N R s . - T R T S B R s, A
MVS/Extended Architecture Program

SAM Logic Product

Order No. LY26-3967-0 Contains Restricted Materials of IBM Data Facility Product 5665-XA2
File No. S370-30 Licensed Materials—Property of IBM Version 2
© Copyright IBM Corp. 1977, 1985 Release 1.0

Contains Restricted Materials of IBM
Licensed Materials—Property of IBM

MVS/Extended Architecture
SAM Logic

Data Facility Product 5665-XA2
Version 2 Release 1.0

LY26-3967-0

© Copyright IBM Corp. 1977, 1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

First Edition (April 1985)

This edition applies to Version 2 Release 1.0 of MVS/Extended
Architecture Data Facility Product, Program Product 5665-XA2,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for Version 2 support are summarized under "Summary
of Amendments"™ following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your

locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials
of International Business Machines Corporation. ® Copyright
International Business Machines Corporation 1977, 1982, 1984,
1985. All rights reserved.

C

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

PREFACE

ORGANIZATION

This manual is intended for programming-support customer
engineers and programmers who require specific information about
queued sequential access method (QSAM), basic sequential access
method (BSAM), and basic partitioned access method (BPAM)
routines.

This manual has the following parts:

"Introduction™ describes the sequential access method (SAM)
routines and includes a reference to Diagram A, "Sequential
Access Method—O0Overview.™ This diagram lists the macro
statements used with SAM programming techniques and directs the
reade; to appropriate diagrams and figures in other parts of the
manual.

In "Method of Operation,™ SAM routines are described in the
following categories:

U Queued sequential access method (QSAM) routines that cause
stgrage and retrieval of data records arranged in sequential
order.

. Basic sequential access method (BSAM) routines that cause
stgrage and retrieval of data blocks arranged in sequential
order.

° Basic partitioned access method (BPAM) routines that cause
storage and retrieval of data blocks in a member of a
partitioned data set. They can also construct entries and
se:rch for entries in the directory of a partitioned data
set.

. Executors that operate with input/output support routines.

) Buffer-pool management routines that furnish buffer space in
virtual storage.

. Problem determination that helps the user determine the
causes of abends by providing more information on the reason
for the termination.

. SVC routines that provide superv1sor state operation for
funct1ons that cannot be done in the problem state or in the
user's key.

. Task recovery routines that provide explicit validity
checking for SVC routines that experience program checks or
other abend conditions.

"Program Organization and Flow of Control™ contains diagrams
tha:_describe the organization and flow of control of the SAM
routines.

"Directory™ lists the names of the sequential access method
modules in alphabetic order. Each entry contains the module
name, type, CSECT name, SVC entry (if any), and references to
figures and appendixes in other parts of the manual that have
information about the module.

"Data Areas™ shows how various control blocks are used in QSAM
and BSAM. This section also describes the access method save
area for user totaling and the job entry subsystem (JES)
compatibility interface control block. "Data Areas™ does not
describe in detail all fields of the system control blocks
referred to in this manual. For more detailed information about

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Preface iii

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

system control blocks, see MVS/Extended Architecture Data
Areas—JES2, LYB8-1191, and MVS/Extended Architecture Data
Areas—JES3, LYB8-1195. ’

"Diagnostic Aids™ contains diagrams of control blocks and an
abend codes cross-reference table.

"Appendixes™ describe channel programs for direct-access
storage, and BDAM create channel programs.

PREREQUISITE KNOWLEDGE

To use this book efficiently, you should be familiar with the
following topics:

[Basic concepts of data management

. Processing sequential and partitioned data sets

PREREQUISITE READING

The above topics are discussed in MVS/Extended Architecture Data
Administration Guide, GC26-4140.

RELATED PUBLICATIONS

Within the text, references are made to the publications listed
in the table below:

Short Title Publication Title order Number

ACF/TCAM Advanced Communications SC30-3137

Diagnosis Guide Function for TCAM, Version 2
Diagnosis_Guide)

ACF/TCAM Advanced Communications LY30-3052

Diagnosis Function for TCAM, Version 2

Reference Diagnosis Reference

Data MVS/Extended Architecture GC26-4141

Administration: Data Administration: Macro

Macro Instruction Reference

Instruction

Reference

Data Areas MVS/Extended Architecture LYB8-1191
Data Areas (MVS/JES2)

Data Areas MVS/Extended Architecture LYB8-1195
Data Areas (MVS/JES3)

Debugging MVS/Extended Architecture LC28-116412

Handbook Debuaging Handbook, Volumes LC28-1165
1 through 5 LC28-1166

LC28-1167
LC28-1168

IBM 3800 IBM 3800 Printing Subsystem SH35-0061

Printing Models 3 and 8 Programmer's

Subsystem Guide

Programmer's

Guide

Note:
1 All five volumes may be ordered under one order number, J
LBOF-1015.

iv MVS/XA SAM Logic LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Short Title

Publication Title

order Number

Initialization MVS/Extended Architecture GC28-1149
and Tuning System Programming Library:
Guide Initialization and Tuning
JES2 Logic MVS/Extended Architecture LY24-6008
JES2 Logic
Open/Close/EQV MVS/Extended Architecture LY26-3966
Logic Open/Close/EOV lLogic
0S/VS Logic for 0S/VS Logic for IBM 3890 SY26-5163
IBM 3890 Document Processor
Document
Processor
Service Aids MVS/Extended Architecture GC28-1159
System Programming Library:
Service Aids
SYS1.LOGREC MVS/Extended Architecture GC28-1162
Error Recording System Programming Library:
SYS1.LOGREC Error Recording
System Codes MVS/Extended Architecture GC28-1157
Message Library: System
Codes
System—Data MVS/Extended Architecture GC26-4149
Administration System—Data Administration
System Logic MVS/Extended Architecture SY28-1208
Library System Logic Library, through
Volumes 1 through 16 LY28-1266
System Messages MVS/Extended Architecture GC28-1376
Message Library: System and
Messages, Volumes 1 and 2 GC28-1377
VIO Logic MVS/Extended Architecture LY26-3900

VIO lLogic

LY26-3967-0 ® Copyright IBM Corp.

1977,1985

Preface v

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

SUMMARY OF AMENDMENTS

RELEASE 1.0, APRIL 1985

NEW DEVICE SUPPORT

° Module descriptions for IGX00030, IGX00031, and IGX00032
have been added.

. Updates to support the IBM 4248 and 3263 Model 5 Printers
have been made to the Printer Device Characteristics Table
(IGGPDC) and the SETPRT Parameter List (IHASPP) under "Data
Areas™ on page 210, and the SETPRT Executor Return/Reason
Codeszggd Messages Table under "Diagnostic Aids"™ on
page .

NEW PROGRAM SUPPORT

A description of the subsystem CICB has been added to "Data
Areas™ on page 210.

VERSION 2 PUBLICATIONS

The Preface includes new order numbers for Version 2.

vi MVS/XA SAM Logic LY26~-3967-0 © Copyright IBM Corp. 1977,1985

C

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

CONTENTS

Introduction e o o o o o o o o 6 o o 6 6 o 6 o o 6 s o »

Method of Operation . e o o o s o o o o
Queued Sequential Access Method Routlnes e e e e e e e
GET Routines . e e e e e e
Simple- Bufferlng GET Routlnes e e e e e
Parallel Input Processing Routine
Update Mode GET Routine
PUT Routines . e e e e e e e e e e
Simple- Bufferlng PUT Routlnes e e e e e e e e e
Update Mode PUTX Routines e e e e e e e
End-of-Block Routines e e e e e e e
Ordinary End-of-Block Routlnes .
Chained Channel-Program Schedullng End-of—Block
Routines (Non-DASD Only) . .
End-of-Block Routines for D1rect Access Storage
Synchronizing-and-Error-Processing Routines
Appendages . e e e e e e e e e e e e e e
How to Read Compend1ums e e e e e e e e e e e e e
Start 170 (SI0) Appendages
EXCPVR Processing Appendages
Appendage IGG019BX/IGG0O19BY (SIO/Pagef1x)
Channel-End Appendages .
Program Controlled Interruptlon (PCI) Appendage
(Execution of Channel Programs Scheduled by Chalnxng)
Abnormal-End Appendages . .
QSAM Control Routines
Basic Sequential Access Method Routlnes
READ and WRITE Routines .
CHECK Routines . .
BSAM Control Routlnes
Basic Partitioned Access Method (BPAM) Routlnes
Dummy Data Set . .
Sequential Access Method Executors .
DCB Relocation to Protected Work Area
OPEN Executors . . .
Stage 1 OPEN Executors
Stage 2 OPEN Executors e e e e e e e e e
Stage 3 OPEN Executors e e e e e e e e e
CLOSE Executors . e e e e e e e e e e e
Force CLOSE Executors
Buffer-Pool Management
Problem Determination
SVC Routines .
DEVTYPE Rout1ne
IMGLIB Routine e e e e e e e e e e e e e e e e e e
Track Balance, Track Overflow Erase, DEB/SAMB Update
Routines e e e e e e e e e e e e e e e e e e e
BSP Routine e e e e e e e e e e e e e e e e e e e
STOW Routines . e e e e e e e e e e e e e e e
BLDL or FIND Rout1nes . e e e e e e e e e e e e
SYNADAF and SYNADRLS Routlnes e e e e e e e e e e e
SETPRT, SETDEV and IMGLIB Routines e e e e e e e e e
Task Recovery Routines c e e e e e e e e e e e e

Program Organization and Flow of Control e o o o o
Diagram A: Sequential Access Methods—Overview .
Diagram B: QSAM GET and PUT Routines .
Diagram C: BSAM/BPAM READ/WRITE and CHECK Rout1nes
Diagram D: Sequential Access Method OPEN Executors
Diagram E: Stage 1—SAM Flow of Control for OPEN Executors
Diagram E: Stage 2—SAM Flow of Control for OPEN Executors
Diagram E: Stage 3—SAM Flow of Control for OPEN Executors
Diagram F: QSAM Flow of Control e e . e e e
Diagram G: BSAM/BPAM Flow of Control . e e e
Diagram H: QSAM Flow of Control with EOV Routlnes .
Diagram I: BSAM Flow of Control with EOV Routines

L]
.
.
.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Contents

130

187
187
188
189
190
191
192

194
196
198
199

vii

viii

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Diagram J: QSAM Operation with FEOV Routine . 200
Diagram K: OPEN Processing for SAM Subsystem Interface
Executors . 201
Diagram L: CLOSE Processing for SAM Subsystem Interface
Executors . . 202
Diagram M: SAM Subsystem Interface Flow of Control for
SYSIN/SYSOUT Data Sets . .. e e . 203
Diagram N: Force CLOSE Process1ng . 204
Diagram 0: SYNADAF Flow of Processing 205
Directory e o o o 6 s s s o o s o s e s s s o s s e e o 206
Data Areas o 210
I0B Extension (Used N1th SAM EXCPVR)——IGGIOBEX . 210
Sequential Access Method Block—IGGSAMB e 211
Interrupt Control Queue Element—-IGGICQE 214
Message CSECT—IGGMSG . . . 214
SETPRT Work Area (SPN)——IGGSPN 215
NEOR Prefix, Message Section, and Reply Area——ln User
e . 216
I0B for EXCP Users and 0PEN——1n User Key 216
Channel Program Area—in User Key 217
Work Area for Unpacking Line Numbers——ln User Key 217
General HWork Area—in User Key e e e . 217
BLDL Work Area—SPW5 . 217
Message Area for the SETPRT Hork Area——Key 5 218
3800 Printing Subsystem Area for the SETPRT Nork
Area—Key 5 . . 218
Error Message Commun1cat1on Area——User—Prov1ded Area 220
SVRB Extended Save Area—Key 0 . 220
3800 Printing Subsystem Translate Table Entry——Key 5 221
One Entry of an FCB Image for a 3800 Pr1nt1ng
Subsystem 221
Buffer Pool Control Block——IGGBCB 221
Subsystem CICB—IGGCICB . . 222
Parameter List—IGGPARML . 224
Printer Device Character1st1cs Table-—IGGPDC 225
SAM OPEN/CLOSE Work Area—IGGSCHW .. 226
SAM/PAM/DAM GTRACE Buffer—IGGSPD 227
STOW Work Area—IGGSTW . 227
SYNADAF General Registers Save Area and Message Buffer
Area—IGGSYN . e e e e e e e e e e e 235
SETPRT Parameter Llst——IHASPP 237
Access Method Save Area for User Tota11ng 261
Diagnostic Aids e e o o o 242
OPEN and CLOSE Executor Problem Determ1nat1on . . . 262
QSAM Control Blocks 2642
BSAM Control Blocks 262
JES Compatibility Interface Control Block (CICB) 245
Abend Codes and Cross—-Reference Table . 266
SETPRT Executor Return/Reason Codes and Messages 251
Debugging EXCPVR Channel Programs . . 260
Appendix A. BSAM/QSAM Channel Programs e e e e e e e . 261
Channel Program Prolog Segment . e e e e e e e e 261
Update-HRITE Channel Program Segment . . 262
Update-WRITE Followed by Refill-READ Channel Program
Segment 2646
Output Channel Program Segment (To Nr1te Output Records
That Are Not Track Overflow Records) 268
Output Channel Program Segment (To Write Track 0verflow
Records) e e e e e e e e e e e 272
Input Channel Program Segment 275
Appendix B. BSAM (BDAM Create) Channnel Programs o o o 280
Channel Program for Erase CCHs for BSAM Load Mode,
Track Overflow (IGG0191M) . e e e e e e e 280
Channel Program for BSAM Load Mode, Track Overflow
(IGGO0191M) . e e e e e e 281
Channel Program for Create BDAM (IGGOl99L) 282
Channel Program for Create BDAM (IGGO0199L) . . . 283
Channel Program for BSAM Load Mode, Track Overflow
(IGGO0199M) e e e e e e e e e e e e e e e e 284
MVS/XA SAM Logic LY26-3967-0 ® Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Index e o o o o o o o o o o o o o o o e s o e o o e o o 285

C

LY26-3967-0 Copyright IBM Corp. 1977,1985 Contents ix

FIGURES

x MVS/XA SAM Logic

10.

DO 0 NN IS N

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Module Selection—Simple-Buffering GET Modules
Order of Records Using GET Routines for Data Sets
Opened for RDBACK (IGG019AM, IGGO19AN) e
Module Selector—Update-Mode GET Modules e
Module Selector—Simple-Buffering Put Modules
Module Selector——Ordinary End-of-Block Modules
(non-DASD)

I0OB SAM Preflxes for Normal and for Cha1ned Schedullng 47

Module Selector—Chained Channel-Program Scheduling,

End-of-Block Modules—Non-DASD . 48
Comparison of I0OB SAM Prefixes for Normal and for
Chained Scheduling . . 49
Module Selector—DASD End—of Block Routlnes 55
Track-Overflow Records .o . . 57
Module Selector—QSAM
Synchronizing-and-Error-Processing Modules 61
Module Selector——Error-Processing Modules 67
Module Selector—Appendages . e e e 71
Module Selector—Control Modules 95
Control Routines That Are Expansions of Macro
Instructions . 95
Module Selector——READ and NRITE Modules 98
Modules Selector—CHECK Modules . 106
Module Selector—Contrel Modules Selected and Loaded
by the Open Executor . . 111
Control Routines that Are Expans1ons of Macro
Instructions . e e e e e e e e e e e e 111
BPAM Routines Re51dence . 117
Sequential Access Method Executors——Control Sequence 117
OPEN Executor Selector—Stage 1 e e e e e e e e e 120
OPEN Executor Selector—Stage 2 129
OPEN Executor Selector—Stage 3 136
CLOSE Executor Selector . . 141
Buffer-Pool Management Routlnes 148
Buffer-Pool Control Block . 149
GETPOOL Buffer-Pool Structures e e e e . 149
Build Buffer-Structuring Table e e e 150
Build Buffer Pool Structure e e e e 150
Buffer-Pool Control Block . . 151
Record Area Used to Assemble and Segment a Spanned
Record e e e e e e e 152
SETPRT Executor Selector . 170
Access Method Save Area for User Totallng 241
QSAM Control Blocks e e e e e e e e e e e 243
BSAM Control Blocks . . 244
Control Block Structure for SYSIN/SYSOUT Data Sets 245
Control Blocks Used with EXCPVR Processing o . 260
LY26-3967-0 ® Copyright IBM Corp. 1977,1985

J

C

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

TRODUCTIO

Sequential access methods (SAM) are programming techniques for

transferring data arranged in sequential order between virtual

storage and an input/output device. This manual describes five
groups of sequential access method routines. They are:

J Queued sequential access method (QSAM) routines
. Basic sequential access method (BSAM) routines
L Basic partitioned access method (BPAM) routines
. Sequential access method executors

o Buffer-pool management routines

A processing program using QSAM routines works with records.

For input, QSAM routines turn the blocks of data of the channel
programs into a stream of input records for the processing
program; for output, QSAM routines collect the successive output
records of the processing program into blocks of data to be
written by channel programs. See Diagram F for information
about the flow of control for QSAM routines.

A processing program using BSAM routines works with blocks of
data. For input, BSAM routines cause a channel program to read
a block of data for the processing program; for output, BSAM
routines cause a channel program to write a block of data for
the processing program. BSAM routines are also used to read and
write blocks of data for members of a partitioned data set. See
Diagram G for flow of control information about BSAM routines.

A processing program that uses BSAM or QSAM to access SYSIN or
SYSOUT data sets invokes a special subset of SAM routines called
SAM-SI (SAM Subsystem Interface). These routines operate as a
compatibility interface to job entry subsystems, such as JES2,
that control these data sets. See Diagram M in "Program
Organization and Flow of Control™ for information about the flow
of control in SAM-SI routines for BSAM and QSAM.

A processing program using BPAM routines also works with blocks
of data. For output, BPAM routines construct and cause writing
of entries in the directory; for input, BPAM routines search for
and read entries from the directory. To read and write the
blocks of the members, a processing program uses the BSAM
routines. Flow of control for the BPAM routines is shown in
Diagram G.

Sequential access method executors are modules that operate with
the OPEN and CLOSE routines. When a data control block is
opened, an executor constructs control blocks and loads the
access method routines. The access method routines reside in
the link pack area.

When the end of a data set or volume is reached, an EOV SVC is
issued to process the pending input/output blocks. The
executors described are:

. OPEN executors
] CLOSE executors

Buffer-pool management routines form buffers in virtual storage
and return virtual storage space (for buffers no longer needed)
to available status. A buffer-pool management routine is
entered when a GETPOOL, BUILD, GETBUF, FREEBUF, or FREEPOOL
macro instruction is encountered in a progranm.

LY26-3967-0 ®© Copyright IBM Corp. 1977,1985 Introduction 1

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The GETPOOL and BUILD routines together form a pool of buffers
in virtual storage. However, the GETPOOL routine also obtains
the virtual storage space for the buffer pool. Virtual storage
space must be provided by the processing program when the BUILD
routine is usqd.

The GETBUF and FREEBUF routines handle individual buffers.
GETBUF obtains a buffer from a buffer pool and FREEBUF returns a
buffer to a buffer pool.

The FREEPOOL routine returns the virtual-storage space used for
a buffer pool.

Diagram A in "Program Organization and Flow of Control™ lists
the macro statements that are used with sequential access method
programming techniques. The diagram also refers to figures in
other portions of the manual that describe the SAM routines,
appendages, and executors associated with each macro statement.

2 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

C

C

contains Restricted

Materials of IBM

Licensed Materials — Property of IBM

METHOD OF OPERATION

QUEUED SEQUENTIAL ACCESS METHOD ROUTINES

GET ROUTINES

Queued sequential access method (QSAM) routines cause storage
and retrieval of records and furnish buffering and blocking
facilities. There are seven types of QSAM routines:

U GET routines
. PUT routines
. End-of-block routines

U Synchronizing and error-processing routines (including the
IBM 3211 and 3203 printer retry]
asynchronous—-error-processing routines)

° Appendage routines
. Control routines
] SVC Routines

Diagram F, ™QSAM Flow of Control,"™ shows the relationship of
QSAM routines to other portions of the operating system and to
the processing program.

GET routines determine the address of the next input record by
referring to the DCB. In update mode, the next output record is
the last input record.

If the American National Standard Code for Information
Interchange (ASCII) is used, the GET routine (if it is specified
in the DCB) will accept a record with a block prefix. The GET
routines do not present the block prefix to the processing
program; the block prefix is specified by the BUFOFF option in
the DCB. For more information on block prefix and record
formats for ASCII, see Data Administration Guide.

Be:ause there is an unused byte at the beginning of each segment
descriptor word (SDHW), the GET routines that process records in
the ISO/ANSI/FIPS spanned record format must make record address
adjustments. The unused byte results from the conversion of the
gghygszSD/ANSI/FIPS segment control word (SCH) to the 4-byte

The GET routine descriptions that follow are accordingly grouped
as:

U Simple-buffering GET routines

U Update—-mode GET routine

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 3

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Simple-Buffering GET Routines

4 MVS/XA SAM Logic

Simple-buffering GET routines use buffers whose beginning and
ending addresses are in the data control block (DCB). The
beginning address is in the DCBRECAD field (address of the next
record); the ending address is in the DCBEOBAD field (address of
the end of the buffer). In each pass through a routine, it
determines:

. The address of the next record

. Whether an input buffer is empty and ready to be scheduled
for refilling

. Whether a new full input buffer is needed

If the records are unblocked, the address of the next record is
always that of the next buffer.

If the records are blocked, a GET routine determines the address
of the next record by adding the length of the last record to
the address of the last record. The address of the last record
is in the DCBRECAD field of the data control block (DCB). 1If
the records are fixed-length blocked records, the length of each
record is in the DCBLRECL field. If the records are
variable-length blocked records, the length of each record is in
the length field of the record itself.

A GET routine determines whether a buffer is empty and ready for
refilling and whether a new full buffer is needed by testing for
an end-of-block (EOB) condition.

When a buffer is empty, a GET routine passes control to an
end-of-block routine to refill the buffer. The buffers are
filled for the first time by OPEN executor IGG01911 for tape and
unit record devices, and by IGG0193B for direct-access storage
devices. Thus, the buffers are primed for the first entry into
a GET routine.

When a new full buffer is needed, a GET routine obtains it by
passing control to the input-synchronizing and error-processing
routine, module IGG019AQ. The synchronizing routine updates the
DCBIOBA field, thus pointing to the new buffer, and returns
control to the GET routine. A GET routine updates the DCBRECAD
field by inserting in it the starting address of the buffer from
the channel program associated with the new IOB. To update the
DCBEOBAD field, a GET routine adds the actual length of the
block read to the buffer starting address. These two fields,
DCBRECAD and DCBEOBAD, define the available buffer.

For unblocked records, an EOB condition exists after every entry
into the GET routine. For blocked records, an EOB condition
exists when the values in the DCBRECAD and DCBEOBAD fields are
equal. For ISO/ANSI/FIPS fixed block format, an EOB condition
exists when the next logical record of a block consists of all
X'5F's. In the move operating mode, the buffer can be scheduled
for refilling as soon as the last record is moved out; thus, an
EOB test is made after moving each record, so that the buffer
can be scheduled for refilling as soon as possible. Another EOB
test is made on the next entry to the routine to determine
whether a new full buffer is needed. In the locate mode, the
empty buffer is scheduled when the routine is entered, if the
last record was presented in the preceding entry; thus, an EOB
test is made on entry into the routine to determine whether a
buffer is empty and ready for refilling and also whether a new
full buffer is needed.

When the processing program determines that the balance of the
present buffer is to be ignored and the first record of the next
buffer is wanted, the processing program issues a RELSE macro
instruction. Control passes to a RELSE routine that sets an EOB
condition. MWhen records are spanned, one or more blocks can be
skipped to find the first record in a new block.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985

C

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

If QSAM is used with a DCB opened for input, update, or
readback, the OPEN executor primes (that is, schedules for
filling) the buffers. For the locate mode, all buffers except
one are primed; for the move mode, all buffers are primed. The
OPEN executor also sets an end-of-block condition; the first
time that a GET routine gains control, it processes this
condition in the usual way.

Upon return from the synchronizing and error-processing routine,
the GET routines, which may be loaded for tape data sets, test
to determine if the buffer contains a DOS checkpoint record. If
a DOS checkpoint record is indicated, ECB posted X'50', the GET
routine branches to the end-of-block routine to reschedule the
buffer for refilling and then branches back to the synchronizing
routine to test the next buffer.

Figure 1 on page 6 lists the simple-buffering GET routines and
the conditions that cause a particular routine to be used. The
OPEN executor selects one of the routines, loads it, and puts
its address into the DCBGET field. Figure 1 shows, for example,
that when the OPEN parameter list specifies input and the DCB
specifies the GET macro instruction, simple buffering, the
locate mode, and the fixed-length record format, routine
IGG019AA is selected and loaded.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 5

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Access Method
Options

Selec~-
tions

Selec-
tions

Selec-
tions

Selec-
tions

Selec-
tions

Selec-
tions

INPUT, GET

X X X

X X X

X X

X X

X X X

RDBACK, GET

X X X

Locate mode

Move mode

Data mode

Fixed-length
record format

Undefined-
length record
format

Variable-length
or record
format-D

Spanned records

¥ or DATA on DD
statement

Card reader,
only a single,
buffer CNTRL

Logical record
interface

GET Modules

IGG019AA

AA AA

IGG019AB

AB

IGGO019AC

AC AC

IGGO19AD

AD

IGG019AG

AG AG

IGGO019AM

AM

AM

IGG019AN

AN AN

IGG019BO

BO

IGG019DJ

DJ

IGGO19FB

FB

IGGO19FD

FD

IGGO19FF

FF

Figure 1.

6 MVS/XA SAM Logic

Module Selection—Simple-Buffering GET Modules

LY26-3967-0 © Copyright IBM Corp.

1977,1985

C

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

GET Module IGGO19AA: Module IGGO019AA presents the processing
program with the address of the next fixed-length or
undefined-length record. The OPEN executor selects and loads
this module if the OPEN parameter list specifies:

Input

and the DCB specifies:
GET
Simple buffering
Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a GET routine and a RELSE routine.
The GET routine operates as follows:

. It receives control when a GET macro instruction is
encountered in a processing program.

. It tests for an EOB condition to determine whether a buffer
is empty and ready for refilling and if a new buffer is
needed. Wkhen the OPEN executor primes the buffers, 1it
schedules all buffers except one and sets an EOB condition.
For ISO/ANSI/FIPS, an EOB condition exists when the next
logical record in a block consists of all padding characters
(X'5F's). The first logical record in a block must not
consist of all padding characters.

. If no ECB condition exists, the GET routine determines the
address of the next record, and then presents the address to
the processing program and returns control to the processing
program.

. If an EOB condition exists, the GET routine issues a BALR
instruction to pass the present buffer to the end-of-block
routine to be scheduled for refilling. The GET routine
issues another BALR instruction to obtain a new full buffer
through the input-synchronizing and error-processing
routine, module IGG019AQ. The GET routine then presents the
address of the first record of the new buffer to the
processing program and returns control to the processing
program.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.
GET Module IGGO1l9AB: Module IGGO019AB presents the processing
program with the address of the next variable-length or format-D
record. The OPEN executor selects and loads this module if the
OPEN parameter list specifies:

Input
and the DCB specifies:

GET

Simple buffering

Locate operating mode

Variable-length or record format-D (unblocked or blocked),
unspanned

The module consists of a GET routine and a RELSE routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 7

8 MVS/XA SAM Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The GET routine operates as follows:

o It receives control when a GET macro instruction is
encountered in a processing program.

. It determines the address of the next record and tests for
an EOB condition to determine whether a buffer is empty and
ready for refilling and if a new buffer is needed. HWhen the
OPEN executor primes the buffers, it schedules all buffers
except one and sets an EOB condition. For ISO/ANSI/FIPS, an
EOB condition exists when the next logical record in a block
consists of all padding characters (X'5F's). The first
logical record in a block must not consist of padding
characters.)

. If no EOB condition exists, it presents the address of the
next record to the processing program and returns control to
the processing progranm.

o If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the end-of-block routine to be
scheduled for refilling. The GET routine issues another
BALR instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ. The GET routine then presents the address of the
first record of the new buffer to the processing program and
returns control to the processing program.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

GET Module IGGO19AC: Module IGGO19AC moves the next
fixed-length or undefined-length record to the work area. The
OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input
and the DCB specifies:

GET

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The DCB does not, however, specify the CNTRL macro instruction.
The module consists of a GET routine and a RELSE routine.
The GET routine operates as follows:

. It receives control when a GET macro instruction is
encountered in a processing program.

U It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, it sets this EOB condition for the first GET macro
instruction.

o If no EOB condition exists, the routine moves the next
record to the work area.

° If an EOB condition exists, the routine issues a BALR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the first record of the new buffer to
the work area.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

C

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. It tests for a new EOB condition to determine whether a
buffer is empty and ready for refilling. For unblocked
records, this condition exists at every entry into the
routine.

. If no new EOB condition exists, the routine returns control
to the processing program.

. If a new EOB condition exists, the routine issues a BALR
instruction to pass the present buffer to the end-of-block
routine to be scheduled for refilling and returns control to
the processing program.

The RELSE routine sets a bit in the DCB so that the GET routine
passes the buffer for refilling and obtains a new full buffer
the next time the routine is entered.

GET Module IGGO19AD: Module IGG019AD moves the next
variable-length or format-D record to the work area. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Input

and the DCB specifies:
GET
Simple buffering
Move operating mode

Variable-length or record format-D (unblocked or blocked),
unspanned

The DCB does not, however, specify the CNTRL macro instruction.
The module consists of a GET and a RELSE routine.
The GET routine operates as follows:

° It receives control when a GET macro ‘instruction is
encountered in a processing program.

. It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, it also sets an end-of-block condition for the
first GET macro instruction.

] If an EOB condition exists, the routine issues a BALR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the first record to the work area.

. If no EOB condition exists, the routine moves the next
record to the work area.

. It tests for a new EOB condition to determine whether a
buffer is empty and ready for refilling. For unblocked
recgrds, the condition exists after every entry to this
routine.

. If no new EOB condition exists, the routine returns control
to the processing program.

. If a new EOB condition exists, the routine issues a BALR
instruction to pass the present buffer to the end-of-block
routine to be scheduled for refilling and returns control to
the processing program.

The RELSE routine sets a bit in the DCB so that the GET routine
passes the buffer for refilling and obtains a new full buffer
the next time the routine is entered.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Method of Operation 9

10

MVS/XA SAM Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

GET Module IGGO19AG (CNTRL—Card Reader): Module IGG019AG moves
the next fixed-length or undefined-length record to the work
area without scheduling the buffer for refilling. To refill the
buffer, the processing program issues a CNTRL macro instruction.
The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input

and the DCB specifies:
GET
Simple buffering
Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

CNTRL (card reader)
The module consists of a GET routine and a RELSE routine.
The GET routine operates as follows:

. It receives control when a GET macro instruction is
encountered in a processing program.

. If an EOB condition exists, it resets the DCBRECAD and
DCBEOBAD fields for the new buffer, issues a BALR to the
input-synchronizing and error-processing routine, module
IGG019AQ, and then tests for blocked records.

. If no EOB condition exists, it tests immediately for blocked
records.

. For blocked records, it updates the DCBRECAD field, moves
the present record to the work area, and returns control to
the processing program.

. For unblocked records, it sets the DCBRECAD and DCBEOBAD
fields so that they are equal, moves the present record to
the work area, and returns control to the processing
program.

The RELSE routine sets the value of the DCBEOBAD field equal to
that of the DCBRECAD field to establish an EOB condition.
Control then returns to the processing program.

GET Module IGG019AM (RDBACK): Module IGG019AM presents the
processing program with the address of the next record when the
data set is opened for backward reading. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

RDBACK
and the DCB specifies:

GET

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a GET routine and a RELSE routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

C

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The GET routine operates as follows:

. It receives control when a GET macro instruction is
encountered in a processing program.

. It tests for an EOB condition.

. If no EOB condition exists, it determines the address of the

next record by subtracting the DCBLRECL value from the
DCBRECAD value. The routine presents the result to the
processing program, and returns control to the processing
program.

U If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the end-of-block routine. The
GET routine issues another BALR instruction to obtain a new
buffer through the input-synchronizing and error-processing
routine, module IGG019AQ. The GET routine then presents the
address of the last record of the new buffer to the
processing program, and returns control to the processing
program. For ISO/ANSI/FIPS, logical records consisting of
all padding characters (X'5F's) are skipped. That is, when
these records are encountered in a block, they are treated
as padding and processing begins with the next logical
record in backward sequence.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

Figure 2 on page 13 illustrates the ordering of records using
this module. When reading backward under QSAM, each block 1is
read from the tape from the end of the block to the beginning,
each buffer is filled from the end of the buffer to the
beginning, and the records are presented to the processing
program in order of the record in the last segment of the buffer
first, and the record in the first one last. In this manner of
reading, buffering, and presenting, each record follows in
backward sequence, from the record presented last out of one
buffer to the record presented first out of the next buffer.

GET Module IGGO19AN (RDBACK): Module IGGO019AN moves the next
record to the work area when the data set is opened for backward
reading. The OPEN executor selects and loads this module if the
OPEN parameter list specifies:

RDBACK
and the DCB specifies:

GET

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a GET routine and a RELSE routine.

The GET routine operates as follows:

. It receives control when a GET macro instruction is
encountered in a processing program.

. It tests for an EOB condition.

. If no EOB condition exists, it moves the next record to the

work area, and updates the DCBRECAD field by reducing it by
the value of the DCBLRECL field.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Method of Operation 11

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. If an EOB condition exists, it issues a BALR instruction to
obtain a new buffer through the input-synchronizing and
error-processing routine, module IGG019AQ. The GET routine
then moves the last record of the new buffer to the work
area.

. It tests for a new EDOB condition.

. If no new EOB condition exists, it returns control to the
processing program.

. If a new EOB condition exists, it issues a BALR instruction
to pass the present buffer to the end-of-block routine and
then returns control to the processing program.

) For ISO/ANSI/FIPS, logical records consisting of all padding
characters (X'5F's) are skipped. That is, when these
records are encountered in a block they are treated as
padding, and processing begins with the next logical record
in backward sequence.

The RELSE routine issues a BALR instruction to pass the present
buffer to the end-of-block routine and then returns control to
the processing program.

Figure 2 illustrates the ordering of records using modules
IGG019AM and IGGO19AN.

12 MVS/XA SAM Logic LY26-3967-0 ® Copyright IBM Corp. 1977,1985

C

Ccontains Restricted Materials of IBM
Licensed Materials — Property of IBM

; 91817 615

4| H32I|E

=% Direction of Tape
When Reading Backward

Direction of Tape >
When Writing

Last GET for this block

addresses this segment 7
118
First GET for this block

addresses this segment

First channel program

fills this buffer
<¢— beginning here

Last GET for this block ? 4
addresses this segment

First GET for this block
addresses this segment

Next channel program
fills this buffer
=¢— beginning here

Last GET for this block)
addresses this segment

Next channel program

First GET for this block 3

addresses this segment

fills this buffer
“%— beginning here

Figure 2. Order of Records Using GET Routines for Data Sets

Opened for RDBACK

(IGGO19AM, IGGO19AN)

GET Module IGG019BO: Module IGG019B0 presents the processing
program with the address of the next variable-length record.
The OPEN executor selects and loads this module if the OPEN

parameter list specifies:
Input

and the DCB specifies:
GET
Simple buffering

Locate operating mode

Variable-length spanned (unblocked or blocked) record format

Logical record interface

The module consists of a GET

LY26-3967-0 ® Copyright IBM Corp. 1977,1985

routine and a RELSE routine.

Method of Operation

13

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The GET routine operates as follows:

U It receives control when a GET macro instruction is
encountered in the processing program.

o It determines the address of the next record and tests for
an EOB condition to determine whether a buffer is empty and
ready for refilling and if new buffer is needed. When the
OPEN executor primes the buffers, it schedules all buffers
except one and sets an EUOB condition. If ISO/ANSI/FIPS
spanned records are being processed, the record address is
adjusted in order to ignore the unused byte that results
from the conversion of the 5-byte IS0/ANSI/FIP> segment
gggﬁgol word (SCH) to the 4-byte IBM segment descriptor word

U If no EOB condition exists, it tests whether the next record
segment contains a complete record.

U If it is a complete record, the routine presents the address
of the next record to the processing program and returns
control to the processing program. If the extended version
of logical record interface (XLRI) is being used, the three
low-order bytes of the first four bytes of a logical record
are used to indicate the length of the record including the
first four bytes.

U If it is the first segment of a spanned record, the routine
moves the segment to the record area with the proper
alignment, sets the EOB condition, and determines the
address of the next record and whether a buffer is ready for
refilling.

U If it is a segment that follows another segment of a spanned
record, the routine moves the segment (without the segment
descriptor word) next to the previous segment in the record
area, and updates the count in the record area. This step
continues until the entire logical record has been assembled
in the record area. If an EOB condition occurs during this
process, the routine determines the address of the next
record and whether a buffer is ready for refilling. When
the entire logical record is assembled, the routine sets the
spanned record flag in the I0B, presents the address of the
assembled record, and returns control to the processing
program.

[If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the EOB routine to be scheduled
for refilling. The GET routine issues another BALR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine (module
IGG019A0). The routine then obtains and interrogates the
first record segment of the new buffer. If it is a complete
record, the routine presents the address of the next record
to the processing program and returns control to the
processing program.

The RELSE routine operates as follows:

. It receives control when a RELSE macro instruction is
encountered in the processing program.

. It sets an EOB condition.
. It sets a release bit in the DCBRECAD of the DCB.
. It returns control to the processing program.

The RELSE routine sets a release bit in the DCB so that the GET
routine passes the buffer for refilling and obtains a new full
buffer the next time the routine is entered. After obtaining
the new buffer as a result of RELSE, the GET routine
interrogates the SDW of the first segment to determine if it is
the first segment of a record (bit 6 in third byte of SDW must

14 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

be 0); if not, the routine skips to the next SDW and checks it.
This continues until an acceptable segment is found. The
routine then processes the GET request in the usual way. The
procedure may result in one or more additional blocks being
passed.

GET Module IGGO019DJ (SYSIN/SYSOUT): Module IGG019DJ interfaces
with a job entry subsystem to provide the next record from the
system input stream to the processing program.

The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input (% or DATA specified on the DD statement)
and the DCB specifies:

GET

Simple buffering

Locate or move operating mode

Fixed, undefined, or variable-length record format

The module consists of a GET routine and a RELSE routine. See
Diagram M for an overview of the SAM-SI processing for QSAM.

This module also contains a PUT routine as described in "Simple
Buffering PUT Routines" (see Figure % on page 26). The GET
routine operates as follows:

. It receives control when a GET macro instruction is
encountered in the processing progranm.

) It determines the type of get request and initializes the
input area address in the request parameter list (RPL). For
move mode, RPLAREA contains the address of the processing
program work area (the contents of register 0 on entry); for
locate mode, RPLAREA contains the address of a buffer from
the DCB buffer pool.

. If the GET request is for variable-length records, RPLAREA
is adjusted to allow space for a record descriptor word
(RDW) in the first four bytes of the work area.

. It passes control to the job entry subsystem (JES) for data
transfer by issuing a GET macro instruction against the RPL.
Tne Seturn code in register 15 is tested upon return from
the JES.

. For an exceptional condition, RPLRTNCD and RPLERRCD are
examined to determine the type of failure.

. If end-of-data is detected, the appropriate registers are
loaded and saved, then an unconditional branch is taken to
the synchronizing module, IGG019AQ (see Figure 11 on
page 60), for EODAD and concatenation processing.

. If an error condition is detected, control is passed to the
error-processing module, IGG019AH (see Figure 12 on
page 67). If control is returned to this routine and DCB
EROPT is SKIP, the GET request is reissued. Otherwise,
control is returned to the processing program.

. For normal completion, it places the record address from the
RPLAREA field into register 1. If the SAM request was for a
variable-length record, the record descriptor word field is
created, by using the value returned in the RPLRLEN field.
Registers are restored and control is returned to the
processing program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 15

Contains Restricted Materials of IBM
Licensed Materials — Property of 1IBM

The RELSE routine receives control when a RELSE macro
instruction is issued. Module IGG019DJ does no processing for
this macro instruction. Control is returned to the processing
program by IGG019DJ.

GET Module IGGO19FB: Module IGGO019FB presents the processing
program with the address of the next variable-length record.
The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input

and the DCB specifies:
GET
Simple buffering
Locate operating mode

Variable-length format (unblocked or blocked) record,
spanned

The module consists of a GET routine and a RELSE routine.
The GET routine operates as follows:

. It receives control when the processing program issues a GET
macro instruction.

. It determines the address of the next record segment and
tests for an EOB condition to determine whether a buffer is
ready for refilling and also whether a new buffer is needed.
When the OPEN executor primes the buffers, the executor
schedules all buffers except one and sets an EOB condition.

. If no EOB condition exists, the routine presents the address
of the next record segment to the processing program.

. If an EOB condition exists or if a DOS-type null segment
(where the high-order bit of the record descriptor word is
on) is encountered, the routine issues a BALR instruction to
pass the current buffer to the EOB routine. The EOB routine
schedules the buffer for refilling. The GET routine issues
another BALR instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ. The GET routine then determines if the EOB
routine was entered because of a RELSE macro instruction.

If so, the GET routine checks the first record segment to
determine if it is a member of a previous logical record.
If it is, the GET routine continues to look for a record
segment that is not a member of a previous record. Such a
segment is considered the first record of the new buffer.
(Note, however, that this could cause reentry into the EOB
routine and result in one or more entire blocks being
skipped.) The GET routine then presents the address of the
first record segment of the new buffer to the processing
program and returns control to the processing program.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal. It then
sets the high-order 6 bits of DCBRECAD to l1l's and returns
control to the processing program.

16 MVS/XA SAM Logic LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

GET

Module IGGO19FD: Module IGGO019FD moves the next

variable-length record to the work area. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

and

The
The
The

Input

the DCB specifies:
GET

Simple buffering
Move operating mode

Variable-length (unblocked or blocked) record format,
spanned

DCB does not, however, specify the CNTRL macro instruction.
module consists of a GET and a RELSE routine.
GET routine operates as follows:

It receives control when the processing program issues a GET
macro instruction.

It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, the executor also sets an EOB condition for the
first GET macro instruction.

If an EOB condition exists, the routine issues a BALR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG£19AQ. and moves the first record segment to the user's
work area.

If no EOB condition exists, the routine moves the first
record segment to the user's work area.

If a DOS-type null segment (where the high-order bit of the
record descriptor word is on) is encountered, that buffer is
rescheduled by passing control to the EOB routine.
Processing continues as if an EOB condition exists as
described above.

If more record segments are required, the routine moves
them, without the segment descriptor words, to the part of
the user's work area that is contiguous with the previous
record segment. The routine also updates the DCBLRECL field
and the logical-record-length field in the record descriptor
word (RDW) in the user's work area. These fields then
reflect the total logical-record length after additional
record segments have been moved. This procedure continues
until the routine has moved the entire logical record. An
EOB condition can occur during this procedure.

When IS0/ANSI/FIPS spanned records are being processed, the
address of the starting byte must be adjusted in order to
ignore the unused byte resulting from the conversion of the
5-byte IS0/ANSI/FIPS segment control word (SCW) to the
G-byte IBM segment descriptor word (SDW).

The routine tests for a new EOB condition to determine
whether a buffer is empty and ready for refilling. For
unblocked records, the EOB condition exists after every
entry to the GET routine.

If no new EOB condition exists, the routine returns control
to the processing program.

LY26-3967-0 ®& Copyright IBM Corp. 1977,1985 Method of Operation 17

18 MVS/XA SAM Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. If a new EOB condition exists, the routine issues a BALR
instruction to pass the present buffer to the EOB routine.
The EOB routine then schedules the buffer for refilling and
returns control to the processing program.

The RELSE routine sets the high-order 4 bits in the DCBRECAD
field to 1's so that the GET routine passes the buffer for
refilling and so that the next time the GET routine is entered,
it obtains a new full buffer. After obtaining the new buffer,
the GET routine interrogates the segment descriptor word (SDW)
of the first record segment. The routine thus determines if the
segment is the first segment of a record. If it is, bit 6 of
the third byte of the SDW will be 0. If not, the GET routine
skips to the next SDW and checks it. This procedure continues
until an acceptable segment is found. Then the GET routine
processes the GET macro instruction in the usual way. The
procedure can result in one or more additional blocks being
passed.

GET Module IGGO1l9FF: Module IGGO019FF moves the data portion of
the next variable-length record to the work area. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Input

and the DCB specifies:
GET
Simple buffering
Data operating mode

Variable-length (unblocked or blocked) record format,
spanned

The DCB does not, however, specify the CNTRL macro instruction.
The module consists of GET and RELSE routines.
The GET routine operates as follows:

. It receives control when the processing program issues a GET
macro instruction.

. It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, the executor also sets an EOB condition for the
first GET macro instruction.

. If an EOB condition exists, the routine issues a BALR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the data portion of the first record
segment to the work area.

. If no EOB condition exists, the routine moves the data
portion of the first record segment to the user's work area.

. If more segments are required, the routine moves thenm,
without the segment descriptor word, to the part of the
user's work area that is contiguous with the previous record
segment. The routine also updates the DCBLRECL field to
reflect the current total logical record length. This
procedure continues until the routine has moved the entire
logical record. An EOB condition can occur during this
procedure.

. When IS0/ANSI/FIPS spanned records are being processed, the
address of the starting byte must be adjusted one position
in order to ignore the unused byte resulting from the
conversion of the 5-byte ISO0/ANSI/FIPS segment control word
(SCH) to the 4-byte IBM segment descriptor word (SDW).

LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. The routine tests for a new EOB condition to determine
whether a buffer is ready for refilling. For unblocked
records, the condition exists after every entry to this
routine.

] If no new EOB condition exists, the routine returns control
to the processing program.

. If a new EOB condition exists, the routine issues a BALR
instruction to pass the present buffer to the EOB routine.
The EOB routine then schedules the buffer for refilling and
returns control to the processing program.

The RELSE routine sets the high-order 4 bits in the DCBRECAD
field to 1ls so that the GET routine passes the buffer for
refilling and so that the next time the GET routine is entered,
it obtains a new full buffer. After obtaining the new buffer,
the GET routine interrogates the segment descriptor word (SDW)
of the first record segment. The routine thus determines if the
segment is the first segment of a record. If it is, bit 6 of
the third byte of the SDW will be 0. If not, the GET routine
skips to the next SDW and checks it. This procedure continues
until an acceptable segment is found. Then the GET routine
processes the GET macro instruction in the usual manner. The
procedure can result in one or more additional blocks being
passed.

Parallel Input Processing Routine

The QSAM parallel input processing routine provides to the user
an input record from a queue of equal priority, sequential data
sets. The routine supports input processing; simple buffering;
locate or move mode; and fixed-length, variable-length, or
undefined-length records. Track overflow and spanned records
are not supported.

Parallel Input Processing Module IGG019JD: Module IGG019JD uses
the parallel data address block (PDAB) to maintain a list of
data control blocks, addresses, and a corresponding wait
parameter list of ECB addresses. DCB addresses are added to the
PDAB by the OPEN routines and are removed by the CLOSE routines.
A count of the maximum number of DCB entries allowable is
assembled in the PDAB.

The address of the DCB entry from which the previous record was
provided is obtained from the PDAB, and each succeeding DCB
entry is processed until an available logical record is found,
or until each data set is found to have reached an EOB
condition, and the next block of data is not available.

An EOB condition is detected when DCBEOBAD is greater than or
equal to DCBREGAD for the move mode, when DCBEOBAD is greater
than or equal to DCBECAD plus DCBLRECL for the locate mode, or
when the first 4 bits of the DCBIOBA are set to ones for the
RELSE function.

The next block is not available when the ECB for the next IOB is
not posted as complete. The location of the next IO0B is
obtained from the current I0OB - 8, and the location of its
corresponding ECB is obtained from IOB + 4.

When the ECB is not posted as complete, its address is stored in
the wait parameter list in the PDAB. When no record is
available from the queue of data sets, a WAIT is issued for the
list of ECB addresses in the PDAB. When control is returned,
the completed event is located from the list of ECB addresses.

When a record is available, the DCB address and the user's data
area address are passed to the DCB get routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 19

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Update Mode GET Routine

The update mode GET routine differs from other GET routines in
that 1t shares its buffers, as well as the DCB and the IO0Bs,
with the update mode PUT routine. The QSAM update mode of
access uses simple buffering in which the buffer is defined by
the start and end addresses of the buffer.

If a PUTX macro instruction addresses a record in a block, the
update mode GET routine determines, when the end of the block is
reached, that that buffer is to be emptied (that is, that the
block is to be updated) before being filled with a new block of
data. If no PUTX macro instruction addresses a record in a
block, the update mode GET routine determines, when the end of
the block is reached, that the buffer is to be refilled only;
that is, that the last block need not be updated and the buffer
can be filled with a new block of data. These characteristics
of the buffer—simple buffering, sharing the buffer with the PUT
routine, and emptying the buffer before refilling—influence the
manner in which the update mode GET routine determines:

. The address of the next record
U Whether the buffer can be scheduled
. Whether a new buffer is needed

. Whether to schedule the buffer for empty-and-refill or for
refill-only

The first three of these determinations are made at every pass
through the routine. The last determination is made after the
routine establishes that the buffer can be scheduled.

If the records are unblocked, the address of the next record is
the address of the next buffer.

If the records are blocked, the address of the next record is
found by adding the record length, found in the DCBLRECL field,
to the value in the DCBRECAD field.

Whether the buffer can be scheduled and whether a new buffer is
needed are determined by whether an end-of-block condition
exists. In the update mode, one determination that an
end-of-block condition exists causes both the last buffer to be
scheduled and a new buffer to be sought. An end-of-block
condition exists for unblocked records at every pass through the
routine; for blocked records it exists if the values in the
DCBRECAD (the address of the current record) and the DCBEOBAD
(the address of the end of the block) fields are equal. To
cause scheduling of the buffer, the GET routine passes control
to the end-of-block routine. To obtain a new buffer, the GET
routine passes control to the update-synchronizing and
error-processing routine, module IGGO19AF.

To cause scheduling of the buffer for either empty-and-refill or
refill-only, the update mode Get routine sets the IOBNFLGl flag
to indicate whether an update (that is, write and refill) or a
read (that is, a refill) is to take place. The "empty and
refill™ operation writes out of the buffer and reads into that
same buffer. When the end-of-block routine schedules the IO0B
for the buffer to be processed by the SIO/pagefix appendage,
that appendage inspects the I0OB flags. The SIO/pagefix
appendage builds an appropriate channel program, based on the
I0OB flags: an update write of the buffer followed by a read into
the same buffer, or a read into the buffer.

Whether to schedule the buffer for empty-and-refill or for
refill-only depends on whether the block is to be updated. If
the block is to be updated, the PUTX routine will have set the
update flag on in the I0B; otherwise, the flag is off. To
schedule the buffer for empty-and-refill, the GET routine leaves
the update flag on. To schedule the buffer for refill only, the
GET routine sets the read flag on. The end-of-block condition

20 MVS/XA SAM Logic LY26-3967-0 ©® Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

that triggers this processing also causes control to pass to the
end-of-block routine, module IGG019TV, for issuing the EXCPVR
macro instruction and to the update-synchronizing—
and-error-processing routine, module IGGO019AF, for obtaining the
next buffer.

The PUTX routine sets the update flag in the IOB and returns
control to the processing program. The RELSE routine sets an
end-of-block condition and returns control to the processing
program.

The OPEN executor primes (that is, schedules for filling) all
the buffers except one if QSAM is used with a DCB opened for
update. The OPEN executor also sets an end-of-block condition;
the first time the update mode GET routine gains control, it
processes this condition in its normal manner.

Figure 3 on page 21 shows the update mode GET routines and the
access conditions that must be specified in the DCB to select a
particular routine. The OPEN executor loads the selected
routine and places its address into the DCBGET field of the DCB.

Access Method Options Selections

Update, GET X X X X X X X
Fixed-length record format X X

Variable-length record format X X X X
Undefined-length record format X

Blocked record format X X X
Unblocked record format X X X

Locate operating mode X

Logical record interface

GET Modules

IGGO19AE!? AE AE AE AE AE

IGG019BN BN BN

Figure 3. Module Selector—Update-Mode GET Modules

Note to Figure 3:
1 This module also carries the Update—-Mode PUTX routine
GET Update Module IGGO19AE: Module IGGO019AE presents the
processing program with the next input record and flags the IO0B
if the block is to be updated. The OPEN executor selects and
loads this module if the OPEN parameter list specifies:

UPDATE
and the DCB specifies:

GET

The module consists of a GET routine, a RELSE routine, and a
PUTX routine.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Method of Operation 21

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

The GET routine operates as follows:

. It receives control when a GET macro instruction is
encountered 1N a processing program.

. It tests for an end-of-block condition to determine whether
the buffer can be scheduled and if a new buffer is needed.
When the OPEN executor primes the buffers, it schedules all
buffers except one and sets an end-of-block condition.

. If no end-of-block condition exists, it presents the address
of the next record, and returns control to the processing
program. For variable-length, format-D, and
undefined-length records, it also determines the length of
the record and places it in the DCBLRECL field in the DCB.

. If an end-of-block condition exists and if the buffer is to
be emptied and refilled, and:

- If entry is not from CLOSE or FEOV, the GET routine
passes control to the end-of-block routine to cause
scheduling of the buffer.

- If entry is from CLOSE or FEOV, the GET routine sets the
I0OB to indicate "write-only." The GET routine then
passes control to the end-of-block routine to cause
scheduling of the buffer.

. On return of control from the end-of-block routine, the GET
routine passes control to the update-synchronizing and
error—-processing routine, module IGGO019AF, to obtain a new
full buffer.

. On return of control from the synchronizing routine, the GET
routine updates the DCBLRECL field, presents the address of
the next record, and returns control to the processing
program.

The RELSE routine operates as follows:

] It receives control when a RELSE macro instruction is
encountered in the processing program.

. It sets an end-of-block condition.
. It returns control to the processing program.
The PUTX routine operates as follows:

. It receives control when a PUTX macro instruction 1is
encountered in the processing program.

. It sets the update flag in the I0B to show that the buffer
is to be emptied before being refilled.

. It returns control to the processing program.
GET Update Module IGGO19BN: Module IGGO019BN presents the
processing program with the next input record, flags the IO0OB if
the block or a spanned record is to be updated (that is, emptied
and refilled), and sets the I0OB to address a QSAM update channel
program for either empty-and-refill or refill-only. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Update
and the DCB specifies:

GET

Locate operating mode

Variable-length spanned (blocked or unblocked) record format

22 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IEM

Logical record interface

The module consists of a GET routine, a RELSE routine, and a PUT
routine.

The GET routine operates as follows:

It receives control when a GET macro instruction is
encountered in a processing program.

It tests whether EQOV has occurred while processing a spanned
record.

If EOV has occurred and the record is not to be updated, it
sets a bit in the DCBIOBAD field of the DCB to indicate that
the old DEB, whose address was saved by the EOV routine, can
be freed. It then issues an FEOV macro instruction to free
the virtual storage assigned to this DEB.

If EOV has occurred and the record is to be updated, it
restores the address to read back the block that contains
the beginning segment of the record. The current I0B is
modified to function as if only one IOB exists. It then
issues an FEOV macro instruction to cause the previous
volume to be mounted and the data management count to be
reset.

On return of control from the FEOV routines, it operates as
if no EOV has occurred.

If EOV has not occurred, it continues on to the next step.
It tests whether a spanned record is to be updated.

If it is not to be updated, it obtains the length of the
previous record segment from the DCBLRECL field in the DCB,
or the SDW if it was a spanned record.

It determines the address of the next record segment and
tests for an EOB condition to determine whether the buffer
can be scheduled and 1f a new buffer is needed. (When the
OPEN executor primes the buffers, i1t schedules all buffers
except one and sets an EOB condition.)

If no EOB condition exists, it tests the next record segment
for a complete record.

If it is a complete record, the routine presents the address
of the next record, determines the length of the record,
places it in the DCBLRECL field, and returns control to the
processing program.

If it is the first segment of a spanned record, the routine
saves the track address of the block that contains this
segment, the position of the segment in the block, and the
alignment of the segment in the record area. The routine
obtains the track address of the block by copying the
IOBSEEK associated with the next I0B, the position of the
segment by subtracting the buffer address from the current
record address, and the alignment of the segment by using
the low-order byte of the current record address. The
routine then moves the first segment to the record area and
sets the EOB condition. It determines the address of the
next record, whether a new buffer can be scheduled, and if a
new buffer is needed.

If it is a segment that follows another segment of a spanned
record, the routine combines the segment (without the SDW)
contiguous with the previous segment in the record area. .
The count in the record descriptor word (RDW) in the record
area is updated to include the total count. This process
continues until the entire logical record has been
assembled. An EOB condition may occur during this process,
in which case the routine determines the address of the next

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 23

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

record, whether a new buffer can be scheduled, and if a new
buffer is needed. When the entire logical record has been
assembled, the routine sets the spanned-record flag in the
I0OB, presents the address of the assembled record in the
record area, places the length of the record (which is
obtained from the RDW in the record area) in the DCBLRECL
field, and returns control to the processing program.

. If an EOB condition exists, control is passed to the
end-of-block routine to schedule a buffer.

. On return of control from the EOB routine, the routine
passes control to the update-synchronizing and
error-processing routine, module IGG019BQ, to obtain a new
full buffer.

. On return of control from the synchronizing routine, the
routine interrogates the next record segment and saves the
track address of the block that contains the record, the
position of the segment in the block, and the alignment of
the segment in the record area. The routine then moves the
first segment to the record area and sets the EOB condition.

° If a spanned record is to be updated, the routine restores
the track address to read back the block that contains the
beginning segment of the record. The current IO0OB is
modified to function as if only one I0OB exists.

The routine next tests to determine if any previous I/0
operation has completed. If no previous I/0 operation has
completed, the routine issues WAIT against the ECB in the ICQE.

The routine next tests to determine if the "EXCPVR needed™ flag
is on and, if not, sets the "end of file"™ and "EXCPVR needed"
flags on. The routine turns off the "spanned record" flag in
the I0OB, sets the IOB to READ-ONLY and SEGMENT, and passes
control to the end-of-block routine.

o On return of control from the EOB routine, the routine
passes control to the update-synchronizing and
error-processing routine, module IGG019BQ, to obtain a new
full buffer.

[On return of control from the synchronizing routine, the
routine repositions the pointers to the beginning segment of
the record and moves that portion of the record from the
record area to the segment in the buffer. (A count is kept
of the number of bytes of data moved.)

° If more segments are to be updated, the routine moves that
portion of the record from the record area to the succeeding
segments in the buffer. (The total count of the data moved
is updated with each move.) This process continues until
the entire logical record has been segmented. If an EOB
condition occurs during this process, the routine tests
whether a spanned record is to be updated. When the entire
logical record has been segmented, the routine turns off the
segment flag in the I0B, restores the link field in the IOB,
obtains the address of the next record segment, and
detgrzines whether a new buffer can be scheduled and is
needed.

When the entire logical record has been segmented (except for
the last segment in the current buffer, which has not been
updated), the routine turns off the "segment"™ flag in the IO0B,
restores the link field in the I0B, and tests the "end of data"™
flag to determine whether the "EXCPVR needed"™ flag was off when
I/0 was quiesced. If the "end of data"™ flag is on, the routine
sets the I0B's "write flag"™ and passes control to the
end-of-block routine to cause an update write without a refill
read for the buffer containing the last segment. When the
end-of-block routine returns, the GET routine sets the I0B flags
to indicate "updating not required."™ The ICQE's "EXCPVR needed"

24 MVS/XA SAM Logic LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

PUT ROUTINES

flag is also zeroed. If the "end of data™ flag is off, the
"EXCPVR needed" flag is set on.

The RELSE routine operates as follows:

o It receives control when a RELSE macro instruction,is
encountered in the processing program.

o It sets an EOB condition.
. It sets a release bit in the DCBRECAD field of the DCB.
o It returns control to the processing program.

The RELSE routine sets a release bit in the DCB so that the GET
routine passes the buffer for refilling and obtains a new full
buffer the next time the routine is entered. After obtaining
the new buffer as a result of RELSE, the GET routine
interrogates the SDW of the first segment to determine if it is
the first segment of a record (bit 6 in the third byte of the
SDH must be 0); if not, the routine skips to the next SDW and
checks it. This continues until an acceptable segment is found.
The routine then processes the GET in the usual way. This
procegure may result in one or more additional blocks being
passed.

The PUTX routine operates as follows:

. It receives control when a_PUTX macro instruction is
encountered in the processing program.

. It sets the update flag in the IOB to show that the buffer
is to be emptied before being refilled.

o It returns control to the processing program.

Note: MWhen a RELSE macro instruction is issued after a spanned
record is written with a PUTX macro instruction, this routine
branches to the GET routine to write the last record (the
spanned record) and then releases the block that contains the
last segment of that spanned record.

Some of the general characteristics of the PUT routines are
described in Diagram B, "QSAM GET and PUT Routines.™ A specific
PUT routine is selected for each data set on the basis of access
method options specified by the processing program. The options
examined are in the OPEN statement parameter list and the data
set attributes described in the DCB.

The OPEN executors (see Diagram D, "SAM OPEN Executors™) select
ang load the modules that are required for a particular data
set.

The access method options that determine which PUT modules are
selected when Simple buffering is used are described in Figure 4
on page 26. For update mode, the PUTX routine resides in the
GET module for update mode. See Figure 3 on page 21 (under
"Update Mode GET Routine"™) for information about the update mode
PUTX routine.

For information about the flow of control through the QSAM
routines, see Diagram F, "QSAM Flow of Control."

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Method of Operation 25

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Access Method Options Selections

Output, PUT/PUT

X X X X X X X X X X X

Locate operating mode X X X X X

Move operating mode

Data operating mode

Fixed-length record format X X

Undefined-length record format X X

Variable-length or record format-D X X X X

Spanned records

Logical record interface

SYSOUT specified on DD statement X

PUT Modules
IGGO19AI
IGG019AJ
IGG019AK
IGGO019AL
IGGO19BP
IGG019DJ
IGGO19FG
IGGO19FJ
IGGO19FL

AI AI
AJ
AK AK
AL
BP
DJ
FG
FJ
FL

Figure 4. Module Selector—Simple-Buffering Put Modules

Simple-Buffering PUT Routines

26 MVS/XA SAM Logic

Simple-buffering PUT routines use buffers whose ending address
and the address of the next or current record are pointed to by
the DCB. The address of the next record is in the DCBRECAD
field (address of the next record); the ending address is in the
DCBEOBAD field (address of the end of the buffer). In each pass
through a routine, it determines:

L The address of the next buffer segment
. Whether an output buffer is to be scheduled for emptying
. Whether a new empty buffer is needed

These three determinations are made at every pass through a PUT
routine.

If the records are unblocked, the address of the next available
buffer segment is always that of the next buffer.

If the records are blocked, a PUT routine determines the address

of the next available buffer segment by adding the length of the
last record to the address of the last buffer segment. The

LY26-3967-0 ® Copyright IBM Corp. 1977,1985

C

contains Restricted Materials of IBM
Licensed Materials — Property of IBM

address of the last buffer segment is in the DCBRECAD field of
the data control block (DCB). If the records are fixed-length
blocked records, the length of each record is in the DCBLRECL
field. If the records are variable-length blocked records, the
length of each record is in the length field of the record
itself.

A PUT routine determines that a buffer is ready for emptying and
a new empty buffer is needed by establishing that an
end-of-block (EOB) condition exists.

If an output buffer is to be scheduled for emptying, a PUT
routine passes control to an end-of-block routine, to cause the
present buffer to be scheduled for output.

If a new empty buffer i1s needed, a PUT routine obtains a new
buffer by passing control to the
output-synchronizing-and—-error-processing routine, module
IGG019AR. For a buffer that was emptied without error, the
synchronizing routine updates the DCBIOBA field (thus pointing
to the new buffer) and returns control to the PUT routine. The
PUT routine updates the DCBRECAD field by inserting the starting
address of the buffer from the channel program associated with
the new I0OB. To update the DCBEOBAD field, the routine adds the
length of the block stated in the DCBBLKSI field to the buffer
starting address. These two fields, DCBRECAD and DCBEOBAD,
define the available buffer.

An EOB condition is established by different criteria for
different record formats and operating modes.

For unblocked records, an EOB condition exists after each record
is placed in the buffer. If the move operating mode is used, a
PUT routine establishes that an EOB condition exists for the
present buffer after the routine has moved the record into the
buffer. If the locate operating mode is used, a PUT routine
establishes that an EOB condition exists for the present buffer
on the next entry to the routine, after the processing program
has moved the record into the buffer.

For blocked records, the time that an EOB condition occurs
depends on the record format.

For fixed-length blocked records, an EOB condition occurs when
the DCBRECAD field equals the DCBEOBAD field. The DCBRECAD
field shows the address of the segment for the next record. The
DCBEOBAD field shows a value equal to one more than the address
of the end of the buffer. If the move operating mode is used,
the PUT routine moves the last fixed-length record into the
buffer, updates the DCBRECAD field, and establishes that an EOB
condition exists for the present buffer. If the locate
operating mode is used, the processing program moves the last
fixed-length record into the buffer. On the next entry to the
PUT routine, the routine updates the DCBRECAD field and
establishes that an EOB condition exists for the present buffer.

For variable-length blocked records, unspanned, an EOB condition
occurs when the length of the next record exceeds the buffer
balance; that is, when the record length exceeds the space
remaining in the buffer. If the user has specified move mode
for unspanned records, the PUT routine establishes that an EOB
condition exists when the record length stated in the first word
of the record exceeds the buffer balance. If the user has
specified locate mode for unspanned records, the PUT routine
establishes that an EOB condition exists when the value stated
in the DCBLRECL field exceeds the buffer balance.

For variable-length blocked records, spanned, the next record is
segmented. The first record segment is used to fill the buffer
when 5 or more bytes remain in the buffer. When fewer than 5
bytes remain in the buffer, an EOB condition occurs.

For ISO/ANSI/FIPS variable-length spanned records, five bytes
are used for the segment control word (SCW). An extra byte is

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 27

28 MVS/XA SAM Logic

Contains Restricted Materials of IEBM
Licensed Materials — Property of IBM

saved at the beginning of each segment. The succeeding four
bytes are processed in the normal manner, but the end-of-block
routine uses the extra byte when it converts the IBM 4-byte
segment descriptor word (SDW) to the 5-byte ISO0/ANSI/FIPS
segment control word (SCHW).

For variable-length spanned records using extended logical
record interface (XLRI), the 3-byte length field is used to
specifiy the exact length in bytes instead of the normal 2-byte
length field. The DCB LRECL specifies the maximum logical
record length in multiples of 1024.

A TRUNC routine sets an end-of-block condition to empty the
buffer. This end-of-block condition is processed so that the
next entry to the PUT routine permits it to operate as usual.
Successive entries to a TRUNC routine without intervening
entries to a PUT routine cause the TRUNC routine to return
control without performing any processing.

To permit a PUT routine to operate normally when it is entered
for the first time, the OPEN executor initializes the DCB fields
DCBRECAD and DCBEOBAD. For an output data set using QSAM and
simple buffering, the values entered in these fields depend on
the operating mode. For locate mode routines, it sets them to
show the beginning and end of the first buffer; for move mode
routines, it sets an end-of-block condition.

Figure % on page 26 lists the PUT routines and the conditions
that cause a particular routine to be read. The OPEN executor
selects one of the routines, loads it, and places its address
into the DCBPUT fields.
PUT Module IGG019AI: Module IGGO1l9AI presents the processing
program with the address of the next available buffer segment
for a fixed-length or an undefined-length record. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Output
and the DCB specifies:

PUT

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked or blocked standard) or
undefined-length record format

The module consists of a PUT routine and a TRUNC routine.
The PUT routine operates as follows:

° It receives control when a PUT macro instruction is
encountered in a processing program.

. It determines the address of the next buffer segment using
the value in the DCBLRECL field.

. It tests for an EOB condition to determine whether a buffer
is Zuﬁl and ready for emptying and if a new empty buffer is
needed.

. If no EOB condition exists, it presents the address of the
next buffer segment to the processing program and returns
control to the processing program.

. If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the end-of-block routine. The
Put routine issues another BALR instruction to obtain a new
buffer through the output-synchronizing-and-error-processing
routine, module IGG019AR, and determines the address of the

LY26-3967-0 ©® Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM

Licensed Materials —

The

Property of IBM

first segment of the new buffer. The PUT routine then
presents this address and returns control to the processing
program.

TRUNC routine causes an EOB condition by setting the

DCBRECAD and DCBEODAD fields so that they are equal; it then
returns control to the processing program.

PUT

Module IGGO19AJ: Module IGG019AJ presents the processing

program with the address of the next available buffer segment

for a variable-length or format-D record. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

OQutput
and the DCB specifies:

The
The

The

PUT
Simple buffering
Locate operating mode

Variable-length or record format D (unblocked or blocked),
unspanned

module consists of a PUT routine and a TRUNC routine.
PUT routine operates as follows:

It receives control when a PUT macro instruction is
encountered in a processing program.

It determines the address of the next buffer segment using
the length field of the record moved by the processing
program into the buffer segment located last.

It tests for an EOB condition to determine whether a buffer
is ready for emptying and if a new empty buffer is needed,
by using the value placed into the DCBLRECL field by the
processing program.

If no EOB condition exists, it tests for blocked records.

If blocked records are specified, it presents the address of
the next buffer segment to the processing program and
returns control to the processing program.

If an EOB condition exists or if unblocked records are
specified, it issues a BALR instruction to pass the present
buffer to the end-of-block routine. The PUT routine issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR, and determines the address of the first segment of
the new buffer. The PUT routine then presents this address
to the processing program and returns control to the
processing program.

TRUNC routine causes an EOB condition by setting the

DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

PUT

Module IGGO19AK: Module IGG019AK moves the present

fixed-length or undefined-length record into the next available
buffer segment. The OPEN executor selects and loads this module
if the OPEN parameter list specifies:

and

Output
the DCB specifies:
PUT

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 29

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Simple buffering
Move operating mode

Fixed-length (unblocked, blocked, blocked standard) or
undefined-length record format

The module consists of a PUT routine, a PUTX routine, and a
TRUNC routine.

The PUT routine operates as follows:

o It receives control when a PUT macro instruction is
encountered in a processing progranm.

. If an EOB condition exists, it issues a BALR instruction to
obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR, and then moves the record from the work area into
the first buffer segment.

o If no EOB condition exists, it moves the record from the
work area into the next buffer segment.

U It tests for blocked records.

. If blocked records are specified, it determines the address
of the next segment and tests for a new EOB condition.

. If unblocked records are specified or if a new E0OB condition
exists, it issues a BALR instruction to pass the present
buffer to the end-of-block routine and then returns control
to the processing program.

. If no new EOB condition exists, it returns control to the
processing program.

The PUTX routine operates as follows:

U It receives control when a PUTX macro instruction is
encountered in a processing progranm.

. It obtains the DCBRECAD value of the input DCB, which points
to the present record in the input buffer.

. It moves the DCB's LRECL field from the input DCB to the
output DCB.

. It enters the PUT routine at the start. The PUT routine
then uses the input DCBRECAD value in place of the work area
address.

The TRUNC routine operates as follows:

U It receives control when a TRUNC macro instruction is
encountered in a processing progranm.

. It simulates an EOB condition.

. It issues a BALR instruction to pass the present buffer to
the end-of-block routine.

U On return of control from the end-of-block routine, it
returns control to the processing program.

PUT Module IGGO19AL: Module IGGO19AL moves the present
variable-length or format-D record into the next available
buffer segment. The OPEN executor selects and loads this module
if the OPEN parameter list specifies:

Output

and the DCB specifies:

30 MVS/XA SAM Logic LY26-3967-0 ©® Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM

Licensed Materials —

The

Property of IBM

PUT

Simple buffering
Move operating mode

Variable—-length or record format-D (unblocked or blocked),
unspanned

module consists of a PUT routine, a PUTX routine, and a

TRUNC routine.

The

The

The

PUT

PUT routine operates as follows:

It receives control when a PUT macro instruction is
encountered in a processing program.

It determines the address of the next buffer segment and
compares the length of the next record with the remaining
buffer capacity.

If the record fits into the buffer, it moves the record,
updates the length field of the block, and tests for blocked
records.

If blocked records are specified, it returns control to the
processing program.

If the record does not fit into the buffer or if unblocked
records are specified, it issues a BALR instruction to pass
the present buffer to the end-of-block routine. It issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error—-processing routine, module
IGG019AR. The PUT routine then moves the record from the
work area to the buffer, updates the block-length field, and
returns control to the processing program.

PUTX routine operates as follows:

It receives control when a PUTX macro instruction is
encountered in a processing program.

It obtains the DCBRECAD value of the input DCB, which points
to the present record in the input buffer.

It enters the PUT routine at the start. The PUT routine
thqn uses the input DCBRECAD value instead of the work area
address.

TRUNC routine operates as follows:

It receives control when a TRUNC macro instruction is
encountered in a processing program.

It issues a BALR instruction to pass control of the present
buffer to the end-of-block routine.

It issues another BALR instruction to obtain a new buffer
through the output-synchronzing-and-error-processing
routine, module IGGO019AR.

It determines the address of the first segment of the new
buffer and then returns control to the processing program.

Module IGGO1l9BP: Module IGGO19BP presents the processing

program with the address of the next available buffer segment

for

a variable-length record. The OPEN executor selects and

loads this module if the OPEN parameter list specifies:

and

Output
the DCB specifies:
PUT

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 31

32 MVS/XA SAM Logic

The
The

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Simple buffering

Locate operating mode

Variable-length spanned (unblocked or blocked) record format
Logical record interface

module consists of a PUT routine and a TRUNC routine.

PUT routine operates as follows:

It receives control when a PUT macro instruction is
encountered in a processing program.

If extended logical record interface (XLRI) is used, the
logical record length field is three bytes long for logical
records that must be spanned. The DCB LRECL value specifies
the maximum logical record length in multiples of 1026.

It tests whether a spanned record was to have been written.

If the last record written was not a spanned record, it
determines the address of the next buffer segment using the
length field of the last record segment moved by the
processing program.

It checks the value placed into the DCBLRECL field to
determine if a buffer is ready for emptying and if a new
empty buffer is needed. If control is returned from the
user and the prior record does not require segmentation (a
buffer location is used instead of a record area), the SDW
must be changed from the three low-order byte format to the
two high-order byte format (OLLL to LLOO) when extended
logical record interface (XLRI) is used.

If no EOB condition exists, it tests for blocked records.

If blocked records are specified, it presents the address of
the next buffer segment to the processing program and
returns control to the processing program.

If unblocked records are specified, it issues a BALR
instruction to pass the present buffer to the EOB routine.
The PUT routine issues another BALR instruction to obtain a
new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR, and determines the address of the first segment of
the new buffer. The PUT routine tests whether the present
record to be written can fit entirely in the new buffer.

If the record fits, the PUT routine then presents this
address to the processing program and returns control to the
processing program.

If the record does not fit, the routine saves the record
address in the record area, obtains the address within the
record area with the proper alignment, sets the
spanned-record flag in the I0B, presents the address in the
record area to the processing program, and returns control
to the processing program.

If an EOB condition exists, it tests whether a minimum
record segment (at least 5 bytes) can fit in the present
buffer.

If it fits, the routine saves the record address, obtains
the address within the record area, sets the spanned-record
flag in the IO0B, presents the address to the processing
program, and returns control to the processing program.

If it does not fit, the routine issues a BALR instruction to

pass the present buffer to the EOB routine. The routine
then issues another BALR instruction to obtain a new buffer

LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

C

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

through the output-synchronizing-and-error-processing
routine, IGGO019AR, and determines the address of the first
segment of the new buffer. The routine tests whether the
present record can fit entirely in the new buffer.

. If a spanned record was to be written out, it restores the
record address, determines the length of the segment that
can fit in this buffer, moves the segment from the record
area to the buffer, and sets the proper flags for the
segment.

J If more segments are required, the routine issues a BALR
instruction to pass the present buffer to the EOB routine.
The PUT routine issues another BALR instruction to obtain a
new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR, and determines the address of the first segment of
the new buffer. It moves the remaining bytes of data from
the record area to the buffer and sets the proper flags for
the segment. This step continues until the entire spanned
record has been segmented. The routine then turns off the
spanned-record flag and determines the address of the next
buffer segment.

The TRUNC routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal. It then
returns control to the processing program.

When a TRUNC macro instruction is issued after a spanned record
was written, this routine branches to the PUT routine to write
out the last record (the spanned record) and then truncates the
block that contains the last segment of that spanned record.

If a spanned record is being truncated in extended logical
record interface (XLRI) mode, the truncate return is set up as
if a buffer location, instead of the record area, is being
returned to the user.

PUT Module IGG019DJ (SYSIN/SYSOUT): Module IGG019DJ interfaces
with a JES to pass the present record into the system output
stream. For locate mode, it presents the processing program
with the address of the next available buffer segment.

The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Output (SYSOUT specified on the DD statement)
and the DCB specifies:

PUT, PUTX

Simple buffering

Locate, move, or data operating mode

Fixed, undefined, or variable-length record format

Spanned records

Logical record interface
The moﬁule consists of PUT, PUTX, and TRUNC macro instructions.
(See Diagram M for an overview of the SAM-SI processing for
QSAM.) The GET routine is also in this module. It is described
in thg)section on simple-buffering GET routines (see Figure 1 on
page .

The PUT routine operates as follows:

. It receives control when a PUT macro instruction is
encountered in the processing progran.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 33

34 MVS/XA SAM Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

It determines the type of PUT request and performs the RPL
initialization necessary to make the translation to a JES
PUT request.

The record address is placed in RPLAREA and the length of
the record is placed in RPLRLEN.

For move mode the record address is obtained from register 0
on entry to the PUT routine. For locate mode, RPLAREA was
set up on the previous invocation of the PUT routine.

For all record formats other than variable-type, record
length is determined by DCBLRECL. For variable format, the
current RDW specifies the record size, unless data mode for
variable-length spanned records is requested, in which case
DCBPRECL contains the record length. Also for variable
format, the RDW is excluded from the output record by
adjusting RPLAREA past the RDW and decreasing the record
length by 4.

Record Format Value of RPLRLEN

Variable-length record format RDW Length - 4

(move or locate mode)

Variable-length record format value equals total length

(spanned records, locate mode) of all segments in a
logical record

Variable-length spanned record RDW length - 4

format (move mode)

Variable-length spanned record DCBPRECL

format (data mode)

Fixed and undefined-length DBLRECL

record format (move or locate

mode)

If processing is in locate mode with variable-length spanned
record format, the present segment is moved to the record
area. If the SDW indicates the logical record is not
complete, the address for the next segment is loaded into
register 1 and control is returned to the processing
program.

If the DCB record format indicates ASA or machine control
characters, then the control character is checked to
determine if it is a Composed Page Data Stream control byte.
In this case, the ACB data stream indicator is set
(ACBCCDSI) before passing control to the job entry subsystem
(JES).

It passes control to the job entry subsystem (JES) for data
transfer by issuing a PUT macro instruction against the RPL.
The return code in register 15 is tested upon return from
the JES.

If a control character is indicated in the DCBRECFM field of
the DCB, the RPLAREA pointer to the record will be adjusted

to point past the control character and the RPLRLEN will be

reduced by 1. The address of the control character is placed
in the RPLCCHAR field.

Upon return, register 15 and the RPLRTNCD and RPLCNDCD
fields are tested.

If an error condition is detected, control is passed to the
error-processing routine, IGG019AH. (See Figure 12 on
page 67.)

For normal completion, the address in the RPLAREA field is

placed in register 1 for locate mode. The RPLAREA field
contains the address of the next available buffer.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Registers are restored and control is returned to the
processing program.

The PUTX routine operates as follows:

. It receives control when a PUTX macro instruction is
encountered in the processing program. This routine
processes only the output mode of the PUTX macro
instruction.

. The address of the input buffer to be written is located
through the DCBRECAD field of the input DCB.

. After having located the output record, the request is then
processed by the PUT routine as a PUT, move mode request.

The TRUNC routine receives control when a CNTRL or TRUNC macro
instruction is issued. Module IGG019DJ does no processing for
these macro instructions. Control is returned to the processing
program by IGG0O19DJ.

PUT Module IGGO19FG: Module IGGO01l9FG moves the data portion of
the variable-length record into the next available buffer
segment. The OPEN executor selects and loads this module if the
OPEN parameter list specifies:

Output

and the DCB specifies:
PUT
Simple buffering
Data operating mode

Variable-length (unblocked or blocked) record format,
spanned

The module consists of a PUT routine and a TRUNC routine.
The PUT routine operates as follows:

. It receives control when the processing program issues a PUT
macro instruction.

. It determines the possible location of the next buffer
segment by adding the length of the previous record or
record segment to the previous buffer segment address. This
address is in the DCBRECAD field.

. It then compares the length of the next record with the
remaining buffer capacity.

. If ISO/ANSI/FIPS spanned records are being processed, the
buffer position pointer is updated to allow room for the
5-byte ISO/ANSI/FIPS segment control word (SCHW).

] If the record will fit, the routine moves the record,
updates the length field of the block descriptor word (BDW),
and checks for blocked records.

. If blocked records are specified, the routine returns
control to the processing program. If unblocked records are
specified, the routine issues a BALR instruction to pass the
current buffer to the EOB routine. The PUT routine issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR. The PUT routine then builds a new block
descriptor word (BDW) and returns control to the processing
program.

o If the record will not fit, the routine determines whether
there are 5 or more unused bytes remaining in the buffer.

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Method of Operation 35

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

If there are, the PUT routine breaks the current record so
that the first segment fills the buffer. The remaining
segment will be placed in subsequent buffers. The length
field in the segment descriptor word (SDW) of the first
segment is updated to reflect the length of the segment.
The third byte of this SDW is set to X'01' to indicate that
this segment is the first of a multisegment record. After
writing the buffer, the PUT routine does not return control
to the processing program until the entire record has been
processed. The routine forms the remainder of the current
record into a new segment. The new segment is constructed
in a new buffer; the third byte of the SDW of the newly
created segment is set to X'02' if this segment is the last
of a multisegment record. If there are other segments, the
third byte is set to X'03' to indicate that this segment is
neither the first nor the last of a multisegment record.
Newly created segments are processed as any other record.

The TRUNC routine operates as follows:

. It receives control when a TRUNC macro instruction is
encountered in a processing program.

. It issues a BALR instruction to pass control of the present
buffer to the end-of-block routine.

. It issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing
routine, module IGGO019AR.

. It determines the address of the first segment of the new
buffer and then returns control to the processing program.

PUT Module IGGO19FJ: Module IGGO19FJ presents the processing
program with the address of the next available buffer segment
for a variable-length record. The OPEN executor selects and
loads this module if the OPEN parameter list specifies:

Output

and the DCB specifies:
PUT
Simple buffering
Locate operating mode

Variable-length (unblocked or blocked) record format,
spanned

The module consists of a PUT routine and a TRUNC routine.
The PUT routine operates as follows:

° It receives control when the processing program issues a PUT
macro instruction.

. It determines the address of the next buffer segment by
adding the address of the last record or record segment
moved to the buffer and the length of that record or record
segment. The length of the record segment is in the SDW.

. It checks the buffer to see if there are 5 or more unused
bytes.

U] If there are 5 or more unused bytes remaining in the buffer,
the PUT routine places their address into register 1 for the
processing program. The PUT routine places the exact number
of bytes left in the buffer into register 0 for the
processing program. The PUT routine then returns control to
the processing program. -

36 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM

Licensed Materials —

The

Property of IBM

If the buffer contains fewer than 5 unused bytes, the
routine issues a BALR to the EO0B routine. The PUT routine
issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing
routine, module IGGO019AR, and determines the address of the
first segment of the new buffer. The PUT routine then
builds a new block descriptor word (BDW) and returns control
to the processing program.

TRUNC routine causes an EOB condition by setting the

DCBRECAD and DCBEDOBAD fields so that they are equal. It then
returns control to the processing program.

PUT

Module IGGO19FL: Module IGGOl9FL moves the current

variable-length record into the next available buffer segment.

The

OPEN executor selects and loads this module if the OPEN

parameter list specifies:

and

The
The

Output

the DCB specifies:
PUT

Simple buffering
Move operating mode

Variable-length (unblocked or blocked) record format,
spanned

module consists of a PUT routine and a TRUNC routine.
PUT routine operates as follows:

It receives control when the processing program issues a PUT
macro instruction.

It determines the possible location of the next buffer
segment by adding the length of the previous record or
record segment to the previous buffer segment address. This
address is in the DCBRECAD field.

It then compares the length of the next record with the
remaining buffer capacity.

If the record will fit, the routine moves the record,
updates the length field of the block descriptor word (BDHW),
and checks for blocked records.

If ISO/ANSI/FIPS spanned records are being processed, the
buffer position pointer is updated to allow room for the
5-byte ISO/ANSI/FIPS segment control word (SCW).

If blocked records are specified, the routine returns
control to the processing program. If unblocked records are
specified, the routine issues a BALR instruction to pass the
current buffer to the EOB routine. The PUT routine issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR. The PUT routine then builds a new block
descriptor word (BDW) and returns control to the processing
program,

If the record will not fit, the routine determines whether
there are 5 or more unused bytes remaining in the buffer.

If there are, the PUT routine breaks the current record so
that the first segment fills the buffer. The remaining
segment is placed in subsequent buffers. The length field
in the segment descriptor word (SDH) of the first segment is
updated to reflect the length of the segment. The third
byte of this SDWN is set to X'01' to indicate that this
segment is the first of a multisegment record. After
writing the buffer, the PUT routine does not return control

LY26-3967-0 ® Copyright IBM Corp. 1977,1985 Method of Operation 37

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

to the processing program until the entire record has been
processed. The routine forms the remainder of the current
record into a new segment, which is constructed in a new
buffer. The third byte of the SDW of the newly created
segment is set to X'02' if this segment is the last of a
multisegment record. If there are other segments, the third
byte is set to X'03' to indicate that this segment is
neither the first nor the last of a multisegment record.
Newly created segments are processed as any other record.

The TRUNC routine operates as follows:

. It receives control when a TRUNC macro instruction is
encountered in a processing program.

. It issues a BALR instruction to pass control of the present
buffer to the end-of-block routine.

. It issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing
routine, module IGGO019AR.

. It determines the address of the first segment of the new
buffer and then returns control to the processing program.

Update Mode PUTX Routines

The update mode PUTX routines differ from other PUT routines in
that PUTX routines share buffers (as well as the DCB and the
I0Bs) with the update mode GET routines. It is the update mode
GET routines that determine the address of the segment, when the
end of the buffer is reached and a new buffer is needed. Thus,
all that remains for the PUTX routines is to flag the block for
output.

There are two update-mode PUT routines. They are part of
modules IGGO19AE and IGGO019BN, which are described under
"Update-Mode GET Modules" (see Figure 3 on page 21).

END-OF-BLOCK ROUTINES

The end-of-block routines are selected for use with a particular
data set on the basis of the access conditions specified by the
processing program for that data set.

Unless INOUT or OUTIN is specified in the OPEN parameter list,
one end-of-block routine is selected. If INOUT or OUTIN is
specified, two end-of-block routines may be required. When
user—-totaling is specified, a special user-totaling routine is
executed in conjunction with one of the end-of-block routines.

An end-of-block routine receives control from a GET or a PUT
routine (when using QSAM), or from a READ or WRITE routine (when
using BSAM).

End-of-block routines are shared by BSAM and QSAM. Q5AM flow of
control is shown in Diagram F; BSAM flow is shown in Diagram G.
Register usage at entry to and exit from end-of-block routines
is as follows:

Registers Entry Value Exit Value

0-1 N7A Mot restored

2 DCB address Unchanged or
restored

3 IOB - 8 (or ICB) Unchanged or
restored

38 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM

Licensed Materials —

Property of IBM

Registers Entry Value Exit Value
q-6 N7A Not restored
7 READ or WRITE CCHW offset Unchanged or
restored
8 Caller's base address Unchanged or
restored
9-10 User's registers Restored!?
11-12 User's registers Unchanged or
restored
13 Save area Unchanged or
restored
14 Caller's return address Unchanged or
restored
15 Entry point address Not restored
Note:
1 These registers are saved by end-of-block in the last two
words of the save area, and are restored before returning to
caller.

Control passes from an end-of-block routine, through the EXCP or

EXCP

VR interface, to the I/0 supervisor, except when one channel

program or I0OB is chained to another. End-of-block routines

prov

ide device-oriented entries for the channel program, such as

control characters and auxiliary storage addresses.

If the American National Standard Code for Information
Interchange (ASCII) is used, routines IGG019CC and IGGO19CH
issue an XLATE macro instruction which translates the entire
buffer from EBCDIC to ASCII before writing the buffer. If
format-D records are specified, the record descriptor words are

conv

End-

erted from binary form to decimal form prior to translation.
of-block routine descriptions are grouped as follows:

Ordinary end-of-block routines. These routines perform
device-oriented processing when normal channel-program
scheduling is used for tape and unit record devices. The
user—-totaling routine is described in this section. It
moves the contents of the user's totaling area to the
user-totaling save area pointed to by the DEB.

Chained channel-program scheduling end-of-block routines.
These routines perform device-oriented processing and
attempt to chain channel programs when chained
channel-program scheduling is used for tape and unit record
devices.

DASD end-of-block routines. These routines perform
direct-access device processing for output data sets. The
routines attempt to chain I0Bs to a queue for which a
real-address channel program will be dynamically built by
the DASD SI0/pagefix appendage.

ordinary End-of-Block Routines

Ordi
and

nary end-of-block routines process channel programs for tape
unit record devices. This processing is independent of the

progress of a previous channel program and causes access to

pProc

eed one channel program at a time. For unit-record devices,

these routines process control characters and PRTOV macro

inst

Figu

ructions.

re 5 on page 4l lists the routines available and the

conditions that cause a particular routine to be used. For
QSAM, the OPEN executor selects one of the routines, loads it

and

places its address into the DCBEOB field. For BSAM, the

OPEN executor selects one of the routines, loads it, and places

its

address into both the DCBEOBR and DCBEOBW fields. If INOUT

or OUTIN is specified, a second end-of-block routine may be

LY26-3967-0 ©® Copyright IBM Corp. 1977,1985 Method of Operation 39

40 MVS/XA SAM Logic

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

selected and loaded. Its address replaces one of the duplicate
addresses in the DCB.

End-of-Block Module IGGO1l9CC: Module IGG019CC causes a channel
program to be scheduled.

If ASCII coding is used, the entire output buffer is translated
from EBCDIC to ASCII. If the ISO/ANSI/FIPS spanned record
format (DS/DBS) is used, the 4-byte IBM segment descriptor word
(SDH) is converted to the 5-byte IS0O/ANSI/FIPS segment control
word (SCH) before translation.

The OPEN executor selects and loads this module if the following
condition exists:

The DCB specifies normal channel-program scheduling and
magnetic tape, card reader, or paper tape as the device
type.

The module operates as follows:

. It receives control when a GET or PUT routine finds that a
buffer is ready to be scheduled, or at the conclusion of the
processing performed by a READ or WRITE routine.

. If the device type is magnetic tape, record format is
variable, control is received from a PUT or WRITE routine,
and a check is made to see if at least 18 bytes are to be
written. If not, the record is padded with binary zeros up
to 18 bytes or block size, whichever is less; however, with
the ASCII feature, format-D records are padded with the
ASCII padding character, X'5F', instead of with zeros. An
EXCP macro instruction is issued, and control is returned to
the PUT or WRITE routine.

. If the device type is magnetic tape and either the record
format is not variable or control is not gained from a PUT
or WRITE routine, an EXCP macro instruction is issued and
control is returned to the GET, PUT, READ, or WRITE routine.

. If an IBM 3525 Card Punch associated data set is being used,
a test is made to determine the status of the read-sequence
flag.

- If the read-sequence flag (DCBQSWS field) is on and the
associated data set is not READ and print, a WTP
message, which indicates that either the GET or READ
sequence is invalid, is issued. An abend (003) is
issued with a return code of 01. If the read-sequence
flag is off, the macro sequence is assumed to be valid
and the READ-sequence flag is turned on.

- Tests are made to determine if the associated data set
is either read, punch, and print, or read and punch.

- If either read, punch, and print, or read and punch is
specified in the FUNC parameter, a test is made to
determine the status of the punch-sequence flag. If the
punch-sequence flag (DCBQSWS field) is on, it is turned
off. (This indicates to modules IGGO19CE and IGGO19CF
that their calling routine is in the proper sequence.)

- If the associated data set is not read, punch, and
print, or read and punch, it is assumed that read and
print is being used.

- A test is made to determine the status of the
print-sequence flag (DCBQSKHS).

- If the print-sequence flag is on, it is assumed that the
print command has been issued. It is turned off so that
proper sequencing may continue. If the print-sequence
flag is off, it is assumed that the print command has
not been issued.

LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

Access Method

Options Selections

Normal channel program X X X X X X X X X X X X X X X
scheduling

Output, or INOUT OUTIN X

Card reader X X

Printer or card punch X X X X X X X

Printer (3535) X X
Interpreter/Punch (3525) X
Data Processing Image X

(3525)

Magnetic Tape X X

No control character

Machine control character

ANS control character X X

PRTOV—No user exit X X

Label=(,,,IN) or X
siatementi) on PP

User totaling facility X

Associated data set X X X X X X
End of Block Modules

IGGO19AX AX

IGGO019CC CC CcC ccC

IGGO19CE CECE CE CE

IGGO19CF CF CF

IGG019CT!? CT

IGGO19FK FK
IGGO19FQ FQ FQ
IGGO19FU FU
IGG019TC TC

Figure 5. Module Selector—O0rdinary End-of-Block Modules (non-DASD)

Note to Figure 5:

1 When either of these LABEL parameters is specified and the
data set is opened for INOUT or OUTIN, the OPEN executor
loads module IGGO19CT in addition to one of the other
end-of-block routines.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 41

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

End-of-Block Module IGGO1l9CE: Module IGGO19CE, if necessary,
modifies channel programs for unit record output devices when
American National Standard Institute (ANSI) control characters
are not used. The module then causes scheduling of the channel
program, whether it was modified or not. The OPEN executor
selects and loads this module if the DCB specifies:

Normal channel-program scheduling

Punch, or printer

Machine control character, or no control character
The module operates as follows:

. It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a WRITE routine.

. It adjusts, in the channel program, the length and starting
address either for the length field of variable-length
records or for a control character. If there are
variable-length records and a control character, the module
adjusts for both.

. If a control character is present, it inserts it as the
command byte of the WRITE channel command word (CCW).

. If the device is an IBM 3800 Printing Subsystem and OPTCD=J
is specified, the module determines if the table reference
character in the current record refers to the translate
table presently active in the device. If so, the select
translate table CCHW, which precedes the WRITE CCH, is
altered to a NOP. Otherwise, the select CCW is modified to
select the appropriate translate table. (If OPTCD=J is not
specified, the common printer channel program is used.)

. It tests the DCB field at location DCBDEVT + 1 for a PRTOV -‘;)
mask. If a PRTOV mask is present, the module temporarily
inserts it into the length field of the NOP CCHW and sets the
first bit in the I0OB. The PRTOV appendage IGG01l9CL tests
for the presence of the I0OB bit and the CCW mask.

. If an associated data set is being used, a test is made to
determine the status of the punch-sequence flag.

- If the punch-sequence flag (DCBQSWS) is on and the
associated data set is not punch and print, a WTP
message 1s issued which indicates that either the PUT or
WRITE sequence is invalid. An abend (003) is issued
with a return code of 02. If the punch-sequence flag is
off, the macro sequence is assumed to be valid and the
punch-sequence flag is turned on.

- A test is made to determine if the associated data set
is read, punch, and print. If read, punch, and print is
specified in the FUNC parameter, a test is made to
determine the status of the read-sequence flag.

- If the read-sequence flag is on, it is turned off. This
allows proper sequencing to continue. If the
read-sequence flag is off, an ABEND is issued.

- A test is made to determine the status of the
print-sequence flag.

- If the print-sequence flag is on, proper sequencing
continues. If it is off, modules IGG019CE and IGGO019CF
continue with their normal functions.

- If the associated data set is punch and print, the ’

status of the print-sequence flag is determined as
previously explained for module IGGO019CC.

42 MVS/XA SAM Logic LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. It issues an EXCP macro instruction and returns control to
the PUT or WRITE routine.

End-of-Block Module IGGO19CF: Module IGGO019CF modifies channel
programs for unit record output devices when an American
National Standard Institute (ANSI) control character is present.
The module then causes scheduling of the channel program,
whether it was modified or not. The OPEN executor selects and
loads this module if the DCB specifies:

Normal channel-program scheduling
Punch or printer
ANS control character

The module operates as follows:

. It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a WRITE routine.

. It adjusts, in the channel program, the length and starting
address for the control character, and for the length field
of variable-length records.

. It translates the control character and inserts it as the
command byte of the control channel command word () which
precedes the WRITE CCW (or the select CCH, if the device is
a 3800 Printing Subsystem with OPTCD=J specified.)

. If the device is a 3800 Printing Subsystem and OPTCD=J is
specified, the module determines i1f the table reference
character in the current record refers to the translate
table presently active in the device. If so, the select
translate table CCH, which precedes the WRITE CCH, is
altered to a NOP. Otherwise, the select CCHW is modified to
select the appropriate translate table. (If OPTCD=J is not
specified, the common printer channel program is used.)

. It tests the DCB field at location DCBDEVT+l for a PRTOV
mask. If a PRTOV mask is present, the module inserts it
into the length field of the control CCW and sets the first
bit in the IOB. The PRTOV appendage IGG019CL tests for the
presence of the I0B bit and the CCH mask.

. If an associated data set is being used, a test is made to
determine the status of the punch-sequence flag.

- If the punch-sequence flag (DCBQSWS) is on and the
associated data set is not punch and print, a WTP
message is issued to indicate that either the PUT or the
WRITE sequence is invalid. An abend (003) is issued
with a return code of 02. If the punch-sequence flag is
off, the macro sequence is assumed to be valid and the
punch-sequence flag is turned on.

- A test is made to determine if the associated data set
is read, punch, and print. If read, punch, and print is
specified in the FUNC parameter, a test is made to
determine the status of the read-sequence flag.

- If the read-sequence flag (DCBQSWS) is on, it is turned
off. This allows proper sequencing to continue. If the
read-sequence flag is off, an ABEND is issued.

- A test is made to determine the status of the
print-sequence flag (DCBQSWS).

- If the print-sequence flag is on, proper sequencing
continues. If it is off, modules IGGO019CE and IGGO19CF
continue with their normal functions.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 43

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

- If the associated data set is punch and print, the
status of the print-sequence flag is determined, as
previously explained for module IGGO0O19CC.

° It issues an EXCP macro instruction and returns control to
the PUT or WRITE routine.

End-of-Block Mecdule IGGO19CT: Module IGGO019CT sets error
indicators in the user's DCB and I0B. The OPEN executor selects
and loads this module if the following conditions exist:

The data set is opened for INOUT and the DD statement
specifies LABEL=(,,,IN)

or

The data set is opened for OUTIN and the DD statement
specified LABEL=(,,,0UT)

The module operates as follows:

° It receives control and sets error indicators in the user's
DCB and I0B when either of the following conditions exists:

The DD statement specifies LABEL=(,,,IN), the data set
is opened for INOUT, and a WRITE macro instruction is
issued,

The DD statement specifies LABEL=(,,,0UT), the data set
is opened for OUTIN, and a READ macro instruction is
issued.

End-of-Block Module IGGO19FK: Module IGG019FK causes a channel
program to be scheduled. The OPEN executor selects and loads
this module, if the following conditions are described in the
DCB:

Data protection image (DPI) is specified for the 3525 with a
read and punch, or read, punch, and print file with normal
channel-program scheduling.

The module operates as follows:

. It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a WRITE routine.

. If the READ associated data set has been opened, a test is
made to determine the status of the read-sequence flag.

[If the READ associated data set has not been opened, or if
the READ-sequence flag is off, a WTP message is issued which
indicates that the sequence is invalid. An abend (003) is
then issued with a return code of 02. If the read-sequence
flag is on (indicating proper sequencing), it is turned off.

. A test is then made to determine the status of the
punch-sequence flag (DCBQSHS field). If the punch-sequence
flag is on, a WTP message is issued, followed by an ABEND
(003). If the punch-sequence flag is off, it is turned on
so that proper sequencing may continue.

° It then establishes the buffer area (for the punch
operation) according to the format of the data protection
image. If a byte in the DPI is blank (X'40'), the module
blanks out the corresponding byte in the output punch
buffer. If the byte is not blank, the output buffer is not
altered. Both areas are 80 bytes in length.

. It returns control to either the PUT or WRITE routine that
called it.

46 MVS/XA SAM Logic LY26-3967-0 ®© Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM

Licensed Materials —

Property of IBM

End-of-Block Module IGGO019FQ: Module IGGO019FQ causes a channel
program to be scheduled to the 3525 Card Punch. The OPEN
executor selects and loads this module, if the following
conditions exist:

The

A print; read, punch, and print; read and print; or punch
and print file is specified for the 3525 with either a
machine control character, an ANSI control character, or no
control character at all with normal channel-program
scheduling.

module operates as follows:

It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a WRITE routine.

If either a read, punch, and print or punch and print
associated data set has been specified, a test is made to
determine the status of the print sequence flag. If the
print-sequence flag is on, the CCW pointer is modified to
point to the print CCH.

If both the print- and punch-sequence flags are off, a WTP
message is issued to indicate that the sequence is invalid.
An abend (003) is then issued with a return code of 03.

If the print-sequence flag is off, but the punch-sequence
flag is on, the module locates the punch DCB and turns off
the punch-sequence flag. The CCW pointer is then modified
:o poant to the print CCW and the print-sequence flag is
urned on.

If a read and print associated data set is specified and the
print-sequence flag is on, the CCH pointer is modified to
point to the print CCH.

If the print-sequence flag is off, but the read-sequence
flag is on, the READ DCB is located and the read-sequence
flag is turned off. The CCH pointer is then modified to
point to the print CCH and the print-sequence flag is turned
on.

After sequence checking is completed, the module tests for
ANSI and machine control characters. If ANSI is specified,
the control character is analyzed to determine which line
the data is to be printed on. An OR operation is then
performed on that line number and the print CCH.

If ANSI control characters are not specified, the module
tests for record format and machine control characters. If
machine control characters are specified, they are inserted
into the CCH and the buffer address is increased by one.

If no control character is specified, and two-line printing
is specified in the FUNC parameter, the module tests to
determine line positioning on the card. This is reflected
in the operation code of the print CCHW.

If no control character is specified, and multiline printing
is specified, tests are again made to determine line
qu1t1gn1ng. (Qutput lines are printed on successive

ines.

If no control characters are specified, or if they are
specified and have been processed, or if either two-line or
multiline positioning is complete, the module establishes
the WRITE CCH and stores the start address of the CCHW for
the input/output supervisor (I0S).

If the PRTOV macro instruction is specified, a check is made
for either channel 9 or 12 (depending on which channel is
specified in the PRTOV macro instruction).

LY26-3967-0 ®© Copyright IBM Corp. 1977,1985 Method of Operation 45

Contains Restricted Materials of IBM
Licensed Materials — Property of IBM

. The channel program is then executed and a WAIT command is
issued. It returns control (via register 14) to either the
PUT or HRITE routine that called it.

End-of-Block Module IGGOl9FU: Module IGGO019FU causes a channel
program to be scheduled. The OPEN executor selects and loads
this module if one of the following conditions exists:

INTERPRET PUNCH is specified for the 3525 with normal
channel-program scheduling.

INTERPRET PUNCH is specified for the 3525 with first control
charaiter for stacker selection or with no control character
at all.

The module operates as follows:
. It retrieves the data address from the WRITE CCH.

. It tests for record format to determine i1f machine control
characters or ANS control characters are being used.

. If either machine or ANS control characters are being used,
the data address is increased by one and the control
character is inserted into the command byte of the KWRITE
CCH.

. If machine control characters are not specified, the data
address remains unchanged.

. The module blanks out a print buffer. (The print buffer is
a 6G-byte area located 64 bytes past the beginning of the
I0OB.) It then moves the final 16 characters of the output
punch buffer into the last 16 bytes of the print buffer.

. The channel program start address is stored in the IOB.
. The channel program is then scheduled for execution.

. It returns control (via register 14) to either the PUT or
WRITE routine that called it.

End-of-Block Module IGGO1l9TC: The OPEN executor selects and
loads this module if the user specified the user-totaling
facility (that is, if bit 6 is 1 in DCBOPTCD) for the data set
and if the fol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>