

Order Number:
SC33-4035-11

DFSORT Application Program
Programming: Guide Product

Program Number: Release Number:
5740-SM1 8.0

Twelfth Edition (March 1986)
This is a major revision of, and makes obsolete, SC33-4035-10.

This edition applies to Release 8.0 of IBM DFSORT, Program Product 5740-SM1, and to
any subsequent releases until otherwise indicated in new editions or technical newsletters.

The changes for this edition are summarized under “Summary of Amendments” following
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx,
and 4300 Processors Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Requests for IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. If you request publications from the address given
below, your order will be delayed because publications are not stocked there.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1973, 1979, 1981, 1982,
1983, 1985, 1986

Preface

This manual is for programmers who want to sort, merge, or copy files using
DFSORT (Data Facility Sort) Program Product No. 5740-SM1.

Hereafter, the term ‘“processing” refers to DFSORT’s sorting, merging and copying
capability.

To use this manual, you should have a basic understanding of OS/VS and its job
control language (JCL); to take advantage of all the options and facilities of the
program, you will need the documents listed under ‘“Reading List.”

Using this manual, you will be able to prepare all the input necessary to process
files. You will also be able to link your own routines to DFSORT to perform such
services as altering, deleting, or inserting records as they are being processed.

If you are a new DFSORT user, consider reading the tutorial, Getting Started with
DFSORT, before you begin using this manual. It provides an introduction to using
the product, including sample sorting applications.

Organization of Manual

This manual contains the following sections:

« Chapter 1, “Introduction” on page 1 describes the program’s relationship to
the operating system, and explains the program’s functions and facilities, its
hardware and storage requirements, user inputs, and factors affecting
performance. It also describes how to write a simple DFSORT program.

« Chapter 2, “Program Control Statements” on page 17 describes how you use
program control statements to describe your input data, to supply information
about the control fields being used, and to describe to the system your personal
routines that you will use during program execution.

« Chapter 3, “Job Control Statements” on page 113 shows you how and what
job control statements you must write to execute your DFSORT program.

o Chapter 4, “User Exit Routines” on page 135 describes how to insert a
routine of your own into the DFSORT program, via program exits.

e Chapter 5, “Invoking DFSORT from an Assembler Program” on page 187

describes how to initiate execution of the program from within your own
program, using a system macro instruction.

Preface 1ii

Reading List

For All Applications

Chapter 6, “Improving Program Efficiency” on page 207 gives advice on
how you can achieve faster processing.

Appendix A, “Sample Job Streams” on page 225 provides sample job
streams for sort, merge, and copy applications.

Appendix B, “Calculating Storage Requirements” on page 277 discusses the
storage devices used for intermediate storage, the factors determining the
amount of intermediate storage required for a DFSORT program, and the
program’s method of selecting a sorting technique.

Appendix C, ‘“Converting to the Extended Parameter List” on page 283
shows how to covert programs that use a 24-bit parameter list to use an
extended parameter list.

Appendix D, ‘“Specification/Override of DFSORT Options” on page 285
shows the order of override when the same or corresponding options are
specified in different sources.

Appendix E, “Data Format Examples” on page 299 gives examples of the
assembled data formats used with IBM System 360/370.

Appendix F, “EBCDIC and ISCII/ASCII Collating Sequences” on page 303
lists the collating sequences from low to high order for EBCDIC and
ISCII/ASCII characters.

Appendix G, “SMF Record (TYPE 16)” on page 311 lists the SMF record
produced by DFSORT.

Appendix H, “DFSORT Messages and Codes,” lists, explains, and suggests
responses to all the error messages produced by this DFSORT program.

The reading list that follows is divided according to the options and facilities of the .
program and how you can use them.

The following manuals supplement the JCL information given in this guide; you
may need them for reference:

MVS /Extended Architecture JCL, GC28-1148
0S/VS1 JCL Reference, GC24-5099

OS/VS2 MVS JCL, GC28-0692

For an explanation of SMF record type 16, which enables an installation to collect
statistics for auditing its DFSORT activities, generating utilization reports,
developing tuning information, and so forth, see: :

iv DFSORT Application Programming: Guide

MVS/Extended Architecture System Programming Library: System Management
Facilities (SMF), GC28-1153

OS/VS1 System Management Facilities (SMF), GC24-5115

OS/VS2 MVS System Programming Library: System Management Facilities
(SMF), GC28-0706 (for users of OS/VS2 MVS Release 3.8)

OS/VS2 MVS System Programming Library: System Management Facilities
(SMF), GC28-1030 (for users of OS/VS2 MVS/System Product)

For an explanation of the options available at mstallatmn time and estimates of
storage required by the program, consult:

DFSORT Planning and Installation, SC33-4034

For an overall discussion of DFSORT features, see:
DFSORT General Information, GC33-4033

For quick reference, see:
DFSORT Reference Summary, SX33-8001

For compatibility of message options from 5734-SM1, see:
OS Sort/Merge Programmer’s Guide, SC33-4007

For a primer on how to use DFSORT, see:
Getting Started with DFSORT, SC26-4109

For information on diagnosing DFSORT failures, see:
DFSORT Diagnosis Guide, SY26-3971

Planning Checkpoint/Restart

Complete information on the checkpoint/restart facility is contained in:
MVS/Extended Architecture Checkpoint/Restart User’s Guide , GC26-4012
MVS /370 Checkpoint/Restart User’s Guide, GC26-4054
0S8/VS1 Checkpoint/Restart User’s Guide, GC26-3876

OS/VS2 MVS Checkpoint/Restart User’s Guide, GC26-3877

Preface V

COBOL and PL/I Users

See the Programmer’s Guide describing the compiler version available at your
installation site.

Assembler Language Users

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

OS/VS—-DOS/VS—VM/370 Assembler Language Manual, GC33-4010
Program Initiation with System Macro Instructions

MVS/Extended Architecture System Programming Library: Supervisor Services
and Macro Instructions, GC28-1154

0S/VS1 Supervisor Services and Macro Instructions, GC24-5103

0S8 /VS2 MVS Supervisor Services and Macro Instructions, GC28-0683
Data Management

MVS /Extended Architecture Data Administration Guide, GC26-4013

MVS /Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4014

MVS /Extended Architecture System—Data Administration, GC26-4010
MVS/370 Data Administration Guide, GC26-4058

MVS/370 Data Administration: Macro Instruction Reference, GC26-4057
MVS/370 System—Data Administration, GC26-4056

08/VS1 Data Management for System Programmers, GC26-3837
0S/VS1 Data Management Macro Instructions, GC26-3872

0S/VS1 Data Management Services Guide, GC26-3874

OS/VS2 MVS Data Management Macro Instructions, GC26-3873
0S/VS2 MVS Data Management Services Guide, GC26-3875

0S/VS2 MVS System Programming Library: Data Management, GC26-3830

Vi DFSORT Application Programming: Guide

Dynamic Allocation

ISCII/ASCII

ISO/ANSI Tape Labels

VSAM Users

MVS/Extended Architecture System Programming Library: System
Modifications, GC28-1152

0S/VS2 MVS System Programming Library: Job Management, GC28-0627

MVS /Extended Architecture Data Administration: Macro Instruction Reference,
GC26-4014

MVS /370 Data Administration: Macro Instruction Reference, GC26-4057
0S/VS1 Data Management Macro Instructions, GC26-3872

0OS/VS2 MVS Data Management Macro Instructions, GC26-3873

MVS /Extended Architecture Magnetic Tape Labels and File Structure
Administration, GC26-4003

MVS/370 Magnetic Tape Labels and File Structure Administration, GC26-4064

OS/VS Tape Labels, GC26-3795

MVS /Extended Architecture Integrated Catalog Administration: Access Method
Services Reference, GC26-4019

MVS/Extended Architecture VSAM Administration Guide, GC26-4015

MYVS /Extended Architecture VSAM Administration: Macro Instruction
Reference, GC26-4016

MVS/ Extended Architecture VSAM Catalog Administration: Access Method
Services Reference, GC26-4075

MVS/370 Integrated Catalog Administration: Access Method Services Reference,
GC26-4051

MVS/370 VSAM Administration Guide, GC26-4066
MVS/370 VSAM Administration: Macro Instruction Reference, GC26-4074

MVS/370 VSAM Catalog Administration: Access Method Services Reference,
GC26-4059

OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3819

OS/VS Virtual Storage Access Method (VSAM) Programmer’s Guide,
GC26-3838

Preface Vil

O0S/VS1 Access Method Services, GC26-3840
0OS/VS2 Access Method Services, GC26-3841
For storage requirements, see

MVS/Extended Architecture Data Facility Product: Planning Guide,
GC26-4040

MVS/370 Data Facility Product: Planning Guide, GC26-4052
Planning for Enhanced VSAM under OS/VS, GC26-3842

For debugging aids, see
MVS /Extended Architecture Debugging Handbook, Volume 1, LC28-1164,
Volume 2, 1.C28-1165, Volume 3, LC28-1166, Volume 4, LC28-1167,
Volume 5, L.C26-1168, or all volumes, LBOF-1015
0S/VS1 Debugging Guide, GC24-5093

0S/VS2 MVS System Programming Library: Debugging Handbook, Volume 1,
GC28-0708, and Volume 2, GC28-0709

viii DFSORT Application Programming; Guide

Summary of Amendments

Release 8.0, March 1986

New features added to DFSORT include:

« An enhancement to the variable-length record sorting technique,
VLR-Blockset, which improves performance when sorting variable length
records. On MVS/Extended Architecture (MVS/XA) systems, utilization of
extended addressing capability is available with VLR-Blockset.

« More efficient use of processor cache memory, which improves performance
when sorting fixed length records.

« The copy function, which copies a data set without performing any sorting or
merging operation. It can be used with most of the same control statements,
exits, and options available when sorting or merging.

« An enhancement to the Blockset technique, which can now be used to continue
sorting when encountering a record too short to contain all specified control
fields. New installation and execution options have been added for ease of use.
In addition, the Blockset technique can now be used for VSAM input and
output data sets.

In addition, the figures in Appendix D have been enhanced to show which options
can be used with a particular function (sort, merge, or copy).

Summary of Amendments iX

Release 7.1, June 1985

New enhancements added to DFSORT are the ability to:

¢ Preserve the original order of identically collating records when doing a
Blockset merge, if the EQUALS option is used.

s Specify, using the EQUALS option, that the first record will be retained when
summarizing identically collating records when doing a Blockset sort or merge.

« Use the Blockset technique when merging spanned variable-length records.

Features that were removed from prior releases and that are now being
reimplemented:

+ Processing of multivolume SORTOUT data sets with the EXCP access method
rather than with the BSAM access method, whenever possible.

« Dynamic link-editing of user exit routines. Note that the SORT cataloged
procedure has been changed to include link-edit DD statements.

Note also that the SORT cataloged procedure has been changed to contain DD
statements for dynamic link-editing.

o Writing program messages to the master console.

Release 7.0, January 1985

New features added to DFSORT are:

« For MVS/XA, the ability to reduce the processor time for sorting done in large
storages by using IBM System/370 Extended Architecture Sorting
Instructions.

« Extended addressing for MVS/XA:

—~ Improved performance because certain buffers and modules can now be
placed above 16-megabyte virtual when sorting fixed-length records.

— The ability to specify:

~— The upper limit of the amount of main storage above and below
16-megabyte virtual available to DFSORT (TMAXLIM).

— The number of bytes reserved above 16-megabyie virtual for system
use (ARESALL).

— The number of bytes reserved above 16-megabyte virtual for a
program that invokes DFSORT (ARESINV).

« COBOL-related enhancements:

X DFSORT Application Programming: Guide

— The ability to invoke DFSORT from VS COBOL II programs.

— The ability to use the VS COBOL II FASTSRT compile-time option,
which enhances performance.

— The ability to write E15 and E35 exit routines in COBOL.

— The ability to specify an alternative message data set when invoking
DFSORT with JCL. This is especially useful when exits are written in
COBOL.

« Support of the 3480 Magnetic Tape Subsystem.
« Removal of the upper limit of 48K bytes for the RESALL option.

o The ability to specify the maximum number of records to be accepted for
sorting.

Service changes have also been added.

Summary of Amendments Xi

Contents

Chapter 1. Introductionciiiiiiieiienneniernernnaaannnns 1
Relationship to the Operating System i, 1
Operation in MVS/XAModettt 2
What the Program WillDo i, 2
Input and Qutput Data Setscciiitttnmiiieinieennn. 3
Control Fields and Collating Sequence ciiiiinon.. 5
Installation Options it ittt ittt et 6
Machine Requirementsc..ttutiiniiternnnneeennnnenenns 8
Main Storage Requirementscc.iiiittinniineeennneeeans 9
Program EXecution ittt ennenennannenens 9
Program Initiation ittt 12
Program Modification "..... e 12
D LT T P 13
Return Codes ... ettt e 13
Checkpoint/ReStartttt it et et e e e 13
Statistical Data Collectionccouvieriieennnnennn. e . 14
Maximum Efficiency i e e e 15
Control Statement Example0ttt 15
Chapter 2. Program Control Statementsccoiiiivtienennnes 17
Control Statement Summary e i 18
Control Statementsoititirintenieneniennennnas 18
Comment Statementst iiireeennnneenannnen.s 19
Notational Conventions ittt nnnenn.n. 19
Control Statement Compatibility 38
General Coding Rules ittt 38
Continuation Linesc.iiiiiitiiiniienenneennnn. 39
Summary of Restrictionsc.. ittt ineeennnnns 41
ALTSEQ Control Statementc. it iirterennnenernnaeens 42
ALTSEQ Statement Examplesc.oiiuiiieinneennn. 42
DEBUG Control Statementc.c.uuttenrrtereeneeraneneennn 44
Forcing a Specially Formatted Dump v, 46
END Control Statementc.ttirtittnnnuneeennnnineennnns 49
END Statement Examplesc.0iriutterneenreeeennns 49
INCLUDE Control Statementcceeeeuieeneennneeenennnns 50
INCLUDE/OMIT Statement NOteSovuererenenennnnnnnnnn. 55
INCLUDE Statement Examplesccuttiiiireennnnnennn. 56
INREC Control Statementco it ttennnnueenanneeennns 58
INREC Statement Notesciiiiiternenieerennnennnns 59
INREC Statement EXamplesccitiinieerneennennnenns 61
MERGE Control Statementutttiiinereeennneennnnas 65
MERGE Statement Examples 0.0t 66
MODS Control Statementiiuttterneneeenaneeannnns 67
MODS Statement Examplesc.iiuiitttrninineennnnneens 69

Contents Xiii

OMIT Control Statementc.covivirnnneenn. e 71

OMIT Statement Exampleciiitiiirtenninnnnneenn. 71
OPTION Control Statementouututertnnnnerennnneeean 72
OPTION Statement Exampiestttitiiiiiiinenennnn 87
OUTREC Control Statementuiiiutemnnennneaneennn. 92
OUTREC Statement NOtesottt ieientieiiernanenas 93
OUTREC Statement Examplesccciiuiiieieneneeenn 95
RECORD Control Statemento.ueentemnneeneeeneenn. 98
RECORD Statement Examples, 100
SORT Control Statementciuutennereneeenneeneeenns 102
SORT Statement NOteciitiietenineiinneenneennn.. 107
SORT Statement Examplesc.iitiiirinunni... 107
SUM Control Statementtntritneinreeennnneennn 110
SUM Statement NOteSvvtetrt e ittt etireeeneeens 111
SUM Statement Examples0iiiinnenninneennnn. 112
Chapter 3. Job Control Statements ceeeaean N et eeaaesan 113
JOB Statementutittitnt ittt e 115
EXEC Statementt itteerennitnninnnnnnnnnns 115
“SORT” Cataloged Procedurec0iiiiiirunennennn 116
“SORTD” Cataloged Procedurecccuiiiiienr... 117
PARM="0ptions’ttt ittt i 117
DD Statements ottt et 121
System DD Statementsc.oiiiiitiiiiiia. 124
Program DD Statementsovtiinnor i neenennnnn 125
Chapter 4. UserExit Routinescc.iiinenureereonnessnns 135
DFSORT Program Phasesc...tiiuttiitnnnnnannenn. 135
Input Phasec.c.. ittt ittt i 135
Output Phaset e e 136
Functions of Routinesat User Exits iuu.u... 136
DFSORT Input/Exit/Output Logic Examples 136
Opening Data Sets and Initializing 140
Inserting, Deleting, and Altering Records, Terminating DFSORT 140
Summarizing Records i e 140
Determining Action when Intermediate Storage Is Insufficient 140
Handling Special I/Q it ittt e 140
Modifying Control Fieldsc.0 ittt ininirennrnnnn 141
Closing Data Setsttt ittt ettt 141
Reserving Storage for Exits ittt enannnn 142
MVS/XA Support of User EXitS vvrirenniininenenenenn. 142
Assembler Exit ROUtinesttt neneenanns 143
Input Phase EXitsttt ninennnnann 143
Output Phase EXitsottt 153
Sample Routines Written in Assembler 160
E15: Deleting Expired Records c..iiiiiirennnn.. 160
E16: When NMAX Exceeded, Sort Current Records 161
E35: Deleting Records ...ttt 161
COBOLExit Routinescciiiiitiiininnineeennnnnnnsns 161
COBOL Exit Requirementscuttiniinninneennnneens 162
Storage Requirementsiiueitnntentrnreneennnnenns 163
Input Phase Exit e ettt e 164
Output Phase EXitottt i inennenn. 172
Sample Routines Writtenin COBOLo ..., 180

Xiv DFSORT Application Progranmiming: Guide

COBOL El15: . e e et e i 180

COBOL E35: InsertingRecords cciiuiinunn.n. 181
Assembler and COBOL User Exit Routines and DFSORT Performance 183
Summary of Rules for User Exit Routinesc..coovvu... 183

How to Load User Exit Routines iurena.., 184

User Exit Linkage Conventionsc0itiieiinnee... 184

How to Dynamically Link-Edit User Exit Routines 185
Chapter 5. Invoking DFSORT from an Assembler Program 187
Merge restriction i e e 187
(07070328 (=117 (5114 o) o LSNP 187
System Macro Instructionsc. i i e 188
HowtoUsethe Macroscuiiiiiiiirininnennnennnn, 188

JCL DD Statementscouueenneeenenanronneennnennnsn 189

Program Control Statements for the 24-Bit Parameter List 190

Program Control Statements for the Extended Parameter List 191

Format of the 24-Bit Parameter Listc.v... 191

Format of the Extended Parameter List 196

Writing the Macro Instruction i, 199

Examples e e e e 200
Chapter 6. Improving Program Efficiency cieea.. 205
Using System/370-MVS/XA Operating Systems 205
Planning Applicationsouuttirtnnnit i nentnnennnan 206

Efficient Blockingttt i, 206

Efficient Control Field Sorting i, 206
Tuning Main Storage i e 207
How to Get DFSORT to Release Storageccoiiiiinienennn. 209
Using Efficient Sort/Merge Techniquescccvirvenen.. 211

Sorting Techniquesouitinniri e enannnnnn 211

Merging Techniques i, 212
Using Work Storage Devices Efficiently 212

Direct Access Work Storage Devices e 213

Device Data Transfer Rate i niiinnnn. 214

Tape Work Storage Devicesc.c.iiiitiiiirennnennne.. 216
Specifying Input/Output Data Set Characteristics 216 -

Simplify Control Field Descriptionscoivirrinn .. 216

DataSet Size0iiiii it e e 216

Variable-Length Records it inrninennnenn. 217
Using JCL to Initiate DFSORT i, 217
Using Options That May Enhance Performance 217

COBEXIT .ottt e et e e e e e e 217

FASTSRT ... e e e e e e 217

INCLUDE OR OMIT, STOPAFT, AND SKIPREC 218

INREC and OUTREC ittt 219

SUM L e e e e e 219
Avoiding Options That May Degrade Performance 220
Appendix A. Sample Job Streams0000000nn Cetesieneaaann 223
Sort EXamplesttt i e e e e 225
Merge EXamplesii ittt e 263
Sort Examples Using VSAMData Setsccovieiuienninennennn 269
Appendix B. Calculating Storage Requirementsc.00.. 275
Main Storageot e e e e e 275

Contents XV

Xvi

Intermediate StOragettt e e e 275

DiIECt ACCESS - v v o vt v e ittt ettt e 275

3 7P 277

Exceeding Intermediate Storage Capacity 277
Appendix C. Converting to the Extended Parameter List b 281
Appendix D. Specification/Override of DFSORT Options 283
JCL Invoked DFSORT ittt ettt et e es 284
Dynamically Invoked DFSORT with an Extended Parameter List 287
Dynamically Invoked DFSORT with 24-Bit List 292
Appendix E. Data Format Examples e eseses et 297
Appendix F. EBCDIC and ISCII/ASCII Collating Sequences 301
EBCDIC .. e e :.. 301
ISCII/ASCII ..ot e ettt et e et 304
Appendix G. SMF Record (TYPE 16}t iiiiiiirnnneinannns 369
Appendix H. DFSORT Messagesand Codescciiiiiinnunnnns 311
Message Format i 312
Printing Messages and Control Statementsc....... 312
Writing Messages to the Master Console 313
Control Statement Coding Errors 314
Return Codest e e e e e e 314
Diagnostic Messages for Debugging 344
Indexcocc0et.n. Ctereerseesasessenannsasaasernraanns . 349

DFSORT Application Programming: Guide

Figures

WX NAW W

Control Fieldso ittt i iianaeens 6
Record Processing SEqUENCecctiiiiiieriniinenennnnns 10
Control Statement SUMIMATYttt en ittt iinvennnnann 20
Control Statement Format 00ttt nanenn 38
Continuation Line Format i, 40
Contents of a Specially Formatted Dump 47
Interpreting a Formatted Dump (Shown for Peerage or Vale) 48
Permissible Field-to-Field Comparisons for INCLUDE/OMIT 52
Permissable Field-to-Constant Comparisons for INCLUDE/OMIT 53
Logic Table for INCLUDE/OMIT e 56
Control Field Formats/Lengthsouuiiitninienennanns 105
Input Job Stream ittt e e e e e 113
DD Statement Parameters Used by DFSORT 121
DCB Subparameters Used by DFSORT 123
Examples of DFSORT Input/Exit/Output Logic 138
Functions of Routines at Program Exits (Sort) 139
Functions of Routines at Program Exits (Copy and Merge) 139
E15 DFSORT Interface with COBOLc.cciuv... 166
LINKAGE SECTION Code Example for E15S (FLR) 167
LINKAGE SECTION Code Example for E15 (VLR) 168
E35 Interface with COBOL. 174
LINKAGE SECTION Code Example for E35 (FLR) 175
LINKAGE SECTION Code Example for E35 (VLR) 176
COBOL E15 Routine Example (FLR) 180
COBOL E35 Routine Example (VLR)c0tiiirnennn. 182
Register Conventions i, 185
Example of DD Statements for a Dynamically Invoked Sort 189
The 24-Bit Parameter List When Attaching the Program 192
Extended Parameter List0 i iiinieann. 197
Specifying the Main Storage Option (24-Bit Parameter List) 200
Specifying E32 and STAE/ESTAE Routine (24-Bit Parameter List) .. 201
The 24-Bit Parameter List in Main Storage 202
Coding a 24-Bit Parameter List it iinan. 203
Coding an Extended Parameter List 204
Comparative Data Transfer Rates of Disk Work Storage Devices 215
Faster Sorting with VSCOBOL Ic.ocon... 218
Number of Tracks per Cylinder for Direct Access Devices 276
External Work Storage Requirements of the Various Tape Techniques . 277
Converting to the Extended Parameter List 281
JCL DFSORT Option Specification/Override 284
Extended Parameter List DFSORT Option Specification/Override ... 287
24-Bit List DFSORT Option Specification/Override 292
EBCDIC Collating Sequencec.ovuiuinennenenernnnns 301
ISCII/ASCII Collating Sequence e e e 305

Figures Xvii

45. Message Format

Xviii DFSORT Application Programming: Guide

..

Chapter 1. Introduction

This chapter describes the relationship of the IBM OS/VS DFSORT Program
Product 5740-SM1 (hereafter referred to as DFSORT) to the operating system; its
functions and facilities; its requirements in terms of hardware, main storage, and
user input; and factors affecting performance.

Relationship to the Operating System

DFSORT operates under the operating system control program; therefore, it must
be initiated according to operating system conventions. You must define any data
sets used by the program according to operating system standards. You can use the
label checking facilities of the operating system during program execution.
(Operating system label checking facilities are described in Supervisor Services and
Macro Instructions.)

Because DFSORT uses the operating system data management facilities, you must
describe all data sets (except those allocated via the DYNALLOC parameter)
‘necessary for program operation in job control language data definition (DD)
statements. These statements must be placed in the operating system input stream
with the job step that initiates program execution.

The operating systems supported by this release are:

« 0OS/VS1 Release 7

« 0S/VS2 MVS Release 3.8

« MVS/Extended Architecture (MVS/XA)

« MVS/370 (0OS/VS2 MVS with MVS/370 Data Facility Product installed)
DFSORT also executes on these systems under VM or VM/XA Migration Aid.

Throughout this manual, the term MVS is used to refer to OS/VS2, MVS,
MVS/XA, and MVS/370, unless otherwise indicated.

Chapter 1. Introduction 1

Operation in MVS/XA Mode

Programs that invoke DFSORT, in addition to user exit routines, will be able to
reside above or below 16-megabyte virtual, execute in 24-bit or 31-bit mode, and
pass data that resides above or below 16-megabyte virtual to DFSORT.

For MVS/XA users who install DFSORT resident, most of the Blockset modules
will be placed above 16-megabyte virtual in the extended link pack area. This
provides more space in the link pack arca for resident programs that cannot reside
above 16-megabyte virtual.

Furthermore, when doing a Blockset sort, DFSORT can place selected buffers
above 16-megabyte virtual, leaving more space below 16-megabyte virtual for user
applications.

In addition, more and larger buffers provide greater optimization opportunities.
Use of IBM System/370 Extended Architecture Sorting Instructions (hereafter
referred to as System/370-XA Sorting Instructions), which are part of the

extended architecture hardware, reduces the processor time for sorting done in
large storage areas.

What the Program Will Do

DFSORT has three basic functions:
o To sort records, that is, to arrange them in a given sequence.

« To merge from 2 to 16 previously sorted record sequences into one sequence.
When you merge records, the sequences to be merged must have been
previously sorted into the same order (ascending or descending) as that
required for final output.

e To copy records, you do not need to sort or merge the records first.
You can copy your data sets, without sorting or merging them, using the COPY
parameter on the OPTION control statement. See the “OPTION Control
Statement” on page 72 for more detailed information on the syntax of this
parameter. You can also use COPY as a value on the FIELDS parameter of
the SORT or MERGE control statement. The original order of your input
records will be retained.

The copy function cannot be used with BDAM data sets.

Dynamic link editing of exits is not allowed with copy.

2 DFSORT Application Programming: Guide

Note: Copy uses only the Blockset technique.

Depending on various conditions, DFSORT selects among the following sorting
and merging techniques:

« Disk work data set sorting techniques: Blockset (for fixed- and variable-length
records), Peerage (for fixed-length records), and Vale (for both fixed- and
variable-length records)

¢ Various tape work data set sorting techniques

« Merge only techniques: Blockset and conventional

These are discussed under “Using Efficient Sort/Merge Techniques” on page 211
and “Merging Techniques” on page 212.

Input and Output Data Sets

Sort and Copy Applications

Merge Applications

Input to the sort or copy may be a blocked or unblocked QSAM or VSAM data set
containing fixed- or variable-length records. QSAM input data sets may be
concatenated even if they are on unlike devices, provided the conditions described
in “SORTIN DD Statement” on page 127 are met.

Output from the sort or copy may be a blocked or unblocked QSAM or VSAM
data set, regardless of whether the input is QSAM or VSAM, but must be of the
same type (fixed or variable) as the input data set.

Input to the merge may be up to 16 blocked or unblocked QSAM or VSAM data
sets containing fixed- or variable-length records. The input data sets may be either
QSAM or VSAM, but not both. The records in the input data sets must already be
sorted into the order required for output. For further details, see “SORTINnn DD
Statement’ on page 128.

Output from the merge may be a bloeked or unblocked QSAM or VSAM data set,
regardless of whether the input is QSAM or VSAM, but must be of the same type
(fixed or variable) as the input data set.

General Notes and Limitations

The input and output data sets must be on devices that can be used with QSAM or
VSAM.

The length of the records that DFSORT can handle depends on the amount of
main storage available. The length of a record can never exceed the maximum
record length specified by the user. The maximum record length for
variable-length records is 32756 bytes; for fixed-length records, it is 32760 bytes.

For spanned records, maximum lengths may be smaller. Conditions such as control
fields of different formats, large number of control fields, or a large number of

Chapter 1. Introduction 3

intermediate data sets reduce the length of the records that may be sorted using a
given amount of storage. The minimum block length for tape work data sets is 18
bytes; the minimum record length is 14 bytes.

QSAM Data Set Notes and Limitations

If you use DSN=NULLFILE on your DD statement for an input data set,
DFSORT cannot use the EXCP access method (this is a system restriction).

Input data sets can be empty.

If any of the input data sets are on tape without standard labels, you must specify
DCB parameters on their DD cards.

ISO/ANSI Version 1 tape files cannot be used as output; they can only be used as
input.

VSAM Data Set Notes and Limitations

If a data set is password protected, passwords can be entered at the console or
(with some restrictions) through routines at exits E18, E38 and E39.

The same data set must not be specified for both input and output.

A data set used for input or output must have been previously defined. A data set
used for input must not be empty. If the data set is empty, VSAM returns an input
error code (160) and DFSORT terminates.

Data sets cannot be contatenated.

If output is a keyed-sequential data set (KSDS), the key must be the major control
field (or the key fields must be in the same ascending order as the major control
field). VSAM does not allow you to store records with duplicate primary keys.

Any VSAM exit function available for input data sets may be used except EODAD.
See the description of E18 use with VSAM in Chapter 4.

The VSAM exit list must be built using the VSAM EXLST macro instruction giving
the address of your routines that handle VSAM exit functions.

When processing variable-length records with VSAM input and non-VSAM output, -
the SORTOUT LRECL must be 4 more than the maximum record size defined in
the cluster. Variable-length records have a record descriptor word (RDW) field of
4 bytes at the beginning of each record, but VSAM records do not. Therefore, the
record size defined in the cluster is 4 bytes less than the non-VSAM LRECL.
DFSORT adds 4 bytes for the RDW when processing the record. These are
removed if VSAM is used for both input and output.

4 DFSORT Application Programming: Guide

For example,

Maximum record size in VSAM cluster 128 : up to 128 bytes of data

LRECL for variable-length recoxrd 128 : 4 bytes RDW and up to
124 bytes of data

132 : 4 bytes RDW and up to
128 bytes of data

Control Fields and Collating Sequence

The program orders your records on the basis of one or more control fields you
specify. The first field you specify is called the major field. The program compares
the major fields of the records and sorts or merges them in ascending or descending
order (according to which order you have specified).

All other fields you specify are called minor fields. Conceptually, if the major
fields in two records are equal, DFSORT sorts or merges the records according to
the minor fields you have specified. If the first minor fields in two records are
equal, the program compares the second minor fields, and so on, until it finds a
difference, or the end of the control field is reached.

The input order of records with identical control fields is preserved on output if the
EQUALS option is in effect.

Control fields may overlap, or be contained within other control fields. They need
not be contiguous, but must be located in the first 4092 bytes of the record.

The collected control fields of each record, arranged in order of priority, are
regarded by the program as a single control word, which can be up to 4092 bytes
long.

A control word composed of four control fields is shown in Figure 1 on page 6.

Records are sorted or merged using either the standard IBM collating sequence
(EBCDIC) or the ISCII/ASCII collating sequence.

The EBCDIC sequence can be modified, for example to allow the alphabetic

collation of national characters. The modification can be installed as a default
when the program is installed, or you can specify it at execution time.

Chapter 1. Introduction S

Record -

7. | -

[V
C.entrcl Contiol > v “ Controi
field 3 field 4 Control field 1 field 2
(major)
< Control Word ——
N ' Z
1 2 3 4

Figure 1. Control Fields

The collating sequence for character data and binary data is absolute; that is,
character and binary fields are not interpreted as having signs. For packed decimal,
zoned decimal, fixed-point, normalized floating-point, and the signed numeric data
formats, collating is algebraic; that is, each quantity is interpreted as having an
algebraic sign.

Installation Options

Some of the DFSORT default values depend on the specifications made by your
system programmer, through the ICEMAC macro, when DFSORT was installed.
DFSORT installation is described in DFSORT Planning and Installation Guide.

The following is a summary of the DFSORT installation parameters and functions
that may be set when the program is installed.

Parameters Function
ALTSEQ Alters the usual EBCDIC collating sequence.
ARESALL Specifies, for MVS/Extended Architecture (MVS/XA), the

number of bytes reserved above 16-megabyte virtual for system
use.

ARESINV Specifies, for MVS/Extended Architecture (MVS/XA), the
number of bytes reserved above 16-megabyte virtual for the
invoking program when DFSORT is dynamically invoked.

CHALT Specifies whether character format fields should be translated
using ALTSEQ.

6 DFSORT Application Programming: Guide

CHECK

COBEXIT

DYNALOC

EQUALS

ERET

EXCPVR

IGNCKPT

INV | JCL

LIST

MAXLIM

MINLIM

MSGCON

MSGDDN

MSGPRT

OUTREL

OUTSEC

OVERRGN

RESALL

Specifies whether record count should be checked for applications
that use the E35 user exit routine without a SORTOUT data set.

Indicates whether E15 and E35 routines written in COBOL will
be executed with the VS COBOL I library.

Specifies the default values for device name and number of work
data sets to be dynamically allocated on MVS systems when
DYNALLOC is specified at execution time (on either the SORT
or OPTION statement) without these values.

Specifies whether the input order of equally collating records
should be preserved for output.

Specifies the action to be taken if DFSORT encounters a critical
error.

Specifies for OS/VS1 users whether the EXCPVR SVC can be
used for SORTWKnn 1/0.

Specifies whether the checkpoint/restart facility is to be ignored if
it is requested at execution time and the Blockset technique (which

does not support the checkpoint/restart facility) can be used.

Indicates whether the defaulits specified are to be used when
DFSORT is JCL invoked or dynamically invoked.

Specifies whether program control statements are to be printed.
Sets an upper limit to the amount of main storage available to
DFSORT below 16-megabyte virtual, when
SIZE/MAINSIZE=MAX.

Sets a lower limit to the amount of main storage available to
DFSORT below 16-megabyte virtunal,

Specifies the class of program messages to be written to the master
console.

Specifies an alternate name for the message data set.

Specifies the class of program messages to be printed on the
message data set.

Specifies whether unused temporary SORTOUT data set space is
to be released.

Specifies whether DFSORT should use automatic secondary
allocation for SORTOUT data sets that are temporary or new.

Specifies the amount of main storage above the REGION value
available to Blockset.

Reserves storage for system and application use.

Chapter 1. Introduction 7

RESDNTx

RESINY

SIZE

SMF

STIMER

SvC

TMAXLIM

VERIFY

VIO

VLSHRT

WRKREL

WRKSEC

Indicates for OS/VS1 whether DFSORT modules reside in the
pageable supervisor area. The x is B for Blockset modules and P
for Peerage and Vale modules.

Reserves space for programs invoking DFSORT.
Sets amount of main storage available to DFSORT.

Specifies whether System Management Facilities (SMF) records
are to be produced. See Appendix G for a description of the SMF
record produced by DFSORT.

Specifies whether DFSORT should use the STIMER macro. If
DFSORT does not use the STIMER macro, processor timing data
does not appear in SMF records.

Specifies a user SVC number for DFSORT.

Specifies, for MVS/XA, an upper limit to the total amount of
main storage above and below 16-megabyte virtual available to
DFSORT when SIZE/MAINSIZE=MAX.

Specifies whether the sequence of output records is to be verified.

Specifies for MVS users whether virtual allocations for sort work
areas should be dynamically reallocated to a real disk location.

Specifies whether to continue sorting or merging if a variable
length input record is found that is not long enough to contain all
specified control fields. VLSHRT does not apply to FLR
processing.

Specifies whether unused temporary SORTWKnn data set space is
to be released.

Specifies whether DFSORT should use automatic secondary
allocation for temporary SORTWKnn data sets.

Tables showing all the possible sources of specification and order of override for
each option are in Appendix D.

Machine Requirements

DFSORT is designed to operate with all of the IBM processors supported by
MVS/370, MVS/XA, or OS/VS1 and:

» Any device that is supported by MVS/370, MVS/XA, or OS/VS1 for
program residence

e Any device that is used by QSAM or VSAM for input or output

8 DFSORT Application Programming: Guide

Intermediate storage requirements are given in “Intermediate Storage’ on
page 275.

System/370-XA Sorting Instructions must be activated to be used.

Main Storage Requirements

DFSORT main storage is defined when the program is installed. If this is not
appropriate, you can determine the requirements for your particular application and
override the default value at execution time. To establish your requirements, see
“Main Storage” on page 275 and “Tuning Main Storage” on page 207.

Program Execution

To execute DFSORT, you must prepare two types of statements: program control
statements and JCL statements. Program control statements are processed by
DFSORT; they describe your records and how you want them processed. A full
discussion of the program control statements is contained in Chapter 2, “Program
Control Statements” on page 17. JCL statements are processed by the operating
system control program; they describe to the operating system the data sets
required by the program, and may be used to initiate execution of DFSORT. A
complete description of the format and of the specifications for the JCL statements
required by the program is contained in Chapter 3, “Job Control Statements” on
page 113.

A sort usually requires intermediate storage as working space during program
execution; you must specify intermediate storage device(s) and the work space
required in certain JCL data definition statements—unless you use the
DYNALLOC facility under MVS. The formulas for determining space
requirements are described in “Intermediate Storage” on page 275.

Neither a merge nor a copy requires intermediate storage.

Application programmers must be aware of the interaction between control
statements and user exits in terms of record handling.

Figure 2 on page 10 shows a simplified picture of the sequence of processing for
record handling exits, statements, and options.

Chapter 1. Introduction 9

Merge Application

Sort or Copy Application

SORTIN SORTINnn
SKIPREC
E15 E15 E32
INCLUDE
OMIT
STOPAFT ﬁ {]
INCLUDE
OMIT
INREC INREC
SORT/ MERGE
SUM
OR
COPY SUM
OUTREC ' OUTREC
E35 E35 E35 E35
SORTOUT SORTOUT

Figure 2. Record Processing Sequence

10 DFSORT Application Programming: Guide

Figure 2 illustrates the following:

« Records are first read in from the SORTIN data set (if present) for a sort or
copy application or the SORTINNn data sets (if present) for a merge
application. If SORTIN is not present for a sort or copy application, all
records must be inserted by an E15 exit. (This is also the case if DFSORT is
invoked from a program with the address of an E15 exit in the parameter list,
because SORTIN will be ignored.) A COBOL E15 routine may be used if the
E15 exit is specified in the MODS statement. If SORTINnn is not present for
a merge application, all records must be inserted by an E32 exit.

« Record processing is done if the SKIPREC option is in effect (sort or copy
application with SORTIN present only). SKIPREC is processed before the
E15 (if any) is called. Records are deleted until the SKIPREC count is
satisfied, thus eliminating them before sort or copy processing, resulting in
better performance.

« If an E15 routine is present (sort or copy application with SORTIN present
only), it is given control next. A COBOL E15 routine may be used if the E15
exit is specified in the MODS statement. The E15 routine may insert, delete,
or reformat records.

« Record processing is done next for an INCLUDE or OMIT statement, if it is
present. If any changes have been made in the record format by an E15, the
INCLUDE/OMIT field definitions must apply to the current format rather
than to the original format. You can cause records to be deleted by your
selection criteria, thus eliminating them before sort, merge, or copy processing,
resulting in better performance.

« For a sort or copy, if the STOPAFT option is in effect, record processing for it
is done next. Input will stop after a user-specified maximum number (n) of
records has been accepted. Records are accepted under the following
conditions:

read from SORTIN or inserted by E15

not deleted by SKIPREC

not deleted by E15

not deleted by INCLUDE/OMIT

« If an INREC statement is present, it is processed next. If any changes have
been made in the record format, the INREC field definitions must apply to the
current format rather than to the original format. INREC reformats the
records. Note that INREC can be used to achieve better performance, by
shortening records before they are processed.

« Record processing for the SORT, MERGE, or OPTION COPY statement is
done next.

For a sort, all input records are processed before any output records is
processed. For a copy or merge, an output record is processed after an input
record is processed. For a sort or merge, if a SUM statement is present, it is
processed during the SORT or MERGE processing. Records are summarized

Chapter 1. Introduction 11

Program Initiation

and duplicates deleted as soon as possible for better performance. If any
changes have been made in the record format, the SORT or MERGE, and
SUM field definitions must apply to the current format rather than to the
original format.

If an OUTREC statement is present, it is processed next. If any changes have
been made in the record format, the OUTREC field definitions must apply to

the current format rather than to the original format. OUTREC reformats the
records.

If an E35 exit is present, it is given control after all of the statement processing
is complete. If any changes have been made in the record format, the E35 exit
receives the records in the current format rather than in the original format. A
COBOL E35 routine may be used if the E35 exit is specified in the MODS
statement. The E35 exit may add, delete, or reformat records. If a SORTOUT
data set is not present, the E35 exit must dispose of all the records (DFSORT
views these records as deleted). (This is also the case if sort, merge, or copy is
invoked with the address of an E35 exit in the parameter list, because
SORTOUT will be ignored.)

Finally, the records are written to the SORTOUT data set, if present.

You can initiate execution of the program in the following places:

In the input stream with an EXEC job control statement using the name of the
program or the name of a cataloged procedure, as described in
Chapter 3, “Job Control Statements” on page 113.

In a program written in basic assembler language with a system macro
instruction, as described in Chapter 5, “Invoking DFSORT from an
Assembler Program” on page 187.

In programs written in either COBOL. or PL./I with a special facility of the
language. For more information, see the programmer’s guide describing the
compiler version available at your installation.

Throughout this manual, a DFSORT program initiated by an EXEC statement is
referred to as JCL invoked; a DFSORT program initiated from another program,
written in assembler, COBOL, or PL/1, is referred to as dynamically invoked.

Program Modification

During execution, DFSORT can pass control at various points, known as program
exits, to routines you have designed and written to perform specific functions. For
example, you can write routines to summarize, insert, delete, shorten, or otherwise
alter records as they are being processed. You can also write your own routines to
correct I/O errors that the control program cannot handle or to perform any
necessary abnormal end-of-task operation before the program is terminated.

12 DFSORT Application Programming: Guide

Messages

Return Codes

Your routines must reside in private libraries.

The program exits and their uses are explained in Chapter 4, “User Exit
Routines™ on page 135.

You can determine whether the DFSORT messages should be printed and/or
written to the master console.

DFSORT can write three types of messages to the message data set: critical error
messages, informational messages, and diagnostic messages. You can specify at
installation or execution time which types of messages you want to be written.

DFSORT can write two types of messages to the master console: critical error
messages and informational messages. You can specify at installation time which
types of messages you want to be written.

Messages are discussed in detail in Appendix H.

DFSORT returns a return code of 0 to the operating system (or other invoking
program) upon successful completion. If completion is unsuccessful, a return code
of 16 is returned or a user abend is issued, depending on what you have requested.
If the message data set is required, but is not provided, a return code of 20 is
returned. See “Return Codes” on page 314. '

Checkpoint/Restart

Checkpoint/Restart is a facility of the operating system that permits an automatic
or deferred restart if a DFSORT sort or merge application abnormally terminates.
You must specify certain parameters in the program control statements and prepare
a JCL DD statement if you want to include this facility in a DFSORT execution
(see Chapter 2, “Program Control Statements” on page 17).

No checkpoints are taken:

« If no work data set is specified.

« For a copy application.

« If an invoked merge is handling output through exit E35.

o If output from a merge application is to be a VSAM data set.

« If the output file for a merge application takes up less than one volume.

Chapter 1. Introduction 13

« If, for a merge application, you supply the address of your own exit list for the
SORTOUT DCB at exit E39.

« If the Blockset technique is selected.

« Within a user exit routine. This includes SORT/MERGE input and output
procedures with an invoking COBOL program.

Notes:
1. Checkpoint/Restart does not apply to the copy function.

2. The Blockset technique does not support checkpoint/restart. If the Blockset
technique is chosen, checkpoint/restart will be ignored. However, if necessary, the
Blockset technique can be bypassed so that checkpoints can be taken, by specifying
either IGNCKPT=NO on the ICEMAC instaliation macro or NOBLKSET on
the OPTION statement.

Also note that no ANSI Standard Tape label files can be open during
checkpoint/restart.

If you want checkpoints taken, you must use the facility provided by DFSORT.
You cannot use the system checkpoint at End of Volume.

For more information on the checkpoint/restart facility, see the list of books at the
front of this manual under “Planning Checkpoint Restart”.

Statistical Data Collection

If you want to collect statistics on execution time, record distribution, and so forth,
you can use the SMF installation option. SMF is a parameter operand of the
ICEMAC installation macro. Users who have properly installed a modified
DFSORT SVC routine have this option available to them.

If SMF is specified, DFSORT causes an SMF record to be written for each sort,
merge, or copy application which completes successfully (return code 0). If an
SMF record is desired, either a short or full SMF record can be produced by means
of the SMF parameter on the ICEMAC installation option. A full SMF record will
only be produced by DFSORT if requested (SMF=FULL), and only if the
processing operation is for variable-length records.

By specifying STIMER=YES on the ICEMAC installation macro, you can have
processor time data included in SMF records. This option can be overridden at
execution time by specifying NOSTIMER on the OPTION statement if your exit(s)
take checkpoints. Note, however, that the installation option STIMER=NO
cannot be overridden at execution time.

For more information on statistical data collection, see Appendix H, “DFSORT
Messages and Codes” on page 313, and System Management Facilities (SMF).

14 DFSORT Application Programming: Guide

Maximum Efficiency

The objective of DFSORT is to process data as fast as possible. Many factors
(such as the size of the work data sets specified, record lengths, default values in
operation) are involved in determining the efficiency of the program. These factors
are evaluated at the beginning of the program, and optimization takes place in two
ways:

« Optimal values are calculated for many variables, such as buffer sizes.

« The most efficient technique is selected automatically.

The specifications you make in your program control and JCL statements affect
program execution, efficiency, and speed. Suggestions for improving the

performance of a DFSORT application are given in Chapter 6, “Improving
Program Efficiency” on page 205.

Control Statement Example

The following example shows the JCL and DFSORT statements required for a
simple sort application. Other examples are described in Appendix A.

/*

/ /EXAMP JOB A402,PROGRAMMER, REGION=512K 01
//SRT EXEC PGM=SORT,PARM='SIZE=MAX' 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD UNIT=3380,VOL=SER=000101,DISP=SHR,DSN=INPUT 04
//SORTOUT DD UNIT=3400-3,DSN=0QUTPUT,VOL=SER=222222, 05
// DISP=(,KEEP) . 06
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL, (10)) 07
//SYSIN DD * 08

SORT FIELDS=(5,12,CH,A),FILSZ=E2000 09

Line Explanation

01 The JOB statement introduces this job to the operating system, and
specifies a region of 512K bytes.

02 The EXEC statement calls the program by its alias SORT and specifies
that the program should use all the main storage available to it.

03 The SYSOUT DD statement directs the sort messages to system output
class A.

04 The SORTIN DD statement describes an input data set named INPUT.

The data set is on a 3380 disk with the serial number 000101. The DISP
parameter indicates that the data set is known to the operating system.

Chapter 1. Introduction 15

05-06 The SORTOUT DD statement describes the output data set. Output is
recorded on a 9-track tape and is kept. The data set is placed on a
standard label tape with tape volume number 222222. By default, format,
record lengih and block size are the same as for SORTIN.

07 This DD statement defines a temporary work data set. The data set is on
a SYSDA direct access device. Ten cylinders are specified for the data
set.

08 A data set follows in the input stream.

09 SORT statement. The FIELDS operand describes one field. It begins on
byte 5 of each record, is 12 bytes long, contains character (EBCDIC)

data, and is to be sorted into ascending order. The file size is estimated to
be 2000 records.

16 DFSORT Application Programming: Guide

Chapter 2. Program Control Statements
Before DFSORT can operate on the input data, it must receive program control
statements. Control statements can be received from the following sources:
« SYSIN data set)
+ SORTCNTL data set
¢ 24-bit parameter list
« Extended parameter list
Each of these sources is discussed in detail in later chapters.

Some control statements are always required, whereas others are optional and are
required only for specific actions. The control statements describe:

« The type of operation to be performed

« Control field parameters

» Modifications to be made by your own routines

» Functions to be invoked

+ Input and output files

« Options selected for particular applications

The program checks the validity of each statement before processing it. If the

program finds an error, it issues a message. (See Appendix H, “DFSORT
Messages and Codes” on page 311, for descriptions of these messages.)

Chapter 2. Program Control Statements 17

Control Statement Summary

Control Statements

There are 13 control statements:

Siaiemeni

ALTSEQ

DEBUG
END

INCLUDE

INREC

MERGE

MODS

OMIT

OPTION

OUTREC

RECORD

SORT

SUM

Funciion

Specifies modifications to the IBM EBCDIC collating sequence.
The modified sequence is used for any control field whose format
is specified as AQ.

For use when diagnostic information is required for debugging.
Causes DFSORT to discontinue reading SYSIN or SORTCNTL.

Specifies that only records whose fields meet certain criteria are
included.

Specifies how records are reformatted before they are processed.

Provides information about control fields. Use this statement if
your application is a merge (or copy).

This statement is required only when you include user routines in a
DFSORT application. A description of how to write such routines
and how they may be used in a DFSORT application is in

Chapter 4, “User Exit Routines” on page 135.

Specifies that records whose fields meet certain criteria are
deleted.

Provides overrides for installation defaults (such as EQUALS,
CHALT, and CHECK), and optional information (such as
DYNALLOC, SKIPREC, and COPY).

Specifies how records are reformatted before they are written.

Provides record length and type information. This statement is
required when you include user exit routines that change record
lengths during DFSORT execution, when there is no SORTIN DD
statement, or when input is a VSAM data set. It can be supplied
at other times to improve efficiency.

Provides information about control fields. Use this statement if
your application is a sort (or copy).

Specifies that summary fields in records with equal control fields
are summarized in one of the records, and that the other records
are deleted.

18 DFSORT Application Programming: Guide

An overview of the format and parameters of all the program control statements is
given in Figure 3 on page 20.

Comment Statements

Comment statements are specified by placing an ‘*’ in column 1. They are printed
with the other control statements, but not otherwise processed.

Note: Comment statements are only allowed in the SYSIN and SORTCNTL data
sets.

Notational Conventions

A uniform system of notation describes the format of the DFSORT control
statements. This notation is not part of the language; it merely provides a basis for
describing the structure of the commands.

The command-format illustrations in this chapter use these conventions:

« Brackets, [], indicate an optional parameter.

« Braces, {}, indicate a choice of entry; unless a default is indicated, you must
choose one of the entries.

« Items separated by a vertical bar, |, represent alternative items. No more than
one of the items may be selected.

¢ An ellipsis, ..., indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

e Other punctuation (parentheses, commas, apostrophes, and so forth) must be
entered as shown.

Chapter 2. Program Control Statements 19

Operation

Parameters

ALTSEQ CODE=(fftt... fftt)
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
CODE= Indicates that the collating Modifications are based on the EBCDIC
sequence is to be modified. sequence.
ff The character whose collating Two hexadecimal digits in EBCDIC code (for
position is to be changed. example, Z is “E9”).
tt The position to be occupied Two hexadecimal digits (for example, “to collate
by the characters ff. after Z” would be “EA”).
Operation Parameters
DEBUG [ABEND | NOABEND]
[,ABSTP]
[,LBSAM]
[,BUFFERS={ANY | BELOW}]
[,CTRx=n]
[LFMTABEND]
[,LNOASSIST]
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
ABEND An unsuccessful run is to: Overrides the ERET option specified at
NOABEND installation time.
-Terminate with ABEND.
-Terminate with return code
of 16.
ABSTP During Blockset processing, Overrides ERET, ABEND, and NOABEND
forces an ABEND for an options.
unsuccessful run preventing
the loss of needed information
in the dump.
BSAM BSAM access method is used
instead of EXCP.

Figure 3 (Part 1 of 18). Control Statement Summary

20 DFSORT Application Programming: Guide

Parameter Explanation Notes
BUFFERS Specifies whether the buffers
may be placed above or below
16-megabyte virtual.
CTRx=n Prints a formatted dump when
the input or output count
equals n.
FMTABEND | Prints a formatted dump when
DFSORT abends.
NOASSIST System/370-XA sorting
instructions are not to be
used.
Operation Parameters
END None. The END statement causes DFSORT to discontinue reading SYSIN or
SORTCNTL.
Operation Parameters
INCLUDE {COND=(p1,m1,f1,{EQ|NE|GT | GE|LT|LE}
,{p2,m2,f2 | constant}[{,AND | ,OR},...]) |
COND=(p1,m1,{EQ|NE|GT|GE|LT|LE},
{p2,m2 | constant}[{,AND | ,OR},..) FORMAT=f}
(See Appendix D for functions to which these parameters apply.)

Figure 3 (Part 2 of 18).

Control Statement Summary

Chapter 2. Program Control Statements

21

used when all
INCLUDE field
data formats are
the same.

Parameter Explanation Notes
COND= Describes the
relational
condition.
p Position within
record.
m Length.
f Format. Permissible formats are:
CH — EBCDIC character, unsigned
ZD — Zoned decimal, signed
PD — Packed decimal, signed
FI — Fixed-point binary, signed
BI — Binary, unsigned
AC — ISCII/ASCII character, unsigned
CSL — EBCDIC numeric, leading separate sign
CST — EBCDIC numeric, trailing separate sign
CLO — EBCDIC numeric, leading overpunch sign
CTO — EBCDIC numeric, trailing overpunch sign
ASL — ISCII/ASCII numeric, leading separate sign
AST — ISCII/ASCII numeric, trailing separate sign
AQ — EBCDIC character, alternate collating sequence
EQ Equal to.
NE Not equal to.
GT Greater than.
GE Greater than or
equal to.
LT Less than.
LE Less than or equal
to.
Constant Constant can be decimal, character, or hexadecimal.
AND Logical AND. The sign & may be used instead of the word AND.
OR Logical OR. The sign | may be used instead of the word OR.
FORMAT=f | Optional; may be The permissible values for f are listed above.

Figare 3 (Part 3 of 18).

Control Statement Summary

22 DFSORT Application Programming: Guide

Operation Parameters
INREC FIELDS=([s,Ip,m[,a]...[,s][,p,m[,a]l[,s])
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
FIELDS= Specifies the order
of input and
separation fields in
the reformatted
input record.
P Position within
record of input
field.
m | Length of input
field.
a Alignment of the Permissible values are:
input field in the H — Halfword aligned.
reformatted input F — Fullword aligned.
record. D — Doubleword aligned.
s Separation field. Permissible values are:
nX - Bland separation. n bytes of EBCDIC
blanks (X'40') are inserted (n=1-256).
nZ — Binary zero separation. n bytes of
binary zeros (X'00') are inserted
(n=1-256).
Operation Parameters
MERGE {FIELDS=(p,m,f,s...,p,m,f,s) |
FIELDS=(p,m,s...,p,m,s), FORMAT=f |
FIELDS=COPY}
[,FILES=n]
[,CKPT]
[LEQUALS | NOEQUALS]
[LFILSZ=x | ,SIZE=y]
(See Appendix D for functions to which these parameters apply.)

Figure 3 (Part 4 of 18). Control Statement Summary

Chapter 2. Program Control Statements

23

Parameter Explanation Notes
FIELDS= See explanation and notes for this parameter on the SORT
statement.
COPY See explanation and notes for this parameter on the OPTION
statement.
FORMAT=Sf See explanation and notes for this parameter on the SORT
statement.
FILES=n Optional.
Specifies the
number of input
files for a merge
when input is
supplied through
the E32 exit.
CKPT See explanation and notes for this parameter on the OPTION
statement.
EQUALS See explanation and notes for this parameter on the OPTION
NOEQUALS statement.
FILSZ=x See explanation and notes for this parameter on the OPTION
SIZE=y statement.
Operation Parameters
MODS exit=(n,m,s[,e])..., exit=(n,m,s[,e])...,
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
exit= The name of an Must be a valid exit name (for example, E15,
exit to be E61). You may specify any exit, except E32.
activated.
n The name of your
routine, or
member name of
routine in a
library.
m Size, in bytes, used | This includes the size of the module and storage obtained by
by the routine. your routine.
s Location of the The ddname of the data set containing the routine.
routine.
Figure 3 (Part 5 of 18). Control Statement Summary

24 DFSORT Application Programming: Guide

Parameter Explanation Notes
e Linkage editor Permissible types are:
requirements of
your routine, and ¢ N — No link-editing required (default if e is not
whether your specified).
routine is written ¢ C—E1lS5 or E35 exit written in COBOL and no
in COBOL. link-editing required.
+« T — Routine must be link-edited together with other
routines for the same phase.
¢« S —E11 or E31 routine requires link-editing, but it must
be link-edited separately from other routines.
Operation Parameters
OMIT {COND=(p1,m1,f1,{EQ|NE | GT | GE|LT|LE}
,{p2,m2,f2 | constant}[{,AND | ,OR},..D |
COND=(p1,m1,{EQ|NE | GT | GE | LT | LE},
{p2,m2 | constant}[{,AND | ,OR},...]), FORMAT=f}
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
COND= Describes the
relational
condition.
P Position within
record.
m Length.
f Format. Permissible formats are:
CH - EBCDIC character, unsigned
ZD — Zoned decimal, signed
PD — Packed decimal, signed
FI — Fixed-point binary, signed
BI — Binary, unsigned
AC ~ ISCII/ASCII character, unsigned
CSL — EBCDIC numeric, leading separate sign
CST ~ EBCDIC numeric, trailing separate sign
CLO — EBCDIC numeric, leading overpunch sign
CTO - EBCDIC numeric, trailing overpunch sign
ASL — ISCII/ASCII numeric, leading separate sign
AST — ISCII/ASCII numeric, trailing separate sign
AQ — EBCDIC character, alternate collating sequence
EQ Equal to.

Figure 3 (Part 6 of 18).

Control Statement Summary

Chapter 2. Program Control Statements

25

used when all
OMIT field data
formats are the
same.

Parameter Explanation Notes
NE Not equal to.
GT Greater than.
GE Greater than or
equal to.
LT Less than.
LE Less than or equal
to.
constant Constant can be decimal, character, or hexadecimal.
AND Logical AND. The sign & may be used instead of the word AND.
OR Logical OR. The sign | may be used instead of the word OR.
FORMAT=f{ | Optional; may be ‘The permissible values for f are listed above.

Figure 3 (Part 7 of 18).

Control Statement Summary

26 DFSORT Application Programming: Guide

Operation

Parameters

OPTION

[ARESALL={n|nK}]

[LARESINV={n | nK}]

[,CHALT | NOCHALT]

[,CHECK | NOCHECK]

[,CKPT]

[,COBEXIT={COB1 | COB2}]
[,COPY]

[LDYNALLOC[={d | (d) | (,;n) | (d,n)}]]
[LEQUALS | ,NOEQUALS]

[,FILSZ=x | SIZE=y | ,FILSZ=En | ,SIZE=En]
[,LIST | NOLIST]

[LMAINSIZE={n | nK | MAX}]
[LMSGDDN=ddname]
[[MSGPRT={ALL | NONE | CRITICAL?}]
[LNOBLKSET]

LNOOUTREL]

LNOOUTSEC]

[LNOSTIMER]

[LNOWRKREL]

[LNOWRKSEC]

[LRESALL ={n | nK}]

[LRESINV={n | nK}]

[,SKIPREC=z]

[LSORTDD=cccc]

[LSORTIN =ddname]
[,SORTOUT=ddname]
[LSTOPAFT=n]

[LVERIFY | ,NOVERIFY]

[,VLSHRT | ,NOVLSHRT]

(See Appendix D for functions to which these parameters apply.)

Figure 3 (Part 8 of 18). Control Statement Summary

Chapter 2. Program Control Statements

27

Parameter Expianation Notes
ARESAII = | Optional. Reserves storage Applicable to only MVS/XA.
(above 16-megabyte virtual)
for system and application
use.
n Limit: 8 digits.
nK Limit: 5 digits; K=1024.
ARESINV= | Optional. Reserves storage Applicable to only MVS/XA when DFSORT is
(above 16-megabyte virtual) dynamically invoked.
for invoking programs.
n Limit: 8 digits.
nK Limit: § digits; K=1024.
-CHALT Optional. Specifies both Specifies that both formats AQ and CH control
NOCHALT formats AQ and CH, or AQ fields be translated through the alternate collating
only. sequence (ALTSEQ) translate table (CHALT), or
only format AQ control fields (NOCHALT).
CHECK Optional. Specifies whether Applicable only for applications with output record
NOCHECK | record counters should be processing in an E35 exit routine.
checked at end of program
execution.
CKPT Optional. Checkpoints are CHKPT is also accepted. This parameter is
taken. ignored if a Blockset technique is selected, unless
IGNCKPT=NO was specified at installation time.
Checkpoints cannot be taken during a merge
operation with VSAM output or during an invoked
merge handling output through E35.
COBEXIT= | Optional. Specifies COBOL
libraries for E15 and E35.
COB1 0S/VS COBOL library or no
library.
COB2 VS COBOL 11 library.

Figure 3 (Part 9 of 18). Control Statement Summary

28 DFSORT Application Programming: Guide

Parameter Explanation Notes
COPY Optional. Specifies a data set Regardless of input form, output can be either
is to be copied. QSAM or VSAM. Output must be of the same
type (fixed or variable) as input.
DYNALLOC | Optional. Dynamic allocation Applicable to only MVS.
of intermediate work storage.
d Device type. d can be any of 2314, 3330, 3330-1,
3340, 3350, 3375, 3380, 3400-3,
34004, 3480, 3850, 2400, 24003, 24004,
or their user—assigned group name,
such as SYSDA.
n Number of devices (work data | Number of work data sets (up to 16).
sets).
EQUALS Optional. Specifies whether
NOEQUALS | order of equally collating
records should be preserved
from input to output.
FILSZ=x Optional. The number of If n is an estimate, the value must be preceded by
SIZE=y records to be sorted or the character E (FILSZ=En). If SIZE is used
FILSZ=En merged. instead of FILSZ, the value should represent the
SIZE=En number of records in the input file(s).
LIST Optional. Specifies whether Will be processed only if passed in an extended
NOLIST control statements will be parameter list. Overridden by a SORTDIAG DD
listed. statement.
MAINSIZE= | Optional. Specifies main
storage size.
n Limit: 8 digits.
nK Limit: 5 digits; K=1024.
MAX Allocates amount of storage
specified by MAXLIM or
TMAXLIM installation
option.
MSGDDN= Optional. Specifies message Applicable only when supplied in an extended
ddname data set ddname. parameter list.

Figure 3 (Part 10 of 18).

Control Statement Summary

Chapter 2. Program Control Statements

29

Parameter Explanation Notes
MSGPRT= - | Optional. Specifies message Applicable only when supplied in an exiended
type. parameter list.
Messages are written to the message data set.
Overridden by a SORTDIAG DD statement.
ALL All Messages except Control statements will be printed only if LIST is
diagnostic messages in effect.
(ICE800I-ICE999I) will be
printed.
NONE Messages and control
statements will not be printed.
CRITICAL Critical (error) messages only Control statements will be printed only if LIST is
will be printed. in effect.
Note: Control statements will not be printed if
MSGPRT=CRITICAL is in effect and DFSORT
is dynamically invoked using the 24-bit parameter
list.
NOBLKSET | Optional. Specifies bypass of The higher performance Blockset technique will
Blockset technique. be used whenever possible. You can bypass the
Blockset technique (for example, if you want to
use checkpoint/restart) by specifying this
parameter.
NOOUTREL | Optional. Specifies that
unused temporary SORTOUT
data set space is not to be
released.
NOOUTSEC | Optional. Specifies that
automatic secondary
allocation for temporary or
new SORTOUT data sets
should not be used.
NOSTIMER | Optional. Specifies that
DFSORT should not use the
STIMER macro.

Figure 3 (Part 11

of 18).

Control Statement Summary

30 DFSORT Application Programming: Guide

Parameter Explanation Notes
NOWRKREL | Optional. Specifies that
unused temporary
SORTWKnn data set space is
not to be released.
NOWRKSEC | Optional. Specifies that
automatic secondary
allocation should not be used
for SORTWKnn data sets.
RESALL= Optional. Reserves storage Applicable only when SIZE/MAINSIZE=MAX is
below 16-megabyte virtual for | in effect.
system and application use.
n Must be 4096 or greater (limited to 8 digits).
nK Must be 4 or greater (limited to 5 digits).
K=1024,
RESINV= Optional. Reserves storage Applicable only when DFSORT has been
below 16-megabyte virtual for | dynamically invoked, and ‘
invoking programs, when SIZE/MAINSIZE=MAX is in effect.
SIZE/MAINSIZE=MAX.
n Limit: 8 digits.
nK Limit: 5 digits; K=1024.
SKIPREC=z | Optional. The program will
skip z records at the beginning
of the input data set.
SORTDD= Optional. Specifies prefix for Applicable only when supplied in an extended
ccee certain “SORT” ddnames. parameter list. A four character prefix. The first
character is alphabetic; the next three characters
are alphameric or national.
SORTIN= Optional. Specifies ddname to Applicable only when supplied in an extended
ddname be associated with the input parameter list. Not affected by SORTDD
data set. keyword.
SORTIN is the default, unless SORTDD=cccc is
specified, in which case ccccIN is the default.

Figure 3 (Part 12 of 18).

Control Statement Summary

Chapter 2. Program Control Statements

31

Parameter

Explanation

Notes

SORTOUT= | Optional. Specifies ddname to Applicable only when supplied in an extended
ddname be associated with the output parameter list. Not affected by SORTDD
data set. keyword.
SORTOUT is the default, unless SORTDD=cccc
is specified, in which case ccccOUT is the default.
STOPAFT=n | Optional. Indicates the
number of records to be
accepted for sorting or
copying (read from SORTIN
or inserted by E15 and not
deleted by SKIPREC, E15, or
INCLUDE/OMIT).
VERIFY Optional. Specifies whether
NOVERIFY | sequence checking on final
output record sequence should
be done.
VLSHRT Optional. Specifies whether to VLSHRT is not used if INCLUDE/OMIT,
NOVLSHRT | continue processing variable INREC, SUM, or OUTREC is specified.
length records if one is too
short to contain all specified
control fields.
Operation Parameters
OUTREC FIELDS=([s,Ip,m[,a]...[,s][,p,m[,a]l[,sD
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
FIELDS= Specifies the order
of input and
separation fields in
the reformatted
output record.
p Position within
record of input
field.
m Length of input
field.

Figure 3 (Part 13 of 18).

Control Statement Summary

32 DFSORT Application Programming: Guide

Parameter Explanation Notes

a Alignment of the Permissible values are:
input field in the H — Halfword aligned.
reformatted output F — Fullword aligned.
record. D — Doubleword aligned.

s Separation field. Permissible values are:

nX — Blank separation. n bytes of EBCDIC
blanks (X'40') are inserted (n=1-~256).
nZ — Binary zero separation. n bytes of
binary zeros (X'00') are inserted (n=1-256).

Figure 3 (Part 14

of 18). Control Statement Summary

Chapter 2. Program Control Statements

33

Operation

Parameters

future use.

RECORD {TYPE=x]{,LENGTH=(L1,L2,L3,1.4,1.5,L6,L.7)]
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
TYPE=x Used when all records are supplied via X must be:
E15 or E32 or when VSAM data sets F—(fixed length),
are used for input. V—(variable length EBCDIC), or
D~—(variable length ASCII).

LENGTH= Describes fixed-length records.

L1 Used when no SORTIN DD statement is
supplied. L1=SORTIN LRECL.1

L2 Used when length is changed at E15.

L2=length after E15.

L3 Used when SORTOUT LRECL! is not
equal to SORTIN and no SORTOUT
LRECL! is available. L3=SORTOUT
LRECL.!

LENGTH= Describes variable-length records.

L1 Used when no SORTIN DD statement If processing records with VSAM input
supplied. L.1=maximum record length; and non-VSAM output, add 4 to the
otherwise, overridden to default. input record length.2

L2 Used when length changed at E15. If the E15 is reading VSAM input, add 4
L2=length after E15. bytes to the input record length.

L3 Used when SORTOUT LRECL is not If the E15 is reading VSAM input, add 4
equal to SORTIN and SORTOUT bytes to the input record length.
LRECL is not available.

L3=SORTOUT LRECL.

L4 Minimum length If the E15 is reading VSAM input, add 4

bytes to the input record length.

LS5 Average length. If the E15 is reading VSAM input, add 4

bytes to the input record length.

L6 Accepted but not used; reserved for
future use.

L7 Accepted but not used; reserved for

Figure 3 (Part 15 of 18).

1 For a VSAM data set, the equivalent of LRECL is maximum record

2 See “VSAM Data Set Notes and Limitations” on page 4 for more information.

Control Statement Summary

34 DFSORT Application Programming: Guide

Operation Parameters
SORT {FIELDS=(p,m,f,s...,p,m,f,s) |
FIELDS=(p,m,s...,p,m,s), FORMAT=f |
FIELDS=COPY}
[.CKPT]
[.LDYNALLOC[={d | (d) | (,;n) | (d,n)}]]
[LEQUALS | NOEQUALS]
[,FILSZ=x | ,SIZE=y | ,FILSZ=En | ,SIZE=En]
[,SKIPREC=z]
(See Appendix D for functions to which these parameters apply.)
Parameter Explanation Notes
FIELDS= Description of Fields must be described in descending order of significance.
control fields.
p Position within All fields except binary must start on a byte boundary. No
record. field may extend past byte 4092.
m Length. The sum of lengths must not exceed 4092 bytes.
f Format. Permissible formats are:
CH - EBCDIC character, unsigned
ZD — Zoned decimal, signed
PD — Packed decimal, signed
FI — Fixed-point binary, signed
BI — Binary, unsigned
FL — Floating point, signed
AC — ISCII/ASCII character, unsigned
CSL — EBCDIC numeric, leading separate sign
CST — EBCDIC numeric, trailing separate sign
CLO — EBCDIC numeric, leading overpunch sign
CTO — EBCDIC numeric, trailing overpunch sign
ASL — ISCII/ASCII numeric, leading separate sign
AST — ISCII/ASCII numeric, trailing separate sign
AQ — EBCDIC character, alternate collating sequence
s Desired Must be one of the following:
sequencing. A — Ascending.
D — Descending.
E - User-modified control field that will
be sorted or merged in ascending order.
COoPY See explanation and notes for this parameter on the OPTION

statement.

Figure 3 (Part 16 of 18).

Control Statement Summary

Chapter 2. Program Control Statements

35

Parameter Explanation Notes
FORMAT=f Optional; may be The permissible values for f are listed above.
used when all
control field data
formats are the
same.
CKPT See explanation and notes for this parameter on the OPTION
statement.
DYNALLOC= See explanation and notes for this parameter on the OPTION
statement.
EQUALS See explanation and notes for this parameter on the OPTION
NOEQUALS statement.
FILSZ=x See explanation and notes for this parameter on the OPTION
SIZE=y statement.
SKIPREC=z See explanation and notes for this parameter on the OPTION
statement.
Operation Parameters
SUM {FIELDS=(p,m,f...,p,m,f) |

FIELDS=(p,m...,p,m), FORMAT=f |

FIELDS=NONE}

(See Appendix D for functions to which these parameters apply.)

Parameter Explanation Notes
FIELDS= Describes
summary fields.
p Position within
record.
m Length.
f Format. Permissible values are:
BI — Binary, unsigned.
FI — Fixed-point binary, signed.
PD — Packed decimal, signed.
ZD - Zoned decimal, signed.
NONE Eliminates records No summation is performed.
with duplicate
keys.

Figure 3 (Part 17

of 18). Control Statement Summary

36 DFSORT Application Programming: Guide

formats are the
same.

Parameter Explanation Notes

FORMAT=f Optional; may be The permissible values for f are listed above.
used when all
control field data

Figure 3 (Part 18 of 18).

Control Statement Summary

Chapter 2. Program Control Statements

37

Control Statement Compatibility

The control statements INPFIL and OUTFIL, which are used by other IBM sort
programs, are accepted by this release, but not processed. The information
contained in the INPFIL and OUTFIL statements is supplied to the program in DD
statements.

Because the OPTION control statement is now used by DFSORT, any job streams
from other IBM sort programs that still contain an OPTION control statement
causes DFSORT to terminate unless the parameters conform to the new OPTION
control statement.

The program accepts SORT, MERGE, RECORD, END, and ALTSEQ statements
prepared for other IBM System/360 or System/370 sort/merge programs; any
obsolete parameters are ignored. However, because of the difference in parameter
specifications, the program does not accept other programs’ MODS control
statements, with the exception of those used by the IBM Sort/Merge Program
3608-SM-023, and Program Product Sort/Merge 5734-SM1.

Note that, although applications using the 360S-SM-023 and 5734-SM1 programs

can be successfully run using the OS/VS1 and MVS program, the reverse is not
necessarily true, because this program provides facilities that the others do not.

General Coding Rules

See “Comment Statements” on page 19 for a description of comment statements.

All other DFSORT control statements have the same general format, shown in

Figure 4.
Column 1 must be blank
unless a label is present
T2 T3ucerneeransessnns 80
{Label) Operation Operand (Comments) (Sequence or

ldentification)

{Continuation column)

Figure 4. Control Statement Format

The control statements are free-form; that is, the operation definer, operand(s),
and comment field may appear anywhere in a statement, provided they appear in
the proper order, and are separated by one or more blank characters. Column 1 of

38 DFSORT Application Programming: Guide

Continuation Lines

each control statement must be blank, unless the first field is a label, in which case
it must begin in column 1.

Label Field: If present, the label must appear first on the line. It must begin in
column 1, and must conform to the operating system requirements for statement
labels.

Operation Field: This field must not extend beyond column 71 of the first line. It
contains a word (for example, SORT or MERGE) that identifies the statement
type to the program. It must not begin in column 1. In the example below, the
operation definer, SORT, is in the operation field of the sample control statement.

Operand Field: The operand field is composed of one or more operands separated
by commas. This field must follow the operation field, and be separated from it by
at least one blank. If the statement occupies more than one line, this field must
begin on the first line. Each operand has an operand definer, or parameter (a
group of characters that identifies the operand type to DFSORT). A value or
values may be associated with a parameter. The three possible operand formats
are:

e parameter
e parameter=value
e parameter=(valuel,value2...,valuen)

The following example illustrates each of these formats.

SORT FIELDS=(10,30,A) ,FORMAT=CH, CKPT

Comments Field: This field may contain any information you desire. It is not
required, but if it is present, it must be separated from the last operand field by at
least one blank.

Continuation Column (72): Any character other than a blank in this column
indicates that the present statement is continued on the next line. However, as
long as the last character of the operand field on a line is a comma followed by a
blank, the program assumes that the next line is a continuation line. The nonblank
character in column 72 is required only when a comments field is to be continued
or when an operand is broken at column 71.

Columns 73 through 80: This field may be used for any purpose.

The format of the DFSORT continuation line is shown in Figure 5 on page 40.

Chapter 2. Program Control Statements 39

Column 1 must
be blank

Continued operand or comments]
Optional use

Continuation coiumn

Figure 5. Continuation Line Format

The continuation column and columns 73 through 80 of a continuation line have
the same purpose as they do on the first line of a control statement. Column 1
must be blank.

A continuation line is treated as a logical extension of the preceding line. Either an
operand or a comments field may begin on one line and continue on the next. The
following rules apply:

« If a comments field is broken or is to be started on a new line, column 72 must
contain a nonblank character. The continuation can begin in any column from
2 through 71.

« If an operand field is broken after a comma, the continuation column (72) can
be left blank, and the continuation can begin in any column from 2 through 71.
If the comma is in column 71 and column 72 contains a nonblank character,
the continuation must begin in column 16.

« If an operand field is not broken after a comma, the operand field must be
broken at column 71. Column 72 must contain a nonblank character. The
continuation must begin in column 16.

Examples of Valid Continuation Lines

—

SORT FIELDS=(5,8,A,20,2,D),

FORMAT=CH
OPTION SKIPREC=2,LIST, SKIP 2 RECORDS - LIST CONTROL STATEMENTS -
DYNALLOC USE DYNAMIC ALLOCATION
INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM',AND,21,8,2D,GT,+500,0R,31,4,CH,N*
E,C'HERR')
16 72

40 DFSORT Application Programming: Guide

Summary of Restrictions
The following rules apply to control statement preparation:
o Column 1 of each control statement must be blank unless a label or comment
statement is present (a comment statement is indicated by an asterisk in

column 1).

« Labels must begin in column 1, and conform to operating system requirements
for statement labels.

» The whole operation definer must be contained on the first line of a control
statement.

» The first operand must begin on the first line of a control statement. The last
operand in a statement must be followed by at least one blank.

+ Embedded blanks are not allowed in operands. Anything following a blank is
considered part of the comments field.

« Values may contain no more than eight alphameric characters (except for
estimated data set size, which may contain nine characters).

« Commas and blanks can be used only as delimiters. They must not be used in
values.

+ Each type of program control statement may appear only once within a single
source (for example, the SYSIN data set).

Chapter 2. Program Control Statements 41

ALTSEQ Control Statement

ALTSEQ CODE=(ff...,fftt)

The ALTSEQ statement is used if you want to change the collating sequence of
EBCDIC character data; it only changes the order in which it is collated, not the
data itself. If a modified version of the collating sequence is available by default at
your installation, the ALTSEQ statement overrides it.

When you supply an ALTSEQ statement, the modified collating sequence can be
used for any control field whose format you specify on the SORT or MERGE
statement as AQ. If you specify AQ without supplying an ALTSEQ statement,
DFSORT uses the default available at your installation, if there is one. Otherwise,
it uses the standard EBCDIC collating sequence.

CODE=(ffu,ff1...)

The modifications are described in this form where:

ff
represents in hexadecimal the character whose position is to be
changed, in the EBCDIC collating sequence.

tt
is the EBCDIC hexadecimal representation of the position to which
the character is to be moved.

The order in which the parameters are specified is not important.

Notes:

1. If CHALT is specified on the OPTION control statement or CHALT=YES is
specified at installation time, control characters with format CH are translated by
the ALTSEQ table in addition to those with format AQ.

2. Use of ALTSEQ can degrade performance.

Default: Usually the installation option, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

ALTSEQ Statement Examples

ALTSEQ Example 1

ALTSEQ CODE= (5BEA)

42 DFSORT Application Programming: Guide

The character represented by X'5B'($ or national character) is to collate after ‘Z’
(at position X'EA').

ALTSEQ Example 2

ALTSEQ CODE= (FOBO,F1B1,F2B2,F3B3,F4B4,F5B5,F6B6,
F7B7,F8B8,F9B9)

The numerals O through 9 are to collate before uppercase letters (but after
lowercase letters).

Chapter 2. Program Control Statements 43

DEBUG Control Statement

DEBUG [ABEND | NOABEND]
[LABSTP]
[, BSAM]
[LBUFFERS={ANY | BELOW1]
[,CTRx=n]}
[FMTABEND]
[LNOASSIST]

For a tape work sort or a conventional merge, only the ABEND | NOABEND
parameters of the DEBUG statement are used.

The statement is not intended for regular use; only the first three parameters
(ABEND | NOABEND, ABSTP and BSAM) are of general interest. For more
information about problem diagnosis, see DFSORT Diagnosis Guide.

ABEND | NOABEND
indicates whether DFSORT abends or terminates with a return code of 16 if
your sort or merge is unsuccessful.

ABEND
If you specify this parameter and your sort or merge is unsuccessful, it
abends with a user completion code equal to the appropriate message
number. It also causes an abend if the unsuccessful sort or merge was
dynamically invoked.

NOABEND
An unsuccessful sort or merge terminates with a return code of 16.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

ABSTP
This option prevents loss of needed information in a dump when Blockset
.terminates during execution phase processing. If the DFSORT application is
unsuccessful, an abend is forced with a completion code equal to the
appropriate message number. The message is not written. This option
overrides ERET, ABEND, and NOABEND.

Default: None; optional
Applicable Functions: See Appendix D.
BSAM

DFSORT normally uses the EXCP access method for SORTIN and
SORTOUT. If you encounter a problem related to this I/O activity, you can

44 DFSORT Application Programming: Guide

temporarily bypass it by specifying this parameter. It is ignored for VSAM
SORTIN and/or SORTOUT data sets.

Note: Use of this option may degrade performance.
Default: None; optional.
Applicable Functions: See Appendix D.
BUFFERS={ANY | BELOW}
DFSORT normally allocates RSA and buffers above 16-megabyte virtual.
You can temporarily bypass the default by specifying BELOW.
ANY
specifies that the record storage area (RSA) and input/output buffers
may be allocated either above or below 16-megabyte virtual.
BELOW
specifies that the record storage area (RSA) and input/output buffers
must be allocated below 16-megabyte virtual.
Note: BSAM buffers are always allocated below 16-megabyte virtual.
Default: ANY
Applicable Functions: See Appendix D.
CTRx=n
The program keeps a count of the input or output records. When the count
reaches the value specified (n), the program abends and a specially
formatted dump is printed on the message data set.
The numbers that may be assigned to x are:
2 Count of input records being moved from the input buffer
3 Count of output records being moved to the output buffer
4 Count of input records inserted by E15 (ignored for Blockset)
5 Count of output records deleted by E35 (ignored for Blockset)
Default: None; optional.
Applicable Functions: See Appendix D.
FMTABEND
Specifying this parameter causes a specially formatted dump to be printed on
the message data set when DFSORT abends. The specially formatted dump
is the same as that produced when CTRx=n is specified.

Default: None; optional.

Applicable Functions: See Appendix D.

Chapter 2. Program Control Statements 45

NOASSIST
DFSORT uses System/370-XA Sorting Instructions on MVS/XA, when
possible. If you do not want to use these instructions, you can temporarily
bypass them by specifying this parameter.

Default: None; optional.

Applicable Functions: See Appendix D.

Forcing a Specially Formatted Dump

The default ERET=ABEND | RC16, which was set at DFSORT installation time,
can be overridden by the DEBUG control statement.

To obtain a specially formatted dump on the message data set when DFSORT
terminates, CTRx=n or FMTABEND must be specified in the DEBUG statement.
This first prints a SNAP dump (corresponding to a normal SYSUDUMP dump),
followed by formatted information as shown in Figure 6 on page 47.

Figure 7 on page 48 shows how to interpret a formatted dump for Peerage or

Vale. (The formatted dump for Blockset is similar to the formatted dump for
Peerage or Vale.)

46 DFSORT Application Programming: Guide

SYSTEM DUMP
SNAP dump corresponding to a normal SYSUDUMP dump.

FORMATTED DATA

1 Save areas
The standard save areas used by different levels of
the program.

2 Abend code
A fullword with the format X'xxsssuuu', where

xx is the standard abend code prefix,

sss is the system completion code at program
failure (or zeros), and

uuu is the user completion code at uncorrectable
error (or zeros).
This code is equal to the message number
(for example, '046' would represent
message ICE046A).

3 A fullword containing the address of the instruction
at which failure occurred.

4 Register contents when program failure occurred: 16
fullwords, giving the register contents in the order
0 through 15.

5 Contents of the communication area (D4COMMON for Blockset
or ICECOMMA for Peerage or Vale) formatted when program
failure occurred, with offsets from register 13, comments,
labels, and definitions.

Figure 6. Contents of a Specially Formatted Dump

Chapter 2. Program Control Statements

47

Displacement (in

Comment from

The data definition level:

Label from One of the standard

Content of the area

hex) from the start the source code a‘level 3' areais alwaysa thesource PL/S data attributes, when the dump was
of ICECOMMA subset of the preceding code for example, PTR(31), taken
: ‘ievei 2° area, and so on. meaning a fuilword
pointer

DISPL. COMMENT LEVEL LABEL ATTR VALUES
0000 /% SUPERVISOR AND DM SAVE AREA*/ 2 CSAVEQGS PTR(31) 00E204F1
000% ’ 000C4FBO
0006 000C91F8
0066C @ 700C4E7A
0010 000C632C
0014 00000000
0018 000C95%0
00D0 000E2478
0oD%G AOODFEAQ

/% LEVEL 3 ROUTINE SAVE AREA x/ 2 CSAVEL3 @\a
06D8 /% ABEND -~ ABEND CODE */ 3 * PTR({31) 00C1000
000C /% ADEND - INTERRUPT PSW END %/ 3 * PTR(31) 600CAOFC
00E0 /% ABEND - REGISTER 0 */ 3 %* PTR(31) @’FFFFFFFC
00E4 /% ABEND - REGISTER 1 */ 3 * PTR(31) 00000002
0GE8 /% ABEND - REGISTER 2 */ 3 %* PTR(31) 00000000
O0EC /% ABEND - REGISTER 3 */ 3 * PTR(31) 00000008
00F0 /% ABEND - REGISTER 4 */ 3 %* PTR(31) 000D4750
06F4 /% ABEND - REGISTER 5 */ -3 * PTR(31) 00000204
00F8 /% ABCEND - REGISTER 6 */ 3 * PTR(31) 000D4C7E
00FC /% ABEND -~ REGISTER 7 */ 3 %* PTR(31) 00CEOS1C
0100 /% ABEND - REGISTER 8 */ 3 * PTR(31) 00000000 >®
0104 /% ABEND - REGISTER 9 */ 3 * PTR(31) 000CAOED
0i08 /% ABEND - REGISTER 10 */ 3 * PTR(31) 000D0D4C
010C /% ABEND - REGISTER 11 */ 3 * PTR(31) 000D15FE
0110 /% ADEND - REGISTER 12 */ 3 * PTR(31) A00D0820
0114 /% ABEWND - REGISTER 13 */ 3 * PTR(31) 000C9240
0118 /% ABEND -~ REGISTER 14 */ 3 * PTR(31) 600D1002
611C /% ABEND - REGISTER 15 */ 3 * PTR(31) 00000000 _j
0120 /% WORK AREA */ 2 CTEMP1 FIXED(31) 000C936C

/% WORK AREA */ 3 CHORK1 FIXED(31)

/% WORK AREA */ G * CHAR(Y)

/% WORK AREA */ 4 CTEMP124 PTR(24)

/% KWORK AREA */ 5 CWORK1l24 PTR(24)

/% HORK AREA */ * CHAR(1)

/% WORK AREA */ CTEMP115 FIXED(15)

/% WORK AREA */ CWORK116 FIXED(16)

/% WORK AREA */ * CHAR(1)

/% HWORK AREA */ CTEMP108 PTR(8)

/% WORK AREA */ CWORK108 PTR(8)

Save areas: The standard save

areas are allocated at the
beginning of ICECOMMA.

ABEND CODE: In the
example the program ended
with system completion
code X'0C1".

®

Last instruction: The address
of the failed instruction, in
this case X‘'OCAOQFC’.

®
®

Register contents: Shows the
register contents when the
program failed.

Figure 7. Interpreting a Formatted Dump (Shown for Peerage or Vale)

®

ICECOMMA: Remaining
contents of ICECOMMA
are shown in the same way.
For example, field CTEMP1
{also known as CWORK1)
contained X'000C936C’
CTEMP124, a subset of the
larger area, thus contained
X'0c936C'.

48 DFSORT Application Programming: Guide

END Control Statement

END

The END statement is required if you want DFSORT to discontinue reading
SYSIN or SORTCNTL before end-of-file.

When you link-edit user exit routines dynamically, the END statement marks the

end of the DFSORT control statements and the beginning of exit routine object
decks in SYSIN.

END Statement Examples

END Example

//SYSIN DD *
SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH
RECORD TYPE=V, LENGTH= (200, ,,,80)
END
OPTION DYNALLOC

Because the OPTION statement appears after the END statement, it cannot be
read.

END Example with SYSIN Input for Dynamic Link-Editing

//SYSIN DD *
SORT FIELDS=(5,8,CH,A)
MODS E15=(E15,1024,SYSIN,T)
' END
<object deck for E15 exit here>

The END statement precedes the E15 exit routine object deck in SYSIN.

Chapter 2. Program Control Statements 49

INCLUDE Control Statement

Relational Condition

INCLUDE {COND=(pi,ml,f1,{EQ|NE|GT|GE |LT|LE}
Ap2,m2,12 | constant}[{,AND | ,OR},...D |
COND=(pl1,ml,{EQ|NE|GT|GE|LT| LE}
{p2,m2 | constant}[{,AND | ,OR},...]1), FORMAT =/}

An INCLUDE statement is used if you want only certain records to appear in the
output data set. By using the INCLUDE statement, you select the records that
qualify for inclusion.

The INCLUDE statement defines a logical expression (that is, one or more
comparisons logically combined) based on fields in the input record. Each
comparison may be between two input fields or between an input field and a
constant. If the logical expression is true for a given record, the record is included
in the output data set. For example, you could compare the first 6 bytes of each
record with its last 6 bytes, and include only those records in which those fields are
identical. Or you could compare a field with a specified date, and include only
those records with a more recent date.

You must not supply both an INCLUDE and an OMIT statement to the same
DFSORT run.

COND
The logical expression of the COND parameter can be represented at a high
level by the following format: COND==(relational
condition1[{,AND | ,OR},relational condition2...])

Default: None, must be specified.

Applicable Functions: See Appendix D.

FORMAT=f
FORMAT=f can be used only when all the fields in the whole COND
expression have the same format. The permissible field formats are shown
under the description of f for fields.

Default: None; optional.

Applicable Functions: See Appendix D.

The relational condition specifies a comparison to be performed. Its format is
described below. Relational conditions can be logically combined, with AND or
OR, to form a logical expression. If they are combined, the following rules apply:

1. “AND” statements are evaluated before “OR” statements unless parentheses
are used to change the order of evaluation; expressions inside parentheses are

50 DFSORT Application Programming: Guide

always evaluated first. (Nesting of parentheses is limited only by the amount
of storage available.)

2. The signs & (AND) and | (OR) may be used instead of the words.

Relational Condition Format

The format of the relational condition is:

Comparison operators:

EQ - Equal to
pl.mlI[fI] NE - Not equal to
AEQINE|GT|GE|LT|LE} GT - Greater than
Ap2,m2[,f2]| constant} GE - Greater than or equal to

LT - Less than

LE - Less than or equal to

Fields

pl,ml,f1: The variables p1, m1, and f1 specify a field in the input record to be

compared to either another field in the input record, or to a constant.

« pl specifies the first byte of the field relative to the beginning of the input
record.! The first data byte of a fixed-length record (FLR) has relative position
1. The first data byte of a variable-length (VLR) record has relative position 5

(because the first 4 bytes contain the RDW). All fields must start on a byte

boundary, and no field may extend beyond byte 4092.

« ml specifies the length of the field. Acceptable lengths for different formats

are given below.

« {1 specifies the format of the data in the field. Permissible formats are given
below.

If all the data fields contain the same type of data, this value may be omitted,
in which case you must use the FORMAT=f operand.

Format Length Description ‘
CH 1-256 Character EBCDIC, unsigned.?
D 1-256 Zoned decimal, signed.

PD 1-255 Packed decimal, signed.

FI 1-256 Fixed-point, signed.

1 If your E15 exit routine formats the record, p1 must refer to the record as reformatted
by the exit.

2 If CHALT is in effect, CH is treated as AQ.

Chapter 2. Program Control Statements

51

Format Length Description

BI 1-256 Binary, unsigned.

AC 1-256 ISCII/ ASCII character, unsigned.

CSL 2-256 EBCDIC numeric, leading separate sign.

CST 2-256 EBCDIC numeric, trailing separate sign.

CLO 1-256 EBCDIC numeric, leading overpunch sign.

CTO 1-256 EBCDIC numeric, trailing overpunch sign.

ASL 2-256 ISCII/ ASCII numeric, leading separate sign.

AST 2-256 ISCII/ASCII numeric, trailing separate sign.

AQ 1-256 EBCDIC character, alternate collating
sequence.

p2,m2,f2: These parameters specify another field in the input record with which

the p1, m1, and f1 input field will be compared. Permissible comparisons between

input fields with different formats are shown in Figure 8.

Note that, for maximum performance, all comparisons in a complex expression are

checked in a single pass for each record. For this reason, if all records do not
contain all INCLUDE/OMIT fields, message ICE0O15A is issued; that is, you

cannot use a complex expression in which one of the comparisons excludes
variable-length records that are too short to contain other fields in the expression.

Field
FORMAT Bl CH D PD

Fl

AC ASL | AST CsSL CsST

cLo

CcT0

AQ

Bl X X

CH X X

ZD X X

PD X X

Fi

AC

ASL

AST

CSL

CST

CLO

CTo

AQ

Figure 8. Permissible Field-to-Field Comparisons for INCLUDE/OMIT

52 DFSORT Application Programming: Guide

Constants: A constant can be decimal, character, or hexadecimal. The different
formats are shown in detail below. Permissible comparisons between input fields
and types of constants are shown in Figure 9.

Self-Defining Term
Field
Format Decimal Character Hexadecimal
Number String String

BI X X

CH X X

D X

PD X

Fl X

AC X X
ASL X

AST X

CsT X

CsL X

CLO X

CTO X

AQ X X

Figure 9. Permissable Field-to-Constant Comparisons for INCLUDE/OMIT

Decimal Number Format: The format for coding a decimal constant is:

[£]n

When the decimal constant is compared with a field of FI format, it may not be
larger than 2147483647 nor smaller than -2147483648.

Chapter 2. Program Control Statements 53

Examples of valid and invalid decimal constants are:

Valid Invalid

15 ++15 Too many sign characters
+15 15+ Sign in wrong place

-15 1.5 Contains invalid character
18000000 1,500 Contains invalid character

Character String Format: The format for coding a character string constant is:

C'xx..x'

The value x may be any EBCDIC character (the EBCDIC character string is
translated appropriately for comparison to an AC or AQ field).

If you want to include a single apostrophe in the character string, you must specify
it as two single apostrophes. Thus:

Required: O'NEILL Specify: C'O''NEILL'

Examples of valid and invalid character string constants are shown below:

Valid Invalid

C'JOHN DOE INC' c''''' Apostrophes not paired
C'$a#’ '"ABCDEF' C identifier missing
C'+0.193" C'ABCDEF Apostrophe missing

Hexadecimal String Format: The format for coding a hexadecimal string constant
is:

X'y !

The value yy represents any pair of hexadecimal digits.

Examples of valid and invalid hexadecimal constants are shown below.

Valid Invalid

X'FF' X'ABGD' Invalid hexadecimal digit

X'BF3C' X'F1F' Incomplete pair of digits

X'AF050505" 'BF3C' Missing X indentifier
'BF3C'X X identifier in wrong place

54 DFSORT Application Programming: Guide

Padding and Truncation

In a field-to-field comparison, the shorter field is padded appropriately. In a
field-to-constant comparison, the constant is padded or truncated to the length of
the field.

Character and hexadecimal strings are truncated and padded on the right.

The padding characters are:

X'40' For character string
X'00' For hexadecimal string

Decimal constants are padded and truncated on the left. Padding is done with
zeros in the proper format.

INCLUDE/OMIT Statement Notes

1. The size of the routine generated by DFSORT to handle the
INCLUDE/OMIT function is dependent on how many fields are referenced,
and what lengths and formats they have. The size of the routine must not
exceed 4096 bytes or DFSORT will issue a message and terminate.

2. Floating point fields may not be referenced in INCLUDE or OMIT statements.

3. Any selection can be performed with either an INCLUDE or an OMIT
statement. INCLUDE and OMIT are mutually exclusive.

4. Remember that if several relational conditions are joined with a combination of
AND and OR logical operators, the AND statement is evaluated first. The
order of evaluation may be changed by using parentheses inside the COND
expression.

5. If any changes are made to record formats by exits E15 or E32, the INCLUDE
or OMIT statement must apply to the newest formats.

6. DFSORT issues a message and terminates if an INCLUDE or OMIT statement
is specified for a tape work data set sort or conventional merge application.

Figure 10 on page 56 shows how DFSORT reacts to the result of a relational
condition comparison, depending on whether the statement is INCLUDE or OMIT
and whether the relational condition is followed by an AND or an OR logical
operator.

When writing complex statements, be sure the result will be what you want. The
table in Figure 10 should help you.

Note that, for maximum performance, all comparisons in a complex statement are
checked in a single pass for each record. For this reason, if all records do not
contain all INCLUDE/OMIT fields, message ICEQ15A is issued; that is, you
cannot use a complex statement in which one of the comparisons excludes
variable-length records too short to contain other fields in the statement.

Chapter 2. Program Control Statements 55

Statement| Relational Program action if next

Condition logical operator is:
Compare AND OR
OMIT True Check next compare, or OMIT record
if last compare, OMIT
record
OMIT False INCLUDE record Check next compare or

if last compare,
INCLUDE record

iNCLUDE True Check next compare, or INCLUDE record
if last compare,
INCLUDE record

INCLUDE False OMIT record Check compare, or if

last compare, OMIT.
record

Figure 10. Logic Table for INCLUDE/OMIT

INCLUDE Statement Examples

INCLUDE Example 1

INCLUDE COND=(5,8,GT,13,8,1,105,4,LE,1000) ,FORMAT=FI

DFSORT includes only records in which:

« The fixed-integer number in bytes 5 through 12 is greater than the
fixed-integer number in bytes 13 through 20. OR

¢ The fixed-integer number in bytes 105 through 108 is less than or equal to
1000.

Note that all four fields have the same format.

INCLUDE Example 2

INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM',
AND,21,8,2D,GT,+50000,
OR,31,4,CH,NE,C'HERR')

56 DFSORT Application Programming: Guide

This statement only includes records in which:

o The first 10 bytes contain STOCKHOLM (this 9 character string was padded
on the right with a blank) 4AND the zoned-decimal number in bytes 21 through
28 is greater than 50000. OR

« Bytes 31 through 34 do not contain HERR.

Note that the AND is evaluated before the OR. (The OMIT example “OMIT
Statement Example’” on page 71, illustrates how parentheses may be used to
change the order of evaluation.) Also note that ending a line with a comma-blank
indicates continuation on the next line starting in any position from 2 through 71.

INCLUDE Example 3

INCLUDE COND=((5,1,CH,EQ,8,1,CH), &,
((20,1,CH,EQ,C'A',§,30,1,FI,GT,10),1,
(20,1,CH,EQ,C'B',&,30,1,FI,LT,100), I,
(20,1,CH,NE,C'A',&,20,1,CH,NE,C'B")))

This statement only includes records in which:

« Byte 5 equals byte 8. AND

e One of the foﬂowing is true:
— Byte 20 equals 'A' and byte 30 is greater than 10.
— Byte 20 equals 'B' and byte 30 is less than 100.

— Byte 20 is not equal to 'A"' or 'B'.

Chapter 2. Program Control Statements 57

INREC Control Statement

INREC FIELDS=([s,lp,m[,al...[s]Lp[,m]l.allls])

The INREC control statement allows you to reformat the input records before they
are processed; that is, to define which parts of the input record are to be included
in the reformatted input record, in what order they are to appear, and how they are
to be aligned.

You do this by defining one or more fields from the input record. The reformatted
input record consists of those fields only, in the order in which you have specified
them, and aligned on the boundaries you have indicated.

You can also pad reformatted input records with blanks and/or binary zeros
before, between, and/or after the input fields, using the s parameter.

For information concerning the interaction of INREC and OUTREC, see also
“Using Options That May Enhance Performance’ on page 217.

FIELDS =([s,|p,ml,al...I, sikpl,m).Lalll,sD
You can use this parameter to specify the order in which the input and
separation fields are to appear in the reformatted input record.

S
indicates a separation field to be inserted into the reformatted input
record in the position you code it relative to the input fields. It can be
specified before or after the p,m,a parameters for any field.
Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X'40') are
inserted in the reformatted input records. n may be from 1 to
256.

nZ Binary zero separation. n bytes of binary zeros (X'00'") are
inserted in the reformatted input records. n may be from 1 to
256.

Consecutive separation ficlds may be specified.

For variable-length records:

« Separation field(s) must not be specified before the first input
field (the RDW).

o Separation field(s) must not be specified after the variable part of
the input record.

58 DFSORT Application Programming: Guide

specifies the first byte of the input field relative to the beginning of the
input record.? The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5 (because the first 4 bytes contain the RDW). All fields
must start on a byte boundary, and no field may extend beyond byte
32000. For special rules concerning variable-length records, see
“INREC Statement Notes.”

specifies the length of the input field. It must include the sign if the
data is signed, and must be a whole number of bytes. See note 5 on
page 60 for more information.

specifies the alignment (displacement) of the input field in the
reformatted input record, relative to the start of the reformatted input
record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of 2 (that is, position 1, 3, 5, and so forth).

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that
is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used in a
COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space
preceding aligned fields will always be padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix D.

INREC Statement Notes

1.

When INREC is specified, DFSORT reformats the input records after user exit
E15 and/or INCLUDE/OMIT processing is finished. Thus, references to
fields by your E15 exit and INCLUDE/OMIT statements are not affected,
whereas your SORT, OUTREC, and SUM statements must refer to fields in
the reformatted input record. Your E35 exit must refer to fields in the
reformatted output record (see below).

3

If your E15 exit reformats the record, p must refer to the record as reformatted by the

Chapter 2. Program Control Statements 59

2. 'When you specify INREC, you should be aware of the change in record size
and layout of the resulting reformatted input records. You should also
understand how reformatting of records affects sort performance, and how to
use INREC and/or OUTREC to achieve the most efficient sort. (See also
“OUTREC Control Statement” on page 92 and “Using Options That May
Enhance Performance” on page 219 for more details.)

3. For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte Record Descriptor Word (RDW). DFSORT sets
the length of the reformatted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted input record immediately following the RDW, the entry in the
FIELDS parameter can specify both RDW and data field in one. Otherwise,
the RDW must be specifically included in the reformatted input record.

4. The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the data set control
block (DSCB) or DD statement, the value for SORTOUT LRECL is
determined in the usual way (that is, from the L3 value or SORTIN LRECL).
If the reformatted length does not match the SORTOUT LRECL, the same
checks used when the SORTIN LRECL does not match the SORTOUT
LRECL are made and padding/truncation is performed, if possible. When
processing variable-length records, the maximum SORTIN LRECL must not
exceed the maximum SORTOUT LRECL.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is 4 less
than the LRECL when processing variable-length records. See ‘“VSAM Data
Set Notes and Limitations on page 4 for more information.

5. The variable part of the input record (that part beyond the minimum record
length) may be included in the reformatted input record, and if included, must
be the last part. In this case, a value should be specified for pn that is less than
or equal to the minimum record length (see L4 of the RECORD control
statement) plus 1 byte; mn and an should be omitted.

If INREC and OUTREC are both specified, either both must specify
position-only for the last part, or neither must specify position-only for the last
part.

If the reformatted input includes only the RDW and the variable part of the
input record, “null” records containing only an RDW could result.

6. The input records are reformatted before processing, as specified by INREC.
The output records are in the format specified by INREC, unless OUTREC is
also specified.

7. Fields referenced in INREC statements may overlap each other and/or control
fields.

8. If input is variable records, the output is also variable. This means that each

record is given the correct RDW by DFSORT before output, even if the
records are treated as fixed internally because they are all the same length.

60 DFSORT Application Programming: Guide

9. In general, INREC shouid be used to reduce the length of input records as
much as possible to achieve the most efficient processing (and OUTREC
should be used to reformat the records for output). However, in the case
where overflow could occur during summation, INREC could be used to create
a larger SUM field in the reformatted input record (perhaps resulting in a larger
record for sorting or merging), so that overflow does not occur.

10. DFSORT issues a message and terminates if an INREC statement is specified
for a tape work data set sort or conventional merge application.

INREC Statement Examples

INREC Example 1

INCLUDE COND=(5,1,GE,C'M') ,FORMAT=CH
INREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(4,8,CH,A,1,3,FI,A)

SUM FIELDS=(17,4,BI)

OUTREC Example 2

INCLUDE COND=(5,1,GE,C'M') ,FORMAT=CH
OUTREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(20,8,CH,A,10,3,FI,A)
SUM FIELDS=(38,4,BI)

The above examples illustrate how a fixed-length input data set is sorted and
reformatted for output. A more efficient sort is achieved by eliminating
unnecessary fields, before sorting, using INREC. The SORTIN LRECL is 80.

Records are also included or excluded by means of the INCLUDE statement, and
summed by means of the SUM statement.

The reformatted input records are fixed length, with a record size of 23 bytes (a
significant reduction from the original size of 80 bytes). The SORTOUT LRECL
should be specified as 23. They look as follows:

* Position Contents

1-3 Input positions 10 through 12
4-11 Input positions 20 through 27
12-22 Input positions 33 through 43
23 Input position 5

Identical results are achieved with INREC or OUTREC. However, use of INREC
can result in better performance. In either case, the INCLUDE COND parameters
must refer to the fields of the original input records. However, with INREC, the
SUM and SORT FIELDS parameters must refer to the fields of the reformatted
input records, while with OUTREC, the SUM and SORT FIELDS parameters must
refer to the fields of the original input records.

Chapter 2. Program Control Statements 61

INREC Example 3

INREC FIELDS=(1,35,2%,36,45)
MERGE FIELDS=(20,4,CH,D,10,3,CH,D),FILES=3
SUM FIELDS=(36,4,BI,40,8,PD)
RECORD TYPE=F,LENGTH=(80,,82)

This example illustrates how overflow of a summary field can be prevented when
three fixed-length data sets are merged and reformatted for output. The input
record size is 80 bytes. To illustrate the use of the RECORD statement, assume
that SORTIN and SORTOUT are not present (that is, all input/output is handled
by user exits).

The reformatted input records are fixed length, with a record size of 82 bytes (an
insignificant increase from the original size of 80 bytes). They look as follows:

Position Contents

1-35 Input positions 1 through 35
36-37 Binary zeros (to prevent overflow)
38-82 Input positions 36 through 80

The MERGE and SUM statements must refer to the fields of the reformatted input
records.

The reformatted output records are identical to the reformatted input records.

Thus, the 2-byte summary field at positions 36 and 37 in the original input records
expand to a 4-byte summary field in positions 36 through 39 of the reformatted
input/output record before merging. This prevents overflow of this summary field.
Note that, if OUTREC were used instead of INREC, the records would be
reformatted after merging, and the 2-byte summary field could overflow.

Note: This method of preventing overflow cannot be used for negative FI summary
fields because padding with zeros rather than ones would change the sign.

INREC Example 4

INREC FIELDS=(1,4,15,15,47,50,101)

SORT FIELDS=(32,4,CH,A)

RECORD TYPE=V,LENGTH=(,,,100,130) :
OUTREC FIELDS=(1,4,10%,5,15,17%,20,50,4%,70)

This example illustrates how a variable-length input data set can be sorted more
efficiently by eliminating padding fields before sorting, and reinserting them after
sorting. The resulting output records are not actually reformatted. The variable
part of the input records is included in the output records. The minimum input
record size is 100 bytes, and the maximum input record size (SORTIN LRECL) is
200 bytes.

62 DFSORT Application Programming: Guide

The reformatted input records are variable length, with a minimum record size of
69 bytes and a maximum record size of 169 bytes (a significant reduction from the
original sizes of 100 and 200 bytes, respectively). They look as follows:

Position Contents

1-4 RDW (input positions 1 through 4)

5-19 Input positions 15 through 29

20-69 Input positions 47 through 96

70-n Input positions 101 through n (variable part of input records)

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Because padding fields are removed by INREC and reinserted by OUTREC, the
output records are identical to the original input records; that is, variable length,
with a minimum record size of 100 bytes and a maximum record size (SORTOUT
LRECL) of 200 bytes. They look as follows:

Position Contents

1-4 RDW

5-14 Binary zeros

15-29 Input positions 15 through 29

30-46 Binary zeros

47-96 Input positions 47 through 96

97-100 EBCDIC blanks

101-n Input positions 101 through n (variable part of input records)

Thus, the use of INREC and OUTREC allows sorting of smaller records, although
the output records are not actually reformatted.

INREC Example 5

INREC FIELDS=(20,4,12,3)
SORT FIELDS=(1,4,D,5,3,D),FORMAT=CH
OUTREC FIELDS=(5%X,1,4,H,8%,1,2,5,3,802)

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. A more efficient sort is achieved by using INREC to
reduce the input records as much as possible before sorting, and using OUTREC to
repeat fields and insert padding after sorting. The SORTIN LRECL is 80 bytes.

Note: Contrast this example with OUTREC Example 4, where INREC does not
achieve a more efficient sort because no fields can be eliminated before sorting.

The reformatted input records are fixed length, with a record size of 7 bytes (a
significant reduction from the original size of 80 bytes). They look as follows:

Position Contents
1-4 Input positions 20 through 23
5-7 Input positions 12 through 14

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

Chapter 2. Program Control Statements 63

The reformatted output records are fixed length, with a record size of 103 bytes;
the SORTOUT LRECL is specified as 103. They look as follows:

Position Contents

1-5 EBCDIC blanks
6 Binary zero (for H alignment)
7-10 Input positions 20 through 23

11-18 EBCDIC blanks

19-20 Input positions 20 through 21
21-23 Input positions 12 through 14
24-103 Binary zeros

Thus, the use of INREC and OUTREC allows sorting of 7-byte records rather than
80-byte records, even though the output records are 103 bytes long.

64 DFSORT Application Programming: Guide

MERGE Control Statement

MERGE {FIELDS=(p,m.f,s...,p,m.f.s) |
FIELDS=(p,m,s...,p,m,s) FORMAT=f |
FIELDS=COPY}

[,CKPT]

[LFILES=n]

[LEQUALS | ,NOEQUALS]
[LFILSZ=x | ,SIZE=y]

The MERGE control statement must be used when a merge operation is to be
performed. It may also be used to specify a copy application. It provides
essentially the same information to DFSORT for a merge as the SORT statement
does for a sort. Like SORT, MERGE parameters can be overridden by similar
parameters specified on the OPTION control statement. The format, defaults, and
specifications for the MERGE statement are similar to the SORT statement with
the following differences:

» The operation definer is MERGE instead of SORT.

« The SKIPREC option is not used (ignored if specified).

« The DYNALLOC option is not used (ignored if specified).

« The FILSZ/SIZE value takes all the input data sets into account.

When an option can be specified on either the MERGE or OPTION statement, it is
preferable to specify it on the OPTION statement.

A table showing other possible sources for specifying dptions available on the
MERGE statement and the rules of override are in Appendix D.

FIELDS=(p,m.f,s...p,m.f.s)
The FIELDS operand is written exactly the same way for a merge as it is for
a sort. The meanings of p, m, f, and s are described in the discussion of the
SORT statement. The defaults for this and the following parameters are also
given there. See also Figure 3 on page 20.

FIELDS=COPY
See the discussion of this operand on the OPTION statement.

FORMAT=f
The FORMAT operand is used in the same way for a merge as for a sort.

CKPT
See the discussion of this operand on the OPTION statement.

FILES=n
specifies the number of input files to a merge when input is supplied through
the E32 exit.

Chapter 2. Program Control Statements 65

Default: None.

Applicable Functions: See Appendix D

EQUALS | NCEQUALS
See the discussion of this operand on the OPTION statement.

FILSZ=x | SIZE=y
See the discussion of this operand on the OPTION statement.

MERGE Statement Examples

MERGE Example 1. One Control Field, Size Option

MERGE FIELDS=(2,5,CH,A) ,FILSZ=29483

FIELDS
The control field begins on byte 2 of each record in the input data sets. The
field is 5 bytes long, and contains character (EBCDIC) data that has been
presorted into ascending order.

FILSZ
The input data sets contain exactly 29483 records.

MERGE Example 2. Two Control Fields, User Modification, Size Estimate

MERGE FIELDS=(3,8,ZD,E,40,6,CH,D) ,FILSZ=E30000

FIELDS

The major control field begins on byte 3 of each record, is 8 bytes long, and
contains zoned decimal data that is modified by your routine before the
merge examines it.

The second control field begins on byte 40, is 6 bytes long, and contains
character data that is in descending order.

FILSZ
The input data sets contain approximately 30000 records.

MERGE Example 3. Two Control Fields, Format Option

MERGE FIELDS=(25,4,A,48,8,A) ,FORMAT=ZD

FIELDS .
The major control field begins on byte 25 of each record, is 4 bytes long, and
contains zoned decimal data that has been placed in ascending sequence.

66 DFSORT Application Programming: Guide

The second control field begins on byte 48, is 8 bytes long, is also in zoned
decimal format, and is also in ascending sequence. The FORMAT parameter
can be used because both control fields have the same data format.

MERGE Example 4. COPY Option

MERGE FIELDS=COPY

FIELDS
The input data set is copied to output. No merge takes place.

MODS Control Statement

MODS exit=(nm,s[,e])...,exit=(nm,s[,el)

The MODS statement is needed only if you want DFSORT to pass control to your
routines at user exits. The MODS statement associates the user routine(s) with
specific DFSORT exits and provides DFSORT with descriptions of these routines.
For details about DFSORT exits and how user routines can be used, see

Chapter 4, ‘“User Exit Routines” on page 135.

To use one of the exits, you substitute its 3-character name (for example, E31) for
the word exiz in the MODS statement format above. You may specify any valid
exit, except E32. (E32 can only be used in a merge operation that is invoked from
a program,; its address must be passed in a parameter list.)

exit=(n,m,sl,e])
The values that follow “‘exit” describe the user routine. These values are:

n
the name of your routine (member name if your routine is in a
library). You may use any valid operating system name for your
routine. This allows you to keep several alternative routines with
different names in the same library.

m

the number of bytes of main storage your routine uses. Include
storage obtained (via GETMAIN) by your routine (or, for example,
by OPEN), and the storage required to load the COBOL library
subroutines.

either the name of the DD statement in your DFSORT job step that .
defines the library in which your routine is located or SYSIN if your
routine is in the input stream.

Chapter 2. Program Control Statements 67

indicates the linkage editor requirements of your routine, or indicates
your routine is written in COBOL.

N
means that your routine has already been link-edited and can be
used in the DFSORT run without further link-editing. This is
the default for e. N (specified or defaulted) may be overridden
by the EXEC PARM parameters '"E15=COB' and
'E35=COB".

means that your E15 or E35 routine is written in COBOL. If
you code C for any other exit, it is ignored, and N is assumed.
Your COBOL-written routine must already have been
link-edited.

means that your routine must be link-edited fogether with other
routines to be used in the same phase (for example, E1n
routines) of DFSORT.

This value is not valid for copy processing.

means that your routine requires link-editing but that it must be
link-edited separately from the other routines (for example, E3n
routines) to be used in a particular phase of DFSORT. E11 and
E31 exit routines are the only routines eligible for separate
link-editing.

This value is not valid for copy processing.
If you do not specify a value for e, N is assumed.

Notes:

1. All the routines for which N or C is specified for the e parameter must be in the
same library, or in libraries defined as a concatenated data set. These routines
may not be placed in SYSIN. Each such routine must be a load module.

2. Each routine for which T or S is specified for the e parameter may be placed in
any library or in SYSIN; they do not all have to be in the same library or SYSIN
(but can be). Some routines can even be in different libraries (or the same library)
and the rest can be in SYSIN. Each such routine, if in a library, can be either an
object deck or a load module; if in SYSIN, it must be an object deck.

3. If the same routine is used in both input (that is, Eln routines) and output (that is,
E3n routines) DFSORT program phases, a separate copy of the routine must be
provided for each exit.

4. COBOL E15 and E35 exit routines can also be specified in the EXEC statement
parameters (E15=COB or E35=COB). In this case, the e parameter of the
MODS statement must not be “T”. If “T” is specified, the program terminates
with error message ICE034A. COBOL exits i\nust already have been link-edited

68 DFSORT Application Programming: Guide

and, if the EXEC parm was specified for the exit, the e parameter must be “C”,
or “N”, or defaulted to “N”. (“‘S” is not valid for any E15 or E35 exit.)

5. If you code C for a conventional merge or a tape work data set sort, DFSORT
issues message ICE153A and terminates.

For information on user exit routines in SYSIN, see “System DD Statements” on
page 124. '

For details on how to design your routines, refer to ‘“Summary of Rules for User
Exit Routines” on page 183.

When you are preparing your MODS statement, remember that DFSORT must
know the amount of main storage your routine needs so that it can allocate main
storage properly for its own use. If you do not know the exact number of bytes
your program requires (including requirements for system services), make a slightly
high estimate. The value of m in the MODS statement is written the same way
whether it is an exact figure or an estimate: You do not precede the value by E for
an estimate.

Default: None; optional. N is the default for the fourth parameter.

Applicable Functions: See Appendix D

MODS Statement Examples

MODS Example 1. Two Routines in a Library

MODS E15=(ADDREC,552,MODLIB) ,E35= (ALTREC, 11032, MODLIB)

E15
At exit E15, DFSORT transfers control to your own routine. Your routine is
in the library defined by a job control statement with the ddname MODLIB.
Its member name is ADDREC and uses 552 bytes.

E35
At exit E35, DFSORT transfers control to your routine. Your routine is in
the library defined by the job control statement with the ddname MODLIB.
Its member name is ALTREC and will use 11032 bytes.

MODS Example 2. E15 and E35 written in COBOL

MODS E15=(COBOLE15,7000,EXITC,C),
E35={COBOLE35,7000,EXITC,C)

)

E15 .
At exit E15, DFSORT transfers control to your own routine. Your routine is
written in COBOL and is in the library defined by a job control statement

Chapter 2. Program Control Statements 69

with the ddname EXITC. Its member name is COBOLE1S5 and uses 7000
bytes.

E35
At exit E35, DFSORT transfers control to your routine. Your routine is
written in COBOL and is in the library defined by the job control statement
with the ddname EXITC. Its member name is COBOLE35 and uses 7000
bytes.

70 DFSORT Application Programming: Guide

OMIT Control Statement

OMIT {COND=(pl,ml,f1,{EQ|NE|GT|GE|LT|LE}
Ap2,m2,1f2 | constant}[{,AND | ,OR},...]D |
COND=(p1,m1,{EQ|NE |GT|GE | LT | LE},
ip2,m2 | constant}[{,AND | ,OR},...]), FORMAT=/}

An OMIT statement is used if you do not want all the input records to appear in
the output data set. By using the OMIT statement, you select the records that do
not qualify for inclusion.

The OMIT statement defines a logical expression (that is, one or more comparisons
logically combined) based on fields in the input record. Each comparison may be
between two input fields or between an input field and a constant. If the logical
expression is true for a given record, that record is omitted from the output data
set. For example, you could compare the first 6 bytes of each record with its last 6
bytes, and omit those records in which those fields are not identical. Or you could
compare a field with a specified date, and omit those records with earlier dates.

For further details on this statement, see “INCLUDE Control Statement” on
page 50.

OMIT Statement Example

OMIT Example.

OMIT COND=(1,10,CH,EQ,C'STOCKHOLM', &, (21,8,2ZD,GT,+50000, | *
,31,4,CH,NE,C"HERR "))

This statement omits records in which:

« The first 10 bytes contain STOCKHOLM (the string was padded on the right
with a blank). AND,

» The zoned-decimal number in bytes 21 through 28 is greater than 50000, OR
bytes 31 through 34 do not contain HERR.

Note that the AND and OR operators can be written with the AND and OR signs,
and that parentheses are used to change the order in which AND and OR are
evaluated. Also note that the asterisk in column 72 indicates continuation of the
parameters to the next line (starting in position 16).

Chapter 2. Program Control Statements 7 1

OPTION Control Statement

OPTION [ARESALL={n | nK}]
[,ARESINV={n | nK}]
[,CHALT | NOCHALT]
[,CHECK | NOCHECK]
[,CKPT]
[,COBEXIT={COBI1 | COB2}]
[,COPY]
[LDYNALLOC[={d| (d) | (;n) | (d.n)}]]
[LEQUALS | NOEQUALS]
LLFILSZ=x | ,SIZE=y| ,FILSZ=En | ,SIZE=En]
[,LLIST | NOLIST]
[LMAINSIZE={n | nK | MAX}]
[LMSGDDN =ddname]
[, MSGPRT={ALL | NONE | CRITICAL}]
[LNOBLKSET]
[LNOOUTREL]
[LNOOUTSEC]
[NOSTIMER]
[,NOWRKREL]
[LNOWRKSEC]
[LRESALL={n|nK}]
[LRESINV={n | nK}}
[,SKIPREC=z]
[,SORTDD=cccc]
[,SORTIN=ddname]
[,SORTOUT =ddname]
[,STOPAFT=n]
[,VERIFY | NOVERIFY]
[LVLSHRT | NOVLSHRT]

The OPTION control statement allows you to override some of the options »
available at installation time (such as EQUALS and CHECK), and to supply other
optional information (such as DYNALLOC, COPY, and SKIPRE_C).

Some of the options available on the OPTION statement are also available on the
SORT or MERGE statement (such as FILLSZ and SIZE). It is preferable to specify
these options on the OPTION statement. For override rules, see Appendix D.

OPTION parameters used by other IBM sort programs cause DFSORT to
terminate unless they conform to the following parameters. For a description of
the OPTION control statement and its parameters, see also Figure 3 on page 20.

The keywords LIST, NOLIST, MSGPRT, MSGDDN, SORTDD, SORTIN, and
SORTOUT are used only when they are specified on the OPTION control
statement passed by an extended parameter list. If they are specified on an
OPTION statement read from the SYSIN data set or the SORTCNTL data set, the
keyword is recognized, but the parameter is ignored.

72 DFSORT Application Programming: Guide

The BLKSET option that was available in previous releases of DFSORT is ignored.
Existing programs that use this option need not be changed.

ARESALL={n | nK}
For MVS/XA, you can use this parameter to temporarily override the
installation option ARESALL =n. It indicates the number of bytes to be
reserved above 16-megabyte virtual for system use.

ARESALL applies only to the amount of main storage above 16-megabyte
virtual. This option is normally not needed because of the large amount of
storage available above 16-megabyte virtual (the default for ARESALL is O
bytes). The RESALL option applies to the amount of main storage below
16-megabyte virtual.

n
n is a decimal value that specifies the number of bytes of main storage
to be reserved.
Limit: 8 digits.

nK

nK specifies n times 1024 bytes of main storage are to be reserved.
Limit: 5 digits.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

ARESINV={n | nK}
For MVS/XA, you can use this parameter to temporarily override the
installation option ARESINV=n. ARESINYV is used only when DFSORT is
dynamically invoked. It indicates the number of bytes to be reserved for an
invoking program or for exits that reside or use space above 16-megabyte
virtual. The reserved space is not meant for the executable code itself.

ARESINV applies only to the amount of main storage above 16-megabyte
virtual. The RESINV option applies to the amount of main storage below
16-megabyte virtual.

n
n is a decimal value that specifies the number of bytes of main storage
to be reserved.
Limit: 8 digits.

nK

nK specifies n times 1024 bytes of main storage are to be reserved.

Limit: 5 digits.

Chapter 2. Program Control Statements 73

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

CHALT | NOCHALT
You can use this parameter to temporarily override the installation option
CHALT={YES | NO}, that specifies whether format CH fields are
translated by the alternate collating sequence as well as format AQ, or just
the latter.

CHALT
means that DFSORT translates character control fields with formats
CH and AQ using the alternate collating sequence.

NOCHALT
means that format CH fields is not translated.

Default: Usually the instaliation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D

CHECK | NOCHECK
You can use this parameter to temporarily override the installation option
CHECK={YES | NO}, that specifies whether record count should be
checked for applications that use the E35 user exit routine without a
SORTOUT data set.

CHECK

means that record counter checking is done at the end of program
execution.

NOCHECK
means that record counter checking is not done.

Default: Usually the installation default, but refer to Appendix E for full override
details.

Applicable Functions: See Appendix D

CKPT
CKPT (the spelling CHKPT is also accepted) causes DFSORT to activate
the checkpoint/restart facility of the operating system.

See “Checkpoint/Restart” on page 13 for further details.
If necessary, the Blockset technique can be bypassed so the
checkpoint/restart facility can be used, by specifying either IGNCKPT=NO

on the ICEMAC installation macro or NOBLKSET on the OPTION
statement.

74 DFSORT Application Programming: Guide

Checkpoint/restart takes the following checkpoints:

1.

2,

3.

Start of sort phase (all tape techniques)

Start of each intermediate merge phase pass (balanced and polyphase
tape technique); or at intervals during the intermediate merge phase
(oscillating tape and all disk techniques)

Start of final merge phase

When you use the checkpoint/restart facility, you must write a JCL
statement to define a data set for the checkpoint records. How to write this
JCL statement (//SORTCKPT) is described in “SORTCKPT DD
Statement” on page 133. In addition, you may need to specify more
intermediate storage for a sort application. See ‘“Intermediate Storage” on
page 277.

Default:

Applicable Functions: See Appendix D

None; optional.

COBEXIT={COB1 | COB2}
indicates whether the E15 and E35 routines written in COBOL are executed

with the VS COBOL II library.

COB1

specifies that E15 and E35 routines written in COBOL are executed
with the OS/VS COBOL library or, in some cases, with no COBOL

library.

COB2

specifies that E15 and E3S5 routines written in COBOL are executed
with the VS COBOL 11 library.

Default: Usually the installation default, but see Appendix D for full override

details.

Applicable Functions: See Appendix D.

COPY

COPY causes DFSORT to copy a SORTIN data set and/or inserted records
to a SORTOUT data set unless all records are disposed of by an E35 exit.
Records can be edited by SKIPREC, E15, INCLUDE/OMIT, STOPAFT,
INREC/OUTREC, and/or E35. E35 is entered after each SORTIN or E15
record is copied.

The following must not be used with copy applications:

Defaulr:

FORMAT=f
BDAM data sets
Dynamic link-editing

None; optional.

Chapter 2. Program Control Statements 75

Applicable Functions: See Appendix D.

DYNALLOC[=4d | (d) | (;n) | (d,n)3]
This parameter is for MVS. This parameter assigns DFSORT the task of
dynamically allocating needed work space. With DYNALLOC you do not
need to calculate and specify through JCL, the amount of intermediate work
space needed by the program. DFSORT, by use of the dynamic allocation
facility of the operating system, allocates work space to get the best possible
performance for the newest application.

d
specifies the device type. You may specify any of the following IBM
devices: 2314, 3330, 3330-1, 3340, 3350, 3375, 3380, 2400, 2400-3,
2400-4, 3400-3, 3400-4, 3480, 3850, or their user-assigned group
name, such as SYSDA.

n

specifies the number of reque‘sted work data sets. The maximum value
of nis 16; if you specify more than 16, 16 is used.

For disk work data sets, an estimate of the number of input records is used as the
basis for determining the total work space to allocate. If DFSORT cannot
reasonably estimate the number of input records and FILSZ/SIZE is not specified
(see FILLSZ/SIZE on the OPTION statement for details), 6000 blocks are
dynamically allocated.

Dynamically allocated work data sets are not deallocated until the job or step is
finished. This is because SMF does not log the use of data sets that are
dynamically unallocated. This means that recursive sorts reuse the work space .
allocated to the first sort.

For tape work data sets, the number of volumes specified (explicitly or by default)
is allocated to the program. The program requests standard label tapes.

If DYNALLOC is specified under any system other than MVS, it is ignored. It is
also ignored if SORTWKnn DD statements are provided.

With VIO=NQO: If your DFSORT program was installed with the VIO=NO
option (“no virtual 1/0”):

» Work space is allocated on nontemporary data sets (DSNAME parameter
specified).

« The device (d) you specify cannot be a virtual device unless a corresponding
real disk is available in your system.

Defaulr: None; optional. If DYNALIOC is specified without d, the default for d
is that specified (or defaulted) by the ICEMAC DYNALOC option at installation

time. If DYNALLOC is specified without n, the default for n is that specified (or

defaulted) by the ICEMAC DYNALOC option at installation time.

Note: Diagnostic messages ICE806I and ICE803I give information about
intermediate storage allocation/use.

76 DFSORT Application Programming: Guide

Applicable Functions: See Appendix D.

EQUALS | NOEQUALS _

You can use this parameter to temporarily override the installation option
EQUALS={YES | NO}, that specifies whether the sequence of identical
collating records for a sort or a merge should be preserved from input to
output. '

EQUALS
means the sequence must be preserved.

NOEQUALS
means the sequence need not be preserved.

When you specify EQUALS, you preserve the original sequence of the
identically collating records.

When sorting, the sequence of the output depends upon the order of:

» The records from the SORTIN file

« The records inserted by an E15 user exit routine

« The E15 records inserted within input from SORTIN

When merging, the sequence of the output depends upon the order of:

o The records from a SORTINnn file.
If two equal collating records are from two different files, for example
SORTINn1 and SORTINN2, and n1 is less than n2, the record from
SORTINn1 is placed before the one from SORTINn2.

o The records from an E32 user exit routine for the same file increment
number.

If two equal collating records from an E32 exit have different file
increment numbers, for example m1 and m2, and m1 is less than m2, the
record associated with m1 is placed before the one associated with m2.

Notes:

1. The total number of bytes occupied by all control fields must not exceed 4088
when the EQUALS option is in effect.

2. Use of EQUALS can degrade performance, except when using the Blockset sort
technique for variable-length records. EQUALS is always used with this
technique.

3. EQUALS is not used if SUM is specified and a technique other than Blockset is
selected.

4. Do not specify EQUALS if variable-length records are sorted using tape work

files and the RDW is part of the control field.

Chapter 2. Program Control Statements 77

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

FILSZ=x | SIZE=y | FILSZ=Fn | SIZE=En
This parameter specifies an exact or estimated number of records for the sort
or merge. An EXACT value can be used to force DFSORT to terminate with
an error message if the number of records sorted or merged is not as
expected.

If DFSORT cannot reasonably estimate the number of records to be sorted
or merged, it uses the FILSZ or SIZE value to aid optimization of
intermediate storage; otherwise, it does not use the value for this purpose.
Following are the circumstances under which DFSORT uses FILSZ or SIZE
(if specified) for optimization:

« An E1S5 exit routine is used

« Work data sets are dynamically allocated

« Input data sets are VSAM, multi-volume or on tape

« Input data sets are concatenated and Blockset is not selected
Note that Blockset never uses the ESTIMATED value.

FILSZ=x
x is the exact number of records to be sorted or merged; it must take
into account the number of records in the input data set(s), records to
be inserted or deleted by exit E15/E32, and records to be deleted by
INCLUDE/OMIT, SKIPREC, and STOPAFT.

SIZE=y
y is the exact number of records in the input data set(s) (that is, the
number of records in the SORTIN data set or SORTINnn data sets).
It must take into account the number of records to be deleted by
STOPAFT.

If the actual number of records is not the same as the specified value,
the program terminates with the value x or y placed in the IN field of
the message ICEQ47A or ICE0541. This applies to both FILSZ and
SIZE. :

FILSZ | SIZE=En
n is the estimated number of records to be sorted or merged (Blockset
will not use this estimate); it must be immediately preceded by the
letter E; in either case, it should be large enough to include both the
SORTIN data set or SORTINnn data sets and any records you may
add at exit E15/E32.

For example, if you estimate your total data set size to be 5000

records, specify FILSZ=ES5000. The program accepts either FILSZ or
SIZE, but FILSZ is always preferable when its use is necessary.

78 DFSORT Application Programming: Guide

If you omit the FILSZ or SIZE operand, DFSORT estimates the number of input
records.

Default: None; optional.
Applicable Functions: See Appendix D.

LIST | NOLIST
You can use this parameter to temporarily override the installation option
LIST={YES | NO}, which specifies whether program control statements
should be listed. See Appendix H for details on use of the message data set.

LIST
means that control statements are printed.

NOLIST
means that control statements are not printed.

Note: LIST | NOLIST is processed only if it is passed on the OPTION control
statement in an extended parameter list.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

MAINSIZE={n | nK | MAX}
You can use this parameter to temporarily override the installation option
SIZE={MAX | n}, which specifies the amount of main storage available to
DFSORT, provided the value you specify is greater than the MINLIM value
set at DFSORT installation time.

For MVS/XA systems, MAINSIZE applies to the total amount of main
storage above and below 16-megabyte virtual. DFSORT determines how
much storage to allocate above and below 16-megabyte virtual but the total
amount of storage can not exceed MAINSIZE.

For details on main storage allocation, see “Tuning Main Storage” on
page 207 and “Main Storage” on page 275.

n
n is a decimal value representing the number of bytes of main storage
to be allocated. You may specify a value greater than MAXLIM or
TMAXLIM.
Limit: 8 digits.

nK

specifies n times 1024 bytes of main storage to be allocated. You may
specify a value greater than MAXLIM or TMAXLIM.

Limit: 5 digits.

Chapter 2. Program Control Statements 79

instructs DFSORT to calculate the amount of main storage available
and allocate this maximum amount, up to the MAXILIM (or
TMAXLIM for MVS/XA systems) value set when DFSORT was
installed.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

MSGDDN=ddname
You can use this parameter to temporarily override the installation option
MSGDDN=ddname, which specifies an alternate ddname for the message
data set. MSGDDN must be in effect if:

« A program that invokes DFSORT uses SYSOUT (for instance, COBOL
uses SYSOUT) and you do not want DFSORT messages intermixed with
the program messages.

« Your E15 and/or E35 routines are written in COBOL. and you do not
want DFSORT messages intermixed with the program messages.

« A program invokes DFSORT more than once and you want separate
messages for each invocation of DFSORT.

The ddname can be any 1- through 8-character name, but must be unique
within the job step; do not use a name that is used by DFSORT (for
example, SORTIN). If the ddname specified is not available at execution
time, SYSOUT is used instead. For details on use of the message data set,
see Appendix H.

Note: MSGDDN is processed only if it is passed on the OPTION control
statement in an extended parameter list.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

MSGPRT=$ALL | CRITICAL | NONE}
You can use this parameter to temporarily override the installation option
MSGPRT={ALL | CRITICAL | NONE}, which specifies the class of
messages to be written to the message data set. For details on use of the
message data set, see Appendix H.

ALL
specifies that all messages except diagnostic messages (ICE800I to
ICE999I) are to be printed. Control statements print only if LIST is
in effect.

CRITICAL
specifies that only critical messages will be printed. Control
statements print only if LIST is in effect.

80 DFSORT Application Programming: Guide

NONE
specifies that no messages and control statements will be printed.

Note: MSGPRT is processed only if it is passed on the OPTION control statement
in an extended parameter list.

Default: Usually the installation default, but refer to Appendix D for full override
details.

NOBLKSET
DFSORT uses the Blockset technique whenever possible. By use of this
parameter, you can cause DFSORT to bypass the Blockset technique for a
sort or merge application. However, this generally degrades performance.

Default: None; optional.
Applicable Functions: See Appendix D.

NOOUTREL
You can use this parameter to temporarily override the installation option,
OUTREL=YES, which specifies that unused temporary SORTOUT data set
space is to be released. NOOUTREL means that unused temporary
SORTOUT data set space is not to be released.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

NOOUTSEC
You can use this parameter to temporarily override the installation option,
OUTSEC=YES, which specifies that automatic secondary allocation should
be used for SORTOUT data sets. NOOUTSEC means that automatic
secondary allocation for SORTOUT data sets is not used.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

NOSTIMER '
You can use this parameter to temporarily override the installation option,
STIMER=YES, which specifies that DFSORT uses the STIMER macro.
NOSTIMER means that DFSORT does not use the STIMER macro;
processor time data does not appear in SMF records.

If your exit(s) take checkpoints, and STIMER=YES is the installation
default, you should specify this parameter.

Default: Usually the instailation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

Chapter 2. Program Control Statements 81

NOWRKREL
You can use this parameter to temporarily override the installation option
WRKREL=YES, which specifies that unused temporary SORTWKnn data
set space is to be released. NOWRKREL means that no unused temporary
SORTWKnn data set space will be released.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

NOWRKSEC
You can use this parameter to temporarily override the installation option,
WRKSEC=YES, which specifies that automatic secondary allocation should
be used for SORTWKnn data sets. NOWRKSEC means that automatic
secondary allocation is not used for SORTWKnn data sets.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

RESALL=$n | nK}
You can use this parameter to temporarily override the corresponding
installation option RESALL=n. RESALL is used only when
MAINSIZE/SIZE=MAX is in effect. It indicates the number of bytes to be
reserved in a partition or REGION when the maximum amount for sorting is
calculated. Usually, only 4K bytes (the standard default) of main storage
has to be available in a partition or region for system use. However, in a few
cases, this may not be enough; for example, if your installation does not have
BSAM/QSAM modules resident, you have exits that open data set(s), or
you have COBOL exits.

For MVS/XA systems, RESALL applies only to the amount of main storage
below 16-megabyte virtual. The ARESALL option applies to the amount of
main storage above 16-megabyte virtual.

n
n is a decimal value that specifies the number of bytes of storage to be
reserved. If you specify less than 4096, 4096 is used.
Limit: 8 digits.

nkK

nK specifies n times 1024 bytes of storage are to be reserved. If you
 specify less than 4K, 4K is used.

Limit: 5 digits.

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

Default: Usually the installation default, but refer to Appendix D for full override
details.

82 DFSORT Application Programming: Guide

Applicable Functions: See Appendix D.

RESINV={n | nK}
You can use this parameter to temporarily override the corresponding
installation option RESINV=n. RESINYV is used only when DFSORT is
dynamically invoked and MAINSIZE/SIZE=MAX is in effect. It indicates
the number of bytes to be reserved in a partition or REGION for the
invoking program when the maximum amount available for processing is
being calculated.

For MVS/XA systems, RESINV applies only to the amount of main storage
below 16-megabyte virtual. The ARESINV option applies to the amount of
main storage above 16-megabyte virtual.

This extra space is usually required for data handling by the invoking
program or exits while DFSORT is executing (as is the case with some PL/1
and COBOL invoked sort applications).

The amount of space required depends upon what routines you have, how
the data is stored, and which access method you use. The reserved space is
not meant for the executable code itself.

If your invoking program and its associated exits do not perform data set
handling, you do not need to specify this parameter.

n
n is a decimal value that specifies the number of bytes of main storage
to be reserved.
Limit: 8 digits

nK

nK specifies n times 1024 bytes of main storage are to be reserved.
Limit: 5 digits

Note: A better way to release the required storage for user exits is the m
parameter on the MODS statement.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

SKIPREC=2
z is the number of records you want to skip before starting to process the
input data set, and is usually used if, on a preceding DFSORT run, you have
processed only part of the input data set.

A program with an input data set that exceeds intermediate storage capacity
usually terminates unsuccessfully. However, for a tape sort, you can use a
routine at E16 (as described in Chapter 4, “User Exit Routines” on

page 135) to instruct the program to sort only those records already read in.
It then prints a message giving the number of records sorted. You can use

Chapter 2. Program Control Statements 83

SKIPREC in a subsequent sort run to sort the remaining records, and then
merge the output from different runs to complete the application.

Notes:

1. SKIPREC applies only to records read from SCRTIN (not from EI15
routines). (See Figure 2 on page 10.)

2. If SKIPREC=0 is in effect, SKIPREC is not used.
Default: None; optional.
Applicable Functions: See Appendix D.

SORTDD=cccc
You should use this parameter to specify a 4-character prefix for ddnames
when you dynamically invoke DFSORT more than once in a program step.
The four characters replace “SORT” in the following ddnames: SORTIN,
SORTOUT, SORTINnn, SORTWKnn, and SORTCNTL.

cccc specifies a 4-character prefix. The four characters must all be
alphanumeric or national ($, #, or @). The first character must be
alphabetic. The first three characters must not be SYS.

Example: If you use ABC# as replacement characters, DFSORT will use DD
statements ABCHIN, ABC#CNTL, ABC#WKnn, and ABC#OUT instead of
SORTIN, SORTCNTL, SORTWKnn, and SORTOUT.

Notes:

1. SORTDD is processed only if it is passed on the OPTION control
statement in an extended parameter list.

2. If SORTIN=ddname and SORTDD=cccc are both specified, ddname is
used for DFSORT input.

3. If SORTOUT=ddname and SORTDD=cccc are both specified, ddname is
used for DFSORT output.

Default: If this parameter is not specified, DFSORT defaults to SORT.
Applicable Functions: See Appendix D.
SORTIN=ddname

You can use this parameter to specify a ddname to be associated with the

SORTIN data set. This allows you to dynamically invoke DFSORT more
than once in a program step, passing a different ddname for each input file.

84 DFSORT Application Programming: Guide

Notes:

1. SORTIN is processed only if it is passed on the OPTION control statement
in an extended parameter list.

2. If SORTIN=ddname and SORTDD=cccc are both specified, ddname is
used for the input file. The same ddname cannot be specified for SORTIN
and SORTOUT.

3. If SORTIN is used for a tape work data set sort, DFSORT terminates.

Default: 1f this parameter is not specified, DFSORT defaults to SORTIN, unless
SORTDD=cccc is specified, in which case ccccIN will be the default.

Applicable Functions: See Appendix D.

SORTOUT =ddname
You can use this parameter to specify a ddname to be associated with the
SORTOUT data sets. This allows you to dynamically invoke DFSORT more
than once in a program step, passing a different ddname for each output file.

Notes:

1. SORTOUT is processed only if it is passed on the OPTION control
statement in an extended parameter list.

2. If SORTOUT=ddname and SORTDD=cccc are both specified, ddname is
used for the output file. The same ddname cannot be specified for
SORTIN and SORTOUT.

3. If SORTOUT is specified for a conventional merge or for a tape work data
set sort, DFSORT terminates.

Defaulr: If this parameter is not specified, DFSORT defaults to SORTOUT,
unless SORTDD=cccc is specified, in which case ccccOUT is the default.

Applicable Functions: See Appendix D.

STOPAFT=n
n is the maximum number of records you want accepted for sorting or
copying (that is, read from SORTIN or inserted by E15 and not deleted by
SKIPREC, E15 or INCLUDE/OMIT). When n records have been
accepted, no more records are read from SORTIN; E15 continues to be
entered as if EOF were encountered until a return code of 8 is sent, but no
more records are inserted. If end-of-file is encountered before n records are
accepted, only those records accepted up to that point are sorted or copied.

Notes:
1. STOPAFT is not used for a tape work data set sort.
2. If you specify FILSZ=x or SIZE=x and the number of records accepted

for processing does not equal x, DFSORT issues message ICE047A and
terminates.

Chapter 2. Program Control Statements 85

3. If STOPAFT=0 is in effect, it will not be used.
Default: None; optional.
Applicable Functions: See Appendix D.

VERIFY | NOVERIFY
You can use this parameter to temporarily override the installation option
VERIFY={YES | NO}, that specifies whether sequence checking of the final
output records should be performed.

VERIFY
means that sequence checking is to be performed.

NOVERIFY
means that sequence checking is not to be performed.

Note: Use of VERIFY can degrade performance.

Defaulr: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

VLSHRT | NOVLSHRT
You can use this parameter to temporarily override the installation option
{VLSHRT=YES | NO} that specifies whether DFSORT is to continue
sorting or merging if a variable-length input record is found that is too short
to contain all specified control fields. VLSHRT is not meaningful for
fixed-length record processing.

VLSHRT
means that sorting or merging continues if a “short” record is found.

NOVLSHRT
means that sorting or merging terminates if a “short” record is found.

Notes:

1. VLSHRT is not used if INCLUDE/OMIT, INREC, OUTREC,
and/or SUM are specified.

2. If Blockset is selected:

o DFSORT pads “short” control fields with binary zeroes, thus
making the order predictable for records with equal control
fields of different lengths.

o VLSHRT is not used for a merge application. To use VLSHRT

for a merge application, you must specify the NOBLKSET
option on the OPTION control statement.

86 DFSORT Application Programming: Guide

3. If Blockset is not selected:

o DFSORT terminates if the first byte of the first (major) control
field is not included in the record.

o DFSORT does not pad “’short” control fields, thus making the
order unpredictable for records with equal control fields of
different lengths.

e In certain cases, VLSHRT is not used due to the number and
position of the control fields.

o EQUALS is not used if VLSHRT is in effect.

Default: Usually the installation default, but refer to Appendix D for full override
details.

Applicable Functions: See Appendix D.

OPTION Statement Examples

OPTION Statement Example 1. One Control Field and Related Options

SORT FIELDS=(1,20,CH,A)
OPTION SIZE=50000,SKIPREC=5,CKPT,EQUALS,DYNALLOC

FIELDS
The control field begins on the first byte of each record in the input data set,

is 20 bytes long, contains character data, and is to be sorted into ascending
order.

SIZE
The data set to be sorted contains 50000 records.

SKIPREC
Five records are skipped before starting to process the input data set.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if one of the Blockset techniques is chosen. If
checkpoints are required, you must bypass the Blockset technique by

~ specifying the NOBLKSET option, or by specifying IGNCKPT:NO on the
ICEMAC installation macro.

EQUALS
The sequence of equal collating records is preserved from input to output.

DYNALLOC
One data set (by default) is allocated on SYSDA (by default). The space on
the data set is calculated using the MAINSIZE/SIZE value in effect.

Chapter 2. Program Control Statements 87

OPTION Example 2. The Relationships Between the OPTION and SORT Control
Statements and the ICEMAC Installation Option

SORT FIELDS=(1,2,CH,R) ,CKPT
OPTION EQUALS,NOCHALT,NOVERIFY, CHECK

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted into ascending
order.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if one of the Blockset techniques is chosen. If
checkpoints are required, yon must bypass the Blockset technique by
specifying the NOBLKSET option, or by specifying IGNCKPT=NO on the
ICEMAC installation macro.

EQUALS
The sequence of equal collating records is preserved from input to output.

NOCHALT
Only AQ fields are translated through the ALTSEQ translate table. (This
overrides CHALT=YES, had it been specified at installation time.)

NOVERIFY
No sequence check is performed on the final output records.

CHECK
Record counters are checked at the end of program execution.

OPTION Example 3. Using OPTION to Override SORT

OPTION FILSZ=50,SKIPREC=5,DYNALLOC=3380
SORT FIELDS=(1,2,CH,A),SKIPREC=1,SIZE=200,DYNALLOC=(3350,5)

This example shows how parameters specified on the OPTION control statement
override those specified on the SORT control statement, regardless of the order of
the two statements.

FILSZ
DFSORT expects 50 records on the input data set. (Note that there is a
difference in meaning between FILSZ and SIZE, and that the OPTION
specification of FILSZ is used in place of SIZE.)

SKIPREC
DFSORT causes five records from the beginning of the input file to be
skipped. (SKIPREC=1 on the SORT statement is ignored.)

88 DFSORT Application Programming: Guide

DYNALLOC
DFSORT allocates one work data set (by default) on an IBM 3380.

FIELDS
The control field begins on the first byte of each record in the input data set,
is 2 bytes long, contains character data, and is to be sorted in ascending
order.

OPTION Example 4. Bypassing the Blockset Technique

OPTION NOBLKSET

NOBLKSET
DFSORT bypasses FLR-Blockset or VLR-Blockset regardless of whether
the Blockset technique can be used.

OPTION Example 5. Using STOPAFT and COBEXIT

OPTION STOPAFT=100,COBEXIT=COB2

STOPAFT
DFSORT accepts 100 records before sorting.

COBEXIT
E15 and/or E35 routines can be executed with the VS COBOL II library.

OPTION Example 6. Passing an OPTION Control Statement through a
SORTCNTL or SYSIN Data Stream

OPTION RESINV=32000,MSGPRT=NONE,
MSGDDN=SORTMSGS , SORTDD=ABCD, SORTIN=MYINPUT,
SORTOUT=MYOUTPUT, NOLIST

This example illustrates the parameters RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST, and the actions taken when these parameters
are supplied on an OPTION statement read from the SYSIN data set or the
SORTCNTL data set. The parameters are recognized, but not used.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=NONE

The keyword is ignored, and messages are printed according to the
installation-supplied default.

Chapter 2. Program Control Statements ~ 89

- MSGDDN=SORTMSGS :
The keyword is ignored, and all messages are written to the SYSOUT data
set.

SORTDD=ABCD
The keyword is ignored, and the standard prefix SORT is used.

SORTIN=MYINPUT
The keyword is ignored, and the ddname SORTIN is used to reference the
input data set.

SORTOUT=MYOUTPUT
The keyword is ignored, and the ddname SORTOUT is used to reference the
output data set.

NOLIST
The keyword is ignored, and control statements are printed according to the
installation-supplied defaults.

OPTION Example 7. Passing an OPTION Control Statement in the Extended
Parameter List

OPTION RESINV=32000,MSGPRT=CRITICAL,
MSGDDN=SORTMSGS , SORTDD=ABCD, SORTIN=MYINPUT,
SORTOUT=MYOUTPUT , NOLIST

This example illustrates keywords RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST and the actions taken when these keywords
are supplied on the OPTION control statement passed by an extended parameter
list.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=CRITICAL
Only critical messages are printed on the message data set.

MSGDDN=SORTMSGS
Messages are written to the SORTMSGS data set.

SORTDD=ABCD
SORT uses ABCD as a prefix for all sort names.

90 DFSORT Application Programming: Guide

SORTIN=MYINPUT
The ddname MYINPUT is used to reference the input data set.

SORTOUT=MYOUTPUT
The ddname MYOUTPUT is used to reference the output data set.

NOLIST
Control statements are not printed.

OPTION Example 8. Using COPY with the OPTION statement

SORT FIELDS=(3,4,CH,A)
OPTION COPY,SKIPREC=10,CKPT
MODS E15=(E15,1024,MODLIB) ,E35=(E35, 1024 ,MODLIB)

SORT
The sort statement is ignored because the COPY option has been specified.

COPY
The copy processing is done on a record-by-record basis. So, each record is
read from SORTIN, passed to the E15 exit, passed to the E35 exit, and
written to SORTOUT. (Contrast this with a sort, where all the records are
read from SORTIN and passed to the E15 exit before any records are passed
to the E35 exit and written to SORTOUT.)

SKIPREC
Ten records are skipped before copying starts.

CKPT
The checkpoint option is not used for copy applications.

Chapter 2. Program Control Statements 91

OUTREC Control Statement

OUTREC FIELDS=([s,lp.ml,a]...[s1Lp,[mI[.a]lll,s])

The OUTREC control statement allows you to reformat the input records before
they are output; that is, to define which parts of the input record are to be included
in the reformatted output record, in what order they are to appear, and how they
are to be aligned.

You do this by defining one or more fieids from the input record. The reformatted
output record consists of those fields only, in the order in which you have specified
them, and aligned on the boundaries you have indicated. You can also pad
reformatted output records with blanks and/or binary zeros before, between,
and/or after the input fields, using the s parameter.

For information concerning the interaction of INREC and OUTREC, see “Using
Options That May Enhance Performance” on page 217.

FIELDS=(Is, Ip. mb,all,sll,p,ImlL,alllss])
specifies the order in which the input and separation fields are to appear in
the reformatted output record.

$
indicates a separation field to be inserted into the reformatted output
record in the position you code it relative to the input fields. It can be
specified before or after the p,m,a parameters for any field.
Permissible values are:

nX Blank separation. n bytes of EBCDIC blanks (X'40") are
inserted in the reformatted output records. n may be from 1 to
256.

nZ Binary zero separation. n bytes of binary zeros (X'00") are
inserted in the reformatted output records. n may be from 1 to
256.

Consecutive separation fields may be specified.

For variable-length records:

« Separation field(s) must not be specified before the first input
field (the RDW).

« Separation field(s) must not be specified after the variable part of
the input record.

92 DFSORT Application Programming: Guide

specifies the first byte of the input field relative to the beginning of the
input record.* The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5, because the first four bytes are occupied by the RDW. All
fields must start on a byte boundary, and no field may extend beyond
byte 32000. See “OUTREC Statement Notes” below for special rules
concerning variable-length records.

specifies the length of the input field. It must include the sign if the
data is signed, and must be a whole number of bytes. See note 5 on
page 60 for more information.

specifies the alignment (displacement) of the input field in the
reformatted output record, relative to the start of the reformatted
output record.

The permissible values are:

H Halfword aligned. This means that the displacement (p-1) of
the field from the beginning of the reformatted input record, in
bytes, is a multiple of 2 (that is, position 1, 3, 5, and so forth).

F Fullword aligned. The displacement is 2 multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that
is, position 1, 9, 17, and so forth). ‘

Alignment can be necessary if, for example, the data is to be used in a
COBOL application program where COMPUTATIONAL. items are
aligned through the SYNCHRONIZED clause. Unused space
preceding aligned fields are always padded with binary zeros.

Default: None; must be specified.

Applicable Functions: See Appendix D.

OUTREC Statement Notes

1.

If input records are reformatted by INREC or E15, OUTREC must refer to
fields in the appropriate reformatted record (see p above).

When you specify OUTREC, you should be aware of the change in record size
and layout of the resulting reformatted output records. You should also
understand how reformatting of records affects processing performance, and
how to use INREC and/or OUTREC to achieve the most efficient processing.

4

If INREC is specified, p must refer to the record as reformatted by INREC. If your
E15 exit reformats the record, and INREC is not specified, p must refer to the record
as reformatted by your E15 exit.

Chapter 2. Program Control Statements 93

(See also “INREC Control Statement” on page 58 and “Using Options That
May Enhance Performance” on page 219 for more details).

3. The length of the INREC/OUTREC record (reformatted length) is not used to
determine the LRECL of SORTOUT. If not specified in the DSCB or DD
statement, the value for SORTOUT LRECL will be determined in the usual
way (that is, from the L3 value or SORTIN LRECL). If the reformatted
length does not match the SORTOUT LRECL, the same checks used when the
SORTIN LRECL does not match the SORTOUT LRECL are made and
padding/truncation is performed, if possible. When processing variable-length
records, the maximum SORTIN LRECL. must not exceed the maximum
SORTOUT LRECL.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four
more than the LRECL when processing variable-length records. See “VSAM
Data Set Notes and Limitations” on page 4 for more information.

4. For variable-length records, the first entry in the FIELDS parameter must
specify or include the 4-byte RDW. DFSORT sets the length of the
reformatted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted output record immediately following the RDW, the entry in the
FIELDS parameter can specify both RDW and data field in one. Otherwise,
the RDW must be specifically included in the reformatted output record.

N

The variable part of the input record {that part beyond the minimum recoid
length) may be included in the reformatted output record as the last part. In
this case, a value should be specified for pn that is less than or equal to the
minimum record length (L4) plus 1 byte, and mn and an should be omitted. If
INREC and OUTREC are both specified, either both must specify
position-only for the last part, or neither must specify position-only for the last
part.

Note that, if the reformatted input includes only the RDW and the variable
part of the input record, “null” records containing only an RDW could result.

6. The reformatted output records are in the format specified by OUTREC
regardless of whether INREC was specified.

7. Fields referenced in OUTREC statements may overlap each other and/or
control fields.

8. If input is variable records, the output is also variable. This means that each
record is given the correct RDW by DFSORT before output even if the records
are treated as fixed internally because they are all the same length.

9. When OUTREC is specified, your E35 exit routine must refer to fields in the
reformatted output record.

10. DFSORT issues a message and terminates if an OUTREC statement is
specified for a tape work data set sort or conventional merge application.

94 DFSORT Application Programming: Guide

11. When you specify OUTREC, VLSHRT is not used. If it is specified, it is
ignored.

OUTREC Statement Examples

See INREC Examples 1, 3, and 4 for applications in which both INREC and
OUTREC statements are used in the same job stream to improve performance.

OUTREC Example 1.

OUTREC FIELDS=(11,32)

This statement specifies that the output record should contain 32 bytes beginning
with byte 11 of the input record. This statement can only be used with fixed-length
input records, because it does not include the first 4 bytes.

OUTREC Example 2.

OUTREC FIELDS=(1,4,11,32,D,101)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record should contain an RDW plus 32 bytes of the input
record starting at byte 11 (aligned on a doubleword boundary, relative to the start
of the record) plus the entire variable portion of the input record.

Note that no extra comma is coded to indicate the omission of the first alignment
parameter. If you do include an extra comma, you get a syntax error message and

the program terminates.

OUTREC Example 3.

OUTREC FIELDS=(1,42,D,101)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record should contain an RDW plus the first 38 data bytes
of the input record plus the entire variable portion of the input record.

The 'D' parameter has no effect, because the first field is always placed at the
beginning of the output record.

Chapter 2. Program Control Statements 95

OUTREC Example 4.

SORT FIELDS=(20,4,CH,D,10,3,CH,D)
OUTREC FIELDS=(5X,20,4,H,8X,20,2,10,3,12,1,9,13,7,24,57,62)

This example illustrates how a fixed-length input data set could be sorted and
reformatted for output. The SORTIN LRECL is 80 bytes.

The reformatted output records are fixed length with a record size of 103 bytes and
look as follows. The SORTOUT LRECL should be specified as 103.

Position Contents

1-5 EBCDIC blanks
6 Binary zero (for H alignment)
7-10 Input positions 20 through 23

11-18 EBCDIC blanks

19-20 Input positions 20 through 21
21-23 Input positions 10 through 12
24 Binary zero

25-33 Input positions 1 through 9
34-40 Input positions 13 through 19
41-97 Input positions 24 through 80
98-103 Binary zeros

OUTREC Example 5.

SORT FIELDS=(12,4,PD,D)
RECORD TYPE=V,LENGTH=(,,,100)
OUTREC FIELDS=(1,7,5%,5X,28,8,6%X,101)

This example illustrates how a variable-length input data set could be sorted and
reformatted for output. The variable part of the input records is included in the
output records. The minimum input record size is 100 bytes and the maximum
input record size (SORTIN LRECL or maximum record size for VSAM) is 200
bytes.

The reformatted output records are variable length, with a maximum record size of
131 bytes. For variable records, the maximum output record size (SORTOUT
LRECL) must be equal to or greater than the maximum input record size
(SORTIN LRECL), which in this case is 200. The reformatted records look as
follows:

Position Contents

1-4 RDW (input positions 1 through 4)
5-7 Input positions 5 through 7
8-12 Binary zeros

13-17 EBCDIC blanks

18-25 Input positions 28 through 35

26-31 EBCDIC blanks

32-n Input positions 101 through n (variable part of input records)

96 DFSORT Application Programming: Guide

OUTREC Example 6.

MERGE FIELDS=(28,4,BI,A)
OUTREC FIELDS=(1,4,5%,5X,5,3,28,8,6%)

This example illustrates how input files can be merged and reformatted for output.
The variable part of the input records is not to be included in the output records.
The SORTINnn LRECL is 50 bytes.

The reformatted output records are variable length, with a maximum record size of
31 bytes and look as follows. The SORTOUT LRECL must be 50 bytes.

Position Contents

1-4 RDW (input positions 1 through 4)
5-9 Binary zeros

10-14 EBCDIC blanks

15-17 Input positions 5 through 7

18-25 Input positions 28 through 35
26-31 Binary zeros

Chapter 2. Program Control Statements 97

RECORD Control Statement

RECORD [TYPE=x][,LENGTH=(L1,L2,L3,L4,L5L6,L7)]

The RECORD control statement describes the format and lengths of the records
being processed. It is required when:

¢ Youinclude user exit routines that change record lengths during a DFSORT
program run.

o Input is from a user data set.

+ SORTIN and/or SORTOUT record length information is unavailable.
+ A sort is invoked from a program written in PL /I, or

o Input is from a VSAM data set.

The RECORD control statement can also be used when sorting variable-length
records to supply the minimum and average record lengths to the program.

For details of the RECORD control statement and its parameters, see also
Figure 3 on page 20.

TYPE=x
F
indicates that the records to be processed are fixed-length records.
A/
indicates that the records are EBCDIC variable-length records.
D

indicates that the records are ISCII/ASCII variable-length records.

For QSAM records, the format you specify in the TYPE operand must be the same
as the format you used in the RECFM subparameter of the DCB parameter on the
SORTIN and SORTOUT DD statements (described in Chapter 3, “Job Control
Statements” on page 113), or that given on the data set label. If the formats are
not the same or TYPE is not specified, the program uses the format given in the
data set label/DD statement.

The TYPE operand is always required for VSAM SORTIN or SORTINnn data
sets.

Default: Required for E15 or E32 input if SORTIN or SORTINnn record format
is unavailable; otherwise, defaults to SORTIN or SORTINnn record format.

Applicable Functions: See Appendix D.

98 DFSORT Application Programming: Guide

LENGTH=(L1,L2,L3,L4,L.5,L.6,L.7)
This parameter is required when you change record lengths at one or more
exits, or when no SORTIN DD statement is supplied.

L1

L2

L3

L4

L5

Input record length, L1, is required only when no SORTIN or
SORTINnn DD statement is supplied. L1 must be at least as large as
the maximum input record size; if it is larger than needed,
performance can be degraded.

For VSAM input data sets, if the L1 value is not equal to the
maximum record size defined in the cluster for fixed-length records, it
is overridden by the cluster value. If processing variable-length
records with VSAM input and non-VSAM output, the L1 value must
be four more than the value defined in the cluster. See ‘“‘VSAM Data
Set Notes and Limitations” on page 4 for more information.

L2 is the record length after E15. It is extremely important to specify
an accurate value for L2 if you change record lengths at E15. Note
that, except for Blockset, if you have specified a value for L.1 but not
for 1.2, the value you specified acts as a default for L2 even if the L1
value has subsequently been overridden.

If work units are tape, the minimum length for records to be sorted
(L2) is 18 bytes.

Output record length, 1.3, can usually be supplied by default: you
need to specify L3 only if no LRECL (or maximum RECSZ, for
VSAM) is available for SORTOUT, either in the DD statement or in
the label, and the L1 value is inappropriate.

For VSAM SORTOUT data sets, if the 1.3 value is not equal to the
maximum output record size defined in the VSAM cluster, it is
overridden by the cluster value.

Specifying the minimum record length (L4) may help performance.
However, if you specify too large a value, the program fails and issues
message ICEO15A. The default for L4 is the minimum length needed
to contain all control fields; if this length is less than 18 bytes, then 18
bytes is used instead—unless the records are shorter than 18 bytes, in
which case record length is used. L4 is not used for Blockset.

L5 is the average record length for variable-length records.

L6, L7

L6 and L7 are accepted, but not used; they are reserved for future
use.

Chapter 2. Program Control Statements 99

Default: For defaults, see RECORD in Figure 3 on page 20.

Usual syntax rules apply:
e You can drop values from the right, that is, LENGTH=(80,70,70,70).

¢ You can omit values from the middle or left, provided you indicate their
omission by a-.comma, that is, LENGTH=(,,,30,80).

Applicable Functions: See Appendix D.

RECORD Statement Examples

RECORD Example 1. Fixed-Length, Three Length Values

RECORD TYPE=F , LENGTH=(60,40,50)

TYPE
The input records are fixed length.

LENGTH
The records in the input data set are each 60 bytes long. Exit E15 is used to
change the records to 40 bytes in the sort phase and exit E35 is used to
change the records to 50 bytes in the final merge phase.

RECORD Example 2. Variable-Length, Five Length Values

RECORD TYPE=V,LENGTH= (200,175, 180,50,80)

TYPE
The records in the input data set are EBCDIC variable-length.

LENGTH
'The maximum length of the records in the input data set is 200 bytes. In the
sort phase, you reduce the maximum record length to 175 bytes. You add
five bytes to each record in the final merge phase, making the maximum
record length in the output data set 180 bytes. The minimum record length
handled by the sort phase is 50 bytes and the average record length is 80
bytes. v

RECORD Example 3. Variable Length, Two Length Values

RECORD TYPE=V,LENGTH=(200,,,,80)

100 DFSORT Application Programming: Guide

TYPE .
The records in the input data set are EBCDIC variable-length records.

LENGTH
The maximum length of the records in the input data set is 200 bytes. You
do not change record lengths, so you omit L2 and L.3; L4 is also omitted.
The average record length is 80 bytes.

Chapter 2. Program Control Statements 101

SORT Control Statement

SORT {FIELDS=(p,m,f.s....p,m,f.5) |
FIELDS=(p,m.s...,p,m,s), FORMAT=f|
FIELDS=COPY}

[,CKPT]

[LDYNALLOC[={d | (d) | (,n) | (d,n)}]]
[LEQUALS | NOEQUALS]

[FILSZ=x | ,SIZE=y | FILSZ=En | ,SIZE=En]
[,SKIPREC=z]

The SORT control statement must be used when a sorting application is to be

performed; this statement describes the control fields in the input records on which
the program sorts.

A SORT statement can also be used to specify a copy application.

The options available on the SORT statement can be specified in other sources, as
well. A table showing all possible sources for these options and the order of
override is given in Appendix D.

When an option can be specified on either the SORT or OPTION statement, it is
preferable to specify it on the OPTION statement.

FIELDS =(p,m,f.5...,p,m.f,s)
The program requires four facts about each control field in the input records:
the position of the field within the record, the length of the field, the format
of the data in the field, and the sequence into which the field is to be sorted.
These facts are communicated to DFSORT by the values of the FIELDS
operand, represented by p, m, f, and s in Figure 3 on page 20.

All control fields must be located within the first 4092 bytes of a record, and
must not extend beyond the shortest record to be sorted. The collected
control fields (comprising the control word) must not exceed 4092 bytes
long (or, when the EQUALS option is in operation, 4088 bytes). As shown
in Figure 3 on page 20, the FIELDS operand can be written in two ways.

Use the first FIELDS operand format to describe control fields that contain
different data formats; use the second format to describe SORT fields that
contain data of the same format. The second format is optional; if you
prefer, you can always use the first format.

The program examines the major control field first, and it must be specified
first. The minor control fields are specified following the major control field.
In Figure 3 on page 20, e, m, f, and s describe the control fields. The
specifications for the parameters in the SORT control statement are
summarized in Figure 3. The text that follows gives these specifications in
detail.

102 DFSORT Application Programming: Guide

specifies the first byte of a control field relative to the beginning of the
input record.’

The first data byte of a fixed-length record has relative position 1. The
first data byte of a variable-length record has relative position 5
(because the first 4 bytes contain the RDW). All control fields, except
binary, must begin on a byte boundary. The first byte of a
floating-point field is interpreted as a signed exponent; the rest of the
field is interpreted as the fraction.

- Note that the beginning of a variable-length record must include a

4-byte record descriptor word (RDW) that precedes the actual record.
This is also true for VSAM input records, for which DFSORT supplies
the necessary RDW on input to the program and removes it again at
output (if output is to a VSAM data set). You should therefore
always add four to the byte position in variable-length records.

Fields containing binary values are described in a “bytes.bits’’ notation
as follows:

1. First, specify the byte location relative to the beginning of the
record and follow it with a period.

2. Then, specify the bit location relative to the beginning of that
byte. Remember that the first (high-order) bit of a byte is bit 0
(not bit 1); the remaining bits are numbered 1 through 7.

Thus, 1.0 represents the beginning of a record. A binary field
beginning on the third bit of the third byte of a record is represented
as 3.2. When the beginning of a binary field falls on a byte boundary
(say, for example, on the fourth byte), you can write it in one of three
ways:

Eog =

5

If INREC is specified, p must refer to the record as reformatted by INREC. If your
E15 exit reformats the record, and INREC is not specified, p must refer to the record
as reformatted by your E15 exit.

Chapter 2. Program Control Statements 103

Other examples of this notation are:

\ \

1.0 [2.2 /3.0
1. .

specifies the length of the control field. All control fields except
binary must be a whole number of bytes long. Binary fields are
expressed in the notation “bytes.bits”. The length of a binary control
field that is a whole number (d) of bytes long can be expressed in one
of three ways:

d.o
d.
d

The number of bits specified must not exceed 7. A control field 2 bits
long would be represented as 0.2.

The total number of bytes occupied by all control fields must not
exceed 4092 (or, when the EQUALS option is in operation, 4088
bytes). When you determine the total, count a binary field as
occupying an entire byte if it occupies any part of it. For example, a
binary field that begins on byte 2.6 and is 3 bits long occupies two
bytes. All fields must be completely contained within the first 4092
bytes of the record.

This three bit binary control field

%
_

N
W

V
‘occupies two bytes

specifies the format of the data in the control field. Acceptable control
field lengths (in bytes) and available formats are shown in Figure 11
on page 105.

104 DFSORT Application Programming: Guide

Format Length Description
CH 1-4092 Character EBCDIC, unsigned.
1-256 If CHALT=YES is in effect, CH is treated the same
as AQ.
7D 1-32 Zoned decimal, signed.
PD 1-32 Packed decimal, signed.
FI 1-256 Fixed-point, signed.
BI 1 bit- Binary, unsigned.
4092 bytes
FL 1-256 Floating-point, signed.
AC 1-256 Character ISCII/ASCII, unsigned.
CSL 2-256 Signed numeric, leading separate sign.
CST 2-256 Signed numeric, trailing separate sign.
CLO 1-256 Signed numeric, leading overpunch sign.
CTO 1-256 Signed numeric, trailing overpunch sign.
ASL 2-256 Signed numeric, ISCII/ASCII, leading separate sign.
AST 2-256 Signed numeric, ISCII/ASCII, trailing separate sign.
AQ 1-256 Character EBCDIC, alternate collating sequence.

Figure 11. Control Field Formats/Lengths

If you specify more than one control field and all the control fields contain the
same type of data, you can omit the f parameters and use the optional FORMAT
operand, described below.

All floating-point data must be normalized before the program can collate it
properly. You can use a routine of your own to do this at execution time, by
associating it with one of the program exits. Specify the E option for the value of s
in the FIELDS operand for each control field you are going to modify.

See Appendix F, “EBCDIC and ISCII/ASCII Collating Sequences” on page 301,
for data format examples.

Chapter 2. Program Control Statements 105

specifies how the control field is to be ordered. The valid codes are:

A—ascending order
D—descending order
E—control fields to be modified

Specify E if you include user routines to modify control fields before
the program sorts them. After a user routine modifies the control
fields, DFSORT collates them using the format(s) specified ¢ and
ascending order.

For information on how to add a user routine to modify a control field, see
Chapter 4, “User Exit Routines” on page 135.

Default: None; a parameter must be specified.
Applicable Functions: See Appendix D.

FORMAT=/
f can be used to specify the format of the data described in the FIELDS
parameter, if you specify more than one control field and the data in all the
control fields is of the same format. The possible values of f are listed in
Figure 3 on page 20.

If you specify more than one control field, and the data in the several fields
has different formats, you must specify an f parameter for each field instead
of using FORMAT.

If you have specified the COPY operand, FORMAT=f cannot be specified.
Default: None; must be specified if not included in FIELDS parameter.
Applicable Functions: See Appendix D.

FIELDS=COPY
See the discussion of the COPY parameter on the OPTION statement.

CKPT
See the discussion of this operand on the OPTION statement.

DYNALLOC[=4d | (d) | (,n) | (d.n)}] (MVS Only)
See the discussion of this parameter on the OPTION statement.

EQUALS | NOEQUALS
See the discussion of this parameter on the OPTION statement.

FILSZ=x | SIZE=y | FILSZ=En | SIZE=En
See the discussion of this parameter on the OPTION statement.

6 With a conventional merge or a tape work data set sort, control fields for which E is
specified are treated as binary byte format regardless of the actual format(s) specified.

106 DFSORT Application Programming: Guide

SKIPREC=z
See the discussion of this parameter on the OPTION statement.

SORT Statement Note
If the records are reformatted by INREC or E15, SORT must refer to fields in the

appropriate reformatted record (see the description for “p” following “FIELDS”
above).

SORT Statement Examples

SORT Example 1. One Control Field and File Size Option

SORT FIELDS=(2,5,CH,A) ,FILSZ=29483

FIELDS
The control field begins on the second byte of each record in the input data
set, is five bytes long, contains character data, and is to be sorted into
ascending sequence.

FILSZ
The data set to be sorted contains exactly 29483 records.

SORT Example 2. Five Control Fields, Size, Checkpoint, and Dynamic Allocation
Options

SORT FIELDS=(7,3,CH,D,1,5,FI,A,398.4,7.6,B1,D,99.0,230.2,
BI,A,452,8,FL,A) ,FILSZ=10693,CKPT,DYNALLOC= (3330, 4)

FIELDS
The first four values describe the major control field. It begins on byte 7 of
each record, is 3 bytes long, contains character (EBCDIC) data, and is to be
sorted into descending sequence.

The next four values describe the second control field. It begins on byte 1, is
5 bytes long, contains fixed-point data, and is to be sorted into ascending
sequence.

The third control field begins on the fifth bit (bits are numbered 0 through 7)
of byte 398. The field is 7 bytes and 6 bits long (occupies 9 bytes), and
contains binary data to be placed in descending order.

The fourth control field begins on byte 99, is 230 bytes and 2 bits long,
contains binary data, and should be sorted into ascending order.

The fifth control field begins on byte 452, is 8 bytes long, contains

normalized floating-point data, which is to be sorted into ascending order. If
the data in this field were not normalized, you would specify E instead of A

Chapter 2. Program Control Statements 107

and include your own routine to normalize the field before the program
examined it.

FILSZ ,
The data set to be sorted contains exactly 10693 records.

CKPT
Instructs the program to take checkpoints during this run.

Note: 1f the Blockset technique is chosen, the CKPT option is ignored. If
checkpoints are required, the Blockset technique can be bypassed by
specifying either IGNCKPT=NO on the ICEMAC installation macro or
NOBLKSET on the OPTION statement.

DYNALLOC (MVS only)
Four work data sets are allocated on 3330. The space on each data set is
calculated using the FILSZ value.

SORT Example 3. Two Control Fields, User Modification, Size Option

SORT FIELDS=(3,8,zD,E,40,6,CH,D) ,FILSZ=E30000

FIELDS
The first four values describe the major control field. It begins on byte 3 of
each record, is 8 bytes long, and contains zoned decimal data that is
modified by your routine before sort examines the field.

The second field begins on byte 40, is 6 bytes long, contains character
(EBCDIC) data, and is sorted into descending sequence.

FILSZ
The input data set contains approximately 30000 records.

SORT Example 4. Two Control Fields, Format and Equals Options

SORT FIELDS=(25,4,A,48,8,A) ,FORMAT=ZD, EQUALS

FIELDS
The major control field begins on byte 25 of each record, is 4 bytes long,
contains zoned decimal data (FORMAT=ZD), and is to be sorted into
ascending sequence.

The second control field begins on byte 48, is 8 bytes long, has the same
data format as the first field, and is also to be sorted into ascending order.

108 DFSORT Application Programming: Guide

FORMAT
The FORMAT=f option can be used because both control fields have the
same data format. It would also be correct to write this SORT statement as
follows:

SORT FIELDS=(25,4,ZD,A,48,8,2ZD,A) ,EQUALS

EQUALS
specifies that the sequence of equal collating records is to be preserved from
input to output.

SORT Example 5. COPY Option

SORT FIELDS=COPY

FIELDS
The input data set is copied to the output data set without sorting or
merging.

Chapter 2. Program Control Statements 109

SUM Control Statement

SUM {FIELDS=(p,m.f....p,m,f) |
FIELDS=(p,m...,p,m),FORMAT=f|
FIELDS=NONE}

The SUM control statement specifies that, whenever two records are found with
equal control fields, the contents of their summary fields are to be added, the sum
is to be placed in one of the records, and the other record is to be deleted.

FIELDS=(p,m.f...p,m.f)
designates numeric fields in the input record as summary fields.

P
specifies the first byte of the field relative to the beginning of the input
record.” The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5, as the first four bytes are occupied by the RDW. All fields
must start on a byte boundary, and no field may extend beyond byte
4092.

m
specifies the length in bytes of the summary fields to be added. The
value must include the sign, if signed data. See below for permissible
length values.

f
specifies the format of the data in the summary field, which can only
be of the following types:
Code Length Description
BI 2,4,o0r 8 bytes Binary, unsigned
FI 2,4,0r 8 bytes Fixed-point, signed
PD 1-16 bytes Packed decimal, signed
7D 1-18 bytes Zoned decimal, signed

NONE

eliminates records with duplicate keys. Only one record with each key
is kept and no summarization is performed.

Default: None; must be specified.

7 If INREC is specified, p must refer to the record as reformatted by INREC. If your
E15 exit reformats the record, and INREC is not specified, p must refer to the record
as reformatted by your E15 exit.

110 DFSORT Application Programming: Guide

SUM Statement Notes

Appilicable Functions: See Appendix D.

FORMAT=f

can be used when all the summary fields contain the same type of data. The
values for f are listed above.

Default: None; optional.

Applicable Functions: See Appendix D.

If input records are reformatted by INREC or E15, SUM must refer to fields in
the appropriate reformatted record (see the description of p above).

The size of the routine generated by DFSORT to handle the SUM function is
dependent on how many fields are referenced, and what lengths and formats
they have. The size of the routine must not exceed 4096 bytes or DFSORT
issues a message and terminates.

Summary fields must not be control fields. They must not overlap control
fields, or each other, and must not overlap the RDW.

Floating-point fields must not be summarized.

When records are summarized, the choice of which record is to receive the sum
(and be retained) and which record is to be deleted is unpredictable unless
EQUALS is in effect and the BLOCKSET technique is being used. In this
case, the first record (based on the sequence described under

EQUALS | NOEQUALS on page 77) is chosen.

Fields other than summary fields remain unchanged and are taken from the
record that receives the sum.

If overflow occurs, the two records involved are left unsummarized (that is, the
contents of the records are left undisturbed and neither record is deleted).

Overflow does not prevent further summary.

DFSORT issues a message and terminates if a SUM statement is specified for a
tape work data set sort or conventional merge.

Summation of data with invalid sign or digit codes results in a data exception
(0C7 ABEND).

Chapter 2. Program Control Statements 111

SUM Statement Examples

SUM Example 1.

SUM FIELDS=(41,8,2ZD,49,4,FI)

This statement designates an 8-byie zoned decimal field at byte 41, and a 4-byte
fixed-integer field at byte 49, as summary fields.

SUM Example 2.

SUM FIELDS=(41,8,49,4) ,FORMAT=FI

This statement illustrates the use of the FORMAT operand. The statement
designates two fixed-integer fields, one 8 bytes long starting at byte 41, and the
other 4 bytes long starting at byte 49.

112 DFSORT Application Programming: Guide

Chapter 3. Job Control Statements

This chapter describes the job control language (JCL) statements you must write
for the program. To describe your application to the operating system, you must
include JCL statements with each program application you submit for execution.

The job control statements required for a program application include a JOB
statement, an EXEC statement, and several DD statements. The inclusion of
certain JCL statements depends on whether you initiate the program with an
EXEC statement in the input job stream, or with a system macro instruction within
your own program. The JCL statements you include can also depend on whether
or not you want to use program exits for routines of your own. If you intend to use
system macro instructions or program exits, or both, you should be familiar with
the material in Chapters 4 and 5. These statements, their functions, and the order
in which they are arranged in the system input stream are shown in Figure 12.

While reading this chapter, you may need the appropriate JCL. reference manual for
supplementary information; you should have it available for reference.

//jobname

JOB

Preceding job steps, if any.

Always needed.

//stepname EXEC Always needed.
The following DD statements can be in any order:

//STEPLIB DD (Or JOBLIB) Omit when using a supplied cataloged procedure.

//SORTLIB DD Only needed for a sort using tape work files or a merge using
the conventional technique. Omit when using a supplied
cataloged procedure.

//SYSOUT DD Usually needed for messages. Omit when using a supplied
cataloged procedure.

//DDname DD Library definition if you use routines from a library.

//SORTIN DD Usually needed for sort or copy processing.
For a merge, the SORTINnn DD statements must be used instead.

//SORTOUT DD Usually needed.

Figure 12 (Part 1 of 2). Input Job Stream

Chapter 3. Job Control Statements 113

// SORTWKnn DD Not needed for a sort in main storage, a merge, or a copy.
Must not be included if you want dynamic allocation.
(The ddname SORTDKnn is used by the program instead of
SORTWKann if it carries out dynamic reallocation.)
//SORTCKPT DD Only needed if checkpoints are to be taken.
//SORTDIAG DD Only needed for debugging.
//SYSUDUMP (Or SYSABEND or SYSMDUMP) Required only if a
dump is needed.
//SORTMODS DD Needed if you have user exit routines in SYSIN.
//SYSPRINT DD Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.
//SYSUT1 DD Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.
//SYSLIN DD Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.
//SYSLMOD DD Needed if you are using the linkage editor.
Omit when using the supplied SORT cataloged procedure.
//SORTCNTL. DD * Needed if DFSORT is dynamically invoked and
you want to define a data set from which additional or changed
DFSORT control statements can be read.
//SYSIN DD * Needed if DFSORT is JCL invoked or needed to
contain user exit routines to be link-edited by
DFSORT, in object deck format.
SORT or MERGE
OPTION
RECORD
MODS
INREC
OUTREC
INCLUDE or OMIT
SUM
ALTSEQ
DEBUG
END
/*

Figure 12 (Part 2 of 2).

Input Job Stream

114 DFSORT Application Programming: Guide

Notes to Figure:

1. All DFSORT control statements, except for the END
statement, can be specified in any order.

2. Either a SORT or MERGE control statement is always
required unless COPY is specified on the OPTION state-
ment. See Chapter 2 for an explanation of when the
other statements are needed.

JOB Statement

The JOB statement is the first JCL statement of your job. It must contain a valid
job name in its name field and the word JOB in its operation field. All parameters
in its operand field are optional, although your installation may make such
information as the account number and the programmer’s name mandatory.

//jobname JOB accounting information, programmer’s name, and so forth.

EXEC Statement

The EXEC statement is either the first JCL statement of each job step, or of each
procedure step in a cataloged procedure. It identifies DFSORT to the operating
system. You may also specify DFSORT options on the EXEC statement.

A cataloged procedure is a set of JCL statements, including DD statements, that
has been assigned a name and placed in a partitioned data set known as the
procedure library. Two cataloged procedures are supplied with the program:
SORT and SORTD. They are specified in the first parameter of the EXEC
statement by PROC=SORT, PROC=SORTD, or simply SORT or SORTD.

The format of the EXEC statement is:

//stepname EXEC {[PGM=SORT | ICEMAN] | [PROC=SORT | SORTD] |
[SORT | SORTD]}
[LPARM="‘options’]
[,other parameters]

If you are not using a cataloged procedure, you should use PGM= either with the
actual name of the sort module (ICEMAN) or with its alias, SORT. Check that the
alias has not been changed at your particular installation.

If you are using a cataloged procedure, specify PROC=SORT | SORTD. You may

omit PROC= and specify simply SORT or SORTD; however, PROC= serves as a
reminder that a cataloged procedure is being used.

Chapter 3. Job Control Statements 115

“SORT” Cataloged Procedure

You can use the supplied SORT cataloged procedure when you include user
routines that require link-editing. To use this procedure without using link-edited
user routines is inefficient because the SORT cataloged procedure allocates linkage
editor data sets, whether or not you include user routines.

When you specify EXEC PROC=SORT or EXEC SORT, the following JCL
statements are generated:

//SORT EXEC
//STEPLIB DD
//SORTLIB DD
//SYSOUT DD
//SYSPRINT DD
//SYSLMOD DD

PGM=ICEMAN ' 00
DSNAME=yyy , DISP=SHR 10
DSNAME=xxx , DISP=SHR 20
SYSOUT=A 30
DUMMY 40

DSNAME=&GOSET ,UNIT=SYSDA, SPACE= (3600, (20,20,1)) 50

10

20

30

40

50

60

//SYSLIN DD DSNAME=ELOADSET, UNIT=SYSDA, SPACE= (80, (10,10)) 60
//SYSUT1 DD DSNAME=§SYSUT1,SPACE= (1024, (60,20)), 70
// UNIT=(SYSDA, SEP=(SORTLIB,SYSLMOD,SYSLIN)) 80
Line Explanation
00 The stepname of the procedure is SORT. This EXEC statement initiates

the program, which is named ICEMAN.

The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data is
cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYS1.LINKLIB.

The SORTLIB DD statement defines the data set that contains the
modules needed for a sort using tape work files or a merge that uses the
conventional technique. The data set is cataloged, and the data set name
represented by xxx was specified at operation time; it can be
SYS1.SORTLIB.

Defines an output data set for system use (messages). It is directed to
system output class A.

Defines SYSPRINT as a dummy data set because linkage editor diagnostic
output is not required.

Defines a data set for linkage editor output. Any system direct access
device is acceptable for the output. Space for 20 records with an average
length of 3600 bytes is requested; this is the primary allocation. Space for
20 more records is requested if the primary space allocation is not
sufficient; this is the secondary allocation, which is requested each time
space is exhausted. The last value is space for a directory, which is
required because SYSLMOD is a new partitioned data set.

The SYSLIN data set is used by the program for linkage editor control
statements. It is created on any system direct access device, and it has
space for 10 records with an average length of 80 bytes. If the primary

116 DFSORT Application Programming: Guide

space allocation is exhausted, additional space is requested in blocks large
enough to contain 10 records. No directory space is necessary.

70/80 The SYSUT1 DD statement defines a work data set for the linkage editor.

“SORTD” Cataloged Procedure

PARM="*options’

You can use the supplied SORTD cataloged procedure when you:

« Do not include user routines, or

¢ Include user routines that do not require link-editing.

When you specify EXEC PROC=SORTD or EXEC SORTD, the following JCL
statements are generated:

//SORT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//SORTLIB DD DSNAME=xxx,DISP=SHR 20
//SYSOUT DD SYSOUT=A 30

Line Explanation

00 The stepname of the SORTD procedure is SORT.

10 The STEPLIB DD statement defines the data set containing the
sort/merge program modules that reside in a link library. The data set is
cataloged, and the data set name represented by yyy is specified at
generation time; it can be SYS1.LINKLIB.

20 The SORTLIB DD statement defines the data set that contains the
modules needed for a sort using tape work files or a merge that uses the
conventional technique. The data set name of the program subroutine
library, represented by xxx, is specified at generation time; it can be
SYS1.SORTLIB.

30

Directs messages to system output class A.

Certain DFSORT options can be specified on the PARM parameter when
DFSORT is JCL invoked. They can be specified in any order. For full override
details and applicability, see Appendix D.

Chapter 3. Job Control Statements 117

PARM=‘[ARESALL={n | nK}]
[LBSAM]
[,LIST | NOLIST]
[LE15=COB]
[,E35=COB]
[, MSGDDN=ddname]
[LMSGPRT={ALL | CRITICAL | NONE}]
[LRESALL={n| nK}]
[LSIZE={n | nK | MAX | MAX-m | MAX-mK}]’

ARESALL={n | nK}
You can use this parameter to temporarily override the installation option,
ARESALL=n|nK. For an explanation of this parameter, see the
ARESALL parameter of the OPTION statement.

« ARESALL=n, where n is a decimal value representing the number of
bytes of storage to be reserved.

Limit: 8 digits.

« ARESALL=nK, where nK specifies n times 1024 bytes of storage are to
be reserved.

Limit: 5 digits.

BSAM
For disk processing the EXCP access method is normally used for SORTIN
and SORTOUT. If you encounter a problem related to this with 1/O
activity, you can temporarily bypass it by specifying BSAM.

This option is ignored if VSAM SORTIN or SORTOUT data sets are
specified.

LIST | NOLIST
You can use this parameter to temporarily override the installation option,
LIST={YES | NO}, that specifies whether program control statements
should be listed. See Appendix H for full details on use of the message data
set.

+ LIST means that all DFSORT control statements are printed on the
message data set.

+ NOLIST specifies that control statements are not printed.

E15=COB
You can use this parameter to specify that your E15 routine is written in
COBOL. It can temporarily override the MODS statement for E15. If you
specify E15=COB but do not identify an E15 module by a MODS
statement, the E15=COB is ignored.

E35=COB
You can use this parameter to specify that your E35 routine is written in
COBOL. It can temporarily override the MODS statement for E35. If you
specify E35=COB but do not identify an E35 module by a MODS
statement, the E35=COB is ignored.

118 DFSORT Application Programming: Guide

MSGDDN =ddname
You can use this parameter to temporarily override the installation option
MSGDDN=ddname. For an explanation of this parameter, see the
MSGDDN parameter of the OPTION statement.

The ddname can be any 1- through 8-character name, but must be unique
within the job step; do not use a name that is used by DFSORT (for
example, SORTIN). If the ddname specified is not available at execution
time, SYSOUT is used instead. For details on using the message data set,
see Appendix H.

MSGPRT={ALL | CRITICAL | NONE}
You can use this parameter to temporarily override the installation option,
MSGPRT={ALL | CRITICAL | NONE3}, that specifies the class of messages
to be written to the message data set. See Appendix H, “DFSORT
Messages and Codes” on page 311, for full details on use of the message
data set

» ALL means that all messages except diagnostic messages ICES800I to
ICE999I are to be printed on the message data set. Control statements
are printed only if LIST is in effect.

e« CRITICAL means that only critical messages are to be printed on the
message data set. Control statements are printed only if LIST is in
effect.

« NONE means that no messages or control statements are to be printed.

For compatibility reasons, the forms FLAG(I) | FLAG(U) | NOFLAG, and
MSG={NO|AP|AC|CC|CP|PC} are also accepted.

Following is the MSGPRT/MSGCON equivalence for these options:

Option MSGPRT MSGCON
MSG=NO NONE , NONE
MSG=AP ALL CRITICAL
MSG=AC NONE ALL
MSG=CC NONE CRITICAL
MSG=CP CRITICAL CRITICAL
MSG=PC ALL ALL
NOFLAG NONE CRITICAL
FLAG(I) ALL CRITICAL
FLAG(U) CRITICAL CRITICAL

RESALL={n|nK}
You can use this parameter to temporarily override the installation option
RESALL=n|nK. For an explanation of this parameter, see the RESALL
parameter of the OPTION statement.

« RESALL=n, where n is a decimal value representing the number of
bytes of storage to be reserved, when SIZE/MAINSIZE=MAX is in
effect. If you specify less than 4096, 4096 is used.

Limit: 8 digits.

Chapter 3. Job Control Statements 119

+« RESALL=nK, where oK specifies n times 1024 bytes of storage are to
be reserved, when SIZE/MAINSIZE=MAX. If you specify less than
4K, 4K is used.

Limit: § digits.

Note: For MVS/XA systems, RESALL applies only to the amount of main
storage below 16-megabyte virtual. The ARESALL option applies to the
amount of main storage above 16-megabyte virtual.

SIZE={n | nk | MAX | MAX-m | MAX-mK}
You can use this parameter to temporarily override the installation option
SIZE=MAX | n. For an explanation of this parameter, see the MAINSIZE
parameter of the OPTION statement.

¢ SIZE=n, where n is a decimal value representing the number of bytes of
main storage to be allocated.

e« SIZE=nK, where nK specifies n times 1024 bytes of main storage are to
be allocated. The value n may be 1 through 5 digits.

e SIZE=MAX, which instructs the program to calculate the amount of
main storage available and allocate this maximum amount, up to the
MAXLIM value (or the TMAXLIM value for an MVS/XA system) set
when DFSORT was installed.

e SIZE=MAX-m, where m is the RESALL value. MAX-m instructs the
program to calculate the amount of storage available and allocate this
amount up to the MAXLIM value (or the TMAXLIM value for an
MVS/XA system) minus the amount of storage reserved for system and
application use (RESALL).

e SIZE=MAX-mK, where mK (m times 1024) is the RESALL value. The
value m may be 1 through 5 digits. MAX-mK instructs the program to
calculate the amount of storage available and allocate this amount up to
the MAXILIM value (or the TMAXLIM value for an MVS/XA system)
minus the amount of storage reserved for system and application use
(RESALL).

Note: The program also accepts the parameter CORE for this option. SIZE
and CORE may not both be specified at the same time. For compatibility
reasons, it also accepts the formats SIZE (option) and CORE (option).

120 DFSORT Application Programming: Guide

DD Statements

A number of DD statements must be provided after the EXEC statement. Some
are system DD statements, and are usually supplied by the cataloged procedure, if
you use one; others, you must always supply yourself if they are required. They are
described below under “System DD Statements” on page 124 and “Program DD
Statements” on page 125, respectively.

The DD statement parameters, the conditions under which they are required, and
the default values, are summarized in Figure 13. The subparameters of the DCB
parameter (a DD Statement parameter) are described similarly in Figure 14 on
page 123. Performance is enhanced if the LRECL subparameter of the DCB is
accurately specified for variable-length records. The maximum input record length
you can specify for your particular configuration is given in “Input and Output
Data Sets” on page 3.

When using DFSORT applications, FREE=CLOSE cannot be used on any DD

statements.
Condition Under Which Summary of Parameter
Parameter Required Values Default Value
DSNAME When the DD statement Specifies the fully qualified or The system assigns a
or defines a labeled input data temporary name of the data unique name.
DSN set (for example, SORTIN), set.
or when the data set being
created is to be kept or
cataloged (for example,
SORTOUT), or passed to
another step.
DCB Always required when 7-track Specifies information used to (See separate
tape is used; for input on tape fill the data control block subparameters in
without standard labels; and (DCB) associated with the Figure 14.)
when the default values are data set.
not applicable.
UNIT When the input data set is Specifies (symbolically or
neither cataloged nor passed actually) the type and quantity
or when the data set is being of I/0 units required by the
created. data set.
SPACE When the DD statement Specifies the amount of space
defines a new data set on needed to contain the data set.
direct access.

Figure 13 (Part 1 of 2).

DD Statement Parameters Used by DFSORT

Chapter 3. Job Control Statements

121

Condition Under Which Summary of Parameter
Parameter Required Values Default Value
VOLUME When the input data set is Specifies information used to
or neither cataloged nor passed, identify the volume or
VOL for multireel input or when volumes occupied by the data
the output data set is on direct | set.
access and is to be kept or
cataloged.
LABEL When the default value is not Specifies information about The system assumes
applicable. labeling and retention for the standard labeling.
data set.
DISP When the default value is not Indicates the status and The system assumes
applicable. disposition of the data set. (NEW, DELETE).
{AMP | When password-protected Minimum buffer pool value None.
BUFSP} VSAM data sets are used and given when creating the data
the password is supplied set.
through E18, E38 or E39.

Figure 13 (Part 2 of 2).

Shared Tape Units

DD Statement Parameters Used by DFSORT

A single tape unit may be assigned to two DFSORT data sets when the data sets
are one of the following pairs:

« The input data set and the first intermediate storage data set (SORTWKO01)
« The input data set and the output data set

If you want to associate the SORTIN data set with SORTWKO1, you could include
in the DD statement for SORTWKO1 the parameter: UNIT=AFF=SORTIN. The
AFF subparameter causes the system to place the data set on the unit occupied by
the data set associated with the ddname following the subparameter (SORTIN, in
this case).

In the same way, you could associate SORTIN with SORTOUT by including
UNIT=AFF=SORTIN in the SORTOUT DD statement.

122 DFSORT Application Programming: Guide

Condition Under Summary of
Subparameter Which Required Subparameter Values Default Value
DEN When the data set Specifies the density 800 bpi
is located on a at which the tape was
7-track 2400-series tape was recorded.
tape unit.
TRTCH When the data set Specifies the technique Converter not
is located on a used to record 8-bit used, translator
7-track 2400-series bytes on a 7-track type. not used, odd
tape unit. parity.
RECFM Specifies the format of e For old data
the records in the data sets, the
set. value in the
When the DCB data set label.
parameter is Specifies the maximum e For a new
LRECL! required and the length (in bytes) of SORT—-OUT data
default value is the logical records in sets, the same
not suitable, the data set. as for the first
except on : SORTIN or
SORTWKnn state— SORTINnn data set.
BLKS1ZE2 ments. Specifies the maximum * No default if
length (in bytes) of input on unlabeled
the physical records tape, or BLP or
in the data set. NSL specified.
OPTCD When processing data Specifies that the
in ISCII/ASCI] tape processed is
format. in ISCII/ASCI|
format.
BUFOFF When processing data Specifies the length
in ISCII/ASCII of the buffer offset
format. or specifies that the
buffer offset is the
block length indicator.
With fixed—length records, except under some circumstances, padding (on the right
with binary zeros) for sort or copy applications or truncation (from the right?
for sort and merge applications occurs if the record length of the output data set
is different from that of the input data set. However, if user exits modify records,
they are responsible for the padding and truncation.
2This is the only subparameter allowed for DD * data sets.

Figure 14. DCB Subparameters Used by DFSORT

Chapter 3. Job Control Statements 123

System DD Statements

If you do not use a cataloged procedure to invoke the program, you may need to
include system DD statements in the input stream. (See also the following section
for DD statements dedicated to DFSORT, such as SORTLIB.) The DD statements
contained in the cataloged procedure (or provided by you) are:

//JOBLIB DD

//STEPLIB DD

//SYSIN DD

//SYSOUT DD

//SYSUDUMP DD

//SYSABEND DD

124 DFSORT Application Programming: Guide

or

statement is needed to identify your program link library if it
is not already known to the system.

contains DFSORT control statements when DFSORT is not
invoked by another program. It can also contain user exit
routines to be link-edited by DFSORT, in object deck format.
The control data set usually resides in the input stream;
however, it can be defined as a sequential data set or as a
member of a partitioned data set. The data set must not be
defined as RECFM=U. SYSIN cannot be concatenated data
sets.

If user exit routines are in SYSIN, make sure that:
« The END statement is the last control statement.

« The user exit routines are arranged in numeric order (for
example, E11 before E15).

« The user exit routines are supplied immediately after the
END control statement.

« Nothing follows the last object deck in SYSIN.
« A SORTMODS DD statement is included.

If you are invoking DFSORT dynamically, and you supply
the DFSORT control statements through the 24-bit or
extended parameter list and/or through SORTCNTL, SYSIN
still remains the source of user exit routines placed in the
system input stream.

identifies the system output data set for messages. Always
use this statement if a cataloged procedure is not used. If you
are invoking DFSORT from another program, you can
specify an alternate ddname for the message data set. (If you
are invoking DFSORT from a COBOL. program and using no
ddname other than SYSOUT, the use of EXHIBIT or
DISPLAY in your COBOL program can give uncertain
printing results.) Before printing DFSORT messages, a skip
to a new page is performed.

or

defines output from a system ABEND dump routine. Needed
only for debugging.

If you are using the supplied SORT cataloged procedure, the four DD statements
mentioned below are automatically supplied. If you are not using the SORT
cataloged procedure and you are using the linkage editor, you must supply the
following four DD statements:

//SYSPRINT DD
//SYSUT1 DD

//SYSLIN DD

//SYSLMOD DD

contains messages from the linkage editor.
is a work area for the linkage editor.

defines a data set in which DFSORT places control
information for the linkage editor.

defines a data set that contains output from the linkage
editor.

Note: If you do not include user routines or you include user routines that do net
require link-editing, you can use the supplied SORTD cataloged procedure. If you
include user routines that require link-editing, you can use the SORT cataloged

procedure.

Program DD Statements

In addition to the standard JCL statements required for normal program execution,
DFSORT may use other dedicated JCL DD statements, as follows:

//SORTLIB DD

//SORTIN DD

//SORTINnn DD

//SORTWKnn DD

//SORTOUT DD

//SORTCKPT DD

//SORTCNTL DD

//SORTDKnn DD

defines the data set that contains special load modules for
DFSORT. Only needed for a tape work data set sort or a
conventional merge.

defines the input data set for a sorting or copying application.
Cannot be used for merging applications.

defines the input data sets for a merging application. Cannot
be used for sorting or copying applications.

defines intermediate storage data sets. Usually needed for a
sorting application unless dynamic allocation is requested.
Must not be used for a merging application. Will not be used
for a copying application.

defines the output data set for a sorting, merging, or copying
application.

defines a data set for checkpoint records. This statement is
not required, if you are not using the checkpoint facility.

defines the data set from which additional or changed
DFSORT control statements can be read, when DFSORT is
invoked from another program.

defines the data set given to a VIO SORTWKnn allocation by

DFSORT if it is dynamically reallocated (MVS only) and
should never be specified in the job stream.

Chapter 3. Job Control Statements 125

SORTLIB DD Statement

//SORTDIAG DD specifies that all messages and control statements will be
printed. Needed only for debugging.

//SORTMODS DD defines a temporary partitioned data set. This temporary
data set must be large enough to contain all your exit routines
that appear in SYSIN for a given application. If none of your
routines appear in SYSIN, this statement is not required. If
your routines are in libraries, you must include DD statements
defining the libraries.

DFSORT temporarily transfers the user exit routines in

SYSIN to the data set defined by this DD statement before
they are link-edited for execution.

The SORTLIB DD statement describes the data set that contains special DFSORT
load modules.

When Required: A SORTLIB DD statement is only required for:
« Sort applications using tape work data sets
« Merge applications for which Blockset cannot be used (see message ICE800I)

Example 1. SORTLIB DD Statement

//SORTLIB DD DSNAME=USORTLIB,DISP=(OLD,KEEP)

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME
causes the system to search the catalog for a data set with the name
USORTLIB. When the data set is found, it is associated with the ddname
SORTLIB. The control program obtains the unit assignment and volume
serial number from the catalog and writes a mounting message to the
operator if the volume is not already mounted.

DISP

indicates that the data set is passed or cataloged (OLD) and that it should be
kept after the current job step.

For information on the parameters used in the SORTLIB DD statement, the
conditions under which they are required, and the default values assumed if a
parameter is not included, see Figure 13 on page 121. The subparameters of the
DCB parameter are described similarly in Figure 14 on page 123. For more
detailed information, see your JCL. reference manual.

126 DFSORT Application Programming: Guide

SORTIN DD Statement

The SORTIN DD statement describes the characteristics of the data set in which
the records to be sorted or copied reside, and indicates its location.

Note: FREE=CLOSE cannot be specified.

When Required: A SORTIN DD statement is required for all sort or copy
applications, unless you provide an E15 exit that supplies all input to DFSORT,
and you include a RECORD statement in the program control statements. The
SORTIN DD statement is ignored if your program invokes DFSORT and passes
the address of your E15 exit in the parameter list.

Data Set Characteristics: DFSORT accepts an empty (not a null) QSAM data set
for sorting or copying (be sure to supply DCB parameters), but an empty VSAM
data set causes a VSAM input error (code 160), and DFSORT terminates. Note
that a null QSAM data set is a data set that has been opened for input, but no
records have been written into it, and it has not been closed successfully.

See “Input and Output Data Sets” on page 3 for additional considerations.
The following rules apply to concatenated data sets:

1. RECFM must be the same for all data sets in the concatenation, except that
FB and FBS can be mixed.

2. BLKSIZE may vary, but the data set with the largest block size must be
specified on the first DD statement of the concatenation.

3. With fixed-length records, LRECL must be the same for all data sets. With
variable-length records LRECL can vary, but the largest size must be specified
for the data set described on the first DD statement.

4. If the data sets are on unlike devices you cannot use the EXLST parameter at
exit E18.

Example 2. SORTIN DD Statement

//SORTIN DD DSNAME=INPUT,DISP=(OLD,KEEP)

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME
causes the system to search the catalog for a data set with the name INPUT.
When the data set is found, it is associated with the ddname SORTIN. The
control program obtains the unit assignment and volume serial number from
the catalog and writes a mounting message to the operator if the volume is
not already mounted. :

Chapter 3. Job Control Statements 127

SORTINnn DD Statement

DISP
indicates that the data set is passed or cataloged (OLD) and that it should be
kept after the current job step.

Example 3. Volume Parameter on SORTIN DD

//SORTIN DD DSN=SORTIN,DISP=(OLD,KEEP) ,UNIT=3400-3,
// VOL=SER=(75836,79661,72945)

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate
the serial numbers of the tape reels. In this example, the input data set is on three
reels that have serial numbers 75836, 79661, and 72945.

If a data set is not on standard-labeled tape (or disk), you must specify DCB
parameters in its DD statement.

The SORTINnn DD statements describe the characteristics of the data sets in
which records to be merged reside, and indicate the locations of these data sets; nn
is any number from 01 through 16.

When Required: SORTINnn DD statements are always needed for a merge unless
the merge is invoked from another program, and all input is supplied through a
routine at exit E32.

Data Set Characteristics: Input data sets can be either QSAM or VSAM, but not
both. Concatenated data sets are not supported. For a conventional merge, the
statements must be numbered in ascending order: SORTINOL1 is the name of the
first, SORTINO2 the name of the second, and so forth; no numbers can be skipped.

The data set with the largest block size must be defined in the first SORTINnn DD
statement. The record format must be the same for all input data sets. Logical
record length must also be the same unless the records are variable-length, in which
case the largest size must belong to the data set described in the first SORTINnn
DD statement.

DFSORT accepts an empty (not a null) QSAM data set for merging, but an empty
VSAM data set causes a VSAM input error (code 160), and DFSORT terminates.

See “Input and Output Data Sets” on page 3 for additional considerations.

Note: FREE=CLOSE cannot be specified.

128 DFSORT Application Programming: Guide

Example 4. SORTINO1-03 DD Statements (Merge)

//SORTINO1 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=0LD,
// LABEL=(,NL) ,UNIT=3400-3,

// DCB= (RECFM=FB, LRECL=80, BLKSIZE=240)
//SORTINO2 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=0LD,
// LABEL=(,NL) ,UNIT=3400-3,

// DCB= (RECFM=FB, LRECL=80, BLKSIZE=240)
//SORTINO3 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=0LD,
// LABEL=(,NL) ,UNIT=3400-3,

// DCB= (RECFM=FB, LRECL=80 ,BLKSIZE=240)

Example 5. SORTINO1-02 DD Statements (Merge)

//SORTINO1 DD DSNAME=INPUT1,VOLUME=SER=000101, *

// UNIT=3330,DISP=0LD *DCB PARAMETERS

//SORTINO2 DD DSNAME=INPUTZ2,VOLUME=SER=000201, *SUPPLIED FROM

// UNIT=3330,DISP=0LD) *LABELS
SORTWKnn DD Statement

The SORTWKnn DD statements describe the characteristics of the data sets used
as intermediate storage areas for records to be sorted; they also indicate the
location of these data sets.

If more than 32 SORTWKnn DD statements are specified, only the first 32 are
used.

Note: FREE=CLOSE cannot be specified.

When Required: One or more SORTWKnn statements are required for each sort
application (but not a merge or copy), unless:

« Input can be contained in main storage (except for Blockset under certain
conditions), or

« DYNALLOC has been specified in the SORT or OPTION statement under
MVS. No SORTWKnn data sets should be provided if dynamic allocation is
specified.

For information on how to calculate the amount of storage needed, see
“Intermediate Storage” on page 275.

See OPTION FILSZ | SIZE for further considerations.

Diagnostic message ICE803I gives information on intermediate storage
allocation/use.

Chapter 3. Job Control Statements 129

Devices: SORTWKnn data sets can be on disk or on tape, but not both, as
described in “Intermediate Storage” on page 275. Disk types can be mixed.

Tape must be 9-track unless input is on 7-track tape, in which case work tapes can
(but need not) be 7-track.

General Coding Notes
¢ In the ddname (SORTWKnn):

— Cylinder allocation is preferable for performance reasons. DFSORT
reallocates temporary SORTWKnn data sets in cylinders (MVS).

~ With disk work areas, nn can be any decimal number from 00 through 99
and numbers can be in any order; however, if more than 32 are specified,
only the first 32 are used.

— Unless the input file is very large, one or two SORTWKnn data sets are
usually sufficient. One or two large SORTWKnn data sets are preferable
to several small ones.

— With tape work areas, nn can be from 01 through 32; the first must be 01,
and the rest must follow consecutively. No numbers can be skipped. At
least three SORTWKnn data sets are required for tapes.

« DD DUMMY must not be used.

« Different SORTWKnn DD statements must not refer to the same physical data
set.

» No parameters relating to ISCII/ASCII data should be included, because
ISCII/ASCII input is automatically translated into EBCDIC before being
moved into an intermediate storage area.

- Disk Coding Notes

Data sets must be sequential, not partitioned.
e The SPLIT cylinder parameter must not be specified.

« If no secondary allocation is requested, and NOSECALL is not in effect, a
default of one-fourth of primary space or one cylinder is used, whichever is
larger, for work data sets. (Secondary allocation is limited to 12 work data sets
in the Peerage or Vale sorting techniques only.)

« If the data set is allocated to VIO, there is no automatic secondary allocation.

e Secondary allocation can be requested for work data sets. If more work data
sets are defined they are used with only the primary allocation. (Secondary
allocation is limited to 12 work data sets in the Peerage and Vale sorting

techniques only.)

e Primary and secondary space must be on the same volume; that is,
SORTWKnn must not be a multivolume data set.

130 DFSORT Application Programming: Guide

« If primary space is fragmented, then all but the first fragment are handled as
secondary space.

Virtual I/0: 1f SORTWKnn data sets are specified using virtual I/O under MVS,
sort normally carries out dynamic reallocation, using the ddname SORTDKnn.
However, if when DFSORT was installed the VIO option was specified, then
virtual I/0 is used and performance is degraded.

Example 6. SORTWKO1 DD Statement, Disk Intermediate Storage

The following is an example of a SORTWKnn DD statement using a disk device:

//SORTWKO1 DD SPACE=(CYL, (15,5)),UNIT=3380

If you use the checkpoint/restart facility and need to make a deferred restart, you
must make the following additions to the above statement so that the sort work
data set is not lost:

DSNAME=namel,DISP=(NEW,DELETE ,KEEP)

Thus the same SORTWKnn DD statement for a deferred restart would be:

//SORTWKO01 DD DSNAME=namel,UNIT=3380,SPACE=(CYL,(15,5)),
// DISP=(NEW,DELETE,KEEP)

Example 7. SORTWKO1 DD Statement, Tape Intermediate Storage

//SORTWKO1 DD UNIT=3400-3,LABEL=(,NL)
//SORTWKO2 DD UNIT=3400-3,LABEL=(,NL)
//SORTWKO3 DD UNIT=3400-3,LABEL=(,NL)

This is an example of SORTWKnn DD statements using three tape devices.

If DFSORT terminates unsuccessfully and the above DD statements have been
specified, the intermediate storage data sets remain in the system until the step has
been successfully rerun or until the data sets have been deleted by some other
means.

These parameters specify unlabeled data sets on three 3400 series tape units.
Because the DSNAME parameters are omitted, the system assigns unique names.

Chapter 3. Job Control Statements 131

SORTOUT DD Statement

SORTCKPT DD Statement

132 DFSORT Application

The SORTOUT DD statement describes the characteristics of the data set in which
the processed records are to be placed, and indicates its location.

Note: FREE=CLOSE cannot be specified.

When Required: A SORTOUT DD statement is always required, unless you
provide an E35 exit that disposes of aii outpui. The SORTOUT DD statement is
ignored if your program invokes DFSORT and passes the address of your E35 exit
in the parameter list.

Data Set Characteristics: See “Input and Output Data Sets’ on page 3.
Notes:

1. If LABEL=RETPD is specified in the SORTOUT DD statement for a standard
labeled tape, the DCB parameters must also be specified. If the DCB paramelers
are not specified, the tape may be opened twice.

2. OPTCD=W should not be specified for an IBM 3480 tape unit. If it is specified
Sor a full function 3480 tape unit, the request is overridden. If it is specified for
a 3480 operating in 3420 compatibility mode (specified as 3400-9), the request is
not overridden, but performance may be degraded.

Example 8. SORTOUT DD Statement

//SORTOUT DD DSN=C905460.0UTPT,UNIT=3350,SPACE=(CYL,5),

// DISP=(NEW,CATLG)
DCB The DCB parameters default to those of SORTIN.
DISP The data set is unknown to the operating system (NEW), and it is to

be cataloged (CATLG) under the name C905460.OUTPT.
DSNAME The data set is to be called C905460.OUTPT.
SPACE Five cylinders of storage are requested for the data set.

UNIT Indicates that the data set is on a 3350 unit.

The SORTCKPT data set may be allocated on any device that operates with the
Basic Sequential Access Method (BSAM). Processing must only be restarted from
the last checkpoint taken.

Programming: Guide

SORTCNTL DD Statement

SORTDKnn DD Statement

SORTDIAG DD Statement

Example 9. SORTCKPT DD Statement

//SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,
// DISP=(NEW,KEEP) ,UNIT=3400-3

When allocating the SORTCKPT data set, at least one intermediate storage data
set is required.

If the CKPT operand is specified on the OPTION or SORT control statement,
more intermediate storage may be required. See ‘“Intermediate Storage” on
page 275.

If you want to use the checkpoint/restart facility, refer to Checkpoint/Restart.

The SORTCNTL data set may be used to read changed and/or additional
DFSORT control statements, when DFSORT is invoked from another program
(written, for example, in COBOL or PL/T). (For override rules, see Appendix D.)

Example 10. SORTCNTL DD Statement

//SORTCNTL DD *

Note: 'When DFSORT is invoked from a PL/I program, the SORTCNTL data set
must not be used to supply a new RECORD control statement.

In an MVS system, sort work data sets can be assigned to VIO. If the ICEMAC
parameter VIO is specified or defaults to NO, VIO sort work data sets are
deallocated and reallocated by sort with the DDname SORTDKnn. The DD name
SORTDKnn is reserved for use by DFSORT.

The SORTDIAG DD statement specifies that all messages, including diagnostic
messages (ICE800I through ICE999I), and control statements are to be written to
the message data set. The statement can be used for all DFSORT techniques, and
provides information on EXCP counts, intermediate storage allocation/use, and so
on.

The SORTDIAG DD statement has no effect on console messages.

The statement is intended as a diagnostic tool.

When SORTDIAG is used for a JCL invoked DFSORT, a SYSOUT DD statement
must be provided. For a dynamically invoked DFSORT, a SYSOUT DD statement

or a ddname DD statement (where ddname is the alternate message data set
ddname specified at installation or execution time) must be provided.

Chapter 3. Job Control Statements 133

Note: If neither an alternate message data set ddname statement nor a SYSOUT
ddname statement is provided, DFSORT terminates with a return code of 20. If a
job using the tape sort or Conventional merge technique terminates unsuccessfully
and SORTDIAG DD has been specified, a system 0C1 abend results.

Example 11. SORTDIAG DD Statement

//SORTDIAG DD DUMMY

134 DFSORT Application Programming: Guide

Chapter 4. User Exit Routines

At certain places in the executable code of DFSORT, control can be passed to your
own routines. You can write routines to perform a variety of functions, such as
deleting, inserting, altering, and summarizing records. The places where control is
passed to your routines are called user exits.
User exit routines can be written in any language that provides the ability to:
» Pass and accept the address of the following in register 1:

— Arecord

— A fullword of zeros

— A parameter list

« Pass a return code in register 15

Note: PL/I routines must use the special subroutine facilities of the PL/1
language.

In addition, certain user exit routines can be written in COBOL using a special
interface.

In this chapter we discuss only routines written in Assembler or COBOL.

DFSORT Program Phases

Input Phase

Because each exit is located in a particular phase of DFSORT, you should have a
general understanding of the phases involved. A phase is a large component of
DFSORT designed to perform a specific task (such as writing the output file). The
phases containing user exits are the input and output phases.

The input phase is used only for a sort or copy. For a sort, the input phase orders
the input data set into sequences and distributes them onto work data sets. There
are several methods of distribution, known as string distribution techniques, and,
unless a particular technique has been forced, DFSORT attempts to choose the
most efficient. All sorting techniques use this phase. In the Peerage, Vale, and
Blockset sorting techniques, indexes are created for these distributed records.

Chapter 4. User Exit Routines 135

Oitpuit Phase

A disk sort can usually operate with no intermediate storage if the input data set
can be contained in the main storage available. A copy never requires intermediate
storage.

The output phase has two uses:

» It makes the final merge pass of a sorting appiication, thus creating the output
data set.

« It merges the input data sets for a merging application to create the output data
set.

During a copy application, this merge phase does not apply. Instead E1S5 is entered
for each record, then the record is put to the output phase.

After execution of this phase, DFSORT returns control to the operating system (or
invoking program).

Functions of Routines at User Exits

Figure 15 on page 138 and Figure 16 and Figure 17 on page 139 summarize the
functions of user exit routines, and the exits and phases with which they may be
associated.

DFSORT Input/Exit/Output Logic Examples

Figure 15 on page 138 gives examples of the logic flow for sort, copy, and merge
applications as it relates to SORTIN(nn), E15, E35, and SORTOUT. The intent is
to show how your E15 and E35 routines fit into the logic of an application. All
possible paths are not covered. For simplicity, it is assumed that all of the
applicable data sets and exits are present and that records are not inserted or
deleted. (For a merge, similar logic would be used if an E32 supplied the records
rather than SORTIN(nn) data sets.)

The figures illustrate the following logic:

o E15 and E35 routines continue to be entered until they pass back a return code
of 8. If your exit passes a return code of 8 to DFSORT and there are still input

records to be processed, the records are processed without being passed to your
exit.

e Seort: Each record is read from SORTIN and passed to E15. When all of the
records have been processed in this manner, they are sorted. Then, each sorted
record is passed to E35 and written to SORTOUT.

+ Copy: Each record is read from SORTIN, passed to E15 and E35, and written
to SORTOUT.

136 DFSORT Application Programming: Guide

Merge: Initially, one record is read from each SORTINnn data set. The record
to be output is chosen, passed to E35, and written to SORTOUT. The chosen

record is then replaced by reading a record from the same SORTINnn data set
and the process continues.

Chapter 4. User Exit Routines 137

INPUT
PHASE

OQUTPUT
PHASE

INPUT/EXIT/OUTPUT LOGIC
FOR SORT APPLICATION

START |

i

READ RECORD
FROM SORTIN

|

E15

MORE INPUT
RECORDS?

YES

Luo

E15

RETURNS
RC=8

l

SORT THE
RECORDS

f—

GET SORTED
RECORDS

'

E35

WRITE RECORD
TO SORTOUT

l

YES
MORE SORTED |—
RECORDS?
J NO

E35

1

RETURNS

EXIT

=

Ll
-

(-]

INPUT/OUTPUT
PHASE

START

READ RECORD
FROM SORTIN

E15

E35

I .

WRITE RECORD
To SORTOUT

l

MORE INPUT
RECORDS?

l NO

£15

RETURNS
RC=8

E35

I._

RETURNS
RC=8

EXIT

I

INPUT/EXIT/OUTPUT LOGIC
FOR COPY APPLICATION

T—ﬂ

YES

Figure 15. Examples of DFSORT Input/Exit/Output Logic

INPUT/EXIT/OUTPUT LOGIC
FOR MERGE APPLICATION

| starT |

OUTPUT |READ RECORD
PHASE FROM EACH
SORT INnn
CHOOSE A
RECORD

WRITE RECORD
TO SORTOUT
YES
MORE INPUT |————|READ RECORD
RECORDS? FROM SORTIN

B 1

0

RETURNS
RC=8

138 DFSORT Application Programming: Guide

Sort Input Phase Sort Output Phase

Functions
Open/Initialization El1, E15 E31
Insert, Delete/Alter E1l5 E35
Terminate DFSORT E15 E35
Summarize records E35 E351
Determine action when intermediate E162 N/A
storage is insufficient
Handle special I/O conditions:

QSAM/BSAM and VSAM input E18 E382

QSAM/BSAM output E192 E39

VSAM output N/A E39
Modify control fields E61 N/A
Close/housekeeping El5, E17 E35, E37

Figure 16. Functions of Routines at Program Exits (Sort)

Functions Copy Merge
Open E31, E15 E31
Insert E15, E35 E32, E35
Delete/Alter E15, E35 E35
Terminate DFSORT E15, E35 E32, E35
Summarize records E35 E35!
Handle special 1/O conditions:

QSAM/BSAM and VSAM input E38 E38

QSAM/BSAM and VSAM output E39 E39
Modify control fields N/A E61
Close/housekeeping E35, E37 E35, E37

Figure 17. Functions of Routines at Program Exits (Copy and Merge)

Notes to Figure 16 and Figure 17:

1 The SUM control statement may be used instead of your own routine to

summarize records.

2 Only applies to a tape work data set sort.

Chapter 4. User Exit Routines 139

Opening Data Sets and Initializing

You can write your own routines to open data sets and perform other forms of
initialization; you must associate these routines with the E11, E15, E31 and/or
E35 exits.

To check labels on input files, use the E18 and E38 exits.

Inserting, Deleting, and Altering Records, Terminating DFSORT

Summarizing Records

You can write your own routines to delete, insert, or alter records, or to terminate
DFSORT. You must associate these routines with the E15, E32, and/or E35 exits.

Note: DFSORT also provides INCLUDE and OMIT statements which
automatically include or delete records based on your field criteria. For more
information on these control statements, refer to Chapter 2, “Program Control
Statements” on page 17.

You can summarize records in the output data set, using the E35 exit. However,
you can also summarize records by using the SUM control statement described in
Chapter 2.

Determining Action when Intermediate Storage Is Insufficient

Handling Special I/0O

Read/Write Error Routines

You can write a routine to direct DFSORT program action if DFSORT determines
that insufficient intermediate storage is available to handle the input data set; you
must associate this routine with the E16 exit for sorts using tape work files. For a
sort that uses tape work files, you can choose between sorting current records only,
trying to complete the sort, or terminating DFSORT.

For more details, see ‘“Exceeding Intermediate Storage Capacity” on page 277.

DFSORT contains four exits to handle special I/O conditions: E18 and E38 for
input, and E19 and E39 for output. They are particularly useful for a tape sort.
With all disk sorts, E19 and E38 are ignored.

You can use these exits to incorporate your own or your installation’s 1/0 error
recovery routines into DFSORT. Your read and write error routines must reside in
a partitioned data set (library). Your library routines are brought into main storage
with their associated phases. When DFSORT encounters an uncorrectable I/0O
error, it passes the same parameters as those passed by QSAM/BSAM or VSAM.
If no user routines are supplied, and an uncorrectable read or write error is
encountered, DFSORT issues an error message and then terminates.

140 DFSORT Application Programming: Guide

VSAM Exit Functions

With QSAM/BSAM the following information is passed to your synchronous error
routine:

« General registers 0 and 1 are unchanged; they contain the information passed
by QSAM/BSAM, as documented in the data management publications.

¢ General register 14 contains the return address of DFSORT.
+ General register 15 contains the address of your error routine.

VSAM will go directly to any routine specified in the EXIL.ST macro you passed to
DFSORT via the E18, E38 or E39 exits, as appropriate. Your routine must return
to VSAM via register 14. For details, see VSAM Programmer’s Guide or VSAM
User’s Guide. '

Read Errors Routines: You must associate these routines with the E18 and/or E38
exits. They must pass certain control block information back to DFSORT to tell it
whether to accept the record as it is, skip the block, or request termination. They
may also attempt to correct the error.

Write Errors: You must associate these routines with the E19 and/or E39 exit.
These routines can perform any necessary abnormal end-of-task operations before
DFSORT is terminated.

There are three exits that can be used with VSAM files to supply passwords or an
exit list to journal a VSAM data set, and carry out other VSAM exit functions
(except EODAD). The exits are E18 for sort input, E38 for merge or copy input,
and E39 for output.

Modifying Control Fields

Closing Data Sets

You can write a routine to alter control fields before DFSORT compares them.
This allows you, for example, to normalize floating-point control fields. It also
allows you to modify the order in which the records are finally sorted or merged, a
function for which you would usually use the ALTSEQ program control statement
instead. You must associate these routines with the E61 exit.

Your routine modifies the extracted image of the control fields, which is used for
comparison. It does not change the original control fields. Thus your original

records are not altered.

If this exit is used, the subsequent comparisons always arrange the modified control
fields in ascending order.

You can write your own routines to close data sets and perform any necessary
housekeeping; you must associate these routines with the E15, E17, E35, and/or
E37 exit.

To write output labels, use the E19 and E39 exits.

Chapter 4. User Exit Routines 141

If you have an end-of-file routine you want to use for SORTIN, include it at the
E18 exit.

Reserving Storage for Exits

You may have to reserve space to be used by your exits. See the options RESALL
and RESINV.

MVS/XA Support of User Exits

To allow user exits called by Blockset, Peerage, or Vale (executing in an MVS/XA
system) to reside above or below 16-megabyte virtual, and use either 24-bit or
31-bit addressing, DFSORT supplies these features:

» To ensure that DFSORT enters your user exit with the correct addressing
mode, you must observe these rules:

— If the exit name is specified in a MODS control statement, the exit is
entered with the addressing mode indicated by the linkage editor attributes

of the routine (for example, 31-bit addressing in effect if AMODE 31 is
specified).

— If the address of the exit is passed to DFSORT (preloaded exit) via the
24-bit list, the exit is entered with 24-bit addressing in effect.

— If the address of the exit is passed to DFSORT via the extended parameter
list (preloaded exit), the exit is entered with 24-bit addressing in effect if
bit O of the exit address in the list is 0, or with 31-bit addressing in effect if
bit O of the exit address in the list is 1.

o User exits may return to DFSORT with either 24-bit or 31-bit addressing in
effect. The return address that DFSORT placed in register 14 must be used.

» Except for the user exit address constant (which is passed to either the
assembler E15 or E35 exit unchanged), DFSORT handles the user exit
parameter list addresses (that is, the pointer to the parameter list and the
addresses in the parameter list) as follows:

— If the exit is entered with 24-bit addressing in effect, DFSORT passes
clean (zeros in the first 8 bits) 24-bit addresses to the exit. Such an exit
must pass 24-bit addresses back to DFSORT. These must be clean 24-bit
addresses if the exit returns to DFSORT with 31-bit addressing in effect.

— If the exit is entered with 31-bit addressing in effect, DFSORT passes
clean 24-bit addresses to the exit. Such an exit must pass 31-bit addresses
or clean 24-bit addresses back to DFSORT. The only exception is when
the high-order byte is used to identify an optional address being passed
(for example, E18 SYNAD address). In this case DFSORT cleans the
24-bit address.

142 DFSORT Application Programming: Guide

Assembler Exit Routines

To determine whether a particular exit can be used for your application, refer to
Figure 16 and Figure 17 on page 139. For example, E15 cannot be used for a
merge application.

Input Phase Exits

E11 Exit, Opening Data Sets/Initializing Routines

You might use routines at this exit to open data sets needed by your other routines
in the input phase, or to initialize your other routines. Return codes are not used.

Note: To avoid special linkage editor requirements (see “Summary of Rules for
User Exit Routines” on page 183), you can include these functions in your E15
routine rather than in a separate E11 routine.

| E15 Exit, Passing or Changing Records for Sort and Copy Applications
If you write your E15 routine in COBOL, see “COBOL Ezxit Routines” on

page 161, and “COBOL E15 Exit, Passing or Changing Records for Sort” on
page 164.

DFSORT enters the E15 exit routine each time a new record is brought into the
input phase. DFSORT continues to enter E15 (even when there are no input
records) until the exit tells DFSORT, with a return-code of 8, not to return.

See Figure 15 on page 138 for logic flow details.

Some uses for E15 are:

« Add records to an input data set.

» Pass an entire input data set to DFSORT.
+ Delete records from an input data set.

« Change records in an input data set (but not control fields—use E61 exit for
that).

If your E15 routine is inserting variable-length records, you must be sure they
contain a 4-byte record descriptor word (RDW) at the beginning of each record
before the routine passes it to DFSORT. The format of an RDW is described in
Data Management Services or System Programming Library: Data Management.
(Alternatively, you could declare the records as fixed length, and pad them to the
maximum length.)

Chapter 4. User Exit Routines 143

Notes:

1. If you use the E15 exit to pass all your records to DFSORT, the SORTIN DD
statement may be omitted, in which case you must include a RECORD statement
in the program control statements.

2. If you invoke DFSORT from an Assembler program, and pass the address of your
E15 exit in the parameter list:

» DFSORT ignores the SORTIN data set.
o DFSORT terminates if you specify E15 in a MODS statement.

3. If the SORTIN DD statement is omitted or ignored, all input records are passed
to DFSORT through your routine at E15: the address of each input record in
turn is placed in register 1, and you return to DFSORT with a return code of 12.
When DFSORT returns to the E15 exit after the last record has been passed,
return to DFSORT with return code of 8 in register 15 to indicate “do not
return.”

4. DFSORT continues to re-enter your E15 exit until a return code of 8 is received.
However, if STOPAFT is in effect, no additional records are inserted to
DFSORT (even if you pass back a return code of 12) after the STOPAFT count
is satisfied.

5. Remember to build an RDW for variable-length VSAM records (see Data
Management Services).

Information DFSORT Passes to Your Routine

The routine at E15 is entered each time a new record is brought into the input
phase. DFSORT passes two words to your routine each time it is entered:

o The address of the new record. If there are no records in the input data set,
this address is zero the first time your E15 is entered. When DFSORT reaches
the end of the input data set, it sets this address to zero before entering your
E15 exit.

After the end of the input data set is encountered, DFSORT will continue to
enter your exit routine until you pass back a return code of 8.

o The user exit address constant. If you invoked DFSORT with a user exit
address constant in the parameter list, it is passed in this word to your E15 exit
the first time it is entered. This word may be changed by your E15 exit any
time it is entered; it is passed along on subsequent entries to your E15 exit and
also on the first entry to your E35 exit. As an example, you could obtain a
dynamic storage area, use it in your E15 exit, and pass its address to your E35
exit.

In general register 1, DFSORT places the address of a parameter list that contains
the record address and the user address constant.

144 DFSORT Application Programming: Guide

The list is two fullwords long and begins on a fullword boundary. The format of
the parameter list is:

Bytes 1 through 4

Address of the new record

User exit address constant

Return Codes

Your routine must pass one of the following return codes to DFSORT, informing it
what to do with the record you have been examining or changing:

No Action/Record Altered
Delete Record
Do not Return

2 Insert Record

6 Terminate DFSORT

— - 00 A O

0—No Action
If you want DFSORT to retain the record unchanged, place the address of
the record in general register 1 and return to DFSORT with a zero return
code.

0—Record Altered
If you want to change the record before passing it back to DFSORT, your
routine must move the record into a work area, perform whatever
modification you want, place the address of the modified record in general
register 1, and return with a zero return code. If your routine changes record
size, you must communicate that fact to DFSORT on a RECORD statement.
(For details of the RECORD statement, see “RECORD Control Statement”
on page 98 and Supervisor Services and Macro Instructions for further
information about the length indicator and the record descriptor word.)

4—Delete Record
If you want DFSORT to delete the record from the input data set, return to
DFSORT with a return code of 4. You need not place the address of the
record in register 1.

8—Do Not Return
DFSORT continues to return control to the user routine until it receives a
return code of 8. After that, the exit is closed and not used again during the
DFSORT application. You need not place an address in register 1 when you
return with return code 8. Unless you are inserting records after end-of-data
set, you must pass a return code of 8 when the program indicates the end of the
data set, which it does by passing your routine a zero address in the
parameter list.

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

Chapter 4. User Exit Routines 145

12—Insert Record
If you want DFSORT to add a record to the input data set, before the record
whose address was just passed to your routine, place the address of the
record to be added in register 1 and return DFSORT with a return code of
12. DFSORT will return to your routine with the same record address as
before, so that your routine can insert more records at that point or alter the
current record. You can make insertions after the last record in the input
data set (after DFSORT places a zero address in the parameter list).
DFSORT keeps returning to your routine until you pass a return code of 8.

16—Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program or to the system with a return code of 16.

E16 Exit, Handling Intermediate Storage Miscalculation

Return Codes

For a tape sort, you would use a routine at this exit to decide what to do if sort
exceeds its calculated estimate of the number of records it can handle for a given
amount of main storage and intermediate storage. This exit is ignored for a disk
sort, because DFSORT uses the WRKSEC option to determine whether secondary
allocation is allowed. See “SORTWKnn DD Statement™ on page 129. See also
“Exceeding Intermediate Storage Capacity” on page 277.

Note: When using magnetic tape, remember that the system uses an assumed tape
length of 2400 feet. If you use tapes of a different length, the Nmax figure is not
accurate; for shorter tapes, capacity could be exceeded before “NMAX
EXCEEDED” is indicated.

Your routine can choose among three actions, and must use one of the following
return codes to communicate its choice to DFSORT:

0 Sort Current Records Only
4 Try to Sort Additional Records
8 Terminate DFSORT

0—Sort Current Records Only
If you want DFSORT to continue with only that part of the input data set it
estimates it can handle, return with a return code of 0. Message ICE0541
contains the number of records with which sort is continuing. You can sort
the remainder of the data set on one or more subsequent runs, using the
SKIPREC operand on the SORT statement to skip over the records already
sorted. Then you can merge the sort outputs to complete the operation.

4—Try to Sort Additional Records
If you want DFSORT to continue with all of the input data set, return with a
return code of 4. Enough space may be available for DFSORT to complete
processing, if tapes are used. If enough space is not available, DFSORT
generates a message and terminates. Refer to ‘“Exceeding Intermediate
Storage Capacity”” on page 277.

8—Terminate the DFSORT
If you want DFSORT to terminate, return with a return code of 8. DFSORT
then terminates with a return code of 16.

146 DFSORT Application Programming: Guide

E17 Exit, Closing Data Sets

Your routine at this exit is executed once at the end of the input phase. It can be
used to close data sets used by your other routines in the phase or to perform any
housekeeping functions for your routines.

Note: To avoid special linkage editor requirements (see ‘“‘Summary of Rules for
User Exit Routines” on page 183), you can include these functions in your E15
routines rather than in a separate E17 routine.

E18 Exit, Handling Input Data Sets

Use with QSAM/BSAM

Your routines at this exit can pass a parameter list containing the specifications for
three data control block fields (SYNAD, EXLST, and EROPT) to DFSORT. Your
E18 exit routine can also pass a fourth DCB field (EODAD) to DFSORT.

Note: 1If you are using a disk sorting technique, the EROPT option is ignored.

Your routines are entered first at the beginning of each phase so that DFSORT can
obtain the parameter lists. The routines are entered again during execution of the
phase at the points indicated in the parameter lists. For example, if you choose the
EXLST option, DFSORT enters your E18 exit routine early in the sort (input)
phase. DFSORT picks up the parameter list, including the EXLST address. Later
in the phase, DFSORT enters your routine again at the EXLST address when the
data set is opened.

Information Your Routine Passes to DFSORT

Before returning control to DFSORT, your routine passes the DCB fields in a
parameter list, the address of which is placed in general register 1. The parameter
list must begin on a fullword boundary and be a whole number of fullwords long.
The high-order byte of each word must contain a character code that identifies the
parameter. One or more of the words can be omitted. A word of all zeros marks
the end of the list.

If VSAM parameters are specified, they are accepted but ignored.

The format of the list is shown below.

Byte 1 Byte 2 Byte 3 Byte &
01 SYNAD field
02 EXLST field
03 00 00 EROPT code
04 EODAD field
00 00 00 00

Chapter 4. User Exit Routines 147

Use with VSAM

SYNAD

This field contains the location of your read synchronous error routine. This
routine is entered only after the operating system has tried unsuccessfully to
correct the error. The routine must be assembled as part of your E18
routine. When the routine receives control, it must not store registers in the
save area pointed to by register 13.

EXLST

This field contains the location of a list of pointers to your routines that you
want used to check labels and accomplish other tasks not handled by data
management. The list, and the routines to which it points, should be
included in your read error routine. This parameter cannot be used at the
E18 exit if the program is reading concatenated input on unlike devices from
the SORTIN data sets.

EROPT

The EROPT code is a means whereby you can specify what action the
program should take if an uncorrectable read error is encountered. The
three possibie actions and the codes associated with them are:

X'80' Accept the Record (Block) as is
X'40' Skip the Record (Block)

X'20" Terminate the Program

If you include this parameter in the DCB fieid lisi, you must piace one of the
above codes in byte 4 of the word. Bytes 2 and 3 of the word must contain
Zeros.

When you use the EROPT option, the SYNAD field and the EODAD field
must contain the appropriate address in bytes 2 through 4; or, if no routine is

available, zeros in bytes 2 and 3, and X'01"' in byte 4. You can use the
assembler instruction DC AL3(1) to set up bytes 2 through 4.

EODAD
This field is the address of your end-of-file routine. If you specify it, the
end-of-file routine must be included in your own routine.

A full description of these DCB fields is contained in Data Management Macro
Instructions.

If input to DFSORT is a VSAM data set, you can use the E18 exit to perform
various VSAM exit functions and to insert passwords in VSAM input ACBs.

Your routine is entered early in the initialization phase when processing under
Blockset and early in the input phase if Blockset is not selected.

Restrictions: If passwords are to be entered through an exit and the Blockset is not
selected, the data set cannot be opened during the initialization phase. This means

that MAINSIZE | SIZE=MAX must not be used, because the program cannot
make the necessary calculations.

148 DFSORT Application Programming: Guide

Information Your Routine Passes to DFSORT

Password List

Exit List

When you return to DFSORT, you must place in Register 1 the address of a
parameter list:

Byte 1 Bytes 2 through 4

05 Address of VSAM exit list
06 Address of password list
00 000000

If QSAM parameters are passed instead, they are accepted but ignored.

Either of the address entries may be omitted; if they are both included, they may
be in any order.

A password list included in your routine must have the following format: Two
bytes on a halfword boundary:

No. of entries in list

Followed by the 16-byte entries:

8 bytes: ddname

8 bytes: Password

The last byte of the ddname field is destroyed by DFSORT. This list should not be
altered at any time during the program. MAINSIZE | SIZE=MAX should not be
used if this function is used.

The VSAM exit list must be built using the VSAM EXLST macro instruction giving
the addresses of your routines handling VSAM exit functions. VSAM branches
directly to your routines, which must return to VSAM via register 14.

Any VSAM exit function available for input data sets may be used, except
EODAD. If you need to do EODAD processing, write a LERAD exit and check

for X'04' in the FDBK field of the RPL: This will indicate input EOD. This field
should not be altered when returning to VSAM, as it is also needed by DFSORT.

For details, see VSAM Programmer’s Guide or VSAM User’s Guide.

Below is an example of code your program can use to return control to DFSORT.

Chapter 4. User Exit Routines 149

E18

PARMLST

VSAMEXL
PWDLST

USYNAD
ULERAD
SER

LST

RTN
QSAMEOD

ENTRY

LA
RETURN
CNOP
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

EXLST
DC
DC
DC
DC
DC

E18

1,PARMLST

0,4

X'01"'

AL3 (SER)
X'02!

AL3 (LST)
X'03"
X'000080"
A(0)

X'o04'

AL3 (QSAMEOD)
X'05!

AL3 (VSAMEXL)
X'06"

AL3 (PWDLST)
A(0)

EROPT CODE

SYNAD=USYNAD, LERAD=ULERAD

Hl2l
CL8'SORTIN'
CL8'INPASS'
CL8'SORTOUT'
CL8'OUTPASS'

X'85',AL3 (RTN)

SORTIN DDNAME

SORTIN PASSWORD
SORTOUT DDNAME
SORTOUT PASSWORD
VSAM SYNCH ERROR RTN
VSAM LOGIC ERROR RTN
QSAM ERROR RTN

EXLST ADDRESS LIST#
EXLST ROUTINE

QSAM END OF FILE ROUTINE

*X'85"= X'80' plus X'05', where:

1. X'80' means this entry is the LAST ENTRY of the list.

2. X'05' means this exit is the data control block exit

For more information, refer to OS/MVS Data Management Services Guide.

E19 Exit, Handling Output to Work Data Sets

This exit is used to handle write error conditions in the input phase when DFSORT
is unable to correct a write error to a work data set. It cannot be used if a disk
sorting technique is used; if supplied, it is ignored.

150 DFSORT Application Programming: Guide

Use with QSAM/BSAM

Your routines at this exit can pass to DFSORT a parameter list containing the
specifications for two DCB fields (SYNAD and EXLST).

Your routines are entered first early in the input phase so that DFSORT can obtain
the parameter lists. The routines are entered again later in the phase at the points
indicated by the options in the parameter lists.

Information Your Routine Passes to DFSORT

Before returning control to DFSORT, your routine passes the DCB fields in a
parameter list, the address of which is placed in register 1. The list must begin on a
fullword boundary and must be a whole number of fullwords long. The first byte
of each word must contain a character code that identifies the parameter. Either
word can be omitted. A word of all zeros indicates the end of the list.

If VSAM parameters are passed, they are accepted but ignored.

The format is shown below.

Byte 1 Byte 2 Byte 3 Byte 4

01 SYNAD field

02 EXLST field

00 00 00 00
SYNAD

This field contains the location of your write synchronous error routine. This
routine is entered only after the operating system has unsuccessfully tried to
correct the error. It must be assembled as part of your own routine.

EXLST
The EXLST field contains the location of a list of pointers to the routines
that you want used to process labels and accomplish other tasks not handled
by data management. This list, and the routines to which it points, must be
included as part of your own routine.

A full description of these DCB fields can be found in Data Management Macro
Instructions.

E61 Exit, Modifying Control Fields

You can use a routine at this exit to lengthen, shorten or alter any control field
within a record. The E option for the s parameter on the SORT or MERGE
control statement must be specified for control fields changed by this routine as

Chapter 4. User Exit Routines 151

Some Uses

described in Chapter 2. After your routine modifies the control field, DFSORT
collates the records in ascending order using the format(s) specified.

Your routine can normalize floating-point control fields or change any other type
of control field in any way that you desire. You should be familiar with the
standard data formats used by the operating system before modifying control
fields.

If you want to merely modify the collating sequence of EBCDIC data, for example,
to permit the alphabetic collation of national characters, you can do so without the
need for an E61 exit routine by use of the ALTSEQ control statement (as
described in Chapter 2).

Information DFSORT Passes to Your Routine

DFSORT places the address of a parameter list in register 1. The list begins on a
fullword boundary and is three fullwords long. It contains the number (in
hexadecimal) of the control field in the last byte of the first word; the address of
the control field in bytes 2 through 4 of the second word; and the length of the
control field (in hexadecimal) in bytes 3 and 4 of the third word. The control field
length allows you to write a more generalized modification routine.

The parameter list for the E61 exit is as follows:

Byte 1 Byte 2 Byte 3 Byte 4
00 00 00 Control Field No.
00 Address of Control Field Image

Not Used Control Field Length 0001 0100

The control field address passed to your routine is that of an extract area to which
the program has moved the control field, separate from the record. Your routine,
in effect, changes an image of the control field and not the control field itself.

For all fields except binary, the total number of bytes DFSORT passes to your
routine is equal to the length specified in the m parameter of the SORT or MERGE
statement.

All binary fields passed to your routine contain a whole number of bytes; all bytes
which contain any bits of the control field are passed. If the control field is greater
than 256 bytes in length, DFSORT splits it up into fields of 256 bytes each and
passes them one at a time to your routine.

8 With a conventional merge or a tape work data set sort, control fields for which E is
specified are treated as binary byte format regardless of the actual format(s) specified.

152 DFSORT Application Programming: Guide

Your routine cannot physically change the length of the control field. If you must
increase the length for collating purposes, you must previously specify that length
in the m parameter of the SORT or MERGE statement. If you must shorten the
control field, you must pad it to the specified length before returning it to
DFSORT. The field your routine returns to DFSORT must contain the same
number of bytes as when the routine was entered.

When E61 is used, records are always ordered into ascending sequence. If you
need some other sequence, you can modify the fields further; for example, if after
carrying out your planned modification for a binary control field, and before
handing back control to DFSORT, you reverse all bits, the field is in effect collated
in descending order. You have not affected the record itself, since it is only an
extracted image you are modifying.

Note that if E61 is used to resolve ISCII/ASCII collating for special alphabetic
characters, substituted characters must be in EBCDIC, but the sequencing result
depends upon the byte value of the ISCII/ASCII translation for the substituted
character.

Output Phase Exits

E31 Exit, Opening Data Sets

You might use routines at this exit to open data sets needed by your other routines
in the output phase, or to initialize your other routines. Return codes are not used.

Note: To avoid special linkage editor requirements (see “Summary of Rules for
User Exit Routines” on page 183), you can include these functions in your E35
routine rather than in a separate E31 routine.

E32 Exit, Handling Input to a Merge Only

This exit can only be used in a merge operation which is invoked from another
program, and cannot be specified on the MODS statement. If activated, it must
supply all input to the merge, and the parameter list passed to the program or an
OPTION statement in SORTCNTL. must indicate the number of input files.

If input is variable-length records, you must be sure they contain a 4-byte record
descriptor word (RDW) at the beginning of each record before handing it to the

merge. The format of an RDW is described in Data Management Services Guide.
(Alternatively, you could declare the records as fixed length, and pad them to the
maximum length.)

See Figure 15 on page 138 for logic flow details.
Information DFSORT Passes to Your Routine
Your E32 exit routine is entered each time the merge program requires a new input

record. DFSORT passes a 2-word parameter list to your routine. The address of
the list is in register 1.

Chapter 4. User Exit Routines 153

Return Codes

E35 Exit, Changing Records

The parameter list has the format:

Bytes 1 through 4

Increment of next file to be used for input

Address of next input record

The file increment is 0,4,8,.... N—4, where N is four times the number of input files.
So, the increment 0 (zero) would represent the first input file, 4 the second file, 8
the third, and so on.

A separate input buffer must be provided by your routine for each input file used.
An input buffer containing the first record for a file must not be altered until you
have passed the first record from each file tc DFSORT.

Before returning control to the merge program, you must:

« Place the address of the next input record from the requested data set in the
second word of the parameter list.

o Put the return code in Register 15.

Your routine must pass one of the following return codes to the DFSORT:
8 End of the Data Set Requested (No Record Returned)

12 Insert Record
16 Terminate DFSORT

If you write your E35 routine in COBOL, see “COBOL Exit Routines” on
page 161, and “COBOL E35 Exit, Changing Records™ on page 172.

The E35 routine is entered each time DFSORT prepares to place a record in the
output area.

See Figure 15 on page 138 for logic flow details.

Some uses are:

« Add, delete, or change records in the output data set.
o Terminate DFSORT.

Notes:

1. Ifyou use the E35 routine to dispose of all your output records, the SORTOUT
DD statement may be omitted.

2. Ifyou invoke DFSORT from an assembler program and you pass the address of
your E35 routine in the parameter list:

154 DFSORT Application Programming: Guide

o DFSORT ignores the SORTOUT data set
« DFSORT terminates if you specify E35 in a MODS statement.

3. If the SORTOUT DD statement is omitted or ignored, your E35 exit routine must
dispose of each output record and return to DFSORT with a return code of 4.
When DFSORT returns to your routine after you have disposed of the last record,
return to DFSORT with return code of 8 to indicate “‘do not return.”

4. If your E35 routine is inserting variable length records, you must be sure they
contain a 4-byte record descriptor word (RDW) at the beginning of each record
before the routine passes it to DFSORT. The format of an RDW is described in
Data Management Services or System Programming Library: Data Management.
(Alternatively, you could declare the records as fixed-length, and pad them to the
maximum length.)

5. Remember that if input records are variable length from a VSAM data set, they
will have been prefixed by a 4-byte record descriptor word (RDW).

6. Once records have been put into the output area, their lengths may not be
increased.

Information DFSORT passes to Your Routine

Your E35 exit routine is executed each time DFSORT prepares to place a record
(including the first record) in the output area. DFSORT passes three words to your
routine:

« The address of the record leaving DFSORT which usually follows the record in
the output area. When DFSORT reaches the end of the input data set, it sets
this address to zero before entering your E35 exit.

After the end of the input data set is encountered, DFSORT continues to enter
your exit routine until you pass back a return code of 8.

« The address of a record in the output area. This address is zero the first time
your routine is entered because there is no record in the output area at that
time. It remains zero provided you pass a return code of 4 (delete record) to
DFSORT.

Note: If the record pointed to is variable length, it has a record descriptor
word at this point, even if output is to a VSAM data set.

« The user exit address constant. This word is passed to your exit exactly as it
was set by your E15 exit or invoking program’s parameter list.

In general register 1, DFSORT places the address of a parameter list that contains
the two record addresses and the user exit address constant.

Chapter 4. User Exit Routines 155

The list is three fullwords long and begins on a fullword boundary. The format of
the parameter list is:

Bytes 1 through 4
Address of record leaving DFSORT '

Address of record in output area

User exit address constant

Return Codes

Your routine must pass one of the following return codes to DFSORT to inform it
what to do with the record leaving DFSORT:

No Action/Record Altered
Delete Record
Do Not Return

2 Insert Record

6 Terminate DFSORT

—— 00 A O

0—No Action)
If you want DFSORT to retain the record unchanged, load the address of the
record leaving DFSORT in register 1 and return to DFSORT with a zero
return code.

0—Record Altered
If you want to change the record before having it placed in the output data
set, move the record to a work area, make the change, load the address of
the modified record into register 1, and return to DFSORT with a zero

return code. If you change record size, you must communicate that fact to
DFSORT in a RECORD statement.

4—Delete Record
Your routine can delete the record leaving DFSORT by returning to

DFSORT with a return code of 4. You need not place an address in register
1.

8—Do Not Return
DFSORT keeps returning to your routine until you pass a return code of 8.
After that, the exit is closed and not used again during the DFSORT
application. When you return with return code 8, you need not place an
address in register 1. Unless you are inserting records after the end of the data
set, you must pass a return code of 8 when DFSORT indicates the end of the
data set, which it does by passing your routine zero as the address of the
record leaving DFSORT.

If you do not have a SORTOUT data set and would usually return with a
return code of 8 before EOF, you can avoid getting the ICE025A message
by specifying NOCHECK on the OPTION control statement (if
CHECK=NO had not already been specified at installation time).

156 DFSORT Application Programming: Guide

Summarizing Records

E37 Exit, Closing Data Sets

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

12—Insert Record
If you want to add a record to the SORTOUT data set before the record
leaving DFSORT, place the address of the new record in register 1 and
return to DFSORT with a return code of 12. DFSORT returns to your
routine with the same address as before for the record leaving DFSORT, and
places the address of the inserted record into the output area, so you can
make more insertions at that point, or delete the record leaving DFSORT.
DFSORT does not perform sequence checking for disk sorts. For tape sorts,
DFSORT does not perform sequence checking on records that you insert
unless you delete the record leaving DFSORT and insert a record to replace
it. DFSORT keeps returning to your routine until you pass a return code of 8.

16—Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program or the system with a return code of 16.

You can use the SUM control statement to summarize records.

However, you can summarize records in the output data set by changing the record
in the output area and then, if you want, by deleting the record leaving DFSORT.
DFSORT returns to your routine with the address of a new record leaving
DFSORT and the same record remains in the output area, so that you can
summarize further. If you do not delete the record leaving DFSORT, that record is
added to the output area, and its address replaces the address of the previous
record in the output area; DFSORT returns with the address of a new record
leaving DFSORT. '

Your routine at this exit is executed once at the end of the output phase. It can be
used to close data sets used by your other routines in the phase or to perform any
housekeeping functions for your routines.

Note: To avoid special linkage editor requirements (see “‘Summary of Rules for
User Exit Routines” on page 183), you can include these functions in your E35
routine rather than in a separate E37 routine.

E38 Exit, Handling Input Data Sets

The routine here is the same as for E18. If you are using a disk sorting technique,
then I/0O error conditions cannot be handled through E38.

Chapter 4. User Exit Routines 157

Use with VSAM

This exit can be used during a merge or copy to insert VSAM passwords into
VSAM input ACBs and to perform various VSAM exit functions. The example
below shows code your program can use to return control to DFSORT.

ENTRY

E38 LA
RETURN
CNOP
PARMLST DS
DC
DC
DC
DC
DC

VSAMEXL EXLST
PWDLST DC

DC

DC

DC

DC

DC

DC
USYNAD N
ULERAD .o

E38

1, PARMLST

0,4

OH

X'05'

AL3 (VSAMEXL)
X'06"'

AL3 (PWDLST)
A(0)

SYNAD=USYNAD, LERAD=ULERAD

H'3'
CL8'SORTINO1'
CL8'INPASS1'
CL8'SORTINO2'
CL8'INPASS2'
CL8'SORTOUT'
CL8'OUTPASS'

SORTINO1 DDNAME
SORTINO1 PASSWORD
SORTINO2 DDNAME
SORTINO2 PASSWORD
SORTOUT DDNAME
SORTOUT PASSWORD
VSAM SYNCH ERROR RTN
VSAM LOGIC ERROR RTN

E39 Exit, Handling Output Data Sets

Use with VSAM

158 DFSORT Application Programming: Guide

Same as for E19 for QSAM/BSAM.

For VSAM, this exit can be used to insert VSAM passwords into VSAM output
ACB:s and to perform various VSAM exit functions. The example below shows
code your program can use to return control to DFSORT.

E39

PARMLST

VSAMEXL
PWDLST

USYNAD
ULERAD

ENTRY

LA
RETURN
CNOP
DS

DC

DC

DC

DC

DC

.

EXLST
DC
DC
DC

. e

E39

1,PARMLST

0,4

OH

X'05"

AL3 (VSAMEXL)
X'06'

AL3 (PWDLST)
A(0)

SYNAD=USYNAD, LERAD=ULERAD

Hl'll
CL8'SORTOUT' SORTOUT DDNAME
CL8'OUTPASS' SORTOUT PASSWORD

VSAM SYNCH ERROR RTN
VSAM LOGIC ERROR RTN

Chapter 4. User Exit Routines

159

Sample Routines Written in Assembler

E15: Deleting Expired Records

This routine checks each record’s expiration date, and deletes records that are

obsolete.
E15 CSECT
USING *,12 SET UP BASE REGISTER
SAVE (14,12) SAVE REGISTERS
LR 12,15 LOAD BASE REGISTER
ST 13, SAVEAREA+4 CHAIN BACKWARD
LR 11,13
LA 13, SAVEAREA
ST 13,8(11) CHAIN FORWARD
*
L 2,0(1) LOAD ADDR OF RECORD INTO R2
LA 2,0(,2) CLEAR FIRST BYTE
LTR 2,2 IS ADDR=0?
BZ EMPTEST YES-TEST FOR NO INPUT
CLI FIRSTIME,C'Y' IS IT FIRST TIME THROUGH
BNE AROUND BRANCH IF NO
TIME DEC OBTAIN TODAY'S DATE
MVI FIRSTIME,C'N’ INDICATE NOT FIRST TIME ANY MORE
ST 1,DATE SAVE DATE '
RECDATE EQU 4
DATLEN EQU 4
RECBASE EQU 2
AROUND CLC RECDATE (DATLEN, RECBASE) ,DATE CHECK EXPIRATION DATE
BNH DELETE IF OBSOLETE, DELETE RECORD
L 13, SAVEAREA+4 RESTORE R13
LM 14,12,12(13) RESTORE REGS
L 1,0(1) POINT TO REC LEAVING MERGE
SR 15,15 RC=0 (NO ACTION)
BR 14
EMPTEST CLI FIRSTIME,C'Y' IS THIS FIRST RECORD?
BNE NORETRET NO-END OF DATA SET
L 13, SAVEAREA+4 YES~-INPUT DATA SET EMPTY
RETURN (14,12) ,RC=16 'TERMINATE SORT' CODE
NORETRET L 13, SAVEAREA+4 RESTORE R13
RETURN (14,12),RC=8 'NO RETURN' CODE
DELETE L 13, SAVEAREA+4 RESTORE R13
RETURN (14,12) ,RC=4 '"DELETE' CODE
*
SAVEAREA DS 18F
DATE DS F
FIRSTIME DC c'y!
END

160 DFSORT Application Programming: Guide

E16: When NMAX Exceeded, Sort Current Records

This routine tells DFSORT to sort only the records it has already read in, when it
issues the message “NMAX EXCEEDED”.

E16 CSECT
LA 15,0 SET RETURN CODE
BR 14
END

E35: Deleting Records

This routine checks byte 5 of each record. If the byte contains the letter ‘N’, it
deletes the record. You could use the INCLUDE or OMIT control statements

instead.
E35 CSECT
USING *,15
SAVE (14,12) SAVE REGISTERS
L 1,0(1) R1 GETS ADDR OF REC FR PARAMLIST
LTR 1,1 IS ADDR ZERO?
BZ NOINPUT YES~END OF INPUT
CLI 4(1),X'D5! DOES BYTE 5 CONTAIN 'N'?
BE DELETE YES-DELETE RECORD
LM 14,12,12(13) RESTORE REGISTERS
SR 15,15 RC=0 (NO ACTION)
L 1,0(1) POINT TO RECORD LEAVING MERGE
BR 14

NOINPUT RETURN (14,12),RC=8 RETURN WITH 'DO NOT RETURN' CODE
DELETE RETURN (14,12),RC=4 RETURN WITH 'DELETE' CODE
END

COBOL Exit Routines

E15 and E35 exit routines written in COBOL can perform the same functions as
E15 and E35 exit routines written in Assembler. However, the information passed
between DFSORT and the COBOL routine is handled differently than for
Assembler. These differences are:

¢ Your COBOL routine must use fields described in the LINKAGE SECTION
of the DATA DIVISION, instead of register 1 and pointers in a parameter list.

¢ Your COBOL routine must use RETURN-CODE (a COBOL special register)
instead of register 15 for the return code.

Chapter 4. User Exit Routines 161

e Your COBOL routine must use return code 20 when you want to alter or
replace a record instead of return code 0.

¢« Your COBOL routine must use the exit area instead of the user address
constant.

COBOL Exit Requirements

The following rules apply to COBOL exits. Failure to observe these COBOL exit
rules may result in termination or unpredictable results.

« If both E15 and E35 exits are used, they must be in the same version of
COBOL.

+ Exits written in COBOL must not use STOP RUN statements. To return to
DFSORT, you have to use the GOBACK statement.

« VS COBOL II exits must be compiled with the RES/RENT compile-time
option.

« Compilation of OS/VS COBOL exits with the RES compiler option aids
migration to VS COBOL II; however, exits compiled with NORES execute
under DFSORT.

« If an exit contains a READY TRACE, EXHIBIT, or DISPLAY statement, the
DFSORT messages normally written to SYSOUT should be directed to another
data set using the MSGDDN parameter. For READY TRACE, EXHIBIT,
and DISPLAY statements, COBOL writes also to SYSOUT. The messages to
SYSOUT could, therefore, be lost because of interleaving of output.

Another alternative is to direct the COBOL output to another data set, using
the SYSx compiler option for OS/VS COBOL or the OUTDD compiler option
for VS COBOL. 11.

« COBOL exits must not contain a SORT or a MERGE verb.

o If invoking DFSORT from a VS COBOL I program, you can use a COBOL
E15 if the VS COBOL II FASTSRT option is in effect for input, and/or a
COBOL E35 if FASTSRT is in effect for output. The COBOL exits must be
compiled with VS COBOL II.

« If you are running with VS COBOL II exits, you must use the VS COBOL 1I
library. If COBEXIT=COB?2 is not the default for your installation, make sure
you specify the COB2 parameter in the OPTION control statement. Failure to
do so results in degraded performance.

« If you run exits compiled with either COBOL compiler and you specify the
RES option, the COBOL. library routines must be available at execution time.
The COBOL library may be required for an exit compiled with the OS/VS
COBOL, NORES option. See your OS/VS COBOL manual for information
on options that may require the COBOL library.

« Exits compiled with OS/VS COBOL may be executed with either the OS/VS
COBOL or VS COBOL 11 library, or in some cases, with no library.

162 DFSORT Application Programming: Guide

« Exits compiled with VS COBOL II must be executed with the VS COBOL II
library.

+ Exits compiled with OS/VS COBOL and executing with the VS COBOL II
library should not issue STAEs. (OS/VS COBOL compiler options that cause
STAE to be issued are: STATE, FLOW, SYMDMP, COUNT, and TRACE.)

Requirements for Copy Processing

Storage Requirements

For copy processing, all sort requirements apply except for the following
restrictions:

« When DFSORT is invoked through JCL and COBEXIT=COB?2, either a
separately compiled COBOL E15 exit or a separately compiled COBOL E35
exit is allowed, but not both together.

« When DFSORT is invoked from a VS COBOL II program, the following
limitations apply when FASTSRT is in effect for:

— input only: a separately compiled E15 exit is allowed, but not a separately
compiled E35 exit

— output only: a separately compiled E35 exit is allowed, but not a
separately compiled E15 exit

— input and output: either a separately compiled E15 or a separately
compiled E35 is allowed, but not both together (when COBEXIT=COB2)

If separately compiled E15 and E35 exits are found together, DFSORT copy
processing terminates. Message ICE161A is issued.

If you are running the COBOL exits compiled with the RES compiler option, make
sure that you have enough storage available for the COBOL library subroutines.
(This does not apply if the library has been installed resident.)

Besides the minimum DFSORT main storage requirements, you need an additional
40K bytes of storage in your REGION for the OS/VS COBOL library subroutines,
and 150K bytes for the VS COBOL II library subroutines. Most of the VS
COBOL 11 library subroutines can be resident above 16-megabyte virtual.
However, whether you can actually load the VS COBOL 11 library subroutines
above 16-megabyte virtual depends on how they were installed.

Under certain conditions, DFSORT can use all the storage in your REGION below
16-megabyte virtual, (true for both MVS and MVS/XA systems) thus leaving no
room to load the COBOL library subroutines required during execution of your
exit.

On an MVS/XA system, main storage is available above 16-megabyte virtual
unless the TMAXLIM or SIZE/MAINSIZE options specify an extremely high
value (for example, your system limit for main storage above 16-megabyte virtual),
in which case you can use the ARESALL or ARESINV option to release storage.

Chapter 4. User Exit Routines 163

During execution, the actual amount of storage required for the COBOL library
subroutines depends on the functions performed in the COBOL exit. You should
add to the size of the exit a minimum of 40K bytes when running with the OS/VS
COBOL library subroutines and, in most cases, 20K bytes when running with the
VS COBOL 11 library subroutines. If the exit does I/0, additional storage must be
reserved for the 1/0 buffers. (See Note below for additional circumstances under
which you may need to release additional storage for VS COBOL II.) This value is
specified by the m parameter on the MODS statement. A VS COBOL II exit
requires less storage, because DFSORT automatically releases storage for some of
the COBOL library subroutines before the exit is called.

When SIZE/MAINSIZE=MAX is in effect, an alternative way to release storage is
to use the RESALL or RESINV option.

Note: When you are calling both exits (E15 and E35), when running with
nonresident VS COBOL 1II library subroutines, and executing a sort under MVS or
MVS/XA with DFSORT residing above 16-megabyte virtual, you may need to
release an additional 70K bytes of storage. This can be done by adding 70K bytes
more to one of the following:

« The m parameter of the MODS statement for the E35 exit (m = E35 exit size
+ 20K + 70K)

« The RESALL option when SIZE/MAINSIZE=MAX is in effect

Input Phase Exit

COBOL E15 Exit, Passing or Changing Records for Sort

DFSORT continues tc enter E15 (even when there are no input records) until the
exit tells DFSORT, with a return code of 8, not to return.

See Figure 15 on page 138 for logic flow details.
Some uses for E15 are:

e Add records to an input data set.

« Pass an entire input data set to DFSORT.

« Delete records from an input data set.

« Change records in an input data set (but not control fields——use E61 exit for
that).

Notes:
1. If both E15 and E35 exits are used, they must be in the same version of COBOL.

2. If you use the E15 exit, the SORTIN DD statement may be omitted, in which
case you must include a RECORD statement in the program control statements.

164 DFSORT Application Programming: Guide

Interface with COBOL

If you omit the SORTIN DD statement, all input records are passed to DFSORT
through your COBOL E15 exit. You return to DFSORT with a return code of
12. When DFSORT returns to the E15 exit after the last record has been passed,
return to DFSORT with return code 8 to indicate “‘do not return.”

DFSORT continues to re-enter your E15 exit until a return code of 8 is received.
However, if STOPAFT is in effect, no additional records are inserted to the sort
after the STOPAFT count is satisfied.

You cannot use dynamic link-editing together with a COBOL E15 exit.

Each time the E15 exit is called, DFSORT supplies the following fields:

]

Record flags

New record

Length of the new record (for VLR)
Length of exit area

Exit area

When E15 returns to DFSORT, the E15 exit provides to DFSORT some or all of
the fields mentioned below. The first field is required; the other four may be
modified as appropriate.

RETURN-CODE (assigned by the exit by setting the COBOL special register
RETURN-CODE)

Return record
Length of the return record (for VLLR)
Length of exit area

Exit area

For more information on how these fields are used in a COBOL E15 exit, see
“Linkage Section Fields” on page 176.

Figure 18 on page 166 details the interface to COBOL for the E15 exit.

Chapter 4. User Exit Routines 165

R1

\

Pointer to Record 1 Record Flags

Flags — 4 bytes —
4 bytes ———

Pointer to New »| New Record

Record L * bytes —
4 bytes w———

Pointer to Return

Record »! Return Record

L * bytes

4 bytes =

Pointer to Dummy

»| Dummy Field

Field L 4 bytes ——d

4 bytes
Pointer to Dummy »! Dummy Field
Field | 4 bytes

4 bytes e—m——i

VLR: Length of New Record

Pointer to Length of » 4 bytes
New Record FLR: Dummy Field

4 bytes = —— 4 bytes

VLR: Length of Return Record
Pointer ro Length of

- 4 bytes
Return Record FLR: Dummy Field
4 bytes —— — 4 bytes
Pointer to Dummy D -
: »| Dummy Field
Field
4 bytes —
4 bytes
Pointer to Length of »! Length of Exit Area
Exit Area L5 bytes
4 bytes el
Pointer to Exit Area »| Exit Area l
L— 256 bytes
4 bytes =

Number of Bytes '
* — VLR: Number of bytes is given by the corresponding length field
FLR: Number of bytes is equal to the LRECL

Figure 18. E15 DFSORT Interface with COBOL

166 DFSORT Application Programming: Guide

Linkage Examples: Figure 19 is an example of the LINKAGE SECTION code for
a fixed-length record data set with LRECL of 100, showing the layout of the fields

passed to your COBOL routine.

Note: You only need to code up to the last field that your routine actually uses
(for example, up to RETURN-REC if you do not use the exit area).

LINKAGE SECTION.

01 RECORD-FLAGS
88 FIRST-REC
88 MIDDLE-REC
88 END-REC

01 NEW-REC

01 RETURN-REC

01 UNUSEDI1
01 UNUSED2
01 UNUSED3

01 UNUSED4

01 UNUSED5

01 EXITAREA-LEN
01 EXITAREA.

PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9(8) COMPUTATIONAL.
VALUE 00.
VALUE 04.
VALUE 08.
X(100).
X(100).
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(8) COMPUTATIONAL.
9(4) COMPUTATIONAL.

05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 19. LINKAGE SECTION Code Example for E15 (FLR)

Figure 20 on page 170 is an example of the LINKAGE SECTION code for a
variable-length record data set with maximum LRECL of 200, showing the layout
of the fields passed to your COBOL routine.

Notes:

1. If the data used for input was not created by a COBOL run, you need to know the
record length (LRECL) that is defined for your data set. For VLR records, the
maximum length of the record defined in your COBOL exit is 4 bytes less than
the LRECL value, because COBOL does not include the RDW as part of the
record. (VLR records have an RDW field of 4 bytes at the beginning of each
record that is not included in the record that is passed to your COBOL exit).

2. You only need to code up to the last field that your routine actually uses (for
example, up to RETURN-REC-LEN if you do not use the exit area).

Chapter 4. User Exit Routines 167

LINKAGE SECTION.
01 RECORD-FLAGS

PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.
01 NEW-REC.
05 NREC OCCURS 1 TO 200 TIMES
DEPENDING ON NEW-REC-LEN PIC X.

01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES
DEPENDING ON RETURN-REC-LEN PIC X.

01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 UNUSED2 PIC 9(8) COMPUTATIONAL.
01 NEW-REC-LEN PIC 9(8) COMPUTATIONAL.
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL.
01 UNUSED3 PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.

01 EXITAREA.
05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 20. LINKAGE SECTION Code Example for E15 (VLR)

Linkage Section Fields for FLR and VLR

The fields in the LINKAGE SECTION are used by DFSORT and your routine as
stated below. For clarity, the field names from the above code examples have been
used.

» To give your COBOL routine the status of the passed records, DFSORT uses
the Record Flags field (RECORD-FLAGS) in the following way:

0 (FIRST-REC)
The new record is the first passed record

4 (MIDDLE-REC)
The new record is not the first passed record

8 (END-REC)
There is no new record to pass; all records have
been passed to your routine or there were no records to pass

o DFSORT places the next input record in the New Record field (NEW-REC).
A variable-length record does not contain a record descriptor word (RDW),
but DFSORT places the length of this variable-length record in the New
Record Length field (NEW-REC-LEN). The value in the NEW-REC-LEN
field is the length of the record only and does not include the 4 bytes for the
RDW.

« When your routine places an insertion/replacement record in the return record

field (RETURN-REC), the variable-length record must not contain an RDW;
your routine must place the length of this record in the return record length

168 DFSORT Application Programming: Guide

field (RETURN-REC-LEN). The value of the RETURN-REC-LEN field is
the length of the record only and should not include the 4 bytes for the RDW.

DFSORT passes your routine a 256-byte exit area field (EXITAREA) for you
to include information to be passed to your COBOL E15 exit each time it is
called by DFSORT and/or to your COBOL E35 exit. The first time the exit
area field is passed to your COBOL E15 exit, it contains 256 blanks, and the
exit area length field (EXITAREA-LEN) contains 256.

Any changes you make to the exit area field or exit area length fields is passed
back to your COBOL E15 exit as well as to your COBOL E35 exit.

Notes:
1. Do not set the exit area length field to more than 256 bytes.

2. You only need to code up to the last field that your routine actually uses (for
example, up to RETURN-REC if you do not use the exit area).

Return Codes: Your COBOL E15 routine must pass one of the following return
codes to DFSORT in the RETURN-CODE field (a COBOL special register)
informing it what to do with the record you have been examining or changing:

0 No Action

4 Delete Record

8 Do not Return

12 Insert Record

16 Terminate DFSORT
20 Alter/Replace Record
0—No Action

If you want DFSORT to retain the record unchanged, return with
RETURN-CODE set to 0.

4—Delete Record

If you want DFSORT to delete the record, return with RETURN-CODE set
to 4.

8—Do Not Return

DFSORT continues to enter your routine until you return with
RETURN-CODE set to 8. After that, the exit is not reentered during the
DFSORT application. Unless you are inserting records after end-of-data set,
you must set RETURN-CODE to 8 when DFSORT indicates the end of the
data set, which it does by entering your routine with the Record Flags field
set to 8.

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

12—Insert Record

If you want DFSORT to add a record before the new record in the input
data set, do the following:

« Move the insert record to the return record field.

Chapter 4. User Exit Routines 169

» For VLR records, move the length to the return record length field. (Do
not include the 4-byte RDW in this length.)

« Return with RETURN-CODE set to 12.
DFSORT reenters your routine with the same record as before in the new
record field, allowing your routine to insert more records or handle the new
record.
You can also insert records after end-of-data set. DFSORT keeps returning
to your routine as long as you pass it a RETURN-CODE 12 and until you
return with a RETURN-CODE set to 8.

16—Terminate DFSORT
If you want to terminate DFSORT, return with RETURN-CODE set to 16.
DFSORT then returns to its calling program or to the system with a return
code of 16.

20—Alter Record
If you want to change the new record, do the following:

» Move the new record to the return record field.

« Change the record in the return record field.

« For VLR records, move the length to the return record length field.
+ Return with RETURN-CODE set to 20.

Note: If your routine changes record size, you must indicate the new size on
the RECORD statement.

20—Replace Record
If you want to replace the new record, do the following:

+ Move the replacement record to the return record field.

« For VLR records, move the length to the return record length field. (Do
not include the 4-byte RDW in this length.)

+ Return with RETURN-CODE set to 20.

Procedure Division Requirements

When coding the PROCEDURE DIVISION, the following requirements must be
met:

¢ To return control to DFSORT, you must use the GOBACK statement.
« In the USING option of the PROCEDURE DIVISION header, you must
specify each 01-level name in the LINKAGE SECTION. You must specify

each name in order up to the last one you plan to use, even when you do not
use all the 01-level names preceding the header.

170 DFSORT Application Programming: Guide

Examples:

For the FLR example, Figure 19 on page 167, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC,
RETURN-REC, UNUSED1, UNUSED2, UNUSED3,
UNUSED4, UNUSED5, EXITAREA-LEN, EXITAREA.

For the VLR example, Figure 20 on page 168, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC,
RETURN-REC, UNUSED1, UNUSEDZ,
NEW-REC~LEN, RETURN-REC-LEN,

UNUSED3, EXITAREA-LEN, EXITAREA.

Chapter 4. User Exit Routines 171

Output Phase Exit

| COBOL E35 Exit, Changing Records

Interface with COBOL

The E35 routine is entered each time DFSORT prepares to place a record in the
output area.

See Figure 15 on page 138 for logic flow details.

Some uses are:

+ Add, delete, or change records in the output data set.

o Terminate DFSORT.

When DFSORT indicates the end of the data set (record flags field set to 8), you
must set RETURN-CODE to 8 (unless you are inserting records after the end of
the data set); otherwise, DFSORT continues to enter E35.

Notes:

1. If both E15 and E35 exits are used, they must be in the same version of COBOL.

2. If you use the E35 exit, the SORTOUT DD statement may be omitted, but you
must include a RECORD statement in the program control statements.

3. If you omit the SORTOUT DD statement, your E35 exit routine must dispose of
each output record and return to DFSORT with a return code of 4. When
DFSORT returns to your routine after you have disposed of the last record, return
to DFSORT with a return code of 8.

4. You cannot use dynamic link-editing together with a COBOL E35 exit.

Each time your E35 exit is called, DFSORT supplies the following fields:

+ Record flags

« Record leaving DFSORT

« Length of record leaving DFSORT (for VLR)

¢ Length of exit area

o Exit area

When your E35 exit returns to DFSORT, the E35 exit provides to DFSORT some
or all the fields mentioned below. The first field is required, the other four may be

modified as appropriate.

« RETURN-CODE (assigned by the exit by setting the COBOL special register
RETURN-CODE) '

172 DFSORT Application Programming: Guide

« Return record

« Length of return record (for VLR)
o Length of exit area

« [Exit area

For more information on how these fields are used in a COBOL E35 exit, see
“Linkage Section Fields” on page 176.

Figure 21 on page 174 details the interface to COBOL for the E35 exit.

Chapter 4. User Exit Routines 173

- R1

F;?;n:er to Record »!| Record Flags i
9 — 4 bytes
‘ 4 bytes ————,
izg\ﬁﬁ;t&%%:g? —»1 Record Leaving DFSORT
— * bytes
4 bytes
Pointer to Return »| Return Record
Record *
- " bytes
4bytes
z‘a:;s; X)r:;ecord n »1 Record in Output Area
= * bytes
4 bytes
Pointer to Dummy »| Dummy Field I
- 4 bytes
‘ 4 bytes
Pointer ot Length of VLR: Length of Record Leaving DFSORT
Record Leaving > 4 bytes
DFSORT FLR: Dummy Field
— 4 bytes L— 4 bytes
. VLR: Length of Return Record
Pointer to Length of o 4 bytes
Return Record - Y .
FLR: Dummy Field
4 bytes — 4 bytes _
Pointer to Length of VLR: Length of Record in Output Area
/Fiecord in Output > 4 bytes :
rea FLR: Dummy Field
4 bytes L— 4 bytes
Po{nter to Length of »| Length of Exit Area
Exit Area
~— 2 bytes ‘
4 bytes
Pointer to Exit Area »1 Exit Area l
L 256 bytes
4 bytes
Number of Bytes

* — VLR: Number of bytes is given by the corresponding length field
FLR: Number of bytes is equal to the LRECL

Figure 21. E35 Interface with COBOL

174 DFSORT Application Programming: Guide

Linkage Section Examples

Figure 22 is an example of the LINKAGE SECTION code for a fixed-length
record data set with LRECL of 100, showing the layout of the fields passed to your
COBOL routine.

Note: You only need to code up to the last field your routine actually uses (for
example, up to OUTPUT-REC if you do not use the exit area).

LINKAGE SECTION.

01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.
88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.
01 LEAVING-REC PIC X(100).
01 RETURN-REC PIC X(100).
01 OUTPUT-REC PIC X(100).
01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 UNUSED2 PIC 9(8) COMPUTATIONAL.
01 UNUSED3 PIC 9(8) COMPUTATIONAL.
01 UNUSED4 PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.

01 EXITAREA.
05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 22, LINKAGE SECTION Code Example for E35 (FLR)

Figure 23 on page 176 is an example of the LINKAGE SECTION code for a
variable-length record data set with maximum LRECL of 200, showing the layout
of the fields passed to your COBOL. routine.

Notes:

1. VLR records have a 4 byte RDW field at the beginning of each record. The
maximum record length plus the RDW will be the length defined for the LRECL
attribute of your output data set. COBOL programs do not use the RDW and
therefore, the maximum length defined in your COBOL exit is 4 bytes less than
the LRECL value.

2. You only need to code up to the last field your routine actually uses (for example,
up to OUTPUT-REC-LEN if you do not use the exit area).

Chapter 4. User Exit Routines 175

LINKAGE SECTION.

01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.
88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 LEAVING-REC.
05 LREC OCCURS 1 TO 200 TIMES
DEPENDING ON LEAVING-REC-LEN PIC X.
01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES
DEPENDING ON RETURN-REC-LEN PIC X.
01 OUTPUT-REC.
05 OREC OCCURS 1 TO 200 TIMES
DEPENDING ON OUTPUT-REC-LEN PIC X.

01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 LEAVING-REC-LEN PIC 9(8) COMPUTATIONAL.
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL.
01 OUTPUT-REC-LEN PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.

01 EXITAREA.
05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 23. LINKAGE SECTION Code Example for E35 (VLR)

Linkage Section Fields: The fields in the LINKAGE SECTION are used by
DFSORT and your routine as stated below. For clarity, the field names from the
above code examples have been used.

To give your COBOL routine the status of the passed records, DFSORT uses
the record flags field (RECORD-FLAGS) in the following way:

0 (FIRST-REC)
The record leaving DFSORT is the first passed record

4 (MIDDLE-REC)
The record leaving DFSORT is not the first passed record

8 (END-REC)
There is no record leaving DFSORT to pass; all records
have been passed to your routine or there were no records to pass

DFSORT places the next output record (which usually follows the record in the
output area) in the record leaving field (LEAVING-REC). A variable-length
record does not contain an RDW; DFSORT places the length of this variable
length record in the record leaving length field (LEAVING-REC-LEN). The
value in the LEAVING-REC-LEN field is the length of the record only, and
does not include the 4 bytes for the RDW.

When your routine places an insertion/replacement record in the return record
field (RETURN-REC), the variable-length record must not contain an RDW;
your routine must place the length of this record in the return record length
field (RETURN-REC-LEN). The value in the RETURN-REC-LEN field is
the length of the record only, and does not include the 4 bytes for the RDW.

176 DFSORT Application Programming: Guide

DFSORT places the record already in the output area in the record in output
area field (OUTPUT-REC). A variable-length record does not contain an
RDW. DFSORT places the length, not including the 4 bytes for RDW, of this
variable-length record in the record in output area length field
(OUTPUT-REC-LEN).

DFSORT passes your routine a 256-byte exit area field (EXITAREA) that
may contain information passed by your COBOL E15 routine. If no
information is passed in this area by your COBOL E15 routine the first time
the exit area field is passed to your COBOL E35 routine, it contains 256
blanks, and the exit area length field (EXITAREA-LEN) contains 256.

Any changes you make to the exit area field or exit area length field is passed
back to your COBOL E35 routine each time it is called by DFSORT.

Note: Do not set the exit area length field to more than 256 bytes.

Return Codes: Your COBOL E35 routine must pass one of the following return
codes to DFSORT in the RETURN-CODE field (a COBOL reserved keyword)
instructing it what to do with the record you have been examining or changing:

0 No Action

4 Delete Record

8 Do Not Return

12 Insert Record

16 Terminate DFSORT

20 Alter/Replace Record

0—No Action
If you want DFSORT to retain the record leaving DFSORT unchanged,
return with RETURN-CODE set to 0.

4—Delete Record

If you want DFSORT to delete the record leaving DFSORT, return with
RETURN-CODE set to 4.

8—Do Not Return

DFSORT keeps returning to your routine until you pass a RETURN-CODE
set to 8. After that, the exit is not reentered during the DFSORT
application. Unless you are inserting records after the end-of-data set, you
must set RETURN-CODE to 8 when DFSORT indicates the end of the data
set, which it does by entering your routine with the record flags field set to 8.

If your exit passes a return code of 8 to DFSORT and there are still input
records to be processed, the records are processed without being passed to
your exit.

If you do not have a SORTOUT data set and would usually return with
return code 8 before EOF, you can avoid getting the ICE025A message by
specifying NOCHECK on the OPTION control statement (if CHECK=NO
had not already been specified at installation time).

Chapter 4. User Exit Routines 177

12—Insert Record
If you want DFSORT to add a record to the SORTOUT data set before the
record leaving DFSORT, do the following:

« Move the insert record to the return record field.
« For VLR records, move the length to the return record length field.
= Return with RETURN-CODE set to 12,
DFSORT reenters your routine with the inserted record in the record output
area field, and with the same record as before in the record leaving DFSORT
field. In this way, your routine can insert more records or handle the record
leaving DFSORT.
You can also insert records after end-of-data set. DFSORT keeps returning
to your routine as long as you pass it a RETURN-CODE 12 and until you
return with RETURN-CODE set to 8.
DFSORT does not perform sequence checking for disk sorts. For tape sorts,
DFSORT does not perform sequence checking on records that you insert
unless you delete the record leaving DFSORT and insert a record to replace
it.

16—Terminate DFSORT
If you want to terminate DFSORT, return with RETURN-CODE set to 16.
DFSORT then returns to its calling program or to the system with a return
code of 16.

20—Alter Record
If you want to change the record leaving DFSORT, do the following:

« Move the record leaving DFSORT to the return record field.

o Change the record in the return record field.

« For VLR records, move the length to the return record length field.
« Return with RETURN-CODE set to 20.

Note: If your routine changes record size, you must indicate the new size on
the RECORD statement.

20—Replace Record
If you want to replace the record leaving DFSORT, do the following:

e Move the replacement record to the return record field.
» For VLR records, move the length to the return record length field.

¢ Return with RETURN-CODE set to 20.

178 DFSORT Application Programming: Guide

Procedure Division Requirements

When coding the PROCEDURE DIVISION, the following requirements must be
met:

e To return control to DFSORT, you must use the GOBACK statement.

« In the USING option of the PROCEDURE DIVISION header, you must
specify each 01-level name in the LINKAGE SECTION. You must specify
each name in order up to the last one you plan to use, even when you do not
use all the 01-level names preceding the header.

Examples:

For the FLR example, Figure 22 on page 175, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1, UNUSED2,
UNUSED3, UNUSED4, EXITAREA-LEN, EXITAREA.

For the VLR example, Figure 23 on page 176, you would code:

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1,
LEAVING-REC-LEN, RETURN-REC-LEN,
OUTPUT~REC-LEN, EXITAREA-LEN, EXITAREA.

Chnapter 4. User Exit Routines 179

Sample Routines Written in COBOL

COBOL E1S8:
Figure 24 is an example of a COBOL E15 routine fo a data set with fixed-length
records of 100 bytes. It examines the department field in the passed trecord and
takes the following action:

« If the department is D29, it changes it to J99.

o If the department is not D29, it accepts the record unchanged.

IDENTIFICATION DIVISION.
PROGRAM-ID.

CE15.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.

01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.
88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.
01 NEW-REC.
05 NFILL1 PIC X(10).
05 NEW-DEPT PIC X(3).
05 NFILL2 PIC X(87).
01 RETURN-REC.
05 RFILLI1 PIC X(10).
05 RETURN-DEPT PIC X(3).
05 RFILLZ2 PIC X(87).

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC, RETURN-REC

IF END-REC
MOVE 8 TO RETURN-CODE
GO TO BACK-TO-SORT.

IF NEW-DEPT EQUAL TO "D29"
MOVE NEW-REC TO RETURN-REC
MOVE "J99" TO RETURN-DEPT
MOVE 20 TO RETURN-CODE

ELSE
MOVE 0 TO RETURN-CODE.

BACK~TO~SORT.
GOBACK.

Figure 24. COBOL E15 Routine Example (FLR)

180 DFSORT Application Programming: Guide

COBOL E35: Inserting Records

Figure 25 on page 182 is an example of a COBOL E35 routine for a data set with
variable-length records up to 200 bytes. It examines the department field in each

passed record (records are assumed to be sorted by the department field) and takes
the following action:

« Itinserts a record for Department K22 in the proper sequence.

¢ It accepts all passed records unchanged.

Chapter 4. User Exit Routines 181

IDENTIFICATION DIVISION.
PROGRAM-ID.
CE35.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING~STORAGE SECTION.
01 INSERT-DONE PIC 9(1) VALUE O.
01 K22-REC. ,
05 K22-MANAGER PIC X(20) VALUE "J. DOE".
05 K22-DEPT PIC X(3) VALUE "K22".
05 K22-FUNC PIC X(20) VALUE "ACCOUNTING".
05 K22-LATER PIC X(30) VALUE SPACES.
01 LEAVING-VAR-LEN PIC 9(8) COMPUTATIONAL.
LINKAGE SECTION.

01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.
88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 LEAVING-REC.
05 LREC-MANAGER PIC X(20).
05 LREC-DEPT PIC X(3).
05 LREC-FUNC PIC X(20).
05 LREC-LATER OCCURS 1 TO 157 TIMES
DEPENDING ON LEAVING-VAR-LEN PIC X.
01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES
DEPENDING ON RETURN-REC-LEN PIC X.
01 OUTPUT-REC.

05 OREC OCCURS 1 TO 200 TIMES
DEPENDING ON OUTPUT-REC-LEN PIC X.
01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 LEAVING-REC-LEN PIC 9(8) COMPUTATIONAL.
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL.
01 OUTPUT-REC-LEN PIC 9(8) COMPUTATIONAL.

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1,
LEAVING~-REC-LEN, RETURN~REC-LEN,
OUTPUT-REC-LEN.

IF END-REC
MOVE 8 TO RETURN-CODE
GO TO BACK-TO-SORT.

IF INSERT-DONE EQUAL TO 1
MOVE 0 TO RETURN-CODE
GO TO BACK-TO-SORT.

SUBTRACT 43 FROM LEAVING-REC-LEN
GIVING LEAVING-VAR-LEN.

IF LREC-DEPT GREATER THAN K22-DEPT
MOVE 1 TO INSERT-DONE
MOVE 43 TO RETURN-REC-LEN
MOVE K22-REC TO RETURN-REC
MOVE 12 TO RETURN-CODE

ELSE
MOVE 0 TO RETURN-CODE.

BACK-TO-SORT.
GOBACK.

Figure 25. COBOL E35 Routine Example (VLR)

182 DFSORT Application Programming: Guide

Assembler and COBOL User Exit Routines and DFSORT Performance

When you consider using user exits, you should consider the following factors:

Your routines occupy main storage that would otherwise be available to
DFSORT. Because its main storage is restricted, DFSORT may need to
execute extra passes to sort the data. This, of course, increases sorting time.

The execution of user exit routines adds time to the overall execution time.
Note that several of the exits give your routine control once for each record
until you pass a “do not return” return code to DFSORT. You should
remember this when designing your routines.

Use INCLUDE, OMIT, INREC, OUTREC, and SUM instead of exit routines
whenever possible.

| Summary of Rules for User Exit Routines

When preparing your routines, remember the following:

User-written routines must follow standard linkage conventions, and use the
described interfaces. COBOL E15 and E35 routines must use the special
interface provided.

To use an E32 exit, your invoking program must pass its address to DFSORT
in the parameter list.

To use any other exit, you must associate your routine with the appropriate
exits using the MODS control statement. See “MODS Control Statement” on
page 67.

Your invoking program may alternatively pass the address of an E15, E18,
E35, and/or E39 exit to DFSORT in the parameter list.

When a disk technique is used and your exits are reenterable, the entire
DFSORT program is reenterable.

If you are using ISCII/ASCII input, remember that data presented to your
exits at user exits are in EBCDIC format (all data is represented internally in
EBCDIC). If the E61 exit is used to resolve ISCII/ASCII collating for special
alphabetic characters, substituted characters must be in EBCDIC, but the
sequencing result depends on the byte value of the ISCII/ ASCII translation for
the substituted character.

Chapter 4. User Exit Routines 183

How to Load User Exit Routines

You must assemble or compile each user exit as a separate program. If your user
exit operates independently, link-edit it separately into a partitioned data set
(library) with the member name to be used in the MODS statement. If your user
exit operates in conjunction with other user exits in the same phase (for example,
E11, E15, and E17 all use the same DCB), you can request DFSORT to
dynamically link-edit them together (see MODS statement). Alternatively, you can
link-edit them together into a partitioned data set following these rules:

1. Specify RENT as a linkage editor parameter.

2. Include an ALIAS statement for each exit routine using the external entry
name of the routine (for example, the CSECT name).

3. Specify the appropriate ALIAS name for each exit routine on the MODS
statement.

DFSORT includes the names and locations of your user exits in the list of modules
to be executed during each phase. No user exit is loaded more than once in a
program phase, but the same exit can appear in different phases. For example, you
can use the same Read Error user exit in both phases, but not twice in one phase.

The individual lengths of the exits specified on a MODS statement are not
important, but the sum of the lengths must be the total length of the modules. For
example, all but one length may be specified as zero, and the total length specified
for the remaining exits. The length should also include any storage used by your
exits outside of the load modules, such as I/O buffers or COBOL library
subroutines. The parameters on the MODS statement that defines the exit must be
the same as the name of the DD statement that defines the library. For example:

//MYLIB DD DSNAME=MYRTN, etc.

MODS E15=(MODNAME, 500, MYLIB,N)

User Exit Linkage Conventions
The program uses a CALL macro instruction expansion to enter a user exit.
Therefore, each user exit must contain an entry point whose name is that of the
associated program exit.

The general registers used by DFSORT for linkage and communication of
parameters follow operating system conventions (see Figure 26 on page 185).

184 DFSORT Application Programming: Guide

Register Use
1 DFSORT places the address of a parameter list in this register.

13 DFSORT places the address of a standard save area in this register.
The area may be used to save contents of registers used by your exit.
The first word of the area contains the characters SM1 in its three
low-order bytes.

14 Contains the address of DFSORT return point.

15 Contains the address of your exit. May be used as base register for
your exit. This register is also used by your exit to pass return codes
to DFSORT.

Figure 26. Register Conventions

You can return control to DFSORT with a RETURN macro instruction. You can
also use this instruction to set return codes when multiple actions are available at
an exit.

Your exit must save all the general registers it uses. You can use the SAVE macro
instruction to do this. If you save registers, you must also restore them; you can do
this with the RETURN macro instruction.

How to Dynamically Link-Edit User Exit Routines

You can dynamically link-edit any user exit routine written in any language that has
the ability to pass the location/address of a record or parameter in register 1 and a
return code in register 15 (see MODS statement). This does not include E15 and
E35 routines written in COBOL.

On MVS/XA systems, dynamic link-editing does not support AMODE 31 or
RMODE 31 for the link-edit option T. The exits that are link-edited fogether by
DFSORT are not loaded above 16-megabyte virtual and can not be entered in
31-bit addressing mode. Exits link-edited with the S option retain the AMODE
and RMODE attributes of the object modules, and are loaded above or below
16-megabyte virtual depending upon the load’s module’s RMODE; they are
entered in the addressing mode of the exit.

Notes:
1. The Blockset technique is not used for dynamic link-editing.

2. Dynamic link-editing cannot be used with copy.

Chapter 4. User Exit Routines 185

Linkage Examples

The CALL macro instruction used by DFSORT to link to your exits is written as
follows:

CALL E15

This macro instruction is expanded to form assembler language instructions and,
when executed, places the return address in general register 14 and your routine’s
entry point address in general register 15. DFSORT has already placed the register
save area address in general register 13.

Your routine for the sort phase assignment component exit could incorporate the
following instructions:

ENTRY E15
E15 SAVE (5,9)

RETURN (5,9)

This coding saves and restores the contents of general registers 5 through 9. The
macro instructions are expanded into the following assembler language code:

ENTRY E15
E15 STM 5,9,40(13)

LM 5,9,40(13)
BR 14

If multiple actions are available at an exit, your routine sets a return code in general
register 15 to inform DFSORT of the action it is to take. The following macro
instruction could be used to return to the DFSORT with a return code of 12 in
register 15:

RETURN RC=12

A full explanation of linkage conventions and the macro instructions discussed in
this section is in Supervisor Services and Macro Instructions.

186 DFSORT Application Programming: Guide

Chapter 5. Invoking DFSORT from an Assembler Program

This chapter describes how you can initiate DFSORT from within your assembler
program with a system macro instruction, instead of with the EXEC job control
statement in the input stream.

DFSORT can also be invoked from programs written in COBOL or PL/1I. How to

do this is described in the relevant COBOL and PL/I programmer’s guides. JCL
requirements are, however, the same as for assembier.

Merge restriction

Merge applications cannot be done when DFSORT is invoked from a PL/I
program.

Copy restrictions

« Copy applications cannot be done when DFSORT is invoked from a PL/1
program.

o If youinvoke DFSORT from a COBOL program, the following restrictions
apply:

l

If using OS/VS COBOL, a copy application cannot be done.

— If using VS COBOL II, the OPTION COPY statement can be placed in
either the COBOL II IGZSRTCD data set or the DFSORT SORTCNTL
data set.

— If using the COBOL II FASTSRT compile time option for any part or all
of the COBOL SORT statement, a copy application can be done.

— If using the COBOL MERGE statement, a copy application cannot be
done.

See “Requirements for Copy Processing” on page 163 for exit requirements.

Chapter 5. Invoking DFSORT from an Assembler Program 187

System Macro Instructions

System macro instructions are macro instructions provided by IBM for
communicating service requests to the control program. You can use these
instructions only when programming in assembler language; they are processed by
the assembler program using macro definitions supplied by IBM and were placed in
the macro library when the control program under which you operate>was installed.

You can specify one of three different system macro instructions to pass control to
the program: LINK, ATTACH, or XCTL.

When you issue one of these instructions, the first load module of DFSORT is
brought into main storage. The linkage relationship between your program and
DFSORT differs according to which of the instructions you have used. For a
complete description of the macro instructions and how to use them, refer to
Supervisor Services and Macro Instructions.

How to Use the Macros

In order to initiate execution of DFSORT with a system macro instruction, you
must:

« Write the required job control language DD statements.
« Write DFSORT control statements as operands of assembler DC instructions.

e Write a parameter list containing information to be passed to DFSORT and a
pointer containing the address of the parameter list. Two types of parameter
lists are accepted by DFSORT: a 24-bit parameter list, and an extended
parameter list. Although you can choose either parameter list for OS/VS1,
MVS, or MVS/XA applications, the extended parameter list can perform a
superset of the functions in the 24-bit parameter list, and thus should be used
for new DFSORT applications.

« Prepare the macro instruction, in which you must specify the entry point name
of DFSORT.

Note: The save area passed to DFSORT must begin on a fullword boundary.
In addition, the following rule applies:
« If you are invoking DFSORT recursively (for example, from E15 or E35 exit),

you must always wait for the last invoked sort to end before you can give
control back to any of your exits in an earlier invoked sort.

188 DFSORT Application Pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>