

Program organization 159

Flowchart 7A. GETI1AIN/FREEMAIN Routine (IIVGET)

160 DOS Emulator Logic

83

ISSUE GETMAIN

I SSUES MESSAGE
II VO 141

~~~M2j:~I~Tv:~~A7t~A~~~ 
3E) ,IIVQPN(CHARTS 50. 
IIVPUB (CHART6A). IlvOvs 
(CHARTS 23A. 23E.23~1 I 

IIVIS (CHARTS 24B, 24C) 

')'.F...;R.::E.::E_-I ISSUE FREEMAIN 

YES INITIALIZE NEW 
STORAGE TO 

ZEROS 

TO IIVA8N ICHART 26AI 

2E, 
3D, 



Synchronous Interruptions 

Program Organization 161 



Program Check Executive Routine (Flowcharts 8A-8U) 

Module name: IIVPCE 

Entry point name: rIVPCE 

Major functions: 

• Checks for privileged operation interruption to determine if 
it is simulated. 

• Checks for first program interruption to determine if it is an 
operation exception interruption. 

• Simulates all other program interruptions. 

• SSMRTN simulates the SSM instruction. 

• SSKRTN simulates the SSK instruction. 

• ISKRTN simulates the 1SK instruction. 

• LPSWRTN simulates the LPS~'l instruction. 

• Checks for first LPSW that causes control to pass to INT~PT. 

• INTRPT checks for wait bit = 1 and enabled interruptions; if 
these conditions are met, INTRPT simulates the expected interruption. 

• TCHRTN simulates the TCH instruction. 

• TIORTN simulates the TIO instruction. 

• HIORTN simulates the HIO instruction. 

• CTLRTN simulates the LCTL and STCTL instructions. 

• STIDPRTN simulates the STIDP instruction. 

• If the DOS device is not staged or is not the DOS system 
console device, IIVPCE issues an OS EXCP macro for the intercepted 
DOS SIO, using DOS CCWs with adjusted addresses (from local to true). 

• Initial DOS CCWs for seek and set file mask are not passed to os. 

• Stand-alone seek and sense operations are simulated as complete 
to DOS but not given to OS. 

• Obtains the channel and unit address, the device entry index into 
COMTAB, and the absolute address of the device entry in COMTAB. 

• Determines the absolute value of the BDDD portion of an instruction 
within the DOS partition or determines channel and unit address· 
from I/O instruction. 

• Dissects the ISK or SSK instruction to obtain corresponding 
addresses of R1 register and entry in ISK/SSK Table. 

• STIDC instruction is ignored. 

• SCKRTN simulates the DOS SCK instruction. Disables STCK instruction in the 
DOS SVC 34 routine. 

• STCKRTN simulates the STCK instruction for DOS SVC 34. 

162 DOS Emulator Logic 

..J 



Entered by: 

• DOS via a program interruption 

• IIVPCI 

Modules called: 

• I IVCCW 
• IIVMSG 
• I IVOPN 
• I IVABN 
• IIVVIO 
• rIVCHK 
• IIVRCW 

Exits to: 

• IIVLOG 
• IIVSTG 
• IIVRTE 
• I IVABN 

OS macros issued: 

• WAIT 
• EXCP 
• IOHALT 
• POST 

Input: 

• DOS registers 

• Local execution list 

• OOS program new PSW 

• Pointer to instruction 

• Pointer to local execution list 

• Pointer to Emulator constants 

• Pointer to DOS area 

• Base register 

• Pointer to current PUB in location REG3 

• Pointer to CCB in location REG1 

output: 

• DOS program old PSW 

• Base register 

• Pointer to instruction 

• Pointer to local execution list 

• Pointer to DOS area 

• Pointer to Emulator constants 

Program Organization 163 



• system mask in current PSW 

• Storage key value in ISK/SSK table 

• Storage key value in instruction register 

• Pointer to COMTAB entry for channel 

• Index of channel within COMTAB 

• Channel and unit address 

• Absolute address of location in DOS area or channel and unit 
address from I/O instruction 

Return codes: Error code 12 for IIVABN 

Tables/work areas: 

• Local execution list 

• Current PSW 

• ISK/SSK table 

• COMTAB 

• DeB 

• ECB 

• CSW 

• CAW 

• IOB 

• CCW 

• DOS I/O old PSW 

• DOS I/O new PSW 

• Post ECB list 

• TEB 

• PUB 

Errors detected: 

• For nondedicated device - invalid seek address 

• Invalid or no IPL device specified 

• For IBM 2321 - no seek or no bin number defined 

Messages requested: 

• IIV160A 
• IIV263I 

164 DOS Emulator Logic 



Flowchart SA. Program Check Executive Routine (IIVPCE Part 1 of 19) 

FROM DOS VIA A 
PROGRAM CHECK; 
IIVPCI {CHART 31C) 

8U/B3, 
8BIBI, 
8B/GI 

MOVE PSW TO DOS 
PROGRAM OLD PSW 

LOCATED IN 
X'28' OF DOS 

AREA 

LOAD ADDRESS AT 
IIVRTE ROUTINE 

~~9~2~B~~7E21 
BB/F2, BB/G2, 
BP/G5, BN/E4, 
8T/KI 

STCKRTN 8U/A3 

MAP PROGRAM 
CHECK TO SVC 0: 
SWAP SVC PSW'S 

LOAD ADDRESS OF' 
PRIVILEGED OP 

CODE 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

.'F' DEVICE IS A CONSOLE, 
EXIT IS TO IIVLOG. IF AN 
ERROR IS DETECTED, EXIT 
IS TO IIVABN. 

LPSWRTN 801 A2 

SIMULATE LPSW 

S IORTN'" 8JIAI 

SIMULATE SID 

TCHRTN 8E I A2 

SIMULATE TCH 

SSMRTN BCI A3 

SIMULATE SSM 

TIORTN'" 8F/A2 

SIMULATE TID 

HIORTN 8HI A2 

SIMULATE HIO 

SSKRTN 8CI A2 

5 I MULATE SSK 

ISKRTN Be I A4 

SIMULATE ISK 

Program Organization 165 



Flowchart 8B. Program Check Executive Routine (IIVPCE Part 2 of 19) 

8A/K4 

CTLRTN 8T / A I 

SIMULATE LOAD 
CONTROL 

CTLRTN 8T/AI 

SIMULATE STORE 
CONTROL 

STIOPRTN 8S/A4 

SIMULATE STORE 
CPU 10 

SCKRTN 8U/AI 

SET CLOCK 
SUBROUTINE 

SET CONDI T I ON 
CODE TO ZERO 

166 DOS Emulator Logic 



Flowchart 8C. SSK, SSM, and 1SK Simulation Subroutines (11VPCE Part 3 of 19l 

FROM II VPCE 

(CHART 8A) 

FINDKEY 851 A2 

GET ADDRESS OF R I 
REGISTER AND 

ADDRESS OF ENTRY IN 
ISK/SSK TABLE 

MOVE STORAGE 
KEY VALUE FROM 

4TH BYTE OF 
REG(STER TO 

ISK/SSK TABLE 

FROM I I VPCE 

(CHART 8AI 

FINDADDR 8R/A2 

GET ADDRESS OF 
BYTE TO BE NEW 

SYSTEM MASK 

MOVE NEW SYSTEM 
MASK TO FIRST 

BYTE OF CURRENT 
PSW 

FROM I I VPCE 

(CHART 8AI 

FINDKEY 8S/A2 

GET ADDRESS OF RI 
REGISTER AND 

ADDRESS OF ENTRY IN 
ISK/SSK TABLE 

MOVE STORAGE 
KEY FROM 

ISK/SSK TABLE 
TO 4TH BYTE OF 

REGISTER 

program organization 167 



Flowchart 80. LPSW Simulation Subroutine (IIVPCE Part 4 of 19, 

168 

LPSWRTN 

FROM IIVPCE 
(CHART 8A) 

FINDADDR 8R/A2 

GET ADORE S S OF 
PSW TO BE 

LOADED 

MOVE PSW TO 
LIST CURRENT 

PSW 

SYMBOL TABLE 

LIST-LOCAL 
EXECUT I'ON LI ST 

DOS Emulator Logic 

MOVE DOS IPL 
ADDRESS TO 
CLiRRENT PSW 

INTERRUPT CODE 
BYTES 

MOVE CURRENT PSW TO 
DOS STORAGE AND 

MOVE DOS I 10 NEW 
PSW TO CURRENT PSW 

INTRPTEX 

MOVE CURRENT PSW TO 
DDS STORAGE AND 

MOVE DOS EXTERNAL 
NEW PSW TO CURRENT 

PSW 



Flowchart 8E. TCH Simulation Subroutine {IIVPCE Part 5 of 19} 

FROM IIVPCE {CHART BAI 

F I NDCHAN BQI A3 

CHECK FOR CHANNEL 

l~g~~0~~5DADg~~SS 
OF FIRST DEVICE ON 

CHANNEL IN COMTAB 

I NCREMENT INDEX 
AND ADDRESS 

REGISTERS TO 
NEXT ENTRY IN 

COMTA8 

Program Organization 169 



- --- -----------------------------------------

Flowchart 8F. TIC Simulation Subroutine (IIVPCE Part 6 of 19) 

170 

F I NDCHAN 80/ A3 

GET I NDEX AND 
ADDRESS OF FIRST 

UN I T ON CHANNEL IN 
COMTAB 

DOS Emulator Logic 

CONDITION CODE 
INITIALIZED TO 
NOT OPERATIONAL 
(CC=031 

H3 



Flowchart 8G. TIO Simulation Subroutine (IIVPCE Part 7 of 19) 

SCAN POST ECB 
TABLE FOR AN 

ENTRY FOR 
DEVICE 

MOVE ECB CODE 
TO PARAMETER 

REGI STER 

GET I/O CSW 
PROCESSED 

Program Organization 171 



Flowchart SH. 

STEP TO NEXT 
UNIT AND TO 
NEXT COMTA8 

ENTRY 

SET CONDITION 
CODE '01 t (C5W 

STORED I 

SET CSW STATUS 
TO ZEROS 

HIO Simulation Subroutine (IIVPCE Part S of 19) 

HIORTN 

FROM I I VPCE 
ICHART 8AI 

FINDCHAN BQ/A3 

GET INDEX TO FIRST 
DEVICE ON CHANNEL 

IN COMTA8 

SET CONDITION 
CODE t 03 t (NOT 

OPERATIONAL) 

SET CONDITION 
CODE TO ZERO IF 
OPERATIONAL 

FROM 8H/E2 

84 

CLEAR CONDITION 
CODE 

172 DOS Emulator Logic 



Flowchart 8J. SIO Subroutine (IIVPCE Part 9 of 19) 

FROM II VPCE 
(CHART SAl 

GET CUU FROM 
DOS SIO 

GET INDEX TO 
COMTAB VIA 

SEARCH ON CUU 

SET ERROR CODE >-;;;.;....-.. = (2 

NOT OPERATIONAL 
(CC = 031 TO 

DOS PSW 
TO II VABN 
(CHART 26AI 

OBTAIN INDEX TO 
NO COMTAB VIA 

CURRENT PUB 
INDEX 

ADJUST POINTER 
TO cm.H AB ENTRY 
FOR BIN NUMBER 

YES 

S I 03 G3 

TO I I VLOG 
(CHART lOA) 

NO SET ERROR CODE = 24 

YES SET PSW 
COND IT I ON CODE 

TO '02' 

Program Organization 173 



Flowchart 8K. SIO and SEEKTEST Subroutines (IIVPCE Part 10 of 19) 

SAVE DOS KEY IN 
COMTAB 

SET lOB FOR 
DATA CHAINING 

SET [DB FOR 
DATA AND 

COMMAND 
CHAINING 

NO 

NO 

TO IIVSTG 
(CHART l1A) 

SET [DB FOR 
COMMAND 

CHAINING 

DOS Emulator Logic 

FROM 8K/J4 

B4 

)"Nc.::0 __ -I SET NULL RETURN 

SET ADJUSTED 
POINTER TO SEEK 

ADDRESS [I DB [ 

FROM 
8N/DI. 
8N/K4 

SEEKTEST 8KI A4 

TEST IF FIRST 
CCW IS SEEK 



Flowchart 8L. 

FROM 
8L 8P/D5 

FI 

ccw ADDRESS + 8 
TO lOB CSW, 

'OR' IN 
CH~~~E~tA95~ICE 

TURN 'NORELOC' 
FLAG ON 

SET NORMAL 
COMPLETION 

(X'lF') IN ECB 

SIO Subroutine (IIVPCE Part 11 of 19) 

SHARED DEVICE 
SEEK 

SEEK ADDRESS TO 
lOB 

YES 

SIOCNT = I 
POINTS TO NEXT 

SIOCNT 

SET FILE MASK 
TO COMTAB 

Program Organization 175 



Flowchart 8M. 

CCW POINTER TO 
lOB CAW AND 

COMTAB 

NO 

TURN OFF IFLGS 
IN DeB, MOVE 
CHAINING BITS 

TO lOB 

SIO Subroutine (IIVPCE Part 12 of 19) 

ISSUES MESSAGE 
I IV I 60A 

I I VRCW 34A I A I 

YES STORE SET MODE >-=--t COMMAND IN 
COMTAB 

YES PSW COND I TI ON 
>=--1 CO~fo~~~ 19 I ?SW 

I I VABN 26AI A2 

ABNORMAL END 
ROUTINE 

SET POINTER 
BACK TO 'SET 

MODE' CCW 

176 DOS Emulator Logic 

SET lOB 
CHAINING TO 
'DATA' ANO 

• COMMAND' 



Flowchart 8N. 

SET SENSE 
LENGTH TO 2 AND 

AODRESS TO 
10BSENSE 

SET SENSE 
LENGTH TO 6 AND 

ADDRESS TO 
UCBSENSE 

SIO Subroutine (IIVPCE Part 13 of 19) 

SET SENSE 
LENGTH AND 

ADDRESS TO UCB 
VALUES 

LOAD DOS LENGTH 
IN REGISTER 

CLEAR DOS SENSE 
AREA 

MOVE SENSE TO 
DOS AREA 

ZERO IOBSENSE 
BYTES 

STORE CCW +8 IN 
COMCAW 

CREATE POST ECB 
TABLE ENTRY FOR 

I/O 

POST ECB 
COMPLETE 

Program Organization 177 



Flowchart 8P. 

EXTENT NUM8ER 
TO 108 SEEK 

DC8 ADDRESS TO 
COMTAB 

ECB ADDRESS TO 
lOB 

FI, __ --. 

SEEKDVS Subroutine (IIVPCE Part 14 of 19) 

FROM II VPCE 
(CHART BLI 

POINT TO FIRST 
COMTAB 

EXTENS I ON ENTRY 

SEEK0500 84 

GET FIRST 
EXTENSION 

ADDRESS 

GET NEXT 
EXTENSION 

ADDRESS 

178 DOS Emulator Logic 

IIVVIO 25AiAI 

I SSUES MESSAGE 
I I V2631 

SEEK CHECK TO 

m~~fI0~N+6 
STATUS 

IN IT I AL I ZE 

>=--1 ~g~m 6~ *RT~W 
DASD ADDRESS 



Flowchart 8Q. FINDCHAN Subroutine (IIVPCE Part 15 of 19) 

FROM IIVPCE 
(CHARTS 8E. 8F, 
8H, 8.J) 

FINDADDR 6RiA2 

GET CUU VALUE 
FROM BDDD PART 
OF I NSTRUCT I ON 

SAVE CUU VALUE 
FOR CALLING 

ROUTINE AND GET 
CHAN NUMBER TO 

USE AS INDEX 

GET I NDEX INTO 
COMTAB FOR 

FIRST DEVICE ON 
THIS CHANNEL 

MULTIPLY INOEX BY 
ENTRY SIZE AND 

GENERATE ADDRESS OF 
FIRST DEVICE ON 

CHANNEL 

Program Organization 179 



Flowchart SR. FINDADDR Subroutine (IIVPCF Part 16 of 19) 

180 

ISOLATE BASE 
REGISTER NUMBER AND 

USE AS INDEX INTO 
DOS REGISTER SAVE 

AREA 

ISOLATE 
DISPLACEMENT 

PORT ION OF 
INSTRUCTION 

ADD BASE 
REGISTER 

CONTENTS TO 
DISPLACEMENT 

ADD RELOCATION 
FACTOR TO SUM OF 

BASE REGISTER 
CONTENTS AND 
DISPLACEMENT 

DOS Emulator Logic 

ISOLATE INDEX 
REGISTER NUMBER AND 

USE AS INDEX INTO 
DOS REGISTER SAVE 

AREA 

YES 

ADD I NDEX VALUE TO 
BASE REGISTER 
+0 I SPLACEMENT 

+RELOCATION FACTOR 



Flowchart 8S. FINDKEY and store CPU ID Subroutines (IIVPCE Part 17 of 19) 

FROM 11 VPCE 
(CHART 8CI 

SEPARATE Rl AND 
R2 REGISTER 

NUMBERS 

GET ADDRESS IN 
REGISTER SAVE AREA 
OF REGISTER RI INTO 
PARAMETER REGISTER 

GET ADDRESS IN 
REGISTER SAVE AREA 

OF REGISTER R2 TO 
LOAD REGISTER VALUE 

USE REGISTER 
VALUE TO 

GENERATE INDEX 
I NTO I SK / SSK 

TABLE 

GENERATE ADDRESS OF 
STORAGE RETURN 
ENTRY FOR THIS 

BLOCK OF STORAGE 

F I NDADDR 8R / A2 

GET DOS MAIN 
STORAGE ADDRESS 

MOVE CPU 10 
FROM EMUCONS TO 

DOS MAIN 
STORAGE 

Program Organization 181 



------------------------ ---~---

Flowchart ST. Load/Store Control Register Subroutine (IIVPCE Part 1S of 19) 

182 

FROM IIVPCE (CHART 8BI 

~Y..:E:,:S~--I SET S~~A~3 S~6 TCH 

F I NDADDR 8R I A2 

GET DOS MAIN 
STORAGE ADDRESS 

COMPUTE NUMBER 
OF BYTES TO 

MOVE 

POINT TO Rl 
REGISTER IN 

CTLREGS 
(EMUCONSI 

MOVE DATA FROM 
DOS TO EMUCONS 

MOVE DATA FROM 
EMUCONS TO 005 

REGISTER 15 

DOS Emulator Logic 

AD.JUST DOS MAIN 
STORAGE POINTER 

RESET WRAP 
SW ITCH 

SET RI TO 
CONTROL 

REGISTER ZERO 



Flowchart 8U. Set Clock, Store Clock Subroutines (IIVPCE Part 19 of 19) 

FROM IIVPCE 
(CHART 881 

SET CONDITION 
CODE TO 0 IN 

LEX PSW 

FINDADDR 8R/A2 

GET DOS 
MAIN-STORAGE 

ADDRESS 

STORE CLOCK 

SAVE IN EMUCONS 
(TDELTA) 

MOVE ZERO INTO 
STCK OP CODE 

SAVE MA J N­
STORAGE ADDRESS 

OF STCK 
INSTRUCTION 

FROM IIVPCE 
(CHART 8AI 

83 

AD,JUST LEX PSW 
INSTRUCTION 

ADDRESS TO NEXT 
INSTRUCTION 

FINDADDR BR/A2 

GET DOS 
MAIN-STORAGE 

ADDRESS 

STORE CLOCK IN 
DOS AREA 

Program Organization 183 



Check I/O Routine (Flowcharts 9A-9D) 

Module name: rIVCHK 

Entry point name: IDTCH1< 

Major functions: 

• Posts the CSW to DOS at I/O interruption 

• If permanent error occurs, posts high error count to DOS to 
bypass DOS error recovery procedures 

• Readjusts DOS CCWS from true to local addresses 

• Provides DOS label cylinder address when DOS system residence volume 
is shared 

Entered from: 

• IIVRTE 
• IIVPCE 

Modules called: 

• IIVCCW 
• IIVABN (if invalid CCW) 
• IIVMSG 
• IIVRCW 

Exits to: 

• Caller 

OS macros issued: EXCP (to issue NOP) 

Input: 

• Local execution list 
• Pointer to EMUCONS 
• Pointer to DOS area 
• Base register 

Output: 

• DOS CSW posted 

• High error count (25~, posted to DOS PUB table (or TEB or TEBV, 
if appropriate) 

• lOB sense bytes 

• IOB status bits 

• DOS label cylinder address in DOS input area when DOS system directory 
record 1 read 

Return codes: 

Register 15 - 0 = simulate I/O interruption 

4 = ignore current entry in post ECB list and get next entry 

184 DOS Emulator Logic 



Tables/work areas: 

• TEB 
• COMTI\B 
• lOB 
• Local execution list 
• DOS communications region 
• DOS PUB 

Errors detected: An error detected by IIVCCW or IIVRCW causes this module to pass 
control to IIVABN. 

Messages requested: IIV160A 

Program Organization 185 



Flowchart 9A. Check I/O Routine (IIVCHK Part 1 of 4) 

ESTABLI SH 
ADDRESSABILITY 

FROM 1 I VPCE (CHART Be) t 
IIVRTE (CHART 20C) 

186 DOS Emulator Logic 

>-~--l D~ei~EC~~DW~T~ 
ON TO DOS CORE 



Flowchart 9B. Check I/O Routine (IIVCHK Part 2 of 4) 

9A/G3 

~,:.I ,:., v;.:c;;;C;;;W:.....;'..:5:.:;A:.;./.:;A.;.I-I OR I I VR C W 3 4A I A I 
ADJUST ccw 

ADDRESSES TO 
LOCAL 

READJUST 
SEVENTH CCW 
ADDRESS TO 

LOCAL 

I I VABN 26A/ "2 
NO 

ERROR ROUTINE 

NO 

NO 

Program Organization 187 



Flowchart 9C. 

ADJUST CSW 
ADDRESS TO 

L~WINI~T~~T 
BYTE 

Check I/O Routine (IIVCHK Part 3 of q) 

QUEUE UP AN 
I NTERRUPT IN 
F I Fa TABLE 

188 DOS Emulator Logic 



Flowchart 9D. 

FROM 
9C/.J2, 
9C/F3, 
9C/G3, 
9C/E5, 
9C/G5, 
9C/E2, 
9C/F2, 
9C/G2, 
9C/H2 

Check I/O Routine (IIVCHK Part 4 of 4) 

GET ADJUSTED 
(TRUEI ADDRESS 

OF PUB 

HIGH ERROR r--.... COUNT TO TEB TO 
BYPASS DDS ERPS 

HIGH ERROR 
COUNT TO TEBV 
TO BYPASS DDS 

ERPS 

TURN 'NOT 
READY' BIT OFF, 
TURN NOP BIT ON 

FROM 9C/K5 

r-________ ~~-----------------------------L--~9~3 

INCREMENT 510 
COUNTER 

IIVMSG 21A1AI 

ISSUE MESSAGE 
II V, 60A 

NO 

9D 
F5 

SET RETURN CODE 
OF FOLIR IN 
REGISTER 15 

9D 1-------, G5 

CF .......................... -, FROM 
9A/D3 

RESTORE CALLERS 
REGISTERS 

Program Organization 189 



Interpretive SYSLOG Routine (Flowcharts 10A-10E) 

Module name: IIVLOG 

Entry point name: 

• IIVLOG 
• IIVLOGR1 
• IIVLOGR2 
• IIVLOGR3 

Major fUnctions: Interprets keyboard-printer CCW chains and issues 
WTO or WTOR macros as required 

Entered from: 

• IIVPCE 
• I IVRTE 

Modules called: 

• IIVAWV 
• I IVCt-1V 

Exits to: 

• IIVPCE 
• IIVRTE 

OS macros issued: 

• WTO 
• WTOR 

Input: 

• Pointer to DOSCORE 

• Pointer to Emulator constants (IIVCON) 

• Pointer to local execution list 

• Replies to WTOR issued by this module 

Output: 

• WTO/WTOR messages requested by DOS supervisor and/or problem programs 

• Updated DOS PSW in local execution list 

• Updated DOS CCW data areas 

• Updated DOS CSW 

Return codes: None 

190 DOS Emulator Logic 



Tables/work areas: 

• DOSCORE: 
CAW 
I/O old PSW 
I/O new PSW 
CCW strings 
CCW data areas 
CCW 

• COMTAB for DOSLOG: LOGIOB (dummy lOB for DOS SYSLOG device) 

• Local execution list: DOS current PSW 

Errors detected: CAW/CCW errors as detected by IIVAWV and IIVCWV 

Messages issued: 

• !IVOOOA 
• lIVOOOI 

program Organization 191 



Flowchart 10A. Interpretive SYSLOG Routine (IIVLOG Part 1 of 5) 

192 

FROM I I VPCE 
I CHART 8JI 

GET 108 ADDRESS CAW CHECK 
ROUTINE 

CCW CHECK 
ROUTINE 

TRANSLATE 
CURRENT LOG 

CODE 

DOS Emulator Logic 

IOE/JI 



Flowchart 10B. 

LOGOUT I I OD I A3 

WTO ROUTINE 
MESSAGE I I VOOO I 

GET OUTPUT AREA 
ADDRESS 

GET MAXIMUM 
LENGTH 

GET DATA 
ADDRESS FROM 

CCW 

GET MESSAGE 
LENGTH FROM CCW 

Interpretive SYSLOG Routine (IIVLOG Part 2 of 5) 

YES 

YES 

SUBTRACT 
MESSAGE LENGTH 

FROM MAXIMUM 
LENGTH 

NO 

SAVE MESSAGE 
LENGTH AT OLD 

LENGTH 

SUBTRACT I FROM 
MESSAGE LENGTH 

SUBTRACT 
MESSAGE LENGTH 
FROM OLD LENGTH 

MOVE DATA TO 
OUTPUT AREA 

LOGOUT 1 1001 A3 

WTO ROUTINE 
MESSAGE I I YODa I 

GET OUTPUT AREA 
ADDRESS 

ADD MESSAGE 
LENGTH TO DATA 

ADDRESS 

Program Organization 193 



Flowchart 10C. IIVLOGR1 Subroutine (IIVLOG Part 3 of 5) 

194 

FROM IOA/D4 

GET TOTAL 
LENGTH FROM CCW 

GET DATA 
ADDRESS FROM 

CCW 

GET END OF 
OUTPUT AREA 

ADDRESS 

MOVE ROUTE AND 
DESCRIPTOR 

CODES TO OUTPUT 
AREA 

MOVE REPLY 
LENGTH TO 

OUTPUT AREA 

DOS Emulator Logic 

FROM I I VRTE I CHART 20C) 
IIVPCE (CHART SF) 

COMPUTE REPLY 
LENGTH 

MOVE REPLY TO 
DATA AREA 

SUBTRACT REPLY 
LENGTH FROM 

TOTAL LENGTH 



Flowchart 10D. LOGOUT' and LOGOUT2 Subroutines (IIVLOG Part 4 of 5) 

MOVE TOTAL 
LENGTH TO 

RESIDUAL COUNT 
IN lOB 

FROM 
IIVLOG 
(CHART 
lOBI 

MOVE CONTINUE 
CHARACTER TO 

MESSAGE 

ADJUST MESSAGE 
LENGTH FOR 

CONTINUE 
CHARACTER 

FROM I I VLOG 
(CHART IOE) 

MOVE DESCRIPTOR 
AND ROUTE CODES 

TO MESSAGE 

COMPUTE TOTAL 
MESSAGE LENGTH 

SAVE RETURN 
ADDRESS 

GET RETURN 
ADDRESS 

Program Organization 195 



Flowchart 10E. IIVLOGR2 Subroutine (IIVLOG Part 5 of 5) 

196 

GET NEXT CCW 
ADDRESS 

DOS Emulator Logic 

POST DOS CSW 
FROM lOB 

J3 J----l 

TO I I VRTE AT 
I I VRTER2 
ICHART 20B) 

FROM IOAtH5, 
IOAIJ5 

LOGOUT2 100/ A4 

WTO ROUTINE 

FROM IIVRTE 
ICHART 20C) 
I I VPCE (CHART 
6F) 

POST DOS CSW 
FROM lOB 

MOVE DOS 
CURRENT PSW TO 
DOS I/O OLD PSW 

MOVE DOS I/O 
NEW PSW TO DOS 

CURRENT PSW 



Staged I/O Routine (Flowcharts 11A-11N) 

Module name: IIVSTG 

Entry point names: 

• IIVSTG 
• EDDA 
• SYNA 
• STGI0300 

Major functions: 

• Furnishes the interface between the DOS Emulator and the spooling 
facilities (temporary data sets) provided for unit record devices by OS 

• During initialization creates an Emulator forms-control image for 
staged printers from an OS FCB image 

• Intercepts DOS FCB load for 3211 and recreates the Emulator 
forms control image 

• Intercepts the DOS READ FCB channel command and builds an FCB in DOS main 
storage from the Emulator forms control image 

• Intercepts the DOS CHECK READ channel command and computes and places the 
value of the FeB address register in DOS main storage 

Entered by: 

• IIVPCE 
• IIVOPN 
• OS (QSAM) upon end of data 
• as (QSAM) upon occurrence of synchronous error 

Modules called: 

• IIVAWV 
• IIVCWV 
• IIVPOV 
• IIVMSG 

Exits to: 

• IIVRTE 
• OS (QSAM) 

OS macros issued: 

• PUT 
• DCBD 
• GET 
• SAVE 
• RETURN 
• GETMAIN 
• FREE MAIN 

Program Organization 197 



Input: 

• Data is passed to DOS following an input request 

• Register o contains the entry number into COMTAB for this I/O 
request. Zero indicates the first entry. 

• Register 10 contains the starting address of DOS 

• Register 11 contains the address of IIVCON 

• Register 14 contains the address of IIVRTER2 

• The OS FCB image is passed from the SYS1.IMAGELIB 

Output: 

• output data from DOS that is written out to temporary data 
sets that are later processed by the Operating System's output writer 

• Emulator forms-control image 

• Operator information messages that indicate unusual occurrences 
(such as SYNAD conditions) 

Return codes: None 

Tables/work areas: 

• DOSCORE - DOS low storage area 

• Local execution list 

• COMTAB 

• STGCON - dummy lOB area 

• OOS CCWs 

• Emulator forms-control image 

Errors detected: 

• SYNAD subroutine is entered after a permanent I/O error 

• Program check bit set in csw 

• Unit check bit set in CSW if error detected in OS FCB image 

• Invalid command sequences for staged 2540 Reader 

• Command reject condition for all staged devices 

Messages requested or issued: 

• llV140l 
• IIV275I 

198 DOS Emulator Logic 



Flowchart 11 A.. Staged I/O Routine (IIVSTG Part 1 of 13) 

FROM II VPCE 
(CHART SKI 
I (VOPN (CHART 
581 

SAVE REGISTERS 
PERFORM 

HOUSEKEEP I NG 

MOVE STGSEN I TO 
STGSENO 

VALl DATE DOS CAW 
AND INITIALIZE CCW 

POINTER IN STGCON 

VALIDATE AND 
I NTERPRET DOS 

CCW'S 

Program Organization 199 



Flowchart 11B. staged I/O Routine (IIVSTG Part 2 of 13) 

200 DOS Emulator Logic 

COMPUTE AND 
STORE RESIDUAL 
COUNT IN STGCSW 



Flowchart 11C. Staged I/O Routine (IIVSTG Part 3 of 13) 

FROM IIB/E2, 
IIB/G3 

S.fJ'I-......................... _-, 

ADJUST CCW DATA 
ADDRESS 

Program Organization 201 



Flowchart 11D. Staged I/O Routine (IIVSTG Part 4 of 13) 

202 

SYMBOL TABLE 

AA-READ, FEED, SELECT STACKER 

AB-READ I NO FEED I 

BA-FEED, SELECT STACKER 

REFER TO 2540 CHANNEL 
COMMAND CODES, SYSTEM! 
360 REFERENCE DATA 

DOS Emulator Logic 

MOVE IN SYNAD 
AND EODAD 
ADDRESSES 

POINT TO LAST 
I NPUT BUFFER 

SYNAD I CHART lIN I 
ENTERED I N CASE OF 
PERMANENT I 10 ERROR 



FloW'chart 11E. staged I/O Routine (IIVSTG Part 5 of 13) 

I IE 
BI 

FROM 110/03, 
IIN/CI 

AO.JUST CCW DATA 
ADDRESS 

PROPAGATE 
BLANKS IN DOS 

1/0 AREA 

MOVE IN I. 

I IE 
B2 

INCREMENT CCW 
ADDRESS BY 8 

Program Organization 203 



Flowchart 11F. 

MOVE FIRST 2 
BYTES OF RECORD 

TO STGDLM 

MOVE INPUT DATA 
TO DDS 

Staged I/O Routine (IIVSTG Part 6 of 13) 

20~ DOS Emulator Logic 



Flowchart 11G. Staged I/O Routine (IIVSTG Part 7 of 13) 

SYMBOL TABLE 

ROW-RECORD 
DESCR I PTOR WORD 

(V AR I ABLE LENGTH 
RECOROS) 

CLEAR OUT 
RECORD 

DESCRIPTOR WORD 

MOVE LRECL INTO 
ROW 

SYNAD (CHART 
I IN) ENTERED 
IN CASE OF 
PERMANENT I 10 
ERROR 

RESET LAST 
NO PRINT COMMAND 

YES 

YES 

IN STGCON TO 
ZERO 

UPDATE LAH 
PR I NT COMMAND 

IN STGCON 

IIVPOV 14A/AI 

SIMULATES 
PRINTER 

OVERFLOW 

Program organization 205 



Flowchart 11H. Staged I/O Routine (IIVSTG Part 8 of 13) 

IIH 
92 

MOVE DO NAME TO 
WTO 

IIVMSG 27A/A1 

WTO PERMANEN7 
I/O ERROR 

MESSAGE I I V 140 I 

206 DOS Emulator Logic 



L 

Flowchart 11J. 

MOVE DOS CUU TO 
LOCAL EXECUTION 

PSW 

MOVE STORAGE 
PROTECT KEY TO 

005 CSW 

READJUST 
COMMAND ADDRESS 

COMMAND ADDRESS 
BY 8 AND STORE 

IN CSW 

Staged IIO Routine (ITVSTG Part 9 of 13) 

DECREMENT 
NUMBER OF 

OUTSTANDING 
SlOtS 

TO IIVRTE AT IIVRTER2 
(CHART 20BI IF 
ENTERED BY IIVPCE 

INCREMENT 
COMMAND ADDRESS 

BY 8 AND MOVE 
TO CSW 

POST ECB IN 
COM TAB 

Program Organization 207 



Flowchart 11K. 

DECREMENT CCW 
COUNT BY 5 MORE 

STORE RESIDUAL 
COUNT IN CSW 

MOVE SENSE BYTE 
TO DOS AREA 

SET FCB LINE 
POSITION CHECK 

IN DOS SENSE 
AREA 

Staged I/O Routine (IIVSTG Part 10 of 13) 

RESET LINE 
POSITION CHECK 

SWITCH 

208 DOS Emulator Logic 



Flowchart 11L. 

IIG/C3 

ZERO CCW DATA 
AREA FOR LENGTH 

N; NS COUNT ~ 
180 

CONVERT CHANNEL 
NUMBER FROM FCB 

TO EMULATOR 
FORMAT 

SET LINES/INCH 
FLAG IN FIRST 

BYTE OF FCB 

SET 
END-OF-FORMS 
FLAG IN LAST 

BYTE OF FCB 

RESET STGLNPTR 

Read FCB Subroutine (IIVSTG Part 11 of 13) 

BUILD FCB FROM 
EMULATOR 
CARRIAGE 
CONTROL IMAGE 

STORE RESIDUAL 
COUNT IN CSW 

SET INCOMPLETE 
LENGTH IN CSW 

IIG/03 

RESET INCORRECT 
LENGTH 

INDICATOR IN 
CSW IF ON 

PLACE IN DOS 
STORAGE 

S TORE RES I DUAL 
COUNT IN CSW 

SET INCORRECT 
LENGTH IN CSW 

Program Organization 209 



Flowchart 11M. Load FeB Subroutine (IIVSTG Part 12 of 13) 

210 

FREE MAIN 
STORAGE FROM 
OLD EMULATOR 

IMAGE 

GET MAIN 
STORAGE FOR NEW 
EMULATOR I MAGE 

CONVERT TO 
EMULATOR FORMAT 

POINT TO NEXT 
LINE IMAGE 

SET FLAG FOR 
READ FCB 

ROUTINE 

DOS Emulator Logic 

UPDATE 

s~¥g~~~G, 
STGLNPTR AND 

STGLNCNT 

SET RESIDUAL 
COUNT IN CSW 

SET INCORRECT 
LENGTH IN CSW 

CALIBRATE FORMS 
CONTROL 

POINTERS 

SET LOAD CHECK 
IN SENSE AND 
LlNIT CHECK IN 

CSW 



Flowchart 11N. EODAD and SYNAD Subroutines (IIVSTG Part 13 of 13) 

FROM OS (QSAM) 
UPON END OF DATA 

B{ 

AD~UST CCW DATA 
ADDRESSES 

PROPAGATE 
BLANKS IN DOS 

1/0 AREA 

MOVE • 1*' INTO 
DOS INPUT AREA 

ENTERED IF GET 
OR PUT ISSUED 
{CHARTS 110 AND 
I (G) AND 

FROM OS 
(QSAM) UPON 
OCCURRENCE OF 
SYNCHRONOUS 
ERROR 

Program Organization 211 



CAW Verification Routine (Flowchart 12A) 

Module name: IIVAWV 

Entry point name: I IVAWV 

Major functions: Vali~ates the DOS CAW and initializes the ccw 
pointer in STGCON for modules IIVSTG and IIVLOG 

Entered by: 

• IIVSTG 
• IIVLOG 

Modules called: None 

Exits to: Caller 

OS macros issued: None 

Input: DOSCORE (DOS CAW) 

output: 

• COM~AB (storage protection key) 
• STGCON (CCW pointer, CSW) 

Return codes: None 

Tables/work areas: 

• STGCON - dummy lOB area 

• DOSCORE - DOS low storage 

• Local execution list 

• COMTAB 

Errors detected: 

• Nonzero value in bits 4-7 of DOS CAW 

• Command address not on a doubleword boundary 

• Command address greater than the limit address in local 
execution list 

Messages requested: None 

212 DOS Emulator Logic 



Flowchart 12A. CAW Verification Routine (IIVAWVl 

TURN ON FIRST 
CCW SWITCH 

FROM I I VSTG 
[CHART I I AI 

FROM IIVLOG 
(CHART IOAI 

MOVE DOS CAW 
STORAGE PROTECT 

KEY TO COMTA8 
FIELD 

ADD ADJUSTMENT 
FACTOR TO CAW 

ADDRESS 

STORE ADJUSTED 
CAW ADDRESS IN 

STGCON CCW 
POINTER 

Program Organization 213 



CCW Verification Routine (Flowchart 13A) 

Module name: IIVCWV 

Entry point name: IIVCWV 

Major functions: 

• Validates and interprets DOS CCWs for modules IIVSTG and IIVLOG 

• Changes pointers from TIC CCWs to TIC-TO-CCWs 

Entered by: 

• IIVSTG 
• IIVLOG 

Modules called: None 

Exits to: Caller 

OS macros issued: None 

Input: 

• STGCON: STGFLG (first CCW), STGCCW (CCW pointer) 

• DOS: CCW 

• Local execution list: DRILIMAD (limit address of DOS) 

Output: 

STGCON: STGCCW (CCW pointer), STGCSW (channel status wor~ 

Return codes: None 

Tables/work areas: 

• STGCON (dummy lOB area) 
• Local execution list 

Errors detected: 

• Nonzero value is contained in bits 37-39 of CCW 

• First CCW (CCW addressed by CAW) is a TIC 

• Count field in CCW is zero 

• TIC/TIC sequence of CCWs was encountered 

• Data address and count greater than the limit address in the 
local execution list 

• Command address in a TIC CCW is greater than the limit 
address in the local execution list 

• Command address in a TIC CCW is not on a doubleword boundary 

Messages requested: None 

214 DOS Emulator Logic 



Flowchart 13A. CCW Verification Routine (IIVCWV1 

FROM I I VSTG 
(CHARTS IIAI 
ANO IIVLOG 
(CHART IOAI 

LOAD CCW 
POINTER FROM 

STGCON (STGCCWI 

Program Organization 215 



Printer Overflow Routine (Flowchart 14A) 

MQdule name: IIVPOV 

Entry point name: IIVPOV 

Major functions: 

• Maintains the simulated sense byte and status portions of the 
CSW for staged printer devices 

• Simulates the carriage tape operation normally performed by the 
printer during output staging 

Entered by: 

• IIVSTG 

Modules called: None 

Exits to: caller 

OS macros issued: None 

Input: ccw operation code (STGCCW) 

Output: 

• Status portion of CSW 
• Sense byte (STGSEN1) 

Return codes: None 

Tables/work areas: 

• Emulator forms-control image created by TIVSTG 

• STGLNPTR index into Emulator forms-control image created by IIV~TG 

• STGCSW channel status word (STGCON) 

• STGSEN1 sense byte (S~GCON) 

• STGLNCNT lines/page (STGCON) 

• STGCHFLG printer carriage tape channel flags (STGCON) 

• STGCTP aadress of Emulator forms-centrel image created bv IIVSTG 

Errors detected: None 

Messages requested: None 

216 DOS Emulator Logie 



Flowchart 14A. Printer overflow Routine (IIVPO~ 

WRITE/ 
SPACE 
SUPP­
PRESS 
NOP 
READ 
OR 
LOAD 
FCB 

FROM IIVSTG 
(CHART 11 G, 
11M) 

BI 

DECREMENT LINE 
POINTER AND 

SAVE IN 
STGLNPTR 

FETCH CARRIAGE 
TAPE LI NE I MAGE 

INITIALIZE LINE 
POINTER TO 
MAXIMUM FOR 

CARRIAGE TAPE 

LOAD STGLNPTR 
INTO REGISTER; 
DECREMENT BY 1 

YES 
INITIALIZE 

STGLNPTR WITH 
MAXIMUM FOR 

CARRIAGE TAPE 

SAVE CURRENT 
LINE POSITION 

IN STGLNPTR 

SET UNIT/DATA 
CHECK IN CSW 

AND SENSE BYTE 

Program Organization 217 



-------------------------------

Adjust CCW Data Address Routine (Flowcharts 15A-15F) 

Module name: IIVCCW 

Entry point name: 

• IIVCCW 
• RCCWAB4 

Major functions: Adjusts data addresses in a string of CCWs prior to 
their being passed to OS for an I/O operation and 
after completion of the CCW function in os 

Entered by: 

• IIVRTE 
• IIVPCE 
• IIVCHK 

Modules called: IIVADJ 

Exits to: 

• IIVPCE 
• IIVCHK 
• Caller 

OS macros issued: SAVE 

Input: 

• Adjustment factor 
• Pointer to a ccw string 
• Pointer to the local execution list 
• Pointer to the Emulator constants area (IIVCON) 
• Pointer to COMTAB 
• Local limit address 

Output: Adjusted CCW string 

Return codes: 

• Error code 16 for IIVABN 
• Error code 20 for IIVABN 

Tables/work areas: 

• Adjust CCW data address list (located in I IVCON) 
• BEBLK CCW addresses for adjusting 
• Status modifier table used to find status modifier-type CCWs 
• RCCWSAVE register save area 

Errors detected: 

• Adjusted addresses not within DOS storage area 
• BEBLK is filled and CCW adjusting cannot proceed 

Messages requested: None 

218 DOS Emulator Logic 



Flowchart 15A. Adjust CCW Data Address Routine (IIVCCW Part 1 of 6) 

IIVPCE (CHART 8MI AND 
IIVCHK (CHART 98) 

SAVE ACTUAL 
AD,JUSTMENT 

FACTOR 

AD,JUST LIST 
LIMIT ADDRESS 

ZERO OUT 8EBLK 

FROM 
15C/F2, 
15E/B5 

FROM 
158/G4, 
158/H4, 
15E/D2, 
15E/B3, 
15E/E3 

MOVE CCW 
ADDRESS FROM 
LIST TO BEBLK 

SAVE CCW 
ADDRESS FROM 

LI ST 

ISSUE AD,JUST 
CCW STRING 
INSTRUCTION 

RESTORE LI ST 
LIMIT ADDRESS 

IIVAD,J 16A/A2 

ADJUST CCW DATA 
ADDRESS ROUTINE 

TURN OFF ABEND 
BYPASS SWITCH; 

RESTORE 
REGISTERS 

(0 
F5 

Program Organization 219 



Flowchart 15B. Adjust CCW Data Address Routine (IIVCCW Part 2 of 6) 

220 

MOVE CCW 
POINTER ADDRESS 

FROM LIST TO 
6EBLK 

UPDATE BEBLK 
POINTER 

DOS Emulator Logic 

PUT DATA 
CHAINING 

COMMAND CODE IN 
LIST OPERATION 

BYTE 

SUBTRACT I FROM 
STATUS MODIFIER 

COUNTER 

PO I NT TO NEXT 
PREVIOUS CCW 

SYMBOL TABLE 

LI ST -- ADJUST CCW 
DATA ADDRESS LI ST 



Flowchart 15C. 

FROM 
15S/G! , 
158/HI, 
15B/H3, 
158/.12, 
15B/..I3, 
150/84, 
15E/C4 

SYMBOL TABLE 

LIST -- ADJUST 
CCW DATA 

ADDRESS L1 ST 

Adjust CCW Data Address Routine (IIVCCW Part 3 of 6) 

MOVE INCOMPLETE 
BEBLK ENTRY TO 

CURRENT BEBLK 
ENTRY 

MOVE CCW 
ADDRESS FROM 
BEBLK TO LI ST 

CCW POINTER 

MOVE OPERATION 
BYTE AND 
OPERATION 

PO I NTER FROM 
BEBLK TO LI ST 

ADD e TO 
INCOMPLETE 
BEBLK ENTRY 

POINTER 

READ..IUST L1 M IT 
ADDRESS IN LIST 

1-----lE3 

MOVE CCW 
ADDRESS FROM 

. BEBLK TO LI ST 
CCW POINTER 

1-___ -\F3 

ISSUE AD..IUST 
CCW STR ING 

INSTRUCTION; 
SET ABEND 

BYPASS SWITCH 

YES 

RESTORE 
REGb~~E~~~N~URN 

BYPASS SWITCH 

IIVAD..I 16A/A2 

AD..IUST CCW DATA 
ADDRESS ROUTINE 

FROM STAE 
RETRY 
ROUTINE IN 
IIVRTE 
lCHART 20C) 

Program organization 221 



Flowchart 15D. Adjust ccw Data Address Routine (IrVCCW Part q of 6) 

222 

150 
BI 

FROM 15A/J3, 
15A/G5 

MOVE CCW 
POINTER FROM 
LIST TO BEBLK 

ADD ADJUSTMENT 
FACTOR TO TIC 

ADDRESS IN LI ST 

ADD 8 TO BEBLK 
POINTER 

COMB04A 15F/A4 

COMBINE ROUTINE 

SYMBOL TABLE 

LI ST -- ADJUST 
CCW DATA 

ADDRESS LI ST 

NO 
COMBINE 15F/A2 

COMBINE ROUTINE 

DOS Emulator Logic 

MOVE TIC-TO 
ADDRESS FROM 
LI ST TO BEBLK 



Flowchart 15E. Adjust CCW Data Address Routine (!IVCCW Part 5 of 6) 

15D/J4 

UPDATE 
INCOMPLETE 

ENTR I ES PO INTER 

SYMBOL TABLE 

LIST - AO,JUST 
CCW DATA 

ADDRESS LIST 

MOVE BEBLK 
CURRENT START 

AOORESS TO 
INCOMPLETE 

START ADORESS 

MOVE OPERATION BYTE 
AND OPERATION 

POINTER FROM LIST 
TO INCOMPLETE END 

ADDRESS 

. MOVE CURRENT 
BEBLK START >"'--..... ADDRESS TO LI ST 
CCW POINTER 

Program Organization 223 



Flowchart 15F. Combine and COMB04A Subroutines (IIVCCW Part 6 of 6) 

224 

FROM IIVCCW 
ICHARTS 15B 
ANO 1501 

MOVE BEBLK 
BEGINNING 

ADDRESS TO 
COMBINE POINTER 

REPLACE COMBINE 
START ADDRESS 
WITH CURRENT 
START ADDRESS 

DOS Emulator Logic 

ADD 8 TO 
COMBINE POINTER 

B4 r ----l 

B4 

FROM IIVCCW 
ICHART 1501 

MOVE BEBLK 
BEGINNING 

ADDRESS TO 
COMB I NE PO INTER 

ADD 8 TO 
COMB I NE PO INTER 



CCW Adjustment Routine (Flowcharts 16A-16B) 

Module name: IIVADJ 

Entry point name: IIVADJ 

Major functions: Adjusts CCW data addresses 

Entered by: 

• IIVCCW 
• IIVRCW 

Modules called: None 

Exits to: Caller 

OS macros issued: None 

Input: 

• Adjustement factor 
• Pointer to a CCW string 
• Pointer to the local execution list 
• Local limit address 

Output: Adjusted ccw string 

Return codes: None 

Tables/work areas: 

• Adjust CCW data address list (located in IIVCON) 
• ADJSAVE register save area 

Errors detected: 

• Adjusted addresses not within DOS storage area 
• CCW not on doubleword boundary 
• Invalid CCW address 

Messages requested: None 

program organization 225 



Flowchart 16A. CCH Ad justment Routine (IIVADJ Part 1 of 2) 

226 

FROM I I vccw I CHARTS 
!~~AR+~C~4A~ I~~g~ 340 

AOO AO.JUSTMENT 
FACTOR TO CCW 
OATA AOORESS 

OOS Emulator Logic 

UPDATE 
OPERA TI ON-BYTE AND 

OPERAT ION-PO INTER 
REGISTERS 

MOVE CCW LOCAL 
DATA ADDRESS 

INTO 
TIC-TO-ADDRESS 

REGISTER 

SUBTRACT CCW 
COUNT FIELD-I 

FROM CCW LOCAL 
DATA ADDRESS 



Flowchart 16B. CCW Adjustment Routine (IIVADJ Part 2 of 2) 

FROM 
16A/F4, 
16A/~4 

ADD CCW COUNT 
FIELD-I TO CCW 

LOCAL DATA 
ADDRESS 

UPDATE ACCW 
LIST 

16A/G4 

SET OPERATION­
BYTE REGISTER 

TO 0 

PUT TIC CCW 
DATA ADDRESS IN 

REGI STER 

Program organization 227 



SUpervisor Call Routine (Flowchart 1?A) 

Module name: IIVSVC 

Entry point name: I IVSVC 

Major functions: Directs DOS SVCs to proper Emulator modules 

Entered from: 

• DOS when DOS issues a supervisor call 
• IIVSCI 

Modules called: 

• I IVADD 
• TIVPUB 
• IIVGR2 

Exits to: 

• IIVRTE (normal exit) 
• IIVAB~ {error exit} 

OS macros issued: None 

Input: DOS registers 

Output: Manipulates PSWs for supervisor calls 

Return codes: x'on' to ITVABN for termination 

Tables/work areas: 

• EMUCONS 
• DOS storage 
• OOS CCB 
• DOS COMREG 
• Local execution list 

Errors detected: None 

Messages requested: None 

228 DOS Emulator Logic 



Flowchart 17A. 

GET DOS CCW 
ADDRESS 

I I v ADD 4A I A3 

BUILD DOS IPL 
CONTROL 

STATEMENT 

Supervisor Call Poutine (TTVSVC) 

IIVGR222A/A1 

SVC MONITOR 

NO 

F5 }----J 

YES 

MOVE CURRENT 
PSW TO DOS SVC 

OLD PSW 

MOVE DOS SVC 
NEW P5W TO 
CURRENT PSW 

TO IIVRTE (CHART 20A) 

Program Organization 229 



-----------------------------------------------------------------------------------

start I/O, End-of-Extent, Channel End, and Abnormal Bnd Appendage 
(Flowchart 18A-1BB) 

Module name: IGG019SA 

Entry point name: 

• IGG019SA 
• SIORTOOO 
• AERTOOO 
• CERTOOO 

Major functions: 

• Maintains (modifies/restores) DEB information so that OOS I/O 
requests may be done by os IOCS 

• Uses the DOS mode set command fer all tape I/O 
• Uses the DOS file mask for all I/O on dedicated DASD volumes 
• Inhibits automatic cylinder switching for all DASD I/O 
• Makes the user label track associated with a shared volume data 

set accessible to the DOS OPEN/EOF routines 

Entere1 by: OS input/output supervisor routines 

Modules called: None 

Exits to: Caller 

OS Macros issued: None 

Input: 

• Pointer to DEB 
• Point~r to DCB 
• Pointer to DCB 
• Pointer to lOB 

Output: Modified DEB extent and/or device modifier fields as required 
to support DOS I/O requests 

Return codes: None 

Tables/work areas: COM~AE, DEB 

Errors detected: ~ne 

Messages requested: None 

230 DOS Emulator Logic 



Flowchart 1SA. Start I/O, End-of-E~tent, Channel End, and Abnormal 
~nd Appencage (TGG01QSA Part 1 of 2, 

FROM OS IFIRST DASD, 
TAPE SIO, OR DASD 
END OF EXTENT) 

STORE CPU 
IDENTIFICATION 

FOR EMULATOR 
USE 

YES 

FROM OS lEND 
OF EXTENT) 

F3 

FROM OS 
ITAPE S)O) 

program Organization 231 



Flowchart 18B. Start I/O, End-of-Extent, Channel End, and Abnormal 
End Appendage (IGG019SA Part 2 of 2) 

SIORTOOO 

232 

FROM as IDASD 
Sial AND 18A/E2 

B1 

USE ADDRESS OF 
FIRST DEB 

EXTENT 

SAVE DEB EXTENT 
IN COMTAB 

YES SET I OE DEXCP 
BIT OFF 

YES COMPUTE ADDRESS 
OF DEB EXTENT 

TO BE USED 

DOS Emulator Logic 

J3 

AERTOOO 

FROM OS IDASD 
ABNORMAL END I 

ESTABLISH 
AODRESSAB I L I TY 



Abnormal End/Chann~l End Appendage (Flowchart 19A) 

Module name: IGG019S1 

Entry point name: IGG01QS1 

~ajor functions: 

• Flags device 'not r~ady' condition after rewind-unload h~s been 
issued 

.. Prevents as error recovery procedures from being loaded for 
incorrect length conditions on tape and unit record devices 

• Prevents OS error recovery procedures from being entered for BTAM 
'intervention required' condition 

• Prevents OS error recovery procedures from being entered for unit 
record 'unit exception' conditions 

Entered from: as input/output supervisor interruption handler 

fIIodules called: None 

Exits to: Caller 

as macros issued: None 

Input: 

• Pointer to DeB 
• Pointer to DEB 
• Pointer to UCB 
• Pointer to IO~ 

Output: 

• lOB exception condition bit 
to ECB completion code in lOB 
• DCB interception bit 
• TJCB 'not ready' bit 
• COMTAB entry 'not ready' bit 

Return codes: None 

Tables/work areas: 

• lOB 
• DCB 
• COMTAB 

Errors detected: Nbne 

Messages requested: None 

Program Organization 233 



Flowchart 19A. Abnormal End/Channel End Appendage (IGG019S1) 

FROM as 1/0 SUPERVISOR 

23q DOS Emulator Logic 



Asvnchronous Interruptions 

Program Org~nization 235 



Asynchronous Interrupt Exit Routine (Flowcharts 20A-20G) 

Module name: I IVRTE 

Entry point names: 

• ITVRTE 
• IIVRTER2 
• JIVRTF'1:'M 
• IIVRTEOJ 
• IIVRTEST 
• ITVRTESR 
• IIVRTBSY 

Major functions: 

• First routine to gain control following asynchronous interruptions 
in local execution mode 

• Serves as central routine for all asynchronous interruption handlers 
• Serves as central return point for all Emulator routines 
• Determines if any interruptions are pending for DOS and gives 

control to the proper routine to process them 
• CheCKS for end-of-job conditions 
• Issues the STIMER macro, decrements the DOS timer, and simulates 

timer interruptions 
• Issues the DOS compatibility instruction (see execute local 

instruction in Appendix) to return to adjusted DOS storage area 
• Issues r-1AIT macro when DOS-requested input/output operations 

are not coropleted 
• Issues STAE macro if a //SYSABEND DD statement is not present, schedules STAE 

retry routine, reissues any STAE retry routine, reissues any canceled WTORs 

Entered from: 

• OS supervisor, OS abend processing routines 
• IIVINT 
• rIVPCE 
• IIVSTG 
• IIVLOG 
• IIVIN2 
• I~VS~TC 
• IIVRAS 
• rIVACI 

Modules called: 

• rIVPRP 
• IIVHSG 
• rIVCHR 

Exits to: 

• Caller 
• DOS 
• I IVABN 
• JIVLOG 
• I IVCC'·7 
• IIVOPN 
• J1VPCvl 

236 DOS Emulator Logic 



OS macros issued: 

• POST 
• STJI_E 
• ~,)AIT 
• STIMER 

Input: Except for rostasynchronous interruption entries, pointer to 
I IVCON 

output: 

• Post BCB list entries for IIVPCE 
• Updated DOS timer value 
• Local execution list with contents required by OS 

Return codes: 16 = DOS entered a hard wait 

Tables/work areas: 

• Local execution list (locaten in IIVCON) 
• COMTAB 
• ECBLIST (dynamic storage) - ECE list to scan 
• PENDSN (I IVCON) - interruption pending switch 
• BREGSAVE (IIVCON) - register saV'e area 
• Post ECB List - index and condition codes of BC~s found posted 
• BASEREGS (IIVCON) - Emulator hase registers 
• DOSCORE - access DOS timer 

Errors ·jetected: Detects ABEND condition signified by DOS hard wait 
PSl-l 

Messages re~lested: IIV1S0I 

Program Organization 237 



Flowchart 201'.. Asynchronous Interrupt and STAE Exit Routin~s 
(IIVR'I'E Part 1 of 7) 

FROM as SUPERVISOR. 

::~~~~ 19~~~t ~~l! 

I I VRTECK 20EI A2 

ASYNCHRONOUS 
INTERRUPT CHECK 

ROUTINE 

IIVRTESL 20C/AI 

SELECT ROUTINE 

FROM OS ABEND 
PROCESSING ROUTINES 

B4 

IIVf,4SG 27A/AI 

I SSUES MESSAGE 
IIVI50 I 

SCHEDULE STAE 
RETRY ROUT I NE 

SET RETURN CODE >-"--.... OF 0 

SET RETURN CODE 
OF 4 

238 DOS Emulator Logic 



Flowchart 20B. 

II VRTER2 

~oute ~outine (JIV~TE Part 2 of 7) 

FROM I I VPCE (CHART 

~~kl. ::~~~~ :g~~~ts 
~g~A~T2?9~1.1 :r~~~s 
{CHART 288), IIVACI 
(CHART 33HI. 20C/C4 

I IVRTESL 20C/AI 

SELECT ROUT I NE 

20B 
E3 

FROM 20A/E2 

SET CODE FOR 
ABEND ROUTINE 

TO IIVABN (CHART 26AI 

I IVRTEOJ 20~/A2 

ENO-OF-JOB 
ROUTINE 

ISSUE MULTIPLE 
WAIT AGAINST 

EC8S POINTED TO 
8Y ECB POINTER 

TABLE 

TO DOS 

Program Organization 239 



Flowchart 20C. Select and STAE Retry Routines (IIVRTE Part 3 of 7) 

240 

IIVRTESL 

FROM IIVRTE 
I CHARTS 20A 
AND 20B 

T I MECHK 200/ A2 

TIMER INTERRUPT 
CHECK ROUTINE 

[ I VPRP 2 1 A I A I 

PROMPT REPLY 
PROCESSOR 

ROUTINE 

DOS Emulator Logic 

GET ADDRESS OF 
DOS 

COMMUNICATIONS 
REGION 

DECREMENT 
NUMBER OF 

POSTED ECBS TO 
BE PROCESSED 

INCREMENT TO 
NEXT ECB ENTRY 
TO 8E PROCESSED 

GET ADDRESS OF 
POST ECB LIST 

GET POST ECB 
ENTRY 

UPDATE POINTER 
TO POST Eca 

LIST 

CHECK I/O 

SWAP DOS I/O 
PSW WITH 

DR ILl ST PSW 

FROM as ABEND 
PROCESSING 
ROUTINES 

TO IIVRTER2 (CHART 208) REISSUE PROMPT 
FOR RETURN TO DOS 

I I VRTESR 

FROM IIVIN2 
(CHART 3F) 

RE ISSUE WTOR 
FOR READ-TQ-LOG 

RESTORE 
REG I STERS 

SET RETURN REG I 5 TER 
TO CONTENTS OF 

S~¢E~r~~ ~~~~C~~F 
CLEAR STAERTN 

TO Ilveew AT RCCWA84 
(CHART lSCI, IlvRew 
AT RCCWA84 [CHART 

~~~~~51:g~~R~T5CI 


Flowchi'lrt 20D. Timer Interrupt Check and Timer Interrupt Subroutines
(IIVRTE Part q of 7)

FROM SELECT
ROUTINE
ICHART 20CI

GET DOS TIMER
VALUE

SUBTRACT I
SECOND FROM DOS

TIMER VALUE

RESTORE DOS
TIMER VALUE

MOVE DOS
CURRENT PSW TO

DOS EXTERNAL
OLD PSW

MOVE DOS
EXTERNAL NEW

PSW TO DOS
CURRENT PSW

TO II VRTE AT
IIVRTER2
ICHART 20B)

IIVRTETM

FROM as

Program Organization 2q1

Flowchart 20E.

20E
FROM ~2
20F/E3

Asynchronous Interrupt Check Subroutine (IIVRTE Part 5 of 7)

FROM [I VRTE
(CHARTS 20A
AND 208)

242 DOS Emulator Logic

:<'lowchart 20F. Asynchronous Interrupt Check subroutine (IIVR"'E Part 6 of 7)

MOVE ECB STATUS
BYTE TO POST

ECB LIST

MOVE OFFSET TO
POST ECB LIST

ECBSCNQ4

POINT TO NEXT
ENTRY IN

EMULATOR COMTAB

ECBSCN10

ADD 1 TO NOSIO
PEND I NG COUNTER

SUBTRACT I FROM
NOSIO COUNTER

Program Organization 243

Flowchart 20G. End-of-Joe Routine (IIVRTB Part 7 of 7)

I [VRTEO,J

FROM IIVRTE
(CHART 208)
AND I I VPRP
(CHART 21A)

LOAD ADDRESS OF
FOREGROUND 1

IFll PIS

LOAD ADDRESS OF
FOREGROUND (F2)

PIS

LOAD ADDRESS OF
SYSROR DEVICE

lOB FROM COMTAB
ENTRY

244 DOS Emulator Logic

Pro~pt Reply Processor Routine (Flowcharts 21A-21E)

~'1odule name: IIVPRP

Entry point name: I IVPRP

r.1a jor functions: Gets control when console operator replies to an
operator prompt message from the Rmulator

Entered by: IIVRTE

Modules called:

• I IVOPN
• IIVMSG
• IIVRAS
• IIVRTEOJ

Exits to: Caller

OS macros is sued:

• SAVE
• CLOSE
• LOAD
• RETURN

Input:

• Pointer to DOS storage area
• Pointer to IIVCON
• Pointer to local execution list
• Reply to previous prompt WTOR

Output:

• Prompt for further operator communication
• ~essages to operator dependent on prompt reply being processed
• TJpdated DOS CSTN
• Updated DOS PSW in local execution list
• Updated ext_ernal and I/O PSWs in DOSCORE

Re~urn codes: None

Tables/work areas:

• IIVCON (constants and addresses)
• Local execution list (DOS current PSW)
• DOSCORE:

External old PSW
External new PSl1
I/O old PSW
I/O new 'PSW
PUB
CSW
COMTAB

Errors detected:

• Replies are checked for a valid Emulator command (EOJ,EXT,ATTN,
MAPIO,MOUNT,DEBUG)

• Invalid operands for MOUN~ and MAPIO

Program Organization 245

Messages requested:

• llV101E
• IIV102E
• lIV103E
• lIV10qE
• llV105E
• lIV106E
• lIV107E
• IIV108E
• IIV109E

2q6 DOS Emulator Logic

Flowchart 21A. Prompt Reply Processor Routine (TIVPRP Part 1 of 5)

FROM I I VRTE
(CHART 20C)

COMPUTE REPLY
LENGTH

UPDATE REPLY
ADDRESS WITH
REPLY LENGTH

ISSUES MESSAGE
II VIOlE

POST DEVICE END
AND ATTENTION

TO DOS CSW

MOVE DOS SYSLOG
cuu TO DOS PSW

MOVE DOS
CURRENT PSW TO
DOS I/O OLD PSW

END-OF-JOB
ROUTINE

I I VtotSG 27 A I A 1

ISSUES MESSAGE
, I VI 02E

MOVE EXTERNAL
INTERRUPT CODE

TO PSW

MOVE CURRENT
PSW TO DOS

EXTERNAL OLD
PSW

MOVE DOS I/O
NEW PSW TO DOS

CURRENT P5W

Program organization 247

Flowchart 21B. Prompt Reply Processor Routine (IIVPRP Part 2 of 5)

TURN FIRST
SWITCH OFF

GET NEXT REPLY
TABLE ENTRY

ADDRESS

MOVE REPLY TO
CUU WORK AREA

MOVE INVALID
INDICATOR TO
OUTPUT AREA

21 A/E3

008 Emulator Logic

PRPMAPA 21E/A2

ASSEMBLE WTO
MESSAGE

GET NEXT REPLY
TABLE ENTRY

ADDRESS

ISSUES MESSAGE
IIVI04E

H3

MOVE NOT IN PUB
INDICATOR TO
OUTPUT AREA

PRPMAPI 21E/A4

ASSEMBLE WTO
MESSAGE

GET DOS PUB
ADDRESS

MOVE DOS CUU TO
OUTPUT AREA

PRPMAPA 21 EI A2

ASSEMBLE WTO
MESSAGE

GET NEXT DOS
PUB ENTRY

ADDRESS

GET END OF
OUTPUT AREA

MOVE ROUTE AND
DESCRIPTOR

CODES TO OUTPUT
AREA

IIVMSG 21A/Al

ISSUES MESSAGE
11 V 1 03E

Flowchart 21C.

GET NEXT REPLY
TABLE ENTRY

ADDRESS

MOVE REPLY TO
CUU WORK AREA

CONVERT CUU TO
HEXADECIMAL

Prompt Reply Processor Routine (IIVPRP Part 3 of 5)

IIVMSG 21A/AI

I SSUES MESSAGE
II v 1 04E

GET NEXT REPLY
TABLE ENTRY

ADDRESS

MOVE REPLY TO
VOLUME SERIAL

WORK AREA

GET Dca ADDRESS

NO

YES

I I VMSG 21 A I A I

ISSUES MESSAGE
II VI 05E

Ilyt.iSG 21A/AI

ISSUES MESSAGE
IIVI01E

IIVMSG 21A/AI

ISSUES MESSAGE
II VI 06E

CLOSE DCB

IIVOPN 5A/A2

OPEN ROUTINE

Program organization 249

Flowchart 21D. Prompt Reply Processor Routine (IIVPRP Part q of 5)

FROM
21A/H3,
21A/C5,
218/F3.
21C/F4,
21CIJ4

FROM
21A/E4,
21AID5
21AIF4

ISSUES MESSAGE
IIV I08E

CLEAR REPLY
AREA

SET PROMPT
PENDING BIT OFF

GET RETURN
ADDRESS IN LINK

REGISTER

250 DOS Emulator Logic

IIVMSG 21AIAI

I SSUES MESSAGE
II VI 01E

TRACE AND SNAP
ROUTINE

Flowchart 21E. PRPMAPA and PRPMAP1 Subroutines (IIVPRP Part 5 of 5)

FROM I I VPRP
(CHART 2(8)

GET COMTAB
ADDRESS AND

NUMBER OF
ENTRIES

MOVE as CUU TO
OUTPUT AREA

NO

YES

YES

MOVE NOT IN as
PU8 INDICATOR

TO OUTPUT AREA

MOVE SYSLOG
INDICATOR TO
OUTPUT AREA

MOVE STAGE
INDICATOR TO
OUTPUT AREA

FROM II VPRP
(CHART 2(8)

84

GET MESSAGE
LINE ADDRESS AT

LAST MESSAGE

GET MESSAGE
LINE ADDRESS OF

NEXT MESSAGE

MOVE OUTPUT
AREA TO MESSAGE

LINE

YES

SET UP NEW
MESSAGE LINE

8

IIVMSG 21A/AI

I SSUES MESSAGE
I I V I 091

Program nrganization 251

Direct-Access Volume Sharing

252 DOS Emulator Logic

SVC Monitor Routine (Flowcharts 22A-22D)

Module name: IIVGR2

Entry point. name: IIVGR2

Major functions:

• Monitors SVC 1, 2, u, and 11 calls from DOS
• Inhibits DOS execution of library maintenance programs when DOS system

residence volume is a shared volume
• Recognizes volume-shared files or os indexed sequential shared data sets
• Calls rIVDVS or IIVIS to perform the needed functions

Entered by: !IVSVC

Modules called:

• IIVIS
• IIVMSG
• I IVDVS

Exits to: Caller

OS macros is sued: RE'T'URN

Input:

• Register 9 must contain a pointer to the local execution list.
• Register 10 must contain a pointer to DOS storage.
• Register 11 must contain a pointer to IIVCON.

Output: None

Return codes: Contained in register 15

Tables/work areas:

• Local execution list
• IIVCON
• DLBL
• DTF
• FID
• COMTAB
• COMTAB extension

Errors detected:

• Invalid logical unit
• Unit unassigned or assigned in error
• Invalid physical unit
• No DD card or invalid DLBL

Messages requested:

• IIV208I
• IIV250I
• IIV251I
• IIV252I
• IIV253I
• IIV254I
• IIV255I

Program Organization 253

DOS SVC Tables. Figure 25 shows the DOS SVC tables. Whenever DOS issues an
SVC 2, the Emulator traps the SVC and determines which routine in IIVGR2 gains
control from SVC2TAB or SVC2PP. The factors that affect which routine in
IIVGR2 gains control are the caller that issues the SVC 2 and the B-transient
phase called.

The SVC11TA3 lists the B-transients that issue an SVC 11. The Emulator traps
this SVC to determine which phase issued the SVC so control can be passed to
routine GR2CLS in IIVGR2.

The SVC4TAB shows which B·transient phase issues an SVC 4 and the phase it
calls. The Emulator traps this svc 4 and gives control to GR2EOJ in IIVGR2.

SVC2TAB (when SVC 2 is issued)

CALLER CALLED ROUTINE IN IIVGR2 CHART

$$BOSDO 1 $$BOSD01 TSTOPN 22B/B2
UBOSD07 GR2EOX 22C/B1
$$BOSDI1 TSl'OPN 22B/B2
$$BOSDW1 GR20PN 22B/B1
$$BOSDW3 GR2EOX 22C/B1

$$BOSD04 $$BOSD06 GR2EOX 22C/B1

$$BOSD06 $$BCLOSE GR2CLS 22C/B2

$$BOSD09 $$BOSD06 GR2EOX 22C/B1

$$BOSDI1 $$BOSDI3 GR2EOX 22C/B1

$$BOSDI3 $$BCLOSE GR2CLS 22C/B2

$$BOSDI4 $$BOSDI3 GR2EOX 22C/B1

$$BOSDW2 $$BOSDW1 GR2EOX 22C/B1

$$BOPEN2 $$BODAIN GR20PN 22B/B1
$$BOIS01 GR20PN 22B/B1
$ $ BORTV 1 GR20PN 22B/B1

$$BODAIN $$BODA01 GR2EOX 22C/B1
$$BODAI1 GR2EOX 22C/B1

$$BODAI1 $$BODAU1 GR2EOX 22C/B1

$ $ BOFLPT $$BOSDW1 GR2EOX 22C/B1
UBODAU1 GR2EOX 22C/B1

$$BOPEN $$BOPEND RMSRESET 22D/B4

$$BCLOSE $$BODACL GR2CLS 22C/B2
$$BOSDC1 GR2CLS 22C/B2
$$BCISOA GR2CLS 22C/B2
$$ BOP END GR2CLS 22C/B2

$$BOSDC1 UBOSD01 GR2EOX 22C/B1
UBOSDW3 GR2EOX 22C/B1
$$BCLOSE GR2CLS 22C/B2
UBOSD06 GR2EOX 22C/B1
UBOSDI3 GR2EOX 22C/B1

-
Figure 25 (Part 1 of 2). DOS SVC Tables

254 DOS Emulator Logic

SVC2TAB (when SVC 2 is issued) (continued)

CALLER CALLED ROUTINE IN IIVGR2 CHART

$$BOSDC2 $$BCLOSE GR2CLS 22C/B2

$$BOMSG2 $$BODSPV GR2DPV 22D/B5 , $$BOVDMP GR2DPV 22D/B5
$$BODSPV GR2DPV 22D/B5

$$BOSDMW $$BOVDMP GR2DPV 22D/B5

SVC2PP (when SVC 2 issued for SETFL, ENDFL, or SETL)

CALLER CALLED ROUTINE IN IIVGR2 CHART

Problem $$BSETFL ISSETFL 22D/B1
program $$BENDFL ISENDFL 22D/B2

$$BSETL ISSETL 22D/B3

SVC11TAB (when SVC 11 is issued)

CALLER ROUTINE IN IIVGR2 CHART

$$BOSDC1 GR2CLS 22C/B2

UBOSDC2 GR2CLS 22C/B2

UBOSDI3 GR2CLS 22C/B2

UBOSD06 GR2CLS 22C/B2

SVC4TAB (When SVC 4 is issued)

CALLER CALLED ROUTINE IN IIVGR2 CHART

$$BEOJ $JOBCTLA GR2EOJ 22C/B3

Figure 25 (Part 2 of 2). DOS SVC Tables

Program Organization 255

Flowchart 22A. SVC Monitor Routine (IIVGR2 Part 1 of 4)

256

FROM I I VSVC
(CHART 17A)

STANDARD
LINKAGE FROM

IIVSVC

GET DOS PHASE
NAME AND LOCK

PHASE NAME
TA8LE ADDRESS

GET NAME OF >="--... PHASE FROM DOS
REGISTER I

SVC4TA8 ...

LOCATE CALLER
AND CALLED- I N

TABLE

DOS Emulator Logic

YES

* * SEE SVC2PP
(F I GURE 25)

RESET SWITCH
'---------<~ 'OK FOR ACCESS

ON VTOC'

LOCATE CALLER
AND CALLED-IN

TA8LE

K3

*SEE SVC2TAB, mime OR
IFIGURE 25)

FROM
228/C5,

22A 22C/GI.
85 22C/H1,

228/Hl.
220/84,
228/85,
22C/C3,
22C/OS,
22D/Cl,
22D/cz,
22D/C3,
22D/G5

G,i"'"' =-............. _.,
CLEAR RESTORE

CODE

STANDARD
LINKAGE BACK TO

I I VSVC

SET'" IN LAST
CHARACTER OF

DOS PHASE NAME

I IVMSG 27A/AI

ISSUES MESSAGE
IIV2081

Flowchart 22B.

TAKE DTF
ADORE S S FR OM

DDS REGISTER 2

TAKE OL8L
ADDRESS FROM

DOS OPEN TABLE

SVC Monitor Routine (IIVGR2 Part 2 of 4)

22A/G4

INITIALIZE
MESSAGE I I V2521

NO INITIALIZE
>-"'----1 MESSAGE I I V250 I

IIVQVS 23A/AI

PROCESS OPEN
FUNCTION

NO

I I v I S 24A/ A 1

PROCESS OPEN
FUNCTION

Program Organization 251

Flowchart 22C. ~VC Monitor ~outine (IIVGR2 Part 3 of 4)

258

FROM 22AIF4,
22AIG4,
228182

SET CODE IN
PARAMETER LIST

FOR END OF
EXTENT

DOS KEY OUT OF
COMREG; DTF OUT
OF DOS REG I STER

2

CI-'"'/,,\/,,\/, _...,

TAKE FlO CHAIN
FOR NQN- I SAM OR

I SAM

SET CODE FOR
OPEN IN

PARAMETER LIST

FROM
22AIK3,
22A IG4

SET CODE IN
PARAMETER LIST

FOR CLOSE

SErNgo~TD ?~F,
PARAMETER Ll ST

FOR CLOSE

IIVQVS 23A/AI

OR ((VIS 24A/AI
PERFORM CLOSE

FUNCTION

22A
85

DOS Emulator Logic

POINT TO FlO
CHAIN FOR

VOLUME SHARING

IIVQVS 23A/Al

NO

MOVE NXT8TR IN
PLACE OF 8TR

NAME

MOVE PRPGM INTO
NXT8TR

SET DTF ADD AND
FlO ADD IN

PARAMETER LIST

PERFORM CLOSE
FUNCTION

FROM
2281-J2,
2281E4,
2281F2,
2281G2,
2281F4,
2281G4

I !VMSG 21A/AI

ISSUES MESSAGE
TO OPERATOR

G'F -,

CHANGE 5 VC IN
LOCAL EXECUTION

LIST TO SVC6

Flowchart 22D. SVC Monitor Routine (IIVGR2 Part 4 of 4)

22A/G4

SCANFIO 220/E4

IOENT IFY OTF IN
ISAM FlO CHAIN

SET CODE FOR
5ETFL IN

PARAMETER LIST

22A/G4

SCANFIO 220/E4

IDENTIFY OTF IN
)SAM FlO CHAIN

SET CODE FOR
ENDFL IN

PARAMETER LIST

)IVIS 24A/AI

PERFORM SETFL,
ENDFL, OR SETL

FUNCT I ON

INDICATE BYPASS
OF SVC

INTERRUPT
SIMULATION

22A/G4

SCANFID 22D/E4

IDENTIFY OTF IN
ISAM FlO CHAIN

SET CODE FOR
SElL IN

PARAMETER LIST

SET RETURN FOR
FlO FOUND

NO

22A/G4

BYPASS DPEND IF
REQUIRED

FROM
220/81,
220/B2,
220/B3

GET LTK OF
PARTITION FROM

PSW

POINT TO)SAM
FlO CHAIN

POINT TO NEXT
FlO IN CHAIN

SET INDICATOR
FOR 0 I SPLAY

VTOC;POINT TO
OPEN CCB

22A/G4

IF UBODSMW
CALL +~G h~~§M~~TURN

OTHERW I SE SET
RETURN TO $SBOSMGI

SET INDICATOR
TO 'OK FOR

ACCESS ON Vloe t

MOVE NXTBTR IN
PLACE OF

1~1+~~~Ti~N~E~~~~t
IIV2551

Program Organization 259

Device Sharing Simulation Routines (Flowcharts 23A-23H)

Module name: I IVDVS

Entry point name: IIVDVS

Major functions:

• Moves the actual limits of the current extent allocated by OS into
the DLBL/EXTENT card image

• Creates (in the obtain routine) VOL 1 (volume 1) identifier (format
1), and extension (format 3) DSCB images to be used by module IlVVIO

• controls the flow of DOS B-transient phases to be executed for open,
end-of-extent, and close operations

Entered from: I IVGR2

Modules called:

• I IVGET
• IIVMSG

Exits to: IlVGR2

OS macros issued:

• OPEN
• EOV
• CLOSE
• OBTAIN
• DCBD

Input:

• DTF address, LTK, COMTAB extension pointer (at open time) or FlD
pointer (at end of extent or close), and PARMCODE in the PARMLST
field of EMUCONS.

• COMTAB extension with dsname, ddname, and DCB pointer (at end of
extent or close) •

• FlD with forward and backward pointers, COMTAB extension pointer,
DTF name, and DOS LTK (at end of extent or close).

• OLDBTR and NXTBTR fields in EMUCONS.
• Register 10 points to DOS storage.
• Register 11 points to EMUOONS.
• Register 14 contains the return address.
• Register 15 points to module llVDVS.

Output:

• Register 15 contains return code.
• NXTBTR field in EMUCONS contains next B-transient phase to be executed.
• FlD created (at open time) or suppressed (at close).
• COMT~B extension updated with DCB pointer and use count (at open and close) •

Return codes:

• 0 = gives control to next B-transient phase pointed to by the
NXTBTR field in EMUCONS.

• ~ 0 = cancels DOS partition.

260 DOS Emulator Logic

Tables/work areas:

• COMTA.B extension
• FID
• DTF
• DLBL
• open table
• DOS communication regi-on
• EMUCO~S

Errors detected:

• Open failure for a data set
• DeB and nTF device types incompatible
• Insufficient extent space in DOS DLBL/EXTENT image for DTF
• User labels specified in DTF but not in DSCB
• cannot get more extents for file
• Cannot obtain identifier (format 1) DSCB for a data set
• Point outside extents cf a data set

r~essages requested:

• IIV256I
• IIV251I
• IIV258T
• IIV2591
• IIV2601
• IIV261I
• IIV262I

program Organization 261

Flowchart 23A. Device Sharing Simulation Routine (IIVDVS Part

262

FROM II VGR2
ICHARTS
228 AND 22CI

SET STANDARD
LI NKAGE WITH
MODULE I I VGR2

SET AODRESS OF
08TAIN AREA IN

EMUCONS

PLACE
DLBL!EXTENT
ADDRESS IN

REGISTER

PLACE DTF
ADDRESS IN

REGISTER

PLACE FlO
ADDRESS IN

REG I STER

PLACE COMTAB
EXTENSION

ADDRESS IN
REGISTER

8UILD A DUMMY
VOLI LABEL IN

OBTAIN AREA

SET SWITCH 'OK
FOR ACCESS ON

VTOC'

DOS Emulator Logic

NO
PLACE COMTA8

EXTENS ION
AODRESS IN

REGISTER

IIVGET 1A/A3

ISSUE GETMAIN
FOR A FID

ATTACH FID TO
EX I STI NG CHA IN

MOVE DTF FILE
NAME AND DOS
LTK INTO FID

MOVE CDMTAB
EXTENSION

POINTER INTO
Fie

SET FLAG
'SYSTEM FILE'

IN FID

INCREMENT USE
COUNT IN COMT A8

EXTENS ION

ISSUE GETMAIN
FOR A DCB

STORE DCB
ADDRESS IN

COMTAB
EXTENSION

I NIT I ALI ZE DCB
FROM DADC8 IN

EMUCONS

of 8)

SET DC8 FDAD ON
LAST TRACK ON

LAST EXTENT

ZERO TRACK
BALANCE IN DCB

CHECK OS AND
DOS DEV I CE

TYPES

INITIALIZE
MESSAGE IIV2511

Flowchart 23B. Device Sharing Simulation Routine (TIVDVS Part 2 of 8)

FROM 23A1E5.
23A/F5

GET DEB ADDRESS
FROM DCB

>N:.:O,-_~ TU~~T~~~' 'T~ST

MOVE LOG I CAL
UNIT OF FIRST

EXTENT IN DTFDA

DLBLI EXTENT

SET DOS
REGISTER 6 TO

POINT TO
DLBLI EXTENT

MOVE UBOSDW2
IN NXTBTR

TURN ON
• DELETFL = NO , •
'SYS IN OTF,'
'EXTENT OPEN'

RESET COBOL
IGNORE

NO RESET tNEW VOL'
>''''----\ BIT IN DTF

PUT VOLUME
SEQUENCE AND

EXTENT SEQUENCE
IN OTF

SET VOLUME
SEQUENCE NUMBER

IN DTF

RESET LlOCS
SWITCHES IN OTF

POINT TO FIRST
EXTENT IN DEB

SET SYSLNK OPEN
BIT IN OPEN

TABLE

YES TURN ON 'LAST
EXTENT' IN
DLBL/EXTENT

RESET OPEN BIT
IN DTF

Program Organization 263

Flowchart 23C. Device Sharing Simulation ~outine (IIVDVS Part 3 of 8)

EOX

SET DCBREG AND
DEBREG

MOVE USER LABEL
TRACK ADDRESS

IN DTFSD

MOVE DATA TRACK
AODRESS IN

DTFSD

MOVE ISBOPEN IN
NXTBTR

DOS Emulator Logic

RESET LIOCS
SWITCHES IN DTF

MOVE ZERO IN
DOS REGISTER 0

INITIALIZE
MESSAGE I I V2621

ADD 1 TO NUMBER OF
RELATIVE TRACKS;

SUBTRACK I FROM
BEGINNING ADDRESS

IN FIRST EXTENT

MOVE 'DAUI' IN
DOS REGISTER 0

YES

IN

MOVE UBOSDW2
IN NXTBTR

MOVE UBOFLPT
IN NXTBTR

Flowchart 230. Device Sharing Simulation Routine (IIVDVS Part 4 of 8)

FROM
23CIF3,
23C IE3

STORE OLBL
ADDRESS IN DOS

REGISTER 6

E.,.... _ _,
ADD I TO EXTENT
SEQUENCE NUMBER

STORE EXTENT
SEQUENCE NUMBER

IN DTFSD
(OUTPUT)

UPDATE NEW
TRKBAL AND FDAD

IN DCB

I NIT I ALI ZE
MESSAGE IIV2601

TURN ON 'LAST
EXTENT' IN DLBL

SET DEBREG ON
CURRENT EXTENT

IN DEB

Program Organization 265

Flowchart 23E. Device Sharing Simulation Routine (IIVDVS Part 5 of 9)

266

23A/JI

SET INDICATOR
'OBTAIN ONLY·

DOS Emulator Logic

CLOSEO

NO

CLOSE I

FREE SPACE OF
DCB

23E
E4

FROM 23A/J5

Flowchart 23F.

ROM
23C/.Jl I

23C/E4,
23C/K4,
23C/K5,
23D/D4,
23E/C2,
23BiK3

SET SWITCH 'OK
FOR ACCESS ON

VTOC'

IIVt.tSG 21A/Al

ISSUES MESSAGE
IIV261 [

Device Sharing Simulation Routine (IIVDVS Pa~t 6 of 8)

MOVE FI ADDRESS
IN VOLI IMAGE

MOVE Fl COUNT
FIELD IN

IIVOBEI

IIVMSG 27A/Al

I SSUES MESSAGE
IlV2591

ADD~~~~ g~S~TOC 1--='<
IN DTFSD

ANALYZE EXTENT .>-----1 TYPE IN F I

NO

SET USER LABEL
TRACK ADDRESS

IN II VOSEI

MOVE LOGICAL
UNIT IN OPEN

TABLE

MOVE BIN NUMBER
IN OPEN TABLE

AND DTF

MOVE FIDSCB
DISK ADDRESS IN
OPEN TABLE SEEK

BUCKET

MOVE FIDSCB
DISK ADDRESS IN
OPEN TABLE VTQC

LIMITS

IIVMSG 27A/AI

MOVE LOG I CAL
UNIT AND BIN
NUMBER IN DTF

AND OPEN TABLE

MOVE FIDSCB
DISK ADDRESS IN
OPEN TABLE SEEK
BUCKET AND VTOC

LIM I TS

RESET SPECIAL
OPEN BIT

Program Organization 267

Flowchart 23G. Device Sharing Simulation Routine (IIVDVS Part 1 of 8)

268

MOVE LOG I CAL
UNIT IN OPEN

TABLE

23F/K5

MOVE BIN NUMBER
IN OPEN TABLE

AND DTF

MOVE FIDSCB
DISK ADDRESS IN
OPEN TABLE SEEK

BUCKET

MOVE FlOSCB
DISK ADDRESS IN
OPEN TABLE VTOC

LIMITS

MOVE FILE 10 IN
OPEN TABLE

MOVE UBOSD I 2
IN NXTBTR

MOVE LOGICAL
UNIT AND BIN
NUMBER IN DTF

AND OPEN TABLE

23F/K5

MOVE FIDSCB
DISK ADDRESS IN
OPEN TABLE SEEK
BUCKET AND VTOC

LIMITS

RESET SPECIAL
OPEN BIT

MOVE SEEK
BUCKET TO DTF

OOS Emulator Logic

TURN OFF LAST
EXTENT BIT

MOVE DEVICE TYPE
CONTROL FACTOR IN

s~~6s~~G+6T~MtR

PUT VOLUME
SEQUENCE NUMBER

IN DTF

NO

PUT USER LABEL
ADDRESS IN DTF

MOVE UBOS004
IN NXTBTR

Flowchart 23H. Device Sharing Simulation Routine (IIVDVS Part 8 of 8)

INDICATE SPLIT
CYLINDER TYPE

RESET VARIOUS
DLBL

INOICATORS*

NO SET VOLSER AND
>'-'--..... FILE-SER FROM

GET LENGTH OF
LABEL AREA FROM

DOS COMREG

COMPUTE MAXIMUM
DLBL LENGTH

TURN ON EXTENT
CONVERTED IN
DIRECT-ACCESS

BYTE

VOL I IMAGE

SET DUMMY
CREATION AND

EXPIRATION
DATES

SET LOGICAL
UNIT FROM OTF

SET EXTENT TYPE
AND SEQUENCE

NUMBER

SET EXTENT
LOWER AND UPPER
LIMITS FROM DEB

ADD 1 TO EXTENT
SEQUENCE NUMBER

COMPUTE ADDRESS
OF NEXT EXTENT

IN OLBL

ISSUES MESSAGE
II V2SS1

UPDATE NEXT AND
PREVIOUS FlO

BLOCKS IN CHAIN

11VGET 1A/A3

FREE SPACE OF
CURRENT FlO

* NEXT EXTENT ON NEW PACK

BYPASS

NEW VOLUME

NO EXTENT CARD

EXTENTS OMITTED

FROM
23A 102,
23B/GS,
23C/03,
23C/C3,
23C/F4,
23C/05,
230/H3,
23E/F2,
23F/E4,
23F /85,
230/BI,
230/01

SET RETURN CODE

RESTORE
REGISTERS

STANDARD
LINKAGE

program Organization 269

.~-----.~------------- .. ---.

ISAM Mapping Routine (Flowcharts 24A-24L)

Module name: IIVIS

Entry point names:

• IIVIS
• IIVIS01

t1ajor function:

Entered from:

• IIVGR2

To map requested DOS ISAM I/O macro instructions t.o
enable accessing os indexed sequent.ial data sets.

• By specifying entry point in ATTACB: macro instruction in IIVIS
open mapping routine

Modules called: IIVGET

Exits to:

• Caller
• By issuing DETACH macro instruction in IIVIS close mapping routine

OS macros issued:

• OPEN
• OPEN TYPE=J
• CLOSE
• SETL
• RDJFCB
• AT'J"ACH
• DETACH
• IDENTIFY
• CHAP
• ESETL
• GET
• PUT
• "PUTX
• READ KfJ

• r,'lRITE
• CB:EC'K
• SAVE
• RETURN
• HAlT
• DCBD
• POST
• DCB
• WRITE K
• WRITE KN

Input:

• Pointer to DOS low storage (DOSCORE)
• Pointer to EMUCONS (DSECT for I IVCON)
• "Parameter list in EMUCONS (ISAMCODE, ISAMDTFA, ISAMFDCX)
• Point~r to local execution list
• ~eturn aodress
• Register 1 ~oints to ISBLK (obtained by IIVIS open mapping routine)

which contains base registers in register save area section.
• When removed from wait state by POST macro instruction issued by

SIO routine (module IIVPCE), ISBLK control information contains
I/O macro code, address of DTFIS table, and address of COMTAB
entry

270 DOS Emulator Logic

Output:

• ISBLK and OPEN DCB
• Error code
• Logical records to DOS problem program from OS indexed sequential data set
• Logical records to OS indexed sequential data set from DOS problem program

Return codes:

• 0 in register 15 - switch SVC PSWs

Tables/work areas:

• COMTAB extension
• FIDBLK
• EMUCONS
• ISBLK
• DOS DTFIS
• DCB

Errors detected: OPEN macro instruction failure

Messages requested: None

Program Organization 271

Flowchart 2qA. Ma in Ta sk cont rol Executi ve Routine (!IVI S Pa rt 1 of 1 1)

II VI S

FROM IIVGR2 ICHARTS
228, 22C. 220)

SAVE CALLER'S
REGISTERS

LOAD ISBLK
ADDRESS

272 DOS Emulator Logic

Flowchart 2l!B.

o R

SET UBoPEN AS
NEXT

B-TRANSIENT TO
BE CALLED

GET AREA FOR
ISBLK

I NIT I ALl ZE
FIRST DCB IN

ISBLK

I N IT I AL I IE
SECOND DCB IN

I SBLK

Open Mapping Routine (IIVIS Part 2 of 11)

24A/DI

IIVGET 7A/A3

GET WORK AREA
FOR ADD

MAP DATA SET
INFORMATION
FROM DCB TO

DTFIS

SET TRAP CODE
IN DTFIS AND

SET ISMOD
POINTER TO MODE

MAP ..JFCB DCB
INFORMATION TO

oCB

MAP DTFIS
INFORMATION TO

DCB

MAP DATA SET
INFORMATION
FROM DCB TO

DTFIS

ISSUE CHAP AND
IDENTIFY MACROS

AND SET
INDICATOR

ATTACH A
SUBTASK FOR

DATA SET I/O
HANDLING

THE SUBTASK IS
ACTIVATED (CHART
24E) AND EXECUTES IN
PARALLEL WITH THE
EMULATOR TASK

Program Oraanization 273

Flowchart 24C. Close Mapping "Routine (IIVIS Part 3 of 11)

274 OOS Emulator Logic

FROM 248/C2,
24A/FI

TERMINATE
SUBTASK

RELEASE WORK
AREA

UBCLOSE TO
NEXT BTRAN

REMOVE ISBLK
FROM I SBLK

CHAIN;
DECREMENT CTEXT

USE COUNT

IIVGET7A/A3

RELEASE ISBLK
AREA

Flowchart 24D.

UPDATE LAST
PRIME RECORD

ADDRESS

SETL Mapping Routine (IIVIS Part 4 of 11)

K2

NO

CLOSOPEN 24LiG2

GET DeB OPEN
FOR SETL TYPE=K

CLOSOPEN 24LiG2

GET DeB OPEN
FOR SETL TYPE=K

CLOSOPEN 24LiG2

GET DCB OPEN
FOR SETL TYPE=I

Program organization 2"15

Flowchart 2'-E. suhtask Control Executive Routine (IIVIS Part 5 of 11)

FROM II VI S
(CHART 24BI

SAVE CALLER' 5
REGISTERS

INITIALIZE
REGISTERS

WAIT FOR WORK

INITIALIZE
DTFIS AND DCB

POINTERS

NO

SUBTASK IS ENTERED
FROM OS WHEN
ATTACH IS ISSUED
(CHART 24B I K4)

276 DOS Emulator Logic

Flowchart 24F. Get Mapping Routine (IIVIS Part 6 of 11)

MOVE RECORD TO
WORKS ADDRESS

NOP LOAD IOREG
INSTRUCTION IN

TRAP CODE

CREATE CODE IN
DTFIS TO LOAD
REGISTER UPON
RETURN TO DOS

Program Organization 277

Flowchart 24G. Put and ESBTL Mapping Foutine {ITVIS Part 7 of 11}

INCREMENT TO
DATA PORTION OF

RECORD

MOVE RECORD
FROM WORKS
ADDRESS TO

IOAREAS ADDRESS

MOVE RECORD
FROM IOAREAS
ADDRESS TO as

BUFFER

278 DOS Emulator Logic

Flowchart 24H. Read Key and Write Key Mapping Routines
(IIVIS Part 8 of 11)

LOAD ADDRESS OF
KEY VALUE FOR

READ SEARCH

MOVE RECORD
FROM WORKR
ADDRESS TO

[OAREAR ADDRESS

MOVE RECORD
FROM IDAREAR
ADDRESS TO as

BUFFER

Program Organization 279

Flowchart 24J. Write NEWKEY Mapping ~outine (IIVIS Part 9 of 11)

280

LOAD WORKL DATA
ANO KEY

ADDRESSES FROM
DTFIS

MOVE KEY
ADDRESS TO DATA

ADDRESS
REG I STER

MAP LAST PRIME
RECORD DASD
ADDRESS AND

RECORD COUNT TO
DTFIS

DOS Emulator Logic

MOVE KEY VALUE
TO DTFIS KEY

SAVE AREA

LOAD WORKL
ADDRESS INTO

REG I STER

INCREMENT PAST
KEY IN WORKL

MOVE RECORD TO
as WORK AREA +

16

Flowchart 24K. WAITF Mapping Routine (IIVIS Part 10 of 11)

MOVE RECORD TO
IOAREAR AOORESS

MOVE RECORD TO
WORKR ADDRESS

NOP LOAO IOREG
INSTRUCTION IN

TRAP CODE

CREATE CODE TO
YES DTFIS TO LOAD

REGISTER UPON
RETURN TO DOS

Program Organization 281

Flowchart 24L. EODAD, SYNAD, and Status ~apping Routines
(7IVIS Part 11 of 11)

FROM
24L/C4,
24L/D4,
24L/Gl

BI

B2 r----J

ENTERED WHEN AN I/O
ERROR OCCURS IN THE
EMULATOR TASK OR
SUBTASK

I="ROM
24J/G2

INITIALIZE
POINTERS FOR

LOAD STATUS
MAPPING

INITIALIZE BYTE
1-------------,---1 LOOP COUNT TO 2

MOVE STATISTICS
TO DTFIS

MOVE LAST PRIME
DATA RECORD
ADDRESS TO

DTFI5

~EO'~D~~~~~~
ENTER- I
ED AT --
END DFJ FILE

MAPSTSTC 24K1Al

MAP STATISTICS
FROM DCB TO

DTFIS

FROM
24B/E3.
24B/E4

ZERO OPEN CODE
IN ISBlK

NO

~
FROM 24D/G2,

24L 24F/02. 24F/K2,
C3 24G/D4, 24D/K5

Q.r-"' ""'----' -,
INITIALIZE

YES POINTERS FOR
QISAM STATUS

MAPPING

INITIALIZE
POINTERS FOR
81SAM STATUS

MAPPING

~:~~B~~Df~~iB2,
24H/B2, 24H/C2.
24H/B4, 24J/B2,
24J/84, 24K/84

CREATE SVC 50
INSTRUCTION IN

DTFIS TO BE
EXECUTED UPON
RETURN TO DOS

FROM I I v IS
(CHART 240)

282 OOS "Emulator Logic

MAPSTSTC 24L1 A I

MAP STATISTICS
FROM DCB TO

DTFIS

MAPSTSTC 24L1AI

MAP STATISTICS
FROM DCB TO

DTFIS

24L
G5

FROM
24K/C2,
24K/C3
24G/B4

SCAN OS BYTE
BIT BY BIT AND

MAP STATUS TO
DTFIS STATUS

BYTE

DECREMENT BYTE
LOOP COUNT AND
SET POINTER FOR

NEXT LOOP

COMPLETE lOB
CSW FIELD IN
COMTAB ENTRY

\roc I/O Simulation Routines {Flowcharts 25A-25E}

Module name: I IV1710

Entry point name: I IVVIO

Major functions (for shared volumes only) :

• provides simulation of V~OC IIO from DOS open phases
• Provides user label extent information from actual user label IIO

Enter€i from: I IVPCE

Modules called: None

Exits to: caller

OS macros iss 11ed:

• SAVE
• RETURN

Input:

• Pointer to DOS CCWs for 1/0 request
• Pointer to the CO~TAB for the volume on which 1/0 is requested

output:

• Updated DOS CCW data areas (VTOC labels)
• User label switch set to specify user label I/O requested

Return codes:

• 00 - EXCP to be issue4
• 04 - 1/0 com1:)letely simulated
• 08 - CC~l chain (channel program) not recognized

Tableslwork areas:

• DOSCORE (CCH strings, CCW data areas)
• Obtain work area (FO, F1 and F3 label values for the volume)
• COMTAB (entry for the volume on which I/O is requested)

Errors detected: Invalid seek address (unrecognizable CCH strinq
or seek address not within ~OC limits or user-label
extent)

Messages requested: None

Program Orqani~ation 283

Command and Type Code Tables for the VTOC I/O Simulation Routine. The address
of the routine to be executed, when exiting from the VTOC I/O simulation routine
(IIVVIO chart 2SA), is in the branch register. This address depends on the
table (see Figure 26) used at entry to VIOA2.

COMMAND CODE 'T'AELE TYPE CODE TABLE

Code Routine Chart Code Routine Chart

X'03' VIOB 25B/B1 X'FF' VIOIOA 25D/B1
X' 07' VIoe 25B/E1 X' 81' VIOIOB 25D/E1
X'08' VIOD 25B/B2 X'82' VIOIOB1 25D/G2
X' 31 ' VIOE 25B/B3 X' 21' VIOIOC 25D/B3
X' 29' VIOF 2SB/E2 X' 4A' '110100 25D/B5
X' 12' VIOG 2SC/B1 X'SA' VIOIOD 25D/BS
X'06' VIOR 25C/B2 X'41' VIOIOE 25E/B1
X'DE' VIOT 25C/B3 X'1C' VTOTOF 25E/B3
X'05' VIOJ 2SC/R4 X'SC' vIOIOF 25E/B3
X'OD' VIOJ 2SC/B4 X '00' VIOERRX 25E/F4
X'OO' VTOERRX 25E/FIJ

Fiqure 26. Command ano Type Code Tables for the V'I'OC I/O Simulation
Routine

284 DOS Emulator Logic

Flowchart 25A. VTOC I/O Simulation Routine (IIVVIO Part 1 of 5)

FROM II VPCE
(CHART 8P)

SAVE CALLER'S
REGISTERS

25C/F4

* SEE TABLES IN FIGURE 26

Program Organization 285

Flowchart 25B.

FROM
25A/C3,
25A/D3

GET DOS SEEK
ADDRESS AND

ADJUST TO TRUE
ADDRESS

V'!'OC I/O Simulation "Routine (IIVVTO Part 2 of 5)

FROM
25A/C3,
25A/D3.
25A/FI

NO PROCESSING
DONE

GET DOS ID
ADDRESS AND

ADJUST TO TRUE
ADDRESS

286 DOS Emulator Logic

Flowchart 25C. v~oc I/O Simulation Routine (IIVVIO Part 3 of 5}

FROM
25A/GI t

258/81.
258/HI,
258/JI,
258/E2.
258/E3.
258/F3.
258/C4,
258/04,
258/F4

FROM
258/82

VIONXT E4

Program Organization 2fl7

------------------ --------------

Flowchart 25D. VTOC I/O Simulation ~outine (IIVVIO Part q qf 5)

288

NO PROCESSING
DONE

MOVE VOLI KEY
TO DOS DATA

AREA

MOVE VOLI DATA
TO DOS DATA

AREA

DOS Emulator Logic

VIQIQX2 25E/A5

CHECK EXTENTS

VIOIOX2 25E/A5

CHECK EXTENTS

MOVE F3 LABEL
TO DOS DATA

ADDRESS

VIOIOX225E/A5

CHECK EXTENTS

MOVE Fl DATA TO
DOS OA T A AREA

-:~ ..

Flowchart 25E.

VIOIOX2 25E/A5

CHECK EXTENTS

VTOC I/O Simulation F.outine (IIV\TIO Part 5 of 5)

25E
F3

FROM
250/81,
25DJHI,
25D/G3,
25D/F5

25E
93

FROM
25A/C3,
25A103,
25D/F5

MOVE F I COUNT
TO DOS DATA

AREA

RESTORE
CALLER'S
REGISTERS

FROM IlvVIO
r-__________________ ~~~~~fRTS 250,

25E
F4

FROM
25A/CI,
258/..Jl,
25A/C3,
25A/D3

95

Program Organization 289

Abnormal End Conditions

290 DOS Emulator Logic

Exit-ABEND Error Routine (Flowcharts 26A-26Bl

Module name: IIVABN

Entry point name: JIVABN

Major functions:

.. Determines if the return to OS at the end of emulation is normal

.. Examines the error code passed from the module in which the error
was found and prints the proper message if the calling routine
has not already done so

.. Dequeues any queued resources

.. Posts 'CSW stored' condition code and status bits for cha~nel
end-program check to DOS if error concerns only one DOS partition

.. Snaps DOS registers and storage using SNAP macro if module IIV~S
not present; if IIVRAS is present, an IIVRAS printout is given

.. Returns to OS if emulation ending

Entered by:

.. IIVINT .. TIVPCE .. II'TOPN .. I IVR'!:'E .. IIV~NT .. I IVGE1' .. JIVCHK .. IIVSVC .. IIVSNP .. !IVRCP

r-1odules called:

• IIVRAS
.. IIVMSG

Exits to:

.. Caller

.. OS

OS macros

.. SNAP .. DEQ .. LOAD .. SAVE .. RETURN .. DCB .. OPEN

Input:

issued:

.. Error code in register RP1EU

.. Addressability in register RBOCD

.. Addressability to COMTAB in RPOEU if entered from IIVCCW at SIO time

Output:

.. Snap of contents of DOS registers and storage area at abnormal
end of emulation

.. DOS CSW and condition code if DOS should end a partition

Return codes: None

Program or~anization 291

Tables/work areas:

• CSloJ
• COMTAB
• CCW
• DeB for SNAPs
• IIVCON - Emulator constant area
• Local execution list
• .rIVRAS constants

Errors detected: None

Messages requested:

• IIV2021 (IIVPCE detected error)
• IIV2031
• IIV2041 (TIVCCW detected error)
• IIV20S1 (IIVPCE detected errorl
• !IV2071

292 DOS Emulator Logic

Flowchart 26A. Exit-ABEND Error Routine (IIVABN Part 1 of 2)

IIVABN

ESTABLISH
AODRESSABILITY ISSUES MESSAGE

1 I V20 1 I

IIVMSG 27AtAI

ISSUES MESSAGE
I I V2031

I IVMSG 27A/AI

ISSUES MESSAGE
II V2041

IIVMSG 21A/AI

ISSUES MESSAGE
I I V2051

LOAD IIVRA5

DEQUEUE

N~2':'s~~~~D
RESOURCES

WR ITE SNAP 10.
DOS STORAGE

REGT~~~RSD~~AP

SET PSW CC TO
• 0 l' AND CSW

STATUS TO

~~~~~~~ ~~~CK 

TURN OFF BUSY 
BIT IN COMTAB 

POST lOB CAW + 
8 TO DOS CSW 

IIVRAS 28AtAI 

TRACE AND SNAP 
ROUTINE 

Program Organization 293 



Flo'/lchart 26B. Exit-ABEND Error Routine (IIVABN Part 2 of 2) 

TESTS TO 
FIND OUT IF 
DOS SVC 14 
OCCURRED 

ISSUES MESSAGE 
I I V2021 

294 DOS Emulator Logic 

26A /02 

ISSUES MESSAGE 
IIV2011 



Message Writer 

Program organization 295 



• 

Message Writer Routine (Flowchart 27A) 

Module name: IIVMSG 

Entry point name: IIVMSG 

Major function: Prints messages using os WTO or WTOR services. 
The messages are on behalf of all the Emulator modules. 

Entered by: 

• IIVINT 
• IIVIN2 
• I IVPUB 
• IIVCHK 
• I IVADD 
• IIVPRP 
• IIVGET 
• I IVOPN 
• IIVSTG 
• IIVRTE 
• IIVABN 
• IIVPCE 
• IIVRCP 
• IIVGR2 
• rIVDVS 
• IIVRCW 

Modules called: 

• IIVMG1 
• Ir.7MG2 
• IIVMG3 

Exits to: Caller 

OS Macros issued: 

• WTO 
• LOAD 
• SAVE 
• T-n'OR 
• DELETE 
• RETURN 

Input: 

• Message code 
• supplemental data, if applicable 
• Parameter list with reply address, length, and ~CB, if 

applicable 

Output: Message printed to the console 

Beturn codes: None 

Tables/work areas: 

• MSGINDX table in each of the message text modules, IIVMG1, 
IIVMG2, and IIVMG3 

• EMUCONS 

Errors detected: None 

l1essages requested: None 

296 DOS Emulator Logic 



Flowchart 27A. 

INITIALIZE 
REGISTERS 

DETERMINE 
REQU I RED MODULE 

SAVE MODULE 
NUMBER AND 
ENTRY POINT 

Message Writer Routine (I IVMSGl 

FROM I I v I NT (CHARTS 2E, 
2F, 2G, 2HA 2J, 2LI~ 

1~ v I ~~ 1 :C71 ~16D 3~CHA~t 
40f I IIVCPN (CHARTS 58, 
5Cl, IIVPUB (CHARTS 68, 
6e, 60 I 6F) I I I VGET 
(CHART lAI. I'VPCE 
ICHARTS 8M, OPI II VCHK 
(CHART 90), 
IIVSTG ICHART 11HI, 
IIVRTE (CHART 20A), 
II VPRP ICHARTS 21 Ar 

f:~GR~'9CH~~~~ m ' 
22CI, IIVDVS (CHARts 

T~~AR¥~H k6A I I ~:~~ 
I I VRCP (CHART 29d, 
I (VRCW (CHART 340) 
IIVRAS (CHART 26Al 

GET MESSAGE 
INDEX TABLE 
POINTER AND 

MESSAGE TEXT 

SET FOR WTo 
ENTRY TO 

MESSAGE WRITER 

SET FOR WToR 
ENTRY TO 

MESSAGE WRITER 

REGISTER MUST 
POINT TO WToR 

'r~S~fo~OX~dF 

COMPUTE NUMBER 
OF CONTROL 

BYTES PRECED I NG 
MESSAGE TEXT 

MOVE THE 
MESSAGE TEXT TO 

WToR AREA 

MOVE FILL DATA 
INTO WTOR AREA 

MOVE MESSAGE 
LENGTH, 

DESCRIPTOR, AND 
ROUTE CODE INTO 

WTOR AREA 

MOVE JOB NAME 
I NTo MESSAGE 

TEXT 

*SEE "DIAGNOSTIC AIDS" 
FOR MESSAGES CONTA I NED 

: Mg~~L~~D I m~b~. 

Program Organization 297 



Emulator Service Aids 

298 DOS Emulator Loqic 



service Aids Initialization Routine (Flowcharts 28A-28~) 

Module name: I IVRAS 

Entry point parnes: 

• I IVRAS 
• IIVRASPC 
• JIVRASVC 
• I IVRASYN 

Major functions: 

• Initiali~es fields in IIVRCN 
• Establishes aadressability after program checks, supervisor 

calls, and asynchronous interruptions during local execution mode 

Entered by: 

• IIVIN2 
• I IVABN 
• JIVPRP 
• Hardware 

SVC, PC, 
(ITV1:{ASVC, IIVR..~SPC, and IIVRASYN addresses placed in 
and ASYNC interruption fields respectively in the LEX 

list) 

Modules called: 

• IIVRCP 
• Asynchronous user exit routine (~IVRASnn) 

• I IVSNP 
• TIVMSG 

Exits to: 

• Caller 
• INPCI 
• INSCI 
• ITVRTE 

OS macros issued: 

• SAVE 
• DELETE 
• RETURN 
• TIME 
• LOAD 
• OPEN 

Input: 

• Fields in rTVRCN (RASCONS) 
• Register 0 - 0 = caller from IIVPRP or IIVIN2 

4 = snap out trace table, caller from IIVABN 
8 = snap DOS hard wait, caller from IIVABN 

• Register 1 - contains option in effect if register 0 contains 8 

Output: Initializes fields in IIVRCN 

Return codes: None 

Program organization 299 



Tables/work areas: 

• 
• 
• 

IIVRCN ('RASCONS) 
Local execution list 
IIVCON (EMUCONS) 

Errors detected: None 

Messages requested: IIV213I 

300 DOS Emulator Logic 



Flowchart 28'1\. 

SAVE REGISTERS 
AND PERFORM 

HOUSEKEEP I NG 

SWAP INTERRUPT 
ADDRESSES 

SNAP EMULATOR 
CONTROL BLOCKS 

SWAP INTERRUPT 
ADDRESSES AGAIN 

Service Aids Initialization Routine (IIVRAS Part 1 of 2) 

FROM IIVIN2 (CHART 
3Fi I IIVPRP (CHART 

1t~Alhlm~N 

LOAD MODULE 
IIVSNP 

OPEN DCB FOR 
SYSSNAP I F NOT 
ALREADY OPENED 

LOAD MODULE 
IIVRCP 

IIVRCP 29AIAI 

PROCESS SERVICE 
AIDS COMMANDS 

DELETE MODULE 
IIVRCP 

LOAD MODULE 
II VSNP 

IIVMSG 27AIAI 

I S SUES MESSAGE 
[ I V273 I 

YES DELETE MODULE 
IIVSNP 

RESTORE 
REGISTERS 

Program organization 301 



Flowchart 2BB. IIVRASPC, IIVRASVC, and IIVRASYN Subroutines 
(TIVRAS Part 2 of 2) 

302 

FROM DOS VIA 
A PROGRAM 
CHECK 

SAVE DOS 
REGISTERS 

FROM DOS 
v I A AN 
SVC 

SAVE DOS 
REGISTERS 

TO IIVSCI 
(CHART 32AI 

DOS Emulator Logic 

FROM as VIA AN 
ASYNCHRONOUS 
I NTERRUPT I ON 

SAVE DOS 
REGISTERS 

I I VRASNN 

USER 
ASYNCHRONOUS 
EXIT ROUTINE 

SWAP INTERRUPT 
ADDRESSES 

IIVSNP 30AiAI 

SNAP EMULATOR 
CONTROL BLOCKS 

SWAP [NTERRUPT 
ADDRESSES AGAIN 

RESTORE DOS 
REGISTERS 

TO IIVRTE 
(CHART 2081 



Command Processor Routine (Flowcharts 29A-2QP) 

Module name: IIVRCP 

Entry point name: IIVRCP 

Major functions: 

• Heads a debug statement from card input or console reply 
• Checks the validity of the statement 
• Sets adequate indicators in RASCO~S 
• Loads service aids processor IIVACI, JIVPCI, 1IVSCI 

Entered by: 11VRAS 

Modules called: IIVHSG 

Exits to: 

• I IVABN 
• Caller 

OS macros issued: 

• OPEN 
• CHECK 
• DELETE 
• FREEMAIN 
• WRITE 
• LOAD 
• GETMAIN 
• GET 
• CLOSE 
• WAIT 
• DCBD 
• DCB 
• SAVE 

Input: 

• Pointer to local execution list 
• Pointer to Emulator constants 
• Service aids constants 

Output: Indicators and switches in RASCONS 

Return codes: In register 15 

Tables/work areas: 

• Local execution list 
• EMUCONS 
• RASCONR 
• DCB for SYSDEBUG data set 

Errors detected: Syntax errors in debug statement 

Messages requested or issued: 

• IIV2701 (on console) 
• IIV2711 (on console) 
• IIV27~! (on console) 
• IIV2761 

program Organization 303 



Dictionaries for IIVRCP. The CMDDICT (Figure 27) lists each command, the 
routine that initializes each command, the routine that resets each command 
after an error is detected, and the associated dictionary to handle the 
parameters or keyword parameters of each command. 

The SNPDICT (Figure 27) lists each parameter or keyword parameter (under heading 
'Name of Keyword') of the SNAP command and the name and chart number of the 
routine to process each parameter. 

The TRCDICT {Figure 27} lists each parameter or keyword parameter (under heading 
'Name of Keyword') of the TRACE command and the name and chart number of the 
routine to process each parameter. 

The STODICT (Figure 27) lists each parameter or keyword parameter (under heading 
'Name of Keyword') of the STORAGE command and the name and chart number of 
the routine to process each parameter. 

The EXIDICT (Figure 27) lists each keyword parameter (under heading 'Name of 
Keyword') of the EXIT command and the name and chart number of the routine 
to process each keyword parameter. 

The DIAGDICT (Figure 27) lists the keyword parameter of the DIAG command and 
the name and chart number of the routine to process the parameter. 

304 DOS Emulator Logic 



L 
CMDDICT - Command Dictionary 

Name of Routine to Routine to Associated 
Command Initialize Reset Keyword 

Dictionary 

Name Cha.rt Name Chart 

DIAG DIAGINIT 29L/A1 DIAGINV 29L./A 1 DIAGDICT 
END ENDINIT 29N/A1 
EXIT EXIINIT 29.M/A1 EXIINV 29M/A1 EXIDICT 
SNAP SNPINIT 29G/A1 SNPINV 29G/A2 SNPDICT 
STORAGE STOINIT 29K/A1 STOINV 29K/A1 STODICT 
TRACE TRCINIT 29E/A1 TRCINV 29E/1\2 TRCDICT 

SNPDICT - Snap Dictionary 

Name of 
Keyword 

ALL 
ATTN 
COMP* 
CUU* 
EXT 
Hra 
INT 
10 
ISK 
LPSW 
PC· 
PSW* 
SIO 
SSK 
SSM 
SVC* 
TCH 
TIMER 
TIO 

note1 

note2 

Routine to Process 

Name Chart 

SNP.ALL 2<}J/G3 
RNPATTN 29H/04 
SNPCOMP 29B/A1 note 1 
SNPCUU 29,1/A 1 
SNPEXT 29H/A5 
SNPHIO 29J/A5 
SNPINT 29B/DS 
SNPIO 29J/G2 
SNPISK 29J/D3 
SNPLPSW 29J/D5 
SNPPC 29H/G4 
SNPPSW 29G/C2 
SNPSIO 29J/A2 
SNPSSK 29J/D4 
SNPSS.M 29J/D2 
SNPSVC 29G/A3 note2 
SNPTCH 29J/A4 
SNPTIMER 29H/A4 
SNPTIO 29J/A3 

If COHP=A 111 111=bhhhhhhh is specified, the routine name to process 
hhhhhhhh is SNPCPSUB. (See cha.rt 29B/A3.) 

If SVC=PHASE-=(modname1,moaname2) is specified, the routine name to 
process modname1 cr modname2 is SNPSUBOP. (see chart". 29G/H5.) 

• 'l"his indicates a keyword parameter. All others ilre called parameters. 

Figure 27 (Part 1 of 2). Command P:rocessor Routine Dictionaries 

Program Organization 305 



TRCDICT - Trace Dictionary 

Name of Routine to Process 
Keyword 

Name Chart 

ALL TRCALL 2 <)F/H5 
ATTN TRCATTN 29F/G3 
CUU* TRCCl1TJ 29F/A2 
EXT TRCEXT 29F/A4 
RIO TRCHIO 29E/C5 
TNT TRCn~T 29F/D3 
TO T~CIO 29F/A1 
ISK TRCISK 29E/F3 
LPS~'l TRCLPSH 29E/F5 
NOWRAP TRCNWRAP 29F/E1 
WRAP TRCWRAD 29F/H1 
NUMBER* 'rRCNUMBR 29F/D4 
SIO TRcsro 29E/C2 
SSK TRCSSK 29E/F4 
SSM TRCSSM 29E/F2 
SVC TRCSVC 29F/AS 
TCfI TRCTCH 29E/C4 
TIMER TRCTIMER 29F/A3 
TIO TRCTIO 29E/C3 
WRAP TRC1:-rRAP 29F.lH1 

STODICT - Storage Dictionary 

Name of Routin~ to Process 
Keyword 

Name Chart 

ALL STOALL 29K/AS 
DOS STOnoS 29K/E2 
EMBLKS STOEMBLK 29K/A3 
EMU S'IOEMU 29K/A4 
t-lODOS S'IONODOS 29K/E3 
NUr.tBER* STONUMBR 29K/E4 

EXIDICT - Exit Dictionary 

Name of Routine to Process 
Keyword 

Name Chart 

AS* EXIAS 29M/AS 
LEX* EXTLEX 29M/A4 
PC* EXIPC 29M/A3 
SVC* EXISVC 29M/A2 

DIAGDICT -- Diagnostic Dictionary 

Name of Routine to Process 
Keyword 

Name Chart 

CCWCHK OIA3CCW 2%/A4 

* This indicates a keyword parameter. All others are called parameters. 

Figure 27 (Part 2 of 2). Command Processor Routine Dictionaries 

306 DOS Emulator Logic 



Flowchart 29A. Command Processor Routine (IIVRCPPart 1 of 1lJ) 

29A 
81 FROM 2981E2 

FROM 1 I VRAS FROM 
[CHART 28A) 2981D4, 

298185, 
2981C5, 
2981D5 

BUILD MESSAGE 
LEVEL EQUAL 0 I I V211 • ERROR 

CLEAR 
PARENTHESIS 

COUNTERS 

GETWQRD 29C/AI 

GET NEXT NAME 

FROM 2981E2 

LEVEL EQUAL 1 

GETWORD 29CIAI 

GET NEXT NAME 

GO PROCESS 
PARAMETER 
[KEYWORD) 

FROM 298/02 

LEVEL EQUAL 2 

GETWQRD 29C/Al 

GET NEXT NAME 

* KEYWORD 

GO PROCESS KEYWORD 
PARAMETER AND VALUE 

{OPERAND) 

AT POSiTION ... • 

FROM 29B/C2 

LEVEL EQUAL 3 

GETWORD 29CIAI 

GET NEXT NAME 

* SUBOP 

GO PROCESS COMP 
AND svc 

(SUBOPERAND) 

RCPPRINT 29DIA5 

PRINT LINE ON 
SYSSNAP 

* SYM80L TABLE 

NOTE: SEE FIGURE 27. NAMES 
I N PARENTHESES ARE THOSE 
USED IN LISTING. 

CMDDICT -- COMMAND 
DICTIONARY (SEE 
FIGURE 27) 

KEYDICT -- KEYWORD 
DICTIONARY. DEFINES THE 
KEYWORD ATTACHED WITH THE 
COMMAND IN CMDDICT (SEE 
FIGURE 27) 

KEYWORD - - KEYWORD AND 
NAME OF ROUTINE TO BE 
PROCESSED (SEE TRCDICT, 

5T~g6'i~t, E~~~6nt, FIGURE 27) 

INIT -- ROUTINES TO 
INITIALIZE EACH COMMAND 
[SEE CMOOICT FIGURE 27) 

SUBOP -- ADDRESS OF THE 
ROUTINE IS STORED BY THE 
ROUTINE THAT PROCESSES 
THE OPERAND (SEE FIGURE 
~~cITNPDICT [COMP AND 

Program Organization 307 



Flowchart 29B. Conunand Processor Routine (tIVRCP Part 2 of 14) 

308 DOS Emulator Logic 

NO 

DECREMENT LEVEL 
~------------~ BY ONE 

BUMP PO I NTER TO 
~------------~ INPUT BUFFER BY 

ONE 

G3 

BUMP POINTER TO 
INPUT BUFFER BY 

ONE 

YES 

MOVE THIS 
CHARACTER INTO 

RCPDEL 

BUMP POINTER TO 
INPUT BUFFER BY 

ONE 

RESET ALL 

F~¢~6I!:BSaO~~ 
PRESENT 

RESTORE 
CALLER'S 
REG I STERS 



Flowchart 29C. 

BI 

RESET NEW CARD 
SWITCH 

ISSUES MESSAGE 
IIV2141 

SET RETURN TO 
IIVABN 

TO IIVABN 
(CHART 26A) 

GETWORD Subroutine (IIVRCP Part 3 of 14) 

FROM 29A ID 1 I 
29A/D2. 
29A/D3. 29A/D4 

NO 

RCPPRINT 290/A5 

PRINT CARD ON 
SYSSNAP 

INI TI ALI ZE 
POINTER TO 

STRING 

CLEAR CONSOLE 
REPLY BUFFER 

IIVMSG 21A1AI 

ISSUES MESSAGE 
IIV2101 DR 2111 

CVTUPP 29D/AI 

CONVERT INTO 
UPPER CASE 

CLEAR RCPCUR. 
I N IT I ALI ZE 

SWI TCHES. 
LENGTH 

MOVE CHARACTER 
IN RCPCUR 

BUMP PO I NTER TO 
STRING BY ONE 

RCPLNG +\ 
POINTER IN 

RCPCUR +1 

BUMP PO I NTER TO 
STR I NG BY ONE 

BUMP 
PARENTHESIS 

COUNTER BY ONE 

CHECK RCPCUR I S 
ALPHANUMERIC 

MOVE CURRENT 
CHARACTER IN 

RCPDEL: SET 
RETURN TO 
CALLER +4 

TO CALLER 

Proqram Orqaniza~ion 309 



Flowchart 29D. 

FROM 
29C/G3 

CONVERT 
CHARACTER TO 

UPPER CASE 

ADD \ TO 
POINTER INTO 

STRING 

CVT a.na lCPP.RTNT Subroutines (IIVRCP Pa.rt 4 of 14) 

FROM 29F/D5, 
29F/E4. 
29G/F3. 
29H/.J2. 
29K/F4. 
29M/C3 

SET FLAG FOR 
NUMERIC 

CONYERS ION 

MOVE NAME AND 
PAD LEFT IN 

CVTSTR 

REPLACE BY 'FO' 

NO 

FROM 
29F/F2, 
29H/G2, 
29J/E1, 
29L/C4 

PROPAGATE FO IN 
CVTSTR 

PROPAGATE 'FF' 
[N CVTWORK2 

INITIALIZE 
POINTER TO 
CVTSTR AND 

CVTWORK2 

YES 

FROM 
29G/F2, 
29H/D3 

SET FLAG FOR 
MASK CONVERSION 

PROPAGATE • IN 
CVTSTR 

MOVE NAME AND 
PAD RIGHT IN 

CVTSTR 

FROM 
29A/C5, 
29C/H2 

85 

PACK CVTSTR IN .>-----1 CVTWORK 

YES CONVERT INTO 
81~A~~tw6~~RE 

NO SHIFT RESULT 
ACCORDING TO 
LENGTH WANTED 

IN C~~6TRiNMOVE 1--=, PACK CVTWORK2 
AND STORE BACK 

IN CVTWORK2 CVTWORK2 

REPLACE 
CHARACTER IN 
CVT5TR BY FA 

THROUGH FF 

310 DOS Emulator Loqic 



Flowchart 29E. 

FROM 
29A/F I 

TURN ON 'TRACE 
WANTED' 

RASTRSW2 

TURN OFF 
RASTRSWI. 
RASTRSW3, 
RASTRSW4 

CLEAR OP CODE 
TABLE 

CLEAR CUll TABLE 

DEFAULT IN 
TRACE TABLE 

SIZE 

T.race subroutines (IIVRCP Part 5 of 14) 

FROM 
29N/C5 

TURN OFF 'TRACE 
WANTED' 

RASTRSW2 

FROM 
29A/H2, 
29AiE3 

MOVE SlOOP 
CODE IN QP CODE 

TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE SSM QP 
CODE IN OP CODE 

TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE TID OP 
CODE IN OP CODE 

TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE 15K OP 
CODE IN OP CODE 

TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE TCH OP 
CODE IN OP CODE 

TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE SSK OP 
CODE IN OP CODE 

TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE HIO OP 
CODE IN OP CODE 

TABLE 

FROM 
29AfH2, 
29AiE3 

MOVE LPSW OP 
CODE IN OP CODE 

TABLE 

Program orgdnizdtion 311 



Flowchart 2QP. Trace Subroutines (IIVRCP Part 6 of 14) 

312 

FROM 
29A/H2, 
29A/E3 

TURN ON t 110 
WANTED' 

RASTRSWI 

MOVE ALL I/O OP 
CODES IN OP 
CODE TABLE 

FROM 
29A1H2, 
29A/E3 

TURN ON 'NO 
WRAP' SW ITCH 

FROM 
29A1H2, 
29A I E3 

TURN OFF 'NO 
WRAP' SWITCH 

B2 

FROM 
29A/H2, 
29A IE3 

CLEAR CUU TABLE 

GET POINTER TO 
FIRST AVAILABLE 

CUU 

CVTHEX 29D/.43 

CONVERT, RESULT 
2 BYTES 

MOVE CUU IN CUU 
TABLE 

DOS Emulator Logic 

FROM 
29A/H2, 
29A/E3 

TURN ON 'TIMER' 
IN RASTRSW3 

FROM 
29A/H2, 
29A1E3 

FROM 
29A/H2, 
29A/E3 

TURN ON 
'ATTENTION' IN 

RASTRSW3 

FROM 
29A/H2, 
29A/E3 

TURN ON 'EXT' 
IN RASTRSW3 

FROM 
29A/H2, 
29A IE3, 
2901 A2 

CVTNUM 129A2 

CONVERT BINARY, 
LENGTH 2 

TEST AT LEAST 
ONE TRACE 

MOVE TRACE 
ENTRIES NUMBER 

IN TRCTBLNO 

_._. _________ '0 _______ _ 

FROM 
29A/H2, 
29A/E3 

TURN ON '5VC' 
IN RASTRSW3 

CONVERT SVC 
INTO 

HEXADECIMAL 

MOVE X'FF' IN 
CORRESPOND I NG 

POSITION OF SVC 
TABLE 

PROPAGATE X' FF' 
IN SVC TABLE 

FROM 
29A/H2, 
29A/E3 

TURN ON 'ALL' 
IN RA5TRSW4 



Flowchart 29G. 

TURN ON 'SNAP 
WANTED' 

RASNPSW2 

CLEAR COMPARE 
BLOCKS I AND 2 

CLEAR SVC 
CHA IN. SVC 

POINTER 

CLEAR PSW VALUE 
AND MASK 

CLEAR 1/0 OP 
CODE TABLE 

CLEAR SNAP CUU 
TABLE 

CLEAR PC AND 
IPL SWITCHES 

Snap Subroutines (.I.IVRCPPart 7 of 14) 

TURN OFF 'SNAP 
WANTED' 

RASNPSWZ 

SNPP'W ~, 

( ENTRY 

FROM 
29A/H2, 
29A/E3 

n, 

TURN ON 'PSW' 
SWITCH 

E2 

MOVE EBCDIC 
CHARACTERS IN 

RASCONS 

F2 

CVTMSK 29D/A4 

CONVERT UP TO 8 
BYTES AND MASK 

r.? 

MOVE MASK IN 
RASCONS 

H2 

MOVE HEX 
ADDRESS VALUE 

IN RASCONS 

.J? 

( RETURN 

B3 

TURN ON 'SVC' 
IN RASNPSW3 

CLEAR SVC 
CHAIN, SVC 

POINTER 

CVTNUM 290/A2 

CONVERT svC IN 
BIN~~+E ONE 

SAVE svC NUMBER 

H3 r ----i 

LOCATE 
BEGINNING OF 
SVC CHAIN IN 

RASCONS 

POINT TO NEXT 
SVC BLOCK 

GETMAIN FOR A 
NEW SVC BLOCK 

MOVE S VC NUMBER 
IN BLOCK6 0 IN 

NEi.\66NAM~N 

SAVE ADDRESS OF 
TH I S SVC BLOCK 

MOVE MODULE 
NAME IN SVC 

BLOCK 

CLEAR ADDRESS 
OF SVC BLOCK 

TURN ON 
, SUBOPERANO 
REQUIRED' 

GIVE SNPSUBOP 
ADDRESS FOR 
SUBOPERAND 
PROCESSING 

FROM 
29A/E4 

J5 

RESTORE ADDRESS 
OF CURRENT SVC 

BLOCK 

FOR 
ENTRY 
AT 

- SNP-
SUBOP 
AT 
29GI 
H5 

Progra~ Organization 313 



Flowchart 29H. Snap Subroutines rlrVRCP Part q of 14) 

314 

FROM 
29A/H2, 
29A/E3 

81 

CLEAR COMPARE 

COM~~~~K 8~OCK 2 

PO I NT TO NEXT 
COMPARE 8LOCK 2 

COMPUTE 
CORRESPOND I NG 

COMPARE 8LOCK 1 
ADDRESS 

MOVE NAME IN 
COMPARE BLOCK 2 

MOVE HEX 
ADORES S VALUE 

IN COMPARE 
8LOCK I 

SET SWITCH 
'SUBOPERAND 
REQUIRED' 

STORE ADDRESS 
OF ROUTINE TO 

PROCESS KEYWORD 
SU8PAR AMETER 
1 SUB OPERAND I 

CVTHEX 290/ A3 

CVTNUM 29D/A2 

CONVERT AND 
TEST DOS 
REGISTER 

SUPPRESS CR 
CHARACTERS 

DOS Emulator Logic 

FROM 
29A/E4 

83 

PAD LEFT WITH 
ZEROS UP TO 4 

BYTES 

CVTMSK 29D/A4 

CONVERT HEX 
ADDRESS PLUS 
MASK, 4 BYTES 

MOVE HEX 
ADDRESS VALUE 

IN COMPARE 
BLOCK 1 

MOVE MASK IN 
COMPARE BLOCK 
[, EBCDIC IN 

COMPARE BLOCK 2 

RESET SWITCH 
t SUBOPERAND 

REQUIRED' 

FROM 
29A/H2, 
29A/E3 

TURN ON 'TIMER' 
IN RASNPSW3 

FROM 
29A/H2, 
29A/E3 

TURN ON 
'ATTENTION' IN 

RASNPSW3 

FROM 
29A/H2, 
29A/E3 

H4 

YES 

FROM 
29A/H2, 
29A/E3 

TURN ON 'EXT' 
IN RASNPSW3 

FROM 
29A/H2, 
29A/E3 

TURN ON • INT' 
IN RASNPSW3 t 
MOVE HIO IN 

OPCODE T A8LE 

TURN ON 'ALL' 
IN RASFLGI 



Flowcha.rt 29J. 

FROM 
29A/H2, 
29AiE3 

BI 

CLEAR CUU TABLE 

POINT TO FIRST 
AVAILABLE CUU 

CVTHEX 29D/A3 

CONVERT AND 
CHECK HEX 

ADDRESS 4 BYTES 

MOVE CUU IN CUU 
TABLE 

SAVE AODRESS OF 
LAST CUU USED 

Snap Subroutines (IIVRCP Part 9 of 14) 

FROM 
29A/H2 1 

29A/E3 

MOVE S I 0 OPCODE 
IN OPCODE TABLE 

FROM CHART 
29A/H2, 29A/E3 

MOVE SSM OPCODE 
IN OPCODE TABLE 

FROM CHART 
29A t H2, 29A/E3 

TURN ON tl/O' 
IN RASNPSW I • 

MOVE 1/0 
OPCODES IN 

OPCODE TABLE 

FROM 
29A/H2 t 

29A/E3 

MOVE T 10 OPCODE 
IN OPCODE TABLE 

FROM CHART 
29A/H2, 29A/E3 

MOVE I SK OPCODE 
IN OPCODE TABLE 

FROM CHART 
29A/H2, 29A/E3 

TURN tALL' 
'PC' SW ITCHES t 

MOVE ALL 
OPCODES IN 

OPCODE TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE TCH OPCODE 
IN OPCODE TABLE 

FROM CHART 
29A/H2, 29A/E3 

MOVE S SK OPCODE 
I N OPCODE TABLE 

FROM 
29A/H2, 
29A/E3 

MOVE HIO OPCODE 
IN OPCODE TABLE 

FROM CHART 
29A/H2, 29A/E3 

MOVE LPSW 
OPCODE IN 

OPCODE TABLE 

Proqram Orqaniz3tion 315 



.·flovlchart 29K. Storaqe :::;ubroutines (IIVRCP Part 10 of 12) 

316 

FROM 
29A/F! , 
29N/C5 

MOVE DEFAULT 
EMBLK PLUS DOS 

IN STORGSW 

DEFAULT TO 50 
I N SNAP NUMBER 

FROM 
29A/H2, 
29A/E3 

MOVE '~OS' IN 
STORGSW 

DOS Emulator Logic 

FROM 
29A/H2, 
29A/E3 

MOVE • EMBLK' IN 
STORGSW 

FROM 
29A/H2, 
29A/E3 

MOVE 'NODOS' IN 
STORGSW 

FROM 
29A/H2, 
29A1E3 

MOVE 'EMU' IN 
STORGSW 

FROM 
29A/H2 t 
29A/E3 

CVTNUM 29D/A2 

CONVERT BINARY 
UP TO 2 BYTES 

ADD 1 IN SNAP 
NUMBER 

STORE SNAP 
NUMBER IN 
RASSNPNO 

FROM 
29A/H2, 
29A/E3 

MOVE • ALL' IN 
STORGSW 



Flowchart 29L. 

FROM 
29A/F 1 , 
29N/C5 

POINT TO FIRST 
DIAG BLOCK 

FREEMAIN THE 
01 AG BLOCK 

PO I NT TO NEXT 
DIAG BLOCK IN 

CHAIN 

Diagnostic Subroutines (IrVRCP Part 11 of 14) 

FROM 
29A/H2,29A/E3 

B4 

NO POINT TO FIRST 
;----1 COMTAB 

C5r __ ~ 

CVTHEX 29D/A3 

CONVERT DOS CUU 

POINT TO FIRST 
DIAG BLOCK IN 

CHAIN 

PO I NT TO NEXT 
ONE 

POINT TO NEXT YES 
COMTAB 

SAVE THIS DOS 
CUU 

FLAG 'DIAG 
WITHOUT A 

PARAMETER' BIT 
ON 

ATTACH IT TO 
CHAIN 

MOVE DOS CUU IN 
01 AG 

program Organization 317 



Flowcha.rt 29M. Exit Subroutines (IIVRCP Part 12 of 14) 

318 

EX II NI T 
OR 

FROM Z9A/FI. 
29N/C5 

LOCATE FIRST 
EXIT ADDRESS 

DELETE 
CORRESPONDING 

MODULE 

CLEAR EXIT 
ADDRESS 

FROM 29A/H2, 
29A/E3 

LOCATE SVC EXIT 

RESTORE DRILIST :>-=--t TO POINT TO 
IIVRTE 

RESTORE SERVICE 
AIDS FROM OLD 

DR I LI ST ADDRESS 

DOS Emulator Logic 

FROM 29A/H2, 
Z9A1E3 

LOCATE PC EXIT 

GO CHECK VALID 
NUMBERS 

LOCATE 
CORRESPOND I NG 

EXIT 

SAVE NEW MODULE 
NAME 

LOAD NEW USER 
MODULE 

STORE EXIT 
ADDRESS 

YES 

FROM 29A/H2, 
29A/E3 

LOCATE LEX EXIT 

DELETE 
CORRESPONDING 

MODULE 

FROM 29A/H2, 
Z9A/E3 

LOCATE AS EXIT 

MOVE SERVICE 
AIDS ENTRY IN 

D~~5 I 6~ IL T~ i E 



Flowchart 29N. End Subroutine (IIVRCP Part 13 of 14) 

FROM 29A/FI 

SET 'END' FLAG 

FREEMAIN TRACE 
TABLE 

CLEAR TRACE 
TABLE ADDRESS 

LOAD Ilvsel 

LOAD IIVACI 

SAVE IIVRTE ADDRESS 
IN EMUCONS (ART20), 
MOVE (IVAGI INTO 

ART20 

GETMAIN NEW 
TRACE TABLE 

5 YMBOL TABLE 

INV -- ROUTINES TO 
RESET EACH COMMAND 
ISEE CMDDICT FIGURE 

21) 

LOAD IIVPCI 

SAVE DRIPCE 
MOVE IIVPCI IN 

DRIPCE 

DELETE II VSCI 

DELETE I I VPC I 

YES 

YES 

POINT TO NEXT 
COMMAND IN 

CMDDICT 

INV 

GO RESET FOR 
THIS COMMAND 

G5 

NO 

J5 

Program Organization 



Flowchart 29P. 

SAVE II veew 
ADDRESS 

LOAD IIVRew 

STORE THI S 
ADDRESS TO 

REPLACE I I veew 

End Subroutine (lIVRep Part 14 of 14) 

DELETE J I VRCW 

RESTORE I I veew 
ADDRESS 

320 DOS Emulator Logic 



Snap Dump and. 'rrace Format.tinq Routine· (Flowcharts JO.A-301<) 

!>1odule name: TTVSNP 

Entry point name: IIVSNP 

Major functions: 

• Formats Emulator control blocks, trac~~ table, :JOS main storaqe 
• Issues OS snil~ mClcro (PD}\TA=ALL or sm'l'T'.l\= ,\LL) 

Entere(1 by: 

• IIVRAS 
• IrVACI 
• lIVPCI 
• rrvscr 

Modules called: ~one 

.Exits to: 

• Caller 
• I IV.ABN 

OS macros issued: 
• SAVE 
• RETURN 
• TH1E 
• SNAP 
• WRITE 
• CHECK 
• DCBD 

Input: 

• .Reqister 1 - option in effect messa'le preceded by a 2-byte field 
(length rrinus one) 

• Register 0 - nonzero indicates trace table snilp only 
• OOS storage 
• RASCONS 
• Emulator control blocks 

Output: Formatted snap ·lump 

Return codes: None 

Tables/work areas: 

• IIVCON (E.MUCONS) 
• IIVRCN (Rl1SCOlllS) 
• Local execution list 
• DOS storaqe 
• COMTAB 

Errors detected: Invalid FIDBLK chain while formatting Emulator 
1/0 control blocks 

Messages requested: None 

Program Organization 321 



Flowchart JOA. 

322 

RESET PAGE 

I N ITT~~7iE LINE 
COUNT 

RAS 15000 30HI A I 

PRINT HEADING 

UNPACK TIME AND 

D~~~E ~~8~:;E 

RAS 15000 30HI A I 

PRINT HEADING 

GET OPTION, 
UPDATE ROW, 

MOVE MESSAGE TO 
OUTPUT BUFFER 

RAS1500030H/AI 

PRINT MESSAGE 

RAS140QO 30E/AI 

FORMAT EMULATOR 
TRACE TABLE 

IIVABN 
ICHART 26AJ 

Snap Dump and Trace Formatting Routine (IIVSNP Part 1 of 10) 

FROM I 1 VRAS 
(CHARTS 28A I 

288) IIVPCI 
(CHARTS 31A, 
31C) Ilysel 
(CHART 32A) 
I I VAC I 
t CHART 5 33G I 

33HI 

NO 
SET UP 

INTERRUPT 
ADDRESS FOR 
CONVERSION 

RASI7000 30G/A4 

CONVERT ADDRESS 
TO EBCDIC 

MOVE INTERRUPT 
ADDRESS TO 

SERVICE AIDS 
MESSAGE 

~, 
RASI500030H/AI 

PRINT INTERRUPT 
ADDRESS 

,,~ 

RASI7000 30G/A4 

CONVERT ADJUST-
MENT FACTOR TO 

EBCDIC 

m 

RAS15000 30H/Al 

PRINT 
ADJUSTMENT 

FACTOR 

E3 

RASI7000 30G/A4 

CONVERT LEX 
LIST AND INPUT 

TO EBCDIC 

F"' 

RASI500030H/AI 

PRINT FIRST 
LINE OF LEX 

LI ST 

G3 

MOVE DATA TO 
OUTPUT BUFFER 

H. 

RAS I 7000 30G/A4 

CONVERT REST OF" 
LEX LIST TO 

EBCDIC 

~3 

RASI5QOO 3QH/Al 

PRINT REMAINDER 
OF" LEX LI ST 

K' 
RASI6000 30K/AI 

PRINT EMUCONS 

cb 

RAS 15000 30H/ AI 

PRINT MESSAGE 
EMULA TOR I 10 

CONTROL BLOCKS 

GET NUMBER OF 
COMTAB ENTRIES 
AND ADDRESS OF 

COMTAB 

MOVE IN 'SYSEM' 
IDENTIFIER 

RASI700030G/A4 

CONVERT BIN 
NUMBER TO 

EBCDIC 

CONCATENATE BIN 
NUMBER TO 

'SYSE' 

YES MOVE IN 
'SYSLOG' 

IDENTIFIER 



F10\</'chart 30E. Sndp Dump and Trac~ ?ortnatt_ing ROlltin~ (IIVSNP Part 2 of 10) 

FROM 30A/H4, 
30A/F4 

RASI7000 30G/A4 

CONVERT ODS CUU 
TO EBCDIC 

MOVE IN COMTAB 

RASI6000 30K/AI 

PRINT COt.1TAB 

MOVE IN STGCON 

MOVE IN CTEXT 

RASI6000 30K/AI 

PRINT CTEXT 

GET CORRECT 
FIOBLK CHAIN 

MOVE IN FIDBLK 

RAS1600030K/Al 

PRINT FIDBLK 

GET NEXT FIDBLK 
IN CHAIN 

RASI5000 30H/AI 

PR INT ERROR 
MESSAGE 

1-----\ G3 

GET NEXT CTEXT 
IN CHA IN 

GET NEXT FIDBLK 

NO 

MOVE IN lOB 

(:) 
TA5 

MOVE IN LOGIOB 

Program Organization 323 



Flowchart 30e. Snap Dump and Trace Formatting Routine (IIVSNP Part 3 of 10) 

324 

GET NEXT COMT AS 

GET OPERATION 
POINTER 

MOVE DOSREGS 
0-1 TO OUTPUT 

8UFFER 

RESET TO TRIPLE 
SPACE 

YES 

YES 

YES 
RAS14000 30E/AI 

SNAP TRACE 
TABLE 

GET ADDRESS AND 
LENGTH OF 

DOSREGS 0-1 

DOS Emuldtor Loqic 

D3 

RAS17000 30G/A4 

CONVERT ACCW 
LIST TO EBCDIC 

RAS15000 30H/Al 

PRINT Acew LIST 

MOVE IN 'BEBLK' 

RAS16000 30K/AI 

~~P~R~IN~T~B~E~B~L;K~ir----L--tA5 

RAS17000 30G/A4 

CONVERT TO 
EBCDIC 

GET BEGINNING 
AND ENDING 

AOORES S OF CCW 
STRING 

RAS1600030K/Al 

PRINT ccw 
STRING 

GET NEXT BEBLK 
ENTRY 

RAS18000 30J/A3 

FORMAT 
REGISTERS 



Flowchart 300. Snap Dump and 'T'race Formattinq Routine (IIVSNP Part 4 of 10) 

30C/K5 

RA515000 30H/AI 

PRINT DOS 
REGISTERS 

GET LENGTH AND 
MESSAGE FOR DOS 

PERMANENT 
STORAGE 

GET MESSAGE AND 
SIZE FOR DOS 

STORAGE 

RASI5000 30H/AI 

PR I NT MESSAGE 

GET SIZE AND 
ADDRESS OF DOS 

STORAGE 

RASlbOOO 30K/AI 

PRINT ADJUSTED AND 
LOCAL ADDRESSES OF 

DOS STORAGE 

RAS15QOO 30H/AI 

PRINT MESSAGE 
END OF DUMP 

MOVE DOS 
NO REGISTERS 8-15 

TO OUTPUT 
BUFFER 

RASI520Q 30J/AI 

EMPTY BUFFER 

Program Orqanization 325 



.Flowchart 30E. Trace Table Subroutine (IIVSNP Part 5 of 10) 

326 

FROM 30AfJl. 
30C/F2 

BI 

RASI5000 30H/AI 

PRINT TRACE 
TABLE HEADER 

GET ADDRESS OF 
MOST RECENT 

ENTRY 

POINT TO ENTRY 

RASI7000 30G/A4 

CONVERT ENTRY 
TO EBCDIC 

PUT INTERRUPT 
IDENTIFIER IN 
OUTPUT BUFFER 

DOS Emulator Logic 

MOVE INTERRUPT 
psw TO OUTPUT 

BUFFER 

MOVE LOMO TO 
OUTPUT BUFFER 

MOVE NAME TO 
OUTPUT BUFFER 

M~~~ ~8M~~~ ~6' 1-__ '<: 
OUTPUT BUFFER 

MOVE BTR TO 
OUTPUT BUFFER 

30E 
~5 

FROM 30F/03, 
30F IG5 



Flowchart 30F. 

MOVE KEY AND 
ADDRESS TO 

OUTPUT BUFFER 

C~~gLR~~D ~m 
ADDRESS TO 

OUTPUT BUFFER 

RAS 15000 30HI Al 

PRINT RECORD 

MOVE TRACE 
COMPLETE 

MESSAGE TO 
OUTPUT BUFFER 

RASI5000 30H/Al 

PRINT MESSAGE 

Trace Table Subroutine (IIVSNP Part 6 of 10) 

MOVE SENSE TO 
OUTPUT BUFFER 

GET MOST RECENT 
ENTRY, ADJUST 
TABLE ADDRESS 

GET NUMBER OF 
ACTIVE ENTRIES 
TO BE PROCESSED 

AND FORMATTED 

NO MOVE CSW TO 

NO 

OUTPUT BUFFER 

C3 

SYMBOL TABLE 

ROW - RECORD 
DESCRIPTOR WORD 

C4 

MOVE MBBCCHHR t 

SEEK 10 TO 
OUTPUT BUFFER 

MOVE CUU TO 
OUTPUT BUFFER 

RESUME psw 
ID 

Program Organization 327 



Flowchart 30G. 

MOVE CAW TO 
OUTPUT BUFFER 

MOVE 10 AND CCW 
TO OUTPUT 

BUFFER 

- -------- -------------------------------------------------------------------------------------------

Trace Table and EBCDIC Conversion Subroutines (IIVSNP Part 7 of 10) 

MOVE AND READY 
BYTES TO BE 

TRANSLATED TO 
OUTPUT BUFFER 

TRANSLATE TO 
EBCDIC 

~~~M?A~5~)E3, 
30A/H3, 30A/G4,
30BI A I, 30C IE3,
30C/K3, 30E/HI,
30K/CI, 30K/CiI,
30K/H4

328 DOS Emulator Logic

Flowchart 30H.

RAS 15000

GET LOG I CAL AND
PHYSICAL RECORD

LENGTHS

WR I TE OUT BLOCK

SYMBOL TABLE

BDW-BLOCK
DESCR I PTaR WORD

Writ~ Subroutin~s (IIVSNP Part 8 of 10)

~~2M?A~g.!.IGI ,
30A/B3, 30A/D3,
30A/F3, 30Al-J3,
30AlB4, 30B/F3,
30C/F3, 30D/ A I,
30D/FI,30D/-JI,
30E/CI, 30F/EI,
30F/HI, 30K/D3.
30K/K5

AD-JUST LINE

>;::"'_-1 COUNtoA~~2RDING 1----« RESTORE PAGE

LOAD OUTPUT
BUFFER BD~PDATE

RASI5200 30-J/AI

WRITE OUT
RECORD

BLANK OUT INPUT
BUFFER

CHARACTER

NO GET PHYS ICAL
AND HEADER

RECORD LENGTH

RASI5200 30-J/AI

WRITE OUT BLOCK

BU I LD HEADER
RECORD IN

BUFFER

REINITIALIZE
LINE COUNT

RAS15200 3Q,J!Al

WRITE OUT
RECORD

NO UPDATE LINE
COUNT .

Program Organization

Flowchart 30J. Write and Data Formatting subroutines (IIVSNP Part 9 of 10)

RAS15200

81

330 DOS Emulator Logic

FROM 30C/K5,
30K/83

83

FORMAT DATA IN
OUTPUT BUFFER

~.

Flowchart 30R.

GET STORAGE
ADDRESS AND

LENGTH

RASI7000 30G/A4

CONVERT TO
EBCDIC

GET ADDRESS OF
DATA AND LENGTH

RASI700030G/A4

CONVERT TO
EBCDIC

USE NUMBER OF
BYTES LEFT

Snap Subroutine (IIVSNP Part 10 of 10)

~~gM~A~~§/GI ,
30B/A2, 30B/G2,
30CIJ3, 30e/C5,
30D/HI

YES MOVE
:>----\ DISPLACEMENT TO

YES

OUTPUT BUFFER

MOVE I N LOCAL
ADDRESS TO

OUTPUT BUFFER

GET STARTING
DATA ADDRESS

RASIBOOO 30..J/A3

FORMAT BUFFER

GET RECORD
ADDRESS AND

LOGICAL RECORD
LENGTH

RASI5000 30H/Al

PRINT RECORD

GET NEXT LINE

LINE SAME
MESSAGE SET UP

WITH ADDRESS

LINE
SAME

GET NEXT LINE

RAS 11000 30G/ A4

CONVERT TO
EBCDIC

SET NEXT
ADDRESS UP FOR

CONVERSION

RAS I 5000 30H/ A I

PRINT RECORD

Program organization 331

Program Chec·k Intercept Routine (Flowcharts 31A-31C)

Module name: rIVPCI

Entry point name: rrvpcI

Major functions:

• Trace and snap privileged operations
• Give control to a program check user exit if specified

Entered by: IIVRAS

Modules called:

• IIVSNP
• IIVRASnn (program check user exit routine)

Ex1t.s to: .IIVPCE

OS macros issued: None

Input:

• Fields in IIV"RCN (RASCONS)
• DOS storaCje

output: Fields in IIVRCN (R!\SCONS)

Return codes: None

Tables/work areas:

• IIVRCN (RASCONS)
• IIVCON (EMUCONS)
• Local execution list
• OOS storage

Errors detected: None

Messaqes requested: None

332 DOS Emulator Loqic

Flowchart 31A. Program Check Intercept Routine (IIVPCI Part 1 of 3)

SWAP

FROM I I VRAS
ICHART 28B)

B)

I NTERRUPT I ON
ADDRESSES FOR

SNAP

UPDATE NUMBER
OF SNAPS
REMAINING

SNAP EMULATOR
CONTROL BLOCKS

SWAP INTERRUPT
ADDRESSES AGAIN

Program Organization 333

Flowchart 31B. Program Check Intercept Routine (IIVPCI Part 2 of .3)

334 DOS Emulator Logic

GET cuu FROM
INSTRUCTION

BODO

POINT TO NEXT
AVAILABLE TRACE

TABLE ENTRY

MOVE IN LEX PSW
cuu AND

INTERRUPT CODE

INDICATE TRACE
TO BE COMPLETED

Flowchart 31C.

GET CUU FROM
I NSTRUCT ION

8000

MOVE CUU TO
OPT ION MESSAGE

SWAP INTERRUPT
ADDRESSES

Program Check Intercept Routine (IIVPCI Part) of 3)

~78~cT!B~~~JEl ,
318/A3, 31B/E3

II VRASNN

PC USER EXIT
ROUTINE

SWAP INTERRUPT
ADDRESSES

IIVSNP 30A/AI

SNAP EMULATOR
CONTROL 8LOCKS

SWAP INTERRUPT
ADDRESSES AGAIN

NO

NO

TO I I VPCE I CHART 8A I

Program Organization

supervisor Call Intercept Routine (Flowchart 32A)

:-1odule name: IIVSCI

Entry point nane: IIVSCI

Major functions:

• Intercepts DOS supervisor call when TRACE=SVC or SNA?=SVC=nn
is specified

• Gives control to user exit routines

Enter~d by: IIVRAS

Modules called:

• III1SNP
• IIVRASnn (supervisor call user exit routine)

Exits to: IIVSVC

OS macros issued: None

Input:

• Fields in IIVRCN (RASCONS
• DOS storage

Output: Fields in TIVRCN (RASCONS)

Return codes: None

Tables/work areas:

• IIVRCN (RASCONS)
• IIVCON (EMUCON~)
• Local execution list
• DOS storage

Errors detected: None

Messages requested: None

336 DOS Emulator Logic

Flowchart 32A. supervisor call Intercept Routine (IIVSCI)

11 VSC I

FROM I I VRAS
(CHART 28BI

MOVE SVC NUMBER
INTO OPTION IN
EFFECT MESSAGE

INCREMENT
POINTER TO NEXT
MODULE NAME IN

TABLE

MOVE MODULE
NAME FOR SNAP

DUMP

SVC00100

MOVE SVC NUMBER,
SVC INTERRUPT, OLD

1~~~'T~~~ER¥A8~~

IIVSNP 30A/AI

GET LENGTH OF
MESSAGE AND SNAP
EMULATOR CONTROL

BLOCKS

SWAP INTERRUPT
ADDRESSES AGAIN

MOVE DOS MODULE
NAME INTO TRACE

TABLE

GO TO USER EXIT
ROUTINE

SWAP INTERRUPT
ADDRESSES

IIVSNP 30A/AI

SNAP EMULATOR
CONTROL BLOCKS

SWAP INTERRUPT
ADDRESSES AGA I N

TO llVSVC (CHART 17A)

Program Organization 337

Asynchronous Intercept Routine (Flowcharts 33A-33H)

Module name: IIVACI

Entry point name: I IVACI

Major functions:

• PSf,r7 compare
• Trace entry completion
• Second snap for privileged operations
• Local execution exit routine
• Check for asynchronous interruptions (trace and snap)
• ~ive control to user exit routines

Entered by:

• Entry point address placed in EWJCONS (ART20 by IIVRCP)
• I IVPCE
• IIVLOG
• IIVRTE
• IIVSTG
• IIVRAS

Modules called:

• IIVSNP
• IIVRASnn (local execution user exit routine)

Exits to: I IVRTE

OS macros issued: None

Input:

• Fields in module IIVRCN (RASCONS)
• COI-1TAB
• DOS storage

Output: Fields in module IIVRCN (RASCONS)

Return codes: None

Tables/work areas:

• IIVRCN (RASCONS)
• EMUCONS
• Local execution list
• COMTAB
.> DOS storage

Errors detected: None

Messages requeste~: None

338 DOS Emulator LOgic

Flowchart]3A. Asynchronous Intercept Routine (IIVACI Part 1 of 8)

(IVACI

FROM IIVPCE (CHART __ ___ ~~t r • I m2¥E 19~~~~T
20A) I I I VSTG (CHART
11..1), IIVRAS (CHART
288) (ONLY WHEN
SERVICE AIDS ARE

POINT TO
CURRENT TRACE

ENTRY

ZERO RPSW FIELD

MOVE IN RESUME
PSW (RP5W)

ACT I VEl

MOVE IN RESUME
PSW IRPSWI

SEARCH COMTAS
CHAIN FOR

MATCHING CUU

Program organizdt:ion .3]Q

Flowchart 33B. Asynchronous Intercept Routine (I IVACI Part 2 of 8)

340

INDICATE SEEK
AND MOVE IN

M88CCHHR

USE CAW FROM
COMTA8 (COMCAWI

MOVE CAW AND
FIRST CCW TO

TRACE TABLE

USE CAW FROM
DOS MAIN

STORAGE

MOVE CCW OP
CODE AND lOB

SENSE BYTES TO
TRACE TABLE

DOS EroulatorLoqic

~~~M:A§~1)E3 , 
33A/H3, 33A/GI, 
33C/G3 

RESET TRACE 
INCOMPLETE 

SWITCH 

UPDATE TRACE 
TABLE POINTERS 

RESET 
ASYNCHRONOUS 

ALREADY CHECKED 
FLAG 



Flowchart 33C. 

MOVE 110 CODE 
TO TRACE TABLE 

Asynchronous Intercept Routine (IIVACI Part 3 of 8) 

FROM 
330/01, 
33D/E I, 
33D/FI 

POINT TO 
CURRENT TRACE 

ENTRY 

MOVE TYPE OF 
INTERRUPT TO 
TRACE TABLE 

INT~2~GpfU~~Wt 
AND CSW TO 
TRACE TABLE 

SET 
ASYNCHRONOUS 
INTERRUPTION 

INDICATOR 

YES 

MOVE DOS 
EXTERNAL OLD 
PSW TO TRACE 

TABLE 

Proqra~ Orqanization 341 



Flowchart 13D. 

INDICATE TIMER 
INTERRUPT 

------~------------------------------------

Asynchronous Intercept Routine (IIVA.t;I Part 4 of 8) 

INDICATE 
EXTERNAL 
INTERRUPT 

342 008 Emulator Logic 



Flowchart 33E. Asynchronous Intercept Routine (IIVACI Pa.rt 5 of 8) 

Program 0rq~nization 343 



Flmoichart 3.3F. Asynchronous Int.ercept Routine (JIVi.\C! Part 6 of R) 

344 DOS Emulator Logic 



.Flowchart 33G. Asynchronous Intercept Routine (IIVACI Part 7 of 8) 

3~~~8~~E~~~'E4, 
33F/E4, 33F/F4 

RTER2315 

SWAP INTERRUPT 
ADDRESSES 

DECREMENT 
NUMBER OF 

REMAINING SNAPS 

SNAP EMULATOR 
CONTROL BLOCKS 

SWAP INTERRUPT 
ADDRESSES AGAIN 

YES 

Progrdm Orqanization 345 



------------- ~--~~ --~--.-------------------

F'lowchart 33H. Asynch.ronous Intercept Routine (IIV!\CI Part 8 of 3) 

Al ~3H FROM 33F/C3 
33F/F4, 33G'EI, 
33GI A3, 33G/E4 

RTER2999 Al 

I I VRASNN 

LEX USER EXIT 
ROUTINE 

SWAP 
I NTERRUPT I ON 

ADDRESSES 

I 1 VSNP 30A I A I 

SNAP EMULATOR 
CONTROL BLOCKS 

SWAP 
I NTERRUPT I ON 

ADDRESSES AGAIN 

TO [I VRTE AT 

NO 

NO 

I I VRTER2 (CHART 
208) 

346 DOS Emulator Loqic 



Servic(~ Ai,isn.djust CC'iJ Data l\ddress Rou+.in~ (Flowchart.s 34\- 34H) 

Module name: IIVPCW 

Entry point name: JIVPC1J.J. ReC~~li.B4 

Major functions: 

• Ad;usts data addresses in a strinq of CC'~S before being passerl to as for 
an I/O operation and aft.er completion of the CCW function in os 

• The CCt·Jf s are adjust(~d in the DIl\G block built hy ITVRCP when the DT.l\G 
feature is called 

Entered by: 

• IIVPCE 
• IIVCHK 
• rIVRTE 

• I IVAD,l" 
• IIVMSG 

Exits to: 

• IIVPCE 
• ItVCHK 
• Caller 

OS macros issued: None 

Input: 

• Adjustment- factor 
• Pointer to a ern strinq 
• Pointer to the local execution list 
• Pointer to the Brrulator constants are"! (.IIVCON) 
• Point.er to CGr-lTAB 
• Local limit iH~dress 

Output: .Adjusted CCW string 

Return codes: 

• Error coile 16 for ITVABN 
• Error code 20 for ITVJ\BN 

Tables/work areas: 

• Adjust CCW data address list (located in I IVCON) 
• BEBLK CC1J.J addresses for adjusting 
• status modifier table used to find status modifier-type CCWs 
• RCCWSAVE regist.er save area 
• DrAG block 

Errors detected: 

• BEBLK is filleo and CCW adjusting cannot proceed 
• Adjusted address"'!s not within DOS storage area 

Messages requested: 

• IIV280I 
• IIV281I 

Program Organization 347 



Flowchart 34A. service Aids .Adjust CCW Data Address Routine (IIVRCW Part 1 of 8) 

348 

FROM IIVPCE 
(CHART 8M). 
I I VCHK (CHART 
9BI 

SAVE ACTUAL 
ADJUSTMENT 

FACTOR 

ADJUST LIST 
LIMIT ADDRESS 

ZERO OUT BEBLK 

POINT TO FIRST 
OIAG BLOCK 

POINT TO NEXT 
DIAG BLOCK 

F2 

SAVE DIAG BLOCK 
ADDRESS 

SET DIAG 
FEATURE ON 

DOS Errulator- Logic 

34A 
C3 

FROM 
34B/G4, 
34B/H4, 
34G/D2, 
34G/83, 
34G/E3 

ISSUE ADJUST 
CCW STRING 
INSTRUCTION 

RES TORE LI S T 
LIMIT ADDRESS 

IIVADJ 16AiA2 

ADJUST CCW DATA 
ADDRESS ROUTINE 

TURN OFF ABEND 
BYPASS SW ITCH; 

RESTORE 
REG I STERS 

SYMBOL TABLE 

LIST-ADJUST CCW 
DATA ADDRESS 

LIST 



Flowchart 34 B. 

MOVE CCW 
POINTER ADDRESS 

FROM LIST TO 
BEBLK 

Service l\ids Adjust CC\~ Data Address Routine (IIV'RC."W Part 2 of 8) 

UPDATE BEBLK 
POINTER 

PUT DATA 
CHAINING 

COMMAND CODE IN 
LIST OPERATION 

BYTE 

SUBTRACT I FROM 
STATUS MODIFIER 

COUNTER 

POINT TO NEXT 
PREVIOUS CCW 

SYMBOL TABLE 

LIST -- ADJUST 
CCW DATA 

ADDRESS LI ST 

Program Organization 349 



Flowchart 34C. Service Aios Adjust CCW Data Address .Routine (IIVRCW Part 3 of 8) 

150 

SYMBOL TABLE 

LIST -- ADJUST CCW 
DATA ADDRESS LIST 

MOVE CCW 
ADDRESS FROM 
BEBLK TO LIST 

CCW POINTER 

MOVE OPERAT I ON 
BYTE AND 
OPERATION 

POINTER FROM 
BEBLK TO LI ST 

ADD 8 TO 
INCOMPLETE 
BEBLK ENTRY 

POINTER 

DOS Emulator Lorrie 

READ0UST LIMIT 
ADDRESS IN LIST 

FROM 34D/C5. 
34E/D3 

RESTORE 
REGISTERS; TURN 

OFF ABEND 
BYPASS SWITCH 

~Y~E~S __ ~DIAG~5~~0~EoCK 

MOVE CCW 
ADDRESS FROM 
BEBLK TO LIST 

CCW POINTER 

ADDRESS 

IIVADJ 16A/A2 

ADJUST CCW DATA 
ADDRESS ROUTINE 

FROM STAE 
RETRY ROUTJ NE 
IN IIVRTE 
(CHART zoe) t 
ALSO 34D/K4 

TO IIVPCE (CHART 
8M) OR II VCHK 
(CHART 9B) 

POINT TO FIRST 
BEBLK 

PO I NT TO BUFFER 
IN 0 I AGNOSE 

BLOCK 

J5 



Flowchart 34D. 

STORE ADD OF 
BUFFER IN BEBLK 

ENTRY 

COMPUTE LENGTH 
OF DOS CHANNEL 

PROGRAM AS 
PO I NTED TO BY 

BE8LK 

ADD THIS LENGTH 
TO BUFFER 

ADDRESS 

POINT TO FIRST 
BEBLK 

EXCHANGE ALL 
CCW'S IN BUFFER 

AND ccw' SIN 
DOS BEBLK 

Service Aids Adjust ccow nata Address Routine (IIVRCW Part 4 of 8) 

ISSUE ADJUST 
CCW STRING 
INSTRUCTION 

[IVADJ 16A/A2 

ADJUST CCW DATA 
ADDRESS ROUTINE 

I 1 VMSG 27 A I A 1 

NO r;;l 
'V' 

ISSUES MESSAGE 
II V28' I 

MOVE X'FF' IN 
01 AGNOSE CUU 

LOCATE ADDRESS 
GIVEN BY TIC IN 

ONE OF THE 
BUFFERS 

COMPUTE 
CORRESPONOING 

DOS TIC ADDRESS 
AND STORE IN 

ccw 

RESTORE [OBCAW 
TO DOS START 

ADDRESS 

LOOK FOR IOBCSW 
ADDRESS I NONE 
OF THE BUFFERS 

IIVMSG 21A/Al 

I SSUES MESSAGE 
II V2801 

STORE DOS 
ADDRESS IN CSW 

RESTORE IOBCAW 
TO DOS START 

ADORESS 

RESTORE ACTIVE 
FLAG IN 

DIAGNOSE 

COMPUTE 
CORRESPOND I NG 

DOS ADDRESS AND 
STORE IN IOBCSW 

RESTORE ACTIVE 
FLAG IN 

DIAGNOSE 

Program organization 351 



Flowchart 34E. service Aids Ad just CCW Data Address Routine (IIVRCW Part 5 of 8) 

352 

FROM 34D/HI 

POINT TO FIRST 
BEBLK 

MOVE CCW FROM 
DOS TO BUFFER 

ISSUE ACCW 
INSTRUCTION 

LOCATE ADDRESS 
GIVEN BY TIC IN 

ONE OF THE 
8EBLK 

COMPUTE 
CORRESPOND I NG 

as TIC ADDRESS 
IN THE BUFFER. 
STORE IN CCW 

EXCHANGE CCW'S 
BETWEEN BUFFER 

AND DOS 

YES 

DOS Emulat.or Loqic 

SET IOBCAW TO 
POINT TO BUFFER 

SET ACTIVE FLAG 
IN DIAGNOSE 



Flowchart. 34F. 

MOVE cew 
PO I NTER FROM 
LI S T TO BEBLK 

ADD AD,JUSTMENT 
FACTOR TO TIC 

ADDRESS IN LI ST 

ADD 8 TO BEBLK 
POINTER 

COMB04A 34H/A4 

COMB I NE ROUT I NE 

LIST - ADJUST 
CCW DATA 

ADDRESS LIST 

NO 

Service Aids Adjust CCH Data Address Routine (I IVRC>;-l Part 6 of 8) 

COMBINE 34H/A2 

COMBINE ROUTINE 

MOVE TIC-TO 
ADDRESS FROM 
L I 5T TO BEBLK 

Program organization 353 



Flowchart 34G. Service }\ids Adjust CCW Data Address Routine (IIVRCW Part 7 of 8) 

34F I J4 

UPDATE 
INCOMPLETE 

ENTRIES POINTER 

SYMBOL TABLE 

LIST - ADJUST 
CCW DATA 

ADDRESS LIST 

SUBTRACT 8 FROM >----1 INCOMPLETE 
ENTRIES POINTER 

MOVE BEBLK 
CURRENT START 

ADDRESS TO 
INCOMPLETE 

START ADDRESS 

MOVE OPERATION BYTE 
AND OPERATION 

POINTER FROM LIST 
TO INCOMPLETE END 

ADDRESS 

351.1 DOS Emulrttor Logic 

MOVE CURRENT 
.>N;.:O __ -I ADg~~~~ nA~T ST 

CCW POINTER 



Flowchart 34H. Servic~ .!\ids Adjust Cc:;.r Data Addn~ss Routine (IIVRCH Part R of R) 

MOVE BE8LK 
BEGINNING 

ADDRESS TO 
COMBINE POINTER 

B4 J----.... 

B4 

>ROM II vRCW 
(CHART 34FI 

Program organization 355 





DIRSCTORIES 

Emulator Module Directory 

Data Area Directory 

Emulator Macros 

Symbol Table 

Field Name Table 

Directories 357 



EMULATOR MODULE DIRECTORY 

Figure 28 contains information about the physical structure of the Emulator. 
The column headings and their meanings are: 

Module Name. 
or transient 
listings are 

The name of the object module containing the routine, table, 
area being described. The microfiche cards containing program 
ordered by object module names. 

Function. The Emulator routines are grouped according to operation: 
initialization, synchronous interruptions, asynchronous interruptions, direct­
access volume sharing, abnormal end conditions, message writer, and service 
aids. The flowcharts in the section "Program Organization" are divided into 
these groups. For a precise definition of fUnction as it relates to a 
particular routine, see the functional and routine descriptions given in the 
section "Method of Operation." 

Name of Routine, Table, Transient Area. 
transient area being described. 

The name of the routine, table, or 

Entrv Point Name. Symbolic labels for routine entry points. 

Control Section Name. The name of the control section containing the item. 

""P,.=L:.oM.::....;R;.;e~f-=e:.::r=-e~no=..:;c...:e'--_D=:;escr i pt i On Page. 
described. 

The page on which a particular item is 

PLM Reference - Flowchart Number. 
routine. 

The flowchart number for the appropriate 

Entry Control PLa Reference 
Module ~;ame of Routine, Table, Point Section Descrip- Chart 

~ Function Transient P.rea :lame :.Jarne ticn P~. !Jo. 

rG~019SI\ SrO,EOX,abn. Start r/c, end-of-extent, channf'l end, 
end, ce and abnormal end appendage IGGO 1 9S~, IGG019SA 73 187,-18B 

1GG019S1 llbn. end, ce l.bnormal end/channel end appendage IGG()19S1 1GG019S1 74 1 ~,' 

lIV1\BN Abnormal Exit-1UJE1W error routine I IV1JW I IV?\P?1 101 26i-26!l 
,nd condo 

lIV}lCI Service aids 7'.synchronous intercept routine lIV!.C1 II\TI.CI 108 331\-33l! 

IIVADD 1nit. 1PL add routine lIVJI.DD lIVADD 51 41,-4D 

IIVIllJ Sync.int. ec\V adjustment routine IIVADJ !IV/,DJ 71 167\-16D 

lIVl,\/V Sync.int. CA~'I verification routine IIVA,IV IIVAV1V 68 121\ 

lIvee,1 Sync.int. Adjust CC'!l data address routine IIVCC:. lIvce;; 69 15i\-15F 

IIVCIll( Sync.int. Check I/O routine IIVC~;K IIVCHK 61 9A-9D 

IIVCWV Sync.int. CCN verification routine IIVClIV IIVC!~' 68 131. 

IIVDVS D.A. volume shar. ilevice s:1aring simulation routine lIVDVS IIVDVS 80 23h-2311 

lIVEHT Init. DOS :emulator entry routine lIVE~,T lIVEt!T 43 1[, 

lIVEllT Init. DOS Emulator constants area (~'llCO:1S) IIVC0N 435 :VJ\ 

lIVPCB Sync.int. Carriage tape storage image table IIvrCB lIVFeB 26 N/,' 

IIVGET Init. GETrl1"IIT/FREE~Tl\IN routine: I IV";ET IIVGET 54 71, 

IIVGR2 D.l .. volume shar. svc monitor routine IIVG'\2 IIVGR2 79 22t.-22D 

IIVINT 1nit. Initialization first-load routine lIVI,lT IIVHlT 43 21.-211 

IIVIN2 Init. Initialization second-load routin~ IIV1N2 IIvm2 47 31.-31" 

IIVIS D.A. volume sharf ISj,\1-~ mapping routine IIVIS 11V1S 88 24A-24L 

IIVLOG Sync.int. Interpretive SYSL'lG routine I IVLOG 11VLOG 62 1 O!.-1 DE 

FigUre 28 (Part 1 of 2) . Emulator Module Directory 

358 DOS Emulator Logic 



Uodule 
Name 

IIVLOG 

IIVLOG 

IIV:.lSG 

IIV~IGl 

IIVlIG2 

IIVl1G3 

IIVOPN 

IIVPCE 

IIVPCI 

IIVPOV 

I IVPPP 

IIVPRl 

IIVPUB 

IIVPUl 

IIVPU2 

IIVPU3 

I IVRhS 

I IV!",A8 

IIV'lCP 

IIVRC'1 

IIV!~D' 

IIVED2 

IIV:\D3 

IIVI1Pl 

IIVRTE 

I IVP.TE 

IIVI'TE 

IIVRTE 

IIVRTE 

IIVP.TE 

I IVRTJ: 

IIVRTF. 

IIVSCI 

IIVSDT 

IIVSNP 

IIVSTG 

IIVSVC 

IIVVIO 

Function 

Sync.int. 

Sync.int. 

Uessage writer 

lIessage "lri ter 

/less age writer 

I!essage writer 

Init. 

Sync.int. 

Service aids 

Sync.int. 

l~sync. int. 

Sync.int. 

Init. 

Sync.int. 

Sync. int. 

Sync.int. 

Service aids 

Service aid3 

Service aids 

Service aids 

Sync.int. 

Sync. into 

Sync.int. 

Z,sync. into 

l'l.Rync. int. 

l\.sync.int. 

il..sync. int. 

Async.int. 

Async.int. 

ltsync.int. 

Service aids 

Init. 

Service aids 

Sync.int. 

Sync.int. 

D.A. volume share 

Name of Routine, Table, 
Transient Area 

Interpretive SYSLOG routine 
Entry point 1 

Interpretive SYSLOG routine 
Entry point 2 

I~ssage >triter routine 

Init'.alization message texts 

Post-initialization message texts 

Volume sharing and service aids 
message texts 

Open routine 

Program check executive routine 

Program check intercept routine 

Printer overflml routine 

Prompt reply proceS30r routine 

1403/1443 printer translate ta!)le 

os PUll table build routine 

1442 punch commands translate tar,le 

2520 punch cor:ur.andr.; tran'31at~ tal'le 

3525 punch commands translate'table 

Service aids initialization routine 

Cons tants area (:-'~\?C':\!7S) 

Cor.unand proces30r routine 

Service aids adjust CC:"l dcta address 
routine 

1442 reader corr,mands translate 
table routine 

2520 reader COf_-.man0.s translate tabl~ 

2501 translate tahle 

2540 translate table 

l\.synchronous interrupt exit routine 

Entry 
Point 

~ 

Control 
Section 

~ 

IIVLOGP.l IIVLOG 

IIVLOGR2 IIVLOG 

IIV.'ISG IIVlISG 

IIVI!Gl 

II V11G 2 

IIVl1G3 

IIVOPN IIVOPll 

IIVPCE IIVPCE 

IIVPCI IIVPCI 

IIvpnv I IVP0'! 

IIVP'lP IIVPRP 

IIVPRl 

IIvrUB IIVPcB 

II'lPUl 

IIVPU2 

IIVPU3 

IIV~l\S 

Il'TRCP 

IIVRDl 

IIVRD2 

II"lPD3 

IIVRP 1 

IIVRT[ IIVRTE 

..:~ynchronous interrupt -:::heck. sll!)routine IIV~TFC:C I IV?TE 

Fnd-of-Job routine 

I,synchronous interrupt exit routine 
Entry point 1 

Route routine, entry point 2 

Select routine 

Timer interrupt subroutine 

Timer interrupt check subroutine 

Su:)ervisor call intercept routine 

Staged. device table 

IIV'lTEOJ I IVRTE 

IIVRTE!":l IIVRTE 

I IVH.Tf ~2 IIVRTE 

IIVRTESL IIVRTE 

IIVRTET" I IVRTE 

TII1ECEl: I IVRTE 

IIVSCI IIVSCI 

IIVSDT 

SiJl:..P dump and trace formatting routine IIV~UP II VS HP 

Staged I/O routine IIVSTG IIVSTG 

Supervisor call routine IIVSVC IIVSVC 

Device sharing VXOC I/O routine IIVVIO 

Figure 28 (Part 2 of 2). Emulator Module Directory 

PLM Reference 
Descrip- Chart 
Hon Pg. ~ 

£3 

63 

101 

101 

101 

101 

51 

54 

107 

6S 

7B 

26 

53 

26 

26 

26 

104 

441 

105 

103 

26 

26 

26 

26 

74 

77 

77 

74 

75 

76 

77 

77 

107 

49 

105 

72 

96 

10C 

10E 

27!. 

:1/1\. 

N/A 

N/ll . 

81.- 8T] 

31A-31C 

14[. 

211\.-211: 

':/1. 

29i'-29r 

:l/A 

:!If, 

20L-20(; 

20;:-20r 

20r; 

20l. 

20D 

20C 

20D 

20D 

321\ 

30Zl-30K 

11/.-11:1 

17.1\ 

25A-25E 

Directories 359 



DA~A AREA DIRECTORY 

Figure 29 contains a summary of information about the major data areas used 
by the Emulator. ~he column headings and their meanings are: 

Data Area Name. Names the data area and its ahbreviation, if there is one. 

~eginnina Symbol. Identifies the beginning of the data area and can be used 
to locate the data area in the program listings. 

Creation. contains some indication as to the origin of the data area. 

"Requestor" means that creation and maintenance of the data area is the 
responsibility of the requestor. ·other requestors do not have to explicitly 
create the needed data area. 

storage Area. Indicates where the data area is in main storage. 

Size. Gives the size of the data area. 

Means of Access. Indicates the most commonly used way of referring to the 
data area or one of its fields. 

Data Area Uame 

:.djust CO) data 
address list 

Beginning and 
end block 

C:1annel address 
word (CAl;) 

Channel command 
'JOrd (CCW) 

Channel status 
'JOrd (CSW) 

Command control 
block (CCB) 

Communications 
table (COHTAB) 

COHTAB extension 

DASD label (DLBL) 

Data control 
block (DCB) 

Data event 
control bloc!< 
(DtCB) -- £ISrJi 

Duta extent 
block (DEB) 

Beginning 
Symbol 

RCCWLIST 

llEBLK 

DOSCAvl 

~one 

DOSCS.} 

DOSCCB 

COt:TI\Il 

CTEXT 

DLBLDS 

IHmlCB 
(DSEC~') 

DECBECI3 

~~onc 

Created by 

Emulator 

r.mulator 

D0S 

Requestor 
when needed 

Emulator 

DOS 

Emulator 

Emulator 

JOS 

r::mulator 

Emulator 

OS curing 
open 

Storage Area Size 

Emulator area 2q bytes 

Heans of Access 

Beginning symbol 

E~ulator area 2qO bytes Beginning symbol 

DOS supervi.sor Word 
area 

DOS storage area 
plus 72 

DOS problem Doubleh'ord ~ddress of requestor's 
first CCW is contained 
in the DOS c.~~W 

program area 

DOS supervisor :Jouble',vord 
area 

DOS storage area plus 
6q 

DOS problem 
program area 

Emulator area 

Enulator area 

DOS 
B- transient 
area + 1192 
bytes 

Emulator area 

Emula tor area 

Protected 
storage 
I:inulator area 

16 byte Register' at SIO 
entry for execution 
each channel 
program 

aq byte entry Address in IIVCON 
for each 
device + 1 for 
SYSLOG 

Gq hytes l.ddress in IIvcon 

variable Address in ~OS open table 
for sequential disk; in 
problem program label area 
for direct-access disks 

Variable Cor:TlIll - symbolic 
names equated to 
offsets of fields 

26 bytes Immediately follows FIDBL}; 

Varies with DCB - Stml":Jolic names 
device and equated to offsets of 
access met~o6 fields 

Figure 29 (Part 1 of 3) • Data Area Directory 

360 DOS Emulator Logic 



Data Area Name 

Data set control 
hlock (DECll) 
format 1 

~)-3. ta set control 
block (flSCB) 
fOrITlut 3 

D<3.ta set 
control hlod: 
(O::;CB) -­
format 4 

lleginning 
Symbol 

OBF1:lA'::'I. 

OBF3LflL 

'jane 

QIAG block DIAGBLK 

DT!"'IS ADD-.PJ::T;'VI:- IJ;::C':'flL' 
/.uDF'l'R tahle 

Lven't control 
bloc:C (ECll) 

l:CL pointer 
table 

)'ilc In bloc).: 
(FIDBL}:) 

IIVe);: 

I IVnc:.:r 

Input/output 
block (1"8) 

151\:·! block 

1SK/SSK 
table 

Job file control 
illocy. (JFCll) 

Local execution 
list 

Logical unit 
block (LUB) 

::onc 

ECllLIS1' 
(pointer) 

PIV[;I,l{ 
(DSeCT) 

IIVCDi<T 

IIVRCH 

Ir)l:lDSECT 

ISBLK 
(DSL:CT) 

ISSI~T;~B 

(pointer) 

JFCBi\H..L:I. 

)., [.fU.L. IS'l' 
(point to 
0H.ILIS'r) 

Created by 

os space 
allocation 
routine or 
DO[; open 
routine 

S tor age ~rea Size 

VT:>C 

os S [J.:lce VTCC 140 bytes 
allocation 
routine or DOS 
open routine 

Utility 
rrograms 

Emulator 

DOS 

=:mulator 

Enulator 

:.:mulator 

Euulator 

Emulator 

Err.ulator 

.cIT,ulator 

r:mulator 

os 

Emulator 

DOS 

'-,~JC 

rmulator area 112 hites 

CC;S probler.. Variab10 
)rogrcml area. 

iY)S problem Vo.ric.blc 
proJram area 

C:Y!T:\3 I'!ord 

:emulator area 4 byte entrj 
for each ;)CE, 
SYST/iC, anJ 
3 s~ccial 
:-:CBs 

L:::lala tor ar~a 1t; byte::; 

LmulC'1tor area 1208 :1ytes 

LI:\ulator area ,58 byte"5 

E:nulator area 10 words 

Lmulator area 383 or 
G24 bytes 

emulator area 1 byte entry 
for each 2K 
bloc~~ of DOS 
5 tor<1.ge 

ll_uxiliarl 176 Lytes 
storage 

I:r:;ulator area 10 words 

:JOS supervisor 2 byte> entry 
arc.:;. for euc!-, 

logicul unit 
in LUi} table 

Figure 29 (Part 2 of 3). Data Area Directory 

Hcans of Access 

OBTf.IN 

()[;TlIl:l 

Chann~l :,rogra:n 

Address in II,\,rCON 

DOS register 0 (point~ to 
fulhror rl con3t:'.mt) at SE'l'L; 
DOS register 1 at CET/PUT/ 
LSETL/RE'D/WP1TI:j,;!\ITF; DOS 
register 2 at (}PEN/CLOSE 

:J()~.; r.'3gi.3 t,::>r a (points to 
full~Gr~ constant) at 
sr':TL/:i.J\fI.JJ'L; DOS register 
, at ldRITl.:; DOS register 2 
at CPr::N/CIJ,)SJ' 

J\ddress in IPlcon 

r.xtp.rnal ref~rencc (see 
L:nulator linkage editor 
mapl 

}\daress in modu Ie 
IIVf'J,S anl~ IIVC0H 

~6drC3S in ISFEGfV\ 
fielu (follm';ng 
FlillJLI: field. I/hich 
is pointed to oy 
I 1VCON) 

l.ddress in I1'\;JCOI'i' 

i.(DJFC~~ macro (IIVCOn) 

l.,jdress in II\'c(~:r 

Address ill IIVCON and 
DOG cOr:"!.lnunication region 

Directories 361 



Beginning 
Data '~rea Name S:/:mbol Createc. by Stora~e Mea Size 1·~ean3 of lI.ccess 

Open table DOS DOS 208 bytes l"ddress in DOS register 
B-transient 15 "hen open phases are 
area in control 

OS PUB table ~-Jone r::mulator L'mulator area l-byte entry Address in IPICOIJ 
for each PUB 
entry 

Physical unit ~Jone DOS DOS supervisor 8 byte entry !'\c1dress in IrVCON and 
block (PUB) area for each DOS communication 

device in region 
DOS PUB tar ... Ie 

Post ECB list tJone Emulator Lmulator area 2 byte entry Address in IIVCO" 
for each device 

Program informa- DOSPIB DOS DOS supervisor 16 bit entry Address in IIVCON and 
tion block (PIB) area for each PIE DOS communication region 

in PIB table 

Progran status DOS l\.C!.justment Double\"ord DJS storage assignment 
\--:ord (PS'/) factor plus plus adjustment factor 

DOS SVC old PSI-/ DOSSVClLD 32(20) 
DOS SVC ne\'l PSi~ DOSSVNE',~ 96 (60) 
DOS program old DOSPGOLD 40(28) 

PSH 
!)OS program ne\I !)OSPGNCh' 10'1 (68) 

PS,'I 
;)OS I/C old PSV/ DOSIOOLD 06 (38) 
DOS I/O neu PSI'/ DOSIONE;'I 120 (78) 

DOS external old DOSXTOLD 24 (18) 
PSil 

DOS external neu DOSXT:!EI'/ 38(58) 
psn 

DOS macJ1ine U()S!:CO! .. D 48 (30) 
check old PSI; 

DOS machine DOSltCllFW 112 (70) 
check ne\T PSN 

Staged I/O STGCOll :emulator Dummy lOB 10 words CO~-ITI~B 

constants block 
(STGCO'l) 

'l'ape error none UOS DOS supervisor 6 byte3 Pl7B 
block (~'EB) area 

'rape error by .~Ione DOS !):)S su?ervisor \.'aria1")le :\cldress in 00S Bf: 
volume (TEBV) area CO:·mEG exten<;ion 

Task inpu t/ au tpu t I.lone OS I1"T-OS problem Variar)le i\.d<.:iress in IIVCO~! 

table (TIO'.r) prograr." area 
;.~.vT --
protected 
~tcrage 

Unit control :Jone OS OS nucleus Variable DEB 
block (UCB) 

Volume label OBVOLl Utility Cylinder 0, 80 c:laracters I IVCC'i'l 
programs track 0, 

record 3 

Figure 29 (Part 3 of 3) • Data Area Directory 

362 DOS Emulator Logic 



EMULATOR MACROS 

The Emulator program makes use of several macros, most of which are DSECTs, 
to describe common Emulator data areas. The macros are identified and described 
as follows (Figure 30): 

Emulator 
Macro 

COMTAB 

CTEXT 

DEBD 

DLBLD 

DOSCCB 

DOSCOM 

DOSCORE 

DOSPIB 

DOSPUB 

DOSREGS 

DRILIST 

DTFD 

DTFISDST 

Issuing 
Module(s) 

IIVGR2, IIVPCE, IIVVIO 
IIVPRP, IIVLOG, lIVIS 
JIVABN, lIVCHK, IIVSNP, 
rIVACI 

IIVGR2, ITVDVS, IIVPCE, 
lIVVIO, lIVTS, IIVSNP 

IIVPCE, TIVDVS 

TIVGR2, IIVDVS 

TIVPCE 

IIVGR2, IIVDVS, TIVPCE, 
IlVCHK 

TIVPRP, IIVLOG, IIVCHK, 
TlVRAS, rIVACI 

llVOPN 

IIVPRP, IIVCHK 

All modules 

All modules (contained 
in EMUCONS) 

IIVGR2, lIVDVS 

IIVlS 

Function 

Creates a DSECT that describes 
one entry of the Emulator com­
munications table. 

Creates a DSECT that describes a 
COMTAB extension entry. 

Creates a DSECT named IIVDEB 
that describes a DEB. 

Creates a DSECT named DLBLDS 
that describes the DLBL card image. 

Creates a DS~CT that describes 
the DOS CCB. 

Creates a DSECT that describes the 
DOS communication region~ 

Creates a DSECT that describes the 
first 128 bytes of DOS storage. 

Creates a DSECT that describes the 
DOS PIB. 

creates a DSECT that describes one 
DOS PUB table entry. 

Equates labels to the 16 general 
purpose registers. 

Creates a DSECT that describes the 
local execution list and the 
adjust CCW data addreEs list. 

Creates a DSECT named DTFDS 
that describes the DTF. 

Creates a DSECT that describes 
the DTFIS tables. 

Figure 30 (Part 1 of 3). Emulator Macros 

Directories 363 



Emulator 
Macr_o __ 

EMUCONS 

EMUMSG 

FIDBLK 

FMTRC 

ISBLK 

.MGTXT 

MSGCODT 

OBTNWK 

Issuing 
Module (s) 

All modules 

IIVINT, IIVADD, 
IIVPUB, IIVPRP, 
IIVS'T'G, !IVRTE, 
IIVGET, IIVOPN, 
IIVDVS, IIVRCP, 
lIVRCW, IIVCHK 

IIVGR2, IIVDVS, 
IIVSNP 

IIVSNP 

IIVIS 

IIVIN2, 
IIVABN, 
IIVPCE, 
IIVGR2, 
IIVRAS, 

IIVIS, 

IIVMG1, IIVMG2, IIVMG3 

IIVMG1, IIVMG2, IIVMG3 

IIVDVS, IIVVIO 

Function 

Describes the Emulator constant 
area, which contains data constants 
common to most Emulator modules. 

EMUCONS can be used in two 
different ways: 

• If the positional parameter 
is omitted, it generates a 
CSECT called IIVCON. This 
CSECT is the common data area 
of the Emulator. The CSECT 
option is used by the Emulator 
entrv routine (IIVENT). 

• If the positional parameter 
DSECT is coded, this macro 
generates a DSECT called 
EMUCONS, which describes the 
Emulator constant CSECT, 
I IVCO'N. 

Provides linkage to the Emulator 
message writer (IIVMSG), which 
sends messages to the operator 
and programmer. 

Creates a DSECT that describes 
the FID. 

Creates a DSECT that describes 
the formatted trace table printed 
when the TRACE command is invoked 
by IIVSNP. 

Creates a DSECT that describes the 
ISAM block (ISBLK1. 

Generates the message text and 
controls information for supple­
mental text. 

Generates an index table to 
locate and process the message 
text. 

Creates a work area for VTOC labels 
used by IIVVIO and IIVDVS. If 
the keyWord parameter DSECT is 
present, only a DSECT to describe 
the area is generated. 

Figure 30 (Part 2 of 3). Emulator Macros 

364 DOS Emulator Logic 



Emulator 
Macro 

RASCONS 

STGTAB 

TRCDSCT 

Issuing 
Module (8) 

IIVRAS, IIVRCP, IIVSNP, 
IIVACI, TIVPCI, IIVSCI 

IIVPUB, IIVOPN 

IIVACI, ITVPCI, IIVSCI, 
IIVSNP 

Function 

Describes Emulator service aids 
constant area, which contains data 
constants required by all service 
aids modules. 

RASCONS can be used in two 
different ways: 

• If the keyword parameter is 
omitted, it generates a CSECT 
called IIVRCN. ~his CSECT 
is the common data area of the 
service aids modules. The 
CSECT option is used by 
module IIVRAS. 

• If the keyword parameter 
DSECT is coded, this macro 
generates a DSECT called 
RASCONS, which describes the 
CSECT, IPTRCN. 

Creates a DSECT that describes 
module IIVSDT. 

Creates a DSECT that describes the 
internal trace table format (see 
figure entitled "Internal Trace 
'T'able Format"). 

Fig'Jre 30 (Part 3 of 3). Errulator Macros 

SY~1BOL TABL E 

The symbols (or labels) in Figure 31 are contained in flowcharts in the "Program 
Organization" section of this publication. The list can be helpful when program 
listings are being used. If there is a symbol at, or nearby the instructions 
in question, refer to this list to locate a flowchart, a routine name, or a 
module name that could either answer your question or provide a context that 
might lead to an answer. 

Users of this list should be aware of its limitations; in particular, the 
flowcharts do not contain all labels to be found in the program listings. 
A full description of the characteristics of the flowcharts appears in the 
"Program Organization" section. 

Directories 365 



symbol 

ABSNAP 
ADDCHK 
ADDCHK20 
ADDPUB 
ADDSTG 
ADD2400 
ADD3400 
ADJ01 
ADJ02 
ADJ03 
ADJ04 
ADJ05 
ADJ06 
ADJ07 
ADJ08 
ADJ09 
ADJ10 
ADJ11 
AERTOOO 
ASCHCK04 
ASCHCK07 
ASCHCK08 
ASCHCK09 
ASCHCK10 
ASKOPR 
BASELEGO 
BISMSTAT 

BLDISK 
CERTOOO 
CHECKERR 
CHECKNDE 
CHECKSDE 
CHECKOOO 
CHECK001 
CHECK002 
CHECK003 
CHECK004 
CHECK040 
CHECK050 
CHECKC90 
CHECK095 
CHECK1 
CHECK100 
CHECK110 
CHECK120 
CHKCUU 
CHKEOJ 
CHKIPL 
CHKLOG 
CHKPMT 
CHKRES 
CHKSIZ 
CHKTIM 
CHNCTE 
CHNCTE09 
CHNCTE10 
CHNCTE25 
CHNCTE30 
CHNCTE40 
CLOSE 
CLOSERTN 

26A 
4C 
4C 
4D 
4D 
4D 
4D 

16A 
16A 
16A 
16A 
16A 
16B 
16B 
16B 
16B 
16B 
16B 
18B 
20E 
20E 
20E 
20E 
20E 

2L 
8R 

24L 

3D 
18B. 

9B 
9D 
9A 
9A 
9A 
9A 
9B 
9C 
9D 
9D 
9D 
9D 

20C 
9D 
9D 
9D 
2L 
2C 
2B 
2B 
2C 
2B 
2C 
2C 
3B 
3B 
3B 
3B 
3B 
3B 

23E 
24C 

Routine 

Exit-ABEND error routine 
IPL add routine 
IPL add routine 
IPL add routine 
IPL add routine 
IPL add routine 
IPL add routine 
ccw adjustment routine 
CCw adjustment routine 
ccw adjustment routine 
CCW adjustment routine 
CCW adjustment routine 
CCW adjustment routine 
CCW adjustment routine 
CCW adjustment routine 
ccw adjustment routine 
CCW adjustment routine 
CCW adjustment routine 
Abnormal end appendage 
Asynchronous interrupt 
Asynchronous interrupt 
Asynchronous interrupt 
Asynchronous interrupt 
Asynchronous interrupt 
ASKOPR subroutine 
FINDADDR subroutine 

check 
check 
check 
check 
check 

subroutine 
subroutine 
subroutine 
subroutine 
subroutine 

EODAD, SYNAD, and status mapping 
routines 
Initialization second-load routine 
Channel end appendage 
Check I/O routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
check I/O routine 
Check I/O routine 
Check I/O routine 
Select routine 
Check I/O routine 
Check I/O routine 
Check I/O routine 
CHKCUU subroutine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization second-load routine 
Initialization second-load routine 
Initialization second-load routine 
Initialization second-load routine 
Initialization second-load routine 
Initialization second-load routine 
Device sharing simulation routine 
Close mapping routine 

Figure 31 (Part 1 of 15). Symbol Table 

366 DOS Emulator Logic 

Module 

I IVABN 
IIVADD 
rIVADD 
IIVADD 
I IVADD 
I IVADD 
IIVADD 
IIVADJ 
I IVADJ 
I IVADJ 
IIVADJ 
IIVADJ 
I IVADJ 
IIVADJ 
IIVADJ 
IIVADJ 
rIVADJ 
I IVADJ 
IGG019SA 
IIVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVINT 
IIVPCE 
IIVIS 

IIVIN2 
IGG019SA 
I IVCHK 
I IVCHK 
IIVCHK 
I IVCHK 
I IVCHK 
I IVCHK 
IIVCHK 
IIVCHK 
I IVCHK 
I IVCHK 
IIVCHK 
I IVCHK 
IIVRTE 
I IVCHK 
IIVCHK 
I IVCHK 
IIVINT 
IIVINT 
I IVINT 
IIVINT 
I IVIN'1" 
IIVINT 
IIVINT 
IIVINT 
IIVIN2 
IIVIN2 
IIVI~2 
IIVIN2 
IIVIN2 
IIVIN2 
I IvnVS 
IIVIS 



symbol 

CLOSED 
CLOSED 1 
CLOSE1 
CLOSE1A 
CLOSE2 
CLOSE3 
CLOSOPEN 

CLSOOOOO 
CLS00050 
CLS00200 
CMDOO 
CMNDREJ 
CNTENT10 
COMBINE 

COMBO 1 

COMB02 

COMB03 

COMBO 4 

COMB04A 

COMBO 5 

COMBO 6 

COMB01 

COMB08 

CSWSTOR 
CTLRTN 
CVTHEX 
CVTMSK 
CVTNUM 
CVTUPP 
CVTOO 
CVT02 
CVT11 
CVT18 
CVT20 
CVT30 
CVT40 
CXRET 
DDS CAN 
DDS CAN 1 0 
DDSCAN20 
DDSCAN22 
DDSCAN24 

Chart 

23E 
24C 
23E 
23E 
23E 
23E 
24L 

22C 
22C 
22C 
29A 
11K 

2E 
15F 
34H 

15F 
34H 

lSF 
34H 

1SF 
34H 

1SF 
34H 

lSF 
34H 

lSF 
34H 

lSF 
34H 

lSF 
34H 

lSF 
34H 
'lJ 

8T 
29D 
29D 
29D 
29D 
29D 
29D 
29D 
29D 
29D 
29D 
29D 
24A 

2M 
2M 
2M 
2M 
2M 

Routine 

Device sharing simulation routine 
Close mapping routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
EODAD, SYNAD, and status mapping 
routines 
SVC monitor routine 
svc monitor routine 
SVC monitor routine 
Command processor routine 
Staged I/O routine 
Initialization first-load routine 
Combine subroutine 
service aids adjust CCW data address 
routine 
combine subroutine 
Service aids adjust CCW data address 
routine 
Combine subroutine 
service aids adjust CCW data address 
routine 
Combine subroutine 
Service aids adjust CCW data address 
routine 
Combine subroutine 
Service aids adjust CCW data address 
routine 
Combine subroutine 
Service aids adjust CCW data address 
routine 
Combine subroutine 
Service aids adjust Ccw data address 
routine 
Combine subroutine 
Service aids adjust CCW data address 
routine 
combine subroutine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids combine subroutine 
Staged I/O routine 
Load/store control register subroutine 
CVT subroutine 
CVT subroutine 
CVT subroutine 
CVT subroutine 
CVT subroutine 
CVT subroutine 
CVT subroutine 
CVT subroutiJ.3 
CVT subroutine 
CVT subroutine 
CVT subroutine 
Main task control executive routine 
DDSCAN subroutine 
DDSCAN subroutine 
DDSCAN subroutine 
DDSCAN subroutine 
DDSCAN subroutine 

Figure 31 (Part 2 of 15). symbol Table 

Module 

I IVDVS 
IIVIS 
IIVDVS 
I IVDVS 
I IVDVS 
I IVDVS 
IIVIS 

I IVGR2 
I IVG'R2 
IIVGR2 
IIVRCP 
IIVSTG 
IIVINT 
IIVCC~<f 

II\TRCW 

I IVCCW 
IIVRC'"w 

IIVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVC0.-r 
IIVRCW 

I IVCCW 
IIVRCW 

Irvccw 
IrVRCW 

Irvccw 
I IVRCW 

IIVCCW 
rrVRCW 

Irvccw 
IIVRCW 
I IVSTG 
IIVPCE 
IIVRCP 
I IVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVIS 
I IVINT 
I IVINT 
IIVINT 
IIVINT 
I IVINT 

Directories 361 



Symbql 

DDSCAN25 
DDSCAN30 
DELFF 
DELPUB 
DELPUBf.lO 
DELOO 
DIAGCCW 
DIAGC20 
DIAGC21 
DIAGINIT 
DIAGINV 
DLBL 
DLBLO 
DLBLOA 
DLBL1 
DLBL10 
DLBL2 
DOSPUB10 
DVSMSG 
ECBSCN 
ECBSCN01 
ECBSCNOf.l 
ECBSCN08 
ECBSCN10 
ENDINIT 
ENDLOAD 
END01 
END02 
END09 
END10 
END20 
ENQDVC 
ENQDVC20 
EODA 
EODADRTN 
EOERTOOO 
EOX 
EOXOA 
EOXOB 
EOX1A 
EOX10 
EOX2 
EOX2A 
EOX20 
EOX20A 
EOX21 
EOX22 
EOX3E 
EOX30 
EOX30c 
EOX31 
EOX32 
EOX33 
EOX33A 
EOX34 
EOX35 
EOX36 
ERR1 
ERR3 
ERR4 
ERRS 

2M 
2M 

29B 
4B 
4B 

29B 
29L 
29L 
29L 
29L 
29L 
23H 
23H 
23H 
23H 
23H 
23H 

4D 
23H 
20F 
20F 
20F 
20F 
20F 
29N 
29P 
29N 
29N 
29N 
29N 
29N 

3D 
3D 

11N 
24L 
18A 
23c 
23C 
23C 
23C 
23C 
23C 
23C 
23C 
23C 
23C 
23C 
23D 
23C 
23D 
23D 
23D 
23D 
23D 
23D 
23D 
23D 
26A 
26A 
26A 
26A 

Routine 

DDS CAN subroutine 
DDSCAN subroutine 
Command processor routine 
IPL add routine 
IPL add routine 
Command processor routine 
Diagnostic subroutines 
Diagnostic subroutines 
Diagnostic subroutines 
Diagnostic subroutines 
Diagnostic subroutines 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
IPL add routine 
Device sharing simulation routine 
Asynchronous interrupt check subroutine 
Asynchronous interrupt check subroutine 
Asynchronous interrupt check subroutine 
Asynchronous interrupt check subroutine 
Asynchronous interrupt check subroutine 
End subroutine 
End subroutine 
End subroutine 
End subroutine 
End subroutine 
End subroutine 
End subroutine 
Initialization second-load routine 
Initialization second-load routine 
EODAD subroutine 
EODAD routine 
End-of-extent appendage 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Device sharing simulation routine 
Exit-ABEND error routine 
Exit-ABEND error routine 
Exit-ABEND error routine 
Exit-ABEND error routine 

Figure 31 (Part 3 of 15). Symbol Table 

368 Dos Emulator Logic 

Module 

I IVINT 
IIVINT 
IIVRCP 
IIVADD 
IIVADD 
IIVRCP 
IIVRCP 
I IVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
I IVDVS 
I IVDVS 
I IVDVS 
I IVDVS 
IIVDVS 
IIVDVS 
IIVADD 
IIVDVS 
IIVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
I IVRTE 
IIVRCP 
IIVRCP 
I IVRCP 
IIVRCP 
IIVRCP 
I IVRCP 
IIVRCP 
I IVIN2 
IIVIN2 
I IVSTG 
IIVIS 
IGG019SA 
I IVDVS 
IIVDVS 
IIVDVS 
I IVDVS 
TIVDVS 
I IVDVS 
I IVDVS 
IIVDVS 
I IVDVS 
I IVDVS 
IIVDVS 
IIVDVS 
I IVDVS 
IIVDVS 
I IVDVS 
IIVDVS 
I IVDVS 
I IVDVS 
IIVDVS 
IIVDVS 
I IVDVS 
!IVABN 
IIVABN 
IIVABN 
I IVABN 



Symbol Chart Routine Module 
) 

ERR6 26A Exit-ABEND error routine IIVABN 

L ESETLRTN 24G ESETL mapping routine IIVIS 
EXIAS 29M Exit subroutines IIVRCP 
EXIINIT 29M Exit subroutines I1VRCP 
EXIINV 29M Exit subroutines I1VRCP 
EXILEX 29M Exit subroutines IIVRCP 
EXIPC 29M Exit subroutines IIVRCP 
EXISVC 29M Exit subroutines IIVRCP 
FETCH 14A Printer overflow routine IIVPOV 
FINDADDR SR FINDADDR subroutine IIVPCE 
FINDADO 8R FINDADDR subroutine IIVPCE 
FINDCHAN 8Q FINDCHAN subroutine I IVPCE 
FINDKEY 8S FINDKEY subroutine TIVPCE 
FIRSTPC SA Program check executive routine I1VPCE 
GETDOS 2D Initialization first-load routine I IVINT 
GETECB 3D Initialization second-load routine I IVIN2 
GETIOREG 24F Get mapping routine IIVIS 
GETPEC 3D Initialization second-load routine IIVIN2 
GETRTN 24F Get mapping routine IIV1S 
GETWORD 29C GETWORD subroutine IIVRCP 
GETWO 29C GETWORD subroutine I!VRCP 
GETW1 29C GETWORD subroutine IIVRCP 
GR11 22A SVC monitor routine I1VGR2 
GR2CLS 22C SVC monitor routine IIVGR2 
GR2DPV 22D SVC monitor routine IIVGR2 
GR2DPV1 22D SVC monitor routine I IVGR2 
GR2DPV3 22D ~VC monitor routine I IVGR2 
GR2EOJ 22C SVC monitor routine IIVGR2 
GR2EOX 22C SVC monitor routine IIVGR2 
GR20PN 22B SVC monitor routine IIVGR2 
GR200010 22A SVC monitor routine IIVGR2 
GR200012 22A SVC monitor routine I IVGR2 
GR200014 22A SVC monitor routine I IVGR2 
GR200016 22A SVC monitor routine IIVGR2 
GR200050 22A SVC monitor routine IIVGR2 
GR200059 22A SVC monitor routine IIVGR2 
GR290000 22C SVC monitor routine IIVGR2 
GR290200 22C SVC monitor routine I IVGR2 
GR29020 1 22C SVC monitor routine IIVGR2 
GR290202 22C SVC monitor routine I IVGR2 
GR299999 22A SVC monitor routine IIVGR2 
GR400000 22A SVC monitor routine IIVGR2 
HIORTN 8H HIO simu'lation subroutine I IVPCE 
HIOTST 8H HIO simulation subroutine I1VPCE 
IDCOMP 2A Initialization first-load routine IIVINT 
IGG019SA 18A Start I/O appendage IGG019SA 
IGG019S1 19A Abnormal end/channel end appendage IGG019S1 
IIVABN 26A Exit-ABEND error routine I IVABN 
I IVACI 33A Asynchronous intercept routine I IVACI 
IIVADD 4A IPL add routine I 1VADD 
IIVADJ 16A ccw adjustment routine I IVADJ 
I IVAWV 12A CAW verification routine I IVAWV 
IIVCCW 15A Adjust CCW data address routine I IVCCW 
I IVCHK 9A Check I/O routine I IVCHK 
I IVCWV 13A ccw verification routine IIVCWV 
I IVDVS 23A Device sharing simulation routine IIVDVS 
1IVENT 1A DOS Emulator entry routine IIVENT 
IIVGET 7A GETMAIN/FREEMAIN routine I IVGET 
IIVGR2 22A SVC monitor routine I IVGR2 
IIVINT 2A Initialization first-load routine I 1VINT 
IIVIN2 3A Initialization second-load routine IIVIN2 
IIVIS 24A Main task control executive IIV1S 

Figure 31 (Part 4 of 15) • Symbol Table 

Directories 369 



Symbol 

IIVIS01 
IIVLOG 
IIVLOGR1 
IIVLOGR2 
IIVMSG 
IIVMSG15 
IIVMSG20 
IIVMSG25 
IIVMSG45 
IIVMSG60 
IIVMSG65 
IIVMSG80 
IIVMSG90 
IIVOPN 
IIVPCE 
I IVPCI 
IIVPOV 
I IVPRP 
IIVPUB 
I IVRAS 
IIVRASPC 
IIVRASVC 
II VRAS YN 
IIVRCP 
IIVRCW 

IIVRTE 
IIVRTECK 
IIVRTEOJ 
IIVRTER1 
IIVRTER2 
IIVRTESL 
I IVRTESR 
IIVRTEST 
IIVRTETM 
I IVSCI 
IIVSNP 
IIVSTG 
IIVSVC 
IIVVIO 
INITCT 
INITCT13 
INITCT15 
INITCT20 
INITCT23 
INITCT30 
INITCT35 
INITCT5A 
INITCT50 
INITCT51 
INITCT52 
INITCT54 
INITCT60 
INIT30 
INTPENO 
INTRPT 
INTRPTEX 
IOBCHK30 
IOBCHK60 
IOBCHK65 
IOBCHK66 
IOB CHK 7 0 

24E 
10A 
10C 
10E 
27A 
21A 
21A 
21A 
27A 
21A 
27A 
27A 
21A 

SA 
8A 

31A 
14A 
21A 

6A 
28A 
28B 
28B 
28B 
29A 
34A 

20A 
20E 
20G. 
20A 
20B 
20C 
20C 
20A 
200 
32A 
30A 
11A 
17A 
2SA 

2F 
2F 
2F 
2G 
2G 
2G 
2G 
2H 
2H 
2H 
2H 
2H 
2H 
4A 

11J 
80 
80 
6B 

.6B 
6B 
6B 
6E 

Routine 

Subtask control executive 
Interpretive SYSLOG routine 
IIVLOGR1 subroutine 
IIVLOGR2 subroutine 
Message writer routine 
Message writer routine 
Message writer routine 
Message writer routine 
Message writer routine 
Message writer routine 
Message writer routine 
Message writer routine 
Message writer routine 
Open routine 
Program check executive routine 
Program check intercept routine 
Printer overflow routine 
Prompt reply processor routine 
OS PUB table build routine 
Service aids initialization routine 
IIVRASPC subroutine 
IIVRASVC subroutine 
IIVRASYN subroutine 
Command processor routine 
Service aids adjust CCW data address 
routine 
Asynchronous interrupt exit routine 
Asynchronous interrupt check subroutine 
End-of-job routine 
Asynchronous interrupt exit routine 
Route routine 
Select routine 
STAE retry routine 
STAE exit routine 
Timer interrupt subroutine 
Supervisor call intercept routine 
Snap dump and trace formatting routine 
Staged I/O routine 
Supervisor call routine 
VTOC I/O simulation routine 
Initialization first-load routine 
Initialization first -load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first·load rouine 
Initialization first-load routine 
Initialization first-load routine 
Initialization first-load rout.ine 
Initialization first-load routine 
IPL add routine 
Staged I/O routine 
LPSW simulation subroutine 
LPSW simulation subroutine 
OS PUB table build routine 
OS PUB table build routine 
OS PUB table build routine 
OS PUB table build routine 
OS PUB table build routine 

Figure 31 (part S of 15). SymbOl Table 

370 DOS Emulator Logic 

Module 

IIVIS 
IIVLOG 
I IVLOG 
IIVLOG 
IIVMSG 
IIVMSG 
IIVMSG 
IIVMSG 
I IVMSG 
IIVMSG 
IIVMSG 
IIVMSG 
IIVMSG 
I IVOPN 
IIVPCE 
IIVPCI 
IIVPOV 
ITVPRP 
IIVPUB 
IIVRAS 
IIVRAS 
IIVRAS 
IIVRAS 
IIVRCP 
IIVRCW 

IIVRTE 
IIVRTE 
IIVRTE 
I JVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVSCI 
IIVSNP 
I IVSTG 
I IVSVC 
IIVVIO 
IIVINT 
IIVINT 
I IVINT 
I IVINT 
IIVINT 
I IVINT 
IIVINT 
IIVINT 
IIVINT 
IIVINT 
IIVINT 
I IVINT 
I IVINT 
I IVADO 
I IVSTG 
I IVPCE 
IIVPCE 
IIVPUB 
IIVPUB 
IIVPUB 
IIVPUB 
I IVPUB 



Sy!!!bol Chart Routine Module 

IOBCHK75 6E OS PUB table build routine IIVPUB 
IOBCHK77 6E OS PUB table build routine IIVPUB 
IPLDOS 3E Initialization second-load routine IIVIN2 
ISENDFL 22D SVC monitor routine IIVGR2 
ISKRTN 8C ISK simulation subroutine I IVPCE 
ISSETFL 22D svc monitor routine I IVGR2 
ISSETL 22D SVC monitor routine IIVGR2 
ISSMULAT 22D SVC monitor routine I IVGR2 
ISWAIT 24E Subtask control executive routine IIVIS 
KEYERR 8S FINDKEY subroutine IIVPCE 
KEYOD 29A Command processor routine I IVRCP 
LEAVE 19A Abnormal end/channel end appendage IGG019S1 
LEAVE1 19A Abnormal end/channel appendage IGG019S1 
LOADSTAT 24L EODAD, SYNAD, and status mapping IIVIS 

routines 
LOAD 0 0 24B Open mapping routine TTVIS 
LOAD11 24B Open mapping routine IIVIS 
LOGI01 10A Interpretive SYSLOG routine TIVLOG 
LOGI010 10B Interpretive SYSLOG routine TIVLOG 
LOGI011 10B Interpretive SYSLOG routine I IVLOG 
LOGI012 10B Interpretive SYSLOG routine IIVLOG 
LOGI013 10B Interpretive SYSLOG routine IIVLOG 
LOGI014 10B Interpretive SYSLOG routine IIVLOG 
LOGI015 10B Interpretive SYSLOG routine I IVLOG 
LOGI016 10B Interpretive SYSLOG routine IIVLOG 
LOGI017 10B Interpretive SYSLOG routine IIVLOG 
LOGI018 10B Int er pr eti ve SYSLOG routine IIVLOG 
LOGI019 10B Interpretive SYSLOG routine 1 IVLOG 
LOGI02 10A Interpretive SYSLOG routine I IVLOG 
LOGI020 10C I IVLOGR1 subroutine I IVLOG 
LOGI021 10C IIVLOGR1 subroutine IIVLOG 
LOGI022 10C IIVLOGR1 subroutine IIVLOG 
LOGI025 10C IIVLOGR1 subroutine I IVLOG 
LOGI026 10C I IVLOGR1 subroutine IIVLOG 
LOGI027 10C I IVLOGR1 subroutine IIVLOG 
LOGI029 10C I IVLOGR 1 subroutine IIVLOG 
LOGI03 10A Interpretive SYSLOG routine IIVLOG 
LOGI030 10D LOGOUT 1 and LOGOUT2 subroutines IIVLOG 
LOGI031 10D LOGOUT 1 and LOGOUT2 subroutines I IVLOG 
LOGI04 10A Interpretive SYSLOG routine IIVLOG 
LOGI040 10E IIVLOGR2 subroutine I IVLOG 
LOGI05 10A Interpretive SYSLOG routine IIVLOG 
LOGI05A 10A Interpretive SYSLOG routine IIVLOG 
LOGI050 10E IIVLOGR2 subroutine I IVLOG 
LOGI06 10A Interpretive SYSLOG routine I IVLOG 
LOGI060 10E IIVLOGR2 subroutine IIVLOG 
LOGI061 10E IIVLOGR2 subroutine ITVLOG 
LOGI062 10E IIVLOGR2 subroutine IIVLOG 
LOGI063 10E IIVLOGR2 subroutine I IVLOG 
LOGI064 10E IIVLOGR2 subroutine IIVLOG 
LOGI065 10E IIVLOGR2 subroutine IIVLOG 
LOGI066 10E IIVLOGR2 subroutine IIVLOG 
LOGI067 10E IIVLOGR2 subroutine IIVLOG 
LOGOUT1 10D LOGOUT 1 subroutine IIVLOG 
LOGOUT 2 10D LOGOUT2 subroutine IIVLOG 
LPSWRTN 8D LPSW simulation subroutine I IVPCE 
MAPDTFIS 24B open mapping routine IIVIS 
MAPSTSTC 24L status mapping routine IIVIS 
OBTAIN 23F Device sharing simulation routine IrvDVS 
OBTAI NO 23F Device sharing simulation routine IIVDVS 
OBTAIN 1 23F Device sharing simulation routine I IVDVS 
OBTAIN2 23F Device sharing simulation routine IIVDVS 

Figure 31 (Part 6 of 15) • symbol Table 

Directories 371 



Symbol Chart Routine Module 

OBTAIN3 23F Device sharing simulation routine I IVDVS 

~ OBTAIN4 23G Device sharing simulation routine I IVDVS 
OBTAIN4A 23G Device sharing simulation routine I lVOVS 
OBTAIN4B 23G Device sharing simulation routine I IVDVS 
OBTAIN4C 23G Device sharing simulation routine I IVDVS 
OBTNO 23F Device sharing simulation routine I IVDVS 
OBTNOO 23F Device sharing simulation routine IIVOVS 
OBTN04 23F Device sharing simulation routine IIVDVS 
OBTN05 23F Device sharing simulation routine I IVDVS 
OBTN4 23F Device sharing simulation routine I IVDVS 
OBTN5 23F Device sharing simulation routine I IVOVS 
OPEN 23A Device sharing simulation routine I IVDVS 
OPENATCH 24B Open mapping routine IIVIS 
OPENAT01 24B Open mapping routine IIVIS 
OPENRTN 24B Open mapping routine IIVIS 
OPENO 23A Device sharing simulation routine I IVDVS 
OPENOA 23A Device sharing simulation routine IIVDVS 
OPENOOO 24B Open mapping routine IIVIS 
OPENOO2 24B open mapping routine IIVIS 
OPENOO3 24B Open mapping routine IIVIS 
OPENOO6 24B Open mapping routine IIVIS 
OPEN10 5A Open routine IIVOPN 
OPEN12 5A Open routine I IVOPN 
OPEN2 23A Device sharing simulation routine I IVDVS 
OPEN2C 23A Device sharing simulation routine IIVDVS 
OPEN20 5A Open routine I IVOPN 
OPEN25 5A Open routine I IVOPN 
OPEN3 23B Device sharing simulation routine I IVDVS 
OPEN30 5B Open routine I IVOPN 
OPEN31T 5C Open routine IIVOPN 
OPEN4 23B Device sharing simulation routine IIVDVS 
OPEN40 5A Open routine IIVOPN ..J OPEN4B 23B Device sharing simulation routine I IVDVS 
OPEN5 23B Device sharing simulation routine I IVDVS 
OPEN6 23B Device sharing simulation routine Irvnvs 
OPEN60 5D OPEN60 routine I IVOPN 
OPEN70 5C Open routine I IVOPN 
OPEN80 5C Open routine I IVOPN 
OPEN95 5C Open routine I IVOPN 
OPNOO200 22B SVC monitor routine I IVGR2 
OPNOO800 22B SVC monitor routine IIVGR2 
OPNOO950 22B SVC monitor routine IIVGR2 
OPRSUB 29A Command processor routine IIVRCP 
OPROO 29A Command processor routine IIVRCP 
PC 8A program check executive routine IIVPCE 
PCE500 31B Program check intercept routine IIVPCI 
PCE550 31C Program check intercept routine IrVPCI 
PCE925 31C Program check intercept routine IIVPCI 
PCPRIVOP SA Program check executive routine IIVPCE 
PCOO SA Program check executive routine I IVPCE 
PC10 SA program check executive routine I IVPCE 
PC20 SA Program check executive routine IIVPCE 
PERMERR 19A Abnormal end/channel end appendage IGG019S1 
PEPMERR1 19A Abnormal end/channel appendage IGG019S1 
POSTCSW 9C Check I/O routine rIVCHK 
POSTCSW1 9C check I/O routine ITVCHK 
POSTCSW2 9C Check I/O routine IIVCHK 
PRPMAPA 21E PRPMAPA subroutine I IVPRP 
PRPMAPB 21E PRPMAPA subroutine IIVPRP 
PRPMAPC 21E PRPMAPA subroutine I IVPRP 
PRPMAPD 21E PRPMAPA subroutine IIVPRP 
PRPMAP1 21E PRPMAP1 subroutine I IVPRP 

Figure 31 (Part 7 of 15) • Symbol Table 

372 DOS Emulator Logic 



SYmbol Chart Routine Module 

PRPMAP2 21E PRPMAP1 subroutine I IVPRP 
PRPMAP3 21E PRPMAP1 subroutine IIVPRP 
PRPMAP4 21E PRPMAP1 subroutine IIVPRP 
PRPMAP5 21E PRPMAP1 subroutine IIVPRP 
PRP01 21A Prompt reply processor routine IrVPRP 
PRP02 21A Prompt reply processor routine IIVPRP 
PRP03 21A Prompt reply processor routine I IVPRP 
PRP04 21A Prompt reply processor routine rrVPRP 
PRP05 21A Prompt reply processor routine IIVPRP 
PRP06 21A Prompt reply processor routine IIVPRP 
PRP07 21A Prompt reply processor routine I IVPRP 
PRP10 21A Prompt reply processor routine I IVPRP 
PRP20 21A Prompt reply processor routine I IVPRP 
PRP30 21A Prompt reply processor routine IIVPRP 
PRP40 21B Prompt reply processor routine I IVPRP 
PRP41 21B Prompt reply processor routine IIVPRP 
PRP42 21B Prompt reply processor routine I IVPRP 
PRP44 21B Prompt reply processor routine IIVPRP 
PRP45 21B Prompt reply processor routine IIVPRP 
PRP46 21B Prompt reply processor routine I IVPRP 
PRP50 21B Prompt reply processor routine IIVPRP 
PRP51 21B Prompt reply processor routine IIVPRP 
PRP52 21B Prompt reply processor routine IIVPRP 
PRP59 21B Prompt reply processor routine I IVPRP 
PRP60 21C Prompt reply processor routine I IVPRP 
PRP62 21C Prompt reply processor routine IIVPRP 
PRP63 21C Prompt reply processor routine I IVPRP 
PRP64 21C Prompt reply processor routine I IVPRP 
PRP65 21C Prompt reply processor routine IIVPRP 
PRP66 21C Prompt reply processor routine I IVPRP 
PRP67 21C Prompt reply processor routine IIVPRP 
PRP67A 21C Prompt reply processor routine I IVPRP 
PRP68 21C Prompt reply processor routine IIVPRP 
PRP80 210 Prompt reply processor routine I IVPRP 
PRP82 21D Prompt reply processor routine I IVPRP 
PUTBLI<DR 24G Put mapping routine IIVIS 
PUTNOWKS 24G Put mapping routine IIVIS 
PUTRTN 24G Put mapping routine IIVIS 
QISMSTAT 24L EODAD, SYNAD and status mapping I IVIS 

routines 
RAS14000 30E Formatting subroutines I IVSNP 

I RAS14228 30G Trace table subroutine IIVSNP 
RAS15000 30H Print subroutines I IVSNP 
RAS15200 30J Print subroutines I IVSNP 
RAS16000 30R Print multiple line subroutine IIVSNP 
RAS17000 30G Formatting subroutines IIVSNP 
RAS18000 30J Print subroutines I IVSNP 
RCCWAB 15A Adjust CCW data address routine I IVCCW 

34A Service aids adjust CCW data address IIVRCW 
routine 

RCCWAB1 15A Adjust CCW data address routine I IVCCW 
34A service aids adjust ccw data address IIVRCW 

routine 
RCCWAB2 15A Adjust CCW data address routine IrvCCW 

34A Service aids adjust CCW data address IIVRCW 
routine 

RCCWAB3 15A Adjust CCW data address routine I IVCCW 
34A Service aids adjust CCW data address IIVRCW 

routine 
RCCWAB4 15c Adjust CCW data address routine I IVCCW 

34C Service aids adjust CCW data address IIVRCW 
routine 

Figure 31 (Part 8 of 15) • Symbol Table 

Directories 373 



Symbol 

RCCWD02 

RCCW020 

RCCW022 

RCCWD30 

RCCW02 

RCCW03 

RCCW04 

RCCWD25 

RCCWD26 

RCCW026 

RCCWD28 

RCCWD99 

RCCW05 

RCCW05A 

RCCW05B 

RCCW06A 

RCCW07 

RCCW08 

RCCW08A 

RCCW08B 

I RCCW08C 

RCCW09 

RCCW10 

Chart 

340 

340 

34D 

34E 

15A 
34A 

15A 
34A 

i5A 
34A 

340 

340 

340 

340 

340 

15A 
34A 

15A 
34A 

15A 
34A 

15B 
34B 

15C 
34C 

15B 
34B 

15B 
34B 

15B 
34B 

15B 
34B 

15B 
34B 

15B 
34B 

Routine 

Service aids adjust CCW data address 
routine 
Service aids adjust CCW data addres~ 
routine 
Service aids adjust CCW data address 
routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust ccw data address routine 
Service aids adjust CCW data address 
routine 
Service aids adjust CCW data 
address routine 
Service aids adjust CCW data 
address routine 
Service aids adjust CCW data 
address routine 
Service aids adjust CCW data 
address routine 
Service aids adjust CCW data 
address routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust ccw data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust ccw data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 

Figure 31 (Part 9 of 15). Symbol Table 

374 DOS Emulator Logic 

Module 

I IVRCW 

IIVRCW 

IIVRCW 

IIVRCW 

TIVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

IIVRCW 

IIVRCN 

IIVRCN 

IIVRCN 

IIVRCN 

IIVCCW 
I IVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
I IVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IrVRCW 

Irvccw 
IIVRCW 

IrVCCH 
IIVRCW 



Symbol Chart -o,outine Module ----
RCCW11 15B ~djust CCW data address routine IIVCCW 

34B Service aids adjust ccw data address IIVRCW 
routine 

RCCW12 15B Adjust CCW data address routine I IVCCW 
34B Service aids adjust CCW data address I IVRCH 

routine 
RC0!'] 13 15B Adjust CCW data address routine I IVCCW 

34B Service aids adjust ccw data address IIVRCW 
routine 

RCCW13A 15B .M just CCW data address routine I IVCCW 
34B Service aids adjust CCW data address IIVRCW 

routine 
RCCW13B 15B Adjust CCW data address routine I IVCCH 

34B Service aids adjust ccw data address I IVRCW 
routine 

RCCW14 15C Adjust CCW data address routine I IVCCH 
34C Service aids adjust CCW data address I IVRCW 

routine 
RCCW15 15C Adjust CCW data address routine I IVCCH 

34C Service aids adjust ccw data address IIVRCH 
routine 

RCCW16 15C Adjust crn data address routine I IVCCW 
34C Service aids adjust CCH data address I IVRCW 

routine 
RCCW17 15C Adjust CCW data address routine I IVCCW 

34C Service aids adjust ccw data address I IVRCW 
routine 

RCCW17A 15c Adjust ccw data address routine ::'IVCCW 
34C Service aids adjust CCW data address I IVRCW 

routine 
RCCW17B 15C Adjust CCW data address routine I IVCCW 

~ 
34B Service aids adjust CCW data address IIVRCW 

routine 
RCCW17c 15C Adjust CCW data address routine I IVCCW 

34C Service aids adjust CCW data address I IVRCH 
routine 

RCCW18 15b Adjust CCW data address routine IIVCCW 
34F Service aids adjust CCW data address I IVPCW 

routine 

I RCCW18A 34F Service aids adjust CCW data address IIVRCW 
routine 

RCCW19 15D Adjust CCW data address routine I IVCCW 
34F Service aids adjust CCW data address IIVPCW 

routine 
RCCW19A 15D Adjust ccw data address routine I IVCCW 

34F Service aids adjust CCW data address IIVRCW 
routine 

RCCW20 15D Adjust CCW data address routine I IVCCH 
34F Service aids adjust CCW data address I IVRCW 

routine 
RCCW20A 15D Adjust CCW data address routine I IVCCW 

34F Service aids adjust ccw data address IIVRCW 
routine 

RCCW21 15D Adjust CCW data address routine I IVCCW 
31.\F Service aids adjust CCW data address IIVRCW 

routine 

Figure 31 (Part 10 of 15) • Symbol Table 

Directories 375 



Symbol 

RCCW21A 

RCCW21B 

RCCW21C 

RCCW22A 

RCCW22B 

RCCW23 

RCCW24 

RCCWD25 

RCCWD26 

RCCWD28 

RCCWD99 

RCPPRINT 
RDJFCB 
RDNOWORK 
READRTN 
READ100 
READ999 
RESET 
RETURN 

RETURN 1 
RMSRESET 
ROUTE05 

ROUTE10 

ROUTE11 
ROUTE11A 
ROUTE12 
ROUTE15 

ROUTE 17 

ROUTE22 
RSTOROOO 
RSTOR005 
RTER2060 
RTER2100 
RTER2110 
RTER2125 
RTER2135 
RTER2200 
RTER2300 
RTER2315 

Chart 

15D 
34F 

15D 
34F 

15D 
34F 

15E 
34G 

15E 
34G 

15E 
34G 

15E 
34G 

34D 

34D 

34D 

34D 

29D 
2F 

24K 
24H 
29C 
29A 
23H 
23H 
29B 
23H 
22D 
20A 
20B 
20A 
20B 
20B 
20B 
20B 
20A 
20B 
20A 
20B 
20B 
18B 
18B 
33B 
33B 
33C 
33C 
33D 
33E 
33F 
33G 

Routine 

Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust ccw data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust ecw data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Adjust CCW data address routine 
Service aids adjust CCW data address 
routine 
Service aids adjust CCW data address 
routine 
Service aids adjust CCH data address 
routine 
Service aids adjust CCW data address 
routine 
service aids adjust CCW data address 
routine 
RCPPRINT subroutine 
Initialization first-load routine 
WAITF mapping routine 
Read key mapping routine 
GETWORD subroutine 
Command processor routine 
Device sharing simulation routine 
Device sharing simulation routine 
Command processor routine 
Device sharing simulation routine 
SVC monitor routine 
Asynchronous interrupt exit routine 
Route routine 
Asynchronous interrupt exit routine 
Route routine 
Route routine 
Route routine 
Route routine 
Asynchronous interrupt exit routine 
Route routine 
Asynchronous interrupt exit routine 
Route routine 
Route routine 
Channel end appendage 
Channel end appendage 
Asynchronous intercept routine 
Asynchronous intercept routine 
Asynchronous intercept routine 
Asynchronous intercept routine 
Asynchronous intercept routine 
Asynchronous intercept routine 
Asynchronous intercept routine 
Asynchronous intercept routine 

Figure 31 (part 11 of 15). Symbol Table 

316 DOS Emulator Logic 

Module 

IIVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
IIVRCW 

I IVCCW 
InTRCW 

I IVCCW 
IIVRCW 

IIVCCW 
IIVRCW 

TIVRCW 

IIVRCW 

IIVRCW 

IIVRCW 

TIVRCP 
I IVINT 
IIVIS 
IIVIS 
IIVRCP 
IIVRCP 
IIVDVS 
IrVDVS 
IIVRCP 
TIVDVS 
I IVGR2 
IIVRTE 
IIVRTE 
IIVPTE 
I IVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
rIVRTE 

IIVRTE 
IIVRTE 
IIVRTE 
IGG019SA 
IGG019SA 
I IVACI 
:rIVACI 
I IVACI 
1 IVACI 
IIVACI 
lIVACI 
I IVACI 
I IVACI 



Symbol 

RTER2325 
RTER2999 
RTRN 
RWUCHK 
SCAN 
SCANFID 
SCKFTN 
SEEKCHK 
SEEKDVS 
SEEKTEST 
SEEK0300 
SEEK0350 
SEEK0400 
SEEK0500 
SEEK0501 
SEEK0504 
SEEK0509 
SEEK0510 
SELINT1 
SELINT2 
SELINT3 
SELINT4 
SENSE 
SETBITS 
SETDAT 
SETEXTO 
SETFDAD 
SETLRTN 
SETRTRN 

SETSKCHK 
SETSVC50 

SIOBUSY 
SIOCNT 
SIOINSOO 
SIOIN05 
SIOIN06 
SIOIN100 
SIOIN10 5 
SIOIN110 
SIOPENED 
SIORTN 
SIORTOOO 
SIORT010 
SIORT015 
SIORT020 
SIORT030 
SIORT500 
SIOSASK 
SIOSN 
SIOSNO 
SIOSN1 
SIOSN2 
SIOSN3 
SIOSN4 
SIOSN6 
SIOSN7 
SIOSN7A 
SIOSTART 
SIOXDASD 
SIOXIOB 

33G 
33H 
26A 

9C 
2K 

22D 
8U 
8L 
8P 
8K 
8P 
8P 
8P 
8P 
8P 
8P 
8P 
8P 

20C 
20c 
20C 
20C 
11K 
19A 

4C 
23B 
23A 
24D 
24L 

8L 
24L 

8J 
8L 

18A 
18A 
18A 
18A 
18A 
18A 
8J 
8J 

18B 
18B 
18B 
18B 
18B 
18A 

8L 
8N 
8N 
8N 
8N 
8N 
8N 
8N 
8N 
8N 
8M 
8K 
8K 

Routine 

Asynchronous intercept routine 
Asynchronous intercept routine 
Exit-ABEND error routine 
Check I/O routine 
Scan subroutine 
SVC monitor routine 
Set clock subroutine 
SIO subroutine 
SEEKDVS subroutine 
SEEKTEST subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
SEEKDVS subroutine 
select routine 
Select routine 
Select routine 
Select routine 
Staged I/O routine 
Abnormal end/channel end appendage 
IPL add routine 
Device sharing simulation routine 
Device sharing simulation routine 
SETL mapping routine 
EODAD, SYNAD, and status mapping 
routines 
SIO subroutine 
EODAD, SYNAD, and status mapping 
routines 
SIO subroutine 
SIO subroutine 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
SIO subrout ine 
SIO subroutine 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
Start I/O appendage 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 

Figure 31 (Part 12 of 15). Symbol Table 

Module 

IIVACI 
I IVACI 
rIVABN 
I IVCHK 
IIVINT 
IIVGR2 
rIVPCE 
JIVPCE 
rIVPCE 
rIVPCE 
rIVPCE 
:tIVPCE 
JIVPCE 
rIVPCE 
rIVPCE 
IIVPCE 
IIVPCE 
JIVPCE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVRTE 
IIVSTG 
IGG019S1 
IIVADD 
IIVDVS 
I IVDVS 
IIVIS 
rIVIS 

rIVPCE 
IIVIS 

IIVPCE 
IIVPCE 
IGG019SA 
IGG019SA 
IGG019SA 
IGG019SA 
IGG019SA 
IGG019SA 
IIVPCE 
IIVPCE 
IGG019SA 
IGG019SA 
IGG019SA 
IGG019SA 
IGG019SA 
IGG019SA 
I IVPCE 
IIVPCE 
IIVPCE 
IIVPCE 
IIVPCE 
IIVPCE 
IIVPCE 
IIVPCE 
I IVPCE 
IIVPCE 
IIVPCE 
IIVPCE 
IIVPCE 

Directories 377 



Symbol 

SIOXTAPE 
SI010 
SI02 
SI03 
SIOq 
SI05 
SKIP 
SNPALL 
SNPATTN 
SNPCOMP 
SNPCPSUB 
SNPCP40 
SNPCUU 
SNPEXT 
SNPHIO 
SNPINIT 
SNPINT 
SNPINV 
SNPIO 
SNPISK 
SNPLPSW 
SNPPC 
SNPPSW 
SNPSIO 
SNPSSK 
SNPSSM 
SNPSUBOP 
SNPSVC 
SNPSV10 
SNPSV11 
SNPSV20 
SNPSV30 
SNPSV50 
SNPTCH 
SNPTIMER 
SNPTIO 
SPECIAL 
SRTCUU 
SSKRTN 
SSMRTN 
STAERTRY 
STCKRTN 
STGIOOOO 
STGIOOO q 
STGI0020 
STGIOOqO 
STGI0050 
STGI0068 
STGI0100 
STGI0105 
STGIO 
STGI0110 
STGI0125 
STGI0200 
STGI0300 
STGIOqOO 
STGI075A 
STGI075B 
STIOPRTN 
STOALL 
STOOOS 
STOEMBLK 

8M 
8M 
8J 
8J 
8J 
8K 

14A 
29J 
29H 
29H 
29H 
29H 
29J 
29H 
29J 
29G 
29H 
29G 
29J 
29J 
29J 
29H 
29G 
29J 
29J 
29J 
29G 
29G 
29G 
29G 
29G 
29G 
29G 
29J 
29H 
29J 

81 
3C 
8C 
8C 

20C 
8U 

11A 
11B 
11C 
110 
110 
11E 
11G 
11G 
107 
11E 
11 H 
11M 
11L 
11L 
110 
11F 

8S 
29K 
29K 
29K 

Routine 

SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
SIO subroutine 
Printer overflow routine 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Snap subroutines 
Abnormal end/channel end appendage 
Initialization second-load routine 
SSK simulation subroutine 
SSM simulation subroutine 
STAE retry routine 
Store clock subroutine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Staged I/O routine 
Load FCB subroutine 
Read FCB subroutine 
Read FCB subroutine 
Staged I/O routine 
Staged I/O routine 
Store CPU 10 subroutine 
Storage subroutines 
Storage subroutines 
Storage subroutines 

Figure 31 (Part 13 of 15). Symbol Table 

318 DOS Emulator Logic 

Module 

I IVPCE 
IIVPCE 
IIVPCE 
I IVPCE 
IIVPCE 
TIVPCE 
I IVPOV 
IIVRCP 
ITVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
ITVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
I IVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
I IVRCP 
IIVRCP 
I IVRCP 
IIVRCP 
ITVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IIVRCP 
IGG019S1 
IIVIN2 
IIVPCE 
IIVPCE 
IIVR'l'E 
IIVPCE 
IIVSTG 
IIVSTG 
IIVSTG 
IIVSTG 
I IVSTG 
IIVSTG 
IIVSTG 
TIVSTG 
I IVSTG 
I IVSTG 
IIVSTG 
IIVSTG 
I IVSTG 
"!IVSTG 
IIVSTG 
TIVSTG 
IrVPCE 
IIVRCP 
I IVRCP 
IIVRCP 



Symbol Chart Routine Module 

STOEMU 29K Storage subroutines IIVRCP 
STOFST40 3D Initialization second-load routine IIVI~2 

STOINIT 29K Storage subroutines I IVRC"P 
STOINV 29K storage subroutines IIVRCP 
STONODOS 29K Storage subroutines IIVRCP 
STONU1>1BR 29K Storage subroutines I IVRCP 
SVCOO100 32A Supervisor call intercept routine IIVSCI 
SVCOO150 32A Supervisor call intercept routine IIVSCI 
SVCOO250 32A Supervisor call intercept routine IIVSCI 
SVC100 17A Supervisor call routine IIVSVC 
SVC150 17A Supervisor call routine IIVSVC 
SVC160 32A Supervisor call intercept routine I IVSCI 
SVC200 17A Supervisor call routine I IVSVC 
SVC300 17A supervisor call routine I IVSVC 
SVC320 17A supervisor call routine IIVSVC 
SVC350 17A Supervisor call routine I IVSVC 
SVC400 17A supervisor call routine I IVSVC 
SVC450 17A supervisor call routine II V SVC 
SVC500 17A Supervisor call routine TIVSVC 
SVC6CO 17A Supervisor call routine I IVSVC 
SYNA 11N SYNAD subroutine IIVSTG 
SYNADRTN 24L EODAD, SYNAD, and status mapping IIVIS 

routines 
TCHRTN 8E TCH simulation subroutine 1 IVPCE 
TIMECHK 20D Timer interrupt check subroutine !IVRTE 
TIMECHK1 20D Timer interrupt check subroutine IIVRTE 
TIOPOSTD 8G TIO simulation subroutine I IVPCE 
TIORTN SF TIO simulation subroutine IIVPCE 
TIOSCAN 8G TIO IIVPCE 
TIOSRCH SF TIO simulation subroutine IIVPCE 
TIOWAIT 8G TIO simulation subroutine TIVPCE 
TIOXLOG 8F TIO simulation subroutine IIVPCE 
TIOXLOG1 SF TIO simulation subroutine I IVPCE 
TIOX2321 8F TIO simulation subroutine IIVPCE 
TRCALL 29F Trace subroutines IIVRCP 
TRCATTN 29F Trace subroutines IIVRCP 
TRCCUU 29F Trace subroutines TIVRCP 
TRCEXT . 29F Trace subroutines IIVRCP 
TRCHlO 29E Trace subroutines IIVRCP 
TRCINIT 29E Trace subroutines IIVRCP 
TRCINT 29F Trace subroutines I IVRCP 
TRCINV 29E Trace subroutines IIVRCP 
TRClO 29F Trace subroutines IIVRCP 
TRCISK 29E Trace subroutines IIVRCP 
TRCLPSW 29E Trace subroutines TlVRCP 
TRCNUMBR 29F Trace subroutines IIVRCP 
TRCNWRAP 29F Trace subroutines IIVRCP 
TRCSIO 29E Trace subroutines IIVRCP 
TRCSSK 29E Trace subroutines IIVRCP 
TRCSSM 29E Trace subroutines IIVRCP 
TRCSVC 29F Trace subroutines IIVRCP 
TRCTCH 29E Trace subroutines IIVRCP 
TRCTIMER 29F Trace subroutines I lVRCP 
TRCTlO 29E Trace subroutines IlVRCP 
TRCWRAP 29F Trace subroutines I lVRCP 
TSTOPN 22B SVC monitor routine I IVGR2 
VIOA 25A V~OC I/O simulation routine I IVVIO 
VIOA2 25A VTOC I/O simulation routine rrITVIO 
VIOB 25B VTOC I/O Simulation routine I IVVIO 
VIOC 25B VTOC I/O simulation routine I IVVIO 
VIoe1 25B VTOC I/O simulation routine I IVVIO 
VIOD 25B VTOC I/O simulation routine IIVVIO 

Figure 31 (Part 14 of 15) • symbol Tabl e 

Directories 379 



Symbol Chart Routine Module 

VIOE 25B VTOC I/O simulation routine IIVVIO ..J VIOERRX 25E VTOC I/O simulation routine I IWIO 
VIOF 25B VTOC I/O simulation routine I IWIO 
VIOG 25C VTOC I/O simulation routine IIWIO 
VIOH 25C VTOC I/O simulation routine IIVVIO 
VIOl 25C VTOC I/O simulation routine IIWIO 
VIOlO 25C VTOC I/O simulation routine IIWIO 
VlOlOA 25D VTOC I/O simulation routine TIWlO 
VIOlOB 25D VTOC I/O simulation routine IIVVIO 
VIOIOB1 25D VTOC I/O simulation routine IIWIO 
VIOIOC 25D VTOC I/O simulation routine I IWIO 
VIOIOD 25D VTOC I/O simulation routine IIWIO 
VIOIOE 25E VTOC I/O simulation routine IIVVIO 
VIOIOF 25E VTOC I/O simulation routine I IWIO 
VIOIOSIM 25E VTOC I/O simulation routine I IWIO 
VIOIOX1 25E VTOC I/O simulation routine IIWIO 
VIOIOX2 25E VTOC I/O simulation routine IIWIO 
VIOJ 25C VTOC I/O simulation routine I IWIO 
VIONXT 25C V'IOC I/O simulation routine IIWIO 
VIONXT1 25C VTOC I/O simulation routine IIWIO 
VIORTRN 25E VTOC I/O simulation routine IIVVIO 
WKNBLKD 24J write NEWKEY mapping routine lIVIS 
WRTKNRTN 24J Write NEWKEY mapping routine IIVIS 
WRTKN100 24J Write NEWKEY mapping routine IIVIS 
WRTKN101 24J Write NEWKEY mapping routine IIVIS 
WRTKN200 24J f,vrite NEWKEY mapping routine TIVIS 
WRTKRTN 24H Hrite key mapping routine IIVIS 
YESORNO 2K YESORNO subroutine IIVINT 

Figure 31 (Part 15 of 15) • Symbol Table 

380 DOS Emulator Logic 



FIELD NAME TABLE 

The field names in Figure 32 are contained in data areas which are initialized, 
modified, or interrogated by the Emulator. The list can be of help in 
identifying a field name with its data area and its location within that area. 
Although field names for DOS and OS data areas are included, they are limited 
to those significant to the Emulator. A full description of each field is 
included in the "Data Areas" section. 

Hexadecimal 
Field Name Location Data Area 

AASCHCK 4EO EMUCONS 
ABADR 4E4 EMUCONS 
ABEBLK 4C4 EMUCONS 
ABGPIB 44C EMUCONS 
ABGSYSRD 448 EMUCONS 
ACOMTAB 98 EMUCONS 
ACOMTABX C4 EMUCONS 
ACOMTBEX CO EMUCONS 
ACTEXEND C8 EMUCONS 
ADDRWRK 1CC EMUCONS 
ADOSBTND 494 EMU CONS 
ADOSBTR 490 EMUCONS 
ADOSPUB 9C EMU CONS 
ADRILIST SOC EMUCONS 
AEMUCONS 514 EMU CONS 
AEOJCHK 4D4 EMUCONS 
AF1PIB 454 EMUCONS 
AF2PIB 450 EMUCONS 
AI IVADJ 5B8 EMUCONS 
AIIVCCW 5B4 EMUCONS 
AIIVDVS 45C EMUCONS 
AI IVGET 518 EMUCONS 
AI IVGR2 458 EMU CONS 
AIIVISM 460 EMUCONS 
AIIVMSG 4CO EMUCONS 
AIIVOBE1 508 EMUCONS 
AIIVPCI 188 RASCONS 
AI IVPOV 478 EMUCONS 
AIIVSCI 194 RASCONS 
AIIVSDT 488 EMUCONS 
AIIWIO 48C EMUCONS 
AOPEN 4EC EMUCONS 
AOSPUB 1DO EMUCONS 
APC 4FC EMUCONS 
ARASCONS 464 EMUCONS 
ARASNP 1A4 RASCONS 
ARASPCE 180 RASCONS 
ARASRTE 198 RASCONS 
ARASSVC 18C RASCONS 
AROUTE 504 EMUCONS 
AROUTEEP 500 EMUCONS 
ART20 4FO EMUCONS 
ASTCBADR D8 EMUCONS 
ASTGIO 4E8 EMUCONS 
ASVC 4F8 EMUCONS 
ASYNEXAD 1BC RASCONS 
ASYNEXRN 108 RASCONS 
ATIMER 4F4 EMUCONS 
BADCUU 1 F7 EMUCONS 
BASEREGS SOC EMUCONS 
BHDR1 238 RASCONS 

Figure 32 (Part 1 of 9). Field Name Table 

Directories 381 



Hexadecimal 
Field Name Location Data Area 

BREGSAVE 168 EMUCONS 
CAWSCNAD 4C8 EMUCONS 
CCB 3E8 Open table 
CCWSCNAD 4CC EMUCONS 
CCW2ADDR 31 COMTAB 
CEAIDS 1D4 EMUCONS 
CHNINDX AO EMUCONS 
CMPBLK 58 RASCONS 
CMPBLK2 DO RASCONS 
CMPLEN A RASCONS 
COMCAW 24 COMTAB 
COMCCWSA 21 COMTAB 
COMFr>1.SK 28 COMTAB 
COMKEY 20 COMTAB 
COMTABEN A8 EMUCONS 
CPUID 5BC EMUCONS 
CSCDLB 378 Open table 
CTOCBPTR 8 COMTAB extension 
CTOCBUC 1 COMTAB extension 
CTDDNAME C COMTAB extension 
CTDSNAME 14 COMTAB extension 
CTECHPTR 4 COMTAB extension 
CTEXTCNT FE EMUCONS 
CTEXTFLG 0 COMT.l\B extension 
CTEXTPTR 4 COMTAB 
CTFLAG 12 COMTAB 
CTFLAG2 13 COMTAB 
CTFLAG3 14 COMTAB 
CTFLAG4 15 COMTAB 
CTLREGS 5C4 EMUCONS 
CTLRO 5C4 EMU CONS 
CTLR14 5C4 EMUCONS 
CTLR15 600 EMUCONS 
CTLR2 SCC EMUCONS 
CTULEXT 16 COMTAB 
CTXTNSAV 16 COMTAB 
CUUSAVE 1EO RASCONS 
DAOCB 348 EMUCONS 
DAOCBLEN 48 EMUCONS 
DBUGDCB 46C EMUCONS 
DCBBLKSI 3E DCB 
DCBDDNAM 28 DCB 
DCBEODAD 21 DCB 
DCBEXCD1 50 DCB 
DCBEXCD2 51 DCB 
DCBIFLGS 2C DCB 
DCBKEYLE 10 DCB 
DCBLPDA B8 DCB 
DCBLRECL 52 DCB 
DCBMAC 35 DCB 
DCBMACR 32 DCB 
DCBNOREC D6 DCB 
DCBNREC 9C DCB 
DCBOFLGS 30 DCB 
OCBOPTCD 34 DCB 
DCBPTR 4C COMTAB 
DCBRECFM 24 DCB 
DCBRKP 3C DCB 
DCBRORG1 EO OCB 
DCBRORG2 CE DCB 
DCBRORG3 98 DCB 

Figure 32 (Part 2 of 9). Field Name Table 

382 DOS Emulator Logic 



Hexadecimal 
Field Name Location Data Area 

DCBSYNAD 38 DCB 
DCBTDC 95 DCB 
DCELFBN~ 38 UCB 
DEBBINUM 24 DEB 
DEBCEA -18 DEB 
DEBDVMOD 20 DEB 
DEBENDCC 2A DEB 
DEBENDHH 2C DEB 
DEBEOEA -24 DEB 
DEBNMTRK 2E DEB 
DEBS lOA -20 DEB 
DEBSTRCC 26 DEB 
DEBSTRHP. 28 DEB 
DEBXCEA -14 DEB 
J:ECBAREA C DECB 
DECBDCBA 8 DECB 
r:ECBEXC1 18 DECB 
DECBEXC2 19 DECB 
DECBKEY 14 DECB 
DECBLOGP 10 DECB 
DEVTYP B COMTAB 
DIAGBLK 0 RASCONS 
DIAGBUF 8 RASCONS 
DIAGCUU 4 RASCONS 
DIAGFI,G 6 ~SCONS 

DIAGLNG 74 RASCONS 
DIAGNXT 0 RASCONS 
DIAGREL 80 RASCONS 
DOS BIN E COMTAB 
DOSCAW 0 CAW 
DOSCCB 0 CCB 
DOSCSW 0 CSW 
DOSCUU 8 COMTAB 
DOSRFTB 608 EMUCONS 
OOSSIZE EO EMUCONS 
DRELEASE 605 EMUCONS 
DSFIDBLK 10C EMUCONS 
DS1DSIND 50 DSCB-F1 
DS1FMTID 2C DSCB-F1 
DS1PTRDS 87 DSCB-F1 
DS4DEVDT 4A DSCB-F4 
DS4DSREC 32 DSCB-F4 
DS4VTOCE 69 DSCB-F4 
DS4VTOCI 3A DSCB-F4 
DTFFLNME 16 DTFIS tables 
DTFLMODA 11 DTFIS tables 
DTFRCTGD 44 DTFIS ADD-RETRVE-ADDRTR table 
DTFTYPE 14 DTFIS tables 
ECB 0 COMTAB 
ECB 0 ECB 
ECBLIST E8 EMUCONS 
ECBLIST 0 ECB pointer table 
EMUCCW1 29 COMTAB 
EMUCCW2 30 COMTAB 
EMU CONS 0 EMUCONS 
EMULBLAD 60C EMUCONS 
EMUPATCH 624 EMUCONS 
EMUSAVE 16C EMUCONS 
ENDPTECB BC EMUCONS 
EOJSW 101 EMUCONS 
EXMSG 1E5 RASCONS 

Figure 32 (Part 3 of 9). Field Name Table 

Directories 383 



Hexadecimal 
Field Name Location Data Area 

EXTMSK 1FA EMUCONS ~ FCBCCW 480 EMUCONS 
FCBCCWCT 486 EMUCONS 
FCBCCWDA 481 EMUCONS 
FCBCCWFG 484 EMUCONS 
FCBCCWOP 480 EMU CONS 
FCBCCWX 485 EMUCONS 
FIDBLK 48 ISBLK 
FIDCTXTN 8 FIDBLK 
FIDLTK 13 FIDBLK 
FIDNXT 0 FIDBLK 
FIDPRV 4 FIDBLK 
FIDTFNME C FIDBLK 
F4INCORE 4AO Open table 
F4INDIC 4AO Open table 
HDRDATE 291 RASCONS 
HDRPAGE 2BO RASCONS 
HDRTIME 2"7D RASCONS 
HDR1 240 RASCONS 
HEXTAB 13B EMUCONS 
HYPLIST 0 EMUCONS 
H1 1BE EMUCONS 
I IVCON 0 EMUCONS 
IIVCONB1 4D8 EMUCONS 
IIVCONB2 4DC EMUCONS 
IIVCONB3 510 EMUCONS 
IIVRCN 0 RASCONS 
IJHAARAD C8 DTFIS ADD-RETRVE-ADDRTR table 
IJHACFID AO DTFIS ADD-RETRVE-ADDRTR table 
IJHACLNK B2 DTFIS ALD-RETRVE-ADDRTR table 

~ IJHACOCR 80 DTFIS ADD-RETRVE-ADDRTR table 
IJHACOFC 9A DTFIS ALD-RETRVE~ADDRTR table 
IJHACORC 9C DTFIS ADD-RETRVE-ADDRTR table 
IJHACOTC 98 DTFIS ADD-RETRVE-A.DDRTR table 
IJHACPRC 1C DTFIS ArD-RETRVE-ADDRTR table 
IJHACRID 98 DTFIS ADD-RETRVE-ADDRTR table 
IJHACTIN AS DTFIS ADD-RETRVE-ADDRTR table 
IJHACTNA 88 DTFIS A[D-RETRVE-ADDRTR table 
IJHACTOA 90 DTFIS ADD-RETRVE-ADDRTR table 
IJHACUSE CC DTFIS ADD-RETRVE-ADDRTR table 
IJHADKEY DO DTFIS AID-RETRVE-ADDRTR table 
IJHAISKY DA DTFIS ADD- P.ETRVE-ADDP~R table 
IJHCA':'B2 64 D'!'FIS ADD-RETRVE-ADDRTR table 
IJHCA':'B3 66 DTFIS ADD-RETRVE-ADDRTR table 
IJHCBLSZ 4E DTFIS ArD-RF.TRVE-ADDRTR table 
IJHCCCB 0 DTFIS ADD-RETRVE-ADDRTR table 
IJHCCCW 8 DTFIS ADD-RETRVE-ADDRTR table 
IJHCCLPA 42 DTFIS ADD-RETRVE-ADDRTR table 
IJHCKYLC 5E DTFIS A[D-RETRVE-A.DDRTR table 
IJHCKYSZ 4C DTFIS ADD-RETRVE-ADDRTR table 
IJHCOPT 15 DTFIS ADD-RETRVE-ADDRTR table 
IJHCRARA C DTFIS ADD-RETRVE-ADDRTR table 
IJHCRESZ 4A DTFIS ADD-RETPVE-ADDRTR table 
IJHCRKEY 10 D'1'FIS ADD-RETRVE-ADDRTR table 
IJHCRTR 2B DTFIS Af'D-RETRVE-ADDRTR table 
IJHC?HOR 14 DTFIS ADD-RETRVE-ADDRTR table 
IJHCSADR 68 DTFIS ADD-RETRVE-ADDRTR table 
IJHCSTBY 1:8 DTFIS ADD-RETRVE-ADDRTR table 
IJHKADCN B8 DTFIS load table 
IJHKBKLN 4E DTFIS load table 
IJHKCCB 0 D'IFIS load table 

Figure 32 (Part 4 of 9) • Field Name Table ~ 
384 DOS Emulator Logic 



Hexadecimal 
Field Name Location Data Area 

IJHKCCOD 1E DTFIS load table 
IJHKLGLN 4A DTFIS load table 
IJHKLPDR 42 DTFIS load table 
IJHKOPCO 15 DTFIS load table 
IJHKPRCT 6C DTFIS load table 
IJHKRDWR 98 DTFIS load table 
IJHRADSV 48 DTFIS AID-RETRVE-ll.DDRTR table 
IJHROVCN 54 DTFIS ADD-RETRVE-ADDRTR table 
IJHRREGS 46 DTFIS ADD-RETRVE-ADDRTR table 
IJHSCADR 30 DTFIS ADD-~ETRVE-ADDRTR table 
IJHSDB1 18 DTFIS AID-RETRVE-ADDRTR table 
IJHSrOAR 8 DTFIS ADD-RETRVE-ADDRTR table 
IJHSLIOR 1C DTFIS ADD-RETRVE-ADDRTR table 
IMGLBDCB 468 EMUCONS 
lOB 38 COI'-1TAB 
IOBCSW 9 lOB 
IOBDCBPT 15 lOB 
IOBECBPT 5 lOB 
IOBFLAG1 0 lOB 
IOBSEEK 21 lOB 
IOBSFEKM 20 lOB 
IOBSENSO 2 IOB 
IOBSENS1 3 lOB 
IOBSTART 11 lOB 
IPLCUU CE EMU CONS 
IPLOFST D3 EMUCONS 
IPLSTMT 498 EMUCONS 
IPLSW 1D8 Er-1UCONS 
ISAMCODE 104 EMUCONS 
I SAMDT FA 105 EMUCONS 
ISAMFDCX 108 EMUCONS 
ISAI."'1LIST 104 EMUCONS 
ISCODE 68 ISBLK 
ISCOMTAB 6C ISBLK 
ISDCB 78 ISBLK 
ISDCB1 184 ISBLK 
ISDECB 164 ISBLK 
ISDTFA 69 ISBLK 
ISDTFLMA 180 ISBLK 
ISECB 5C ISBLK 
ISFIDBLK 110 EMUCONS 
ISFLAGS 74 ISBLK 
ISLIST 68 ISBLK 
ISREGSAV 0 ISBLK 
ISREGSVA 64 ISBLK 
ISSKTAB F8 EMUCONS 
ISTCB 60 ISBLK 
ISWKNARA 70 ISBLK 
JFCBAREA 394 EMUCONS 
JFCBBS 3FA EMUCONS 
JFCBDSJN 3AA EMUCONS 
JFCBDSN 394 EMUCONS 
JFCBDSNM 0 JFCB 
JFCBDS18 3A5 EMUCONS 
JFCBDS19 3A6 EMU CONS 
JFCBDS8 39C EMUCONS 
JFCBIB 3C8 EMUCONS 
JFCBIND2 3EB EMUCONS 
JFCBIP 3D6 EMUCONS 
JFCBLKSI 66 JFCB 
JFCBLTYP 42 JFCB 

Figure 32 (Part 5 of 9). Field Name Table 

Directories 385 



Hexadecimal 
Field Name Location Data Area 

JFCBMSK1 3EO EMUCONS .J JFCBTSDM 34 JFCB 
JFCBUFIN 3ED EMUCONS 
JFCBUFL 3EE EMUCONS 
JFCBUFNO 3EC EMUCONS 
JFCBVOLS 16 JFCB 
JFCBVSER 40A EMUCONS 
JFCBVSR1 40A EMUCONS 
JFCBVSR3 40D EMUCONS 
JFCCYLOF 402 EMUCONS 
JFCDSORG 3F6 EMUCONS 
JFCFCBID 3CC EMUCONS 
JFCKEYLE 3F1 EMUCONS 
JFCLRECL 3FC EMUCONS 
JFCNCP 3FE EMUCONS 
JFCNTM 3FF EMUCONS 
JFCOPTCD 3F9 EMU CONS 
JFCRECFM 3FB EMUCONS 
JFCRKP 400 EMUCONS 
LABADDR 4AB Open table 
LEXADR 1BB RASCONS 
LEXMSG 1E3 RASCONS 
LEXRTN 1DO RASCONS 
LHDR1 23C RASCONS 
LIMTBCKT 3EO open table 
LINECNT 2BA RASCONS 
LOGCUU DO EMU CONS 
LOGIO 4DO EMUCONS 
LOGOFST D4 EMUCONS 
LOPTMSG1 20A RASCONS 
LPSWSVE 222 RASCONS .J MODNM 201 RASCONS 
MSGIN 4A1 Open table 
MSGINDIC 4A1 Open table 
MSGOUT 4A1 Open table 
MSGWF 4A1 Open table 
NBRENT FC EMUCONS 
NBR2K E4 EMUCONS 
NOIOPEND 1BC EMUCONS 
NOSIO 1CO EMUCONS 
NXTBTR 114 EMUCONS 
OLDBTR 11C EMUCONS 
OPENLIS'I' 598 EMUCONS 
OPTBFLGS 4A3 Open table 
OPTBFLPT 4A3 Open table 
OPTBLNK 4A3 Open table 
OPTBSYFL 4A3 Open table 
OPTCt.lU 211 RASCONS 
OPTFLGR2 100 EMUCONS 
OPTION 20C RASCONS 
OPTMSG1 20C RASCONS 
OSBIN 10 COMTAB 
OSCUU C COMTAB 
PAGECN'J' 2BC RASCONS 
PARMCLSE 20 EMUCONS 
PARMCODE 104 EMUCONS 
PARMDTFA 104 EMUCONS 
PARMEOX 24 EMUCONS 
PARMFDCX 108 EMUCONS 
PARMFLG 1C2 EMUCONS 
PARl>ILST 104 EMUCONS 

Figure 32 (Part 6 of 9). Field Name Table ~ 
386 DOS Emulator Logic 



Hexadecimal 
Field Name Location Data Area 

PARMI2K 108 EMTJCONS 
PARHOPEN 1C EMUCONS 
PCEXITAD 1B4 RASCONS 
PCEXRTN 1C8 RASCONS 
PECBPTR1 BO EMUCONS 
PECBPTR2 B4 EMUCONS 
PENDSW 1D9 EMUCONS 
POSTECB B8 EMUCONS 
PRONPECB 4DC EMUCONS 
PRPCONTF 594 EMU CONS 
PRPCrUC 4BC EMUCONS 
PRPCVUWK 4B8 EMUCONS 
PRPMSGJN 1DF EMUCONS 
PRPr.1SG99 1DA EMUCONS 
PRPRPLY 510 EMUCONS 
PRPRPLYZ 51C EMUCONS 
PRPSW 1F5 EMUCONS 
PRPVSER 1EF EMUCONS 
PSWMSK2 172 RASCONS 
PSWSAVE 168 RASCONS 
PSvlSVE 224 RASCONS 
PSWSW 17C RASCONS 
PTCHAREA 3C8 RASCONS 
PUBINDX A COMTAB 
QLIST 59C EMUCONS 
QNAME 5A8 EMUCONS 
RAS ART 2 0 1AO R1\SCONS 
RASCCW 2C4 RASCONS 
RASCONS 0 RASCONS 
RASDIAG 2CO RASCONS 
RASFLG1 17E RASCONS 
RASNPCDS 36 RASCONS 
RASNPCUU 40 RASCONS 
RASNPSW1 54 PASCONS 
RASNPsw2 55 'RASCONS 
RASNPSW3 56 RASCONS 
RASNPSW4 57 RASCONS 
RASOPCDS 0 RASCONS 
RASOPLEN 8 RASCONS 
RASOTHER 19C RASCONS 
RASPC 184 RASCONS 
RASPCSW 17F RASCONS 
RASPSWSV 160 RASCONS 
RASSNPNO 34 ?ASCONS 
RASSVC 190 RASCONS 
RASTRCDS 14 RASCONS 
RASTRCMX C RASCONS 
RASTRCNO 10 RASCONS 
RASTRCNX E RASCONS 
RASTRCTB 8 RASCONS 
RASTRCUU 1C RASCONS 
RASTRLEN A RASCONS 
RASTRSVC 2C8 RASCONS 
RASTRSW1 30 RASCONS 
RASTRSW2 31 RASCONS 
RASTRSW3 32 RASCONS 
RASTRSW4 33 RASCONS 
REGA 150 EMUCONS 
REGB 154 EMUCONS 
REGC 158 EMUCONS 
REGD 15C EMU CONS 

Figure 32 (Part 7 of 9) • Field Name Table 

Directories 387 



Hexadecimal 
Field Name Location Data Area 

REGE 160 EMUCONS 
REGF 164 EMUCONS 
REGSAV 128 EMUCONS 
REGSAVE 1C4 EMUCONS 
REGO 128 EMUCONS 
REG1 12C EMUCONS 
REG2 130 EMUCONS 
REG3 134 EMU CONS 
REG4 138 EMUCONS 
REGS 13C EMUCONS 
REG6 140 EMUCONS 
REG7 144 EMUCONS 
REG8 148 EMUCONS 
REG9 14C EMUCONS 
RESCUU CC EMUCONS 
RESOFST D2 EMUCONS 
RFACTOR 510 EMUCON8 
RNAME SBO EMTJCONS 
RNMBIN SB3 EMUCONS 
RNMCUU SBO EMUCONS 
FNMELEN 4 EMUCONS 
SCAN:SEG 244 EMUCONS 
SCANCHR 240 EMUCONS 
SCANEND 23C EHUCONS 
SCANLNG 248 EMUCONS 
SCANSTP 243 EMUCONS 
SCANTBL 23c EMUCONS 
SECOND 1 B4 EMUCONS 
SECONDA 1B8 EMUCONS 
SEKADR 3FC Open table 
SNPCUULN A RASCONS 
SNPLEN 8 RASCONS 
SNPNO 21C RASCONS 
SRCHKEY 409 Open table 
STAEREGS 470 EMUCONS 
STAERTN 474 EMUCONS 
STCKArDR 620 EMUCONS 
STGBUF 18 STGCON 
STGCCW 1C STGCON 
STGCHFLG 10 STGCON 
STGCON 38 COMTAB 
STGCSW 9 STGCON 
STGCUU 24 STGCON 
STGDLM 20 STGCON 
STGCTP 18 STGCON 
STGFLG 0 STGCON 
STG!"LG2 27 STGCON 
STGINTR AC EMUCONS 
STGLNCNT 4 STGCON 
S'1'GU1PTR 6 STGCON 
STGMAX 12 STGCON 
STGOPCD 14 STGCON 
STGSENO 2 STGCON 
STGSEN1 3 STGCON 
8 Tm·1K1 1 8TGCON 
8TORG81f1 17D RASCONS 
STPTBL 24C EMUCON8 
SVCCHN 1A8 -qA8CONS 
SVCEXAD 1BO RASCON8 
8VCEXRTN 1CO RA8CON8 
83708W 604 EMUCON8 

Figure 32 (Part 8 of 9). Field Name Table ~ 
388 DOS Emulator Logic 



Hexadecimal 
Field Name Location Data Area 

TAFLAG1 74 ISBLK 
TAFLAG2 75 ISBLK 
TAFLAG3 76 ISBLK 
TAFLAG4 77 ISBLK 
TDELTA 610 EMUCONS 
TEBLEN 0 TEBV 
TEBTAB 0 ",EB 
TEBV 18 TEBV 
TIMEIND 1F6 EMUCONS 
TIMERECB 124 EMUCONS 
TIOEDDNM 4 TIOT 
TIOEFSR..., 1 TIOT 
TIOELNGH 0 TIO'" 
TIOTADR DC 'SMUCONS 
TRCDLEN 8 RASCONS 
TRCL3N 12 RASCONS 
TRNSFLD FO EMUCONS 
TRNSFL;)A F1 EMUCONS 
TRNSFLD1 FO EMUCONS 
TRNSFLD3 FO EMUCONS 
TRNSFLD4 FO EMUCONS 
TRNSFLD5 FO EMUCONS 
TSBLEN 1 TEBV 
TYPSAVE 1E2 RASCONS 
UCBTYP 10 UCB 
VIIVCON 1AC RASCONS 
VOLLABI 0 VOL label 
VOLNO 3 VOL label 
VOLSERNO 4 VOL label 
VOLVTOC B VOL label 
WKAREA 618 EMUCONS 
WTOECB 444 EMUCONS 
WTORECB 4D8 EMUCONS 
XLIST 390 EMUCONS 

Figure 32 (Part 9 of 9) • Field Name Table 

Directories 389 





DATA AREAS 

Data Area Relationships 

Data Area Layouts 

Data Areas 391 



DATA AREA RELATIONSHIPS 

The major paths by which Emulator routines can reach specific data areas are 
shown in Figures 33, 34, and 35. 

392 DOS Emulator Logic 



r 

<oj 
f-" 

cQ 
.:: 
i"i 
(!) 

W 
w 

d 
PI 
rt 
PI 

~ 
t1 
CD 
PI 

::0 
CD 
I-'" 
Qj 

rt 
0 f-" 

0 
:J 
CJ) 

:Y 
f-'. 
'0 
CJ) 

~ 

~ 
:Y 
(]) 
:J 

::0 
(]) 
CJ) 

0 
C 
1'1 
0 
(]) 
CJ) 

III 
t1 KEY, 
(1) 

d 
DOS PUB table 

(1) 

0. OS PUB table 
f-'. 
() 
PI COMTAB 

0 rt 
p; CD 
rt 0. 
PJ 

0 
>' t1 
'1 

DCB CD Cfl 
III rt 
tJ) III 

Register 11 .a 
(1) 

w E; 
..0 
W 

r 

® 

Communications Table AB) @ DCB 

G) A one-to-one relationship exists between the DOS PUB table and the OS PUB table. An 
X'FF' In the last byte of this table acts as a table delimiter. 

® An OS PUB entry specifies a COMTAB entry number. An X'FF' entry Indicates that no 
COMTAB entry exists for a DOS PUB table entry. 

® The communications table has one BS-byte entry for every device allocated to emulation 
plus an entry for SYSLOG. 

o The byte labeled PUBINDX is an index Into the DOS PUB table where the PUB entry 
for this DOS device can be found. 

® Bytes X'4C-4F' labeled DGBPTR point to the appropriate DCB. 

® 

For every data set to be processed by a program, there is a corresponding data control 
block to indicate its current use. 

This register points to the first byte of IIVCON . 

r 

~~======----

IIVCON 

Post ECB list 

ECB Pointer table 

ISK/SSK table 

CD 
® 
® 
@) 
@ 
@ 
@ 
§ 

@ 

@ 

The CSECT II VCON contains data constants common to most Emulator modules. 

Bytes X'98-9B' labeled ACOMTAB point to COMTAB. 

Bytes X'9C-9F' labeled ADOSPUB point to the DOS PUB table 

Bytes X'S8-B8' labeled POSTECB point to the post ECa list. 

Bytes X'E8-EB' labeled ECBLlST point to the ECB pointer table. 

Bytes X'FB-Fa' labeled ISSKTAB point to the ISK/SSK table. 

Bytes X'' 00-' D3' labeled AOSPUB point to the OS PUB table. 

The first byte points to a COMTAB entry. The second byte contains the conditIon code 
from the EGB when it was last posted. 

This table is a list of 4·byte addresses to the ECBs for the devices being used (or DOS 
emulation plus addresses for SYSlOG and three special ECBs. 

This table has a l-byte entry for each 2K block of DOS storage that contains the 
appropriate protect key for each block . 



w 

'" -'=' 

8 
CIl 

tlj 
!3 
~ 
~ 
III 
eT 
0 
Ii 

t"' 
0 

\Q 
1-'-
n 

I'zl 
1-" 
.Q 
~ 
Ii 
Ib 

w 
-'=' . 

Ol;j 
eTilI 
::reT 
Ib III 
1"1 
~ 

>-'3 Ii 
::reo 
QJ QJ 
:J 
~ 

OlD 
iJ) I-' 

III 
HeT ::s 1-'-
0.0 
(l) ::s 
x CIl 
(1);:3" 
0. 1-" 

'CI 
UlCil 
(J) 
.Q--
c:: I: 
rtl;:3" 
::i Ib 
eT::S .,.-
1110 
I-' 1"" 

Ii 
III Ib 
Ii n 
meT 

I 
:sl:l>' 
::l"O 
ill n 
~ (I) 
m :IJ 
':'CIl 

0 
ill 
eT 
\II 

(Il 
(I) 
eT 
CIl 
"-
I'zl 
1-'-
I-' 
(I) 
til 

'" 

KEY: 

Register 11 

IIVCON 
IEMUCONSJ 

FIDBLK 

CD "I",:::o{lCUN \~MUlCUN'" ~ 
I 

lPu~~ 

- ~ ,- 0 I 
98 ACOMTAB 0 

~ 
• 4 

CTEXTPTR 

,o,~ lOC 

::,':~; Gil ~ ts 
110 

@ 

=:1 4C 

;i~ 
COMTAB extension chain 

DCBPTR 

"···'·.·.r.r'.·.·".',,,··· [ ~ :=, J~ .' ..... 

c 
0 I 

i 
FIDBLK chain J J. 

<) 0 0 ..... :::'iJ 0 
FIDPRV • 4 CTECHPTR 

0 ~ 
.Jt0L G) 

i 0 FIDNXT 

[::::t 4 FIDPRV 

CD o o 
o 
G) 

.A • 0 

""'V 
4 

8 

r 
This register points to the first byte of IIVeON. 

Bytes X'9S·9B' lIabeled ACOMTABI po;nt to COMTAB. 

Bytes X'10C·l0F' Ilabeled DSFIDBLKI po;nt to a FIDBLK ;n 
the FIDBLK chain. 

Bytes X'O-3' (labeled FIDNXT in each FIDBLK) point to the 

following FIDBLK in the chain. 

Bytes X'4-7' (labeled FIDPRV in each FIDBLKJ point to a 
previous FIDBLK in the chain. (This field is zero in the first 

FIDBlK in the chain.) o Bytes X'S·B' Ilabeled FI DCTXTN ;n each FI DBLKJ po;nt to 
the appropriate COMTA8 extension for the data set in the chain 
of COMT AB extensions. 

8 
FIDCTXTN 

FIDNXT 

0 

FIDCTXTN 

I 
COMTAB 
Extension 

COMTAB 

4.., 

o 
o 
o 
@ 

B8 CTDCBPTR 

0 

r 
® 

Bytes X'4-7' (labeled CTECHPTR in each COMTAB extension) 
point to the next COMTAB extension on this device. 

Bytes X'8·B' (labeled CTDCBPTR In each COMTAB extension) 
point to the DCB for this data set. 

Bytes X'4-7' (labeled CTEXTPTR in each COMTAB) point to 
the COMTAB extension for this entry. 

Bytes X'4C-4F' (labeled DCBPTR in each COMTABI point to 
the DCB for this data set. 

~-

'-' 



t:I 
OIJ 
rt 

'" ~ 
1"\ 
rD 
III 
CIl 

IN 
ID 
U1 

r 

'Ij .... 
:.Q 
~ 
1"\ 
CD 
W 
VI . 

t:It:I 
\II III 
rtrt 
\II III 

l'J))' 
CD 1"\ 
rtCD 
III '" 
1lI::cr 
,., I\) 
(I) .... 

III 
l'J)(1' 

~~. 
,., ::I 
I'D III 
0.::T -- .... 

'0 
CIl -~ 
::T 
(l) 
::I 

0 
l'J) 

H g. 
(0 
X 
CD 
0. 

f€ 
~ 

~ :s 
(1' .... 
QI 
~ .. 
0 .... 
1"\ 
(I) 

~ 
I 

>' 
0 
0 
I\) 
III 
fI) 

KEY: 

Register 11 

IIVCON 
IEMUCONS) 

ISBlK 

0) 

~ 
o 
® 

CD 

This register points to the first byte of IIVCON. 

Bytes X'98·9B· (labeled ACOMTABI point to COMTAB. 

Bytes X"'O·"3' (labeled ISFIDBLKI point to FIDBLK in the 
ISBlK. 

Bytes X'48·4B' (labeled FIDNXT in .ach FIDBLK in the ISBlK) 
point to the following FIDBLK in the chain. 

Bytes X'4C·4F' (labeled FIDPRV in each FIDBlKI point to the 
previous FIDBlK in the chain. However, this field in the first 
FIDBLK in the chain points to the ISFIDBlK field in IIVCON. 

(' 

COMTAB 
Extension 

COMTAB 

® 

o 
® 
® 

ISAM 

DCBIS) 

This portion of an 
ISBlK is the same 
asaFIDBlK 

o 

COMTAB extension chain 

Bytes X'50·53' (labeled FIDCTXTN in each FIDBLK) point to 
the appropriate COMTAB extension in the chain of COMTAB 
extenSions. 

Bytes X'4-7' (labeled CTECHPTR in each COMTAB extension) 
point to the next COMTAB extension on this device. 

Bytes X'S-B' (labeled CTDCBPTR in each COMTAB extension) 
point to the associated ISBlK in the ISBLK chain. 

Bytes X'4-7' (labeled CTEXTPTR in each COMTAB) point to the 

COMTAB extensions associated with this volume. 

(' 



• 

DATA AREA LAyOUTS 

Page of GY2 6-3 7 41 
Revised July 2S, 1972 
By TNL GN26-8021 

This section describes control blocks unique to the Emulator, control blocks 
in the Emulator region that are referenced by both the Emulator and OS, and 
data areas in DOS and OS that are referenced by the Emulator. 

In some cases, major portions of the block not relevant to the functions of 
the Emulator are omitted. In those cases, a reference is made to a publication 
where a more complete description can be found. 

Some of the data areas (for example, the CAW, CSW, and the PSW) are fully 
described in the publication IBM system/360 principles of Operation. 'J"he 
descriptions of those data areas are therefore condensed in this section to 
minimize references to the Principles of operation publication. 

The symbolic names shown in individual data area fields represent the offset, 
in bytes, from the beginning of a table to the field. Access is gained to 
a specific field by using an instruction in which the beginning address of 
the table (usually contained in a register) is the base address, and the 
symbolic field name represents the displacement. 

There are places where the symbolic field names will differ from the names 
used in other publications. Names used here were taken from Emulator listings 
and where differences exist, a nonemulator program may refer to the field hy 
the other name. (To resolve name differences, compare offsets; if the offsets 
match, the names represent the same field.) 

Usage of the data ar~a fields can be traced in the Emulator listings by first 
locating the symbolic field names in the cross-reference table at the back 
of the listings and then noting where the names are used. ~{here no symbolic 
name appears in a data area field, the field is probably not referred to hy 
the Emulator. 

The page format used for data area field descriptions is identical to that 
used in the publication syste~ Control Blocks for OS or Svstem Data Areas for 
OS/Vs. The field headings and their meanings are: 

*********************************************************************** 
* Bytes and Field Hex. * 
*Offset Alignment Name Dig. Field Description, Contents, r4eaning* 
*********************************************************************** 

Offset: The numeric address of the field relative to the beginning of the 
data area. The first number is the offset in decimal, follow~d (in parentheses) 
by the hexadecimal equivalent. 

Example: 16 (1 O) 

~ and Alignment: The size (number of bytes) of the field and its alignment 
relative to the fullword boundary. 

396 DOS Emulator Logic 



Examples: 

4 

• • 2 
• •• 1 
• •• 3 

a 4-byte field beginning on a word boundary 
a 2-ryte field beginning on a halfword boundary 
a 1-byte field in the low-order byte of a word 
a 3.byte field beginning at the low-order byte of a 
word (and running into the next word) 

Page of GY26-3741 
Revised July 25,1972 
By TNL GN26-8021 

Field Name: A name that identifies the field. This column is also used to 
show the bit settings of flag fields, that is, the state of bits in a byte. 
'f7hen the column is used to show the state of bits (0, 1) in a flag byte, it 
is shown as follows: 

The 8 bit positions (0-7) in a byte. For ease of 
scanning, the high-order (left-hand) 4 bits are 
separated from the low-order 4 bits. 

x. • . A reference to bit O. 

1... Bit 0 is on. 

0... Bit 0 is off • 

•• xx A reference to bits 6 and 7. 

Bit settings that are significant are shown and described. Bit settings that 
are not presently significant are described as reserved bits. Do not use these 
bits because the Operating System may make use of them in the future. 

Hex.dig. (hexadecimal digits): The contents of the field expressed as 
hexadecimal digits. 

Field Description, Contents, Meaning: The use of the field. 

Adjust CCW List 

Initialized by: IIVINT 

Modified by: IIVCCW, IIVPCE, IIVABN, IIVADJ, adjust CCW string instruction 

Interrogated by: IIVCCW, IIVSNP, IIVADJ, and adjust CCW string instruction 

Pointer in: EMUCONS and Emulator register 9 + X'40' offset 

The Adjust CCW list (Figure 361 contains information necessary for modifying 
the data addresses in channel command words so that they address the main­
storage area assigned to the emulated environment. See the Appendix for 
details. 

Data Areas 397 

-



0(0) 

4(4) 5(5) 

Reserved 

8(8) 

12(C) 13(0) 

Reserved 

16(10) 17(11) 

Reserved 

20(14) 21 (15) 

Reserved 

Figure 36. Adjust CCW List 

Adjust CCW List Description 

0(0) 

5 (5) 

11 (B) 

Bytes and Field 
Alignment Name 

3 

... , 

398 DOS Emulator Logic 

Signed Adjustment Factor 

Local Limit Address 

11 (B) 

Reserved Operation Byte 

Operation Pointer 

CCW Address 

TIC Command Address 

Field Description, Contents, Meaning 

Signed adjustment factor. This area holds a 
fUllword, binary, signed number on a 4096-byte 
boundary (the three low-order hexadecimal digits 
equal 000). This factor is algebraically added 
to the data addresses of the CC1't1s. A positive 
number is used to adjust local CCW data addresses 
to true addresses; a negative number is used to 
reconvert true data addresses to local addresses. 

Local limit address. This word holds the maximum 
address usable by the emulated DOS programs. 
The address value must be on a 4096-byte boundary 
minus 1 (the three low-order hexadecimal digits 
equal FFF). The adjusted data address computed 
from the CCW data address plus the adjustment 
factor (see above) must fall between address 0 
and the local limit address. 

Operation byte. This field carries the command 
code for CCws that are data chained together. 
The operation byte is set to the command of the 
first CCW of a data chain and is used to indicate 
direction when computing the extreme data aCl.dresses 
of the CCws that are data chained together. 



Offset 

13 (D) 

11(11) 

21 (15) 

Bytes and Field 
Alignment Name 

3 

3 

3 

Field Description, Contents, Meaning 

The field is set to zero when the CCW being 
processed is not data chained. Therefore, a 
nonzero field found upon initialization of an 
instruction indicates that the first ccw to be 
adjusted is part of a chain. 

Operation pointer. This word contains the true 
address of the CCW that originated the operation 
byte for the last nonTTC CCW adjusted. 

ccw address. This field holds the true address 
o.f the first ccw of the string. The adjust CCW 
string instruction (see Appendix) adds the 
adjustment factor to the data address portion 
of each CCW in the CCW string until: 

(1) The end of the string has been reached 
(condition code = 0); 

(2) A TIC (transfer in channel) command has been 
encountered (condition code = 1); 

(l) The local storage area specified by the last 
ccw adjusted falls at least partially outside 
the limits of 0 and ,the local storage limit 
address (condition code = 2); or 

(4) The next ccw to be adjusted falls at least 
partially outside the limits of 0 and the 
local storage limit address or is not located 
on a doubleword boundary (condition code 
"" 3). 

Whenever one of these four conditions terminates 
the instruction, the condition code is set and 
the address +8 of the last ccw adjusted is placed 
into the CCW address field. If a data chain was 
in process, the command code and address of the 
CCW containing the command a.re set in the operatioI 
byte and operation pointer fields of this list. 

TIC command address. If the last ccw adjusted 
was a TIC, this field contains the command address 
from the TIC CCW. 

If the TTC CCW is within a data chain, the 
operation byte and ope.ration pointer fields of 
this list contain the values set for the first 
CCW of the data chain. 

If the TIC CCW is not within a data chain, the 
operation byte field of this list is set to zero, 
the ccw address field of this list is set to the 
address +8 of the TIC CCW, and the operation 
pOinter field of this list is set to the address 
of the last Ccw adjusted before the TTC. 

Data Areas 399 



Beginning and End Block (BEBLK) 

tnitialized by:IIVCCW 

Modified/Interrogated by: IIVCCW, IIVSNP 

Pointer in: EMUCONS 

The BEBLK table (.Figure 37 Part 1 of 2) in the Emulator routine IIVCCW contains 
an 8-byte entry for eac.h group o.f CCWs. The first four bytes of an entry 
contain the starting address of a group of CCWs wi thin the ccw chain presently 
being processed by the IIVCCW routine. This starting address will be the 
address of one of the following CCWs (numbe.rs below correspond to numbers in 
Figure 37 Part 2 of 2): 

CD 
o 

The first CCW in the CCW chain being processed. 

The CCW addressed by a TIC CCW (only if that ccw addresses a group of ccws 
other than the group that the TIC CCW itself terminates). 

The ccw that follows a TIC CCW (only if the TIC cern addresses a CCW within 
the group that the TIC CCW itself terminates). 

The end of a group of CCws is determined by encountering one of the following 
CCWs (Figure 37 Part 2 of 2): 

A TIC CCW. 

The end of the CCW chain (the command chaining and data chaining bits set 
to zero). 

The last four bytes in each BEBLK table entry contain the address +8 of the 
CCW that terml.nates the group of CCWs begun at the address contained in the 
first four bytes. 

BEBLK 

0(0) 4(4) 

Beginning CCW Address Ending CCW Address 
+8 

8(8) 12(C) 

Beginning CCW Address 
Ending CCW Address 

+8 

16( 10) 20(14) 

Beginning CCW Address End i ng CCW Add ress 
+8 

24(18) 28(1C) 

Beginning CCW Address Eodi",CC~ 
+8 

32(20) 361241~ 
Beginning CCW Address 

40(28) L..---

Beginning CCW Address 

Figure 37 (Part 1 of 2). Beginninq and End Block (BEBLK) 

400 DOS Emulator Logic 



- --

Conceptual illustrations of Beginning CCW Address in BEBLK: 

'1' )>?)+) ----i ... ~ CCW 
~ CCW 

CCW 

») 

CCW 
CCW 
CCW 

TIC 

CCW 

CCW) 
CCW 
TIC 

... CCW 
CCW 

CCW .... ~-~(~« 
CCW 
CCW 

Conceptual illustrations of Ending CCW Address in BEBLK: 

») .. 

CCW 
CCW 

CCW 
TIC 

CCW 
CCW 

CCW (last CCW in chain) 

Legend 

~ Beginning/Ending address pointer 

----- TIC command address 

Figure 37 (Part 2 of 2). Beginning and End Block (BEBLK) 

Data Areas 401 



Channel Address Word 

Initialized by: DOS 

Interrogated hy: IIVPCE, IIVLOG, IIVAWV, IIVSCI 

Pointer in: Emulator register 10 (points to DOS storage) + X'48' offset 

The channel address word (Figure 38) is referred to by a channel during 
execution of a start I/O instruction. It is the means hy which the channel 
can determine the main-storage location from which it should fetch the first 
channel cOOImand word (CCW). The channel address word is permanently assigned 
to main-storage location 72. 

DOSCAW 

0(0) 
Protection 

o 
Bits 

Key 

1 (1) 

0000 Address of CCW 

34 78 

Figure 38. Channel Address Word 

Channel Address Word nesc.ription 

0(0) 

1 (1) 

Bytes and Field 
Alignment Name 

DOSCAW 

.3 

Channel Command word 

Initiali'z:ed by: DOS 

Field Description, Contents, Meaning 

Protection key. In systems having the data set 
protection feature, contains the requestor's 
protection key. Otherwise, contains zeros. 

The main-storage address of the first channel 
command word (CCW) to be executed. 

31 

Modified by: IIVABN, TIVPCE, IIVCCW, IIVADJ, and adjust CCW string instruction 

Interrogated by: IIVLOG, IIVSTG, IIVCWV, IIVCCW, lIVVIO, IIVCHK, IIVACI, 
I IVADJ 

Pointer in: DOS CCB + X'OS' offset 

The channel command word (CCW, Figure 39) indicates to a channel what I/O 
operation it should start. For operations involving data transfer, the CCW 
also indicates the main-storage location into which data is to be placed or 
read from, and how many bytes of data are to be transferred. 

402 DOS Emulator Logic 



rOJ Command 1"11 Code Data Address 

0 78 31 
Bits 

1"41 Flags 
~6J6J 

Count 

32 3940 
Bits 

Fiqure 39. Channel Command Word 

Channel canmand Word Description 

Offset 

0(0) 

1 «1) 

4 (4) 

6 (6) 

Bytes and Field 
Alignment Name 

1 

.3 

, 10 •••••• 

01 •••••• 

•• 1 ••••• 

••• 1 •••• 

1 ••• 

.000 

•• 2 

4748 

Field Description, Contents, Heaninq 

Command code. Specifies the operation to 
be performed. 

Data address. specifies the main-storage 
location of a data area. Depending upon 
the command code, data is either read from 
or placed into the data area during an I/O 
o~ration involving data transfer. 

Chain-data (CD) flag. The data area 
designated by the next CCW is to be used 
with the current operation. 

Chain-command (CC) flag. The operation 
specified by the command code of the next 
Ccw is to be initiated o~ normal completion 
of the current operation. 

suppress-length-indication ($LI) flag_ The 
incorrect length status bit in the channel 
status word. is not to be set by the channel 
if it detects an incorrect-length condition. 

Skip flag. Data transfer to main storaqe 
is to be suppressed. This flag is valid 
only for read, read backward, and senae 
operations. 

Proqram controlled interruption (PCI) flag. 
Not significant to Emulator. 

63 

Must be zeros for every CCW except for those 
CCWs specifying a transfer in cbannel 
operation. 

Count. specifies the number of bytes in 
the data area associated with this CCW. 

Data Areas 403 



Channel Status Word 

Initialized by: Emulator 

Mooified by: OS, IIVPCE, IIVSTG, IIVCWV, I IVAWV, IIVPOV, IIVLOG 

Pointer in: Emulator register 10 (points to DOS storage) + X'40' offset 

Interrogated by: IIVPCI, IIVACI 

Explanation: IIVPCE gets the 7 low-order bytes of the last CSW from the IOBCSW 
field in the lOB and the high-order byte from the COMKEY field of COMTAB and 
places it in the csw location in DOS storage. It is the CSW in the lOB that 
is modified by OS and the Emulator modules. 

The channel status word (CSW, Figure 40) indicates to a program the status 
of an 1/0 device, control unit, channel, and subchannel. The CSW is assigned 
permanently to main-storage location 64. Information is stored in the CSW 
by a channel after an 1/0 interruption and also during execution of the start 
I/O, test I/O, and halt I/O instructions. 

DOSCSW 

O(O~ 1(1) 
rotection 0000 Address of Last CCW + 8 Key 

0 34 78 
Bits 

14141 Status 1"'61 Count 

32 4748 
Bits 

Figure 40. Channel Status Word 

404 DOS Emulator Logic 

31 

63 



Channel Status WOrd Description 

Offset 

0(0) 

1 (1) 

q (q) 

6 (6) 

.Bytes and Field 
Alignment Name 

1 

.3 

2 

•• 2 

xxxx 

•••• 0000 

Status byte 1 
1 ••• 
.1 •• 
•• 1 • 
•• • 1 

1 ••• 
• 1 •• 
• • 1. 
••• 1 

Status byte 2 
1 ••• 
.1 •• 
• • 1. 
••• 1 

1 ••• 
a 1 •• 
· • 1. 
••• 1 

Command Control Block 

Init.iali zed by: DOS 

Field Description, Contents, Meaning 

Protection key. In systems having the data 
set protection feature, contains the 
requestor's protection key. otherwise, 
contains zeros. 

Always zeros • 

A main-storage address that is eight higher 
than the address of the last executed CCW. 

Attention 
Status modifier 
control unit end 
Busy 
Channel end 
Device end 
Unit check 
Unit exception 

program-controlled interruption 
Incorrect length 
Program check 
Protection check 
Channel data check 
Channel control check 
Interface control check 
Chaining check 

Count. 
The number of bytEls of data that remained to 
be transferred after the last ccw was executed. 

Interrogated by: IIVADD, IIVDVS, IIVGR2, IIVPCE 

Pointer in: DOS register 1 

The DOS command control block (CCB) is used for communication between phYSical 
IOCS and the prcblem program. A 16-byte field is required for each channel 
program executed by physical IOCS. 

Note in Fiqurp 41 that byte 2, bit 0, is significant to the Emulator. Bit 
o is normally set on at channel end to signify that the I/O operation was 
completeri. Bytes 9-11, also significant to the Emulator, contain the address 
of the CCW associated with this CCB. 

Data Areas 405 



c:DOSCCB :'-f-_-_-_-_-_-_-_-_~~-----------------------------~~-'~~ ~ .... ~~~~~~~~~~~~~~~~:~\----------------~ Transmission CCW Address 
Information 

( I 
o 2 I 9 12 .... j ---------------1 .... 5 

Bytes 

,/ 
,/ 

,/ 
,/ 

,/ 

,/ 
./ 

,/ 

IT,,"', B" (Wait) 

o 
Bits 

,/ 

I Used for Transmitting 

I 
I 
I 
I 
I 

) 
./ 

,/ 

I nformation Between 
Physical 10CS and 

Problem Program 

..... -
Byte 2 (Set by Problem Program) 

..... .... ..... ..... -

Figure 41. Command Control Block Field Used by the Emulator 

Communications Table 

lni tialized by: IIVl.NT 

..... - -

Modified by: IlVOPN, llVPCE, IIVSTG, IIVAWV, IIVABN, IIVCHK, IIVlNT 

Interrogated by: IIVRTE, IIVPRP, IGG019S1, IGG019SA, IIVGR2, IIVACI, IIVIN2 

Pointer in: EMUCONS 

The communications table (COMTAB, Figure 42) has one entry for every device 
allocated to emulation plus an entry for SYSLOG. Each entry is formatted as 
illustrated in Figure 42. 

406 DOS Emulator Logic 

l 



COMTAB 

0(0) 

ECB 

4(4) 

CTEXTPTR 

8(8) 10(A) 11 (6) 

DOSCUU PUBINDX DEVTYP 

12(C) 14(E) 

OSCUU DOSBIN 

16(10) 18(12) 19(13) 

OSBIN CTFLAG CTFLAG2 

20(14) 21(15) 22(16) 

CTFLAG3 CTFLAG4 

CTXTNSAV/CTULEXT 

32(20) 33(21 ) 

COM KEY COMCCWSA 

36(24) 

COM CAW 

40(28) 141 (29) 

COMFMSK I 
EMUCCWI ________ J 

48(30) 49(31 ) 

EMUCCW2 
CCW2ADDR 

56 (38) 

= :~ IOB/STGCON ~ .... 

76(4C) 
DCBPTR 

-'- -'-

1 95(5F) J 
Figure 42. Communications Table 

Data Areas 407 



--------------------------------------~ ~--------

Communications Table Description 

Offset ----
o (OJ 

4 (4) 

8 (8) 

10 (A) 

11 (Bl 

12 (C) 

14 (E) 

16 ( 10) 

18 (12) 

19 (13) 

20 (14) 

Bytes and 
Alignment 

4 

4 

2 

• • 1 

· ... , 
2 

•• 2 

2 

• • 1 

• •• 1 

Field 
Name Field Description, Contents, Meaning 

EC.S The actual ECB for tbis device. 

CTEXTPTR The pointer to the COMTAB extension for this 
entry. 

DOSCUU The DOS channel and unit address as known by the 
DOS supervisor. 

PUBINDX The index into the DOS-PUB table whe.re the PUB 
entry for this DOS device can be found. The first 
PUB entry is index value zero. 

DEVTYP The one-byte DOS device type as given in the DOS­
PUB table. 

OSCUU The OS channel and unit address. 

DOSBIN The DOS 2321 bin number from the DDname • 

OSBIN The OS 2321 bin number from the OCB. 

CTFLAG communications flag. 

1... Entry for a staged device • 
• 1.. Entry for DOS SYSLOG • 
•• 1. Check I/O to test I/O exit flag • 
••• 1 Device end flag. 

1 ••• Sense switch • 
• 1 •• Device in use 
•• 1. Nonoperational flag • 
••• 1 Device is open. 

C'TFLAG2 Communications flag 2. 

1... Tape device • 
• 1.. Direct-access device • 
•• 1. Optical character reader • 
••• 1 Staged SYSIN device. 

1 ••• Staged SYSOUT device • 
• 1 •• 2321 device • 
•• 1. Do not suppress error retry • 
••• 1 File protection flag. 

CTFLAG3 communications flag 3 

1... Use OS error recovery procedures for this 
I/O request • 

• 1.. Shared volume indicator • 
•• 1. Indexed sequential data set • 
••• 1 User label swap switch. 

1 ••• Telecommunications device • 
• 1 •• Seven-track tape unit • 
•• 1. NOP-issued flag • 
• ~.1 Stand-alone seek flag. 

408 DOS Emulator Logic 



Communications Table Description (Continued) 

Offset 
Bytes and Field 
Alignment Name Field Descr:iption, Contents, Meaning 

21 (15) 

22 (16) 

22(16) 

32 (20) 

33 (21) 

36 (24) 

40(28) 

40 (28) 

48 (30) 

49(31) 

56 (38) 

76 (4C) 

• 1 

•• 10 

•• 10 

1 

.3 

4 

8 

.7 

40 

4 

COMTAB Extension 

CTF.LAG4 Communications flag 4. 

1... Disposition is SKR • 
• 1 • • Not ready mask • 
•• 1. DOS resident device. 

1 ••• Restore DEB extents indicator • 
••• x .x.x Not used • 

•• 1. Stand-alone CCW (not chained) set mode issued. 

CTXT.NSAV Extent from DEB at SIO time. 

or 

CTULEXT User label extent at DOS open time. 

COMKEY Save area used to pass storage protection key 
at SIO time to DOS (during I/O interruption time). 

COMCCWSA Save area for ccw command address; nonzero value 
implies NOP has been issued by Emulator. 

COMCAW Pointer to CCW command chain to be adjusted from 
local to true address. 

COMFMSK File mask for DOS DASD. 

or 

EMUCCW1 Emulator area for set-mode CCW .for tape. 

EMTJCCW2 Emulator area for TIC CCW for tape commands. 

CCW2ADDR The first three bytes contain the address portion 
of TIC CCW for tape; the last four bytes, the­
remainder of the TIC CCW. 

IOB/ The actual lOB (including a 4-byte field ealled 
STGCON DCBPTR, the DCB pointe.r) or STGCON in the case 

of a staged device. 

DCBPTR (See IOB/STGCON field) 

Initiali.zed by: IIVINT 

Modified by: IIVDVS, IIVIS 

Interrogated by: IIVPCE, IIVGR2, IIVDVS, IIVIS 

Pointer in: COMTAB 

The COMTAB extension (CTEXT, Figure 43) has one entry for every file residing 
on a shared direct-acc~ss volume. If a COMTAB entry is marked for direct­
access device sharing, then at least one COMTAB extension entry exists that 
is related to the COMTAB entry. Each entry is formatted as illustrated in 
Figure 43. 

Data Areas 409 



CTEXT 
0(0) 1(1 ) 2(2) 

CTEXTFLG CTDCBUC Unused 

4(4) 

8(8) 

12(C) 

_~0(14) 

Figure 43. COMTAB Extension 

COMTAB Extension Description 

Offset 
Bytes and .Field 
Alignment Name 

CTECHPTR 

CTDCBPTR 

CTDDNAME 

CTDSNAME 

Field Description, Contents, Meaning 

0(0) 1 CTEXTFLG COMTAB extension flag. 

1 ••• Indexed .sequential data set. 
• 1 •• End of CTEXT chain indicator • 
_ • xx. xxxx Not used. 

1 (1) .1 CTDCBUC DCB use count. 

4 (4) 4 CTECHPTR Pointer to the next COMTAB extension on this 
device. 

S (8) 4 CTDCBPTR Pointer to the DCB for this data set. 

12 (C) 8 CTDDNAME DD (data definition) name. 

20(14) 44 C'l'DSNAME DS (data set) name. 

DASD Label (DLBL) 

Initialized by: DOS 

Modified by: DOS, IIVDVS, IIVIS 

Interrogated by: IIVGR2, IIVDVS, IIVIS, DOS 

Pointer in: DOS open table 

The DLBL represents the internal format of a DOS DLBL extent statement read 
from the label cylinder by DOS OPEN phases. Figure 44 shows the fields in 
the DLBL that are significant to the Emulator and the field description tells 
which modules modify or interrogate each field. 

410 DOS Emulator LOgic 

~ 



0(0) 

DLBL-Extent 

I nd icator Unused 

8(8) 9(9) 

OAflS Switch 

File 10 

53(35) 54(36) 

Unused 

File Serial Number 

60(3C) 62(3E) 
Volume Sequence Number Creation Date 

64(40) 65(41 ) 
Creation Date Expiration Date 
(continued) 

68(44) 70(46) 

Retention Period Open Code 

=~ = r--; -..;; 

84(54) 

Volume Serial Number 

90(5A) 91 (58) 

Extent Type Extent Sequence 
Number 

92(5C) 

Extent Lower Limit 

96(60) 

Extent Upper Limit 

100(64) 102(66) 103(67) 

Logical (Symbolic) Unit Address 2321 Lower Cell 2321 Upper Cell 

Figure 44. Dl\SDLabel 

Data Areas 411 



DASD Label Description 

Offset 

0(0) 

a (a) 

9 ('l) 

54(.36) 

60 PC) 

63 (3E) 

65(41) 

68 (44) 

70 (46) 

Bytes and Field 
Alignment Name Field Description, Contents, Meaning 

1 

1 

44 

6 

2 

3 

3 

2 

1 

6 

DLBL­
EXTENT 

SO (sequential disk) 

1... Next extent on a new pack • 
. 1.. Last extent • 
•• 1. Bypass extent • 
••• 1 New volume on same unit. 

,... Extent limits omitted • 
• 1 •• Extent converted to DASD address • 
•• 1. No EXTENT/XTENT card • 
••• x Not used. 

For direct access or indexed sequential file 
management system, this byte indicates 
the number of e.xtents. Modified/interrogated 
by IIVDVS. 

D.1\/1S switch 
xxx x •• xx Not used. 

1 ••• Extent limits omitted • 
• 1 •• Extent converted to DASD address. 

File 10 

File 
serial 
number 

Volume 
sequence 
number 

Creation 
date 

Modified by 1IVDVS. 

File identifier including generation and version 
numbers. If field is missing on DLBL card, file 
name padded with blanks is inserted. Interrogated 
by IIVGR2. 

Vclume serial number from first extent. 
Modified by IIVDVS. 

Always initialized to X'0001'. 
Modified by 1IVDVS. 

Initialized '-lith 3 bytes of X·OO'. 
IIVDVS. 

Modified by 

Expira- If date is in the form nDDD, it is converted to 
tion date YDD. If date is in retention period form, 1 to 4 

characters, the field is padded with binary zeros. 
Modified by IIVDVS. 

Retention Converted to a 2-byte number and inserted in this 
period field. Modified by IIVDVS. 

Open code 

Volume 
serial 
number 

DLBL type: 
S = sequential 
D = direct access . 
C or E = indexed sequential 
file management system where: 
C = load create function 
E = load extend function 
Interrogated by IIVIS. 

Volume serial number for extent. 
Modified by IIVDVS. 

412 DOS Emulator Logic 



Offset 

90 (SA) 

91 (SB) 

92 (SC) 

96 (60) 

100(64) 

102 (66) 

103(67) 

Bytes and Field 
Alignment Name 

1 

1 

4 

4 

2 

Extent 
Type 

Extent 
sequence 
number 

Extent 
lower 
limit 
and 
extent 
upper 
limit 

Logical 
(sym­
bolic) 
unit 
address 

2321 
lower 
cell 

2321 
upper 
cell 

Field Description, Contents, Meaning 

Same codes as in .Format 1 label: 
X'OO' = next three fields do not indicate any extent. 

X'Ol' 

X'02' = 
X' OIP = 

X'40' = 
X'Sn' = 
Modified 

prime data area (ISFMS) or consecutive area, 
etc. (that is, the extent containing the 
user's data records). 
Overflow area of an ISFMS file. 
Cylinder index or master index 
of an ISFMS file. 
User label track area. 
Shared cylinder indicator, 
where n = 1, 2, or 4. 

by IIVDVS. 

Number of extents as determined by the 
extent card sequence. Modified by IIVDVS. 

Before the OPEN, DLBL/EXTENT informa­
tion is in the relative track form of 
HHNNT followed by three bytes of 
binary zeros. 
HH = Relative (to 0) start address in 

tracks. 
NN Number of tracks. 
T = 0 or upper track number for split 

cylinder in SD files. 
Following an OPEN on DLBL/EXTBN'l' cards, 
or whenever DLAB/XTENT cards are used, 
the e.xtent lower and upper limits are 
each in the CCHH format. Modified by IIVDVS. 

This 2-byte field identifies the logical 
unit with the same code as that used in 
a CCB. The first byte identifies the 
unit class: 
X'OO' = System logical unit 
X'01' = Proqrammer loqical unit 
The second byte identifies the logical 
unit within its class. Thus X'0003' 
denotes SYSLST and X'0103' denotes 
SYS003. Interrogated by IIVGR2 and IIVDVS. 

2321 extent lower and upper cell limit. 
This 2-byte field contains zeros for 
2311/2314/2319 disk. Modified by IIVDVS. 

Data Areas 413 



Data Control Block 

Initialized by: lIVOPN {EXCP, QTAM, BTAM), IIVIS (ISAM), IIVDVS 

Defined by: IIVRAS (ESAM) 

Modified/interrogated by: IIVSTG, IIVINT, IIVIN2, IIVOPN, IIVPCE (EXCP, 
QSAM, .BTAM), IIVIS (ISAM), IIVSNP (BSAM) 

Pointer in: lOB, COMTAB extension 

Data control blocks (DCBS) describe the current use of a data set. For every 
data set to be processed ty a program, there is a corresponding DCB. 

The foundation sections serve the same purpose in all DeBs although the formats 
may vary sliqhtly for different access method routines. Althouqh they are 
rraintained primarily by data management routines, certain fields in the DCBs 
do contain a limited amount of information maintained or referred to by the 
Emulator. Figure 4S illustrates the format of this DCB. Descriptions of the 
fielrls follow the illustration. 

Device Interface (ISAM only) 

1
16(10) 

DCBKEYLE Unused 

Foundation Extension 

33(21 ) 

Unused DCBEODAD 

36(24) 

DCBRECFM Unused 

Foundation r-----------------------------------, 
Before Open 

40(28) 
DCBDDNAM 

48(30) 50(32) 

DCBOFLGS Unused DCBMACR 

After Open 

1
4412C1 DCBIFLGS Unused 

1... _________________________________ _ 

Figure 45 (Part 1 of 2). Data Control Block Fields used by the Emulator 

414 DOS Emulator Logic 



Access Method Interface - ISAM BSAM QSAM 

52(34) 53(35) 

DCBOPTCD DCBMAC Unused 

56(38) 

DCBSYNAD 

60(3C) 62(3E) 

DCBRKP DCBBLKSI 

=~ '-
: 

I"-
80(50) 81 (51) 82(52) 

DCBEXCD1 DCBEXCD2 DCBLRECL 

=~ : 
'-

148(95) 
DCBTDC Unused 

152(98) 

DCBRORG3 

156(9C) 

DCBNREC 

-~ -
DCBLPDA 

Unused 
1,"6IeEI 

DCBRORG2 

Unused 
1 2141D61 

DCBNOREC 

DCBRORG1 Unused 

Figure 45 (Part 2 of 2). Data Control Block Fields Used by the Emulator 

Data Areas 415 



Data Control Block Description 

Bytes and Field 
Offset Alignment Name 

16 (10) DCBKEYLE 

33 (21) • J DCBEODAC 

36 (21J) 1 DCBRECFM 

40(28) 8 J:CBDDN .. l\M 

411 (2C) 1 OCBIFLGS 

48(30) DCBOF.LGS 

50 (32) •• 2 DCEMACR 

52 (34) DC EOPTCD 

53(35) • 1 DCBMAC 

56 (38) 4 DCBSYNt\D 

or 

57 (39) • 3 DCBSYNAD 

60 PC) 2 DCBRKP 

62 PE) •• 2 DCBBLKSI 

80(.50) 1 CCBEXClJ1 

81 (51) .1 DCBEXCD2 

82 (52) •• 2 DCBLRECL 

1IJ8(95) 2 OCBl'DC 

152 (98) 1+ DCBRORG3 

156 (9C) 4 DCBNREC 

184 (38) 8 DCBLPDA 

206 {CE) •• 2 OCSRORG2 

211+{D6) •• 2 OCBNOREC 

224 (EO) 2 DCBRORGl 

416 DOS Emulator Logic 

Field Description, Contents, Meaning 

Key length (used by ISAM). 

EODAD exit address (used by ISAM and QSAM) • 

REcord format (used by ISA"1). 

DD statement data set name (used by IIVINT, 
IIVIN2, IIVOPN and ISAM) • 

Permanent error condition is indicated when 
bits {} ani 1 a.re on (used by EXCP). 

successful open is indicated when hit 3 is 
on (used by IIVOPN and ISAM). 

Macro instruction code (used hy ISAM). 

Option code (used by ISk~). 

Extension of the mac.ro instruction operation 
code field (used by ISAM). 

SYNAD exit address (used by ISAM). 

Staged I/O SYNAD exit· address (used by QSAM). 

Relative key position (used by ISAM). 

Blocksize (used by ISAM and BSAM). 

Condition flags (used by ISAM). 

Condition flags (used by ISAM). 

Logical record length for variable length 
records (used by ISAt'4, BSAM, and QSAM). 

Tag deletion count (used by ISAM). 

Count of accesses to overflow records other 
than the first (used by ISAM). 

Number of logical records in prime data area 
(used by ISAM). 

Direct-access address of last prime d.ata 
record in prime data area (used by ISAM). 

Number of tracks left in overflow area (used 
by ISAM). 

Number of logical records in overflow area 
(used by ISAM). 

Number of full cylinder overflow areas (used 
by ISAM). 



t' 

\...., 

Data Event control Block -- BISAH 

Initialized by: IIVIS 

Modified/interrogated by: ttvts 

Pointer in: Register 1 at WRITE and CHEC~ time 

The data event control block (DECB) is created when a READ or WRITE macro 
instruction is expanded. It contains information about the input or output 
operation requested by the macro instruction. Figure 46 shows the DICB fields 
used in BISAM that are significant to the Emulator. 

8(8) 
DECBDCBA 

12(C) 
DECBAREA 

16(10) 
DECBLOGR 

20(14) 

DECBKEY 

24(18) 25(19) 

DECBEXC1 DECBEXC2 

Figure 46. Data Event Control Block -- BISAMFields Used by the Emulator 

Data Event Control Block -- BtSAM Description 

Bytes and 
Offset Ali9!,!ment 

8 (a) 4 

12 (e) 4 

16 (10) 4 

20 (14) 4 

24 ( 18) , 

Field 
Name 

DECBDCBA 

DECBAREA 

DEC.BLOGR 

DECBREY 

DECBEXC1 

1 ••• 
• 1 •• 
•• 1. 
••• 1 , .... 

• 1 •• 
• • 1. 
••• 1 

Field Description, Contents, Meaning 

Address of the DCB to which this I/O request is 
related. 

Address of the area in storage for the record. 

Address of the logical record (also used by IIVIS 
in QISAM mode to store the current locyical record). 

Address of the key portion of the record. 

Exceptional condition code. 

Reco.rd not found. 
Record length check. 
Space not found in which to add a record • 
Invalid request • 
Uncorrectable I/O error. 
Unreachable block • 
OVerflow record. 
Duplicate record presented for inclusion 
in the data set. 

Data Areas 417 



Page of GY26-3741 
Revised July 25,1972 
By TNL GN26-8021 

Offset 
Bytes and Field 
Alignment Name Field Description, Contents, Meaning 

25 (19) .1 

Data Extent Block 

Initialized by: OS 

DECBEXC2 Exceptional condition code. 

.• 1. Execution of the last channel program 
was instituted by an asynchronous routine • 

••• 1 Previous macro instruction was READ RU. 
xxxx xx •• Reserved bits. 

Modified by: IGG019SA 

Interrogated by: IIVOPN, IIVDVS, IIVPCE 

Pointer in: DCE 

The data extent block (~EB) contains an extension of information in the data 
control block (DCB). Every DEB is associated with a DCB, and the two point 
to each other. The DEE contains information concerning the physical 
characteristics of a data set. 

Each DEB consists of one 32-byte base plus: 

• 

• 

One 4-byte extension if the data set is to be processed on unit-record 
or magnetic tape devices. 

One 16-byte extension for each extent if the data set is to be processed 
on a direct-access device. 

Figure 47 shows the DEB fields used by the Emulator. A complete description 
of the DEB is contained in the publication ]ystem Control Blocks for OS or 
System Data Areas for OS/VS. 

418 DOS Emulator Logic 



Appendage Table' 

-36(-24) 

DEBEOEA 

-321-20) 

DEBSIOA 

L.... 
,oJ 

-241-18) 

DEBCEA 

-201-14) 

DEBXCEA 

Direct-Access Storage Device Section 2 

+321+20) 

DEBDVMOD Unused 

+361+24) +38(+26) 

DEBBINUM DEBSTRCC 

+401+28) +42(+2A) 

DEBSTRHH DEBENDCC 

+44(+2C) +46(+2E) 

DEBENDHH DEBNMTRK 

, The Emulator includes the start-I/O appendage, channel-end appendage, and abnormal-end appendage routines. , 
The start-I/O appendage modifies these fields to extend the extent to cover the whole DASD volume. 

Figure 47. Data Extent Block (Ordinary) Fie.lds Used by the Emulator 

Data Extent Block Description 

Of.fset 
Bytes and Field 
Alignment Name 

-36 (-24) 4 DEBEOEA 

-32 (-20) 4 DEBSIOA 

Field Description, Contents, Meaning 

APPENDAGE TABLE 

Address of the end-of-extent appendage 

Address of the start I/O appendage routine. 

-24 (-18) " DEBCEA Address of the channel end appendage routine. 

-20 (-114) 4 DEBXCEA Address of the abnormal end appendage routine. 

DIRECT-ACCESS STORAGE DEVICES 

+32 (+20) 1 DEBDVMOD Device modifier: file mask 

Data Areas 419 

'" ~ 



Bytes and Field 
Offsej: Alignment Name Field Descri~!on_ contents. Meaning 

+36 (+24) 2 DEBBINUM Bin number. 

+38 (+26, •• 2 DEBSTRCC Cylinder address for the start of an extent limit. 

+40 (+28) 2 DEBSTRHB Read/write track address for the start of an 
extent limit. 

+42 (+2A) •• 2 DEBENOCC Cylinder address for the end of an extent limit. 

+44 (+2C) 2 DEBENDHH Read/write track address for the end of an extent 
limit. 

+46 (+2E) •• 2 DEBNMTRK Number of tracks allocated to a given extent. 

Data Set control Block -- Identifier (Format 1) 

Initialized by: OS space allocation routine or DOS open routine 

Modified by: OS, DOS 

Interroqated by: OS, DOS, IIVDVS, IIVVIO, IIVOPN 

Located in: VTOC 

This data set control block (DSCB) describes the characteristics and up to 
three extents of a data set. Figure 48 shows the format of the fields of a 
format 1 DSCB that are significant to the Emulator. Descriptions of the fields 
follow the illustration. 

44(2C) 

DS1FMTID Unused 

93(5D) 
Unused DS1DSIND Unused 

135(87) 
Unused 

DS1 PTRDS 

Figure 48. Data Set control Block -- Identifier (Format 1) Fields 
Used by the Emulator 

420 DOS Emulator Loqic 

139(88) 



Data Set Control Block -- Format 1 Description 

Offset 

44 (2C) 

93 (50) 

Bytes and Field 
Alignment Name Field DescriFtion, contents, Meaning 

1 

.1 

DS1FMTID Format identifier; hexadecimal F1 
identifies this as a format 1 DSCB. 

DS1DSIND Data set indicators. 
1... This is the last volume on which this 

data set normally resides 
•• 1. Block length must always be a mUltiple 

of 8 bytes • 
••• x .x •• Data set security • 
••• 1 .0 •• Password is requested to read or write • 
••• 1 .1 •• Password is required to write but not 

to read • 
• x •• x.xx Reserved bits. 

Page of GY26-374l 
Revised July 25,1972 
By TNL GN26-802l 

135(87) ••• 5 DS1PTRDS Pointer to an index (format 2) DSCB, if data set 
has IS organization, or pointer to an extension 
(format 3) DSCB if data set has sequential or 
direct organization and more than 3 extents. 
This pointer has the format CCHHR. Contains 
cinary zeros if no additional DSCB is pointed 
to. 

Data Set Control Block -- Extension (Format It 

Initialized by: OS space allocation routine or DOS open routine 

Modified by: OS, DOS 

Interrogated by: OS, DOS, IIVDVS, II~7IC, IIVOPN 

Pointer in: DSCB -- identifier (format 1) 

This data set control block (DSCB) describes up to 13 additional extents that 
cannot be described in an identifier (format 1) DSCB. All fields are 
significant to the Emulator. It is pointed to by an identifier (format 1) 
rSCB. (For format see Svstem Control Blocks for OS or System ~ Areas for 
OS/VS. ) 

Data Set Control Block -- VTOC (Format 4) 

Initialized by: voluroe-initializing utilities 

Modified by: OS, DOS 

Interrogated by: OS, DOS, IIVOPN 

Identified by: A U4-byte entry of X'04' 

This data set control block (DSCB) describes the volume table of contents 
(VTOC) data set. It is always the first DSCB in the VTOC. "'iqure 49 shows 
the format of the fields a VTOC (format 4) DSCB that are significant to the 
Emulator. Descriptions of the fields follow the illustration. 

Data Areas 421 



In y s Padd· 9 B te 
1 

50(32) 
DS4DSREC 

52(34) 

58(3A) 
DS4VTOCI 

Device Constants 

1 
74(4A) 

DS4DEVDT 

76(4C) 

" 
105(69) 

DS4VTOCE 

115(73) 

10 .11 r 139(SBJ 

Figure 49. Data set Control Block -- VTOC (Format 4) Fields Used by the 
Emulator 

422 DOS Emulator Logic 



Data Set Control Block -- Format q Description 

Offset 
Bytes and Field 
Alignment ~ 

0(0) 

50 (32) •• 2 

58 (3A) •• 1 

74 (4A) •• 1 

105 (69) .10 

105 (69) 

106{6A) 

(Padding 
Bytes) 

DS4DSREC 

DS4VTOC1: 

1 ••••••• 

•••• 1 ••• 

••.• .1 •• 

.xx.x •• xx 

D54DEVDT 

DS4VTOCE 

Byte 1 

Byte 2 

Hex. 
Oig£ Field Description, contents, Meaning 

Hexadecimal 04 in each byte. 

Number of available free VTOC record 
{format 0) DSCBs in the VTOC. 

VTOC indicators. 

Either no free space (format 5) 
DSCBS exist, or they do not 
reflect the true status of the 
volume. 
Accurate free space and shared 
extent (format 5 and 6) DSCBs 
now exist, and bit 0 has been turned 
off. This volume may contain data 
sets produced by the Pil;!k Operating 
Sys.tell.; the operating 
System access methods may not 
be able to process these data 
sets. 
A DADSM function has been pre­
maturely terminated. Possible 
VTOC errors exist. 
(Reserved hits) 

Number of full DSCBs that can be 
contained on one track (""-byte 
key plus 96-byte data length). 

Extent description of the VTOC. 

Data set extent type indicator. 

00 Following 9 bytes do not indicate 
any extent. 

01 The extent contains the data blocks 
(userts blocks) or is a prime area 
for indexed sequential data sets). 

02 The extent is an overflow area (for 
indexed sequential data sets only). 

04 The extent is an index area (for 
indexed sequential data sets only). 

40 The first extent description 
describes the user label extent. 

80 The extent described is sharing one 
or more cylinders with one or more 
data sets. 

81 The extent described begins and 
ends on cylinder boundaries, that 
is, the extent is composed of one 
or more cylinders. 

Extent sequence number (M) 

Uniquely identifies each separate 
extent on a given volume for a 
data set. For all organizations 

Data .~reas 423 



Offset 

107 (6B) 

111(6F) 

Bytes and Field 
Alignment Name 

Bytes 3-6 

Bytes 7-10 

Diagnostic Block (DiAG Block) 

Initialized by: I IVRCP 

Monified by: IIVRCP, IIVRCW 

Interrogated by: IIVRCW, IIVRCP 

Pointer in: RASCONS· (RASDIAG) 

Hex. 
Dig. Field Description, Cant-nets, Meaning 

but indexed sequential, the first 
extent of the data set on each 
volume is identified with zero 
in this field. 

The first extent on each volume 
of an indexed sequential data set 
is identified with a value of one 
in the field. 

Additional extents on the volume 
are identified with sequentially 
increasing binary values. This 
field is always zero for an 
exte.nt field pointing to a user 
label track. 

Lower limit of this extent (CeHH) 
Contains the cylinder and the 
track address specifying the 
starting point of this extent. 

Upper limit of this extent (CCHH) 
contains the cylinder and track 
address specifying the ending 
point of this extent. 

The diagnostic block (Figure 50) is used to adjust and readjust the data address 
portion of the CCWs from DOS lccal addresses to OS true addresses, then back 
to DOS local addresses. 

424 Dos Emulator Loqic 



0(0) 
DIAGNXT 

4(4) 6(6) 
DIAGCUU DIAGFLAG Unused 

8(8) 
DIAGBUF 

Figure 50. Diagnostic Block 

Diagnostic Block Description 

Bytes and Field 
Offse!; Alignment Name Field DescriQtion, Contents, Meaning 

0(0) 4 DIAGNXT Pointer to the next diagnostic block. 

4 (4) 2 DIAGCUU The DOS cuu for the channel p.roqram. 

6 (6) 1 DIAGF.LAG X'RO' H relocation of CCWs is done. 

S (8) 104 I:I.AGBUF Buffer area fo.r the CCWs. 

DTFIS ADD-RETRVE.:~DDRTR and DTFIS Load "'ables 

Initialized by: TIVIS 

Modified by: IIVIS 

Interroqated by: IIVIS, IIVGR2 

Pointer in: DOS register 1 when a DOS I/O macro is issued 

When the DT.FIS (define the file for indexed sequential) macro instruction is 
encountered at assembly time, the assembler builds a DTF table tailored to 
the DTF parameters. The table contains: 

• A device CCB. 

• A V-t.ype statement used by the linkagE editor to resolve the linkage to 
the logic module associated lioIith this DTF. 

• Logic indicators such as one I/O area, two I/O areas, and device type. 

• Addresses of all of the areas and controls used by this device (except 
work files). 

Those parts of the DTFIS ADD-RETRVE-ADDRTR table and the DTFIS Load table that 
are significant to the Emulator as shown in Figuro.s 51 and 52. respectively_ 

Data Areas 425 



IJHCTBL 1 -e(0) 

I"- ~ 
IJHCCCB 

171111 

Unused OTFLMOOA 

20(141 211151 122(16) 
DTFTYPE IJHCOPT 

OTFFLNME 

Unused 

1301.IE) 

IJHCSTBY I 
'--

~~~", _____ u_nused ____ ~r3_12BI_IJHCR_TR_~ 
IJHCCLPA

I"- -I'-

7414A)

Unused IJHCRESZ

7614C) 7814E)

IJHCKYSZ IJHCBLSZ

I"- =!:=
9415E)

Unused IJHCKYLC

100(64) 102(66)

IJHCATB2 IJHCATB3

104(68)
'- ~

IJHCSADR 1
IJHACPRC I

1"- I'-

152198) 154)9AI

IJHACOTC IJHACOFC

15619C)
IJHACQRC Unused

~ :~

200IC8)

IJHAARAO

204)CCI
IJHACUSI.::

2081001

IJHAOKEY

Figure 51 (Part 1 of 2). OTFIS ADO-RETRVE-ADDRTR Table

426 DOS Emulator Logic

IJHCTBL2

~IO)
r--:

818)

121C)

16110)

20114)

24118)

2811C)

........

1""
r--
68144)

72148)

-""
128180)

136188)

144190)

152198)

160lAOJ

1681A8)

~
2161D8)

DTFRCTGD

Unused

Figure 51 (Part 2 of 2) •

Unused -r-

IJHSIOAR

IJHCRARA

IJHCRKEY

IJHCRWOR

IJHSDB1

IJHSLlOR

-~

IJHSCADR

170146)
IJHRREGS

IJHRADSV

IJHROVCN

IJHCCCW I"-

IJHACOCR

IJHACTNA

IJHACTOA

IJHACRID

IJHACFID

IJHACTIN

J 178IB2)

IJHACLNK

~ I 218IDAJ

IJHAISKY

D'IFIS ADD-RETRYE-l\DDRTR Table

Data Areas 427

-------------- ----------------------------- ------- ------

IJHKTABL

~(O)
-~ IJHKCCB -rC

17(11)

Unused DTFLMODA

20(14) 21 (15) 22(16)

DTFTYPE IJHKOPCO

DTFFLNME

30(lE)

Unused IJHKCCOD Unused

-~ r'=- = ~
66(42)

Unused

IJHKLPDR

74(4A)

IJHKLGLN

76(4C) 78(4E)
Key Length IJHKBKLN

-""-.. -:-.-

IJHKPRCT

]52(98)

-~ IJHKRDWR -~
184(B8)

IJHKADCN

188(BC)

Address of Data in WORKL

192(CO)

Address of Key in WORKL

-,- -

r lCSI IJHKMIXT Unused T
Figure 52. DTFIS Load Table

428 DOS Emulator Logic

DTFIS ADD-RETRVE-ADDRTR Table Description (Part 1)

Offset * DSECT Label

*Note: Within IIVIS, IJH=DTF.

0(0)

17(11)

20(14)

21 (15)

22 (16)

30 (1E)

"] (28)

60(42)

74 (4.1\.)

76 (4C)

78 (4E)

94 (5E)

100(64)

102 (66)

104 (68)

124 PC)

16

3

1

7

8

2

2

2

6

2

2

10

4

IJHCCCB

DTFLMODA

DTFTYPE

IJHCOPT
• . 1.
• • •• 1 •••

DTFFLNME

IJHCSTBY

1 •••

• 1 ••
• • 1. · .. ,

1 ••• · , ..
· .1.
• •• 1

IJRCRTR
1 ••• · ,..
IJHCCLPA

IJHCRESZ

LIHCKYSZ

IJHCHLSZ

IJHCKYLC

IJHCATB2

LIHCATB3

IJHCSADR

IJHACPRC

Hex.
Dig. Field Description, Contents, Meaning

25
26
27

Command control block (CCB).

Logic module address.

File type for open/close as
follows:
Add
RETRVE
ADDRTR

Option byte.
Cylinder overflow.
Blocked records.

DTF file name.

Status byte.

Uncorrectable DASD Error (except
WLR) •
WLR error.
EOF (sequential).
No record found.
Illegal identification specified.
Duplicate record sensed.
Overflow area full.
Record retrieved from overflow
area.

Retrieval byte.
WORKR area specified.
WORKS area specified.

Last prime data recor1 address
(MEBCCTIHR) •

Logical record length (RECSIZR).

Key length (KEYLEN).

Block size (logical record
length times number of records
in the block).

Key location (KEYLOC) for blocked
records.

Displacement of part 2 of the
DT.FIS table from start of part
1.

Displacement of part 3 of the
D'IFIS table from start of part
1.

Seek/search address area.

Prime data record count.

Data Areas 429

Offset ----
152 (98)

154{9A)

, 56 (9C)

200(C8)

204 (CC)

208 (DO)

DSECT Label

2 IJHA.COTC

2 IJHACOFC

2 IJHACORC

IJHAARAD

4 1:JHACUSE

4 IJHADKEY

430 DOS Emulator Logic

Hex.
Dig. Field Description, Contents, Meaning

Number of independent'overflow
tracks.

Number of full cylinder overflow
areas.

Overflow record count.

A (&IOAREAL) - address of IOAREAL,
the I/O area used for adding
records to a file.

A (tWORKL)- address of WORKL, wo.rk
area containing user data records
to be added to the file.

A {&filename.K) - address of the
add key area.

DTFIS ADD-RETRVE-ADDRTR Table Description (Part 2)

Offset DSECT Label

8 (8) 4 IJHSIOAR

12 (C) IJHCRARA

'6 (10) IJHCRKEY

20(14) IJHCRWOR

24(18) 4 IJHSDB1

28 (1C) 4 IJHSLIOR

48 (30) 8 IJHSCADR

68 (44) 2 DT.FRCTGD

70 (46) 2 IJHRREGS

72 (48) IJHRADSV

84 (54) IJHROVCN

Hex.
Dig. Field Description. Contents, Meaning

Address of IOAREAS, I/O area used
for sequential retrieval.

Address of IOAREAR, I/O. area used
for random retrieval or address of
Io.AREA2 (if specified) for
sequential retrieval.

Address of KEYARG, field containing
user-supplied Key used for random
read/write operations and sequential
retrieval initiated by key.

Address of WORKR, work area used
for random retrieval.

Current sequential I/O area address.

Load I/O. register for sequential,
or 4-byte NOP instruction for random.

Current sequential DASD address
(MB.BCCHHR) •

Number of records tagged .for
deletion.

Io.REG for random (or 2-byte NOP
for sequential).

Record pointer within I/O. area
fo.r write (for random retrieval).

An overflow record that is other
than the first record in a
chain of such records.

Data Areas 431

DTFIS ADD-RE'l'RVE-ADDRTR Table Description (Part 3)

Offset Bytes oSECT Label

8 (8) 60 IJRCCCW

128 (80) 8 IJRACOCR

136 (88) B IJRACTNA

144(90) 8 IJRACTOA

152 (98) 8 IJDACRID

160 (AO) 8 IJRACFIo

168 (AS) 10 IJHACTIN

178 (B2) 10 IJHACLNK

218 (oA) 6 IJRAISKY

236 (EC)

432 OOS Emulator Logic

Hex.
Dig. Field Descript.ion, contents. Meaning

I/O trap code build area.

Cylinder overflow cont.rol record
(COCR) •

Current. track index normal entry
count field.

Current. track index overflowen~
count field.

Current prime data record count.
field.

Current overflow record count
field.

Track index normal ent.ry data field.

Current overflow record sequence­
link field.

MVC O(&KEYLEN,13).O(12) - unblocked
MVC 0 (&KEYLEN.13h&KEYLOC-1 (12) -
blocked ut.ilit.y MVC for key.

Key area for add only. Number of
bytes depends on key length,
KEYLBN.

DTFIS Load Table Desc%iption

o.ffset Bytes

0(0) 16

17(11) 3

20 (14)

21 (15)

22 (16,

JO (1E)

1

1

7

1

8

2

2

108 (6C) q

1S2(98)]2

184 (B8) 14

188 (BC)

192 (CO) 4

200 (CB)

DSECT Label

IJBKCCB

DTPLMODA

DTFTYPE

IJHKo.PCO
•• 1.
•••• 1 •••

DTFFLNME

IJHKCCo.D

1 •••
• 1 ••
.• 1.
••• 1

1 •••

• 1 ••
•• 1.
••• 1

IJHKLPDR

IJHKLGLN

IJHKBKLN

IJHKPRCT

IJHKRDWR

IJHKADCN

IJHKMIXT

Hex.
Dig. Field Description, COntents, Meaninq

211

Command control block (CCB).

Logic module address.

File type for OPEN/CLOSE: LOAD.

Option byte.
Cylinder overflow option •
Blocked records •

File name.

status byte.

Uncorrectable DASD error (except WLR error).
WLR error.
Prime data area full •
Cylinder index area not large enough to
reference prime data area. Set on only
if e%ror detected at SETFL time.
Master index not large enough to
reference prime data area. Set on only
if error detected at SETFL time.
Duplicate record •
sequence error.
No EOF record written in prime
data area.

Address of last prime data record
(MBBCCBHR) •

Logical record length.

Key length.

.Block length (logical record
length times number of records
in the block).

Prime data record counter
(logical records).

I/O. trap code build area.

Address of IOAREAL.

Address of data in WORKL.
(FIXBLK = address of Wo.RKL;

FlXUNB = address of WORKL +
key length.)

Address of key in Wo.RKL. (FIXBLK
= address of WORKL + KEYLOC - 1:
FIXUNB = address of Wo.RKL.)

Master index indicator. X'01'
indicates a master index is
used; X'OOt indicates no master
index is used.

Data Areas 433

Event Control Block

Initialized by: IIVINT

Modified by: IIVPCE, IIVSTG, IIVRTE, IIVCHK

Pointer in: lOB

The event control block (ECB, Figure 52) is used for communication hetwE':en
various components of the control program, as well as between processing
programs and the control program. It is located in COMT.I\B and is used as
specified in EXCP for testing of normal or abnormal coropletion of 1/0 requests.

0(0) 1 (1)

ECB Not significant to Emulator

Figure 53. Event Control Block

Event Control Block Description

Hex
Offset

Bytes and .Field
Alignment Name Dig. Field Description, Contents, Meaning

o to) 1 ECB

, ...

. 1.. • •••

.xxx xxxx
0111 1111 1F

0100 0001 41

0100 0010 42

0100 0100 44

0100 1000 48

0100 1111 4F

434 OOS Emulator Logic

Flags and completion code.

Waiting for an event to occur. The
WAIT macro instruction has been issued
but the channel program has not been
completed.
The event has occurred. The channel
program has been completed; a zero
bit indicates it has .not been
completed.
COMPLETION CODE:
The channel program has terminated
wi thout er.ror.
The channel program has terminated
with a permanent error.
The channel program has terminated
because a direct-access extent address
has been violated.
The channel program has been
intercepted because of a permanent
error associated with a device end
for the previous request. The
intercepted request may be
reissued.
A request element for the channel
program has been made available
after having been purged.
A direct-access device error
recovery routine was unable to read
the home address record or record O.

L

BeB Pointer Table

Initialized by: IIVINT

Interrogated by: OS WAIT macro, IlVRTE

Pointer in: EMUCONS

The ECB pointer table (Figure 53) is a list of 4-byte addresses to the BeBs
fo.r devices being used for DOS emulation. The list contains an ECB address
for each SYSE card plus a.n address for SYSLOG and three special ECBs. The
special ECBs are for the Emulator prompt, wrOR, and timer. This table is
initiated by the initiali2ationroutine.

ECBLlST

0(0)

Address of Prompt ECB

4(4)

Address of WTOR ECB

8(8)

Address of Timer ECB

12(C)

Address of SYSLOG ECB

16(10)

Address of COMTAB ECB
Entry 1

20(14) Add,~of COMTA" EC" ~
Entry 2

24(18)

Addre

28(lC)

~
-
Figure 54. ECB Pointer Table

Data Areas 435

File ID Block

Initialized by: IIVIS, IIVDVS

Modified by: IIVIS, IIVDVS

Interrogated by: IIVIS, IIVDVS, IIVGR2, IlVSNP

Pointer in: EMueONS

A file ID block (FIDBLK, Figure 54) is created for each opened file to map
a DOS OPEN DTF to an o.S OPEN DCB. TheFID table is pOinted to by the DSFIDBLK
or ISFIDBLK fields in EMUCONS. Each FIDBLK entry is formatted as follows:

FIDBLK

0(0)
FIDNXT

4(4)
FIDPRV

8(8) 9(9)

FIDFLAG FIDCTXTN

12(C)
FIDTFNME

19(13)

Unused FIDLTK

Figure 55. File ID Block

File ID Block Description

Bytes and Field
offset Alignment Name Field DescriEtion l Contentst. Meaning

o to) q FIDNXT Address of next FlD block.

'q4} " FIDPRV Address of previous FID block.

8 (8) 1 FIDFLAG X'SO' indicates a system file.
X'ltO' indicates a SYSREC file.

<J (9) 3 FIDCTXTN Pointer to eOMTAB extension.

12 (e) 7 FIDTFNME Name of the DTP.

19 (13) FIDLTK OOS partit.ion of O'l'F.

436 DOS Emulator Logic

I IVCON

Initialized by: IIVINT

Modified by: All Emulator modules

Pointer in: Emulator register 11

ItVCON (Figure 56) is a CSECT assembled with IIV.ENT containing data constants
common to most Emulator modules. Figure 57 is a listing of the contents of
IIVCON.

Dat.') Areas 437

Local
Execution
List
(DRILlST)

Adjust CCW
Data Address
List
(RCCWLlST)

ECB
Pointer
Table

OS PUB
Table

DOSCORE

DOSCOM (DOS
Communications
Region)

ISK/SSK
Table

IIVCON
(EMUCONS DSECT)

DOS PUB
Table

".

I
I

COMTAB

lOB

CTEXT
(COMTAB
Extension)

I
/

/

/

/
/

/

DCB

DEB

FIDBLK UCB

'"
......

DOS PIB

...••. ISBLK
". ----------

....... FIDBLK

ISAM DeB

---I.~ Dedicated/staged relationship

---~ Volume sharing relationship

............. I ndexed Sequential data set relationship

-. - Volume sharing/indexed sequential

DOS LUB
Table

data set relationship

Figure 56. Relationship of IIVCON to Other Major Emulator Data Areas

438 DOS Emulator Logic

ODS EMULATOR - COMMON OATA AREA

LaC OBJECT CODE ADDR 1 ADDR2 STMT SOURCE STATEMENT

000000
000000
000000 0000000000000000
000040 0000000000000000
000068 0000000000000000
000080 0000000000000000

000:)98 COCOOOOO
00009: 00000000
OOOOAO FFFFFFFFFFFFFFFF
0000A8 00000000
OOOOAC 00000000
)ODOBO 00000000
0000B4 00000000
DODOB 8 00000000
lOOOBe 00000000
ooooeo 00000000
OOOOC 4 00000000
0000C8 00000000
ooooce 0000
OOOOCE 0000
000000 0000
000002 00
000003 00
000004 00
00000 5 000000
JOOOD8 00000000
OOOODe 00000000
OOOOE 0 00000000
0000E4 0000
0000E6 0000
0000E8 00000000

OOOOF 0
OOOOF 0
OOOOFO
OOOOF 0
OOOOFO 00
OOOOFl OOOOOOOuOOOOOO

0000F8 00000000
0000 FC 0000
OOOOH; 0000
000100 00

OD0101 00
000104
000104
000104 00
DOODle
::100020
000024
000105
000108.
000108
000109
000104
000104
000104 00
000105 000000
0001118 00000000
::I0010e
OOelce OOCCOOOO
000110 DOOM 000
)(.10114 D70907C704404040
OOOIlC D7D9D7C7D4404040
000124 00000000

000128
000128
000128
0001lC
00013c
000134
000138
JOO 13C
000140
000144
0001'.8
00014(.
000150
000154
000158
0001se
00016r
000164

000168 00000000
00016e OcOO(OOO(lc;,oooocc
000184 00012(00

Figure 57 (part

3+ "'''' "'''''''''' "''''''' '" "''''''' '" '" '" "'''' ... '" "' "'
4+· '"
5+. EMULATOR. DATA CONSTANTS CSECT ...
7 +.*.* * •• * •• * •••• * "'''' "'* '" '" "'** "'''' '" "'''' "'''' * * ** * * *'" '" ** * * * * '" ** * "'*.'" *** "'* "'''' "' ••••••• *

9+11 veON C SEC T
10+H'I'PL 1ST OS ". DC
12' DC
13' DC
14. DC

16+ACOMTAB DC
17+ADOSPUB De
18+CHNINDX DC
19+COII\TA8E~ DC
2;~+-:;rGINTR DC

"PECBPTR1 DC
.)EC8PTR2 DC
POSTECB DC

<-'t<"i,NDPTECB DC
Z5+ACOMTBEX OC
2&+ ACOMT ABX DC
27+AC TE XE NO DC
28+RESCUU DC
29+IPLCUU DC
30+LOGCUU DC
31+RESOFST DC
32+IPLOFST DC
33+LOGOFST DC

34+ASTCBADR DC
35+T lOT ADR DC
36+QOSSllE DC
37+NBR2K DC

38+ECBUST DC
39+*
40+TRNSFLD OS
41+ TRNSF L05 OS
42+TR~SFLD4 OS
43+TRNSFLD3 OS
44+TRNSFlOl DC
45+TRNSFLDA DC
46+*
47+ISSKTAB DC
48+NBRENT DC
49+CTEXTCNT DC
50+0P TF LGR2 DC
51+* EQU
52+* E~

53+* EQU
54+. EQU
55+. EQU
56+. EQU
51+. EQU
58t-* EQU
59+ECJS,.j DC
6C+PARMLST OS
61+PARMDTFA OS
62+PARMCODE DC
63+PARMOPEN EW
64+PARMC LSE EQU
65+PARMEOX EQU
66+ OS
67+PARMFDCX OS
68+PARMLTK OS
69+ OS
70+ ORG
71+ISAMLIST OS
72+ I SAMCODE DC
73+ISAMDTFA DC
74+ISAMFDCX DC
75+ ORG
76+DSF IDBLK DC
77+ISFIDBLK DC
18+NXTe TR DC
79+0LDBTR DC
80+T1 HERECo DC

82+*** SAVE. AREA

'4' OS
e5+REGSAv OS
86-1-REGO OS
87+REC.1 OS
88+REG 2 OS
89+REG3 OS
90+ REG4 OS
91+REG5 OS
92+REG6 OS
9;+REG7 OS
94+REG 8 CS
95+REG9 OS
96+ REGA OS
97+P.EGB OS
98+REGC OS
99+RE' GO OS

100+REGE OS
101 +REGF CS

103+BRE:GSAVE DC
104+EMUS AV E DC
105+SECOND DC

OCL152
16 F 'C"
10F' 0'
tF' 0'
6F' 0'

A(0) •
A((I) •
ax' FF'
AIOI •
A{o I •
A (O) •

AIOI •
A(O I •
AlGI
A(OI
A(QI
AID)
HIO'
H'O'
H' 0'
X '0'
X' 0'
X'D'

AIO)
F '0'
F'O'
H'O'

AW)

00 •
OCl5
DeL', •
OCL3 •
x' 00' •
XL 7'00'

A (Q) •

H' 0' •
H'(I' •
XLI' 0'
X, 80'
X' 4C"
X' 20'
X' 10'
X' 08'
X' C4'
X' 02'
X'OI'
XLI' 0 1

0' •
OA •
XL 1'0' •
28 OPEN CODE
32 CLOSE CODE
36 E~O OF EXTENT CODE
AL3C('1) •
OA •
AL 1 •
AL3 •
PARMLST •
0' •
ALI 10 I
AU(D)
AL41:l1

SPAC.E =<E~ T(l ILI:;~1 Tn 64 BYTE'
SPACE REQ FOR flRI L!!=-T
fORCE ALIGNMFNT FOR RCC\oI LIST
SPACE P,EQ F('IP P(:", LI ST

ADDR OF COMMllN ICAT IONS T Af'.L E
ADDR OF DDS Pi..F TI.'L
CHANNEL It'tDEY TIIl.'l F
COMM TABLE
STAGED 1~!TEPPo FDIJTJNE
ECB LIST PD!'HEP ("t\lE
ECB LI ST POINTER T\oIO
f::EGJN'fUI(: t>[lOP OF POST feE< LT ST
POST ECf'. L T~T DEL IMIT!~l(: ADDP
ADDRESS OF (OMTA8 EYTENSION ('-0
PAFlM FOP AUTO AD['I ~=,un'Jf 2-(1
ENDING ADDP. OF CO,",T AB En 2-(\
DOS SYSP.E 5 (UU
DOS IPL DV((UU
DOS LOG Dve CUU
CDHAB F~!T NO OF ['1["15 SVSPFS
COMTAB E~IT NJ (1F IDS !PL DV:
COMTAB ENT NO OF DOS LOG Dve

ASVNC TCB ADDRESS5
ADDRESS OF TIOT
DOS SYSTEM SIZE'
NUMBER OF U INCPE~E~ITS IN

ADDR OF F(EI LIST

TRANSLA TE WORK AP.EA
LNfH 5
LNTH 4
LNTH 3
FIRST BYT E
LAS T 7 BYTES

ISUSSK TAf'.LE AQDPES5
NUMBER OF [")EV IC ES ALLOCAT ED
NUI1BER (IF ((If'lTAf\ EXT fNTPIES2-n
OPT IONS F.LAG 2-0
I SAM SUPPOP.T REQUESTED 2-{'
VJLuME SHAPHI(: PfClUESTED 2-1"'1
AUTO I PL REOJESTED 2-(1
AA8REVIATE'[1 PROMT RFOUESTFD ?-<'
SVSSNAP DO r~PD PPFSF\lT 2-1"1
STAGED SLI~PCRT REQJFSTE[l 2-("'1
PVPASS Afl.E'NO FL~(, 2-"
SVSDEBUG DO CAPO P'lESfNT 2-n
END OF EMULATION SOIITHCH
PAR\I;S - !!VGP211IV)IISIIIVIS 2-(1
DTF POI~'TFP 2-11
CODE 2.....(1

DTF ADDPESS 2-1'1
FID8LK OR CTEYT P(lHITEP. 2-(1
LO';ICAL TR~NSIENT KEY ?-{'
FIDBlK (1P rTFXT f>r[lPFSS 2-11

2-0
PARMSIIVIS(X 2-(1
CODE 2-(1
DTF ADDRESS 2-"
FIDI\LK (1~ :TEXT A['IOF'~SS (,-(I

AIOI • FIRST FIrJPLl' ON DIS LIST 2-0
A(,)' • FIR ST F !DElLI<'. (IN SSAM LI ST 2-n
(L8'PRPGM' NEXT BT;;. TO BE EXECUTED 2-~

CL8'PRPGM' N./lME OF BTP ISSUI"l> SVC2 2-C'
F'[\' • DJIIIIV TltoIFg ECf>. F:"O'l lPSIoI

FOR Des RE.G! STERS

o e 'J< A LI r-~If'lf ~IT

DC Lt't
F DOS , ["·:15 , Dns , DOS , ll")S REG 4 , [105 REG ~ , DOS ReG b , l1fJS ReG 7 , DDS REG P , GJ 5 REG Q , DOS REG) ("I , DOS RfG 11 , 01 S REG 12 , DDS REG 13 , DOS REG 14 , D3S RFG 15

F '0' REGISTER 'SAVE
1aF"Q' EMULATOP REO STEP. S VE AP.EA
fl76$I::C' ONE SECO~IO TJ~f T~TFPWl

of 4). Emulator common Data Area

Data Areas 439

DOS EMULATOR - COMMON DATA AREA

LOC OBJECT CODE

JuDI BB (100('19600
OOOlBC 0000
OOOlBE ('001
OOOlCO oeo(l
0001: 2 00
::I00lC3 00

AOOR 1 AODR2

COOl C4 OOCOOOOOOOOOOOC ('
0001:C 00000000
000100 00000000
000104 00004E20

000108 IF

000109 01

OOCIDA
OOOlOA SCC5!J4E440
:)QOI0F DID6C2D5C 104C540
0001E1 40D1D9DoD4D1E35C
OOOlEF 404040404040
::I00lF5 01
000lF6 00
0001F7 F7FOFO
0001 FA FFQ(I

00013B
0001 F C F AF 8FCF OF E F F
000202 000000C000000080
00022B FOFlF2F3F4F5F6F7

00023C
00023 C
00023C (,OOCOO 10
000240 oooooe
000243 00
000244 00000000
::100248 00000000

00024C OOOOCOOOOOOOOOOO
00C28C 40
000280 0000000000000000
000287 6B
:J002 B8 OCC(,OOOOOOOOQC'OC

000348
000346
J0034C

00034C OOOOOOOOOCO(OOOO
00035-8 OOOO('O('C

00035C 00
000350 OOOCOI
000360 0000
00036:t': 2000
000364 (lCCOOOOI

000368 oe
000369 000001
00036C 00
000360000390

000370 E2E8E2C504404040
000318 02
000379 00
00031A F004

STI'IT SOURCE STATEMENT

106+ SE:: CNDA DC
lC7+NUIOPEND DC
108+Hl DC
109+NOS11 DC
1IC+PARMFLG DC

111+REGSAVE DC
112+AODRWRK DC
113+AOSPUS DC
1l4+CEA I OS DC

DC

F'384QC'
H'n' •
H'l' •
H'O' •
XLI 'JD'

2F '0' •
A(D) •
AIO) •
A(ZOOOOI

B'OOJlllll I

ONE SECCNO FOD. !MEP
NiJ ClF I/Q
HALF WOPD ~'F ="'E
NO. SID FUNCTIONS ACTIVE
I\lITIAL"Il.ATIN' p~~!~lrFP FLAG

REGISTEP SAVE
ADDRESS W(lPf(Apf~
ADDR OF os PUR TAflLf
IILJDR Of- DO."; CE fIJ ns APEr\

INITI"'LII"Tr=,~1 (TPLI <;\-IIT:t-<
BIT r: - l' ~llIS ED
BIT 1 - 'IN'J SIO[l

116+1 PLSW
117+*
118+*
119+*
120+*
121+*
122+*
123+*
124+*

BIT 2 - SYSfI[>H'D ['~ PPFSF"T 2-1
BIT 3 - lie HlP, !PL PFr\O<:
BI T 4 - lID TO PEl!;) SlJPFOI/T snp
BIT 5 - 1ST L(lI\D PSI"
BIT 6 - I ST PC FOR CDRI: CI.EARHI
BIT 7 - 1ST SV:: 16. (F(lJI

12b+PENDSW liC
127+*
1Z8+*
129+*
13(\+*
131+*
132+*
133+*
134+*

136+PF<.PMSG99 OS
137+ DC
138+ pp PMSG IN DC
139 + DC
140+ PRPVSER DC
141+PRPSW DC
142+T IMEIND DC
143+ BADCUU DC
144+EXTMSK DC

X' 01' •

OCL21 •
C I *EI'IU ••
C' JDBNAMI: '
C' PRD"'!PT*'
CL6' ••
X' 01' •
X '00' •
C' 700' •
X' FFOO' •

INTERRUPT PH·JOINr. $PI!TC.H
cIT 0 - LOG flUSV
BIT 1 - UNU SF(I
BIT Z - MODEL D~ CPll
EH T 3 - WTO I NTFRPUPT
BIT 4 - TIf'lE H'TEFPUPT
BI T 5 - PROMPT tNT ERPltPT
~IT 6 - WT[lP INTEPPUPT
BIT 1 - DRI SWITft-<

EMULATOR
OPEPAT]P
PROMPT
MSG
VOL SlOP r'(1PK I'Pf,!.
INITIAL pD.m~pT SA
T1 ME I N[,ICATOR SWI TrH
INVALID CH"~I~IFL d[lOP
EXTfRNA! REQUI'ST MIISf<'

146+*
147+HEXTAB
14S+

TRANSLATE TA8LE TO (.(lNVEPT TJ Hf'X

149+
150+

152 +*

154+
l5S+SCANTBL
15b+SCANEND
157+ SCANCHR
158+SCAI'.STP
159+SCANB EG
16C+SCANLNG

EQU *-C' A'
DC x'FAF6FCFJFEFF I •

DC XL41'O' 0 SPACE: BFTWEF~I
DC C'I)IZ345t,789ABCDFF' 0 - 9

EMULATOR SCA~ TABLE

DS OF •
DS OCL16
DC Ale)
DC XL3' 0'
DC X'O'
DC AID 1
DC F' 0'

ALIGNMENT

EIJD ADDPf SS OF SCHI IIPf~

SCAN CHI\P
SCAN STOP CHARACTER
'>IE'll ::.CAt-! SHPT ,IIJDPfSS
RF.~~AINnIG SCM! jlPEA LE'Ir,TH

16Z+* TRANSLATE TABLl TO STOP (IN fLANI" OK COMMA

It:4+STPTBL
165+
166+
11"7+
168+

171+*
172+*
173+
17" +DADCB
175+

177+*

1 '0.
lS0+

IS2 +*

184+
185+
1 B6 +
187+
188 +

19Z+
193+
194+
195+

197+*

19'*
ZOO+
Z(ll +
202+

2C4+*

DC XL64' 0' DO "lOT qQP
(lC C' STOP
DC XL 42' 0' DO NOT STOP
DC C',' STOP
DC XL148'0' DO NOT STOP

OAT A C(lNTPDL ELJCK

ORG *-4 TJ ELIMINATE UNUS~O SPACE
OS OF'O' ORIGIN 01\1 ;lOPD B='UN[1A~Y
ORG *+4 TO ORIGIN GENERATICN

DC
DC

DC
DC
DC
DC
DC

DC
DC
DC
DC

['C
DC
DC
DC

GI'lE(.T ACCESS ClEVie!:: INTFPFArF

BU2'O' FDAD,DVTBL
A(01 KEYLE ,DEVT,TR~AL

CQM"HlN AC(ESS Me THJD j'FFPFACF

nl(fl BUFNO
AL3(11 bUFCB
ALZ(e) BJFL
ALZ' 001 OOC0000C00000' DSOkG
A(11 i::J8AD

FOUNDAT ION EXTE\fSm

PLl'''Qnol'''::,)' BFTEK,I:IFLN,HIARCHY
AL3(1) EL:.'OAO
BU'CrOOCC'C'lO' I<ECFM
AL3(XLlSTI EXLST

FOUNDATION BU:'<

C LS' SVSEM' DDNAME
BL1'OOC'OOOI0' OFLG'i
BU'[,(I'('f:0::JO' IFLG
8L2'lI11(l0CCOCClCC1CC" 1',1\(1(

EXCP AI'PENDAGi. LIST

2"'-

Figure 57 (Part 2 of 4). Emulator Common Data Area

440 DOS Emulator Logic

DOS EMUlATuR - CUt',MCIII DATA AREA

UK OBJECT CODE ADDRI ADOR2 ST MT SOURCE ST AT EM ENT

00037C 00
000370 000(00
000380 {leoe-onoe
0003e4 E 8C 1
000386 F04 (
0003ee ESCI
00038A F040
00038C F(l4(
00038E: F 040
J(0048

0(0390 87
('00391 OGC394

000394
000394
000394
O~039C

00039E
0003A5
OOC3 A6
0003A 7
:>003AA
(1C.03AA
00031 0
JOO 3(8
0003(9
0003((
0003 iX
000306
0003D7
0003E 0

0003tl
0003(El
00C3 E(

0003 ED

00~3EE

0003F 0
JOQjFl

00031- 2
0003F6
0003F-7
OCt03F 8
OOO~ F9
0003r- A
0003FC

0003F f:

::'CC'3F F

0004J2
(00403
00040A
0004QA
0004r. 0
OOQ410

000444 00000000
0(·0448 OCO()OOOC
00044(. 0('0000:;0
J00450 OC'000C 00
0004j4 0110"10,)"('

000458
J0045C
000460
000464 000001')'JO
C!OQ46f1 Cc.CC('JQr
u0046L c,r,JC(:O'J~

Jf'lOl, 70 ooe(-oooo
000474 (100{'"C1('1C
000478 rGCCQJOC

000480
JC048:; (\'1

0004el creec J
(',00484 00
JuC485 1')0
OC0466 OOOC

000488
C'C04I:1C
(004<:OC
000 .. 94
J0049A 4C ... (,+J40 .. :, .. C4~4('

0004B ~
000481:1 03
000489 O(j04BC
00048C 40404J

2CH DC
20 7+ [~C

2.C8 + CC
2C9+ DC
210+ D(
211 + DC
212+ DC
213+ DC
21<"+ DC
215+DADCBLEN f:QU

217+XlIST
218+

DC
DC

22Q+JFCflAI<.EA OS
al+JFCB~N OS
222+ OS
223+JF(BDS8 OS
224+ DS
225+JF(eDSlb OS
22t:+JFCbOS19 OS
227+ OS
228+JFCIC\OSJN fUll
229+ OS
23C+ OS
231+JFCBIP. OS
2.32+ [1S
L!3+JFCFCaIO OS
234+ C S
235+JFCBIP OS
236+ OS
237+JFC8MSKl OS
238+*
239 + OS
240+ JF cal NDt:: OS
241+JFCE:!UFNU DS
242 +*
243+*
244+J FcaUF It-. 0 S
24~ +*
246+*
247+JF(BUFL [IS

248+ OS
249+ JFC KE YLf [' S
250+*
L51+ DS
252+JF(OSOR(;. OS
253+ OS
<: 54+ JF CRECFM OS
255+JFC(;PTCD OS
256+JFCBBS OS
257+JFCLRECL [IS

258+*
2~9+JFCNCP OS
260+*
UI+JFCNTM OS
2~ 2 +*
263+JFCRI<P CS
204+*
2t;~+JFCCYLOf OS
266+ 0 S
U7+JfCBVSER OS
26$+ JFC!:IVS Rl DS
269+JFC(>'VSR3 GS
27(' + OS

272+ OjTOECB DC
273+ABGSYSPD DC
274+ABGPIB DC
275+.6F2Plto DC
276+AFIPIB DC

27E+AI I VGR2 OS
279+AIIVDVS OS
28e +AJ IV ISM OS
281+ARASCOIliS CC
282+JMGLBDOl DC
283+DBuGOCB DC
284+ STAI::REGS DC
2 85+STAER TN DC
28A+AIIV DOV DC

;CPP+FceCCLo.' os
289+FCf'>C: "CI' L'C
2<.:(+FCdCC~ DA C C
;"Ql+FCBCCWFG DC
2Q2+fl eccwx DC
293+FC8CCOjCT DC

2q5+AI I "SDT OS
lqb+AIIVViC OS
;::Ci7+ADOSBH DC
298+AOO SF< TNr DC
29CJ+IPL STMT DC

3 Gl + PR PCUUWK OS
302+ DC
3r3+ DC
3('4+ PRPCUUC DC

Figure 57 (Part 3 of 4).

8ll'D~'(1crr,"10' PERI
Xl3'f)(,rooo' f<Ekl
Xl4'OC(O"00 n ' UMSK
Cl2'YA' EOEA
Cl2' 0' PC I A
Cl2'Yt;' SIDA

CL2' C' CENOA
(L 2'')' XENDA
CL2 '0' AERR.
*-OADCB •

X' 87' •
A13IJFCBMEAI

OF •
OCL 44
CLf:! •
(l2 •
Cl7 •
CLl •
CL 1 •
Cl3 • , .
Cl22 •
X lP •
Xll •
Xl3 •
XL4 •
Cl b •
XLI.
XL9 •
XU •

XlI0 •
XU •
XLI •

XLI.

Xl2 •
XLI •
XU •

Y l4 •
XLI •
Y.L 1 •
XU •
XU •
XL 2 •

"2
XLI.

XL 1 •

XLZ •

XLI •
XL 7 •
OCl6 •
Cl3 •
CL 3 •
CL 52

F'r:"
AI fll
AWl
,0,1,)1
AIOI

A •
A •

A(" I
A('))

A(r)
A(0)

A(0)
A((' I

CD.
AU(O)
Al '3(01
All (Cl)
All(OJ
)l,l2(01

A •
A •
A{O)
A{Q)

tL 32'

~ A •
AL 1 (~I •
AL 3{P~PCUUC I
CL1' , •

LENGTH ('1F D"~O orp.

T LIST FOR P[lJFCA MACR.O

JFCS I00Rt<' AREA
JFCB DATA SET NAME' 2-(\

NJT USE(1
JFCB INTERFArf' BnF.

2-0
2-D
2-D

2--<'
2-D
2-f'
7-0

NOT USED ?~
FeB IOE~ITTFIFP 2-'"
NOT US ED 2-0

LAE'E L TVPE
uS En 2- f'I

OAT.<' ~fI~J\G"'~\lT 2-(1
8YTE ~ ?-r

NOT USED 2-('
JFCf! FLAG 2-')
JFCB NUMBER OF PUFF~P5 2-:
REQUIPEf' Frp THT S NITA. 2-(1
SET 2-1'1
JFCa BUFFER HIE'<.AP.CHY, 2-('
BUFF ER l~!G Te[HNI Qu= , 2-1'1
BUFFER AlTG~I~'ENT 2-r
JFCB BUFFEP, lFNGTt- 2-':\
~JT USEr 2-'"
JFC3 OIP.ECT MCE~5 1<'1"" 2-'"'
LENGTH 2-0
NJT USED 2-'"
JFCB DATA SET ORGAf-IlZAT!Or-! 2-(\
NOT USED 2~
JFCB REWPD FOP_I"AT 2-0
J~CB OPTION C(lOES 2-('\
I1AX BlOO' SIlE
JFC~ LCr,IrflL PE(Of.-l' 2-0
LENGTH 2-0
JF(B ~W~flFP [1-I1-~!J\lfL 2_n

PROGRAMS 2-'"
JFCB NUMPF:I', rF TRACKS ?--(\

MASTER INOF X 2-(1
JFCB PElAT !I.'F ~ JCv 2-r
pas) Tl ON ,,_n
JFCB CVlHI['FP OVrPFU"lW 2-(\
NiJT :JS En 2-r
JFlB VOLUMF SFRIIIL ", IMP, F: 0_

NOT U$ECl

ruMMY Er:P. F(lP S" SL JG
ADDq OF 8'"; S"SRrH~ lliB
AD(1R rF EG PI~

AJ[)~ OF "'7. PIP,
t;o:q· Of- F) PIP,

AnDQ OF SV[2 SUP~ VSR ~"'IIT 2-(1
ADO" OF SHAP.ED VOL P(lL'T THe 7-0
ADOI' OF I SAM P.tlUT1~F. 7-r-
PTR TO SEPV'[E t;,!n (\ITPL f'11'2-n
PTR TO P"AGEL If! nCR 2-('
S\jAP DCP PtlHITFP 2-('1
PTR TO SAVE 111''''1'.
kETllY POINT 7-0
P'<[.\.TOV£PFt.['OjprUTI~IE ,,-(1

f-LB OIJl~MV ((W (ST~ P"PITFP) 2-(1
ep cn['lF: 2-rI

oj. PTR TO F(P IMAGE + " :?_f'I
* CC~ F-UGS (:-r;

7-0
'" CCW ['1AT/J TRNSf. EP. LFtlG ,,-0

AOD~·OF STAGED nFII!p: TPlf 2-('1
ADDQ CF tlVvro 2-<"
ADD~ OF ['I[1S pTP/J~!SIF~IT PFA 2-t"
AD)!<. OF DllS P,TPJ.~IS 'F\'T 1'\'['\ 2-(1
LAST AUTO fPl $TMT 2-(\

cuu TFMI 5lIl- T E-)<I(lPt "Pfl­
LENGTH ?-
CH.6K i.UU '~P,K AIl(IP,
r HANNEL At!C' U~'I T

Emulator Common Data Area

Data Areas 441

DOS E:"tULATOR - COMMON OAT A AREA

laC OBJE:CT CODE AODfll ADDR2 STMT SOURCE STATEHEIliT

0004 BF OC
0004C 0 OCOCCOO(l
0004C4 00000000
OOG4C8 OOO(-(':'IOC
0'J04((00000000
000400 00('('0000
00040" 000(,C00C

:lOND8

000408 00000000

00040C

3004DC ONGO:JCO

')004E:.r ("J~GJOCQ
COOC (·000
coeceooo
00000COO

oore ooc(
Or8CO(}(,~

O(OC(,(·OO
U004FC 0(,00001)0
000500 occoooco
0005(-4 000000(0
000508 oeC00000
00050e
0005(1(OOOCOOOO
000510 COOOOOOO
:>00514 OOf>('O('C(I
000518 0000(,0('(.1

00051C 00
))051 D

000510 0000(lOCO'JOOCCOCO
J00594 40(3

000598
000598 80
00C.599 (10('348

00059C
00059C FF
aOO~9D 04
00059f: 40
0005~F 0(1
00(}5AO 000005AS
0005A4 000((580
0GC~AH C9C<;E5C504E44040
000580
JOC5Br:- 41.;4040
000583 40
000(,04

J00584 Ooooooor
00058S 00000000
D005ec O(lOO,)OjODJ0QOIJOO

0005C4
ooose 4 O~COJE a
JOCl5C!l 00000000
00('.5ec FFFFFFFF
000500 oro:Jooco
000504 OOOOQCOC'
1)00508 CDCODOOO
00C'5DC ccccc')cc
0005 EO OC;C0C Joe
D005E 4 OOCOOOOO
0005E8 O(lOOCOOO
0005 EC 0000000('
0005F 0 001)C('0CO
:>OCi5F4 c(le,ocooo
OOC'5FS OOO(.(")OC
0005FC C 40CCJCO
000600 00000200

000604 DC

0006C5 C8
000001
0000e 2
1)00004
oooon
OOCM6 (100(;
00060S 000(1('300
00060C 0000
0006e E ooco
000610 OCOOOOCCOOOi"GOOC'
000018 000000000(1000000
~00620 oooorooo
000624 BBBBBBBBB8B8BBEB

3(,6+AI IVMS G DC
301+ABEBLK DC
30a+CAWSCNAD DC
309+CCWSCNAD DC
310+LOGIO DC
31l+AEDJCHK DC
312+*
313+IIVCONBl EQU
314+ [NTKV
315+WTOR.E(B DC
316+*
317+IIVCONB2 EOU
31P+ ENT RY
319+PPUMPEC8 DC
212(\+*
321+AAS(HCK DC
322+ABAOP DC
:J.23+ASTGIO DC
324+AOPEN DC

326+ART21) DC
327+AT I"1ER DC
328+ASVC DC
329+AP(DC
330+AROUTEEP DC
331+AROUTE DC
332+A1 lVOBEl DC
333+BASEREGS DS
334+ADR IL ST DC
33!: +RFACTOR CC
336+AEML(ONS DC
331+AIIYGET DC

33"'+PRPRPLY Z DC
340+II VCONB3 EQU
341+ E:NTRY
342+ PRPRPLY DC
343+PRPCONTF DC

345+0PENl1ST OS
346+ DC
347+ DC

349 +OLI 5 T DS
350+ DC
351 + DC
352+ DC
353+ DC
354+ DC
355+ DC
356+QNAME C·C
357+RNAME OS
358+FlNMC UU DC
359+RNMBIN DC
?60+RNMELEN E<IJ

362+AI I vce w DC
363+AIIVADJ DC
364+CPUID DC

366 +CTL REGS DS
367+CTLRO DC
368+CTLRl DC
369+CTLR2 DC
37C'+CTLR3 DC
371+CTLR4 DC
372+CTLR5 DC
373+CTLR.6 DC
374+CTLR7 DC
375+CTLRS DC
37b+CTLR9 DC
377+CTLP 10 DC
37e+CTLRli DC
379+CTLRI2 DC
3Bo+eTLR13 DC
3S1+eTLR14 DC
3S2+CTLR 15 DC

3f',4+S370SW DC
385+* EQU
,,86+DRELEASE DC
387+REL25 E'-\J
38S+REL25E EQU
389+REl26 EQU
:9C+REL27 EQU
391+ DC
392+DOS RFT B DC
393+EMULBLAD DC

391o+TOcLTA DC
395+ WKAP E A DC
396+ST(KADOR DC
397+EMUPATCH DC

Figure 57 (Pa.rt " of 4).

442 OOSEmulator Logic

V(II""S G) AOOR. OF ~E S s} Gf WP I TFI'
V(II VCCWPB I AOOR rF OEP-L('-rtr
VIIIVAWVl ADOR OF I IVAWV
V I Ill.' CI.V) ADOR OF ! I vr WV
VI I I VLOG) ADDR 0 F IIVLOr,
VIIIVRTEJJ) EOJ CHECK ROUTI Nf AODR

I IVCO'4B 1
fOCI WTOIt EC'

IIVCONB2
F' ')' PROMPT EC'

V Ii IVRTECK) AC'OR OF IIVpTEC!<'
V, I I VA5N) AGDR OF AflENO ERP,OR PT~I

A(OI ADOk OF ! I VSTG
VI I IVOPf\j) AOOR OF [lP E~I ROUT !IIF

VIIIVUER2) AOOR OF TIvnEp2
V (I IVRT ET M) AGOR OF I! VP TF Tf'\
VII I VSVC) AODR OF ~\lC POUT HIE
'.II i I IJP(Ei AO['.lR OF PC [<OUTl NF
VIIIVIHEI ADOR OF ! IVTPF
VI I I VRTf:R!) AAOR. OF I IV P,T ERl
,0,101 AVOR OF OIHAHI WflPK AP F.
f"XL12 COMMON RASE PEGI5 T EP V~ L Uf .s
,0,101 DRI LI ST ADDRESS
AHII DOS CDPF A[lOPf SS
A(!IVCONI EMJCONS i\O{'lP.ESS
VI II VGE TI ADDRESS OF GETMAI ~I ROLIT [NE

X'OG' ZERO (LF R (H II AC TE P

11VCONB3
X Ll19' C' P EPL Y Af.' fA FCP PP (l~P T
C' C' (ONTINUATTO~ CHAP.ACT EP

OF
All 112S 1 OPT I ON BYTE
AL3(DADCBI DCB ADlIRE 5S

OF
Al1(25S1 LAST ENTRY INDICATION
AL l(RNMELENJ L ENG TH
Bll' 010(lrooo' S OS 1
All(01 RETURN CODE FIELD
AIQNAME) :;)NAME ADORE SS
AIRNAME) kNAME ADDRESS
CL8' II VEMU' Q RESOURCE NAME
0CL4 P PESOUPCf ~I,<I ME
C L3' OS Cuu
CL I' os 81 N NUMP ER
L'RNAME LENGTH OF nl ME FT El[l

VII I 'ICC WI IIveew ADDR 2-1
VI IIVADJ I II VA (lJ Al.OR '-I
XlS' 0' CPU 10 FIEL 0 ,.1

OF DOS CONTP.Ol REGISTER FI F.LD
Xl4' EO' TM~ , INT A~O EXT Sl G M~ SKS
F' 0' UNU5 EO
F '-1' CHANNE L MASKS
F'C" UNUS ED
F' 0' uNUSED
F' O' l'NUSED
F'O' UNUS ED
F' 0' UNUS EO
F '0' UNUSED
F"O' UNUS ED
F'I)' UNUSED
F'O' UNUSE'D
F '0' UNUS ED
F '0' UNUSED
X" (41 ,Xl3'O' IIICH HANDl HIG
F' 512' MCEL J>TR IMCHI

SWI TCH Frp 3'7r") x '0' •
X, 20' • SHAPED [)[lSP ES VOLllMF Fl G
x'es' DOS '<E:LFo1SE
X' (' l' 25

SlJ>PDi{T 2-1

X' 02' 25E
x' 04' 26
x' 08' 27
2X' 00' SPARE'" LAGS
AWl ADD OF ODS RF HElLE
H'C'

2- 1
2-1
2-1
2-1
, -l

'-I
LABEL CVL ADDP -(('-

ott)' rI~E OIFF 8TWN OS A~O COS 2-1
0 ' (" WORK AREA 2-1
,0,10) AD[iRESS Of SVC 34 STCK INST 2-1
13201\'&B' ABOUT 5 PEPCE:8T 2-1

,_0
r-n

2-('·

'-0

,-<'
,-0
2- 0
2 -0
2-0
2-(

'-I '-I
, ,

'-1
2-1
2-!
2-1
2-1
7-1
2 -1
2-1
2-),
2-1
2-1
2 -1

'-I '-I

2-1
2-1

,-,

Emulator Common Data A.rea

J

..l

IIVRCN

Initialized by: IIVRAS

Modified/interrogated by: IVRAS, IIVSNP, IIVRCP, IIVSCI, rrvpcI, IIVACI

Pointer in: I IVCON

IIVRCN (Figure 58) is a CSECT assembled with module IIVRAS containing data·
constants common to the serivce aids modules. Figure 59 is a listing of the
contents of IIVRCN.

Data Areas 443

----------------------------.----- -----

IIVPCE

IIVSVC

....--------,

IIVRTE
(Entry Point
IIVRTER2)

IIVRTE

IIVRASPC
(IIVRAS
Program
Check Entry
Point)

--~

---~ / /
'/ /

IIVRAS

IIVRASYN IIVRASVC
(lIVRAS (lIVRAS
Asynchron- Supervisor
ous Entry Call Entry
Point) Point)

V

~
v-'"

IIVRCN
(RASCONS
DSECT)

I-----------...

\ ~
I

\ ~ f
I
I
f
I
I

IIVCON IIVSNP I IIVSCI

I
I
I
f
;

• Points to
IIVACI IIVRCP

---~ Loads and deletes

User SVC
Exit Routine

User
Asynchron-
ous Exit
Routine

User Local

Execution

Exit Routine

User Program
Check Exit
Routine

IIVPCI

Figure 58. Relationship of IIVRCN to other Service Aids Modules, Other
Emulator Modules, IIVCON, and Use.r Routines

444 DOS Emuldtor Logic

RAS CnSTANTS

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

~(OOOO

CCOOOO
)00000 08098C829C9D9E9F
(e0008

~COCOS ccocecco
CC oooe 0000
((OOOE (000
GOOOI0 0000
:C0012 0024

)00014 COOCOC(OOCCOOOOO

8(1000S

CCOCIC 0000000000000000
CCGOOA

80003 a 00

000031 00
C(0032 00

CC0033 CO

(C0034 C033

lCOO36 COCCOCCOOCCCOOOO

JOOO08

CCOC3E ecce
)(0040 cocceecocccoOOOO
OOCOOA

ceo C5 4 OC

(e 0 C55 CO
COOC56 00

JOOC57 CO

Figure 59 (Part 1 of 3) •

3~I IVRCN
4~RAsceNS

5~RASOPCD S
6+RAS CFLEN

CS ECT
EQU
DC
EQU

S+RASTRCTB DC
9+RASTRCMX DC

10~R~STRCNX

11+RASTRCNO
12~TRCLEN

CC
DC
DC

14+RASTRCDS DC
15+* EQU
16+* EQU
17+* EQU
1S+* EQU
19+* EQU
20+* EQU
21+* EQU
22+* EQU
23+TRCDLEN EQU

25+RASTRCUU DC
26+RASTRLEN EQU

28~RASTRSW 1 CC
29+* EQU
30+RASTRSW2 DC
31~R~STRSW3 DC
32+* EQU
33~* EQU
34+* EQU
35+* EQU
36+* EQU
37+RASTRSW4 DC
38+* EQU

40+RASS~FNC DC

42+RAS~FCDS DC
43+* EQU
44+* EQU
45+* EQU
46+* EQ.U
47+* EQU
48+* EQU
49+* EQU
50+* EQU
51~SNPLEN EQL

53+ RAS ~ FCUU DC
54+SNPCUULN EQU

56+RASNFSW1 CC
51+* EQU
58+RASNP SW2 DC
59+RASNFSW3 DC
6C+* EQU
61+* EQU
62+* EQU
63+* EQU
64+* EQU
65+RASNPSW4 DC
66+* EQU

IIVRCN
XLB' 0809S0S29CSD9E9F'
*-R~SOPCDS

AIOI •
H'O'
H' o·
H' 00'
H' 36'

XLS' 0'
X'08CGOOOOOCOOOOOO'
X'00090000CCOOOOOO'
X'00008000000QOOOO'
X'COOOOCS2cccoooao'
X'000000009COOOOOO'
X' C0000000009DOOOO'
X'CCC0000000009EOO'
X'000000000000009F'
*-RASTRCc)S

5F' 0' •
(*-RASTRCUU 1/2

X'OO'
X'Ol'
X' 00'
X'OO'
X '10'
X' 0 I'
X'OZ'
X'04'
X' OS'
X'OO'
X' 01'

H'51'

XLS' 0'

.

X'08COCCOOOCOCOOOO'
X'OO09000000000000'
X'COOOSCOOOOOOOOOO'
X'COOOOOS2000000eo'
X'OOOOOOO09COOOOOO'
X'COOOOOOOO09DOOOO'
X'OOOOOOOOOC009EOO'
X'OOOOOOOOOOOOO09F'
*-RASNPCDS •

5F' C'
(*-RAS'IIPCUUl/Z

X'OO'
X'Ol'
X'OO'
X'OO'
X'10'
X '01'
X' 02'
X' 04'
X'OS'
~, 00'
~ '01'

Emulator Service Aids Common

VALID OP CODES
LENGTH OF TABLE

ADDRESS OF TRACE TABLE
NUMBER OF ACTIVE ENTRIES
NEXT AVAILABLE ENTPY
TRACE TABLE ENTRIES
LENGTH OF EACH TRACE ENTRY

SP ECI FlED TRACE OP CODE S
SSK TRACE
ISK TRACE
SSM TRACE
LPSW TRACE
SID TRACE
TID TRACE
HID TRACE
TCH TRACE
LENGTH OF TABLE

TRACE CUU TABLE
SIZE OF TABLE

TRACE S.IITCH 1
TRACE '10 ' PARM SPECIFIED
TRACE S'I ITCH 2
TRACE SWI TCH 3
TRACE 'SVC' PAPM SPECIFIED
TRAC E 'EX T' PAR M SPEC I F I ED
TRACE 'INT' PARM SPECIFIED
TRAC'. 'ATTN PARM SPECIFIED
TRACe 'TI~ER FAR~ SPECIFIED
TRACE Sill TCH
TRACE 'ALL' PARM SPECIFIED

SNAP TABLE ENTRIES

SPECIFIED SNAP OP CODES
SSK SNAP
I SK SNAP
SSM SNAP
LPSW SNAP
SIO SNAP
T! D SNAP
HI D SNAP
TCH SNAP
LENGTH OF TABLE

SNAP CUU TABLE
SI ZE OF CUU T~BLE

SNAP SW ITCH 1
SNAP '10 ' PAP.~ SPECIFIED
SNAP SWI TCH 2
SNAP SW ITCH 3
SNAP , SVC' PAR~ SPECIFIED
SNAP 'E XT' PAP.~ SPECIFIED
SNAP 'INT' PARM SPECIFIED
SNAP 'ATTN' PARI' SPECIFI ED
SNAP 'TIMER' PARM SPECIFIED
SNAP SW ITCH 4 SNAP ALL
SNAP 'ALL' PA~" SPECIFIED

Data Area

Data Areas 445

RAS CC~STANTS

LOC OBJ ECT COOE ADDR 1 ADDR 2 ST ... T SOURCE STATEMENT

0000S8 COCOOCCOCCCCOOOO
)OOOOC
CCOOOA
000000 OOOCOCCOOOCOOOOO
CCOOOE

aOOlSC OCOOCCCO
000160 0000000000000000
000168 CCCCCC(OOCCOCOOO
000172 OOOOOC(OO(OOOOOO
00017C 00

000170 00

C0017E 00

C0017F 00

000180 ccceooeo
000184 oeooooeo
eC0188 cccoecco

JOO18C ooooooeo
0(0190 00000000
000194 ooe.oeceo

000198 00000000
OCOl9C CCCCOCCO

oeo lAO COOOOCCO

00OlA4 00000000

CCOIA8 COCCCCCO
0001AC 00000000
eCOIBO COOOOCOO
0001B4 OOCCOCCO
0001B8 00000000
eCOIBC CCCCOCCO
OOOlCO C9C~ ESC9C lE24040
0001C8 C9C~ ES [9Cl E24040
oeOIDC C9C~ESC9CIE24040
000108 C9C9ESC9CIE24040

ce01EC ceoc
0001E2 00
OC01E3 C02.3
ec 0 IE 5 E2DSC ID740C4E4D4
C00201
OC0201
000209
000209 00
CC020A
00020A 0015
J0020C E7E7E7E740E7E7E7

Figure 59 (Part 2 of 3) •

446 DOS Emulator Logic

68+CMPBlK
69+CMPLEN 1
70+C~FlEN

71+C HPBlK2
7 2+CMPL EN2

74+RASPS~SV

7S+PSWSAVE
76+PSWMSK2
77+PSWSW

79+STCRGS,W
80+*
81+*
82+*
83+*

8 S+RASFlGl
86+*
87+*
88+*

90+R~SPCSW

9 2+A RASPCE
9 HRASPC
94+AIIVPCI

~6+ARASSVC

97+RASSVC
98+AlI ~SCI

100+ARASRTE
101+RASCTHER

103+RASART2C

10S+ARASNP

lC7+SVCCHN
Ie 8+VI I VCON
109+SVCEXAD
1l0+PCEXITAD
1l1+LEXADR
112+ASY ~EXAD
113+SVCEXRTN
114+PCEXRTN
llS+lEX RTN
116+A SYNE XRN

118+CUUS AV E
119+TYPSAVE
12J+L EXMS G
121+EXMSG
122+
123+MODNM
124+

125+
126+LOPHSGI
127+0PTMSG 1

DC
EQU
EQU
DC
EQU

DC
DC
DC
DC

DC
EQU
EQU
EQU
EQU

DC
EQU
EQU
EQU

DC

DC
DC
DC

DC
DC
DC

DC
DC

DC

DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
CC
ORG
OS
DRG

CNOP
DC
DC

XL120'O' CO~P INPUT AREA
12 •
I*-CMPBLK I/CMPL t', 1
XLl40' O'
14 •

D' O· · XLIO'O'
XLlO' 0'
X'OO' •

X'OO' ,
X' 00'
X'Ol'
X' 02'
X'10'

X'O' · X' 01'
X'02'
X'04'

X'O'

AIOI
A,(0)
A(oI

AIO)
AIOI
AIO)

AI 01
AIOI

A (0)

AIC)

A(o)
AIOI

LENGTH OF CMPBLKI
TA3LE SIZE
(;(],~P INPUT SAVE AREA
LENGTH OF CMPBLK2

PSW SAVE AREA

MASK FOR PSW OPTION
PSIot SWITCH

STORAGE SWITCI-I
STORAGE =(EMBL KS, DOS 1
STORAGE={EMU,OOS!
STORAGE={~LL,CCSI

STORAGE=(,NOOCSI

FLAG BYTE
TRACE NOT COMFLET E
PkOGRAM CHECK INTERRUPT
CAUSE OF SNAP IS EQUAL COMP

PROGRAM CHECK SWITCH

REPLACEMENT ACDR FOR OR IPC
V.III VPCE) - !l'il T BY IIVRCP
AIIIVPCII

REPLACEMENT ACCR FOR ORISVC
VI IIVSVC) - I NI T BY I1VRCP
AIIIVSCII

REPLACEMENT ACDR FOR DR!OT H!' f
VI I IVRTE I - I NI T BY I! VRCP

VI'IIVRTER21 - INIT BY IIVP.CP

VIIIVSNPI

POINTER TO BEGINNHIG OF CHAIN
INITIALIZED BY IIVRAS

AIO) SVC EXIT ROUTINE ADDR
A (0) PC EX IT ROOT INE ADCR
AIO) LEX EXIT RTN ACDRESS
AIO) ASYN EX1T ROUTINE ADDR
CL8' II VRAS

,
SVC EX IT ROUT I NE NAME

CL 8' !lVRA S , PC E XI T ROUTI NE flAME
CL8' IIVRAS ' L EX EX IT RTN NAME
Cl8'! I VRAS , ASYN EXIT ROUTINE NAME

H'O' · CHANNEL AND UN! T SAVE AP.EA
X' o· TV PE OF INTERRUPT
AL2(L'EXMSG-lJ LENG TH MINLS GNE
C'SNAP DUMP INVOKED BY MODULE XXXXXXXX' MSG
*-L'LEXRTN RESET IC
XL8 LOAD MODULE NAME
EX~SG+L' EXMSG RESET IC

2,4 ALLIGN ON HALf WORD BOUNDR Y
A L2 (L' 0 PT MS G 1-1 I LENGTH MINUS ONE
C'XXXX XXX SNAP X CF X' MSG

Emulator Service Aids Common Data Area

RAS eUSTANT S

LaC OBJ EeT CODE ADOR1 ADDR2 STMT SOURCE STATEMENT

CC020C
OC a 20C
000210
OC0211
00021C
OC02lC
0(C222
000222 0013
000224 D7E2E67EE7E7E7E7
OC0238 oeElCCCO
J0023C 00700000
OC0240 40404C4040404040
000240
000240 F1 06 E261 F3 F6 F040
OC0264
000278 E3C9C4C540
OC02H E7E7E7E7E7E7
CC0283
000292 C4CIE3C540
CC02'7 E7E7E7E7E7
00029C
0002AE D7CIC7C540
CC02BO E7E7E1E7
0002B9
C002 B9 00
oe02BA 0001
0002BC 0000
CC02BE ceoo
oe02CO coe.cecco
a 002C4 000.00000
eC02C8 OOOOOOCOOOOOOOOO
CC03C 7 00
0003C8 0000000000000000
CCOOOO
ceoooo
000004
CCOOO~
000080
CCCCC7
CCOCC8
000074

Figure 59 (pa.rt 3 of 3).

128t ORG
129+CPTlGN os
130+ 0 S
131+0FTCUU OS
132+ ORG
133+SNPNO OS
134+ ORG
135+LPSWSVE DC
136+PSWSV E DC
137+BHDR1 DC
138+LHOR1 DC
139+HOR1 DC
140+ ORG
141+ DC
142+ OS
143+ DC
144+HDRT IME DC
145+ OS
146+ DC
147+HDRCH E DC
148+ OS
149+ DC
150+HCRPAGE DC
E1+ ORG

152+L1 NECNT DC
153+PAGECNT DC

154+RAS CIAG DC
15S+RASCCW DC
156+RASTRSVC DC

157+PTCHAREA
158+CIAGBLK
159+0IAGt\XT
160+0IAGCUU
161+CI AGFLAG
162+01 AGREL
163+
164HIAGBUF
H5+0IAGLNG

DC
OS ECT
OS
OS
OS
EQU
OS
OS
EQU

OPTMSGI RESET IC
XL4 • CAUS E
X ,FILLER
XL3 CUU
OPHSG1+L'OPTMSGl-6 POINT TO SNAP NO
XL 6 • S NA P X OF X
OPTMSG1+L 'OPTMSGI • RESET Ie
AL2(L' PSWSVE-ONEI • LENGTH OF MSG
C'PSW=XXXXXXXXXXXXXXXX' .MSG
AL2(L'HDR1+8I,AL2(01 BOW
AL2(L'HDR1+41 ,AL2 (0) ROW
CL 121' , HEADER RECORD
HCRI RES ET IC
C'10S/360 DOS EMULATOR SERVICE AIDS' 10
Cl20 FilL ER
Cl5' TIME' 10
C' XXXXXX' TIME
CLl5 FILLER
Cl5'DATE' 10
C'XXXXX' DATE
CLl5 FILLER
CLS'PAGE' 10
C'XXXX' PAGE
HCR1+L'HDR1 RESET IC

H' l'
H' O'

LI NE COUNT FOR II VP.C P
PAG E COLI NT Fa R IIVP.CP

F'O' ADOR OF FIRST DIAG BLOCK
F'O' SAVE IIVCCW ADDRESS

2-1
2-1

XL25S'00' SVC TRACE TAB LE

lCOD'O' • MAINTENENCE PATCH AREA
CIAGNOST IC BLOCK FOR CC W 2-1

F ACDR OF NXT BLOCK 2-1
CL2 DOS CUU 2-1
CLl FLAG BYTE 2-1
X'80' ON IF RELOC+SAVE 2-1
C1. 1 UN USED 2-1
CLloa BUFFER(SAVE FOR DOS CH.PGMI 2-1
*-OIAGBLK LENGTH OF DIAG BlK 2-1

Emulator service AidS Common Data Area

Data Areas 447

Input/output Block

Initialize~ by: IIVOPN

Modified by: IIVPCE, IIVINT, IGGO 1QS1, OS, IIVCHK

Interrogated by: IIVPCE, rIVCHK

Located in: COMTAB (X'38' offset)

The input/output block (lOB) is the primary means of communiciltion between
a requestor of an I/O operation and the 1/0 supervisor. All of the information
passed between the requestor and the 1/0 supervisor is either contained in
the lOB or pointed to by the lOB.

Although the I/O supervisor uses lOBs, it neither creates them nor disposes
of them; lOBs belong to the requestor of an I/O operation.

Only those parts of the rOB that are significant to the Emulator are shown
in Figure 60 below.

0(0) 1 (1) 2(2) 3(3)
IOBFLAG1 Unused

IOBSENSO IOBSENS1

4(4) 5(5)

Unused IOBECBPT

8(8) 9(9)

Unused

IOBCSW

16(10) 17(11)
10BSTART

Unused

20(14) 21 (15)

Unused
IOBDCBPT

32(20) 33(21)

IOBSEEKM

IOBSEEK

Figure 60. Input/Output Block Fields Used by the Emulator

448 DOS Emulator Logic

InputlOutput Block Description

0(0)

Bytes and Field
Alignment Name

1 IOBFLAG1

00 ••
01 ••
10 ••
11 ••

Field Description, Contents, Meaning

Flag byte 1.

No chaining.
Command cbaining.
Data chaining.
Both command and data chaining.

•• 1. Not a related 1/0 request.

2 (2) •• 1 rOBSENSO

3 (3) ••• 1 rOBSENS1

5 (5) .3 rOBBCBPT

9 (9) .7 I OBC SW

17(11) .3 IOBSTART

21 (15) .3 rOBOCBPT

32 (20) IOBSEEKM

]] (2 1l • 7 IOBSEEK

Note: Bits 0, 1, and 6 are set as
required by EXCP.

Sense byte 1 is tested or passed
to oos (see IIVCHK for details).

Sense byte 2 is tested or passed
to DOS (see IIVCHK for details).

Address of the ECE to be posted
upon completion of·the 1/0
event.

Low order seven bytes of the last
CSW for this request are passed
to DOS when 1/0 interruptions are
simulated •

. Address of the first CCW in the
channel program to be executed.

Address of the DCB needed for
this request.

M = the number of the DEB extents
for the data set to be read or
written •

BBCCHHR = the seek address of
a direct-access volume:

Bytes 1-2
Bytes 3-q
Bytes 5-6
Bytes 7

Disk
Zeros
cylinder number
Read/write head number
Record number

nata "'reas 449

ISM Block (ISBLK)

Initialized by: IIVIS

Modified by: IIVIS

Interrogated by: IIVIS, IIVGR2 (FIDBLK only), and IIVPCE (FIDBLK only)

Pointer in: ISREGSVA field (.following FIDBLK field, which is pointed to by
EMUCONS)

The ISM block (ISLBK, Figure 61) is built by the Emulator when a DTF is opened
and is used at I/O macro time to reap the DOSDT.F to the OS OCB.

ISBlK

0(0)

ISREGSAV

72(48)

FIDBlK

92(5C)

ISECB

96(60)

ISTCB

100(64)

ISREGSVA

104(68)

ISLIST

112(70)

ISWKNARA

116(74)

ISFlAGS

120(78)

ISDGB

P56(164)
ISDEGB

P84(180)
ISDTFlMA

~88(184)
ISDGB1

623(26F)

Figure 61. ISAM Block (ISBLK)

450 DOS Emulator Logic

ISAM Block (IS13LK) Descrir:tion

Offset

0(0)

72 (48)

n (5C)

96 (60)

100 (64)

10IJ(68)

104(68)

105(69)

108 (6Cl

112 (70)

116(74)

116(74)

111(75)

Bytes and
A.lignment

72

32

4

8

4

4

1

Name
Field

ISREGSAV

FIDBLK

ISECB

ISTCB

ISLTST

Byte 1
ISCODE

Bytes 2-4
ISDTFA

BYTES 5-8
TSCOMTAB

ISWKNARA

ISFLAGS

Byte 1
TAFLAG1
1 •••
• 1 ••
• • 1.
• •• 1

1 •••
• xxx

Byte 2
TAFLAG2
1 •••
11 ••
1.1.

1 •• 1

• •• 1
1 •••
• _. 1
11 ••

Hex.
Dig. Eield DescriptionL Contents, Meaning

00
04
08
OC
10
14
18

Register save area.

File identification block.

Event control block used for
communication between the Emulator
main task and subtask.

Address of task control block for
subtask associated with ISBL.K.

Address of TSREGSAV.

Parameter list used to communicate
an TIO request from the main task
to a subtask.

1/0 request code.
wRITE NEW KEY.
WAT'!'? •
GET.
PUT.
WRITE KEY.
ES1":TL.
READ KEY.

Address of DTFIS table.

Ad,lress of the COMTAB entry to which
this IIO request is related.

Ad'lress of the WRITE type KN work
area.

Indicators.

1/0 request.status indicator.
GET successful.
READ .KEY issued •
WRITE KEY issued.
WRITE NEW KEY issued.
READ successful.
Not used •

CI?EN/SETL status indicator.
Open for QISAM.
Open for QISAM load.
Open for QlSAM search by record or
generic key.
Open for QISAM search by device
address.
Set for all S.ETLs.
Open for BlSAH.
Open for BlSAM in DCB 2 •
Open for BlSAM add in DCB 1.

Data Areas 451

Bytes dnd
Offset Alignment

118(16)

119(77)

120(18) 2.36

356 (164) 28

384 (1aO) 4

388 (184) 236

1SK/SSK Table

Name
Field

1.1.
1.11

" 1.
1111

Byte 3
TAFLAG3
1111 1111
0000 0000

Byte 4
TAFLAG4

ISDCB

rSDECB

ISDT.FLMA

ISDCB1

Initialized by: rIVINT

Modified by: I IVPCE

Pointer in: .F.MUCONS

Hex.
Dig. Field DescriQtion, Contents f Meaning

Open for BISAM RETRV.E in DCB 1.
Open for EISAM RETRVE in DCB 2.
Open for BISAM ADDRTR in DCB 1.
Open for BISAM ADDRTR in DCB 2.

subtask/main task control indicator.
Subtask in control.
Main task in control.

Not used.

QISru"'l load mode: DCB when creating
file.
QISAM scan mode: DCB when
sequentially retrieving file.
BISAM mode: DCB only when adding
records to file.

BISAM-mode data event control block
used when accessing file for rannom
retrieval or add mode.

Save area for add.ress of DTF (define
the filel logic module.

BISAM-mode data control block when
randomly retrieving and/or adding
records to file.

The insert storage key/set storage key (ISK/SSK) table contains one 1-byte
entry for each 2K block of DOS dynamic storage. It is initialized to zeros
by the initialization routine. The appropriate protection key for each block
is stored in its related byte entry.

Job File Control Block

Initialized by: OS

Modified by: IIVINT. TIVCF~

Interrogated by: ITVINT

Obtained by: Issuing RD,TFCB macro instruction

The job file control block (.JFCB) is an internal representation of a DD
statement.

Only those parts of a JFCB that are significant to the Emulator are described
in Figure 62.

452 OOS Emulator Logic

~

010)

JFCBDSNM

1521~1
JFCBTSDM Unused

I Unused 1""1421 JFCBLTYP Unused

I Unused 1'021661 JFCBLKSI

118(76)

Unused JFCBVOLS

Figure 62. Job File Control Block Fields Used by the Emulator

Job File Control Block Description

Offset
Bytes and Field
Alignment Name Field Description, Contents, Meaning

0(0) 44

52 (34) 1

66 (42) •• 1

102(66) •• 2

118 (76) •• 6

JFCBDSNM This field is initialized to 44 bytes
of X'04' to indicate the VTOC data
set name. The tenth cha.racter is
examined to determine SYSIN and
SYSOUT files.

JFCBTSDM A X'20' in this byte is assumed to
mean a SYSTN or SYSOUT file.

JFCBLTYP This byte is set to X' 1 0' to assure
BLP option.

JFCBLRSI If the blocksize for staged I/O is
not specified in a DO statement. this
fie1d holdS a default blocksize (89
bytes for punch, lf11 for print).

JFCBVOLS The OPEN routines move volume identifi­
cation (VOLID) into this field for
mount requests.

Data Areas 453

,I"

I
[
I

Local Execution List

Initialized by: IIVINT

Modified by: IIVINT, IIVPCE, IIVLOG, IIVSTG, IIVPRP, execute local instruction,
IIVRAS, IIVSNP, IIVSCI, IIVACI, IIVPCI, IIVRCP

Interrogated by: IIVCCW,IIVRTE, IIVAWV, IIVCWV, IIVPCE, IIVGR2, IIVRAS,
IIVSNP, IIVSCI, IIVACI, IIVPCI, IIVRCP

Pointer in: EMUCONS and Emulator register 9

The local execution list (Figure 63) contains information that enables the
Emulator to acquire control after an interruption and subsequently return
control to DOS. See the Appendix for details concerning DOS emulation.

0(0) 2(2)

Programming Use I nterruption Code

4(4) 5(5)

ILC CC PM Local I nstruction Address

8(8)

Register 14

12(C)

Register 15

16(10) 17(11)

Reserved True Origin Address

20(14) 21 (15)

Reserved Local Limit Address

24(18) 25(19)

Reserved True Operation Pointer

28(1C) 29(1D)

Reserved SVC I nterruption Address

32(20) 33(21)

Reserved Program I nterruption Address

36(24) 37(25)

Reserved Asynchronous I nterruption Address

Figure 63. Local Execution List Fields Used by the Emulator

454 DOS Emulator Logic

Local Execution List Description

Offset

o (O)

2 (2)

4 (4)

4 (4)

4 (4)

5 (5)

8 (8)

12 (C)

17 (11)

21 (15)

Bytes and Field
Alignment ~ Field Description. Contents, Meaning

2 The Emulator cannot change the condition of the
first two bytes •

•• 2 Interruption code. Identifies the cause or source
of an interruption. When an interruption occurs
while in local execution mode, the interruption
code is placed in the local execution list.

xx •••••• Instruction length code (ILC). When an
interruption occurs while in local execution mode,
the current value of the ILC is placed in this
area of the local execution list •

•• xx •••• Condition code (CC). When an interruption occurs
while in local execution mode, the current value
of the condition code is placed in this area of
the local execution list •

•••• xxxx Program mask (PM). When an interruption occurs
while in local execution mode, the current value
of the program mask is placed in this area of
the local execution list •

• 3 Instruction address. When an interruption occurs
while in local execution mode, the address of

4

3

3

the next sequential instruction is placed in this
area of the local execution list.

Register 14. When an interruption occurs While
in local execution mode, the contents of register
14 are placed into this area of the local execution
list.

Register 15. When an interruption occurs while
in local execution mode, the contents of register
15 are placed into this area of the local execution
list.

~rue origin address. This area holds the address
of the Emulator program corresponding to address
o in the emulated environment. It must be on
a 4096-byte boundary (the three low-order
hexadecimal digits equal 000). The origin address
is added to the local limit address to determl ne
that the maximum local address falls within the
storage limits of the system.

Local limit address. This area holds the maximum
address usable by the emulated DOS programs.
The address value must be on a 4096-byte boundary
-1 (the three low-order hexadecimal digits equal
FFF). All local instruction and operand addresses
are

Data Areas 455

25 (19)

29 (1Dl

33 (21)

.37 (25)

Bytes and Field
Alignment Name

3

3

Field Description, Contents, Meaning

checked hy t".he DOS Compatibility Feature (in
Models 135 and 145) against the local limit address
to determine whether they fall within the adjusted
DOS storage area. Any add.ress found. to be greater
than the local limit address causes an addressing
exception. 'Ihe DOS Compatibility Feature in Model
155 does not do this checking. However, all
addresses contained in the local execution list
are checked for boundary alignment.

True operation pointer. When an interruption
concli tion is raised while in local execution mode,
the true add.ress of the last executed instruction
(except for the object of an execute instruction,
in which case it is the true address of the execute
inst.ruction itself) is stored in this area of
the local execution list.

SVC interruption address. When an SVC interruption
occurs, the SVC interruption address from the
local execution list replaces the instruction
address of the current PSW. This area holds the
address of the Emulator SVC interruption routine. 1

Program interruption ctddress. 'i-lhen a program
interruption occurs, the program interruption
address from the local execution list replaces
the instruction address of the current PSW. This
area holds the address of the Emulator program
interruption routine. 2

Asynchronous interruption address. When an
external or I/O interruption occurs, the
asynchronous interruption aodress from the local
execution list replaces the instruction address \
of the current PSW." A machine check int~rruption
causes unpredictable results.

lThe Emulator svc interruption routine (IIVSVC) determines if device or data
set sharing is involved. If not, IIVSVC moves the first two words from the
local execution list to the DOS SVC old PSW location .32(20). It then moves
the DOS SVC new PSW into the first two words of the local execution list.
The DOS SVC interruption routine then handles the interruption in the usual
manner. If device or data set sha.ring is involved, the SVC is checked to see
if it is a 2, 4, or 11. If not, IIVSVC swaps PSWs in the manner described
above. If the interruption is an SVC 2, 4, or '1, module IIVGR2 further
analyzes it and then returns to IIVSVC with an indication of whether SVcs
should be swapped cr control passed to the next instruction following the SVC.
For further inform.3tion concerning DOS emulation interruption handling
procedures, see the explanation of the DOS Compatibility Feature in the
Appendix.

2The Emulator program interruption routine (IIVPCE) moves the first two words
from the local execution list to the DOS program old PSW location 40(28).
It then moves the DOS proqram new PSW into the first two words of the local
execution list. The DOS program interruption routine then handles the
interruption in the usual manner.

"The interruption is then handled in the normal OS manner by storing the old
PSW and loading the appropriate new PSW.

456 DOS Emulator Logic

Logical Unit Block

Initialized by: DOS

Interrogated by: IIVOPN. IIVRTE, I.IVGR2

Pointer in: DOS COMREG

The logical unit block (LUB) is a 2-byte entry in the LUB table for each logical
unit specified. The first byte is used as a PUB pointer; the second byte is
not significant to the Emulator.

LUB Table

The LUB table (Figure 6lJ) contains a 2-byte entry for each logical unit
specified. The first entry must be for SYSRDR.

Number in
Class List
(NICL)

SYS

BG

F2

Fl

LUB Table

BG
System
bld.B~ __
BG Pro­
grammer
LUBs
F2
System
LUBs ------
F2 Pro-
grammer
LUBs

Fl
System

!-~§~--
F 1 Pro­
grammer
LUBs

First
Class List
(FICL)

SYS

BG

F2 CD
Fl

0
0
0

LUB Table for Any
Partition

SYSROR

SYSIPT

SYSPCH

SYSLST

SYSLOG

SYSLNK

SYSRES

SYSSLB

SYSRLB
1---1----1

SYSUSE

SYSREC
I--t-----t

SYSOOO

SYSOOl

SYS002

SYS003

SYS004

SYS221

0000 0000 - Points to first PUB
0000 000 1 - Points to second PUB
000000 1 0 - Points to third PUB

1 1 1 1 1 0 = Ignore
1 1 1 1 1 1 1 = Null Pointer, the LUB IS

Unassigned

Q) When in single program initiation mode (foreground 1 or 2): must be unit record device and can be referenced by
the program_

o When in single program initiation mode (foreground 1 or 2): can be referenced by the program_

® Cannot be referenced by foreground programs.

Note: The location of the LUB table is found in bytes 76 and 77 (X'4C' -'40') of the communications region_
Label OOSLUB identifies the first byte of the table_

Figure 64. Logical unit Elock Table

Data Areas 457

Open Table

Initialized by: OOS

Interrogated by: IIVTS, IIVGR2, IIVDVS

Pointer in: B-transient area in DOS register 15 at SVC 2 time

The open table (Figure 65), located in the B-transient area, is a common section
for all OPEN/CLOSE phases and is initialized by phase 1 of the OPEN or CLOSE
monitor. Only the fields listed in the figure are significant to the Emulator.

Address
Dec.

888
992

1000
1018
1033
1184

1185

1187

1192

Hex Bytes

378
3EO
3Ea
3FC
4Q9
4AO

4A1

4A3

4.AB

104
8
8
7

44
1

1

4

Field
Name

CSCDLB
LIMTBCKT
CCB
SEKAOR
SRCHKEY
F4INOIC
FIHNCORE
MSGINDIC
MSGOUT

MSGIN

MSGWF

OPTBFLGS
OPTBLNI<
OPTBSYFL
OPTBFLPT
LABADDR

Field Description, Contents, Meaning

OLBL image (sequential only).
Limit (lower and upper CCHH).
CCB used by DOS open.
Seek bucket (CCHBR).
Search argument.
VTOC oseE indicator.
X'Ol' = on if VTOC DSCB read into core.
Monitor 10 for message routine.
X'F4' = message ID for
sequential output.
X'F3' = message 10 for sequential
input.
X'F9' = message 10 for sequential
work file.
OPEN indicators.
X'40' = SYSLNK open.
X' 02 1 = SYST.EM file.
X'01' = file protection.
Address of DLBL.

Figure 65. Open Table Fields Used by the Emulator

Rhysical Unit Block

Initialized by: DOS

Modified/Interrogated by: IIVPCE, IIVCHK

Interrogated by: IIVOPN, IIVPRP, IIVGR2

Pointer in: DOS COMREG

The DOS PUB and as PUB tables provide a one-to-one correspondence between a
DOS device and its associated as device.

458 DOS Emulator Logic

DOS PUB Table

The physical unit block (PUB) is an 8-byte entry in the DOS PUB table (Figure
66) for each physical unit specified. Byte 0 contains the channel number;
byte 1, the device unit number; byte 3, the TEE pointer or the error count;
byte 4, the device type code; and byte 6, the channel scheduler flags. These
are the only bytes significant to the Emulato.r.

OS PUB Table

The OS PUB table (Figure 66) contains a 1-byte entry for each DOS PUB. If
there is no OS equivalent for a DOS PUB entry, the OS PUB entry will be X'FF'.

OS PUB
Table

DOS PUB
Table Channel

AOSPUB B ADOSPUB

,....--------Unit

TEB Pointer or Error Count

Device Type

Byte 0

Byte 1

Byte 3

Byte 4

Byte 6

Channel 1

PUBS

t+----""""'I Format
:::=====:::;:=i of any

PUB
1----+-1

Channel number (hex 0-7, FF=NULL).

I/O device unit number.

o 2

Channel Scheduler lags

3 4 5 6 7

If device is a magnetic tape unit* and TE BS are specified, this byte is a TE B pointer (hex 1,2,3 ...)'

If device is a magnetic tape unit* but TEBS are not specified, this byte is an error counter.

If device is not a magnetic tape unit*, this byte is an error counter.

The error count must indicate to the DOS error routines when it has reached the maximum number of retries.

*2400 series or 2495 Tape Cartridge Reader.

Device type codes are mapped with corresponding OS device type codes during Emulator initialization.

A 1 in bit 7 indicates a 7·track tape unit.

Note: Only the fields noted above in any PUB are significant to the Emulator. Bytes 64 and 65 of the DOS communications
region contain the address of the PU B table entry.

Figure 66. OS PUB and DOS PUB Tables

Data Areas 459

Post ECB List

.Initialized by: IIVINT

Modified/interrogated by: IIVPCE, IIVRTE, IIVCHK

.Pointer in:EMUCONS

The post ECB list contains one 2-byte entry for each entry in the communications
table (COMTAB). The first byte is an index into COMTAB. The second byte is
the condition code from the EeB when it was last posted.

An entry is made for each ECB posted by OS except for the three special ECBs
(prompt,WTOR, and timer) and the SYS.LOG ECB. The entries represent I/O
interruptions to be simulated to DOS on a first-in, first-out queue.

Four pointers are used to process this table:

- PECBPTR1 This pointer to an entry in the table indicates that it just
finished I/O interruption processing.

- PECBPTR2 This pointer indicates the next entry available in the table.

• POSTECB This pointer indicates the first entry in the table.

-ENDPTECB This pointer indicates the last entry +2 bytes to prepare for
wraparound to the first entry in the table after the last entry
is processed.

Program Information Bloc.k

Initialized by: DOS

Interrogated by: TIVOPN

Pointer in: DOS COM REG

The first part of a program information block (PI B) contains program status
information about OOS. Only byte 0 is significant to the Emulator (Figure
67) •

The second part contains the address of t.he communications region (Figure 68),
which is significant to the Emulator.

Both parts of the PIB must be in the following order: all bound, backgronnd,
foreground 2, and foreground 1.

Problem Program PI B1

Byte 0' 1 ...

Flag
Byte

.. 15

1 Bytes 90-91 of the communications region contain the address of the first part of the PI B table (see Figure 77- DOS Communications
Region Fields used by the Emulator).

2Byte 0 (PI BFLG) must indicate the following:

Background PI B must have X'S2' when waiting for a CCB to be posted.
F2 and F 1 PI Bs must have X'SO' if they exist and are inactive.

Figure 67. .First Part of Proqraro Information Block Table

460 OOS Emulator LOqic

Problem Program PIB \

Byte 0 .. ~ 12 2 ... ~ 15

Address of BG
BG PIB Communications

Region

iAddress of Area

F2 PIB Communications
Region

Address of Area

F1 PIB Communications
Region

1 Bytes 124-125 of the communications region contain the address of the second part of the PI B table (see Figure 77-DOS Communi­
cations Region Fields used by the Emulator).

2Background, F2 and F1 PI Bs must contain a pointer to their associated communications region (COMREG) in bytes 0-1.

Figure 68. Second Part of Program Infonnation Block Table

Program Status Word

Initialized by: DOS

Modified by: TIVOPN, IIVPCE, IIVLOr;, IIVPRP, IIVSTG, IIVGR2

Interrogated by: ItVR'IE, IIVACI, IIVPCI. tIVSCT, TIVSNP

Located in: Local execution list

The program status word (PSW, Figure 69) is a two-way communication link between
a CPU and a program. All PSWs occupy permanently assigned main-storage
locations. The PSWs are:

Symbolic
Name Name

DOS SVC old PSW DCSSVOLD
DOS SVC new PSW DOSSVNEW
DOS program old PSW DOSPGOLD
OOS program new PSW DOSPGNEW
DOS I/O old PSW DOSIOOLD
DOS I/O new PSW DOSIONEW
DOS external old PSW DCSXTOLD
DOS external new PSW DOSXTNEW
DOS machine check old PSW DOSMCOLD
DOS machine check new PSW DOSMCNEW

0(0) 1 (1)

System Mask Protection Key AMWP

o
Bits

4(4)

ILC

32

Bits

CC

34 36

78 11 12

5(5)

Program
Mask

40

Figure 69. program status Word

.Location

32 (20)
96 (60)
,.0 (28)
104(68)
56 (38)
120(18)
24(18)
88 (58)
48 (30)
112 (70)

2(2)

I nterruption Code

1516 31

I nstruction Address

63

Data Areas 461

Program Status Word Description

o (0)

1 (1)

1 (1'

2 (2)

Bytes and Field
.r>.lignment Name

1 •••
• 1 ••
• • 1.
••• 1

1 ••• · , ..
· • 1.
• •• 1

4 bits 'X.xxx ••••

4 bits

7

.2

••••. xxxx

.f' , x •.•
• 1 ••
.0 ••

• • 1.
· . o.
• •• 1
••• 0

462 OOS Emulator Logic

Field Description, Content~Meanin9

System mask. This field is used to cletermine
if DOS is enabling interruptions. Each bit
represents a potential interruption source.
A system mask bit of one allows the
corresponding source to cause an interruption.
A mask bit of 0 prevents interruptions from
occurring; they remain pending.

Channel O.
Channel 1 •
Channel 2 •
Channel 3 •
Channel 4.
ChannelS.
Channel 6.
External interruptions (timer
interru[:tion key, and extern,"il signals
of the direct control feature).

Protection .key. This key is matched with
a storage key whenever data is stored in
or fetched from a location that is protected.

AM'flP hits. The W? bi ts a.re tested to
determine wait or problem state. The four
bits indicate:

Not significant to the Emulator.
Machine check interruptions can occur •
M,1chine check interruptions will remain
pending.
The CPU is in the wait state.
The CPU is in the running state.
The CPU is in the p.rohlem state.
The CPU is in the supervisor state •

Interruption code. Identifies the cause
or source of an interruption. When si.mulating
an I/O interruption, the Emulato.r stores
the address of the charmel end and device
that caused the interruption here. 4(4)

xx.. •••• Instructi0!l length
code (ILC). For program or supervisor call
interruptions, contains the length, in
halfwords, of the last interpreted
instruction. For I/O, external, and lI'.achine
check interruptions, th~ u..c is unpredictable.

offset
Bytes and Field
Alignment Name

•• xx

Field Description, Contents, Meaning

Condition code (CC). Reflects the results
of the execution of an instruction. Modified
by the .Emulator.

•••• xxxx Program mask (P.M). Each bit represents a
potential interruption source. A program
mask bit of 1 allows the source to cause
an interruption. A mask bit of 0 prevents
the interruption frcm occurring.

1... Fixed-point overflow •
• 1.. Decimal overflow •
• • 1. Exponent underflow •
••• 1 Significance.

5 (5) .3 Instruction address. The leftmost byte of
the instruction to be executed.

Staged I/O Constants Block

Initialized by: IIVOPN

Modified/Interrogated by: IIVSTG, IIVAWV, IIVCWV, IIVPOV

Located in: COMT.AB at '(' JB' offset

The staged I/O constants block (STGCON, Figure 70) which resides in the COMTAB
rOB area for staged devices, contains data unique to the particular device
being staged. The Emulator both creates and uses the STGCON.

Data f\reds 463

0(0) 1 (1) 2(2) 3(3)
STGFLG STGWK1 STGSENO STGSEN1

4(4) 6(6)
STGLNCNT STGLNPTR

S(S) 9(9)

Unused

STGCSW

16(10) 1S(12)
STGCHFLG STGMAX

20(14)

STGOPCD

24(1S)

STGCTP or STGBUF

2S(1C)
STGCCW

32(20) 34(22)
STGDLM

Unused

36(24) 39(27)
STGCUU STGFLG2

Figure 70. Staged I/O Constants Block (STGCON)

Staged I/O Constants Block Description

Bytes and Field
Offset Alignmen t Name

o to) 1 STGFLG

1 •••
• 1 ••
• • 1 •
••• 1

1 •••
• 1 ••
• • 1.
••• 1

1 (1) .1 STGWK1

2 (2) •• 1 STGSENO

464 DOS Emulator Logic

Field Description, Contents, Meaning

Flaq byte 1.

Staged reader.
staged printer •
Staged punch •
SYNAD (I/O error).
Read, no feed, command encountered.
EODAD (generate /& next 510).
EOD (unit exception next SIO) •
First CCW in a chdin •

Work byte.

Sense information for last I/O
operation.

Bytes and Field
Offset Alignment Name

3 (3) ••• 1 STGSENl

4 (Ii) 2 STGLNCNT

6 (6) •• 2 STGLNPTR

8 (8) Unused

9 (9) • 7 S'IGCSW

16 (10) 2 STGCHFLG

18 (1 2) •• 2 S'IGMAX

20 (14) 4 STGOPCD

24 (18) 4 ST(,,~TP

STGEUF

28 (1C) It S'IGCCW

32 (20) 2 STGDLM

34 (22) •• 2 Unused

36 (24) 3 S'IGCUU

39(27) ••• 1 STGFLG2

xxxx
1 •••
• 1 ••

• • 1.

• •• 1

Tape Error Block

Initialize~ by: DOS

Modified by: IIVCHK

Pointer in: DOS COMREG

Field Description, Contents, Meaning

sense infcrmation for current I/O
operation.

Number of lines per page (required
by module IIVPOV).

Index into in-storage carriage tape •

Reserved for future use.

Simulated channel status word •

In-storage carriage tape channel
flaqs.

Maximum number of bytes that can be
transmitted to or from this device.

Opcode translate table address.

Printer: in-storage carriage tape
address, or
Reader: address of the last os
input buff~r, if a staged reader

DOS CCW address.

DOS .TeL delimiter.

Reserved for future use •

DOS cuu in EBCDIC.

Flag byte 2.

Reserved for future use.
3211 line position check.
Punch stacker HPJ has been previously
selecte i l.
Punch stacker P2 has been previously
selecte,i.
Punch stocker Pl has been previously
selected.

The tape error block (TEB, Fiqure 71) is qenerated for each 2J~OO series rJ(agnetic
Tape or 2495 Tape Cartr'idqe Reader unit and is tile index for TIO error retry
suppn~ssion by the Emulator.

A TEB is referenc:(~d from byte 1 of a magnetic tape unit PUB.

Only byte 0 of the 6-byte TEB is significant to the Errulator. 'I'his byte keeps
track of the error recovery .retry count; the count is set to 254 'tlhen the
r:mulator wants to suppress DOS retries~

Data AreaS 465

TEB Table Not significant to Emulator

TEBTAB TEB 1

TEB 4

Byte
0- Error recovery retry count

TEB 5

TEB 6

One TE B is generated for each 2400 Series magnetic tape or 2495 Tape Cartridge Reader unit if the FOPT macro contains the
TEB; n parameter. Job control resets each TEB at normal or abnormal end-of-job. An unused TEB contains
HEX'FFOOOOOOOOOO'. A TEB is referenced from byte 3 of a magnetic tape unit PUB.

Bytes 70 and 71 (X'46'-'47') of the communications region contain the address of the TEB table entry.
Label TEBTAB identifies the first byte of the table.

Fiqure 71. Tape Error Block

Tape Error by volume

Initialized by: DOS

Modified by: rIVCHK

Pointer in: DOS BG communication region extension

The tape error by volume (TEBV) is a DOS table composed of one status block
and (n) error blocks and pointed to by the TEBVTAB field in the DOS BG COM.REG
extension. The TEBLEN and TSBLEN fields are used in conjunction with the TEBV
index field in the PUB (byte 3) to locate the TEBV retry counter. This counter
is set to a higher count to force DOS I/O retries. For further information
concerning the TEBV, see the OOS System Programmer's Guide.

Only those parts of the TEBV that are significant to the Emulator are described
in Figure 72.

Decimal Byte
disElacement Label length Descr iE!: ion

0 TEBLEN 1 Lenqth of TEBV error block (for
each error block generated)

1 TSBLEN 1 Lenqth of TEBV status block (4,
6, or 22 bytes) .

-.
2" TEBV 1 Retry counter

Figure 72. Tape Error by Volume Fields Used by the Emulator

466 DOS Emulator Logic

Task Input/Output Table

Initialized by: os

Interrogated by: IIVINT

Pointer in:EMOCONS

The task input/output table (TIOT) maps JFCBs to UCBs.

Only those parts o~ the 'lIOT (Figure 73) that are significant to the Emulator
are described below.

DO Entry

0(0)

TIOELNGH Unused

4(4)

TIOEOONM

1" 1l
TIOEFSRT

Figure 73. TaSk Input/Output Table Fields Used by the Emulator

Task Input/Output Table Desc.ription

Offset

0(0)

,. (If)

1 (1)

Bytes and Field
Alignment ~

1 TIOELNGH

8 TIOEDDNM

• 3 TIOEFSR'l'

Field Description. Contents, Meaning

DO entry: A DD entry includes a device
entry. Before allocation, there may be
several device entries in each DO entry.

This field contains the length of each DO
entry and is used to scan the TIOT during
ini tia lization.

This field is scanned to determine DOS units.

Device entry: During the execution of a
problem program, contains 1 device entry
for each allocated device •

Devices other than 2321: address of the UCB.

2321 Data Cell Drive: address of the descrip­
tion in the UCB of the cell in the bin.

Data Areas 467

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

Unit Control Block

Initialized by: OS, IGG019S1

Interrogated by: IIVINT, IGG019S', IGG019SA

Pointer in: DEE

There is a unit control block (UCB) for each device attached to the system.
It describes the characteristics of the device to the I/O supervisor and is
used by the job scheduler during allocation of the device.

Only those parts of the UCB (Figure 7~) that are significant to the Emulator
are described below.

Common Segment

1
0(0)

. Unused
1"11 UCBFL5 Unused

Common Segment

1161101
UCBTYP

Data Cell Drive

1
561381 DCELBBNR Unused

Figure 74. Unit Control Block Fields Used by the Emulator

Unit Control Elock Description

1 (1)

16 (10)

56 (38)

Bytes and Field
Alignment Name

• 1 UCBFL5
• • •• 1 •• ,.

4 UCBTYP

2 DCELEENR

468 DOS Emulator Logic

Field Description, Contents, Meaning

UCBEXTSN-UCE+2" (UCBNERSN) contains
the number of bytes of sense information
and UCB+25 (UCESNADR) contains the address
of the sense information.

Bytes 3 and 4 of this field are used to
identify the device class and unit type,
respectively, for the purpose of cross­
referencing them with DOS device types during
initialization.

The SIO a{:pendage modifies the DEB, based
on the device type. The abnormal end
appendage determines whether OS or DOS is
to handle I/O errors, bas~d on the device
type.

Ein number for a data cell drive.

Volume .Label

Initialized by: IIVDVS (simulates volume label used by DOS)

Interrogated by: OOS, IIVVIO, IIVDVS

Located in: first record (tape) or cylinder 0, track 0, record 3 (DASD)

A volume label is 80 characters long and identifies the volume and its owner.
On direct-access volumes, it is record number J, which follows the two IPL
records. It is recorded as an aij-byte physical record consisting of a 4-byte
key area containing VOL1 and an aO-byte data area. Figure 7S shows the fields
in the volume label that are significant to the Emulator.

0(0) 3(3)

VOllABI VOlNO

4(4)

VOlSERNO 10(A) 11 (B)

Reserved

DASD: VOlVTOC

Figu.re 75. Volume Label Fields Used by the Emulator

Offset

o {O'

J (.3)

4 (4)

11 (B)

Bytes and Field
Alignment Name

3 VOLLABI

••• 1 VOLNO

6 VOLSERNO

••• 5 VOLVTOC

Field Description, Contents, Meaning

Label identifier - VOL.

Volume label sequence number - 1 •

Volume serial number that uniquely identifies
the volume. This field may contain from
one to six alphabetic or numeric characters,
left justified with blanks in the remainder
of the field.

Direct-access storage: The CCHHR address
of the VTOC DSCB on this volume.

Data Areas 469

DIAGNOSTIC AIDS

Hints for Debugging

Emulator Dependencies on DOS, as, and Hardware

• Dependence on DOS
• Dependence on as
• Dependence on Hardware

service Aids

Emulator General Register Assignments

Emulator Message-to-Module Relationships

Diagnostic Aids 471

HINTS .FOR DEBUGGING

When error conditions such as program checks, channel program checks, or channel
protection checks occur, they may be due to violations of Emulator restrictions
by OOS programs. One example is the modification of a CCW by a DOS problem
program between its issuance of an EXCP and the WAIT. The following information
may be of assistance in debugging such conditions.

The conditions listed below, found in DOS and/or Emulator stqrage, may indicate
violations:

• Channel program CCW addresses have been adjusted only part way through
a group of ccws by module IIVCCW (adjust CCW data address routine).

• Channe.l programs contain data addresses that appear to be improperly
adjusted (from true to local addresses or vice versa).

• Channel programs or CCws are properly adjusted, but are not currently in
use (that is, no active COMTAB entries point to the channel program in
question).

• Input channel proqrams have the SLI bit off, and the sum of its data address
and the count field exceeds the address of the DOS area.

• Program check occurs in module IIVCCW during execution of the adjust ccw
string instruction.

• OOS CSW status indicates a p.rogram check. The CSW program check bit is
set by module IIVABN ",hen module rIVCCW could not adjust the channel program
or the BEBLK was full.

Emulator tables and fields that may be .useful in locating channel programs
and determininq I/O status are:

• COMTAB - contains one entry per device with all I/O-related information,
including a pointer to the last channel program used for the device (DCB,
lOB pointers, ECB, etc.).

• COMTAB - while examining I/O request and/or the lOB, keep the following
in mind:

stand-alone seeks are simulated by use of the CSW field contained
in the lOB. All other fields in the rOB relate to the last EXCP
issued. The same applies to stand-alone sense commands where the
lOB sense field is ncnzero at the time the sense is issued, except
that the simulated CSW is stored in the EMUCCW1 fiel'} of COMTAB.

The lOB is also used for issuing NOP commands within the Emulator
and, therefore, the information contained in the lOB is not always
associated with a DOS .request.

• NOSIO - 510 counter in CSECT IIVCON. The value in this counter represents
the number of DOS I/O operations initiated by OS EXCPs whose associated
I/O interruptions have not been queued in the post ECB list.

• NOIOPEND - number of queued I/O interruptions to be simulated to DOS by
IIVPCECK, entry point to the check I/O routine (IIVCHK). The value in
this counter represents th~ number of entries in the post ECB list. This
counter is also located in IIVCON.

Note: DOS p.rograms violating storage pro~ection requirements can also produce
unpredictable results.

472 DOS Emulator Logic

EMULATOR DEPENDENCIES ON DOS, OS, AND HARDWARE

Dependence on DOS

OOS Low Storage and Communication Reqions

The following area in DOS low storage and communication region is referred
to by the Emulator. This listing briefly describes what the area contains
that is relevant to the Emulator.

.005 Area

Low storage
(Figure 76)

DOS BG
communication
region (COMREG)
(Fiqure 71)

Address (He.x) Description of Use

0-1F Bytes 0-121 are as assumed to exist as
in stand-alone DOS.

14

2C

35

3B

40

46

48

4A

4C

58

SA

6E

7C

88

As in stand-alone DOS, contains the
pointer to the background (BG)
communications region.

Contains the label area length.

X'08' in this byte must indicate
timer support.

X'40' in this byte must indicate
a multiprocessing system.

X' QB' in this byte must .inrlicate
that the job is to be canceled.

Contains the address of the PUB
(physical unit block).

contains the address of the TEB (tape
error block).

contains the address of FICL.

Contains the address of NICL.

Contains the LUB.

Contains theLIOCS communication
bytes.

Must contain a 2-byte address of
the first part of the PIB.

Contains the logical transient
key.

Must contain a 2-byte address of
the second part of the PIB table.

Contains a pointer to the
communication region extension;
if the latter does not exist,
must contain zeros.

Diagnostic Aids 473

DOS Area

DOS F': dnd F2
COMREGs
(Figure 17)

DOS BG COMRBG
Extension
(Figure 18)

0(0) ..

20(14) 24(18)

Address (Hex) Description of Use

38 X'08' in this byte must indica~e
that the job is to be canceled.

o Must contain an address pointer
to the CE table or zeros.

12

20

32(20) 40(28)

contains the PIK.

Contains the address of the TEBV
table.

Reset to Zeros after IPL

48(30) 56(38) 64(40) 72(48)

.. 13

76(4C)

Comm Region External SVC Program Machine Check I/O CSW CAW BG Job
(COMREG) Old PSW Old PSW Old PSW Old PSW PSW Duration
Address

80(50) 84(54) 88(58) 96(60) 104(68) 112(70) 120(78)

System Timer System Timer External SVC New Program Check Machine Check I/O
of Day New PSW PSW New PSW New PSW New PSW

Figure 76. DOS Low Storaqe

COMREGI

0(0) 44(2C) 52(34) 53(35) 54(36)

Label Area Length Machine Configuration System Configuration
Byte Byte

56(38) 57(39) 64(40) 66(42) 70(46)

Job Control Byte Address of PUB Address of TE B

72(48) 74(4A) 76(4C) 78(4F) 88(58)
LlOCS

Address of FICL Address of N I C L Address of LUB Communication
Bytes

90(5A) 92(5C) 110(6E) 112(70) 124(7C)
Address of

First Part of PIB Logical Address of Second

Table Transient Key Part of PI B Table

126(7E) 136(88)
Pointer to

Communication
Region Extension

1The address of the communications region is in fixed location X'14' - '17' (see Figure 76 - DOS Low Storage).

Figure 17. DOS Communications Region Fields Used by the Emulator

474 DOS Emulator Logic

BGXTNSN
0(0) 4(4) 18(12) 20(14) 32(20)

CE Table Address Program Interrupt TEBV Table
Key (PIK) Address

Figure 78. DOS Background Communications .Region Extension Fields
Used by the Errulator

DOS Control Blocks

63(3F)

The DOS control blocks in Figure 79 are referred to by the Emulator. This
directory briefly describes how each block is used. The field names listed
are those contained in the DOS supervisor assembly listings. The blocks are
further described in the 1tDataAreas" section.

Diagnostic Aids 475

Control
Block
Name

CCB

LUB

PIB

PIB

PUB

PUB

PUB

PUB

PUB

TE.B

TEBV

TEBV

TEBV

Field
Name

Displacement
Decimal Hex

CCBCOM1 2 2

9 9

o o

PIBFLG 0 o

PIBCOMRA 0 o

PUBCHANN 0 o

PUBDEVND

PUB ERR 3 3

PUBDEVTY 4 4

PUBCSFLG 6 6

TEBEPRCT 0 o

TEBLEN o o

TSBLEN 1 1

TEBV 24 18

Figure 79. DOS Control Blocks

476 DOS Emulator Logic

Bytes

1

3

2

1

2

1

1

1

1

Description of Use

Bit 1 is normally set on at char,nel
end to signify that the I/O
operation was completed.

Bytes q-l1 must contain the address
of the ccw associated with this
CCB.

The first 2-byte entry in each
LUB table must be for SYSRDR.
Byte 0 is used as a PUB pointer.

The Fl and F2 program areas must
have X f 80 1 when they a.re inactive.
The BG program area must have X'82'
when it is waiting for a CCB to
be posted.

Byt.es 0 and 1 of the second part
of PIB must contain the address
of the corresponding communications
region.

Must contain the channel address.

Must contain the device address.

Must contain either the error retry
count or the TEB index for I/O
error retry suppression by the
Emulator.

Contains device-type codes that
are mapped with corresponding OS
device type codes during Emulator
initialization.

A 1 in bit 7 indicates a 7-track
tape unit.

Error retry count is set to 254
when the Emulator wants to suppress
DOS retries.

Length of TEBV error block (for
each error block generated).

Length of TEBV status block (4,
6, or 22 bytes).

Retry counter.

DOS IPL and Initialization

The Emulator also depends on DOS for the following information:

• IPL records - Simulation of DOS IPL by the Emulator is based on the IPL
records description in the IEM Svstem/360 ~isk Operating System, IPL and
Job Control Programs.

• $$A$IPL2 - This phase is loaded during DOS initialization. The Emulator
scans for the DOS clear main-storage routine in this phase. The operation
code of a move character (MVC) instruction in the clear main-storage routine
is then set to O. (See 'DOS IPL' in "Method of Operation" section.)

• First LPSW - The Emulator requires that the first LPSW instruction following
an SVC 4 must signal that DOS is ready to begin processing I~L input.

• First SVC 14 - The first SVC '4 received must signal the end of DOS TPL
and initialization.

DOS SIO

When the Emulator intercepts an SIO not originating from a DOS CE serviceability
routine, registers 1 and 3 must contain the addresses of the associated CCB
and PUB entry, respectively.

CE S10

When the Emulator intercepts an SIO originating from a DOS CE serviceability
routine, it is assumed by the Emulator to be executed from a higher storage
location than the normal (DOS SIO) request. The contents of registers 1 and
3 are not significant, as after a DOS SIO.

DOS Time of Day

The address of the DOS SVC table must be contained in the last nonzero halfword
preceding the DOS communications table.

B-Transient Phases, Sequence, and Table

• $$BOPEN or $$BOPEN2 - One of these DOS phases must set registers 2, 6,
and 7 with the DTF pointer, the XTENT card image pointer, and the COMPEG
pointer, respectively.

• B-transient sequence - The sequence of calls between the B-transient phases,
for OPEN, CLOSE, and EOV must be followed or results will he unpredictable.

• open table - The format and fields significant to the Emulator for this
table are found in "Data Areas."

Diagnostic Aids 477

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

DOS programming Considerations

• DLBL and EXTEN~ statements or, in the alternative, VOL, DLAB, and XTENT
statements, supply the information needed to build SYSRES DASD labels.

• ISAM I/O macro calls - All calls for the logic (I/O access) phases must
culminate with BAL 14,XXX(15} where register 15 is loaded from the DTFIS
table (displacement X'10') with the address of a logic phase, register
1 contains the address of the DTFIS table, and XXX is the displacement
into the standard ISMOD branch table for the desired I/O operation.
Register 14 contains the return address for the calling routine.

• DTFIS - Defined within the problem program. The format and fields
significant to the Emulator are found in "Data Areas".

Dependence on OS

The following OS facilities are used by the Emulator:

Macros

OS macros used by the Emulator are shown in Figure 80.

Note:

• Each module summary in the Program Organization section lists the macros
issued by that particular module.

The macros in the following list can be better understood in the context of
overall Emulator operation, which is presented in "Method of Operation." For
a basic description of the operands of these macros and their operation, refer
to supervisor services anQ Ma£ro Instructions and ~ta Management Macro
Instructions for as or OS/VS.

478 OOS Emulator Logic

'~ ...,

OS Macro

ATTACH

CHAP

CHECK

CLOSE

DCB

DCBD

DELETE

DEQ

DETACH

ENQ

Emulator module
issuing maoro

IIVIS

IIVIS

IIVIS

IIVSNP

IIVRCP

IIVPRP

IIVDVS

IIVIS

IIV'RCP

IIVABN, IIVCON,
IIVOPN, IIV'RCP,
IIVIS

I IVSNP, IIVRCP,
IIVDVS, IIVIS
IIVOPN, IIVIN2,
IIVSTG

IIVRAS

IIVRCP

I IVMSG

IIVOPN

IIVIN2, ItVABN

IIVIS

IIVIN2

Use of Macro

Issued to attach (create) a subtask to
process ISAM I/O macros at open. Tbe
subtask is asslgned a higher dispatch­
ing priority than the Emulator task.

Issued to reduce the dispatching
priority of the Emulator task to
expedite subtask processing.

Issued to test completlon of direct
retrieval ISAM macro instructions,
such as READ K, WRI~E K, and WRITB KN.

Issued to test completion of WRITE.

Issued to test completion of WRITE.

Issued after a MOU~ reply (to a
prompt) has been entered. After
emulation is finished, OS closes the
Emulator-related data sets.

Issued after a OOS CLOSE macro has
been trapped by IIVGR2 for a
sequential DASD or direct-access
data set residing on a shared volume.

Issued to close OS indexed sequential
data sets.

Issued to close the SYSDEBUG data set.

Issued to create the DCB format
according to file organization and
access methods.

Issued to generate a DSECT that shows
the structure of a DCB.

Issued to delete I.IVSNP and IIV'RCP.

Issued to delete IIVACI, IIVPCI, and IIVSCI.

Issued to delete IIVMSG1, IIVMG2, and IIVMG3.

Issued to delete forms-control image.

Issued to release control of an as device.

Issued to remove (eliminate) a subtask
at close.

Issued to request exclusive control
of an OS volume for the issuing
Emulator job. This prevents two
Emulator jobs from usinq the same
as volume concurrently.

Figure 80 (Part 1 of 5). as Macros Used by the Emulator

Diagnostic Aids 479

as Macro

EOV

ESETL

EXCP

EXTRACT

GET

GETMAIN/
FREEMAIN

IDENTIFY

I.MGLIB

IOHALT

Emulator module
issuing macro

IIVDVS

IIVIS

IIVPCE, IIVCHK

IIVIN2

IIVOPN

HV.INT

IIVSTG

IIVIS

IIVRCP

.IIVGET

IIVSTG

IIVRCP

IIVIS

I IVOPN

I.IVPCE

-- -- - .-------------------

Use of Macro

Issued when additional space is
required by means of a secondary

alloca tion parameter on a
sequential DASD output data set.

Issued to terminate sequential
retrieval.

Issued on behalf of DOS I/O requests
that are not directed to the console
and not to be staged.

Issued to read the DOS bootstrap
channe 1 p.rogram.

Issued to ensure protection of OS
password data sets.

Issued to obtain the address of the
TIOT from the TCB.

Issued on behalf of DOS input requests
wben staging has been indicated. The
input operation is always to an OS
DASD.

Issued to sequentially retrieve records
from an OS inde.xed sequential data set.

Issued to .read service aids control
statements.

Issued (GETMAIN) for the size of DOS
plus 4K bytes. After DOS is aligned on
a 4K boundary, IIVGET issues a
FREEMAIN to release the extra 4K bytes;
subsequent GETMAINs obtain space in the
same area(s) for Emulator tables and for
the DOS residence file's DCB and rOB.

GETMAIN issued for main storage for forms-control
image. FREEMAIN issued to free old forms-control
image if old one exists.

GETMAIN issued to obtain main storage for the
trace table., SVC blocks, and DIAG blocks.
FREEMAIN issued to release main storage obtained
f.rom the GETMAIN.

Issued to add an entry point to IIVIS
for use by the subtask.

Issued to open the SYS1.IMAGELIB data set.

Issued to terminate I/O on a tele­
processing device when DOS performs an
HIO operation.

Figure 80 (Part 2 of 5). OS Macros Used by the Emulator

480005 Emulator Logic

OS Macro

LOAD

OBTAIN

OPEN

OPEN TYPE=J

POST

Emulator module
issuing macro

IIVCFN, IIVPUB

IIVRCP

IIVIN2

rIVPRP

rrVPUB

IIVRAS

IIVMSG

IIVABN

I IVDVS

IrVDVS

IIVIS

IIVIN2

IIVRCP

I IVABN

IIVRAS

I IVOPN

IIVIS

IIVRTE

Use of Macro

Issued to selectively bring staged I/O
modules into main storage when staged
I/O is requested, depending on the unit
record device type in the DOS PUB table.

Issued to load IIVACI, IIVPCI, and
IIVSCI, IIVRCW, user exit routines.

Issued to load Emulator modules.

Issued to load IIVRAS.

Issued to fetch volume-s.haring modules.

Issued to load IIVSNP and IIVRCP.

Issued to load IIVMG1, IIVMG2, and
IIVMG3.

Issued to load IIVRAS.

Issued to examine and modify the DSCBs
associated with a sequential DASD or
direct-access data set located on a
shared volume.

Issued after a DOS OPEN macro has
been trapped by IIVGR2 for a sequential
DASD or direct-access data set residing
on a shared volume.

Issued to open OS indexed sequential
data sets.

Issued to open DOS residence file if it is
shared.

Issued to open the SYSDEBUG data set.

Issued to open a DCB with a ddname of
SYSNAP.

Issued to open the SYSSNAP data set.

Issued to open sequential DASD and
direct-access data sets (TYPE=J
specifies that the Emulator's JFCBs
are already in main storage).

Issued to open an OS indexed sequential
data set for initial loading of that
data set.

Issued by the timer interrupt check
subroutine to set a completion code
in an ECB. The completion code
indicates that a time interval of 1
second, established with an STINER,
has expired.

IIVPCE Issued to initiate subtask processing for
IIVIS.

Figure 80 (Part 3 of 5). OS Macros Used by the Emulator

Diagnostic Aids 481

as Macro

PUT

PUTX

RDJFCB

READ KU

RETURN

SAVE

SETL

SNAP

STAE

Emulator module
issuing macro

IIVIS

IIVSTG

IIVIS

IIVIS

IIVOPN I IIVIS,
IIVINT

IIVIS

lIVIS, IIVINT,
IIVRAS, I IVSNP.
IrVVIO, IIVMSG,
IIVGR2, IIVABN.
IIVSTG, IIVPUB,
IIVIN2, IIVPRP

IIVENT, IIVINT,
IIVIS, IIVSNP,
I IVRCP • I IVRAS.
IIVVIO, I IVMSG
TIVSTG. IIVPRP.
IIVPUB, IIVCCW.
IIVIN2, IIVADD.
IIVGET. IIVOPN,
IIVABN

IIVIS

IIVABN

IIVSNP

IIVRTE

Use of Macro

Issued to signal the completion of
subtask processing to the Emulator
task.

Issued on behalf of DOS output
requests when staging has been
indicated. The output operation is
always to an as CASD.

Issued to sto.re records in ascending
order by key to an as indexed
sequential data set.

Issued torew.rite sequentially
retrieved records to an as indexed
sequential data set.

Issued so that these modules can
examine and modify the JFCBS.

Issued to retrieve .records from an
as indexed sequential data set by key.

Issued to restore register contents
and return to the calling routine.

Issued to save contents of caller's
registers.

Issued to start sequential retr ieva!.

Issued if the Emulator run must be
terminated and if the JCL statement
I/SYSSNAP DO SYSOUT=.A was included
for the Emulator job step. The
contents of the entire DOS storage
area of the Emulato.r region and the
DOS registers are dumped.

Optionally issued to obtain a snap dump.

Issued to enable the Emulator to retain
control if an OS ABEND condition occurs
because of an error in the DOS problem
program so that DOS, not as, can cancel
the job.

Figure 80 (Part lJ of 5). as Macros Used by the Emulator

482 DOS Emulator Logic

as Macro

STIMER

TIME

WAIT

WRITE

WRIT.E K, KN

WTO, WTOR

Emulator mooule
issuing macro

I.IVRTE, IIVPUB

IIVADD, IIVSNP,
IIVRAS

IIVIN2, IIVIS,
IIVOPN, IIVPCE,
IIIVRTE, IIVRCP

IIVSNP

IIVRCP

IIVIS

IIVMSG, IIVLOG

Use of Macro

Issued by the timer interrupt check
subroutine and os PUB table build
routine to establish a time
interval of 1 second if the user
has requested that the Emulato.r
simulate the OOS time.r.

UFon ex}:iration of this 1-second
interval for the timer interrupt check
subroutine, the os control program
passes control to the timer interrupt
routine as soon as the Emulator becomes
the highest priority task in the ready
concH tion. Since the Emulator must
compete with other tasks for control,
the timer interrupt routine may not be
entered immediately upon expiration
of the 1-second interval. Also, it
is possible that DOS external
interruptions may be disabled when
the interval expires. Consequently,
the Emualator cannot simulate the
DOS timer with strict accuracy.

Issued to get the present OS date
and time of day.

Issued when processing cannot continue
until an interruption occurs.

Issued to dump Emulator control blocks.

Issued to write the SYSSNAP data set.

Issued to update and add, respectively,
records to an os indexed sequential
data set.

Used by the Emulator to issue messages
for DOS and by IIVMSG to output
Emulator messages. A DOS message is
reformatted and issued as a WTO or WTOR
by IIVLOG.

Figure 80 (Part 5 of 5). OS Macros Used by the Emulator

Bypass Label Processing

See "Requesting Bypass Label Processing" in the "Introduction" for details.

Access Methods

.For the indexed sequential access method (ISAM), module IIVIS is dependent
on the location of the fields in the DCB, the DECB, and the JFCB.

Diagnostic Aids 483

Appendages

Appendage modules IGG019SA and 1GG019SI are used by the Emulator (see also
"Emulator Appendages" in the Introduction and "I/O Appendages" in the Method
of Operation section). These modules pe.rform the following operations:

IGG019SA

• Updates DASD extents to inhibit automatic cylinder switching procedures.

• Updates DASD extents to allow accessing of the user label track associated
with a sequential DASD or direct-access data set on a shared volume.

• Updates DASD file mask to .reflect DOS file mask if the I/O is for a
dedicated volume.

• Updates tape set mode to reflect DOS set mode.

• Issues store CPU ID instruction (STIDP).

IGG01951

• Suppresses OS error recovery for teleprocessing I/O.

• Suppresses OS error recovery for special tape operations (see IGGOP}S1
module description).

OS control Blocks

The OS control blocks in Figure 81 are re.ferred to by the Emulator. This
directory briefly describes how each block is used. The blocks are further
described in the "Data Areas" section.

Control
Block Field Displacement
Name Name Decimal Hex Bytes Description of Use

DCB OCBKEYLE 16 10 Contains the key length.

DCB OCBEODAD 33 21 3 Contains the EODAD exit
address.

DCB DCBRECFM 36 24 1 Contains the record format.

DCB OCBDDNA.'" 40 28 8 Contains the DD statement
data set name.

tCB IlCBIFLGS 44 2C 1 Indicates a permanent error
condition when bits 0 and 1
are on.

DCB OCBOFLGS 43 30 Indicates a successful open
when bit 3 i::~ on.

DCB DCBMACR 50 32 2 Contains the macro instruction
ope.ration code.

DCB DC BOPTCD 52 34 Contains the option code.

Figure 81 (Part 1 of .5) • OS Control Blocks

484 OOS Emulator Loqic

~

·L

Control
Block Field Displacement
Name Name Decimal Hex Bytes

DeB DCBMAC 53

DCB DCBSYNAD 56

or

DCB DCBSYNAD 57

DCB DCBRKP 60

DCB DCBBLKSI 62

DCB DCB.EXCDl 80

DeB DCBEXCD2 81

DCB DCBLRECL 82

DCB rCBTDC 148

DCB DCBRORG3 152

DCB DCBNREC 156

DCB CCBLPDA 184

DCB DCBRORG2 206

DCB DCBNOREC 214

DeB DCBRORGl 224

DEB DEBEOEA -36

DEB DEBSIOA -32

DEB DEBCEA -24

35

38

39

3C

3E

50

Sl

52

95

1

4

3

2

2

1

1

2

2

98 4

9C 4

D8 8

CE 2

D6 2

EO 2

-24 4

-20 4

-18 4

Figure 81 (Part 2 of 5). as Contro 1 Blocks

Description of Use

contains extension of the
macro instruction operation
code field.

contains the SYNAD exit
address.

contains the staged I/O
SYNAD exit address.

Contains the relative
key position.

contains the blocksize.

Contains condition flags.

Contains condition flags.

Contains the logical
record length for variable
length records.

Contains the tag deletion
count.

Contains the count of accesses tc
overflow records other than the
first.

Contains the number of
logical .records in the
prime data area.

Contains the direct-access
address of the last prime
data record in the prime
data a.rea.

Contains the number of tracks lef
in the overflow area.

contains the number of
logical records in the
overflow area.

Contains the number of full
cylinder overflow areas.

Contains the end-of-extent
appendage address.

Contains the SIO appendage
address.

Contains the channel end
appendage address.

Diagnostic Aids 485

Control
Block
Name

DEB

DEB

DEB

DEB

CECB

DECB

DECB

DECB

DECB

DECB

DSCE

DSCB

DSCB

Field
Name

Displacement
Decimal Bex

DEBXCEA -20 -,,,

DEBDVMOD 32

DEBBINUM 36

DEBSTRCC 38
DEBSTRHH 40
DEBENDCC 42
DEBENDHH 44

DEBNMTRK 46

DEC BDCBJI. 8

DECBAREA 12

DECBLOGR 16

DECBKEY 20

CECBEXC 1 24

DECBEXC2 25

DS1FMTID 44

DS.1 DSIND 93

DS1PTRDS 135

20

24

26
28
2A
2C

2E

8

C

10

14

18

19

2C

5D

87

OSCB VTOC
(Format 4)

o o

DSCB DS4DSREC 50 32

Bytes

4

1

2

2
2
2
2

2

4

4

4

4

1

1

1

5

44

2

Figure 81 (Part J of 5). OS Cont.rol Blocks

486 DOS Emulator Logic

Description of Use

Contains the abnormal end
appendage address.

Contains the file mask.

The SIO appendage modifies fields
to extend the extent to cover the
entire OASD volwne (for dedicated
volumes only).

Contains the number of tracks
allocated on the volume.

Contains the address of the
DCB.

Contains the address of the
area in storage for the
record.

Contains the address of the
logical record (also used by lIVIS
in QISAM mode to store the current
logical record).

Contains the address of the
key portion of the record.

Contains the e.xceptional
condition code.

contains the exceptional
condition code.

Contains the format identifier
(X'F1' identifies this as (format 1)
DSCB) •

Contains data set indicators
in bits 0, 2, 3, and 5.

Contains the pointer to an
index (format 2) DSCB, if data
set has IS organization, or
pointer to an extension (format J)
DSCB if data set has sequential
or direct-access organization and
more than 3 extents.

Contains padding bytes.

Contains the number of
available free VTOC record
(format 0) DSCBs in the VTOC.

Control
Block Field Displacement
Name Name Decimal Hex Bytes

DSCB DS4V'l'OCI 58 3A

OSCE DS4DEVDT 74 4A 1

DOCB DS4VTOCE 105 69 10

rOB rOB FLAG 1 0 o

rOB IOBSENO 2 2 1

rOB IOBSENl 3 3 1

lOB IOBFCBPT 5 5 3

rOB IOBCSW 9 9 7

rOB 10 BSTART 17 11 3

lOB IOBDCBPT 21 15 3

lOB IOBSEEKM 32 20 1

lOB IOBSEEK 33 21 7

JFCB JFCBDSNM 0 o 44

JFCB JFCBTSDM 52 34

JFCB JFCBLTYP 66 42 1

Figure 81 (Part 4 of 5). OS Control Blocks

Descri{:tion of Use

contains VTOC indicators.

Contains the number of
full DSCBs that can be
held on one track.

Contains extent descri{:tion
of the VTOC.

Bits 0, 1, and 6 are set as
required by EXCP (data
chaining, command chaining, and
related bit).

Sense byte 1 is tested or
passed to DOS (see 1IVCHR
for details).

sense byte 2 is tested or
passed to DOS (see IIVCHR
for details).

Contains the address of
the ECE.

When I/O inter.ruptions
are simulated, the 7
low-order bytes of t.he
last CSW are passed to DOS.

Initialized with the first
CCW for EXCP.

Initialized with the DCB
address for EXCP.

M :: the number of DEB extents
as required by EXCP.

BBCCHHR :: the seek address
for a direct-access volume.

This field is modified so
that the VTOC can be
opened. The tenth
character is examined to
determine SYSIN and SYSOUT
files for staged devices.

SYSIN or SYSOUT file is
assumed if X'20' is set
in this byte.

set to X'10' to assure
BLP (bypass label
processing) option.

Diagnostic Aids 487

Control
Block Field Displacement
Name Name Decimal Hex Bytes

JFCB JFCBLKSI 102 66 2

JFCB JFCBVOLS 118 76 6

TIOT TIOELNGH 0 o

TIOT TIOEFSRT

TIOT TIOEDDNM 4 8

UCB UCBTYP16 10 4

nCB DC.ELBBNR C; 6 38 3

Figure 81 (Part 5 of 5). OS Central Blocks

Dependence on Hardware

Description of Use

Contains a default block­
size for staged I/O if
not specified in the DD
statement (89 bytes for
punch, 141 for print).

The Emulator o[::en routine
moves in the volume serial
number or identification
(VOLID) for mount requests.

Used to locate the TIOT
by means of EXTRACT.

Contains the length of each DD
entry. Used to scan the TIOT
during initialization.

Contains the UCB address
of the device allocated.

Contains an 8-byte DDname
used to determine DOS units.

Used to identify device
types for cross-referencing
with DOS device types.

The SIO appendage modifies
the DEB based on device
type. The abnormal end
appendage determines whether
as or DOS is to handle I/O
errors r based on the device type.

Bin number fo.r a data cell dr ive.

The Emulator depends upon hardware for information as .follows:

• .PSW - The system mask field in the program status word is used to determine
whether DOS is enabling interruptions.

The WP bits (14-15) are tested by the Emulator to determine wait or problem
state.

The interruption code bits (16-31) are used by the Emulato.r to store the
channel and device address when simulating an I/O interruption.

The condition code bits (34-35) are modified by the Emulator.

• CAW - The .key and address fields in the DOS channel address word are
accessed by the Emulator.

• CSW - All fields in the channel status word are used or tested by the
Emulator.

The formats of the above words ca.n be found in the "Data Areas" section.

488 DOS .Emulator Logic

EMULATOR SERVICE AIDS

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

Some of the problems that might cause a DOS program to be canceled way he due
to violations of the Emulator restrictions such as a CCW modified bv DOS between
the issuance of an EXCP and WAIT macros. The service aids may help-in
confirming the suspected cause of the problem by providing a dump at the time
the violation occurred.

The Emulator contains certain modules (IIVRAS, IIVRCP, IIVSNP, IIVPCI, IIVSCI,
IIVACI, IIVRCW), referred to herein as the service aids, that enable the
installation systems prcgrammer or the IBM programming systems representative
to localize problems that might occur during emulation.

The service aids enable the Emulator to:

• issue a dump of all or part of the Emulator region when specific events
occur

• trace specific events and record them in a variable size trace table

• give control to user exit routines when specific events occur

An additional 14K bytes of storage plus BSAM storage requirements are needed
in order to utilize the service aids. BSAM storage requirements can be computed
by referring to storage Estimates for OS or OS/VS. The DCB parameters used
for the output data set are DSORG=PS, MACRF=W, RECFM=VBA. Buffering is simple,
scheduling is normal, and output goes to a rASD without record overflow.

Before using the service aids, a review of "Hints for Debugging" and Emulator
limitations and restrictions in the "Introduction" may help localize a problem.
It would also be helpful to review the "Method of Operation" section of this
publication. Note that the centrol blocks that appear in the formatted snap
dumps ean all be found in the "Data Areas" section.

Use of the Emulator Service Aids

The Emulator service aids can be invoked in one (or both) of two ways:

• by replying DEBUG to an Emulator prompt message on the system console

A reply of DEBUG to an Emulator prompt message causes the following message
to be issued:

IIV270A jobname ENTER OR CONTINUE DEBUG STATEMENT

The debug statement may then be entered on the console and when ccmpleted
(as indicated by the END command), the Emulator prompt message is reissued
and emUlation resumes.

• by including a //SYSDEBUG DD * card with the Emulator job step

A debug statement that is entered through the OS input stream may span
1 or more cards and must be immediately preceded by a //SYSDEBUG DD * card
and followed by a /* card.

Diagnostic Aids 489

A SYSSNAP DD statement, such as //SYSSNAP DD SYSOUT=A, must be included to
define an output data set. This data set will contain:

• the debug statement(s) entered during eroulation and error messages
associated with it (if any)

• the formatted snap dumps requested

• the trace table (if specified) containing the events recorded before the
Emulator's termination

If both snap dumps and a trace table are specified, a trace table containing
the events recorded at the time the snap is taken will be printed ~ith every
snap dump.

The Debug statement

A debug statement can be ~ritten in free form, that is, it need not begin in
a particular column and it may contain any number of blank characters between
elements and/or delimiters (commas, parentheses, equal signs) of the statement.
Debug statements can contain commands, parameters, keyword parameters, and
keyword subparameters. Each keyword parameter or keyword subparameter must
be followed by an equal sign and its corresponding value or values.

There are six commands: SNAP, TRACE, STORAGE, EXIT, DIAG, and END. Each
command, with the exception of END, must contain at least one parameter or
keyword parameter. The commands, parameters, or keyword parameters may appear
in any order in the debug statement, but a keyword subparameter must follow
its associated value. If more than one parameter or keyword parameter is
entered in a debug statement, the parameters must be enclosed in parentheses.
A debug statement is composed of:

debug statement = [[1[command 1[, command 2 , •••)],]END

parameter1 parameter2
command = ((] or [, or , •••)]

keyword parameter1 keyword parameter2

keyword parameter=[(]value(,keyword subparameter1 [,keyword subparameter2, ...]](, ...)]

keyword subparameter = [(]value1[,value2, •••)]

Whenever a keyword parameter is repeated ~ithin a single debug statement, only
the last keyword parameter specified will be in effect. For exawple,

SNAP = (SVC =2, svc =q), END

causes a SNAP to be taken only when DOS issues an SVC q since the first keyword
parameter (SVC=2) is overridden by the second keyword parameter. Each time
a command is repeated in a statement (with the exception of END) the first
command is overriden by the second. A SNAP would be taken for each I/O
operation on cuu=132, but not for each SVC 2 in the following example:

SNAP = (SVC =2), SNAP (IO,CUU= 132), END

Figure 82 shows how to code a debug statement.

~90 DOS Emulator Logic

BI

CODE COMMAND

CODE I I F MORE
THAN I

PARAMETER

CODE THE
PARAMETER

CODE I I F MORE
THAN I

PARAMETER

CODE,

YES

YES

CODE END

CODE,

CODE KEYWORD
PARAMETER =

CODE I I F MORE
THAN I VALUE

AND/OR KEYWORD
SUB PARAMETER

CODE VALUE

CODE I IF MORE
THAN I VALUE

AND / OR KEYWORD
SUBPARAMETER

Figure 82. How to Code a Debug statement

YES

CODE KEYWORD
.----------1 SUBPARAMETER =

CODE,

CODE,

YES

CODE
THAN

IF MORE
VALUE N

CODE VALUE N

IF MORE
VALUE N

Diagnostic Aids 491

Some points to consider when coding a debug statement are:

• The debug statement may be contained in more than one card or console
reply. "In this case:

1. The statement can only be interrupted after a comma. statements can
only be interrupted when a comma follows a parameter or keyword
parameter anc1 its corresponding value, or a keyword subparameter and
its corresponding value.

2. If the service aids are invoked by including a //SYSDEBUG DO * card,
the next record of the data set defined by the DD statement is read
and processed.

3. If the service aids are invoked by replying DEBUG to an Emulator
prompt, the message

IIV270A jobname ENTER OR CONTINUE DEBUG STAT.EMENT

is issued and the reply is read and processed.

• The end of a debug statement is indicated by the END command. When an
END command is encountered following other debug commands, functions defined
by the other debug commands, such as SNAP and TRACE, are activated. when
an END command is encountered and is the only command in the DEBUG
statement, all the existing functions, if any, are inactivated.

• The options specified in the debug statement remain in effect until a new
debug statement is entered through the system console or until the end
of the Emulator job.

• Whenever a PHASE keyword subparameter is identified, all values encountered
are processed; thus,

SNAP = (SVC =4, PHASE=A, PHASE= (B,C» ,END

will cause a SNAP to be taken when DOS issues an SVC 4 to load A, B, or
C.

• If an error occurred when entering the debug statement on the console,
the following message will be issued

IIV271A jobname DEBUG Ca.tMAND ERROR AT POSITION xxx-RESPECIFY

The debug statement may be reentered with the command in error or the
entire statement may t:e respecified.

• If any errors are detected when input is from the data set defined by the
SYSOEBUG 00 statement, the message

IIV27/JI jot:name

is issued and emulation is terminated.

492 DOS Emulator Logic

• If a syntax error is detected during the processing of a debug statement
from the console. all functions. if any. are inactivated only for the
command being processed. For example. if

TRACE=ALL. SNAP={SVC=2.END

is issued from the console, an error message

IIV271A jobname

is issued (END in the example is interpreted as an incor.rect parameter
for the command SNAP since there is no closing parenthesis before the
second comma). Only the command in error (SNAP in this e.xample) and any
subsequent commands (END in this example) must be correctly respecified
to be processed. In the above example. a reply

SNAP = (SVC=2), END

will cause a TRACE to be taken and a SNAP to be issued when DOS issues
an SVC 2. .If only END were respecified, only the TRACE command would be
activated.

TRACE command

The format for a TRACE command is

parameter 1
TRACE = [(]or

parameter2
[.or ••••)]

keyword parameter1=value1 keyword parameter2=value2

See also "Trace Table" for further information concerning the function of this
command.

The following are valid parameters or keyword parameters of TRACE. Only the
keyword parameters NUMBER and CUU have values.

ALL

ATTN

CUU =

EXT

When .ALL is spec Hied, all of the events caused by the following
parameters or keyword pa.rameters are recorded in the trace table as
they occur.

If the attention bit is set in the CSw.the cuu, the PSW at the time
of inter.ruption and the CSW are recorded in the trace table. If the
unit check bit is set in the CSW,thetwo lOB sense bytes are also
recorded. This parameter is recorded in the trace table (see Figure
86 (Part 6 of 7). Se.rvice Aids Snap Dump) as:

ATTN cuu lPSW hht1hhhhh thhhhhhh CSW hhhh hhhh SNS hhhh

[(J cuu [,cuu, •••)]
Events associated with I/O operations will only be recorded
in the trace table if the operation is to the specified
channel and unit. These events include SIO, TIO, TCH, HIO,
and I/O interruptions.

When an interruption is external or the DOS interval timer occurs,
t~e psw at the time of interruption is recorded in the trace table
(see Figure 86 (Part 6 of 1). Service Aids Snap Dumr;) as:

EXT 1PSW hhhh0040 hhhhhhhh
TMR IPSW hhhh0080 hhhhhhhh

Diagnostic Aids 493

HIO When a halt I/O instruction is issued by DOS .. the cuu, the resume
psw .. and the CSW are recorded in the trace table. In addition, if
the unit check bit is set in the csw, the two lOB sense bytes are
recorded. This parameter is r-ecorded in the trace table (see Figure
86 (Part 6 of 7). Service Aids Snap Dump) as:

HIO cuu RPSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh SNS hhhh

INT When INT is spec ified, I/O interruptions, external inter.ruptions,
and timer interruptions are recorded in the trace table. see also
the parameters IO, EXT, and TIMER for further information.

TO All interruptions associated with I/O operations are .recorded in the
t.race table. These include SIO, TIO, TCH, and HIO~ In addition,
1/0 interruptions cause the PSW at interruption, the channel and unit
address, and the CSW to be recorded in the trace table. If the unit
check bit is set in the CSW, the two lOB sense bytes are also recorded.
I/O interruptions are recorded in the trace table {see Figure 86 (Part
6 of 7). service Aids Snap Dump} as:

I/O cuu IPSW hhhhhhhh hhbhhhhh CSW hhhhhhhh thhhbhhh SNS hhhh

ISK When an insert storage key instruction is issued by DOS, the PSW at
interruption, the storage address of DOS, and the storage protection
key are .recorded in the trace table. This paramete.r is recorded in
the trace table (see Figure 86 (Part 6 of 7). Se.rvice Aids Snap Dump)
as:

LPSW

1SK IPSW hhhhhhhh hhl:hhhhh ADDR 11111111 KEY h

When a load PSW inst.ruction is issued by DOS, thePsW at interruption
and the resume PSW are recorded in the trace table (see Figure 86
(Part 6 of 7). service Aids Snap Dump) as:

LPSW IPSW ht.hhhtl:h hhhhhhhh RPSW hhhhhhhh hhhhhhhh

NUMBER = l2Ql
(nnnnn)

This keyword parameter is used to redefine the default trace table
size. If NUMBER is not s(:ecified, the default value is 50. The
maximum number of entries is 65,534_ As each entry is 36 bytes in
length, any significant increase in the table size should be reflected
in the job st~p region parameter.

SIO When a start 1/0 instruction is encountered, the information recorded
in the trace table de(:ends on the condition code and the type of
device. If the device type is direct access, the CASD seek address
will be recorded. If CC=O 1 (CSW stored) and the unit check bit is
not set in the CSW, the cuu, the RPSW, the CSW, and the CCW addressed
by the DOS CAW (for staged or SYSLOG devices, or if the operation
is a stand-alone sense or seek) are recorded in the trace table.
If, however, the device is not staged or SYSLOG, or if the operation
is not a stand-alone sense or seek, the CCW address is obtained from
the COM CAW field of t.he COMTAB entry fo.r that device. This parameter
is recorded in the trace table (see Figure 86 (Part 6 of 7). service
Aids Snap Dump) as:

510 cuu S.E.EK hhhhhhhh hhhhhhhh RPS'ft hhhhhhhh hhhhhhhh

CAw hhhhhhhh CCW1 hhhhhhhh hthhhhhh

494 OOS Emulator Logic

If CC=01 and the unit check bit is set in the CSW, the cuu, RPSW,
esw, the operation code of the ccw referred to above, and the first
two sense bytes obtained from the lOB are recorded in the trace table
(see Figure 86 (Part 6 of 7). Service Aids Snap Dump) as:

SlO cuu RPSW hbhhhhbh hbhhhhhh CSW hhbhbhhh hhbhhbhh

SNS hhhh OP hh

If ceJfO 1, the cuu, RPSW, CAW, and either tbe first CCW or the CCW
pointed to by tbe eOMCAW field in COMTAB (depending on the same device
types and operations noted previousl~ are recorded in tbe trace table
(see Figure 86 (Part 6 of 7). Service Aids Snap Oump) as:

SIO cuu RPSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhbh
eCW1 hhhhhhhh bhhhhhhh

SSK When a set storage key instruction is issued by DOS, the PSW at
interruption, the storage address, and the storage protection key
are recorded in the trace table (see Figure 86 (Part 6 of 7). Service
Aids Snap Dump) as:

SSK IPSW hhhhhhhh hhhhhhhh ADDR 11111111 KEY h

SSM When a set system mask instruction is issued by DOS, the PSW at
interruption and the resume PSW are reco~ded in the trace table (see
Figure 86 (Part 6 of 7). Service Aids Snap Dump) as:

SSM IPSW hhhhhhhh hhhhhhhh RPSWhhhhhhhh hhhbbhhh

sve When a supervisor call is issued by DOS, the PSW at interruption and
the contents of DOS general purpose registers 0 and 1 are recorded
in the trace table. In addition, if the interruption is not taken
(in other words, if the function of the DOS sve routine is performed
by the Emulator), the resume PSW is also recorded in the trace table.
If the sve is 2 (OOS fetch), the name of the DOS B-transient phase
is recorded. If the sve is 4 (DOS load), the name of the DOS load
module is recorded. This keyword parameter is recorded in the trace
table (see Figure 86 (Part 6 of 7). Se.rvice Aids Snap Dump) as:

sve nnn IPSW hhhhhhhh hhhhhhhh RPSW hhhhhhhh hhhbhhhh BTR cccccccc

RO hhhhhhhh R1 tthhhhhh

sve nnn IPSW hhhhhhhh hhhhhhhh LDMD cccccccc ROhhhhhhhh

R1 hhhhhhhh

sve = [(] n ([, n, •••)]}

n This value of the sve keyword parameter is the supervisor call
number ,for which entries will be made in the trace table. The
value n represents a decimal number from 0 to 255.

TCH When a test channel instruction is issued by DOS, the cuu and the
resume PSW are recorded in the trace table (see Figure 86 (Part 6
of 7). Service Aids Snaf Dum~) as:

TIME1'l.

TCH cuu RPSW hhhhhhhh hhhhhhhh

When an interruption due to the emulated DOS interval timer occurs,
the .PSW at interruftion is recorded in the trace table (see Figure
R6 (Part 6 of 7). Service Aids Snap Dump) as:

TMR IPSW hhhhhhhh hhbhhhhh

Diagnostic Aids 495

TIO When a test 1/0 instruction is issued by DOl'l, the cuu, the resume
PSW, and the csw are recorded in the trace table. In addition, if
the unit check bit is set in the CSW, the two lOB sense bytes are
recorded. This parameter is recorded in the trace table {see Figure
86 (Part 6 of 7). Service Aids Snap Dump) as:

TIO cuu RPSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh SNS hhhh

.HBA£
NOWRAP

WRAP is the default parameter of the TRACE command and will cause old
entries in the trace table to be overlaid by new entries when the
trace table is full. NOWRAP causes the trace table to be snapped every
time it is full.

Trace Table. The trace table is an optional feature specified by the command
TRACE. The events to be traced a.re specified in parameters in the TRAC.E
command. When the table is filled, old entries are overlaid with new entries,
starting at the beginning address of the trace table.

The trace table is printed along with the Emulator-fonnatted snap dumps as
they occur. All trace table pointers are reset immediately after the TRACE
table is printed. This ensures that no two formatted traces reflect the same
events. If no snap dumps a.re taken, the trace table will be printed only once
at Emulator end-of-job time.

Unusual circumstances may cause abnormal termination of the Emulator region
be.forethe trace table is printed. Refer to Figures 83 and 84 for the procedure
to locate and interpret an unformatted trace table.

X'464'

IIVCON

X'08' IIVRCN

RASTRCTB

~ Vx'oc' X'OE' Trace Table
RASTRCMX RASTRCNX

X'10'
ARASCONS RASTRCNO

Notes:
The address of the Emulator service aids constants area (lIVRCN) is located in a 4-byte field at X'464'.in IIVCON
The address of the Emulator trace table is located in a 4-byte field at X'08' in IIVRCN_ .
The number of active trace entries is located in a 2-byte field at X'OC' in IIVRCN.
The address of the next available entry in the trace table is located by multiplying 36 (trace table entry length) times the value
contained in the 2-byte field at X'OE' in IIVRCN and adding the result to the beginning address of the trace table.
The size of the trace table in 36-byte entries is located in a 2-byte field at X'l 0' in IIVRCN.
The most recent entry in the trace table can be located by subtracting 36 from the address of the next available entry,
Successive subtractions vield addresses of former entries.

Figure 83. How to Locate the Trace Table

496 DOS Emulator Logic

r

~
SKK

~
(1)

Q) ISK
42
•
i-I SSM ::s
rt
(\)

g
~ LPSW
;f
~ SID 0
ell

>-3
~ SID tT
(\)

~
0 SID
Q
QI
rt

TID

HIO

TCH

I/O

0
~.

III EXT
IQ
::s
0
CIl
rt TMR
0

~
~.

SVC Q,
(/)

..,.
10
-...J

CC=O

CC=1

CC=l

r ('

[01 [K~ IPSW Address

[021~ey ~ IPSW Address

[03 ~ IPSW RPSW ~

~ IPSW RPSW ~

Seek Address 2 RPSW CAW CCWI

Seek Address 2 RPSW :SW CCW1

Seek Address 2 RPSW ::::SW (unit check)

[068?1 cuu ~ RPSW C CSW I Sense ~

~ cuu ~ RPSW CSW Sense ~

I08~ CXX ~ RPSW

I 09 ~ ~~UJ IPSW ~ CSW I Sense ~I

IOA~ IPSW ~

IOB~ IPSW ~~

[oc [~~ IPSW RPSW RO Rl ~ BTRAN Name ~

1 Flag - X'Ol' indicates a DASD; the other 7 bits in this byte are reserved .

2The seek address refers to MBBCCHHR (for DASD only).

SNAP Command

The format for a SNAP command is

SNAP = [(]
parameter1

or
keyword parameterl=value1[,keyword subparameter1=value2

, ...)]

(,keyword subparameter2=value3, ••• 1

The following parameters, keyword parameters, keyword subparameters, and
corresponding values of the SNAP comman<l define the conditions under which
an Emulator dump can be taken.

ALL

ATTN

COMP

This parameter causes an Emulator snap dump to be taken, as desc.ribed
for all other parameters or keyword parameters.

This parameter causes an Emulator snap dump to be taken whenever an
I/O interruption is simulater1 to DOS and the attention bit is set
in the DOS CSW.

[(J
{A 111111
{Rnn
{CRnn

=}
=} {h}[{h} {h} [h} {h} (hI {h} {h}] [••••)]
=} {*} [{*} t*} {*} {*} {*} {*} {*}]

This digit represents a OOS local address in main storage whose
contents will be compared ~ith the corresponding data as shown
by values replacing h. Leading zeros are not required for the
address.

Rnn This value represents a DOS general purpose register that contains
an address in main storage. The main storage addressed by the
indicated register will be compared ~ith the corresponding data.

CRnn This value indicates that the contents of the indicated DOS
general purpose register is to be compared with the corresponding
data.

nn This value can be one or two digits .representing any decimal
value from 0-15.

* The * indicates that the corresponding four bits in the same
position are not to be examined.

h The h represents the data to be compared and can be any valid
hexadecimal digit from O-F. The data can be any valid combination
of hexadecimal digits or *'s, up to a total of 8 digits (4 bytes).

The effectiVe length of the compare field for All1111 and Rnn will
only be as long as the number of digits provided. In the case of
eRnn, leading zeros are padded to t.he left.

Note: If the debug statement

SNAP = COMP = A0020 = OEQO, END

were coded, an Emulator snap dump would be taken if DOS storage
locations 20 and 21 contained the he.xadecimal values of OE and 40,
respectively. If, however, this condition is met while DOS is in
local execution mode and the values in storage locations 20 and 21
are then changed prior to a hardware interruption, the condition will
never be detected by the Emulator and thus no snap dump will be taken.

498 DOS Emulator Logic

coo =

EXT

BIO*

INT

10

ISK*

LPS"W*

PC =

[(] cuu [,cuu, •••)]
This keyword parameter causes an .Emulator snap dump to be taken
only for the channel and unit specified for I/O related
instructions and interruptions.

This parameter causes an Emulator snap dump to be taken whenever an
external interruption is simulated to DOS.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues a halt I/O instruction.

This parameter causes an Emulator snap dump to be taken for I/O,
external. and timer (asynchronous) interruptions.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues the SIO, '110. HIO, or TCH instructions. In addition, a snap
dump will be taken for all I/O interruptions.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues an insert storage key instruction.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues a load PS'W instruction.

{NOIPL}
{ALL}

This keyword parameter causes an Emulator snap dump to be taken
whenever a nonprivileged operation program check occurs. If the
problem state bit was set in the local execution PSW when the
privileged operation occurred, a snap dump will also be taken. If
PC without operands or PC=NOIPL is specified, program checks during
DOS IPL are ignored. If PC=ALL is specified, program checks will
also be snapped during DOS IPL. The SPACE parameter should then be
included in the SYSSNAP DD statement since there is a fairly large
volume of output.

PSW {hI [(h} fh} {hI {hI {hI {hI {h} {h} (h} (h} {hI {hl (h} {h} {hI J
{*} [(*} {*} {*} {*} {*} {*} (*} {*} (*} {*} (*} (*J (*} {*} (*}]

SIO*

SSK*

SSM*

* The * indicates that the correspondinq four bits in the same
position of the local execution PS'W are not to be examined.

h The h can be any valid hexadecimal digit from O-F.

Digits and *'s can be placed in any order. If fewer than 16 characters
are specified, *'s are padded to the right up to a total of 16. In
other words, the remaininq diqits in the local execution PSW are not
examined.

The local executionPSW is examined before passing control to DOS.
An Emulator snap dump will be taken if there is an equal compare
between all the indicated fields to be examined (as specified by valid
digits in place of h) and those in the local execution PSW.

Note: If all the characters are *'s, a snap dump will be taken every
time control is J;:assed to DOS.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues a start I/O instruction.

This parameter causes a.n Emulator snap dump to be taken whenever DOS
issues a set storage key instruction.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues a set system mask instruction.

Diagnostic Aids 499

svc =

TCH*

TIMER

'1'10*

[(] n

n

PHAS.E

modname

([, n, •••) n
{[,n, ••• ,PHASE =[(] modnamel r,modname2, •••)])[, •••]}

This value is the supervisor call numbe.r for which snaps
are to be taken.

This keyword sutparameter indicates that snaps are taken
only if specific DOS B-transient phases and load modules
are being fetched or loaded. PHASE is valid only if the
SVC number is 2 or 4 and immediately precedes PHASE.

This value may be any combination cf alphameric characters
or $, up to a total of 8 characters. If less than 8
characters are specified, the name will be padded right
with blanks to 8 characters.

An Emulator snap dump is taken if the indicated SVC interruption
occurs. If the PRASE keyword sutparameter was specified, snaps are
taken only if DOS register 1 points to one of the indicated module
names at the time the indicated SVC interruption occurs.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues a test channel instruction.

This parameter causes an Emulator snap dump to be taken whenever an
interval timer interruption is simulated to DOS.

This parameter causes an Emulator snap dump to be taken whenever DOS
issues a test IIO instruction.

• * Another dump is issued after the Emulator has simulated the instruction.

STO RAG F. Command

The format for a STORAGE command is

parameter 1 (, parameter 2, •••)]
STORAGE = [{] or

keyword parameter=value

The following parameters and keyword parameter of the STORAGE command define
the main storage to be dumped whenever a snap dwnp is taken. The parameters
may be specified in any order.

ALL

EMBLKS

This parameter causes the OS SNAP macro to be issued (SDATA=ALL) in
addition to the formatted dump of the Emulator control blocks, which
is printed whenever a snap dump is ta.ken.

This parameter ca.uses the DOS registers and entire DOS main-storage
area to be dumped whenever a snap dump is taken. (DOS is the default
value if STORAGE is not specified.)

This parameter causes a formatted dump of the Emulator control blocks
to be printed whenever a snap dump is taken. (EMBLKS is the default
value if STORAGE is not specified.)

EMU This parameter causes the OS SNAP macro to be issued (PDATA=ALL) in
addition to the formatted dump mentioned previously.

NOnoS This parameter causes the DOS registers and only the DOS permanent
storage area to be dumped whenever a snap dump is taken.

500 DOS Emulator Logic

NUMBER = 50
nnnnn

This keyword parameter defines the number of snaps to be taken (maximum
number is 65.534). Snap dumps are bypassed when this value is reacbed.
If NUMBER is not specified. the default value is 50.

EXIT Command

The format for an EXIT command is

EXIT = (] keyword parameter1=value1(,keyword parameter2=value2 •••• ']

The EXIT command allows user-written routines to be given control at various
points during the emulation process.

Before the user routine can be executed. it must reside on the system program
library (SYS1.LINKLIB) or on a private library. The full member name of the
routine is 8 bytes in length, but the first 6 bytes are required to be the
characters IIVRAS. The last 2 characters must be provided by the user as an
identification (nn) and can be any two numeric characters.

User-written e.xitroutines can provide additional control when solving emulation
problems. Emulatcr control blocks can be examined. as well as individual bit
settings anywhere in the Emulator region.

A user exit routine may receive control under the conditions described in the
following keyword parameters and corresponding values.

Refer to Figure 85 for overall control flow.

Diagnostic ldds 501

DRILIST

IIVRCP IIVRAS EMUCONS
LEX
LIST

- .
IIVRASYN2 A(IIVRASYN) A(IIVACI) 1 -

r---- IIVRASVC2 A(IIVRASVC)

I
IIVRASPC2 AUI VRASPC)

• ~ • IIVSNP IIVSCI IIVPCI IIVACI

f4-
14- ~ ~ ~ r-

r ,

User Exit User Exit User Exit User Exit
ASYNC SVC PC LEX'

• • • IIVRTE IIVSVC II VPCE

IIVRTER2 -

l The label for this address constant is ART20. This address constant is the return point for all Emulator modules.

2These entry points are entered after the associated hardware interruptions have occurred.

Figure 85. Control Flow of the Emulator Service Aids

502 DOS Emulator Logic

AS = nn

LEX = nn

PC = nn

SVC = nn

An asynchronous interruption occurred while the CPU was in local
execution mode. Control is passed to the asynchronous user exit
routine before passing control to the Emulator (entry point
IIVRTE). Tte nn is a 2-byte identification of an asynchronous
user exit reutine that has been entered on the system program
library (SYS1.LINKLIB) or on a private library.

Control is to be returned to DOS after a program check, supervisor
call, or asynchronous interruption occurs. Control is passed
to the local execution user exit routine before passing control
to the Emulator (entry point IIVRTER2). The nn is a 2-byte
identification of a local execution user exit routine that has
been entered on the system program library (SYS1.LINKLIB) or
cn a private library.

A DOS program check interruption occurred. This condition
includes privileged operations, which will subsequently be handled
by the Emulator. Control is passed to the program check user
exit routine before passing control to the Emulator (entry poinT
IIVPCE). The nn is a 2-byte identification of' a program check
user exit routine that has been entered on the system program
library (SYS1.LINKLIB) or on a private library.

A DOS supervisor call interruption occurred. control is passed
to the supervisor call user exit routine before passing control
to the Emulator (entry point IIVSVC). The nn is a 2-byte
identification of a supervisor call user exit routine that has
been entered on the system program library (SYS1.LINKLIB) or
on a private library.

At entry to an exit routine, the contents of the registers are as follows:

• Register 9 contains the address of the local execution list.

• Register 10 contains the true address of the DOS main storage (adjustment
factor).

• Register 11 contains the address of IIVCON (EMUCONS).

• Register 14 contains the return address. An optional snap dump will be
taken if the user exit routine returns to the address in register 14 plus
a displacement of 4. A zero displacement will cause a normal return.

• Register 15 contains the address of the exit routine entry point.

Standard linkage must be used. It is the responsibility of the user to ensure
all registers are saved and restored.

Note: The ddname for user data sets must start with the three characters SYS.
Any other combination of characters will be interpreted as an erroneous volume­
sharing request.

DIAG Command

The format for a DIAG command is

DIAG = CCWCHR [=[(Jcuu[, •••)]]

One of the main restrictions of tbe Emulator is in running DOS programs which
modify CCws or use COl data addresses between an I/O request and its completion.
The result is unpredictable and could cause a loop in DOS as well as a DOS
program check or an Emulator program check. The restriction is required because

Diagnostic Aids 503

the Emulator adjusts the DOS CCWs in place (in DOS main storage) and issues
an OS EXCP against these CCWs. These CCWs contain os (true) addresses from
the time the OS EXCP is issued and the time OS posts I/O completion in the
ECB.

The DIAG feature of version 2, level 1 of the Emulator allows removal of the
restriction on ~rograms using CCW data addresses (read only operations) during
I/O requests. In addition, the DIAG command allows identification of DOS
programs that modify the CCWs.

Rather than adjusting the DOS CCWs in DOS main storage, a special module
(1 IVRCW) is loaded when the DIAG feature is requested. IIVRCW~ll copy the
DOS CCWs in a special save area, adjust them to their OS addresses in this
area (called the DIAG block) and allows the Emulator to issue I/O requests
from this area only.

The DOS CCWs in DOS main storage will remain unchanged between the 1/0 request
and its completion. When IIVRCW readjusts the CCWs in the DIAG block back
to DOS (local) addresses, a check will be made to determine whether the DOS
CCWs have been modified by the DOS program from the time of the DOS. S10 and
the completion of the 1/0 as indicated by OS. If the CCWs have been modified,
a message (IIV280I) will be issued to indicate which CCW bas been modified.
A channel program check is ,returned to the DOS program.

How to Request the DIAG Feature

CCWCHK [=[(]cuu[, •••)]]

The cuu's specified indicate which DOS unit address will have the feature
attached. If no cuu is specifiefi, all the DOS unit addresses defined
during the Emulation run (specified on SYSEMcuu statements) will have the
DIAG feature except for staged devices and log devices.

DIAG limitations: When the DIAG command is being processed by IIVRCP, a DIAG
block is created for each cuu specified. The total length of the block is
112 bytes (104 of these bytes will be used to save the DOS channel program).
If a DOS channel program issued on a DOS unit with the DIAG feature contains
more than 13 CCWs, message IIV281I is issued by module IIVRCW and the DIAG
feature is reset for the DOS cuu involved.

The Emulator region should contain enough space for the DIAG blocks and module
IIVRCW plus the 11K required for the service aids function.

END Canmand

When coded with other debug commands, END indicates termination of the debug
statement. When coded'as the only command in a debug statement, END will
inactivate all previous functions, if any.

504 DOS Emulator Logic

Examples of Valid and Invalid Debug statements

The following are valid detug statements using one card/console reply:

• TRACE:: • (EXT, NUf-1BER :: (120», END

(At .Emulator end of job, a trace table of 120 entries will be written to
the SYSSNAP data set. The trace table lIiIill contain DOS external
interruption entries, if they occur.)

• SNAp:: COMP == 1\0020 :: OE40, END

(An Emulator snap dump will be taken if DOS storage locations 20 and 21
contain the hexadecimal values of OE and 40, respectively. See also the
note in the explanation of the keyword parameter COMP under the SNAP
command.)

• SNAP = (SVC = {(2. 3, 4,PHASE== ($$BOPEN,$$BCLOSE}»),END

(An Emulator snap dump lIiIill be taken whenever DOS executes an SVC 2 or
SVC 3. In addition, a snap dump will be taken by the Emulator whenever
DOS executes an sve 4 and .DOS general purpose register 1 paints to ei ther
the phase name $$BO.PEN or $$ECLOSE.)

The following are valid debug statements using multiple card/console replies:

•

•

TRACE = (SIO,
TIO) ,

SNAP :: SVC (1,
2, END

(005 start I/O and test I/O instructions will be recorded in the Emulator
trace table as they occur. Since the keyword parameter NUMEER was not
included, a default value of 50 entries lIiIill be used.)

(An Emulator snap will be issued wheneve.r an SVC 1 or sve 2 instruction
is executed by DOS. If any start I/O or test I/O instructions lIiIere issued
by OOS before the snap, the trace table will .be included as part of the
snap dump. If there are any entries in the trace table betllileen the time
the last snap dump was taken and Emulator end of job, the trace table will
be snapped again at Emulator end of job.)

The following are invalid debug statements using one card/console reply

• TRACE = SIO, TIO. END

(SIO, TIO are not enclosed in parentheses.)

• SNAP = (SVC == (2), END
(Unbalanced parentheses.)

• SN AP ; ALL, END

(Blank embedded in SNAP.)

The following are invalid DEBUG statement using multiple card/console replies:

• SNAP:: (ALL, SVC:: (,
2, 3}), END

(Statements can only be interrupted when a comma follows a parameter,
keyword parameter and its corresponding value, or a keyword subpara.meter
and its corresponding value.)

Diagnostic Aids 505

Examples of Service Aids Usage to Diagnose Problems

Problem 1

symptom:

DOS program canceled due to a DOS program check or channel program check and
a DOS storage num~ is produced.

Assumptions:

The following assumptions are made in this example:

1. The program chec.k occurs only undereroulation.

2. The DOS Emulator restrictions have been reviewed for possible violation
by the user program.

Probable cause:

with the symptoms and assumpticns listed above, the following causes are
suspected;

1. A DOS module is using the data address in a CCW that is currently active
(for example a WAIT macro not issued to ensure I/O completion). This type
of violation usually results in a variety of program checks, depending
on the data address and its usage. In any case, it is desirable to obtain
dumps and any other helpful diaqnostic information at the time the symptom
occurs.

Code the following statement to obtain information that may help identify the
cause of this problem.

SNAP=(PC .. COMP=R14=35DE4) .. END

Rxplanation:

Specifying PC tells the Emulator to produce the desired dumps whenever a
nonprivileged operation program check occurs. Specifying COMP=CR14=3SDE4 tells
the Emulator to produce the desired snap durrps whenever reqister 14 contains
the value ()0035DE4. The register and the value are arbitrary, but in this
example the value may represent an adjusted data address from a Ccw.

If the suspected cause was responsible for the Froblem, the dumps produced
should help reveal the DOS modules involv€d when the problem occurred and
consequently help locate the code violating the restriction.

2. .A .DOS module is modifying a CCW chain that is currently active. The
modification involves the data address or the chaining bits. This violation
usually results in a channel program check from the channel or from an
Emulator simulation during CCW adjustment.

By using the service aids, diagnostic information may be o.btained before the
channel program check is passed to DOS. since the cause of the problem may
be that the channel program is being modified, the only areas of interest are
the Emulator control blocks (such as .relative I/O blocks) and DOS storage.
Therefore. the default STORAGE specifications will be used again and the
following SNAP command will be used:

SNAP=COMP=A4S=20,END

COMP=AQS=20 tells the service aids to produce the required snap dumps when
the contents of nos location X'QS' is equal to 20. Location X'4S' is byte
.2 of the CSW status and hexadecimal 20 represents a channel program check.
The dumps should aid in revealing the information in the follOWing list.

506 DOS Emulator Logic

a. The channel program check was simulated by the Emulator (the status of
the rOB does not indicate a channel program check).

b. The channel prcgram that caused the channel program check.

c. The module involved in causing the channel program check, since the
modification occurred shortly before the dump.

A more effective method of obtaining an Emulator snap dump could be employed
if it can be determined exactly how the channel program is being modified.
The COMP specification can then be used to compare with a specific CCW to
obtain the dump closer to the time the CCw is being modified. If the chain
bit is being moved or ORed in to add more ccws to a CCW string, then the
following SNAP command might be used to take a snap dump:

SNAP = CCMP=A234DC=60COOODO,END

The following exarople shows a CCW in the ccw string before and after
modification:

Before modification:

86026004200COODO

After modification:

860260046COCOODO

Problem 2

Symptom:

A OOS problem program is canceled due to an invalid direct-access seek address
after the Emulator message IIV2631 is issued.

Assumptions:

The following assumptions are made in this example:

1. The program check occurs only under emulation.

2. The volume involved in a nondedicated volume.

3. The DOS supervisor was generated without the DASD file protection option.

Probable cause:

It is suspected that the DOS problem program is violating an Emulator
restriction regarding nondedicated volumes.

Service aids usage:

The DOS message indicates the contents of the CSW, the address of the CCB and
the seek address. If a DOS dump is not available, an Emulator snap dump can

Diagnostic Aids 507

be created at the time DOS issues the SIO. This is accomplished by coding
the following debug statement:

(sample statement 1) SNAP=COMP=A44=OE,STORAGE=ALL,END

First identify the file involved; the CCB address should help to locate the
DTF (in most cases, the CCB immediately begins the DTF). The DTF name can
then be located and, in turn, be used to locate the corresponding DLBL/EXTENT
cards. If they have been cataloged on the SYSRES label cylinder, the DOS LSERV
program can be used. The DLBL/EXTENT cards will contain the 'file-ide of the
file; and therefore, its 'data set name'. The dsnaJlle is then used to locate
the corresponding DO statement.

In addition the DTF should indicate whether it has been opened by DOS (open
bit on and volume sequence numter and extent description initiali~ed).

Another way to check that DOS actually issued an open for the file is by coding:

(sample statement 2) SNAP= SVC=(2,PHASE=SSBOPEN) ,END

An Emulator snap dump will be issued for each DOS open. No further debU9ging
is required if it can be determined that a DOS open was never issued to the
file in question, since a direct-access volume sharing restriction was violated.

At this point, the DTF has been located, and the corresponding OS DO statement
has been identified. The last snap dump issued by the Emulator (sample
statement 1) lists the Emulator control blocks:

• COMTAB extensions are listed immediately below their related COMTAB. To
identify the associated CTEXT, match the DO name of the involved file with
the name listed at the left of each COMTAB extension.

•

CTDCBPTR (displacement 8 into the CTEXT) points to the related DCB. Then
locate the DEB to find the actual extents of the file as allocated by as.

File identification blocks (FIOBL.K) are listed below their related COMTAB
extensions. Verify that a FIDBLI< has been created for the DTF (the DTF
name is listed immediately to the left of each FIDBL.K entry) for the
executing DOS ~artition. Displacement X'13' into the FIOBL.K contains the
PIO/PIK of the DOS partition issuing the open.

At this point, the DCB and its related DEB have been located and it has been
verified that the Emulator actually opened the corresponding as file.

The presence of message IIV2631 indicates that the Emulator module IIVPCE did
not find the given DOS seek address in any of the DEB's attached to the
corresponding COMTAB; additionally the Elt'ulator module IIVVIO could not identify
the channel Frogram as one issued by specific OOS open routines to maintain
the VTOC.

It must first be checked whether or not the I/O request came from the problem
program either by looking in the snap dump created (sample statement 1 - the
instruction address portion of the DOS SVC old PSW should point to the next
sequential instruction after the DOS SVC 0 instruction) or by looking at the
dump created by DOS (the PSW is listed immediately before the dump).

An Emulator error can be suspected if the I/O request came from a B-transient
phase and the seek address indicates either the volume label (cylinder 0, head
0) or the VTOC (the VTOC address should be set in the DTF).

Since all Emulator processing for shared volumes is highly dependent upon DOS
open phases, the DOS open phases and release number should be checked. The
DOS Release number must be 25, 26, or 27 and the DOS open pha~es must not be
modified by the installation.

508 DOS Emulator Logic

A violation of an Emulator restriction can be suspected if the request came
from a problem program. SOme possible violations are:

• The problem program is expecting an extent at a given address. solution:
The DD statement should contain absolute track allocation.

• The problem program is expecting either:

1. an extent larger than the one defined in the SPACE parameter of the
DO statement

2. an extent type which does not match the one given in the DO statement

3. a total number of extents different than those provided.

In all the above cases the DD statement must be modified to reflect an extent
status compatible with the problem program befo~ resubmitting the job.

Interpreting Dumps

The followinq explanation of the contents of an Emulator snap dump is
interspersed with samples taken from a snap dump. Capital letters represent
the headings found in all dumps and lower case letters represent information
that varies with each dump. Each lower case letter used indicates the format
of the information and the number of letters indicates the length.

• h represents 1/2 byte of hexadecimal information

• d represents 1 byte o.f decimal information

• c represents 1 byte of character information

• a represents 1/2 byte of information used for true addresses

• 1 represents 1/2 byte of information used for local addresses

*******************.**.**.*** •• ********************~.* ****.*.**.* •• *.*************
*** Emulator Service Aids Requested** *

* * *OS/360 DOS EMULATOR VERSION d LEVEL d ~I~E dcdddd DA~E ddddd PAGE ddda*

* *
*OPTION IN EFFECT option *
*********.******* •••• *****.******** •• *********************** ••• ******* ••• **.******

Figure 86 (Part 1 of 7). Service Aids SnapOUmp

EMULATOR SERVICE AIDS REQUESTED

identifies the data that fellows as debugging output.

VERSION d

is the version of the Emulator being executed.

LEVEL d

is the level of the Emulator being e.xecuted.

TIME dddddd

is the hour (first two digits" minute (second two digits), and second
(last two digits) when the Emulator service aids .routines began processing.

DATE ddddd

is the year (first two digits) and day of the year (last three digits).

Diagnostic Aids 509

PAGE dddd

is the page number that appears at the top of each page.

OPTION IN EPFECT option

is the reason the snap dump was taken. The service aids SNAP options
appear in the listing as follows:

cccc cuu SNAP 1 of 2 or cccc cuu SNAP 2 of 2

where cccc is one of the following privileged instructions:

• HID halt I/O instruction

• ISK insert storage key instruction

• LPSW - load PSW instruction

• SID start I/O instruction

• SSK set storage key instruction

• SSM set system mask instruction

• TCH test channel instruction

• TID test I/O instruction

cuu is the channel and unit number of the DOS device. This field will
appear only for an I/O related instruction.

SNAP 1 of 2
indicates that the snap dump was taken at the time of the hardware
interruption and before control is passed to the Emulator.

SNAP 2 of 2
indicates that the snap dump is taken before passing control
to a user local execution exit routine if one was specified.

ATTENTION
indicates that an I/O inte.rruption was simulated to DOS and the
attention bit in the CSW was set to 1.

DOS HARD WAIT
indicates that the PSW specified in the operand portion of a DOS LPSW
instruction had its wait bit set to 1 and all interruptions disabled ..
This option will appear automatically only if the service aids routines
are in storage at the time the condition occurs.

EMULATOR TRACE REQUESTED
indicates that the following lines will contain the formatted
Emulator trace table.

EQUAL COMPARE AD DR 111111 STORAGE bhhhhhhh or
EQUAL COMPAFE.REG dd STORAGE hhhhhhhh or
EQUAL COMPARE REG dd CONTAINS hhhhhhhh

indicates that an equal compare condit.ion has occurred. ADDR
111111 is the DOS local main-storage address. STORAGE hhhhhhhh
is the contents of the addressed main storage.
REG dd is the DOS general purpose register that contains a
local main-storage address or
REG dd is the DOS general purpose register that contains the
data that was compared.
dd is the register number.
CONTAINS hhhhhhhh is the compare data supplied by the user.

510 DOS Emulator Logic

EXTERNAL INTERRUPTION
indicates that an external interruption was simulated to 005.

INPUT/OUTPUT INTERRUPTIONcuu
indicates that an input/output interruption was simulated to
DOS.
cuu is the channel and unit address of the DOS device.

PROGRAM CHECK
indicates that a DOS program check interruption occurred. This
condition includes privileged operations not supported by the
Emulator, but does not includetbe supported privileged
operations.

PSW = hhhhhhhh bhbhhhhh
indicates that the specified fields of the local execution PSW
contain the indicated values.

SNAP DUMP INVOKED BY MODULE cccccccc
indicates that the user exit routine rep.resented by cccccccc
requested an optional snap dump.

SUPERVISOR CAL.L (sve d) or
SUPERVISOR CALL (SVC d) MODULE cccccccc

indicates that a supervisor call instruction was issued by 005.
(SVC d) is the supervisor call instruction. MODULE cccccccc is
the a-character B-transient phase or load module name addressed
by 005 general purpose register 1 at the time of the interruption
(for SVC 2 or 4 only).

TIMER INTERRUPTION
indicates that a timer interruption was simulated to DOS~

**************** •••• ************************************** •• *********************************
*INTERUPT AT 11111' (aaaaaa) *

* * *DOS ADJUSTMENT FACTOR aaaaaa *

* * *LEX LIST aaaaaa PSW hhhhhhhh hhhhhhhh R'~ hhhhhhhh R1S hhhhthhh AJF aaaaaaaa LMAD 11111111 *
• OPR aaaaaaaa SVC aaaaaaaa PC aaaaaaaa ASYN aaaaaaaa *
.**

Figure 86 (Part 2 of 7). Service Aids Snap Dump

INTERRUPT AT 111111 (aaaaaa)
is the address of the last inst.ruction e.xecuted wbi1e the CPU vas
in local execution mode. The local address is represented by 111111.
The adjusted address is represented by aaaaaa.

005 ADJUSTMENT FACTOR aaaaaa
is an address in the Emulator region that corresponds to location 0
of the adjusted DOS storage area. This value is obtained from the
adjustment factor field of the local execution list.

LEX LIST aaaaaa
is the starting address of the local execution list.

PSW hhhhhbhh hbhhhhhh
is the PSW field (first eight bytes) of the local execution list.

R1lJ hhhhhhhh
is the register 14 field of the local execution list.

R 15 hhhhbhhh
is the register 15 field of the local execution list.

Diagnostic Aids 511

AJF aaaaaaaa
is the adjustment factor field in the local execution list.

LMAD 11111111
is the limit address field in the local execution list. This
value corresponds to the OOSSYS parameter in the Emulator execute
statement.

OPR aaaaaaaa
is the true operation pointer field in the local execution list.
This field points to the last instruction executed while the CPU
was in the local execution mode.

SVC aaaaaaaa
is the SVC interruption address field of the local execution list.
The value contained in this field should be the entry point address
of module IIVSVC.

PC aaaaaaaa
is the program interruption address field of the local execution
list. The value contained in this field should be the entry
point address of module IIVPCE.

-ASYN aaaaaaaa
is the asynchronous interruption field of the local execution list.
The value contained in this field should be the entry point address
of module IIVRTE •

•••••••••••••••••••••••••• ** ••••• ** ••• ** •••••••••••••••••••
• CSECT IIVCON (EftUCONS) •
• ADDR DSPL STORAGE •
• aaaaaa hhhh hhhhhhhh hhhhhhhh hhhhhh~h h~hhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhh~ •
• aaaaaa hhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •
• aaaaaa hhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •
• LINES aaaaaa TO aaaaaa SA"E AS ABOVE •
• aaaaaa hhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hh~hhhhh hhhhhhhh hhhhhhhh hhhh~hhh •
• aaaaaa hhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhh~ •
• LINE aaaaaa SA"! AS ABOVE • ••• ** ••••• *** ••• ** •••••••••••• * ••••••••• ** •••••••••••••••••• ** •• ** •••• * ••••••••• **.**.** ••••• *** •••

Figure 86 (Part 3 of 7). Service Aids Snap Dump

CSECT I IVCON (EMUCONS)
identifies the next lines as the contents of the main-storage area
occupied by the CSECT IIVCON.

aaaaaa
is the main-storaqe address of the line.

hhhh
is the displacement from zero of the line.

LINES aaaaaa TO aaaaaa SliME AS ABOVE
are the starting addresses of the first and last lines for a group
of lines that a.re identical to the line immediately preceding.

LINE aaaaaa SAME AS ABOVE
is the startinq address of a line that is identical to the line
immediately precedinq.

512 DOS Emulator Loqic

L
**
***EftOL1TOR 1/0 CONTROL BLOCKS** *
*SYSLOG COftTAB aaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhbhH Hhhhhh~ *
* bHhhhhh hhhhh"hh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *
* LOGIOB aaaaaa hhhhhhhh hhhhhh"h hhhhhhhh hhhhhhhh hhhhhhbh hhhhhhhh hhhhhhhh hhhhhhhh *
* hhhbhbl}h hhhhbbhh •
*cccccccc t COftTAB aaaaaa hbhhhhhh hhhhhhhh hhhhhhhb hhhhhhhh hhhhhhhh hhhl>hhhh hhhhhbhh hhhPhhhh •
* hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh I:hhhhhhh hhhhbhhh •
• STGCON aaaaaa hhhhHhh hhhhhhhh hhhhhhhh bhhhhbhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhbh *
* hhhhhhhh hhhhhhhh *
*cccccccc i COI'lTA'J aaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *
* hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhh"hhhh •
* lOB aaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhbh hHhhhhh hhhhhhhh hhhhhhPh hhhhhl>hh *
• hhlthhhhh hhhhhhhh *
*cccccccc i CTEXT aaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhl>hhhh hhhhhhhh *
* hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *
*ccccccc 2 l'IDBLK aaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhl}hhh • •••• ****.*** •••• ***** •• ** ••••• **** ••••••••••••••••••••••• ** ••••••••••••• **.** •••••••••••••••••••••••• ***** ••••

Figure 86 (Part 4 of 1) • Service Aids Snap Dump

**EMULAToa I/O. Co.NTPo.L BLo.CKS*.
identifies the next lines as
input/output control blocks.
its address and contents.

the contents of the Emulator
The name of each control block precedes

SYSLOG
identifies the control blocks that follow as being related to the
DOS system log.

cccccccc 1

identifies the control blocks that follow as being related to the DD
statement with the ddname cccccccc i •

ccccccc2

is the DOS DTF file name associated with the Emulator file identifi­
cation block.

Co.MTAB
identifies the control block as an Emulator communications table
entry.

LOGIo.B
identifies the control block as the work and constants area for
Emulator module IIVLOG.

STGCo.N

lOB

identifies the control block as the work and constants area for the
unit record staging modules.

identifies the control block as an OS input/output block.

CTEXT
identifies the ccntrol block as an Emulator COMTAB extension.

FIDBLK
identifies the control block as an Emulator file identification
block.

aaaaaa
is the starting address of the control block identified on the same
line.

If an invalid FIDBLK chain is detected, the following entry will be
recorded in the snap dump:

Diagnostic Aids 513

***INVALID FIDBLK CHAIN •••
indicates that the DCB use count in the preceding COMTAB extensiol'
entry was greater than the number of file identification blocks
whose third word pointed back to that COMTAB extension entry.

******* ••• *.* ••• ******** •• *** ••• ***
*ccw STRING BEGINNYNG/ENDING BLOCK (!'!EllLKJ *
* aaaaaa bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee *
* bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee *
* bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee *
* bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee bbbbbbbb eeeeeeee *
* * *CCW(S) aaaaaa hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *
* hhhhhhhh hhhh~hhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh *
************** •• *.*********** ••• ** •• *******.***** •••••••• **

Figure ~6 (Part 5 of 7). service Aids Snap Dump

CCW BEGINNING/ENDING BLOCR (BEB.LR)
identifies the next lines as the contents of the main-storage area
occupied by the Emulator contra 1 block EEBLR.

aaaaaa
is the starting address of the cont.rol block.

bbbbbbbb
is the starting main-storage address of a group of CCWs whose
data addresses were ad justed by the Emulator module I IVCCW •

eeeeeeee
is the ending main-storage address of a group of CCWs whose data
addresses were adjusted by the Emulator module IIVCCW.

CCW(S)
identifies the nelCt lines as the contents of the main-storage area
occupied by a group of CCWs whose main-storage addresses are found
in the Emulator control block BEBLK.

aaaaaa
is the starting address of the group of CCWs.

** •••• ******** •• *** •••••• **** ••• ***** ••••• * •• ***** •••••• ************ •••••• *********************************
*E"ULATOR TRACE TABLE STARTING WITH KOST R~CENT ENTRY *
*SIO cuu SEEK hhhhhhhh hhhhhhhh RPSW hhhhhhhh hhhhhhhh CAW hhhhhhhh CCII' hhhhhhhh hhhhhhhh *
*SIO cuu RPSW hhhhhhhh hhhhhhhh CSII hhhhhhhh hhhhhhhh SNS hhhh OP hh *
*SIO cuu RPSII hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh CCW, hhhhhHh hhhhhhhh *
*TIO cuu RPSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh SNS hhhh *
*HIO cuu RPSi' hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh S1'IS hhH *
*TCH cuu RPSW hhhhhhhh hhhhhhhh *
*1/0 CllU IPSII hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh S1ITS hhhh *
*ATTN cuu IPSW hhhhhhhh hhhhhhhh CSW hhhhhhhh hhhhhhhh SIIS hhhh *
*ISK !PSW hhhhhhhh hhhhhhhh ADDR 11111111 KEY h *
*SSK IPSW hhhhhhhh hhhhhhhh ADDR 11111111 KEY h *
*SS" IPSII hhhhhhhh hhhhhhhh RPSW bhhhhhhh hhhhhhhh *
*EXT IPSW hhhhhhhh hhhhhhhh *
*TKR IPSW hhhhhhhh hhhhhhhh *
*LPSW IPSW hhhhhhhh hhhhhhhh RPSW hhhhhhhh hhhhhhhh *
SVC ddd IPSW hhhhhhhh hhhhhhhh RPSW hhhhhhhh hhhhhhhh BTR cccccccc RO hhhhhhhh R' hhhhhhhh
svc ddd IPSW hhhhhhhh hhhhhhhh LDI'!D cccccccc R~ hhhhhhhh R1 hhhhhhhh
**TRACE COKPLETE* *
.**************

Figure 86 (Part 6 of 7). Service Aids Snap Dump

EMULATOR TRACE TABLE STARTING WITH MOST RECENT ENTRY
identifies the next lines as entries in the Enmlator trace table.
The first line printed is the most recent entry. Each succeedinq
line represents an older entry. The name at the beginning of each
line identifies the type of entry on that line:

•

•

ATTN input/output interruption entry with the attention
bit in the csw set to one

EXT external interruption entry

514 DOS Emulator Logic

• HIO baIt input/output (HIO) entry
• I/O input/output interruption entry
• ISK insert storage key (ISK) entry
• LPSW load PSW (LPSW) entry
• SIO start input/output (SIO) entry
• SSK set storage key (SSK) entry
• SSM set system mask (SSM) entry
• TCfl test channel (TCH) entry
• TIO test input/output (TIO) entry
• SVC supervisor call (SVC) interruption entry
• TMR timer interruption entry

ADDR 11111111
is the local address in main storage.

BTR cccccccc
is the name of the B-transient pbase when the supervisor call is
an SVC 2 (DOS fetch).

CAW hhhhhhhh
is the DOS channel address word. This value is taken from DOS
permanent storage location X'4a' if the device is either staged
or the DOS system leg. In all other cases, the value is taken
from location X'24' in the corresponding COMTAB entry.

CCW1 hhhhhhhh hhhhhhhh
is the channel command word addressed by the CAW. Refer to
preceding explanation of CAW for further details.

CSW hhhhhhhh .hhhhhhhh

cuu

is the DOS channel status word. The CSW is taken from location
X'40' in DOS permanent storage.

is the channel and unit for the indicated I/O operation.

IPSW hhhhhhhh hhhhbhhh
is the local execution PSW when the interruption occurs.

KEY h
is the storage protection key associated with the 15K or SSK instruction.

LDMD cccccccc

ddd

is the name of the load module when the supervisor call is an SVC
4 (DOS load).

is the SVC number.

OP hh
is the opcode of the CCW addressed by the CAW. Refer to preceding
explanation of CAW for furthe.r details.

RPSW hhhhhhhh hhhhhhhh
is the resume PSW. This is the local execution PSW that will be
.useu when control is returned to DOS.

RO hhhhhhhh
is the contents of DOS general purpose register zero.

R1hhhhhhhh
is the contents of DOS general purpose register one.

SEEK hhhhhhhh thhhhhhh
is the seek address for direct-access devices. This value is taken
from the lOB.

Diagnostic Aids 515

SNS hhhh
is the first two sense bytes. This field will only appear if the
unit chec.k bit in the CSW is set to one. The sense bytes are
taken f.romthe lOB •

••
• DOS REGS 0-7 hhhhhhhh hhhhhhhh hhhbhhhb hhhhhhhh hhhhhhhh hhhhhbhh hhbhhhhh hhhhhhhh •
* 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh bhhbhbhh hhhhhhhh hhhhhhhh •
• •

DOS PERKAN~IT STORAGE • •
• •
* • • •
• • • • • • • • •

aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
END OF DU"IP

hhhhhhhh hhhhhhhh hhhhhhhh ~hhh~hh~ •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •
hhhhhbhh hhhhhhhh hhhhhhhh hhhhhhhh •

DOS STORAGE
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

. L !NES aaaaaa TO aaaaaa SAl'll': AS A'30VE
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINE aaaaaa SAKE AS ABOVE
aaaaaa 111111 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
EID OF DUI'IP

• • •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh • •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh * •
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh •

• •• * •••

Figure 86 (Part 7 of 7). service Aids Snap DumF

OOS REGS 0-1
8-15

identifies the contents of the DOS general purpose registers at
the time the Emulator service aids routines issued the snap dump.

DOS PERMANENT STORAGE
identifies the next four lines as the DOS permanent storage
assignment (first 128 bytes).

aaaaaa
is the adjusted main-storage address of the line.

111111
is the local main-storage address of the line.

DOS STORAG.E
identifies the next lines as the contents of the main-storage
area assigned to DOS.

aaaaaa
is the adjusted main-sto.rage address of the line.

111111
is the local main-storage address of the line.

LINES aaaaaa TO aaaaaa SAME AS ABOVE
are the starting add.resses of the first and last lines for a group
of lines that are identical to the line immediately preceding.

LINE aaaaaa S~ME AS ABOVE
is the starting address of a line that is identical to the line
immediately preceding.

END OF DUMP
indicates that the snap dump of DOS main storage is completed.

516 DOS Emulator Logic

EMULATOR GENERAL REGISTER ASSIGNMENTS

Figure 87 shows the general register assignments for the resi"ient parts of
the DOS Emulator.

Register Symbol Assignment

0 RPOEU Paramete.r passing register

1 RP1EU Pa.rameter passing register

2 RVoiOEU ~ork register 1

3 RW1EU ~ork register 2

4 Rw2EU ~ark reqister 3

5 Rw3ED Work register 4

6 RW4.EU Work register 5

7 Rw5F.tl Work register 6

8 RE1CD Base register 2 (used as base for mo"iules)

9 RB2CD Painter to local execution list

10 RBlOS Pointer to DOS storage

11 RB4DS Ease register for IIVCON

12 PE5DS Base register 6 (DSECT)

13 RB6DS Base register 7 (DSECT)

14 RLOEU Link register 1

15 REDCD Base register 1 (subroutine)

Figure 87. General Register Assignments

DiagnosticAids 517

MESSAGE-TO-MODULE RELATIONSHIP

Fiqure 88 shows the relationship between each .Emulator messaqe, the module J that requests or issues that message, and the module in which the messaqe te.xt
is contained.

Message Module requesting Message Module containing
Number message Code text

IIVOOOA IIVLOG I IVLOG
IIVOOOI I IVLOG I.IVLOG
IIVOO2D IIVINT 1,8 I IVMG 1
IIVOO3D IIVINT 2, q. IIVMG1
IIVOOlm IIVINT .1 , 8 IIVMG1
lIVOO5D IIVIN'! 4,10 IIVMGl
IIVOO6D IIVINT 5,11 IIVMGl
IIV007D IIVINT 6,11 nVMG1
IIVOO8D IIVINT 7,11 IIVMGl
IIVOO9I IIVPUB 22 I IVMG 1
lIV01H IIVINT 13 IIVMG1
IIV012I IIVIN2 15 IIVMGl
IIVOnI IIVIN2 16 IIVMGl
IIV014I IIVGET 123 IIVMG2
IIV0151 IIVIN2 17 IIVMGl
IIVOl7I I IVPUB 23 I IVMG 1
IIV018I IIVOPN 128 .IIVMG2
IIV0191 IIVINT 14 I IVMG 1
IIV0201 IIVIN2 18 IIVMGl
IIV021I IIVPUB, I IVOPN 2IJ IIVMGl
lIVOl2I IIVINT, IIVIN2 H IIVMG1
IIV023I IIVOPN 124 IIVMG2
IIV024I IIVOPN 12<J IIVMG2

~ IIV025I IIVINT 25 IIVMGl
IIV026I IIVINT 26 IIVMGl
IIV027I IIVIN2 27 IIVMGl
IIV0281 IIVIN2 28 IIV.MGl
IIVO.32.1 I IVADD 12 IIVMGl
IIV033I IIVIN2 20 IIVMGl
IIVO.341 IIVIN2 21 IIVMGl
IIVOIJOD TIVOPN 125,126 IIVMG2
IIV0411 IIVOPN 127 IIVMG2
IIV050D IIVOFN 130,131 IIVMG2

IIV100E IIVPUB 101,102,103 IIVMG2
IIV101E IIVPRP 104 IIVMG2
IIV102E I IVPRP 105 IIVMG2
lIV103E IIVPRP 106 IIVMG2
IIV104E IIVPRP 107 IIVMG2
IIV105E IIVPRP 108 IIVMG2
IIV106E IIVPRP 10<J IIVMG2
IIV107E I IVPRP 110 I IVMG2
.IIV108E IIVPRP 112 IIVMG2
IIV109I IIVPRP 111 I IVMG2
IIV1401 IIVSTG 119 I IVMG2
IIV1501 IrVRTE 120 IIVMG2
IIV160A IIVPCE, IIVCHK 121 IIVMG2

IIV2021 I IVABN 113 I IVMG2
IIV203I IIVABN 115 IIVMG2
IIV2041 IIVABN 116 IIVMG2
IIV205I I IVABN 117 ITVMG2
IIV2071 IIVABN 111J IIVMG2
IIV2081 IIVGR2 221 IIVMG3

Figure B8 {Part 1 of 2). Message-to-Module Relationships

518 DOS Emulator Logic

Message Module requesting Message Module containing
Number message Code text

IIV2501 IIVGR2 201 IIVMG3
IIV2511 IIVGR2 202 IIVMG3
IIV25.2I I IVGR2 203 IIVMG3
Itv2531 IIVGR2 20Q IIVMG3
IIV25IH IIVGR2 205 IIVMG2
IIV2551 IlVGR2 206 IIVMG3
IIV2561 IIVDVS 207 IIVMG3
IIV251I IIVDVS 208 IIVMG3
IIV2581 IIVDVS 209 IIVMGJ
IIV259I IIVDVS 210 IIVMG3
IIV2601 I.IVDVS 211 IIVMG3
I.IV2611 IIVDVS 212 IIVMG3
IIV2621 I IVDVS 213 IIVMG3
IIV2631 I IVPCE 214 IIVMG3
IIV270A IIVRCP 216 IIVMG3
IIV271A IIVRCP 217 IIVMG3
IIV273A IIVRCP 218 IIVMG3
IIV274A IIVRCP 220 IIVMG3
IIV275I IIVSTG IIVSTG
IIV2761 IIVRCP IIVRCP
IIV2801 .IIVRCW 215 IIVMG3
IIV28H I IVRCW 21<} IIVMG3

f'iqure 88 (Part 2 of 2) • Message-to-Module Relationships

Diagnostic Ai~s 519

APPENDIX

DOS Compatibility Feature

Appendix 521

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

DOS COMPATIBILITY FEATURE

DOS emulation is assisted by the DOS Compatibility Feature to an extent
determined by which System/370 model is being used. The execute local
instruction is provided as a part of this feature. This instruction deals
with the emulated environment, which consists of the CPU and storage of the
emulated system (DOS). The instruction is used to achieve the direct execution
of System/370 nonprivileged instructions and to provide the Emulator with the
information necessary for such procedures as simulating privileged instructions,
changing the state of the emulated CPU, and executing the input/output
operations of the emulated system.

The emulation of channels and input/output devices is considered to be a
function of the Emulator. On some models an additional instruction, adjust
CCW string, is provided to assist in converting channel programs (data addresses
are modified in the CCWs) in the emulated environment to channel programs within
the Emulator and vice versa.

The storage of the emulated system must be embedded within the storage available
to the Emulator. Addresses relative to the storage of the emulated environment
are called local addresses; the corresponding addresses relative to the storage
of the Emulator are called program addresses. The size of the emulated storage
and the relationship between local and program addresses are provided by the
operand of the execute local instruction, the local execution list. Other
parameters of the emulated environment provided by the local execution list are
the condition code, program mask, local instruction address, and the contents
of general registers 14 and 15 of the emulated CPU.

Execution of the execute local instruction causes the CPU to be placed in local
execution mode. General registers 14 and 15 are loaded from the local execution
list, and the PSW is modified by replacing the condition code, program mask,
and the instruction address with values from the list. In local execution
mode the CPU functions as the CPU of the emulated environment and executes
nonprivileged instructions contained therein, treating all instruction and
data addresses as local to that environment.

Any interruption condition terminates local execution mode. An interruption
is said to be synchronous if it is a result of instruction execution within
the emulated environment; if it is caused by conditions or events external
to the emulated environment it is said to be asynchronous. The current
parameters of the emulated environment are stored in the local execution list,
and if the interruption was synchronous, the appropriate interruption code,
instruction length code, and the program address of the instruction causing
the interruption are also stored. The instruction address in the PSW is
replaced by the program address, appropriate to the interruption type, of the
next instruction of the Emulator. If the interruption was synchronous,
instruction execution proceeds with the modified PSW. If the interruption
was asynchronous to local instruction execution, which would be the case, for
example, with an input/output interruption, the modified PSW is stored in the
permanent storage location for the interruption type, a new PSW is loaded,
and instruction sequencing proceeds under control of the new PSW.

Refer to IBM System/370 Principles of Operation for more information on
system structure and modes, hardware instructions, input/output operations,
interruption action, and status switching.

Execute Local Instruction

B20E B2 D2

o 1516 1920 31

522 DOS Emulator Logic

Page of GY26-374I
Revised July 25, 1972
By TNL GN26-8021

The local execution list (Figure 89), operand of the execute local instruction,
provides the CPU with the parameters necessary for an emulated environment
when the CPU is placed in local execution mode. The local execution list is
40 bytes in length and must begin on a 64-byte boundary.

Bytes 0 - 3 Programming Use Interruption Code

Bytes 4 - 7 ILC CC PM I nstruction Address

Bytes 8 - 11 General Register 14

Bytes 12 - 15 General Register 15

Bytes 16 - 19 Origin Address

Bytes 20 - 23 Zeros Local Limit Address

Bytes 24 - 27 Last I nstruction Address

Bytes 28 - 31 Supervisor Call I nterruption Address

Bytes 32 - 35 Program Interruption Address

Bytes 36 - 39 Asynchronous I nterruption Address

Figure 89. Local Execution List

The condition code, program mask, and instruction address in the current PSW
are replaced by the values in the corresponding sutfields of the local PSW
field (bytes 0-7) of the local execution list. General registers 1q and 15
are loaded, respectively, with the values contained in the general register
14 and general register 15 fields of the local execution list. The CPU is
placed in local execution mode.

The modified PSW is not checked for program interruptions during execution
of the execute local instruction. The checking occurs as part of the execution
of the next instruction.

Any program event exception resulting from completion of the eXEcute local
instruction is held pending terrrination of local execution mode. The program
event recording code and the program event address, which is either the program
address of the execute local instruction or the program address of an execute
instruction, as appropriate, may be stored immediately or when the interruption
is actually taken. If succ~ssful-branch, storage-alteration, or general­
register-alteration monitoring is active, the associated program event will
be indicated, regardless of what bytes of storage or what general registers
were actually altered by the execute local instruction and regardless of the
general-register-alteration mask.

Resulting Condition Code:

Upon completion of the execute local instruction, the code is set according
to the condition code loaded from the local PSW field of the local execution
list.

Appendix 523

Program Interruptions:

Operation: The instruction is not installed. The operation is suppresseo.

Protection: The operand location is protected, and the key in storage
associated with the operand does not match the protection key in the PSW.
The operation is suppressed.

Addressing: The address of the local execution list is invalid, or the value
formed by summing the origin address and the local limit address exceeds the
maximum valid program address if dynamic address translation is not active
or exceeds 16,777,215 if dynamic address translation is active. The operation
is suppressed.

Specification: The operand address does not specify a 64-byte boundary,
the origin address is not a Il1ultiple of 4096, or the local limit address is
not one less than a multiple of 4096. The operation is suppressed.

Segment Translation: The address of the lecal execution list cannot be
translated. The operation is nullified.

Page Translation: The address of the lccal execution list cannot be translated.
The operation is nullified.

~ranslation Specification: A translation soecification exceotion was detected
while translating the address of the local execution list. The operation is
suppressed.

Special operation: The CPU is already in local execution mode. The operation
is suppressed. The interruption will be indicated to the program which olaced
the CPU in local execution mode.

Program Event: The execute local instruction has been nullified or suppresse':'l,
and attempted execution of the instruction resulted in an instruction-fetching
event. The program event condition is indicated in the interruption code
concurrently with the code denoting the exception condition which caused
nullification or suppression. successful-branch, storage-alteration, and
general-register alteration events are not possible; they cannot occur with
the exception conditions causing nullification or suppression.

Program Event (deferred until local execution mode is terminated): Execution
of the instruction generated a program-event excepticn. The instruction has
been completed.

Local Execution List

The local executicn list, which is the operand of the execute local instruction,
provides the CPU with the parameters necessary for an emulated environment
when the CPU is placed in local execution mode. Upon termination of local
execution mode by an interruption condition, the modified values of these
parameters are stored at locations in the local execution list. Included in
the list is the address of the first instruction in the Emulator to be executed
following termination of local execution mode. The following is a detailed
description of each field and subfield in the 40-byte list:

• The Local PSW Field (bytes 0-7) contains the PSW for the emulated
environment. The PSW is in the BC-mode format.

The Programming Use Subfield (bits 0-15) is an area in which the
Emulator may place bits 0-15 of the current BC-mode PSH of the emulated
environment. This field is neither inspected nor altered by execution

524 DOS Emulator ~ogic

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

of the execute local instruction. The system-mask, p~otection key,
machine crceck mask, BC-mode, wait state, and problem state bits of
the current PSW are unaltered by execution of the execute local
instruction. Also unaltered are the following functions: program­
event recording (although it is inhibited during local execution
mode), and dynamic address translation for program addresses.

The Interruption Code Subfield (bits 16-31) is identical to the
interru~tion code field in the BC-mode PS1i\. Upon termination of local
execution mode by a synchronous interruption, the 16-bit interruption
code associated with the exception condition in the emulated
environment is placed in this field. The contents of this field are
unpredictable when local execution mode has been terminated by an
asynchronous interruFtion.

The Instruction Length Code Subfield (bits 32-33) is identical to
the instruction length code field in the BC-mode PSW. When local
execution mode is terminated by a synchronous interrl.l~tion, the value
stored in this field is the same as that stored in the old PS~..j for
the saroe interruFtion condition in normal mode. The contents of this
field are unpredictable when local execution mode has been terminated
by an asynchronous interruFtion.

The Condition Code subfield (bits 34-35) replaces the current condition
code upon completion of the execute local instruction. UFon
termination of local execution mode because of any interruption
condition, the current condition code is stored in this field.

Th~Pr2g~am M~sk SUEfield (bits 36-39) replaces the prograro mask in
the current PSW upon completion of the execute local instruction.
U~on termination of local execution mode because of any interruption
condition, the current ~rogram mask is stored in this field.

The Local Instruction Address Subfield (bits 40-63) replaces the
instruction address in the current PSW upon completion of the execute
local instruction. It is the local address of the first instruction
to be exe~lted in local execution mode. Upon termination of local
execution mode because of any interruption condition, the current
local instruction address is stored in this field.

• The General Register 14 Field (bytes 8-11) provides a fullword value which
is loaded into general register 14 upon comFletion of the execute local
instruction. Upon termination of local execution mode because of any
interruption condition, the current contents of general register 14 are
stored in this field.

• The General Register 15 Field (bytes 12-15) provides a fullword value which
is loaded into general register 15 u~on comFletion of the execute local
instruction. Upon terroination of local execution mode because of any
interruption condition, the current contents of general register 15 are
stored in this field.

• The Origin Address Field (bytes 16-19) specifies the program address that
corresponds to local address 0 for the emulated environment. This address
must be a multiple of 4096, that is, the three low-order hexadecimal digits
must be zeros. When this field is fetched from the local execution list,
the high-order byte is ignored; it is reserved and should be set to
zero.

The CPU, in converting a local address to a program address, adds the value
obtained from this field to the local address. The contents of this field
are not altered by the execution of the execute local instruction or by the
local execution mode termination process.

Appendix 525

• The Local Limit Address Field (bytes 20-23) specifies the rraximum address
permitted the emulated environment. 'Ihe address must specify one less
than a multiple of 4096, that is, the three low-order hexadecimal digits
must be X'F's. Tte high-order byte of this field is reserved and should
be set to zero. The contents of this field are no~ altered by execution
of the execute local instruction or by the local execution termination
process.

• The Last Instruction Address Field (bytes 24-27) provides, when local
execution mode is terminated by a synchronous interru~tion, the program
address of the instruction causing the interruption. If, ~owever, the
instruction causing the interru~tion was the subject of an execute
instruction, the program address of the execute instruction is stored in
this field. The high-order byte is set to zero. The contents of this
field are unpredictable when local execution mode has been terminated by
an asynchronous interru~tion.

• The supervisor Call Interruption Address Field (bytes 28-31) specifies
the program address of the first instruction to be executed subsequent
to terminaticn of local execution mode by a supervisor call instruction.
After the current instruction address has been stored in the local
instruction address subfield, the contents of the supervisor call
interruption address field replace the current instruction address in the
PSW. The high-order tyte of this field is ignored. It is reserved and
should be set to zero. The contents of this field are not altered by
execution of the execute local instruction or by the local execution mode
termination process.

• The Program Interruption Address Field (bytes 32~35) specifies the program
address of the first instruction to be executed subsequent to termination
of local execution mode by a program interruption condition other than
one of the address translation exceptions. After the current instruction
address has been stored in the local instruction address subfield, t~e
contents of the program interruption address field replace the current
instruction address in the PSW. The high-order byte of this field is
ignored. It is reserved and should be set to zero. The contents of this
field are not altered by execution of the execute local instruction or
by the local execution mode termination process.

• !he~nchroncus Tnterruption Address Field (bytes 36-39) specifies the
program address of the first instruction to be executed subsequent to
termination of local execution mode by any asynchronous interruption.
After the current instruction address has been stored in the local
instruction adjress subfield, the contents of the asynchronous interruption
address field replace the current instruction address in the PSW. The
high-order byte in this field is ignored. It is reserved and should be
set to zero. The contents of this field are not altered by execution of
the execute local instruction or by the local execution mode termination
process.

The contents of the local PSW' general register 14, general register 15, and
last instruction address fields are unpredictable while the CPU is in local
execution mode.

Programming Note: Alteration of the local execution list while the CPU is
in local execution mode gives unpredictable results. For those models which
check the validity of local addresses, the local execution list should be
placed at a location not addressable while the CPO is in local execution mode.
For those models which do not, the local execution list should be placed at
an address that is less than the origin address so as to minimize the chance
of error.

Loss of CPO addressability to the local execution list once the CPU has been
placed in local execution mode will make proper termination of local ~xecution
mode impossible. The key in storage associated with the local execution list

526 Dos Emulator Logic

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

should not be altered while the CPU is in local execution mode. If dynamic
address translation is active, no translation table entry required for
translation cf the address of the local execution list should be altered or
invaliiated while the CPU is in local execution mode.

Local Execution Mode

Execution of an execute local instruction places the CPU in local execution
mode; attached channels are not affected. Program event recording is inhibited
for subsequent instruction execution while the CPU remains in local ex')cution
mode, and any program event exception resulting from execution of the execute
local instruction remains pending until the CPU is removed from local execution
mode. The CPU rerrains in local execution mode until an interruption or a CPU
reset occurs.

In local execution mcde, all instruction and operand addresses are local to
the emulated environment. Addition of the value contained in the origin address
field of the local execution list converts these addresses to program addresses.

Instruction execution in local execution mode proceeds under the protection
in force at the time the execute local instruction was executed.

Except as noted below, any installed nonprivileged system/370 instruction may
be executed while the CPU is in local execution mode. If a privileged
instruction is encountered, a privileged operation exception is recognized,
regardless of the problem state bit of the current PSW. If a monitor call
instruction or any emulation instruction is encountered, a special operation
exception is recognized. For any of these exceptions, the operation is
suppressed, and a program interruption takes place. Conditions causing a
privileged operation exception are checked fcr before conditions that would
cause a special operaticn exception.

For some models, when a lecal address specifies any part of an instruction
or data outside the available local storage, as defined by the local limit
address, an addressing exception is recognized. A program interruption takes
place, and the instruction is suppressed or terminated as appropriate. such
an addressing exception has priority over a segment translation or page
translation exception resulting from attempted translation of the corresponding
program address. If dynamic address translation is active, an addressing
exception of lower priority may also be caused by an invalid address in the
segment or page tables; no distinction is made among the various causes of
addressing exceptions.

Alteration of the local execution list while the Cpry is in local execution
mode gives unpredictable resu'lts.

The condition code and program mask in the current PSW may be altered by
instruction execution while the CPU is in local execution mode. The setting
of the condition code by instruction execution is unaffected by local execution
mode.

The CPU remains in local execution mode when it is placed in the stopped state,
and, if a program event exception is pending as a result of the execute local
instruction which placed the CPU in local execution mode, it remains pending.

If the store status function is executed while the CPU is in local execution
mode, the program address of the lecal execution list is stored in the word
at absolute storage location 268, and bit 0 of this word is set to one. The
instruction address in the PSW stored in the doubleword at absolute storage
location 256 is either the local instruction address or the correspondinq
program address, depending upon the model. (If the execute local instruction
is installed, execution of the store status function causes all bits of the
word at absolute storage location 268 to be set to zeros when the CPU is not
in local execution mode.)

Appendix 527

Termination of Local Execution Mode

Any interruption or any reset removes the CPU from local execution mode.

Interruptions are divided into two classes: the class of asynchronous
interruptions which encompasses all those interruptions caused by conditions
external to the emulated environment, and the class of synchronous interruptions
which are those resulting from instruction execution while in local execution
mode. The class of synchronous interruptions is further divided into two
subclasses: supervisor call interruptions arising from execution of a supervisor
call instruction while in local execution mode, and program interruptions due
to exception conditions generated by instruction execution while in local
execution mode. Program interruptions resulting from segment translation,
page translation, and translation specification exceptions are asynchronous
interruptions, since a condition causing such an interruption is external to
the emulated environment.

In local execution mode, the recognition of any interruption condition for
which the CPU is enabled (otter than a pending program event exception resulting
from the execution of the execute local instruction which placed the CPU in
local execution mode) causes the current contents of general registers 14 and
15, the condition code, the program mask, and the instruction address to he
stored in the corresponding fields of the lccal execution list. If the
interruption causes nullification, the instruction address is the local address
of the nullified instruction; other~ise, it is the updated instruction address.
Additionally, if the interruption is a synchronous interruption, the
interruption code associated with the exception, the instruction length code,
and the program address of the last executed instruction are stored; otherwise
the contents of these fields in the local execution list are unpredictable.
For a program interruption resulting from an odd-numbered instruction address,
the instruction length code is unpredictable, and the last instruction address
is the program address corresponding to the odd-numbered local instruction
address. If the last executed instruction was the subject of an execute
instruction, the program address of the execute instruction is stored in the
last instruction address field.

After the instruction address has been stored in the local execution list,
the instruction address in the current PSW is replaced by the supervisor call
interruption address, the program interruption address, or the asynchronous
interruption address from the local execution list, as appropriate. The
modified PSW is not checked for program interruptions during the process of
termination of local execution mode; these checks occur as part of the execution
of the next instruction.

The cpn is then removed from local executicn mode, and if the interruption
was a synchronous interruption, the interruption condition is cleared. If
a program event excepticn is pending as a result of the execute local
instruction that placed the CPU in local execution mode, the exception is now
recognized.

If the interruption was a synchronous interruption, and if no program event
exception is recognized, instruction execution proceeds as specified by the
modified PSW. If the interruption was an asynchronous interruption, or if
a program event exception has been recognized, the modified psw, with any
ancillary information, is stored in the permanent storage locations for the
highest priority interruption condition pending, a new PSW is loaded from the
appropriate permanent storage location, and the highest priority interruption
condition is cleared. The state of the CPU and subsequent instruction execution
are as specified by this new psw, which also specifies whether any interruption
conditions of lower priority are accepted or kept pending.

528 DOS Emulator Logic

Page of GY26-374l
Revised July 25, 1972
By TNL GN26-8021

If the CPU was removed frem local execution mode because of a segment
translation, a page translation, or a translation specification exception,
and if a program event exception is recognized when local execution mode is
terminated, both conditions are indicated concurrently in the program
interruption code storeo.

An indication of an enabled input/output or external interruption condition
may cause the CPU to initiate termination of local execution mode. In such
a case, should a pending program event exception be recognized, it is
permissible for the CPU te complete termination of local execution mode and
subsequently take the program interruption, even though the indication of the
initial interrupticn condition be canceled.

Under certain ncnrecoverable machine check conditions, the CPU may be unable
to store into the local execution list or to fetch the asynchronous interruption
address from the list. In such cases, local execution mode is terminated,
any pending program event exception is lost, and the contents of the local
execution list are unpredictable, as is the instruction address in the machine
check 010 PS~'1.

otherwise, if upon termination of local execution mode the CPU is unable to
store into the local execution list or to fetch the appropriate interruption
address from the list, a protection exception is recognized, regardless of
the reason why the list cannot be accessed. Any supervisor or program
interruption conditions resulting from instruction execution in local execution
mode are cleared. A program event exception pending from execution of the
execute local instruction may be lost or may be indicated concurrently with
the protection exception. Local execution mode is terminated. The contents
of the local execution list and the instruction address in the old PSW are
unpredictable. On some models, if the CPU is unable to access the local
execution list upon termination of local execution mode, the CPU will enter
an internal loop trying to terminate local execution mode; in these cases,
the CPU must be reset.

Any reset of the CPU in local executicn mode results in termination of local
execution mode. Execution of the current CPU operatien is terminated, and
all pending program and supervisor call interruption conditions are cleared.
The contents of the local execution list are unpredictable. After a CPU reset
while in local execution mode, the instruction address in the old PSW is either
the local instruction address or the corresponding program address if the reset
occurred while the CPU was in the stopped state; otherwise, it is unpredictable.
Aft~r any other reset the PSW is cleared to zeros.

Programming Notes: When any address translation exception occurs while the
CPU is in local execution mode, the instruction address in the program old
PSW resulting frorr the interruption is the asynchronous interruption address
from the local execution list, not the program address of the instruction
causing the interruption.

Instruction execution in local execution mode may alter the program mask.
After termination of local execution mode, tbe program mask in the current
PSW is the same as that which has been stored in the local execution list.

Model Dependencies: The System/370 Model 155 does not check local addresses
against the local limit address unless the dynamic address translation facility
is installed.

The System/370 Model 155 stores a PSW containing the program address
corresponding to the local instruction address when the store status function
is executed while the CPU is in local execution mode. On all other models,
the instruction address in the PSW stored is the local instruction address.

After a CPU reset while in the stopped state, the instruction address in the
PSW is the program address corresponding to the local instruction address in
the Systeml370 Model 1~5. On all other models, the instruction address is
the local instruction address.

Appendix 529

~he System/370 Model 155 is unable to recover when it finds itself unable to
access the local execution list upon termination of local execution mode.

Adjust CCW String Instruction

B20F B2 D2

o 15 16 1920

As part of the ros Emulaticn Feature, an instruction, called the adjust CCW
string instruction, is provided on some CPU models to assist the Emulator in
locating the CCWs of a channel program, testing the validity of the addresses
of CCWs and their storage areas, and adjusting their data addresses. On other
models, these functions are accomplished by the Emulator.

Consecutive doublewords are interpreted as a string of CCWs, and the data address
fields of these CCWs are adjusted by the addition of a signed adjustment factor.
The string of CCWs begins at a location designated in the CCW address field
of a list specified by the operand address. The list, called the ACCW list, begins
on a 64-byte boundary and contains these fields:

Bytes 0 - 3 Signed Adjustment Factor

Bytes 4 - 7 Local Limit Address

Bytes 8 - 11 Operation Byte

Bytes12-15 Operation Pointer

Bytes 16 - 19 CCW Address

Bytes 20 - 23 TIC Data Address

Figure 90. ACCW List

The signed adjustment factor used to adjust the data address field is contained
in the ACCW list. Tr.e factor is a nonnegative value to convert addresses local
to the emulated environment to program addresses, and it is a negative value
to convert program addresses to local addresses. Adjustment consists in

530 Dos Emulator Logic

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

replacing the data address in a ccw with the 2q low"order bits of the algel::raic
sum of the adjustment factor and the data address, where the latter is
considered to be an unsigned binary number. The data address fields of
consecutive CCws are adjusted until one of the following conditions occurs:

• The last CCW of the string, as indicated by the absence of both the chain
data and chain command flags, has been adjusted.

• A CCW whose command code specifies transfer in channel has been adjusted.

• A CCW specifying indirect data addressing has been adjusted.

• A CCIN has been adjusted that specifies a local storage area at least
partially outside the limits of local address 0 and the local limit address.

• The local address of the next CCW to be adjusted falls outside the area
bounded by local address 0 and the local limit address, or the local address
does not specify a doubleword boundary.

Anyone of these conditions completes execution of the adjust CCW string
instruction and sets the condition code to indicate the reason for comoletion.
The program address + 8 of the last ccw adjusted is placed in the ACCW'list.
If data chaining was in progress, the command code and the program address
of the CCW containing the command code are stored in the operation byte field
and the operation pointer field, respectively, of the ACCW list. Otherwise,
zeros are stored in the operation byte field. If the last CCW adjusted
specifies transfer in channel, the TIC data address field of the ACCW list
contains the data address, prior to adjustment, that was in the CCW.

Execution of the instructicn may be interrupted by an external event. If an
interruption condition is presented to the CPU during execution of the
instruction, with the CPU enabled for the interruption, the interruption is
taken upon completion of the current unit of operation. A unit of operation
is the operation within the instruction execution required for complete
adjustment of a CCW. The instruction address stored in the old PSW as a result
of the interruption is the address of the adjust CCW string instruction, or
the address of an execute instruction if the adjust CCW string was the object
of such an instruction. The contents of the ILC and CC fields in the old PSW
are unpredictable. The contents of the ACCW list are such that execution of
the adjust CCW instruction may be resumed by loading the old PSW stored as
a result of the interruption.

Resulting Condition Code:

o End of the CCW string; the last CCW adjusted specifies neither data
chaining nor command chaining.

1 A CCW specifying transfer in channel was the last CCW adjusted.

2 The last CCW adjusted specifies a local storage area at least partially
outside the limits of local address 0 and the local limit address.

3 The local address of the next CCW to be adjusted does not specify
a doubleword boundary or is outside the limits of local address 0
and the local limit address, or the last CCW adjusted specifies
indirect data addressing.

Appendix 531

Program Interruptions:

operations: The instruction is not installed. The operation is suppressed.

Protection: The operand location is protected, and the key in storage
does not match the protection key. The operation is suppressed for fetching
and terminated for storing; or a CCW in the designated string is protected,
and the operation is terminated.

Addressing: The address of the ACCW list is invalid, and the operation is
suppressed; or the address of a CCW in the designated string is invalid, and
the operation is terminated.

Specification: The operand address does not specify a 64-byte boundary,
or the signed adjustment factor is not a multiple of 4096, or the local limit
address is not one less than a multiple of 4096. The operation is suppressed.

Segment Translation: The address of the ACCW list or of a CCW cannot be
translated. ~he operation is nullified.

Page Translation: The address of the ACCW list or of a CCW cannot be
transla~ed. The operation is nullified.

Trans]~tion Exception: A translation specification exception is detected while
translating the first operand address or the address of a Ccw. ~he operation
is terminated.

Special operation: The adjust CCW string instruction was encountered while
the CPU was in local executicn mode. The operation is suppressed, and the
interruption is indicated to the program that placed the CPU in local ex~cution
mode.

Program Event: An instruction-fetching or storage alteration event has been
encountered. The operation is completed, nullified, or terminated. (see the
detailed descripticn of program-event reccrding.)

The ACCW List

The operand of the adjust ccw string instruction is the ACCW list. The
following is a detailed description of each field in the 24-byte list at the
initiation of the instruction execution:

The Signed Adjustment Factor Field (bytes 0-3) is a signed fullword binary
number whose value must be a mUltiple of 4096 (that is, the three low-crder
hexadecimal digits must be zeros).

The Local Limit Address Field (bytes 4-7) provides the maximum address permitted
the emulated environment. This address must be one less than a multiple of
4096 (that is, the three lew-order hexadecimal digits must be X'FFF'). I,ocal
CCW addresses and the extrerre lecal addresses of the storage area defined for
each CCW by the data address, command code, and count must fall between local
address 0 and the local limit address. The high-order byte of this field is
reserved, and should be set to zero.

The Operation Byte Field (bytes 8-11) when zero, byte 11 indicates that the
initial ccw to be adjusted contains its own command code. When byte 11 is
not zero, the first CCW to be adjusted is considered to be part of a sequence
of CCws that are data chained together, and byte 11 provides the corrmand code
for this sequence. When fetched from the ACCW list, the three high-order bytes
of this field are ignored; they should be set to zeros.

532 DOS Emulator Logic

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

The operation Pointer Field (bytes 12-15) contains the address of the CCW that
originated the operation byte for the last CCW adjusted that did not specify
transfer in channel. When the field is fetched from the ACCW list the high­
order byte is ignored; it is reserved and should be set to zeros.

The CCW Address Field (bytes 16-19) provides the address of the first CCV1 to
be adjusted. When this field is fetched from the ACCW list, the high-order
byte is ignored; it is reserved and should be set to zeros.

~he TIC Data Address Field (bytes 20-23) is ignored ufon initiation of
instruction execution.

The contents of the signed adjustment factor field and the local limit address
field are not altered by the adjust CCW string instruction. At the end of
the operation the contents of the remaining fields defend upon the manner in
which execution tock place. In general, if the operation was suppressed, the
contents of the entire list are unaltered, while if the operation was
terminated, the contents of bytes 8-23 of the ACCW list are unpredictable.
Upon instruction nullification or completicn, the contents of the remaining
fields are as follows:

• For the operation byte field:

Bytes 8-10 will always be zeros.

Ufon completion with condition code 0, bute 11 will be zero.

Upon completion with condition code 1, if the TIC command was data
chained into, byte 11 will contain the command code in force for the
string of CCWs data chained together; otherwise, it will ce zero.

Upon completion with condition code 2, byte 11 will contain the command
code in force for the last ccw adjusted if that CCW specifies data
chaining; otherwise, it will be zero.

Upon completion with condition code 3:

If no CCWs have been adjusted, byte 11 is unaltered.

If the last CCW adjusted specifies indirect data addressing, byte
11 will contain the command code in force for that ccw.

If the last CCW adjusted does not specify indirect data addressing,
byte 11 will contain the command code in force for the last CCW
adjusted if that CCW specifies data chaining; otherwise it will be
zero.

Upon nullification, if the last CCW adjusted specifies data chaining,
byte 11 will contain the command code in force for that CCW; otherwise,
it will be zero.

• For the operation pointer field:

The high-order byte will be set to zero.

U~on completion with condition code 1, if the TIC command was data
chained into, the operation pointer field will contain the program
address of the ccw at the start of the chain of CCWs data chained
together. Other~ise, the operation pointer field will contain the
program address of the CCW containing the command code in force prior
to fetching the TIC command.

Appendix 532.1

Upon completion with condition code 3, when no CCWs have been adjusted,
the operation pointer field will contain the same address as upon
initiation of instruction execution.

Under all ot.her conditions, the operation pointer field will contain
the program address of the C~l containing the cOIT'mand code in force
for the last CCW adjusted.

• For the CCW adaress field:

The high-order byte will be set to zero.

Upon completion with condition code 3, when no CCWs have been adjusted,
the ccw address field will contain the same address as upon initiation
of instruction execution.

Under all other conditions, the CCW address field will contain the
program address + 8 of the last ccw adjusted.

• The TIC data address field:

Upon completion with condition code 1, the TIC data address fiela
contains zero in byte 20 and the data address from the ~IC command,
prior to its adjustwent, in bytes 21-23.

Under all other conditions, the TIC data address field is unaltered
by execution of the adjust ccw string instruction.

Upon nullification due to a segment-translation exception or a page translation
exception encountered when attempting to access the initial CCW, the data
contents of the ACCW list are unaltered. 'Ihe high-order byte of the operation
pointer field and the CCW address field and bytes 8-10 of the operation byte
field may either be unaltered or set to zeros.

Programming Note:

If a CCW specifies transfer in channel, no limit checking of the data address
occurs. The data address is adjusted, and the instruction is completed with
condition code 1.

If a CCW specifies indirect data addressing, no limit checking of the data
address occurs. ~he data address is adjusted, and the instruction is completed
with condition code 3.

During execution of the adjust CCW string instruction, the contents of the
ACCW list are unpredictable. In particular, the CPU may alter the contents
of the list after the adjustment of each CCW in the string.

If the CPU is unable to access the ACCW list after initiation of the adjust
ccw string instruction, the operation will be terminated. The cause of
termination will be indicated as a prograw interruption due to protection
exception.

This condition may arise independently of any other interruption conditions,
or it may be detected only when an attempt is made to store into the ACCH list
in order to interrupt the adjust CCW string instruction. In the latter case,
the program interruption due to protection exception is taken (concurrently
with a program event exception if necessary). Any address translation
exceptions are lost. If the interruption condition is of lower priority than
the program interruption, the program interruption occurs first, and the other
interruption is subject to the control of the mask bits in the program new
PSW.

Model Dependencies:

The adjust CCW string instruction is available on Models 145 and 155.

532.2 DOS Emulator Logic

GLOSSARY

Page of GY26-3741
Revised July 25, 1972
By TNL GN26-8021

The terms in this glossary are defined as they pertain to this document.

ACCW list: See adjust CCW list.

address translation: The process of changing the address of a data item or
an instructicn from its virtual address to its real storage address.

adjust CCW list: The area of main storage that contains data pertinent to
the adjust ccw string instruction (See APfendix).

adjust CCW string: The instruction used to modify ccw command addresses so
they address the main-storage area aSSigned to the DOS storage area in the
Emulator region.

adjustment factor: A constant that is added to the address fields of DOS
instructions as they are executed.

appendages: Emulator routines that provide additional control over I/O
operations during channel program execution. An appendage may receive control
when a channel end, abnormal end, end-of-extent, or a start I/O condition
occurs. Refer to Data Management for Syst~~ Progr?~mers for OS or OS/VS.

asynchronous interruptions: Interruptions that occur without regular time
relationships; unexpected or unpredictable with respect to the execution of
a program's instructions (I/O, machine check, external).

Eackground partition (BG): In DOS, storage is divided into three partitions.
The partition with the lowest priority is the background partition (see
'foreground partition').

basic telecoITmunications access method (BTAM): Controls transmission and
reception of messages over telecommunications lines in resfonse to READ, WRITE
and CONTROL macro instructions issued in the user's problem program. The
primary functions of BTAM are channel program generation at object time and,
at the user's ortion, buffer management.

beginning and end block (EEELI9: Contains one 8-byte entry for each group
of CCWs that contain the beginning and ending addresses +8 of each group.

bootstrap: A technique or device designed to bring a program into main storage
by means of its own action, for example, a subroutine whose first few
instructions are sufficient to bring the rest of it into the computer from
an input device.

B-transient area: A special area of the DOS supervisor reserved for B-transient
routines.

B-transient routines: DOS routines that deal primarily with the logical
input/output control system. These routines are located in the core image
library.

channel addres~ word (CAW): Contains the address of the first ccw.

charnel c~mand word (CCW): Indicates to a channel what I/O operation it
should start. For operations involving data transfer, also indicates the main­
storage location into which data is to be placed or read from, and how many
bytes of data are to be transferred.

channel status word (CSW): Indicates to a program the status of an I/O device,
control unit, channel, and subchannel.

Glossary 533

command control block (CCE): A DOS control block containing information
pertinent to DOS data set processing.

common area: A control section used to reserve a main-~torage area that can
be referred to by other modules. communications t~ble (COMTAB): Contains
one entry for every DOS device allocated to emulation plus an entry for SYSLOG.

compatible data set: When a data set does not have to be changed in format
to be accessed by the Emulator, DOS, or OS.

COMTAB extension: The control block that is either chained to a COMTAB entry
or to another COMTAB extension entry. There is one COMTAB extension entry
for every shared or OS indexed sequential data set.

conversion: The process of changing from one form of representation to another,
for example, converting indexed sequential data sets from DOS to as format.

DASD label (DLBL): Internal format of a DOS DLBL extent statement read from
the label cylinder by DOS OPEN phases.

data control blcck {DCB}: A control r.lock through which the infcrmation
required by access routines tc store and retrieve data is communicated to the
access routines.

data definition-1DD} statement: A job control statement that describes a data
set associated with a particular job step.

data event control block JDECB} -- BISAM: A control block through which
information concerning input or output operations is communicated to BISAM.

data extent block (DEB): Contains one or more extent entries and other control
information for the data set with which it is associated.

data set: The rrajor unit of data storage and retrieval in the operating system,
consisting of a collection of data in one of several prescribed arrangements
and described by control information to which the system has access. See also
file.

data set control block--extension {format 3} (DSCB): A control block that
describes up to 13 additional extents that cannot be described in a format
1 DSCB.

data set contr21 block--i1entifier jformai-1l, (DSCB): A control block that
describes the characteristics and up to three extents cf a data set.

data set control block--V~OC J!ormat_~l (DSCB): The 140-byte block, always
the first DSCB in the VTOC, that describes the VTOC data set.

data set name: A 44 character name that identifies an OS data set.
must be identical to the DOS file !D to indicate a DOS shared file.
DSNAME and file 10.)

This name
(see also

dedicated device: A device assigned specifically to operate under DOS. It
is inaccessible to as programs until released from this assignment.

define the file (DTF): A macro instruction that describes the characteristics
of a logical file, indicates the type of proceSSing for the file, and specifies
the main-storage areas and routines to be used.

define the file for indexed seguential (DTFIS): Same as the definition for
a DTF except that a DTFIS describes the characteristics of a logical file for
ISAM.

534 DOS Emulator Logic

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

DIAG block: The area of main storage used to adjust and readjust the data
address portions of the CCws from DOS local addresses to OS true addresses,
then back to DOS local addresses.

diagnostic block: See DIAG block.

direct-access storage device (DASD): A type of storage device wherein access
to the next position from which informaticn is to be obtained is in no way
dependent on the position from which information was previously ottained.

disk operating system (DOS): Wherever the term DOS is used in this manual,
it refers to DOS system and/or DOS problem programs.

DLBL/EXTENT card image: Contains the extent limits, extent type, extent
sequence number, logical unit, vclume serial number, expiration and creation
dates, and DLBL indicator according to the OS information about the file.

DOS compatibility feature: A hardware feature that permits execution of DOS
programs within the OS environment.

DSNAME: A parameter in a DD statement that is used by the operating system
to locate the data set on a volume. (See also data set name.)

DTFIS ADD-RETRVE-ArDRTR table: A DTF table built at assembly time and tailored
to the DT~ parameters associated with the add and retrieve functions of ISA~.

DTFIS load table: A DTF table built at assembly time and tailored to the DTF
parameters associated with the load function of ISAM.

dummy record: A record that takes up space in a file but is not actually a
record of that file.

dvnamic.addre~s translation (DAT): A hardware feature that performs the
translation of a virtual storage address to a real storage address during
execution of an instruction.

ECB pointer table: A list of 4-byte addresses for SYSLOG, the three Emulator
ECBs (prompt, WTOR, and timer), and the ECBs for staged devices and devices
being used for emulation.

EMUCONS: A dummy section (DSECT) containing data constants cOmmon to most
Emulator modules. See also IIVCON.

emulation: The combination of programming techniques and special machine
features that permits DOS programs to operate in the OS environment.

Emulator {as used in this publication}: Designates the DOS Emulator program
IIVEMU. See also emulation.

~mulator region: The main-storage area (OS) in which the Errulator program,
Emulator control clocks, and the DOS main-storage area reside.

event control block (ECE)
an event.

A control block used to represent the status of

execute: To carry out an instruction or perform a routine.

execute local: The instruction used to place the system in local execution
mode and to adjust the instructions and instruction operands within the storage
area aSSigned to the adjusted DOS storage area.

extent: ~he physical locations on input/output devices occupied by, or reserved
for, a particular data set.

FCB: See forms-centrol buffer.

Glossary 535

FCB image: An image of the carriage control used by the IBM 3211 Printer and
the Emulator. ~he image must be assembled and link-edited into SYS1.IMAGELIB.
(See forms-centrol buffer.)

file: The major unit of data storage and retrieval in the disk operating
system, consisting of a collection of data in one of several prescribed
arrangements and descriced by control information to which the system has
access. See also data set.

file 1D block (FltBLK): A block for each opened file to map a DOS OPEN DTF
to an OS OPEN DCB.

!oreground partition: In DOS, storage is divided into three partitions. The
partitions with highest and next-to-highest priority are foreground partitions.

forms-central buffer: The forms-control buffer (FCB) is 180 positions and
is used to store vertical formatting information. Each position corresponds
to a line on the form. The FCB is addressed in synchronism with carriage
movement. Channel codes used for skipping control are stored at the FCB
addresses corresFonding to the desired line positions on the form. A flag
bit off or on at FCB address 1 determines six or eight lines per inch vertical
spacing respectively. The flag bit on at an address other than 1 identifies
the corresponding line as the last line on the form. The FCB is loaded by
the "load FCB" command.

forms-control image: A term applied to the Emulator. {See FCB image.)

hard wait: A condition in which the system is placed in the wait state with
all interruptions disabled.

IIVCON: A control section containing data constants common to most Bmulator
modules. See also EMUCONS.

I1VRCN:
modules.

A control section cintaining data contents common to the service aids
see also RASCONS.

image: See FCB image.

initial program load (IPL): The initialization procedure that loads the nucleus
or supervisor and begins normal operation.

input/output block (lOB}: A block used for communication between the proclem
program and the system; provides the addresses of the other control blocks
and maintains information about the channel program, such as the type of
chaining and the progress of I/O operations.

integrated Emulator: An Emulator designed to be executed under control of
a system control program in a multiprogramming environment.

interface: A shared boundary, such as OS and DOS control blocks that are
modified or examined by the Emulator.

ISAM block (ISBLK): A tatle built by the Emulator when a DTFIS is opened and
used at I/O macro time to map to the as data set.

1SK/SSK table: Contains one 1-byte entry for each 2K block of DOS dynamic
storage.

job file control block (JFCB): A control block holding the internal format
of an OS DD statement.

job (JOB) statement: The control statement that identifies the beginning of
a series of job central statements for a single job.

536 DOS Emulator Logic

library: A collection of related files (DOS) or data sets (OS).

Page of GY26-374I
Revised July 25, 1972
By TNL GN26-8021

load~dules: Reside on a link or job library for the purpose of being loaded
into main storage.

local address: An unadjusted DOS main-storage address.

local execution list: ~he area of main storage that contains data that is
pertinent to the execute local instruction (see Appendix).

local execution mode: That state the CPU enters when the execute local
instruction is issued (see Appendix) •

local execution PSW: Effective DOS current PSW when CPU is in local execution
mode.

logical unit block (LUB): A DOS control block that associates a LOS logical
unit with its corresponding physical unit.

map: Ao establish a correspondence between the elements of one set and the
elements of another set, such as to assign to every DOS device a device of
the same type or a DOS macro to an OS macro.

module: An entity associated with a single assembly or corr~ilation. The
smallest unit used for distribution and maintenance purposes, for example,
the set of statements in some source language that is compiled, or the resulting
code.

normal mode: That state of the CPU during execution of OS or E~ulator programs.

open table: A common section located in the B-transient area for all DOS
OPEN/CLOSE phases initialized by phase 1 of the OPEN or CLOSE monitor.

OS PUB table: Contains a 1-byte entry for each DOS PUB that functions as an
index into COMTAB.

nage table: A table that indicates whether a page is in real storage and
correlates virtual addresses with real storage addresses.

~ge translation exception: A program interruption that occurs when a virtual
address cannot be translated by the hardware because the invalid bit in the
page table entry for that address is set.

partition: see region.

password data set: An OS data set that is protected from other users by means
of a password that must be given to the operating system at the time the data
set is accessed.

phase: Under DOS, the smallest ccmplete unit that can be referred to in the
core image library. Each overlay of a program or the program itself, if it
contains no overlays, is a single, complete phase.

physical unit block (PUB): A DOS control block that contains information
pertinent to the device characteristics of an input/output unit.

post ECB list: Contains one 2-byte entry for each entry in COMTAE, the first
of which is an index into COMTAB and the second the completion oode from the
ECB when it was last posted.

preformatted DOS file: The cap~city records are reset to reflect empty tracks
on the file of a disk pack or data cell. This is done in preparation for
creating a new file.

Glossary 537

£!ivate volume: In OS, a mounted volume that the system can allocate to an
output data set only when a specific volume request is made. A private vol~me
is demounted after its last use in a job step.

£rivileged instruction: An instruction that can only be executed when the
CPU is in supervisor state.

£!ohlem program: Any program that is not part of the Operating System: a
routine that solves problems, sorts and merges records, performs computations,
etc., as opposed to a contrcl program or a language translator.

processing program: A general term for any prograrr that is not a control
program.

£rogram event recording (PER): A hardware feature used to assist in debugging
programs by detecting program events.

£rogram information block (PIE): A DOS control block that contains information
pertinent to DOS task management.

program status word (PSW): A doubleword in main storage used to control the
order in which instructions are executed and to hold and indicate the status
of the system in relation to a particular program.

£rompt: A special Emulator message that allows the operator to communicate
with the Emulator at any tirne.

~otection key: An indicator, associated with a task, that appears in the
program status word whenever the task is in control, and that must match the
storage keys of all storage blocks it is to use.

public volume: In OS, a mcunted volume that the system can allocate to an
output data set for which a nonspecific vclume request is made. A public
volume remains mounted until the device on which it is mounted is required
by another volume.

RASOONS: A dummy section (DSECT) containing data contents common to the service
aids modules.

reader/interpreter: The part of the control program that controls the reading,
transcription, and interpretation of an input job stream.

~egion: An area of main storage set aside for a job.

resident volume (~OSRES)
and supervisor' reside.

The direct-access volume in which the DOS IPL program

resume PSW: The PSW DOS continues with whether or not modified by the Emulator,
i.e., the local execution PSW.

root segment: That segment of an overlay program that remains in main storage
at all times during the execution of the overlay program; the first segment
in an overlay program.

routine: An ordered set of instructions that may have some general or frequent
use. A module may consist of one or several routines.

segment table (SGT): A table used in dynamic address translation to control
user access to virtual storage segments. Each entry indicates the length,
location, and availability of a corresponding page table.

segment table entry (STE): An entry in the segment table that indicates the
length, location, and availability of a corresponding page table.

538 DOS Emulator Logic

Page of GY26-3741
Revised July 25,1972
By TNL GN26-8021

segment translation exception: A program interruption that occurs when a
virtual address cannot be translated by the hardware because the invalid bit
in the segment table entry for that address is set.

shared data set: When other OS job steps may access a data set concurrently
with the Emulator.

shared volume: When other os jot steps may access a volume concurrently with
the Emulator.

simulation (as used in thi~utlication): The programming techniques used
in the Emulator to produce, as nearly as possible, the results that DOS
instructions and hardware functions produce in a stand-alone DOS environment.

snap dump (as used in this-publication): A selective dynamic formatted dump
performed at various points in a program run.

soft wait: ~hat state the CPU enters when the wait bit of the current PSW
is set to one and interruptions are enabled.

spooling: All primary input streams are read from an input device and
temporarily stored on a DASD in a fermat eenvenient for later precessing by
the Operating System and user programs. System and selected user print and
punch output are similarly stored on a DASD until a convenient time for writing
hard copy.

staged I/O: The ability to request input/output operations without regard
to the characteristics of the input/output devices; partitions compete for
these devices on a priority basis or on a first-in, first-out deterroinant.

~taged I/O constants bleck (STGCON): The block residing in the lOB area for
staged devices that contains data unique te the particular device being staged.

stand-alone DOS: The disk operating system as it functions in its own
environment (contrasted to DOS when it is emulated).

stand-alone emulator: An Emulator that can be executed only on a computing
system totally dedicated te that program.

subroutine: A routine that can be part of another routine.

sUDervisor: ~he mediuro through which the use of resources is coordinated and
the flow cf operations through the CPU is maintained; hence, a control program
that executes in the supervisor state.

~~~rvisor call (SVC): An instruction that causes an SVC interruption in the 
hardware to give central to a centrel program routine (called an svc routine) 
for some specific action, such as reassigning parts of main storage or 
retrieving data from an I/O device. This interruption mechanism differs when 
the program is running in lccal execution mode. See the Appendix for details. 

§ynchronous interruptions: Interruptions that occur with a regular or 
predictable time relationship {program check, SVC}. 

SYS1.IMAGELIB: The OS system library in which UCS and FeB images reside. 

SYS1.LINKLIB: The OS system library that contains executable programs and 
modules. 

tape error block (TEB): A DOS control block that contains information pertinent 
to error recovery processing. 

tape error bloc~ volume (TEBV): This is a DOS table composed of one status 
block and {nl error blocks and pointed to by the TEEVTAB field in the DOS BG 
COMREG extension. 

Glossary 539 



task: A unit of work for the central processing unit from the standpoint of 
the control program, that is, the basic multiprogramming unit under the control 
program. 

task I/O table (TIOT): A table that contains information pertinent to input 
and output processing. One TIOT entry is created by the Operating system for 
each DD statement supplied in the job step. 

I 
translation sEecification exception: A program interruption that occurs when 
a page table entry, segment table entry, or the control register pointing to 
the segment table contains infcrmation in an invalid format. 

trap (as used in !his publication): Intercepting a given DOS event and 
recognizing certain specific DOS or Emulator conditions. 

true address: An actual main-storage address (OS) within the Emulator region. 

unit control block (UCB): An OS control block that contains information 
pertinent to the device characteristics of an input/output unit. 

virtual storage: Addressable space that appears to the user as real storage, 
from which instructions and data are mapped into real storage locations. The 
size of virtual storage is limited by the addressing scheme of the computing 
system and by the amount of auxiliary storage available, rather than by the 
actual number of real storage locations. 

volume: That portion of a single unit of storage media that is accessible 
to a single read/write mechanism, for example, a drum or disk pack, or a 
recording medium that is mounted and demounted as a unit, for example, a data 
cell. 

volume label: Uniquely identifies the volume. 

volume table of contents (VTOC): A table, associated with a direct-access 
volume, that describes each data set on the volume. 

write to operator (WTO): A macro instruction that causes a message contained 
within the macro to be written to the operator's console. 

write to operation with reply (WTOR): A macro instruction that causes a message 
contained within the macro to be written to the operator's console. An operator 
reply is required. 

540 DOS Emulator Logic 



INDEX 

Indexes to program logic manuals are consolidated in the publication as Master 
Index to Logic Manuals, GY28-6717. For additional information about any subject 
listed below, refer to other publications listed for the same subject in the 
Master Index. 

"". 
abnormal end 

appendages 6, 28-29 
(see also IGG019S1 and IGG019SA) 

conditions 42 (see also rIVAEN) 
DASD (see subroutines) 

ADD, RETRVE, ADDRTR open mapping 
subroutine (see subroutines) 

addresses 
local 
program 

adjust CCW data address list 
(see also adjust CCW string 
instruction) 
data area layout 397 
defined in glossary 533 
function described in IIVCCW 70 
in data area directory 360 

adjust CCW data address routine 
(see IIVCCW) 

adjust CCW string instruction 
defined in glossary 533 
function 521 
termination condition (table) 531 

appendages, Emulator (see Emulator 
appendages) 

ASKOPR subroutine (see subroutines) 
asynchronous intercept initialization 

routine (see IIVRASYN) 
asynchronous intercept routine 

(see I IV ACI) 
asynchronous interrupt check subroutine 

(see subroutines) 
asynchronous interrupt exit routine (s~ 

IIVRTE) 
asynchronous interruptions (see 

interruptions, asynchronous) 
ATTACH macro 419 

II 
B-transient phases, sequence, and 

table 471 
beginning and end block (BEBLK) 

data area layout 400 
defined in glossary 533 
~unction described in IIVCCW 70 
in data area directory 360 

build DLBI. routine (see subroutines) 
bypass label processing (ELP) 7 

II 
CAW (channel address word) 

data area layout 402 
defined in glossary 533 
in data area directory 360 
verification routine (see IIVAWV) 

CCB (command control block) 
data area layout 405 
defined in glossary 533 
in data area directory 360 
in DOS control blocks 476 

CCW (channel command word) 
adjustment routine (see IIVADJ) 
data area layout 402 
defined in glossary 533 
in data area directory 360 
verification routine (see IIVCWV) 

channel address word (see CAW) 
channel command word (see CCW) 
channel end 

appendages 6, 28-29 
(see also IGG019S1 and IGG019SA) 

DASD (see subroutines) 
channel status word (see CSW) 
CHAP macro 479 
check 1/0 routine (see IIVCHn 
CHECK macro 479 
CHKCUU subroutine (see subroutines) 
CLOSE 

macro 479 
mapping routine (see subroutines) 
routine (see subroutines) 

combine subroutine (see subroutines) 
COMB04A subroutine (see subroutines) 
command control block (see CCB) 
command processor routine (see IIVRCP) 
commands, service aids 

DI AG 503 
~ND 504 
EXIT 501 
SNAP 498 
STORAGE 501) 
1'!lACE 493 

common data area (listing) 
communications table (COMTAB) 

data area layout 406 
defined in glossary 534 
in data area directory 360 
initialization 18, 44 
relationship of COMTAB to COMTAB 

extension (figure) 48 
compatibility feature (see DOS 

compatibility feature) 
CO'TAB extension 

data area layout 409 
defined in glossary 534 
in data area directory 360 
initia1izatio n 18, 45 
relationship of COMTAB to COMTAB 

extension (figure) 48 
COMTAB macro 363 

(see also communications table) 
control subroutine (see subroutines) 
control to DOS, passing 20 
csw (channel status word) 

data area layout 404 
defined in glossary 533 
in data area directory 360 

Index 541 



CTEXT macro 363 
(see also COl'lTAB extension) 

current PSi, DOS (see PS~ 
CVT subroutine (see subroutines) 

DASD label (see DLBL) 
data area direct ory (table) 360 
data area relationships (figures) 

relationship of IIVCON to other 
data areas 438 

when direct-access data sets/files, 
other than as indexed sequential, 
are shared 394 

when as indexed sequential, direct­
access data sets are shared 395 

when resources are dedicated or 
staged 393 

data control block (see DCB) 
data event control block (see DFCB) 
data extent block (see DEB) 
data formatting subroutine 

(see subroutines) 
data set control block--format 1, 3, 4 

(see DSCB) 
data set requirements 8 
DCB (data control block) 

data area layout 414 
defined in glossary 534 
in data area directory 360 
in as control blocks 484 
initialization 19, 51 
macro 479 

DCBD macro 479 
DDS CAN subroutine (see subroutines) 
DEB (data extent block) 

data area layout 418 
defined in glossary 534 
in data area directory 360 
in as control blocks 485 

DEBD macro 363 
d~bug statement 490 

commands 493 
examples of valid and invalid 505 
how to code 489-491 

debugging, hints for 472 
DECB (data event control block)--BISAl'I 

data area layout 417 
defined in glossary 534 
in data area directory 360 
in as control blocks 486 

dedicated resources 3 
DELETE macro 479 
DEQ macro 479 
DETACH macro 479 
device sharing simulation routine (see 

IIVDVS) 
devices, dedicated 3 
DIAG 

block (see diagnostic block) 
command 503 

DIAGNOSE privileged operation 24 
diagnostic aids 471 
diagnostic block 

defined in glossary 534 
function described in IIVRCW 108-109 

542 DOS Emulator Logic 

in data area directory 361 
in data area layout 424 

direct-access volume sharing 30 
data areas affected by open processing 

(JIVDVS) (figure) 33 
data areas affected by open processing 

(IIVIS) (figure) 38 
DOS sequential DASD and direct-access 

shared files 32 
flowcharts 22A-25E 256-289 
open/close processing for a sequential 

disk output file (figur~ 31 
as indexed sequential data set 

sharing 37 
os sequential DASD and direct-access 

shared data sets 32 
processing OPEN and I/O macros for an 

OS indexed sequential data set 39 
directories 357 

data area 360-362 
Emulator macros 363-365 
Emulator module 358-359 
field names 381-389 
symbols 365-380 

DLBL (DASD label) 
data area layout 410 
defined in glossary 534 
in data area directory 360 

DLBLD macro 363 
DOS (disk operating system) 

backqround communication region field 
extension significant to the 
Emulator (figure) 475 

CE S10 477 
communications region fields 

significant to the Emulator 
(figure) 474 

compatibility feature 
defined in glossary 535 
function 522 

control blocks 475 
current PSi (see PSi) 
emulation 1 
Emulator dependence on 473 
Emulator entry routine (see lIVE NT) 
Emulator program (see Emulator 

program, DOS) 
IPL (see Emulator program, DOS) 
low storage (figure) 474 
programming considerations 478 
PUB table (see also PUB) 

data area layout 459 
SIO 477 
storage area, establishing 18, 44 
storage in Emulator region (figure) 

45 
system residence file, shared 41 
time-of-day 477 

DOSCCB macro 363 
DOSCOl'l macro 363 
DOSCORE macro 363 
DOSPIB macro 363 
DOSPUB macro 363 
DOSREGS macro 363 
DRILTST macro 363 
DSCB--Format 1 

data area layout 420 
defined in glossary 534 
in data area directory 361 
in OS control blocks 486 



DSCB--Format 3 
defined in glossary 534 
in data area directory 361 
in data areas 421 

DSCB--Format 4 
data area layout 421 
defined in glossary 534 
in data area directory 361 
in OS control blocks 486 

DTFD macro 363 
DTFIS ADD-RETRVE-ADDRTR table 

data area layout 425 
defined in glossary 535 
in data area directory 361 

DTFIS 10 ad table 
data area layout 425 
defined in glossary 535 
in data area directory 361 

DTFISDST macro 363 
dumps 

interpreting 509 
snap of BEBIK (listing) 514 
snap of DOS registers and storage 

(listing) 516 
snap of Emulator I/O control blocks 

(listing) 513 
snap of Emulator trace table 

(listing) 514 
snap of TIVCON Uisting) 512 
snap of service aids (listing) 509 

II 
ECB (event control block) 

data area layout 434 
defined in glossary 535 
in data area directory 361 

BCB pointer table 
data area layout 435 
definEd in glossary 535 
in data area directory 361 
initialization 19, 49 

EMUCONS macro 364 
(see also 1IVCON) 

Emulator appendages 
abnormal end/channel end 6, 29, 484 

(see also IGG019S1) 
start 1/O/end-of-extent/channel 

end/abnormal end 6, 28, 484 
(see also IGGO 19SA) 

Emulator macros 363-365 
Emulator program, DOS (TTVEMU) 

common data area (listing) 439 
control to DOS, passing 20 
data area relationships 

(figures) 393-395 
data area relationships to IIVCON 

(figure) 438 
data set requirements 8 
cependencies on OS, DOS, and 

hardware 473 
DOS storage area, establishing 

18, 44 
flowcharts 118-355 
function 1 
functional organization of 

interruption handling 
(figure) 113 

general register assignments 517 
initialization 16 
interruption action when CPU is in 

local execution mode 21-28 
IPt, DOS 

description 20, 49, 477 
OS region at beginning of 

(figure) 50 
1PL of DOS supervisor during 

initializa tion (figure) 17 
main storage environment (figure) 2 
main storage requirements 10-13 
message-to-module relationships 

518- 519 
method of operation 15 
module relationship (figure) 114 
modules (see modules; directories; 

Emulator module) 
operational considerations 7 
operations, major 16 
overlay structure and load modules 

(figure) 11 
parameters, verifying 18 
physical characteristics 10 
resource requirements 2-6 
service aids 489 
tables, initializing 

communications table 
(COI'ITAB) 18, 44 

COI'ITAB extension 18, 45 
data control block (DCB) 19, 51 
ECB pointer table 19, 49 
input/output block (lOB) 20 
ISK/SSK table 19, 49 
OS PUB table 19 

. post RCB list 19, 49 
EMUMSG macro 104, 364 
END command 5e4 
end-of-extent 

appendage 6, 28 
(see also IGG019SA) 
subroutines (see subroutines) 

end-of-job subroutine (see subroutines) 
end subroutine (see subroutines) 
ENQ macro 479 
EODAD subroutines (see subroutines) 
FOV macro 480 
ESETL 

macro 480 
mapping routine (see subroutines) 

event control block (see ECB) 
EXCP macro 480 
execute local instruction 

defined in glossary 535 
function 522 

exit-ABEND error routine (see IIVABN) 
EXIT command 501 
exit subroutine (see subroutines) 
external interruption simulation (SEe 

interruptions, asynchronous) 
EXTRACT macro 480 

II 
~CB2~M01 (see IIVFCB) 
FIDBtK macro 364 

(see also file ID block) 
field name table 381 

Index 543 



file ID block (FIDBLK) 
o ata area layout 436 
defined in glossary 536 
in data area directory 361 

FINDADDR subroutine (see subroutines) 
FINDCHAN subroutine (see subroutine~ 
FINDKEY subroutine (see subroutines) 
first program interruption 23, 55 
FIRSTPC subroutine (see subroutines) 
flowcharts 1A-34H 118-355 

abnormal end conditions (flowcharts 
26A-26B) 293-294 

asynchronous interruptions 
(flowcharts 20A-21E) 238-251 

direct-access volume sharing 
(flowcharts 22A-25E) 256-289 

Emulator service aids (flowcharts 
28A-34H) 301-355 

initialization (flowcharts 1A-7A) 
1 , 8- 1 60 

message writer (flowchart 27A) 297 
synchronous interruptions (flowchart~ 

8A-19A) 165-234 
PMTRC macro 364 
FREEMAIN/GETMAIN routine (see IIVGET) 
PREEMAIN macro 480 
functional organization of Emulator 

interruption handling (figure) 113 

general register assignments 517 
GET 

macro 480 
mapping routine (see subroutines) 

GETMAIN/FREEMAIN routine (see IIVGET) 
GETMAIN macro 480 
GBTWORD subroutine (see subroutines) 

hardware, Emulator deoendence on 488 
hints for debugging 472 
HIO 

privileged operation 25 
simulation subroutine 

(see subroutines) 

a 
1/0 

appendages (see Emulator appendages) 
device types 2 
staged (see staged input, staged 

output and staged 1/0) 
IDENTIFY macro 480 
IGG019S1 

description 29, 74 
flowchart 19A 234 
residence 28 
summary 233 

544 DOS Emulator Logic 

IGG019SA 
description 28, 73 
flowcharts 18A-18B 231-232 
residence 28 
summary 230 

IIVABN 
description 101 
flowcharts 26A-26B 293-294 
summary 291-292 

IIVAC! 
description 108 
flowcharts 33A-33H 339-346 
summary 338 

IIVADD 
aescription 51 
flowcharts 4A-4D 142-145 
summary 141 

IIVADJ 
aescription 71 
flowcharts 16A-16B 226-227 
summary 225 

IIVAWV 
function 26 
description 68 
flowchart 12A 213 
summary 212 

IIVCCW 
description 69-71 
flowcharts 15A-15F 219-224 
summary 218 

IIVCHK 
description 61-62 
flowcharts 9A-9D 186-189 
summary 184-185 

IIVCON 
common data area (listing) 439-442 
data area layout 437 
definEd in glo~sary 536 
in data area directory 361 
relationship to other major Emulator 

data areas (figure) 438 
IIVCWV 

function 26 
description 68 
flowchart 13A 215 
summary 214 

tIVDVS 
description 80~88 
flowcharts 23A-23H 262-269 
general flow (figure) 81 
summary 260-261 

IIVEMU (see Emulator program, DOS) 
IIVENT 

description 43 
flowchart 1A 118 
summary 117 

IIVFCB function 26 
IIVGET 

description 54 
flowchart 7A 160 
summary 159 

IIVGR2 
description 79-80 
DOS SVC tables 254-255 
flowcharts 22A-22D 256-259 
summary 253 

IIVINT 
description 43-46 
flowcharts 2A-2M 121-132 
summary 119-120 



interruptions, synchronous 
defined in glo£sary 539 
flowcharts 8A-19A 165-234 
program interruptions 21 

first program interruption 23 
(see also FIRSTPC subroutine) 

IPL interruption 23 
normal program interruption 23 
privileged operation 23-28 

(see also PCPRIVOP subroutine) 
supervisor call (SVC) 
interruptions 21 

(see also I1vsvq 
interval timer interruptions (see 

interruptions, asynchronous) 
lOB (input/output block) 

data area layout 448 
defined in glossary 536 
in data area directory 361 
in OS control blocks 487 
initialization 20 

10HALT macro 480 
IPL 

add routine (see I1VADD) 
DOS (see Emulator program, DOS) 
DOS 1PL, OS region at beginning of 

(figure) 50 
ISAM 

block (see 1SBLK) 
mapping of DCB fields to DTF1S fielfu 

after processing of each I/O 
macro 95 

mapping routine (see IIVIS) 
mapping subroutines (see subroutines) 
storage estimates table 12 

ISBLK 

1SK 

data area layout 450 
defined in glossary 536 
in data area directory 361 
macro 364 

privileged operation 24 
simulation subroutine 

(see subroutines) 
1SK/SSK (insert storage key/set storage 

key) table 
data area layout 452 
defined in glossary 536 
in data area directory 361 
initialization 19 

• JFCB (job file control block) 
data area layout 452 
defined in glossary 536 
in data area directory 361 
in OS control blocks 487 

II 
LCTL privileged operation 24 
load control instruction (see LCTt) 

load control register subroutine 
(see subroutines) 

load FeB subroutine (see subroutines) 
LOAD macro 481 
load open mapping subroutine (see 

subroutines) 
local addresses 
local execution 

list (see also execute local 
instruction) 

data area layout 454 
defined in glossary 536 
in data area directory 361 

mode (see mode, local execution) 
PSW (see PSW) 

LOGOUT1 subroutine (see subroutines) 
LOGOUT2 subroutine (SEe subroutines) 
LPSW 

privileged operation 24 
simulation subroutine 

(see subroutines) 
LUB (logical unit block) 

data area layout 457 
defined in glossary 537 
in data area directory 361 
in DOS control blocks 476 

II 
macro instructions 

Emulator 363-365 
OS 479-483 

main storage requirements 10-13 
main task control executive routine 

(see subroutines) 
message-to-module relationships 518-519 
message writer routine (see 11VMSG) 
MGTXT macro lOS, 364 
mode 

local execution 
defined in glossary 537 
described 1, 522 

normal 
defined in glossary ·537 
described 1 

modules 
(see also 1GGxxxxx; I1Vxxx) 
defined in glossary 537 
directory of Emulator modules 

(table) 358-359 
functional organization of Emulator 

interruption handling (figure) 11 
relationship (figure) 114 

MSGCODT macro 106, 364 

II 
normal 

mode (see mode, normal) 
program interruption 21 

Index 545 



II 
OBTAIN 

macro !l81 
routine (see subroutines) 

OBTNWK macro 36!1 
OPEN 

macro !l81 
mapping routine (see subroutines) 
routine (see IIVOPN) 
subroutine (see subroutines) 
subroutine gross flow (figure) 52 
table 

data area layout 458 
defined in glossary 537 
in data area directory 362 

TYPE=J macro !l81 
OPENFAIL routine (see subroutines) 
OPEN60 subroutine (see subroutines) 
OS 

access methods !l83 
appendages !l84 
bypass label processing 7 
control blocks !l8!1-488 
Emulator dependence on 478-488 
macros 479-483 
PUB table 

build routine (see IIVPUB) 
data area layout 459 
defined in glossary 537 
in data area directory 362 
initialization 19 

output, staged (see staged output) 

II 
parameters, verifying (see Emulator 

program, DOS) 
PCPRIVOP subroutine (see subroutines) 
physical unit block (see PUB) 
PIB (program information block) 

data area layout !l60 
defined in glossary 537 
in data area directory 362 
in DOS control blocks 476 

post EeB list 
data area layout 46C 
defined in glossary 537 
in data area directory 362 
initialization 19 

POST macro 481 
printer overflow 

routine (see IIVPOV) 
simulation 7 

privileged operations 23-28 
program 

addresses 
check executive routine (see IIVPCE) 
check intercept routine (see IIVPCI) 
information block (see PIB) 

546 DOS Emulator Logic 

interruptions (see interruptions, 
synchronous) 

status word (see PSW) 
prompt reply processor routine 

(see IIVPRP) 
PRPMAPA subroutine (see subroutines) 
PRPMAP1 subroutine (see subroutines) 
PSi (program status word) 

data area layout 461 
defined in glossary 538 
explanation of local execution (DOS 

current) PSi 21 
function of local execution (DOS 

current) PSi (figure) 22 
in data area directory 362 

PUB (physical unit block) 
data area layout 458 
defined in glossary 537 

PUT 

in data area directory 362 
in DOS control blocks !l76 

macro !l82 
mapping routine (see subroutines) 

PUT X macro 482 

II 
QSAM storage estimates table 13 

II 
RASCONS macro 365 

(see also IIVRCN) 
RCPPRINT subroutine (see subroutines) 
RDD privileged operation 2!1 
RDJFCB macro 482 
read FCB subroutine (see subroutines) 
READ KEY mapping routine 

(see subroutines) 
READ KU macro 482 
register assignments 511 
relationship of IIVCON to other 

data areas (figure) 438 
relationship of IIVRCN to other service 

aids modules, other Emulator modules, 
IIVCON, and user routines 
(figure) 4!14 

resources 
dedicated 3 
definition 2 
shared 4 
staged !I 

restore DEB extent subroutine (see 
subroutines) 

RBTURN macro 482 
return routine (see subroutines) 
route routine (see subroutines) 
routine descriptions, Emulator 43 



II 
SAVE macro 482 
SCAN subroutine (see subroutines) 
SCK privileged operation 24 
SEEKDVS subroutine (see subroutines) 
SEEKTEST subroutine (see subroutines) 
select subroutine (see subroutines) 
service aids 

control flow (figure) 502 
description 489 
examples of usage to diagnose 

problems 506-509 
flowcharts 28A-34H 301-355 
use of 489-490 

set clock (see SCK) 
set clock subroutine (see subroutines) 
SETL 

macro 482 
mapping routine (see subroutines) 

shared system residence file, DOS 41 
SIO 

appendage 6, 28 
(see also IGG019SA) 

CE 477 
DASD subroutine (see subroutines) 
DOS 477 
privileged operation 25-28 
subroutine (see subroutines) 
tape subroutine (see subroutines) 

snap 
dump and trace formatting routine 

(see IIVSNP) 
subroutine (see subroutines) 

SNAP 
command 498 
macro 482 

SSK 

SSM 

privileged operation 24 
simulation subroutine 

(see subroutines) 

privileged operation 24 
simulation subroutine 

(see subroutines) 
STAE 

macro 482 
retry routine (see subroutines) 
routine (see subroutines) 

staged I/O 
constants block (see 
control program flow 
defined in glossary 
routine ~ee IIVSTG) 

staged input 
de:inition 4 
description 65 

staged output 
definition 4 
description 65 

STGCON) 
(figure) 
538 

output considerations 7 
printer overflow simulation 7 
separator feature 8 

start I/O (see SIO) 

27 

status mapping routine (see subroutine~ 
status modifier table 70 
5~C~L privileged operation 24 
j','GCON (staged I/O constants block) 

data area layout 463 
defined .in glossary 538 

in data area directory 362 
STGTAB macro 365 
STID~ privileged operation 24 
STIDP privileged operation 24 
STIMER macro 483 
storage 

DOS, in Emulator region (figure) 45 
for Emulator data sets 10 
for files on shared devices 12 
for indexed sequential data sets 12 
for service aids 13 
main, requirements 10-13 
subroutine (see subroutines) 

STORAGE command 500 
store channel ID instruction (see STIDC) 
store clock subroutine (see subroutines) 
store control instruction (see STCTL) 
store control register subroutine 

(see subroutines) 
store CPU ID instruction (see STIDP) 
store CPU ID subroutine (see subroutines 
subroutines 

abnormal end (DASD) (IGGO 19SA) 
description 74 
flowchart 18B 232 

ADD, RETRVE, ADDRTR open mapping 
(IIVIS) 

description 90 
flowchart 24B 273 
source of input to supported DTFIS 

fields at open of ADD, RETRVE, 
and ADDRTR 90 

ASKOPR (IIVINT) 
description 46 
flowchart 2L 131 

asynchronous intercept 
initialization (IIVRAS) 
description 105 
flowcharts 28B 302 

asynchronous interrupt check (IIVRTE) 
descr ipt io n 77 
flowcharts 20E-20F 242-243 

build DLBL (IIVDVS) 
crescription 88 
flowchart 23H 269 

channel end (DASD) (IGG019SA) 
description 74 
flowchart 18B 232 

CHKCUU (TIVINT) 
description 46 
flowchart 2L 131 

close (IIVDVS) 
description 86 
flowchart 23E 266 

close mapping (IIVIS) 
description 91 
flowchart 24C 274 

combine (IIVCCW) 
description 71 

. flowchart 15F 224 
combine (IIVRCW), flowchart 34H 
COMB04A (IIVCCW), flowchart 15F 
COMB04A (IIVRCW), flowchart 34H 
control (IIVDVS) 

description 82 
flowchart 23A 262 

CVT (IIVPCP), flowchart 29D 310 
data formatting (IIVSNP) 

description 106 
flowchart 30J 330 

355 
224 
355 

Index 547 



subroutines (continued) 
DDSC A N (IIVINT) 

d escr ipt io n q 6 
flowchart 2M 132 

diagnostic (IIVRCP), flowchart 29L 
317 

EBCDIC conversion 
description 106 
flowchart 30G 328 

end. (IIVRCP), flowchart 29N-29P 
319-320 

end-of-extent (IGG019SA) 
description 73 
flowchart 18A 231 

end-of-extent (IIVDVS) 
description 8q 
flowcharts 23C-23D 26q-265 

ena.-of-job (IlVRTE) 
description 77 
flowchart 20G 2qq 

EODAD (llVlS), flowchart 2qL 282 
EODAD (I1VSTG) 

description 67 
flowchart llN 211 

ESETL mapping (IIVlS) 
description 92 
flowchart 2qG 278 

exit (TlVRCP), flowchart 29M 318 
FlNDADDR (1IVPC~ 

description 60 
flowchart 8R 180 

P1NDCHAN (IIVPCE) 
description 59 
flowchart 8Q 179 

FINDKEY (I1VPCE) 
description 60 
flowchart 8S 181 

FlRSTPC (IIVPCE) 
description 55 
flowchart 8A 165 

GET mapping (IIVIS) 
description 92 
flowchart 2qp 277 

GETWORD (lIVRCP), flowchart 29C 309 
HIO simulation (I1VPCE) 

description 58 
flowchart 8H 172 

IIVLOGRl (IIVLOG) 
description 63 
flowchart 10C 19q 

IlVLOGR2 (lIVLO~ 
description 63 
flowchart 10E 196 

IlVRASPC (IlVRA~ 
description 10q 
flowchart 28B 302 

IIVRASVC (lIVRAS) 
description 105 
flowchart 28B 302 

TIVRASYN (IIVRAS) 
description 105 
flowchart 28B 302 

1SK simulation (IIVPCE) 
description 56 
flowchart 8C 167 

load FCB (lIVSTG) 
description 67 
flowchart 11M 210 

548 DOS Emulator Logic 

load open mapping (1IVlS) 
description 89 
flowchart 2qB 273 
sources of input to DCB fields at 

OS indexed sequential data set 
creation 89 

load/store control register (llVPCE) 
description 60 
flowchart 8T 182 

LOGOUT1 (IIVLOG), flowchart 10D 195 
LOGOUT2 (IIVLOG), flowchart 100 195 
LPSW simulation (I1VPCE) 

description 56 
flowchart 8D 168 

main task control executive 
routine (IlVlS) 
description 88 
flowchart 2qA 272 

OBTAIN (IIVDVS) 
descr ipt ion 87 
flowcharts 23F-23G 267-268 

OPEN (TIVDVS) 
description 83 
flowcharts 23A-23B 262-263 

OPEN mapping (IIVIS) 
description 89 
flowchart 2qB 273 

OPENFAIL (IIVIS) 
description 9q 
flowchart 2qL 282 

OPEN60 (I1VOPN), flowchart 5D 151 
PCPRlVOP (IIVPC~ 

description 55 
flowchart 8A 165 

program check intercept (I1VPCI) 
description 107 
flowchart 31A-31C ~33-335 

program check interc~pt 
initialization (IIVRAS) 
description 10q 
flowchart 28B 302 

PRPMAPA{IlVPRP), flowchart 21E 251 
PRPMAP1 (IlVPRP), flowchart 21E 251 
PUT mapping (IlVIS) 

description 92 
flowchart 2qG 278 

RCPPRINT (IIVRCP), flowchart 29D 31C 
read FCB (IIVST~ 

description 66 
flowchart 11L 209 

read key mapping (IIVIS) 
description 93 
flowchart 2qH 279 

restore DEB extent (IGG019SA) 
description 7q 
flowchart 18B 232 

return (IIVDVS) 
description 88 
flowchart 23H 269 

route (IIVRTE) 
description 75 
flowchart 20B 239 

SCAN (IIVINT) 
description q6 
flowchart 2K 130 

SEEKDVS (IIVPCE) 
description 59 
flowchart 8P 178 



subroutines (continued) 
SEEK TEST (IIVPC~ 

description '39 
flowchart SK 174 

select (lIV'RTE) 
description 76 
flowchart 20C 24~ 

set clock (IIVPCE) 
description 61 
flowchart 8U 183 

SETL mapping (IIVIS) 
descr iption 91 
flowchart 24D 275 

S 10 (TIV PCE) 
description 58 
flowcharts 8J-8N 173-177 

SIO (DASD) (IGG019SA) 
description 73 
flowchart 18B 232 

SIO (tape) (IGG019SA) 
description 73 
flowchart 18A 231 

snap (!IVRCP), flowcharts 29G-29J 
313-315 

snap (IIVSNP) 
description 106 
flowchart 30K 331 

SSK simulation (IIVPCE) 
description 56 
flowchart 8C 167 

SSM simulation (IIVPCE) 
descr iption 56 
flowchart 8C 167 

STAE exit (IIVFTE) 
description 75 
flowchart 20A 238 

STAE retry (IIVRTE) 
description 76 
flowchart 20C 240 

status mapping (IIVIS) 
description 94 
flowchart 24L 282 

storage (IIVRCP), flowchart 29K 3 
store clock (IIVPC!) 

description 61 
flowchart 8U 183 

~~ore control register (TTVPCE) 
description 60 
flowchart RT 182 

store CPU ID (IIVpeE) 
description 61) 

flowchart 8S 181 
subtask attaching (IIVIS) 

description 90 
flowchart 24B 273 

subtask control executive routine 
(IIVIS) 

description 91 
flowchart 24E 276 

supervisor call intercept 
initialization (ITVRAS) 
description 105 
flowchart 28B 302 

SVC SO (IIVIS) 
description 94 
flowchart 24L 282 

SYNAD (IIVIS) 
description 94 
flowchart 24L 282 

SYNAD (IIVSTG) 
description 67 
flowchart l1N 211 

TCH simulation (IIVPCE) 
description 57 
flow~hart 8E 169 

timer interruption (IIVRTE) 
description 77 
flowchart 20D 241 

timer interruption check (IIVRTE) 
description 77 
flowchart 20D 241 

TIO simulation ~IVPCE) 
description 57 
flowcharts 8F-8G 170-171 

trace (IIVRCP), flowcharts 29E-29F 
311-312 

trace table (TIVSNP) 
description 105 
flowcharts 30E-30G 326-328 

VIOA (IIVVIO) 
description 96 
flowchart 25A 285 

VIOB (IIVVIO) 
description 97 
flowchart 25B 286 

VIoe (IIVVIO) 
description 97 
flowchart 25B 286 

VIOD (!IVVIO) 
description 97 
flowchart 25B 286 

VIOE (IIVVIO) 
description 97 
flowchart 25B 286 

VIOERRX (IIVVIO) 
description 100 
flowchart 25E 289 

VIOF (IIVVIO) 
descr iption 97 
flowchart 25B 286 

VIOG (TIVVIO) 
descr iption 97 
flowchart 25C 287 

VIOH (IIVVIO) 
description 97 
flowchart 25C 287 

VIOr (II VVIO) 
description 98 
flowchart 25C 287 

VrOIO (IIVVIO) 
description 99 
flowchart 25C 287 

VIOIOA (IIVVIO) 
description 99 
flowchart 25D 288 

VIOIOB (lIVVIO) 
description 100 
flowchart 25D 288 

VIOIOC (TTVVIO) 
description 100 
flowchart 25D 288 

VIOIOD (lIVVIO) 
descr iption 100 
flowchart 25D 288 

VIOIOE (IIVVIO) 
description 100 
flowchart 25E 289 

Index 549 



subroutines (continued) 
VIOIOF (lIVVIO) 

description lOa 
flowchart 25E 289 

nOIOSH (lIVVIO) 
description 100 
flowchart 25E 289 

VIOJ (lIVVIO) 
description 98 
flowchart 25C 281 

VIONXT (lIVVIO) 
description 98 
flowchart 25C 281 

WAITF mapping (IIVIS) 
description 93 
flowchart 24K 281 

write (IIVSNP) 
description 106 
flowcharts 30H-30J 329-330 

write key mapping (IIVIS) 
description 93 
flowchart 24H 279 

write NEWKEY mapping (IIVIS) 
descr iption 93 
flowchart 24J 280 

YESORNO (HUNT) 
description 46 
flowchart 2K 130 

subtask attaching routine 
(see subrout i nes) 

subtask control routine (se8 subroutines 
supervisor call (SVC) 

intercept initialization ~outine (see 
IIVRASVC) 

intercept routine (see IIVSCI) 
interruptions 21 
monitor routine (see IIVGR2) 
routine (see IIVSVC) 

SVC 50 routine (see subroutines) 
symbol table 366-380 
SYNAD subroutines (see subroutines) 
synchronous interruptions (see 

- interruptions, synchronous) 
system residence file, shared 

for nos 41 
System/310 machine interruption logic 

(figure) 22 

II 
tape error block (see TEB) 
tape error by volume (see TEBV) 
task control block (see TC~ 
task input/output table (see TIOT) 
TCH 

privileged operation 24 
simulation subroutine 

(see subroutines) 
TEB (tape error block) 

data area layout 465 
defined in glossary 539 
in data area directory 362 
in DOS control blocks 416 

TEBV (tape error by volume) 
data area layout 466 
defined in glossary 539 
in data area directory 362 
in DOS control blocks 476 

550 DOS Emulator Index 

TIME macro 483 
time-of-day, DOS 477 
timer interruption 

'l'IO 

check subroutine (see subroutines) 
subroutine (see subroutines) 

privileged operation 24-25 
simulation subroutine 

(see subroutines) 
TIOT (task input/output table) 

data area layout 467 
defined in glossary 539 
in data area directory 362 
in OS control blocks 488 

trace 
subroutine (see subroutines) 
table 

how to locate (figure) 496 
internal format (table) 491 

TRACE command 493 
TRCDSCT macro 365 
true addresses (see program addresses) 

UCB (un it cont ro 1 block) 
data area layout 468 
defined in glossary 539 
in data area directory 362 
in OS control blocks 488 

II 
VIa routines (see subroutines) 
volume label 

data area layout 469 
defined in glossary 539 
in data area directory 362 

VTOC I/O simulation routine (see TIVVIO) 

II 
WAIT macro 483 
WAITF mapping routine (see subroutines) 
WRD privileged operation 24 
WRITE K, KN macros 483 
W~ITE KEY mapping routine 

(see subroutines) 
'i1~ITE macro 483 
WRITE NEiKEY mapping routine (see 

subroutines) 
WTO macro 483 
iTOR macro 483 

II 
YESORNO subroutine (see subroutines) 



wi macro 481 
W~ mapping routine (see subroutines) 
WRD privileged operation 24 
WRITE K, KN macros 481 
WRITE KEY mapping rout.ine (see subroutines) 
WRITE macro 481 
WRITE NEWKEY mapping routine (see 

subroutines) 

iTO macro 481 
liTOR macro 481 

a 
YESORNO subroutine (see subroutines) 

Index 551 



Order Number GY26-3741-3 

International Business Machines Corporation 
Da .. Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 



READER'S COMMENT FORM 

DOS Emulator Logic Order Number GY26-3741-3 

Your comments about this publication will help us to produce better publications for your use. If 
you wish to comment, please use the space provided below, giving specific page and paragraph 
references. 

Please do not use this form to ask technical questions about the system or equipment or to make 
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen­
tative or to the IBM Branch Office serving your locality. 

Reply requested Name 

Yes D Job Title 

No D Address 

__________________________ Zip ______________________ __ 

No postage necessary if mailed in the USA 



Order Number GY26-3741-3 

YOUR COMMENTS, PLEASE ... 

This publication is one of a series which serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your answers to the questions on the back.of 
this form, together with your comments, will help us produce better publications for your 
use. Each reply will be carefully reviewed by the persons responsible for writing and 
publishing this materiaL All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY . 

IBM Corporation 
Department 813 (LGP) 
1133 Westchester Avenue 
White Plains, N.Y. 10604 

Attention: Programming Publications, Dept. 813 (LGP) 

fold 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

FIRST CLASS 

PERMIT NO. 1359 
White Plains, N.Y. 

fold 

fold 



-- ~ 
11"1 Technical Newsletter File Number 

S360-35 

Base Publication Number 

This Newsletter Number 

GY26-3741-3 

GN26-8021 

Date August 14, 1972 

Previous Newsletter Number(s) 

DOS EMULATOR LOGIC (on IBM System/370 Under OS) 

@Copyright IBM Corporation 1971, 1972 

This Technical Newsletter provides replacement pages for 
the DOS Emulator Logic publication, Order Number 
GY26-3741-3. 

These replacement pages remain in effect for subsequent 
versions of the DOS Emulator program unless specifically 
altered. Pages to be inserted and/or removed are listed 
below: 

title page - xii 
xix-xxii 
1-2 
7-14 
27-28 
395-398 
417-418 
421-422 
467-468 
477-478 
489-490 
521-540 
Reader's Comment Forms (new mailing address) 

A change to the text is indicated by a vertical line to 
the left of the change. 

Summary of Amendments 

The DOS Emulator program, which runs under OS/MFT and 
OS/MVT, now runs under OS/VSl as well. The support of 
OS/VSl is reflected in these replacement pages. Any 
reference in this manual to main storage pertains to 
virtual storage for OS/VS. 

Note: Please file this cover letter at the back of the 
manual to provide a record of changes. 

,,/ IBM Corporation, Programming Publications, Department D78, San Jose, California 95114 

.. . 

None 

PRINTED IN USA 




