
•

--..------- ----- - -- -. ----· -------- --_ _.. __ _

Order Number:
SC33-4035-11

DFSORT Application
Programming: Guide

Program Number:
5740-SM1

Program
Product

Release Number:
8.0

Twelfth Edition (March 1986)

This is a major revision of, and makes obsolete, SC33-4035-10.

This edition applies to Release 8.0 of IBM DFSORT, Program Product 5740-SMl, and to
any subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of Amendments" following
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/ 3 70, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked th~e.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

©Copyright International Business Machines Corporation 1973, 1979, 1981, 1982,
1983, 1985, 1986

Preface

This manual is for programmers who want to sort, merge, or copy files using
DFSORT (Data Facility Sort) Program Product No. 5740-SMl.

Hereafter, the term "processing" refers to DFSORT's sorting, merging and copying
capability.

To use this manual, you should have a basic understanding of OS/VS and its job
control language (JCL); to take advantage of all the options and facilities of the
program, you will need the documents listed under "Reading List."

Using this manual, you will be able to prepare all the input necessary to process
files. You will also be able to link your own routines to DFSORT to perform such
services as altering, deleting, or inserting records as they are being processed.

If you are a new DFSORT user, consider reading the tutorial, Getting Started with
DFSORT, before you begin using this manual. It provides an introduction to using
the product, including sample sorting applications.

Organization of Manual

This manual contains the following sections:

Chapter 1, "Introduction" on page 1 describes the program's relationship to
the operating system, and explains the program's functions and facilities, its
hardware and storage requirements, user inputs, and factors affecting
performance. It also describes how to write a simple DFSORT program.

• Chapter 2, "Program Control Statements" on page 17 describes how you use
program control statements to describe your input data, to supply information
about the control fields being used, and to describe to the system your personal
routines that you will use during program execution.

• Chapter 3, "Job Control Statements" on page 113 shows you how and what
job control statements you must write to execute your DFSORT program.

• Chapter 4, "User Exit Routines" on page 135 describes how to insert a
routine of your own into the DFSORT program, via program exits.

• Chapter 5, "Invoking DFSORT from an Assembler Program" on page 187
describes how to initiate execution of the program from within your own
program, using a system macro instruction.

Preface iii

Reading List

For All Applications

• Chapter 6, "Improving Program Efficiency" on page 207 gives advice on
how you can achieve faster processing.

• Appendix A, "Sample Job Streams" on page 225 provides sample job
streams for sort, merge, and copy applications.

• Appendix B, "Calculating Storage Requirements" on page Z!77 discusses the
storage devices used for intermediate storage, the factors determining the
amount of intermediate storage required for a DFSORT program, and the
program's method of selecting a sorting technique.

• Appendix C, "Converting to the Extended Parameter List" on page 283
shows how to covert programs that use a 24-bit parameter list to use an
extended parameter list.

Appendix D, "Specification/Override of DFSORT Options" on page 285
shows the order of override when the same or corresponding options are
specified in different sources.

• Appendix E, "Data Format Examples" on page 299 gives examples of the
assembled data formats used with IBM System 360/370.

• Appendix F, "EBCDIC and ISCH/ ASCII Collating Sequences" on page 303
lists the collating sequences from low to high order for EBCDIC and
ISCII/ ASCII characters.

• Appendix G, "SMF Record (TYPE 16)" on page 311 lists the SMF record
produced by DFSORT.

• Appendix H, "DFSORT Messages and Codes," lists, explains, and suggests
responses to all the error messages produced by this DFSORT program.

The reading list that follows is divided according to the options and facilities of the
program and how you can use them.

The following manuals supplement the JCL information given in this guide; you
may need them for reference:

MVS I Extended Architecture JCL, GC28-1148

OS/VSJ JCL Reference, GC24-5099

OS /VS2 MVS JCL, GC28-0692

For an explanation of SMF record type 16, which enables an installation to collect
statistics for auditing its DFSORT activities, generating utilization reports,
developing tuning information, and so forth, see:

iv DFSORT Application Programming: Guide

MVS I Extended Architecture System Programming Library: System Management
Facilities (SMF), GC28-1153

OS/VSJ System Management Facilities (SMF), GC24-5115

OS/VS2 MVS System Programming Library: System Management Facilities
(SMF), GC28-0706 (for users of OS/VS2 MVS Release 3.8)

OS/VS2 MVS System Programming Library: System Management Facilities
(SMF), GC28-1030 (for users of OS/VS2 MYS/System Product)

For an explanation of the options available at installation time and estimates of
storage required by the program, consult:

DFSORT Planning and Installation, SC33-4034

For an overall discussion of DFSORT features, see:

DFSORT General Information, GC33-4033

For quick reference, see:

DFSORT Reference Summary, SX33-8001

For compatibility of message options from 5734-SMl, see:

OS Sort/Merge Programmer's Guide, SC33-4007

For a primer on how to use DFSORT, see:

Getting Started with DFSORT, SC26-4109

For information on diagnosing DFSORT failures, see:

DFSORT Diagnosis Guide, SY26-3971

Planning Checkpoint/Restart

Complete information on the checkpoint/ restart facility is contained in:

MVS I Extended Architecture Checkpoint I Restart User's Guide , GC26-4012

MVS/370 Checkpoint/Restart User's Guide, GC26-4054

OS/VSJ Checkpoint/Restart User's Guide, GC26-3876

OS/VS2 MVS Checkpoint/Restart User's Guide, GC26-3877

Preface V

COBOL and PL/I Users

Assembler Language Users

See the Programmer's Guide describing the compiler version available at your
installation site.

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

OS/VS-DOS/VS-VM/370 Assembler Language Manual, GC33-4010

Program Initiation with System Macro Instructions

Data Management

MVS/Extended Architecture System Programming Library: Supervisor Services
and Macro Instructions, GC28-1154

OS/VSJ Supervisor Services and Macro Instructions, GC24-5103

OS/VS2 MVS Supervisor Services and Macro Instructions, GC28-0683

MVS I Extended Architecture Data Administration Guide, GC26-4013

MVS/Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4014

MVS I Extended Architecture System-Data Administration, GC26-4010

MVS/370 Data Administration Guide, GC26-4058

MVS/370 Data Administration: Macro Instruction Reference, GC26-4057

MVS/370 System-Data Administration, GC26-4056

OS/VSJ Data Management for System Programmers, GC26-3837

OS/VSJ Data Management Macro Instructions, GC26-3872

OS/VSJ Data Management Services Guide, GC26-3874

OS/VS2 MVS Data Management Macro Instructions, GC26-3873

OS/VS2 MVS Data Management Services Guide, GC26-3875

OS/VS2 MVS System Programming Library: Data Management, GC26-3830

Vi DFSORT Application Programming: Guide

Dynamic Allocation

ISCH/ ASCII

ISO I ANSI Tape Labels

VSAMUsers

MVS I Extended Architecture System Programming Library: System
Modifications, GC28-1152

OS/VS2 MVS System Programming Library: Job Management, GC28-0627

MVS I Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4014

MVS/ 3 70 Data Administration: Macro Instruction Reference, GC26-4057

OS/VSJ Data Management Macro Instructions, GC26-3872

OS/VS2 MVS Data Management Macro Instructions, GC26-3873

MVS I Extended Architecture Magnetic Tape Labels and File Structure
Administration, GC26-4003

MVS I 3 70 Magnetic Tape Labels and File Structure Administration, GC26-4064

OS/VS Tape Labels, GC26-3795

MVS I Extended Architecture Integrated Catalog Administration: Access Method
Services Reference, GC26-4019

MVS I Extended Architecture VSAM Administration Guide, GC26-4015

MVS/Extended Architecture VSAM Administration: Macro Instruction
Reference, GC26-4016

MVS I Extended Architecture VSAM Catalog Administration: Access Method
Services Reference, GC26-407 5

MVS/370 Integrated Catalog Administration: Access Method Services Reference,
GC26-4051

MVS/370 VSAM Administration Guide, GC26-4066

MVS/370 VSAM Administration: Macro Instruction Reference, GC26-4074

MVS/370 VSAM Catalog Administration: Access Method Services Reference,
GC26-4059

OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819

OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838

Preface vii

OS/VSJ Access Method Services, GC26-3840

OS /VS2 Access Method Services, GC26-3841

For storage requirements~ see

MVS/ Extended Architecture Data Facility Product: Planning Guide,
GC26-4040

MVS/ 3 70 Data Facility Product: Planning Guide, GC26-4052

Planning for Enhanced VSAM under OS/VS, GC26-3842

For debugging aids, see

MVS/Extended Architecture Debugging Handbook, Volume 1, LC28-1164,
Volume 2, LC28-l 165, Volume 3, LC28-1 l66, Volume 4, LC28-l 167,
Volume 5, LC26-1168, or all volumes, LBOF-1015

OS/VSJ Debugging Guide, GC24-5093

OS/VS2 MVS System Programming Library: Debugging Handbook, Volume 1,
GC28-0708, and Volume 2, GC28-0709

viii DFSORT Application Programming: Guide

Summary of Amendments

Release 8.0, March 1986

New features added to DFSORT include:

• An enhancement to the variable-length record sorting technique,
VLR-Blockset, which improves performance when sorting variable length
records. On MVS/Extended Architecture (MVS/XA) systems, utilization of
extended addressing capability is available with VLR-Blockset.

• More efficient use of processor cache memory, which improves performance
when sorting fixed length records.

• The copy function, which copies a data set without performing any sorting or
merging operation. It can be used with most of the same control statements,
exits, and options available when sorting or merging.

• An enhancement to the Blockset technique, which can now be used to continue
sorting when encountering a record too short to contain all specified control
fields. New installation and execution options have been added for ease of use.
In addition, the Blockset technique can now be used for VSAM input and
output data sets.

In addition, the figures in Appendix D have been enhanced to show which options
can be used with a particular function (sort, merge, or copy).

Summary of Amendments ix

Release 7.1, June 1985

New enhancements added to DFSORT are the ability to:

• Preserve the original order of identically collating records when doing a
Blockset merge, if the EQUALS option is used.

Specify, using the EQUALS option, that the first record will be retained when
summarizing identically collating records when doing a Blockset sort or merge.

• Use the Blockset technique when merging spanned variable-length records.

Features that were removed from prior releases and that are now being
reimplemented:

• Processing of multivolume SORTOUT data sets with the EXCP access method
rather than with the BSAM access method, whenever possible.

• Dynamic link-editing of user exit routines. Note that the SORT cataloged
procedure has been changed to include link-edit DD statements.

Note also that the SORT cataloged procedure has been changed to contain DD
statements for dynamic link-editing.

• Writing program messages to the master console.

Release 7.0, January 1985

New features added to DFSORT are:

• For MVS/XA, the ability to reduce the processor time for sorting done in large
storages by using IBM System/370 Extended Architecture Sorting
Instructions.

Extended addressing for MVS/XA:

Improved performance because certain buffers and modules can now be
placed above 16-megabyte virtual when sorting fixed-length records.

The ability to specify:

The upper limit of the amount of main storage above and below
16-megabyte virtual available to DFSORT (TMAXLIM).

The number of bytes reserved above 16-megabyte virtual for system
use (ARESALL).

The number of bytes reserved above 16-megabyte virtual for a
program that invokes DFSORT (ARESINV).

• COBOL-related enhancements:

X DFSORT Application Programming: Guide

The ability to invoke DFSORT from VS COBOL II programs.

The ability to use the VS COBOL II FASTSRT compile-time option,
which enhances performance.

The ability to write El5 and E35 exit routines in COBOL.

The ability to specify an alternative message data set when invoking
DFSORT with JCL. This is especially useful when exits are written in
COBOL.

• Support of the 3480 Magnetic Tape Subsystem.

• Removal of the upper limit of 48K bytes for the RESALL option.

• The ability to specify the maximum number of records to be accepted for
sorting.

Service changes have also been added.

Summary of Amendments Xi

Contents

Chapter 1. Introduction . • • . . • • • 1
Relationship to the Operating System . 1

Operation in MVS/XA Mode 2
What the Program Will Do . 2

Input and Output Data Sets . 3
Control Fields and Collating Sequence . 5
Installation Options . 6

Machine Requirements . 8
Main Storage Requirements . 9
Program Execution . 9
Program Initiation . 12
Program Modification · . 12
Messages . 13
Return Codes . 13
Checkpoint/Restart . 13
Statistical Data Collection .. ·. 14
Maximum Efficiency . 15
Control Statement Example . 15

Chapter 2. Program Control Statements • . 17
Control Statement Summary . 18

Control Statements . 18
Comment Statements . 19
Notational Conventions . 19

Control Statement Compatibility . 38
General Coding Rules . 38

Continuation Lines . 39
Summary of Restrictions . 41

ALTSEQ Control Statement 42
AL TSEQ Statement Examples . 42

DEBUG Control Statement . 44
Forcing a Specially Formatted Dump . 46

END Control Statement . 49
END Statement Examples . 49

INCLUDE Control Statement 50
INCLUDE/OMIT Statement Notes . 55
INCLUDE Statement Examples . 56

INREC Control Statement . 5 8
INREC Statement Notes . 59
INREC Statement Examples . 61

MERGE Control Statement . 65
MERGE Statement Examples . 66

MODS Control Statement . 67
MODS Statement Examples . 69

Contents xiii

OMIT Control Statement . 71
OMIT Statement Example 71

OPTION Control Statement . 72
OPTION Statement Examples . 87

OUTREC Control Statement 92
OUTREC Statement Notes ·. 93
OUTREC Statement Examples 95

RECORD Control Statement . 98
RECORD Statement Examples . 100

SORT Control Statement . 102
SORT Statement Note . 107
SORT Statement Examples . 107

SUM Control Statement . 110
SUM Statement Notes . 111
SUM Statement Examples . 112

Chapter 3. Job Control Statements • • 113
JOB Statement . 115
EXEC Statement . 115

"SORT" Cataloged Procedure . 116
"SORTO" Cataloged Procedure . 117
PARM='options' .. 117

DD Statements . 121
System DD Statements . 124
Program DD Statements . 125

Chapter 4. User Exit Routines • • . . • . . . • • . . . • . . • . • 135
DFSORT Program Phases .. 135

Input Phase . 13 5
Output Phase . 136

Functions of Routines at User Exits . 136
DFSORT Input/Exit/Output Logic Examples . 136
Opening Data Sets and Initializing . 140
Inserting, Deleting, and Altering Records, Terminating DFSORT 140
Summarizing Records . 140
Determining Action when Intermediate Storage Is Insufficient 140
Handling Special I/ 0 . 140
Modifying Control Fields . 141
Closing Data Sets . 141
Reserving Storage for Exits . 142

MVS/XA Support of User Exits . 142
Assembler Exit Routines . 143

Input Phase Exits . 143
Output Phase Exits . 15 3

Sample Routines Written in Assembler . 160
E 15: Deleting Expired Records . 160
E 16: When NMAX Exceeded, Sort Current Records 161
E35: Deleting Records . 161

COBOL Exit Routines . 161
COBOL Exit Requirements . 162
Storage Requirements . 163
Input Phase Exit . 164
Output Phase Exit . 1 72

Sample Routines Written in COBOL . 180

xiv DFSORT Application Programming: Guide

COBOL E15: . 180
COBOL E35: Inserting Records . 181

Assembler and COBOL User Exit Routines and DFSORT Performance 183
Summary of Rules for User Exit Routines . 183

How to Load User Exit Routines . 184
User Exit Linkage Conventions . 184
How to Dynamically Link-Edit User Exit Routines 185

Chapter 5. Invoking DFSORT from an Assembler Program • . . • • . . • • • • 187
Merge restriction . 18 7
Copy restrictions . 187
System Macro Instructions . 188
How to Use the Macros . 188

JCL DD Statements . 189
Program Control Statements for the 24-Bit Parameter List 190
Program Control Statements for the Extended Parameter List 191
Format of the 24-Bit Parameter List . 191
Format of the Extended Parameter List . 196
Writing the Macro Instruction . 199
Examples . 200

Chapter 6. Improving Program Efficiency • • . • • • . • . . . • • • • . • • • • • . • • 205
Using System/370-MVS/XA Operating Systems 205
Planning Applications . 206

Efficient Blocking . 206
Efficient Control Field Sorting . 206

Tuning Main Storage . 207
How to Get DFSORT to Release Storage 209
Using Efficient Sort/Merge Techniques . 211

Sorting Techniques . 211
Merging Techniques . 212

Using Work Storage Devices Efficiently . 212
Direct Access Work Storage Devices 213
Device Data Transfer Rate . 214
Tape Work Storage Devices . 216

Specifying Input/ Output Data Set Characteristics . 216 ·
Simplify Control Field Descriptions . 216
Data Set Size . 216
Variable-Length Records . 217

Using JCL to Initiate DFSORT . 217
Using Options That May Enhance Performance . 217

COBEXIT . 217
FASTSRT .. 217
INCLUDE OR OMIT, STOPAFT, AND SKIPREC 218
INREC and OUTREC .. 219
SUM .. 219

Avoiding Options That May Degrade Performance . 220

Appendix A. Sample Job Streams . • • • • • • • • . • • • • . • • • • • • • • • • • • • . • • • • • 223
Sort Examples . 225
Merge Examples . 263
Sort Examples Using VSAM Data Sets 269

Appendix B. Calculating Storage Requirements . . • • • • • . . • • • • . • • • • • • • • . • 2 7 5
Main Storage . 2 7 5

Contents XV

Intermediate Storage . 275
Direct Access . 275
Tape .. 277
Exceeding Intermediate Storage Capacity . 277

Appendix C. Converting to the Extended Parameter List •.••••. ~.. • • • • . • . 281

Appendix D. Specification/Override of DFSORT Options . . . • . • . . • • • 283
JCL Invoked DFSORT . 284
Dynamically Invoked DFSORT with an Extended Parameter List 287
Dynamically Invoked DFSORT with 24-Bit List 292

Appendix E. Data Format Examples • . . • . • . . . • • • • • . • . • • • . • • 297

Appendix F. EBCDIC and ISCII/ ASCII Collating Sequences • • • • • • . • • 301
EBCDIC .. ~ . . 301
ISCH/ ASCII . 304

Appendix G. SMF Record (TYPE 16) • • • • • • . • . • . . • • • • . • • 309

Appendix H. DFSORT Messages and Codes••......••.....•.... 311
Message Format . 312
Printing Messages and Control Statements . 312
Writing Messages to the Master Console . 313
Control Statement Coding Errors . 314
Return Codes . 314
Diagnostic Messages for Debugging . 344

Index . . . • • . . . • . • . . . • • • • . . . • • . • . • . . • • . . • • . • • • 349

xvi DFSORT Application Programming: Guide

Figures

1. Control Fields . 6
2. Record Processing Sequence . 10
3. Control Statement Summary . 20
4. Control Statement Format . 38
5. Continuation Line Format . 40
6. Contents of a Specially Formatted Dump . 4 7
7. Interpreting a Formatted Dump (Shown for Peerage or Vale) 48
8. Permissible Field-to-Field Comparisons for INCLUDE/OMIT 52
9. Permissable Field-to-Constant Comparisons for INCLUDE/OMIT 53

10. Logic Table for INCLUDE/OMIT . 56
11. Control Field Formats/Lengths . 105
12. Input Job Stream . 113
13. DD Statement Parameters Used by DFSORT . 121
14. DCB Subparameters Used by DFSORT . 123
15. Examples of DFSORT Input/Exit/Output Logic 138
16. Functions of Routines at Program Exits (Sort) 139
17. Functions of Routines at Program Exits (Copy and Merge) 139
18. E15 DFSORT Interface with COBOL . 166
19. LINKAGE SECTION Code Example for E15 (FLR) 167
20. LINKAGE SECTION Code Example for El5 (VLR) 168
21. E35 Interface with COBOL . 174
22. LINKAGE SECTION Code Example for E35 (FLR) 175
23. LINKAGE SECTION Code Example for E35 (VLR) . , 176
24. COBOL E 15 Routine Example (FLR) . 180
25. COBOL E35 Routine Example (VLR) 182
26. Register Conventions . 185
27. Example of DD Statements for a Dynamically Invoked Sort 189
28. The 24-Bit Parameter List When Attaching the Program 192
29. Extended Parameter List . 197
30. Specifying the Main Storage Option (24-Bit Parameter List) 200
31. Specifying E32 and STAE/ESTAE Routine (24-Bit Parameter List) . . 201
32. The 24-Bit Parameter List in Main Storage . 202
3 3. Coding a 24-Bit Parameter List . 203
34. Coding an Extended Parameter List . 204
35. Comparative Data Transfer Rates of Disk Work Storage Devices 215
36. Faster Sorting with VS COBOL II . 218
37. Number of Tracks per Cylinder for Direct Access Devices 276
38. External Work Storage Requirements of the Various Tape Techniques . 277
39. Converting to the Extended Parameter List . 281
40. JCL DFSORT Option Specification/Override 284
41. Extended Parameter List DFSORT Option Specification/Override . . . 287
42. 24-Bit List DFSORT Option Specification/Override 292
43. EBCDIC Collating Sequence 301
44. ISCH/ ASCII Collating Sequence . 305

Figures xvii

45. Message Format ,_ 312

xviii DFSORT Application Programming: Guide

Chapter 1. Introduction

This chapter describes the relationship of the IBM OS/VS DFSORT Program
Product 5740-SMl (hereafter referred to as DFSORT) to the operating system; its
functions and facilities; its requirements in terms of hardware, main storage, and
user input; and factors affecting performance.

Relationship to the Operating System

DFSORT operates under the operating system control program; therefore, it must
be initiated according to operating system conventions. You must define any data
sets used by the program according to operating system standards. You can use the
label checking facilities of the operating system during program execution.
(Operating system label checking facilities are described in Supervisor Services and
Macro Instructions.)

Because DFSORT uses the operating system data management facilities, you must
describe all data sets (except those allocated via the DYNALLOC parameter)
necessary for program operation in job control language data definition (DD)
statements. These statements must be placed in the operating system input stream
with the job step that initiates program execution.

The operating systems supported by this release are:

• OS/VSl Release 7

• OS/VS2 MVS Release 3.8

• MYS/Extended Architecture (MVS/XA)

• MVS/370 (OS/VS2 MVS with MVS/370 Data Facility Product installed)

DFSORT also executes on these systems under VM or VM/XA Migration Aid.

Throughout this manual, the term MVS is used to refer to OS/VS2, MVS,
MVS/XA, and MVS/370, unless otherwise indicated.

Chapter 1. Introduction 1

Operation in MVS/XA Mode

Programs that invoke DFSORT, in addition to user exit routines, will be able to
reside above or below 16-megabyte virtual, execute in 24-bit or 31-bit mode, and
pass data that resides above or below 16-megabyte virtual to DFSORT.

For MVS/XA users who install DFSORT resident, most of the Blockset modules
will be placed above 16-megabyte virtual in the extended link pack area. This
provides more space in the link pack area for resident programs that cannot reside
above 16-megabyte virtual.

Furthermore, when doing a Blockset sort, DFSORT can place selected buffers
above 16-megabyte virtual, leaving more space below 16-megabyte virtual for user
applications.

In addition, more and larger buffers provide greater optimization opportunities.

Use of IBM System/370 Extended Architecture Sorting Instructions (hereafter
referred to as System/370-XA Sortinglnstructions), which are part of the
extended architecture hardware, reduces the processor time for sorting done in
large storage areas.

What the Program Will Do

DFSORT has three basic functions:

• To sort records, that is, to arrange them in a given sequence.

• To merge from 2 to 16 previously sorted record sequences into one sequence.
When you merge records, the sequences to be merged must have been
previously sorted into the same order (ascending or descending) as that
required for final output.

• To copy records, you do not need to sort or merge the records first.

You can copy your data sets, without sorting or merging them, using the COPY
parameter on the OPTION control statement. See the "OPTION Control
Statement" on page 72 for more detailed information on the syntax of this
parameter. You can also use COPY as a value on the FIELDS parameter of
the SORT or MERGE control statement. The original order of your input
records will be retained.

The copy function cannot be used with BDAM data sets.

Dynamic link editing of exits is not allowed with copy.

2 DFSORT Application Programming: Guide

Note: Copy uses only the Blockset technique.

Depending on various conditions, DFSORT selects among the following sorting
and merging techniques:

• Disk work data set sorting techniques: Blockset (for fixed- and variable-length
records), Peerage (for fixed-length records), and Vale (for both fixed- and
variable-length records)

• Various tape work data set sorting techniques

• Merge only techniques: Blockset and conventional

These are discussed under "Using Efficient Sort/Merge Techniques" on page 211
and "Merging Techniques" on page 212.

Input and Output Data Sets

Sort and Copy Applications

Merge Applications

Input to the sort or copy may be a blocked or unblocked QSAM or VSAM data set
containing fixed- or variable-length records. QSAM input data sets may be
concatenated even if they are on unlike devices, provided the conditions described
in "SORTIN DD Statement" on page 127 are met.

Output from the sort or copy may be a blocked or unblocked QSAM or VSAM
data set, regardless of whether the input is QSAM or VSAM, but must be of the
same type (fixed or variable) as the input data set.

Input to the merge may be up to 16 blocked or unblocked QSAM or VSAM data
sets containing fixed- or variable-length records. The input data sets may be either
QSAM or VSAM, but not both. The records in the input data sets must already be
sorted into the order required for output. For further details, see "SORTINnn DD
Statement" on page 128.

Output from the merge may be a bloeked or unblocked QSAM or VSAM data set,
regardless of whether the input is QSAM or VSAM, but must be of the same type
(fixed or variable) as the input data set.

General Notes and Limitations

The input and output data sets must be on devices that can be used with QSAM or
VSAM.

The length of the records that DFSORT can handle depends on the amount of
main storage available. The length of a record can never exceed the maximum
record length specified by the user. The maximum record length for
variable-length records is 32756 bytes; for fixed-length records, it is 32760 bytes.

For spanned records, maximum lengths may be smaller. Conditions such as control
fields of different formats, large number of control fields, or a large number of

Chapter 1. Introduction 3

intermediate data sets reduce the length of the records that may be sorted using a
given amount of storage. The minimum block length for tape work data sets is 18
bytes; the minimum record length is 14 bytes.

QSAM Data Set Notes and Limitations

If you use DSN=NULLFILE on your DD statement for an input data set,
DFSORT cannot use the EXCP access method (this is a system restriction).

Input data sets can be empty.

If any of the input data sets are on tape without standard labels, you must specify
DCB parameters on their DD cards.

ISO/ ANSI Version 1 tape files cannot be used as output; they can only be used as
input.

VSAM Data Set Notes and Limitations

If a data set is password protected, passwords can be entered at the console or
(with some restrictions) through routines at exits E18, E38 and E39.

The same data set must not be specified for both input and output.

A data set used for input or output must have been previously defined. A data set
used for input must not be empty. If the data set is empty, VSAM returns an input
error code (160) and DFSORT terminates.

Data sets cannot be contatenated.

If output is a keyed-sequential data set (KSDS), the key must be the major control
field (or the key fields must be in the same ascending order as the major control
field). VSAM does not allow you to store records with duplicate primary keys.

Any VSAM exit function available for input data sets may be used except EODAD.
See the description of E 18 use with VSAM in Chapter 4.

The VSAM exit list must be built using the VSAM EXLST macro instruction giving
the address of your routines that handle VSAM exit functions.

When processing variable-length records with VSAM input and non-VSAM output,
the SORTOUT LRECL must be 4 more than the maximum record size defined in
the cluster. Variable-length records have a record descriptor word (RDW) field of
4 bytes at the beginning of each record, but VSAM records do not. Therefore, the
record size defined in the cluster is 4 bytes less than the non-VSAM LRECL.
DFSORT adds 4 bytes for the RDW when processing the record. These are
removed if VSAM is used for both input and output. ·

4 DFSORT Application Programming: Guide

For example,

Maximum record size in VSAM cluster 128 up to 128 bytes of data

LRECL for variable-length record 128 4 bytes ROW and up to
124 bytes of data

132 4 bytes ROW and up to
128 bytes of data

Control Fields and Collating Sequence

The program orders your records on the basis of one or more control fields you
specify. The first field you specify is called the major field. The program compares
the major fields of the records and sorts or merges them in ascending or descending
order (according to which order you have specified).

All other fields you specify are called minor fields. Conceptually, if the major
fields in two records are equal, DFSORT sorts or merges the records according to
the minor fields you have specified. If the first minor fields in two records are
equal, the program compares the second minor fields, and so on, until it finds a
difference, or the end of the control field is reached.

The input order of records with identical control fields is preserved on output if the
EQUALS option is in effect.

Control fields may overlap, or be contained within other control fields. They need
not be contiguous, but must be located in the first 4092 bytes of the record.

The collected control fields of each record, arranged in order of priority, are
regarded by the program as a single control word, which can be up to 4092 bytes
long.

A control word composed of four control fields is shown in Figure 1 on page 6.

Records are sorted or merged using either the standard IBM collating sequence
(EBCDIC) or the ISCH/ ASCII collating sequence.

The EBCDIC sequence can be modified, for example to allow the alphabetic
collation of national characters. The modification can be installed as a default
when the program is installed, or you can specify it at execution time.

Chapter 1. Introduction 5

'--v---/
Control
field 3

Figure 1. Control Fields

Installation Options

Record

Control__ ___ . __ __

field 4 Control field 1
(major)

14 Control Word ------••

~~
2 3 4

The collating sequence for character data and binary data is absolute; that is,
character and binary fields are not interpreted as having signs. For packed decimal,
zoned decimal, fixed-point, normalized floating-point, and the signed numeric data
formats, collating is algebraic; that is, each quantity is interpreted as having an
algebraic sign.

Some of the DFSORT default values depend on the specifications made by your
system programmer, through the ICEMAC macro, when DFSORT was installed.
DFSORT installation is described in DFSORT Planning and Installation Guide.

The following is a summary of the DFSORT installation parameters and functions
that may be set when the program is installed.

Parameters

ALTSEQ

ARES ALL

ARES INV

CHALT

Function

Alters the usual EBCDIC collating sequence.

Specifies, for MYS/Extended Architecture (MYS/XA), the
number of bytes reserved above 16-megabyte virtual for system
use.

Specifies, for MYS/Extended Architecture (MYS/XA), the
number of bytes reserved above 16-megabyte virtual for the
invoking program when DFSORT is dynamically invoked.

Specifies whether character format fields should be translated
using ALTSEQ.

6 DFSORT Application Programming: Guide

CHECK

COB EXIT

DYNALOC

EQUALS

ERET

EXCPVR

IGNCKPT

INVIJCL

LIST

MAXLIM

MINLIM

MSGCON

MSGDDN

MSGPRT

OUTREL

OUTSEC

OVERRGN

RES ALL

Specifies whether record count should be checked for applications
that use the E35 user exit routine without a SORTOUT data set.

Indicates whether E15 and E35 routines written in COBOL will
be executed with the VS COBOL II library.

Specifies the default values for device name and number of work
data sets to be dynamically allocated on MVS systems when
DYNALLOC is specified at execution time (on either the SORT
or OPTION statement) without these values.

Specifies whether the input order of equally collating records
should be preserved for output.

Specifies the action to be taken if DFSORT encounters a critical
error.

Specifies for OS/VSl users whether the EXCPVR SVC can be
used for SORTWKnn 1/0.

Specifies whether the checkpoint/ restart facility is to be ignored if
it is requested at execution time and the Blockset technique (which
does not support the checkpoint/ restart facility) can be used.

Indicates whether the defaults specified are to be used when
DFSORT is JCL invoked or dynamically invoked.

Specifies whether program control statements are to be printed.

Sets an upper limit to the amount of main storage available to
DFSORT below 16-megabyte virtual, when
SIZE/MAINSIZE=MAX.

Sets a lower limit to the amount of main storage available to
DFSORT below 16-megabyte virtual.

Specifies the class of program messages to be written to the master
console.

Specifies an alternate name for the message data set.

Specifies the class of program messages to be printed on the
message data set.

Specifies whether unused temporary SORTOUT data set space is
to be released.

Specifies whether DFSORT should use automatic secondary
allocation for SORTOUT data sets that are temporary or new.

Specifies the amount of main storage above the REGION value
available to Blockset.

Reserves storage for system and application use.

Chapter 1. Introduction 7

RESDNTx

RESINV

SIZE

SMF

STIMER

SVC

TMAXLIM

VERIFY

VIO

VLSHRT

WRKREL

WRKSEC

Indicates for OS/VSl whether DFSORT modules reside in the
pageable supervisor area. The x is B for Blockset modules and P
for Peerage and Vale modules.

Reserves space for programs invoking DFSORT.

Sets amount of main storage available to DFSORT.

Specifies whether System Management Facilities (SMF) records
are to be produced. See Appendix G for a description of the SMF
record produced by DFSORT.

Specifies whether DFSORT should use the STIMER macro. If
DFSORT does not use the STIMER macro, processor timing data
does not appear in SMF records.

Specifies a user SVC number for DFSORT.

Specifies, for MVS/XA, an upper limit to the total amount of
main storage above and below 16-megabyte virtual available to
DFSORT when SIZE/MAINSIZE=MAX.

Specifies whether the sequence of output records is to be verified.

Specifies for MVS users whether virtual allocations for sort work
areas should be dynamically reallocated to a real disk location.

Specifies whether to continue sorting or merging if a variable
length input record is found that is not long enough to contain all
specified control fields. VLSHR T does not apply to FLR
processing.

Specifies whether unused temporary SORTWKnn data set space is
to be released.

Specifies whether DFSORT should use automatic secondary
allocation for temporary SORTWKnn data sets.

Tables showing all the possible sources of specification and order of override for
each option are in Appendix D.

Machine Requirements

DFSORT is designed to operate with all of the IBM processors supported by
MVS/370, MVS/XA, or OS/VSl and:

• Any device that is supported by MVS/370, MVS/XA, or OS/VSl for
program residence

• Any device that is used by QSAM or VSAM for input or output

8 DFSORT Application Programming: Guide

Intermediate storage requirements are given in "Intermediate Storage" on
page 275.

System/370-XA Sorting Instructions must be activated to be used.

Main Storage Requirements

DFSORT main storage is defined when the program is installed. If this is not
appropriate, you can determine the requirements for your particular application and
override the default value at execution time. To establish your requirements, see
"Main Storage" on page 275 and "Tuning Main Storage" on page 207.

Program Execution

To execute DFSORT, you must prepare two types of statements: prog!am control
statements and JCL statements. Program control statements are processed by
DFSORT; they describe your records and how you want them processed. A full
discussion of the program control statements is contained in Chapter 2, "Program
Control Statements" on page 17. JCL statements are processed by the operating
system control program; they describe to the operating system the data sets
required by the program, and may be used to initiate execution of DFSORT. A
complete description of the format and of the specifications for the JCL statements
required by the program is contained in Chapter 3, "Job Control Statements" on
page 113.

A sort usually requires intermediate storage as working space during program
execution; you must specify intermediate storage device(s) and the work space
required in certain JCL data definition statements-unless you use the
DYNALLOC facility under MYS. The formulas for determining space
requirements are described in "Intermediate Storage" on page 275.

Neither a merge nor a copy requires intermediate storage.

Application programmers must be aware of the interaction between control
statements and user exits in terms of record handling.

Figure 2 on page 10 shows a simplified picture of the sequence of processing for
record handling exits, statements, and options.

Chapter 1. Introduction 9

Sort or Copy Application

INCLUDE
OMIT

STOPAFT

•

T
SORT/
SUM

OR
COPY

f soRTOuTf

Figure 2. Record Processing Sequence

10 DFSORT Application Programming: Guide

Merge Application

SORT!Nnn

INCLUDE
OMIT

T
MERGE

SUM

f soRrouTf

Figure 2 illustrates the following:

• Records are first read in from the SORTIN data set (if present) for a sort or
copy application or the SORTINnn data sets (if present) for a merge
application. If SORTIN is not present for a sort or copy application, all
records must be inserted by an E15 exit. (This is also the case if DFSORT is
invoked from a program with the address of an E 15 exit in the parameter list,
because SORTIN will be ignored.) A COBOL E15 routine may be used if the
E15 exit is specified in the MODS statement. If SORTINnn is not present for
a merge application, all records must be inserted by an E3 2 exit.

• Record processing is done if the SKIP REC option is in effect (sort or copy
application with SORTIN present only). SKIPREC is processed before the
E15 (if any) is called. Records are deleted until the SKIPREC count is
satisfied, thus eliminating them before sort or copy processing, resulting in
better performance.

If an E15 routine is present (sort or copy application with SORTIN present
only), it is given control next. A COBOL E15 routine may be used if the E15
exit is specified in the MODS statement. The E15 routine may insert, delete,
or reformat records.

• Record processing is done next for an INCLUDE or OMIT statement, if it is
present. If any changes have been made in the record format by an E15, the
INCLUDE/OMIT field definitions must apply to the current format rather
than to the original format. You can cause records to be deleted by your
selection criteria, thus eliminating them before sort, merge, or copy processing,
resulting in better performance.

• For a sort or copy, if the STOPAFT option is in effect, record processing for it
is done next. Input will stop after a user-specified maximum number (n) of
records has been accepted. Records are accepted under the following
conditions:

read from.SORTIN or inserted by E15

not deleted by SKIPREC

not deleted by E 15

not deleted by INCLUDE/OMIT

• If an INREC statement is present, it is processed next. If any changes have
been made in the record format, the INREC field definitions must apply to the
current format rather than to the original format. INREC reformats the
records. Note that INREC can be used to achieve better performance, by
shortening records before they ~re processed.

• Record processing for the SORT, MERGE, or OPTION COPY statement is
done next.

For a sort, all input records are processed before any output records is
processed. For a copy or merge, an output record is processed after an input
record is processed. For a sort or merge, if a SUM statement is present, it is
processed during the SORT or MERGE processing. Records are summarized

Chapter 1. Introduction 11

and duplicates deleted as soon as possible for better performance. If any
changes have been made in the record format, the SORT or MERGE, and
SUM field definitions must apply to the current format rather than to the
original format.

• If an OUTREC statement is present, it is processed next. If any changes have
been made in the record format, the OUTREC field definitions must apply to
the current format rather than to the original format. OUTREC reformats the
records.

• If an E3 5 exit is present, it is given control after all of the statement processing
is complete. If any changes have been made in the record format, the E35 exit
receives the records in the current format rather than in the original format. A
COBOL E35 routine may be used if the E35 exit is specified in the MODS
statement. The E35 exit may add, delete, or reformat records. If a SORTOUT
data set is not present, the E35 exit must dispose of all the records (DFSORT
views these records as deleted). (This is also the case if sort, merge, or copy is
invoked with the address of an E35 exit in the parameter list, because
SORTOUT will be ignored.)

Finally, the records are written to the SORTOUT data set, if present.

Program Initiation

You can initiate execution of the program in the following places:

• In the input stream with an EXEC job control statement using the name of the
program or the name of a cataloged procedure, as described in
Chapter 3, "Job Control Statements" on page 113.

• In a program written in basic assembler language with a system macro
instruction, as described in Chapter 5, "Invoking DFSORT from an
Assembler Program" on page 187.

• In programs written in either COBOL or PL/I with a special facility of the
language. For more information, see the programmer's guide describing the
compiler version available at your installation.

Throughout this manual, a DFSORT program initiated by an EXEC statement is
referred to as JCL invoked; a DFSORT program initiated from another program,
written in assembler, COBOL, or PL/I, is referred to as dynamically invoked.

Program Modification

During execution, DFSORT can pass control at various points, known as program
exits, to routines you have designed and written to perform specific functions. For
example, you can write routines to summarize, insert, delete, shorten, or otherwise
alter records as they are being processed. You can also write your own routines to
correct I/ 0 errors that the control program cannot handle or to perform any
necessary abnormal end-of-task operation before the program is terminated.

12 DFSORT Application Programming: Guide

Messages

Return Codes

Your routines must reside in private libraries.

The program exits and their uses are explained in Chapter 4, "User Exit
Routines" on page 135.

You can determine whether the DFSORT messages should be printed and/ or
written to the master console.

DFSORT can write three types of messages to the message data set: critical error
messages, informational messages, and diagnostic messages. You can specify at
installation or execution time which types of messages you want to be written.

DFSORT can write two types of messages to the master console: critical error
messages and informational messages. You can specify at installation time which
types of messages you want to be written.

Messages are discussed in detail in Appendix H.

DFSORT returns a return code of 0 to the operating system (or other invoking
program) upon successful completion. If completion is unsuccessful, a return code
of 16 is returned or a user abend is issued, depending on what you have requested.
If the message data set is required, but is not provided, a return code of 20 is
returned. See "Return Codes" on page 314.

Checkpoint/Restart

Checkpoint/Restart is a faciµty of the operating system that permits an automatic
or deferred restart if a DFSORT sort or merge application abnormally terminates.
You must specify certain parameters in the program control statements and prepare
a JCL DD statement if you want to include this facility in a DFSORT execution
(see Chapter 2, "Program Control Statements" on page 17).

No checkpoints are taken:

• If no work d.ata set is specified.

• For a copy application.

• If an invoked merge is handling output through exit E35.

• If output from a merge application is to be a VSAM data set.

• If the output file for a merge application takes up less than one volume.

Chapter 1. Introduction 13

• If, for a merge application, you supply the address of your own exit list for the
SORTOUT DCB at exit E39.

• If the Blockset technique is selected.

Within a user exit routine. This includes SORT /MERGE input and output
procedures with an invoking COBOL program.

Notes:

1. Checkpoint/ Restart does not apply to the copy function.

2. The Blockset technique does not support checkpoint/restart. If the Blockset
technique is chosen, checkpoint/restart will be ignored. However, if necessary, the
B lockset technique can be bypassed so that checkpoints can be taken, by specifying
either IGNCKPT=NO on the ICEMAC installation macro or NOBLKSET on
the OPTION statement.

Also note that no ANSI Standard Tape label files can be open during
checkpoint/ restart.

If you want checkpoints taken, you must use the facility provided by DFSORT.
You cannot use the system checkpoint at End of Volume.

For more information on the checkpoint/restart facility, see the list of books at the
front of this manual under "Planning Checkpoint Restart".

Statistical Data Collection

If you want to collect statistics on execution time, record distribution, and so forth,
you can use the SMF installation option. SMF is a parameter operand of the
ICEMAC installation macro. Users who have properly installed a modified
DFSORT SVC routine have this option available to them.

If SMF is specified, DFSORT causes an SMF record to be written for each sort,
merge, or copy application which completes successfully (return code 0). If an
SMF record is desired, either a short or full SMF record can be produced by means
of the SMF parameter on the ICEMAC installation option. A full SMF record will
only be produced by DFSORT if requested (SMF=FULL), and only if the
processing operation is for variable-length records.

By specifying STIMER= YES on the ICEMAC installation macro, you can have
processor time data included in SMF records. This option can be overridden at
execution time by specifying NOSTIMER on the OPTION statement if your exit(s)
take checkpoints. Note, however, that the installation option STIMER=NO
cannot be overridden at execution time.

For more information on statistical data collection, see Appendix H, "DFSORT
Messages and Codes" on page 313, and System Management Facilities (SMF).

14 DFSORT Application Programming: Guide

Maximum Efficiency

The objective of DFSORT is to process data as fast as possible. Many factors
(such as the size of the work data sets specified, record lengths, default values in
operation) are involved in determining the efficiency of the program. These factors
are evaluated at the beginning of the program, and optimization takes place in two
ways:

• Optimal values are calculated for many variables, such as buffer sizes.

• The most efficient technique is selected automatically.

The specifications you make in your program control and JCL statements affect
program execution, efficiency, and speed. Suggestions for improving the
performance of a DFSORT application are given in Chapter 6, "Improving
Program Efficiency" on page 205.

Control Statement Example

The following example shows the JCL and DFSORT statements required for a
simple sort application. Other examples are described in Appendix A.

llEXAMP JOB A402,PROGRAMMER,REGION=512K 01
llSRT EXEC PGM=SORT,PARM='SIZE=MAX' 02
llSYSOUT DD SYSOUT=A 03
llSORTIN DD UNIT=3380,VOL=SER=000101,DISP=SHR,DSN=INPUT 04
llSORTOUT DD UNIT=3400-3,DSN=OUTPUT,VOL=SER=222222, 05
II DISP=(,KEEP) 06
llSORTWK01 DD UNIT=SYSDA,SPACE=(CYL, (10)) 07
/ISYSIN DD * 08

I*
SORT FIELDS=(5,12,CH,A),FILSZ=E2000 09

Line Explanation

01 The JOB statement introduces this job to the operating system, and
specifies a region of 512K bytes.

02 The EXEC statement calls the program by its alias SORT and specifies
that the program should use all the main storage available to it.

03 The SYSOUT DD statement directs the sort messages to system output
class A.

04 The SORTIN DD statement describes an input data set named INPUT.
The data set is on a 3380 disk with the serial number 000101. The DISP
parameter indicates that the data set is known to the operating system.

Chapter 1. Introduction 15

05-06 The SORTOUT DD statement describes the output data set. Output is
recorded on a 9-track tape and is kept. The data set is placed on a
standard label tape with tape volume number 222222. By default, format,
record length and block size are the same as for SORTIN.

07 This DD statement defines a temporary work data set. The data set is on
a SYSDA direct access device. Ten cylinders are specified for the data
set.

08 A data set follows in the input stream.

09 SORT statement. The FIELDS operand describes one field. It begins on
byte 5 of each record, is 12 bytes long, contains character (EBCDIC)
data, and is to be sorted into ascending order. The file size is estimated to
be 2000 records.

16 DFSORT Application Programming: Guide

Chapter 2. Program Control Statements

Before DFSORT can operate on the input data, it must receive program control
statements. Control statements can be received from the following sources:

• SYSIN data set

• SORTCNTL data set

• 24-bit parameter list

• Extended parameter list

Each of these sources is discussed in detail in later chapters.

Some control statements are always required, whereas others are optional and are
required only for specific actions. The control statements describe:

• The type of operation to be performed

• Control field parameters

• Modifications to be made by your own routines

• Functions to be invoked

• Input and output files

• Options selected for particular applications

The program checks the validity of each statement before processing it. If the
program finds an error, it issues a message. (See Appendix H, "DFSORT
Messages and Codes" on page 311, for descriptions of these messages.)

Chapter 2. Program Control Statements 17

Control Statement Summary

Control Statements

There are 13 control statements:

Statement

ALTSEQ

DEBUG

END

INCLUDE

INREC

MERGE

MODS

OMIT

OPTION

OUTREC

RECORD

SORT

SUM

Specifies modifications to the IBM EBCDIC collating sequence.
The modified sequence is used for any control field whose format
is specified as AQ.

For use when diagnostic information is required for debugging.

Causes DFSORT to discontinue reading SYSIN or SORTCNTL.

Specifies that only records whose fields meet certain criteria are
included.

Specifies how records are reformatted before they are processed.

Provides information about control fields. Use this statement if
your application is a merge (or copy).

This statement is required only when you include user routines in a
DFSORT application. A description of how to write such routines
and how they may be used in a DFSORT application is in
Chapter 4, "User Exit Routines" on page 135.

Specifies that records whose fields meet certain criteria are
deleted.

Provides overrides for installation defaults (such as EQUALS,
CHALT, and CHECK), and optional information (such as
DYNALLOC, SKIPREC, and COPY).

Specifies how records are reformatted before they are written.

Provides record length and type information. This statement is
required when you include user exit routines that change record
lengths during DFSORT execution, when there is no SORTIN DD
statement, or when input is a VSAM data set. It can be supplied
at other times to improve efficiency.

Provides information about control fields. Use this statement if
your application is a sort (or copy).

Specifies that summary fields in records with equal control fields
are summarized in one of the records, and that the other records
are deleted.

18 DFSORT Application Programming: Guide

Comment Statements

Notational Conventions

An overview of the format and parameters of all the program control statements is
given in Figure 3 on page 20.

Comment statements are specified by placing an'*' in column 1. They are printed
with the other control statements, but not otherwise processed.

Note: Comment statements are only allowed in the SYSIN and SORTCNTL data
sets.

A uniform system of notation describes the format of the DFSORT control
statements. This notation is not part of the language; it merely provides a basis for
describing the structure of the commands.

The command-format illustrations in this chapter use these conventions:

• Brackets,[], indicate an optional parameter.

• Braces, {}, indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

• Items separated by a vertical bar, I, represent alternative items. No more than
one of the items may be selected.

• An ellipsis, ... ,indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

• Other punctuation (parentheses, commas, apostrophes, and so forth) must be
entered as shown.

Chapter 2. Program Control Statements 19

Operation Parameters

ALTSEQ CODE= (fftt ... ,fftt)

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

CODE= Indicates that the collating Modifications are based on the EBCDIC
sequence is to be modified. sequence.

ff The character whose collating Two hexadecimal digits in EBCDIC code (for
position is to be changed. example, Z is "E9").

tt The position to be occupied Two hexadecimal digits (for example, "to collate
by the characters ff. after Z" would be "EA").

Operation Parameters

DEBUG [ABEND I NOABEND]
[,ABSTP]
[,BSAM]
[,BUFFERS={ANY I BELOW}]
[,CTRx=n]
[,FMTABEND]
[,NOASSIST]

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

ABEND An unsuccessful run is to: Overrides the ERET option specified at
NO ABEND installation time.

-Terminate with ABEND.
-Terminate with return code
of 16.

ABSTP During Blockset processing, Overrides ERET, ABEND, and NOABEND
forces an ABEND for an options.
unsuccessful run preventing
the loss of needed information
in the dump.

BSAM BSAM access method is used
instead of EXCP.

Figure 3 (Part 1 of 18). Control Statement Summary

20 DFSORT Application Programming: Guide

Parameter Explanation Notes

BUFFERS Specifies whether the buffers
may be placed above or below
16-megabyte virtual.

CTRx=n Prints a formatted dump when
the input or output count
equals n.

FMTABEND Prints a formatted dump when
DFSORT abends.

NO ASSIST System/ 3 70-XA sorting
instructions are not to be
used.

Operation Parameters

END None. The END statement causes DFSORT to discontinue reading SYSIN or
SORTCNTL.

Operation Parameters

INCLUDE {COND=(pl,ml,fl,{EQ I NE I GT I GE I LT I LE}
,{p2,m2;f2 I constant}[{,AND I ,OR}, ...]) I
COND=(pl,ml,{EQ I NE I GT I GE I LT I LE},
{p2,m2 I constant}[{,AND I ,OR}, ...])FORMAT=f}

(See Appendix D for functions to which these parameters apply.)

Figure 3 (Part 2 of 18). Control Statement Summary

Chapter 2. Program Control Statements 21

Parameter Explanation Notes

COND= Describes the
relational
condition.

p Position within
record.

m Length.

f Format. Permissible formats are:
CH - EBCDIC character, unsigned
ZD - Zoned decimal, signed
PD - Packed decimal, signed
FI - Fixed-point binary, signed
BI - Binary, unsigned
AC - ISCil/ ASCII character, unsigned
CSL - EBCDIC numeric, leading separate sign
CST - EBCDIC numeric, trailing separate sign
CLO - EBCDIC numeric, leading overpunch sign
CTO - EBCDIC numeric, trailing overpunch sign
ASL - ISCH/ ASCII numeric, leading separate sign
AST - ISCH/ ASCII numeric, trailing separate sign
AO - EBCDIC character, alternate collating sequence

EQ Equal to.

NE Not equal to.

GT Greater than.

GE Greater than or
equal to.

LT Less than.

LE Less than or equal
to.

Constant Constant can be decimal, character, or hexadecimal.

AND Logical AND. The sign & may be used instead of the word AND.

OR Logical OR. The sign I may be used instead of the word OR.

FORMAT=f Optional; may be The permissible values for f are listed above.
used when all
INCLUDE field
data formats are
the same.

Figure 3 (Part 3 of 18). Control Statement Summary

22 DFSORT Application Programming: Guide

Operation Parameters

INREC FIELDS= ([s,]p,m[,a] ... [,s][,p,m[,a]][,s])

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

FIBLDS= Specifies the order
of input and
separation fields in
the reformatted
input record.

p Position within
record of input
field.

m Length of input
field.

a Alignment of the Permissible valu~s are:
input field in the H - Halfword aligned.
reformatted input F - Fullword aligned.
record. D - Doubleword aligned.

s Separation field. Permissible values are:
nX - Bland separation. n bytes of EBCDIC

blanks (X'40') are inserted (n= 1-256).
nZ - Binary zero separation. n bytes of

binary zeros (X '00') are inserted
(n=l-256).

Operation Parameters

MERGE {FIELDS=(p,m,f,s ... ,p,m,f,s) I
FIELDS=(p,m,s ... ,p,m,s),FORMAT=f I
FIELDS=COPY}
[,FILES=n]
[,GKPT]
[,EQUALS I ,NOEQUALS]
[,FILSZ=x I ,SIZE=y]

(See Appendix D for functions to which these parameters apply.)

Figure 3 (Part 4 of 18). Control Statement Summary

Chapter 2. Program Control Statements 23

Parameter Explanation Notes

FIBLDS= See explanation and notes for this parameter on the SORT
statement.

COPY See explanation and notes for this parameter on the OPTION
statement.

FOR.MAT=f See explanation and notes for this parameter on the SORT
statement.

FILES=n Optional.
Specifies the
number of input
files for a merge
when input is
supplied through
the E32 exit.

CK.PT See explanation and notes for this parameter on the OPTION
statement.

EQUALS See explanation and notes for this parameter on the OPTION
NO EQUALS statement.

FILSZ=x See explanation and notes for this parameter on the OPTION
SIZE=y statement.

Operation Parameters

MODS exit=(n,m,s[,e]) ... , exit=(n,m,s[,e]) ... ,

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

exit= The name of an Must be a valid exit name (for example, E15,
exit to be E61). You may specify any exit, except E32.
activated.

n The name of your
routine, or
member name of
routine in a
library.

m Size, in bytes, used This includes the size of the module and storage obtained by
by the routine. your routine.

s Location of the The ddname of the data set containing the routine.
routine.

Figure 3 (Part 5 of 18). Control Statement Summary

24 DFSORT Application Programming: Guide

Parameter Explanation Notes

e Linkage editor Permissible types are:
requirements of
your routine, and • N - No link-editing required (default if e is not
whether your specified).
routine is written • C - El5 or E35 exit written in COBOL and no
in COBOL. link-editing required.

• T - Routine must be link-edited together with other
routines for the same phase.

• S - Ell or E3 l routine requires link-editing, but it must
be link-edited separately from other routines.

Operation Parsmeters

OMIT {COND=(pl,ml,fl,{EQ I NE I GT I GE I LT I LE}
,{p2,m2,f2 I constant}[{,AND I ,OR}, ...]) I
COND=(pl,ml,{EQ I NE I GT I GE I LT I LE},
{p2,m2 I constant}[{,AND I ,OR}, ...]),FORMAT=f}

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

COND= Describes the
relational
condition.

p Position within
record.

m Length.

f Format. Permissible formats are:
CH - EBCDIC character, unsigned
ZD - Zoned decimal, signed
PD - Packed decimal, signed
FI - Fixed-point binary, signed
BI - Binary, unsigned
AC - ISCII/ ASCII character, unsigned
CSL - EBCDIC numeric, leading separate sign
CST - EBCDIC numeric, trailing separate sign
CLO - EBCDIC numeric, leading overpunch sign
CTO - EBCDIC numeric, trailing overpunch sign
ASL - ISCII/ ASCII numeric, leading separate sign
AST - ISCII/ ASCII numeric, trailing separate sign
AQ - EBCDIC character, alternate collating sequence

EQ Equal to.

Figure 3 (Part 6 of 18). Control Statement Summary

Chapter 2. Program Control Statements 25

Parameter Explanation Notes

NE Not equal to.

GT Greater than.

GE Greater than or
equal to.

LT Less than.

LE Less than or equal
to.

constant Constant can be decimal, character, or hexadecimal.

AND Logical AND. The sign & may be used instead of the word AND.

OR Logical OR. The sign I may be used instead of the word OR.

FORMAT=f Optional; may be The permissible values for f are listed above.
used when all
OMIT field data
formats are the
same.

Figure 3 (Part 7 of 18). Control Statement Summary

26 DFSORT Application Programming: Guide

Operation Parameters

OPTION [ARESALL= {n I nK}]
[,ARESINV = {n I nK}]
[,CHALT I ,NOCHALT]
[,CHECK I ,NOCHECK]
[,CKPT]
[,COBEXIT={COBl I COB2}]
[,COPY]
[,DYNALLOC[={d I (d) I (,n) I (d,n)}]]
[,EQUALS I ,NOEQUALS]
[,FILSZ=x I ,SIZE=y I ,FILSZ=En I ,SIZE=En]
[,LIST I ,NOLIST]
[,MAINSIZE= {n I nK I MAX}]
[,MSGDDN =ddname]
[,MSGPRT={ALL I NONE I CRITICAL}]
[,NOBLKSET]
[,NOOUTREL]
[,NOOUTSEC]
[,NOSTIMER]
[,NOWRKREL]
[,NOWRKSEC]
[,RESALL= {n I nK}]
[,RESINV = {n I nK}]
[,SKIPREC=z]
[,SORTDD=cccc]
[,SORTIN =ddname]
[,SORTOUT=ddname]
[,STOP AFT=n]
[,VERIFY I ,NOVERIFY]
[,VLSHRT I ,NOVLSHRT]

(See Appendix D for functions to which these parameters apply.)

Figure 3 (Part 8 of 18). Control Statement Summary

Chapter 2. Program Control Statements 2 7

Parameter Explanation Notes

ARESALL= Optional. Reserves storage Applicable to only MVS/XA.
(above 16-megabyte virtual)
for system and application
use.

n Limit: 8 digits.

nK Limit: 5 digits; K= 1024.

ARESINV= Optional.. Reserves storage Applicable to only MVS/XA when DFSORT is
(above 16-megabyte virtual) dynamically invoked.
for invoking programs.

n Limit: 8 digits.

nK Limit: 5 digits; K= 1024.

·CHALT Optional. Specifies both Specifies that both formats AQ and CH control
NOCHALT formats AQ and CH, or AQ fields be translated through the alternate collating

only. sequence (AL TSEQ) translate table (CHAL T), or
only format AQ control fields (NOCHALT).

CHECK Optional. Specifies whether Applicable only for applications with output record
NOCHECK record counters should be processing in an E35 exit routine.

checked at end of program
execution.

CKPT Optional. Checkpoints are CHKPT is also accepted. This parameter is
taken. ignored if a Blockset technique is selected, unless

IGNCKPT=NO was specified at installation time.
Checkpoints cannot be taken during a merge
operation with VSAM output or during an invoked
merge handling output through E35.

COBEXIT= Optional. Specifies COBOL
libraries for E15 and E35.

COB1 OS/VS COBOL library or no
library.

COB2 VS COBOL II library.

Figure 3 (Part 9 of 18). Control Statement Summary

28 DFSORT Application Programming: Guide

Parameter Explanation Notes

COPY Optional. Specifies a data set Regardless of input form, output can be either
is to be copied. QSAM or VSAM. Output must be of the same

type (fixed or variable) as input.

DYNALLOC Optional. Dynamic allocation Applicable to only MVS.
of intermediate work storage.

d Device type. d can be any of 2314, 3330, 3330-1,
3340,3350,3375,3380,3400-3,
3400-4, 3480, 3850, 2400, 2400-3, 2400-4,
or their user-assigned group name,
such as SYSDA.

n Number of devices (work data Number of work data sets (up to 16).
sets).

EQUALS Optional. Specifies whether
NOEQUALS order of equally collating

records should be preserved
from input to output.

FILSZ=x Optional. The number of If n is an estimate, the value must be preceded by
SIZE=y records to be sorted or the character E (FILSZ=En). If SIZE is used
FILSZ=En merged. instead of FILSZ, the value should represent the
SIZE=En number of records in the input file(s).

LIST Optional. Specifies whether Will be processed only if passed in an extended
NO LIST control statements· will be parameter list. Overridden by a SORTDIAG DD

listed. statement.

MAIN SIZE= Optional. Specifies main
storage size.

n Limit: 8 digits.

nK Limit: 5 digits; K= 1024.

MAX Allocates amount of storage
specified by MAXLIM or
TMAXLIM installation
option.

MSGDDN= Optional. Specifies message Applicable only when supplied in an extended
ddname data set ddname. parameter list.

Figure 3 (Part 10 of 18). Control Statement Summary

Chapter 2. Program Control Statements 2 9

Parameter Explanation Notes

MSGPRT= Optional. Specifies message Applicable only when supplied in an extended
type. parameter list.

Messages are written to the message data set.

Overridden by a SORTDIAG DD statement.

ALL All Messages except Control statements will be printed only if LIST is
diagnostic messages in effect.
(ICE800I-ICE9991) will be
printed.

NONE Messages and control
statements will not be printed.

CRITICAL Critical (error) messages only Control statements will be printed only if LIST is
will be printed. in effect.

Note: Control statements will not be printed if
MSGPRT=CRITICAL is in effect and DFSORT
is dynamically invoked using the 24-bit parameter
list.

NOBLKSET Optional. Specifies bypass of The higher performance Blockset technique will
Blockset technique. be used whenever possible. You can bypass the

Blockset technique (for example, if you want to
use checkpoint/restart) by specifying this
parameter.

NOOUTREL Optional. Specifies that
unused temporary SORTOUT
data set space is not to be
released.

NOOUTSEC Optional. Specifies that
automatic secondary
allocation for temporary or
new SORTOUT data sets
should not be used.

NOSTIMER Optional. Specifies that
DFSORT should not use the
STIMER macro.

Figure 3 (Part 11 of 18). Control Statement Summary

30 DFSORT Application Programming: Guide

Parameter Explanation Notes

NOWRKREL Optional. Specifies that
unused temporary
SORTWKnn data set space is
not to be released.

NOWRKSEC Optional. Specifies that
automatic secondary
allocation should not be used
for SORTWKnn data sets.

RES ALL= Optional. Reserves storage Applicable only when SIZE/MAINSIZE==MAX is
below 16-megabyte virtual for in effect.
system and application use.

n Must be 4096 or greater (limited to 8 digits).

nK Must be 4 or greater (limited to 5 digits).
K=1024.

RESINY= Optional. Reserves storage Applicable only when DFSORT has been
below 16-megabyte virtual for dynamically invoked, and
invoking programs, when SIZE/MAINSIZE=MAX is in effect.
SIZE/MAINSIZE=MAX.

n Limit: 8 digits.

nK Limit: 5 digits; K= 1024.

SKIPREC=z Optional. The program will
skip z records at the beginning
of the input data set.

SOR TDD= Optional. Specifies prefix for Applicable only when supplied in an extended
cccc certain "SORT" ddnames. parameter list. A four character prefix. The first

character is alphabetic; the next three characters
are alphameric or national.

SORTIN= Optional. Specifies ddname to Applicable only when supplied in an extended
ddname be associated with the input parameter list. Not affected by SORTDD

data set. keyword.

SORTIN is the default, unless SORTDD=cccc is
specified, in which case ccccIN is the default.

Figure 3 (Part 12 of 18). Control Statement Summary

Chapter 2. Program Control Statements 31

Parameter Explanation Notes

SOR TOUT= Optional. Specifies ddname to Applicable only when supplied in an extended
ddname be associated with the output parameter list. Not affected by SORTDD

data set. keyword.

SORTOUT is the default, unless SORTDD=cccc
is specified, in which case ccccOUT is the default.

STOPAFT=n Optional. Indicates the
number of records to be
accepted for sorting or
copying (read from SORTIN
or inserted by E 15 and not
deleted by SKIPREC, El5, or
INCLUDE/OMIT).

VERIFY Optional. Specifies whether
NO VERIFY sequence checking on final

output record sequence should
be done.

VLSHRT Optional. Specifies whether to VLSHRT is not used if INCLUDE/OMIT,
NOVLSHRT continue processing variable INREC, SUM, or OUTREC is specified.

length records if one is too
short to contain all specified
control fields.

Operation Parameters

OUTREC FIELDS=([s,]p,m[,a] ... [,s][,p,m[,a]][,s])

I. (See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

FIELDS= Specifies the order
of input and
separation fields in
the reformatted
output record.

p Position within
record of input
field.

m Length of input
field.

Figure 3 (Part 13 of 18). Control Statement Summary

32 DFSORT Application Programming: Guide

Parameter Explanation Notes

a Alignment of the Permissible values are:
input field in the H - Halfword aligned.
reformatted output F - Fullword aligned.
record. D - Doubleword aligned.

s Separation field. Permissible values are:
nX - Blank separation. n bytes of EBCDIC

blanks (X'40') are inserted (n=l-256).
nZ - Binary zero separation. n bytes of

binary zeros (X'OO') are inserted (n=l-256).

Figure 3 (Part 14 of 18). Control Statement Summary

Chapter 2. Program Control Statements 3 3

Operation Parameters

RECORD [TYPE=x][,LENGTH=(L1,L2,L3,L4,L5,L6,L7)]

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

TYPE=x Used when all records are supplied via x must be:
El5 or E32 or when VSAM data sets F -(fixed length),
are used for input. V-(variable length EBCDIC), or

D-(variable length ASCII).

LENGTH= Describes fixed-length records.

Ll Used when no SORTIN DD statement is
supplied. Lt =SOR TIN LRECL.t

L2 Used when length is changed at E15.
L2=length after El5.

L3 Used when SORTOUT LRECV is not
equal to SORTIN and no SORTOUT
LRECV is available. L3=SORTOUT
LRECL.t

LENGTH= Describes variable-length records.

Ll Used when no SORTIN DD statement If processing records with VSAM input
supplied. Ll =maximum record length; and non-VSAM output, add 4 to the
otherwise, overridden to default. input record length. 2

L2 Used when length changed at E15. If the E 15 is reading VSAM input, add 4
L2=length after El5. bytes to the input record length.

L3 Used when SORTOUT LRECL is not If the El 5 is reading VSAM input, add 4
equal to SORTIN and SORTOUT bytes to the input record length.
LRECL is not available.
L3=SORTOUT LRECL. .

L4 Minimum length If the E 15 is reading VSAM input, add 4
bytes to the input record length.

L5 Average length. If the El 5 is reading VSAM input, add 4
bytes to the input record length.

L6 Accepted but not used; reserved for
future use.

L7 Accepted but not used; reserved for
future use.

For a VSAM data set, the equivalent of LRECL is maximum record

2 See "VSAM Data Set Notes and Limitations" on page 4 for more information.

Figure 3 (Part 15 of 18). Control Statement Summary

34 DFSORT Application Programming: Guide

Operation Parameters

SORT {FIELDS=(p,m,f,s ... ,p,m,f,s) I
FIELDS=(p,m,s ... ,p,m,s),FORMAT=f I
FIELDS=COPY}
[,CKPT]
[,DYNALLOC[={d I (d) I (,n) I (d,n)}]]
[,EQUALS I ,NOEQUALS]
[,FILSZ=x I ,SIZE=y I ,FILSZ=En I ,SIZE=En]
[,SKIPREC=z]

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

FIELDS= Description of Fields must be described in descending order of significance.
control fields.

p Position within All fields except binary must start on a byte boundary. No
record. field may extend past byte 4092.

m Length. The sum of lengths must not exceed 4092 bytes.

f Format. Permissible formats are:
CH - EBCDIC character, unsigned
ZD - Zoned decimal, signed
PD - Packed decimal, signed
FI - Fixed-point binary, signed
BI - Binary, unsigned
FL - Floating point, signed
AC - ISCH/ ASCII character, unsigned
CSL - EBCDIC numeric, leading separate sign
CST - EBCDIC numeric, trailing separate sign
CLO - EBCDIC numeric, leading overpunch sign
CTO - EBCDIC numeric, trailing overpunch sign
ASL - ISCH/ ASCII numeric, leading separate sign
AST - ISCH/ ASCII numeric, trailing separate sign
AQ - EBCDIC character, alternate collating sequence

s Desired Must be one of the following:
sequencing. A - Ascending.

D - Descending.
E - User-modified control field that will

be sorted or merged in ascending order.

COPY See explanation and notes for this parameter on the OPTION
statement.

Figure 3 (Part 16 of 18). Control Statement Summary

Chapter 2. Program Control Statements 3 5

Parameter Explanation Notes

FORMAT=f Optional; may be The permissible values for f are listed above.
used when all
control field data
formats are the
same.

CK.PT See explanation and notes for this parameter on the OPTION
statement.

DYNALLOC= See explanation and notes for this parameter on the OPTION
statement.

EQUALS See explanation and notes for this parameter on the OPTION
NOEQUALS statement.

FILSZ=x See explanation and notes for this parameter on the OPTION
SIZE=y statement.

SKIPREC=z See explanation and notes for this parameter on the OPTION
statement.

Operation Parameters

SUM {FIELDS= (p,m,f ... ,p,m,f) I
FIELDS=(p,m ... ,p,m),FORMAT=f I
FIELDS=NONE}

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes

FIELDS= Describes
summary fields.

p Position within
record.

m Length.

f Format. Permissible values are:
BI - Binary, unsigned.
FI - Fixed-point binary, signed.
PD - Packed decimal, signed.
ZD - Zoned decimal, signed.

NONE Eliminates records No summation is performed.
with duplicate
keys.

Figure 3 (Part 17 of 18). Control Statement Summary

36 DFSORT Application Programming: Guide

•
Parameter Explanation Notes

FORMAT=f Optional; may be The permissible values for f are listed above.
used when all
control field data
formats are the
same.

Figure 3 (Part 18 of 18). Control Statement Summary

Chapter 2. Program Control Statements 3 7

Control- Statement Compatibility

The control statements INPFIL and OUTFIL, which are used by other IBM sort
programs, are accepted by this release, but not processed. The information
contained in the INPFIL and OUTFIL statements is supplied to the program in DD
statements.

Because the OPTION control statement is now used by DFSORT, any job streams
from other IBM sort programs that still contain an OPTION control statement
causes DFSORT to terminate unless the parameters conform to the new OPTION
control statement.

The program accepts SORT, MERGE, RECORD, END, and ALTSEQ statements
prepared for other IBM System/360 or System/370 sort/merge programs; any
obsolete parameters are ignored. However, because of the difference in parameter
specifications, the program does not accept other programs' MODS control
statements, with the exception of those used by the IBM Sort/Merge Program
360S-SM-023, and Program Product Sort/Merge 5734-SMl.

Note that, although applications using the 360S-SM-023 and 5734-SMl programs
can be successfully run using the OS/VSl and MYS program, the reverse is not
necessarily true, because this program provides facilities that the others do not.

General Coding Rules

Column 1 must be blank
unless a label is present

(Label) Operation

See "Comment Statements" on page 19 for a description of comment statements.

All other DFSORT control statements have the same general format, shown in
Figure 4.

Operand (Comments)

72 73 80

(Sequence or
Identification)

(Continuation column)

Figure 4. Control Statement Format

The control statements are free-form; that is, the operation definer, operand(s),
and comment field may appear anywhere in a statement, provided they appear in
the proper order, and are separated by one or more blank characters. Column 1 of

3 8 DFSORT Application Programming: Guide

Continuation Lines

each control statement must be blank, unless the first field is a label, in which case
it must begin in column 1.

La.be/ Field: If present, the label must appear first on the line. It must begin in
column 1, and must conform to the operating system requirements for statement
labels.

Operation Field: This field must not extend beyond column 71 of the first line. It
contains a word (for example, SORT or MERGE) that identifies the statement
type to the program. It must not begin in column 1. In the example below, the
operation definer, SORT, is in the operation field of the sample control statement.

Operand Field: The operand field is composed of one or more operands separated
by commas. This field must follow the operation field, and be separated from it by
at least or1e blank. If the statement occupies more than one line, this field must
begin on the first line. Each operand has an operand definer, or parameter (a
group of characters that identifies the operand type to DFSORT). A value or
values may be associated with a parameter. The three possible operand formats
are:

• parameter

• parameter=value

• parameter= (value 1, value2 ... , valuen)

The following example illustrates each of these formats.

I SORT FIELDS=(10,30,A),FORMAT=CH,CKPT

Comments Field: This field may contain any information you desire. It is not
required, but if it is present, it must be separated from the last operand field by at
least one blank.

Continuation Column (72): Any character other than a blank in this column
indicates that the present statement is continued on the next line. However, as
long as the last character of the operand field on a line is a comma followed by a
blank, the program assumes that the next line is a continuation line. The nonblank
character in column 72 is required only when a comments field is to be continued
or when an operand is broken at column 71.

Columns 73 through 80: This field may be used for any purpose.

The format of the DFSORT continuation line is shown in Figure 5 on page 40.

Chapter 2. Program Control Statements 3 9

Column 1 must
be blank

l 16
72 73 80

Continued operand or comments
Optional use

l
Continuation column

Figure 5. Continuation Line Format

1

The continuation column and columns 73 through 80 of a continuation line have
the same purpose as they do on the first line of a control statement. Column 1
must be blank.

A continuation line is treated as a logical extension of the preceding line. Either an
operand or a comments field may begin on one line and continue on the next. The
following rules apply:

• If a comments field is broken or is to be started on a new line, column 72 must
contain a nonblank character. The continuation can begin in any column from
2 through 71.

• If an operand field is broken after a comma, the continuation column (72) can
be left blank, and the continuation can begin in any column from 2 through 71.
If the comma is in column 71 and column 72 contains a nonblank character,
the continuation must begin in column 16.

• If an operand field is not broken after a comma, the operand field must be
broken at column 71. Column 72 must contain a nonblank character. The
continuation must begin in column 16.

Examples of Valid Continuation Lines

SORT FIELDS=(S,8,A,20,2,D),
FORMAT=CH

OPTION SKIPREC=2,LIST, SKIP 2 RECORDS - LIST CONTROL STATEMENTS -
DYNALLOC USE DYNAMIC ALLOCATION

INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM' ,AND,21,8,ZD,GT,+500,0R,31,4,CH,N*
E,C'HERR')

T t
16 72

40 DFSORT Application Programming: Guide

Summary of Restrictions

The following rules apply to control statement preparation:

• Column 1 of each control statement must be blank unless a label or comment
statement is present (a comment statement is indicated by an asterisk in
column 1).

• Labels must begin in column 1, and conform to operating system requirements
for statement labels.

• The whole operation definer must be contained on the first line of a control
statement.

• The first operand must begin on the first line of a control statement. The last
operand in a statement must be followed by at least one blank.

• Embedded blanks are not allowed in operands. Anything following a blank is
considered part of the comments field.

• Values may contain no more than eight alphameric characters (except for
estimated data set size, which may contain nine characters).

• Commas and blanks can be used only as delimiters. They must not be used in
values.

• Each type of program control statement may appear only once within a single
so!l"ce (for example, the SYSIN data set).

Chapter 2. Program Control Statements 41

AL TSEQ Control Statement

ALTSEQ CODE= (fftt ... ,fftt)

The AL TSEQ statement is used if you want to change the collating sequence of
EBCDIC character data; it only changes the order in which it is collated, not the
data itself. If a modified version of the collating sequence is available by default at
your installation, the AL TSEQ statement overrides it.

When you supply an AL TSEQ statement, the modified collating sequence can be
used for any control field whose format you specify on the SORT or MERGE
statement as AQ. If you specify AQ without supplying an ALTSEQ statement,
DFSOR T uses the default available at your installation, if there is one. Otherwise,
it uses the standard EBCDIC collating sequence.

CODE=ifftt,fftt ...)

Notes:

The modifications are described in this form where:

ff

tt

represents in hexadecimal the character whose position is to be
changed, in the EBCDIC collating sequence.

is the EBCDIC hexadecimal representation of the position to which
the character is to be moved.

The order in which the parameters are specified is not important.

l

1. If CHALTis specified on the OPTION control statement or CHALT= YES is
specified at installation time, control characters with format CH are translated by
the ALTSEQ table in addition to those with format AQ.

2. Use of ALTSEQ can degrade performance.

Default: Usually the installation option, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

AL TSEQ Statement Examples

ALTSEQ Example 1

ALT SEQ CODE= (5BEA)

42 DFSORT Application Programming: Guide

The character represented by X'5B'($ or national character) is to collate after 'Z'
(at position X'EA').

ALTSEQ Example 2

ALT SEQ CODE=(FOBO,F1B1,F2B2,F3B3,F4B4,F5B5,F6B6,
F7B7,F8B8,F9B9)

The numerals 0 through 9 are to collate before uppercase letters (but after
lowercase letters).

Chapter 2. Program Control Statements 43

DEBUG Control Statement

DEBUG [ABEND I NOABEND]
[,ABSTP]
[,BSAM]
[,BUFFERS= {ANY I BELOW}]
[,CTRx=n]
[,FMTABEND]
[,NOASSIST]

For a tape work sort or a conventional merge, only the ABEND I NOABEND
parameters ofthe DEBUG statement are used.

The statement is not intended for regular use; only the first three parameters
(ABEND I NOABEND, ABSTP and BSAM) are of general interest. For more
information about problem diagnosis, see DESORT Diagnosis Guide.

ABEND I NOABEND
indicates whether DFSORT abends or terminates with a return code of 16 if
your sort or merge is unsuccessful.

ABEND
If you specify this. parameter and your sort or merge is unsuccessful, it
abends with a user completion code equal to the appropriate message
number. It also causes an abend if the unsuccessful sort or merge was
dynamically invoked.

NO ABEND
An unsuccessful sort or merge terminates with a return code of 16.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

ABSTP
This option prevents loss of needed information in a dump when Blockset
terminates during execution phase processing. If the DFSORT application is
unsuccessful, an abend is forced with a completion code equal to the
appropriate message number. The message is not written. This option
overrides ERET, ABEND, and NOABEND.

Default: None; optional

Applicable Functions: See Appendix D.

BSAM
DFSORT normally uses the EXCP access method for SORTIN and
SORTOUT. If you encounter a problem related to this 1/0 activity, you can

44 DFSORT Application Programming: Guide

temporarily bypass it by specifying this parameter. It is ignored for VSAM
SORTIN and/or SORTOUT data sets.

Note: Use of this option may degrade performance.

Default: None; optional.

Applicable Functions: See Appendix D.

BUFFERS={ANY I BELOW}
DFSORT normally allocates RSA and buffers above 16-megabyte virtual.
You can temporarily bypass the default by specifying BELOW.

ANY
specifies that the record storage area (RSA) and input/ output buffers
may be allocated either above or below 16-megabyte virtual.

BELOW
specifies that the record storage area (RSA) and input/ output buffers
must be allocated below 16-megabyte virtual.

Note: BSAM buffers are always allocated below 16-megabyte virtual.

Default: ANY

Applicable Functions: See Appendix D.

CTRx=n
The program keeps a count of the input or output records. When the count
reaches the value specified (n), the program abends and a specially
formatted dump is printed on the message data set.

The numbers that may be assigned to x are:

2 Count of input records being moved from the input buff er

3 Count of output records being moved to the output buff er

4 Count of input records inserted by ElS (ignored for Blockset)

5 Count of output records deleted by E35 (ignored for Blockset)

Default: None; optional.

Applicable Functions: See Appendix D.

FMTABEND
Specifying this parameter causes a specially formatted dump to be printed on
the message data set when DFSORT abends. The specially formatted dump
is the same as that produced when CTRx=n is specified.

Default: None; optional.

Applicable Functions: See Appendix D.

Chapter 2. Program Control Statements 45

NO ASSIST
DFSORT uses System/370-XA Sorting Instructions on MVS/XA, when
possible. If you do not want to use these instructions, you can temporarily
bypass them by specifying this parameter.

Default: None; optional.

Applicable Functions: See Appendix D.

Forcing a Specially Fonnatted Dump

The default ERET=ABEND I RC16, which was set at DFSORT installation time,
can be overridden by the DEBUG control statement.

To obtain a specially formatted dump on the message data set when DFSORT
terminates, CTRx=n or FMTABEND must be specified in the DEBUG statement.
This first prints a SNAP dump (corresponding to a normal SYSUDUMP dump),
followed by formatted information as shown in Figure 6 on page 4 7.

Figure 7 on page 48 shows how to interpret a formatted dump for Peerage or
Vale. (The formatted dump for Blockset is similar to the formatted dump for
Peerage or Vale.)

46 DFSORT Application Programming: Guide

SYSTEM DUMP
SNAP dump corresponding to a normal SYSUDUMP dump.

FORMATTED DATA

1 Save areas
The standard save areas used by different levels of
the program.

2 Abend code
A fullword with the format X' xxsssuuu', where

xx is the standard abend code prefix,
sss is the system completion code at program

failure (or zeros), and
uuu is the user completion code at uncorrectable

error (or zeros).
This code is equal to the message number
(for example, '046' would represent
message ICE046A).

3 A fullword containing the address of the instruction
at which failure occurred.

4 Register contents when program failure occurred: 16
fullwords, giving the register contents in the order
0 through 15.

5 Contents of the communication area (D4COMMON for Blockset
or ICECOMMA for Peerage or Vale) formatted when program
failure occurred, with offsets from register 13, comments,
labels, and definitions.

Figure 6. Contents of a Specially Formatted Dump

Chapter 2. Program Control Statements 4 7

Displacement (in Comment from The data definition level: Label from

hex) from the start the source code a 'level 3' area is always a the source

of ICECOMMA I subset of the preceding code

! l
'level 2' area, and so on.

! 1
DISPL. COt1HENT LEVEL LABEL

0000 I* SUPERVISOR AND OM SAVE AREA*/ 2 CSAVEOS
0004
0008
oooc
0010
0014
0018

OODO
0004

I* LEVEL 3 ROUTINE SAVE AREA
0008 I* ABWD - Aorno CODE
OODC I* ABEND - INTERRUPT
OOEO I* ABWD - REGISTER
OOE4 I* ABrno - REGISTER
OOE8 I* ABEND - REGISTER
OOEC I* ABEND - REGISTER
OOFO I* Aorno - REGISTER
00f4 I* ABEND - REGISTER
OOF8 I* Aorno - REGISTER
OOFC I* ABEND - REGISTER
0100 I* AO Elm - REGISTER
0104 I* AOEHD - REGISTER
0108 I* ABEND - REGISTER
OlOC I* ABEtm - REGISTER
0110 I* ABE HD - REGISTER
0114 I* ABEND - REGISTER
0118 I* ABEi-iD - REGISTER
OllC I* ABEND - REGISTER
0120 I* ~ORK AREA

I* WORK AREA
I* WORK AREA
I* !>:ORK AREA
I* 1-lORK AREA
I* ~·JORK AREA
I* WORK AREA
I* WORK AREA
I* WORK AREA
I* WORK AREA
I* WORK AREA

8 Save areas: The standard save
areas are allocated at the
beginning of ICECOMMA.

0 ABEND CODE: In the
example the program ended
with system completion
code X'OC1 '.

PSW
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
*I

*I
*I
*I
*I
*I
*I
*I
*I
*I
*I

ENO

*I 2 CSAVEL3
*I 3 *
*I 3 *
+ft/ 3 *
*I 3 *
*I 3 *
*I 3 *
*I 3 * *I 3 * *I 3 *
*I 3 * *I 3 *
*I 3 * *I 3 *
*I 3 *
*I 3 *
*I 3 *
*I 3 *
*I 3 *

2 CTEMPl
3 CWORKl
4 *
4 CTENP124

5 CWORK124

* CTEMP115
CWORK116

* CTEMP108
CWORK108

Last instruction: The address
of the failed instruction, in
this case X'OCAOFC'.

Register contents: Shows the
register contents when the
program failed.

Figure 7. Interpreting a Formatted Dump (Shown for Peerage or Vale)

48 DFSORT Application Programming: Guide

One of the standard Content of the area
PL/S data attributes, when the dump was
for example, PTR(31), taken
meaning a fullword

! pointer

i
ATTR

PTRC 31)

PTR(31)
PTRC 31)
PTRC31)
PTRC 31)
PTRC 31)
PTRC31)
PTRC 31)
PTR(31)
PTRC 31)
PTRC31)
PTR<3U
PTRC:U>
PTRC 31)
PTRC31)
PTRC 31)
PTRC 31)
PTRC31)
PTRC3ll
FIXEOC31)
FIXED(31)
CHARCll
PTRC24)
PTRC 24)
CHARCll
FIXEDC15)
FIXED< 16)
CHARCl l
PTRC8J
PTRC8)

VALUES

OOE204Fl
OOOC4FBO 8 OOOC91F8
700C4E7A
OOOC632C
00000000
OOOC9590

OOOE2478
~AOOOFEAO

SOOClOOO
w600CAOFC

FFFFFFFC
00000002

0

00000000
00000008
00004'750
00000204
OOOD4C7E
OOOE051C

8 00000000
OOOCAOEO
OOODOD4C
000015FE
A0000820
OOOC9240
60001002
00000000
OOOC936C

ICECOMMA: Remaining
contents of ICECOMMA
are shown in the same way.
For example, field CTEMP1
(also known as CWORK1)
contained X'OOOC936C'
CTEMP124, a subset of the
larger area, thus contained
X'OC936C'.

END Control Statement

END

The END statement is required if you want DFSORT to discontinue reading
SYSIN or SORTCNTL before end-of-file.

When you link-edit user exit routines dynamically, the END statement marks the
end of the DFSORT control statements and the beginning of exit routine object
decks in SYSIN.

END Statement Examples

END Example

//SYSIN DD *
SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH
RECORD TYPE=V,LENGTH=(200,,,,80)
END
OPTION DYNALLOC

Because the OPTION statement appears after the END statement, it cannot be
read.

END Example with SYSIN Input for Dynamic Link-Editing

//SYSIN DD *
SORT FIELDS=(S,8,CH,A)
MODS E15=(E15,1024,SYSIN,T)
END

<object deck for E15 exit here>

The END statement precedes the E15 exit routine object deck in SYSIN.

Chapter 2. Program Control Statements 4 9

INCLUDE Control Statement

Relational Condition

INCLUDE {COND=(pl,ml,fl,{EQ I NE I GT I GE I LT I LE}
,{p2,m2,f2 I constant}[{,AND I ,OR}, ...]) I
COND=(pl,ml,{EQ I NE I GT I GE I LT I LE}
{p2.m2 I constant}[{,AND I ,OR}, ...]),FORMAT=f1

An INCLUDE statement is used if you want only certain records to appear in the
output data set. By using the INCLUDE statement, you select the records that
qualify for inclusion.

The INCLUDE statement defines a logical expression (that is, one or more
comparisons logically combined) based on fields in the input record. Each
comparison may be between two input fields or between an input field and a
constant. If the logical expression is true for a given record, the record is included
in the output data set. For example, you could compare the first 6 bytes of each
record with its last 6 bytes, and include only those records in which those fields are
identical. Or you could compare a field with a specified date, and include only
those records with a more recent date.

You must not supply both an INCLUDE and an OMIT statement to the same
DFSORTrun.

COND
The logical expression of the COND parameter can be represented at a high
level by the following format: COND=(relational
conditionl[{,AND I ,OR},relational condition2 ...])

Default: None; must be specified.

Applicable Functions: See Appendix D.

FORMAT=/
FORMAT=f can be used only when all the fields in the whole COND
expression have the same format. The permissible field formats are shown
under the description of f for fields.

Default: None; optional.

Applicable Functions: See Appendix D.

The relational condition specifies a comparison to be performed. Its format is
described below. Relational conditions can be logically combined, with AND or
OR, to form a logical expression. If they are combined, the following rules apply:

1. "AND" statements are evaluated before "OR" statements unless parentheses
are used to change the order of evaluation; expressions inside parentheses are

50 DFSORT Application Programming: Guide

Relational Condition Format

always evaluated first. (Nesting of parentheses is limited only by the amount
of storage available.)

2. The signs & (AND) and I (OR) may be used instead of the words.

The format of the relational condition is:

Comparison operators:
EQ- Equal to

pl,m1Lfl1
,{EQ I NE I GT I GE I LT I LE}
,{p2,m2[/.?] I constant}

NE - Not equal to
GT - Greater than
GE - Greater than or equal to
LT - Less than
LE - Less than or equal to

Fields

pl,ml,fl: The variables pl, ml, and fl specify a field in the input record to be
compared to either another field in the input record, or to a constant.

• p 1 specifies the first byte of the field relative to the beginning of the input
record. 1 The first data byte of a fixed-length record (FLR) has relative position
1. The first data byte of a variable-length (VLR) record has relative position 5
(because the first 4 bytes contain the RDW). All fields must start on a byte
boundary, and no field may extend beyond byte 4092.

• ml specifies the length of the field. Acceptable lengths for different formats
are given below.

• fl specifies the format of the data in the field. Permissible formats are given
below.

If all the data fields contain the same type of data, this value may be omitted,
in which case you must use the FORMAT=f operand.

Format Length Description

CH

ZD

PD

FI

1-256 Character EBCDIC, unsigned.2

1-256 Zoned decimal, signed.

1-255 Packed decimal, signed.

1-256 Fixed-point, signed.

If your ElS exit routine formats the record, pl must refer to the record as reformatted
by the exit.

2 If CHALT is in effect, CH is treated as AQ.

Chapter 2. Program Control Statements 51

Field
FORMAT Bl

Bl x
CH x
ZD

PD

Fl

AC

ASL

AST

CSL

CST

CLO

CTO

AQ

Format Length Description

BI 1-256 Binary, unsigned.

AC 1-256 ISCH/ ASCII character, unsigned.
~

CSL 2-256 EBCDIC numeric, leading separate sign.

CST 2-256 EBCDIC numeric, trailing separate sign.

CLO 1-256 EBCDIC numeric, leading overpunch sign.

CTO 1-256 EBCDIC numeric, trailing overpunch sign.

ASL 2-256 ISCII/ ASCII numeric, leading separate sign.

AST 2-256 ISCH/ ASCII numeric, trailing separate sign.

AQ 1-256 EBCDIC character, alternate collating
sequence.

p2,m2,f2: These parameters specify another field in the input record with which
the pl, ml, and fl input field will be compared. Permissible comparisons between
input fields with different formats are shown in Figure 8.

Note that, for maximum performance, all comparisons in a complex expression are
checked in a single pass for each record. For this reason, if all records do not
contain all INCLUDE/OMIT fields, message ICE015A is issued; that is, you
cannot use a complex expression in which one of the comparisons excludes
variable-length records that are too short to contain other fields in the expression.

CH ZD PD Fl AC ASL AST CSL CST CLO CTO

x
x

x x
x x

x
x

x x
x x

x x
x x

x x
x x

Figure 8. Permissible Field-to-Field Comparisons for INCLUDE/OMIT

52 DFSORT Application Programming: Guide

AQ

x

Field
Format

Bl

CH

ZD

PD

Fl

AC

ASL

AST

CST

CSL

CLO

CTO

AQ

Constants: A constant can be decimal, character, or hexadecimal. The different
formats are shown in detail below. Permissible comparisons between input fields
and types of constants are shown in Figure 9.

Self-Defining Term

Decimal Character Hexadecimal
Number String String

x x

x x

x

x

x

x x

x

x

x

x

x

x

x x

Figure 9. Penni~ble Field-to-Constant Comparisons for INCLUDE/OMIT

Decimal Number Fonnat: The format for coding a decimal constant is:

[±]n

When the decimal constant is compared with a field of Fl format, it may not be
larger than 2147483647 nor smaller than -2147483648.

Chapter 2. Program Control Statements 5 3

Examples of valid and invalid decimal constants are:

Valid Invalid

15
+15
-15
18000000

++15
15+
1.5
1,500

Too many sign characters
Sign in wrong place
Contains invalid character
Contains invalid character

Character String Format: The format for coding a character string constant is:

C'xx ... x'

The value x may be any EBCDIC character (the EBCDIC character string is
translated appropriately for comparison to an AC or AQ field).

If you want to include a single apostrophe in the character string, you must specify
it as two single apostrophes. Thus:

Required: O'NEILL Specify: C'O''NEILL'

Examples of valid and invalid character string constants are shown below:

Valid .Invalid

C'JOHN DOE INC' C' I I I I Apostrophes not paired
C' $@#' 'ABCDEF' C identifier missing
C'+0.193' C'ABCDEF Apostrophe missing

Hexadecimal String Format: The format for coding a hexadecimal string constant
is:

X'yy ... Y.J''

The value yy represents any pair of hexadecimal digits.

Examples of valid and invalid hexadecimal constants are shown below.

Valid Invalid

X'FF' X'ABGD' Invalid hexadecimal digit
X'BF3C' X'F1F' Incomplete pair of digits
X'AF050505' 'BF3C' Missing X indentifier

'BF3C'X X identifier in wrong place

54 DFSORT Application Programming: Guide

Padding and Truncation

In a field-to-field comparison, the shorter field is padded appropriately. In a
field-to-constant comparison, the constant is padded or truncated to the length of
the field.

Character and hexadecimal strings are truncated and padded on the right.

The padding characters are:

X' 40' For character string
X' 00' For hexadecimal string

Decimal constants are padded and truncated on the left. Padding is done with
zeros in the proper format.

INCLUDE/OMIT Statement Notes

1. The size of the routine generated by DFSORT to handle the
INCLUDE/OMIT function is dependent on how many fields are referenced,
and what lengths and formats they have. The size of the routine must not
exceed 4096 bytes or DFSORT will issue a message and terminate.

2. Floating point fields may not be referenced in INCLUDE or OMIT statements.

3. Any selection can be performed with either an INCLUDE or an OMIT
statement. INCLUDE and OMIT are mutually exclusive.

4. Remember that if several relational conditions are joined with a combination of
AND and OR logical operators, the AND statement is evaluated first. The
order of evaluation may be changed by using parentheses inside the COND
expression.

5. If any changes are made to record formats by exits E15 or E32, the INCLUDE
or OMIT statement must apply to the newest formats.

6. DFSORT issues a message and terminates if an INCLUDE or OMIT statement
is specified for a tape work data set sort or conventional merge application.

Figure 10 on page 56 shows how DFSORT reacts to the result of a relational
condition comparison, depending on whether the statement is INCLUDE or OMIT
and whether the relational condition is followed by an AND or an OR logical
operator.

When writing complex statements, be sure the result will be what you want. The
table in Figure 10 should help you.

Note that, for maximum performance, all comparisons in a complex statement are
checked in a single pass for each record. For this reason, if all records do not
contain a// INCLUDE/OMIT fields, message ICE015A is issued; that is, you
cannot use a complex statement in which one of the comparisons excludes
variable-length records too short to contain other fields in the statement.

Chapter 2. Program Control Statements 5 5

Statement Relational Program action if next
Condition logical operator is:

Compare AND OR

OMIT True Check next compare, or OMIT record
if last compare, OMIT
record

OMIT False INCLUDE record Check next compare or
if last compare,
INCLUDE record

INCLUDE True Check next compare, or INCLUDE record
if last compare,
INCLUDE record

INCLUDE False OMIT record Check compare, or if
last compare, OMIT.
record

Figure 10. Logic Table for INCLUDE/OMIT

INCLUDE Statement Examples

INCLUDE Example 1

INCLUDE COND=(5,8,GT,13,8,l,105,4,LE,1000) ,FORMAT=FI

DFSORT includes only records in which:

• The fixed-integer number in bytes 5 through 12 is greater than the
fixed-integer number in bytes 13 through 20. OR

• The fixed-integer number in bytes 105 through 108 is less than or equal to
1000.

Note that all four fields have the same format.

INCLUDE Example 2

INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM',
AND,21,8,ZD,GT,+50000,
OR,31,4,CH,NE,C'HERR')

56 DFSORT Application Programming: Guide

This statement only includes records in which:

• The first 10 bytes contain STOCKHOLM (this 9 character string was padded
on the right with a blank) AND the zoned-decimal number in bytes 21 through
28 is greater than 50000. OR

• Bytes 31 through 34 do not contain HERR.

Note that the AND is evaluated before the OR. (The OMIT example "OMIT
Statement Example" on page 71, illustrates how parentheses may be used to
change the order of evaluation.) Also note that ending a line with a comma-blank
indicates continuation on the next line starting in any position from 2 through 71.

INCLUDE Example 3

INCLUDE COND= ((5 , 1 , CH , EQ , 8 , 1 , CH) , & ,

((20' 1 'CH, EQ' c I A I , & '30' 1 'FI' GT' 10) ' I '
(20, 1,CH,EQ,C'B' '&, 30, 1,FI,LT, 100)' I'
(2 0 , 1 I CH , NE , c I A I I & ' 2 0 ' 1 ' CH, NE ' c I B I)))

This statement only includes records in which:

Byte 5 equals byte 8. AND

• One of the following is true:

Byte 20 equals 'A' and byte 30 is greater than 10.

Byte 20 equals 'B' and byte 30 is less than 100.

Byte 20 is not equal to 'A' or 'B'.

Chapter 2. Program Control Statements 5 7

INREC Control Statement

INREC FIELDS=([s,]p,m[,a] ... [,s][,p[,m][,a]][,s])

The INREC control statement allows you to reformat the input records before they
are processed; that is, to define which parts of the input record are to be included
in the reformatted input record, in what order they are to appear, and how they are
to be aligned.

You do this by defining one or more fields from the input record. The reformatted
input record consists of those fields only, in the order in which you have specified
them, and aligned on the boundaries you have indicated.

You can also pad reformatted input records with blanks and/or binary zeros
before, between, and/ or after the input fields, using the s parameter.

For information concerning the interaction of INREC and OUTREC, see also
"Using Options That May Enhance Performance" on page 217.

FIELDS=([s,]p,m(,a) ... [, s)(,p[,m).(,a))[,s))
You can use this parameter to specify the order in which the input and
separation fields are to appear in the reformatted input record.

s
indicates a separation field to be inserted into the reformatted input
record in the position you code it relative to the input fields. It can be
specified before or after the p,m,a parameters for any field.
Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X'40') are
inserted in the reformatted input records. n may be from 1 to
256.

nZ Binary zero separation. n bytes of binary zeros (X' 00') are
inserted in the reformatted input records. n may be from 1 to
256.

Consecutive separation fields may be specified.

For variable-length records:

• Separation field(s) must not be specified before the first input
field (the RD W).

• Separation field(s) must not be specified after the variable part of
the input record.

5 8 DFSORT Application Programming: Guide

p

m

a

specifies the first byte of the input field relative to the beginning of the
input record.3 The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5 (because the first 4 bytes contain the RDW). All fields
must start on a byte boundary, and no field may extend beyond byte
32000. For special rules concerning variable-length records, see
"INREC Statement Notes."

specifies the length of the input field. It must include the sign if the
data is signed, and must be a whole number of bytes. See note 5 on
page 60 for more information.

specifies the alignment (displacement) of the input field in the
reformatted input record, relative to the start of the reformatted input
record.

The permissible values are:

H Half word aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of 2 (that is, position 1, 3, 5, and so forth).

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that
is, position 1, 9, 1 7, and so forth).

Alignment can be necessary if, for example, the data is to be used in a
COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space
preceding aligned fields will always be padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix D.

INREC Statement Notes

1. When INREC is specified, DFSORT reformats the input records after user exit
ElS and/or INCLUDE/OMIT processing is finished. Thus, references to
fields by your ElS exit and INCLUDE/OMIT statements are not affected,
whereas your SORT, OUTREC, and SUM statements must refer to fields in
the reformatted input record. Your E35 exit must refer fo fields in the
reformatted output record (see below).

If your E15 exit reformats the record, p must refer to the record as reformatted by the
exit.

Chapter 2. Program Control Statements 5 9

2. When you specify INREC, you should be aware of the change in record size
and layout of the resulting reformatted input records. You should also
understand how reformatting of records affects sort performance, and how to
use INREC and/ or OUTREC to achieve the most efficient sort. (See also
"OUTREC Control Statement" on page 92 and "Using Options That May
Enhance Performance" on page 219 for more details.)

3. For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte Record Descriptor Word (RDW). DFSORT sets
the length of the reformatted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted input record immediately following the ROW, the entry in the
FIELDS parameter can specify both ROW and data field in one. Otherwise,
the ROW must be specifically included in the reformatted input record.

4. The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the data set control
block (DSCB) or DD statement, the value for SORTOUT LRECL is
determined in the usual way (that is, from the L3 value or SORTIN LRECL).
If the reformatted length does not match the SORTOUT LRECL, the same
checks used when the SORTIN LRECL does not match the SORTOUT
LRECL are made and padding/ truncation is performed, if possible. When
processing variable-length records, the maximum SORTIN LRECL must not
exceed the maximum SORTOUT LRECL.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is 4 less
than the LRECL when processing variable-length records. See "VSAM Data
Set Notes and Limitations" on page 4 for more information.

5. The variable part of the input record (that part beyond the minimum record
length) may be included in the reformatted input record, and if included, must
be the last part. In this case, a value should be specified for pn that is less than
or equal to the minimum record length (see L4 of the RECORD control
statement) plus 1 byte; mn and an should be omitted.

If INREC and OUTREC are both specified, either both must specify
position-only for the last part, or neither must specify position-only for the last
part.

If the reformatted input includes only the RDW and the variable part of the
input record, "null" records containing only an ROW could result.

6. The input records are reformatted before processing, as specified by INREC.
The output records are in the format specified by INREC, unless OUTREC is
also specified.

7. Fields referenced in INREC statements may overlap each other and/ or control
fields.

8. If input is variable records, the output is also variable. This means that each
record is given the correct ROW by DFSORT before output, even if the
records are treated as fixed internally because they are all the same length.

60 DFSORT Application Programming: Guide

9. In general, INREC should be used to reduce the length of input records as
much as possible to achieve the most efficient processing (and OUTREC
should be used to reformat the records for output). However, in the case
where overflow could occur during summation, INREC could be used to create
a larger SUM field in the reformatted input record (perhaps resulting in a larger
record for sorting or merging), so that overflow does not occur.

10. DFSORT issues a message and terminates if an INREC statement is specified
for a tape work data set sort or conventional merge application.

INREC Statement Examples

INREC Example 1

INCLUDE COND=(S,1,GE,C'M') ,FORMAT=CH
INREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(4,8,CH,A,1,3,FI,A)
SUM FIELDS=(17,4,BI)

OUTREC Example 2

INCLUDE COND=(5,1,GE,C'M') ,FORMAT=CH
OUTREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(20,8,CH,A,10,3,FI,A)
SUM FIELDS=(38,4,BI)

The above examples illustrate how a fixed-length input data set is sorted and
reformatted for output. A more efficient sort is achieved by eliminating
unnecessary fields, before sorting, using INREC. The SORTIN LRECL is 80.

Records are also included or excluded by means of the INCLUDE statement, and
summed by means of the SUM statement.

The reformatted input records are fixed length, with a record size of 23 bytes (a
significant reduction from the original size of 80 bytes). The SORTOUT LRECL
should be specified as 23. They look as follows:

Position
1-3
4-11
12-22
23

Contents
Input positions 10 through 12
Input positions 20 through 27
Input positions 33 through 43
Input position 5

Identical results are achieved with INREC or OUTREC. However, use of INREC
can result in better performance. In either case, the INCLUDE COND parameters
must refer to the fields of the original input records. However, with INREC, the
SUM and SORT FIELDS parameters must refer to the fields of the reformatted
input records, while with OUTREC, the SUM and SORT FIELDS parameters must
refer to the fields of the original input records.

Chapter 2. Program Control Statements 61

INREC Example 3

INREC FIELDS=(1,35,2Z,36,45)
MERGE FIELDS=(20,4,CH,D,10,3,CH,D),FILES=3
SUM FIELDS=(36,4,BI,40,8,PD)
RECORD TYPE=F,LENGTH=(B0,,82)

This example illustrates how overflow of a summary field can be prevented when
three fixed-length data sets are merged and reformatted for output. The input
record size is 80 bytes. To illustrate the use of the RECORD statement, assume
that SORTIN and SORTOUT are not present (that is, all input/output is handled
by user exits).

The reformatted input records are fixed length, with a record size of 82 bytes (an
insignificant increase from the original size of 80 bytes). They look as follows:

Position
1-35
36-37
38-82

Contents
Input positions 1 through 35
Binary zeros (to prevent overflow)
Input positions 36 through 80

The MERGE and SUM statements must ref er to the fields of the reformatted input
records.

The reformatted output records are identical to the reformatted input records.

Thus, the 2-byte summary field at positions 36 and 37 in the original input records
expand to a 4-byte summary field in positions 36 through 39 of the reformatted
input/ output record before merging. This prevents overflow of this summary field.
Note that, if OUTREC were used instead of INREC, the records would be
reformatted after merging, and the 2-byte summary field could overflow.

Note: This method of preventing overflow cannot be used for negative Fl summary
fields because padding with zeros rather than ones would change the sign.

INREC Example 4

INREC FIELDS=(1,4,15,15,47,50,101)
SORT FIELDS=(32,4,CH,A)
RECORD TYPE=V,LENGTH=(,,,100,130)
OUTREC FIELDS=(1,4,10Z,5,15,17Z,20,50,4X,70)

This example illustrates how a variable-length input data set can be sorted more
efficiently by eliminating padding fields before sorting, and reinserting them after
sorting. The resulting output records are not actually reformatted. The variable
part of the input records is included in the output records. The minimum input
record size is 100 bytes, and the maximum input record size (SORTIN LRECL) is
200 bytes.

62 DFSORT Application Programming: Guide

The reformatted input records are variable length, with a minimum record size of
69 bytes and a maximum record size of 169 bytes (a significant reduction from the
original sizes of 100 and 200 bytes, respectively). They look as follows:

Position
1-4
5-19
20-69
70-n

Contents
RDW (input positions 1 through 4)
Input positions 15 through 29
Input positions 4 7 through 96
Input positions 101 through n (variable part of input records)

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Because padding fields are removed by INREC and reinserted by OUTREC, the
output records are identical to the original input records; that is, variable length,
with a minimum record size of 100 bytes and a maximum record size (SORTOUT
LRECL) of 200 bytes. They look as follows:

Contents
RDW
Binary zeros
Input positions 15 through 29
Binary zeros
Input positions 4 7 through 96
EBCDIC blanks

Position
1-4
5-14
15-29
30-46
47-96
97-100
101-n Input positions 101 through n (variable part of input records)

Thus, the use of INREC and OUTREC allows sorting of smaller records, although
the output records are not actually reformatted.

INREC Example 5

INREC FIELDS=(20,4,12,3)
SORT FIELDS=(1,4,D,5,3,D) ,FORMAT=CH
OUTREC FIELDS=(5X,1,4,H,8X,1,2,5,3,80Z)

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. A more efficient sort is achieved by using INREC to
reduce the input records as much as possible before sorting, and using OUTREC to
repeat fields and insert padding after sorting. The SORTIN LRECL is 80 bytes.

Note: Contrast this example with OUTREC Example 4, where INREC does not
achieve a more efficient sort because no fields can be eliminated before sorting.

The reformatted input records are fixed length, with a record size of 7 bytes (a
significant reduction from the original size of 80 bytes). They look as follows:

Position
1-4
5-7

Contents
Input positions 20 through 23
Input positions 12 through 14

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Chapter 2. Program Control Statements 63

The reformatted output records are fixed length, with a record size of 103 bytes;
the SORTOUT LRECL is specified as 103, They look as follows:

Position
1-5
6
7-10
11-18
19-20
21-23
24-103

Contents
EBCDIC blanks
Binary zero (for H alignment)
Input positions 20 through 23
EBCDIC blanks
Input positions 20 through 21
Input positions 12 through 14
Binary zeros

Thus, the use of INREC and OUTREC allows sorting of 7-byte records rather than
80-byte records, even though the output records are 103 bytes long.

64 DFSORT Application Programming: Guide

MERGE Control Statement

MERGE {FIELDS=(p,m,f,s ... ,p,m,f,s) I
FIELDS= (p,m,s ... ,p,m,s) ,FORMAT= f I
FIELDS= COPY}
[,CKPT]
[,FILES=n]
[,EQUALS I ,NOEQUALS]
[,FILSZ=x I ,SIZE=y]

The MERGE control statement must be used when a merge operation is to be
performed. It 'may also be used to specify a copy application. It provides
essentially the same information to DFSORT for a merge as the SORT statement
does for a sort. Like SORT, MERGE parameters can be overridden by similar
parameters specified on the OPTION control statement. The format, defaults, and
specifications for the MERGE statement are similar to the SORT statement with
the following differences:

• The operation definer is MERGE instead of SORT.

• The SKIPREC option is not used (ignored if specified).

• The DYNALLOC option is not used (ignored if specified).

• The FILSZ/SIZE value takes all the input data sets into account.

When an option can be specified on either the MERGE or OPTION statement, it is
preferable to specify it on the OPTION statement.

A table showing other possible sources for specifying options available on the
MERGE statement and the rules of override are in Appendix D.

FIELDS=(p,m,f,s ... p,m,f,s)
The FIELDS operand is written exactly the same way for a merge as it is for
a sort. The meanings of p, m, f, ands are described in the discussion of the
SORT statement. The defaults for this and the following parameters are also
given there. See also Figure 3 on page 20.

FIELDS=COPY
See the discussion of this operand on the OPTION statement.

FORMAT=/
The FORMAT operand is used in the same way for a merge as for a sort.

CKPT
See the discussion of this operand on the OPTION statement.

FILES=n
specifies the number of input files to a merge when input is supplied through
the E3 2 exit.

Chapter 2. Program Control Statements 65

Default: None.

Applicable Functions: See Appendix D

EQUALS I NOEQUALS
See the discussion of this operand on the OPTION statement.

FILSZ=x I SIZE=y
See the discussion of this operand on the OPTION statement.

MERGE Statement Examples

MERGE Example 1. One Control Field, Size Option

I MERGE FIELDS=(2,5,CH,A) ,FILSZ=29483

FIELDS
The control field begins on byte 2 of each record in the input data sets. The
field is 5 bytes long, and contains character (EBCDIC) data that has been
presorted into ascending order.

FILSZ
The input data sets contain exactly 29483 records.

MERGE Example 2. Two Control Fields, User Modification, Size Estimate

MERGE FIELDS=(3,8,ZD,E,40,6,CH,D),FILSZ=E30000

FIELDS
The major control field begins on byte 3 of each record, is 8 bytes long, and
contains zoned decimal data that is modified by your routine before the
merge examines it.

The second control field begins on byte 40, is 6 bytes long, and contains
character data that is in descending order.

FILSZ
The input data sets contain approximately 30000 records.

MERGE Example 3. Two Control Fields, Format Option

MERGE FIELDS=(25,4,A,48,8,A) ,FORMAT=ZD

FIELDS
The major control field begins on byte 25 of each record, is 4 bytes long, and
contains zoned decimal data that has been placed in ascending sequence.

66 DFSORT Application Programming: Guide

The second control field begins on byte 48, is 8 bytes long, is also in zoned
decimal format, and is also in ascending sequence. The FORMAT parameter
can be used because both control fields have the same data format.

MERGE Example 4. COPY Option

I MERGE FIELDS=COPY

FIELDS
The input data set is copied to output. No merge takes place.

MODS Control Statement

MODS exit=(n,m,s[,e]) ... ,exit=(n,m,s[,e])

The MODS statement is needed only if you want DFSORT to pass control to your
routines at user exits. The MODS statement associates the user routine(s) with
specific DFSORT exits and provides DFSORT with descriptions of these routines.
For details about DFSORT exits and how user routines can be used, see
Chapter 4, "User Exit Routines" on page 135.

To use one of the exits, you substitute its 3-character name (for example, E31) for
the word exit in the MODS statement format above. You may specify any valid
exit, except E32. (E32 can only be used in a merge operation that is invoked from
a program; its address must be passed in a parameter list.)

exit=(n,m,s(,e])
The values that follow "exit" describe the user routine. These values are:

n

m

s

the name of your routine (member name if your routine is in a
library). You may use any valid operating system name for your
routine. This allows you to keep several alternative routines with
different names in the same library.

the number of bytes of main storage your routine uses. Include
storage obtained (via GETMAIN) by your routine (or, for example,
by OPEN), and the storage required to load the COBOL library
subroutines.

either the name of the DD statement in your DFSORT job step that
defines the library in which your routine is located or SYSIN if your
routine is in the input stream.

Chapter 2. Program Control Statements 6 7

e

Notes:

indicates the linkage editor requirements of your routine, or indicates
your routine is written in COBOL.

N

c

T

s

means that your routine has already been link-edited and can be
used in the DFSORT run without further link-editing. This is
the default fore. N (specified or defaulted) may be overridden
by the EXEC PARM parameters iE15=C0Bi and
'E35=C0B'.

means that your ElS or E35 routine is written in COBOL. If
you code C for any other exit, it is ignored, and N is assumed.
Your COBOL-written routine must already have been
link-edited.

means that your routine must be link-edited together with other
routines to be used in the same phase (for example, Eln
routines) of DFSORT.

This value is not valid for copy processing.

means that your routine requires link-editing but that it must be
link-edited separately from the other routines (for example, E3n
routines) to be used in a particular phase of DFSORT. Ell and
E3 l exit routines are the only routines eligible for separate
link-editing.

This value is not valid for copy processing.

If you do not specify a value for e, N is assumed.

1. All the routines for which Nor C is specified for the e parameter must be in the
same library, or in libraries defined as a concatenated data set. These routines
may not be placed in SYSIN. Each such routine must be a load module.

2. Each routine for which Tor Sis specified for thee parameter may be placed in
any library or in SYSIN; they do not all have to be in the same library or ·SYSIN
(but can be). Some routines can even be in different libraries (or the same library)
and the rest can be in SYSIN. Each such routine, if in a library, can be either an
object deck or a load module; if in SYSIN, it must be an object deck.

3. If the same routine is used in both input (that is, Eln routines) and output (that is,
E3n routines) DFSORT program phases, a separate copy of the routine must be
provided for each exit.

4. COBOL El5 and E35 exit routines can also be specified in the EXEC statement
parameters (El 5 =COB or E35 =COB). In this case, thee parameter of the
MODS statement must not be "T". If "T" i~\ specified, the program terminates
with error message ICE034A. COBOL exits 'l(zUst already have been link-edited

68 DFSORT Application Programming: Guide

and, if the EXEC parm was specified for the exit, thee parameter must be "C'',
or "N", or defaulted to "N". ("S" is not valid for any El 5 or E35 exit.)

5. If you code C for a conventional merge or a tape work data set sort, DESORT
issues message ICE153A and terminates.

For information on user exit routines in SYSIN, see "System DD Statements'' on
page 124.

For details on how to design your routines, refer to "Summary of Rules for User
Exit Routines" on page 183.

When you are preparing your MODS statement, remember that DFSORT must
know the amount of main storage your routine needs so that it can allocate main
storage properly for its own use. If you do not know the exact number of bytes
your program requires (including requirements for system services), make a slightly
high estimate. The value of m in the MODS statement is written the same way
whether it is an exact figure or an estimate: You do not precede the value by E for
an estimate.

Default: None; optional. N is the default for the fourth parameter.

Applicable Functions: See Appendix D

MODS Statement Examples

MODS Example 1. Two Routines in a Library

MODS E15=(ADDREC,552,MODLIB) ,E35=(ALTREC,11032,MODLIB)

E15

E35

At exit El5, DFSORT transfers control to your own routine. Your routine is
in the library defined by a job control statement with the ddname MODLIB.
Its member name is ADDREC and uses 552 bytes.

At exit E35, DFSORT transfers control to your routine. Your routine is in
the library defined by the job control statement with the ddname MODLIB.
Its member name is ALTREC and will use 11032 bytes.

MODS Example 2. E15 and E35 written in COBOL

MODS E15=(COBOLE15,7000,EXITC,C),

E15

E35=(COBOLE35,7000,EXITC,C)

At exit El5, DFSORT transfers control to your own routine. Your routine is
written in COBOL and is in the library defined by a job control statement

Chapter 2. Program Control Statements 69

E35

with the ddname EXITC. Its member name is COBOLE15 and uses 7000
bytes.

At exit E35, DFSORT transfers control to your routine. Your routine is
written in COBOL and is in the library defined by the job control statement
with the ddname EXITC. Its member name is COBOLE35 and uses 7000
bytes.

70 DFSORT Application Programming: Guide

OMIT Control Statement

OMIT {COND=(pl,ml,fl,{EQ I NE I GT I GE I LT I LE}
,{p2,m2,f2 I constant}[{,AND I ,OR}, ...]) I
COND=(pl,ml,{EQ I NE I GT I GE I LT I LE},
{p2,m2 I constant}[{,AND I ,OR}, ...]),FORMAT=J1

An OMIT statement is used if you do not want all the input records to appear in
the output data set. By using the OMIT statement, you select the records that do
not qualify for inclusion.

The OMIT statement defines a logical expression (that is, one or more comparisons
logically combined) based on fields in the input record. Each comparison may be
between two input fields or between an input field and a constant. If the logical
expression is true for a given record, that record is omitted from the output data
set. For example, you could compare the first 6 bytes of each record with its last 6
bytes, and omit those records in which those fields are not identical. Or you could
compare a field with a specified date, and omit those records with earlier dates.

For further details on this statement, see "INCLUDE Control Statement" on
page 50.

OMIT Statement Example

OMIT Example.

OMIT COND=(1,10,CH,EQ,C'STOCKHOLM' ,&, (21,8,ZD,GT,+50000, I *
,31,4,CH,NE,C'HERR'))

This statement omits records in which:

• The first 10 bytes contain STOCKHOLM (the string was padded on the right
with a blank). AND,

• The zoned-decimal number in bytes 21 through 28 is greater than 50000, OR
bytes 31 through 34 do not contain HERR.

Note that the AND and OR operators can be written with the AND and OR signs,
and that parentheses are used to change the order in which AND and OR are
evaluated. Also note that the asterisk in column 72 indicates continuation of the
parameters to the next line (starting in position 16).

Chapter 2. Program Control Statements 71

OPTION Control Statement

OPTION [ARESALL= {n I nK}]
[,ARESINV = {n I nK}]
[,CHALT I ,NOCHALT]
LCHECK I ,NOCHECK]
[,CKPT]
[,COBEXIT={COBl I COB2}]
[,COPY]
[,DYNALLOC[={dl (d) I (,n) I (d,n)}]]
[,EQUALS I ,NOEQUALS]
[,FILSZ=x I ,SIZE=y I ,FILSZ=En I ,SIZE=En]
[,LIST I ,NOLIST]
[,MAINSIZE={n I nK I MAX}]
[,MSGDDN =ddname]
[,MSGPRT= {ALL I NONE I CRITICAL}]
[,NOBLKSET]
[,NOOUTREL]
[,NOOUTSEC]
[,NOSTIMER]
[,NOWRKREL]
[,NOWRKSEC]
[,RESALL={n I nK}]
[,RESINY= {n I nK}]
[,SKIPREC=z]
[,SORTDD=cccc]
[,SORTIN =ddname]
[,SORTOVT=ddname]
[,STOPAFf =n]
[,VERIFY I ,NOVERIFY]
[,VLSHRT I ,NOVLSHRT]

The OPTION control statement allows you to override some of the options
available at installation time (such as EQUALS and CHECK), and to supply other
optional information (such as DYNALLOC, COPY, and SKIPREC).

Some of the options available on the OPTION statement are also available on the
SORT or MERGE statement (such as FILSZ and SIZE). It is preferable to specify
these options on the OPTION statement. For override rules, see Appendix D.

OPTION parameters used by other IBM sort programs cause DFSORT to
terminate unless they conform to the following parameters. For a description of
the OPTION control statement and its parameters, see also Figure 3 on page 20.

The keywords LIST, NOLIST, MSGPRT, MSGDDN, SORTDD, SORTIN, and
SORTOUT are used only when they are specified on the OPTION control
statement passe4 by an extended parameter list. If they are specified on an
OPTION statement read from the SYSIN data set or the SORTCNTL data set, the
keyword is recognized, but the parameter is ignored.

72 DFSORT Application Programming: Guide

The BLKSET option that was available in previous releases of DFSORT is ignored.
Existing programs that use this option need not be changed.

ARESALL=tn I nKJ
For MVS/X.A, you can use this parameter to temporarily override the
installation option ARESALL=n. It indicates the number of bytes to be
reserved above 16-megabyte virtual for system use.

ARESALL applies only to the amount of main storage above 16-megabyte
virtual. This option is normally not needed because of the large amount of
storage available above 16-megabyte virtual (the default for ARESALL is 0
bytes). The RESALL option applies to the amount of main storage below
16-megabyte virtual.

n

nK

n is a decimal value that specifies the number of bytes of main storage
to be reserved.

Limit: 8 digits.

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

ARESINV =tn I nKJ
For MVS/XA, you can use this parameter to temporarily override the
installation option ARESINV=n. ARES/NV is used only when DFSORT is
dynamically invoked. It indicates the number of bytes to be reserved for an
invoking program or for exits that reside or use space above 16-megabyte
virtual. The reserved space is not meant for the executable code itself.

ARESINV applies only to the amount of main storage above 16-megabyte
virtual. The RESINY option applies to the amount of main storage below
16-megabyte virtual.

n

nK

n is a decimal value that specifies the number of bytes of main storage
to be reserved.

Limit: 8 digits.

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits.

Chapter 2. Program Control Statements 7 3

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D. ·

CHALT I NOCHALT
You can use this parameter to temporarily override the installation option
CHALT={YES I NO}, that specifies whether format CH fields are
translated by the alternate collating sequence as well as format AQ, or just
the latter.

CHALT
means that DFSORT translates character control fields with formats
CH and AQ using the alternate collating sequence.

NOCHALT
means that format CH fields is not translated.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D

CHECKINOCHECK
You can use this parameter to temporarily override the installation option
CHECK= {YES I NO}, that specifies whether record count should be
checked for applications that use the E35 user exit routine without a
SORTOUT data set.

CHECK
means that record counter checking is done at the end of program
execution.

NO CHECK
means that record counter checking is not done.

Default: Usually the installation default, but refer to Appendix E for full override
details.

Applicable Functions: See Appendix D

CKPT
CKPT (the spelling CHKPT is also accepted) causes DFSORT to activate
the checkpoint/ restart facility of the operating system.

See "Checkpoint/Restart" on page 13 for further details.

If necessary, the Blockset technique can be bypassed so the
checkpoint/restart facility can be used, by specifying either IGNCKPT=NO
on the ICEMAC installation macro or NOBLKSET on the OPTION
statement.

7 4 DFSORT Application Programming: Guide

Checkpoint/ restart takes the following checkpoints:

1. Start of sort phase (all tape techniques)

2. Start of each intermediate merge phase pass (balanced and polyphase
tape technique); or at intervals during the intermediate merge phase
(oscillating tape and all disk techniques)

3. Start of final merge phase

When you use the checkpoint/restart facility, you must write a JCL
statement to define a data set for the checkpoint records. How to write this
JCL statement (/ /SORTCKPT) is described in "SORTCKPT DD
Statement" on page 133. In addition, you may need to specify more
intermediate storage for a sort application. See "Intermediate Storage" on
page 277.

Default: None; optional.

Applicable Functions: See Appendix D

COBEXIT={COBt I COB2}
indicates whether the E15 and E35 routines written in COBOL are executed
with the VS COBOL II library.

COBt
specifies that E15 and E35 routines written in COBOL are executed
with the OS/VS COBOL library or, in some cases, with no COBOL
library.

COB2
specifies that E15 and E35 routines written in COBOL are executed
with the VS COBOL II library.

Default: Usually the installation default, but see Appendix D for full override
details.

Applicable Functions: See Appendix D.

COPY
COPY causes DFSORT to copy a SORTIN data set and/or inserted records
to a SORTOUT data set unless all records are disposed of by an E35 exit.
Records can be edited by SKIPREC, El5, INCLUDE/OMIT, STOPAFT,
INREC/OUTREC, and/or E35. E35 is entered after each SORTIN or ElS
record is copied.

The following must not be used with copy applications:

• FORMAT=f

• BDAM data sets

• Dynamic link-editing

Default: None; optional.

Chapter 2. Program Control Statements 7 5

Applicable Functions: See Appendix D.

DYNALLOC[=Id I (d) I (,n) I (d,n)H
This parameter is for MYS. This parameter assigns DFSORT the task of
dynamically allocating needed work space. With DYNALLOC you do not
need to calculate and specify through JCL, the amount of intermediate work
space needed by the program. DFSORT, by use of the dynamic allocation
facility of the operating system, allocates work space to get the best possible
performance for the newest application.

d

n

specifies the device type. You may specify any of the following IBM
devices: 2314,3330,3330-l,3340,3350,3375,3380,2400,2400-3,
2400-4, 3400-3, 3400-4, 3480, 3850, or their user-assigned group
name, such as SYSDA.

specifies the number of requested work data sets. The maximum value::
of n is 16; if you specify more than 16, 16 is used.

For disk work data sets, an estimate of the number of input records is used as the
basis for determining the total work space to allocate. If DFSORT cannot
reasonably estimate the number of input records and FILSZ/SIZE is not specified
(see FILSZ/SIZE on the OPTION statement for details), 6000 blocks are
dynamically allocated.

Dynamically allocated work data sets are not deallocated until the job or step is
finished. This is because SMF does not log the use of data sets that are
dynamically unallocated. This means that recursive sorts reuse the work space
allocated to the first sort.

For tape work data sets, the number of volumes specified (explicitly or by default)
is allocated to the program. The program requests standard label tapes.

If DYNALLOC is specified under any system other than MYS, it is ignored. It is
also ignored if SORTWKnn DD statements are provided.

With VIO=NO: If your DFSORT program was installed with the YIO=NO
option ("no virtual I/ 0"):

• Work space is allocated on nontemporary data sets (DSNAME parameter
specified).

• The device (d) you specify cannot be a virtual device unless a corresponding
real disk is available in your system.

Default: None; optional. If DYNALLOC is specified without d, the default ford
is that specified (or defaulted) by the ICEMAC DYNALOC option at installation
time. If DYNALLOC is specified without n, the default for n is that specified (or
defaulted) by the ICEMAC DYNALOC option at installation time.

Note: Diagnostic messages ICE8061 and ICE8031 give information about
intermediate storage allocation/use.

7 6 DFSORT Application Programming: Guide

Applicable Functions: See Appendix D.

EQUALS I NOEQUALS

Notes:

You can use this parameter to temporarily override the installation option
EQUALS= {YES I NO}, that specifies whether the sequence of identical
collating records for a sort or a merge should be preserved from input to
output.

EQUALS
means the sequence must be preserved.

NO EQUALS
means the sequence need not be preserved.

When you specify EQUALS, you preserve the original sequence of the
identically collating records.

When sorting, the sequence of the output depends upon the order of:

• The records from the SORTIN file

• The records inserted by an E 15 user exit routine

• The El5 records inserted within input from SORTIN

When merging, the sequence of the output depends upon the order of:

• The records from a SORTINnn file.

If two equal collating records are from two different files, for example
SORTINnl and SORTINn2, and nl is less than n2, the record from
SORTINnl is placed before the one from SORTINn2.

The records from an E32 user exit routine for the same file increment
number.

If two equal collating records from an E32 exit have different file
increment numbers, for example ml and m2, and ml is less than m2, the
record associated with ml is placed before the one associated with m2.

1. The total number of bytes occupied by all control fields must not exceed 4088
when the EQUALS option is in effect.

2. Use of EQUALS can degrade performance, except when using the Blockset sort
technique for variable-length records. EQUALS is always used with this
technique.

3. EQUALS is not used if SUM is specified and a technique other than Blockset is
selected.

4. Do not specify EQUALS if variable-length records are sorted using tape work
files and the RD Wis part of the control field.

Chapter 2. Program Control Statements 7 7

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

FILSZ=x I SIZE= y I FILSZ=En I SIZE= En
This parameter specifies an exact or estimated number of records for the sort
or merge. An EXACT value can be used to force DFSORT to terminate with
an error message if the number of records sorted or merged is not as
expected.

If DFSORT cannot reasonably estimate the number of records to be sorted
or merged, it uses the FILSZ or SIZE value to aid optimization of
intermediate storage; otherwise, it does not use the value for this purpose.
Following are the circumstances under which DFSORT uses FILSZ or SIZE
(if specified) for optimization:

An ElS exit routine is used

• Work data sets are dynamically allocated

• Input data sets are VSAM, multi-volume or on tape

• Input data sets are concatenated and Blockset is not selected

Note that Blockset never uses the ESTIMATED value.

FILSZ=x
x is the exact number of records to be sorted or merged; it must take
into account the number of records in the input data set(s), records to
be inserted or deleted by exit E15/E32, and records to be deleted by
INCLUDE/OMIT, SKIPREC, and STOPAFT.

SIZE=y
y is the exact number of records in the input data set(s) (that is, the
number of records in the SORTIN data set or SORTINnn data sets).
It must take into account the number of records to be deleted by
STOP AFT.

If the actual number of records is not the same as the specified value,
the program terminates with the value x or y placed in the IN field of
the message ICE047A or ICE0541. This applies to both FILSZ and
SIZE.

FILSZ I SIZE=En
n is the estimated number of records to be sorted or merged (Blockset
will not use this estimate); it must be immediately preceded by the
letter E; in either case, it should be large enough to include both the
SORTIN data set or SORTINnn data sets and any records you may
add at exit E15/E32.

For example, if you estimate your total data set size to be 5000
records, specify FILSZ=ESOOO. The program accepts either FILSZ or
SIZE, but FILSZ is always preferable when its use is necessary.

78 DFSORT Application Programming: Guide

If you omit the FILSZ or SIZE operand, DFSORT estimates the number of input
records.

Default: None; optional.

Applicable Functions: See Appendix D.

LIST I NOLIST
You can use this parameter to temporarily override the installation option
LIST={YES I NO}, which specifies whether program control statements
should be listed. See Appendix H for details on use of the message data set.

LIST
means that control statements are printed.

NO LIST
means that control statements are not printed.

Note: LIST I NOLIST is processed only if it is passed on the OPTION control
statement in an extended parameter list.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

MAINSIZE= {n I nK I MAXI
You can use this parameter to temporarily override the installation option
SIZE= {MAX I n}, which specifies the amount of main storage available to
DFSORT, provided the value you specify is greater than the MINLIM value
set at DFSORT installation time.

For MVS/XA systems, MAINSIZE applies to the total amount of main
storage above and below 16-megabyte virtual. DFSORT determines how
much storage to allocate above and below 16-megabyte virtual but the total
amount of storage can not exceed MAINSIZE.

For details on main storage allocation, see "Tuning Main Storage" on
page 207 and "Main Storage" on page 275.

n

nK

n is a decimal value representing the number of bytes of main storage
to be allocated. You may specify a value greater than MAX.LIM or
TMAXLIM.

Limit: 8 digits.

specifies n times 1024 bytes of main storage to be allocated. You may
specify a value greater than MAXLIM or TMAXLIM.

Limit: 5 digits.

Chapter 2. Program Control Statements 79

MAX
instructs DFSORT to calculate the amount of main storage available
and allocate this maximum amount, up to the MAXLIM (or
TMAXLIM for MVS/XA systems) value set when DFSORTwas
installed.

Def a ult: Usually the installation default, but ref er to Appendix D for full override
details.

Applicable Functions: See Appendix D.

MSGDDN =ddname
You can use this parameter to temporarily override the installation option
MSGDDN =ddname, which specifies an alternate ddname for the message
data set. MSGDDN must be in effect if:

• A program that invokes DFSORT uses SYSOUT (for instance, COBOL
uses SYSOUT) and you do not want DFSORT messages intermixed with
the program messages.

• Your E15 and/or E35 routines are written in COBOL and you do not
want DFSORT messages intermixed with the program messages.

• A program invokes DFSORT more than once and you want separate
messages for each invocation of DFSORT.

The ddname can be any 1- through 8-character name, but must be unique
within the job step; do not use a name that is used by DFSORT (for
example, SORTIN). If the ddname specified is not available at execution
time, SYSOUT is used instead. For details on use of the message data set,
see Appendix H.

Note: MSGDDN is processed only if it is passed on the OPTION control
statement in an extended parameter list.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

MSGPRT={ALL I CRITICAL I NONE}
You can use this parameter to temporarily override the installation option
MSGPRT={ALL I CRITICAL I NONE}, which specifies the class of
messages to be written to the message data set. For details on use of the
message data set, see Appendix H.

ALL
specifies that all messages except diagnostic messages (ICE800I to
ICE9991) are to be printed. Control statements print only if LIST is
in effect.

CRITICAL
specifies that only critical messages will be printed. Control
statements print only if LIST is in effect.

80 DFSORT Application Programming: Guide

NONE
specifies that no messages and control statements will be printed.

Note: MSGPRT is processed only if it is passed on the OPTION control statement
in an extended parameter list.

Default: Usually the installation default, but refer to Appendix D for full override
details.

NOBLKSET
DFSORT uses the Blockset technique whenever possible. By use of this
parameter, you can cause DFSORT to bypass the Blockset technique for a
sort or merge application. However, this generally degrades performance.

Default: None; optional.

Applicable Functions: See Appendix D.

NOOUTREL
You can use this parameter to temporarily override the installation option,
OUTREL= YES, which specifies that unused temporary SORTO UT data set
space is to be released. NOOUTREL means that unused temporary
SORTOUT data set space is not to be released.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

NOOUTSEC
You can use this parameter to temporarily override the installation option,
OUTSEC= YES, which specifies that automatic secondary allocation should
be used for SORTOUT data sets. NOOUTSEC means that automatic
secondary allocation for SORTOUT data sets is not used.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

NOSTIMER
You can use this parameter to temporarily override the installation option,
STIMER= YES, which specifies that DFSORT uses the STIMER macro.
NOSTIMER means that DFSORT does not use the STIMER macro;
processor time data does not appear in SMF records.

If your exit(s) take checkpoints, and STIMER= YES is the installation
default, you should specify this parameter.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

Chapter 2. Program Control Statements 81

NOWRKREL
You can use this parameter to temporarily override the installation option
WRKREL= YES, which specifies that unused temporary SORTWKnn data
set space is to be released. NOWRKREL means that no unused temporary
SORTWKnn data set space will be released.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

NOWRKSEC
You can use this parameter to temporarily override the installation option,
WRKSEC =YES, which specifies that automatic secondary allocation should
be used for SORTWKnn data sets. NOWRKSEC means that automatic
secondary allocation is not used for SORTWKnn data sets.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

RESALL={n I nK}
You can use this parameter to temporarily override the corresponding
installation option RESALL=n. RESALL is used only when
MAINSIZE/SJZE=MAX is in effect. It indicates the number of bytes to be
reserved in a partition or REGION when the maximum amount for sorting is
calculated. Usually, only 4K bytes (the standard default) of main storage
has to be available in a partition or region for system use. However, in a few
cases, this may not be enough; for example, if your installation does not have
BSAM/QSAM modules resident, you have exits that open data set(s), or
you have COBOL exits.

For MVS/XA systems, RESALL applies only to the amount of main storage
below 16-megabyte virtual. The ARESALL option applies to the amount of
main storage above 16-megabyte virtual.

n

nK

n is a decimal value that specifies the number of bytes of storage to be
reserved. If you specify less than 4096, 4096 is used.

Limit: 8 digits.

nK specifies n times 1024 bytes of storage are to be reserved. If you
specify less than 4 K, 4 K is used.

Limit: 5 digits.

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

Default: Usually the installation default, but refer to Appendix D for full override
details.

82 DFSORT Application Programming: Guide

Applicable Functions: See Appendix D.

RESINV =ln I nKJ
You can use this parameter to temporarily override the corresponding
installation option RESINY =n. RES/NV is used only when DFSORT is
dynamically invoked and MAINSIZE/ SIZE=MAX is in effect. It indicates
the number of bytes to be reserved in a partition or REGION for the
invoking program when the maximum amount available for processing is
being calculated.

For MYS/XA systems, RESINY applies only to the amount of main storage
below 16-megabyte virtual. The ARESINY option applies to the amount of
main storage above 16-megabyte virtual.

This extra space is usually required for data handling by the invoking
program or exits while DFSORT is executing (as is the case with some PL/I
and COBOL invoked sort applications).

The amount of space required depends upon what routines you have, how
the data is stored, and which access method you use. The reserved space is
not meant for the executable code itself.

If your invoking program and its associated exits do not perform data set
handling, you do not need to specify this parameter.

n

nK

n is a decimal value that specifies the number of bytes of main storage
to be reserved.

Limit: . 8 digits

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits

Note: A better way to release the required storage for user exits is them
parameter on the MODS statement.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

SKIPREC=z
z is the number of records you want to skip before starting to process the
input data set, and is usually used if, on a preceding DFSORT run, you have
processed only part of the input data set.

A program with an input data set that exceeds intermediate storage capacity
usually termina_tes unsuccessfully. However, for a tape sort, you can use a
routine at E16 (as described in Chapter 4, "User Exit Routines" on
page 13 5) to instruct the program to sort only those records already read in.
It then prints a message giving the number of records sorted. You can use

Chapter 2. Program Control Statements 83

SKIPREC in a subsequent sort run to sort the remaining records, and then
merge the output from different runs to complete the application.

Notes:

1. SKIPREC applies only to records read from SORTIN (not from E15
routines). (See Figure 2 on page JO.)

2. If SKIPREC=O is in effect, SKIPREC is not used.

Default: None; optional.

Applicable Functions: See Appendix D.

SORIDD=cccc
You should use this parameter to specify a 4-character prefix for ddnames
when you dynamically invoke DFSORT more than once in a program step.
The four characters replace "SORT" in the following ddnames: SORTIN,
SORTOUT, SORTINnn, SORTWKnn, and SORTCNTL.

cccc specifies a 4-character prefix. The four characters must all be
alphanumeric or national ($, #, or @). The first character must be
alphabetic. The first three characters must not be SYS.

Example: If you use ABC# as replacement characters, DFSORT will use DD
statements ABC#IN, ABC#CNTL, ABC#WKnn, and ABC#OUT instead of
SORTIN, SORTCNTL, SORTWKnn, and SORTOUT.

Notes:

1. SORTDD is processed only if it is passed on the OPTION control
statement in an extended parameter list.

2. If SORTIN=ddname and SORTDD=cccc are both specified, ddname is
used for DFSORTinput.

3. If SORTOUT=ddname and SORTDD=cccc are both specified, ddname is
used for DFSORToutput.

Default: If this parameter is not specified, DFSORT defaults to SORT.

Applicable Functions: See Appendix D.

SORTIN =ddname
You can use this parameter to specify a ddname to be associated with the
SORTIN data set. This allows you to dynamically invoke DFSORT more
than once in a program step, passing a different ddname for each input file.

84 DFSORT Application Programming: Guide

Notes:

1. SORTIN is processed only if it is passed on the OPTION control statement
in an extended parameter list.

2. If SORTIN=ddname and SORTDD=cccc are both specified, ddname is
used for the input file. The same ddname cannot be specified for SORTIN
and SORTOUT.

3. If SORTIN is used for a tape work data set sort, DFSORT terminates.

Default: If this parameter is not specified, DFSORTdefaults to SORTIN, unless
SORTDD=cccc is specified, in which case cccclN will be the default.

Applicable Functions: See Appendix D.

SORTO UT =ddname
You can use this parameter to specify a ddname to be associated with the
SORTOUT data sets. This allows you to dynamically invoke DFSORT more
than once in a program step, passing a different ddname for each output file.

Notes:

1. SORTOUT is processed only if it is passed on the OPTION control
statement in an extended parameter list.

2. If SORTOUT=ddname and SORTDD=cccc are both specified, ddname is
used for the output file. The same ddname cannot be specified for
SORTIN and SORTOUT.

3. If SORTO UT is specified for a conventional merge or for a tape work data
set sort, DFSORT terminates.

Default: If this parameter is not specified, DFSORT defaults to SORTOUT,
unless SORTDD=cccc is specified, in which case ccccOUT is the default.

Applicable Functions: See Appendix D.

STOPAFf=n
n is the maximum number of records you want accepted for sorting or
copying (that is, read from SORTIN or inserted by E15 and not deleted by
SKIPREC, E15 or INCLUDE/OMIT). When n records have been
accepted, no more records are read from SORTIN; E15 continues to be
entered as if EOF were encountered until a return code of 8 is sent, but no
more records are inserted. If end-of-file is encountered before n records are
accepted, only those records accepted up to that point are sorted or copied.

Notes:

1. STOP AFT is not used for a tape work data set sort.

2. If you specify FILSZ=x or SIZE=x and the number of records accepted
for processing does not equal x, DFSORT issues message ICE047A and
terminates.

Chapter 2. Program Control Statements 85

3. If STOPAFT=O is in effect, it will not be used.

Default: None; optional.

Applicable Functions: See Appendix D.

VERIFY I NOVERIFY
You can use this parameter to temporarily override the installation option
VERIFY= {YES I NO}, that specifies whether sequence checking of the final
output records should be performed.

VERIFY
means that sequence checking is to be performed.

NO VERIFY
means that sequence checking is not to be performed.

Note: Use of VERIFY can degrade performance.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

VLSHRT I NOVLSHRT
You can use this parameter to temporarily override the installation option
{VLSHRT=YES I NO} that specifies whether DFSORT is to continue
sorting or merging if a variable-length input record is found that is too short
to contain all specified control fields. VLSHRT is not meaningful for
fixed-length record processing.

VLSHRT
means that sorting or merging continues if a "short" record is found.

NOVLSHRT
means that sorting or merging terminates if a "short" record is found.

Notes:

1. VLSHRTis not used if INCLUDE/OMIT, INREC, OUTREC,
and/or SUM are specified.

2. If Blockset is selected:

86 DFSORT Application Programming: Guide

• DFSORT pads "short" control fields with binary zeroes, thus
making the order predictable for records with equal control
fields of different lengths.

• VLSHRT is not used for a merge application. To use VLSHRT
for a merge application, you must specify the NOBLKSET
option on the OPTION control statement.

3. If Block.set is not selected:

• DFSORT terminates if the first byte of the first (major) control
field is not included in the record.

• DFSORT does not pad "short,, control fields, thus making the
order unpredictable for records with equal control fields of
di[f erent lengths.

• In certain cases, VLSHR Tis not used due to the number and
position of the control fields.

• EQUALS is not used if VLSHRT is in effect.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

OPTION Statement Examples

0 PTIO N Statement Example 1. One Control Field and Related Options

SORT FIELDS=(1,20,CH,A)
OPTION SIZE=SOOOO,SKIPREC=S,CKPT,EQUALS,DYNALLOC

FIELDS

SIZE

The control field begins on the first byte of each record in the input data set,
is 20 bytes long, contains character data, and is to be sorted into ascending
order.

The data set to be sorted contains 50000 records.

SKIPREC
Five records are skipped before starting to process the input data set.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if one of the Blockset techniques is chosen. If
checkpoints are required, you must bypass the Blockset technique by
specifying the NOBLKSET option, or by specifying IGNCK.PT•NO on the
ICEMAC installation macro.

EQUALS
The sequence of equal collating records is preserved from input to output.

DYNALLOC
One data set (by default) is allocated on SYSDA (by default). The space on
the data set is calculated using the MAINSIZE/SIZE value in effect. ·

Chapter 2. Program Control Statements 87

OPTION Example 2. The Relationships Between the OPTION and SORT Control
Statements and the ICEMAC Installation Option

SORT FIELDS=(1,2,CH,A),CKPT
OPTION EQUALS,NOCHALT,NOVERIFY,CHECK

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted into ascending
order.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if one of the Blockset techniques is chosen. If
checkpoints are required, you must bypass the Blockset technique by
specifying the NOBLKSET option, or by specifying IGNCKPT=NO on the
ICEMAC installation macro.

EQUALS
The sequence of equal collating records is preserved from input to output.

NOCHALT
Only AQ fields are translated through the AL TSEQ translate table. (This
overrides CHAL T =YES, had it been specified at installation time.)

NO VERIFY
No sequence check is performed on the final output records.

CHECK
Record counters are checked at the end of program execution.

OPTION Example 3. Using OPTION to Override SORT

OPTION FILSZ=50,SKIPREC=5,DYNALLOC=3380
SORT FIELDS={1,2,CH,A),SKIPREC=1,SIZE=200,DYNALLOC=(3350,5)

This example shows how parameters specified on the OPTION control statement
override those specified on the SORT control statement, regardless of the order of
the two statements.

FILSZ
DFSORT expects 50 records on the input data set. (Note that there is a
differencein meaning between FILSZ and SIZE, and that the OPTION
specification of FILSZ is used in place of SIZE.)

SKIPREC
DFSORT causes five records from the beginning of the input file to be
skipped. (SKIPREC= 1 on the SORT statement is ignored.)

88 DFSORT Application Programming: Guide

DYNALLOC
DFSORT allocates one work data set (by default) on an IBM 3380.

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted in ascending
order.

OPTION Example 4. Bypassing the Blockset Technique

I OPTION.NOBLKSET

NOBLKSET
DFSORT bypasses FLR-Blockset or VLR-Blockset regardless of whether
the Blockset technique can be used.

OPTION Example 5. Using STOPAFTand COBEXIT

I OPTION STOPAFT=100,COBEXIT=COB2

STOPAFf
DFSORT accepts 100 records before sorting.

COBEXIT
E15 and/or E35 routines can be executed with the VS COBOL II library.

OPTION Example 6. Passing an OPTION Control Statement through a
SORTCNTL or SYSIN Data Stream

OPTION RESINV=32000,MSGPRT=NONE,
MSGDDN=SORTMSGS,SORTDD=ABCD,SORTIN=MYINPUT,
SORTOUT=MYOUTPUT,NOLIST

This example illustrates the parameters RESINY, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST, and the actions taken when these parameters
are supplied on an OPTION statement read from the SYSIN data set or the
SORTCNTL data set. The parameters are recognized, but not used.

RES INV
3 2000 bytes of storage are reserved for the user.

MSGPRT=NONE
The keyword is ignored, and messages are printed according to the
installation-supplied default.

Chapter 2. Program Control Statements , 89

MSGDDN=SORTMSGS
The keyword is ignored, and all messages are written to the SYSOUT data
set.

SORTDD=ABCD
The keyword is ignored, and the standard prefix SORT is used.

SORTIN=MYINPUT
The keyword is ignored, and the ddname SORTIN is used to reference the
input data set.

SORTOUT=MYOUTPUT
The keyword is ignored, and the ddname SORTOUT is used to reference the
output data set.

NO LIST
The keyword is ignored, and control statements are printed according to the
installation-supplied defaults.

OPTION Example 7. Passing an OPTION Control Statement in the Extended
Parameter List

OPTION RESINV=32000,MSGPRT=CRITICAL,
MSGDDN=SORTMSGS,SORTDD=ABCD,SORTIN=MYINPUT,
SORTOUT=MYOUTPUT,NOLIST

This example illustrates keywords RESINY, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST and the actions taken when these keywords
are supplied on the OPTION control statement passed by an extended parameter
list.

RES INV
3 2000 bytes of storage are reserved for the user.

MSGPRT=CRITICAL
Only critical messages are printed on the message data set.

MSGDDN=SORTMSGS
Messages are written to the SORTMSGS data set.

SORTDD=ABCD
SORT uses ABCD as a prefix for all sort names.

90 DFSORT Application Programming: Guide

SORTIN=MYINPUT
The ddname MYINPUT is used to reference the input data set.

SORTOUT=MYOUTPUT
The ddname MYOUTPUT is used to reference the output data set.

NO LIST
Control statements are not printed.

OPTION Example 8. Using COPY with the OPTION statement

SORT FIELDS=(3,4,CH,A)
OPTION COPY,SKIPREC=10,CKPT
MODS E15=(E15,1024,MODLIB) ,E35=(E35,1024,MODLIB)

SORT
The sort statement is ignored because the COPY option has been specified.

COPY
The copy processing is done on a record-by-record basis. So, each record is
read from SORTIN, passed to the E15 exit, passed to the E35 exit, and
written to SORTOUT. (Contrast this with a sort, where all the records are
read from SORTIN and passed to the E15 exit before any records are passed
to the E35 exit and written to SORTOUT.)

SKIP REC
Ten records are skipped before copying starts.

CKPT
The checkpoint option is not used for copy applications.

Chapter 2. Program Control Statements 91

OUTREC Control Statement

OUTREC FIELDS=([s,]p,m[,a] ... [,s][,p,[m][,a]][,s])

The OUTREC control statement allows you to reformat the input records before
they are output; that is, to define which parts of the input record are to be included
in the reformatted output record, in what order they are to appear, and how they
are to be aligned.

You do this by defining one or more fields from the input record. The reformatted
output record consists of those fields only, in the order in which you have specified
them, and aligned on the boundaries you have indicated. You can also pad
reformatted output records with blanks and/ or binary zeros before, between,
and/ or after the input fields, using the s parameter.

For information concerning the interaction of INREC and OUTREC, see "Using
Options That May Enhance Performance" on page 217.

FIELDS=([s,]p,m(,a](,s](,p,(m](,a))(,s])
specifies the order in which the input and separation fields are to appear in
the reformatted output record.

s
indicates a separation field to be inserted into the reformatted output
record in the position you code it relative to the input fields. It can be
specified before or after the p,m,a parameters for any field.
Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X'40') are
inserted in the reformatted output records. n may be from 1 to
256.

nZ Binary zero separation. n bytes of binary zeros (X' 00') are
inserted in the reformatted output records. n may be from 1 to
256.

Consecutive separation fields may be specified.

For variable-length records:

• Separation field(s) must not be specified before the first input
field (the RDW).

• Separation field(s) must not be specified after the variable part of
the input record.

92 DFSORT Application Programming: Guide

p

m

a

specifies the first byte of the input field relative to the beginning of the
input record. 4 The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5, because the first four bytes are occupied by the ROW. All
fields must start on a byte boundary, and no field may extend beyond
byte 32000. See "OUTREC Statement Notes" below for special rules
concerning variable-length records.

specifies the length of the input field. It must include the sign if the
data is signed, and must be a whole number of bytes. See note 5 on
page 60 for more information.

specifies the alignment (displacement) of the input field in the
reformatted output record, relative to the start of the reformatted
output record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of 2 (that is, position 1, 3, 5, and so forth).

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that
is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used in a
COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space
preceding aligned fields are always padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix D.

OUTREC Statement Notes

1. If input records are reformatted by INREC or ElS, OUTREC must refer to
fields in the appropriate reformatted record (seep above). ·

2. When you specify OUTREC, you should be aware of the change in record size
and layout of the resulting reformatted output records. You should also
understand how reformatting of records affects processing performance, and
how to use INREC and/ or OUTREC to achieve the most efficient processing.

4 If INREC is specified, p must refer to the record as reformatted by INREC. If your
E15 exit reformats the record, and INREC is not specified, p must refer to the record
as reformatted by your E15 exit.

Chapter 2. Program Control Statements 93

(See also "INREC Control Statement" on page 58 and "Using Options That
May Enhance Performance" on page 219 for more details).

3. The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the DSCB or DD
statement, the value for SORTOUT LRECL will be determined in the usual
way (that is, from the L3 value or SORTIN LRECL). If the reformatted
length does not match the SORTOUT LRECL, the same checks used when the
SORTIN LRECL does not match the SORTOUT LRECL are made and
padding/truncation is performed, if possible. When processing variable-length
records, the maximum SORTIN LRECL must not exceed the maximum
SORTOUT LRECL.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four
more than the LRECL when processing variable-length records. See "VSAM
Data Set Notes and Limitations" on page 4 for more information.

4. For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte RDW. DFSORT sets the length of the
reformatted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted output record immediately following the ROW, the entry in the
FIELDS parameter can specify both RDW and data field in one. Otherwise,
the RDW must be specifically included in the reformatted output record.

5. The variable part of the input record (that part beyond the rrJnimum re.curd
length) may be included in the reformatted output record as the last part. In
this case, a value should be specified for pn that is less than or equal to the
minimum record length (L4) plus 1 byte, and mn and an should be omitted. If
INREC and OUTREC are both specified, either both must specify
position-only for the last part, or neither must specify position-only for the last
part.

Note that, if the reformatted input includes only the RDW and the variable
part of the input record, "null" records containing only an RDW could result.

6. The reformatted output records are in the format specified by OUTREC
regardless of whether INREC was specified.

7. Fields referenced in OUTREC statements may overlap each other and/ or
control fields.

8. If input is variable records, the output is also variable. This means that each
record is given the correct RDW by DFSORT before output even if the records
are treated as fixed internally because they are all the same length.

9. When OUTREC is specified, your E35 exit routine must refer to fields in the
reformatted output record.

10. DFSORT issues a message and terminates if an OUTREC statement is
specified for a tape work data set sort or conventional merge application.

94 DFSORT Application Programming: Guide

11. When you specify OUTREC, VLSHRT is not used. If it is specified, it is
ignored.

OUTREC Statement Examples

See INREC Examples l, 3, and 4 for applications in which both INREC and
OUTREC statements are used in the same job stream to improve performance.

OUTREC Example 1.

I OUTREC FIELDS= (11 '32 I

This statement specifies that the output record should contain 32 bytes beginning
with byte 11 of the input record. This statement can only be used with fixed-length
input records, because it does not include the first 4 bytes.

OUTREC Example 2.

I OUTREC FIELDS=(1,4,11,32,D,101)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record should contain an RDW plus 32 bytes of the input
record starting at byte 11 (aligned on a doubleword boundary, relative to the start
of the record) plus the entire variable portion of the input record.

Note that no extra comma is coded to indicate the omission of the first alignment
parameter. If you do include an extra comma, you get a syntax error message and
the program terminates.

OUTREC Example 3.

I OUTREC FIELDS= (1 ,42 ,D' 101 I

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record should contain an RDW plus the first 38 data bytes
of the input record plus the entire variable portion of the input record.

The 'D' parameter has no effect, because the first field is always placed at the
beginning of the output record.

Chapter 2. Program Control Statements 95

OUTREC Example 4.

SORT FIELDS=(20,4,CH,D,10,3,CH,D)
OUTREC FIELDS=(5X,20,4,H,8X,20,2,10,3,1Z,1,9,13,7,24,57,6Z)

This example illustrates how a fixed-length input data set could be sorted and
reformatted for output. The SORTIN LRECL is 80 bytes.

The reformatted output records are fixed length with a record size of 103 bytes and
look as follows. The SORTOUT LRECL should be specified as 103.

Position
1-5
6
7-10
11-18
19-20
21-23
24
25-33
34-40
41-97
98-103

Contents
EBCDIC blanks
Binary zero (for H alignment)
Input positions 20 through 23
EBCDIC blanks
Input positions 20 through 21
Input positions 10 through 12
Binary zero
Input positions 1 through 9
Input positions 13 through 19
Input positions 24 through 80
Binary zeros

OUTREC Example 5.

SORT FIELDS=(12,4,PD,D)
RECORD TYPE=V,LENGTH={,,,100)
OUTREC FIELDS=(1,7,5Z,5X,28,8,6X,101)

This example illustrates how a variable-length input data set could be sorted and
reformatted for output. The variable part of the input records is included in the
output records. The minimum input record size is 100 bytes and the maximum
input record size (SORTIN LRECL or maximum record size for VSAM) is 200
bytes.

The reformatted output records are variable length, with a maximum record size of
131 bytes. For variable records, the maximum output record size (SORTOUT
LRECL) must be equal to or greater than the maximum input record size
(SORTIN LRECL), which in this case is 200. The reformatted records look as
follows:

Position
1-4
5-7
8-12
13-17
18-25
26-31
32-n

Contents
RDW (input positions 1 through 4)
Input positions 5 through 7
Binary zeros
EBCDIC blanks
Input positions 28 through 3 5
EBCDIC blanks
Input positions 101 through n (variable part of input records)

96 DFSORT Application Programming: Guide

OUTREC Example 6.

MERGE FIELDS=(28,4,BI,A)
OUTREC FIELDS=(1,4,5Z,5X,5,3,28,8,6Z)

This example illustrates how input files can be merged and reformatted for output.
The variable part of the input records is not to be included in the output records.
The SORTINnn LRECL is 50 bytes.

The reformatted output records are variable length, with a maximum record size of
31 bytes and look as follows. The SORTOUT LRECL must be 50 bytes.

Position
1-4
5-9
10-14
15-17
18-25
26-31

Contents
RDW (input positions 1 through 4)
Binary zeros
EBCDIC blanks
Input positions 5 through 7
Input positions 28 through 35
Binary zeros

Chapter 2. Program Control Statements 97

RECORD Control Statement

RECORD [TYPE=x][,LENGTH=(Ll,L2,L3,L4,L5,L6,L7)]

The RECORD control statement describes the format and lengths of the records
being processed. It is required when:

• You include user exit routines that change record lengths during a DFSORT
program run.

• Input is from a user data set.

• SORTIN and/ or SOR TOUT record length information is unavailable.

• A sort is invoked from a program written in PL/I, or

• Input is from a VSAM data set.

The RECORD control statement can also be used when sorting variable-length
records to supply the minimum and average record lengths to the program.

For details of the RECORD control statement and its parameters, see also
Figure 3 on page 20.

TYPE=x

F
indicates that the records to be processed are fixed-length records.

v
indicates that the records are EBCDIC variable-length records.

D
indicates that the records are ISCH/ ASCII variable-length records.

For QSAM records, the format you specify in the TYPE operand must be the same
as the format you used in the RECFM subparameter of the DCB parameter on the
SORTIN and SORTOUT DD statements (described in Chapter 3, "Job Control
Statements" on page 113), or that given on the data set label. If the formats are
not the same or TYPE is not specified, the program uses the format given in the
data set label/DD statement.

The TYPE operand is always required for VSAM SORTIN or SORTINnn data
sets.

Default: Required for E15 or E32 input if SORTIN or SORTINnn record format
is unavailable; otherwise, defaults to SORTIN or SORTINnn record format.

Applicable Functions: See Appendix D.

98 DFSORT Application Programming: Guide

LENGTH=(L1,L2,L3,L4,L5,L6,L 7)
This parameter is required when you change record lengths at one or more
exits, or when no SORTIN DD statement is supplied.

Lt

L2

LJ

L4

LS

Input record length, Ll, is required only when no SORTIN or
SORTINnn DD statement is supplied. Ll must be at least as large as
the maximum input record size; if it is larger than needed,
performance can be degraded.

For VSAM input data sets, if the Ll value is not equal to the
maximum record size defined in the cluster for fixed-length records, it
is overridden by the cluster value. If processing variable-length
records with VSAM input and non-VSAM output, the Ll value must
be four more than the value defined in the cluster. See "VSAM Data
Set Notes and Limitations" on page 4 for more information.

L2 is the record length after E 15. It is extremely important to specify
an accurate value for L2 if you change record lengths at El5. Note
that, except for Blockset, if you have specified a value for L 1 but not
for L2, the value you specified acts as a default for L2 even if the L 1
value has subsequently been overridden.

If work units are tape, the minimum length for records to be sorted
(L2) is 18 bytes.

Output record length, L3, can usually be supplied by default: you
need to specify L3 only if no LRECL (or maximum RECSZ, for
VSAM) is available for SORTOUT, either in the DD statement or in
the label, and the L 1 value is inappropriate.

For VSAM SORTOUT data sets, if the L3 value is not equal to the
maximum output record size defined in the VSAM cluster, it is
overridden by the cluster value.

Specifying the minimum record length (L4) may help performance.
However, if you specify too large a value, the program fails and issues
message ICE015A. The default for L4 is the minimum length needed
to contain all control fields; if this length is less than 18 bytes, then 18
bytes is used instead-unless the records are shorter than 18 bytes, in
which case record length is used. L4 is not used for Blockset.

L5 is the average record length for variable-length records.

L6,L7
L6 and L 7 are accepted, but not used; they are reserved for future
use.

Chapter 2. Program Control Statements 99

Default: For defaults, see RECORD in Figure 3 on page 20.

Usual syntax rules apply:

• You can drop values from the right, that is, LENGTH=(80,70,70,70).

• You can omit values from the middle or left, provided you indicate their
omission by a comma, that is, LENGTH=(,,,30,80).

Applicable Functions: See Appendix D.

RECORD Statement Examples

RECORD Example 1. Fixed-Length, Three Length Values

I RECORD TYPE=F,LENGTH=(60,40,50)

TYPE
The input records are fixed length.

LENGTH
The records in the input data set are each 60 bytes long. Exit E 15 is used to
change the records to 40 bytes in the sort phase and exit E3 5 is used to
change the records to 50 bytes in the final merge phase.

RECORD Example 2. Variable-Length, Five Length Values

RECORD TYPE=V,LENGTH=(200,175,180,50,80)

TYPE
The records in the input data set are EBCDIC variable-length.

LENGTH
The maximum length of the records in the input data set is 200 bytes. In the
sort phase, you reduce the maximum record length to 17 5 bytes. You add
five bytes to each record in the final merge phase, making the maximum
record length in the output data set 180 bytes. The minimum record length
handled by the sort phase is 50 bytes and the average record length is 80
bytes.

RECORD Example 3. Variable Length, Two Length Values

RECORD TYPE=V,LENGTH=(200,,,,80)

100 DFSORT Application Programming: Guide

TYPE
The records in the input data set are EBCDIC variable-length records.

LENGTH
The maximum length of the records in the input data set is 200 bytes. You
do not change record lengths, so you omit L2 and L3; L4 is also omitted.
The average record length is 80 bytes.

Chapter 2. Program Control Statements 101

SORT Control Statement

SORT {FIELDS=(p,m,f,s ... ,p,m,f,s) I
FIELDS=(p,m,s ... ,p,m,s),FORMAT=f I
FIELDS= COPY}
[,CKPT]
[,DYNALLOC[={dl (d) I (,n) I (d,n)}]]
[,EQUALS I ,NOEQUALS]
[,FILSZ=x I ,SIZE=y I ,FILSZ=En I ,SIZE=En]
[,SKIPREC=z]

The SORT control statement must be used when a sorting application is to be
performed; this statement describes the control fields in the input records on which
the program sorts.

A SORT statement can also be used to specify a copy application.

The options available on the SORT statement can be specified in other sources, as
well. A table showing all possible sources for these options and the order of
override is given in Appendix D.

When an option can be specified on either the SORT or OPTION statement, it is
preferable to specify it on the OPTION statement.

FIELDS=(p,m,f,s ••• ,p,m,f,s)
The program requires four facts about each control field in the input records:
the position of the field within the record, the length of the field, the format
of the data in the field, and the sequence into which the field is to be sorted.
These facts are communicated to DFSORT by the values of the FIELDS
operand, represented by p, m, f, ands in Figure 3 on page 20.

All control fields must be located within the first 4092 bytes of a record, and
must not extend beyond the shortest record to be sorted. The collected
control fields (comprising the control word) must not exceed 4092 bytes
long (or, when the EQUALS option is in operation, 4088 bytes). As shown
in Figure 3 on page 20, the FIELDS operand can be written in two ways.

Use the first FIELDS operand format to describe control fields that contain
different data formats; use the second format to describe SORT fields that
contain data of the same format. The second format is optional; if you
prefer, you can always use the first format.

The program examines the major control field first, and it must be specified
first. The minor control fields are specified following the major control field.
In Figure 3 on page 20, e, m, f, ands describe the control fields. The
specifications for the parameters in the SORT control statement are
summarized in Figure 3. The text that follows gives these specifications in
detail.

102 DFSORT Application Programming: Guide

p
specifies the first byte of a control field relative to the beginning of the
input record. s

The first data byte of a fixed-length record has relative position 1. The
first data byte of a variable-length record has relative position 5
(because the first 4 bytes contain the RDW). All control fields, except
binary, must begin on a byte boundary. The first byte of a
floating-point field is interpreted as a signed exponent; the rest of the
field is interpreted as the fraction.

Note that the beginning of a variaqle-length record must include a
4-byte record descriptor word (RDW) that precedes the actual record.
This is also true for VSAM input records, for which DFSORT supplies
the necessary RDW on input to the program and removes it again at
output (if output is to a VSAM data set). You should therefore
always add four to the byte position in variable-length records.

Fields containing binary values are described in a "bytes.bits" notation
as follows:

1. First, specify the byte location relative to the beginning of the
record and follow it with a period.

2. Then, specify the bit location relative to the beginning of that
byte. Remember that the first (high-order) bit of a byte is bit 0
(not bit 1); the remaining bits are numbered 1 through 7.

Thus, 1.0 represents the beginning of a record. A binary field
beginning on the third bit of the third byte of a record is represented
as 3.2. When the beginning of a binary field falls on a byte boundary
(say, for example, on the fourth byte), you can write it in one of three
ways:

4.0
4.
4

5 If INREC is specified, p must ref er to the record as reformatted by INREC. If your
El5 exit reformats the record, and INREC is not specified, p must refer to the record
as reformatted by your ElS exit.

Chapter 2. Program Control Statements 103

Other examples of this notation are:

m

f

3

specifies the length of the control field. All control fields except
binary must be a whole number of bytes long. Binary fields are
expressed in the notation "bytes.bits,'. The length of a binary control
field that is a whole number (d) of bytes long can be expressed in one
of three ways:

d.O
d.
d

The number of bits specified must not exceed 7. A control field 2 bits
long would be represented as 0.2.

The total number of bytes occupied by all control fields must not
exceed 4092 (or, when the EQUALS option is in operation, 4088
bytes). When you determine the total, count a binary field as
occupying an entire byte if it occupies any part of it. For example, a
binary field that begins on byte 2.6 and is 3 bits long occupies two
bytes. All fields must be completely contained within the first 4092
bytes of the record.

This three bit binary control field
____ __,A._ __

I

occupies two bytes

specifies the format of the data in the control field. Acceptable control
field lengths (in bytes) and available formats are shown in Figure 11
on page 105.

104 DFSORT Application Programming: Guide

Format Length Description

CH 1-4092 Character EBCDIC, unsigned.
1-256 If CHALT=YES is in effect, CH is treated the same

asAQ.

ZD 1-32 Zoned decimal, signed.

PD 1-32 Packed decimal, signed.

FI 1-256 Fixed-point, signed.

BI 1 bit- Binary, unsigned.
4092 bytes

FL 1-256 Floating-point, signed.

AC 1-256 Character ISCII/ ASCII, unsigned.

CSL 2-256 Signed numeric, leading separate sign.

CST 2-256 Signed numeric, trailing separate sign.

CLO 1-256 Signed numeric, leading overpunch sign.

CTO 1-256 Signed numeric, trailing overpunch sign.

ASL 2-256 Signed numeric, ISCII/ ASCII, leading separate sign.

AST 2-256 Signed numeric, ISCII/ ASCII, trailing separate sign.

AQ 1-256 Character EBCDIC, alternate collating sequence.

Figure 11. Control Field Formats/Lengths

If you specify more than one control field and all the control fields contain the
same type of data, you can omit the f parameters and use the optional FORMAT
operand, described below.

All floating-point data must be normalized before the program can collate it
properly. You can use a routine of your own to db this at execution time, by
associating it with one of the program exits. Specify the E option for the value of s
in the FIELDS operand for each control field you are going to modify.

See Appendix F, "EBCDIC and ISCII/ ASCII Collating Sequences" on page 301,
for data format examples.

Chapter 2. Program Control Statements 105

s
specifies how the control field is to be ordered. The valid codes are:

A-ascending order
D-descending order
E-control fields to be modified

Specify E if you include user routines to modify control fields before
the program sorts them. After a user routine modifies the control
fields, DFSORT collates them using the format(s) specified 6 and
ascending order.

For information on how to add a user routine to modify a control field, see
Chapter 4, "User Exit Routines" on page 135.

Default: None; a parameter must be specified.

Applicable Functions: See Appendix D.

FORMAT=/
f can be used to specify the format of the data described in the FIELDS
parameter, if you specify more than one control field and the data in all the
control fields is of the same format. The possible values of f are listed in
Figure 3 on page 20.

If you specify more than one control field, and the data in the several fields
has different formats, you must specify an f parameter for each field instead
of using FORMAT.

If you have specified the COPY operand, FORMAT=/ cannot be specified.

Default: None; must be specified if not included in FIELDS parameter.

Applicable Functions: See Appendix D.

FIELDS= COPY
See the discussion of the COPY parameter on the OPTION statement.

CKPT
See the discussion of this operand on the OPTION statement.

DYNALLOC[={d I (d) I (.n) I (d,n>H (MVS Only)
See the discussion of this parameter on the OPTION statement.

EQUALS I NOEQUALS
See the discussion of this parameter on the OPTION statement.

FILSZ=x I SIZE=y I FILSZ=En I SIZE=En
See the discussion of this parameter on the OPTION statement.

6 With a conventional merge or a tape work data set sort, control fields for which E is
specified are treated as binary byte format regardless of the actual format(s) specified.

106 DFSORT Application Programming: Guide

SORT Statement Note

SKIPREC=z
See the discussion of this parameter on the OPTION statement.

If the records are reformatted by INREC or El5, SORT must refer to fields in the
appropriate reformatted record (see the description for "p" following "FIELDS"
above).

SORT Statement Examples

SORT Example 1. One Control Field and File Size Option

I SORT FIELDS=(2,5,CH,A),FILSZ=29483

FIELDS
The control field begins on the second byte of each record in the input data
set, is five bytes long, contains character data, and is to be sorted into
ascending sequence.

FILSZ
The data set to be sorted contains exactly 29483 records.

SORT Example 2. Five Control Fields, Size, Checkpoint, and Dynamic Allocation
Options

SORT FIELDS=(7,3,CH,D,1,5,FI,A,398.4,7.6,BI,D,99.0,230.2,
BI,A,452,8,FL,A) ,FILSZ=10693,CKPT,DYNALLOC=(3330,4)

FIELDS
The first four values describe the major control field. It begins on byte 7 of
each record, is 3 bytes long, contains character (EBCDIC) data, and is to be
sorted into descending sequence.

The next four values describe the second control field. It begins on byte 1, is
5 bytes long, contains fixed-point data, and is to be sorted into ascending
sequence.

The third control field begins on the fifth bit (bits are numbered 0 through 7)
of byte 398. The field is 7 bytes and 6 bits long (occupies 9 bytes), and
contains binary data to be placed in descending order.

The fourth control field begins on byte 99, is 230 bytes and 2 bits long,
contains binary data, and should be sorted into ascending order.

The fifth control field begins on byte 452, is 8 bytes long, contains
normalized floating-point data, which is to be sorted into ascending order. If
the data in this field were not normalized, you would specify E instead of A

Chapter 2. Program Control Statements 107

and include your own routine to normalize the field before the program
examined it.

FILSZ
The data set to be sorted contains exactly 10693 records.

CKPT
Instructs the program to take checkpoints during this run.

Note: If the Blockset technique is chosen, the CKPT option is ignored. If
checkpoints are required, the Blockset technique can be bypassed by
specifying either IGNCKPT=NO on the ICEMAC installation macro or
NOBLKSET on the OPTION statement.

DYNALLOC (MVS only)
Four work data sets are allocated on 3330. The space on each data set is
calculated using the FILSZ value.

SORT Example 3. Two Control Fields, User Modification, Size Option

SORT FIELDS=(3,8,ZD,E,40,6,CH,D),FILSZ=E30000

FIELDS
The first four values describe the major control field. It begins on byte 3 of
each record, is 8 bytes long, and contains zoned decimal data that is
modified by your routine before sort examines the field.

The second field begins on byte 40, is 6 bytes long, contains character
(EBCDIC) data, and is sorted into descending sequence.

FILSZ
The input data set contains approximately 30000 records.

SORT Example 4. Two Control Fields, Format and Equals Options

SORT FIELDS=(25,4,A,48,8,A),FORMAT=ZD,EQUALS

FIELDS
The major control field begins on byte 25 of each record, is 4 bytes long,
contains zoned decimal data (FORMAT=ZD), and is to be sorted into
ascending sequence.

The second control field begins on byte 48, is 8 bytes long, has the same
data format as the first field, and is also to be sorted into ascending order.

108 DFSORT Application Programming: Guide

FORMAT
The FORMAT=f option can be used because both control fields have the
same data format. It would also be correct to write this SORT statement as
follows:

SORT FIELDS=(25,4,ZD,A,48,8,ZD,A),EQUALS

EQUALS
specifies that the sequence of equal collating records is to be preserved from
input to output.

SORT Example 5. COPY Option

I SORT FIELDS=COPY

FIELDS
The input data set is copied to the output data set without sorting or
merging.

Chapter 2. Program Control Statements 109

SUM Control Statement

SUM {FIELDS=(p,m,f. .. ,p,m,j) I
FIELDS=(p,m ... ,p,m),FORMAT=/ I
FIELDS=NONE}

The SUM control statement specifies that, whenever two records are found with
equal control fields, the contents of their summary fields are to be added, the sum
is to be placed in one of the records, and the other record is to be deleted.

FlELDS=(p,m,f ••• p,m,j)
designates numeric fields in the input record as summary fields.

p

m

f

specifies the first byte of the field relative to the beginning of the input
record. 7 The first data byte of a fixed-length record has relative.
position 1. The first data byte of a variable-length record has relative
position 5, as the first four bytes are occupied by the RDW. All fields
must start on a byte boundary, and no field may extend beyond byte
4092.

specifies the length in bytes of the summary fields to be added. The
value must include the sign, if signed data. See below for permissible
length values.

specifies the format of the data in the summary field, which can only
be of the following types:

Code

BI
FI
PD
ZD

Length

2, 4, or 8 bytes
2, 4, or 8 bytes
1-16 bytes
1-18 bytes

Description

Binary, unsigned
Fixed-point, signed
Packed decimal, signed
Zoned decimal, signed

NONE
eliminates records with duplicate keys. Only one record with each key
is kept and no summarization is performed.

Default: None; must be specified.

7 If INREC is specified, p must refer to the record as reformatted by INREC. If your
E15 exit reformats the record, and INREC is not specified, p must refer to the record
as reformatted by your E 15 exit.

110 DFSORT Application Programming: Guide

SUM Statement Notes

Applicable Functions: See Appendix D.

FORMAT=/
can be used when all the summary fields contain the same type of data. The
values for f are listed above.

Default: None; optional.

Applicable Functions: See Appendix D.

1. If input records are reformatted by INREC or E 15, SUM must ref er to fields in
the appropriate reformatted record (see the description of p above).

2. The size of the routine generated by DFSORT to handle the SUM function is
dependent on how many fields are referenced, and what lengths and formats
they have. The size of the routine must not exceed 4096 bytes or DFSORT
issues a message and terminates.

3. Summary fields must not be control fields. They must not overlap control
fields, or each other, and must not overlap the RDW.

4. Floating-point fields must not be summarized.

5. When records are summarized, the choice of which record is to receive the sum
(and be retained) and which record is to be deleted is unpredictable unless
EQUALS is in effect and the BLOCKSET technique is being used. In this
case, the first record (based on the sequence described under
EQUALS I NOEQUALS on page 77) is chosen.

6. Fields other than summary fields remain unchanged and are taken from the
record that receives the sum.

7. If overflow occurs, the two records involved are left unsummarized (that is, the
contents of the records are left undisturbed and neither record is deleted).
Overflow does not prevent further summary.

8. DFSORT issues a message and terminates if a SUM statement is specified for a
tape work data set sort or conventional merge.

9. Summation of data with invalid sign or digit codes results in a data exception
(OC7 ABEND).

Chapter 2. Program Control Statements 111

SUM Statement Examples

SUM Example 1.

I SUM FIELDS=(41,B,ZD,49,4,FI)

This statement designates an 8-byte zoned decimal field at byte 41, and a 4-byte
fixed-integer field at byte 49, as summary fields.

SUM Example 2.

I SUM FIELDS=(41,B,49,4),FORMAT=FI

This statement illustrates the use of the FORMAT operand. The statement
designates two fixed-integer fields, one 8 bytes long starting at byte 41, and the
other 4 bytes long starting at byte 49.

112 DFSORT Application Programming: Guide

Chapter 3. Job Control Statements

//jobname JOB

This chapter describes the job control language (JCL) statements you must write
for the program. To describe your application to the operating system, you must
include JCL statements with each program application you submit for execution.

The job control statements required for a program application include a JOB
statement, an EXEC statement, and several DD statements. The inclusion of
certain JCL statements depends on whether you initiate the program with an
EXEC statement in the input job stream, or with a system macro instruction within
your own program. The JCL statements you include can also depend on whether
or not you want to use program exits for routines of your own. If you intend to use
system macro instructions or program exits, or both, you should be familiar with
the material in Chapters 4 and 5. These statements, their functions, and the order
in which they are arranged in the system input stream are shown in Figure 12.

While reading this chapter, you may need the appropriate JCL reference manual for
supplementary information; you should have it available for reference.

Always needed.

Preceding job steps, if any.

//stepname EXEC

/ /STEPLIB DD

/ /SORTLIB DD

//SYSOUT DD

//DDname DD
//SORTIN DD

/ /SORTOUT DD

Always needed.

The following DD statements can be in any order:

(Or JOBLIB) Omit when using a supplied cataloged procedure.

Only needed for a sort using tape work files or a merge using
the conventional technique. Omit when using a supplied
cataloged procedure.

Usually needed for messages. Omit when using a supplied
cataloged procedure.

Libra.ry definition if you use routines from a library.
Usually needed for sort or copy processing.
For a merge, the SORTINnn DD statements must be used instead.

Usually needed.

Figure 12 (Part 1 of 2). Input Job Stream

Chapter 3. Job Control Statements 113

I /SORTWKnn DD

//SORTCKPT DD

//SORTDIAG DD

//SYSUDUMP

//SORTMODS DD

//SYSPRINT DD

//SYSUTl DD

//SYSLIN DD

//SYSLMOD DD

//SORTCNTL DD*

//SYSIN DD*

SORT or MERGE
OPTION
RECORD
MODS
INREC
OUTREC
INCLUDE or OMIT
SUM
ALTSEQ
DEBUG
END

/*

Not needed for a sort in main storage, a merge, or a copy.
Must not be included if you want dynamic allocation.
(The ddname SORTDKnn is used by the program instead of
SORTWKnn if it carries out dynamic reallocation.)

Only needed if checkpoints are to be taken.

Only needed for debugging.

(Or SYSABEND or SYSMDUMP) Required only if a
dump is needed.

Needed if you have user exit routines in SYSIN.

Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.

Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.

Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.

Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.

Needed if DFSORT is dynamically invoked and
you want to define a data set from which additional or changed
DFSORT control statements can be read.

Needed if DFSORT is JCL invoked or needed to
contain user exit routines to be link-edited by
DFSORT, in object deck format.

Figure 12 (Part 2 of 2). Input Job Stream

114 DFSORT Application Programming: Guide

JOB Statement

EXEC Statement

Notes to Figure:

1. All DFSORTcontrol statements, except for the END
statement, can be specified in any order.

2. Either a SORT or MERGE control statement is always
required unless COPY is specified on the OPTION state­
ment. See Chapter 2 for an explanation of when the
other statements are needed.

The JOB statement is the first JCL statement of your job. It must contain a valid
job name in its name field and the word JOB in its operation field. All parameters
in its operand field are optional, although your installation may make such
information as the account number and the programmer's name mandatory.

//jobname JOB accounting information, programmer's name, and so forth.

The EXEC statement is either the first JCL statement of each job step, or of each
procedure step in a cataloged procedure. It identifies DFSORT to the operating
system. You may also specify DFSORT options on the EXEC statement.

A cataloged procedure is a set of J CL statements, including DD statements, that
has been assigned a name and placed in a partitioned data set known as the
procedure library. Two cataloged procedures are supplied with the program:
SORT and SORTD. They are specified in the first parameter of the EXEC
statement by PROC=SORT, PROC=SORTD, or simply SORT or SORTD.

The format of the EXEC statement is:

I I stepname EXEC {[PGM=SORT I ICEMAN] I [PROC=SORT I SORTD] I
[SORT I SORTD]}
[,PARM='options']
[,other parameters]

If you are not using a cataloged procedure, you should use PGM= either with the
actual name of the sort module (ICEMAN) or with its alias, SORT. Check that the
alias has not been changed at your particular installation.

If you are using a cataloged procedure, specify PROC=SORT I SORTD. You may
omit PROC= and specify simply SORT or SORTD; however, PROC= serves as a
reminder that a cataloged procedure is being used.

Chapter 3. Job Control Statements 115

"SORT" Cataloged Procedure

//SORT
//STEPLIB
llSORTLIB
//SYSOUT
//SYSPRINT
l/SYSLMOD
/ISYSLIN
llSYSUT1
II

EXEC
DD
DD
DD
DD
DD
DD
DD

You can use the supplied SORT cataloged procedure when you include user
routines that require link-editing. To use this procedure without using link-edited
user routines is inefficient because the SORT cataloged procedure allocates linkage
editor data sets, whether or not you include user routines.

When you specify EXEC PROC=SORTor EXEC SORT, the following JCL
statements are generated:

PGM=ICEMAN
DSNAME=yyy,DISP=SHR
DSNAME=xxx,DISP=SHR
SYSOUT=A
DUMMY
DSNAME=&GOSET,UNIT=SYSDA,SPACE=(3600, (20,20,1))
DSNAME=&LOADSET,UNIT=SYSDA,SPACE=(80, (10,10))
DSNAME=&SYSUT1,SPACE=(1024, (60,20)),
UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN))

Line Explanation

00
10
20
30
40
50
60
70
80

00 The stepname of the procedure is SORT. This EXEC statement initiates
the program, which is named ICEMAN.

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data is
cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYSl.LINKLIB.

20 The SORTLIB DD statement defines the data set that contains the
modules needed for a sort using tape work files or a merge that uses the
conventional technique. The data set is cataloged, and the data set name
represented by xxx was specified at operation time; it can be
SYSl.SORTLIB.

30 Defines an output data set for system use (messages). It is directed to
system output class A.

40 Defines SYSPRINT as a dummy data set because linkage editor diagnostic
output is not required.

50 Defines a data set for linkage editor output. Any system direct access
device is acceptable for the output. Space for 20 records with an average
length of 3600 bytes is requested; this is the primary allocation. Space for
20 more records is requested if the primary space allocation is not
sufficient; this is the secondary allocation, which is requested each time
space is exhausted. The last value is space for a directory, which is
required because SYSLMOD is a new partitioned data set.

60 The SYSLIN data set is used by the program for linkage editor control
statements. It is created on any system direct access device, and it has
space for 10 records with an average length of 80 bytes. If the primary

116 DFSORT Application Programming: Guide

space allocation is exhausted, additional space is requested in blocks large
enough to contain 10 records. No directory space is necessary.

70/80 The SYSUTl DD statement defines a work data set for the linkage editor.

"SORTD" Cataloged Procedure

PARM='options'

You can use the supplied SORTD cataloged procedure when you:

• Do not include user routines, or

Include user routines that do not require link-editing.

When you specify EXEC PROC=SORTD or EXEC SORTD, the following JCL
statements are generated:

//SORT EXEC
//STEPLIB DD
//SORTLIB DD
//SYSOUT DD

Line Explanation

PGM=ICEMAN
DSNAME=yyy,DISP=SHR
DSNAME=xxx,DISP=SHR
SYSOUT=A

00 The stepname of the SOR TD procedure is SORT.

10 The STEPLIB DD statement defines the data set containing the

00
10
20
30

sort/ merge program modules that reside in a link library. The data set is
cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYS l .LINKLIB.

20 The SORTLIB DD statement defines the data set that contains the
modules needed for a sort using tape work files or a merge that uses the
conventional technique. The data set name of the program subroutine
library, represented by xxx, is specified at generation time; it can be
SYSl.SORTLIB.

30 Directs messages to system output class A.

Certain DFSORT options can be specified on the PARM parameter when
DFSORT is JCL invoked. They can be specified in any order. For full override
details and applicability, see Appendix D.

Chapter 3. Job Control Statements 117

PARM='[ARESALL={n I nK}]
[,BSAM]
[,LIST I ,NOLIST]
[,ElS=COB]
[,E3S=COB]
[,MSGDDN=ddname]
[,MSGPRT={ALL I CRITICAL I NONE}]
[,RESALL= {n I nK}]
[,SIZE={n I nK I MAX I MAX-m I MAX-mK}]'

ARESALL={n I nK}
You can use this parameter to temporarily override the installation option,
ARESALL=n I nK. For an explanation of this parameter, see the
ARESALL parameter of the OPTION statement.

• ARESALL=n, where n is a decimal value representing the number of
bytes of storage to be reserved.

Limit: 8 digits.

• ARESALL=nK, where nK specifies n times 1024 bytes of storage are to
be reserved.

Limit: 5 digits.

BSAM
For disk processing the EXCP access method is normally used for SORTIN
and SORTOUT. If you encounter a problem related to this with 1/0
activity, you can temporarily bypass it by specifying BSAM.

This option is ignored if VSAM SORTIN or SORTOUT data sets are
specified.

LIST I NOLIST
You can use this parameter to temporarily override the installation option,
LIST={YES I NO}, that specifies whether program control statements
should be listed. See Appendix H for full details on use of the message data
set.

• LIST means that all DFSORT control statements are printed on the
message data set.

• NOLIST specifies that control statements are not printed.

ElS=COB
You can use this parameter to specify that your E 15 routine is written in
COBOL. It can temporarily override the MODS statement for El5. If you
specify E15=COB but do not identify an E15 module by a MODS
statement, the El5=COB is ignored.

E3S=COB
You can use this parameter to specify that your E35 routine is written in
COBOL. It can temporarily override the MODS statement for E35. If you
specify E35=COB but do not identify an E35 module by a MODS
statement, the E35=COB is ignored.

118 DFSORT Application Programming: Guide

MSGDDN=ddname
You can use this parameter to temporarily override the installation option
MSGDDN=ddname. For an explanation of this parameter, see the
MSGDDN parameter of the OPTION statement.

The ddname can be any 1- through 8-character name, but must be unique
within the job step; do not use a name that is used by DFSORT (for
example, SORTIN). If the ddname specified is not available at execution
time, SYSOUT is used instead. For details on using the message data set,
see Appendix H.

MSGPRT={ALL I CRITICAL I NONE}
You can use this parameter to temporarily override the installation option,
MSGPRT={ALL I CRITICAL I NONE}, that specifies the class of messages
to be written to the message data set. See Appendix H, "DFSORT
Messages and Codes" on page 311, for full details on use of the message
data set

• ALL means that all messages except diagnostic messages ICE800I to
ICE9991 are to be printed on the message data set. Control statements
are printed only if LIST is in effect.

• CRITICAL means that only critical messages are to be printed on the
message data set. Control statements are printed only if LIST is in
effect.

• NONE means that no messages or control statements are to be printed.

For compatibility reasons, the forms FLAG(I) I FLAG(U) I NOFLAG, and
MSG={NO I AP I AC I CC I CPI PC} are also accepted.

Following is the MSGPRT /MSGCON equivalence for these options:

Option
MSG=NO
MSG=AP
MSG=AC
MSG=CC
MSG=CP
MSG=PC
NOFLAG
FLAG(I)
FLAG(U)

RESALL={n I nK}

MSGPRT
NONE
ALL
NONE
NONE
CRITICAL
ALL
NONE
ALL
CRITICAL

MSGCON
NONE
CRITICAL
ALL
CRITICAL
CRITICAL
ALL
CRITICAL
CRITICAL
CRITICAL

You can use this parameter to temporarily override the installation option
RESALL=n I nK. For an explanation of this parameter, see the RESALL
parameter of the OPTION statement.

• RESALL=n, where n is a decimal value representing the number of
bytes of storage to be reserved, when SIZE/MAINSIZE=MAX is in
effect. If you specify less than 4096, 4096 is used.

Limit: 8 digits.

Chapter 3. Job Control Statements 119

• RESALL=nK, where nK specifies n times 1024 bytes of storage are to
be reserved, when SIZE/MAINSIZE=MAX. If you specify less than
4K, 4K is used.

Limit: 5 digits.

Note: For MVS/XA systems, RESALL applies only to the amount of main
storage below 16-megabyte virtual. The ARESALL option applies to the
amount of main storage above 16-megabyte virtual.

SIZE={n Ink I MAX I MAX-m I MAX-mKl
You can use this parameter to temporarily override the installation option
SIZE=MAX I n. For an explanation of this parameter, see the MAINSIZE
parameter of the OPTION statement.

• SIZE=n, where n is a decimal value representing the number of bytes of
main storage to be allocated.

• SIZE=nK, where nK specifies n times 1024 bytes of main storage are to
be allocated. The value n may be 1 through 5 digits.

SIZE=MAX, which instructs the program to calculate the amount of
main storage available and allocate this maximum amount, up to the
MAXLIM value (or the TMAXLIM value for an MVS/XA system) set
when DFSORT was installed.

• SIZE=MAX-m, where mis the RESALL value. MAX-m instructs the
program to calculate the amount of storage available and allocate this
amount up to the MAXLIM value (or the TMAXLIM value for an
MVS/XA system) minus the amount of storage reserved for system and
application use (RESALL).

• SIZE=MAX-mK, where mK (m times 1024) is the RESALL value. The
value m may be 1 through 5 digits. MAX-mK instructs the program to
calculate the amount of storage available and allocate this amount up to
the MAXLIM value (or the TMAXLIM value for an MVS/XA system)
minus the amount of storage reserved for system and application use
(RESALL).

Note: The program also accepts the parameter CORE for this option. SIZE
and CORE may not both be specified at the same time. For compatibility
reasons, it also accepts the formats SIZE (option) and CORE (option).

120 DFSORT Application Programming: Guide

DD Statements

Parameter

DSNAME
or
DSN

DCB

UNIT

SPACE

A number of DD statements must be provided after the EXEC statement. Some
are system DD statements, and are usually supplied by the cataloged procedure, if
you use one; others, you must always supply yourself if they are required. They are
described below under "System DD Statements" on page 124 and "Program DD
Statements" on page 125, respectively.

The DD statement parameters, the conditions under which they are required, and
the default values, are summarized in Figure 13. The subparameters of the DCB
parameter (a DD Statement parameter) are described similarly in Figure 14 on
page 123. Performance is enhanced if the LRECL subparameter of the DCB is
accurately specified for variable-length records. The maximum input record length
you can specify for your particular configuration is given in "Input and Output
Data Sets" on page 3.

When using DFSORT applications, FREE=CLOSE cannot be used on any DD
statements.

Condition Under Which Summary of Parameter
Required Values Default Value

When the DD statement Specifies the fully qualified or The system assigns a
defines a labeled input data temporary name of the data unique name.
set (for example, SORTIN), set.
or when the data set being
created is to be kept or
cataloged (for example,
SORTOUT), or passed to
another step.

Always required when 7-track Specifies information used to (See separate
tape is used; for input on tape fill the data control block subparameters in
without standard labels; and (DCB) associated with the Figure 14.)
when the default values are data set.
not applicable.

When the input data set is Specifies (symbolically or
neither cataloged nor passed actually) the type and quantity
or when the data set is being of I/ 0 units required by the
created. data set.

When the DD statement Specifies the amount of space
defines a new data set on needed to contain the data set.
direct access.

Figure 13 (Part 1 of 2). DD Statement Parameters Used by DFSORT

Chapter 3. Job Control Statements 121

Condition Under Which Summary of Parameter
Parameter Required Values Default Value

VOLUME When the input data set is Specifies information used to
or neither cataloged nor passed, identify the volume or
VOL for multireel input or when volumes occupied by the data

the output data set is on direct set.
access and is to be kept or
cataloged.

LABEL When the default value is not Specifies information about The system assumes
applicable. labeling and retention for the standard labeling.

data set.

DISP When the default value is not Indicates the status and The system assumes
applicable. disposition of the data set. (NEW, DELETE).

{AMPI When password-protected Minimum buff er pool value None.
BUFSP} VSAM data sets are used and given when creating the data

the password is supplied set.
through El8, E38 or E39.

Figure 13 (Part 2 of 2). DD Statement Parameters Used by DFSORT

Shared Tape Units

A single tape unit may be assigned to two DFSORT data sets when the data sets
are one of the following pairs:

• The input data set and the first intermediate storage data set (SORTWKOl)

• The input data set and the output data set

If you want to associate the SORTIN data set with SORTWKOl, you could include
in the DD statement for SORTWKOl the parameter: UNIT=AFF=SORTIN. The
AFF subparameter causes the system to place the data set on the unit occupied by
the data set associated with the ddname following the subparameter (SORTIN, in
this case).

In the same way, you could associate SORTIN with SORTOUT by including
UNIT=AFF=SORTIN in the SORTOUT DD statement.

122 DFSORT Application Programming: Guide

Subparameter

DEN

TRTCH

REC FM

LRECLl

BLKSIZE2

OPTCD

BUFOFF

Condition Under
Which Required

When the data set
is located on a
7-track 2400-series
tape unit.

When the data set
is located on a
7-track 2400-series
tape unit.

When the DCB
parameter is
required and the
default value is
not suitable,
except on
SORTWKnn state­
ments.

When processing data
in I SC I I I ASC I I
format.

When processing data
in I SC 11/ASC11
format.

Summary of
Subparameter Values

Specifies the density
at which the tape was
tape was recorded.

Specifies the technique
used to record 8-bit
bytes on a 7-track type.

Specifies the format of
the records in the data
set.

Specifies the maximum
length (in bytes) of
the logical records in
the data set.

Specifies the maximum
length (in bytes) of
the physical records
in the data set.

Specifies that the
tape processed is
in I SC I I /ASC 11
format.

Specifies the length
of the buffer off set
or specifies that the
buffer offset is the
block length indicator.

Default Value

800 bpi

Converter not
used, translator
not used, odd
parity.

• For old data
sets, the
value in the
data set 1abe1 .

• For a new
SORT-OUT data
sets, the same
as for the first
SORTIN or
SORTINnn data set.

• No default if
input on unlabeled
tape, or BLP or
NSL specified.

lwith fixed-length records, except under some circumstances, padding (on the right
with binary zeros) for sort or copy applications or truncation (from the right)
for sort and merge applications occurs if the record length of the output data set
is different from that of the input data set. However, if user exits modify records,
they are responsible for the padding and truncation.

2This is the only subparameter allowed for DD* data sets.

Figure 14. DCB Subparameters Used by DFSORT

Chapter 3. Job Control Statements 123

System DD Statements

If you do not use a cataloged procedure to invoke the program, you may need to
include system DD statements in the input stream. (See also the following section
for DD statements dedicated to DFSORT, such as SORTLIB.) The DD statements
contained in the cataloged procedure (or provided by you) are:

//JOBLIB DD

I /STEPLIB DD

//SYSIN DD

//SYSOUT DD

or

statement is needed to identify your program link library if it
is not already known to the system.

contains DFSORT control statements when DFSORT is not
invoked by another program. It can also contain user exit
routines to be link-edited by DFSORT, in object deck format.
The control data set usually resides in the input stream;
however, it can be defined as a sequential data set or as a
member of a partitioned data set. The data set must not be
defined as RECFM= U. SYSIN cannot be concatenated data
sets.

If user exit routines are in SYSIN, make sure that:

• The END statement is the last control statement.

The user exit routines are arranged in numeric order (for
example, El 1 before E15).

• The user exit routines are supplied immediately after the
END control statement.

• Nothing follows the last object deck in SYSIN.

• A SORTMODS DD statement is included.

If you are invoking DFSORT dynamically, and you supply
the DFSORT control statements through the 24-bit or
extended parameter list and/or through SORTCNTL, SYSIN
still remains the source of user exit routines placed in the
system input stream.

identifies the system output data set for messages. Always
use this statement if a cataloged procedure is not used. If you
are invoking DFSORT from another program, you can
specify an alternate ddname for the message data set. (If you
are invoking DFSORT from a COBOL program and using no
ddname other than SYSOUT, the use of EXHIBIT or
DISPLAY in your COBOL program can give uncertain
printing results.) Before printing DFSORT messages, a skip
to a new page is performed.

I /SYSUDUMP DD or

I /SYSABEND DD defines output from a system ABEND dump routine. Needed
only for debugging.

124 DFSORT Application Programming: Guide

If you are using the supplied SORT cataloged procedure, the four DD statements
mentioned below are automatically supplied. If you are not using the SORT
cataloged procedure and you are using the linkage editor, you must supply the
following four DD statements:

//SYSPRINT DD contains messages from the linkage editor.

//SYSUTl DD is a work area for the linkage editor.

//SYSLIN DD defines a data set in which DFSORT places control
information for the linkage editor.

I /SYSLMOD DD defines a data set that contains output from the linkage
editor.

Note: If you do not include user routines or you include user routines that do not
require link-editing, you can use the supplied SORTD cataloged procedure. If you
include user routines that require link-editing, you can use the SORT cataloged
procedure.

Program DD Statements

In addition to the standard JCL statements required for normal program execution,
DFSORT may use other dedicated JCL DD statements, as follows:

I /SORTLIB DD defines the data set that contains special load modules for
DFSORT. Only needed for a tape work data set sort or a
conventional merge.

//SORTIN DD defines the input data set for a sorting or copying application.
Cannot be used for merging applications.

//SORTINnn DD defines the input data sets for a merging application. Cannot
be used for sorting or copying applications.

//SORTWKnn DD defines intermediate storage data sets. Usually needed for a
sorting application unless dynamic allocation is requested.
Must not be used for a merging application. Will not be used
for a copying application.

//SORTOUT DD defines the output data set for a sorting, merging, or copying
application.

I /SORTCKPT DD defines a data set for checkpoint records. This statement is
not required, if you are not using the checkpoint facility.

//SORTCNTL DD defines the data set from which additional or changed
DFSORT control statements can be read, when DFSORT is
invoked from another program.

//SORTDKnn DD defines the data set given to a VIO SORTWKnn allocation by
DFSORT if it is dynamically reallocated (MVS only) and
should never be specified in the job stream.

Chapter 3. Job Control Statements 125

SORTLIB DD Statement

//SORTDIAG DD specifies that all messages and control statements will be
printed. Needed only for debugging.

I /SORTMODS DD defines a temporary partitioned data set. This temporary
data set must be large enough to contain all your exit routines
that appear in SYSIN for a given application. If none of your
routines appear in SYSIN, this statement is not required. If
your routines are in libraries, you must include DD statements
defining the libraries.

DFSORT temporarily transfers the user exit routines in
SYSIN to the data set defined by this DD statement before
they are link-edited for execution.

The SORTLIB DD statement describes the data set that contains special DFSORT
load modules.

When Required: A SORTLIB DD statement is only required for:

• Sort applications using tape work data sets

• Merge applications for which Blockset cannot be used (see message ICE800I)

Example 1. SORTLIB DD Statement

//SORTLIB DD DSNAME=USORTLIB,DISP=(OLD,KEEP)

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME

DISP

causes the system to search the catalog for a data set with the name
USORTLIB. When the data set is found, it is associated with the ddname
SORTLIB. The control program obtains the unit assignment and volume
serial number from the catalog and writes a mounting message to the
operator if the volume is not already mounted.

indicates that the data set is passed or cataloged (OLD) and that it should be
kept after the current job step.

For information on the parameters used in the SORTLIB DD statement, the
conditions under which they are required, and the default values assumed if a
parameter is not included, see Figure 13 on page 121. The subparameters of the
DCB parameter are described similarly in Figure 14 on page 123. For more
detailed information, see your JCL reference manual.

126 DFSORT Application Programming: Guide

SORTIN DD Statement

The SORTIN DD statement describes the characteristics of the data set in which
the records to be sorted or copied reside, and indicates its location.

Note: FREE= CLOSE cannot be specified.

When Required: A SORTIN DD statement is required for all sort or copy
applications, unless you provide an E15 exit that supplies all input to DFSORT,
and you include a RECORD statement in the program control statements. The
SORTIN DD statement is ignored if your program invokes DFSORT and passes
the address of your E 15 exit in the parameter list.

Data Set Characteristics: DFSORT accepts an empty (not a null) QSAM data set
for sorting or copying (be sure to supply DCB parameters), but an empty VSAM
data set causes a VSAM input error (code 160), and DFSORT terminates. Note
that a null QSAM data set is a data set that has been opened for input, but no
records have been written into it, and it has not been closed successfully.

See "Input and Output Data Sets" on page 3 for additional considerations.

The following rules apply to concatenated data sets:

1. RECFM must be the same for all data sets in the concatenation, except that
FB and FBS can be mixed.

2. BLKSIZE may vary, but the data set with the largest block size must be
specified on the first DD statement of the concatenation.

3. With fixed-length records, LRECL must be the same for all data sets. With
variable-length records LRECL can vary, but the largest size must be specified
for the data set described on the first DD statement.

4. If the data sets are on unlike devices you cannot use the EXLST parameter at
exit E18.

Example 2. SORTIN DD Statement

//SORTIN DD DSNAME=INPUT,DISP=(OLD,KEEP)

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME
causes the system to search the catalog for a data set with the name INPUT.
When the data set is found, it is associated with the ddname SORTIN. The
control program obtains the unit assignment and volume serial number from
the catalog and writes a mounting message to the operator if the volume is
not already mounted.

Chapter 3. Job Control Statements 127

SORTINnn DD Statement

DISP
indicates that the data set is passed or cataloged (OLD) and that it should be
kept after the current job step.

Example 3. Volume Parameter on SORTIN DD

//SORTIN
II

DD DSN=SORTIN,DISP=(OLD,KEEP),UNIT=3400-3,
VOL=SER=(75836,79661,72945)

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SOR TIN DD statement to indicate
the serial numbers of the tape reels. In this example, the input data set is on three
reels that have serial numbers 75836, 79661, and 72945.

If a data set is not on standard-labeled tape (or disk), you must specify DCB
parameters in its DD statement.

The SORTINnn DD statements describe the characteristics of the data sets in
which records to be merged reside, and indicate the locations of these data sets; nn
is any number from 01 through 16.

When Required: SORTINnn DD statements are always needed for a merge unless
the merge is invoked from another program, and all input is supplied through a
routine at exit E3 2.

Data Set Characteristics: Input data sets can be either QSAM or VSAM, but not
both. Concatenated data sets are not supported. For a conventional merge, the
statements must be numbered in ascending order: SORTINOl is the name of the
first, SORTIN02 the name of the second, and so forth; no numbers can be skipped.

The data set with the largest block size must be defined in the first SORTINnn DD
statement. The record format must be the same for all input data sets. Logical
record length must also be the same unless the records are variable-length, in which
case the largest size must belong to the data set described in the first SORTINnn
DD statement.

DFSORT accepts an empty (not a null) QSAM data set for merging, but an empty
VSAM data set causes a VSAM input error (code 160), and DFSORT terminates.

See "Input and Output Data Sets" on page 3 for additional considerations.

Note: FREE=CLOSE cannot be specified.

128 DFSORT Application Programming: Guide

llSORTIN01 DD
II
llSORTIN02 DD
II

Example 4. SORTINOl-03 DD Statements (Merge)

llSORTIN01
II
II
llSORTIN02
II
II
llSORTIN03
II
II

DD

DD

DD

DSNAME=MERGE1,VOLUME=SER=000111,DISP=OLD,
LABEL=(,NL) ,UNIT=3400-3,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
DSNAME=MERGE2,VOLUME=SER=000121,DISP=OLD,
LABEL=(,NL),UNIT=3400-3,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
DSNAME=MERGE3,VOLUME=SER=000131,DISP=OLD,
LABEL=(,NL),UNIT=3400-3,
DCB=(RECF~=FB,LRECL=80,BLKSIZE=240)

Example 5. SORTINOl-02 DD Statements (Merge)

DSNAME=INPUT1,VOLUME=SER=000101, *
UNIT=3330,DISP=OLD *DCB PARAMETERS
DSNAME=INPUT2,VOLUME=SER=000201, *SUPPLIED FROM
UNIT=3330,DISP=OLD *LABELS

SORTWKnn DD Statement

The SORTWKnn DD statements describe the characteristics of the data sets used
as intermediate storage areas for records to be sorted; they also indicate the
location of these data sets.

If more than 32 SORTWKnn DD statements are specified, only the first 32 are
used.

Note: FREE=CLOSE cannot be specified.

When Required: One or more SORTWKnn statements are required for each sort
application (but not a merge or copy), unless:

• Input can be contained in main storage (except for Blockset under certain
conditions), or

DYNALLOC has been specified in the SORT or OPTION statement under
MVS. No SORTWKnn data sets should be provided if dynamic allocation is
specified.

For information on how to calculate the amount of storage needed, see
"Intermediate Storage" on page 27 5.

See OPTION FILSZ I SIZE for further considerations.

Diagnostic message ICE8031 gives information on intermediate storage
allocation/ use.

Chapter 3. Job Control Statements 129

Devias: SORTWKnn data sets can be on disk or on tape, but not both, as
described in "Intermediate Storage" on page 275. Disk types can be mixed.

Tape must be 9-track unless input is on 7-track tape, in which case work tapes can
(but need not) be 7-track.

General Coding Notes

• In the ddname (SORTWKnn):

Cylinder allocation is preferable for performance reasons. DFSORT
reallocates temporary SORTWKnn data sets in cylinders (MVS).

With disk work areas, nn can be any decimal number from 00 through 99
and numbers can be in any order; however, if more than 32 are specified,
only the first 3 2 are used.

Unless the input file is very large, one or two SORTWKnn data sets are
usually sufficient. One or two large SORTWKnn data sets are preferable
to several small ones.

With tape work areas, nn can be from 01 through 32; the first must be 01,
and the rest must follow consecutively. No numbers can be skipped. At
least three SORTWKnn data sets are required for tapes.

• DD DUMMY must not be used.

• Different SORTWKnn DD statements must not refer to the same physical data
set.

• No parameters relating to ISCII/ ASCII data should be included, because
ISCII/ ASCII input is automatically translated into EBCDIC before being
moved into an intermediate storage area.

Disk Coding Notes

• Data sets must be sequential, not partitioned.

• . The SPLIT cylinder parameter must not be specified.

• If no secondary allocation is requested, and NOSECALL is not in effect, a
default of one-fourth of primary space or one cylinder is used, whichever is
larger, for work data sets. (Secondary allocation is limited to 12 work data sets
in the Peerage or Vale sorting techniques only.)

• If the data set is allocated to VIO, there is no automatic secondary allocation.

• Secondary allocation can be requested for work data sets. If more work data
sets are defined they are used with only the primary allocation. (Secondary
allocation is limited to 12 work data sets in the Peerage and Vale sorting
techniques only.)

• Primary and secondary space must be on the same volume; that is,
SORTWKnn must not be a multivolume data set.

130 DFSORT Application Programming: Guide

• If primary space is fragmented, then all but the first fragment are handled as
secondary space.

Virtual 1/0: If SORTWK.nn data sets are specified using virtual 1/0 under MYS,
sort normally carries out dynamic reallocation, using the ddname SORTDKnn.
However, if when DFSORT was installed the VIO option was specified, then
virtual 1/0 is used and performance is degraded.

Example 6. SORTWKOl DD Statement, Disk Intermediate Storage

The following is an example of a SORTWKnn DD statement using a disk device:

//SORTWK01 DD SPACE=(CYL, (15,5)),UNIT=3380

If you use the checkpoint/ restart facility and need to make a deferred restart, you
must make the following additions to the above statement so that the sort work
data set is not lost:

I DSNAME=name l ,DISP=(NEW,DELETE,KEEP)

Thus the same SORTWKnn DD statement for a deferred restart would be:

/ /SORTWKOl DD DSNAME=namel,UNIT=3380,SPACE=(CYL,(15,5)),
// DISP=(NEW,DELETE,KEEP)

Example 7. SORTWKOl DD Statement, Tape Intermediate Storage

//SORTWK01
//SORTWK02
//SORTWK03

DD UNIT=3400-3,LABEL=(,NL)
DD UNIT=3400-3,LABEL=(,NL)
DD UNIT=3400-3,LABEL=(,NL)

This is an example of SORTWKnn DD statements using three tape devices.

If DFSORT terminates unsuccessfully and the above DD statements have been
specified, the intermediate storage data sets remain in the system until the step has
been successfully rerun or until the data sets have been deleted by some other
means.

These parameters specify unlabeled data sets on three 3400 series tape units.
Because the DSNAME parameters are omitted, the system assigns unique names.

Chapter 3. Job Control Statements 131

SORTOUT DD Statement

SORTCKPT DD Statement

The SORTOUT DD statement describes the characteristics of the data set in which
the processed records are to be placed, and indicates its location.

Note: FREE=CLOSE cannot be specified.

When Required: A SOR TOUT DD statement is always required, unless you
provide an E35 exit that disposes of all output. The SORTOUT DD statement is
ignored if your program invokes DFSORT and passes the address of your E35 exit
in the parameter list.

Data Set Characteristics: See "Input and Output Data Sets" on page 3.

Notes:

1. If LABEL=RETPD is specified in the SORTOUT DD statement for a standard
labeled tape. the DCB parameters must also be specified. If the DCB parameters
are not specified, the tape may be opened twice.

2. OPTCD= W should not be specified for an IBM 3480 tape unit. If it is specified
for a full function 3 480 tape unit, the request is overridden. If it is specified for
a 3480 operating in 3420 compatibility mode (specified as 3400-9), the request is
not overridden, but per[ormance may be degraded.

Example 8. SORTOUT DD Statement

l/SORTOUT DD DSN=C905460.0UTPT,UNIT=3350,SPACE=(CYL,5),
II DISP=(NEW,CATLG)

DCB The DCB parameters default to those of SORTIN.

DISP The data set is unknown to the operating system (NEW), and it is to
be cataloged (CATLG) under the name C905460.0UTPT.

DSNAME The data set is to be called C905460.0UTPT.

SPACE Five cylinders of storage are requested for the data set.

UNIT Indicates that the data set is on a 3350 unit.

The SORTCKPT data set may be allocated on any device that operates with the
Basic Sequential Access Method (BSAM). Processing must only be restarted from
the last checkpoint taken.

132 DFSORT Application Programming: Guide

Example 9. SORTCKPT DD Statement

SORTCNTL DD Statement

SORTDKnn DD Statement

SORTDIAG DD Statement

llSORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,
II DISP=(NEW,KEEP),UNIT=3400-3

When allocating the SORTCKPT data set, at least one intermediate storage data
set is required.

If the CKPT operand is specified on the OPTION or SORT control statement,
more intermediate storage may be required. See "Intermediate Storage" on
page 275.

If you want to use the checkpoint/restart facility, refer to Checkpoint/ Restart.

The SOR TCNTL data set may be used to read changed and/ or additional
DFSORT control statements, when DFSORT is invoked from another program
(written, for example, in COBOL or PL/I). (For override rules, see Appendix D.)

Example 10. SORTCNTL DD Statement

I //SORTCNTL DD •

Note: When DFSORT is invoked from a PL/I program, the SORTCNTL data set
must not be used to supply a new RECORD control statement.

In an MYS system, sort work data sets can be assigned to VIO. If the ICEMAC
parameter VIO is specified or defaults to NO, VIO sort work data sets are
deallocated and reallocated by sort with the DDname SORTDKnn. The DD name
SORTDKnn is reserved for use by DFSORT.

The SOR TDIAG DD statement specifies that all messages, including diagnostic
messages (ICE800I through ICE999I), and control statements are to be written to
the message data set. The statement can be used for all DFSORT techniques, and
provides information on EXCP counts, intermediate storage allocation/use, and so
on.

The SORTDIAG DD statement has no effect on console messages.

The statement is intended as a diagnostic tool.

When SORTDIAG is used for a JCL invoked DFSORT, a SYSOUT DD statement
must be provided. For a dynamically invoked DFSORT, a SYSOUT DD statement
or a ddname DD statement (where ddname is the alternate message data set
ddname specified at installation or execution time) must be provided.

Chapter 3. Job Control Statements 133

Note: If neither an alternate message data set ddname statement nor a SYSOUT
ddname statement is provided, DFSORT terminates with a return code of 20. If a
job using the tape sort or Conventional merge technique terminates unsuccessfully
and SORTDIAG DD has been specified, a system OCl abend results.

Example 11. SORTDIAG DD Statement

//SORTDIAG DD DUMMY

134 DFSORT Application Programming: Guide

Chapter 4. User Exit Routines

At certain places in the executable code of DFSORT, control can be passed to your
own routines. You can write routines to perform a variety of functions, such as
deleting, inserting, altering, and summarizing records. The places where control is
passed to your routines are called user exits.

User exit routines can be written in any language that provides the ability to:

• Pass and accept the address of the following in register 1:

A record

A fullword of zeros

A parameter list

• Pass a return code in register 15

Note: PL/I routines must use the special subroutine facilities of the PL/I
language.

In addition, certain user exit routines can be written in COBOL using a special
interface.

In this chapter we discuss only routines written in Assembler or COBOL.

DFSORT Program Phases

Input Phase

Because each exit is located in a particular phase of DFSORT, you should have a
general understanding of the phases involved. A phase is a large component of
DFSORT designed to perform a specific task (such as writing the output file). The
phases containing user exits are the input and output phases.

The input phase is used only for a sort or copy. For a sort, the input phase orders
the input data set into sequences and distributes them onto work data sets. There
are several methods of distribution, known as string distribution techniques, and,
unless a particular technique has been forced, DFSORT attempts to choose the
most efficient. All sorting techniques use this phase. In the Peerage, Vale, and
Blockset sorting techniques, indexes are created for these distributed records.

Chapter 4. User Exit Routines 13 5

Output Phase

A disk sort can usually operate with no intermediate storage if the input data set
can be contained in the main storage available. A copy never requires intermediate
storage.

The output phase has two uses:

• It makes the final merge pass of a sorting application, thus creating the output
data set.

• It merges the input data sets for a merging application to create the output data
set.

During a copy application, this merge phase does not apply. Instead EI 5 is entered
for each record, then the record is put to the output phase.

After execution of this phase, DFSORT returns control to the operating system (or
invoking program).

Functions of Routines at User Exits

Figure 15 on page 138 and Figure I6 and Figure I 7 on page I39 summarize the
functions of user exit routines, and the exits and phases with which they may be
associated.

DFSORT Input/Exit/ Output Logic Examples

Figure 15 on page 138 gives examples of the logic flow for sort, copy, and merge
applications as it relates to SORTIN(nn), ElS~ E35, and SORTOUT. The intent is
to show how your ElS and E3S routines fit into the logic of an application. All
possible paths are not covered. For simplicity, it is assumed that all of the
applicable data sets and exits are present and that records are not inserted or
deleted. (For a merge, similar logic would be used if an E32 supplied the records
rather than SORTIN(nn) data sets.)

The figures illustrate the following logic:

• EIS and E35 routines continue to be entered until they pass back a return code
of 8. If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to your
exit.

• Sort: Each record is read from SORTIN and passed to EIS. When all of the
records have been processed in this manner, they are sorted. Then, each sorted
record is passed to E35 and written to SORTOUT.

• Copy: Each record is read from SORTIN, passed to EIS and E35, and written
to SORTOUT.

136 DFSORT Application Programming: Guide

• Merge: Initially, one record is read from each SORTINnn data set. The record
to be output is chosen, passed to E35, and written to SORTOUT. The chosen
record is then replaced by reading a record from the same SORTINnn data set
and the process continues.

Chapter 4. User Exit Routines 137

INPUT/EXIT/OUTPUT LOGIC INPUT/EXIT/OUTPUT LOGIC INPUT/EXIT/OUTPUT LOGIC
FOR SORT APPLICATION FOR COPY APPLICATION FOR MERGE APPLICATION

0 ~ 0 ~ T,,

OUTPUT READ RECORD
INPUT READ RECORD INPUT /OUTPUT READ RECORD PHASE FROM EACH
PHASE FROM SORTIN PHASE FROM SORTIH SORTINnn

0 ..

T T
MORE INPUT 0 cp RECORDS? cp NO

T
WRITE RECORD
TO SORTOUT

WRITE RECORD
TO SORTOUT

RETURNS MORE INPUT 0 RC=8 RECORDS? YES
MORE INPUT READ RECORD

NO RECORDS? FROM SORTI N

NO

T 0 cp 0 ..
RETURNS

RC=8
OUTPUT GET SORTED
PHASE RECORDS RETURNS

RC=8

cp cp
EXIT

RETURNS
RC=8

WRITE RECORD
TO SORTOUT

EXIT
YES

~ MORE SORTED
RECORDS?

NO

cp
RETURNS

RC=8

EXIT

Figure 15. Examples of DFSORT Input/Exit/Output Logic

138 DFSORT Application Programming: Guide

Sort Input Phase Sort Output Phase
Functions

Open/Initialization Ell, El5 E31

Insert, Delete/ Alter El5 E35

Terminate DFSORT El5 E35

Summarize records E35 E35t

Determine action when intermediate El62 N/A
storage is insufficient

Handle special I/0 conditions:

QSAM/BSAM and VSAM input El8 E382

QSAM/BSAM output El92 E39

VSAM output NIA E39

Modify control fields E61 N/A

Close /housekeeping El5, E17 E35, E37

Figure 16. Functions of Routines at Program Exits (Sort)

Functions Copy Merge

Open E31, El5 E31

Insert E15, E35 E32, E35

Delete I Alter El5, E35 E35

Terminate DFSORT E15, E35 E32, E35

Summarize records E35 E35t

Handle special I/O conditions:

QSAM/BSAM and VSAM input E38 E38

QSAM/BSAM and VSAM output E39 E39

Modify control fields N/A E61

Close /housekeeping E35, E37 E35, E37

Figure 17. Functions of Routines at Program Exits (Copy and Merge)

Notes to Figure 16 and Figure 17:

The SUM control statement may be used instead of your own routine to
summarize records.

2 Only applies to a tape work data set sort.

Chapter 4. User Exit Routines 139

Opening Data Sets and Initializing

You can write your own routines to open data sets and perform other forms of
initialization; you must associate these routines with the E 11, E 15, E31 and/ or
E35 exits.

To check labels on input files, use the E18 and E38 exits.

Inserting, Deleting, and Altering Records, Terminating D FSO RT

Summarizing Records

You can write your own routines to delete, insert, or alter records, or to terminate
DFSORT. You must associate these routines with the EIS, E32, and/or E35 exits.

Note: DFSORT also provides INCLUDE and OMIT statements which
automatically include or delete records based on your field criteria. For more
information on these control statements, refer to Chapter 2, "Program Control
Statements" on page 17.

You can summarize records in the output data set, using the E35 exit. However,
you can also summarize records by using the SUM control statement described in
Chapter 2.

Determining Action when Intermediate Storage Is Insufficient

Handling Special I/ 0

Read/Write Error Routines

You can write a routine to direct DFSORT program action if DFSORT determines
that insufficient intermediate storage is available to handle the input data set; you
must associate this routine with the E16 exit for sorts using tape work files. For a
sort that uses tape work files, you can choose between sorting current records only,
trying to complete the sort, or terminating DFSORT.

For more details, see "Exceeding Intermediate Storage Capacity" on page 277.

DFSORT contains four exits to handle special 1/0 conditions: E18 and E38 for
input, and E 19 and E3 9 for output. They are particularly useful for a tape sort.
With all disk sorts, E19 and E38 are ignored.

You can use these exits to incorporate your own or your installation's 1/0 error
recovery routines into DFSORT. Your read and write error routines must reside in
a partitioned data set (library). Your library routines are brought into main storage
with their associated phases. When DFSORT encounters an uncorrectable 1/0
error, it passes the same parameters as those passed by QSAM/BSAM or VSAM.
If no user routines are supplied, and an uncorrectable read or write error is
encountered, DFSORT issues an error message and then terminates.

140 DFSORT Application Programming: Guide

VSAM Exit Functions

With QSAM I BSAM the following information is passed to your synchronous error
routine:

• General registers 0 and 1 are unchanged; they contain the information passed
by QSAM/BSAM, as documented in the data management publications.

• General register 14 contains the return address of DFSORT.

• General register 15 contains the address of your error routine.

VSAM will go directly to any routine specified in the EXLST macro you passed to
DFSORT via the El8, E38 or E39 exits, as appropriate. Your routine must return
to VSAM via register 14. For details, see VSAM Programmer's Guide or VSAM
User's Guide.

Read Errors Routines: You must associate these routines with the E 18 and/ or E3 8
exits. They must pass certain control block information back to DFSORT to tell it
whether to accept the record as it is, skip the block, or request termination. They
may also attempt to correct the error.

Write Errors: You must associate these routines with the E 19 and/ or E3 9 exit.
These routines can perform any necessary abnormal end-of-task operations before
DFSORT is terminated.

There are three exits that can be used with VSAM files to supply passwords or an
exit list to journal a VSAM data set, and carry out other VSAM exit functions
(except EODAD). The exits are E18 for sort input, E38 for merge or copy input,
and E3 9 for output.

Modifying Control Fields

Closing Data Sets

You can write a routine to alter control fields before DFSORT compares them.
This allows you, for example, to normalize floating-point control fields. It also
allows you to modify the order in which the records are finally sorted or merged, a
function for which you would usually use the AL TSEQ program control statement
instead. You must associate these routines with the E61 exit.

Your routine modifies the extracted image of the control fields, which is used for
comparison. It does not change the original control fields. Thus your original
records are not altered.

If this exit is used, the subsequent comparisons always arrange the modified control
fields in ascending order.

You can write your own routines to close data sets and perform any necessary
housekeeping; you must associate these routines with the EIS, El7, E35, and/or
E37 exit.

To write output labels, use the E19 and E39 exits.

Chapter 4. User Exit Routines 141

If you have an end-of-file routine you want to use for SORTIN, include it at the
E18 exit.

Reserving Storage for Exits

You may have to reserve space to be used by your exits. See the options RESALL
and RESINY.

MVS/XA Support of User Exits

To allow user exits called by Blockset, Peerage, or Vale (executing in an MVS/XA
system) to reside above or below 16-megabyte virtual, and use either 24-bit or
31-bit addressing, DFSORT supplies these features:

• To ensure that DFSORT enters your user exit with the correct addressing
mode, you must observe these rules:

If the exit name is specified in a MODS control statement, the exit is
entered with the addressing mode indicated by the linkage editor attributes
of the routine (for example, 31-bit addressing in effect if AMODE 31 is
specified).

If the address of the exit is passed to DFSORT (preloaded exit) via the
24-bit list, the exit is entered with 24-bit addressing in effect.

If the address of the exit is passed to DFSORT via the extended parameter
list (preloaded exit), the exit is entered with 24-bit addressing in effect if
bit 0 of the exit address in the list is 0, or with 31-bit addressing in effect if
bit 0 of the exit address in the list is 1.

• User exits may return to DFSORT with either 24-bit or 31-bit addressing in
effect. The return address that DFSORT placed in register 14 must be used.

• Except for the user exit address constant (which is passed to either the
assembler E15 or E35 exit unchanged), DFSORT handles the user exit
parameter list addresses (that is, the pointer to the parameter list and the
addresses in the parameter list) as follows:

If the exit is entered with 24-bit addressing in effect, DFSORT passes
clean (zeros in the first 8 bits) 24-bit addresses to the exit. Such an exit
must pass 24-bit addresses back to DFSORT. These must be clean 24-bit
addresses if the exit returns to DFSORT with 31-bit addressing in effect.

If the exit is entered with 31-bit addressing in effect, DFSORT passes
clean 24-bit addresses to the exit. Such an exit must pass 31-bit addresses
or clean 24-bit addresses back to DFSORT. The only exception is when
the high-order byte is used to identify an optional address being passed
(for example, El8 SYNAD address). In this case DFSORT cleans the
24-bit address.

142 DFSORT Application Programming: Guide

Assembler Exit Routines

Input Phase Exits

To determine whether a particular exit can be used for your application, refer to
Figure 16 and Figure 17 on page 139. For example, E15 cannot be used for a
merge application.

El 1 Exit, Opening Data Sets/Initializing Routines

You might use routines at this exit to open data sets needed by your other routines
in the input phase, or to initialize your other routines. Return codes are not used.

Note: To avoid special linkage editor requirements (see "Summary of Rules for
User Exit Routines" on page 183), you can include these functions in your E15
routine rather than in a separate E 11 routine.

EIS Exit, Passing or Changing Records for Sort and Copy Applications

If you write your E15 routine in COBOL, see "COBOL Exit Routines" on
page 161, and "COBOL E15 Exit, Passing or Changing Records for Sort" on
page 164.

DFSORT enters the E15 exit routine each time a new record is brought into the
input phase. DFSORT continues to enter E15 (even when there are no input
records) until the exit tells DFSORT, with a return-code of 8, not to return.

See Figure 15 on page 138 for logic flow details.

Some uses for E 15 are:

• Add records to an input data set.

• Pass an entire input data set to DFSORT.

• Delete records from an input data set.

• Change records in an input data set (but not control fields-use E61 exit for
that).

If your E15 routine is inserting variable-length records, you must be sure they
contain a 4-byte record descriptor word (RDW) at the beginning of each record
before the routine passes it to DFSORT. The format of an RDW is described in
Data Management Services or System Programming Library: Data Management.
(Alternatively, you could declare the records as fixed length, and pad them to the
maximum length.)

Chapter 4. User Exit Routines 143

Notes:

1. If you use the E15 exit to pass al/your records to DFSORT, the SORTIN DD
statement may be omitted, in which case you must include a RECORD statement
in the program control statements.

2. If you invoke DFSORT from an Assembler program, and pass the address of your
E 15 exit in the parameter list:

• DFSORT ignores the SORTIN data set.

• DFSORT terminates if you specify El 5 in a MODS statement.

3. If the SOR TIN DD statement is omitted or ignored, all input records are passed
to DFSORT through your routine at El5: the address of each input record in
turn is placed in register 1, and you return to DFSORTwith a return code of 12.
When DFSORT returns to the El 5 exit after the last record has been passed,
return to DFSORT with return code of 8 in register 15 to indicate "do not
return."

4. DFSORTcontinues to re-enter your El5 exit until a return code of 8 is received.
However, if STOPAFT is in effect, no additional records are inserted to
DFSORT (even if you pass back a return code of 12) after the STOPAFTcount
is satisfied.

5. Remember to build an RDW for variable-length VSAM records (see Data
Management Services).

Information DFSORT Passes to Your Routine

The routine at E 15 is entered each time a new record is brought into the input
phase. DFSORT passes two words to your routine each time it is entered:

• The address of the new record. If there are no records in the input data set,
this address is zero the first time your E15 is entered. When DFSORT reaches
the end of the input data set, it sets this address to zero before entering your
E15 exit.

Mter the end of the input data set is encountered, DFSORT will continue to
enter your exit routine until you pass back a return code of 8.

• The user exit address constant. If you invoked DFSORT with a user exit
address constant in the parameter list, it is passed in this word to your.EIS exit
the first time it is entered. This word may be changed by your E 15 exit any
time it is entered; it is passed along on subsequent entries to your E15 exit and
also on the first entry to your E35 exit. As an example, you could obtain a
dynamic storage area, use it in your E15 exit, and pass its address to your E35
exit.

In general register 1, DFSORT places the address of a parameter list that contains
the record address and the user address constant.

144 DFSORT Application Programming: Guide

Return Codes

The list is two fullwords long and begins on a fullword boundary. The format of
the parameter list is:

Bytes 1 through 4

Address of the new record

User exit address constant

Your routine must pass one of the following return codes to DFSORT, informing it
what to do with the record you have been examining or changing:

0 No Action/Record Altered
4 Delete Record
8 Do not Return
12 Insert Record
16 Terminate DFSORT

0-No Action
If you want DFSORT to retain the record unchanged, place the address of
the record in general register 1 and return to DFSORT with a zero return
code.

0-Record Altered
If you want to change the record before passing it back to DFSORT, your
routine must move the record into a work area, perform whatever
modification you want, place the address of the modified record in general
register 1, and return with a zero return code. If your routine changes record
size, you must communicate that fact to DFSORT on a RECORD statement.
(For details of the RECORD statement, see "RECORD Control Statement"
on page 98 and Supervisor Services and Macro Instructions for further
information about the length indicator and the record descriptor word.)

4-Delete Record
If you want DFSORT to delete the record from the input data set, return to
DFSORT with a return code of 4. You need not place the address of the
record in register 1.

8-Do Not Return
DFSORT continues to return control to the user routine until it receives a
return code of 8. After that, the exit is closed and not used again during the
DFSORT application. You need not place an address in register 1 when you
return with return code 8. Unless you are inserting records after end-of-data
set, you must pass a return code of 8 when the program indicates the end of the
data set, which it does by passing your routine a zero address in the
parameter list.

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

Chapter 4. User Exit Routines 145

12-Insert Record
If you want DFSORT to add a record to the input data set, before the record
whose address was just passed to your routine, place the address of the
record to be added in register 1 and return DFSORT with a return code of
12. DFSORT will return to your routine with the same record address as
before, so that your routine can insert more records at that point or alter the
current record. You can make insertions after the last record in the input
data set (after DFSORT places a zero address in the parameter list).
DFSORT keeps returning to your routine until you pass a return code of 8.

16-Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program or to the system with a return code of 16.

El 6 Exit, Handling Intermediate Storage Miscalculation

Return Codes

For a tape sort, you would use a routine at this exit to decide what to do if sort
exceeds its calculated estimate of the number of records it can handle for a given
amount of main storage and intermediate storage. This exit is ignored for a disk
sort, because DFSORT uses the WRKSEC option to determine whether secondary
allocation is allowed. See "SORTWKnn DD Statement" on page 129. See also
"Exceeding Intermediate Storage Capacity" on page 277.

Note: When using magnetic tape, remember that the system uses an assumed tape
length of 2400 feet. If you use tapes of a different length, the Nmax figure is not
accurate; for shorter tapes, capacity could be exceeded before "NMAX
EXCEEDED" is indicated.

Your routine can choose among three actions, and must use one of the following
return codes to communicate its choice to DFSORT:

0 Sort Current Records Only
4 Try to Sort Additional Records
8 Terminate DFSORT

0--Sort Current Records Only
If you want DFSORT to continue with only that part of the input data set it
estimates it can handle, return with a return code of 0. Message ICE0541
contains the number of records with which sort is continuing. You can sort
the remainder of the data set on one or more subsequent runs, using the
SKIPREC operand on the SORT statement to skip over the records already
sorted. Then you can merge the sort outputs to complete the operation.

4-Try to Sort Additional Records
If you want DFSORT to continue with all of the input data set, return with a
return code of 4. Enough space may be available for DFSORT to complete
processing, if tapes are used. If enough space is not available, DFSORT
generates a message and terminates. Ref er to "Exceeding Intermediate
Storage Capacity" on page 277.

8-Terminate the DFSORT
If you want DFSORT to terminate, return with a return code of 8. DFSORT
then terminates with a return code of 16.

146 DFSORT Application Programming: Guide

E 17 Exit, Closing Data Sets

Your routine at this exit is executed once at the end of the input phase. It can be
used to close data sets used by your other routines in the phase or to perform any
housekeeping functions for your routines.

Note: To avoid special linkage editor requirements (see "Summary of Rules for
User Exit Routines" on page 183), you can include these functions in your E15
routines rather than in a separate El 7 routine.

E 18 Exit, Handling Input Data Sets

Use with QSAM/BSAM

Your routines at this exit can pass a parameter list containing the specifications for
three data control block fields (SYNAD, EXLST, and EROPT) to DFSORT. Your
El8 exit routine can also pass a fourth DCB field (EODAD) to DFSORT.

Note: If you are using a disk sorting technique, the ERO PT option is ignored.

Your routines are entered first at the beginning of each phase so that DFSORT can
obtain the parameter lists. The routines are entered again during execution of the
phase at the points indicated in the parameter lists. For example, if you choose the
EXLST option, DFSORT enters your E18 exit routine early in the sort (input)
phase. DFSORT picks up the parameter list, including the EXLST address. Later
in the phase, DFSORT enters your routine again at the EXLST address when the
data set is opened.

Information Your Routine Passes to DFSORT

Before returning control to DFSORT, your routine passes the DCB fields in a
parameter list, the address of which is placed in general register 1. The parameter
list must begin on a fullword boundary and be a whole number of fullwords long.
The high-order byte of each word must contain a character code that identifies the
parameter. One or more of the words can be omitted. A word of all zeros marks
the end of the list.

If VSAM parameters are specified, they are accepted but ignored.

The format of the list is shown below.

Byte 1 Byte 2 l Byte 3 1 Byte 4

01 SY NAO field

02 EXLST field

03 00 l 00 l EROPT code

04 EODAD field

00 00 l 00 l 00

Chapter 4. User Exit Routines 14 7

Use with VSAM

SYN AD
This field contains the location of your read synchronous error routine. This
routine is entered only after the operating system has tried unsuccessfully to
correct the error. The routine must be assembled as part of your El8
routine. When the routine receives control, it must not store registers in the
save area pointed to by register 13.

EXLST
This field contains the location of a list of pointers to your routines that you
want used to check labels and accomplish other tasks not handled by data
management. The list, and the routines to which it points, should be
included in your read error routine. This parameter cannot be used at the
El8 exit if the program is reading concatenated input on unlike devices from
the SOR TIN data sets.

ERO PT
The EROPT code is a means whereby you can specify what action the
program should take if an uncorrectable read error is encountered. The
three possible actions and the codes associated with them are:

X' 80' Accept the Record (Block) as is

X' 40' Skip the Record (Block)

X' 20' Terminate the Program

If you include this parameter in tht; DCB fid<l iisl, you musi piace one oi the
above codes in byte 4 of the word. Bytes 2 and 3 of the word must contain
zeros.

When you use the EROPT option, the SYNAD field and the EODAD field
must contain the appropriate address in bytes 2 through 4; or, if no routine is
available, zeros in bytes 2 and 3, and X 101 1 in byte 4. You can use the
assembler instruction DC AL3 (1) to set up bytes 2 through 4.

EODAD
This field is the address of your end-of-file routine. If you specify it, the
end-of-file routine must be included in your own routine.

A full description of these DCB fields is contained in Data Management Macro
Instructions.

If input to DFSORT is a VSAM data set, you can use the E18 exit to perform
various VSAM exit functions and to insert passwords in VSAM input ACBs.

Your routine is entered early in the initialization phase when processing under
Blockset and early in the input phase if Blockset is not selected.

Restrictiom: If passwords are to be entered through an exit and the Blockset is not
selected, the data set cannot be opened during the initialization phase. This means
that MAINSIZE I SIZE=MAX must not be used, because the program cannot
make the necessary calculations.

148 DFSORT Application Programming: Guide

Information Your Routine Passes to DFSORT

Password List

Exit List

When you return to DFSORT, you must place in Register 1 the address of a
parameter list:

Byte 1 Bytes 2 through 4

05 Address of VSAM exit list

06 Address of password list

00 000000

If QSAM parameters are passed instead, they are accepted but ignored.

Either of the address entries may be omitted; if they are both included, they may
be in any order.

A password list included in your routine must have the following format: Two
bytes on a halfword boundary:

l No. of entries in list

Followed by the 16-byte entries:

8 bytes: ddname

8 bytes: Password

The last byte of the ddname field is destroyed by DFSORT. This list should not be
altered at any time during the program. MAINSIZE I SIZE= MAX should not be
used if this function is used.

The VSAM exit list must be built using the VSAM EXLST macro instruction giving
the addresses of your routines handling VSAM exit functions. VSAM branches
directly to your routines, which must return to VSAM via register 14.

Any VSAM exit function available for input data sets may be used, except
EODAD. If you need to do EODAD processing, write a LERAD exit and check

for X' 04' in the FDBK field of the RPL: This will indicate input EOD. This field
should not be altered when returning to VSAM, as it is also needed by DFSORT.

For details, see VSAM Programmer's Guide or VSAM User's Guide.

Below is an example of code your program can use to return control to DFSORT.

Chapter 4. User Exit Routines 149

ENTRY E18

E18 LA 1,PARMLST
RETURN
CNOP 0,4

PARMLST DC X'01'
DC AL3(SER)
DC X'02'
DC AL3(LST)
DC X'03'
DC X'OOOOSO' EROPT CODE
DC A(O)
DC X'04'
DC AL3(QSAMEOD)
DC X'OS'
DC AL3(VSAMEXL)
DC X'06'
DC AL3(PWDLST)
DC A(O)

VSAMEXL EXLST SYNAD=USYNAD,LERAD=ULERAD
PWDLST DC H'2'

DC CLB'SORTIN' SORTIN DDNAME
DC CL8'INPASS' SORTIN PASSWORD
DC CL8'SORTOUT' SORTOUT DDNAME
DC CL8'0UTPASS' SORTOUT PASSWORD

USYNAD VSAM SYNCH ERROR RTN
ULERAD VSAM LOGIC ERROR RTN
SER QSAM ERROR RTN
LST DC x I 85 I ,AL3 (RTN) EXLST ADDRESS LIST*
RTN EXLST ROUTINE
QSAMEOD QSAM END OF FILE ROUTINE

* X 1 85 1= X 1801 plusX105 1
, where:

1. X 180 1 means this entry is the LAST ENTRY of the list.

2. X 1 05 1 means this exit is the data control block exit

For more information, refer to OS/MVS Data Management Services Guide.

Et 9 Exit, Handling Output to Work Data Sets

This exit is used to handle write error conditions in the input phase when DFSORT
is unable to correct a write error to a work data set. It cannot be used if a disk
sorting technique is used; if supplied, it is ignored.

150 DFSORT Application Programming: Guide

Use with QSAM/BSAM

Your routines at this exit can pass to DFSORT a parameter list containing the
specifications for two DCB fields (SYNAD and EXLST).

Your routines are entered first early in the input phase so that DFSORT can obtain
the parameter lists. The routines are entered again later in the phase at the points
indicated by the options in the parameter lists.

Information Your Routine Passes to DFSORT

Before returning control to DFSORT, your routine passes the DCB fields in a
parameter list, the address of which is placed in register 1. The list must begin on a
fullword boundary and must be a whole number of fullwords long. The first byte
of each word must contain a character code that identifies the parameter. Either
word can be omitted. A word of all zeros indicates the end of the list.

If VSAM parameters are passed, they are accepted but ignored.

The format is shown below.

Byte 1 Byte 2 J Byte 3 J Byte 4

01 SYNAD field

02 EXLST field

00 00 l 00 I 00

SYN AD
This field contains the location of your write synchronous error routine. This
routine is entered only after the operating system has unsuccessfully tried to
correct the error. It must be assembled as part of your own routine.

EXLST
The EXLST field contains the location of a list of pointers to the routines
that you want used to process labels and accomplish other tasks not handled
by data management. This list, and the routines to which it points, must be
included as part of your own routine.

A full description of these DCB fields can be found in Data Management Macro
Instructions.

E61 Exit, Modifying Control Fields

You can use a routine at this exit to lengthen, shorten or alter any control field
within a record. The E option for the s parameter on the SORT or MERGE
control statement must be specified for control fields changed by this routine as

Chapter 4. User Exit Routines 151

Some Uses

described in Chapter 2. After your routine modifies the control field, DFSORT
collates the records in ascending order using the format(s) specified.8

Your routine can normalize floating-point control fields or change any other type
of control field in any way that you desire. You should be familiar with the
standard data formats used by the operating system before modifying control
fields.

If you want to merely modify the collating sequence of EBCDIC data, for example,
to permit the alphabetic collation of national characters, you can do so without the
need for an E61 exit routine by use of the ALTSEQ control statement (as
described in Chapter 2).

Information DFSORT Passes to Your Routine

DFSORT places the address of a parameter list in register 1. The list begins on a
fullword boundary and is three fullwords long. It contains the number (in
hexadecimal) of the control field in the last byte of the first word; the address of
the control field in bytes 2 through 4 of the second word; and the length of the
control field (in hexadecimal) in bytes 3 and 4 of the third word. The control field
length allows you to write a more generalized modification routine.

The parameter list for the E61 exit is as follows:

Byte 1 Byte 2 Byte 3 Byte 4

00 00 00 Control Field No.

00 Address of Control Field Image

Not Used Control Field Length 0001 0100

The control field address passed to your routine is that of an extract area to which
the program has moved the control field, separate from the record. Your routine,
in effect, changes an image of the control field and not the control field itself.

For all fields except binary, the total number of bytes DFSORT passes to your
routine is equal to the length specified in them parameter of the SORT or MERGE
statement.

All binary fields passed to your routine contain a whole number of bytes; all bytes
which contain any bits of the control field are passed. If the control field is greater
than 256 bytes in length, DFSORT splits it up into fields of 256 bytes each and
passes them one at a time to your routine.

8 With a conventional merge or a tape work data set sort, control fields for which E is
specified are treated as binary byte format regardless of the actual format(s) specified.

152 DFSORT Application Programming: Guide

Output Phase Exits

Your routine cannot physically change the length of the control field. If you must
increase the length for collating purposes, you must previously specify that length
in them parameter of the SORT or MERGE statement. If you must shorten the
control field, you must pad it to the specified length before returning it to
DFSORT. The field your routine returns to DFSORT must contain the same
number of bytes as when the routine was entered.

When E61 is used, records are always ordered into ascending sequence. If you
need some other sequence, you can modify the fields further; for example, if after
carrying out your planned modification for a binary control field, and before
handing back control to DFSORT, you reverse all bits, the field is in effect collated
in descending order. You have not affected the record itself, since it is only an
extracted image you are modifying.

Note that if E61 is used to resolve ISCH/ ASCII collating for special alphabetic
characters, substituted characters must be in EBCDIC, but the sequencing result
depends upon the byte value of the ISCII/ ASCII translation for the substituted
character.

E31 Exit, Opening Data Sets

You might use routines at this exit to open data sets needed by your other routines
in the output phase, or to initialize your other routines. Return codes are not used.

Note: To avoid special linkage editor requirements (see "Summary of Rules for
User Exit Routines" on page 183), you can include these functions in your E35
routine rather than in a separate E31 routine.

E3 2 Exit, Handling Input to a Merge Only

This exit can only be used in a merge operation which is invoked from another
program, and cannot be specified on the MODS statement. If activated, it must
supply all input to the merge, and the parameter list passed to the program or an
OPTION statement in SORTCNTL must indicate the number of input files.

If input is variable-length records, you must be sure they contain a 4-byte record
descriptor word (RDW) at the beginning of each record before handing it to the
merge. The format of an RDW is described in Data Management Services Guide.
(Alternatively, you could declare the records as fixed length, and pad them to the
maximum length.)

See Figure 15 on page 13 8 for logic flow details.

Information DFSORT Passes to Your Routine

Your E3 2 exit routine is entered each time the merge program requires a new input
record. DFSORT passes a 2-word parameter list to your routine. The address of
the list is in register 1.

Chapter 4. User Exit Routines 15 3

Return Codes

E35 Exit, Changing Records

The parameter list has the format:

Bytes 1 through 4

Increment of next file to be used for input

Address of next input record

The file increment is 0,4,8, ... ,N-4, where N is four times the number of input files.
So, the increment 0 (zero) would represent the first input file, 4 the second file, 8
the third, and so on.

A separate input buff er must be provided by your routine for each input file used.
An input buffer containing the first record for a file must not be altered until you
have passed the first record from each file to DFSORT.

Before returning control to the merge program, you must:

• Place the address of the next input record from the requested data set in the
second word of the parameter list.

Put the return code in Register 15.

Your routine must pass one of the following return codes to the DFSORT:

8 End of the Data Set Requested (No Record Returned)
12 Insert Record
16 Terminate DFSORT

If you write your E35 routine in COBOL, see "COBOL Exit Routines" on
page 161, and "COBOL E35 Exit, Changing Records" on page 172.

The E35 routine is entered each time DFSORT prepares to place a record in the
output area.

See Figure 15 on page 13 8 for logic flow details.

Some uses are:

• Add, delete, or change records in the output data set.

• Terminate DFSORT.

Notes:

1. If you use the E35 routine to dispose of al/your output records, the SORTOUT
DD statement may be omitted.

2. If you invoke DFSOR T from an assembler program and you pass the address of
your EJ 5 routine in the parameter list:

154 DFSORT Application Programming: Guide

DFSORT ignores the SORTOUT data set

DFSORT terminates if you specify E35 in a MODS statement.

3. If the SORTO UT DD statement is omitted or ignored, your E35 exit routine must
dispose of each output record and return to DFSORTwith a return code of 4.
When DFSORT returns to your routine after you have disposed of the last record,
return to DFSORTwith return code of 8 to indicate "do not return."

4. If your E35 routine is inserting variable length records, you must be sure they
contain a 4-byte record descriptor word (RDW) at the beginning of each record
before the routine passes it to DFSORT. The format of an RDWis described in
Data Management Services or System Programming Library: Data Management.
(Alternatively, you could declare the records as fixed-length, and pad them to the
maximum length.)

5. Remember that if input records are variable length from a VSAM data set, they
will have been prefixed by a 4-byte record descriptor word (RDW).

6. Once records have been put into the output area, their lengths may not be
increased.

Information DFSORT passes to Your Routine

Your E35 exit routine is executed each time DFSORT prepares to place a record
(including the first record) in the output area. DFSORT passes three words to your
routine:

• The address of the record leaving DFSORT which usually follows the record in
the output area. When DFSORT reaches the end of the input data set, it sets
this address to zero before entering your E35 exit.

After the end of the input data set is encountered, DFSORT continues to enter
your exit routine until you pass back a return code of 8.

• The address of a record in the output area. This address is zero the first time
your routine is entered because there is no record in the output area at that
time. It remains zero provided you pass a return code of 4 (delete record) to
DFSORT.

Note: If the record pointed to is variable length, it has a record descriptor
word at this point, even if output is to a VSAM data set.

• The user exit address constant. This word is passed to your exit exactly as it
was set by your E 15 exit or invoking program's parameter list.

In general register 1, DFSOR T places the address of a parameter list that contains
the two record addresses and the user exit address constant.

Chapter 4. User Exit Routines 155

Return Codes

The list is three fullwords long and begins on a fullword boundary. The format of
the parameter list is:

Bytes 1 through 4

Address of record leaving DFSORT 1

Address of record in output area

User exit address constant

Your routine must pass one of the following return codes to DFSORT to inform it
what to do with the record leaving DFSORT:

0 No Action/Record Altered
4 Delete Record
8 Do Not Return
12 Insert Record
16 Terminate DFSORT

0-NoAction
If you want DFSORT to retain the record unchanged, load the address of the
record leaving DFSORT in register 1 and return to DFSORT with a zero
return code.

0-Record Altered
If you want to change the record before having it placed in the output data
set, move the record to a work area, make the change, load the address of
the modified record into register 1, and return to DFSORT with a zero
return code. If you change record size, you must communicate that fact to
DFSORT in a RECORD statement.

4-Delete Record
Your routine can delete the record leaving DFSORT by returning to
DFSORT with a return code of 4. You need not place an address in register
1.

8-Do Not Return
DFSORT keeps returning to your routine until you pass a return code of 8.
After that, the exit is closed and not used again during the DFSORT
application. When you return with return code 8, you need not place an
address in register 1. Unless you are inserting records after the end of the data
set, you must pass a return code of 8 when DFSORT indicates the end of the
data set, which it does by passing your routine zero as the address of the
record leaving DFSORT.

If you do not have a SORTOUT data set and would usually return with a
return code of 8 before EOF, you can avoid getting the ICE025A message
by specifying NOCHECK on the OPTION control statement (if
CHECK=NO had not already been specified at installation time).

156 DFSORT Application Programming: Guide

Summarizing Records

E3 7 Exit, Closing Data Sets

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

12-Insert Record
If you want to add a record to the SOR TOUT data set before the record
leaving DFSORT, place the address of the new record in register 1 and
return to DFSORT with a return code of 12. DFSORT returns to your
routine with the same address as before for the record leaving DFSORT, and
places the address of the inserted record into the output area, so you can
make more insertions at that point, or delete the record leaving DFSORT.
DFSORT does not perform sequence checking for disk sorts. For tape sorts,
DFSORT does not perform sequence checking on records that you insert
unless you delete the record leaving DFSORT and insert a record to replace
it. DFSORT keeps returning to your routine until you pass a return code of 8.

16-Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program or the system with a return code of 16.

You can use the SUM control statement to summarize records.

However, you can summarize records in the output data set by changing the record
in the output area and then, if you want, by deleting the record leaving DFSORT.
DFSORT returns to your routine with the address of a new record leaving
DFSORT and the same record remains in the output area, so that you can
summarize further. If you do not delete the record leaving DFSORT, that record is
added to the output area, and its address replaces the address of the previous
record in the output area; DFSORT returns with the address of a new record
leaving DFSORT.

Your routine at this exit is executed once at the end of the output phase. It can be
used to close data sets used by your other routines in the phase or to perform any
housekeeping functions for your routines.

Note: To avoid special linkage editor requirements (see "Summary of Rules for
User Exit Routines" on page 183), you can include these functions in your E35
routine rather than in a separate E3 7 routine.

E38 Exit, Handling Input Data Sets

The routine here is the same as for E18. If you are using a disk sorting technique,
then 1/0 error conditions cannot be handled through E38.

Chapter 4. User Exit Routines 157

Use with VSAM

This exit can be used during a merge or copy to insert VSAM passwords into
VSAM input ACBs and to perform various VSAM exit functions. The example
below shows code your program can use to return control to DFSORT.

ENTRY E38

E38 LA 1,PARMLST
RETURN
CNOP 0,4

PARMLST DS OH
DC X'OS'
DC AL3(VSAMEXL)
DC X'06'
DC AL3(PWDLST)
DC A(O)

VSAMEXL EXLST SYNAD=USYNAD,LERAD=ULERAD
PWDLST DC H'3'

DC CL8'SORTIN01' SORTIN01 DDNAME
DC CL8IINPASS1 I SORTIN01 PASSWORD
DC CL8'SORTIN02' SORTIN02 DDNAME
DC CL8'INPASS2' SORTIN02 PASSWORD
DC CLB'SORTOUT' SORTOUT DDNAME
DC CL8'0UTPASS' SORTOUT PASSWORD

USYNAD VSAM SYNCH ERROR RTN
ULERAD VSAM LOGIC ERROR RTN

E39 Exit, Handling Output Data Sets

Use with VSAM

Same as for El 9 for QSAM/BSAM.

For VSAM, this exit can be used to insert VSAM passwords into VSAM output
ACBs and to perform various VSAM exit functions. The example below shows
code your program can use to return control to DFSORT.

158 DFSORT Application Programming: Guide

ENTRY E39

E39 LA
RETURN
CNOP

PARMLST DS
DC
DC
DC
DC
DC

VSAMEXL EXLST
PWDLST DC

USYNAD
ULERAD

DC
DC

1 ,PARMLST

0,4
OH
X'OS'
AL3(VSAMEXL)
X'06'
AL3(PWDLST)
A(O)

SYNAD=USYNAD,LERAD=ULERAD
H' 1'
CLB'SORTOUT'
CLB'OUTPASS'

SORTOUT DDNAME
SORTOUT PASSWORD
VSAM SYNCH ERROR RTN
VSAM LOGIC ERROR RTN

Chapter 4. User Exit Routines 159

Sample Routines Written in Assembler

E 15: Deleting Expired Records

This routine checks each record's expiration date, and deletes records that are
obsolete.

E15

*

CSE CT
USING
SAVE
LR
ST
LR
LA
ST

L
LA
LTR
BZ

*, 12
(14,12)
12, 15
13,SAVEAREA+4
11 ' 1 3
13,SAVEAREA
13,8(11)

2,0(1)
2,0(,2)
2,2
EMPTEST
FIRSTIME,C'Y'
AROUND
DEC

SET UP BASE REGISTER
SAVE REGISTERS
LOAD BASE REGISTER
CHAIN BACKWARD

CHAIN FORWARD

LOAD ADDR OF RECORD INTO R2
CLEAR FIRST BYTE
IS ADDR=O?
YES-TEST FOR NO INPUT
IS IT FIRST TIME THROUGH
BRANCH IF NO
OBTAIN TODAY'S DATE

CLI
BNE
TIME
MVI
ST

FIRSTIME,C'N'
1 ,DATE

INDICATE NOT FIRST TIME ANY MORE
SAVE DATE

RECDATE
DATLEN
RECBASE
AROUND

EMPT EST

NORETRET

DELETE

*

EQU
EQU
EQU
CLC
BNH
L
LM
L
SR
BR
CLI
BNE
L
RETURN
L
RETURN
L
RETURN

4
4
2
RECDATE(DATLEN,RECBASE),DATE CHECK EXPIRATION
DELETE IF OBSOLETE, DELETE RECORD
13,SAVEAREA+4 RESTORE R13
14,12,12(13) RESTORE REGS
1 , 0 (1) POINT TO REC LEAVING MERGE
15, 15 RC=O (NO ACTION)
14
FIRSTIME,C'Y'
NORETRET
13,SAVEAREA+4
(1 4 , 1 2) , RC= 1 6
13,SAVEAREA+4
(1 4 I 1 2) I RC=8
13,SAVEAREA+4
(1 4 , 1 2) , RC=4

IS THIS FIRST RECORD?
NO-END OF DATA SET
YES-INPUT DATA SET EMPTY
'TERMINATE SORT' CODE
RESTORE R13
'NO RETURN' CODE
RESTORE R13
'DELETE' CODE

SAVEAREA DS 18F
DATE DS F
FIRSTIME DC C'Y'

END

160 DFSORT Application Programming: Guide

DATE

E16: When NMAX Exceeded, Sort Current Records

This routine tells DFSORT to sort only the records it has already read in, when it
issues the message "NMAX EXCEEDED".

E16 CSE CT
LA
BR
END

15,0
14

SET RETURN CODE

E3S: Deleting Records

E35 CSECT
USING
SAVE
L
LTR
BZ
CLI
BE
LM
SR
L
BR

NOINPUT RETURN
DELETE RETURN

END

This routine checks byte 5 of each record. If the byte contains the letter 'N', it
deletes the record. You could use the INCLUDE or OMIT control statements
instead.

*' 15
(14' 12)
1 '0 (1)
1 , 1
NO INPUT
4 (1), x' DS I

DELETE
14,12,12(13)
15' 15
1 , 0 (1)
14
(14, 12) , RC=8
(1 4 , 1 2) , RC=4

SAVE REGISTERS
R1 GETS ADDR OF REC FR PARAMLIST
IS ADDR ZERO?
YES-END OF INPUT
DOES BYTE 5 CONTAIN 'N'?
YES-DELETE RECORD
RESTORE REGISTERS
RC=O (NO ACTION)
POINT TO RECORD LEAVING MERGE

RETURN WITH 'DO NOT RETURN' CODE
RETURN WITH 'DELETE' CODE

COBOL Exit Routines

E15 and E35 exit routines written in COBOL can perform the same functions as
EIS and E35 exit routines written in Assembler. However, the information passed
between DFSORT and the COBOL routine is handled differently than for
Assembler. These differences are:

• Your COBOL routine must use fields described in the LINKAGE SECTION
of the DATA DIVISION, instead of register 1 and pointers in a parameter list.

• Your COBOL routine must use RETURN-CODE (a COBOL special register)
instead of register 15 for the return code.

Chapter 4. User Exit Routines 161

• Your COBOL routine must use return code 20 when you want to alter or
replace a record instead of return code 0.

• Your COBOL routine must use the exit area instead of the user address
constant.

COBOL Exit Requirements

The following rules apply to COBOL exits. Failure to observe these COBOL exit
rules may result in termination or unpredictable results.

• If both E15 and E35 exits are used, they must be in the same version of
COBOL.

• Exits written in COBOL must not use STOP RUN statements. To return to
DFSORT, you have to use the GOBACK statement.

• VS COBOL II exits must be compiled with the RES/RENT compile-time
option.

• Compilation of OS/VS COBOL exits with the RES compiler option aids
migration to VS COBOL II; however, exits compiled with NORES execute
under DFSORT.

If an exit contains a READY TRACE, EXHIBIT, or DISPLAY statement, the
DFSORT messages normally written to SYSOUT should be directed to another
data set using the MSGDDN parameter. For READY TRACE, EXHIBIT,
and DISPLAY statements, COBOL writes also to SYSOUT. The messages to
SYSOUT could, therefore, be lost because of interleaving of output.

Another alternative is to direct the COBOL output to another data set, using
the SYSx compiler option for OS/VS COBOL or the OUTDD compiler option
for VS COBOL II.

• COBOL exits must not contain a SORT or a MERGE verb.

• If invoking DFSORT from a VS COBOL II program, you can use a COBOL
E15 if the VS COBOL II FASTSRT option is in effect for input, and/or a
COBOL E35 if FASTSRT is in effect for output. The COBOL exits must be
compiled with VS COBOL II.

• If you are running with VS COBOL II exits, you must use the VS COBOL II
library. If COBEXIT=COB2 is not the default for your installation, make sure
you specify the COB2 parameter in the OPTION control statement. Failure to
do so results in degraded performance.

• If you run exits compiled with either COBOL compiler and you specify the
RES option, the COBOL library routines must be available at execution time.
The COBOL library may be required for an exit compiled with the OS/VS
COBOL, NORES option. See your OS/VS COBOL manual for information
on options that may require the COBOL library.

• Exits compiled with OS/VS COBOL may be executed with either the OS/VS
COBOL or VS COBOL II library, or in some cases, with no library.

162 DFSORT Application Programming: Guide

• Exits compiled with VS COBOL II must be executed with the VS COBOL II
library.

• Exits compiled with OS/VS COBOL and executing with the VS COBOL II
library should not issue STAEs. (OS/VS COBOL compiler options that cause
STAE to be issued are: STATE, FLOW, SYMDMP, COUNT, and TRACE.)

Requirements for Copy Processing

Storage Requirements

For copy processing, all sort requirements apply except for the following
restrictions:

• When DFSORT is invoked through JCL and COBEXIT=COB2, either a
separately compiled COBOL ElS exit or a separately compiled COBOL E35
exit is allowed, but not both together.

• When DFSORT is invoked from a VS COBOL II program, the following
limitations apply when FASTSRT is in effect for:

input only: a separately compiled E 15 exit is allowed, but not a separately
compiled E35 exit

output only: a separately compiled E3 5 exit is allowed, but not a
separately compiled E 15 exit

input and output: either a separately compiled E 15 or a separately
compiled E35 is allowed, but not both together (when COBEXIT=COB2)

If separately compiled E15 and E35 exits are found together, DFSORT copy
processing terminates. Message ICE161A is issued.

If you are running the COBOL exits compiled with the RES compiler option, make
sure that you have enough storage available for the COBOL library subroutines.
(This does not apply if the library has been installed resident.)

Besides the minimum DFSORT main storage requirements, you need an additional
40K bytes of storage in your REGION for the OS/VS COBOL library subroutines,
and 150K bytes for the VS COBOL II library subroutines. Most of the VS
COBOL II library subroutines can be resident above 16-megabyte virtual.
However, whether you can actually load the VS COBOL II library subroutines
above 16-megabyte virtual depends on how they were installed.

Under certain conditions, DFSORT can use all the storage in your REGION below
16-megabyte virtual, (true for both MVS and MVS/XA systems) thus leaving no
room to load the COBOL library subroutines required during execution of your
exit.

On an MVS/XA system, main storage is available above 16-megabyte virtual
unless the TMAXLIM or SIZE/MAINSIZE options specify an extremely high
value (for example, your system limit for main storage above 16-megabyte virtual),
in which case you can use the ARESALL or ARESINV option to release storage.

Chapter 4. User Exit Routines 163

Input Phase Exit

During execution, the actual amount of storage required for the COBOL library
subroutines depends on the functions performed in the COBOL exit. You should
add to the size of the exit a minimum of 40K bytes when running with the OS/VS
COBOL library subroutines and, in most cases, 20K bytes when running with the
VS COBOL II library subroutines. If the exit does 1/0, additional storage must be
reserved for the 1/0 buffers. (See Note below for additional circumstances under
which you may need to release additional storage for VS COBOL II.) This value is
specified by the m parameter on the MODS statement. A VS COBOL II exit
requires less storage, because DFSORT automatically releases storage for some of
the COBOL library subroutines before the exit is called.

When SIZE/MAINSIZE=MAX is in effect, an alternative way to release storage is
to use the RESALL or RESINY option.

Note: When you are calling both exits (E15 and E35), when running with
nonresident VS COBOL II library subroutines, and executing a sort under MVS or
MVS/XA with DFSORT residing above 16-megabyte virtual, you may need to
release an additional 70K bytes of storage. This can be done by adding 70K bytes
more to one of the following:

• Them parameter of the MODS statement for the E35 exit (m = E35 exit size
+ 20K + 70K)

• The RESALL option when SIZE/MAINSIZE=MAX is in effect

COBOL E15 Exit, Passing or Changing Records for Sort

DFSORT continues to enter E15 (even when there are no input records) until the
exit tells DFSORT, with a return code of 8, not to return.

See Figure 15 on page 138 for logic flow details.

Some uses for E 15 are:

• Add records to an input data set.

• Pass an entire input data set to DFSORT.

• Delete records from an input data set.

• Change records in an input data set (but not control fields-use E61 exit for
that).

Notes:

1. If both El 5 and E35 exits are used, they must be in the same version of COBOL.

2. If you use the E15 exit, the SORTIN DD statement may be omitted, in which
case you must include a RECORD statement in the program control statements.

164 DFSORT Application Programming: Guide

Interface with COBOL

3. If you omit the SORTIN DD statement, all input records are passed to DFSORT
through your COBOL E15 exit. You return to DFSORTwith a return code of
12. When DFSORTreturns to the E15 exit after the last record has been passed,
return to DFSORTwith return code 8 to indicate "do not return."

4. DFSORTcontinues to re-enter your EJ5 exit until a return code of 8 is received.
However, if STOPAFT is in effect, no additional records are inserted to the sort
after the STOPAFTcount is satisfied.

5. You cannot us~ dynamic link-editing together with a COBOL E15 exit.

Each time the El5 exit is called, DFSORT supplies the following fields:

• Record flags

• New record

• Length of the new record (for VLR)

• Length of exit area

• Exit area

When E15 returns to DFSORT, the E15 exit provides to DFSORT some or all of
the fields mentioned below. The first field is required; the other four may be
modified as appropriate.

• RETURN-CODE (assigned by the exit by setting the COBOL special register
RETURN-CODE)

• Return record

• Length of the return record (for VLR)

• Length of exit area

• Exit area

For more information on how these fields are used in a COBOL E 15 exit, see
"Linkage Section Fields" on page 176.

Figure 18 on page 166 details the interface to COBOL for the E15 exit.

Chapter 4. User Exit Routines 165

R1

Pointer to Record
Flags

4 bytes

Pointer to New New Record
Record * bytes

4 bytes

Pointer to Return
Return Record Record * bytes

4 bytes

Pointer to Dummy Dummy Field
Field 4 bytes

4 bytes

Pointer to Dummy Dummy Field
Field 4 bytes

4 bytes

VLR: Length of New Record
Pointer to Length of 4 bytes
New Record FLR: Dummy Field

4 bytes.
4 bytes

VLR: Length of Return Record
Pointer ro Length of 4 bytes
Return Record

FLR: Dummy Field

4 bytes 4 bytes

Pointer to Dummy Dummy Field
Field

4 bytes
4 bytes

Pointer to Length of Length of Exit Area
Exit Area

2 bytes

4 bytes

-~xitArea J Pointer to Exit Area
256 bytes

4 bytes

Number of Bytes
I

* -- VLR: Number of bytes is given by the corresponding length field
FLR: Number of bytes is equal to the LRECL

Figure 18. El5 DFSORT Interface with COBOL

166 DFSORT Application Programming: Guide

Linkage F.xamp/es: Figure 19 is an example of the LINKAGE SECTION code for
a fixed-length record data set with LRECL of 100, showing the layout of the fields
passed to your COBOL routine.

Note: You only need to code up to the last field that your routine actually uses
(for example, up to RETURN-REC if you do not use the exit area).

LINKAGE SECTION.
01 RECORD-FLAGS

88 FIRST-REC
88 MIDDLE-REC
88 END-REC

01
01
01
01
01
01
01
01
01

NEW-REC
RETURN-REC
UNUSED1
UNUSED2
UNUSED3
UNUSED4
UNUSEDS
EXITAREA-LEN
EXITAREA.

PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9(8) COMPUTATIONAL.
VALUE 00.
VALUE 04.
VALUE 08.

x (100).
X(100).
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(4) COMPUTATIONAL.

05 EAREA OCCURS TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 19. LINKAGE SECTION Code Example for E15 (FLR)

Figure 20 on page 170 is an example of the LINKAGE SECTION code for a
variable-length record data set with maximum LRECL of 200, showing the layout
of the fields passed to your COBOL routine.

Notes:

1. If the data used for input was not created by a COBOL run, you need to know the
record length (LRECL) that is defined for your data set. For VLR records, the
maximum length of the record defined in your COBOL exit is 4 bytes less than
the LRECL value, because COBOL does not include the RDW as part of the
record. (VLR records have an RD W field of 4 bytes at the beginning of each
record that is not included in the record that is passed to your COBOL exit).

2. You only need to code up to the last field that your routine actually uses (for
example, up to RETURN-REC-LEN if you do not use the exit area).

Chapter 4. User Exit Routines 16 7

LINKAGE SECTION.
01 RECORD-FLAGS

88 FIRST-REC
88 MIDDLE-REC
88 END-REC

PIC 9(8) COMPUTATIONAL.

01 NEW-REC.

VALUE 00.
VALUE 04.
VALUE 08.

05 NREC OCCURS 1 TO 200 TIMES
DEPENDING ON NEW-REC-LEN

01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES

PIC X.

DEPENDING ON RETURN-REC-LEN PIC X.
01
01
01
01
01
01
01

UNUSED1
UNUSED2
NEW-REC-LEN
RETURN-REC-LEN
UNUSED3
EXITAREA-LEN
EXITAREA.

PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(4) COMPUTATIONAL.

05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 20. LINKAGE SECTION Code Example for ElS (VLR)

Linkage Section Fields for FLR and VLR

The fields in the LINKAGE SECTION are used by DFSORT and your routine as
stated below. For clarity, the field names from the above code examples have been
used.

• To give your COBOL routine the status of the passed records, DFSORT uses
the Record Flags field (RECORD-FLAGS) in the following way:

0 (FIRST-REC)
The new record is the first passed record

4 (MIDDLE-REC)
The new record is not the first passed record

8 (END-REC)
There is no new record to pass; all records have
been passed to your routine or there were no records to pass

• DFSORT places the next input record in the New Record field (NEW-REC).
A variable-length record does not contain a record descriptor word (ROW),
but DFSORT places the length of this variable-length record in the New
Record Length field (NEW-REC-LEN). The value in the NEW-REC-LEN
field is the length of the record only and does not include the 4 bytes for the
RDW.

• When your routine places an insertion/ replacement record in th~ return record
field (RETURN-REC), the variable-length record must not cont'ain an ROW;
your routine must place the length of this record in the return record length

168 DFSORT Application Programming: Guide

field (RETURN-REC-LEN). The value of the RETURN-REC-LEN field is
the length of the record only and should not include the 4 bytes for the RDW.

• DFSORT passes your routine a 256-byte exit area field (EXITAREA) for you
to include information to be passed to your COBOL E15 exit each time it is
called by DFSORT and/or to your COBOL E35 exit. The first time the exit
area field is passed to your COBOL E15 exit, it contains 256 blanks, and the
exit area length field (EXITAREA-LEN) contains 256.

Any changes you make to the exit area field or exit area length fields is passed
back to your COBOL ElS exit as well as to your COBOL E35 exit.

Notes:

1. Do not set the exit area length field to more than 2 5 6 bytes.

2. You only need to code up to the last field that your routine actually uses (for
example, up to RETURN-REC if you do not use the exit area).

Return Codes: Your COBOL E 15 routine must pass one of the following return
codes to DFSORT in the RETURN-CODE field (a COBOL special register)
informing it what to do with the record you have been examining or changing:

0 No Action
4 Delete Record
8 Do not Return
12 Insert Record
16 Terminate DFSORT
20 Alter /Replace Record

0--No Action
If you want DFSORT to retain the record unchanged, return with
RETURN-CODE set to 0.

4-Delete Record
If you want DFSORT to delete the record, return with RETURN-CODE set
to4.

8-Do Not Return
DFSORT continues to enter your routine until you return with
RETURN-CODE set to 8. After that, the exit is not reentered during the
DFSORT application. Unless you are inserting records after end-of-data set,
you must set RETURN-CODE to 8 when DFSORT indicates the end of the
data set, which it does by entering your routine with the Record Flags field
set to 8.

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

12-Insert Record
If you want DFSORT to add a record before the new record in the input
data set, do the following:

• Move the insert record to the return record field.

Chapter 4. User Exit Routines 169

For VLR records, move the length to the return record length field. (Do
not include the 4-byte RDW in this length.)

Return with RETURN-CODE set to 12.

DFSORT reenters your routine with the same record as before in the new
record field, allowing your routine to insert more records or handle the new
record.

You can also insert records after end-of-data set. DFSORT keeps returning
to your routine as long as you pass it a RETURN-CODE 12 and until you
return with a RETURN-CODE set to 8.

16-Terminate DFSORT
If you want to terminate DFSORT, return with RETURN-CODE set to 16.
DFSORT then returns to its calling program or to the system with a return
code of 16.

20-Alter Record
If you want to change the new record, do the following:

• Move the new record to the return record field.

• Change the record in the return record field.

• For VLR records, move the length to the return record length field.

Return with RETURN-CODE set to 20.

Note: If your routine changes record size, you must indicate the new size on
the RECORD statement.

20-Replace Record

Procedure Division Requirements

If you want to replace the new record, do the following:

• Move the replacement record to the return record field.

• For VLR records, move the length to the return record length field. (Do
not include the 4-byte RDW in this length.)

• Return with RETURN-CODE set to 20.

When coding the PROCEDURE DIVISION, the following requirements must be
met:

• To return control to DFSORT, you must use the GOBACK statement.

• In the USING option of the PROCEDURE DIVISION header, you must
specify each 01-level name in the LINKAGE SECTION. You must specify
each name in order up to the last one you plan to use, even when you do not
use all the 01-level names preceding the header.

170 DFSORT Application Programming: Guide

Examples:

For the FLR example, Figure 19 on page 167, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC,
RETURN-REC, UNUSED1, UNUSED2, UNUSED3,
UNUSED4, UNUSED5, EXITAREA-LEN, EXITAREA.

For the VLR example, Figure 20 on page 168, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC,
RETURN-REC, UNUSED1, UNUSED2,
NEW-REC-LEN, RETURN-REC-LEN,
UNUSED3, EXITAREA-LEN, EXITAREA.

Chapter 4. User Exit Routines 171

Output Phase Exit

COBOL E35 Exit, Changing Records

Interface with COBOL

The E35 routine is entered each time DFSORT prepares to place a record in the
output area.

See Figure 15 on page 138 for logic flow details.

Some uses are:

• Add, delete, or change records in the output data set.

• Terminate DFSORT.

When DFSORT indicates the end of the data set (record flags field set to 8), you
must set RETURN-CODE to 8 (unless you are inserting records after the end of
the data set); otherwise, DFSORT continues to enter E35.

Notes:

1. If both E15 and E35 exits are used, they must be in the same version of COBOL.

2. If you use the E35 exit, the SORTOUT DD statement may be omitted, but you
must include a RECORD statement in the program control statements.

3. If you omit the SORTO UT DD statement, your E35 exit routine must dispose of
each output record and return to DFSORTwith a return code of 4. When
DFSORT returns to your routine after you have disposed of the last record, return
to DFSORT with a return code of 8.

4. You cannot use dynamic link-editing together with a COBOL E35 exit.

Each time your E35 exit is called, DFSORT supplies the following fields:

• Record flags

• Record leaving DFSORT

• Length of record leaving DFSORT (for VLR)

• Length of exit area

• Exit area

When your E35 exit returns to DFSORT, the E35 exit provides to DFSORT some
or all the fields mentioned below. The first field is required, the other four may be
modified as appropriate.

• RETURN-CODE (assigned by the exit by setting the COBOL special register
RETURN-CODE)

172 DFSORT Application Programming: Guide

• Return record

• Length of return record (for VLR)

• Length of exit area

• Exit area

For more information on how these fields are used in a COBOL E35 exit, see
"Linkage Section Fields" on page 176.

Figure 21 on page 174 details the interface to COBOL for the E35 exit.

Chapter 4. User Exit Routines 173

R1-----------------------.
Pointer to Record
Flags

,__ __,.. Record Flags
4 bytes

4 bytes ----1

Pointer to Record
Leaving DFSORT 1-------11M Record Leaving DFSORT

4bytes---

Pointer to Return
Record

4bytes

* bytes ------

Pointer to Record in
Output Area 1------11 Record in Output Area

4 bytes ----t

Pointer to Dummy
Field

* bytes ~~~_,

VLR: Length of Record Leaving DFSORT

4 bytes

Pointer ot Length of
Record Leaving
DFSORT

....._ ___ ,...._ 4 bytes ------------1
FLR: Dummy Field

4 bytes 4 bytes------------

VLR: Length of Return Record
Pointer to Length of
Return Record

...... ___,_ 4 bytes

4bytes --­

Pointer to Length of

FLR: Dummy Field
4 bytes

VLR: Length of Record in Output Area
Record in Output
Area

1-----..... - 4 bytes ------------t
4 bytes ----1

Pointer to Length of
Exit Area

4 bytes ----1

Pointer to Exit Area

4bytes ---

Number of Bytes

FLR: Dummy Field
4 bytes -----------

Length of Exit Area
2bytes ___ _,

Exit Area
256 bytes

* - VLR: Number of bytes is given by the corresponding length field
FLR: Number of bytes is equal to the LRECL

Figure 21. E35 Interface with COBOL

17 4 DFSORT Application Programming: Guide

Linkage Section Examples

Figure 22 is an example of the LINKAGE SECTION code for a fixed-length
record data set with LRECL of 100, showing the layout of the fields passed to your
COBOL routine.

Note: You only need to code up to the last field your routine actually uses (for
example, up to OUTPUT-REC if you do not use the exit area).

LINKAGE SECTION.
01 RECORD-FLAGS

8$ FIRST-REC
88 MIDDLE-REC

01
01
01
01
01
01
01
01
01

88 END-REC
LEAVING-REC
RETURN-REC
OUTPUT-REC
UNUSED1
UNUSED2
UNUSED3
UNUSED4
EXITAREA-LEN
EXITAREA.

PIC 9(8) COMPUTATIONAL.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

VALUE 00.
VALUE 04.
VALUE 08.

X(100).
x (100).
x (100).
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(4) COMPUTATIONAL.

05 EAREA OCCURS
DEPENDING ON

TO 256 TIMES
EXITAREA-LEN PIC X.

Figure 22. LINKAGE SECTION Code Example for E35 (FLR)

Figure 23 on page 176 is an example of the LINKAGE SECTION code for a
variable-length record data set with maximum LRECL of 200, showing the layout
of the fields passed to your COBOL routine.

Notes:

1. VLR records have a 4 byte RD W field at the beginning of each record. The
maximum record length plus the RD W will be the length defined for the LRECL
attribute of your output data set. COBOL programs do not use the RDW and
there[ore, the maximum length defined in your COBOL exit is 4 bytes less than
the LRECL value.

2. You only need to code up to the last field your routine actually uses (for example,
up to OUTPUT-REC-LEN if you do not use the exit area).

Chapter 4. User Exit Routines 175

LINKAGE SECTION.
0 1 RECORD-FLAGS

88 FIRST-REC
88 MIDDLE-REC
88 END-REC

PIC 9(8) COMPUTATIONAL.

01 LEAVING-REC.

VALUE 00.
VALUE 04.
VALUE 08.

05 LREC OCCURS 1 TO 200 TIMES
DEPENDING ON LEAVING-REC-LEN

01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES

DEPENDING ON RETURN-REC-LEN
01 OUTPUT-REC.

05 OREC OCCURS 1 TO 200 TIMES

PIC X.

PIC X.

DEPENDING ON OUTPUT-REC-LEN PIC X.
01
01
01
01
01
01

UNUSED1
LEAVING-REC-LEN
RETURN-REC-LEN
OUTPUT-REC-LEN
EXITAREA-LEN
EXITAREA.

PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(4) COMPUTATIONAL.

05 EAREA OCCURS TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 23. LINKAGE SECTION Code Example for E35 (VLR)

Linkage Section Fields: The fields in the LINKAGE SECTION are used by
DFSORT and your routine as stated below. For clarity, the field names from the
above code examples have been used.

• To give your COBOL routine the status of the passed records, DFSORT uses
the record flags field (RECORD-FLAGS) in the following way:

0 (FIRST-REC)
The record leaving DFSORT is the first passed record

4 (MIDDLE-REC)
The record leaving DFSORT is not the first passed record

8 (END-REC)
There is no record leaving DFSORT to pass; all records
have been passed to your routine or there were no records to pass

• DFSORT places the next output record (which usually follows the record in the
output area) in the record leaving field (LEAVING-REC). A variable-length
record does not contain an RDW; DFSORT places the length of this variable
length record in the record leaving length field (LEA VINO-REC-LEN). The
value in the LEAVING-REC-LEN field is the length of the record only, and
does not include the 4 bytes for the RD W.

• When your routine places an insertion/ replacement record in the return record
field (RETURN-REC), the variable-length record must not contain an RDW;
your routine must place the length of this record in the return record length
field (RETURN-REC-LEN). The value in the RETURN-REC-LEN field is
the length of the record only, and does not include the 4 bytes for the RDW.

17 6 DFSORT Application Programming: Guide

• DFSORT places the record already in the output area in the record in output
area field (OUTPUT-REC). A variable-length record does not contain an
RDW. DFSORT places the length, not including the 4 bytes for RDW, of this
variable-length record in the record in output area length field
(OUTPUT-REC-LEN).

• DFSORT passes your routine a 256-byte exit area field (EXITAREA) that
may contain information passed by your COBOL E15 routine. If no
information is passed in this area by your COBOL E15 routine the first time
the exit area field is passed to your COBOL E35 routine, it contains 256
blanks, and the exit area length field (EXITAREA-LEN) contains 256.

Any changes you make to the exit area field or exit area length field is passed
back to your COBOL E35 routine each time it is called by DFSORT.

Note: Do not set the exit area length field to more than 256 bytes.

Return Codes: Your COBOL E35 routine must pass one of the following return
codes to DFSORT in the RETURN-CODE field (a COBOL reserved keyword)
instructing it what to do with the record you have been examining or changing:

0 No Action
4 Delete Record
8 Do Not Return
12 Insert Record
16 Terminate DFSORT
20 Alter /Replace Record

0-NoAction
If you want DFSORT to retain the record leaving DFSORT unchanged,
return with RETURN-CODE set to 0.

4-Delete Record
If you want DFSORT to delete the record leaving DFSORT, return with
RETURN-CODE set to 4.

8-Do Not Return
DFSORT keeps returning to your routine until you pass a RETURN-CODE
set to 8. After that, the exit is not reentered during the DFSORT
application. Unless you are inserting records after the end-of-data set, you
must set RETURN-CODE to 8 when DFSORT indicates the end of the data
set, which it does by entering your routine with the record flags field set to 8.

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

If you do not have a SORTOUT data set and would usually return with
return code 8 before EOF, you can avoid getting the ICE025A message by
specifying NOCHECK on the OPTION control statement (if CHECK=NO
had not already been specified at installation time).

Chapter 4. User Exit Routines 177

12-Insert Record
If you want DFSORT to add a record to the SORTOUT data set before the
record leaving DFSORT, do the following:

• Move the insert record to the return record field.

• For VLR records, move the length to the return record length field.

Return with RETURN-CODE set to 12.

DFSORT reenters your routine with the inserted record in the record output
area field, and with the same record as before in the record leaving DFSORT
field. In this way, your routine can insert more records or handle the record
leaving DFSORT.

You can also insert records after end-of-data set. DFSORT keeps returning
to your routine as long as you pass it a RETURN-CODE 12 and until you
return with RETURN-CODE set to 8.

DFSORT does not perform sequence checking for disk sorts. For tape sorts,
DFSORT does not perform sequence checking on records that you insert
unless you delete the record leaving DFSORT and insert a record to replace
it.

16-Terminate DFSORT
If you want to terminate DFSORT, return with RETURN-CODE set to 16.
DFSORT then returns to its calling program or to the system with a return
code of 16.

20-Alter Record
If you want to change the record leaving DFSORT, do the following:

• Move the record leaving DFSORT to the return record field.

• Change the record in the return record field.

• For VLR records, move the length to the return record length field.

• Return with RETURN-CODE set to 20.

Note: If your routine changes record size, you must indicate the new size on
the RECORD statement.

20-Replace Record
If you want to replace the record leaving DFSORT, do the following:

• Move the replacement record to the return record field.

• For VLR records, move the length to the return record length field.

• Return with RETURN-CODE set to 20.

178 DFSORT Application Programming: Guide

Procedure Division Requirements

When coding the PROCEDURE DIVISION, the following requirements must be
met:

• To return control to DFSORT, you must use the GOBACK statement.

• In the USING option of the PROCEDURE DIVISION header, you must
specify each 01-level name in the LINKAGE SECTION. You must specify
each name in order up to the last one you plan to use, even when you do not
use all the 01-level names preceding the header.

Examples:

For the FLR example, Figure 22 on page 175, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1, UNUSED2,
UNUSED3, UNUSED4, EXITAREA-LEN, EXITAREA.

For the VLR example, Figure 23 on page 176, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1,
LEAVING-REC-LEN, RETURN-REC-LEN,
OUTPUT-REC-LEN, EXITAREA-LEN, EXITAREA.

Cnapter 4. User Exit Routines 179

Sample Routines Written in COBOL

COBOLE1S:

Figure 24 is an example of a COBOL E15 routine fo a data set with fixed-length
records of 100 bytes. It examines the department field in the passed record and
takes the following action:

• If the department is D29, it changes it to 199.

• If the department is not D29, it accepts the record unchanged.

IDENTIFICATION DIVISION.
PROGRAM-ID.

CE15.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 RECORD-FLAGS

88 FIRST-REC
88 MIDDLE-REC
88 END-REC

01 NEW-REC.
05 NFILL1
05 NEW-DEPT
05 NFILL2

01 RETURN-REC.
05 RFILL1
05 RETURN-DEPT
05 RFILL2

PIC 9(8) COMPUTATIONAL.
VALUE 00.
VALUE 04.
VALUE 08.

PIC X (10) .
PIC X(3).
PIC X(87).

PIC X (10) .
PIC X(3).
PIC X(87).

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC, RETURN-REC

IF END-REC
MOVE 8 TO RETURN-CODE
GO TO BACK-TO-SORT.

IF NEW-DEPT EQUAL TO "D29"
MOVE NEW-REC TO RETURN-REC
MOVE "J99" TO RETURN-DEPT
MOVE 20 TO RETURN-CODE

ELSE
MOVE 0 TO RETURN-CODE.

BACK-TO-SORT.
GOBACK.

Figure 24. COBOL E15 Routine Example (FLR)

180 DFSORT Application Programming: Guide

COBOL E3S: Inserting Records

Figure 25 on page 182 is an example of a COBOL E35 routine for a data set with
variable-length records up to 200 bytes. It examines the department field in each
passed record (records are assumed to be sorted by the department field) and takes
the following action:

• It inserts a record for Department K22 in the proper sequence.

• It accepts all passed records unchanged.

Chapter 4. User Exit Routines 181

IDENTIFICATION DIVISION.
PROGRAM-ID.

CE35.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INSERT-DONE PIC 9(1) VALUE 0.
01 K22-REC.

05 K22-MANAGER PIC X(20) VALUE "J. DOE".
05 K22-DEPT PIC X(3) VALUE "K22".
05 K22-FUNC PIC X(20) VALUE "ACCOUNTING".
05 K22-LATER PIC X(30) VALUE SPACES.

01 LEAVING-VAR-LEN PIC 9(8) COMPUTATIONAL.
LINKAGE SECTION.
01 RECORD-FLAGS

88 FIRST-REC
88 MIDDLE-REC
88 END-REC

PIC 9(8) COMPUTATIONAL.

01 LEAVING-REC.
05 L.REC-MANAGER PIC X(20).
05 LREC-DEPT PIC X(3).
05 LREC-FUNC PIC X(20).

VALUE 00.
VALUE 04.
VALUE 08.

05 LREC-LATER OCCURS 1 TO 157 TIMES
DEPENDING ON LEAVING-VAR-LEN PIC X.

01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES

DEPENDING ON RETURN-REC-LEN
01 OUTPUT-REC.

05 OREC OCCURS 1 TO 200 TIMES

PIC X.

DEPENDING ON OUTPUT-REC-LEN PIC X.
01
01
01
01

UNUSED1
LEAVING-REC-LEN
RETURN-REC-LEN
OUTPUT-REC-LEN

PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.
PIC 9(8) COMPUTATIONAL.

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1,
LEAVING-REC-LEN, RETURN-REC-LEN,
OUTPUT-REC-LEN.

IF END-REC
MOVE 8 TO RETURN-CODE
GO TO BACK-TO-SORT.

IF INSERT-DONE EQUAL TO 1
MOVE 0 TO RETURN-CODE
GO TO BACK-TO-SORT.

SUBTRACT 43 FROM LEAVING-REC-LEN
GIVING LEAVING-VAR-LEN.

IF LREC-DEPT GREATER THAN K22-DEPT
MOVE 1 TO INSERT-DONE
MOVE 43 TO RETURN-REC-LEN
MOVE K22-REC TO RETURN-REC
MOVE 12 TO RETURN-CODE

ELSE
MOVE 0 TO RETURN-CODE.

BACK-TO-SORT.
GOBACK.

Figure 25. COBOL E3S Routine Example (VLR)

182 DFSORT Application Programming: Guide

Assembler and COBOL User Exit Routines and DFSORT Performance

When you consider using user exits, you should consider the following factors:

• Your routines occupy main storage that would otherwise be available to
DFSORT. Because its main storage is restricted, DFSORT may need to
execute extra passes to sort the data. This, of course, increases sorting time.

• The execution of user exit routines adds time to the overall execution time.
Note that several of the exits give your routine control once for each record
until you pass a "do not return" return code to DFSORT. You should
remember this when designing your routines.

• Use INCLUDE, OMIT, INREC, OUTREC, and SUM instead of exit routines
whenever possible.

1 Summary of Rules for User Exit Routines

When preparing your routines, remember the following:

• User-written routines must follow standard linkage conventions, and use the
described interfaces. COBOL ElS and E35 routines must use the special
interface provided.

To use an E32 exit, your invoking program must pass its address to DFSORT
in the parameter list.

• To use any other exit, you must associate your routine with the appropriate
exits using the MODS control statement. See "MODS Control Statement" on
page 67.

• Your invoking program may alternatively pass the address of an ElS, El8,
E35, and/ or E39 exit to DFSORT in the parameter list.

• When a disk technique is used and your exits are reenterable, the entire
DFSORT program is reenterable.

• If you are using ISCH/ ASCII input, remember that data presented to your
exits at user exits are in EBCDIC format (all data is represented internally in
EBCDIC). If the E61 exit is used to resolve ISCII/ ASCII collating for special
alphabetic characters, substituted characters must be in EBCDIC, but the
sequencing result depends on the byte value of the ISCII/ ASCII translation for
the substituted character.

Chapter 4. User Exit Routines 183

How to Load User Exit Routines

You must assemble or compile each user exit as a separate program. If your user
exit operates independently, link-edit it separately into a partitioned data set
(library) with the member name to be used in the MODS statement. If your user
exit operates in conjunction with other user exits in the same phase (for example,
Ell, El5, and El 7 all use the same DCB), you can request DFSORT to
dynamically link-edit them together (see MODS statement). Alternatively, you can
link-edit them together into a partitioned data set following these rules:

1. Specify RENT as a linkage editor parameter.

2. Include an ALIAS statement for each exit routine using the external entry
name of the routine (for example, the CSECT name).

3. Specify the appropriate ALIAS name for each exit routine on the MODS
statement.

DFSORT includes the names and locations of your user exits in the list of modules
to be executed during each phase. No user exit is loaded more than once in a
program phase, but the same exit can appear in different phases. For example, you
can use the same Read Error user exit in both phases, but not twice in one phase.

The individual lengths of the exits specified on a MODS statement are not
important, but the sum of the lengths must be the total length of the modules. For
example, all but one length may be specified as zero, and the total length specified
for the remaining exits. The length should also include any storage used by your
exits outside of the load modules, such as 1/0 buffers or COBOL library
subroutines. The parameters on the MODS statement that defines the exit must be
the same as the name of the DD statement that defines the library. For example:

//MYLIB DD DSNAME=MYRTN, etc.

MODS E15=(MODNAME,500,MYLIB,N)

User Exit Linkage Conventions

The program uses a CALL macro instruction expansion to enter a user exit.
Therefore, each user exit must contain an entry point whose name is that of the
associated program exit.

The general registers used by DFSORT for linkage and communication of
parameters follow operating system conventions (see Figure 26 on page 185).

184 DFSORT Application Programming: Guide

Register Use

1 DFSORT places the address of a parameter list in this register.

13 DFSORT places the address of a standard save area in this register.
The area may be used to save contents of registers used by your exit.
The first word of the area contains the characters SMl in its three
low-order bytes.

14 Contains the address of DFSORT return point.

15 Contains the address of your exit. May be used as base register for
your exit. This register is also used by your exit to pass return codes
to DFSORT.

Figure 26. Register Conventions

You can return control to DFSORT with a RETURN macro instruction. You can
also use this instruction to set return codes when multiple actions are available at
an exit.

Your exit must save all the general registers it uses. You can use the SA VE macro
instruction to do this. If you save registers, you must also restore them; you can do
this with the RETURN macro instruction.

How to Dynamically Link-Edit User Exit Routines

You can dynamically link-edit any user exit routine written in any language that has
the ability to pass the location/ address of a record or parameter in register 1 and a
return code in register 15 (see MODS statement). This does not include E15 and
E35 routines written in COBOL.

On MVS/XA systems, dynamic link-editing does not support AMODE 31 or
RMODE 31 for the link-edit option T. The exits that are link-edited together by
DFSORT are not loaded above 16-megabyte virtual and can not be entered in
31-bit addressing mode. Exits link-edited with the S option retain the AMODE
and RMODE attributes of the object modules, and are loaded above or below
16-megabyte virtual depending upon the load's module's RMODE; they are
entered in the addressing mode of the exit.

Notes:

1. The B lockset technique is not used for dynamic link-editing.

2. Dynamic link-editing cannot be used with copy.

Chapter 4. User Exit Routines 185

Linkage Examples

The CALL macro instruction used by DFSORT to link to your exits is written as
follows:

CALL E15

This macro instruction is expanded to form assembler language instructions and,
when executed, places the return address in general register 14 and your routine's
entry point address in general register 15. DFSORT has already placed the register
save area address in general register 13.

Your routine for the sort phase assignment component exit could incorporate the
following instructions:

ENTRY E15

E15 SAVE (5,9)

RETURN (5,9)

This coding saves and restores the contents of general registers 5 through 9. The
macro instructions are expanded into the following assembler language code:

ENTRY E15

E15 STM 5,9,40(13)

LM 5,9,40(13)
BR 14

If multiple actions are available at an exit, your routine sets a return code in general
register 15 to inform DFSORT of the action it is to take. The following macro
instruction could be used to return to the DFSORT with a return code of 12 in
register 15:

RETURN RC=12

A full explanation of linkage conventions and the macro instructions discussed in
this section is in Supervisor Services and Macro Instructions.

186 DFSORT Application Programming: Guide

Chapter 5. Invoking DFSORT from an Assembler Program

Merge restriction

Copy restrictions

This chapter describes how you can initiate DFSORT from within your assembler
program with a system macro instruction, instead of with the EXEC job control
statement in the input stream.

DFSORT can also be invoked from programs written in COBOL or PL/I. How to
do this is described in the relevant COBOL and PL/I programmer's guides. JCL
requirements are, however, the same as for assembler.

Merge applications cannot be done when DFSORT is invoked from a PL/I
program.

• Copy applications cannot be done when DFSORT is invoked from a PL/I
program.

• If you invoke DFSORT from a COBOL program, the following restrictions
apply:

If using OS/VS COBOL, a copy application cannot be done.

If using VS COBOL II, the OPTION COPY statement can be placed in
either the COBOL II IGZSRTCD data set or the DFSORT SORTCNTL
data set.

If using the COBOL II FASTSRT compile time option for any part or all
of the COBOL SORT statement, a copy application can be done.

If using the COBOL MERGE statement, a copy application cannot be
done.

See "Requirements for Copy Processing" on page 163 for exit requirements.

Chapter 5. Invoking DFSORT from an Assembler Program 187

System Macro Instructions

System macro instructions are macro instructions provided by IBM for
communicating service requests to the control program. You can use these
instructions only when programming in assembler language; they are processed by
the assembler program using macro definitions supplied by IBM and were placed in
the macro library when the control program under which you operate'was installed.

You can specify one of three different system macro instructions to pass control to
the program: LINK, ATTACH, or XCTL.

When you issue one of these instructions, the first load module of DFSORT is
brought into main storage. The linkage relationship between your program and
DFSORT differs according to which of the instructions you have used. For a
complete description of the macro instructions and how to use them, ref er to
Supervisor Services and Macro Instructions.

How to Use the Macros

In order to initiate execution of DFSORT with a system macro instruction, you
must:

• Write the required job control language DD statements.

• Write DFSORT control statements as operands of assembler DC instructions.

• Write a parameter list containing information to be passed to DFSORT and a
pointer containing the address of the parameter list. Two types of parameter
lists are accepted by DFSORT: a 24-bit parameter list, and an extended
parameter list. Although you can choose either parameter list for OS/VS 1,
MVS, or MVS/XA applications, the extended parameter list can perform a
superset of the functions in the 24-bit parameter list, and thus should be used
for new DFSORT applications.

• Prepare the macro instruction, in which you must specify the entry point name
of DFSORT.

Note: The save area passed to DFSORT must begin on a fullword boundary.

In addition, the following rule applies:

• If you are invoking DFSORT recursively (for example, from E15 or E35 exit),
you must always wait for the last invoked sort to end before you can give
control back to any of your exits in an earlier invoked sort.

188 DFSORT Application Programming: Guide

JCL DD Statements

JCL DD statements of the type shown in Figure 27 are usually required. The
statements and their necessary parameters are described in Chapter 3.

//SORTLIB DD (parameters)
Defines the data set containing the special DFSORT
program modules for a sort using tape work files or a merge
using the conventional technique.

I /SORTIN1 DD (parameters)
Defines the data set to be sorted or copied.
Not needed if you supply all input through El5.

//SORTINnnt DD (parameters)
Defines data sets to be merged. Not needed if you supply
an E32 exit.

//SORTWKnnt DD (parameters)
Defines work data sets. Needed for most sorting applications
applications but not for a merge or copy.

/ /SYSOUTt DD SYSOUT=A
Defines the output data set for DFSORT messages.

//SORTOUTt DD (parameters)
Defines the output data set. Not needed if you handle
all output through E35.

I /SORTCNTLl DD *
Defines a data set with overriding control statements. Not
needed if the control statements in the parameter list are
acceptable.

/ /SORTDIAG DD DUMMY
Only used for debugging; usually not needed.

//SYSINDD
Contains user exit routines to be link-edited by DFSORT
in object deck format.

I /SORTMODS DD
Defines a temporary partitioned data set large enough to
contain all your exit routines that appear in SYSIN for a
given application.

Figure 27 (Part 1 of 2). Example of DD Statements for a Dynamically Invoked Sort

Chapter 5. Invoking DFSORT from an Assembler Program 189

/ /SYSPRINT DD
Used for messages from the linkage editor.

//SYSUTl DD
Used as a work area by the linkage editor.

//SYSLINDD
Defines a data set in which DFSORT places control
information for the linkage editor.

/ /SYSLMOD DD
Defines a data set that contains output from the linkage
editor.

Figure 27 (Part 2 of 2). Example of DD Statements for a Dynamically Invoked Sort

1 These are the default ddnames. They can be changed at execution time
by the parameter list. SYSOUT can also be changed at installation time.
For override information, see Appendix D.

Program Control Statements for the 24-Bit Parameter List

The program control statements described in Chapter 2 are usually provided in the
form of character constants defined by assembler DC instructions. When using the
24-bit parameter list, the address of each control statement must be given in the
parameter list. The rules for preparing the program control statements are:

• Program control statements must be in EBCDIC format.

• SORT (or MERGE) and RECORD statements are always required.

• The MODS statement is required when exits other than E15, E32, and E35 are
to be used, or when the E 15 or E3 5 routine addresses are not passed by the
parameter list.

• ALTSEQ can be used to modify the EBCDIC collating sequence, as described
in "ALTSEQ Control Statement" on page 42.

• DEBUG is needed only for debugging.

• At least one blank must follow the operation definer (SORT, MERGE,
RECORD, ALTSEQ, DEBUG, or MODS). A control statement may start
with one or more blanks and must end with at least one blank. No other
blanks are allowed.

190 DFSORT Application Programming: Guide

• The content and format of the statements are as described in Chapter 2,
except:

Labels are not allowed; a leading blank is optional.

No continuation character is allowed (the statements are not specified in
image format).

• Neither comment statements nor comment fields are permitted.

• If you use ATTACH to initiate the program, you cannot use the
checkpoint/restart facility and, therefore, should not specify CK.PT in the
SORT statement image.

For full override and applicability details, see Appendix D.

SORT Statement Image Example

SORTBEG
SOR TEND

DC
DC

C' SORT FIELDS=(10,15,CH,A) I

C' I

This form, with a trailing blank separately defined, allows you to refer to the last
byte of the statement (SORT statement end address) by the name SORTEND.

Program Control Statements for the Extended Parameter List

When using the extended parameter list, the control statements are written in a
single area to which the parameter list points. The control statement area consists
of:

• A 2-byte field containing the length (in binary) of the character string to
follow.

• A character string containing valid images of the control statements to be used
at execution time.

The control statements must be separated by one or more blanks; a blank
preceding the first statement is optional; however, a trailing blank is required. No
labels, comment statements, or comment fields are allowed.

Format of the 24-Bit Parameter List

Figure 28 on page 192 shows the format of the 24-bit parameter list and the
pointer containing its address which you must pass to DFSORT. Detailed
specifications for each of the entries in the parameter list follow.

For full override and-applicability details, see Appendix D.

Chapter 5. Invoking DFSORT from an Assembler Program 191

Address of pointer

(Hex) (Dec) X'80' Pointer to the beginning of the parameter list

Byte 1 Byte 2 Bytes 3 and 4

-2 -2 Unused Unused l Number of bytes i n fo 1 1 ow i n g 1 is t 1

p3 2 X'OO' Starting address of SORT or MERGE statement2

6 6 X'OO' Ending address of SORT or MERGE statement3

A 10 X'OO' Starting address of RECORD STATEMENTl

E 14 X'OO' Ending address of RECORD statementl

12 18 X'OO' Address of E15 or E35 routine (zeros if none)l

16 22 X'OO' Address of E35 routine (zeros if none) 1

lA 26 X1 02' Starting address of MODS statement2

lE 30 X'OO' Ending address of MODS statement2

22 34 X'OO' Optional main storage value (hex)3

26 38 x 1 01 1 Optional reserved main storage value (hex)3

2A 42 X'03' Starting address of message ddname3

2E 46 X'04' Number of input files to a merge-only (4)3,4

32 50 x•o5' Starting address of DEBUG statment3

36 54 X'OO' Ending address of DEBUG statement3,5

3A 58 X'06' Starting address of ALTSEQ statement3

3E 62 X'OO' Ending address of ALTSEQ statement3,6

42 66 X'F6 1 Pointer to ALTSEQ translation table3

46 70 X'F7' User exit address constant3

4A 74 X'FD' These 3 bytes are ignored3

4E 78 X'FE' Pointer to 104-byte STAE/ESTAE work area (or zeros)3

52 82 X1 FF 1 Message option (MSGPRT)3

56 86 Optional character for ddname.3

Figure 28. The 24-Bit Parameter List When Attaching the Program

192 DFSORT Application Programming: Guide

Notes:

Required entries, which must appear in the relative positions shown.

2 Optional entries, which, when included, must appear in the relative positions
shown.

3 Optional entries, which must appear directly after the other entries. They can
appear in any order, except that those identified by 5 and 6 must be
consecutive as shown.

4 Must appear if the MERGE statement is present, and input is supplied
through E32, unless the FILES option of the MERGE statement is specified
(see Appendix D).

5 The ending address of the DEBUG statement must appear after the starting
address.

6 The ending address of the AL TSEQ statement must appear after the starting
address.

Byte Explanation

-2 to -1

0 to +1

2-5

6-9

10-13

14-17

18-21

Unused.

The byte count. This 2-byte field contains the length of the parameter
list. The length is specified in bytes, in hexadecimal. This 2-byte field
is not included when counting the number of bytes occupied by the
list.

The total length of the required entries is 24 (X '0018 '). All optional
entries are four bytes long, except those referring to control statement
images, which are each eight bytes long.

The starting address of the SORT or MERGE statement image. Must
be in the last three bytes of this fullword. The first byte must contain
x•oo•.

The ending address of the SORT or MERGE statement image. Must

be in the last three bytes. The first byte must contain X' 00' .

The starting address of the RECORD statement image. Must be in
the last three bytes. The RECORD statement must include the
LENGTH parameter if E15 is specified. The first byte must contain

x•oo'.

The ending address of the RECORD statement. Must be in the last

three bytes. The first byte must contain X' 00'.

The address of your E15 or E32 routine, if any; otherwise, all zeros.
Must be in the last three bytes. The first byte must contain X' 00' .

Chapter 5. Invoking DFSORT from an Assembler Program 193

22-25

26-29

30-33

34-37

38-41

42-45

46-49

50-53

54-57

The address of your E35 routine, if any; otherwise, all zeros. Must be
in the last three bytes. The first byte must contain X' 00 1

•

The starting address of the MODS statement image. Must be in the
last three bytes. (If present, it must be in this location.) The first byte

must contain X 102'.

The ending address of the MODS statement image. Must be in the
last three bytes. The first byte must contain X' 00;. (If the MODS
statement image is present, this entry must be in this location in the
list.)

Main storage value (optional). The first byte must contain X 100 1 •

The next three bytes contain either the characters MAX or a
hexadecimal value. You can use this option to temporarily override
the SIZE= {MAX I n} installation option. (For full override details,
see Appendix D.) For an explanation of this value, see the
MAINSIZE parameter of the OPTION statement.

A reserved main storage value (optional). The first byte must contain
a hexadecimal one (X 101 '). The next three bytes contain a
hexadecimal value that specifies a number of bytes to be reserved,
where the minimum is 4K. For an explanation of this value, see the
RESINY parameter of the OPTION statement.

You can use this option to temporarily override the RESINY =n
installation default. For full override and applicability details, see
AppendixD.

Message ddname (optional). The ddname for the output data set for
program messages. You can use this option to override the installation
default. For full override and applicability details, see Appendix D.
For details on use of the message data set, see Appendix H.

The first byte must contain X' 03 1 • The following three bytes contain
the address of an 8-byte field containing the name, padded with
blanks if necessary. The name can be any valid ddname. Make sure it
is unique.

Number of input files to a merge. This entry is needed only if the
MERGE statement is present and input to the merge is being supplied
through the E32 exit. This information may also be supplied on the
MERGE statement. The first byte must contain X 104'. The next
three bytes contain the number of files, in hexadecimal. For full
override and applicability details, see Appendix D.

The starting address of the DEBUG control statement image. The

first byte must be X' 05 ' .

The ending address of the DEBUG control statement image. Must be

in the last three bytes. The first byte must contain X' 00 1
.

194 DFSORT Application Programming: Guide

58-61

62-65

66-69

70-73

74-77

78-81

82-85

The starting address of the AL TSEQ control statement image. The

first byte must be X' 06'. For full override and applicability details,
see Appendix D.

The ending address of the AL TSEQ control statement image. Must be
in the last three bytes. The first byte must contain X' 00' .

The address of a 256-byte translate table supplied instead of an
AL TSEQ statement. If this parameter is present, the '06' parameter
is ignored. The first byte must contain 'F6'. For full override and
applicability details, see Appendix D.

User exit address constant.

These 4 bytes are passed to E15 (at offset 4 in the E15 parameter list)
and/or to E35 (at offset 8 in the E35 parameter list) after DFSORT

replaces the X' F7 ' with an X' 00' .

X'FD' in the first byte (the VLSHRT option) specifies that DFSORT
is to continue sorting or merging if a variable-length input record is
encountered that is too short to contain all specified control fields.
For full details of this option, see the VLSHRT parameter on the
OPTION statement. You can use this option to temporarily override
the NOVLSHRT installation default. For full override and
applicability details, see Appendix D.

If the first byte contains X' FE', the ST AB/EST AE routine you
provide will receive control. You can also include in the last three
bytes the address of a 104-byte save area where the STAE/ESTAE
work area will be saved; otherwise, these bytes must contain zeros. If
this option is omitted, no ST AB/EST AE routine will receive control at
program failure.

The message option. The first byte must contain X' FF' . The
following three bytes contain the characters NOF, (I), or (U). This
parameter is equivalent to the MSGPRT option of the OPTION
statement and specifies the printing of messages as follows:

NOF Messages and control statements are not printed. Critical
messages are written to the master console.

(I) All messages except diagnostic messages (ICE800I to
ICE9991) are printed. Critical messages are also written to
the master console. Control statements are printed only if
LIST is in effect.

(U) Only critical messages are printed. They are also written to
the master console. Control statements are not be printed
(NOLIST is forced).

All messages are written to the message data set. For details on use of
the message data set, see Appendix H. For full override and
applicability details, see Appendix D.

Chapter 5. Invoking DFSORT from an Assembler Program 195

86-89

For compatibility reasons, the forms:
{(NO I (AP I (AC I (CC I (CPI (PC} are also accepted.

Following is the MSGPRT /MSGCON equivalence for these options:

Option
(NO
(AP
(AC
(CC
(CP
(PC

MSGPRT
NONE
ALL
NONE
NONE
CRITICAL
ALL

MSGCON
NONE
CRITICAL
ALL
CRITICAL
CRITICAL
ALL

Four characters, which replace "SORT" in the following ddnames:
SORTIN, SORTOUT, SORTINnn, SORTWKnn, and SORTCNTL.
You must use this option when you dynamically invoke DFSORT
more than once in a program step.

The four characters must all be alphanumeric or national($,#, or@),
the first character must be alphabetic, and the reserved names DIAG,
BALN, OSCL, POLY, CRCX, PEER, LIST, and SYSc (where c is
any alphanumeric character) must not be used. Otherwise, the four
characters are ignored.

Example: if you use ABC# as replacement characters, DFSORT will
use DD statements ABC#IN, ABC#CNTL, ABC#WKnn, and
ABC#OUTinstead of SORTIN, SORTCNTL, SORTWKnn, and
SOR TOUT.

Format of the Extended Parameter List

Figure 29 on page 197 shows the format of the extended parameter list and the
pointer containing its address, which you must pass to DFSORT.

The first parameter must be specified. A 4-byte field containing X' FFFFFFFF'

must be used to indicate the end of the parameter list, and can be coded anywhere
after the first parameter.

If a parameter is specified, it must appear in the indicated position and must
contain a 31-bit address or a clean (the first 8 bits containing zeros) 24-bit address.

If a parameter is not specified, it will be treated as if it were specified as zeros.

For full override and applicability details, see Appendix D.

196 DFSORT Application Programming: Guide

Register

(Hex) (Dec)
I

Bit 0

0 0
~ ..---·
0 Address of control statements (zero if none)

4 4 f Address of user exit E15 or E32 (zeros if none)

8 8 f Address of user exit E35 (zeros if none)

c 12 User exit address constant (zeros if none)

10 16 Address of ALTSEQ translation table (zeros if none)

14 20 Address of STAE/ESTAE area field (zeros if no STAE/ESTAE routine)

18 24 f Address of user exit E18 (zeros if none)

1 c 28 f Address of user exit E39 (zeros if none)

20 32 X1 FFFFFFFF 1

Figure 29. Extended Parameter List

Byte Explanation

0-3 Required. The address of the area containing the DFSORT control
statements, if any; otherwise all zeros. The high order bit must be 0 to
identify this as an extended parameter list. If this is the last
parameter, it must be followed by X' FFFFFFFF'.

If you specify this parameter as zeros, you must supply all the required
control statements by means of the SORTCNTL DD statement.

4-7 Optional. The address of the E15 or E32 routine that your program
has placed in main storage (for example, via LOAD), if any;
otherwise, all zeros. If this is the last parameter, it must be followed

by X 1FFFFFFFF 1 •

f (bit 0) has the following meaning when executing in an MVS/XA
system:

• 0 =Enter the exit with 24-bit addressing in effect (AMODE 24).

• 1 =Enter the exit with 31-bit addressing in effect (AMODE 31).

8-11 Optional. The address of the E35 routine that your program has
placed in main storage (for example, via LOAD), if any; otherwise, all

zeros. If this is the last parameter, it must be followed by

X 1FFFFFFFF 1 •

Chapter 5. Invoking DFSORT from an Assembler Program 197

12-15

16-19

20-23

24-27

28-31

f (bit O) has the following meaning when executing in an MVS/XA
system:

• 0 =Enter the exit with 24-bit addressing in effect (AMODE 24).

• 1 =Enter the exit with 31-bit addressing in effect (AMODE 31).

Optional. The user address constant, if any; otherwise, all zeros. This
field will be passed to the E 15 and/ or E3 5 routines. If this is the last

parameter, it must be followed by X' FFFFFFFF'.

Optional. The address of a 256-byte translate table supplied instead
of an AL TSEQ statement, if any; otherwise, all zeros. If specified, it
will override any translate table specified at installation time. If this is

the last parameter, it must be followed by X 1FFFFFFFF 1 •

Optional. The address of a ST AE/EST AE area field if the
ST AE/EST AE routine you provide should receive control at program
failure; otherwise, all zeros. If this is the last parameter, it must be

followed by X' FFFFFFFF'.

The ST AE/EST AE area field is a 4-byte field containing either the
address of a 112-byte work area where ST AE/EST AE information
will be saved, or all zeros if the ST AE/EST AE information is not to
be saved.

Optional. The address of the E 18 routine that your program has
placed in main storage (for example, via LOAD), if any; otherwise, all
zeros. This parameter will be ignored for a merge application and for a
tape work data set sort application. If this is the last parameter, it must

be followed by X 1 FFFFFFFF'.

f (bit O) has the following meaning when executing in an MVS/XA
system:

• 0 =Enter the exit with 24-bit addressing in effect (AMODE 24).

• 1 =Enter the exit with 31-bit addressing in effect (AMODE 31).

Optional. The address of the E39 routine that your program has
placed in main storage (for example, via LOAD), if any; otherwise, all
zeros. This parameter is ignored for a conventional merge application
and for a tape work data set sort application. Because this is the last

parameter, it must be followed by X 1FFFFFFFF'.

f (bit O) has the following meaning when executing in an MVS/XA
system:

• 0 =Enter the exit with 24-bit addressing in effect (AMODE 24).

• 1 =Enter the exit with 31-bit addressing in effect (AMODE 31).

198 DFSORT Application Programming: Guide

Writing the Macro Instruction

When writing the LINK, ATTACH, or XCTL macro instruction, you must:

Specify SORT (the entry point) in the BP parameter of the instruction. (This
applies to both sorting and merging applications.)

Load the address of the pointer to the parameter list into register 1 (or pass it
in the MF parameter of the instruction).

Note: If you are using ATTACH, you may also need the ECB parameter.

If you provide an E15 exit routine address in the parameter list, DFSORT ignores
the SORTIN data set; your El5 exit routine must pass all input records to the sort
program. The same applies for a merge if you specify an exit E32 address. This
means that your routine must issue a return code of 12 ("insert record") until the
input data set is complete, and then a return code of 8 ("do not return").

Similarly, DFSORT ignores the SORTOUT data set if you provide an E35 exit
routine address in the parameter list. Your routine is then responsible for disposing
of all output records. It must issue a return code of 4 ("delete record") for each
record in the output data set. When the program has deleted all the records, your
routine issues a return code of 8 ("do not return").

When DFSORT completes execution, it passes control to the routine that invoked
it.

When a single task attaches two or more program applications, you must modify
the standard ddnames so that they are unique. For ways of doing this, and for the
rules of override, see Appendix D.

If you ATTACH more than one DFSORT application from the same program, you
must wait for the first to complete before attaching the next, and so forth-unless
the application is a disk sort, in which case the program is reenterable (provided
that any exit routines you use are also reenterable).

When you initiate DFSORT via XCTL, you must give special consideration to the
area where the parameter list, address list, optional parameters, and modification
routines (if any) are stored. This information must not reside in the module that
issues the XCTL, because the module is overlaid by DFSORT.

There are two ways to overcome this problem. First, the control information can
reside in a task that attaches the module that issu~s the XCTL. Second, the
module issuing the XCTL can first issue a GETMAIN macro instruction and place
the control information in the main storage area it obtains. This area is not
overlaid when the XCTL is issued. The address of the control information in the
area must be passed to DFSORT in general register 1.

Chapter 5. Invoking DFSORT from an Assembler Program 199

Examples

Example 1. Specifying a Main Storage Value (24-Bit Parameter List)

Figure 30 shows a 24-bit parameter list when specifying the main storage option
for a sort application.

(Hex)(Dec)

-2 -2 Unused I X'OOlC'

2 2 X'OO' Starting address of SORT statement

6 6 x'oo' Ending address of SORT statement

A 10 x'oo' Starting address of RECORD statement

E 14 x'oo' Ending address of RECORD statement

12 18 x'oo' Address of E15 routine

16 22 x•oo' Address of E35 routine

lA 26 x•oo' Main storage value (in hexadecimal)

Figure 30. Specifying the Main Storage Option (24-Bit Parameter List)

200 DFSORT Application Programming: Guide

Example 2. Supplying Input through Exit E32 and Giving Control to the
STAE/ESTAE Routine (24-Bit Parameter List)

Figure 31 shows a 24-bit parameter list for a merge application when supplying
input through exit E32 and giving control to the STAE/ESTAE routine if the
program fails.

(Hex)(Dec)

-2 -2 Unused l X1 00lC 1

2 2 x•oo• Starting address of MERGE statement

6 6 x•oo• Ending address of MERGE statement

A 10 x•oo• Starting address of RECORD statement

E 14 x•oo• Ending address of RECORD statement

12 18 x•oo• Address of E32 routine

16 22 x•oo• Zeros (no E35 routine provided)

lA 26 x'o4' Number of input files

lE 30 X1 FE 1 (Zeros-no work area address provided)

Figure 31. Specifying E32 and STAE/ESTAE Routine (24-Bit Parameter List)

Chapter 5. Invoking DFSORT from an Assembler Program 201

Example 3. How a 24-Bit Parameter List Might Appear in Main Storage

Figure 32 shows how a 24-bit parameter list might appear in main storage.

Reg 1 I 0 0 I 0 0 I 10 I 0 0 I (pointer to address)

/
1000 I a 0 j 0 0 (10) 0 6 j (address of parameter list)

I
1004 00 00 00 24

1008 00 00 10 36

100C 00 00 10 SB

1010 00 00 10 SC

1014 00 00 10 7S

1018 00 00 20 00

101C 00 00 30 00

1020 A B C #

1036

F

105C

s 0 R T

1 0 1

I L s z

F I E L D S =

s c H A)

= 4 7 8 0 6 b

105B

. 1024 0 0 0 0 6 5 9 0 Optional 1~1~1~1~1~1:1~1:1~1~1=1~1T 1 H 1
102C FF (U) 1075

Parameter list

Figure 32. The 24-Bit Parameter List in Main Storage

General register 1 contains a pointer to the address of the parameter list, which is
at location 1000. The address points to the parameter list, which begins at location
1006. The first 2-byte field of the parameter list contains, right-justified in
hexadecimal, the number of bytes in the list (36 decimal).

The first two fullwords in the parameter list point to the beginning (location 1036)
and end (location 105B) of the SORT control statement. The next two fullwords
point to the beginning (location 105C) and end (location 1075) of the RECORD
statement.

The fifth and sixth fullwords in the list contain the entry point addresses for the
E15 exit (location 2000) and E35 exit (location 3000).

The next fullword in the list contains four characters to replace the letters 'SORT'
in the ddnames of standard DD statements.

The next two fullwords in the list specify a main storage value for this application
and a message option.

202 DFSORT Application Programming: Guide

Example 4. Coding a 24-Bit Parameter List

The example in Figure 33 shows, in assembler language, how to code the
parameters and statement images in Figure 3 2 on page 202, and how to pass
control to DFSORT.

LA 1,PARLST
ATTACH EP=SORT

LOAD ADDR OF PARAM POINTER IN R1
INVOKE SORT

PARLST DC X'SO' ,AL3(ADLST) POINTER FLAG/ADDRESS OF PARAM LIST

CNOP 2,4
ADLST DC AL2(LISTEND-LISTBEG)
LISTBEG DC A(SORTA)

DC A (SORTZ)
DC A(RECA)
DC A(RECZ)
DC A(MOD1)
DC A(MOD2)
DC C'ABC#'
DC F'720000'
DC X'FF'
DC c I (U) '

LISTEND EQU *

ALIGN TO CORRECT BOUNDARY
PARAM LIST LENGTH
BEGINNING ADDRESS OF SORT
END ADDRESS OF SORT STMT
BEGINNING ADDR OF RECORD
END ADDR OF RECORD STMT
ADDR OF E15 RTN
ADDR OF E35 RTN
DDNAME CHARACTERS

STMT

STMT

OPTIONAL MAIN STORAGE VALUE
MESSAGE OPTION FLAG BYTE
MESSAGE OPTION

SORTA DC C' SORT FIELDS=(10,15,CH,A) ,' SORT CONTROL STMT

SORTZ
RECA
RECZ

MOD1

DC C'FILSZ=4780' (CONTINUED)
DC C' I DELIMITER
DC C' RECORD LENGTH=100,TYPE=F' RECORD CONTROL STMT
DC C' I DELIMITER
DS OH
USING *,15
(routine for exit E15)

USING *,15
MOD2 (routine for exit E35)

Figure 33. Coding a 24-Bit Parameter List

Chapter 5. Invoking DFSORT from an Assembler Program 203

*

*

PL1
PL2
PL3
PL4
PLS
CTLST

CTL1

CTL2
OUT
E15

Example 5. Coding an Extended Parameter List

The example in Figure 34 shows, in assembler language, how to code parameters
and statement images, and pass control to DFSORT, using an extended parameter
list.

LA R 1, PL 1

ST R2,PL4

LINK EP=SORT

SET ADDRESS OF PARAMETER LIST
TO BE PASSED TO SORT/MERGE

SET ADDRESS OF GETMAINED AREA
TO BE PASSED TO E15

INVOKE SORT/MERGE

DC A(CTLST) ADDRESS OF CONTROL STATEMENTS
DC A(E15) ADDRESS OF E15 ROUTINE
DC A(O) NO E35 ROUTINE
DS A USER EXIT ADDRESS CONSTANT
DC F'-1' INDICATE END OF LIST
DS OH CONTROL STATEMENTS AREA
DC AL2(CTL2-CTL1) LENGTH OF CHARACTER STRING
DC C' SORT FIELDS=(4,5,CH,A)'
DC C' OPTION I

DC C'RESINV=2048,FILSZ=E25000,MSGDDN=MSGOUT I

DC C' OMIT COND=(S,8,EQ,13,8) ,FORMAT=FI I

DC C' RECORD TYPE=F,LENGTH=80 '
EQU *
DCB DDNAME=SYSOUT, ... MYSORT USES SYSOUT
DS OH E15 ROUTINE

BR R14 RETURN TO SORT/MERGE
* MAPPING OF PARAMETER LIST
SRTLST DS A

PASSED TO E15 FROM SORT/MERGE
ADDRESS OF RECORD

GMA DS A

*

Figure 34. Coding an Extended Parameter List

204 DFSORT Application Programming: Guide

ADDRESS OF AREA GETMAINED BY
MY SORT

Chapter 6. Improving Program Efficiency

DFSORT automatically optimizes performance by analyzing the information given
to it. This automatic optimization sets optimization variables (such as buffer sizes)
and selects the most efficient sort or merge technique.

You can optimize program performance by:

• Using Syste,m/370-MVS/XA Operating System.

• Planning your application development (including data formats) for efficient
use of the program.

• Using the most efficient sort/merge techniques.

• Planning for optimal use of work storage devices.

• Specifying the input/ output data set characteristics correctly.

• Using JCL to initiate DFSORT.

• Using options that may enhance performance.

• A voiding options that may degrade performance.

These techniques are described in detail below.

Using System/370-MVS/XA Operating Systems

On MVS/XA systems, DFSORT can automatically

Use virtual storage above 16-megabyte virtual.

• Free space below 16-megabyte virtual.

• Allow more efficient sorting.

• Eliminate the need to change J CL, unless SIZE or MAIN SIZE is specified.

In addition, System/370-XA Sorting Instructions can enhance DFSORT's
performance when sorting FLR records. DFSORT selects the System/370-XA
Sorting Instructions if the following requirements are met:

• The System/370-XA Sorting Instructions are activated.

Chapter 6. Improving Program Efficiency 205

• FLR records are being sorted.

• The Blockset sorting technique is being used.

• DEBUG NOASSIST is not specified.

Diagnostic message ICE8071 indicates whether the System/370-XA Sorting
Instructions were used.

Planning Applications

Efficient Blocking

You should consider several factors when you design new applications. Some of
these factors are discussed in the following sections.

Performance of DFSORT may be significantly improved if you block your input
and output records. A blocksize of approximately 6000 bytes is generally
considered to be a good value for DASD data sets. For large files, files on tape, or
files which you sort of ten, you may want to choose a larger blocksize. In general,
the larger your input and output blocksizes, the better DFSORT's performance.

Efficient Control Field Sorting

When you design new applications, you can improve the program's performance if
you:

• Put the control fields used for subsequent sorting or merging at the beginning
of your record in descending order of significance, and

• Use the most efficient control field data formats and control field descriptions.

Control fields may be contiguous, separated, or overlapping. The control fields
may occur anywhere within the first 4092 bytes of a data record, but their total
length must not exceed 4092 bytes.

Location of Control Fields: The following example illustrates the benefit of
locating control fields at the beginning of a record.

Assume that your input record has the following layout:

le
where 1 = the more significant sorting or merging control field

2 = the less significant sorting or merging control field
A, B, and C are not sorting or merging control fields.

206 DFSORT Application Programming: Guide

Internally, the program reorganizes the record fields prior to the actual sorting or
merging as follows:

Is le
Upon completion of the actual sorting, the record fields are restored to their
original positions.

By designing your record format to conform to the second diagram, you can
improve the program performance.

Control Field Data Formats and Descriptions: Whenever possible:

• Use either EBCDIC character or binary control fields.

• Start and end binary control fields on byte boundaries.

• A void using the alternate collating sequence character translation, because this
function not only increases CPU time, but also increases the total length of the
internal record.

• Use packed decimal format rather than zoned decimal, because DFSORT
packs the control fields and also increases the total length of the internal
record.

• If several contiguous character or binary control fields in the right order of
significance are to be sorted in the same order (ascending or descending),
specify them as one control field.

• A void overlapping control fields.

By carefully designing your application from the beginning with the above
considerations, the performance for your sorting applications improves.

Tuning Main Storage

Either the REGION value or the MAINSIZE/SIZE value can be the limiting factor
in determining how much storage is available to DFSORT. See DFSORT Planning
and Installation for more details.

Generally, the most efficient way to allocate (virtual) main storage is to specify
MAINSIZE/SIZE=MAX. However, problems can arise if the values for
TMAXLIM and/ or MAX.LIM installation options have been set excessively high
(or low). Guidelines for setting these values are given in DFSORT Planning and
Installation.

Note: Do not use SIZE/MAINSIZE=MAX with password-protected data sets if
passwords are to be entered through a routine at an exit, because DFSORT cannot
then open the data sets during the initialization phase to make the necessary
calculations.

Chapter 6. Improving Program Efficiency 207

If you specify MAINSIZE/SIZE=n and the value is less than that specified for the
MINLIM installation option, MINLIM is used.

If the MINLIM value is greater than that specified for REGION on the EXEC
statement, DFSORT attempts to use the value specified for MINLIM; if it fails to
get the amount specified by MINLIM, DFSORT still tries to execute, provided at
least 88K bytes (below 16-megabyte virtual for MVS/XA) are available to
DFSORT.

Although DFSORT requires a minimum of 88K bytes (below 16-megabyte virtual
for MVS/XA), the minimum amount of main storage required depends on the
application.

You may need more main storage if you use:

Spanned records

COBOL user-exit routines

AL TSEQ or CHAL T

INCLUDE, OMIT, SUM, OUTREC, or INREC (although INREC can also
reduce storage requirements by shortening record sizes.)

• Very large blocks or logical records

VSAM data sets (For more information, see your VSAM manuals.)

Note: In some cases, this release may use more storage than prior releases. This
may affect the operation of some jobs. For example, there may be jobs that run as
in-storage sorts (with no SORTWKnn data sets) that will not run in-storage when
using this release.

When sorting records using Blockset on an MVS/XA system, DFSORT attempts
to allocate storage above and below 16-megabyte virtual. The total amount of
storage allocated is normally controlled by TMAXLIM. A REGION size of at
least 300K bytes should be available if DFSORT is to achieve acceptable
performance. The allocation of storage can be adversely affected if you have a
smaller region value or if DFSORT needs to allocate buffers below 16-megabyte
virtual.

The relationship between TMAXLIM, MAXLIM, MINLIM, and REGION might
be described as a series of checks and balances.

Your system programmer has set the default storage values according to your
installation's major sorting requirements. If you have an overnight or batch time
window that must be met, then increasing storage (using REGION or
SIZE/MAINSIZE=n) could give you some relief from the time constraint. If you
are concerned with processor time, then decreasing storage (using REGION or
SIZE/MAINSIZE=n) could reduce the processor time associated with sorting
small files.

208 DFSORT Application Programming: Guide

In general, when you vary main storage that you make available to DFSORT, the
following occurs:

1. If you increase the amount of storage:

• EXCPs are reduced.

• On a light to medium-loaded system, elapsed time decreases.

• On a heavily loaded system, elapsed time could increase because DFSORT
could be swapped out more of ten.

Processor time may remain stable or increase because of the overhead in
managing the extra storage. For large files (more than 64 megabytes),
however, processor time may decrease because the overhead in managing
the extra storage would be less than the benefit gained by DFSORT
making fewer passes over the data.

2. If you decrease the amount of storage:

• EXCPs increase.

• Elapsed time increases for most sorts.

• Processing time decreases for small files, but increases for large files.

Changing the main storage allocation can affect system efficiency: By reducing the
amount of main storage allocated, you impair performance of DFSORT in order to
allow other programs to have the storage they need to operate simultaneously; and,
by increasing the allocation, you can run large DFSORT applications efficiently at
the risk of decreasing the efficiency of other jobs sharing the multiprogramming
environment.

How to Get DFSORT to Release Storage

Under some circumstances, DFSORT uses all the available storage in your
REGION . For MVS/XA, this normally will not occur for storage above
16-megabyte virtual (if it does, use the ARESINV and/ or ARESALL options or
lower your SIZE/MAINSIZE value). This section explains how to release storage
within your REGION.

When SIZE/MAINSIZE=n and n is greater than the REGION parameter or
default REGION value for your sort job, or when SIZE/MAINSIZE=MAX and
MAXLIM (or TMAXLIM for MVS/XA systems) is greater than your REGION,
specify the storage you need released in the following way:

• For jobs with user exits:

For JCL-invoked DFSORT, you can choose one of the following:

Use them parameter of the MODS control statement.

If SIZE=MAX is in effect, you can use the RESALL option.

Chapter 6. Improving Program Efficiency 209

Change your REGION so that REGION is greater than
SIZE/MAINSIZE (the difference is available).

If the installation parameter OVERRGN is smaller than your system
IEALIMIT value on MVS/370, this difference is available.
(OVERRGN is an installation option that can only be modified by
your system programmer).

For dynamically invoked DFSORT, you can choose one of the following:

If the exit address is not passed in the parameter list (that is, it is
specified with a MODS statement), use them parameter on the
MODS statement.

If the exit address is passed in the parameter list, and
SIZE/MAINSIZE=MAX is in effect, use the RESINY option.

If the exit address is passed in the parameter list, and
SIZE/MAINSIZE=n is in effect, change your REGION so that the
REGION is greater than SIZE/MAINSIZE (the difference is
available).

If the exit address is passed in the parameter list, and
SIZE/MAINSIZE=n is in effect, for many of your sort applications,
you should consider having the OVERRGN value changed by your
system programmer to less than your IEALIMIT value.

For jobs without user exits:

For JCL-invoked DFSORT, you can choose one of the following:

If SIZE/MAINSIZE=MAX is in effect, use the RESALL option.

If SIZE/MAINSIZE=n is in effect, change your REGION so that
REGION is greater than SIZE/MAINSIZE (the difference is
available).

Have the OVERRGN value changed by your system programmer to
less than your IEALIMIT value.

For dynamically invoked DFSORT, you can choose one of the following:

If SIZE/MAINSIZE=MAX is in effect, use the RESINY option.

If SIZE/MAINSIZE=n is in effect, change your REGION so that
REGION is greater than SIZE/MAINSIZE (the difference is
available).

Have the OVERRGN value changed by your system programmer to
less than your IEALIMIT value.

When SIZE/MAINSIZE is less than REGION, make sure the difference between
SIZE/MAINSIZE and your REGION specification value or default provides
sufficient storage for system or user exit routine use.

210 DFSORT Application Programming: Guide

Using Efficient Sort/Merge Techniques

Sorting Techniques

Blockset Sorting Techniques

Depending on various conditions, DFSORT selects different techniques for sorting
and merging. Message ICE1431 informs you which technique has been selected.

For copy applications, Blockset is the only technique used. If your program cannot
use Blockset, error message ICE160A is issued and DFSORT stops processing.

One condition that affects which sorting technique is selected is the type of device
used for intermediate storage. The Blockset, Peerage, and Vale techniques can be
used only with disk devices. If you use a tape device, the less efficient tape work
data set sort technique is used. The Blockset, Peerage, and Vale techniques are
discussed below. For more information on using tape devices for intermediate
storage, see "Tape Work Storage Devices" on page 216.

Fixed-Length Records: DFSORT's most efficient fixed-length record technique,
FLR-Blockset, is used for most sorting applications. If one or more of the
conditions for the FLR-Blockset technique are not met (for example, if the control
field is too long), the Peerage or Vale technique is used.

Variable-Length Records: The high-performance VLR-Blockset technique is used
for sorting variable-length records in most cases. If one or more of the conditions
for the VLR-Blockset technique are not met (for example, if the control field is too
long), the Vale technique is used.

Notes:

1. The B lockset technique may require more intermediate work space than Peerage
or Vale. For more information, see "Using Work Storage Devices Efficiently" on
page 212.

2. If Blockset is not selected, you can use a SORTDIAG DD statement to force
message ICE8001, which gives a code indicating why Blockset can not be used.

Peerage and Vale Disk Sorting Techniques

If the conditions for use of the Blockset sorting technique are not met, DFSORT
uses Peerage or Vale. Peerage is normally used if the following criteria are met:

• Fixed-length records
• Record length no greater than track length
• No exits to be activated other than El5, El8, E35, E39, or E61
• Control word not too long

Chapter 6. Improving Program Efficiency 211

Merging Techniques

Blockset Merging Technique

No figure can be given for how long the control word can be if the Peerage
technique is used. The control field's length depends on many variables, such as
device type for work storage and amount of main storage available for buffers.
However, the length limit is probably greater than 256 bytes.

If any one of the conditions mentioned above is not satisfied, DFSORT will use
Vale.

For merging applications, DFSORT uses either the Blockset or Conventional
technique.

DFSORT's high-performance Blockset merging technique is used for merging
fixed- and variable-length records, in most cases.

Note: If Blockset is not selected, you can use a SORTDIAG DD statement to
force message ICE800I, which gives a code indicating why Blockset cannot be
used.

Conventional Merging Technique

If the conditions for use of the Blockset merging technique are not met (for
example, if the control field is too long), DFSORT uses the Conventional merging
technique.

Using Work Storage Devices Efficiently

Performance is enhanced when multiple channels are available. Performance is
also improved if the device is connected so that two channel paths exist between
each device and the processor that is running the program.

The following table shows the relationship of file size and sorting technique to the
number of cylinders used by work data sets. (For best performance, you should
always allocate work storage in cylinders. If a temporary sort work data set is not
allocated in cylinders, DFSORT reallocates it in cylinders.) The numbers given are
estimates of the number of SORTWKnn cylinders sort uses for a particular file size
when secondary allocation is allowed. You can make primary and secondary
allocations by means of the SORTWKnn DD statement or job control language
(SPACE=). Automatic secondary allocation can be specified at installation time.
However, even if you don't allow for secondary allocation and you allocate fewer
cylinders than indicated in the table, the sorting technique may still run-but
performance is generally degraded.

212 DFSORT Application Programming: Guide

SORTWKnn Space Usedl

Fi le Size 3380
in Bytes Cylinders

3M 8

20M 47

40M 77

150M 284

This example is based on jobs run using the Blockset technique with a
SIZE/MAINSIZE parameter of 2048K bytes and one SORTWKnn data set on
an IBM 3380.

Direct Access Work Storage Devices

Program performance is improved if you use devices, storage areas, and channels
efficiently. If you specify a particular device type with the UNIT parameter on the
DD statements that define intermediate storage data sets (for example,
UNIT=3380), DFSORT assigns areas, and some optimization occurs
automatically. Best performance is achieved if you follow these recommendations:

• Use high speed disks for SORTWK.nn.

• Assign only one data set per spindle, if you can.

• Try to use the same device type as much as possible.

Use two channel paths to devices whenever you can.

• Make all data sets the same size, or as near as possible.

• Assign SORTIN, SORTOUT, and SORTWKnn on different spindles and
separate channels.

• Some improvement may be gained by specifying contiguous space for work
data sets, and by making sure that there is enough primary space that the
automatic secondary allocation is not needed.

Elapsed time is decreased when DFSORT can read input while writing to
SORTWKnn, and write output while reading from SORTWKnn. If, for example,
you have two channels, the best allocation of them is to have SORTIN and
SORTOUTon one and the SORTWKnns on the other.

Storage requirements for different disk techniques can be estimated by using the
guidelines found in Appendix B.

Chapter 6. Improving Program Efficiency 213

Device Data Transfer Rate

In general, the faster the data transfer rate of the storage device, the faster the sort.
Figure 35 on page 217 should therefore be taken into consideration when
planning for your sorting applications.

Note: The data transfer rate of any processor is limited by the speed of the
channel to which it is attached. For example, the 3880 Model 2 or 3 with the
speed matching Buffer Feature permits attachment of the IBM 3380 to systems
with block multiplexer channels with data rates less than 3 megabytes per second.

Also, the 3880 Model 1 with the Speed Matching Buffer Feature permits
attachment of the IBM 3375 to systems with block multiplexer channels with data
rates less than 3 megabytes per second.

214 DFSORT Application Programming: Guide

3000

Scale in kilobytes
per second

2500

2000

r---

1500

~

1000

~

r---"l

500

rn
"' .!!!

~
0 ~ ~ IO as ("') ,....
M ("') ("') M ("')
("') ("') (') M (')

._ ,___ - - i......,.j 0

""""" Direct Access Devices

Figure 35. Comparative Data Transfer Rates of Disk Work Storage Devices

Chapter 6. Improving Program Efficiency 215

Tape Work Storage Devices

Best performance, using tape intermediate storage, is usually obtained when you
use six or more tape drives of the fastest type. As a general rule, you should use as
many tapes as you have available for intermediate storage. A larger number of
tapes increases the number of strings that can be merged in one pass, and,
therefore, decreases the number of passes required in the intermediat~ merge
phase. This then reduces elapsed time and often the number of 1/0 operations.

Increasing the number of work units, however, also has the effect of reducing the
block size used for intermediate storage; this could become a critical factor if you
have relatively little main storage available for buffers. For example, if DFSORT
has only 88K bytes in which to operate, you probably achieve no improvement
(and may find deterioration) if you use more than four tape work units. The
general rule-to use as many tapes as you can-should be taken to apply with
more than lOOK bytes available for DFSORT.

For information on how to determine storage requirements when using different
tape techniques, see Appendix B.

Note: Frequency of tape direction changes, which occur during DFSORT workfile
operations, have more of an impact on the effective data rate of IBM 3480
Magnetic Tape Subsystems than on IBM 3420 Magnetic Tape Units. Because of
this characteristic, performance comparisons between these tape units for
intermediate storage cannot be reliably predicted and may vary widely.

Specifying Input/Output Data Set Lharacteristics

DFSORT uses the information given it about the operation it is to perform to
optimize for highest efficiency. When you do not supply information such as data
set size and record format, the program makes assumptions which, if incorrect, can
lead to inefficiency or program termination.

Simplify Control Field Descriptions

Data Set Size

When designing record formats, plan for sorting and merging the records
efficiently. For example, specify the location and data formats of control fields so
they contain EBCDIC character or binary data (beginning and ending on byte
boundaries) whenever possible-this decreases processor time. Fixed, packed, or
zoned decimal data can be sorted as if it were binary if you know it will always be
positive; and two or more contiguous character or binary fields may be sorted as
one, provided they are in order of significance (with the most important first), and
provided they are to be sorted in the same order.

When DFSORT has accurate information about data set size, it can make the most
efficient use of both main storage and intermediate storage. This information is
also important when dynamic allocation of the work files is requested (MVS only).

216 DFSORT Application Programming: Guide

If you know the exact number of records to be sorted, use that number as the value
of the FILSZ parameter in the OPTION or SORT control statement. If you do not
know the exact number, estimate it as closely as you can.

If you are using a tape sort, the most important information you can give DFSORT
is an accurate data set size in the FILSZ parameter of the OPTION or SORT
statement.

Variable-Length Records

Care should be taken to ensure that the LRECL parameter of the DCB
corresponds to the actual maximum record length contained in your data set.

Using JCL to Initiate DFSORT

Many installations invoke DFSORT from a COBOL or PL/I program instead of
initiating DFSORT by means of JCL. Because this is generally done for
convenience, you should be aware that the trade-off may be degraded
performance. DFSORT defaults specified at installation time and options specified
at execution time should be fine-tuned for optimum performance, especially to
make use of control statements that "work together," such as INCLUDE/OMIT,
INREC/OUTREC, and SUM. Using these functions, you can eliminate records
from input files, arithmetically combine records, and reformat records to eliminate
unwanted fields.

Using Options That May Enhance Performance

COB EXIT

FASTSRT

To take advantage of the COBOL II interface with DFSORT, and thereby enhance
performance, specify the COBEXIT = COB2 when running exits compiled with VS
COBOL II.

By specifying the VS COBOL II FASTSRT compile-time option, you can
significantly reduce DFSORT processor time, EXCPs, and elapsed time. With
FASTSRT, sorting input/output operations are more efficient because DFSORT
rather than COBOL does the input and output (see Figure 36 on page 218). For
more details, see your COBOL manuals.

The F ASTSR T option does not take effect for input and output if input and output
procedures are used in the SORT statement. Many of the functions usually
performed in an input or output procedure are the same as those done by DFSORT
INREC, OUTREC, INCLUDE, OMIT, STOPAFT, SKIPREC, and SUM
functions. You may be able to eliminate your input and output procedures by
coding the appropriate DFSORT program control statements and placing them in

Chapter 6. Improving Program Efficiency 217

either the SORTCNTL (DFSORT) or IGZSRTCD (COBOL) data set, thereby
allowing your SORT statement to qualify for FASTSRT.

input file

unsorted OS/VS
COBOL
or VS

DFSORT COBOL II
without

sorted FASTS RT

output file

input file

unsorted

VS COBOL
II with DFSORT
FASTS RT

sorted

output file

Figure 36. Faster Sorting with VS COBOL II

INCLUDE OR OMIT, STOPAFT, AND SKIPREC

You can use either the INCLUDE or OMIT statement and the STOPAFT and/or
SKIPREC option to reduce the size of the input file. Reducing the size of the input
file may reduce processor and data transfer time.

• The INCLUDE and OMIT statements allow you to select records by
comparing fields with constants and/ or other fields.

• The STOP AFT option allows you to specify the maximum number of records
that should be accepted for sorting or copying.

• The SKIPREC option allows you to skip records at the beginning of the input
file for sorting or copying.

218 DFSORT Application Programming: Guide

INREC and OUTREC

SUM

You can use the INREC statement to reformat the input records before processing.
This can provide more efficient processing if you reduce the size of the records (or
less efficient processing if you increase the size of the records).

OUTREC can be used to lengthen the record after processing, aligning the data
fields and introducing blanks to separate fields to make the output more legible.

When INREC and/or OUTREC is used with INCLUDE or OMIT, only the
records that remain in the data set are reformatted after the process of elimination
initiated by INCLUDE or OMIT.

You must be aware of the change in record size and layout of the resulting
reformatted input/ output records, and of which DFSORT functions must refer to
the layout of the reformatted input records, rather than the layout of the original
input records.

Three types of fields may be removed by INREC/OUTREC:

1. Padding fields (blanks or binary zeros) may be removed before processing by
using INREC, and then reinserted after processing by using OUTREC.

2. Fields that are not needed in the output records may be removed before
processing by using INREC.

3. If a variable-length file is being processed and only the fixed part of the record
is needed, the variable part may be eliminated before processing. This allows
DFSORT to manage the records internally as if they were fixed length, and can
result in significantly more efficient processing.

You can use the SUM statement to summarize records. SUM is processed after
SORT or MERGE, INCLUDE, OMIT, and/ or INREC processing has completed.
Thereafter, whenever two records with equal control fields are found, the contents
of fields defined in the SUM statement are added, the result is placed in one record,
and the other is deleted; any resulting reduction in the number of records to be
sorted or merged by DFSORT saves processor time and data transfer time.

For a diagram of the processing sequence for record handling statements, exits, and
options, see Figure 2 on page 10.

Chapter 6. Improving Program Efficiency 219

Avoiding Options That May Degrade Performance

VERIFY

EQUALS

NOWRKSEC

NOBLKSET

CKPT

Tape Work Data Sets

User Routines

The VERIFY option affects performance negatively, because it involves an extra
read operation of the written output.

The EQUALS option causes an additional field of four bytes to be added to each
record, which increases the time needed for comparison of records and for data
transfer. This does not apply to the Blockset technique for sorting variable-length
records, which always uses EQUALS.

The NOWRKSEC option prevents automatic allocation of secondary work data set
extents. This will cause reuse of the available extents involving extra reads and
writes.

The NOBLKSET option precludes the use of the more efficient Blockset technique.

The CKPT option may preclude the use of the more efficient Blockset technique.

Note: If the installation default, IGNCKPT= YES, has been selected, DFSORT
ignores the checkpoint/ restart request and select the Blockset technique.

Use of tape work data for intermediate storage precludes the use of the much more
efficient disk techniques.

When user routines are included in an application, the time required to run the job
is usually increased.

220 DFSORT Application Programming: Guide

Dynamic Link-Editing

The execution time required by most user routines is generally small, but the
routines at exits El5, E32, and E35 are entered for each record of the data set(s).
For large input data sets, the total execution time of these routines can be relatively
large.

Dynamic link-edit of user exit routines degrades performance.

Chapter 6. Improving Program Efficiency 221

Appendix A. Sample Job Streams

The table below describes the examples that are provided in this appendix.

No. Description Input Output

1 Disk sort Blocked fixed-length records on Blocked fixed-length records on
3380 9-track

2 3 3 80 sort with exits Blocked fixed-length records on Blocked fixed-length records on
3380 3380, same unit as input

3 Sort, one exit, Fixed-length unblocked records Fixed-length blocked records on
PROC=SORT on 3380 3380

4 3380 sort, tape I/O, Variable-length records on 3400 Variable-length records on 3400
exits tape tape

5 COPY using OPTION Variable-length records Variable-length records
control statement

6 Disk sort, ISCH/ ASCII Variable-length ISCH/ ASCII Variable-length ISCII/ASCII
tape I/O records on 9-track tape records on 9-track tape

7 3380 sort, ISCH/ ASCII Variable-length ISCH/ ASCII Variable length ISCH/ ASCII
tape 1/0 records on 9-track tape records on 9-track tape

8 Disk sort Blocked fixed-length records on Blocked fixed-length records on
9-track tape 9-track tape

9 Disk sort with exits Fixed-length blocked records on Fixed-length blocked records on
two unlabeled 9-track volumes one 9-track tape

10 3380 sort, exits Variable-length blocked records Variable-length blocked records
on 3350 on 3380

11 Sort with no Fixed-length blocked records on Fixed-length blocked records on
SORTWKnn, 1 exit 3380 3380

12 Concatenated input, A concatenation of three data Blocked fixed-length records on
dynamically allocated sets, two on 3 3 80 and one on 9-track tape
work areas 3400-3

13 3350 sort called from Fixed-or variable-length records Fixed-or variable-length records
another program

Appendix A. Sample Job Streams 223

No. Description Input Output

14 3350 sort using options Blocked fixed-length records Blocked fixed-length records
NOOUTREL,
DYNALLOC, DEBUG,
and FMT ABEND

15 3350 sort using control Blocked fixed-length records Blocked fixed-length records
statements OMIT,
INREC, and SUM

16 COPY using SORT Blocked fixed- or variable-length Blocked fixed- or variable-length
Control Statement records records

17 Sort using COBOL exits Fixed- or variable-length records Fixed- or variable-length records

18 Dynamic link-editing of Fixed- or variable-length records Fixed- or variable-length records
user exit routines

19 3380 sort using Blocked fixed-length records Blocked fixed-length records
extended parameter list
interface

20 Merge four files Blocked fixed-length records on Blocked fixed-length records on
two 3350s and two 3380s one 9-track tape

21 Merge two 3350 files, Variable-length blocked records Variable-length blocked records
exits on 3350 on 3350

22 Merge with equals and Fixed- or variable-length records Fixed- or variable-length records
sum

23 Define VSAM cluster VSAM variable-length records VSAM variable-length records
for DFSORT use

24 Sort with VSAM input VSAM variable-length records VSAM variable-length records
and output

25 Sort with VSAM output, Variable-length records VSAM variable-length records
exit

224 DFSORT Application Programming: Guide

Sort Examples

Example 1. DISK SORT

llEXAMP JOB A402,PROGRAMMER,REGION=512K 01
llSRT EXEC PGM=SORT,PARM='SIZE=MAX' 02
llSYSOUT DD SYSOUT=A 03
llSORTIN DD UNIT=3380,VOL=SER=000101,DISP=SHR,DSN=INPUT 04
llSORTOUT DD UNIT=3400-3,DSN=OUTPUT,VOL=SER=222222, 05
II DISP=(,KEEP) 06
llSORTWK01 DD UNIT=SYSDA,SPACE=(CYL, (10)) 07
llSORTWK02 DD UNIT=SYSDA,SPACE=(CYL, (10)) 08
llSYSIN DD * 09

SORT FIELDS=(S,12,CH,A) 10
*KEEP ESTIMATED FILSZ UP-TO-DATE 11

I*
OPTION FILSZ=E2000 12

This example is the same as that shown in Chapter 1.

Line Explanation

01 The JOB statement introduces this job to the operating system, and
specifies a region of 512K bytes.

02 The EXEC statement calls the program by its alias SORT and specifies
that the program should use all the main storage available to it.

03 The SYSOUT DD statement directs messages and control statements to
system output class A.

04 The SORTIN DD statement describes a temporary input data set named
INPUT. The data set is on a 3380 disk with the serial number 000101.
The DISP parameter indicates that the data set is known to the operating
system.

05-06 The SORTOUT DD statement describes the output data set. Output is
recorded on a 9-track tape and is kept. The data set is placed on a
standard label tape with tape volume number 222222. By default, format,
record length, and block size are the same as for SORTIN.

07-08 These DD statements define temporary work data sets. The two data sets
are on SYSDA direct access devices. Ten cylinders are specified for each
data set.

09 A data set follows in the input stream.

10 SORT statement. The FIELDS operand describes one field. It begins on
byte 5 of each record, is 12 bytes long, contains character (EBCDIC)
data, and is to be sorted into ascending order.

11 Comment statement.

12 OPTION statement. The file size is estimated to be 2000 records.

Appendix A. Sample Job Streams 225

Example 2. 3380, PROC=SORTD, EXITS

INPUT Blocked fixed-length records on 3380.

OUTPUT Blocked fixed-length records on 3380, same unit as input.

INTERMEDIATE STORAGE Three 3380 areas of 10 cylinders each.

USER ROUTINES Four: two change record lengths, one changes control fields, one
decides what to do if Nmax is exceeded.

OPTIONS Estimated data set size; maximum main storage allocation.

llEXAMP JOB A402,PROGRAMMER
llSTEP1 EXEC SORTD,PARM='SIZE=MAX' 01
llSORTIN DD UNIT=3380,VOL=SER=000101,DISP=(OLD,DELETE), 02
II DSN=INPUT 03
llSORTOUT DD UNIT=AFF=SORTIN,VOL=SER=000101,DISP=(OLD, 04
II KEEP),SPACE=CYL, (21,1)),DSN=OUTPUT, 05
II DCB=(LRECL=80) 06
llSORTWK01 DD UNIT=(3380,SEP=(SORTIN,SORTOUT)), 07
II SPACE=(CYL, (10),,CONTIG) 08
llSORTWK02 DD UNIT=(3380,SEP=(SORTIN,SORTOUT)), 09
II SPACE=(CYL, (10) ,,CONTIG) 10
llSORTWK03 DD UNIT=(3380,SEP=(SORTIN,SORTOUT)), 11
II SPACE=(CYL, (10),,CONTIG) 12
llMODLIB DD DSNAME=YOURRTNS,DISP=SHR 13
llSYSIN DD * 14

I*

SORT FIELDS=(3,8,ZD,E,40,6,CH,D) 15
OPTION FILSZ=E30000 16
RECORD TYPE=F,LENGTH=(,100,80) 17
MODS E15=(MODREC,784,MODLIB) ,E16=(E16,1024,MODLIB), 18

E35=(ADDUP,912,MODLIB) ,E61=(CHGE,1000,MODLIB) 19

Line Explanation

01 The EXEC statement specifies the SORTD cataloged procedure.
SIZE=MAX instructs the program to allocate the maximum amount of
main storage available for program execution.

02-03 The SORTIN DD statement describes an input data set on a 3380. DCB
parameters are supplied by the system (since DISP=OLD). The data set
is deleted after this job step.

04-06 The SORTOUT DD statement describes the output data set.
UNIT=AFF=SORTIN means that the data set is to be placed on the
same unit as the input data set. The output records have the same format
and block size as the input records, so these values need not be supplied.
They are shorter (see the RECORD statement), so LRECL must be
specified.

226 DFSORT Application Programming: Guide

07-12 The three SORTWKnn DD statements describe three work data sets on
an IBM 3380. Each area contains 10 cylinders. The UNIT specification
means that the intermediate storage area is not to be located on the same
device as the SORTIN and SORTOUT data sets.

13 Defines the data set containing the load modules for the user routines.

14 A data set follows in the input stream.

15 SORT statement. The FIELDS operand describes two control fields. The
first is changed by a user routine (at the E61 exit-see the MODS
statement) before the program places it into ascending order. The second
control field is not modified and is placed in descending order.

16 OPTION statement. The file size is estimated to be 30000 records.

17 RECORD statement. The fixed-length records in the input data set are
120 bytes long. A user exit routine (at the E15 exit) changes them to 100
bytes during the sort phase. A user routine at the E35 exit again changes
the length during the final merge phase, to 80 bytes each.

18-19 MODS statement. The statement describes four user routines in a library
that is defined on a job control statement with the ddname MODLIB;
these routines have the member names MODREC, E16, ADDUP, and
CHGE.

Appendix A. Sample Job Streams 227

Example 3. SYSDA SORT, PROC=SORTD, 1 EXIT

INPUT Fixed-length unblocked records on a 3380 DASO.

OUTPUT Fixed-length blocked records on a 3380 DASO.

INTERMEDIATE STORAGE Three SYSDA areas, 1 cylinder each.

USER ROUTINES E35 exit routine shortens each record by 30 bytes as it leaves the
merge.

OPTIONS

llEXAMP
llSTEP1
llSORTIN
II
II
llSORTOUT
II
II
llSORTWK01
llSORTWK02
llSORTWK03
llUSERLIB
llSYSIN

I*

SORT
OPTION
RECORD
MODS

Exact data set size, maximum sort main storage option, message
option.

JOB A402,PROGRAMMER
EXEC PROC=SORTD,PARM='SIZE=MAX,MSGPRT=NONE'
DD DSNAME=INFILE,VOL=SER=INP214,UNIT=3380,

DCB=(RECFM=F,BLKSIZE=80),
DISP=(OLD,DELETE)

DD DSNAME=OUTFILE,VOL=SER=DLIB02,UNIT=3380,
DCB=(RECFM=FB,LRECL=50,BLKSIZE=500),
DISP=(NEW,KEEP) ,SPACE=(CYL, (8,1))

DD UNIT=SYSDA,SPACE=(CYL, (1))
DD UNIT=SYSDA,SPACE=(CYL, (1))
DD UNIT=SYSDA,SPACE=(CYL, (1))
DD DSN=EX35,DISP=SHR
DD *
FIELDS=(10,5,CH,A)
FILSZ=1000
TYPE=F,LENGTH=(,,50)
E35=(E35,536,USERLIB)

Line Explanation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

01 Invokes the SORTO cataloged procedure; specifies that the maximum
amount of main storage available is to be allocated for the program's
execution, and that messages and control statements are not to be printed.

02-04 The input data set consists of fixed-length unblocked records on volume
INP214 on a 3380. The data set is deleted after this job step.

05-07 The output data set is composed of fixed-length blocked records that
requires 8 cylinders on a 3380. Each time space is exhausted, an
additional cylinder is allotted. The data set is retained.

08-10 Intermediate storage consists of three SYSDA areas of one cylinder each.

11 Defines the library that contains the E35 module.

12 A data set follows in the input stream.

13 SORT statement. The FIELDS operand describes one control field that
begins on byte 10 of each record, is 5 bytes long, and contains character
(EBCDIC) data; it is to be sorted into ascending order.

228 DFSORT Application Programming: Guide

14 OPTION statement. The input data set contains exactly 1000 records.

15 RECORD statement. Indicates that the input data set contains
fixed-length records that are shortened to 50 bytes each as they leave the
final merge.

16 MODS statement. Describes a user routine that receives control at
program exit E35. The name of the routine is E35; it is 536 bytes long
and is on the data set defined in the USERLIB DD statement.

Appendix A. Sample Job Streams 229

Example 4. 3380 SORT, TAPE I/0, PROC=SORTD, EXITS

INPUT Variable-length records on 3400 tapes.

OUTPUT Variable-length records on 3400 tapes.

INTERMEDIATE STORAGE Two 3380 areas of 15 cylinders each.

USER ROUTINES Ell routine performs initialization for the El6 Nmax routine.

OPTIONS

llEXAMP
llSTEPN
llSORTIN
II
II
llSORTWK01
llSORTWK02
llSORTOUT
II
llUSERLIB
II
llSYSIN

I*

SORT
OPTION
RECORD
MODS

ALT SEQ

Estimated data set size.

JOB B999,PROGRAMMER
EXEC SORTD,REGION=512K 01
DD DSNAME=XFILE,VOL=SER=000230,UNIT=3400-3, 02

DISP=OLD,DCB=(RECFM=VB,LRECL=120, 03
BLKSIZE=1200) 04

DD UNIT=3380,SPACE=(CYL, (15)) 05
DD UNIT=3380,SPACE=(CYL,(15)) 06
DD DSNAME=M999999.YFILE,VOL=SER=000258, 07

UNIT=3400-3,DISP=(NEW,CATLG) 08
DD DSNAME=MYRTNS,DISP=SHR 09
DD DSNAME=MORTNS,DISP=SHR 10
DD * 11
FIELDS=(20,5,AQ,A) 12
FILSZ=E25500 13
TYPE=V,LENGTH=(120,,,80,120) 14
E11=(PREPMOD,504,USERLIB) ,E16=(MODMAX,554, 15
USERLIB) 16
CODE=(5BEA,7BEB,7CEC) 17

Line Explanation

01 Calls the SORTD cataloged procedure and indicates that a 512K-byte
region is needed for program execution.

02-04 The input data set is named XFILE, resides on 9-track standard labeled
tape on a 3400 series magnetic tape unit with the volume serial number
000230, is known to the system, and is not to be deleted. It consists of
variable-length blocked records.

05-06 Two intermediate storage areas on 3380s are defined. Each consists of 15
cylinders.

07-08 The output data set is named YFILE, and is to be placed on 9-track
standard-labeled tape on a 3400 series magnetic tape unit with the volume
serial number 000258. It contains records of the same format as the input
data set. The data set is being created in this job step and is to be
cataloged.

09 Defines the library that contains the E 16 user routine.

10 Defines the library that contains the E 11 user routine.

230 DFSORT Application Programming: Guide

11 A data set follows in the input stream.

12 SORT statement. Describes one control field that begins on byte 16 of
each record data area (not byte 20, because the record descriptor word
takes 4 bytes), is 5 bytes long, contains character data, which is to be
collated according to the modified sequence described in the AL TSEQ
statement (format is AQ), and is to be sorted into ascending sequence.

13 OPTION statement. The input data set contains approximately 25500
records.

14 RECORD statement. Indicates that the input data set contains
variable-length records with a maximum record length of 120 bytes, a
minimum record length of 80 bytes, and an average length of 120 bytes.
The RECORD statement is not required for this example, but without it,
the program assumes a minimum record length of 24 bytes (large enough
to contain the specified control field) and an average length of 72 bytes
(the average of maximum and minimum lengths). Maximum length could
have been supplied by default.

15-16 MODS statement. Describes two user routines. The first, PREPMOD,
receives control at exit El 1. It is 504 bytes long and resides in MORTNS.
The second user routine, named MODMAX, receives control at exit El6.
It is 554 bytes long and resides in MYRTNS.

17 ALTSEQ statement. Specifies that the three characters$,#, and@ are to
collate in that order after Z.

Appendix A. Sample Job Streams 231

Example 5. COPY WITH OPTION CONTROL STATEMENT

INPUT Variable-length records

OUTPUT Variable-length records

INTERMEDIATE STORAGE None

USER ROUTINES None

OPTION

llEXAMP
llS1 EXEC
llSYSOUT
llSORTIN
I ISOR'l'OUT
II
llSYSIN

OP'rION
DEBUG

I*

COPY ,STOP AFT ,ABSTP

JOB B999,PROGRAMMER01
PGM=SORT,PARM='MSGPRT=CRITICAL' 02
DD SYSOUT=A 03
DD DSNAME=INV1,DISP=OLD 04
DD DSNAME=OUTV1,DISP=(NEW,KEEP), 05

UNIT=3380,SPACE=(TRK, (15,2)),VOL=SER=XYZ003 06
DD * 07
STOPAFT=500,COPY 08
ABSTP 09

Line Explanation

0 l The JOB statement introduces this job to the operating system.

02 The EXEC statement calls the program by its alias SORT.
MSGPRT=CRITICAL in the EXEC parm field specifies that only error
messages are to be printed.

03 The SYSOUT DD statement directs DFSORT messages to output class A.

04 The SORTIN DD statement describes a cataloged variable length record
input data set named INVl.

05-06 The SORTOUT DD statement directs the output to a new data set named
OUTVl on volume XYZ003 of a 3380.

07 The SYSIN DD statement indicates that data follows in the input stream.

09 THE OPTION statement indicates that a copy is to be done and that only
the first 500 records are to be copied.

10 The DEBUG statement indicates that if this application fails in the
Blockset execution phase, an abend occurs with a user completion code
that is equal to the appropriate message number. (The message is NOT
written.)

232 DFSORT Application Programming: Guide

Example 6. SYSDA SORT, ISCII/ ASCII TAPE 1/0, PROC=SORTD

INPUT

OUTPUT

INTERMEDIATE STORAGE

Variable-length ISCII/ ASCII records on 9-track tape.

Variable-length ISCII/ ASCII records on 9-track tape.

Two SYSDA areas of 15 cylinders each and two SYSDA areas of 10
cylinders each.

USER ROUTINES None.

OPTIONS

llEXAMP
llSTEPM
llSORTIN
II
II
llSORTWK01
llSORTWK02
llSORTWK03
llSORTWK04
llSORTOUT
II
llSYSIN

I*

SORT
OPTION
RECORD

Estimated data set size.

JOB A432,PROGRAMMER
EXEC SORTD
DD DSNAME=SRTFIL,DISP=(OLD,DELETE) ,UNIT=3400-6, 01

DCB=(RECFM=DB,LRECL=80,BLKSIZE=404,0PTCD=Q, 02
BUFOFF=L),VOL=SER=311500,LABEL=(1,AL) 03

DD UNIT=SYSDA,SPACE=(CYL, (15)) 04
DD UNIT=SYSDA,SPACE=(CYL, (15)) 05
DD UNIT=SYSDA,SPACE=(CYL, (10)) 06
DD UNIT=SYSDA,SPACE=(CYL, (10)) 07
DD DSN=OUTFIL,UNIT=3400-6,LABEL=(,AL), 08

DISP=(,KEEP) ,DCB=(OPTCD=Q,BUFOFF=L),VOL=SER=311501 09
DD * 10
FIELDS=(10,8,AC,D) 11
FILSZ=E525000 12
TYPE=D,LENGTH=(,,,20,23) 13

Line Explanation

01-03 The input data set SRTFIL is on a 9-track tape with the volume serial
number 311500. It is known to the system and is deleted after this job
step. It consists of variable-length ISCH/ ASCII records that are blocked
and have a maximum length of 80 bytes. For this job, the buff er offset is
the block length indicator. The records are to be translated from
ISCII/ ASCII to EBCDIC (OPTCD=Q).

04-07 Four intermediate storage data sets are defined on SYSDA.

08-09 The output data set is named OUTFIL. It is written on a 9-track tape
with a density of 6250 bpi and is retained. It has an ISCH/ ASCII label
and contains records with the same RECFM, LRECL, and BLKSIZE
values as the input (by def a ult).

10 A data set follows in the input stream.

11 SORT statement. The FIELDS operand describes a control field that
begins on byte 6 of each record data area (not byte 10, because the record
descriptor word takes 4 bytes), and is 8 bytes long. This field contains
character (ISCII/ ASCII) data, and is sorted in descending order.

Appendix A. Sample Job Streams 23 3

12 OPTION statement. The input data set contains approximately 525000
records.

13 RECORD statement. All the records in the input data sets are
ISCH/ ASCII records. Their maximum length is supplied by default; the
minimum is 20. The average length is 23.

234 DFSORT Application Programming: Guide

Example 7. 3380 SORT, ISCH/ ASCII TAPE I/0, PROC=SORTD

INPUT Variable-length ISCH/ ASCII records on 9-track tape.

OUTPUT Variable-length ISCH/ ASCII records on 9-track tape.

INTERMEDIATE STORAGE One 3380 area of 4 cylinders.

USER ROUTINES . None.

OPTIONS

llEXAMP
llSTEPM
llSORTIN
II
II
llSORTWK01
llSORTOUT
II
llSYSIN

I*

SORT
OPTION
RECORD

Estimated data set size.

JOB A432,PROGRAMMER
EXEC SORTD
DD DSNAME=SRTFIL,DISP=(OLD,DELETE) ,UNIT=3400-6, 01

DCB=(RECFM=D,LRECL=400,BLKSIZE=404,0PTCD=Q, 02
BUFOFF=L) ,VOL=SER=311500,LABEL=(1,AL) 03

DD UNIT=3380,SPACE=(CYL, (4)) 04
DD DSN=OUTFIL,UNIT=3400-6,LABEL=(,AL), 05

DISP=(,KEEP) ,DCB=(OPTCD=Q,BUFOFF=L) ,VOL=SER=311501 06
DD * 07
FIELDS=(10,8,AC,D) 08
FILSZ=E26000 09
TYPE=D,LENGTH=(,,,20,80) 10

Line Explanation

01-03 The input data set SRTFIL is on a 9-track tape with the volume serial
number 311500. It is known to the system and is deleted after this job
step. It consists of variable-length ISCH/ ASCII records which are
blocked and have a maximum length of 400 bytes. It has an ISCH/ ASCII
label. For this job, the buffer offset is the block length indicator. The
records are to be translated from ISCH/ ASCII to EBCDIC (OPTCD=Q).

04 One intermediate storage data set is defined on a 3380.

05-06 The output data set OUTFIL is written on a 9-track tape with a density of
6250 bpi and the volume serial number 311501. It has an ISCH/ ASCII
label and is kept. It contains records with the same RECFM, LRECL,
and BLKSIZE values as the input (by default).

07 A data set follows in the input stream.

08 SORT statement. The FIELDS operand describes a control field that
begins on byte 6 of each record data area (not byte 10, because the record
descriptor word takes 4 bytes), and is 8 bytes long. This field contains
character (ISCH/ ASCII) data, and is sorted in descending order.

09 OPTION statement. The input data set contains approximately 26000
records.

Appendix A. Sample Job Streams 23 5

10 RECORD statement. All the records in the input data sets are
ISCH/ ASCII records. Their maximum length is supplied by default; the
minimum is 20. The average length is 80.

236 DFSORT Application Programming: Guide

Example 8. DISK SORT, PGM=SORT

INPUT Blocked fixed-length records on 9-track tape.

OUTPUT Blocked fixed-length records on 9-track tape.

INTERMEDIATE STORAGE Four SYSDA devices with 10 cylinders each.

USER ROUTINES None.

OPTIONS

llEXAMP
llSTEP1
llSYSOUT
llSORTLIB
llSORTIN
II
II
llSORTOUT
II
llSORTWK01
llSORTWK02
llSORTWK03
llSORTWK04
llSYSIN

SORT
OPTION

I*

FORMAT=xx for control fields of like format; estimated data set
size.

JOB A402,PROGRAMMER
EXEC PGM=SORT,REGION=512K
DD SYSOUT=A
DD DSNAME=SM01.SORTLIB,DISP=SHR
DD DSNAME=INPUT,VOL=SER=000101,UNIT=3400-3,

DISP=(OLD,DELETE) ,DCB=(RECFM=FB,
LRECL=80,BLKSIZE=800)

DD DSNAME=M999999.0UTPUT,UNIT=3400-3,
DISP=(NEW,CATLG),VOL=SER=000102

DD UNIT=SYSDA,SPACE=(CYL,(10))
DD UNIT=SYSDA,SPACE=(CYL, (10))
DD UNIT=SYSDA,SPACE=(CYL,(10))
DD UNIT=SYSDA,SPACE=(CYL,(10))
DD *
FIELDS=(1,6,A,28,5,D),FORMAT=CH
FILSZ=E10000

Line Explanation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

01 This EXEC statement calls the program module by its alias, SORT, and
indicates that it wants a 512K-byte region in which to operate.

02 The SYSOUT DD statement directs messages and control statements to
system output class A.

03 The SORTLIB DD statement defines a private data set containing the sort
program modules.

04-06 The SORTIN DD statement defines an input data set on 9-track tape with
fixed blocked records, on volume 000101.

07-08 The SORTOUT DD statement defines an output data set with the same
characteristics as the input data set, on volume 000102.

09-12 The SORTWK DD statements define four SYSDA devices with 10
cylinders each.

13 A data set follows in the input stream.

Appendix A. Sample Job Streams 23 7

14 SORT statement. The FIELDS operand describes two control fields. The
first control field begins on byte 1 of each record, is 6 bytes long, contains
character (EBCDIC) data, and is to be sorted into ascending order. The
second control field begins on byte 28 of each record, is 5 bytes long,
contains character (EBCDIC) datat and is to be sorted into descending
order.

15 OPTION statement. The file size is estimated at 10000 records.

238 DFSORT Application Programming: Guide

Example 9. DISK SORT, PROC=SORTD, EXITS

INPUT Fixed-length blocked records on two unlabeled 9-track tap volumes.

OUTPUT Fixed-length blocked records on one 9-track tape.

INTERMEDIATE STORAGE Four SYSDA devices with 1 cylinder each.

USER ROUTINES Three: two change record lengths, one decides what to do if Nmax is
exceeded.

OPTIONS Estimated data set size

llEXAMP JOB A402,PROGRAMMER
llSTEP1 EXEC SORTD 01
llSORTIN DD DSNAME=INPUT,VOL=SER=(000333,000343), 02
II UNIT=(3400-3,2),DISP=(OLD,DELETE),LABEL=(,NL), 03
II DCB=(RECFM=FB,LRECL=120,BLKSIZE=480) 04
llSORTOUT DD DSNAME=OUTPUT,UNIT=3400-3,DISP=(NEW,PASS), 05
II VOL=SER=456,DCB=(RECFM=FB,LRECL=80, 06
II BLKSIZE=3200) 07
llSORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(1)) 08
llSORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(1)) 09
llSORTWK03 DD UNIT=SYSDA,SPACE=(CYL, (1)) 10
llSORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(1)) 11
llMODLIB DD DSNAME=YOURRTNS,DISP=SHR 12
llSYSIN DD * 13

I*

SORT FIELDS=(3,8,ZD,A,40,6,CH,D) 14
OPTION FILSZ=E30000 15
RECORD TYPE=F,LENGTH=(120,100,80) 16
MODS E15=(MODREC,784,MODLIB), 17

E16=(E16,1024,MODLIB) ,E35=(ADDUP,912,MODLIB) 18
19

Line Explanation

01 Specifies the cataloged procedure SORTO.

02-04 Defines the input data set. The data set consists of fixed-length blocked
records on two 9-track tape volumes; the UNIT parameter requests the
system to provide two tape drives, one for each volume of the data set.
Because the tape is unlabeled, DCB parameters must be supplied.

05-07 Defines the output data set, which also consists of fixed-length blocked
records. It is on one 9-track tape.

08-11 Define four intermediate storage data sets on SYSDA devices with 1
cylinder each.

12 Describes a data set containing the load modules of the user exit routines.

13 A data set follows in the input stream.

14 SORT statement. The FIELDS operand describes two control fields.

Appendix A. Sample Job Streams 23 9

15 OPTION statement. The file size is estimated at 30000 records.

16 RECORD statement. The fixed-length records in the input data set are
120 bytes long. A modification routine (at exit E 15) changes them to 100
bytes during the sort phase. A user routine at the E35 exit again changes
the length during the final merge phase, to 80 bytes each.

17-19 MODS statement. The statement describes four user routines in a library
that is defined on a job control statement with the ddname MODLIB.

240 DFSORT Application Programming: Guide

Example 10. 3380 SORT, PROC=SORTD, EXITS

INPUT Variable-length blocked records on 3350.

OUTPUT Variable-length blocked records on 3380.

INTERMEDIATE STORAGE One 3380 area of 6 cylinders.

USER ROUTINES Initialization routine at the E 11 exit and an NMAX error routine at
El6.

OPTIONS

llEXAMP
llSTEPONE
llSORTIN
II
llSORTOUT
II
llSORTWK01
llUSERLIB
llSYSIN

I*

SORT
OPTION
RECORD
ALT SEQ
MODS

Message option (critical messages only); estimated data set size.

JOB A402,PROGRAMMER
EXEC SORTD,PARM='MSGPRT=CRITICAL,LIST' 01

02
03
04
05
06
07
08
09
10
11
12
13
14

DD UNIT=3350,DSNAME=PAY413,VOL=SER=335001,
DISP=(OLD,KEEP)

DD UNIT=3380,DSNAME=PAY414,VOL=SER=335004,
SPACE=(CYL, (15) ,RLSE) ,DISP=(NEW,KEEP)

DD UNIT=3380,SPACE=(CYL,(6),,CONTIG)
DD DSNAME=JIMSMODS,DISP=SHR
DD *
FIELDS=(20,5,AQ,A)
FILSZ=E17000
TYPE=V,LENGTH=(,,,80,120)
CODE=(5BEA,7BEB,7CEC)
E11=(PREPMOD,504,USERLIB) ,E16=(MODMAX,554,
USERLIB)

Line Explanation

01 Specifies the SORTD cataloged procedure. The PARM options indicate
that critical messages and program control statements are to be printed.

02-03 The name of the input data set is PAY 413, and it is on volume 335001 on
a 3350. The data set is known to the operating system and is to be
retained. The program takes the DCB parameters from the data set label.
The records are variable-length, blocked.

04-05 The output data set is called PAY414, and will be on volume 335004 of a
3380. It is being created in this job step, and is to be retained. Data set
DCB parameters is the same as for SORTIN, by default. Unused space is
released.

06 One intermediate storage data set is defined on a 3380.

07 Defines a data set called JIMSMODS, which contains the user exit
routines described on the MODS program control statement. The data set
is known to the operating system and is not to be deleted after this job
step.

08 A data set follows in the input stream.

Appendix A. Sample Job Streams 241

09 SORT statement. The FIELDS operand describes one control field that
begins on byte 16 of each record data area (not byte 20, because the
record descriptor word takes 4 bytes), is 5 bytes long, contains character
data which is to be collated according to the modified sequence described
in the ALTSEQ statement (format is AQ), and is to be sorted into
ascending sequence.

10 OPTION statement. The input data set contains approximately 17000
records.

11 RECORD statement. Indicates that the input data set contains
variable-length records with a minimum record length of 80 bytes, and an
average length of 120 bytes. The RECORD statement is not required for
this example, but without it, the program assumes a minimum record
length of 24 bytes (large enough to contain the specified control field) and
an average length equal to the average of maximum and minimum lengths.

12 ALTSEQ statement. Specifies that the three characters$,#, and@ are to
collate in that order after Z.

13-14 MODS statement. Describes two user routines. The first, PREPMOD,
receives control at exit El 1. It is 504 bytes long. The second routine,
named MODMAX, receives control at exit El6. It is 554 bytes long. The
library in which both reside is described in the job control statement with
the ddname USERLIB.

242 DFSORT Application Programming: Guide

Example 11. SORT WITH NO SORTWKnn, PROC=SORTD, 1 EXIT

INPUT Fixed-length blocked records on 3380.

OUTPUT Fixed-length blocked records on 3380.

INTERMEDIATE STORAGE None.

USER ROUTINES One routine shortens the records as they leave the final merge phase.

OPTIONS

llEXAMP
llSTEP1
llSORTIN
II
llSORTOUT
II
II
llERTNLIB
I ISYSIN

I*

SORT
OPTION
RECORD
MODS

Exact data set size.

JOB B600,PROGRAMMER
EXEC PROC=SORTD,PARM='SIZE(130000) I

DD DSNAME=INPUT,UNIT=3380,VOL=SER=333001,
DISP=SHR

DD DSNAME=OUTPUT,UNIT=3380,VOL=SER=334010,
DCB=(RECFM=FB,LRECL=50,BLKSIZE=500) I

DISP=(NEW,KEEP) ,SPACE=(CYL, (1,1) ,RLSE)
DD DSN=EXITS,DISP=SHR
DD *
FIELDS=(10,5,CH,A)
FILSZ=800
TYPE=F,LENGTH=(,,50)
E35=(E35,534,ERTNLIB)

01
02
03
04
05
06
07
08
09
10
11

No work areas are defined. If all records cannot be sorted in main storage, the
program terminates.

Line Explanation

01-02 The input data set is named INPUT, is on a 3380 volume 333001, and
consists of fixed-length records with a length of 80 bytes. The DCB
information is taken from the data set label.

03-05 The output data set, named OUTPUT, is on volume 334010 of a 3380
and contains fixed-length blocked records. One cylinder is requested for
the data set; if the space is exhausted, additional cylinders are to be
assigned one at a time. Unused space is released. Records have been
shortened at E35, so DCB information is different from SORTIN and
therefore has to be specified.

06 Defines a library that contains the E35 routine.

07 A data set follows in the input stream.

08 SORT statement. The FIELDS operand describes one control field that
begins on byte 10 of each record, is 5 bytes long, and contains character
(EBCDIC) data; it is to be sorted into ascending order.

09 OPTION statement. The input data set contains exactly 800 records.

Appendix A. Sample Job Streams 243

10 RECORD statement. Indicates that the input data set contains
fixed-length records and that the record length is changed to 50 bytes as
records leave the final merge.

11 MODS statement. Describes a user exit routine that receives control at
E35 exit. The name of the routine is E35; it is 534 bytes long and resides
in the data set described in the ERTNLIB DD statement.

244 DFSORT Application Programming: Guide

INPUT

OUTPUT

Example 12. CONCATENATED INPUT, DYNAMICALLY ALLOCATED
WORK AREAS

A concatenation of three data sets, two on 3380 and one 3400-3.

Blocked fixed-length records on 9-track tape.

INTERMEDIATE STORAGE Two 3350 areas.

USER ROUTINES None.

OPTIONS

llEXAMP
llSTEPT
llSYSOUT
llSORTLIB
llSORTIN
II
II
II
II
II
II
II
II
llSORTOUT
II
I ISYSIN

SORT
OPTION

FORMAT parameter for control fields of like format; estimated data
set size.

JOB A400,PROGRAMMER
EXEC PGM=ICEMAN,REGION=512K 01
DD SYSOUT=A 02
DD DSNAME=SYS1.SORTLIB,DISP=SHR 03
DD DSNAME=INP1,DISP=OLD,UNIT=3380, 04

DCB=(RECFM=FB,BLKSIZE=7200,LRECL=80), 05
VOL=SER=XB0001 06

DD DSNAME=INP2,DISP=OLD,UNIT=3400-3, 07
DCB=(RECFM=FB,BLKSIZE=4000,LRECL=80), 08
VOL=SER=T33333 09

DD DSNAME=INP3,DISP=OLD,UNIT=3380, 10
DCB=(RECFM=FB,BLKSIZE=3600,LRECL=80), 11
VOL=SER=DISK01 12

DD DSNAME=M999999.0UTPUT,UNIT=3400-3, 13
DISP=(NEW,CATLG) ,VOL=SER=000102,DCB=(BLKSIZE=800) 14

DD * 15
FIELDS=(1,6,A,28,5,D),FORMAT=CH 16
FILSZ=E10000,DYNALLOC=(3350,2) 17

Example 11 differs from Example 7 in three ways: The input is a concatenation of
three input data sets on unlike devices; the region specified is 512K bytes; and
work storage is dynamically allocated on tape.

Line Explanation

01 Indicates that a 512K-byte region is needed.

02 The SYSOUT DD statement directs messages and control statements to
system output class A.

03 Sort program modules required for a sort using tape work files are on
SYSl.SORTLIB.

04-12 The SORTIN DD statement describes a concatenation of three input data
sets on unlike devices.

The INPl data set is on volume XBOOOl of a 3380. It is known to the
system, and consists of fixed-length blocked records with a record length
of 80 and a block size of 7200. Note that this MUST be the largest block
size of the data sets in the concatenation.

Appendix A. Sample Job Streams 245

The INP2 data set is on a 9-track tape with serial number T33333. It is
known to the system, and consists of fixed-length blocked records with a
record length of 80 and a block size of 4000.

The INP3 data set is on a 3380 disk with the serial number DISKOl. It is
known to the system, and consists of fixed-length blocked records with a
record length of 80 and a block size of 3600.

13-14 Block size is not the same for output as for input, and must therefore be
specified.

15 A data set follows in the input stream.

16 SORT statement. The FIELDS operand describes two control fields. The
first field begins on byte 1 of each record, is six bytes long, contains
character (EBCDIC) data (FORMAT=CH), and is to be sorted into
ascending order. The second field begins on byte 28 of each record, is
five bytes long, contains character (EBCDIC) data, and is to be sorted
into descending order.

17 OPTION statement. The FILSZ operand indicates that the input data set
contains an estimated 10000 records. The DYNALLOC operand
indicates that two work data sets are to be dynamically allocated on 3350
(valid only when DFSORT is running under MVS).

246 DFSORT Application Programming: Guide

Example 13. 3350 SORT USING SORTCNTL AND OPTION

INPUT Fixed- or variable-length blocked records.

OUTPUT Fixed- or variable-length blocked records.

INTERMEDIATE STORAGE One 3350 area of 5 cylinders.

USER ROUTINES None.

OPTIONS

//EXAMP
//SORT1
//STEPLIB
//SYSOUT
//SYSPRINT
//SORTIN
/ISORTWK01
llSORTOUT
II
//SORTCNTL

OPTION
I*

Exact size file and alternate collating sequence for EBCDIC fields.

JOB A402,PROGRAMMER
EXEC PGM=MYPGM 01

02
03
04
05
06
07
08
09
10

DD DSN=NAME1.NAME2.NAME3,DISP=SHR
DD SYSOUT=A
DD SYSOUT=A
DD DSN=M999999.INPUT.FILE,DISP=SHR
DD UNIT=3350,SPACE=(CYL, (5))
DD DSN=MY.OUTPUT.FILE,UNIT=SYSDA,

SPACE=(CYL, (3,2)) ,DISP=(NEW,CATLG)
DD *
FILSZ=2270,CHALT

Line Explanation

01 Specifies the name of the program calling DFSORT.

02 The STEPLIB DD statement describes where MYPGM is located.

03 The SYSOUT DD statement directs messages and control statements to
system output class A.

04 MYPGM output is to be directed to system output class A.

05 The SORTIN DD statement describes an input data set named
M999999.INPUT.FILE. The DISP parameter indicates that the data set
is known to the operating system.

06 The SORTWKOl DD statement describes a work data set on a 3350. The
area contains five cylinders.

07-08 The SORTOUT DD statement describes an output data set named
M999999.0UTPUT.FILE. The DISP parameter indicates that the data
set is new and will be cataloged.

09 The SORTCNTL DD statement defines the data set that contains control
statements used to provide overrides or optional information for the sort
application.

Appendix A. Sample Job Streams 24 7

10 OPTION statement. The file size is specified as exactly 2270 records.
Both CH and AQ format record fields are sorted as if they were AQ
format.

248 DFSORT Application Programming: Guide

Example 14. OVERRIDING INSTALLATION OPTIONS AND DEBUGGING

INPUT Blocked fixed-length records on 3350.

OUTPUT Blocked fixed-length records on SYSDA.

INTERMEDIATE STORAGE Dynamically allocated.

USER ROUTINES

OPTIONS

None.

Unused temporary SORTOUT space is not to be released; needed
work space is to be dynamically allocated; debug information is to be
obtained.

llEXAMP JOB A400,PROGRAMMER 01
llSTEP1 EXEC PGM=SORT,PARM='MSGPRT=CRITICAL,SIZE(800K)' 02
llSYSOUT DD SYSOUT=A 03
llSORTIN DD DSNAME=INP1,DISP=OLD,UNIT=3350, 04
II DCB=(RECFM=FB,BLKSIZE=7200,LRECL=80), 05
II VOL=SER=XB0001 06
llSORTOUT DD DSNAME=&&OUTPUT,DISP=(,PASS),UNIT=SYSDA, 07
II SPACE=(CYL, (5,1)) 08
//SYSIN DD * 09

SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH 10
OPTION NOOUTREL,DYNALLOC 11

* THE NEXT STATEMENT WILL PRODUCE A SPECIALLY FORMATTED 12
* DUMP IF THE STEP ABENDS 13

DEBUG FMTABEND 14
/* 15
//SORTDIAG DD DUMMY 16

This job is only applicable to MVS systems because of the use of dynamic
allocation for work data sets. For purposes of illustration, assume that none of the
standard defaults for JCL invocation of DFSORT have been changed at
installation time.

Line Explanation

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement calls the program by its alias SORT.
MSGPRT=CRITICAL specifies that only error messages are to be
printed, overriding the standard default of MSGPRT=ALL. Because the
standard default of LIST= YES has not been overridden, control
statements are also printed. SIZE (SOOK) specifies the main storage to be
allocated to DFSORT, overriding the standard default of SIZE=MAX.

03 The SYSOUT DD statement directs messages, control statements, and the
specially formatted dump to system output class A.

04-06 The SORTIN DD statement describes an input data set named INPl on
volume XBOOOl of a 3350. It consists of fixed-length blocked records
with a record length of 80 and a block size of 7200.

Appendix A. Sample Job Streams 24 9

07-08 The SORTOUT DD statement describes a temporary output data set,
which is passed to the next step for further processing.

09 The SYSIN DD statement indicates that a data set follows in the input
stream.

10 SORT statement. Describes two control fields in the input records.

11 OPTION statement. NOOUTREL specifies that unused temporary
SORTOUT space is not to be released, overriding the standard default of
OUTREL=YES. DYNALLOC specifies that needed work space is to be
dynamically allocated using the standard default device (SYSDA) and
number of work data sets (1).

12-13 Comment statements. These statements are printed, but otherwise
ignored.

14 DEBUG statement. FMTABEND specifies that the program is to produce
a specially formatted dump if an abend situation occurs. The specially
formatted dump is produced on the message data set and includes a SNAP
dump equivalent to a SYSUDUMP and a formatted dump of the
communication area.

15 Marks the end of the SYSIN data set.

16 The SORTDIAG DD statement indicates that all messages (including
diagnostic messages) and control siaiemt:mi.s are to be printed, overriding
MSGPRT=CRITICAL in the EXEC statement.

Note that the cumulative effect of the SORTDIAG DD statement, the options in
the EXEC PARM field, and the control statements in the SYSIN data set is the
following equivalent set of control statements for the run:

SORT FIELDS={1,6,A,28,5,D),FORMAT=CH
OPTION NOOUTREL,DYNALLOC,MSGPRT=ALL,MAINSIZE=819200,LIST
DEBUG FMTABEND

250 DFSORT Application Programming: Guide

Example 15. OMIT, INREC, AND SUM CONTROL STATEMENTS

INPUT Blocked fixed-length records on 3350.

OUTPUT Blocked fixed-length records on SYSDA.

INTERMEDIATE STORAGE Dynamically allocated.

USER ROUTINES None.

OPTIONS Needed work space is to be dynamically allocated.

llEXAMP JOB A400,PROGRAMMER 01
llSTEP1 EXEC PGM=SORT 02
llSYSOUT DD SYSOUT=A 03
llSORTIN DD DSNAME=INP1,DISP=OLD,UNIT=3350, 04
II DCB=(RECFM=FB,BLKSIZE=7200,LRECL=80), 05
II VOL=SER=XB0001 06
llSORTOUT DD DSNAME=&&OUTPUT,DISP=(,PASS),UNIT=SYSDA, 07
II SPACE=(CYL,(5,1)) ,DCB=(LRECL=25,BLKSIZE=5000) 08
llSYSIN DD * 09

I*

OMIT COND=(S,1,CH,EQ,C'M') 10
INREC FIELDS=(10,3,20,8,33,11,2Z,5,1) 11
SORT FIELDS=(4,8,CH,A,1,3,FI,A) ,DYNALLOC=(,2) 12
SUM FIELDS=(17,4,BI) 13

This example shows how to use the OMIT, INREC, SORT, and SUM control
statements. This job is only applicable to MVS systems because of the use of
dynamic allocation for work data sets. For purposes of illustration, assume that
none of the standard defaults for JCL invocation of DFSORT have been changed
at installation time.

Line Explanation

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement calls the program by its alias SORT.

03 The SYSOUT DD statement directs messages and control statements to
system output class A.

04-06 The SORTIN DD statement is identical to that in Example 13. The input
records have a record length of 80 and a block size of 7200.

07-08 The SORTOUT DD statement is identical to that in Example 13 except
that the reformatted records have a record length of 25 and a block size of
5000.

09 The SYSIN DD statement indicates that a data set follows in the input
stream.

Appendix A. Sample Job Streams 251

10 OMIT statement. COND specifies that input records with a character M
in position 5 are to be deleted.

11 INREC statement. FIELDS specifies how the input records are to be
reformatted before they are sorted. The reformatted input records are
fixed-length, with a record size of 25 bytes (a significant reduction from
the original size of 80 bytes). They look as follows:

Position
1-3
4-11
12-22
23-24
25

Content
Input positions 10 through 12
Input positions 20 through 27
Input positions 33 through 43
Zeros
Input position 5

12 SORT statement. FIELDS specifies two control fields starting at positions
4 and 1 in the reformatted record, which correspond to positions 20 and
10 in the input record. DYNALLOC=(,2) specifies that needed work
space is to be dynamically allocated using the standard default device
(SYSDA) and 2 work data sets.

13 SUM statement. FIELDS specifies a 4-byte binary summary field at
position 17 in the reformatted record, which corresponds to position 38 in
the input record. Whenever two reformatted records with the same
control fields are found, their summary fields are to be added and placed
in one of the reformatted records, and the other reformatted record is to
be deleted.

252 DFSORT Application Programming: Guide

Example 16. SORT WITH COPY OPTION

INPUT Block fixed- or variable-length records

OUTPUT Blocked fixed- or variable-length records

INTERMEDIATE STORAGE None

USER ROUTINES One: E35

OPTIONS FIELDS=COPY

llEXAMP JOB A402,PROGRAMMER 01
llSTEP1 EXEC PGM=SORT,PARM='MSGPRT=CRITICAL' 02
llSYSOUT DD SYSOUT=A 03
llSORTIN DD DSNAME=INP1,DISP=OLD 04
llSORTOUT DD DSNAME=OUT1,DISP=(NEW,KEEP),UNIT=3380, 05
II SPACE=(TRK,(15,2)),VOL=SER=XYZ003 06
llMODLIB DD DSNAME=MY.LOADLIB,DISP=SHR, 07
II UNIT=3380,VOL=SER=XYZ012 08
llSYSIN DD * 09

I*

OMIT COND=(1,8,CH,EQ,C' ') 10
MODS E35=(ALTREC,11000,MODLIB) 11
SORT FIELDS=COPY

This example shows how a SORT /MERGE control statement can be used to
specify a copy application.

Line Explanation

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement calls the program by its alias SORT.
MSGPRT=CRITICAL in the EXEC parm field specifies that only error
messages are to be printed.

03 The SYSOUT DD statement directs DFSORT messages to output class A.

04 The SORTIN DD statement describes a cataloged input data set INPl.

05-06 The SORTOUT DD statement directs the output to a new data set named
OUTl on volume XYZ003 of a 3380.

07-08 The MODLIB DD statement describes the exit library as a data set named
MY.LOADLIB on a volume XYZ012 of a 3380.

09 The SYSIN DD statement indicates that data follows in the input stream.

10 The OMIT statement specifies that records with blanks in the first 8 bytes
of the input records are to be omitted.

Appendix A. Sample Job Streams 253

11 The MODS statement specifies an E35 exit named AL TREC that is
11000 bytes long and in a data set defined by ddname MODLIB.

12 The SORT statement indicates that a copy is to be done.

254 DFSORT Application Programming: Guide

Example 17. SORT USING COBOL EXITS

INPUT Fixed- or variable-length records

OUTPUT Fixed- or variable-length records

INTERMEDIATE STORAGE One SYSDA area of 3 cylinders

USER ROUTINES

OPTIONS

Two: E15 and E35 written in COBOL and executed with VS
COBOL II library subroutines

Alternate message data set, VS COBOL II library, accept 100
records

//EXAMP JOB A402,PROGRAMMER 01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

//STEP1 EXEC PGM=SORT,REGION=1000K,PARM='MSGDDN=MYQUE'
//STEPLIB DD DSN=SYS1.COB2LIB,DISP=SHR
//EXITC DD DSN=COBEXITS.LOADLIB,DISP=SHR
//MYQUE DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=SORT1.IN,DISP=SHR
//SORTOUT DD DSN=SORT1.0UT,DISP=OLD
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,3)
//SYSIN DD *

OPTION MAINSIZE=MAX,RESALL=70K,
STOPAFT=100,COBEXIT=COB2

SORT FIELDS=(5,4,BI,A),EQUALS
MODS E15=(COBOLE15,37000,EXITC,C),

E35=(COBOLE35,37000,EXITC,C)
I*

Line Explanation

01-02 The EXEC statement calls the program by its alias SORT, and indicates
that a lOOOK-byte region is needed for program execution. The PARM
statement specifies that the DFSORT messages are written to a data set
defined by a DD statement called MYQUE.

03 The STEPLIB DD statements indicate where the VS COBOL II library is
located.

04 The EXITC DD statement defines the library in which the exit routines
are, located.

05 The MYQUE DD statement specifies the alternate message data set (to
keep DFSORT messages separate from COBOL messages) for DFSORT
messages and control statements.

06 The SYSOUT DD statement specifies the message data set for COBOL
messages.

07 The SORTIN DD statement specifies the input data set SORTl.IN.

08 The SORTO UT DD statement specifies the output data set SORTl .OUT.

Appendix A. Sample Job Streams 25 5

09 The SORTWKOl DD statement describes the work data set on a SYSDA
device of 3 cylinders.

10 The SYSIN DD statement indicates that the DFSORT control statements
follow in the input stream.

11-12 The OPTION statement. MAINSIZE=MAX instructs the program to
calculate the amount of main storage available and allocate the maximum
amount. STOPAFT indicates that DFSORT accepts 100 records before
sorting. COBEXIT specifies that E15 and E35 exit routines be executed
with the VS COBOL II library.

13 SORT statement. FIELDS describes the control fields in the input records
on which the program sorts.

14-15 MODS statement. E 15 specifies a user exit routine written in COBOL.
The name of the routine is COBOLE15, it is 7000 bytes long, and it
requires 30000 bytes for the COBOL library subroutines. The exit
routine resides in the data set described in the EXITC DD statement. E35
specifies a user exit routine written in COBOL. The name of the routine
is COBOLE35, it is 7000 bytes long, and it requires 30000 bytes for the
COBOL library subroutines. The exit routine resides in the data set
described in the EXITC DD statement.

256 DFSORT Application Programming: Guide

INPUT

OUTPUT

Example 18. DYNAMIC LINK-EDITING OF USER EXIT ROUTINES,
PROC=SORT

Fixed- or variable-length records.

Fixed- or variable-length records.

INTERMEDIATE STORAGE One SYSDA area of 1 cylinder.

USER ROUTINES 9 user routines; see MODS statement below.

OPTIONS 4 user routines link-edited together for the input phase; 1 user
routine link-edited separately for the input phase; 4 user routines
link-edited together for the output phase.

//EXAMP
//S1
//SORTIN
//SORTOUT
II
//SORTWK01
//EXIT
//EXIT2
//SORTMODS
//SYSIN

JOB A400,PROGRAMMER
EXEC SORT
DD DSN=SMITH.INPUT,DISP=OLD
DD DSN=SMITH.OUTPUT,DISP=(NEW,CATLG),

UNIT=3380,SPACE=(TRK,(10,2)),VOL=SER=XYZ003
DD UNIT=SYSDA,SPACE=(CYL, (1,1))
DD DSN=SMITH.EXIT.OBJ,DISP=SHR
DD DSN=SMITH.EXIT2.0BJ,DISP=SHR
DD UNIT=SYSDA,SPACE=(TRK, (10,,3))
DD *

01
02
03
04

05
06
07
08
09
10
11

SORT
MODS

END
<object
<object
<object
I*

FIELDS=(1,8,CH,A,20,4,BI,D)
E11=(EXIT11,1024,EXIT,S),
E15=(E15,1024,SYSIN,T),
E17=(EXIT17,1024,EXIT2,T),
E18=(EXIT18,1024,EXIT,T),
E19=(E19,1024,SYSIN,T),
E31=(PH3EXIT,1024,EXIT,T),
E35=(PH3EXIT,1024,EXIT,T),
E38=(PH3EXIT,1024,EXIT,T),
E39=(E39,1024,SYSIN,T)

deck for E15 exit here>
deck for E19 exit here>
deck for E39 exit here>

Line Explanation

12
13

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement calls the program through the SORT cataloged
procedure, which also sets up the four DD statements (not shown)
required by the linkage editor.

03 The SORTIN DD statement describes a cataloged input data set named
SMITH.INPUT.

04 The SORTOUT DD statement directs the output to a new data set named
SMITH.OUTPUT on volume XYZ003 of a 3380.

Appendix A. Sample Job Streams 257

05 The SORTWKOl DD statement specifies that SYSDA space of 1 primary
cylinder and secondary extents of 1 cylinder each can be used for work
space by DFSORT.

06 The EXIT DD statement specifies the partitioned data set containing the
object decks for the Ell, El8, E31, E35, and E38 exit routines.

07 The EXIT2 DD statement specifies the partitioned data set containing the
object deck for the E 17 exit routine.

08 The SORTMODS DD statement defines a partitioned data set to hold user
exit routine object decks from SYSIN for input to the linkage editor.
SYSDA space of 10 primary tracks and 3 directory blocks is reserved.

09 The SYSIN DD statement indicates that data follows in the input stream.

10 The SORT statement defines two control fields in the input records.

11 The MODS statement specifies that:

The EXITl 1 routine in the EXIT library is to be link-edited
separately from other input phase exit routines and associated with
exit El 1;

• The E15 and E19 routines in SYSIN, the EXITl 7 routine in EXIT2,
and the EXIT 18 routine in EXIT are to be link-edited together and
associated with exits E15, E19, E17, an<l E18, respectively;

• The E31, E35, and E38 routines in the PH3EXIT object deck and the
E39 routine in SYSIN are to be link-edited together and associated
with exits E3 l, E35, E38, and E39, respectively.

12 The END statement marks the end of the DFSOR T control statements
and the beginning of the exit routine object decks.

13 The three object decks for El5, E19, and E39 exit routines follow the
END statement.

258 DFSORT Application Programming: Guide

Example 19. EXTENDED PARAMETER LIST INTERFACE

INPUT Fixed-length records from a preloaded E15 exit routine

OUTPUT Blocked fixed-length records

INTERMEDIATE STORAGE One 3380 area

USER ROUTINES None

OPTIONS The order of identically collating records must be preserved;
estimated file size; automatic secondary allocation should not be
used.

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=MYSORT 02
//MSGOUT DD SYSOUT=A 03
//STEPLIB DD DSNAME=NAME1.NAME2.NAME3,DISP=SHR 04
//SORTOUT DD DSNAME=&&OUTPUT,DISP=(,PASS),UNIT=SYSDA, 05
II SPACE=(CYL,(8,4)) ,DCB=(RECFM=F,LRECL=111)
//SORTWK01 DD SPACE=(CYL, (10)) ,UNIT=3380 06
//SORTCNTL DD * 07

OPTION EQUALS,FILSZ=E30000,NOWRKSEC 08
INCLUDE COND=(S,8,GT,13,8),FORMAT=FI 09
OUTREC FIELDS=(5X,5,8,5X,13,8,5X,1,80) 10
RECORD TYPE=F,LENGTH=80 11

I* 12
//SYSOUT DD SYSOUT=A 13

MYSORT CSECT 14

*

*

PL1
PL2
PL3
PL4
PL5
CTLST

CTL1

CTL2
OUT
E15

LA R1 ,PL1

ST R2,PL4

LINK EP=SORT

DC A(CTLST)
DC A(E15)
DC A (0)
DS A
DC FI -1 I
DS OH
DC AL2 (CTL2-CTL 1)

SET ADDRESS OF PARAMETER LIST
TO BE PASSED TO SORT/MERGE

SET ADDRESS OF GETMAINED AREA
TO BE PASSED TO E15

INVOKE SORT/MERGE

ADDRESS OF CONTROL STATEMENTS
ADDRESS OF E15 ROUTINE
NO E35 ROUTINE
USER EXIT ADDRESS CONSTANT
INDICATE END OF LIST
CONTROL STATEMENTS AREA
LENGTH OF CHARACTER STRING

DC C' SORT FIELDS=(4,5,CH,A) I

DC C' OPTION I

DC C'RESINV=2048,FILSZ=E25000,MSGDDN=MSGOUT'
DC C' OMIT COND=(S,8,EQ,13,8),FORMAT=FI I

EQU *
DCB DDNAME=SYSOUT, ... MYSORT USES SYSOUT
DS OH E15 ROUTINE

BR R14 RETURN TO SORT/MERGE

15

16

17

18
19

20

21

Appendix A. Sample Job Streams 25 9

Example 17 shows the use of the extended parameter list. The JCL for program
MYSORT and highlights of the code for program MYSORT are shown in the two
boxes, respectively. This job is applicable to all systems supported by DFSORT in
all addressing modes. For purposes of illustration, assume that none of the
standard defaults for dynamic invocation of DFSORT have been changed at
installation time.

Line Explanation

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement specifies the name of the program calling DFSORT.

03 The MSGOUT DD statement directs the DFSORT messages to output
class A. (The SYSOUT DD statement cannot be used for sort messages
because it is being used by MYSORT.)

04 The STEPLIB DD statement describes where MYSORT is located.

05 The SORTOUT DD statement describes a temporary data set on SYSDA
with fixed-length records and a logical record length of 111 bytes.

06 The SORTWKOl DD statement describes a temporary work data set on a
3380 containing 10 cylinders.

07 The SORTCNTL DD statement indicates that a data set follows in the
inpu.t stream.

08 OPTION statement. EQUALS specifies that the order of records with
equal control fields is to be preserved, overriding the standard default of
EQUALS=NO. FILSZ=E30000 specifies the estimated number of
records to be sorted, overriding FILSZ=E25000 in the OPTION
statement of the invocation parameter list. NOWRKSEC specifies that no
automatic secondary allocation is to take place for the temporary work
data set, overriding the standard default of WRKSEC= YES.

09 INCLUDE statement. COND and FORMAT specify that input records in
which the fixed-integer number in positions 5 to 12 is greater than the
fixed-integer number in positions 13 to 20 are the only input records that
are included in the output data set. The INCLUDE statement causes the
OMIT statement of the invocation parameter list to be ignored.

10 OUTREC statement. FIELDS specifies how the input records are to be
reformatted before they are output. The output records are fixed length,
with a record size of 111 bytes. They look as follows:

Position
1-5
6-13
14-18
19-26
27-31
32-111

260 DFSORT Application Programming: Guide

Content
Blanks
Input positions 5 through 12
Blanks
Input positions 13 through 20
Blanks
Input positions 1 through 80

11 The RECORD statement. Indicates that the input records are
fixed-length and 80 bytes long.

12 Marks the end of the SOR TCNTL data set.

13 The SYSOUT DD statement is used by MYSORT and thus cannot be
used by DFSORT.

14 This is the start of the MYSORT program. Assume that it GETMAINs a
work area, saves its address in register 2, and initializes the work area for
use by its E15 routine.

15 Before calling DFSORT, MYSORT places the address of the parameter
list to be passed to DFSORT in register 1, places the address of the
GETMAINed work area in the user exit address constant field in the
parameter list, and indicates that the user exit address constant field is the
last field in the parameter list (that is, there is no AL TSEQ table or ST AE
routine). Then MYSORT calls DFSORT.

16 The parameter list which MYSORT passes to DFSORT contains the
address of the control statements area, the address of the E 15 routine, and
the address of the GETMAINed work area. It indicates there is no E35
routine.

1 7 The control statements area contains the length of the control statements
character string, followed by the character string which contains a SORT
statement and an OPTION statement.

18 SORT statement. FIELDS specifies a control field in the input records.

19 OPTION statement. RESINV=2048 specifies the number of bytes to be
reserved for the invoking program (MYSORT), overriding the standard
default of RESINY =0. FILSZ=E25000 specifies the estimated number
of records to be sorted. (There is no standard default for FILSZ.)
MSGDDN =MSGOUT specifies the ddname to be used for program
messages, overriding the standard default of MSGDDN=SYSOUT. Note
that RESINV=2048 and MSGDDN=MSGOUT cannot be overridden by
corresponding options specified in the SORTCNTL data set; these options
are ignored when specified in the SOR TCNTL data set because it is too
late to use them when they are read.

20 OMIT statement. COND and FORMAT specify that input records in
which the fixed-integer number in positions 5 to 12 is equal to the
fixed-integer number in positions 13 to 20 are to be deleted.

21 The E15 routine is preloaded; therefore, it generates input records and
passes them to DFSORT. For this reason, a SORTIN DD statement is not
used.

Appendix A. Sample Job Streams 261

Note that the cumulative effect of the control statements in the SORTCNTL data
set and the control statements in the invocation parameter list is the following
equivalent set of control statements for the run:

SORT FIELDS=(4,5,CH,A)
OPTION EQUALS,FILSZ=E30000,NOWRKSEC,RESINV=2048,MSGDDN=MSGOUT
INCLUDE COND=(S,8,GT,13,8),FORMAT=FI
OUTREC FIELDS=(5X,5,8,5X,13,8,5X,1,80)

262 DFSORT Application Programming: Guide

Merge Examples

Example 20. MERGE FOUR DATA SETS, PROC=SORTD

INPUT

OUTPUT

INTERMEDIATE STORAGE

Four data sets containing blocked fixed-length records; data sets are
on four devices: two 3350s and two 3380s.

One data set containing blocked fixed-length records, on one 9-track
tape.

None required for a merge.

USER ROUTINES None

OPTIONS

llEXAMP
llSTEP1
llSORTIN01
II
llSORTIN02
II
llSORTIN03
II
llSORTIN04
II
llSORTOUT
II
II
llSYSIN

MERGE
OPTION

I*

FORMAT=CH for control fields of like format; estimated data set
size

JOB A402,PROGRAMMER
EXEC SORTD
DD DSNAME=MERGIN01,VOL=SER=SCR760,DISP=OLD,

UNIT=3380,DCB=(RECFM=FB,LRECL=80,BLKSIZE=6000)
DD DSNAME=MERGIN02,VOL=SER=SYS004,DISP=OLD,

UNIT=3350,DCB=(RECFM=FB,LRECL=80,BLKSIZE=6000)
DD DSNAME=MERGIN03,VOL=SER=SCR764,DISP=OLD,

UNIT=3380,DCB=(RECFM=FB,LRECL=80,BLKSIZE=6000)
DD DSNAME=MERGIN04,VOL=SER=SYS005,DISP=OLD,

UNIT=3350,DCB=(RECFM=FB,LRECL=80,BLKSIZE=6000)
DD DSNAME=MERGOUT,

VOL=SER=(,RETAIN,SER=(000101)) ,DISP=(NEW,KEEP),
LABEL=(,NL),UNIT=3400-3

DD *
FIELDS=(1,6,A,28,5,D),FORMAT=CH
FILSZ=E10000

Line Explanation

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

01 The EXEC statement invokes the cataloged procedure SORTD.

02-09 The SORTINnn DD statements describe the merge input data sets. They
are all on different devices and consist of fixed-length records with a
blocking factor of 7 5. Because they all have the same block size, the
order in which they are specified is unimportant. Had they been different,
the data set with the largest block size would have had to be specified
first.

10-12 By default the result of the merge is recorded on 9-track tape at the same
blocking factor and in the same format as the first input data set
(SORTINOl).

13 A data set follows in the input stream.

Appendix A. Sample Job Streams 263

14 MERGE statement. The FIELDS operand describes two fields. The first
begins on byte 1 of each record, is 6 bytes long, contains character
(EBCDIC) data, and is to be sorted into ascending order. The second
field begins on byte 28, is S bytes long, contains character data, and is to
be sorted into descending order. The optional FOJlMAT operand is used
because both fields contain data of the same format.

15 OPTION statement. The input data sets contain a total of approximately
10000 records.

264 DFSORT Application Programming: Guide

Example 21. MERGE TWO 3350 FILES; PROC=SORTD, EXITS

INPUT Variable-length blocked records on 3350.

OUTPUT Variable-length blocked records on 3350.

INTERMEDIATE STORAGE None.

USER ROUTINES E35 (CALC) routine shortens records.

OPTIONS

llEXAMP
llSTEPONE
llSORTIN01
II
II
llSORTIN02
II
II
llSORTOUT
II
II
llUSERLIB
II
llSYSIN

I*

MERGE
OPTION
RECORD
MODS

Exact input data set size.

JOB A402,PROGRAMMER
EXEC SORTD
DD DSNAME=WEEKLY,VOL=SER=000101,UNIT=3350,

DISP=OLD,DCB=(RECFM=VB,LRECL=240,
BLKSIZE=4800)

DD DSNAME=DAILY,VOL=SER=000113,UNIT=3350,
DISP=(OLD,DELETE) ,DCB=(RECFM=VB,LRECL=240,
BLKSIZE=1200)

DD DSNAME=WEEKA,VOL=SER=000111,UNIT=3350,
DISP=(NEW,KEEP) ,SPACE=(TRK, (200,10)),
DCB=(RECFM=VB,LRECL=200,BLKSIZE=2000)

DD DSNAME=MYMODS,DISP=SHR
DD DSNAME=XYZ,DISP=SHR
DD *
FIELDS=(S,6,CH,A)
FILSZ=8150
TYPE=V,LENGTH=(,,200)
E35=(CALC,800,USERLIB)

Line Explanation

02 Calls the SORTD cataloged procedure.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

02-04 The first of two input data sets for the merge. The data set, named
WEEKLY, is on a 3350 disk with the volume serial number 000101. The
data set is known to the operating system and is to be retained. It
contains variable-length blocked records with a maximum record length of
240 bytes and a block size of 4800.

05-07 The second input data set, which is named DAILY, is on a 3350 disk unit,
with the volume serial number 000113. It is old, will be deleted after this
job step, and contains records of the same format and length as the
WEEKLY data set; the block size is smaller.

08-10 The output from the merge is a data set named WEEKA. It is new and
will be retained in the system on a 3350 disk with the serial number
000111. The data set is recorded on 200 tracks. If this space is not
sufficient, additional space is allotted in blocks of 10 tracks. The data set
consists of v~riable-length blocked records with a maximum record length
of 200 (see L3 on the RECORD statement) and a block size of 2000.

Appendix A. Sample Job Streams 265

11-12 The libraries on which the user exit routines reside. Because CALC
resides in MYMODS, and MODRTN resides in XYZ, these data sets must
be concatenated.

13 A data set follows in the input stream.

14 MERGE statement. The FIELDS operand describes one control field.
The start of the control field is given as byte 5; note that this points to the
first byte of the record data itself, because, for a variable-length record,
the first four bytes are occupied by the record descriptor word. The field
is six bytes long.

15 OPTION statement. The input data set contains exactly 8150 records.

16 RECORD statement. Records in the input data sets are variable length.
A modification routine (at exit E3 5) makes the maximum record length in
the output data set 200 bytes.

17 MODS statement. A routine named CALC receives control at exit E35.
It is approximately 800 bytes long and resides in MYMODS.

266 DFSORT Application Programming: Guide

Example 22. MERGE WITH EQUALS AND SUM

INPUT Fixed- or variable-length records.

OUTPUT Fixed- or variable-length records.

INTERMEDIATE STORAGE None

USER ROUTINES None

OPTIONS

llEXAMP
llS1 EXEC
llSYSOUT
llSORTIN01
llSORTIN02
llSORTIN03
llSORTOUT
II
llSYSIN

EQUALS (on MERGE control statement), and SUM

JOB A400,PROGRAMMER
PGM=SORT
DD SYSOUT=A
DD DSNAME=M1234.INPUT1,DISP=SHR
DD DSNAME=M1234.INPUT2,DISP=SHR
DD DSNAME=M1234.INPUT3,DISP=SHR
DD DSNAME=M1234.MERGOUT,DISP=(NEW,KEEP),

UNIT=SYSDA,SPACE=(CYL, (1,1))
DD *

01
02
03
04
05
06
07

MERGE FIELDS=(1,8,CH,A,20,4,FI,A) ,EQUALS
SUM FIELDS=(32,4,FI)

08
09
10

I*

This example shows how MERGE with SUM and EQUALS is specified.

Line Explanation

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement calls the program by its alias SORT.

03 The SYSOUT DD statement directs DFSORT messages to output class A.

04 The SORTINO! DD statement describes a cataloged input data set named
Ml234.INPUT1.

05 The SORTIN02 DD statement describes a second cataloged input data set
named M1234.INPUT2.

06 The SOR TIN03 DD statement describes a third cataloged input data set
named M1234.INPUT3.

07 The SORTOUT DD statement directs the output to a new data set named
M1234.MERGOUT. The data set is written to a SYSDA device.

08 The SYSIN DD statement indicates that a data set follows in the input
stream.

09 The MERGE statement. The FIELDS operand describes two fields. The
first begins on byte 1 of each record, is 6 bytes long, contains character
(EBCDIC) data, and is to be merged into ascending order. The second
field begins on byte 20, is 4 bytes long, contains fixed integer data, and is

Appendix A. Sample Job Streams 267

to be merged into ascending order. The optional EQUALS operand
specifies that the order of output records with equal control fields is the
same as the original order within a file and is based on the file number for
records from different files.

10 The SUM statement specifies that whenever two records with equal
control fields are found, the contents of their 4-byte fixed integer fields
beginning at position 32 are added and the sum saved in one of the
records. The other record is to be deleted. Because of the EQUALS
parameter on the MERGE statement, the first record always receives the
sum and is kept.

268 DFSORT Application Programming: Guide

Sort Examples Using VSAM Data Sets

Example 23. DEFINE VSAM DATA SETS FOR DFSORT PROCESSING

//EXAMP JOB A402, 'JOHN DOE'
PGM=IDCAMS,REGION=512K

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

//DEFINE EXEC
//SYSPRINT DD SYSOUT=A

UNIT=3330V,VOL=SER=VSM999,DISP=OLD //DISK DD
//SYSIN DD*

I*

DEFINE CL (NAME(TEST.SORTIN.FILE) -
KEYS(4 7) -
VOL(VSM999) -
TRK (40 20) -
RECSZ (91 110) -
BUFSP (5000)) -

DEFINE CL (NAME(TEST.SORTOUT.FILE) -
KEYS(4 25) -
VOL(VSM999) -
TRK (40 20) -
RECSZ (91 110) -
BUFSP(5000))

Line Explanation

01 The JOB statement introduces this job to the operating system.

02 The EXEC statement directs the system to execute the IDCAMS utility.

03 The SYSPRINT statement identifies the output device for messages.

04 The DISK statement ensures that the required volume is mounted.

05 The SYSIN DD statement indicates that a data set follows in the input
stream.

06-11 The DEFINE CL statement defines a key-sequenced cluster named
TEST.SORTIN.FILE. Its parameters are:

• KEYS, which specifies that the length of the key is 4 bytes and that
the key field begins in the 8th byte (offset 7) of each data record.

• VOL, which specifies that the cluster is to reside on volume VSM999.

• TRK, which specifies that 40 tracks are allocated for the cluster's
space. When the cluster is extended, it is to be extended in
increments of 20 tracks.

• RECSZ, which specifies that the records are variable-length with an
average size of 91 bytes and a maximum size of 110 bytes.

• BUFSP, which specifies that a minimum of 5000 must be provided for
1/0 buffers.

Appendix A. Sample Job Streams 269

12-17 The second DEFINE CL statement defines a similar cluster
TEST.SORTOUT.FILE as having keys 4 bytes long beginning in position
26 (offset 25).

270 DFSORT Application Programming: Guide

Example 24. SORT WITH VSAM INPUT AND OUTPUT

INPUT VSAM variable-length records

OUTPUT VSAM variable-length records

INTERMEDIATE STORAGE Three SYSDA areas of five cylinders each

USER ROUTINES None

OPTIONS None

//SORT1 EXEC PGM=SORT,REGION=512K 01
02
03
04
05
06
07
08
09
10

//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=TEST.SORTIN.FILE,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,5)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,5)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,5)
//SORTOUT DD DSN=TEST.SORTOUT.FILE
//SYSIN DD *

SORT FIELDS=(30,4,BI,A)
RECORD TYPE=V,LENGTH=110

I*

Line Explanation

01 The EXEC statement calls the program using the program name.

02 The SYSOUT statement identifies the output device for
messages.

03 The SORTIN DD statement describes as input the VLR VSAM
data set, TEST.SORTIN.FILE, previously created by DFSORT.

04-06 The SORTWK DD statements specify that SYSDA space of 5
cylinders each can be used for work space by DFSORT.

07 The SORTOUT DD statement directs output to a VLR VSAM
data set named TEST.SORTOUT.FILE.

08 The SYSIN DD statement indicates that data follows in the input
stream.

09 The SORT statement defines one control field in the input
records that begins in position 30 and is 4 bytes long. Since these
are variable-length records, 4 bytes have been added for the
record descriptor word (RDW) which DFSORT supplies at input
and removes at output for VSAM records. (SORTOUT file key
at byte position 26 + 4 = 30.)

Note that in order to produce the output data set in sequence on
positions 26 (offset 25) through 29 as defined in the cluster
definition shown in Example 23, positions 30 through 33 must be
specified in the FIELDS entry.

Appendix A. Sample Job Streams 271

10 The RECORD statement indicates that the input file is of VLR
format and the input record length is 110 bytes.

272 DFSORT Application Programming: Guide

Example 25. NON-VSAM SORTIN DATA SET, VSAM SORTOUT

INPUT Variable-length records

OUTPUT VSAM variable-length records

INTERMEDIATE STORAGE Three SYSDA areas of five cylinders each

USER ROUTINES E39

OPTIONS None

//SORT2 EXEC PGM=SORT,REGION=512K 01
02
03
04
05
06
07
08
09
10
11
12

//SYSOUT DD SYSOUT=A
//EXITC DD DSN=TEMPE39,DISP=SHR
//SORTIN DD DSN=SORTINPT,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,5)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,5)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,5)
//SORTOUT DD DSN=TEST.SORTOUT.FILE,DISP=SHR
//SYSIN DD *

SORT FIELDS=(30,4,BI,A)
RECORD TYPE=V
MODS E39=(E39,7000,EXITC)

/*

Line Explanation

01 The EXEC statement calls the program using the program name.

02 The SYSOUT statement identifies the output device for
messages.

03 The EXITC DD statement defines the library in which the exit
routines are located.

04 The SORTIN DD statement describes a sequential input data set
named SORTINPT.

05-07 The SORTWK DD statements specify that SYSDA space of 5
cylinders each can be used for work space by DFSORT.

08 The SORTOUT DD statement directs output to a VLR VSAM
data set named TEST.SORTOUT.FILE.

09 The SYSIN DD statement indicates that data follows in the input
stream.

10 The SORT statement defines one control field in the input
records that begins in position 30 and is 4 bytes long.

11 The RECORD statement indicates that the input file is VLR
format.

Appendix A. Sample Job Streams 273

12 The MODS statement describes a user routine that will receive
control at program exit E39. The name of the routine is E39; it
is 7000 bytes long and is on the data set defined in the EXITC
DD statement.

274 DFSORT Application Programming: Guide

Appendix B. Calculating Storage Requirements

Main Storage

This appendix describes the guidelines for allocating main storage to DFSORT.

Storage devices used for intermediate storage, the factors determining the amount
of intermediate storage required for a DFSORT program, and the program's
method of selecting a sorting technique are also discussed.

The amount of main storage to be made available to DFSORT is defined when the
program is installed. If for any reason this default value is unsuitable, you can
override it with the MAINSIZE/SIZE parameter (for ways to specify this value,
see Appendix D).

In general, the more (virtual) main storage you make available to the program (up
to a certain limit), the better the performance. The effect of the main storage
amount on performance is discussed under ''Tuning Main Storage" on page 207.

Intermediate Storage

Direct Access

Most sorting applications need work space on disk or tape. Merge and copy
applications need none. The amount of space required depends on the type of
device on which you assign storage, the number of records in your input data set,
and the amount of main storage assigned to the program. You can assign
intermediate storage on either mixed direct access devices or magnetic tape, but not
both.

You can specify a mixture of direct access devices for a given sort application. The
types of device available for intermediate storage are:

• IBM 2314/2319 disk
• IBM 3 3 30 I 3 3 3 3 series disks (Model 1 and/ or Model 11)
• IBM 3340/3344 disk
• IBM 3350 disk
• IBM 3375 disk

Appendix B. Calculating Storage Requirements 2 7 5

• IBM 3380 disk
• All system supported models of the 3880 are supported for use with 3380.

Notes:

1. The 3880 Model 1 with the Speed Matching Buffer Feature permits attachment
of the 3 3 7 5 to systems with block multiplexer channels with data rates less than 3
megabytes per second.

2. The 3880 Model 2 or 3 with the Speed Matching Buffer Feature permits
attachment of the 3 3 80 to systems with block multiplexer channels with data rates
less than 3 megabytes per second.

3. The 3880 Model 23 with cache provides high-speed access to data in the cache
memory located in the control unit.

For MVS, system performance is improved if storage is specified in cylinders rather
than tracks. Storage on temporary SORTWKnn data sets is reallocated in
cylinders. The number of tracks per cylinder for direct access devices is shown in
Figure 37.

Tracks per Maximum Bytes
Device Cylinder used per Track

2314 20 7193

3330/3333 series 19 13030

3340 12 8368

3350 30 19059

3375 12 35616

3380 15 47476

Figure 37. Number of Tracks per Cylinder for Direct Access Devices

The program allocates secondary extents as required, even if not requested in the
JCL, if DFSORT has been installed with the option WRKSEC= YES, unless the
data set is virtual I/ 0.

For allocation of sort work data sets it is usually adequate to allocate twice the
space used by the input data set(s). Certain conditions may cause additional space
requirements. These include:

• Use of long control words (> 150 bytes).

• Using different device types or work data sets.

• Use of an alternate collating sequence.

276 DFSORT Application Programming: Guide

Tape

Tape Maximum
Techniques Input

Balanced 15 volumes
tape

Polyphase 1 volume
tape

Oscillating 15 volumes
tape

IBM 2400 and 3400 series magnetic tape units can be used for intermediate
storage. If the sort input data set is on 7-track tape, you can use any combination
of 7-track and 9-track tapes for intermediate storage and output, or intermediate
storage and output can be on direct-access devices. However, if 7-track tape is not
used for input, it cannot be used for intermediate storage or output. When 7-track
tape is used for intermediate storage, variable-length records cannot be handled.

If you assign 7-track tapes for input, you can use the data converter. If you assign
7-track tapes for intermediate storage, you can use neither the data converter, nor
the translation feature for anything but character data.

Three different techniques are available to the program: Balanced, Polyphase, and
Oscillating. For information on how to calculate their requirements, see Figure 38.

Note: The value you obtain for "min." is literally a minimum value; if, for
example, your input uses a more efficient blocking factor than the sort program or
is spanned, you need more intermediate work space. Space requirements are also
summarized in Figure 38. DFSORT selects the most appropriate tape technique
using these criteria.

Work Storage Max.No. of
Areas Required Work Area Comments

Min=2(V + l)* 32 volumes Used if > 3 work storage tapes
tape units are provided; no file size given

Min=3 tape units 17 volumes Used if 3 work storage tapes
provided

Min=V*+2 or 4 17 volumes File size must be given. The
tape units, tape drive containing SORTIN
whichever is cannot be used as a work unit
greater

Figure 38. External Work Storage Requirements of the Various Tape Techniques

* Number of input volumes of blocking equals work storage blocking.

Exceeding Intermediate Storage Capacity

At the beginning of a sorting operation, DFSORT estimates a maximum sorting
capacity (Nmax) and generates an informative message: ICE0921 or ICE0931 for
a disk sort, ICE0381 for a tape sort. See the explanation of these messages for
details.

The message gives the approximate capacity in number of records. With disk work
space, the value is usually based on use of only the first extent of work data sets.
For variable-length records, the value is based on the maximum record length.

Appendix B. Calculating Storage Requirements 277

Work Storage on Disk

Work Storage on Tape

Program Action

The value printed in message ICE0381 is an average value rounded down to the
nearest thousand. This value assumes random input. If you have a reversed
sequenced file and tape work storage, sort capacity may be exceeded at a lower
value, because of the higher number of partly empty end-of-string blocks.

If, during sorting, the allocation of secondary space on one of the sort work data
sets fails, the system issues a B37 informational message. DFSORT can recover
from this by allocating space on one of the other work data sets, if one is available.

DFSORT normally allocates secondary extents for work data sets, even if not
requested in the JCL. This reduces the probability of exceeding intermediate
storage capacity.

For magnetic tape, a tape length of 2400 feet is assumed in calculating Nmax, so,
for tapes of other lengths, the figure is not correct. When tapes with mixed density
are used, the smallest density is used in the calculation.

If you specify an actual data set size, and that size is larger than the maximum
capacity estimated by the program (Nmax), the program terminates before
beginning to sort. If you specify an estimated data set size, or none at all, and the
number of records reaches the maximum (Nmax), the program gives control to
your routine at exit E16, if you have written and included one. This routine can
direct the program to take one of the following actions:

• Continue sorting the entire input data set with available intermediate storage.
If the estimate of the input data set size was high, enough intermediate storage
may remain to complete the application.

• Continue sorting with only part of the input data set; the remainder could be
sorted later and the two results merged to complete the application.

• Terminate the program without any further processing.

If you do not include an E 16 routine, the program continues to process records for
as long as possible. If the intermediate storage capacity is sufficient to contain all
the records in the input data set, the sort completes normally; when intermediate
storage is not sufficient, the program terminates.

The program generates a separate message for each of the three possible error
conditions. They are:

ICE041A - N GT NMAX: Generated before sorting begins (for a tape sort) when
the exact data size supplied on a SORT control statement is greater than Nmax.

ICE046A or ICE116A- SORT CAPACITY EXCEEDED: Generated when the
sort has used all available intermediate storage while processing.

278 DFSORT Application Programming: Guide

ICE0481 - NMAX EXCEEDED: Generated when a tape sort has exceeded Nmax
and has transferred control to a user-written E16 routine for further action.

The test for message ICE041A is made with the maximum possible calculated
value, that is, DFSORT is sure it will fail. In case of doubt, the message is not
issued.

Appendix B. Calculating Storage Requirements 279

Appendix C. Converting to the Extended Parameter List

Programs that use the 24-bit parameter list can be converted to use the extended
parameter list by applying a combination of the parameters in the extended
parameter list and the control statements in its control statements area. Figure 39
shows the correspondence between the two parameter lists.

24-Bit List Equivalent in Extended List

SORT I MERGE, RECORD, Corresponding control statements
MODS, AL TSEQ control statements

Address of E15 or E32 routine Address of E 15 or E3 2 routine

Address of E35 routine Address of E3 5 routine

Main storage value MAINSIZE option of the OPTION
control statement

Reserved main storage value RESINY option of the OPTION
control statement,

Message ddname MSGDDN option of the OPTION
control statement

Number of input files to a merge FILES option of the MERGE
control statement

AL TSEQ translation table AL TSEQ translation table

ST AE/EST AE information ST AE/EST AE information

Message type option MSGPRT option of the OPTION
control statement

Option characters for ddnames SORTDD option of the OPTION
control statement

Allow short variable records VLSHRT option of the OPTION
control statement

Figure 39. Converting to the Extended Parameter List

Appendix C. Converting to the Extended Parameter List 281

Appendix D. Specification/Override of DFSORT Options

Listed below are the places in DFSORT where you can specify various options.
The sources for the options are listed in override order; that is, any option specified
in a higher place in the list overrides one specified in a lower place.

JCL Invoked DFSORT

EXEC statement PARM field

SYSIN data set

DEBUG and OPTION control statements

Other control statements

• Installation macro (ICEMAC JCL)

Standard defaults

Dynamically Invoked DFSORT

SORTCNTL data set

DEBUG and OPTION control statements

Other control statements

• Parameter list

DEBUG and OPTION control statements

Other control statements

• Installation macro (ICEMAC INV)

Standard defaults

The following sections show the possible sources of specification and order of
override for individual options.

Appendix D. Specification/Override of DFSORT Options 283

JCL Invoked DFSORT

Function

S,M

s

S,M,C

s

s
S,M

S,M

S,M,C

S,M,C

S,M,C

s

S,M

S,M,C

s
S,M,C

Figure 40 shows where each sort, merge, or copy option may be specified when
DFSORT is invoked through JCL. Unless otherwise noted, the order of override
between sources of specification is from right to left; that is, a specification overrides
all specifications to its left. The order of override within a source is from bottom to
top; that is, a specification overrides all specifications above it.

The column on the left tells which functions (S=sort, M=merge, or C=copy) can
use the option. Notes follow the figure.

Description Specified with Specified with Specified with
of Option ICEMACJCL SY SIN EXEC PARM

Alternate sequence ALTSEQ ALTSEQCODE NO

System storage above ARE SALL OPTION ARESALL ARE SALL
16-megabyte virtual

Force BSAM NO DEBUGBSAM BSAM

Bypass Sorting NO DEBUG NOASSIST NO
Instructions

Placement of buffers NO DEBUG BUFFERS NO

CH field sequence CHALT OPTION CHALT I NO
NOCHALT

Record count check CHECK OPTION CHECK I NO
NOCHECK

COBOL library COB EXIT OPTION COBEXIT NO

ABEND record count NO DEBUGCTRx NO

Abnormal stop NO DEBUGABSTP NO

Dynamic SORTWKs DYNALLOCt SORT DYNALLOC NO
OPTION DYNALLOC

Equal record order EQUALS SORT I MERGE NO
EQUALS I

NOEQUALS
OPTION EQUALS I

NOEQUALS

Error action BRET DEBUG ABEND I NO
NO ABEND

EXCPVR for SORTWK EXCPVR NO NO

Include I Omit fields NO INCLUDE I OMIT NO
COND/FORMAT

Figure 40 (Part 1 of 3). JCL DFSORT Option Specification/Override

284 DFSORT Application Programming: Guide

Description Specified with Specified with Specified with
Function of Option ICEMACJCL SY SIN EXEC PARM

S,M,cs Exit Exx NO MODSExx El5=COB
(xx= 11,15-19,31,35, E35=COB
37-39, and 61)

S,M,C Inrec fields NO INREC FIELDS NO

S,M,C Outrec fields NO OUTREC FIELDS NO

S,M Control fields NO SORT I MERGE NO

FIELDS/FORMAT

c Copy records NO SORT I MERGE NO
FIELDS

OPTION COPY

S,M Sum fields NO SUM FIELDS/FORMAT NO

M Merge input files NO MERGE FILES NO

S,M File size NO SORT I MERGE FILSZ I NO
SIZE

OPTION FILSZ I SIZE

S,M,C Formatted dump NO DEBUG FMTABEND NO

S,M Checkpoints IGNCKPT SORT I MERGE CKPT I NO
CHKPT2

OPTION CKPT I CHKPT2

S,M,C Record lengths NO RECORD LENGTH NO

S,M,C Print control LIST NOS LIST I NOLIST
statements3

S,M,C Maximum storage below MAXLIM NO NO
16-megabyte virtual4

S,M,C Minimum storage MINLIM NO NO

S,M,C Alternate message data MSGDDN N07 MSGDDN
set

S,M,C Write messages on MSGCON NO NO
master console

S,M,C Print messages MSGPRT N06 MSGPRTIFLAG

S,M Bypass Blockset NO OPTION NOBLKSET NO

S,M,C Release SORTOUT OUTREL OPTION NOOUTREL NO
space

S,M,C SORTOUT secondary OUTSEC OPTION NOOUTSEC NO
allocation

Figure 40 (Part 2 of 3). JCL DFSORT Option Specification/Override

Appendix D. Specification/Override of DFSORT Options 285

Description Specified with Specified with Specified with
Function of Option ICEMACJCL SYSIN EXEC PARM

S,M,C Storage over REGION OVERRGN NO NO

S,M,C System reserved RE SALL OPTION RESALL RES ALL
storage4

S,M,C Resident modules RESDNTx NO NO

S,M,C Storage SIZE OPTION MAINSIZE SIZEI CORE

S,M,C SMF records SMF NO NO

S,C Skip records NO SORT SKIPREC NO
OPTION SKIPREC

S,M,C User of STIMER STIMER OPTION NOSTIMER NO

S,C Input limit NO OPTION STOPAFT NO

S,M,C Record format NO RECORD TYPE NO

S,M,C User SVC number SVC NO NO

s Maximum storage above TMAXLIM NO NO
and below 16-megabyte
virtual

S,M Sequence check VERIFY OPTION VERIFY I NO
NO VERIFY

s SORTWK virtual I/O VIO NO NO

S,M Variable records do not VLSHRT OPTION VLSHRT I NO
contain all specified NOVLSHRT
control fields

s Release SORTWK WRKREL OPTION NOWRKREL NO
space

s SORTWK secondary WRKSEC OPTION NOWRKSEC NO
allocation

Figure 40 (Part 3 of 3). JCL DFSORT Option Specification/Override

Notes to Ji~igure 40:

2

3

4

5

6

7

8

Does not request dynamic allocation; just supplies defaults.
Not used if Blockset is selected and IGNCKPT= YES was specified.
Not used if MSGPRT=NONE is in effect; in this case control statements are
not printed.
Not used unless MAINSIZE=MAX is in effect.
OPTION LIST I NOLIST in SYSIN is not used.
OPTION MSGPRT in SYSIN is not used.
OPTION MSGDDN in SYSIN is not used.
All functions do not apply to all exits. See Figure 16 on page 138 and
Figure 17 on page 139 for applicable exits.

286 DFSORT Application Programming: Guide

Dynamically Invoked DFSORT with an Extended Parameter List

Function

S,M

s

s

S,M,C

s

s

S,M

S,M

S,M,C

S,M,C

S,M,C

Description
of Option

Figure 41 shows where each sort, merge, or copy option may be specified when
DFSORT is dynamically invoked and an extended parameter list is passed to it.
Unless otherwise noted, the order of override between sources of specification is from
right to left; that is, a specification overrides all specifications to its left. The order
of override within a source is from bottom to top; that is, a specification overrides all
specifications above it. Note that control statements other than DEBUG and
OPTION specified in the SORTCNTL data set completely override corresponding
control statements specified through the extended parameter list. (SORT and
MERGE and INCLUDE and OMIT, are considered to be corresponding control
statements.)

The column on the left tells which functions (S=sort, M=merge, or C=copy) can
use the option. Notes follow the figure.

Specified with Specified with Specified with
ICEMACINV Extended Parameter List SORTCNTL

Alternate sequence ALTSEQ ALTSEQCODE ALTSEQCODE
Offset 16 entry

System storage ARE SALL OPTION ARESALL OPTION ARESALL
above
16-megabyte
virtual

Storage above ARES INV OPTION ARESINV OPTION ARESINV
16-megabyte
virtual for invoking
program

Force BSAM NO DEBUGBSAM DEBUGBSAM

Bypass Sorting NO DEBUG NOASSIST DEBUG NOASSIST
Instructions

Placement of NO DEBUG BUFFERS DEBUG BUFFERS
buffers

CH field sequence CHALT OPTION CHALT I OPTION CHALT I
NOCHALT NOCHALT

Record count CHECK OPTION CHECK I OPTION CHECK I
check NOCHECK NO CHECK

COBOL library COBEXIT OPTION COBEXIT OPTION COBEXIT

ABEND record NO DEBUGCTRx DEBUGCTRx
count

Abnormal stop NO DEBUGABSTP DEBUGABSTP

Figure 41 (Part 1 of 4). Extended Parameter List DFSORT Option Specification/Override

Appendix D. Specification/Override of DFSORT Options 287

Description Specified with Specified with Specified with
Function of Option ICEMACINV Extended Parameter List SORTC1"1L

s Dynamic DYNALLOCt SORT DYNALLOC SORT DYNALLOC2
SORTWKs OPTION DYNALLOC OPTION

DYNALLOC

S,M Equal record order EQUALS SORT I MERGE SORT I MERGE
EQUALS I EQUALS I

NOEQUALS NOEQUALS2
OPTION EQUALS I OPTION EQUALS I

NOEQUALS NOEQUALS

S,M,C Error action BRET DEBUG ABEND I DEBUG ABEND I
NO ABEND NO ABEND

s EXCPVRfor EXCPVR NO NO
SORTWK

S,M,C Include I Omit NO INCLUDE I OMIT INCLUDE I OMIT
fields COND/FORMAT

COND/FORMAT

s,c Exit EIS NO MODS El53 MODSE153
Off set 4 entry3

s Exit E18 NO MODS El83 MODSE183
Off set 24 entry3

M Exit E32 NO Off set 4 entry NO

S,M,C Exit E35 NO MODS E353 MODS E353
Off set 8 entry3

S,M,C Exit E39 NO MODS E393 MODSE393
Off set 28 entry3

S,M,Cts Exit Exx NO MODSExx MODSExx
(xx= 11,16,17 ,19,31,
37,38, and 61)

S,M,C lnrec fields NO INREC FIELDS INREC FIELDS

S,M,C Outrec fields NO OUTREC FIELDS OUTREC FIELDS

S,M Control fields NO SORT I MERGE SORT I MERGE
FIELDS/FORMAT FIELDS/FORMAT

c Copy records NO SORT I MERGE FIELDS SORT I MERGE
OPTION COPY FIELDS2

OPTION COPY

S,M Sum fields NO SUM FIELDS/FORMAT SUM
FIELDS/FORMAT

M Merge input files NO MERGE FILES MERGE FILES

Figure 41 (Part 2 of 4). Extended Parameter List DFSORT Option Specification/Override

288 DFSORT Application Programming: Guide

Description Specified with Specified with Specified with
Function of Option ICEMACINV Extended Parameter List SORTCNTL

S,M File size NO SORT I MERGE FILSZ I SORT I MERGE
SIZE FILSZI

OPTION FILSZ I SIZE SIZE2
OPTION
FILSZI SIZE

S,M,C Formatted dump NO DEBUG FMTABEND DEBUG
FMTABEND

S,M Checkpoints IGNCKPT SORT I MERGE CK.PT I SORT I MERGE
CHKPT4 CKPTI

OPTION CKPT I CHKPT4 CHKPT2,4

OPTION
CKPT I CHKPT4

S,M,C Record lengths NO RECORD LENGTH RECORD LENGTH

S,M,C Print control LIST OPTION LIST I NOLIST N06
statementss

S,M,C Maximum storage MAXLIM NO NO
below
16-megabyte
virtual7

S,M,C Minimum storage MINLIM NO NO

S,M,C Alternate message MSGDDN OPTION MSGDDN NOS
ddname

S,M,C Write messages on MSGCON NO NO
master console

S,M,C Print messages MSGPRT OPTION MSGPRT N09

S,M Bypass Blockset NO OPTION NOBLKSET OPTION NOBLKSET

S,M,C Release OUTREL OPTION NOOUTREL OPTION
SORTO UT NOOUTREL
space

S,M,C SOR TOUT OUTSEC OPTION NOOUTSEC OPTION
secondary NOOUTSEC
allocation

S,M,C Storage over OVERRGN NO NO
REGION

S,M,C System reserved RE SALL OPTION RESALL OPTION RESALL
storage?

S,M,C Resident modules RESDNTx NO NO

Figure 41 (Part 3 of 4). Extended Parameter List DFSORT Option Specification/Override

Appendix D. Specification/Override of DFSORT Options 289

Description Specified with Specified with Specified with
Function of Option ICEMACINV Extended Parameter List SORTCNTL

S,M,C Program reserved RES INV OPTION RESINY OPTION RESINV
storage?

S,M,C Storage SIZE OPTION MAINSIZE OPTION MAINSIZE

S,M,C SMF records SMF NO NO

s,c Skip records NO SORT SKIPREC SORT SKIPREC2
OPTION SKIPREC OPTION SKIPREC

S,M,C ddname prefix NO OPTION SORTDD NO to

s,c Alternate input NO OPTION SORTIN11 N0t2
ddname

S,M,C Alternate NO OPTION SORTOUTt3 NOt4
output ddname

S,M,C Use of STIMER STIMER OPTION NOSTIMER OPTION NOSTIMER

S,C Input limit NO OPTION STOPAFT OPTION STOPAFT

S,M,C User SVC number SVC NO NO

S,M,C Record format NO RECORD TYPE RECORD TYPE

s Maximum storage TMAXLIM NO NO
above and below
16-megabyte
virtual

S,M Sequence check VERIFY OPTION VERIFY I OPTION VERIFY I
NO VERIFY NO VERIFY

s SORTWK virtual VIO NO NO
I/0

S,M Variable records VLSHRT OPTION VLSHRT I OPTION VLSHRT I
do not contain all NOVLSHRT
specified control NOVLSHRT
fields

s Release SORTWK WRKREL OPTION NOWRKREL OPTION
space NOWRKREL

s SORTWK WRKSEC OPTION NOWRKSEC OPTION
secondary NOWRKSEC
allocation

Figure 41 (Part 4 of 4). Ext~nded Parameter List DFSORT Option Specification/Override

Notes to Figure 41:

2

3

4

Does not request dynamic allocation; only supplies defaults.
Does not override corresponding option in an OPTION statement specified
via the extended parameter list.
DFSORT terminates if the exit is specified via the parameter list entry and the
exit is specified in a MODS statement.
Not used if Blockset is selected and IGNCKPT= YES was specified.

290 DFSORT Application Programming: Guide

5

6

7

8

9

10

11

12

13

14

15

Not used if MSGPRT=NONE is in effect; in this case control statements are
not printed.
OPTION LIST I NOLIST in SORTCNTL is not used.
Not used unless MAINSIZE=MAX is in effect.
OPTION MSGDDN in SORTCNTL is not used.
OPTION MSGPRT in SORTCNTL is not used.
OPTION SORTDD in SORTCNTL is not used.
Overrides SORTDD for the sort input DDname.
OPTION SORTIN in SORTCNTL is not used.
Overrides SORTDD for the sort output DDname.
OPTION SORTOUT in SORTCNTL is not used.
All functions do not apply to all exits. See Figure 16 on page 138 and
Figure 17 on page 139 for applicable exits.

Appendix D. Specification/Override of DFSORT Options 291

Dynamically Invoked DFSORT with 24-Bit List

Function

S,M

s

s

S,M,C

s

s

S,M

S,M

S,M,C

S,M,C

S,M,C

s

Description
of Option

Figure 42 shows where each sort, merge, or copy option may be specified when
DFSORT is dynamically invoked and a 24-bit parameter list is passed to it. Unless
otherwise noted, the order of override between sources of specification is from right to
left: a specification overrides all specifications to its left. The order of ove"ide
within a source is from bottom to top: a specification overrides all specifications
above it. Note that control statements other than DEBUG specified in the
SORTCNTL data set completely override corresponding control statements
specified via the 24-bit parameter list. (SORT and MERGE and INCLUDE and
OMIT are considered to be corresponding control statements.)

The column on the left tells which functions (S=sort, M=merge, or C=copy) can
use the option. Notes follow the figure.

Specified with Specified with Specified with
ICEMACINV 24-Bit List SORTCNTL

Alternate sequence ALTSEQ ALTSEQCODE ALTSEQCODE
X'F6' entry

System storage ARES ALL NO OPTION ARESALL
above
16-megabyte
virtual

Storage above ARES INV NO OPTION ARESINV
16-megabyte
virtual for invoking
program

Force BSAM NO DEBUGBSAM DEBUGBSAM

Bypass Sorting NO DEBUG NOASSIST DEBUG NOASSIST
Instructions

Placement of NO DEBUG BUFFERS DEBUG BUFFERS
buffers

CH field sequence CHALT NO OPTION CHALT I
NOCHALT

Record count CHECK NO OPTION CHECK I
check NOCHECK

COBOL library COBEXIT NO OPTION COBEXIT

ABEND record NO DEBUGCTRx DEBUGCTRx
count

Abnormal stop NO DEBUGABSTP DEBUGABSTP

Dynamic DYNALLOCt SORT DYNALLOC SORT DYNALLOC
SORTWKS OPTION DYNALLOC

Figure 42 (Part 1 of 4). 24-Bit List DFSORT Option Specification/Override

292 DFSORT Application Programming: Guide

Description Specified with Specified with Specified with
Function of Option ICEMACINV 24-Bit List SORTCNTL

S,M Equal record order EQUALS SORT I MERGE SORT I MERGE
EQUALS I NOEQUALS EQUALS I NOEQUALS

OPTION EQUALS I
NOEQUALS

S,M,C Error action BRET DEBUG ABEND I DEBUG ABEND I
NO ABEND NO ABEND

s EXCPVRfor EXCPVR NO NO
SORTWK

S,M,C Include I Omit NO NO INCLUDE I OMIT
fields COND

COND/FORMAT

s,c Exit E15 NO MODS El52 MODS El52
Offset 18 entry2

M Exit E32 NO Off set 18 entry NO

S,M,C Exit E35 NO MODS E352 Offset 22 MODS E352
entry2

S,M,cto Exit Exx NO MODSExx MODSExx
(xx= 11,16-19,31,
37-39, and 61)

S,M,C Inrec fields NO NO INREC FIELDS

S,M,C Outrec fields NO NO OUTREC FIELDS

S,M,C Control fields NO SORT I MERGE SORT I MERGE
FIELDS/FORMAT FIELDS/FORMAT

c Copy records NO SORT I MERGE SORT I MERGE
FIELDS FIELDS

OPTION COPY

S,M Sum fields NO NO SUM
FIELDS/FORMAT

M Merge input files NO MERGE FILES MERGE FILES
X'04' entry

S,M File size NO SORT I MERGE SORT I MERGE FILSZ I
FILSZI SIZE

SIZE OPTION FILSZ I SIZE

S,M,C Formatted dump NO DEBUG FMTABEND DEBUG FMTABEND

S,M Checkpoints IGNCKPT SORT I MERGE SORT I MERGE
CKPT I CHKPT3 CKPT I CHKPT3

OPTION
CKPT I CHKPT3

Figure 42 (Part 2 of 4). 24-Bit List DFSORT Option Specification/Override

Appendix D. Specification/Override of DFSORT Options 293

Description Specified with Specified with Specified with
Function of Option ICEMACINV 24-Bit List SORTCNTL

S,M,C Record lengths NO RECORD LENGTH RECORD LENGTH

S,M,C Print control LIST NO NOS
statements4

~·

S,M,C Maximum storage MAXLIM NO NO
below
16-megabyte
virtual6

S,M,C Minimum storage MIN LIM NO NO

S,M,C Alternate message MSGDDN X'03' entry N07
ddname

S,M,C Write messages on MSGCON NO NO
master console

S,M.C Print messages MSGPRT X'FF' entry NOB
i----··

S,M Bypass Blockset NO NO OPTION NOBLKSET

S,M,C Release OUTREL NO OPTION NOOUTREL
SORTOUT space

S,M,C SORTO UT OUTSEC NO OPTION NOOUTSEC
secondary
allocation

S.M.C Storage over OVERRGN NO NO
REGION

S,M,C System reserved RES ALL NO OPTION RESALL
storage6

S,M,C Resident modules RESDNTx NO NO

S,M,C Program reserved RES INV X'Ol' entry OPTION RESINY
storage6

S,M,C Storage Size X'OO' entry OPTION MAINSIZE

S,M,C SMF records SMF NO NO

S,C Skip records NO SORT SKIPREC SORT SKIPREC
OPTION SKIPREC

S,M,C ddname prefix NO Prefix entry N09

S,M,C Use of STIMER STIMER NO OPTION NOSTIMER

S,C Input limit NO NO OPTION STOPAFT

S,M,C User SVC number SVC NO NO

S,M,C Record format NO RECORD TYPE RECORD TYPE

Figure 42 (Part 3 of 4). 24-Bit List DFSORT Option Specification/Override

294 DFSORT Application Programming: Guide

Description Specified with Specified with Specified with
Function of Option ICEMACINV 24-Bit List SORTCNTL

s Maximum storage TMAXLIM NO NO
above and below
16-megabyte
virtual

S,M Sequence check VERIFY NO OPTION VERIFY I
NO VERIFY

s SORTWK virtual VIO NO NO
1/0

S,M Variable records VLSHRT X'FD' entry OPTION VLSHRT I
do not contain all NOVLSHRT
specified control
fields

s Release SORTWK WRKREL NO OPTION NOWRKREL
space

s SORTWK WRKSEC NO OPTION NOWRKSEC
secondary
allocation

Figure 42 (Part 4 of 4). 24-Bit List DFSORT Option Specification/Override

Notes to Figure 42:

2

3

4

5

6

7

8

9

10

Does not request dynamic allocation; just supplies defaults.
DFSORT terminates if the exit is specified via the parameter list entry and the
exit is specified in a MODS statement.
Not used if Blockset is selected and IGNCKPT= YES was specified.
Not used if MSGPRT=NONE or MSGPRT=CRITICAL is in effect; in this
case control statements is not printed.
OPTION LIST I NOLIST in SORTCNTL is not used.
Not used unless MAINSIZE=MAX is in effect.
OPTION MSGDDN in SORTCNTL is not used.
OPTION MSGPRT in SORTCNTL is not used.
OPTION SORTDD in SORTCNTL is not used.
All functions do not apply to all exits. See Figure 16 and Figure 17 on
page 13 9 for applicable exits.

Appendix D. Specification/Override of DFSORT Options 295

Appendix E. Data Format Examples

The format descriptions ref er to the assembled data formats as used with IBM
System 360/370. If, for example, a data variable is declared in PL/I as FIXED
DECIMAL, it is the compiled format of the variable that must be given in the 'f'
field of the SORT control statement, not the PL/I declared format. In this case,
the 'f' field would be PD (packed decimal) because the PL/I compiler converts
fixed decimal to packed decimal form.

Format Description

CH (character EBCDIC, unsigned). Each character is represented
by its 8-bit EBCDIC code.

Example: AB7 becomes
C 1 C2 F7 Hexadecimal

11000001 11000010 11110111 Binary

ZD (zoned decimal, signed). Each digit of the decimal number is
converted into its 8-bit EBCDIC representation. The sign
indicator replaces the first four bits of the low order byte
of the number.

Example: -24 7 becomes
2 4 - 7 Decimal
F2 F 4 D7 Hexadecimal

11110010 11110100 11010111 Binary

The number + 24 7 becomes
F2 F4 C7

11110010 11110100 11000111

PD (packed decimal, signed). Each digit of the decimal number
is converted into its 4-bit binary equivalent. The sign
indicator is put into the rightmost four bits of the number.

Example: -247 becomes
2 4 7 - Decimal

24 7D Hexadecimal
00100100 01111101 Binary

The number + 24 7 becomes 24 7 C in hexadecimal.

Appendix E. Data Format Examples 297

Format Description

FI (fixed point, signed). The complete number is represented
by its binary equivalent in either halfword or fullword
format. The sign indicator is placed in the most
significant bit position.

0 for+ or 1 for-. Negative numbers are in 2's complement
form.

Example: + 24 7 becomes in halfword form
OOF7 Hexadecimal

0000000011110111 Binary

The number -24 7 becomes
FF09 Hexadecimal

BI (binary unsigned). Any bit pattern.

FL (floating point, signed). The specified number is in the
two-part format of character and fraction with the sign
indicator in bit position 0.

Example: +247 becomes
0 1000010 111101110000000
+ chara. fraction

-24 7 is identical, except that the sign bit is
changed to 1.

AC (character ASCII, unsigned). This is similar to format CH
but the characters are represented with ASCII code.

Example: AB7 becomes
41 42 37 Hexadecimal

010000010100001000110111 Binary (ASCII code)

CSL (signed number, leading separate sign). This format refers to
decimal data as punched into cards, and then assembled into
EBCDIC code.

Example: +247 punched in a card becomes
+ 2 4 7 Punched numeric data
4E F2 F4 F7 Hexadecimal

01001110 11110010 11110100 11110111 Binary EBCDIC code

-24 7 becomes
- 2 4 7 Punched numeric data
60 F2 F4 F7 Hexadecimal

01100000 11110010 11110100 11flOl11 Binary EBCDIC code

298 DFSORT Application Programming: Guide

Format Description

CST (signed numeric, trailing separate sign). This has the same
representation as the CSL format, except that the sign
indicator is punched after the number.

CLOt

Example: 247+ punched on the card becomes
F2 F4 F7 4E Hexadecimal

(signed numeric, leading overpunch sign). This format again
refers to decimal data punched into cards and then assembled
into EBCDIC code. The sign indicator is, however,
overpunched with the first decimal digit of the number.

Example: +247 with+ overpunched on 2 becomes
+ 2 4 7 Punched numeric data
C2 F4 F7 Hexadecimal

11000010 11110100 11110111 Binary EBCDIC code

Similarly -24 7 becomes
D2F4F7

CTO (signed numeric, trailing overpunch sign). This format has
the same representation as for the CLO format, except that
the sign indicator is overpunched on the last decimal digit of
the number.

Example: +247 with+ overpunched on 7 becomes
F2 F4 C7 hexadecimal

ASL (signed numeric, ASCII, leading separate sign). Similar to
the CSL format but with decimal data assembled into ASCII
code.

Example: +247 punched into card becomes
+ 2 4 7 Punched numeric data
2B 32 34 37 Hexadecimal

0101011 00110010 00110100 00110111 Binary ASCII code

Similarly -24 7 becomes
2D 3 2 34 3 7 hexadecimal

AST (signed numeric, ASCII, trailing separate sign). This gives
the same bit representation as the ASL format, except that
the sign is punched after the number.

Example: 24 7 + becomes
32 34 37 2B hexadecimal

The overpunch sign bit is always X'C' for positive and X'D' for negative.

A detailed description of CH, ZD, PD, Fl, Bl, and FL data formats will be found in
the OS/VS-DOS/VSE-VM/370 Assembler La.nguage Manual, Section G.

Appendix E. Data Format Examples 299

Appendix F. EBCDIC_ and ISCII/ ASCII Collating Sequences

EBCDIC

Figure 41 on page 287 shows the collating sequence for EBCDIC character and
unsigned decimal data. The collating sequence ranges from low (00000000) to
high (11111111). The bit configurations which do not correspond to symbols (that
is, 0 through 73, 81 through.89, and so forth) are not shown. Some of these
correspond to control commands for the printer and other devices.

Packed decimal, zoned dec~al, fixed-point, and normalized floating-point data are
collated algebraically, that is, each quantity is interpreted as having a sign.

Collating Bit
Sequence Configuration Symbol Meaning

0 00000000

74 01001010
75 01001011
76 01001100
77 01001101
78 01001110
79 01001111
80 01010000

90 01011010
91 01011011
92 01011100
93 01011101
94 01011110
95 01011111
96 01100000
97 01100001

¢ Cent sign
Period, decimal point

< Less than sign
(Left parenthesis
+ Plus sign
I Vertical bar, Logical OR
& Ampersand

Exclamation point
$ Dollar sign
* Asterisk
) Right parenthesis

Semicolon
Logical not
Minus, hyphen

I Slash

Figure 43 (Part 1 of 3). EBCDIC Collating Sequence

Appendix F. EBCDIC and ISCII/ ASCII Collating Sequences 301

Collating Bit
Sequence Configuration Symbol Meaning

107 01101011
'

Comma
108 01101100 % Percent sign
109 01101101 Underscore
110 01101110 > Greater than sign
111 01101111 '! Question mark

122 01111010 Colon
123 01111011 # Number sign
124 01111100 @ At sign
125 01111101 Apostrophe, prime
126 01111110 = Equal sign
127 01111111 " Quotation marks

129 10000001 a
130 10000010 b
131 10000011 c
132 10000100 d
133 10000101 e

134 10000110 f
135 10000111 g
136 10001000 h
137 10001001

145 10010001 j
146 10010010 k
147 10010011 1
148 10010100 m
149 10010101 n
150 10010110 0

151 10010111 p
152 10011000 q
153 10011001 r

162 10100010 s
163 10100011 t
164 10100100 u
165 10100101 v
166 10100110 w
167 10100111 x
168 10101000 y
169 10101001 z

Figure 43 (Part 2 of 3). EBCDIC Collating Sequence

302 DFSORT Application Programming: Guide

Collating Bit
Sequence Configuration Symbol Meaning

193 11000001 A
194 11000010 B
195 11000011 c
196 11000100 D
197 11000101 E
198 11000110 F
199 11000111 G
200 11001000 H
201 11001001 I

209 11010001 J
210 11010010 K
211 11010011 L
212 11010100 M
213 11010101 N
214 11010110 0
215 11010111 p
216 11011000 Q
217 11011001 R

226 11100010 s
227 11100011 T
228 11100100 u
229 11100101 v
230 11100010 w
231 11100111 x
232 11101000 y

233 11101001 z

240 11110000 0
241 11110001 l
242 11110010 2
243 11110011 3
244 11110100 4
245 11110101 5

246 11110110 6
247 11110111 7
248 11111000 8
249 11111001 9

255 11111111

Figure 43 (Part 3 of 3). EBCDIC Collating Sequence

Appendix F. EBCDIC and ISCII/ ASCII Collating Sequences 303

ISCII/ ASCII

Figure 42 on page 292 shows the collating sequence for ISCH/ ASCII, character,
and unsigned decimal data. The collating sequence ranges from low (00000000) to
high (01111111). Bit configurations that do not correspond to symbols are not
shown.

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the
signed numeric data formats are collated algebraically; that is, each quantity is
interpreted as having a sign.

304 DFSORT Application Programming: Guide

Collating Bit
Sequence Configuration Symbol Meaning

0 00000000 Null
32 00100000 SP Space
33 00100001 I Logical OR
34 00100010 " Quotation mark
35 00100011 # Number sign
36 00100100 $ Dollar sign
37 00100101 % Percent
38 00100110 & Ampersand
39 00100111 Apostrophe, prime
40 00101000 (Opening parenthesis
41 00101001) Closing parenthesis
42 00101010 * Asterisk
43 00101011 + Plus
44 00101100 Comma
45 00101101 Hyphen, minus
46 00101110 Period, decimal point
47 00101111 I Slant
48 00110000 0
49 00110001 1
50 00110010 2
51 00110011 3
52 00110100 4
53 00110101 5
54 00110110 6
55 00110111 7
56 00111000 8
57 00111001 9
58 00111010 Colon
59 00111011 Semicolon
60 00111100 < Less than
61 00111101 = Equals
62 00111110 > Greater than
63 00111111 ? Question mark
64 01000000 @ Commercial At
65 01000001 A
66 01000010 B
67 01000011 c
68 01000100 D

'69 01000101 E

Figure 44 (Part 1 of 3). ISCII/ ASCII Collating Sequence

Appendix F. EBCDIC and ISCII/ ASCII Collating Sequences 305

Collating Bit
Sequence Configuration Symbol Meaning

70 01000110 F
71 01000111 G
72 01001000 H
73 01001001 I
74 01001010 J
75 01001011 K
76 01001100 L
77 01001101 M
78 01001110 N
79 01001111 0
80 01010000 p
81 01010001 Q
82 01010010 R
83 01010011 s
84 01010100 T
85 01010101 u
86 01010110 v
87 01010111 w
88 01011000 x
89 01011001 y

90 01011010 z
91 01011011 [Opening bracket
92 01011100 I Reverse slant
93 01011101] Closing bracket
94 01011110 f\ Circumflex, Logical NOT
95 01011111 Underscore
96 01100000 ' Grave Accent
97 01100001 a
98 01100010 b
99 01100011 c
100 01100100 d
101 01100101 e
102 01100110 f
103 01100111 g
104 01101000 h
105 01101001
106 01101010 j
107 01101011 k
108 01101100 1
109 01101101 m
110 01101110 n
111 01101111 0

112 01110000 p
113 01110001 q
114 01110010 r
115 01110011 s
116 01110100 t
117 01110101 u

Figure 44 (Part 2 of 3). ISCH/ ASCII Collating Sequence

306 DFSORT Application Programming: Guide

Collating Bit
Sequence Configuration Symbol Meaning

118 01110110 v
119 01110111 w
120 01111000 x
121 01111001 y
122 01111010 z
123 01111011 { Opening Brace
124 01111100 I Vertical Line
125 01111101 } Closing Brace
126 01111110 - Tilde

Figure 44 (Part 3 of 3). ISCH/ ASCII Collating Sequence

Appendix F. EBCDIC and ISCII/ ASCII Collating Sequences 307

Appendix G. SMF Record (TYPE 16)

DISP

0000
0000
0004

0005
0006
OOOA
OOOE
0012
001A
001E
0022

002.A
002B
002E
0032

0034
0038
003A

003C
0040
0042

0044
0048
004A

The SMF record produced by DFSORT has the following format:

NAME

ICESMF DSECT
ICERDW DS XL4
ICESIND DS B

*
*
ICERTYP DS X
ICEBTIME DS FL4
ICEBDATE DS PL4
ICES ID DS CL4
ICEJOBNM DS CL8
ICERST DS FL4
ICERDS DS PL4
ICEUIF DS CL8

*
ICESTN DS XL1
ICERES1 DS CL3
ICESUBID DS CL4
ICERSUB DS XL2
ICERSUBS EQU X'01'
ICERSUBF EQU X'02'

DESCRIPTION

RECORD DESCRIPTOR WORD
SYSTEM INDICATOR
BITO: 1 = SUBSYSTEM ID FOLLOWS SYSTEM ID
BIT 1-7: RESERVED
SMF RECORD TYPE. (16)
TIME RECORD WAS MOVED TO SMF BUFFER
DATE RECORD WAS MOVED TO SMF BUFFER
SYSTEM IDENTIFICATION
JOB NAME
TIME READER RECOGNIZED JOBCARD
DATE READER RECOGNIZED JOBCARD
USER ID (TAKEN FROM COMMON EXIT

PARAMETER AREA)
STEP NUMBER
RESERVED
SUBSYSTEM ID
RECORD SUBTYPE
SHORT RECORD
FULL RECORD

**
* SELF DEFINING SECTION *
**
ICEPROD DS
ICEPRODL DS
ICEPRODN DS

*
ICEDATA DS
ICEDATAL DS
ICEDATAN DS

*
ICESTAT DS
ICESTATL DS
ICESTATN DS

F
H
H

F
H
H

F
H
H

OFFSET TO PRODUCT SECTION
PRODUCT SECTION LENGTH (10)
NUMBER OF PRODUCT SECTIONS (1)

OFFSET TO SECTION COMMON TO SHORT AND FULL RECS
DATA SECTION LENGTH (38)
NUMBER OF DATA SECTIONS (1)

OFFSET TO RECORD LENGTH STATISTICS
STATISTICS SECTION LENGTH (64)
NUMBER OF DATA SECTIONS (110)

**
* PRODUCT SECTION *
**

Appendix G. SMF Record (TYPE 16) 309

DISP

004C
004E

0056
0056
0058
0060
0064
0068
SECOND
006C
006E
0070
0072

0074
0078

0079
007A

007C
OOBC
007C
0080
0084
0088
008C
0090
0094
0098
009C
OOAO
00A4
00A8
OOAC
OOBO
OOB4
OOB8

NAME

ICERECV DS
ICEPRDCT DS

CL2
CL8

DESCRIPTION

RECORD VERSION.
PRODUCT NAME. '5740SM1'

**
* DATA SECTION. COMMON PART *
**
ICECDAT DS
ICERES2 DS
ICESTPNM DS
ICERCDS DS
ICEBYTES DS
ICECPUT DS

ICELEN DS
ICEIBLK DS
ICEOBLK DS
ICEKEYLN DS

*
ICEWBLK DS
ICEFLBYT DS

*
*
*
*
*
*
*
*
*
ICENDYNA DS
ICERES3 DS

OH
CL2
CL8
F
F
F

H
H
H
H

F
B

AL1
CL2

START OF DATA SECTION
TO PUT NEXT FIELD ON FULLWORD BOUNDARY
STEP NAME
NUMBER OF RECORDS SORTED
NUMBER OF BYTES SORTED (SUM OF RECORD LENGTHS)
DFSORT CPU TIME, HUNDREDTHS OF A

SPECIFIED RECORD LENGTH
INPUT BLOCKSIZE (MAX)
OUTPUT BLOCKSIZE
TOTAL CONTROL FIELD LENGTH (NUMBER

OF BYTES ACTUALLY COMPARED BY DFSORT)
NUMBER OF WORK DATA SET TRACKS USED
BIT 0: RESERVED
BIT 1-2: OO=FIXED-LENGTH RECORDS

01=VARIABLE-LENGTH RECORDS
1 O=VARIABLE-LENG'I'H SPANNED RECORD

BIT 3-4: OO=BLOCKSET
01=PEERAGE
10=VALE
11=CONVENTIONAL TECHNIQUE

BIT 5: '1'B IF DFSORT DYNAMICALLY INVOKED
BIT 6-7: RESERVED

NUMBER OF ALLOCATED WORK DATA SETS
RESERVED

**
* DATA SECTION. STATISTICS PART *
**

ICEVAR EQU
ICECTR DS

ORG
ICECTR01 DS
ICECTR02 DS
ICECTR03 DS
ICECTR04 DS
ICECTR05 DS
ICECTR06 DS
ICECTR07 DS
ICECTR08 DS
ICECTR09 DS
ICECTR10 DS
ICECTR11 DS
ICECTR12 DS
ICECTR13 DS
ICECTR14 DS
ICECTR15 DS
ICECTR16 DS
ICESMFND EQU

END

ICECTR BEGINNING OF VARIABLE PART
16F RECORD INTERVAL COUNTERS
ICECTR
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

*

RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
RECORD RANGE
END OF RECORD

4 - 15
16 - 31
32 - 63
64 - 127

128 - 191
192 - 255
256 - 511
512 - 1023

1024 - 2047
2048 - 2095
4096 - 7167
7168 - 10751

10752 - 15359
15360 - 20991
20992 - 26623
26624 - 32767

(4 - F)
(10 - 1F)
(20 - 3F)
(40 - 7F)
(80 - BF)
(CO - FF)
(100 - 1 FF)
(200 - 3FF)
(400 - 7FF)
(800 - FFF)
(1 0 0 0 - 1 BFF)
(1COO - 29FF)
(2AOO - 3BFF)
(3COO - 51FF)
(5200 - 67FF)
(6800 - 7FFF)

310 DFSORT Application Programming: Guide

Appendix H. DFSORT Messages and Codes

This section lists the DFSORT messages, explains them, and, when applicable,
suggests appropriate responses.

Depending on the DFSORT technique being used, a different message may be
issued for the same error situation.

DFSORT produces three types of messages:

• Critical error messages

• Information messages

• Diagnostic messages

Appendix H. DFSORT Messages and Codes 311

Message Format

For printed messages: ICEnnns c text

For displayed messages: ICEnnns c jjjjjjjj.ssssssss text

nnn Message number.

s Severity code.

The severity codes are:

A Error message; programmer action is required. .
I Information message; usually no programmer action is required.

c Diagnostic trace character. (This character is not usually needed, but
may be requested by your IBM representative for diagnostic
purposes.)

jjjjjjjj Jobname

ssssssss Stepname.

text Message text.

Figure 45. Message Format

Printing Messages and Control Statements

The type of messages to be printed can be selected at either installation or
execution time (for override information, see Appendix D). The messages are
written on the message data set; the only exceptions are ICE0971 and ICE158A,
which are written only to the master console.

For a JCL-invoked DFSORT, a SYSOUT DD statement must be provided when
messages are to be printed. For a dynamically invoked DFSORT, a ddname DD
statement (where ddname is the name of the alternate message data set specified at
either installation or execution time), or a SYSOUT DD statement must be
provided. If a required message data set ddname DD statement is not provided,
DFSORT terminates with a return code of 20.

The following message and control statement printing hierarchy is observed for
Blockset, Peerage, and Vale (note that MSGPRT and LIST are used here to
represent all methods of specifying the appropriate function; for example,
FLAG(I) in the EXEC PARM field is equivalent to MSGPRT=ALL):

312 DFSORT Application Programming: Guide

• SORTDIAG DD statement-print all messages (including diagnostic
messages); print control statements. A message data set ddname DD
statement must be provided.

Note: When SORTDIAG DD is specified, Blockset error messages that are
normally suppressed are printed. This may result in an error message being
printed for a run that is actually successfully completed by another technique
(as indicated by a return code of 0).

MSGPRT=ALL and LIST in effect-print all messages except diagnostic
messages; print control statements. A message data set ddname DD statement
must be provided.

• MSGPRT=ALL and NOLIST in effect-print all messages except diagnostic
messages; do not print control statements. A message data set ddname DD
statement must be provided.

• MSGPRT=CRITICAL and LIST in effect-print only critical error messages;
print control statements. A message data set ddname DD statement must be
provided.

Note: Control statements are not printed if MSGPRT=CRITICAL is in effect
and DFSORT is dynamically invoked using the 24-bit list.

MSGPRT=CRITICAL and NOLIST in effect-print only critical error
messages; do not print control statements. A message data set ddname DD
statement must be provided.

• MSGPRT=NONE in effect-do not print messages; do not print control
statements.

Writing Messages to the Master Console

The type of messages to be written to the master console can be selected at
installation time.

Note: Because of the addition of the jobname and the stepname, some DFSORT
messages may be truncated from the right when they are written to the master
console if you change the text in ICEMSGS (see Installation Guide).

At installation time, you can specify, through the ICEMAC parameter MSGCON,
the class of messages you want to have written to the master console:

MSGCON={ALL I CRITICAL I NONE}

ALL Specifies that all messages except option-in-effect messages (ICE1281
through ICE1331) and diagnostic messages (ICE800I through
ICE9991) are written to the master console.

CRITICAL Specifies that only critical messages are to be written to the master
console.

NONE Specifies that messages are not to be written to the master console.

Appendix H. DFSORT Messages and Codes 313

Notes:

1. Console message choices are independent of the message data set choices.

2. Messages /CE097/ and /CE158A are written only to the master console.

3. Inclusion of a SORTDIAG DD statement has no effect on console messages.

Control Statement Coding Errors

Return Codes

DFSORT analyzes control statements in two ways:

• The general format (syntax) of control statements.

• The information contained in the program control statements and job control
language statements, for content errors. Each statement is scanned for errors.
The first error detected stops the scan for that statement. Unless the message
data set (usually SYSOUT) DD statement is in error or missing and such a
statement is required because messages and/ or control statements are to be
printed, DFSORT prints a message and continues the scan on successive
statements.

If control statements are printed, and an error occurs that can be associated with a
specific statement, the message follows it in the listing. If the statement is in
SYSIN or SORTCNTL and the error can be associated with a specific operation,
operand, or value, a pointer($) is printed on the line below the statement, near to
the character in error.

If an error has occurred, the program usually terminates after all control input has
been analyzed. However, in some cases, if an error is found while a Blockset
technique is being used, DFSORT reverts to another technique instead of
terminating.

Upon successful completion, DFSORT returns a return code to the operating
system (or the invoking program). If completion is unsuccessful, either a return
code or an ABEND is issued, depending on what was specified at installation or
execution time. (If the ABEND option is in effect, the user abend code is equal to
the error message number.) This code may be interrogated by succeeding job
steps. The codes are:

0 Successful Completion
16 Unsuccessful Completion
20 Message Data Set Missing

0-Successful Completion
When DFSORT has been successfully executed, a code of zero is returned
and the sort terminates.

314 DFSORT Application Programming: Guide

16-Unsuccessful Completion
If DFSORT encounters an error during execution that does not allow it to
complete successfully, it returns a code of 16 and terminates. Such errors
include an out-of-sequence condition or an uncorrectable 1/0 error.

20-Message Data Set Missing
For a JCL-invoked DFSORT, a SYSOUT DD statement was not provided.
For a dynamically invoked DFSORT, neither a message data set DD
statement nor a SYSOUT DD statement was provided.

Appendix H. DFSORT Messages and Codes 315

ICEOOOI ---CONTROL
STATEMENTS/MESSAGES ---
5740-SMl REL x.y ...

Explanation: This indicates the DFSORT release
level (x.y) and the time and date for the run.

System Action: None.

Programmer Response: None.

ICEOOlA TEXT BEGINS IN WRONG
COLUMN

Explanation: Critical. A continuation line following
a line broken at a comma does not begin within
columns 2 through 71 ; or a continuation line
following a line broken at column 71 (with a
nonblank entry in 72) does not begin in column 16.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check continuation lines for
text beginning in a wrong column.

ICE002I DUPLICATE OR CONFLICTING
xxxxxxxx STATEMENT

Explanation: This message is issued if the same
operation definer, or mutually exclusive operation
definers (SORT and MERGE, or INCLUDE and
OMIT), appear more than once in the same source
(for example, SORTCNTL).

System Action: The program does not analyze
duplicate or conflicting statements. The first one
encountered is used.

Programmer Response: No action necessary. For
later runs, check control statements.

ICE003A CONTINUATION LINE MISSING

Explanation: Critical. A continuation line has been
indicated by the previous line ending with a comma,
or with a nonblank entry in column 72, and no line
follows.

System Action: Termination when all control
statement scanning is complete.

316 DFSORT Application Programming: Guide

Programmer Response: Check for an overflow of
parameters into column 72 or a missing continuation
line.

ICEOOSA STATEMENT DEFINER ERROR

Explanation: Critical. A control statement does not
contain one of the acceptable operation definers
(SORT, MERGE, OPTION, RECORD, MODS,
ALTSEQ, DEBUG, INCLUDE, OMIT, INREC,
OUTREC, SUM, or END). You may also receive
this message for continuation lines after a line that
has an error.

System Action: Termination when all control
statements scanning is complete.

Programmer Response: Check for blank lines in
SYSIN or SORTCNTL. Check all statements for
incorrect, misplaced, or misspelled operation
definers. Check that no definer begins in column 1
(in which case it will have been treated as a label).
If you have a label, check that it begins in column 1
(otherwise, it will have been treated as an operation
definer).

ICE006A OPERAND DEFINER ERROR

Explanation: Critical. The first operand of a control
statement does not begin on the same line as the
operation definer, or an operand or operand value is
not valid.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check for statements that
contain invalid operands, invalid operand values, or
no operands.

ICE007A SYNTAX ERROR

Explanation: Critical. A control statement contains
an error in syntax.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check the control
statements for syntax errors. Some of the more
common syntax errors are:

• Unbalanced parenthesis

• Missing comma

Embedded blank

• Invalid format type

• Invalid operator

ICE008A FIELD ORV ALUE GT 8
CHARACTERS

Explanation: Critical. A parameter of more than 8
characters has been specified.

System Action: Termination when all control
statement scanning is complete. ·

Programmer Response: Check control statements for
parameters with more than eight characters.

ICEOtOA NO SORT OR MERGE CONTROL
STATEMENT

Explanation: Critical. All control statements have
been processed and no SORT or MERGE control
statement or OPTION COPY statement has been
found, or a 24-bit parameter list does not contain a
SORT or MERGE control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the 24-bit
parameter list contains a SORT or MERGE control
statement. If you are not using a 24-bit parameter
list, make sure you have supplied a SORT or
MERGE control statement or an OPTION COPY
statement.

ICE011A DUPLICATE OR CONFLICTING
OPERANDS ON THE OPTION
STATEMENT

Explanation: Critical. On an OPTION control
statement, one of the following errors was found:

• A keyword was specified twice.

• A keyword and a variation of it were both
specified. CKPT and CHKPT are variations, as
are FILSZ and SIZE.

• A keyword and its opposite were both specified.
EQUALS and NOEQUALS are examples of
this.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check the OPTION control
statement for the errors indicated in the explanation
and correct the errors.

ICE012A MISSING FIELDS OPERAND
DEFINER

Explanation: Critical. A SORT, MERGE, INREC,
OUTREC, or SUM control statement does not
contain a field definition.

System Action: None.

Programmer Response: Check SORT, MERGE,
INREC, OUTREC, or SUM control statement for
lack of a field definition (FIELDS operand).

ICE013A INVALID SORT OR MERGE
STATEMENT OPERAND

Explanation: Critical. An invalid keyword operand
has been detected on a SORT or MERGE control
statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the SORT or
MERGE control statement does not contain an
invalid keyword operand.

ICE014A DUPLICATE SORT OR MERGE
STATEMENT OPERAND

Explanation: Critical. A keyword operand is defined
twice on a SORT or MERGE control statement.

System Action: Termination when all control
statement scanning is complete.

Appendix H. DFSORT Messages and Codes 317

Programmer Response: Check SORT or MERGE
control statement for a duplicate keyword operand.
Note that FILSZ and SIZE count as the same, as do
CK.PT and CHKPT as well as EQUALS and
NOEQUALS.

ICE015A VARIABLE RECORD TOO SHORT

Explanation: Critical. DFSORT has detected a
variable-length record too short to contain all fields
or, if Blockset is not used, shorter than L4.

For Peerage and Vale, the record does not contain
the first byte of the first control field when
VLSHRT is in effect.

System Action: The program terminates.

Programmer Response: Decrease L4 if too large.
Check the input in both the SORTIN data set and all
records inserted at exit E 15 to see that all records
contain all fields. Remove any which are too short.
Check your E 15 routine and correct any errors. If
you wish to continue processing if DFSORT
encounters a short variable-length record, specify
VLSHRT.

ICE016A INVALID FIELDS OPERAND VALUE

Explanation: Critical. An invalid number of values
is specified with a FIELDS operand on a SORT or
MERGE control statement.

System Action: Termination when' all control
statement scanning is complete.

Programmer Response: Check for valid formats of
the FIELDS operand:

FlELDS=(location,/ength,format,order ...)

or

FIELDS= (location, length, order ...)
,FORMAT=format

318 DFSORT Application Programming: Guide

ICEOl 7 A CONTROL FIELD DISPLACEMENT
OR LENGTH VALUE ERROR

Explanation: Critical. An invalid length or
displacement (position) value is specified in a
control field definition on a SORT or MERGE
control statement, or the maximum length plus
displacement has been exceeded when VLSHRT is
specified for a sort application.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the length
and position values in the FIELDS operand of a
SORT or MERGE control statement were specified
correctly. Make sure that the length value plus the
position value does not exceed 4093; and that bit
positions and lengths are specified for binary fields
only, and do not exceed 7. If VLSHRT is specified
for variable length sorts, make sure that the length
values plus the position values do not exceed 4086;
control field manipulation or overlapping may
reduce the limit of 4086.

ICE018A INVALID FORMAT

Explanation: Critical. A SORT, MERGE, SUM,
INCLUDE, or OMIT statement contains an invalid
or missing format type, or more than 112 control
fields are specified and Blockset cannot be used. Or ..
for a SORT or MERGE control statement, the
format is invalid for the length specified.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check that each format type
is valid for the control statement specified.

ICE020A INVALID RECORD STATEMENT
OPERAND

Explanation: Critical. An invalid keyword has been
found in a RECORD control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check for invalid keywords.

ICE021A NO TYPE OPERAND

Explanation: Critical. A TYPE operand is required
and is not present (or the RECORD statement is
required but missing).

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check RECORD control
statement for TYPE operand. The RECORD
statement with the TYPE operand is required for
VSAM SORTIN/SORTINxx data sets.

ICE022A RECORD FORMAT NOT F, V ORD

Explanation: Critical. An error in specifying the
value associated with the TYPE operand of a
RECORD control statement has been detected.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check RECORD control
statement for data entry or other errors resulting in
TYPE operand value being some character other
than F (fixed-length records), V (variable-length
records), or D (variable-length ASCII records).
Check also for a conflict between the
SORTIN/SORTOUT DCB RECFM parameter and
the RECORD control statement.

ICE023A NO LENGTH OPERAND

Explanation: Critical. The LENGTH operand of a
RECORD control statement is missing, and input
record length is not otherwise available, because no
DD statement with the name SORTIN has been
supplied. Can also be issued if SORTIN processing
is bypassed because of a previous error (for
example, ICE021A).

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check for missing RECORD
statement; check RECORD control statement for
lack of LENGTH operand; check for missing
SORTIN DD statement.

ICE024A RECORD LENGTH VALUE ERROR

Explanation: Critical. An incorrect value is
associated with the LENGTH operand of a
RECORD control statement or with the input or
output length values obtained from SORTINxx or
SORTOUT, respectively.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Some of the more common
errors are:

• Entry errors in length values. (Length values
must not contain nonnumeric characters,
negative numbers, more than 8 characters, a
nonprintable character, and so forth).

• Minimum length (L4) specified or determined as
the last field displacement plus length greater
than maximum length (L2) or average length
(LS).

• Average length (L5) greater than maximum
length (L2).

• No LENGTH specified, and logical record
length not specified on the SORTIN DD
statement.

• The maximum length (L2) is greater than the
output record length (L3), but there is no E35
exit.

ICE025A RECORD COUNT OFF

Explanation: Critical. The program has compared
the count of input records and output records
(shown in message ICE0541), taken into account the
numbers inserted or deleted (shown in message
ICE0551), if any, and found a discrepancy.

The message is issued when the entire output data
set has been written. The message is suppressed if
CHECK=NO was specified at installation time or
NOCHECK at execution time, and you have an E35
exit and no SORTOUT DD statement.

System Action: The program terminates.

Programmer Response: The most probable cause is
that you have not specified a SORTOUT data set,
have specified E35, and from your E35 routine have
passed a return code of 8 (do not return) too early,

Appendix H. DFSORT Messages and Codes 319

when there are still output records remaining.· If this
is the cause, you can avoid receiving this message by
specifying OPTION NOCHECK. If this is not the
cause, examine any exit routines (especially E 15 and
E35) for possible return code or other errors.

If a COBOL invoking program contains an output
procedure, make sure the RETURN statement is
integrated until the AT END condition is executed.
This occurs the next time the RETURN statement is
executed AFTER the last record has been returned
to you.

If the iteration of the RETURN is controlled by a
PERFORM statement, the PERFORM logic should
be controlled by the execution of the AT END
clause of the RETURN statement.

It is possible but less likely that the error was caused
by an internal sort problem.

ICE026I SMF RECORD NOT WRITIEN TO
THE SMF DATA SET (RC=xx)

Explanation: Nonzero return code was returned
from SMF (SMFWTM macro).

System Action: Writing of the SMF record to the
SMF data set was suppressed.

Programmer Response: Determine whether or not
your IEFU83 record exit is correct and the SMF
facility is properly installed and initialized on your
system. Correct if necessary.

ICE027A FIELD BEYOND MAXIMUM
RECORD LENGTH

Explanation: Critical. A SORT, MERGE, INREC,
OUTREC, SUM, INCLUDE, or OMIT field has
been defined as extending beyond the maximum
input record length, or if INREC is specified, a
SORT, MERGE, OUTREC, or SUM field has been
defined as extending beyond the maximum
reformatted record length.

System Action: Termination when all control
statement scanning is complete.

3 20 DFSORT Application Programming: Guide

Programmer Response: Check SORT, MERGE,
INREC, OUTREC, SUM, INCLUDE, and OMIT
statements for incorrectly specified field
displacement or length. Check RECORD statement
for incorrectly specified maximum input record
length.

ICE028A TOO MANY EXITS

Explanation: Critical. An attempt has been made to
specify in the MODS statement more than the
maximum number of program exits allowed by the
program.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that routines are
specified for valid exits only, and that each exit is
associated with only one routine. Exits that may be
specified in the MODS statement are El 1, El5,
E16, E17, E18, E19, E31, E35, E37, E38, E39, and
E61. (Note: For a merge-only application, only exits
E31, E35, E37 E38, E39, and E61 can be
specified.)

ICE029A IMPROPER EXIT

Explanation: Critical. This message is generated for
one of two reasons:

• An incorrect exit has been specified on a MODS
control statement.

• An exit in the sort or intermediate merge phase
of the program has been specified for a merge
application.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the MODS
control statement does not contain errors that
resulted in the specification of an invalid program
exit number. Numbers that may be specified are
Ell, El5, E16, El7, El8, El9, E31, E35, E37,
E38, E39, and E61. (Note: For a merge-only
application, only exits E31, E35, E37 E38, E39, and
E61 are valid.)

ICEOJOA MULTIPLY DEFINED EXITS

Explanation: Critical. A program exit has been
defined twice in a MODS control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check MODS statement for
multiply defined exits.

ICE031A INVALID MODS OP CHAR

Explanation: Critical. An invalid character in a
parameter of a MODS control statement has been
found.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check the parameters of the
MODS control statement for a length field
containing something other than numeric data, a
source or name field beginning with something other
than an alphabetic character, or containing a special
character other than $, @, or #.

ICE032A EXIT E61 REQUIRED

Explanation: Critical. A SORT or MERGE control
statement defines a control field to be modified by a
user-written routine (this is done by specifying E for
the control field sequence indicator), and exit E6 l is
not activated by a MODS control statement.

System Action: Termination when all control
statement scanning is. complete.

Programmer Response: Check SORT or MERGE
control statements for errors resulting in the
specification of an E type parameter. Check the
MODS control statement for lack of an E6 l
specification.

ICE033A CONTROL FIELD SEQUENCE
INDICATOR E REQUIRED

Explanation: Critical. Program exit E61 is activated
and no control fields have been specified for user
modification (E control field sequence parameter
missing on SORT or MERGE control statement).

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check MODS and SORT or
MERO E control statements for errors resulting in
the activation of exit E6 l and the lack of an E type
parameter on the SORT or MERGE control
statement.

ICE034A MODS STATEMENT OPERAND
ERROR

Explanation: Critical. One or more of the following
errors exist:

• An incorrect number of parameters follows an
operand defined on a MODS control statement.

• SYSIN is specified as the third parameter for an
exit whose fourth parameter is 'N' or 'C'.

• For those exits pre link-edited by the user
(fourth parameter is 'N' or 'C', or null), the
third parameter (library ddname) is different for
two or more exits.

• For a copy application, SYSIN is specified as the
third parameter, or 'T' or 'S' is specified as the
fourth parameter.

• An invalid value is specified for the fourth
parameter of the statement.

• T is specified for the fourth parameter for an
E15 (E35) for which the EXEC statement
parameter 'El5=C0B' ('E35=C0B') is also
specified.

• S is specified for the fourth parameter, but the
exit is not Ell or E3 l.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that any MODS
control statements -have the following format:

MODS exit= (name,size, { ddname of library I SYSIN}
[,NI ,c I ,Tl S]) ...

Check that SYSIN is not specified for any exit with
the fourth parameter as 'N' or 'C'.

Appendix H. DFSORT Messages and Codes 321

Make sure that T has not been specified as the
fourth parameter for an E15 or E35 exit when the
EXEC PARM 'E15=C0B' or 'E35=C0B' has
been specified.

Make sure that S has not been specified for the
fourth parameter for an exit other than E 11 or E3 l.

Make sure that the dynamic link-edit parameters
(SYSIN, T, and S) have not been specified for a
copy application.

ICE035A DUPLICATE MODS ROUTINE
OPERAND

Explanation: Critical. The same user-written routine
is being used for more than one exit in a DFSORT
program phase, or two or more routines have the
same name.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the MODS
control statement does not use duplicate names.

ICE036I B = xxxxxx

Explanation: This message communicates the
blocking used by the Sort (conventional techniques)
for intermediate storage records. For fixed-length
records, the blocking factor is substituted for xxxxxx
in the message text. For variable-length records, the
size of the buffer area (= sort block size) is
substituted for xxxxxx in the message text.

System Action: None.

Programmer Response: None.

ICE0371 G = xxxxxx

Explanation: This message communicates the
number of records that can fit into the program's
record storage area at one time during a Sort (old
techniques). The number of records is substituted
for the xxxxxx in the text of the message as shown
above.

322 DFSORT Application Programming: Guide

System Action: None.

Programmer Response: None.

ICE0381 NMAX APPROXIMATELY= n

Explanation: The message communicates an
estimate of the maximum number of records that can
be sorted using the intermediate storage and main
storage available to DFSORT for the current
application. The number replaces n in the text of
the message as shown above. For magnetic tape,
Nmax is calculated assuming that 2400-foot tapes
are used. For variable-length records, the value is
based on maximum record length.

System Action: None.

Programmer Response: None.

ICE039A INSUFFICIENT MAIN STORAGE­
ADD nK BYTES

Explanation: Critical. There is not enough main
storage available for DFSORT to execute, or main
storage is fragmented.

System Action: The program terminates.

Programmer Response: The message gives an
estimation of how much more main storage is
needed. Add at least that amount to the main
storage already allocated to the program by recoding
the REGION parameter and/ or the
MAINSIZE/SIZE value (see Appendix D for ways
to specify this).

Storage requirements can be reduced by decreasing
either the input block size or the number of
intermediate storage areas. See also message
ICE0921 or ICE0931.

For MVS/XA, make sure that storage allocation is
permitted above 16-megabyte virtual and enough
storage is available above 16-megabytes virtual to
load the DFSORT modules.

ICE040A INSUFFICIENT WORK UNITS

Explanation: Critical. There are not enough work
data sets to allow program execution. This can
occur when work data sets are on tape. In a
merge-only application, this message may be caused
by incorrect specification of one or more input units
(SORTINOl, and so forth), or use of an E32 exit
without specifying the number of files.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the DD
statements do not contain errors. For a sort using
tape work files, the SORTWKnn numbers must be in
sequence, starting with SORTWKOl, and at least
three work data sets must be assigned to the
program. For a conventional merge application,
make sure that the numbers for the SORTINnn DD
statements are in sequence, starting with
SORTINOl.

ICE041A N GT NMAX

Explanation: Critical. The exact number of records
specified in the FILSZ or SIZE operand of an
OPTION or SORT control statement is greater than
the maximum sort capacity calculated by the
program.

System Action: The program terminates.

Programmer Response: Check FILSZ or SIZE
operand of the OPTION or SORT control statement
for errors. If the operand is correct, check DD
statements for an error in assigning intermediate
storage. If DD statements are correct, assign more
intermediate storage to the program.

ICE042A UNIT ASSIGNMENT ERROR xxxxxx

Explanation: Critical.

1. An invalid combination of input, work, and
output devices has been assigned to DFSORT.

Examples:

• a SORTWKnn DD statement and a
SORTINnn DD statement are both specified

• a SORTIN DD statement and a SORTINnn
statement are both specified

• A VSAM SORTINnn DD statement and a
non-VSAM SORTINnn DD statement are
both specified

2. Duplicate ddnames have been specified. xxxxxx
represents the ddname of the data set on which
the error was encountered.

3. If :xxx:xxx says DYNALLOC, either wrong
device type or too many work data sets are
specified.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: For case 1, eliminate the
improper DD statements for the application. For the
examples listed above, the following statements
apply:

• A SORTWKnn DD statement is improper for a
merge application.

• The SORTIN and SORTINnn statements are
mutually exclusive.

• MERGE input data sets may be either QSAM or
VSAM, but not both.

For case 2, eliminate duplicate ddnames.

For case 3, check that the device type specified is
supported by the program (see "Direct Access" on
page 275) and available at your installation; and
check whether you have exceeded the maximum
number of areas permitted for the storage type used.

ICE043A INVALID DATA SET AITRIBUTES
SPECIFIED xxxxxx [yyyyyy]

Explanation: Critical. One of the following
conditions has been encountered:

• DD statements that define input and output data
sets contain information conflicting with each
other, with information on the data set labels, or
with the default values assumed for DCB
subparameters by the program (see Figure 14
on page 123 for a summary of DCB
subparameters).

Appendix H. DFSORT Messages and Codes 3 23

• A DD statement for input or output specifies a
cataloged disk data set which does not exist on
the volume pointed to by the catalog entry.

• Input data sets to a merge contain different
record lengths, and the largest blocksize is not
specified first.

xxxxxx is the name of the DD statement in error;
yyyyyy is the error description.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: For case 1, check DD
statements for input and output data sets for conflict
in the BLKSIZE (blocksize), RECFM (record
format), and LRECL (logical record length)
subparameters. Input and output must have the
same record type (fixed or variable). When using
variable-length records without El 5 or E35 exits,
the maximum SORTIN/SORTINnn LRECL,
reformatted record length, or RECORDSIZE (for
VSAM data sets), must not exceed the maximum
SORTOUT LRECL or RECORDSIZE (for VSAM
data sets).

When using fixed-length records with E15 or E35
exits, the following are true:

• For a merge application, SORTOUT LRECL
(or RECORDSIZE for VSAM data sets) must
not exceed SORTINnn LRECL (or
RECORDSIZE for VSAM data sets).

• For a sort application, except with Blockset,
SORTOUT LRECL (or RECORDSIZE FOR
VSAM data sets) must not exceed SORTIN
LRECL (or RECORDSIZE for VSAM data
sets).

For case 2, check the volumes of input data sets.

For case 3, check that the SORTINOl data set has
the largest block size.

ICE0441 EXIT Exx INVALID OPTION

Explanation: An invalid input/ output option was
passed to DFSORT at exit El8, El9, E38, or E39.
The xx value in the above message text is replaced
by the number of the exit at which the error
occurred.

System Action: The invalid option is ignored.

324 DFSORT Application Programming: Guide

Programmer Response: Check the parameter list
passed by the user-written routine against the table
at the end of this appendix before rerunning the
application. An x in the table indicates an option
that is allowed with the exit in question.

ICE0451 END SORT PH

Explanation: The sort (input) phase has been
successfully executed. Only appears when BALN or
POLY tape technique is used.

ICE046A SORT CAPACITY
EXCEEDED-RECORD COUNT: n

Explanation: Critical. Sort capacity has been
reached. The count n is an approximation of the
number of records that DFSORT can handle with
the assigned primary intermediate storage plus the
available amount of secondary allocated extents. If
intermediate storage is on disk, and secondary
allocations have been allowed, DFSORT overrides
any system B3 7 abend and continues processing;
this message is only issued when no more space is
available on any allocated SORTWKnn data set.

System Action: The program terminates.

Programmer Response: If magnetic tape is used for
intermediate storage, be sure that all reels contain
full-length tapes. (A bad tape may appear short
because of a large number of write errors.) If all
reels contain full-length tapes, rerun the application
and specify more work data sets.

If a direct access device is used for intermediate
storage, assign more intermediate storage space to
DFSORT. Note that reverse sequence files may
require more space. Alternatively, increase the main
storage available to DFSORT.

ICE047A RECORD COUNT OFF, SPECIFIED
n, RECEIVED n

RCD COUNT OFF

Explanation: Critical. The number of records
entering and leaving a program phase are not equal.
The message appears if the number of records
entering and leaving the input phase (and the

intermediate phase of tape work sorts) are not equal,
provided an actual value for the FILSZ or SIZE
parameter was specified on the OPTION, SORT, or
MERGE control statement. The IN field contains
the specified value for FILSZ or SIZE. The OUT
field contains the end of phase record count, which
has been adjusted by the number of records inserted
or deleted by exits El5/E32, SKIPREC, STOPAFT,
and/or INCLUDE/OMIT processing.

If FILSZ or SIZE parameter actual values were not
specified, the check is not made until the end of the
output phase, where an unequal compare causes
message ICE025A to be issued together with
messages ICE0541 and ICE0551.

System Action: The program terminates.

Programmer Response: Make sure that the value of
the FILSZ (or SIZE) parameter on the OPTION or
SORT control statement is accurate. See also
message ICE025A above.

ICE0481 NMAX EXCEEDED

Explanation: DFSORT has exceeded the calculated
sort capacity while processing the input data set, and
exit E 16 is specified.

System Action: The user-written routine at exit E 16
is entered.

Programmer Response: No response necessary.
(The number of records sorted is equal to the
NMAX calculated by DFSORT. See message
ICE038I.)

ICE0491 SKIP MERGE PH

Explanation: For a tape sorting application, it is not
necessary to execute the intermediate merge phase
because the number of sequences created by the sort
(input) phase is ~ the merge order.

System Action: Control is passed directly from the
sort (input) phase to the final merge (output) phase.

Programmer Response: None.

ICEOSOI END MERGE PH

Explanation: A tape technique program's
intermediate merge phase has been successfully
executed.

ICEOSlA UNENDING MERGE

Explanation: Critical. Nonstandard technique:
There is not enough intermediate storage assigned to
successfully complete the program's intermediate
merge phase. Standard technique: There is not
enough main storage available to merge two strings
(5 buffers required)

System Action: The program terminates.

Programmer Response: Assign more intermediate
storage or main storage and rerun the job. Note that
reverse sequence files may require more space.

ICE0521 END OF DFSORT

Explanation: The program has been executed.

System Action: Return is made to the operating
system or invoking program.

Programmer Response: None.

ICE053A OUT OF SEQUENCE

Explanation: Critical. The current record leaving
the intermediate or output phase is not in collating
sequence with the last record blocked for output.

System Action: The program terminates.

Programmer Response: If message ICE143I
indicates the Blockset technique was selected,
specify OPTION NOBLKSET to bypass the
DFSORT error.

ICEOS41 RECORDS-IN: n, OUT: n RCD IN
n,OUT n

Explanation: This message lists the number of
records read by DFSORT from the input data set(s)
and the number of records written to the output data
set. The numbers replace n in the text of the
message as shown above. In a conventional merging

Appendix H. DFSORT Messages and Codes 325

application, if an exact file size is not specified, the
IN field is zero; if an exact file size is specified, it
appears in the IN field.

If Peerage or Vale is used-with DEBUG CTRx, the
n values may not be meaningful.

System Action: None.

Programmer Response: If you are using exit El5
and/or E35 and have any reason to suspect that you
are "losing" or "gaining" records, check with
message ICE0551. The sum of RECORDS IN plus
INSERT should always be equal to the sum of
RECORDS OUT plus DELETE. If it is not, you
should also receive message ICE025A.

ICE0551 INSERT n, DELETE n

Explanation: The number of records inserted and/ or
deleted during a DFSORT program execution
replaces the values shown as n in the above format.

If Peerage or Vale is used with DEBUG CTRx, the
n values may not be meaningful.

System Action: None.

Programmer Response: See message ICE0541 above.

ICE056A ddname NOT DEFINED

Explanation: Critical. A required DD statement was
not supplied. This message appears for:

•

I •

•

Sort or copy without a SORTIN DD statement
or E 15 exit routine

Merge without a SORTINnn DD statement or
E32 routine

Sort, merge, or copy without a SORTOUT DD
statement or E3 5 exit routine

The s;ime OPTION SORTIN and OPTION
SORTOUT ddname

CK.PT in effect with no intermediate storage
data set specified.

326 DFSORT Application Programming: Guide

System Action: The program terminates.

Programmer Response: Check DD statements for
error.

ICE057A SORTIN NOT SORTWKOl

Explanation: Critical. An intermediate storage data
set other than SORTWKOl was assigned to the
same tape drive as SORTIN.

System Action: The program terminates.

Programmer Response: Check DD statements for
errors.

ICE058A SORTOUT A WORK UNIT

Explanation: Critical. SORTOUT was specified on
the same tape drive as an intermediate storage data
set.

System Action: The program terminates.

Programmer Response: Check DD statements for
error.

ICEOS9A RECORD LENGTH INVALID FOR
{DEVICE I ddname}

Explanation: Critical. The intermediate record
created by DFSORT from the input record is either
less than 18 bytes when work units are tape
(indicated by DEVICE) or is too large for the
assigned intermediate storage device with the
indicated ddname.

System Action: The program terminates .

Programmer Response: If the intermediate record is
too small, redefine input record l~ngth to at least 18
bytes. If the length is too large, assign an
intermediate storage device with a larger track
capacity .

If EQUALS is in effect the maximum record length
is reduced by 4 bytes.

ICE061A 1/0 ERROR, DD name, DEV address,
ECB completion code, CSW status
bytes, SENSE sense bytes.

Explanation: Critical. This message is generated for
one of following reasons:

• The job control statements incorrectly specify
record length or blocking information for the
data set located on the device indicated by the
'DEV' field in the message.

• A permanent error occurred during an I/ 0
operation on the indicated device.

The most likely cause is a hardware-related error.

System Action: If no user options are specified, the
program terminates.

Programmer Response: Make sure that the DD
statement for the data set assigned to this device
contains the correct DCB information. In a merge
application, if the device in error holds an input data
set, make sure that the DCB information (except for
BLKSIZE) specified in the SORTINO! DD
statement correctly describes the data in this device.

If the error persists, a bypass may be obtained by
forcing DFSORT to use a different sorting
technique. This is done with the OPTION control
statement.

ICE062A LINK-EDIT ERROR

Explanation: Critical. The linkage editor found a
serious error.

System Action: The program terminates.

Programmer Response: Check that all the DD
statements used by the linkage editor were included
(SYSPRINT, SYSLIN, SYSUTl, and SYSLMOD),
and that they are correct.

If the DD statements are correct, make sure that:

• All user routines in libraries are valid object
decks or load modules

• All user routines in the system input stream
(SYSIN) are valid object decks

• Modules to be link-edited together do not
contain duplicate entry point names.

ICE063A OPEN ERROR ddname

Explanation: Critical. An error occurred during
execution of the OPEN routine for the data set with
the indicated ddname.

System Action: The program terminates.

Programmer Response: Check for any of the
following:

• A missing or invalid DD statement.

• Conflicting DCB information, for example, fixed
block records and block size not a multiple of
record length.

• Concatenated input without the largest block
size specified for the first data set.

• Concatenated, fixed-length input with different
LRECL specifications.

• A partitioned data set member specified as a
user exit routine cannot be found.

• Data sets required for dynamic link-editing
cannot be opened.

ICE064A DELETE ERR

Explanation: Critical. DFSORT was unable to
delete either itself or a user exit routine. This
message should appear only when exit routines are
used.

System Action: The program terminates ..

Programmer Response: Make sure that the user exit
routines are not modifying the DFSORT code and
information areas, and rerun the job.

ICE065A PROBABLE DECK STRUCTURE
ERROR

Explanation: Critical. The end of the SYSIN data
set was found before all needed user exit modules
were read; or the end of the SYSIN data set was not
found after all specified modules were read.

System Action: The program terminates.

Appendix H. DFSORT Messages and Codes 327

Programmer Response:

• Check that the MODS statement specifies the
correct routines.

• Make sure the SYSIN data set contains all
-and only those- exit routines specified by
the MODS statement.

• Check for misplaced job control language
statements, especially preceding a user exit
routine on SYSIN.

• Make sure nothing follows the last object deck
in SYSIN.

ICE0661 APROX RCD CNT xxxxxxxx

Explanation: Sort capacity has been reached. The
count xxxxxxxx is an approximation of the number
of records the DFSORT program can handle with
the assigned intermediate storage.

System Action: The program terminates.

Programmer Response: Respond as indicated in the
accompanying message, ICE046A.

ICE0671 INVALID PARAMETER IN JCL
EXEC PARM OR INVOKED
PARMLIST

Explanation: An error was found in the PARM field
parameters of the EXEC statement, or in the
optional parameters of the parameter list passed to a
DFSORTinitiated by ATTACH, LINK, or XCTL.
If a parameter is specified more than once, the first
entry is used (if valid).

System Action: Processing continues. Invalid and
duplicate parameters are ignored.

Programmer Response: No action is necessary. For
later runs, be sure that the optional parameters are
valid. Valid parameters are described in Chapter 3.

328 DFSORT Application Programming: Guide

ICE068A OUT OF SEQ SORTINxx

Explanation: Critical. During a merge, a daia set
was found to be out of sequence. The xx is replaced
by the data set identification (01 to 16). If input is
being supplied through exit E32, then 01 signifies
the first input file, 02 the second, and so forth.

System Action: The program terminates.

Programmer Response: If a user-written routine was
modifying the records, check the routine thoroughly.
It should not modify control fields at exit E35. If no
user-written routine is being used, make sure that all
input data sets have been sorted on the same control
fields, in the same order, and that they all have a
similar format. Check whether you have also
received message ICE0721.

If input is being supplied through E32, check your
routine to make sure records are passed to the merge
from the correct file.

If you are reading in variable-length VSAM records
through exit E32, check the format and accuracy of
the RDW which you are building at the beginning of
each record.

ICE069A INVALID SIGN

Explanation: Critical. The first byte of signed
numeric data with leading separate sign, or the last
byte of signed numeric data with trailing separate
sign does not contain a valid sign character.

System Action: The program terminates.

Programmer Response: Check the description of
data format in the FIELDS or FORMAT parameter
of the SORT or MERGE statement.

ICE071A INVALID RETURN CODE FROM
EXITExx

Explanation: Critical. A user routine at the exit Exx
(can be E 15, E3 2, or E3 5) has returned an invalid
return code to the program, or a return code of 0 or
4 has been given at end of file.

System Action: The program terminates.

Programmer Response: Check the user routine
concerned thoroughly and ensure that the return
code is either 0, 4, 8, 12, or 16 (only 8, 12, or 16 for
E32).

Check also that:

• An E15 or E35 routine always finishes by
returning 8 (do not return) or 16 (terminate).

• If no SORTIN DD statement is provided, the
E 15 routine only passes back a return code of 8
(do not return), 12 (insert) or 16 (terminate).

• If no SORTOUT DD statement is provided, the
E35 routine only passes back a return code of 4
(delete), 8 (do not return); or 16 (terminate).

• In a COBOL invoking program containing an
input and/ or output procedure, control passes
through the end of the input procedure before
the output procedure is entered, and through the
end of the output procedure before the sort is
terminated.

ICE072I FIELD NOT WITHIN MINIMUM
RECORD LENGTH

Explanation: A RECORD statement specifies a
minimum record length (L4) which cannot contain
all fields specified in the SORT, MERGE,
INCLUDE, OMIT, INREC, OUTREC, or SUM
statement(s).

System Action: The L4 value is adjusted.
Processing continues.

Programmer Response: None.

ICE073A VARIABLE RECORD TOO LONG

Explanation: Critical. A variable-length record was
larger than the maximum length specified or
defaulted.

System Action: The program terminates.

Programmer Response: Check the input both at
E15/E35, if used, and in SORTIN. Then either
delete the extra long records or increase the
SORTIN/SORTOUT DD statement DCB LRECL
value or the RECORD statement Ll/L2/L3 value.

If you are using INREC and/ or OUTREC, check
that a SORTOUT DD LRECL value or L3 value is
at least as large as the reformatted output record
length.

If you have VSAM records, remember that they are
increased in length by the 4-byte record descriptor
word added when they enter DFSORT. If you are
reading input through E15, check the format of the
RDW you are building at the beginning of each
record.

ICE0741 RECORD LENGTH Lt OR L3
OVERRIDDEN

Explanation: Either the L1 value for the LENGTH
parameter of the RECORD statement is not the
same as the LRECL value for SOR TIN or
SORTINOl; and/or the L3 value is not the same as
the SORTOUT LRECL value. For VSAM, the
equivalent of LRECL is maximum RECSZ.

//

System Action: Processing continues with the L
value(s) overridden.

Programmer Response: For subsequent runs, check
all the record lengths. Take special note of the L2
value. If you did not specify one, it will have
defaulted to the value you specified for L 1 (and will
not have been overridden by the LRECL value). If
the L2 value is too small, it can cause program
termination at any of a number of points, and the
error can be difficult to detect.

If you have variable-length records (shown in
message ICE0881 or ICE0891), check that the L1
value used is actually a maximum. The logical
record length (LRECL) of the input file is also given
in message ICE0881 or ICE0891.

ICE075A VSAM CB ERROR (xx) AT aaaaaa

Explanation: Critical. aaaaaa represents the storage
address of the control block at which the error was
detected. xx is the VSAM return code, in decimal,
from a GENCB, MODCB, SHOWCB, or TESTCB
macro.

System Action: The program terminates, unless the
error is detected during close, when the program
tries to close all remaining VSAM data sets before
terminating.

Appendix H. DFSORT Messages and Codes 329

Programmer Response: Refer to VSAM
Programmer's Guide or VSAM Reference for the
meaning of the return code, and if possible take
appropriate action.

ICE076A VSAM INPUT ERROR i(xxx) yyyyyyyy

Explanation: Critical. i is replaced by either P
(physical) or L (logical), describing the type of error
encountered. xxx is the VSAM feedback code
(RPLERRCDE) from a GET macro, in decimal; and
YYYYYYYY is the ddname of the data set in error.

System Action: The program terminates.

Programmer Response: Refer to the VSAM
Programmer's Guide or VSAM Reference for the
meaning of the return code, and if possible take
appropriate action.

ICE077 A VSAM OUTPUT ERROR i(xxx)
[yyyyyyyy)

Explanation: Critical. i is replaced by either P
(physical) or L (logical), describing the type of error
encountered, xxx is the VSAM feedback code
(RPLERRCDE) from a PUT macro, in decimal.
yyyyyyyy (if available) is the ddname of the data set
in error.

System Action: The program terminates.

Programmer Response: Refer to the VSAM
Programmer's Guide or VSAM Reference for the
meaning of the return code, and if possible take
appropriate action.

ICE078A VSAM OPEN ERROR (xxx) yyyyyyyy

Explanation: Critical. :·xx is the VSAM OPEN
ERROR return code (ACBERFLG) in decimal.
YYY.YYYYY is the ddname of the data set on which the
error was encountered.

System Action: The program terminates.

Programmer Response: Refer to the VSAM
Programmer's Guide or VSAM Reference for the
meaning of the return code, and, if possible, take
appropriate action. Check that the SORTIN and
SORTOUT VSAM data set is not the same data set.

330 DFSORT Application Programming: Guide

ICE079A VSAM CLOSE ERROR (xxx) yyyyyyyy

Explanation: Critical. xxx is the VSAM CLOSE
ERROR return code (ACBERFLG), in decimal.
yyyyyyyy is the ddname of the data set on which the
error was encountered.

System Action: The program terminatf"~.

Programmer Response: Refer to the vSAM
Programmer's Guide for the meaning of the return
code, and if possible take appropriate action.

ICEOSOI IN MAIN STORAGE SORT

Explanation: All records were sorted in main
storage, that is, no sort work areas were used.

System Action: None.

Programmer Response: None.

ICE081A COMMUNICATION AREA NOT
FULLY ADDRESSABLE

Explanation: Critical. Certain dynamic areas and
routines have exceeded the fixed amount of storage
allocated for them. This situation can only arise if a
large number of data sets are allocated and/ or a
large number of SORT, MERGE, INCLUDE,
OMIT, INREC, OUTREC, or SUM fields are
specified.

System Action: The program terminates.

Programmer Response: Specify fewer work data sets
and/ or fewer fields. Alternatively, if message
ICE1431 indicates the Blockset technique was
selected, specify OPTION NOBLKSET to bypass
the Blockset technique.

ICE0821 CHECKPOINT CANCELLED

Explanation: When no more work data set tracks are
available, the tracks allocated for CKPT (if
requested) are given back to the Sort work data sets.

System Action: The program continues, but no
checkpoints are taken.

Programmer Response: Increase work space
allocation for next run.

ICE083A UNAVAILABLE RESOURCES
DYNALLOC (xxxx)

Explanation: Critical. xxxx is the return code from
the MVS dynamic allocation facility. The requested
work data sets were not available on the system.

System Action: The program terminates.

Programmer Response: Be sure that the requested
work files can be allocated on the available
resources. See System Programming Library: Job
Management or System Programming Library: System
Modifications for the codes.

If VIO=NO is in effect and the virtual devices at
your installation do not have corresponding real
disks, specify non-virtual work data sets.

ICE0841 {BSAM I EXCP I VSAM} ACCESS
METHOD USED FOR ddname

Explanation: Identifies the access method used for
the identified data set.

System Action: None.

Programmer Response: None, unless you have any
problems reading or writing the data set. If EXCP
were used, you could force DFSORT not to use
EXCP by use of the DEBUG control statement or
the EXEC statement.

ICE0871 EXCPVR CANCELLED

Explanation: Not enough pages were available for
page fixing. The program uses normal EXCP for its
disk work files.

System Action: None.

'Programmer Response: None.

ICE0881 jobname.stepname, INPUT LRECL=n,
BLKSIZE=n, TYPE={F IV I VS}

Explanation: Gives details of current job and step
information. The types printed in the message are:

F Fixed-length blocked or
unblocked records

V Variable-length records
(EBCDIC or ASCII)

VS Variable spanned records are present

System Action: None.

Programmer Response: None.

ICE0891 jobname.stepname, INPUT LRECL=n,
TYPE={FI VJ

Explanation: As for ICE0881, but used when all
records are supplied via exits E15/E32, or when
SOR TIN is a VSAM data set, and Blockset was not
selected.

System Action: None.

Programmer Response: None.

ICE0921 MAIN STORAGE = (x,y,z),
NMAX =n

Explanation: Information related to the DFSORT
application:

x is the main storage value specified, or supplied
by default.

y is the main storage theoretically available to
DFSORT, considering MINLIM figure specified
when the program was installed.

z is the main storage actually available to
DFSORT, after any other program took what it
needed from the partition or region (invoking
program and/ or exit routines).

This value is not meaningful if the storage taken
by the invoking program or exit is greater than
REGION or SIZE/MAINSIZE.

For MVS/XA, the x, y, and z references to main
storage apply to the total storage above and below
16-megabyte virtual.

Appendix H. DFSORT Messages and Codes 331

n is the approximate number of records that can
be sorted:

• If no intermediate data sets are specified, n
is determined using total available main
storage (for MVS/XA, storage above and
below 16-megabyte virtual).

• If intermediate data sets are specified, n is
determined using the sum of the extents
allocated when sorting begins (that is,
primary extents only for temporary data
sets, and/ or previously allocated extents for
permanent data sets). Note that the
availability of unallocated secondary extents,
especially when intermediate storage is
reallocated in cylinders, can make the actual
number of records which can be sorted
MUCH HIGHER than the value shown
for n.

System Action: None.

Programmer Response: None, unless DFSORT
subsequently terminated abnormally. In that case,
check the z value to see how much storage was really
available to DFSORT. If space was the problem,
you have probably also received message ICE039A;
but if storage was heavily fragmented, the result
could instead be a system 80A abend in either
DFSORT or one of your own routines. Note that
you could need considerably more than the normal
minimum if the partition or region is fragmented.

ICE0931 MAIN STORAGE = (MAX,y,z),
NMAX=n

Explanation: Information related to the DFSORT
application:

MAX was specified or the value specified is the
same as MAXLIM.

y

z

is the main storage theoretically available to
DFSORT, considering anyTMAXLIM, or
MAXLIM figures specified when the program
was installed.

is the main storage actually available to
DFSORT, after any other program took what
it needed from the partition or region

332 DFSORT Application Programming: Guide

(invoking program and/ or exit routines).
RESALL and RESINY are not considered.

This value is not meaningful if the storage
taken by the invoking program or exit is
greater than REGION or SIZE/MAINSIZE.

For MVS/XA, they, and z references to main
storage apply to the total storage above and below
16-megabyte virtual.

n is the approximate number of records that can
be sorted:

• If no intermediate data sets are specified,
n is determined using total available main
storage (for MVS/XA, storage above and
below 16-megabyte virtual).

If intermediate data sets are specified, n is
determined using the sum of the extents
allocated when sorting begins (that is,
primary extents only for temporary data
sets, and/ or previously allocated extents
for permanent data sets). Note that the
availability of unallocated secondary
extents, especially when intermediate
storage is reallocated in cylinders, can
make the actual number of records which
can be sorted MUCH HIGHER than the
value shown for n.

System Action: None.

Programmer Response: None, unless DFSORT
subsequently terminated abnormally. In that case,
check the z value to see how much storage was really
available to DFSORT. If space was the problem,
you probably also received message ICE039A; but if
storage was heavily fragmented, the result could
instead be a system 80A abend in either DFSORT
or one of your own routines. Note that you couid
need considerably more than the normal minimum if
the partition or region is fragmented.

ICE0941 SMF RECORDS NOT WRITTEN

Explanation: SMF records were requested, but the
SMF option is not present in the system or SMF is
not active.

System Action: The data collection for the record
length statistics and the writing of the SMF record to
the SMF data set is bypassed.

Programmer Response: Determine whether or not
the SMF facility is properly installed and initialized
on your system. Correct as necessary.

ICE09SA INVALID OPTION STATEMENT
OPERAND

Explanation: Critical. An invalid keyword operand
has been detected on an OPTION control statement.

System Action: The program terminates when all
control statement scanning is complete.

Programmer Response: Make sure that the OPTION
control statement does not contain an invalid
keyword operand. For valid keywords, refer to
Chapter 2.

ICE096I SUCCESSFUL RECOVERY FROM
B37 ABEND(S) FOR WORK DATA
SET(S)

Explanation: DFSORT successfully recovered from
one or more B3 7 ABENDs that occurred when sort
attempted to acquire more disk space than was
available on one of the work data sets allocated by
sort.

System Action: Processing continues.

Programmer Response: None.

ICE097I SORT RECOVERING FROM B37
ABEND ON SORTWK DATASET

Explanation: Issued only to the master console after
a B3 7 ABEND occurred when sort attempted to
acquire more disk space than was available on one
of the work data sets allocated by sort.

System Action: Processing continues.

Programmer Response: None.

ICE0981 A VERA GE RECORD LENGTH = n
BYTES

Explanation: n is the number of bytes in the
variable-length records (including the record
descriptor word) divided by the number of sorted
records. The number of sorted records includes all
records received, added, and/ or deleted before the
E3 5 exit is taken.

System Action: None.

Programmer Response: None.

ICE099A BLDL FAILED FOR ddname DATA
SET

Explanation: Critical. A bad return code was
returned from a BLDL macro instruction issued
when the identified data set is defined as a PDS
member.

System Action: The program terminates.

Programmer Response: Ensure that the PDS
member specified as ddname exists.

ICE100A OPERATING SYSTEM NOT
SUPPORTED

Explanation: Critical. This operating system is not
supported by this release of DFSORT. Only current
or subsequent releases of the following systems are
supported:

• OS/VSl Release 7.0

• OS/VS2 MVS Release 3.8

• MVS/XA

• MVS/370 (OS/VS MVS with MVS/370 Data
Facility Product installed)

System Action: The- program terminates.

Programmer Response: Execute DFSORT on one of
the supported operating systems.

Appendix H. DFSORT Messages and Codes 333

ICE101A xxxxxxxxxxxx STATEMENT NOT
SUPPORTED FOR TECHNIQUE
USED

Explanation: Critical. The control statement
indicated by xxxxxxxxxxxx is not supported for the
technique used (tape work data set sort or
conventional MERGE). xxxxxxxxxxxx is replaced
by INCLUDE/OMIT, SUM, INREC, or OUTREC.

System Action: The program terminates.

Programmer Response: Rerun job with SORTDIAG
DD statement to get reason for the revert from
message ICE800I. Remove cause of revert or
remove the indicated statement.

ICE102A MISSING COND OPERAND
DEFINER

Explanation: Critical. An INCLUDE or OMIT
control statement does not contain a logical
expression definition.

System Action: Termination when all control
scanning is complete.

Programmer Response: Check the INCLUDE or
OMIT control statement for lack of a logical
expression definition (COND operand).

ICE103A INVALID INCLUDE OR OMIT
STATEMENT OPERAND

Explanation: Critical. An invalid keyword operand
has been detected on an INCLUDE or OMIT
control statement.

System Action: Termination when all control
scanning is complete.

Programmer Response: Make sure that the
INCLUDE or OMIT control statement does not
contain an invalid keyword operand.

334 DFSORT Application Programming: Guide

ICE104A INVALID INREC OR OUTREC
STATEMENT OPERAND

Explanation: Critical. An invalid keyword operand
has been detected on an INREC or OUTREC
control statement.

System Action: Termination when all control
scanning is complete.

Programmer Response: Make sure that the INREC
or OUTREC control statement does not contain an
invalid keyword operand.

ICEIOSA INVALID SORT, MERGE, OR SUM
STATEMENT OPERAND

Explanation: Critical. An invalid keyword operand
has been detected on a SORT, MERGE, OR SUM
control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response:

I • Make sure that the SORT, MERGE, OR SUM
control statement does not contain an invalid
keyword operand.

• Make sure that FIELDS=COPY and
FORMAT=f are not both specified for the
SORT or MERGE control statement.

• Make sure that FIELDS=NONE and
FORMAT=f are not both specified for the
SUM control statement.

ICE106A DUPLICATE INCLUDE OR OMIT
STATEMENT OPERAND

Explanation: Critical. A keyword operand is defined
twice on an INCLUDE or OMIT control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check INCLUDE or OMIT
control statement for a duplicated keyword operand.

ICE107A DUPLICATE INREC OR OUTREC
STATEMENT OPERAND

Explanation: Critical. A keyword operand is defined
twice on an INREC or OUTREC control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check INREC or OUTREC
control statement for a duplicated keyword operand.

ICE108A DUPLICATE SUM STATEMENT
OPERAND

Explanation: Critical. A keyword operand is defined
twice on a SUM control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Check SUM control
statement for a duplicated keyword operand.

ICE109A SUM FIELD DISPLACEMENT OR
LENGTH VALUE ERROR

Explanation: Critical. An invalid length or
displacement (position) value is specified in a sum
field definition on a SUM control statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the length
and position values in the FIELDS operand of the
SUM control statement were specified correctly.
For BI and FI, length must be 2, 4, or 8 bytes; for
PD, length must be 1through16 bytes; for ZD,
length must be 1 through 18 bytes. Make sure that
the length value plus the position value does not
exceed 4093.

ICEllOI VERIFY NOT USED WITH SUM

Explanation: A sum control statement has been
specified and VERIFY is in effect. VERIFY cannot
be used with SUM (with a technique other than
BLOCKSET). NOVERIFY is forced into effect.

System Action: Processing continues with
NO VERIFY in effect.

Programmer Response: None.

ICEl 1 lA INREC OR OUTREC FIELD
DISPLACEMENT OR LENGTH
VALUE ERROR

Explanation: Critical. One of the following errors
has been detected in an INREC or OUTREC field
value (p,m,a are ref erred to as an input field; nX and
nZ are ref erred to as separation fields):

1. The position or length value of an input field is
less than 1 or the position value plus the length
value of an input field is greater than 32001.

2. The first input field consists of only one value
(that is, it contains a position value without a
length value).

3. An invalid input field alignment value is
specified; only H, F, or D is allowed.

4. An invalid separation field value is specified.
Only nX or nZ is allowed, where n must be
between 1 and 25 6

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that field values
in the FIELDS operand of the INREC or OUTREC
control statements are specified correctly.

ICE1121 EQUALS NOT USED WITH SUM

Explanation: A SUM control statement has been
specified and EQUALS is in effect, but the
BLOCKSET technique was not selected. EQUALS
with SUM is not supported by the other techniques.

System Action: Processing continues; EQUALS is
not used.

Programmer Response: Determine why BLOCKSET
could not be used (check diagnostic message
ICE800I, which is produced if SORTDIAG DD is
specified), and, if possible, remove the cause of the
revert.

Appendix H. DFSORT Messages and Codes 335

ICE113A CONDIDON VALUE INVALID

Explanation: Critical. An invalid value is specified
in a condition definition on an INCLUDE or OMIT
control statement. The value may be a
displacement, length, format, or constant.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that all the values
are correct in the COND operand of the INCLUDE
or OMIT control statement. Make sure that the
length value plus the position value does not exceed
4093.

ICE114A CONDITION FIELDS COMPARISON
INVALID

Explanation: Critical. An invalid field-to-field or
field-to-constant comparison is specified in a
condition definition on an INCLUDE or OMIT
control statement.

System Action: Termination when all control
statement scanning is complete.

»-~---... --... - n ___ ..., lrn _ ... +t. ... + ... 11 +t. ...
.. IUj511All.lllI-.;:;a ..,.-.;:;.,puui>-.;:;• U'.1.aA\.I ~UJ.\.I l.J.J.al. aJ.J.,

field-to-field and field-to-constant comparisons in
the COND or FORMAT operands of the INCLUDE
or OMIT control statements contain valid
combinations.

ICE115A INSUFFICIENT MAIN STORAGE

Explanation: Critical. Storage is fragmented and/ or
reserved storage value is too large, or exit sizes are
too large compared to the total storage available to
DFSORT.

For MVS/XA, main storage refers to the storage
below 16-megabyte virtual.

Programmer Response: See''Tuning Main Storage''
on page 209 (or add more main storage in 8K
increments).

If routines are used at program exits, their size
should be added to this minimum value. For
efficient sorting, allow at least 50% more storage
than the roJnimum required.

336 DFSORT Application Programming: Guide

Storage requirements can be reduced by decreasing
either the input block size or the number of
intermediate storage areas. See also message
ICE092I or ICE0931.

ICE116A SORT CAPACITY EXCEEDED

Explanation: Critical. Sort capacity has been
reached. If intermediate storage is on disk, and
secondary allocations have been allowed, DFSORT
overrides any system B3 7 abend and continue
processing; this message is only issued when no
more space is available on any allocated
SORTWKnn data set.

System Action: The program terminates.

Programmer Response: If magnetic tape is used for
intermediate storage, be sure that all reels contain
full-length tapes. (A bad tape may appear short
because of a large number of write errors.) If all
reels contain full-length tapes, rerun the application .
and specify more work data sets.

If a direct access device is used for intermediate
storage, assign more space to DFSORT. Note that
reverse sequence files may require more space.
A 1+ ... -- ... +! 1T. !- ... - +t. ... _..,.:_ + ... -""~"" !1 ... 1..1 ... + ... ru.1.vJ.uauvv1)', uutva~v !..l.lv u1au1 ~1..v1a0v avauau.tv 1..v

DFSORT.

ICE117A 1/0 ERROR, jobname, stepname, unit
address, device type, DDname, operation
attempted, error description, last seek
address or block count, access method.
(SYN AD AF) .

. Explanation: Critical. This message is generated for
one of the following reasons:

• The job control statements incorrectly specify
record length or blocking information for the
data set located on the device indicated by the
"unit address" field in the message.

• A permanent error occurred during an I/ 0
operation on the indicated device.

The most probable cause is a hardware-related error.

System Action: If no user options are specified, the
program terminates.

Operator Response: If the "error description" field
in the message does not contain "WRNG. LEN.
RECORD", execute the job again with the indicated
unit offline, using an alternative unit and/ or volume
in its place during execution.

Programmer Response: Make sure that the DD
statement for the data set assigned to this device
contains the correct DCB information. In a merge
application, if the device in error holds an input data
set, make sure that the DCB information (except for
BLKSIZE) specified in the SORTINOl DD
statement correctly describes the data in this device.

ICE119A SUM FIELD OVERLAPS CONTROL
FIELD

Explanation: Critical. A sum field is specified in a
SUM control statement which overlaps a control
field specified in a SORT or MERGE control
statement.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the sum
fields in the FIELDS operand of the SUM control
statement do not overlap control fields in the
FIELDS operand of the SORT or MERGE control
statement.

ICE120I EXIT Eon IGNORED

Explanation: Exit E 14 or E2n has been specified on
the MODS statement, as identified in the message
by Enn. Exit Enn is not supported and can not be
entered.

System Action: The syntax of the Enn operand is
checked for the format "(a,b,c)" or "(a,b,c,d)", but
the exit is not used.

Programmer Response: Optional. Correct the
MODS statement by removing the identified Enn
operand.

ICE1231 CK.PT or CHKPT OPTION IGNORED

Explanation: CKPT or CHKPT was specified on the
SORT, MERGE, or OPTION control statement,
IGNCKPT was specified at installation time, and the
Blockset technique was selected. The Blockset
technique does not support the automatic
checkpoint/ restart facility, so the CKPT or CHKPT
option was ignored.

System Action: The program continues, but no
checkpoints are taken.

Programmer Response: If checkpoints must be
taken, specify NOBLKSET on the OPTION control
statement.

ICE124A SUM FIELD OVERLAPS RECORD
DESCRIPTOR WORD

Explanation: Critical. A sum field is specified in a
SUM control statement which overlaps the record
descriptor word (ROW) of the variable records
being processed.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that the sum
fields in the FIELDS operand of the SUM control
statement do not overlap the ROW.

ICE12SA SUM FIELD OVERLAPS SUM FIELD

Explanation: Critical. A sum field is specified in a
SUM control statement which overlaps another sum
field.

System Action: Termination when all control
statement scanning is ~omplete.

Programmer Response: Make sure that the sum
fields in the FIELDS operand of the SUM control
statement do not overlap.

Appendix H. DFSORT Messages and Codes 337

ICE126A REFORMATIING FIELDS ARE
INCONSISTENT

Explanation: Critical. One of the following
inconsistencies has been detected between the
reformat fields specified in the INREC and
OUTREC statement and the record format (p,m,a
are referred to as an input field; nX and nZ are
referred to as a separation field):

1. The last position value is specified without a
corresponding length value when fixed-length
records are being processed. This usage is only
allowed with variable-length records.

2. A single input field containing only bytes from
the RDW is specified when variable-length
records are being processed. At least one
separation field byte or one input field byte must
be included in addition to the RDW.

3. The first field is a separation field or an input
field which does not contain the RDW when
variable-length records are being processed.
The first field must contain the RDW.

4. The last position value is specified with a
corresponding length value for INREC, but not
f,.,..,. llTTTDUI"" "' .. n:,..,,.., .. ,,..,,... T"ll..TDUI"" ..,._,.t
.lV.l ""~ .LJ. J..J'-'' VJ. VJ.'-''-' \l'-'l~a • .J.l•LJ.LJ'-' auu

OUTREC must both incJude or exclude variable
data at the end of the record.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Make sure that field values
in the FIELDS operand of the INREC or OUTREC
control statements are specified correctly.

ICE128I OPTIONS:
SIZE=n,MAXLIM=n,MINLIM=n,
EQUALS=x,LIST=x,ERET =a,
MSGDDN=b

ICE129I OPTIONS:
VIO=x,EXCPVR=x,RESDNT=c,
SMF=e,WRKSEC=x,OUTSEC=x,
VERIFY =x,CHALT =x,DYNALOC=d

ICE130I OPTIONS:
RESALL=n,RESINV =n,SVC=n,
CHECK=x,WRKREL=x,OUTREL=x,
CKPT =x,STIMER=x,COBEXIT=f

338 DFSORT Application Programming: Guide

ICE1311

ICE1321

OPTIONS:
TMAXLIM=n,ARESALL=n,
ARESINV =n,OVERRGN =n

OPTIONS: VLSHRT=x

Explanation: Messages ICE1281 through ICE132I
indicate the options in effect for a sort application.
When DFSORT is invoked by JCL, these options
may come from the EXEC PARM field, the SYSIN
data set, or the installation defaults. When
DFSORT is invoked dynamically, these options may
come from the SORTCNTL data set, the invocation
parameter list, or the installation defaults. DFSORT
may also change the options due to conflicts
between specifications or for performance reasons.
For information on where the options may be
specified and on the order of override, see
Appendix E, "Data Format Examples" on
page 297. Message values are as follows:

x Y for YES; N for NO
n a decimal value
a RC16 or ABEND
b dynamic invocation message data set ddname
c ALL, MON, or NONE
d N for NO, or (y,n) where y is the dynamic

allocation device name and n is a decimal value
c
f COBl or COB2

System Action: None.

Programmer Response: None.

Note: Message ICE1311 is printed only for a
Blockset sort. However, the TMAXLIM,
ARESALL, and ARESINV values are shown as zero
except when running under MVS/XA with DEBUG
BUFFERS=ANY (the default) in effect.

ICE134I NUMBER OF BYTES SORTED: n

Explanation: n is the total nuinber of bytes "sorted,"
that is, the number of bytes in records for which
control field processing must be performed. The
following insert/ delete/ alter processing is
performed before control field processing and is
taken into account when determining n: SORTIN,
SKIPREC, STOPAFT, El5, and/or
INCLUDE/OMIT. Other processing that may
affect the number of bytes actually manipulated by
DFSORT (for example, INREC) is done after

control field processing, and is not taken into
account when determining n. The maximum value
that can be displayed for n is 4294967295. Above
this value, n is not accurate.

System Action: None.

Programmer Response: None.

ICE1361 ddname SPACE REALLOCATED IN
CYLINDERS

Explanation: DFSORT reallocated the indicated
work data set in cylinders to achieve better
performance.

System Action: None.

Programmer Response: To optimize performance for
future runs, change your JCL to use cylinder
allocation for the indicated work data set.

ICE137 A VSAM INPUT ERROR i(xxx) text
from VSAM SYNAD

ICE137 A (CONT.) text from VSAM SYNAD
continued

Explanation: Critical. i is replaced by either P
(physical) or L (logical), describing the type of error
encountered. xxx is the VSAM feedback code from
a GET macro, in decimal, and it is followed by the
VSAM SYNAD message.

System Action: The program terminates.

Programmer Response: Refer to VSAM
Programmer's Guide or VSAM Reference for the
meaning of the return code, and if possible take
appropriate action.

ICE138A VSAM OUTPUT ERROR i(xxx) text
from VSAM SYNAD

ICE138A (CONT.) text from VSAM SYNAD
continued

Explanation: Critical. i is replaced by either P
(physical) or L (logical), describing the type of error
encountered. xxx is the VSAM feedback code from
a PUT macro, in decimal. yyyyyyyy is the VSAM
SYNAD message.

System Action: The program terminates.

Programmer Response: Refer to VSAM
Programmer's Guide or VSAM Reference for the
meaning of the return code, and if possible take
appropriate action.

ICE141A SPANNED RECORD ON ddname
COULD NOT BE ASSEMBLED

Explanation: Critical. A spanned record on the
indicated data set could not be properly assembled.
This message is generated for one of the following
reasons:

• A segment length greater than LRECL.

• A segment length less than 4 bytes.

• The order of the segment codes is incorrect.
(Beginning= 1, continuation= 3, ending= 2.)

• Total length of segments greater than LRECL.

System Action: The program terminates.

Programmer Response: Check the indicated data set
for incorrect spanned records.

ICE1421 ddname NOT FOUND - SYSOUT
USED

Explanation: A DD statement for ddname (the
specified alternate message data set) was not found.
SYSOUT was used instead.

System Action: Processing continues; messages are
written to SYSOUT.

Programmer Response: If you want to use an
alternate message data set, provide a DD statement
for ddname.

ICE1431 t a TECHNIQUE SELECTED

Explanation: 't' indicates the DFSORT technique
chosen for the run, and 'a' indicates the application
chosen for the DFSORT technique. Message values
are as follows:

Appendix H. DFSORT Messages and Codes 339

t BLOCKS ET (disk sort, standard merge, or
copy)
PEERAGE (disk sort)
VALE (disk sort)
CONVENTIONAL (tape sort or
nonstandard merge)

a SORT
MERGE
COPY

System Action: None.

Programmer Response: None.

ICE144A GENERATED SUM ROUTINE
GREATER THAN 4K BYTES

Explanation: Critical. The routine generated by
DFSORT to perform the summary function specified
in a SUM statement has a total length greater than
the maximum of 4096 bytes.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Reduce the number of
~nrnrn<;>ru f1Alr1.,. ,_,.,...._.a..a...a..a..a""'.LJ .L.LV.L""'"U'•

ICE1461 END OF STATEMENTS FROM
xxxxCNTL-PARAMETER LIST
STATEMENTS FOLLOW

Explanation: When a data set specified with a DD
statement for xxxxCNTL is present, this message
separates the listing of its statements from the listing
of the statements specified in the parameter list.
The statements for xxxxCNTL (if any) and the
parameter list (if any) are listed only if LIST is in
effect (see message ICE1281).

A statement other than OPTION or DEBUG in the
xxxxCNTL data set completely overrides the same
or corresponding statement in the parameter list.

A DEBUG statement in the xxxxCNTL data set
overrides only the same or corresponding operands
in a DEBUG statement in the parameter list. This
selective override does not affect the other operands

340 DFSORT Application Programming: Guide

in a DEBUG statement in the xxxxCNTL data set or
parameter list.

An OPTION statement in the xxxxCNTL data set
overrides only the same or corresponding operands
in an OPTION, SORT, or MERGE statement in the
parameter list. This selective override does not
affect the other operands in an OPTION, SORT, or
MERGE statement in the xxxxCNTL data set or
parameter list. (Note that OPTION statement
operands LIST, NOLIST, MSGDDN, MSGPRT,
SORTDD, SORTIN, and SORTOUT are not used if
specified in the xxxxCNTL data set.)

For complete details on the order of override, see
Appendix B.

System Action: None.

Programmer Response: None.

ICE147A OPTION STATEMENT OPERAND
SORTIN OR SORTOUT NOT
ALLOWED

Explanation: Critical. The OPTION statement
operand SORTOUT was specified for a
Conventional merge, or the operand SORTIN or
SOR TOUT was specified for a tape work data set
sort.

System Action: The program terminates.

Programmer Response: Remove the SORTIN or
SORTOUT operand. You may use the SORTDD
operand of the OPTION statement to provide
alternate ddnames for SORTIN and SORTOUT.

ICE148A ddname CONCATENATION NOT
ALLOWED

Explanation: Critical. SORTINnn or SORTWKnn
data sets were concatenated.

System Action: The program terminates.

Programmer Response: Use separate DD statements
for SORTINnn or SORTWKnn data sets.

ICE150I VLSHRT NOT USED

Explanation: The VLSHRT option is in effect, and
one or more of the following situations exists:

• An INCLUDE, OMIT, INREC, OUTREC, or
SUM statement is specified

• More than one control field is specified, and
Blockset has not been selected

• Blockset has been selected for a merge
application

• The application is a copy (VLSHR T is not
meaningful for copy)

Blockset has not been selected, and EQUALS is
in effect

VLSHRT cannot be used under these circumstances.

System Action: Processing continues; VLSHR T is
not used.

Programmer Response: None, unless message
ICE015A is received, in which case you should
respecify your fields to be within the shortest record
in the input data set(s). Alternatively, if the
application is merge, the NOBLKSET option on the
OPTION control statement can be used

ICE151A GENERATED INCLUDE/OMIT
ROUTINE GREATER THAN 4K
BYTES

Explanation: Critical. The routine generated by
DFSORT to perform the function specified in an
INCLUDE/OMIT statement has a total length
greater than the maximum of 4096 bytes.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Reduce the number of
INCLUDE/OMIT fields.

ICE1521 OVERFLOW DURING SUMMATION

Explanation: Overflow occurred for one or more
pairs of summary fields during the run.

System Action: Summation continues for pairs of
records for which overflow does not occur.
Summation is not performed for pairs of records for
which overflow would occur resulting in more than
one record with the same control field.

Programmer Response: Redesign the records so that
summary fields do not overflow, or, if possible,
increase the size of the summary field(s) using
INREC (see INREC Example 2).

ICE153A COBOL EXIT NOT SUPPORTED
FOR TECHNIQUE USED

Explanation: Critical. An E15 or E35 exit written in
COBOL was specified, but is not supported for the
technique used (tape work data set sort or
conventional merge).

System Action: The program terminates.

Programmer Response: Rerun job with SORTDIAG
DD statement to get reason for the revert from
message ICE800I. Remove cause of revert or
remove the COBOL exit.

ICE154A STOPAFT NOT SUPPORTED FOR
TECHNIQUE USED

Explanation: Critical. STOP AFT is in effect but is
not supported for the technique used (tape work
dataset sort).

System Action: The program terminates.

Programmer Response: Use disk work dataset, if
possible, or remove the STOP AFT option from the
OPTION statement.

ICEtSSI STOPAFT OR SKIPREC NOT
APPLICABLE TO MERGE

Explanation: A MERGE control statement has been
specified and STOPAFT and/or SKIPREC is in
effect. STOP AFT and/ or SKIPREC cannot be used
with MERGE, so it is ignored.

Appendix H. DFSORT Messages and Codes 341

System Action: Processing continues; STOPAFT
and/ or SK.IPREC is ignored.

Programmer Response: None.

ICE1561 MAIN STORAGE ABOVE
16-MEGABYTE = (y,z)

Explanation: Information on the amount of storage
available above 16-megabyte virtual for a MVS/XA
system.

y is the upper limit of main storage available to
DFSORT above 16-megabyte virtual.

z is the actual amount of main storage available
to DFSORT above 16-megabyte virtual, after
DFSORT has released the ARESALL and
ARESINV space.

System Action: None.

Programmer Response: None.

Note: This message is printed for a Blockset sort
under MVS/XA. The values are shown as zero if
DEBUG BUFFERS=BELOW is in effect.

ICE157I EXEC PARM E15=COB OR
E35=COB AND NO MODS EXIT

Explanation: E15=COB has been specified without
a corresponding E15 operand on the MODS
statement and/ or E3 5 has been specified without a
corresponding E35 operand on the MODS
statement.

System Action: Processing continues. The EXEC
parameter E15=COB or E35=COB is ignored.

Programmer Response: Specify an E15 and/or E35
operand on a MODS statement or remove the
EXEC parameter. ·

ICE158A SYSOUT DD STATEMENT MISSING

Explanation: Critical. Issued only to the master
console to indicate that a message data set was
required, but not specified. Corresponds to
DFSORT return code 20.

System Action: The program terminates.

342 DFSORT Application Programming: Guide

Programmer Response: Specify a DD statement for
the message data set, using the ddname specified by
MSGDDN (if any) or SYSOUT.

ICE159A MODULE ICECOB2 NOT FOUND

Explanation: Critical. Module ICECOB2 was not
installed as part of DFSORT. An E15 or E35 exit
routine written in COBOL is to be used and
COBEXIT=COB2 is in effect. Module ICECOB2
is required for COBEXIT=COB2.

System Action: The program terminates.

Programmer Response: If IBM VS COBOL II has
become available on your system since this release
of DFSORT was installed, ask your system
programmer to update the DFSORT installation.

If IBM VS COBOL II is not available on your
system, COBEXIT-COB2 cannot be used.

ICE160A COPY FUNCTION COULD NOT BE
USED - REASON CODE IS nn

Explanation: Critical. The COPY function is
specified but cannot be processed. Reason code
values are as follows:

1. BDAM input and/ or output data set

2. SORTOUT is tape with DISP=OLD or
DISP=MOD, and LRECL, RECFM, or
BLKSIZE is not specified in DD statement.

3. System error attempting to open a data set

4. An input and/ or output data set resides on an
unsupported device

5. ASCII tapes with the following parameters:

OPTCD=Q & RECFM=D & BUFOFF-. =L

or

OPTCD=Q &.RECFM-. =D & BUFOFF-. =0

6. System error attempting to read DSCB for an
input data set

7. System error attempting to read DSCB for an
output data set

System Action: Termination when all control
statement scanning is complete.

Programmer Response: Remove the indicated
condition.

ICE161A COBEXIT=COB2 AND COBOL EIS
ANDE3SEXITSWEREFOUND

Explanation: Critical. When COBEXIT = COB2 is
in effect, separately compiled COBOL El5 and E35
exits are not allowed together for COPY processing.

System Action: Termination when all control
statement scanning is complete.

Programmer Response: When COBEXIT=COB2 is
in effect, use either a COBOL E15 exit or a
COBOL E35 exit for COPY applications, but not
both. If your exits are actually written in OS VS
COBOL, make sure that COBEXIT=COB2 is not
in effect.

Appendix H. DFSORT Messages and Codes 343

Diagnostic Messages for
Debugging

Note: The following diagnostic messages can occur
when the SORTDIAG DD statement is present.

ICE8001 BLOCKSET TECHNIQUE COULD
NOT BE USED-REASON CODE IS
nn

Explanation: The primary DFSORT technique,
Blockset, could not be used for this application. nn
is the revert reason code. See the following list to
determine the reason associated with this code; then
use the index of this manual to locate more
information about the reason.

1 Critical message issued

5 SORTIN JFCB - BDAM specified in DD
Statement

6 SORTIN DSCB - BDAM specified in data set
label

7 SORTOUT JFCB - BDAM specified in DD
Statement

8 Old tape SORTOUT

10 DUMMY or SPOOL SORTWKxx

12 DCB ABEND exit taken

14 Compare or sum length too long

16 Unsupported SOR TIN and/ or SORTO UT
device

17 Unsupported SORTWKxx device (e.g. tape)

22 ASCII tapes with following parameters:
OPTCD=Q & RECFM=D & BUFOFF-. =L

or

OPTCD=Q & RECFM-. =D & BUFOFF-. =0

23 OBTAIN failed for SORTIN DS

24 OBTAIN failed for SORTOUT DS

344 DFSORT Application Programming: Guide

28 El8 or E38 with tape SORTIN(XX)

4 7 NOBLKSET specified

48 CKPT and IGNCKPT=NO specified

58 Dynamic tape SORTWKnn data set

63 Internal control word longer than maximum
allowed

64 Internal control word longer than maximum
allowed

65 Work data set not specified

68 Inadequate MAIN/BLOCKSIZE ratio

72 Many SORTWKs and reallocation required

73 The dynamically allocated work data set does
not allow seek head. Use SORTWKnn DD
statement to specify work data set.

7 4 E61 specified with VLSHRT

System Action: None.

Programmer Response: None.

ICE8021 t TECHNIQUE IN CONTROL

Explanation: Indicates the DFSORT technique that
is currently in control. t is BLOCKSET (disk sort,
standard merge, or copy), PEERVALE (disk sort),
or CONVENTIONAL (nonstandard merge or tape
work data set sort). This technique may not be the
technique ultimately selected (see message
ICE1431).

System Action: None.

Programmer Response: None.

ICE8031 TOTAL DATA SET TRACKS
ALLOCATED: a TRACKS USED: b

Explanation: Gives work data set space usage
information for the sort run. Message values are as
follows:

a Total primary and secondary space allocated (in
tracks)

b Total primary and secondary space used (in
tracks)

System Action: None.

Programmer Response: None.

ICE8041 ddname EXCP COUNT: n

Explanation: Lists the total number of EXCPs
performed to the specified input, output, or work
data set.

System Action: None.

Programmer Response: None.

Note: If this message is printed for a data set for
which the EXCP access method is not used, the
count will be 0, to indicate that it is not meaningful.

ICE8051 JOBNAME: jobname , STEPNAME:
step name

Explanation: Indicates jobname and stepname for
DFSORTrun.

System Action: None.

Programmer Response: None.

ICE8061 DYNAMIC ALLOCATION
REQUIRED a DATA SET(S), EACH
WITH b BLOCKS OF c BYTES

Explanation: Gives required dynamic allocation
work data set space for the sort run when
DYNALLOC is in effect. Message values are as
follows:

a Number of work data sets to be dynamically
allocated

b Number of primary blocks for each work data
set

c Size of blocks

System Action: None.

Programmer Response: None.

I ICE8071 370-XA SORTING INSTRUCTIONS
(ARE I ARE NOT) BEING USED

Explanation: Indicates whether the sorting
instruction algorithm was used.

System Action: None.

Programmer Response: None.

Note: This message is only printed for a Blockset
sort under MVS/XA.

ICE8081 PHASE p: RSA ALLOCATED
(BELOW I ABOVE I ABOVE AND
BELOW) 16-MEGABYTE VIRTUAL

Explanation: This message indicates where the
record save area (RSA), used by DFSORT to hold
records in storage, was allocated during the run.

pis the phase number (l=input, 2=key, 3=output).

System Action: None.

Programmer Response: None.

Note: This message is only printed for a Blockset
sort under MVS/XA.

ICE8091 PHASE p: c BUFFERS ALLOCATED
(BELOW I ABOVE I ABOVE AND
BELOW) 16-MEGABYTE VIRTUAL

Explanation: This message indicates where the
SORTIN (input), SORTOUT (output), or SORTWK
(work) buffers were allocated during the run.

pis the phase number (l=input, 2=key, 3=output).

c is SORTIN, SORTOUT, or SORTWK and the
message would appear once for each type of buff er
that was allocated.

System Action: None.

Programmer Response: None.

Note: This message is printed for a Blockset sqrt
under MVS/XA, if the buffers were allocated. For
example, if all the input was through an E 15 user

Appendix H. DFSORT Messages and Codes 345

exit, no input buffers would be allocated and the
message would not be printed for SORTIN. ICE908I OUTPUT IOB ADDR xx.xx

The following messages (ICE820-ICE990) are
ICE9091 OPEN LIST ADDR xx.xx

diagnostic messages for use by IBM field support ICE920I GENERATED CORE END ADDR
personnel. They do not require your response as a xxxx
DFSORT user.

ICE820I RL=a B=b IL=c IS=d IB=e RM=f
ICE9211 INPUT BFR TBL ADDR xx.xx

EM=g BA=h IX=j OX=k ICE922I OUTPUT BFR ADDR xxxx,xxxx

ICE8211 BN=aX=bTO=cSN=dG=e ICE923I MOVE RTN ADDR xxxx

ICE8221 BN=aX=hG=cPN=dBT=eTO=f ICE9241 DCBTBLADDR

ICE8231 BN=aX=hG=cTO=dBT=e ICE92SI O/P CCW ADDR xxxx

ICE8241 PE=aRP=bCX=cCO=dCO=e ICE9261 IOB TBL ADDR xxxx
CR=f G=g WB=h

ICE82SI GP=a SA=b X=c
ICE9271 l/P CCW ADDR xxxx

ICE8261 BN=a X=b RM=c
ICE9401 GENERATED CORE END ADDR

ICE8911 a WMAIN, b CMAIN
ICE9411 INPUT BFR TBL ADDR xxxx

ICE8921 a RIN b BLI c BLO d RUN e BUN f
ICE9421 OUTPUT BFR ADDR xxxx,xxxx

CPU ICE9431 MOVE RTN ADDR xxxx

ICE8931 a XIN b WIN c GIN ICE9441 ECB TBL ADDR xx.xx

ICE8941 a STR b MOR c IPB d OPB e CYL ICE94SI 1/P CCW ADDR xx.xx

ICE89SI a MUNIT b SUNIT c OUNIT ICE9611 TECHNIQUE xx.xx

ICE896I a SET b DEXTOT c BLK d CSZ ICE9621 NO/SIZE OF BFRS, PH x, x, xxxx

ICE900I GENERATED CORE END ADDRxx ICE9631 MAX.SYSGEN CORE xxxx

ICE9011 INPUT BFR TBL ADDRxxxx ICE964 CALC. CORE PH1 =xxxx

ICE902I OUTPUT BFR ADDR xxxx,xxxx ICE96SI MERGE ORDER=xxxx

ICE9031 RSA TBL ADDR xxxx ICE988I ICEyyy LOC. AT xx.xx

ICE904I TREE ADR FROM xxn TO xx.xx ICE989I CLOCK - xx,xx,xx

ICE90SI MOVE RTN ADDR xx.xx ICE9901 NO OF STRINGS PROD BY PHt

ICE9061 DCB TBJ_., ADDR xxxx
xxxxxxx

ICE907I 0/P CCW ADDR xxxx

346 DFSORT Application Programming: Guide

Option 1 E18 E19 E38

SYN AD x x x

EXLST x2 x x

ERO PT x x

EODAD x

BSAMEXLST x x3

VSAM PASSWORD x x3

1 See ICE044I for reference to this table.
2 Cannot be used if input is concatenated on unlike devices.
3 For merge applications.

E39

x

x

x

x

Appendix H. DFSORT Messages and Codes 34 7

Index

ABEND parameter 44
ABSTP parameter 44
access methods 3-4
altering records 140
ALTSEQ

parameter 6
statement

description 18
examples 42-43
format 42
performance 42

AMP parameter 122
application development 206
ARESALL parameter

EXEC statement 118
ICEMAC macro 6
OPTION statement 73

ARESINV parameter
ICEMAC macro 6
OPTION statement 73

ASCII
See also ISCII/ ASCII
chart 304
collating sequence 5
restriction with E61 exit 153

assembler
converting to extended 281
DC instructions 190
exits 143, 161
extended list 191
invoking DFSORT 187
user-written routines 135
24-Bit List 190

ATTACH macro 188, 199

balanced tape 277
basic assembler

converting to extended 281
DC instructions 190
exits 143, 161
extended list 191
invoking DFSORT 187
user-written routines 135
24-Bit List 190

BLKSIZE subparameter 123
blocking 206
Blockset

checkpoint/ restart 13
conditions 344

merge 211, 212
overriding 81
sort 211

Blockset copy technique 3
BSAM parameter 118

DEBUG statement 44
EXEC statement 118

buffer/module placement
BUFFERS parameter 45
VSCR 2, 206
with BSAM input/ output 206

BUFFERS parameter 45
BUFOFF subparameter 123
BUFSP parameter 122

CALL 184
cataloged procedures

SORT 115
SORTD 115

CHALT parameter
ICEMAC macro 6
OPTION statement 7 4

channels, multiple 213
character string format 54
CHECK parameter

ICEMAC macro 7
OPTION statement 74

checkpoint/ restart 13, 7 4
CKPT parameter 220

data set 132
MERGE statement 65
OPTION statement 74
SORT statement 106
with ATTACH 191

closing data sets 141
COBEXIT parameter

ICEMAC macro 7
OPTION statement 7 5
performace 217

COBOL
exit requirements 162
E15 exit 164
E35 172
invoking DFSORT 187
sample routines 160, 180

COBOL E15 exit 164
COBOL E35 exit 172
COBOL II

COBEXIT 217
exit requirements 162
E15 exit 164
E35 172
FASTSRT 217

Index 349

invoking DFSORT 187
sample routines 180

CODE parameter 42
coding rules 3 8
collating sequences

charts 301-307
EBCDIC 5
ISCH/ ASCII 5
modifying 5

comment statements 19
comments field 39
COND parameter

INCLUDE statement 50
OMIT statement 71

conditions
character string format 54
constants 53
decimal number format 53
fields 51
format 51
hexadecimal string format 54

constants 53
continuation lines 3 9
control fields

collating sequences 5
data format 207
FIELDS parameter 102
length 5
location 206
major 5
minor 5
ordering 5
performance considerations 206
simplifying descriptions 216

control statements
coding errors 314
coding rules 3 8
compatibility 38
DC instructions for extended list 191
DC instructions for 24-Bit List 190
example 15
format 38-41
list 18
processing sequence 10
summary 18-37

copy a data set 7 5
COPY parameter

description of 2
MERGE statement 65
OPTION statement 75
SORT statement 106

copy restrictions 163, 187
copy technique, Blockset 3
CTRx parameter 45
cylinder allocation 212
cylinders 276 ·

3 50 DFSORT Application Programming: Guide

. DATA DIVISION 161
data set characteristics

access methods 3-4
concatenated 127
format examples 297-299
input 3
size 216
specifying 216

data transfer rate 214
DCB parameter 121
DCB subparameters 123
DD statements

description 121
initiating with macro 189
parameters 121
program 125
system 124

DEBUG statement
description 18
format 44

decimal number format 53
deleting records 71, 140
DEN subparameter 123
device

data transfer rate 215
direct access 275
performance 213-216, 220
tape 277

diagnostic messages 344
direct access

device types 275,
performance 213-215
space requirements 275

DISP parameter 122
distribution, string 135
DSN parameter 121
DSNAME parameter 121
dumps 45, 46
dynamic allocation

DYNALLOC parameter 76, 106
DYNALOC parameter 7

dynamically invoking DFSORT
passing control statements 17
with macros 187

EBCDIC
chart 301
collating sequence 5
modifying 5, 42

END-REC 168, 176
END statement

description 18

example 49
format 49

EODAD field 148
EQUALS parameter

ICEMAC macro 7
OPTION statement 77
performance 220
SORT statement 106
with Blockset for VLR 77

ERET parameter 7
EROPT field 148
exceeding intermediate storage 140
EXCPVR parameter 7
EXEC statement 115
EXITAREA 169, 177
exits

COBOL E15 164
COBOL E35 172
example routines 182
El 1 143
E15 143, 164
E16 146
E17 147
E18 147
E19 150
E31 153
E32 153
E35 154
E37 157
E38 157
E39 158
E61 151
linking 184
loading routines 184
performance 183, 220
preparing routines 183
routine functions 136, 142
sample routines 160

EXLST field 148, 151
extended parameter list

assembler DC instructions 191
converting to 281
examples 200
format 196
overriding options 287

Ell exit 143
E15 exit 143
E15 exit (COBOL) 164
E 15 parameter 118
E16 exit 146
E17 exit 147
El8 exit 147
E19 exit 150
E31 exit 153
E32 exit 153
E35 exit 154
E35 exit (COBOL) 172
E35 parameter 118
E37 exit 157
E38 exit 157

VSAM use of 157

E39 exit 158
VSAM use of 158

E61 exit 151

FASTSRT 217
FIELDS parameter

INREC statement 58
MERGE statement 65
OUTREC statement 92
SORT statement 102
SUM statement 110

FILES parameter 65
FILSZ parameter

MERGE statement 66
OPTION statement 78
SORT statement 106

FIRST-REC 168, 176
FLR-Blockset 211, 212
FMTABEND parameter 45
FORMAT parameter

INCLUDE statement 50
MERGE statement 65
OMIT statement 71
SORT statement 106
SUM statement 111

formatted dump 46

handling special I/ 0 140
hardware requirements 8
hexadecimal string format 54

ICEMAC macro 6
ICEMAN module 115
IGNCKPT parameter 7
images

Extended List 191
24-Bit List 190

INCLUDE statement
description 18
examples 56-57
format 50
notes 55
performance 218

initiation with system macros 187
INPFIL statement 38
input phase

description 135

Index 351

exits 143, 153, 164
input/ output

record limitations 3-4
special 140

INREC statement
description 18
examples 61-64
format 58
notes 59
performance 219

inserting records 140
installation

overriding options 283
parameters 6-8

intermediate storage
calculating requirements 27 5
device types 275
error messages 278
exceeding capacity 140, 277
performance 212

INV parameter
ICEMAC macro 7

invoking DFSORT
from JCL 217
overview 12
passing control statements 17
with JCL 113
with macros 187

ISCII/ ASCII
chart 304
collating sequence 5
restriction with E61 exit 153

JCL parameter
ICEMAC macro 7
initiating with macro 18 9
invoking from 113
overriding options 284
performance 217

job control statements 113
JOB statement 115
job stream

examples 223-274
overview 113

JOBLIB DD statement 124

label
checking 1
field 39

LABEL parameter. 122
languages 13 5
LENGTH parameter 99

352 DFSORT Application Programming: Guide

LINK macro 188, 199
linkage conventions 135, 183
LINKAGE SECTION 167, 175
linking to user-written routine 184
LIST

EXEC statement 118
ICEMAC macro 7
OPTION statement 79

logic flow 13 8
LRECL subparameter 123

machine requirements 8
macro for installation options 6
macros for initiation 187
main storage

ARESALL parameter 6, 73
ARESINV parameter 6, 73
calculating requirements 275
MAINSIZE parameter 79
MAX.LIM parameter 7
MINLIM parameter 7
overview 207
performance 207
RESALL parameter 7, 82
RESINV parameter 8, 83
size 9
TMAXLIM parameter 8

MAINSIZE parameter 79
major control field 5
MAX.LIM parameter 7
merge restrictions 187
MERGE statement

description 18
examples 66
form~t 65

merge techniques
Blockset 3, 211, 212
Conventional 3, 212
performance 212

messages
coding errors 314
data set 124
diagnostic 344-347
displaying 313
format 312
information 342
MSGDDN parameter 80, 119
MSGPRT parameter 80, 119
printing 312
SORTDIAG statement 133
when initiating with macro 189

MIDDLE-REC 168, 176
MINLIM parameter 7
minor control field 5
modifying 141
MODS statement

description 18
example 69
format 67

MSGCON parameter 7
MSGDDN parameter

ICEMAC macro 7
OPTION statement 80

MSGPRT parameter
EXEC statement 119
ICEMAC macro 7
OPTION statement 80

NOABEND parameter 44
NOASSIST parameter 46
NOBLKSET parameter 81, 220
NOCHALT parameter 7 4
NOCHECK parameter 74
NOEQUALS parameter

OPTION statement 77
SORT statement 106

NOLIST parameter
EXEC statement 118
OPTION statement 79

NOOUTREL parameter 81.
NOOUTSEC parameter 81
NOSTIMER parameter 81
notational conventions 19
NOVERIFY parameter 86
NOWRKREL parameter 82
NOWRKSEC parameter 82, 220

OMIT statement
description 18
example 71
format 71
notes 55
performance 218

opening data sets 140
operand field 3 9
operating system 1
operation field 3 9
OPTCD subparameter 123
OPTION statement

description 18
examples 87-91
format 72-91

oscillating tape 277
OUTFIL statement 38
output phase

description 136
exits 153, 161, 172

OUTREC statement
description 18
examples 95-97
format 92
notes 93
performance 219

OUTREL parameter 7
OUTSEC parameter 7
OVERRGN parameter 7
overriding options 283, 295

Extended Parameter List 287
JCL 284
24-Bit List 292

padding/truncation 55
parameter list

assembler DC instructions 190, 191
converting to extended 281
examples 200
format 191, 196
overriding options 287-295

PARM parameter 117
passwords 149
Peerage 211
performance

degrading 220-221
enhancing 205-219

PGM parameter 115
PL/I 135, 187
polyphase tape 277
PROC parameter 115
PROCEDURE DIVISION 170, 179
program

control statements 1 7
efficiency 15
execution 9
initiation 12, 187
installation 6
modification 12
performance 205-221
phases 135

programming languages 135

QSAM data sets, input with 3

Index 353

RDW (record descriptor word) 4, 103, 143
read errors 141
read/write error routines 140
RECFM subparameter 123
record

blocking 3, 206
length 3, 99
limitations 3
processing sequence 10
spanned 3
variable-length 58, 103, 217

record descriptor word (RDW) 4, 103, 143
RECORD-FLAGS 168
RECORD statement

description 18
examples 100-101
format 98

relational conditions
character string format 54
constants 53
decimal number format 53
fields 51
format 51
hexadecimal string format 54

RESALL parameter
EXEC statement 119
ICEMAC macro 7
OPTION statement 82

RESDNTx parameter 8
RESINY parameter

ICEMAC macro 8
OPTION statement 83

RETURN-CODE 165, 172
return codes

See also each user exit
DFSORT 314

sixteen-megabyte virtual
buffer I module placement

BUFFERS parameter 45
with BSAM input/ output 206
with FLR-Blockset 206

user exits 142
SIZE parameter

EXEC statement 120
ICEMAC macro 8
MERGE statement 66
OPTION statement 78
SORT statement 106

skipping records 107
SKIPREC parameter

OPTION statement 83

354 DFSORT Application Programming: Guide

performance 218
SORT statement 107

SMF parameter 8, 14
SMF record format 309
SORT cataloged procedure 115
SORT statement

assembler DC instructions example 191
copy 109
description 18
examples 107-109
format 102-109
statement note 107

sort techniques
Blockset 3, 211
Conventional 3
Peerage 3, 211
Vale 3, 211

SORTCKPT DD statement
description 132
example 133

SORTCNTL DD statement
description 133
example 133

SORTD cataloged procedure 115
SORTDD parameter 84
SORTDIAG DD statement

description 133
example 134

SORTDKnn DD statement 133
SORTIN DD statement

description 127
examples 127
initiating with macro 189

SORTIN parameter 84
SORTINnn DD statement

description 128
examples 129
initiating with macro 189

SORTLIB DD statement
description 126
example 126
initiating with macro 189

SORTOUT DD statement
description 132
example 132
initiating with macro 189

SORTOUT parameter 85
SORTWKnn DD statement

description 129
examples 131
initiating with macro 189

SPACE parameter 121
spanned records 3
spindles 213
statistical data collection 14
STEPLIB DD statement 124
STIMER parameter 8
STOPAFT parameter 85, 218
storage

calculating requirements 275

exceeding capacity 140 .
main 9, 207
performance 207

string distribution 13 5
SUM statement

description 18
examples 112
format 110
notes 111
performance 219

sum statements 110, 140
SVC parameter 8
SYNAD field 148, 151
SYSABEND DD statement 124
SYSIN DD statement 124
SYSLIN DD statement 125
SYSLMOD DD statement 125
SYSOUT DD statement 124
SYSPRINT DD statement 125
system macro instructions 188
System/370-XA Sorting Instructions

bypassing 46
performance 2, 205

SYSUDUMP DD statement 124
SYSUTl DD statement 125

tape
device types 277
exceeding capacity 278
performance 216,220
shared units 122
space requirements 277

terminating DFSORT 49, 140
TMAXLIM parameter 8
tracks 276
TRTCH subparameter 123
truncation/padding 55
twenty-four bit

assembler DC instructions 190
converting to extended 281
examples 200
format 191
overriding options 292

24-bit parameter list
TYPE parameter 98

UNIT parameter 121
user-written routines

COBOL EIS 164
COBOL E35 172
example routines 182

El 1 143
E15 143, 164
E16 146
El 7 147
El8 147
E19 150
E31 153
E32 153
E35 154
E37 157
E38 157
E39 158
E61 151
linking 184
loading routines 184
performance 183, 220
preparing routines 183
routine fµnctions 136, 142
sample routines 160

Vale 211
VERIFY parameter

ICEMAC macro 8
OPTION statement 86
performance 220

VIO parameter 8
VIO=NO (no virtual 1/0) 76
virtual storage constraint relief 2, 205
VLR-Blockset 211
VLSHRT parameter 86
VOL parameter 122
VOLUME parameter 122
VS COBOL II

COBEXIT 217
exit requirements 162
E15 exit 164
E35 172
FASTSRT 217
invoking DFSORT 187
sample routines 180

VSAM 151
VSAM data sets

maximum input size for variable length 96
notes and limitations 4
use with DEBUG 45
using SORTINnn DD statement 128
with BSAM option 118
with INREC control statement 60
with Ll value of LENGTH parameter 99
with L3 value of LENGTH parameter 99
with OUTREC control statement 94
with RECORD control statement 98
with TYPE operand 98

VSAM exit functions 140
VSCR 2, 206

Index 355

work data sets
calculating requirements 275
device types 275
error messages 278
exceeding capacity 140, 277
performance 212

356 DFSORT Application Programming: Guide

VSAM use of 157, 158
write errors 141
WRKREL parameter 8
WRKSEC parameter 8

XCTL macro 188, 199

DFSORT Application
Programming: Guide
SC33-403 5-11

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office
serving your locality.

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL -----------

Previous TNL ---------

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC33-4035-11

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

I II II I

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

... ,

Fold and tape Please do not staple Fold and tape

--...--- ------- - - ---- - -- -. ----- - - ------- --_ _.._,_
®

c ,.
Cl. c
::x

)':
'O
'O

0
Ill
0
:::J ., ..,
0

<.C ..,
Ill

3
3
:3

(Cl

SC33-4035-11

