S$Y28-0765-0
File No. S370-36

Systems - 0S/VS2
| System Logic Library
Volume 5

VS2.03.805
VvS2.03.807

This minor revision incorporates the following Selectable Units:

Supervisor Performance ¥1 VS2.03.805
Supervisor Performance #2 VS2.03.807

The selectable unit to which the information applies, is noted in the upper corner of the page.
First Edition (July, 1976)

This is a reprint of SY28-0717-0 incorporating changes released in the following
Selectable Units Newsletters:

SN28-2688 (dated May 28, 1976)
SN28-2694 (dated May 28, 1976)

This cdition applies to Release 3.7 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwisc indicated in new editions or Technical Newsletters. Changes are continually made to
the information herein; before using this publication in connection with the operation of 1BM
systems, consult the latest JBM System/370 Bibliography, GC20-0001, for the editions that are
applicablc and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
I1BM branch office serving your locality. i

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Publications Development,
Department DS8, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments become
the property of IBM.

© Copyright International Business Machines Corporation 1976

System Logic Library comprises seven volumes.
Following is the content and order number for each
volume.
OS/VS2 System Logic Library,
Volume 1 contents: SY28-0713
MVS logic introduction
Abbreviation list
Index for all volumes
Volume 2 contents: SY28-0714
Method of Operation diagrams for
Communications Task
Command Processing
Region Control Task (RCT)
Started Task Control (STC)
LOGON Scheduling
Volume 3 contents: SY28-0715
Method of Operation diagrams for
System Resources Manager (SRM)
System Activity Measurement Activity (MF/1)
JOB Scheduling
—Subsystem Interface
—Master Subsystem
—Initiator/ Terminator
—SWA Create Interface
—Converter/Interpreter
—SWA Manager
—Allocation/Unallocation
—System Management Facilities (SMF)
—System Log
—Checkpoint/Restart
Volume 4 contents: SY28-0716
Method of Operation diagrams for
Timer Supervision
Supervisor Control
Task Management
Program Management
Recovery/Termination Management (R/TM)
Volume 5 contents: SY28-0717
Method of Operation diagrams for
Real Storage Management (RSM)
Virtual Storage Management (VSM)
Auxiliary Storage Management (ASM)
Volume 6 contents: SY28-0718
Program Organization
Volume 7 contents: SY28-0719
Directory
Data Areas
Diagnostic Aids

Preface

Please note that if you use only one order
number, you will only receive that volume. To
receive all seven volumes, you must either use all
seven form numbers or, simply the following
number: SBOF-8210. If you use SBOF-8210, you
will receive all seven volumes.

The publication is intended for persons who are
debugging or modifying the system. For general
information about the use of the MVS system, refer
to the publication Introduction to OS/VS Release
2, GC28-0661.

How This Publication is Organized
This publication contains six chapters. Following, is
a synopsis of the information in each section:

o Introduction and Master Index — an
overview of each of the functions this
publication documents, an abbreviation list of
all acronyms used in the publication, and a
complete index for all seven volumes.

e Method of Operation — a functional
approach to each of the subcomponents, using
both diagrams and text. Each subcomponent
begins with an introduction; all the diagrams
and text applying to that subcomponent
follow.

e Program Organization — a description of
module-to-module flow for each
subcomponent; a description of each module’s
function, including entry and exit. The
module-to-module flow is ordered by
subcomponent. The module descriptions are
in alphabetic order without regard to
subcomponent.

« Directory — a cross-reference from names in
the various subcomponents to their place in
the source code and in the publication.

e Data Areas — a description of the major
data areas used by the subcomponents (only
those, however, that are not described in
OS/VS Data Areas, SYB8-0606, which is
on microfiche); a data area usage table,
showing whether a module reads or updates a
data area; a control block overview diagram
for each subcomponent, showing the various
pointer schemes for the control blocks
applicable to each subcomponent; a table
detailing data area acronyms, mapping macro
instructions, common names, and symbol
usage table. i

Preface 3

Diagnostic Aids — the messages issued,
including the modules that issue, detect, and
contain the message; register usage; return
codes; wait state codes; and miscellaneous

aids.

Corequisite Reading
The following publications are corequisites:

e OS/VS2 JES2 Logic, SY28-0622
OS/VS Data Areas, SYB8-0606 (This
document is on microfiche.)

« OS/VS2 System Initialization Logic,

SY28-0623

4 0S/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

vS2.03.807

Contents
Section 2: Method of Operation 5-1
Real Storage Management (RSM) 5-3
Method-of-Operation Diagrams 5-6
23-1. LSQA/SQA Allocation IEAVSQA) 5-6
23-2. V=R Region Allocation (IEAVEQR) 5-8
23-3. Freeing a V=R Region (IEAVEQR) 5-12
23-4. Page Release Processing (IEAVRELS) 5-14
23-5. FREEMAIN Release Processing (IEAVRELS) 5-16
23-6. Create Segment (IEAVCSEG) 5-18
23-7. Destroy Segment IEAVDSEG) 5-20
23-8. Program Check Interruption Extension (IEAVPIX) 5-22
23-9. General Frame Allocation IEAVGFA) 5-24
23-10. Page I/0O Post (IEAVPIOP) 5-28
23-11. Page I/0 Completion Processing (IEAVIOCP) 5-30
23-12. Page Services Interface (IEAVPSI) 5-32
23-13. PGFIX/PGLOAD Processor (IEAVFXLD) 5-34
23-14. PGFIX/PGLOAD Root Exit (IEAVFXLD) 5-36
23-15. PGFREE Routine IEAVFREE) 5-38
23-16. PGOUT Routine (IEAVOUT) 5-40
23-17. Swap-In Processor Routine (IEAVSWIN) 5-42
23-18. Swap-In Root Exit (IEAVSWIN) 5-44
23-18A. Swap-In Post Processor IEAVSWPP) (VS2.03.807) 5-45.0
23-19. Swap-Out Processor Routine IEAVSOUT) 5-46
23-20. Swap-Out Root Exit (IEAVSOUT) 5-50
23-20. Swap-Out Completion Routine (IEAVSWPC) (vS2.03.807) 5-50
23-21. Page 1/0 Initiator IEAVPIOI) 5-52
23-21. LSQA Swap I/0O Initiator IEAVPIOI) (VS2.03.807) 5-52
23-22. VIO Services Routine IEAVAMSI) 5-54
23-23. Initialize Address Space Routine IEAVITAS) 5-58
23-24. Delete Address Space Routine (IEAVDLAS) 5-60
23-25. Page Termination Services (IEAVTERM) 5-62
23-26. Real Frame Replacement IEAVRFR) 5-64
23-27. Real Storage Reconfiguration Routine IEAVRCF) 5-68
23-28. PFTE Enqueue/Dequeue Routine IEAVPFTE) 5-72
23-29. PCB Manager IEAVPCB) 5-74
23-30. Page Invalidation Routine (IEAVINT) 5-76
23-31. Find Page Routine IEAVFP) . . " 5-78
23-32. Translate Real to Virtual IEAVTRV) 5-80
23-33. RSM Functional Recovery Routine (IEAVRCV) 5-82
23-34. RSM Preferred Area Steal JEAVPREF) 5-84
Virtual Storage Mangement (VSM) 5-87
Subpools L. e e e e e e 5-88
Method-of-Operation Diagrams 5-94
24-1. GETMAIN (IEAVGMO00)« oo .. 5-94
24-2. FREEMAIN (IEAVGMO00)« 5-96 .
24-3. GETPART (IEAVPRTO) 5-98
24-4. FREEPART (IEAVPRTO) 5-100
24-5. Create Address Space IEAVGCAS) 5-102
24-6. Free Address Space (IEAVGCAS) 5-104
24-7. Task Termination IEAVGCAS) 5-106
24-8. Build Quickcell Pool Routine IEAVBLDP) 5-108
24-9. GETCELL Routine (IEAVGTCL) 5-110
24-10. FREECELL Routine !EAVFRCL) 5-112
24-11. Delete Quickcell Pool IEAVDELP) 5-114
24-12. CHANGKEY (IEAVCKEY) (vS2.03.805) 51150
Auxiliary Storage Management e 0., 5-117
Method-of-Operation Diagrams 5-118
' 25-1. Auxiliary Storage Management Overview 5-118
25-2. ILRINTOO Overview ¢ v v v v v v e e e e e 5-118
253 ACTIVATE i i e e e e e e e e e e e e e 5-122
25-4. GETLGN i i it et e e e e e e e e e e e 5-124
255.GETCORE i v it it i e e e e e e 5-126
25-6. Chain ACEILRCEPOO v v v v v oo 5-128
25-71. GETACE o i i i i i e e e e e e e e e e e e 5-130
25-8. ASSIGN e e e e e e e e e e e 5-132
259.FREECORE« i i it it i i e 5-134

25-10. RELLG vt it e e e e e e e e 5-136

Contents §

VS2.03.807

25-11.
25-12.
25-13.
25-14.
25-15.
25-16.
25-17.
25-18.
25-19.
25-20.
25-21.
25-22.
25-23.
25-24.
25-25.
25-26.
25-27.
25-28.
25-29.
25-30.
25-31.
25-32.
25-33.
25-34.
25-35.
25-36.
25-37.
25-38.
25-39.
25-40.
25-41.
25-42.
25-43.
25-44.
25-45.
25-46.
25-47.
25-48.
25-49.
25-50.
25-51.
25-52.
25-53.
25-54.
25-55.
25-56.
25-57.
25-58.
25-59.
25-60.
25-61.
25-62.
25-63.
25-64.
25-65.
25-66.
-25-67.
25-68.
25-69.
25-70.
25-71.
25-72.
25-73..
25-74.
25-75.
25-76.
25-71.
25-78.
25-79.
25-80.
25-81.

RELLP e e e e e e e 5-138
SAVE . . . e e e e e e e e e e e e e 5-140
TRPAGE e e e e e e e 5-142
Input/Output 5-146
SWAPCHK o i ittt i i e 5-148
SAVEACT it i i i i e e e e e e e e 5-150
WTOMSG e e e e e 5-154
ARLSEG e e e s 5-156
ILRMONOO Overview v v v v v v v v .. 5-158
GMAGET o e e e e e e e e e 5-162
GMAFREE e e e 5-164
PROCLG o e e i et et e et e e e 5-166
INTMON e e e e e e e e e 5-170
REVERSER i i i i i e 5-172
NOAIE e e e e e e e e e e e e e e e e e 5-174
QUEIT o e e e e e e e e e e e e e 5-176
STARTOP« e e e e e e e 5-178
STINDV o e e e e e e e e e e e e e e e e 5-180
BLDTSKQ e e e e e e 5-184
PLPASAVE e 5-186
ILRARLSo 5-188
GETLPME e e e e e e 5-190
REMOVA | e e e e e e e 5-192
MONQIO e e e e e 5-196
FINDPE @ e e s e e e e e h e 5-198
SECCHK i it ittt i s 5-200
QUEREAD e e e e e e e 5-202
GETANIOE o i e e e e e e e 5-204
QUEWRITE i i i it i it i e e 5-206
QUEIOE e e e 5-208
TRPAGE o e e e e e s 5-210
ILRASNOO Overview v v v v v v v v e e v 5-212
ASPCTII O, 5-216
ASPCTI2 o e e e e e e e e e 5-220
ILRRLPOO Overview v v v v v v v v e e 5-222
RLPSGO1 o e s e e e e e e 5-224
SEGRLSE i i it e e e e e 5-226
CTRUPDTE i i i it it i i i . 5-228
ILRTRPOO Overview v v v v v v v . 5-230
TRPSGO2Z e e e e e e e e 5-234
TRPSGO3 e 5-236
TRPSGO4 e e e e e e e e e 5-240
ILRACTO0 Overview v v v v v v v v .. 5-244
ACTREEN i i it i i e i e e e e e e e 5-248
ACTGETB it e e e e e e e e e e s 5-250
ACTCOND e e e e e e e e 5-254
ACTINPR e e e e e 5-258
ACTCACE o i e e e e e st e e e e e e e e 5-260
ACTINIT e e e e e e e e e e e e e e 5-266
ACTSLOT e e e e e e e e 5-270
ACTFREE i i i i i i i i i i i 5-274
ACTCLUP e e e e e e e e e e e e e e e e 5-276
ILRSAVO0 Overview ¢ v v v v v v v v v v 5-278
SAVSGO4 e e e e e e 5-282
SAVSGI1 e e e e e e e 5-284
ADDLSID i i i e e e e e e e e e e e e 5-286
SAVSGO6 e e e e e 5-288
SAVSGO8 e e 5-292
SAVSGIO e e e e e e 5-294
ILRRLGOO Overview v v v v v v v .. 5-300
RLGSGO1 i i i s i e e e e e . 5-304
RLGSGO2 v i i i i e e e s e e e e e e e e e 5-308
RLGSGO3 - i i e s e e s e e e e e e e e e e 5-310
ACTUPDT v e e e e e e e e 5-312
GETONE et i e e e e e e 5-314
PUTONE e e e e e e e e e 5-318
FINISH 5-320
ACTGETN o i i e e e e e e e e e e e e 5-322
GETALLX i i i e e e e e e e e e e e e 5-324
GETEXTS« i i i e e e e i e e e e e e e e e e 5-326
SVRLGGET o e e e e e e e e e e e 5-328

6 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

25-82. GETERASE o i e e e e e 5-332
25-83. SAVEPUT« i i i i e e e e e 5-334
25-84. PUTASPCT i i it i et e e e e 5-338
25-85.ILRALS00 e 5-340
25-86. ALSPROC i i e e e 5-342
25-87. SAVSGO61 L Lo e e e e 5-344
25-88. SAVSGO62 e e e e e e e e 5-346
25-89. SAVSGO63 e e e e e e e 5-348
2590. RLGSGO4 e e e e e e e 5-354
2591. RLGSGOS e e e e e e 5-356
25992 ILRTMCO0 i i i e e e e e e e e e e 5-358
25993. TMCSGO6 v v v v v v v oo . N 5-360
2594, TMCSGI0 e e e 5-362
2595. TMCMSG v v v i i e e e e e 5-364
25-96. I/0 Request Overview o . v ... 5-366
2597.ILRPTMO0 e e e e e . 5-388
25-98. ILRSRTO0 Overview v v v v v v v v e v 5-390
25-99. GETWRTQ e e e e e e e e e e e e e e e e e e 5-390
25-100. REPWRTQ« o e e e e 5-392
25-101. PROCPARE o o i i e e e 5-394
25-102. BADSORT e e e e e e e e e e 5-396
25-103. REPBUFC 5-398
25-104. ILRSRTO0 o i i s e e e e e 5-400
25-105. INITLZ o e e e e e e e e e e e e e e e e 5-402
25-106. SORTREAD v v v v v .. 5-404
25-107. ADRTTRE i i i i i i i e 5-406
25-108. CYSCANCYL e 5-408
25-109. GETRDCYL v i e e e, 5-410
25-110. GETWCYL e e e 5-412
25-111. BRDMASK e e e e e e 5-414
25-112. GETLOLEC 5416
25-113. PROCREQS o i e e e e e 5-418
25-114. PROCHIT o o e e e e e e e e e e 5-420
25-115. INITBUFC e i e e e e e e e 5-422
25-116. FREEIOE v v v v, 5-424
25-117.I0CHAIN o o e e e e e e e e 5-426
25-118. GETBUFC o i i e e e e 5-428
25-119. BILDMSKSo 5-430
25-120. WRTUPDTE 5-432
25-121. FINDSLOT« o i i i e e e e e e e 5-434
25-122. SETWRITE o i i e e 5-436
25-123. GETREADo 5-438
25-124. REMVNODE o v v i i e e e e e e 5-440
25-125. RCHAINUP e 5-442
25-126. 10 . . . L L L e e e e e e e e e e e e e 5-444
25-127. CLEANUP o o e e e e e e e 5-446
25-128. ILRIOCO00 Overview v v v v v v oo .. 5-448
25-129. BUFCPROC o i i i i e e e e e 5-454
25-130. RECHAIN it it 5-458
25-131. BADSLOT o o e e e e e e 5-460
25-132. ADDSLOT o e e e e e e e 5-464
25-133. COMPBRST« o i i i e e e e e e 5-466
25-13¢. NOTREADY« v i i . 5-468
25-135. Mark Slot Available 5-472
25-136. ILRINTO1 Overview v v v v v v v v o 5-474
25-137. ILRINTOLl o e e e e e 5-476
25-138. ILRFRROO-ILRDET00 5-478
25-139. ILRFRROO-ILRFRRO1 5-480
25-140. ILRMONO1 e e 5-482
25-141. ILRFRROO-ILRIOBO1l 5-486
25-142. ILRIOCO1o e e e 5-488
25-143. ILRTMRO1 Overview v v 5-490
25-144. ILRTMRO1 e 5-492
25-145. ILRTMROI1 Error Processing 5-494
25-146. ILREOTO0 o i i e e e e 5-496
25-147. ILREOTOO-ILRRETRY 5-498
25-148. ILREOTOO-ILRETXR« o oo .. 5-500
25-149. ILRFRROO Overview v v v v v v v v v v v v 5-502
25-150. ILRFRROO-ILREXO0t 5-504
25-151.ILRTMROO0 oo e e e e e e e e 5-506
Overview (VS2.03.807)« i e e e e e e e 5-117

Contents 7

vS2.03.807

1/0 Control (VS2.03.807) e e e e e e e e e e e 5-119
25-1. ILRPAGIO (VS2.03.807)« v v v v v v v .. 5-122
25-2. ILRSWAP (VS2.03.807) v v v v v e 5-130
25-3. ILRSWPDR (VS2.03.807) 5134
25-4. ILRPAGCM (VS2.03.807) v v v v v v v . 5-135
25-5. ILRFRSLT (VS2.03.807) « o v v v v v 5-149

I/0 Subsystem (VS2.03.807) 5-152
25-6. ILRPTM (VS2.03.807) o v v v v v v 5-156
25-7. ILRSRT (VS2.03.807) v v v v v v i v v v 5-165
25-8. ILRCMP (VvS2.03.807) 5184
25-9. ILRMSGO00 (VS2.03.807) v 5-195

VIO Control (VS2.03.807) e e 5-202
25-10. ILRPOS (VS2.03.807) 5-205
25-11. ILRGOS (VS2.03.807) v i i e e e e e 5-210
25-12. ILRSRBC (VS2.03.807) o o 5214
25-13. ILRVIOCM (vS2.03.807) 5-217
25-14. ILRJTERM (VS2.03.807), 5-219

VIO Group Operators (VS2.03.807) 5-222
25-15. ILRACT (vS2.03.807) e e e e e e e e e e 5-225
25-16. ILRSAV (VS2.03.807) i e e 5-228
25-17. ILRRLG (VS2.03.807) v v v v v . 5-235
25-18. ILRTMRLG (VS2.03.807) ¢« v v v« .. 5-239
25-19. ILRVSAMI (VS2.03.807)« v ... 5-242

Recovery (VS2.03.807) i i i e e e e 5-250
25-20. ILRIOFRR (vS2.03.807)« 5-257
25-21. ILRSWPO1 (VS2.03.807) v v v v .. 5-270
25-22. ILRSRTO1 (VS2.03.807) 5-278
25-23. ILRCMPO1 (VS2.03.807)« v v v v 5-283
25-24. ILRGOSO1 (VS2.03.807) 5-288
25-25. ILRSRBO1 (vS2.03.807) 5-296
25-26. ILRTMIO1 (VS2.03.807)« 5-300
25-27. ILRFRRO1 (VS2.03.807) 5-322

Service Routines (VS2.03.807) 5-334
25-28. ILRTERMR (VS2.03.807) 5-336
25-29. ILRPEX (VS2.03.807) v v v v v e it i e 5-340
25-30. ILRFMTO00, ILRFMTPG, ILRFMTSW, ILRFMTCV (VS2.03.807) . 5-341

Page Expansion (VS2.03.807) 5-344
25-31. ILRPGEXP (VS2.03.807)« 5-346
25-32. ILROPS00 (VS2.03.807)« o v o .. 5-351
25-33. ILRPREAD (VS2.03.807) v v v v v v v v o 5-364

Index e e e e e e e e e e e e e e e I-1

8 OS/VS2 System Logic Library Volume § (VS2.03.807)

v52.03.807

Figures
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure

2-43
2-44
2-45
2-56

2-57
2-58
2-59
2-60

Figure 2-60A

Figure
Figure
Figure

2-61
2-62
2-63

Real Storage Management Visual Contents 5-5
Subpool Assignments 5-89
Virtual Storage Management Visual Contents 5-93
Auxiliary Storage Management Visual Table of Contents (VS2.03.807)
.............................. 5-118
I/0 Control Overview (VS2.03.807 5-121
I/0 Subsystem Overview (VS2.03.807) 5-155
VIO Control Overview (VS2.03.807) 5-204
VIO Group Operators Overview (VS2.03.807) 5-224
Recovery Routines (VS2.03.807) 5-255
Recovery Overview (VS2.03.807) 5-256
Service Routines Overview (VS2.03.807) 5-335
Page Expansion Overview (VS2.03.807) 5-345

Contents 8.1

8.2 0S/VS2 System Logic Library Volume 5 (VS2.03.807)

This section uses diagrams and text to describe the
functions performed by the scheduler, supervisor,
MF/1, SRM, and ASM functions of the 0S/VS2
operating system. The diagrams emphasize
functions performed rather than the program logic
and organization. Logic and organization is
described in "Section 3: Program Organization."
The method-of-operation diagrams are arranged
by subcomponent as follows:
« Communications Task.
« Command Processing (includes
Reconfiguration Commands).
« Region Control Task (RCT).
« Started Task Control (STC) (includes
START/LOGON/MOUNT).
o« LOGON Scheduling
« System Resources Manager
« System Activity Measurement Facility
(MF/1)
o Job Scheduling:
- Subsystem Interface.
- Master Subsystem.
- Initiator/Terminator.
- SWA Create Interface.
- Converter/Interpreter.
- SWA Manager.
- Allocation/Unallocation.
- System Management Facilities (SMF).
- System Log.
- Checkpoint/Restart.
« Timer Supervision.
o Supervisor Control.
« Task Management.
« Program Management.

Section 2: Method of Operation

+ Recovery/Termination Management (R/TM).
« Real Storage Management (RSM).

« Virtual Storage Management (VSM).

« Auxiliary Storage Management (ASM).

The diagrams for each subcomponent are
preceded by an introduction that summarizes the
subcomponent’s function. Following each
introduction is a visual table of contents that
displays the organization and hierarchy of the
diagrams for that subcomponent.

The diagrams cross-reference each other using
diagram numbers and module names. As an aid in
locating the diagrams that are cross-referenced, an
alphabetic list of all diagram names and their
corresponding page numbers follows this
introduction.

Method-of-operation diagrams are arranged in
an input-processing-output format: the left side of
the diagram contains data that serves as input to
the processing steps in the center of the diagram,
and the right side contains the data that is output
from the processing steps. Each processing step is
numbered; the number corresponds to an amplified
explanation of the step in the "Extended
Description' area. The object module name and
labels in the extended description point to the code
that performs the function.

Note: The relative size and the order of fields
within input and output data areas do not always
represent the actual size and format of the data
area.

Section 2: Method of Operation §-1

b Primary processing — indicates major functional flow.

- Secondary processing — indicates functional flow within a diagram.

i:() Data movement, modification, or use.

— —=» Data reference — indicates the testing or reading of a data area to
determine the course of subsequent processing.

- Pointer — indicates that a data area contains the address of another
data area.

——— Indirect pointer — indicates intermediate pointers have been omitted.

—D Connector — indicates that a diagram is continued on the next page.

Figure 2-1. Key to Symbols Used in Method-of-Operation Diagrams

5-2 08/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

Real Storage Management (RSM) routines
administer the use of real storage and direct the
movement of virtual pages between auxiliary
storage and real storage in page-size blocks. The
routines make all addressable virtual storage in
each address space appear as real storage to the
user. Only virtual pages necessary for execution are
kept in real storage; the remainder reside on
auxiliary storage. RSM calls Auxiliary Storage
Management (ASM) routines to perform the paging
1/0 necessary to transfer pages into and out of real
storage. ASM also provides direct storage allocation
and management for paging 1/O space on auxiliary
storage. The System Resources Manager provides
guidance for RSM in the performance of some of
these functions.

RSM assigns real storage frames on request from
a pool of available frames (the available frame
queue), associating virtual addresses with real
storage addresses. Frames are repossessed on
termination of use, when freed by a user, when a
user is swapped out, or when needed to replenish
the available frame queue. While a virtual page
occupies a real frame, the page is considered
pageable unless specified as fixed, either by the
PGFIX routine, or by the system for its own use.
RSM routines also allocate nonpageable (V=R)

Real Storage Management

regions on request by those programs that cannot
tolerate dynamic relocation. Such a region is
allocated from a predefined area of real storage
and is nonpageable. Programs in the V=R region do
use dynamic address translation, although the
addressing is on a one-to-one basis.

RSM routines determine the working set size for
swap-in and swap-out functions. They maintain the
necessary information to remove the virtual pages
of an address space from real storage during
swap-out and to re-establish them during swap-in.
ASM provides the paging 1/0 for the swap function.

RSM also provides a set of service routines for
use by the system:

« Table building for address translation

« Page fault processing

« Alteration of the pageable status of virtual

pages

« Capability for paging in virtual pages before

needed

« Capability for paging out selected pages

e Address translation from real to virtual

addresses

« Varying real storage frames online or offline

« Virtual 1/0 (VIO) services

« Error recovery processing

Section 2: Method of Operation 5-3

(L08'€0°TSA) S dwnjoA Arexqry 313077 waisAS ZSA/SO - +-§

Real Storage
Management
Overview
(no diagram)
l) To
[l | | [[l I Part 2
l 231 23-2 23-3 234 236 23.7 I 238 239
LSQA/SQA V=R Region Freeing a Page Release Create Destroy Program Check General Frame
Alfocation Allocation V=R Region Processing Segment Segment Interrupt Allocation
(IEAVSQA) (IEAVEQR) ({IEAVEQR) (IEAVRELS) (IEAVCSEG) (IEAVDSEG) Fl’ét:‘r\’;:;:;’() (IEAVGFA)

l

l 23-5

L08°€0°TSA

FREEMAIN
Release
Processing
(IEAVRELS)
|23.10> |23.11 [23-12 |23.17 |23.19 LS0A 3-21 | 23.22
Page 1/0 :) ‘ Swap-In 1| Swap-Out Swap /0 VIO Servi
Page 1/0 Post Completion Page Service Processor Processor vap 0 Services
{(IEAVPIOP) b Interface * ” Initiator Routine
Processing (IEAVPSI) Routine Routine (IEAVPIOI) (IEAVAMSI)
(IEAVIOCP) (IEAVSWIN) (IEAVSOUT)
2313 23-15 23-16 & 23.20
l’zgigxo PGFREE PGOUT Swap-In Swap-Out
P <sOT Routine Routine Root Exit Completion
“'EEQVFXLD) (IEAVFREE (IEAVOUT) (IEAVSWIN) (IEAVSWPC)
|23.14 23-18A
gg EBXA{D gwap-ln Post
Exit rocessor
'(::Z(Xv;;(wv (IEAVSWPP)

Figure 2-43. Real Storage Management Visual Contents (Part 1 of 2)

§'§ uonesadQ JO PO :Z uoteg

From)

Real Storage
Management
Overview

Part1(

I

r

[

123-23 l 23-24 l23-25 [23—26 l 23-27 ‘ 23-28 23-29}
Initialize Delete Page PFTE PCB
Address Space Addrgss Space Termination :z;l.allanr;em gziizg:?:tion Enqueue/ Manager
Routine Routine Services (IEAVRFR) (IEAVRCF) Degueue (IEAVPCB)
(IEAVITAS) (IEAVDLAS) (IEAVTERM) (IEAVPFTE)

2330 {2331 |23-32] 2333 2334
Page Find Pa RSM Functional
L ge Translate Preferred
g"‘)’ar‘?‘aetm" Routine Real to Virtual gzz\i':;y Area Steal
uti v AVTRV
(IEAVINV) (IEAVFP) (IE) (IEAVRCV) (IEAVPREF)

Figure 2-43. Real Storage Management Visual Contents (Part 2 of 2)

(L€ 9sea[oY ZSA) §ouIMjoA Arerquy 91807 WIsAS ZSA/SO 9§

Diagram 23-1. LSQA/SQA Allocation (IEAVSQA) (Part 1 of 2)

From GETMAIN (IEAVGMO00)
or Address Space
Initialization (IEAVITAS)
Input Process

Frame Queues

PFTE " PFTE Search for a frame to be used for
SQA or LSQA.

2 Call IEAVEQRI to perform completion
processing for intercepted frames.

3 Update PFTE and move it to the

correct queue.

4 Clear the real frame and validate

and update the page table entry.

Return,

To GETMAIN (IEAVGMOO) or
Address Space
Initialization (IEAVITAS)

SQA or LSQA Frame Queue

PFTE

L-§ uoneiddQ jo poylel iz uondag

Diagram 23-1. LSQA/SQA Allocation (IEAVSQA) (Part 2 of 2)

Extended Description Module

SQA or LSQA Allocation (IEAVSQA) assigns real storage
frames to those virtual pages that VSM or RSM’s Address
Space Initialization routine specifies to be SQA or LSQA
pages. The caller holds the SALLOC lock and is in key 0,
supervisor state.

1 Satisfaction of the request is first attempted by access-
ing the AFQ (available frame queue) to find a frame
outside the V=R area and also, if desirable, within the pre-
ferred area. If a PFTE (page frame table entry) for such a
frame is found on this queue, it is dequeued and the request
will be satisfied. If no preferred area frames exist on the
AFQ, an attempt is made to steal a preferred area frame
that holds a virtua!l page. Only unchanged, non-fixed
frames for which no PCB exists are candidates for this
stealing. Frames which are fixed, allocated to an active
V=R region, offline, are changed, have paging I/0 in
progress, or contain a storage error are excluded. The Local
and Common Frame queues are searched (in that order)
for a frame meeting the steal criteria.

The search stops as soon as a stealable frame in the preferred
area is found. If none can be stolen, non-preferred area
frames outside the V=R area on the AFQ become candidates,
and one is stolen if it exists. If no such frames exist on the
AFQ, but one was found on the local or common frame
queue, it will be stolen and used for the request. If any such
non-preferred, non-V=R frame is used, the physical storage
unit containing the frame is converted from non-preferred to
preferred storage.

If no pageable area frames can be found, the V=R area

frames on the AFQ become candidates and one is taken if

any exist. If none can be found, the V=R area frames of the
other queues become candidates and one will be taken.
Frames that have been intercepted for a V=R region are
skipped if a stealable, non-intercepted, V=R area frame exists
on any of the queues. If no frame could be obtained and the
request is for an LSQA page or unassigned frame (VSA=0), no
further action is taken and a return code of 4 is passed to

the caller.

IEAVSQA

Label

Extended Description Module

For SQA requests, the search moves to the SQA Reserve
queue, where a certain number of frames are held, usually one.
When a reserved frame is taken, the SQA Reserve Queue
Deficit count is increased, telling the PFTE Enqueue routine
that the next frame sent to the AFQ should be diverted to
the SQA Reserve queue to replenish it. If the SQA Reserve
queue is also empty, an out of real storage condition exists
and return code 4 is given to the caller.

2 If the selected frame was previously intercepted for a
V=R region, the V=R Wait queue is scanned to locate
the root PCB for the V=R region so that it can be marked
as failed. Then the IEAVEQRI entry is called, passing the
RBN of the intercepted PFTE to start the process that will
lead V=R allocation to post the region ECB with code 16.

3 If the input virtual storage address was 0, the VBN
{virtual block number) in the PFTE of the selected

frame is set to zero, as are all the PFTE flags except PFTVR
(V=R area) and the Intercept flags. The PFTLSQA flag is
also set. The PFTE is dequeued and the RBN (real
block number) of the frame is placed in register one
before returning to the calier with a code of zero.

If the input virtual storage address is not zero, the frame is
to be assigned to the page corresponding to the VSA. First
the PFTE is moved to the LSQA or SQA frame queue,
depending on whether the VSA is in the private or common
area address range. The frame counts of the sending and
receiving queues are adjusted where necessary. The VBN of
the page is placed in the PFTE and either the current ASID
or x'FFFF’ {for SQA pages) placed in the PFTASID field.
The PFTLSQA is turned on and all other flags except the
PFTVR and intercept flags turned off. The system fix
counters are also incremented.

4 The PGTE for the page is updated with the real address

of the block, the GETMAIN bit is set to one, and the
invalid bit is set to zero. The XPTE protect key field is set
to zero {for LSQA only). The real storage key is also set to
zero. Finally, the entire page is cleared to zeros.

Label

L08°€0°TSA

(LOS'E0°TSA) § awnjoA Arexqry 218307 waisAS ZSA/SO 8-S

Diagram 23-2. V=R Region Allocation (IEAVEQR) (Part 1 of 4)

From GETPART
Processing (IEAVPRTO)

Input Process

Input
Parameter List
(from GETPART)

PFT]

1 Get the necessary number of real frames.

2 Create page tables, if necessary,

and move PFTEs for available '

frames to local frame queue.

V=R Wait Queue

3 Iif all frames are not available,
enqueue a root PCB and go
to step 7. : PCBR

4 Validate PGTEs and set'real frames

to zero.
Local Frame Queue
5 Move all PFTEs to local frame PFTEs
queue, | .

6- uoneradQ Jo POYISl :7 UONIIS

Diagram 23-2. V=R Region Allocation (IEAVEQR) (Part 2 of 4)

Extended Description

V=R Region Allocation (IEAVEQR) allocates contiguous
regions of real storage for V=R requests.

1 Upon receiving control, V=R allocation attempts to

locate the proper number of contiguous real frames
necessary for the region request. This is done by indexing
through the PFT, starting with the PFTE that corresponds
to the VSM-supplied starting address, and selecting frames
for use. Frames need not be on the AFQ to be included in
the region. Frames not available will be marked as inter-
cepted for V=R allocation; they will be picked up later, as
they become available. If an intercepted frame’s page is in
the current address space, it is paged out, thereby freeing up
the frame for V=R. If an SQA, LSQA, long-fixed V=R
allocated, offline, or intercepted page frame is encountered,
the search is terminated and any frames already assigned to
the region are restored to their previous status. If VSM
indicated the region must start at the specified address, the
allocation process is terminated and VSM is informed that
allocation has failed with a return code of 16. If this require-
ment was not specified, the search is restarted with the first
page frame following the unusable frame. This process con-
tinues until the region is allocated or the V=R area has been
exhausted. If no region can be allocated anywhere in the
V=R area, VSM is informed via return code 16 that alloca-
tion has failed.

2 Once aregion has been allocated, the page tables are

created where necessary. Then the status of each frame
is determined. All frames selected from the AFQ are moved
to the local frame queue and the system fix counters
(RSMCNTFX and PVTCNTFX) are incremented. Also,
fields in the PFTE are updated to reflect the new owner.
Frames not on the AFQ have the PFTVRINT flag set. The
starting address of the region is placed in the start address
field of the input list.

Module

IEAVEQR

Label

IEAVEQR

Extended Description Module

3 If all frames are not immediately obtained, a root PCB

is placed on the V=R Wait queue pointed to by the
PVT. Into the root is placed the count of the number of
allocated but unavailable (intercepted) frames, the ASCB
address, the address range of the selected region, and the
input ECB address. Return code four is placed in register 15
and IEAVEQR exits.

4 All PFTEs are moved to the local frame queue.

B The root PCB can be freed by putting it on the avail-
able queue.

Label

LOR'E0°TSA

(LO8°€0°TSA) § dwnjoA Areiqit o180y uoIsAS ZSA/SO 01-S

Diagram 23-2. V=R Region Allocation (IEAVEQR) (Part 3 of 4)

Input

Process

Free PCB Queue

6 Free the root PCB.

From
PFTE
Enqueue/

egiter15 '

Dequeue

7 Return, indicating action taken.

Return Code

Routine
(JEAVPFTE)

GETPART
(IEAVPRTO)

8 Find root PCB for region in which

V=R Root PCB Q

From
e | V=R
| Allocation

Dispatcher
| (IEAVDS0)

input frame resides.

via Q Force a page-out for all pages in V=R

area by scheduling IEAVEQRP.

Root PCB

Z?m \t/;s ; 10 When alt frames for a region are
Di oci Ih rv a available, build and schedule an
. ('IETV(I:D;O) SRB for the completion of

allocation.

11 Validate the region as in steps 4-6.

PFTE
Enqueue/
Dequeue
Routine -
(IEAVPFTE)}

12 Notify the waiting initiator that

region allocation is complete.

Return.

Dispatcher
(IEAVEDSO)

11-§ uonedd(Q Jo POyl 7 Uoi3s

Diagram 23-2. V=R Region Allocation (IEAVEQR) (Part 4 of 4)
Extended Description -) Module Label

6 Control is passed to GETPART, with a return code to
indicate the action taken.

7 IEAVEQRI scans the V=R Wait queue looking for a root

PCB whose region range includes the frame. If none is
found an internal error ABEND is generated to record the
condition. The unwanted frame is returned to the caller by
ieaving its RBN in the input parameter fieid. If the frame is
part of a waiting region, it is left in its dequeued state, the
count in the root is decreased by one, and the input RBN
set to zero to indicate acceptance of the frame. Next the
PFTE is checked to determine if the frame is also inter-
cepted for offline or storage error processing. If so, a POST
code of 16 is set up. Otherwise, the frame count in the
PCBR is decreased by one and then the value is checked for
zero. :

IEAVEQRI

8 If all frames are not immediately obtained, V=R Allo-
cation schedules IEAVEQRP into the first address
space that has pages in the V=R area. When that routine has

issued page-outs for all addressable pages, it searches the
PFTEs for another ASID to be cleared. If another ASID's
pages are in the V=R area, IEAVEQRP schedules itself into
that address space. |f no other address spaces have V=R
area frames, IEAVEQRP frees the SRB.

9 if all frames are available, the region can be validated

and the request compieted. Validation consists of
placing the real storage addresses into the proper PGTEs,
turning off the invalid flag, turning on the GETMAIN flag,
clearing the region to zeros, and setting all keys to 0. A
return code of O is passed to the caller when this is
compieted.

Extended Description Module

10 When the frame count in the root PCB becomes zero,

a POST code of O is indicated. (GETCELL was
called early in V=R allocation for an SRB area in order to
schedule a POST in the caller’s address space.) The
completion routine is then scheduled with a POST code of
0 or 16. In all cases, Intercept returns to its caller.

11 Get the local and SALLOC locks. Then follow the
same procedure as in steps 4-6.

12 Thecaller's ECB is posted with code 0 or 16. The
root PCB-and the SRB are freed before exiting; also
the PFTFPCB bit is set.

Label

LOS'€0°TSA

(LOS'€0°ZSA) § awnjop Areiqi 91807 weisdS ZSA/SO CI-§

Diagram 23-3. Freeing a V=R Region (IEAVEQR) (Part 1 of 2)

From FREEPART
Processing (IEAVPRTO)

Process

Parameter List
(From FREEPART)

Free PCB Queue

If the region is not totally allocated,
turn off the intercept flag for frames
in use. Then free the root PCB.

PCB

Local Frame Queue

T

Invalidate PFTEs and free LSQA space
used for PGT and XPT.

Available Frame Queue
PFTE

Return all PFTEs assigned to the
region to the available frame queue.

Purge the TLBs on all CPUs.

Return.

FREEPART Processing
(IEAVPRTO)

€1-§ - uoneiadQ JO POYRN :Z UOHDAS

Diagram 23-3. Freeing a V=R Region (IEAVEQR) (Part 2 of 2)
Extended Description Module

The Free V=R Region routine ({IEAVEQR) returns V=R
allocated frames to the available queue for reuse by the
system.

1 If the PCBRINT flag in the page control block is set to IEAVEQR
one, the completion routine was scheduled to post the

ECB; therefore, the completion routine needs the PCBR. In

that case, the PCBR is not dequeued. Free sets PCBRPB so

that when the completion routine does get control, it will

check the bit and dequeue the PCBR. On the other hand if

the PCBRFPCB bit is on in the Free routine, the completion

routine has ailready run. Complete sets the bit to notify Free

to free the PCBR in addition to freeing the V=R region.

2 The PFTE for each frame that is part of the region is

located and its V=R allocated flag turned off. Frames
that are intercepted for V=R have the intercept flag turned
off as well.

3 Any frames already on the Local Frame Queue plus

any unqueued frames are returned to the AFQ. Page
tables that contain only V=R region pages are disconnected
and freed. For each frame that was found on the local frame
queue, the system fix counters (RSMCNTFX and
PVTCNTFX) are decremented by one.

4 Page invalidation is called to purge the TLBs on all
CPUs in the system.

5 Control isreturned to FREEPART.

Label

IEAVEQRF

LO8’€0°TSA

(L08°€0°ZSA) S dwnjop Are1qig 91807 WaIsAS ZSA/SO HI-S

Diagram 23-4. Page Release Processing (IEAVRELS) (Part 1 of 2)

From Page Services Interface
Routine (IEAVPSI)

Input Process

: 1 invalidate the PGTE for the page
i and free the real frame.

PGTE

PGTRSA

2 |f the page is not in real storage,

1/0 Active Queues or
GFA Defer Queue

PCB

3 Free any auxiliary storage assigned

to the page.

PCBASCB

4 Process all pages in the VSL entry
and repeat steps 1-3 for all VSL
entries in the CIWA.

Register 14

search for any PCB and process it. l

5 Return, indicating the status of

Return Address j

processing.

Page Services Interface
Routine (IEAVPSI)

& Available Frame Queue

PFTE

XPTE

XPTFLAGS

CIwWA

PCB

PCBFL1

PCBFL2

PCBVBN

CIWRETC

CIWRETRN

S1-§ uoneIad(Jo POy :Z Uodeg

Diagram 23-4. Page Release Processing (IEAVRELS) (Part 2 of 2)

Extended Description Module Label

The PGRLSE routine (IEAVRELS) gets control from PSi to
free one or more pages from real and auxiliary storage.

1 PGRLSE performs initial checking on the VSL entry

and the addresses contained in the VSL entry. if an
invalid address is found, PGRLSE passes, in the CIWA, a
return code of 4 to PSI.

PGRLSE obtains the PGTE and XPTE addresses from the
Find Page routine. If the page is in real storage, PGRLSE
checks the PFTE. If the frame is V=R allocated, fixed, or
located in SQA or LSQA, PGRLSE terminates processing
the page. Otherwise, PGRLSE calls Page Invalidation to
invalidate the PGTE and then calls PFTE Enqueue/Dequeue
to free the PFTE.

IEAVRELS I|IEAVRELS

2 If the page is not in real storage, PGRLSE first checks

to see if the page is assigned by GETMAIN; if not,
PGRLSE puts a return code of 4 in the CIWA and returns
control. Then PGRLSE searches the following queues for
PCBs associated with the virtual page being processed: GFA
Defer Queue, Common /O Active Queue, and Local 1/0
Active Queues. If any PCBs with non-zero fix counts are
found, PGRLSE terminates processing of the page, leaving
the PCBs on their queue.

If PGRLSE finds a PCB on the GFA Defer Queue, it purges
the PCB. If the PCB is for a page fault and is in SRB mode,
PGRLSE calls the Reset routine of the PCIH to reactivate
the suspended SRB. PGRLSE puts other page fault PCBs

on the I/0 active queue and requests |/O completion proc-
essing. If the PCB has a root PCB, the PCB count in the root
PCB is decreased by one and the PCB is scheduled for 1/O
completion processing. For a PCB not for a page fault and
without a root PCB, PGRLSE returns the PCB to the free
queue.

If PGRLSE finds PCBs on the 1/O active queues, it purges
them by setting to zero the virtual block number and by set-
ting the free-real-storage flag to one.

Extended Description Module

3 If the save auxiliary storage flag is not set to one in the

XPTE, PGRLSE calls ASM to free the auxiliary slot
assigned to the virtual page. PGRLSE sets the auxiliary stor-
age assigned flag in the XPTE to zero. Then it returns con-
trol to PSI.

4 PGRLSE processes all pages in the VSL entry and, if
no errors occur, continues with the next VSL entry
until complete.

5 PGRLSE returns control to PS|, putting a return code
in the CIWA. '

Label

(L°€ B3y TSA) § dumjoA Arexqry 1807 warshs ZSA/SO 91-S

Diagram 23-S. FREEMAIN Release Processing (IEAVRELS) (Part 1 of 2)

From FREEMAIN Routine
(IEAVGMOQ) or an RSM Routine
(see extended description)

Input | Process

Register 0

Available Frame Queue

Low address of area to be :
released : For pages with real frames,

invalidate real and virtual page.

PFTE

Register 1 -
High address of area to be
released If a deferred release has been

if from FREEMAIN completed, notify FREEMAIN
Register 1 : (IEAVGMOO0).

Address of virtual page
to be released

if from RSM

PCB -
. For pages without real frames,
PCBASCB search for any PCB for the page and

PCBVBN) process it.
PCBFXC
PCBRLPA

XPTE

XPTFLAGS
XPTPROT
XPTLPID

Free auxiliary storage assigned
to the page.

If a complete segment has been
released, call IEAVDSEG to
invalidate the segment.

Register 14
l Return Address 1 6 Return.

FREEMAIN (IEAVGMOQO) or
an RSM routine (see extended
description)

7 uondag

.

LI-§ uonendQ jo poyrop

Diagram 23-5. FREEMAIN Release Processing (IEAVRELS) (Part 2 of 2)

Extended Description

- Deferred and FREEMAIN Page Release Processing (a part

of IEAVRELS) performs PGRLSE functions for two special
cases: when an RSM routine frees a frame marked for
deferred release, and when FREEMAIN frees a page.

The RSM routines are: |EAVSOUT, IEAVTERM,
IEAVFREE, IEAVIOCP, and IEAVPIOP.

1 When entering at the IEAVRELYV entry point, the
caller holds the SALLOC lock and the local lock.
When entering at the LEAVRELF entry point, the caller
holds the SALLOC lock. Page Release uses the Find Page
routine to get the PGTE and the XPTE addresses. If the
page has a frame assigned, Page Release checks the PFTE.
If the page is an SQA page or an LSQA page with a VBN
matching the input VBN, Page Release moves the PFT to
the available frame queue and then, using the Page Invalida-
tion routine, invalidates the PGTE. The system fix counters
(SQACNTFX, RSMCNTFX, and PVTCNTFX) are also
decremented.

2 If the deferred release flag is set in the PFTE and if
the fix count is zero, Page Release notifies FREEMAIN
that the virtual page may be used again.

Module

IEAVRELS

Label

IEAVRELV

IEAVRELF

E xtended Description Module

3 if the virtual page does not have a frame in real storage,

Page Release checks for a PFTE with the deferred
release flag set. If it finds one, it resets the flag and notifies
FREEMAIN that the virtual page can be used again. If it
does not find one, Page Release searches for PCBs for the
virtual address and processes them according to the queue
they are associated with. When all such PCBs are processed,
Page Release sets the PGTE to zero.

4 Page Release tests the XPTE. If the auxiliary-storage-
assigned flag is set and the save-auxiliary-storage flag

is not, Page Release calls ASM to free the auxiliary storage

slot assigned to the logical page ID (LPID). Then Page

Release resets the LPID generator value in the XPTE to zero

and sets to zero all flags in the XPTE.

5 if all PGT entries for a private area segment containing
the input virtual address are set to zero, Page Release
calls the Destroy Segment routine to invalidate-the PGTEs
and XPTEs and to prepare the table storage for FREEMAIN
processing. Then Page Release frees the page table space.

6 Page Release returns control to FREEMAIN or to the
RSM routine that called it.

Label

LOS'E0°TSA

(LOS'€0°ZSA) § swnjop Arerqry o180 wesASISA/SO SI-S-

Diagram 23-6. Create Segment (IEAVCSEG) (Part 1 of 2)

From GETMAIN Routine (IEAVGMO00), V=R Region
Allocation (IEAVEQR]), or NIP (IEAVNPO8)

Input

Register 1

Process

New
Segment

Initialize page table entries. |f : .
page-table-only option specified, l

2 Initialize external page table entries.

go to step 4.

|

GETMAIN Routine {IEAVGMO0O0),
V=R Region Allocation (IEAVEQR),
or NIP (IEAVNPO8)

3 Initialize SPCT entry for new
segment.

4 Initialize and validate segment table
entry.

5 Return.

T uotjosg

61-s uonedQ Jo poyldol

Diagram 23-6. Create Segment (IEAVCSEG) (Part 2 of 2)
Extended Description Module Label

The Create Segment routine (IEACSEG) is called by VSM
functions, NIP, and the V=R Allocation routine to initialize
the page tables for one or more newly created segments. The
local lock must be held by the caller. V=R Allocation uses
the IEAVCSGB entry point to avoid setting a pointer to the
RSM FRR.

IEAVCSEG |EAVCSEG
IEAVCSGB

1 When entered at IEAVCSEG, Create Segment sets a

pointer to the RSM functional recovery routine
IEAVRCV. It validity checks parameters passed. Then Create
Segment initializes the page table for the new segment. It
does this by setting 32 bytes of storage to zero, setting the
real block number fields in each page table entry to zero,
and setting the page table GETMAIN flag to zero and the
invalid flag to one.

2 |If the bypass XPT option was not selected, Create Seg-

ment establishes an external page table in the next 192
bytes of storage by setting each external page table entry to
zeroes.

Extended Description Module

3 If the XPT is created and the SPCT address is not zero,

Create Segment sets the segment index, the virtual
address of the PGT, and the segment entry count in the
SPCT. If necessary, Create Segment enlarges the SPCT
(under the SALLOC lock) by obtaining storage for the
SPCT, under GETMAIN, moving the SPCT, updating the
size and entry count fields in the SPCT, and freeing the old
SPCT with FREEMAIN.

4 - Create Segment initializes the segment table entry for

the new segment by setting the invalid flag to zero and
inserting the page table length and the real storage address
of the page table.

5 Create Segment repeats the procedure for additional
segments, and then returns to the caller.

Label

LOS°€0°TSA

(LOS'€0°TSA) S dwnjoA Areaqry 807 waIsAS ZSA/SO 0T-S

Diagram 23-7. Destroy Segment (IEAVDSEG) (Part 1 of 2)

From IEAVRELS during FREEMAIN
Frame Processing (IEAVGMO00)
and V=R Freeing (IEAVEQR)

Process

Register 0

I . Parameters J : Get virtual address of page table.

SGT

{nvalidate the segment tabie entry
and purge the TLB on all CPUs.

Set the SPCT entry to zero and
repack the SPCT.

Return.

To IEAVRELS during FREEMAIN
-Frame Processing (lEAVGMOO) and
V=R Freeing (IEAVEQR)

Register 1

[Address of PGT

12-s uoRIadQ JO POYISN T UORIES -

Diagram 23-7. Destroy Segment (IEAVDSEG) (Part 2 of 2)

Extended Description

The Destroy Segment routine (IEAVDSEG) invalidates con-

trol block entries for a virtual segment that is being deleted;

it returns the address of the page table space to be freed with
FREEMAIN by the caller. The caller must hoid the SALLOC
and local locks. Destroy Segment is called by V=R Alloca-

tion and by PGRLSE.

1 Destroy Segment gets the virtual address of the page
table by translating the real address obtained from the
segment table entry.

2 Destroy Segment invalidates the segment table entry
by setting the entry to zero and then setting the invalid

flag to one. It then calls the Page Invalidation routine

IEAVINV, passing a dummy PGTE address to invalidate

the translation lookaside buffers. ’

3 Destroy Segment checks the RSM Header for an SPCT

address; if zero, Destroy Segment returns to the caller.
If an address is given, Destroy Segment sets the SPCT entry
matching the destroyed segment to zero, decreases the SPCT
entry count, and repacks the last SPCT entry into the entry
just set to zero.

4 Destroy Segment returns to the caller with the virtual
_ address of the page table, to be freed with FREEMAIN
by the caller. :))

Module Label

IEAVDSEG IEAVDSEG

(L°€ asealoy TSA) S dumfoA Arerqr] o807 weIsAS ZSA/SO 7T-S

Diagram 23-8. Program Check Interrupt Extension (IEAVPIX) (Part 1 of 2)-

From Program Check
Interrupt Handler (IEAVEPC)

Input Process

1 Check for valid page fault.

2 Build a page control blod; for the
request,

3 Call General Frame Allocation
(IEAVGFA) to assign real
frames and initiate paging.

4 Return, indicating status of

interrupted routine,

Program Check
interrupt Handler
(IEAVEPC)

Register 16
I Return Code

€7-s uonrid(Jo poysl :7 uondeg

Diagram 23-8. Program Check Interrupt Extension (IEAVPIX) (Part 2 of 2)

Extended Description Module Label

The Program Check Interrupt Extension (IEAVPIX) services
all page translation interrupts. It gets control from the

PCIH on all page faults except those incurred by a routine
holding a global lock, which should not have a page fauit.

1 = PIX first acquires the storage allocation global lock IEAVPIX IEAVPIX

(SALLOC) and sets up the RSM FRR. The page fault
is checked for validity by checking the GETMAIN-assigned
flag in the page table entry that corresponds to the virtual
address for which the interruption occurred. If the flag is
off or if no page tables exist for the virtual address, PIX
returns to PCIH with a return code indicating the interrupt
should be treated as a logical protection exception {0C4
ABEND). During this check, internal errors may be detected
if the segment or page table is not correctly built or initial-
ized, triggering special recovery processing. Return code 12
is given to PCiH to indicate a RSM error prevented page
fault resolution. The page may also have been marked as
valid in real storage because another CPU validated the page
after the page fault occurred. For this case, no further proc-
essing would be required for the page fault and return code
4 is given.

Extended Description Module

2 APCB is built and initialized for use by other RSM

functions that must be employed to satisfy the page
fault. General Frame Allocation (GFA) is then called with
the PCB address passed as a parameter.

3 General Frame Allocation attempts to assign a real

frame to the virtual page. Upon completion of its func-
tion, it returns to PIX indicating the action taken. PIX
interprets these return codes and issues the proper return
code to the PCIH. The code indicates that either the
interrupted routine may continue execution {no paging I/0
was necessary to satisfy the page fault), or the interrupted
routine’s execution was suspended until paging 1/O can be
completed to satisfy the page fault.

Labet

(L' eIy TSA) §dumop Areiqiy 918077 wasAS ZSA/SO $T-S

Diagram 23-9. General Frame Allocation (IEAVGFA) (Part 1 of 4)

From Program Check
Interrupt Extension (IEAVPIX)
PAGEFIX/PAGELOAD (IEAVFXLD) or
S -InP Routi EAVSWIN
wap-In Processor Routine (IEAVSWIN) Process

Register 1

1 Try to reclaim a real frame for the PCB.

2 Allocate a new real frame for the
: PCB.

3 If auxiliary storage is assigned to the
page being a!lomted:
e Initialize the AlA and the PCB.

® Put the PCB on the 1/O active
queue.

Put the interrupted routine in
page wait.

1/0 Active Queue

§Z-s uoneradQ Jo poyRW :z uondsg

Diagram 23-9. General Frame Allocation (IEAVGFA) (Part 2 of 4)

Extended Description Module Label

General Frame Allocation (IEAVGFA) is called by Program
Interrupt Extension, Page Fix, Page Load, and Swap-in to
assign real frames to virtual pages. Each virtual page requir-
ing a real frame is represented by a PCB (page control block).

1 if the PCB is not for the swap-in of a private area (LSQA IEAVGFA
or PGFIX) page, reclamation is attempted.

The last real storage frame the page occupied is located by
looking at the real address field of the PGTE. The Page
Frame Table Entry (PFTE) for the frame is examined to
see if it still contains the page. If it does, the frame is used
to satisfy the current request except as noted in the follow-
ing paragraph. If input 1/0 is in progress for the frame, the

_current request is related to the existing request and the

current requestor is suspended if he is satisfying a page fauit.

If output is in process, general frame allocation determines if
the output operation has been marked non-reclaimable; that is,
the PCB represents the output for a V=R or Vary Storage
intercepted frame. If it has been marked non-reclaimabile,
reclaim fails and the copy of the output page is duplicated in a
new storage frame. Otherwise, the frame and the page are
made immediately available by validating the PGTE and setting
storage keys,

If the request is for a “long fix’’ of a page and reclamation
would place the page in the V=R area or outside the
preferred area for a non-swappable “‘tong-fix" page,
reclamation is suppressed. If necessary, the existing copy
of the page is duplicated outside the V=R area or inside
the preferred area and the frame is freed. Naturally, this
can be done only if the page is not already fixed.

If reclamation is successful, the next input PCB is processed.
Also, if the input PCB represents a fix request and the fix
count in the PFTE is currently zero, the system fix counters
are updated (incremented by one).

2 If reclamation fails or if it is not attempted, {EAVGFA
tries to allocate a new real frame from the Available
Frame Queue (AFQ).

If no special requirements exist, the first frame on the AFQ
is assigned to the request. |f the PCB represents a LSQA or
PGFIX request, the system fix counters are incremented by
one. Fix data is transferred from the PCB to the PFTE and
allocation is complete. If no frames are available, the input
PCB is marked ‘defer’ to indicate allocation failed.

Extended Description Module

There are special requirements associated with ““long fix'’
and Stage | swap-ins. V=R area frames are never used for
long-fix pages or Stage | pages of address spaces that may
become non-swappable. Whenever possible, these types of
pages are assigned to frames in a NIP-designated ‘preferred
area’ so that they will be out of the way of most requests
to vary storage.

However, if no ‘preferred’ frames are available, an attempt
is made to steal a preferred area frame from some virtual
page. Only unchanged, non-fixed frames for which no
PCB exists are candidates for this stealing. Frames that
are excluded are fixed, allocated to an active V=R region,
offline, changed, have paging /O in progress, or contain
a storage error. The local and common frame queues

are searched (in that order) for a frame meeting the steal
criteria. The search stops as soon as a stealable frame in
the preferred area is found. If no preferred area frame
can be obtained, a non-preferred, non-V=R frame is used
if available. If one such frame is found on the AFQ, the
physical storage unit containing the frame is converted
from non-preferred to preferred storage.

Stage | pages of swappable address spaces are treated
similarly except that they can be placed in V=R area
frames if no other frames are available. As in the simple
case, if the page cannot be allocated, it is marked ‘defer’.

If none are available or meet the allocation criteria, the
input request is deferred by placing the PCB on the GFA
Defer Queue and then continuing with the next input PCB.

If allocation is successful, it is determined if any other
requests for the same page are presently deferred. If there
are any, they are removed from the Defer queue and
attached to the current request via the PCB relating mech-
anism, so they will be satisfied as well.

3 If no auxiliary storage copy of the page exists, an

empty page is created by validating the page table
entry (PGTE) for the page, setting the storage to zeroes,
and setting the storage keys to the value specified in the
externai page table. If the PCB indicates a need for any
follow-up processing, it is performed immediately where
possible and scheduled for asynchronous processing if not.
If no asynchronous processing is needed, the PCB is freed.
In either case, the next input PCB is then begun.

Label

L08'€0°TSA

(LOS'€0°TSA) S ownop Areiqiy o180] wd)sA§ ZSA/SO 9Z-S

Diagram 23-9. General Frame Allocation (IEAVGFA) (Part 3 of 4)

Input Process Output

Register 15
rReturn Code

4 f noauxiliary storage is assigned, set
the real frame to zeroes, set the
protection key and validate the
PGTE. Return, indicating the status
of processing.

From PFTE
Enqueue/
Dequeue
Routine
(IEAVPFTE)
via SRB

To
Program Check Interrupt Extension {IE~VPIX),
PAGEFIX/PAGELOAD (IEAVFXLD), or
Swap-In Processor Routine (IEAVSWIN)

Available PCB Queue
PCB

5§ If any deferred requests exist, move the
PCBs from the available queue and
follow steps 1 through 4.

6 Return.

To Program Check Interrupt Extension (IEAVPIX),
PAGEFIX/PAGELOAD (IEAVFXLD), or
Swap-in Processor Routine (IEAVSWIN)

L7-s uonesad(Jo POYPB i UOHIIS

Diagram 23-9. General Frame Allocation (IEAVGFA) (Part 4 of 4)

Extended Description

4 If an auxiliary storage copy of the page does exist,

the PCB is queued for page-in I/0 and its AIA (ASM
1/0 Request Area) is placed on an internal 1/0 request
queue. If the request involves a page fault, the execution of
the faulting RB or SRB is stopped by a call to the Suspend
routine of PCIH. A PCB flag is set to indicate that reset
is required when the request is eventually satisfied. The
next input PCB is then begun. When ail PCBs are processed,
IEAVGFA returns control to the caller.

B When all input PCBs have been processed as above, the

chain of ASM 1/O request areas (AlAs) is passed to the
Auxiliary Storage Manager (ASM) for satisfaction. If any
input request was deferred, related to other 1/0, or sent to
ASM, a return code of 4 is given; otherwise the return code
is 0.

6 |EAVGFA removes PCBs from the Defer Queue one
at a time and passes them to the main portion of
IEAVGFA for allocation processing. When all PCBs on the
Defer Queue for this address space have been processed.

IEAVGFA returns control to the caller.

Module

Label

(L€ 35030y TSA) S dwnjop Areiqyy o807 udlSAS ZSA/SO 8T-S

Diagram 23-10. Page 1/0 Post (IEAVPIOP) (Part 1 of 2)

From Auxiliary Storage Manager (}LRIOC00

on page 1/O operation completion)
Input Process

1/0 Active Queue
PCB

1/0 Active Queue

PCB Indicate 1/O complete for PCB

on the 1/0 active queue.

For page-out completion, free
associated real frame and then
free PCB.

Free PCB Queue Available Frame
: Queue

pce PFTE

For page-in completion for
common area pages, validate the
PGTE and schedule 1/O completion
processing.

For page-in completion of private
area pages, schedule 1/0 completion
processing.

For stage | swap-in completion,
enqueue PCB on root PCB.
Go to step 7.

Swap-in
Root PCB

When the last AIA has been pro-
cessed, PIOP releases the SALLOC
. ! lock, frees the FRR, and returns
From an RSM Routine (IEAVIOCP, ¢ control to the Auxiliary Storage
IEAVGFA, IEAVSOUT, IEAVRELS, Management.
or IEAVTERM)

| To RSM
{ILR1OC00)

~ Schedule I/O completion pro-
cessing (IEAVIOCP) in the caller’s
address space.
Return.

To an RSM Routine e

67-s uonedQ jo poyaly 17 uondsg

Diagram 23-10. Page 1/0 Post (IEAVPIOP) (Part 2 of 2)

Extended Description Module Label

Page 1/0 Post (IEAVPIOP) notifies waiting routines that an
1/O operation has completed.

1 After establishing FRR linkage and setting up the recov- IEAVPIOP |EAVPIOP
ery communication area (RCA), PIOP gets the SALLOC

tock. Then it checks the 1/O completion information in the

AlA that is passed as input. If an error is found, PIOP issues

an abnormal termination request with a code of X'COD’. PIOP

moves the completion information from the AlA to the

PCB and to all related PCBs. If an 1/O error has occurred,

PIOP sets 1/O-completed and 1/O error flags in each PCB.

2 PIOP processes the input depending upon whether the

operation is a page-out, a normal page-in, or a stage |
swap-in. For page-out PCBs, PIOP frees the PCB and the real
frame unless an 1/0 error occurred. If an 1/O error occurred,
PIOP changes the page-out PCB to a page-in PCB and
schedules the 1/0 completion processor to revalidate the
page '

3 For common area page-in PCBs, PIOP schedules the 1/0

related PCBs by removing them from the related chain
and either freeing them or, if IEAVRSET or a root exit
routine is to be called, putting them on a common /O active
queue. PIOP determines from the free-real-storage flag
whether to free or save the real so that any zero TCB fix
PCBs are the last to be processed by the 1/0 completion
processor. Then, if necessary, PIOP schedules /O comple-
tion processing (IEAVIOCP),

Extended Description Module

4 For private area page-in PCBs PIOP schedules the 1/0
completion processor to validate the PGTE and/or to

call IEAVRSET or a root exit routine. The input PCB and

any PCBs related to it remain unchanged. If an 1/O error

occurred, the 1/0 completion processor will not validate

the PGTE and will call IEAVRSET with an error completion

code.

5 If the PCB in a stage | swap-in for a private and page
and no 1/O error occurred, PIOP removes the PCB from
the 1/0 active queue and enqueues it to the swap-in root
PCB. If an 1/O error occurred, the PCB and the frame are
freed and the root PCB fail flag is set. If the PCB is for the
common area and no /O error occurred, PIOP validates the
PGTE. If an /O error occurred, PIOP rearranges any related
PCBs so that any zero TCB fix PCBs are the last to be proc-
essed by the 1/O completion processor. If necessary, the 1/O
completion processor is scheduled. Whenever PIOP finds a
PCB for a swap-in it decreases the root PCB
count and, when that count goes to zero, calls the root
exit routine. Whenever PIOP finds a PCB for a PGFIX or
PGLOAD with an ECB, it decreases the root PCB count
except when that count goes to zero. When that count goes
to zero, PIOP makes sure that the 1/O completion processor
is scheduled to decrease the count and call the root exit
routine.

6 When the last AlA has been processed, PIOP releases
the SALLOC lock, frees the FRR, and returns control

to the Auxiliary Storage Manager.

7 In aspecial scheduling routine of PIOP, called IEAVPIOP
IEAVOPBR, PIOP examines the PCB and any

related PCBs to determine how to schedule IEAV{OCP.

If IEAVIOCP has not already been scheduled, PIOP

gets an SRB, initializes it, and schedules it.

Return to caller.

Label

IEAVOPBR

LOS'€0°CSA

(L08€0°TSA) § dumjoA Arexqry 918077 waIsAS ZSA/SO- 0€-S

Diagram 23-11. Page 1/O Completion Processing (IEAVIOCP) (Part 1 of 2)

From Page 1/0 Post
(IEAVPIOP) via

SRB Dispatcher Process

Input

1/0O Active Queue

1 Search the |/O active queues for PCBs
marked ‘‘1/O complete.”
For 1/0 error processing, go to step 4.

PCB

2 Validate the virtual page and take

any suspended routine out of
page wait.

1/0 ACT
Queues

3 Schedule this routine again if the

PCB not fully. processed.

Otherwise, move PCB to the free

queue.

4 Take suspended routines out of page
wait supplying an error indication.

Free Queue PCB

PCB

Available Frame Queue

5 When all page-in PCBs have been

processed, free the new frame.

PFTE

6 [f any PCB cannot be completely
processed, reschedule this routine.
Otherwise, free the PCBs from the
1/0 active queue and return.

To Dispatcher
(IEAVEDSO0)

Free PCB
Queue

I€-S uoneiadQ Jo oyl :g uoiddg

Diagram 23-11. Page I/O Completion Processing (IEAVIOCP) (Part 2 of 2)
Extended Description Module Label

The Page /0O Completion Processor (IEAVIOCP) processes
all page-in 1/O completion events.

1 PIOCP establishes the FRR and gets the SALLOC lock. IEAVIOCP IEAVIOCP

If requested, it also gets the local lock. Then P1OCP
searches the local 1/O active queue for the current address
space, and searches the common /0 active queue for PCBs
that have |/Ocomplete flags set.

2 PIOCP checks the PCBs found. If a stage 2 swap-in
PCB is found that has not been intercepted, PIOCP
| sets the RBN in the PGTE.

PIOCP processes all related PCBs by checking for one of
three conditions:

o The free-real storage flag is set.
o The VBN is zero.
@ The virtual page represented by the PCB is already valid.

If none of the conditions occur, PIOCP validates the page
by setting the protection keys in the XPTE and setting to
zero the page-invalid flag in the PGTE. Then PIOCP notifies
the routine in the PCB that the |/O operation is complete.
If the reset flag is on, PIOCP calls the reset routine of PCIH
to release the routine that page-faulted. If the PCB has a
root PCB, the PCB count in the root PCB is decreased by
one. If the count becomes zero, PIOCP calls the root exit
routine.

Extended Description

3 Aseach PCB is processed, PIOCP frees it or enqueues
it to an 1/O active queue and calls a subroutine of

IEAVPIOP to reschedule IEAVIOCP to complete processing.

Finally, PIOCP frees the input PCB unless it is to be kept.
Then PIOCP returns control to the dispatcher.

4 For 1/O errors, PIOCP notifies the routine specified in
the PCB that the operation completed with an error.
PIOCP also performs processing for swap-in and fix PCBs.

5 When each PCB has been processed, PIOCP frees it or

leaves it enqueued. When all PCBs are processed — and
if all PCBs for the real frame have been freed — PIOCP frees
the real frame. Note that during 1/O error processing, when
PFTFXCT is decremented to zero, the system fix counters
are also decremented.

6 if any PCBs cannot be freed, PIOCP calls IEAVPIOP to
schedule IEAVIOCP again. Then PIOCP returns control
to the dispatcher.

Module

Label

LOS'E0°TSA

(L0S°€0°TSA) S ownjoA Arexqry 91807 u,IsA§ ZSA/SO Z€-S

Diagram 23-12. Page Services Interface (IEAVPSI) (Part 1 of 2)

From SVC Interrupt Handler or
From any supervisor routine

Input or branch entry Process

Register 1

1 Validate input parameters and

request type; set up the CIWA.

2 Gall requested function routine.

3 Return status from requested

L

routine to caller,

Register 15

To SVC Interrupt Handler (IEAVESVC),
Caller, or EXIT Prolog (IEAVEEXP)

r Return Code 1

Z uondeg

€€-§ uoneindQ jo poyreN

Diagram 23-12. Page Services Interface (IEAVPSI) (Part 2 of 2)

Extended Description Module Label
The Page Services Interface routine (IEAVPSI) processes all

input requests for page service functions (PGFlXjPG LOAD,

PGFREE, PGRLSE). Input is placed in a common internal

work area (CIWA). All exit processing is done in the module

also.

1 When entered via an SVC 112, PSI gets the SALLOC IEAVPSI IEAVPSI

lock and checks the requestor’s authorization. If the
requestor is not authorized, PSI returns a code of 4 in reg-
ister 15. Otherwise, it sets up the virtual subarea list (VSL)
entry in the CIWA and calls IEAVRELS. When entered via
an SVC 113, PSI verifies that the ECB passed as input is in
storage, gets the SALLOC lock, and checks the caller’s
authorization. PS| returns a code of 16 in register 15 if the
caller is not authorized and the request is PGFiX or
PGFREE or if the Real Address option is specified on a
PGFIX or PGFREE request or for any other parameter
error. If this validity check is successful then PSl sets up the
CIWA with data from the VSL. When entered via a branch
entry from a non-RSM routine for page services, PS| vali-
dates any ECB input and gets the SALLOC lock. If the Real
Address option is specified for PGFIX or PGFREE, PSI
returns a code of 16 in register 15 and issues an ABEND,
If the validity check is successful, it sets up the CIWA and
sets up and checks VSL entries.

When entered via a branch entry from an RSM routine,
PS1 checks any ECB input and constructs a VSL in the
CIWA.

Extended Description Module

2 PSI tests the operation and option bits in the CIWA

for validity. Then it calls the page service functions
requested by the operation flags in the CIWA, Any invalid
bit combination results in PSI returning a code of 16 in
register 15 and issuing an ABEND.

3 When areturn is made from the function routine, PSI
examines the return code. If supplied, it posts the
input ECB. If the return code is an error code, PS| requests

abnormal termination with a completion code of x‘171’

and a reason code in register 15 for the requestor. If the
caller was unauthorized, PS| sets an abnormal termination
code of x“271". If return code 8 is to be issued, indicating
asynchronous completion of the request, PS1 fixes the input
ECB. Finally, PSI returns control to the caller or to the
EXIT routine.

Label

(L€ ose[0Y ZSA) S dwmnjop Areiqry %807 waSAS ZSA/SO $E-S

Diagram 23-13. PGFIX/PGLOAD Processor (IEAVFXLD) (Part 1 of 2)

From Page Services Interface
routine (IEAVPSI)

Input Process Output

For fix requests for pages with real
frames, update the fix count in the
PFTE or the PCB and FOE.

R

PGTE

For pages without real frames,
create a PCB and, if necessary, a
root PCB. -

XPTE

PFTE

If errors occur, record the error,
free any FOEs or PCBs created,
and decrement fix counts.

Free PCB Queue

PCB
CIWA

CIWARETC

If all pages of all VSL entries are
processed correctly, pass the
PCBs created to IEAVGFA for
real frame allocation.

Return, indicating processing done
and normal or asynchronous
completion.

Page Services
Interface Routine
(IEAVPSH)

S€-S uonerdadQ Jo poyey g OIS

Diagram 23-13. PGFIX/PGLOAD Processor {IEAVFXLD) (Part 2 of 2)

Extended Description

The PGFIX/PGLOAD Processor routine (IEAVFXLD)
handles requests for bringing virtual pages into real storage.
The PGFIX processor also fixes the page in real storage.

1 FXLD checks the pages to be sure they are GETMAIN-
assigned and, for PGFIX, not VIO pages. Otherwise,
FXLD returns a code of 4 to the exit processor. For pages
with frames in real storage, FXLD fixes virtual pages not
already fixed or re-fixed pages that are already fixed. It does
this by increasing the fix count in the PFTE for the frame
and by creating (or updating) a fix ownership element
(FOE), which it enqueues to the fix ownership list (FOL)
pointed to by the requestor’s TCB. If the page is being
requested for a long fix and is in a V=R area, FXLD creates
a PCB and sets the long-fix flag to one, so the real frame
can be moved out of the V=R area. If the page is notina
V=R area, FXLD sets the long fix flag in the PFTE to one.
If the fix count in the PFTE is currently zero indicating that
the frame is not already fixed, the system fix counters are
updated (incremented by one).

2 When a virtual page is not in real storage, FXLD

searches the internal PCB queue for a PCB for the page
being processed. If a PCB is found, FXLD increases by one
the fix count in the PCB and the FOE, if it is a PGF!X
request. If a PCB is not found, FXLD creates one and initial-
izes it. For a PGFIX request, FXLD also creates and initial-
izes an FOE.

If an ECB address is specified, FXLD checks for an existing
root PCB. If none exists, FXLD creates one and initializes
it. FXLD associates the regular PCB with the root PCB and
increases the count of PCBs in the root PCB.

Module Label

IEAVFXLD IEAVFXLD

Extended Description

3 If errors occur, FXLD puts each PCB it created and its
associated root PCB on the available queue. For PGFIX
requests, FXLD frees the FQE. If the return code in the
CIWA is 4, it sets the error flag in the CIWA copy of the
input virtual subarea list (VSL) entry; the CIWA copy of
the VSL entry is copied over the user copy. Also, the
CIWA return code is saved. FXLD calls IEAVFREE to
free any virtual pages fixed before the error, Then FXLD
returns control to |EAVPSI,

4 1f noerrors have occurred, FXLD passes any PCBs

created to IEAVGFA, which attempts to allocate real
frames. If successful, IEAVGFA marks the PFTEs for the
PGFIX requests.

5 FXLD returns control to PSI, indicating processing is
completed and specifying normal or asynchronous
completion.

LO8’€0'CSA

(LOS'€0°TSA) ¢ awnjoA Areiqry 213077 woIsAS ZSA/SO 9€-S

Diagram 23-14. PGFIX/PGLOAD Root Exit (IEAVFXLD) (Part 1 of 2)

From an RSM routine that
decrements PCB count in
root PCB to zero (see

extended description)

Input Process ’ Output

If any page-in‘s for page fixes failed,
abnormally terminate the requestor.

Root PCB

Post the requestor’s ECB complete.

Page free the posted ECB.

Free PCB Queue

N PCB

Free the root PCB.

Return.

To an RSM Routine
(see extended description)

LE-S uonesdp Jo poylal :7 uondag

Diagram 23-14. PGFIX/PGLOAD Root Exit (IEAVFXLD) (Part 2 of 2)
Extended Description Module Label

The PGFIX/PGLOAD Root Exit {apart of [EAVFXLD) com-
pletes processing of a root page control block (PCB) when
the PCB count has been decreased to zero. The local and
SALLOC locks are heid by the caller. RSM routines that
use this exit are: ' IEAVPIOP, IEAVIOCP, IEAVSOUT,
IEAVGFA, and IEAVTERM.

1 If the intercept flag is set to one in the root PCB, go IEAVFXLD IEAVFXL
to step 3. If the intercept flag is set to zero, the FXLD

Root Exit checks for an /O error. If the request is for

PGLOAD, FXLD Root Exit continues with normal process-

ing. If the PGFIX request has an 1/O error, the FXLD Root

Exit schedules abnormal termination for the requestor, using

the TCB address in the root PCB. If the TCB address is zero,

FXLD Root Exit posts the requestor’s ECB from the root

PCB with an error POST code.

2 |f both the intercept flag and the 1/O error flag are set
to zero, the FXLD Root Exit posts the requestor’s
ECB with a zero POST code, indicating completion.

3 If the free ECB flag is set to one in the root PCB, the
FXLD Root Exit issues a PGFREE request through
IEAVPSI.

4 The FXLD Root Exit converts the root PCB to a
regular PCB and returns it to the free queue.

B The FXLD Root Exit returns control to the calling
routine.

(L°€ osBaY TSA) §oWM[OA Areiqry 91807 walsAS ZSA/SO 8€-S

Diagram 23-15. PGFREE Routine (IEAVFREE) (Part 1 of 2)

From Page Services
Interface (IEAVPSI) or
PGFIX/PGLOAD
Processing (IEAVFXLD)

Input

CIWA PFTE

FOE

TCB

GFA Defer Queue Local I/0 Active
Queues

PCB PCB

Common /O Active Queue
PCB

ll | Process

> 1

» 2

PFTE

Output

If the pages are in real storage and

are not in nucleus, SQA, LSQA,
or V=R area, decrease their FOE
fix counts and update PFTE.

FOE

TCB

PCB

. Free Queue

If the pages are not in real storage,

check queues for PCB representing
page.

e If PCB on GFA Defer Queue,
free PCB.

e If PCB on I/O Active Queue,
decrement PFTE fix count for
corresponding PFTE.

Return, indicating status of

processing.

To PSI (IEAVPSI) or
PGFIX/PGLOAD
(IEAVFXLD)

CIWA

CIWRETC

PCB

‘uongesad () Jo POy iz UOIOAS

6¢€-S

Diagram 23-15. PGFREE Routine (IEAVFREE) (Part 2 of 2)
Extended Description Module Label

The PGFREE routine (IEAVFREE) is called through Page
Services Interface to free up a group of real pages previously
fixed. When calied by the PGFIX function, it also reverses

a partially completed fix operation that is being abnormally
terminated.

1 PGFREE checks the status of the page being processed. |EAVFREE IEAVFREE
If the page is not already in real storage and PGFIX is

the caller, PGFREE returns control immediately. if PGFIX

is not the caller and if the requestor supplies an ECB address,

PGFREE performs purge processing as in step 2. Otherwise,

PGFREE returns control.

If the page is valid in real storage, PGFREE checks the page
location. If the page resides in the nucleus, system queue
area, local system queue area, or V=R area, then PGFREE
does not process the page. Otherwise, lEAVFREE locates

a fix ownership element (FOE), if one exists. If no FOE

- exists on the fix ownership list (FOL), PGFREE does no

free processing. Otherwise, PGFREE decreases the fix count
and frees the FOE if the count becomes zero. Then PGFREE
decreases the fix count in the PFTE, unless PGFIX is the
caller. If the PFTE fix count becomes zero and the page was
long-fixed, the long fix flag is set to zero and the system

fix counters are decremented by one; if a deferred release
was specified, PGFREE calls the PGRLSE processor to
perform deferred release processing.

Extended Description

2 If the requestor supplies an ECB address, PGFREE

checks three queues for PCBs representing paging 1/O
for the current address space: General Frame Allocation
(GFA) queue, the Common 1/O Active Queue, and the
Local 1/0 Active Queue. When it finds one, PGFREE checks
for a root PCB and marks the root PCB intercepted, which
prevents posting the ECB.

If the root PCB has an FOE associated with it, PGFREE
calls FOEDEL to find and remove all FOEs for the PGFiX
request being purged. FOEDEL is called repeatedly until
the PCB fix count is zero. PGFREE either frees the PCB
from the GFA Defer Queue or decreases the PFTE fix
count for the frames assigned to the virtual page on the |/O
active queues. If the PFTFXCT is decremented to zero,
the system fix counters are decremented by one.

PGFREE checks for related PCBs as well, continuing

until all three queues have been searched.

3 Ifanerroris detected in the input data for list entry
requests, PGFREE sets the error flag in the CIWA

copy of the VSL entry and stores the whole VSL entry

over the user-supplied copy. The CIWA return code of 4 is

also saved. Then PGFREE returns to PS! for exit processing.

If no errors occur, PGFREE passes the return code and out-

put data to the caller, PGFIX or PSI, for exit processing.

Module

Label

LO8'€0'TSA

(LOS'€0°ZSA) § SWNOA Areiqi 21807 waysAg TSA/SO Ot-S

Diagram 23-16. PGOUT Routine (l[EAVOUT) (Part 1 of 2)

From Page Services
Interface Routine (IEAVPSI)

Input Process

CIWA
CIWCUVSL
CIWENDIA
CIWSTRTA
CIWKRPRL
CIWTCB

PGTE
PGTBITS

1 Get the PGTE and XPTE addresses
and invalidate the PGTE.

Available Frame Queue

PFTE
PFTFLAG1

2 If the page is unchanged, free the
real frame.

PCB XPTE
PCBRTP XPTFLAGS
PCBXPTA
PCBPGTA

PCBRBN N

PCBVBN
PCBASCB

3A if the page is changed, set up PCB
and XPTE for page-out.

4 Repeat steps 1-3 for all requested
pages.

Internal PCB Queue

PCB

5 Enqueue any PCBs on an internal
queue and pass the queue to
Auxiliary Storage Management
(ILRINTOO) for page-out.

CIWA

Register 14

L Return Address __I

6 Return, indicating status of
processing.

CIWRETC
CIWERR

CIWOUTKR

To Page Services Interface
Routine (IEAVPSI)

L08'€0'TSA

14§ uoneadQ Jo poyRK :7 uoipIg

Diagram 23-16. PGOUT Routine (IEAVOUT) (Part 2 of 2)

Extended Description

The PGOUT routine {IEAVOUT) is called by the Page Ser-
vices Interface routine to process a page-out for a selected
virtual page. :

1 PGOUT processes each VSL entry in the CIWA. It

checks and rounds the addresses to page boundaries;
if an error is detected, PGOUT sets the CIWA return code
to 4.

For a page with a frame assigned in real storage, PGOUT
invalidates the PGTE using the Page Invalidation routine.
If the page resides in the nucleus, SQA, V=R space, LSQA,
or quick start area, or if the page is unusable or fixed, no
processing is done. If a PCB already exists, no processing
is performed.

2 If the page is unchanged, PGOUT returns the PFTE for
the frame to the available frame queue. If the Keepreai
| option flag in the PCB or the internal Keepreal flag is set
to one, PGOUT validates the PGTE and returns control.

Module

IEAVOUT

Label

Extended Description Module
3 If the page has been changed, PGOUT builds a PCB
and initializes fields in the PCB and XPTE.

4_ When the first VSL entry is complete, PGOUT checks

the CIWA return code. For a zero return code, PGOUT
gets the next VSL entry by using the Page Services Interface
NEXTVSL subroutine; for a return code of 8, PGOUT per-
forms exit processing; and for all other return codes, PGOUT
performs error processing.

5 PGOUT puts the created PCBs on an internal queue

and, when all VSL entries have been brocessed, passes
them to the Auxiliary Storage Manager by calling
ILRPAGIO.

6 If noerrors have occurred, PGOUT returns control to

PS|, putting the return code in the CIWA. If an invalid
page address was detected, and the CIWA return code is 4,
PGOUT sets the CIWA error flag to one and copies the CIWA
copy of the VSL entry over the user copy. Then PGOUT
returns to PSI.

Label

LOS'€0°ZSA

(LOS'€0°TSA) ¢ owm|oA Are1qry o180 waisAS ZSA/SO Th-S

Diagram 23-17. Swap-In Processor Routine (IEAVSWIN) (Part 1 of 2)

Input

From System Resource
Manager via dispatch
{of an SRB)

Process

Get PCBs for swap-in and root PCB.

Initialize root PCB.

Initialize stage 1 PCBs for fixed

pages and LSQA pages.

Build stage 2 PCBs for pageable
private area pages and chain from

the swap-in root PCB.

Call IEAVGFA to assign real frames
to the stage 1 pages and start

page in.

Return, if successful.

If enough PCBs or frames could not
be obtained, notify SRM via
SYSEVENT that swap-in failed, and

return.

If an 1/O error occurs, Swap-In calis
R/TM to terminate the address space:

Dispatcher
(IEAVEDSO)

Output

Swap-In PCBs
PCB

Dispatcher (IEAVEDSO)

LO8'€0°TSA

£b-s uoneradQ Jo POYIB 17 UOKRS

Diagram 23-17. Swap-In Processor Routine (IEAVSWIN) (Part 2 of 2)
Extended Description Module Label

The Swap-in Processor routine (IEAVSWIN) initializes 1/0
operations for an address to be swapped in {made active
within an address space).

1 After freeing the input SRB and establishing the FRR, IEAVSWIN
Swap-in gets the SALLOC lock. If the swap-in request
is valid, Swap-in gets enough PCBs for the swap-in operation.

2 Swap-ln puts the root exit address and the ASCB
address in the root PCB.

3 Swap-In initializes PCBs for Stage | pages to be swapped
in.

4 Swap-in initializes Stage | page PCBs for swapping in

and chains them from the swap-in root PCB. The
Stage 2 PCBs will be passed to IEAVSWPP (an entry point
in IEAVSWIN) in the IEAVSWPP SRB.

5 Swap-In calls IEAVGFA to assign real frames and
initiate the page-in process for the stage 1 pages.

© If the 1/O successfully completes, Swap-In updates the
count of swap-ins in the PVT, releases the SALLOC
lock and the FRR, and returns control to the Dispatcher.

~ 7 1f Swap-In cannot get enough PCBs to swap in the

address space or if there are not enough real frames
available, Swap-In issues a SYSEVENT to notify SRM that
the swap-in failed.

8 ifan 1/O error occurs, Swap-In calls R/TM
(TYPE=MEMTERM) to terminate the address space.

LOS'E0°TSA

(L08'€0°ZSA) S dwnjop Arexqry 1807 waIsAS ZSA/SO -

Diagram 23-18. Swap-In Root Exit (IEAVSWIN) (Part 1 of 2)

Input

- Root PCB

From Page 1/0 Post (IEAVPIOP), Page Termination
Services (IEAVTERM), or General Frame
Allocation (IEAVGFA) decreasing
PCB count in root PCB to zero

Process

Stage 1

Stage 2
Swap-in
PCBs

Swap-In PCBs

PCBs

If page-ins have completed with an
error, the system fix count is
decremented by one and the address
space is terminated. Go to step 5.

2 Update the ASCB, SGT, PGT, and
XPT for stage | pages and set storage

keys of the frames.

3 Add to the ready queue the ASCB
for the swapped -in address space.

4 Allow SRBs to be dispatched in new
address space.

5 Free PCBs.

6 !f normal swap-in processing has
completed, schedule IEAVSWPP to
post the Region Control Task to run
in the swapped-in address space and

to start the 1/0 for the stage 2 pages.

7 Return,

Free PCB Queue

PCB

SRB

Stage 2
Swap-in PCBs

IEAVSWPP
SRBPARM

-

To IEAVPIOP, IEAVTERM, or

IEAVGFA

L08'€0°TSA

St-s uonedQ Jo poylel :z UoNIAS

Diagram 23-18. Swap-In Root Exit (IEAVSWIN) (Part 2 of 2)

Extended Description

The Swap-In Root exit (part of IEAVSWIN) is called by
Page 1/0O Post when 1/O for Stage | pages has completed.
The routine re-initializes the segment and page table entries,
re-enqueues the ASCB, and makes the swapped-in address
space dispatchable.

1 If page-ins have completed in error, Swap-In Root
Exit decreases the fix counts for the common area
swap-in pages and completes error processing in step 5.

2 Swap-in Root Exit updates the ASCB, the PGT, and
XPT with information about the swap-in Stage |
pages. It then validates the PGT and XPT and sets the stor-

age keys for the page frames.

3 Swap-In Root Exit calls ASCBCHAP to add the ASCB
to the ready queue.

4 Swap-In Root Exit calls STATUS START to allow
SRBs to be dispatched in a new address space.

B Swap-In Root Exit frees the root PCB and the chain of
PCBs used for the swap-in.

6 If the swap-in was successful, IEAVSIRT schedules
an SRB routine, IEAVSWPP, to the swapped-in

address space. This routine posts the RCT to begin

restore processing and start the 1/O for the stage 2 pages.

7 Swap-In Root Exit returns control to the caller.

Module

IEAVSWIN

Label

IEAVSIRT

L08°€0°TSA

(LOS'€0°TSA) S dwm[oA Arexqr] oo wsAs ZSA/SO 0°SH-S

Diagram 23-18A. Swap-In-Post Processor (IEAVSWPP) (Part ! of 2)

Input

Register 1

Register 0

Stage 2 PCBs

Free the SRB.

Scan the input stage 2 PCB

PCB Free Queue

PCBs

queue. If the page defined by
the PCB cannot be referenced
or is already valid in storage,
free the PCB.

Call IEAVGFA to assign frames
for the stage 2 pages, if any exist.

Post RCT to indicate that restore
processing can be started.

Stage 2 PCBs
RSMHD

Local /O Queue
PCBs (Stage 2)

LO8°€0°TSA

1'St-s uoneradQ Jo poylop :7 uopdas

Diagram 23-18A. Swap-In-Post Processor (IEAVSWPP) (Part 2 of 2)

Extended Description

The Swap-Post processor {IEAVSWPP) injtiates the 1/0
for the stage 2 pages and posts RCT when stage 1
swap-in is complete.

1 Free the input SRB.

2 Foreach PCB on the input stage 2 queue, call

IEAVFP2 to obtain the PGTE/XPTE addresses for
the page represented by the PCB. If the page was freed
or the page is already in storage, free the PCB because
the real frame assignment for this request is no fonger
required.

3 Call IEAVGFA to assign frames for the remaining
stage 2 pages.

4 Post RCT to indicate that stage 1 swap-in is
complete and that restore processing can now be
started.

Module

IEAVSWIN

Label

IEAVSWPP

LO8'E0°TSA

(LOS'€0°TSA) §dwnjoA Arerqry 21801 waish§ ZSA/SO 9-S

Diagram 23-19. Swap-Out Processor Routine (IEAVSOUT) (Part 1 of 4)

Input

Register 1

ASCB Address

1/0 Active Queues
PCBs

GFA Defer Queue
PCBs

From RCT Quiesce
Routine (IEAVAROO)

Process

Get page control block space for
swap-out.

Build an SPCT entry for each LSQA
and fixed page.

Search PCB queues for those PCBs
that correspond to address space
being swapped out.

For |/O complete PCBs, dequeue
and free the PCBs, and free the
PFTE.

For 1/0 not complete PCBs,

mark PCB so real storage is

freed when /O completes.

For fixed frames withoutan FOE,

-make an SPCT fix entry.

Free Queue
PCB

1/O Active Queues
PC8s

Z uonoasg

Ly-§ uoneiadQ jo poyro

Diagram 23-19. Swap-Out Processor Routine IEAVSOUT) (Part 2 of 4)

Extended Description

The Swap-Out Processor routine (|EAVSOUT) performs and
initiates the process of logically disconnecting an address
space, initiating the 1/0O operation for page-out to auxiliary
storage, and saving in real storage the information required
for a subsequent swap-in.

1 Swap-Out calls STATUS to stop non-quiescable
SRBs. Then it gets the SALLOC lock and sets the
FRR. If the swap request is valid, swap-out calls IEAVPCB
to get enough PCBs for all the frames in the address space
plus one to be used as a swap-out parameter list. The list
will contain a pointer to the LSQA PCBs, a pointer to the
private area non-LSQA PCBs, an eight-byte parameter list
passed to SRM on the swap-out complete sysevent, and an

SR8 used to schedule IEAVPIOI.

2 Swap-Out initializes the SPCT and then builds SPCT
entries for each Stage | page (either LSQA or fixed).

3 Swap-Out scans the Common 1/O Queue for PCBs

corresponding to the address space being swapped out.
Swap-Out calls the Reset routine of PCiH and resets any
fix indicators. If 1/0 is complete, Swap-Out frees the PCB.
Then Swap-Out scans the 1/0 active queue and the GFA
Defer Queue, processing PCBs in the same manner. If any
root PCB count goes to zero, Swap-Out calls the root exit
routine.

4 f a fixed frame has no FOE, Swap-Out sets the fix
count in the SPCT fix entry.

Module

IEAVSOUT

LOS'€0°TSA

(L08°€0°TSA) S dwnjop Areiqry 01807 WaIsAS ZSA/SO 8-S

Diagram 23-19. Swap-Out Processor Routine (IEAVSOUT) (Part 3 of 4)

Input Process

B Build page control blocks to page - Swap-out PCBs
out fixed and LSQA pages. PCBs

6 For pageable frames, either build
a PCB or free the frame. Then
update the PGTE and XPTE and
flag the SPCT entry to make page
part of the swap-in ‘“working set.”

Free PCB Queue
PCB
Free excess PCBs and call ASM

(ILRPAGIO) to initiate the 1/O for
the non-LSQA pages.

Schedule IEAVPIOI to initiate the . SRB for IEAVPIOI

1/0 for the LSQA pages and to - _ = .

remove the address space from the , Swap-out

dispatching queue. . Parameter
E . List

Return.

To RCT Quiesce Routine
(IEAVAROQO)

LOS €0°TSA

6v-¢ uoneradQ Jo poyle| :g UOIIS

Diagram 23-19. Swap-Out Processor Routine (IEAVSOUT) (Part 4 of 4)
Extended Description Module Label

B Swap-Out completes the initialization of swap-out
PCBs for LSQA and fixed pages.

6 For pageable frames with no PCB defined, Swap-Out

either frees the frame or creates a Swap-Out PCB.
After updating the PGTE and XPTE for each page, Swap-
Out marks the SPCT entry so that the page will be swapped
in with the address space.

7 Swap-Out frees any PCBs not used and puts the swap-

out PCBs on the local /O active queue. Then swap-
out invokes ASM at ILRPAGIO to initiate the 1/O for the
non-LSQA pages.

8 Swap-out schedules IEAVPIOI to start the /O for the
LSQA pages and to remove the address space from

the dispatching queue. IEAVPIOI receives the swap-out

parameter list containing a pointer to the LSQA PCBs.

9 Swap-Out frees the unused SPCT extensions, frees

the unused SPCT extensions, frees the SALLOC lock
and FRR, and returns control to RCT Quiesce with a return
code in register 15.

LOS8'€0'TSA

(LOB'€0°ZSA) S dwnjop Areiqry 5807 widsAS ZSA/SO 0§-S

Diagram 23-20. Swap-out Completion Routine (IEAVSWPC) (Part 1 of 2)

From ILRSWAP
or IEAVSOUT
Input Process

PFTE #1

Purge TLBs.

1

Register 1 - 2 Tell SRM (system resource

manager) that swap-out is
complete.

PFTE #2

#2 PFTE #3

3 Dequeue the ASCB for the
address being swapped out.

4 Return RSM resources.

Register 0

B For errors, record them and

6 Return.

or

Available Frame Queue
PFTE

PCB Free Queue

PCB

terminate the address space.

|

SPCT
SPCTOUT=0
SPCTSWRT=0

ILRSWAP

IEAVSOUT

LOS'E0°TSA

Is:s uonersdQ jo poyON :7 UoHIes

Diagram 23-20. Swap-out Completion Routine (IEAVSWPC) (Part 2 of 2)

‘Extended Description

The Swap-out completion routine (IEAVSWPC) handles

completion processing for swap-outs. The input is the

address of a chain of AlAs and a return code. IEAVSWPC
is entered from the Swap-Out Processor {EAVSOUT) or

from ILRSWAP. The SALLOC lock is held at entry.

1 SWPC established the RSM FRR and calls IEAVINV
to purge the translation lookaside buffers (TLBs).

2 If the 1/O was successful, IEAVSWPC issues a

SYSEVENT notifying the system resource manager
(SRM) that the swap-out has been completed and passes

status information to SRM about the swapped-out
frames.

3 For either a successful or unsuccessful swap-out,

IEAVSWPC frees the area (PCB) containing the
swap-out parameter list by calling the PCB manager
(IEAVPCB).

o The PCB defined flag is turned off in the PFTEs for
the frames that were allocated to the swapped out
pages. If the 1/O was successful, IEAVSWPC calls
PFTE enqueue/dequeue to free the frames and calls
IEAVPCB to free the PCBs used for the swap-out.
The system fix counters are decremented by 1 for
each AIA passed as input.

‘e If the 1/0 was unsuccessful, IEAVSWPC does not

free the frames.

4 1f a nonzero return code was given to IEAVSWPC,

a COD abend is issued.

The address space being swapped out is terminated via

CALLRTM.

5 IEAVSWPC removes the FRR and returns to the
caller.

Module

IEAVSWPC

IEAVSWPC

IEAVSWPC

IEAVSWPC

IEAVSWPC

Label

IEAVSWPC

FREFMPCB

FREEPCB

MMTERM

DELTEFRR

LOS'€0°TSA

(L0S°€0°ZSA) S dwnjop Areiqi] a1807 waisA§ ZSA/SO TS-S

Diagram 23-21. LSQA Swap I/O Initiator (IEAVPIOI) (Part 1 of 2)

From Swap-Out (IEAVSOUT) via
Input Dispatcher (I EAVEDSO) Process

Set FRR and obtain the local
lock.

I SRBPARM

1/0 Active Queue

Dequeue the ASCB for the address
space being swapped out.

1/0 Active Queue

LSQA PCBs PCB/AIA
gwap—o:lt Obtain the SALLOC lock and
Srta meter pass control to Auxiliary Storage
1s Manager to perform the 1/0.
‘ ILRSWAP

Free the local and SALLOC) Auxiliary
locks, delete the FRR, and Storage
return. Manager
For errors, invoke IEAVSWPC IEAVSWPC
for cleanup and address space -
termination.

Free the local and SALLOC
locks, delete the FRR, and
return.

Dispatcher
(IEAVEDSO)

LOS'€0"TSA

Z uondeg

.
.

€5-§ uoneradQ jo poyoN

Diagram 23-21. Swap I/O Initiator (IEAVPIOI) (Part 2 of 2)
Extended Description Module

' The Swap /O Initiator (IEAVPIOI) starts the LSQA paging
1/0 for the address space being swapped out. The input
is the address of the swap-out parameter list containing a

| pointer to the LSQA PCBs. IEAVPIOI passes the
PCB/AIAs to ASM to start the swap-out i/0.

' 1 PIOI establishes the RSM FRR, and gets the local IEAVPIOI
tock.

2 PIOI calls ASCBCHAP to remove the address space
from the dispatching queue.

I 3 PIOI obtains the SALLOC lock and calls ASM
(ILRSWAP) to perform the page-out 1/0.

l 4 1f the 1/O is successful, PIO1 releasess the SALLOC
and local locks, removes the FRR, and returns
control to the Dispatcher.

B If an error occurs, or if the ASCBCHARP fails,
IEAVPIOI calls IEAVSWPC for cleanup processing and
for terminating the address space.

6 PIOI releases the local and SALLOC locks, removes
the FRR, and returns control to the dispatcher
{IEAVEDSO).

Label

IEAVPIOI

LOS€0°TSA

o

(LOS'€0°TSA) S swnjoA Arexqr] 91807 wAsAS ZSA/SO ¥S-S

Diagram 23-22. VIO Services Routine (IEAVAMSI) (Part 1 of 4)

From Virtual Block Processor (IDAVBPP1 and IDAVBPJ1)
Input Process

VvCB
VCBLINK
VCBOPFLAG
VCBRSN

1 Check toensure that each VCB is
in storage.

Call a subroutine according to request:

Assign, go to step 3.

Move-out, go to step 5.

For Assign, assure that virtual page is
not currently in use.

Process assign request setting up
necessary PGTE, XPTE and possibly
PFTE for normal paging;

return.

To
Virtual
Block
Processor
(IDAVBPP1
and
IDAVBPJ1)

66-¢ uoneIdd(Q JO POYIS 7 UOIIIS

Diagram 23-22. VIO Services Routine (IEAVAMSI) (Part 2 of 4)

Extended Description ‘ Module

The V10 Services routine (IEAVAMSI) manipulates the
page and external page tables; in some cases it also manip-
ulates the page frame table for the VIO Processor when
V10 data set pages are to be inserted or removed from the
V1O buffer. One VCB (VIO Control Block) is supplied for
each page to be processed.

1 VIO Services obtains the global SALLOC fock and
checks the input VCB to be sure that the real storage
address specified is valid.

2 V10 Services checks the operation flags in the VCB .
for the operation to be performed.

3 For an assign request, V10 Services checks for the
following conditions:

e GETMAIN-assigned flag and invalid flag in PGTE are set
to one;

o Real storage address in PGTE is zero;

@ Auxiliary-storage-assigned and the defer flags in the XPT
are set to zero.

If any of the preceding conditions are not met, VIO Services
sets an error code in the VCB and returns to VBP with a
code of 4 in register 15.

IEAVAMSI

L abel

Extended Description Module

4 If a null assignment is requested (LPID in VCB is zero),
V10 Services sets the VIO flag to one in the XPTE and
checks for further VCBs.

Otherwise, if the RSN in the VCB is not zero, V1O Services
gets the PFTE for the real framé that fast contained the page.
It checks to see whether the VIO flag is set to one and
whether the data set ID matches the ID in the VCB. If so,
the page has been reclaimed.

If a PCB exists for the reclaimed PFTE, VIO Services updates
the PCB to halt the page-out from freeing the real frame. it
also updates the XPTE and the PGTE. Finally, VIO Services
puts the virtual address of the VCB and the ASID in the
PFTE.

Label

LO8'E0°TSA

(L08°€0°TSA) S swnjop Areiqry o180 waysAS ZSA/SO 9§-S

Diagram 23-22. VIO Services Routine (IEAVAMSI) (Part 3 of 4)

Input Process

B For Move-out of pages in real

PFTE’s

storage, obtain and initialize a PCB
for page-out.

6 For Move-out of pages not in real
storage, free or transfer RSM-created
auxiliary storage as required.

7 Process Move-out request, updating

PGTE, XPTE, and PFTE.

8 Passall AlAs to ASM to start 1/O.

To Virtual Block
Processor
(IDAVBPP1 and
IDAVBPJ1)

Output

Register 15

L Return Code]

VvCB

VCB

VCB

LS-S uonerad(jo poylo z uor0ag

Diagram 23-22. VIO Services Routine (IEAVAMSI) (Part 4 of 4)

Extended Description Module Label

B VIO Services returns to VBP, passing a return code in
register 15,

6 If the page is not in real storage, VIO Services transfers
RSM-created auxiliary storage as required and sets the
real storage address in the VCB to zero.

If paging 1/O is in process for the page, VIO Services quiesces
page-in 1/0 and allows page-out /O to complete normally.
V10 Services processes all PCBs for the page according to
the queue on which they reside. V1O Services releases all
non-V1{0 auxiliary storage for the page and updates the

VCB and the XPTE.

7 VIO Services updates status flags in the XPTE, VCB,
PGTE, and the PFTE to complete the Move-Out
request according to the options specified in the VCB.

8 When all VCBs have been processed, VIO Services

passes any AlAs created to ASM (at ILRINTOO)
for page-out I/O processing. Then it returns to VBP,
passing a return code in register 15.

(L08'€0°TSA) S dwnjoA Areiqry o180 waishg ZSA/SO 8-S

Diagram 23-23. Initialize Address Space Routine (IEAVITAS) (Part 1 of 2)

Input

Register 0

Register 14

L

Return Address

From VSM
Create Address Space
(IEAVGCAS)

Process

Output

ASCB

ASCBSTOR

1 Initialize RSM header and

SPCT, then request real frame i :

assignment.

2 Initialize PFTE as an LSQA

page and enqueue it on the
LSQA frame queue.

RSMH

ASCBRSM

RSMVSTO

RSMSPCT

RSMASCB

PFTE

PFTVBN

PFTASID

SPCT

PFTLSQA

SPCTNSEG

SPCTSSEG

g L N

SPCTSEGX

SPCTPGT

3 Build the initial LSQA page

for the new address space.

SGT
SGTPAM
SGTPTL
SGTPO
SGTLK

Register 15

SPCTSIZE

4 Return.

To VSM Create
Address Space
(IEAVGCAS)

>l Return Code

LOS'E0°TSA

6s-¢ uoneradQ Jo poyzap g uondIg

Diagram 23-23. Initialize Address Space Routine (IEAVITAS) (Part 2 of 2)

Extended Description Module Label

The Initialize Address Space routine (IEAVITAS) builds and

initializes the RSM control blocks required to define an

address space. The function runs in the Master Scheduler

address space, is called in supervisor, key O state, and must

run under a local lock.

1 The Initialize routine sets up linkage with the RSM IEAVITAS
FRR IEAVRCV and acquires the SALLOC lock.

Initialize obtains SQA space for the RSM Header (the

ASM Header is part of the RSMHD) and the Swap Control

Table (SPCT). If the GETMAIN fails, Initialize returns

with a code of 4 in register 15. Then it calls ASM

(ILRINTOO) to assign a logical group number for the new

address space. If none are available, Initialize returns to

the caller with a code of 4 in register 15. It Initializes the RSM

Header address in the ASCB and initializes RSM Header

fields with the virtual addresses of the SGT, SPCT,

and ASCB. Initialize then sets other RSM Header fields to

zero. The ASM slot reserve routine (ILRSLTRV) is called

to assign reserved slots for the address space. Next, the

Initialization routine calls LSQA/SQA Allocation

(IEAVSQA) to get a real frame. If the allocation fails,

Initialize returns a code of 4 to the caller in register 15.

If successful, Initialize initializes the segment table address

in the ASCB.

Extended Description Module

2 Initialize inserts into the page frame table entry the
virtual block number of the page with the highest
address in the new address space private area and the ASID

of the new address space, and sets the LSQA flag to one.
Then Initiatize calls PFTE Enqueue/Dequeue (IEAVPFTE)
to put the PFTE on the new address space’s LSQA queue.

3 Initialize sets the LSQA page to zero and clears the

storage keys. It initializes the common area portions of
the segment table and marks the private area portions invalid.
Then Initiatize sets up the SGTE for the private area contain-
ing the LSQA page. It initializes the page table last and all
other pages invalid. It then initializes the external page table
by putting the logical group number in each 12 byte entry.
Initialize sets up fields in the SPCT for the active segment
count, the segment entry count, the page table address, the
segment 1D, and the SPCT size. The local (RSMCNTFX)
and global (PVTCNTFX) system fix counters are also
updated.

4 [Initialize deletes linkage to the RSM FRR, frees the
SALLOC ifock, and returns to the caller.

Error Processing

If an error occurs, the Initialize routine restores any success-
ful set-up operations to their status before the error occurred.
It frees any real frame obtained, releases the logical group
number, and frees the SQA space before returning to the
caller with a code of 4 in register 15.

Label

LOS'€0°TSA

(LO8'€E0°TSA) § dWnoA Arexqi] 21307 WAISAS ZSA/SO 09-S

Diagram 23-24. Delete Address Space Routine (IEAVDLAS) (Part 1 of 2)

From RSM Termination
Routine (IEAVTERM)

input Process

Process the 1/O-active
queue.

2 Putall PFTEs relating to the address
space on the available queue.

3 Purge TLBs to remove real segment
table address.

4 Free SQA space used for RSMHD,
SPCT and SPCT extension.

. To RSM
5 Return. Termination
(IEAVTERM)

From
PURGEDEQ
Routine
PCB/AIA (IEAVEPDQ)

Free PCB/AlAs asifitisa

normal swap out completion.

7 Freeinput SRB.

8 Return.

To PURGEDEQ
(IEAVEPDQ}

L08’€0°TSA

19-§ uonesadQ Jo POYIdW :T UOIIO3S

Diagram 23-24. Delete Address Space Routine (IEAVDLAS) (Part 2 of 2)

Extended Description

The Delete Address Space routine ({EAVDLAS) returns
RSM resources associated with an address space being ter-
minated. It runs in the Master Scheduler address space.

1 Delete moves the local 1/O-active queue for the
address space to the Master local 1/0-active queue.

2 Delete scans the local frame queue and calls IEAVPFTE

to dequeue PFTEs on the queues, freeing them if no
PCB has been defined. If no PCB is defined, the local
(RSMCNTFX) and global (PVTCNTFX) fix counters are
decremented for each LSQA and PGFIX frame. If any PCBs
exist on the Local I/O Active Queue, Delete moves them to
the Master Scheduler 1/0O Active Queue and changes their
ASCB addresses to the Master Scheduler ASCB address.
Then it sets to zero the RSM Header address and the real
segment table address in the ASCB.

Module

{EAVDLAS

Label

IEAVDLAS

Extended Description

3 Delete calls the Page Invalidate routine, IEAVINV, to
purge all translation fookaside buffers.

4 Delete uses FREEMAIN to free the SQA space used
for the RSM Header, the SPCT, and any SPCT
extensions.

5 Delete returns control to RSM Termination.

6 If the SRB was scheduled to dispatch IEAVSWPP

to start the stage 2 swap-out, Delete obtains the
SALLOC lock and the PCB manager frees the string of
PCB/AlAs addressed in the SRB. Then Delete releases
the SALLOC lock. ’

7 Delete frees the SRB using the FREECELL routine.

8 Delete returns control to the PURGEDEQ routine.

Module Labe!

IEAVINV

IEAVGMOO

IEAVDLAS IEAVSRBP

LO8’€0°TSA

(L0S°€0°TSA) S swnjoA Areiqry 218077 welsAS ZSA/SO 79§

Diagram 23-25. Page Termination Services Routine (IEAVTERM) (Part 1 of 2)

Input

Local 1/0 Active
Queue

PCB

Common 1/O Active
Queue

PCB

GFA Defer Queue
PCB

From R/TM (IEAVTSKT)

Process

For address space purge, fail
a swap-in or swap-out in
process.

Search for PCBs that have
addresses matching the input
data.

Process the purge request.

For a TCB purge, after 1/O
purging, purge FOEs for any
in-storage page fixes.

For an address space purge,
clean up RSM resources by
calling Delete Address Space.

Return.

R/TM (IEAVTSKT)

Output

Root PCB

Free PCB Queue Avaalzg{:aeF rame

PCB PETE

LOS'E0'TSA

T uorag

.
.

19-s uonesadQ jo poyrK

Diagram 23-24. Delete Address Space Routine (IEAVDLAS) (Part 2 of 2)
Extended Description Module Label

The Delete Address Space routine (IEAVDLAS) returns
RSM resources associated with an address space being ter-
minated. It runs in the Master Scheduler address space.

1 Delete moves the local i/O-active queue for the IEAVDLAS IEAVDLAS
address space to the Master local 1/0-active queue.

2 Delete scans the local frame queue and calls IEAVPFTE

to dequeue PFTEs on the queues, freeing them if no
PCB has been defined. If no PCB is defined, the local
{RSMCNTFX) and global (PVTCNTFX) fix counters are
decremented for each LSQA and PGFIX frame. if any PCBs
exist on the Local 1/O Active Queue, Delete moves them to
the Master Scheduler I/O Active Queue and changes their
ASCB addresses to the Master Scheduler ASCB address.
Then it sets to zero the RSM Header address and the real
segment table address in the ASCB.

Extended Description

3 Delete calls the Page Invalidate routine, IEAVINV, to
purge all translation lookaside buffers.

4 Delete uses FREEMAIN to free the SQA space used
for the RSM Header, the SPCT, and any SPCT
extensions.

5 Delete returns control to RSM Termination.

6 If the SRB was scheduled to dispatch IEAVSWPP

to start the stage 2 swap-out, Delete obtains the
SALLOC lock and the PCB manager frees the string of
PCB/AIlAs addressed in the SRB. Then Delete releases
the SALLOC Iiock.

7 Delete frees the SRB using the FREECELL routine.

8 Delete returns control to the PURGEDEQ routine.

Module Label

IEAVINV

IEAVGMO0

IEAVDLAS IEAVSRBP

LO8'€0°TSA

(L0S°€0°TSA) § dwnjop Arexqry 8o woIsAS ZSA/SO T9-S

Diagram 23-25. Page Termination Services Routine (IEAVTERM) (Part 1 of 2)

From R/TM (IEAVTSKT)
Input

Process

For address space purge, fail

a swap-in or swap-out in
process.

Local 1/O Active
Queue

PCB

2 Search for PCBs that have
addresses matching the input
data.

Process the purge request.

For a TCB purge, after 1/O
purging, purge FOEs for any
in-storage page fixes.

GFA Defer Queue
PCB

B For an address space purge,
clean up RSM resources by
calling Delete Address Space.

Return.

R/TM (IEAVTSKT)

Output

PCB

Root PCB

Free PCB Queue Queue

Available Frame

PFTE

LO8€0'TSA

£9-¢ uonerddQ Jo oYW g UondeS

Diagram 23-25. Page Termination Services Routine (IEAVTERM) (Part 2 of 2)

Extended Description

The Page Termination Services (PTS) routine (IEAVTERM)
is called by the Recovery/Termination Manager to quiesce
paging 1/0 for an RB or TCB within a virtual address space
or for an entire virtual address space. The routine may also
free pages fixed by the TCB being quiesced.

1 PTS gets the SALLOC lock, sets up the RSM FRR,
and gets the local lock. PTS terminates any swapping
operations. For a swap-in, the RSM-failed flag is turned on.

" For a swap-out, the SRM parameter list is freed. For an

ASCB purge, PTS releases the local lock.

2 PTS searches for PCBs that have ASCB and TCB or

RB addresses matching the input data. It searches the
GFA Defer Queue and the /O active queues. When a PCB
is found, PTS processes it according to the queue it is on
and the purge type.

Module Label

IEAVTERM IEAVTERM

Extended Description

3 When the purge type is ASCB and the SRB mode flag

in the PCB is set, PTS will reset the SRB routine if
reset has been requested. If the purge type is RB and the
RB address in the PCB matches the input RB address, PTS
calls the Reset subroutine of PCIH to remove the specified.
routine from page wait. For all PCBs for which no I/O has
started, PTS processes any root PCB and then frees the
PCBs. For all PCBs for which 1/0 is active, PTS flags the
PCB to cancel the |/O request. If the 1/O is complete, PTS
frees the PCB and the PFTE if there is no other requestor
for the page. If the purge type is RB, PTS only frees one
PCB. During /0O purge processing, if a PFTFXCT is
decremented to zero, the system fix counters are
decremented by one.

4 ForaTCB purge, PTS frees the FQE for a fix PCB,

and, if requested, purges all in-storage fixes and FOEs.
If the PFTFXCT is decremented to zero, the system fix
counters are decremented by one.

B For an address space purge, PTS calls Delete Address
Space to clean up the RSM resources and real frames.

6 PTS returns to the Recovery/Termination Manager.

Module

Label

L08’€0°TSA

(LO8'€0°ZSA) S dwnjoA Arexqry 307 warshs ZSA/SO #9-S

Diagram 23-26. Real Frame Replacement (IEAVRFR) (Part 1 of 4)

Input

Register 1

From System

Resources Manager (SRM)
(IRARMSRV) °

Process

Parameter Select Routine

1 For each frame queue in the parameter

list, locate each PFTE and test its
status flags.

2 For PFTEs on the common area frame
queue, or the current address space
local frame queue, that are eligible
and selected to be stolen, go to the
Freepage subroutine to do steps 8—9.

Common Frame
Queue

PFTE

Output

Local Frame Queue

PFTE

3 For PFTEs on other local address

Local Frame
Queue
PFTEs

space frame queues that are eligible
and selected to be stolen, set the
“pending steal’’ flag in each PFTE.

Local Frame
Queue
PFTEs

4 f necessary, schedule the Steal
subroutine to asynchronously steal
frames whose PFTEs are marked
"‘pending steal’’

5 When the PFTEs meeting the input steal
criteria on all the input frame queues

have been processed, return to the SRM.

System
Resources
Manager
(IRARMSRV)

LOS'E0TSA

Z uond9y

§9-¢ uoperadg jo poyeN

Diagram 23-26.. Real Frame Replacement (IEAVRFR) (Part 2 of 4)

Extended Description Module Label

Real Frame Replacement (IEAVRFR) scans sets of real IEAVRFR IEAVRFR
frames selected by the System Resources Manager (SRM)

to determine if they are available for stealing. It also

updates the unreferenced interval count (UIC), when

requested. |t returns to the SRM the count of stolen

frames.

1-3 Real Frame Replacement (RFR) gets the SALLOC

lock. Then, for each entry in the input parameter
list, its Select routine accesses the local frame queue
(LFQ) for the specific ASCB, or the common frame
queue (CFQ) if the ASCB address is zero. The common
frame queue contains entries for frames used by areas
such as the PLPA, CSA, and MLPA. Frames represented
on the local frame queues contain the user private area,
excluding LSQA.

RFR processes each PFTE on a queue, and its associated
frame, in one or more of the following ways (as detailed
in substeps a—f below) :

o Skips the frame and doesn’t steal it.

o Increases by one the count of stolen frames.

o Resets the frame's usage history by zeroing its
unreferenced interval count (UIC).

@ Increases by one the unreferenced interval count,
when requested. :

o Flags the PFTE for a “pending steal”.

e Calls the Freepage subroutine (steps 8-9) to steal the
frame.

a) RFR determines that the PFTE is ineligible and
doesn’t steal the frame, if any of these conditions
applies:

e The frame is fixed (PFTE fix count is not zero).

® The frame has outstanding 1/O (PFTE ““PCB-defined”
flag is set).

e The frame is part of a nonpageable region (V=R).

o The frame is already flagged as ‘pending steal’.

o The frame contains a storage error.

Extended Description Module
l b) If the frame has been referenced (hardware reference

bit is on), RFR resets the frame’s usage history by

zeroing the unreferenced interval count (UIC) in the

PFTE. RFR then processes the next PFTE. (The

UIC is a count of the number of intervals in which the

frame's page has not been referenced.)

c) When SRM requests that the UICs be updated,
PFTUIC is incremented by one for each unreferenced
PFTE in the requested queues.

d) The count of stolen frames is increased by one.
If the PFTE belongs to the local frame queues of an

address space other than the current one, RFR flags
the PFTE for a pending steal, then processes the next
PFTE on the queue. (For processing of “pending
steal’’ frames, see step 6.)

If the frame has met the steal criteria (described above),
RFR calls the Freepage subroutine to invalidate the
page and steal the frame. (See steps 8—9.)

| e} When all the eligible frames have been stolen from the
queue being examined, as specified in the input parameter
list, RFR processes the next frame queue.

4 The Steal routine is scheduled via an SRB to be run

in the address space specified by the ASCB address,
if a non-current local frame queue has PFTEs marked
“pending steal’’. (These PFTEs were flagged in substep d,
above.)

5 The count of stolen frames is placed in the count

field of the parameter list entry, for use by the SRM.
After the entire parameter list has been processed, the
Select routine releases the SALLOC lock and exits to the SRM.

Label

LO8'€0°TSA

(L08°€0°TSA) S oumjop Arexqry 31307 waISAS ZSA/SO 99-S

Diagram 23-26. Real Frame Replacement (IEAVRFR) (Part 3 of 4) -

Input

Local Frame Queue

From Select
Routine via
Dispatcher
(IEAVEDSO)

Process

Steal Routine

PFTE

6 For each “pending steal”” PFFE on

the current local frame queue, verify
that the frame is still eligible to be
stolen. If so, call the Freepage
subroutine (steps 8—9).

Available Frame Queue

7 When all “pending steal’”” frames
have been processed, exit to the
Dispatcher.

Dispatcher
(IEAVEDSO)

Freepage Subroutine

8 Call Page Invalidation (IEAVINV)
to invalidate the page table entry for
the page whose frame is to be stolen
and to determine if the frame is still
eligible to be stolen. If the frame is
not still eligible, the page is revalidated.

9 If the page has been changed, it is paged
out by ASM and the frame is returned
to the AFQ when the 1/0 is complete.
If, however, the page has not been
changed, the frame is returned to the
AFQ without paging 1/0. Return is

either to step 2 or step 6

L9-s uonesnd(Jo poyIP g UoKdIS

Diagram 23-26. Real Frame Replacement (IEAVRFR) (Part 4 of 4)

Extended Description Module Label

6 The Steal routine gets the SALLOC lock, frees the IEAVRFRA
input SRB, then processes each PFTE marked

“pending steal’’ on the local frame queue. It checks the

“PCB defined” flag, the ‘‘storage error’’ flag, and the fix

count in the PFTE. If any of these are set, the frame

cannot be stolen. Steal turns off the steal indicators and

gets the next PFTE. Otherwise, Steal calls the Freepage

subroutine (steps 8—9).

7 When it has processed all “‘pending steal’’ PFTEs,
the Steal routine releases the SALLOC lock and
returns, via the Dispatcher, to step 5.

8 The Freepage subroutine invalidates the page by FREEPAGE
calling IEAVINV. Freépage tests the reference

and change bits to ensure that no reference has taken

place since the decision to steal the frame. If the page

has been referenced, it is revalidated, and the PFTE steal

indicators are reset.

Extended Description

O~ If the page has been changed but not referenced,
Freepage calls ASM to write out the page to a
paging data set, and returns the frame's PFTE to the
available frame queue (AFQ} when the I/O completes.
If, however, the page has not been changed, Freepage
returns the PFTE to the AFQ without any paging /0.

Module

Label

LO8’€0'TSA

(LOS'€0°TSA) § dWn[oA Aresqry 1807 weIshS ZSA/SO 89-S

Diagram 23.27. Real Storage Reconﬁgufation Routine (IEAVRCF) (Part 1 of 4)

Input _

Register 1

From VARY STORAGE Processor

(IEEMPVST) or Recovery
Termination Manager
(IEAVTRTH) Process

Parameter List

Root PCB

For storage key errors, try to
reset the real storage key.

For storage data errors, if the real
frame is unchanged, invalidate the
PGTE and put the frame offline.

If the frame is changed, no recovery
is possible.

For VARY STORAGE processing
with the STATUS option, record
the current status of the real frame.

For the CANCEL option, find the
offline processing root PCB and
schedule offline processing.

For the ONLINE option, enqueue’
the offline frames on the available
queue and notify the System
Resource Manager of the new
available frames.

utput

Parameter List

Available Frame Queue
PFTE

69-S uopedQ Jo POISK T UOHIAS

Diagram 23-27. Real Storage Reconfiguration Routine (IEAVRCF) (Part 2 of 4)

Extended Description Module

The Real Storage Reconfiguration (RSR) routine (IEAVRCF)
adds to or subtracts from the real storage frames currently
available for use by the system. When entered for cancel
processing, RSR automatically follows with offline
processing.

1 After obtaining the SALLOC lock, RSR checks the
option field in the parameter list for the option

requested. If entered for a storage key error, RSR calls the
Reset Storage Key routine to reset the key of any frame
for which it has key information. It also sets the change
flag in the frame. If the error is not recovered, RSR sets
error flags in the PFTE and puts a return code of 8 in
register 15,

IEAVRCF

Label

Extended Description Module

2 f entered for a storage data error, RSR sets error

flags in the PFTE. If the frame is unchanged and
pageable, RSR invalidates the PGTE and puts the PFTE on
the available frame queue. If the frame contains changed,
LSQA, or fixed data , RSR sets the pending-status indicator
and sets a return code of 8 indicating no recovery is possible.

3 if entered by VARY STORAGE for status processing,
RSR records status information in the status list.

4 If entered by VARY STORAGE for cancel process-

ing, RSR searches for the offline-processing root
PCB and dequeues it. RSR also posts the ECB with a code
of 4.

5 If entered for online processing, RSR sets the online

flag in each PFTE and puts the PFTEs on the avail-
able queue. Then it notifies SRM of the new available
frames.

Label

(L€ 95313y ZSA) S wnjoA Arerqry 91807 weISAS ZSA/SO OL-S

Diagram 23-27. Real Storage Reconfiguration Routine (IEAVRCF) (Part 3 of 4)

From

PFTE
Enqueue/
Dequeue
(IEAVPFTE)

Root PCB

From Real
Storage
Reconfiguration
{ Via Dispatcher
(IEAVEDSO0)

Root PCB

6 For the OFFLINE option, remove
frames from system use, notify
the SRM of the frames no longer
available, and record the status of the
frames. If some frames are in use,
create root PCB to monitor frames
until they become available to be
marked offline,

7 Return.

To
(IEEMPVST)
or
(IEAVTRTH)

8 Check the real frame number against
the offline root PCB queue,

9 Getan SRB and schedule offline
completion when frames are
available for offline processing.
Go to step 12.

1Q If the frame is unrecoverable, take
it offline and notify SRM.
PFTE
Enqueue/
11 Returmn. Dequeue
Routine
(IEAVPFTE)
12 Post the requestor’s ECB addressed
by the root PCB.
13 Dequeue the root PCB specified and

put it.on the free queue.

Return,

To Dispatcher
(IEAVEDSO0)

Frames Offline and unqueued

| prre |

i

Bt e

Parameter List

|

Root PCB
Pt

SRB

R

PFTE

ECB Posted

e

PCB Queue

PCB

1L-§ uonedQ Jo PoYP g UodAS

Diagram 23-27. Real Storage Reconfiguration Routine (IEAVRCF) (Part 4 of 4)

Extended Description

6 !f entered for offline processing, RSR checks to see if
the frame is in use. If it is not, RSR sets the offline
flag in the PFTE and removes it from the queue it resides
on. If the frame is in use, RSR sets the offline-intercept
flag in the PFTE, sets condition indicators in the frame's
status byte, and builds a root PCB to monitor the request.

7 RSR returns control to the caller, passing a return
code in register 15.

8 RSRisentered from PFTE Enqueue/Dequeue when

a frame with the PFTE offline-intercept flag set is sent
to the available frame queue. RSR searches the offline wait
queue for the corresponding root PCB. If the frame is
accepted for offline processing, RSR resets the offline-
intercept flag in the PFTE and decreases by one the PCB
count in the root PCB.

Module

IEAVRCF

Label

IEARCF!

Extended Description Module Label

9 When the PCB count in the root PCB becomes zero,
RSR schedules a POST of the requestor’s ECB.

(A GETCELL was done early in RSR for an SRB area

for this purpose.)

10 If the frame has a storage error, RSR removes the
PFTE immediately, marks it offline, and notifies*
SRM of the decrease in available frames.

11 When all offline-intercept frames are processed, RSR
returns control to PFTE Enqueue/Dequeue.

12 RSR offline completion is scheduled by the offline- IEAVRCF (EARCFC
intercept subroutine of RSR when the frame count
in the root PCB becomes zero. RSR finds the corresponding

root PCB and posts the ECB specified in the root PCB.

13 RSR then dequeues the PCB and frees the quickcell
used for the SRB.

14 RSR returns control to the Dispatcher.

LOS'E0°TSA

(L08°€0°TSA) §ownjop Areiqry 91807 waIsAS ZSA/SO ZL-S

Diagram 23-28. PFTE Enqueue/Dequeue Routine (IEAVPFTE) (Part 1 of 2)

From an RSM Routine
that manipulates PFTEs.

Input) Process

Register 1

[Parameters] 1 Dequeue a PFTE, if requested.
If the dequeuing drops the available
queue below the threshold, notify
the System Resource Manager.

PFTE
PFTFQPTR
2 Enqueue the PFTE, if requested,

and notify SRM if the available
frame queue count is above
thresholid.

3 !f a PFTE is to be enqueued on the
available frame queue, perform
special processing.

4 Return,

Caller

7 uoog

€L-§ uoneradQ jo poyel

Diagram 23-28. PFTE Enqueue/Dequeue Routine (IEAVPFTE) (Part 2 of 2)

Extended Description

The PFTE Enqueue/Dequeue routine (IEAVPFTE) enqueues
a PFTE (page frame table entry) at the end or the front of

a specified queue, dequeues a PFTE from a specified queue,
or moves a PFTE from one queue to another. The routine
also intercepts PFTEs routed for the available frame queue
{AFQ) and directs them to special queues or other RSM
functions requiring the real storage frame represented by

the PFTE. The caller holds the SALLOC lock.

IEAVPFTE is responsible for increasing and decreasing
the allocated frame count for each address space
(ASCBFMCT) and the common area (PVTCFMCT). It
will also compute the ‘‘page-seconds’ information for
an address space. Page-seconds are the total CPU time
in milliseconds that each frame has used by an address
space. Page-seconds are recomputed before each
change of the local frame count;that is, ASCBFMCT is
increased or decreased.

1 The routine first checks for a dequeue. request. If the
PFTE is on a queue, the specified PFTE is dequeued
and the QID field in the PFTE is set. If the PFTE was
dequeued from the AFQ, special processing is done. The
AFC (available frame count) in the PVT is decreased and
the PFTONAVAQ flag is turned off. If the AFQ is now below
its safe threshold and a SYSEVENT has not been issued,
one is issued to notify the System Resource Manager (SRM)
of the low AFC. if the AFC is zero, a special SYSEVENT
is issued to notify the SRM of the zero AFC.

When dequeuing the PFTE from a local frame queue,
page-seconds are computed and ASCBFMCT is
decremented by one, If the PFTE is dequeued from
the common frame queue, PVTCFMCT is decremented.

2 The routine tests to see if an enqueue operation is

requested. |f the PFTE is not to be enqueued,
IEAVPFTE returns to the caller. If the TQID is the available
frame queue ID, IEAVPFTE checks to see if the PFTE has
been intercepted. If the V=R intercept flag is set, the V=R
Intercept subroutine of V=R allocation (IEAVEQR) is
called, passing the RBN of the PFTE. This subroutine
returns either a zero RBN or the RBN of the PFTE passed
by the intercept processor. If a zero RBN is returned, the
frame is intercepted for V=R Allocation; IEAVPFTE

Module

IEAVPFTE

Label

IEAVPFTE

Extended Description Module

returns control to the caller. If the returned RBN is not
zero, or if the V=R intercept flag was not set, the PFTE
offline intercept flag is tested. If the offline intercept flag
is set, the PFTE is passed to Real Storage Reconfiguration
{IEAVRCF). If the Reconfiguration routine returns a zero
RBN, the frame has been intercepted for offline or is a
bad page; |IEAVPFTE returns control to the cailer. If the
Reconfiguration routine returns the input RBN, or if V=R
Allocation returned the RBN and the PFTE offline inter-
cept flag is not set, processing continues. This also occurs
if no intercept flags are set in the PFTE. IEAVPFTE then
checks to see if the SQA Reserve Queue requires frames. If
so, the PFTE is diverted to the SQA Reserve Queue. If
not intercepted, IEAVPFTE enqueues the PFTE on the AFQ.
If the input TQID was not X'FF’ and was not the AFQ
ID, then IEAVPFTE puts the TQID in the PFTE and
engueues on it on the end of the specified queue. If the
TQID is X'00’ and the special ’head of queue’ flag is set,
the PFTE is placed at the head of the AFQ. If the

PFTE is to be enqueued to a local frame queue, page-
seconds are computed and ASCBFMCT is incremented.

If the PFTE is to be ehqueued to the common frame
queue, PVTCFMCT is incremented. Then IEAVPFTE
returns to the caller.

3 if the PFTE is to be queued on the Available Frame

Queue (AFQ), IEAVPFTE sets to zero the storage
keys on the real frame, enqueues the PFTE, and increases
the available frame count (AFC) in the PVT. If a low-
threshold violation is outstanding, IEAVPFTE checks to see
if the new AFC is equal to or greater than the safe threshold.
if it is, IEAVPFTE notifies the SRM that the AFC is suf-
ficient. Next, IEAVPFTE tests the GFA defer queue. If
there is a PCB for which defer processing has not been
scheduled, and whose address space does not have defer
processing scheduled, then IEAVPFTE schedules GF A defer
processing with an SRB. Then IEAVPFTE returns to the
caller.

Label

LOS'€0°TSA

(L08°€0°TSA) §awnjoA Areiqi] o180 woIsAS ZSA/SO ¥L-S

Diagram 23-29. PCB Manager (IEAVPCB) (Part 1 of 2)

From IPL CPU Initialization
or an RSM routine

Input Process Output

IEAVPCB

1 Set up free queue of PCBs in SQA
and build quickcell pool of SRBs
in SQA space.

PCB
Free Queue

When calied by an RSM routine that
requests the build option, dequeue
PCBs from the free queue and, if
necessary, perform step 4 to extend
the PCB pool.

PCB Queues
PCB Queues

When calied for enqueuing or
dequeuing, enqueue or dequeue the
specified PCB fromits current
queue. Go to Step 5.

Get SQA space for PCBs
if the pool is running low.

5 Return to caller.

IEAVREP2—-IEAVREP3

6 Replenish pool of SRBs via
GETMAIN/BLDCPOOL in SQA.

IEAVREP1

Replenish SRB pool in SQA (as
in step 6).

Schedule IEAVIOCP to appropriate
address space if necessary.

Return to the dispatcher.

To Dispatcher
(IEAVEDSO)

G/-¢ uonesddQ Jo POYIdy g UONIAg

Diagram 23-29. PCB Manager (IEAVPCB) (Part 2 of 2)

Extended Description Module Label

The PCB Manager (IEAVPCB) obtains PCBs (page control
blocks) from the PCB free queue, dequeues, enqueues,
and moves PCBs. In addition, the routine attempts to
maintain a minimum number of PCBs on the free queue
by replenishing the queue. Entries tEAVREP1,
IEAVREP2, and IEAVREP3 are used by RSM routines
to replenish the SRB pool.

1 IEAVPCB checks the input PCB address. If it is zero,
the caller requests the build option. IEAVPCB checks
for zero PCBs requested. if zero PCBs are requested and
IEAVNIPO is the caller, IEAVPCB builds a pool of PCBs
in SQA. An internal routine, IEAVREP3, is invoked to
build and initialize (BLDCPOOL) a pool of SRBs in SQA.
Step 5 is then performed. If zero PCBs are requested and
IEAVNIPO is not the caller, a return code of 4 is passed
to the caller. If it is not a zero PCB request, IEAVPCB
checks to make sure there are enough PCBs on the free
queue to satisfy the request. {f there are not enough
PCBs on the free queue, IEAVPCB expands the pool if
possible, unless the GETMAIN-Inhibit flag is set. If the
entire request cannot be satisfied, |EAVPCB returns
control to the caller with a return code of 4.

IEAVPCB IEAVPCB

IEAVPCB IEAVREP3

If there are enough PCBs on the free queue to satisfy a
request or if enough have now been obtained, the specified
number of PCBs are all removed at one time; this prevents
loss of the chain pointers for PCB requests greater than one.
The number of PCBs dequeued is subtracted from the free
queue depth. If the new depth value is below the free queue
threshold, the GETMAIN inhibit bit is tested. If this flag

is set, return is made to the caller. If the GETMAIN

inhibit bit is not set, the PCB Replenish routine is called.

In either case, return is made to the caller with a zero
return code. For requests of more than one PCB, the PCBs
are chained together using the standard chain pointers. All
PCBs obtained for the caller wiil be set to zero, except the
chain pointer fields and the queue number fields which are
set to X'FF’, and the AIAUSER/1 field, which points to the
PCB Address.

Extended Description Module

2 Forabuild request, IEAVPCB obtains SQA space for
a calculated number of PCBs and for an equal number
of SRBs.

3 If the input PCB address is not zero, IEAVPCB performs
dequeuing or enqueuing based on what the PQN and

TQN parameters specify. If dequeued, the PCB queue num-

ber field is set to X'FF’. For enqueuing, the PCB is placed

at the end of the specified queue. Then IEAVPCB returns

control to the caller with a return code of 0.

4 |EAVPCB clears the SQA space to zero and constructs
the PCBs required. The PCBs are enqueued on the
free PCB queue and the queue depth is updated.

5 Return to the calier.

6 Entry IEAVREP2 is branch entered by RSM
routines requiring an SRB when the SRB pool has
been depleted. IEAVREP2 wili replenish the pool.

7 Entry IEAVREP1 is entered via SRB scheduled by
IEAVPIOP or IEAVREP1 itself to replenish the
SRB pool.

8 [IEAVREP1 scans the RSMHD in each address space
to determine if IEAVIOCP should be scheduled.

When this is necessary, an SRB is obtained from the

pool (via GETCELL) and IEAVREP1 is scheduled. If

the GETCELL fails, IEAVREP1 schedules itself (using

an SRB in the PVT) to replenish the pool.

Label

(L°¢ 95¥319Y TSA) §oWM[OA Arexqry 91807 WojsAS ZSA/SO 9L-S

Diagram 23-30. Page Invalidation Routine (IEAVINV) (Part 1 of 2)

From an RSM Routine
(see extended description)
Process

input

For uniprocessor operation, go to
step 3.

External .
ls::”"d 't-"’e' 1 Pass control to the slave routine in
Ha:::e‘f each CPU via IEAVERI.

(IEAVEES)
Slave routine waits for an indication
that it can purge its TLB, then does
so and returns.

utput

External
Second Level
Interrupt
Handler

{IEAVEES)

When all CPUs are running in the

slave routine or, for uniprocessor
operation, invalidate the page table
entry and purge the TLB on the
master CPU.

4 Return,

Caller

(see extended description)

T uonoag

LL-s uoneiadQ Jo poyrol

Diagram 23-30. Page Invalidation Routine (IEAVINV) (Part 2 of 2)

Extended Description Module

The Page Invalidation routine (IEAVINV) performs all
necessary interprocessor synchronization, sets the page
table entry invalid bit, and purges the translation lookaside
buffer on every processing unit in the system. The main
routine must be entered with the SALLOC lock. This
routine is entered from the following RSM routines:
IEAVRFR, IEAVRCF, IEAVOUT, IEAVPIOI,
IEAVDLAS, and IEAVGFA.

1 When executing in an MP environment, IEAVINV sets IEAVINV
its internal indicator to zero and signals all other proc-
essors in the system to execute the slave subroutine.

2 Thecalled (slave) subroutine of IEAVINV executing
on the other processor sets the global spin indicator in
the LCCA and waits for the internal indicator to be set to
X‘FF’. While waiting, the slave subroutine allows intermit-
tent emergency signals and malfunction alert signals. When
the slave subroutine finds X‘FF' in the internal indicator,
it purges its translation lookaside buffer, resets its global
spin indicator, and returns.

3 When all other processors are in the slave subroutine,

or when only one processor is online, IEAVINYV sets
the PGTE invalid bit to one, sets the internal indicator to
X‘FF’, and purges its translation lookaside buffer. If the
PGTE address is zero, no invalidation occurs but the other
operations take place. Then IEAVINV returns control to
the caller.

Label

IEAVINV

IEAVINVA

Input

(L°€ 349 TSA) S dWNJOA Areiqr] NBo] wasAS TSA/SO 8L-S

Diagram 23-31. Find Page Routine (IEAVFP) (Part 1 of 2)

Fromany
non-RSM or

Routi
RSM Routine Process

Register 1 .
Virtual Address 1 Get virtual address of page table.

2 Calculate page table entry and
external page table entry addresses.

Rlster 14

I " Return Address 3 Return.

Caller

Output

Register 0

| PGTE Address

Register 1

r XPTE Address

Register 15

| Return code

6L-S uoneIdd(JO POYIOW :Z UOHOSS

Diagram 23-31. Find Page Routine (IEAVFP) (Part 2 of 2)
Extended Description Module

The Find Page routine (IEAVFP) locates the page table
entry (PGTE) and/or external page table entry (XPTE) cor-
responding to virtual address.

1 Find Page gets the virtual address of the page table by IEAVFP
translating the real address obtained from the segment

table entry referenced by the virtual storage address. If the

segment referenced is invalid, Find Page returns control to

the caller with a return code of 4 in register 15.

2 Find Page calculates the PGTE and XPTE addresses
from the virtual address of the page table and the page
number obtained from the virtual address.

3 When the calculation is complete, Find Page returns
control to the caller.

‘Label

IEAVFP

(L°€ 9swapoY ZSA) § SwnjoA Areaqry o180] waNSAS ZSA/SO 08-S

Diagram 23-32. Translate Real to Virtual Routine IEAVTRV) (Part 1 of 2)

From routine requiring
address transiation

Input bProcess

Register 1

Check validity of real address
input.

Real Address

PFT

Convert real address to virtual

address using page frame table entry,

Output

Register 0

{ ASID

Register 1

[Virtual Address

18- uonesdQ Jo poyid| :g UoNdIS

Diagram 23-32. Translate Real to Virtual Routine (IEAVTRV) (Part 2 of 2)

Extended Description Module

The Real to Virtual Translation routine (IEAVTRV)

provides the virtual storage address and address space
ID for an input real storage address. No locks are re-

quired.

1 Translation of real to virtual checks the real storage IEAVTRV
address input. If the real address exceeds the

boundaries of real storage, Translation returns to the

caller with a return code of 4 in register 15.

2 If the real address is in the nucleus, Translation leaves
the input address unchanged and sets register O, the
ASID, to X'FFFF’ to indicate common area storage. If the
address is not in the nucleus, Transtation uses the input
real address to find the page frame table entry; it then
locates the virtual address and address space |1D associated
with the PFTE. If the frame is invalid, or on the available
queue, or offline, or being used by VIO, Translation returns
a code of 4 in register 15, signifying unsuccessful translation.

3 Transiation returns to the caller with a code of 0 in
register 15 if translation is successful.

Label

IEAVTRYV

(L08°€0°ZSA) §awmnjop Areiqry a0 walsAS ISA/SO 78-S

Diagram 23-33. RSM Functional Recovery Routine (IEAVRCYV) (Part 1 of 2)

From Recovery/Termination

Manager (IEAVTRTM)

Process

1 For intentionai ABENDs, percolate to

2 Initialize SDWA fields and set
up for retry or SVC DUMP, if
specified.

3 Check for special recovery situations:

4 Route control for retry.

5 Return, indicating percolation or
retry.

Recovery/Termination.

Intercept routine error.

Page fault error.

Swap-in completion errort
Swap-in SRB error.

Swap Post.

PSl error.

To Recovery/Termination Manager
(IEAVTRTM)

Output

LOS’€0°TSA

€8-¢ uonerndQ jJo poyssjy :z uorpag

Diagram 23-33. RSM Functional Recovery Routine (IEAVRCYV) (Part 2 of 2)

Extended Description

The RSM Functional Recovery Routine (IEAVRCV) pro-
vides threk services:

o The recording of software errors in RSM modules.

o The clean-up of locks and deletion of the FRR for inten-
tional ABEND situations.

@ The handling of unexpected errors by dumping, record-
ing, releasing locks, and attempting to contain the effects
of the error.

1 After setting up a recovery FRR, the FRR checks the

RCAABEND flag for an intentional ABEND situation.
If one exists, the FRR releases any locks gotten by the RSM
function, deletes the recovery FRR, indicates ‘‘continue
with termination’’ and returns control to R/TM.

2 The FRR verifies the PVT pointer in the CVT. Next,
the FRR checks the SDWA to see if the error was per-
colated. 1f so, the FRR does no recording. If not, the FRR
sets fields in the SDWA to prepare for recording of the
error. If the error was a non-percolated X'COD’, the
FRR sets up for retry after calling for a dump. The FRR
returns control to the point immediately following the
X'COD’ ABEND that called it.

Module Label

IEAVRCV |IEAVRCV

Extended Description

3 If the V=R Intercept or Reconfiguration Intercept
routine (IEAVEQRI or IEAVRCFI) was running, the
FRR indicates retry at the point addressed by register 14.

If RSM is providing second-level interruption handling for a
page-fault program check, the FRR retries at an address
within IEAVRCV, using RCAPARMI as a guide for process-
ing: if RCAPARMLI is zero, the FRR sets the return code to
12 in register 15; if it is not zero, the retry routine sets the
-eturn code to zero to allow any paging 1/0 in progress to
complete. Then the retry routine frees the SALLOC fock,
deletes the RSM FRR and passes control to the Program
Check Interrupt Handler (IEAVEPC).

If the Swap-in Root Exit is executing, the FRR abnormally
terminates the swapped-in address space and attempts retry
at the address saved from register 14.

If the Swap-in SRB is executing, the FRR abnormally
terminates the swapped-in address space and attempts
to retry at the Dispatcher entry point used for SRB
exits.

If the Swap-In-Post is executing and the RCARETAD
is non-zero, the FRR releases the SALLOC lock, if
held, and attempts retry at the address specified in
RCARETAD. 1f RCARETAD is zero, the FRR
performs the same processing described in paragraph 5.

If IEAVPSI has suffered a program check because of bad
input parameters, the FRR changes the ABEND code to
X‘17" and indicates ‘‘continue with termination’’.

4 If none of the special situations apply, the FRR
checks to see if retry will be handled by internal RSM

routines. If so, and if RCARETAD is non-zero, the FRR

attempts retry at the address specified in RCARETAD.

5 The FRR performs lock clean-up and deletion of its
own FRR. Then it returns control to R/TM, passing
a percolate or retry return code previously set.

Module

Label

LOS’€0°TSA

(LOS°€0°TSA) § sumjop Arerqry 918077 ue)SAS ZSA/SO #8-S

Diagram 23-34. RSM Preferred Area Steal (IEAVPREF) (Part 1 of 2)

From LSQA/SQA Allocation (IEAVSQA) or
General Frame Allocation (IEAVGFA)

Input Process : Output

Register 1
RBN

1 Scan input PFTE queue,
looking for acceptable
steal candidate.

\

PVT
\ (index)

\

PVTPFTP |

PFTE Queue

Register 15
RBN

2 If found, return real block
number {(RBN) to caller.
Else set return code to zero.

Register 1 Group of PFTEs
m 3 Mark all PFTEs in same
storage unit as preferred.
N\
\lindex)
N\, PFTE

Issue message regarding status
of storage, if message was not
already -issued.

To LSQA/SQA Aliocation (IEAVSQA) or
General Frame Allocation (IEAVGFA)

§8-S uonesad(jo poyPW :7 UONIS

Diagram 23-34. RSM Preferred Area Steal IEAVPREF) (Part 2 of 2)

Extended Description Module

The preferred area steal routine runs as a subroutine of
IEAVGFA or IEAVSQA. Its purpose is to either scan an
input frame queue to select a preferred area frame to steal
or convert the status of a storage unit from non-preferred
to preferred storage.

1 If the call is to steal, the input RBN is the first RBN IEAVPREF
on the frame queue to be searched. Each frame is

examined until one is found which meets the ctiteria for

the steal.

2 fasuitable frame to be stolen is found, its RBN is

returned to the caller. Otherwise, sets zero return
code to indicate that the specified real biock number
could not be found.

3 if thecall is to convert, the input RBN is used to

identify the physical storage unit to be converted
from non-preferred to preferred storage. Every PFTE in
the unit is updated by turning on the PFTPREF flag to
indicate to RSM that the preferred area has been
expanded to include these frames.

4 |f message IEA988I has not been issued, it is

written to the operator, and a flag is set indicating
that the message has been written. Control returns to
the caller.

Label

IEAVPREF

5-86 0OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

Virtual storage is the name given to the entire span
of addresses available on a System/370 system
with the dynamic address translation feature
enabled. The size of virtual storage is equal to the
size of real storage when the system is operating
with the dynamic address translation feature
disabled. When the system is in extended control
mode, with the dynamic address translation feature
enabled, the size of virtual storage is limited only
by the addressing capability of the system, not by
the size of real storage.

Like other system resources, virtual storage can
be shared by many system users. Consequently, the
allocation of virtual storage must be supervised.
Space must be allocated to a user when it is needed
and freed when it is no longer needed. The
supervisor routines that control the allocation and
release of virtual storage are referred to as VSM
(virtual storage management) routines.

The VSM routines service two macro
instructions: GETMAIN (used to allocate storage)
and FREEMAIN (used to release previously
allocated storage). When executed, each macro
instruction results in an SVC interruption and
passage of control to the appropriate VSM routines.

Requests for allocation of virtual storage are
serviced by the GETMAIN routines. These routines
service all requests for virtual storage, including
requests for a new region, space within an existing
region, space within a system queue area, space
within a local system queue area. The GETMAIN
routines create, reference, and continually update
queues of control blocks to determine whether a
request for storage can be satisfied, and from
where the storage is to be allocated. The GETMAIN
routines pass the address of the allocated area to
the requesting routine.

Requests to free virtual storage are serviced by
FREEMAIN routines. These routines update control
block queues to relfect the release of previously
allocated space, thereby making the space available
for reallocation. The FREEMAIN routines service all
requests to free virtual storage, including requests
to free an entire region, space within a region,
space within a local system queue area, and space
within the system queue area.

The VSM routines assign blocks of storage to the
various tasks according to their needs. The vsSM
routines:

» Allocate virtual storage blocks on request.

+ Release virtual storage blocks on request.

i

Virtual Storage Management

« Ensure that real (fixed by definition)
page-frames exist for all SQA, LSQA, and
nonpageable (V=R) region space allocated.

« Maintain storage usage information for use by
System Management Facilities.

« Protect storage with fetch protection and
storage protection keys.

The GETMAIN and FREEMAIN routines are
supported by the GETPART and FREEPART
routines, which allocate and free regions and their
associated control block space.

The GETPART and FREEPART routines are called
by GETMAIN and FREEMAIN to allocate and free
space for an entire virtual region. These routines
can process requests for both pageable (V=V) and
nonpageable (V=R) regions. For V=R region
requests, VSM passes control to Real Storage
Management to allocate real storage frames to
match the virtual pages allocated for the V=R
region.

VSM also comprises a set of routines which
handle intialization and termination of VSM
resources within an address space.

The Create/Free Address Space routines are
called by Address Space Create and Address Space
Termination to allocate and initialize or delete
address space control block space for a new
address space. The Create Address Space routine
calls Real Storage Management to initialize the
RSM control blocks for the new address space. A
subroutine within the Create/Free Address Space
routines performs storage clean-up when a task
terminates. It frees all local storage being used by
the terminating task.

Another set of routines satisfy requests for quick
cells, small fixed-length blocks of storage in the
SQA or in the LSQAs that can be allocated quickly
and that can be expected to be used repeatedly
during short periods of time.

The Build Quick Cell Pool routine establishes a
set of quick cells within an area of storage
specified by the requester, a system routine. It
formats the storage into a "best fit" number of
quick cells or extends an established pool by
formatting the new space and enqueuing it from
the old pool space.

Section 2: Method of Operation 5-87

~ s

The GETCELL routine allocates a quick cell from
an established cell pool. The FREECELL routine
frees a quick cell for further use by returning it to
the pool from which it was allocated.

The Delete Quick Cell Pool routine deletes all or
part of a pool of quick cells, either freeing the
storage or enqueuing the storage to be freed by the
user.

Another routine allows the protection key for
one or more areas of virtual storage to be
manipulated. Both the storage protection key and
the fetch protection key for a page that has been
allocated by GETMAIN can be changed by using
the change key routine (CHANGKEY).

5-88 0S/VS2 System Logic Library Volume 5 (VS2.03.805)

vS2.03.805

‘Subpools

A subpool is a group of logically related storage
blocks identified by a subpool number. The
subpool number indicates to VSM the kind of
storage that is requested. Figure 2-44 summarizes
the subpool assignments.

Subpool
Number Indicates Request for Attributes of Subpool Notes
0-127 Space within a region Job-oriented These are the only valid subpool numbers for problem
Pageable programs. A request for a higher number will cause the
Job step’s protection key problem program to be abnormally terminated. When
Fetch-protected subpool 0 is requested by programs in supervisor state
and key 0, subpool 252 is assigned.
128 Reserved for compatibility with VSI. Treated as an error.
129-226 Undefined.
227 Fixed giobal space User protection key Multiple-key system queue area. Space is obtained
(explicitly assigned Fixed from the Common Service Area (CSA).
and freed) System-oriented
Explicitly assigned and freed
Fetch-protected
228 Fixed global space User protection key Multiple-key system queue area. Space is obtained
{explicitly assigned Fixed from the Common Service Area (CSA).
and freed) System-oriented
Explicitly assigned and freed
Not fetch-protected
229 Private Area Storage User protection key Automatically freed at task termination. Assigned from
Pageable top of private area.
Fetch-protected
230 Private Area Storage User protection key Freed automatically at task termination. Assigned from
Pageable top of private area.
Not fetch-protected
231 Space within CSA User protection key Assigned in Common Service Area.
(explicitly assigned Pageable
and freed) Fetch-protected
System-oriented
Explicitly assigned and
freed
232 Reserved. Treated as an error. Used in OS/VS2 Release 1
for TSO external page storage.
233 Space within LSQA Job-oriented Allows a task running in key 0 to acquire accountable,
(task-related) Fixed fixed, protected storage that is job-oriented and freed
Protection key =0 at end of task. Space is assigned from subpool 253.
Task-related
Swappable
Not fetch-protected
234 Space within LSQA Job-oriented Allows a task running in key O to acquire accountabie,
(job-step-related) Fixed fixed, protected storage that is job-oriented and freed
Protection key =0 at end of job step. Space is assigned from subpool 254.
Job-step-related
Swappable
Not fetch-protected
235 Space within LSQA Job-oriented Allows a task running in key 0 to acquire non-accountable,
(explicitly assigned Fixed fixed, protected storage that is job-oriented. Space is
and freed) Protection key =0 assigned from subpool 255,
Explicitly assigned and
freed
Not fetch-protected
Swappable

Figure 2-44. Subpool Assignments (Part 1 of 3)

Section 2: Method of Operation

5-89

Sﬁbpool
Number Indicates Request for Attributes of Subpool Notes
236 Space within SWA For system use only To assign or free pageable virtual storage for the
Protection key = 1 scheduler work area,
Not fetch-protected
\
237 Space within SWA For system use only To assign or free pageable virtual storage for the
Protection key =1 scheduler work area.
Not fetch-protected
. . . \
238 Reserved for compatibility with OS/VS1.
Treated as an error.
239 Fixed, Global Space Fetch-protected System queue area space obtained from the Common
(explicitly assigned Protection key = 0 Service Area (CSA). Treated as subpool 227
and freed) Explicitly assigned and key-zero space.
freed
———
240 Space within a region Job-oriented Treated as subpool 250 to maintain compatibility with
(job-step-related) Pageable MFT and OS/VSI. Automatically freed at end of step,
Job step’s protection key
Fetch-protected
Job-step-related
241 .Space within CSA System-oriented Assigned in the Common Service Area.
Pageable
User protection key
Explicitly assigned and
freed
Not fetch-protected
242 Nonpageable For scheduler use only A new nonpageable (V = R) region is assigned or an
V =R region existing nonpageable region is freed.

243 Reserved. Treated as an error. Usad in OS/VS2 Release 1
for SQA space. '

244 Reserved. Treated as an error. Usad in OS/VS2 Release 1
for SQA space.

245 Space within SQA System-oriented Allows a task running in key 0 to acquire non-accountable,

(explicitly assigned and Fixed fixed, protected storage that is system-oriented.
freed) Protection key =0
Explicitly assigned and
freed
Not fetch-protected

246 Reserved. Treated as an error. Used in MVT to exchange
regions.

247 Pageable (V = V) region For scheduler use only A new pageable (V = V) region is assigned or an existing
pageable region is freed. External page storage alfocation
is assumed when using this subpool.

248 Reserved. Treated as an error. Used in MVT for rollout/
rollin.

249 Reserved. Treated as an error. Used in OS/VS2 Release 1
for LSQA segments.

250 Space within a region Job-oriented Allows a task running in supervisor state

Pageable and key O state to acquire unprotected storage in the
Job step’s protection key user’s region. All subpool 250 requests are assigned
Job-step-related subpool 0 of the associated task.

Fetch-protected

Figure 244. Subpool Assignments (Part 2 of 3)

590 OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

PP sl

w—-——
Subpool it
Number Indicates Request for Attributes of Subpool Notes
0-127 Space within a region Job-oriented These are the only valid subpool numbers for problem
Pageable programs. A request for a higher number will cause the
Job step’s protection key problem program to be abnormally terminated. When
Fetch-protected subpool O is requested by programs in supervisor state
and key 0, subpool 252 is assigned.
128 Reserved for compatibility with VSI, Treated as an error.
129-226 Undefined.
227 Fixed global space User protection key Multiple-key system queue area. Space is obtained
(explicitly assigned Fixed from the Common Service Area (CSA).
and freed) System-oriented
Explicitly assigned and freed
Fetch-protected
228 Fixed global space User protection key Multiple-key system queue area. Space is obtained
(explicitly assigned Fixed from the Common Service Area (CSA).
and freed) System-oriented
Explicitly assigned and freed
Not fetch-protected
229 Private Area Storage User protection key Automatically freed at task termination. Assigned from
Pageable top of private area.
Fetch-protected
230 Private Area Storage User protection key Freed automatically at task termination. Assigned from
Pageable top of private area.
Not fetch-protected
231 Space within CSA User protection key Assigned in Common Service Area.
(explicitly assigned Pageable
and freed) Fetch-protected
System-oriented
Explicitly assigned and
freed
232 Reserved. Treated as an error. Used in OS/VS2 Release 1
for TSO external page storage.
233 Space within LSQA Job-oriented Allows a task running in key 0 to acquire accountable,
(task-related) Fixed fixed, protected storage that is job-oriented and freed
Protection key = 0 at end of task. Space is assigned from subpool 253.
Task-related
Swappable
Not fetch-protected
234 Space within LSQA Job-oriented Allows a task -running in key O to acquire accountable,
(job-step-related) Fixed fixed, protected storage that is job-oriented and freed
Protection key = 0 at end of job step. Space is assigned from subpool 254.
Job-step-related
Swappable
Not fetch-protected
235 Space within LSQA Job-oriented Allows a task running in key O to acquire non-accountable,
{explicitly assigned Fixed fixed, protected storage that is job-oriented. Space is
and freed) Protection key = 0 assigned from subpool 255.
Explicitly assigned and
freed
Not fetch-protected
Swappable
Figure 2-44. Subpool Assignments (Part 1 of 3)

Section 2: Method of Operation 5-89

¢ g
Subpool
Number Indicates Request for Attributes of Subpool Notes
236 Space within SWA For system use only To assign or free pageable virtual storage for the
Protection key = 1 scheduler work area.
Not fetch-protected
237 Space within SWA For system use only To assign or free pageable virtual storage for the
Protection key =1 scheduler work area.
Not fetch-protected
238 Reserved for compatibility with OS/VS1.
Treated as an error.
239 Fixed, Global Space Fetch-protected System queue area space obtained from the Common
(explicitly assigned Protection key = 0 Service Area (CSA). Treated as subpool 227
and freed) Explicitly assigned and key-zero space.
freed
240 Space within a region Job-oriented Treated as subpool 250 to maintain compatibility with
{job-step-related) Pageable MFT and OS/VSIi. Automatically freed at end of step.
Job step’s protection key
Fetch-protected
Job-step-related
241 .Space within CSA System-oriented Assigned in the Common Service Area.
Pageable
User protection key
Explicitly assigned and
freed
Not fetch-protected
242 Nonpageable For scheduler use only A new nonpageable (V = R) region is assigned or an
V = R region existing nonpageable ragion is freed.

243 Reserved. Treated as an error. Used in OS/VS2 Release 1
for SQA space. '

244 Reserved. Treated as an error. Used in OS/VS2 Release 1
for SQA space.

245 Space within SQA System-oriented Allows a task running in key O to acquire non-accountable,

(explicitly assignedia’nd Fixed fixed, protected storage that is system-oriented.
freed) Protection key =0
Explicitly assigned and
freed
Not fetch-protected

246 Reserved. Treated as an error. Used in MVT to exchange
regions.

247 Pageable (V = V) region For scheduler use only A new pageable (V = V) region is assigned or an existing
pageable region is freed. External page storage allocation
is assumed when using this subpool.

248 Reserved. Treated as an error. Used in MVT for rollout/
rollin.

249 Reserved. Treated as an error. Used in OS/VS2 Release 1
for LSQA segments.

250 Space within a region Job-oriented Allows a task running in supervisor state

Pageable and key O state to acquire unprotected storage in the
Job step’s protection key user’s region. All subpool 250 requests are assigned
Job-step-related subpool 0 of the associated task.

Fetch-protected

Figure 2-44. Subpool Assignments (Part 2 of 3)

590 OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

Subpool
Number Indicates Request for Attributes of Subpool Notes
251 Space within a region Job-oriented Allows an authorized task to acquire accountable,
Job step’s protection key unprotected, pageable storage in the user’s partition.
Job-step-related Space is job-oriented and automatically freed at the
Fetch-protected termination of the job step. Used for modules not loaded
into Subpool 252 from the low end of storage.
252 Space within a region Job-oriented Allows a task running in key O to acquire accountable,
Protection key = 0 pageable, protected storage in the user’s region that is
Job-step-related job-oriented and automatically freed at the termination
Not fetch-protected of the job-step task. Used for reenterable modules from
authorized libraries.
253 Space within LSQA Job-oriented Allows a task running in key O to acquire fixed,
(task-related) Fixed accountable, protected storage in the LSQA for the user's
Protection key = 0 region that is job-oriented and freed when the task
Task-related terminates.
Not fetch-protected
Swappable
254 Space within LSQA Job-oriented Allows a task running in key O to acquire fixed,
(job-step related) Fixed accountable, protected storage in the LSQA for the user’s
Protection key =0 region that is job-oriented and freed when the job step
Job-step-related terminates.
Swappable
Not fetch-protected
255 Space within LSQA Job-oriented Allows a task running in key O to acquire fixed, non-
(explicitly assigned and Fixed accountable, protected storage in the LSQA that is job-
freed) Protection key = 0 oriented and must be explicitly freed.
Explicitly assigned and
freed
Swappable
Not fetch-protected
Figure 2-44. Subpool Assignments (Part 3 of 3)

Section 2: Method of Operation 5-91

592 0S/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

£6-S uonerndQ jo poYRH :Z UOIOIS

Virtual
Storage
Management
Overview
{no diagram)

Figure 2-45. Virtual Storage Management Visual Contents

(Address Space)

24-1 24-2 245 246 | 24.7 | 2412
GETMAIN FREEMAIN Create Address Free Address Task CHANGKEY
(IEAVGMO0) (IEAVGMO00) Space Space Termination (IEAVCKEY)

(IEAVGCAS) (IEAVGCAS) (IEAVGCAS)
(Cell Pools)

24-3 244 24-8 | 249 | 24-10 | 24-11
GETPART FREEPART Build/Cell GETCELL FREECELL Delete Cell
(IEAVPRTO) (IEAVPRTO) Pool (IEAVGTCL) (IEAVFRCL) Pool

(IEAVBLDP) (IEAVDELP)

S08'€0°CSA

(S08°€0°CSA) §own|oA Areiqry o180 wayshS ZSA/SO 16§

Diagram 24-1. GETMAIN Routine (IEAVGMO00) (Part 1 of 2)

From SVC First Level Interrupt
Handler (IEAVEEXT) or a
supervisor routine

lnput via branch entry Process

. Reg1 Parameter

1 Setup internal parameters

for processing request.

Check the subpool number and
initialize pointers to it.

For subpools 242 or 247, pass
control to GETPART for special
processing.

Contents at
entry

Reg 10

Ptr to
Length List

Reg 11

Error Code 1

List of
Addresses

LDA

LDARQSTA|

SPQE

SPQEPTR

Satisfy the request as

specified.

Reg 14

)| SPQEFLGS

"SPQEKEY

SPQEID

L Return Address

To EXIT Prolog
(IEAVEEXP)

$6-S uonesdQ Jo POYISW T UONIAS

Diagram 24-1. GETMAIN Routine (IEAVGMO00) (Part 2 of 2)

Extended Description

The GETMAIN routine (IEAVGMO0O) allocates virtual stor-
age in the SOA and CSA and in the LSQA, SWA, and user
region of each virtual memory. It also provides storage-used
figures for System Management Facilities use.

1 For entry points {GC004 and 1GC005, GETMAIN

checks the validity of all input parameters and lists.
For all other entry points, no validity checking occurs.
GETMAIN then sets up internal parameters describing
the operation to be performed and the information
needed to perform it.

2 GETMAIN checks the subpool number in the parameter

list. If subpools 242 or 247 are requested, GETMAIN
passes control to GETPART (IEAVPRTO). For other sub-
pools, GETMAIN checks the validity of the subpool request
and the authorization of the user. If the subpool request is
invalid, GETMAIN abnormally terminates the user with a
code of Bxy, where xy is the hexadecimal SVC under which
GETMAIN was called. For authorized subpool requests,
GETMAIN obtains pointers to the relevant control blocks,
such as the TCB, GDA (Global Data Area), and the SPQE
(Subpool Queue Element).

Module

IEAVGMO0
IEAVEVAL
IEAVEVAL

IEAVGMO00

IEAVPRTO

Label

GMBASE
IEAOVLOO
IEAOVLO1

CSPCHK

IEAVPRTO

Extended Description

3 GETMAIN creates an SPQE if no SPQE exists. Then it
searches for virtual storage to satisfy the request. f
the requested space is not available, GETMAIN sets register
15 to 4 or 8 for conditional requests. For unconditional
requests, GETMAIN abnormally terminates the task. If
the space is available, GETMAIN updates the FQE to show
the allocated storage and notifies SMF and SRM how much
has been allocated.

4 GETMAIN returns control to the caller with a return

code of O for a successful allocation or an error return
code of 4 or 8 if the request is conditional; GETMAIN
schedules an abnormal termination if the request is
unconditional.

Error Processing

When an error occurs in GETMAIN, Recovery Termination
passes control to the FRR. The FRR records information
on SYS1.LOGREC, calls for an SVC DUMP, and tries to
repair the subpoo! queues. Then for unexpected errors
{machine check, program check, etc), the FRR percolates
the error for higher level recovery to RTM. For SALLOC
lock release or page release failures, the FRR returns control
for execution to continue. For other errors, the FRR issues

a completion code of 7xy (where xy is the SVC number under

which GETMAIN was called) and then percolates the error
through RTM.

Module
IEAVGMO00

IEAVGMOO
IEAVGMO0

IEAVGMOO0
IEAVGMO00
IEAVGMO0

IEAVGMOO0

IEAVGFRR

Label

GSPQESPC
GETMAINB
GRRECORE

GFQEUPDT

SRMSTART

GMSMFCRE

GERROR

IEAVGFRR

(L°€ 958319y ZSA) § dwNjoA Arexqry 018077 WasAS ZSA/SO 96-S

Diagram 24-2. FREEMAIN Routine (IEAVGMO00) (Part 1 of 2)

From SVC First Level Interrupt
Handler (IEAVEEXT) or a
supervisor routine

via branch entry
input Process

Set up internal parameters
for processing request.

Check the subpool specified
and initialize pointers to it.
For subpools 242 or 247,
pass control to FREEPART
for special processing.

Satisfy the request.

.Reg 14
[Return Address J

4 Return.

To EXIT Prolog
(IEAVEEXP)

Output

Reg 1

Parm List
Address

Reg 10
] I Length] or

Pointer to
Length List

Reg 11

L Address J or

Pointer to
Address List

Reg 4

[LDA Address |
Reg ‘5
[Error Code 1

Reg 15

LDA

LDARQSTA

N

>[Return Code J

z uonsg

L6-S uonendQ jo poylsl

Diagram 24-2. FREEMAIN Routine IEAVGM00) (Part 2 of 2)

Extended Description

The FREEMAIN routine (IEAVGMOO) frees virtual storage
in the SQA and CSA and in the LSQA, SWA, and user
region of each virtual address space.

1 Foran SVC 5 request, FREEMAIN checks the input
parameters and parameter lists. For all other entries,
FREEMAIN only indicates the type of entry. The
FREEMAIN sets up registers with internal parameters to
allow common routines to process FREEMAIN requests.

2 FREEMAIN checks the subpool requested. For

subpools 242 and 247, FREEMAIN passes control to
FREEPART to free the storage. For subpools not in LSQA
or SQA, FREEMAIN searches for an SPQE. If no SPQE is
found, FREEMAIN sets an error return code of 4 if the
request is conditional.

3 FREEMAIN rounds the request up to an 8-byte multi-
ple and searches for the requested storage. It removes
the appropriate storage from the allocated space and updates

the FQE to show freed space. The AQEs (Allocated Queue
Element) for the freed space are removed. FREEMAIN
determines whether one or more complete pages of virtual
storage have been freed. If so, FREEMAIN calls the RSM
PGRLSE routine to release the real pages. Then FREEMAIN
releases the virtual pages and updates the FBQE (Free Block
Queue Element) associated with the type of storage released.
FREEMAIN also notifies the SRM how much space is avail-
able in CSA or SQA. In addition, for 4K block releases,
FREEMAIN updates the storage-used fields in the TCT for
SMF use.

Module

IEAVGMO0

IEAVGMOO0

IEAVPRTO

IEAVGMOO

IEAVRELS

Label

GMBASE

FMCOMMON

IEAVPRTO

FMCOM

IEAVRELV

Extended Description

4 FREEMAIN returns to the caller with a code of O in
register 15 for a successful operation; failures are

indicated with codes of 4 or 8 in register 15 if the request

is conditional. For an unconditional FREEMAIN or a

parameter error on a conditional FREEMAIN, FREEMAIN

calls for an abnormal termination of the user task.

of the user task.

Error Processing

When an error occurs in a FREEMAIN operation, Recovery
Termination passes control to the FRR (functional recovery
routine). The FRR records information on SYS1.LOGREC,
calls for an SVC DUMP operation if necessary, and tries to
repair the subpool queues. For unexpected errors, such as
machine checks, the FRR returns control to RTM for
higher-level error recovery. For SALLOC lock release or
page release failures, the FRR returns control and allows
execution to continue. For other errors, the FRR issues a
completion code of 7xy (where xy is the SVC number
through which FREEMAIN was entered) and then passes
the error back to RTM for further recovery.

Module

Label

IEAVGM00 CKERRCDE

{EAVGFRR IEAVGFRR

(L°¢ a2y TSA) S dWNjoA Areiqry oBoy wAsAS ZSA/SO 86§

Diagram 24-3. GETPART Routine (IEAVPRTO) (Part 1 of 2)

From GETMAIN
(IEAVGMOO0)

input

Reg 1] Parameter List

R'egéon Size Determine from IEALIMIT if an
or instaliation region size limit has
List Pointer been specified.

Region Addr
List Pointer

Request Code LN
) \ For virtual regions, compare the
o’ requested region size with the
SPID available space.

SVC 10,
SVC 120 Reg0 For V=R regions, atlocate real
. storage and then aliocate

virtual space.

Region Size - l
Reg 1
| Zeroor Negative

Reg 4

If space is not available for V=R

[LDA Address i request, enqueue request on
Reg 5 the wait queue.

| subpool ID E

Reg 14

[Return Address Ir

B When request is satisfied, return. Return Code

GETMAIN
(IEAVGMOO0)

T uoipeg

.

66-S uonendQ jo poyrop

Diagram 24-3. GETPART Routine IEAVPRTO) (art 2 of 2)

Extended Description

The GETPART routine (IEAVPRTO) allocates region space
at the request of the system. Both V=V and V=R requests
are processed by GETPART.

1 GETPART calls IEALIMIT, the user exit routine, to
determine if an installation-supplied limit is to be
applied to the region request.

2 GETPART checks the V=V region size requested

against the total space available for regions within
the address space. |f not enough space is available,
GETPART puts a return code of 8 in register 15 and
returns. |f not enough contiguous space is available,
GETPART puts a return code of 20 in register 15. A
region size of zero is taken by GETPART as a request
for the system default region size.

3 Fora V=R request, GETPART finds an FBQE (Free
Block Queue Element) to satisfy the request and then
calls RSM to allocate the corresponding real pages. If RSM
returns a code of 8, indicating it found assigned frames
already allocated in the area requested by GETPART,

GETPART recalls RSM with the next available free address.

If GETPART can’t find sufficient space, it puts a return
code of 20 in register 15. |f RSM passes a return code of
16, GETPART puts a return code of 16 in register 15.

Module

IEAVPRTO

IEAVPRTO

IEAVPRTO

IEAVEQR

IEAVPRTO

Label

IEALIMIT

IEAVPRTO

IEAVPRTO

IEAVEQR

IEAVPRTO

Extended Description

4 GETPART enqueues a VRWPQEL on the global

queue of waiting requests. This occurs when GETPART
cannot initially find virtual space to satisfy the V=R region
request. When the space becomes free, GETPART posts
the ECB for the request. The initiator then reissues the
GETPART request.

B When the required region has been allocated,
GETPART returns a code of 0 in register 15.

Error Processing

When an error occurs in GETPART processing, Recovery
Termination passes control to the GETPART Functional
Recovery routine (FRR). For machine checks and program
checks in GETPART, the FRR retries the GETPART routine

(for V=V requests) or retries the specific section where failure

occurred (V=R requests). Where no retry can be made, the
FRR cleans up storage already allotted and queues processed
and calls for termination to continue. In all cases, the FRR
initializes the SDWA. Then the FRR returns to R/TM.

If an error in the XMPOST routine occurs during the wait-
ing period, the FRR abnormally terminates the waiting
initiator with a code of X'304’.

Module

IEAVPRTO

IEAOPTO1

IEAVPRTO

IEAVGPRR

IEAVGPRR

Label

IEAVPRTO

IEAOPTO1

IEAVPRTO

IEAVGPRR

PRTOERTN

('€ WY ZSA) § FUMjoA Areiqr NBof woIAs tSA/SO\ (118

- Diagram 24-4. FREEPART Routine (IEAVPRTO) (Part 1 of 2)

From FREEMAIN
(IEAVGMO0)
Input Process

Dequeue and free request element:
from wait queue and post queue.

Free virtual region space.

If the region is V=R, free the real
region space and the region
control blocks.

4 Try to satisfy waiting V=R requests
with freed region space.

Reg 14

Output

Reg 15

9|

B[rewmadies | ’ " 5 Return.

FREEMAIN
(IEAVGMO00)

Return Code

7§

101-S uonerdadQ Jo pOYIOW :Z UORIS

Diagram 24-4. FREEPART Routine (IEAVPRTO) (Part 2 of 2)

Extended Description

The FREEPART routine (IEAVPRTO) processes requests
from initiators and Started Task Control to return virtual
or real region space to available space. The routine also

dequeues and frees the control blocks defining the region.

1 FREEPART checks the WAIT queue and the POST
queue for requests relating to the region being released.
If found, the elements are dequeued and the space freed.

2 FREEPART releases any remaining allocated space

within the region and the SPQEs identifying it. Then
the space representing the region is returned to the system
queues. For a V=R region, FREEPART also releases the
DPQE and PQE for the region.

3 Fora V=R region, FREEPART calls RSM to release
the real pages and their identifying control blocks.

If the return code from RSM is not zero, FREEPART puts

areturn code of 4 in register 15,

Module

IEAVPRTO

IEAVPRTO
IEAVGMOO
IEAVGMOO

IEAVEQR

Label

IEAVPRTO

IEAVPRTO
RMBRANCH
MRELEASE

IEAVEQRF

Extended Description

4 FREEPART checks the VRWAITQ for requests that

can be satisfied by the region space just freed if the
FREEPART was for a V=R region. It posts requests that
can use up to, but not more than, the available space.

5 When processing is completed, FREEPART returns
to the caller. if the FREEPART is successful, a return
code of O is placed in register 15.

Error Processing

When Recovery Termination passes an error to IEAVGPRR,
the routine looks for program checks and machine checks.
For these errors, IEAVGPRR tests to determine the extent
of processing and calis for retry at that point. For other
errors, termination is indicated. IEAVGPRR sets up the
SDWA and returns to Recovery Termination. For errors in
posting routines from the WAIT queue, IEAVGPRR abnor-

Module Label
IEAVPRTO IEAVPRTO
IEAVPRTO IEAVPRTO

IEAVGPRR 1EAVGPRR

mally terminates the Initiator for the address space with a codelEAVGPRR PRTOERTN

of X‘304'.

(L°€ 958319 ZSA) oA Arexqry 2180 waisAS ZSA/SO Z0T-S

Dihgram 24-5. Create Address Space (IEAVGCAS) (Part 1 of 2)

From Address Space
Creation (IEAVEMCR))
Input Process Output

Reg 15

Reg 1
Check caller’s authorization. > Return Code
l ASCB Address If unauthorized, return.
e
Reg 13
g Calter SYSTEM REGION

l Save Area Ptr

2 Obtain storage for new address
space in the Master Scheduler
address space,

PQE

Reg 14
[Return Address

ADDRESS SPACE

3 Set up control blocks and tables
PQE

in new address space.

4 Construct VSM control blocks.

LSQA SPQE LSQA DQE

5 Release the virtual storage used
for initializing control blocks
in the Master Scheduler
address space.

Reg 15
Return Code

6 Return,

Address Space Creation
(IEAVEMCR)

€01-§ uoperadQ Jo POYPRW :Z UOHRIS

Diagram 24-5. Create Address Space (IEAVGCAS) (Part 2 of 2)

Extended Description

IEAVGCAS (VSM Address Space Creation) processes
requests to set up a new address space. It initializes the
address space control biocks and calls RSM to set up the
RSM control blocks.

1 IEAVGCAS checks the caller’s authorization. If the
caller is not authorized, IEAVGCAS puts a return
code of 4 in register 15.

2 |EAVGCAS gets a page of storage in the Master
Scheduler address space. If the storage can’t be

obtained, IEAVGCAS puts a return code of 4 in register 15.

3 IEAVGCAS calls RSM Address Space Initialization

to set up global and local address control blocks in the
new address space. |f RSM returns a non-zero return code,
IEAVGCAS frees the page in the Master Scheduler address
space and puts a return code of 4 in register 15.

Module Label

IEAVGCAS IEAVGCAS

IEAVGCAS IEAVGCAS

IEAVITAS [EAVITAS

Extended Description

4 IEAVGCAS builds the LDA (Local Data Area) in the

top of the page obtained from the Master Scheduler
address space. Then it initializes the various address space
and region control blocks used by VSM: PQE, FBQE,
SPQE, DQE, and FQE.

5 IEAVGCAS releases the virtual page in the Master
Scheduler address space.

6 [EAVGCAS returns to the caller through register 14.

Error Processing

When errors occur, IEAVCARR frees the page in Master
Scheduler address space. For program checks and machine
checks, IEAVCARR retries the IEAVGCAS routine unless
RSM had been entered; if so, IEAVCARR returns to
Address Space Creation with a return code of 4. For any
other errors, [EAVCARR records information in the SDWA
and routes control to R/TM to continue termination
processing.

Module Label

IEAVGCAS IEAVGCAS

IEAVGCAS [EAVGCAS

IEAVGCAS IEAVGCAS |

IEAVCARR IEAVCARR

(L€ %319y ZSA) S owmjoA Areiqry o180y wolsAS ZSA/SO vOI-S

Diagram 24-6. Free Address Space (IEAVGFAS) (Part 1 of 2)

From Address Space
Termination
(IEAVTMMT)

Input Process

Reg 15

>[Return Code I

71 Check caller’s authorization.
If unauthorized, return.

ASCB
Address

Caller

GDA

VRPOSTQ
VRWAITQ

L —

2 Free any address-space related
global storage which remains
allocated.

Reg 15

:>| Return Code |

Reg 14
Return Address

3 Return to caller.

To Address Space Termination
(IEAVTMMT)

$01- uope1ad(Jo poyls :z uonses

Diagram 24-6. Free Address Space (IEAVGFAS) (Part 2 of 2)

Extended Description

IEAVGFAS (VSM Address Space Freeing) processes the
deletion of an address space. It dequeues and frees all queue
elements relating to the address space and updates the sys-
tem control blocks.

1 VEAVGFAS checks the caller’s address space against
the Master Scheduler ASID. If not equal, the routine
puts a return code of 4 in register 15.

2 IEAVGFAS checks the VRWAITQ and VRPOSTQ
for an element identified for the specified address
space, dequeues it, and frees the space.

3 If no errors have occurred, IEAVGFAS puts a return
code of 0 in register 15 and returns.

Error Processing

For retriable errors during dequeuing, IEAVFARR attempts
to retry the dequeuing routine; for other retriable errors,
IEAVFARR re-enters the IEAVGFAS routine. For other
errors, IEAVFARR records information in the SDWA and
returns to Recovery Termination.

Module

IEAVGCAS

IEAVGCAS

IEAVGCAS

IEAVGCAS

IEAVCARR

Label

IEAVGFAS

IEAVGFAS

FREEQEL

IEAVGFAS

IEAVFARR

(L°€ aseapey ZSA) € dumjoA Areiqry 8oy woshg ZSA/SO 901-S

Diagram 24-7. Task Termination (IEAVGCAS) (Part 1 of 2)

From SVC EXIT
Routine (IEAVEOR)

Input

Free region subpool storage owned
by failing task.

TCB

TCBMSS Free subpool 229 and 230 storage,

if owned by task.

L TCBAQE

TCBSWA Free task or job step related

LSQA storage.

TCBUKFSP

Free SWA storage.

Reg 14

Reg 15

L Return Address]

SPQE Chain

SPQE
SPQE To SVC EXIT
Routine (IEAVEOR)

SPQE
SPQE

Return Code

LOT-S uoneradQ Jo poyp| :7 uopdes

Diagram 24-7. Task Termination (IEAVGCAS) (Part 2 of 2)

Extended Description

IEAQSPET (VSM Task Termination) performs storage
clean-up operations when a task is terminating. It frees all
local storage owned by the task.

1 IEAQSPET frees the subpool storage represented by
the SPQEs chained from the TCBMSS field for the
task unless the subpool is shared. Then it frees the SPQEs.

2 IEAQSPET frees the subpool 229 and 230 storage
and the SPQEs for the task.

3 IEAQSPET frees the SWA space for the task unless the
subpool is shared and then frees the SPQEs.

4 When all control block queues have checked,
IEAQSPET returns to EXIT with a return code of 0

in register 15. If any of the FREEMAIN operations failed,

IEAQSPET places a return code of 4 in register 15.

Error Processing

When the error is a program check or a machine check,
IEAVTTRR enters the IEAQSPET routine for retry. Other-
wise, it returns to Recovery Termination after recording the
SDWA information.

Module

IEAVGCAS
IEAVGCAS

IEAVGCAS
IEAVGCAS

IEAVGCAS
IEAVGCAS

IEAVGCAS

IEAVCARR

Label

IEAQSPET
FREESPQE

IEAQSPET

FREESPQE

IEAQSPET
FREESPQE

IEAQSPET

IEAVTTRR

(L°€ s3]y ZSA) S SWNOA AreIqr] 91807 WRISAS ZSA/SO 801-S

Diagram 24-8. Build Quickcell Pool Routine (IEAVBLDP) (Part 1 of 2)

From a routine requiring a new quickcell
pool (see extended description)

Skeleton CPAB
CPABCPID
CPABSPID
CPABCSZE
CPABENAD

1 Determine cell pool location
and type,

2 Validate the cell pool request.

CPAB

CPABCPID

CPABCSZE

CPABDEQC

CPABFACP

CPABFLGN

3 Format the cell pool.

CPABSPID

Reg 15

CPABFLGS

4 Return,

Return Code

CPABUSE#

CPABSTAD

Caller (see
extended description)

CPABENAD

601-S uonerd(JO POYION :7 UOIROS

Diagram 24-8. Build Quickcell Pool Routine (IEAVBLDP) (Part 2 of 2)

Extended Description

The Build Quickcelt Pool routine (IEAVBLDP) creates,
extends, or reformats a pool of quickcells, as directed
by the internal macro instruction {(BLDCPOOL) that
invokes it. Modules that can require a new quickcell
pool are: IEAVEMIN, IEAVESVC, IEAVMDOM,
IEAVMWTO, IEAVNIPO, IEAVNPAG, IEAVNP14,
IEAVPCB, IEAVSWCH, IEAVVINT, IEAVVRP2,
IEAVVWTO, IEEMB803, IEEMB804, and IRARMSRV.

1 IEAVBLDP checks the CPAB (Cell Pool Anchor Block)

and CPID (Cell Pool Identifier) passed to it. It deter-
mines whether a new cellpool must be created, whether a
cell pool is to be extended, or whether a cell pool is to be
reformatted.

2 IEAVBLDP verifies that all parameters passed are
valid by checking them against the skeleton CPAB
built by the macro processor.

3 IEAVBLDP formats the new cell pool by dividing

itinto the number of cells that will fit into the specified
area and storing pointer and size information in the CPAB.
Then it formats each cell, linking it to its chain through
linkage pointers. '

4 |EAVBLDP returns control to the caller with a return
code indicating success (0) or an error:

Return
Code Error
8 Invalid CPID or unformatted pool.
12 Invatid Subpool
16 nvalid cell size
20 Incompatible concurrent request.

In each error return case, register 0 contains the extent
subpool number and the extent length; register 1 contains
the extent address.

Module

IEAVBLDP

IEAVBLDP

IEAVBLDP

IEAVBLDP

Label

IEAVBLDP

CPIDTEST

POOLFORM

LOOPFORM

ERREXIT

(L°¢ 35899y TSA) § swnjoA Arexqi] 51807 woyshS ZSA/SO O11-S

Diagram 24-9. GETCELL Routine JEAVGTCL) (Part 1 of 2)

From routine requiring
quickcell allocation

Input Process

Validate CPID against requested
CPAB.

Locate free cell in the requested
pool.

Validity check the cell.

Output

Cell

Reg 1

Allocate the cell.

GDA

L~

Reg 15

Return.

PFSTCPAB 1 CPAB Table
-CPAB 1

Caller

Return Code]

[11-§ uoneradQ Jo poyla g UOHIRS

Diagram 24-9. GETCELL Routine (IEAVGTCL) (Part 2 of 2)
Extended Description Module Label

The GETCELL routine {IEAVGTCL) allocates a quick-

cell from an established quickcell pool. The routine is
invoked through the GETCELL internal macro instruction.
Modules that can require quickcell allocation are:

IEAVELK, IEAVEMIN, IEAVEPC, IEAVEQR, IEAVESVC,
IEAVGPRR, IEAVMDOM, {EAVMWTO, IEAVPCB,
IEAVPFTE, IEAVPIOP, IEAVRCF, IEAVRFR, IEAVSOUT,
IEAVSWCH, IEAVTRTH, IEAVTRTM, IEAVTRTR,
IEAVVRP2, IEAVVWTO, IEEMB804, and IRARMSRV.

1 |EAVGTCL checks the CPID and CPAB passed for IEAVGTCL I|EAVGTCL
validity. It also checks for matching CPIDs and empty
- pools.
2 |EAVGTCL locates an empty cell in the requested IEAVGTCL PERMCPID

pool by checking the CPABFACP field. It also verifies
that no deletions are in process against the extent.

3 IEAVGTCL checks the cell for residence in the proper IEAVGTCL DEQLOOP2
extent and f_or boundary alignment within the extent.

4 IEAVGTCL stores the CPID in the chosen cell and IEAVGTCL STORCPID
uniocks the pool extent for further operations.

TEAVGTCL returns control to the caller with a return
code of O for successful allocation or the following
error return codes:

Return
Code
4
‘8
12

16

Error

Empty pool or extent being deleted.
Extent is unreliable

Pool is unformatted

Invalid CPID

(4457

(L' %e3p9Y ZSA) S FwmjoA Areiqry oS0 walsAS ZSA/SO

Diagram 24-10. FREECELL Routine (IEAVFRCL) (Part 1 of 2)

From routine which has

Input

no further need for
allocated quickcell

CPAB Table

GDA

PFSTCPAB

/\/\—._,

Process

Validate CPAB against requested
CPID.

Locate CPAB for the requested
extent.

Verify that the cell is on an integral
boundary.

Enqueue the cell on the available
queue.

CPAB Table

T

€11-s uonead(Jo oY T uonIS

Diagram 24-10. FREECELL Routine (IEAVFRCL) (Part 2 of 2)

Extended Description

The FREECELL routine (IEAVFRCL) returns a quick-

cell to a quickcell pool. It makes the cell available for use

by adding it to a queue of available calls in the pool.
Modules that may no longer require an allocated
quickcell are: 1EAVDLAS, IEAVEDSO, IEAVEEXP,
IEAVEOR, IEAVEPCR, IEAVEQR, IEAVGFA,
IEAVGPRR, IEAVIOCP, IEAVMDOM, IEAVMDSV,
IEAVPIOI, IEAVRCF, IEAVRFR, IEAVSOUT,
IEAVSWCH, IEAVSWIN, IEAVTRTR, IEAVTRT1,
IEAVTRT2, IEAVVRP2, IEAVVWTO, IEEMB803,
and IRARMSRYV.

1 IEAVFRCL checks the cell to determine that it was

allocated from the cell pool specified.

2 IEAVFRCL locates the CPAB for the cell pool
specified.

. 3 IEAVFRCL verifies that the cell is on an integral

boundary in the extent, and that no deletions are
taking place concurrently.

4 1EAVFRCL returns the cell to the pool of available
_cells and releases the extent for further operations.

5 IEAVFRCL returns control to the user and passes a
return code indicating success (0) or an-error return
code:

Return
Code Error : .
4 Cell not allocated from specified pool
.) (CPID doesn’t match)
8 : The cell did not come from one of the
tents in specified pool
12 Unformatted pool
16 invalid CPID

Module

IEAVFRCL

IEAVFRCL

IEAVFRCL

IEAVFRCL

IEAVFRCL

Label

PERMCPID
GOTCPAB

CPABLOOP

ENQLOOP

FRCEXITO

(L' %%y TSA) § oumjop Arexqry 80T wepAS ZSA/SO ¥II-S

Diagram 24-11. Delete Quickcell Pool (IEAVDELP) (Part 1 of 2)
From termination

routine to release
quickcell pool space

Input

Reg?
| option code |

Reg 3

CcvT

/CVTGDA

i
GDA

PFSTCPAB 1

i

Process

- = 41 Validate CPID against CPAB.

2 For deleting last extent, dequeue

Permanent
CPAB
Table

its CPAB.

3 Free the last extent area.

Reg 1

4 For pool deletion, repeat steps 2
and 3 for the other extent in
the pool.

5 For a system pool, zero out
permanent CPAB, except for
CPID.

6 Return,

>

Oor"x

Deleted Extent

Z uoneg

.
.

S11-§ uonerdQ jo poyre

Diagram 24-11. Delete Quickcell Pool (IEAVDELP) (Part 2 of 2)

Module Label

Extended Description

The Delete Quickcell Pool routine (IEAVDELP) removes all
or part of a pool of quickcells, either freeing the storage or
enqueuing the storage for user freeing. Either one extent,
all extents, or the whole pool may be deleted, depending on
which DELCPOOL macro instruction option is chosen.

1 |EAVDELP checks the CPID against the CPAB for IEAVDELP GOTCPAB
validity. It also checks to see if NIP created the cell

pool.

2 |EAVDELP finds the last extent and checks for IEAVDELP EXTENT

another operation in progress. |If none, IEAVDELP
dequeues the CPAB for the last extent.

3 If the suppress FREEMAIN option was chosen, IEAVDELP REMOVEAB
IEAVDELP stores FREEMAIN information in the
first two words of the extent. Otherwise, IEAVDELP frees

the storage used by the extent and its CPAB.

Extended Description

4 |EAVDELP checks for pool deletion and, if requested,
loops through the pool deleting all extents and
CPAB:s.

B |EAVDELP sets to zero all fields in the permanent
CPAB, except CPABCPID, when the entire pool of
quickcells has been deleted.

6 |EAVDELP returns control to the caller with a return
code of zero for success or one of the following error
return codes:

Return
Code Error
8 Attempt to delete a NiP-created pool.
12 Attempt to delete an unformatted pool.
16 Invalid or nuil CPID.
20 A conflicting function is pending for specified
extent.

Module Label

IEAVDELP REMOVED

IEAVDELP DELEXIT

Diagram 24-12. Change Key Routine (IEAVCKEY) (Part 1 of 2)

By branch entry from
key 0 supervisor routine

(S08°€0"ZSA) §dumnjop Arerqyy o80T wasAS ZSA/SO 0°STI-S

Input

Process

Output

Reg 0
Bit0 1 Determine type of
interface used.
Reg 1
/
Reg 1
Parameter
List VA of
- storage Validity check
_ start input parameters.
or
Reg 2
VA of
storage
end Hardware
key
Reg 0
XPTPR
Key Change storage key or
of area specified.
4 Restore original key
of area if processing
is unsuccessful.
Reg 14

Return Address

B Processing is

Reg 0

successful, return.

Original key

to caller

SO8°€0°TSA

7 uonoag

I'SII -§ uopesad(Jo poylon

Diagram 24-12. Change Key Routine (IEAVCKEY) (Part 2 of 2)

Extended Description

The change key routine (IEAVCKEY) changes the key of
areas of storage within the problem program subpools at
the request of supervisor-state key O programs.

1 Two types of interfaces are recognized, R-type and

L-type. R-type interfaces (indicated by bit zero of
input register O being zero) specify via general purpose
registers 1 and 2 a single virtual address (VA). L-type
interfaces (indicated by bit zero of input register O
being one) specify one or more VA ranges via a
parameter list.

2 For L-type interfaces, the parameter list supplied

must be in fixed storage (L/SQA or PGFiX). For
either interface, the VA range(s) must define storage
from subpools 0-127, 251, and 252.

3 Foreach VA range, the storage key and fetch
protection flag at all pages in the range are changed
to the new key and new fetch protect flag supplied.

This is accomplished by:

e Changing the XPTPROT field in the XPTE associated
with each page.

@ Changing the hardware key of any pages that are
assigned to a frame in real storage at the time of the
request.

The key of the first page that will be changed is saved for

return to the caller upon successful completion of the
change key function.

Module Label

IEAVCKEY IEAVCKEY

IEAVCKEY REGPTOC
LISTPROC
ELTVCK
PAGEVCK

IEAVCKEY ELTPROC
KEYCHG

Extended Description Module Label
4 f a page within this area is found not to have IEAVCKEY ELTPROC
been allocated (via GETMAIN) during the process RECOVER

of changing the key for the area of storage, an error
condition is recognized and the original key of the area
of storage is restored.

B At the successful completion of this routine, the IEAVCKEY [EAVCKEY
caller receives control with a return code of O in
register 15 and the key of the first page changed in

register 0.

Error Processing: '

For any error that prevents successful completion of the IEAVCKRR IEAVCKRR
change key function, the requesting program is abnormally
terminated with an error code in register 15 reflecting the

exact error that occurred.

For unexpected errors in IEAVCKEY, recovery termination
management (RTM) gives control to the change key FRR
(IEAVCKRR). For system or machine errors, the FRR
records information on SYS1,LOGREC and requests, when
possible, a retry to recover the original storage key of all
areas of storage that has been changed. For all other type
error conditions, percolation is requested through RTM.

S08°€0°TSA

5-116 OS/VS2 System Logic Library Volume 5 (VS2.03.805)

Auxiliary Storage Management (ASM)

Overview

ASM transfers virtual storage pages between real
storage and auxiliary storage, either as a paging
operation (a page at a time) or as a swapping
operation (an address space at a time).
Additionally, ASM manages auxiliary storage, and
maintains the necessary copies of VIO data set
pages.

ASM is called by RSM (Real Storage
Management) and VBP (Virtual Block Processor).
ASM interfaces more directly with RSM than before;
RSM calls the appropriate modules in ASM for the
specific function needed. Also, control blocks
(XPTEs and AlAs) are shared with RSM. VBP calls
one module (ILRGOS) to initiate VIO operations.

The ASM MO diagrams are presented in seven
sections corresponding to the seven functions
described here. There is an introduction to each
section that contains a more complete description
of each function, including control block usage.

ASM processing is divided into seven functions:

e I/O Control is the communication link

through which Real Storage Management
(RSM) makes paging and swapping requests.
I/0 Control determines the type of request,
passes it to the Swap Driver part of 1/0
Control or to the 1/0 Subsystem, and is
notified of its completion. I/0 Control notifies
RSM of the completion, and keeps track of
the auxiliary storage locations of all virtual
pages.

« I/0O Subsystem receives control via an SRB

from 1/0 Control, starts 1/0 Supervisor (10S)

v52.03.807

processing by issuing the STARTIO macro, and
returns control to 1/0 Control after the
completion of the 1/0. The message module,
which produces the messages issued by ASM,
is also a part of the 1/0 Subsystem.

VIO Control coordinates and synchronizes
all ASM processing required to support VIO
data sets. This function interfaces with the
Virtual Block Processor (VBP) for
group-related requests. VIO Control and 1/0
Control process VIO page-related requests
that RSM initiates.

VIO Group Operators maintain the VIO data
set information required by VBP. These
operators are invoked only by VIO Control as
the result of requests from VBP.

Recovery provides the mechanism to handle
two types of errors, those detected during
normal ASM processing, and those detected
by ASM recovery while it is in control. ASM
recovery attempts to determine the severity of
the error and then takes appropriate action.
Service Routines include: an ASM control
block formatting facility, which is invoked by
the system dump-printing facility; an address
space termination resource manager, whose
main function is to reclaim auxiliary storage
resources from an address space that is
terminating; and a pool extender routine for
adding storage to a virtual storage pool.

Page Expansion gives the user-the ability to
add page and swap data sets to the system
without having to do another IPL. This
function is available to the installation
through the PAGEADD operator command.

Section 2: Method of Operation 5-117

VS$2.03.807

1/0 Control

Auxiliary

Storage

Management

2
1/0 Subsystem VIO Control g::zraGt::ls‘p
7
Recovery Service Page
Routines Expansion

Figure 2-56. Auxiliary Storage Management Visual Table of Contents

5-118 OS/VS2 System Logic Libragy Volume § kVS2.03.807)

I/0 Control

In MVS, RSM initiates all paging and swapping 1/0.
The 1/0 Subsystem (part of ASM) and the 1/0
Supervisor (10S) execute the paging/swapping 1/0.
1/0 Control is the communication link between
RSM and the 1/0 Subsystem-10S.

1/0 Control is divided into three functional
units: Initial Page Processing, Initial Swap
Processing, and Completion Processing.

Initial Page Processing

The ASM module ILRPAGIO performs Initial Page
Processing. RSM or Initial Swap Processing sends a
chain of ASM I/0 Request Areas (AlAs) to
ILRPAGIO. Each AIA represents a request for a
paging operation (either in or out) against either
VIO or non-VIO pages.

VIO Regquests

ILRPAGIO sends requests for VIO paging to ILRPOS
(the Page Operation Starter, part of vi0 Control)
for processing. See Chapter 3, “VIO Control ” for
a description. The return of an AIA address from
ILRPOS to ILRPAGIO indicates an error AlA.

Non-VIO Requests

For non-VIO write requests, ILRPAGIO clears the
XPTE (External Page Table Entry) of the page to
be written and calls ILRFRSL1 (an entry point in
the Free Slot module, also part of 1/0 Control) to
free the slot of auxiliary storage that page currently
occupies.

For non-vIO read requests, the XPTE is checked
to see if the page to be read has a valid LSID
(Logical Slot Identifier). If the LSID is valid, it is
copied into the AIA. If it is invalid, or if there was
a previous 1/0 error on this page (indicated by a
flag in the XPTE), the AIA is in error.

ILRPAGIO puts valid AlAs on the staging queue
(ASMSTAGQ). The ILRQIOE entry point of
ILRPAGIO is then called to build an 10E (1/0
Request Element) for each AIA on the queue.
Initial Page Processing and the 1/0 Subsystem
communicate via 10Es.

ILRQIOE queues write IOEs to the PART (Page
Activity Reference Table); it queues read IOEs to
the PART Entry of the page to be read. If there is
no 1/0 currently outstanding, ILRQIOE then
schedules an SRB for ILRPTM (the PART Monitor,
part of the 1/0 Subsystem) to start the work
represented by the IOEs. If there is I/0 currently
outstanding, Page Completion (ILRPAGCM) will

v§2.03.807

schedule the SRB for ILRPTM when that 1/0
completes.

Each AIA received from RSM is processed until
the entire chain of AlAs is exhausted or an error is
found. If an error is found, the AIA chain is broken
and the error AIA and any following AlAs are
returned to RSM.

Initial Swap Processing

Two modules, ILRSWAP and ILRSWPDR, perform
initial swap processing. RSM sends a chain of AlAs
to ILRSWAP. ILRSWAP divides the chain into two
groups: requests against non-LSQA pages and
requests against LSQA pages. Non-LSQA requests
are sent to ILRPAGIO to be processed to page data
sets.

When ILRPAGIO returns, ILRSWAP determines if
the ILRSLSQA entry point of ILRSWAP can be
called to process the LSQA pages through special,
high-speed, swap data sets. If all paging operations
are complete, ILRSWAP calls ILRSLSQA. If all
paging operations are not complete, the LSQA
pages cannot be processed now and ILRWSAP
returns to RSM. LSQA page processing is initiated
later by ILRPAGCM, the page completion routine.

When ILRSLSQA gets control, if the AIA request
is a swap-out and no swap data sets are available,
or if it is a swap-in of LSQA pages previously
written to page data sets, ILRSLSQA calls ILRPAGIO
to process the AIA. Otherwise, ILRSLSQA builds a
SCCW (Swap Channel Command Workarea) and a
channel program for the request, and chains the
SCCW from the SART Entry (Swap Activity
Reference Table Entry) for the appropriate swap
data set. An SRB for ILRSWPDR (the Swap Driver)
is scheduled to start the work represented by the
SCCw.

ILRSWPDR checks each SART Entry for work
(represented by a SCCW chained from the SART
Entry). When it finds work, it locks the SART entry
and chains the SCCW to the IORB/IOSB (I/0
Request Block and 1/0 Supervisor Block) that is
also chained to the SARTE. ILRSWPDR then issues

'STARTIO to begin IOS processing against the swap

data set.

Completion Processing

ILRPAGCM handles completion processing. The
function of ILRPAGCM is to process completed
page and swap requests and place the AlAs on
queues to be retried or to be returned to RSM.
ILRPAGCM divides the chain of AlAs that is passed
to it into two groups; one group contains AlAs
representing paging requests, the other contains

Section 2: Method of Operation 5-119

swapping requests. It processes each group
separately. :

Page Completion

This procedure handles all AlAs that are completed
for page requests and VIO requests. When an AIA
completes successfully, Page Completion puts it on
a queue to be returned to RSM. If an error occurs
on a read request and if there is a backup copy of
the page, the request is retried. An error on a write
request is always retried. If any additional 1/0
requests are queued to the PART, ILRPAGCM
schedules an SRB for ILRPTM. If a swap-out is in
process, Page Completion checks to see if all
non-LSQA operations have completed. If they have,
ILRSLSQA is called to start the LSQA swap.

Swap Completion

The swap completion routine handles all
completions for LSQA pages regardless of whether
they were processed through swap data sets or
through page data sets. Swap Completion processes
AlAs in the order in which they are received. AlAs
that are grouped for swap data sets are rechained
prior to being returned to RSM.

5-120 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Completed swap-in AlAs are returned to RSM
immediately unless the 1/0 retry flag (indicating
I0S failure) is set in the AIA. In this case, the
requests are retried by queueing the AlAs to the
SARWAITQ or the ASMSTAGQ, depending on
whether a swap data set or a page data set is being
used.

Swap Completion queues normal swap-out
completions to the Swap Capture Queue
(ASHCAPQ). Swap-out completions that fail are
retried by sending them to the SARWAITQ (for
swap data sets) or the ASMSTAGQ (for page data
sets). If there was an error and no more swap data
sets are available, the AIA is sent to the capture
queue and the captured error flag is set. When all
AlAs for a particular address space have been
placed on ASHCAPQ, Swap Completion determines
if any AlAs have error flags set. If no errors
occurred Swap Completion returns the entire group
of AlAs to RSM. Otherwise, Swap Completion puts
the entire group on the ASHSWPAQ to be retried by
ILRSLSQA.

VS2.03.807

1/0 Control
25.1 25.2 25.4 255
1/0 Control Swap Control Page and_ Swap Free Slot for
(ILRPAGIO) (ILRSWAP) Completion RSM
. (ILRPAGCM) (ILRFRSLT)
25.1.1 25.2.1 25.5
Queue 1/0 Swap LSQA Free Slot for
Request ILRSL ASM
(ILRQIOE) { SaA) (ILRFRSL1)
25.5
Free Swap Set
25.3 (ILRFRSW1)
Swap Driver
(ILRSWPDR)
25.x, — Module
25.x.y. — Entry point in module 25.x.

" Figure 2-57. 1/0 Control Overview

Section 2: Method of Operation 5-121

VS2.03.807

Input - Processing Output
FROM_RSM
ROUTINES OR
ILRSWAP
ILRPAGIO:
R 1 AIA ASMVT
] _,—»l] A SAVE REGISTERS (ASMWKSA1) .)
—JI ASMWKSA1
R 2 RSMHD
[] ESTABLISH RECOVERY. D —
ASMHD . ATA
FOR_ILRVSAMI REQUESTED I N w—
AIA WRITES, SEND ENTIRE CHAIN .
- TQ ILRPOS TO PROCESS, IF
AIAWRITE=1| ANY AIA'S RETURNED SEND R 4
THEM gAc TO CALLER. GO TO
s
ATA
ASM ROUTINE
>
ATAAIA
AIA

Notes

Routine

Label Ref Notes

Routine

Label

Ref

CALLED BY RSM FOR A_PAGING
RATI! M

SAVED THE_ASMVT SAVE
DEFINED FOR THIS MODULES USE.

SETFRR_IS ISSUED FOR RECOVERY
PURPOSES. ILRIOFRR RECOVERY
ROU?IN%AEANDLES ERRORS OCCURRING

FOR VIO RE UES”BD WRITES
=1 AIAWRITE=1
NTIRE CHRIN 8‘ AIA

MIX] WITH E|
ILRPOS DETERMINES IF THE
S MAY STARTED IMMEDIATELY
HO DS THEM OR QUEUES THEM TO
THE STAGING QUEUVE
APPROPRIATE. IF ANY ERRORS ARE.
DETECTED, THE AIA AND
SUCCEEDING AIA'S ARE RETURNED TO
THIS MODULE, AND THEY WILL BE
RETURNED Tg THE CALLER AT EXIT.
GO TO STEP

ILRPOS

ILRPOS

Diagram 25.1

ILRPAGIO (Part 1 of 4)

§5-122 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
AIA
A FOR NORMAL WRITE REQUESTS:
AIAWRITE= 1 | s Q
AIAVIO=0)
| *Emsamrse ——I—| []
v NOT A VIO PAGE, FREE
PCB XPTE | ANY CURRENTLY ASSIGNED
I SLOTS.
[pcBxpTa | —
XPTVALID=1 <:> ILRFRSL1
ASM ROUTINE
ASMVT XPTE
A B. SET PAGE-OUT-IN-PROCESS
v G AND QUEUE AIA T0 -
PCB XPTE' STAGING @ Boe" 85710
I STEP ASMSTAGF XPTPOINP
PCBXPTA | — ASMSTAGL
—
XPTVALID=0
AIA
—
AIA
Notes Routine{ Label Ref Notes Routine| Label Ref
FOR_NORMAL WRITE REQUESTS
(AIAWRITE=1 AND AIAVIO=0):
A. IF THE XPTE IS VALID ILRFRSLT| ILRFRSL1

A
PREVIOUS WRITE HAS BEEN DONE
PAGE AND IS NOT A

E SLOT THAT

E OT'
BE USED FOR THE WRITE.

B. MARK XPTE BEING A 'PAGE OUT
IN PROGRES$ JPAGE |
fxer 2, PUT AIA ON
A5 EPACING QUEUE éAs"s“GQ) .
GO TO STEP 7-T

MORECATATS 70 BROCESS

Diagram 25.1 ILRPAGIO (Part 2 of 4)

Section 2: : Method of Operation

5-123

VS$2.03.807

Input Processing Output
PCBXPTA XPTE | R R 4 ATA
I [05] For A READ REQUEST wiTH r~
] rem—————— THE VIO FLAG_SET, SEND TH |]
AIA TO POS. IF THE AIA IS
XPTVIOLP=1 RETURNED, SEND IT BACK 10 ATAAIA
THE CALLER. GO TO STEP 7. —_—
AIA
S "
ASM ROUTINE
FOR REGULAR READ REQUESTS:
PCB XPTE | R n. g THE_pAgE 15 o ASMVT AIA
— . ———
[pcBxpra |4 | VALID OR HAD B PREVIOUS—~———— T
- READ ERROR, SET THE
XPTVALID=0 APPROPRIATE FLAGS IN ASMWKAS 1 AIABADID=1
THE AIA AND RETURN THE
XPTIOERK=1 AIA TO THE CALLER. GO
—_— TO STEP 8. =
r A B. IF THE PAGE IS VALID e
— BUT LSID INTO AIA AND emwcemmmmy AIA -
UEUE AIA TO STAGING
PCB XPTE | UEUE .
[pcexpra |J AIAPRIER=1
XPTVALID=1
XPTLSID
ASMVT ~__AIA
= ASMSTAGF AIALSID
ASMSTAGL
Notes Routine| Label Ref Notes Routine| Label Ref
EOR READ REQUESTS THAT HAVE V10 |ILRPOS |ILRPOS

PAGES IN THE SLOT, THE AIA MUST
BE SENTETO ILRPOS TO BE

GO TO TEP 7 TQ CHECK FOR MORE’
AIA'S TO PROCESS.

FOR REGULAR READ REQUESTS
(XPTWRITE=0 AND XPTVIOLP=0) .

A. CHECK TO SEE IF THE PAGE
SUFFERED A PREVIOUS READ
OR AT SWAP IN TI

D lET THE AIA
AND ANY SUCCEEDING AIA'S TO
THE CALLER AT EXIT. GO TO
STEP 8 TO CHECK FOR WORK ON
THE STAGING QUEUE.

o
m %
I}

B. IF THE XPTE IS VALID
EXPTVALID='1') THE LSID
AL SLOT IDENTIFIER)
IED FROM THE XPTE
T I THE AJA IS THEN
PLACED ON THE STAGING QUEUE.

Diagram 25.1 ILRPAGIO (Part 3 of 4)

5-124 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2Z.U3.80/

Input Processing Output
AIA AIA l
> A 7| IF _ANY MORE AIA'S ON
e | |_J-———)| CHAIN, GO TO STEP &,
AIA ASMVT AIA
A IF_ANY AIA'S ARE_ON THE '
| | STAGING QUEUE, CALL L]
ILRQIOE PO PROCESS THEM.
ASMSTAGF
ASMVT '_’AIA l <:> TLRoToR ASMSTAGL
I l ASM ROUTINE
ASMSTAGF
ASMSTAGL AIA DELETE THE FRR.
ASMVT | p—— (10| RESTORE REGS AND RETURN
I Y ANY ERRORS TO CALLER.
ASMWKSA1
\
RETURN TO
CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
IF ANY MORE AIA'S REMAIN TO BE
PROCESSED (AIANXAIA NOT= 0), GO
TO STEP 4.
IF ANY AIA'S WERE PUT ON THE ILRPAGIO| ILRQIOE

STAGING QUEUE, EITHER BY
ILRPAGIO ITSELF OR BY ILRPOS,
CALL ILR810E TO START THE
PROCESSING.

RETURN TO CALLER.

REMOVE RECOVERY.

Diagram 25.1 ILRPAGIO (Part 4 of 4)

Section 2: Method of Operation 5-125

VS§2.03.807

Input rrocessing Output
FROM_ILRPAGIO
D OTHER ASM
RO0reN
b ILRQIOE:
R3 ASMVT ATA
r] e o) SET FOOTPRINT IN THE ATA. " |]
ASMSTAGF '
R4 ASMSTAGL
SAVE REGISTERS (ASMWKSA2)
ESTABLISH ADDRESSABILITY.
ATA
GET THE FIRST AIA ADDRESS
] AND DETERMINE IF THERE 18
—_— ONE TO PROCESS. IF NONE TO
ATAAIA=0 PROCESS, GO TO STEP 12.
R ASMVT
N GET AN IOE AND PREPARE TO
v PROQESS THE_AIA, IF NO
75 ARE AVAILABLE, GO T0 i
ASMVT AIA l 10. ASMWKSA
ASMSTAGF —
ASMSTAGL
ASMVT 10E —I
| |
ASMIOEPC
Notes Routine] Label Ref Notes Routine| Label Ref
ILRQIOE IS ENTERED FROM R
ILRESTRT, ILRPAGIO, ILRSWAP, AND
ILRPAGCM'WITH REGISTER 3
FOINTING YO THE ASMVE. REGISTER
4 POIN TO THE AT, AIA'S
TO BE ESSED CHAINED FROM THE
STAGING QUEUE" (ASMSTAGO) ., IOE'S
WILL BE BUILT FOR THE AIA
ACCORDING TO THE INDICATORS IN
HEM. AN INDICATOR 1S SET IN ATA
FOR RECOVERY BURPOSES. ILRCOIOE
(AN ENTRY IN TLRIOFRR RECOVERY
RQUTINE) HANDLES ERKORS
OCCURRING IN ILRQIO!
REGISTERS ARE SAVED AT ASMWKSA2
AND THE WORK AREA IS ZEROED.
THE CHAIN OF AIA'S TO PROCESS IS
UEYED TO THE DOUBLE HEADED
SMSTAGQ. THE FIRST AIA
ASHSTAG F) IS PICKED UP AND IF
G IT IS _PROCESSED. IF
'%‘EZ!ER ARE NO AIA S EO T0 sTRP
ISSUE, THE ILRGMA MACRO To GET AN |ILRGMA
IOE. THE IOE'S ARE TAKEN FROM

NON-EXPANDABLE POOL CONTROLLED
IN THE ASMVT. THE IOE WILL BE
RETURNED VIA REGISTER 1, BUT IF

TISZER TH. REARENOIOES

I
AVAIL,

BLE AND PROCESSI
CONTINUES AT STEP 10.

Diagram 25.1.1

ILRQIOE (Part 1 of 4)

§-126 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
AIA
o) FOR A DUPLEXING REQUEST:
AIADUPLX=1
eterv—r——— I0OE AIA
A. IF THERE IS I
ERROR, ENIRIALTEE e I IOEAIA AIAPRIER=0
: l I IOELSIDA AIALSID
AIA ——————ﬁ B. IF THERE ARE TWO PRIOR eswesesswscsmmes
— w—y/ ERRORS OR'NO ERRORS) =~ sy |
— TWO IOE'S MUST BE_BUILT
——e AND INITIALIZED. IF THE AIA
AIAPRIER=1 SECOND_IQE_WA:
AVAILABLE FREE THE I0E AIASECER=0
AIASECER=1 FIRST ONE AND GO TO
—_— TEP I0OEAIA ATALSID2
IOELSIDA
UEUE THE IOE'S FROM STEP
AND GO TO STEP 9.
AIA
10E I0E
e IOEAIA IOEAIA
AIAPRIER=0
hifohi st IOELSIDA IOELSIDA
AIASECER=0
AIA
AIAPRIER=0
AIASECER=0
AIALSID=0
Notes Routine} Label Ref Notes Routine| Label Ref
LE THIS 1S A DUPLEXING REQUEST A
CHECK TS MADE TO SEE
WERE ANY ERRORS. THE ERROR BITS
INDICATE THAT AN ATTEMPT WAS
MADE PREVIOUSLY BUT AN I/Q ERROR
OCCURRED AND IT MUST BE RETRIED.
A. IF ONLY ONE OF THE ERROR BITS
AIAPRIER OR AIASECER) ARE O
HEN ONLY THAT ONE HAS TO BE
RETRIED. A PR ERROR
(AIAPRIER) INDICATES AN ERROR
GOING TO PA OR COMMON
DATA SET WHILE A SECOND
ERROR INDICATES AN _ERROR
GOING TO THE DUPLEX DATA SET.
ONLY ONE IOE WILL BE B
FOR THE ONE RETRY
B. IF BOTH ERROR BITS ARE ON OR
EITHER BIT IS ON THE
REQUESTS MUST ITT
H_DATA SETS. ANOTHER IOE
IS OBTAINED HEN BOTH ARE
ILT, IF A SECOND IQE IS NOT
AVAILABLE THE FIRST 1S GIVEN
BACK AND PROCESSING CONTINUES
AT STEP 11,
THE TOE'S FROM STEP 5 ARE PUT ON
Locar D A LOCAL FLAG
{WRI)r 3 < T ORNED OnTO
chmr, HAT URITE IOE'S MUST .
E PUT ON THE Pj HEADER .
QUEUES S0 6 ETED ~
Diagram 25.1.1 ILRQIOE (Part 2 of 4)
Section 2: Method of Operation 5-127

VS$2.03.807

Input Processing Output
AIA ASMVT 10E
S| 107] 1E THIS Is A wRITE AIA >
_ 8UEUE H %0 A TEMPORARY
EUE. GO TO STEP 9. ASMWKSA
AIAWRITE=1
r — IF_THIS IS A READ AIA
E———— INITIALIZE THE IOE AND
DETERMINE IF PART ENTRY
INDEX (NN VALUE OF LSID) AIA
A. IF IT IS VALID, PUT THEmmmmrmemesny
AIADUPLX=0 IOE ON READ QUEUE.
. PART ENTRY AIA
AIAWRITE=0 []
PAREIOEQ
B. IF THE PART ENTRY IS >
AIA NOT VALID PUT AIA ON
PART ERROR QUEUE AND
SET A FLAG IN THE AIA. I0E
AIALSID C. LF THE DATA SET IS P ———— IOEAIA
[t UNUSABL) AIA IN
ERHOR END guzua IT TO
THE PART ERROR QUEUE.
PART AlA
v PARTAIAE AIABADID=1
Notes Routine| Label Ref Notes Routine| Label Ref

IF THIS IOE_IS FOR A WRITE
RE%UESTS (AIAWRITE=1) INITIALIZE
UEUE IT FOR THE
LOCAL DA TA SET. TURN ON THE
ég%%L9FLAG (WRITEFLG) AND GO TO

THIS IS A READ REgAT THE PAGE

éAIAWRITE OARCHEC
NTRY) INDICATED
XISTS, TH E SECOND BYTE (NN

BORTION) OF LSID IS AN INDEX TO
THE PART ENTRY

A. IF THE INDEX ENTRY IS WITHIN

TERMI
ONE IS AVAILABLE (IORFUSE —0)

A _LOC.
éREADFLAG’ IS _SET TQ_INDICATE
'O SCHEDULE PART MONITOR.

w
o]

THE INDEX ENTRY IS GREATER
E EN THE PART

IS INV;
RETURNED, THE AIA IS PUT ON
HE PART ERR QUEUE AND
AIABADID IS SET 1.

F -THE DATA SET_ THESE
RE UESTS _ARE BEING MADE
INST IS _NOT_ USABLE
%PAR SE=1), AIABADID IS SET
AND THE AIA IS QUEUED TO
PART ERROR QUEUE
(PARTAIA E) .

o]

Diagram 25.1.1 ILRQIOE (Part 3 of 4)

5-128 0OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

ASMVT AIA I

VS2.03.807

Processing

ASMSTAGF

LOCAL QUEUES
PAQUE
CAQUE
DUPQUE

I0E

[
L

1

I0E

[

ASMVT
ASMCALLQ
ASMSRBCT

PART

PARTAIAE

LOCAL FLAGS
READFLAG
WRITEFLAG

ET THE NEXT AIA POINTER.
éFE;HERE IS AN AIA GO TO

LF ANY IOE'S WERE BUILT I
PS 6 & 7, GET

E T
E PART WRITE
gggUES AND RELEASE THE

IF THERE IS WORK FOR PART
MONITO SRB IS BUILT
égﬁ INIT%ALIZED THEN

B

RESTORE REGISTERS, RESET
FOOTPRINT IN THE

RETURN TO CALLER

Ata AND

RETURN TQ
CALLER (SEE
STEPT)

Output

g
=]

PARTCOMQ
PARTDUPQ
PARTLOCQ

-
=]
m

U

T

OE
>

U

[2]

RB

|

Notes

Routine

Label Ref Notes

Routine| Label Ref

GET THE NEXT AIA FROM_ THE QUEUE
$3SMSTAGF) IF THERE 1S AN AIA
PROCESS GO TO_STEP4. IF THERE
S NO AIA SET THE LAST POINTER
(ASMSTAGL) TO ZERO.

AT THIS POINT ALL AIA'S HAVE
BEEN PROCESSED OR THERE ARE NO
OE'S. AL FLA

I THE INTERN. G
(WRITEFLG) IS CHECKED TO SEE IF
ANY WRITE IOE'S WERE PUT ON THE
LOCAL UEUES. IF WRITEFLG=0
THERE E NONE SO GO TO STEP 12.
THE IOE'S ARE PUT ON THE WRITE
UEUES IN THE PART HEADER
PARTLOCQ, PARTCOMQ PARTDUPQ) .

THE_PART MONITOR éILRPTM) Is
SCHEDULED I {
OUTSTANDING ASMIOCNT—AAf F ANY

88835 ERETA AE Ab OR I

YRITEFLAG) AkR oN. Howaven IF
THE SRB FOR PART M :
ALREADY SCHEDULED lsasr~1saac'r—.-0)
IT WILL NOT ULED AGAIN.
ALSO 1 TGN (LLRBACCH) IS
THBOCALLER (ASMCALL T TR LRE
WILL NOT BE S LED, BECAUSE
COMPLETION SCHEDULES 1T.

RESTORE REGISTERS FROM ASMWKSA2,
RESET FOOTPRINT IN THE ATA

RETURN

THE CALLER.

Diagram 25.1.1

ILRQIOE (Part 4 of 4)

Section 2: Method of Operation

5-129

¢ V82.03.807

Input Processing : Output

FROM RSM
E> ILRSWAP:
R1 AIA(LSQA) : ‘
l | I—-»L — ENTRY IS FROM IEAVPIOL
“1 . (SWAP-OUT REQUESTS) OR
IEAVSWIN (SWAP-IN
AIA (FXD)
REQUESTS) .
o
i ASMHD AIA(LSQA
QUEUE AIA'S TO SWAP QUEUE, r (LSQR)
ALA (NON-LSQA v : [|
) AND PASS NON-LSQA AIA'S TO
ASHSWAPQ
] THE PAGE I/0 CONTROLLER.
AIA(NON-LSQA

R 1 })\IA (NON-LSQA

.
. P———t) IF AIA'S ARE RETURNED BY
[] THE PAGE 1/0 CONTROLLER,

RETURN THEM AND ALL AIA'S

ASMHD ON THE SWAP QUEUE TO THE
e . CALLER. GO TO STEP 5.

ASHSWAPQ . i

- ————A FOR ALL SWAPINS OR FOR

SWAPOUT 'AND NO 1/0

AIA(LSQA) . OUTSTANDING, CALL LSQA
PROCESSOR.
ASMHD ASMHD l I <:> ILRSLSQA
] ASM ROUTINE
ASHSWPOT=0 ASHSWPOT=1
DELETE FRR.
ASHIOCNT=0
A\
RETURN TO
CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
ILRSWAP INITIALIZES THE SWAP IF THERE WERE NO NON-LSQA AIA'S |ILRSWAP |ILRSLSQA
REQUESTS RECEIVED FROM RSM. © TO BE PROCESSED FOR A SWAP OUT
ESTABLISHES ADDRESSABILITY, REQUEST AND NO I/0 WAS
SAVES CALLER'S REGISTERS IN THE OUTSTANDING AT THE TIME THE
ASMVT, AND ISSUES SETFRR TO : REQUEST WAS MADE, OR IF THE
ESTABLISH A RECOVERY REQUEST WAS FOR A SWAPIN, CALL
ENVIRONMENT. ILRCSWAP (ENTRY IN ILRSLSQA TO PROCESS THE LSQA
ILRSWPO1 RECOVERY ROUTINE) . PAGES BEING SWAPPED. IF THERE IS
HANDLES ERRORS OCCURRING IN OUTSTANDING I/0, ILRPAGCM WILL
ILRSWAP. CALL ILRSLSQA WHEN I/0
COMPLETES.
THE INPUT AIA'S ARE QUEUED TO ILRPAGIO| ILRPAGIO
THE ASM HEADER SWAP QUEUE DELETE THE FRR AND RESTORE
(ASHSWAPQ) . THOSE AIA'S THAT CALLER'S REGISTERS.

REPRESENT NON-LSQA PAGES ARE
DEQUEUED AND SENT TO ILRPAGIO,
THE PAGE I/0 CONTROLLER, TO BE
PROCESSED. NON-LSQA PAGES ARE
WRITTEN TO PAGE DATA SETS, NOT
SWAP DATA SETS.)

ANY AIA'S RETURNED BY ILRPAGIO
MUST BE SENT BACK TQO THE CALLER
ALONG WITH ANY OTHER AIA'S ON
THE SWAP QUEUE. THE AIA'S
RETURNED REPRESENT AN ERROR AIA
AND THE SUBSEQUENTLY CHAINED
AIA'S. SET A RETURN CODE OF 4
AND GO TO STEP 5.

Diagram 25.2 ILRSWAP (Part 1 of 1)

§-130 OS/VS2 System Logic Library Volume $§ (VS:.03.807)

V§$2.03.807

Input Processing Output
FROM_ASM
ROUTINES
ILRSLSQA:
[01] ENTERED wiTH gALLOC HELD g
AND FRR SET. 'RACKING
INFORMATION IN ATA AND
INITIALIZE WORKAREA . ATASLSQA

R 2
2 IE REDRIVE IS REQUESTED, -
1l smiye, 15 o
BROCESS AIA s'on ThE
ASHSWAPQ. ASMVT
R 2
ASHAKEAS

AIA

SWAPIN REQUESTS (READS):

ASMVT AIA

|AIaPAGDS=1 L]
A. IF PAGES WERE WRITTEN == ASMSTAGQ
TO PAGE DATA SET, PUT —_—

¥ ASh
AIA'S ON ASMST AND
CALL ILRQIOE.

<:> TLRQIOE

ASM ROUTINE
AIA R SART SCCW
B. IF PAGES rP

AIAPAGDS=0 T0 A CRAD DATA SET. DU T SARWAITQ
—_— RIn's IN GROUPS. oﬁ'm IN

A FREE SCCW SARTE

CHARNEL PROGRAM, "BUT"

. SCCW ON_PROPER smr

ENTRY FOR_SWAP DRI
SART IF NO_SCCW; FREE

PUT AIAYS on SARWAITQ AIA

SaRscong |

SCCW

Notes Routine] Label Ref Notes Routine| Label Ref

ILRSLSQA PROCESSES THE

PAGES OF A SWAB PROCESS. RTERED

WITH SALLOC HELD AND. FRR
BREVIOUSLY SET- BT TRACKING
INFORMATION IN THE ATA FOR
RECOVERY AND CLEAR THE WORKAREA
IN THE ASMVT LSe (ENTRY I
ILRSHEO T RECOVERY ROUTL NE)
HANDLES ERGRS OCCURRING 1N

IF R2=0, ENTRY VAS MADE_FOR

PROCESSING WORK THAT Wi
PREVIOUSLY LEFT ON THE SARWAITQ
BCAU$ OF A LACK O] ES
SCCW' S GOTO STEP 5. %F %%—1‘0,

T CONTAINS AN nsuu
ENTRY WAS MADE TO PROCESS AIA'S
FOR THAT ADDRESS SPACE, AND THE
AIA'S ARE ON THE ASHSWAPQ.

IIJ{TAAGES WERE WRITTEN TO A PAGE]ILRPAGIO}|ILRQIOE

Diagram 25.2.1 ILRSLSQA (Part 1 of 3)

chtion 2: Method of Operation . 5-131

VS2.03.807

Input Processing Output
AIA :
SWAPOUT REQUESTS (WRITES):
AIAWRITE=1) .
SART SCCW
A. IF SWAP SETS ARE fad
. AVAILABLE, PUT AIA'S =:|1_m I]
INTO GROUPS AND SET THE
SWAP COUNT, ALLOCATE SARTE
SART SWAPSETS, AND BUILD THE —_—
CHANNEL "ROGRAM UT
SCCW ON PROPER SART
—_ . ENTRYCFOR"SWAD DRIVER.
SARSETCT>0
- [— 8 }I\VAEl%AgE%P 85%‘55“511\'5 ;I pi ,—»MA
M TO ASMSTAGQY CALL [|
ILRQIOE o bRGCESs THE
ASMSTAGQ
AIA b S
<:> TLRQIOE
AIAWRITE=1 ASM ROUTINE
7
ey pm— IF ANY WORK IS ON THE
— v SARWALTO, REMGVE AIA GROUP
AND P 3,
SART -
SARSETCT=0
SART AIA l
7 =]
SARWAITQ
Notes Routine| Label Ref Notes Routine| Label Ref

FOR SWAP OUT REQUESTS ILRPAGIO| ILRQIOE

AVAILABLE THE AgAis ARE

DIV INTO GROUPS AN

SETS ARE _ALLOCATED. E C! E
IS BUILT AND TI C

PU N_TH, ;ROPERISART ENT! FOR

PLA 'AGQ AND
%LR IOE IS CALLED TO PROCESS

IF ANY WORK WAS LEFT BEHIND
BREVIOUSLY (CAUSED BY AN Sccw
GE) E_A GROUP 'FEOM

FHS SARG h‘Q D GOTO STEP 3.

Diagram 25.2.1 ILRSLSQA (Part 2 of 3)

§-132 OS/VS2 System Logic Library Volume 5 (V32.03.807)

VS$2.03.807

Input Processing Output
SCCW SRB
SARSRBCEO | —» I A IF ANY WORK WAS PUT ON TH A
ittt I _l_-r_—J SARTE'S AND THE SWAP ————————) I I
SARTE DRIVER IS NOT SCHEDULED,
—e SCHEDULE AN SRB.
SARTE) .
RETURN TO CALLER.
A\
RETURN TO
CALLER.
Notes Routine| Label Ref Notes Routine| Label Ref

[06] 1P ANY WORK WAS PUT ON A SART
ENTRY, AND THE SWAP DRIVER IS
NOT CURRENTLY SCHEDULED
(SARSRBCT=0) , SCHEDULE AN SRB
SET THE SCHEDULED COUNT
SARSRBCT=1) "TO PREVENT ANOTHER
PU FROM SCHEDULING.

RETURN TO CALLER.

Diagram 25.2.1 ILRSLSQA (Part 3 of 3)

Section 2: Methad of Operation 5-133

VS§2.03.807

Input Processing Output
FROM
DISPATCHER
(IEAVEDSO)
E ILRSWPDR:
ENTERED IN SRB MODE FROM
DISPATCHER. SETFRR, AND
RESET SRB SCHEDULED COUNT
(SARSRBCT) .
I [work_arEA |1-2F==3 OBTAIN WORKAREA ADDRESS.
WSACASMS
| SARTE TORB
A SEARCH SARTE'S (SART I
. ¥ —_—
SART _SCCH ENTRIES) LOOKING FOR WORK. T
ren | IF FOUND, LOCK SARTE AND — | sccw
SRESCCWQ PUT SCCW ON THE IORB/IOSB
SRESCCWQ PAIR. 1058 1
St —T
START I/0 AND UNLOCK
aIa SARTE. AT
REPEAT FROM STEP 3 UNTIL EZ———I

ALL SARTE'S CHECKED.

DELETE THE FRR.
RETURN TO DISPATCHER.

l':l

v
TQ_DISPATCHER
(IEAVEDSO)

Notes Routine| Label Ref Notes Routine| Label Ref
SCCW'S ON IORB-IOSB PAIRS AND
. ENTERED IN SRB MODE FROM
POINT TO FIRST CCW.
DISPATCHER, ILRSWPDR FINDS AND
STARTS 1I/0 REQUESTS TO THE SWAP
DATA SETS (ILRPTM AND ILRSRT ISSUE SIO (START I/O) MACRO TO s10

TOGETHER DO THIS PROCESSING FOR
THE PAGE DATA SETS). SET FRR FOR
RECOVERY AND RESET THE SCHEDULED
COUNT (SARSRBCT=0) SO ANY
SUBSEQUENT WORK PUT ON QUEUES
WILL CAUSE A RE-SCHEDULE OF SWAP
DRIVER. ILRSWPO1 RECOVERY
ROUTINE HANDLES ERRORS OCCURRING
IN ILRSWPDR.

I0Ss TO START THE OPERATION.

UNLOCK THE SARTE AND REPEAT FROM
STEP 3 UNTIL ALL SART ENTRIES
HAVE BEEN CHECKED.

ISSUE SETFRR DELETE TO RESET THE
RECOVERY ENVIRONMENT.

OBTAIN ADDRESS OF WORKAREA USED
TO STORE REGISTERS ACROSS START
1/0.

RETURN TO THE DISPATCHER.

SEARCH SART ENTRIES (SARTE)
LOOKING FOR WORK TO PROCESS.
A SCCW IS FOUND TO PROCESS
(SRESCCWQ) AND AN IORB/IOSB PAIR
1S AVAILABLE (ILRFUSE=0) TRY TO
LOCK THE SARTE TO PREVENT
INTERFERENCE FROM ANOTHER COPY
OF THE SWAP DRIVER. IF
PREVIOUSLY LOCKED GO TO NEXT
SARTE TO,PROCESS. IF LOCK I€
SUCCESSFULLY OBTAINED, PUT

IF

- Diagram 25.3 ILRSWPDR (Part 1 of 1)

§-134 0OS/VS2 System Logic Library Volume § (VS2.03.807)

V$2.03.807

Input Processing Outbut
FROM ILRCMP OR
ILRPTM
ILRPAGCM:
R 1 AIA R 13
0 SAVE CALLER'S REGISTERS Ibt:ﬁ | REGISTERS -
T [| STANDARD SAVE AREA AND E
ESTABLISH ADDRESSABILITY.
AIA
OBTAIN THE SALLOC FOR
] QERREN THE SR
AIA :
C] BSTABLISH RECOVERY. —
R 13 ATA
E:] 18_WORD SET UP ADDRESSABILITY TO e E______—]
SAVEAREA THE ASMVT. B
AL _: R 3 ASMVT
A|[05] DETERMINE WHICH INTERNAL e J
f—— QUEUE TO PUT AIA ON, SWAP = L I |
AIALSQA=1
|asmiswpg | r {asmaceng |
AIA AIA o
1]
\ ‘
Notes Routine| Label Ref Notes Routine| Label Ref
[01] cALLED BY 1/0 COMPLETION, OR BY
PART MONITOR, WITH REGISTER 1
POINTING TO A CHAIN OF AIA'S AND
REGISTER 13 POINTING TO AN 18
WORD_SAVEAREA, THE REGISTERS ARE
SAVED IN THE CALLER'S SAVE AREA.
OBTAIN THE SALLOC FOR CONTROL
BLOCK SERIALIZATION.
ISSUE SETFRR TO ESTABLISH ERROR
RECOVERY. ILRIOFRR I
BREONS OCCURRING IN ILREAGCM.
- GET THE_ADDRESS OF THE ASMVT AND
BUT IT IN REGISTER 3, TH
STANDARD ASM CONVENTON.
THE AIA'S ARE PUT ON ONE OF TWO
PUSH DOWN STACKS, IF THE AIR IS
FOR A SWAP LSOA PAGE AIALSOA=T)
T2 GDES ON 'm SHAE
{asHisupo) oL FEcors on
HE GENERAL gUEUE (ASM3G Q) -
THE TWO QUEUES ARE MAINTAINED IN
THE WORK AREA (ASMWKSA3)
Diagram 25.4 ILRPAGCM (Part 1 of 3)
Section 2: Method of Operation 5-135

VS2.03.807

Input Processing Ou¥put
R 4 ATA R 4 ATA
: [IF THERE IS ANOTHER AIA TO Ing
L I [ataaia | PROCESS, GO TO STEP 5. [|
: ATAAIA=0
AIA
o I
- —
R 4 AIA
IF THERE ARE ANY AIA'S ON >
AIA THE INTERNAL GENERAL QUEUBeem— r L gl
.

Ly FOR_PAGECOMP SUBROUTI
:} CALL PAGECOMP FOR
COMPLETION PROCESSING. -

>
AIA r |ATAAIA
e —

[

|t

IA

4 AIA
—>

— ®
L J
—J

- IF THERE ARE ANY AIA'S ON
AIA - ’—-—-) THE INTERNAL SWAP QUEUE s .
INTSWAPQ | —>) CALL_ SWAPCOMP FOR
iy l::___] COMPLETION PROCESSING. ‘
L
.

AIA r {ATAAIA

J E—

>

IA

i

Notes Routine{ Label Ref Notes Routine| Label Ref

06] WHILE PROCESSING IN THIS LOOP

ke
L)
>
=3
15}
g
g
=i
n 2
Q
[=]
3
o
0
]
5
L
)

IF ANY AIA'S WERE BUT ON THE PAGECOMP{25.4.1

PROCESSING. THE AIA'S

. ARE PASSED
VIA THE ATAAIA FIELD.

IF ANY AIA'S WERE PUT ON THE SWAPCOMP25.4.2
INTERNAL SWAP SUEUE PASS THEM
TO SWAPCOMP FOR COMPLETION
PROCESSING, THE AIA'S' ARE PASSED
VIA THE ATAAIA FIELD.

Diagram 25.4 ILRPAGCM (Part 2 of 3)

5-136 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

v$2.03.807

Input Processing Output
AIA R 1 AIA
ASM3PIOP | > | A THERE_ARE ANY AIA'S ON —
| | | ’I‘HE ASM3PIOP QUEUE, CALL eoee— [| | |
RSM. L
AIA AIA
[— = ’
RSM ROUTINE L1
ASMUT AIA IF THERE IS WORK ON THE e AIA
—> STAGING QUEUE CALL poe—
ASMSTAGL [
AIA <:> ILRQIOE R 3 _JAIA
C— Rem wovrivg | Indi
DELETE FRR, RELEASE
SALLOC, RESTORE REGISTERS ASMVT
AND E‘f'URN CONTROL TO THE
0
ASMSTAGF
[_.I I ASMSTAGL
v
TO CALLER AIA
Notes Routine| Label Ref Notes Routine| Label Ref

[09] werLe PRocESsING IN PAGECOMP AND |IEAVPIOP|IEAVPIOP
SWAPCOMP SOME A

P SOM
BEEN PUT ON THE UBUE MBPIOP)
TO PASS_BACK E(.U VPIOP).
IF ANY ARE ON 8
ADDRESS IN ASM3PIO IS PUT INTO
REGISTER 1 AND CONTROL IS PASSED
TO IEAVPIOP.

THE STAGING QUEUE (ASMSTAGO) 1S |ILRPAGIO|ILRQIOE
CHECKED TO SEE TF ANY AIA'S ARE

WAITING OCESSED. IF
THERE IS ADDRESS IN THE FIRST
POINTER MSTAGF NON-ZERO)
CONTROL ASSED TO ILRQIOE TO
BUILD IOE

;"o’
ﬁ

<,

”E

s.

[11] e rrr IS DELETED, THE SALLOC
1S _RELEASED REGIS

RESTORED AND con-mox. $S RETURNED
16 TaR G

Diagram 25.4 ILRPAGCM (Part 3 of 3)

Section 2: Method of Operation 5-137

VS2.03.807

Input Processing Output
FROM ILRPAGCM
MAINLINE
b PAGECOMP:
R 4 . ATA R 4 ATA
A SET FOOTPRINT IN THE ATA. A
. r 1] Ny S———— ———— r]J, |ATAPCOMP=1|
ATAAIA
AIA
“‘, IF THE TERMINATION
[——-—j INDICATOR IS ON PROCESS
AIA ' THE TERMINATION. IF NOT GO
—/ 7O TR 2
R 1
z A. IF THERE WAS NO ERROR A
R 3 P —————r LSID
E '_’ASMVT PROCESSING THE SLOT,
R ASMVT
AIA o <:> ILRFRSL1 ——
— ASMNVSC-1
AIATERMR=1 l ASM ROUTINE W
- B. DECREMENT THE e———— —_—
AIA e APPROPRIATE COUNT. I
AIAPRIER=0
I C. QUEUE THE AIA TO THE ASMVT
] |ASM3PIOP l
ASM3PIOP TO BE PASSED
TO RSM. GO TO STEP 9. AIA ASMIORQC+1
PCB RSMHD
SET UP ADDRESSABILITY TO r]47‘['
‘THE ASCB AND RSMHD. Ib
ASCB
Notes Routine| Label Ref Notes Routine| Label Ref

COMPLETED COUNT (ASMIORQC).

CONTROL IS RECEIVED FROM
GO TO STEP 9.

MAINLINE ILRPAGCM TO PROCESS ‘ALL
PAGE COMPLETIONS. REGISTER 3
POINTS TO THE ASMVT AND REGISTER GET THE ADDRESSES FOR THE ASCB
4 POINTS TO THE ATA WHICH HAS AND RSMHD FOR THE ADDRESS SPACE.
THE ADDRESS OF THE AIA'S TO BE
PROCESSED. FOR RECOVERY
PURPOSES, PAGECOMP INDICATES IT
HAS CONTROL BY SETTING A BIT IN
THE ATA.

THE TERMINATION INDICATOR
(AIATERMR=1) MEANS THAT THE
ADDRESS SPACE WAS TERMINATED AND
THAT CONTROL BLOCKS ARE NO
LONGER AVAILABLE. THE AIA MUST
BE GIVEN BACK TO IEAVPIOP AND:

A. IF THERE WAS NO ERROR FREE ILRFRSLT|ILRFRSL1
THE SLOT FOR FURTHER USE.-

B. DECREMENT THE VIO OR NON-VIO
(ASMVSC OR ASMNVSC)' SLOT
COUNT DEPENDING ON. THE TYPE
OF PAGE.

C. QUEUE THE AIA TO THE ASM3PIOP
QUEUE (FOR RETURN TO
IEAVPIOP) AND INCREMENT THE -

Diagram 25.4.1 PAGECOMP (Part 1 of 6)

5-138 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
AA “ CHECK IF THIS IS A VIO ASHVT AIR
—_— COMPLETION. IF NOT, GO TO |
AIAVIO=1 ASMSTAGF
STEP 5.
ASMSTAGL
A. IF THIS IS A RETRY AIA
:I| FOR A WRITE OPERATION,
FREE THE SLOT AND QUEUE AIA
AIAWRITE=1
- THE AIA FOR ILRQIOE. GO {:
m TO STEP 9.
<:> ILRFRSL1
ASM ROUTINE
AIA AIA '—| L B. IF AN 1/0 ERROR ASMVT _JAIA
—II ’ OCCURRED ON A WRITE, OR [L J
AIAWRITE=0 AIAWRITE=1 ASMSTAGF
IF A READ AND THE RETRY -
AIAIORTY=1 AIAPRIER=1 ASMSTAGL
FLAG IS SET, QUEUE THE | —
AIA TO THE STAGING
QUEUE AND GO TO STEP 9.
AIA
I
C. CALL VIO COMPLETION. R 4 AIA
TO STEP 7. r | 11 }
<:> ILRVIOCM ATA
|ASM ROUTINE]
ATAAIA
Notes Routine{ Label Ref . Notes Routine| Label Ref
IF THIS IS NOT A VIO COMPLETION
(AIAVIO=0) GO TO STEP5, ELSE:
A. IF A RETRY WAS REQUESTED ILRFRSLT | ILRFRSL1
(AIAIORTY=1) THE AIA MUST BE
SENT BACK TO ILRQIOE VIA THE
STAGING QUEUE. IN ADDITION,
IF IT WAS A WRITE
(AIAWRITE=1) THE SLOT THAT
WAS USED MUST BE FREED. GO TO
STEP 9.
B. IF THE REQUEST WAS FOR A
WRITE AND AN ERROR OCCURRED
(AIAWRITE=1 AND AIAPRIER=1)
OR IF REQUEST WAS FOR READ
AND RETRY 1S SET (AIAWRITE=0
AND AIAIORTRY=1) QUEUE THE
AIA TO THE STAGING QUEUE. GO
TO STEP 9.
C. IN ANY OTHER CASE THE AIA ILRVIOCM| ILRVIOCM
WILL BE SENT TO ILRVIOCM FOR
PROCESSING GO TO STEP 7.
N\
Diagram 25.4.1 PAGECOMP (Part 2 of 6)
“ Section 2: Method of Operation 5-139

'V$2.03.807

Input Processing Output
PAGECOMP:
ATAFRAUX=0 | mmmry Remmeommmy IF THERE WERE ANY SPECIAL [Arapexer-1]
AIAIORTY=0 M BITS ON, GO TO STEP 7.
AIAPRIER=0
- A A. FOR A DUPLEXED REQUEST,
AIASECER=0 e/
e CHECK ‘IF BOTH REQUESTS
AIAERROR=0
il ARE COMPLETED. IF NOT,
ATABADID=0
GO TO STEP 11.
’ XPTE SPCTE
A B. IF THE REQUEST IS A A
PRI e S [s—— 4 G —————— 4 XPTLSID SPCTSSID
(AzaDexcr | PRIVATE AREA PAGE,
| XPTVALID=1 SPCTLVAL=1
UPDATE THE XPTE. IF IT :
AIAPRIV=1 IS A FIXED SWAP PAGE, XBTE
ATASWPFX=1 UPDATE THE SPCTE. GO TO
. XPTLPID
STEP 9. —_—
XPTVALID=1
AIABADID=1]|=—m C. IF REQUEST IS NOT A
OR PRIVATE AREA, UPDATE
AIAERROR=1
THE XPTE AND GO TO STEP
9.
D. FOR READ REQUEST THERE
IS NO UPDATE NECESSARY
FOR THE XPTE. IT IS
PASSED DIRECTLY TO STEP
9.
— IF THERE ARE ERRORS IN THE
AIA, GO DIRECTLY TO STEP
9.
Notes Routine| Label | Ref Notes Routine| Label | Ref
- : VALIDATED.
IF THERE WERE NO SPECIAL BITS ON
- IN AIAFLG2, THE REQUEST IS A
D. FOR READ REQUESTS NO
NORMAL COMPLETION AND IS HANDLED
PROCESSING IS REQUIRED.
FIRST.
A. FOR A DUPLEX REQUEST IF ANY SEVERE ERRORS (AIABADID
(ATADUPLX=1), DECREMENT OR AIAERROR) OCCURRED THE AIA'S
AIADPXCT. SET TO TWO ARE QUEUED FOR DIRECT RETURN TO
ORIGINALLY, AIADPXCT MUST BE IEAVPIOP (DONE IN STEP 9).

2ERO, BOTH REQUESTS
COMPLETED, BEFORE RETURNING
AIA TO RSM. IF AIADPXCT DOES
NOT GO TO ZERO WHEN
DECREMENTED, GO TO STEP 11 TO
GET NEXT AIA.

B. FOR A PRIVATE AREA COMPLETION
(AIAPRIV=1)}, A TRANSFER
ADDRESS SPACE 1S DONE TO
ACCESS THE XPTE. THE LSID IS
MOVED IN AND IT IS VALIDATED
(XPTVALID=1). FOR FIXED SWAP
PAGES (AIASWPFX=1) THE SPCTE
IS ALSO UPDATED (SPCTSSID AND
SPCTLVAL) .

C. FOR A NONRRIVATE AREA .
COMPLETION A TRANSFER ADDRESS
SPACE IS NOT REQUIRED. THE
XPTE 1S UPDATED AND

Diagram 25.4.1 PAGECOMP (Part 3 of 6)

5-140 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V$2.03.807

Input Processing Output
AIA | R
I IF THIS IS A READ REQUEST
—| = (AIAWRITE=0) GO TO STEP 8.
AIAWRITE=1
— WRITE REQUESTS WILL BE
PROCESSED HERE.
R 1 ASMVT
AIA l_r———--—*; A. IF THE REQUEST IS o | [rsmwecss
AIAWRITE= 1 | s M PURGED, FREE THE SLOT,
AIAFRAUX=1 DECREMENT THE COUNTS ASCB
- FOR A PRIVATE AREA PAGE
ASCBNVSC-1
AND GO TO' STEP 9.
<:> TLRFRSL1
ASM ROUTINE
AIA o ASMUT AIA
B. IF THE RETRY FLAG IS I
—_—me -—J| FOUND ON, THE AIA WILL |5
AIAWRITE=1 ASMSTAGF
—_— BE PUT BACK ON THE —_—
AIAIORTY=1 ASMSTAGL
—_— STAGING QUEUE FOR il
REDRIVE AFTER FREEING
THE SLOT. GO TO STEP
1.
<:> ILRFRSL1
ASM ROUTINE
AIA ASMVT AIA
A C. IF ANY ERRORS WERE l
—_— I FOUND IN THE AIA, PUT
AIAWRITE=1 ASMSTAGF
THE AIA ON THE STAGING —
AIAPRIER=1 ASMSTAGL
—_ QUEUE FOR REDRIVE. GO
AIASECER=1
— TO STEP 11.
AIA
Notes Routine| Label Ref Notes Routine| Label Ref
FOR WRITE REQUESTS:
A. IF THE REQUEST WAS PURGED ILRFRSLT|ILRFRSL1
(AIAFRAUX=1) THE SLOT IS NOT
NEEDED SO IT IS FREED UNLESS
THERE WERE I/0 ERRORS. THE
USE COUNTS (ASCBNVSC,
ASMNVSC) ARE DECREMENTED FOR
PRIVATE AREA PAGES. GO TO
STEP 9.
B. IF THE AIA SPECIFIES THAT A ILRFRSLT | ILRFRSL1
RETRY SHOULD BE ATTEMPTED
(AIAIORTY=1) THE SLOTS WHICH
WERE ALLOCATED ARE FREED AND
THE AIA IS QUEUED TO THE
ASMSTAGQ. GO TO STEP 11.
C. IF ANY I/O ERRORS OCCURRED

(AIAPRIER=1 OR AIASECER=1)
QUEUE THE AIA TO THE ASMSTAGQ
FOR REDRIVE. GO TO STEP 11.

Diagram 25.4.1

PAGECOMP (Part 4 of 6)

Section 2: Method of Operation 5-141

VS§2.03.807

(AIAFRAUX=1) WHILE THE PAGE
OPERATION WAS IN PROGRESS THE
SLOT CAN BE FREED AND USE
COUNTS DECREMENTED (ASCBNVSC,
ASMNVSC) FOR PRIVATE AREA
PAGES. IF NO I/O ERRORS
OCCURRED, THE SLOT IS FREED.
GO TO STEP 9.

B. IF THE RETRY FLAG IS ON THE
AIA MUST BE QUEUED FOR
REDRIVE TO THE ASMSTAGQ. GO
TO STEP 11.

C. FOR A READ REQUEST THAT WAS
DUPLEXED, A PRIMARY ERROR CAN
BE REDRIVEN TO TRY TO READ
THE SECONDARY COPY. THE
SECONDARY LSID (XPTLSID2) IS
MOVED INTO THE PRIMARY FIELD
(XPTLSID) AND INTO THE AIA
(AIALSID) AND THEN QUEUED TO
ASMSTAGQ FOR REDRIVE. GO TO
STEP 11.

JP. FOR A NON-DUPLEXED READ ERROR
THE ERROR IS INDICATED IN THE

Input Processing Output
AIA
I ; . FOR READ COMPLETIONS:
AIAWRITE=0 '
A= R R 1 ASMVT
> A. IF THE REQUEST WAS [1
PURGED, FREE THE SLOTS Y
AIA [DECREMENT THE COUNTS AscB e
AIAWRITE=0 AND GO TO STEP 9.
AIAFRAUX=1 |) YT
<:> ILRFRSL1
= | |ASM ROUTINE
A B. IF THE RETRY FLAG IS ONe
AIAWRITE=0 | mmd o : - ASMVT AIA
uammvy,1 QUEUE THE AIA TO THE J-»L
-
STAGING QUEUE FOR — ASMSTAGF
REDRIVE. GO TO STEP 11. m—
XPTE AIA I C. FOR A DUPLEXED READ smweemmn
l M WITH AN ERROR, REDRIVE
XPTLSID2-0 AIAWRITE=O] FOR SECONDARY COPY. GO ASMVT AIA
ALAPRIER=1 TO STEP 11. e
= ASMSTAGF
ASMSTAGL
AIA l D. FOR ERRORS WHICH ARE
NOT DUPLEXED MARK THE
AIAPRIER=1 XPTE. XPTE
AIALSID2=0 Rmany
XPTIOERR=1
Notes Routine| Label Ref Notes Routine| Label Ref
XPT (XPTIOERR=1).
FOR READ REQUESTS:
A. IF THE SLOT WAS PURGED ILRFRSLT|ILRFRSL1

Diagram 25.4.1 PAGECOMP (Part § of 6)

5-142 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

ASMHD ASMVT
QUEUE THE AIA TO THE ﬁ ASM3PIOP

INTERNAL QUEUE FOR

ASHSWPOT=1 ASMIORQC+1
=== IEAVPIOP AND INCREMENT THE AIA bt Ay
ASHIOCNT=0

COMPLETED COUNT T

(ASMIORQC) .

IF THE ADDRESS SPACE IS
INVOLVED IN A SuAp OUT AND
THE LSQA PAGES CAN BE
STARTED, GO TO ILRSLSQA TO
PROCESS THE SWAP LSQA
AIA'S.

<:> ILRSLSQA

ASM ROUTINE

[71] tr THERE ARE MORE AIA's TO
PROCESS, GO TO STEP 2.

@ RESET THE FOOTPRINT IN THE
ATA AND RETURN TO

ILRPAGCM.
\J
RETURN TO
ILRPAGCM
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
THE AIA IS NEXT QUEUED TO THE
INTERNAL QUEUE (ASM3PIOP) FOR
IEAVPIOP AND THE AIA COMPLETED
COUNT (ASMIORQC) IS INCREMENTED. /
DETERMINE IF A SWAPOUT IS IN ILRSWAP | ILRSLSQA

PROGRESS (ASHSWPOT=1) AND IF SO,
IF ALL 1/0 FOR THE PRIVATE AREA
PAGES HAS COMPLETED
(ASHIOCNT=0), THE LSQA PAGES CAN
BE STARTED. IF THE LSQA CAN BE
STARTED, ILRSLSQA IS CALLED TO
START THEM.

[::] THE NEXT AIA TO PROCESS IS
PICKED UP FROM ATAAIA AND IF
THERE IS ONE TO PROCESS GO TO
STEP 2.

[E ALL THE AIA'S ARE NOW PROCESSED
= RESET THE FOOTPRINT IN THE ATA
AND RETURN TO ILRPAGCM.

Diagram 25.4.1 PAGECOMP (Part 6 of 6)

Section 2: Method of Operation 5-143

VS2.03.807

Input Processing Output
FROM ILRPAGCM
MAINLINE
SWAPCOMP:
R 3 ASMVT / R ATA
s - SWAPCOMP - ROUTINE OF
| 7]] ILRPAGCM FOR “HANDLING SWAPemmemssssey ATASCOMP-1
: LSOA COMPLETIONS. SET THE _—
FODTPRINT IN THE ATA FOR
RECOVERY.
R 4 ATA
]!
ATAAIA
AIA
LE THE AIA IS FOR B MEMORY
THAT HAS BEEN TERMINATED
—_— THE AIA CANNOT BE
AIATERMR=1 ocassm) AND MUST BE
- RETURNED TO RSM IN THE
MAINLINE.
A. IF NO I/0 ERRORS WERE
ENCQUNTERED, THE SLOT
AIA OR SWAPSET S FREED. -.
—_— <:> TLRFRSLT
AIAPRIER=0
ASM ROUTINE
AIABADID=0 -
ASMVT
AIAERROR=0 A
ASMIORQC+1
AIA -
ASMNVSC-1
I B. IF_A PAGE DATA SET WAS
v USED, ADJUST THE
AIAPAGDS=1 APPROPRIATE COUNTS. |
C. CHAIN THE AIA
ATS) THE RSM3PI0P TO ASMVT AIA
BE PASSED BACK TO RSM.
A GO TO STEP 7. L]
ASM3PIOP
——\[o3] EOR SWAP OUTS, GO TO STEP -
AIAWRITE=1 M .
Notes Routinef Label Ref Notes Routine| Label Ref
101] SET_FOOTPRINT IN THE ATA TO
INDICATE TO RECOVERY THAT
PROCESSING IS NOW IN THE SWAP
COMPLETION PART OF ILRPAGCM.
F_THE TERMINATION BIT IS SET IN
THE ALD é TERMR=1) MEMORY
© THAT AIA WAS d £aTHD FOR
HAS BE ZERMINATED AND THE
ASMHD AND OTHER MEMORY
RELAT&D o ROL Bl HAVE BEEN
DESTROYED, FOR THIS REASON ONLY
THE AIA CAN BE REFERENCED.
A. IF THE AIA DID NOT HAVE AN ILRFRSLT | ILRFRSL1
0 ERROK, FREE THE PAGE DATA
RSL1 THE ILRFRSLT | ILRFRSW1

T_SLOT (ILRFR:
SWAP DATA SET (ILR RSW1).

INCREMENT THE COUNT OF
COMPLETED 1/0 REQUESTS

{ASMIOR AND DECREMENT THE
? Lo'rs FOR NON-VIO
ROES (ASMNVSS) "

Q
.

g EYE THE AIA (OR GROUP OF
IA'S) TO ASM3PIOP FOR THE
MAINLINE TO RETURN TO RSM.

FOR SWAP OUTS (AIAWRITE=1) GO TO
STEP 5.

Diagram 25.4.2

SWAPCOMP (Part 1 of 5)

5-144 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
AIA
A FOR SWAP IN REQUESTS:
AILAWRITE=0
| cmm————— ASWT
e — | A. IF THE AIA SUFFERED A ASM3PIOP
v NON-PAGING ERROR, QUEU
IT FOR RETURN TO'REM IN —
THE MAINLINE,. ADJUST ASMIORQCH+1
AIA COUNT OF COMPLETED 1/0 AIA -
REQUESTS. IF AIA IS FOR
AGE DATA SET, GO TO |::]
STEP 7.
AIAERROR=1
A B. IF A RETRY IS REQUESTED=
e/ BECAUSE I0S SUFFERED ANewmeeamemee ASMVT AIA
DETERMINATE ERROR ™~
AIABADID=1 QUEUE AIA'S FOR PAGE l |
ETS TO THE
STAGING QUEUE AND AIA'S ASMSTAGQ
FOR SWEP' SETS TO THE —_—
T QUEUE TO BE AIA
ALR BIRIBD "GO 0 STEP 7. :
C. IF NO 1/0 ERRORS L 1
AIAIORTY=1 OCCURRED, THE SLOT OR e SART
SWAP SET'IS FREED. IN
AIAPRIER=0 EVENT, INVALIDATE
THE SWAP TABLE ENTI ——e
AIAPAGDS=1 AND QUEUE THE AIA TO BE SARWAITQ
RETU! TO THE —_—_—
OR INLINE.
AIAPAGDS=0 APPROPRIATE CQUNTS IF
THE AIA 1S FOR A BAGE
DATA SET. GO TO STEP 7.
ASMVT
ASM3PIOP
ILRFRSLT
ASM ROUTINE ASMIORQC+1
: AIA Qc
C I s
Notes Routine| Label Ref Notes Routine| Label Ref
FOR SWAP_IN REQUESTS
(AIAWRITE=0)
A. IF THE AIA HAD A NON-PAGING
ERROR _SUCH AS A_BAD LSID
PASSED BY RSN AIABADID=1) OR
AN INDETERMINA
(AIaER monn ETTHE opmnou
ED_AND THE AIA
is SUEUED 3O THE TNYERNAL
E TO RNED TO KM
v THE m(xim.ms. INCRE!
RE UESTS (ASMIOR(AIA
FOR-A BAGE DAT 1\
B. IF I0S HAD AN INDETERMINATE
RROR_BUT NOTHING 1S WRONG
WITH THE ASM REQUEST (AIA)
THE OPERATION SHOULD BE
RETRIED (AIAIORTY=1). IF THE
READ REQDEST WAS A PAGE
N A _PAGE DATA SET
AIAPAGDS=1) THE RIA 1S
LACED ON THE ASMSTA
THE MAINLINE CALLS IOE TO
RETRY THE BPERATION. 18 THE
luaa WAS FOR' A GROUP OF
BS ON' A_SHAD S
AGDS=0) THE ATa GROQUP 1S
PACED QN THE™ SARWAT
THAT TLRSLIOA T8 CAL
R Ry FRE OBRRATION (ETED 8) .
C. IF NO ERRORS OCCURRED, THE ILRFRSLT | ILRFRSL1
SLOT OR_SWAP
THE RELATED amav s m THE | ILRFRSLT|ILRFRSW1
SWAP CONTROL
SR SONTRD " (TABLEy
BECAUSE THE AUXILIARY SLOTS
EXIST. THE MIA(S)
LACED ON_THE_QUI
RETURNED BY
ﬂk'éé“ﬁmirs%" TNCREMENT
coﬁpwrno 1/0
n%zs'rs (ASHI AND
E_COUNT’ OF SLOTS
POR NON-VIO FAGES (ASMNVEQ)

Diagram 25.4.2

SWAPCOMP (Part 2 of 5)

Section 2:

Method of Operation 5-145

VS2.03.807

Input Processing Output
SWAPCOMP:
AIA
FOR SWAP OUT REQUESTS:
AIAWRITE=1 T
AIAIORTY=1 smme— A. IF RETRY IS REQUESTED RS
~/ BECAUSE IOS HAD AN sy -
FREE. THE SLOT OR oWAP ASMSTAG SARWAIT
AIA SET AND PUT THE ATA ON 2 2
THE STAGING QUEUE
AIAWRITE=1 | commem (SLOTS) OR_WAIT QUEUE
——r AS APPROPRIATE TO BE
AIAPRIER=1 RETRIED. GO TO STEP 6. AIR AIA
"|AIAPAGDS=1 - >
e ILRFRSLT L I L I
ASM ROUTINE -
! B. IF THERE WAS_A WRITE ASMVT
AIA) ERROR ON A PAGE DATA ASMHD
; , OQUEUE THE AIA - |asHcapg
A T RETRIED. 1§ DHERE WAS A |asmMsTaGQ - ASHPERME=1
AIAPRIER=1| MISCELLANEOUS ERROR b 2 ' RME=
N_ON PERMARENT
AIAPAGDSZO SNECAIA TG THE GRBURE AIA
AIAERROR=1 QUEUE. GO TO S STED 6 ALA »I——--I
A C. IF THERE WAS A WRITE
| Se———— 4 ERROR ON A SWAP SET, ee— I I
AIA TURN ON.THE CAPTURE
UEUE ERROR FLAG. I
AIAWRITE= 1 | swmeemn HERE WAS A
—_— 'MISCELLANEOUS ERROR ASMHD AIA
RAIRPRIER=O ERROR PLAG- GURUE ALA ASHCAP ing | |
AIAERROR=0 TO cgwunz'quus. GO TO : 2
STEP 6. : ASHCAPER=1
| D. NO ERROR OCCURRED, e ASHPERME=1
: UPDATE SWAP CONTROL =@ seemcc— E
TABLE AND OUEUE AIA TO
CAPTURE QUEUE.
SPCT ASMHD
SPCTSSID ASHCAPQ
: SPCTLVAL=1
AIA
Notes Routine| Label Ref Notes Routine| Label Ref
SWAP OUT (AIAWRITE=1) REQUESTS:
A. IF_IOS SUFFERED AN ILRFRSLT| ILRFRSL1
INDETERMINATE ERROR, THE
RIED, THE ILRFRSLT | ILRFRSW1

ERROR
P

AN ERROR

F‘

THE

AIA’S) MAY BE R
S OR SWAPS

AND THE AIAg& 8UEUED TO
EITHER THE STA

. ILR IO
gA ARE CALLED TO
AIA'S ON THE QUEUES LATER
IN PROCESSING.

P THERE WAS A WRITE_ERROR ON
THE OPERATION T%IS AIA

REPRESENTS ERROR
OCCURRED ON A PAGE DATA SET,
THE AIA IS QUEUED TH

TAGQ SO THAT IT MAY BE
WRITTEN TO A DIFFERENT SLOT.
IF THERE WAS A MISCELLANEOUS
AIAERROR='|

'HE

ASHPERME:
KIA TO THB &APTURg“QUEUE

C. IF THERE WAS A WRITE ERROR ON

A SWAP SET, TURN ON THE
GAETURE QUEvE ELAc
ASHCAP] 'IA TO_INDICATE THAT
R IVE IS ON THE CAPTURE
8 UE. IF WAS A
ISCEL) LAN
AJAERROR=1
(ASHPERME=1
8UBUB THE AIA TO THE CAPTURE

NO_ERROR. OCCURRED, UPDATE
sm CONTROL TABLE Eﬁ'l‘RY WITH
LSID FROH AIA AND

BTS ARE FREED

E_Of
RETRY

TURN
FLAG
THE

ERROR
CAPABLE FOR

S ERROR
TUR![_! ON THE

WH CH MEANS THE
E_REDRIVEN.

Diagram 25.4,2

SWAPCOMP (Part 3 of 5)

§-146 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V§2.03.807

Input Processing Output
SWAPCOMP:
ASMHD
- 1{06] IF THE swap COUNT GOE
p— 4 ZERO, ALL LSOA OPERATIONS
— HAVE' COMPLETED Iy
ASHSWPCT=0 SPECIFIC ADDRESS SPACE. spoTE
[A. IF SWAP OUT WAS TO SWAP=—
-/ DATA SETS AND NQ ERRORSeme———— SPCTSSID
WERE CAPTURED, UPDATE e
THE sWap CONTROL TABLE SPCTLVAL=1
AIA ASMHD] -
-
AIAPAGDS=0 ASHCAPER=0 | s
A B. IF SWAP OUT WAS TQ SWAP N
ASHPERME=0 et 4 DATA SETS AND ERRORS
WERE CAPTURED, “FREE ANY
SWAP_SETS S THAT ARE NOT
RROR .
AIA ASMHD <:> ILRFRSW1
[a1aprIER=0] ASHCAPER= 1 | ememens ASM ROUTINE
—
OR
ASHPERME=1
R : R O R 1
C. IE NO ERRORS OCCURRED
IF A PERMANENT ERROR: foora |]]
ASMHD occqmmb, RETURN ALL
AIA'S AS'A GROUP_TO
RSM. GO TO STEP 7. ALA
ASHCAPER=0
LR TS —
RSM ROUTINE
ASMHD
— D. IF A RETRYABLE ERROR il e
- -/ " OCCURRED, QUEUE ALL I]
ASHCAPER=1 AIA'S TO'THE SWAP
UEUE. CALL ILRSLSQA TO ASHSWAPQ
ETRY THE ENTIRE —_—
OPERATION. RSMHD
<:> TLRSLSQA R 2 L J
=== 1
Notes Routine|{ Label Ref Notes Routine! Label 'Ref
[06] waen THE SUAP COUNT 15 ZERQ
{J\SMSNPCT 0) o ALL LSQA AIA'S FOR
HAT SPECIF (: ADDRESS SPACE” HAVE
A. IE SWAP QUT WAS TO SWAP DATA
SETS (AIAPAGDS=0) IF NO
ERROR 28 EABTORED
RSRCAPERSG AND ASHPERME=0) ,
HE SPCTE'S (SWAP CONTROL
IES) ARE VALIDATED
SPCTLV] THE LSID'S
OR EACH AIA ARE PLACED IN
THE SWAP CONTROL TABLE
THE SUBSEQUENT SWAP IN.
B. IF SWAP OUT WAS TO SWAP DATA |ILRFRSLT|ILRFRSW1
SETS (AIAPAGDS=0), AND ERRORS
ED (ASHCAPER=1 OR
HPERME=1), ALL SWAP SETS
THAT DO ' CONTAIN ERROR! s
(AIAERROR=0 AND AIAPRIER=0)
ARE FREED.
c. NQ ERROR_OCCURRED IEAVSWPC | IEAVSWPC
REGISTER 0 IS SET TO 0, IF A
ERROR occtm?
ISTER SET 4 (fo
INDICATE THE ABSENCE OR
PRESENCE OF THE ERROR TO
RSM]. IN EITHER CASE, ALL THE
AIA'S ETURN, RSM'S
SWAP COMPLETION ROUTINE.
D. AN_ERROR ILRSWAP |ILRSLSQA
BE RETRIED (RSHOADER= 1), Taft
THE AIR'S ARE QUEUED TO'THE
UEUE (ASHSWAPQ) .
Is CALLED T0'REDRIVE
THE ENTIRE LSQA SWAP
OPERATION

Diagram 25.4.2

SWAPCOMP (Part 4 of 5)

Section 2:

Method of Operation 5-147

VS§2.03.807

Processing Output

1nput

ATA... ...

07] IF THERE IS ANOTHER AIA 10 | |
PROCESS, GO TO STEP 2. Lo > .

ATASCOMP=0

IF THERE ARE AIA'S ON THE
SARWAITO, CALL ILRSLSOA

| I———-—J TO
PROCESS THEM, AS RESOURCES

HAVE NOW BEEN FREED.

<:> ILRSLSQA

ASM ROUTINE

SARWAITQ

|09} RESET. THE RECOVERY
TRACKING BIT IN THE ATA.

RETURN TO MAINLINE.

[—1

\'%
RETURN TO
MAINLINE
ILRPAGCM

Notes Routine| Label Ref Notes Routine| Label Ref

UEUE TO_B:!

IF THERE ARE MORE AIA'S ON THE
] NTERNAL SWAP
PROCESSED, 86 %0 STER 2

IF THERE ARE AIA'S ON THE WAIT ILRSWAP |ILRSLSQA

EUE ILRS 'ALLED TO .
OCE$S THEM, BDCAUSE RESQURCES
CCW'S) ARE NOW FREE TO PROCESS

RESET THE TRACKING BIT IN THE
ATA FOR RECOVERY.

RETURN TO THE MAINLINE.

Diagram 25.4.2 SWAPCOMP (Part 5 of 5)

5-148 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_RSM
ROUTINES
ILRFRSLT:
e R.13.. . EpS
ILRFRSLT-CALLED FROM RSM o ‘ -1
— TO FREE A SLOT.
[R2=RSHHD | SAVEAREA
i STORE CALLERS REGISTERS.
R13=SAVE
PAT
XPTE IF THE PAGE IS VALID AND A
NO PREVIOUS ERRORS WERE 10101
XPTVALID=1 ENCOUNTERED, FREE THE
XPTIOERR=0 SLOT. IF THE PAGE WAS
DUPLEXED, FREE THE SECOND
SLOT.
XPTE
XPTLSID2
NOT=0
Notes Routine| Label Ref Notes Routine| Label Ref

ILRFRSLT IS THE MAIN ENTRY
POINT. SECONDARY ENTRY POINTS
ARE ILRFRSL1 AND ILRFRSW1. THE
MAIN ENTRY POINT IS USED BY RSM
ROUTINES TO FREE A SLOT SUCH AS
WHEN A PAGE IS FREED. THIS
MODULE SETS NO FRR OR TRACKING
BIT, IT MERELY RUNS AS A
SUBROUTINE OF THE CALLER.

STORE THE CALLERS REGISTERS IN
THE SAVEAREA PASSED IN REGISTER
13.

IF THE XPTE IS VALID
(XPTVALID=1) AND NO PREVIOUS
ERRORS WERE DETECTED
(XPTPRIER=0) , FREE THE SLOT BY
SETTING THE APPROPRIATE PAT BIT
TO 0. IF THE PAGE WAS DUPLEXED
(XPTLSID2-=0) , FREE THE SECOND
SLOT IN THE SAME MANNER.

Diagram 25.5 ILRFRSLT (Part 1 of 3)

Section 2: Method of Operation 5-149

VS2.03.807

R13=SAVE |

SAVE CALLER'S REGISTERS.

ﬁ

Input Processing Output

XPTE XPTE

‘, RESET THE XPTE. GO TO STEP ‘>
—_—— i 11.
XPTVALID=1 :> XPTID=0

/ XPTVALID=0

ENTRY POINT
XPTVIOLP=0
ILRFRSL1-CALLED BY ASM
R1=LSID I ROUTINES TO FREE A SLOT.
R13

SAVEAREA

Notes Routine| Label Ref

Notes

Routine

Label

Ref

RESET THE XPTE BY SETTING
XPTVALID=0, XPTVIOLP=0 AND XPTID
(THE TWO LSID'S) TO 0. GO TO
STEP 11.

ENTRY POINT ILRFRSL1 IS CALLED
BY ASM ROUTINES TO FREE A SLOT.

SAVE THE CALLERS REGISTERS IN
THE CALLER PROVIDED SAVE AREA.

Diagram 25.5 ILRFRSLT (Part 2 of 3)

5-150 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

{ VS82.03.807

Input Procéssing output

FREE THE SLOT. GO TO STEP
1.

ENTRY POINT ILRFRSW1 -
CALLED BY ASM ROUTINES TO.
FREE A SWAP SET.

|R1=LSID I_'_——_r)

iF—=—

]

R13
SAVEAREA

FREE THE SWAP SET.

7]
- SAVE CALLER'S REGISTERS.
G
E;

RESTORE CALLER'S
REGISTERS.

RETURN TO CALLER.

11|

\
RETURN TO
CALLER

Notes Routine| Label Ref Notes Routine| Label Ref

FREE THE SLOT BY SETTING THE
APPROPRIATE PAT BIT TO 0. GO TO
STEP 11. :

ENTRY POINT ILRFRSW1 IS CALLED
BY ASM ROUTINES TO FREE A SWAP
SET.

SAVE THE CALLERS REGISTERS IN
THE SAVE AREA PASSED BY THE
CALLER.

FREE THE SWAP SET BY SETTING THE
APPROPRIATE ‘SAT BIT TO 0.

E RESTORE THE CALLER'S REGISTERS.

RETURN TO THE CALLER.

Diagram 25.5 ILRFRSLT (Part 3 of 3)

Section 2: Method of Operation 5-151

I/0 Subsystem

The 1/0 Subsystem communicates with 10S to
effect the physical transfer of data between real
and auxiliary storage. When paging 1/0 is required,
170 Control schedules an SRB to start the I/0
Subsystem processing. The 1/0 Subsystem selects
the page data sets for which paging is pending,
allocates slots if necessary, builds channel
programs, calls I0S through the STARTIO macro to
initiate the actual 170, and, after return from IOS,
returns the completed requests to 1/0 Control.

The 1/0 Subsystem is “completion” driven, that
is, the page completion portion of 170 Control
drives the 1/0 Subsystem when previously
scheduled 1/0 completes. Only when no 1/0 is
currently outstanding is the I/0 Subsystem driven
by the initial page processing portion of 1/0
Control.

1/0 Subsystem processing is done by three
modules: the Part Monitor (ILRPTM), Slot Sort
(ILRSRT), and Completion (ILRCMP). The 1/0
Subsystem contains one other module, the Message
module (ILRMSG00), which produces the messages
issued by ASM.

1/0 Subsystem can be divided into two basic
parts: Initial Processing (prior to the call to 10S),

and Completion Processing (upon return from 10S).

Initial Processing
Initial Processing starts when ILRPTM receives
control (SRB mode) from 1/0 Control. Paging
requests are represented by I0Es (I/0 Request
Elements) pointing to AIAs (ASM I/0 Request
Areas). Before passing control to ILRPTM, I/0
Control queues each IOE to the PARTE (Page
Activity Reference Table Entry) for the ASM data
set against which the paging request is being made.

There are three queues of PARTEs. The first is a
straight queue of PLPA, Common, and Duplex data
set PARTEs. The other two are circular queues (the
last PARTE on the queue points to the first) for
local page data sets, one for fixed- and one for
movable-head devices. ILRPTM examines all
PARTEs on these two queues each time it is called.
ILRPTM processes the PARTEs in the following
order: PLPA, Common, Duplex, fixed-head queue,
movable-head queue.

ILRPTM scans each PARTE and calls Slot Sort
(ILSRT) if all the following conditions are met:

o There is a read or write request on the

PARTE.

5-152 0OS/VS2 System Logic Library Volume 5§ (V $2.03.807)

vS2.03.807

« If the request is a write, there is at least one
slot available in the data set represented by
that PARTE.

« The PARTE is not locked (in use by another
CPU). If it is not, ILRPTM turns on an
in-process flag to lock out this PARTE from
other CPUs.

» A PCCW (Program Channel Command
Workarea, used by ASM to identify a page 1/0
request), is available.

« An IORB (I/0 Request Block) is available.
The IORB is the main interface with 10S.

There are two read queues on a PARTE, one
sorted and one unsorted. Before passing control to
ILRSRT, ILRPTM sorts the unsorted reads and
inserts them onto the sorted queue.

During processing, if the PLPA data set fills
before all PLPA pages are written, the remainder
are written to the Common paging data set.
Conversely, Common writes can spill over into
PLPA. If PLPA and Common are both full or one is
unusable, ILRPTM calls the message routine
(ILRMSG00). If duplexing is active, ILRMSGO00
notifies the operator that the system is relying on
the secondary copy. If duplexing is not active,
ILRMSGO00 terminates the system. If the Duplex
data set is unusable, but both PLPA and Common
are not, the operator is notified and the system
continues, relying on the primary copy. If Duplex is
unusable and if PLPA or Common is unusable or
both are full, ILRMSGO00 terminates the system.

ILRSRT sorts the I/0 requests against a page
data set in such a way that they can be processed
with a minimum number of device revolutions.
ILRSRT chooses a cylinder between the one it last
used and the end of the data set. If none can be
selected, ILRSRT starts again from the beginning of
the data set. (If there is only one réad and no
writes to be done, ILRSRT takes a quick path to
process the read, bypassing the cylinder selection
process.) If no cylinder is found on the data set
(no reads and no more available slots), the
data-set-full return code is set and 1/0 processing
for this data set on this ILRSRT invocation ceases.

After ILRSRT selects a cylinder, it selects a slot,

“dequeues the IOE to be processed to that slot,

builds a PCCW for the operation, and chains the
PCCW from the IORB. When all requests possible
for a specific cylinder are processed, ILRSRT finds
the next cylinder for 1/0.

Processing of cylinders and slots stops when
resources (PCCWs, 10Es, available slots, etc.) are
exhausted or when the current service burst (the

maximum amount of time the channel/device can
be tied up for a given set of operations) is met.
Finally, ILRSRT completes initialization of an
IORB-IOSB-SRB chain (I0SB is the 1/0 Supervisor
Block) and branch enters 10S via the STARTIO
macro.

Completion Processing
When the physical 1/0 operation completes, 10S
returns control to the Completion module
(ILRCMP) of the 1/0 Subsystem. The function of
ILRCMP is to return AlAs to page completion
(ILRPAGCM, part of 1/0 Control). If an error has
occurred and retry is possible, ILRCMP causes an
AIA to be reprocessed before returning it to
ILRPAGCM. ILRCMP has four major routines:
« Disabled Interrupt Exit (entry point
ILRCMPDI).
+ Normal End Appendage (entry point
ILRCMPNE).
« Abnormal End Appendage (entry point
ILRCMPAE).
s Termination (ILRCMP).

Any 1/0 completion involves at least two calls to
ILRCMP entry points. For successful 1/0, both calls
are to ILCMPDI. If there were errors on the 1/0,
the first call is to ILCMPDI, and the subsequent
calls are to other entries of ILRCMP depending on
the types of errors.

Disabled Interrupt Exit

10s first returns control to ILRCMPDI, passing it the
address of an 10SB. ILRCMPDI follows the
10SB-IORB-S/PCCW chain, and processes the

1 individual requests represented by the S/PCCWs.
After a successful 1/0, on the first branch entry to
ILRCMPDI it frees the S/PCCWs, returns the
associated AlAs to ILRPAGCM, and returns to I0S.
10S branch enters ILRCMPDI a second time so that
ILRCMPDI can release the IORB of the successfully
completed request, and, if work remains on the
associated PARTE/SARTE, schedule ILRPTM or
ILRSWPDR as appropriate. On the first branch
entry after an unsuccessful 1/0, ILRCMPDI returns
to I0s with a code indicating that the Post Status
routine (IECVPST) should get control. 10S must
schedule an SRB for POST STATUS, who calls the
appropriate entry in ILRCMP.

Normal End Appendage

IECVPST calls ILRCMPNE if the error is a
wrong-length record or a unit exception. ILRCMPNE
immediately returns to IECVPST with a code

VS2.03.807

indicating that control should be passed to DASD
ERP (Error Recovery Procedure) for retry.

IECVPST also calls ILRCMPNE if DASD ERP
retried successfully. In this case, ILRCMPNE
removes the S/PCCWs from the 10SB-IORB, returns
the S/PCCWs to the appropriate available queue,
and returns the processed AIAs to ILRPAGCM.

Abnormal End Appendage

IECVPST calls ILRCMPAE on all errors other than
the two mentioned in the previous section. If
ILRCMPAE determines that the error is temporary,
it returns immediately to IECVPST with a code
indicating that control should be passed to DASD
ERP for retry.

If the error is permanent, it indicates that either
an entire page/swap data set or a slot is unusable.
If it is a data set error, control is passed to
ILRMSGO00 to determine whether the system can
continue and to take appropriate action - either
sending a message or taking the system down.
Additionally, ILRCMPAE calls a subroutine to mark
all the S/PCCWs as errors. If it is a slot error,
ILRCMPAE records the LSID in a bad slot list in
SQA and queues the error S/PCCW AIA to be
returned to ILRPAGCM. ILRCMPAE rechains the
S/PCCWs following the one in error and returns to
IECVPST with a code indicating that a new
STARTIO should be issued to retry them.

Termination
IECVPST calls ILRCMP if an ABEND occurs within
108 or within ILRCMPNE or ILRCMPAE. This means
the status of the 1/0 is indeterminable, so ILRCMP
marks all the AlAs for retry, returns them to
ILRPAGCM, frees the IORB associated with the AlAs
and schedules ILRPTM or ILRSWPDR as appropriate.
IECVPST also calls ILRCMP after ILRCMPAE or
ILRCMPNE has freed all the S/PCCWs. In this case,
ILRCMP frees the IORB and schedules the SRB if
necessary.

Message Module
The Message Module (ILRMSG00) is used by the
Part Monitor (ILRPTM), I/0 Completion (ILRCMP),
and the recovery modules ILRCMPO1, ILRSRTO01 and
ILRSWPOL. ,
ILRMSG00 has two primary functions: to write
messages to the operator concerning the status of
all page and swap data sets; to terminate the
system when ASM is unable to continue. Reasons
for termination are: PLPA or Common has become
unusable and there is no Duplex data set available;
Duplex has become unusable and PLPA/Common is

Section 2: Method of Operation 5-153

unusable or both are. full; the last Local page data
set has become unusable.

When ILRMSG00 is provided with a message
number, it issues that message to the operator and
returns to the caller. If the message number
provided is eight, ILRMSG00 passes control to
IGFPTERM to terminate the system.

5-154 0S/VS2 System Logic Library Volume § (V$2.03.807)

VS2.03.807

If a message number is not provided to
ILRMSGO00, it determines what message to issue and
updates the appropriate flag and count fields in the
ASMVT, PART, and SART. If necessary, ILRMSG00
passes control to IGFPTERM to terminate the
system.

vS2.03.807

1/O Subsystem

25.6. 258
Part Monitor - 1/0 Completion
(ILRPTM) (ILRCMP)
258.1
.DIE Routine
(ILRCMPDW)
25.7 25.8.2
Slot Sort Abnormal End
ot 5o - Appendage
{ILRSRT} ’ (ILRCMPAE)
259 | 25.8.3
ASM Message Normal End
Routine Appendage
(ILRMSGO00) (ILRCMPNE)
25.x. - Module

25.x.y. — Entry point in module 25.x.

Figure 2-58. 1/O Subsystem Overview

Section 2: Method of Operation 5-155

VS2.03.807

Input Processing Output
FROM
DISPATCHER
ILRPTM:
ILRPTM'S SRB IS SCHEDULED
BY ILRPAGIO AND ILRCMP TO
GET PAGE DATA SET
PROCESSING STARTED.
PART
A MAKE SRB AVAILABLE FOR
RESCHEDULING.
PARTCOMQ
PARTDU PARMLIST
rQ e DETERMINE PAGE DATA SET:
PARTLOCQ PROCESS IORB
PAREIOE) | PARE
PARENODE PCCW
GET THE IOE'S FROM THE s
puat— WRTQ
WRITE QUEUE FOR THE PAGE o
DATA SET.
PART I0RB |
~ | LOCK THE PARTE.
pom——
PAREIORB
GET AN AVAILABLE IORB, s
—_
.
Notes Routine| Label Ref Notes Routine| Label Ref
ILRPTM (PART MONITOR) RECEIVES READ QUEUES ARE PARENGDE
CONTROL IN SRB MODE TO INITIATE PAREIOE, RESPECTIVELY. THE
.ADDRESS OF THE PARTE SELECTED IS
WORK ON PAGE DATA SETS. THE PUT IN THE PARAMETER LIST
INFORMATION ABOUT A PAGE DATA :
SET IS CONTAINED IN A PARTE IN
THE PART. THERE IS ONE PARTE FOR ALL IOES CHAINED ON THE WRITE GETWRTQ |25.6.1

EACH PAGE DATA SET. FOR RECOVERY
PURPOSES, ILRSRTO1 RECOVERY
ROUTINE HANDLES ERRORS OCCURRING
IN ILRPTM.

ONLY 1 SRB FOR ILRPTM CAN BE
SCHEDULED AT A TIME. IF ANY WORK
IS ADDED AFTER THIS ENTRY,
ILRPTM WILL BE SCHEDULED AGAIN.

A PAGE DATA SET WILL BE
PROCESSED IF THERE ARE WRITES ON
ITS CORRESPONDING WRITE QUEUE IN
THE PART HEADER, OR READS IN
EITHER OF ITS READ QUEUES
(SORTED AND UNSORTED) IN THE
PARTE, AND THAT PARTE IS NOT
CURRENTLY BEING PROCESSED. THE
POSSIBLE WRITE QUEUES ARE
PARTCOMQ, PARTDUPQ, AND
PARTLOCQ. MORE THAN ONE PARTE

- CAN POINT TO THE SAME WRITE
QUEUE.. THE SORTED AND UNSORTED

QUEUE ARE REMOVED AND PUT ON THE
WRITE QUEUE IN THE PARAMETER
LIST. THE ASM CLASS LOCK WILL
SERIALIZE THE WRITE QUEUES.

THE PART ENTRY IS LOCKED TO
SERIALIZE PROCESSING OF THE PAGE
DATA SET.

PUT THE IORB ADDRESS IN THE
PARAMETER LIST. IF THERE ARE NO
IORB'S FOR THIS PARTE AT ALL,
PART MONITOR ABENDS 084 SO THAT
RECOVERY CAN BUILD AN IORB FOR
THIS PARTE. IF NO IORB IS
AVAILABLE, THE PART ENTRY IS
UNLOCKED AND PROCESSING
CONTINUES AT THE NEXT ENTRY.

Diagram 25.6 " ILRPTM (Part 1 of 3) -

5-156 OS/VS2 Sy;tem Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
ASMVT PCCW |
r>| l A GET A PCCW.
ASMPCCHQ |
N PARTE
SORT ANY UNSORTED READS.
PARTE I_-I.__ql %
PAREIOE PARENODE
l SORT THE REQUESTS AND
START THE 1/0.
<:> ILRSRT
ASM ROUTINE
REPEAT STEPS 3-9 UNTIL ALL
PART ENTRIES HAVE BEEN
PROCESSED.
PARMLIST
onn A|[11] 1F A pcow 1s LEFT IN THE
e II v PARAMETER LIST, RETURN IT
oo TO THE PCCW AVAILABLE
QUEUE"
WRTQ
BWK
[12] tr wr1tE REQUESTS ARE LEFT
IN PARAMETER LIST, RETURN
THEM TO THE APPROPRIATE
PART HEADER WRITE QUEUE.
Notes Routine| Label Ref Notes Routine{ Label Ref
PUT. THE PCCW ADDRESS IN THE PARAMETER LIST. IF LLRSRT
: RETURNS A PCCW, STEP 7 WILL NOT
PARAMETER LIST. IF NO PCCW IS HAVE TO BE DONE FOR THE NEXT
AVAILABLE THE IORB IS MADE .
AVAILABLE. THE PARTE UNLOCKED PARTE. FINAL CLEANUP REQUIRES
’ ' THAT ANY RESOURCES REMAINING BE
AND PART MONITOR EXITS. RETURNED
AN ADDITIONAL CHECK IS MADE TO SORTREAD|25.6.2
[(2] 1r writES ARE RETURNED FROM
DETERMINE IF THERE IS STILL WORK ILRSKT. STEP 4 WILL HAVE TO BE
TO DO, AND ANY UNSORTED READS !
' EXPANDED FOR THE NEXT PARTE AS
ARE SORTED ACCORDING TO CYLINDER FOLLOWS. IF THE PREVIOLS WRIT
LOCATION AND PUT ONTO THE SORTED QuEVE 15 THE SAME AS THE CURRENT
READ QUEUE (PARENODE) .
@ WRITE QUEUE, THE NEW WRITES ARE
JUST ADDED TO THE QUEUE IN THE
ILRSRT IS CALLED TO SORT ILRSRT |ILRSRT PARAMETER LIST. IF THEY ARE NOT
REQUESTS, BUILD THE CHANNEL THE SAME, THE OLD WRITES WILL BE
PROGRAMS, AND START THE I/0. PUT BACK ON THEIR WRITE QUEUE
BEFORE THE NEW ONES ARE
OBTAINED. FINAL CLEANUP REQUIRES
THE PART ENTRIES ARE PROCESSED DSFULL [25.6.3 THAT ANY WRITES REMAINING §E sur
IN THE FOLLOWING ORDER - PLPA, BACK ON THE APPROPRIATE QUEUE
COMMON, DUPLEX, QUEUE OF ALL .
FIXED HEAD LOCALS, QUEUEU OF ALL
MOVABLE HEAD LOCALS. CALL DSFULL
TO DETERMINE WHICH DATA SETS ARE
FULL AND WHICH CAN ACCEPT A
WRITE. FOR DRUMS, IF MORE WORK
REMAINS, STEPS 6-9 ARE REPEATED.
[(3] ™ pccw ADDRESS Is KEPT IN THE

Diagram 25.6 ILRPTM (Part 2 of 3)

Section 2:

Method of Operation 5-157

VS2.03.807

- Input Processing Output
PART AIA R 1 AIA
J—br—————-ll_m @ IF ANY AIA'S ARE ON r———-—-l r_—_—l
PARTAIAE QUEUE, PASS THEM i5
PARTAIAE y
TO ILRPAGCM FOR FURTHER AIA
<:> TLRPAGCH
ASM ROUTINE 1
RETURN TO DISPATCHER.
v
TO DISPATCHER.
Notes Routine| Label Ref Notes Routine| Label Ref
ANY ERROR AIA'S RETURNED BY ILRPAGCM| ILRPAGCM

ILRSRT WILL BE REMOVED FROM THE
PARTAIAE QUEUE TO BE PASSED TO
ILRPAGCM.

ILRPTM RUNS IN SRB MODE SO
CONTROL IS RETURNED TO THE
DISPATCHER,

Diagram 25.6 ILRPTM (Part 3 of 3)

5-158 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

FROM ILRPTM
MAINLINE

GETWRTQ:

IF THE WRITE QUEUE OF THE
PREVIOUS PARTE IS NOT THE
SAME FOR THE CURRENT PARTE
AND WRITE REQUESTS ARE ON
THE INTERNAL QUEUE:.

A. GET ASM CLASS LOCK.

B. SET LOCK INDICATOR.
R 1 PARMLIST l PART
I ‘> . RETU ITES
l l J—b C RN WR. ON
INTERNAL QUEUE TO FRONT
WRTQ PARTCOMQ
—_— OF WRITE QUEUE OF
PARTDUPQ
PREVIOUS PARTE.
PARTLOCQ
IF NO WRITE REQUESTS ARE p—
PAREWTQE
ON INTERNAL QUEUE AND -
WRITES REQUESTS ARE ON
WRITE QUEUE OF CURRENT
PARTE.
A. GET ASM CLASS LOCK, IF
NOT HELD AND SET
INDICATOR.
PARTE R 1 PARMLIST
A) B. PUT ALL WRITES FROM % L]J—b
CURRENT WRITE QUEUE ON
PARTCOMQ - WTQE
INTERNAL QUEUE.
PARTDUPQ
PARTLOCQ
PAREWTQE
Notes Routine| Label Ref Notes Routine| Label Ref

- WRITE REQUESTS FOR THE CURRENT
PARTE (PAGE DATA SET) ARE TO BE
OBTAINED. ALL WRITE REQUESTS ARE
IN QUEUES IN THE PART HEADER OR
ON THE INTERNAL QUEUE BEING
PASSED TO ILRSRT. ANY WRITE
REQUESTS NOT PROCESSED BY ILRSRT
FOR THE PREVIOUS PARTE ARE STILL
ON THIS INTERNAL QUEUE. IF A
PARTE HEADER WRITE QUEUE
DIFFERENT FROM THE PREVIOUS ONE
IS TO BE USED FOR THE PARTE AND
REQUESTS ARE LEFT ON THE
INTERNAL QUEUE, THE INTERNAL
QUEUE 1S CLEARED (WRITE REQUESTS
RETURNED TO ORIGINAL QUEUE). THE
INTERNAL QUEUE WILL BE FILLED IN
STEP 2.

IF THERE ARE NO WRITE REQUESTS
ON THE INTERNAL QUEUE, IT IS
FILLED WITH NEW REQUESTS FROM
THE APPROPRIATE PART HEADER
QUEUE FOR THE CURRENT PARTE.

Diagram 25.6.1 GETWRTQ (Part 1 of 2)

Section 2: Method of Operation 5-159

Input

V$2.03.807

Processing

IF PREVIOUS PARTE WRITE
QUEUE IS THE SAME FOR
CURRENT PARTE AND WRITE
REQUESTS ARE ALREADY ON
INTERNAL QUEUE, LEAVE AS
Is.

RELEASE ASM CLASS LOCK, IF
HELD, AND RESET INDICATOR.

=l

\'
RETURN TO
MAINLINE

Oueput

Notes

Routine

Label Ref Notes

Routine

Label

Ref

SINCE BOTH PARTES ARE TO USE THE
SAME PART HEADER QUEUE OF WRITE
REQUESTS, USE THE REQUESTS LEFT
OVER FROM LAST PARTE PROCESSING.

LOCK INDICATORS SET SO THAT LOCK
WILL BE OBTAINED ONLY ONCE AND
FREED ONLY ONCE.

Diagram 25.6.1 GETWRTQ (Part 2 of 2)

5-160 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output

FROM ILRPTM
MAINLINE

SORTREAD:

PARTE 10E |

4 REMOVE READ IOES FROM
PAREIOEQ |J |IOENXT ——

PARTE QUEUE.
PARENODE

COMPUTE CYLINDER AND SLOT
NUMBER WITHIN CYLINDER.

PERFORM TREE SORT ON IOE
ACCORDING TO RELATIVE SLOT
NUMBER .

v PARTE 10E
ADD IOE TO SORTED READ -~
—_———I_ | PARENODE TOENXTLE
QUEUE.
TOENXTGT

IOEAIA
SPECIAL CASE: IF THIS IS e————
AIA IOEBKPTR

THE ONLY READ AND THERE

ARE NO WRITE REQUESTS, SET L———-——-——J
SPECIAL INDICATOR ON
SORTED TREE.

RETURN.

l:'l

A4
TO_ILRPTM
MAINLINE

Notes Routine| Label Ref Notes Routine| Label Ref

THE IOE TO THE SORTED READ
[01] THE ENTIRE CHAIN OF READ

QUEUE.
REQUESTS (IOES) IS REMOVED FROM
PAREIOEQ AND PAREIOEQ IS SET TO
ZERO. COMPARE AND SWAP (CS) IS IF THIS IS THE ONLY READ AND
USED FOR SERIALIZATION. THERE ARE NO WRITES, SET

PARENODE TC ITS COMPLEMENT FOR A

SPECIAL PATH THROUGH ILRSRT.
THE READ IOES ARE SORTED

ACCORDING TO CYLINDER AND
RELATIVE SLOT NUMBER.

EACH IOE IS PLACED ON A
TWO-DIRECTION TREE ACCORDING TO
ITS RELATIVE SLOT NUMBER. ONE
DIRECTION REPRESENTS LESS THAN
OR EQUAL, THE OTHER DIRECTION
REPRESENTS GREATER THAN. IN
ORDER TO GROUP IOES REPRESENTING
READ REQUESTS FROM THE SAME
CYLINDER TOGETHER AN INSERTION
1S SOMETIMES NECESSARY IN THE
MIDDLE OF A 'LEG' OF THE TREE.
THE TOP OF THE TREE IS POINTED
TO BY PARENODE.

IF THERE ARE NO READS ALREADY ON ADRTTREE|25.6.4
THE TREE, JUST SET TOP NODE

(PARENODE) TO POINT TO THIS IOE.
OTHERWISE, CALL ADRTTREE TO ADD

Diagram 25.6.2 SORTREAD (Part 1 of 1)

Section 2: Method of Operation 5-161

Input

ASMVT

PARTE

PARESLTA

FROM ILRPTM
MAINLINE

VS2.03.807

Processing

DSFULL:

IF PLPA IS FULL, SET THE
PLPA FULL INDICATOR.

- IF COMMON 1S FULL, SET THE
COMMON FULL INDICATOR.

IF DUPLEX IS FULL,
INDICATE THAT DUPLEXING IS
SUSPENDED.

IF PLPA IS FULL AND COMMO!
IS USABLE, SET UP COMMON
AREA WRITES TO GO TO
COMMON .

T 1

IF COMMON IS FULL AND PLP.
IS USABLE, SET UP COMMON
AREA WRITES TO GO TO PLPA,.

IF PLPA IS FULL, COMMON IS
FULL, AND DUPLEXING IS ON,
MARK EACH AIA LSID FIELD
ZERO AND PUT THE AIA ON
THE PART ERROR.QUEUE.

Output

ASMVT

PART

PARTSPLQ
PARTCOMQ

Notes

Routine

Label Ref Notes

Routine

Label

Ref

IF PLPA DATA SET IS FULL (NO

MORE SLOTS AVAILABLE), SET THE
FLAG IN ASMVT (ASMPLPAF).

IF COMMON DATA SET IS FULL, SET

THE FLAG IN ASMVT (ASMCOMMF) .

IF DUPLEX DATA SET IS FULL, SET
THE FLAGS INDICATING DUPLEXING
1S SUSPENDED (ASMDUPLX OFF,
ASMNODPX ON) .

IF PLPA IS FULL, COMMON IS NOT
MARKED BAD, AND COMMON IS NOT
FULL, SET UP FOR WRITES TO GO TO
THE COMMON DATA SET BY SETTING
PAREWTQE TO O FOR PLPA AND.
PAREWTQE TO THE ADDRESS OF THE
PARTCOMQ FOR COMMON.

IF COMMON IS FULL AND PLPA IS
NOT MARKED AS BAD, AND PLPA IS
NOT FULL, SET UP FOR THESE
WRITES TO GO TO PLPA BY MOVING
WRITES TO THE SPECIAL SPILL
WRITE QUEUE.

IF PLPA AND COMMON ARE FULL AND

DUPLEXING IS STILL ACTIVE, EACH
AIA ON THE WRITE QUEUE IS MARKED
AS AIALSID EQUAL ZERO AND PUT ON
THE PART ERROR QUEUE. THESE AIAS
WILL LATER BE SENT TO ILRPAGCM

TO HANDLE.

Diagram 25.6.3

DSFULL (Part 1 of 2)

§-162 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

IF DUPLEXING IS FULL AND
BOTH PLPA AND COMMON ARE
USABLE, MARK EACH AIA AS A
DUPLEX ERROR AND PUT IT ON
THE PART ERROR QUEUE.

IF PLPA IS NOT USEABLE,
COMMON IS NOT USEABLE, AND
DUPLEXING IS NOT ACTIVE
TERMINATE THE SYSTEM. IF
CONTINUING, ISSUE THE
APPROPRIATE MESSAGE.

Notes Routine| Label Ref Notes Routine| Label Ref

IF DUPLEX DATA SET IS FULL AND
BOTH PLPA AND COMMON ARE
USEABLE, ALL AIAS ON THE DUPLEX
WRITE QUEUE WILL BE MARKED AS
SECONDARY ERROR AND ‘PUT ON THE
PARTAIAE QUEUE. THESE AIAS WILL
LATER BE SENT TO ILRPAGCM TO
HANDLE.

IF ACCESS TO SOME PLPA OR COMMON |ILRMSGOO}ILRMSGOO
PAGES HAS BEEN LOST, ILRMSGOO
TERMINATES THE SYSTEM. IF
PROCESSING CAN CONTINUE,
ILRMSGOO INFORMS THE OPERATOR OF
WHAT HAS JUST HAPPENED, IF HE
HAS NOT ALREADY BEEN INFORMED.

Diagram 25.6.3 DSFULL (Part 2 of 2)

Section 2: Method of Operation 5-163

VS2.03.807

Input - ewieasing Output
FROM_SORTREAD
(ILRPTM
SUBROUTINE)
ADRTTREE:
IOEPTR 10E PARTE I0E .
> A PUT AN IOE ONTO ITS >
| |4 T [1oEnxr PARENODE | [10ENXTLE
- APPROPRIATE PLACE ON THE TORNNTGT
’ e | TREE OF READ IOES. -
PARTE IOEAIA IOEAIA
PARENODE [——l TOEBKPTR
v
TO CALLER.
Notes Routine| Label Ref Notes Routine| Label Ref

[61] e TrEE oF READ IOES 1Is PoINTED
TO BY PARENODE. A BACKWARD
POINTER IS USED TO ALLOW UFWARD
AS WELL AS DOWNWARD MOVEMENT
WHEN SCANNING THE TREE. AN
INSERTION IS NECESSARY WHEN
NORMAL SORTING WOULD SEPARATE
TWO NODES ASSOCIATED WITH
REQUESTS FOR THE SAME CYLINDER.

Diagram 25.6.4 ADRTTREE (Part1of1)

§-164 OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS2.03.807

Input Processing Output
FROM ILRPTM :
| b ILRSRT:
R 1 I0RB /
o Ind | INITIALIZE WORK VARIABLES.
PARMLIST PCCW
> Ine IF ONLY 1 READ AND NO
[JI9RB I | WRITES:
PARTE
PCCW BWK A. REMOVE READ FROM QUEUE.
WR
szg l I B. BUILD CONTROL BLOCKS
FOR THAT REQUEST.
PARTE
> IF MORE THAN ONE READ
AND/OR WRITE:
108 A. SELECT THE NEXT
C—] CYLINDER TO BE
- PROCESSED.
B. PROCESS REQUESTS ON
CYLINDER BASIS.
10SB I0RB i
FINAL SET UP FOR CALL TO S S rs ;
10S. |I;$!
i
PCCW PCCW |
RETURN IOES TO AVAILABLE r l J—>L 1 i
QUEUE OF IOES. > i
SET UP RETURN CODE. ;
v
TO ILRPTM
Notes Routine| Label Ref Notes Routine| Label Ref
(BASED ON FEWEST REQUIRED
ILRSRT IS CALLED BY ILRPTM TO INITLZ [25.7.1
ROTATIONS) WHICH REQUESTS

PROCESS ONE PAGE DATA SET.
ILRSRT PREPARES THE 1/0 REQUESTS
FOR A SERVICE BURST OF WORK AND
STARTS THE I/0. INITIALIZE
WORKING VARIABLES, ESTABLISH
CONTROL BLOCK ADDRESSABILITY.
FOR RECOVERY PURPOSES, ILRSRTO1
RECOVERY ROUTINE HANDLES ERRORS
OCCURRING IN ILRSRT. CALL IO TO COMPLETE SET UP AND I0 25.7.5
TO ISSUE THE SIO (START I/0)

WILL BE PROCESSED. PROCESSING
CONTINUES UNTIL ENOUGH
REQUESTS TO FILL THE SERVICE
BURST ARE BUILT, NO MORE
PCCWS ARE AVAILABLE, OR THERE
ARE NO MORE REQUESTS.

MACRO.

A SPECIAL PATH FOR ONE READ AND
NO WRITES - PARENODE (THE SORTED
READ QUEUE) WILL BE NEGATIVE. USE COMPARE AND SWAP (CS) TO

RETURN STRING OF ALL THE IOES.

A. REMOVE READ FROM QUEUE, ZERO
QUEUE AND COMPLEMENT ADDRESS
TO GET VALID ADDRESS,

RETURN CODES: 0 - SUCCESSFUL, NO
WORK REMAINING. 4 - SUCCESSFUL,
READS AND OR WRITES LEFT. 8 -
DATA SET FULL, NO READS LEFT. 12
~ DATA SET FULL, READS LEFT.

B. CALL PROCHIT TO BUILD CCWS PROCHIT |25.7.2
FOR THIS REQUEST.

NORMAL PATH THROUGH SLOT SORT:

A. DETERMINE CYLINDER TO -PROCESS
BASED ON THE CURRENT POSITION
OF THE CYLINDER.

B. CALL PROCREQS TO DETERMINE PROCREQS[25.7.4

Diagram 25.7 ILRSRT (Part1of1)

Section 2: Method of Operation 5-165

VS§2.03.807

Input Processing Output
FROM ILRSRT
MAINLINE
INITLZ:
PAT
A |]01| SET PAT CYLINDER MAP A
PATCYLMLW | eenamsmmesrmmang’
— INFORMATION.
PATCYLSZ
L'—s CYLMPWDS CYLSLOTS
- SET ADDRESS OF DEVICE v
PATMAP ovmem———— [l I]
DEPENDENT FINDSLOT
ROUTINE.
PARTE PCT ' , FSRTNPTR
IPCTDTYPX J ZERO WORK VARIABLES
. —
. SCYLCOPY SCYLREAD
COMPUTE MAXIMUM NUMBER OF seemm—— l 1 r j
— ——
I/0 REQUESTS TO PROCESS.
m SCYLRDWT SSLOT
PARERQTM [_—_[f } [j
]V SRTELGS
MAINLINE
REQNEED
Notes Routine| Label Ref Notes Routine| Label Ref

SET IN REQNEED.
OBTAIN INFORMATION NEEDED TO

ACCESS APPROPRIATE SECTION OF
PATMAP. THIS INFORMATION IS THE
NUMBER OF WORDS TO MAP A
CYLINDER AND THE NUMBER OF SLOTS
IN A CYLINDER, AND IT IS
DEVICE-TYPE DEPENDENT.

DEVICE TYPE 1S DETERMINED FROM
THE PCTCTYPX FIELD IN THE PCT. A
SEPARATE FINDSLOT ROUTINE EXISTS
FOR EACH DEVICE TYPE.

ZERO LAST CHOSEN SLOT NUMBER IN
FINDSLOT PARM LIST, INITIALIZE
ALL SLOT FLAGS OFF IN FINDSLOT
PARM LIST, 2ERO READ CYLINDER
VALUE (INDICATING READ CYLINDER
TO BE FOUND), INITIALIZE ALL
INTERNAL FLAGS OFF, ZERO RETURN
CODE.

THE -COMPUTATION CONSISTS OF THE
LENGTH OF A 'SERVICE BURST'
-(ASMBURST) DIVIDED BY THE TIME
TO PROCESS' A SINGLE REQUEST
v (PARERQTM) PLUS TWO. A MINIMUM
OF -TWO. REQUESTS WILL ALWAYS BE

Diagram 25.7.1 ~ INITLZ (Part 1 of 1)

5-166 OS/V82 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM_ PROCREQS
OR_ILRSRT
MAINLINE
PROCHIT:
1
IOE PCCW —
] r I-—I ‘) INITIALIZE PCCW FOR I/0
J AND CHAIN TO IORB - IOSB.
PUT IOE ON INTERNAL
AVAILABLE QUEUE.
ASMVT PCCW IORB PCCW
r II I ‘) GET ANOTHER PCCW. l IJ—D|
v
TO PROCREQS OR
ILRSRT
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref

CALL IOCHAIN TO INITIALIZE PCCW
AND CHAIN IT TO IOSB-IORB.

PUT IOE ON INTERNAL QUEUE. WHEN
PROCESSING COMPLETE, ALL IOQES
WILL BE FREED USING ONE COMPARE
AND SWAP (Cs).

IF MORE REQUESTS TO PROCESS AND
SERVICE BURST NOT MET YET, GET A
ANOTHER PCCW FROM AVAILABLE
QUEUE.

IOCHAIN [25.7.6

Diagram 25.7.2 PROCHIT (Part 1 of 1)

Section 2: Method of Operation 5-167

Input

FROM ILRSRT
MAINLINE

PARELCYL

WRITEQUE

|

PARTE
PARENODE

READCYL

VS§2.03.807

Processing

CSCANCYL:

oufput

READCYL

ADDRESS IF THERE ARE ANY
READS ON THE SORTED TREE
(PARENODE) .

IF A READ CYLINDER IS NOT
FOUND OR THE READ CYLINDER
FOUND IS NOT THE SAME AS
THE STARTING POINT VALUE,
IF WRITE REQUESTS EXIST,
SEE IF A WRITE CYLINDER
EXISTS BETWEEN THE
‘STARTING POINT VALUE AND
THE CURRENT END CYLINDER.

HAS READ REQUESTS QUEUED
FOR IT, BUILD READ MASK.

AND NO READ REQUESTS
EXIST, SET 'DATA SET FULL'
RETURN CODE AND INDICATE
TO STOP PROCESSING.

IF CYLINDER ADDRESS CHOSENm=wommna

=]

MAINLINE

FIND THE READ CYLINDER) | l

THISCYL

— CYLINDER

v
TO_ILRSRT

PROCESS)

SCYLREAD

RETCODEB
IF PAGE DATA SET 1S FULL :

Notes Routine

Label Ref Notes

Routine

Label

Ref

STARTING POINT VALIE IS THE
CYLINDER OF THIS DATA SET LAST
PROCESSED. END CYLINDER IS
INITIALLY SET TO THE END OF THE
DATA SET. IF A NEW READ CYLINDER
MUST BE FOUND, CALL GETRDCYL.
SET THISCYL AND END CYLINDER
EQUAL TO READCYL IF A READ
CYLINDER IS FOUND.

THE CURRENT END CYLINDER IS
EITHER THE NEXT READ CYLINDER OR
THE END OF THE DATA SET. WHEN
THE END OF THE DATA SET IS
REACHED, THE STARTING CYLINDER
IS RESET TO THE BEGINNING OF THE
DATA SET. CALL GETWCYL TO FIND
WRITE CYLINDER.

CALL BRDMASK TO BUILD MASK OF
READ REQUESTS FOR THIS CYLINDER.

INDICATE RETURN CODE 64 TO
INDICATE 'DATA SET FULL'.

GETRDCYL|25.7.7

GETWCYL [25.7.8

BRDMASK [25.7.9

Diagram 25.7.3 CSCANCYL (Part 1 of 1)

5-168 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
FROM ILRSRT
MAINLINE .
b PROCREQS :
THISCYL PATCYLMP PARTE
[J I || [‘) RESET LAST USED CYLINDER 4’
VALUE. [—
PARELCYL
SCYLREAD
BUILD CYLINDER MAP MASKS, ey
SCYLRDWT
FSRTNPTR REQNEED - b /i
l] rQ J_‘l o) SELECT EACH SLOT TO BE s
| PROCESSED ACCORDING TO
SSLOT
BEST ROTATIONAL POSITION. b
e —
E BUILD A PCCW FOR EACH
PCCW AIA
REQUEST. Il ~
PCCWAIA
IF ANY WRITES SELECTED FOR:
PROCESSING, UPDATE PAT MAP
TO REFLECT THOSE PAT
UNAVAILABLE SLOTS.
PATMAP
v
TO_ILRSRT
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref

SAVE CYLINDER NUMBER FOR NEXT
CYLINDER SCAN SO THAT READ
REQUESTS ARE PROCESSED WITH
MINIMUM ROTATION.

FINISH BUILDING THE CYLINDER MAP BILDMSKS | 25.7.1
MASKS TO BE USED IN PROCESSING
REQUESTS ON THIS CYLINDER.

FIND NEXT BEST (REQUIRING FEWEST FINDSLOT %5.7.1
ROTATIONS) SLOT TO BE USED.

ASSIGN I/0 TO SLOT FOUND VIA PROCHIT |25.7.2
FINDSLOT ROUTINE. REPEAT STEPS 3
AND 4 UNTIL NO MORE REQUESTS FOR
THIS CYLINDER, A RESOURCE HAS
RUN OUT, OR THE REQUEST QUOTA
FOR THE SERVICE BURST HAS BEEN
MET.

UPDATE PAT CYLINDER MAP AND PART WRTUPDTE|25.7.1
ENTRY SLOTS AVAILABLE COUNT.

Diagram 25.7.4 PROCREQS (Part 1 of 1)

Section 2: Method of Operation 5-169

VS2.03.807

MACRO.

IF NO I/O IS TO BE STARTED, TURN
OFF THE 'IN USE' FLAG IN THE
“IORB.

Input Processing Output
FROM ILRSRT
MAINLINE
I0:
10SB IORB ASMVT
> A IF ANY I/O TO BE STARTED:
|] ' ASMIOCNT
PCCW PCCW A. INCREMENT COUNT OF —] R IORB
OUTSTANDING 1/0
PCCWPCCW PCCWPCCW REQUESTS . IORTSMP
B. STORE THE TOD IN THE]
IORB.
C. SET LAST CCW TO NOP
WITH NO CHAINING.
10SB IORB
D. ISSUE STARTIO. l 11—"7
‘IF NO I/0 TO BE STARTED, (]
SRB PCCW
MAKE IORB AVAILABLE. | I
v
TO_ILRSRT
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
IF ANY REQUESTS QUEUED:
A. INCREMENT COUNT OF
OUTSTANDING IOSBS FOR ASM.
B. IF THE SERVICE BURST HAS BEEN
FILLED, STORE THE CLOCK.
OTHERWISE, ZERO THE TOD(TIME
OF DAY).
C. SET LAST CCW TO NOP (NO
OPERATION) AND STOP CHAINING.
THIS WILL END THE CHANNEL
PROGRAM FOR THE CHANNEL.
D. GO TO IOS VIA THE STARTIO STARTIO

Diagram 25.7.5 IO (Part1 of 1)

5-170 OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM PROCHIT
SUBROUTINE)
IOCHAIN:
IORB PCCW IORB AIA
- INITIALIZE PCCW.
TORPCCW J | I_I.H ——— IORPCCW]
AIA
2| COMPUTE RELATIVE BYTE
IOE PCCW
ADDRESS (RBA) .
| | PCCWIORB
PCCWAIA
CONVERT RBA TO FULL SEEK
ADDRESS. _—
INITIALIZE CCW STRING TO
PARAMETER
APPROPRIATE COMMANDS.
EDB
l_l RBA
. v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
WRITE. FOR ALL OTHER PCCWS, THE
PCCWAIA IS SET TO POINT TO THE
CHANNEL PROGRAM MAY START WITH A
AIA CURRENTLY POINTED TO BY THE .
SEEK CYLINDER, SEEK HEAD, SET
IOE FOR THIS REQUEST. PCCWIORB
SECTOR, OR SEARCH DEPENDING ON
IS A BACKWARD POINTER TO THE
. THE PREVIOUS CCW STRING. A SET
IORB. THE REAL ADDRESS OF AREA
SECTOR 1S ONLY USED WHEN THERE
TO WRITE OUT OR READ INTO IS PUT
IS ENOUGH ROOM TO DO A SET
IN PCCWADDR.
SECTOR AND NOT LOSE A
REVOLUTION. THE PREVIOUS LAST
THE SLOT NUMBER IS CONVERTED TO CCW IS SET TO A TIC TO THE FIRST
AN RBA BY MULTIPLYING THE SLOT CCW IN THIS PCCW. THE READ/WRITE
NUMBER BY 4096. CCW IS SET TO THE APPROPRIATE
CODE.
CONVERT RBA TO A FULL SEEK
ADDRESS (MBBCCHHR). IF AN ERROR
IS ENCOUNTERED DURING THE
CONVERT A X'083' ABEND IS ISSUED
SINCE EITHER THE EDB (EXTENSION
DATA BLOCK) OR THE PAT HAS BEEN
OVERLAID.
THE APPROPRIATE STRING OF CCWS
IS SET UP. FOR THE FIRST PCCW,
THE CHANNEL PROGRAM STARTS WITH
THE SET SECTOR FOR RPS
(ROTATIONAL POSITION SENSING)
AND THE SEARCH FOR NON RPS. THE
READ/WRITE CCW IS CONVERTED TO
THE APPROPRIATE CODE FOR READ OR
Diagram 25.7.6 IOCHAIN (Part 1 of 1)
Section 2: Method of Operation 5-171

.

VS2.03.807

Input Processing Output
FROM CSCANCYL
SUBROUTINE)
GETRDCYL:
THISCYL IOEPTR 1I0E
SCAN THE TREE TO FIND THE r =
IOE REPRESENTING THE
NEAREST CYLINDER ADDRESS
STRTCYL READCYL
BEYOND THE LAST USED.
CYLINDER ADDRESS.
PARTE
4 PARENODE [_] |
v
TO CSCANCYL
Notes Routine| Label Ref Notes Routine| Label Ref

THE TREE, POINTED B0 BY
PARENODE, IS EXAMINED, MOVING
DOWN ONE NODE AT A TIME ALONG
THE APPROPRIATE LEG, KEYING ON
THE CYLINDER ADDRESS VALUE
ASSOCIATED WITH EACH IOE, IN
SEARCH OF ONE OR MORE IOES
REPRESENTING REQUESTS FOR THE
NEAREST CYLINDER ADDRESS TO THE
LAST USED CYLINDER ADDRESS. IF
NO READ CYLINDER ADDRESS IS
FOUND BETWEEN THE CURRENT C-SCAN
ﬁngINDER SCAN) END POINTS, NO
WORK VARIABLES ARE ALTERED.
OTHERWISE READCYL IS SET TO NEW
READY CYLINDER ADDRESS.

T e

25.7.7

GETRDCYL (Part 1 of 1)

FEATRR Swaturs ¥ oootfc Ribwer o VT 3am. 8 (VED B0 RO

VS§2.03.807

Input Processing Output
FROM CSCANCYL
SUBROUTINE)
GETWCYL:
STRTCYL THISCYL
FIND A CYLINDER ADDRESS o)
CONTAINING AN UNUSED SLOT. | [——-—l
N4
PAT TO CSCANCYL
PATMAP
Notes: Routine| Label Ref Notes Routine| Label Ref

A FREE SLOT IS REPRESENTED BY A
BIT OFF IN THE PAT MAP. THE SCAN
IS PERFORMED BETWEEN THE
BEGINNING AND ENDING CYLINDER
VALUES PASSED AS INPUT
PARAMETERS. IF NO CYLINDER
ADDRESS IS FOUND THISCYL WILL
NOT BE RESET. OTHERWISE, THISCYL
WILL BE SET TO WRITE CYLINDER
ADDRESS.

Diagram 25.7.8 GETWCYL (Part 1 of 1)

Section 2: Method of Operation 5-173

VS$2.03.807

Input Processing Output
FROM_CSCANCYL
(ILRSRT
SUBROUTINE)
BRDMASK :
TOPRDIOE SCYLREAD
; FIND THE NODE REPRESENTING
THE READ REQUEST FOR THE
- LOWEST RELATIVE SLOT
THISCYL
. NUMBER IN THE CYLINDER.
FIND ALL NODES ON THE TREE:
PARTE
BELONGING TO THE SELECTED
PARENODE)
PRRENODE CYLINDER.
v
TO CSCANCYL
Notes Routine} Label Ref Notes Routine| Label Ref

CALL GETLOLEC TO GET
LESS-THAN-EQUAL-TO NODE FOR THIS
CYLINDER.

THE APPROPRIATE BIT IN THE
CYLINDER READ MASK (SCYLREAD) IS
SET FOR EACH RELATIVE SLOT
NUMBER FOUND REPRESENTING A READ
REQUEST FOR THIS CYLINDER.

GETLOLEC %5 7.1

Diagram 25.7.9 BRDMASK (Part 1 of 1)

5-174 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_PROCREQS
SUBROUTINE)
BILDMSKS:
THISCYL "/
) DETERMINE IF CYLINDER MAP
IN PAT IS ONE-WORD OR
PaT TWO-WORDS AND COMPUTE
— ADDRESS ACCORDINGLY.
P » SET BIT ON FOR EACH READ
REQUEST FOR THIS CYLINDER.
THISCYLA
A IF WRITE REQUESTS EXIST, —
— SET BIT ON FOR EACH L—-——-—]
[: AVAILABLE SLOT.
SCYLRDWT
WRITEQUE) | -m
v
TO PROCREQS
PATMAP
Notes Routine| Label Ref Notes Routine| Label Ref

THE 3330 IS THE ONLY DEVICE TYPE
WHICH REQUIRES A 2-WORD MAP TO
DESCRIBE ONE CYLINDER, AS THERE
ARE 58 SLOTS(RECORDS) PER
CYLINDER.

A BIT IS TURNED ON IN SCYLRDWT
FOR EACH READ REQUEST FOR THIS
CYLINDER.

IF WRITE REQUESTS EXIST, TURN ON
A BIT IN SCYLRDWT FOR EACH
AVAILABLE SLOT.

Diagram 25.7.10 BILDMSKS (Part 1 of 1)

Section 2: Method of Operation 5-17§

VS82.03.807

Input Processing Output
FROM PROCREQS
[§3 RT
SUBROUTINE)
FINDSLOT:
" ssLoT SSLOT
ﬁ FIND NEXT BEST SLOT ‘, I]
ACCORDING TO LEAST ARM
MOVEMENT REQUIRED.
SCYLRDWT SCYLRDWT
Ty | vronee senommare waox so I~
SLOT WILL NOT BE CHOSEN
SCYLWRT SCYLWRT
AGAIN.
IF WRITE SELECTED SET B —
APPROPRIATE BIT IN WRITE
MASK TO LATER UPDATE PAT
MAP.
DETERMINE IF READ SELECTED
AND BRANCH TGO APPROPRIATE
ROUTINE.
TO GETREAD
WRITE SELECTED, BRANCH TO
APPROPRIATE ROUTINE.
TO
SETWRITE
AN
Notes Routine| Labels Ref Notes Routine| Label Ref
[07] eacu pEvICE TYPE HAS A DIFFERENT
TRACK LAYOUT DUE TO TRACK SIZE
AND NUMBER OF TRACKS PER
CYLINDER. A SEPARATE FINDSLOT
ROUTINE IS USED TO DETERMINE THE
NEXT BEST SLOT ON EACH DEVICE
TYPE.
ROUTINE IS CALLED FOR EACH I/0
REQUEST FOR THIS CYLINDER WITH
SCYLRDWT AS INPUT.
FOR WRITE SLOTS SELECTED, PATMAP
MUST BE UPDATED TO INDICATE SLOT
IS ALLOCATED.
SLOT SELECTED IS FOR READ GETREAD [25.7.1
REQUEST.
SLOT SELECTED IS FOR WRITE SETWRITE §5.7 1
REQUEST.

Diagram 25.7.11

FINDSLOT (Part 1 of 1)

5-176 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS$2.03.807

input

Processing Output
FROM PROCREQS
SRT
SUBROUTINE)
WRTUPDTE:
THISCYLA PAT PAT
r ‘ . MARK THE WRITE SLOTS)
L—————J — -—l SELECTED FOR THIS CYLINDER —
PATMAP | CYL MAP
— AS UNAVAILABLE. —_——
SCYLWRT
E——J DECREMENT AVAILABLE SLOT
COUNT IN PART ENTRY.
PARTE PARESLTA
v
TO PROCREQS EPAWRTCT
EPAWRTCT
Notes Routine| Label Ref Notes Routine| Label Ref

THISCYLA CONTAINS THE ADDRESS OF
THE CYLINDER MAP WITHIN THE PAT
FOR THE CYLINDER SELECTED.

EPAWRTCT IS AN INITIAL COUNT OF
SLOTS THAT HAVE BEEN ASSIGNED
FOR WRITES. PARESLTA, AVAILABLE
SLOTS, 1S DECREMENTED BY
EPAWRTCT. EPAWRTCT IS SET TO
2ERO.

Diagram 25.7.12 WRTUPDTE (Part 1 of 1)

Section 2: Method of Operation 5-177

VS2.03.807

Input Processing Output
FROM BRDMASK
SUBROUTINE)
|—I——f> GETLOLEC:
THISCYL THISNODE
| GET IOE FOR LOWEST SLOT O M
SELECTED CYLINDER. l L—-——l
THISNODE [_—_'l
v
TO BRDMASK
Notes Routine| Label Ref Notes

Routine

Label

Ref

MOVE DOWN THE LEG OF THE TREE,
STARTING FROM THE NODE PASSED AS
INPUT, UNTIL THE END OF THE LEG
IS REACHED OR THE CYLINDER
NUMBER CHANGES. RETURN A POINTER
TO THE LOWEST NODE STILL ON THE
SELECTED CYLINDER. ‘

Diagram 25.7.13 GETLOLEC (Part1of 1)

5-178 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
FROM FINDSLOT
SUBROUTINE)
E> GETREAD:
THISCYL TSLOTNBR IOE
l COMPUTE RELATIVE SLOT = T [[romwerie
NUMBER SELECTED. TORNKTOT
SSLOT TOPRDIOE IOEAIA
-z FIND THE IOE CORRESPONDING " I] TOBBKPTR
TO THAT SLOT NUMBER.
TOPRDIOE IOE IOEPTR IOE
A REMOVE THE IOE FROM TREE. -
[]I [10ENXTLE | e[e [|4 " [10EAIA
IOENXTOT l
PARTE IOEAIA PARTE
PARENODE IOEBKPTR [ﬁ I PARENODE
v
TO PROCREQS
Notes Routine| Label Ref Notes Routine|. Label Ref

THE FINDSLOT ROUTINE PASSES A
SLOT VALUE RELATIVE TO THE START
OF A CYLINDER. THIS VALUE MUST
BE CONVERTED TO THE RELATIVE
SLOT NUMBER FROM THE BEGINNING
OF THE PAGE DATA SET.

FIND READ REQUEST ON TREE
CORRESPONDING TO THE SLOT FOUND
BY THE FINDSLOT ROUTINE.

CALL REMVNODE TO REMOVE IOE FROM REMVNODE %5.7.1
THE TREE (SORTED READ QUEUE -
PARENODE) .

Diagram 25.7.14 GETREAD (Part 1 of 1)

Section 2: Method of Operation 5-179

VS2.03.807

Input Processing Output
i FROM FINDSLOT
(ILRSRT
SUBROUTINE)
SETWRITE:
THISCYL TSLOTNBR
I COMPUTE RELATIVE SLOT o]

NUMBER SELECTED. |—J
SSLOT SCYLRDWT
: z REMOVE TOP WRITE IOE FROM A l]

WRITE QUEUE.
WRITEQUE IOE WRTCOUNT
| 2 l ™ homms — A IF THE WRITE QUEUE IS NOW A I |

TOBAIA EMPTY, UPDATE THE
SCYLRDWT READ/WRITE MASK. AIA
5 m AIALSID

INCREMENT COUNT OF WRITES _

SELECTED.
WRTCOUNT

BUILD SLOT IDENTIFIER IN

AIA. l

4
TO PROCREQS
Notes Routine| Label Ref Notes Routine| Label Ref

THE FINDSLOT ROUTINE PASSES A
SLOT VALUE RELATIVE TO THE START
OF THE SELECTED CYLINDER. THIS
MUST BE CONVERTED TO THE
RELATIVE SLOT NUMBER FROM THE
BEGINNING OF THE PAGE SPACE.

THE FIRST WRITE IOE IS SELECTED
TO USE THE SLOT CHOSEN BY
FINDSLOT.

THE READ/WRITE MASK IS UPDATED
SO THAT NO MORE WRITES WILL BE
SELECTED.

THIS COUNT IS LATER USED TO
UPDATE THE COUNT OF ALLOCATED
SLOTS IN THE PART ENTRY
(PARESLTA) .

BUILD LOGICAL SLOT ID(LSID) OF
" THE SLOT BEING WRITTEN TO IN THE
AIA.

Diagram 25.7.15 SETWRITE (Part 1 of 1)

5-180 OS/VS2 System Logic Library Volume 5 (VS2.03.807) *

VS$2.03.807

Input Processing Output
FROM GETREAD
SUBROUTINE)
REMVNODE :
‘THISNODE IOE IOEPTR IOE
I JJ——D - ‘, REMOVE IOE FROM TREE OF ‘> l]J—D
READS.
PARTE v PARTE
A RECHAIN ANY NODES HANGING N\
PARENODE t—— . —————— 4 PARENODE
—_— FROM IT. I —
v
TO GETREAD
Notes Routine| Label Ref Notes Routine| Label Ref

THE TREE OF READS IS POINTED TO
BY THE PART ENTRY (PARENODE) .
REMOVAL OF A NODE(IOE) FROM THE
TREE REQUIRES UPDATING OF AN
ANCESTOR NODE POINTING TO THE
NODE BEING REMOVED.

CALL RCHAINUP TO RECHAIN NODE, RCHAINUP 27’5.7.1
WHOSE ANCESTOR IS BEING REMOVED
FROM THE TREE, TO ITS ANCESTOR'S
ANCESTOR.

Diagram 25.7.16 REMVNODE (Part 1 of 1)

Section 2: Method of Operation 5-181

VS§2.03.807

Input Processing Output
FROM REMVNODE'
ILRSK
UBROUTINE)
RCHAINUP:
LASTNODE 10E \/ PARTE I0E
A RESET ANCESTOR'S IX RD A
| | IOENXTLE ——] . PARENODE I10ENXTLE
POINTERS.
IOENXTGT IOENXTGT
NEXTNODE IOEBKPTR
- RESET DESCENDANT"S BACK
IOEPTR e ——]
CHAIN POINTERS.
l] TOPRDIOE
PARTE
: RESET THE TOP-READ-IOE IF
PARENODE
fiivitiavies NECESSARY. |
TOPRDIOE [—j I
v
TO REMVNODE
Notes Routine| Label Ref Notes Routine| Label Ref

IF THE ANCESTOR NODE POINTS TO
THE NODE(IOE) TO BE REMOVED
THROUGH THE GREATER-THAN(GT)
LEG, UPDATE THE ANCESTOR'S GT
POINTER (IOENXTGT) . OTHERWISE,
UPDATE THE
LESS-THAN-OR-EQUAL~TO (LE)
POINTER (IOENXTLE) . IF THE NODE
BEING REMOVED IS THE TOP NODE OF
THE TREE, THEN PARENODE MUST BE
RESET.

IF A NEXT NODE EXISTS, RESET THE
BACKWARD POINTER OF THE NEXT
NODE.

IF THE IOE JUST REMOVED FROM THE
TREE IS THE FIRST IOE OF READS
FROM A SPECIFIC CYLINDER, THEN
RESET THE TOP-READ-IOE PTR FOR
THE GROUP.

Diagram 25.7.17 RCHAINUP (Part 1 of 1)

5-182 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_ ILRSRT
MAINLINE
CLEANUP:
EPTEP3RD RETCODE R13 SAVEAREA EPTE3RD
1 ' > RELEASE FRR. I 1 I
SET RETURN CODE IN CALLER
SAVE AREA. |
v
TO_ILRSRT
MAINLINE
Notes Routine} Label Ref Notes Routine| Label Ref

ZERO THE ILRSRT ENTRY IN THE
EPATH (RECOVERY CONTROL BLOCK) .

RETURN CODE HAS BEEN PREVIOUSLY
SET BY SUBROUTINES OF ILRSRT,
AND IS FURTHER CHANGED BY THIS
ROUTINE TO iNDICATE TO PART
MONITOR THAT MORE WORK EXISTS,
IF NECESSARY.

Diagram 25.7.18 CLEANUP (Part 1of1)

Section 2: Method of Operation 5-183

VS$2.03.807

Input Processing outfut

FROM 10S
(IECVPST)
ILRCMP:

[01] ILRCMP (1/0 COMPLETION
HAS “THREE SECONDARY ENTRY
POINTS: ILRCM

ILRCMPAE, 1LRCMBRE. THIS
ENTRY. TLRIMB. IS CALFED
BV TBAVBST FOR TwWo
SITUATIONS.

pi = | 4| [02] zE e status oF p/0 1s =
[] —t— UNDETERMINABLE (X'45°' TN —]
YOBE0D FROM T6s RECOVERY) :

10SCOD

A. MARK ALL AIAS FOR
RETRY."

RETURN PCCWS/SCCWS TO
AVAILABLE QUEUE.

C. RETURN AIAS TQO PAGE
COMPLETION. IF NOT
X 45' CODE_FROM IOS AND

THERE ARE
PCCWS/SCCWS ON THE
IORB, ABEND 084.

B

FREE THE IORB.

[04] scHEDULE SRB_ P
XEEROBRIATE 1/9 DRIVER.

j‘

TO IOS.

Notes Routine| Label Ref Notes Routine| Label Ref

FOR RECOVERY PURPOSES ILRCMPO1
RECOVERY ROUTINE HANDLES ERROR
QCCURRING IN ILRCMP (ALL FOU

NTRY POINTS). ILRCMP ENTRY
TERMINATION ROUTINE FOR ASM) IS
ALLED BY IECVPST (POST STATUS)
g ATHS S IF 10S

I T R PATH IS

1ECVPST CALLS ILRCMP AFTER
ALL THE PCCWS/SCCWS ARE FREED BY
ILRCMPAE AND ILRCMPNE.

IF X'45' CODE, ALL I/0 SHOULD BE ABNTERM |25.8.9
RETRIED SINCE STATUS OF 1/0 1
UNDETERMINABLE.

A. ALL AIAS ARE MARKED FOR RETRY
SO THAT PAGE COMPLETION CAN
REDRIVE REQUESTS.

B. PCCWSéSCCWS ARE RETURNED TO
THE APPROPRIATE QUEUE.

P

ALL AIAS ARE RETURNED TC PAGE
COMPLETION HAVING ADg%TIONAL

6 ON THE I

IT T T DE X'

CONDITION INDICATES ENTRY IN
'HE NORMAL D APPENDAG

Rg-ENTRY HERE WITH CODE
X'45"

THE IORB IS MADE AVAILABLE.

THE APPROPRIATE I/O DRIVER
ILRPTM OR ILRSWPD 1S SCHEDULED
WITH NO CHECKS FOR’WORK.

Diagram 25.8 ILRCM\P (Part 1 of 1)

5-184 OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS§2.03.807

Input Processing Output

FROM_I0S
(IECIOSCN)
ILRCMPDI:

IF_FIRST ENTRY TO DIE
EXIT:

R 2 10SB
A A. IF_1/0 COMPLI
| | uusucczssrux.w OR was
INITIATED BY DASD ERROR
IOSERR RECOVERY PROCEDURE,
—_— RETURN TO IO.
10SCSW
10SDIESE=0 | |
v
TO 10S
B. REMOVE SUCCESSFUL 1/0
REQUESTS FROM
C. RETURN FREE PCCHS/SCCHS
TO AVAILABLE QUEUE.
D. RETURN PROCESSED AIAS
TO PAGE COMPLETION.
E. SET UP SPECIAL RETURN
ADDRESS .
F. CALCULATE NEW SERVICE
BURST.
R 2 I0RB AIA AIA
A IF_SECOND ENTRY TO DIE Iad
{ ! J I EXIT: l | J
10SB A. MAKE IORB AVAILABLE. SRB

B. SCHEDULE SRB_FO!
IOSDIESE=1 APPROPRIATE I/O DRIVER.

RETURN TO IOS.

i T

T0 108
Notes Routine| Label Ref Notes Routine} Label Ref
B. IE WORK REMAINS FOR THE
ILRCMPDI, AN ENTRY IN ILRCMP, CORRESPONDING
RECEIVES'CONTROL WHEN 1/ THE APPROPRIA’I‘E "éo DRIVER T&
PLETES WHETHER 1T IS STARTED SCHEDULED -
RT OR TLRSWPDR.

RESTARTED BY DASD ERP_FOR
RETRIES. é° s
ONSULCESSFUL OR RESTAR TED BY
DASD ERB, ILRCMPDI RETURNS To
I0S_IMMEDIATELY. IF FIRST

10 ILACMBDE (DIE EXIT) . IOSDIBSE
FLAG 1S OFF.

A. THE STATUS BITS IN THE CSW
STORED IN THE
'ESTED. IF ANY BITS ARB ON
ER T 'HANN|

HAN
END, THE I/¢ N
SUCCESSFUL, IN THI E_OR
TOSERR (RESTARTED BY DASD

ILINI
POST STATUS DRIVER APPENDAGES
PROCESS THIS 1/0 COMPLETION.

B. ALL PCCW/SCCWS WILL BE PROCCCWS|25.8.4
REMOVED
C. THE FREE PCCWS/SCCWS WILL BE POSTCMP [25.8.6

RETURNED TO THE APPROPRIATE
QUEUE.

D. ALL AIAS REMOVED WILL BE POSTCMP |25.8.6
RETURNED TO ILRPAGCM.

E. THE RETURN ADDRESS 1S SET TO
R1448 TO CAUSE SECOND ENTRY
TO ILRCMPDI.

F. THE TOD WILL HAVE BEEN STORED
UPON ENTRY TO_ILRCMPDI.
ILRSRT'S TOD IS NON-ZBRO, A
NEW BURST TIME WILL BE
CALCULATED.

IF_SECOND ENTRY 70 DIE EXIT
IQSDIESE PLAG WILL B ENTRY
1O PEE ELERR uP GF RESQUACES

A. THE IORB IS MADE AVAILABLE.

Diagram 25.8.1 ILRCMPDI (Part1 of 1)

Section 2: Method of Operation 5-185

VS2.03.807

Input Processing Output
FROM I0S
(IECVPST)
ILRCMPAE:
ILRCMPAE HANDLES THE
TEMPORARY AN D PERMANENT
RRORS .
R 1 10SB —l PARTE
~ v A IF TEMPORARY ERROR, RETURN ‘
|] —_— To BOST STATUS FOR' ENTRY []
— TO DASD ERROR RECOVERY
10SCOD PROCEDURE .
0 [03] 1F A PAcK ERROR:
A. MARK THE PAGING SPACE el
AS S UNUSEABLE, Tr NOT
B. MARK ALL PCCWS/SCCWS AS
ERRORS . ;
| [04] 1r st0T ERROR:
A. MARK THE PCCW/SCCW'S
ATA IN ERROR
B. RECHAIN THE REMAINING
REQUESTS .
RETURN ANY FREE
PCCWS/SCCWS TO APPROPRIATE
QUEUE".
RETURN ANY PROCESSED AIAS
TG PAGE COMPLETION.
v
RETURN TO IOS
Notes Routine| Label Ref Notes Routine| Label Ref
ILRCMPAE IS ABNORMAL_END ANY PROCESSED AIAS WILL B POSTCMP |25.8.6
APPENDAGE FOR ASM. IECVPST (POST RETURNED 70 PAGE COMPLETION TO
STATUS) GIVEN CONTROL VIA COMPLETE PROCESSING FOR THE
ILRCMEDY “(UPON UNSUCCESSFUL 1/0 REQUESTS .
COMPLETION) CALLS, ILECNPAE 1O
HANDLE THE CODES THAT ARE NOT
7F'. THE CODES

ARE IN IOSCOD

A TEMPORARY ERROR HAS A CODE OF
X'7%' AND WILL BE RETURNED To
POST STATUS FOR A CALL TQ DASD
ERP TO INTERPRET AND RETRY

3,PACK ERROR IS A CODE OF X'51',
OR A X131" CODE W1

SPECI“IC ¢ cHaNy 9 RRORS OR A
TOTAL OF 176 1/0 ERRORS ON THE

A. THE PARTE/SARTE IS MARKED BADPACK [25.8.1
SEAB| E AND THE APPROPRIATE o
ION S T BY ILRMSGOO

AKEN BY
VIA BADPACK IF THE SYSTEM
MUST BE TERMINATED.

ALL' PCCWS/SCCWS WILL BE BADSLOT {25.8.7
MARKED AS ERRORS.

A SLOT ERROR, ANY OTHER 10SCOD
CODE GIVEN TO ILRCMPAE

A. THE BCCW/SCCW ATA IN ERROR IS BADSLOT |25.8.7
SO MARKED.

B. THE REMAINING PCCWS/SCCWS RECHAIN [25.8.5
WILL BE RECHAINED RGBSR
RETURN ADDRESS SET SO THAT
POST STATUS WILL ISSUE A
START I0.

ALL FREED PCCWS/SCCWS WILL BE POSTCMP [25.8.6

RETURNED TO THE ABFROPRIATE
QUEUE.

Diagram 25.8.2 ILRCMPAE (Part 1 of 1)

$-186 OS/VS2 System Logic Library Volume 5§ (VS52.03.807)

VS2.03.807

Input Processing Output
FROM 10S
(IECVPST)
ILRCMPNE:
R 1 10SB
—~ A(lo1] 1F 1/0 1s NOT SUCCESSFUL
l l I,—ﬂ - RETURN. ’
10SCSW
I0SCOD ﬁ
v
TQ _POST STATUS
(IECVPST)
IF 1/0 RETRY IS
SUCCESSFUL:
A. REMOVE 1/0 REQUESTS
FROM 108
B. RETURN FREE PCCHS/SCCWS
TO AVAILABLE QUEU
AIA AIA
C. RETURN PROCESSED AIAS ~
TO PAGE COMPLETION. | 4T |
D. RETURN TO POST STATUS.]
v
TQ _POST STATUS
(IECVPST)
Notes Routine| Label Ref Notes Routine| Label Ref
(01] THIS IS NORMAL END APPENDAGE FOR
AcH. THE 105COD WILL CONTAIN
X'7F'. SINCE THE FIRST ENTRY TO
DIE HAS ALK I THE
INITIALLY SUCCESSFUL 1/0, ONLY
THE UNEXPECTED "NORMAL'
S FUNTTONE REMAIN. UR
BXCEPTION OR WRONG LENGTH RECORD
WITH IOSEX BIT ON -
SITUATION IS CONSIDERED AN ERROR
AND SENT TO DASD ERP VIA
IECVPST.
NORMAL END APPENDAGE ALSO
HANDLES SUCCESSFUL 1/0 FROM DASD
ERP RETRIES
A. ALL PCCWS/SCCWS ARE REMOVED. PROCCWS |25.8.4
B. THE FREE PCCWS/SCCWS ARE POSTCMP |25.8.6
RETURNED TGO THE APPROPRIATE
QUEUE.
C. ALL_AIAS REMOVED ARE RETURNED POSTCMP |25.8.6
TO ILRPAGCM.
D. RETURN TO POST STATUS.

Diagram 25.8.3 ILRCMPNE (Part 1 of 1)

Section 2: Method of Operation 5-187

'V§2.03.807

Input Processing Output
FROM_ILRCMPDI
OR ILRCMPNE
E> PROCCCWS :
I0RB PCCW
r — . REMOVE ALL PCCWS/SCCHS
|r—-—~) UNTIL PCCWPTR/ SCCWPTR
EQUALS IORERR.
IORERR PCCWAIA
AIA AIA
e [02] gueue Atas on 1nTERNAL I
AIA ‘ UEUE TO BE PASSED TO PAG | C |]
1 oL
3 UEUE PCCW/SCCW_ON ﬁ sl I_»PCCW
NTERNAL "OUEGE 1O BE | 4]]
RETURNED TO THE AVAILABLE
QUEUE.
v
RETURN TO
CALLER
Notes ’ Routine| Label Ref Notes Routine| Label Ref

[01] IORERR IS THE ADDRESS OF THE
CW/SCCHW_IN ERROR. FOLLOW THE
cx-m G PCCWE/Socis : CAS LONG AS
THE PCCWPTR/SCCWPTR ‘DOES NOT
EQUAL TORERRTHE PCCW/SCCW WILL
DECHAINED FROM THE IORB.

ALL OF THE AIAS CHAINI
TOGETHER AND PASSED TO PAGE
COMPLETION ON ONE CALL.

ALL OF THE PCCWS/SCCWS WILL BE
CHAINED TOGETHER ON AN INTERNAL
QUEUE A THEY ARE FREED. THEY

ILL THEN BE PUT BACK ON THE
AVAILABLE 8UEUE WITH ONE COMPARE
AND SWAP

Diagram 25.8.4 PROCCCWS (Part 1 of 1)

5-188 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM ILRCMPAE
RECHAIN:
I0SB IORB IORB
I IJ—PI J [> REINITIALIZE IORB. >
IORBTSMP
PCCW - PCCW R
[IJ—DI l > - REINITIALIZE IOSB.
IQSB
IOSVST
COUNT NUMBER O ————— _—
PCCWS/SCCWS AND UPDATE S —— IOSRST
COUNT IN IORB. -
IOSSEEK
r——l IOSSEEKA
] IORB
v
10 calel—=
IORRQSZ
Notes Routine| Label Ref Notes Routine| Label Ref

POINT THE IORB TQ THE FIRST
PCCWéSCCN ZERO ILRSRT'S TOD
TIM IN THE IORB SINCE

ERVICE BURST RECALCULATION WILL

A _PARTIAL

NOT BE DONE BASED O 1
SERVICE BURST OF I/O REQUESTS.

RESET THE FOLLOWING IOSB FIELDS
RELATIVE TQ THE FIRST pccw/sccw-
I0SVST, IOSRST, IOSSEEK
TOSSEEKA.

COUNT NUMBER OF PCCW/SCCWS AND
PUT COUNT IN IORRQSZ.

Diagram 25.8.5 RECHAIN (Part 1 of 1)

Section 2: Method of Operation 5-189

VS2.03.807

Input Processing Output
EROM 1/0
COMPLETION.
POSTCMP:
[01] ENTRY IS FROM ILRCMPDI,
ILRCMPAE, OR ABNTERM,
PCCW PCCW ASMVT
> DETERMINE IF THERE AR A
[]I DeCHSJEtEwE, TO, RETURN TO
THE AVAILABLE QUEUE. J|—_—
ASMPCCWQ
AIA AIA
a 03 PCCWS, RETURN CHAIN TO
Il Ml] 3] 3 AEMVT OUEUE.
SART
IF _SCCWS, RETURN CHAIN TO :F —_—
SART QUEQE. SARSCCWQ
CALL PAGE COMPLETION TO
COMPLETE PROCESSING FOR
THESE AIAS.
<:> TLRPAGCM
ASM ROUTINE
RETURN TO CALLER.
v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
POSTCMP MAKES PCCW/SC
AOAILABLE AND CALLE TLAPAGCM TO
HANDLE AIAS.
CHECK INTERNAL QUEUE_TO SEE IF
ANY PCCWS/ SCCWS HAVE BEEN
FREED.
ALL PCCWS WILL BE CHAINED FROM
THE ASMVT.
ALL SCCWS WILL BE CHAINED FROM
THE SART. ONLY ONE KIND OF CCW
BLOCK 1S PROCESSED AT ANY ONE
INVOCATION.
CALL ILRPAGCM TO RETURN ILRPAGCM | ILRPAGCM

PROCESSED AIAS.

Diagram 25.8.6

POSTCMP (Part 1 of 1)

5-190 OSyVS2 System Logic Library Volume 5 (VS2.03.807)

V$2.03.807

Input Processing Output
FROM ILRCMPAE
BADSLOT:
"
PCCW AIA — AIA
[A EACH AIA IN CHAIN AS A
I lJ | II l————d I>O ERROR . ﬁ
’ AIAPRIER
) ATASECER
PUT PCCW/SCCW ON INTERNAL ——
QUEUE.
PUT AIA ON INTERNAL QUEUE.
ASMVT PARTE
FOR SLOT ERRORS FOR EACH
FOR SLOT. E s
ASMERRS PAREIOCT
A, 1_TO PARTE ERROR
SDOT COUNT.
B. ADD 1 TO ASMVT ERROR
SLOT COUNT.
C. CALL RECERR TO RECORD
ERROR SLOT.
v
TO ILRCMPAE
N
Notes Routine| Label Ref Notes Routine| Label Ref
IF THE AIA IS FOR THE DUPLEX
DATA’' SET, MARK
SECONDAR? ERROR. OTHERWISE MARK
IT AS A PRIMARY ERROR.
[02] eree pccw/scew wiLL BE puT ON
INTERNAL QUEUE.
AIA'S WILL BE PUT ON INTERNAL
UEUE TO BE RETURNED TO PAGE
'OMPLETION.
- IF THE ERROR IS AN I/O EI
THE ERROR SLOT COUNTS MUST Bﬁ
UPDATED
A. THE PARTE ERROR COUNT KEEPS
TRACK OF THE NUMBER OF 1/0
ERRORS RECE%VED FOR THIS DATA
SET. WHEN 176 ORS AR
RECEIVED, THE PACK IS NO
LONGER CONSIDERED USEABLE.
B. THE ASMVT ERROR COUNT IS A
COUNT FOR ALL LOCAL
PAGE DATA SETS.
C. THE LSID WILL BE RECORDED IN RECERR 25.8.8
A SQA BUFFER.
.

Diagram 25.8.7 BADSLOT (Part1of1)

Section 2: Method of Operation 5-191

VS$2.03.807

Input Processing Output
FROM BADSLOT
(ILRCMPAE
SUBROUTINE)
RECERR:
ASMVT
A DETERMINE_IF_ERROR RECORD
—'—'—-) BUFFER HAS BEEN OBTAINED
— PREVIOUSLY. IF NOT
ASMEREC
A. OBTAIN SALLOC LOCK.
B. BRANCH ENTER GETMAIN
AIA FOR CONDITIONAL SQA
GETMAIN
— C. RELEASE SALLOC LOCK.
AIALSID
—_ ASMVT BUFFER
D. INITIALIZE HEADER
PORTION OF BUFFER.
ASMEREC LSID
FIND NEXT AVAILABLE ENTRY.
RECORD LSID FOR ERROR AIA, ==t
\'
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref

A BUFFER FROM SQA IS USED TO
RECgRg THE LSID g%ROERROR SLOTS.

Ag] ZERO
SET TQ THE ADDRESS OF THE BUFFER
ONCE IT IS OBTAINED

A FIELD IN THE HEADER POINTS TO
THE CURRENT ENTRY FOR RECORDING.

RECORD, THE THREE BYTE LSID IN

S!
DAT. TURN ON THE HIGH ORDER
BIT OF THE HIGH ORDER BYTE.

Diagram 25.8.8 RECERR (Part 1 of 1)

5-192 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM. ILRCMP
ABNTERM:
IORB PCCW , AIA
-I—P I -\ SET AIAIORTY FLAG IN EACH
| J [J I AIA AND PUT AIA ON ————)
INTERNAL QUEUE. —————
AIAIORTY
AIA
PUT PCCW, SCCHS ON THE
C— BRRRSRY 2688
WHEN THE ENTIRE STRING OF
PCCW‘SCCWS IS COMPLETE,
RETURN AS TO PAGE
COMPLETION AND RETURN
éS TO APPROPRIATE
EU
v
RETURN TO
ILRCMP
Notes Routine| Label Ref Notes Routine] Label Ref

THE AIAIORTY FLAG INDICATES TO

REQUEST

L POSTCMP

PAGE COMPLETION TO REDRIVE THE

8U£UE OF PCCW/SCCWS
IS USED FREE THE PCCW/SCCWS.

RETURN
B/ E2RS R0 T RPBROBRIATE
ALL LR

AND Ci PAGCM TO RETURN
STRING OF AIAS.

POSTCMP }25.8.6

UEUE

Diagram 25.8.9

ABNTERM (Part 1 of 1)

Section 2: Method of Operation 5-193

VS2.03.807

Input Processing Output

FROM ILRCMPAE
E:> BADPACK :
PART/SART PARTE/SRE
E ' OBTAIN SALLOC LOCK. /
PAREDSBD
MARK DATA SET BAD.
SREDSBD
SET UP FOR MESSAGE 10 BE e
1SSUED AND/OR™SYSTEM
<:> ILRMSGOO
ASM ROUTINE
IF RECEIVE CONTROL BACK
FREE SALLOC AND CONTINUE.
v
TO ILRCMPAE
Notes Routine| Label Ref Notes Routine| Label

S OBTAINED TO
SERIALIZE COUNTS THAT HAVE BE
HANIPULA AND T! INATION IF
T BECOMES NECESSAR

INDIC, TE PAGE/SWAP SPACE IN
PARTE/ SARTE.

SE’I‘ UP MESSAGE PARAHETER LIST ILRMSGOO | ILRMSGOO
WITH E/SWAP I ICATOR AND
PAgTE SAR 'E_ADDRESS.
S, FIELD INDICATIM;

GO0 WI ET!
APPROPR ATE SYSTEM ACTION. Ci
ILRMSG UE MESSAGE AND, OR
TERMINATE SYSTEM

IF SYSTEM NOT TERMINATED, FREE
SALLOC AND CONTINUE TO IfRCMPAE.

Diagram 25.8.10 BADPACK (Part 1 of 1)

§-194 OS/\S2 System Logic Library Volume § (VS2.03.807)

VS$2.03.807

Input Processing Output

: CALLER
EE NOTE 1)

B ILRMSGOO:
PARM LIST

[Ree T] IF MESSAGE NUMBER IS NOT
MSGNUM

EROVIDBD, PROCEED TO STEP
ENTRYTYP

ENTRYPTR

wa
B

IF MESSAGE NUMBER IS 8,
TERMINATE THE SYSTEM.

OTHERWISE, WRITE THE
RE UESTED}&ESSAGE TO THE
TEP

D PROCEED TO

HA.
———— PREVIOUSLY PROCESSED ’
ENTRYTYP P 9.

PROCEED TO &'
ENTRYPTR

PARM LIST |
m — A ||04| IF THE DESIGNATED
— MSGNUM :f'r—_) PARTE/SARTE S BEEN

IF THE UNUSABLE DATA SET SART
p e T s i P —————

M MESSAGE 9 TO THE OPERATOR.
ASMVT I SARSETCT
CVTASMVT | b
- A IF THE_UNUSABLE DATA SET P
ASMPART ||| be—— IS PLPA OR COMMON AND THE e SREAVLSL
—————m DUPLEX DATA SET IS NOT il AL,
ASMSART AVAILABLE, TERMINATE THE
SYSTEM. OTHERWISE, SET UP
FOR PROCESSING THE DOPLEX
DATA SET ONLY.
ASMVT PART
ASMNOCWQ
PAREWTQE
Notes Routine| Label Ref Notes Routine| Label Ref
A. IF THE DUPLEX DATA SET I§ NOT TERMRTN |25.9.2
E CALLER OF ASM MESSAG AVAILABLE (ASMDUPLX = 10" BJ,
nou'rmn ILRMSCO0) TS om: OF THE CALL T BROUTINE TO
LLOWING ROUTINE FERMINATE THE SYSTEM.
ILRCMP tpiLRRIOT i, ILRSLD 1 bon
ENTRY 1F PuE MESSACE HUMBER. RAS B. IF THE DUPLEX DATA SET Is CLEARWTQ|25.9.4
NOT BEEN SUPPLIED BY THE CALLER, AVAILABLE IS CALLED
PROCEED TO STEP 4 IN ORDER RO BHPRY AHE RPPROBRIATE. PARR WRITEMSG|25.9.3
DETERMINE WHICH MESSAGE SHOULD WRITE QUEUE, FREE THE IOES ON
BE WRITTEN. THE MESSAGE NUMBER THE QUEGE AND SCHEDULE SRB
IS NOT SUPPLIED BY ILRCMP FOR ILRPTH TO BEG
ILRSRTO1, ILRCMPO1, AND ILRSWPO1 PROCESSING AGAINST THE DUPLEX
WHEN A PAGE OR SWAP DATA SET HAS DATA SET. THE ASI F
Bl ASTE AS| (NO_COMMON WRITE
EUE) IS TURNED ON. WRITEMSG
UERGUTINE BUILDS AND WRITES
MESSAGES 9 .
IF THE MESSACE NUMEER 1S 8, CALL TERMSYS |25.9.2
THE SUBROUTINE THAT TERMINATES
THE SYSTEM.
CALL THE SUBROUTINE THAT B WRITEMSG|25.9.3
T PR R
T0 STEP 9. :
LF THE DATA SET IS ALREADY
PARENUSE/SRENUSE IS ON AND
AREDSBD BD 1S°ON) A
MESSAGE EEA WRITTEN
ABOUT THIS DATA sn 1F
REITHER FLAG IS ON m!u*
BROCEED 1o &3R8 e
IF THE DATA SET THAT HAS BECOME ‘|wrITEMSG|25.9.3
UNUSABLE IS A SWAP SET, SET THE
MESSAGE NUMBER TO 9. ALsSO
Rncnmm THE_TOTAL OF
VALLABLE SETS (SARSETCT
xgl VERTRY !smvx.s ZERO
AP < FOR
KDL SWAD DATA SBT
JULSABLE WAL THE, SUBROUTINE
BUILD AND WRITE IT
TO THE OPERATOR.
THE UNUSABLE DATA SET IS PLPA OR

Diagram 25.9 1LKMSGO0 (Part 1 of 2)

Section 2: Method of Operation 5-19§

VS2.03.807

Input Processing Output
ASMVT
> | A|{07] IF THE UNUSABLE DATA SET sreeesmmsmm
| IS THE DUPLEX PAGE DATA e
—_— SET, THEN TERMINATE THE
ASMPLPAF SysteM IF EITHER PLPA AND
COMMON PAGE DATA SETS ARE
ASMCOMMF GNUSABLE GF TR BOTH ARE
— FULL. OTHERWISE, WRITE
MESSAGE 7 TO THE OPERATOR.
ASMVT
A IF THE UNUSABLE DATA $ET —————
PART et 4 IS A LOCAL PAGE DATA = ASMDUPLX
ASMPART — Tgau rmmuz THE SvSken
— AVATLABTE FOCKL PAGE DATA
PARTLCNT | == SET. OTHERWISE, WRITE ASMNODPX
MESSAGE 9 TO THE OPERATOR.
PARESLTA RETURN TO CALLER.
ASMVT PART
I I ASMBKSLT PARTLCNT
v
TO CALLER
i
Notes Routine| Label Ref Notes Routine| Label Ref
IF THE DATA SET THAT HAS TERMSYS |25.9.2
USABLE I THE DUPLEX AT sm,
EN CALL THE SUBROUTINE TO : WRITEMSG|25.9.3
TERMINATE THE SYSTEM IF
PLPA/C PAGE_DATA SET IS
UNUSABLE (I.E. EITHER THE
E_PARENUSE
FLAG IS ON) OR IF BOTH PLPA
AGE DATA SETS ARE FULL
I.E; BOTH ASMBLEAF AND As
ON) . OTHERWISE, SET THE
MESSAG TO 7. TURN OFF
THE DUBLEX OPTION FiAG
ASMDUPLX) .AND TURN ON THE
AEMNODDX PENDED CALE THECSUBROUTINE
'1(0 BUILD ﬁsssmz T END WRITE T
TO THE OPERA’
IF THE DATA SET THAT HAS BECOME TERMSYS [25.9.2
SETAND 1T 18 Pmﬁvuusm WRITEMSG]25.9.3
LOCAT DAFA ST nxiﬁcmn : U
THEN THE SUBROUTINE TG m}ttm'rz
THE SYSTEM IS CALLED.
DATA SE Tnm“éxz%‘“w MESSAGE
e ECEEMEIT THE
ERVED AVAILABLE LOCAL SLOT
'OUNT (ASMBKSLT) BY THE
OF SLOTS MADE AVAILABLE BY THIS
DATA_SET (PARESLTA). DI
LOCAL PAGE DATA SET COUNT
PARTLCNT) "BY ONE. CALL THE
UBR TO BUILD MESSAGE 9
RND WRITE IT TO THE OBERATOR
RETURN TO CALLER OF ILRMSGOO.

Diagram 25.9 ILRMSGO0O (Part 2 of 2)

5-196 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM ILRTMIOO

B ILRMSGSP:
PARTE

ILRMSGSP, AN ENTRY OF

— ILRMSGO0 TS CALLED B

—_— ILRTHIOO UE ANY
PAREDSED S THat- BE
—_— S 0D DURTNG NIB RUCLEUS

PARENUSE INITIALIZATION PROCESS.

02] TEST WHETHER ANY MESSAGE
e mm—— 4 MUST BEISSUED. IF NOT,
PROCEED TO STEP 7.

>

03| OBTAIN SALLOC LOCK TO
SERIALIZE ASM MESSAGE
BUFFER.

TEST WHETHER PLPA AND/OR
COMMON HAVE BECOME FULL

AND PUT OUT THE
APPROPRIATE MESSAGE(S) .

i

ASMPLPAF
ASMCOMMF
ASMPLPAS

H
v

TEST WHETHER PLPA AND‘OR
COMMON ARE UNUSABLE AND
PUT OUT THE APPROPRIATE
MESSAGE.

TEST WHETHER THE DUPLEX
DATA SET HAS BECOME FUI’fL

OR _UNUSABLE AND PUT OU'
THE APPROPRIATE MESSAGE. !

07| RETURN TO CALLER.

TO ILRTMIOO

Notes Routine| Label Ref _Notes Routine| Label Ref

MESSAGE 7 AND WRITE IT TO THE
01| MESSAGES ISSUED BY ILRMSGOO OPERATOR.
DUKING NIP ARE NEVER RECEIVED BY
OPEKATOR, "1LRTMI00, "WHICH IS
GIVER. CONTROL AFTER N1p

CLRMNGED O BETERMINE AKDC 7 RN ALLER.
RE-ISSUE THESE MESSAGES. RETURN TO CALLER

70 TEST WHETHER ANY MESSAGES
MUST BE ISSUED, CHECK T

ASMPLPAF

ROMCOE ASMNODPX, THE iwumssn

A PARENUSE FLAGS' OF PLPA_PARTE
COMMON PARTE. IF N

'rsssamsmou No' MBS AGE
ST BE ISSUED, SO PROCEED TO

ANY MESSAGES MUST BE WRITTEN,
e SALIGC. MUST BE_OBTAINED
SERIALYZE ASMTS MESSAGE BUPFER.

IF PLPA IS FULL (ASMPLPAF AND WRITEMSG|25.9.3
SPILL TO COMMON (ASMPLP: .
THE SUBROUTINE TO BUI WRITEMSG
E S WRITE IT TO THE
Rgmma IF COMMON IS FULL WRITEMSG

THE
UBROUT INL TO BUILD MESSAGE 6
AND WRITE IT TO THE OPERATOR. IF

BOTH PLPA AND ARE FULL,

THEN THE SUBROUTINE TO
BUILD MESSAGE AND WRITE IT TO
'HE_OPERATOR. MESSAGE 10 WILL

REFER TO COMMON IF PLPA SPILLED
COMMON . WISE WIL!
REFER TO BLOA N » IT WILL

IF EITHER PLPA OR COMMON ARE WRITEMSG|25.9.3
UNUSABLE (PAREDSED OR PARENUSE
1S ONE HE_SUBROUTINE TO WRITEMSG

BUILD E 9 AND WR
THE OP!RASAG CALL S| Rt IT 0

TOR
AGAIN TO BUILD HESSAGB AND
WRITE IT TO THE OPERATOR.

IF THE DUPLEX DATA SET HAS WRITEMSG 9.
m OR_NOT USABLE 25.9.3

Diagram 25.9.1 ILRMSGSP (Part 1 of 1)

Section 2: Method of Operation 5-197

VS82.03.807

Input Processing Output
FROM;
ILRMSGOO,
ICRMSGSP
TERMSYS:
PARM LIST
REG 1 > A |[01] EsTABLISH RECOVERY FOR
MSGNUM TERMINATION ROUTINE.
ENTRYTYP
ENTRYPTR =
ASMMSGBF BUILD TERMINATION MESSAGE = [MsererM]I T [TERMMSG
| IN ASM'S TERMINATION v
MSGTERM BUILD TERMINATION LOGREC >
—_— BUFFER AND PARAMETER LIST :__\"E> [mscrERM]
TERMLRB
TERMINATE THE SYSTEM.
v
TO IGFPTERM
2
\

Notes Routine| Label Ref Notes Routine| Label Ref

RECOVERY, IS ESTABLISHED (SETERR)
C

FOR _THE TERMINATION R

VE ASM A SECOND CH
T YST MUST BE TEI ED.
THE_RECOVERY ROUTINE éILR.MSGO'I)
WIL NOT A PT TO U

L TTEl
MACHINE CHECK HANDLER) 10
ERVINATE ‘THE SYSTEM, BUT L
SIMPLY DO A LoAD P!

THE BASE_TERMINATION MESSAGE IS
PLACED IN THE TERMINATION
BUFFER. THE VARIABLE INFORMATION
T THEN PILLED IN- THIS VARTABLE
INFORMATION INCLUDES THE_DATA
SET TYPE (PLPA, COMMON el
AND THE VOLTD GF THE DATA SE

THE SYSTEM TERMINATION LOGREC
BUFFER IS INITIALIZED WITH ONE
OF ASM'S WAIT STATE CobES . THE

EAL
ADDRES:
REAL ADDRESS OF THE LRB (LOGREC
BUFFER} .

THE MACHINE CHECK HANDLER IGFPTERM| IGFPTERM
TERMINATION ROUTINE IS BRANCH
ENTERED TO TERMINATE THE SYSTEM.

Diagram 25.9.2 TERMSYS (Part1of1)

5-198 OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS2.03.807

Input Processing oufput
FROM ILRMSGOO,
ILRMSGSP
WRITEMSG:
PARM LIST
— A n LOCATE NEXT AVAILABLE
] MSGNUM MESSAGE BUFFER.
ENTRYTYP
ASMVT
ENTRYPTR BUFFER
ASMMSGBF - FILL BUFFER WITH MESSAGE: MSGCURR —
MSGCURR A. COPY BASE MESSAGE INTO
—_— BUFFER.
B. FILL IN VARIABLE
INFORMATION WHEN
NECESSARY .
USE_THE RECORDING FACILITY
TQ WRITE THE MESSAGE TO
THE OPERATOR.
<:> TEAVTRER
RECORDING FACILITY
- RETURN TO CALLER.
v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
ASM'S MESSAGE BUFFER AREA IS
POINTED TO BY ASMMSGBF. THE
FIRST WORD OF THE HEADER IS THE
POINTER TO THE CURRENT BUFFER
(I.E. THE BUFFER LAST USED).
THIS POINTER IS UPDATED TO POINT
TQ THE NEXT AVAILABLE BUFFER. IF
THE CURRENT BUFFER HAPPENS TO BE
THE LAST BUFFER THEN THE NEXT
AVAILABLE BUFFER IS THE FIRST
BUFFER. THE NEW CURRENT BUFFER
IS THE ONE TO BE USED.
TO PLACE THE MESSAGE IN THE
BUFFER
B. COBY THE BASE MESSAGE INTQ
THE BUFFER. "THIS'IS ALL THAT
NEEDS 1O BE DOND. FOR MESSACES
2,AND 6 SINCE THEY ARE
CONSTAN
B. FOR MESSAGES 7, 9 AND 10,
FILL IN THE VARIABLE
INFORMATION SUCH AS THE DATA
SET TYPE (PLPA, COMMON
R SWAP), THE VOLUME ID OF
THE DAT. T WHETHER THE
DATA SET 1S FULL OR BAD (T:
ATA SE BAD IF EITHER THE
DSBD FLAG OR THE NUSE FLAG IS
ON, OTHERWISE THE DATA SET 1S
FUfL).
[03] USE THE WTO OPTION OF RECORD TO |RECORD

WRITE THE MESSAGE TO THE
OPERA’

TOR. RETURN TO CALLER.

Diagram 25.9.3

WRITEMSG (Part 1 of 1)

Section 2: Methoa of Operation

5-199

VS2.03.807

Input Processing Output
FROM ILRMSGOO
MAINLINE
l"l_d> cLearwg
[rEG 1] f OBTAIN ASM CLASS LOCK FOR PART iR
g —_— ‘ >
PART WRITE QUEUES. | I
——— PARTAIAE AIASECER
PART ENTRYPTR
< 0 AIANXAIA
) CLEAR THE PART WRITE QUEUE
I ASSOCIATED WITH THE PART AIALSID
10E ENTRY PROVIDED.
[PARTE
[———— OBTAIN A POINTER TO THE
v NEXT IOE TO BE FREED. AIA
PAREWTQE
: AIASECER
MARK THE AIA. ———
PARTE AIA .
>l l AIALSID
PAREWTQE A IF NECESSARY, PLACE THE
— — AIA ON THE PART AIA ERROR el
I0E QUEUE.
iy
AIA
—/
Notes Routine| Label Ref Notes Routine| Label Ref

THE ASM CLASS LOCK IS OBTAINED
IN ORDER TO SERIALIZE THE PART
WRITE QUEUE

SAVE THE POINTER TO THE FIRST
I0E O HE PART TE UE

D O THE FORWARD AN]
BACKWARD POINTERS EoF THE BART
WRITE QUEU!

OBTAIN A POINTER TO THE-IOE THAT
IS TO BE FREED.

OBTAIN A POINTER TO THE AIA FROM
THE IQE. IF THE PART ENTRY

IF
PART ENTRY IS THE DUPLEX PART
ENTRY, THEN TURN ON THE

THCONbARY WRITE ERROR FLAG IN

IF THE AIA COUNT OF OUTSTANDING
WRITE OPERATIONS FOR A DUPLEXED
WRITE OP T EQUA

THE PART AIA ERROR QUEUE TO BE
RETURNED TO RSM.

Diagram 25.9.4. CLEARWTQ (Part 1 of 2)

5-200 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
ASMVT
——— RETURN THE IOE TO ITS
— POOL.
ASMSRBCT
ASMPSRB
——— 07| IF THERE ARE MORE IOE'S
GO _BACK TO STEP 3 AND '
REPEAT OPERATION.
RELEASE ASM CLASS LOCK.
[SCHEDULE_ ILRPTM IF NOT
| ALREADY SCHEDULED.
RETURN TO CALLER.
v
RETURN TO
CALLER
Notes Routine| Label Ref Notes *Routine| Label Ref
USE ILRGMA TO RETURN THE IOE TO ILRGMA

B & E & @
~

ITS POOL.

IF _THERE ARE MORE IOE'S TO BE

FREED, THEN GO BACK TO STEP 3

AND REPEAT THE PROCESS FOR THE
NEXT IOE.

THE _ASM CLASS LOCK USED TO
SERIALIZE THE PART WRITE QUEUES
IS RELEASED.

IF ILRPTM IS NOT ALREADY
SCHEDULED, THEN SCHEDULE IT.

RETURN TO ILRMSGOO.

Diagram 25.9.4 CLEARWTQ (Part 2 of 2)

Section 2: Method of Operation 5-201

VIO Control

viO Control coordinates and synchronizes all ASM
processing required to support VIO data sets. ASM
treats each VIO data set as a Logical Group (LG)
of 4096-byte pages. The Virtual Block Processor
(VBP) requests assignment of a LG each time a new
VIO data set is created. ASM assigns a four-byte
Logical Group Number (LGN) for each logical
group requested by VBP. ASM provides a journaling
facility for logical groups that allows VBP to direct
saving the current contents of a VIO data set, for
later recovery if necessary. For each journaled VIO
data set ASM assigns a unique value called the ‘S’
symbol. All requests for services on a VIO data
must be made using either the LGN or the eight
byte ‘S’ symbol assigned to the data set. Each page
within a logical group is identified by an eight-byte
Logical Page Identifier (LPID). The LPID consists
of the LGN followed by a four byte Relative Page
Number (RPN). The LGN is assigned by ASM, the
RPN is assigned by VBP.

The four central control blocks for VIO Control
processing are the LGVT (Logical Group Vector
Table), ASMHD (ASM Header), LGE (Logical Group
Entry), and the ASPCT (Auxiliary Storage Page
Correspondence Table).

The LGVT resides in SQA and contains a small
header section plus an eight-byte entry (LGVTE)
for each LG. The LGVTE contains the address of
the ASCB for the address space to which LG is
assigned and a pointer to the LGE for the LG.

The ASMHD is the focal point of VIO Control
processing. An ASMHD exists for each active
address space. It resides in SQA and contains
paging 1/0 control information and VIO Control
information. The VIO Control information includes
a pointer to the SRB used to schedule SRB
Controller and a queue header for the LGE queue.

An LGE exists for each LG assigned to the
address space. The LGEs are allocated from SQA
and reside on a single-threaded queue based in the
ASMHD. The LGE controls all processing of a
logical group. It includes control information for
the LGE, a process queue containing ACEs (ASM
Control Elements) and AlAs (ASM 1I/0O Areas)
representing all work in progress or waiting to be
executed. The LGE also contains a pointer to the
ASPCT.

The ASPCT contains an LSID (Logical Slot
Identifier) for each VIO data set page written to
auxiliary storage. The ASPCT also has a header with
additional control information for the LG. An
ASPCT exists for each LG and resides in user

5-202 OS/VS2 System Logic Library Volume 5 (vVS2.03.807)

V52.03.807

private area storage. For further information about
the ASPCT, see “Diagnostic Aids” in Volume 7.
vIO Control consists of four central routines:
« ILRPOS — Page Operations Starter.
« ILRGOS — Group Operations Starter.
« ILRSRBC — SRB Controller.
« ILRVIOCM — VIO Completion.

vi10 Control also includes a special Job
Termination Resource Manager (ILRITERM).

Page Operations Starter

170 Control (ILRPAGIO) calls ILRPOS whenever a
paging request for a VIO page is received from
RSM. It can also be called by the Transfer Page
Routine (ILRTRPAG), an entry point in ILRPOS
entered from RSM.

VIO Page Requests
ILRPAGIO sends a chain of AlAs to ILRPOS. These
AlAs may be for different VIO data sets. ILRPOS
tests to determine if a paging operation is pending
or if a group operation is pending or in progress
for the LGs on which the paging is to be done. If
there is a group operation pending or in progress,
the paging request is in error and the error AlA is
returned to ILRPAGIO. If there is a paging
operation pending for this LG, ILRPOS queues the
AIA to the LGE Process Queue for later processing.
If there is no paging operation pending or group
operation pending or in progress, ILRPOS locates
the LSID corresponding to the VIO LPID and queues
the input AIA to the ASMVT staging queue
(ASMSTAGQ). The LSID is located by finding the
Logical-to-Physical Mapping Entry (LPME) in the
ASPCT via the RPN portion of the LPID. The LPME
address is put into the AIA. The LPME contains the
LSID corresponding to the LPID. On a page-out
operation, ILRPOS frees the LSID in the LPME. On
a page-in, ILRPOS moves the LSID into the AIA.
The ILRESTRT entry point of ILRPOS handles
any VIO paging requests that are queued for later
processing. The SRB Controller (ILRSRBC) calls
ILRESTRT whenever it finds unstarted paging
requests on the LGE process queue.

Transfer Page Requests

RSM initiates a Transfer Page request by calling the
ILRTRPAG entry point of ILRPOS. ILRTRPAG builds
an ASM Control Element (ACE) by copying into it
the information in the ACA (ASM Control Area)
that RSM passes it. ILRTRPAG then calls the main
entry point of ILRPOS. If a paging operation is
pending for the Logical Group the Transfer Page

Request is being made against, ILRPOS queues the
ACE to the LGE Process Queue for later processing.
If the request can be started immediately, ILRPOS
calls the ILRTRANS entry point of ILRPOS to

| process the request.

The ILRTRANS entry point of ILRPOS handles
any Transfer Page requests that are queued for
later processing. The SRB Controller (ILRSRBC, also
part of VIO Control) calls ILRTRANS whenever it
finds unstarted transfer requests on the LGE
Process Queue.

Group Operations Starter

ILRGOS accepts the following group requests from
VBP: ASSIGN LG, SAVE LG/LGN, ACTIVATE LG,
and RELEASE LG. An ACA is the input parameter
list. ILRGOS always does an ASSIGN operation
immediately. SAVE, ACTIVATE, and RELEASE are
started immediately only if no other operations are
pending or in progress for the Logical Group.

ASSIGN LGN

For an ASSIGN request, ILRGOS assigns a new
LGN, builds a LGE and an ASPCT, and returns the
LGN to VBP.

SAVE, ACTIVATE, and RELEASE

For these requests ILRGOS moves the input
information from the AIA into an ACE, and then
queues the ACE to the LGE Process Queue to
prevent any other group operation from starting
until this operation completes. If any group
operations are in progress or pending, the ACE is
marked work-pending. Otherwise, ILRGOS calls the
appropriate group operator (see Section 4, “VIO
Group Operators”) to process the request.

The Release LG operator (ILRRLG, one of the
VIO Group Operators) calls the ILRFRELG entry
point of ILRGOS to free the LGE and make the
LGVTE available. For that Logical Group,
ILRFRELG dequeues the LGE from the ASM Header

v52.03.807

Queue, returns the LGVTE to the available queue,
and frees the LGE.

SRB Controller

An SRB scheduled by VIO Completion or by
ILRGOS causes the SRB Controller (ILRSRBC) to be
dispatched in the address space for which a page or
group operation is pending. ILRSRBC finds the
pending work via the LGE queue based in the ASM
Header (ASMHD), determines which work can be
started, separates the startable work into group
operation and page operation chains, and starts the
work by posting ILRPOS, by calling the appropriate
group operator, or by calling the ILRTRANS or by
ILRESTRT entries in ILRPOS.

VIO Completion

1/0 Control passes control to VIO Completion
(ILRVIOCM) whenever a VIO paging operation is
completed. ILRVIOCM processes one AlA as input,
dequeues it from the LGE Process Queue, and
returns it to 1/0 Control. For a page-out,
ILRVIOCM stores the newly-assigned LSID in the
ASPCT. For a page-in, ILRVIOCM sets error flags, if
necessary. If any more work is pending on the LGE
Process Queue, ILRVIOCM schedules an SRB for
ILRSRBC to start the work prior to return to 1/0
Control.

Job Termination Resource Manager

The initiator’s job termination module (IEFSD166)
calls the Job Termination Resources Manager
(ILRJTERM) to deactivate any VIO data sets still
active at job deletion time. ILRJITERM searches each
LGE process queue for a RELEASE LG ACE. If a
RELEASE ACE is not queued for an LG, ILRITERM
obtains one, intializes it, and queues it. ILRITERM
then schedules ILRSRBC to start the RELEASE
operations.

Section 2: Method of Operation 5-203

V§52.03.807

I 25.14

Job Termination
(ILRJTERM)

25.x.y. — Entry point in module 25.x.

Figure 2-59. VIO Control Overview

5204 OS/VS2 Systém Logic Library Volume 5 (VS2.03.807)

V10 Control
25.10 25.11 25.13
Page Operations Group Operations VIO Completion
Starter Starter (ILRVIOCM)
(I1LRPOS) (ILRGOS)
1
25.10.1 25.11.1 IsrRB
Restart VIO Free Logical Group I'
Request Control Blocks
(ILRESTRT) (ILRFRELG) 25.12
’ 25.10.2 SRB Controiler
Transfer Page (ILRSRBC)
Process
(ILRTRANS)
25.10.3
Transfer Page
Initiator
(ILRTRPAG)
25.x. — Module

VS2.03.807

Input Processing Output
FROM_ ILRPAGIO
OR ILRTRPAG
ILRPOS:
. *ENTRY SETUP
LOCATE LGE RELATED TO
INPUT ACE/AIA.
- IF GROUP OPERATION IS
QUEUED OR IN PROGRESS FOR
THE LGE, THE REQUEST .
CANNOT BE PROCESSED. GOTO
STEP 10 WITH ERROR CODE.
LGE ASPCT R R AIA/ACE ASPCT
LOCATE LPME
LGEASPCT LPME PTR. LPME
A. IF ASPCT EXPANSION
REQUIRED, EXPAND ASPCT
IMMEDIATELY.
ATA
AIA B. STORE LPME ADDRESS IN ssssec——
AIA/ACE.
ATAAIA
IF WORK IS PENDING FOR
LGE, GOTO STEP7.
AIA
" [a1anxaia
LPID
Notes Routine| Label Ref Notes Routine| Label Ref

PAGE OPERATIONS STARTER (POS)
RECEIVES CONTROL FROM I1/0
CONTROL, OR FROM THE ILRTRPAG
SECONDARY ENTRY POINT FOR
TRANSFER PAGE REQUESTS. INPUT IS
A SINGLE ACE (ILRTRPAG) OR A
STRING OF ONE OR MORE AIAS (I/0
CONTROL) . IYBRPOS ATTEMPTS TO
START ALL OPERATIONS
IMMEDIATELY. AIAS THAT CAN BE
STARTED IMMEDIATELY ARE RETURNED
TO 1/0 CONTROL. ACE (TRANSFER
PAGE) 1S PROCESSED COMPLETELY IF
STARTABLE IMMEDIATELY. OTHER
AIAS AND ACES ARE PUT ON THEIR
PROCESS QUEUES FOR LATER
PROCESSING. ASM LOCK OF CURRENT
ADDRESS SPACE 1S OBTAINED. FOR
RECOVERY, ILRIOFRR RECOVERY
ROUTINE HANDLES ERRORS OCCURRING
IN ILRPOS (ALL ENTRIES).

THE LGE IS FOUND VIA THE LPID IN
THE INPUT ACE/AJA.

EITHER OF THESE CONDITIONS WILL
PREVENT PROCESSING OF THE
OPERATION. PAGE OPERATIONS ARE
TREATED AS ERRORS IN THIS CASE

TO PREVENT INTERLOCK SITUATIONS
FROM ARISING IF ASPCT EXPANSION
IS REQUIRED FOR THE LG.

WHILE LOCATING THE LPME VIA THE
RPN OF THE LPID, THE ASPCT MAY
REQUIRE EXPANSION.

A. THE RPN LEADS TO AN LPME THAT
DOES NOT YET EXIST IN THE
ASPCT. ASPCT EXPANSION IS
PERFORMED IMMEDIATELY WHILE
ALL NECESSARY LOCKS ARE HELD.
DELAY OF THIS PROCESSING
WOULD CAUSE A POTENTIAL LOCAL
LOCK INTERLOCK SITUATION.

w

ONCE THE RPN LEADS TO AN
EXISTING LPME, THE LPME
ADDRESS IS PLACED IN THE
AIA/ACE FOR USE BY OTHER VIO
CONTROLLER ROUTINES.

IF WORK IS PENDING FOR THE LGE,
NEW WORK CANNOT BE STARTED

BECAUSE IT MAY BE FOR THE SAME
PAGE FOR WHICH WORK IS PENDING.

Diagram 25.10 ILRPOS (Part 1 of 2)

Section 2: Method of Operation

V32.03.807

Input Processing Output
ATA AIA ASMVT AIA
IF ANOTHER OPERATION NOT I
IN PROGRESS FOR LPME. —
ATAACE ASMSTAGQ ATALSID
A. IF THE ACE HAS NO AIA
ADDRESS, EXECUTE
ACE TRPPROC SUBROUTINE,
THEN GOTO STEP 10.
ACEATAPT
Y B. IF THE ACE HAS AN AIA
M ADDRESS, GOTO STEP 7.
C. FOR 1/0 REQUESTS, MOVE
—
NECESSARY LSID DATA
INTO AIA. QUEUE AIA TO
ASM STAGING QUEUE.
LGE ASECT
QUEUE AIA OR UNPROCESSED
———— LGEPROCQ
ACE TO LGE PROCESS QUEUE.
LPME
REPEAT STEPS 4-7 FOR EACH
AIA IN INPUT CHAIN.
AIA OR ACE
REPEAT STEPS 2-8 IF AIAS —_
LPME PTR.
ON INPUT CHAIN FOR MORE —_
THAN ONE LGE.
ATA AIA OR ACE
[19] RETURN ANY ERROR AIA. %
' 0 OR PIR
v
TO CALLER
Notes Routine! Label Ref Notes Routine} Label Ref
AT THIS POINT, LPME IS KNOWN AND [07] aLL azas wiLL Be QUEUED aND ANy
IS PROCESSED UNLESS THE LPME IS UNPROCESSED ACES QUEUED TO
ALREADY IN PROGRESS. IN THIS PROVIDE SYNCHRONIZATION OF ALL
CASE, THE AIA/ACE MUST BE QUEUED OPERATIONS FOR LG.
TO THE PROCESS QUEUE TO BE
HANDLED LATER.
EACH AIA IS PROCESSED
SEPARATELY. WHEN,A NEW LGID IS
A. IF THE INPUT IS A SINGLE ACE, TRPPROC {25.11.
5 ENCOUNTERED IN AN LGE, THE WORK
THE TRANSFER PAGE REQUEST IS
PENDING FLAG IS SET ON THE
PROCESSED IMMEDIATELY BY THE
CURRENT LGE IF ALL AIAS WERE NOT
SUBROUTINE. THE ACE IS FREED.
QUEUED TO THE STAGING QUEUE.
B. IF THE TRP ACE HAS AN AIA
ADDRESS, THE TRANSFER PAGE AIAS MAY BE PASSED FOR MULTIPLE
OPERATION CANNOT BE STARTED LGIDS (LOGICAL GROUPS), BUT ALL
UNTIL I/0 REPRESENTED BY THE LSIDS MUST BE IN THE CURRENT
AIA COMPLETES. ADDRESS SPACE.
C. FOR PAGING I/0 AIAS, MOVE ILRFRSLT| ILRFRSL1
ANY AIAS STARTABLE IMMEDIATELY
NECESSARY DATA FROM LPME TO
HAVE BEEN QUEUED TO THE STAGING
AIA. LSID MOVED FOR PAGE-IN
QUEUE. AIAS NOT QUEUED TO
REQUESTS, LSID FREED (BY
STAGING QUEUE WILL BE STARTED
ILRFRSL1) AND/OR CLEARED FOR
LATER BY ILRSRBC. IN ERROR
PAGE-OUTS. THE LPME PTR IS
CONDITIONS, THE AIA/ACE IS
SAVED IN ATA AND AIA QUEUED
RETURNED TO THE CALLER.
TO ASM STAGING QUEUE TO BE
PROCESSED BY THE ILRQIOE
SUBROUTINE OF I/0 CONTROL.

Diagram 25.10

ILRPOS (Part 2 of 2)

§-206 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
FROM ILRSRBC
. ILRESTRT:
ILRESTRT SECONDARY ENTRY
POINT TO ILRPOS
- OBTAIN SALLOC AND ASM
LOCKS .
REG 1 ASPCT ‘, MOVE NECESSARY LSID DATA ASMVT J—DAIA
IQ%%RESS l FROM LPME TO AIA. QUEUE ﬁ
ASMSTAGQ LSID
AIA TO ASM STAGING QUEUE.
AIA LPME
LsIp REPEAT STEP 3 FOR EACH AIA
IN INPUT STRING.
AIALPMEP
RELEASE ASM LOCK.
THE ILRQIOE ROUTINE OF I/O
CONTROL IS CALLED TO
INITIATE PAGING I/0.
<:> ILRQIOE
ASM ROUTINE
RELEASE SALLOC LOCK.
v
RETURN TO
ILRSRBC
Notes Routine| Label Ref Notes Routine{ Label Ref
THE RESTART ENTRY POINT OF POS A STRING OF AIAS MAY BE PASSED
RECEIVES CONTROL FROM SRBC AS INPUT. THEY DO NOT HAVE TO BE
WHENEVER UNSTARTED I/0 REQUESTS FOR THE SAME LOGICAL GROUP, BUT
(AIAS) ARE FOUND ON A PROCESS MUST BE ONLY FOR LOGICAL GROUPS
QUEUE. THE PROPER LSID IN THE CURRENT ADDRESS SPACE.
INFORMATION IS PLACED IN THE
AIAS AND THE AIAS ARE QUEUED TO THE ASM LOCK IS RELEASED IN
THE STAGING QUEUE FOR 1/0 ORDER THAT THE SALLOC LOCK
CONTROL TO START THE 1/0 (LOWER IN HIERARCHY) IS THE ONLY
OPERATION. INPUT MAY BE A STRING LOCK HELD AT ENTRY TO ILRQIOE.
OF ONE OR MORE ALAS. THIS ENIRY THE ASM LOCK IS NO LONGER NEEDED
POINT USES SUBROUTINES COMMON TO BY THIS ROUTINE.
MAINLINE ILRPOS PROCESSING.
THIS ENTRY OF I/O CONTROL ILRPAGIO|ILRQIOE
THE SALLOC LOCK IS REQUIRED TO
PROVIDE A SAVE AREA IF THE FREE REQUIRES THE SALLOC LOCK.
SLOT ROUTINE HAS TO BE CALLED.
IT IS ALSC REQUIRED FOR THE CALL THE SALLOC LOCK IS FREED BEFORE
TO ILRQIOCE. THE ASM CLASS LOCK RETURNING TO ILRSRBC WHO HAS NO
FOR THE CURRENT ADDRESS SPACE IS FURTHER LOCK REQUIREMENTS.
REQUIRED TO SERIALIZE LPME
PROCESSING.
THE LPME ADDRESS IN THE AIAS IS ILRFRSLT|ILRFRSL1
PROCESSED. LSID 1S MOVED INTO
THE AIA FOR PAGE-IN REQUESTS.
LSID IS FREED (BY ILRFRSL1)
AND/OR CLEARED FOR PAGE OUTS.

Diagram 25.10.1

ILRESTRT (Part 1 of 1)

Section 2: Method of Operation 5-207

VS$2.03.807

Input Processing Output

FROM ILRSRBC

ILRTRANS:

ILRTRANS SECONDARY ENTRY
POINT TO POS (INTERNAL
SUBROUTINE - TRPPROC) .

ACE ASPCT]
Ind A DISPOSE OF ANY CURRENT

LSID IN LPME

ACETLPME

A. IF ASPCT HAS NOT BEEN
LPME SAVED, FREE SLOT

LSID
<:> ILRFRSL1

ASM ROUTINE
B. OTHERWISE, CLEAR LSID
ONLY

ASPCT

[MOVE THE NEW LSID FROM TH

ACE TO THE LPME. l

[_J I ‘LPME
LSID
v ———
RETURN TO
CALLER.

Notes Routine| Label Ref Notes Routine| Label Ref

PAGE-OUT OPERATION.
ILRTRANS SUBROUTINE/ENTRY OF

ILRPOS IS CALLED BOTH INTERNALLY
BY ILRPOS AND EXTERNALLY BY
ILRSRBC WHENEVER A TRANSFER PAGE
OPERATION IS REQUIRED. INPUT IS
A SINGLE ACE CONTAINING A SOURCE
LSID AND A TARGET LPME ADDRESS.

\

(e
THE INPUT ACE POINTS TO THE LPME
TO PROCESS.

A. ANY VALID LSID IN THE LPME IS |ILRFRSLT|ILRFRSL1
FREED (BY ILRFRSL1) IF THE
ASPCT HAS NOT BEEN SAVED OR
THE CURRENT LPME HAS ALREADY
BEEN RELEASED AT LEAST ONCE
AFTER THE LAST SAVE.

B. IF THE SLOT IDENTIFIED BY THE
LSID MUST BE SAVED FOR A
FUTURE ACTIVATE, THE LSID IS
SET TO ZERO BUT THE
ASSOCIATED SLOT IS NOT FREED.

THIS COMPLETES THE TRANSFER PAGE
OPERATION. THE LSID MOVED INTO
THE LPME WAS FORMERLY ASSIGNED
TO A VIO WINDOW PAGE BY ASM AS
THE RESULT OF A NON-VIO DIRECTED

Diagram 25.10.2. ILRTRANS (Part 1 of 1)

5-208 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V$2.03.807

Llnput . Processing Output
FROM IEAVAMSI

ILRTRPAG:
ILRTRPAG SECONDARY ENTRY
POINT TO ILRPOS.

SETFRR FOR RECOVERY AND
GET AN ACE FROM ACE POOL.

ACE AIA

COPY INFORMATION FROM ACA I—DI
TO ACE. | E
ACEAIAPT

IF AIA ADDRESS PASSED IN
ACA, SET SPECIAL FLAGS IN
AIA AND ACE.

ACA AIA

ACAAIAP

:05' CALL MAINLINE ENTRY POINT
OF ILRPOS TO GET ACE
PROCESSED.

RETURN TO RSM.

=]

v
TO LEAVAMSI

Notes Routine| Label Ref Notes Routine| Label Ref

THEREFORE, THIS AIA MUST BE
MARKED AS A VIO AIA FOR
PROCESSING BY VIO COMPLETION.
THE ACE IS ALSO MARKED TO
INDICATE THAT IT IS WAITING FOR
1/0 TO COMPLETE.

- THIS IS AN INTERNAL ENTRY POINT
TO ILRPOS USED BY RSM WHEN
REQUESTING A TRANSFER PAGE
OPERATION VIA THE ILRCALL MACRO.
THIS ROUTINE WILL BUILD AN ACE
AND PASS IT TO MAINLINE ILRPOS
FOR PROCESSING.

MAINLINE ILRPOS CODE IS CALLED, |ILRPOS |ILRPOS

PASSING THE ADDRESS OF THE ACE

THE RECOVERY ENVIRONMENT IS

TO BE PROCESSED IN THE ATA. THE
CREATED FOR ASM VIA A SETFRR
ATA (ASM TRACKING AREA) IS USED
SINCE THIS IS AN EXTERNAL ENTRY
. TO RECORD INFORMATION NEEDED FOR
TO ASM. THE ACE IS OBTAINED FROM
RECOVERY. UPON RETURN, IF ERRORS

THE COMMON ACE POOL, BASED IN
OCCURRED, THE ACE IS FREED AND

THE ASMVT.

STEP 4 BACKED OUT IF EXECUTED.

IF NO ERRORS OCCURRED, ILRPOS
THE INFORMATION PASSED IN THE MAINLINE HAS DISPOSED OF THE
ACA IS COPIED TO THE ACE. THE ACE.
ACA IS ONLY A PARAMETER LIST
OWNED BY RSM THAT MUST BE

NO SPECIAL RETURN INFORMATION IS

-RETURNED ON EXIT EVEN IF THE

PASSED BACK TO RSM EXCEPT A
OPERATION HAS NOT COMPLETED.
RETURN CODE.
IF RSM SUPPLIED A NON-ZERO AIA
ADDRESS IN THE ACA, A SOURCE
LSID IS NOT YET AVAILABLE. THE
SOURCE LSID WILL BE AVAILABLE
WHEN THE PAGE-OUT OPERATION
IDENTIFIED BY THE AIA COMPLETES.

Diagram 25.10.3 ILRTRPAG (Part 1 of 1)

Section 2: Method of Operation 5-209

VS$2.03.807

Input Processing Qutput

FROM_VBP
ROUTINES
ILRGOS:

STEPS 2 AND 3 FOR ASSIGN
LG. GO TO STEP4 FOR OTHER

REQUESTS .
R1 ASMVT !
O — A TEST TO ASSURE THERE ARE
I ENOUGH - RESERVE SLOTS FOR A
ASMBKSLT
_ NEW LOGICAL GROUP. IF NOT,
ACA
RETURN.
LGVT ASMHD] I-
— v
RETURN TO VBP ASMVT ASMHD
—A A. OBTAIN SALLOC LOCK.
LGVTE [— 3 ASMLGVT - [asuvsrep
ASSIGN AN AVAILABLE
LGVTE SRBPTR ASMLGEQ
LGID FROM LGVT.
LGVTE
B. OBTAIN SPACE FOR A LGE
AND AN ASPCT. I I
|, SRB
C. COPY LGVT IF REQUIRED. -——l
D. INITIALIZE AND QUEUE
SRB AND ASPCT, IF LGVTE
OBTAINED. INITIALIZE LGVTE 2
THE LGE. RELEASE SALLOC LGVTE r
LOCK.
ACA LGEASPCT
ADD THE LGE TO THE ASMHD
QUEUE AND VALIDATE THE LGID
LGVTE FOR THE LG. | AsECT
v
RETURN TO VBP
Notes Routine| Label Ref Notes Routine| Label Ref

NO LGVTE IS AVAILABLE, THE
LGVT MUST BE EXPANDED BY
BEING COPIED INTO A LARGER
STORAGE AREA.

. THE GROUP OPERATIONS STARTER
(Gbs) ALWAYS RECEIVES CONTROL
FROM VBP (VIRTUAL BLOCK
PROCESSOR) VIA AN ILRCALL MACRO
INSTRUCTION. AN ACA 1S THE INPUT
PARAMETER LIST. GOS EXECUTES ALL
ASSIGN LG REQUESTS IMMEDIATELY.
SAVE, ACTIVATE AND RELEASE MAY
OR MAY NOT BE STARTED
IMMEDIATELY. FOR ASSIGN AND
RELEASE, THE LOCAL LOCK IS HELD
ON ENTRY AND SETFRR 1S ISSUED
FOR RECOVERY. AN ESTAE IS USED
FOR SAVE AND ACTIVATE REQUESTS
BECAUSE NO LOCKS ARE HELD AT
ENTRY. ILRGOSO1 (BOTH AN FRR AND
ESTAE RECOVERY ROUTINE) HANDLES
ERRORS OCCURRING IN ILRGOS.

B. SQA SPACE IS OBTAINED FOR AN IEAVGMOO | GLBRANCH
LGE, FOR AN SRB THIS IS FIRST |IEAVGMOO|CRBRANCH
- ASSIGN FOR ADDRESS SPACE, AND
FOR A LGVT IF REQUIRED IN
STEP2A. LSQA SPACE IS
OBTAINED FOR AN ASPCT.

C. ANY CODE THAT REFERENCES A
LGE THRU THE LGVT MUST NOT
SAVE THE POINTER TO THE
LGVTE. IF THE LGVT MUST BE
COPIED TO BE EXPANDED, THE
POINTER WILL BE CHANGED.

D. SALLOC IS RELEASED AFTER THE

IF ENOUGH SLOTS ARE NOT CONTROL BLOCKS HAVE BEEN
AVAILABLE, AN ERROR RETURN CODE BUILT AND QUEUED. IF STEP 5
IS PASSED BACK TO-VBP. IS EXECUTOR OF THESE STEPS,

THE ASPCT WILL BE OBTAINED BY
A. THE SALLOC LOCK IS NEEDED FOR THE GROUP OPERA'TOR.

THE SQA GETMAIN. IT ALSO

SERIALIZES LGUT EXPANSION AND
SRB CREATION, IF REQUIRED. AN
LGID IS TAKEN FROM A LGVTE ON
THE LGVT AVAILABLE QUEUE. IF

THIS WHOLE OPERATION IS
SERIALIZED BY THE ASM LOCK FOR
THE ADDRESS SPACE.

Diagram 25.11 ILRGOS (Part 1 of 3)

§-210 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
LGVT ACE
. SAVE,ACTIVATE, RELEASE LG
TGVIE REQUESTS. GET AN ACE FROM
TovTE POOL AND OBTAIN ASM LOCK
| ——— FOR THE ADDRESS SPACE.
LGVTE LGE
ASMHD |I ~ FIND EXISTING LGE FOR
LOGICAL GROUP IDENTIFIED
m——— IN REQUEST OR OBTAIN NEW
——2— LGE BY EXECUTING STEPS
2A-2D AS A SUBROUTINE.
ASMHD ACE
QUEUE ACE TO LGE PROCESS
QUEUE.
ASHLGEQ
RELEASE ASM LOCK.
LGE
LGEPROCQ
Notes Routine| Label Ref Notes Routine{ Label Ref

THE ACE IS OBTAINED BEFORE THE
LOCK IN ORDER TO ALLOW EXPANSION
OF THE ACE POOL IF NECESSARY.

IF REQUEST IS FOR RELEASE 's'
SYMBOL, LGE MAY NOT EXIST DUE TO
A WARM START. FOR ACTIVATE
REQUESTS, AN LGE IS ASSUMED TO
NEVER EXIST. A NEW LGID AND LGE
ARE CREATED IN THESE CASES.

THE ACE 1S QUEUED IN

ANTICIPATION OF ASYNCHRONOUS
COMPLETION OF GROUP OPERATIONS
AND TO PREVENT ANY OTHER
OPERATION FROM STARTING UNTIL
THIS OPERATION COMPLETES.

THE ASM LOCK IS RELEASED BEFORE
CALLING ANY GROUP OPERATORS
BECAUSE THEY ARE IN PAGEABLE
LPA. PAGE FAULTS MUST NOT OCCUR
WHILE A GLOBAL LOCK IS HELD.

Diagram 25.11 ILRGOS (Part 2 of 3)

Section 2: Method of Operation 5-211

VS2.03.807

Input Processing ’ Output

IF NO OTHER REQUESTS m

QUEUED TO LGE, START GROUP
OPERATION BY CALLING
CORRECT GROUP OPERATOR.

FOR SAVE, OR ACTIVATE
REQUESTS, IF STEP 8 NOT
EXECUTED, WAIT FOR OTHER
OPERATIONS TO COMPLETE,
THEN EXECUTE STEP 8.

RETURN TO VBP PASSING
RETURN DATA IN ACA.

v
RETURN TO VBP
ROUTINE

Notes Routine| Label Ref Notes Routine| Label Ref

AND FREED WHEN THE OPERATION IS

IF THE OPERATION CANNOT BE ILRSAV |ILRSAV
COMPLETE.

STARTED IMMEDIATELY THE LGE IS ILRACT ILRACT
MARKED WORK PENDING. ILRRLG ILRRLG

ILRGOS WAITS ON AN ECB IN THE
ACE THAT WILL BE POSTED BY SRB
CONTROLLER WHEN ALL CURRENTLY
QUEUED WORK ON THE PROCESS QUEUE
IS COMPLETE. IF OR WHEN THE
GROUP OPERATOR CAN BE CALLED,
GOS ALLOCATES A VSAM BUFFER FOR
THE OPERATION VIA A COUNT. IF NO
BUFFERS ARE AVAILABLE, ILRGOS
WAITS FOR ONE TO BECOME
AVAILABLE. AT THIS TIME THE SAVE
OR ACTIVATE GROUP OPERATOR IS
CALLED. UPON RETURN, THE VSAM
BUFFER IS RETURNED TO THE
GENERAL POOL AND ANY GOS ROUTINE
WAITING UNDER ANOTHER TCB FOR
THE BUFFER IS POSTED. NOTE THESE
ACTIONS ARE TAKEN ONLY FOR SAVE
OR ACTIVE REQUESTS. NO WAIT OR
VSAM BUFFER MANAGEMENT IS
NECESSARY FOR RELEASE LG
REQUESTS .

INFORMATION IN THE ACE IS MOVED
TO THE ACA AND THE ACE DEQUEUED

Diagram 25.11 ILRGOS (Part 3 of 3)

§-212 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Linput Processing Output
FROM ILRRLG OR
TLRGOS01
ILRFRELG:
ILRFRELG SECONDARY ENTRY
POINT TO ILRGOS.
OBTAIN ASM CLASS LOCK.
LGVT LGVT
DEQUEUE LGE FROM ASMHD. = Y
LGVTE LGVTE
RELEASE ASM CLASS LOCK AND
OBTAIN SALLOC LOCK.
ASMHD ASMHD
ASHLGEQ
el FREE LGVTE FOR LGE BY
PUTTING IT ON LGVTE
AVAILABLE QUEUE.
FREE SQA SPACE FOR LGE.
RELEASE SALLOC LOCK.
v
RETURN TO
ILRRLG OR
TLRGOSO1
Notes Routine| Label Ref Notes Routine| Label Ref
THE ILRFRELG ENTRY POINT IS THE LGVTE IS FREED BY QUEUEING
CALLED BY ILRRLG AND ILRGOSO1 TO IT TO THE LGVTE AVAILABLE QUEUE
FREE THE LGE SPACE AND MAKE THE IN THE LGVT HEADER AND PLACING
LGID AVAILABLE (BY PUTTING ITS THE LGID IN THE LGVTE.
ASSOCIATED LGVTE ON THE
AVAILABLE QUEUE) FOR THE LOGICAL
; THE SPACE USED FOR THE LGE IS TEAVGMOO | GLBRANCH

GROUP BEING RELEASED. THIS ENTRY
POINT IS REQUIRED BECAUSE GLOBAL
LOCKS ARE REQUIRED TO PERFORM
THESE FUNCTIONS. ILRRLG IS IN
PAGEABLE LPA AND CANNOT HOLD THE SALLOC LOCK IS FREED BEFORE
GLOBAL SPIN LOCKS. RETURNING.

FREED VIA THE GLOBAL BRANCH
ENTRY POINT TO FREEMAIN.

THE ASM CLASS LOCK OF THE
ADDRESS SPACE SERIALIZES THE
QUEUE OF LGES BASED IN THE
ASMHD.

THE LGE QUEUE IS SEARCHED FOR
THE INPUT LGE WHICH IS THEN
DEQUEUED.

THE ASM CLASS LOCK IS NO LONGER
REQUIRED AND THE SALLOC IS
REQUIRED TO SERIALIZE THE
FREEING OF THE LGVTE AND THE
CALLING OF FREEMAIN.

Diagram 25.11.1 ILRFRELG (Part 1 of 1)

Section 2: Method of Operation 5-213

VS2.03.807

Input Processing Output

FROM
DISPATCHER

b ILRSRBC:

ENTRY SETUP

SETFRR FOR RECOVERY AND
OBTAIN THE ASM LOCK FOR
THE CURRENT ADDRESS SPACE.

Notes Routine| Label Ref Notes Routine| Label Ref

THE SRB CONTROLLER (ILRSRBC)
ALWAYS RECEIVES CONTROL FROM THE
DISPATCHER AS THE RESULT OF A
SCHEDULE BY ILRGOS OR ILRVIOC.
EACH LGE PROCESS QUEUE FOR THE
CURRENT ADDRESS SPACE IS
SEARCHED FOR WORK THAT CAN BE
STARTED. PAGE OPERATIONS ARE
STARTED BY CALLING THE RESTART
ENTRY POINT (ILRESTRT) OF
ILRPOS. GROUP OPERATIONS, EXCEPT
FOR RELEASE LG AND DEACTIVATE,
ARE STARTED BY POSTING THE ECB
WAITED ON BY ILRGOS. FOR RELEASE
LG, ILRRLG IS CALLED. DEACTIVATE
IS PROCESSED BY SRB CONTROLLER.

THE ASM LOCK FOR THE CURRENT
ADDRESS SPACE IS OBTAINED AFTER
DOING A SETFRR TO ESTABLISH THE
RECOVERY ENVIRONMENT. ILRSRBO1
RECOVERY ROUTINE HANDLES ERRORS
OCCURRING IN ILRSRBC. THE SRB IS
MADE AVAILABLE REUSE. EACH LGE
QUEUED TO THE ASMHD THAT HAS
WORK PENDING AND NO GROUP
OPERATION IN PROGRESS IS
" PROCESSED IN STEPS 3 AND 4.

Diagram 25.12 ILRSRBC (Part 1 of 3)

5-214 OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS§2.03.807

Input Processing Qutput
ASMHD PLA A FOR EACH LGE WITH WORK
PENDING AND A GROUP
OPERATION NOT IN PROGRESS,
—_— SEARCH PROCESS QUEUE.
ACE
A. IF A GROUP-OPERATOR ACE
LGE IS FIRST ON THE QUEUE,
e THE ACE IS SAVED FOR
AIA STEPS.
B. IF A TRANSFER PAGE ACE
HAS A FIXED LPME
ADDRESS AND LPME IS NOT
IN PROGRESS, CALL
ILRTRPAG SUBROUTINE OF
ILRPOS, DEQUEUE AND
' FREE THE ACE.
C. IF AN AIA HAS A FIXED
LPME ADDRESS AND THE
LPME IS NOT IN
PROGRESS, SAVE AIA
ADDRESS FOR STEP4.
D. SEARCH OF PROCESS QUEUE
STOPS WHEN A GROUP
OPERATOR ACE IS FOUND.
Notes Routine| Label Ref Notes Routine| Label Ref
THE PROCESS QUEUE IS SEARCHED SERIALIZATION OF THE LOGICAL
FOR EACH LGE QUEUED TO THE ASMHD GROUP, ASSURING THAT
OF THE CURRENT ADDRESS SPACE. IF OPERATIONS ARE PERFORMED IN
THE ORDER RECEIVED.
NO WORK IS PENDING OR A GROUP
OPERATION IS IN PROGRESS, THE
LGE IS SKIPPED AS THERE IS NO
STARTABLE WORK.
A. THE ACE IS SAVED UNTIL THE
ASM LOCK IS RELEASED. GROUP
OPERATORS ARE PAGEABLE AND
MUST NOT BE CALLED WHILE
HOLDING, THE ASM LOCK.
B. TRANSFER PAGE REQUESTS MAY BE |ILRPOS |ILRTRANS
PROCESSED IMMEDIATELY WITH
THE LOCK HELD.
C. BIAS TO BE PROCESSED ARE
SAVED FOR A SINGLE CALL TO
ILRESTRT. THIS IS DONE
BECAUSE RESTART MUST BE
ENTERED WITHOUT THE ASM LOCK.
IF 1/0 IS PENDING FOR A TRP
ACE, THE IN-PROGRESS FLAG IS
SET. IF LPME IN-PROGRESS, ACE
OVERRIDE FLAG OVERRIDES THE
IN-PROGRESS FLAG.
D. THIS ACTION ALLOWS FULL
Diagram 25.12 ILRSRBC (Part 2 of 3)
Section 2: Method of Operation 5-215

VS§2.03.807

Input Processing Output
REG 1 AIA
CALL THE RESTART ROUTINE | 1
OF ILRPOS, PASSING ANY
AIAS SAVED IN STEP 3C IN a1n
ORDER TO START PAGING I/0.
<:> ILRESTRT
ASM ROUTINE
ACE
IF ANY ACES SAVED IN STEP __———_r_,-_—Q
3A, POST THE ACEECB FOR
SAVE OR ACTIVATE REQUESTS.
CALL ILRRLG FOR RELEASE OR
DEACTIVATE ACES.
v
TO DISPATCHER
Notes Routine| Label Ref Notes Routine| Label Ref
THE RESTART ROUTINE WILL PERFORM |ILRPOS |ILRESTRT
FINAL AIA PROCESSING BEFORE
PASSING THE AIAS TO ILRQIOE TO
INITIATE PAGING 1/0.
GROUP OPERATIONS READY TO BE IEAVSY50| IEAOPTO2
STARTED ARE STARTED BY POSTING |ILRRLG |ILRRLG

THE ECBS ILRGOS IS WAITING ON.
ILRGOS THEN STARTS THE OPERATION
BY CALLING THE GROUP OPERATOR.
IF THE ACE IS FOR A RELEASE LG
REQUEST, THE GROUP OPERATOR IS
CALLED. DEACTIVATE ACES ARE
PROCESSED ONLY BY SRB

CONTROLLER. THEY WERE CREATED BY

ILRJTERM DURING JOB DELETION
PROCESSING.

Diagram 25.12

ILRSRBC (Part 3 of 3)

§-216 OS/VS2 System Logic Library Volume § (VS2.03.807)

$2.03.807

Input Processing Output
FROM ILRPAGCM
ILRVIOCM:
REG 2 RSMHD REG 1 AIA
I | > OBTAIN ASM CLASS LOCK. o) ‘ | r’L 1
ASMHD
REG 3 REG 7 ACE
7y aswr IF AIA SPECIAL, BUT ERROR r Indi 7
1, BITS SET BY ILRPOS:
L=
REG 4 A. RESET
[J ATa PROCESS-IN-OPERATION
- [aTAAIa] FLAG IN LPME.
REG 1
B. DEQUEUE AND FREE THE
9] a1a ace
r |AIACEPTR)
AIALGE . C. IF WORK PENDING, SKIP
TO STEP 7. OTHERWISE
LACE SKIP TO STEP 8.
IF AIA SPECIAL, NO ERROR
|, LGE BITS ON, MOVE LSID TO ACE,
E: AND SET WORK PENDING FOR
LGE ACE QUEUED ON. SKIP TO
AIA 7.
Ly
- [ATALPMEP
IF AIA NORMAL BUT MARKED
, Asecr BAD BY ILRPOS, SKIP TO 7.
LPME
Notes Label Ref Notes Routine{ Label Ref

VIO COMPLETION ALWAYS RECEIVES
CONTROL FROM PAGE COMPLETION.
ONE AIA IS RECEIVED AS INPUT.
THE AIA IS PROCESSED, DEQUEUED
FROM ITS PROCESS QUEUE, AND
RETURNED TO PAGE COMPLETION,
UPON ENTRY, ENTRY INFORMATION IS
RECORDED IN ATA FOR USE DURING
RECOVERY. ILRIOFRR RECOVERY
ROUTINE HANDLES ERRORS OCCURRING
IN ILRVIOCM. THE ASM CLASS LOCK
IS OBTAINED. THE POINTER TO THE
AIA IS FOUND IN THE ATA, AND THE
ASCB POINTER IS FOUND IN RSMHD.

THIS IS A SPECIAL CASE CREATED
BY ILRPOS WHEN TRANSFER PAGE WAS
REQUESTED, AND THE SOURCE LSID
HAD NOT YET BEEN DETERMINED DUE
TO A PAGE-OUT IN PROGRESS. THF
'SPECIAL' AIA PROCESSED HERE AND
IN STEP 3 1S THAT PAGE OUT.

A. OBTAIN ADDRESSABILITY TO THE
ASPCT BY AN INTERNAL TRAS
(TRANSFER ADDRESS SPACE)
MACRO. RESET
PROCESS-IN-OPERATION FLAG IN
LPME AND TRAS BACK.

B. DEQUEUE AND FREE THE ACE
RELATED TO THE SPECIAL AIA
WITH ERRORS.

FOR A 'SPECIAL' AIA WITH NO

ERROR BITS ON, MOVE LSID FROM
AIA TO ACE, SET WORK PENDING
FLAG IN LGE AND SCHEDULE SRB FOR
ILRSRBC.

IF AIA NORMAL BUT ERROR BITS ON,
DEQUEUE IT AND SCHEDULE SRB FOR
ILRSRBC IF REQUIRED.

ILRGMA

Didgram 25.13

ILRVIOCM (Part 1 of 2)

Section 2: Method of Operation 5-217

Input

T
L

AIA/ACE QUEUE

Processing

VS2.03.807

Output

O

FLAG.

- IF AIA HAD NO ERRORS SET
BY ILRPOS, OBTAIN
ADDRESSABILITY TO THE
ASPCT.

A. FOR PAGE-IN, SET I/0
ERROR FLAG AS NEEDED.

. FOR PAGE-OUT, MOVE LS D
TO LPME AND SET LPME
VALID.

RESET THE LPME
PROCESS-IN-OPERATION
AND RETURN TO
PRIOR ADDRESSABILITY.

FLAG,

DEQUEUE THE AIA AND RESET
ITS PROCESS-IN-OPERATION
IF NO WORK PENDING,
SKIP TO STEP 8. '

SCHEDULE SRB IF ONE NOT
ALREADY SCHEDULED.

RELEASE ASM LOCK, CLEANUP

ASPCT

REQUESTS FOR THIS PAGE.

B. PAGE-OUT AIA: SINCE THIS
ROUTINE DOES NOT RECEIVE
PAGE-OUT AIAS WITH I/0
ERRORS, THE LSID CAN SIMPLY
BE MOVED FROM THE AIA TO THE
LPME.

0

IN EITHER CASE, THE LPME
PROCESS-IN-OPERATION FLAG IS
RESET AND ADDRESSABILITY TO
THE ADDRESS SPACE AT ENTRY 1S
RESTORED.

THE AIA IS DEQUEUED FROM ITS LGE
PROCESS QUEUE BECAUSE ONCE IT IS

THE INPUT AIA IS RETURNED TO
ILRPAGCM VIA A POINTER IN THE
ATA.

AND RETURN.
v
RETURN TO
ILRPAGCM
Notes Routine| Label Ref Notes Routine| Label Ref
RETURNED TO I/O CONTROL (WHO
[05] For NomMAL Aza wrTH NO ERRORS:
. RETURNS IT TO RSM) RSM WILL FREE
ADDRESSABILITY TO THE ASPCT IS
THE PCB/AIA FOR REUSE. THE AIA
OBTAINED BY AN INTERNAL TRAS
. PROCESS-IN-OPERATION FLAG IS
(TRANSFER ADDRESS SPACE) MACRO RESET
THAT LOADS THE SEGMENT TABLE '
ORIGIN ADDRESS FOR THE ADDRESS
SPACE CONTAINING THE ASPCT. IF ANY WORK IS PENDING FOR THE ILRSRBC [ILRSRBC
LGE PROCESSED SRB CONTROLLER IS
A. PAGE~IN AIA: IF PERMANENT SCHEDULED TO ATTEMPT TO START
READ ERRORS OCCUR, THE LPME THE WORK.
IS SO FLAGGED TO GIVE TRUE
ERROR CODES FOR ANY FUTURE
THE ASM LOCK IS RELEASED, AND ILRPAGCM| ILRPAGCM

Diagram 25.13

ILRVIOCM (Part 2 of 2)

§5-218 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
FROM IEFSD166 i

ILRITERM:
REG13 SAVEAREA
I I J—>| — ASM JOB TERMINATION —
ROUTINE.
REG14 RETURN AD.
l I J—->| I " CHECK CURRENT ADDRESS
SPACE ASMHD FOR QUEUED
LGE'S. IF NONE, SKIP TO 7 INTERNAL ACE QUEUE
REG15 ILRJTERM

: r_’ENTRY ADDR (NO ACTIVE VIO DATA SET).

OBTAIN THE LOCAL LOCK AND
SETFRR TO ESTABLISH

SEARCH LGE QUEUE. IF

RELEASE LG NOT QUEUED FOR
AN LGE, THEN:

ASMHD

A. GET AN ACE.

LGE QUEUE B. INITIALIZE THE ACE.

C. QUEUE ACE'S INTERNALLY.

Notes Routine} Label Ref Notes Routine| Label Ref

(LGERELLG="'0'B), AN ACE IS
REQUIRED VIA ILRGMA FROM THE ACE
POOL IN ASMVT. THE ACE OPCODE,
LGID, LGE PTR, ETC. FIELDS ARE
INITIALIZED, AND THE ACE IS KEPT
ON AN INTERNAL QUEUE FOR
PROCESSING IN STEP 5.

JOB TERMINATION PROCESSING
RECEIVES CONTROL FROM THE
INITIATOR JOB DELETION MODULE
(IEFSD166) WHICH CALLS THIS
ROUTINE ON ALL JOB TERMINATIONS.

NO LOCKS HELD,KEYO, SUPERVISOR
STATE. IHAPSA CONTAINS A POINTER
TO THE ASCB, WHICH IN TURN
CONTAINS A POINTER TO THE RSMHD.
THE RSMHD CONTAINS THE ASMHD
WHICH WILL LOCATE ANY QUEUED
LGE'S. THE NORMAL SITUATION IS
THAT NO LGE'S ARE QUEUED FROM
ASMHD, AND CONTROL IS RETURNED
IMMEDIATELY TO IEFSD166. (SKIP
TO 7).

IF AN LGE WAS FOUND, THEN THE
LOCAL LOCK IS OBTAINED IN ORDER
TO SERIALIZE THE LGE QUEUE
AGAINST ASSIGN AND RELEASE LG,
AND TO ALLOW SETFRR COVERAGE.
ILRJTMO1, ANOTHER ENTRY POINT,
IS THE RECOVERY ROUTINE
INDICATED ON THE SETFRR.

IF RELEASE LG NOT QUEUED ILRGMA

Diagram 25.14 ILRITERM (Part 1 of 2)

Section 2: Method of Operation 5-219

VS2.03.807

Ihput Processing OQutput

LGE PROCESS
IF ANY ACE'S BUILT: QUEUE

A. OBTAIN ASM CLASS LOCK. esesswme——t

w

CORRECT LGE PROCESS

QUEUE EACH ACE TO r—-—

QUEUE AND SET LGERELLG
FLAG ON TO BLOCK FUTURE

REQUESTS FOR LGID.

SCHEDULE SRB AT LOCAL
LEVEL.

o]

REG 15

RELEASE ASM CLASS LOCK.

o

DELETE FRR AND RELEASE
LOCAL LOCK.

SET REGISTER 15 TO O AND
RETURN,

N

RETURN TO
CALLER

Notes Routine| Label Ref Notes Routine| Label

ONCE THE SEARCH IS COMPLETE, IF
ANY ACE'S HAVE BEEN BUILT IN
STEP 4, THE ASM CLASS LOCK IS
OBTAINED, THE ACE'S ARE QUEUED
ON TO THE CORRECT LGE PROCESS
QUEUE AND LGERELLG IS SET. IF AN
SRB WAS NOT YET SCHEDULED,
(ASHSCHED='0'B) THEN IT IS
SCHEDULED AND ASHSCHED IS SET.
THE ASM CLASS LOCK IS RELEASED.

', FRR IS DELETED AND LOCAL LOCK
RELEASED.

RETURN CODE (REG 15) IS ALWAYS
SET TO 0 FOR COMPLETENESS -
CALLER DOES NOT NEED TO CHECK.

Diagram 25.14 ILRJTERM (Part 2 of 2)

§5-220 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Qutput
FROM R/TH
(IEAVTRTS)
ILRITMO1 :
FRR_WORKAREA A . ITIALIZAT R SDWA
.-»I]) INITIALIZATION PROCESSING. ' >
SDWASRSV
[rEG 1 }4 . sowa —
1 FOR NON-RETRYABLE ERRORS, =mrasmmm]
SDWAPARM SET LOCK FREEING FLAGS Ifi SDWARTYA
—_ THE SDWA. SKIP TO STEP 6.
ATA
[03] For RETRYABLE ERRORS WITH
ATASAVE NO_RECUR
ATASAVE UNCONDITIONALLY ACOUIRE
ASCB ASM CLASS LOCK
ASCBRSM
—_— - SET UP THE SDWA FOR RETRY.
PSAAOLD
SET RECURSION FLAG »An
RSMHD ° %
ASMHD pr— ATARCRF1
. RETURN TO CALLER.
REG
14=RETURN
ADDR I I
——] v
REG — 0 R/TM
15=JTMO1 (IEAVTRTS)
ENTRY
BOINT ADDR
CVTJITERM
Notes Routine| Label Ref Notes Routinej Label Ref

ILRJTM01 IS THE RECOVERY ROUTINE
CESSARY

Z
ol

REGISTERS. COPY THE MODULE
CSECT, AND RECOVERY ROUTINE IDS
INTO tHE SDWA.

NON-RETRYABLE ERRORS ARE

RESTART AND RECURSION.

PERCOLATION CAUSES MEMORY

TERM INDICATE THAT RTM
AND ASM

LOCKS ACQUIRED BY ILRJTERM.

THE _ASM LOCK IS REQUIRED AT
ILRITERM'S RETRY POINT.

REGISTER 13 IS LOADED FROM THE
ATA. ILRJTMO1 STORES ITS
REGISTERS INTO THE SDWA
(SBWASKSY) "TO BE USED'AS RETRY
REGISTERS, ILRJTERM'S RETRY
POINT, ILRCRTR1, IS PLACED IN
THE SDWA. SDWA RECORDING AND
RETRY INDICAYORS SAB SBT.

THE RECURSION FLAG, ATARCRF1, IS
TURNED ON TO PREVENT A RETRY FOR
ANOTHER ERROR IN ILRJTERM.

SETRP

SETLOCK

SETRP

Diagram 25.14.1

ILRJITMO1 (Part 1 of 1)

Section 2:

Method of Operation 5-221

VIO Group Operators

The VIO Group Operators perform all processing
necessary to create, save, restore, and delete a
logical group (LG) and its associated ASPCT. The
three basic operators are SAVE, ACTIVATE, and
RELEASE. Two other routines that assist the
operators are the Task Mode Release routine and .
the VSAM Interface routine.

The SAVE, ACTIVATE, and RELEASE operators
execute in the address space to which an LG is
assigned. The SAVE and ACTIVATE operators are
invoked only by ILRGOS. The RELEASE operator
can be invoked either by ILRGOS or by the SRB
Controller.

Task Mode Release processing occurs in the
Master Scheduler address space as an extension of
RELEASE processing when the LG being released
has been previously saved. Task Mode Release gets
control via a POST by RELEASE whenever a saved
copy of an LG exists on SYS1.STGINDEX. This
processing occurs asynchronously to processing in
the address space owning the LG because VBP
requires no return data. It also prevents
unnecessary delays in normal job deletion
processing.

The VSAM Interface routine is a service routine,
used by SAVE, ACTIVATE, and Task Mode Release
to access the SYSI.STGINDEX data set. This data
set is used to save copies of ASPCTs for journaled
logical groups.

Note that a fourth group operation can be

requested by VBP. This is the ASSIGN LG operation.

Processing of this request occurs within ILRGOS, as
described in Chapter 3, “vio Control”.

SAVE Operator

The SAVE Operator saves active VIO ASPCTs on
SYS1.STGINDEX. ILRGOS passes control to the
SAVE Operator (ILRSAV) with an ACE as input.
The ACE contains either an ‘S’ symbol or an LGID,
and a pointer to the LGE.

If the input ACE contains an LGID, ILRSAV is
processing a previously unsaved logical group.
ILRSAV flags each valid LPME as saved and
increases the saved slot counter in the ASPCT.
ILRSAV then calls ILRVSAMI to write the ASPCT to
SYS1.STGINDEX. After ILRVSAMI returns, ILRSAV
flags the ASPCT as saved, copies the ‘s’ symbol
(assigned by ILRGOS) from the ASPCT to the ACE,
and returns to ILRGOS.

If the input ACE contains an ‘S’ symbol, ILRSAV
is processing a previously saved logical group.
ILRSAV calls ILRVSAMI to retrieve and erase the

5-222 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

previously saved copy of the ASPCT. After
ILRVSAMI returns, ILRSAV flags each valid LPME as
saved, frees the unneeded storage for the old
ASPCT, and updates the appropriate counters.
ILRSAYV then calls ILRVSAMI to write the ASPCT to
SYS1.STGINDEX. After ILRVSAMI returns, ILRSAV
flags the ASPCT as saved and flags it as having no
slots released after the save. ILRSAV then copies
the ‘S’ symbol (assigned by ILRGOS) from the
ASPCT to the ACE and returns to ILRGOS.

ACTIVATE Operator

The ACTIVATE Operator (ILRACT) retrieves a
saved ASPCT from SYS1.STGINDEX and rebuilds it
in the current address space’s LSQA.

ILRGOS passes control to ILRACT with an ACE
as input. The input ACE contains ‘S’ symbol and a
pointer to the newly-created LGE. During an
ACTIVATE request, there is never an active ASPCT
for the VIO data set being activated.

ILRACT calls ILRVSAMI to retrieve the ASPCT
from SYS1.STGINDEX. After ILRVSAMI returns,
ILRACT copies the new LGN from the LGE (both
built by ILRGOS) into the ASPCT, copies the
retrieved ASPCT from 1/0 buffers to LSQA storage,
frees the 1/0 buffers, stores the LSQA address of
the ASPCT in the LGE, and returns to ILRGOS.

RELEASE Operator

The RELEASE Operator (ILRRLG), along with the
Task Mode Release Operator (described in the
next section), releases paging slots back to the
system and erases saved ASPCTs from
SYS1.STGINDEX. ILRRLG posts Task Mode Release
only if the LG being released has been previously
saved.

ILRGOS or ILRSRBC passes control to ILRRLG
with an ACE as input. The ACE contains either an
‘S’ symbol or an LGID, and, if the VIO data set is
active, a pointer to the LGE.

If the ACE contains an LGID, the data set is
active. ILRRLG releases valid LPMEs frees the LSQA
storage used for the ASPCT, and calls ILRFRELG
(entry point of ILRGOS) to free the LGE storage
and mark the LGVTE as available. ILRRLG also
updates the appropriate slot counters, then returns
control to either ILRGOS or ILRSRBC. ,

If the ACE contains an ‘S’ symbol, the ASPCT
has been saved and the data set may or may not be
active. If the ASPCT is not active, ILRRLG sets the
inactive flag in the input ACE. In either case,
ILRSAV adds the ACE to the head of the release
queue in the ASMVT, issues a POST to start Task
Mode Release processing, and updates the

appropriate slot counters. If the ASPCT is active,
ILRRLG calls ILRFRELG (entry point of ILRGOS) to
free the LGE storage and mark the LGVTE
available.

Task Mode Release Operator
The Task Mode Release Operator (ILRTMRLG) has
two responsibilities: to call Task Mode Initialization
(ILRTMIO00) to complete ASM initialization, and to
complete the release processing for a saved ASPCT.

ILRTMRLG runs under the ASM TCB in the
Master Scheduler address space established during
system initialization. The Master Scheduler attaches
ILRTMRLG. ILRTMRLG establishes the recovery
environment via an ESTAE, initializes pointer, then
loads the Task Mode Initialization routine
(ILRTMI00). Upon return, ILRTMRLG deletes
ILRTMIO00, posts Master Scheduler Initialization, and
issues a wait on the ECB in the ASMVT.

ILRRLG posts this ECB to start Task Mode
Release processing. ILRTMRLG processes a queue

vS$2.03.807

of ACEs, each representing a LG whose ASPCT is
saved on SYS1.STGINDEX. ILRTMRLG calls
ILRVSAMI to retrieve and erase the saved copy of
the ASPCT on SYS1.STGINDEX. After ILRVSAMI
returns ILRTMRLG frees all slots assigned in the
ASPCT. After it has processed all the ACEs,
ILRTMRLG waits on its ECB for more work.

VSAM Interface
The VSAM Interface routine (ILRVSAMI) supplies
all the necessary functions the VIO Group operators
require for access to SYS1.STGINDEX. There are
separate subroutines for each function required by
each operator. The functions are:
e GETASPCT — retrieve an ASPCT from
SYS1.STGINDEX.
¢ PUTASPCT — write an ASPCT to
SYS1.STGINDEX.
« RETERASE — retrieve and then erase an
ASPCT from SYS1.STGINDEX.

Section 2: Method of Operation 5-223

Page of SY28-0717-0

5-224

25.x.y. — Entry point in module 25.x.

Figure 2-60. VIO Group Operators Overview

0OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

4
V10 Group
Operators
25.15 25.16 25.17
Activate Operator Save Operator Release Operator
(ILRACT) (ILRSAV) (ILRRLG)
| ;
| xmposT
25.18
Task Mode
___—.-—’
Release Operator
[* \ (ILRTMRLG)
25.19
VSAM Interface
(ILRVSAMI)
25.x. — Module

VS$2.03.807

Input Processing Qutput
FROM ILRGOS

E} i
EPATH

ACTIVATE GROUP OPERATOR

—>
R —

RECORD ENTRY INFORMATION
IN EPATH.

ASPLGE
: BUILD THE PARAMETER LIST ——
FOR ILRVSAMI

ASPBKSLT

CALL ILRVSAMI TO RETRIEVE
ASPCT FROM SYS1,STGINDEX,
IF RETRIEVIBXL UNSUCCESSFUL

<:> TLRVSAMI

ASM ROUTINE

"¥

L

R 1 LGE < LGE
UPDATE THE ASECT BASE WIT A
L] CURRENT LGN, BACKUP SLOT e
COUNT, AND ASCB POINTER. —
LGEASPCT=0 LGESLTCT

ACE LGEASPCT

ACELGE
ACELGID
ACESYM

Notes Routine| Label Ref Notes Routine| Label Ref

- THE ACTIVATE GROUP OPERATOR
v

AND:. NG IN
ILRACT AND ITS PATH THROUGH
ILRVSAMI.

IF ILRGMA IS UNSUCCESSFUL IN ILRGMA
OBTAINING A WORKAREA, THE RETURN

CODE IS SET TO 28, D ILRACT
RETURNS TO ILRGOS.

ILRACT'
IN THE

S _CSECT_ IDENTIFIER IS SET
EPATH. THE POINTER TO THE
RKAREA IS STORED IN THE EPATH.

STORB THB ADDRESS OF THE EPATH
IN THE WORKAREA PARAMETER LIST

FOR ILRVSAMI STORE_THE ADDRESS
OF ACESYM IN THE PARAMETER LIST

SET THE REQUEST OP CODE TO A

CALL ILRVSAMI TO RETRIEVE THE ILRVSAMI | ILRVSAMI
ASPCT FROM SYS1.STGIND

ILRVSAHI AS SUCCBSSFUL SAVE

THE RETURN CODE IN THE WORKAREA

AND SKIP TO STEP NO. 9.

THE RETRIEVED ASPCT BASE IS NOW
UPDATED, THE lGE (ASPIGID}
COPIED FROM_THE EéLGE D,

THE ASCB_POINTER ASCB) 1§
INITIALIZBD FROM MOLD. THE
POINTER TO THE é l}
INITIALIZ THE ADDRESS.OF THE
LGE (ACELGE) . THE NUMBER OF SLOTS
1R CK_THE VIO DATASET
PBKSLT) 1S CALCULATED BY

IVIDING
'S PNE BY THB CURRENT
VAL E OF ILR!

Diagram 25.15 ILRACT (Part 1 of 2)

Section 2: Method of Operation 5-225§

V$2.03.807

Input Processing Output

ASPCT ' ASPCT
A REBUILD THE ASPCT IN USER Al o
|lé"ROM STEP l_—_—) LSQA STORAGE. j————— r
ASPSSYM
ANCHOR THE REBUILT ASPCT ‘ —_—
IN THE LGE. B — ASPLGID
ASPASCB
ASPLGE
PERFORM_NECESSARY _
CLEAN-UP.
ASPBKSLT
RETURN TO CALLER.
LGE
= =
L
[——_| I LGEASPCT

\Y
RETURN TO
ILRGOS

Notes Routine| Label Ref Notes Routine] Label

THE INTERNAL SUBROUTINE REBUILD REBUILD [25.18.
IS CALLED TO COPY THE ASPCT IN 1
BUFFER (S) STORAGE TO LSQA.

A. SAVE THE RETURN CODE IN
WORKAREA: IF IT WAS NON-ZERO
SKIP TO STEP 9.

THE LSgA STORAGE IS ANCHORED IN
THE LG LGE.
NUMBER OF SLOTS ACTUALLY USED BY

THE ASP?T(ASPSAVCT) IS COPIED TO
THE LGE(LGESLTCT) .

SAVE THE INTERNAL WORKAREA ILRGMA
RETURN CODE IN THE USERS REG .15.
USE. ILRGMA TO RETURN THE
WORKAREA TO ITS POOL.

RESTORE REGISTERS AND RETURN TO
ILRGOS.

Diagram 25.15 ILRACT (Part 2 of 2)

5-226 0OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V§$2.03.807

Input Processing Output
FROM ILRACT
MAINLINE
REBUILD:
SAVE RETURN ADDRESS.
ASPCTPTR
ASST CALCU;ATE THE NUMBER OF
ASPCT'S TO BE REBUILT.
ASPASSTE
ASPCT ——
CALCULATE THE AMOUNT OF
ASPCT LSOA STORAGE NEEDED TO
REBUILD THE ASPCT.
ASPLEXCT LPME
OBTAIN THE LSQA STORAGE.
ASPAEXCT
ASPASSTP
RBASPCTP
COPY THE ASPCT FROM BUFFER
STORAGE TO LSQA STORAGE. l I
ASPCT
FREE THE BUFFER STORAGE.
ASPC
ASPASSTP
RETURN TO MAINLINE OF —
ILRACT.
| I ASST -
v ASPASSTE
RETURN TO e —
ILRACT
MAINLINE.
Notes Routine|{ Label Ref Notes Routine| Label Ref

LENGTH OF AN ASST EXTENSION.
SAVE REGISTER 14 IN WORKAREA.

E. STORE LSQOA POINTER IN ASST
EXTENSION (ASPASSTE(I)).
THE_ NUMBER OF ASPCT'S TO BE
BUILT IS THE NUMBER OF ASST
EXTENSTONS (ASPAEXCT] PLUS THE F. COPY THE LPME EXTENSION FROM
NUMBER OF LEME EXTENSIONS BUFFER TO LSQA STORA
(ASPLEXCT) PLUS ONE FOR THE
ASPCT BASE.
G. UPDATE THE LSQA POINTER BY
LENGTH OF LBME EXTENSION.
THE_ AMOUNT OF LSOM SPACE NEEDED
IS THE NUMBER OF-ASD H. ANYMORE LPME EXTENSIONS
REBUILT WIMES THE LENGTH OF AN {T=ASPLEXCT) , THEN GOTO STEP

I. ANYMORE ASST EXTENSIONS
ISSUE A BRANCH ENTRY GETMAIN TO GETMAIN (I=ASPAEXCT), THEN GOTO STEP
OBTAIN THE LSQA SPACE. B.

A, IF UNSUCCESSFUL IN OBTAINING GETMAIN
LOAD REG 1

THE LSOR SPRCE IF THERE ARE NO EXTENSIONS FREEMAIN
WITH POINTER T ASPCT BASE ILRAFSO00 ISSUE A FREEMAIN TOR THE ASpcT
AND SET 0" %0 LENGTH OF BASE BUFFER STORAGE, IF THERE ILRAFS00
BUPFER. CALL ILRAFS00 FO FREE |ABEND ARE EXTENSIONS THE LOAD REG
THE RETRIEVED ASPCT. IF WITH POINTER To ASPCT BASE, SET |ABEND
ILEAFSO0 WAS UNSUCCESSFUL REG 0 TO LENGTH OF BUFFER.’ CALL
ISSOECAN 08 ABEND. SET THE TERAPS00 TO PREECTHE BUEFER
RETURN CODE 70 28, AND RETURN STORAGE. IF ILRAFSO0 WA
TG MAINL UNSUCCESSFUL ISSUE AN 087 ABEND.
B. SAVE AND RECORD IN EPATH,
POINTER TO STORAGE. [07] meTurn 1O MAINLINE ILRACT.

COPY THE ASPCT BASE FROM THE
BUFFER TO LSQA STORAGE, IF THERE
ARE NO EXTEN xons S (ASPAEXCT=0)
THEN SKIP TO S

A

UPDATE THE LSQA POINTER BY
LENGTH OF AN ASPCT.

-

STORE THE _LSOA POINTER IN THE
BASE ASPCT (ASPASSTP(I)).

[e]

COPY THE ASST EXTENSION FROM-
BUFFER TO LSQA STORAGE.

D. UPDATE THE LSQA POINTER BY

Diagram 25.15.1 REBUILD (Part1 of 1)

Section 2: Method of Operation 5-227

VS2.03.807

Input Processing Output
FROM ILRGOS
ILRSAV:
R 1 LGE ACE LGE
l 7 SAVE GROUP OPERATOR ; foa
LGEASPCT ACELGE LGEASPCT
ACE LGESLTCT
OBTAIN NECESSARY
RESOURCES . S'SYMB
ACELGE ASPCT
IF THE HAS
S'SYMB PﬁgVégggBycggvan, NRETRIEVE _:::> ASPCT
S'SYMB
IF. THE LG _HAS NOT BEEN —_
SAVED, DEFINE SRVLEME As
ﬁ OCEDURE ILRALSO0
witL DoE" ; ASPSAVCT
f~__mﬁ —
CALL ILRALSOO TO PROCESS
THE LBME'S.
F_THERE IS A RETRIEVED
AepChREALY RLRRFR0G 10
FREE THE REBUILT ASPCT.
Notes Routine} Label Ref Notes Routine| Label Ref
THE_LENGTH OF A VSAM BUFFER ABEND
- THE SAVE GROUP OPERATOR (ILRSAV) LOAD REG 1 WITH ADDRESS OF THE
IS _RESPONSIBLE FOR SAVING VIO RETRIEVED ASPCT BASE
ASPCTS ON SYS1.STGINDEX. IF THE ILRAFSO0 TO FREE THE ‘BUFFERS. IF
INPUT ACE CONTAINS THERE IS A ZERO RETURN CODE
V WILL BE PROCESSING ONLY EROM 1LRARS00 15808 AN 083
THE ACTIVE ASPCT, IF THE_ACE END.
CONTAINS AN 'S SYMBOL, ILRSAV
ILL BE PROCESSING THE 1V
AND THE PREVIOUSLY SAVED ASPCTS.
FOR RECOVERY, ILRGOSO1 RECOVERY
ROUTINE DLES ORS OCCURRING
IN ILRSAV AND ITS PATH THROUGH
ILRVSAMI .
USE TLRGMA TQ OBTAIN A WORKAREA |ILRGMA
FROM ASM'S POOL. ILRGMA IS
UNSUCCESSFUL, SET THE RETURN
CODE 28 D _RETURN TO
CALLER. SAVE THE POINTERS TO THE
ASMHD FROM INBUT REG g, IHE
ASMUT FROM INPUT REG 3+ THE
EEAtH FROM INPUT REG 4! AND A
FROM. INBUT RBG 1. GBT BOINTERS
LGE_FROM ACELGE D
ROM LGEASPCT. RECORD THE
POINTER TO THE WORKAREA IN THE
PATH.
IF THE ASPCT IS FLAGGED AS SAVEDASP|25.15.
HAVING BEEN SAVED (ASPSAVED81), i
THEN CALL INTERNAL SUBROUTINE
SAVEDASP TO RETRIEVE THE SAVED
ASPCT.
IF THE LG HAS NOT BEEN SAVED
DEFINE SAVELPME AS_THE pRocabuaa
ILRALSOG WILL USE TO FLAG T
LPME AS SAVED.
ZERQ THE FREESLOT AND SAVESLOT ILRALS0O 25.15.
COUNTERS, LOAD REG O WITH THE 2
ADDRESS OF THE ACTIVE ASPCT
LL TQ PROCESS 25.15,
ACTIVE LPME'S BY CALLING THE 3
ROl INE DEFINED, 70 1T (NSTEP 2
(BY SAVEDASP) OR STEP 3.
[06] IF THERE IS A RETRIEVED ASPCT ILRAFS00
(RETASPCT.=0), LOAD REG O WITH

Diagram 25.16

ILRSAV (Part 1 of 2)

5-228 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
FREESLOT ACE LGE
A IF ANY SLOTS HAVE BEEN -
| I_—) FREED, DECREMENT THE p—
INDIVIDUAL "SLOT COUNT BY
THE NUMBER FREED. ACELGE LGEASPCT
SAVESLOT LGESLTCT
A IF THE NUMBER OF SLOTS e
| |—-—) SAVED HAS CHANGED, UPDATE S'SYMB
THE SAVED SLOT COUNTER IN —_—
THE ASPCT.
CALL ILRVSAMI TO WRITE
A LI
S'SYMB
ILRVSAMI
ASM ROUTINE —
ASPSAVCT
F THE WRITE WAS B —
NECESSARY CONTROL BLocx§
AS ‘SAVED, AND COPY THE 'S'
SYMBOL TO THE ACE. Q
IF THE WRITE WAS —
UNSUCCESSFUL, FLAG THE —
ASPCT AND THE ACTIVE
LBME'S AS NOT SAVED.
RETURN THE WORKAREA TO ITS STGINDEX
POOL.
RETURN TO CALLER.
v
RETURN TO
ILRGOS
’/
Notes ! Routine| Label Ref Notes Routine| Label Ref
NIER ER
ESLTCT (ILRGOS WILL USE_THIS
VALOE O UPDATE THE INDTUIDUAL
SLOT COUNT IN THE ASCB.).
IF THE SAVESLOT COUNTER IS
NON-ZERO DUE TO SAVLIMBO
I3 SSING, THEN Ul THE
SAVED SLOT COUNT IN THE ASPCT
(BSPSAVCT) BY THE SAVESLOT
STORE THE POINTERS TO THE EPATH, |ILRVSAMI|ILRVSAMI
AND THE ASPCT BASE IN THE
ORKAREA’ PAKAMBTER LYST FOR
TLRVSAMI. SET THE REQUEST
OP-CODE 70 02, CALL YLRVSAMI TO
WRITE THE ASPCT OUT TO STGINDEX.
IF THERE IS A ZERO RETURN CODE
EROM TTRVSAMI, FLAG THE ASBCT AS
SAVED (AsPsnvk =10 AS
BAVING No. SLOTS RELEASED AFTER
SAVE (ASBSAVRB=O) - COPY THE &
SYMBOL TO THE ACE
(ACESYM=ASPSSYM) .
1E THERE IS A NON-ZERO RETURN ILRALS00 25,15,
CODE FROM ILRVSAMI, G _TH 4
PCT AS {‘ASPSAVED-OA
DREINE UNSAULEN AS THE PROCEDURE
ILRALSO0. CALL ILRALS00 T
ALL ACTIVE LPME'S NoT SAVED®
ZERO THE SAVE SLOT COUNTEI
(ASPSAVCT) IN THE ASPCT.
USE ILRGMA T0 RETURN TO RETURN ILRGMA
THE WORKAREA TO ITS POOL
[13] Restore REGISTERS AND RETURN TO
CALLER.

Diagram 25.16 ILRSAV (Part 2 of 2)

Section 2: Method of Operation

§5-229

Input

‘1FROM_MAINLINE
ILRSAV

STGINDEX

L’ASPCT

ASPSSYM

ASPFLAG

VS2.03.807

Processing Output
SAVEDASP:
. ETA:
DO INITIALIZATION. ? ==]r"lﬁPCT

sYS1

-

RETRIEVE AND ERASE THE —————
SAVED ASPCT ON
.STGINDEX.

ILRVSAMI
ASM ROUTINE

IF THE ASPCT WAS RETRIEVED
SUCCESSFULLY, SAVE THE
POINTER TO IT.)

IF NO SLOTS HAVE BEEN
RELEASED AFTER SAVE,
SAVLPME 1S THE PROCEDURE
ILRALSOQ WILL USE.

IF SLOTS HAVE BEEN

RELEASED AFTER SAVE,
SAVLIMBO IS THE PROCEDURE
ILRALS00 WILL USE.

RETURN TO MAINLINE.

=]

v
MAINLINE
ILRSAV

THE 'S' SYMBOL IN THE PARAMETER
LIST FOR ILRVSAMI. SET THE
REQUEST OP-CODE TO 03 (RETRIEVE
AND ERASE). CALL ILRVSAMI TO
RETRIEVE AND ERASE THE SAVED
ASPCT ON SYS1.STGINDEX.

IF THERE IS A ZERO RETURN CODE,
SAVE THE POINTER TO THE
RETRIEVED ASPCT IN THE WORKAREA
(RETASPCT) . IF THERE IS A
NON-ZERO RETURN CODE FROM
ILRVSAMI, TURN THE SAVED FLAG
(ASPSAVED) OFF IN THE ASPCT.

IF NO SLOTS HAVE BEEN RELEASED
AFTER SAVE (ASPSAVRP=0), THEN
DEFINE SAVLPME AS THE PROCEDURE
ILRALSO0 WILL USE TO FLAG THE
LPME AS SAVED.

IF SLOTS HAVE BEEN RELEASED
AFTER SAVE (ASPSAVRP=1), THEN

RETURN TO MAINLINE.

Notes Routine| Label Ref Notes Routine| Label Ref
DEFINE SAVLIMBO AS THE PROCEDURE
SAVE THE RETURN ADDRESS. GET THE
ILRALSO0 WILL USE TO PROCESS THE
ADDRESS OF THE 'S' SYMBOL SLOTS ACCORDING TO THE LPME
(ASPSSYM) IN THE ASPCT.
FLAGS.
STORE POINTERS TO THE EPATH AND ILRVSAMI | ILRVSAMI

Diagram 25.16.1 SAVEDASP (Part 1 of 1)

5-230 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_ILRALSO00
VIA ILRSAV
SAVLPME:
RO LPME LPME
J—-b 4) IF THE LPME 1S SAVED
L, J L AAJ 1 ASPLSAVE
ALREADY, RETURN TO CALLER.
SAVESLOT
FLAG THE LPME AS SAVED. A
INCREMENT INTERNAL ————————
COUNTER.
RETURN TO CALLER.
A%
RETURN TO
ILRALSOO
Notes Routine| Label Ref Notes Routine| Label . Ref

IF THE LPME IS FLAGGED AS SAVED
(ASPLSAVE=1) ,THEN GOTO STEP 4.

TURN THE SAVED FLAG (ASPLSAVE)
ON IN THE LPME.

INCREMENT THE SAVESLOT COUNTER
BY ONE.

RETURN TO CALLER.

Diagram 25.16.2 SAVLPME (Part 1 of 1)

Section 2: Method of Operation 5-231

VS2.03.807
Output

Processing

Input

FROM_ILRALSQO
VIA ILRSAV

SAVLIMBO:

SAVE POINTERS.

"
ﬂ

RO
— [02] 1F THE LPME HAS BEEN
SAVED, THEN RETURN TO

U

IF THE LPME HAS NOT BEEN
RELEASED AFTER SAVE BUT IT
IS INVALID, THEN RETURN TO
CALLER.

LPME

ASPLPFLG

SAVESLOT
IF THE LPME HAS NOT BEEN
IT IS T

OUNTER, AND RETURN TO
LER.

LPME
IF THE LPME HAS BEEN A
| RELEASED AF‘TER SAVE, TURN —-——ﬂ) ASPLPFLG 1
OFF THE FLA(—
ASPLSAVE

Notes Routine| Label Ref Notes Routine| Label

[01] FOR A SAVE LG REQUEST, THIS
PROCEDURE_PROCESSES THE LEMES OF
THE EREVIOUSLY SAVED ASPCT IN
WHICH SOME SLOTS WERE
AFTER SRVE, ETU
ADDRESS, THE POINTER TO THE LPME
AND THE' CORKESPONDING REN,
THE WORKAREA

HE L PME SAVED FLAG
LSAVE) IS ON, THEN SKIP TO

IF THE RELEASED AFTER SAVE FLAG
ASPLSVRP} AND THE VALID FLAG
ARE O!“IE‘1 %N THE LPME,

LD
'HEN SKIP TO STEP

IF THE RELEASED AF}’I{ER SAVE FLAG

LPME, TH LPME
SRVED (ASPLEAWE=1)r INCREMENT
THE SAVESLOT COUN ER™AND SKIP TO

IF THE RELEASED AFTER SAVE FLAG
é?gPLSAVE) IS ON, THEN TURN IT

Diagram 25.16.3 SAVLIMBO (Part 1 of 2)

5-232 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output

RO LPME
IF THERE IS NOT A
] RETRIEVED ASPOT, “AND THE ASPLPFLG 1
LBME IS INVALID!
RETURN TO CALLER. ASPLSAVE

LPME .
0 IF THERE IS NOT A
ASPLPFLG RETRIEVED ASPCT, AND THE SAVESLOT
LPME IS VALID, THEN FLAG
THE LPME AS SAVED SAVESLOT+1
INCREMENT THE INTERNAL
S LOT COUNTER, AND

D S
RETURN TO CALLER.

IF THERE IS A RETRIEVED
ASPCT, CONVERT THE RPN.

IF CONVERSION WAS
UNSUCCESSFUL, ISSUB AN 085
ABEND AND RETURN TO
BRILER"

CALL ILRFRSL1 TO RELEASE
THE SLOT BACK TO T
SYSTEM

SAVESLOT FREESLOT
ADJUST INTERNAL SLOT
COUNTERS . { | |]

LPME
IF THE LPME IS VALID, FLA
IT AS SAVED, AND INCﬁEMBN ASPLPFLG 1
THE INTERNAL SAVED
COUNTER.

ERNE

ASPLSAVE
RETURN TO CALLER.
SAVESLOT
v
RETURN TO
ILRALS00

Notes Routine| Label Ref Notes Routine| Label Ref

IF THERE IS NOT A RETRIEVED
ASPCT" (RETASPCT=0) , ‘AND THE LPME
ASPLVALD) IS OFF,
THEN SKIP TG STED 13

F THERE IS NOT A RETRIEVED
ASPCT RETASPCT OLL AND THE LPME

VALID D) IS ON,
THEN FLAG T SA

(ASPLSAVE=1 2] INCREMENT Te,

swnsx.g'r COUNTER KIP TO

IF THERE IS A RETRIEVED ASPCT
(RETASPCTC=0), CONVERT THE RPN
AN LEME.

CONVERSION FAILS, ISSUE
ABEND FOR RECORDING AND
KIP TO STEP 13

22
ZO"l
e

SAVE THE POINTER TO THE ACTIVE ILRFLSLT| ILRFRSL1
ME, CALL I 'RSL1 TO FREE THE

LOT FOR THIS LPME. T
LPMEPTR BACK TO THE ACTIVE LPME.

(2]
e}

DECREMENT THE SAVESLOT COUNTER
BY ONE INCREMENT THE
FREESLOT COUNTER BY ONE.

@ E THE LEME VALID FLAG IS ON
&SPLVALD i FLAG THE LPME
SAVED (A "LSAVE=1
INCRENERT TREVZAVESLOT RODNTER.

- RETURN TO CALLER.

Diagram 25.16.3. SAVLIMBO (Part 2 of 2)

Section 2: Method of Operation 5-233

VS$2.03.807

Input Processing Output
FROM_ILRALSO0
VIA ILRSAV
E) UNSAVLPM:
RO LPME LPME
A TURN THE LPME SAVED FLAG A
OFF.
RETURN TO CALLER.
v
RETURN TO
ILRALSOO
Notes Routine| Label Ref Notes Routine| Label Ref

TURN THE SAVED FLAG (ASPLSAVE)
OFF IN THE LPME.

RETURN TO ILRALSOO.

Diagram 25.16.4 UNSAVLPM (Part 1 of 1)

5-234 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

FROM ILRGOS OR
ILRSRBC

ILRRLG:

. RELEASE LG GROUP OPERATOR.

|:, GET WORKAREA. IF WORK AREA

CANNOT BE OBTAINED, RETURN

WITH ERROR.
ACE
r |ACELGE
INITIALIZE WORKAREA.
LGE
—
ESTABLISH ADDRESSABILITY
TO LGE.
R 3
[S IF THERE IS AN ACTIVE w e
ASPCT, SAVE THE SLOT
ASMVT
> COUNTS FROM THE ASPCT IN

WORKAREA COUNTERS.

R 4
: IF THE ASPCT HAS NOT BEEN

SAVED, SKIP TO STEP 11.

IF THE ASPCT IS NOT

[::::::::::} ACTIVE, SET FLAG IN ACE.

LGE ASPCT o

[LGEAsPcT]J—’ [J

Notes Routine| Label Ref Notes Routine| Label Ref

BACKSLOT AND THE ASPSAVCT COUNT

THE RELEASE LOGICAL GROUP
IN SAVESLOT.

OPERATOR (ILRRLG) TOGETHER WITH
ILRTMRLG ARE RESPONSIBLE FOR

RELEASING SLOTS OF THIS 1G, IF THIS LOGICAL GROUP HAS NOT
FREEING THE ACTIVE ASPCT, AND BEEN SAVED (ACEUSYM=OFF),
ERASING THE SAVED ASPCT FROM PROCEED TO STEP 11.

SYS1.STGINDEX. FOR RECOVERY,
ILRGOSO1 RECOVERY HANDLES ERRORS

IF LGEASPCT IS ZERO, SET
OCCURRING IN ILRRILG.

ACENOACT=ON IN ACE.

RECORD ENTRY IN EPATH. USE ILRGMA
ILRGMA TO OBTAIN A WORKAREA FROM
ASM'S POOL. IF ILRGMA IS
UNSUCCESSFUL (REG1=0), SET THE
RETURN CODE TO 28, AND RETURN TO
CALLER.

INITIALIZE THE SAVESLOT,
BACKSLOT, AND FREESLOT WORKAREA
COUNTERS TO ZERO.

GET THE POINTER TO THE LGE FROM
THE ACE (ACELGE).

IF THE LGEASPCT POINTER IS
NON-ZERO (ACTIVE ‘ASPCT), STORE
THE LGEASPCT POINTER IN EPATH,
SAVE THE ASPBKSLT COUNT IN

Diagram 25.17 ILRRLG (Part 1 of 3)

Section 2: Method of Operation 5-235

VS2.03.807

Input Processing Output
ASMVT
— THE ASPCT IS ACTIVE:
ASMSTGXA
ASMNOTMR A. SET THE ASPCT POINTER e
- IN LGE TO ZERO AND
DEFINE RLGLPME AS THE
PROCEDURE ILRALSO0 WILL
USE TO FREE THE UNSAVED
SLOTS.
B. FREE THE ACTIVE ASPCT
STORAGE, ABEND ON
NON-ZERO RETURN.
:z IF STGINDEX IS NOT OPEN,
OR ILRTMRLG IS NOT
OPERATING, SET AN INTERNAL
FLAG TO INDICATE THIS ACE
IS TO BE RETURNED. SET
RETURN CODE TO 20. SKIP TO
STEP 12.
ASMVT ACE
IF THIS IS A RELEASE LG % J—Dl
REQUEST, THEN:
ASMRLGRQ
A." PUT ACE ONTO HEAD OF
THE RELEASE QUEUE.
B. POST ILRTMRLG TO FREE
THE SAVED ASPCT. SKIP
TO STEP 12.
Notes Routine| Label Ref Notes Routine| Label
ASMTMECB FIELD IN ASMVT,
LGEASPCT IS NONZERO:
ILRTMRLG WILL RELEASE THE
A. PUT POINTER TO ASPCT IN ILRALSOO 25.16. SAVED ASPCT ON SYS1.STGINDEX.
REGISTER 0. SET LGEASPCT TO !
ZERO. CALL ILRALSOO.
B. PUT POINTER TO ASPCT IN REG ILRAFS00
1, LENGTH OF ASPCT IN
REGISTER O. SET THE EPATH
ASPCT POINTER TO ZERO. CALL
ILRAFSO0 TO FREE THE ASPCT
STORAGE. IF REG 15 NOT O,
SAVE REGISTERS FOR RECOVERY
AND ISSUE AN 087 ABEND.
IF ASMSTGXA=0 OR ASMNOTMR=1,
THEN SET AN INTERNAL FLAG
INDICATING THAT THE ACE IS TO BE
FREED. SET THE RETURN CODE TO 20
AND PROCEED TO STEP 12.
IF ASMSTGXA=1 AND ASMNOTMR=0 AND .
ACEOP=ACERELLG, THEN:
A. SET THE FORWARD POINTER IN
THE ACE TO ZERO. COMPARE AND
SWAP THE ACE ONTO ASMRLGRQ.
B. POST ILRTMRLG VIA THE IEAOPTO1

Diagram 25.17 ILRRLG (Part 2 of 3)

5-236 0OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
[:] IF THE ASPCT HAS NOT BEEN
SAVED, AND THE ASPCT
POINTER IS NON-ZERO, THEN:
A. RELEASE THE SLOTS
ASSIGNED TO THIS LG.
B. RELEASE THE STORAGE FOR
THIS ASPCT.
ASMUT LGE
CHECK SLOT COUNTERS FOR A
—_— ASMBKSLT [LeesLrer |}
NON-ZERO. UPDATE ASMVT AND
ASMVSC
LGE SLOT COUNTS.
CALL TLRFRELG TO RELEASE
THE LGE.
<:> ILRFRELG
ASM ROUTINE
FREE ACE IF REQUIRED.
FREE WORKAREA, CLEAN UP,
AND RETURN TO CALLER.
v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
/
[::] IF ACEUSYM FLAG WAS OFF, THE SET THE LGE POINTERS TO THE ACE |ILRGOS |ILRFRELG
LGEASPCT IS NON-ZERO, THEN: TO ZERO. TOAD REG 1 WITH POINTER
TO LGE AND CALL ILRFRELG TO
A. LOAD REG O WITH POINTER TO ILRALS00 25.16. RELEASE THE LGE.
ASPCT AND CALL ILRALSOO ’
(WHICH USES RLGLPME) TO
IF ACEUSYM FLAG WAS OFF OR THIS |ILRGMA
RELEASE THE SLOTS ASSIGNED TO
IS A DEACTIVATE REQUEST
THIS LG.
(ACEOP=ACEDEACT) OR STORAGE
INDEX CLOSED (ASMSTGXA=0) OR
B. LOAD REG 1 WITH POINTER TO ILRAFS00
ILRTMRLG IS NOT OPERATING
ASPCT AND SET REG O TO LENGTH
(ASMNOTMR=ON) THEN SET THE ACE
OF THE ASPCT. SET THE EPATH
POINTER IN THE EPATH TO ZERO,
POINTER OF THE ACTIVE ASPCT -
’ LOAD REG 1 WITH POINTER TO ACE,
TO ZERO, AND CALL ILRAFSO0 TO
AND CALL ILRGMA TO FREE THE ACE.
FREE THE STORAGE USED FOR
THIS ASPCT. IF THERE IS A
NON-ZERO RETURN CODE FROM SET THE WORK AREA POINTER AND ILRGMA

IF THE BACKSLOT COUNTER IS
NON-ZERO, ADD IT BACK INTO THE
AVAILABLE SLOT COUNT (ASMBKSLT) .
IF THE FREESLOT COUNTER IS
NON-ZERO, SUBTRACT IT FROM,
ASMVSC AND LGESLTCT.
SAVESLOT COUNTER IS NON-ZERO,
SUBTRACT IT FROM LGESLTCT.

ILRAFS00, SAVE REGISTERS FOR
RECOVERY, AND ISSUE AN 087
ABEND.

IF THE

THE RLG BIT IN EPATH TO ZERO.
INVOKE ILRGMA TO FREE THE
WORKAREA RESTORE REGISTERS AND
RETURN TO CALLER.

Diagram 25.17

ILRRLG (Part 3 of 3)

Section 2: Method of Operation

5-237

V§2.03.807

Input Processing Output
FROM_ILRALSO0
VIA ILRRLG
RLGLPME:
R 1 LPME
—— ———————%|[01] 1= mu= Lpuz 15 savep,
RETURN TO CALLER. _—
ASPLVALD
LPME
IF THE I/O ERROR FLAG IS ——mem—ma——mrrl
OFF, MARK THE LPME AS
INVALID. CALL ILRFRSL1 TO [
MAKE SLOT AVAILABLE.
<:> ILRFRSL1
ASM ROUTINE
INCREMENT INTERNAL FREE
SLOT COUNTER.
RETURN TO CALLER.
v
RETURN TO
TLRALS00
Notes Routine| Label Ref Notes Routine| Label Ref
IF THE LPME HAS BEEN SAVED
(ASPLSAVE=1) , THEN GOTO STEP 4.
THIS LPME WILL BE PROCESSED IN
THE MASTER SCHEDULER ADDRESS
SPACE BY ILRTMRLG.
IF ASPLIOER=OFF, MARK THIS LPME | [LRFRSLT|ILRFRSL1

AS INVALID (ASPLVALD) .

INCREMENT THE INTERNAL FREED
SLOT COUNTER BY 1. THIS COUNTER
IS USED TO UPDATE THE VIO SLOT
COUNT IN THE ASMVT (ASMVSC) AND
THE VIO SLOT COUNT IN THE ASCB
(ASCBVSC) .

RETURN TO CALLER.

Diagram 25.17.1 RLGLPME (Part 1 of 1)

§-238 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
FROM MASTER
SCHEDULER
INITIALIZATION
ILRTMRLG:
R 1 PARAMETER
LIST [01] Task mopE RELEASE LoGICAL
— I
—
M.S.I.ECB ESTABLISH RECOVERY
ENVIRONMENT .
COMPLETE_ASM
INITIALIZATION. pr—
<:> ILRTMIO0O
ASM ROUTINE
VT ACE ASMVT
A POST_ MASTER SCHEDULER
. S——— INTTIALIZATION. ASMNOSAV
CUTASMVT
ASMBKSLT
WAIT FOR WORK. e
ASMYVT ASMUSC
ASMNOSAV ACE
Ly POSTED MOVE ACE'S ON REQUEST
- QUEUE TO THE WORK QUEUE. ASMTCBPT
TLRRLG
ASMBKSLT ASMTMECB
I ASMRLGRQ
—A REMOVE AN ACE FROM WORK
ASMVSC QUEUE. ASMRLGWQ
ASMSTASCB
ASMSLOTV ACE
N CALL ILRVSAMI TO RETRIEVE
AND ERASE THE ASPCT FROM ASMPSAV
SYS1.STGINDEX.
ASMTMECB 0 ASMPACT
ASMRLGRQ ASMPRLG
TLRVSAMI
N ASM ROUTINE
ASMPFRSL,

Notes Routine| Label Ref Notes Routine| Label Ref
ENTRY IS FROM MASTER SCHEDULER |GETMAIN OMPARE AND SWAP THE ACE'S
INITIALIZATION ROUTINE IEEMEG6O. g REQUEST OUEUE (ASMRLGRQ) Mo

LRTMRLG THO THE WORK QUE!
RESPONSIBILITIES SRO CALL
TLRTMIOD TO COMPLETE ASM'S
INSTTALIZADION AND, To GOMBLETE
THE RELEASE LOGICAL GROUP REMOVE AN ACE FROM THE HEAD OF
PROCESSING FOR A SAVED ASPCT, THE WORK QUEUE (ASMRLGWQ) -
s ONDITIONAL GETMAIN
TO OBTAIN SPACE FOR A Wi .
OR “RECOV LRTMIO1 RECOVER
ROUTINE HANDLES ERRORS OCCURRING STORE THE P HE _EPATH
AND ITS PATH THROUGH AND TO THE 'S' SYMBOL IN THE ACE
ILRVSAMI . INTO THE WORK AREA PARAMETER
LIST FOR SET THE
REQUEST OF-COD - RETRIEVE
ERASE FOR RELEFASE. PLACE
ISSUE_AN ESTAE TO ESTABLISH ESTAE POINTER TO E
RECOVERY ENVIRONMENT. INTO REGISTER. 1, THEN CALL
LRVSAMI. IF ILRV COULD NOT
RETRIEVE THE ASPCT, SKIP TO STEP
INITIALIZE CERTAIN FIELDS IN THE :
AS TLRTMIOO IN ORDER TO
COMPLETE INITIALIZATION OF AGM.
A. PLACE THE ENTRY POINTS FOR
ILRA G, AND ILRSAV
INTO THE ASMVT. ALSO BUT THE
ADDRESS OF THE CURRENT TCB
AND CURRENT ASCB INTO THE
ASMVT .
B. ISSUE A LOAD OF ILRTMIOO TO |ILRTMIOO]ILRTMIOO
OBTAIN ITS ENTRY POINT
S, CALL_ ILRTMIO LOAD
COMPLETE_ASM INITIALIZATION.
E_TLRTMIO0'S RETURN . IDELETE
E A DELETE OF ILRTMIOO 1O
FREE THE STORAGE IT OCCUPIED.
ISSUE A POST ON THE MASTER POST
SCRUDULER INIRIALIZATION'S ECB
TG INDICATE THAT ASM
INITIALIZATION IS COMPLETE.
ISSUE A WAIT ON THE ASMTMECB IN |WAIT

THE ASMVT. ILRRLG WILL POST THIS
ECB WHEN THERE IS WORK F
ILRTMRLG TO DO

Diagram 25.18 ILRTMRLG (Part 1 of 2)

Section 2: Method of Operation §-239

vS2.03.807

Input Processing Output
[09] CALL_ILRALSO0 TO RETURN =y
ALL SLOTS TO THE SYSTEM.
IF THIS ASPCT WAS NOT
ACTIVE DURING THIS o ———
SESSION, UPDATE THE
AVAILA L _SLOT COUNT IN
THE
cvT ACE ASMVT
[::] CALL_ILRAFSO0 TO FREE THE A
iy RETRIEVED ASPCT. r-a? ASMNOSAV
CVTASMVT
ASMBKSLT
r A IF SYS1.STGINDEX WAS FULL, —_—
TURN THE FULL INDICATOR
ASMVT : ASMVSC
ASMNOSAV ACE
Ly A RETURN THE ACE TO ITS
__l——H POOL.. ASMTCBPT
ASMBKSLT ASMTMECB
ASMRLGRQ
IF THERE ARE MORE ACE'S ON
ASMVSC THE WORK QUEUE (gsmngcwg», ASMRLGWQ
REPEAT OPERATION. ASMTASCB
ASMSLOTV ACE
L IF THERE ARE MORE ACE'S ON —_—
Tue REgUEST QUEUE, GO BACK ASMPSAV
ASMTMECB 0 OPERAT ASMPACT
ASMRLGRQ ASMPRLG
IF THERE WERE NO MORE
ASMPFRSL ACE'S"ON THE REQUES
gUEUE BACK O STER
A17 FOR SOME MORE
WORK
Notes Routine} Label Ref Notes Routine| Label Ref
[09] pEFINE TMRLPME AS THE PROCEDURE |ILRALS0O 25.17. IE THE REQUEST QUEUE (ASMRLckg
ILRALSO0 WILI, USE. LOAD REG O 1 IS NON-ZERO THE BACK TO STEP
WEAR POINTER TO FiE RBTRIEVE & BND REPEAT THE PROCESS FOR THE
ASPCT BASE, CALL ILRALSOO NERT GROUE OF ON THE
RELEASE THE SLOTS ASSIGNED TO REQUEST QUEUE.
THIS ASPCT. UPON RETURN FROI
ILRALS00, THE NUMBER OF 'SLOTS
FREED 1S'DECREMENTED FROM THE
VIO SLOT COUNT (ASMVSC) . IF REQUEST QUEUE (ASMRLGRQ) IS
ZERO BACK TO STEP 4 ARD WAIT
pogKiLRRLG TO SEND SOME MORE
LE THE ACENACT FLAG IS ON, THIS
ASPCT WAS NOT ACTIVE SINCE T
LAGT WARM START TBL- THE NUMBER
OF SLOTS USED TQ BACK UP THIS
ATA SET IS CALCULATED BY
DIVIDING THE MAXIMUM NUMBEI
THAT COULD BE ALLOCATED TO
THIS DATA SET BY THE TLRSLOTV
CONSTANT. THE LT IS USED TO
RCREMENT THE AVALLABLE SLOT
NT (ASMBKSLT) .
OBTAIN THE LOCAL LOCK SINCE ABEND
OPRAFS06 NEFDS T WHILE FREEING
SPACE. LOAD REG 1 WITH TH ILRAFS00
POINTER 20 THE RETRIFVED ASPCT
BASE, SET REG 0 TO THE LENGTH OF
1/0 BUFFER. CALL ILRAFSO0 TO
FREE TH BUFFER SPACE. RELEASE
HE_LOCA CK. IF THERE 1S A
NON-Z5R0 RECURN CODE ERGM
TERAFE00 TESUS ANCOB7 ABEND.
IF_SYS1.STGINDEX FULL FLAG
ASMNOSAV) 'IS ON IN THE ASMVT,
TH G _OFF, THIS WILL
ALLOW ASM TO PERFORM SAV
OPERATIONS AGAIN.
ILRGMA

USE ILRGMA TO RETURN THE ACE TO
ITS POOL.

IF THE WORK gUEUE (ASMR gTE

AND REPEAT THE PROCESS FOR
NEXT ACE ON THE WORK QUEU

Diagram 25.18

ILRTMRLG (Part 2 of 2)

5-240 0OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input-

VIA ILR

FROM_ILRALS00
TMRLG

VS$2.03.807

Processing

TMRLPME:

GET POINTER TO LPME.

INVALIDATE THE LPME.

IF THE LPME I/0 ERROR FLAG
IS OFF, CALL ILRFRSL1 TO
UPDATE THE PAT.

<:> ILRFRSLT

ASM ROUTINE

INCREMENT AN INTERNAL FREE
SLOT COUNTER.

{05] RrETuRN To 1LRALSOO.

F:_J_l

v
RETURN TO
ILRALS00

output

LPME

Notes Routine{ Label Ref Notes

Routine| Label Ref

OBTAIN THE POINTER TO THE LPME
FROM REG 1.

TURN OFF THE LPME VALID FLAG
(ASPLVALD) .

(ASPLIOER) IS OFF, THEN LOAD REG
1 WITH THE LSID TO BE FREE AND
CALL ILRFRSL1. ILRFRSL1 WILL
UPDATE THE APPROPRIATE BIT IN
THE PAT MAP AND SLOT AVAILABLE
COUNT (PARESLTA) OF THE
APPROPRIATE PART ENTRY, THUS
MAKING THE SLOT AVAILABLE FOR
FURTHER USE.

INCREMENT AN INTERNAL FREE SLOT
COUNTER BY 1. THIS COUNT IS USED
LATER TO UPDATE THE VIO SLOT
COUNT IN THE ASMVT.

RETURN TO ILRALSOO.

IF THE LPME 1/0 ERROR FLAG ILRFRSLT|ILRFRSL1

Diagram 25.18.1 TMRLPME (Part 1 of 1)

Section 2: Method of Operation 5-241

Input

PARAMETER
- LIST

OR ILR

FROM
ILRACT, ILRSAV
FMRLG

I
REQUEST
OP=CODE

PTR.'S'SYM
BOL OR

PTR .ASPCT
BASE

PTR.TO THE
EPATH

VS82.03.807

pProcessing

ILRVSAMI:

OBTAIN NECESSARY
RESOURCES .

CALL APPROPRIATE
SUBRQUTINE BASED UPON THE
REg ES OP-CODE IN THE

P. TER LIST. 01
-GETASP T, 02 - PUTASPCT,
03 & 04 - RETERASE.

H

IF THERE IS A NON-ZERO

RETURN CODE FROM THE
UB%gUTINE CALLED, ISSUE

RECORDING.

CLEAN-UP.

- RETURN TO CALLER.

A

RET,TO
TILRACT, ILRSAV
OR ILRIMRLG

Output |

REG 1

ASPCT

Not

es

Routine

Label Ref Notes

Routine

Label

Ref

USE ILRGMA TO OBTAIN A WORKAREA
AND RPL BUILD AREA. IF IL

EPATH. RECOVERY FOR
ILRz%aMI IS ESTABLISHED BY ITS

IF THE REQUEST OP-CODE IS: O1

T 0 TO RETRIEVE THE

STGINDEX:

TgRE THE ASPCT
CALL

SAVE LG RFS
RETERASE R
REQUESTS .

RELE SE LG

IF THERE IS A NON-ZERO RETURN
CODE FROM WHICHEVER SUBROUTINE
WAS CALLED, ISSUE AN 086 ABEND.

SET THE EPATH POINTER TO THE
WORKAREA TO ZERO. USE ILRGMA
RETURN THE WOl EA AND RPL
BUILD AREA TO ITS POOL. SET THE
gngERéNFORMATION IN THE EPATH

RESTORE REGISTERS AND RETURN TO
CALLER.

ILRGMA

ABEND

ILRGMA

GETASPCT
PUTASPCT

25.19.
RETERASE|} 2
25.19.
3

25.19,

Diagram 25.19

ILRVSAMI (Part 1 of 1)

§-242 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V52.03.807

Input Processing Output
FROM ILRVSAMI
MAINLINE
GETASPCT:
PARMPTR REG 1
z - SE'I’ THE NORKAREA KEY
HICH VSAM WILL USE To -
RETRIEVE THE KSPCD BASE
FROM SYS1.STGINDEX.
(P — ASPCT
0 PTR T pr— - RETRIEVE THE ASPCT BASE - L
EPATH FROM SYS1.STGINDEX. pr——— § g FY=F7
PTR'S' SYMB
oL —_—
ASPASSTP
PTR_RPL [03] 1r THERE ARE No EXTENSIONS bl A
BUILD AREA RETURN TO MAINLINE.
<:> _—l—l__:> RETRIEVE ANY EXTENSIONS. '_:3 (ASST
ASPASSTE
fos] 1e UNSUCCESSEUL TN
OBTAINING ANY OF THE
STGINDEX EXTENSIONS, FREE ALL 1/0
BUFFERS OBTAINED.
LPME
. RETURN TO MAINLINE.
v
RETURN TO
MAINLINE®
Notes Routine| Label Ref Notes Routine| Label Ref
, FREEMAIN FOR THIS LAST IFREEMAIN
[01] copy THE 's' SYMBOL INTO THE BUFFER. 2ZERQ THE EPATH
WORKAREA AND APPEND A FULL WORD POINTER TQ THE ASPCT BASE ILRAFS00
OF ZEROS TO THE END, THUS MAKING LOAD REG 1 WITH BOINTER TO }
THE TWELVE BYTE KEY FOR VSAM. ASPCT BASE, S EG 0 ABEND
LENGTH OF BUFFER, CALL
TLRAFS00 TO FREE ALL THE
BUFFERS. IF THERE IS A
CALL_INTERNAL SUBROUTINE GETONE |FREEMAIN|GETONE [25.19. ON-ZERO RETURN CODE FROM
TO RETRIEVE THE ASPCT BASE FROM 5 ILRAFS00, ISSU 087 ABEND.
SYS1,.STGINDEX. IF THERE 1S A RETURN TO MAINLINE WITH THE
NON-ZERQ_RETUR E_AND AN 1/0 RETURN CODE FROM GETONE.
BUFFER WaS OBTAINED ISSUE A
FREEMAIN TO FREE THE 1/0_BUFFER
AND THEN RETURN TO MAINLINE WITH H. ZERO THE LPME EXTENSION
THE RETURN CODE FROM GETONE. BOINTERS (ASPASSTE) IN THE
ASST EXTENSION. STORE THE
. PIONIE Ago HE ASST EXTENSION
IF THE ASST EXTENSION COUNT {.Asmss'rpém\sa% INCREMENT
SASPAEXCT) "IN THE ASPCT BASE 1S N COUNT I
ERO, THEN RETURN TO MAINLINE. THE ASPCT BASE. DECREMENT THe
ASST EXTENSION COUNT IN THE
WORKAREA.
PROCESS EXTENSIONS.
I. INCREMENT THE TWELVE BYTE
WORKAREA KEY BY ONE.
A. SAVE THE LPME EXTENSION COUNT
é ENSTON COUNT (RSPAERCT) IN J. CALL INTERNAL SUBROUTINE GETONE [25.19.
E WORKAREA. GETONE TO RETKIEVE AN LPME 5
EXTENSION FROM SYS1.STGINDEX.
B. ZERO THE LPME AND ASST
EXTENSION COUNTS IN THE ASPCT K. IE THERE WAS A NON-ZERO ABEND
BASE. RETURN CODE FROM GETONE
é OPEER WAS- DBTATNED."
STOR THE POINTER TO THE L LEME
C. ZERO THE ASST EXTENSION 4'[
BOINTERS (ASPASSTP) IN THE E4TENSTON. (ASPASSTE(ASST))
ASPC AND INCREMENT THE
EXTENSION COUNT (ASPLEXCT) IN
THE ASPCT BASE. LOAD REG
D. RECORD THE POINTER TO THE T BOINTER TO_ASPCT BASE.
I\SPCT BASE IN THE EPATH. ZERQ EPATH POINTER TO
UFFER. SET R o
N TH OF 1/0 BUFF,
E. mcm-:nsm- THE TWELVE BYTE TTRAFS00 T EREE. 1,0 BUPFERS.
WORKAREA KEY BY ONE, IF THERE IS A NON-ZERQ RETURN
CODE_FROM S00 UE_ AN
087 ABEND. RETURN fo MAINLINE
F. CALL INTERNAL SUBROUTINE GETONE [25.19. WITH RETURN CODE FROM GETONE.
GETONE_TO RETRIEVE AN ASST 5
EXTENSION FROM SYS1.STGINDEX.
L. STORE POINTER TO LPME
N ASST EXTENSION
G. IF THERE IS A NON-ZERO RETURN GETONE |25.19. A SPASSTE Ass'r%i
CODE_FROM_GETONE AND AN 1/0 5 g B LIME LXTENLION COUNT
BUFFER WAS OBTAINED, ISSUE A (ASPLEXCT) IN THE ASPCT.
Diagram 25.19.1 GETASPCT (Part 1 of 2)
Section 2: Method of Operation 5-243

Input Processing

VS2.03.807

output

Notes ’ Routine| Label Ref

Notes

Routine

Label

Ref

DECREMENT THE WORKAREA LPME
EXTENSION COUNT.

=

IF THE LPME EXTENSION COUNT
IN THE WORKAR A IS ZERO SKIP
TO STEP 4-0.

z

INCREMENT THE ASST EXTENSION
ARRAY SUBSCRIPT (ASST) . IF WE
HAVE N(ACHED THE END O

E ARRA T

RESET UBSCRIPT TO
BEGINNING OF ARRAY (ASST=1).

O. IF THE WORKAREA A.
EXTENSION COUNT IS ZERO,
RETURN TO MAINLIN

o

INCREMENT THE ASPCT BAS.
ARRAY SUBSCRIPT (BASE) IP WE
HAVE REACHBD END O] Y
éA > 4) THEN RETURN TO
INLINE. IF WE HAVE NOT,
GOTO STEP 4E.

THIS STEP IS ALL THE ERROR EXITS
IN STEP4.

RETURN TO MAINLINE.

Diagram 25.19.1 GETASPCT (Part 2 of 2)

5-244 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
FROM ILRVSAMI
MAINLINE
PUTASPCT:
PARMPTR ASPCT
—A - BUILD THE 12 BYTE KEY FOR —
L [[asec | ——— VSAM IN THE WORKAREA.
ASPASSTP
ADDR . OF A |[02] wriTE THE asecr BASE OUT
EPATH TO $YS1.STGINDEX
STGINDEX
ADDR OF .
ASPCT
ADDR OF 03| IF THERE ARE NO
RPL EXTENSIONS, FREE THE 1/0
BUFFER AND'RETURN TO
MAINLINE
< —_—
ASST —_— - WRITE ANY ASST AND LPME e
EXTENSIONS OUT TO —
SYS1,STGINDEX.
ASPASSTE
[05] FreE THE 1/0 BUFFER.
LPME
- RETURN TO MAINLINE.
v
RETURN TO
ILRVSAMI
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
LPME EXTENSIO
COPY THE 12 BYTE VSAM KEY FROM (RSPASSTE (ABST)) . COPY THE
Kby, DASE ASECT TO THE WORKAREA ERTENSION. T THE WORKAREA.
: CALL INTERNAL SUBROUTINE
BUTONE. IF THERE I3 A
NON-ZERO RETURN CODE FROM
LOAD REG 1 WITH THE_ POINTER TO FREEMAIN|PUTONE {25.19. PUTONE, GOTO STEP 4M.
P S s
ASPCT BASE OUT TQ SYS1.STGINDEX. H. DECREMENT THE WORKAREA LPME
IF THERE 1S A NON-Z ETU EXTENSION COUNT.
EOR AN 1/0 BUFFER. TSSO A "
FREEMAIN' TO FREE THE BUFFER, AND I. IF THE WORKAREA LPME
RETURN TO MAINLINE WITH TH EXTENSION COUNT IS ZERO, SKIP
RETURN CODE FROM PUTONE. TO STEP 4L.
J. INCREMENT THE ASST ARRAY
IF THE ASST_EXTENSION COUNT FREEMAIN SUBSCRIPT (ASST).
(ASPAEXCT) 1S ZERO IN THE ASPCT
BASE, ZERQ THE EPATH POINTER TO
THE {/0 BUFFER, ISSUE A FREEMAIN K. IF THE SUBSCRIPT J IS NOT
ggTSENETgHﬁA{ébIEgFFER AND GREATER™THAN THE NUMBER OF
: (ASPNASST) GOTQ STEP 4G, IF
THE_END THIS ARRAY HAS
BEEN REACHED, RESET THE
PROCESS EXTENSIONS. SUBSCRIPT FOR THE NEXT ASST
A. SAVE THE LPME (ASPLEXCT) AND
N L I 35 TF 4585 BUmSion o
BASEGARRAYngBSCRIET (BASE)
B. GET POINTER TO AN ASST COUNTER IS ZERO, GOTO STEP 5.
TASEASERE (BASE))| NSFCT BASE '
M. IF AN ERROR OCCURS WHILE ERASE
WRI ON THE EXTENSIONS,
28K THRNSLKEL Fnge T b iE Bhee ti
WORKAREA KEY. RASE Is ISSUED AGAINs& THE
CURRENT RECO HE V!
S DECREMENTED B9 ONB-
P JOIR SR LI, EOTER o, PUTONE 35,19 Bleo e e
TN ERNAL SUBROUTINE POTONE: gggxasgﬁnxégngEoggkgvTEs OF
E+ EEni From BuToNg, Q0RO SrEp
iM. ! ST THE EPATH POINTER TO THE [/O |FREEMAIN
BUFFER TO ZERQ ISSUE A PREEMA
TO FREE THE 1,/0 BUFFER
F. DECREMENT THE WORKAREA ASST
EXTENSTON COUNT.
lL—G.-LOAD REG 1 WITH POINTER TO AN PUTONE——25.19 .
Diagram 25.19.2 PUTASPCT (Part 1 of 1)
Section 2: Method of Operation 5-245

VS§2.03.807

Diagram 25.19.3

~

RETERASE (Part 1 of 2)

5-246 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

I.=IF THERE IS A NON-ZERO RETURN

Input Processing Output
FROM ILRVSAMI
MAINLINE
RETERASE:
PARMPTR S'SYMB —% [01] ser muE WORKAREA VSAM KEY P MEE
L T | F6R THE ASPCYBRsES I
ASPCT
03 - RETRIEVE THE ASPCT BASE A
‘ FROM SYS1.STGINDEX. ————ee—e | ¢ [ASPC
04 ADDR.OF
EPATH
ADDR ASPASSTP
AP%8 svmeo [03] ERASE_THE ASPCT BASE FROM e -
L SYST.STGINDEX.
ADDR.OF I
RPL
[4] 1r, ThExe | [asst !
ERTENG TONS \CRETURN TO =
— “MAINLINE.
== —_—
D) RSpRSSTE
[. RETRIEVE AND ERASE ALL s
ASST AND LPME EXTENSIONS.
STGINDEX —>
[06] reTURN TO MAINLINE.
[__,l | STGINDEX
v
RETURN TO
TLRVSAMI
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
SYS1.STGINDEX. IF THERE IS A
[01] THIS SUBROUTINE RETRIEVES AND ZERQ'RETURN CODE FROM GETONE
ERASES THE ASPCT FROM) ER5R ROTERERCSE
SYS1.STGINDEX. COPY THE 'S’
SYMBOL TO T RKAREA VSAM KEY .
APPEND A FULLWORD OF ZEROS, THUS C. IF THERE WAS A NON-ZERO FREEMAIN
MAKING THE 12 BYTE KEY NEEDED BETURN CODE FROM CETONE, AN
FOR VSAM RETRIEVED. 1/0 BUFFER WAS OBTAINED, AND |ILRAFS00
THIS 1S A RELEASE
REQUEST (04) , MAKE THE BUFFER |ABEND
TOBKEIIRE Al ASST EXTENSION
CALL INTERNAL SUBROUTINE GETONE |FREEMAIN|GETONE |[25.19. D GOTO STEP 5D, IF THIS WAS
TO RETRIEVE THE_ASPCT BASE 5 A RELEASE REQUEST AND
SYS1.STGINDEX, IF T 1S STORAGE WAS OBTAINED, FREE
ZERQ RETURN CODE, GOTO STEP 3. HE ASST EXTENSION BOFFER.
TF THERE WAS A NON-ZERO RETURN CALL TLRAFSO0 TO FREE THE
CODE(SAVE THE RETURN CODE. IF UFFERS. IF THERE IS A
STORAGE OBTAINED, ISSUE NON-ZERO RETURN CODE FROM
FRORMATN' TO PREE-THE' 170 BUFFER. TLRAFS00, ISSUE AN 087 ABEND
LOAD THE SAVED RETURN CODE, AN AND RETURN TO MAINLINE.
RETURN TO MAINLIN
D. ZERQ THE ASST EXTENSION ARRAY
(ASPASSTE) OF POINTERS TO THE
ISSUE AN ERASE FOR THE ASPCT ERASE EXTENSIONS . STORE THE
BASE. IF THERE IS A ZERO RETURN BOINTER TO THE ASST EXTENSION
CODE, GOTO STEP 4, IF THERE IS A |SHOWCB HE ASPCT BASE
NON-4ERO RETURN CODE, ISSUE (ASPASSTP (1)) " INCREMENT THE
SHOWCB TO DETERMINE THE TYPE OF ASST EXTENSION COUNT
iniFREEIRY IS POSSIBLE GO ASPAEXCT) TN THE ASPCT BASE.
BACK AND REISSUE THE ERASE, SET ECREMENT THE WORKAREA ASST
RAE INTERNAL RETURN CODE TO 4. EXTENSION COUNT.
E. ISSUE AN ERASE OF THE ASST ERASE
IF THE ASST_ EXTENSION COUNT EXTENSION, IF THERE IS A
(ASPAEXCT) IS ZERO, RETURN TO NON-ZERO RETURN CODE_FROM SHOWCB
LINE ERASE, ISSUE A SHOI
DETERMINE THE TYPE O OR,
IF RETRY IS POSSIBLE, GO BACK
AND REISSUE THE ERASE, IF
ASST AND LPME EXTENSIONS: RETRY 15 TMPOSSTRLE “SET THE
INTERNAL RETURN CODE TO 4
A. SAVE THE ASST (ASPAEXCT) AND
LEME (ASPLEXCT) EXTENSTON F. SET THE WORKAREA KEY FOR AN GETONE |25.19.
| COUNTS IN THE WORKAREA. Z LPME EXTENSTON. CALL INTERNAL 5
$HE ASST AND LENME EXTENSTON SUBROUTTNE GETONE TG RETRIEVE
'S IN THE ASPCT BASE, AN LPME EXTENSION.
ZERO THE POINTERS _(ASPASSTP)
TO THE ASST EXTENSIONS IN THE
ASPCT BASE. RECORD THE G. IE THERE IS A ZERO RETURN
POINTER TO THE BUFFER ASPCT CODE FROM GETONE, SKIP TO
BASE IN THE EPATH. STEP 5S.
B. SET THE WORKAREA KEY FOR AN GETONE [25.19. H. IF THERE IS A NON-ZERO RETURN
ASST EXTENSION. CALL INTERNAL 5 CODE_AND THIS 1S A RELEA:
BORROUTINE. COTONE TO ABTRIEVE RBOUEST. SKIB 70 STEP 20"
THE ASST EXTENSION FROM

VS2.03.807 (

1lnput Processing Output
Notes Routine| Label Ref Notes Routine| Label Ref
CODE, THIS IS NOT A RELEASE END OF THE ARRAY, GOTO STEP
8 AND STORAGE WAS NOT SF.
AINEb SKIP TO STEP 5K.
Q. LOAD INTERNAL RETURN CODE AND
J. IE THERE WAS A NON-ZERO RETURN TO MAINLINE.
RETURN CODE, THIS IS NOT A
RELEASE RE 6EsT AND STORAGE
WAS OBT. stoR; R. STORE THE POINTER TO THE LPME
POINTER 1O PHE LEME BUEFER IN EXTENSION BUFFER IN THE ASST
£ ASST EXTENSION ARRAY XTENSION ARRAY
(ASPASSTE(J) 5 ZERO THE EPATH (ASPASSTE(J%& ZERO THE EPATH
OINTER T 1/0 BUFFER_AND POINTER 0 BUFFER.
P RCREMBNT THE LP{e. BRTENSION INCREMENT, THE LB BYTENSION
COUNT (ASPLEXCT) IN THE ASPCT COUNT IN THE BASE (ASPLEXCT) .
BASE. DECREMENT THE LPME EXTENSION
K. LSSUE AN ERASE OF AN ASST
EXTEN Iou DECREMENT THE ASST S. ISSUE AN ERASE OF AN LPME
EXTENSION COUNT . EMT THE ASST EXTENSION. IF THERE IS A ZERO
EXTENSION CARRAY SUBSCRIPT RETURN CODE FROM ERASE GOTO
(J) FOR BEGINNING OF ARRAY. STEP 5P.
L. INCREMENT THE WORKAREA KEY ERASE T. IF THERE IS A NON-ZERQ RETURN |SHOWCB
FOR THE NEXT LPME EXTENSION. CODE FROM ERASE
ISSUE AN ERASE OF AN LPME SHOWCB TQ DETERﬁINE THE
EXTENSION. DECREMENT THE LPME ERROR. IF A RETR
EXTENSION COUNT IN W0 POSSIBLE, GO HACK 10 sTEp 5T
INCR T THE ASST EXTENSION 0 RELSSUE TI ERA
SUBSCRTRT. IF THE LPME RETRY 18 NOT BOSSIBLE SET.
EXTENSION COUNT IS ZERO, SET THE INTERNAL RETURN CODE TO 4
THE URN CODE ARD D GOTO STEP SP
RETURN TO MAINLINE.
M. IF THE ASST EXTENSION ARRAY . RETURN TO MAINLINE.
SUBSCRIPT HAS NOT REACHED THE
END AY GOTO S
SM. IF IT HAS REACHED THE END
oF Y, INCREMENT THE
WORKAREA KEY'FOR THE NEXT
ASST EXTENSION AND GOTG STEP
N. IF STORAGE WAS OBTAINED FREEMAIN
SUE_A El TO FREE THE
LomE EXTENSION TRorre
BECREMBNT ‘THO LEME BXTENSION
COUNT.
O. IF THE LPME EXTENSION COUNT
IS ZERO, GOTO STEP 5I.
P. IF THE_ASST EXTENSION ARRAY
SUBSCRIPT HAS NOT REACHED THE

Diagram 25.19.3

RETERASE (Part 2 of 2)

Section 2:

Method of Operation = 5-247

V§2.03.807

Input Processing Output
FROM PUTASPCT
{AERYS
UBROUTINE)
PUTONE:
RPLPTR ' A
C] OBTAIN AN I/0 BUFFER. — (>
RPL i l J
#E:j : BUILD THE RPL PUTONEA
ENTRY POINT. STGINDEX
REG 1
[::j COPY THE ASPCT OR
EXTENSION TO BUFFER.
ASPCT
-»r_—__—_—-_—_—_‘ CALL VSAM TO WRITE THE seeemed
BUFFER OUT TO .
SYS1.STGINDEX.
RETURN TO CALLER.
v
RETURN TO
PUTASPCT
L
Notes Routine| Label Ref

Notes Routine| Label Ref

ISSUE A GETMAIN TO OBTAIN A 2K GETMAIN
I/0 BUFFER. IF THERE IS A ZERO
RETURN CODE FROM GETMAIN SAVE
THE POINTER TO THE BUFFER AND
RECORD THE POINTER IN THE EPATH.
IF THERE IS A NON-ZERO RETURN
CODE FROM GETMAIN, SET THE
RETURN CODE TO 28, AND RETURN TO
CALLER.

ISSUE A GENCB TO BUILD THE RPL GENCB
FOR A VSAM PUT REQUEST. IF THERE
IS A NON-ZERO RETURN CODE FROM
GENCB, SET THE RETURN CODE TO 20
AND RETURN TO CALLER.

PUTONEA ENTRY POINT. COPY THE
ASPCT BASE, OR ASST EXTENSION OR
LPME EXTENSION TO THE GETMAINED
1/0 BUFFER. ’

ISSUE A VSAM PUT TO WRITE THE PUT
1/0 BUFFER OUT TO SYS1.STGINDEX. |SHOWCB
IF THERE IS A NON-ZERO RETURN
CODE FROM PUT, ISSUE A SHOWCE TO
DETERMINE THE ERROR. IF WE CAN
RETRY, GO BACK AND REISSUE THE
PUT. IF STGINDEX IS FULL, SET

THE RETURN CODE TO 24,
OTHERWISE, SET THE RETURN CODE
TO 20. RETURN TO CALLER.

SET THE RETURN CODE TO ZERO AND

RETURN TO CALLER.

Diagram 25.19.4 PUTONE (Part 1of 1)

§-248 OS/VS2 System Logic Library Volume § (VS2.03.807)

VY DLUI.OVI

Input Processing Output

FROM_GETASPCT
OR_RETERASE
{ILRVSAMI
E) GETONE:
RPLPTR RPL REG 1
r Tag] | . OBTAIN AN I/0 BUFFER. l_——:———]
WORKKEY l ” 1 asecT
— | [07] L0 e weL. |
(D _—l—l___———_o CALL VSAM TO RETRIEVE THE sessemmsmmma|
RECORD FROM SYS1.STGINDEX.
N——/ RETURN TO CALLER WITH —
STGINDEX RETRIEVED RECORD. '
v
RETURN TO
GETASPCT OR
RETERASE.
Notes Routine| Label Ref Notes Routine| Label Ref

ERRORS, GO BACK AND REISSUE THE
GET. IF IT WAS NOT ONE OF THE
RETRY ERRORS, SET THE RETURN
CODE TO 20 AND RETURN TO CALLER.

OBTAIN THE LOCAL LOCK AND ISSUE SETLOCK
A GETMAIN FOR A 2K BUFFER TO-BE |GETMAIN
USED FOR VSAM 1/0. RELEASE THE
LOCAL LOCK. IF THERE IS A
NON-ZERO RETURN CODE FROM .
GETMAIN, SET THE RETURN CODE TO SET RETURN CODE TO 0, AND RETURN
28 AND RETURN TO CALLER. IF TO CALLER.

THERE IS A ZERO RETURN CODE,
SAVE THE POINTER TQ THE
GETMAINED AREA AND RECORD IT IN
THE EPATH. IF THE INTERNAL RPL
BUILT FLAG IS ON SKIP TO STEP 3.

ISSUE A GENCB TO BUILD AN RPL GENCB
FOR A GET REQUEST FROM VSAM. IF
THERE IS A NON-ZERO RETURN CODE
FROM GENCB, SET THE RETURN CODE
TO 20 AND RETURN TO CALLER. IF
THERE WAS A ZERO RETURN CODE SET
THE INTERNAL RPL BUILT FLAG.

ISSUE A VSAM GET PASSING THE SHOWCB
RPL. IF THERE IS A NON-ZERO
RETURN CODE FROM GET, ISSUE A
SHOWCB TO DETERMINE THE TYPE OR
ERROR. IF IT WAS RECORD NOT
FOUND, SET THE RETURN CODE TO 08 '
AND RETURN TO CALLER. IF THE
ERROR WAS ONE OF THE RETRYABLE

Diagram 25.19.5 GETONE (Part1 of 1)

Section 2: Method of Operation 5-249

Recovery

ASM Recovery provides the mechanism to handle
any errors that occur during normal ASM
processing. Errors are classified into two groups.
First, there are the errors in mainline processing
that are detected during normal execution. These
errors, sometimes referred to as determinate errors,
normally do not prevent continuation of the ASM
process in progress. The errors are recorded in
SYS1.LOGREC and mainline processing resumes.
The second group of errors are the unexpected,
or indeterminate errors. ASM Recovery itself first
detects these errors. ASM Recovery attempts to
determine the severity of the error in terms of the
extent of damage to ASM control blocks and/or
code and to the process in progress at the time of
the error. Appropriate action is then taken.
Possible actions that may be taken include
recording the error with module identification and
appropriate ASM status information, clean-up of
ASM resources where possible, converting the error
to a failure indication such as a return code to the
caller of ASM, and terminating a task or address
space if necessary.
For recovery purposes, ASM code has been
divided into functional areas. Each recovery routine
has primary responsibility for the mainline code it
covers.
The functional areas of recovery are:
e 170 Control Modules and Page Operations
Starter (ILRPOS)))

+ Swap Modules (ILRSWAP, ILRSWPDR)

¢ 1/0 Subsystem — front end (ILRPTM,
ILRSRT)

+ I/0 Subsystem — back end (ILRCMP)

« Group Operations Starter (ILRGOS) and VIO
Group Operators

+ SRB Controller (ILRSRBC)

« Task Mode Release Processing (ILRTMRLG)

o Message Module (ILRMSG00)

¢ Address Space Termination (ILRTERMR)

¢ Job Termination (ILRJITERM)

« Page Expansion (ILRPGEXP)

« Special 1/0 to Page Data Sets (ILRPREAD)

The ASM recovery environment is established via
the SETFRR or ESTAE macro. The task mode
release processing recovery environment is
established during system initialization and is
always present. Issuance of the SETFRR or ESATE
macro is held to a minimum to allow maximum
recovery coverage with minimum overhead.
Recovery environments are established only at
external entry points to ASM.

5-250 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

¥S2.03.807

Mainline ASM processing is tracked via the new
ASM Tracking Area (ATA) and the Recovery Audit
Trail Area (EPATH). The ATA is mapped onto the
24-byte area returned by the SETFRR macro. The
module establishing the recovery environment
dynamically obtains the EPATH. The ATA and
EPATH will contain module, CSECT, and entry
point data in addition to other data required for
eITor recovery processing.

I/O Control Modules and Page Operation
Starter ILRPOS)

The 1/0 control FRR (ILRIOFRR) is the routine
RTM calls whenever an error is encountered during
ASM’s swap processing, initial page processing, or
page completion processing. This FRR is placed on
the current stack if:

+ ILRSWAP, ASM’s swap controller, has been
called by RSM;

« ILRPAGIO, ASM’s page 1/0 controller, has
been called by RSM or by ILRSWAP on a
swap out request;

¢ ILRTRPAG (entry point in ILRPOS), ASM’s
transfer page routine, has been called by
RSM;

o ILRPAGCM, ASM’s page completion controller,
has been called by the 1/0 subsystem for
notification of I/0 completion, or by the VIO
SRB Controller and the front end of the 1/0
subsystem to handle errors;

o ILRSWPDR, ASM’s swap driver, has been
scheduled to start 1/0 to a swap data set.

The FRR consists of a mainline router and
recovery subroutines for each of the ASM functions
covered. The mainline receives control from RTM
on an error. At this time, the SDWA contains
information about the error, such as error type
(program check, machine check, etc.), registers -and
PSW at the time of the error, and information
about the mode of the system at the time of the
error. The SDWA also contains the address of the
ATA, the ASM tracking area mapped to the
six-word parameter area provided by SETFRR. The
mainline of the FRR uses the tracking information
in the ATA to determine which ASM function was
in control at the time of the error and then gives
control to the recovery subroutine for this function.
The mainline first performs common verifications
and set up for the recording of the error. The
functions identified in the mainline of this FRR
include:

e ILRQIOE

‘e ILRSLSQA

» SWAPCOMP subroutine of ILRPAGCM
e ILRVIOCM

« PAGECOMP subroutine of ILRPAGCM
« ILRPOS

« ILRPAGIO

¢ ILRPAGCM

¢ ILRSWAP

e ILRTRPAG (entry point in ILRPOS)

e ILRSWPDR

Each recovery subroutine attempts recovery
and/or clean-up of its resources and, if retry is
desired, places the retry address in the SDWA. In
the cases of ILRSLSQA, ILRSWAP, and ILRSWPDR,
the subroutine calls one of the entries in ILRSWP01
to do the recovery. Some common clean-up is also
performed in the mainline. The mainline completes
the set-up for retry if retry has been requested.

Recovery for ILRQIOE begins by validity-checking
the ASMSTAGQ and the AIA checkpointed in the
ATA. If this AIA is valid, it is marked with the
indeterminate error flag and queued to the AIA
error queue in the PART. Any work already queued
to the temporary write queques is then queued to
the PART write queues. Finally, Part Monitor
(ILRPTM) is scheduled if it is not already
scheduled. The retry point is set to return to the
caller.

Recovery for the SWAPCOMP subroutine of
ILRPAGCM begins by validity-checking the
SARWAITQ and the queue of remaining AlAs
checkpointed in the ATA. If the AIA in the ATA is
valid and is for a swap-in request, it is marked with
the indeterminate error flag and queued to the
internal PIOPQ (the internal queue of AlAs to be
given to module IEAVPIOP). The ASMIORQC count
is also increased. If the AIA is valid and is for a
swap-out request, the AIA is marked with the
indeterminate error flag and queued to the
ASHCAPQ. Because an indeterminate error has
occurred, the address space is then terminated.
Retry is not attempted.

Recovery for ILRVIOCM begins by a ‘TRAS’ back
to the current address space. The AIA checkpointed
in the ATA is then validity checked. This AlA, or its
related ACE, is dequeued from the LGEPROCQ. The
SRB Controller is scheduled and the ASM class lock
is freed, if held. Retry is not attempted. Recovery
processing is completed by recovery for the
PAGECOMP subroutine of ILRPAGCM.

vS2.03.807

Recovery for the PAGECOMP subroutine of
ILRPAGCM begins by a ‘TRAS’ back to the current
address space. On a ‘TRAS’ error, the address space
involved is terminated. The in-process AIA queue,
pointed to by the AIA checkpointed in the ATA, is
validity checked. If the AIA in the ATA is valid, it
is marked with the indeterminate error flag and
queued to the internal PIOPQ (the internal queue of
AIA’s to be given to module IEAVPIOP). The
ASMIORQC count is also increased. Retry is
attempted when Recovery determines that
ILRSLSQA can be called.

Recovery for ILRPOS begins by validity-checking
the AIA/ACE checkpointed in the ATA. If it is a
valid AIA, it is dequeved from the ASMSTAGQ, the
ASMIORQR count is decreased, and the AIA is
marked with the indeterminate error flag. If the
ASM lock is held, the LGEPROCQ is validity
checked and the AIA/ACE is dequeued from it. The
ASM lock is freed if held. The retry point is set so
that return is to the caller.

Recovery for ILRPAGIO begins by
validity-checking the AIA checkpointed in the ATA.
If this AIA is valid, it is marked with the
indeterminate error flag and its address is placed in
the work area for return to RSM. If the AIA is on
the ASMSTAGAQ, it is dequeued and the ASMIORQR
count is decreased. The retry point is set to call
ILRQIOE.

Recovery for ILRTRPAG entry point of ILRPOS
begins by validity-checking the ACE checkpointed
in the ATA. If it is a valid ACE, it is returned to its
cell pool. If there is a related AIA, it is
disconnected from the ACE. Retry is not attempted.

Recovery for ILRPAGCM is contained in the
clean-up processing performed for all routines on
the ILRPAGCM path. This clean-up consists of first
placing any unprocessed AIAs on the AIA error
queue in the PART and then scheduling Part
Monitor (ILRPTM) to process these AlAs. The
clean-up then attempts to return any completed
AIASs to RSM either by retrying at the call to
IEAVPIOP (if retry is permitted) or by calling
IEAVPIOP directly.

Swap Modules ILRSWAP, ILRSWPDR)
ILRIOFRR passes control to swap recovery
(ILRSWPO01) to process errors that occur in ASM’s
swapping path. This module has three entry points:
ILRSWPO!1 for swap driver recovery, ILRCSWAP for

Section 2: Method of Operation 5-251

front end swap processor recovery, and ILRCSLSQ
for swap LSQA processor recovery.

Recovery for ILRSWPDR

Swap driver recovery processes all errors that occur
in ASM’s swap driver, ILRSWPDR, as non-retryable.
All swap recovery routines receive control from
ILRIOFRR. The control blocks associated with the
error are validity-checked. Unprocessed swap sets
are returned to work queues for future processing.
Resources such as the IORB are freed. If a SARTE
has been checkpointed by swap driver, it is
unlocked. Swap driver’s SRB is rescheduled to
ensure continuity for ASM swap processing. There
is special processing that will rebuild one IORB and
chain it to the SARTE when a SARTE’s last IORB
fails validity checking or when processing an
ASM-issued ‘084’ abend. A SARTE (swap data set)
is unusable without an IORB.

Recovery for ILRSWAP

Swap processor recovery processes all errors which
occur in ASM’s swap processor, ILRSWAP. The
ASMHD swap queue is validity checked. Since the
swap request being processed has not yet been
merged with other swap requests on ASM’s internal
queues, a retry is set up into ILRSWAP to return
this swap request to RSM.

Recovery for ILRSLSQA

Swap LSQA recovery processes all errors that occur
in ASM’s swap LSQA processor, ILRSLSQA. It is
convenient to identify three stages of swap
processing: AlAs on the ASMHD swap queue,
essentially just starting swap processing; AIAs on
the SART wait queue, grouped for SWAP processing
and containing assigned LSIDs; and single AlAs
connected to SCCWs ready to be sent to the swap
driver for 1/0 processing.

Swap LSQA recovery identifies the stage of
processing at the time of error and validity-checks
the control blocks and queues being processed. The
swap AlAs are returned to the appropriate queues
or to RSM via address space termination if the error
precludes the successful completion of the swap
request. Unused SCCWs are returned to the SARTE
SCCW available queue. The retry address and
registers are set up in the SDWA at a point in
ILRSLSQA where swap AlAs returned to queues by
recovery are reprocessed.

5.252 (OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

I/0 Subsystem — Front End (ILRPTM,
ILRSRT)

ILRSRTOI1 is the FRR for both ILRPTM and ILRSRT.
It is made active by ILRPTM and it remains active
until ILRSRT and ILRPTM processing is complete
and ILRPTM deletes it. The major objective of this
FRR is to get rid of invalid or loop-causing control
blocks that ILRPTM and ILRSRT were using at the
time of the error that caused ILRSRTO1 to be
invoked. Another objective is to restructure the
environment so that any remaining requests will be
properly processed by ILRPTM and ILRSRT.

I/O Subsystem — Back End (ILRCMP)
ILRCMPO1 is the recovery routine for ILRCMP, the
1/0 completion routine. I/0 completion consists of
four entry points — ILRCMPDI, the DIE exit;
ILRCMPAE, the abnormal end appendage;
ILRCMPNE, the normal end appendage; and
ILRCMP, the termination routine. The recovery
routine attempts to clean up whatever resources
have been checkpointed in the ATA and force
reprocessing for any requests not yet attempted.
For ILRCMP, the termination routine, the SRB is
scheduled so that ILRCMP can complete its
processing. For the other entry points (ILRCMPDI,
ILRCMPNE and ILRCMPAE), percolation causes the
I0S FRR to get control and force a X‘45’ to the
termination routine.

Group Operation Starter ILRGOS) and VIO
Group Operators

ILRGOSO1 is the recovery routine for ILRGOS and
its paths to VSAM; ILRGOS calls the group
operators ILRSAV, ILRRLG, and ILRACT, which call
ILRVSAMI. ILRGOS01 serves as an ESTAE for Save
and Activate requests and an FRR for Release
Logical Group and Assign requests. It only retries
for record-only abends. For all other errors, the
resources are freed and the error percolated.
Eventually ILRITERM will clean up at job
termination and ILRTERMR will clean up at address
space termination.

If the error occurred during an Assign request,
any storage obtained on behalf of the request is
freed. Since no ACE is created for the Assign
request, there is no trace of the request once
recovery has completed. Percolation to VBP allows
VBP to take care of the ACA.

If the error occurred during an Activate request,
any storage obtained on behalf of the request is
freed. The ACE is returned to the pool and there is
no trace of the request once recovery has

completed. Percolation to VBP allows VBP to take
care of the ACA.

If the error occurred during a Release Logical
Group request, the work-pending flag in the LGE is
turned off. ILRSRBC does not look at this LGE
because the work-pending flag is off. ILRITERM
does not process this LGE because the Release
Logical Group flag in the LGE remains on.
ILRTERMR gets control at memory termination and
cleans up resources for the ASPCT. If the ASPCT
had been saved, a Release Logical Group request is
queued to ILRTMRLG's request queue in the
ASMVT.

If the error occurred during a Save request, all
LPME's are marked as unsaved if EPAUNSAV is on
or if the save flag in the ASPCT is off. This allows
slots to be freed up during later clean-up
processing. If the save flag is off in the ASPCT, the
‘s’ symbol is set to zero so that a later release
request for the LGE will be honored. The ACE is
dequeued from the LGE so that there is no trace of
this Save request. The work-pending flag in the
LGE is turned off if there is no remaining work on
the LGE. The Save-request-queued flag in the LGE
is turned off if there are no more Save requests
queued for this LGE. The
group-operations-in-process flag in the LGE is
turned off. The ACA is then returned to the
available pool. Further processing can be done for
this LGE and ILRJTERM issues a Deactivate request
for this LGE at job termination in order to clean

up.

SRB Controller ILRSRBC)

SRB Controller Recovery (ILRSRB01) processes all
errors that occur in ASM’s SRB Controller, ILRSRBC,
or in either of the two ILRPOS subroutines
(ILRESTRT and ILRTRANS), or in ILRRLG when
called by ILRSRBC. The internal queues of AlAs and
ACEs, and the ASM Header LGE queue are
validity-checked. Startable AlAs and group
operation ACEs are set up for reprocessing by the
SRB controller. The ATA, which checkpoints critical
ASM control blocks, is copied into the SWDA.
Resources such as ILRSRBC’s and ILRRLG’s
workarea cells are freed. SRB controller’s SRB is
rescheduled to ensure continuity for ASM
processing in the address space.

The only ‘non-retryable’ error is one that causes
truncation of the ASM Header LGE queue. Because
the extent of damage cannot be ascertained and
ASM cannot handle future requests for the missing
'LGES, the address space is terminated.

VS2.03.807 \

Task Mode Release Processing (ILRTMRLG)
ILRTMIO1, an ESTAE established in ILRTMRLG, is
basically recovery for two mainline functions —
processing in TLRTMI00 to complete ASM
initialization and processing in ILRTMRLG to erase
saved ASPCTs from SYS1.STGINDEX and release the
slots assigned to the ASPCTs.

If ILRTMIO1 is entered due to a failure in
ILRTMIO0, retry is attempted at the next logical
process in ILRTMI00. If, however, RTM does not
pass an SDWA to ILRTMIO1, then the system is in
serious condition since it cannot get 512 bytes of
storage (the size of an SDWA) when very few or
no other system functions are concurrently
executing. In this case ILRTMIO1 percolates, causing
the Master Scheduler Initialization Task to
terminate the IPL.

If the error occurred while the ILRTMRLG main
function was executing, every effort is made to
keep the task for ILRTMRLG from being
terminated, since this task is initiated only once per
IPL. Retry in this case is always into ILRTMRLG
where it will get the next work element (ACE) off
its queue, if there is one, or go into its normal wait,
waiting for more work to be queued.

If the error occurred in ILRVSAMI (called by
ILRTMRLG), the retry is made into ILRTMRLG,
unless it is a record-only abend situation, in which
case the retry is made into ILRVSAMI.

Message Module (ILRMSG00)

ILRMSGO1 gets control when an error occurs in the
ILRMSGO00 system termination subroutine. [ILRMSGOI1
loads a wait state PSW.

Address Space Termination ILRTERMR)
TERMEFRR is the recovery routine for ILRTERMR. If
ILRTERMR got an error while working on a queue
it calls the appropriate queue verification routine. If
retry is possible, TERMRFRR attempts to retry at
the next retry point in the module.

Job Termination Resource Manager
(ILRJTERM)

ILRITMO1 is the recovery FRR for ILRITERM. The
error is recorded in SYS1.LOGREC. If the error is
retryable, a retry is requested at a point in
ILRJITERM where an SRB for ILRSRBC is scheduled
to the address space owning the VIO data set.

" Section 2: Method of Operation 5-253

Page Expansion ILRPGEXP) ‘

ESTAER is the recovery routine for ILRPGEXP. It
gets control on errors from ILRPGEXP mainline,
ILROPS00 or ILRPREAD. If the error occurred while
reading or writng ILRTPARB a message is sent to
the operator. In all cases control blocks are cleaned
up and freed.

Special I/0 to Page Data Sets (ILRPREAD)
ESTAEXIT gets control if an error occurs while
ILRPREAD is trying to read or write the ILRTPARB.
ESTAEXIT frees storage obtained from SQA and
returns to RTM. RTM will then give control to
ESTAER, the ESTAE routine for ILRPGEXP.

Recovery Service Routine Module
(ILRFRRO1)

The FRR service routine module contains routines
used by the other ASM recovery routines. There are
three types of service routines contained in this
module: 1) queue verfication routines, 2) control
block verification routines, and 3) a PURGEDQ
resource manager termination routine. The
verification routines verify (and correct, when
possible) queues and control blocks that might
have been affected by an error that occurred
during ASM’s processing. This prevents an invalid
queue or control block from possibly causing
another error during later ASM processing. The
following queues have been identified for
verification in the case of an error: the ASM staging
queue (ASMSTAGQ), and LGE process queue
(LGEPROCQ), the SART wait queue (SARWAITQ), a
queue of AlA’s, a queue of swap AlAs, a queue of
SCCws, a queue of PCCWs, the RSM local 1/0 queue
(RMSLIOQ — a queue of PCBs), a queue of ACEs,
and a queue of 1I0Es. The following control blocks
have been identified for verification: the AIA, the
ACE, the LGE, the PCB, the SCCW, the PCCW, the
IOE, and the IORB-IOSB-SRB combination.

The queue verification routines all have similar
methods of operation. They all use the general
supervisor queue verification routines to actually
verify and correct the queue. Thus, each ASM
queue verification routine initializes the parameter
list for the general queue verifier with those
parameters applicable to its particular queue. The
appropriate queue verifier entry point is then
called. There is one queue verifier for each type of
queue verified: 1) a single-threaded, single-headed

5-254 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

vS2.03.807

queue, 2) a single-threaded, double-headed queue,
and 3) a double-threaded, double-headed queue.

The PCB/AIA verification routine begins by
checking that the PCB/AIA can be referenced. Then
the storage pointed to by PCBASCB checked to see
if it can be referenced. Finally, AIAOP is tested for
the correct operations code (X‘00).

The ACE verification routine begins by checking
that the ACE can be referenced. Then the storage
pointed by ACELGE is tested to check that it is a
valid LGE. Finally, a test is made to check that the
LGID in the ACE matches the LGID in the LGE.

The LGE verification routine begins by checking
that the LGE can be referenced. Then the value of
LGELGID is tested to ensure that it is less than the
maximum LGVMAXLG. Finally, a test is made to
check that LGVTE indexed by the LGID does point
to the LGE.

The SCCW verification routine begins by
checking that the SCCW can be referenced, is in the
nucleus buffer area, and contains the SCCW
identifier. Then tests are made to check that
SCCWSEEK contains the seek command code and
that SCCWSSEC contains the set-sector command
code.

The PCCW verification routine begins by
checking that the PCCW can be referenced, is in
the nucleus buffer area, and contains the PCCW
identifier. Then, tests are made to check that
PCCWSRCH contains the TIC command code.

The IOE verification routine begins by checking
that the 10E can be referenced. Then the value of
IOEAIA is tested. If it is non-zero, the AIA
verification routine is used to check that the
storage is a valid AIA.

The IORB-IOSB-SRB verification routine begins by
checking that the IORB-IOSB-SRB combination can
be referenced. Then the IORB storage is checked
for the IORB identifier and to ensure that
IORPARTE points to a valid PARTE. Finally, the
I0SB storage is checked for the correct driver ID
and the correct ASID. If all verifications are
successful, the constant fields in the IORB-IOSB-SRB
are refreshed.

The PURGEDQ resource manager termination
routine protects the SRBs for Part Monitor and
Swap Driver by rescheduling them if they are ever
purged.

V§2.03.807

Type of Recovery L

Recovery Routine

Code Covered

ILRCMPO1
ILRGOS01!
ILRGOS01?
ILRIOFRR
ILRIOFRR
ILRIOFRR
ILRCQIOE (ILRIOFRR entry)

T

ILRCMP

ILRGOS

ILRRLG

ILRPAGCM

ILRPAGIO

ILRPOS

ILRQIOE (ILRPAGIO entry)

ILRIOFRR ILRVIOCM
FRR ILRJTMO1? ILRJITERM
ILRMSGO1? ILRMSGOO
ILRSRBO1 ILRSRBC
ILRSRTO1 ILRPTM
ILRSRTO1 ILRSRT
ILRSWPO1 ILRSWPDR
ILRCSLSQ (ILRSWPO1 entry) ILRSLSQA (ILRSWAP entry)
ILRCSWAP (ILRSWPO1 entry) ILRSWAP
TERMRFRR? ILRTERMR
ESTAER? ILRPGEXP
ESTAEXITZ ILRPREAD
ESTAE ILRGOS01* ILRACT and ILRVSAMI
ILRGOSO1} ILRSAV and ILRVSAMI
ILRTMIO1 ILRTMRLG and ILRVSAMI

1{LRGOSO01 is both an FRR and an ESTAE.

2An alternate entry within the module, for which it provides recovery. The MO is with
this module’s MO, not with the group of recovery routine MOs,

Figure 2-60A. Recovery Routines

Section 2:

Method of Operation 5-255

VS§2.03.807

25.x.

Ls |
Recovery
25.20 25.22 25.24 25.26
1/0 Control 1/0O Subsystem Group Operation Task Mode
Recovery Recovery Recovery Recovery
(ILRIOFRR) (ILRSRTO1) (ILRGOSO01) (ILRTMIO01)
25.20.1 A 1 A
Queue /0 25.23 25.25
Recovery
(ILRCQIOE) 25.21 1/0 Completion SRB Controlier
Recovery Recovery
Swap Driver (ILRCMPO1) (ILRSRBO1)
Recovery
o] (ILRSWPO1) \ 4
25.21.1
Swap Recovery
(ILRCSWAP)
25.21.2
Swap LSQA
Recovery
(ILRCSLSQ)
\ B
25.27 '26.27.1 '25.27.2 25.27.3
Control Block - . Initialize LGE Initialize SART
and Queue Verifiers Initialize Staging Process Queue Wait Queue
(ILRFRRO) e ASGQ] Verifier Verifier
‘ (ILRVLPRQ) (ILRVSWTQ)
25.27.4 25.27.5 25.27.6 25.27.7 25.27.8 25.27.9
e ps Initialize Initialize Swap st
Initialize AIA Initialize IOE Compare v AIA
Queue Verifier | SCCTY Queue SA Dueue Queue Verifier AIA/ACE ey ALl
ILRVAIAQ rivier LRVIOEQ ILRVAIAC
{) (ILRVSCWQ) (ILRVSPAQ) “ 10EQ) ‘)
25.27.9 I25.27.10 25.27.11 25.27.12 |25.27.13 |25.27.14
Verify PCB Verify ACE Verify LGE Verify SCCW Initialize PCCW Verify PCCW -
(ILRVPCB) (ILRVACE) (ILRVLGE) (ILRVSCCW) Queue Verifier (ILRVPCCW)
: (ILRVPCWQ)
25.27.15 25.27.16 25.27.16 25.27.17 25.27.18 25.27.19
Reschedule
Gunvrn, | Bowners | mimest | vemons | vewer | TS
ueu ueue veriite (ILRVIORB) (ILRVIOE)
(ILRVPCBQ) ILRVACE ILRSWPDR SRB
(lo)] (ILRVACQ2) (ILRPSRMT)
— Module

25.x.y. — Entry point in module 25.x.

Figure 2-61. Recovery Overview

5-256 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

VS2.03.807

Processing

FROM RTM
{IEAVTRTS)

WORK AREA
s ,
|REG 1 l] SDWA

SDWAPARM

ATA

I

CVT
ICVTASMVT '1 ASMVT

Output

ILRIOFRR:

ASM I/0 CONTROL RECOVERY.

SDWA
SET UP COMMON REGISTER sy _ —
INTERFACE FOR RECOVERY P
SDWAMODN
SUBROUTINES AND PERFORM e
COMMON INITIALIZATION. —_—
SDWAREXN
DETERMINE WHICH ROUTINE -—
SDWAVRA
WAS IN CONTROL AT THE TIME

OF ERROR AND ROUTE CONTROL
TO THIS ROUTINE'S RECOVERY
CODE.

A. QIOE RECOVERY

IREG 3 I1 ASMVT

]REG 4 Il_,ATA
L1

B. SLSQA RECOVERY
C. SWAPCOMP RECOVERY [Rec 8 Il__wORK AREA
D. VIOCM RECOVERY L]
E. PAGECOMP RECOVERY [REc ®]1__pata area
F. POS RECOVERY 1
G. PAGIO RECOVERY
H. SWAP RECOVERY
I. TRPAG RECOVERY
J. SWPDR RECOVERY
Notes Routine| Label Ref Notes ‘Routine| Label Ref
ARE TESTED IN THE REVERSE OF THE
ILRIOFRR IS CALLED BY RTM
ORDER IN WHICH THE ROUTINES ARE
ANYTIME AN ERROR OCCURS DURING
CALLED TO DETERMINE WHICH
ASM'S SWAP PROCESSING, INITIAL :
ROUTINE WAS 'CURRENT' WHEN THE
PAGE PROCESSING, AND PAGE
ERROR OCCURRED.
COMPLETION PROCESSING. ILRIOFRR
CALLS ILRSWPO1 IF THE ERROR
. A. INVOKE ILRQIOE RECOVERY. ILRCQIOE({25.20.
OCCURRED DURING SWAP PROCESSING. 7
OTHERWISE, ILRIOFRR CALLS
B. INVOKE ILRSLSQA RECOVERY. ILRSWPO1 | ILRCSLSQ|25.21.
INTERNAL SUBROUTINES. N 2
C. INVOKE SWAPCOMP RECOVERY. |rEcscomp | 25. 20.
PLACE NECESSARY POINTERS IN
REGISTERS TO STANDARDIZE THE D. INVOKE ILRVIOCM RECOVERY. RECVIOCM|25.20.
INTERFACE TO THE RECOVERY
SUBROUTINE. INITIALIZE THE E. INVOKE PAGECOMP RECOVERY. RECPCONP|25.20.
PARAMETERS FOR RECORDING AND
COPY THE FRR PARAMETER AREA, THE F. INVOKE ILRPOS RECOVERY. RECPOS |25.20.
ATA, INTO THE VARIABLE RECORDING
AREA SO THAT THE ATA AT THE TIME G. INVOKE ILRPAGIO RECOVERY. RECPAGIO| 25.20.
OF THE ERROR IS RECORDED. ALSO
PERFORM VERIFICATION OF COMMON H. INVOKE ILRSWAP RECOVERY. ILRSWPO1| ILRCSWAP|25.21.
QUEUES.
I. INVOKE ILRTRPAG RECOVERY. RECTRPAG|25.20.
THE FRR USES THE SECTION FLAGS
J. INVOKE ILRSWPDR RECOVERY. ILRSWPO1 | ILRSWPO1 |25 .21
IN THE ATA TO DETERMINE WHICH .
ROUTINE WAS IN CONTROL AT THE
TIME OF THE ERROR. THE FLAG IS
TURNED ON WHEN THE ROUTINE IS
ENTERED, AND OFF WHEN THE
ROUTINE EXITS. THE SECTION FLAGS

Diagram 25.20

ILRIOFRR (Part 1 of 2)

Section 2: Method of Operation 5-257

VS2.03.807

Input Processing Output
PERFORM CLEAN-UP FOR
ERRORS DURING ILRPAGCM
PROCESSING.
ASMVT PART
A. QUEUE UNPROCESSED AIA'S: j—#
== =S
TO THE PART AIA ERROR
PARTAIAE
QUEUE AND SCHEDULE THE
SRB FOR PART MONITOR.
B. RETURN COMPLETED AIA'S - '_’SDWA
TO RSM BY RETRYING TO iB
CALL IEAVPIOP OR BY SDWARTYA
CALLING IEAVPIOP
DIRECTLY.
<:> IEAVPIOP
RSM ROUTINE
SDWA
[05] RreTURN TO RTM WITH —
INDICATION OF RETRY OR b ———
SDWARCDE
CONTINUE WITH ———
DETERMINATION.
\
TO RTM
Notes Routine| Label Ref Notes Routine| Label Ref
INFORMATION NECESSARY FOR RETRY
PERFORM COMMON CLEAN-UP IF RETRY
IS NOT AVAILABLE.
HAS NOT BEEN REQUESTED OR IF
RETRY IS NOT ALLOWED.
A. COLLECT ANY UNPROCESSED AIA'S
FROM THE ATA AND FROM THE
ASMVT WORKAREA FOR ILRPAGCM.
IF THERE ARE ANY, PLACE THEM
ON THE PART AIA ERROR QUEUE
AND SCHEDULE THE SRB FOR PART
MONITOR, IF NOT ALREADY
SCHEDULED, TO PROCESS THESE
AIA'S.
B. IF THERE ARE ANY COMPLETED IEAVPIOP|IEAVPIOP

AIA'S TO BE RETURNED TO RSM,
ATTEMPT TO RETRY TO RETURN
THEM TO RSM. ALSO SET THE
ILRPAGCM RECURSION FLAG. IF
RETRY IS NOT ALLOWED, OR IF
THE ILRPAGCM RECURSION FLAG
IS SET, ATTEMPT TO RETURN THE
AIA'S TO RSM FROM FRR. THIS
IS NOT ALWAYS DONE BECAUSE
SUCH A CALL MIGHT CAUSE A
RECURSIVE PROBLEM.

RETRY IS ATTEMPTED UNLESS
PROHIBITED BY RTM OR UNLESS

Diagram 25.20 ILRIOFRR (Part 2 of 2)

§-258 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output

FROM ILRIOQFRR
OR ILRSRBO1

ILRCQIOE:
SDWA ASMUT
— A VERIFY AND CORRECT ;Lj REG 3 >
L ASMSTAGQ. v ——
ASMSTAGQ
[Rec 3] _aswvr
1, IF ATAAIA POINTS TO A
_ VALID AIA AND IT IS NOT ON
ASMSTAGQ ATA AIA
fissdind a0 THE ASMSTAGQ, MARK IT IN o]J-a
ERROR AND QUEUE IT TO THE
AIAERROR
AIA ERROR QUEUE IN THE B
[REG @ J1 _ara
1, < PART.
ATAAIA ASMUT PART
[asMpaRT]J

PARTAIAE

REG 8 1 WORK AREA
REG 9
| DATA AREA

ASMVT
VERIFY TEMPORARY WRITE — >

QUEUES IN ASMVT WORKAREA.

ASMZPAQ
ASM2CAQ
ASM2DUPQ
Notes Routine| Label Ref Notes Routine| Label Ref
VERIFY AND RECONSTRUCT THE ILRFRRO'|ILRVASGQ| 25.27.
ASMSTAGQ.

VERIFY THAT ATAAIA POINTS TO A ILRFRRO1[ILRVAIA 35.27.
VALID AIA., IF IT DOES, A FURTHER
CHECK IS MADE TO SEE IF THIS AIA
IS STILL ON THE ASMSTAGQ WAITING
TO BE PROCESSED (IF IT WAS, ITS
ADDRESS WOULD BE IN ASMSTAGF) .
IF IT IS NOT ON THE ASMSTAGQ
(ALREADY BEING PROCESSED), THE
ERROR FLAG IN THE AIA IS TURNED
ON AND THE ﬂIA IS QUEUED TO THE
ERROR AIA QUEUE IN THE PART,
PARTAIAE.

VERIFY AND CORRECT THE TEMPORARY |ILRFRRO1|ILRVIOEQ %5.27.
WRITE QUEUES IN THE ASMVT
WORKAREA.

Diagram 25.20.1 ILRCQIOE (Part 1 of 2)

Section 2: Method of Operation 5-259

V$2.03.807

Input Processing Qutput
/
ASMVT ASMVT PART
A |104| REMOVE WRITE REQUESTS FRO Ine
9 |asmparT |
TEMPORARY WRITE QUEUES AND =
ASM2PAQ PARTCOMQ
] QUEUE THEM TO THE PART
ASM2CAQ PARTDUPQ
WRITE QUEUES.
ASM2DUPQ PARTLOCQ
A. COMMON AREA WRITE QUEUE
B. SECONDARY WRITE QUEUE
C. PRIVATE AREA WRITE
QUEUE
SCHEDULE PART MONITOR.
SDWA
. SET UP FOR RETRY IF — [Rs 1]/
RECURSION IS NOT
SDWARTYA
INDICATED.
v
TO CALLER
Notes Routine| Label Ref Notes Routine} Label Ref

- IF THERE ARE ANY REQUESTS ON THE
TEMPORARY WRITE QUEUES, THE ASM
LOCK THAT SERIALIZES THE PART
QUEUES MUST BE OBTAINED IF IT IS
NOT ALREADY HELD. THE WRITE
REQUESTS ARE THEN QUEUED TO THE
APPROPRIATE PART WRITE QUEUE.
THE ASM CLASS LOCK IS FREED -~ IT
IS FREED EVEN IF IT HAD ALREADY
BEEN HELD SINCE RTM DOES NOT
FREE LOCKS ON RETRY.
SERIALIZATION IS MAINTAINED
SINCE THE SALLCC LOCK IS STILL
HELD.

PART MONITOR IS SCHEDULED, IF IT
ISN'T ALREADY SCHEDULED, TO
HANDLE ANY REQUESTS THAT MIGHT
HAVE BEEN QUEUED.

IF THE ILRQIOE RECURSION
INDICATOR IS NOT SET, THE RETRY
ADDRESS IN THE SDWA, SDWARTYA,
IS SET TO THE ADDRESS IN ILRQIOE
AT WHICH 'RETURN TO THE CALLER®
IS PERFORMED. THE ILRQIOE
RECURSION INDICATOR IS ALSO SET.

Diagram 25.20.1 ILRCQIOE (Part 2 of 2)

5-260 OS/VS2 System Logic Library Volume § (VS2.03.807)

V$2.03.807

Input Processing Output
FROM ILRIOFRR
MAINLINE
RECSCOMP:
SDWA
REG 1 —> A VERIFY AND CORRECT RELATED
L1 QUEUES:

|—-—-|_:-> |asmMsarT

B. QUEUE OF REMAINING ————] SARWAITQ

REG 4 AIA'S TO PROCESS. |
| ata

[ES 3]y asmur A. saRW e —
R AS| . SARWAITQ.]I—b

S VALIDITY CHECK THE AIA.
ATAAIA
ATAASCB >

PROCESS VALID AIA FOR A e

———
SWAP IN REQUEST.
IREG 8 |1 WORK AREA FY7)
[—-—-—-—-—-—J EH!HH!HIIII' >

AIAERROR
IREG 9 |1 DATA AREA ——
: | REG 3 |~| ASMVT

ASMIORQC

ASMVT
REG 3 >

ASM3TMPA _

ASM3PIOP

Notes Routine| Label Ref Notes Routine] Label Re

)

VERIFY AND CORRECT THE QUEUES
THAT MIGHT HAVE BEEN AFFECTED BY
AN ERROR DURING SWAPCOMP
PROCESSING:

A. THE SARWAITQ. ILRFRRO1] ILRVSWTQ %5.27.

B. THE QUEUE OF REMAINING AIA'S ILRFRRO1}{ ILRVSPAQ %5.27A
(POINTED TO BY ASM3TMPA).

VALIDITY CHECK THE AIA POINTED ILRFRRO1[ILRVAIA %5.27.
TO BY ATAAIA.

IF ATAAIA POINTS TO A VALID AIA
FOR A SWAP IN REQUEST
(ATAASCB=0) , THE INDETERMINATE
ERROR FLAG, AIAERROR, IS TURNED
ON, THE AIA IS PLACED ON THE
INTERNAL QUEUE OF AIA'S TO BE
RETURNED TO RSM (IF NOT ALREADY
THERE) , AND THE COUNT OF
COMPLETED REQUESTS IN THE ASMVT,
ASMIORQC, IS INCREMENTED. SET UP
FOR ADDRESS SPACE TERMINATION BY
PUTTING THE ASCB ADDRESS IN
ATAASCB AND TURNING ON THE SWAP
IN FLAG.

Diagram 25.20.2 RECSCOMP (Part 1 of 2)

¢

Section 2: Method of Operation 5-261

Input

Processing

VS2.03.807

‘Output

o

IF ATAASCB IS NOT ZERO,
VERIFY THAT ATAASCB POINTS
TO A VALID ASCB.

IEAVEGAS
ASCB VERIFIER

IF ATAASCB POINTS TO A
VALID ASCB,

PROCESS ATAAIA
(IF VALID), TURN ON THE
PERMANENT ERROR FLAG IN
THE ASM HEADER, . AND
TERMINATE THE MEMORY.

AIA
ATAAIA —>

AIAERROR

‘ASCBRSM ‘1 RSMHD~ASMHD

ASHPERME _

IATAASCB l] ASCB

VALIDITY CHECK THE ASHCAPQ.
THEN IF ATAAIA POINTS TO A
VALID AIA, TURN ON THE
INDETERMINATE ERROR FLAG,
AIAERROR, AND PLACE THE AIA
ON THE ASHCAPQ. (ASHCAPQ IS A
QUEUE OF COMPLETED SWAP-OUT
REQUESTS FOR AN ADDRESS
SPACE. WHEN ALL THE REQUESTS
COMPLETE, THEY ARE RETURNED
TO RSM.) TURN ON THE
PERMANENT ERROR FLAG,
ASHPERME, TO PREVENT SWAPCOMP
FROM EVER CALLING IEAVSWPC
NORMALLY .

IF A SWAP-IN REQUEST,SET THE
RSMFAIL FLAG.

BECAUSE AN INDETERMINATE
ERROR HAS OCCURRED, TERMINATE

MEMTERM

ASCBTERM
UPDATE ATAAIA TO POINT TO
THE NEXT AIA TO PROCESS.
ATA
REG 4 —>
[---] I ATAAIA
v
TO ILRIOFRR
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
THE ADDRESS SPACE.

IF ATAASCB IS NOT ZERO, VERIFY |IEAVEGAS|IEAVEGAS

THAT ATAASCB POINTS A VALID

ASCB. UPDATE ATAAIA TO POINT TO THE

NEXT AIA (IN ASM3TMPA). THE
. REMAINING AIA'S WILL BE

IF ATAASCB POINTS TO A VALID

asch CLEANED-UP BY THE PROCESSING IN

. THE MAINLINE OF ILRIOFRR.
A. IF IT IS A SWAP OUT REQUEST, |ILRFRROT|ILRVSPAQ|25.27.

Diagram 25.20.2 RECSCOMP (Part 2 of 2)

5-262 0OS/VS2 System Logic Library Volume § (V

VS§2.03.807

Output

Input Processing
FROM_RECPCOMP
OR_ILRIOFRR
MAINLINE
RECVIOCM:
SDWA
REG 1 r+| l } RESTORE ADDRESSABILITY TO
. THE CURRENT ADDRESS SPACE.

IREG 3 |1_.ASMVT
L1

I EG 4 ATA
REG 1

ATAAIA

L’WORKAREA

[rec 8]
REG 9
[Fee> 11 oxa anea

. ASCB
PCBASCB —

ASCBRSM

VALIDITY CHECK THE QUEUE
OF AIA'S.

IF ATAAIA POINTS TO A
VALID AIA, OBTAIN THE ASM
LOCK FOR ITS ADDRESS
SPACE, IF IT IS NOT
ALREADY HELD.

::____TIL:

T L

RSMHD-ASMHD
ASCBRSM >

ASHLOCK

Notes

Routine

Label Ref Notes

Routine| Label Ref

ISSUE A TRAS BACK TO RESTORE THE
STOR (SEGMENT TABLE ORIGIN
REGISTER) OF THE CURRENT MEMORY.
THIS IS NECESSARY IF THE ERROR
OCCURRED DURING A TRAS OPERATION
FOR ALL ERRORS EXCEPT A DAT
ERROR (RESTORE HAS BEEN DONE BY
RTM) .

VALIDITY CHECK THE QUEUE OF
AIA'S BEING PROCESSED, STARTING
WITH ATAAIA.

IF ATAAIA POINTS TO A VALID AIA
(NON-ZERO ADDRESS)}, USE THE LOCK
WORD IN THE ASM HEADER, ASHLOCK,
TO OBTAIN THE ASM CLASS LOCK FOR
THE RELATED ADDRESS SPACE.

ILRFRRO1

ILRVAIAQ %5.27.

Diagram 25.20.3 RECVIOCM (Part 1 of 2)

Section 2: Method of Operation 5-263

Input

ATA AIA

[aTaa1a l.l"’

AIACEPTR

AIALGE

VvS2.03.807

Processing

Output

AIA

LGE

. IF ATAAIA POINTS TO A
VALID AIA, VERIFY THE LGE
AND ITS PROCESS QUEUE. IF
AIALGE POINTS TO A VALID
LGE, DEQUEUE THE AIA OR
ITS RELATED ACE FROM THE
LGEPROCQ.

SCHEDULE SRB CONTROLLER IF
NOT ALREADY SCHEDULED.

FREE ASM CLASS LOCK IF IT
WAS ALREADY HELD OR JUST
OBTAINED.

pe———E——

=]

v
TO_RECPCOMP OF
ILRIOFRR
MAINLINE

|AIALGE

] [teerrocg

Not.

es

Routine

Label Ref Notes

Routine

Label Ref

IF ATAAIA POINTS TO A VALID AIA,
THEN AIALGE AND ITS LGEPROCQ ARE
VALIDITY CHECKED. IF AIALGE
POINTS TO A VALID LGE, THE AIA,
OR ITS RELATED ACE (IF AIATRPSP
IS ON), IS DEQUEUED FROM THE
LGEPROCQ. IF ANY VERIFICATION
FAILS, OR IF THE AIA OR ACE WAS
NOT FOUND ON THE LGEPROCQ, THE
AIA MUST NOT BE RETURNED TO RSM
SINCE THE AIA, OR A RELATED ACE,
MIGHT STILL BE ON SOME LGEPROCQ
WAITING TO BE PROCESSED. SO AN
INTERNAL FLAG IS SET TO PREVENT
FURTHER PROCESSING OF THIS AIA.

SCHEDULE THE SRB CONTROLLER IF
IT IS NOT ALREADY SCHEDULED.
THIS IS ONLY DONE IF THE ASM
LOCK IS HELD.

A TEST IS MADE TO SEE IF THE ASM
LOCK IS HELD. THIS TEST IS MADE
WHETHER OR NOT ATAAIA POINTS TO
A VALID AIA. IF THE ASM LOCK IS
HELD, IT IS UNCONDITIONALLY
FREED BEFORE CONTROL IS GIVEN TO
THE RECPCOMP ROUTINE TO COMPLETE
RECOVERY PROCESSING.

ILRFRRO1

ILRVLPRQ %5.27.

Diagram 25.20.3 RECVIOCM (Part 2 of 2)

5-264 0S8/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
FROM ILRIOFRR
MAINLINE
RECPCOMP:
SDWA
REG 1 — A - RESTORE THE SEGMENT TABLE
l———————l M ORIGIN REGISTER OF THE
CURRENT MEMORY (TRAS).
[reG 3 l'l ASMVT
ATA
VERIFY AND CORRECT THE —
| REG 4 | ATA %
1y QUEUE OF AIA'S STARTING —_—
ATAAIA
WITH ATAAIA. —_—
ATAAIA
ATAASCB
N ASCB
\ IF THE ERROR IS A TRAS ATAASCB —>
v ERROR, VALIDITY CHECK THE h _
[reG 8 | WORK AREA ASCBTERM
L ERROR ASCB. IF IT POINTS _
L———J TO A VALID ADDRESS SPACE,
TERMINATE THIS ADDRESS
| DATA AREA
1 SFAcE:
<:> TEAVEGAS
SDWA 1
> ASCB VERIFIER
SDWACMPC
SDWA
IF THE ERROR IS NOT A TRAS%
ERROR, SET THE RETRY —
SDWARTYA
ADDRESS IN THE SDWA FOR
RETRY TO CALL ILRSLSQA.
Notes Routine| Label Ref Notes Routine} Label Ref

ISSUE A TRAS BACK TO RESTORE THE
SEGMENT TABLE ORIGIN REGISTER
(STOR) OF THE CURRENT MEMORY.
THIS IS NECESSARY IF THE ERROR
OCCURRED DURING A TRAS OQPERATION
FOR ALL ERRORS EXCEPT A DYNAMIC
ADDRESS TRANSLATION (DAT) ERROR
(RESTORE HAS BEEN DONE BY RTM).

VERIFY AND CORRECT THE QUEUE OF ILRFRRO1|ILRVAIAQ ‘2'5.27;
AIA'S BEING PROCESSED (POINTED
TO BY ATAAIA).

IF ERROR IS A TRAS ERROR (A DAT
ERROR DURING A TRAS OPERATION
INDICATED BY A UNIQUE COMPLETION
CODE IN THE SDWA), USE MEMTERM
TO TERMINATE THE ERROR ADDRESS
SPACE (THE ASCB ADDRESS WAS
TRACKED IN ATAASCB}, IF THE
ADDRESS SPACE IS VALID.

FOR NON-TRAS ERRORS, THE MEMORY
IS STILL IN PROCESS, SO THE SDWA
IS SET FOR RETRY TO THE POINT IN
PAGECOMP WHERE THE CALL TO
ILRSLSQA IS MADE.

Diagram 25.20.4 RECPCOMP (Part 1 of 2)

Section 2: Method of Operation 5-265

VS2.03.807

Input Processing Output

AIA
ATAAIA —>

AIAERROR

IF THE ERROR OCCURREb IN
ILRVIOCM,RECVIOCM GETS
CONTROL PRIOR TO RECPCOMP.

IF ATAAIA POINTS TO A
VALID AIA,AND IF THE

RECVIOCM NORETRY FLAG IS
NOT SET, THEN MARK THE AIA
IN ERROR AND COMPLETE THE
PROCESSING FOR THIS AIA.

OTHERWISE, ZERO THE RETRY
[REG 3 Jq asmvr
ADDRESS IN THE SDWA TO - LS

PREVENT RETRY.

ASMIORQC
SDWA
_ —> IF RETRY HAS BEEN
ASM3PIOP
———— REQUESTED, COMPLETE THE
SDWARTYA
———— SET-UP FOR RETRY.
v
TO_ILRIOFRR
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref

IF ATAAIA POINTS TO A VALID AIA
(NON-ZERO ADDRESS), AND.RECVIOCM
PROCESSING HAS NOT INDICATED
THAT THIS AIA IS NOT TO BE
PROCESSED, THE INDETERMINATE
ERROR FLAG, AIAERROR, IS TURNED
ON AND THE AIA IS PLACED ON THE
INTERNAL QUEUE OF AIA'S FOR RSM.
THE VALUE OF ATAAIA AND THE
ASMIORQC COUNT ARE ALSO UPDATED.
OTHERWISE, THE RETRY ADDRESS IN
THE SDWA IS ZEROED TO PREVENT
RETRY.

IF THE RETRY ADDRESS IN THE SDWA
IS NOT ZERO, COMPLETE THE RETRY
SET-UP FOR RETRY TO CALL
ILRSLSQA.

Diagram 25.20.4 RECPCOMP (Part 2 of 2)

§6 OS/VS2 Sysiem Logic Library Voiume 5 (VS52.03.807)

VS$2.03.807

Input Processing Output
FROM_ILRIOFRR
MAINLINE
RECPOS:
SDWA AIA
REG 1 [‘> . IF ATAAIA POINTS TO A ATAAIA >
VALID AIA/ACE, MARK IT IN b —————
- AIAERROR
ERROR, OTHERWISE ZERO AIA _—
IREG 3 ASMVT
L—> FIELD IN ATA.
ASMSTAG ASMVT
————Q—— - IF NOT A TRANSFER PAGE REG 3 —>
REQUEST, REMOVE ATAAIA ib —_—
ASMSTAGQ
REG & ATA FROM THE ASMSTAGQ IF IT IS ASMIORGR
L, paL QUEUED. PR
ATAAIA
A\ VERIFY AND CORRECT

ATALGE — 4 LGE
Rk LGEPROCQ, REMOVING ATAAIA ATALGE —
IF QUEUED. _

LGEPROCQ
|REG 8 h WORK AREA

REG 9 1 FREE THE ASM CLASS LOCK IF ASCERSM | i oo ASMHD

IT IS HELD. PO T —
ASHLOCK

ASCB |
PSAAOLD —> . —
—_— SET UP FOR RETRY, IF REG -1 —>
ASCBRSM :b
—_—_—— RECURSION NOT INDICATED. |

SDWARTYA _
v
Rt

Notes Routine| Label Ref Notes Routine| Label Ref
IF ILRPOS WAS CALLED FOR A ILRFRRO1|ILRVACE %8‘27. IF THE ILRPOS RECURSION

TRANSFER PAGE REQUEST, VERIFY ILRFRRO1|ILRVAIA 25.27. INDICATOR IS NOT SET, THE RETRY

THAT ATAAIA POINTS TO A VALID 9 ADDRESS IN THE SDWA, SDWARTYA,

ACE. OTHERWISE VERIFY THAT IS SET TO THE ADDRESS IN ILRPOS

ATAAIA POINTS TO A VALID AIA, AT WHICH 'RETURN TO THE CALLER'

AND THEN TURN ON THE IS PERFORMED. THE ILRPOS

INDETERMINATE ERROR FLAG, RECURSION INDICATOR IS ALSO SET.

AIAERROR. IF ATAAIA DOES NOT IF THE RECURSION INDICATOR IS

POINT TO A VALID AIA OR ACE, THE ALREADY SET,NO RETRY IS

FIELD IN THE ATA IS ZEROED. ATTEMPTED.

IF ILRPOS WAS NOT CALLED FOR A
TRANSFER PAGE REQUEST (INDICATED
BY THE ATA FLAGS) AND THE AIA
POINTED TO BY ATAAIA IS QUEUED
TO THE ASMSTAGQ, THE AIA IS
DEQUEUED AND THE COUNT OF
RECEIVED REQUESTS IN THE ASMVT,
ASMIORQR, IS DECREMENTED.

VERIFY THE LGEPROCQ. IF ATALGE ILRFRRO1| ILRVLERQ| 25.27.
IS A VALID LGE DEQUEUE ATAAIA

FROM THE LGEPROCQ IF IT IS
QUEUED.

THE ASM LOCK FOR THE CURRENT
ADDRESS SPACE IS FREED, IF IT
HAD BEEN HELD BY ILRPOS.

Diagram 25.20.5 RECPOS (Part1of1)

Section 2: Method of Operation 5-267

Input Processing Output
FROM_ILRIOFRR
MAINLINE
RECPAGIO:
SDWA ATA AIA
—> A IF ATAAIA POINTS TO A
I I ————— ———-—b rATAAIA].'
VALID AIA, MARK IT IN AIAERROR
ERROR AND PLACE IT IN THE | ———————
REG 3 - ASMVT
1 SAVE AREA FOR RETURN TO
—— RSM.
ASMSTAGQ
ASMVT
IF ATAAIA POINTS TO A REG 3 —>
VALID AIA, REMOVE ATAAIA i|:> ———————
REG 4 ATA ASMSTAGQ
I—b FROM ASMSTAGQ IF IT IS m
QUEUED. ASMIOROR
ATAAIA
SET UP FOR RETRY, IF RETR SDWA
IS ALLOWED AND RECURSION REG 1 —>
IREG 8 | WORK AREA
l—bl l IS NOT INDICATED. m

e
DATA AREA

VS2.03.807

['_?l

v
TO_ILRIOFRR
MAINLINE

Notes

Routine

Label Ref Notes

Routine

Label Ref

VERIFY THAT ATAAIA POINTS TO A
VALID AIA. IF IT DOES, THE ERROR
FLAG IN THE AIA IS TURNED ON,
AND THE VALUE OF ATAAIA IS
PLACED IN THE SAVE AREA SO IT
WILL BE RETURNED TO RSM. IF
ATAAIA DOES NOT POINT TO A VALID
AIA, THE VALUE IN THE SAVE AREA
REMAINS ZERO TO PREVENT ASM FROM
RETURNING AN INVALID ADDRESS TO
RSM.

IF THE AIA POINTED TO BY ATAAIA
IS QUEUED TO THE ASMSTAGQ, IT IS
DEQUEUED AND THE COUNT OF
RECEIVED REQUESTS IN THE ASMVT,
ASMIORQR, IS DECREMENTED.

IF THE ILRPAGIO RECURSION
INDICATOR IS NOT SET,THE RETRY
ADDRESS IN THE SDWA, SDWARTYA,
IS SET TO THE ADDRESS IN
ILRPAGIO AT WHICH THE CALL TO
ILRQIOE IS MADE. THE ILRPAGIO
RECURSION INDICATOR IS ALSO SET.
IF THE RECURSION INDICATOR IS
ALREADY SET, NO RETRY IS
ATTEMPTED.

ILRFRRO1

ILRVAIA 55 .27,

Diagram 25.20.6 RECPAGIO (Part 1 of 1)

§-268 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

output
FROM ILRIOFRR
MAINLINE
RECTRPAG:
SDWA
[rec 1 > VERIFY THAT ATAACE POINTS
(I TO ADDRESSABLE STORAGE.
[res 3], asmve ACE AIA
1 IF ATAACE IS A VALID -
(I ACEAIAPT |
CONTROL BLOCK, VERIFY
AIAVIO
ACEAIAPT. IF AIA IS A
[REG 4]y _aTa AIATRPSP
1 VALID AIA, THE AIA 1S
AIACEPTR

DISCONNECTED FROM THE ACE.
ATAACE

IF THE ACE IS A VALID

ASMVT
CONTROL BLOCK, RETURN THE —>
[rec 8] _work arEa
L, CELL TO ITS POOL.

| I ASMACEPC

|REG 9 l1 DATA AREA

v
TO_ILRIOFRR
MAINLINE

Notes Routinej Label Ref Notes Routine| Label Ref

IF ATAACE IS NON-ZERO, VERIFY IEAVEADV | IEAVEADV
THAT THE ENTIRE STORAGE OF THE
ACE CAN BE REFERENCED.

IF ATAACE IS VALID, THE AIA ILRFRRO1{ILRVAIA [25.27.
POINTED TO BY ACEAIAPT IS ?
VALIDITY CHECKED. IF IT IS
VALID, IT IS DISCONNECTED FROM
THE ACE.

IF ATAACE IS VALID, THE CELL
USED FOR THE ACE IS RETURNED TO
ITS POOL,

Diagram 25.20.7 RECTRPAG (Part 1 of 1)

Section 2: Method of Operation 5-269

VS2.03.807

SDWACMPC. THE RBIORB SUBROUTINE
IS CALLED TO ATTEMPT REBUILDING
AN IORB.

THE CURRENT IORB IS VALIDITY ILRFRRO1
CHECKED. NOTE THAT IF AN IORB IS
NOT CHECKPOINTED, THIS RECOVERY
WILL STILL VALIDITY CHECK THE
IORB QUEUE ANCHORED IN THE
SARTE.

THE QUEUE OF SCCWS ANCHORED IN |ILRFRRO1
THE IORB (IORSCCW) IS VALIDITY
CHECKED AND MERGED WITH THE

ILRVIORB %;.27.

ILRVSCWQ gs .27.

THIS SARTE. IF THE ANCHOR IORB
IS INVALID THE RBDIORB
SUBRQUTINE IS CALLED TO REBUILD
AN IORB.

Input Processing Output
: FROM ILRIOFRR
ILRSWPO1:
ILRSWPO1 IS THE RECOVERY
ROUTINE FOR ILRSWPDR.
ATA sccw .
,—»l 1 4 . CHECK FOR A SWAP ACTIVITY
REFERENCE TABLE ENTRY
ATASCCW
ATASCCW (SARTE) ADDRESS
ATASARTE scew
CHECKPOINTED IN THE ATA.
ATAIORB |]
IF ZERO, SKIP TO STEP B.
SARTE
03] CALL RBDIORB IF A SWAP
ToRs :
> LANLL DRIVER ISSUED '084000'
. SREIORB |esme
ABEND. SKIP TO STEP 7.
TORSCCW SRESCCW
fos4] vaiprTy cHECk THE IoRB
POINTED TO BY THE ATA.
sccw sccw
-»l] -»L] SKIP TO STEP 5 IF INVALID.
[05] erocEss a vaLiD
sccw |, sccw
L CHECKPOINTED IORB. SKIP TO
STEP 7.
[f— [06] vaLiprTY cHECK THE I0RB
ANCHORED IN THE SARTE. FOR
AN INVALID IORB, CALL
RBDIORB AND SKIP TO STEP
7.
Notes Routine| Label Ref Notes Routine| Label Ref
QUEUE OF SCCWS ANCHORED IN THE
ILRSWPO1 AND ITS TWO ENTRIES
ATA (ATASCCW). BECAUSE SWAP
HANDLE ERRORS OCCURRING IN
DRIVER MOVES SCCWS INDIVIDUALLY
ILRSWPDR AND ILRSWAP.
FROM THE ATA TO IORB SCCW QUEUE,
A CHECK IS MADE TO INSURE THAT
IF A SARTE IS NOT CHECKPOINTED THE ATA SCCW QUEUE DOES NOT
(ATASARTE), THE SWAP DRIVER CONTAIN DUPLICATE SCCWS. THE
(ILRSWPDR) IS IN ENTRY OR EXIT IORB IS FREED BY TURNING OFF THE
PROCESSING. RECOVERY CONSISTS OF IORB IN USE FLAG (IORUSE) AND
RESCHEDULING SWAP DRIVER'S SRB. THE IORB SCCW QUEUE ANCHOR IS
ZEROED.
AN '084' ABEND WAS ISSUED WHEN RBDIORB |25.21.
SWAP DRIVER FOUND A ZERO IORB THE IORB ANCHOR IN THE SARTE IS |ILRFRRO1|ILRVIORB|2S.27.
ANCHOR IN A SARTE. THE ABEND VALIDITY CHECKED TO INSURE AT RBDIORB |,
CODE IS FOUND IN THE SDWA FIELD LEAST ONE VALID IORB EXISTS FOR 5700

Diagram 25.21 ILRSWPO1 (Part 1 of 2)

§-270 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V§2.03.807

Input Processing Output
ATA SCCW
VALIDITY CHECK THE A l l
REMAINING IORB QUEUE 5
ANCHORED IN THE SARTE. —_—
o} SCCW
0
FOR A SARTE ADDRESS l |
CHECKPOINTED IN THE ATA:
SCCW
A. UNLOCK THE SARTE, AND SARTE
B. PROCESS A SCCW QUEUE J —
SRESCCW
ANCHORED IN THE ATA. —_—
SCHEDULE SWAP DRIVER'S
SRB, IF NECESSARY.
RETURN TO CALLER.
v
TO ILRIOFRR
Notes Routine| Label Ref Notes Routine| Label Ref

5 CURRENTLY ACTIVE (SARSRBCT=0),

7 THE SRB COUNT IS INCREMENTED
USING COMPARE AND SWAP. THE SWAP
DRIVER SRB IS RESCHEDULED TO
PROCESS WORK LEFT ON THE SARTE
SCCW ‘QUEUE BY THIS RECOVERY.

EACH IORB ON THE SARTE IORB ILRFRRO1|ILRVIORB %
QUEUE IS VALIDITY CHECKED. THE
QUEUE IS TRUNCATED IF AN INVALID
IORB IS FOUND.

IF THE REBUILD IORB SUBROUTINE
WAS CALLED AND WAS UNABLE TO
REBUILD AN IORB, THE SARTE
ADDRESS WILL HAVE BEEN ZEROED TO
PREVENT UNLOCKING THE SARTE.

A. SWAP DRIVER'S REDRIVE FLAG
(SREDRIVE) IS TURNED OFF -AND
THE SARTE IS UNLOCKED
(SRELOCK) USING COMPARE AND
SWAP. .

B. THE ATA SCCW QUEUE IS ILRFRRO1| ILRVSCWQ g5.27.
VALIDITY CHECKED. THE COMMAND
CHAINING FLAGS IN THE LAST
READ/WRITE CCW OF EACH SCCW
ARE CLEARED TO BREAK THE SCCW
CHAINING BETWEEN SCCWS. THE
ATA SCCW QUEUE IS ADDED TO
THE SARTE SCCW WORK QUEUE
(SRESCCW) USING COMPARE AND
SWAP.

IF A SWAP DRIVER SRB IS NOT SCHEDULE

Diagram 25.21 ILRSWPO1 (Part 2 of 2)

Section 2: Method of Operation 5-271

3.807

TO PASS SWAP AIAS BACK TO RSM SO
THAT FRAMES ASSOCIATED WITH THE
AIAS MAY BE FREED PRIOR TO
MEMORY TERMINATION. A NON ZERO
SWAP QUEUE ANCHORED IN THE ASM
HEADER IS VALIDITY CHECKED TO
PREVENT A REOCCURRENCE OF THIS
ERROR BY RSM. THE FIRST AIA
RETURNED TO RSM IS FLAGGED IN
ERROR (AIAERROR) .

IF THE ERROR IS NOT RECURSIVE, A
RECURSION FLAG IS SET IN THE
ATA. THE RETRY ADDRESS AND THE
REGISTER SAVE AREA ARE
INITIALIZED IN THE SDWA. A
NON-ZERO RETRY ADDRESS INDICATES
TO ILRIOFRR THAT RETRY OF THE
ERROR IS REQUESTED. ILRIOFRR
WILL COMPLETE INITIALIZATION OF
THE SDWA.

Input Processing Output
FROM ILRIOFRR
ILRCSWAP:
ASMUT AIA SDWA
l l o) CALL ILRVSPAQ TO VALIDITY
CHECK THE SWAP QUEUE
ASMARG2 SDWASRSV
T |{| aa ANCHORED IN THE ASM
pANLL HEADER.
[|._1 SDWARTYA
RSMHD
AIA : SET UP THE RETRY ADDRESS ewemeescd
AND REGISTERS IN THE SDWA.
ASHSWAPQ |]
RETURN TO CALLER.
. v
TO ILRIOFRR
Notes Routine| Label Ref Notes Routine| Label Ref
THE EFFECT OF THIS RECOVERY IS |ILRFRRO1|ILRVSPAQ

Diagram 25.21.1 ILRCSWAP (Part 1 of 1)

5-272 OS/VS2 System Logic Library Vol

VDZN3.BU/

Input Processing ~ Output
FROM ILRIOFRR

b ILRCSLSQ:

AIA
. - _5[] A IF EITHER OF THE ILRSLSQA

SUBROUTINES WAS IN CONTROL
SDWA A AT THE TIME OF ERROR, CALL
- l» THE APPLICABLE RECOVERY
SDWAPARM [I-_—————] SUBROUTINE AND SKIP TO
—_ STEP S.
AIA

ATA I :l o IF THE SWAP REQUEST IS

- CURRENTLY ON THE ASMHD
ATAAIA SWAP QUEUE AND THE ASMVT
STAGING QUEUE, CLEAR THE
SWAP QUEUE ANCHOR IN THE
ASM HEADER AND SKIP TO
STEP 5.

ASMVT AIA
R —_— TERMINATE THE MEMORY FOR A

SWAP REQUEST ANCHORED IN
ASMSTAGQ
THE ASM HEADER SWAP QUEUE.
ASM4RG2 AIA
———— [———I SKIP TO STEP 5.
——
RSMHD
ASHSWAPQ |
Notes Routine| Label Ref Notes Routine| Label Ref
THE RECOVERY SUBROUTINES ARE: . ASETRCVY|}25.21.
ASETRCVY FOR ASIGNSET -- SCCWRCVY

25.21.
SCCWRCVY FOR SCCWPROC. FLAGS IN 4

THE ATA INDICATE THE ROUTINE IN
CONTROL AT THE TIME OF ERROR.
ERRORS IN ASIGNSET, WITH THE
EXCEPTION OF ASM ISSUED ABENDS,
ARE TREATED AS MAINLINE ILRSLSQA
ERRORS.

A SWAP REQUEST CAN COMPLETE
SUCCESSFULLY IF IT IS ALREADY ON
THE ASMVT STAGING QUEUE
(ASMSTAGQ) . THIS SITUATION
OCCURS WHEN ILRSLSQA IS MOVING A
SWAP REQUEST FROM THE ASMHD SWAP
QUEUE TO THE ASMVT STAGING
QUEUE.

THE SWAP REQUEST IS NOT CALLRTM
CURRENTLY READY FOR 1/0
PROCESSING. THE MEMORY 1S
SCHEDULED FOR TERMINATION WITH A
SYSTEM X'028' COMPLETION CODE.
FOR A SWAP-IN REQUEST, A FLAG IN
THE RSM HEADER (RSMFAIL) IS SET
TO INDICATE A SWAP-IN FAILURE.

Diagram 25.21.2 ILRCSLSQ (Part 1 of 2)

Section 2: Method of Operation 5-273

VS2.03.807

Input Processing Output
ASMVT AIA SDWA
| J A FOR AN AIA CHECKPOINTED IN m

THE ATA: ——
ASMSART SDWASRSV
ASMSTAGQ AIA A. VALIDITY CHECK THE
ASM4RG2 I AJ CHECKPOINTED ATA AIA SDWARTYA

L. QUEUE.
AIA

B. VALIDITY CHECK THE SART

SART l l
WAIT QUEUE.
SARWAITF C. ADD THE ATA AIA QUEUE
SARWAITL TO THE SART WAIT QUEUE.
- INITIALIZE THE SDWA FOR ——vad
————————
RETRY.
RETURN TO CALLER.
v
TO ILRIOFRR
Notes Routine| Label Ref Notes Routine| Label Ref

A.

A CHECKPOINTED AIA REPRESENTS A
SWAP REQUEST CURRENTLY READY FOR
I/0 PROCESSING. THE ATA AIA
QUEUE CAN BE LEFT ON THE SART
WAIT QUEUE FOR REPROCESSING BY
ILRSLSQA.

THE CHECKPOINTED AIA QUEUE IS
VERIFIED BEFORE ADDING IT TO
THE SART WAIT QUEUE.

THE SART WAIT QUEUE IS
VALIDITY CHECKED TO REMOVE
INVALID ELEMENTS CAUSED BY
THIS ERROR.

IF THE CHECKPOINTED AIA IS
VALID, IT IS COMPARED TO EACH
ELEMENT ON THE SART WAIT
QUEUE. THE AIA IS. ADDED TO
THE SART WAIT QUEUE IF NOT
ALREADY ON THE QUEUE.
SERIALIZATION FOR THE WALT
QUEUE IS PROVIDED BY THE
SALLOC LOCK, HELD BY THIS
RECOVERY ROUTINE ON ENTRY.

FOR ASM ISSUED ABENDS THE ERROR
PSW AND REGISTERS (SDWANXT1 AND

SDWASRSV) ARE USED FOR RETRY. IF
THIS IS NOT A RECURSIVE ERROR
(ATARCRF6="'0'B), THE RECURSION
FLAG IS SET IN THE ATA, AND A
RETRY ADDRESS IN ILRSLSQA IS SET
IN THE SDWA. AT THE RETRY POINT,
LABELLED ILRCRSP2, ILRSLSQA WILL
CHECK FOR WORK LEFT ON THE SART
WAIT QUEUE BY RECOVERY. THE RSM
HEADER REGISTER (REG3), AND
ILRSLSQA BASE REGISTER (REG 12)
ARE REINITIALIZED IN THE SDWA.
THE ATA CHECKPOINTED FIELDS ARE
CLEARED.

ILRFRRO1|ILRVSPAQ %5.27.

ILRFRRO1|ILRVSWTQ %5 .27,

Diagram 25.21.2

ILRCSLSQ (Part 2 of 2)

§-274 - OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_ ILRSWPO1
MAINLINE
RBDIORB:
ATTEMPT TO ACQUIRE STORAGE
TO REBUILD AN IORB. SKIP
TO STEP 3 IF UNSUCCESSFUL.
SARTE SCCW1 R R SARTE
[47] INITIALIZE THE CONSTANT)
“ FIELDS IN THE NEW —_—
SRESCCW SREIORB
—_— scew2 . IORB-IOSB-SRB I/O STRING. —
ANCHOR THE REBUILT IORB IN
SREAVLSL [|
THE SART ENTRY. SKIP TO
STEP 6.
SART SART Scewt
RETURN THE SART ENTRY sccw——l J-»r 1
_— QUEUE TO THE SART 1
SARSETCT SARSCCWQ
fimbidadeh A AVAILABLE SCCW QUEUE. ——
SCCW2
SARSETCT
* RECALCULATE THE SART TOTALsmmmmed
SWAP SET COUNT.
NOTIFY THE OPERATOR OF AN
UNUSABLE SART ENTRY.
RETURN TO CALLER.
v
TO_ILRSWPO1
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
THE SALLOC LOCK IS OBTAINED SETLOCK THE SART ENTRY IS FLAGGED ILRMSGOO | ILRMSGOO
UNCONDITIONALLY AND A BRANCH 1EAVGMOO UNUSABLE (SRENUSE). ASM'S
ENTRY TO GETMAIN FOR SQA STORAGE MESSAGE MODULE IS CALLED TO
IS ISSUED FOR THE LENGTH OF AN ISSUE AN UNUSABLE SWAP DATA SET
IORB-IOSB-SRB I/0 STRING. MESSAGE, ILRO09I. THE SART ENTRY
ADDRESS IN THE ATA IS ZEROED TO
PREVENT ILRSWPO1 FROM UNLOCKING
THE ACQUIRED STORAGE IS CLEARED. |ILRFRRO1]ILRVIORB|25.27.
17 THIS SARTE.
THOSE FIELDS CHECKED BY ILRVIORB
ARE INITIALIZED (IORID, IORSWAP,
IORPARTE, IOSDVRID, AND
I0SMISID). ILRVIORB IS CALLED TO
INITIALIZE CRITICAL
IORB-I0SB-SRB FIELDS.
A SART ENTRY IS UNUSABLE SINCE ILRFRRO1|ILRVSCHQ|25.27.

THE IORB CANNOT BE REBUILT. THE
SCCW WORK QUEUE (SRESCCW) IS
VALIDITY CHECKED AND RETURNED TO
THE SART AVAILABLE SCCW QUEUE.
THE AIAS ANCHORED IN THESE SCCWS
ARE LOST.

THE COUNT OF AVAILABLE SWAP SETS
ON THIS SARTE IS SET TO ZERO.
THE SART TOTAL SWAP SET COUNT IS
RECALCULATED AS THE SUM OF EACH
USABLE SARTE AVAILABLE SWAP SET
COUNT.

Diagram 25.21.3 RBDIORB (Part 1 of 1)

Section 2: Method of Operation 5-275

VS2.03.807

Input Processing Output
FROM ILRCSLS!
(ILRSWEOT Q
NTRY)
B SCCWRCVY:
v PROCESS THE ASM-ISSUED
'083000' ABEND. SKIP TO
STEP 6.
ATA AIA1
r VALIDITY CHECK AN AIA
CHECKPOINTED IN THE ATA.
ATAAIA
—_ SKIP TO STEP 6 IF AN AIA
scew
1S NOT CHECKPOINTED.
ATASCCW |
SART AIAT
ADD THE CHECKPOINTED AIA nd:]
.
TO THE SART WAIT QUEUE.
SART ST SARWAITF
e | SARWAITL AIA2
VALIDITY CHECK A SCCW
SARWAITF] [|
—— CHECKPOINTED IN THE ATA.
SARWATTL [, A1a3 SARSCCWQ
AIA3
L | A ADD A VALID SCCW TO THE
SARacoD —_— i []
it SART SCCW QUEUE.
scewz scew
S
L1 RETURN TO CALLER. [
scew3 sccwW2
N Ly
[—'|]
] scow3
v Ly
Notes Routine| Label Ref Notes Routine| Label Ref
QUEUE OF AVAILABLE SCCWS
WHEN THE LOGICAL SLOT ID IN AN
ANCHORED IN THE SART (SARSCCWQ)
AIA IS OUTSIDE THE RANGE OF
VIA COMPARE AND SWAP.
VALID LSIDS, SCCWPROC
(SUBROUTINE OF ILRSLSQA) ISSUES
A RECORD ONLY ABEND. SCCWRCVY
PROCESSING CONSISTS OF COPYING
THE ERROR AIA (ATAAIA) INTO THE
SDWA.
IF AN AIA IS NOT CHECKPOINTED, |ILRFRRO1|ILRVAIA |25.27.
SCCWPROC HAS COMPLETED ‘
PROCESSING FOR BOTH THE AIA AND
SCCW.
AN AIA WHICH CONTAINS AN 1/0
ERROR FLAG (AIAPRIER OR
AIABADID) IS IGNORED SINCE IT
MAY ALREADY HAVE BEEN ADDED TO
THE PART ERROR QUEUE (PARTAIAE)
BY SCCWPROC. IF THE AIA IS
VALID, IT IS ADDED TO THE SART
WAIT QUEUE, SERIALIZED BY THE
SALLOC LOCK.
THE CHECKPOINTED SCCW (ATASCCW) | ILRFRROT | ILRVSCCW|25.27.
IS VALIDITY CHECKED.
A VALID SCCW IS ADDED TO THE

Diagram 25.21.4 SCCWRCVY (Part1of1)

5276 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS§2.03.807

Input) Processing . Output
FROM ILRCSLS
{ILRSWPO1 2
ENTRY)

ASETRCVY:

A SET THE SART SET COUNT TO A

ZERO.

ATA SARTE SART

ATASARTE SREAVLSL SARSETCT

V) FOR A SART ENTRY e—
CHECKPOINTED IN THE ATA,
AT SARTE
ZERO THE SARTE AVAILABLE
SREAVLSL
SET COUNT AND RECALCULATE

SARSETCT ATASARTE 0
—_— THE SART TOTAL SET COUNT.

SART

=l

RETURN TO CALLER.

l":l_l

v
TO ILRCSLSQ

Notes Routine| Label Ref Notes Routine| Label Ref

THIS ROUTINE IS ENTERED FOR
EITHER OF 2 COD ABENDS: (1)
INCORRECT SART TOTAL SWAP SET
COUNT (SARSETCT) OR (2) -
INCORRECT SART ENTRY AVAILABLE
SET COUNT (SREAVLSL). IF THE
SART ENTRY IS NOT CHECKPOINTED
IN THE ATA (THE FIRST ABEND),
THE SART SET COUNT IS SET TO
2ERO.

ASIGNSET (SUBROUTINE OF
ILRSLSQA) CHECKPOINTS THE SART
ENTRY IN THE ATA ONLY BEFORE
ISSUING THE COD ABEND FOR AN
INCORRECT SART ENTRY SET COUNT
(THE SECOND ABEND). THIS SARTE'S
SET COUNT IS ZEROED AND THE SART
TOTAL SET COUNT IS RESET TO THE
CURRENT TOTAL OF ALL AVAILABLE
SWAP SET COUNTS IN EACH USABLE
SART ENTRY.

Diagram 25.21.5 ASETRCVY (Part 1 of 1)

Section 2: Method of Operation 5-277

Input

REG 0 FRR WORKAREA

FROM RTM
(IEAVTRTS)

(1
REG 1

C g

ATA
MoDID
ATAWORKA
ATAEPATH

SDWA
SDWAPARM

PARMLIST
PAREPTR
WRTIOEQ

EPATH
EPAPARM
EPAIOEIP I0E

EPAIOEQP [|
EPAWRTQ

PART
PARTE 4

i r——

Processing

V$2.03.807

Output

ILRSRTO1:

IOE.

RECORD THE ERROR.

COPY THE ATA AND EPATH.
VALIDITY CHECK THE CURRENT
" REPLACE THE READ IOE'S.

REPLACE THE WRITE IOE'S.

PARMLIST

COPY OF

EPATH

]

PAREPTR

PARTE

IOE

|
1 1

PAREIOEQ
PAREWTQE

J"E::J

I

CE

—

Notes

Routine

Label Ref

Notes

Routine| Label Ref

MOVE THE MAINLINE

- MODULE-IN-ERROR (ILRPTM OR
ILRSRT) NAME AND ILRSRTO1
(RECOVERY NAME) TO THE SDWA.
ISSUE SETRP TO REQUEST RECORDING
AND RELEASING OF THE SALLOC AND
THE CLASS LOCKS ON RETURN TO
RTM.

THE ATA AND EPATH (IF
CHECKPOINTED) ARE COPIED TO THE
VARIABLE RECORDING AREA IN THE
SDWA. IF THE EPATH ADDRESS IS
ZERO GOTO STEP 22, SINCE NO
RECOVERY CAN BE DONE WITHOUT THE
INFORMATION IN THE EPATH.

THE CURRENT IOE (EPAIOQEIP) IS
ADDRESS VERIFIED. IF VALID IT IS
PLACED ON THE APPROPRIATE IOE
QUEUE, WRTIOEQ OR EPAIOEQP.

THE QUEUE OF READ IOE'S ON THE
WORK QUEUE (EPAIOEQP) IS
VALIDITY CHECKED. IF VALID-
IOE'S, THEY ARE REPLACED ON THE
PARTE (PAREIOEQ). EPAIOEQP
SHOULD BE NON-ZERO ONLY IF

ILRFRRO1

ILRFRRO1

ILRVIOE %

ILRVIOEQ %5.27.

ILRPTM WAS PROCESSING.

THE QUEUE OF WRITE IOE'S IS
VALIDITY CHECKED. IF ANY VALIDS
THE CLASS LOCK IS OBTAINED AND
THE IOE'S ARE REPLACED ON THE
PART WRITE QUEUE (EPAWRTQ).

ILRFRRO1[ILRVIOEQ %5.27.‘

Diagram 25.22

ILRSRTO1 (Part 1 of 5)

5-278 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing output
PARMLIST PCCW ASMVT PCCW
~ A VALIDITY CHECK THE CURRENT g
PCCH.
PCCWPTR ASMPCCW
TORBPTR ASMPARTP PCCW
VALIDITY CHECK ITS AIA. I]
VALID PUT IT ON THE PART L
AIA ERROR QUEUE. FREE THE
ASMVT AIA PART AIA
T ! PCCH. nd 1
ASMPCCH PARTAIAE
= — FREE IOE'S USED BY ILRSRT. —_—
asMeaRTP || Pocw —_— 10E

ASMVT
——, VALIDITY CHECK THE CURRENT
EPATH | PART [asmicerc |4 | 1oE
IORB.
EPAFFIOE L 1

—

EPALFIOE PARTAIAE
IF THE IORB IS INVALID,
I10RB TRUNCATE THE IORB CHAIN IN
. d THE PARTE AND IF AN IORB

I0E

REMAINS, GOTO STEP 14.

f
[

L I0E

Notes Routine| Label Ref Notes Routine| Label Ref

CHAIN (PAREIORB) IS TRUNCATED.
IF PAREIORB IS NOW NON-ZERO, GO
TO STEP 14.

CALL ILRVPCCW TO VALIDITY CHECK ILRFRRO1] ILRVPCCW %2.27.
THE CURRENT PCCW (PCCWPTR) IN
THE PARMLIST.

THE AIA FROM THE PCCW IS ILRFRRO1|ILRVAIA 35.27.
VALIDITY CHECKED BY ILRVAIA. IF
VALID IT IS PUT ON THE AIA ERROR
QUEUE IN THE PART (PARTAIAE). IF
ILRSRT HAD A CONVERT ERROR (083
ABEND) COPY THE AIA AND EDB TO
THE VARIABLE RECORDING AREA IN
THE SDWA. THE AIA FIELD IN THE
PCCW IS SET TO ZERO AND THE PCCW
IS RETURNED TO ITS POOL
(ASMPCCWQ) .

THE IOE'S ON THE ILRSRT FREE ILRFRRO1|ILRVIOEQ %5,27‘
QUEUE (EPAFFIOE AND EPALFIOE)
ARE VALIDITY CHECKED BY
ILRVIOEQ. ANY VALID IOE'S ARE
RETURNED TO THEIR POOL
(ASMIOEPC) .

CALL ILRVIORB TO VALIDITY CHECK ILRFRRO1|ILRVIORB %%.27.
THE CURRENT IORB (IORBPTR IN
PARMLIST) .

IF THE IORB IS INVALID, THE

Diagram 25.22 ILRSRTO1 (Part 2 of 5)

Section 2: Method of Operation 5-279

VS§2.03.807

Input Processing oytput

ILRSRTO1:

[E IF THE IORB IS INVALID AND
THERE ARE NO MORE ON THE
PARTE, GET SQA STORAGE AND
INITIALIZE A NEW IORB.

IF ILRPTM WAS NOT
PROCESSING AT TIME OF
FAILURE GOTO STEP 15.

RELEASE THE IORB.

E IF DSFULL ROUTINE WAS
PROCESSING, WRITE THE
PROPER MESSAGE AND PERFORM
DATA SET FULL PROCESSING.
GOTO STEP 21.

Notes Routine| Label Ref Notes Routine| Label

WRITTEN AND THE PARTE IS
PROPERLY ADJUSTED (AS IF DSFULL
HAD COMPLETED PROCESSING). GO TO
STEP 21 SINCE THERE IS NO I/O TO
PERFORM.

IF THE IORB IS INVALID AND ILRFRRO1|ILRVIORB %;.27.
PAREIORB IS ZERO, ISSUE A
GETMAIN FOR SQA TO BUILD A NEW
IORB, IOSB AND SRB. INITIALIZE
THE REQUIRED FIELDS THEN CALL
ILRVIORB TC FINISH THE
CONSTRUCTION. STORE IN THE IORB
THE ADDRESS IN PAREIORB AND GO
TO STEP 14. IF THE GETMAIN FAILS
SET PARENUSE=1 SINCE THIS PAGE
DATA SET CANNOT BE USED. IF THE
PARTE IS FOR A LOCAL PAGE DATA
SET, DECREMENT TOTAL SLOTS
AVAILABLE COUNT (ASMSLOTS).
WRITE MESSAGE ILR0OO9I. GO TO
STEP 22.

[::] IF ILRPTM WAS PROCESSING THERE
IS NO 1/0 TO BE DONE AND
POSSIBLY THE DSFULL ROUTINE IN
ILRPTM FAILED.

[13] make THE 10RB AVAILABLE sINCE
PROCESSING OF IT IS COMPLETE.

IF THE DSFULL (DATA SET FULL)
ROUTINE WAS PROCESSING, INSURE
THAT THE PROPER MESSAGE IS

Diagram 25.22 ILRSTRO1 (Part 3 of 5)

5-280 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
IORB PCCW I0RB PCCW
I l 0] VALIDITY CHECK THE PCCW N LC c 1
CHAIN OFF THE IORB. v
TORPCCW TORPCCW
PCCH PCCW
IF NO PCCW REMAINS ON THE
i | IORFUSE |]
IORB, RELEASE THE IORB. :
GOTO STEP 21.
pCCw pcCw .
LOCATE THE LAST PCCW ON E:—_—‘
THE IORB.
SET UP THE LAST PCCW ON
THE IORB CHAIN FOR 1/0
PROCESSING.
Notes Routine| Label Ref Notes Routine| Label Ref
THE PCCW CHAIN (IORPCCW) IS ILRFRRO1| ILRVPCUQ|25.27.
VALIDITY CHECKED BY ILRVPCWQ AND
A COUNT IS MAINTAINED FOR THE
PCCW'S THAT ARE KEPT ON THE
CHAIN. IF THE CURRENT PCCW
(PCCWPTR) IS ON THE CHAIN, IT IS |
REMOVED.
IF NO PCCW IS LEFT TO SEND TO
10S, RELEASE THE IORB AND
CONTINUE AT STEP 21. ‘
FOLLOW THE PCCW CHAIN FROM
IORPCCW AND FIND THE LAST ONE SO
IT CAN BE UPDATED.
THE LAST PCCW REMAINING ON THE
IORB CHAIN IS SET UP AS FOLLOWS:
-PCCWPCCW=0, -THE LAST CCW IS
CHANGED TO A NOP AND CHAINING
BITS ARE SET=0.
Diagram 25.22 ILRSRTO1 (Part 4 of 5)
Section 2: Method of Operation 5-281

VS2.03.807

Input) Processing Output
{
EPATH SCYLWRT
-~ A UPDATE THE CURRENT PATMAP =

EPAWTPAT [] — ——

ENTRY WITH THE NEW MAP AND
EPAWRTCT
—_— UPDATE THE SLOTS AVAILABLE
EPACYLA
—_— COUNT IN THE PARTE.

CURRENT

ISSUE STARTIO. PATMAP ENTRY

CURRE >

NT
PATMAP ENTRY SCYLWRT

UNLOCK THE PARTE. PARTE
PARTE :
PARESLTA
PARESLTA SCHEDULE ILRPTM.

—— =l

v
RETURN TO RTM

IORB PCCW

! e]

Notes Routine| Label Ref Notes Routine| Label

THE CURRENT PATMAP ENTRY AND
AVAILABLE SLOT COUNT IN THE
" PARTE (PARESLTA) ARE UPDATED,
USING EPAWTPAT,EPACYLA AND
EPAWRTCT.

FIELDS IN THE IORB AND IOSB ARE
SET UP FOR IOS. THE SRB FOR IOS
IS OBTAINED AND THE COUNT OF SRB
(ASMIOCNT) FOR ILRIOCOO TO
PROCESS IS UPDATED. THEN STARTIO
IS ISSUED TO PROCESS PCCW'S ON
THE IORB.

PAREFSIP IS SET TO O TO UNLOCK
THE PARTE IF LOCKED BY CURRENT
PART MONITOR (EPACPUID).

SCHEDULE ILRPTM SO THAT ANY
IOE'S OR AIA'S PUT BACK ON THE
QUEUES WILL BE PROCESSED.

Diagram 25.22. ILRSRTO1 (Part 5 of 5)

§-282 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input
FROM RTM
(IEAVTRTS)
R 1 SDWA
L]Iy [spwaparm
ATA
-«
{ 1™ 10sB
ATA I0SUSE
IOSSRB
ATAIOSB
SRB

I0RB ,J’r—\
1

VS2.03.807 »
Processing Output
ILRCMPO1:
SDWA
MOVE THE ATA TQO _THE SDWA A
VARIABLE RECORDING AREA. —————)
SDWARA

IS A RECORD-ONLY

IF IT
GO TO STEP 20.

ABEND,

IF NO_IOSB
ggECKPOINTED GO TO STEP

VALIDITY CHECK THE
IOSB-IORB-

IF I0SB-IORB-SRB IS NOT
VALID, GO TO STEP 22.

Routine

Label Ref Notes

Routine| Label Ref

A RECORD-ONLY ABEND

RESCHEDULED WI

F THE IOSB HAS NOT BEEI
THE

BEGAN. NO RECO
SO GO TO STEP 22.

THE IOSB-IORB-SRB WILL BE
FIELDS AN

IF THE IOSB IS NOT VALID
RECOVERY IS DONE,

AREA. THE DID W BE SET 1!
THE SDWA IF NOT PERCOLATED TO.

REASON CODE a)THILRCMPSW Lﬁ BE

CHECKPOINTED EITHER THE 10SB
FREED OR ABEND

S2CURRED BEFORE DROCESSING
WERY CAN BE DONE,

VALIDITY CHECI KED FOR CERTAIN
BASIC D TH THE
REMAINING FIELDS REFRESHED.

NO
GO TO STEP 22.

'084°',

ILRFRRO1

ILRVIORB %?.27.

Diagram 25.23

ILRCMPO1 (Part 1 of §)

Section 2: Method of Operation

5-283

. ' V52.03.807

Input Processing Output
ATA
[06] 1F no a1a's To RETURN TO
ILRPAGCM, GO TO STEP 9.
ATACOMPQ
ATACPCCW
F - \é[A’%gBITY CHECK THE AIA
PUT ALL VALID AIA'S ON
PARTAIAE FOR LATER RETURN e
TO ILRPAGCM.
PART
: . IF NO SCCW/PCCW'S TO
1 RETURN TO THE AVAILABLE
QUEUE, GO TO STEP 12. m
AIAQUEUE
- VALIDITY CHECK THE
ATA SCCW/PCCW QUEUE.
ATAPCCWQ]
ATACPCCW
—
AIAQUEUE
SCCW/PCCW QUEUE
/
Notes Routine| Label Ref Notes Routine| Label Ref

[06] a1A'S TO BE RETURNED TO ILRPAGCM
ARE CHECKPOINTED IN ATACOMPQ.

BEFORE AIA'S ARE SENT TO THE ILRFRRO1|{ILRVAIAQ|25.27.
VALIDITY CHECK KOUTINE, THE AIA 4
POINTED TO BY THE cuaaén S/PCCW
JATACECCW) WILL BE NRED With
FIRST AIA ON 'r114= B

HAD BEE!
BEFORE ';‘ ERR!
THE AIA'S ARE VALIDITY CHECKED.

A NON-ZERO QUEUE IS RETURNED,
AIA S _ARE PUT N PARTAIAE PART

A ERROR g{E . ILRPTM MUST BE
SCHEDULED

S/PCCH'S TO BE RETURNED TO THE
AVATLABLE QUEUE ARE CHECKPOINTED
IN ATAPCCWG.

BEFORE THE_SCCW/PCCW'S ARE S ILRFRRO1|ILRVSCWQ|2
T8 RE VALIDITY OHECK ROUTINE.™ 5
ATACPCCW WILL BE COMPARED TO THE |ILRFRRO1|ILRVPCWQ
FIRST SCCW/PCCW ON THE QUEUE. IF 2
A MATCH IS FOUND, THE ATACPCCH 1
S REE 6 ZERG SINCE THIS PCCW
ARBADY 1A BPEN. PROCESSED BY
ILRCMP BEFORE THE

OCC EN THE VALIDITY
CHECK ROUTINE IS CALLED

Diagram 25.23 ILRCMPO1 (Part 2 of 5)

5284 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
ATA S/PCCW ASMVT
A PUT ALL VALID SCCW/PCCW'S 1
| I-—————-.) ON THE AVATLABLE QUEUE, = ey
ATACPCCW ASMPCCWA
IF THERE IS NO CURRENT
SCCW/PCCW, GO TO STEP 18,
VALIDITY CHECK THE l
SCCW/PCCW QUEUE.
4
IF THE SCCW/PCCW QUEUE IS
KRR YRMI2 RheSERT. T = pccw
SART
SARSCCWQ
SCCwW
PART AIA
PARTAIAE
Notes Routine| Label Ref Notes Routine| Label Ref
IF THE SCCW/PCCW' S ARE VALID,
THEY ARE RETURNED TO THE
APPROPRIATE AVAILABLE QUEUE.
THE CURRENT SCCW/PCCW IS
CHECKPQINTED IN THE ATACPCCW.
THE AIA POINTER MAY BE ZERO. THE
SCCW/PCCW MAY BE ON THB IORB
CHAL OR THE ATAPCCWQ. SPECIAL
CARE MUST BE TAKEI TO INSURE
THAT NEITHER AN AIA NOR A
CC éPCCW IS PROCESSED TWICE BY
THE SCCW/PCCW IS CHECKED AGAINST ILRFRRO1|ILRVSCWQ|25.27.
THE IORPCCW IORSCCW FIELD. IF A 5
MATCH THE ATACPCCW ILRFRRO1| ILRVPCWQ
WILL BE ZBROED AND CONTROL SENT 25.27.
TO STEP 18. IF NOT, T 13
SCCW/PCCW is VALIDiTY CHECKED.
[F4] 1z _eccwaia/sccwara 1s nonzero, |ILRFRROT|ILRVAIA |25.27.
THE AIA IS VALIDITY CHECKED. 9

Diagram 25.23 ILRCMPO1 (Part 3 of 5)

Section 2: Method of Operation 5-285

VS2.03.807

Input Processing Output
ATA ASMVT PCCW
— E] IF THE ATA IS VALID, MARK
ATAMODID —— IT AS AN ERROR OR™A 'RETRY []
pisieuiru AND PUT IT ON THE
PARTAIAE. ASMPCCWA
- SET THE PCCWAIA/SCCWAIA TO
IORB ZERO.
SART SCCW
ILRPCCW
—_— [7) pur mhE scew PCCH ON THE L]
APPROPRIATE BL| SARSCCWQ
QUEUE. REPEAT STHAS 34-17 —_——=
‘OR ALL ON THE CURRENT
QUEUE.
“VALIDITY CHECK THE QUEUE ASMVT SRB
OF "SCCW/PCCWS CHAINED OFF ™
THE IORB. l |
ASMPSRB
P[] £, 1xzemw 15 —_— 1osB
ECHEBULED, “TURN ON THE
SCHEDULE BIT.
IORB IOSSRB
- IF LRCMP Is THE ENTRY ﬂ
POINT 45' CODE AND
SCHE! Dl.'JLE SRS FOR TLRCME. IORIOSB
SRB
Notes Routine| Label Ref Notes Routine| Label Ref
SINCE THE STATUS OF THIS AIA IS
UNSURE K_IT AS A RETRY IF
THERE {5 ONLY ONE AIA. IF THERE
A _CHAIN OF AIAS, MARK IT AS
AN ERROR.SINCE 1T ﬁusr BE FOR
BADPACK PROCESSING
THE AIA POINTER IS ALWAYS ZERQ
FOR A" SCCW/PCCW ON THE AVAILABLE
QUEUE.
THE SCCH/PCCW IS MADE AVAILABLE
FOR REUSE.
WHATEVER REMAINS ON THE IORB IS |ILRFRRO1{ILRVSCWQ|25.27.
PROCESSED BY THE MAINLIN: 5
TERMINATION ROUTINE - ILRCMP. ILRFRRO1{ILRVPCWQ 25.27
1377

IF _ANY AIA'S WERE PUT ON THE
ARTAIAE QUEUE, ILRPTM SHOI[J,LD %g

Dia

gram 25.23

ILRCMPO1 (Part 4 of 5)

§-286 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

ATA

ATABADPK

VS2.03.807

Processing

IF A MESSAGE NEEDS TO BE
ISSUED SET UP FOR A CALL
70 ILRMSGO

A. IF THE IOSB WAS LOST OR
IF THE AIA'S WERE PUT
ON THE PART ERROR
ggEUE SCHEDULE ILRPTM
LRSWPDR SRB, IF
NECESSARY

B. SCHEDULE ILRPTM SRB.

RETURN TO RTM TO PERCOLATE
ERROR.

=]

v
TO RTM

Output

Notes

Routine

Label Ref Notes

Routine| Label Ref

IF THE ERROR WAS IN THE BADPACK
SUBROUTINE, COMPLETE SETTING UP
OF PARAMETER LIST AND CALL
ILRMSGOO. UNCONDITIONALLY SET
THE BADPACK FLAG IN THE PARTE OR
THE SARTE.

A. IF THE IOSB WAS LOST
é%%AIOSB—O) OR THE AIAS gERE

Di EN AP
DRIVER IS ALSO SCHEDULED.

B. IF THE ILRPTM SCHEDULE BIT IS
ON, "THEN SCHEDULE THE ILRPTM
SRB I Is NOT ALREADY

SEREDOLED

FOR ILRCMPAE OR ILRCMPDI, 10s
FRR WILL GET CONTR AND SET THE
I0SCOD TO X'45°. 0 RIOCOQ
THERE IS NO FRR BELOW ILRCMP01
BUT ILRCMP HAS BEEN RESCHEDULED.

ILRMSGOO

ILRMSGOO

Diagram 25.23

ILRCMPO1 (Part 5 of 5)

Section 2: ‘Method of Operation 5-287

Input
FROM RTM
(IEAVRTS)
R 1 SDWA /
f)4 [sowaparm
ATA
R O
ATAEPATH {]
EPATH WORKAREA .
RO

VS§2.03.807

GOTO STEP 5.

ILRCGOSE:

NOT OBTAINED,
CONTINUE-WITH-TERMINATION
INDICATOR AND RETURN TO
RTM.

IF A SDWA WAS
SET THE

v
RTM

Processing Putput
ILRGOSO1:
R 1 SDWA
ILRGOSO1: SET FRR) l Tng
INDICATOR IN SDWA.
SDWACOMP
SDWAACE3
INDICATE SALLOC AND ASM
CLASS LOCKS TO BE FREED.

SET THE ESTAE INDICATOR I ‘) R '_'SDWA
SDWA. ;—]
SDWACOMP
SET THE RECORD INDICATOR
IN SDWA.
Notes Routine| Label Ref Notes Routine| Label Ref

ILRGOS01 IS THE RECOVERY ROUTINE
FOR ILRGOS, ILRRLG, ILRACT,
ILRSAV, AND ANY OF THEIR PATHS
THROUGH ILRVSAMI. IT IS AN FRR
FOR ILRGOS AND ILRRLG, AN ESTAE
FOR THE OTHERS. FOR FRR ENTRY
POINT, COMMUNICATION FIELD IN
SDWA (SDWAPARM) WILL BE USED TO
INDICATE WHETHER THIS IS THE FRR
OR ESTAE PROCESSING. THE FRR
WILL SET THE FIELD TO ZERO.

WHEN ILRGOS. RECEIVED CONTROL AND
ESTABLISHED THE FRR, THE LOCAL
LOCK WAS THE ONLY LOCK HELD. ALL
OTHER LOCKS OBTAINED DURING
MAINLINE OR RECOVERY PROCESSING
SHOULD BE FREED BEFORE
PERCOLATING TO VBP'S RECOVERY.
GO TO STEP 5.

THIS IS THE ESTAE ENTRY POINT
GIVEN CONTROL BY RTM ROUTINE
IEAVTAS1. IF NO SDWA WAS
OBTAINED BY RTM, RECOVERY IS NOT
ATTEMPTED.

THE COMMUNICATION FIELD IN THE

SDWA IS SET TO NON-ZERO FOR
ESTAE PROCESSING. WHEN THE 200
BYTE WORKAREA IS OBTAINED ITS
ADDRESS WILL BE PUT IN THAT
FIELD.

COMMON PROCESSING FOR ESTAE AND
FRR - SDWA HAS BEEN OBTAINED.
THE SDWA IS MARKED TO BE
RECORDED IN SYS?!.LOGREC.

Diagram 25.24

ILRGOSO1 (Part 1 of 8)

5-288 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input - Processing Output

R 1 ___SDWA
I [sowaparm

R 1 SDWA

- MOVE THE ATA TO THE SDWA. ‘, [—IJ—>

SDWARA

ATA

IF EPATH IS NOT

CHECKPOINTED, RETURN TO
RTM TO CONTINUE WITH
TERMINATION.

ATAEPATH

EPATH

SDWA
MOVE THE EPATH TO THE A
SDWA.

SDWARA

SET THE APPROPRIATE Se————
RECOVERY ROUTINE NAMES IN
THE SDWA.

IF IT IS A RECORD-ONLY
ABEND AND RETRY IS
POSSIBLE, SET UP FOR RETRY
AND RETURN TO RTM.

=]

v
TO RTM

INDICATE IN THE SDWA TO
CONTINUE WITH TERMINATION.

Notes Routine| Label Ref Notes Routine] Label Ref

INDICATE IN THE SDWA TO CONTINUE

THE ATA IS RECORDED IN THE
WITH TERMINATION.

VARIABLE RECORDING AREA
(SDWARA) .

IF THE EPATH HAS NOT BEEN
CHECKPOINTED, NO RECOVERY IS
ATTEMPTED.

THE EPATH IS RECORDED IN THE
VARIABLE RECORDING AREA.

THE ROUTINE IN CONTROL AT THE
TIME OF ERROR IS DETERMINED FROM
THE ATA AND THE PROPER MODULE,
CSECT, AND THE RECOVERY NAME IS
PUT IN THE SDWA.

IF IT 1S A RECORD-ONLY ABEND
(X'cOD', X'085', X'086', OR
X'087'), SET UP THE RETRY
REGISTERS FROM THE EPATH
POINTER, INDICATE RETRY AT THE
NEXT SEQUENTIAL INSTRUCTION, AND
RETURN TO RTM.

[7] ¥ 11 15 Nor A RECORD-ONLY ABEND
OR RETRY IS IMPOSSIBLE, THEN

Diagram 25.24 ILRGOSO1 (Part 2 of 8)

Section 2: Method of Operation 5-289

VS2.03.807

MAKE BOTH ENTRY POINTS HOLD THE
SAME LOCKS AND SET UP COMMON
REGISTERS., FOR THE ESTAE ENTRY
POINT, THE LOCAL, SALLOC, AND
ASM LOCKS ARE OBTAINED. FOR THE
FRR ENTRY, THE LOCAL LOCK WAS
ALREADY HELD AND THE OTHER LOCKS
MAY BE HELD. THE SALLOC. AND ASM
LOCKS ARE OBTAINED. IF THE ASM
WAS HELD AND THE SALLOC CANNOT
BE OBTAINED CONDITIONALLY, NO
RECOVERY IS DONE AND CONTROL IS

Input Processing Output
R 4 EPATH ‘R 1 .~ _RPL
~> - ‘, @ IF ESTAE ENTRY, PREPARE - | 7 _,—»l a
THE ENVIRONMENT TO ENABLE
EPAVSAMI
—_—= COMMON PROCESSING.
ATA EPAVWKA R 4 EPATH
e : :z - SET UP THE COMMON L]
ATAEPATH SDWA —— EPAACE
REGISTERS AND LOCKS. IF ——
ATA EPAAASP
— THE NECESSARY LOCKS CANNOT
R 1 SDWAPERC
BE OBTAINED, RETURN TO
| I8 ATAEPATH
RTM.
R 4 EPATH ASPCT
EPAACE]v ASPLGE
ATA EPAAASP TO RTM
L IF THE ACE IS
ATAEPATH CHECKPOINTED, VALIDITY
CHECK THE ACE. IF THE ACE
ASPCT IS INVALID, SET THE ACE
POINTER TO ZERO.
ASPLGE
IF THE ACTIVE ASPCT IS
CHECKPOINTED, IT IS
ADDRESS VERIFIED AND THEN
THE LGE IS VERIFIED. ANY
ERROR INDICATOR CAUSES THE
APPROPRIATE POINTER TO BE
ZEROED.
Notes Routine| Label Ref Notes Routine| Label Ref
RETURNED TO RTM.
E'g IF ESTAE ENTRY:
A. OBTAIN A 200 BYTE WORKAREA. IE IF THE ACE IS CHECKPOINTED IT IS |ILRFRRO1|ILRVACE (25.27.
EACH FRR IS PASSED ONE. VALIDITY CHECKED. IF THE POINTER
IS INVALID, THE ACE POINTER IN
B. IF ILRVSAMI HAD CALLED VSAM ENDREQ THE EPATH IS SET TO ZERO.
(POSSIBLE ONLY IF ESTAE
ENTRY), VSAM MUST BE ALLOWED
IF THE ACTIVE ASPCT IS ILRFRRO1|ILRVLGE |25.27.
TO CLEAN UP ITS RESOURCES. CHECKPOINTED, ADDRESS VERIFY THE |IEAVEADV|IEAVEADV|
THE ENDREQ MACRO IS ISSUED.) !
ASPCT. IF THE ADDRESS IS
INVALID, SET THE POINTER TO THE
C. IN PREPARATION OF OBTAINING
ACTIVE ASPCT TO ZERO. IF ASPCT
THE SALLOC LOCK, PAGE FIX THE
: ADDRESS IS VALID, VERIFY THE LGE
SDWA. SDWA IS FIXED IF FRR
ENTRY ADDRESS IN THE ASPCT. IF LGE
: ADDRESS IS INVALID, ZERO POINTER
TO LGE IN ASPCT.
FOR COMMON RECOVERY PROCESSING, |SETLOCK

Diagram 25.24

ILRGOSO1 (Part 3 of 8)

5-290 OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS2.03.807

Input Processing Output
ILRGOSO1:
R 4 EPATH R 4 EPATH
A IF AN ACTIVATE REQUEST WAS
[| EPAACE [E— 4 L J EPAACE
PROCESSING:
EPALGEP EPALGEP
ATA EPAACT A. FREE THE ACE. ATA
EPAACASR b
B. IF EPALGEP IS ———
ATAEPATH ATAEPATH ASMVT
CHECKPOINTED, ZERO
LGESLTCT, THEN CALL
R 3 ASMREQCT
ILRFRELG TO FREE THE [J
LGE AND MAKE THE LGVTE
AVAILABLE.
C. INCREMENT THE BUFFER S ——
COUNT BY 1 IN ASMVT.
Notes Routine| Label Ref Notes Routine| Label Ref

A.

IF AN ACTIVATE REQUEST WAS
PROCESSING, CLEAN UP ANY
RESOURCES OBTAINED ON BEHALF OF
THIS REQUEST.

IF THE ACE IS STILL
CHECKPOINTED, DEQUEUE THE ACE
FROM THE PROCESS QUEUE AND
RETURN IT TO THE ACE POOL.

IF AN LGE WAS OBTAINED,
ILRFRELG IS CALLED TO FREE
STORAGE AND MAKE THE LGVTE
AVAILABLE.

THE BUFFER COUNT IN THE ASMVT
MUST BE INCREMENTED SO THAT
THE GROUP OPERATORS CAN
CONTINUE TO DO I/0.

ILRGMA

ILRGOS

ILRFRELG

Diagram 25.24

ILRGOSO1 (Part 4 of 8)

Section 2:

Method of Operation 5-291

VS$2.03.807

Processing

Input Output
T hd] %E:::scn 4 IF AN ASSIGN REQUEST WAS T 2 | r’ASMV'l‘
EPASRB PROCESSING: ASMBKSLT
ATA EPALGVTP A. ADJUST THE BACKING R 4
EPALGEP SLOTS COUNT IN THE l l
ATAEPATH EPAACASR ASMVT. EPATH
EPABKSLT ATA r EPAASGN
B. IF THE SRB IS
CHECKPOINTED, FREE EPASRB
ATAEPATH EPALGVTP
STORAGE.
EPALGEP
C. IF THE LGVT IS EPAACASR
CHECKPOINTED, FREE EPABKSLT
STORAGE.
D. IF THE LGE IS
CHECKPOINTED, FREE
STORAGE.
Notes Routine| Label Ref Notes Routine| Label Ref
IF AN ASSIGN REQUEST IS BEING
PROCESSED, CLEAN UP ANY
RESOURCES OBTAINED ON BEHALF OF
THIS REQUEST.
A. IF EPAASGN IS ON, THE BACKING
SLOTS COUNT OBTAINED FOR THIS
LOGICAL GROUP MUST BE
RETURNED. THE NUMBER OF SLOTS
RETURNED IS ADDED TO THE
ASMBKSLT COUNT IN ASMVT.
B. IF THE SRB 1S CHECKPOINTED, FREEMAIN
FREE THE SRB STORAGE. “
C. IF THE LGVT IS CHECKPOINTED,
FREE THE LGVT STORAGE.
D. IF THE LGE 1S CHECKPOINTED, ILRGOS ILRFRELG
CALL ILRFRELG TO FREE LG FREEMAIN

RELATED STORAGE. IF
UNSUCCESSFUL, FREE THE LGE
STORAGE .

Diagram 25.24

5-292 = OS/VS2 System Logic Library Volume § (VS2.03.807)

ILRGOSO1 (Part 5 of 8)

VS$2.03.807

Input Processing Output

ILRGOSO1:
R 4 EPATH . N ACE : LGE
eem—— ‘r—b

l] > IF A RELEASE LOGICAL GROUP >

REQUEST WAS PROCESSING:
EPARLG ACELGE LGEWRKPD

ATA ‘EPAIGE A. TURN OFF THE WORK
PENDING FLAG IN THE

ATAEPATH LGE.

B. IF THE LGE IS
CHECKPOINTED, FREE THE
STORAGE.

Notes Routine| Label Ref Notes Routine| Label Ref

IF A RELEASE LOGICAL GROUP
REQUEST WAS PROCESSING (ILRRLG),
ALLOW THE REQUEST TO REMAIN ON
THE PROCESS QUEUE UNTIL MEMORY
TERMINATION.

A, THE WORK PENDING FLAG IN THE
LGE BEING OFF PREVENTS THE
SRB CONTROLLER FROM
PROCESSING THIS LGE.

B. IF THE LGE IS STILL FREEMAIN
CHECKPOINTED, IT HAS NOT BEEN
QUEUED, SO THIS SQA IS FREED.

Diagram 25.24 ILRGOSO1 (Part 6 of 8)

Section 2: Method of Operation 5-293

VS2.03.807

Input Processing Output

EPATH ASPCT

EPATH ASPCT
: IF A SAVE REQUEST WAS “

ASPSAVED
g : PROCESSING:
EPASAVE EPAAASP ASPSSYM

EPAAASP A. IF THE SAVE FLAG IS OFF

EPAUNSAV LGE IN THE ASPCT, SET THE EPAACE
EPAACE |] 'S' SYMBOL IN THE LGE

§

ASPCT. ACE I
LGEWRKPD

B. IF THE SAVE FLAG IS OFF
ACE ACELGE LGEGRINP
OR THE EPAUNSAV FLAG IS

LGESAVRQ
ON, CALL ILRALSO0 TO

MARK ALL THE LPME'S IN

ACELGE

THE ACTIVE ASPCT AS
[] _asmvr
UNSAVED. Ly

C. DEQUEUE THE ACE FROM ASMREQCT
THE LGE.

D. TURN ON THE
WORK-PENDING FLAG AND
THE SAVE-
REQUEST-QUEUED FLAG IN
THE LGE, IF NECESSARY.

E. TURN OFF THE
GROUP-IN-PROCESS FLAG
IN THE LGE .

m

FREE THE ACE.

G. INCREMENT THE BUFFER
COUNT IN THE ASMVT BY 1

Notes Routine| Label Ref Notes Routine{ Label Ref .

DURING THE SAVE TO SERIALIZE

IF ILRSAV WAS PROCESSING, CLEAN
WORK BEING DONE FOR THIS LGE.

UP THE RESOURCES OBTAINED FOR

THIS REQUEST.
F. THE ACE IS FREED AND RETURNED {ILRGMA

TO THE POOL VIA ILRGMA.
A. IF THE ASPCT HAS NOT BEEN

MARKED SAVE, ZERO THE 's'
SYMBOL SO THAT FUTURE RELEASE
REQUEST WILL BE HONORED.

2]

THE BUFFER COUNT IN THE ASMVT
SHOULD BE INCREMENTED BY 1 TO
ALLOW ADDITIONAL I/0
PROCESSING BY THE GROUP
OPERATORS .

B. IF THE ASPCT HAS NOT BEEN ILRALSOO
MARKED SAVED OR, IF THE
_EPAUNSAV FLAG IS ON, MARK ALL .
LPME'S AS UNSAVED. THIS WILL
ALLOW SLOTS TO BE FREED
LATER.

C. THE ACE SHOULD BE THE FIRST
ACE ON THE LGE PROCESS QUEUE
(LGEPROCQ) .

D. THE WORK-PENDING AND THE
SAVE-REQUEST FLAGS IN THE LGE
ARE TURNED OFF. IF MORE ACE'S
ARE QUEUED, THE WORK-PENDING
FLAG IS TURNED ON. IF MORE
SAVE REQUESTS EXIST ON QUEUE,
THE SAVE- REQUEST-QUEUED FLAG
IS TURNED ON.

E. THE GROUP-OP FLAG WAS ON

Diagram 25.24 ILRGOSO1 (Part 7 of 8)

5-294 © O8/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

Input Processing Output
R 4 EPATH R 1 SDWA
> A CLEAN UP ANY REMAINING 2 r"
{ J EPAOWKA ——— ———————r L J [l
STORAGE.
EPAVWKA
ATA EPAAASP
2 IF ESTAE ENTRY POINT, FREE
EPABASP
WORKAREA, LOCKS, AND SDWA.
ATAEPATH EPARASP
ATAWORKA EPALGVTP
EE] RETURN TO RTM TO CONTINUE
EPALGEP
— WITH TERMINATION.
EPASRB
EPAACE
EPARBASP [—1 I
v
TO RTM
Notes Routine| Label Ref Notes Routine| Label Ref
- ANY WORKAREAS OR CONTROL BLOCKS FREEMAIN
STILL CHECKPOINTED AT THIS POINT
ARE FREED. IN PREVIOUS STEPS
WHERE AREAS HAVE BEEN FREED, THE
EPATH POINTERS HAVE BEEN
CLEARED.
IF ESTAE ENTRY POINT, THE 200 FREEMAIN
BYTE WORKAREA MUST BE FREED, ALL SETLOCK
LOCKS OBTAINED MUST BE FREED, PGFREE

AND THE SDWA MUST BE PAGE FREED.

THE SDWA HAS ALREADY BEEN SET UP
TO CONTINUE WITH TERMINATION.

Diagram 25.24.

ILRGOSO1 (Part 8 of 8)

Section 2: Method of Operation 5-295

VS$2.03.807

Input Processing OQutput

FROM RTM
{IEAVTRTS)
ILRSRBOT:

FRR_WORK
AREA SET UP COMMON REGISTERS =
1y AND PERFORM_COMMON —
[:] INITIALIZATION.

REG 1

CcoD ABEND SET UP FOR

SDWAPARM RETRY AND'RETURN TO RTM.
ATA JI—
ATAEPATH] I
—————|| _eeaTn — eV
INITIALIZE THE SDWA FOR
PERCOLATION.
EPASWRK
ATAAIACE EeRORRK
CALL TLRCOIOE FOR AN ERROR
— CURRING IN ILROIOE.
ATAAIAQ
—_— SDWA
ATAACEQ - UNCONDITIONALLY OBTAIN THE [Rec 1| ~C]

|m:c 2 | RSMHD
SKIP TO STEP 14 FOR AN 1,
ERROR THAT OCCURRED DURING []

RSMHD ILRSRBC ENTRY PROCESSING.
PSAAOLD
AstT
ASHLGE! —-———-—3 7 VALIDITY CHECK ’I‘HE ASMHD b Lb
asca e)l o A8 | R
e pr— ?UEU IS 'I‘RUNCATE
—— ERMINATE THE ER.ROﬁ MEMORY REG 4
—— ASHLOCK AND SKIP TO STEP .
ASCBRSM ——— ATA
REG 8
| FRR_WORK
AREA
Notes Routine| Label Ref Notes Routine| Label Ref
VERIFICATION. THE SRB SCHEDULED
m PLACE THE NECBSSARY POINTERS IN FLAG IN THE_ASM HEADER
REGISTERS TO 'ANDAR] (ASHSCHED IS TURNED
INTERFACE TO RECOV RY INSURE THAT THE SRB CONTROLLER'S
SUBRQUTINES. COMMON . SRB IS RESCHEDULED.

INITIALIZATION INCLUDES: SETTING
THE _FRR WORKAREA TO ZERO AND
COPYING THE ATA INTO THE SDWA.

CALL ILRVLGEQ TO VERIFY EACH LGE |ILRFRRO1]ILRVLGEQ|25.27.
ON THE ASM H ER LGE QUEUE 1
(ASHLG ES) AND THE PROCESS %EUE ILRFRRO1|ILRVLPRQ

THE SRB CONTROLLER ISSUES A COD SETRP ANCHORI IN THE LGE (LGEPR 08 . 25.27.

ABEND FOR AN AIA THAT DOES NOT ASM CANNOT BE ALLOWED TO PR SS |CALLRTM 2

CONTAIN A LOGICAL TO PHYSICAL AYN FU’I‘URE REQUESTS FOR THIS

MAPPING ENTRY (LPME) . THE SDWA Y ON A I AL GROUP ENTRY

IS SET UP FOR RETRY AT T {. THAT MAY NOT

SEQUENTIAL INSTRUCTION AFTER THE ERM NATE THE MBMORY USING THE

ABEND, CSECT, SYSTEM_COMPLETION CODE

RECOVERY ROUTfNE IDS'ARE_COPIED SDWACMPC LRTBRMR WILL

INTOQ RETURN 1S ECOVER M _RESOURCES .

ISSUED TO RT?

THIS ROUTINE PERCOLATES FOR SETRP
UNEXPECTED ABENDS . THE MODULE
cs COVERY ROUTINE IbS
ARE COPIED INTO THE SDWA. SDWA
FLAGS, WHICH nguzs'r THAT RT‘N
FREE THE AS {mN

RTZg S DEFA(ILT RECORDING
PROCEDURE 1S USED.

INDICATES THAT I IOE "WAS IN
CONTROL AT THE TIM ERROR .
ILRSRBC'S AIA PROCESSING IS
COMPLBTED BBFORE THE_CALL TO
[E_SDWA CSECT_ 1D
'}SD ACSCT&.OIS RESET TO ILR IOE.
'HE_CALL gl MUST
DONB PRIOR TO OBTAINING THE ASM
CLASS LOCK

A FLAG IN THE AT)\ éATA 10E) ILRIOFRR | ILRCQIOE %5.20.

E LOCK MAY HAVE BEEN HELD ON |SETLOCK
ENTRY 10C
SERIALIZE 3SM_PROCESSING FOR
1S MEMOR

ORY . E FREED BY
RT/M ON PERCOLAT ON

IF_SRB CONTROLLER'S MODID IS NOT
INITIALIZED IN THE ATA. IT IS
NOT NECESSARY TO PERFOAM QUEUE

Diagram 25.25 ILRSRBO1 (Part 1 of 3)

§-296 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
ATA ACE
fod A PROCESS THE INTERNAL QUEUE
| | OF GROUP OPERATION ACES.
ATAACEQ L
ACE
- VALIDITY CHECK A CURRENT
[] ALK'OR ACE CHECKPOINTED IN
L THE ATA
ACE
[10] pERFORM UNI UE PROCESSING
) - FOR A TRANSFER PAGE ACE
CHECKPOINTED N THE
SKIP TO STEP 12.
Notes Routine| Label Ref Notes Routine| Label Ref
SRB CONTROLLER MAINTAINS IN THE |ILRFRRO1|ILRVACEQ|25.27.
ATA A LIFO QUEUE OF GROUP i
QPERATION ACES T BE PROCESSED.
VALIDITY CHECKING THE
gunun SET THE GROUP OF IN
LGEGRINP) AND WORK
NOING FLAG (LGEWRKDD] [N ThS
RESOLTATED TGE (ACELGE) 5O THAT
SRB CONTROLLER WILL REPROCESS
THE ACES ON THIS INTERNAL QUEUE.
VALIDITY CHECK THE CURRENT ACE |ILRFRRO1

LRTRANS PROCESSING OR AIA
ILRESTRT PROCESSING T'HB FIELD
TAAIA MAY B THER AN _ACE OR

AN AIA. AN A E S IDENTIFIED BY

THE T ? F ACE OPERATION

CODE EOP-X

F THE ACE TARGET LPME
ACETLPME) IS MARKED VALID AND
SAVED, MARK THE LPME INVALID
10 AVOID FREEING A SLOT
NORMAL_PROCESSING
cm L] 1S BRERED VALID
THE SLOT 1S
Y HAVE BEEN
E m}!ﬁon OCCURRED,

i IT L ALLOW
ILRSRT ’X‘O ALLOCATE IT TWICE. IF
IT HAD NOT BEEN FREED BEFORE THE
ERROR THE SLUl‘ IS N 'REED.)

LAG
FOR THE u; ACE!G SO THAT
THIS ACE 1 PROC SED BY THE
SRB CONTROL!

ILRVAIAC 55. 27.

biagram 25.25

ILRSRBO1 (Part 2 of 3)

Section 2: Method of Operation 5-297

VS§2.03.807

Input : Processing Output
ATA AIA
ot PROCESS A_CURRENT A
| CREERBSINTED IN TuE AT
ATAAIAQ
AIA A. IF AN ERROR FLAG IS ON
IN THE AIA, ADD THE AIA
ATAAIACE |] TO THE PART ERROR
: QUEUE. SKIP TO STEP 12.
B. IF THE AIA IS CURRENTLY
AIA LAST ON THE

STAGING QUEUE DEQUEUE
:: IT FROM THE INTERNAL
. QUEUES. SKIP'TO STEP

C. IF IT IS A WRITE AIA,
INVALIDATE ITS
ASSOCIATED LPME.

ASMVT
CVTASMVT —> VALIDITY CHECK THE ASMVT
STAGING QUEUE.
ASMSTAGF
PROCES§ THE INTERNAL QUEUE
OF AIA'S.
ASMSTAGL
SCHEDULE THE SRB
CONTROLLER S SRB, IF
NECESSARY.
EPATH
— [15] erocEss an ERroR occURRING
| IN ILRRIG.
EPAASP
— FREE SRB CONTROLLER'S
EPAOWRK WORKAREA CELL.
EPASWRK
— RETURN TO CALLER.
v
RETURN TO
CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
Ld
EB IF AN AIA WAS CURRENTLY BEING IF RELEASE LOGICAL GROUP WAS IN FREECELL|25.25.
PROCESSED BY ILRESTRT, IT IS CONTROL AT THE TIME OF ERROR, AN 1
NECESSARY TO DETERMINE THE STAGE ACTIVE ASPCT PAASP) AND A i
OF PROCESSING FOR THE AIA. WORKAREA CELL_(EPAO MAY BE
CHECKPOINTED IN THE EPATH. THE
A T DRESS IN T
A, AN ERROR FLAG_IS ON IN THE ASSOCIATED LGE éLGEASPé 1s
CURRBNT AIA, IT IS DEQUEUED CLEARED TO PREVENT FREEING THE
FROM THE INTERNAL AIA QUEUE ASPCT SLOTS TWICE IN THE EVENT
POINTED TO BY THE ATA OF ANOTHER RELEASE LOGICAL GROUP
ADDED TO THE PART ERROR QUEUE REQUEST FOR THE LGE. THE
(PARTAIAE) . WOl EA CELL IS FREED.
B. DugﬂEUBING THE AIA FROM THE
'ERNAL AIA QUEUE INSURES SRB CONTROLLER'S WORKAREA CELL FREECELL| 25.25.
THIS AIA WILL NOT BE IS CHECKPOINTED IN THE 1
TUP FOR REPROCESSING BY EPATH (EPASWRK) .
THIS RECOVERY.
C. LO'I‘ ASSOCIATED WITH A THIS RECOVERY PATH ALWAYS
HAVE ALREADY PERCOLATES .

A MAY
BEEN RBED. INVALIDATING THE
LPMER%QEURES THAT IT WILL NOT

THE VALIDITY CHECKING ROUTINE ILRFRRO1|ILRVASGQ|25.27.
REMOVES A PARTIALLY QUEUED AIA. 1

[13] sre_conrrorer marnTAINS A QUEUE |ILRFRRO1|ILRVAIAQ|2S.27.
OF STARTABLE AIAS. (ATAAIAQ)- THE Ft
CURRENT AIX TISAATAAIACE
EEPRESENT T PART OF THE AIA
EUE NOT PROCE! SSED BY THE
LR e
THE INTERNAL 3 UE 10 THE
CURRENT AIA. UALIDITY CHECK THE
INTERNAL QUEUE OF ATAS. TURN OFF
THE AIA IN PROCESS FLAG AND TURN
ON ‘THE. LGE _WORK BENDING FLAG FOR
EACH ATA ON'THE IM‘ERNAL UEUE
ORDER TO ALLOW THESE ATAS TO
BE SEBROCESSED BY ILRSRBC.

THE SRB CONTROLLER'S SRB IS SCHEDULE
RESCHEDULED IF NOT ALREADY
SCHEDULED. THE ASH

HEAD!
SCHEDULE PLAG CHED
TURNED ON iNDICA'!‘B T{lB SRB
CONT[EOLLER IS SCHEDULED FOR THIS

Diagram 25.25 ILRSRBO1 (Part 3 of 3)

5298 OS/VS2 System Logic Library Volumz 5 (VS2.03.807)

Input

R — Ol

WORKAREA
CELL

I

FROM_ILRSRBO1
MAINLINE

VS$2.03.807

Processing

FREECELL:

IF THE WORKAREA CELL
ADDRESS IS NOT ZERO,
VERIFY THE STORAGE
ADDRESS.

[02] FreEE A vALID cELL ADDRESS.

RETURN TO CALLER.

=]

v
TO_ILRSRBO1
MAINLINE

output

WORKAREA CELL IS RETURNED TO THE
PROPER ASM CELL POOL.

Notes Routine| Label Ref Notes Routine} Label Ref
. THE STORAGE POINTED TO BY THE IEAVEADV | IEAVEADV

WORKAREA CELL ADDRESS IS

VERIFIED TO BE ADDRESSABLE AND

FREE OF STORAGE CHECKS.
IF THE STORAGE IS VALID THE ILRGMA

Diagram 25.25.1

FREECELL (Part 1 of 1)

Section 2: Method of Operation 5-299

VS$2.03.807

Input Processing Output

FROM RTM
(IEAVTRTS)

b ILRTMIO1:

IF ILRTMRLG IS ALREADY
UNUSABLE OR THIS ERROR HAS
ALREADY BEEN RETRIED,
PERCOLATE.

l"_—]l

v
TO RTM

pac i | IF RTM DID NOT PASS A

|xroc]

—-J I SDWA:
EPATMI

REG 2 EPARECUR A. IF MASTER SCHEDULER

|] INITIALIZATION (M.S.I.)
IS POSTED, GOTO
SETRETRY .

[__—1[

v
TO SETRETRY

C'_]—l

v
TO RTM

B. IF M.s.I. IS NOT
POSTED, PERCOLATE.

Notes Routine| Label Ref Notes Routine| Label

ILRTMIO1 IS THE RECOVERY ROUTINE
FOR ILRTMRLG AND ILRTMIQO. IF
ASMNOTMR=1 OR EPARECUR=1, A
DOUBLE ERROR HAS OCCURRED SO SET
ASMNOTMR TO ONE, IF NOT ALREADY,
AND PERCOLATE.

RTM COULD NOT OBTAIN A SDWA.

A. IF RTM DID NOT PASS A SDWA, SETRETRY %5.26.
THERE IS NO WAY TO TELL RTM
TO RETRY WITH UPDATED
REGISTERS. IF MASTER
SCHEDULER INITIALIZATION HAS
BEEN POSTED (EPAMAST=1),
ILRTMRLG MAIN LINE CODE WAS
PRbCBSSING, THUS WE HAVE
ENOUGH INFORMATION TO DO A
SPECIAL RETRY.

B. IF MASTER SCHEDULER
INITIALIZATION IS NOT POSTED
AND RTM COULD NOT GET STORAGE
FOR A SDWA, PERCOLATE AND
ALLOW M.S.I. TO TERMINATE THE
IPL.

Diagram 25.26 ILRTMIO1 (Part 1 of 2)

5-300 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS2.03.807

INFORMATION INTO THE SDWA,
INCLUDING A COPY OF THE EPATH TO
THE VARIABLE RECORDING AREA,
THEN GO PREPARE TO RETRY INTO
ILRTMIOO OR ILRTMRIG.

Input Processing Output
REG 0 : SDWA
IF RTM PASSED A SDWA, MOVE A
GQDE~=X'0C)
RECOVERY DATA INTO THE —ee
SDWARA
SDWA AND PREPARE TO RETRY. -
REG 1
SDWA v
TO CKRETRY
SDWA PARM
1
Notes Routine| Label Ref Notes Routine| Label Ref
PLACE ERROR RECORDING CKRETRY |25.26.

Diagram 25.26

ILRTMIO1 (Part 2 of 2)

Section 2:- Method of Operation

5-301

VS2.03.807

Input Processing Output
FROM CHART
25.26
SETRETRY:
REG 2 EPATH
REINITIALIZE EPATH AND
OTHER REQUIRED FIELDS FOR
EPABASP=0
RETRY TO ILRTMRIG. —————n
EPATH EPARASP=0
EPAOWKA ‘-—5 EPAACE=0
SET UP TO CAUSE RETRY IN v
EPAVSAMI ———— EPARECUR=0
| ILRTMIO1N. protiishidinviniig
EPABASP EPAVWKA=0
EPARASP
0 RETURN TO RTM WHO WILL
EPAACE ASMVT
RETURN TO STEP 4.
EPATMRSV ASMRLGWQ=0
EPARECUR
EPAVWKA l—] l REG O
ADDR.OF
A ILRCRTMX
ASMVT

10 Ry |ty
ASMRLGWQ

REG 15

I

Notes Routine| Label Ref Notes Routine| Label

WITHOUT THE SDWA NO ERROR

RECORDING OR VALIDITY CHECKING
IS POSSIBLE. SET EPARECUR=1 SO
THAT RECURSION CAN BE DETECTED.
THE FOLLOWING EPATH FIELDS ARE -
SET TO ZERO UNCONDITIONALLY:
EPAVSAMI, EPABASP, EPARASP,
EPAACE, ASMRLGWQ, EPAVWKA.

THE RETRY ADDRESS ILRCRTMX IN
ILRTMIOT IS PUT IN REGISTER ZERO
AND A 4 IS PUT IN REGISTER 15 TO
CAUSE RTM TO RETRY.

CONTROL IS RETURNED TO RTM WHO
WILL CONTINUE AT STEP 4.

Diagram 25.26.1 SETRETRY (Part 1 of 2)

§-302 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

REG 1

(I

EPATH
" [EpnowkA
EPATMRSV

ILRTMRLG
ILRCBTM1
ILRCRTM1

FROM RTM

VS2.03.807

Processing

SET UP THE REGISTERS FOR
MAIN RETRY POINT IN
ILRTMRLG.

BRANCH TO ILRCRTM1 IN
ILRTMRLG.

output

REG 3

REG 10

REG 13

REG 4

ILRCBTM1

EPATMRSV

Notes

Routine

Label Ref Notes

Routine

Label Ref

AT THIS POINT, IT APPEARS (TO
THE SYSTEM) THAT ILRTMIO1 IS NO
LONGER RUNNING AS AN ESTAE BUT
AS A MAINLINE RETRY ROUTINE. THE
FOLLOWING REGISTERS ARE LOADED
WITH VALUES REQUIRED TO BRANCH
TO THE MAIN RETRY POINT IN
ILRTMRLG: REGISTER 3, REGISTER
4, REGISTER 9, REGISTER 10,
REGISTER 13.

BRANCH TO ILRTMRLG TO CONTINUE
PROCESSING ACES OR WAIT IF NO
MORE ACES ARE ON THE QUEUES
(ASMRLGWQ AND ASMRLGRQ) .

ILRTMRLG

ILRCRTM1

Diagram 25.26.1

SETRETRY (Part 2 of 2)

Section 2:

Method of Operation = 5-303

VS$2.03.807

Input Processing Output
R FROM CHART v
25.26
CKRETRY:
REG 1 IF PROCESSING A 'RECORD
: ONLY' ABEND, RECORD THE
ERROR AND RETRY.
SDWA
SDWAPARM
SDWACMPC [-—] |
RETURNVTO RTM
EPATH IF MASTER SCHEDULER
EPAMAST INITIALIZATION IS NOT
EPAVSAMI POSTED GO TO STEP 8.
EPAVWKA
EPABASP FREE THE STORAGE GOTTEN BY
EPARASP ILRVSAMI.
EPAACE
EPATMRSV FREE THE CURRENT ACE.
FREE THE STORAGE USED TO
RETRIEVE THE ASPCT.
Notes Routine| Label Ref Notes Routine| Label

SET UP FOR RETRY IF ONE OF THE
FOLLOWING CODES IS IN SDWACMPC:
X'086000°, X'087000'. RETURN TO
RTM.

IF MASTER SCHEDULER
INITIALIZATION IS NOT POSTED,
ILRTMRLG MAIN LINE ACE PROCESSOR
WAS NOT IN CONTROL, SO GO TO

STEP 8.
IF THE ERROR OCCURRED DURING ENDREG
ILRTMRLG'S CALL TO VSAM ILRGMA

{SDWAPERC=1) , ISSUE ENDREQ FOR FREEMAIN
VSAM CLEAN UP. IF EPAVWKA IS
NON-ZERO, ISSUE ILRGMA TO FREE
THE VSAMI WORKAREA., ISSUE
FREEMAIN FOR THE ASPCT BUFFER.

VALIDITY CHECK THE ACE ADDRESSED |ILRFRRO1|ILRVACE %3.27.
BY EPAACE AND ISSUE ILRGMA TO ILRGMA
FREE IT.

CALL ILRAFSO0 TO FREE ASPCT
STORAGE IF EPARASP IS NON-ZERO.

Diagram 25.26.2 CKRETRY (Part 1 of 3)

5-304 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
EPATH
RESET THE TRACKING FLAGS A
e————) [epavsami=0]
IN EPATH AND VERIFY THE
ACE WORK QUEUE.
SDWASRO4
RETURN TO RTM INDICATING
ADDR OF
RETRY AT ILRTMRLG MAIN EPATH
RETRY POINT.
SDWASRO3
ADDR OF
__.1 ASMVT
v
TO RTM SDWASRO9
EPAOWKA
SDWASR10
ILRCBTM1
SDWASR13
EPATMRSV
Notes Routine| Label Ref Notes Routine! Label Ref
VERIFY THE ACE WORK QUEUE ILRFRRO1(ILRVACEQ| 25.27.

(ASMRLGWQ) : SET EPAVSAMI=0 AND
SET EPARECUR=1 TO STOP RECURSION
DUE TO ERRORS IN ILRTMRLG.

UPDATE THE FOLLOWING REGISTER
VALUES IN THE SDWA TO CONTAIN
THE VALUES REQUIRED AT THE MAIN
RETRY POINT (ILRCRTM1) IN
ILRTMRLG: REG 3, REG 4, REG 9,
REG 10, REG 13.

Diagram 25.26.2 CKRETRY (Part 2 of 3)

Section 2:

Method of Operation 5-305

VS§2.03.807

Input Processing Output
EPATH ASMVT
P | [08] r rzRmMIo0 was —>| [emonis
—— PROCESSING, ATTEMPT TO —
EPATMXIT RECOVER
EPAMSECB :
EPAMAST EPATH
———— IF ILRTMIOO HAS PROCESSED -ﬂ
EPAMAST=1
GOTO STEP 11.
ASMVT
ASMNOTIR : INFORM THE OPERATOR OF THE:
[————
——es ERROR AND DETERMINE IF HE
WANTS TO CONTINUE.
E POST MASTER SCHEDULER emna———
——
INITIALIZATION.
E RETURN TO RTM INDICATING
RETRY AT THE MAIN ENTRY
POINT IN ILRTMRLG.
v
RETURN TO RTM
Notes Routine| Label Ref Notes Label Ref

Routine

IF EPATMI IS 1, GOTO TMIPROC.

IF EPATMXIT FLAG HAS BEEN TURNED
ON BY TMIPROC, GO TO STEP 11.

THE FAILURE HAPPENED SOMETIME
BEFORE ILRTMRLG CALLED ILRTMIOO
SO ISSUE MESSAGES ILRO21I AND
ILRO22A TO INFORM THE OPERATOR
OF AN ERROR AND TO DETERMINE IF
HE WANTS TO CONTINUE WITHOUT VIO
JOURNALING. IF HE DOES, ASMNOTMR
IS SET TO 1 TO INDICATE ILRTMRLG
IS NOT AVAILABLE. SET TO 2ERO
SARDSNL, PARTDSNL, AND PARTTPAR.

[7] EeamsEc 1s usep 7o PosT MAsTER
SCHEDULER INITIALIZATION -
SETPAMAST=1.

@ RETRY AT THE MAIN RETRY POINT IN
ILRTMRLG (ILRCRTM1), WHICH WILL
PUT THE ILRTMRLG TASK IN A WAIT.

TMIPROC %5 .26,

Diagram 25.26.2 CKRETRY (Part 3 of 3)

5-306 OS/VS2 System Logic Library Volume § (VS2.03.807)

V$2.03.807

Input Processing Output
FROM_CKRETRY
{ILRmM
UBROUTINE)
TMIPROC:
EPATH
el PROCESSING, GOTO STEP 5.
EPAWARM
EPAMSECB
e — IF WARMERR WAS PROCESSING,
e GOTO STEP 16.
EPATMIBA
EPATMISV SDWASR03 SDWASRO7
b A SET UP TO RETRY AT WARMERR
ADDR_OF ADDR_OF
IN ILRTMIOO. ASMUT TOBUFFER
ILRTPARB
RETURN TO RTM INDICATING SDWASRO4 SDWASR11
—_— RETRY AT WARMERR. ADDR_OF [ePaTiBA |
TPARWARM EPATH
SDWASR12
SDWASRO5
| EPATMIBA+4
v EPATMACB K-1
RETURN TO RTM
SDWASRO6 SDWASR13
|epaTvwka | [EPATMISV |
Notes Routine| Label Ref Notes Routine| Label Ref
IF EPAWARM=0, THE WARMSTRT (WARM
START) SECTION OF ILRTMIOO WAS
NOT EXECUTING. GO TO STEP 5 TO
DETERMINE WHERE THE ERROR
OCCURRED.
A WARM START WAS PROCESSING. IF
TPARWARM=0, THEN WARMERR (WARM
START RETRY CODE) WAS
PROCESSING. SO THERE IS A DOUBLE
OR RECURSIVE ERROR. GO TO STEP
16 TO ISSUE MESSAGES.
SINCE THIS IS A SINGLE WARM
START ERROR, PREPARE TO RETRY.
THE FOLLOWING REGISTERS ARE
REQUIRED BY WARMERR:
3,4,5,6,”,11,12 AND 13.
RETURN TO RTM TO RETRY AT
WARMERR (ILRCRTM2) IN ILRTMIOO.
Diagram 25.26.3 TMIPROC (Part 1 of 4)
Section 2: Method of Operation 5-307

Input

EPATH

EPACOLD e———

VS$2.03.807

Processing

IF CVIOSTRT WAS NOT
PROCESSING, GOTO STEP 10.

WRITE MESSAGES TO
DETERMINE IF THE OPERATOR
WANTS TO CONTINUE.

S
~

RESET TRACKING FLAGS.

CLOSE SYS1.STGINDEX.

RETURN TO RTM INDICATING
RETRY AFTER CVIOSTRT.

=]

\'
RETURN TO RTM

output
_ SDWASRO3 SDWASRO4
ADDR_OF ADDR_OF
asmvr EPATH
SDWASROS SDWASR11
|EraTMAcB | [EPATMIBA]
SDWASR12 SDWASR13
Iﬁp?mxmml {epamMISV_]

Notes Routine

Label Ref Notes

Routine

Label Ref

IF EPACOLD=0 GOTO STEP 10.

WRITE MESSAGES ILROO1I AND
ILRO22A TO INDICATE AN ERROR
OCCURRED AND SEE IF THE OPERATOR
WANTS TO CONTINUE.

CONTINUING, SET EPACOLD=0
(CVIOSTRT NO LONGER PROCESSING)
AND ASMNOTMR=1 (ILRTMRLG WILL
NOT BE USED TO RELEASE SAVED LG
THIS IPL).

IF ASMSTGKA IS NOT ZERO ISSUE
CLOSE FOR SYS1.STGINDEX AND SET
ASMSTGXA=0.

SET UP SDWA WITH VALUES FOR
REGISTERS REQUIRED AFTER
CVIOSTRT (ILRCRTM3) AND RETURN
TO RTM TO RETRY.

Diagram 25.26.3 TMIPROC (Part 2 of 4)

5-308 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
EPATH PART
SABUTID —————|[19] 1r surosww uas wor
i, PROCESSING GOTO STEP 16. —_—
EPADSLST PARTDSNL=0
EPATMIRT
— INFORM THE OPERATOR THAT
TMWKA PAGEADD WILL NOT WORK.
EPATMACB SART
EPATPART
[72] zero pornTers 1o THE DATA I
SARDSNL=0
T SET NAME LIST IN THE PART SAos=
AND SART..
PARTDSNL
SDWASRO3
FREE THE STORAGE FOR LIST.
SART RDDR_OF
SARDSNL
RESET THE TRACKING FLAG. SDWASRO4
ADDR_OF
EPATH
[E RETURN TO RTM INDICATING

SDWASROS5
EPATMACB

[-—-1 l SDWASR11
EPATMIBA

v
RETURN TO RTM

RETRY AFTER BUILDSNL. I

SDWASR12
EPATMIBA+4

I

SDWASR13
EPAIMISV

Notes Routine| Label Ref Notes Routine| Label Ref

IF EPABUILD=0, GOTO STEP 16.

WRITE MESSAGE ILR0O03I TO INFORM
THE OPERATOR THAT PAGEADD WILL
NOT WORK.

SET THE DATA SET NAME LISTS
(PARTDSNL AND SARDSNL) TO ZERO.) 2

ISSUE FREEMAIN FOR LIST FREEMAIN
ADDRESSED BY EPADSLST.

SET EPABUILD=0.

SET UP SDWA WITH REQUIRED
REGISTER VALUES AND RETURN TO
RTM TO RETRY AFTER BUILDSNL
(ILRCRTM4 IN ILRTMIOO).

[E B &

Diagram 25.26.3 TMIPROC (Part 3 of 4)

Section 2: Method of Operation 5-309

VS2.03.807

Input Processing Output
DWASRO3
ASK THE OPERATOR IF HE SADDR o
WANTS TO CONTINUE INSPITE
OF UNKNOWN ERROR.
’ SDWASRO4
FREE STORAGE. "[apoR oF
EPATH
SET TRACKING FLAGS. SDHASRO6
:
SDWASRO9
SET UP TO RETRY AT ——l
ILRCRTMS. -
' DWASR 10
RETURN TO RTM INDICATING SDWASR
RETRY IN ILRTMRLG AFTER
CALL TO ILRTMIOO.
SDWASR13
l——l EPATMRSV
v
RETURN TO RTM
Notes Routine| Label Ref Notes Routine| Label Ref
AT THIS POINT THE PLACE OF
FAILURE IS UNKNOWN UNLESS
WARMERR FAILED. ISSUE MESSAGES
ILRO21I AND ILRO22A TO SEE IF
THE OPERATOR WANTS TO CONTINUE.
CONTINUING, SET ASMNOTMR=1 FREEMAIN

(INDICATING ILRTMRLG WILL NOT BE
USED TO RELEASE LG ON SAVED
LOGICAL GROUPS). IF ASMSTGXA IS
ZERO, FREE THE STORAGE USED FOR
THE ACB(EPATMACB). FREE THE WORK
AREA FOR ILRTMIOO (EPATMWKA).
FREE THE STORAGE FOR TPARTBLE
(EPATPART) . ZERO PARTTPAR.

SET EPATMXIT=1.

ILRTMRLG AT ILRCRTMS REQUIRES
REGISTERS 3, 4, 6, 9, 10 AND 13,

RETURN TO RTM TO RETRY AT
ILRCRTMS.

Diagram 25.26.3 TMIPROC ' (Part 4 of 4)

5-310 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
FROM ASM
RECOVERY
ROUTINE
ILRVASGQ:
SDWA WORK AREA
~ A — Ee 1~
L__.__J PARAMETER LIST WITH _—
QUPLEVR
PARAMETERS UNIQUE TO THE :
REG 3 ASMVT QVPLHDR
1, VERIFICATION OF THE e
QVPLFPTR
—— ASMSTAGQ.
ASMSTAGQ QVPLTRLR

| 8 I WORK AREA
REG L.

ASMVT
CALL COMMON ROUTINE TO REG 3 >

IRBG 13 I SAVE AREA
L-> INTERFACE WITH THE QUEUE —_—
|] ASMSTAGQ
VERIFIER.
WORK AREA I
nd -
—————— l lREG 15 I RETURN
QTYPE v CODE
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE FOR THE
VERIFICATION OF THE ASMSTAGQ.
THESE PARAMETERS ARE THE ADDRESS
OF THE QUEUE HEADER (ASMSTAGF),
THE ADDRESS OF THE QUEUE TRAILER
(ASMSTAGL), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVAIA), AND THE OFFSET OF THE
FORWARD CHAIN POINTER
(AIANXAIA) .

CALL COMMON ROUTINE TO SET UP ILRFRRO1|COMQRTN %
THE INTERFACE FOR THE QUEUE
VERIFIER. AN INTERNAL VARIABLE,
QTYPE, IS SET TO INDICATE THE
QUEUE IS A SINGLE-THREADED,
DOUBLE-HEADED QUEUE (QTYPE=2).

Diagram 25.27.1 ILRVASGQ (Part 1 of 1)

Section 2: Method of Operation 5-311

VS52.03.807

Output

input Processing
FROM ASM
RECOVERY
ROUTINE
ILRVLPRQ:
LGE
REG O | r 3 VERIFY THAT REGISTER 0

LGEPROCQ

[ReG 1]L’snm
' (I

IREG 8 l]_’FORK AREA

REG 13 1 SAVE AREA

WORK AREA
-~

QTYPE

POINTS TO A VALID LGE. IF
NOT, NO FURTHER
VERIFICATION CAN BE DONE.

INITIALIZE THE QUEUE
VERIFIER PARAMETER LIST
WITH PARAMETERS UNIQUE TO
THE VERIFICATION OF THE
LGEPROCQ.

CALL THE COMMON ROUTINE T
INTERFACE WITH THE QUEUE
VERIFIER.

1]

J =

[rec 15 7" [rETORN
CODE

er

v
TO CALLER

]

v
TO CALLER

{)s)

WORK AREA

[Rese]

QVPLEVR
QVPLHDR
QVPLFPTR
QVPLTRLR
QUPLBPTR _

LGE
[Rec 0 [~

LGEPROCQ

IREG 15 l-' RETURN
CODE

Notes Routine

Label Notes

Routine] Label Ref

VERIFY THAT REGISTER O POINTS TO |ILRFRRO1
A VALID LGE. IF IT DOES NOT,
RETURN TO THE CALLER SINCE NO
FURTHER VERIFICATION CAN BE

DONE.

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE FOR THE
VERIFICATION OF THE LGEPROCQ.
THESE PARAMETERS ARE THE ADDRESS
OF THE QUEUE HEADER (LGEPROCF),
THE ADDRESS OF THE QUEUE TRAILER
(LGEPROCL) ,/ THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVAIAC), THE OFFSET OF THE
FORWARD CHAIN POINTER (AIAFQPA),
AND THE OFFSET OF THE BACKWARD
CHAIN POINTER (AIABQPA).

CALL THE COMMON ROUTINE TO SET
UP THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=3 TO
INDICATE THE QUEUE 1S A
DOUBLE-HEADED, DOUBLE-THREADED
QUEUE.

ILRFRRO1

ILRVLGE

COMRTN |2

Diagram 25.27.2 ILRVLPRQ (Part 1 of 1)

§-312 0OS/VS2 System Logic Library Volume § (VS2.03.807)

V$2.03.807

output

lASMSART |1 SART

SARWAITQ

lREG 8 Il_’WORK AREA

lREG 13 |1 SAVE AREA

WORK AREA

[Rese ~Jr—r

QTYPE

Input Processing
' FROM ASM
RECOVERY
ROUTINE
ILRVSWTQ:
SDWA y
'_.l :I -, INITIALIZE QUEUE VERIFIER =
v PARAMETER LIST WITH
REG 3 ASMVT PARAMETERS UNIQUE TO THE
> VERIFICATION OF THE
TSMSART SARWAITQ.
ASMSART
—

CALL COMMON ROUTINE TO
INTERFACE WITH THE QUEUE
VERIFIER.

OF THE FIRST AIA ON THE
SARWAITQ. THEN BRANCH TO
SECTION OF ILRVSPAQ THAT
VERIFIES THE AIA'S IN A
SWAP GROUP.

SET AIAPTR TO THE ADDRESS ::_-IFI)

=]

V4
TQ VERLAIAS
(IN ILRVSPAQ)

WORK AREA
-~

QUVPLEVR
QUPLHDR
QUPLFPTR |
QUPLTRLR

SART
[rswsarr] >

SARWAITQ

IREG 15 IJ RETURN
CODE

|7 [sarwarte |

[a1apTR

Not.

es

Routine

Label Ref Notes

Routine} Label Ref

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE FOR VERIFICATION
OF THE SARWAITQ. THESE
PARAMETERS ARE THE ADDRESS OF
THE QUEUE HEADER (SARWAITF), THE
ADDRESS OF THE QUEUE TRAILER
(SARWAITL), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVAIA), AND THE OFFSET OF THE
FORWARD CHAIN POINTER
(AIANXAIA) .

CALL COMMON ROUTINE TO SET UP
THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=2 TO
INDICATE THE QUEUE IS A
SINGLE-THREADED, DOUBLE-HEADED
QUEUE.

THE VARIABLE AIAPTR IS
INITIALIZED TO THE ADDRESS OF
THE FIRST AIA ON THE SARWAITQ.
THIS IS DONE TO SET UP FOR THE
VERIFICATION OF THE LATERAL
AIA'S OF EACH AIA ON THE
SARWAITQ. THIS VERIFICATION IS
ACTUALLY DONE. IN ILRVSPAQ.

ILRFRRO1

ILRFRRO1

COMQRTN |2

ILRVSPAQ| 25.27.

Diagram 25.27.3 ILRVSWTQ (Part 10f 1)

Section 1: Method of Operation

5-313

VS§2.03.807

Input Processing Output

FROM ASM
RECOVERY
ROUTINE

—L'> ILRVAIAQ:
\/ WORK AREA

|REG © 19] - INITIALIZE QUEUE VERIFIER — —
PARAMETER LIST WITH II ST
AIA PARAMETERS UNIQUE TO THE g

WVPLHDR
— VERIPICATION OF AN AIA . QUELHDR __
QUPLFPTR
QUEUE, AL L

T eom

| REG 8 IL’WORK AREA

CALL COMMON ROUTINE TO' :P [rEG 15 |-| lggggnu I
[REG 13 J1 _save area INTERFACE WITH THE QUEUE

l I VERIFIER.
rotoRk 2eEr | [|

QTYPE

Vv
TO CALLER

Notes Routine] Label Ref Notes Routine| Label Ref

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER.LIST
THAT ARE UNIQUE FOR VERIFICATION
OF AN AIA QUEUE. THESE
PARAMETERS ARE THE ADDRESS OF
THE QUEUE HEADER (VALUE OF
REGISTER 0), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVAIA), AND THE OFFSET OF THE
FORWARD CHAIN POINTER
(AIANXAIA) .

CALL' COMMON ROUTINE TO SET UP ILRFRRO 1 | COMORTN
THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=1 TO
INDICATE THE QUEUE IS A
SINGLE-THREADED, SINGLE HEADED
QUEUE.

Diagram 25.27.4 ILRVAIAQ (Part1 of 1)

5-314 - OS/VS2 System Logic Library Volume 5§ (VS2.03.807)

VS2.03.807

Input Processing Output

FROM ASM
RECOVERY
ROUTINE

ILRVSCWQ:

WORK AREA

REG 0 1trd] INITIALIZE QUEUE VERIFIER
PARAMETER LIST WLTH

sccw PARAMETERS UNIQUE TO THE
VERIFICATION OF AN SCCW
QUEUE.

QVPLEVR
QVPLHDR
QVPLFPTR

[ReG 1 |1_’SDWA
L I

|REG 8 |1 WORK AREA

¥ CALL COMMON ROUTINE TO ﬁ lREG 15 IJ lgggléRN I
IREG 13 I] SAVE AREA INTERFACE WITH THE QUEUE
I , VERIFIER.

e [—1

YPE v
QT_.._._— TO CALLER

Notes Routine| Label Ref Notes Routine} Label Ref

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE FOR VERIFICATION
OF AN SCCW QUEUE. THESE
PARAMETERS ARE THE ADDRESS OF
THE QUEUE HEADER (VALUE OF
REGISTER 0), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVSCCW), AND THE OFFSET OF
THE FORWARD CHAIN POINTER
(SCCWSCCW)

CALL COMMON ROUTINE TO SET UP ILRFRRO1|COMQRTN
THE INTERFACE FOR THE QUEUE
VERIFIER., SET QTYPE=1 TO
INDICATE THE QUEUE IS A
SINGLE-THREADED, SINGLE-HEADED
QUEUE.

Diagram 25.27.5 ILRVSCWQ (Partiof1)

Section 2: Method of Operation 5-315

VS52.03.807

Input Processing Output

|_‘—> ILRVSPAQ:

[rRec o Ird) 11| —=|[07] mviriALIzE THE QuEUE
M VERIFIER PARAMETER LIST VPLER
AIA WITH PARAMETERS UNIQUE TO SvrLADR
i THE VERIFICATION OF A SvriePTR

QUEUE OF SWAP AIA'S.

l REG 1 IL’SDWA

L 5

e

CALL THE COMMON ROUTINE TC'————r: [REG 15 jj |ggggRN I

INTERFACE WITH THE QUEUE

IREG 13 l-l SAVE AREA VERIFIER.

WORK AREA
REG 8 —> l FIRST AIA
SET AIAPTR TO THE ADDRESS 'AIA PTR Iv—b:

QTYPE OF THE FIRST AIA TO

PREPARE FOR VERIFICATION
OF THE AIA'S IN EACH SWAP
GROUP.

LABEL ALTER THE QUEUE VERIFIER — '_’WORK AREA
VERLAIA3 .:a
PARAMETER LIST FOR THE
QUPLFPTR
VERIFICATION OF EACH SWAP ————————
GROUP.
Notes Routine| Label Ref Notes Routine| Label Ref

CHAIN POINTER (TO AIAFQPA) TO
VERIFY THE LATERAL AIA'S.

INITIALIZE THE PARAMETER OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE FOR THE
VERIFICATION OF A QUEUE OF., SWAP
AIA'S. THESE PARAMETERS ARE THE
ADDRESS OF THE QUEUE HEADER
(VALUE OF REGISTER 0), THE
ADDRESS OF THE ELEMENT
VERIFICATION ROUTINE (ILRVAIA),
AND THE OFFSET OF THE FORWARD
CHAIN POINTER (AIANXAIA).

CALL THE COMMON ROUTINE TO SET |ILRFRRO1|COMQRTN
UP THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=1 TO
INDICATE THE QUEUE IS A
SINGLE-THREADED , SINGLE-HEADED
QUEUE.

THE VARIABLE AIAPTR IS
INITIALIZED TO THE ADDRESS OF
THE FIRST AIA ON THE INPUT
CHAIN. THIS IS DONE TO SET UP
FOR THE VERIFICATION OF THE
LATERAL AIA'S OF EACH AIA ON THE
INPUT CHAIN.

CHANGE THE OFFSET OF THE FORWARD

Diagram 25.27.6 ILRVSPAQ (Part 1 of 2)

§-316 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

WORK AREA

VS§2.03.807

Processing

ese J—r

QTYPE

]:4_,-———?

THE INPUT CHAIN, CALLING
THE COMMON QUEUE VERIFIER
INTERFACE ROUTINE FOR EACH

- LOOP THROUGH THE AIA'S ON ﬁ

Output

IREG 15 lj RETURN
CODE

CALL THE COMMON ROUTINE TO
INTERFACE WITH THE QUEUE
VERIFIER. QTYPE=1 TO INDICATE
THE QUEUE IS A

SINGLE-THREADED, SINGLE-HEADED
QUEUE. AFTER ALL THE SWAP GROUPS
HAVE BEEN VALIDITY CHECKED,
RETURN TO THE CALLER. THE RETURN
CODE IS SET TO THE LARGEST
RETURN CODE PASSED BACK BY THE
QUEUE VERIFIER.

SWAP GROUP.
v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
FOR EACH AIA ON THE INPUT CHAIN, |ILRFRROT[COMORTN |25.27.

Diagram 25.27.6

ILRVSPAQ (Part 2 of 2)

Section 2: Method of Operation 5-317

VS2.03.807

Input Processing Output
FROM ASM
RECOVERY
ROUTINE
ILRVIOEQ:

REG 0 rds | ——A INITIALIZE QUEUE VERIFIER ﬁ [Rese] -y {ORK BREA

PARAMETER LIST WITH —_—
QVPLEVR

I0E PARAMETERS UNIQUE TO THE TR
QUPLHDR

) VERIFICATION OF AN IOE QUPLHDR
QVPLFPTR

QUEUE. QUPLFPTR

| REG 1 I L.SDWA

L
|REG 8 |L’W0RK AREA

CALL COMMON ROUTINE TO ﬁ IREG 15 IJ |g(E)ggRN I

|REG 13 I‘] SAVE AREA INTERFACE WITH THE QUEUE
| l VERIFIER.

o5 —»WORK_AREA I r—_—l

QTYPE v
—— TO CALLER

Notes Routine| Label Ref Notes Routine| Label Ref

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE FOR VERIFICATION
OF AN IOE QUEUE. THESE
PARAMETERS ARE THE ADDRESS OF
THE QUEUE HEADER (VALUE OF
REGISTER 0), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVIOE), AND THE OFFSET OF THE
FORWARD CHAIN POINTER (IOENEXT).

CALL COMMON ROUTINE TO SET UP ILRFRRO1|COMQRTN 53.27.
THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=1 TO
INDICATE THE QUEUE IS A
SINGLE-THREADED, SINGLE-HEADED
QUEUE.

Diagram 25.27.7 ILRVIOEQ (Part 1 of 1)

5-318 OS/VS2 System Logic Library Volume § (VS2.03.807)

Input

AIA-ACE

FROM ASM
RECOVERY
ROUTINE

VS82.03.807

Processing

e 1~ ,l___,,__:)

1 DWA
|REG Il_,s

ILRVAIAC:

IF THE STORAGE POINTED TO

BY REGISTER O CANNOT BE
REFERENCED, RETURN TO
CALLER.

IEAVEADV
ADDRESS VERIFIER

o

DIFFERENTIATE BETWEEN AIA

AND ACE BY OP CODE, AND
ROUTE CONTROL TO THE
APPROPRIATE ROUTINE FOR

FURTHER VERIFICATIONS.

A. AIA VERIFICATION
ROUTINE.

B. ACE VERIFICATION
ROUTINE.

l';'[

v
TO CALLER

=]

v
TO_ILRVAIA OR
ILRVACE

Qutput

Notes

Routine

Label Ref Notes

Routine| Label Ref

IF THE STORAGE POINTED TO BY
REGISTER ZERO CANNOT BE
REFERENCED, RETURN IS MADE TO
THE CALLER WITH A RETURN CODE OF
8, MEANING THAT THE ELEMENT IS
NEITHER AN AIA NOR ACE.

IF THE STORAGE CAN BE
REFERENCED, AN AIA IS
DISTINGUISHED FROM AN ACE BY
OPERATION CODE. SEPARATE
ROUTINES PERFORM FURTHER
VERIFICATIONS FOR AN AIA AND AN
ACE.

THE

A. AIA VERIFICATION ROUTINE.

B. ACE VERIFICATION ROUTINE.

IEAVEADV

ILRFRRO1

ILRFRRO1

IEAVEADV

ILRVAIA

ILRVACE %

Diagram 25.27.8

ILRVAIAC (Part 1 of 1)

Section 2: Method of Operation

5-319

Input

ENTRY ILRVAIA
RECOVERY
ROUTINE

H)IA 1—-' /

I REG 1 IL’SDWA
|

ENTRY
ILRVPCB

5 FCB/AIA |__| R

IREG 1]1_.SDWA
L]

. VS2.03.807

Processing

ILRVAIA:
IF INPUT ADDRESS IS NOT O,
CALCULATE PCB ADDRESS.

ILRVPCB: SECONDARY ENTRY
POINT.

IF INPUT ADDRESS IS NOT O,
DETERMINE IF PCB/AIA CAN
BE REFERENCED.

<:> TEAVEADV

ADDRESS VERIFIER

IF THE STORAGE CAN BE
REFERENCED, VERIFY THAT
THE STORAGE POINTED TO BY
PCBASCB CAN BE REFERENCED
AND CONTAINS THE ASCB
IDENTIFIER.

<::> TEAVEADV

ADDRESS VERIFIER

outtput

Notes

Routine

Label Ref Notes

Routine

Label

" Ref

FOR ENTRY ILRVAIA, IF INPUT
ADDRESS IS 0, A RETURN CODE OF 8
IS SET. OTHERWISE, THE OFFSET TO
THE PCB IS CALCULATED.

THIS IS THE ENTRY POINT FOR
ILRVPCH.

IF INPUT ADDRESS IS 0, A RETURN
CODE OF 8 IS SET. OTHERWISE,
VERIFY THAT THE STORAGE POINTED
TO BY THE PCB ADDRESS CAN BE
REFERENCED. IF IT CANNOT, A
RETURN CODE OF 8 IS SET.

IF THE PCB/AIA CAN BE
REFERENCED, VERIFY THAT THE
STORAGE POINTED TO BY PCBASCB
CAN ALSO BE REFERENCED. IF IT
CANNOT, A RETURN CODE OF 8 IS
SET. IF IT CAN BE REFERENCED,
THE ASCBASCB FIELD IS CHECKED
FOR THE ACRONYM 'ASCB'. IF THE
ACRONYM IS NOT THERE, A RETURN
CODE OF 8 IS SET.

IEAVEADV

IEAVEADV

IEAVEADV

IEAVEADV

Diagram 25.27.9

ILRVAIA/ILRVPCB (Part 1 of 2)

5-320 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VdL.U3.8V/

Input Processing Output
IF STORAGE IS A PCB/AIA,
VERIFY THAT IT DOES NOT
CONTAIN BAD DATA.
RETURN TO CALLER WITH ﬁ lREG 15 l-! lggggRN I
RETURN CODE INDICATING
SUCCESS OR FAILURE.
v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
IF THE PREVIOUS VERIFICATIONS
ARE SUCCESSFUL, PERFORM
VERIFICATIONS TO CHECK FOR BAD
DATA (AIAOP=X'00'). IF THIS
VERIFICATION FAILS, A RETURN
CODE OF 4 IS SET.
RETURN IS MADE TO THE CALLER
WHEN AN ERROR IS FOUND OR
VALIDITY CHECKING IS COMPLETE.
THE POSSIBLE RETURN CODES ARE:
A. O - ELEMENT PASSED ALL TESTS.
B. 4 - ELEMENT IS A PCB/AIA, BUT
IT CONTAINS BAD DATA.
C. 8 - ELEMENT 1S NOT A PCB/AIA.
Diagram 25.27.9 ILRVAIA/ILRVPCB (Part 2 of 2)
Section 2: Method of Operation

5-321

VS2.03.807

ovtput .

Input Processing
FROM ASM
RECOVERY
ROUTINES

ILRVACE:

A

SACE l_l

REG 1 SDWA
[h-f

IF INPUT ADDRESS IS NOT O,
DETERMINE IF ENTIRE ACE
CAN BE-REFERENCED.

<:> TEAVEADV

ADDRESS VERIFIER

IF STORAGE CAN BE

REFERENCED, VERIFY THAT
ACELGE POINTS TO A VALID
LGE.

IF ACELGE POINTS TO A
VALID LGE, VERIFY THAT
ACELGID EQUALS LGELGID.

RETURN TO CALLER WITH
RETURN CODE INDICATING
SUCCESS OR FAILURE.

—

l__:l

IREG 15 |J RETURN
CODE

REFERENCED, VERIFY THAT ACELGE
POINTS TO A VALID LGE. IF IT
'DOES NOT POINT TO A VALID LGE, A
RETURN CODE OF 8 IS SET.

IF THE PREVIOUS VERIFICATIONS
ARE SUCCESSFUL, CHECK FOR BAD
DATA BY VERIFYING THAT ACELGID
EQUALS LGELGID. IF IT DOES NOT,,
A RETURN CODE OF 4 IS SET.

RETURN IS MADE TO THE CALLER
'WHEN AN ERROR IS FOUND OR

VALIDITY CHECKING IS COMPLETE.
THE POSSIBLE RETURN CODES ARE:

A. O - ELEMENT PASSED ALL TESTS.

B. 4 - ELEMENT IS AN ACE BUT

v
TO CALLER
Notes Routine} Label Ref Notes Routine| Label Ref
CONTAINS BAD DATA.
IF INPUT ADDRESS IS 0, A RETURN |IEAVEADV|IEAVEADV
CODE OF 8 (NOT AN ACE) I§ SET.
C. 8 - ELEMENT IS NOT AN ACE.
OTHERWISE, VERIFY THAT THE
STORAGE POINTED TO BY THE ACE
ADDRESS CAN BE REFERENCED. IF IT
CANNOT, A RETURN CODE OF 8 IS
SET.
IF THE STORAGE CAN BE ILRFRROT|ILRVLGE |25.27.

Diagram 25.27.10

ILRVACE (Part 1 of 1)

5322 OS/vS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

FROM ASM
RECOVE!
ROUTINE

S|
RY

~E K A

[rRec 1 |1 . sowa
1

ILRVLGE:

IF INPUT ADDRESS IS NOT O,
DETERMINE IF THE ENTIRE
LGE CAN BE REFERENCED.

<:> IEAVEADV

ADDRESS VERIFIER

IF STORAGE CAN BE

REFERENCED, VERIFY THAT
STORAGE POINTED TO BY
LGEASPCT CAN BE REFERENCED
AND CONTAINS THE ASPCT
IDENTIFIER.

<:> TEAVEADV
ADDRESS VERIFIER

IF STORAGE IS AN LGE,
VERIFY THAT THE LGE DOES
NOT CONTAIN ANY BAD DATA.

RETURN TO CALLER WITH
RETURN CODE INDICATING
SUCCESS OR FAILURE.

Output

—

lREG 15 I-I RETURN
CODE

l':'l

v
TO CALLER

Notes Routine| Label Ref Notes Routine| Label Ref
VALIDITY CHECKING IS COMPLETE.
IF INPUT ADDRESS IS 0, A RETURN | IEAVEADV|IEAVEADV
THE POSSIBLE RETURN CODES ARE:
CODE OF 8 (NOT AN LGE) IS SET.
OTHERWISE, VERIFY THAT THE
A. 0 - ELEMENT PASSED ALL TESTS.
STORAGE POINTED TO BY THE LGE
ADDRESS CAN BE REFERENCED. IF IT
B. 4 - ELEMENT IS AN LGE BUT
CANNOT, A RETURN CODE OF 8 IS
CONTAINS BAD DATA.
SET.
C. 8 - ELEMENT IS NOT AN LGE.
IP THE LGE CAN BE REFERENCED, IEAVEADV | IEAVEADV

VERIFY THAT THE STORAGE POiNTED
TO BY LGEASPCT CAN ALSO BE
REFERENCED. IF THIS STORAGE
CANNOT BE REFERENCED, A RETURN
CODE OF 8 IS SET. IF IT CAN, THE
ASPIDENT FIELD IS CHECKED FOR
THE ACRONYM 'ASPC'. IF THE
ACRONYM IS NOT THERE, A RETURN
CODE OF 8 IS SET.

IF THE PREVIOUS VERIFICATIONS
ARE SUCCESSFUL, CHECK FOR AN LGE
CONTAINING BAD DATA BY VERIFYING
THAT LGELGID EQUALS ASPLGID. IF
IT DOES NOT, A RETURN CODE OF 4
{(BAD DATA) IS SET.

RETURN IS MADE TO THE CALLER
WHEN AN ERROR IS FOUND, OR

Diagram 25.27.11

ILRVLGE (Part1of1)

Section 2:

Method of Operation 5-323

Processing

VS§2.03.807

output

Input
FROM ASM
RECOVERY
ROUTINE
ILRVSCCW:

REG 0

A\

SCCW |

|RBG 1 II_,SDWA

Tl

IF THE INPUT ADDRESS IS
» DETERMINE IF THE
ENTIRE SCCW CAN BE

NOT O

REFERENCED.

o

IEAVEADV

ADDRESS VERIFIER

IF THE SCCW CAN BE

REFERENCED, VERIFY THAT
THE STORAGE IS IN THE

NUCLEUS,

AND THAT IT
CONTAINS THE SCCW

IDENTIFIER.

IF THE STORAGE IS AN SCCW,
VERIFY THAT THE SCCW DOES
NOT CONTAIN ANY BAD DATA.

RETURN CODE OF 8 (NOT AN SCCW)
IS SET. OTHERWISE, VERIFY THAT
THE STORAGE POINTED TO BY THE
SCCW ADDRESS CAN BE REFERENCED.
IF IT CANNOT, A RETURN CODE OF 8
IS SET.

IF THE STORAGE CAN BE
REFERENCED, VERIFY THAT THE
STORAGE IS IN THE NUCLEUS (<
CVTNUCB). IF IT IS NOT, A RETURN
CODE OF 8 IS SET. ALSO VERIFY
THAT THE SCCWID FIELD CONTAINS
THE SCCW IDENTIFIER, X'87'. IF
IT IS NOT THERE, A RETURN CODE
OF 8 IS SET.

IF THE PREVIOUS VERIFICATIONS
ARE SUCCESSFUL, MAKE THE
FOLLOWING TESTS TO CHECK FOR BAD
DATA. IF ANY OF THESE TESTS
FAIL, A RETURN CODE OF 4 IS SET.
A. CHECK THAT THE FIRST BYTE OF
SCCWSEEK IS THE SEEK COMMAND
CODE (X'0B').

CHECK THAT THE FIRST BYTE OF

COMMAND CODE (X'23').

C. CHECK THAT THE DATA ADDRESS
OF SCCWSSEC IS THE ADDRESS OF
SCCWSECT.

RETURN IS MADE TO THE CALLER
WHEN AN ERROR IS FOUND OR
VALIDITY CHECKING IS COMPLETE.
THE POSSIBLE RETURN CODES ARE:

A. O - ELEMENT PASSED ALL TESTS.

B. 4 - ELEMENT IS AN SCCW BUT

CONTAINS BAD DATA.

C. 8 - ELEMENT IS NOT AN SCCW.

RETURN TO CALLER WITH A -—_—-r; [Rec 15—]I RETURN
- RETURN CODE INDICATING
SUCCESS OR FAILURE.
v
TO CALLER
Notes Routine| Label Ref Notes Routine] Label Ref
SCCWSSEC 1S THE SET SECTOR
IF THE INPUT ADDRESS IS 0, A IEAVEADV| IEAVEADV

Diagram 25.27.12

ILRVSCCW (Part 1 of 1)

5§-324 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM ASM

I-L_> ILRVPCWQ:
WORK AREA

[rec © ird || —4 INITIALIZE QUEUE VERIFIER ::L|—> [fss]

PARAMETER LIST WITH

QVPLEVR
PCCW PARAMETERS UNIQUE TO THE QUPLIDR
VERIFICATION OF A PCCW .

QVPLFPTR
QUEUE.

[REG 1 I-L_’snwn
L I

REG 8 1 WORK AREA

CALL COMMON ROUTINE TO ———I',ZD [rRec 15]4 Iggggm |
REG 13 SAVE AREA INTERFACE WITH THE QUEUE

s
[] VERIFIER.

— '_’wom(AREA I | I

QTYPE

v
TO CALLER

Notes Routine| Label Ref Notes Routine| Label Ref

- INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE TO THE
VERIFICATION OF A PCCW QUEUE.
THESE PARAMETERS ARE THE ADDRESS
OF THE QUEUE HEADER (VALUE OF
REGISTER 0), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVPCCW), AND THE OFFSET OF
THE FORWARD CHAIN POINTER
(PCCWPCCW) .

- CALL COMMON ROUTINE TO SET UP ILRFRRO1{COMQRTN %
THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=1 TO
INDICATE THE QUEUE 1S A
SINGLE-HEADED, SINGLE-THREADED
QUEUE.

Diagram 25.27.13 ILRVPCWQ (Part 1 of 1)

Section 2: Method of Operation 5 - 325

VS2.03.807

* Input Processing) ‘Output
FROM ASM
RECOVERY
ROUTINE
ILRVPCCW:
PCCW -
REG 0 '—>l l] —— IF THE INPUT ADDRESS IS.
-'-JI NOT O, DETERMINE IF THE
ENTIRE PCCW CAN BE
IREG 1 l SDWA
L>'] REFERENCED.

<:> TEAVEADV

ADDRESS VERIFIER

IF THE PCCW CAN BE

REFERENCED, VERIFY THAT
THE STORAGE IS IN THE
NUCLEUS AND THAT IT
CONTAINS THE PCCW
IDENTIFIER.

VERIFY THAT THE PCCW DOES
NOT CONTAIN BAD DATA.

RETURN TO CALLER WITH A ::::::::::!}:::> REG 15 I gEEgRN

SUCCESS OR FAILURE.

RETURN CODE INDICATING

v
TO CALLER

Notes Routinel Label Ref Notes Routine| Label Ref
IF THE INPUT ADDRESS IS 0, A IEAVEADV{ IEAVEADV RETURN IS MADE TO THE CALLER

RETURN CODE OF 8 (NOT A PCCW) IS WHEN AN ERROR IS FOUND OR

SET. OTHERWISE, VERIFY THAT THE VALIDITY CHECKING IS COMPLETE.

STORAGE POINTED TO BY THE PCCW THE POSSIBLE RETURN CODES ARE:

ADDRESS CAN BE REFERENCED. IF IT

CANNOT, A RETURN CODE OF 8 IS A. O - ELEMENT PASSED ALL TESTS.

SET.

B. 4 - ELEMENT IS A PCCW BUT

CONTAINS BAD DATA.
IF THE STORAGE CAN BE

REFERENCED, VERIFY THAT THE
STORAGE IS IN THE NUCLEUS (<
CVTNUCB) . IF IT IS NOT, A RETURN
CODE OF 8 IS SET. ALSO CHECK
THAT THE PCCWID FIELD CONTAINS .
THE IDENTIFIER X'86'. IF IT DOES
NOT, A RETURN CODE OF 8 IS SET.

C. 8 - ELEMENT IS NOT A PCCW.

MAKE THE FOLLOWING TESTS TO
CHECK FOR BAD DATA. IF ANY OF
THESE TESTS FAILS, A RETURN CODE
OF 4 IS SET.

A. CHECK THAT THE FIRST BYTE OF
PCCWSRCH IS THE SEARCH
COMMAND CODE (X'31').

B. CHECK THAT THE FIRST BYTE OF
PCCWTIC IS THE TIC COMMAND
CODE (X'08').

Diagram 25.27.14 ILRVPCCW (Part 1 of 1

§-326 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
FROM ASM
RECOVERY
ROUTINE
ILRVPCBQ:
SDWA WORK AREA
REG 1 —> A INITIALIZE QUEUE VERIFIER _.-—»
I | ———
PARAMETER LIST WITH —
QUPLEVR
PARAMETERS UNIQUE TO THE
IREG 2 | RSMHD QVPLHDR
1, VERIFICATION OF THE
QVPLFPTR
—_— RSMLIOQ. o=
RSMLIOQ QVPLTRLR
QVPLBPTR
REG 8 |1 WORK AREA
RSMHD
CALL COMMON ROUTINE TO —
[REG 13 | SAVE AREA p——
Ly INTERFACE WITH THE QUEUE —_—
l:___) RSMLIOQ
VERIFIER. o
WORK AREA l ;
REG 8 — :
_ I lREG 15 IJ RETURN :
QTYPE v CODE {
TO CALLER
i
|
1
i
{
i i
l
Notes Routine| Label Ref Notes Routine| Label Ref

INITIALIZE THE PARAMETERS OF THE
QUEUE VERIFIER PARAMETER LIST
THAT ARE UNIQUE TO THE
VERIFICATION OF THE RSMLIOQ.
THESE PARAMETERS ARE THE ADDRESS
OF THE QUEUE HEADER (RSMLIOQF),
THE ADDRESS OF THE QUEUE TRAILER
(RSMLIOQL), THE ADDRESS OF THE
ELEMENT VERIFICATION ROUTINE
(ILRVPCB) , THE OFFSET OF THE
FORWARD CHAIN POINTER (PCBFQP, 3
BYTE POINTER), AND THE OFFSET OF
THE BACKWARD CHAIN POINTER
(PCBBQP, 4 BYTE POINTER).

CALL COMMON ROUTINE TO SET UP
THE INTERFACE FOR THE QUEUE
‘VERIFIER. SET QTYPE=3 TO
INDICATE THE QUEUE IS A
DOUBLE-HEADED, DOUBLE-THREADED
QUEUE.

ILRFRRO1

COMQRTN |25.27.
20

Diagram 25.27.15 ILRVPCBQ (Part 1 of 1)

‘Section 2: Method of Operation 5 - 327

VS2.03.807

Input) Processing outpght

ENTRY ILRVACEQ
ILRVACQ2

ILRVACEQ:

PARAMETER LIST WITH

[rec 0 Erdi] N INITIALIZE QUEUE VERIFIER :—L-|—> e K BRER

AC PARAMETERS UNIQUE TO THE {ovPLEVR
E B —
[] VERIFICATION oi AN ACE QVPLHDR
QUPLFPTR
QUEUE.

REG 1 1 SDWA
|REG 8 h WORK AREA

CALL COMMON ROUTINE TO ﬁ 'REG 15 I-I légggkﬂ |

VERIFIER.

5 . WORK_AREA I I |

TYPE A
g TO CALLER

IREG 13 h SAVE AREA INTERFACE WITH THE QUEUE

Notes Routine| Label Ref Notes Routine| Label Ref

ENTRY IS FROM ASM RECOVERY
ROUTINES. INITIALIZE THE
PARAMETERS OF THE QUEUE VERIFIER
PARAMETER LIST THAT ARE UNIQUE
TO THE VERIFICATION OF AN ACE
QUEUE. THESE PARAMETERS ARE THE
ADDRESS OF THE QUEUE HEADER
(VALUE OF REGISTER 0), THE
ADDRESS OF THE ELEMENT
VERIFICATION ROUTINE (ILRVACE),
AND THE OFFSET OF THE FORWARD
CHAIN POINTER (ACESRBWK FOR
ENTRY ILRVACEQ, ACEFQPA FOR
ENTRY ILRVACQ2).

CALL COMMON ROUTINE TO SET UP ILRFRRO1{COMQRTN
THE INTERFACE FOR THE QUEUE
VERIFIER. SET QTYPE=1 TO
INDICATE THE QUEUE IS A
SINGLE-HEADED, SINGLE-THREADED
QUEUE.

Diagram 25.27.16 ILRVACEQ (Part1 of 1)

§-328 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

FROM ASM
RECOVERY
ROUTINE

V$2.03.807

Processing

A

IORB |

[REG 0 | r*1 l._.] >

IREG 1 h SDWA

ILRVIORB:

IF INPUT ADDRESS IS NOT O,
DETERMINE IF ENTIRE
IORB-IOSB-SRB COMBINATION
CAN BE REFERENCED.

Q IEAVEADV

ADDRESS VERIFIER

VALIDITY CHECK IORB

STORAGE:

A. CHECK FOR IORB
IDENTIFIER.

B. CHECK THAT IORPARTE
POINTS TO A PARTE.

<:> IEAVEADYV

ADDRESS VERIFIER

VALIDITY CHECK IOSB
STORAGE:

A. CHECK IOSDVRID.

B. CHECK IOSASID.

. REFRESH IORB FIELDS.

Output

IORB

o]~

IORFRPS
IORIOSB
IORSAVE

Notes Routine| Label Ref Notes Routine| Label Ref
A. CHECK THAT IOSDVRID CONTAINS
IF INPUT ADDRESS IS O, A RETURN |I1EAVEADV| IEAVEADV !
. IOSMISID (THE MISCELLANEOUS
CODE OF 8 (NOT AN IORB-IOSB-SRB) 10)
IS SET. OTHERWISE, VERIFY THAT
THE STORAGE POINTED TO BY THE
B. CHECK THAT IOSASID CONTAINS 1
IORB ADDRESS CAN BE REFERENCED.
(MASTER SCHEDULER'S ADDRESS
IF IT CANNOT, A RETURN CODE OF 8
SPACE ID).
IS SET.
IF ALL PREVIOUS VERIFICATIONS
IF THE STORAGE CAN BE
ARE SUCCESSFUL, REFRESH IORB
REFERENCED, VALIDITY CHECK THE
FIELDS ORIGINALLY SET BY
IORB STORAGE. IF ANY OF THE)
ILROPSOO: THE IORFRPS FLAG,
TESTS FAIL, A RETURN CODE OF 8
IORSAVE, AND IORIOSB.
IS SET.
A. CHECK THAT IORID CONTAINS THE
IORB IDENTIFIER, X'88'.
B. VERIFY THAT THE STORAGE IEAVEADV | IEAVEADV
POINTED TO BY IORPARTE CAN BE
REFERENCED. IF IT CAN, CHECK
THAT THE PARTE INDICATED BY
PARENN (OR SARTE INDICATED BY
SRENN, IF IORSWAP IS ON) IS
THE SAME AS IORPARTE.
IF THE IORB VALIDITY CHECKS,
VALIDITY CHECK THE IOSB STORAGE.
IF ANY TEST FAILS, A RETURN CODE
OF 8 IS SET.

Diagram 25.27.17

ILRVIORB (Part 1 of 2)

Section 2: Method of Operation

5§-329

Input

VS2.03.807

Processing

REFRESH IOSB FIELDS.

REFRESH SRB FIELDS.

RETURN TO CALLER WITH
INDICATION OF SUCCESS OR
FAILURE,

-

[:_]—[-:')

\4
TO CALLER

Output

SRB
SRBPTR —>

IREG 15. I-I RETURN
CODE

Notes Routine

Label Ref Notes

Routine| Label

Re:

H

REFRESH IOSB FIELDS ORIGINALLY
SET BY ILROPSQ0: FLAGS IOSCC3WE,
IOSIDR, IOSPESLL, IOSTSLL, AND
FIELDS IOSPGAD, IOSSRB, IOSUSE,
IOSNRM, IOSABN, IOSDIE (WITH
HIGH ORDER BIT ON), AND IOSFMSK.

REFRESH SRB FIELDS: SRBID,
SRBPARM, AND SRBPRIOR.

RETURN IS MADE TO THE CALLER
WHEN AN ERROR IS FOUND OR THE
REFRESH IS COMPLETE. THE
POSSIBLE RETURN CODES ARE:

A. 0 - STORAGE PASSED ALL TESTS
AND WAS REFRESHED.

B. 8 - STORAGE IS NOT AN
IORB-IOSB-SRB.

Diagram 25.27.17 ILRVIORB (Part 2 of 2)

§-330 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing
FROM ASM
RECOVERY
ROUTINE
ILRVIOE:

A

Fre 1-f ,I__,,____>

REG 1 SDWA
{ —

IF INPUT ADDRESS IS NOT O,
DETERMINE IF ENTIRE IQGE
CAN BE REFERENCED.

<:> TEAVEADV

ADDRESS VERIFIER

IF IOE CAN BE REFERENCED
AND AN AIA IS CHECKPOINTED

IN THE IOE, ROUTE CONTROL q
TO THE AIA VERIFICATION TO ILRVAIA

=

ROUTINE TO VERIFY THE AIA.

RETURN TO CALLER WITH

output

[rEG 15 |7 [RETurn
| CODE

RETURN CODE INDICATING
SUCCESS OR FAILURE.

=]

Notes

Routine

Label Ref Notes

Routine| Label Ref

IF INPUT ADDRESS IS 0, A RETURN

CODE OF 8 (NOT AN IOE) IS SET.
OTHERWISE, VERIFY THAT THE
STORAGE POINTED TO BY THE IOE
ADDRESS CAN BE REFERENCED. IF IT
CAN NOT, A RETURN CODE OF 8 IS
SET.

IF THE STORAGE CAN BE REFERENCED
AND IOEAIA IS NOT O, THE AIA
VERIFICATION ROUTINE IS GIVEN
CONTROL TO VERIFY THE AIA. THIS
ROUTINE WILL RETURN DIRECTLY TO
THE CALLER OF ILRVIOE.

RETURN IS MADE TO THE CALLER
WHEN AN ERROR IS FOUND OR IF
ILRVAIA HAS NOT BEEN GIVEN
CONTROL. THE POSSIBLE RETURN
CODES ARE:

A. O - ELEMENT PASSED ALL TESTS.

B. 8 - ELEMENT IS NOT AN IOE.

IEAVEADV

ILRFRRO1

IEAVEADV

ILRVAIA %5‘27.

Diagram 25.27.18

ILRVIOE (Part1 of 1)

Section 2: Method of Operaﬁon 5-331

Input

FROM PURGEI
(IEAVEPDQ)DQ

= 4
Jjj B

Processing

V$2.03.807

ILRPSRMT:

RE-SCHEDULE THE SRB

DEQUEUED BY PURGEDQ.

RETURN TO PURGEDQ.

=]

v
TO PURGEDQ

Output

Notes

Routine

Label Ref

Notes

Routine

Label

Ref

THE SRB'S FOR PART MONITOR AND
SWAP DRIVER SHOULD NOT BE
PURGED. IF PURGEDQ IS EVER
CALLED TO PURCE ALL SRB'S IN THE
MASTER SCHEDULER'S ADDRESS
SPACE, THIS ROUTINE RESCHEDULES
THE SRB THAT WAS PURGED.

Diagram 25.27.19 ILRPSRMT (Part 1 of 1)

5-332 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V§2.03.807

Input Processing Output
FROM _ASM_OUEUE
VERIFICATION
ROUTINES
COMQRTN:
SDWA
REG 1 — A IF QTYPE > 1 AND THE VALUE_——': [rec 15 | |§gggnw I
L | OF THE HEADER ELEMENT IS
0, SET THE VALUE OF THE
[rec 8] WORK AREA
1, TRAILER ELEMENT TO O AND
RETURN.
QTYPE
[Rec 13]y save area] l
L’ v
[| TO CALLER
WORK AREA
COMPLETE THE REG 8 —>
INITIALIZATION OF THE i!:::> —
QUPLODA
QUEUE VERIFIER PARAMETER =
QUPLWKA
LIST. it
CALL ONE OF THE QUEUE
SDWA
VERIFIER ROUTINES REG O rb::
ACCORDING TO THE QTYPE
SPECIFIED.
[REG 1 _pARM LIsT
<:> TEAVEQUX L 1
QUEUE VERIFIER
[REc 13~ |4 save area
CONVERT RETURN INFORMATIOI ‘ {]
' FROM QUEUE VERIFIER INTO
RETURN CODE INDICATING —
[Rec 15 [rETURN
SUCCESS OR FAILURE. CODE
v
TO CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
C. QTYPE=3, VERIFY TEAVEQUO | IEAVEQV3
FOR DOUBLE-HEADED QUEUES (QTYPE
DOUBLE-THREADED,
> 1), CHECK THE VALUE OF THE
DOUBLE-HEADED QUEUE.
 HEADER ELEMENT FOR 0. IF IT IS
0, NO FURTHER VERIFICATION NEEDS
TO BE DONE. INSURE THAT THE THE QUEUE VERIFIER RETURNS
VALUE OF THE TRAILER ELEMENT IS INFORMATION ABOUT HOW THE QUEUE
ALSO O AND RETURN TO THE CALLER. WAS CORRECTED IN ADDITION TO A
IF THE HEADER ELEMENT IS NOT RETURN CODE INDICATING WHETHER
ZERO, CONTINUE. ANY ERRORS WERE FOUND. PRESERVE
ONLY THE RETURN CODE.
INITIALIZE THE COMMON PARAMETERS
FOR THE QUEUE VERIFIER, SUCH AS
THE ADDRESS OF THE VARIABLE
RECORDING AREA IN THE SDWA AND
THE ADDRESS OF THE WORKAREA FOR
THE QUEUE VERIFIER.
CALL THE APPROPRIATE QUEUE
VERIFIER ROUTINE ACCORDING TO
THE QTYPE SPECIFIED BY THE
CALLER.
A. QTYPE=1, VERIFY IEAVEQUVO | IEAVEQV1
SINGLE-THREADED,
SINGLE-HEADED QUEUE.
B. QTYPE=2, VERIFY IEAVEQVO | IEAVEQU2
SINGLE-THREADED,
DOUBLE-HEADED QUEUE.

Diagram 25.27.20 COMQRTN (Part 1 of 1)

Section 2: Method of Operation §- 333

Service Routines

This section describes three service routines in
ASM:
« ILRPEX — Pool Extender,
e ILRTERMR — Address Space Termination
Resource Manager,
o ILRFMT00 — Control Block Formatter.

Pool Extender

The Pool Extender routine (ILRPEX) expands a
pool of control blocks or work areas if the pool
becomes temporarily empty. The ILRGMA macro
(issued in mainline ASM routines) passes control to
ILRPEX. Input to ILRPEX is the address of the
appropriate pool controller. The pool controller
contains the size of each cell and the number of
cells to build for the expansion. ILRPEX obtains
sufficient space from SQA and formats it by
chaining together cell-sized portions of the storage.
ILRPEX returns the first cell to the caller and places
the remaining cells on the available queue of the
pool controller.

Address Space Termination Resource
Manager

The ASM Address Space Termination routine
(ILRTERMR) provides clean-up of ASM resources
during normal or abnormal address space
termination and attempts to recover auxiliary
storage resources from an address space that is
terminating abnormally. All ASM resources for the
address space including storage, control blocks, and
auxiliary storage slots, are freed or marked to be
freed when in-process operations complete.

RTM (Recovery Termination Manager) gives
control to ILRTERMR during termination of any
address space. ILRTERMR attempts to free auxiliary
storage slots assigned to private area address space
pages and VIO data set logical groups. Abnormal
address space terminations are not scheduled while
the address space is swapped out. If the address is
swapped out, ASM tables for the address space are
unavailable; only swap sets assigned to the address
space can be freed.

'5-334 0S/VS2 System Logic Library Volume 5 (VS§2.03.807)

v§2.03.807

The ASM termination routine also receives
control during normal address space termination.
This is a safety-valve type operation to assure that
all auxiliary storage resources assigned to an
address space have in fact been freed. If resources
have not been freed, an error is assumed to have
occurred and the error is recorded before
attempting to free the resources.

Another entry point of ILRTERMR (ILRSLTRV)
receives control during memory creation (from
IEAVITAS) to determine if there are enough slots to
create a new memory.

Control Block Formatter

The system dump-printing routine (AMDPRDMP)
invokes the Control Block Formatter (ILRFMT00).
ILRFMTO0 calls ILRFMTPG, ILRFMTSW, and
ILRFMTCYV to format ASM and shared RSM control
blocks. The control blocks are contained in storage
areas passed by AMDPRDMP. Formatting is done as
follows:

1. Beginning from the CVT address passed in
the input parameter list, the routine attempts
to access the ASMVT. If successful, it formats
the ASMVT (including the bad slot error
record, message buffer, ACEs and AIAs).

2. Calls module ILRFMTPG to format the PART
and its associated blocks (AlAs, IOEs, PARTEs,
PCTs, PATs, IORBs, I0OSBs and PCCWs).

3. Calls ILRFMTSW to format the SART and its
associated blocks (AIAs, SARTEs, SATs, SDCTs,
IORBs, I0SBs and SCCWs).

4. Calls module ILRFMTCV at entry point
ILRFMTC to format the common service area
page tables (PGTs) and external page tables
(XPTs).

5. Calls module ILRFMTCV at entry point
ILRFMTH for each address space to format
RSMHD, SPCT, ASMHD, AlAs and private area
PGT/XPTs.

6. Calls module ILRFMTCV at entry point
ILRFMTV to format LGVT and its associated
blocks (LGEs, ASPCTs, LPMEs, ASSTs,
AIA/ACEs).

VS§2.03.807

6

Service Routines

25.28

Termination

Address Space

(ILRTERMR)

25.x. — Module

25.x.y. — Entry point in module 25.x.

25.29 25.30
Pool Expansion ASM Control
Block Formatter
(ILRPEX) (ILRFMT00)
25.30 25.30 25.30

Swap Formatter
(ILRFMTSW)

Page Formatter
(ILRFMTPG)

VIO Formatter
(ILRFMTCV)

Figure 2-62. Service Routines Overview

Section 2: Method of Operation . 5-335

VS2.03.807

Input Processing Ovtput

FROM RTM
(LEAVTMTC)
ILRTERMR:

OBTAIN SALLOC. ESTABLISH
RECOVERY.

RMPL
#[: : NORMAL TERMINATION.
A. INDICATE LS A
'DASCB AVAILABLE 2

S B. UPDATE AIAS ON LOCAL
I/0 QUEUE.
RSMHD SPCT l C. GOTO STEP 4,
>
T ——
I/0 QUEUE I

ABNORMAL TERMINATION:

A. IF LSOA IS AVAILABLE,
GOTO STEP 3D.

B. IF LSOA IS UNAVAILABLE,
MARK IT UNAVAILABLE.
C. IF A SWAP-OUT IS IN
PROCRBAS
COMPL LETED AND UNSTARTED
LSoa SLOTS. 'SAVE
/AIA
D. INDICATE LSQA IS
AVAILABLE.
E. VALIDITY CHECK SEGMENT
TABLE, IF ERROR, GOTO
STEP 2B.
F. UPDATE AIAS ON LOCAL
1/0 QUEUE.
Notes Routine| Label Ref Notes Routine| Label Ref
IN ORDER TO RECORD THE ERROR,
ILRTERMR RECEIVES CONTROL FROM LSoA 1S MARKED UNAVAILABLE
R/TM_DURING TERMINATION OF ANY AND PROCESSING CONTINUES At
ADDRESS SPACE. ALL ASM RESOURCES STEP 2B. IF A SWAP-IN FAILURE
FOR THE ADDRESS SPACE, INCLUDING HAS OCCURRED D (RSMFAIL=1),
STORAGE, CONTROL BLOCKS AND MARK LSOA U BLE.
AUXILIARY STORAGE SL AR CONTINUE AT STEP 2B.
FREED OR KE E FREED WHEN
INCPROCRSS OPERATIONS COMPLETE.
THE SALLOC_IS OBTAINED IN ORDER C. IF A _SWAP-OUT IS IN PROGRESS, |ILRFRSLT|ILRFRSL1
TO SERIALIZE ASM/RSM PROCESSING. THE SLOTS ALLOCATED TO
AN FRR IS ESTABLISHED FOR COMPLETED LSQA FRAMES ARE ILRFRSLT{ ILRFRSW1
RECOVERY. TERMRFRR, ANOTHER FREED BY SCANNING THE CAPTURE
ENTRY IN ILRTERMR, HANDLES QUEUE. ALL AIAS ARE REMOVED TERMSOUT
ERRORS OCCURRING IN ILRTERMR. 'ROM_THE CAPTURE QUEUE AND
THE SWAP OUEUE D SAVED ON
AN INTERNAL QUEUE.
THE RMPL 1S CHECKED TO DETERMINE
IF THE ADDRESS SPACE D. SET LOCAL FLAG INDICATING
TERMINATING NORMALLY O THAT LSQA IS AVAILABLE.
ABNORMALLY. THE FOLLOWING I
DONE FOR “NORMAL TERMINATION:
E. THE SEGMENT TABLE IS VALIDITY
CHECKED TO PREVENT ANY
A. A _LOCAL FLAG OBVIOUS ERRORS. IF IT IS
INDICATING FHAT LSQA 1s INVALID, LSQA 1S, MARKED
AVAILABL UNAVATILABLE AND PROCESSING
CONTINUES AT STEP 2B.
B. THE LOCAL I/O QUEUE_IS TERMAIA1
SCANNED. ALL AYAS ARE MARKED F. THE LOCAL x/o guzus is TERMAIA1
TQ FREE THE SLOTS WHEN THE SCANNED. PROC, NG IS
OPERATION COMPLETES AND : TOENTIGAL WITH SRED 2B. AN TERMAIA2
ONBICATE THAT TERMINATION HAS ADDITIONAL SCAN OF THE QUEUE
PROCESSED THEM. IS MADE IF LSOA IS AVAILABLE.
XPTVALID 1S TURNED OFF Fi
INCOMPLETE, NON-VIO, NON-LSQA
C. CONTINUE COMMON PROCESSING AT WORK NOT KED TO_BE FREED
STEP4 . BECAUSE THE SLOT WILL RE
FREED WHEN THE OPERATION
COMPLETES. THIS PREVENTS
ILRTERMR FROM FREEING THE
ABNORMAL TERMINATION, THE SLOT IN LATER PROCESSING.
LSQA IS NEEDED TO PERFORM SOME
OF “THE CLEAN-UP.
A. IF LSOA IS AVAILABLE, AS
INDICATED BY RSMFAIL=0
RSMLSOAF=0, AND SWAP
PERATION IN PROCESS,
CONTINUE AT STEP 3D.
B. IF THE ADDRESS SPACE TERMRFRR
SWAPPED OUT RSMLSQAP—O&
IF A SWAP-IN IS IN T
BUT HAS NOT FAILED, AN ERKOR
EXISTS. A COD ABEND IS ISSUED

Diagram 25.28 ILRTERMR (Partl of 3)

5-336 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
RSMHD asMvT ACE
—A | [04] PERFORM VIO AspcT A ~
I BB a——— PROCESSING 1F 'LSOA 18 — [RELEASE 1G]
AVATLABLE, FREE ONSAVED
SLOTS.
ASMHD LGVT
A PERFORM_VIO COMMON —_—
- | | e PROCESSING - CLEAN UP VIO BKSLT
‘ WORK . —
LGVTE
LGE A. FREE AIA WORK ELEMENTS
> ‘ SAVE AIAS WHICH ARE
|]1] |zevre NOT IN PROCESS"ON
— INTERNAL QUEUE (SEE
055 307,
AIA/ACE B. FREE ACES WHICH DO NOT
» LoE NEED ANY MORE WORK
> C. BLACE RELEASE LG ACES =1\
K-MODE RELEASE
aspCT [o
. D. FREE LGES AND MAKE
LGVTES AVAILABLE.
Notes Routine| Label Ref Notes Routine{ Label Ref
1§ AVAILABLE, ASPCT ILRFRSLT | ILRFRSL1
BROCEREING T DORE AL TGE'S
EGED FROM_THE ASMHD ARE ILRALS00
ROCESSED. V1O S ARE FREED.
THRGE AR UNSAVED SLOTS. OR
SLOTS RELEASED AFTER SAVE.
IN PROCESS VIO WORK IS CLEANED TERMVIO

UP _AND GLOBAL RESQURCES ARE
FREED. ALL LGE'S gUBUBD FROM THE
ASMHD ARE PROCES

A. ALL ELEMENTS ARE
F@ UED FROM THE LGE PROCESS
8“ UE AIAS WH CH ARE FOR

PROCESS) ARE SA A()N ANIN
o%RNAL EUE_SINCE THEY
Wllyab NEVER BE FREED ANY OTHER

w
.

ALL ACES ARE DEQUEUED AND ILRGMA
TASK E RELEASE PROCB NG
IS NEEDED.

RELEASE LG ACES NEEDING TASK
MODE RELEASE PROCESSING ARE
PLACED ON THE TASK MODE
RELBAS EU ANCHORED IN THE

ASMVT ., MODE

PROCESSING IS NOT POSTED AT
THIS TIME. THE RELEASE
PROCESSING WILL OCCUR WHEN
TASK MODE RELEASE PROCESSING
IS POSTED LATER.

P

D. 'I‘HB [GBEDAND SRB USED FOR vio
AVAILABLE BY QUEUEING THEM TO
THE AVAILABLE QUEUE IN THE

Diagram 25.28 ILRTERMR (Part 2 of 3)

Section 2: Method of Operation 5-337

Input

VS$2.03.807

Processing

ASMVT

FREE PRIVATE AREA SLOTS.

CALL IEAVPIOP TO FREE
PCB/AIAS AND FRAMES NO
LONGER NEEDED.

FREE RECOVERY AND SALLOC.

PURGE/DEQUEUE THE VIO SRB
IF IT IS SCHEDULED.

POST TASK MODE RELEASE ECB
IF THERE IS ANY TASK-MODE
RELEASE WORK.

[ce]
(7]
[ce]
(23]
[
(]

RETURN SLOTS TO UNRESERVED=enmd
COUNT.

v
RETURN TO RTM
 (IEAVTMTC)

Output
AsMVT ACE
T [ReLEAsE 1g]
BKSLT .

Routine

Notes

Label Ref Notes

Routine| Label Ref

ABNORMAL TERMINATION WITH
L§8A AVAILABLE, PRIVATE AKE
WHICH ARE B ALLOCATED

ILRFRSLT

ALL THE VAL
EXTERNAL PAGE S, AND
FREEING ALL SLOTS WHECH ARE
STILL MARKED VALID.

THE UNRESERVED SLOT COUNT IN THE
ASMVT IS UPDATED.

ALL PCB/AIAS (AND THEIR

IEAVPIOP
ASSOCIATED FRAMES) HICH ARE NO
LONGER EDED AR!

TARTED. ALL 0C
WILL BE FREED AS THEY COMPLETE
R%CgUSE OF THE FLAGGING OF THE

THE_FRR_IS DELETED AND THE
SALLOC IS RELEASED.

THE, VIO SRB IS PURGEéDEgUEUED IF
IT HAS BEEN_ S Is
NECESSARY SINCE THE_STORAGE
EED IF THE SRB IS ON
UEUE. THE SRB

FRI
A DISPATCHER
E FREED BY

E WILL
S.

LE THERE 1S ANY WORK ON THE TASK
Mobs RELEASE REQUEST QUEUE

B ASMUT, “THE TASK MODE BELEASE
PROCESSOR’ ECB TN THE AHVA 1S
POSTED.

ILRFRSL1
TERMPA

Diagram 25.28 [ILRTERMR (Part 3 of 3)

5-338 OS/VS System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807

Input Processing Output
FROM RTM
(IEAVTRTS)
TERMRFRR:
SDWA ATA
r SET UP ADDRESSABILITY
[WITHIN ILRTERMR AND TO
ILRTERMR'S WORKAREA.
SDWAPARM
OBTAIN ADDRESSABILITY TQ
MASTER SCHEDULER ADDRESS
SPACE.
INITIALIZE DATA IN SDWA
RECORDING AREA. Jres——
SDWA
IF A CONTROL BLOCK QUEUE
WAS BEINC PROCESSED, CALL
THE_APPROPRIA'
VERIFICATION ROUTINE.
<:> ILRVSPAQ ILRVPCBQ
OR ILRVLPRQ
ASM ROUTINES SDWA
AIAS
SET UP RETRY ADDRESS. —_—
—— - LE RETRY IS NOT POSSIBLE,
FREE ILRTERMR'S WORKAREA.
LGES - RETURN TO RTM.
:] v
IEAVTRTS
PCBS
Notes Routine| Label Ref Notes Routine| Label Ref
REGISTER 1 CONTAINS THE_ADDRESS
OF THE SDWA WHICH CONTAINS THE
ADDRESS OF THE ATA. ATA
CONTAINS OTHER NEEDED ADDRESSES
(RMPL, WORKAREA) .
TRAS IS NECESSARY TO GET
ADDRESSABILITY TO THE CORRECT
ADDRESS SPACE TO RECOVER.
THE FAILING CSECT NAME IS PUT IN
THE SDWA.
THE ROUTINES THAT COULD B ILRFRRO1|ILRVSPAQ
CALLED ARE: ILRVSPAQ, ILRVPCBQ,
NG ELRILERQ. ILRFRRO1{ ILRVPCBQ
ILRFRRO1 | ILRVLPRQ

THE_ADDRESS AT WHICH TO RETRY IS
IN ILRTERMR'S WORKAREA.

RETRY IS NOT POSSIBLE IF SO
INDICATED IN THE SDWA
(SDWARCDE) .

IF RETRY 1S POSSIBLE
WILL GET CONTROL AT
RETRY POINT.

ILRTERMR
frs NEXT

Diagram 25.28.1

TERMRFRR (Part 1 of 1)

Section 2: Method of Operation = 5-339

VS2.03.807

1nput Processing Output
FROM_INVOKER
OF ILRGMA
MACRO
E:) ILRPEX:
REG 1 POOL
CONTROLLER REQUEST SALLOC_LOCI
1~ v S0P CALL RS RECTSTERS IN
THE ASMVT.
IE THE SALLOC LocK
HELD BY THE CALLER nmovn
AN ACE CELL FROM THE
RESBRVECBGOL.
IF THE SALLOC_WAS NOT HELD
ON ENTRY, IT IS NOW HELD.
IF THE INPUT POOL IS NOT
EMPTY, REMOVE A CELL FROM
E POOL.
IF THE_ INPUT POOL IS EMPTY
AND THE CALLER DID NOT
HOLD THE SALLOC LOCK, SQA
SPACE_1S OBTAINED VIA
MAIN AND FORMATTED. THE
FIRST CELL FORMATTED
SAVED FOR RETURN TO Ti
REG 1
RELEASE THE SALLOC LOCK I
OBTAINED AND RETURN TO 'nm______,) 0 OR CELL
CALLER. ADDR
v
RETURN TO
CALLER.
Notes Routine| Label Ref Notes Rontine| Label Ref
THE ASM POOL EXTENDER, ILRPEX,
RECEIVES CONTROL FROM ANY ASM
ROUTINE INVOKING THE ILRGMA
MACRO WHEN THE BOOL BEING
ERGCESSED 1S EMPTY. ILRPEX WILL
BECALLED ONLY FOR EXPANBAB
POOLS. INPUT REGISTERS 13 AND 14
MUST BE SAVED ACROSS THE - SETLOCK
EOR THE SALLOC™LOCK. ONCE' THE
SALLOC LOCK 1S HELD
CALLER'S REGISTERS ARE szwsn IN
THE ASMVT WORK SAVE
REEERVED PR TLAPEK.
E RETURN CODE FROM THE SETLOCK
R AEUBST IS NON-ZERO IF THE
HELD SALLOC ON ENTRY. THE
ONLY POOL FROM WHICH CELLS CAN
BE_REQUESTED HOLDING SALLOC IS
THE ACE POOL. IF T!
CONTRGLLER ADDRESS WAS PASSED AS
INPUT, A CELL IS KEMOVED TO BE
um(mn TO THE CALLER. IF TI
FEOL WAS EMPTY OR FHE ACE. POOL
o NOT PASEED S5 INPUT. A’ 28RO
CELL ADDRESS IS RETURNED.
THE_SALLOC LOCK WAS OBTAINED BY
ILRPEX IF THE SETLOCK RETURN
CODE WAS ZERO. IN THIS CASE, THE
POOL MUST BE CHECKED TO SEE IF
IT HAD ALREADY BEEN EXPANDED BY
ILRPEX RUNNING ON ANOTHER CPU.
IF SO L, 1S NOT EMPTY AND
CELL IS REMOVED FROM THE POOL
20CEE RETURNED O THE CALLER
E_BMOUNT OF SoA SPACE 10 1EAVGMOO | GLBRANCH
CRTAIN IS DETERGINED SY THE SIZE
AND NUMBER OF CELLS INDICATED IN
THE POOL_CONTROLLER. IF T
GETMAIN PAILS A ZERO ADDRESS 1S
RETURNED TO THE
REGISTERS ARE_RESTORED AND THE
CELL_ADDRESS IS PASSED BACK IN
REG_1. THE SALLOC
RELEASED ONLY IF THE CALLER DID
NOT HOLD IT AT ENTRY TO ILRPEX.

Diagram 25.29 ILRPEX (Part1o0f 1)

5-340 OS/VS System Logic Library Volume 5§ (VS2.03.807)

Input

REGISTER 1 J—b

FROM ABDPRUIM

ADDR OQUTPU
BUFFER

=

ADDR.ACCES
S RTN.

ADDR.CVT

ADDR . PRINT
RTN.

ADDR , FORMA
T RTN.

VS§2.03.807

Processing

ILRFMT00:

FORMATTER OF ASM CONTROL
BLOCKS .

ACCESS AND FORMAT ASHVT
D ASSOCIATED BLOCKS .

ACCESS AND FORMAT PART
ASSOCIATED BLOCKS.

<:> TLRFMTPG

ASM ROUTINE

Output
ASMVT AGE
[] L |
AIA MSGBF
| |]
EREC
PART PCT
{ 1| J
PAT PCCW
[1 1 J
AIA 10SB
[|]
10E
IORB

Notes

Routine

Label Ref Notes

Routine| Label Ref

WHEN PRINT DUMP (AMDPRDI %
PROGRAM IS EXECUTED WITH THE

LRFMTO0 IS ENTERED.
OL BLOCKS AND SOM

RMATTED E
BLOCK INFORMATION CAN THEN BE
EASILY FOUND AND READ.

THE ASMVT IS ACCESSED VIA THE
CVTASMVT FI1ELD. IT IS FORMATTED
FOLLOWED BY: :

A. AIA'S CHAINED FROM ASMSTAGQ.
B. THE MESSAGE BUFFER, ASMMSGBF.

C. THE BAD SLOT ERROR RECORD,
ASMEREC.

D. ACE'S CHAINED FROM ASMRLG]
AND LGWQ. THEN THE OTH R
MERULBS ARE CALLED IN TURN,

{;ERFMTH;IL§LRFM%¢ ILREMTCY

THE PART IS ACCESSED FROM
ASMPART AND F TTED LONG
WITH‘ éh) PCTS CHAINED ?
ERROR _AIA
PAR AIA 40‘ 1I0ES FROM
PARTS!

PARTCOMQ, gg PARTDUng
PARTLOC! NBX éH PART ENTRY
1S FORMATTED WITH: éA& PAT

FROM pmr-:pmp (Bi 10ES RO
PAREIOE OSBS
AND Pccws ARD A S FOURD VIR
PAREIORB

ILRFMTPG

ILRFMTPG

Diagram 25.30

ILRFMTO00 (Part 1 of 3)

Section 2:

Method of Operation 5-341

VS§2.03.807

Input Processing Output
SART sccw
ACCESS AND FORMAT SART AND——remny :
ASSOCTATED BLOCKS. — | |
SAT 10SB
ILRFMTSW | 1
ASM ROUTINE
ACCESS AND FORMAT COMMON SDCT
SERVICE AREA PAGE TABLES s
AND EXTERNAL PAGE TABLES.]
<:> ILRFMIC AIA
semrecy By —
IORB
PGT XPT
Notes Routine| Label Ref Notes Routine| Label Ref
THE SART IS ACCESSED FROM ILRFMTSW| ILRFMTSW
ASMSART AND FORMATTED ALONG WITH
AIAS FROM SARWAITO, AND THE SDCT
AND ITS ENTRIES. EACH SART ENTRY
S _FORMATTED WITH ITS
ASSOCIATED:
A. SAT FROM SRESAT
B. SCCW FROM SRESCCW AND.
C. IORBS, IOSBS, SCCWS AND AIAS
FROM SREIORB.
THE COMMON SERVICE AREA PAGE AND |ILRFMTCV|ILRFMTC

NT TABLE
. EACH PAGE TABLE (PGT

ITS ASSOCIATED EXTERNAL PAG

TABLE (XPT) ARE FORMATTED.

Diagram 25.30

ILRFMTO00 (Part 2 of 3)

§-342 OS/VS System Logic Library Volume 5 (VS2.03.807)

VS§2.03.807 .

Input Processing Output
RSMHD AIA
[06] ACCESS AND FORMAT FOR EACH-mmme——
ADDRESS SPACE, THE RSMHD, e [||]

TABLES AND EXTERNAL PAGE
ABLES .

O = I ‘

ILRFMTCV ENTRY

ASCBEEANB EORME 1ovT Mo L1 L |

ILRFMTCV ENTRY

RETURN. LoVt AIA

[—_?I Lm ASPCT

A
TO CALLER ACE

Notes Routine| Label Ref Notes Routine| Label Ref

m THE RSMHD IS ACCESSED VIA ILRFMTCV| ILRFMTH
CVTASVT AND ASCBRSM. IT AND THE
SPCT ARE FORMATTED. THEN THE
ASMHD 1S FORMATTED WITH:

A. AIAS FROM ASHSWAPQ AND
ASHCAPQ.

B. PGT/XPTS FOR THE PRIVATE AREA
OF THAT ADDRESS SPACE VIA
SPCTPGT.

THE LGVT IS ACCESSED VIA ILRFMTCV | ILRFMTV
THE IGVT ENTRY FOR THAT

ADDRESS "SPACE 1S LOCATED

FORMATTED WITH THE ASSOCIATED:

A. LGE FROM LGVELGEP.

B. AIAS FROM ME?ROCQ AND

C. ASPCT FROM LGEASPC
LPM

S’ R(25
RESENT SO AIAéA(ZE g
CHATNED FROM ATACEDTR.

RETURN TO CALLER.

Diagram 25.30 ILRFMTO00 (Part 3 of 3)

Section 2: Method of Operation 5-343

Page Expansion

The dynamic page expansion facility (ILRPGEXP)
allows the system operator to add page or swap
data sets to the system by entering the PAGEADD
command. The number of page or swap data sets
that can be added throughout one ILP is limited to
the number specified by the PAGNUM system
parameter at IPL time.

Control Blocks Used
The major control blocks ILRPGEXP uses are:
e« ASMVT — Auxiliary Storage Management
Vector Table .
o PART — Page Activity Reference Table
o PAT — Page Allocation Table
e SART — Swap Activity Reference Table
e SAT — Swap Allocation Table
« Data Set Name List
e ILRTPARB— TPARTBLE
e PCT — Performance Characteristics Table

The ASMVT resides in the nucleus and is ASM’s
extension of the CVT. It contains a count of
available slots and back slots that are changed
when slots are allocated and page data sets are
added. The ASMVT also contains an indicator that
specifies whether TPARTBLE is valid or not
(ASMNOTPT).

The PART resides in SQA and consists of one
header and an entry (PARTE) for each page data
set that is open and for the number of entries
required to support page expansion. When a page
data set is added, ILRPGEXP updates an empty
PARTE and chains it to the others.

The PAT resides in SQA and contains a bit map
of allocated and unallocated page slots.

The SART resides in SQA and consists of a
header and an entry (SARTE) for each swap data
set and additional entries for the number of swap
sets that may be added.

The SAT resides in SQA and describes the
allocated and-available slots for a swap data set.

The Data Set name lists reside in CSA and
contain lists of swap and page data set names that

5-344 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Page of SY28-0717-0

are currently in use; they also have additional
entries for page and swap data sets to be added by
page expansion.

ILRTPARB (TPARTBLE) resides on the PLPA page
data set. It is built during IPL, contains the page
data set information that is used when quick or
warm starting. ILRPGEXP updates ILRTPARB when
a new page data set is added.

Processing

The Master Scheduler attaches ILRPGEXP when the
operator issues the PAGEADD command, passing
the command text in a CSCB (Command Scheduling
control block). ILRPGEXP loads the read/write
routine (ILRPREAD) and the open routine
(ILROPS00), establishes an ESTAE, syntax checks
the command, and then processes the page or swap
data set request(s). If there is more than one
request the process is repeated as many times as
necessary.

Page Data Sets
ILRPGEXP calls ILRPREAD to read the TPARTBLE
and calls ILROPS00 to open the page data set.
ILRPGEXP then updates the following control
blocks. If the page data set being added is of a
different device type than the existing page data
sets, ILRPGEXP builds a PCT. Then it finds an
empty PARTE, fills it in, and chains it to the others.
Next ILRPGEXP gets storage for and initializes a
PAT to reflect the available slots on the new page
data set. Finally, ILRPGEXP updates the TPARTBLE,
the data set name list, increases the slot and back
slot counts in ASMVT, and calls ILRPREAD to write
the TPARTBLE back to the PLPA data set.

Swap Data Sets

ILRPGEXP calls ILROPS00 to open the data set, fills
in and chains a SARTE, updates the SART header,
builds a SAT to reflect available swap space, and
updates the data set name list.

VS§82.03.807

Page Expansion

25.31

Page Expansion
(ILRPGEXP)

25.32

Open Page and
Swap Data Sets
(ILROPS00)

25.x. — Module
25.x.y. — Entry point in module 25.x.

Figure 2-63. Page Expansion Overview

25.33

Special 1/0 to
Page Data Sets
(ILRPREAD)

" Section 2:

Method of Operation

5-345

VS2.03.807

Input Processing Output
IEEVWAIT VIA
COMMAND FROM
OPERATOR
ILRPGEXP:

SERIALIZE - PAGEADD
COMMANDS .

ESTABLISH ESTAE.

[o2]
PAGEFIX THE MODULE.
[o4]

LYST OF" i I A | [04] SYNTAX CHECK COMMAND.
D.S.NAMES _—_'_,———-) STEPS 5-15 ARE FOR ADDING
& PACE DATA SET. SEE STEPS
[COMMAND 16-22 FOR SWAP DATA SETS.
(THESE STEPS ARE EXECUTED
EOK ONE'DATA SET AT A
PART CHECK FOR ROOM IN THE
BART.
IF TPARTBLE IS NOT
Vv USEABLE, GOTO STEP 8.
ASMVT

Notes Routine} Label Ref Notes Routine| Label

[01] 1LRPGEXP ism.ms IEEPGEXP) IS
ENTERED WHENEVER THE ;ﬁgmmn

COMMAND
OPERAT OR. ITS PUR SE TQ ADI
PAGE DATA SET(g)Y %R SWAP D%TA

Té STEM. NS
IS USED TO KEEP SUBSE% ENT

PAGEADD COMMANDS FROM E.

BEFORE THIS ONE HAS COMPLETED

ILRPGEXP SETS UP THE INTERFACE
TG IEECB860, THE MAST
SCHEDULER USER ESTAE ROUTINE A
THEN ESTABLISHES ITS OWN ESTAE
%E{%é (ANOTHER ENTRY IN

PAGEFIX IS NEEDED IN ORDER TO
TAIN THE SALLOC LOCK FOR
SERIALIZATION OF CONTROL BLOCKS.

THE DATA SET NAMES ARE CHECKED
FOR THE CORRECT LENGTH AND FOR
DUPLICATES, IF THE LENGTH IS

CT ORI

INCORRE! F TH!
DUPLICATES, THE OPERATOR IS
NOTIFIED.

THERE IS ONLY ROOM IN THE PART
TO PROCESS THE NUMBER OF PAGE
DATA SETS SPECIFIED ON THE
PAGNUM SYSTEM PARAMETER.

IF_TPARTBLE IS UNUSEABLE,
IT IS'NoT
lssm) OR” UED: ATED

Diagram 25.31 ILRPGEXP (Part 1 of 4)

5-346 OS/VS2 System Logic Library Volume 5 (VS$2.03.807)

V§$2.03.807

Input Processing Output
IF TPARTBLE HASN'T BEEN
READ _YET, GETMAIN AN AREA
FOR IT AND READ IT.
TPARTBLE
OPEN THE DATA SET, CALL WORKAREA
TLROPS00.
PLPA DATA
SET
geen <:> TLROPSO00
G — ASM ROUTINE
[:::::::::] . N PCT
— SERRCH EXISTING PCTS FOR
v DEVIC Typ TCH. IF [—— | I
PART PCT PHVRE TS NG MATCH, GETMAIN
— AN AREA FOR A NEW' PCT AND
I] BULLD PARTE
FILL IN FIELDS IN THE ﬁ PARESZSL
PCT — PARTE.
| | PAREEDBP
PAREUCBP
_— [GETMAIN AND INITIALIZE A mm———m PAREIORB
; —_—
—— PAREPCTP
ADD THE PAGE DATA SET NAME e
DATASET NAME TO THE DATA SET NAME LIST s
LIST PAT
DATASET NAME
LIST

Notes Routine| Label Ref Notes Routine| Label Ref

IF THE GETMAIN OR READ FOR ILRPREAD| ILRPREAD
TPARTBLE FAILS, ASK THE OPERATOR
IF HE WANTS TO' CONTINUE

LE SUCCESSFUL, ILROPSQ0 WILL ILROPS00| ILROPSO0
RETURN WITH THE NUMBER OF SLOTS

THE IORB BB aND
BLOCKS. FOR _MOUNT, GETMAIN AND
LOCATE ERRORS ON OPEN

PROCESSING, THE REQUEST FOR THIS
DATA SET IS xé FAILED. THE OPERATOR

EW_P.
N_A DIFFERENT DEVICE FROM THE
EéISTING gNES A NEW PCT IS

ADDRESSES OF CONTROL BI.OCKS AND
THE NUMBER OF SLOTS FOR_THIS
DATA_SET RETURNED FROM ILROPSOO
ARE PUT INTO THE PARTE. THE
ADDRESS OF THE PCT IS ALSO
INCLUDED.

E IF THE GETMAIN FOR THE PAT
FAILS, NOTIFY THE OPERATOR AND
FAIL tHIS DATA SET REQUEST.

THE DATA SET NAME LIST IS USED
FOR_CHECKING NEW DATA SET NAMES
AGAINST EXISTING ONES

Diagram 25.31 ILRPGEXP (Part 2 of 4)

Section 2: Méthod of Operation = 5-347

VS$2.03.807

Input Processing Output

TPARTBLE
IF THE TPARTBLE IS GOOD, WORKAREA
FILL AN ENTRY WITH PAGE %

DATA SET INFORMATION

MAKE ASM MAINLINE AWARE OF
THE DATA SET:

A. UPDATE THE TPARTBLE —— l . I
H ER ITE

[EAD! AN
TPARTBLE BACK TO THE
PLPA DATA SET.

<:> ILRPREAD

TPARTBLE
WORKAREA

L1

H

PLPA DATA
SET

ASM ROUTINE PART
PART ' T—O PARTEUSE
— P§TLCNT
PAREPARE
A B. CHAIN THE PARTE AND ———
ey UPDATE THE PART HEADER.'——
e—— C. INCREMENT THE swr AND ASMVT
Y BACK SLOT COUNTS %

ASMVT [15] TELL THE OPERATOR THE DATA———————— ASMSLOTS
—_ SET IS _NOW AN ACTIVE PAGE =
== DATA SET. GOTO STEP 4 FOR ASMBKSLT
ADDITIONAL PAGE DATA SETS. -

IF THERE ARE MORE,
CONTINUE AT STEP 23.

A

(

OPERATOR
CONSOLE

Notes Routine| Label Ref Notes Routine| Label Ref

3] IE TPARTBLE IS NOT GOOD
ASMNOTPT=1), IT IS NOT UPDATED.

AFTER THE DATA SET IS OPENED AND
COMPLETELY INITIALIZED IT CAN BE
USED BY ASM.

A. IF THE WRITE OF TPARTBLE ILRPREAD} ILRPREAD
E‘AILS THE OPERATOR 1S ASKED
IF HE'WANTS TO CONTINUE.

w

SALLOC LOCK IS OBTAINED

Ol SE
IS INCREMENTED, THE PAR%'E
IS CHAINED VIA PAREPARE.

o

THE TOTAL PAGE SLOTS COUNT IN
THE ASMVT IS _INCREMENTED.
ALSO TH AVAILABLE SLOTS FOR

(ASMBKSLT) AN ADDRESS
SPACE OR VIO DATA SET IS
INCREHENTED

Diagram 25.31 ILRPGEXP (Part 3 of 4)

§-348 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
SART
A STEPS 16-22 ARE FOR
—_— PROCESSING. SWAP_DATA SETS.
CHECK FOR ROOM IN THE
SART.
—_— SARTE
OPEN THE DATA SET, CALL SRETOTSL
TLROPS00 .
SREUGCB
ILROPS00 SREEDB
OPEN PARM
LIST ASM ROUTINE
[:—:] FILL IN THE SARTE.
SaT
- GETMAIN AND BUILD A SAT. _—__—r_rn I::)
DATASET NAME
LIST DATASET NAME
1 LIST
| s it e []
TO THE DATASET NAME LIST.
SART
| A CHAIN THE SARTE AND UPDATE—_—_;J—I—_O SARUSE
THE SART HEADER. (THIS 1S
PR DONE HOLDING THE SALLOC SARSETCT
LOCK.)
—_— [22] TELL THE OPERATOR THE swa SRENEXT
DATASET IS NOW AN ACTIVE
SWAP DATA SET. FOR NORE
DATA SBTS COTO STEP 1@
OTHERWISE CONTINUE.
TPARTBLE [23] 1F A TPARTBLE WORKAREA Was
WORKAREA OBTAINED FREE IT.
| :-:l/
—_— . PREPARE FOR EXIT. ‘
QPERATOR'S
ONSOLE
v
RETURN TO
TEEVWAIT
Notes Routine| Label Ref Notes Routine{ Label Ref
THERE IS ONLY ROOM IN THE SART
To PROCESS THE NOMBER OF SWAP
DATA SETS SPECIFIED ON THE
DAGNUM SYSTEN PARAMETER
IF SUCCESSFUL ILROPS00 | ILROPS00

ILROPS00 RETU%NS

WITH THE NUMBER OF SLOTS ON THIS
DATA SET AND ADDRESSES OF THE
I0RB, EDB, AND UCB ROL
LOCKS. UPON RETURN, THE NUMBER
F SLOTS IS CONVERTED TO THE
NUMBER OF SWAP SETS. FOR MOUNT
GETMAIN AND LOCATE ERRORS ON
OPEN, THE OPERATOR IS TOLD AN

'OLD D
PROCESSING FOR THIS DATASET IS
FAILED.

ADDRESSES OF CONTROL BLOCKS

RETURNED BY ILROPSO0 ARE PUT

I TO THE SART ENTRY. ALSQ PUT IN
THE ENTRY IS THE NUMBER OF SWAP
SETS (SRETOTSL) .

IF THE GETMAIN FOR THE
FAILS, THE OPERATOR IS TOLD AND
PROCEéSING FOR THIS DATASET IS

THE DATA SET NAME LIST IS USED
FOR_CHECKING NEW SWAP DATA SETS
AGAINST ALREADY EXISTING ONES.

E_SALLOC LOCK IS NEEDED TO
EP ASM FROM USING THE SART
WHILE IT IS BEING UPDATED.

[24] vERQRE RETURNING CONTROL
LLRPGEXP REMOVES ITS ESTAE FOR
RECOVERY, DEQUEUES FROM THE

RER AND 28S0

PAGEADI ES A
PGFREE MACRO

Diagram 25.31

ILRPGEXP (Part 4 of 4)

Section 2: Method of Operation

5-349

Input

SDWA

VS2.03.807

Processing

FROM RTM
(IEAVTAS1)

ILRPGEXP'S
WORKAREA

I

L 1

ESTAER:

OBTAIN ADDRESSABILITY TO
ILRPGEXP AND ITS WORKAREA.

él" ILRPREAD WAS IN ——————

NTROL, THE OPERATOR 1S
INFORMED THAT FUTURE gUICK
OR WARM STARTS WILL HAVE
RANDOM RESULTS.

VERIFY THAT ALL CONTROL
BLOCK ADDRESSES ARE VALID
ADDRESSES.

FREE ALL VALID CONTROL
BLOCKS THAT ILRPGEXP AND
ILROPSO0 BUILT PRIOR TO
THE ERROR.

RETURN TO RTM.

=

v
IEAVTAS1

Output

DI/

OPERATOR
CONSOLE

Notes

Routine

Label Ref Notes

Routine

Label

Ref

ESTAER IS PHYSICALLY CONTAINED
WITHIN ILRPGEXP'S FIRST BASE
REGISTER.

IF ILRPREAD WAS IN CONTROL, AN’
TTEMPT WAS MADE TO READ

INFORM THE OPERATOR OF THE
SITUATION.

ALL ADDRESSES OF CONTROL BLOCKS
OBTAINED BY ILRPGEXP AND
ILROPSO0 ARE VALIDITY CHECKED.

THE CONTROL BLOCKS FREED INCLUDE
) SAT, EDB

$HE RELATED CONTROL
BLOCK ENTRIES IN THE PART

AND DATA SET NAME LIST ARE

’

Diagram 25.31.1 ESTAER (Part 1of1)

5-350 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VvS2.03.807

Input Processing Output
SO
ILROPSOO0:
OPEN A PAGE OR SWAP DATA BERMLIST
e —
PREPARE THE CATALOG LOCATE:
PARAMETER LISTS.
REG 1 LOCATE DATA SET IN ﬁ ADDR OF C1 PARMLIST
— caTALoG. Bl
FLAG A. PAGE DATA SET - LOCATE
— PAGE DATA SET.
R =
B. SWAP DATA SET - LOCATE g
SWAP DATA SET.
MOUNT DATA SET. —————
A. NIPTIME - USE NIP
SERVICE.,
B. AFTER NIP TIME - USE
DYNAMIC ALLOCATION.
Notes Routine| Label Ref Notes Routine| Label Ref
. ILROPSO0 OPENS A PAGE OR SWAP MOUNT METHOD IS BASED ON THE VMTVER 25.31.
DATA SET FOR ASM'S RIM TIME REQUESTED. NIPMOUNT IS USED DYNALLO 25.31.
{(ILRASRIM) DURING SYSTEM AT NIPTIME,DYNAMIC ALLOCATION IS 4
INITIALIZATION OR FOR PAGE USED AFTER NIP TIME. IF MOUNT
EXPANSION (ILRPGEXP) AFTER IPL. FAILS, RETURN TO CALLER WITH
'08' IN REGISTER 15.
INITIALIZE THE CATALOG LOCATE
PARAMETER LISTS (CTGPL} AND
CATALOG FIELD PARAMETER LISTS
(CTGFLS) FOR CLUSTER LOCATE AND
DATA CONTROL INTERVAL (CI)
LOCATE, RESPECTIVELY.
INFORMATION, SUCH AS DATA SET
TYPE, VOLSER, ATTRIBUTES, DEVICE
TYPE AND STATISTICAL DATA WILL
BE REQUESTED FROM VSAM CATALOG.
ISSUE THE TWO LOCATES TO LOCATE LOCPAGE [25.32.
PAGE OR SWAP DATA SET . CHECK LOCSWAP 25.32.
THE RETURN PARAMETER TO INSURE 2
THE REQUESTED DATA SET IS
LOCATED, AND CHECK THAT TRACK
OVERFLOW IS NOT INDICATED FOR
SWAP DATA SET. IF LOCATE FAILS,
SET RETURN CODE TO '12' IN
REGISTER 15 AND RETURN TO
CALLER.

Diagram 25.32

ILROPS00 (Part 1 of 2)

Section 2: Method of Operation

5-351

VS2.03.807

Input Processing Output *

CONTROL
- DETERMINE THE TYPE OF PATH BLOCKS
REQUESTED. ﬂ IORB
EDB
A. SHORT PATH - RETURN TO
I0SB
CALLER.
SRB
[_I LPMB
v
RETURN T
CALLER

B. LONG PATH - CONTINUE.

GET CORE AND BUILD CONTROLmmesmemed
BLOCKS.

REG. 1
RETURN TO CALLER WITH A s=eecewesmsm— :j FLAG
———e—

RETURN PARAMETER LIST AND
Lm ADDR OF
-—___] EDB

RETURN CODE IN REG 15.
v
N RETURN TO DEV TYPE
CALLER

Notes Routine| Label Ref Notes Routine{ Label

h

SHORT PATH IS ONLY (MEANING
CONTROL BLOCKS SHOULD NOT BE
BUILT) IS ONLY REQUESTED DURING
SYSTEM INITIALIZATION. THE TYPE
OF PROCESSING IS BASED ON AN
INPUT FLAG. IF A SHORT PATH IS
DESIRED, RETURN TO THE CALLER.
OTHERWISE CONTINUE PROCESSING.

BUILD LPME, EDE, IORB, SRB, IOSB GETCORE |25.31.
AND SAVE AREA FOR PAGE OR SWAP 3
DATA SET. IF THE REQUESTED DATA
SET IS A PAGE DATA SET AND ON
NIPTIME, PCCW'S WILL BE BUILT IN
NUCLEUS BUFFER SPACE. IF SQA
SPACE IS NOT AVAILABLE FOR THE
CONTROL BLOCKS, RETURN CODE IS
SET TO '16' ('20' FOR NUCLEUS
BUFFER SPACE NOT AVAILABLE).

IF ALL ABOVE PROCESSING IS
SUCCESSFUL, A RETURN PARAMETER
LIST WILL BE SET AND PASSED BACK
TO CALLER WITH A RETURN CODE OF
ZERO.

Diagram 25.32 ILROPS00 (Part 2 of 2)

5-352 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_ILROPS00
MAINLINE
E} LOCPAGE:
CLUSTER PARM FIELD PARM / RETURN AREA
LIST LISTS v |[01] 1wokE caTALOG LoCATE ON A —A
/ _——-—) DATA SET
CLUSTER NAME FOR PAGE DATA TYPE
SET. {para cr
PAGE FLAG
A. CHECK DATA SET TYPE. —_—
SWAP FLAG
B. CHECK PAGE DATA SET.
FIELD PARM
LISTS C. FAIL - RETURN TO
ﬁ REG 15
CALLER.
RETURN AREA I RETURN
CODE
D.S.TYPE [_—l
DATACI —_— —-—]
\'
RETURN TO
RETURN AREA CALLER
PAGE SPACE
FLAG
Notes Routine| Label Ref Notes Routine| Label Ref

ISSUE A LOCATE ON A CLUSTER NAME
REQUESTING NAMEDS AND CATTR

INFORMATION. NAMEDS INCLUDES THE

DATA SET TYPE('INDEX' OR 'DATA')
AND THE DATA CONTROL INTERVAL
FOR ALL OTHER INFORMATION ON
THIS DATA SET. CATTR CONTAINS A
PAGE SPACE FLAG.

A. CHECK THAT THE REQUESTED DATA
SET TYPE IS ONLY 'DATA'.

B. CHECK THAT THE PAGE DATA SET

FLAG IS ON AND SWAP FLAG IS

OFF.

C. IF LOCATE FAILS OR THE DATA
SET TYPE IS NOT 'DATA' OR THE
DATA SET IS NOT A PAGE DATA
SET, THEN SET REGISTER 15 TO
'12' AND RETURN TO CALLER.

SVC26

Diagram 25.32.1

LOCPAGE (Part 1 of 2)

Section 2: Method of Operation 5-353

VS§2.03.807

Input Processing Output
DATA CI PARM l REG 15 RETURN AREA
LIST [02] 1wvoke caTALOG LocATE on —
1 DATA CONTROL INTERVAL. I CODE TYPE
W R
—— A. FAIL - RETURN TO —— —OLSE
TRACK
CALLER. I OVERFLOW
— STATISTIC
v
RETURN TO .
CALLER
FIELD PARM B. SUCCESSFUL -~ CONTINUE.
LISTS
FIELD PARM FIELD PARM .]
LISTS LISTS A
RETURN TO
- [] r | 1 ILROPS00
MAINLINE
AMDSB ATTR1
»> |
VOLDEV LyOLPHY
>
Notes ‘| Routine| Label Ref Notes Routine| Label Ref

USING THE DATA CONTROL INTERVAL
FROM THE FIRST LOCATE, ISSUE A
LOCATE ON A DATA CONTROL
INTERVAL, REQUESTING VOLPHV,
VOLDEV, AMDSB AND ATTR1
INFORMATION. VOLPHY AND VOLDEV
CONTAIN RESPECTIVELY PHYSICAL
AND DEVICE RELATED DATA. THE
AMDSB CONTAINS CONTROL INTERVAL
DATA . ATTR1 CONTAINS A TRACK
OVERFLOW FLAG.

»

IF 2ND LOCATE FAILS, ILROPSQ0 |SVC26
SETS REGISTER 15 TO 12 AND
RETURN TO CALLER.

w

IF SUCCESSFUL, THEN CONTINUE.

Diagram 25.32.1 LOCPAGE (Part 2 of 2)

§-354 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
FROM_ILROPS00
MAINLINE
LOCSWAP:
CLUSTER . RETURN AREA
PARMLIST F INVOKE CATALOG LOCATE ON A A DATA SET
[:::::::::] CLUSTER NAME FOR SWAP DATA TYPE
SET. DATA CI
FIELD FIELD PARM PAGE FLAG
PARMLIST LIST A. CHECK DATA SET TYPE.
SWAP FLAG
B. CHECK SWAP DATA SET.
C. FAIL - RETURN TO REG 15
CALLER. |L_:>
RETURN
CODE
RETURN AREA | RETURN AREA
D.S.TYPE PAGE SPACE |
DATA CI FLAG v
RETURN TO
CALLER
Notes Routine| Label Ref Notes Routine| Label Ref
ISSUE A LOCATE ON A CLUSTER NAME |SVC26

REQUESTING NAMEDS AND CATTR
INFORMATION. NAMEDS INCLUDES THE
DATA SET TYPE ('INDEX' OR
'DATA') AND THE DATA CONTROL
INTERVAL FOR ALL OTHER
INFORMATION ON THIS DATA SET.
CATTR CONTAINS A SWAP DATA SET
FLAG AND PAGE DATA SET FLAG.

A. CHECK THAT THE SWAP DATA SET
TYPE IS 'DATA'.

CHECK THAT THE SWAP AND PAGE
DATA SET FLAGS ARE BOTH ON.

IF LOCATE FAILS OR THE TYPE
IS NOT 'DATA' OR THE DATA SET
IS NOT A SWAP DATA SET, THEN
SET RETURN CODE TO '12' AND
RETURN TO THE CALLER.

Diagram 25.32.2 LOCSWAP (Part 1 of 2)

Section 2:

Methoad of Operation 5-355

VS2.03.807

Input Processing Output
DATA CI PARM . REG 15 RETURN AREA
LIST — INVOKE CATALOG LOCATE ON
: . |RETURN DEVICE
- DATA CONTROL INTERVAL. CODE TYPE
VOLSER
—— A. CHECK SWAP DATA SET. NO —_—
TRACK
—_— TRACK OVERFLOW. OVERFLOW
—_— STATISTIC
B. FAIL - RETURN TO INFO
CALLER. |
[~ | "F1ELD PARM FIELD PARM I |
LIST LIST
L v
|] | RETURN TO
— CALLER
B C. SUCCESSFUL - CONTINUE.
FIELD PARM FIELD PARM .
LIST LIST l__l \
v
AMDSB ATTR1 RETURN TO
ILROPSO0
|] |] MAINLINE
VOLDEV VOLPHY
Notes Routine| Label Ref Notes Routine| Label Ref
USING THE DATA CONTROL INTERVAL |SVC26

FROM THE FIRST LOCATE, ISSUE A
LOCATE ON A DATA CONTROL
INTERVAL, REQUESTING VOLPHV,
VOLDEV, AMDSB, AND ATTRC
INFORMATION. VOLPHY AND VOLDEV
CONTAIN RESPECTIVELY PHYSICAL
AND DEVICE RELATED DATA. THE
AMDSB CONTAINS CONTROL INTERVAL
DATA. ATTRC CONTAINS A TRACK
OVERFLOW FLAG.

A. TRACK OVERFLOW IS NOT ALLOWED
FOR SWAP DATA 'SET.

B. IF THE SECOND LOCATE FAILS OR
THE TRACK OVERFLOW FLAG IS
ON, SET THE RETURN CODE TO 12
AND RETURN TO CALLER.

C. IF SUCCESSFUL, THEN CONTINUE.

Diagram 25.32.2 LOCSWAP (Part 2 of 2)

§5-356 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM_ILROPSO0
MAINLINE
VMTVER:
DATA SET
NAME INITIALIZE PARAMETER LIST
l I— v FOR VOLUME MOUNT AND
VERIFY REQUEST.
Eggﬁ%gGDATA REG 1 ucB
02| INVOKE NIPMOUNT. >
VOLPHY IE|
VOLSER A. GET UCB ADDRESS. —
| ERROR EXIT
B. TAKE ERROR EXIT ON -—-——-—————-—" REG 15
FAILURE. RETURN
CODE
\'4
RETURN TO
CALLER
C. SUCCESSFUL - CONTINUE.
A
RETURN TO
ILROPSO0
MAINLINE
Notes Routine| Label Ref Notes Routine| Label Ref
PUT THE DATA SET NAME AND VOLSER
IN THE PARAMETER LIST FOR
NIPMOUNT.
INVOKE NIPMOUNT SERVICE. IEAPMNIP

A. IF SUCCESSFUL, REGISTER 1

WILL CONTAIN A UCB POINTER.

B. IF NIPMOUNT FAILS, PUT AN 8
IN REGISTER 15, AND RETURN TO
CALLER.

C. IF SUCCESSFUL, THEN CONTINUE.

Diagram 25.32.3 VMTVER (Part 1 of 1)

Section 2:

Method of Operation 5-357

VS2.03.807

Input Processing X Output \
FROM ILROPSO00
MAINLINE
b DYNALLO:
. REG 1
FLAG SET UP ADDRESSABILITY TO ‘,
DSNAME REQUEST BLOCK FOR DYNAMIC l——-]
ALLOCATION.
-
REQUEST A DSNAME —mmerer] BL8CK
ALLOCATION.
03| SET TEXT UNITS FOR = = -=--w-w---— >
- “ﬂ LEN
ALLOCATION. ——
CODES
ADDR OF
TEXT UNITS
RESERVED
S99MOUNT
S990FFLN
TEXT UNIT -
I 02 DSNAME
ADDR TEXT
UNIT
04
> TEXT UNIT DISP-OLD
ADDR TEXT
UNIT
ISS DDNAME l
TEXT UNIT
ADDR -TEXT
UNIT
Notes Routine| Label Ref Notes Routine| Label Ref

THE REQUEST BLOCK - S99RB IS
MAPPED BY IEFZB4DO, IT IS THE
INPUT PARAMETER TO DYNAMIC
ALLOCATION.

SET CODES 'IN REQUEST BLOCK TO
INDICATE THAT DSNAME ALLOCATION
IS DESIRED. TURN ON THE OFFLINE
UNITS BIT (S990FFLN) AND THE
MOUNT VOLUME BIT (S99MOUNT), SO
DYNAMIC ALLOCATION WILL NO‘PIFY
THE OPERATOR WHEN THESE
CONDITIONS OCCUR.-

TEXT UNITS, POINTED TO BY THE
REQUEST BLOCK, ACTUALLY CONTAIN
THE INPUT DATA (DSNAME AND
DISPOSITION) AND THE EXPECTED
OUTPUT DATA (DDNAME). THE OUTPUT
DATA IS FILLED IN BY DYNAMIC
ALLOCATION.

Diagram 25.32.4 DYNALLO (Part 1 of 3)

5-358 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output
REG 15
INVOKE DYNAMIC ALLOCATION,
RETURN
CODE
CHECK RETURN CODE FROM
DYNALLOC.
A. FAIL - SET MOUNT FAIL
RETURN CODE, RETURN TO
CALLER.
\
RETURN TO
CALLER
Notes Routine| Label Ref Notes Routinef Label Ref
INVOKE DYNALLOC MACRO TO SVC99

ALLOCATE A DATA SET.

IF DYNAMIC ALLOCATION FAILS, SET
REG 15 TO 8 AND RETURN TO
CALLER.

Diagram 25.32.4 DYNALLO (Part 2 of 3)

Section 2: Method of Operation 5-359

VS2.03.807

Input) Processing Output

REG 15

RETURN
CODE

TCB

L

A FIND UCB ADDRESS THRU

e — TIOT.
TCBISCB

:

A. IF UNSUCCESSFUL, SET

IPSATOLD I RETURN CODE TO INDICATE

JSCB THAT MOUNT FAILED AND

DSAB QDB _‘rv RETURN TO CALLER.
. ~ |ascpsasg
JSCDSABQ I
TIOT DD v
ENTRY RETURN TO
DSAB CALLER
B. SUCCESSFUL - CONTINUE.
r |PTR DBAB ——e
DDNAME
DSABTIOT —— [
—— ADDR UCB l
URN
TIOT DD ILROPS00
DSAB ENTRY MAINLINE
r |PTR DSAB
DDNAME
DSABTIOT
ADDR UCB
DSAB TIOT DD
. d ENTRY
0 —>
e—— DDNAME
DSABTIOT
ADDR UCB
Notes Routine] Label Ref Notes Routine{ Label Ref

THE UCB ADDRESS IS NOT RETURNED
BY DYNAMIC ALLOCATION SO IT MUST
BE OBTAINED BY SEARCHING TIOTS
WITH THE RETURNED DD NAME. IF
THE DD NAME CANNOT BE FOUND IN
TIOTS SET REG 15 TO 8 AND RETURN
TO CALLER. IF SUCCESSFUL, THEN
CONTINUE.

Diagram 25.32.4 DYNALLO (Part 3 of 3)

5-360 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS$2.03.807

Input Processing Output
FROM ILROPSO00
MAINLINE
b GETCORE:
DEVICE ID REG 15
TABLE IDENTIFY DEVICE TYPE. \
—_ m— 4 RETURN
1 - cove
CATALOG A. IF THE DEVICE TYPE IS
LOCATE DATA INVALID, SET THE RETURN
VOLDEV TO INDICATE LOCATE
FAILURE AND RETURN TO
DEVTYP CALLER.
A
RETURN T
CALLER
GETMAIN SQA SPACE FOR
CONTROL BLOCKS.
A. IF SPACE IS NOT
AVAILABLE, SET THE
RETURN CODE AND RETURN
TO CALLER.
v .
RETURN TO
CALLER
Notes Routine| Label Ref Notes Routine| Label Ref

SEARCH A TABLE OF VALID DEVICE
TYPE FOR A MATCH WITH THE DEVICE
TYPE RETURNED BY THE CATALOG
LOCATE. IF A MATCH IS NOT FOUND,
PUT A 12(LOCATE FAIL) IN REG 15
AND RETURN TO CALLER.

CALCULATE THE TOTAL SIZE FOR SVC120
IORB-I0SB-SRB, EDB AND LPMB.
ISSUE A CONDITIONAL GETMAIN. IF
REQUESTED SPACE IS NOT
AVAILABLE, SET REG 15 TO 16 (NOT
ENOUGH SQA SPACE) AND RETURN TO
CALLER.

Diagram 25.32.5 GETCORE (Part 1 of 3)

Section 2: Method of Operation 5-361

VS82.03.807

Input Processing Output
INPUT FLAG ASMVT PCCW
— 03| IF PAGE SPACE REQUEST AT A -
PAGE-NIP-L o pst— 2 p— g
ONG PATH NIPTIME, ACQUIRE NUCLEUS
BUFFER SPACE FOR .PCCWS.
. PCCW
NVT
— A. IF SPACE IS NOT l
— AVAILABLE, SET THE
NVTNBFND .
— RETURN CODE AND RETURN R REG 15
P TO CALLER, — lRETURN I
NVTNUCNP CODE
ASMVT U | P UCBPRES
UCBALOC
B. INITIALIZE PCCWS. o ———— " JucBUSER
i UCBPGFL
IF NIPTIME, UPDATE UCB ——
INFORMATION.
Notes Routine| Label’ Ref Notes Routine| Label Ref

CALCULATE THE NUMBER OF PCCWS
FOR THIS DEVICE TYPE AND CHECK
THAT THERE IS ENOUGH SPACE FOR
PCCWS IN THE NUCLEUS BUFFER. IF
THERE IS NOT ENOUGH SPACE, SET
REG 15 TO 20 (NUCLEUS BUFFER
DOES NOT HAVE ENOUGH SPACE) AND
RETURN TO CALLER. INITIALIZE THE
CCW STRING WITH SEEK, SET
SECTOR, SEARCH, 1D, TIC,
READ/WRITE NOP. CHAIN THE PCCWS
TOGETHER.

THE UCB INFORMATION 1S’ UPDATED
TO INCREMENT USER COUNT, AND TO
MARK IT AS A PAGE SPACE AND
PERMANENTLY RESIDENT.

Diagram 25.32.5 GETCORE (Part 2 of 3)

§-362 OS/VS2 System Logic Library Volume § (VS2.03.807)

VS§2.03.807

Input Processing Output
CATALOG CATALOG R LPMP 10SB
LOCATE DATA LOCATE DATA - INITIALIZE LPMB WITH —»
o/ e —) LPMBID r I
VOLPHY VOLDEV DEVICE TYPE
LPMBLEN
CHARACTERISTICS. —————

CATALOG CATALOG INITIALIZE EDB HEADER AND
LOCATE DATA LOCATE DATA EDB
ENTRY FOR EACH DATA SET

AMDSB ATTR1 EDBID
EXTENT. ———

EDBLPMBA
INITIALIZE IORB-IOSB-SRB e

ASMVT
‘::' STRING OF CONTROL BLOCKS.

IORB
[—] 3
— .
RETURN TO

ILROPSOO
MAINLINE

Notes Routine| Label Ref Notes Routine| Label Ref

FIELDS INITIALIZED ARE: ID, AND
NON-QUIESCEABLE PRIORITY. THE
SRB IS POINTED TO BY IOSB WHICH
IS POINTED TO BY IORB.

THE LPMB (LOGICAL TO PHYSICAL
MAPPING BLOCK) FIELDS
INITIALIZED ARE: ID, LENGTH
TRACKS PER ALLOCATION UNIT,
TRACKS PER CYLINDER, BLOCKS PER
TRACK, BLOCK SIZE, BYTES PER
TRACK, BYTES PER ALLOCATED
UNITS, THE TRACK OVERFLOW AND
RPS DEVICE FLAGS IF APPLICABLE.

INITIALIZE RDB (EXTENT
DEFINITION BLOCK) HEADER FIELDS:
ID, LENGTH, NUMBER OF EXTENTS,
LPMB ADDRESS. FOR EACH EXTENT
INITIALIZE: LPMB ADDRESS, EXTENT
NUMBER, STARTING TRACK, LOW RBA,
HIGH RBA, TRACK OVERFLOW.

AN IORB-IOSB-SRB STRING WILL BE
INITIALIZED FOR EACH IORB
REQUIRED. THE IORB FIELDS
INITIALIZED ARE: ID, NUMBER OF
IORB'S, RPS FLAG, IOSB ADDRESS,
AND CHAIN FIELD TO NEXT IORB OR
ZERO. THE INITIALIZED FIELDS IN
IOSB ARE: DRIVER ID, 140 FILE
MASK, IORB ADDRESS, SRB ADDRESS,
I/0 TERMINATION ADDRESS, NORMAL
AND ABNORMAL END APPENDAGE. SRB

Diagram 25.32.5 GETCORE (Part 3 of 3)

Section 2: Method of Operation 5-363

VS2.03.807

‘Input) Processing Output
l FROM_ASM
INITIALIZATION
OR™ ILRPGEXP
ILRPREAD:
REG 1 REG 1
. ILRPREAD IS A SPECIAL ASM
[] L[PARM] o1} 1/0 DRIVER.
R L CCWS
SRB FLAGS OBTAIN STORAGE FOR ﬁ ADDR.GETMA
L__—___]- BUILDING CCWS, IOSB, AND IN IN SQA []
TOTAL SLOT SRB FROM SQA. GETMAIN
. LEN
FIRST SLOT SRB
NO. - ISSUE ESTAE.
ADDR . PARE/ 10SB —_—
TPARE SRBPTCB
ADDR . BUFFE SRBPARM
R . BUILD IOSB AND SRB. —e 10SVST
v SRBPASID
| 1osB . IOSSRB
L
pus— 05| BUILD CHANNEL PROGRAM IOSUSE (ECB
————— {CCWS) . ————)
10SVST Too
Josuse (ECB TTY
- START 1/0.
CCWS
[07] warr For 1/0 TO compLETE.
cCWs
SEEK HEAD
SEARCH ID
: - CHECK I/0 SUCCESSFUL. Q
TIC
RD/WT
A. SUCCESSFUL: CONTINUE TO
PROCESS .
B.. UNSUCCESSFUL: SET ERROR
RETURN CODE, GOTO STEP
Notes Routine| Label Ref Notes Routine| Label Ref
PASSED TO 10.
ILRPREAD IS 1/0 DRIVER THAT
‘é%“u%ix‘»‘ﬁ‘ﬁc”'ééﬁﬁﬁor,mam“xs an
FR INFORMATION NEEDED BY ASM. CALL START I/O FOR READ/WRITE. STARTIO
SYSTEM INITIALIZATION READS
RIS SRt Hleic,
READS AND ITL?s‘" TRTPARB (THE WAIT FOR 1/0 TO COMPLETE, THE WAIT PREADNRM|25.33.
TBARTBLE) ."THESE CONTROL BLOCKS L/O" COMPLETION ROUTINE WiLLl POST ’
ARE NEEDED F FOR QUICK AND WARM ECB WHEN IT GETS CONTROL. PREADABN
STARTS TO OCCUR~ reaprrn| 3533
25.33.
GETMAIN 2
CHECK I/0 COMPLETION, IF
NOT SUCCESSFUL, THE CONTROL 509
TO ITE BE PASSED TO STEP 10
TEN SLOTS. IF GETMAIN FAILS, A
CODE OF 8 IS RETURNED.
ESTABLISH ESTAE FOR ABNORMAL ESTAE ESTAEXIT|25.33.
TERMINATION. : 3

XHE ADDRESSES gF NORMAL END

E

Appsnmcej I/0 TERMI N

ROUTINES, SRB AD

UT, INTO' THE IOSB. THE_ ROUTINES

ARE § ARY ENTRY

LRPREAD, THE ADDRESSES OF THE

TCB iosB PUT

RB. ASID (ADDRESS SPACE "

IDENTIFIER) IS 0_PUT_INTO THE
SINCE THE TCB

S]
AFFINITY ADDRESSES ARE IN THE
10sB, RIM PROCESSING CLEANS UP
h.R FAD_RESOURCES AND
ANDING 1{0 UPON ERRORS
OUCTRRING TN 405 OR IR PREAD
APPENDAGE ROUTINES.

CREATE THE CHANNEL PROGRAM FOR

READS OR WRITES - MAXIMUM TEN

SLOTS WiITHIN A CYLINDER. THESE

CONSIST OF SEEK HEAD CH_ID
UAL, TIC AND READ/WRITE. IF AN
OR’ OCCURSTDU!RiING CONVERTI

S. CH
ADDRESS THE CONTROL WILL IS

Diagram 25.33 ILRPREAD (Part 1 of 2)

5364 OSVS2 System Logic Library Volume 5 (VS2.03.807)

'VS2.03.807

Input Processing Output
REGISTER 15
CHECK IF MORE SLOTS TO
PROCESS . RETURN
CODE
A. YES: GOTO STEP 5.
B. NO: CONTINUE TO :
PROCESS.
[19] canceL Estae.
[171] eree stomace oTAINED FOR
CCWS, 10SB AND SRB.
v
RETURN TO
CALLER
Notes Routine{ Label Ref Notes Routine| Label Ref
IF THE 1/0 COMPLETE!
SDCCRESEOLLY THE NUMBER OF
REQUESTS REMAINING, 1S CHECKED.
PROCESSED, REPEAT FROM STEP 5.
CANCEL THE ESTAE. ESTAE .
F_THE REQUESTED READS OR WRITES FREEMAIN

‘CODE OF

ARE:COMPL TED, ALL THE STORAGE
OBTAINED FOR CCWS, I0SB, AND SRB
WILL BE FREED

IF READ/WRITE IS SUCCBSSFUL, A
RETURN CODB OF ZERO WILL BE
. BRgI E A RETURN

R _FOI
READ, WRITB CONVERT ERROR OR A
RET CODE OF EIGHT FOR SPACE
AVAILABLB WILL BE RETURNED.

Diagram 25.33

ILRPREAD (Part 2 of 2)

Section 2: Method of Operation 5-365

VS§2.03.807

Input . Processing Output
FROM I0S
{IECVPST)
b PREADABN:
. RETURN TO 10S
RETURNV 108
(IECVPST
Notes Routine| Label Ref Notes Routine| Label Ref

FOR_NORMAL AND ABNORMAL
APPENDAGES, CONTROL IS, PASSED
BACK TO IO§ IMMEDIATELY.

Diagram 25.33.1

PREADABN (Part 1 of 1)

§-366 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

This blank leaf represents pages 5-367 - 5-483 which were deleted by Supervisor Performance * 2:

Section 2: Method of Operation 5-367 - 5483

5-484 0S/VS2 System Logic Library Volume 5 (VS2.03.807)

ABDU%\(P initialization (See OS/VS2 System Initialization
Logic
ABEND
intentional 5-82
access control block (see ACB)
access method, pseudo (see pseudo access method)
account tables (see ACT)
ACE (ASM control element) (VS2.03.807)
in save, activate, and release processing 5-203, 5-222
(VS2.03.807)
in transfer page processing 5-202 (VS2.03.807)
ACTCACE diagram 5-258
ACTCLUP diagram 5-276
ACTCOND diagram 5-254
ACTFREE diagram 5-274
ACTGETB diagram 5-250
ACTGETN diagram 5-322
ACTINIT diagram 5-266
ACTINPR diagram 5-258
ACTIVATE diagram 5-122
ACTIVATE LG request (VS2.03.807)
functional description 5-222 (VS2.03.807)
initial processing of 5-203 (VS2.03.807)
recovery for 5-252 (VS2.03.807)
ACTREEN diagram 5-248
ACTSLOT diagram 5-270
ACTUPDT diagram 5-312
ADDLSID diagram 5-286
address, translating real to virtual 5-80
address space (see also memory)
clean-up 5-104
control blocks (see ASCB)
in VSM address space creation 5-102
error recovery 5-103
initialization
in VSM address space creation 5-102
processing 5-58
obtaining storage 5-102
address space queue elements, dequeueing 5-105
ADDSLOT diagram 5-464
affinity (see CPU affinity)
AIA (auxiliary storage manager 1/0 request area)
in completion processing 5-119, 5-153 (VS2.03.807)
in deleting an address space 5-60 .
in general frame allocation 5-24
in page I/0 initiation 5-52
in page I/O post 5-28
in page processing 5-119 (VS2.03.807)
in swap processing 5-119 (VS2.03.807)
in VIO completion processing 5-202 (VS2.03.807)
in VIO data set processing 5-203 (VS2.03.807)
in VIO services 5-56
allocate from groups picked by algorithm (see IEFAB478
object module)
allocate function control (see IEFDB410 object module)
allocating region space 5-98
allocation queue manager (see IEFAB4FA object module)
allocation queue manager request block (see AQMRB)
allocation/unallocation 3-269
insufficient space for V=R region 5-98
RSM V=R region 5-98
storage, virtual 5-94
allocation of virtual storage (GETMAIN processing) 5-94
allocation work area (see ALCWA)
ALSPROC diagram 5-342
APF (see authorized program facility)
AQE (available queue element)
in FREEMAIN 597
in VSM task termination 5-106
ARLSEG diagram 5-156
ASCB (address space control block)
in deleting an address space 5-60
in freeing an address space 5-104
in initializing an address space 5-58
in page I/O initiation 5-52

VS2.03.807

Index

in swap-in
root exit 5-44
in swap-out
processing 5-46

in VSM task termination 5-106
ASM (see auxiliary storage manager)
ASMHD (auxiliary storage management header)

(VS2.03.807)

in VIO data set processing 5-202 (VS2.03.807)
ASMSTAGQ (ASM staging queue) (VS2.03.807)

in page processing 5-119 (VS2.03.807)

in VIO data set processing 5-202 (VS2.03.807)
ASPCT (auxiliary storage page correspondence table)

(VS2.03.807)
in save, activate, and release processing 5-202
(VS2.03.807)

in VIO completion 5-203 (VS2.03.807)

in VIO data set processing 5-222 (VS2.03.807)
ASPECT! diagram 5-216
ASPECT2 diagram 5-220
ASSIGN diagram 5-132
ASSIGN LGN

MO diagram of 5-216

processing of 5-202 (VS2.03.807)

recovery for 5-252 (VS2.03.807)
assign processing in VIO services 5-54
ASXB (address space extension block)

in VSM address space creation 5-102
asynchronous exits (see exit asynchronous)
ATA (ASM tracking area) (VS2.03.807)

in recovery processing 5-250 (VS2.03.807)
attributes, user (see VAPS)
automatic priority group (see APG)
auxiliary storage, freeing 5-16
auxiliary storage manager (ASM)

introduction to MOs 5-117 (VS2.03.807)

recovery 5-250 (VS2.03.807)

relationship to real storage manager 5-3

VTOC 5-118 (vS2.03.807)
auxiliary storage manager I/O request area (see AIA)
auxiliary storage management visual table of contents

7

available queue element (see AQE)
available space, returning virtual region space to 5-100

BADSLOT diagram 5-460

BASEA (see MSRDA)

BLDTSKQ diagram' 5-184

broadcast data set (see SYSI.BRODCAST)
BUFLPROC diagram 5-454

chain ACE diagram 5-128
CHANGKEY routine (VS2.03.805)
function 5-88 (VS2.03.805)
channel availability table (see CAT)
CIWA (common internal work area)
in PGFIX/PGLOAD 5-34
in PGFREE 5-38
in PGOUT 540
clock, TOD (see TOD clock)
coefficients, resource (see resource factor coefficient)
command, reconfiguration (see reconfiguration commands)
common I/0 active queue 5-38
common page data set (ASM) (VS2.03.807)
overflow processing 5-152 (VS2.03.807)
comparator, clock (see clock comparator)
COMPBRST diagram 5-46
control, common allocation (see common allocation
control)
control blocks (see data areas)
corequisite publications iv (preface)
CPAB (cell pool address block)
in building a cell pool 5-108

Index I-1

in deleting a cell pool 5-114

in FREECELL routine 5-112

in GETCELL routine 5-110
CTRUPDTE diagram 5-228
CVT (communication vector table)

in deleting a quick cell pool 5-114

in FREECELL routine 5-112

in freeing an address space 5-104

in GETCELL routine 5-110

in RSM functional recovery routine = 5-83

deferred requests (in general frame allocation) 5-24
DEQ macro instruction (see ENQ/DEQ/RESERVE
routine)

dequeueing address space queue elements 5-105
dequeueing POST queue elements 5-100
dequeueing region control blocks 5-104-5-105
dequeueing WAIT queue elements 5-100
device allocation/unallocation (see allocation/unallocation)
devices, generic (see generic allocation control)
direct access data set (see DADSM)
DOM (delete operator message) ID entries
DQE (descriptor queue element)

in freeing a virtual region 5-101

in VSM address space creation 5-102
duplex page data set (ASM) (VS2.03.807)

overflow processing 5-152 (VS2.03.807)
DWWIN
dynamic support system (see DSS)

ECB (event control block)
in page services interface 5-32
in PGFIX/PGLOAD root exit 5-36
in real storage reconfiguration 5-70
in V=R region allocation 5-10
ECCDB
end of task (see EOT)
ENQ macro instruction (see ENQ/DEQ/RESERVE
routine)
enqueueing a V=R request on the wait queue 5-98
EPAL (external parameter area locate mode, see EPA)
EPAM (external parameter area move mode, see EPA)
EPATH (recovery audit trail area) (VS2.03.807)
in recovery processing 5-250 (VS2.03.807)
€rror messages
in getting a virtual region 5-99
error processing (see also error recovery ESTAE processing)
in FREEMAIN 5-97
paging 1/0 post -5-29
error recovery (FRRs) €2
MO diagram 5-502
error recovery (see also error processing, ESTAE
processing)
address space create 5-103
allocating virtual storage in GETMAIN 5-95
in free address space routine 5-105
error recursion (see recursion processing of errors)
exclusive control (see XCTL routine)
exit, attention (see attention exit)
exit handling (see EXIT routine)
external parameter area (see EPA)
external parameter area locate mode (see EPA)
external parameter area move mode (see EPA)

faults (see page faults)
FBQE (free block queue element)
in FREEMAIN 597
in VSM address space creation 5-102
fetch (see program fetch)
find page routine 5-78
FINDPE diagram 5-378
FINISH diagram 5-320
FOE (fixed ownership element)
in PGFIX/PGLOAD 5-34
in PGFREE 5-38
FQE (free queue element)
in VSM address space creation 5-102

12 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

frame (see page frame)

frame, page, allocation of 5-24

FREECELL routine processing 5-112

FREECORE diagram 5-134

freeing a virtual region (FREEPART routine) 5-100
freeing a V=R region 5-12

freeing an address space 5-104

freeing pages 5-14

FREEMAIN processing (freeing virtual stotage) 5-96
FREEMAIN release processing 5-16

FRR (see functional recovery routine)

full analysis (see system resources manager)

funlc{tgl)\fllal r;:%ozvery routine (see also termination conditions)

GDA (global data area)

in freeing an address space 5-104

in GETMAIN 5-95

in deleting a quickcell 5-114

in FREECELL 5-112

in GETCELL 5-110
generation data group (see GDG)
GETACE diagram 5-130
GETALLX diagram 5-324
GETANIDE diagram 5-384
GETCELL routine processing 5-110
GETCORE diagram 5-126
GETERASE diagram 5-332
GETEXTS diagram 5-326
GETIOE diagram 5-380
GETLGN diagram 5-124
GETLPME diagram 5-190
GETMAIN processing 5-94
GETONE diagram 5-314
GETPART/FREEPART routine 5-98-5-101
getting a virtual region 5-98
GFA (general from allocation) queue

in PGFREE routine 5-39
global storage

freed when task terminates 5-106
GMAFREE diagram 5-164
GMAGET diagram 5-162

HIPO (see Method-of-Opération section)
housekeeping (see JFCB housekeeping)

IEAVAMSI object module
function 5-55
IEAVBLDP object module
function 5-74
IEAVCARR object module
function 5-105, 5-103, 5-107
IEAVCKEY object module (VS2.03.805)
function 5-88, 5-93, 5-116 (VS2.03.805)
IEAVCSEG object module
function 5-19
IEAVDLAS object module
function 5-60-5-62
IEAVDSEG object module
function 5-20
IEAVEQR object module
function 5-8
IEAVFP object module
function 5-78
IEAVFRCL object module
unction 5-112
IEAVFREE object module
function 5-38 i
IEAVFXLD object module
function 5-34
IEAVGCAS object module
function 5-102-5-107
IEAVGFA object module
function 5-24
IEAVGFRR object module
function 5-95, 5-97
IEAVGMO00 object module

function 5-94-5-97

IEAVGPRR object module
function 5-99, 5-101

IEAVGTCL object module
function 5-110

IEAVINV object module
function 5-76

IEAVIOCP object module
function 5-30

IEAVITAS object module
function 5-58 -

IEAVOUT object module
function 5-40

IEAVPCB object module
function 5-74

IEAVPFTE object module
function 5-72

IEAVPIOI object module
function 5-52

IEAVPIOP object module
function 528

IEAVPIX object module
function 5-22

IEAVPREF object module
function 5-84, 6-145

IEAVPRTO object module
function 5-98-5-101

IEAVPSI object module
function 5-32

IEAVRCEF object module
function 5-68

IEAVRCYV object module
function 5-82

IEAVRELS object module
function 5-14

IEAVRFR object module
function 5-64

IEAVSOUT object module
function 5-46, 5-50

IEAVSQA object module
function 5-6-5-7

IEAVSWIN object module
function 5-42, 5-44

IEAVSWPC object module (VS2.03.807)
function 5-50 (VS2.03.807)

IEAVSWPP object module (VS2.03.807)
function 5-45.0 (VS2.03.807)

IEAVTERM object module
function 5-62

IEAVTRY object module
function 5-80

IEAOPTO1 object module
function 5-98-5-99

IEEMSER (see MSRDA)

ILRACT object module (VS2.03.807)
functional description 5-222 (VS2.03.807)
MO diagram 5-225 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRACTOO diagram 5-244

ILRALSO00 diagram 5-340

ILRASNOO overview diagram 5-212

ILRASNLS diagram 5-188

ILRCMP object module (VS2.03.807)
functional description 5-153 (VS2.03.807)
MO diagram 5-184 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRCMPAE (entry point in ILRCMP) (VS2.03.807)
functional description 5-153 (VS2.03.807)
MO diagram 5-186 (VS2.03 807)

ILRCMPDI (entry point in ILRCMP) (VS2.03.807)
functional description 5-153 (VS2.03.807)
MO diagram 5-185 (VS2.03.807)

ILRCMPNE (entry point in ILRCMP) (VS2.03.807)
functional description 5-153 (VS2.03.807)
MO diagram 5-187 (VS2.03.807)

ILRCMPOI1 object module (VS2.03.807)
functional description 5-252 (VS2.03.807)
MO diagram 5-283 (VS2.03.807)

ILREOTOO diagram 5-496

ILREOTOO-ILRETXR diagram 5-500

v52.03.807

ILREOTOO-ILRRETRY diagram 5-498

ILRFMTCYV object module (VS2.03.807)
functional description 5-334 (VS2.03.807)

ILRFMTPG object module (VS2.03.807)
functional description 5-334 (VS2.03.807)

ILRFMTSW object module (VS2.03.807)
functional description. 5-334 (VS2.03.807)

ILRFMTO00 object module (VS2.03.807)
functional description 5-334 (VS2.03.807)
MO diagram 5-341 (VS2.03.807)

ILRFRROO overview diagram 5-502

ILRFRROO-ILRDETO00 diagram 5-478

ILRFRROO-ILRFRROI1 diagram 5-480

ILRFRROO-ILRIOBO1 diagram 5-486

ILRFRROO-ILRPEXO01 diagram 5-504

ILRFRRO1 object module (VS2.03.807)
functional description 5-254 (VS2.03.807)

ILRFRSLT object module (VS2.03.807)

MO diagram 5-149 (VS2.03.807) -

ILRGOS object module (VS2.03.807) * -
functional description 5-202 (VS2.03.807)
MO diagram 5-210 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRGOSO01 object module (VS2.03.807)
functional description 5-252 (VS2.03.807)
MO diagram 5-288 (VS2.03.807)

ILRINTOO overview diagram 5-120

ILRINTO1 diagram 5-476

ILRINTO1 overview diagram 5-474

ILRIOCO00 overview diagram 5-448

ILRIOCO1 diagram 5-488

ILRIOFRR object module (VS2.03.807)
functional description 5-250 (VS2.03.807)
MO diagram 5-257 (VS2.03.807)

ILRJTERM object module (VS2.03.807)
functional description 5-203 (VS2.03.807)
MO diagram 5-219 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRMONO1 diagram 5-482

ILRMSGO00 object module (VS2.03.807)
functional description 5-153 (VS2.03.807)
in overflow processing 5-152 (VS2.03.807)
MO diagram 5-195 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILROPS00 object module (VS2.03.807)
in PAGEADD processing 5-344 (VS2.03.807)
MO diagram 5-351 (VS2.03.807)

ILRPAGCM object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-135 (VS2.03.807)
recovery for 5-251 (VS2.03.807)

ILRPAGIO object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-122 (VS2.03.807)
recovery for 5-251 (VS2.03.807)

ILRPEX object module (VS2.03.807)
functional description 5-334 (VS2.03.807)
MO diagram 5-340 (VS2.03.807)

ILRPGEXP object module (VS2.03.807)
functional description 5-344 (VS2.03.807)
MO diagram 5-346 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRPOS object module (VS2.03.807)
functional description 5-202 (VS2.03.807)
MO diagram 5-205 (VS2.03.807)
recovery for 5-250, 5-253 (VS2.03.807)

ILRPREAD object module (VS2.03.807)
in PAGEADD processing 5-344 (VS2.03.807)
MO diagram 5-364 (VS2.03.807)
recovery for 5-254 (VS2.03.807)

ILRPTM object module (VS2.03.807)
functional description 5-152 (VS2.03.807)
MO diagram 5-156 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

" ILRPTMO00 diagram 5-388

ILRRLG object module (VS2.03.807)
functional description 5-222 (VS2.03.807)
MO diagram 5-235 (VvS2.03.807)
recovery for 5-252 (VS2.03.807)
ILRGIOO00 overview diagram 5-370

Index I-3

ILRRLGOO overview diagram 5-300

ILRRLPOO overview diagram 5-222 -

ILRSAYV object module (VS2.03.807)
functional description 5-222 (VS2.03.807)
MO diagram 5-228 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRSAVQ0 overview diagram 5-278

ILRSRBC object module (VS2.03.807)
functional description 5-203 (VS2.03.807)
MO diagram 5-214 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRSRBO1 object module (VS2.03.807)
functional description 5-253 (VS2.03.807)
MO diagram 5-296 (VS2.03.807)

ILRSRT object module (VS2.03.807)
functional description 5-152 (VS2.03.807)
MO diagram 5-165 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRSRTO00 overview diagram 5-390

ILRSRTO1 object module (VS2.03.807)
functional description 5-252 (VS2.03.807)
MO diagram 5-278 (VS2.03.807)

ILRSWAP object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram - 5-130 (VS2.03.807)
recovery for 5-250, 5-251 (VS2.03.807)

ILRSWPDR object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-134 (VS2.03.807)
recovery for 5-250, 5-251 (VS2.03.807)

ILRSWPO1 object module (VS2.03.807)
functional description 5-251 (VS2.03.807)
MO diagram 5-270 (VS2.03.807)

ILRTERMR object module (VS2.03.807)
functional description 5-334 (VS2.03.807)
MO diagram 5-336 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRTMCO00 diagram 5-358

TLRTMIO1 object module (VS2.03.807)
functional description 5-253 (VS2.03.807)
MO diagram 5-300 (VS2.03.807)

ILRTMRLG object module (VS2.03.807)
functional description 5-223 (VS2.03.807)
MO diagram 5-239 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRTMROO diagram 5-506

ILRTMROI1 diagram 5-492

ILRTMROI1 error processing diagram 5-494

ILRTMROI1 overview 5-490

ILRTRPAG (entry point in ILRPOS) (VS2.03.807)
functional description 5-202 (VS2.03.807)
MO diagram 5-209 (VS2.03.807)
recovery for 5-250, 5-251 (VS2.03.807)

ILRTRPOO overview 5-230

ILRVIOCM object module (VS2.03.807)
functional description 5-203 (VS2.03.807)
MO diagram 5-217 (VS2.03.807)
recovery for 5-251 (VS2.03.807)

ILRVSAMI object module (VS2.03.807)
functional description 5-223 (VS2.03.807)
in save, activate, and release processing 5-222

(VS2.03.807)

MO diagram 5-242 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

initialize BUFC diagram 5-410

input stream (see converter)

input options for MF/1 (see options, MF/1)

installation performance specifications (see IPS values)

in-stream procedures (see JCL statements)

instructions (see also macro. instructions)

insufficient space for V=R region allocation 5-98-5-99

integrity (see data set integrity processing)

intentional ABENDs, handling in RSM FRR 5-82-5-83

INTMON diagram 5-170

input/output diagram ~ 5-146

I/% completion
page 1/0 post 5-28

1/0 control (ASM) (VS2.03.807)
introduction to MOs 5-119 (VS2.03.807)
overview diagram 5-121 (VS2.03.807)

14 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

1/0 error processing 5-29
1/0 paging queues, checking by PGFREE routine 5-38
I/0 request overview diagram 5-366)
1/0 subsystem (ASM) (vS2.03.807)

introduction to MOs 5-152 (VS2.03.807)

overview diagram 5-155 (VS2.03.807)
IOE (I/0 request element) (VS2.03.807)

in page processing 5-119 (VS2.03.807)
IORB (I/O request block) (VS2.03.807)

in completion processing 5-119 (VS2.03.807)

in swap processing 5-153 (VS2.03.807)

job control language (see JCL)
job step allocation (see step allocation)
journal (see job journal)

LCCA (logical communications configuration area)
in page invalidation 5-76
in program interruption extension 5-22
LDA (local data area)
in freeing a virtual region 5-100
in FREEMAIN 5-96
in getting a virtual region 5-98
in VSM address space creation 5-102
LGE (logical group entry) (VS2.03.807)
in VIO data set processing 5-202 (VS2.03.807)
LGE process queue (VS2.03.807)
in save, activate, and release processing 5-203
(VS2.03.807)
in transfer page processing 5-203 (VS2.03.807)
in VIO completion processing 5-203 (VS2.03.807)
in VIO data set processing 5-202 (VS2.03.807)
LGVT (logical group vector table) (VS2.03.807)
in VIO data set processing 5-202 (VS2.03.807)
LGVTE (logical group vector table entry) (VS2.03.807)
description of 5-202 (VS2.03.807)
link pack area (see LPA))
local 1/0 active queue, in PGFREE routine = 5-38
lock manager (see SETLOCK)
log data set (see system log)
log hardcopy (see hardcopy of system log)
log, system (see system log) !
logical reconfiguration (see reconfiguration commands)
LPME (logical-to-physical mapping entry) (VS2.03.807)
in VIO data set processing 5-202 (VS2.03.807)
LSID (logical slot identifier) (VS2.03.807)
in page processing 5-119 (VS2.03.807)
in VIO completion processing 5-202 (VS2.03.807)
_in VIO data set processing 5-202 (VS2.03.807)
LSQA
allocation 5-6-5-7
allocation of virtual storage in GETMAIN routine
5-94-5-95
stealing a frame if no preferred area frame is on
available frame queue 5-7
LSQA control blocks, setting up
in VSM address space creation 5-102-5-103
LSQA storage
freed when task terminates 5-106-5-107
LSQA swap I/0 initiator 5-52 (VS2.03.807)

mark slot available diagram 5-472
master JCL
method of operation (ASM) 5-117
ACTCACE 5-260
ACTCLUP 5-276
ACTCOND 5-254
ACTFREE 5-274
ACTGETB 5-250
ACTGETN 5-322
ACTINIT 5-266
ACTINPR 5-258
ACTIVATE 5-122
ACTREEN 5-248
ACTSLOT 5-270
ACTUPDT 5-312
ADDLSID 5-286

ADDSLOT 5-464

ALSPROC 5-342

ASPCTI1 5-216

ASPCTI2 5-220

ASSIGN 5-132

auxiliary storage management overview 5-118

auxill%a7ry storage management visual table of contents
5-

BADSLOT 5-460

BLDTSKQ 5-184

BUFCPROC 5-454

chain ACE 5-128

FINDPE 5-378

FINISH 5-320

FREECORE 5-134

GETALLX 5-324

GETCORE 5-126

GETERASE 5-332

GETEXTS 5-326

GETIOE 5-380

GETLGN 5-124

GETONE 5-314

GMAFRGET 5-162

ILRACT 5-225 (VS2.03.807)

ILRACT00 5-244

ILRALS00 5-340 -

ILRASNOO overview 5-212

ILRCMP 5-184 (VS2.03.807)

ILRCMPAE 5-186 (VS2.03.807)

ILRCMPDI 5-185 (VS2.03.807)

ILRCMPNE 5-187 (VS2.03.807)

ILRCMPO1 5-283 (VS2.03.807)

ILREOTO00 5-496

ILREOTOQO-ILRETXR 5-500

ILREOTOO-ILRRETRY 5-498

ILRFMTO00 5-341 (VS2.03.807)

ILRFRROO overview 5-502

ILRFRROO-ILRDET00 5-478

ILRFRROO-ILRFRRO1 5-480

ILRFRROO-ILRIOB0O1 5-486

ILRFRROO-ILRPEX01 5-504

ILRFRSLT 5-149 (VS2.03.807)

ILRGOS 5-210 (VS2.03.807)

ILRGOSO01 5-288 (VS2.03.807)

ILRINTO0O overview 5-120

ILRINTO1 5-476

ILRINTO1 overview 5-474

ILRIOCOO-ILRIOCO1 5-488

ILRIOFRR 5-257 (VS2.03.807)

ILRJTERM 5-219 (VS2.03.807)

ILRIOCO0 overview 5-448

ILRMONOO overview 5-158

ILRMONO1 5-482

ILRMSG00 5-195 (VS2.03.807)

ILROPS00 5-351 (VS2.03.807)

ILRPAGCM 5-135 (VS2.03.807)

ILRPAGIO 5-122 (VS2.03.807)

ILRPEX 5-340 (VS2.03.807)

ILRPGEXP 5-346 (VS2.03.807)

ILRPOS 5-205 (VS2.03.807)

ILRPREAD 5-364 (VS2.03.807)

ILRPTM 5-156 (VS2.03.807)

ILRPTMO00 5-388

ILRQIO00 overview 5-370

ILRRLG 5-235 (VS2.03.807)

ILRRLGOO overview 5-300

ILRRLPOO overview 5-222

ILRSAV 5-228 (VS2.03.807)

ILRSAV0O0 overview 5-278

ILRSRBC 5-214 (VS2.03.807)

ILRSRBO1 5-296 (VS2.03.807)

ILRSRT 5-165 (VS2.03.807)

ILRSRTO0O0 overview 5-390

ILRSRTO1 5-278 (VS2.03.807)

ILRSWAP 5-130 (VS2.03.807)

ILRSWPDR 5-134 (VS2.03.807)

ILRSWPO1 5-270 (VS2.03.807)

ILRTERMR 5-336 (VS2.03.807)

ILRTMCO00 5-360

ILRTMCO0 overview 5-358

VS2.03.807

ILRTMIO1 5-300 (VS2.03.807)

ILRTMRLG 5-239 (VS2.03.807)

ILRTMRO00 5-506

ILRTMRO1 5-492

ILRTMROI1 error processing 5-494

ILRTMRO1 overview 5-490

ILRTRPAG 5-209 (VS2.03.807)

ILRTRPOO overview 5-230

ILRVIOCM 5-217 (VS2.03.807)

ILRVSAMI 5-242 (VS2.03.807)

input/output 5-146

INTIALIZE BUFC 5-410

INTMON 5-170

1/0 request overview 5-366

mark slot available 5-472

movehead 5-446

NOAIE 5-174

prepare for a write 5-418

process request 5-430

PROCLG - 5-166

PUTASPCT 5-338

PUTONE 5-318

QUEIOE 5-382

QUEIT 5-176

QUESWAP 5-374

RECHAIN 5-458

RECHAIN 5-438

RELLG 5-136

RELLP 5-138

REMOVA 5-192

REVERSER 5-172

RLGSG01 5-304

RLGSG02 5-308

RLGSGO03 5-310

RLGSG04 5-354

RLGSGO5 5-356

RLPSGO1 5-224

SAVE 5-140

SAVEACT 5-150

SAVEPUT 5-334

SAVSG04 5-282

SAVSG06 5-288

SAVSGO08 5-292

SAVSG10 5-294

SAVSGI11 5-284

SAVSGO61 5-344

SAVSGO062 5-346

SAVSGO063 5-348

- select 1/0 request 5-402

sort rotation 5-434

STARTOP 5-178

STINDV 5-180

SVRLGGET 5-328

SWAPCHK 5-148

TRPAGE 5-142

TRPSG02 5-234

TRPSGO03 5-236

TRPSG04 5-240
mounting a volume (see volume mount & verify)
MOVEHEAD diagram 5-446 .
move-out processing in VIO services routine 5-56-5-57
MP (see multi-processor system)
MSRDA or BASEA (master scheduler resident data area)

in VSM address space creation 5-102

‘MSS

multi-unit generic (see MUG)

new address space (see address space)

NOAIE diagram 5-174 ~

NOTREADY diagram 5-468

null assignment in VIO services routine 5-55

Operation (see Method of Operation Section)
operator console (see console)
Organization (see Program Organization Section)

page data sets (ASM) (VS2.03.807)

Index I-5

dynamic addition of 5-344 (VS2.03.807)
page expansion (ASM) (VS2.03.807)

introduction to MOs 5-344 (VS2.03.807)

overview diagram 5-345 (VS2.03.807)
page faults

error in 5-82
global locks end 5-22
satisfying 5-22
validity checking 5-22

page, finding 5-78
page fix (see also PGFIX)
freeing a fixed page
“long fix"’ processing
processing 5-34
page frame (sece also GFA)
allocation 5-24, 5-34
assigning real 5-42
freeing 5-52, 5-40
interruption 5-22
paging out 5-40
reclamation 5-24
replacement 5-64, 3-47
status, determining 5-8
stealing 5-6
validating 5-64
page free request (see PGFREE)
page I/0 completion processing
page 1/0 initiation 5-52
page 1/0 initiation error 5-59
page 1/0 post 5-28
page load (see PGLOAD)
page release processing 5-14
page seconds 5-73 (VS2.03.807)
page services interface 5-32
page services interface error 5-32
page table building/creation
in obtaining a new memory 5-102, 2-250
in V=R region allocation 5-8
page table, freeing 5-12
page-in completion 5-28
paging termination services
page-out completion 5-28
page validation 5-65
PAGEADD command (ASM) (VS2.03.807)
processing of 5-344 (VS2.03.807)
paging I/0 5-119 (VS2.03.807)
parse (see IKJPARSE)
PART (page activity reference table) (VS2.03.807)
in page processing .5-119 (VS2.03.807)
PARTE (page activity reference table entry) (VS2.03.807)
in page processing 5-152 (VS2.03.807)
path, device (see device path)
PCB (page control block
in freeing a V=R region 5-12
in FREEMAIN release processing
in general frame allocation 5-24
in page 1/0 initiation 5-52
in page I/0 post 5-28
in page release processing
in page termination services
in PCB management 5-74
in PGFIX/PGLOAD root exit 5-36
in PGOUT 540
in program interruption extension 5-22
in real storage reconfiguration 5-70
in swap-in processor routine 5-42
in swap-in root exit 5-44
in swap-out processor routine 5-46
in swap-out root exit 5-50
in V=R region allocation 5-10
in VIO services 5-56
1/0 complete 5-46
1/0 not-complete 5-46
. PCB manager 5-74
PCCW (program channel command workarea) (VS2.03.807)
in completion processing 5-153 (VS2.03.807)
in page processing 5-152 (VS2.03.807)
PFK (see program function key)
PFTE (page fix table entry)
in deleting an address space

5-38
5-24, 5-38

5-28

5-62

5-16

5-14
5-62

5-60

1-6 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS$2.03.807

in freeing a V=R region 5-12

in FREEMAIN release processing
in general frame allocation 5-24
in initializing an address space 5-58
in LSQA/SQA allocation 5-6

in page frame replacement 5-64

in page I/0 completion processing

in page release processing 5-14

in page termination services 5-62
in PFTE enqueue/dequeue 5-72

in PGFIX/PGLOAD 5-36, 5-34

5-80

5-58
5-72

5-78
5-18
5-20

in PGFREE 5-38
in PGOUT 540
in translating real to virtual
in VIO services 5-54
putting on LSQA frame queue
PFTE (enqueue dequeue routine
completion 5-36
interfaces 5-32
PGFREE
interfaces 5-32
5-38
PGLOAD
completion
5-32
processing 5-34
PGOUT
PGTE (page table entry)
calculating addresses in
in destroying a segment
in finding a page 5-78
in general frame allocation 5-24
in LSQA/SQA allocation 5-6
in page I/0 post = 5-28
in page invalidation 5-76
in PGFIX/PGLOAD processing
in PGOUT 5-40
in real storage reconfiguration 5-68
in swap-in root exit 5-44
in invalidating real and virtual pages
initializing 5-18
overflow processing
PLPASAVE diagram 5-186
posting region requests
error termination 5-100
in freeing a virtual region 5-101
in VSM address space creation
preferred area steal (in RSM) 5-84
prepare for a write diagram 5430

in swap-out 5-46

in V=R region allocation 5-8
PGFIX .

processing 5-34

processing

5-36

interfaces

processing 5-40

in creating a segment

in FREEMAIN release processing

in page frame replacement 5-64

in page release processing 5-14

in program interruption extension

in VIO services 5-54
PLPA page data set (ASM) (VS2.03.807)
pool (see quick cell)
PQE (partition queue element)
preferred area, meaning of ~5-25
process request diagram 5430

5-16

5-30

5-16

534
5.22

5-14, 5-76

5-152 (VS2.03.807)

5-103

processors, command (see command processing)

PROCLG diagram 5-171
program interrupt extension 5-22
programmer, writing to (see WTP)

prompting exit (see pre-prompt exit, LOGON)

PUTASPCT diagram 5-338

PUTONE diagram 5-318

PVT (page vector table)
in PFTE enqueue/dequeue 5-72
in RSM functional recovery routine
in swap-in 542

QUEIOE diagram
QUEIT diagram

5-382
5-176

5-82

QUESWAP diagram 5-374
quick cell
allocating 5-110
boundary alignment of pool 5-112
building pools 5-108
deleting pool 5-114
formatting pool 5-108
freeing pool space 5-114, 5-112
returning to pool 5-112

RCA (RSM recovery communications area)
in initializing an address space 5-58
in initiating page 1/0 5-52
in page I/0 post 5-28
in page termination services 5-62
in RSM functional recovery routine 5-82
in swap-in 5-42
real address, translating to virtual 5-80
real frame (see page frame)
real frame replacement 5-64
real storage
reconfiguration 5-68
real storage manager
functional recovery routine 5-82
PGFIX function 5-34, 5-36
preferred area steal 5-84
RECHAIN diagram 5458, 1-2-2-282
recording, error (see error recording)
recovery (ASM) (VS2.03.807)
introduction to MOs 5-250 (VS2.03.807)
overview diagram 5-256 (VS2.03.807)
recovery, error (see error recovery ESTAI)
recovery, FRR (see functional recovery routine)
region allocation
insufficient space for 5-99, 5-9
V=R 5-8
XMPOST errors during 5-99
region control blocks
creating 5-102-5-103
dequeueing 5-104-5-105
releasing 5-12-5-13, 5-101
region control task
posting by swap-in root exit 5-44
region requests
checking V=R requests after freeing a region
5-100-5-101
V=R 598
V=V 598
XMPOST error during 5-99
region size, system default 5-99
region validation 5-10-5-11
RELEASE LG (RELLG)
functional description5-222 (VS2.03.807)
initial processing of 5-203 (VS2.03.807)
MO diagram 5-136
recovery for 5-252 (VS2.03.807)
release processing in FREEMAIN routine 5-16
RELLG diagram 5-136
RELLP diagram 5-138
REMOVA diagram 5-192
requests, allocation
requests, region (see region requests)
resources manager (see system resources manager)
restarting (see restart)
returning virtual region space to available space (in
FREEPART) 5-100
REVERSER diagram 5-172
RLGSGO1 diagram 5-304
RLGSGO02 diagram 5-308
RLGSGO3 diagram 5-310
RLGSGO04 diagram 5-354
RLGSGOS5 diagram 5-356
RLPSGOI1 diagram 5-224
RMPL (system resources manager parameter list)
in page termination services 5-62
RMWA
in page termination services 5-62
RSM (see real storage manager)
RSM functional recovery routine 5-82

VS2.03.807

RSM preferred area steal 5-84
RSM V=R region allocation 5-98
RSMH
in deleting an address space 5-60
in destroying a segment 5-20
in initializing an address space 5-58
R/TM (see recovery termination)

‘S’ symbol (VS2.03.807)
in save, activate, and release processing 5-222
(VS2.03.807)
SART (swap activity reference table) (VS2.03.807)
in swap processing 5-119 (VS2.03.807)
SARWAITQ (SART wait queue) (VS2.03.807)
in swap completion processing 5-120 (VS2.03.807)
SAVE LG request (VS2.03.807)
functional description 5-222 (VS2.03.807)
initial processing of 5-203 (VS2.03.807)
recovery for 5-252 (VS2.03.807)
SAVEACT diagram 5-150
SAVE diagram 5-140
SAVEPUT diagram 5-334
SAVSGO04 diagram 5-282
SAVSGO6 diagram 5-288
SAVSGO8 diagram 5-292
SAVSGI10 diagram 5-294
SAVSGI11 diagram 5-284
SAVSGO61 diagram 5-344
SAVSGO062 diagram 5-346
SAVSGO063 diagram 5-348
SCCW (swap channel command workarea) (VS2.03.807)
in completion processing 5-153 (VS2.03.807)
in swap processing 5-119 (VS2.03.807)
scheduler (see job scheduler)
screen image buffer (see SIB)
SDWA (system diagnostic work area)
in freeing an address space 5-104
in freeing a virtual region 5-100
in getting a virtual region 5-98
in RSM functional recovery routine 5-82
in VSM address space creation 5-102
in VSM task termination 5-106
SECCHK diagram 5-386
second level interrupt handler (see SLIH)
segment
creating, in IEAVCSEG 5-18
destroying, in IEAVDSEG 5-20
invalidating, in RSM 5-16
SEGRLSE diagram 5-226
select I/0 request diagram 5-402
service routine (ASM) (VS2.03.807)
introduction to MOs 5-334 (VS2.03.807)
overview diagram 5-335 (VS2.03.807)
SGTE (segment table entry)
in creating a segment 5-18
in destroying a segment 5-20
in FREEMALIN release processing 5-16
in initializing an address space 5-58
initializing 5-18
invalidating 5-20
swap-in root exit 5-44
in V=R region allocation 5-8
shared subpools
exception in freeing when task terminates 5-106
SIB (screen image buffer)
signal processor (see SIGP instruction)
single line message (see WTO)
SMF (System Measurement Facility)
ng’,“storage-used” field, updating by FREEMAIN

sort rotation diagram 5434
space, address (see address space)
space, region
allocating in GETPART 5-98
SPCT (swap control table)
in creating a segment 5-18
in deleting an address space 5-60
initializing 5-58, 5-18
in swap-in 542

Index I-7

processing 5-46
root exit 5-50
repacking 5-20
SPQE (subpool queue element)
in freeing a virtual region 5-100
in FREEMAIN '5-96
in GETMAIN 5-94
in getting a virtual region 5-98
in VSM task termination 5-106
SQA
allocation 5-6
allocation, virtual storage for 5-94
GETMAIN for, processing 5-94
reserve queue, search of to satisfy SQA request 5-7
search of the available frame queue 5-6
stealing a frame if no preferred area frame is on the
available frame queue 5-7
SRB (service request block) (see also dispatcher)
in deleting an address space 5-60
in page I/0O initiation 5-60
in page I/O post 5-28
in PCB management 5-74
in PFTE enqueue/dequeue 5-72
in real storage reconfiguration 5-68
in swap-in root exit 5-44 (VS2.03.807)
in swap-in post processor 5-45.0 (VS2.03.807)
in V=R region allocation 5-8
stack, FRR (see FRR stack)
STARTDP diagram 5-178
statement (see JCL statement)
status, console (see console status) -
stealing page frames 5-64, 3-46, 5-7, 5-25, 5-84
STEPL (STAE exit parameter list)
STINDY diagram 5-180
STOP MONITOR command
storage, global
freed when task terminates 5-106
storage management (see real storage manager, virtual
storage management, system resources manager)
storage, real allocation of frames 5-25
stream, input (see converter)
subpool numbers, attributes of 5-89
subpool number, checking in GETMAIN 594
subpool storage
freeing at task termination 5-106
subpool, checking in FREEMAIN 5-96
subpools, shared
exception from freeing at task termination 5-106-5-107
subsytem name, determination of 638
SVC interruptions (see supervisor interruptions handler)
SVC 109 (see extended SVC routing)
SVC 116 (see extended SVC routing)
SVC 122 (see extended SVC routing)
SVCIH (see supervisor interruption handler)
SVRLGGET diagram 5-328 -
SWA storage i
freed when task terminates. 5-106
swap data sets (ASM) (VS2.03.807)
dynamic addition of 5-344 (VS2.03.807)
SWAPCHK diagram 5-148
swapping I/O 5-119 (VS2.03.807)
swap-in, address space
root exit 5-44
completion error 5-82
swap-in processor routine (in RSM) 5-42, 5-44
swap-in root exit routine (in RSM) 5-44
swap-in post processor 5-45.0 (VS2.03.807)
swap-in SRM notification if swap-in fails = 543
swap-out, address space
completion processor 5-50 (VS2.03.807)
initiating 5-52
root exit routine 5-50
SRM notification that swap-out is complete 5-51
swap-out processor (in RSM) 5-46, 5-50
System Activities Measurement Facility (see MF/1)
system default region size 5-99
system log data set (see system log)
System Measurement Facility (see SMF)
system parameter library (see SYSI.PARMLIB)
system reconfiguration (see reconfiguration commands)

I-8 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

system resources manager (SRM) (see also workload
manager) 3-3
swap-out completion, notification from RSM. 5-50
system, stopping (see stopping)
system trace (see trace, system)
system trace termination (see trace termination)

TCB (task control block)
in freeing an address space 5-104
in GETMAIN 5-94
in page termination services - 5-62
in PGFREE 5-38
in VSM task termination 5-106
TCT (timing control table)
FREEMAIN 5-96
terminator (see initiator/terminator)
text, internal (see converter, internal text)
timer second level interrupt handler (see timer SLIH)
TIOT manager control routine
TLB (translation look-side buffer)
invalidating 5-20
purging 5-52
TMCMSG diagram 5-364
TMCSGO06 diagram 5-360
TMCSG10 diagram 5-362
TPCA (see TPC)
TRANSFER PAGE
MO diagram 5-142
translating real addresses to virtual 5-80
TRPAGE diagram 5-142
TRPSGO02 diagram 5-234
TRPSGO3 diagram 5-236
TRPSGO04 diagram 5-240
TSO LOGON (see LOGON)

unit affinity (see allocating affinity requests)

unit, allocating request to (see allocating requests to units)
user, allocating virtual storage for (GETMAIN) 5-94
user, swapping (see swap-in, swap-out)

V=R completion processing for intercepted frames 5-6
V=R frame interception 5-11
V=R region allocation 5-3
V=R region requests, processing in GETPART 5-98
V=V region requests, processing in GETPART 5-98
values, IPS (see IPS values)
VCB
in VIO services 5-54
VIO control (ASM) (VS2.03.807)
introduction to MOs = 5-202 (VS2.03.807)
overview diagram 5-204 (VS2.03.807)
VIO data sets (VS2.03.807)
activating 5-222 (VS2.03.807)
ASM processing of 5-202 (VS2.03.807
creating 5-203 (VS2.03.807)
saving 5-222 (VS2.03.807)
VIO group operators (ASM) (VS2.03.807)
introduction to MOs 5-222 (VS2.03.807)
overview diagram 5-224 (VS2.03.807)
VIO services routine 5-54
virtual addresses, translating from real 5-80
virtual region .
freeing 5-100
getting 5-98-5-99 .
space to available space, returning 5-100
virtual storage, allocating (GETMAIN processing) 5-94
virtual storage management (VSM)
address space creation 5-102
overview
virtual storage unallocation 5-96
volume serial number (see VOLSER)
volume, specific allocation (see specific volume allocation
control) :]
volume unload control (see IEFAB494 object module)
volunit table
VRWAITQ
in freeing a V=R region 5-101

VS2.03.807

VRWPQE (V=R wait/post queue element) calculating addresses in 5-78

in getting a virtual region 5-98 in creating a segment 5-18
VSL (virtual subarea list) in finding a page 5-78
in freeing a virtual region 5-12 in freeing a virtual region 5-12
in page services 5-32 in FREEMAIN release processing 5-16
in PGOUT 5-40 in general frame allocation 5-24
VSM (see virtual storage management) in LSQA/SQA allocation 5-6
VSM address space creation 5-102 in page processing 5-119 (VS2.03.807)
V=R region in PGFIX/PGLOAD 5-38
freeing 5-12 in PGOUT 540
getting 5-98-5-99, 5-8 in swap-in root exit 5-44

in VIO services 5-54

in V=R region allocation 5-8
write-to-programmer (see WTP) initializing 5-18
WTOMSG diagram 5-154 XSA (extended save area)

in getting a virtual region 5-98

XPTE (external page table entry)

Index 19

I-10 - OS/VS2 System Logic Library Volume 5 (VS2.03.807)

-_—— - _—_————— — ——— — — — —— — — — — — AWM B P4 IN) — — — — — —— o —— — ——— o — —— —— — —— — — —

0S/VSs2
System Logic Library
Volume 5

Your views about this publication may help improve its usefulness, this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

READER’S
COMMENT
FORM

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

S$Y28-0765-0

Your comments, please. . .

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold
Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.
Postage will be paid by:
International Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602
Fold

BN

internationai Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(international)

First Class
Permit 81
Poughkeepsie
New York

(9€-0£ES) G dwNnjoA Adeiqi] 21B0O7 WaISAS ZQA /RN

—— — — — aur 3uojy P04 40 Y — —— — — —

"V'S'N Ul paug

0-69.0-8CAS

