
Systems

SY28-0765-0
File No. S370-36

OS/VS2
System Logic Library
Volume 5

VS2.03.805
VS2.03.807

This minor revision incorporates the following Selectable Units:

Supervisor Performance #1
Supervisor Performance #2

VS2.03.805
VS2.03.807

The selectable unit to which the information applies, is noted in the upper corner of the page.

First Edition (July, 1976)

This is a reprint of SY28-0717-0 incorporating changes released in the following
Selectable Units Newsletters:

SN28-2688 (dated May 28,1976)
SN28-2694 (dated May 28, 1976)

This edition applies to Release 3.7 of OS/VS2 and to aU subsequent releases of OS/VS2 until
otherwise indicated in new editions or Technical Newsletters. Changes are continually made to
the information herein; before using this publication in connection with the operation of IBM
systems, consult. the latest IBM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
113M branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments become
the property of IBM.

©Copyright International Business Machines Corporation 1916

System Logic Library comprises seven volumes.
Following is the content and order number for each
volume.
OS /VS2 System Logic Library,
Volume 1 contents: SY28-0713

MVS logic introduction
Abbreviation list
Index for all volumes

Volume 2 contents: SY28-0714
Method of Operation diagrams for
Communications Task
Command Processing
Region Control Task (RCT)
Started Task Control (STC)
LOGON Scheduling

Volume 3 contents: SY28-0715
Method of Operation diagrams for
System Resources Manager (SRM)
System Activity Measurement Activity (MF /1)
JOB Scheduling

-Subsystem Interface
-Master Subsystem
-Initiator /Terminator
-SW A Create Interface
-Converter/Interpreter
-SW A Manager
-Allocation/U nallocation
-System Management Facilities (SMF)
-System Log
-Checkpoint/Restart

Volume 4 contents: SY28-0716
Method of Operation diagrams for
Timer Supervision
Supervisor Control
Task Management
Program Management
Recovery /Termination Management (R/TM)

Volume 5 contents: SY28-0717
Method of Operation diagrams for
Real Storage Management (RSM)
Virtual Storage Management (VSM)
Auxiliary Storage Management (ASM)

Volume 6 contents: SY28-0718
Program Organization

Volume 7 contents: SY28-0719
Directory
Data Areas
Diagnostic Aids

Preface

Please note that if you use only one order
number, you will only receive that volume. To
receive all seven volumes, you must either use all
seven form numbers or, simply the following
number: SBOF-8210. If you use SBOF-8210, you
will receive all seven volumes.

The publication is intended for persons who are
debugging or modifying the system. For general
information about the use of the MVS system, refer
to the publication Introduction to OS / VS Release
2, GC28-0661.

How This Publication is Organized
This publication contains six chapters. Following, is
a synopsis of the information in each section:

• Introduction and Master Index - an
overview of each of the functions this
publication documents, an abbreviation list of
all acronyms used in the publication, and a
complete index for all seven volumes.

• Method of Operation - a functional
approach to each of the subcomponents, using
both diagrams and text. Each subcomponent
begins with an introduction; all the diagrams
and text applying to that subcomponent
follow.

• Program Organization - a description of
module-to-module flow for each
subcomponent; a description of each module's
function, including entry and exit. The
module-to-module flow is ordered by
subcomponent. The module descriptions are
in alphabetic order without regard to
subcomponent.

• Directory - a cross-reference from names in
the various subcomponents to their place in
the source code and in the publication.

• Data Areas - a description of the major
data areas used by the subcomponents (only
those, however, that are not described in
OS / VS Data Areas, SYB8-0606, which is
on microfiche); a data area usage table,
showing whether a module reads or updates a
data area; a control block overview diagram
for each subcomponent, showing the various
pointer schemes for the control blocks
applicable to each subcomponent; a table
detailing data area acronyms, mapping macro
instructions, common names, and symbol
usage table.

Preface 3

Diagnostic Aids - the messages issued,
including the modules that issue, detect, and
contain the message; register usage; return
codes; wait state codes; and miscellaneous
aids.

4 OS/VS2 System Logic Library Volu~e 5 (VS2 Release 3.7)

Corequisite Reading
The following publications are corequisites:

• OS/VS2 JES2 Logic, SY28-0622
• OS /VS Data Areas, SYB8-0606 (This

document is on microfiche.)
• OS/VS2 System Initialization Logic,

SY28-0623

VS2.03.807

Section 2: Method of Operation
Real Storage Management (RSM)

Method-of-Operation Diagrams
23-1. LSQA/SQA Allocation (lEAVSQA)
23-2. V =R Region Allocation (lEA VEQR)
23-3. Freeing a V=R Region (lEAVEQR)
23-4. Page Release Processing (lEA VRELS)
23-5. FREEMAIN Release Processing (lEAVRELS)
23-6. Create Segment (lEAVCSEG)
23-7. Destroy Segment (lEAVDSEG)
23-8. Program Check Interruption Extension (lEA VPIX)
23-9. General Frame Allocation (IEAVGFA)
23-10. Page I/O Post (IEAVPIOP)
23-11. Page I/O Completion Processing (lEAVIOCP)
23-12. Page Services Interface (lEAVPSI)
23-13. PGFIX/PGLOAD Processor (lEAVFXLD)
23-14. PGFIX/PGLOAD Root Exit (lEAVFXLD)
23-15. PGFREE Routine (IEAVFREE)
23-16. PGOUT Routine (lEAVOUT)
23-17. Swap-In Processor Routine (lEA VSWIN)
23-18. Swap-In Root Exit (lEAVSWIN)
23-18A. Swap-In Post Processor (lEA VSWPP) (VS2.03.807)
23-19. Swap-Out Processor Routine (lEAVSOUT)
23-20. Swap-Out Root Exit (lEA VSOUT)
23-20. Swap-Out Completion Routine (lEA VSWPC) (VS2.03.807)
23-21. Page I/O Initiator (lEA VPIOI)
23-21. LSQA Swap I/O Initiator (lEAVPIOI) (VS2.03.807)
23-22. VIO Services Routine (lEA V AMSI)
23-23. Initialize Address Space Routine (lEA VIT AS)
23-24. Delete Address Space Routine (lEA VDLAS)
23-25. Page Termination Services (lEA VTERM) . .
23-26. Real Frame Replacement (lEA VRFR) . .
23-27. Real Storage Reconfiguration Routine (lEA VRCF)
23-28. PFTE Enqueue/Dequeue Routine (lEA VPFTE)
23-29. PCB Manager (lEAVPCB)
23-30. Page Invalidation Routine (lEA VINT)
23-31. Find Page Routine (lEA VFP)
23-32. Translate Real to Virtual (lEA VTRV)
23-33. RSM Functional Recovery Routine (lEA VRCV)
23-34. RSM Preferred Area Steal (lEA VPREF)

Virtual Storage Mangement (VSM) .
Subpools
Method-of-Operation Diagrams ..

24-1. GETMAIN (lEA VGMOO) .
24-2. FREEMAIN (lEA VGMOO)
24-3. GETPART(lEAVPRTO) .
24-4. FREEPART (lEAVPRTO) .
24-5. Create Address Space (lEA VGCAS)
24-6. Free Address Space (lEA VGCAS) .
24-7. Task Termination (lEAVGCAS)
24-8. Build Quickcell Pool Routine (lEA VBLDP)
24-9. GETCELL Routine (IEAVGTCL)
24-10. FREECELL Routine (lEA VFRCL) . . .
24-11. Delete Quickcell Pool (lEAVDELP)
24-12. CHANGKEY (IEAVCKEY) (VS2.03.80S)

Auxiliary Storage Management
Method-of-Operation Diagrams

25-1. Auxiliary Storage Management Overview
25-2. ILRINTOO Overview
25-3. ACTIVATE
25-4. GETLGN
25-5. GETCORE
25-6. Chain ACE ILRCEPOO
25-7. GETACE .
25-8. ASSIGN
25-9. FREECORE
25-10. RELLG

Contents

5-1
5-3
5-6
5-6
5-8

· 5-12
· 5-14
· 5-16
· 5-18
· 5-20
· 5-22
· 5-24
· 5-28
· 5-30
· 5-32
· 5-34
· 5-36
· 5-38
· 5-40
· 5-42
· 5-44
5-45.0
· 5-46
· 5-50
· 5-50
· 5-52
· 5-52
· 5-54
· 5-58
· 5-60
· 5-62
· 5-64
· 5-68
· 5-72
· 5-74
· 5-76
· 5-78
· 5-80
· 5-82
· 5-84
· 5-87
· 5-88
· 5-94
· 5-94
· 5-96
· 5-98
5-100
5-102
5-104
5-106
5-108
5-110
5-112
5-114

5-115.0
5-117
5-118
5-118
5-118
5-122
5-124
5-126
5-128
5-130
5-132
5-134
5-136

Contents 5

VS2.03.807

25-11. RELLP
25-12. SAVE .
25-13. TRPAGE .
25-14. Input/Output
25-15. SW APCHK
25-16. SAVEACT .
25-17. WTOMSG .
25-18. ARLSEG
25-19. ILRMONOO Overview
25-20. GMAGET .
25-21. GMAFREE
25-22. PROCLG
25-23. INTMON
25-24. REVERSER
25-25. NOAIE
25-26. QUEIT
25-27. STARTOP .
25-28. STINDV . .
25-29. BLDTSKQ .
25-30. PLP ASA VE
25-31. ILRARLS
25-32. GETLPME
25-33. REMOV A
25-34. MONQIO
25-35. FINDPE .
25-36. SECCHK
25-37. QUEREAD
25-38. GET ANIOE
25-39. QUEWRITE
25-40. QUEIOE . .
25-41. TRPAGE .
25-42. ILRASNOO Overview
25-43. ASPCTIl
25-44. ASPCTI2
25-45. ILRRLPOO Overview
25-46. RLPSGOI
25-47. SEGRLSE
25-48. CTRUPDTE
25-49. ILRTRPOO Overview
25-50. TRPSG02
25-51. TRPSG03
25-52. TRPSG04
25-53. ILRACTOO Overview
25 .. 54. ACTREEN .
25-55. ACTGETB .
25-56. ACTCOND
25-57. ACTINPR
25-58. ACTCACE
25-59. ACTINIT
25-60. ACTS LOT
25-61. ACTFREE
25-62. ACTCLUP
25-63. ILRSA VOO Overview
25-64. SA VSG04
25-65. SA VSG 11
25-66. ADDLSID
25-67. SA VSG06
25-68. SA VSG08
25-69. SA VSG 10
25-70. ILRRLGOO Overview
25-71. RLGSGO 1
25-72. RLGSG02
25-73. RLGSG03 .
25-74. ACTUPDT
25-75. GETONE
25-76. PUTONE
25-77. FINISH
25-78. ACTGETN
25-79. GETALLX
25-80. GETEXTS
25-81. SVRLGGET

6 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

5~138

5-140
5-142
5-146
5-148
5-150
5-154
5-156
5-158
5-162
5-164
5-166
5-170
5-172
5-174
5-176
5-178
5-180
5-184
5-186
5-188
5-190
5-192
5-196
5-198
5-200
5-202
5-204
5-206
5-208
5-210
5-212
5-216
5-220
5-222
5-224
5-226
5-228
5-230
5-234
5-236
5-240
5-244
5-248
5-250
5-254
5-258
5-260
5-266
5-270
5-274
5-276
5-278
5-282
5-284
5-286
5-288
5-292
5-294
5-300
5-304
5-308
5-310
5-312
5-314
5-318
5-320
5-322
5-324
5-326
5-328

VS2.03.807

25-82. GETERASE
25-83. SAVEPUT .
25-84. PUT ASPCT
25-85. ILRALSOO
25-86. ALSPROC
25-87. SA VSG061
25-88. SA VSG062
25-89. SA VSG063
25-90. RLGSG04
25-91. RLGSG05
25-92.ILRTMCOO
25-93. TMCSG06
25-94. TMCSG 10
25-95. TMCMSG
25-96. I/O Request Ovetview
25-97. ILRPTMOO
25-98. ILRSRTOO Overview
25-99. GETWRTQ
25-100. REPWRTQ
25-101. PROCPARE
25-102. BADSORT
25-103. REPBUFC
25-104. ILRSRTOO
25-105. INITLZ ..
25-106. SORTREAD
25-107. ADRTTRE .
25-108. CYSCANCYL
25-109. GETRDCYL
25-110. GETWCYL
25-111. BRDMASK
25-112. GETLOLEC
25-113. PROCREQS
25-114. PROCHIT
25-115. INITBUFC
25-116. FREEIOE .
25-117. 10CHAIN .
25-118. GETBUFC
25-119. BILDMSKS
25-120. WRTUPDTE
25-121. FINDSLOT . .
25-122. SETWRITE .
25-123. GETREAD .
25-124. REMVNODE
25-125. RCHAINUP .
25-126. 10
25-127. CLEANUP
25-128. ILRIOCOO Overview
25-129. BUFCPROC
25-130. RECHAIN
25-131. BADSLOT
25-132. ADDSLOT
25-133. COMPBRST
25-134. NOTREADY .
25-135. Mark Slot Available
25-136. ILRINTO 1 Overview
25-137. ILRINTOI
25-138. ILRFRROO-ILRDETOO
25-139. ILRFRROO-ILRFRROI
25-140. ILRMONOI
25-141. ILRFRROO-ILRIOBOI
25-142. ILRIOCOI
25-143. ILRTMROI Overview
25-144. ILRTMROI
25-145. ILRTMROI Error Processing
25-146. ILREOTOO
25-147. ILREOTOO-ILRRETRY
25-148. ILREOTOO-ILRETXR
25-149. ILRFRROO Overview
25-150. ILRFRROO-ILREXOI
25-151. ILRTMROO

Overview (VS2.03.807)

5-332
5-334
5-338
5-340
5-342
5-344
5-346
5-348
5-354
5-356
5-358
5-360
5-362
5-364
5-366
5-388
5-390
5-390
5-392
5-394
5-396
5-398
5-400
5-402
5-404
5-406
5-408
5-410
5-412
5-414
5-416
5-418
5-420
5-422
5-424
5-426
5-428
5-430
5-432
5-434
5-436
5-438
5-440
5-442
5-444
5-446
5-448
5-454
5-458
5-460
5-464
5-466
5-468
5-472
5-474
5-476
5-478
5-480
5-482
5-486
5-488
5-490
5-492
5-494
5-496
5-498
5-500
5-502
5-504
5-506
5-117

Contents 7

VS2.03.807

I/O Control (VS2.03.807)
25-1. ILRPAGIO (VS2.03.807)
25-2. ILRSW AP (VS2.03.807) .
25-3. ILRSWPDR (VS2.03.807)
25-4. ILRP AGCM (VS2.03.807)
25-5. ILRFRSLT (VS2.03.807)

I/O Subsystem (VS2.03.807) ..
25-6. ILRPTM (VS2.03.807) .
25-7. ILRSRT (VS2.03.807) ..
25-8. ILRCMP (VS2~03.807)
25-9. ILRMSGOO (VS2.03.807)

VIO Control (VS2.03.807)
25-10. ILRPOS (VS2.03.807) .
25-11. ILRGOS (VS2.03.807) '.
25-12. ILRSRBC (VS2.03.807)
25-13. ILRVIOCM (VS2.03.807)
25-14. ILRJTERM (VS2.03.807)

VIO Group Operators (VS2.03.807)
25-15. ILRACT (VS2.03.807) ..
25-16. ILRSA V (VS2.03.807) . .
25-17. ILRRLG (VS2.03.807) . .
25-18. ILRTMRLG (VS2.03.807)
25-19. ILRVSAMI (VS2.03.807)

Recovery (VS2.03.807)
25-20. ILRIOFRR (VS2.03.807)
25-21. ILRSWPOI (VS2.03.807)
25-22. ILRSRTOI (VS2.03.807)
25-23. ILRCMPOI (VS2.03.807)
25-24. ILRGOSOI (VS2.03.807)
25-25. ILRSRBOI (VS2.03.807)
25-26. ILRTMIOI (VS2.03.807)
25-27. ILRFRROI (VS2.03.807)

Service Routines (VS2.03.807) . .
25-28. ILRTERMR (VS2.03.807)
25-29. ILRPEX (VS2.03.807)
25-30. ILRFMTOO, ILRFMTPG, ILRFMTSW, ILRFMTCV (VS2.03.807)

Page Expansion (VS2.03.807)

Index

25-31. ILRPGEXP (VS2.03.807)
25-32. ILROPSOO (VS2.03.807) .
25-33. ILRPREAD (VS2.03.807)

8 oS/VS2 System Logie Library Volume 5 (VS2.03.807)

"

5-119
5-122
5-130
5-134
5-135
5-149
5-152
5-156
5-165
5-184
5-195
5-202
5-205
5-210
5-214
5-217
5-219
5-222
5-225
5-228
5-235
5-239
5-242
5-250
5-257
5-270
5-278
5-283
5-288
5-296
5-300
5-322
5-334
5-336
5-340
5-341
5-344
5-346
5-351
5-364

. 1-1

V82.03.807

Figures
Figure 2-43
Figure 2-44
Figure 2-45
Figure 2-56

Figure 2-57
Figure 2-58
Figure 2-59
Figure 2-60
Figure 2-60A
Figure 2-61
Figure 2-62
Figure 2-63

Real Storage Management Visual Contents 5-5
Subpool Assignments 5-89
Virtual Storage Management Visual Contents 5-93
Auxiliary Storage Management Visual Table of Contents (VS2.03.807) .

. 5-118
I/O Control Overview (VS2.03.807 5-121
I/O Subsystem Overview (VS2.03.807) 5-155
VIO Control Overview (VS2.03.807) 5-204
VIO Group Operators Overview (VS2.03.807) 5-224
Recovery Routines (VS2.03.807) 5-255
Recovery Overview (VS2.03.807) . . . 5-256
Service Routines Overview (VS2.03.807) 5-335
Page Expansion Overview (VS2.03.807) 5-345

ConteDts 8.1

8.2 OS!VS2 System Logic library Volume 5 (VS2.03.807)

This section uses diagrams and text to describe the
functions performed by the scheduler, supervisor,
MF /1, SRM, and ASM functions of the OS/VS2

operating system. The diagrams emphasize
functions performed rather than the progr.~m logic
and organization. Logic and organization is
described in "Section 3: Program Organization."

The method-of -operation diagrams are arranged
by subcomponent as follows:

• Communications Task.
• Command Processing (includes

Reconfiguration Commands).
• Region Control Task (RCT).
• Started Task Control (STC) (includes

START/lOGON/MOUNT).

• LOGON Scheduling
• System Resources Manager
• System Activity Measurement Facility

(MF/l)
• Job Scheduling:

- Subsystem Interface.
- Master Subsystem.
- Initiator/Terminator.
- SW A Create Interface.
- Converter/Interpreter.
- SW A Manager.
- Allocation/U nallocation.
- System Management Facilities (SMF).
- System Log.
- Checkpoint/Restart.

• Timer Supervision.
• Supervisor Control.
• Task Management.
• Program Management.

Section 2: Method of operation.

• Recovery/Termination Management (R/TM).
• Real Storage Management (RSM).
• Virtual Storage Management (VSM).
• Auxiliary Storage Management (ASM).

The diagrams for each subcomponent are
preceded by an introduction that summarizes the
subcomponent's function. Following each
introduction is a visual table of contents that
displays the organization and hierarchy of the
diagrams for that subcomponent.

The diagrams cross-reference each other using
diagram numbers and module names. As an aid in
locating the diagrams that are cross-referenced, an
alphabetic list of all diagram names and their
corresponding page numbers follows this
introduction.

Method-of-operation diagrams are arranged in
an input-processing-output format: the left side of
the diagram contains data that serves as input to
the processing steps in the center of the diagram,
and the right side contains the data' that is output
from the processing steps. Each processing step. is
numbered; the number corresponds to an amplified
explanation of the step in the "Extended
Description" area. The object module name and
labels in the extended description point to the code
that performs the function.

Note: The relative size and the order of fields
within input and output data areas do not always
represent the actual size and format of the data
area.

Section 2: Method of Operation 5·1

_ Primary processing - indicates major functional flow .

•••• _. Secondary processing - indicates functional flow within a diagram.

L-_---.> Data movement, modification, or use.

- -~ Data reference - indicates the testing or reading of a data area to
determine the course of subsequent processing.

---.... Pointer - indicates that a data area contains the address of another
data area.

I a.. Indirect pointer - indicates intermediate pointers have been omitted.

--D Connector - indiOJtes that a diagram is continued on the next page.

Figure 2-1. Key to Symbols Used in Method~f-operation Diagrams

5-2 OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7)

Real Storage Management (RSM) routines
administer the use of real storage and direct the
movement of virtual pages betwe(;!n auxiliary
storage and real storage in page-size blocks. The
routines make all addressable virtual storage in
each address space appear as real storage to the
user. Only virtual pages necessary for execution are
kept in real storage~ the remainder reside on
auxiliary storage. RSM calls Auxiliary Storage
Management (ASM) routines to perform the paging
I/O necessary to transfer pages into and out of real
storage. ASM also provides direct storage allocation
and management for paging I/O space on auxiliary
storage. The System Resources Manager provides
guidance for RSM in the performance of some of
these functions.

RSM assigns real storage frames on request from
a pool of available frames (the available frame
queue), associating virtual addresses with real
storage addresses. Frames are repossessed on
termination of use, when freed by a user, when a
user is swapped out, or when needed to replenish
the available frame queue. While a virtual page
occupies a real frame, the page is considered
page able unless specified as fixed, either by the
PGFIX routine, or by the system for its own use.
RSM routines also allocate nonpageable (V=R)

Real Storage Management

regions on request by those programs that cannot
tolerate dynamic relocation. Such a region is
allocated from a predefined area of real storage
and is nonpageable. Programs in the V=R region do
use dynamic address translation. although the
addressing is on a one-to-one basis.

RSM routines determine the working set size for
swap-in and swap-out functions. They maintain the
necessary information to remove the virtual pages
of an address space from real storage during
swap-out and to re-establish them during swap-in.
ASM provides the paging I/O for the swap function.

RSM also provides a set of service routines for
use by the system:

• Table building for address translation
• Page fault processing
• Alteration of the pageable status of virtual

pages
• Capability for paging in virtual pages before

needed
• Capability for paging out selected pages
• Address translation from real to virtual

addresses
• Varying real storage frames online or offline
• Virtual I/O (VIO) services
• Error recovery processing

Section 2: Method of Operation 5-3

tit

.1...

o
V}

<:
V}
t..J
V}

'<
~
('I)

3
r-
~
n"
r­
cr
"'" ~
-<
<:
o
C
3
('I)

VI

'<
f'-l
N
Q
w
00 o -

Real Storage
Management
Overview
(no diagram)

LSQA/SQA V=R Region Freeing a Page Release Create Destroy Program Check
Alfocation Allocation V=R Region Processing Segment Segment Interru'pt
(lEAVSQA) (lEAVEQR) (lEAVEQR) (lEAVRELS) (IEAVCSEG) (JEAVDSEG) ExtensIon

(lEAVPIX)

I
123-10

Page I/O Post
(lEAVPIOP)

I
123~ 11

Page I/O
Completion
Processing
(IEAVIOCP)

1
123-13

1

PGFIX/
PGLOAD
Processor
(lEAVFXLD)

1
123-14

PGFJX!
PGLOAO
Root Exit
OEAVFXLO)

1
123-12

Page Service
Interface
(I EAVPSI)

1
1

123-15

PGFREE
Routine
(lEAVFREE

1
123-5

FREEMAIN
Release
Processing
(lEAVRELS)

1
123-16

1

PGOUT
Routine
(IEAVOUT)

Figure 2-43. Real Storage Management Visual Contents (Part I of 2)

1
123-17

Swap-In
Processor
Routine
(IEAVSWIN)

I
123-18

1

Swap-In
Root Exit
(lEAVSWIN)

1
\23-19

Swap-Out
Processor
Routine
(lEAVSOUT)

I
123-20

Swap-Out
Completion
(IEAVSWPC)

23-18A

Swap-I n Post
Processor
(IEAVSWPP)

I
LSQA 123-21

Swap I/O
Initiator
(lEAVPIOI)

General Frame
Allocation
(lEAVGFA)

1
123-22

VIO Services
Routine
(IEAVAMSIl

To
Part 2

<:
f'-l
N
Q
w
00
S

~
(D

~
e' ::s
N

~
(D

:;
&.
o
~ ;
e' ::s

CIt
ci.

From
Part 1 I

~
Initialize
Address Space
Routine
(lEAVITAS)

I
~

Delete
Address Space
Routine
(lEAVDLAS)

Page
Invalidation
Routine
(lEAVINV)

I
~

Page
Termination
Services
(lEAVTERM)

Find Page
Routine
(lEAVFP)

Figure 2-43. Real Storage Management Visual Contents (part 2 of 2)

Real Storage
Management
Overview

I
I I I I
~ ~ ~ ~I

Real Frame Real Storage PFTE PCB

Replacement Reconfiguration Enqueue/ Manager
(lEAVRFR) (lEAVRCF) Dequeue (lEAVPCB)

(IEAVPFTE)

Translate RSM Functional
Preferred

Real to Virtual R.ecovery
Area Steal

(lEAVTRV) Routine
(lEAVPREF) (IEAVRCV)

~ Diagram 23-1. LSQA/SQA Allocation (IEAVSQA) (part 1 012)

~
~
N

l
I

i
r­
&

~
<
i-a
('D

VI

~
N

~

i
3
w
~

M

1m

Frame Queues

From GETMAIN (lEAVGMOO)
or Address Space
Initialization (I EAV IT AS)

P
~7.;¥~';,

I i:Ij ,"«

x· ~, <:l:i .~/~

--'" 1
]

Search for a frame to be used for PFTE PFTE

CJJ
'

CJb
SOA or LSOA.

~

2 CaIiIEAVEQRI to perform completion
processing for intercepted frames.

~

3 Update PFTE and move it to the
correct 'queue.

« ~

4 Clear the real frame and validate
and update the page table entry.

i
lit

5 Return.
;

,_%

Initialization UEAVITAS)

Output
~

"',

I
I

SOA or LSQA Frame Queue

PFTE

~
--'" '«

.... «

k-*%@ ~,

PGTE
J\.

I I

'"

CI.l
~
(') g.
:I
N

a:
~

;.
&.
o
o

"0
~

;;J

S·
:I

til

.!.J

Diagram 23-1. LSQA/SQA Allocation (lEAVSQA) (Part 2 of 2)

Extended Description

SOA or LSOA Allocation (I EA VSOA) assigns real storage
frames to those virtual pages that VSM or RSM's Address
Space Initialization routine specifies to be SOA or LSOA
pages. The caller holds the SALLOC lock and is in key 0,
supervisor state.

1 Satisfaction of the request is first attempted by access·
ing the AFO (available frame queue) to find a frame

outside the V=R area and also, if desirable, within the pre­
ferred area. If a PFTE (page frame table entry) for such a

frame is found on this queue, it is dequeued and the request
will be satisfied. If no preferred area frames exist on the
AFO, an attempt is made to steal a preferred area frame
that holds a virtual page. Only unchanged, non-fixed
frames for which no PCB exists are candidates for this
stealing. Frames which are fixed, allocated to an active
V=R region, offline, are changed, ha'(e paging 1/0 in

progress, or contain a storage error are excluded. The Local
and Common Frame queues are searched (in that order)
for a frame meeting the steal criteria.

The search stops as soon as a stealable frame in the preferred
area is found. If none can be stolen, non-preferred area
frames outside the V=R area on the AFO become candidates,
and one is stolen if it exists. If no such frames exist on the
AFO, but one was found on the local or common frame
queue, it will be stolen and used for the request. If any such
non-preferred, non-V=R frame is used, the physical storage
unit containing the frame is converted from non-preferred to
preferred storage.

If no pageable area frames can be found, the V=R area
frames on the AFO become candidates and one is taken if
any exist. If none can be found, the V=R area frames of the
other queues become candidates and one will be taken.
Frames that have been intercepted for a V=R region are
skipped if a stealable, non-intercepted, V=R area frame exists
on any of the queues. If no frame could be obtained and the
request is for an LSOA page or unassigned frame (VSA=O), no
further action is taken and a return code of 4 is passed to
the caller.

Module

IEAVSOA

label Extended Description

For SOA requests, the search moves to the SOA Reserve
queue, where a certain number of frames are held, usually one.

When a reserved frame is taken, the SOA Reserve Oueue
Deficit count is increased, telling the PFTE Enqueue routine
that the next frame sent to the AFO should be diverted to
the SOA Reserve queue to replenish it. If the SOA Reserve
queue is also empty, an out of real storage condition exists
and return code 4 is given to the caller.

2 If the selected frame was previously intercepted for a
V=R region, the V=R Wait queue is scanned to locate

the root PCB for the V=R region so that it can be marked
as failed. Then the IEAVEORI entry is called, passing the
RBN of the intercepted PFTE to start the process that will
lead V=R allocation to post the region ECa with code 16.

3 If the input virtual storage address was 0, the VBN
(virtual block numbed in the PFTE of the selected

frame is set to zero, as are all the PFTE flags except PFTVR
(V=R area) and the Intercept flags. The PFTLSOA flag is

also set. The PFTE is dequeued and the RBN (real
block numbed of the frame is placed in register one
before returning to the caller with a code of zero.

If the input virtual storage address is not zero, the frame is
to be assigned to the page corresponding to the VSA. First
the PFTE is moved to the LSOA or SOA frame queue,
depending on whether the VSA is in the private or common
area address range. The frame counts of the sending and
receiving queues are adjusted where necessary. The VBN of
the page is placed in the PFTE and either the current ASID
or x'FFFF' (for SOA pages) placed in the PFTASID field.
The PFTLSOA is turned on and all other flags except the
PFTVR and intercept flags turned off. The system fix
counters are also incremented.

4 The PGTE for the page is updated with the real address
of the block, the GETMAIN bit is set to one, and the

inval id bit is set to zero. The XPTE protect key field is set
to zero (for LSOA only). The real storage key is also set to
zero. Finally, the entire page is cleared to zeros.

Module label

<:
CI.l
I-.l

C
~

00 o
-...l

~ Diagram 23-2. V=R Region Allocation (lEA VEQR) (part 1 of 4)

&3

~
N
CI.l
'<
~
t1>
3

~
n'
f"'" c:
iil
~
<: o
C
3
t1>
VI

~
N
b w
Co e
.::!

Input

PFT

D
Input
Parameter List

From GETPART
Processing (I EAVPRTO) P rocess

~
(from GETPART)

1 IJ
" .I 1 Get the necessary number of real frames.

-

SGT

D ..
"\ 2 Create page tables, if necessary,

I' and move PFTEs for available
frames to local frame queue.

3 If all frames are not available,
enqueue a root PCB and go
to step 7.

4 Validate PGTEs and set'real frames
to zero.

5 Move all PFTEs to local frame
queue.

It
- '--

Output

SGT

I rGT

I " • --y : 1 XPTE I

.... V=R Wait Queue
I'

cro
Local Frame Queue

-"
PFTEs v

[[[j

C/}
til

a o·
= I>j

:::
til

[
o ...
o
"0
Q

;
6'
=
Vt
..Q

Diagram 23-2. V=R Region Allocation (IEAVEQR) (Part 2 of 4)

Extended Description

V=R Region Allocation (lEAVEQR) allocates contiguous
regions of real storage for V=R requests.

1 Upon receiving control, V=R allocation attempts to
locate the proper number of contiguous real frames

necessary for the region request. This is done by indexing
through the PFT, starting with the PFTE that corresponds
to the VSM-supplied starting address, and selecting frames
for use. Frames need not be on the AFQ to be included in
the region. Frames not available will be marked as inter­
cepted for V=R allocation; they will be picked up later, as
they become available. If an intercepted frame's page is in
the current address space, it is paged out, thereby freeing up
the frame for V=R. If an SQA, LSQA, long-fixed V=R
allocated, offline, or intercepted page frame is encountered,
the search is terminated and any frames already assigned to
the region are restored to their previous status. If VSM
indicated the region must start at the specified address, the
allocation process is terminated and VSM is informed that
allocation has failed with a return code of 16. If this require­

ment was not specified. the search is restarted with the first
page frame following the unusable frame. This process con­
tinues until the region is allocated or the V=R area has been
exhausted. If no region can be allocated anywhere in the
V=R area, VSM is informed via return code 16 that alloca­
tion has failed.

2 Once a region has been allocated, the page tables are
created where necessary. Then the status of each frame

is determined. All frames selected from the AFQ are moved
to the local frame queue and the system fix counters
(RSMCNTFX and PVTCNTFX) are incremented. Also,
fields in the PFTE are updated to reflect the new owner.
Frames not on the AFQ have the PFTVRINT flag set. The
starting address of the region is placed in the start address
field of the input list.

Module Label

IEAVEQR IEAVEQR

Extended Description

3 If all frames are not immediately obtained, a root PCB
is placed on the V=R Wait queue pointed to by the

PVT. Into the root is placed the count of the number of
allocated but unavailable (intercepted) frames, the ASCB
address, the address range of the selected region, and the
input ECB address. Return code four is placed in register 15
and IEAVEQR exits.

4 All PFTEs are moved to the local frame queue.

5 The root PCB can be freed by putting it on the avail­
able queue.

Module Label

< C/}
I>j

Q
t...I

be
S

~ Diagram 23-2. V=R Region Allocation (IEAVEQR) (Part 3 of 4)
o

o
·Vl

"<
Vl
N
Vl
'<
til ;-
3

~
n'
r-
~
~
<: o

= 3
(tI

0.

'<
Vl
N
b
~

Co
o -

Input ..

PFTE

[
V=R Root PCB Q

~
Root PCB

[-~-~ ., ,'" I

From
PFTE
Enqueue/
Dequeue
Routine
(lEAVPFTE)

via
Dispatcher
(lEAVDSO)

Process
y

6 Free the root PCB.

7 Return, indicating action taken.

8 Find root PCB for region in which
input frame resides.

9 Force a page-out for all pages in V=R
area by scheduling IEAVEQRP.

10 When a II frames for a region are
available, build and schedule an
SRB for the completion of
allocation.

..... .. /11 Validate the region,as in steps 4-6.

12 Notify the waiting initiator that
region allocation is complete.

13 Return.

Dispatcher
(lEAVEDSO)

Enqueue/
Dequeue
Routine
(lEAVPFTE)

o ut

Free PCB Queue

[[8
Register 15

Return Code

PFTE

SRB

ECB r--u

en
~
(") g.
::I
t-.J

~
~

~
&.
o ..,
o
"0
~
Co) g.
::I

til --

Diagram 23-2. V=R Region Allocation (lEA VEQR) (Part 4 of 4)

Extended Description

6 Control is passed to GETPART, with a return code to
indicate the action taken.

7 IEAVEORI scans the V=R Wait queue looking for a root
PCB whose region range includes the frame. If none is

found an internal error ABEND is generated to record the

condition. The unwanted frame is returned to the caller by
ieaving its RBN in the input parameter field. If the frame is
part of a waiting region, it is left in its dequeued state, the
count in the root is decreased by one, and the input RBN
set to zero to indicate acceptance of the frame. Next the

PFTE is checked to determine if the frame is also inter­
cepted for offline or storage error processing. If so, a POST
code of 16 is set up. Otherwise, the frame count in the
PCBR is decreased by one and then the value is checked for
zero.

8 If all frames are not immediately obtained, V=R Allo-
cation schedules I EAVEORP into the first address

space that has pages in the V=R area. When that routine has
issued page-outs for all addressable pages, it searches the
PFTEs for another ASID to be cleared. If another ASID's
pages are in the V=R area, IEAVEORP schedules itself into
that address space. If no other address spaces have V=R
area frames, IEAVEORP frees the SRB.

9 If all frames are available, the region can be validated
and the request completed. Validation consists of

placing the real storage addresses into the proper PGTEs,
turning off the invalid flag, turning on the GETMAI N flag,
clearing the region to zeros, and setting all keys to O. A
return code of 0 is passed to the caller when this is
completed.

Module Label

IEAVEORI

Extended Description

10 When the frame count in the root PCB becomes zero,
a POST code of 0 is indicated. (GETCELL was

called early in V=R allocation for an SRB area in order to
schedule a POST in the caller's address space.) The
completion routine is then scheduled with a POST code of
o or 16. I n all cases, I ntercept returns to its caller.

11 Get the local and SAL LaC locks. Then follow the
same procedure as in steps 4-6.

12 The caller's ECB is posted with code 0 or 16. The
root PCB and the SRB are freed before exiting; also

the PFTFPCB bit is set.

Module Label

~.
~

b
c..I

00
Q
-..J

'1' -N

o
fJ')

"<
fJ')
N
fJ')

'<
~

~
S
~.
r-
0:

~
< o = :3
(1)

(It

~
N

S
00 s -

Diagram 23-3. Freeing a V=R Region (IEAVEQR) (Part I of 2)

From FREEPART
Processing (I EAVPRTO)

Input - -..r=
I

Parameter List
(From FREEPART)

Local Frame Queue

4[j -
I

J,.

II

-~
I I -
II ;>

1 If the region is not totally allocated,
turn off the intercept flag for frames
in use. Then free the root PCB.

2 Invalidate PFTEs and free LSQA space
used for PGT and XPT.

3 Return all PFTEs assigned to the
region to the available frame queue.

4 Purge the TLBs on all CPUs.

5 Return.

• •

FREEPART Processing
(lEAVPRTO)

Jo,.

--v

" v

Output - Free PCB Queue

~
Available Frame Queue

PFTE

crro

en
~
f') g.
=
N

;c
(1)

S-
O
Q.

o
o
"0
~
Q) g.
=
:c
w

Diagram 23-3. Freeing a V=R Region (IEAVEQR) (Part 2 of 2)

Extended Description

The Free V=R Region routine (lEAVEQR) returns V=R
allocated frames to the available queue for reuse by the
system.

1 If the PCBR INT flag in the page control block is set to
one, the completion routine was scheduled to post the

ECB; therefore, the completion routine needs the PCBR. In
that case, the PCBR is not dequeued. Free sets PCBRPB so
that when the completion routine does get control, it will
check the bit and dequeue the PCBR. On the other hand if
the PCBRFPCB bit is on in the Free routine, the completion
routine has already run. Complete sets the bit to notify Free

to free the PCBR in addition to freeing the V=R region.

2 The ,PFTE for each frame that is part of the region is
located and its V=R allocated flag turned off. Frames

that are intercepted for V=R have the intercept flag turned
off as well.

3 Any frames already on the Local Frame Queue plus
any unqueued frames are returned to the AFQ. Page

tables that contain only V=R region pages are disconnected
and freed. For each frame that was found on the local frame
queue, the system fix counters (RSMCNTFX and
PVTCNTFX) are decremented by one.

4 Page invalidation is called to purge the TLBs on all
CPUs in the system.

5 Control is returned to FREEPART.

Module label

IEAVEQR IEAVEQRF

< cn
~

8
00 s

:c Diagram 234. Page Release Processing (lEA VRELS) (Part 1 of 2)
~

~
'< c:n
t-J
c:n
'<
~

3
t"'"
~
(5'

t"'" a:
0;
-<
:<! e.
c a
t1>
VI

~
N
Q
~

00 o
,::;!

Input -
PGTE

I PGTRSA I

1/0 Active Queues or
GFA Defer Queue

1
PCB

L.-.

~ PCBASCB

Register 14

C-R;turn Address

From Page Services Interface
Routine (lEAVPSIl I.. Process . ,

~1

...

Invalidate the PGTE for the page
and free the real frame.

~--n;;.....,;> 2 If the page is not in real storage,
search for any PCB and process it.

t-..

V"

3 Free any auxiliary storage assigned
to the page.

4 Process all pages in the VSL entry
and repeat steps 1 -3 for all VSL
entries in the CIWA.

5 Return, indicating the status of
processing.

Page Services Interface
Routine OEAVPSI)

....
-v

t-..

--y

t-..

-v

to..

"V

J\..

-,)

Output

Available Frame Queue

PFTE

QIJ

XPTE

I XPTFlAGS I

CIWA

CIWRETC

CIWRETRN

PGTE

§

PCB
PCBFL1

PCBFL2

PCBVBN

f
54
e' ::s
~

tc

i
o
"'"' o
1 a.
e' ::s

Cf' -(II

Diagram 23-4. Page Release Processing (lEA VRELS) (part 2 of 2)

Extended Description

The PGRLSE routine UEAVRELS) gets control from PSI to
free one or more pages from real and auxiliary storage.

Module Label

1 PGRLSE performs initial checking on the VSL entry IEAVRELS IEAVRELS
and the addresses contained in the VSL entry. If an

invalid address is found, 'PGRLSE passes, in the CIWA, a
return code of 4 to PSI.

PGR LSE obtains the PGTE and XPTE addresses from the
Find Page routine. If the page is in real storage, PGRLSE
checks the PFTE. If the frame is V=R allocated, fixed, or
located in SQA or LSQA, PGRLSE terminates processing
the page. Otherwise, PGRLSE calls Page Invalidation to
invalidate the PGTE and then calls PFTE Enqueue/Dequeue
to free the PFTE.

2 If the page is not in real storage, PGRLSE first checks
to see if the page is assigned by GETMAIN; if not,

PGRLSE puts a return code of 4 in the CIWA and returns
control. Then PGRLSE searches the following queues for
PCBs associated with the virtual page being processed: GFA
Defer Queue, Common I/O Active Queue, and Local I/O
Active Queues. If any PCBs with non-zero fix counts are
found, PGRLSE terminates processing of the page, leaving
the PCBs on their queue.

If PGRLSE finds a PCB on the GFA Defer Queue, it purges
the PCB. If the PCB is for a page fault and is in SRB mode,
PGRLSE calls the Reset routine of the PCIH to reactivate
the suspended SRB. PGRLSE puts other page fault PCBs
on the I/O active queue and requests I/O completion proc­
essing. If the PCB has a root PCB, the PCB count in the root
PCB is decreased by one and the PCB is scheduled for I/O
completion processing. For a PCB not for a page fault and
without a root PCB, PGRLSE returns the PCB to the free
queue.

If PGRLSE finds PCBs on the I/O active queues, it purges
them by setting to zero the virtual block number and by set­
ting the free-real-storage flag to one.

Extended Descriptiqn

3 If the save auxiliary storage flag is not set to one in the
XPTE, PGRLSE calls ASM to free the auxiliary slot

assigned to the virtual page. PGRLSE sets the auxiliary stor­
age assigned flag in the XPTE to zero. Then it returns con­
trol to PSI.

4 PGRLSE processes all pages in the VSL entry and, if
no errors occur, continues with the next VSL entry

until complete.

5 PGRLSE returns control to PSI, putting a return code
in the CIWA.

Module Label

~ Diagram 23-5. FREEMAIN Release Processing (lEA VRElS) (part 1 of 2)
0'1

~
N ,
i­
f
f
~

~
N

'" f
eN

~

ut

From FREEMAIN Routine
(lEAVGMOO) or an RSM Routine
(see extended description)

Process

Register 0
..

I Low address of area to be I " released 1 For pages with real frames,
y

Register 1
inva lidate rea I and virtua I page.

I High address of area to be J
released

2 If a deferred release has been
If from FR EEMAI N completed, notify FREEMAIN
Register 1 (IEAVGMOO). I Address of vi rtual page

to be released J
If fromRSM . ~ v' ':0/.

~.

PCB ,.
> 3 For pages without real frames,

PCBASCB y search for any PCB for the page and
PCBVBN process it.

PCBFXC

PCBRLPA

4 Free auxiliary storage assigned
to the page.

"'- ••
5 If a complete segment has been

released, calli EAVDSEG to
invalidate the segment.

Register 14
-" I I 6 Return. Retum Address y

" - - ."-" ~~. ~

description)

Output

PGT Available Frame Queue

"

~
I

0--01 PFTE I v

-- --
:%:m~~""'"

iii
I

.
PCB

PCBFL2

" PCBFL1
y

PCBVBN

.,.~~ ~'.~;.ffffiJ .. , '.-~:: ,v. ".e. ," '. , . .. h . '%¥ff+ ... :'~,'.b= .. :t..: : .N~"k ,,,, .. , .. "

XPTE
" XPTFLAGS -,

~
y

XPTPROT

XPTLPID

I~- l

!

"-
SGT

~
v

" 0--01

.. '"

~
~
5·
= ~
~
I'D ;.
8-
o
'"I)

o
'0
~ a e·
=
:!:

Diagram 23-5. FREEMAIN Release Processing (IEAVRELS) (Part 2 of 2)

Extended Description

Deferred and FREEMAIN Page Release Processing (a part
of IEAVRELS) performs PGRLSE functions for two special
cases: when an RSM routine frees a frame marked for
deferred release, and when FREEMAIN frees a page.
The RSM routines are: IEAVSOUT,IEAVTERM,
IEAVFREE, IEAVIOCP, and IEAVPIOP.

Module Label

1 When entering at the IEAVRELV entry point, the IEAVRELS IEAVRELV
caller holds the SALLOC lock and the local lock.

When entering at the lEA VR ELF entry point, the caller
holds the SALLOC lock. Page Release uses the Find Page
routine to get the PGTE and the XPTE addresses. I f the
page has a frame assigned, Page Release checks the PFTE.
If the page is an SQA page or an LSQA page with a VBN
matching the input VBN, Page Release moves the PFT to
the available frame queue and then, using the Page I nvalida­
tion routine, invalidates the PGTE. The system fix counters
(SQACNTFX, RSMCNTFX, and PVTCNTFX) are also
decremented.

2 If the deferred release flag is set in the PFTE and if
the fix count is zero, Page Release notifies FREEMAIN

that the virtual page may be used again.

IEAVRELF

Extended Description

3 If the virtual page does not have a frame in real storage,
Page Release checks for a PFTE with the deferred

release flag set. If it finds one, it resets the flag and notifies
FREEMAIN that the virtual page can be used again. If it
does not find one, Page Release searches for PCBs for the
virtual address and processes them according to the queue
they are associated with. When all such PCBs are processed,
Page Release sets the PGTE to zero.

4 Page Release tests the XPTE. If the auxiliary-storage-
assigned flag is set and the save-auxiliary-storage flag

is not, Page Release calls ASM to free the auxiliary storage
slot assigned to the logical page ID (LPID). Then Page
Release resets the LPID generator value in the XPTE to zero
and sets to zero all flags in the XPTE.

5 If all PGT entries for a private area segment containing
the input virtual address are set to zero, Page Release

calls the Destroy Segment routine to invalidate'the PGTEs
and XPTEs and to prepare the table storage for FREEMAIN
processing. Then Page Release frees the page table space.

6 Page Release returns control to FREEMAIN or to the
RSM routine that called it.

Module Label

~.
~
Q
w
00
9

:!: Diagram 23-6. Create Segment (lEAVCSEG) (Part 1 of 2)
00

~
"<
{I}
~

{I}

'<
~
(D

3
r-
~ n·
t'"" a:
~
<: o
2"
3
(D

Vl

~
~

S
00 s -

From GETMAIN Routine (lEAVGMOO), V=R Region
Allocation (JEAVEOR), or NIP (JEAVNP08)

New r-g

; ste ,

1

}-"0
Output

1 Initialize page table entries. If
page-table-only option specified,
go to step 4.

2 Initialize external page table entries.

3 I n,tialize SPCT entry for new
segment.

4 Initialize and validate segment table
entry.

5 Return.

GETMAIN Routine (JEAVGMOO),
V=R Region Allocation OEAVEOR),
or NIP (JEAVNP08)

PGT

I XPT

SPCT

D
~T rD

ell
(I>

Sl
~5"
= N

:::
(I>

~
&.
Q
~

o
"C:I
~
a
~.

=
!
\C

Diagram 23-6. Create Segment (IEAVCSEG) (Part 2 of 2)

Extended Description

The Create Segment routine (IEACSEG) is called by VSM
functions, NIP, and the V=R Allocation routine to initialize
the page tables for one or more newly created segments. The
local lock must be'held by the caller. V=R Allocation uses
the IEAVCSGB entry point to avoid setting a pointer to the
RSM FRR.

1 When entered at IEAVCSEG, Create Segment sets a
pointer to the RSM functional recovery routine

IEAVRCV. It validity checks parameters passed. Then Create
Segment initializes the page table for the new segment. It
does this by setting 32 bytes of storage to zero, setting the
real block number fields in each page table entry to zero,
and setting the page table GETMAIN flag to zero and the
invalid flag to one.

2 If the bypass XPT option was not selected, Create Seg­
ment establishes an external page table in the next 192

bytes of storage by setting each external page table entry to
zeroes.

Module Label

IEAVCSEG IEAVCSEG
IEAVCSGB

Extended Description

3 If the XPT is created and the SPCT address is not zero,
Create Segment sets the segment index, the virtual

address of thp. PGT, and the segment entry count in the
SPCT. I f necessary, Create Segment enlarges the SPCT
(under the SALLOC lock) by obtaining storage for the
SPCT, under GETMAIN, moving the SPCT, updating the
size and entry count fields in the SPCT, and freeing the old
SPCT with FREEMAIN.

4 Create Segment initial izes the segment table entry for
the new segment by setting the invalid flag to zero and

inserting the page table length and the real storage address
of the page table.

5 Create Segment repeats the procedure for additional
segments, and then returns to the caller.

Module Label

<:
ell
N o
1M
00
S

Ul

~

~
~
(/.)
N
(/.)
'<
~

i
b

qs .•
()

r­a:
!
<: o

= :3
f'O

Ul

~
N
b w
Co
9 -

Diagram 23-7. Destroy Segment (IEAVDSEG) (Part 1 of 2)

Input

Register 0

From IEAVRELS during FREEMAIN
Frame Processing (I EAVGMOO)
and V=R Freeing (lEAVEQR)

Parameters

SPCT

D

1 Get virtual address of page table.

2 Invalidate the segment table entry
and purge the T LB on a II CPUs.

3 Set the SPCT entry to zero and
repack the SPCT.

4 Return.

To IEAVRELS during FREEMAIN
Frame Processing (lEAVGMOO) and
V=R Freeing (lEAVEQR)

Output

Register 1

Address of PGT

SGT

SPCT
~

o

f(l
~
e' ::a
~

a::
Sl
[
2-
o

-c=
q
It
~
u-
N -

Diagram 23-7. Destroy Segment (lEA VDSEG) (part 2 of 2)

Extended Description

The Destroy Segment routine (lEAVDSEG) invalidates con­
trol block entries for a virtual segment that is being deleted;
it returns the address of the page table space to be freed with
FREEMAIN by the caller. The caller must hold theSALLOC
and local locks. Destroy Segment is called by V=R Alloca­
tion and by PGRLSE.

1 Destroy Segment gets the virtual address of the page
table by translating the real address obtained from the

segment table entry.

2 Destroy Segment invalidates the segment table entry
by setting the entry to zero and then setting the invalid

flag to one. It then calls the Page Invalidation routine
IEAVINV. passing a dummy P(lTE address to invalidate
1he translation lookaside buffers. .

3 Destroy Segment checks the RSM Header for an SPCT
address; if zero. Destroy Segment returns to the caller.

If an address is given. Destroy Segment sets the SPCT entry
matching the destroyed segment to zero. decreases the SPCT
entry count. and repacks the last SPCT entry into the entry
just set to zero.

4 Destroy Segment returns to the caller with the virtual
address of the'page table. to be freed with FREEMAIN

by the caller.

Module Label

IEAVDSEG IEAVDSEG

f.(I Diagram 23-8. Program Check Interrupt Extension (lEA VPIX) (part 1 of 2)·
N
N

o
~
CIl
N
CIl

~
(D

a

oi
(is"
t­
&

~
<:

~
(D

VI

~
N

~
if
~
~

~ -

From Program Check
I nterrupt Handler (I EAVEPC)

Input

PGTE

D
LCCA

D

Process

1 Check for valid page fault.

2· Build a page control block for the
request.

3 Call General Frame Allocation
(lEAVGFA) to assign real
frames and initiate paging.

4 Return, indicating status of
interrupted routine.

Program Check
Interrupt Handler
(lEAVEPC)

PCB

D
Register 15

I Return Code

f
$l e·
D

~

a::
[
2-
o

1 e·
D

CIt
N
eN

Diagram 23-8. Program Check Intenupt Extension (lEA VPIX) (part 2 of 2)

Extended Description

The Program Check Interrupt Extension (lEAVPIX) services
atl page translation interrupts. It gets control from the
PCI H on all page faults except those incurred by a routine
holding a global lock, which should not have a page fault.

Module

1 PIX first acquires the storage allocation global lock IEAVPIX
(SALLOC) and sets up the ASM FAR. The page fault

is checked for validity by checking the GETMAIN-assigned
flag in the page table entry that corresponds to the virtual
address for which the interruption occurred. If the flag is
off or if no page tables exist for the virtual address, PIX
returns to PCIH with a return code indicating the interrupt
should be treated as a logical protection exception (0C4
ABEND). During this check, internal errors may be detected
if the segment or page table Is not correctly built or initial­
ized, triggering special recovery processing. Aeturn code 12
is given to PCIH to indicate a ASM error prevented page
fault resolution. The page may also have been marked as
valid in real storage because another CPU validated the page
after the page fault occurred. For this case, no further proc­
essing woul,d be required for the page fault and return code
4 is given.

Label

IEAVPIX

Extended Description

2 A PCB is built and initialized for use by other ASM
functions that must be employed to satisfy the page

fault. General Frame Allocation (GFA) is then called with
the PCB address passed as a parameter.

3 General Frame Allocation attempts to assign a real
frame to the virtual page. Upon completion of its func­

tion, it returns to PIX indicating the action taken. PIX
interprets these return codes and issues the proper return
code to the PCIH. The code indicateS that either the
interrupted routine may continue execution (no paging I/O
was necessary to satisfy the page fault), or the interrupted
routine's execution was suspended until paging I/O can be
completed to satisfy the page fault.

Module Label

:c Diagram 23-9. General Frame Allocation (lEA VGF A) (part 1 of 4) ...
o
~
{'I.)
N
{'I.)

I
i.
n
r-'
6'

!
i
(D

UI

~
N

~
(D

i
R
w
:.... -

Input

Register 1

I

From Program Check
Interrupt Extension (IEAVPIX)
PAGEFIX/PAGELOAD (lEAVFXLD) or
Swap-In Processor Routine (lEAVSWIN) Process

PCB 11 ~ I., 1

3-LJ I"
Try to reclaim a real frame for the PCB.

2 Allocate a new real frame for the
PCB.

3 If auxiliary storage is assigned to the
page being allocated:

• Initialize the AlA and the PCB.

"." ""~"$: • Put the PCB on the I/O active
queue.

• Put the interrupted routine in
page wait.

~,

., ----

Output

PGTE PFTE

"" D D
I"

I/O Active Queue
AlA PCB PCB

" D D~~~!IO I"

~ .. , 'y '& , F ~ .~

», ,

til
~ a o·
=
~

~
~

~
8-
o,
o
"0
~
~ o·
=
VI

~

Diagram 23-9. General Frame Allocation (lEA VGF A) (Part 2 of 4)

Extended Description

General Frame Allocation (I EA VG FA) is called by Program
Interrupt Extension, Page Fix, Page Load, and Swap-In to
assign real frames to virtual pages. Each virtual page requir­
ing a real frame is represented by a PCB (page control block),

Module

1 If the PCB is not for the swap-in of a private area (LSQA IEAVGFA
orPGFIX) page, reclamation is attempted.

The last real storage frame the page occupied is Ic;>cated by
looking at the real address field of the PGTE. The Page
Frame Table Entry (PFTE) for the frame is examined to
see if it still contains the page. If it does, the frame is used
to satisfy the current request except as noted in the follow-
ing paragraph. If input I/O is in progress for the frame, the
current request is related to the existing request and the
current requestor is suspended if he is satisfying a page fault.
If output is in process, general frame allocation determines if
the output operation has been marked non-reclaimable; that is,
the PCB represents the output for a V=R or Vary Storage
1ntercepted frame. If it has been marked non-reclaimable,
reclaim fails and the copy of the output page is duplicated in a
new storage frame. Otherwise, the frame and the page are
made immediately available by validating the PGTE and setting
storage keys.

If the request is for a "Iong fix" of a page and reclamation
would place the page in the V=R area or outside the
preferred area for a non-swappable "Iong-fix" page,
reclamation is suppressed. If necessary, the existing copy
of the page is duplicated outside the V=R area or inside
the preferred area and the frame is freed. Naturally, this
can be done only if the page is not already fixed.

If reclamation is successful, the next input PCB is processed.
Also, if the input PCB represents a fix request and the fix
count in the PFTE is currently zero, the system fix counters
are updated (incremented by one).

2 If reclamation fails or if it is not attempted, IEAVGFA
tries to allocate a new real frame from the Available

Frame Queue (AFQ) .

If no special requirements exist, the first frame on the AFQ
is assigned to the request. If the PCB represents a LSQA or
PGFIX request, the system fix counters are incremented by
one. Fix data is transferred from the PCB to the PFTE and
allocation is complete. If no frames are available, the input
PCB is marked 'defer' to indicate allocation failed.

Label Extended Description

There are special requirements associated with "Iong fix"
and Stage I swap-ins. V=R area frames are never used for
long-fix pages or Stage I pages of address spaces that may
become non-swappable. Whenever possible, these types of
pages are assigned to frames in a NIP-designated 'preferred
area' so that they wi" be out of the way of most requests
to vary storage.

However, if no 'preferred' frames are available, an attempt
is made to steal a preferred area frame from some virtual
page. Only unchanged, non-fixed frames for which no
PCB exists are candidates for this stealing. Frames that
are excluded are fixed, allocated to an active V=R region,
offline, changed, have paging I/O in progress, or contain
a storage error. The local and common frame queues
are searched (in that order) for a frame meeting the steal
criteria. The search stops as soon as a stealable frame in
the preferred area is found. I f no preferred area frame
can be obtained, a non-preferred, non-V=R frame is used
if available. If one such frame is found on the AFQ, the
physical storage unit containing the frame is converted
from non-preferred to preferred storage.

Stage I pages of swappable address spaces are treated
similarly except that they can be placed in V=R area
frames if no other frames are available. As in the Simple
case, if the page cannot be allocated, it is marked 'defer'.

If none are available or meet the allocation criteria, the
input request is deferred by placing the PCB on the GFA
Defer Queue and then continuing with the next input PCB.

If allocation is successful, it is determined if any other
requests for the same page are presently deferred. If there
are any, they are removed from the Defer queue and
attached to the current request via the PCB relating mech­
anism, so they will be satisfied as well.

3 If no auxiliary storage copy of the page exists, an
empty page is created by validating the page table

entry (PGTE) for the page, setting the storage to zeroes,
and setting the storage keys to the value specified in the
external page table. If the PCB indicates a need for any
follow-up processing, it is performed immediately where
possible and scheduled for asynchronous processing if not.
If no asynchronous processing is needed, the PCB is freed.
In either case, the next input PCB is then begun.

Module Label

<:
c:I.l
N
Q
!,N

00
~

;:c Diagram 23-9. General Frame Allocation (lEA VGF A) (Part 3 of 4)
0\

o
C/}

"<
~
N
~
'<
fI'

i
r-
«i ::;.
r­
c;: ...
III

-<
<:
~
= a
~

VI

<:
rIl
N
b
~

00
S -

Input ..
PGTE

XPTE

Available PCB Queue

PCB

QD

From PFTE
Enqupue!
Dequeue
Routine
(IEAVPFTE)
via SRB

Process

4 If no auxiliary storage is assigned, set
the real frame to zeroes, set the
protection key and validate the
PGTE. Return, indicating the status
of processing.

5 If any deferred requests exist, move the
PCBs from the available queue and
follow steps 1 through 4.

6 Return.

Output

Register 15

Return Code

To
Program Check Interrupt Extension (IEhVPIX),
PAGEFIX!PAGELOAD OEAVFXLD), or
Swap-In Processor Routine (lEAVSWIN)

To Program Check Interrupt Extension (IEAVPIX),
PAGEFIX/PAGELOAD (IEAVFXLD), or
Swap-In Processor Routine (lEAVSWIN)

~
(\)
~

S·
= N

::
(\)

~
8-
o
o
'0
~
a o·
=
VI

N
-..J

Diagram 23-9. General Frame Allocation (lEA VGF A) (part 4 of 4)

Extended Description

4 If an auxiliary storage copy of the page does exist,
the PCB is queued for page-in I/O and its AlA (ASM

I/O Request Area) is placed on an internal I/O request
queue. If the request involves a page fault. the execution of

the faulting RB or SRB is stopped by a call to the Suspend
routine of PCIH. A PCB flag is set to indicate that reset

is required when the request is eventually satisfied. The
next input PCB is then begun. When all PCBs are processed,
IEAVGFA returns control to the caller.

5 When all input PCBs have been processed as above, the
chain of ASM I/O request areas (AlAs) is passed to the

Auxiliary Storage Manager (ASM) for satisfaction. If any
input request was deferred, related to other I/O, or sent to
ASM, a return code of 4 is given; otherwise the return code
is O.

6 IEAVGFA removes PCBs from the Defer Queue one
at a time and passes them to the main portion of

IEAVGFA for allocation processing. When all PCBs on the
Defer Queue for this address space have been processed.

IEAVGFA returns control to the caller.

Module Label

u.

~

~
~
N
r.n
~
~

oi t;.

t:
~
~
~
J
~

u.

'< r.n
N

i
~
{,N

:....
'-'

Diagram 23-10. Page I/O Post (IEAVPIOP) (put 1 of 2)

Input

AlA

From Auxiliary Storage Manager (llRIOCOO
on page I/O operation completion)

1/0 Active Queue

PCB

[[[j

Gu~> I

From an RSM Routine (IEAVIOCP,
IEAVGFA, IEAVSOUT, IEAVRElS,
or IEAVTERM)

1 Indicate 1/0 complete for PCB
on the 1/0 active queue.

2 For page-out compl~tion, free
associated real frame and then
free PCB.

3 For page-in completion for
common area pages, validate the
PGTE and schedule 1/0 completion
processing.

4 For page-in completion of private
area pages, schedule I/O completion
processing.

5 For stage I swap-in completion,
enqueue PCB on root PCB.
Go to step 7.

6 When the last AlA has been pro-
cessed, PlOP releases the SAllOC
lock, frees the FRR, and returns
control to the Auxiliary Storage
Management.

7 Schedule 1/0 completion pro-
cessing (lEAVIOCP) in the caller's
address space.
Return.

Output

I/O Active Queue
PCB

~
Free PCB Queue

PCB

Available Frame
Queue

PFTE

~ ~

SRB

CIl
(D

g.
~.

:=
~

ac
(D

;.
8-
o
""' o

"0
~ a
~.

:=

til

N
I.()

Diagram 23-10. Page I/O Post (IEAVPIOP) (part 2 of 2)

Extended Description

Page 1/0 Post (lEAVPIOP) notifies waiting routines that an
1/0 operation has completed.

Module Label

1 After establishing FRR linkage and setting up the recov- IEAVPIOP IEAVPIOP
ery communication area (RCA), PlOP gets the SALLOC

lock. Then it checks the 1/0 completion information in the
AlA that is passed as input. If an error is found, PlOP issues
an abnormal termination request with a code of X'COD'. PlOP
moves the completion information from the AlA to the
PCB and to all related PCBs. If an 1/0 error has occurred,
PlOP sets I/O-completed and 1/0 error flags in each PCB.

2 PlOP processes the input depending upon whether the
operation is a page-out, a normal page-in, or a stage I

swap-in. For page-out PCBs, PlOP frees the PCB and the real
frame unless an 1/0 error occurred. If an 1/0 error occurred,
PlOP changes the page-out PCB to a page-in PCB and
schedules the 1/0 completion processor to revalidate the
page

3 For common area page-in PCBs, PlOP schedules the 1/0
related PCBs by removing them from the related chain

and either freeing them or, if IEAVRSET or a root exit
routine is to be called, putting them on a common 1/0 active
queue. PlOP determines from the free-real-storage flag
whether to free or save the real so that any zero TCB fix
PCBs are the last to be processed by the 1/0 completion
processor. Then, if necessary, PlOP schedules 1/0 comple­
tion processing (lEAVIOCP).

Extended DesCription

4 For private area page-in PCBs PlOP schedules the 1/0
completion processor to validate the PGTE andlor to

call IEAVRSET or a root exit routine. The input PCB and
any PCBs related to it remain unchanged. If an 1/0 error
occurred, the 1/0 completion processor will not validate
the PGTE and will call IEAVRSETwith an error completion
code.

5 If the PCB in a stage I swap-in for a private and page
and no 1/0 error occurred, PlOP removes the PCB from

the 1/0 active queue and enqueues it"to the swap-in root
PCB. If an 1/0 error occurred, the PCB and the frame are
freed and the root PCB fail flag is set. If the PCB is for the
common area and no 1/0 error occurred, PlOP validates the
PGTE. If an 1/0 error occurred, PlOP rearranges any related
PCBs so that any zero TCB fix PCBs are the last to be proc­
essed by the 1/0 completion processor. If necessary, the 1/0
completion processor is scheduled. Whenever PlOP finds a
PCB for a swap-in it decreases the root PCB
count and, when that count goes to zero, calls the root
exit routine. Whenever PlOP finds a PCB for a PGFIX or
PGLOAD with an ECB, it decreases the root PCB count
except when that count goes to zero. When that count goes
to zero, PlOP makes sure that the 1/0 completion processor
is scheduled to decrease the count and call the root exit
routine.

6 When the last AlA has been processed, PlOP releases
the SALLOC lock, frees the FRR, and returns control

to the Auxiliary Storage Manager.

7 In a special scheduling routine of PlOP, called
IEAVOPBR, PlOP examines the PCB and any

related PCBs to determine how to schedule IEAVIOCP.
If IEAVIOCP has not already been scheduled, PlOP
gets an SRB, initializes it, and schedules it.
Return to caller.

Module Label

I EAVPIOP I EAVOPBR

;;3
N
Q
~

00
oa

VI
~
Q

o
CI.l

"<
CI.l
N
CI.l
'<
~

~
r-
<i
t)'

r­e:
~
< g.
c
9
~

VI

'<
CI.l
N
o
~

00
Q
...... -

Diagram 23-11. Page I/O Completion Processing (IEAVIOCP) (part 1 of 2)

'I

1/0 Active Queue

~

From Page 1/0 Post
(lEAVPIOP) via
SRB Dispatcher p ..

.

if

'"

J\.

v 1 Search the 1/0 active queues for PCBs
marked "110 complete."
For 1/0 error processing, go to step 4.

2 Validate the virtual page and take
any suspended routine out of
page wait.

3 Schedule this routine again if the
PCB not fully processed.
Otherwise, move PCB to the free
queue •

4 Take suspended routines out of page
wait supplying an error indication.

5 When all page-in PCBs have been
processed, free the new frame.

6 If any PCB cannot be completely
processed, reschedule this routine.
Otherwise, free the PCBs from the
1/0 active queue and return.

"

L

- -- -1- -- -

PGTE
..... D "

1/0 ACT
-". Queues

~
II v

...JI..
Free Queue .-. "

4b Dispatcher
(lEAVEDSO)

Available Frame Queue
j,.

LtEJ "

.....

~ FreePCB
.,

Queue

til
(D

sa.
~.

= N

~
(D

~
o
"" o
~

~
~.

=
(II

c:w -

Diagram 23-11. Page I/O Completion Processing (lEA VIOCP) (part 2 of 2)

Extended Description

The Page I/O Completion Processor (lEAVIOCP) processes
all page-in 1/0 completion events.

Module Label

1 PIOCP establishes the FRR and gets the SALLOC lock. IEAVIOCP IEAVIOCP
If requested, it also gets the local lock. Then PIOCP

searches the local I/O active queue for the current address
space, and searches the common I/O active queue for PCBs
that have I/O-complete flags set.

2 PIOCP checks the PCBs found. If a stage 2 swap-in
PCB is found that has not been intercepted, PIOCP

sets the RBN in the PGTE.

PIOCP processes all related PCBs by checking for one of
three conditions:

• The free-real storage flag is set.
• The VBN is zero.
• The virtual page represented by the PCB is already valid.

If none of the conditions occur, PIOCP validates the page
by setting the protection keys in the XPTE and setting to
zero the page-inv~lid flag in the PGTE. Then PIOCP notifies
the routine in the PCB that the I/O operation is complete.
If the reset flag is on, PIOCP calls the reset routine of PCIH
to release the routine that page-faulted. If the PCB has a
root PCB, the PCB count in the root PCB is decreased by
one. If the count becomes zero, PIOCP calls the root exit
routine.

Extended Description

3 As each PCB is processed, PIOCP frees it or enqueues
it to an I/O active queue and calls a subroutine of

IEAVPIOP to reschedule IEAVIOCP to complete processing.
Finally, PIOCP frees the input PCB unless it is to be kept.
Then PIOCP returns control to the dispatcher.

4 For I/O errors, PIOCP notifies the routine specified in
the PCB that the operation completed with an error.

PIOCP also performs processing for swap-in and fix PCBs.

5 When each PCB has been processed, PIOCP frees it or
leaves it enqueued. When all PCBs are processed - and

if all PCBs for the real frame have been freed - PIOCP frees
the real frame. Note that during I/O error processing, when
PFTFXCT is decremented to zero, the system fix counters
are also decremented.

6 If any PCBs cannot be freed, PIOCP calls IEAVPIOP to
schedule IEAVIOCP again. Then PIOCP returns control

to the dispatcher.

Module Label

~
N o
~

00
S

VI
W
~

~
~
~

~
~

B

i.
~
~

~
:I
ell
VI

~
~

8
00
§

Diagram 23-12. Page Services Interface (IEAVPSI) (part 1 of 2)

Input

From SVC Interrupt Handler or
From any supervisor routine
or branch entry

1 Validate input parameters and
request type; set up the CIWA.

2 Call requested function routine.

3 Return status from requested
routine to caller.

Output

To SVC Interrupt Handler (JEAVESVC),
Caller, or EXIT Prolog (JEAVEEXP)

CIWA

D
ECB

Register 15

Return Code ~

til
(II

~ e·
= N

i:

[
o
""" o

I
5·
=
VI
W
w

Diagram 23-12. Page Services Interface (IEAVPSI) (part 2 of 2)

Extended Description

The Page Services Interface routine (lEAVPSI) processes all
input requests for page service functions (PGFIX/PGLOAD,
PGFREE, PGRLSE). Input is placed in a common internal
work area (CIWA). All exit processing is done in the module
also.

Module

1 When entered via an SVC 112, PSI gets the SALLOC IEAVPSI
lock and checks the requestor's authorization. If the

requestor is not authorized, PSI returns a code of 4 in reg­
ister 15. Otherwise, it sets up the virtual subarea list (VSL)
entry in the CIWA and calls IEAVRELS. When entered via
an SVC 113, rSI verifies that the ECB passed as input is in
storage, gets the SALLOC lock, and checks the caller's
authorization. PSI returns a code of 16 in register 15 if the
caller is not authorized and the request is PGFIX or
PGFREE or if the Real Address option is specified on a
PGFIX or PGFREE request or for any other parameter
error. If this validity check is successful then PSI sets up the
CIWA with data from the VSL. When entered via a branch
entry from a non-RSM routine for page services, PSI vali­
dates any ECB input and gets the SALLOe lock. If the Real
Address option is specified for PGFIX or PGFREE, PSI
returns a code of 16 in register 15 and issues an ABEND.
If the validity check is successful, it sets up the CIWA and
sets up and checks VSL entries.

When entered via a branch entry from an RSM routine,
PSI checks any ECB input and constructs a VSL in the
CIWA.

Label

IEAVPSI

Extended Description

2 PSI tests the operation and option bits in the CIWA
for validity. Then it calls the page service functions

requested by the operation flags in the CIWA. Any invalid
bit combination results in PSI returning a code of 16 in
register 15 and issuing an ABEND.

3 When a return is made from the function routine, PSI
examines the return code. If supplied, it posts the

input ECB. If the return code is an error code, PSI requests
abnormal termination with a completion code of x'171'
and a reason code in register 15 for the requestor. If the
caller was unauthorized, PSI sets an abnormal termination
code of x'271'. If return code 8 is to be issued, indicating
asynchronous completion of the request, PSI fixes the input
ECB. Finally, PSI returns control to the caller or to the
EXIT routine.

Module Label

(,A

w ..
i
~
N

i
b
'\1.

f
~
J
c
(,A

'< {I)
N

'" i
3
w
~

Diagram 23-13. PGFIX/PGLOAD Processor (IEAVFXLD) (part 1 of 2)

CIWA

I

I

From Page Services Interface
routine (lEAVPSI)

" "'" '-4J1a7".~ " ·i f ' .. n ... _.m··_~1

I ~
I D I

PGTE

I
I XPTE f<'~

I I f

PFTE Z7W

....
1 For fix requests for pages with real

y frames, update the fix count in the
PFTE or the PCB and FOE.

;.
> 2 For pages without real frames,

II" create a PCB and, if necessary, a
root PCB.

3 If errors occur, record the error,
free any FOEs or PCBs created,
and decrement fix counts.

4 If all pages of all VSl entries are
processed correctly, pass the
PCBs created to lEA VG FA for
real frame allocation.

5 Return, indicating processing done
and normal or asynchronous
completion.

(lEAVPSI)

PFTE TCB
....

I)I

I
11". ,.

FOE
to..

Y

;1

' Z
> PCB PCBR y

D D
,YC,:.:

'" ". $.'
~ ..

....

:i
y Free PCB Queue

PCB
: i~ CIWA

~
!

CIWARETC
.y

~A

. .
~

Diagram 23-13. PGFIX/PGLOAD Processor (IEAVFXLD) (part 2 of 2)

Extended Description

The PGFIX/PGLOAD Processor routine (lEAVFXLD)
handles requests for bringing virtual pages into real storage.
The PGFIX processor also fixes the page in real storage.

Module Label

1 FXLD checks the pages to be sure they are GETMAIN· IEAVFXLD IEAVFXLD
assigned and, for PGFIX, not VIO pages. Otherwise,

FXLD returns a code of 4 to the exit processor. For pages
with frames in real storage, FXLD fixes virtual pages not
already fixed or re-fixed pages that are already fixed. I't does
this by increasing the fix count in the PFTE for the frame
and by creating (or updating) a fix ownership element
(FOE), which it enqueues to the fix ownership list (FOL)
pointed to by the requestor's TCB. If the page is being
requested for a long fix and is in a V=R area, FXLD creates
a PCB and sets the long-fix flag to one, so the real frame
can be moved out of the V=R area. If the page is not in a
V=R area, FXLD sets the long fix flag in the PFTE to one.
If the fix count in the PFTE is currently zero indicating that
the frame is not already fixed, the system fix counters are
updated (incremented by one).

2 When a virtual page is not in real storage, FXLD
searches the internal PCB queue for a PCB for the page

being processed. If a PCB is found, FXLD increases by one
the fix count in the PCB and the FOE, if it is a PGFIX
request. If a PCB is not found, FXLD creates one and initial­
izes it. For a PGFIX request, FXLD also creates and initial~
izes an FOE.

If an ECB address is specified, FXLD checks for an existing
root PCB. If none exists, FXLD creates one and initializes

~ it. FXLD associates the regular PCB with the root PCB and
g. increases the count of PCBs in the root PCB.

=
~

a:
sa.
=-8-
o
~

o
"C
~
a
5'
=
til
~
til

Extended Description

3 If errors occur, FXLD puts each PCB it created and its
associated root PCB on the available queue. For PGFIX

requests, FXLD frees the FOE. If the return code in the
CIWA is 4, it sets the error flag in the CIWA copy of the
input virtual subarea list (VSL) entry; the CIWA copy of
the VSL entry is copied over the user copy. Also, the
CIWA return code is saved. FXLD calls IEAVFREE to
free any virtual pages fixed before the error. Then FXLD
returns control to lEA VPSI.

4 If no errors have occurred, FXLD passes any PCBs
created to IEAVGFA, which attempts to allocate real

frames. If successful, IEAVGFA marks the PFTEs for the
PG F I X requests.

5 FXLD returns control to PSI, indicating processing is
completed and specifying normal or asynchronous

completion.

Module Label

~,
~

o w
00
9

!.II
W
0\

~
~
til
t-J
til
'<
~

~
t"'"
~
n'
t"'"
0:
;3
-<
<:
o

=­= (!)

!.II

~
t-J
b
~

00 o
-...I -

Diagram 23-14. PGFlXjPGLOAD Root Exit (IEAVFXLD) (part 1 of 2)

Input

Root PCB

D

From an RSM routine that
decrements PCB count in
root PCB to zero (see
extended description)

1 If any page-in's for page fixes failed,
abnormally terminate the requestor.

2 Post the requestor's ECB complete.

3 Page free the posted ECB.

4 Free the root PCB.

5 Return.

To an RSM Routine
(see extended description)

o t

ECB

Free PCB Queue

PCB

(Il
ftI
~
e' :s
!':»
I: a
[
Q
o

I
e' :s

~

W
"-ol

Diagram 23-14. PGFIX/PGLOAD Root Exit (lEAVFXLD) (part 2 of 2)

Extended Description

The PGFIX/PGLOAD Root Exit (a part of IEAVFXLD) com­
pletes processing of a root page control block (PCB) when
the PCB count has been decreased to zero. The local and
SALLOC locks are held by the caller. RSM routines that
use this exit are: IEAVPIOP, IEAVIOCP, IEAVSOUT,
IEAVGFA, and IEAVTERM.

Module Label

1 If the intercept flag is set to one in the root PCB, go IEAVFXLD IEAVFXL
to step 3. If the intercept flag is set to zero, the FXLD

Root Exit checks for an I/O error. If the request is for
PGLOAD, FXLD Root Exit continues with normal process­
ing. If the-PGFIX request has an I/O error, the FXLD Root
Exit schedules abnormal termination for the requestor, using
the TCB address in the root PCB. If the TCB address is zero,
FXLD Root Exit posts the requeftor's ECB from the root
PCB with an error POST code.

2 If both the intercept flag and the I/O error flag are set
to zero, the FXLD Root Exit posts the requestor's

ECB with a zero POST code, indicating completion.

3 If the free ECB flag is set to one in the root PCB, the
FXLD Root Exit issues a PGFREE request through

IEAVPSI.

4 The FXLD Root Exit converts the root PCB to a
regular PCB and returns it to the free queue.

5 The FXLD Root Exit returns control to the calling
routine.

'f' Diagram 23-15. PGFREE Routine (IEAVFREE) (part 1 of 2) w .
00

o
f'-l

"< f'-l
N
f'-l
'<
~

9

i
r""

J
~
2"
9
~

Vl

'<
f'-l
N

:;c
2-
3
Y6
w
~

CIWA

D

From Page Services
I nterface (I EA VPS I) or
PGFIX/PGLOAD
Processing (lEAVFXLD)

PFTE

o
feB ~

G FA Defer Queue

PCB

[[Q
Loca I 1/0 Active
Queues

PCB

ceo
Common 1/0 Active Queue

PCB

[{o

1 If the pages are in real storage and
are not in nucleus, SQA, LSQA,
or V=R area, decrease their FO E
fix counts and update PFTE.

2 If the pages are not in real storage,
check queues for PCB representing
page.

• If PCB on GFA Defer Queue,
free PCB.

• If PCB on 1/0 Active Queue,
decrement PFTE fi x count for
oorresponding PFTE.

3 Return, indicating status of
processi ng.

To PSI (JEAVPSI) or
PGFIX/PGLOAD
(lEAVFXLD)

PFTE o FOE

TeB /QJ]
I 1

. Free Queue
PCB

PCB

Ql] D

CIWA

I elWRETe I

en
~
(") g.
::I
N

::
~

[
o
~

o
"0
OJ
~ g.
::I

til

~
~

Diagram 23-15. PGFREE Routine (lEA VFREE) (Part 2 of 2)

Extended Description

The PGFREE routine (IEAVFREE) is called through Page
Services Interface to free up a group of real pages previously

fixed. When called by the PGF I X function, it also reverses
a partia!ly completed fix operation that is being abnormally
terminated.

Module label

1 PGFREE checks the status of the page being processed. IEAVFREE IEAVFREE
I f the page is not al ready in real storage and PG F I X is

the caller, PGFREE returns control immediately. If PGFIX
is not the caller and if the requestor supplies an ECB address,
PGFREE performs purge processing as in step 2. Otherwise,

PGFREE returns control.

If the page is valid in real storage, PGFREE checks the page
location. If the page resides in the nucleus, system queue
area, local system queue area, or V=R area, then PGFREE
does not process the page. Otherwise, I EAVF R E E locates
a fix ownership element (FOE), if one exists. If no FOE
exists on the fix ownership list (FOU, PGFREE does no
free processing. Otherwise, PGFREE decreases the fix count
and frees the FOE if the count becomes zero. Then PGFREE
decreases the fix count in the PFTE, unless PGFIX is the
caller. If the PFTE fix count becomes zero and the page was
long-fixed, the long fix flag is set to zero and the system
fix counters are decremented by one; if a deferred release
was specified, PGFREE calls the PGRLSE processor to
perform deferred release processing.

Extended Description

2 If the requestor supplies an ECB address, PGFREE
checks three queues for PCBs representing paging I/O

for the current address space: General Frame Allocation
(GFA) queue, the Common I/O Active Queue, and the
local I/O Active Queue. When it finds one, PGFREE checks
for a root PCB and marks the root PCB intercepted, which
prevents posting the ECB.

If the root PCB has an FOE associated with it, PGFREE
calls FOEDEL to find and remove all FOEs for the PGFIX
request being purged. FOEDEL is called repeatedly until
the PCB fix count is zero. PGFREE either frees the PCB
from the GFA Defer Queue or decreases the PFTE fix
count for the frames assigned to the virtual page on the I/O

active queues. If the PFTFXCT is decremented to zero,
the system fix counters are decremented by one.
PGFREE checks for related PCBs as well, continuing
until all three queues have been searched.

3 If an error is detected in the input data for list entry
requests, PGFREE sets the error flag in the CIWA

copy of the VSL entry and stores the whole VSL entry
over the user-supplied copy. The CIWA return code of 4 is
also saved. Then PGFREE returns to PSI for exit processing.
If no errors occur, PGFREE passes the return code and out­
put data to the caller, PGFIX or PSI, for exit processing.

Module label

~.
N
Q
~

00
Q
~

(II

~
o
~

"<
~
~

til
'<
~

3
r-

4
fi·
r-
0: ..
I»

-<
<:: a c
:3
(1)

(II

'<
til
N
Q
~

Oc
§

Diagram 23-16. PGOUT Routine (tEAVOUT) (Part 1 of 2)

Inpu!

r PGTE r
XPTE

CIWA

CIWCUVSL

CIWENDIA

CIWSTRTA

C'IWKRPRL

CIWTCB

PFTE

Register 14

From Page Services
I nterface Routine (I EA VPSI) ,-,process

1

..
• d v> 1 Get the PGTE and XPTE addresses

and invalidate the PGTE.

..

~ II I ~ 2

If the page is unchanged, free the
real frame.

3 If the page is changed, set up PCB
and XPTE for page-out.

4 Repeat steps 1-3 for all requested
pages.

5 Enqueue any PCBs on an internal
queue and pass the queue to
Auxiliary Storage Management
(I LR I NTOO) for page-out.

Return Address 1 ..
v

6 Return, indicating status of
processing.

To Page Services Interface
Routine (lEAVPSI)

Output

PGTE XPTE
......

-v I PGTBITS I

Available Frame Queue

I
~.
N
Q

....

CN

~
PFTE

PFTFLAG1 I.-.

v
'--

PCB XPTE

)I;.

-v ~
PCBATP

PCBXPTA

PCBPGTA
PCBRBN

PCBVBN

PCBASCB

Internal PCB Queue

" --v utJ
CIWA

" -v
CIWAETC

CIWERR

CIWOUTKR

~
~
e'
=
~

~
a
5'
Q..
o ...,
o
"0
~
~ s·
=
<.11

~ -

Diagram 23-16. PGOUT Routine (IEAVOUT) (Part 2 of 2)

Extended Description

The PGOUT routine (I EA VOUT) is called by the Page Ser­
vices I nterface routine to process a page-out for a selected
virtual page.

1 PGOUT processes each VSL entry in the CIWA. It
checks and rounds the addresses to page boundaries;

if an error is detected, PGOUT sets the CIWA return code
to 4.

For a page with a frame assigned in real storage, PGOUT
invalidates the PGTE using the Page Invalidation routine.
If the page resides in the nucleus, SQA, V=R space, LSQA,
or quick start area, or if the page is unusable or fixed, no
processing is done. If a PCB already exists, no processing
is performed.

2 If the page is unchanged, PGOUT returns the PFTE for
the frame to the available frame queue. If the Keepreal

option flag in the PCB or the internal Keepreal flag is set
to one, PGOUT validates the PGTE and returns control.

Module

IEAVOUT

Label Extended Description

3 If the page has been changed, PGOUT builds a PCB
and initializes fields in the PCB and XPTE.

4. When the first VSL entry is complete, PGOUT checks
the CIWA return code. For a zero return code, PGOUT

gets the next VSL entry by using the Page Services Interface
NEXTVSL subroutine; for a return code of 8, PGOUT per­
forms exit processing; and for all other return codes, PGOUT
performs error processing.

5 PGOUT puts the created PCBs on an internal queue
and, when all VSL entries have been processed, passes

them to the Auxiliary Storage Manager by calling
ILRPAGIO.

6 If no errors have occurred, PGOUT returns control to
PSI, putting the return code in the CIWA. If an invalid

page address was detected, and the CIWA return code is 4,
PGOUT sets the CIWA error flag to' one and copies the CIWA
copy of the VSL entry over the user copy. Then PGOUT
returns to PSI.

Module Label

~.
~ o
w
00
S

'{' Diagram 23-17. Swap-In Processor Routine (lEA VSWIN) (Part 1 of 2)
~
N

o
{I}

"< {I}
N
{I}

~
9
r-

J6
(=j'

r­a:
;
-<
-< o
8"
:3
(1)

CIo

~
N
b
~

00
Q
-...J -

Input

SPCT

D

From System Resource
Manager via dispatch
(of an SRB) o t

1 Get PCBs for swap-in and root PCB.

2 Initialize root PCB.

'.
3 Initialize stage 1 PCBs for fixed

pages and LSQA pages.

4 Build stage 2 PCBs for pageable
private area pages and chain from
the swap-in root PCB.

Nt]]'::

~,.,',','.', ~.~

5 Call1EAVGFA to assign real frames
to the stage 1 pages and start
page in,

6 Return, if successful.

7 If enough PCBs or frames could not
be obtained, notify SRM via
SYSEVENT that swap-in failed, and
return.

8 If an liD error occurs, Swap-In calls
R/TM to terminate the address space;

Dispatcher
(IEAVEDSO)

Dispatcher (IEAVEDSO)

Swap·ln PCBs

PCB

00 -<
CI}
N
b
~

00
Q
.......

CI:)
~
('")

S·
::I
~

~
~

:;
8-
o,
o
'e
~
~

S·
::I

VI

~
~

Diagram 23-17 _ Swap-In Processor Routine (lEA VSWIN) (Part 2 of 2)

Extended Description

The Swap-In Processor routine (IEAVSWIN) initializes 1/0
operations for an address to be swapped in (made active
within an address space).

Module

1 After freeing the input SRB and establishing the FRR, IEAVSWIN
Swap-1ngets the SALLOC lock. If the swap-in request

is valid, Swap-In gets enough PCBs for the swap-in operation.

2 Swap-In puts the root exit address and the ASCB
address in the root PCB.

3 Swap-In initializes PCBs for Stage I pages to be swapped
in.

4 Swap-In initiaiizes Stage II page PCBs for swapping in
and chains them from the swap-in root PCB_ The

Stage 2 PCBs will be passed to I EAVSWPP (an entry point
in IEAVSWIN) in the IEAVSWPP SRB_

5 Swap-I n calls lEA VG FA to assign real frames and
initiate the page-in process for the stage 1 pages_

6 If the I/O successfully completes, Swap-In updates the
count of swap-ins in the PVT, releases the SAL LaC

lock and the FRR, and returns control to the Dispatcher.

7 If Swap-In cannot get enough PCBs to swap in the
address space or if there are not enough real frames

available, Swap-In issues a SYSEVENT to notify SRM that
the swap-in failed.

8 If an I/O error occurs, Swap-In calls R/TM
(TYPE=MEMTERM) to terminate the address space.

Label

~
N
b
~

00
S

:c Diagram 23-18. Swap-In Root Exit (IEAVSWIN) (part I of 2)
~

o
(Il

~
~

(Il

'<

~
E n·
t::
~

~
~
2'
3
~

VI

~
~
(:)
CN
Co
9 -

From Page 1/0 Post (I EAVPIOP), Page Termination
Services (IEAVTERMI. or General Frame
Allocation (lEAVGFA) decreasing
PCB count in root PCB to zero

nput

Root PCB
~_o.ce.s.s"""""""""""'1

~ Stage 1
Swap-I n PCBs

Stage 2
Swap-In
PCBs

~ LD I
fGT nPG:PT I

ASCB

D

~

~---""_IIII"'"'IV> 1 If page-ins have completed with an
error, the system fix count is
decremented by one and the address
space is terminated. Go to step 5.

~

v

I I=>

2 Update the ASCB. SGT, PGT, and
XPT for stage I pages and set storage
keys of the frames.

3 Add to the ready queue the ASCB
for the swapped - in address space.

4 Allow SRBs to be dispatched in new
address space.

5 Free PCBs.

6 If normal swap-in processing has
completed, schedule I EAVSWPP to
post the Region Control Task to run
in the swapped-in address space and
to start the 1/0 for the stage 2 pages.

O,,!!p~~

~

-"'.

y

PGT

SGT

Free PCB Queue

PCB

C{Q
SRB

IEAVSWPP
SRBPARM

Stage 2
Swap-In PCBs

vlF,

7 Return. I .,. To IEAVPIOP.IEAVTERM.o,
IEAVGFA

I
< (Il
~
Q
CN
Co
Q

CI:l
~

~
5'
= l-.J

a::
~ ;.
8-
0
0
."
~ a
5'
=
VI

J:.
VI

Diagram 23·18. Swap·In Root Exit (IEAVSWIN) (Part 2 of 2)

Extended Description

The Swap·ln Root exit (part of IEAVSWIN) is called by
Page I/O Post when I/O for Stage I pages has completed.
The routine re-initializes the segment and page table entries,
re-enqueues the ASCB, and makes the swapped-in address
space dispatchable.

1 If page-ins have completed in error, Swap-In Root
Exit decreases the fix counts for the common area

swap-in pages and completes error processing in step 5.

2 Swap-In Root Exit updates the ASCB, the PGT, and
XPT with information about the swap-in Stage I

pages. It then validates the PGT and XPT and sets the stor­
age keys for the page frames.

3 Swap-In Root Exit calls ASCBCHAP to add the ASCB
to the ready queue.

4 Swap-In Root Exit calls STATUS START to allow
SRBs to be dispatched in a new address space.

5 Swap-In Root Exit frees the root PCB and the chain of
PCBs used for the swap-in.

6 If the swap-in was successful, IEAVSIRT schedules
an SRB routine, IEAVSWPP, to the swapped-in

address space. This routine posts the RCT to begin
restore processing and start the I/O for the stage 2 pages.

7 Swap-In Root Exit returns control to the caller.

, ~

Module Label

IEAVSWIN IEAVSIRT

<
CI:l
l-.J
C
c..J
00 o
-..J

<II

~
b

o
f:Il

~
~

f:Il
~
;-

== b
~.
r-

f
<

f
<II

~
~

b
~

00
Q

.::!

Diagram 23-18A. Swap-In-Post Processor (IEAVSWPP) (part 1 of 2)

Input Process

Register 0

'LJ _JI.

,I 1 Free the SRB.

Register 1

_1'1.
_ ... Stage 2 PCBs 2 Scan the input stage 2 PCB

v queue. If the page defined by

I tb the PCB cannot be referenced
or is already valid in storage,

L free the PCB.

3 CalilEAVGFA to assign frames
for the stage 2 pages, if any exist.

4 Post RCT to indicate that restore
processing can be started.

Output

.....

v

-l)
v

PCB Free Queue

PCBs

Qb
Stage 2 PCBs

RSMHD

I , I Local 1/0 Queue

"'- PCBs (Stage 2)

-L
'\

<
f:Il
~

b
~

00
S

C"'-l
(D
(')

ct. g
N

::
(D

~
o
'." o
'e
(D

~ g
til

~
~ -

Diagram 23-18A. Swap-In-Post Processor (IEAVSWPP) (part 2 of 2)

Extended Description

The Swap-Post processor (I EAVSWPP) initiates the I/O
for the stage 2 pages and posts RCT when stage 1
swap-in is complete.

1 Free the input SRB.

2 For each PCB on the input stage 2 queue, call
I EAVFP2 to obtain the PGTE/XPTE addresses for

the page represented by the PCB. If the page was freed
or the page is already in storage, free the PCB because
the real frame assignment for this request is no longer
required.

3 Call IEAVGFA to assign frames for the remaining
stage 2 pages.

4 Post RCT to indicate that stage 1 swap-in is
complete and that restore processing can now be

started.

Module Label

IEAVSWIN IEAVSWPP

<:
C"'-l
N

'=> w
00
o
-..J

VI

~
o
CIl

~
N
CIl

1
~
r-
~ n·
t'""
eT

~
<:
!2.
= :3
~

VI

'<
CIl
N
Q
(,u,

00
o -

Diagram 23-19. Swap-Out Processor Routine (IEAVSOUT) (Part 1 of 4)

From RCT Quiesce

Input

I/O Active Queues
PCBs

W[J
GFA Defer Queue

PCBs

CIO

Routine (I EAVAROO)

f:
ceH

I 1 Get page control block space for
swap-out.

2 Build an SPCT entry for each LSQA
and fixed page.

3 Search PCB queues for those PCBs
that correspond to address space
being swapped out.
For I/O complete PCBs, dequeue
and free the PCBs, and free the
PFTE.
For I/O not complete PCBs,
mark PCB so real storage is
freed when I/O completes.

4 For fixed frames without an FOE,
·make an SPCT fix entry.

Output

SPCT

D
Free Queue

PCB

Q]]D
I/O Active Queues

PCBs

Q]

C/.)
fD
~
O·
= ~

J:
fD

[
o
o
"0

~ eo
=
(A

J:..
....a

Diagram 23·190 Swap..()ut Processor Routine (lEA VSOUT) (Part 2 of 4)

Extended Description

The Swap.out Processor routine (I EAVSOUT) performs and
initiates the process of logically disconnecting an address
space, initiating the 1/0 operation for page-out to auxiliary
storage, and saving in real storage the information required
for a subsequent swap-in.

1 Swap.out calfs STATUS to stop non-quiescable
SRBs. Then it gets the SALLOC lock and sets the

FRR. If the swap request is valid, swap-out calls IEAVPCB
to get enough PCBs for all the frames in the address space
plus one to be used as a swap-out' parameter list. The list
will contain a pointer to the LSOA PCBs, a pointer to the
private area non-LSQA PCBs, an eight-byte parameter list
passed to SRM on the swap-out complete sysevent, and an
SRB used to schedule IEAVPIOI.

2 Swap-Out initializes the SPCT and then builds SPCT
entries for each Stage I page (either LSQA or fixed).

3 Swap-Out scans the Common I/O Queue for PCBs
corresponding to the address space being swapped out.

Swap-Out calls the Reset routine of PCIH and resets any
fix indicators. If I/O is complete, Swap-Out frees the PCB.
Then Swap-Out scans the I/O active queue and the G FA
Defer Queue, processing PCBs in the same manner. If any
root PCB count goes to zero, Swap-Out calls the root exit
routine.

4 If a fixed frame has no FOE, Swap-Out sets the fix
count in the SPCT fix entry.

Module Label

IEAVSOUT

<:
C/.)
~

8
00 s

VI
,j:.
00

o
CZI

'< CZI
N
ell
'<
~

~
t"'"
~
()'

t"'"

~
~
<:
o = :3
CD
VI

~
N

S
00
§

Diagram 23-19. Swap-Out Processor Routine (IEAVSOUT) (Part 3 of 4)

Input

SPCT

! D

Process

I>

5 Build page control blocks to page
out fixed and LSQA pages.

6 For pageable frames, ~ither build
a PCB or free the frame. Then
update the PGTE a,,!d XPTE and
flag the SPCT entry to make page
part of the swap-in "working set."

7 Free excess PCBs and call ASM
(lLRPAGIO) to initiate the I/O for
the non-LSQA pages.

8 Schedule IEAVPIOI to initiate the
I/O for the LSOA pages and to
remove the address space from the
dispatching queue.

9 Return.

I

To RCT Quiesce Routine
(lEAVAROO)

Output

~
J..

v

Jo..

y

I

Swap-out PCBs

PCBs

[[[j
PGTE

XPTE

Free PCB Queue

PCB

[l[j
SRB for IEAVPIOI

~
swap-out

. Parameter
''_____ List

<
ell
N

<=>
~

00
0
~

en
~
n

s·
::s
N

~
~

;.
&.
o
o

"0
~
~

S·
::s

VI
J;..
\.Q

Diagram 23-19_ Swap-Out Processor Routine (IEAVSOUT) (Part 4 of 4)

Extended Description

5 Swap-Out completes the initialization of swap-out
PCBs for LSQA and fixed pages.

6 For pageable frames with no PCB defined, Swap-Out
either frees the frame or creates a Swap-Out PCB.

After updating the PGTE and XPTE for each page, Swap­
Out marks the SPCT entry so that the page will be swapped
in with the address space.

7 Swap-Out frees any PCBs not used and puts the swap­
out PCBs on the local I/O active queue. Then swap­

out invokes ASM at ILRPAGIO to initiate the I/O for the
non-LSQA pages.

8 Swap-out schedules I EAVPIOI to start the I/O for the
LSQA pages and to remove the address space from

the dispatching queue. I EAVPIOI receives the swap-out
parameter list containing a pointer to the LSQA PCBs.

9 Swap-Out frees the unused SPCT extensions, frees
the unused SPCT extensions, frees the SALLOC lock

and FRR, and returns control to RCT Quiesce with a return
code in register 15.

Module Label

<:
til
N

o
~

00
S

VI
U.
Q

~
< CI)
N
CI)
'<
flO ;-
a
r-
ci. n
r-

J
~
i
VI

~
l-.. e
00
§

Diagram 23-20. Swap-out Completion Routine (lEA VSWPC) (Part 1 of 2)

Input

PFTE # 1

From I LRSWAP
or IEAVSOUT
.. process

III 1 Purge TLBs.

I ---
Register 1 PFTE # 2]J

I
~--#2 PFTE #3]]

. 2 Tell SRM (system resource
manager) that swap-out is
complete.

3 Dequeue the ASCB for the
address being swapped out.

--- I I n:es

I I : > 4 Return RSM resou . •

Register 0

retu rn code J
: . : > 5 For errors, record them and

terminate the address space.

6 Return.

ILRSWAP
or
IEAVSOUT

Output

....
)

V'

I\.
}

V'

Available Frame Queue

PFTE

~
PCB Free Queue

PCB

~
SPCT

SPCTOUT=O

SPCTSWRT=O

~
N
Q
(N

00
:3

fIl

i-
~

a::
ft

[
2-

f
i
~

c:.--

Diagram 23-20. Swap-out Completion Routine (lEA VSWPC) (Part 2 of 2)

'Extended Description

The Swap-out completion routine (I EA VSWPC) handles
completion processing for swap-outs. The input is the
address of a chain of AlAs and a return code., IEAVSWPC
is entered from the Swap-Out Processor (EA VSOUT) or
from ILRSWAP. The SALLOC lock is held at entr-y.

1 SWPC established the RSM FRR and calls IEAVINV
to purge the translation lookaside buffers (TLBs).

2 If the I/O was successful, I EAVSWPC issues a
SYSEVENT notifying the system resource manager

(SRM) that the swap-out has been completed and passes
status information to SRM about the swapped-out
frames.

3 For either a successful or unsuccessful swap-out,
IEAVSWPC frees the area (PCB) containing the

swap-out parameter list by calling the PCB manager
(IEAVPCB).

• The PCB defined flag is turned off in the PFTEs for
the frames that were allocated to the swapped out
pages. If the I/O was successful, IEAVSWPC calls
PFTE enqueue/dequeue to free the frames and calls
lEA VPCB to free the PCBs used for the swap-out_
The system fix counters are decremented by 1 for
each AlA passed as input .

• If the I/O was unsuccessful, IEAVSWPC does not
free the frames.

4 If a nonzero return code was given to IEAVSWPC,
a COD abend is issued.

The address space being swapped out is terminated via
CALLRTM.

5 IEAVSWPC removes the FRR and returns to the
caller.

Module Label

I EAVSWPC I EAVSWPC

IEAVSWPC FREFMPCB

IEAVSWPC FREEPCB

I EAVSWPC MMTERM

IEAVSWPC DELTEFRR

~
~ e w
00
53

&: I Diagram 23-21. LSQA Swap I/O Initiator {lEA VPIOI) (Part 1 of 2)
t-.J

o
til

"< til
t-.J

til
'<
~

3
£
(;.

t'""
s:
~
-<:
o
C
:3
~

VI

'< til
N
(:)
~

00
S -

Input

SRB

SRBPARM

From Swap-Out (JEAVSOUT) via

Dispatcher (lEAVEDSO) Process

1 Set FRR and obtain the local
lock.

2 Dequeue the ASCB for the address

I/O Active Queue I I
space being swapped out.

LSQA PCBs

3 Obtain the SALLOC lock and

4

S

6

pass control to Auxiliary Storage
Manager to perform the I/O.

Free the local and SALLOC
locks, delete the FRR, and
return.

For errors, invoke lEA VSWPC
for cleanup and address space
termination.

Free the local and SALLOC
locks, delete the FRR, and
return.

Dispatcher
(JEAVEDSO)

Output

I I I/O Active Queue

PCB/AlA

CEO
<:
til

1 i .1 ILRSWAP 11
N
(:)
~

00
0
-.J

CIl
(II

a o·
= N

;c
(II

s-
o
Q.

o ...,
o

"0
(II

~ o·
=
til
~
w

Diagram 23-21. Swap I/O Initiator (lEA VPIOI) (part 2 of 2)

Extended Description

I The Swap 1/0 Initiator (lEAVPIOI) starts the LSQA paging
1/0 for the address space being swapped out. The input

I is the address of the swap-out parameter list containing a
pOinter to the LSQA PCBs. IEAVPIOI passes the
PCB/AIAs to ASM to start the swap-out 1/0.

I 1 PIOI establishes the RSM FRR, and gets the local
lock.

2 PIOI calls ASCBCHAP to remove the address space
from the dispatching queue.

1
3 PIOI obtains the SALLOC lock and calls ASM

(lLRSWAP) to perform the page-out 1/0.

I 4 If the I/O is successful, PIOI releasess the SALLOC
and local locks, removes the FRR, and returns

control to the Dispatcher.

5 If an error occurs, or if the ASCBCHAP fails.
IEAVPIOI calls IEAVSWPC for cleanup processing and
for terminating the address space.

6 PIOI releases the local and SALLOC locks. removes
the FRR, and returns control to the dispatcher

rlEAVEDSOL

Module Label

IEAVPIOI IEAVPIOI

<:
CIl
N
b
w
00
C
"'-l

Cf' Diagram 23-22. VIO Services Routine (lEA V AMSI) (Part 1 of 4)
CIt ...
o
Ie
<
fI)
N
fI)

1
~
·i

(=)"

r-
~
~
<
~
= (D

CIt

'< fI)
N
Q
w
00 o -

From Virtual Block Processor (lDAVBPP1 and IDAVBPJ1)

Input • ? Process 11 ... 6 2
VCB

VCBLlNK

VCBOPFLAG

VCBRSN

PGTE

[XPTE

1 Check to ensure that each VCB is
in storage.

2 Call a subroutine according to request:

Assign, go to step 3.

Move-out,go to step 5.

3 For Assign, assure that virtual page is
not currently in use.

4 Process assign reQJest setting up
necessary PGTE, XPTE and possibly
PFTE for normal paging;
return.

6

Output

To
Virtual
Block
Processor
(lDAVBPP1
and
IDAVBPJ1)

PGTE

XPTE

PFTE 1

en
~
()

S·
::I
N

::
~

;.
8-
o
o
"0
~
~

S·
::I

VI
c:"
VI

Diagram 23-22. VIO Services Routine (lEAV AMSI) (Part 2 of 4)

Extended Description

The VIO Services routine (IEAVAMSI) manipulates the

page and external page tables; in some cases it also manip­

ulates the page frame table for the VIO Processor when

VIO data set pages are to be inserted or removed from the
VIO buffer. One VCB (VIO Control Block) is supplied for

each page to be processed.

1 VIO Services obtains the global SALLOC lock and

checks the input VCB to be sure that the real storage

address specified is val id.

2 VIO Services checks the operation flags in the VCB

for the operation to be performed.

3 For an assign request, VIO Services checks for the

following conditions:

• GETMAIN-assigned flag and invalid flag in PGTE are set

to one;

• Real storage address in PGTE is zero;

• Auxiliary-storage-assigned and the defer flags in the XPT
are set to zero.

If any of the preceding conditions are not met, VIO Services
sets an error code in the VCB and returns to VBP with a

code of 4 in register 15.

Module

IEAVAMSI

Label Extended Description

4 If a null aszignment is requested (LPIO in VCB is zero),
VIO Services sets the VIO flag to one in the XPTE and

checks for further VCBs.

Otherwise, if the RSN in the VCB is not zero, VIO Services

gets the PFTE for the real frame that last contained the page_

It checks to see whether the VIO flag is set to one and

whether the data set 10 matches the ID in the VCB. If so,

the page has been reclaimed.

If a PCB exists for the reclaimed PFTE, VIO Services updates

the PCB to halt the page-out from freeing the real frame. It

also updates the XPTE and the PGTE. Finally, VIO Services
puts the virtual address of the VCB and the ASI!) in the
PFTE.

Module Label

-< en
N

o
W

00
o
-...I

(J!

~
0'1

o
til

~
til
N
til
'<

~
r-
~ (;.

r-
~
~
B
=-3
~

(J!

~
N

S
00 o
-...I
'-'

Diagram 23-22. VIO Services Routine (IEAVAMSI) (part 3 of 4)

Input

PFTE's

Process

5 For Move-out of pages in real
storage, obtain and initialize a PCB
for page -out.

6 For Move-out of pages not in real
storage, free or transfer RSM - created
auxiliary storage as required.

7 Process Move-out request, updating
PGTE, XPTE, and PFTE.

8 Pass all AlAs to ASM to star~ 1/0.

9 Return.

To Virtual Block
Processor
(lDAVBPP1 and
IDAVBPJ1)

OutDut

PCB

D
AlA

D
I PGT]

XPTE

PFTE

Register 15

Return Code --]

VCB

c;,:)
~
(") g.
:::I
N

::
~

~
o
0-
o -,
o
'0
~
~ g.
:::I

Vl

V.
~

Diagram 23-22. VIO Services Routine (lEA V AMSI) (Part 4 of 4)

Extended Description

5 via Services returns to VBP, passing a return code in
register 15.

6 If the page is not in real storage, via Services transfers

RSM-created auxiliary storage as required and sets the

real storage address in the VCB to zero.

If paging I/O is in process for the page, via Services quiesces

page-in I/O and allows page-out I/O to complete normally.

via Services processes all PCBs for the page according to

the queue on which they reside. via Services releases all

non-Via auxiliary storage for the page and updates the

VCB and the XPTE.

7 via Services updates status flags in the XPTE, VCB,
PGTE, and the PFTE to complete the Move-Out

request according to the options specified in the VCB.

8 When all VCBs have been processed, via Services
passes any AlAs created to ASM (at ILRINTOO)

for page-out I/O processing. Then it returns to VBP,

passing a return code in register 15.

Module Label

Vt
tA
00

~
"<
CJ'l
t-.J
CJ'l
'<
~

3
r-'
<i r;.
r-'
e: ...
~

~
< eo c
3
(II

Vt

~
t-.J
<:>
\H
00
Q
'-I -

Diagram 23-23. Initialize Address Space Routine (lEA VIT AS) (Part 1 of 2)

Input

Register 0 r·o I

Register 14

I Return Address I

From VSM
Create Address Space
(lEAVGCAS)

~

"

'.

I

Process

~ 1 Initialize RSM header and
y

SPCT, then request real frame
assignment.

2 Initialize PFTE as an LSOA
page and enqueue it on the
LSOA frame queue.

* ;
3 Build the initial LSOA page

for the new address space.

J\.) 4 Return.
y

(lEAVGCAS)

-

[I

Out t

ASCB

ASCBSTOR
1'>..

v ASCBRSM

RSMH

RSMVSTO
J\.

RSMSPCT
v

RSMASCB

PFTE

PFTVBN
J\.

SPCTNSEG I PFTASID v

PFTLSOA SPCTSSEG

SPCTSEGX - --- -- - SPCTPGT

" SPCTSIZE I SGT
v

.... SGTPAM
v

SGTPTL

SGTPO

SGTLK

Register 15
1\. J)I Return Code
v

<
CJ'l
t-.J
<:>

.eN
00
Q
'-I

CIl
(t)
I") g.
=
~

::
(t)

;.
8-
o
o
'0
~
~ g.
=
VI

V.
\0

Diagram 23-23. Initialize Address Space Routine (lEAVITAS) (Part 2 of 2)

Extended Description

The Initialize Address Space routine (IEAVITAS) builds and
initializes the RSM control blocks required to define an
address space. The function runs in the Master Scheduler
address space, is called in supervisor, key 0 state, and must
run under a local lock.

1 The Initialize routine sets up linkage with the RSM
FRR IEAVRCV and acquires the SALLOC lock.

Initialize obtains SOA space for the RSM Header (the
ASM Header is part of the RSMHD) and the Swap Control
Table (SPCT). If the GETMAIN fails, Initialize returns
with a code of 4 in register 15. Then it calls ASM
(I LRINTOO) to assign a logical group number for the new
address space. If none are available, Initialize returns to
the caller with a code of 4 in register 15. It Initializes the RSM
Header address in the ASCB and initializes RSM Header
fields with the virtual addresses of the SGT, SPCT,
and ASCB. Initialize then sets other RSM Header fields to
zero. The ASM slot reserve routine (I LRSL TRV) is called
to assign reserved slots for the address space. Next, the
Initialization routine calls LSOA/SOA Allocation
(lEAVSQA) to get a real frame. If the allocation fails,
Initialize returns a code of 4 to the caller in register 15.
If successful, Initialize initializes the segment table address
in the ASCB.

Module Label

IEAVITAS

Extended Description

2 Initialize inserts into the page frame table entry the
virtual block number of the page with the highest

address in the new address space private area and the ASID
of the new address space, and sets the LSOA flag to one.
Then Initialize calls PFTE Enqueue/Dequeue (IEAVPFTEl
to put the PFTE on the new address space's LSOA queue.

3 Initialize sets the LSOA page to zero and clears the
storage keys. It initializes the common area portions of

the segment table and marks the private area portions invalid.
Then I nitialize sets up the SGTE for the private area contain­

ing the LSQA page. It initializes the page table last and a"
other pages invalid. It then initializes the external page table
by putting the logical group number in each 12 byte entry.
Initialize sets up fields in the SPCT for the active segment

count, the segment entry count, the page table address, the
segment 10, and the SPCT size. The local (RSMCNTFX)
and global (PVTCNTFX) system fix counters are also

updated.

4 Initialize deletes linkage to the RSM FRR, frees the
SALLOC lock, and returns to the caller.

Error Processing

If an error occurs, the Initialize routine restores any success­
ful set-up operations to their status before the error occurred.
It frees any real frame obtained, releases the logical group
number, and frees the SOA space before returning to the
caller with a code of 4 in register 15.

Module Label

<
Cfl
N
o
~

00
o

b: Diagram 23-24. Delete Address Space Routine (lEA VDLAS) (Part 1 of 2)
Q

o
I.fl

~
C'Il
N
C'Il
'<
~

3
t"'"
~
(S.

t"'"
c;:
Iil
-<
<:
o
=-3
('!)

VI

'<
C'Il
N
(:,
t.o.I
00
Q

,::;!

Input

PFT

D
RSMH SPCT

From RSM Termination
Routine (lEAVTERM)

D D -,/

PCB/AlA

L[[j
From
PURGEDEQ
Routine
OEAVEPDQ)

1 Process the I/O-active
queue.

2 Put all PFTEs relating to the address
space on the available queue.

3 Purge TLBs to remove real segment
table address.

4 Free SQA space used for RSMHD,
SPCT and SPCT extension.

5 Return.

Free PCB/AlAs as if it is a
normal swap out co'"':!pletion.

7 Free input SRB.

8 Return.

To PURGEDEQ
(IEAVEPDQ)

To RSM
Termination
(lEAVTERM)

Output

PFT

ASCB
-<
C'Il
N
(:,
t.o.I
00
Q
-.J

{Zl
~

a o·
= N

~
~

;.
o
c-
o
o
'0
~
~ o·
=
VI
Q.. -

Diagram 23-24. Delete Address Space Routine (lEAVDLAS) (Part 2 of 2)

Extended Description

The Delete Address Space routine (lEAVDLAS) returns
RSM resources associated with an address space being ter­
minated. It runs in the Master Scheduler address space.

1 Delete moves the local I/O-active queue for the
address space to the Master local I/O-active queue.

2 Delete scans the local frame queue and calls I EAVPFTE
to dequeue PFTEs on the queues, freeing them if no

PCB has been defined. If no PCB is defined, the local
(RSMCNTFX) and global (PVTCNTFX) fix counters are
decremented for each LSQA and PGFIX frame. If any PCBs
exist on the Local I/O Active Queue, Delete moves them to
the Master Scheduler I/O Active Queue and changes their
ASCB addresses to the Master Scheduler ASCB address.
Then it sets to zero the RSM Header address and the real
segment table address in the ASCB.

Module Label

IEAVDLAS IEAVDLAS

Extended Description

3 Delete calls the Page Invalidate routine, IEAVINV, to
purge all translation lookaside buffers.

4 Delete uses FREEMAIN to free the SQA space used
for the RSM Header, the SPCT, and any SPCT

extensions.

5 Delete returns control to RSM Termination.

6 If the SRB was scheduled to dispatch IEAVSWPP
to start the stage 2 swap-out, Delete obtains the

SALLOC lock and the PCB manager frees the string of
PCB/AlAs addressed in the SRB. Then Delete releases
the SALLOC lock.

7 Delete frees the SRB using the FREECELL routine.

8 Delete returns control to the PURGEDEQ routine.

Module Label

IEAVINV

IEAVGMOO

IEAVDLAS IEAVSRBP

/

<:
CI.l
N
b
~

00
o
-...I

b: Diagram 23-25. Page Termination Services Routine (lEA VTERM) (Part I of 2)
N

o
CIl

"<
CIl
N
CIl
'<
~

i
~ ;:;.
r-
§=
~
< o

= 3
('D

VI

'<
CIl
N

8
00
::1 -

*.'

From R/TM (I EAVTSKT)

- ..
..

RMPL RMWA

UTI
Local 1/0 Active I
Queue

PCB PFTE ,

Qn 0-
an ~

Common I/O Active
Queue

PCB

QJJ I , FOE

OJ I 1
!~ I ,

GFA Defer Queue

PCB

Qn

p

~ For address space pur~e, fail 1
a swap-in or swap-out In

process.

,',

~ 2 Search for PCBs that ha~e t
I'

addresses matching the Inpu
data.

A Process the purge request. 3 v

~ 4 For a TCB purge,after I/O

I
v

purging, purge FOEs for any
in-storage page fixes.

5 For an address space purge,
clean up R SM resources by
calling Delete Address Space.

*
6 Return.

~ --

-1\
v

J\.

I'

.l\
..

I

Root PCB

D
Available Frame

Free PCB Queue Queue

PCB PFTE

Q ~
TCB

[_I

<:
CIl
N
Q
~'

00
::1

C"I)
(D

~ e·
:s
~

i:
:l
[
Q
o
1 a
e" :s

(,A

~ -

Diagram 23-24. Delete Address Space Routine (lEA VDLAS) (Part 2 of 2)

Extended Description

The Delete Address Space routine (lEAVDLAS) returns
RSM resources associated with an address space being ter­
minated. It runs in the Master Scheduler address space.

1 Delete moves the local I/O-active queue for the
address space to the Master local I/O-active queue.

2 Delete scans the local frame queue and calls I EAVPFTE
to dequeue PFTEs on the queues, freeing them if no

PCB has been defined. If no PCB is defined, the local
(RSMCNTFX) and global (PVTCNTFX) fix counters are
decremented for each LSQA and PGFIX frame. If any PCBs
exist on the Local I/O Active Queue, Delete moves them to
the Master Scheduler I/O Active Queue and changes their
ASCB addresses to the Master Scheduler ASCB address.
Then it sets to zero the RSM Header address and the real
segment table address in the ASCB.

Module Label

I EAVDLAS I EAVDLAS

Extended Description

3 Delete calls the Page Invalidate routine, IEAVINV, to
purge all translation lookaside buffers.

4 Delete uses FREEMAIN to free the SQA space used
for the RSM Header, the SPCT, and any SPCT

extensions.

5 Delete returns control to RSM Termination.

6 If the SRB was scheduled to dispatch IEAVSWPP
to start the stage 2 swap-out, Delete obtains the

SALLOC lock and the PCB manager frees the string of
PCB/AlAs addressed in the SRB. Then Delete releases
the SALLOC Ipck.

7 Delete frees the SRB using the FREECELL routine.

8 Delete returns control to the PURGEDEQ routine.

Module Label

IEAVINV

IEAVGMOO

IEAVDLAS IEAVSRBP

<:
C"I)
~

o
~

00 o
'"

<.It

~
ty

o
en
"< en
ty

en
'<
!;Il

i
£ ;:;.
r"'

~
~
~
=-9
(I)

VI

'< en
ty

8
00
o
-..J -

Diagram 23-25. Page Termination Services Routine (IEAVTERM) (Part 1 of 2)

From R/TM (lEAVTSKT)
P

p-

ErTI w..J\.
1 For address space pur~e, fail ~

a swap-in or swap-out In

process.

Local 1/0 Active I l.:') 2 Search for PCBs that ha~e t ...
addresses matching the Inpu

Queue
PFTE PCB

data.

D [J] :> Process the purge request. 3 v

,

an Common 1/0 Active
Queue

PCB
j"

QD ' FOE

~ 4 For a TCB purge, after 1/0 Q] v
purging, purge FOEs for any
in-storage page fixes.

G F A Defer Queue

PCB

5 For an address space purge,

~ clean up R SM resources by
calling Delete Address Space.

6 Return.

o
I

..J\.

v

1\

..

J\.

- ...

Root PCB

D
Available Frame

Free PCB Queue Queue

PCB PFTE

[J] ~
TCB

I J

-

<:
en
ty

o
(M'

00 o
-..J

CI.l g
e­
o
= t-,)

== nl

S-
o
Q.

o
o

"C

~
=
Ut
~
w

Diagram 23-25. Page Termination Services Routine (IEAVTERM) (part 2 of 2)

Extended Description

The Page Termination Services (PTS) routine (IEAVTERM)
is called by the Recovery/Termination Manager to quiesce
paging I/O for an RB or TCB within a virtual address space
or for an entire virtual address space. The routine may also
free pages fixed by the TCB being quiesced.

1 PTS gets the SALLOC lock, sets up the RSM FRR,
and gets the local lock. PTS terminates any swapping

I operations. For a swap-in, the RSM-failed flag is turned on.
. For a swap-out, the SRM parameter list is freed. For an
ASCB purge, PTS releases the local lock.

2 PTS searches for PCBs that have ASCB and TCB or
RB addresses matching the input data. It searches the

GFA Defer Queue and the I/O active queues. When a PCB
is found, PTS processes it according to the queue it is on
and the purge type.

Module Label

IEAVTERM IEAVTERM

Exte·nded Description

3 When the purge type is ASCB and the SRB mode flag
in the PCB is set, PTS will reset the SRB routine if

reset has been requested. I f the purge type is R B and the
RB address in the PCB matches the input RB address, PTS
calls the Reset subroutine of PCIH to remove the specified
routine from page wait. For all PCBs for which no I/O has
started, PTS processes any root PCB and then frees the
PCBs. For all PCBs for which I/O is active, PTS flags the
PCB to cancel the I/O request. If the I/O is complete, PTS
frees the PCB and the PFTE if there is no other requestor

for the page. If the purge type is RB, PTS only frees one
PCB. During I/O purge processing, if a PFTFXCT is
decremented to zero, the system fix counters are
decremented by one.

4 For a TCB purge, PTS frees the FQE for a fix PCB,
and, if requested, purges all in-storage fixes and FOEs.

If the PFTFXCT is decremented to zero, the system fix
counters are decremented by one.

5 For an address space purge, PTS calls Delete Address
Space to clean up the RSM resources and real frames.

6 PTS returns to the Recovery/Termination Manager.

Module Label

<:
CI.l
N o
W

00
o
~

Vi
b.
~

o
!!!
<:
VJ
t-I
VJ
'<
~

3
i
(i'

t""

J
<:
o
C
:I
I'D
VI

'<
VJ
t-I
Q
~

00
S -

Diagram 23-26. Real Frame Replacement (IEAVRFR) (Part I of 4)

From System
Resources Manager (SRM)

Input
(IRARMSRV)

Register 1 Parameter ______ ~~~(_i~----~
Local Frame
Queue Common Frame

Queue

QE}
Local Frame Local Frame
Queue Queue

DJan

Select Routine
1 For each frame queue in the parameter

list, locate each PFTE and test its
status flags.

2 For PFTEs on the common area frame
queue, or the current address space
local frame queue, that are eligible
and selected to be stolen, go to the
Freepage subroutine to do steps 8-9.

3 For PFTEs on other local address
space frame queues that are eligible
and selected to be stolen, set the
"pending steal" flag in each PFTE.

4 If necessary, schedule the Steal
subroutine to asynchronously steal
frames whose PFTEs are marked
"pending steal"

5 When the PFTEs meeting the input steal
criteria on all the input frame queues
have been processed, return to the SRM,

System
Resources
Manager
(lRARMSRV)

Local Frame Queue

PFTE

Qo
<:
VJ
t-I
Q
~

00 o
-....I

til
g g.
~

~
(D

So
8-
Q
o

I
VI
~
VI

Diagram 23-26. Real Frame Replacement (lEA VRFR) (Part 2 of 4)

Extended Description

Real Frame Replacement (lEAVRFR) scans sets of real
frames selected by the System Resources Manager (SRM)
to determine if they are available for stealing. It also
updates the unreferenced interval count (UIC), when
requested. It returns to the SRM the count of stolen
frames.

1-3 Real Frame Replacement (RFR) gets the SALLOC
lock. Then, for each entry in the input parameter

list, its Select routine accesses the local frame queue
(LFQ) for the specific'ASCB, or the common frame
queue (CFQ) if the ASCB address is zero~ The common
frame queue contains entries for frames used by areas
such as the PLPA, CSA, and MLPA. Frames represented
on the local frame queues contain the user private area,
excluding LSQA.

RFR processes each PFTE on a queue, and its associated
frame, in one or more of the following ways (as detailed
in substeps a-f below) :

• Skips the frame and doesn't steal it. I • Increases by one the count of stolen frames.
• Resets the frame's usage history by zeroing its

unreferenced interval count (UIC).
• I ncreases by one the unreferenced interval count,

when requested.
• Flags the PFTE for a "pending steal".
• Calls the Freepage subroutine (steps 8-9) to steal the

frame.

a) RFR determines that the PFTE is ineligible and
doesn't steal the frame, if any of these conditions
applies:

• The frame is fixed (PFTE fix count is not zero).
• The frame has outstanding I/O (PFTE "PCB-defined"

flag is sed.
• The frame is part of a nonpageable region (V=R).
• The frame is already flagged as 'pending steal'.
• The frame contains a storage error .

Module Label

IEAVRFR IEAVRFR

Extended Description

b) If the frame has been referenced (hardware reference
bit is on), RFR resets the frame's usage history by
zeroing the unreferenced interval count (UIC) in the
PFTE. RFR then processes the next PFTE. (The
UIC is a count of the number of intervals in which the
frame's page has not been referencedJ

c) When SRM requests that the UICs be updated,
PFTUIC is incremented by one for each unreferenced
PFTE in the requested queues.

I d)
The count of stolen frames is increased by one.
If the P FTE belongs to the local frame queues of an

address space other than the current one, RFR flags
the PFTE for a pending steal, then processes the next
PFTE on the queue. (For processing of "pending
steal" frames, see step 6.)

If the frame has met the steal criteria (described above),
RFR calls the Freepage subroutine to invalidate the
page and steal the frame. (See steps 8-9.1

Module

I e) When all the eligible frames have been stolen from the
queue being examined, as specified in the input parameter
list, RFR processes the next frame queue.

4 The Steal routine is scheduled via an SRB to be run
in the address space specified by the ASCB address,

if a non-current local frame queue has PFTEs marked
"pending steal". (These PFTEs were flagged in substep d,
above.)

5 The count of stolen frames is placed in the count
field of the parameter list entry, for use by the SRM.

After the entire parameter list has been processed, the
Select routine releases the SALLOC lock and exits to the SRM.

Label

<=
til
N

<:>
1...1
00
o
.......

~ Diagram 23-26. Real Frame Replacement (IEAVRFR) (Part 3 of 4)
0'1

o
r:n
"< r:n
N
r:n
'<
~

~

~
()'

t'"" c;: ..
t»

-<
<:
o

= 3
('D

VI

~
N
Q
(N

00
~

U,spatcher

Loca I F ra me Queue
(lEAVEDSO) .. ,.

PFTE

~
Steal Routine

!\ 6 For each "pending steal" PFFE on
[V the current local frame queue, verify

that the frame is still eligible to be
stolen . If so, call the Freepage
subroutine (steps 8-9).

7 When all "pending steal" frames
have been processed, exit to the
Dispatcher.

Freepage Subroutine
8 Call Page Invalidation (IEAVINV)

to invalidate the page table entry for
the page whose frame is to be stolen
and to determine if the frame is still
eligible to be stolen. If the frame is
not still eligible, the page is revalidated.

9 If the page has been changed, it is paged
out by ASM and the frame is returned
to the AFQ when the I/O is complete.
If, however, the page has not been
changed, the frame is returned to the
AFQ without paging I/O. Return is
either to step 2 or step 6.

Available Frame Queue

.. Dispatcher ,. (IEAVEDSO)
PFTE PGT

.... Q] v

0--01

~
~
e' =
~

~
(D

[
o
o

"CI
~

=­e' =
VI
Qo.

Diagram 23-26. Real Frame Replacement (lEA VRFR) (Part 4 of 4)

Extended Description

6 The Steal routine gets the SALLOe lock, frees the
input SRB, then processes each PFTE marked

"pending steal" on the local frame queue. It checks the
"PCB defined" flag, the "storage error" flag, and the fix
count in the PFTE. If any of these are set, the frame
cannot be stolen. Steal turns off the steal indicators and
gets the next PFTE. Otherwise, Steal calls the Freepage
subroutine (steps 8-9).

7 When it has processed all "pending steal" PFTEs,
the Steal routine releases the SALLOe lock and

returns, via the Dispatcher, to step 5.

8 The Freepage subroutine invalidates the page by
calling IEAVINV. Freepage tests the reference

and change bits to ensure that no reference has taken
place since the decision to steal the frame. If the page
has been referenced, it is revalidated, and the PFTE steal
indicators are reset.

Module Label

IEAVRFRA

FREEPAGE

Extended Description

9-- If the page has been changed but not referenced,
Freepage calls ASM to write out the page to a

paging data set, and returns the frame's PFTE to the
available frame queue (AFQ) when the I/O completes.
If, however, the page has not been changed, Freepage
returns the PFTE to the AFO without any paging I/O.

Module Label

<:
til
N
Q
~

00
9

(II

0-
00

o
CIl

~
N
CIl

'S
i
r-
~
n'
r-
0:

~
<: o
E'
:3
(1)

(II

'<
CIl
N
Q
w
00
S -

Diagram- 23-27. Real Storage Reconfiguration Routine (lEA VRCF) (Part 1 of 4)

From VARY STORAGE Processor
(lEEMPVST) Or Recovery
Termination Manager
(IEAVTRTH)

Parameter List I ~I····················· Register 1 , /1 I ~ " PGT I Y' I] -v 1 For storage key errors, try to .. B
_ reset the real storage key, --y 0 ---01

PFT PFTE

D
2 For st~rage data errors, if the real J\ 0

_ frame IS unchanged, invalidate the --v
_- PGTE and put the frame offline. '"

If the frame is changed, no recovery
is possible.

Parameter List

3 F~r VARY STORAGE processing "I I
With the STATUS option, record v ij

Root PCB the current status of the real frame.

I I ..) 4 For.the CANCEL option, find the Available Frame Queue
offline processing root PCB and

D
PFT ~ 5 :r~:~:O~~il::::~:~ue~ • ccoPFTE

.

the offline frames on the available "
queue and notify the System

_ . Resource Manager of the new
available frames. I

[
e'
:I

~

I:

[
e­
O

'I
Ii
f
u. :

Diagram 23-27. Real Storage Reconfiguration Routine (lEA VRCF) (part 2 of 4)

Extended Description

The Real Storage Reconfiguration (RSR) routine (lEAVRCF)
adds to or subtracts from the real storage frames currently
available for use by the system. When entered for cancel
processing, RSR automatically follows with offline
processing.

1 After obtaining the SALLOC lock, RSR checks the
option field in the parameter list for the option

requested. If entered for a storage key error, RSR calls the
Reset Storage Key routine to reset the key of any frame
for which it has key information. It also sets the change
flag in the frame. If the error is not recovered, RSR sets
error flags in the PFTE and puts a return code of 8 in
register 15.

Module Label

IEAVRCF

Extended Description

2 If entered for a storage data error, RSR sets error
flags in the PFTE. If the frame is unchanged and

pageable, RSR invalidates the PGTE and puts the PFTE on
the available frame queue. If the frame contains changed,
LSQA. or fixed data, RSR sets the pending-status indicator
and sets a return code of 8 indicating no recovery is possible.

3 If entered by VARY STORAGE for status processing.
RSR records status information in the status list.

4 If entered by VARY STORAGE for cancel process­
ing, RSR searches for the offline-processing root

PCB and dequeues it. RSR also posts the ECB with a code
of 4.

5 If entered for online processing, RSR sets the online
flag in each PFTE and puts the PFTEs on the avail­

able queue. Then it notifies SRM of the new available
frames.

Module Label

~ Diagram ~3-27. Real Storage Reconfiguration Routine (lEA VRCF) (put 3 of 4)
c:>

o
til

~
~

til
'<
~

~

E
(;'

j
~
[
<"
VI

< CIl
~

f
~

:.... -

f~ fj
[< Frames Offline and unqueued
I' :2

l:.' 15 6 For the OFFLINE option, remove I'; -.1I.1;j' I PFTE I I PFTE I
frames from system use, notify Y 1'(

the SRM of the frames no longer i .,~

available, and record the status of the ! Parameter List
; frames. If some frames ~re in use,] ... I I

aeate root PCB to monitor frames ..
From until they become available to be p~1 Y R t PCB

); PFTE marked offline. 'l:l -.11. 00 I
Enqueue! ,~, .. y I .
Dequeue 7 Return.------
(IEAV ... PFTE) ,..

~TE To

D " (lEEMPVST)
.) 8 Check the real frame number against or

Root PCB ~ I ~ Y .hO offline root PCB queue, (lEAVTRT}l) SRB

I I r:; 9 GetanS.RBandscheduleoffline ... D
. - completion when frames are Y

available for offline processing.
Go to step 12.

'" From Real 10 If the frame is unrecoverable, take B
Storage .;: it offline and notify SRM. -It, Y PFTE

;;:~·fit~1~.~ITIie;~?~:;f?YJ~t~j0Ij,~Y)I:~1,iiifUi\'~t~~'i_~tlii~~~~j' R econfiguration tr PFTE
t'i: Via Dispatcher Enqueue! R~~~%ljIJ'1;1I\?j;;U~~uft~IJ~~'1tY''R~lill~~iTI1:;~£'1~'{:;7,j;lVz:~~itt

(I EA VEDSO) 11 Return. Dequeue

I •• I"'~)~~ Routine
(I EAVPFTE) r-E_C_B_P_o_st_ed _____ '-'l

.. 12 Post the requestor's ECB addressed -'" I I
by the root PCB. "

Rom PCB 1~~;~~:~VVu~~uuV~~V~~~V~~*R~.iu~

I I "'> 13 Dequeue'M roo. PCB .pecifi:x1 and >-. PCB Queue
. .~' " put it~on the free queue. "QEj

~ PCB

~~~.mI=~!aillm~~~9:£k~ 14 Return. :~ ~ ;;.: 

~ ~ 

To Dispatcher 
III:: 1\ \Ic:n~n\ 



\n 
~ 

~ 
CS· 
= N 

a:: 
sa. 
=-8-
o .... 
o 

"CI 
~ 
~ o· 
= 
VI 

~ 

Diagram 23-27. Real Storage Reconfiguration Routine (lEA VRCF) (Part 4 of 4) 

Extended Description 

6 If entered for offl ine processing, RSR checks to see if 
the frame is in use. I f it is not, RSR sets the offl ine 

flag in the PFTE and removes it from the queue it resides 
on. If the frame is in use, RSR sets the offline-intercept 
flag in the PFTE, sets condition indicators in the frame's 
status byte, and builds a root PCB to monitor the request. 

7 RSR returns control to the caller, passing a return 
code in register 15. 

8 RSR is entered from PFTE Enqueue/Dequeue when 
a frame with the PFTE offline-intercept flag set is sent 

to the available frame queue. RSR searches the offline wait 
queue for the corresponding root PCB. If the frame is 
accepted for offline processing, RSR resets the offline­
intercept flag in the PFTE and decreases by one the PCB 

count in the root PCB. 

Module Label 

IEAVRCF IEARCFI 

Extended Description 

9 When the PCB count in the root PCB becomes zero, 
RSR schedules a POST of the requestor's ECB. 

(A GETCELL was done early in RSR for an SRB area 
for this purpose.) 

10 If the frame has a storage error, RSR removes the 
PFTE immediately, marks it offline, and notifies' 

SRM of the decrease in available frames. 

11 When all offline-intercept frames are processed, RSR 
returns control to PFTE Enqueue/Dequeue. 

12 RSR offline completion is scheduled by the offline­
intercept subroutine of RSR when the frame count 

in the root PCB becomes zero. RSR finds the corresponding 
root PCB and posts the ECB specified in the root PCB. 

13 RSR then dequeues the PCB and frees the quickcell 
used for the SRB. 

14 RSR returns control to the Dispatcher. 

Module Label 

IEAVRCF IEARCFC -< 
\n 
t-.J o 
eN 

00 
o 
....... 



V\ 
.!..J 
~ 

o 
I'".f.I 

"< I'".f.I 
~ 

I'".f.I 

~ 
a 
i 
ill)' 
r­
a: 
~ 
-< 
~ a 
(D 

V\ 

~ 
~ 

8 
00 
~ 

Diagram 23·28. PFTE Enqueue/Dequeue Routine (lEA VPFTE) (Part 1 of 2) 

Register 1 

I Parameters 

PFTE 

I PFTFQPTR I 

I 

From an RSM Routine 
that manipulates PFTEs. 

IIIIIt 
" > 1 Dequeue a PFTE, if requested. 
v 

If the dequeuing drops the avai lable 
queue belOllV the threshold, notify 
the System Resource Manager. 

" ) 2 Enqueue the PFTE, if requested, 
v and notify SR M if the available 

frame queue count is above 
threshold. 

3 If a PFTE is to be enqueued on the 
available frame queue, perform 
special processing. 

4 Return. 

I PFTE 
J\. 

I I .. 

SRB 

_11.. D v 

--\ 



c:n 
('I) 

sa 
~. 

= N 

a:: 
('I) 

;. 
8-
o .... 
o 
"t' 

~ 
O· 
= 
VI 
..:... 
eN 

Diagram 23-28. PFTE Enqueue/Dequeue Routine (lEA VPFTE) (Part 2 of 2) 

Extended Description 

The PFTE Enqueue/Dequeue routine (IEAVPFTE) enqueues 
a PFTE (page frame table entry) at the end or the front of 
a specified queue, dequeues a PFTE from a specified queue, 
or moves a PFTE from one queue to another. The routine 
also intercepts PFTEs routed for the available frame queue 
(AFQ) and directs them to special queues or other RSM 
functions requiring the real storage frame represented by 
the PFTE. The caller holds the SALLOC lock. 

lEA VPFTE is responsible for increasing and decreasing 
the allocated frame count for each address space 
(ASCBFMCT) and the common area (PVTCFMCTl. It 
will also compute the "page-seconds" information for 
an address space. Page-seconds are the total CPU time 
in milliseconds that each frame has used by an address 
space. Page-seconds are recomputed before each 
change of the local frame count;that is, ASCBFMCT is 
increased or decreased. 

Module Label 

1 The routine first checks for a dequeue. request. If the IEAVPFTE IEAVPFTE 
PFTE is on a queue, the specified PFTE is dequeued 

and the QID field in the PFTE is set. If the PFTE was 
dequeued from the AFQ, special processing is done. The 
AFC (available frame count) in the PVT is decreased and 
the PFTONAVQ flag is turned off. If the AFQ is now below 
its safe threshold and a SYSEVENT has not been issued, 
one is issued to notify the System Resource Manager (SRM) 
of the low AFC. If the AFC is zero, a special SYSEVENT 
is issued to notify the SRM of the zero AFC. 

When dequeuing the PFTE from a local frame queue, 
page-seconds are computed and ASCBFMCT is 
decremented by one. If the PFTE is dequeued from 
the common frame queue, PVTCFMCT is decremented. 

2 The routine tests to see if an enqueue operation is 
requested. If the PFTE is not to be enqueued, 

IEAVPFTE returns to the caller. If the TQID is the available 
frame queue 10, I EAVPFTE checks to see if the PFTE has 
been intercepted. If the V=R intercept flag is set, the V=R 
Intercept subroutine of V=R allocation (I EAVEQR) is 
called, passing the RBN of the PFTE. This subroutine 
returns either a zero RBN or the RBN of the PFTE passed 
by the intercept processor. If a zero RBN is returned, the 
frame is intercepted for V=R Allocation; IEAVPFTE 

Extended Description 

returns control to the caller. If the returned RBN is not 
zero, or if the V=R intercept flag was not set, the PFTE 
offline intercept flag is tested. If the offline intercept flag 
is set, the PFTE is passed to Real Storage Reconfiguration 
(lEAVRCFI. If the Reconfiguration routine returns a zero 
R BN, the frame has been intercepted for offl ine or is a 
bad page; lEA VP FTE returns control to the caller. I f the 
Reconfiguration routine returns the input R BN, or if V=R 
Allocation returned the RBN and the PFTE offline inter­
cept flag is not S9,t, processing continues. This also occurs 
if no intercept flags are set in the PFTE. IEAVPFTE then 
checks to see if the SQA Reserve Queue requires frames. If 
so, the PFTE is diverted to the SOA Reserve Oueue. If 
not intercepted, IEAVPFTE enqueues the PFTE on the AFO. 
If the input TOlD was not X'FF' and was not the AFO 
10, then IEAVPFTE puts the TQID in the PFTE and 
enqueues on it on the end of the specified queue. If the 
TOlD is X '00' and the special "head of queue" flag is set, 
the PFTE is placed at the head of the AFQ. If the 
PFTE is to be enqueued to a local frame queue, page­
seconds are computed and ASCBFMCT is incremented. 
If the PFTE is to be enqueued to the common frame 
queue, PVTCFMCT is incremented. Then I EAVPFTE 
returns to the caller. 

3 If the PFTE is to be queued on the Available Frame 
Queue (AFQ), I EAVPFTE sets to zero the storage 

keys on the real frame, enqueues the PFTE, and increases 
the available frame count (AFC) in the PVT. If a low­
threshold violation is outstanding, IEAVPFTE checks to see 
if the new AFC is equal to or greater than the safe threshold. 
If it is, I EAVPFTE notifies the SRM that the AFC is suf­
ficient. Next, IEAVPFTE tests the GFA defer queue. If 
there is a PCB for which defer processing has not been 
scheduled, and whose address space does not have defer 
processing scheduled, then IEAVPFTE schedules GFA defer 
processing with an SRB. Then I EAVPFTE returns to the 
caller. 

Module Label 

-< c:n 
N 
o 
eN 
00 
o 
--.J 



VI 
.!..J 
~ 

o 
til 

"< til 
N 
til 
'< 
I"n 

i 
s 
~. 
~ 

r-' 

~ 
~ 
<: 
o 

= :I 
(1) 

VI 

'< til 
N 
C 
~ 

00 
~ 

Diagram 23-29. PCB Manager (lEA VPCB) (part 1 of 2) 

PCB 
Free Queue 

~ 
PCB Queues 

Q[[J 

From IPL CPU Initialization 
or an RSM routine .. 

" ) 
"V 

,... 

:;) 

IEAVPCB 

1 Set up free queue of PCBs in SQA 
,... PCB SRB 

and build quickcell pool of SRBs -V 

~ ~ 
in SQA space. 

2 When called by an RSM routine that 
requests the build option, dequeue 
PCBs from the free queue and, if 
necessary, perform step 4 to extend 
the PCB pool. 

PCB Queues 

.1'. 

rcro 
3 When called for enqueuing or 

dequeuing, enqueue or dequeue the 
v 

specified PCB from its current 
queue. Go to Step 5. 

,... 
4 Get SQA space for PCBs 

if the pool is running low. 
--v 

PCB 

5 Return to caller. ij[[J 
IEAVREP2-IEAVREP3 

6 Replenish pool of SRBs via 
GETMAIN/BLDCPOOL in SQA. ]]1 IEAVREP1 "- SRB 

'l 

ffJ 7 Replenish SRB pool in SQA (as v 

in step 6), 

8 Schedule IEAVIOCP to appropriate 
address space if necessary. 

9 Return to the dispatcher. 

(IEAVEDSO) 



~ 
I'D 
(') 

S· 
= N 

:3: 
I'D 
;. 
8-
o -. 
o ..., 
~ 
~ 

S· 
= 
VI 

.:.. 
VI 

Diagram 23-29. PCB Manager (lEA VPCB) (Part 2 of 2) 

Extended Description 

The PCB Manager (I EAVPCB) obtains PCBs (page control 
blocks) from the PCB free queue, dequeues, enqueues, 
and moves PCBs. In addition, the routine attempts to 
maintain a minimum number of PCBs on the free queue 
by replenishing the queue. Entries IEAVREP1, 

IEAVREP2, and IEAVREP3 are used by RSM routines 
to replenish the SRB pool. 

1 I EAVPCB checks the input PCB address. If it is zero, 
the caller requests the build option. IEAVPCB checks 

for zero PCBs requested. If zero PCBs are requested and 
IEAVNIPO is the caller, IEAVPCB builds a pool of PCBs 
in SOA. An internal routine, IEAVREP3, is invoked to 
build and initialize (BLDCPOOL) a pool of SRBs in SOA. 
Step 5 is then performed. If zero PCBs are requested and 
IEAVNIPO is not the caller, a return code of 4 is passed 
to the caller. If it is not a zerO PCB request, I EAVPCB 
checks to make sure there are enough PCBs on the free 
queue to satisfy the request. If there are not enough 
PCBs on the free queue, lEA VPCB expands the pool if 
possible, unless the GETMAIN-Inhibit flag is set. If the 
entire request cannot be satisfied, lEA VPCB returns 
control to the caller with" a return code ()f 4. 

If there are enough PCBs on the free queue to satisfy a 
request or if enough have now been obtained, the specified 
number of PCBs are all removed at one time; this prevents 
loss of the chain pointers for PCB requests greater than one. 
The number of PCBs dequeued is subtracted from the free 
queue depth. If the new depth value is below the free queue 
threshold, the GETMAIN inhibit bit is tested. If this flag 
is set, return is made to the caller. If the GETMAIN 
inhibit bit is not set, the PCB Replenish routine is called. 
In either case, return is made to the caller with a zero 
return code. For requests of more than one PCB, the PCBs 
are chained together using the standard chain pointers. All 
PCBs obtained for the caller will be set to zero, except the 
chain pointer fields and the queue number fields which .are 
set to X'FF', and the AIAUSERl field, which points to the 
PCB Address. 

Module Label 

IEAVPCB IEAVPCB 

IEAVPCB IEAVREP3 

Extended Description 

2 For a build request, I EAVPCB obtains SOA space for 
a calculated number of PCBs and for an equal number 

of SRBs. 

3 If the input PCB address is not zero, lEA VPCB performs 

dequeuing or enqueuing based on what the PON and 
TON parameters specify. If dequeued, the PCB queue num­
ber field is set to X'FF'. For enqueuing, the PCB is placed 
at the end of the specified queue. Then I EAVPCB returns 
control to the caller with a return code of O. 

4 lEA VPCB clears the SOA space to zero and constructs 
the PCBs required. The PCBs are enqueued on the 

free PCB queue and the queue depth is updated. 

5 Return to the caller. 

6 Entry IEAVREP2 is branch entered by RSM 
routines requiring an SRB when the SRB pool has 

been depleted. IEAVREP2 will replenish the pool. 

7 Ent~y IEAVREPl is entered via SRB scheduled by 
IEAVPIOP or IEAVREPl itself to replenish the 

SRB pool. 

8 IEAVREPl scans the RSMHD in each address space 
to determine if IEAVIOCP should be scheduled. 

When this is necessary, an SRB is obtained from the 
pool (via GETCELL) and IEAVREPl is scheduled. If 
the GETCELL fails, IEAVREPl schedules itself (using 
an SRB in the PVT) to replenish the pool. 

Module Label 



~ 

~ 

2 
~ 
N 

~ 
=-I 

i 
f 
i 
(II 

Ut 

~ 
N 

~ 

f 
w 
~ 

Diagram 23·30. Page Invalidation Routine (lEAVINV) (Put 1 of 2) 

Input 

Register 1 

From an RSM Routine 
(see extended description) 

External, 
Second Level 
Interrupt 
Handler 
UEAVEES) 

For uniprocessor operation, go to 
step 3. 

1 Pass control to the slave r.outine in 
each CPU via IEAVERI. 

2 Slave routine waits for an indication 
that it can purge itsTLB, then does 
so and returns. 

3 When all CPUs are running in the 
slave routine or, for un iprocessor 
operation, invalidate the page table 
entry and purge the TLB on the 
master CPU. 

4 Return. 

Caller 

External 
Second Level 
Interrupt 
Handler 
(lEAVEES) 

(see extended description) 

Output 

PGTE 



i e' ::s 
~ 

s: 
c 

[ 
o .... 
o 
'a 
Q 
et 
e' ::s 

CIa 
.=., ..., 

Diagram 23-30. Page Invalidation Routine (lEA VINV) (part 2 of 2) 

Extended Description 

The Page Invalidation routine (lEAVINV) performs all 
necessary interprocessor synchronization, sets the page 
table entry invalid bit, and purges the translation lookaside 
buffer on every processing unit in the system. The main 
routine must be entered with the SALLOC lock. This 
routine is entered from the following RSM routines: 
IEAVRFR, IEAVRCF, IEAVOUT, IEAVPIOI, 
IEAVDLAS, and IEAVGFA. 

1 When executing in an MP environment, IEAVINV sets 
its internal indicator to zero and signals all other proc­

essors in the system to execute the slave subroutine. 

2 The called (slave) subroutine of IEAVINV executing 
on the other processor sets the global spin indicator in 

the LCCA and waits for the internal indicator to be set to 
X'FF'. While waiting, the slave subroutine allows intermit­
tent emergency signals and malfunction alert signals. When 
the slave subroutine finds X'FF' in the internal indicator, 
it purges its translation lookaside buffer, resets its global 
spin indicator, and returns. 

3 When all other processors are in the slave subroutine, 
or when only one processor is online, IEAVINV sets 

the PGTE invalid bit to one, sets the internal indicator to 
X'FF', and purges its translation lookaside buffer. If the 
PGTE address is zero, no invalidation occurs but the other 
operations take place. Then IEAVINV returns control to 
the caller. 

Module 

IEAVINV 

Label 

IEAVINV 

IEAVINVA 



u. 

~ 

~ 
~ 
N 

!t 
~ 

I 
b 
C;. 
r­ea 
i 

f 
u. 

< C'Il 
N 

r: 
if 
tI 
eN 
:... -

Diagram 23-31. Find Page Routine (lEA VFP) (part 1 of 2) 

Register 1 

I Virtual Address I 
PGTE 

I I XPTE 

I 
Register 14 

I Return Address I 

From any 
non-RSM or 
RSM Routine p 

'I' ~ 
-) 1 Get virtual address of page table. 

~ > 2 Calculate page table entry and 
Y external page table entry addresses. 

~ 

.> 3 Return. 

OutDut 

Register 0 

I PGTE Address I 
Register 1 

'" I I ) XPTE Address 
y 

Register 15 
~ I I Return Code 
y 



r.Il 
0 
g. 
~. 

:= 
~ 

a:: 
0 .... 
[ 
Q 

"'" 0 
'e 
~ a 
(5. 
:= 

<.1\ 
.!.J 
IC 

Diagram 23-31. Find Page Routine (lEA VFP) (part 2 of 2) 

Extended Description 

The Find Page routine (I EA VFP) locates the page table 
entry (PGTE) and/or external page table entry (XPTE) cor­
responding to virtual address. 

1 Find Page gets the virtual address of the page table by 
translating the real address obtained from the segment 

table entry referenced by the virtual storage address. If the 
segment referenced is invalid, Find Page returns control to 
the caller with a retu rn code of 4 in register 15. 

2 Find Page calculates the PGTE and XPTE addresses 
from the virtual address of the page table and the page 

number obtained from the virtual address. 

3 When the calculation is complete, Find Page returns 
contro. to the caller. 

Module 

IEAVFP 

"Label 

IEAVFP 

", 



i Diagram 23-32. Translate Rei1 to Vn1ual Routine (rnA VTRV) (part 1 of 2) 

il 
~ 
N 
fIl 

1 
I 

i 
; 
! 
~ 
i 
CIa 

~ 
N 

f 
~ 

Input 

Real Address 

PFT 

From routine requiring 
address tra.nslation 

1 Check validity of real address 
input. 

2 Convert real address to virtual 
address using page frame table entry. 

3 Return. 

caller 

Output 

R~ister 0 

C--ASID 
Register 1 

Virtual Address 



CI:l 
~ 

sa. c)" 
= ~ 
~ 
!a-

8: 
Q .... 
o 
." 
~ a 
5· 
= 
Ul 

~ 

Diagram 23-32. Translate Real to Virtual Routine (lEA VTRV) (Part 2 of 2) 

Extended Description 

The Real to Virtual Translation routine (I EA VTRV) 
provides the virtual storage address and address space 
10 for an input real storage address. No locks are reo 
quired. 

1 Translation of real to virtual checks the real storage 
address input. If the real address exceeds the 

boundaries of real storage, Translation returns to the 
caller with a return code of 4 in register 15. 

2 If the real address is in the nucleus, Translation leaves 
the input address unchanged and sets register 0, the 

ASIO. to X'FFFF' to indicate common area storage. If the 
address is not in the nucleus, Translation uses the input 
real address to find the page frame table entry; it then 
locates the virtual address and address space 10 associated 
with the PFTE. If the frame is invalid. or on the available 
queue, ~r offline, or being used by VIO, Translation returns 
a code of 4 in register 15. signifying unsuccessful translation. 

3 Translation returns to the caller with a code of 0 in 
register 15 if translation is successful. 

Module Label 

IEAVTRV IEAVTRV 

.. 



Y' Diagram 23-33. RSM Functional Recovery Routine (IEAVRCV) (Part 1 of 2) 
00 
~ 

~ 
"< 
~ 
~ 

~ 
'< 
~ 

~ 

E 
(IS" 
t'"' 
~ 
~ 
<: o 

~ 
(1) 

Vl 

'< 
~ 
N 
b 
~ 

00 
Q 

.:::! 

Input .. From Recovery/Termination 
Manager (lEAVTRTM) 

o R~ D p~ 
D 

To Recovery/Termination Manager 
(IEAVTRTM) 

o ut 



til 
fP 
g, 
e>' 
::s 
~ 

a:: 
fP 
:; 
&. 
o .... 
o 

"C:I 
~ 

=­e>' 
::s 

VI 

00 
IN 

Diagram 23-33. RSM Functional Recovery Routine (IEAVRCV) (Part 2 of 2) 

Extended Description 

The RSM Function~1 Recovery Routine (lEAVRCV) pro­

vides three services: 

• The recording of software errors in RSM modules. 

• The clean-up of locks and deletion of the FRR for inten­
tional ABEND situations. 

• The handling of unexpected errors by dumping, record­
ing, releasing locks, and attempting to contain the effects 
of the error. 

Module label 

1 After setting up a recovery FRR, the FRR checks the IEAVRCV IEAVRCV 
RCAABEND flag for an intentional ABEND situation. 

If one exists, the FRR releases any locks gotten by the RSM 
function, deletes the recovery FRR, indicates "continue 
with termination" and returns control to RITM. 

2 The FRR verifies the PVT pointer in the CVT. Next, 
the FRR checks the SDWA to see if the error was per­

colated. If so, the FRR does no recording. If not, the FRR 
sets fields in the SDWA to prepare for recording of the 
error. If the error was a non-percolated X'COD', the 
FRR sets up for retry after calling for a dump. The FRR 
returns control to the point immediately following the 
X'COD' ABEND that called it. 

Extended Description 

3 If the V=R Intercept or Reconfiguration Intercept 
routine (lEAVEQRI or IEAVRCFI) was running, the 

FRR indicates retry at the point addressed by register 14. 

If RSM is providing second-level interruption handling for a 
page-fault program check, the FRR retries at an address 
within IEAVRCV, using RCAPARMI as a guide for process­
ing: if RCAPARMI is zero, the FRR sets the return code to 
12 in register 15; if it is not zero, the retry routine sets the 
'eturn code to zero to allow any paging I/O in progress to 
complete. Then the retry routine frees the SAllOC lock, 
deletes the RSM FRR and passes control to the Program 
Check Interrupt Har.dler (lEAVEPCI. 

If the Swap-in Root Exit is exec~lting, the FR R abnormally 
terminates the swapped-in address space and attempts retry 
at the address saved from register 14. 

If the Swap-in SRB is executing, the FRR abnormally 
terminates the swapped-in address space and attempts 
to retry at the Dispatcher entry point used for SR B 
exits. 

If the Swap-In-Post is exec~ting and the RCARETAD 
is non-zero, the FRR releases the SAllOC lock, if 
held, and attempts retry at the address specified in 
RCARETAD. If RCARETAD is zero, the FRR 
performs the same processing described in paragraph 5. 

If lEA VPS I has suffered a program check because of bad 
input parameters, the FRR changes the ABEND code to 
X'lT and indicates "continue with termination". 

4 If none of the special situations apply, the FRR 
checks to see if retry will be handled by internal RSM 

routines. If so, and if RCARETAD is non-zero, the FRR 
attempts retry at the address specified in RCARETAD. 

5 The FRR performs lock clean-up and deletion of its 
own FRR. Then it returns control to R/llV', passing 

a percolate or retry return code previously set . 

Module label 

< 
(I'.l 
hJ 

b 
IN 
00 
o 
~ 



VI 
do 
~ 

o 

~ 
N 
('I) 

'< 
=-a 
i 
fi;-
r-r 
< o 

~ 
(\I 

VI 

<: 
('I) 
N 
Q 
1M 
00 
S -

Diagram 23-34_ RSM Preferred Area Steal (lEA VPREF) (Part 1 of 2) 

t 
&*~t % /; x i?/;/.;;}%0@.~W 

Register 1 

RBN 

\ 

\ 

From LSQA/SQA Allocation (I EA VSQA) or 
General Frame Allocation (lEAVGFA) 

p 

PVT 
\\indeX) 

PVTPFTP \ 

Register 1 

RBN 

\ 
\. . 

\Jmdex) 

"- PFTE \ 

o 

1 Scan input PFTE queue, 
looking for acceptable 
steal candidate. 

Register 15 

2 If found, return real block I RBN 
number (RBN) to caller. 
Else set return code to zero. 

Group of PFTEs 

3 Mark all PFTEs in same I storage unit as preferred. 

4 Issue message regarding status 
of storage, if message was not 
already -issued. 



fI.) 
o 
a e· 
= 
~ 

a:: 
o 

[ 
o 
"'" o 

I e· 
= 
u-
~ 

Diagram 23-34_ RSM Preferred Area Steal (lEA VPREF) (part 2 of 2) 

Extended Description 

The preferred area steal routine runs as a subroutine of 
IEAVGFA or IEAVSQA. Its purpose is to either scan an 
input frame queue to select a preferred area frame to steal 
or convert the status of a storage unit from non-preferred 
to preferred storage. 

1 If the call is to steal, the input RBN is the first RBN 
on the frame queue to be searched. Each frame is 

examined until one is found which meets the ctiteria for 
the steal. 

2 If a suitable frame to be stolen is found, its RBN is 
returned to the caller. Otherwise, sets zero return 

code to indicate that the specified real block number 
could not be found. 

3 If the call is to convert, the input RBN is used to 
identify the physical storage unit to be converted 

from non-preferred to preferred storage. Every PFTE in 
the unit is updated by turning on the PFTPREF flag to 
indicate to RSM that the preferred area has been 
expanded to include these frames. 

4 If message I EA9881 has not been issued, it is 
written to the operator, and a flag is set indicating 

that the message has been written. Control returns to 
the caller. 

Module Label 

IEAVPREF IEAVPREF 



5-86 OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7) 



Virtual storage is the name given to the entire span 
of addresses available on a System/370 system 
with the dynamic address translation feature 
enabled. The size of virtual storage is equal to the 
size of real storage when the system is operating 
with the dynamic address translation feature 
disabled. When the system is in extended control 
mode, with the dynamic address translation feature 
enabled, the size of virtual storage is limited only 
by the addressing capability of the system, not by 
the size of real storage. 

Like other system resources, virtual storage can 
be shared by· many system users. Consequently, the 
allocation of virtual storage must be supervised. 
Space must be allocated to a user when it is needed 
and freed when it is no longer needed.· The 
supervisor routines that control the allocation and 
release of virtual storage are referred to as VSM 

(virtual storage management) routines. 
The VSM routines service two macro 

instructions: GETMAIN (used to allocate storage) 
and FREE MAIN (used to release previously 
allocated storage). When executed, each macro 
instruction results in an svc interruption and 
passage of control to the appropriate VSM routines. 

Requests for allocation of virtual. storage are 
serviced by the GETMAIN routines. These routines 
service all requests for virtual storage, including 
requests for a new region, space within an existing 
region, space within a system queue area, space 
within a local system queue area. The GETMAIN 

routines create, reference, and continually update 
queues of control blocks to determine whether a 
request for storage can be satisfied, and from 
where the storage is to be allocated. The GETMAIN 

routines pass the address of the allocated area to 
the requesting routine. 

Requests to free virtual storage are serviced by 
FREEMAIN routines. These routines update control 
block queues to relfect the release of previously 
allocated space, thereby making the space available 
for reallocation. The FREEMAIN routines service all 
requests to free virtual storage, including requests 
to free an entire region, space within a region, 
space within a local system queue area, and space 
within the system queue area. 

The VSM routines assign blocks of storage to the 
various tasks according to their needs. The VSM 

routines: 
• Allocate virtual storage blocks on request. 
• Release virtual storage blocks on request. 

Virtual Storage Management 

• Ensure that real (fixed by definition) 
page-frames exist for all SQA, LSQA, and 
nonpageable (V=R) region space allocated. 
Maintain storage usage information for use by 
System Management Facilities. 

• Protect storage with fetch protection and 
storage protection keys. 

The GETMAIN and FREEMAIN routines are I 
supported by the GETPART and FREE PART 

routines, which allocate and free regions and their 
associated control block space. 

The GETPART and FREEPART routines are called 
by GETMAIN and FREEMAIN to allocate and free 
space for an entire virtual region. These routines 
can process requests for both pageable (v=v) and 
nonpageable (V=R) regions. For V=R region 
requests, VSM passes control to Real Storage 
Management to allocate real storage frames to 
match the virtual pages allocated for the V=R 

region. 
VSM also comprises a set of routines which 

handle intialization and termination of VSM 

resources within an address space. 
The Create/Free Address Space routines are 

called by Address Space Create and Address Space 
Termination to allocate and initialize or delete 
address space control block space for a new 
address space. The Create Address Space routine 
calls Real Storage Management to initialize the 
RSM control blocks for the new address space. A 
subroutine within the Create/Free Address Space 
routines performs storage clean-up when a task 
terminates. It frees all local storage being used by 
the terminating task. 

Another set of routines satisfy requests for quick 
cells, small fixed-length blocks of storage in the 
SQA or in the LSQAS that can be allocated quickly 
and that can be expected to be used repeatedly 
during short periods of time. 

The Build Quick Cell Pool routine establishes a 
set of quick cells within an area of storage 
specified by the requester, a system routine. It 
formats the storage into a "best fit" number of 
quick cells or extends an established pool by 
formatting the new space and enqueuing it from 
the old pool space. 

Section 2: Method of Operation 5-87 



.. , 
The GEl-CELL routine allocates a quick cell from 

an established cell pool. The FREECELL routine 
frees a quick cell for further use by returning it to 
the pool from which it was allocated. 

The Delete Quick Cell Pool routine deletes all or 
part of a pool of quick cells, either freeing the 
storage or enqueuing the storage to be freed by the 
user. 

Another routine allows the protection key for 
one or more areas of virtual storage to be 
manipulated. Both the storage protection key and 
the fetch protection key for a page that has been 
allocated by GETMAIN can be changed by using 
the change key routine (CHANGKEY). 

5-88 OS/VS2 System Logic Library Volume 5 (VS2.03.805) 

V82.03.80S 

Subpools 
A subpool is a group of logically related storage 
blocks identified by a subpool number. The 
subpool number indicates to VSM the kind of 
storage that is requested. Figure 2-44 summarizes 
the subpool assignments. 



..-.-.,..-- ~ 
Subpool .. ~I""" 
Number Indicates Request for Attributes of Subpool Notes 

~ 

0-127 Space within a region Job-oriented These are the only valid subpool numbers for problem 
Pageable programs. A request for a higher number will cause the 
Job step's protection key problem program to be abnormally terminated. When 
Fetch-protected subpool 0 is requested by programs in supervisor state 

and key 0, subpool 252 is assigned. 

128 Res·erved for compatibility with VSI. Treated as an error. 

129-226 Undefined. 

227 Fixed global space User protection key Multiple-key system queue area. Space is obtained 
(explicitly assigned Fixed from the Common Service Area (CSAI. 
and freed) Syste m-oriented 

Explicitly assigned and freed 
Fetch-protected 

228 Fixed global space User protection key Multiple-key system queue area. Space is obtained 

(explicitly assigned Fixed from the Common Service Area (CSA). 

and freed) System-oriented 
Explicitly assigned and freed 
Not fetch-protected 

229 Private Area Storage User protection key Automatically freed at task termination. Assigned from 
Pageable top of private area. 
Fetch-protected 

230 Private Area Storage User protection key Freed automatically at task termination. Assigned from 
Pageable top of private area. 
Not fetch-protected 

231 Space within CSA User protection key Assigned in Common Service Area. 
(explicitly assigned Pageable 
and freed) Fetch-protected 

System-oriented 
Explicitly assigned and 

freed 

232 Reserved. Treated as an error. Used in OS/VS2 Release 1 
for TSO external page storage. 

233 Space within LSQA Job-oriented Allows a task running in key 0 to acquire accountable, 
(task-related) Fixed fixed, protected storage that is job-oriented and freed 

Protection key = 0 at end of task. Space is assigned from subpool 253. 
Task-related 
Swappable 
Not fetch-protected 

234 Space within LSQA Job-oriented Allows a task running in key 0 to acquire accountable, 
(job-step-related) Fixed fixed, protected storage that is job-oriented and freed 

Protection key = 0 at end of job step. Space is assigned from subpool 254. 
Job-step-re lated 
Swappable 
Not fetch-protected 

235 Space within LSQA Job-o rien ted Allows a task running in key 0 to acquire non-accountable, 
(expli-citly assigned Fixed fixed, protected storage that is job-oriented. Space is 
and freed) Protection key = 0 assigned from subpool 255. 

Explicitly assigned and 
freed 

Not fetch-protected 
Swappable 

Figure 2-44. Subpool Assignments (Part 1 of 3) 

Section 2: Method of Operation 5-89 



........ 
''' ...... ..., .... -~ .. 

~. 

7 Subpool 
Number Indicates Request for Attributes of Subpool Notes 

236 Space within SWA For system use only To assign or free pageable virtual storage for the 

I Protecti on key = 1 scheduler work area. 
Not fetch-protected 

237 Space within SWA For system use only To assign or free pageable virtual storage for the 
Protection key = 1 scheduler work area. 
Not fetch-protected 

238 Reserved for compatibility with OSIVS1. -
Treated as an error. 

239 Fixed, Global Space Fetch-protected System queue area space obtained from the Common -I (explicitly assigned Protection key = 0 Service Area (CSA). Treated as subpool 227 
and freed) Explicitly assigned and key-zero space. 

freed -240 Space within a region Job-oriented Treated as subpool 260 to maintain compatibility with 
(job-step-related) Pageable M FT and OS/VSI. Automatically freed at end of step. 

Job step's protection key 
Fetch-protected 
Job-step-related 

241 Space within CSA System-oriented Assigned in the Common Service Area. 
Pageable 
User protection key 
Explicitly assigned and 

freed 
Not fetch-protected 

242 Nonpageable For scheduler use only A new nonpageable (V = R) region is assigned or an 
V = R region existing nonpageable region is freed. 

243 Reserved. Treated as an error. Used in OS/VS2 Release 1 
for SQA space. 

244 Reserved. Treated as an errOr. Used in OS/VS2 Release 1 
for SQA space. 

245 Space within SQA System-oriented Allows a task running in key 0 to acquire non-accountable, 
(explicitly assigned and Fixed fixed, protected storage that is system-oriented. 
freed) Protection key = 0 

Explicitly assigned and 
freed 

Not fetch-protected 

246 Reserved. Treated as an error. Used in MVT to exchange 
regions. 

247 Pageable (V = V) region For scheduler use only A new pageable (V = V) region is assigned or an existing 
pageable region is freed. External page storage allocation 
is assumed when using this subpool. 

248 Reserved. Treated as an error. Used in MVT for rolloutl 
rollin. 

249 Reserved. Treated as an error. Used in OS/VS2 Release 1 
for LSQA segments. 

250 Space within a region Job-oriented Allows a task running in supervisor state 
Page able and key 0 state to acquire unprotected storage in the 
Job step's protection key user's region. All subpool 250 requests are assigned 
Job-step-related subpool 0 of the associated task. 
Fetch-protected 

Figure 2-44. Subpool Assignments (Part 2 of 3) 

5-90 OS/VS2 System Logic library Volume 5 (VS2 Release 3.7) 



Subpool '~'t,J'~",~"""",~""""""". 
I. 

\ 

Number Indicates Request for Attributes of Subpool Notes 

0-127 Space within a region Job-oriented These are the only valid subpool numbers for problem 
Pageable programs. A request for a higher number will cause the 

Job step's protection key problem program to be abnormally terminated. When 
Fetch-protected subpool 0 is requested by programs in supervisor state 

and key 0, subpool 252 is assigned. 

128 Reserved for compatibility with VSI. Treated as an error. 

129-226 Undefined. 

227 Fixed global space User protection key Multiple-key system queue area. Space is obtained 
(explicitly assigned Fixed from the Common Service Area (CSAI. 
and freed) System-oriented 

Explicitly assigned and freed 
Fetch-protected 

228 Fixed global space User protection key Multiple-key system queue area. Space is obtained 

(explicitly assigned Fixed from the Common Service Area (CSA). 

and freed) System-oriented 
Explicitly assigned and freed 
Not fetch-protected 

229 Private Area Storage User protection key Automatically freed at task termination. Assigned from 

Pageable top of private area. 
Fetch-protected 

230 Private Area Storage User protection key Freed automatically at task termination. Assigned from 

Pageable top of private area. 

Not fetch-protected 

231 Space within CSA User protection key Assigned in Common Service Area. 

(explicitly assigned Pageable 
and freed) Fetch-protected 

System-oriented 
Explicitly assigned and 

freed 

232 Reserved. Treated as an error. Used in OS/VS2 Release 1 

for TSO external page storage. 

233 Space within LSOA Job-oriented Allows a task running in key 0 to acquire accountable, 

(task-related) Fixed fixed, protected storage that is job-oriented and freed 

Protection key = 0 at end of task. Space is assigned from subpool 253. 

Task-related 
Swappable 
Not fetch-protected 

234 Space within LSOA Job-o rien ted Allows a task running in key 0 to acqui re accountable, 

(job-step-related) Fixed fixed, protected storage that is job-oriented and freed 

Protection key = 0 at end of job step. Space is assigned from subpool 254. 

Job-step-related 
Swappable 
Not fetch-protected 

235 Space within LSOA Job-oriented Allows a task running in key 0 to acquire non-accountable, 

(expli-citl y assigned Fixed fixed, protected storage that is job-oriented. Space is 

and freed) Protection key = 0 assigned from subpool 255. 

Explicitly assigned and 
freed 

Not fetch-protected 
Swappable 

Figure 244. Subpool Assignments (Part 1 of 3) 

Section 2: Method of Operation 5-89 



.. ..; '..,. 

---Subpool 
Number Indicates Request for Attributes of Subpool Notes 

236 Space within SWA For system use only To assign or free pageable virtual storage for the 
Protection key = 1 scheduler work area. 
Not fetch-protected 

237 Space within SWA For system use only To assign or free pageable virtual storage for the 
Protection key = 1 scheduler work area. 
Not fetch-protected 

238 Reserved for compatibility with OS/VS1. 
Treated as an error. 

239 Fixed, Global Space Fetch-protected System queue area space obtained from the Common 
(explicitly assigned Protection key = 0 Service Area (CSA). Treated as subpool 227 
and freed) Explicitly assigned and key-zero space. 

freed 

240 Space within a region Job-oriented Treated as subpool 260 to maintain compatibility with 
(job-step-related) Pageable MFT and OS/VSI. Automatically freed at end of step. 

Job step's protection key 
Fetch-protected 
Job-step-re lated 

241 Space within CSA System-oriented Assigned in the Common Service Area. 
Pageable 
User protection key 
Explicitly assigned and 

freed 
Not fetch-protected 

242 Nonpageable For scheduler use only A new nonpageable (V" R) region is assigned or an 
V = R region existing nonpageable region is freed. 

243 Reserved. Treated as an error. Used in OS/VS2 Release 1 
for SQA space. 

244 Reserved. Treated as an error. Used in OS/VS2 Release 1 
for SOA space. 

245 Space within SOA System-oriented Allows a task running in key 0 to acquire non-accountable, 
(explicitly assigned.and Fixed fixed, protected storage that is system-oriented. 
freed) Protection key = 0 

Explicitly assigned and 
freed 

Not fetch-protected 

246 Reserved. Treated as an error. Used in MVT to exchange 
regions. 

247 Pageable (V = V) region For scheduler use only A new pageable (V = V) region is assigned or an existing 
pageable region is freed. External page storage allocation 
is assumed when using this subpool. 

248 Reserved. Treated as an error. Used in MVT for rolloutl 
rollin. 

249 Reserved. Treated as an error. Used in OS/VS2 Release 1 
for LSOA segments. 

250 Space within a region Job-oriented Allows 8 task running in supervisor state 
Pageable and key 0 state to acquire unprotected storage in the 
Job step's protection key user's region. All subpool 260 requests are assigned 
Job-step-related subpoolO of the associated task. 
Fetch-protected 

Figure 2-44. Subpool Assignments (Part 2 of 3) 

5-90 OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7) 



Subpool 
Number 

251 

252 

253 

254 

255 

Indicates Request for 

Space within a region 

Space within a region 

Space within LSQA 
(task-related) 

Space within LSOA 
(job-step related) 

Space within LSOA 
(explicitly assigned and 
freed) 

Attributes of Subpool 

Job-oriented 
Job step's protection key 
Job-step-related 
Fetch-protected 

Job-oriented 
Protection key = 0 
Job-step-re lated 
Not fetch-protected 

Job-oriented 
Fixed 
Protection key = 0 
Task-related 
Not fetch-protected 
Swappable 

Job-oriented 
Fixed 
Protection key = 0 
Job-step-related 
Swappable 
Not fetch-protected 

Job-oriented 
Fixed 
Protection key = 0 
Explicitly assigned and 

freed 
Swappable 
Not fetch-protected 

Figure 2-44. Subpool Assignments (Part 3 of 3) 

.( 
..... -

Notes 

Allows an authorized task to acquire accountable, 
unprotected, pageable storage in the user's partition. 
Space is job-oriented and automatically freed at the 
termination of the job step. Used for modules not loaded 
into Subpool 252 from the low end of storage. 

Allows a task running in key 0 to acquire accountable, 
pageable, protected storage in the user's region that is 
job-oriented and automatically freed at the termination 
of the job-step task. Used for reenterable modules from 
authorized libraries. 

Allows a task running in key 0 to acquire fixed, 
accountable, protected storage in the LSOA for the user's 
region that is job-oriented and freed when the task 
terminates. 

Allows a task running in key 0 to acquire fixed, 
accountable, protected storage in the LSOA for the user's 
region that is job-oriented and freed when the job step 
terminates. 

Allows a task running in key 0 to acquire fixed, non­
accountable, protected storage in the LSOA that is job­
oriented and must be explicitly freed. 

Section 2: Method of Operation 5-91 



5-92 OS/VS2 System Logic Library Volume 5 (VS2 Release 3.7) 



f 
~ 
(5' 

= ~ 

:::: 
~ 

[ 
o .... 
o 
"0 
~ a 
(5' 

= 
VI 
~ 
w 

I 24-1-

GETMAIN 
(lEAVGMOO) 

124~3J 
I 

GETPART 
(lEAVPRTO) 

~ 
FREEMAIN 
(lEAVGMOO) 

~ 
FREEPART 
(IEAVPRTO) 

(Address Space) 

r 
~ 

Create Address 
Space 
(lEAVGCAS) 

Figure 2-45. Virtual Storage Management Visual Contents 

Virtual 
Storage 
Management 
Overview 
(no diagram) 

I 24-6 

Free Address 
Space 
(lEAVGCAS) 

1 24-8 

Build/Cell 
Pool 
(lEAVBLDP) 

I I 24-7 . 

Task 
Termination 
(lEAVGCAS) 

(Cell Pools) 

I 
1 24-9 

GETCELL 
(lEAVGTCL) 

124-12 

CHANGKEY 
(lEAVCKEY) 

I 
124-10

1 

I 

FREECELL 
(lEAVFRCL) 

1 
124-11 

Delete Cell 
Pool 
(lEAVDELP) 

~, 
~ 

(:, 
w 
00 
~ 



~ Diagram 24-1. GETMAIN Routine (IEAVGMOO) (part 1 of 2) 
~ 

&5 
"< 
~ 
N 
~ 

~ 
9 
i 
(") 

r-
0: 

~ 
<: 
g. 
c: 
:3 
(11 

VI 

<: rn 
N 
b 
w 
00 
~ -

Input 

From SVC First Level Interrupt 
Handler (lEAVEEXT) or a 
supervisor routine 
via branch entry 

Parameter 
List 

1 Set up internal parameters 
for processing request. 

2 Check the subpool number and 
initialize poi nters to it. 

For subpools 242 or 247, pass 
control to GETPART for special 
processing. 

3 Satisfy the request as 
specified. 

4 Return. 

To EXIT Prolog 
(lEAVEEXP) 

Output 

Contents at 
entry 

Reg 10 

Length lor 

Reg 11 

I. Address lor 

Reg4 

LDA Addr 

Reg5 

Error Cocle 

Reg 15 

Return Code 

Ptr to 
Length List 

List of 
Addresses 

LDA 

rOA±J 



CI:) 
I'D 
n g. 
:I 
N 

~ 
I'D 
;. 
&. 
o 
100) 

o 
't:I 
~ a o· 
:I 

VI 

~ 

Diagram 24-1. GETMAIN Routine (lEA VGMOO) (part 2 of 2) 

Extended Description 

The GETMAIN routine (lEAVGMOO) allocates virtual stor­
age in the SOA and CSA and in the LSOA, SWA, and user 
region of each virtual memory. It also provides storage-used 
figures for System Management Facilities use. 

1 For entry points I GC004 and I GC005, GETMAIN 
checks the validity of all input parameters and lists. 

For all other entry points, no validity checking occurs. 
GETMAIN 'then sets up internal parameters describing 
the operation to be performed and the information 
needed to perform it. 

Module Label 

IEAVGMOO GMBASE 
IEAVEVAL IEAOVLOO 
IEAVEVAL IEAOVL01 

2 GETMAIN checks the subpool number in the parameter IEAVGMOO CSPCHK 
list. If subpools 242 or 247 are requested, GETMAIN 

passes control to GETPART (lEAVPRTO). For other sub- IEAVPRTO IEAVPRTO 
pools, GETMAIN checks the validity of the subpool request 
and the authorization of the user. If the subpool request is 
invalid, GETMAIN abnormally terminates the user with a 
code of Bxy, where xy is the hexadecimal SVC under which 
GETMAIN was called. For authorized subpool requests, 
GETMAIN obtains pointers to the relevant control blocks, 
such as the TCB, GOA (Global Data Area), and the SPOE 
{Subpool Oueue Element}. 

Extended Description 

3 GETMAIN creates an SPOE if no SPOE exists. Then it 
searches for virtual storage to satisfy the request. If 

the requested space is not available, GETMAIN sets register 
15 to 4 or 8 for conditional requests. For unconditional 
requests, GETMAIN abnormally terminates the task. If 
the space is available, GETMAIN updates the FOE to show 
the allocated storage and notifies SMF and SRM how much 
has been allocated. 

4 GETMAIN returns control to the caller with a return 
code of 0 for a successful allocation or an error return 

code of 4 or 8 if the request is conditional; GETMAIN 
schedules an abnormal termination if the request is 
unconditional. 

Module Label 

IEAVGMOO GSPOESPC 
IEAVGMOO GETMAINB 
IEAVGMOO GRRECORE 

IEAVGMOO GFOEUPDT 
IEAVGMOO SRMSTART 
IEAVGMOO GMSMFCRE 

IEAVGMOO GERROR 

Error Processing IEAVGFRR IEAVGFRR 

When an error occurs in GETMAIN, Recovery Termination 
passes control to the FRR. The FRR records information 
on SYS1.LOGREC, calls for an SVC DUMP, and tries to 
repair the subpool queues. Then for unexpected errors 
(machine check, program check, etc), the FRR percolates 
the error for higher level recovery to RTM. For SALLOC 

lock release or page release failures, the FRR returns control 
for execution to continue. For other errors, the FRR issues 
a completion code of 7xy (where xy is the SVC number under 
which GETMAIN was called) and then percolates the error 
through RTM. 



til 

i 
i 
~ 
N 

i 
I 
i 
~. 

r-

J 
< 
~ a 
(D 

til 

'< 
Ia 
~ 

f 
eN 

~ 

Diagram 24-2. FREEMAIN Routine (IEAVGMOO) (part 1 of 2) 

From SVC First Level Interrupt 
Handler (IEAVEEXT) or a 
supervisor routine 

Input 
via branch entry 

Process .. * " M, 

Parameter Reg 1 

I I ...30. List 
--" :r 

Set up internal parameters ) 1 r 
for processing request. 

2 Check the subpool specif~ed ~ 

I and initialize pointers to It. ;m: 
For subpools 242 or 247, 

>XI,' 
" pass control to FREEPART 
~ for special processing. 

3 Satisfy the request. 

~Reg 14 
'\ --"- 4 Return. I I ) Return Address 

" 

Output 
,'" ",',~ ~ " 

Reg 1 

r 
Parm List 

J J\.. 
Address 

r 

Reg 10 

I or I Pointer to 

J 1 Length Length List 

A 
Reg 11 

J 
( 

I or I Pointer to "" , I Address Address List ,,;" 

Reg 4 

I 
LOA ' I LOA Address E§. ; 

Reg 5 

I I Error Code 

, 

f Reg 15 

~ Return Code J y 

" 
" 



til 
(\) 

~ e· 
= N 

a:: 
~ 

[ 
Q .... 
o 
"d q 
~ e· 
= 
CII 
Ii> ..... 

Diagram 24-2. FREEMAIN Routine (lEA VGMOO) (part 2 of 2) 

Extended Description 

The FREEMAIN routine (lEAVGMOO) frees virtual storage 
in the SQA and CSA and in the LSQA, SWA. and user 
region of each virtual address space. 

Module Label 

1 For an SVC 5 request, FREEMAIN checks the input IEAVGMOO GMBASE 
parameters and parameter lists. For all other entries, 

FREEMAIN only indicates the type of entry. The 
FREEMAIN sets up registers with internal parameters to 
allow common routines to process FREEMAIN requests. 

2 FREEMAIN checks the subpool requested. For IEAVGMOO FMCOMMON 
subpools 242 and 247, FREEMAIN passes control to 

FREEPART to free the storage. For subpools not in LSQA IEAVPRTO IEAVPRTO 

or SOA, FREEMAIN searches for an SPQE. If no SPQE is 
found, FREEMAIN sets an error return code of 4 if the 
re,quest is conditional. 

3 FREEMAIN rounds the request up to an 8-byte multi- IEAVGMOO FMCOM 
pie and searches for the requested storage. It removes 

the appropriate storage from the allocated space and updates 
the FQE to show freed space. The AQEs (Allocated Queue 
Element) for the freed space are removed. FREEMAIN 
determines whether one or more complete pages of virtual 
storage have been freed. If so, FREEMAIN calls the RSM IEAVRELS IEAVRELV 
PGRLSE routine to release the real pages. Then FREEMAIN 
releases the virtual pages and updates the FBQE (Free Block 
Queue Element) associated with the type of storage released. 
FREEMAIN also notifies the SRM how much space is avail-
able in CSA or SQA. In addition, for 4K block releases, 
FREEMAIN updates the storage-used fields in the TCT for 
SMF use. 

Extended Description 

4 FREEMAIN returns to the caller with a code of 0 in 
register 15 for a successful operation; failures are 

indicated with codes of 4 or 8 in register 15 if the request 
is conditional. For an unconditional FREEMAIN or a 
parameter error on a conditional FREEMAIN, FREEMAIN 
calls for an abnormal termination of the user task. 
of the user task. 

Module Label 

IEAVGMOO CKERRCDE 

Error Processing IEAVGFRR IEAVGFRR 

When an error occurs in a FREEMAIN operation, Recovery 
Termination passes control to the FRR (functional recovery 
routine). The FRR records information on SYS1.LOGREC, 
calls for an SVC DUMP operation if necessary, and tries to 
repair the subpool queues. For unexpected errors, such as 
machine checks, the FRR returns control to RTM for 
higher-level error recovery. For SALLOC lock release or 
page release failures, the FRR returns control and allows 
execution to continue. For other errors, the FRR issues a 
completion code of 7xy (where xy is the SVC number 
through which FREEMAIN was entered) and then passes 
the error back to RTM for further recovery. 



(oft • 
i 
~ 
w 

~ 
i 
i 
t: 

! 
~ 
I 
CD 
(oft 

~ w 
~ r 
I 

~ 

Diagram 24-3. GETPART Routine (IEAVPRTO) (part 1 of 2) 

Request Code 

SVC4 

SVC 10, 
SVC 120 

Reg 0 

Reg 1 

Parameter List 

AegionSize 
or 

List Pointer 

Reserved 

Regionsi~~ 

Zero or Negative 

From GETMAIN 
(lEAVGMOO) 

1 Determine from lEA LIMIT if an 
installation region size limit has 
been specified. 

2 For virtual regions, compare the 
requested region size with the 
available space. 

3 For V=R regions, allocate real 
storage and then allocate 
virtual space. 

4 If space is not available for V=R 
request, enqueue request on 
the wait queue. 

, , ......... '"''''''", .. - v 5 When request is satisfied, return. 
ill III 

GETMAIN 
(lEAVGMOO) 

Output 



C"Il 

a 
e' 
= 
~ 

~ 
a 
8: 
o 
~ 

o 
"'C 
~ a 
e' 
= 
CIt 

~ 

Diagram 24-3. GETPART Routine (IEAVPRTO) (part 2 of 2) 

Extended Description 

The GETPART routine (lEAVPRTO) allocates region space 
at the request of the system. Both V=V and V=R requests 
are processed by GETPART. 

Module Label 

1 GETPART calls IEALIMIT, the user exit routine, to IEAVPRTO IEALIMIT 
determine if an installation-supplied limit is to be 

applied to the region request. 

2 GETPART checks the V=V region size requested I EAVPRTO I EAVPRTO 
against the total space available for regions within 

the address space. If not enough space is available, 
GETPART puts a return code of 8 in register 15 and 
returns. If not enough contiguous space is available, 
GETPART puts a return code of 20 in register 15. A 
region size of zero is taken by GETPART as a request 
for the system default region size. 

3 For a V=R request, GETPART finds an FBQE (Free IEAVPRTO IEAVPRTO 
Block Queue Element) to satisfy the request and then 

calls RSM to allocate the corresponding real pages. If RSM IEAVEQR IEAVEQR 
returns a code of 8, indicating it found assigned frames 
already allocated in the area requested by GETPART, 
GETPART recalls RSM with the next available free address. IEAVPRTO IEAVPRTO 
If GETPART can't find sufficient space, it puts a return 
code of 20 in register 15. If RSM passes a return code of 
16, GETPART puts a return code of 16 in register 15. 

Extended Description Module Label 

4 GETPART enqueues a VRWPQEL on the global IEAVPRTO IEAVPRTO 
queue of waiting requests. This occurs when GETPART 

cannot initially find virtual space to satisfy the V=R region 
request. When the space becomes free, GETPART posts 
the ECB for the request. The initiator then reissues the 
GETPART request. IEAOPT01 IEAOPT01 

5 When the required region has been allocated, IEAVPRTO IEAVPRTO 
GETPART returns a code of 0 in register 15. 

Error Processing IEAVGPRR IEAVGPRR 

When an error occurs in GETPART processing, Recovery 
Termination passes control to the GETPART Functional 
Recovery routine (FRR). For machine checks and program 
checks in GETPART, the FRR retries the GETPART routine 
(for V=V requests) or retries the specific section where failure 
occurred (V=R requests). Where no retry can li>e made, the 
FRR cleans up storage already allotted and queues processed 
and calls for termination to continue. In all cases, the FRR 
initializes the SDWA. Then the FRR returns to R/TM. 

If an error in the XMPOST routine occurs during the wait- IEAVGPRR PRTOERTN 
ing period, the FRR abnormally terminates the waiting 
initiator with a code of X'304'. 



V' .-
8 

~ 
N 

I 
i 
8' 
l"'" 

r 
~ 
~ r 
CIt 

a 
i 
w 
:..a -

DiaJram 24-4. FREEP ART Routine (lEA VPRTO) (part 1 of 2) 

From FREEMAIN 

Input 

Reg 1 

( . Positive 

Reg 4 

E=p 
SubpoollD 

(lEAVGMOO) 

LOA 

1 Dequeue and free request element, 
from wait queue and post queue. 

2 Free virtual region space. 

31f the region is V=R, free the real 
region space and the region 
control blocks. 

4 Try to satisfy waiting V=R requests 
with freed region space. 

5 Return. 

FREEMAIN 
(lEAVGMOO) 

o 



f 
i' :s 
~ 

a: sa 
[ 
~ 
~ 
I 
i' :s 

'ft -c -

Diagram 244. FREEPART Routine (IEAVPRTO) (part 2 of 2) 

Extended Description 

The FREEPART routine (lEAVPRTO) processes requests 
from initiators and Started Task Control to return virtual 
or real region space to available space. The routine also 
dequeues and frees the control blocks defining the region. 

Module Label 

1 FREEPART checks the WAIT queue and the POST IEAVPRTO IEAVPRTO 
queue for requests relating to the region being released. 

If found, the elements are dequeued and the space freed. 

2 FREEPART releases any remaining allocated space 
within the region and the SPOEs identifying it. Then 

the space representing the region is returned to the system 
queues. For a V=R region, FREEPART also releases the 
DPOE and POE for the region. 

3 For a V=R region, FREEPART calls RSM to release 
the real pages and their identifying control blocks. 

If the return code from RSM is not zero, FREEPART puts 
a return code of 4 in register 15. 

I EAVPRTO I EAVPRTO 
IEAVGMOO RMBRANCH 
IEAVGMOO MRELEASE 

IEAVEOR IEAVEORF 

Extended Description 

4 FREEPART checks the VRWAITO for requests that 
can be satisfied by the region space just freed if the 

FREEPART was for a V=R region. It posts requests that 
can use up to, but not more than, the available space. 

5 When processing is completed, FREEPART returns 
to the caller. If the FREEPART is successful, a return 

code of 0 is placed in register 15. 

Module Label 

I EAVPRTO I EAVPRTO 

I EAVPRTO I EAVPRTO 

Error Processing IEAVGPRR IEAVGPRR 

When Recovery Termination passes 'an error to I EAVGPRR, 
the routine looks for program checks and machine checks. 
For these errors, IEAVGPRR tests to determine the extent 
of processing and calls for retry at that point. For other 
errors, termination is indicated. I EAVGPRR sets up the 
SDWA and returns to Recovery Termination. For errors in 
posting routines from the WAIT queue, IEAVQPRR abnor-
mally terminates the Initiator for the address sPace with a codelEAVGPRR PRTOERTN 
of X'304'. 



'f' Diagram 24-5. Create Address Space (IEAVGCAS) (part 1 of 2) ... 
2 

2 -~ 
N 
fIl 

I 
i 
j 
~ r 
VI 

~ 
'" l-
I 
w 
~ 

Input 

Reg 1 

From Address Space 
Creation (IEAVEMCR) 

Process Output 

1 Check caller's authorization. 
If unauthorized, return. 

2 Obtain storage for new address 
space in the Master Scheduler 
address space. 

3 Set up control blocks and tables 
in new address space. 

Caller 

4 Construct VSM control blocks. &£. ,/II 

5 Release the virtual storage used 
for initializing control blocks 
in the Master Scheduler 
address space. 

6 Return. 

Address Space Creation 
(lEAVEMCR) 

SYSTEM REG ION 

POE FBOE 

DD 
AOOR ESS SPACE 

POE FBOE 

DD 
LSOA SPOE LSOA DOE LSOA FOE 

DDD 
LOA ASXB 

D D 
15 

Return Code 



fIl 

it 
~. 

:s 
~ 

a:: 

i 
a 
o 

1 g. 
:s 

:c 
= w 

Diagram 24-5. Create Address Space (lEA VGCAS) (part 2 of 2) 

Extended Desctiption 

IEAVGCAS (VSM Address Space Creation) processes 
requests to set up a new address space. It initializes the 
address space control blocks and calls RSM to set up the 
RSM control blocks. 

1 IEAVGCAS checks the caller's authorization. If the 
caller is not authorized, IEAVGCAS puts a return 

code of 4 in register 15. 

Module Label 

IEAVGCAS IEAVGCAS 

2 IEAVGCAS gets a page of storage in the Master IEAVGCAS IEAVGCAS 
Scheduler address space. If the storage can't be 

obtained, lEA VGCAS puts a return code of 4 in register 15. 

3 IEAVGCAS calls RSM Address Space Initialization IEAVITAS IEAVITAS 
to set up global and local address control blocks in the 

new address space. If RSM returns a non-zero return code, 
IEAVGCAS frees the page in the Master Scheduler address 
space and puts a return code of 4 in register 15. 

~" ---.-----_ ....... ""-" 

Extended Description 

4 IEAVGCAS builds the LOA (Local Data Area) in the 
top of the page obtained from the Master Scheduler 

address space. Then it initializes the various address space 
and region control blocks used by VSM: PQE, FBQE, 
SPQE, DOE, and FQE. 

5 IEAVGCAS releases the virtual page in the Master 
Scheduler address space. 

Module Label 

IEAVGCAS IEAVGCAS 

IEAVGCAS IEAVGCAS 

6 IEAVGCAS returns to the caller through register 14. IEAVGCAS IEAVGCAS " 

Error Processing IEAVCARR IEAVCARR 

When errors occur, IEAVCARR frees the page in Master 
Scheduler address space. For program checks and machine 
checks, IEAVCARR retries the I"EAVGCAS routine unless 
RSM had been entered; if so, IEAVCARR returns to 
Address Space Creation with a return code of 4. For any 
other errors, IEAVCARR records information in the SDWA 
and routes control to RITM to continue termination 
processing. 

.;>~~.:1?:<;:;"1.' ~ 



'f' Diagram 24-6. Free Address Space (lEA VGF AS) (part I of 2) ... 
2 
o 
f'-l 

~ 
~ 

~ 
=-
~ 

i (;. 

r""I 

~ 
~ 
~ 
i 
(D 

VI 

< 
~ 
~ r 
w 
:.... -

Input 

CVT 

Reg 14 

GOA 

ASCB 
Address 

VRPOSTO 

VRWAITO 

Return Address 1 

From Address Space 
Termination 
(lEAVTMMT) 

1 Check caller's authorization. 
If unauthorized, return. 

2 Free any address-space related 
global storage which remains 
allocated. 

3 Return to caller. 

To Address Space Termination 
(IEAVTMMT) 

Output 

Return Code 



rIl a cs· 
=:I 
~ 

a::: 

[ 
o 
'"'" o 

"0 

S g. 
=:I 

'f' -~ 

Diagram 24-6. Free Address Space (lEA VGF AS) (part 2 of 2) 

Extended Description 

IEAVGFAS (VSM Address Space Freeing) processes the 
deletion of an address space. It dequeues and frees all queue 
elements relating to the address space and updates the sys­
tem control blocks. 

1 IEAVGFAS checks the caller's address space against 
the Master Scheduler ASID. If not equal, the routine 

puts a return code of 4 in register 15. 

2 IEAVGFAS checks the VRWAITO and VRPOSTO 
for an element identified for the specified address 

space, dequeues it, and frees the space. 

3 If no errors have occurred, IEAVGFAS puts a return 
code of 0 in register 15 and returns. 

Module Label 

IEAVGCAS IEAVGFAS 

IEAVGCAS IEAVGFAS 

IEAVGCAS FREEOEL 

IEAVGCAS IEAVGFAS 

Error Processing IEAVCARR IEAVFARR 

For retriable errors during dequeuing, IEAVFARR attempts 
to retry the dequeuing routine; for other retriable errors, 
IEAVFARR re-enters the IEAVGFAS routine. For other 
errors, IEAVFARR records information in the SDWA and 
returns to Recovery Termination. 



'f' ... 
i 

i 
~ 
w 
rn 

i 
i n 
r--

f 
i 
CD 
(1\ 

~ 

f 
w 
~ 

Diagram 24-7. Task Termination (lEA VGCAS) (part 1 of 2) 

Input 

Reg 4 

Tce Address 

AOE 

SPOE Chain 

SPOE 

SPOE 

SPOE 

SPOE 

From SVC EXIT 
Routine (lEAVEOR) 

1 Free region subpool storage owned 
by failing task. 

2 Free sub pool 229 and 230 storage. 
if owned by task. 

3 Free task or job step related 
LSOA storage. 

4 Free SWA storage. 

5 Return. 

ToSVC EXIT 
Routine (lEAVEOR) 



rIl g 
g. 
= 
~ 

ac a-
S 
Q. 

Q .... 
o 

I 
~. 

= 
'f' -= ...... 

Diagram 24-7. Task Tennination (lEA VGCAS) (part 2 of 2) 

Extended Description 

IEAQSPET (VSM Task Termination) performs storage 
clean-up operations when a task is terminating. It frees all 
local storage owned by the task. 

1 I EAOSPET frees the subpool storage represented by 
the SPQEs chained from the TCBMSS field for the 

task unless the subpool is shared. Then it frees the SPOEs. 

2 I EAQSPET frees the subpool 229 and 230 storage 
and the SPQEs for the task. 

3 I EAQSPET frees the SWA space for the task unless the 
subpool is shared and then frees the SPQEs. 

4 When all control block queues have checked, 
IEAQSPET returns to EXIT with a return code of 0 

in register 15. If any of the FREEMAIN operations failed, 
IEAQSPET places a return code of 4 in register 15. 

Module Label 

I EAVGCAS I EAQSPET 
IEAVGCAS FREESPQE 

I EAVGCAS I EAQSPET 
IEAVGCAS FREESPQE 

I EAVGCAS I EAQSPET 
IEAVGCAS FREESPOE 

IEAVGCAS IEAOSPET 

Error Processing IEAVCARR IEAVTTRR 

When the error is a program check or a machine check, 
IEAVTTRR enters the IEAQSPET routine for retry. Other-
wise, it returns to Recovery Termination after recording the 
SDWA information. 



V' -i 
i 
~ 
to.» 

i 
i-
t: 
~ 
~ 
~ 
J 
~ 

CA 

~ 
to.» 

i 
w 
:... -

Diapam 24-8. Build Quickcel Pool Routine (IEAVBLDP) (Part 1 oil) 

From a routine requiring a new quickc:ell 
pool (see extended description) 

Process 

Skeleton CPAB 

1 Determine cell pool location 
and type. 

2 Validate the cell pool request. 

3 Format the cell pool. 

4 Return. 

Caller (see 
extended description) 

o 

Return Code 



C"Il 

J ::s 
~ 

it:: 
sa 
[ 
a. 
o 

! 
e' ::s 

'ft 
$ 

Diagram 24-8. Build QuickceU Pool Routine (lEA VBLDP) (part 2 of 2) 

Extended Description 

The Build Quickcell Pool routine (IEAVBLDP) creates, 
extends, or reformats a pool of quickcells, as directed 
by the internal macro instruction (BLDCPOOL) that 
invokes it. Modules that can require a new quickcell 
pool are: IEAVEMIN, IEAVESVC, IEAVMDOM, 
IEAVMWTO, IEAVNIPO, IEAVNPA6, IEAVNP14, 
IEAVPCB, IEAVSWCH, IEAVVINT, IEAVVRP2, 
IEAVVWTO, IEEMB803, IEEMB804, and IRARMSRV. 

Module Label 

1 IEAVBLDP checks the CPAB (Cell Pool Anchor Block) IEAVBLDP IEAVBLDP 
and CPID (Cell Pool Identifier) passed to it. It deter­

mines whether a new cellpool must be created, whether a 
cell pool is to be extended, or whether a cell pool is to be 
reformatted. 

2 IEAVBLDP verifies that all parameters passed are IEAVBLDP CPIDTEST 
valid by checking them against the skeleton CPAB 

built by the macro processor. 

3 IEAVBLDP formats the new cell pool by dividing IEAVBLDP POOLFORM 
it into the number of cells that will fit into the specified 

area and storing pointer and size information in the CPAB. 
Then it formats each cell, linking it to its chain through 
linkage pointers. LOOPFORM 

4 I EAVBLDP returns control to the caller with a return 
code indicating success (0) or an error: 

Return 
Code 

8 
12 
16 
20 

Error 
Invalid CPID or unformatted pool. 
Invalid Subpool 
Invalid cell size 
Incompatible concurrent request. 

.In each error return case, register 0 contains the extent 
subpool number and the extent length; register 1 contains 
the extent address. 

IEAVBLDP ERREXIT 



*;'N\W4¥L,,@ 

'f' Diagram 24-9 ° GETCELL Routine (lEA VGTCL) (part 1 of 2) .... .... 
e 

i 
~ 
N 
C"Il 

1 
9 
r"" 
~ t;0 
r"" 
& 
lOt 

~ 
~ 
S' 
ii 
<II 

'< 
C"Il 
N 

~ 
(D 

5" 

• ~ 

~ 

Input 

Reg 0 

CPID 

CPAB Table 

CPAB 1 

CPAB 2 

From routine requiring 
quickcell allocation 

1 Validate CPID against requested 
CPAB. 

2 Locate free cell in the requested 
pool. 

3 Validity check the cell. 

4 Allocate the cell. 

5 Return. 

Caller 

Output 

Cell 



til 
(D 

~ 
5· 
= ~ 

~ 
~ go 
~ 

o 
""" o 

"0 

! 
5· 
= 
! --

Diagram 24-9. GETCELL Routine (lEA VGTCL) (part 2 of 2) 

Extended Description 

The GETCELL routine (lEAVGTCL) allocates a quick-
cell from an established quickcell pool. The routine is 
invoked through the GETCELL internal macro instruction. 
Modules that can require quickcell allocation are: 
IEAVELK, IEAVEMIN, IEAVEPC, IEAVEOR, IEAVESVC, 
IEAVGPRR, IEAVMDOM, IEAVMWTO, IEAVPCB, 
IEAVPFTE, IEAVPIOP, IEAVRCF, IEAVRFR, IEAVSOUT, 
IEAVSWCH, IEAVTRTH, IEAVTRTM, IEAVTRTR, 
IEAVVRP2, IEAVVWTO, IEEMB804, and IRARMSRV. 

1 IEAVGTCL checks the CPID and CPAB passed for 
validity. It also checks for matching CPIDs and empty 

pools, 

2 lEA VGTCL locates an empty cell in the requested 
pool by checking the CPABFACP field. It also verifies 

that no deletions are in process against the extent. 

Module Label 

I EAVGTCL I EAVGTCL 

IEAVGTCL PERMCPID 

3 IEAVGTCL checks the cell for residence in the proper IEAVGTCL DEOLOOP2 
extent and for boundary alignment within the extent. 

4 IEAVGTCL stores the CPIO in the chosen cell and IEAVGTCL STORCPID 
unlocks the pool extent for further operations. 

5 lEA VGTCL returns control to the caller with a return 
code of 0 for successful allocation or the following 

error return codes: 

Return 
Code 
4 
8 

12 
16 

Error 
Empty pool or extent being deleted. 
Extent is unreliable 
Pool is unformatted 
Invalid CPID 



'f' --N 

i 
~ 
N 

1 
i 
j 
.~ 

I" 
G 
U. 

'< 
fIl 
N ,., 
!. 

I 
w 
~ 

Diagram 24-10. FREECELL Routine (IEAVFRCL) (part 1 of 2) 

Input 

Reg 0 

CPID 

Cell 

From routine which has 
no further need for 
allocated quickcell 

1 Validate CPAB against requested 
CPID. 

2 Locate CPAB for the requested 
extent. 

3 Verify that the cell is on an integral 
boundary. 

4 Enqueue the cell on the available 
queue. 

5 Return. 

Caller 

Output 

CPAB Table 
, i 

Cell 



ell 
(D 
f:I .... 
S· 
::t 
~ 

~ 

~ 
8. 
0 
~ 

0 
"0 

i 
S· 
::t 

'f' ... ... 
w 

Diagram 24-10. FREECELL Routine (lEA VFRCL) (part 2 of 2) 

Extended Description 

The FREECELL routine (lEAVFRCL) returns a quick­
cell to a quickcell pool. It makes the cell available for use 
by adding it to a queue of available calls in the pool. 
Modules that may no longer require an allocated 
quickcell are: IEAVDLAS,IEAVEDSO, IEAVEEXP, 
IEAVEOR, IEAVEPCR,IEAVeQR, leAVGFA, 
IEAVGPRR, IEAVIOCP, IEAVMDOM, IEAVMDSV, 
IEAVPIOI, IEAVRCF, IEAVRFR, IEAVSOUT, 
IEAVSWCH, IEAVSWIN, IEAVTRTR, IEAVTRT1, 
IEAVTRT2, IEAVVRP2, IEAVVWTO, IEEMBS03, 
and IRARMSRV. 

1 IEAVFRCL checks the cell to determine that it was 
allocated from the cell pool specified. 

2 IEAVFRCL locates the CPAB for the cell pool 
specified. 

3 IEAVFRCL verifies that the cell is on an integral 
boundary in the extent, and that no deletions are 

taking place concurrently. 

4 IEAVFRCL returns the cell to the pool of available 
cells and releases the extent for further operations. 

5 IEAVFRCL returns control to the user and passes a 
return code indicating success (0) or an error return 

code: 

Return 
Code 

4 

S 

12 
16 

Error 
Cell not allocated from specified pool 
(CPID doesn't match) 
The cell did not come from one of the 
tents in specified pool 
Unformatted pool 
Invalid CPID 

Module Label 

IEAVFRCL PERMCPID 

IEAVFRCL GOTCPAB 

IEAVFRCL CPABLOOP 

I EAVFRCL ENQLOOP 

IEAVFRCL FRCEXITO 



V' ... ... .. 
§ 
{IJ 
'W 

I 
i 
j 
i 
u-

a 
i 
~ 

Diap'am 24-11. Delete QuiekceD Pool (lEA VDEU) (put 1 012) 

Input 

RagO. 

r- CP1D 

Reg 1 

I n Option Code 

PFSTCPAB 

Permanent 
CPAB 
Table 

From termination 
routine to release 
quickcell pool space 

1 Validate CPID against CPAB. 

2 For deleting last extent, dequeue 
itsCPAB. 

3 Free the last extent area. 

4 For pool deletion, repeat steps 2 
and 3 for the other extent in 
the pool. 

5 For a system pool, zero out 
permanent CPAB, except for 
CPID. 

6 Return. 

Caller 

o 

Reg 0 

CPID 



rIl 
(D 

::a. 
~. 

= ~ 
~ 

~ 
c:;l. 

e. 
o 

"CI ; 
g. 
= 
'f' --(II 

Diagram 24-11. Delete Quickcell Pool (IEAVDELP) (part 2 of 2) 

Extended Description 

The Delete Quickcell Pool routine (lEAVDELP) removes all 
or part of a pool of quickcells, either freeing the storage or 
enqueuing the storage for user freeing. Either one extent, 
all extents, or the whole pool may be deleted, depending on 
which DELCPOOL macro instruction option is chosen. 

Module Label 

1 IEAVDELP checks the CPID against the CPAB for IEAVDELP GOTCPAB 
validity. It also checks to see if NIP created the cell 

pool. 

2 IEAVDELP finds the last extent and checks for 
another operation in progress. If none, IEAVDELP 

dequeues the CPAB for the last extent. 

3 If the suppress FREEMAIN option was chosen, 
IEAVDELP stores FREEMAIN information in the 

first two words of the extent. Otherwise, I EAVDELP frees 
the storage used by the extent and its CPAB. 

IEAVDELP EXTENT 

IEAVDELP REMOVEAB 

Extended Description Module Label 

4 IEAVDELP checks for pool deletion and, if requested, IEAVDELP REMOVED 
loops through the pool deleting all extents and 

CPABs. 

5 IEAVDELP sets to zero all fields in the permanent IEAVDELP DELEXIT 
CPAB, except CPABCPID, when the entire pool of 

quickcells has been deleted. 

6 I EAVDE LP returns control to the caller with a return 
code of zero for success or one of the following error 

return codes: 

Return 
Code 

8 
12 
16 
20 

Error 
Attempt to delete a NIP-created pool. 
Attempt to delete an unformatted pool. 
Invalid or null CPID. 
A conflicting function is pending for specified 
extent. 



If' --(,II 
Q 

~ 
~ 
t-.» 
("I) 

'< 
f 
= 
S" 
~. 
C-
a" 

8 
g: 
c 
::I 
ftI 
(,II 

~ 
t-.» 
b 
tN 
00 
~ 
'-' 

Diagram 24-12. Change Key Routine (IEAVCKEY) (Part 1 of 2) 

RegO 

l L 
Bit 0 I 

I 

Reg 1 

Reg 1 &mneter 
List VA of 

storage 
start 

or 
Reg 2 

VA of 
storage 
end 

Reg 0 

I 
L 

Key I 
I 

Reg 14 

l Return Address 1 

By branch entry from 
key 0 supervisor routine .. 

I 

.. 
II> 1 Determine type of 

interface used. 

) 2 Validity check 
JI' input parameters. 

.. 
") 3 Change storage key 

r of area specified. 

4 Restore original key 
of area if processing 
is unsuccessful. 

.. 

.. } 5 Processing is 
successful, return. 

XPTE 

I 
I 

XPTPROT 

.. 
--v -

Reg 0 .. I Original key I 
I " 

Hardware 
key 

@ 
~ 

Reg15 

I 0 

I 

I 

~ 
~ 
S 
00 
~ 



til 
(D 
(') 

8 
N 

ac 

I 
o 
'"" o 
'g 
S 
~ g 

V' --~ j... 

Diagram 24-12. Change Key Routine (IEAVC~EY) (part 2 of 2) 

Extended Description 

The change key routine (lEAVCKEY) changes the key of 
areas of storage within the problem program subpools at 
the request of supervisor-state key 0 programs. 

1 Two types of interfaces are recognized, R-type and 
L-type. R-type interfaces (indicated by bit zero of 

input register 0 being zero) specify via general purpose 
registers 1 and 2 a single virtual address (VA). L-type 
interfaces (indicated by bit zero of input register 0 
being one) specify one or more VA ranges via a 
parameter list. 

2 For L-type interfaces, the parameter list supplied 
must be in fixed storage (L/SQA or PGFIX). For 

either interface, the VA range(s) must define storage 
from subpools 0-127, 251, and 252. 

3 For each VA range, the storage key and fetch 
protection flag at all pages in the range are changed 

to the new key and new fetch protect flag supplied. 
This is accomplished by: 

• Changing the XPTPROT field in the XPTE associated 
with each page. 

• Changing the hardware key of any pages that are 
assigned to a frame in real storage at the time of the 
request. 

Tpe key of the first page that will be changed is saved for 
return to the caller upon successful completion of the 
change key function. 

Module Label 

IEAVCKEY IEAVCKEY 

IEAVCKEY REGPTOC 
LlSTPROC 
ELTVCK 
PAGEVCK 

IEAVCKEY ELTPROC 
KEYCHG 

Extended Description 

4 If a page within this area is found not to have 
been allocated (via GETMAIN) during the process 

of changing the key for the area of storage, an error 
condition is recognized and the original key of the area 
of storage is restored. 

5 At the successful completion of this routine, the 
caller receives control with a return code of 0 in 

register 15 and the key of the first page changed in 
register O. 

Error Processing: 

For any error that prevents successful completion of the 
change key function, the requesting program is abnormally 
terminated with an error code in register 15 reflecting the 
exact error that occurred. 

For unexpected errors in IEAVCKEY, recovery termination 
management (RTM) gives control to the change key FRR 
(lEAVCKRR). For system or machine errors, the FRR 
records information on SYS1.LOGREC and requests, when 
possible, a retry to recover the original storage key of all 
areas of storage that has been changed. For all other type 
error conditions, percolation is requested through RTM. 

Module Label 

IEAVCKEY ELTPROC 
RECOVER 

IEAVCKEY IEAVCKEY 

IEAVCKRR IEAVCKRR 

;;3. 
N o 
~ 

00 
~ 



5-116 OS/VS2 System Logic Library Volume 5 (VS2.03.805) 



Auxiliary Storage Management (ASM) 

Overview 
ASM transfers virtual storage pages between real 
storage and auxiliary storage, either as a paging 
operation (a page at a time) or as a swapping 
operation (an address space at a time). 
Additionally, ASM manages auxiliary storage, and 
maintains the necessary copies of VIO data set 
pages. 

ASM is called by RSM (Real Storage 
Management) and VBP (Virtual Block Processor). 
ASM interfaces more directly with RSM than before; 
RSM calls the appropriate modules in ASM for the 
specific function needed. Also, control blocks 
(XPTEs and AlAs) are shared with RSM. VBP calls 
one module (ILRGOS) to initiate VIO operations. 

The ASM MO diagrams are presented in seven 
sections corresponding to the seven functions 
described here. There is an introduction to each 
section that contains a more complete description 
of each function, including control block usage. 

ASM processing is divided into seven functions: 
• I/O Control is the communication link 

through which Real Storage Management 
(RSM) makes paging and swapping requests. 
I/O Control determines the type of request, 
passes it to the Swap Driver part of I/O 

Control or to the I/O Subsystem, and is 
notified of its completion. I/O Control notifies 
RSM of the completion, and keeps track of 
the auxiliary storage locations of all virtual 
pages. 

• I/O Subsystem receives control via an SRB 
from I/O Control, starts I/O Supervisor (lOS) 

V82.03.807 

processing by issuing the STARTIO macro, and 
returns control to I/O Control after the 
completion of the I/O. The message module, 
which produces the messages issued by ASM, 

is also a part of the I/O Subsystem. 
• VIO Control coordinates and synchronizes 

all ASM processing required to support VIO 

data sets. This function interfaces with the 
Virtual Block Processor (VBP) for 
group-related requests. VIO Control and I/O 
Control process VIO page-related requests 
that RSM initiates. 

• VIO Group Operators maintain the VIO data 
set information required by VBP. These 
operators are invoked only by VIO Control as 
the result of requests from VBP. 

• Recovery provides the mechanism to handle 
two types of errors, those detected during 
normal ASM processing, and those detected 
by ASM recovery while it is in control. ASM 
recovery attempts to determine the severity of 
the error and then takes appropriate action. 

• Service Routines include: an ASM control 
block formatting facility, which is invoked by 
the system dump-printing facility; an address 
space termination resource manager, whose 
main function is to reclaim auxiliary storage 
resources from an address space that is 
terminating; and a pool extender routine for 
adding storage to a virtual storage pool. 

• Page E,xpansion gives the user· the ability to 
add page and swap data sets to the system 
without having to do another IPL. This 
function is available to the installation 
through the PAGEADD operator command. 

Section 2: Method of Operation 5-117 

• 



\ 

I 

I/O Control 

Recovery 

VS2.03.807 

I 
I/O Subsystem 

Auxiliary 
Storage 
Management 

Service 
Routines 

Figure 2-56. Auxiliary Storage Management Visual Table of Contents 

5-118 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

I 

VIO Control 

Page 
Expansion 

I 
~ 

VIO Group 
Operators 



I/O Control 
In MVS, RSM initiates all paging and swapping I/O. 
The I/O Subsystem (part of ASM) and the I/O 
Supervisor (los) execute the paging/swapping I/O. 
I/O Control is the communication link between 
RSM and the I/O Subsystem-lOs. 

I/o Control is divided into three functional 
units: Initial Page Processing, Initial Swap 
Processing, and Completion Processing. 

Initial Page Processing 
The ASM modlJ.le ILRPAGIO performs Initial Page 
Processing. RSM or Initial Swap Processing sends a 
chain of ASM I/O Request Areas (AlAs) to 
ILRPAGIO. Each AlA represents a request for a 
paging operation (either in or out) against' either 
VIO or non-VIO pages. 

VIO Requests 
ILRPAGIO sends requests for VIO paging to ILRPOS 
(the Page Operation Starter, part of VIO Control) 
for processing. See Chapter 3, "VIO Control" for 
a description. The return of an AlA address from 
ILRPOS to ILRPAGIO indicates an error AlA. 

Non-VIO Requests 
For non-VIa write requests, ILRPAGIO clears the 
XPTE (External Page Table Entry) of the page to 
be written and calls ILRFRSL 1 (an entry point in 
the Free Slot module, also part of I/O Control) to 
free the slot of auxiliary storage that page currently 
occupies. 

For non-VIO read requests, the XPTE is checked 
to see if the page to be read has a valid LSID 
(Logical Slot Identifier). If the LSID is valid, it is 
copied into the AlA. If it is invalid, or if there was 
a previous I/o error on this page (indicated by a 
flag in the XPTE), the AlA is in error. 

ILRPAGIO puts valid AlAs on the staging queue 
(ASMSTAGQ). The ILRQIOE entry point of 
ILRPAGIO is then called to build an 10E (I/O 
Request Element) for each AlA on the queue. 
Initial Page Processing and the I/O Subsystem 
communicate via 10Es. 

ILRQIOE queues write 10Es to the PART (Page 
Activity Reference Table); it queues read 10Es to 
the PART Entry of the page to be read. If there is 
no I/Q currently outstanding, ILRQIOE then 
schedules an SRB for ILRPTM (the PART Monitor, 
part of the I/O Subsystem) to start the work 
represented by the 10Es. If there is I/o currently 
outstanding, Page Completion (ILRPAGCM) will 

VS2.03.807 

schedule the SRB for ILRPTM when that I/O 
completes. 

Each AlA received from RSM is processed until 
the entire chain of AlAs is exhausted or an error is 
found. If an error is found, the AlA chain is broken 
and the error AlA and any following AlAs are 
returned to RSM. 

Initial Swap Processing 
Two modules, ILRSW AP and ILRSWPDR, perform 
initial swap processing. RSM sends a chain of AlAs 
to ILRSW AP. ILRSW AP divides the chain into two 
groups: requests against non-LSQA pages and 
requests against LSQA pages. Non-LSQA requests 
are sent to ILRPAGIO to be processed to page data 
sets. 

When ILRPAGIO returns, ILRSW AP determines if 
the ILRSLSQA entry point of ILRSW AP can be 
called to process the LSQA pages through special, 
high-speed, swap data sets. If all paging operations 
are complete, ILRSW AP calls ILRSLSQA. If all 
paging operations are not complete, the LSQA 
pages cannot be processed now and ILRWSAP 
returns to RSM. LSQA page processing is initiated 
later by ILRPAGCM, the page completion routine. 

When ILRSLSQA gets control, if the AlA request 
is a swap-out and no swap data sets are available, 
or if it is a swap-in of LSQA pages previously 
written to page data sets, ILRSLSQA calls ILRPAGIO 
to process the AlA. Otherwise, ILRSLSQA builds a 
SCCW (Swap Channel Command Workarea) and a 
channel program for the request, and chains the 
SCCW from the SART Entry (Swap Activity 
Reference Table Entry) for the appropriate swap 
data set. An SRB for ILRSWPDR (the Swap Driver) 
is scheduled to start the work represented by the 
SCCW. 

ILRSWPDR checks each SART Entry for work 
(represented by a SCCW chained from the SART 
Entry). When it finds work, it locks the SART entry 
and chains the SCCW to the 10RB/IOSB (I/o 
Request Block and I/O Supervisor Block) that is 
also chained to the SARTE. ILRSWPD R then issues 
'STARTIO to begin lOS processing against the swap 
data set. 

Completion Processing 
ILRP AGCM handles completion processing. The 
function of ILRPAGCM is to process completed 
page and swap requests and place the AlAs on 
queues to be retried or to be returned to RSM. 
ILRP AGCM divides the chain of AlAs that is passed 
to it into two groups; one group contains AlAs 
representing paging requests, the other contains 

Section 2: Method of Operation 5-119 



swapping requests. It processes each group 
separately. 

Page Completion 
This procedure handles all AlAs that are completed 
for page requests and VIO requests. When an AlA 
completes successfully, Page Completion puts it on 
a queue to be returned to RSM. If an error occurs 
on a read request and if there is a backup copy of 
the page, the request is retried. An error on a write 
request is always retried. If any additional I/O 
requests are queued to the PART, lLRPAGCM 
schedules an SRB for ILRPTM. If a swap-out is in 
process, Page Completion checks to see if all 
non-LSQA operations have completed. If they have, 
ILRSLSQA is called to start the LSQA swap. 

Swap Completion 
The swap completion routine handles all 
completions for LSQA pages regardless of whether 
they were processed through swap data sets or 
through page data sets. Swap Completion processes 
AlAs in the order in which they are received. AlAs 
that. are grouped for swap data sets are rechained 
prior to being returned to RSM. 

5-110 OSIVSl System Logic Ubrary Volume 5 (VSl.03.807) 

VS2.03.807 

Completed swap-in AlAs are returned to RSM 
immediately unless the I/O retry flag (indicating 
lOS failure) is set in the AlA. In this case, the 
requests are retried by queueing the AlAs to the 
SARWAITQ or the ASMSTAGQ, depending on 
whether a swap data set or a page data set is being 
used. 

Swap Completion queues normal swap-out 
completions to the Swap Capture Queue 
(ASHCAPQ). Swap-out completions that fail are 
retried. by sending them to thesARwAITQ (for 
swap data sets) or the ASMSTAGQ (for page data 
sets). If there was an error and no more swap data 
sets are available, the AlA is sent to the capture 
queue and the captured error flag is set. When all 
AlAs for a particular address space have been 
placed on ASHCAPQ, Swap Completion determines 
if any AlAs have error flags set. If no errors 
occurr~d Swap Completion returns the entire group 
of AlAs to RSM. Otherwise, Swap Completion puts 
the entire group on the ASHSWP AQ to be retried by 
ILRSLSQA. 



I 
I 25.1 

I/O Control 
(lLRPAGIO) 

25.x. 
25.x.y. 

I 25.1.1 

Queue I/O 
Request 
(lLRQIOE) 

Module 
Entry point in module 25.x . 

. Figure 2-57. I/O Control Overview 

VS2.03.807 

I 25.2 

Swap Control 
(lLRSWAP) 

I 25.2.1 

Swap LSQA 
(lLRSLSQA) 

~ 

, 

I 25.3 

Swap Driver 
(ILRSWPDR) 

1 1 

I/O Control 

I 
I I 
I 25.4 I 25.5 

Page and Swap Free Slot for 
Completion RSM 
(lLRPAGCM) (lLRFRSLT) 

I 25.5 

Free Slot for 
ASM 
(I LRFRSL1) 

I 25.5 

Free Swap Set 
(lLRFRSW1) 

Section 2: Method Qf Operation 5-121 



Input 

FROM RSM 
ROUTINES OR 
ILRSWAP 

~-R--l--------A-I-A----~I ~:> 
~ __ ~Ir+~1 ----~Ibhti ., 
R 2 RSMHD 

~----IIr+I __ 1 
ASMHD . 

L..-..--_ .. ____ ~====:::J 

r~~~WRITE= 11~ :> 
IAIAVIO=l I 

Notes Routine 

[£D CALLED BY RSM FOR A PAGING 
OPERATION OR FROM ILRSWAP FOR 
~O~~NgpI~T¥g~~L~~~I~~~~~ ~EA 
SAVED IN THE ASMVT SAVE AREA 
DEFINED FOR THIS MODULES USE. 

~ SETFRR IS ISSUED FOR RECOVERY 
PURPOSES. ILRIOFRR RECOVERY 
ROUTINE HANDLES ERRORS OCCURRING 
IN ILRPAGIO. 

@] ~2~A~Ig=~E~~SI¥~~t~~~) THE 
ILRPOS 

NTIRE CHAIN OF AlA f S IS SENT TO 
THE VIO PAGE OPERATIONS STARTER 
~~~TT~~S~I~iEE~I~~ ~~U~~~~R 
TYPE. ILRPOS DETERMINES IF THE
PAGES MAY BE STARTED IMMEDIATELY
~~ ~~kg¥N~H~E8~ ~~EUES THEM TO
APPROPRIATE. IF ANY ERRORS ARE

~5t~~I~¥NGT2¥A~§AAR~R~6RNED TO

~~t3R~~gU~~'T~DC~fiRW~~LE~¥T.
GO TO STEP8.

Diagram 25.1 ILRPAGIO (Part 1 of 4)

Processing

ILRPAGIO:

VS2.03.807
/

Output

ASMVT

1 .. _sAT I

~ SAVE REGISTERS (ASMWKSA 1) .::;=====~>

~ ESTABLISH RECOVERY.

~~IIf~p ~E~g ~~ot~~S:H~~N
ANY AIA9S RETURNED SEND
§¥~~ ~~CK TO CALLER. GO TO

<:::::>IILRPOS I
IASM ROUTINE I

Label Ref Notes

---- ---

ILRPOS

ATA

I I
R 4

l' I
ATA

l~
I I

Routine

5-122 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- --_.

VS2.03.807

Input Processing Output

AlA

IAIAWRlTE-' I : > ~ FOR NORMAL WRITE REQUESTS:

IAIAVIO .. O I

XPTE lJ:!j)
PCB
IpCBXPTA Irl I

IXPTVALID=lll

>
XPTE lJ:!j PCB

IpCBXPTA Irl I
I XPTVALID=OIj

I J

Notes Routine

~ ~2~A~~~lWR~5EA~~~¥~~6f:
A. tkE~¥~U~P~If~ ~~~IRE~~ DONE

ILRFRSLT

~~~ 5~i-¥N~AGE1GfID IS NOT A 
iXPTVALID=91fl THE SLOT THAT 
S CURRENTLY SSIGNED TO THE 
~~g~u§~ ~~~Do¥ftEIL~~L~fLL 
BE USED FOR THE WRITE. 

B. ~R~~~sBt:I~2G~ I PAGE OUT 
+XPTPOINP=~llb AND PUT AlA ON 

HE STAGING Q EUE tASMSTAGQ). 
~RIOA¥I'§ fOT~R~E~~.FOR 

Diagram 25.1 ILRPAGIO (Part 2 of 4) 

A. IF XPTE IS VALID AND :====~~J . 
~2~ ~U~~N~t~EAS§~~~ED 
SLOTS. 

<::=:> I ILRFRSLl I 
I ASM ROUTINE I 

§~~gI~DQ8~~~~ MA
T6° 

STEP 7. 

B. SET PAGE_OUT_IN-PROCESSrl 

Label Ref Notes 

---- ---

ILRFRSLl 

IR l=LSID I 

ASMVT XPTE 

IXPTPOINP I ASMSTAGF 
ASMSTAGL 

AlA 

·1 I 
AlA 

1 I 

Routine Label Ref 

---- ---

Section 2: Method of Operation' 5·123 



VS2.03.807 

Input Processing output 

PCBXPTA XPTE I 
I Ir+ 

XPTVIOLP=l J : ~ FOR A READ RE~UEST WITH 
R 4 ATA 

L6 I I"'~ I~~ ¥60pb~GIFEtHES~~~ I~E 
] ATMIA ~~iU~~~EER:E~g i6 ~~~~ ~~ 

AlA 

OIILRPOS I I I 
I I ASM ROUTINE 

> 

~ FOR REGULAR READ REQUESTS: 

PCB XPTE I 
IpCBXPTA I.r+ ~ : 

XPTVALID=O 
XPTIOERR=l 

PCB XPTE 

IpCBXPTA I.r+ 

ASMVT AlA 
A. IF THE PAGE IS NOT ~ 

~J~ 
VALID OR HAD A PREVIOUS 
READ ERROR SET THE I APPROPRIATE FLAGS IN 
THE AlA AND RETURN THE 
AlA TO THE CALLER. GO 
TO STEP 8. 

B. IF THE PAGE IS VALID 
PUT LSID INTO AlA AND 
8UEUE AlA TO STAGING 

UEUE. 

AIAPRIER=l 

> 

'PTVALID=! I 
XPTLSID 

ASMVT AlA 

~ T}ALSID I ASMSTAGF 

ASMSTAGL 

Notes Routine Label Ref Notes Routine Label Ref 
---- --- ---- ---

~ ~2~E~Effi ~~~U~t6~, T¥~i ~XEM~§~ ILRPOS ILRPOS 
BE SENT TO ILRPOS TO BE 
PROCESSED AS IN THE ABOVE STEPS. 
~g~EXE~foI~A~~I~X~~¥of~SV1~fA 
MUST BE SENT INDIVIDUALLY SINCE 
THEY MAY BE MIXED WITH OTHER 
~it~~~b ~~Q¥~~~s §bMiH¥y~~AO~S 
ERROR WAS DETECTED AND THE AlA 
AND ANY SUCCEEDING AlA'S WILL BE 
RETURNED TO THE CALLER AT EXIT. 
GO TO STEP 7 TO CHECK FOR MORE 
AlA' STO PROCESS. 

~ ~~~~1¥~~ ~x~?¥~r~~O). 
A. CHECK TO SEE IF THE PAGE 

SUFFERED A PREVIOUS READ 
ERROR AT SWAP IN TIME 
(XPTIOERR=l) OR IF IT IS NOT 
VALID (XPTVALID=O). IF EITHER 
CONDITION IS DETECTED SET THE 
CORRESPONDING ERROR FLAG IN 
THE AlA (AIAPRIER OR 
AIABADID) AND RETURN THE AlA 
AND ANY SUCCEEDING AlA'S TO 
THE CALLER AT EXIT. GO TO 
STEP 8 TO CHECK FOR WORK ON 
THE STAGING QUEUE. 

B. IF THE XPTE IS VALID 
!XPTVALID=' 1 ') THE LSID 
LOGICAL SLOT IDENTIFIER) 

MUST BE COPIED FROM THE XPTE 
TO THE AlA. THE AlA IS THEN 
PLACED ON THE STAGING QUEUE. 

Diagram 25.1 ILRPAGIO (Part 3 of 4) 

5-124 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

AlA AlA 

I T AlA 

I 
ASMVT AlA 

"I 
ASMSTAGF t,. ASMSTAGL 

I 

I' 

I 

I 

11 

V~Z.Uj.HUI 

Processing 

IF ANY MORE AlA'S ON 
CHAIN, GO TO STEP 4. 

<::::::>IILRQIOE I 

IASM ROUTINE I 

~ DELETE THE FRR. 

ASMVT 

lAS_SAl I =..r;==~> ~ 
RESTORE REGS AND RETURN 
ANY ERRORS TO CALLER. 

Notes Routine Label Ref Notes 

---- ---
@] IF ANY MORE AlA'S REMAIN TO BE 

PROCESSED (AIANXAIA NOT= 0), GO 
TO STEP 4. 

§] IF ANY AlA'S WERE PUT ON THE ILRPAGIO ILRQIOE 

~I~~~~YoQ¥~~~LFE6~H~~ ¥ERPOS, 
~~~E§~~2a~E TO START THE 

~ REMOVE RECOVERY.

~ RETURN TO CALLER.

Diagram 25.1 ILRPAGIO (Part 4 of 4)

V
RETURN TO
CALLER

Output

ASMVT AlA

r+1 I
ASMSTAGF

ASMSTAGL

Routine Label Ref

---- ---

Section 2: Method of Operation 5-125

VS2.03.807

Input t'rocessing Output

FROM ILRPAGIO
AND OTHER ASM
ROUTINES

r
ILRQIOE:

R3 ASMVT §] , Ir SET FOOTPRINT IN THE ATA. >
ASMSTAGF I R4 ASMSTAGL @] I 'L

SAVE REGISTERS (ASMWKSA2)

~z~ooo~~ rl ESTABLISH ADDRESSABILITY.

ATA §]

IATAAIA-O I F
GET THE FIRST AlA ADDRESS
AND DETERMINE IF THERE IS
ONE TO PROCESS. IF NONE TO
PROCESS, GO TO STEP 12.

§I GET AN IOE AND PREPARE TO

i~~~S~IH~v~I~ABE~,Ngo TO
ASMVT AlA

d
STEP 10.

r,

ATA

ASMVT

IASMWKSAl I
ASMSTAGF r ASMSTAGL

ASMVT IOE IL ~"I ASMIOEPC I

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] ILR~IOE IS ENTERED FROM

ILR STRT, ILRPAGIO 5 ILRSWAP, AND
ILRPAGCM WITH REGI TER 3

~O~~I~~~OT6H¥H~S~I,~~GnI'~
TO BE PROCESSED CHAINED FROM THE
~I~~I~ ~H¥~¥ ~~~M~~~GiiA.§OE S
ACCORDING TO THE INDICATORS IN
THEM. AN INDICATOR IS SET IN ATA

1~ ~~~~~E~~ r~~ig~~~· R~~~S~~?E
ROUTINE) HANDLES ERRORS
OCCURRING IN ILRQIOE.

@J REGISTERS ARE SAVED AT ASMWKSA2
AND THE WORK AREA IS ZEROED.

§] THE CHAIN OF AlA' S TO PROCESS IS
iUEUED TO THE DOUBLE HEADED

SMSTAGg. THE FIRST AlA
~ASMSTA F) IS PICKED UP AND IF

ON-ZERO IT IS PROCESSED. IF
THERE ARE NO AlA'S GO TO STEP
12.

lEI ISSUE THE ILRGMA MACRO TO GET AN
IOE. THE IOE' S ARE TAKEN FROM A

ILRGMA

NON-EXPANDABLE POOL CONTROLLED
IN THE ASMVT. THE IOE WILL BE
~¥T¥~N~~~I~H~~~I~~RN6' Ig~T SIF

~~~fr~3~~ ~~Dst~~'S~ING 

Diagram 25.1.1 ILRQIOE (Part 1 of 4) 

5-126 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



VS2.03.807 

Input Processing Output 

AlA 
) ~ FOR A DUPLEXING REQUEST: 

IAIADUPLX-,I IOE AlA 
A. IF THERE IS A PRIOR 

II I IOEAIA 1~IAIAPRIER=OI ERROR, lNITIALIZE THE 
IOE. I I IOELSIDA I lAIALSID J AlA B. IF THERE ARE TWO PRIOR 

:::) I I - ¥~0~~E9~ ~8S¥~~R~6ILT 
AND INITIALIZED. IF THE AlA 

AIAPRIER=1 SECOND IOE WAS NOT 
f,AIASECER=OI AVAILABLE FREE THE IOE 

AIASECER=1 FIRST ONE AND GO TO 
I IOEAIA I L AIALSID2 J STEP 11. 

~ 
IIOELSIDA I ~UEUE THE IOE' S FROM STEP 

AND GO TO STEP 9. 
AlA 

IOE IOE 
I-~ 

IIOEAIA 'llIIOUIA J AIAPRIER=O 
I IOELSIDA I IIOELSIDA I AIASECER=O 
I. I 1 J 

~ 
AlA 

IAIAPRIER=OI 

J AIASECER=0.1 

IAIALSID=O J 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ e&Et~IYsI~ED¥bL~~~NYFR~~~~~T A 

WERE ANY ERRORS. THE ERROR BITS 
INDICATE THAT AN ATTEMPT WAS 

~g~Rk~~v~~gsr¥ ~H§T~Elk~T~~g~ 

A. IF ONLY ONE OF THE ERROR BITS 
4AIAPRIER OR AIASECER) ARE ON 

HEN ONLY THAT ONE HAS TO BE 
RETRIED. A PRIMARY ERROR 
(AIAPRIER) INDICATES AN ERROR 
GOING TO THE PLPA OR COMMON 
DATA SET WHILE A SECONDARY 
ERROR INDICATES AN ERROR 
GOING TO THE DUPLEX DATA SET. 
ONLY ONE IOE WILL BE BUILT 
FOR THE ONE RETRY. 

B. IF BOTH ERROR BITS ARE ON OR 
IF NEITHER BIT IS ON THE 

~~~E~I¥AM~~ts ~E A~MH~~N 16~ 
IS OBTAINED AND THEN BOTH ARE
BUILT. IF· A SECOND IOE IS NOT
AVAILABLE THE FIRST IS GIVEN
BACK AND' PROCESSING CONTINUES
AT STEP 11.

~ THE IOE'S FROM STEP 5 ARE PUT ON

~~~E~~~EYs~8R~E5og~LTbLAG 
NDICATE HAT WRITE IOE'S MUST 

BE PUT ON THE PART HEADER 
QUEUES. GO TO STEP 9. " 

Diagram 25.1.1 ILRQIOE (Part 2 of 4) 

Section 2: Method of Operation 5-12'7 



Input 

AlA 

AIADUPLX=O 

AIAWRITE=l I 
AlA 

AIADUPLX=O 

AIAWRITE=O 

AlA ~ 

I"'LSID I 

Notes 

@J IF THIS IOE IS FOR A WRITE 
~~~U~8IS A~~IA~~GIEI~) F6~Ifli~LIZE 
LOCAL DATA S~T. TURN ON THE
LOCAL FLAG
STEP 9.

(WRITEFLG) AND GO TO

§] UIX~~YT~~of ~~~gKR~~R~SfHE PAGE
DATA SET (PART ENTRY) INDICATED
EXISTS. THE SECOND BYTE (NN
PORTION) OF LSID IS AN INDEX TO
THE PART ENTRY.

A. IF THE INDEX ENTRY IS WITHIN
THE RANGE OF PART ENTRIES IN

¥~~ ±g~I~UY~iTIIII~~DV~~6D.
PUT ON THE PART ENTRY READ

8~~¥~E6P~5~O~~t·p~~ ~g~~~
ARE CHECKED TO DETERMINE THAT
ONE IS AVAILABLE (IORFUSE=O) •

~kE~~~LI3f ~SL~~LTbL~~DICATE
TO SCHEDULE PART MONITOR.

. B. IF THE INDEX ENTRY IS GREATER

IM~~yP~THl~hlb~E~HtH¥o~AI}§
RETURNED, THE AlA IS PUT ON

X~~BX~b ¥~R~~TQ¥5U~: AND

C. IF THE DATA SET THESE

~~~¥~~fS I~~o~EG~~B~DE 
(PARENUSE=l), AIABADID IS SET 
f~Elp~¥ t~~o~I~u~ijEQUEUED TO 
(PARTAIAE) • 

VS2.o3.807 

Processing 

)@J : IF THIS IS A WRITE AlA, 
INITIALIZE THE IOE AND 

: 

Routine 

8UEUE IT TO A TEMPORARY 
UEUE. GO TO STEP 9. 

Label Ref Notes 

---- ---

Diagram 25.1.1 ILRQIOE (Part 3 of 4) 

5-128 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Output 

ASMVT IOE 

~r 
I 

AlA 

I I 
PART ENTRY AlA 

l~r 
I 

IOE I IOEAIA I 
PART AlA 

~"I I PARTAIAE lAIABADID=11 

Routine Label Ref 

---- ---- ---



Input 

ASMVT AlA II ~"I ASMS'J,'AGF 

LOCAL QUEUES IOE 

IpAQu. IT I 
ICAQUE I 

looPQu. I It I 
IOE 

I I 
ASMVT PART 

I ASMCALLQ I 

IPARTAIAE I I ASMSRBCT I 

I I 

LOCAL FLAGS 

IREADFLAG I 
IWRITEFLAG J 

Notes Routine 

@] GET THE NEXT AlA FROM THE QUEUE 
tASMSTAGF). IF THERE IS AN AlA. 
o PROCESS GO TO STEP4. IF THERE 

IS NO AlA SET THE LAST POINTER 
(ASMSTAGL) TO ZERO. 

~ AT THIS POINT ALL AlA'S HAVE 
BEEN PROCESSED OR THERE ARE NO 
IOE' S. THE INTERNAL FLAG 
(WRITEFLG) IS CHECKED TO SEE IF 
ANY WRITE IOE'S WERE PUT ON THE 
~~~~ ~~U~5NEI~O~6T¥b~T~P 12. 
THE IOE'S ARE PUT ON THE WRITE
9~E{~f~~, T~~t~~QH~~~~UPQ) •

~ §~~EbftE~DM?~It~~R~It~~~)If5
OUTSTANDING tASMIOCNT=2lt F ANY
AlAS WERE PU ON THE P ERROR
~2f tLA~§Af~~loF~GIbRTHE
~~T~kf3A~bl.~~~NMO~?~~E~~ I~
~~~tfr ~g¥E~~L~g~~5~f~EClGA~~. 
ALSO IF COMPLETION ~LRPAGCM) IS 
THE CALLER (ASMCALL 1) THE SRB 
~6~~L~~O~ES~~~~B~~SDiT~ECAUSE 

[ill ~~~~~R~H~E~~~~¥N~R~ ~~~~2, 
AND RETURN TO THE CALLER. 

Diagram 25.1.1 ILRQIOE (Part 4 of 4) 

VS2.03.807 

Processing 

GET THE NEXT AlA POINTER. 
IF THERE IS AN AlA GO TO 
STEP 4. 

Output 

PART 

PARTCOMQ 
PARTDUPQ 
PARTLOCQ 

IOE 
~I I 

IOE 

I I 
SRB 

IF THERE IS WORK FOR PART ur 
~g~IIg~tI~~I~~g,I~H~MILT 
SCHEDULED. 

RESTORE REGISTERS I RESET 
FOOTPRINT IN THE ATA AND 

I I 

RETURN TO CALLER. I 

Label Ref 

---- ---
Notes 

[~l 
V 

RETURN TO 
CALLER (SEE 
STEP 1) 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-129 



Input 

R1 AIA(LSQA) 

I I~I I 
lAIA(FXDJ 

FROM RSM 

V82.o3.807 

Processing 

ILRSWAP: 

@iJ ENTRY IS FROM IEAVPIOI 
(SWAP-OUT REQUESTS) OR 
IEAVSWIN (SWAP-IN 

77=il REQUESTS). 

Output 

II I 
tIA'NON-LSQAI 
I I 

~rt'LSQAJ I 
ASHSWAPQ 

tIA (NON-LSQA 

III~I===~) @!)QUEUEAIA'STOSWAPQUEUE'====lb;'1 
AND PASS NON-LSQA AlA'S TO 
THE PAGE I/O CONTROLLER. 

<::::) I ILRPAGIO .1 
IASM ROUTINE I 

R 1 

I 
AlA (NON-LSQA I 

Ir+i illr.
@:BIFAIA'SARERETURNEDBY 

I THE· PAGE I/O CONTROLLER, 
RETURN THEM AND ALL AlA'S 
ON THE SWAP QUEUE TO THE 
CALLER. GO TO STEP 5. 

ASMHD 

I I 
I ASHSWPOT=O I 

I I 

Notes 

ASMHD 

l~ 
AlA (LSQA) 

I I 
ASMHD 

SWAPOUTAND NO I/O 
OUTSTANDIl\IG,' CALL LSQA 
PROCESSOR. 

I I, r 
~ FOR ALL SWAPINS OR FOR 

<::::)IILRSLSQA I 
IASM ROUTINE I 

I ASHSWPOT= 1 II 
I ASHIOCNT=O I 

Routine 

~ DELETE FRR. 

L---,l 
IRETURNVTO 

CALLER 

~------------------------~ 

Label Ref Notes 

---- ---

R 

I 

@iJ ILRSWAP INITIALIZES THE SWAP §] IF THERE WERE NO NON-LSQA AlA'S 
REQUESTS RECEIVED FROM RSM. TO BE PROCESSED FOR A SWAP OUT 
ESTABLISHES ADDRESSABILITY, REQUEST AND NO I/O WAS 
SAVES CALLER'S REGISTERS IN THE OUTSTANDING AT THE TIME THE 
ASMVT, AND ISSUES SETFRR TO REQUEST WAS MADE, OR IF THE 
ESTABLISH A RECOVERY REQUEST WAS FOR A SWAPIN, CALL 
ENVIRONMENT. ILRCSWAP (ENTRY IN ILRSLSQA TO PROCESS THE LSQA 
ILRSWP01 RECOVERY ROUTINE) PAGES BEING SWAPPED. IF THERE IS 
HANDLES ERRORS OCCURRING IN OUTSTANDING I/O, ILRPAGCM WILL 
ILRSWAP. CALL ILRSLSQA WHEN I/O 

COMPLETES. 

@!) THE INPUT AlA'S ARE QUEUED TO ILRPAGIO ILRPAGIO 
THE ASM HEADER SWAP QUEUE ~ DELETE THE FRR AND RESTORE 
(ASHSWAPQ). THOSE AlA'S THAT CALLER'S REGISTERS. 
REPRESENT NON-LSQA PAGES ARE 
DEQUEUED AND SENT TO ILRPAGIO, 
THE PAGE I/O CONTROLLER, TO BE 
PROCESSED. NON-LSQA PAGES ARE 
WRITTEN TO PAGE DATA SETS, NOT 
SWAP DATA SETS. 

@:B ANY AlA'S RETURNED. BY ILRPAGIO 
MUST BE SENT BACK TO THE CALLER 
ALONG WITH ANY OTHER AlA'S ON 
THE SWAP QUEUE. THE AlA'S 
RETURNED REPRESENT AN ERROR AlA 
AND THE SUBSEQUENTLY CHAINED 
AlA'S. SET A RETURN CODE OF 4 

AND GO TO STEP 5. 

Diagram 2 S. 2 ILRSW AP (Part 1 of 1) 

5-130 OS/VS2 System Logic Library Volume S (VS2.03.807) 

1 r' I 
I 

Routine Label Ref 

---- ----
ILRSWAP ILRSLSQA 



Input 

R 2 ,I /0 

R 2 

II I RSMHDPTR 

AlA 

f ,. 
IAIAPAGDS=1 I , , 

AlA I 
IAIAPAGDS .. ol , 

I 

SART 

l~ 
SCCW 

I , 

FROM ASM 
ROUTINES 

) 

Notes Routine 

§] ~~~~8~ IR~f~S~~oe~~S~S~ERED 
WITH SALLOC HELD AND FRR 
PREVIOUSLY SET. SET TRACKING 
INFORMATION IN THE ATA FOR 
RECOVERY AND CLEAR THE WORKAREA 
IN THE ASMVT. ILRCSLS~ ~ENTRY IN 
ILRSWP01 RECOVERY ROU I El 
HANDLES ERRORS OCCURRING N 
ILRSLSQA. 

§] ~K~~sgf~NT~W~~fsFOR 
P~~~OMS5i kE~NOiH~SRU:~i~ 
fSCCW~Sl' GOTO STEP 5. IF R2~0, 
~~~~~N~ ~"R~~~~A' S 
I~~'~~E~~R~~ ~~~~APQ~ THE

@] IF PAGES WERE WRITTEN TO A PAGE ILRPAGIO
DATA'SET AT SWAPOUT TJME
~AIAPAGDS.1~i THE AlA S ARE
I~¥8EO~STCAL~~~~R~S TH~. IF THE PAGES WERE WRITTEN
TO A SWAP DATA SET A SCCW IS
OBTAINED AND CHANNEL PROGRAMS
BUILT. THE SCCW IS THEN PLACED
~=J~Rr~~ ~AR~ ~YSF~THE
FREE A THE AlA J S ARE PUT ON THE
SARW ITQ.

Diagram 25.2.1 ILRSLSQA (Part 1 of 3)

VS2.03.807

Processing Output

ILRSLSQA:

§J ENTERED WITH SALLOC HELD
AND FRR SET. SET TRACKING
INFORMATION IN ATA AND
INITIALIZE WORKAREA.

@] ~~E~~~~E5ISI~E2&¥STED, .
PROCESS AlA'S ON THi
ASHSWAPQ.

ATA

IATASLSOA I

ASMVT

IAS A, I
@] SWAPIN REQUESTS (READS):

ASMVT AlA

A. IF PAGES WERE WRITTEN
X~Af~G~ND~~~~~ ~
CALL ILRQIOE.

~r+1
,

ASMSTAGQ

<::::::> I ILRQIOE 1
'ASM ROUTINE ,

B. IF PAGES WERE WRITTEN
X~A~S~~PGRSo~S~E66TI¥~
A FREE SCCW AND BUILD
CHANNEL PROGRAM. PUT
SCCW ON PROPER SART
ENTRY FOR SWAP DRIVER.
~&TN2If9~3N~lR'~¥~.

SART SCCW

lfSARWAlTO I~I I
ISARTE I
I I

AlA

I I

Label Ref Notes Routine Label Ref

---- --- ---- ---

ILRQIOE

Section 2: Method of Operation 5-131

VS2~03.807
Input Processing Output

AlA

I I
~ SWAPOUT REQUESTS (WRITES):

I AIAWRITE= 1 I

I I SART SCCW

~rl SARTE
SART

I I
ISARSETCT>OI

ASMVT AlA

~rl ASMSTAGQ r
B. IF NO SWAP SETS ARE ::;::::===;'1

~ZAl~~~~~G ~U~2fL AlA'S I L
ILR~IOE ~OQpROCESS THE ~
AlA S.

I I

AlA

I I
I AIAWRITE= 1 I

~IILRQIOE I
'\,--../ II-A-S-M;:;'R-O-U-T-IN-E---11

I' I =:r;:===~> ~ IF ANY WORK IS ON THE
~W~8's~~O~~ AlA GROUP

SART

ISARS=Tool

Notes Routine Label Ref Notes

---- ---
~ §~~SS~~ 2~II~~~~Sf~E lrA~~~E ILRPAGIO ILRQIOE

DIVIDED INTO GROUPS AND SWAP
SETS ARE ALLOCATED. THE CHANNEL
PROGRAM IS BUILT AND THE SCCW
PUT ON THE PROPER SART ENTRY FOR
THE SWAP DRIVER. IF NO SWAP SETS
~~c~ZA~~~h~'A§~~T~aA'~E
IL~IOE IS CALLED TO ~ROCESS
TH .

~ IF ANY WORK WAS LEFT BEHIND
PREVIOUSLY (CAUSED BY AN SCCW
~U~R§~~lfTS~ZE~gR~¥~pF~?M

Diagram 25.2.1 ILRSLSQA (Part 2 of 3)

5-132 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

,

Routine Label

I

I

I

Ref

VS2.03.807

Input Processing Output

SRB SCCW I ~
ISARSRBCEO I ,.....Ir------.I:::::!J~;:::===~> ~ §L.~¥SW~~ ~ft~ ~2IpON THE:::=====~)
ISARTE I I ~~h~~nL~S~O§R~:HEDULED,
ISARTE I

Notes Routine

~ IF ANY WORK WAS PUT ON A SART
~~Rt6R~~Tr~Es~~~bu~~5VER IS
~~~~¥CtH~)SC~~~~~~~EC~N~RB 
t~ftR~~~Ts~~E5aLi~~~ENT ANOTHER 

@] RETURN TO CALLER. 

Diagram 25.2.1 ILRSLSQA (Part 3 of 3) 

@] RETURN TO CALLER. 

Label Ref Notes 

---- ---

LJl 
V 

RETURN TO 
CALLER. 

Routine Label Ref 

---- ---

Section 2: Method of Operation S~133 



Input 
FROM 
DISPATCHER 
(IEAVEDSO) 

~ 

VS2.03.807 

Processing 

ILRSWPDR: 

@TI ENTERED ni SRB MODE FROM 
DISPATCHER. SETFRR, AND 

RESET SRB SCHEDULED COUNT 

(SARSRBCT) • 

Output 

~r+I~RX AREA II. 
WSACASMS 

::::%.J~;:::===~) [§] OBTAIN WORKAREA ADDRESS. 

SART . SCCW 

J 
I 

SRESCCWQ 

SRESCCWQ 

SRESCCWQ 

AlA 

I I 

Notes Routine 

@TI ENTERED IN SRB MODE FROM 

DISPATCHER, ILRSWPDR FINDS AND 
STARTS I/O REQUESTS TO THE SWAP 

DATA SETS (ILRPTM AND ILRSRT 

TOGETHER DO THIS PROCESSING FOR 

THE PAGE DATA SETS). SET FRR FOR 
RECOVERY AND RESET THE SCHEDULED 

COUNT (SARSRBCT"O) SO ANY 
SUBSEQUENT WORK PUT ON QUEUES 

WILL CAUSE A RE-SCHEDULE OF SWAP 
DRIVER. ILRSWP01 RECOVERY 

ROUTINE HANDLES ERRORS OCCURRING 

IN ILRSWPDR. 

[§] OBTAIN ADDRESS OF WORKAREA USED 

TO STORE REGISTERS ACROSS START 

I/O. 

[§ SEARCH SART ENTRIES (SARTE) 

LOOKING FOR WORK TO PROCESS. IF 
A SCCW IS FOUND TO PROCESS 

(SRESCCWQ) AND AN IORB/IOSB PAIR 

IS AVAILABLE (ILRFUSE-O) TRY TO 

LOCK THE SARTETO PREVENT 

INTERFERENCE FROM ANOTHER COPY 

OF THE SWAP DRIVER. IF 
PREVIOUSLY LOCKED GO TO NEXT 

SARTE TO.PROCESS. IF LOCK 16 

SUCCESSFULLY OBTAINED, PUT 

Diagram 25.3 ILRSWPDR (Part 1 of 1) 

SEARCH SARTE'S (SART It 
ENTRIES) LOOKING FOR WORK. 

IF FOUND, LOCK SARTE AND 
PUT SCCW ON THE lORB/lOSB 

PAIR. 

~ START i/o AND UNLOCK 
SARTE. 

~ REPEAT FROM STEP 3 UNTIL 
ALL SARTE'S CHECKED. 

~ DELETE THE FRR. 

@2] RETURN TO DISPATCHER. 

Label Ref Notes 

---- --- SCCW'S 

LJl 
V 

TO DISPATCHER 
(IEAVEDSO) 

ON IORB- lOSB PAIRS AND 

POINT TO FIRST CCW. 

SARTE IORB 

[~rl SRE'ORB r 
SCCW 

f lOSB 

I I~ 

AlA 

I I 

Routine Label 

----

~ ISSUE SIO (START I/O) MACRO TO SlO 
lOS TO START THE OPERATION. 

~ UNLOCK THE SARTE AND REPEAT FROM 

STEP 3 UNTIL ALL' SART ENTRIES 
HAVE BEEN CHECKED. 

~ ISSUE SETFRR DELETE TO RESET THE 

RECOVERY ENVIRONMENT. 

@2] RETURN TO THE DISPATCHER. 

5·134 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

I 

I 

Ref 

---



Input 

R 1 AlA 

I T AlA 

C AlA 

I 
R 13 

I I """'18 WORD 
SAVEAREA 

FROM ILRCMP OR 
ILRPTM 

I~ lillJ 
I 

I 

, 

V82.03.807 

ProceSSl.ng 

ILRPAGCM: 

SAVE CALLER'S REGISTERS UIjo, ====:~~ 
STANDARD SAVE AREA AND- -
ESTABLISH ADDRESSABILITY. 

OBTAIN THE SALLOC FOR 
SERIALIZATION. 

~ ESTABLISH RECOVERY. 

SET UP ADDRESSABILITY TO 
THE ASMVT. 

AlA 

I AlALSQA' 
1 I 

>~ : I lb 
DETERMINE WHICH INTERNAL IlL 
8~Eg~GI~ PUT AlA ON, SWAP 

\ 

Notes Routine Label Ref Notes 

---- ---
§] ~~¥E~o~iT6~O S~~~L~I~~~TE~R 1 BY 

POINTING TO A CHAIN OF AlA'S AND 
REGISTER 13 POINTING TO AN 18 
WORD SAVEAREA. THE REGISTERS ARE 
SAVED IN THE CALLER'S SAVE AREA. 

§] OBTAIN THE SALLOC FOR CONTROL 
BLOCK SERIALI2ATION. 

@) ISSUE SETFRR TO ESTABLISH ERROR 
RECOVERY. ILRIOFRR HANDLES 
ERRORS OCCURRING IN ILRPAGCM. 

[§] GET THE ADDRESS OF THE ASMVT AND 

§¥lN5IR5N~~eg~~N~fo~~E 

@] THE AlA'S ARE PUT ON ONE OF TWO 
PUSH DOWN STACKS. IF THE AlA IS 
I~RG~E~W~~ ¥~~AS~~~E ~~ij~LSQA=1) 
4ASM3SWPRlt OTHERWIS~ IT GOES ON 

T~~ ¥S~EQUEu~~E~E(~~~¥f~2~D IN 
THE WORK AREA (ASMWKSA3). 

I 
Diagram 25.4 ILRPAGCM (Part 1 of 3) 

out$ut 

R 13 
IJIREGISTERS I 

I 

Il;:: I 
I 

I 

I 
R 3 ASMVT 

II I 1r+1 

CASM3SWPQ I CASMJeENQ I 

AlA AlA 

I I I I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-135 



VS2.o3.801 

Input Processing Outfput 

R 4 ATA 

I TATAAIA 
AlA 

C AlA 

I 

IINTGENQ I AlA r+1 
lArA 

I 

IINTSWAPQ I AlA r+1 

lm 
I 

I 
I 

I 

I 

I 

II 

IF THERE IS ANOTHER AlA TO 
PROCESS, GO TO STEP 5. 

IF THERE ARE ANY AlA'S ON ======;"'1 
~g~ ~~~~~~~ g~~~~I2~~UE lb 
CALL PAGECOMP FOR 
COMPLETION PROCESSING. 

I 
II II > t2fLI~~f~~~~pS~~k QUEUE 

P';::===~ ~ IF THERE ARE ANY AlA'S ON flb 
~ COMPLETION PROCESSING. 

II 

Notes Routine Label Ref Notes 

---- ---

~ WHILE PROCESSING IN THIS LOOP 
THE ATAAIA ALWAYS POINTS TO THE 
NEXT AlA TO PROCESS. PICK UP 
ATAAIA AND IF THERE IS ANOTHER 
AlA TO PROCESS GO TO STEP 5. 

@] IF ANY AlA'S WERE PUT ON THE PAGECOMP 25.4.1 

i~~R~~Lp~~~~~~ ~g~u~6M~t~~ION 
PROCESSING. THE AlA S ARE PASSED 
VIA THE ATAAIA FIELD. 

~ IF ANY AlA'S WERE PUT ON THE SWAPCOMP 25.4.2 
iST~~~~~O~~A~oiu~g~~L~~¥3NTHEM 
PROCESSING. THE AlA S·ARE PASSED 
VIA THE ATAAIA FIELD. 

Diagram 25.4 ILRPAGCM (Part 2 of 3) 

5-136 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

R 4 ATA 

I Ir+~ ATAAIA=O 

R 4 AlA 

II r 
I 

ATA 

llATAAIA I 
AlA 

I I 
R 4 AlA 

C r 
I 

ATA 

CATAAIA I 
AlA 

I I 

Routine Label Ref 

---- ---



VS2.03.807 

Input 

1 ASM3PIOP 1 AlA 
..... 1 

lAIA 
I 

ASMVT AlA 

1 ASMSTAGF 1 ..... 1 
I ASMSTAGL I[A1A 

I 

Processing 

I~ r;:===~~) IQ91 IF THERE ARE ANY AlA'S ON II .' ~ THE ASM3PIOP QUEUE, CALL 
RSM. 

II <:::::> IEAVPIOP 

RSM ROUTINE 

1::::£ 
r;===~> ~ IF THERE IS WORK ON THE 

¥~8~~.QUEUE, CALL 

<:::::> I.I_LR....=,Q_IO_E _____ I 

ASM ROUTINE 

Notes Routine Label Ref Notes 

---- ---
@] ~~I~~~~~~I~A J~ ~~E~~ AND 

lEAVPIOP IEAVPIOP 

BEEN PUT ON THE ~UEUE ~ASM3PIOP) 
~ ~~S~C~NT~HESMU~GEA¥~lOP). 
ADDRESS IN ASM3PIO~ IS PUT INTO 
REGISTER 1 AND CONTROL IS PASSED 
TO IEAVPIOP. 

~ ~n~c~I~Gf~si~E¥~ ~~MfI~~)Al~ ILRPAGIO ILRQIOE 

WAITING TO BE PROCESSED. IF 
THERE IS AN ADDRESS IN THE FIRST 

~~~~ l~S~~~~b ToN~~~~~)TO 
BUILD IOE S.

@) I~ER~r-&J~D DE~ftIERI:GI~~d~LOC
RESTORED ANi> CONTROL IS RETURNED
TO THE CALLER.

Diagram 25.4 ILRPAGCM (Part 3 of 3)

Output

R 1 AlA

Il c r
1

AlA

C
1

AlA

1 1
R 3 ~AIA

C
1 I 1

ASMVT

LJl~ l:A~~'
1
I

I ASMSTAGL 1

V
TO CALLER AlA

1 1

Routine Label Ref

---- ---

Section 2: Method of Operation 5-137

Input
FROM ILRPAGCM
MAINLINE

~-R-4------AT-A----~ ~

I T~r
l~:: I-r
I !

R 3

I I
ASMVT

L.... ----'. ,-+1 ___ 1

I A I..I==A ==----.-.:..-J' I ~AIATERMR=11 I

l_A_I_A _______________ --J~ . 1 AIAPRIER=O I I

VS2.03.807

Processing output

PAGECOMP:

@2] SET FOOTPRINT IN THE ATA.

~ IF THE TERMINATION
INDICATOR IS ON PROCESS
THE TERMINATION. IF NOT GO
TO STEP 3.

A. IF THERE WAS NO ERROR >

PRI..OC_E_S_S_IN_G_T_H_E_S_L_O_T_'~ Lr FREE IT.

<::::::>IILRFRSL1
IASM ROUTINE

B. DECREMENT THE
APPROPRIAT! COUNT.

C. QUEUE THE AlA TO THE
ASM3PIOP TO BE PASSED
TO RSM. GO TO STEP 9.

~ SET UP ADDRESSABILITY TO
THE ASCB AND RSMHD.

R 4

1

R 1

ILSID

ASMVT

ASMNVSC-1
ASMVSC-1

CASH'P'OP
AlA

I AlA

PCB

C ASeB

I

ATA

!.r+IATAPCOMP=1!

I

!
ASMVT

I I
I ASMIORQC+ 1 I

I l I

RSMHD r I

I

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
@2] COMPLETED COUNT (ASMIORQC) •

CONTROL IS RECEIVED FROM
GO TO STEP 9.

MAINLINE ILRPAGCM TO PROCESS'ALL
PAGE COMPLETIONS. REGISTER 3
POINTS TO THE ASMVT AND REGISTER ~ GET THE ADDRESSES FOR THE ASCB
4 POINTS TO THE ATA WHICH HAS AND RSMHD FOR THE ADDRESS SPACE.
THE ADDRESS OF THE AlA'S TO BE
PROCESSED. FOR RECOVERY
PURPOSES, PAGECOMP INDICATES IT
HAS CONTROL BY SETTING A BIT IN
THE ATA.

~ THE TERMINATION INDICATOR
(AIATERMR-l) MEANS THAT THE
ADDRESS SPACE WAS TERMINATED AND
THAT CONTROL BLOCKS ARE NO
LONGER AVAILABLE. THE AlA MUST
BE GIVEN BACK TO IEAVPIOP AND:

A. IF THERE WAS NO ERROR FREE ILRFRSLT ILRFRSLt
THE SLOT FOR FURTHER USE.

B. DECREMENT THE VIO OR NON-VIO
(ASMVSC OR ASMNVSC) SLOT
COUNT DEPENDING ON. THE TYPE
OF PAGE.

C. QUEUE THE AlA TO THE ASM3PIOP
QUEUE (FOR RETURN TO
IEAVPIOP) AND INCREMENT THE

Diagram 25.4.1 PAGECOMP (Part 1 of 6)

5-138 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

AlA

~I
~

AIAWRlTE .. l

AIAIORTY .. 1

AlA AlA II
AIA~IT~llr AIAWRITE=O

AIAIORTY=l AIAPRIER=l

Notes

§] IF THIS IS NOT A VIa COMPLETION

(AIAVIO=O) GO TO STEPS, ELSE:

A. IF A RETRY WAS REQUESTED

(AIAIORTY .. l) THE· AlA MUST BE

SENT BACK TO ILRQIOE VIA THE

STAGING QUEUE. IN ADDITION,

IF IT WAS A WRITE

(AIAWRITE=l) THE SLOT THAT

WAS USED MUST BE FREED. GO TO

STEP 9.

B. IF THE REQUEST WAS FOR A

WRITE AND AN ERROR OCCURRED

(AIAWRITE=l AND AIAPRIER=l)

OR IF REQUEST WAS FOR READ

AND RETRY IS SET (AIAWRITE-O

AND AIAIORTRY-l) QUEUE THE

AlA TO THE STAGING QUEUE. GO

TO STEP 9.

C. IN ANY OTHER CASE THE AlA

WILL BE SENT TO ILRVIOCM' FOR

PROCESSING GO TO STEP 7.

VS2.03.807

Processing Output

> ~ CHECK IF THIS IS A VIO :

: >

: >

Routine

ILRFRSLT

ILRVIOCM

COMPLETION. IF NOT, GO TO

STEP 5.

A. IF THIS IS A RETRY AlA ====:p~
FOR A WRITE OPERATION,

FREE THE SLOT AND QUEUE

THE AlA FOR ILRQIOE. GO

TO STEP 9.

<:::::>IILRFRSLl I

IASM ROUTINE I

B. IF AN I/O ERROR =r===1b
OCCURRED ON A WRITE, OR

IF A READ AND THE RETRY

FLAG IS SET, QUEUE THE

AlA TO THE STAGING

QUEUE AND GO TO STEP 9.

C. CALL VIO COMPLETION. GO::===:;I~ I
TO STEP 7. lb

<:::::> 1~r:V~=INE I

Label Ref· Notes

---- ---

ILRFRSLl

ILRVIOCM

ASMVT AlA

r l AS~'~F ASMSTAGL

AlA

I I

ASMVT AlA

r l ~~p ASMSTAGL

AlA

I I
R 4 AlA

C r ATA

~

Routine Label

\

I

I

I

Ref

Diagram 25.4.1 PAGECOMP (Part 2 of 6)

Section 2: Method of Operation 5-139

Input

-VS2.03.807

Processing Output

PAGECOMP:

AIAFRAUX=O =;:::;1L!===~> @]
AIAIORTY=O

;:~:::: I ~
AIABADID-O JJJ~

IAIADPX"" IlJ I :>

AIAPRIV= 1 ::::::!J
AIASWPFX=l I
AIABADID=ll--
OR
AIAERROR .. 1

IF THERE WERE ANY SPECIAL Lr
BITS ON, GO TO STEP 7.

A. FOR A DUPLEXED REQUEST,
CHECK IF BOTH REQUESTS
ARE COMPLETED. IF NOT,
GO TO STEP 11.

B. IF THE REQUEST IS A
PRIVATE AREA PAGE,
UPDATE THE XPTE. IF IT
IS A FIXED SWAP PAGE,

>

UPDATE THE SPCTE. GO TOur
STEP 9.

C .. IF REQUEST IS NOT A
PRIVATE AREA, UPDATE
THE XPTE AND GO TO STEP
9.

D. FOR READ REQUEST THERE
IS NO UPDATE NECESSARY
FOR THE XPTE. IT IS
PASSED DIRECTLY TO STEP
9.

I!====:) I ~ IF THERE ARE ERRORS IN THE
AlA, GO DIRECTLY TO STEP
9.

IAIADPXCT- 1 1

XPTE

rXPTLSID 1
I XPTVALID=l\

XPTE

rXPTLPID 1
\ XPTVALID= 1 I

Notes Routine Label Ref Notes Routine

---- ---
@] IF THERE WERE NO SPECIAL BITS ON

VALIDATED.

IN AIAFLG2, THE REQUEST IS A
NORMAL COMPLETION AND IS HANDLED

D. FOR READ REQUESTS NO

FIRST.
PROCESSING IS REQUIRED.

A. FOR A DUPLEX REQUEST ~ IF ANY SEVERE ERRORS (AIABADID
(AIADUPLX=l), DECREMENT OR AlAERROR) OCCURRED THE AlA'S
AIADPXCT. SET TO TWO ARE QUEUED FOR DIRECT RETURN TO
ORIGINALLY, AIADPXCT MUST BE IEAVPIOP (DONE IN STEP 9).
ZERO, BOTH REQUESTS
COMPLETED, BEFORE RETURNING
AlA TO RSM. IF AIADPXCT DOES
NOT GO TO ZERO WHEN
DECREMENTED, GO TO STEP 11 TO
GET NEXT AlA.

B. FOR A PRIVATE AREA COMPLETION
(AIAPRIV=l), A TRANSFER
ADDRESS SPACE IS DONE TO
ACCESS THE XPTE. THE LSID IS
MOVED IN AND IT IS VALIDATED
(XPTVALID= 1). FOR FIXED SWAP
PAGES (AIASWPFX-') THE SPCTE
IS ALSO UPDATED (SPCTSSID AND
SPCTLVAL) •

C. FOR A NONERIVATE AREA
COMPLETION A TRANSFER ADDRESS
SPACE IS NOT REQUIRED. THE
XPTE IS. UPDATED AND

Diagram 25.4.1 PAGECOMP (Part 3 of 6)

5-140 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

SPCTE
ISPCTSSID I
I SPCTLVAL=ll

/

Label Ref

---- ---

Input

AlA I
AIAWRITE=l I

AlA I
AIAWRITE=l l'l
AIAFRAUX=l

AlA I >
AIAIORTY=l
AIAWRITE=l I

AlA I >
AIAWRITE=l

AIAPRIER=l

AIASECER=l

Notes Routine

@2] FOR WRITE REQUESTS:

A. IF THE REQUEST WAS PURGED ILRFRSLT

(AIAFRAUX=1) THE SLOT IS NOT

NEEDED SO IT IS FREED UNLESS

THERE WERE I/O ERRORS. THE

USE COUNTS (ASCBNVSC,

ASMNVSC) ARE DECREMENTED FOR

PRIVATE AREA PAGES. GO TO

STEP 9.

B. IF THE AlA SPECIFIES THAT A ILRFRSLT

RETRY SHOULD BE ATTEMPTED

(AIAIORTY=l) THE SLOTS WHICH

WERE ALLOCATED ARE FREED AND

THE AlA IS QUEUED TO THE

ASMSTAGQ. GO TO STEP 11.

C. IF ANY _I/O ERRORS OCCURRED

(AIAPRIER=1 OR AIASECER=l)

QUEUE THE AlA TO THE ASMSTAGQ

FOR REDRIVE. GO TO STEP 11.

Diagrarrl 25.4.1 PAGECOMP (Part 4 of 6)

iV82.03.807

Processing

IF THIS IS A READ REQUEST

(AIAWRITE=O) GO TO STEP 8.

WRITE REQUESTS WILL BE

PROCESSED HERE.

A. IF THE REQUEST IS

PURGED, FREE THE SLOT,

DECREMENT THE COUNTS

FOR A PRIVATE ~EA PAGE

AND'GO TO'STEP 9 ..

<:::::>IILRFRSL1 I

IASM ROUTINE I

B. IF THE RETRY FLAG IS

FOUND ON, THE AlA WILL

BE PUT BACK ON THE

STAGING QUEUE FOR

REDRIVE AFTER FREEING

THE SLOT. GO TO STEP

11.

<:::::>IILRFRSL1 I

IASM ROUTINE I

C. IF ANY ERRORS WERE =r====l
FOUND IN THE AlA, PUT

THE AlA ON THE STAGING

QUEUE FOR REDRIVE. GO

TO STEP 11.

Label Ref Notes

---- ---

ILRFRSL1

I LRFRSL 1

Output

R 1 ASMVT

ILSID I I ASMNVSC-1 I
ASCB

I ASCBNVSC- 1 I

ASMVT AlA

.r+1 I
ASMSTAGF

ASMSTAGL

ASMVT AlA

r
I l M~TAGF

ASMSTAGL

AlA

I I

Routine Label Ref

---- ---

Section 2: Method of Operation 5-141

VS2.o3.807

Input Processing Output

AlA I > @!] FOR READ COMPLETIONS:

AIAWRITE=O

AlA

AIAWRITE=O J
AIAFRAUX=1

AlA I
AIAWRITE=O

C Y
=1/

A. IF THE REQUEST WAS
PURGED, FREE THE SLOTS
DECREMENT THE COUNTS
AND GO TO STEP 9.

<::::::>IILRFRS~l I
.LASM ROUTINE I

> B. IF THE RETRY FLAG IS 011
QUEUE THE AlA TO THE
STAGING QUEUE FOR
REDRIVE. GO TO STEP 11.

R 1 ASMVT

ILSID I
IASMNVSC-' I ASCB

IASCBNVSC-' I
ASMVT AlA

.r+1 I
ASMSTAGF
ASMSTAGL

XPTE AlA I) C. FOR A DUPLEXED READ
WITH AN ERROR, REDRIVE

XPTLSID2...,O AIAWRITE=O

AIAPRIER.' 1 FOR SECONDARY COPY. GO
TO STEP 11.

ASMVT AlA
.r+-I I

ASMSTAGF
ASMSTAGL

AlA I) D. FOR ERRORS WHICH ARE
NOT DUPLEXED MARK THE

AIAPRIER=1

1 AIALSID2=O
XPTE. XPTE

I XPTIOERR' ' I

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
@!] FOR READ REQUESTS:

XPT (XPTIOERR .. 1).

A. IF THE SLOT WAS PURGED ILRFRSLT ILRFRSL1
(AIAFRAUX=1) WHILE THE PAGE
OPERATION WAS IN PROGRESS THE
SLOT CAN BE FREED AND USE
COUNTS DECREMENTED (ASCBNVSC,
ASMNVSC) FOR PRIVATE AREA
PAGES. IF NO I/O ERRORS
OCCURRED, THE SLOT IS FREED.
GO TO STEP 9.

B. IF THE RETRY FLAG IS ON THE
AlA MUST BE QUEUED FOR
REDRIVE TO THE ASMSTAGQ. GO
TO STEP 11.

C. FOR A READ REQUEST THAT WAS
DUPLEXED, A PRIMARY ERROR CAN
BE REDRIVEN TO TRY TO READ
THE SECONDARY COPY. THE
SECONDARY LSID (XPTLSID2) IS
MOVED INTO THE PRIMARY FIELD
(XPTLSID) AND INTO THE AlA
(AIALSID) AND THEN QUEUED TO
ASMSTAGQ FOR REDRIVE. GO TO
STEP 11.

,p. FOR A NON-DUPLEXED READ ERROR
THE ERROR IS INDICATED IN THE

Diagram 25.4.1 PAGECOMP (Part 5 of 6)

5-142 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

ASMHD

! III !ASHSWPOT=1!

I ASHIOCNT=O I

Notes Routine

@!] THE AlA IS NEXT QUEUED TO THE

INTERNAL QUEUE (ASM3PIOP) FOR

IEAVPIOP AND THE AlA COMPLETED

COUNT (ASMIORQC) IS INCREMENTED.

~ DETERMINE IF A SWAPOUT IS IN ILRSWAP

PROGRESS (ASHSWPOT=1) AND IF SO,

IF ALL I/O FOR THE PRIVATE AREA

PAGES HAS COMPLETED

(ASHIOCNT=O), THE LSQA PAGES CAN

BE STARTED. IF THE LSQA CAN BE

STARTED, ILRSLSQA IS CALLED TO

START THEM.

~ THE NEXT AlA TO PROCESS IS

PICKED UP FROM ATAAIA AND IF

THERE IS ONE TO PROCESS GO TO

STEP :2.

~ ALL THE AlA'S ARE NOW PROCESSED

- RESET THE FOOTPRINT IN THE ATA

AND RETURN TO ILRPAGCH.

Diagram 25.4.1 PAGECOMP (Part. 6 of 6)

VS2.03.807

Processing

@!] QUEUE THE AlA TO THE

INTERNAL QUEUE FOR

IEAVPIOP AND INCREMENT THE

COMPLETED COUNT

(ASMIORQC) •

~ IF THE ADDRESS SPACE IS

INVOLVED IN A SWAP OUT AND

THE LSQA PAGES CAN BE

STARTED, GO TO ILRSLSQA TO

PROCESS THE SWAP LSQA

AlA'S.

<::::::>IILRSLSQA I

lASH ROUTINE J
~ IF THERE ARE MORE AlA'S TO

PROCESS, GO TO STEP 2.

~ RESET THE FOOTPRINT IN THE

ATA AND RETURN TO

ILRPAGCM.

Label Ref Notes

---- ---

ILRSLSQA

LJl
V

RETURN TO
ILRPAGCM
MAINLINE

Output

l
lASM3PIOP

AlA

Routine

ASMVT

Label Ref

---- ---

Section 2: Method of Operation 5-143

Input

FROM ILRPAGCM
MAINLINE

~ R 3 ASMVT

1M I 1r+1
R 4 ATA

I Ir+~ ATAAIA

AlA

~I
>

> AlA :!:Jj
AIAPRIER=O

AIABADID=O

AIAERROR=O

AlA

:::;:::c > AIAPAGDS=l

I

AlA

~::;:v AIAWRITE=l .
>

Notes Routine

§] SET FOOTPRINT IN THE ATA TO
INDICATE TO RECOVERY THAT
PROCESSING IS NOW IN THE SWAP
COMPLETION PART OF ILRPAGCM.

[§J IF THE TERMINATION BIT IS SET IN
tU~TA~~I~AltIE~=~kEAt~~ ~~ORY
HAS BEEN TERMINATED AND THE

~~~~EDS~g~R~DB~~ ~~~R~EEN 
DESTROYED. FOR THIS REASON ONLY 
THE AlA CAN BE REFERENCED. 

A. IF THE AlA DID NOT HAVE AN ILRFRSLT 
~k~ ~~Rtl~~~sr~f b~G¥H~ATA ILRFRSLT 
SWAP DATA SET (ILRFRSW1). 

B. INCREMENT THE COUNT OF 
COMPLETED I/O RE8UESTS 
(ASMIOR~)L AND ECREMENT THE 
COUNT 0 5 OTS FOR NON-VIO 
PAGES (ASMNVSC). 

C. ~UEyE THE AlA (OR GROUP OF 
IA Sl TO ASM3PIOP FOR THE 

MAINL NE TO RETURN TO RSM. 

~ FOR SWAP OUTS (AIAWRITE=l) GO TO 
STEP 5. 

Diagram 25.4.2 SWAPCOMP (Part 1 of 5) 

VS2.03.807 

Processing 

SWAPCOMP: 

s. IF A PAGE DATA SET WAS I rr===> 
USED ADJUST THE J:dJ 
APPR6PRIATE COUNTS. I 

C. CHAIN THE AlA (OR =====;, 
AlA'S) TO ASM3PIOP TO lb 
BE PASSED BACK TO RSM. 
GO TO STEP 7. 

~ FOR SWAP OUTS, GO TO STEP 
5. 

Label Ref Notes 

---- ---

ILRFRSLl 

ILRFRSWl 

5-144 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

output 

ATA 

IATASCOMP-l 

ASMVT 

ASMIORQC+l 

ASMNVSC-l 

ASMVT AlA 

r~rl I 
ASM.3PIOP 

Routine Label Ref 

---- ---

I 



Input 

j::AWRITE-OII > 

AlA r 
AIAERROR-l 

VS2.03.807 

Processing 

~ FOR SWAP IN REQUESTS: 

A. IF THE AlA SUFFERED A 
~~NFb~G~~u~~~~' R~~E¥~ 
THE MAINLINE. ADJUST 
COUNT OF COMPLETED I~O 
RE~UESTS. IF AlA IS OR 
~TE~G~ • DATA SET, GO TO 

Output 

l'ASM3PIOP I ASMVT 

is I 
ASMIORQC+ 1 I 

AlA 
I I I 

AIABADID-l JJr 
AlA 

B. IF A RETRY IS "'iUES~ BECAUSE lOS SUFF RED ASMVT AlA 
INDETERMINATE ERROR! 

~r-I I gUEUE AlA'S FOR PAG 
ATA SETS TO THE 
~6~G~~pQ~~¥~ ~Tft~A'S ASMSTAGQ 

~~i~I~g~U~T~OB~TEP 7. rt I 
6tc~~6° ~~O~~ OR 

Notes 

AIAIORTY.l 
AIAPRIER-O 
AIAPAGDS .. 1 

OR 
AIAPAGDS-O 

[§] iR¥A~~~E!~)~EQUESTS 
A. IF THE AlA HAD A NON-PAGING 

ERROR SUCH AS A BAD LSID 
~¥~gE¥~¥=Af~I~iD-l) OR 

t~~g~-JkT~¥~DO~tA~NAIA 
IS 8UEUED TO THE INTERNAL 
iUE E TO BE RETURNED TO RSM 

Y THE MAINLINE. INC~ENT 
COUNT OF OMPLETED I 0 
RfiUESTS 1ASMIO~1 tAlA W FOR A PAGE T ST. 

B. IF lOS HAD AN INDETERMINATE 
ERROR BUT NOTHING IS WRONG 
~AiHO~~~~NR~2g~f5 ~~IA) 
RETRIED ~AIAIORTY.l~. IF THE 
R~ ~f8 EgIT%~E~ A PAGE 
~AIAPAGDS-l~ THE AlA IS 
T~C~Ig~I~EEc~T~~ ~ TO 
RETRY THE OPERATION. Ii THE 
~8~~S6NWtBS~~ ~~ROUP OF 
~tl~~G~-~~E T~faCI~ GRggP IS 
THAT ILRSLS~A IS CAL~D TO 
RETRY THE 0 ERATION STEP 8). 

c. ~~0~2~~ ~EfU~E~REig~ 
THE RELATED ENTRY S WN THE 
SWAP CONTROL TABL 
i~ftJ~~At~ A~~tm-gbs 
~~~E~&StHETS~EftiA~)BE 
RETURNED TO RSM BY THE
MAINLINE. IF THE AlA WAS FOR
~H&Ag~~TaFS~l~EDEMf~
~~~ (~~Ig~~, O~LOTS 
FOR NON-VIO PAGES (ASMNVSC). 

Routine 

ILRFRSLT 
ILRFRSLT 

Diagram 25.4.2 SWAPCOMP (Part 2 of 5) 

C. 
SART 

SWAP SET'IS FREED. IN 

ISM.AITO I ~~ ~~f~Thj~A~~~E 
~~Uig~gET6H~S~I~NT~H~E 
MAINLINE. ADJUST THE 
APPROPRIATE COUNTS IF 
THE AlA IS FOR A PAGE 
DATA SET. GO TO STEP 7. 

l'ASM3PIOP I ASMVT 

<::::::>IILRFRSLT I 
IASM ROUTINE I ~ AlA 

ASMIORQC+l 

I I ASINVSC-l 

Label Ref Notes Routine Label Ref 

---- --- ---- ---

I LRFRSL 1 

ILRFRSWl 

Secti~n 2: Method of Operation 5-145 



Input 

Notes 

I------IL 
AlA 

AIAWRITE=1 TIL 
AIAPRIER=1 
AIAPAGDS=1 

AlA 

AIAWRITE=1 L .. ·· .. 
AIAPRIF;R=1 
AIAPAGDS=O 
AIAERROR=1 

Routine 

~ SWAP OUT (AIAWRITE=1) REQUESTS: 

A. IF 105 SUFFERED AN ILRFRSLT 
INDETERMINATE ERROR THE 
~fMSbR~~A~~E~~Tn~DFR~~~ ILRFRSLT 
AND THE AIA(S) ~UEUED TO 
EITHER THE ASMS AG~ (FOR PAGE 
DATA SETS) OR THE ARWAI6i 
1~ SWAP SETb· ILRQIOE 0 
FORS~i~s~~ T~L~BE~sRfI~iR 
IN PROCESSING. 

B. IF THERE WAS A WRITE ERROR ON 
THE OPERATION THIS AlA 
REPRESENTS AND THE ERROR 
~~U~fDI~N aE~~gE~AtftESET, 
ASMSTAOO SOQTHAT IT MAY BE 
WRITTEN TO A DIFFERENT SLOT. 
IF THERE WAS A MISCELLANEOUS 
~O~~~O~bft i~ ON 

1tiH~E'bA~R~~H~u~~E 

C. IF THERE WAS A WRITE ERROR ON 
AASWAPES~tu~u~g: i~G 
~ pEi·'l TO INDICATE THAT 

R AI CAPABLE FOR 
R IS ON THE CAPTURE 
2IScIL~E6n~~~ A 
~~~.~6~Rt!r.2~ THE 

1~'~~~ ~I~~D~~.THE
8UEUE THE AlA TO THE CAPTURE

UEUE.

D. ~~~C~~L~~~~~~DcnH
LSID FROM AlA AND VALIDATE
THE ENTRY.

Diagram 25.4.2 SWAPCOMP (Part 3 of '5)

VS2.03.807

Processing

SWAPCOMP:

~ FOR SWAP OUT REQUESTS:

Label Ref Notes

---- ---

I LRFRSL 1
ILRFRSW1

5-146 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Output

ASMVT SART

l~l~
AlA AlA

I I I I
ASMVT ASMHD

l~
CSHCAPQ I

.1 ASHPERME=1 1

AlA
AlA I I
I I
ASMHD AlA
I ASHCAPQ I.r+ I r
1 ASHCAPER= 1-1

I ASHPERME= 1 1

SPCT ASMHD
ISPCTSSID 1 lIAS~~ I .ISPCTLVAL=11

AlA

I I

Routine Label Ref

---- ---

VS2.03.807

Input Processing Output

SWAPCOMP:
ASMHD

ASHSWPCT=O I

:::AP>005=O: -::::AP,.-O ~
~::I:::::::::J::~:AS:H:P:E:RM::E::O~illr

AlA ASMHD
I AIAPRIER=O I ASHCAPER= 1

> ~ IF THE SWAP COUNT GOES TO
~f~~'C~~~L~~i~ ~~~R~TIONS
SPECIFIC ADDRESS SPACE.
A. IF SWAP OUT WAS TO SWAP : DATA SETS AND NO ERRORS

~~~ES~~~g~~¥RO~P¥~~fE 
ENTRIES. 

B. IF SWAP OUT WAS TO SWAP 
DATA SETS AND ERRORS 
~~~~ ~~~U~~Rt ~~EN~Y 
IN ERROR.

<::::::>IILRFRSW1 I
IASM ROUTINE I

>
SPCTE
ISPCTSSID I
I SPCTLVAL .. 11

L-_~~~HP==ERME~=11Ir.=~ - > ASMHD

ASHCAPER=O

C.
6k ~~ f~~~~¥~~6R
~XY~f~'AR~~gn~ ~~L
RSM. GO TO STEP 7.

<::::::>IIEAVSWPC I
I RSM ROUTINE I

R 0 R 1

10 OR 4 I
C

I
AlA

1 I
ASMHD

I_-'--_I::;::;-'L!:==~>
ASHCAPER=1

D. IF A RETRYABLE ERROR
~XY~~8'T~~E~~A~L
~~~~~'T~~~N~~~LSQA TO 
OPERATION. 

<::::::> I ILRSLSQA I 
I ASM ROUTINE I 

ASMHD AlA 

~r+1 I 
ASHSWAPQ rrD 

I 
R 2 

1 I 

, 
Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ ~~S~~T~~tP x£~NrSIX ~¥~9s FOR 

HAT SPECIF t ADDRES~ SPACE HAVE 
COMPLETED AND BEEN CAPTURED. 

A. IF SWAP OUT WAS TO SWAP DATA 
~~~R~A~~~GR~Eg)tA~Rlb NO 
J~H~~~~g ~~S~~~LO),
~NTRIESlLARE VALIDATED

SPCTLV =11 AND THE LSID'S
OR EACH AI ARE PLACED IN

THE SWAP CONTROL TABLE FOR
THE SUBSEQUENT SWAP IN.

B. IF SWAP OUT WAS TO SWAP DATA ILRFRSLT ILRFRSW1
~~~fiAT~B~AgtR=~RERRORS 
ASHPERMENJ1,' ALL SWAP SETS 
12t~ORao ~~I~p~~~S) 
ARE FREED. 

C. IF NO ERROR OCCURRED lEAVSWPC IEAVSWPC 
~~O~O~~t3~tDIF A 
REGISTER 0 IS SET TO 4 (to 
INDICATE THE ABSENCE OR 
PRESENCE OF THE ERROR TO 
~¥~~s ~EI~~~~~ ~~,~HE 
SWAP COMPLETION ROUTINE. 

D. IF AN ERROR OCCURRED THAT CAN ILRSWAP ILRSLSQA 
BE RETRfED (ASHCAPER-1) ALL 
THE AlA S ARE 8UEUED TO'THE 
SWAP ~EUE (AS SWA~. ILRS A IS CALLED REDRlVE 
6~MTI6r.: LSQA SWAP 

Diagram 25.4.2 SWAPCOMP (Part 4 of 5) 

Section 2: Method of Operation 5-147 



VS2.03.807 

.lnput: Processing output 

§] IF'THERE IS ANOTHER AlA TO ~ 
ATA " 

PROCESS, GO TO STEP 2. r 1-
I ATMCOMP=O I 

~ IF THERE ARE AlA'S ON THE I I 
SARWAITQt CALL ILRSLSgA TO 
~~~E~~W ~~N ~~E~~~O RCES 

<:::::> I ILRSLSQA I
IASM ROUTINE I

IASM3SWPQ I ;;ACI I:A~.:·=·==.]I: =i=====~)

FWAIT2 I ~ Arl I_A ___ 1:=====~>

~ RESET THE RECOVERY
TRACKING BIT IN THE ATA.

~ RETURN TO MAINLINE.

Lll
V

RETURN TO
MAINLINE
ILRPAGCM

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
@] IF THERE ARE MORE AlA'S ON THE

~~OC~~D~Wab ~gEg~E~2~E

§J IF THERE ARE AlA'S ON THE WAIT ILRSWAP ILRSLSQA
~M~~~§~~~~ABI~A8~L~~s6gRCES
4SCCW S) ARE NOW FREE TO PROCESS

HEM.

~ RESET THE TRACKING BIT IN THE
ATA FOR RECOVERY.

~ RETURN TO THE MAINLINE.

Diagram 25.4.2 SWAPCOMP (Part 5 of 5)

5-148 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

IR1.=XPTE I

IR2=RSMHD I

IR13=SAVE I
XPTE

XPTVALID=1

XPTIOERR=O

XPTE

XPTLSID2
NOT=O

I

~

FROM RSM
ROUTINES

Notes Routine

~ ILRFRSLT IS THE MAIN ENTRY

POINT. SECONDARY ENTRY POINTS

ARE ILRFRSL1 AND ILRFRSW1. THE

MAIN ENTRY POINT IS USED BY RSM

ROUTINES TO FREE A SLOT SUCH AS

WHEN A PAGE IS FREED. THIS

MODULE SETS NO FRR OR TRACKING

BIT, IT MERELY RUNS AS A

SUBROUTINE OF THE CALLER.

@) STORE THE CALLERS REGISTERS IN

THE SAVEAREA PASSED IN REGISTER

13.

§] IF THE XPTE IS VALID

(XPTVALID=1) AND NO PREVIOUS

ERRORS WERE DETECTED

(XPTPRIER=O) , FREE THE SLOT BY

SETTING THE APPROPRIATE PAT BIT

TO O. IF THE PAGE WAS DUPLEXED

(XPTLSID2..,=0), FREE THE SECOND

SLOT IN THE SAME MANNER.

Diagram 25.5 ILRFRSL T (Part 1 of 3)

VS2.03.807

Processing

ILRFRSLT:

~ ENTRY POINT

ILRFRSLT-CALLED FROM RSM

TO FREE A SLOT.

STORE CALLERS REGISTERS.

IF THE PAGE IS VALID AND

NO PREVIOUS ERRORS WERE

ENCOUNTERED, FREE THE

SLOT. IF THE PAGE WAS

DUPLEXED, FREE THE SECOND

SLOT.

Label Ref Notes

---- ---

Output

Lr
I
===~>

~ " I

ISAVEAREA I

PAT

lPAT BITS J
10101

Routine Label Ref

---- ---

Section 2: Method of Operation" 5-149

V82.03.807

Input Processing output

§] RESET THE XPTE. GO TO STEP)
11.

@] ENTRY POINT

ILRFRSL 1-CALLED BY ASM
ROUTINES TO FREE A SLOT.

~ SAVE CALLER'S REGISTERS.

is

XPTE

XPTID=O
XPTVALID=O

XPTVIOLP=O

R13

C
I

I ISAVEAREA

r~ALID=lll G

r
~----------------------~

IR1=LSID

IR13=SAVE

Notes Routine Label Ref Notes Routine Label Ref

----- ----- ----- ----
§] RESET THE XPTE BY SETTING

XPTVALID=O, XPTVIOLP=O AND XPTID

(THE TWO LSID'S) TO O. GO TO

STEP 11.

@] ENTRY POINT ILRFRSL1 IS CALLED

BY ASH ROUTINES TO FREE A SLOT.

~ SAVE THE CALLERS REGISTERS IN

THE CALLER PROVIDED SAVE AREA.

Diagram 25.5 ILRFRSL T (Part 2 of 3)

5-150 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

I~
0

IR1=LSlD >
II IR13=SAVE

Notes Routine

@2] FREE THE SLOT BY SETTING THE

APPROPRIATE PAT BIT TO O. GO TO

STEP 11.

@!I ENTRY POINT ILRFRSW1 IS CALLED

BY ASM ROUTINES TO FREE A SWAP

SET.

@] SAVE THE CALLERS REGISTERS IN

THE SAVE AREA PASSED BY THE

CALLER.

~ FREE· THE SWAP SET. BY SETTING THE

APPROPRIATE SAT BIT TO O.

[i2] RESTORE THE CALLER' S REGISTERS.

~ RETURN TO THE CALLER.

Diagram 25.5 ILRFRSLT (Part 3 of 3)

VS2.03.807

Processing

@2] FREE THE SLOT. GO TO STEP

11.

@!I ENTRY POINT ILRFRSW1 -

CALLED BY ASM ROUTINES TO

FREE A SWAP SET.

@] SAVE CALLER' S REGISTERS.

~ FREE THE SWAP SET.

E2J RESTORE CALLER' S

REGISTERS.

~ RETURN TO CALLER.

Label Ref Notes

---- ---

[Jl
V

RETURN TO
CALLER

Output

PAT

> IPATBITS
01101 I

R13

C
I

ISAVEAREA I
SAT

IgATBITS
11101 I

Routine Label Ref

---- ---

Section 2: Method of Operation 5-151

1/0 Subsystem
The I/O Subsystem communicates with lOS to
effect the physical transfer of data between real
and auxiliary storage. When paging I/O is required,
I/o Control schedules an SRB to start the I/O
Subsystem processing. The I/O Subsystem selects
the page data sets for which paging is pending,
allocates slots if necessary, builds channel
programs, calls lOS through the STARTIO macro to
initiate the actual I/O, and, after return from lOS,
returns the completed requests to I/O Control.

The I/O Subsystem is "completion" driven, that
is, the page completion portion of I/O Control
drives the I/O Subsystem when previously
scheduled I/O completes. Only when no I/O is
currently outstanding is the I/O Subsystem driven
by the initial page processing portion of I/O

Control.
I/O Subsystem processing is done by three

modules: the Part Monitor (ILRPTM), Slot Sort
(lLRSRT), and Completion (ILRCMP). The I/O
Subsystem contains one other module, the Message
module (lLRMSGOO), which produces the messages
issued by ASM.

I/O Subsystem can be divided into two basic
parts: Initial Processing (prior to the call to lOS),
and Completion Processing (upon return from lOS).

Initial Processing
Initial Processing starts when ILRPTM receives
control (SRB mode) from I/O Control. Paging
requests are represented by 10Es (I/O Request
Elements) pointing to AlAs (ASM I/O Request
Areas). Before passing control to ILRPTM, I/O
Control queues each 10E to the PARTE (Page
Activity Reference Table Entry) for the ASM data
set against which the paging request is being made.

There are three queues of PARTEs. The first is a
straight queue of PLPA, Common, and Duplex data
set PARTEs. The other two are circular queues (the
last PARTE on the queue points to the first) for
local page data sets, one for fixed- and one for
movable-head devices. ILRPTM examines all
PARTEs on these two queues each time it is called.
ILRPTM processes the PARTEs in the following
order: PLPA, Common, Duplex, fixed-head queue,
movable-head queue.

ILRPTM scans each PARTE and calls Slot Sort
(ILSRT) if all the following conditions are met:

• There is a read or write request on the
PARTE.

5-152 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V82.03.807

• If the request is a write, there is at least one
slot available in the data set represented by
that PARTE.

• The PARTE is not locked (in use by another
cpu). If it is not, ILRPTM turns on an
in-process flag to lock out this PARTE from
other CPUs.

• . A PCCW (Program Channel Command
Workarea, used by ASM to identify a page I/O
request), is available.

• An 10RB (I/O Request Block) is available.
The IORB is the main interface with lOS.

There are two read queues on a PARTE, one
sorted and one unsorted. Before passing control to
ILRSRT,ILRPTM sorts the. unsorted reads and
inserts them onto the sorted queue.

During processing, if the PLP A data set fills
before all PLPA pages are written, the remainder
are written to the Common paging data set.
Conversely, Common writes can spill over into
PLPA. If PLPA and Common are both full or one is
unusable, ILRPTM calls the message routine
(ILRMSGOO). If duplexing is active, ILRMSGOO
notifies the operator that the system is relying on
the secondary copy. If duplexing is not active,
ILRMSGOO . terminates the system. If the Duplex
data set is unusable, but both PLPA and Common
are not, the operator is notified and the system
continues, relying on the primary copy. If Duplex is
unusable and if PLPA or Common is unusable or
both are full, ILRMSGOO terminates the system.

ILRSRT sorts the I/o requests against a page
data set in such a way that they can be processed
with a minimum number of device revolutions.
ILRSRT chooses a cylinder between the one it last
used and the end of the data set. If none can be
selected, ILRSRT. starts again from the beginning of
the data set. (If there is only one read and no
writes to be done, ILRSRT takes a quick path to
process the read, bypassing the cylinder seleciion
process.) If no cylinder is found on the data set
(no reads and no more available slots), the
data-set-full return code is set and I/O processing
for this data set on this ILRSRT invocation ceases.

After ILRSRT selects a cylinder, it selects a slot,
dequeues the 10E to be processed to that slot,
builds a PCCW for the operation, and chains the
PCCW from the IORB. When all requests possible
for a specific cylinder are processed, ILRSRT finds
the next cylinder for I/O.

Processing of cylinders and slots stops when
resources (pccws, 10Es, available slots, etc.) are
exhausted or when the current service burst (the

maximum amount of time the channel/device can
be tied up for a given set of operations) is met.
Finally, ILRSRT completes initialization of an
10RB-IOSB-SRB chain (IOSB is the I/O Supervisor
Block) and branch enters lOS via the ST ARTIO
macro.

Completion Processing
When the physical I/o operation completes, lOS
returns control to the Completion module
(ILRCMP) of the I/O Subsystem. The function of
ILRCMP is to return AlAs to page completion
(ILRPAGCM, part of I/O Control). If an error has
occurred and retry is possible, ILRCMP causes an
AlA to be reprocessed before returning it to
ILRPAGCM. ILRCMP has four major routines:

• Disabled Interrupt Exit (entry point
ILRCMPDI).

• Normal End Appendage (entry point
ILRCMPNE).

• Abnormal End Appendage (entry point
ILRCMPAE).

• Termination (ILRCMP).

Any I/O completion involves at least two calls to
ILRCMP entry points. For successful I/O, both calls
are to ILCMPDI. If there were errors on the I/O,
the first call is to ILCMPDI, and the subsequent
calls are to other entries of ILRCMP depending on
the types of errors.

Disabled Interrupt Exit
lOS first returns control to ILRCMPDI, passing it the
address of an 10SB. ILRCMPDI follows the
IOSB-IORB-S/pccw chain, and processes the
individual requests represented by the s/pccws.
After a successful I/o, on the first branch entry to
ILRCMPDI it frees the s/pccws, returns the
associated AlAs to ILRPAGCM, and returns to lOS.
lOS branch enters ILRCMPDI a second time so that
ILRCMPDI can release the 10RB of the successfully
completed request, and, if work remains on the
associated PARTE/SARTE, schedule ILRPTM or
ILRSWPDR as appropriate. On the first branch
entry after an unsuccessfulI/o, ILRCMPDI returns
to lOS with a code indicating that tbe Post Status
·routine (IECVPST) should get control. lOS must
schedule an SRB for POST STATUS, who calls the
appropriate entry in ILRCMP.

Normal End Appendage
IECVPST calls ILRCMPNE if the error is a
wrong-length record or a unit exception. ILRCMPNE
immediately returns to· IECVPST with a code

VS2.03.807

indicating that control should be passed to DASD
ERP (Error Recovery Procedure) for retry.

IECVPST also calls ILRCMPNE if DASD ERP
retried successfully. In this case, ILRCMPNE
removes the s/pccws from the 10SB-IORB, returns
the s/pccws to the appropriate available queue,
and returns the processed AlAs to ILRPAGCM.

Abnormal End Appendage
IECVPST calls ILRCMP AE on all errors other than
the two mentioned in the previous section. If
ILRCMPAE determines that the error is temporary,
it returns immediately to IECVPST with a code
indicating that control should be passed to DASD
ERP for retry.

If the error is permanent, it indicates that either
an entire page/swap data set or a slot is unusable.
If it is a data set error, control is passed to
ILRMSGOO to determine whether the system can
continue and to take appropriate action - either
sending a message or taking the system down.
Additionally, ILRCMP AE calls a subroutine to mark
all the s/pccws as errors. If it is a slot error,
ILRCMPAE records the LSID in a bad slot list in
SQA and queues the error S/PCCW AlA to be
returned to ILRPAGCM. ILRCMPAE rechains the
s/pccws following the one in error and returns to
IECVPST with a code indicating that a new
ST ARTIO should be issued to retry them.

Termination
IECVPST calls ILRCMP if an ABEND occurs within
lOS or within ILRCMPNE or ILRCMPAE. This means
the status of the I/O is indeterminable, so ILRCMP
marks all the AlAs for retry, returns them to
ILRPAGCM, frees the 10RB associated with the AlAs

and schedules ILRPTM or ILRSWPDR as appropriate.
IECVPST also calls ILRCMP after ILRCMP AE or

ILRCMPNE has freed all the s/pccws. In this case,
ILRCMP frees the 10RB and schedules the SRB if
necessary.

Message Module
The Message Module (ILRMSGOO) is used by the
Part Monitor (ILRPTM), I/O Completion (ILRCMP),
and the recovery modules ILRCMP01, ILRSRTOI and
ILRSWPOI.

ILRMSGOO has two primary functions: to write
messages to the operator concerning the status of
all page and swap data sets; to terminate the
system when ASM is unable to continue. Reasons
for termination are: PLPA or Common has become
unusable and there is no Duplex data set available;
Duplex has become unusable and PLPA/ Common is

Section 2: Method of Operation 5-153

unusable or both are full; the last Local page data
set has become unusable.

When ILRMSGOO. is provided with a message
number, it issues that message to the operator and
returns to the caller. If the message number
provided is eight, ILRMSGOO passes control to
IGFPTERM to terminate the system.

5-154 OS/VS2 System lDsic Libruy Volume 5 (VS2.03.807)

VS2.03.807

If a message number is not provided to
ILRMSGOO, it· determines what message to issue and
updates the appropriate flag and count fields in the
ASMVT, PART, and SART. If necessary, ILRMSGOO

passes control to IGFPTERM to terminate the
system.

1
I 25.6.

Part Monitor -(ILRPTM)

l 25.7

Slot Sort -
(ILRSRT)

Module 25.x.
25.x.y. Entry point in module 25.x.

Figure 2-58. I/O Subsystem Overview

VS2.03.807

I 2

I/O Subsystem

I

l II ~

l 25.9

ASM Message
Routine
(ILRMSGOO)

I
I 25.8

I/O Completion
(ILRCMP)

I 25.8.1

,01 E Routine
(ILRCMPOI~

I 25.8.2

Abnormal End
Appendage
(ILRCMPAE)

125.8.3

Normal End
Appendage
(ILRCMPNE)

Section 2: Method of Operation 5-155

VS2.03.807

Input Processirig Output

PART

PARTCOMQ
PARTDUPQ
PARTLOCQ
PAREIOE
PARENODE

PART IORB

IPAREIORB
1r+1 I

FROM
DISPATCHER

I
M >
'l!r==~)

I

Notes Routine

@] ILRPTM (PART MONITOR) RECEIVES
CONTROL IN SRB MODE TO INITIATE
WORK ON PAGE DATA SETS. THE
INFORMATION ABOUT A PAGE DATA
SET IS CONTAINED IN A PARTE IN
THE PART. THERE IS ONE PARTE FOR
EACH PAGE DATA SET. FOR RECOVERY
PURPOSES, ILRSRT01 RECOVERY
ROUTINE HANDLES ERRORS OCCURRING
IN ILRPTM.

§] ONLY 1 SRB FOR ILRPTM CAN BE
SCHEDULED AT A TIME. IF ANY WORK
IS ADDED AFTER THIS ENTRY,
ILRPTM WILL BE SCHEDULED AGAIN.

@] A PAGE DATA SET,WILL BE
PROCESSED IF THERE ARE WRITES ON
ITS CORRESPONDING WRITE QUEUE IN
THE PART HEADER, OR READS IN
EITHER OF ITS READ QUEUES
(SORTED AND UNSORTED) IN THE
PARTE, AND THAT PARTE IS NOT
CURRENTLY BEING PROCESSED. THE
POSSIBLE WRITE QUEUES ARE
PARTCOMQ, PARTDUPQ, AND
PARTLOCQ. MORE THAN ONE PARTE
CAN, POINT ,TO THE SAME WRITE
QUE~E. "THE SORTED AND UNSORTED

Diagram 25.6 ILRPTM (Part 1 of 3)

ILRPTM:

@] ILRPTM'S SRB IS SCHEDULED
BY ILRPAGIO AND ILRCMP TO
GET PAGE DATA SET
PROCESSING STARTED.

§] MAKE SRB AVAILABLE FOR
RESCHEDULING.

@] DETERMINE PAGE DATA SET'TO
PROCESS.

I §) GET THE IOE'S FROM THE
WRITE QUEUE FOR THE PAGE

I
DATA SET.

@] LOCK THE PARTE.

~ GET AN AVAILABLE IORB.
I

Label Ref Notes

---- --- READ QUEUES ARE PARENODE AND
PAREIOE, RESPECTIVELY. THE

,ADDRESS OF THE PARTE SELECTED IS
PUT IN THE PARAMETER LIST.

[EJ ALL IOES CHAINED ON THE WRITE
QUEUE ARE REMOVED AND PUT ON THE
WRITE QUEUE IN THE PARAMETER
LIST. THE ASM CLASS LOCK WILL
SERIALIZE THE WRITE QUEUES.

@] THE PART ENTRY IS LOCKED TO
SERIALIZE PROCESSING OF THE PAGE
DATA SET.

~ PUT THE IORB ADDRESS IN THE
PARAMETER LIST. IF THERE ARE NO
IORB'S FOR THIS PARTE AT ALL,
PART MONITOR ABENDS 084 SO THAT
RECOVERY CAN BUILD AN lORB FOR
THIS PARTE. IF NO IORB IS
AVAILABLE, THE PART ENTRY IS
UNLOCKED AND PROCESSING
CONTINUES AT THE NEXT ENTRY.

5-156 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

PARMLIST
IORB
PARE
PCCW
WRTQ
BWK

Routine Label Ref

---- ---

GETWRTQ 25.6.1

Input

ASMVT PCCW

I ASMPCCWQ
Irl I

~ I
PARTE

IPAREIOE I

PARMLIST M lORB
PARE

PCCW

WRTQ
BWl<

Notes

@2] PUT, THE PCCW ADDRESS IN THE

PARAMETER LIST. IF NO PCCW IS
AVAILABLE THE lORB IS MADE

AVAILABLE, THE PARTE UNLOCKED,

AND PART MONITOR EXITS.

@!] AN ADDITIONAL CHECK IS MADE TO
DETERMINE IF THERE IS STILL WORK

TO DO, AND ANY UNSORTED READS

ARE SORTED ACCORDING TO CYLINDER

LOCATION AND PUT ONTO THE SORTED

READ QUEUE (PARENODE).

@!] ILRSRT IS CALLED TO SORT

REQUESTS, BUILD THE CHANNEL

PROGRAMS, AND START THE I/O.

~ THE PART ENTRIES ARE PROCESSED

IN THE FOLLOWING ORDER - PLPA,
COMMON, DUPLEX, QUEUE OF ALL

FIXED HEAD LOCALS, QUEUEU Of ALL

MOVABLE HEAD LOCALS. CALL DSFULL

TO DETERMINE WHICH DATA SETS ARE

FULL AND WHICH CAN ACCEPT A

WRITE. FOR DRUMS, IF MORE WORK
REMAINS, STEPS 6-9 ARE REPEATED.

Q!] THE PCCW ADDRESS IS KEPT IN THE

Diagram 25.6 ILRPTM (Part 2 of 3)

VS2.03.801

Processing

> @] GET A PCCW. :
> @!] SORT ANY UNSORTED READS. :

>

~ SORT THE REQUESTS AND
START THE I/O.

~IILRSRTI
IASM ROUTINE I

~ REPEAT STEPS 3-9 UNTIL ALL
PART ENTRIES HAVE BEEN

PROCESSED.

Q!] IF A PCCW IS LEFT IN THE
PARAMETER LIST, RETURN IT

TO THE PCCW AVAILABLE

QUEUE'.

~ IF WRITE REQUESTS ARE LEFT

IN PARAMETER LIST, RETURN
THEM TO THE APPROPRIATE

PART HEADER WRITE QUEUE.

Output

PARTE

IPAR~E I

Routine Label Ref Notes Routine

---- --- PARAMETER LIST. IF ILRSRT

RETURNS A PCCW, STEP 7 WILL NOT
HAVE TO BE DONE FOR THE NEXT

PARTE. FINAL CLEANUP REQUIRES

THAT ANY RESOURCES REMAINING BE
RETURNED.

SORTREAD 25.6.2
~ IF WRITES ARE RETURNED FROM

ILRSRT, STEP 4 WILL HAVE TO BE

EXPANDED FOR THE NEXT PARTE AS

FOLLOWS. IF THE PREVIOUS WRITE

QUEUE IS THE SAME AS THE CURRENT

WRITE QUEUE, THE NEW WRITES ARE

JUST ADDED TO THE QUEUE IN THE
ILRSRT ILRSRT PARAMETER LIST. IF THEY ARE NOT

THE SAME, THE OLD WRITES WILL BE

PUT BACK ON THEIR WRITE QUEUE

BEFORE THE NEW ONES ARE

DSFULL 25.6.3
OBTAINED. FINAL CLEANUP REQUIRES

THAT ANY WRITES REMAINING BE PUT

BACK ON THE APPROPRIATE QUEUE.

Label Ref

---- ---

Section 2: Method of Operation 5-157

VS2.03.807

Input Processing Output

R 1 AlA

C r ,
AlA

I I

P~ART r+ A I I-A-----.,Lr; .===~) [22] IF ANY AlA'S ARE ON
--II PARTAIAE .QUEUE, PASS THEM

PARTAlAE
TO ILRPAGCM FOR FURTHER
PROCESSING. L-______________________ ~

<::::::>IILRPAGCM I
IASM ROUTINE I

~ RETURN TO DISPATCHER.

[j1
V

TO DISPATCHER.

Notes Routine Label Ref Notes Routine Label Ref

--- ---- ---- ----
[22] ANY ERROR AlA'S RETURNED BY ILRPAGCM ILRPAGCM

ILRSRT WILL BE REMOVED FROM THE
PARTAlAE QUEUE TO BE PASSED TO

ILRPAGCM.

rEl ILRPTM RUNS IN SRB MODE SO
CONTROL IS RETURNED TO THE
DISPATCHER.

Diasram 25.6 ILRPTM (Part 3 of 3)

5-158 OS/VS2 System Lo,ic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing

R 1 PARMLIST I
I Ir+~

WRTQ I

PARTE II
PARTCOMQ

PARTDUPQ

PARTLOCQ

PAREWTQE

FROM ILRPTM
MAINLINE

>

>

Notes Routine

@:i] WRITE REQUESTS FOR THE CURRENT

PARTE (PAGE DATA SET) ARE TO BE

OBTAINED. ALL WRITE REQUESTS ARE

IN QUEUES IN THE PART HEADER OR

ON THE INTERNAL QUEUE BEING

PASSED TO ILRSRT. ANY WRITE

REQUESTS NOT PROCESSED BY ILRSRT

FOR THE PREVIOUS PARTE ARE STILL

ON THIS INTERNAL QUEUE. IF A

PARTE HEADER WRITE QUEUE

DIFFERENT FROM THE PREVIOUS ONE

IS TO BE USED FOR THE PARTE AND

REQUESTS ARE LEFT ON THE

INTERNAL QUEUE, THE INTERNAL

QUEUE IS CLEARED (WRITE REQUESTS

RETURNED TO ORIGINAL QUEUE). THE

INTERNAL QUEUE WILL BE FILLED IN

STEP 2.

@] IF THERE ARE NO WRITE REQUESTS

ON THE INTERNAL QUEUE, IT IS

FILLED ~ITH NEW REQUESTS FROM

THE APPROPRIATE PART HEADER

QUEUE FOR THE CURRENT PARTE.

Diagram 25.6.1 GETWRTQ (Part 1 of 2)

GETWRTQ:

@:i] IF THE WRITE QUEUE OF THE

PREVIOUS PARTE IS NOT THE

SAME FOR THE CURRENT PARTE

AND WRITE REQUESTS ARE ON

THE INTERNAL QUEUE:.

A. GET ASM CLASS LOCK.

B. SET LOCK INDICATOR.

C. RETURN WRITES ON

INTERNAL QUEUE TO FRONT

OF WRITE QUEUE OF

PREVIOUS PARTE.

@] IF NO WRITE REQUESTS ARE

ON INTERNAL QuEUE AND

WRITES REQUESTS ARE ON

WRITE QUEUE OF CURRENT

PARTE.

A. GET ASM CLASS LOCK, IF

NOT HELD AND SET

INDICATOR.

B. PUT ALL WRITES FROM

CURRENT WRITE QUEUE ON

INTERNAL QUEUE.

Label Ref Notes

---- ---

Outp~

PART

PARTCOMQ

PARTDUPQ lb
PARTLOCQ

PAREWTQE

R 1 PARMLIST

I Ir+~ WTQE
~

Routine Label Ref

---- ---

Section 2: Method of Operation 5-159

Input

Notes Routine

@] SINCE BOTH PARTES ARE TO USE THE

SAME PART HEADER QUEUE OF WRITE

REQUESTS, USE THE REQUESTS LEFT

OVER FROM LAST PARTE PROCESSING.

~ LOCK INDICATORS SET SO THAT LOCK

WILL BE OBTAINED ONLY ONCE AND

FREED ONLY ONCE.

Diagram 25.6.1 GETWRTQ (Part 2 of 2)

VS2.03.807

Processing

@TI IF PREVIOUS PARTE WRITE

QUEUE IS THE SAME FOR

CURRENT PARTE AND WRITE

REQUESTS ARE ALREADY ON

INTERNAL QUEUE, LEAVE AS

IS.

~ RELEASE ASM CLASS LOCK, IF

HELD, AND RESET INDICATOR.

Label Ref Notes

---- ---

V
RETURN TO
ILRPTM
MAINLINE

5-160 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Ou.put

Routine Label Ref -_._- ---

Input
FROM ILRPTM
MAINLINE

9 1h!J
J

PARTE IOE

I PAREIOEQ 'I.r+rl i-O-E-NX-T---'

IPARENOD~ .

'L--_---I'

Notes Routine

@!] THE ENTIRE CHAIN OF READ

REQUESTS (IOES) IS REMOVED FROM

PAREIOEQ AND PAREIOEQ IS SET TO

ZERO. COMPARE A~D SWAP (CS) IS

USED FOR SERIALIZATION.

§] THE READ IOES ARE SORTED
ACCORDING TO CYLINDER AND

RELATIVE SLOT NUMBER.

~ EACH IOE IS PLACED ON A

TWO-DIRECTION TREE ACCORDING TO

ITS RELATIVE SLOT NUMBER. ONE

DIRECTION REPRESENTS LESS THAN

OR EQUAL, THE OTHER DIRECTION

REPRESENTS GREATER THAN. IN

ORDER TO GROUP IOES REPRESENTING

READ REQUESTS FROM THE SAME

CYLINDER TOGETHER AN INSERTION
IS SOMETIMES NECESSARY IN THE

MIDDLE OF A 'LEG' OF THE TREE.

THE TOP OF THE TREE IS POINTED

TO BY PARENODE.

§] IF THERE ARE NO READS ALREADY ON
THE TREE, JUST SET TOP NODE

(PARENODE) TO POINT TO THIS IOE.
OTHERWISE, CALL ADRTTREE TO ADD

Diagram 25.6.2 SORTREAD (Part 1 of 1)

VS2.03.807

Processing Output

SORTREAD:

@2] REMOVE READ IOES FROM

PARTE QUEUE.

§] COMPUTE CYLINDER AND SLOT
NUMBER WITHIN CYLINDER.

§] PERFORM TREE SORT ON IOE

ACCORDING TO RELATIVE SLOT

NUMBER.

PARTE IOE

IPARENODE IJ IOENXTLE

IOENXTGT

[§] ADD IOE TO SORTED READ

QUEUE. Lb
[§] SPECIAL CASE: IF THIS IS

THE ONLY READ AND THERE

ARE NO WRITE REQUESTS, SET
SPECIAL INDICATOR ON
SORTED TREE.

~ RETURN.

L---,l
V

TO ILRPTM
MAINLINE

Label Ref Notes

---- ---
THE IOE TO THE SORTED READ

QUEUE.

[§] IF THIS IS THE ONLY READ AND

THERE ARE NO WRITES, SET

AlA

I

PARENODE TO ITS COMPLEMENT FOR A

SPECIAL PATH THROUGH ILRSRT.

ADRTTREE 25.6.4

IOEAIA

IOEBKPTR

I

Routine Label Ref

---- ---

Section 2: Method of Operation 5-161

Input

ASMVT

~
PARTE

I·MESLTA I

FROM ILRPTM
MAINLINE

Notes Routine

@TI IF PLPA DATA SET IS FULL (NO

MORE SLOTS AVAILABLE), SET THE

FLAG IN ASMVT (ASMPLPAF).

~ IF COMMON DATA SET IS FULL, SET

THE FLAG IN ASMVT (ASMCOMMF).

@] IF DUPLEX DATA SET IS FULL, SET

THE FLAGS INDICATING DUPLEXING

IS SUSPENDED (ASMDUPLX OFF,

ASMNODPX ON) •

§J IF PLPA IS FULL, COMMON IS NOT

MARKED BAD, AND COMMON IS NOT

FULL, SET UP FOR WRITES TO GO TO

THE COMMON DATA SET BY SETTING

PAREWTQE TO 0 FOR PLPA AND

PAREWTQE TO THE ADDRESS OF THE

PARTCOMQ FOR COMMON.

~ IF ~OMMON IS FULL AND PLPA IS

NOT MARKED AS BAD,. AND PLPA IS

WOT FULL, SET UP FOR THESE

WRITES TO GO TO P~PA BY MOVING

WRITES TO THE SPECIAL SPILL

WRITE QUEUE.

Diagram 25.6.3 DSFULL (Part 1 of 2)

VS2.03.807

Processing

DSFULL:

@2] IF PLPA IS FULL, SET THE

PLPAFULL INDICATOR.

~ IF COMMON IS FULL, SET THE

COMMON FULL INDICATOR.

@2] IF DUPLEX IS FULL,

INDICATE THAT DUPLEXING IS

SUSPENDED.

IF PLPA IS FULL AND COMMON I
IS USABLE, SET UP COMMON I I
::O:~ITES TO GO TO I rP
IF COMMON IS FULL AND PLPA~
IS USABLE, SET UP COMMON

AREA WRITES TO GO TO PLPA.

~ IF PLPA IS FULL, COMMON IS

FULL, AND DUPLEXING IS ON,

MARK EACH AlA LSID FIELD

ZERO AND PUT THE AlA ON

THE PART ERROR QUEUE.

Output

ASMVT

I I

PART

PARTSPLQ

PARTCOMQ

Label Ref Notes Routine

---- ---
~ IF PLPA AND COMMON ARE FULL AND

DUPLEXING IS STILL ACTIVE, EACH

AlA ON THE WRITE QUEUE IS MARKED

AS AIALSID EQUAL ZERO AND PUT ON

THE PART ERROR QUEUE. THESE AlAS

WILL LATER BE SENT TO ILRPAGCM

TO HANDLE.

5-162 OSlVS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

Input

Notes Routine

@2] IF DUPLEX DATA SET IS FULL AND

BOTH PLPA AND COMMON ARE

USEABLE, ALL AlAS ON THE DUPLEX

WRITE QUEUE WILL BE MARKED AS

SECONDARY ERROR AND·PUT ON THE

PARTAIAE QUEUE. THESE AlAS WILL

LATER BE SENT TO ILRPAGCM TO

HANDLE.

~ IF ACCESS TO SOME PLPA OR COMMON ILRMSGOO

PAGES HAS BEEN LOST, ILRMSGOO

TERMINATES THE SYSTEM. IF

PROCESSING CAN CONTINUE,

ILRMSGOO INFORMS THE OPERATOR OF

WHAT HAS JUST HAPPENED, IF HE

HAS NOT ALREADY BEEN INFORMED.

Diagram 25.6.3 DSFULL (Part 2 of 2)

VS2.03.807

Processing

@2] IF DUPLEXING IS FULL AND

BOTH PLPA AND COMMON ARE

USABLE, MARK EACH AlA AS A

DUPLEX ERROR AND PUT IT ON

THE PART ERROR QUEUE.

~ IF PLPA IS NOT USEABLE,

COMMON IS NOT USEABLE, AND

DUPLEXING IS NOT ACTIVE

TERMINATE THE SYSTEM. IF

CONTINUING, ISSUE THE

APPROPRIATE MESSAGE.

Label Ref Notes

---- ---

ILRMSGOO

V
ILRPTM
MAINLINE

Output

Routine Label Ref

---- ---

Section 2: Method of Operation 5-163

Input

IOEPTR

I Ir
PARTE

IPARENODE I

IOE
IOENXT

IOEAIA

FROM SORTREAD
(ILRPTM

I

SUBROiS

M >

Notes Routine

@2J THE TREE OF READ IOES IS POINTED
TO BY PARENODE. A BACKWARD
POINTER IS USED TO ALLOW UPWARD
AS WELL AS DOWNWARD MOVEMENT
WHEN SCANNING THE TREE. AN
INSF.RTION IS NECESSARY WHEN
NORMAL SORTING WOULD SEPARATE
TWO NODES ASSOCIATED WITH
REQUESTS FOR THE SAME CYLINDER.

Diagram 25.6.4 ADRTTREE (Part 1 of 1)

V82.03.807

ADRTTREE:

@2J PUT AN IOE ONTO ITS
APPROPRIATE PLACE ON THE
TREE OF READ IOES.

Label Ref Notes
---- ---

I
[Jl

V
TO CALLER.

5-164 OS/YS2 System Logic Library Volume 5 (VS2.03.807)

.".

Output

PARTE IOE

IPARENODE I r IOENXTLE
IOENXTGT
IOEAIA
IOEBKPTR

Routine Label Ref

---- ---

Input
FROM ILRPTM

R 1 IORB I
! I TI I

[........ IST PCCW
IORB rl I
PARTE
PCCW BWK
WRTQ r I
BWK

PARTE

·1· I
IOE

I I .

Notes Routine

@2] ILRSRT IS CALLED BY ILRPTM TO
PROCESS ONE PAGE DATA SET.
ILRSRT PREPARES THE I/O REQUESTS
FOR A SERVICE BURST OF WORK AND
STARTS THE I/O. INITIALIZE
WORKING VARIABLES, ESTABLISH
CONTROL BLOCK ADDRESSABILITY.
FOR RECOVERY PURPOSES, ILRSRT01
RECOVERY ROUTINE HANDLES ERRORS
OCCURRING IN ILRSRT.

[@ A SPECIAL PATH FOR ONE READ AND
NO WRITES - PARENODE (THE SORTED
READ QUEUE) WILL BE NEGATIVE.

A. REMOVE READ FROM QUEUE, ZERO
QUEUE AND COMPLEMENT ADDRESS
TO GET VALID ADDRESS.

B. CALL PROCHIT TO BUILD CCWS
FOR THIS REQUEST.

[ill NORMAL PATH THROUGH SLOT SORT:

A. DETERMINE CYLINDER TO·PROCESS
BASED ON THE CURRENT POSITION
OF THE CYLINDER.

B. CALL PROCREQS TO DETERMINE

Diagram 25.7 ILRSR T (Part 1 of 1)

VS2.03.807

Processing Output

ILRSRT:

@2] INITIALIZE WORK VARIABLES.

~ IF ONLY 1 READ AND NO
WRITES:

A. REMOVE READ FROM QUEUE.

B. BUILD CONTROL BLOCKS
FOR THAT REQUEST.

§] IF MORE THAN ONE READ
AND/OR WRITE:

A. SELECT THE NEXT
CYLINDER TO BE
PROCESSED .

B. PROCESS REQUESTS ON
CYLINDER BASIS.

lOSB ~ FINAL SET UP FOR CALL TO
lOS.

~ RETURN IOES TO AVAILABLE
QUEUE OF lOES.

C PCCW

I
~ SET UP RETURN CODE.

LJl
ITO ILR~M

L-________________________ ~

Label R~f Notes

----- -----
INITLZ 25.7.1

(BASED ON FEWEST REQUIRED
ROTATIONS) WHICH REQUESTS
WILL BE PROCES$ED. PROCESSING
CONTINUES UNTIL ENOUGH
REQUESTS TO FILL THE SERVICE
BURST ARE BUILT, NO MORE
PCCWS ARE AVAILABLE, OR THERE
ARE NO MORE REQUESTS.

[§J CALL 10 TO COMPLETE SET UP AND
TO ISSUE THE SIO (START I/O)
MACRO.

~ USE COMPARE AND SWAP (CS) TO
RETURN STRING OF ALL THE IOES.

a

~ RETURN CODES: 0 - SUCCESSFUL, NO
WORK REMAINING. 4 - SUCCESSFUL,
READS AND OR WRITES LEFT. 8 -

PROCHIT 25.7.2
DATA SET FULL, NO READS LEFT. 12
- DATA SET FULL, READS LEFT.

PROCREQS 25.7.4

.,.~

IORB

I~I

r PCCW

I

Irl I

Routine Label Ref

---- ---

10 25.7.5

Section 2: Method of Operttiion 5-165

~

VS2.03.807

Input Processing Output
FROM ILRSRT
MAINLINF

INITLZ:
PAT

PATCYLMLW

PATCYLSZ

PATMAP

~ > @2] SET PAT CYLINDER MAP

Ir
INFORMATION.

~ SET ADDRESS OF DEVICE
DEPENDENT FINDSLOT

ROUTINE.

Ilk I CYLMPWDS

I I

=r==n: PARTE PCT

~rlpcTDTm
PAREPCTP

I
PARTE ~

I .. ·BROTH I

Notes

§] OBTAIN INFORMATION NEEDED TO
ACCESS APPROPRIATE SECTION OF

PATMAP. THIS INFORMATION IS THE

NUMBER OF WORDS TO MAP A

CYLINDER AND THE NUMBER OF SLOTS

IN A CYLINDER, AND IT IS

DEVICE-TYPE DEPENDENT.

§] DEVICE TYPE IS DETERMINED FROM

THE PCTCTYPX FIELD IN THE PCT. A
SEPARATE FINDSLOT ROUTINE EXISTS

FOR EACH DEVICE TYPE.

@] ZERO LAST CHOSEN SLOT NUMBER IN

FINDSLOT PARM LIST, INITIALIZE

ALL SLOT FLAGS OFF IN FINDSLOT

PARM LIST, ZERO READ CYLINDER

VALUE (INDICATING READ CYLINDER
TO BE FOUND), INITIALIZE ALL

INTERNAL FLAGS OFF, ZERO RETURN

CODE.

~ THE COMPUTATION CONSISTS OF THE

LENGTH OF A • SERVICE BURST'
(ASMBURST) DIVIDED BY THE TIME

TO PROCESS A SINGLE REQUEST
(PARERQTM) PLUS TWO. A MINIMUM

OF TWO REQUESTS WILL ALWAYS BE

Diagram 25. 7.1 INITLZ (Part 1 of 1)

)

Routine

@] ZERO WORK VARIABLES.

~ COMPUTE MAXIMUM NUMBER OF

I/O REQUESTS TO PROCESS.

Label Ref Notes

---- ---

III
I ~

L---,l
V

TO ILRSR
MAINLINE

~

SET IN REQNEED.

5-166 9,~/VS2 System Logic Library Volume 5 (VS2.03.807)

FSRTNPTR

I I
SCYLCOPY

I I
SCYLRDWT

f I
SRTELGS

I I
REQNEED

I I

Routine

II

CYLSLOTS

I

SCYLREAD

I I
SSLOT

I I

Label Ref

---- ---

VS2.03.807

Input

I
IOE PCCW

I , I

ASMVT PCCW

~rl

Processing

b~O~ Lk~~fREQS
MAINLINE

Ii

D:> ~OPR10CHIT:
~ ~, ~ INITIALIZE PCCW FOR I/O

AND CHAIN TO IORB - IOSB.

~ PUT roE ON INTERNAL

AVAILABLE QUEUE.

,I ~~;::::==~) @l]GETANOTHERPCCW.

I

Notes Routine Label Ref Notes

---- ---
§] CALL IOCHAIN TO INITIALIZE PCCW IOCHAIN 25.7.6

AND CHAIN IT TO IOSB-IORB.

~ PUT IOE ON INTERNAL QUEUE. WHEN

PROCESSING COMPLETE, ALL roES

WILL BE FREED USING ONE COMPARE

AND SWAP (CS) •

@l] IF MORE REQUESTS TO PROCESS AND

SERVICE BURST NOT MET YET, GET A

ANOTHER PCCW FROM AVAILABLE

QUEUE.

Diagram 25.7.2 PROCHIT (Part 1 of 1)

Output

rll"---I-ORB-,.r+-L=-CCW -=0]-"1

LJl
V

I~R~~~REQS OR
MAINLINE

Routine Label Ref

---- ---

Section 2: Method of Operation 5-167

Input

PARELCYL

I I
WRITEQUE

I I
PARTE

IPARENODE

I

READCYL

I I

FROM ILRSRT
MAINLINE

r
~ >

Notes Routine

@2] STARTING POINT VALlE IS THE

CYLINDER OF THIS DATA SET LAST

PROCESSED. END CYLINDER IS

INITIALLY SET TO THE END OF THE

DATA SET. IF A NEW READ CYLINDER

MUST BE FOUND, CALL GETRDCYL.

SET THISCYL AND END CYLINDER

EQUAL TO READCYL IF A READ

CYLINDER IS FOUND.

§] THE CURRENT END CYLINDER IS

EITHER THE NEXT READ CYLINDER OR

THE END OF THE DATA SET. WHEN

THE END OF THE DATA SET IS

REACHED, THE STARTING CYLINDER

IS RESET TO THE BEGINNING OF THE

DATA SET. CALL GETWCYL TO FIND

WRITE CYLINDER.

@TI CALL BRDMASK TO BUILD MASK OF

READ REQUESTS FOR THIS CYLINDER.

[§] INDICATE RETURN CODE 64 TO

INDICATE 'DATA SET FULL'.

Diagram 25.7.3 CSCANCYL (Part 1 of 1)

VS2.03.807

Processing output

CSCANCYL:

@2] FIND THE READ CYLINDER

ADDRESS IF THERE ARE ANY >
READCYL

I I
READS ON THE SORTED TREE

THISCYL
(PARENODE) .

F 1 ~CYLINDER
TO

§] PROCESS)
IF A READ CYLINDER IS NOT

FOUND OR THE READ CYLINDER
SCYLREAD

r.==) FOUND IS NOT THE SAME AS I I THE STARTING POINT VALUE,

IF WRITE REQUESTS EXIST,

SEE IF A WRITE CYLINDER

EXISTS BETWEEN THE

STARTING POINT VALUE AND

THE CURRENT END CYLINDER.

@TI IF CYLINDER ADDRESS CHOSE

HAS READ REQUESTS QUEUED

I
FOR IT, BUILD READ MASK.

[§] ~I
RETCODEB

IF PAGE DATA SET IS FULL

I I AND NO READ REQUESTS

EXI ST, SET 'DATA SET FULL'

RETURN CODE AND INDICATE

TO STOP PROCESSING.

LJl
V

TO ILRSRT
MAINLINE

Label Ref Notes Routine

---- ---
GETRDCYL 25.7.7

GETWCYL 25.7.8

BRDMASK 25.7.9

5-168 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

I

Label Ref

---- ---

VS2.03.807

Input Processing Output

THISCYL

SCYLREAD

PATCYLMP

FROM ILRSRT
MAINLINE

~ PROCREQS:

1 r;:====~> @I] RESET LAST USED CYLINDER
'--___ 1 I, VALUE.

)

rt.==>§!
~~===~

FSRTNPTR REQNEED:---, rn:;,

L=====-~I====::.Jlrl L!: .=~) ~

BUILD CYLINDER MAP MASKS. I I.b
~lb

SELECT EACH SLOT TO BE

PCCWPTR
BEST ROTATIONAL POSITION.

. 1--1 _-----oJ Till!:==:::» §]

PROCESSED ACCORDING TO I

BUILD A PCCW FOR E)\.CH ====:::;,
REQUEST. I II

Notes Routine

@I] SAVE CYLINDER NUMBER FOR NEXT
CYLINDER SCAN SO THAT READ
REQUESTS ARE PROCESSED WITH
MINIMUM ROTATION. §!
FINISH BUILDING THE CYLINDER MAP
MASKS TO BE USED IN PROCESSING
REQUESTS ON THIS CYLINDER.

@] FIND NEXT BEST (REQUIRING FEWEST
~OTATIONS) SLOT TO BE USED.

§] ASSIGN I/O TO SLOT FOUND VIA
FINDSLOT ROUTINE. REPEAT STEPS 3

AND 4 UNTIL NO MORE REQUESTS FOR
THIS CYLINDER, A RESOURCE HAS
RUN OUT, OR THE REQUEST QUOTA
FOR THE SERVICE BURST HAS BEEN
MET.

@] UPDATE PAT CYLINDER MAP AND PART
ENTRY SLOTS AVAILABLE COUNT.

Diagram 25.7.4 PROCREQS (Part 1 of 1)

IF ANY WRITES SELECTED FORr==l~
PROCESSING, UPDATE PAT MAP
TO REFLECT THOSE
UNAVAILABLE SLOTS.

Label

BILDMSKS

FINDSLOT

PROCHIT

WRTUPDTE

Ref

25.7.1
0

~5.7.1

25.7.2

~5. 7.1

Notes

V
TO ILRSRT
MAINLINE

PARTE

IPARBLeYL I
SCYLRDWT

I I
SSLOT

I I
PCCW AlA

IpCCWAIA Ir+§

I
PAT

I IPATMAP I

Routine Label Ref

---- ---

Section 2: Methou of Operation 5-169

Input

FROM ILRSRT
MAINLINE

Notes Routine

§] IF ANY REQUESTS QUEUED:

A. INCREMENT COUNT OF

OUTSTANDING IOSBS FOR ASM.

B. IF THE SERVICE BURST HAS BEEN

FILLED, STORE THE CLOCK.

OTHERWISE, ZERO THE TOD(TIME

OF DAY).

C. SET LAST CCW TO NOP (NO

OPERATION) AND STOP CHAINING.

THIS WILL END THE CHANNEL

PROGRAM FOR THE CHANNEL.

D. GO TO lOS VIA THE STARTIO STARTtO

MACRO.

@] IF NO I/O IS TO BE STARTED, TURN

OFF THE 'IN USE' FLAG IN THE

. IORB.

Diagram 25.7.5 10 (Part 1 of 1)

VS2.03.807

Processing

IF ANY I/O TO BE STARTED:

A. INCREMENT COUNT OF

OUTSTANDING I/O

REQUESTS.

B. STORE THE TOD IN THE

IORB.

C. SET LAST CCW TO NOP

WITH NO CHAINING.

D. ISSUE STARTIO.

~ IF NO I/O TO BE STARTED,

MAKE IORB AVAILABLE.

Label Ref Notes

---- ---

V
TO ILRSRT
MAINLINE

5-170 OS/VS2 System Logic Library Volumf! 5 (VS2.03.807)

Output

ASMVT

I ASMIOCNT I
IORB

IWRTSMP I

IOSB IORB

C
I~I. I

lpccw SRB

I I I I

Routine Label Ref

---- ---

Input

IORB

I IORPCCW

FROM PROCHIT
(ILRSRT
SUBROUTINE)

PCCW I 0:>
IS-IL-------I� illJr;::::==~-'

AlA

IrO_E ____ ~I~LI ______ ~

Notes Routine

@!] PCCWAIA IS SET TO POINT TO THE

AlA CURRENTLY POINTED TO BY THE

IOE FOR THIS REQUEST. PCCWIORB

IS A BACKWARD POINTER TO THE

IORB. THE REAL ADDRESS OF AREA

TO WRITE OUT OR READ INTO IS PUT

IN PCCWADDR.

@] THE SLOT NUMBER IS CONVERTED TO

AN RBA BY MULTIPLYING THE SLOT

NUMBER BY 4096.

@] CONVERT RBA TO A FULL SEEK

ADDRESS (MBBCCHHR). IF AN ERROR

IS ENCOUNTERED DURING THE

CONVERT A X' 083' ABEND IS ISSUED

SINCE EITHER THE EDB (EXTENSION

DATA BLOCK) OR THE PAT HAS BEEN

OVERLAID.

[§] THE APPROPRIATE STRING OF CCWS

IS SET UP. FOR THE FIRST PCCW,

THE CHANNEL PROGRAM STARTS WITH

THE SET SECTOR FOR RPS

(ROTATIONAL POSITION SENSING)

AND THE SEARCH FOR NON RPS. THE

READ/WRITE CCW IS CONVERTED TO

THE APPROPRIATE CODE FOR READ OR

Diagram 25.7.6 IOCHAIN (Part 1 of 1)

YS2.03.807

Processing

IOCHAIN:

~ INITIALIZE PCCW.

~ COMPUTE RELATIVE BYTE

ADDRESS (RBA) •

~ CONVERT RBA TO FULL SEEK

ADDRESS.

~ INITIALIZE CCW STRING TO

APPROPRIATE COMMANDS.

V
TO CALLER

Output

IORB AlA

lIIOR~"" r PCCW

PCCWIORB

PCCWAIA

PCCWADDR

PARAMETER

EDB

RBA

WKAREA

Label Ref Notes Routine Label

---- --- ----
WRITE. FOR ALL OTHER PCCWS, THE

CHANNEL PROGRAM MAY START ~ITH A

SEEK CYLINDER, SEEK HEAD, SET

SECTOR, OR SEARCH DEPENDING ON

THE PREVIOUS CCW STRING. A SET

SECTOR IS ONLY USED WHEN THERE

IS ENOUGH ROOM TO DO A SET

SECTOR AND NOT LOSE A

REVOLUTION. THE PREVIOUS LAST

CCW IS SET TO A TIC TO THE FIRST

CCW IN THIS PCCW. THE READ/WRITE

CCW IS SET TO THE APPROPRIATE

CODE.

I

Ref

Section 2: Method of Operation 5-171

Input

THISCYL

STRTCYL

PARTE

IPARENODE

FROM CSCANCYL
(ILRSRT
SUBROUTINE)

iLL I ~

Notes Routine

@2] THE TREE, POINTED 'iO BY

PARENODE, IS EXAMINED, MOVING

DOWN ONE NODE AT A TIME ALONG

THE APPROPRIATE LEG, KEYING ON

THE CYLINDER ADDRESS VALUE

ASSOCIATED WITH EACH IOE, IN

SEARCH OF ONE OR MORE IOES

REPRESENTING REQUESTS FOR THE

NEAREST CYLINDER ADDRESS TO THE

LAST USED CYLINDER ~DRESS. IF

NO READ CYLINDE~ ADDRESS IS

FOUND BETWEEN THE CURRENT C-SCAN

~:LINDER SCAN) END POINTS, NO

WORK VARIABLES ARE ALTERED.

OTHERWISE READCYL IS SET TO NEW

READY CYLINDER ADDRESS.

"

~l
Diagram 25.7.7 GETRDCYL (Part 1 of 1)

VS2.03.807

Processing Output

GETRDCYL:

IOEPTR IOE

I 1r+1 I @2]SCANTHETREETOFIND THE ====~IL~
IOE REPRESENTING THE ~

NEAREST CYLINDER ADDRESS
READCYL

I I
BEYOND THE LAST USED

CYLINDER ADDRESS.

V
TO CSCANCYL

Label Ref Notes Routine Label Ref

---- --- ---- ---

Input

STRTCYL

THISCYL

PAT

FROM CSCANCYL
(ILRSRT
SUBROUTINE)

iLL I ~

Notes' Routine

@i) A FREE SLOT IS REPRESENTED BY A

BIT OFF IN THE PAT MAP. THE SCAN

IS PERFORMED BETWEEN THE

BEGINNING AND ENDING CYLINDER

VALUES PASSED AS INPUT

PARAMETERS. IF NO CYLINDER

ADDRESS IS FOUND THISCYL WILL

NOT BE RESET. OTHERWISE, THISCYL

WILL BE SET TO WRITE CYLINDER

ADDRESS •

..

Diagram 25.7.S GETWCYL (Part 1 of 1)

VS2.03.807

Processing

GETWCYL:

§] FIND A CYLINDER ADDRESS

CONTAINING AN UNUSED SLOT.

Label Ref Notes

---- ---

I
L~l

V
TO CSCANCYL

Output

THISCYL

:>

Routine Label Ref

---- ---

Section 2: Method of Operation 5-173

Input

/

TOPRDIOE

THISCYL

PARTE

IPARENODE

FROM CSCANCYx.:
(ILRSRT
SUBROUTINE)

iLL I ~

Notes Routine

@) CALL GETLOLEC TO GET

LESS -THAN - EQUAL-TO NODE FOR THIS

CYLINDER.

@] THE APPROPRIATE BIT IN THE

CYLINDER READ MASK (SCYLREAD) IS

SET FOR EACH RELATIVE SLOT

NUMBER FOUND REPRESENTING A READ

REQUEST FOR THIS CYLINDER.

Diagram 25.7.9 BRDMASK (Part 1 of 1)

VS2.03.807

Processing Output

BRDMASK:

FIND THE NODE REPRESENTINGU
THE READ REQUEST FOR THE

LOWEST RELATIVE SLOT

NUMBER IN THE CYLINDER.

FIND ALL NODES ON THE TREE

CYLINDER.

BELONGING TO THE SELECTED I

LJl
V

TO CSCANCYL

Label Ref Notes

---- ---
GETLOLEC 25.7.1

3

SCYLREAD

Routine

5-174 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

Input

W£~Sk~OCREQS
SUBROUTINE)

THISCYL I
I I
PAT

~
~

SCYLREAD

I I

I
WRITEQUE

I I

IPATMAP I I

Notes Routine

@2] THE 3330 IS THE ONLY DEVICE TYPE

WHICH REQUI~ES A 2-WORD MAP TO

DESCRIBE ONE CYLINDER, AS THERE

ARE 58 SLOTS (RECORDS) PER

CYLINDER.

§] A BIT IS TURNED ON IN SCYLRDWT

FOR EACH READ REQUEST FOR THIS

CYLINDER.

@] IF WRITE REQUESTS EXIST, TURN ON

A BIT IN SCYLRDWT FOR EACH

AVAILABLE SLOT.

Diagram 25.7.10 BILDMSKS (Part 1 of 1)

VS2.03.807

Processing

BILDMSKS:

@2] DETERMINE IF CYLINDER MAP ====:::J
IN PAT IS ONE-WORD OR

TWO-WORDS AND COMPUTE

ADDRESS ACCORDINGLY.

SET BIT ON FOR EACH READ

REQUEST FOR THIS CYLINDER.

IF WRITE REQUESTS EXIST,

SET BIT ON FOR EACH

AVAILABLE SLOT.

Label Ref Notes

---- ---

V
TO PROCREQS

Outp\U:

THISCYLA

SCYLRDWT

Routine· Label Ref

---- ---

Section 2: Method of Operation 5-175

VS2.03.807

Input Processing

;n~sk~OCREQS
SUBROUTINE)

I
>

SSLOT ==::::::flL--:>::::~> ~D:::::NEXT BEST SLOT

ACCORD ING TO LEAST ARM

SCYLRDWT
MOVEMENT REQUIRED.

=rl!::~> §]
rp UPDATE READ/WRITE MASK SO =====:.1

SLOT WILL NOT BE CHOSEN
SCYLWRT

1ilL!::==:::::::J>@]

AGAIN.

IF WRITE SELECTED SET

APPROPRIATE BIT IN WRITE

MASK TO LATER UPDATE PAT

MAP.

Notes Routine

@2J EACH DEVICE TYPE HAS A DIFFERENT

TRACK LAYOUT DUE TO TRACK SIZE

AND NUMBER OF TRACKS PER

CYLINDER. A SEPARATE FINDSLOT

ROUTINE IS USED TO DETERMINE THE

NEXT BEST SLOT ON EACH DEVICE

TYPE.

§] ROUTINE IS CALLED FOR EACH I/O

REQUEST FOR THIS CYLINDER WITH

SCYLRDWT AS INPUT.

@J FOR WRITE SLOTS SELECTED, PATMAP

MUST BE UPDATED TO INDICATE SLOT

IS ALLOCATED.

§] SLOT SELECTED IS FOR READ

REQUEST.

@] SLOT SELECTED IS FOR WRITE

REQUEST.

Diagram 25.7.11 FINDSLOT (Part 1 of 1)

~ DETERMINE IF READ SELECTED

AND BRANCH TO APPROPRIATE

ROUTINE.

WRITE SELECTED, BRANCH TO

APPROPRIATE ROUTINE.

Label. Ref Notes

---- ---

GETREAD 25.7.1
4

SETWRITE 25.7.1
5

5-176 OS/VS2 System. Logic Library Volume 5 (VS2.03.807)

rF

'ITO G~REAO

9
SETWRITE

Output

SSLOT

SCYLRDWT

SCYLWRT

Routine Label Ref

---- ---

VS2.03.807

.lnput. Processing Output

THISCYLA

W~S~~OCREQS
SUBROUTINE)

[S
PAT II

I Ir+~ PATMAP
SCYLWRT

I I

!!:!Jr.::=. ~>

PARTE

,"ARES LT. I

EPAWRTCT

I I

Notes Routine

~ THISCYLA CONTAINS THE ADDRESS OF
THE CYLINDER MAP WITHIN THE PAT
FOR THE CYLINDER SELECTED.

@] EPAWRTCT IS AN INITIAL COUNT OF
SLOTS THAT HAVE BEEN ASSIGNED
FOR WRITES. PARESLTA, AVAILABLE
SLOTS, IS DECREMENTED BY
EPAWRTCT. EPAWRTCT IS SET TO
ZERO.

Diagram 25.7.12 WRTUPDTE (Part 1 of 1)

WRTUPDTE:

MARK THE WRITE SLOTS

SELECTED FOR THIS CYLINDER I
AS UNAVAILABLE.

)

DECREMENT AVAILABLE SLOT 6l
COUNT IN PART ENTRY. I

Fil
V

TO PROCREQS

Label Ref Notes

---- ---

PAT

~
PARTE

IPARESLT. I

EPAWRTCT

1
0 I

Routine Label Ref

---- ---

Section 2: Method of Operation 5-177

Input

THISCYL

FROM BRDMASK
(ILRSRT
SUBROUTINE)

VS2.03.807

Processing Output

9~::C;o,
FOR LOWEST SLOT Ot~1 ======~>

I
L---,l

THISNODE

SELECTED CYLINDER.

THISNODE

V
TO BRDMASK

Notes Routine Label Ref Notes Routine

---- ---
§] MOVE DOWN THE LEG OF THE TREE,

STARTING FROM THE NODE PASSED AS

INPUT, UNTIL THE END OF THE LEG

IS REACHED OR THE CYLINDER

NUMBER CHANGES. RETURN A POINTER

TO THE LOWEST NODE STILL ON THE

SELECTED CYLINDER.

Diagram 25.7.13 GETLOLEC (Part 1 of 1)

5-178 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

VS2.03.807

Input processing Output

THISCYL

FROM FINDSLOT
(ILRSRT
SUBROUTINE)

~r.:::=rs~> GETREAD:

COMPUTE RELATIVE SLOT

NUMBER SELECTED. >

L...=SSL==:OT =-------11 ~ @] FIND THE IOE CORRESPONDING::::::::::::~>
TO THAT SLOT NUMBER.

TOPRDIOE IOE II - r;;';l

L...... ___II~I.I....;O...;..E_NX_T_L_E_IF L.92J IOENXTOT

PARTE IOEAIA

IPARENODE IOEBKPTR

REMOVE THE IOE FROM TREE.

Notes Routine Label Ref Notes

---- ---
§] THE FINDSLOT ROUTINE PASSES A

SLOT VALUE RELATIVE TO THE START

OF A CYLINDER. THIS VALUE MUST

BE CONVERTED TO THE RELATIVE

SLOT NUMBER FROM THE BEGINNING

OF THE PAGE DATA SET.

§] FIND READ REQUEST ON TREE
CORRESPONDING TO THE SLOT FOUND

BY THE FINDSLOT ROUTINE.

@] CALL REMVNODE TO REMOVE IOE FROM

THE TREE (SORTED READ QUEUE -

REMVNODE gS.7.1

PARENODE) .

-

Diagram 25.7.14 GETREAD (Part 1 of 1)

I lb
[ll

V
TO PROCREQS

TSLOTNBR IOE

I r IO_T~
IOENXTOT

TOPRDIOE IOEAIA

I I IOEBKPTR

IOEPTR IOE

I I~IIOEAIA I
PARTE

IPARENODE I

Routine . Label Ref

---- ---

Section 2: Method of Operation 5-179

VS2.03.807

Input

FROM FINDSLOT
(ILRSRT
SUBROUTINE)

Processing

SETWRITE:
THISCYL ~~ @2] COMPUTE RELATIVE SLOT

NUMBER SELECTED.

L..:::SSL==OT =---ll::@i]
WRITEQUE IOE r;:;-;-,
I I.r+ Ir-I-OE-NX-T--'I > ~
L.....----...J I IOEAIA 'JJIII
SCYLRDWT ~

WRTCOUNT
JJjr.:::=> §]

L!:I' ==~> §]

Notes Routine Label

@2] THE FINDSLOT ROUTINE PASSES A

SLOT VALUE RELATIVE TO THE START

OF THE SELECTED CYLINDER. THIS
MUST BE CONVERTED TO THE

RELATIVE SLOT NUMBER FROM THE

BEGINNING OF THE PAGE SPACE.

[§] THE FIRST WRITE IOE IS SELECTED

TO USE THE SLOT CHOSEN BY

FINDSLOT.

@] THE READ/WRITE MASK IS UPDATED
SO THAT NO MORE WRITES WILL BE
SELECTED.

§] THIS COUNT is LATER USED TO
UPDATE THE COUNT OF ALLOCATED

SLOTS IN THE PART ENTRY
(PARESLTA) •

@] BUILD LOGICAL SLOT ID(LSID) OF
THE SLOT BEING WRITTEN TO IN THE
AlA.

Diagram 25.7.15 SETWRITE (Part 1 of 1)

Ref

5-180 OS/VS2 System Logic Library Volume 5 (VS2.03.807)·

Notes

V
TO PROCREQS

Output

TSLOTNBR

SCYLRDWT

WRTCOUNT

AlA

IAIALSID

Routine Label Ref

---- ---

Input

THISNODE IOE

FROM GETREAD
(ILRSRT
SUBROUTINE)

~

VS2.03.807

Processing

REMVNODE:

@!J REMOVE IOE FROM TREE OF

READS.

Output

> ,------,I.r+a· I
PARTE rn:;,

I PARENODE I ======~) ~ RECHAIN ANY NODES HANGING ======~>
. . FROM IT. I

I O_E_PT_R __ I.r+f-==l

PARTE l===J

LJl
V

TO GETREAD

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
~ THE TREE OF READS IS POINTED TO

BY THE PART ENTRY (PARENODE) •

REMOVAL OF A NODE(IOE) FROM THE

TREE REQUIRES UPDATING OF AN

ANCESTOR NODE POINTING TO THE

NODE BEING REMOVED.

@] CALL RCHAINUP TO RECHAIN NODE, RCHAINUP ~5. 7.1

WHOSE ANCESTOR IS BEING REMOVED

FROM THE TREE, TO ITS ANCESTOR' S

ANCESTOR.

Diagram 25.7.16 REMVNODE (Part 1 of 1)

Section 2: Method of Operation 5-181

Input

LASTNODE

NEXTNODE

PARTE

IOE

IIOENXTLE

IIOENXTGT

IOEPTR

FROM REMVNODEo
(ILRSRT
SUBROUTINE)

: ill I ~
~IPARENO~DE _II ~

TOPRDIOE ~

Notes Routine

§] IF THE ANCESTOR NODE POINTS TO

THE NODE(IOE) TO BE REMOVED

THROUGH THE GREATER-THAN (GT)

LEG, UPDATE THE ANCESTOR'S GT

POINTER (IOENXTGT) • OTHERWISE,

UPDATE THE

LESS -THAN-OR - EQUAL-TO (LE)

POINTER (IOENXTLE) • IF THE NODE

BEING REMOVED IS THE TOP NODE OF

THE TREE, THEN PARENODE MUST BE

RESET.

@] IF A NEXT NODE EXISTS, RESET THE

BACKWARD POINTER OF THE NEXT

NODE.

@] IF THE IOE JUST REMOVED FROM THE

TREE IS THE FIRST IOE OF READS

FROM A SPECIFIC CYLINDER, THEN

RESET THE TOP-READ-IOE PTR FOR

THE GROUP.

Diagram 25.7.17 RCHAINUP (Part 1 of 1)

VS2.03.807

Processing

RCHAINUP:

RESET ANCESTOR'S DOWNWARD Dr
POINTERS.

RESET DESCENDANT"S BACK

CHAIN POINTERS. I
RESET THE TOP-READ-IOE IF ====P:,J
NECESSARY. I

LJl
V

TO REMVNODE

Label Ref Notes

---- ---

5-182 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Output

PARTE IOE

IPARENODE

TOPRDIOE

Routine Label Ref

---- ---

Input

EPTEP3RD RETCODE

FROM ILRSRT
MAINLINE

Notes Routine

§] ZERO THE ILRSRT ENTRY IN THE

EPATH (RECOVERY CONTROL BLOCK).

@] RETURN CODE HAS BEEN PREVIOUSLY

SET BY SUBROUTINES OF ILRSRT,

AND IS FURTHER CHANGED BY THIS

ROUTINE TO INDICATE TO PART

MONITOR THAT MORE WORK EXISTS,

IF NECESSARY.

Diagram 25.7.18. CLEANUP (Part 1 of 1)

VS2.03.807

Processing Output

CLEANUP:

R 13 SAVEAREA EPTE3RD @2J RELEASE FRR.

~ SET RETURN CODE

SAVE AREA.

IN CALLER~

Label Ref

---- ---
Notes

I
LJl

V
TO ILRSRT
MAINLINE

Routine Label Ref

---- ---

Settion 2: Method of Operation S-183

Input

R 1

FROM lOS
(IECVPST)

IOSB I
1r+~:::=J

c==J1
>

Notes Routine

[§2] k~~o~~~~v~~fiTig~P~~gLE§L~~g~J
OCCURRING IN ILRCMP (ALL FOUR
ENTRY POINTS). ILRCMP ENTRY
(TERMINATION ROUTINE FOR ASM) IS
g~L~~g ~XT~~c:vg~~ i§Ol~ 16~TUS)
RECOVERY IS ENTERED WHILE lOS
WAS PROCESSING THIS IOSB. CODE

~~~~;sfSSt~~Dij~E5~E~gsI~gvPST 
CALLS ILRCMP. THE OTHER PATH IS 
WHEN IECVPST CALLS ILRCMP AFTER 
~tkcA~IEP~~S{f~~~~N~E FREED BY 

~ ~~T~~~fi'sIgg~'s~k~u§/gFS~9gL£sBE 
UNDETERMINABLE. 

A. ALL AlAS ARE MARKED FOR RETRY 
SO THAT PAGE COMPLETION CAN 
REDRIVE REQUESTS. 

B. t~~Wx~~~g~~I~~ ~ij~H~~ED TO 

C. ALL AlAS ARE RETURNED TO PAGE 
COMPLETION. HAVING ADDITIONAL 

~Ii~36¥Ci~~ g~D~H~'i~~B 
CONDITION INDICATES ENTRY IN 
THE NORMAL END APPENDAGE 
WITHOUT IOSEX ON. THIS WILL 
ONLY OCCUR WITH CERTAIN 
HARDWARE MALFUNCTIONS. THE 
084 ABEND IS ISSUED TO CAUSE 
~~4~~TRY HERE WITH CODE 

@] THE IORB IS MADE AVAILABLE. 

§] I~~p~~P~~P~E~§~p5~~ £~I~~~!DULED 
WITH NO CHECKS FOR WORK. 

Diagram 25.8 ILRCMP (Part 1 of 1) 
\ 

VS2.03.807 

Processing 

ILRCMP: 

~ ILRCMP (I/O COMPLETION) 
HAS THREE SECONDARY ENTRY 

i~~A~AEIL~~t~~NE. THIS 
~~T~~cv~~~C~gR f~o CALLED 
SITUATIONS. 

~ . IF THE STATUS OF I/O IS 
UNDETERMINABLE (X'4S' IN 
IOSCOD FROM lOS RECOVERY): 

A. MARK ALL AlAS FOR 
RETRY. 

B. ~~I¥~~BE~C~B'B~C:WS TO 

C. RETURN AlAS TO PAGE 
~9~~~Et6g~'F~bMN~6s AND 
THERE ARE ANY 
PCCWS/SCCWS ON THE 
IORB, ABEND 084. 

@] FREE THE IORB. 

§] SCHEDULE SRB FOR 
APPROPRIATE I/O DRIVER. 

I 
LJl 

V 
TO lOS. 

Label Ref Notes 

---- ---

ABNTERM 2S.8.9 

5-184 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Out~ut 

SRB 

rr:=) I I 

Routine Label Ref 

---- ---



Input 

R 2 

I I.r+ 
IOSB 

lOS ERR 
IOSCSW 
IOSDIESE=O 

I 

FROM lOS 
(IEClOSCN) 

> 

VS1.03.807 

Processing 

IF FIRST ENTRY TO DIE 
EXIT: 

B. REMOVE SUCCESSFUL I/O 
~~~~~STS FROM IOSB -

C. ~~T2~~IrnfE ~fi~fi'~CCWS
D. RETURN PROCESSED AlAS

TO PAGE COMPLETION.
E. SET UP SPECIAL RETURN

ADDRESS.
F. CALCULATE NEW SERVICE

BURST.

LJl
V

TO lOS

Output

R 2 IORB
II

C r III >§]
AlA

IF SECOND ENTRY TO DIE
EXIT:

IOSB

!
! IOSDIESE=l!

I I

Notes Routine

§] ~~~~~~~'c~T~~iR~H~~ I~CMP,
COMPLETES WHETHER IT IS STARTED
BY ILRSWPDR OR ILRSRT OR
RESTARTED BY DASD ERP FOR
n~~nt~~SS~~L T~~ ~'~THTED BY
¥~D I=6II~£~~DIFR~I~~SE~~RY
~a~~b~~. (DIE EXIT), IOSDIESE

A. THE STATUS BITS IN THE CSW
STORED IN THE IOSB ARE
TESTED. IF ANY BITS ARE ON
gI~~ET~,C~~~T~~'UNIT
~~gcE~~~uFOI=~H~WCASE OR
IF IOSERR (RESTARTED BY DASD
¥~P~I~L?~t I~~ ¥6EH~~IU~~
POST STATUS DRIVER APPENDAGES
PROCESS THIS I/O COMPLETION.

B. ALL PCCW/SCCWS WILL BE
REMOVED.

C. ~~¥U~~~ t8C~~'SK~~~O~~tkT~E
QUEUE.

D. ALL AlAS REMOVED WILL BE
RETURNED TO ILRPAGCM.

E. THE RETURN ADDRESS IS SET TO
R14+8 TO CAUSE SECOND ENTRY
TO ILRCMPDI.

F. THE TOD WILL HAVE BEEN STORED
¥~~R~~Rto~I~LR~~iRO!FA
NEW BURST TIME WILL BE
CALCULATED.

§] IF SECOND ENTRY TO DIE EXIT
I~S~6~S~L~Gu~I~~ ~~sg~Rc~~RY
A. THE 10RB IS MADE AVAILABLE.

Diagram 25.8.1 ILRCMPDI (Part 1 of 1)

A. MAKE IORB AVAILABLE.

B. SCHEDULE SRB FOR :::===rp~ APPROPRIATE I/O DRIVER.

@TI RETURN TO lOS.

Label Ref Notes

---- --- B.

V
TO lOS

IF WORK REMAINS FOR THE

SRB

CORRESPONDING PARTE OR SARTE
~~~E~bi~gP~It~P1'OoRRIVER I~ 
ILRSWPDR. 

PROCCCWS 25.8.4 

POSTCMP 25.8.6 

POSTCMP 25.8.6 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-185 



VS2.03.807 

Input Processing Output 

FROM lOS 
(IECVPST) 

D ILRCMPAE: 

§I ILRCMPAE HANDLES THE 
TEMPORARY AND PERMANENT 
I/O ERRORS. 

R 1 IOSB I )@J I Ir+~ , 
IF TEMPORARY ERROR, RETURN 
TO POST STATUS FOR ENTRY 

I--

u 
TO DASD ERROR RECOVERY 
PROCEDURE. IOSCOD I 

)§] IF A PACK ERROR: 

Notes Routine 

§I ILRCMPAE IS ABNORMAL END 
APPENDAGE FOR ASM. IECVPST (POST 
STATUSb GIVEN CONTROL VIA 
ILRCMP I ~UPON UNSUCCESSFUL I/O 
COMPLETIO ) CALLS ILRCMPAE TO 

~~~tE ~gENg~D~~ 7~V~T T~Ec~gIs 
ARE IN IOSCOD.

§] A TEMPORARY ERROR HAS A CODE OF
X'7X' AND WILL BE RETURNED TO
POST STATUS FOR A CALL TO DASD
ERP TO INTERPRET AND RETRY
ERROR.

§] ~,~~crK ~~~Rxt~1~ ggg~ 2{T~' 51',
SPEClhc CHANNEL ERRORS OR A
~~t~ OF 176 I/O ERRORS ON THE

A. THE PARTE/SARTE IS MARKED AS
UNUSEABLE AND THE APPROPRIATE
ACTION IS TAKEN BY ILRMSGOO
VIA BADPACK IF THE SYSTEM
MUST BE TERMINATED.

B. ~~C~~/~~~~S~ILL BE

~ ~05~I~~0~6 fN~c~~~ IOSCOD

A. ~ME~~6~CCW AlA IN ERROR IS

B. ~¥fLR~i~~~I~5W~C~~
RETURN ADDRESS SET SO THAT
POST STATUS WILL ISSUE A
START 10.

@) ~~UK~~~D~C~~~/~~~~3p~Ik~EBE
QUEUE.

Diagram 25.8.2 ILRCMPAE (Part 1 of 1)

A. MARK THE PAGING SPACE
~fR~~~E~tD:F NOT

B. MARK ALL PCCWS/SCCWS
ERRORS.

AS

~ IF SLOT ERROR:

A. MARK THE PCCW/SCCW'S
AlA IN ERROR.

B. RECHAIN THE REMAINING
REQUESTS.

@] RETURN ANY FREE
~5~~~~SCCWS TO APPROPRIATE

~ RETURN ANY PROCESSED AlAS
TO PAGE COMPLETION.

Label Ref Notes

---- ---

LJt
V

RETURN TO IOS

~ ANY PROCESSED AlAS WILL BE
RETURNED TO PAGE COMPLETION TO
COMPLETE PROCESSING FOR THE
REQUESTS.

BADPACK 25.8.1
0

BADSLOT 25.8.7

BADSLOT 25.8.7

RECHAIN 25.8.5

POSTCMP 25.8.6

5~186 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

PARTE

Routine Label Ref

---- ---
POSTCMP 25.8.6

I

Input

R 1 lOSB

I Ir+
IOSCSW

lOSCOD

FROM lOS
(IECVPST)

~
I.) 1

L

Notes Routine

§] THIS IS NORMAL END APPENDAGE FOR

~~~F' :H~I~g~c~~E WH~sfO~~~~~ TO 
DIE HAS ALREADY HANDLED ALL THE 
.f~F~~~E~¥~gE~~bIUiJ.I,O, ONLY 
SITUATIONS REMAIN. UNIT 
EXCEPTION OR WRONG LENGTH RECORD 
WITH IOSEX BIT ON - EITHER 
SITUATION IS CONSIDERED AN ERROR 
AND SENT TO DASD ERP VIA 
IECVPST. 

@] NORMAL END APPENDAGE ALSO 
HANDLES SUCCESSFUL I/O FROM DASD 
ERP RETRIES. 

A. ALL PCCWS/SCCWS ARE REMOVED. 

B. ~~¥U~~~ ¥8C~~'SK~~~0~fATE 
QUEUE. 

C. ALL AlAS REMOVED ARE RETURNED 
TO ILRPAGCM. 

D. RETURN TO POST STATUS. 

Diagram 25.8.3 ILRCMPNE (Part 1 of 1) 

VS2.03.807 

Processing 

ILRCMPNE: 

I()i1 IF 1/0 IS NOT SUCCESSFUL, 
t.::.:.J RETUkN. 

A. ~~~gvfo§'~ I~~~~ESTS 

B. ~~T~e~Irl~fE P88~~~~:CWS 
C. RETURN PROCESSED AlAS 

TO PAGE COMPLETION. 

D. RETURN TO POST STATUS. 

Label Ref Notes 

---- ---

PROCCWS 25.8.4 

POSTCMP 25.8.6 

POSTCMP 25.8.6 

LJl 
V 

TO POST STATUS 
(IECVPST) 

Output 

I=::::!J~ LI ...::AIA===Ir+_A.=IIA==::::J11 

LJl 
V 

TO POST STATUS 
(IECVPST) 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-187 



Input 

FROM ILRCMPDI 
OR ILRCMPNE 

IORB pccw 1 D 
~r'IPCCWAIA I II :> 

L-----=A,...--I===A -;;In::: 

Notes Routine 

@D IORERR IS THE ADDRESS OF THE 
~x~~sg~w~~w~~g~ws:O~~~~EAS 
THE PCCWPT~SCCWPTR DOES NOT 
EiUAL IORE THE PCCW/SCCW WILL 
B DECHAINED FROM THE IORB. 

@] ALL OF THE AlAS ARE CHAINED 
TOGETHER AND PASSED TO PAGE 
COMPLETION ON ONE CALL. 

@] ALL OF THE PCCWS/SCCWS WILL BE 
CHAINED TOGETHER ON AN INTERNAL 
2UEUE AS THEY ARE FREED. THEY 

ILL THEN BE PUT BACK ON THE 
~I~~E(8~f?E WITH ONE COMPARE 

Diagram 25.8.4 PROCCCWS (Part 1 of 1) 

VS2.03.807 

Processing 

PROCCCWS: 

@D fi~~rEp~~~~~5W~6~S~~ 
EQUALS IORERR. 

IQ21 §UEUE AlAS ON INTERNAL ~ UEUE TO BE PASSED TO PAGE 
OMPLETION. 

Label Ref Notes 

---- ---

output 

~ I AlA 

~I 
PCCW 

I 
[---:It 

V 
RETURN TO 
CAL'LER 

5-188 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

AlA II Irl 
PCCW II Irl 

Routine Label Ref 

---- ---



Input 

FROM ILRCMPAE 

Notes Routine 

§] POINT THE IORB TO THE FIRST 

~~i~~sg~WDA~fR~NI~~~RI~~BT~~NCE 
SERVICE BURST RECALCULATION WILL 
NOT BE DONE BASED ON A PARTIAL 
SERVICE BURST OF I/O REQUESTS. 

~ RESET THE FOLLOWING IOSB FIELDS 
RELATIVE TO THE FIRST PCCW/SCCW: 
i8~~~tKA:OSRST, lOSSEEK, 

§J COUNT NUMBER OF PCCW/SCCWS AND 
PUT COUNT IN lORRQSZ. 

Diagram 25.8.5 RECHAIN (Part 1 of 1) 

VS2.03.807 

Processing 

RECHAIN: 

@2] REINITIALIZE lORB. 

~ REINITIALIZE IOSB. 

roJ1 COUNT NUMBER OF 
L.:::..J PCCWS/SCCWS AND UPDATE 

COUNT IN lORB. 

I 

I 
I 
LJl 

Output 

IORB 

> 
IlORBTSH. I 

6 IOSB 

IOSVST 

lOSRST 

IOSSEEK 

IOSSEEKA 

IORB 

TO CAL~E !::::::) 
IIORRQSZ I 

Label Ref Notes Routine Label Ref 

---- --- ---- ---

Section 2: Method of Operation 5-189 



Input 

PCCW 

V82.o3.807 

Processing 

POSTCMP: 

IQi1 ENTRY IS FROM ILRCMPDI, 
~ ILRCMPAE, OR ABNTERM. 

PCCW I rn:;"I 

'---___ ..... 1 1..1 ____ ..II~ ~H~Wi~i1r~tiLIO Qfi~O~~N TO 
r+ r;::===~> ~ DETERMINE IF THERE ARE Lr 

AlA AlA I rn:;"I .-----...,Ir+r-I-----.I ~ IF PCCWSt RETURN CHAIN TO 

output 

ASMVT 

IASM=WO I 

SART 

ISARSCCWQ I 

L~====~~====~ ASMVT QU UE. I 
§] IF SCCWS,. RETURN CHAIN TO :===rp~ 

SART QUEuE. -

Notes Routine 

@:D POSTCMP MAKES PCCW/SCCW 
AVAILABLE AND CALLS ILRPAGCM TO 
HANDLE AlAS. 

@J ~~C~ce~I'R~~w~u~~~ETgE~~E IF 

FREED. 

@] ALL PCCWS WILL BE CHAINED FROM 
THE ASMVT. 

§] ALL SCCWS WILL BE CHAINED FROM 
THE SART. ONLY ONE KIND OF CCW 
BLOCK IS PROCESSED AT ANY ONE 
INVOCATION. 

@] CALL ILRPAGCM TO RETURN ILRPAGCM 
PROCESSED AlAS. 

Diagram 25.8.6 POSTCMP (Part 1 of 1) 

~ CALL PAGE COMPLETION TO 
t..:::..J COMPLETE PROCESSING FOR 

THESE AlAS. 

<::::)IILRPAGCM I 

IASM ROUTINE I 
~ RETURN TO CALLER. 

Label Ref Notes 

---- ---

ILRPAGCM 

5-190 OS{VS2 System Logic Library Volume 5 (VS2.03.807) 

lJl 
V 

TO CALLER 

Routine 

/ 

Label Ref 

---- ---



VS2.03.807 

Input Processing Output 

F ROM ILRCMPAE 

AlA ~ BADSLOT: 

@2] MARK EACH AlA IN CHAIN AS : I/O ERROR. 

PCCW 

> 
AIAPRIER 

AIASECER 
~. PUT PCCW/SCCW ON INTERNAL 

QUEUE. 

~ PUT AlA ON INTERNAL QUEUE. 

ASMVT PARTE 

IAS"ERRS I IPAREIQcr I 
§] FOR SLOT ERRORS FOR EACH 

PCCW/SCCW: 

A. ADD 1 TO PARTE ERROR 
SLOT COUNT. 

B. ADD 1 TO ASMVT ERROR 
SLOT COUNT. 

C. CALL RECERR TO RECORD 
ERROR SLOT. 

LJl 
V 

TO ILRCMPAE 

\ 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
@2] IF THE AlA IS FOR THE DUPLEX 

~~~~NB~Y ~~R~I~~~ROISE MARK 
IT AS A PRIMARY ERROR.

~ FREE PCCW!SCCW WILL BE PUT ON
INTERNAL QUEUE.

~ AlA'S WILL BE PUT ON INTERNAL
gUEUE TO BE RETURNED TO PAGE

OMPLETION.

§] f~ET~~~~~~SC~Nf~OM~~O~E
UPDATED.

A. THE PARTE ERROR COUNT KEEPS
TRACK OF THE NUMBER OF I/O
ERRORS RECEIVED FOR THIS DATA
SET. WHEN 176 ERRORS ARE

M~~~~Eg6N§¥~E~~gKU~~A~£E •

B. THE ASMVT ERROR COUNT IS A
TOTAL COUNT FOR ALL LOCAL
PAGE DATA SETS.

C. THE LSID WILL BE RECORDED
A SQA BUFFER.

IN RECERR 25.8.8

.

Diagram 25.8.7 BADSLOT (Part 1 of 1)

Section 2: Method of Operation 5-191

VS2.03.807

Input Processing
FROM BADSLOT
(ILRCMPAE
SUBROUTINE)

~ RECERR:
ASMVT @2J

I .. HEREe I
DETERMINE IF ERROR RECORD
BUFFER HAS BEEN OBTAINED
PREVIOUSLY. IF NOT,

A. OBTAIN SALLOC LOCK.

B. BRANCH ENTER GETMAIN
AlA ~~~~~~~ITIONAL SQA

~--AIALSID I~ C. RELEASE SALLOC LOCK.

D. INITIALIZE HEADER
PORTION OF BUFFER.

§] FIND NEXT AVAILABLE ENTRY.

> §] RECORD LSID FOR ERROR AlA.

Notes Routine Label Ref Notes

---- ---
§] ~E~gkbE~H~R£~IgQ~O~SE~~~~ §£OTS.

THIS BUFFER IS NOT OBTAINED
UNTIL THE FIRST ERROR IS
ENCOUNTERED. THE POINTER IN THE
ASMVT IS INITIALIZED TO ZERO AND
SET TO THE ADDRESS OF THE BUFFER
ONCE IT IS OBTAINED.

§] A FIELD IN THE HEADER POINTS TO
THE CURRENT ENTRY FOR RECORDING.

§] RECORD THE THREE BYT~ LSID IN
THE NEXT AVAILABLE BUFFER ENTRY.
IF RECORDING AN ERROR ON A SWAP
~tfAo~EfHETM~~HO~R5~~ ~~¥~.ORDER

Diagram 25.8.8 RECERR (Part 1 of 1)

5-192 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

output

ASMVT BUFFER

Lf I .. HEREe r·1 LSID

I
V

TO CALLER

Routine Label

I

Ref

VS2.03.807

Input Processing Output
FROM/ILRCMP

~ ABNTERM:

PCCW I L.....) rn;-J

IJ~ "';1 ~----'1I1 hr.;::==~> L£!..J ~rI ~MI~5:PAnAgNIN EACH =====~> " -=.J INTERNAL QUEUE •

AlA I §]------.1 02 PUT PCCW/SCCWS ON THE

IORB AlA

l·lAIORn I
. INTERNAL QUEUE.

Notes Routine

@2] THE AIAIORTY FLAG INDICATES TO
PAGE COMPLETION TO REDRIVE THE
REQUEST.

@] ~ a~I~R~LF~~~U¥H~F~~§~gS~~

~ CALL POSTCMP TO RETURN
~wfgcg~fL~L~~~~~R1~T~E~S~~E
STRING OF AlAS.

Diagram 25.8.9 ABNTERM (Part 1 of 1)

~ WHEN THE ENTIRE STRING OF
K~t~~~C~~~SI~OC~~b~ETE,
COMPLETION AND RETURN
~ij~~'~CCWS TO APPROPRIATE

Label Ref Notes

---- ---

POSTCMP 25.8.6

LJl
V

RETURN TO
ILRCMP

Routine Label Ref

---- ---

Section 2: Method of Operation 5-193

VS2.03.807

Input Processing
FROM ILRCMPAE

PART/SART
~ BADPACK: 'L -@D OBTAIN SALLOC LOCK. I

Notes Routine

@D SALLOC LOCK IS OBTAINED TO
SERIALIZE COUNTS THAT HAVE TO BE
MANIPULATED AND TERMINATION IF
IT BECOMES NECESSARY.

@] ~~~~'T~AR~. PAGE/SWAP SPACE IN

@] SET UP MESSAGE PARAMETER LIST ILRMSGOO
~li~E6~~~~W~ INDI~A~OAND
MESSA E NUMBER INDICATING
ILRMSGOO WIL INE
~~n~A~ ISSUE ~~18~· ~"7~R
TERMINATE SYSTEM.

[§J ~L.~TlI:o~tJ¥mJ~~E¥LR~~L: .

Diagram 25.8.10 BADPACK (Part 1 of 1)

~ MARK DATA SET BAD.

~ SET UP FOR MESSAGE TO BE
~~~¥gA~~OR SYSTEM 

C> ILRMSGOO 
ASM ROUTINE 

fQii1 IF RECEIVE CONTROL BACKL ~ FREE SALLOC AND CONTINU~. 

Label Ref Notes 

---- ---

ILRMSGOO 

5-194 OS/"S2 System Logic Library Volume 5 (VS2.03.807) 

output 

PARTE/SRE 

PAREDSBD 

SREDSBD u 
[Jl 

V 
TO ILRCMPAE 

Routine 

._. --.----

Label Ref 

---- ---

---- ._. 



Input 

I REG 
• PARM LIST 

1 I """MSGNUM 

IENTRYTYP 

IENTRYPTR 

IREG 1 
I ,....PARM LIST 

·'MSGNUM 

'ENTRYTYP 

'ENTRYPTR 

ICVTASMVT 
• ASMVT 

I ""'1 ASMDUPLX 

'ASMPART 

'ASMSART 

,I , 
1 

FROM: CALLER 
(SEE NOTE 1) 

D , > 

VS2.03.807 

Processing 

ILRMSGOO: 

IF MESSAGE NUMBER IS NOT 
PROVIDED, PROCEED TO STEP 
4. 

IF MESSAGE NUMBER IS 8, 
TERMINATE THE SYSTEM. 

@] OTHERWISE WRITE THE 

~~~~~6~D~~S~~~E~ ~~E 
STEP 9.

,I ~II" .;:::===~.. IQ41 IF THE DESIGNATED ---!J J t..::::.J PARTE/SARTE HAS BEEN

:1
,I
:,

~~~~~gs~6 ~~~E~:ED, 

r;:===~~> [§] IF THE UNUSABLE DATA SET II II AM~A~ ~TME3pEl>~R;:. I J 

~ _. ~ IS PLPA OR COMMON AND THE 
DUPLEX DATA SET IS NOT 

~~~t~L~Hi~~~~AT~E~H~p 
FOR PROCESSING THE DUPLEX
DATA SET ONLY.

Output

ASMVT

:;:;=;111===~~> I()6l IF THE UNUSABLE DATA SET IlL
I ASMNOCWQ ,

Notes Routine Label Ref Notes Routine

---- ---
§] A. I~AI~£~P~~M8fi~txS~T'6~ NOT

THE CALLER OF a8M MESSAGE B) ,
ROUTlNENdILRMSG o§ IS ONE OF THE CALL THE S BROUTINE TO
FOLLOWij ROUTIN~: ILRCMP TERMINATE THE SYSTEM.
ILRCMP 1 t ILRSRT 1, ILRswp6 1 ro
ILRPTM. HE SALLOC IS HELD U N
ENTRY. IF THE MESSAGE NUMBER HAS B. IF THE DUPLEX DATA SET IS
~1~N~U~t~~E~ ¥~ ~~AL~ER, ~A~~EtH~L~~RI~T~~kf~
DETERMINE WHICH MESSAGE SHOULD WRITE ~UEUEANbREE THE IOES ON
BE WRITTEN. THE MESSAGE NUMBER ~: £~~ TO B~~W'ULE SRB IS NOT SUPPLIED BY ILRCMP

~RIO~J.Gi~2lf. ~A I~~~ PROCESSING AGAINST THE DUPLEX
DATA SET. THE ASMVT FLAG

BECOME UNUSABLE. Afift1vs (¥~~~~ ~I~EMSG ~UBRO INE BUILD~ AND WRITES

@] MESSAGES 9 AND 1 •
t~ET~~~t~ ~E~~IgAT~~L TERMSYS 25.9.2

THE SYSTEM.

§] CALL . THE SUBROUTINE THAT BUILDS WRITEMSG 25.9.3
THE ~TED MESSAGE AND WRITES
IT TO OPERATOR. THEN PROCEED
TO STEP •

[§] IP THE DATA SET IS ALREADY
• AS NOT USABLE
PARENUS~RENUSE IS ON AND

~:o REDS~~ ~~ CrtITTEN

~~~~I~ ~'~T~ 
IIIOCISSING IS DONE~ HENCE, 
PROCltED TO STEP 9. 

[§] IF THE DATA SET THAT HAS BECOME WRITEMSG 25.9.3 
=~~~9~~ET THE 
~ THE TOTAL _ OP 
VAILABLEJl!AP SETS SARS~ ay THE AV, LAB~ SW SET C 

POR mIS IRTRY SREAVLS~ERO 
THE ~LABLB~nftI SET POR 
NVLS~'M SUBROUTINE BUILD B AND WRITE IT 
'l'O THE 0' 1"01\. 

@!] ~SA8LB DATA SET IS 'LPA OR 

Diagram 25.9 lLKMSGOO (Part 1 of 2) 

SART 

SARSETCT 

SREAVLSL 

PART 

1---,1 

Label Ref 

TERMRTN 25.9.2 

CLEARWTQ 25.9.4 

WRITEMSG 25.9.3 

Section 2: Method of Operation 5-195 



Input 

ICVTASMVT I,.....ASMVT I 
ASMPLPAF 

ASMCOMMF I 
1 ASMPART I,..... 

PART 

PARTLCNT 

PARESLTA 

Notes Routine 

§] IF THE DATA SET THAT HAS BECOME 
~~~ABckfLI¥HiH~u~gb~N~A~ SET, 
TERMINATE THE SYSTEM IF
PLPA~n PAGE DATA SET IS
UNUS LE I.E. EITHER THE
PAREDSBD LAG OR THE PARENUSE
FLAG ~Sp~~ ~TIFS~H~P~u~ 'fl'!'l? BOTHASMPLPAF AND ASMCOMMF
ARE ON,. OTHERWISE., SET THE
MESSAG NUMBER TO • TURN OFF
~E DUPLEX OPTION FLAG
~~P~~p=E6~I.A8N THE

~~~XhEs~ ;"E~U~~¥iIr~ 
TO THE OPERATOR. 

@!] IF THE DATA SET THAT HAS BECOME 
UNUSABLE IS A LOCAL PAGE DATA 
SET AND IT IS THE LAST AVAILABLE 

MfzALT~T~uL~u4f~T~EJU.fNATE· 
THE SYSTEM IS CALLED. IF IT IS 
NOT THE LAST AVAILABLE LOCAL 

=dz:£.6 ~~~~S~ 
UNRESERVED AVAILABLE LOCAL SLOT 
C<>UNf.oJ.ASMBlCSL~~ BY THE NUMBER 
OF S S ~E A AlLABLE BY THIS 

¥DiArmz. ~~5I~l·s~~ 
~&~~ ¥6 ~i.o~sIMl 9 
AND WRITE IT TO THE OPERATOR. 

~ RETURN TO CALLER OF ILRMSGOO. 

Diagram 25.9 ILRMSGOO (Part 2 of 2) 

VS2.03.807 

Processing 

IF THE UNUSABLE DATA SET 
IS THE DUPLEX PAGE DATA 

~~t~H¥~ ~¥~~AifpIHlNn 
COMMON PAGE DATA SETS ARE 
UNUSABLE OR IF BOTH ARE 

~~~AG~~~~I~~~ ~~TOR. 

RETURN TO CALLER.

Label Ref Notes

---- ---
TERMSYS 25.9.2
WRITEMSG 25.9.3

TERMSYS 25.9.2
WRITEMSG 25,9.3

Output

n~
ASMVT

L.-,l~ IASMBKSLT I
V

TO CALLER

Routine

5-196 OS/VS2 System Logic Library Volume S (VS2.03.807)

ASMVT

ASMDUPLX

ASMNODPX

PART

~

Label Ref

---- ---

Input

PARTE

PAREDSBD

PARENUSE

ICVTASMVT I,...ASMVT

ASMPLPAF

ASMCOMMF

ASMPLPAS

..

Notes

VS2.03.807

Processing

FROM ILRTMIOO

~ ILRMSGSP:

~ §] ILRMSGSP, AN ENTRY OF

I~~188'T6SI~~~E~~Y
MESSAGES THAT COULD NOT BE
ISSUED DURING NIP NUCLEUS
INITIALIZATION PROCESS.

~ ~5~+ ~EI~~fiE~YI~~~?E
PROCEED TO STEP 7.

IOJl OBTAIN SALLOC LOCK TO
~ SERIALIZE ASM MESSAGE

BUFFER.

I
!h!J > §l e~O~~U~RB~~~~8(£R

AND PUT OUT THE
APPROPRIATE MESSAGE(S).

Routine

I"Q5l TEST WHETHER PLPA AND lOR
~ COMMON ARE UNUSABLE AND

PUT OUT THE APPROPRIATE
MESSAGE.

IQ61 TEST WHETHER THE DUPLEX
t.:::.:::.J DATA SET HAS BECOME FULL

OR UNUSABl.E AND PUT OUT
THE APPROPRIATE MESSAGE.

@2J RETURN TO CALLER.

Label Ref Notes

---- ---

L---,l
V

TO ILRTMIOO

Output

Routine Label Ref

---- ---
§J MESSAGES ISSUED BY ILRMSGOO

MESSAGE 7 AND WRITE IT TO THE
OPERATOR.

DURING NIP ARE NEVER RECEIVED BY
THE OPERATOR •. ILRTMI00f> WHICH IS

@2J 1~G~~N~05E~N~IANoCALLS RETURN TO CALLER.
RE-ISSUE THESE MESSAGES.

~ TO TEST WHETHER ANY MESSAGES

~g~~¥~s~¥~~; ~~~p~E
~~~u~~~~'oiH~L~tR~~~~ 
AND COMMON PARTE. IF NONE OF 
~ESE BITS ARE ON6 NO MESSAGE 
ST~J 9~ ISSUED, S PROCEED TO 

@] IF ANY MESSAGES MUST BE WRITTEN, 

§~I~~~~§ ~sgf~~I~5~FI~. 

§l ~~I[t~~ ~ ~~o~'~~8luAND WRITEMSG 25.9.3 
CALL THE SUBROUTIN TO BUI ' wRITEMSG 
MESSAGE 5 AND WRITE IT TO THE 
XPERATOR. IF COMMON IS FULL 

ASMCOMMF THEN CALL THE 
UBROUTIN*'TO BUILD MESSAGE 6 

WRITEMSG 

AND WRITE IT TO THE OPERATOR. IF 
¥WEll ~ ~ com:gf1.r~ ~LL, 
BUILD MESSAGE ~8 AND WR~TE IT TO 
THE OPERATOR. MESSAGE 1 WILL 
REFER TO COMMON IF PLPA SPILLED 
~F~NpL~WISE, IT WILL 

~ IF EITHER PLPA OR COMMON ARE WRITEMSG 25.9.3 
¥W~~~fiIDs3Lg~S~ 
BUILD SAGE § AND WRITE IT TO 

WRlTEMSG 

THE OPERATOR. urY8T~ AGAIN TO BUILD 
WRITE IT TO THE TOR. 

~ IP THE DUPLEX· DATA SET HAS WRITEMSG 25.9.3 
~OMB FULL OR NOT USABLE 

PAREDSBD OR PARENUSE IS ONJ" 
THE SUBROUTINE TO BUI 

II -.. --

Diagram 25.9.1 ILRMSGSP (Part 1 of 1) 

Section 2: Method of Operation 5-197 



Input 

FROM: 
n~~~gg~, 

r-------, PARM LIST 1 D 
1 REG I.. F . !MSGNUM! 

ASMVT IENTRYTYP 1 
r-----,I !ENTRYPTR! 
I ASMMSGBF . L 

IMSGTERM I 

Notes Routine 

@D ~~~O¥ft~YT~~f~I~¥5~S~~BTt~~T~~) 
GIVE ASM A SECOND CHANCE WHEN 
THE SYSTEM MUST BE TERMINATED. 
THE RECOVERy ROUTINE (ILRMSG01) 
WILL NOT ATTEMPT TO USE MCH 
JMACHINE CHECK HANDLER~ TO 

ERMINATE THE SYSTEM
Ao 

UT WILL 
SIMPLY DO A LPSW (LO PSW) . 

[§J THE BASE TERMINATION MESSAGE IS 
PLACED IN THE TERMINATION 
BUFFER. THE VARIABLE INFORMATION 
IS THEN FILLED IN. THIS VARIABLE 
INFORMATION INCLUDES THE DATA 
~5 ~H~Ev6trbA6FC~~O~ATfT~Et. 

@II THE SYSTEM TERMINATION LOGREC 
BUFFER IS INITIALIZED WITH ONE 
2KI~~;~T~AI§ ~T~~~,C~~E~HET~~BD 
FLAG OR THE NUSE FLAG OF THE 
~~~Esf~T~EIs ~Tg~~~s¥~ETHE 
PARAMETER LIST IS ALSO
INITIALIZED WITH THE REAL
ADDRESS OF THE MESSAGE AND THE
REAL ADDRESS OF THE LRB (LOGREC
BUFFER) •

§] THE MACHINE CHECK HANDLER IGFPTERM
TERMINATION ROUTINE IS BRANCH
ENTERED TO TERMINATE THE SYSTEM.

Diagram 25.9.2 TERMSYS (Part 1 of 1)

VS2.03.807

Processing

TERMSYS:

I'Qi1 ESTABLISH RECOVERY FOR
~ TERMINATION ROUTINE.

)

Output

I I MSGTERM I r+ I TERMMSG II
,~'I I MSGTERM I r+ I TERMLRB II

§] TERMINATE T'HE SYSTEM.

V
TO IGFPTERM

Label Ref Notes Routine Label Ref

---- --- ---- ---

IGFPTERM

5-198 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

PARM LIST
I REG '1 r+
'-. --_....... I MSGNUM

I

FROM ILRMSGOO,
ILRMSGSP

Processing

~ WRITEMSG:

VS2.03.807

output

ASMVT

llASHMSGBF

IMSGCU~

IENTRYTYP

IENTRYPTR
1!lF

1 I"Q'il LOCATE NEXT AVAILABLE
~ MESSAGE BUFFER.

I ~ FILL BUFFER WITH MESSAGE: =======~~ 1L-_I_MS_G_cu_~ ____ Ir+~i=UF=F=ER====~II

Notes Routine

§] ASM'S MESSAGE BUFFER AREA IS
POINTED TO BY ASMMSGBF. THE
FIRST WORD OF THE HEADER IS THE
POINTER TO THE CU~ENT BUFFER
(I.E. THE BUFFER LAST USED).
THIS POINTER IS UPDATED TO POINT
TO THE NEXT AVAILABLE BUFFER. IF
THE CURRENT BUFFER HAPPENS 'I'O BE
THE LAST BUFFER THEN THE NEXT
AVAILABLE BUFFER IS THE FIRST
BUFFER. THE NEW CU~ENT BUFFER
IS THE ONE TO BE USED.

@] TO PLACE THE MESSAGE IN THE
BUFFER:

A. COPY THE BASE MESSAGE INTO
THE BUFFER. THIS IS ALL THAT
NEEDS TO BE DONE FOR MESSAGES
5 AND 6 SINCE THEY ARE
CONSTANT.

B. ~~~L Mf~S~~~S VlRI~B~D 10
,

INFORMATION SUCH AS THE DATA

~~Ts~X~E (~~~Avo£8~0~6 ~~AL
THE DAT1'SET

F
AND WHETHER THE

DATA SET IS ULL OR BAD (THE
DATA SET IS BAD IF EITHER THE
DSBD FLAG OR THE NUSE FLAG IS
~~LL?~HERWISE THE DATA SET IS

§] USE THE WTO OPTION OF RECORD TO RECORD
WRITE THE MESSAGE TO THE
OPERATOR. RETURN TO CALLER.

Diagram 25.9.3 WRITEMSG (Part 1 of n

A. COPY BASE MESSAGE INTO
BUFFER.

B. FILL IN VARIABLE
INFORMATION WHEN
NECESSARY.

USE THE RECORDING FACILITY
TO WRITE THE MESSAGE TO
THE OPERATOR.

<::::::>IIEAVTRERI

IRECORDING FACILITY I

~ RETURN TO CALLER.

Label Ref Notes

---- ---

L---,l
V

TO CALLER

Routine Label Ref

---- ---

Section 2: MethoQ of Operation 5-199

Input

FROM ILRMSGOO
MAINLINE

Processing

CLEARWTQ:

VS2.03.807

I REG 1 IJ.!-r===l: =-
PART ~ ~

@I] OBTAIN ASM CLASS LOCK FOR
PART WRITE QUEUES.

~L
I====~> §] ~~~~I!¥~DP~~HW!;A~Ep~~UE

I~OE ENTRY PROVIDED.

I,:===~~> roJl OBTAIN A POINTER TO THE I· ., ~ NEXT IOE TO BE FREED.

~====:)I ~ MARK THE AlA.

b§] AlA PARTE

IPAR."W. I

[~
I I

Notes Routine Label Ref Notes

---- ---
~ THE ASM CLASS LOCK IS OBTAINED

IN ORDER TO SERIALIZE THE PART
WRITE QUEUES.

@] SAVE THE POINTER TO THE FIRST

1~~og~At~5 t~~ ~~~T~~¥E~~TRY
PROVIDED. ZERO THE FORWARD AND
BACKWARD POINTERS OF THE PART
WRITE QUEUE.

@] OBTAIN A POINTER TO THE- IOE THAT
IS TO BE FREED.

~ OBTAIN A POINTER TO THE AlA FROM
THE IOE. IF THE PART ENTRY
PROVIDED IS THE PART ENTRY FOR

L~f~ ~~E£g~2NtH~Hf~A~E~~ ~~~
PART ENTRY IS THE DUPLEX PART

~~~@~6~~E~RI¥~NE~~oftH~LAG 
THE AlA. 

IN 

@] IF THE AlA COUNT OF OUTSTANDING 
WRITE OPERATIONS FOR A DUPLEXED 
~~fi¥C~~¥~T~~~SI~SE~M~LFI~stWO 
~~~gE~~c~~~~~~I~~A~Rg~u~~S~y 
~~~p ~oM¥~W4~EpL~~~ ~~~~~¥A~~ 
~~~u~~fi ~6AR~~~OR QUEUE TO BE 

Diagram 25.9.4, CLEARWTQ (Part 1 of 2)

5-200 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

output

P§:::TAIAE J.!-lA::ASECER
o AIANXAIA

AIALSID

PARTE

IPAR'~ I AI.I_A ________ I

Routine

AIASECER

AIANXAIA

AIALSID

Label Ref

---- ---

Input

ASMVT

==-
ASMSRBCT

ASMPSRB

Notes Routine

~ USE ILRGMA TO RETURN THE IOE TO ILRGMA
ITS POOL.

@I] IF THERE ARE MORE IOE'S TO BE

~~E~!pi~¥NT~~ ~~~E§~ ~6:PT~E
NEXT IOE.

§] THE ASM CLASS LOCK USED TO
SERIALIZE THE PART WRITE QUEUES
IS RELEASED.

@] IF ILRPTM IS NOT ALREADY
SCHEDULED, THEN SCHEDULE IT.

[2:£] RETURN TO ILRMSGOO.

Diagram 25.9.4 CLEARWTQ (Part 2 of 2)

VS2.03.807

Processing

~ RETURN THE IOE TO ITS
POOL.

@I] 12f S ,
IF THERE ARE MORE
GO BACK TO STEP 3
REPEAT OPERATION.

§] RELEASE ASM CLASS LOCK.

@] SCHEDULE ILRPTM IF NOT
ALREADY SCHEDULED.

[2:£] RETURN TO CALLER.

Label Ref Notes

---- ---

[Jl
V

RETURN TO
CALLER

Output

·Routine Label Ref

---- ---

Section 2: MethoJ of Operation 5-201

VIO Control
VIO Control coordinates and synchronizes all ASM
processing required to support VIO data sets. ASM
treats each VIO data set as a Logical Group (LG)
of 4096-byte pages. The Virtual Block Processor
(VBP) requests assignment of a LG each time a new
VIO data set is created. ASM assigns a four-byte
Logical Group Number (LGN) for each logical
group requested by VBP. ASM provides a journaling
facility for logical groups that allows VBP to direct
saving the current contents of a VIO data set, for
later recovery if necessary. For each journaled VIO
data set ASM assigns a unique value called the's'
symbol. All requests for services on a VIO data
must be made using either the LGN or the eight
byte's' symbol assigned to the data set. Each page
within a logical group is identified by an eight-byte
Logical Page Identifier (LPID). The LPID consists
of the LGN followed by a four byte Relative Page
Number (RPN). The LGN is assigned by ASM, the
RPN is assigned by VBP.

The four central control blocks for VIO Control
processing are the LGVT (Logical Group Vector
Table), ASMHD (ASM Header), LGE (Logical Group
Entry), and the ASPCT (Auxiliary Storage Page
Correspondence Table).

The LGVT resides in SQA and contains a small
header section plus an eight-byte entry (LGVTE)

for each LG. The LGVTE contains the address of
the ASCB for the address space to which LG is
assigned and a pointer to the LGE for the LG.

The ASMHD is the focal point of VIO Control
processing. An ASMHD exists for each active
address space. It resides in SQA and contains
paging I/O control information and VIO Control
information. The VIO Control information includes
a pointer to the SRB used to schedule SRB
Controller and a queue header for the LGE queue.

An LGE exists for each LG assigned to the
address space. The LGEs are allocated from SQA
and reside on a single-threaded queue based in the
ASMHD. The LGE controls all processing of a
logical group. It includes control information for
the LGE, a process queue containing ACEs (ASM

Control Elements) and AlAs (ASM I/O Areas)
repres~nting all work in progress or waiting to be
executed. The LGE also contains a pointer to the
ASPCT.

The ASPCT contains an LSID (Logical Slot
Identifier) for each VIO data set page written to
auxiliary storage. The ASPCT also has a header with
additional control information for the LG. An
ASPCT . exists for each LG and resides in user

S-202 OS/VS2 System Logic Library VolumeS (VS2.03.807)

V82.03.807

private area storage. Forfurther information about
the ASPCT, see "Diagnostic Aids" in Volume 7.

VIO Control consists of four central routines:
• ILRPOS - Page Operations Starter.
• ILRGOS - Group Operations Starter.
• ILRSRBC - SRB Controller.
• ILRVIOCM - VIO Completion.

VIO Control also includes a special Job
Termination Resource Manager (ILRJTERM).

Page Operations Starter
I/O Control (ILRPAGIO) calls ILRPOS whenever a
paging request for a VIO page is received from
RSM. It can also be called by the Transfer Page
Routine (ILRTRPAG), an entry point in ILRPOS

entered from RSM.

YIO Page Requests
ILRPAGIO sends a chain of AlAs to ILRPOS. These
AlAs may be for different VIO data sets. ILRPOS
tests to determine if a paging operation is pending
or if a group operation is pending or in progress
for th~ LGs on which the paging is to be done. If
there is a group operation pending or in progress,
the paging request is in error and the error AlA is
returned to ILRPAGIO. If there is a paging
operation pending for this LG, ILRPOS queues the
AlA to the LGE Process Queue for later processing.

If there is no paging operation pending or group
operation pending or in progress, ILRPOS locates
the LSID corresponding to the VIO LPID and queues
the input AlA to the ASMVT staging queue
(ASMSTAGQ). The LSID is located by finding the
Logical-to-Physical Mapping Entry (LPME) in the
ASPCT via the RPN portion of the LPID. The LPME
address is put into the AlA. The LPME contains the
LSID corresponding to the LPID. On a page-out
operation, ILRPOS frees the LSID in the LPME. ~n
a page-in, ILRPOS moves the LSID into the AlA.

The ILRESTRT entry point of ILRPOS handles
any VIO paging requests that are queued for later
processing. The SRB Controller (ILRSRBC) calls
ILRESTRT whenever it finds unstarted paging
requests on the LGE process queue.

Transfer Page Requests
RSM initiates a Transfer Page request by calling the
ILRTRPAG entry point of ILRPOS. ILRTRPAG builds
an ASM Control Element (ACE) by copying into it
the information in the ACA (ASM Control Area)
that RSM passes it. ILRTRPAG then calls the main
entry point of ILRPOS. If a paging operation is
pending for the Logical Group the Transfer Page

Request is being made against, ILRPOS queues the
ACE to the LGE Process Queue for later processing.
If the request can be started immediately, ILRPOS
calls the ILRTRANS entry point of ILRPOS to

. process the request.
The lLRTRANS entry point of ILRPOS handles

any Transfer Page requests that are queued for
later processing. The SRB Controller ~(ILRSRBC, also
part of VIO Control) calls ILRTRANS whenever it
finds unstarted transfer requests on the LGE

Process Queue.

Group Operations Starter
ILRGOS accepts the following group requests from
VBP: ASSIGN LG, SAVE LG/LGN, ACTIVATE LG,
and RELEASE LG. An ACA is the input parameter
list. ILRGOS always does an ASSIGN operation
immediately. SAVE, ACTIVATE, and RELEASE are
started immediately only if no other operations are
pending or in progress for the Logical Group.

ASSIGN LGN
For an ASSIGN request, ILRGOS assigns a new
LGN, builds a LGE and an ASPCT, and returns the
LGN to VBP.

SAVE, ACTIVATE, and RELEASE
For these requests ILRGOS moves the input
information from the AlA into an ACE, and then
queues the ACE to the LGE Process Queue to
prevent any other groqp operation from starting
until this operation completes. If any group
operations are in progress or pending, the ACE is
marked work-pending. Otherwise, ILRGOS calls the
appropriate group operator (see Section 4, "VIO

Group Operators") to process the request.
The Release LG operator (ILRRLG, one of the

·VIO Group Operators) calls the ILRFRELG entry
point of ILRGOS to free the LGE and make the
LGVTE available. For that Logical Group,
ILRFRELG dequeues the LGE from the ASM Header

VS2.03.807

Queue, returns the LGVTE to the available queue,
and frees the LGE.

SRB Controller
An SRB scheduled by VIO Co~pletion or by
ILRGOS causes the SRB Controller (ILRSRBC) to be
dispatched in the address space.for which a page or
group operation is pending. ILRSRBC finds the
pending work via the LGE queue based in the ASM
Header (ASMHD), determines which work can be
started, separates the startable work into group
oper~tion and page operation chains, and starts the
work by posting ILRPOS, by calling the appropriate
group operator, or by calling the ILRTRANS or by
ILRESTRT entries in ILRPOS.

VIO Completion
I/O Control passes control to VIO Completion
(ILRVIOCM) whenever a VIO paging operation is
completed. ILRVIOCM processes one AlA as input,
dequeues it from the LGE Process Queue, and
returns it to I/O Control. For a page-out,
ILRVIOCM stores the newly-assigned LSID in the
ASPCT. For a page-in, ILRVIOCM sets error flags, if
necessary. If any more work is pending on the LGE

Process Queue, ILRVIOCM schedules an SRB for
ILRSRBC to start the work prior to return to I/O
Control.

Job Termination Resource Manager
The initiator's job termination module (IEFSD166)

calls the Job Termination Resources Manager
(ILRJTERM) to deactivate any VIO data sets still
active at job deletion time. ILRJTERM· searches each
LGE process queue for a RELEASE LG ACE. If a
RELEASE ACE is not queued for an LG, ILRJTERM
obtains one, intializes it, and queues it. ILRJTERM
then schedules ILRSRBC to start the RELEASE
operations.

Section 2: Method of Operation 5-203

I
l 25.10

Page Operations
Starter
(lLRPOS)

l25.10.1

Restart VIO
Request
(lLRESTRT)

l25.10.2

Transfer Page
Process
(ILRTRANS)

~ 25.10.3

Transfer Page
Initiator
(lLRTRPAG)

Module

VS2.03.807

1
I 25.11

Group Operations
Starter
(ILRGOS~

125.11.1

Free Logical Group
Control Blocks
(lLRFRELG)

25.x.
25.x.y. Entry point in module 25.x.

Figure 2-59. VIO Control Overview

I 3

VIO Control

f

5-204 OS/VS2 SystJm Logic Library Volume 5 (VS2.03.807)

I
I 25.13

VIO Completion
(lLRVIOCM)

I

ISRB

t
1 25.12

SRB Controller
(lLRSRBC)

r-----'1~ l 25.14

Job Termination
(lLRJTERM)

Input

ILPID I
I I

FROM ILRPAGIO
OR ILRTRPAG

Notes Routine

@2] PAGE OPERATIONS STARTER (POS)

RECEIVES CONTROL FROM I/O

CONTROL, OR FROM THE ILRTRPAG

SECONDARY ENTRY POINT FOR

TRANSFER PAGE REQUESTS. INPUT IS

A SINGLE ACE (ILRTRPAG) OR A

STRING OF ONE OR MORE AlAS (I/O

CONTROL) • I<bRPOS ATTEMPTS TO

START ALL OPEJil-ATIONS

IMMEDIATELY. AlAS THAT CAN BE

STARTED IMMEDIATELY ARE RETURNED

TO I/O CONTROL. ACE (TRANSFER

PAGE) IS PROCESSED COMPLETELY IF

START ABLE IMMEDIATELY. OTHER

AlAS AND ACES ARE PUT ON THEIR

PROCESS QUEUES FOR LATER

PROCESSING. ASM LOCK OF CURRENT

ADDRESS SPACE IS OBTAINED. FOR

RECOVERY, ILRIOFRR RECOVERY

ROUTINE HANDLES ERRORS OCCURRING

IN ILRPOS (ALL ENTRIES) •

@II THE LGE IS FOUND VIA THE LPID IN

THE INPUT ACE/AlA.

@:TI EITHER .OF THESE CONDITIONS WILL

PREVENT PROCESSING OF THE

OPERATION. PAGE OPERATIONS ARE

TREATED AS ERRORS IN THIS CASE

Diagram 25.10 ILRPOS (Part 1 of 2)

VS2.03.807

Processing

ILRPOS:

@2] 'ENTRY SETUP

@II LOCATE LGE RELATED TO

INPUT ACE/AlA.

@:TI IF GROUP OPERATION IS

QUEUED OR IN PROGRESS FOR

THE LGE, THE REQUEST

CANNOT BE PROCESSED. GOTO

STEP 10 WITH ERROR CODE.

Output

~::':~ EXPANSION U F:C~·IJl~~ I
REQUIRED, EXPAND ASPCT

IMMEDIATELY.

B. STORE LPME ADDRESS IN

AlA/ACE.

IF WORK IS PENDING FOR

LGE, GOTO STEP7.

Label Ref Notes

---- ---
TO PREVENT INTERLOCK SITUATIONS

FROM ARISING IF ASPCT EXPANSION

IS REQUIRED FOR THE LG.

[§] WHILE LOCATING THE LPME VIA THE

RPN OF THE LPID, THE ASPCT MAY

REQUIRE EXPANSION.

A. THE RPN LEADS TO AN LPME THAT

DOES NOT YET EXIST IN THE

ASPCT. ASPCT EXPANSION IS

PERFORMED IMMEDIATELY WHILE

ALL NECESSARY LOCKS ARE HELD.

DELAY OF THIS PROCESSING

WOULD CAUSE A POTENTIAL LOCAL

LOCK INTERLOCK SITUATION.

B. ONCE THE RPN LEADS TO AN

EXISTING LPME, THE LPME

ADDRESS IS PLACED IN THE

AlA/ACE FOR USE BY OTHER VIO

CONTROLLER ROUTINES.

@] IF WORK IS PENDING FOR THE LGE,

NEW WORK CANNOT BE STARTED

BECAUSE IT MAY BE FOR THE SAME

PAGE FOR WHICH WORK IS PENDING.

Routine Label Ref

---- ---

Section 2: Method of Operation 5-205

Input

Notes Routine

~ AT THIS POINT, LPME IS KNOWN AND

IS PROCESSED UNLESS THE LPME IS

ALREADY IN PROGRESS. IN THIS

CASE, THE AlA/ACE MUST BE QUEUED

TO THE PROCESS QUEUE TO BE

HANDLED LATER.

A. IF THE INPUT IS A SINGLE ACE,

THE TRANSFER PAGE REQUEST IS

PROCESSED IMMEDIATELY BY THE

SUBROUTINE. THE ACE IS FREED.

B. IF THE TRP ACE HAS AN ALA

ADDRESS, THE TRANSFER PAGE

OPERATION CANNOT BE STARTED

UNTIL I/O REPRESENTED BY THE

AlA COMPLETES.

C. FOR PAGING I/O ALAS, MOVE ILRFRSLT

NECESSARY DATA FROM LPME TO

ALA. LSID MOVED FOR PAGE-IN

REQUESTS, LSID FREED (BY

ILRFRSL 1) AND/OR CLEARED FOR

PAGE-OUTS. THE LPME PTR IS

SAVED IN ALA AND ALA QUEUED

TO ASM STAGING QUEUE TO BE

PROCESSED BY THE ILRQIOE

SUBROUTINE OF I/O CONTROL.

Diagram 25.10 ILRPQS (Part 2 of 2)

VSZ.U3.8U7

Processing Output

ASMVT ALA
IF ANOTHER OPERATION NOT

IN PROGRESS FOR LPME.

A. IF THE ACE HAS NO ALA

ADDRESS, EXECUTE

TRPPROC SUBROUTINE,

THEN GOTO STEP 10.

IASM~MQ Ir}~SID I

B. IF THE ACE HAS AN ALA

ADDRESS, GOTO STEP 7.

C. FOR I/O REQUESTS, MOVE ====::!J
NECESSARY LSID DATA

INTO ALA. QUEUE ALA TO

ASM STAGING QUEUE.

~~:U:O A:
E O:R:::~~~:~~. j=il lr~EPROCQ IfF: I

REPEAT STEPS 4-7 FOR EACH I 16
ALA IN INP\JT CHAIN.

ALA OR ACE

IL~E PTR·I
REPEAT STEPS 2-8 IF ALAS

ON INPUT CHAIN FOR MORE

THAN ONE LGE.

I2£] RETURN ANY ERROR ALA.

---~
I

Label Ref

---- ---

TRPPROC 25.11.
2

f

ILRFRSL1

LJl
V

TO CALLER

Notes

@2] ALL ALAS WILL BE QUEUED AND ANY

UNPROCESSED ACES QUEUED TO

PROVIDE SYNCHRONIZATION OF ALL

OPERATIONS FOR LG.

§] EACH ALA IS PROCESSED

SEPARATELY. WHEN.A NEW LGID IS

ENCOUNTERED IN AN LGE, THE WORK

PENDING FLAG IS SET ON THE

CURRENT LGE IF ALL ALAS WERE NOT

QUEUED TO THE STAGING QUEUE.

~ ALAS MAY BE PASSED FOR MULTIPLE

LGIDS (LOGICAL GROUPS), BUT ALL

LSIDS MUST BE IN THE CURRENT

ADDRESS SPACE.

~ ANY ALAS STARTABLE IMMEDIATELY

HAVE BEEN QUEUED TO THE STAGING

QUEUE. ALAS NOT QUEUED TO

STAGING QUEUE WILL BE STARTED

LATER BY ILRSRBC. IN ERROR

CONDITIONS, THE ALA/ACE IS

RETURNED TO THE CALLER.

Routine Label Ref

---- ---

5-206 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

FROM ILRSRBC

VS2.03.807

Processing

ILRESTRT:

~ ILRESTRT SECONDARY ENTRY

POINT TO ILRPOS

§] OBTAIN SALLOC AND ASM

LOCKS.

Output

REG 1 ASPCT

llm.ESS r~
>§] MOVE NECESSARY LSID DATA

LPME

~ LSID
AIALPMEP

Notes Routine

~ THE RESTART ENTRY POINT OF POS

RECEIVES CONTROL FROM SRBC

WHENEVER UNSTARTED I/O REQUESTS

(AlAS) ARE FOUND ON A PROCESS

QUEUE. THE PROPER LSID

INFORMATION IS PLACED IN THE

AlAS AND THE AlAS ARE QUEUED TO

THE STAGING QUEUE FOR I/O

CONTROL TO START THE 1/9
OPERATION. INPUT MAY BE A STRING

OF ONE OR MORE AlAS. THIS ENTRY

POINT USES SUBROUTINES COMMON TO

MAINLINE ILRPOS PROCESSING.

@] THE SALLOC LOCK IS REQUIRED TO

PROVIDE A SAVE AREA IF THE FREE

SLOT ROUTINE HAS TO BE CALLED.

IT IS ALSO REQUIRED FOR THE CALL

TO ILRQIOE. THE ASM CLASS LOCK

FOR THE CURRENT ADDRESS SPACE IS

REQUIRED TO SERIALIZE LPME

PROCESSING.

§] THE LPME ADDRESS IN THE AlAS IS ILRFRSLT

PROCESSED. LSID IS MOVED INTO

THE AlA FOR PAGE- IN REQUESTS.

LSID IS FREED (BY ILRFRSL1)

AND/OR CLEARED FOR PAGE OUTS.

Diagram 25.10.1 ILRESTRT (Part 1 of 1)

FROM LPME TO 11.111.. QUEUE

AlA TO ASM STAGING QUEUE.

§] REPEAT STEP 3 FOR EACH AlA

IN INPUT STRING.

@] RELEASE ASM LOCK.

~ THE ILRQIOE ROUTINE OF I/O

CONTROL IS CALLED TO

INITIATE PAGING I/O.

<::::> IILRQIOE I

IASM ROUTINE I

@2] RELEASE SALLOC LOCK.

Label Ref Notes

---- ---

V
RETURN TO
ILRSRBC

§] A STRING OF AlAS MAY BE PASSED

AS INPUT. THEY DO NOT HAVE TO BE

FOR THE SAME LOGICAL GROUP, BUT

MUST BE ONLY FOR LOGICAL GROUPS

IN THE CURRENT ADDRESS SPACE.

@] THE ASM LOCK IS RELEASED IN

ORDER THAT THE SALLOC LOCK

(LOWER IN HIERARCHY) IS THE ONLY

LOCK HELD AT ENTRY TO ILRQIOE.

THE ASM LOCK IS NO LONGER NEEDED

BY THIS ROUTINE.

~ THIS ENTRY OF I/O CONTROL

REQUIRES THE SALLOC LOCK.

@2] THE SALLOC LOCK IS FREED BEFORE

RETURNING TO ILRSRBC WHO HAS NO

FURTHER LOCK REQUIREMENTS.

ILRFRSL1

Routine Label Ref

---- ---

ILRPAGIO ILRQIOE

Section 2: Method of Operation 5-207

Input

FROM ILRSRBC

VS2.03.807

Processing

ILRTRANS:

@:D ILRTRANS SECONDARY ENTRY

POINT TO POS (INTERNAL

SUBROUTINE - TRPPROC).

A~CE r+A~SPCT= I::;-I====~> ~ DISPOSE OF ANY CURRENT

ACETLPME - LSID IN LPME

A. IF ASPCT HAS NOT BEEN

LPME SAVED, FREE SLOT

LSID

<:::::>IILRFRSLl I
I ASM ROUTINE I

B. OTHERWISE, CLEAR LSID

ONLY

Output

ASPCT
MOVE THE NEW LSID FROM THE:::;===::;,
ACE TO THE LPN.. [' 1 l~ ~

~

Notes Routine Label Ref

---- ---
@:D ILRTRANS SUBROUTINE/ENTRY OF

ILRPOS IS CALLED BOTH INTERNALLY

BY ILRPOS AND EXTERNALLY BY

ILRSRBC WHENEVER A TRANSFER PAGE

OPERATION IS REQUIRED. INPUT IS

A SINGLE ACE CONTAINING A SOURCE

LSID AND A TARGET LPME ADDRESS.

\
/

§J THE INPUT ACE POINTS TO THE LPME

TO PROCESS.

A. ANY VALID LSID IN THE LPME IS ILRFRSLT ILRFRSLl

FREED (BY ILRFRSLl) IF THE

ASPCT HAS NOT BEEN SAVED OR

THE CURRENT LPME HAS ALREADY

BEEN RELEASED AT LEAST ONCE

AFTER THE LAST SAVE.

B. IF THE SLOT IDENTIFIED BY THE

LSID MUST BE SAVED FOR A

FUTURE ACTIVATE, THE LSID IS

SET TO ZERO BUT THE

ASSOCIATED SLOT IS NOT FREED.

@] THIS COMPLETES THE TRANSFER PAGE

OPERATION. THE LSID MOVED INTO

THE LPME WAS FORMERLY ASSIGNED

TO A VIO WINDOW PAGE BY ASM AS

THE RESULT OF A NON-VIO DIRECTED

Diagram 25.10.2. ILRTRANS (Part 1 of 1)

5-208 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Notes

V
RETURN TO
CALLER.

PAGE-OUT OPERATION.

Routine Label Ref

---- ---

.Lnput

FROM IEAVAMSI

VS1.03.807

processing

ILRTRPAG:

~ ILRTRPAG SECONDARY ENTRY

POINT TO ILRPOS.

~ SETFRR FOR RECOVERY AND

GET AN ACE FROM ACE POOL.

Output

A§CA r+iL-.~A_---,I~r.:=~) @]
ACAAIAP I

[§]

COPY INFORMATION FROM ACA ====::;11;1 n_~
TO ACE. t:=)

IF AlA ADDRESS PASSED IN

ACA, SET SPECIAL FLAGS IN

AlA AND ACE.

ACE AlA §r+1 I
ACEAIAPT

Notes Routine

§] THIS IS AN INTERNAL ENTRY POINT

TO ILRPOS USED BY RSM WHEN

REQUESTING A TRANSFER PAGE

OPERATION VIA THE ILRCALL MACRO.

THIS ROUTINE WILL BUILD AN ACE

AND PASS IT TO MAINLINE ILRPOS

FOR PROCESSING.

~ THE RECOVERY ENVIRONMENT IS

CREATED FOR ASM VIA A SETFRR

SINCE THIS IS AN EXTERNAL ENTRY

TO ASM. THE ACE IS OBTAINED FROM

THE COMMON ACE POOL, BASED IN

THE ASMVT.

[ill INFORMATION PASSED IN THE THE

ACA IS COPIED TO THE ACE. THE

ACA IS ONLY A pARAMETER LIST

OWNED BY RSM THAT MUST BE

RETURNED ON EXIT EVEN IF THE

OPERATION HAS NOT COMPLETED.

§] IF RSM SUPPLIED A NON-ZERO AlA

ADDRESS IN THE ACA',A SOURCE

LSID IS NOT YEr AVAILABLE. ~HE

SOURCE LSID WILL BE AVAILABLE

WHEN THE PAGE-OUT OPERATION

IDENTIFIED BY THE AlA COMPLETES.

Diagram 25.10.3 ILRTRPAG (Part 1 of 1)

~ CALL MAINLINE ENTRY POINT

OF ILRPOS TO GET ACE

PROCESSED.

~ RETURN TO RSM.

V
TO IEAVAMSI

Label Ref Notes

---- ---
THEREFORE, THIS AlA MUST BE

MARKED AS A VIO AlA FOR

PROCESSING BY VIO COMPLETION.

THE ACE IS ALSO MARKED TO

INDICATE THAT IT IS WAITING FOR

I/O TO COMPLETE.

§] MAINLINE ILRPOS CODE IS CALLED,

PASSING THE ADDRESS OF THE ACE

TO BE PROCESSED IN THE ATA. THE

ATA (ASM TRACKING AREA) IS USED

TO RECORD INFORMATION NEEDED FOR

RECOVERY. UPON RETURN, IF ERRORS

OCCURRED, THE ACE IS FREED AND

STEP 4 BACKED OUT IF EXECUTED.

IF NO ERRORS OCCURRED, ILRPOS

MAINLINE HAS DISPOSED OF THE

ACE.

~ NO SPECIAL RETURN INFORMATION IS

PASSED BACK TO RSM EXCEPT A

RETURN CODE.

Rou~ine Label Ref

---- --~

ILRPOS ILRPOS

Section 2: Method of Operation 5-209

Input

F
R

ROM VBP
OUTINES

VS2.03.807

Processing

ILRGOS:

@2] STEPS 2 AND 3 FOR ASSIGN

LG. GO TO STEP4 FOR OTHER

REQUESTS.

Output

Rl

C
, illJ"'--~) [§] ~I

TEST TO ASSURE THERE ARE

ENOUGH RESERVE SLOTS FOR A

NEW LOGICAL GROUP. IF NOT,

RETURN.
ACA

I I
LGVT ASMHD

~ LGVTE

LGVTE

LGVTE

Notes Routine

@2] THE GROUP OPERATIONS STARTER

(GOS) ALWAYS RECEIVES CONTROL

FROM VBP (VIRTUAL BLOCK

PROCESSOR) VIA AN ILRCALL MACRO

INSTRUCTION. AN ACA· IS THE INPUT

PARAMETER LIST. GOS EXECUTES ALL

ASSIGN LG REQUESTS IMMEDIATELY.

,SAVE, ACTIVATE AND RELEASE MAY

OR MAY NOT BE STARTED

IMMEDIATELY. FOR ASSIGN AND

RELEASE, THE LOCAL LOCK IS HELD

ON ENTRY AND SETFRR IS ISSUED

FOR RECOVERY. AN ESTAE IS USED

FOR SAVE AND ACTIVATE REQUESTS

BECAUSE NO LOCKS ARE HELD AT

ENTRY. ILRGOSOl (BOTH AN FRR AND

ESTAE RECOVERY ROUTINE) HANDLES

ERRORS'OCCURRING IN ILRGOS.

[§] IF ENOUGH SLOTS ARE NOT

AVAILABLE, AN ERROR RETURN CODE

IS PASSED BACK TO VBP.

A. THE SALLOC LOCK IS NEEDED FOR

THE SQA GETMAIN. IT ALSO

SERIALIZES LGVT EXPANSION AND

SRB CREATION, IF REQUIRED. AN

LGID IS TAKEN FROM A LGVTE ON

THE LGVT AVAILABLE QUEUE. IF

Diagram 25.11 ILRGOS (Part 1 of 3)

LJt
A. OBTAIN SALLOC LOCK.

V
RETURN TO VBP ASMVT ArS_M_H_D ____ ~

l
§ l~::::~P ASSIGN AN AVAILABLE

LGID FROM LGVT.

AND AN ASPCT.
B. OBTAIN SPACE FOR A LGE I II

SRB
C. COpy LGVT IF REQUIRED. I
D. INITIALIZE AND QUEUE UT I

~::A~:~D ~S:~:;I~:IZE ;: ll~E I
LGVTE l~ THE LGE. RELEASE SALLOC

LOCK.

ADD THE LGE TO THE ASMHD
ACA ~

~ AS=
QUEUE AND VALIDATE THE I
LGVTE FOR THE LG.

LJt
IRETURNVTO VBP L-________________ ~

......1 ------.,

Label Ref Notes Routine Label Ref

---- --- ----- ----NO LGVTE IS AVAILABLE, THE

LGVT MUST BE EXPANDED BY

BEING COPIED INTO A LARGER

STORAGE AREA.

B. SQA SPACE IS OBTAINED FOR AN IEAVGMOO GLBRANCH

LGE, FOR AN SRB THIS IS FIRST IEAVGMOO CRBRANCH

ASSIGN FOR ADDRESS SPACE, AND

FOR A LGVT IF REQUIRED IN

STEP2A. LSQA SPACE IS

• OBTAINED FOR AN ASPCT.

C. ANY CODE THAT REFERENCES A

LGE THRU THE LGVT MUST NOT

SAVE THE POINTER TO THE

LGVTE. IF THE LGVT MUST BE

COPIED TO BE EXPANDED, THE

POINTER WILL BE CHANGED.

D. SALLOC IS RELEASED AFTER THE

CONTROL BLOCKS HAVE BEEN

BUILT AND QUEUED. IF STEP 5

IS EXECUTOR OF THESE STEPS,

THE ASPCT WILL BE OBTAINED BY

THE GROUP OPERATOR.

IITI THIS WHOLE OPERATION IS

SERIALIZED BY THE ASM LOCK FOR

I
THE ADDRESS SPACE.

5-210 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

LGVT ACE [§]
I I

SAVE, ACTIVATE, RELEASE LG

1

REQUESTS. GET AN ACE FROM
LGVTE

POOL AND OBTAIN ASM LOCK
LGVTE

FOR THE ADDRESS SPACE.
LGVTE LGE

ASMHO n I Tnl >@J FIND EXISTING LGE FOR

LOGICAL GROUP IDENTIFIED

~
IN REQUEST OR OBTAIN NEW

LGE BY EXECUTING STEPS

2A-2D AS A SUBROUTINE.

ASMHD ACE

l~r§
I LGEPROCQ I .

~ QUEUE ACE TO LGE PROCESS

It QUEUE.

§] RELEASE ASM LOCK.

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] THE ACE IS OBTAINED BEFORE THE

LOCK IN ORDER TO ALLOW EXPANSION

OF THE ACE POOL IF NECESSARY.

@] IF REQUEST IS FOR RELEASE I S I

SYMBOL, LGE MAY NOT EXIST DUE TO

A WARM START. FOR ACTIVATE

REQUESTS, AN LGE IS ASSUMED TO

NEVER EXIST. A NEW LGID AND LGE

ARE CREATED IN THESE CASES.

~ THE ACE IS QUEUED IN

ANTICIPATION OF ASYNCHRONOUS

COMPLETION OF GROUP OPERATIONS

AND TO PREVENT ANY OTHER

OPERATION FROM STARTING UNTIL

THIS OPERATION COMPLETES.

@] THE ASM LOCK IS RELEASED BEFORE

CALLING ANY GROUP OPERATORS

BECAUSE THEY ARE IN PAGEABLE

LPA. PAGE FAULTS MUST NOT OCCUR

WHILE A GLOBAL LOCK IS HELD.

Diagram 25.11 ILRGOS (Part 2 of 3)

Section 2: Method of Operation 5-211

VS2.03.807

Input Processing Output

[§] ~
ACA

IF NO OTHER REQUESTS

QUEUED TO LGE, START GROUP § OPERATION BY CALLING

CORRECT GROUP OPERATOR. S SYM .

~ FOR SAVE, OR ACTIVATE

REQUESTS, IF STEP B NOT

EXECUTED, WAIT FOR OTHER

OPERATIONS TO COMPLETE,

THEN EXECUTE STEP B.

~ RETURN TO VBP PASSING
RETURN DATA IN ACA. I

[Jl
V

RETURN TO VBP
ROUTINE

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
[§] AND FREED WHEN THE OPERATION IS

IF THE OPERATION CANNOT BE ILRSAV ILRSAV
COMPLETE.

STARTED IMMEDIATELY THE LGE IS ILRACT ILRACT
MARKED WORK PENDING. ILRRLG ILRRLG

~ ILRGOS WAITS ON AN ECB IN THE

ACE THAT WILL BE POSTED BY SRB

CONTROLLER WHEN ALL CURRENTLY

QUEUED WORK ON THE PROCESS QUEUE
IS COMPLETE. IF OR WHEN THE

GROUP OPERATOR CAN BE CALLED,

GOS ALLOCATES A VSAM BUFFER FOR

THE OPERATION VIA A COUNT. IF NO

BUFFERS ARE AVAILABLE, ILRGOS

WAITS FOR ONE TO BECOME

AVAILABLE. AT THIS TIME THE SAVE
OR ACTIVATE GROUP OPERATOR IS

CALLED. UPON RETURN, THE VSAM

BUFFER IS RETURNED TO THE

GENERAL POOL AND ANY GOS ROUTINE

WAITING UNDER ANOTHER TCB FOR
THE BUFFER IS POSTED. NOTE THESE

ACTIONS ARE TAKEN ONLY FOR SAVE

OR ACTIVE REQUESTS. NO WAIT OR
VSAM BUFFER MANAGEMENT IS

NECESSARY FOR RELEASE LG
REQUESTS.

~ INFORMATION IN THE ACE IS MOVED

TO THE ACA AND THE ACE DEQUEUED

Diagram 25.11 ILRGOS (Part 3 of 3)

5-212 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

LGVT R 1

~1l~,
J I 1::::'0 I

I

I

I

FROM ILRRLG OR
ILRGOSOl

Notes Routine

@J THE ILRFRELG ENTRY POINT IS

CALLED BY ILRRLG AND ILRGOSOl TO

FREE THE LGE SPACE AND MAKE THE

LGID AVAILABLE (BY PUTTING ITS

ASSOpATED LGVTE ON THE

AVAILABLE QUEUE) FOR THE LOGICAL

GROUP BEING RELEASED. THIS ENTRY

POINT IS REQUIRED BECAUSE GLOBAL

LOCKS ARE REQUIRED TO PERFORM

THESE FUNCTIONS. ILRRLG IS IN

PAGEABLE LPA AND CANNOT HOLD

GLOBAL SPIN LOCKS.

@) THE ASM CLASS LOCK OF THE

ADDRESS SPACE SERIALIZES THE

QUEUE OF LGES BASED IN THE

ASMHD.

~ THE LGE QUEUE IS SEARCHED FOR

THE INPUT LGE WHICH IS THEN

DEQUEUED.

[§] THE ASM CLASS LOCK IS NO LONGER

REQUIRED AND THE SALLOC IS

REQUIRED TO SERIALIZE THE

FREEING OF THE LGVTE AND THE

CALLING OF FREEMAIN.

Diagram 25.11.1 ILRFRELG (Part 1 of 1)

VS2.03.807

Processing Output

ILRFRELG:

@2J ILRFRELG SECONDARY ENTRY

POINT TO ILRGOS.

@) OBTAIN ASM CLASS LOCK.

~ DEQUEUE LGE FROM ASMHD.

[§] RELEASE ASM CLASS LOCK AND

OBTAIN SALLOC LOCK.

@I1 FREE LGVTE FOR LGE BY

PUTTING IT ON LGVTE

AVAILABLE QUEUE.

~ FREE SQA SPACE FOR LGE.

@II RELEASE SALLOC LOCK.

Label Ref Notes

---- ---

V
RETURN TO
ILRRLG OR
ILRGOSOl

:>

@] THE LGVTE IS FREED BY QUEUEING

LGVT

~
ASMHD

§

Routine

IT TO THE LGVTE AVAILABLE QUEUE

IN THE LGVT HEADER AND PLACING

THE LGID IN THE LGVTE.

~ THE SPACE USED FOR THE LGE IS IEAVGMOO

FREED VIA THE GLOBAL BRANCH

ENTRY POINT TO FREEMAIN.

@] THE SALLOC LOCK IS FREED BEFORE

RETURNING.

Label Ref

---- ---

GLBRANCH

Section 2: Method of Operation 5-213

Input
FROM
DISPATCHER

Notes Routine

@2] THE SRB CONTROLLER (ILRSRBC)
ALWAYS RECEIVES CONTROL FROM THE
DISPATCHER AS THE RESULT OF A
SCHEDULE BY ILRGOS OR ILRVIOC.
EACH LGE PROCESS QUEUE FOR THE
CURRENT ADDRESS SPACE IS
SEARCHED FOR WORK THAT CAN BE
STARTED. PAGE OPERATIONS ARE
STARTED BY CALLING THE RESTART
ENTRY POINT (ILRESTRT) OF
ILRPOS. GROUP OPERATIONS, EXCEPT
FOR RELEASE LG AND DEACTIVATE,
ARE STARTED BY POSTING THE ECB
WAITED ON BY ILRGOS. FOR RELEASE
LG, ILRRLG IS CALLED. DEACTIVATE
IS PROCESSED BY SRB CONTROLLER.

~ THE ASM LOCK FOR THE CURRENT
ADDRESS SPACE IS OBTAINED AFTER
DOING A SETFRR TO ESTABLISH THE
RECOVERY ENVIRONMENT. ILRSRB01
RECOVERY ROUTINE HANDLES ERRORS
OCCURRING IN ILRSRBC. THE SRB IS
MADE AVAILABLE REUSE. EACH LGE
QUEUED TO THE ASMHD THAT HAS
WORK PENDING AND NO GROUP
OPERATION IN PROGRESS IS

'PROCESSED IN STEPS 3 AND 4.

Diagram 25.12 ILRSRBC (Part 1 of 3)

VS2.03.807

Processing

ILRSRBC:

@2] ENTRY SETUP

~ SETFRR FOR RECOVERY AND
OBTAIN THE ASM LOCK FOR
THE CURRENT ADDRESS SPACE.

Label Ref Notes

---- ---

5-214 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Output

Routine Label Ref

---- ---

Input

ASMHD AlA I

l~~~E I

I
aL" I I

Notes Routine

@] THE PROCESS QUEUE IS SEARCHED

FOR EACH LGE QUEUED TO THE ASMHD
OF THE CURRENT ADDRESS SPACE. IF

NO WORK IS PENDING OR A GROUP

OPERATION IS IN PROGRESS, THE

LGE IS SKIPPED AS THERE IS NO
STARTABLE WORK.

A. THE ACE IS SAVED UNTIL THE

ASM LOCK IS RELEASED. GROUP

OPERATORS ARE PAGEABLE AND

MUST NOT BE CALLED WHILE

HOLDING THE ASM LOCK.

B. TRANSFER PAGE REQUESTS MAY BE ILRPOS

PROCESSED IMMEDIATELY WITH

THE LOCK HELD.

C. AlAS TO BE PROCESSED ARE

SAVED FOR A SINGLE CALL TO
ILRESTRT. THIS 'IS DONE

BECAUSE RESTART MUST BE

ENTERED WITHOUT THE ASM LOCK.

IF I/O IS PENDING FOR A TRP

ACE, THE IN-PROGRESS FLAG IS

SET. IF LPME IN-PROGRESS, ACE

OVERRIDE FLAG OVERRIDES THE
IN-PROGRESS FLAG.

D. THIS ACTION ALLOWS FULL

Diagram 25.12 ILRSRBC (Part 2 of 3)

VS1.03.807

Processing

FOR EACH LGE WITH WORK

PENDING AND A GROUP

OPERATION NOT IN PROGRESS,

SEARCH PROCESS QUEUE.

A. IF A GROUP-OPERATOR ACE

IS FIRST ON THE QUEUE,

THE ACE IS SAVED FOR

STEPS.

B. IF A TRANSFER PAGE ACE

HAS A FIXED LPME

ADDRESS AND LPME IS NOT
IN PROGRESS, CALL

ILRTRPAG SUBROUTINE OF

ILRPOS, DEQUEUE AND

FREE THE ACE.

C. IF AN AlA HAS A FIXED

LPME ADDRESS AND THE

LPME IS NOT IN

PROGRESS, SAVE AlA

ADDRESS FOR STEP4.

D. SEARCH OF PROCESS QUEUE
STOPS WHEN A GROUP

OPERATOR ACE IS FOUND.

Label Ref Notes

---- ---

Output

SERIALIZATION OF THE LOGICAL

GROUP, ASSURING THAT
OPERATIONS ARE PERFORMED IN
THE ORDER RECEIVED.

ILRTRANS

Routine Label Ref

---- ---

Section 2: Method of Operation 5-215

Input

Notes Routine

~ THE RESTART ROUTINE WILL PERFORM ILRPOS

FINAL AlA PROCESSING BEFORE

PASSING THE AlAS. TO ILRQIOE TO

INITIATE PAGING I/O.

~ GROUP OPERATIONS READY TO BE IEAVSY50

STARTED ARE STARTED BY POSTING ILRRLG

THE ECBS ILRGOS IS WAITING ON.

ILRGOS THEN STARTS THE OPERATION

BY CALLING THE GROUP OPERATOR.

IF THE ACE IS FOR A RELEASE LG

REQUEST, THE GROUP OPERATOR IS

CALLED. DEACTIVATE ACES ARE

PROCESSED ONLY BY SRB

CONTROLLER. THEY WERE CREATED BY

ILRJTERM DURING JOB DELETION

PROCESSING.

Diagram 25.12 ILRSRBC (Part 3 of 3)

VS2.03.807

Processing Output

~ CALL THE RESTART ROUTINE

OF ILRPOS, PASSING ANY

AlAS SAVED IN STEP 3C IN

ORDER TO START PAGING I/O.

<::::::>IILRESTRT I

IASM ROUTINE I
~ IF ANY ACES SAVED IN STEP ====:~~

3A, POST THE ACEECB FOR

SAVE OR ACTIVATE REQUESTS.

CALL ILRRLG FOR RELEASE OR

DEACTIVATE ACES.

V
TO DISPATCHER

Label Ref Notes

---- ---
ILRESTRT

I EAOPTO 2
ILRRLG

REG

C AlA

I
ACE

I

5-216 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

1 AlA

'fI I
I

I

Routine Label Ref

---- ---

Input

FROM ILRPAGCM

:L-: -----I1r+j_::::_D -'lrD
'---__ ----Ih ASMVT .

I
REG 4

h A,...T_A __ --.

'-----.... lIATAAIA

REG

AlA

~I ___ ~

LGE

AlA

S2.03.807

Processing Output

ILRVIOCM:

REG AlA @2] OBTAIN ASM CLASS LOCK. ========~> ~ __ ~Ir+~1 ____ ~

I REG ACE
IF AlA SPECIAL, BUT ERROR III .. -----.r .. ----..... '1 I BITS SET BY ILRPOS: lL...-----I· ----.....

A. RESET LGE

PROCESS-IN-OPERATION rILG-E-p-R~OC-F--'1

FLAG IN LPME.

B. DEQUEUE AND FREE THE

ACE.

C. IF WORK PENDING, SKIP

TO STEP 7. OTHERWISE

SKIP TO STEP 8.

~ IF AlA SPECIAL, NO ERROR

BITS ON, MOVE LSID TO ACE,

AND SET WORK PENDING FOR

LGE ACE QUEUED ON. SKIP TO

7.

l

'AIALPMEP

r.:==~> [§]
A_S_PC_T ___ I:!:!l

IF AlA NORMAL BUT MARKED

BAD BY ILRPOS, SKIP TO 7.

I LPME .

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] B. DEQUEUE AND FREE THE ACE ILRGMA

VIO COMPLETION ALWAYS RECEIVES
RELATED TO THE SPECIAL AlA

CONTROL FROM PAGE COMPLETION.

ONE AlA IS RECEIVED AS INPUT.
WITH ERRORS.

THE AlA IS PROCESSED, DEQUEUED

FROM ITS. PROCESS QUEUE, AND ~ FOR A 'SPECIAL 'AlA WITH NO

RETURNED TO PAGE COMPLETION. ERROR BITS ON, MOVE LSID FROM

UPON ENTRY, ENTRY INFORMATION IS AlA TO ACE, SET WORK PENDING

RECORDED IN ATA FOR USE DURING FLAG IN LGE AND SCHEDULE SRB FOR

RECOVERY. ILRIOFRR RECOVERY ILRSRBC.

ROUTINE HANDLES ERRORS OCCURRING

IN ILRVIOCM. THE ASM CLASS LOCK §] BITS ON, IF AlA NORMAL BUT ERROR
IS OBTAINED. THE POINTER TO THE

DEQUEUE IT AND SCHEDULE SRB FOR
AlA IS FOUND IN THE ATA, AND THE

ASCB POINTER IS FOUND IN RSMHD.
ILRSRBC IF REQUIRED.

@] THIS IS A SPECIAL CASE CREATED

BY ILRPOS WHEN TRANSFER PAGE WAS

REQUESTED, AND THE SOURCE LSID

HAD NOT YET BEEN DETERMINED DUE

TO A PAGE-OUT IN PROGRESS. THF.

'SPECIAL' AlA PROCESSED HERE ~

IN STEP 3 IS THAT PAGE OUT.

A. OBTAIN ADDRESSABILITY TO THE

ASPCT BY AN INTERNAL TRAS

(TRANSFER ADDRESS SPAC~J

MACRO. RESET

PROCESS-IN-OPERATION FLAG IN

LPME AND TRAS BACK.

Diagram 25.13 ILRVIOCM (Part 1 of 2)

Section 2: Method of Operation 5-217

Input

REG

I
I
LGE

ll""1 LG-E-PR-OC-F---'

BJ
AlA/ACE QUEUE

Notes Routine

@] FOR NORMAL AlA WITH NO ERRORS:

ADDRESSABILITY TO THE ASPCT IS

OBTAINED BY AN INTERNAL TRAS

(TRANSFER ADDRESS SPACE) MACRO

THAT LOADS THE SEGMENT TABLE

ORIGIN ADDRESS FOR THE ADDRESS

SPACE CONTAINING THE ASPCT.

A. PAGE-IN AlA: IF PERMANENT

READ ERRORS OCCUR, THE LPME

IS SO FLAGGED TO GIVE TRUE

ERROR CODES FOR ANY FUTURE

REQUESTS FOR THIS PAGE.

B. PAGE-OUT AlA: SINCE THIS

ROUTINE DOES NOT RECEIVE

PAGE-OUT AlAS WITH I/O

ERRORS, THE LSID CAN SIMPLY

BE MOVED FROM THE AlA TO THE

LPME.

C. IN EITHER CASE, THE LPME

PROCESS-IN-OPERATION FLAG IS

RESET AND ADDRESSABILITY TO

THE ADDRESS SPACE AT ENTRY IS

RESTORED.

~ THE AlA IS DEQUEUED FROM ITS LGE

PROCESS QUEUE BECAUSE Ot:l,CE IT IS

Diagram 25.13 ILRVIOCM (Part.2 of 2)

VS2.03.807

Processing Output

ASPCT
IF AlA HAD NO ERRORS SET

BY ILRPOS, OBTAIN

ADDRESSABILITY TO THE

ASPCT. ~
A. FOR PAGE-IN, SET I/O

ERROR FLAG AS NEEDED.

B. FOR PAGE-OUT, MOVE LSI~====::J

TO LPME AND SET LPME

VALID.

C. RESET THE LPME

PROCESS-IN-OPERATION

FLAG, AND RETURN TO

PRIOR ADDRESSABILITY.

~ DEQUEUE THE AlA AND RESET

ITS PROCESS-IN-OPERATION

FLAG. IF NO WORK PENDING,

SKIP TO STEP 8.

@2] SCHEDULE SRB IF ONE NOT

ALREADY SCHEDULED.

~ RELEASE ASM LOCK, CLEANUP

AND RETURN.

Label Ref Notes

---- ---

LJl
V

RETURN TO
ILRPAGCM

RETURNED TO I/O CONTROL (WHO

RETURNS IT TO RSM) RSM WILL FREE

THE PCB/AlA FOR REUSE. THE AlA

PROCESS- IN-OPERATION FLAG IS

RESET.

@] IF ANY WORK IS PENDING FOR THE

LGE PROCESSED SRB CONTROLLER IS

SCHEDULED TO ATTEMPT TO START

THE WORK.

~ THE ASM LOCK IS RELEASED, AND

THE INPUT AlA IS RETURNED TO

ILRPAGCM VIA A POINTER IN THE

ATA.

Routine

ILRSRBC

ILRPAGCM

5-218 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

ILRSRBC

ILRPAGCM

VS2.03.807

Input Processing Output

FROM I EFSD 166

ILRJTERM:

~ ASM JOB TERMINATION ~

BJ ROUTINE.

~ CHECK CURRENT ADDRESS

SPACE ASMHD FOR QUEUED

REG13 SAVEAREA

~ ____ ~Ir+I~ ____ ~
REG14 RETURN AD.

~ __ ~Ir+FI ~~I=======~>
LGE'S. IF NONE, SKIP TO 7 INTERNAL ACE QUEUE

REG15 ILRJTERM
(NO ACTIVE VIO DATA SET).

@] OBTAIN THE LOCAL LOCK AND

I
ENTRY ADDR

'-------'. "L..I ___J

ASMHD
SETFRR TO ESTABLISH

RECOVERY.

~ SEARCH LGE QUEUE. IF

RELEASE LG NOT QUEUED FOR

AN LGE, THEN:

A. GET AN ACE.

LGE QUEUE B. INITIALIZE THE ACE.

C. QUEUE ACE'S INTERNALLY.

v

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] (LGERELLG='O'B), AN ACE IS

JOB TERMINATION PROCESSING
REQUIRED VIA ILRGMA FROM THE ACE

RECEIVES CONTROL FROM THE

INITIATOR JOB DELETION MODULE
POOL IN ASMVT. THE ACE OPCODE,

LGID, LGE PTR, ETC. FIELDS ARE
(IEFSD166) WHICH CALLS THIS

INITIALIZED, AND THE ACE IS KEPT
ROUTINE ON ALL JOB TERMINATIONS.

ON AN INTERNAL QUEUE FOR

PROCESSING IN STEP 5.

@] NO LOCKS HELD, KEYO, SUPERVISOR

STATE. IHAPSA CONTAINS A POINTER
. .

TO THE ASCB, WHICH IN TURN

CONTAINS A POINTER TO THE RSMHD.

THE RSMHD CONTAINS THE ASMHD

WHICH WILL LOCATE ANY QUEUED

LGE'S. THE NORMAL SITUATION IS

THAT NO LGE'S ARE QUEUED FROM

ASMHD, AND CONTROL IS RETURNED

IMMEDIATELY TO IEFSD166. (SKIP

TO 7).

@II IF AN LGE WAS FOUND, THEN THE

LOCAL LOCK IS OBTAINED IN ORDER

TO SERIALIZE THE LGE QUEUE

AGAINST ASSIGN AND RELEASE LG,

AND TO ALLOW SETFRR COVERAGE.

ILRJTM01, ANOTHER ENTRY POINT,

IS THE RECOVERY ROUTINE

INDICATED ON THE SETFRR.

§J IF RELEASE LG NOT .QUEUED ILRGMA

Diagram 25.14 ILRJTERM (Part 1 of 2)

Section 2: Method of Operation 5-219

Input

Notes Routine

@J ONCE THE SEARCH IS COMPLETE, IF
ANY ACE'S HAVE BEEN BUILT IN

STEP 4, THE ASM CLASS LOCK IS

OBTAINED, THE ACE'S ARE QUEUED

ON TO THE CORRECT LGE PROCESS

QUEUE AND LGERELLG IS SET. IF AN
SRB WAS NOT YET SCHEDULED,

(ASHSCHED='O'B) THEN IT IS
SCHEDULED AND ASHSCHED IS SET.

THE ASM CLASS LOCK IS RELEASED.

§] FRR IS DELETED AND LOCAL LOCK
RELEASED.

@] RETURN CODE (REG 15) IS ALWAYS
SET TO o FOR COMPLETENESS -
CALLER DOES NOT NEED TO CHECK.

Diagram 25.14 ILRJTERM (Part 2 of 2)

VS2.03.807

Processing

§] IF ANY ACE'S BUILT:

A. OBTAIN ASM CLASS LOCK.

B. QUEUE EACH ACE TO

CORRECT LGE PROCESS

QUEUE AND SET LGERELLG

FLAG ON TO BLOCK FUTURE
REQUESTS FOR LGID.

C. SCHEDULE SRB AT LOCAL
LEVEL.

D. RELEASE ASM CLASS LOCK

~ DELETE FRR AND RELEASE

LOCAL LOCK.

@2] SET REGISTER 15 TO 0 AND
RETURN.

Label Ref Notes

---- ---

F

~

I
LJl

V
RETURN TO
CALLER

5-220 OSJVS2 System Logic Library Volume 5 (VS2.03.807)

Output

LG"E PROCESS
QUEUE

I 'L I

OJ
ACE'S

REG 15

10 I

Routine Label Ref

---- ---

Input

W~~v~k:f~)

1
FRR WORKAREA

.... 1 R_EG_O_~. '-+1 ,

I ASM.HD I
.~

1 REG 1 h SDWA

ATA J I SOW .. ARM I

IATASAVE I

PL...--SAAOL---JD ,.m:";BRSM I
RSMHD J

REG
15=JTM01
ENTRY
POINT ADDR
IN
CVTJTERM

--

~

Notes

@2] ILRJTM01 IS THE RECOVERY ROUTINE
FOR ILRJTERM. PLACE NECESSARY
POINTERS IN REGISTERS FOR THIS
ROUTINES PROCESSING AND AS RETRY
REGISTERS. COPY THE MODULEt i~~8TtH~N~D~~:OVERY ROUTIN IDS

§] NON-RETRYABLE ERRORS ARE

~~~t~Itrg~TCAfi~~SR~~~~~~ON • 
TERMINATION. INDICATE THAT RTM 
IS TO FREE THE LOCAL AND ASM 
LOCKS ACQUIRED BY ILRJTERM. 

@] I~~J~~~~~~E~~yR~8~~~~D AT 

§] REGISTER 13 IS LOADED FROM THE 
ATA. ILRJTM01 STORES ITS 
REGISTERS INTO THE SDWA 
(SDWASRSV) TO BE USED AS RETRY 
REGISTERS. ILRJTERM' S RETRY 

~~~N§6wl~R~~~~1RE~3Rbr~8ERN5N 
RETRY INDICATORS ARE SET.

IE] :ftl~N~~cg~s~gNpft~~~NTAI~gftJ I F6~
ANOTHER ERROR IN ILRJTERM.

~

Routine

SETRP

SETLOCK

SETRP

Diagram 25.14.1 ILRJTMOI (Part 1 of 1)

VS2.03.807

Processing Output

ILRJTM01 :

@2] INITIALIZATION
SDWA

PROCESSING.
~

I SDWASRSV

§] FOR ~~KR~~~~~~~E Ff~~~R~N SET SDWARTYA
THE SDWA. SKIP TO STEP 6.

@] FOR RETRYABLE ERRORS WITH

U~c~~g~~~b~~LLY ACQUIRE
THE ASM CLASS LOCK.

§] SET UP THE SDWA FOR RETRy.

I IE] SET RECURSION FLAG.

~
IREG 4

, ,-+ATA

IATAReR" I
~ RETURN TO CALLER.

LJl
V

WE~~f~TS)

Label Ref Notes Routine Label Ref

---- --- ---- ---

Section 2: Method of Operation 5-221

YIO Group Operators
The VIO Group Operators perform all processing
necessary to create, save, restore, and delete a
logical group (LG) and its associated ASPCT. The
three basic operators are SAVE, ACTIVATE, and
RELEASE. Two other routines that assist the
operators are the Task Mode Release routine and,
the VSAM Interface routine.

The SAVE, ACTIVATE, and RELEASE, operators
execute in the address space to which an LG is
assigned. The SAVE and ACTIVATE operators are
invoked only by ILRGOS. The RELEASE operator
can be invoked either by ILRGOS or by the SRB
Controller.

Task Mode Release processing occurs in the
Master Scheduler address space as an extension of
RELEASE processing when the LG being released
has been previously saved. Task Mode Release gets
control via a POST by RELEASE whenever a saved
copy of an LG exists on SYSl.STGINDEX. This
processing occurs asynchronously to processing in
the address space owning the LG because VBP
requires no return data. It also prevents
unnecessary delays in normal job deletion
processing.

The VSAM Interface routine is a service routine
used by SAVE, ACTIVATE, and Task Mode Releas~
to access the SYS1.STGINDEX data set. This data
set is used to save copies of ASPCTs for journaled
logical groups.

Note that a fourth group operation can be
requested by VBP. This is the ASSIGN LG operation.
Processing of this request occurs within ILRGOS, as
described in Chapter 3, "VIO Control".

SA VE Operator
The SA VE Operator saves active VIO ASPCTs on
SYS1.STGINDEX. ILRGOS passes control to the
SAVE Operator (ILRSA V) with an ACE as input.
The ACE contains either an'S' symbol or an LGID,
and a pointer to the LGE.

If the input ACE contains an LGID, ILRSAV is
processing a previously unsaved logical group.
ILRSA V flags each valid LPME as saved and
increases the saved slot counter in the ASPCT.
ILRSA V then calls ILRVSAMI to write the ASPCT to
SYSl.STGINDEX. After ILRVSAMI returns, ILRSAV
flags the ASPCT as saved, copies the's' symbol
(assigned by ILRGOS) from the ASPCT to the ACE
and returns to ILRGOS. '

If the input ACE contains an'S' symbol, ILRSA V
is processing a previously saved logical group.
ILRSA V calls ILRVSAMI to retrieve and erase the

5-222 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

previously saved copy· of the ASPCT. After
ILRVSAMI returns, ILRSA V flags each valid LPME as
saved; frees the unneeded storage for the old
ASPCT, and updates the appropriate counters.
ILRSA V then calls ILRVS.NMI to write the ASPCT to
SYS1.STGINDEX. After ILRVSAMI returns, ILRSAV
flags the ASPCT as saved and flags it as having no
slots released after the save. ILRSA V then copies
the's' symbol (assigned by ILRGOS) from the
ASPCT to the ACE and returns to ILRGOS.

ACTIVATE Operator
The ACTIVATE Operator (ILRACT) retrieves a
saved ASPCT from SYS1.STGINDEX and rebuilds it
in the current address space's LSQA.

ILRGOS passes control to ILRACT with an ACE
as input. The input ACE contains'S' symbol and a
pointer to the newly-created LGE. During an
ACTIVATE request, there is never an active ASPCT
for the VIO data set being activated.

ILRACT calls ILRVSAMI to retrieve the ASPCT
from SYS1.STGINDEX. After ILRVSAMI returns
ILRACT copies the new LGN from the LGE (b~th
built by ILRGOS) into the ASPCT, copies the
retrieved ASPCT from I/O buffers to LSQA storage,
frees the I/O buffers, stores the LSQA address of
the ASPCT in the LGE, and returns to ILRGOS.

RELEASE Operator
The RELEASE Operator (ILRRLG), along with the
Task Mode Release Operator (described in the
next section), releases paging slots back to the
system and erases saved ASPCTs from
SYSl.STGINDEX. ILRRLG posts Task Mode Release
only if the LG being released has been previously
saved.

ILRGOS or ILRSRBC passes control to ILRRLG
with an ACE as input. The ACE contains either an
's' symbol or an LGID, and, if the VIO data set is
active, a pointer to the LGE.

If the ACE contains an LGID, the data set is
active. ILRRLG releases valid LPMEs frees the LSQA
storage used for the ASPCT, and calls ILRFRELG
(entry point of ILRGOS) to free the LGE storage
and mark the LGVTE as available. ILRRLG also
updates the appropriate slot counters, then returns
control to either ILRGOS or ILRSRBC.

If the ACE contains an'S' symbol, the ASPCT
has been saved and the data set mayor may not be
active. If the ASPCT is not active, ILRRLG sets the
inactive flag in the input ACE. In either case,
ILRSA V adds the ACE to the head of the release
queue in the ASMVT, issues a POST to start Task
Mode Release processing, and updates the

appropriate slot counters. If the ASPCT is active,
ILRRLG calls ILRFRELG (entry point of ILRGOS) to
free the LGE storage and mark the LGVTE

available.

Task Mode Release Operator
The Task Mode Release Operator (ILRTMRLG) has
two responsibilities: to call Task Mode Initialization
(ILRTMIOO) to complete ASM initialization, and to
complete the release processing for a saved ASPCT.

ILRTMRLG runs under the ASM TCB in the
Master Scheduler address space established during
system initialization. The Master Scheduler attaches
ILRTMRLG. ILRTMRLG establishes the recovery
environment via an EST AE, initializes pointer, then
loads the Task Mode Initialization routine
(ILRTMIOO). Upon return, ILRTMRLG deletes
ILRTMIOO, posts Master Scheduler Initialization, and
issues a wait on the ECB in the ASMVT.

ILRRLG posts this ECB to start Task Mode
Release processing. ILRTMRLG processes a queue

VS2.03.807

of ACEs, each representing a LG whose ASPCT is
saved on SYSl.STGINDEX. ILRTMRLG calls
ILRVSAMI to retrieve and erase the saved copy of
the ASPCT on SYSl.STGINDEX. After ILRVSAMI

returns ILRTMRLG frees all slots assigned in the
ASPCT. After it has processed all the ACEs,

ILRTMRLG waits on its ECB for more work.

VSAM Interface
The VSAM Interface routine (ILRVSAMI) supplies
all the necessary functions the VIO Group operators
require for access to SYS 1.STGINDEX. There are
separate subroutines for each function required by
each operator. The functions are:

• GET ASPCT - retrieve an ASPCT from
SYS 1.STGINDEX.

• PUT ASPCT - write an ASPCT to
SYS 1.STGINDEX.

• RETE RASE - retrieve and then erase an
ASPCT from SYSl.STGINDEX.

Section 2: Method of Operation 5-223

~ 25.15

Activate Operator
(lLRACT)

,~

/

Module 25.x.
25.x.y. Entry point in module 25.x.

Page of SY28-0717-0

I 4

VIOGroup
Operators

I 25.16

Save Operator
(lLRSAV)

~ " t
I 25.19

VSAM Interface
(lLRVSAMI)

Figure 2-60. VIO Group Operators Overview

5-224 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

I
~ 25.17

Release Operator
(lLRRLG)

I

~ XMPOST

I 25.18

... Task Mode
Release Operator
(lLRTMRLG)

VS2.03.807

Input Processing Output

F ROM ILRGOS

0 ILRACT:

@D ACTIVATE GROUP OPERATOR
EPATH

t I I

@] ASPCT
OBTAIN NECESSARY ,.
RESOURCES.

ASPSSYM

@] RECORD ENTRY IN~ORMATION
IN EPATH. ASPLGID

ASPASCB

>~
ASPLGE

BUILD THE PARAMETER LIST
FOR ILRVSAMI.

ASPBKSLT

~ CALL ILRVSAMI TO RETRIEVE
ASPCT FROM SYS1.STGINDEX.
IF RETRIEVAL UNSUCCESSFUL
GOTO STEP 8.

<::::::>IILRVSAMI I
I ASM ROUTINE I

R 1 LGE I

C r~ ACE

LGEASPCT=O

~ UPDATE THE ASPCT BASE WITH)
~LGE

§gfl~~~T A~N As~~c~giN~~~:
L

LGESLTCT

LGEASPCT

LGELGID

ACELGE

ACELGID

ACESYM

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
~ THE ACTIVATE GROUP OPERATOR

JI~H~o~NaSAR~K~~~sn~~TF~~OM
SYS1.STGINDEX AND REBUILDING IT
IN THE CURRENT ADDRESS SPACE
~5~~I~~~IKsM~~Dp68LO~~AIN A

~~~~~·R~g~v~~~OX~fltI~~RPOSES, 
HANDLES ERRORS OCCURRING IN 
ILRACT AND ITS PATH THROUGH 
ILRVSAMI. 

@] IF ILRGMA IS UNSUCCESSFUL IN ILRGMA 
g~b~I~~~E~ ~~E~DT~~~~URN 
RETURNS TO ILRGOS. 

@] ILRACT'S CSECT IDENTIFIER IS SET 
IN THE EPATH. THE POINTER TO THE 
WORKAR!A IS STORED IN THE EPATH. 

~ STORE THE ADDRESS OF THE EPATH 
IN THE WORKAREA PARAMETER LIST 
FOR ILRVSAMI. STORE THE ADDRESS 

~A~~~Y~H~NR~~~E~~~~~ELi5T A 
01. 

@] CALL ILRVSAMI TO RETRIEVE THE 
ASPCT FROM SYS1.STGINDEX. IF 
i~V~~~R~~O~S¥~C~~~F~~~f 
AND SKIP TO STEP NO.9. 

ILRVSAMI ILRVSAMI 

~ THE RETRIEVED ASPCT BASE IS NOW 
UPDATED. THE LGE (ASPLGID~ IS 

~~I~C'R~I~~~f~~~)D~S 
INITIALIZED FROM SAAOLD. THE 

rgI~ffI!~DT~~E~6~~~~~ ~~E 
LGE~ACELG~. THE NUMBER OF SLOTS 
R~ IRED BACK THE VIO DATASET 
6IVfM~TtaiS.&c~~TED BY 

~~~~b~~§~:HE CURRENT 

I

Diagram 25.1 5 ILRACT (Part 1 of 2)

Section 2: Method of Operation 5-225

VS2.03.807

Input Processing

ASPCT @2] ~)MSTEPl:======~:> 07 REBUILD THE ASPCT IN USER I~ROM STEP - LSQA STORAGE.

ANCHOR THE REBUILT ASPCT
IN THE LGE.

PERFORM NECESSARY
CLEAN-UP.

~ RETURN TO CALLER.

Notes Routine Label Ref Notes

---- ---
§J THE INTERNAL SUBROUTINE REBUILD REBUILD 25.18.

IS CALLED TO COPY THE ASPCT IN 1
BUFFER(S) STORAGE. TO LSQA.

A. SAVE THE RETURN CODE IN
WORKAREA~ IF IT WAS NON-ZERO
SKIP TO STEP 9.

§] tU~ ~~A(~~~~~~TfS ~~5H~~~D IN
NUMBER OF SLOTS ACTUALLY USED BY
THE ASPCT(ASPSAVCT) IS COPIED TO
THE LGE (LGESLTCT) .

@] SAVE THE INTERNAL WORKAREA ILRGMA
RETURN CODE IN THE USERS REG 15.
USE ILRGMA TO RETURN THE
WORKAREA TO ITS POOL.

~ RESTORE REGISTERS AND RETURN TO
ILRGOS.

Diagram 25.15 ILRACT (Part 2 of 2)

5-226 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

I
>

[Jl~
V

RETURN TO
ILRGOS

Output

ASPCT ,..
ASPSSYM

ASPLGID
ASPASCB

ASPLGE

ASPBKSLT

LGE

L ILGEASPCT I

Routine Label Ref

---- ---

VS2.03.807

Input Processing Output

FROM ILRACT
MAINLINE

0 REBUILD:

@2] SAVE RETURN ADDRESS.

ASPCTPTR

I l' I~ AS"' r ~ CALCU~ATE THE NUMBER OF
ASPCT S TO BE REBUILT.

ASPASSTE
ASPCT §J CALCULATE THE AMOUNT OF

ASPCT k~~fiIgO~~~EA~~~~~D TO -
ASPLEXCT I LPME I ~ OBTAIN THE LSQA STORAGE.
ASPAEXCT

ASPASSTP

>§] COPY THE ASPCT FROM BUFFER
STORAGE TO LSQA STORAGE.

RBASPCTP I LPME I

l' I

Notes Routine

@2] SAVE REGISTER 14 IN WORKAREA.

~ THE NUMBER OF ASPCT'S TO BE
BUILT IS THE NUMBER OF ASST
EXTENSIONS (ASPAEXCT) PLUS THE
NUMBER OF LPME EXTENSIONS
(ASPLEXCT) PLUS ONE FOR THE
ASPCT BASE.

§J I~ET~O~~AB~k ~~Q~s~~~9~ ~~E~~D
REBUILT TIMES THE LENGTH OF AN
ASPCT.

~ ISSUE A BRANCH ENTRY GETMAIN TO GETMAIN
OBTAIN THE LSQA SPACE.

A. IF UNSUCCESSFUL IN OBTAINING GETMAIN

~¥~HL~8tN~~~C~6 ~~TR~XS~ ILRAFSOO
AND SET REG 0 TO LENGTH OF
BUFFER. CALL ILRAFSOO TO FREE ABEND
THE RETRIEVED ASPCT. IF
ILRAFSOO WAS UNSUCCESSFUL
ISSUE AN 087 ABEND. SET THE
~~T~Nf~~t TO 28, AND RETURN

B. ~~¥~~DT~E~~~~~~. EPATH,

§] COPY THE ASPCT BASE FROM THE
BUFFER TO LS~A STORAGE. IF THERE
~~NN~K¥~T~~ §~~~ £.r:sPAEXCT=O)

A. ~~~tfi 6~E~S~~p~~:NTER BY

B. ~I~~EA§~L~~P~§~~'~)f~ THE

c. COpy THE ASST EXTENSION FROM-
BUFFER TO LSQA STORAGE.

D. UPDATE THE LSQA POINTER BY

Diagram 25.15.1 REBUILD (Part 1 of 1)

~ FREE THE BUFFER STORAGE.
ASPCT l ~~ ASPASSTP EI RETURN TO MAINLINE OF

ILRACT.

Label Ref

---- ---

V
RETURN TO
ILRACT
MAINLINE.

ASST

ASPASSTE

Notes Routine

LENGTH OF AN ASST EXTENSION.

E. ~I~~~s!52A(K~~~§~~E~~)~ST

F. COpy THE LPME EXTENSION FROM
BUFFER TO LSQA STORAGE.

G. ~~gsifi 6~EL~~~AE~~~~§¥~N~Y

H. ANYMORE LPME EXTENSIONS
t:=ASPLEXCT), THEN GOTO STEP

I. ANYMORE ASST EXTENSIONS
(I=ASPAEXCT), THEN GOTO STEP
B.

~ ~§s6~E~EF~~~NE~6~N~A~NX~PCT FREEMAIN

BASE BUFFER STORAGE. IF THERE ILRAFSOO
ARE EXTENSIONS THE LOAD REG 1

:~aHoP~6~~~~ ~~6F~~~~'cXf£ ABEND

ILRAFSOO TO FREE THE BUFFER
STORAGE. IF ILRAFSOO WAS
UNSUCCESSFUL ISSUE AN 087 ABEND.

EI RETURN TO MAINLINE ILRACT.

Label Ref

---- ---

Section 2: Method of Operation 5-227

VS2.03.807

Input processing Output

FROM ILRGOS

ILRSAV:

@2] SAVE GROUP OPERATOR
ACE

l~c~ Il~ ~j I r;==~> @]
~ ASeer III

OBTAIN NECESSARY
RESOURCES.

ACELGE

S'SYMB

~Tilt.==~> @]
IF THE LG HAS BEEN
PREVIOUSLY SAVED, RETRIEVE

THE SAVED COPY. . U ASPCT

Notes Routine

[?il THE SAVE GROUP OPERATOR (ILRSAV)
IS RESPONSIBLE FOR SAVING VIO
ASPCTS ON SYS 1 . STGINDEX. IF THE

~~k~IvAS¥LtO~~A~~5c~sffi~D6NLY
tg~T~y~~V~A?~~TSY~~Or~EItft~AV
WILL BE PROCESSING THE ACTIVE
AND THE PREVIOUSLY SAVED ASPCTS.

kgnT~~~o~~6LE~L~~5RJ ~88~~~G
IN ILRSAV AND ITS PATH THROUGH
ILRVSAMI.

@J USE ILRGMA TO OBTAIN A WORKAREA ILRGMA
FROM ASM'S POOL. IF ILRGMA IS

g~5~cf5S~~ULAN5EAEftl~NR~6URN
CALLER. SAVE THE POINTERS TO THE
ASMHD FROM INPUT REG 2, THE
ASMVT FROM INPUT REG 3 THE

~k~AHI~~8~ ~~~U~.R~~T4~ot~¥E~~E
~~olf~~~~~C~:Ef&~6R~¥H~SPCT
POINTER TO THE WORKAREA IN THE
EPATH.

@] IF THE ASPCT IS FLAGGED AS
HAVING BEEN SAVED (ASPSAVED=l),
THEN CALL INTERNAL SUBROUTINE
SAVEDASP TO RETRIEVE THE SAVED
ASPCT.

§] 5~FI~~ ~v~t~M~OIsB~~~ ~~~~bURE
ILRALSOO WILL USE TO FLAG THE
LPME AS SAVED.

@II ZERO THE FREESLOT AND SAVES LOT ILRALSOO
COUNTERS. LOAD REG 0 WITH THE
ADDRESS OF THE ACTIVE ASPCT
BASE. CALL ILRALSOO TO PROCESS
ALL ACTIVE LPME'S BY CALLING THE
ROUTINE DEFINED TO IT IN STEP 2
(BY SAVEDASP) OR STEP 3.

~ IF THERE IS A RETRIEVED ASPCT ILRAFSOO
(RETASPCT.=O) , LOAD REG 0 WITH

Diagram 25.1 6 ILRSAV (Part 1 of 2)

IF. THE LG HAS NOT BEEN

~~~E~R~~bb~~ ~t~kr~~OAS 
WILL USE. 

(---_ ... -

CALL ILRALSOO TO PROCESS 
THE LPME'S. 

Label Ref Notes 

---- ---
rgfoL~~gTV 2iT~ XB~E~~Fb~RtHE 
RETRIEVED ASPCT BASE. CALL 

S'SYMB 

ASPSAVCT 

Routine 

ABEND 

ILRAFSOO TO FREE THE BUFFERS. IF 
THERE IS A NON-ZERO RETURN CODE 
FROM ILRAFSOO ISSUE AN 087 
ABEND. 

SAVEDASP 25.15. 
1 

~5.15. 

~5.15. 

5-228 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

LGE 

J 

Label Ref 

---- ---



Input 

VS2.03.807 

Processing 

FREESLOT r;:;:;, 
r----l:======::J:> ~ IF ANY SLOTS HAVE BEEN 

r~5Y~tD8~IR~~~~T C6tl~T BY 
THE NUMBER FREED. 

I 

Output 

ACE LGE 

> ~II 
ACELGE 

ILGESLTCTI SAVESLO'l' r;:;;;1 r.:.;.."::":'::":'--I=======J:> ~ IF THE NUMBER OF SLOTS 
, ¥fi~E~AU~5 ~~~~G~g6N¥~~Ai~ 

THE ASPCT. 

CALL ILRVSAMI TO WRITE 
ASPCT OUT TO 
SYS1.STGINDEX. 

] I CGEASPCT I 

It 
S'SYMB 

ASPCT l S'S~ 

/ 
Notes Routine 

§J IF THE FREES LOT COUNTER IS 
NON-ZERO DUE TO SAVLIMBO 

~~~~tMNg6u~~~~ ~M~~~~~ THE 
LGESLTCT (ILRGOS WILL USE THIS
VALUE TO UPDACI'E THE INDIVIDUAL
SLOT COUNT IN THE ASCB.) •

@] IF THE SAVESLOT COUNTER IS
NON-ZERO DUE TO SAVLIMBO

§~~5S~E~¥'c6tl~~ ¥~D~A~ I~~CT
(ASPSAVCT) BY THE SAVESLOT

COUNTER.

~ STORE THE POINTERS TO THE EPATH,
AND THE ASPCT BASE IN THE

ILRVSAM+

WORKAREA PARAMETER LIST FOR

6~~~5~I TO s~~ • T~~L~E£~~e§AMI TO
WRITE THE ASPCT OUT TO STGINDEX.

~ IF THERE IS A ZERO RETURN. CODE

§~~~DI~~~~~~ED~rtG IM5 ~~PCT AS
HAVING NO SLOTS RELEASED AFTER
SAVE (ASPSAVRP=O). COPY THE'S'
SYMBOL TO THE ACE
(ACESYM=ASPSSYM) •

@] IF THERE IS A NON-ZERO RETURN ILRALSOO
CODE FROM ILRVSAMI FLAG THE

~~~Y~EAijN~~~L~~V~~'Jfi~p~~~~D8kE 
H~Ak~¥2vE C~~~E f~~~s2gT T~A~~~~ 
ZERO THE SAVE SLOT COUNTER 
(ASPSAVCT) IN THE ASPCT. 

@] USE ILRGMA TO RETURN TO RETURN ILRGMA 
THE WORKAREA TO ITS POOL. 

Q2] RESTORE REGISTERS AND RETURN TO 
CALLER. 

Diagram 25.16 ILRSAV (Part 2 of 2) 

~ ILRVSAMI 

ASM ROUTINE 

RETURN THE WORKAREA TO ITS 
POOL. 

Q2] RETURN TO CALLER. 

Label Ref Notes 

---- ---

ILRVSAMI 

25.15. 
4 

ASPSAVCT 

I 
C J 
STGINDEX 

lJl 
V 

RETURN TO 
ILRGOS 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-229 



Input 
. FROM MAINLINE 

ILRSAV 

Processing 

SAVEDASP: 

VS2.03.807 

Output 

RETASPCT ASPCT @2] DO INITIALIZATION. 
~ ____ ~Ir+I~ ____ ~ 

Notes 

~ RETRIEVE AND ERASE THE 
SAVED ASPCT ON 

SYS1.STGINDEX. 

<::::> I ILRVSAMI I 
IASM ROUTINE I 

ASPCT ~ ...... ·r----l,'-=-::;l:===~) ~ IF THE ASPCT WAS RETRIEVED 
I-A-S-P-S-S-Y-M--I SUCCESSFULLY, SAVE THE 

POINTER TO IT. 

ASPFLAG 
I====~) §] IF NO SLOTS HAVE BEEN 

RELEASED AFTER SAVE, 

SAVLPME IS THE PROCEDURE 
ILRALSOO WILL USE. 

l!:====:)1 @B IF SLOTS HAVE BEEN 
RELEASED AFTER SAVE, 

SAVLIMBO IS THE PROCEDURE 

ILRALSOO WILL USE. 

~ RETURN TO MAINLINE. 

I 
Routine Label Ref Note.s 

---- ---

[----:It 
V 

MAINLINE 
ILRSAV 

@2] DEFINE SAVLIMBO AS THE PROCEDURE 
SAVE THE RETURN ADDRESS. GET THE 
ADDRESS OF THE'S' SYMBOL 

ILRALSOO WILL USE TO PROCESS THE 

(ASPSSYM) 
SLOTS ACCORDING TO THE LPME 

IN THE ASPCT. 
FLAGS. 

~ STORE POINTERS TO THE EPATH AND ILRVSAMI ILRVSAMI 
~ RETURN 

THE'S' SYMBOL IN THE PARAMETER 
TO MAINLINE. 

LIST FOR ILRVSAMI. SET THE 
REQUEST OP-CODE TO 03 (RETRIEVE 

AND ERASE). CALL I LRVSAMI TO 

RETRIEVE AND ERASE THE SAVED 

ASPCT ON SYS1.STGINDEX. 

@] IF THERE IS A ZERO RETURN CODE, 
SAVE THE POINTER TO THE 

RETRIEVED ASPCT IN THE WORKAREA 

(RETASPCT). IF THERE IS A 

NON-ZERO RETURN CODE FROM 

ILRVSAMI, TURN THE SAVED FLAG 

(ASPSAVED) OFF IN THE ASPCT. 

~ IF NO SLOTS HAVE BEEN RELEASED 

AFTER SAVE (ASPSAVRP=O), THEN 

DEFINE SAVLPME AS THE PROCEDURE 
ILRALSOO WILL USE TO FLAG THE 

LPME AS SAVED. 

~ IF SLOTS HAVE BEEN RELEASED 
AFTER SAVE (ASPSAVRP=1), THEN 

Diagram 25.16.1 SA VEDASP (Part 1 of 1) 

5-2'30 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Routine Label Ref 

---- ---



Input 

RO 

FROM ILRALSOO 
VIA ILRSAV 

Processing 

~ SAVLPME: 

LPME L-v> r;:;-:;-] 

VS2.03.807 

. . ALREADY. RETURN TO CALLER. 

Output 

LPME 

11 ASPLSAVE I I.r-r'-----,:=====:J> ~ IF THE LPME IS SAVED r 
@] FLAG THE LPME AS SAVED. lIP 
~ INCREMENT INTERNAL :!:::::::JJ 

SAVES LOT 

Notes Routine 

@II IF THE LPME IS FLAGGED AS SAVED 

(ASPLSAVE= 1 ) • THEN GOTO STEP 4. 

@] TURN THE SAVED FLAG (ASPLSAVE) 

ON IN THE LPME. 

@] INCREMENT THE SAVESLOT COUNTER 

BY ONE. 

§] RETURN TO CALLER. 

Diagram 25.16.2 SAVLPME (Part 1 of 1) 

COUNTER. 

§] RETURN TO CALLER. 

Label Ref Notes 

---- ---

V 
RETURN TO 
ILRALSOO 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-231 



Input 

R 2 

IRPN I 
R 0 

FROM ILRALSOO 
VIA ILRSAV 

Processing 

III ~ ~L::'POINTERS. 

VS2.03.807 

-~ ~ IF THE LPME HAS BEEN -II . ~~~f~R.THEN RETURN TO 

_ ~ ) fiiJ1 IF THE LPHE HAS NW BEEN 
-. ~ RELEASED AFTER SAVE BUT IT 

C 
I 

LPME 

I ASPLPFLG I ~XL[~~LID, THEN RETURN TO 

, 

Notes Routine Label Ref Notes 

---- ---
@2] ~~&~Dij~~E pk&:~~~~~S~HE Tr~~ES OF 

THE PREVIOUSLY SAVED ASPCT IN 
WHICH SOME SLOTS WERE RELEASED 
AFTER SAVE. SAVE THE RETURN 
ADDRESS, THE POINTER TO THE LPME 
N1~ ~g~K~~~:SPONDING RPN, IN 

~ IF THE LPME SAVED FLAG 
(ASPLSAVE) IS ON, THEN SKIP TO 
STEP 13. 

@] IF THE RELEASED AFTER SAVE FLAG 

!~~~t~X~bl ~~ 6~~ ¥~L~~EFt~~E, 
THEN SKIP TO STEP 13. 

§] IF THE RELEASED AFTER SAVE FLAG 
(ASPLSVRP) IS OFF AND THE VALID 
FLAG (ASPLVALD) IS ON IN THE 

~K~~6 TR~~L§k~~=TrE r~~~E~~NT 
THE SAVES LOT COUNTER AND SKIP TO 
STEP 13. 

@] IF THE RELEASED AFTER SAVE FLAG 
(ASPLSAVE) 
OFF. 

IS ON, THEN TURN IT 

Diagram 25.16.3 SAVLIMBO (Part 1 of 2) 

5-232 OS/VS2 System Logic Library Volump.5 (VS2.03.807) 

OUtput 

I 
SAVES LOT 

I ISAVESLOT+11 

LPME 

!ASPLPFLG 11 

!ASPLSAVE I 

Routine Label Ref 

---- ---



VS2.03.807 

Input Processing Output 

~ IF THERE IS NOT A 
RETRIEVED ASPCT, AND THE 

k~~~RJST6~~tE~R.THEN 

§J IF THERE IS NOT A 
RETRIEVED ASPCT

t 
AND THE 

~~~EL~~E V~~I~AvE~EN FLAG 
INCREMENT THE INTERNAL

R 0

I
I
LPME
,..-A-S-P-LP-F-LG--":""""

LPME

1 ASPLPFLG 1\

1 ASPLSAVE 1

SAVESLOT

ISAVESLOT+1 I
SAVED SLOT COUNTER, AND
RETURN TO CALLER.

@] IF THERE IS A RETRIEVED
ASPCT, CONVERT THE RPN.

@i] IF CONVERSION WAS

~~~2gC~~gF~~tU~~S¥~ AN 
085 

CALLER. 

~ CALL ILRFRSL 1 TO RELEASE 
THE SLOT BACK TO THE 
SYSTEM. 

@] ADJUST INTERNAL SLOT 
COUNTERS. 

I @] IF THE LPME IS VALID FLAji 
IT AS SAVED

L 
AND INcREMEN 

THE INTERNA SAVED SLOT 
COUNTER. 

I 
SAVES LOT FREES LOT 

II I I I 

LPME 

1 ASPLPFLG 11 

1 ASPLSAVE 1 

@] RETURN TO CALLER. 
SAVES LOT 

I I 
L---,l 

V 
RETURN TO 
ILRALSOO 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ IF THERE IS NOT A RETRIEVED 

¢~L~6 ~~~~A1~~L~lLD~¥ST~~F~PME 
THEN SKIP TO STEP 13. 

§J IF THERE IS NOT A RETRIEVED 

¢~L~6 ~tf~ASK~~L~lLD~¥sT~~ LPME 
THEN FLAG T~E LPME AS SAVED' 

~~~~~f~¥EC6bNT~~?R~~N§Ki~ETO 
STEP 13.

§] IF THERE IS P. RETRIEVED ASPCT
4~E~SL~~E:O), CONVERT THE RPN

@i] ~ 6H~ K~~~R~6~NR~~6kgtN~S~~
THEN SKIP TO STEP 13.

~ SAVE THE POINTER TO THE ACTIVE ILRFLSLT ILRFRSL1
LPME, CALL ILRFRSL1 TO FREE THE
SLOT FOR THIS LPME. RESET
LPMEPTR BACK TO THE ACTIVE LPME.

I22J DECREMENT THE SAVES LOT COUNTER

~~E~~f6T~gu&¥~~~~N6NI~E

@] IF THE LPME VALID FLAG IS ON

~S§k~~~D(l§~~~~~=~fAG~~E LPME
INCREMENT THE SAVES LOT COUNTER.

@] RETURN TO CALLER.

Diagram 25.16.3. SAVLIMBO (Part 2 of 2)

Section 2: Method of Operation 5-233

VS2.03.807

Input

FROM ILRALSOO
VIA ILRSAV

Processing

~ UNSAVLPM:

LPME ~ §]
;:":"':":::"---l======~:> 01 TURN THE LPME SAVED FLAG , __ ---II.r+,I __J -,

RO

- - OFF.

@II RETURN TO CALLER.

Notes Routine Label Ref Notes

---- ---

§] TURN THE SAVED FLAG (ASPLSAVE)

OFF IN THE LPME.

@II RETURN TO ILRALSOO.

Diagram 25.16.4 UNSAVLPM (Part 1 of 1)

5-234 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V
RETURN TO
ILRALSOO

Output

LPME

> 10 ASPLSAVE I

Routine Label Ref

---- ---

VS2.03.807

Input Processing Output

FROM ILRGOS OR
ILRSRBC

q ILRRLG:

@) RELEASE LG GROUP OPERATOR.

R 1 §]

C
I GET WORKAREA. IF WORK AREA

CANNOT BE OBTAINED, RETURN

WITH ERROR.
ACE

liACELGE I

illr=
§] INITIALIZE WORKAREA.

LGE

I I ~ ESTABLISH ADDRESSABI LI TY

TO LGE.
R 3

C
I ~ P

ACE
IF THERE IS AN ACTIVE I ACENOACT= 1 I

ASMVT
ASPCT, SAVE THE SLOT

I I
COUNTS FROM THE ASPCT IN

WORKAREA COUNTERS.

R 4
~

C
I IF THE ASPCT HAS NOT BEEN

SAVED, SKIP TO STEP 11·.

EPATH @]
I I

IF THE ASPCT IS NOT

ACTIVE, SET FLAG IN ACE.

I
LGE ASPCT i ILGEASPCT 1.r+1 I

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§1 BACKS LOT AND THE ASPSAVCT COUNT

THE RELEASE LOGICAL GROUP
IN SAVESLOT.

OPERATOR (ILRRLG) TOGETHER WITH

ILRTMRLG ARE RESPONSIBLE FOR

RELEASING SLOTS OF THIS LG, ~ IF THIS LOGICAL GROUP HAS NOT

FREEING THE ACTIVE ASPCT, AND BEEN SAVED (ACEUSYM=OFF) ,

ERASING THE SAVED ASPCT FROM PROCEED TO STEP 11.

SYS 1 . STGINDEX. FOR RECOVERY,

ILRGOS01 RECOVERY HANDLES ERRORS @] IF LGEASPCT IS ZERO, SET
OCCURRING IN ILRRLG.

ACENOACT=ON IN ACE.

§] RECORD ENTRY IN EPATH. USE ILRGMA

ILRGMA TO OBTAIN A WORKAREA FROM

ASM'S POOL. IF ILRGMA IS

UNSUCCESSFUL (REG1=O), SET THE

RETURN CODE TO 28, AND RETURN TO

CALLER.

§] INITIALIZE THE SAVESLOT,

BACKSLOT, AND FREES LOT WORKAREA

COUNTERS TO ZERO.

§I GET THE POINTER TO THE LGE FROM

THE ACE (ACELGE) •

~ IF THE LGEASPCT POINTER IS

NON-ZERO (ACTIVE ASPCT), STORE

THE LGEASPCT POINTER IN EPATH,

SAVE THE ASPBKSLT COUNT IN

Diagram 25.1 7 ILRRLG (Part 1 of 3)

Section 2: Method of Operation 5-235

VS2.03.807

Input Processing Output

ASMVT §] IF THE ASPCT IS ACTIVE:
1--

LGE

I LGEASPCT=O I
ASMSTGXA

ASMNOTMR A. SET THE ASPCT POINTER

IN LGE TO ZERO AND

DEFINE RLGLPME AS THE

PROCEDURE ILRALSOO WILL

USE TO FREE THE UNSAVED

SLOTS.

B. FREE THE ACTIVE ASPCT

STORAGE, ABEND ON

NON-ZERO RETURN.

~ IF STGINDEX IS NOT OPEN,

OR ILRTMRLG IS NOT

OPERATING, SET AN INTERNAL

FLAG TO INDICATE THIS ACE

IS TO BE RETURNED. SET

RETURN CODE TO 20. SKIP TO

STEP 12.

~ IF THIS IS A RELEASE LG

REQUEST, THEN:

A.· PUT ACE ONTO HEAD OF

ASMVT ACE

~"I I
ASMRLGRQ

THE RELEASE QUEUE.

B. POST ILRTMRLG TO FREE

THE SAVED ASPCT. SKIP

TO STEP 12.

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] ASMTMECB FIELD IN ASMVT.

IF LGEASPCT IS NONZERO:
ILRTMRLG WILL RELEASE THE

SAVED ASPCT ON SYS 1 . STGINDEX.
A. PUT POINTER TO ASPCT IN ILRALSOO 25.16.

1
REGISTER O. SET LGEASPCT TO

ZERO. CALL ILRALSOO.

B. PUT POINTER TO ASPCT IN REG ILRAFSOO

1, LENGTH OF ASPCT IN

REGISTER O. SET THE EPATH

ASPCT POINTER TO ZERO. CALL

ILRAFSOO TO FREE THE ASPCT

STORAGE. IF REG 15 NOT 0,

SAVE REGISTERS FOR RECOVERY

AND ISSUE AN 087 ABEND.

~ IF ASMSTGXA=O OR ASMNOTMR=1,

THEN SET AN INTERNAL FLAG

INDICATING THAT THE ACE IS TO BE

FREED. SET THE RETURN CODE TO 20

AND PROCEED TO STEP 12.

~ IF ASMSTGXA=1 AND ASMNOTMR=O AND

ACEOP=ACERELLG, THEN:

A. SET THE FORWARD POINTER IN

THE ACE TO ZERO. COMPARE AND

SWAP THE ACE ONTO ASMRLGRQ.

B. POST ILRTMRLG VIA THE IEAOPT01

Diagram 25.1 7 ILRRLG (Part 2 of 3)

5-236 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

VS2.03.807

Processing

~ IF THE ASPCT HAS NOT BEEN

SAVED, AND THE ASPCT

POINTER IS NON-ZERO, THEN:

A. RELEASE THE SLOTS

ASSIGNED TO THIS LG.

B. RELFASE THE STORAGE FOR

THIS ASPCT.

~ CHECK SLOT COUNTERS FOR

NON-ZERO. UPDATE ASMVT AND

LGE SLOT COUNTS.

[22] CALL I LRFRELG TO RELEASE

THE LGE.

<::::::>IILRFRELG I
IASM ROUTINE I

G FREE ACE IF REQUIRED.

~ FREE WORKAREA, CLEAN UP,

AND RETURN TO CALLER.

V
TO CALLER

>

Output

ASMVT

I ASMBKSLT

I ASMVSC

LGE

I ILGESLTCT I
I

Notes Routine Label Ref Notes Routine Label Ref

IF ACEUSYM FLAG WAS OFF, THE

LGEASPCT IS NON-ZERO, THEN:

A. LOAD REG 0 WITH POINTER TO

ASPCT AND CALL I LRALSOO

(WHICH USES RLGLPME) TO

RELEASE THE SLOTS ASSIGNED TO

THIS LG.

ILRALSOO

B. LOAD REG 1 WITH POINTER TO ILRAFSOO

ASPCT AND SET REG 0 TO LENGTH

OF THE ASPCT. SET THE EPATH

POINTER OF THE ACTIVE ASPCT

TO ZERO, AND CALL ILRAFSOO TO

FREE THE STORAGE USED FOR

THIS ASPCT. IF THERE IS A

NON-ZERO RETURN CODE FROM

ILRAFSOO, SAVE REGISTERS FOR

RECOVERY, AND ISSUE AN 087

ABEND.

~ IF THE BACKSLOT COUNTER IS

NON-ZERO, ADD IT BACK INTO THE

AVAILABLE SLOT COUNT (ASMBKSLT).

IF THE FREESLOT COUNTER IS

NON-ZERO, SUBTRACT IT FROM,

ASMVSC AND LGESLTCT. IF THE

SAVESLOT COUNTER IS NON-ZERO,

SUBTRACT IT FROM LGESLTCT.

Diagram 25.17 ILRRLG (Part 3 of 3)

25.16.
J

I

SET THE LGE POINTERS TO THE ACE

TO ZERO. LOAD REG 1 WITH POINTER

TO LGE AND CALL ILRFRELG TO

RELEASE THE LGE.

ILRGOS

G IF ACEUSYM FLAG WAS OFF OR THIS ILRGMA

IS A DEACTIVATE REQUEST

(ACEOP~ACEDEACT) OR STORAGE

INDEX CLOSED (ASMSTGXA~O) OR

ILRTMRLG IS NOT OPERATING

(ASMNOTMR~ON) THEN SET THE ACE

POINTER IN THE EPATH TO ZERO,

LOAD REG 1 WITH POINTER TO ACE,

AND CALL ILRGMA TO FREE THE ACE.

~ SET THE WORK AREA POINTER AND

THE RLG BIT IN EPATH TO ZERO.

INVOKE ILRGMA TO FREE THE

WORKAREA RESTORE REGISTERS AND

RETURN TO CALLER.

ILRGMA

ILRFRELG

Section 2: Method of Operation 5-237

VS2.03.807

Input

FROM I LRALSOO
VIA ILRRLG

Processing

R 1

I
I ::::::::~::::~> ~L::E:HE LPME IS SAVED,

RETURN TO CALLER.

LPME 1-----.,

Notes

@}J IF THE LPME HAS BEEN SAVED

(ASPLSAVE=l), THEN GOTO STEP 4.

THIS LPME WILL BE PROCESSED IN

THE MASTER SCHEDULER ADDRESS

SPACE BY ILRTMRLG.

[§] IF ASPLIOER=OFF, MARK THIS LPME

AS INVALID (ASPLVALD).

@] INCREMENT THE INTERNAL FREED

SLOT COUNTER BY 1. THIS COUNTER

IS USED TO UPDATE THE VIO SLOT

COUNT IN THE ASMVT (ASMVSC) AND

THE VIO SLOT COUNT IN THE ASCB

(ASCBVSC) .;

§] RETURN TO CALLER.

Routine

ILRFRSLT

Diagram 25.17.1 RLGLPME (Part 1 of 1)

~ IF THE I/O ERROR FLAG

OFF, MARK THE LPME AS

INVALID. CALL ILRFRSLl TO

MAKE SLOT AVAILABLE.

~ ILRFRSLl
'\,---JI---I

ASM ROUTINE

@] INCREMENT INTERNAL FREE

SLOT COUNTER.

§] RETURN TO CALLER.

Label Ref Notes

---- ---

ILRFRSLl

5-238 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

V
RETURN TO
ILRALSOO

Output

LPME

I ASPLVALD

Routine Label Ref

---- ---

Input

FROM MASTER
SCHEDULER
INITIALIZATION

D R 1 PARAMETER I
I

LIST

IL.. __ ---'' '-+:=1 ======1,_ l .. S.UCB -I-
I I

VS2.03.807

Processing

ILRTMRLG:

~ TASK MODE RELEASE LOGICAL
~ GROUP.

ESTABLISH RECOVERY
ENVIRONMENT,

~ INITIALIZATION.

(::::) IL.I_L_RT_M_I_OO ___ ---III
IASM ROUTINE

Output

IQ3l COMPLETE ASM rl
r ~[B t===:::)1 [§J i~Y+I~f!~~I5~~EDULER

L c==J t==l @] WAIT FOR WOR!<.

A:::OSAV ACE PWOSTED r;::;;l

~
~ MOVE ACE'S ON REOUEST

ASMVT

ASMNOSAV

ASMBKSLT

ASMVSC

ILRRLG

l
BY QUEUE TO THE WORK QUEUE.

AASsMMVBKsScLT ACE ~L~ II II :>@2]REMOVEANACEFROMWORK
., QUEUE.

ASMSLOTV §]

ASMTMECB

ASMRLGRQ

ASMPFRSL

§
08 CALL ILRVSAMI TO RETRIEVE

AND ERASE THE ASPCT FROM
SYS 1 • STGINDEX.

(::::) I ILRVSAMI I

I ASM ROUTINE J

ASMTCBPT

ASMTMECB

ASMRLGRQ

ASMRLGWQ

ASMSTASCB

ASMPSAV

ASMPACT

ASMPRLG

Notes Routine Label Ref Notes Routine

---- ---
§] ENTRY IS FROM MASTER SCHEDULER GETMAIN ~ COMPARE AND SWAP THE ACE'S ON

INITIALIZATION ROUTINE IEEMB860. ~~~ ~~~~EgOE8~Ey~s~~~~~Q) TO ILRTMRLG HAS TWO SEPARATE
RESPONSIBILITIES: TO CALL
ILRTMIOO TO COMPLETE ASM'S
INITIALIZATION AND TO COMPLETE

@2] THE RELEASE LOGICAL GROUP REMOVE AN ACE FROM THE HEAD OF
PROCESSING FOR A SAVED ASPCT. THE WORK QUEUE (ASMRLGWQ).
ISSUE AN UNCONDITIONAL GETMAIN
TO OBTAIN SPACE FOR A WORKAREA.

kg5T~~~o~~5LE§~ft~6~~ ~88~~~&G §] ~gR~oT~~EP9§~T~~~B6£ I~ET~~AI~E IN ILRTMRLG AND ITS PATH THROUGH
ILRVSAMI. INTO THE WORK AREA PARAMETER

LIST FOR ILRVSAMI. SET THE

@]
~8U~~!S~PFg~D~Et~Ag~.-p~f~~IfVE

ISSUE AN ESTAE TO ESTABLISH ESTAE POINTER TO THE PARAMETER LIST
RECOVERY ENVIRONMENT. i~ftes~1~SI~RILRv§~~ 8~btD NOT

RETRIEVE THE ASPCT, SKIP TO STEP

@I] 13.
INITIALIZE CERTAIN FIELDS IN THE
ASMVT. CALL ILRTMIOO IN ORDER TO
COMPLETE INITIALIZATION OF ASM.

A. PLACE THE ENTRY POINTS FOR

i~~~C~HEIk~~~: ~~oI~B¥A¥HE
ADDRESS OF THE CURRENT TCB
AND CURRENT ASCB INTO THE
ASMVT.

B. ISSUE A LOAD OF ILRTMIOO TO ILRTMIOO I LRTMI 00
OBTAIN ITS ENTRY POINT
ADDRESS. CALL ILRTMIOO TO LOAD
COMPLETE ASM INITIALIZATION.
SAVE ILRTMIOO' S RETURN CODE. DELETE
ISSUE A DELETE OF ILRTMIOO TO
FREE THE STORAGE IT OCCUPIED.

~ ISSUE A POST ON THE MASTER POST
SCHEDULER INITIALIZATION'S ECB
TO INDICATE THAT ASM
INITIALIZATION IS COMPLETE.

@] ISSUE A WAIT ON THE ASMTMECB IN WAIT
THE ASMVT. ILRRLG WILL POST THIS
ECB WHEN THERE IS WORK FOR
ILRTMRLG TO 00.

Diagram 25.18 ILRTMRLG (Part 1 of 2)

Label Ref

---- ---

Section 2: Method of Operation 5-239

Input

VS2.03.807

Processing Output

CALL ILRALSOO TO RETURN I II ALL SLOTS TO THE SYSTEM.

IF THIS ASPCT WAS NOT n
ACTIVE DURING THIS n
~~~yt~~LEU~~~tEC6tl~T IN 
THE ASMVT. 

CALL ILRAFSOO TO FREE THE Lr 
RETRIEVED ASPCT. 

IF SYS1.STGINDEX WAS FULL, 
TURN THE FULL INDICATOR 
OFF. 

RETURN THE ACE TO ITS 
POOL. 

ASMBKSLT lACE G IF THERE ARE MORE ACE' S ON 
ASMVSC 6~EB~g~KT8u~¥~p (~S~~15GWQ) , 

REPEAT OPERATION. 

ASMSLOTV (,71 

§ 
~ IF THERE ARE MORE ACE' S ON 

ASMTMECB 

ASMRLGRQ 

ASMPFRSL 

O 
. 

f~E S~~~U~SIN8U~~~EA¥O BACK 
OPERATION. 

rj61 I F THERE WERE NO MORE 
L:.::J ACE' S ON THE RE~UEST 

~M5U~AI¥OF~~C~OM~ ~6~~ 5 
WORK. 

ASMVT 

ASMNOSAV 

ASMBKSLT 

ASMVSC 

ASMTCBPT 

ASMTMECB 

ASMRLGRQ 

ASMRLGWQ 

ASMTASCB 

ASMPSAV 

ASMPACT 

ASMPRLG 

Notes Routine Label Ref Notes Routine 

---- ---
~ DEFINE TMRLPME AS THE PROCEDURE ILRALSOO 25.17. @] g ~~~_~~~gE¥t;E2u~gEB~~~M~~~~tp ILRALSOO WILL USE. LOAD REG 0 1 

WITH POINTER TO THE RETRIEVE ~E~~D G~5b~A6F T~~E f~og~s¥H~OR THE ASPCT BASE. CALL ILRALSOO TO 
RELEASE THE SLOTS ASSIGNED TO REQUEST QUEUE. 
THIS ASPCT. UPON RETURN FROM 
ILRALSOO, THE NUMBER OF SLOTS 
FREED IS DECREMENTED FROM THE 

~ VIO SLOT COUNT (ASMVSC) • IF REQUEST gUEUE (ASMRLGR2) IS 

~~~OfL~~L~AT~ ~~NgT~gM~ ~O~EWAIT 

~
WORK.

Hp~¥EW~~E~~iTA~~~~EI~I2~E f~P
LAST WARM START I PL. THE NUMBER
OF SLOTS USED TO BACK UP THIS
DATA SET IS CALCULATED BY
DIVIDING THE MAXIMUM NUMBER OF
SLOTS THAT COULD BE ALLOCATED TO
THIS DATA SET BY THE ILRSLOTV
CONSTANT. THE RESULT IS USED TO
INCREMENT THE AVAILABLE SLOT
COUNT (ASMBKSLT).

[i2J OBTAIN THE LOCAL LOCK SINCE ABEND
ILRAFSOO NEEDS IT WHILE FREEING
SPACE. LOAD REG 1 WITH THE ILRAFSOO
POINTER TO THE RETRIEVED ASPCT
BASE. SET REG 0 TO THE LENGTH OF
AN I/O BUFFER. CALL ILRAFSOO TO
FREE THE BUFFER SPACE. RELEASE
THE LOCAL LOCK. IF THERE IS A
NON-ZERO RETURN CODE FROM
ILRAFSOO ISSUE AN 087 ABEND.

[2.I] IF SYS 1 • STGINDEX FULL FLAG
(ASMNOSAV) IS ON IN THE ASMVT,
TURN THE FLAG OFF. THIS WILL
ALLOW ASM TO PERFORM SAVE
OPERATIONS AGAIN.

@] USE ILRGMA TO RETURN THE ACE TO ILRGMA
ITS POOL.

~ ~bN:~~R~OR~H~gEg~ ~~~~~gw~~E~s7
AND REPEAT THE PROCESS FOR THE
NEXT ACE ON THE WORK QUEUE.

Diagram 25.18 ILRTMRLG (Part 2 of 2)

5-240 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

VS2.03.807

Input-

FROM ILRALSOO
VIA ILRTMRLG

Processing

R 1 [S:> ~OMR, LPME:

[========J:=r::::::::::~~: ~ GET POINTER TO LPME.

l ~PME I~ ~ IWALI~TE THE LmE.

I ~ @2] IF THE LPME I/O ERROR FLAG

IS OFF, CALL ILRFRSL 1 TO

UPDATE THE PAT.

~ ILRFRSLT

ASM ROUTINE

~ INCREMENT AN INTERNAL FREE

SLOT COUNTER.

~ RETURN TO ILRALSOO.

Notes Routine Label Ref Notes

---- ---
§] OBTAIN THE POINTER TO THE LPME

FROM REG 1.

§] TURN OFF THE LPME VALID FLAG

(ASPLVALD) •

@] IF THE LPME I/O ERROR FLAG ILRFRSLT ILRFRSL1

(ASPLIOER) IS OFF, THEN LOAD REG

1 WITH THE LSID TO BE FREE AND

CALL ILRFRSL 1. ILRFRSL 1 WILL

UPDATE THE APPROPRIATE BIT IN

THE PAT MAP AND SLOT AVAILABLE

COUNT (PARESLTA) OF THE

APPROPRIATE PART ENTRY, THUS

MAKING THE SLOT AVAILABLE FOR

FURTHER USE.

[§] INCREMENT AN INTERNAL FREE SLOT

COUNTER BY 1. THIS COUNT IS USED

LATER TO UPDATE THE VIO SLOT

COUNT IN THE ASMVT.

~ RETURN TO ILRALSOO.

Diagram 25.18.1 TMRLPME (Part 1 of 1)

LJl
V

RETURN TO
ILRALSOO

Output

LPME

I ASPLVALD

Routine Label Ref

---- ---

Section 2: Method of Operation 5-241

VS2.o3.807

Input i'roceSSl.ng output

ILRVSAMI:

REG 1 @2J OBTAIN NECESSARY

C
I RESOURCES.

@] ~
'ASPCT

CALL APPROPRIATE I I SUBROUTINE BASED UPON THE
~~~~~E~PLi~~~ 6~ THE 

REG PARAMETER 
L--___ .....II ,..... LIST , ) 

lib ~~gg~5~ 
PTR. 'S'SYM 
BOL OR 
PTR.ASPCT 
BASE 

PTR.TO THE 
EPATH 

o~EIA~~C:, R~4ERA~~~ASPCT, 

@] IF THERE IS A NON-ZERO 
RETURN CODE FROM THE 
SUBROUTINE CALLED, ISSUE 
AN 086 ABEND FOR 
RECORDING. 

§] CLEAN-UP. 

@B RETURN TO CALLER. 

I 
lJl 

V 
RET.TO 
akR~£~TMt~AV 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
§] USE ILRGMA TO OBTAIN A WORKAREA ILRGMA 

AND RPL BUILD AREA. IF ILRGMA 
g~~~~~ ~f~HAA W~~~~Aco~~Tg~N2~? 
SAVE POINTER TO PARAMETER LIST 
!~A~~~~AfN~~~ ~~~~~E~OLIST. 
RECORD ENTRY INFORMATION IN 
EPATH. RECORD POINTER TO 
WORKAREA IN EPATH. RECOVERY FOR 
ILRVSAMI IS ESTABLISHED BY ITS 
CALLER. 

[§] eKLrH~E~f~~¥TOO~OC~~~Rf~~EOfHE GETASPCT 25.19. 
1 

ASPCT FROM SYS1.STGINDEX: 02 PUTASPCT 
CALL PUTASPCT TO STORE THE ASPCT 25.19. 
ON SYS1.STGINDEX: 03 CALL RETERASE 2 
RETERASE TO RETRIEVE AND ERASE 
THE ASPCT FROM SYS1.STGINDEX FOR 25.19. 
~~¥~R~ER~gE~~~tAg~ ~L 3 

REQUESTS. 

§] IF THERE IS A NON-ZERO RETURN ABEND 
CODE FROM WHICHEVER SUBROUTINE 
WAS CALLED, ISSUE AN 086 ABEND. 

~ 

§I SET THE EPATH POINTER TO THE ILRGMA 
WORKAREA TO ZERO. USE.ILRGMA TO 
RETURN THE WORKAREA AND RPL 
BUILD AREA TO ITS POOL. SET THE 
ENTRY INFORMATION IN THE EPATH 
TO ZERO. 

@] RESTORE REGISTERS AND RETURN TO 
CALLER. 

Diagram 25.19 ILRVSAMI (Part 1 of 1) 

5-242 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

PARMPTR 

o PTR 
EPATH 

PTR'S'SYMB 
OL 

PTR RPL 
BUILD AREA 

STGINDEX 

FROM ILRVSAMI 
MAINLINE 

Notes Routine 

~ COPY THE'S' SYMBOL INTO THE 
WORKAREA AND APPEND A FULL WORD 
OF ZEROS TO THE END, THUS MAKING 
THE TWELVE BYTE KEY FOR VSAM. 

§] CALL INTERNAL SUBROUTINE GETONE FREEMAIN 
TO RETRIEVE THE ASPCT BASE FROM 
SYS 1 • STGINDEX. IF THERE IS A 
~8~F~~R~A~E6~~~I~~gEI~8E~ I/O 

~gE~l~ ~~T~~~ET6H~I~£I~~F~¥~h 
THE RETURN CODE FROM GETONE. 

@] IF THE ASST EXTENSION COUNT 

:!~b~E~~~~ ~~TOU~ ~PgI~t¥~lS 

§) PROCESS EXTENSIONS. 

A. SAVE THE LPME EXTENSION COUNT 

~~¥~~~~g&) CO~~ 1~~P~~tT) IN 
THE WORKAREA. 

B. ZERO THE LPME AND ASST 
EXTENSION COUNTS IN THE ASPCT 
BASE. 

C. ZERO THE ASST EXTENSION 
I~~tE~~s~~SPASSTP) IN THE 

D. RECORD THE POINTER TO THE 
ASPCT BASE IN THE EPATH. 

E. INCREMENT THE TWELVE BYTE 
WORKAREA KEY BY ONE. 

F. CALL INTERNAL SUBROUTINE 
GETONE TO RETRIEVE AN ASST 
EXTENSION FROM SYS1.STGINDEX. 

G. IF THERE IS A NON-ZERO RETURN 

~8~~EKR~~G~~~~fN~ ~Sij'OA 

Diagram 25.19.1 GETASPCT (Part 1 of 2) 

V:SZ.U3.HU7 

Processing 

GETASPCT: 

~ ~~ICftH~S~R~~fAU~~YtO 
RETRIEVE THE ASPCT BASE 
FROM SYS1.STGINDEX. 

Output 

REG 1 

ASPCT 
RETRIEVE THE ASPCT BA!E 
FROM SYS1.STGINDEX. ) I

I 

....----..... 

IF THERE ARE NO EXTENSIONS 
RETURN TO MAINLINE. 

RETRIEVE ANY EXTENSIONS. rI'::::) 
IF UNSUCCESSFUL IN 

ASPASSTP l 
ASPC 

ASPASSTE 

OBTAINING ANY OF THE l 
ASST 

~~~~~~§O~~tAr~~g.ALL I/O 

RETURN TO MAINLINE.

Label Ref Notes

---- ---

GETONE ~5.19.

H.

I.

J.

K.

GETONE ~5.19.

L.

GETONE ~5.19.

I LPME

LJl
V

RETURN TO
MAINLINE'

FREEMAIN FOR THIS LAST
BUFFER. ZERO THE EPATH
E8~T~~GT? ~~~HA~bI~T~~S~6
t~~g~HB~~E~U~~~R~EgA~LTO
ILRAFSOO TO FREE ALL THE
BUFFERS. IF THERE IS A
NON-ZERO RETURN CODE FROM

~~K~O~6 ~¥gfI~ 2¥+H~~~D.
RETURN CODE FROM GETONE.

ZERO THE LPME EXTENSION
POINTERS (ASPASSTE) IN THE
ASST EXTENSION. STORE THE
PIONTER TO THE ASST EXTENSION
IN THE ASPCT BASE

4ft~P~~q:P~~~~~M6NI~gB~~E~~
THE ASPCT BASE. DECREMENT THE
ASST EXTENSION COUNT IN THE
WORKAREA.

INCREMENT THE TWELVE BYTE
WORKAREA KEY BY ONE.

CALL INTERNAL SUBROUTINE
GETONE TO RETRIEVE AN LPME
EXTENSION FROM SYS1.STGINDEX.

IF THERE WAS A NON-ZERO

~T¥,~ ~8~~EKR2~sG~i~~¥NEftND
STOR THE POINTER TO THE Lt>ME

l~~E~~rb~R(~p~~T~~f§ST»
AND INCREMENT THE LPME
EXTENSION COUNT (ASPLEXCT) IN
THE ASPCT BASE. LOAD REG 1
WITH POINTER TO ASPCT BASE.
ZERO EPATH POINTER TO ASPCT
BASE BUFFER. SET REG 0 TO
LENGTH OF I/O BUFFER. CALL

I~~~~~ I~ KR~~N~f~R8UK'~fi~
8g~E~~~.I~~2°toI~¥~L~E
WITH RETURN CODE FROM GETONE.

STORE POINTER TO LPME
EXTENSION IN ASST EXTENSION
4~P~~E~~~~§l6NI~g~~NT
(ASPLEXCT) IN THE ASPCT.

Routine

FREEMAIN

ILRAFSOO

ABEND

ABEND

Label Ref

---- ---

GETONE ~5.19.

Section 2: Method of Operation 5-243

VS2.03.807

Input Processing Output

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---DECREMENT THE WORKAREA LPME
EXTENSION COUNT.

M. IF THE LPME EXTENSION COUNT
IN THE WORKAREA IS ZERO SKIP
TO STEP 4-0.

N. INCREMENT THE ASST EXTENSION
ARRAY SUBSCRIPT (ASST). IF WE
HAVE NOT REACHED THE END OF
THE ARRAY (ASST > ASPNASST)
THEN GOTO STEP 41. IF WE HAVE
REACHED THE END OF THE ARRAY,
RESET THE SUBSCRIPT TO
BEGINNING OF ARRAY (ASST=l).

O. IF THE WORKAREA ASST
~~~~~~I~~ ~¥~II~~. ZERO, 

P. INCREMENT THE ASPCT BASE 
ARRAY SUBSCRIPT (BASE). IF WE 
HAVE REACHED END OF ARRAY 
(BASE > 4) THEN RETURN TO 
~~L§~ip 1~.WE HAVE NOT, 

§] THIS STEP IS ALL THE ERROR EXITS 
IN STEP4. 

~ RETURN TO MAINLINE. 

Diagram 25.19.1 GETASPCT (Part 2 of 2) 

5-244 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

FROM ILRVSAMI 
MAINLINE 

PARMPTR ASPCT ~ 
II If ASPC C> 

r--------, ASPASSTP 
ADDR.OF 
EPATH 

ADDR OF 
ASPCT 

ADDR OF 
RPL 

r l 
ASST 

ASPASSTE 

I LPME 

Notes Routine 

@2J COpy THE 12 BYTE VSAM KEY FROM 
THE BASE ASPCT TO THE WORKAREA 
KEY. 

@] LOAD REG 1 WITH THE POINTER TO FREEMAIN 
THE ASPCT BASE. CALL INTERNAL 
SUBROUTINE PUTONE TO WRITE THE 
ASPCT BASE OUT TO SYS 1 • STGINDEX. 
IF THERE IS A NON-ZERO RETURN 
CODE AND STORAGE WAS OBTAINED 

~~h~I~/~OB~k~~RtH~S~B~F~R, AND 
RETURN TO MAINLINE WITH THE 
RETURN CODE FROM PUTONE. 

@!J IF THE ASST EXTENSION COUNT FREEMAIN 
(ASPAEXCT) IS ZERO IN THE ASPCT 
BASE ZERO THE EPATH POINTER TO 
THE if 0 BUFFER

6 
ISSUE A FREEMAIN 

~~TD~NET6H~i~LI~~~FER AND 

§] PROCESS EXTENSIONS. 

A. SAVE THE LPME (ASPLEXCT) AND 
ASST (ASPAEXCT) EXTENSION 
COUNTS IN THE WORKAREA. 

B. GET POINTER TO AN ASST 
EXTENSION FROM THE ASPCT BASE 
(ASPASSTP (BASE) ) • 

C. COPY THE VSAM KEY FROM THE 
ASST EXTENSION TO THE 
WORKAREA KEY. 

D. LOAD REG 1 WITH POINTER TO 
ASST EXTENSION AND CALL THE 
INTERNAL SUBROUTINE PUTONE. 

E. IF THERE IS A NON-ZERO RETURN 
CODE FROM PUTONE, GOTO STEP 
4M. 

F. DECREMENT THE WORKAREA ASST 
EXTENSION COUNT. 

~ .-LOAD REG 1 WITH POINTER TO AN 

Diagram 25.19.2 PUTASPCT (Part 1 of 1) 

VS2.03.807 

Processing Output 

PUTASPCT: 

@2J BUILD THE 12 BYTE KEY FOR ~ 

C J 
VSAM IN THE WORKAREA. 

§] WRITE THE ASPCT BASE OUT 
TO SYS1.STGINDEX. 

STGINDEX 

@!J IF THERE ARE NO 

~~~~~~I~~5'R~~~~NT¥~ I/O 

MAINLINE.

§] WRITE ANY ASST AND LPME
EXTENSIONS OUT TO
SYS 1 • STGINDEX.

II8 FREE THE I/O BUFFER.

~ RETURN TO MAINLINE.

[---,l
V

RETURN TO
ILRVSAMI
MAINLINE

Label Ref Notes Routine Label Ref

------ --- ------ ---
LPME EXTENSION
(ASPASSTE(ASST)). COPY THE
VSAM KEY FROM THE LPME
EXTENSION TO THE WORKAREA.
CALL INTERNAL SUBROUTINE
PUTONE. IF THERE IS A
NON-ZERO RETURN CODE FROM

PUTONE 25.19. PUTONE, GOTO STEP 4M.
4

H. DECREMENT THE WORKAREA LPME
EXTENSION COUNT.

I. IF THE WORKAREA LPME
EXTENSION COUNT IS ZERO, SKIP
TO STEP 4L.

J. INCREMENT THE ASST ARRAY
SUBSCRIPT (ASST) •

K. IF THE SUBSCRIPT J IS NOT
GREATER THAN THE NUMBER OF
ENTRIES IN THE ARRAY
(ASPNASST) GOTO STEP 4G. IF
THE END OF THIS ARRAY HAS

~~~~c~r~~H~gR ~~~E~E~¥EASST 
ARRAY. 

L. IF THE ASST EXTENSION COUNT 

~~s~OlR~~~Osu~~§~r~~N1BI~~) 
AND GOTO STEP 40. IF THE 
COUNTER I S ZERO, GOTO STEP 5. 

M. IF AN ERROR OCCURS WHILE ERASE 

~~tT4~~ ~~c6~5sE*I~~i5~NS, 
WRITTEN MUST BE ERASED. AN 
ERASE IS ISSUED AGAINST THE 
CURRENT RECORD AND THE VSAM 
KEY IS DECREMENTED BY ONE. 

PUTONE 25.19. 5~~~E~~2~E~~y~E~~~~iNUES 4 
UNTIL THE LAST FOUR BYTES OF 
THE VSAM KEY ARE ZERO. 

§] ~~~FI~ET~P~I~oP2~~~~RAT~RI~~i~0 
TO FREE THE I/O BUFFER. 

FREEMAIN 

PUTONE-25.19. 

Section 2: Method of Operation 5-245 



Input 

f"'YM> 
PARMPTR 

03 

04 ADDR.OF 
EPATH 

~9~'SYMBO 
L 

ADDR.OF 
RPL 

STGINDEX 

FROM ILRVSAMI 
MAINLINE 

VS2.03.807 

Processing 

RETERASE: 

~ SET THE WORKAREA VSAM KEY 
~ FOR THE ASPCT BASE. 

r.:====:) I @] ~~6~I~~~ 1 :~t;~~~~. BASE > 
'iiJ1 ERASE THE ASPCT BASE FROM b

r 
l.:::.J SYS1.STGINDEX. I i I 
ro41 IF THERE ARE NO 
~ EXTENSIONS, RETURN TO 

III 
'MAINLINE. 

L====~~ IQ5l RETRIEVE AND ERASE ALL :) = ASST AND LPME EXTENSIONS. I.b 
~ RETURN TO MAINLINE. 

Ljl 
V 

RETURN TO 
ILRVSAMI 
MAINLINE 

Output 

REG 1 

l 
I I 
ASPCT 

l 
ASPC 

ASPASSTP 

ASST 

ASPASSTE 

STGINDEX 

Notes Routine Label Ref Notes Routine 

---- ---
@l SYS 1 . STGINDEX. IF THERE IS A 

THIS SUBROUTINE RETRIEVES AND ZERO RETURN CODE FROM GETONE 
ERASES THE ASPCT FROM SKIP TO STEP 5. 
SYS1.STGINDEX. COPY THE'S' 
SYMBOL TO THE WORKAREA VSAM KEY. 
~¥~8 ~H~ur~wg~¥EokE~E~~~6E6HUS C. IF THERE WAS A NON-ZERO FREEMAIN 

RETURN CODE FROM GETONE AN 
FOR VSAM RETRIEVED. ~~~SB~§F~RR~t~A~~TAINED: AND ILRAFSOO 

~~E~I~~4lN ~~ ~~~E~~ib~R ABEND 

@] CALL INTERNAL SUBROUTINE GETONE FREEMAIN GETONE 25.19. AND GOTO STEP 50. IF THIS WAS 
TO RETRIEVE THE ASPCT BASE FROM 5 NOT A RELEASE RE£UEST AND 
SYS1.STGINDEX. IF THERE IS A STORAGE WAS OBTA NEDij FREE 
f~R~H~~~ue~sC~D~6N~~~~oS~~~uJN THE ASST EXTENSION B FFER. 

CALL ILRAFSOO TO FREE THE 
~~8~G~A~~ST~~T~¥&~~N I~~~E IF 

BUFFERS. ,IF THERE IS A 
NON-ZERO RETURN CODE FROM 

FREEMAIN TO FREE THE' I/O BUFFER. ifu~k~~8RNI~3U~~L~~~.ABEND LOAD THE SAVED RETURN CODE, AND 
RETURN TO MAINLINE. 

D. ZERO THE ASST EXTENSION ARRAY 

@] (ASPASSTE) OF POINTERS TO THE 
ISSUE AN ERASE FOR THE ASPCT ERASE LPME EXTENSIONS. STORE THE 
BASE. IF THERE IS A ZERO RETURN POINTER TO THE ASST EXTENSION 
~g~~iE*gT~E~~~~ ~6D~F I~~fi~ IS A 

SHOWCB IN THE ASPCT BASE ARRAY 
(ASPASSTP(I». INCREMENT THE 

SHOWCB TO DETERMINE THE TYPE OF ASST EXTENSION COUNT 
ERROR. IF RETRY IS POSSIBLE GO (ASPAEXCT) IN THE ASPCT BASE. 
BACK AND REISSUE THE ERASE. SET DECREMENT THE WORKAREA ASST 
THE INTERNAL RETURN CODE TO 4. EXTENSION COUNT. 

~ 
E. ISSUE AN ERASE OF THE ASST ERASE 

IF THE ASST EXTENSION COUNT EXTENSION. IF THERE IS A 
(ASPAEXCT) IS ZERO, RETURN TO NON-ZERO RETURN CODE FROM SHOWCB 
MAINLINE. ~~~~~I&~S¥~EAT~~~wg~ ~~ROR. 

@] ASST AND LPME EXTENSIONS: 
l&DR~~~§sfi~ ~~~S~~~E.G~FBACK 
~~¥~~NI~ ~~~8~~I~5~E ~~T4:HE 

A. SAVE THE ASST (ASPAEXCT) AND 
LPME (ASPLEXCT) EXTENSION F. SET THE WORKAREA KEY FOR AN 

I COUNTS IN THE WORKAREA. ZERO LPME EXTENSION. CALL INTERNAL 
THE ASST AND LPME EXTENSION SUBROUTINE GETONE TO RETRIEVE 
COUNTS IN THE ASPCT BASE. AN LPME EXTENSION. 
~~R~H~H~S~I~~~~~st~~~A¥~T~hE 
ASPCT BASE. RECORD THE G. IF THERE IS A ZERO RETURN 
POINTER TO THE BUFFER ASPCT ~~~~ !~~M GETONE, SKIP TO BASE IN THE EPATH. 

B. SET THE WORKAREA KEY FOR AN GETONE 25.19. H. U THERE IS A NON-ZERO RETURN 
ASST EXTENSION. CALL INTERNAL 5 CODE AND THIS IS A RELEASE 
SUBROUTINE GETONE TO RETRIEVE REQUEST, SKIP TO STEP 50. 
THE ASST EXTENSION FROM 

'---I.-IF THERE IS A NON-ZERO RETURN 

Diagram 25.19.3 RETE RASE (Part 1 qf 2) 

5-246 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

I LPME I 

Label Ref 

---- ---

GETONE 25.19. 
5 



VS2.03.807 

Input: Processing Output 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---CODE THIS IS NOT A RELEASE END OF THE ARRAY, GOTO STEP 
~~~2f~~6 ~~pS:fgR~~~pW~~. NOT 5F. 

Q. LOAD INTERNAL RETURN CODE AND
J. IF THERE WAS A NON-ZERO RETURN TO MAINLINE.

RETURN CODE THIS IS NOT A
~*~E~~~A~~~g~S§to~D T~~ORAGE R. STORE THE POINTER TO THE LPME
POINTER TO THE LPME BUFFER IN EXTENSION BUFFER IN THE ASST
THE ASST EXTENSION ARRAY EXTENSION ARRAY
(ASPASSTE (J)). ZERO THE EPATH (ASPASSTE(J». ZERO THE EPATH

f~~~~~~N:f°TA~EL~~~ ~~~~~~I~D ig~~~~~N~OTA~EL~~~ ~~~~~~iON
COUNT (ASPLEXCT) IN THE ASPCT COUNT IN THE BASE (ASPLEXCT).
BASE. DECREMENT THE LPME EXTENSION

COUNT.

K. ISSUE AN ERASE OF AN ASST
EXTENS10N. DECREMENT THE ASST S. ISSUE AN ERASE OF AN LPME
EXT ENS ION COUNT. SET THE ASST EXTENSION. IF THERE IS A ZERO
EXTENSION CARRAY SUBSCRIPT RETURN CODE FROM ERASE GOTO
(J) FOR BEGINNING OF ARRAY. STEP 5P.

L. INCREMENT THE WORKAREA KEY ERASE T. IF THERE IS A NON-ZERO RETURN SHOWCB
FOR THE NEXT LPME EXTENSION. ~~g~c~R~~ ~~~~I~~S¥~EA ISSUE AN ERASE OF AN LPME
EXTENSION. DECREMENT THE LPME ERROR. IF A RETRY IS
EXTENSION COUNT IN WORKAREA. ~gs~~¥~~6EG~H~A~~§~.SI~p 5T INCREMENT THE ASST EXTENSION
SUBSCRIPT. IF THE LPME ~~~RiN~~R~~r ~~~ij~~L~6D~E~O 4 ~~~E~~~g~N cgg~~ ~3 ~~R~D SET AND GOTO STEP 5P.
RETURN TO MAINLINE.

M. IF THE ASST EXTENSION ARRAY
SUBSCRIPT HAS NOT REACHED THE ~ RETURN TO MAINLINE.

END OF THE ARRAY GOTO STEP
5M. IF IT HAS REACHED THE END
Sb~E~~'F6~C~~~E~~X~HE
ASST EXTENSION AND GOTO STEP
5L.

N. IF STORAGE WAS OBTAINED
t~~~EE~T~~~¥~I~6F~~R:REE THE

FREEMAIN

DECREMENT THE LPME EXTENSION
COUNT.

O. IF THE LPME EXTENSION COUNT
IS ZERO, GOTO STEP 51.

P. IF THE ASST EXTENSION ARRAY
SUBSCRIPT HAS NOT REACHED THE

Diagram 25.19.3 RETE RASE (Part 2 of 2)

Section 2: Method of Operation 5-247

Input

RPLPTR

I
I

:>
RPL
1..-----,

REG

I
I
ASPCT 1..-----, F

Notes Routine

@2] ISSUE A GETMAIN TO OBTAIN A 2K GETMAIN
I/O BUFFER. IF THERE IS A ZERO
RETURN CODE FROM GETMAIN SAVE
THE POINTER TO THE BUFFER AND
RECORD THE POINTER IN THE EPATH.
IF THERE IS A NON-ZERO RETURN
CODE FROM GETMAIN, SET THE
RETURN CODE TO 28, AND RETURN TO
CALLER.

§] ISSUE A GENCB TO BUILD THE RPL GENCB
FOR A VSAM PUT REQUEST. IF THERE
IS A NON-ZERO RETURN CODE FROM
GENCB, SET THE RETURN CODE TO 20
AND RETURN TO CALLER.

@] PUTONEA ENTRY POINT. COPY THE
ASPCT BASE, OR ASST EXTENSION OR
LPME EXTENSION TO THE GETMAINED
I/O BUFFER.

§] ISSUE A VSAM PUT TO WRITE THE PUT
I/O BUFFER OUT TO SYS1.STGINDEX. SHOWCB
IF THERE IS A NON-ZERO RETURN
CODE FROM PUT, ISSUE A SHOWCB TO
DETERMINE THE ERROR. IF WE CAN
RETRY, GO BACK AND REISSUE THE
PUT. IF STGINDEX IS FULL, SET

Diagram 25.19.4 PUTONE (Part 1 of 1)

VS2.03.807

Processing Output

PUTONE:

@2] OBTAIN AN I/O BUFFER.

§] BUILD THE RPL PUTONEA
ENTRY POINT. STGINDEX

§] COpy THE ASPCT OR
EXTENSION TO BUFFER.

[§] CALL VSAM TO WRITE THE
BUFFER OUT TO
SYS1.STGINDEX.

§] RETURN TO CALLER.

LJl
V

RETURN TO
PUTASPCT

Label Ref Notes

---- --- THE RETURN CODE TO 24,
OTHERWISE, SET THE RETURN CODE
TO 20. RETURN TO CALLER.

§] SET THE RETURN CODE TO ZERO AND
RETURN TO CALLER.

Routine

5-248 OS/VS2 Sy~tem Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

I,

Input

RPLPTR

FROM GETASPCT
OR RETERASE

RPL (lLRVS~

IrlL-----J1=nl]l
WORKKEY III
~--~ ======~>

I
::;:::;Jt!:=~>

STGINDEX

Notes Routine

@I) OBTAIN THE LOCAL LOCK AND ISSUE SETLOCK
A GETMAIN FOR A 2K BUFFER TO· BE GETMAIN
USED FOR VSAM I/O. RELEASE THE
fOCAL LOCK. IF THERE IS A
NON-ZERO RETURN CODE FROM
GETMAIN, SET THE RETURN CODE TO
28 AND RETURN TO CALLER. IF
THERE IS A ZERO RETURN CODE,
SAVE THE POINTER TO THE
GETMAINED AREA AND RECORD IT IN
THE EPATH. IF THE INTERNAL RPL
BUILT FLAG IS ON SKIP TO STEP 3.

§] ISSUE A GENCB TO BUILD AN RPL GENCB
FOR A GET REQUEST FROM VSAM. IF
THERE IS A NON-ZERO RETURN CODE
FROM GENCB, SET THE RETURN CODE
TO 20 AND RETURN TO CALLER. IF
THERE WAS A ZERO RETURN CODE SET
THE INTERNAL RPL BUILT FLAG.

§] ISSUE A VSAM GET PASSING THE SHOWCB
RPL. IF THERE IS A NON-ZERO
RETURN CODE FROM GET, ISSUE A
SHOWCB TO DETERMINE THE TYPE OR
ERROR. IF IT WAS RECORD NOT
FOUND, SET THE RETURN CODE TO 08
AND RETURN TO CALLER. IF THE
ERROR WAS ONE OF THE RETRYABLE

Diagram 25.19.5 GETONE (Part 1 of 1)

y i)~.U".OU I

Processing Output

GETONE:

@I) OBTAIN
REG 1

AN I/O, BUFFER.

C
I

[§] BUILD THE RPL. r;::::)
. ASPCT

I I

§] CALL VSAM TO RETRIEVE THE
RECORD FROM SYS 1 . STGINDEX.

I §] RETURN TO CALLER WITH
RETRIEVED RECORD. I

LIl
V

RETURN TO
GETASPCT OR
RETERASE.

Label Ref Notes Routine Label Ref

---- --- ---- ---ERRORS, GO BACK AND REISSUE THE
GET. IF IT WAS NOT ONE OF THE
RETRY ERRORS, SET THE RETURN
CODE TO 20 AND RETURN TO CALLER.

§] SET RETURN CODE TO 0, AND RETURN
TO CALLER.

,

Section 2: Method of Operation 5-249

Recovery
ASM Recovery provides the. mechanism to handle
any errors that occur during normal ASM
processing. Errors are· classified into two groups.
First, there are the errors in mainline processing
that are detected during normal execution. These
errors, sometimes referred to as determinate errors
normally do not prevent continuation of the ASM '
process in progress. The errors are recorded in
SYS1.LOGREC and mainline processing resumes.

The second group of errors are the unexpected,
or indeterminate errors. ASM Recovery itself first
detects these errors. ASM Recovery attempts to
determine the severity of the error· in terms of the
extent of damage to ASM control blocks and/or
code and to the process in progress at the time of
the error. Appropriate action is then taken.
Possible actions that may be taken include
recording the error with module identification and
appropriate ASM status information, clean-up of
ASM resources where possible, converting the error
to a failure indication such as a return code to the
caller of ASM, and terminating a task or address
space if necessary.

For recovery purposes, ASM code has been
divided into functional areas. Each recovery routine
has primary responsibility for the mainline code it
covers.

The functional areas of recovery are:
• I/O Control Modules and Page Operations

Starter (ILRPOS)
• Swap Modules (ILRSWAP, ILRSWPDR)
• I/O Subsystem - front end (ILRPTM,

ILRSRT)
• I/O Subsystem - back end (ILRCMP)
• Group Operations Starter (ILRGOS) and VIO

Group Operators
• SRB Controller (ILRSRBC)
• Task Mode Release Processing (ILRTMRLG)
• Message Module (ILRMSGOO)
• Address Space Termination (ILRTERMR)
• Job Terprination (ILRJTERM)
• Page Expansion (ILRPGEXP)
• Special I/O to Page Data Sets (ILRPREAD)

The ASM recovery environment is established via
the SETFRR or EST AE macro. The task mode
release processing recovery environment is
established during system initialization and is
always present. Issuance of the SETFRR or ESA TE
macro is held to a minimum to allow maximum
r:ecovery coverage with minimum overhead.
Recovery environments are established only at
external entry points to ASM.

5-250 OS/VS2 System Logic Ubrary Volume 5 (VS2.03.807)

VS2.03.807

Mainline ASM processing is tracked via the new
ASM Tracking Area (AT A) and the Recovery Audit
Trail Area (EPATH). The ATA is mapped onto the
24-byte area returned by the SETFRR macro. The
module establishing the recovery environment
dynamically obtains the EPA TH. The AT A and
EPATH will contain module, CSECT, and entry
point data in addition to other data required for
error recovery processing.

110 Control Modules and Page Operation
Starter (ILRPOS)
The I/O control FRR (ILRIOFRR) is the routine
RTM calls whenever an error is encountered during
ASM's swap processing, initial page processing, or
page completion processing. This FRR is placed on
the current stack if:

• ILRSW AP, ASM's swap controller, has been
called by RSM;

• ILRPAGIO, ASM's page I/O controller, has
been called by RSM or by ILRSW AP on a
swap out request;

• ILRTRPAG (entry point in ILRPOS), ASM's
transfer page routine, has been called by
RSM;

• ILRPAGCM, ASM's page completion controller,
has been called by the I/O subsystem for
notification of I/O campletion, or by the VIO
SRB Controller and the front end of the I/O
subsystem to handle errors;

• ILRSWPDR, ASM's swap driver, has been
scheduled to start I/O to a swap data set.

The FRR consists of a mainline router and
recovery subroutines for each of the ASM functions
covered. The mainline receives control from RTM
on an error. At this time, the SDWA contains
information about the error, such as error type
(program check, machine check, etc.), registers -and
PSW at the time of the error, and information
about the mode of the system at the time of the
error. The SDWA also contains the address of the
AT A, the ASM tracking area mapped to the
six-word parameter area provided by SETFRR. The
mainline of the FRR uses the tracking information
in the AT A to determine which ASM function was
in control at the time of the error and then gives
control to the recovery subroutine for this Junction.
The mainline first performs common verifications
and set up for the recording of the error. The
functions identified in the mainline of this FRR
include:

• ILRQIOE
• ILRSLSQA

• SW APCOMP subroutine of ILRPAGCM

• ILRVIOCM
• PAGECOMP subroutine of ILRPAGCM

• ILRPOS
• ILRPAGIO

• ILRPAGCM

• ILRSWAP
• ILRTRPAG (entry point in ILRPOS)

• ILRSWPDR

Each recovery subroutine attempts recovery
and/ or clean-up of its resources and, if retry is
desired, places the retry address in the SDW A. In
the cases of ILRSLSQA, ILRSWAP, and ILRSWPDR,
the subroutine calls one of the entries in ILRSWPOI
to do the recovery. Some common clean-up is also
performed in the mainline. The mainline completes
the set-up for retry if retry has been requested.

Recovery for ILRQIOE begins by validity-checking
the ASMST AGQ and the AlA checkpointed in the
AT A. If this AlA is valid, it is marked with the
indeterminate error flag and queued to the AlA
error queue in the PART. Any work already queued
to the temporary write queques is then queued to
the PART write queues. Finally, Part Monitor
(ILRPTM) is scheduled if it is not already
scheduled. The retry point is set to return to the
caller.

Recovery for the SW APCOMP subroutine of
ILRPAGCM begins by validity-checking the
SARW AITQ and the queue of remaining AlAs

checkpointed in the AT A. If the AlA in the AT A is
valid and is for a swap-in request, it is marked with
the indeterminate error flag and queued to the
internal PIOPQ (the internal queue of AlAs to be
given to module IEAVPIOP). The ASMIORQC count
is also increased. If the AlA is valid and is for a
swap-out request, the AlA is marked with the
indeterminate error flag and queued to the
ASHCAPQ. Because an indeterminate error has
occurred, the address space is then terminated.
Retry is not attempted.

Recovery for ILRVIOCM begins by a 'TRAS' back
to the current address space. The AlA checkpointed
in the AT A is then validity checked. This AlA., or its
related ACE, is dequeued from the LGEPROCQ. The
SRB Controller is scheduled and the ASM class lock
is freed, if held. Retry is not attempted. Recovery
processing is completed by recovery for the
PAGECOMP subroutine of ILRPAGCM.

V82.03.807

Recovery for the PAGECOMP subroutine of
ILRPAGCM begins by a 'TRAS' back to the current
address space. On a 'TRAS' error, the address space
involved is terminated. The in-process AlA queue
pointed to by the AlA checkpointed in the AT A is
validity checked. If the AlA in the AT A is valid' it . '
IS marked with the indeterminate error flag and
queued to the internal PIOPQ (the internal queue of
AlA'S to be given to module IEAVPIOP). The
ASMIORQC count is also increased. Retry is
attempted when Recovery determines that
ILRSLSQA can be called.

Recovery for ILRPOS begins by validity-checking
the AlAI ACE checkpointed in the AT A. If it is a
valid AlA, it is dequeued from the ASMST AGQ, the
ASMIORQR count is decreased, and the AlA is
marked with the indeterminate error flag. If the
ASM lock is held, the LGEPROCQ is validity
checked and the AlAI ACE is dequeued from it. The
ASM lock is freed if held. The retry point is set so
that return is to the caller.

Recovery for ILRPAGIO begins by
validity-checking the AlA checkpointed in the AT A.

If this AlA is valid, it is marked with the
indeterminate error flag and its address is placed in
the work area for return to RSM. If the AlA is on
the ASMSTAGQ, it is dequeued and the ASMIORQR
count is decreased. The retry point is set to call
ILRQIOE.

Recovery for ILRTRP AG entry point of ILRPOS
begins by validity-checking the ACE checkpointed
in the AT A. If it is a valid ACE, it is returned to its
cell pool. If there is a related AlA, it is
disconnected from the ACE. Retry is not attempted.

Recovery for ILRPAGCM is contained in the
clean-up processing performed for all routines on
the ILRPAGCM path. This clean-up consists of first
placing any unprocessed AlAs on the AlA error
queue in the PART and then scheduling Part
Monitor (ILRPTM) to process these AlAS. The
clean-up then attempts to return any completed
AlAS to RSM either by retrying at the call to
IEAVPIOP (if retry is permitted) or by calling
IEAVPIOP directly.

Swap Modules (ILRSW AP, ILRSWPDR)
ILRIOFRR passes control to swap recovery
(ILRSWPOl) to process errors that occur in ASM's
swapping path. This module has three entry points:
ILRSWPOI for swap driver recovery, ILRCSWAP for

Section 2: Method of Operation 5-251

front end swap processor recoyery, and ILRCSLSQ
for swap LSQA processor recovery.

Recovery for ILRSWPDR
Swap driver recovery processes all errors that occur
in ASM's swap driver, ILRSWPDR, as non-retryable.
All swap recovery routines receive control from
ILRIOFRR. The control blocks associated with the
error are validity-checked. Unprocessed swap sets
are returned to work queues for future processing.
Resources such as the 10RB are freed. If a SARTE
has been checkpointed by swap driver, it is
unlocked. Swap driver's SRB is rescheduled to
ensure continuity for ASM swap processing. There
is special processing that will rebuild one 10RB and
chain it to the SARTE when a SARTE's last IORB
fails validity checking or when processing an
ASM-issued '084' abend. A SARTE (swap data set)
is unusable without an 10RB.

Recovery for ILRSW AP
Swap processor recovery processes all errors which
occur in ASM's swap processor, ILRSWAP. The
ASMHD swap queue is validity checked. Since the
swap request being processed has not yet been
merged with other swap requests on ASM's internal
queues, a retry is set up into ILRSW AP to return
this swap request· to RSM.

Recovery for ILRSLSQA
Swap LSQA recovery processes all errors that occur
in ASM's swap LSQA processor, ILRSLSQA. It is
convenient to identify three stages of swap
processing: AlAs on the ASMHD swap queue,
essentially just starting swap processing; AlAs on
the SART wait queue, grouped for SWAP processing
~nd containing assigned LSIDs; and single AlAs
connected to SCCWs ready to be sent to the swap
driver for I/O processing.

Swap LSQA recovery identifies the stage of
processing at the time of error and validity-checks
the control blocks and queues being processed. The
swap AlAs are returned to the appropriate queues
or to RSM via address space termination if the error
precludes the successful completion of the swap
request. Unused SCCWs are returned to the SARTE
SCCW available queue. The retry address and
registers are set up in the SDWA at a point in
ILRSLSQA where swap AlAs returned to queues by
recovery are reprocessed.

5-152 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

I/O Subsystem - Front End (ILRPTM,
ILRSRT)
ILRSRTOI is the FRR for both ILRPTM and ILRSRT.
It is made active by ILRPTM and it remains active
until ILRSRT and ILRPTM processing is complete
and ILRPTM deletes it. The major objective of this
FRR is to get rid of invalid or loop-causing control
blocks that ILRPTM and ILRSRT were using at the
time of the error that caused ILRSRTOI to be
invoked. Another objective is to restructure the
environment so that any remaining requests will be
properly processed by ILRPTM and ILRSRT.

I/O Subsystem - Back End (ILRCMP)
ILRCMPOI is the recovery routine for ILRCMP, the
I/O completion routine. I/O completion consists of
four entry points - ILRCMPDI, the DIE exit;
ILRCMPAE, the abnormal end appendage;
ILRCMPNE, the normal end appendage; and
ILRCMP, the termination routine. The recovery
routine attempts to clean up whatever resources
have been checkpointed in the AT A and force
reprocessing for any requests not yet attempted.
For ILRCMP, the termination routine, the SRB is
scheduled so that ILRCMP can complete its
processing. For the other entry points (ILRCMPDI,
ILRCMPNE and ILRCMPAE), percolation causes the
lOS FRR to get control and force a x'4S' to the
termination routine.

Group Operation Starter (ILRGOS) and VIO
Group Operators
ILRGOSOI is the recovery routine for ILRGOS and
its paths to VSAM; ILRGOS calls the group
operators ILRSAV, ILRRLG, and ILRACT, which call
ILRVSAMI. ILRGOSOI serves as an ESTAE for Save
and Activate requests and an FRR for Release
Logical Group and Assign requests. It only retries
for record-only abends. For all other errors, the
resources are freed and the error percolated.
Eventually ILRJTERM will clean up at job
termination and ILRTERMR will clean up at address
space termination.

If the error occurred during an Assign request,
any storage obtained on behalf of the request is
freed. Since no ACE is created for the Assign
request, there is no trace of the request once
recovery has completed. Percolation to VBP allows
VBP to take care of the ACA.

If the error occurred during an Activate request,
any storage obtained on behalf of the request is
freed. The ACE is returned to the pool and there. is
no trace of the request once recovery has

completed. Percolation to VBP allows VBP to take
care of the ACA.

If the error occurred during a Release Logical
Group request, the work-pending flag in the LGE is
turned off. ILRSRBC does not look at this LGE
because the work-pending flag is off. ILRJTERM
does not process this LGE because the Release
Logical Group flag in the LGE remains on.
ILRTERMR gets control at memory termination and
cleans up resources for the ASPCT. If the ASPCT
had been saved, a Release Logical Group request is
queued to ILRTMRLG's request queue in the
ASMVT.

If the error occurred during a Save request, all
LPME's are marked as unsaved if EPAUNSA v is on
or if the save flag in the ASPCT is off. This allows
slots to be freed up during later clean-up
processing. If the save flag is off in the ASPCT, the
's' symbol is set to zero so that a later release
request/for the LGE will be honored. The ACE is
dequeued from the LGE so that there is no trace of
this Save request. The work-pending flag in the
LGE is turned off if there is no remaining work on
the LGE. The Save-request-queued flag in the LGE
is turned off if there are no more Save requests
queued for this LGE. The
group-operations-in-process flag in the LGE is
turned off. The ACA is then returned to the
available pool. Further processing can be done for
this LGE and ILRJTERM issues a Deactivate request
for this LGE at job termination in order to clean
up.

SRB Controller (ILRSRBC)
SRB Controller Recovery (ILRSRBOl) processes all
errors that occur in ASM's SRB Controller, ILRSRBC,
or in either of the two ILRPOS subroutines
(ILRESTRT and ILRTRANS), or in ILRRLG when
called by ILRSRBC. The internal queues of AlAs and
ACEs, and the ASM Header LGE queue are
validity-checked. Startable AlAs and group
operation ACEs are set up for reprocessing by the
SRB controller. The AT A, which checkpoints critical
ASM control blocks, is copied into the SWDA.
Resources such as ILRSRBC's and ILRRLG's
workarea cells are freed. SRB controller's SRB is
rescheduled to ensure continuity for ASM
processing in the address space.

The only 'non-retryable' error is one that causes
truncation of the ASM Header LGE queue. Because
the extent of damage cannot· be ascertained and
ASM cannot handle future requests for the missing
LGES, the address space is terminated.

VS2.03.807

Task Mode Release Processing (ILRTMRLG)
ILRTMlOl, an ESTAE established in ILRTMRLG, is
basically recovery for two mainline functions -
processing in ·ILRTMlOO to complete ASM
initialization and processing in ILRTMRLG to erase
saved ASPCTs from SYS1.STGINDEX and release the
slots assigned to the ASPCTs.

If ILRTMIOI is entered due to a failure in
ILRTMlOO, retry is attempted at the next logical
process in ILRTMlOO. If, however, RTM does not
pass an SDWA to ILRTMlOl, then the system is in
serious condition since it cannot get 512 bytes of
storage (the size of an SDWA) when very few or
no other system functions are concurrently
executing. In this case ILRTMIOI percolates, causing
the Master Scheduler Initialization Task to
terminate the IPL.

If the error occurred while the ILRTMRLG main
function was executing, every effort is made to
keep the task for ILRTMRLG from being
terminated, since this task is initiated only once per
IPL. Retry in this case is always into ILRTMRLG
where it will get the next work element (ACE) off
its queue, if there is one, or go into its normal wait,
waiting for more work to be queued.

If the error occurred in ILRVSAMI (called by
ILRTMRLG), the retry is made into ILRTMRLG,
unless it is a record-only abend situation, in which
case the retry is made into ILRVSAMI.

Message Module (ILRMSGOO)
ILRMSGOI gets control when an error occurs in the
ILRMSGOO system termination subroutine. ILRMSGOI
loads a wait state PSW.

Address Space Termination (ILRTERMR)
TERMFRR is the recovery routine for ILRTERMR. If
ILRTERMR got an error while working on a queue
it calls the appropriate queue verification routine. If
retry is possible, TERMRFRR attempts to retry at
the next retry point in the module.

Job Termination Resource Manager
(ILRJTERM)
ILRJTMOI is the recovery FRR for ILRJTERM. The
error is recorded in SYS1.LOGREC. If the error is
retryable, a retry is requested at a point in
ILRJTERM where an SRB for ILRSRBC is scheduled
to the address space owning the VIO data set.

Section 2: Method of Operation 5-253

Page Expansion (ILRPGEXP)
ESTAER is the recovery routine for ILRPGEXP. It
gets control on errors from ILRPGEXP mainline,
ILROPSOO or ILRPREAD. If the error occurred while
reading or writng ILRTPARB a message is sent to
the operator. In all cases control blocks are cleaned
up and freed.

Special I/O to Page Data Sets (ILRPREAD)
EST AEXIT gets control if an error occurs while
ILRPREAD is trying to read or write the ILRTPARB.
EST AEXIT frees storage obtained from SQA and
returns to RTM. RTM will then give control to
ESTAER, the ESTAE routine fOr.ILRPGEXP.

Recovery Service Routine Module
(ILRFRROl)
The FRR service routine module contains routines
used by the other ASM recovery routines. There are
three types of service routines contained in this
module: 1) queue verfication routines, 2) control
block verification routines, and 3) a PURGEDQ
resource manager termination routine. The
verification routines verify (and correct, when
possible) queues and control blocks that might
have been affected by an error that occurred
during ASM's processing. This prevents an invalid
queue or control block from possibly causing
another error during later ASM processing. The
following queues have been identified for
verification in the case of an error: the ASM staging
queue (ASMSTAGQ), and LGE process queue
(LGEPROCQ), the SART wait queue (SARWAITQ), a
queue of AlA's, a queue of swap AlAs, a queue of
sccws, a queue of pccws, the RSM local I/O queue
(RMSLlOQ - a queue of PCBs), a queue of ACEs,
and a queue of 10Es. The following control blocks
have been identified for verification: the AlA, the
ACE, the LGE, the PCB, the sccw, the pccw, the
10E, and the 10RB-IOSB-SRB combination.

The queue verification routines all have similar
methods of operation. They all use the general
supervisor queue verification routines to actually
verify and correct the queue. Thus, each ASM
queue verification routine initializes the parameter
list for the general queue verifier with those
parameters applicable to its particular queue. The
appropriate queue verifier entry point is then
called. There is one queue verifier for each type of
queue verified: 1) a single-threaded, single-headed

5-254 OS/VSl System Logic Ubrary Volume S (VSl.03.807)

VS1.03.807

queue, 2) a single-threaded, double-headed queue,
and 3) a double-threaded, double-headed queue.

The PCB/AlA verification routine begins by
checking that the PCB/ AlA can be referenced. Then
the storage pointed to by PCBASCB checked to see
if it can be referenced. Finally, AIAOP is tested for
the correct operations code (X'OO').

The ACE verification routine begins by checking
that the ACE can be referenced. Then the storage
pointed by ACELGE is tested to check that it is a
valid LGE. Finally, a test is made to check that the
LGID in the ACE matches the LGID in the LGE.

The LGE verification routine begins by checking
that the LGE can be referenced. Then the value of
LGELGID is tested to ensure that it is less than the
maximum LGVMAXLG. Finally, a test is made to
check that LGVTE indexed by the LGID does point
to the LGE.

The SCCW verification routine begins by
checking that the SCCW can be referenced, is in the
nucleus buffer area, and contains the SCCW
identifier. Then tests are made to check that
SCCWSEEK contains the seek command code and
thatSCCWSSEC contains the set-sector command
code.

The PCCW verification routine begins by
checking that the PCCW can be referenced, is in
the nucleus buffer area, and contains the PCCW
identifier. Then, tests are made to check that
PCCWSRCH contains the TIC command code.

The 10E verification routine begins by checking
that the 10E can be referenced. Then the value of
10EAIA is tested. If it is non-zero, the AlA
verification routine is used to check that the
storage is a valid AlA.

The 10RB-IOSB-SRB verification routine begins by
checking that the 10RB-IOSB-SRB combination can
be referenced. Then the 10RB storage is checked
for the 10RB identifier and to ensure that
10RPARTE points to a valid PARTE. Finally, the
10SB storage is checked for the correct driver ID
and the correct ASID. If all verifications are
successful, the constant fields in the 10RB-IOSB-SRB
are refreshed.

The PURGEDQ resource manager termination
routine protects the SRBs for Part Monitor and
Swap Driver by rescheduling them if they are ever'
purged.

VS2.03.807

Type of Recovery Recovery Routine Code Covered

ILRCMPOl ILRCMP

ILRGOS01 1
ILRGOS

ILRGOS01
I

ILRRLG

ILRIOFRR ILRPAGCM

ILRIOFRR ILRPAGIO

ILRIOFRR ILRPOS

ILRCOIOE (lLRIOFRR entry) ILROIOE (lLRPAGIO entry)

ILRIOFRR ILRVIOCM

FRR ILRJTM01 2
ILRJTERM

ILRMSG01 2
ILRMSGOO

ILRSRBOl ILRSRBC

ILRSRTOl ILRPTM

ILRSRTOl ILRSRT

ILRSWPOl ILRSWPDR

I LRCSLSO (I LRSWPOl entry) I LRSLSOA (I LRSWAP entry)

I LRCSWAP (I LRSWPOl entry) ILRSWAP

TERMRFRR2 ILRTERMR

ESTAER2
ILRPGEXP

ESTAEXIT2
ILRPREAD

ESTAE ILRGOS01 I
ILRACT and ILRVSAMI

ILRGOS01 1
ILRSAV and ILRVSAMI

ILRTMIOl ILRTMRLG and ILRVSAMI

11 LRGOSOl is both an FRR and an ESTAE.

2 An alternate entry within the module, for which it provides recovery. The MO is with
this module's MO, not with the group of recovery routine MOs.

Figure 2-60A. Recovery Rou tines

Section 2: Method of Operation 5-255

--..

25.x.
25.x.y.

J
1 25.20

I/O Control
Recovery
(lLRIOFRR)

VS2.03.807

Recovery

I 25.22

I/O Subsystem
Recovery
(lLRSRT01)

J

5

25.24

Group Operation
Recovery
(ILRGOS01)

,

1 25.23

1 25.26

Task Mode
Recovery
(lLRTMI01)

, 125.20.1

Queue I/O
Recovery
(lLRCQIOE) I 25.21

Swap Driver
Recovery

I/O Completion
Recovery
(lLRCMP01)

1 25.25

SRB Controller
Recovery
(lLRSRB01)

~ (lLRSWP01)

125•27 .4

Initialize AlA
Queue Verifier
(lLRVAIAQ)

125.2"7.9

Verify PCB
(lLRVPCB)

f------r----I

125.21.1

Swap Recovery
(lLRCSWAP)

125.21.2

Swap LSQA
Recovery
(lLRCSLSQ)

Control Block
and Queue Verifiers
(lLRFRR01)

125.27.5

Initialize
SCCW Queue
Verifier
(lLRVSCWQ)

125.27.10

Verify ACE
(lLRVACE)

125.27.15 125.27.16

Initialize PCB Initialize ACE
Queue Verifier Queue Verifier
(lLRVPCBQ) (lLRVACEQ)

Module
Entry point in module 25.x.

, ,

I 25.27

125.27.6

Initialize Swap
AlA Queue
Verifier
(lLRVSPAQ)

125.27.11

Verify LGE
(lLRVLGE)

125.27.16

Initialize ACE
Queue Verifier
(lLRVACQ2)

,

1:25.27.1 " 1'25.27.2 125.27.3

Initialize Staging Initialize LGE Initialize SART

Queue Verifier Process Queue Wait Queue

(ILRVASGQ) Verifier Verifier
(lLRVLPRQ) (ILRVSWTQ)

125.27.7 125.27.8 125.27.9

Initialize 10E Compare Verify AlA
Queue Verifier AlA/ACE (lLRVAIA)
(lLRVIOEQ) (lLRVAIAC)

125.27.12 125.27.13 125.27.14

Verify SCCW Initialize PCCW Verify PCCW
(lLRVSCCW) Queue Verifier (ILRVPCCW)

(ILRVPCWQ)

125.27.17 125.27.18 125.27.19

Reschedule
Verify 10RB Verify 10E ILRPTM or
(lLRVIORB) (lLRVIOE) I LRSWPDR SRB

(ILRPSRMT)

Figure 2-61. Recovery Overview

5-256 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

!

Input
FROM RTM
(IEAVTRTS)

lr+rRK AREA l[rl

.... , R-EG-1--"'j, SDWA

~ ll;..;:......;.;.SDWAP----.ARM I
IREG 0

ATA

CVT

ICVTASMVT

Notes Routine

@2] ILRIOFRR IS CALLED BY RTM

ANYTIME AN ERROR OCCURS DURING
ASM'S SWAP PROCESS lNG, INITIAL
PAGE PROCESSING, AND PAGE

COMPLETION PROCESSING. ILRIOFRR

CALLS ILRSWP01 IF THE ERROR

OCCURRED DURING SWAP P~OCESSING.
OTHERWISE, ILRIOFRR CALLS
INTERNAL SUBROUTINES.

@] PLACE NECESSARY POINTERS IN

REGISTERS TO STANDARDIZE THE

INTERFACE TO THE RECOVERY

SUSROUTINE. INITIALIZE THE
PARAMETERS FOR RECORDING AND

COPY THE FRR PARAMETER AREA, THE

ATA, INTO THE VARIABLE RECORDING

AREA SO THAT THE ATA AT THE TIME

OF THE ERROR IS RECOI,l-DED. ALSO

PERFORM VERIFICATION OF COMMON

QUEUES.

@] THE FRR USES THE SECTION FLAGS

IN THE ATA TO DETERMINE WHICH

ROUTINE WAS IN CONTROL AT THE

TIME OF THE ERROR. THE FLAG IS
TURNED ON WHEN THE ROUTINE IS
ENTERED, AND OFF WHEN THE

ROUTINE EXITS. THE SECTION FLAGS

Diagram 25.20 ILRIOFRR (Part 1 of 2)

VS2.03.807

Processing Output

ILRIOFRR:

@2] ASM I/O CONTROL RECOVERY.

SDWA §] I REG Ir+ SET UP COMMON REGISTER 1
INTERFACE FOR RECOVERY

SDWAMODN
SUBROUTINES AND PERFORM

SDWACSCT
COMMON INITIALIZATION.

SDWAREXN

@] DETERMINE WHICH ROUTINE
SDWAVRA

WAS IN CONTROL AT THE TIME

OF ERROR AND ROUTE CONTROL

~
I REG 3 '4ASMVT TO THIS ROUTINE'S RECOVERY

I I CODE.

A. QIOE RECOVERY IREG 4 14ATA

B. SLSQA RECOVERY I I
C. SWAPCOMP RECOVERY I REG 8 14WORK AREA

D. VIOCM RECOVERY I I
E. PAGECOMP RECOVERY IREG 9 14DATA AREA

F. POS RECOVERY I I
G. PAGIO RECOVERY

H. SWAP RECOVERY

1. TRPAG RECOVERY

J. SWPDR RECOVERY

Label Ref Notes 'Routine Label Ref

---- --- ---- ---
ARE TESTED IN THE REVERSE OF THE

ORDER IN WHICH THE ROUTINES ARE

CALLED TO DETERMINE WHICH
ROUTINE WAS 'CURRENT' WHEN THE

ERROR OCCURRED.

A. INVOKE ILRQIOE RECOVERY. ILRCQIOE 25.20.
1

B. INVOKE ILRSLSQA RECOVERY. ILRSWP01 ILRCSLSQ 25.21.
2

C. INVOKE SWAPCOMP RECOVERY. RECSCOMP 25.20.
2

D. INVOKE ILRVIOCM RECOVERY. RECVIOCM 25.20.
3

E. INVOKE PAGECOMP RECOVERY. RECPCOMP 25.20.
4

F. INVOKE ILRPOS RECOVERY. RECPOS 25.20.
5

G. INVOKE ILRPAGIO RECOVERY. RECPAGIO 25.20.
6

H. INVOKE ILRSWAP RECOVERY. ILRSWP01 ILRCSWAP 25.21.
1

1. INVOKE ILRTRPAG RECOVERY. RECTRPAG 25.20.
7

J. INVOKE ILRSWPDR RECOVERY. ILRSWP01 ILRSWP01 25.21

Section 2: Method of Operation 5-257

Input

Notes Routine

~ PERFORM COMMON CLEAN-UP IF RETRY

HAS NOT BEEN REQUESTED OR IF

RETRY IS NOT ALLOWED.

A. COLLECT ANY UNPROCESSED AlA' S

FROM THE ATA AND FROM THE

ASMVT WORKAREA FOR ILRPAGCM.

IF THERE ARE ANY, PLACE THEM

ON THE PART AlA ERROR QUEUE

AND SCHEDULE THE SRB FOR PART

MONITOR, IF NOT ALREADY

SCHEDULED, TO PROCESS THESE

AlA'S.

B. IF THERE ARE ANY COMPLETED IEAVPIOP

AlA'S TO BE RETURNED TO RSM,

ATTEMPT TO RETRY TO RETURN

THEM TO RSM. ALSO SET THE

ILRPAGCM RECURSION FLAG. IF

RETRY IS NOT ALLOWED, OR IF

THE ILRPAGCM RECURSION FLAG

IS SET, ATTEMPT TO RETURN THE

AlA'S TO RSM FROM FRR. THIS

IS NOT ALWAYS DONE BECAUSE

SUCH A CALL MIGHT CAUSE A

RECURSIVE PROBLEM.

~ RETRY IS ATTEMPTED UNLESS

PROHIBITED BY RTM OR UNLESS

Diagram 25.20 ILRIOFRR (Part 2 of 2)

VS2.o3.807

Processing Output

~ PERFORM CLEAN-UP FOR

ERRORS DURING ILRPAGCM

PROCESSING.

A. QUEUE UNPROCESSED AlA' S:====:::.:1 ~
TO THE PART AlA ERROR L-...,,1

QUEUE AND SCHEDULE THE

SRB FOR PART MONITOR.

B. RETURN COMPLETED AlA' S ====:;I~ L ~
TO RSM BY RETRYING TO ~

CALL IEAVPIOP OR BY

CALLING IEAVPIOP

DIRECTLY.

<;:::> I IEAVPIOP I

IRSM ROUTINE I

~ RETURN TO RTM WITH

INDICATION OF RETRY OR

CONTINUE WITH

DETERMINATION.

Label Ref Notes

---- ---

V
TO RTM

ASMVT PART

Br+~ PARTAIAE

IREG 1 I.-.SDWA

ISDWARTYA I

IREG 1 I.-.SDWA

ISDWARCDE I

Routine Label Ref

---- ---INFORMATION NECESSARY FOR RETRY

IS NOT AVAILABLE.

IEAVPIOP

5-258 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

FROM ILRIOFRR
OR ILRSRBOl

[S ILRCQIOE:

1 REG
1 SDWA @2] VERIFY AND CORRECT 1
"I 1

>
ASMSTAGQ.

I IREG 3 14ASMVT @]

IAS"'TAGO I

IF ATAAIA POINTS TO A

VALID AlA AND IT IS NOT ON

THE ASMSTAGQ, MARK IT IN

ERROR AND QUEUE IT TO THE

AlA ERROR QUEUE IN THE
IREG 4 14ATA =- • PART.

~
I REG 8

14
WORK AREA

I 1

IREG 3 I .. ASMVT

IA'.'TAGO I

ATA AlA

IATAAIA Ir+~ AIAERROR .

ASMVT PART

I ASMPART Ir+~ PARTAIAE

I REG 9
IL.DATA

@] VERIFY TEMPORARY WRITE
AREA

I 1

QUEUES IN ASMVT WORKAREA.

IREG I .. ASMVT
3

ASM2PAQ

ASM2CAQ

ASM2DUPQ

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
@2] VERIFY AND RECONSTRUCT THE ILRFRROl ILRVASGQ f5. 27.

ASMSTAGQ.

@] VERIFY THAT ATAAIA POINTS TO A ILRFRROl ILRVAIA 25.27.
9

VALID AlA. IF IT DOES, A FURTHER

CHECK IS MADE TO SEE IF THIS AlA

IS STILL ON THE ASMSTAGQ WAITING

TO BE PROCESSED (IF IT WAS, ITS

ADDRESS WOULD BE IN ASMSTAGF) •

IF IT IS NOT ON THE ASMSTAGQ

(ALREADY BEING PROCESSED), THE

ERROR FLAG IN THE AlA IS TURNED

ON AND THE AlA IS QUEUED TO THE

ERROR AlA QUEUE IN THE PART,

PARTAIAE.

@] VERIFY AND CORRECT THE TEMPORARY ILRFRROl ILRVIOEQ 25.27.
7

WRITE QUEUES IN THE ASMVT

WORKAREA.

Diagram 25.20.1 ILRCQIOE (Part 1 of 2)

Section 2: . Method of Operation 5-259

VS2.03.807

Input processing Output

I REG 3
, ASMVT I

ASM2PAQ
ASM2CAQ
ASM2DUPQ

Notes

~ IF THERE ARE ANY REQUESTS ON THE
TEMPORARY WRITE QUEUES, THE ASM
LOCK THAT SERIALIZES THE PART
QUEUES MUST BE OBTAINED IF IT IS
NOT ALREADY HELD. THE WRITE
REQUESTS ARE THEN QUEUED TO THE
APPROPRIATE PART WRITE QUEUE.
THE ASM CLASS LOCK IS FREED - IT
IS FREED EVEN IF IT HAD ALREADY
BEEN HELD SINCE RTM DOES NOT
FREE LOCKS ON RETRY.
SERIALIZATION IS MAINTAINED
SINCE THE SALLOC LOCK IS STILL
HELD.

~ PART MONITOR IS SCHEDULED, IF IT
ISN'T ALREADY SCHEDULED, TO
HANDLE ANY REQUESTS THAT MIGHT
HAVE BEEN QUEUED.

~ IF THE ILRQIOE RECURSION
INDICATOR IS NOT SET, THE RETRY
ADDRESS IN THE SDWA, SDWARTYA,
IS SET TO THE ADDRESS IN ILRQIOE
AT WHICH 'RETURN TO THE CALLER'
IS PERFORMED. THE ILRQIOE
RECURSION INDICATOR IS ALSO SET.

> ~ REMOVE WRITE REQUESTS FROI~I====::;Lb
TEMPORARY WRITE QUEUES AND
QUEUE THEM TO THE PART

Routine

WRITE QUEUES.

A. COMMON AREA WRITE QUEUE

B. SECONDARY WRITE QUEUE

C. PRIVATE AREA WRITE

QUEUE

~ SCHEDULE PART MONITOR.

SET UP FOR RETRY IF
RECURSION IS NOT
INDICATED.

Label Ref Notes

---- ---

::;::1 ==:;1~

[-It
V

TO CALLER

Diagram 25.20.1 ILRCQIOE (Part 2 of 2)

5-260 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

ASMVT PART

I ASMPART p-+
.~

PARTCOMQ
PARTDUPQ
PARTLOCQ

IREG 1 I SDWA

ISOW .. T.. I

Routine Label Ref

---- ---

VS2.03.807

Input processing Output

FROM ILRIOFRR
MAINLINE

0 RECSCOMP:

IREG 1
I SDWA §] 1 I VERIFY AND CORRECT RELATED

QUEUES;

ASMVT SART
IREG IL.ASMVT 3 A. SARWAITQ.

~ /ASMSART Ir~ 1 I I
B. QUEUE OF REMAINING

Il
SARWAITQ

IREG 4
'LATA

AlA'S TO PROCESS.

§] VALIDITY CHECK THE AlA. , ASMVT
ATAAIA - IREG 3

ATAASCB IA~3TMPA I
§] PROCESS VALID AlA FOR A

IREG 8
'L.

WORK AREA
SWAP IN REQUEST.

I
AIA

1
,

IATAAIA

IAIA~OR I lREG 9 IL.DATA AREA

I I

~ IREG 3 IL.ASMVT

ASMIORQC

ASM3PIOP

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] VERIFY AND CORRECT THE QUEUES

THAT MIGHT HAVE BEEN AFFECTED BY

AN ERROR DURING SWAPCOMP

PROCESSING:

A. THE SARWAITQ. ILRFRROl ILRVSWTQ 25.27.
3

B. THE QUEUE OF REMAINING AlA'S ILRFRROl ILRVSPAQ 25.27.
6

(POINTED TO BY ASM3TMPA) •

@] VALIDITY CHECK THE AlA POINTED ILRFRROl ILRVAIA 25.27.
9

TO BY ATAAIA.

§] IF ATAAIA POINTS TO A VALID AlA

FOR A SWAP IN REQUEST

(ATAASCB=O), THE INDETERMINATE

ERROR FLAG, AIAERROR, IS TURNED

ON, THE AlA IS PLACED ON THE

INTERNAL QUEUE OF AlA'S TO BE

RETURNED TO RSM (I F NOT ALREADY

THERE), AND THE COUNT OF

COMPLETED REQUESTS IN THE ASMVT,

ASMIORQC, IS INCREMENTED. SET UP

FOR ADDRESS SPACE TERMINATION BY

PUTTING THE ASCB ADDRESS IN

ATAASCB AND TURNING ON THE SWAP

IN FLAG.

Diagram 25.20.2 RECSCOMP (Part 1 of 2)

Section 2: Method of Operation 5-261

VSl.03.807

Input Procfi!ssing ·Output

~ IF ATAASCB IS NOT ZERO,

VERIFY THAT ATAASCB POINTS

TO A VALID ASCB.

<::::> I EAVEGAS

ASCB VERIFIER

IATAASCB I ---... A~SCB.:..:-J I. . rn;;J . ,----.- ----Ir;:-:: ==~> ~

L-_______________ AS~
IF ATAASCB POINTS TO A rl
VALID ASCB, PROCESS ATAAIA

(IF VALID), TURN ON THE

PERMANENT ERROR FLAG IN

Notes Routine

~ IF ATAASCB IS NOT ZERO, VERIFY IEAVEGAS

THAT ATAASCB POINTS A VALID

ASCB.

@] IF ATAASCB POINTS TO A VALID

ASCB:

A. IF IT IS A SWAP OUT REQUEST, ILRFRROl

VALIDITY CHECK THE ASHCAPQ.

THEN IF ATAAIA POINTS TO A

VALID AlA, TURN ON THE

INDETERMINATE ERROR FLAG,

AIAERROR, AND PLACE THE AlA

ON THE ASHCAPQ. (ASHCAPQ IS A

QUEUE OF COMPLETED SWAP-OUT

REQUESTS FOR AN ADDRESS

SPACE. WHEN ALL THE REQUESTS

COMPLETE, THEY ARE RETURNED

TO RSM.) TURN ON THE

PERMANENT ERROR FLAG,

ASHPERME, TO PREVENT SWAPCOMP

FROM EVER CALLING IEAVSWPC

NORMALLY.

B. IF A SWAP-IN REQUEST,SET THE

RSMFAIL FLAG.

C. BECAUSE AN INDETERMINATE MEMTERM

ERROR HAS OCCURRED, TERMINATE

Diagram 25.20.2 RECSCOMP (Part 2 of 2)

THE ASM HEADER, AND

TERMINATE THE MEMORY.

UPDATE ATAAIA TO POINT TO =r========il
THE NEXT AlA TO PROCESS. h ~

LJl

Label Ref

------ ---
IEAVEGAS

ILRVSPAQ 25.27.
6

V
TO ILRIOFRR
MAINLINE

Notes

THE ADDRESS SPACE.

~ UPDATE ATAAIA TO POINT TO THE

NEXT AlA (IN ASM3TMPA). THE

REMAINING AlA'S WILL BE

CLEANED-UP BY THE PROCESSING

THE MAINLINE OF ILRIOFRR.

IATAAIA I AIA

IAIA~OR I

I ASCBRSM 14 RSMHD-ASMHD

IASHPERME I

IATAASCB 14ASCB

IASCBT~M I

IREG 4 I ATA

~

Routine Label Ref

---- ---

IN

",

VS2.03.807

Input

I
SDWA

I...IR_EG_'_---I. ,.1.----'1

1...1 R_EG_3_---I1 4 ASMVT

I

1 L.. R_E_G_8 __ -J14 WORKAREA

1 I
IREG 9 I,
1-. ___ --.I 4DATA AREA

1 I

FROM RECPCOMP
OR ILRIOFRR
MAINLINE

Processing

~ RECVIOCM:

r;::::::::~»I~ RESTORE ADDRESSABILITY TO

THE CURRENT ADDRESS SPACE.

@] VALIDITY CHECK THE QUEUE

OF AlA'S.

>@l IF ATAAIA POINTS TO A

VALID AlA, OBTAIN THE ASM

LOCK FOR ITS ADDRESS

SPACE, IF IT IS NOT

ALREADY HELD.

1 PCBASCB I,.ASCB ,L

~r

Notes Routine Label Ref Notes

---- ---
@2] ISSUE A TRAS BACK TO RESTORE THE

STOR (SEGMENT TABLE ORIGIN

REGISTER) OF THE CURRENT MEMORY.

THIS IS NECESSARY IF THE ERROR

OCCURRED DURING A TRAS OPERATION

FOR ALL ERRORS EXCEPT A DAT

ERROR (RESTORE HAS BEEN DONE BY

RTM) •

@] VALIDITY CHECK THE QUEUE OF ILRFRRO' ILRVAIAQ 25.27.
4

AlA'S BEING PROCESSED, STARTING

WITH ATAAIA.

§] IF ATAAIA POINTS TO A VALID AlA

(NON-ZERO ADDRESS), USE THE LOCK

WORD IN THE ASM HEADER, ASHLOCK,

TO OBTAIN THE ASM CLASS LOCK FOR

THE RELATED ADDRESS SPACE.

Diagram 25.20.3 RECVIOCM (Part 1 of 2)

I

Output

~
IREG 4 I~~

Lb I ASCBRSM
I,. RSMHD-ASMHD

I·SHLOCK I

Routine Label Ref

---- ---

Section 2: Method of Operation 5-263

VS2.03.807

Input Processing

ATA AlA I
IATAAIA Ir

AIACEPTR

)§] IF ATAAIA POINTS TO A

VALID AlA, VERIFY THE LGE

AND ITS PROCESS QUEUE. IF

AIALGE POINTS TO A VALID
AIALGE

LGE, DEQUEUE THE AlA OR

ITS RELATED ACE FROM THE

LGEPROCQ.

§J SCHEDULE SRB CONTROLLER IF

NOT ALREADY SCHEDULED.

~ FREE ASM CLASS LOCK IF IT

WAS ALREADY HELD OR JUST

OBTAINED.

Notes Routine Label Ref Notes

---- ---
§J IF, ATAAIA POINTS TO A VALID AlA, ILRFRROl ILRVLPRQ ~5.27.

THEN AIALGE AND ITS LGEPROCQ ARE

VALIDITY CHECKED. IF AIALGE

POINTS TO A VALID LGE, THE AlA,

OR ITS RELATED ACE (IF AIATRPSP

IS ON), IS DEQUEUED FROM THE

LGEPROCQ. IF ANY VERIFICATION

FAILS, OR IF THE AlA OR ACE WAS

NOT FOUND ON THE LGEPROCQ, THE

AlA MUST NOT BE RETURNED TO RSM

SINCE THE AlA, OR A RELATED ACE,

MIGHT STILL BE ON SOME LGEPROCQ

WAITING TO BE PROCESSED. SO AN

INTERNAL FLAG IS SET TO PREVENT

FURTHER PROCESSING OF THIS AlA.

lIB SCHEDULE THE SRB CONTROLLER IF

IT IS NOT ALREADY SCHEDULED.

THIS IS ONLY DONE IF THE ASM

LOCK IS HELD.

~ A TEST IS MADE TO SEE IF THE ASM

LOCK IS HELD. THIS TEST IS MADE

WHETHER OR NOT ATAAIA POINTS TO

A VALID AlA. IF THE ASM LOCK IS

HELD, IT IS UNCONDITIONALLY

FREED BEFORE CONTROL IS GIVEN TO

THE RECPCOMP ROUTINE TO COMPLETE

RECOVERY PROCESSING.

Diagram 25.20.3 RECVIOCM (Part 2 of 2)

5-264 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

)

LJl
V

TO RECPCOMP OF
ILRIOFRR
MAINLINE

Output

AlA LGE

IAIALGE 1.r+ILGEPROCQ

I

Routine Label Ref

---- ---

VS2.03.807

Input Processing Output

FROM ILRIOFRR
MAINLINE

b RECPCOMP:

IREG 1
I SDWA

I @2] RESTORE THE SEGMENT TABLE
r-+I

ORIGIN REGISTER OF THE

CURRENT MEMORY (TRAS).
IREG 3 14ASMVT

I I

@] VERIFY AND CORRECT THE
IREG 4 14ATA QUEUE OF AlA'S STARTING

ATAAIA - ~ITH ATAAIA.

IREG 4 I~~
ATAASCB

[§] IF THE ERROR IS A TRAS

I REG 8
14

WORK AREA
ERROR, VALIDITY CHECK THE

I I ERROR ASCB. IF IT POINTS

TO A VALID ADDRESS SPACE,

IATAASCB I r-+
ASCB

IASCBT'"" I

I REG 9
IL.DATA AREA

TERMINATE THIS ADDRESS

I
SPACE.

I

<::::::>IIEAVEGAS 'I
SDWA

I REG I 1 I r-+ I SDWACMPC Ir- IASCB VERIFIER

[§] IF THE ERROR IS NOT A TRAS

ERROR, SET THE RETRY

ADDRESS IN THE SDWA FOR

RETRY TO CALL ILRSLSQA.

IREG 1 I r-+
SDWA

ISOWARTY. I

Notes Routine Label Ref Notes Routine Label Ref

---- --- -~-- ---
@TI ISSUE A TRAS BACK TO RESTORE THE

SEGMENT TABLE ORIGIN REGISTER

(STOR) OF THE CURRENT MEMORY.

THIS IS NECESSARY IF THE ERROR

OCCURRED DURING A TRAS OPERATION

FOR ALL ERRORS EXCEPT A DYNAMIC

ADDRESS TRANSLATION (OAT) ERROR

(RESTORE HAS BEEN DONE BY RTM).

§] VERIFY AND CORRECT THE QUEUE OF ILRFRROl ILRVAIAQ 25.27.
4

AlA'S BEING PROCESSED (POINTED

TO BY ATAAIA).

[§] IF ERROR IS A TRAS ERROR (A DAT

ERROR DURING A TRAS OPERATION

INDICATED BY A ,UNIQUE COMPLETION

CODE IN THE SDWA), USE MEMTERM

TO TERMINATE THE ERROR ADDRESS

SPACE (THE ASCB ADDRESS WAS

TRACKED IN ATAASCB), IF THE

ADDRESS SPACE IS VALID.

§] FOR NON-TRAS ERRORS, THE MEMORY

IS STILL IN PROCESS, SO ~HE SDWA

IS SET FOR RETRY TO THE POINT IN

PAGECOMP WHERE THE CALL TO

ILRSLSQA I~ MADE.

Diagram 25.20.4 RECPCOMP (Part 1 of 2)

Section 2: Method of Operation 5-265

YS2.03.807

Input processing

~ IF THE ERROR OCCURRED IN

ILRVIOCM, RECVIOCM GETS

CONTROL PRIOR TO RECPCOMP.

IF ATAAIA POINTS TO A

VALID AIA,AND IF THE

RECVIOCM NORETRY FLAG IS

NOT SET, THEN MARK THE AlA

IN ERROR AND COMPLETE THE

PROCESSING FOR THIS AlA.

OTHERWISE, ZERO THE RETRY

ADDRESS IN THE SDWA TO·

PREVENT RETRY.

L....-_--'I-"o.S~DWA~ I~ ~ I~G 1 . r~ --Ir-;:. ====~) ~ IF RETRY HAS BEEN

SDWARTYA I REQUESTED, COMPLETE THE

SET-UP FOR RETRY.

Notes Routine Label Ref Notes

---- ---
@] IF ATAAIA POINTS TO A VALID AlA

(NON-ZERO ADDRESS), AND, RECVIOCM

PROCESSING HAS NOT INDICATED

THAT THIS AlA IS NOT TO BE

PROCESSED, THE INDETERMINATE

ERROR FLAG, AIAERROR, IS TURNED

ON AND THE AlA IS PLACED ON THE

INTERNAL QUEUE OF AlA'S FOR RSM.

THE VALUE OF ATAAIA AND THE

ASMIORQC COUNT ARE ALSO UPDATED.

OTHERWISE, THE RETRY ADDRESS IN

THE SDWA IS ZEROED TO PREVENT

RETRY.

§] IF THE RETRY ADDRESS IN THE SDWA

IS NOT ZERO, COMPLETE TH~ RETRY

SET-UP FOR RETRY TO CALL

ILRSLSQA.

Diagram 25.20.4 RECPCOMP (Part 2 of 2)

5;2~~ OSjVS1. SYitem Lugic Library Voiume 5 (VS2.03.807)

V
TO ILRIOFRR
MAINLINE

Output

1 ATAAIA I ... AlA

~------~ I"'~OR I
L-I R_EG_l_----J1 4 SDWA

ISOWARTY, I

.... 1 R_E_G_3 __ 14 ASMVT

ASMIORQC

ASM3PIOP

Routine Label Ref

---- ---

Input

IREG 1

I REG 3

IREG 4

1 SDWA

""'1 1

IL.
ASMVT

IASMST,"" I

IL.
ATA

F
M

ROM ILRIOFRR
AINLINE

0

VS2.03.807

Processing Output

RECPOS:

@i] IF ATAAIA POINTS TO A

VALID AlA/ACE, MARK IT IN

ERROR, OTHERWISE ZERO AlA

FIELD IN ATA.

I AIA
IATAAIA

I"AEROOR I

[§] IF NOT A TRANSFER PAGE IREG 3 I ASMVT

REQUEST, REMOVE ATAAIA

FROM THE ASMSTAGQ IF IT IS

QUEUED.

ASMSTAGQ

ASMIORQR

ATAAIA

ATALGE >§] VERIFY AND CORRECT

IATALGE I LGE

I REG 8
IL.

WORK AREA

I 1

LGEPROCQ, REMOVING ATAAIA

IF QUEUED.

ILGEPROCO I

IREG 9
IL.DATA AREA

I I
§] FREE THE ASM CLASS LOCK IF

IT IS HELD.

I ASCBRSM
I RSMHD-ASMHD

IASHLOCK I

I ASCB
I PSAAOLD

~I @] SET UP FOR RETRY, IF

RECURSION NOT INDICATED.

I
LJl

SDWA

~r+~
SDWARTYA

V
TO ILRIOF RR
MAINLINE

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
@2J IF ILRPOS WAS CALLED FOR A ILRFRR01 ILRVACE ~8·27 . @] IF THE ILRPOS RECURSION

TRANSFER PAGE REQUEST, VERIFY ILRFRR01 ILRVAIA
25.27.

INDICATOR IS NOT SET, THE RETRY

THAT ATAAIA POINTS TO A VALID 9 ADDRESS IN THE SDWA, SDWARTYA,

ACE. OTHERWISE VERIFY THAT IS SET TO THE ADDRESS IN ILRPOS

ATAAIA POINTS TO A VALID AlA, AT WHICH 'RETURN TO THE CALLER'

AND THEN TURN ON THE IS PERFORMED. THE ILRPOS

INDETERMINATE ERROR FLAG, RECURSION INDICATOR IS ALSO SET.

AIAERROR. IF ATAAIA DOES NOT IF THE RECURSION INDICATOR IS

POINT TO A VALID AlA OR ACE, THE ALREADY SET,NO RETRY IS

FIELD IN THE ATA IS ZEROED. ATTEMPTED.

[§] IF ILRPOS WAS NOT CALLED FOR A

TRANSFER PAGE REQUEST (INDICATED

BY THE ATA FLAGS) AND THE AlA

POINTED TO BY ATAAIA IS QUEUED

TO THE ASMSTAGQ, THE AlA IS

DEQUEUED AND THE COUNT OF

RECEIVED REQUESTS IN THE ASMVT,

ASMIORQR, IS DECREMENTED.

§] VERIFY THE LGEPROCQ. IF ATALGE ILRFRR01 ILRVLPRQ 25.27.
2

IS A VALID LGE DEQUEUE ATAAIA

FROM THE LGEPROCQ IF IT IS

QUEUED.

§] THE ASM LOCK FOR THE CURRENT

ADDRESS SPACE IS FREED, IF IT

HAD BEEN HELD BY ILRPOS.

Diagram 25.20.5 RECPOS (Part 1 of 1)

Section 2: Method of Operation 5-267

VS2.03.807

Input Processing Output
FROM ILRIOFRR
MAINLINE

ATA AlA

IATAAIA Ir+~ AIAERROR

I REG 3 I,.....ASMVT

b RECPAGIO:

I SDWA
IREG 1 §] I

IF ATAAIA POINTS TO A """1 VALID AlA, MARK IT IN

ERROR AND PLACE IT IN THE
IREG 3 h ASMVT

IASMSTACO I
SAVE AREA FOR RETURN TO
RSM.

§] IF ATAAIA POINTS TO A

ASMSTAGQ

ASMIORQR

I REG 1 I,.....SDWA

ISOWARTYA I

IREG 4 Ic.~ =-
VALID AlA, REMOVE ATAAIA

FROM ASMSTAGQ IF IT IS

QUEUED.

@] SET UP FOR RETRY, IF RETRY

I REG h WORK
IS ALLOWED AND RECURSION

I
8 AREA

1 I IS NOT INDICATED.

IREG 9
11..DATA AREA [j1

I I V
TO ILRIOFR R
MAINLINE

Notes Routine Label Ref Notes Routine Label Ref
---- --- ---- ---

§] VERIFY THAT ATAAIA POINTS TO A ILRFRROl ILRVAIA ~5.27.
VALID AlA. IF IT DOES, THE ERROR
FLAG IN THE AlA IS TURNED ON,
AND THE VALUE OF ATAAIA IS

PLACED IN THE SAVE AREA SO IT

WILL BE RETURNED TO RSM. IF
ATAAIA DOES NOT POINT TO A VALID

AlA, THE VALUE IN THE SAVE AREA
REMAINS ZERO TO PREVENT ASM FROM

RETURNING AN INVALID ADDRESS TO

RSM.

§] IF THE AlA POINTED TO BY ATAAIA

IS QUEUED TO THE ASMSTAGQ, IT IS
DEQUEUED AND THE COUNT OF

RECEIVED REQUESTS IN THE ASMVT,

ASMIORQR, IS DECREMENTED.

@] IF THE ILRPAGIO RECURSION

INDICATOR IS NOT SET,THE RETRY
ADDRESS IN THE SDWA, SDWARTYA,

IS SET TO THE ADDRESS IN

ILRPAGIO AT WHICH THE CALL TO

ILRQIOE IS MADE. THE ILRPAGIO

RECURSION INDICATOR IS ALSO SET.

IF THE RECURSION INDICATOR IS
ALREADY SET, NO RETRY IS

ATTEMPTED.

Diagram 25.20.6 RECPAGIO (Part 1 of 1)

5-268 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Output

FROM ILRIOFRR
MAINLINE

~ RECTRPAG:

, SDWA §] 'REG 1 .--., , VERIFY THAT.ATAACE POINTS

TO ADDRESSABLE STORAGE.

'REG 3
'4

ASMVT @] , , IF ATAACE IS A VALID

CONTROL BLOCK, VERIFY

ACE AlA

I ACEAIAPT
p-+

AIAVIO

IREG 4

h ~=-
ACEAIAPT. IF AlA IS A

VALID AlA, THE AlA IS

ATAACE 1-
DISCONNECTED FROM THE ACE.

@] IF THE ACE IS A VALID

IREG 8
'4

WORK AREA
CONTROL BLOCK, RETURN THE

I I I CELL TO ITS POOL.

IREG 14DATA AREA LJl 9

I I V

AIATRPSP

AIACEPTR

I.--.ASMVT
IREG 3

l·s".cEPC I

TO ILRIOFR R
MAINLINE

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] IF ATAACE IS NON-ZERO, VERIFY IEAVEADV IEAVEADV

THAT THE ENTIRE STORAGE OF THE

ACE CAN BE REFERENCED.

§] IF ATAACE IS VALID, THE AlA ILRFRROl ILRVAIA 25.27.
9

POINTED TO BY ACEAIAPT IS

VALIDITY CHECKED. IF IT IS

VALID, IT IS DISCONNECTED FROM

THE ACE.

@] IF ATAACE IS VALID, THE CELL

USED FOR THE ACE IS RETURNED TO
I

ITS POOL.

Diagram 25.20.7 RECTRPAG (Part 1 of 1)

Section 2: Method of Operation 5-269

Input

FROM ILRIOFRR

VS2.03.807

Processing

ILRSWPOl :

@2] ILRSWPOl IS THE RECOVERY

ROUTINE FOR ILRSWPDR.

Output

ATA SrC~C~W ______ ~

ATAIORB 1...1 ___ --..Jl

S,...AR __ T_E __ --.

r;:====~1 ~ CHECK FOR A SWAP ACTIVITY
REFERENCE TABLE ENTRY

(SARTE) ADDRESS

CHECKPOINTED IN THE ATA.

IF ZERO, SKIP TO STEP 8. l ~;~::;E ~l~ I

IORB l
II IOR~ I : ::=:=:=~=~=~=:=== 11

1
-• ..-_..;.w

@:B CALL RBDIORB IF A SWAP

DRIVER ISSUED '084000'

ABEND. SKIP TO STEP 7.

>§] VALIDITY CHECK THE IORB

POINTED TO BY THE
SCCW SCCW

ATA.

II I lr---I ----,
SCCW SCCW
1 I r-I ----,

I SKIP TO STEP 5 IF INVALID.

§] PROCESS A VALID

I CHECKPOINTED IORB. SKIP TO

STEP 7.

>~ VALIDITY CHECK THE IORB

ANCHORED IN THE SARTE. FOR

AN INVALID IORB, CALL

RBDIORB AND SKIP TO STEP

7.

Notes Routine Label Ref Notes

---- ---
@2] QUEUE OF SCCWS ANCHORED IN THE

ILRSWPOl AND ITS TWO ENTRIES
ATA (ATASCCW). BECAUSE SWAP

HANDLE ERRORS OCCURRING IN

ILRSWPDR AND ILRSWAP.
DRIVER MOVES SCCWS INDIVIDUALLY

FROM THE ATA TO IORB SCCW QUEUE,

A CHECK IS MADE TO INSURE THAT

@] IF A SARTE IS NOT CHECKPOINTED THE ATA SCCW QUEUE DOES NOT

(ATASARTE), THE SWAP DRIVER CONTAIN DUPLICATE SCCWS. THE

(ILRSWPDR) IS IN ENTRY OR EXIT IORB IS FREED BY TURNING OFF THE

PROCESSING. RECOVERY CONSISTS OF IORB IN USE FLAG (IORUSE) AND

RESCHEDULING SWAP DRIVER'S SRB. THE IORB SCCW QUEUE ANCHOR IS

ZEROED.

@:B AN '084' ABEND WAS ISSUED WHEN RBDIORB 25.21.
3

~ SWAP DRIVER FOUND A ZERO IORB THE IORB ANCHOR IN THE SARTE IS

ANCHOR IN A SARTE. THE ABEND VALIDITY CHECKED TO INSURE AT

CODE IS FOUND IN THE SDWA FIELD LEAST ONE VALID IORB EXISTS FOR

SDWACMPC. THE RBIORB SUBROUTINE THIS SARTE. IF THE ANCHOR IORB

IS CALLED TO ATTEMPT REBUILDING IS INVALID THE RBDIORB

AN IORB. SUBROUTINE IS CALLED TO REBUILD

AN IORB.

§] THE CURRENT IORB IS VALIDITY ILRFRR01 ILRVIORB 25.27.
17

CHECKED. NOTE THAT IF AN IORB IS

NOT CHECKPOINTED, THIS RECOVERY

WILL STILL VALIDITY CHECK THE

IORB QUEUE ANCHORED IN THE

SARTE.

@] THE QUEUE OF SCCWS ANCHORED IN ILRFRROl ILRVSCWQ 25.27.
5

THE IORB (IORSCCW) IS VALIDITY

CHECKED AND MERGED WITH THE

Diagram 25.21 ILRSWP01 (Part 1 of 2)

5-270 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Routine Label Ref

---- ---

ILRFRROl ILRVIORB f~·27.
RBDIORB

~5.21.

VS2.03.807

Input Processing Output

Notes Routine

§] EACH IORB ON THE SARTE IORB ILRFRROl

QUEUE IS .VALIDITY CHECKED. THE

QUEUE IS TRUNCATED IF AN INVALID

lORB I S FOUND.

§] IF THE REBUILD IORB SUBROUTINE

WAS CALLED AND WAS UNABLE TO

REBUILD AN IORB, THE SARTE

ADDRESS WILL HAVE BEEN ZEROED TO

·PREVENT UNLOCKING THE SARTE.

A. SWAP DRIVER' S REDRIVE FLAG

(SREDRIVE) IS TURNED OFF AND

THE SARTE IS UNLOCKED

(SRELOCK) USING COMPARE AND

SWAP.

B. THE ATA SCCW QUEUE IS ILRFRR01

VALIDITY CHECKED. THE COMMAND

CHAINING FLAGS IN THE LAST

READ/WRITE CCW OF EACH SCCW

ARE CLEARED TO BREAK THE SCCW

CHAINING BETWEEN SCCWS. THE

ATA SCCW QUEUE IS ADDED TO

THE SARTE SCCW WORK QUEUE

(SRESCCW) USING COMPARE AND

SWAP.

@!! IF A SWAP DRIVER SRB IS NOT SCHEDULE

Diagram 25.21 ILRSWP01 (Part 2 of 2)

@2] VALIDITY CHECK THE

REMAINING IORB QUEUE

ANCHORED IN THE SARTE.

~ FOR A SARTE ADDRESS

CHECKPOINTED IN THE ATA:

A. UNLOCK THE SARTE, AND
t=r ~ [::'--------':
===~p I SR"CCW I B. PROCESS A SCCW QUEUE

ANCHORED IN THE ATA.

@2J SCHEDULE SWAP DRIVER'S

SRB, IF NECESSARY.

~ RETURN TO CALLER.

V
TO ILRIOFRR

Label Ref Notes

---- ---
CURRENTLY ACTIVE (SARSRBCT=O),

ILRVIORB 25.27.
17 THE SRB COUNT IS INCREMENTED

USING COMPARE AND SWAP. THE SWAP

DRIVER SRB IS RESCHEDULED TO

PROCESS WORK LEFT ON THE SARTE

SCCW 'QUEUE BY THIS RECOVERY.

ILRVSCWQ 25.27.
5

Routine Label Ref

---- ---

Section 2: Method of Operation 5~271

·3.807

Input Processing

FROM ILRIOFRR

ILRCSWAP:

ANCHORED IN THE ASM l~[~I:: ~ RSMHD j l,...--· ----.,'FiilIL==:~) §]
IASHSWAPQ I ALII_A ___ -.J.

[§]

CALL ILRVSPAQ TO VALIDITY U
CHECK THE SWAP QUEUE

HEADER.

SET UP THE RETRY ADDRESS

AND REGISTERS IN THE SDWA.

RETURN TO CALLER.

LJl
V

TO ILRIOFRR

Notes Routine Label Ref Notes
---- ---

§] THE ·EFFECT OF THIS RECOVERY IS ILRFRROl ILRVSPAQ
TO PASS SWAP AlAS BACK TO RSM SO

THAT FRAMES ASSOCIATED WITH THE

AlAS MAY BE FREED PRIOR TO

MEMORY TERMINATION. A NON ZERO

SWAP QUEUE ANCHORED IN THE ASM

HEADER IS VALIDITY CHECKED TO

PREVENT A REOCCURRENCE OF THIS
ERROR BY RSM. THE FIRST· AlA

RETURNED TO RSM IS FLAGGED IN
ERROR (AIAERROR).

§] IF THE ERROR IS NOT RECURSIVE, A
RECURSION FLAG IS SET IN THE
ATA. THE RETRY ADDRESS AND THE

REGISTER SAVE AREA ARE

INITIALIZED IN THE SDWA. A

NON-ZERO RETRY ADDRESS INDICATES

TO ILRIOFRR THAT RETRY OF THE

ERROR IS REQUESTED. ILRIOFRR
WILL COMPLETE INITIALIZATION OF
THE SDWA.

Diagram 25.21.1 ILRCSWAP (Part 1 of 1)

5-272 OS/VS2 System Logic '.i~,~,y V ~!'!!!!!e 5

Output

SDWA

SDWASRSV

SDWARTYA

Routine Label Ref

Input Processing Output
FROM ILRIOFRR

[S ILRCSLSQ:

CREG'STEA '1
AlA §]

C
1

IF EITHER OF THE ILRSLSQA
SUBROUTINES WAS IN CONTROL

SDWA AT THE TIME OF ERROR, CALL

l~
AlA

C
1

THE APPLICABLE RECOVERY
SUBROUTINE AND SKIP TO -- STEP 5.

AlA

ATA I 1 @] IF THE SWAP REQUEST IS

~
CURRENTLY ON THE ASMHD
SWAP QUEUE AND THE ASMVT
STAGING QUEUE, CLEAR THE
SWAP QUEUE ANCHOR IN THE
ASM HEADER AND SKIP TO
STEP 5.

ASMVT AlA
)@J

l f
1

TERMINATE THE MEMORY FOR A
SWAP REQUEST ANCHORED IN

ASMSTAGQ
THE ASM HEADER SWAP QUEUE.

. ASM4RG2 rA

1
SKIP TO STEP 5. -

RSMHD

IASHSWA~ I

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] THE RECOVERY SUBROUTINES ARE: ASETRCVY ~5 •. 2'.

ASETRCVY FOR ASIGNSET -- SCCWRCVY
SCCWRCVY FOR SCCWPROC.FLAGS IN ~5.2'.

THE ATA INDICATE THE ROUTINE IN
CONTROL AT THE TIME OF ERROR.
ERRORS IN ASIGNSET, WITH THE
EXCEPTION OF ASM ISSUED ABENDS,
ARE TREATED AS MAINLINE ILRSLSQA
ERRORS.

[§] A SWAP REQUEST CAN COMPLETE
SUCCESSFULLY IF IT IS ALREADY ON
THE ASMVT STAGING QUEUE
(ASMSTAGQ). THIS SITUATION

OCCURS WHEN ILRSLSQA IS MOVING A
SWAP REQUEST FR~ THE ASMHD SWAP
QUEUE TO THE ASMVT STAGING
QUEUE.

@] THE SWAP REQUEST IS NOT CALLRTM
CURRENTLY READY FOR I/O
PROCESSING. THE MEMORY IS
SCHEDULED FOR TERMINATION WITH A
SYSTEM X'02S' COMPLETION C~DE.
FOR A SWAP-IN REQUEST, A FLAG IN
THE RSM HEADER(RSMFAIL) IS SET
TO INDICATE A SWAP-IN FAILURE.

Diagram 25.21.2 ILRCSLSQ (Part 1 of 2)

Section 2: Method of Operation 5-273

Input

ASMVT AlA 1

~I
I l ~AAT ASMSTAGQ AlA

ASM4RG2

l~'A
I

SART J I I
SARWAITF

SARWAITL

Notes Routine

~ A CHECKPOINTED AlA REPRESENTS A

SWAP REQUEST CURRENTLY READY FOR

I/O PROCESSING. THE ATA AlA

QUEUE CAN BE LEFT ON THE SART

WAIT QUEUE FOR REPROCESSING BY

ILRSLSQA.

A. THE CHECKPOINTED AlA QUEUE IS ILRFRR01

VERIFIED BEFORE ADDING IT TO

THE SART WAIT QUEUE.

B. THE SART WAIT QUEUE IS ILRFRR01

VALIDITY CHECKED TO REMOVE

INVALID ELEMENTS CAUSED BY

THIS ERROR.

C. IF THE CHECKPOINTED AlA IS

VALID, IT IS COMPARED TO EACH

ELEMENT ON THE SART WAIT

QUEUE. THE AlA IS ADDED TO

THE SART WAIT QUEUE IF NOT

ALREADY ON THE QUEUE.

SERIALIZATION FOR THE WAIT

QUEUE IS PROVIDED BY THE

SALLOC LOCK, HELD BY THIS

RECOVERY ROUTINE ON ENTRY.

@] FOR ASM ISSUED ABENDS THE ERROR

PSW AND REGISTERS (SDWANXT1 AND

Diagram 25.21.2 ILRCSLSQ (Part 2 of 2)

VS2.03.807

Processing

~ FOR AN AlA CHECKPOINTED IN

THE ATA:

outpu

SDWA

SDWASRSV

A. VALIDITY CHECK THE

CHECKPOINTED ATA AlA

QUEUE.

SDWARTYA

B. VALIDITY CHECK THE SART

WAIT QUEUE.

C. ADD THE ATA AlA QUEUE

TO THE SART WAIT QUEUE.

~ INITIALIZE THE SDWA FOR

RETRY.

~ RETURN TO CALLER.

V
TO ILRIOFRR

Label Ref Notes

---- ---
SDWASRSV) ARE USED FOR RETRY. IF

THIS IS NOT A RECURSIVE ERROR

(ATARCRF6=' 0 'B) , THE RECURSION

FLAG IS SET IN THE ATA, AND A

RETRY ADDRESS IN ILRSLSQA IS SET

IN THE SDWA. AT THE RETRY POINT,

LABELLED ILRCRSP2, ILRSLSQA WILL

ILRVSPAQ ~5.27 •
CHECK FOR WORK LEFT ON THE SART

WAIT QUEUE BY RECOVERY. THE RSM

HEADER REGISTER (REG3), AND

ILRSLSQA BASE REGISTER (REG 12)

ILRVSWTQ 25.27.
ARE REINITIALIZED IN THE SDWA.

3. THE ATA CHECKPOINTED FIELDS ARE

CLEARED.

Routine

5-274 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Label Ref

---- ---

Input

SARTE SCCW1

FROM ILRSWP01
MAINLINE

11 It I-------I~~I ----~
l seew,

>

I~

1C
I

SRESCCW

SREAVLSL

Notes Routine

@I] THE SALLOC LOCK IS OBTAINED SETLOCK

UNCONDITIONALLY AND A BRANCH IEAVGMOO

ENTRY TO GETMAIN FOR SQA STORAGE

IS ISSUED FOR THE LENGTH OF AN

IORB-IOSB-SRB I/O STRING.

§J THE ACQUIRED STORAGE IS CLEARED. ILRFRR01

THOSE FIELDS CHECKED BY ILRVIORB

ARE INITIALIZED (IORIO, IORSWAP,

IORPARTE, IOSDVRID, AND

IOSMISID). ILRVIORB IS CALLED TO

INITIALIZE CRITICAL

IORB- IOSB-SRB FIELDS.

@) A SART ENTRY IS UNUSABLE SINCE ILRFRR01

THE IORB CANNOT BE REBUILT. THE

SCCW WORK QUEUE (SRESCCW) IS

VALIDITY CHECKED AND RETURNED TO

THE SART AVAILABLE SCCW QUEUE.

THE AlAS ANCHORED IN THESE SCCWS

ARE LOST.

§] THE COUNT OF AVAILABLE SWAP SETS

ON THIS SARTE IS SET TO ZERO.

THE SART TOTAL SWAP SET COUNT IS

RECALCULATED AS THE SUM OF EACH

USABLE SARTE AVAILABLE SWAP SET

COUNT.

Diagram 25.21.3 RBDIORB (Part 1 of 1)

VS2.03.807

Processing

RBDIORB:

@I] ATTEMPT TO ACQUIRE STORAGE

TO REBUILD AN IORB. SKIP

TO STEP 3 IF UNSUCCESSFUL.

§J INITIALIZE THE CONSTANT

FIELDS IN THE NEW

IORB-IOSB-SRB I/O STRING.

ANCHOR THE REBUILT IORB IN

THE SART ENTRY. SKIP TO

STEP 6.

Output

SARTE
)

ISREIORB I

SART SCCW1

~I

Leew,
@) RETURN THE SART ENTRY SCC~I

QUEUE TO THE SART

I
AVAILABLE SCCW QUEUE.

~ RECALCULATE THE SART TOTAL

SWAP SET COUNT.

~ NOTIFY THE OPERATOR OF AN

UNUSABLE SART ENTRY.

~ RETURN TO CALLER.

Label Ref Notes

---- ---

V
TO ILRSWP01
MAINLINE

~ THE SART ENTRY IS FLAGGED

UNUSABLE (SRENUSE). ASM'S

MESSAGE MODULE IS CALLED TO

SARSCCWQ

SARSETCT

Routine

ILRMSGOO

ISSUE AN UNUSABLE SWAP DATA SET

MESSAGE,ILR0091. THE SART ENTRY

ADDRESS IN THE ATA IS ZEROED TO

PREVENT ILRSWP01 FROM UNLOCKING
ILRVIORB n· 27 • THIS SARTE.

ILRVSCWQ ~5.27 •

I

Label

ILRMSGOO

I

I

Ref

Section 2: Method of Operation 5-275

Input

ATA

ATAAIA

ATASCCW

SART

SARWAITF

SARWAITL

SARSCCWQ

Notes

WHEN THE

1n~s~~~TSLSQ
ENTRY)

0

VS2.03.807

Processing

SCCWRCVY:

@2J PROCESS THE ASM-ISSUED

'083000' ABEND. SKIP TO

STEP 6.

AIAl

11 "
'-+1 :
Lee. 1

> @] VALIDITY CHECK AN AlA

Iml I
I

AIA2

~~IA3
I :
I :

SCCW2

C
I

SCCW3

I I

Routine

LOGICAL SLOT ID IN AN

CHECKPOINTED IN THE ATA.

SKIP TO STEP 6 IF AN AlA

IS NOT CHECKPOINTED.

ADD THE CHECKPOINTED AlA

TO THE SART WAIT QUEUE.

VALIDITY CHECK A SCCW

CHECKPOINTED· IN THE ATA.

ADD A VALID SCCW TO THE

SART SCCW QUEUE.

~ RETURN TO CALLER.

Label Ref Notes

---- ---

n
---~

lJl
V

TO ILRCSLSQ

QUEUE OF AVAILABLE SCCWS

Output

SART AIAl

~~'A2 SARWAITF

SARWAITL

l~'A3 SARSCCWQ

I
SCCWl

C
I

SCCW2 •

C
I

SCCW3

I I

Routine Label

@2]

AlA IS OUTSIDE THE RANGE OF
ANCHORED IN THE SART (SARSCCWQ)

VALID LSIDS, SCCWPROC
VIA COMPARE AND SWAP.

(SUBROUTINE OF ILRSLSQA) ISSUES
A RECORD ONLY ABEND. SCCWRCVY

PROCESSING CONSISTS OF COPYING

THE ERROR AlA (ATAAIA) INTO THE
SDWA.

@] IF AN AlA IS NOT CHECKPOINTED, ILRFRROl ILRVAIA 25.27.
9

SCCWPROC HAS COMPLETED

PROCESSING FOR BOTH THE AlA AND

SCCW.

@] AN AlA WHICH CONTAINS AN I/O

ERROR FLAG (AIAPRIER OR
AIABADID) IS IGNORED SINCE IT

MAY ALREADY HAVE BEEN ADDED TO

THE PART ERROR QUEUE (PARTAIAE)

BY SCCWPROC. IF THE AlA IS
VALID, IT IS ·ADDED TO THE SART

WAIT QUEUE, SERIALIZED BY THE

SALLOC LOCK.

§] THE CHECKPOINTED SCCW (ATASCCW)
IS VALIDITY CHECKED.

ILRFRROl ILRVSCCW 25.27.
12

~ A VALID SCCW IS ADDED TO THE

Diagram 25.21.4 SCCWRCVY (Part 1 of 1)

5-276 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

I

I

I

Ref

Input

1n~s~~~TSLSQ
ENTRY)

ATA SARTE I 0
~~~nl ~ 
SART 

j SARSETCT I . 

Notes Routine 

~ THIS ROUTINE IS ENTERED FOR 

EITHER OF 2 COD ABENDS: (1) 

INCORRECT SART TOTAL SWAP SET 

COUNT (SARSETCT) OR (2)' 

INCORRECT SART ENTRY AVAILABLE 

SET COUNT (SREAVLSL). IF THE 

SART ENTRY IS NOT CHECKPOINTED 

IN THE ATA (THE FIRST ABEND) , 

THE SART SET COUNT IS SET TO 

ZERO. 

§] ASIGNSET (SUBROUTINE OF 

ILRSLSQA) CHECKPOINTS THE SART 

ENTRY IN THE ATA ONLY BEFORE 

ISSUING THE COD ABEND FOR AN 

INCORRECT SART ENTRY SET COUNT 

(THE SECOND ABEND). THIS SARTE I S 

SET COUNT IS ZEROED AND THE SART 

TOTAL SET COUNT IS RESET TO THE 

CURRENT TOTAL OF ALL AVAILABLE 

SWAP SET COUNTS IN EACH USABLE 

SART ENTRY. 

Diagram 25.21.5 ASETRCVY (Part 1 of 1) 

VS2.03.807 

Processing Output 

ASETRCVY: 

SART 
SET THE SART SET COUNT TO IT 
ZERO. 

FOR A SART ENTRY 

ISARSE= I 
CHECKPOINTED IN THE ATA, 

ZERO THE SARTE AVAILABLE 

SET COUNT AND RECALCULATE 

THE SART TOTAL SET COUNT. 

@I] RETURN TO CALLER. 

Label Ref Notes 

---- ---

lb 

L---,l 
V 

TO ILRCSLSQ 

~ SMTE 
rlSREAVLSL -1 

ATASARTE 10 I 
I I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5·277 



Input 

FROM RTM 
(IEAVTRTS) 

Processing 

~ ILRSRT01: 

VS2.03.807 

REG 0 FRR WORKAREA ~ rn71 L..I ___ ---Ilrl 1=:r:===::::>1 ~ RECORD THE ERROR. 

Output 

PARMLIST COPY OF 

I P l~ EIoPAETH 

@] COPY THE ATA AND EPATH. ~ ~ 

r;;;-]03 LI lP:::
IOEQ rl==== ~ VALIDITY CHECK THE CURRENT 

IOE. 

~. REPLACE THE READ IOE'S. 
t..::.:J IOE 

R .... I E_G_1 __ ~I~J r~APARM I 
ATA 

l 

:~~~~RKA PARMLIST 

ATAEPATH ~IPAREPTR 1--
IWRTIOEQ I 

ErP_A_T_H ___ • ,I'--___ ~I 

EPAPARM 11 
EPAIOEIP IOE 

EPAIOEQP jj ,"----'1 
EPAWRTQ 

~ REPLACE THE WRITE IOE' S . 

PART 

~ 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---

§] ILRPTM WAS PROCESSING. 
MOVE THE MAINLINE 

,MODULE-IN-ERROR (ILRPTM OR 

ILRSRT) NAME AND IL~SRT01 ~ THE QUEUE OF WRITE rOE'S IS ILRFRR01 ILRvrOEQ 25.27. 
7 

(RECOVERY NAME) TO THE SDWA. VALIDITY CHECKED. IF ANY VALIDS 

ISSUE SETRP TO REQUEST RECORDING THE CLASS LOCK IS OBTAINED AND 

AND RELEASING OF THE SALLOC AND THE IOE' S ARE REPLACED ON THE 

THE CLASS LOCKS ON RETURN TO PART WRITE QUEUE (EPAWRTQ) • 

RTM. 

@] THE ATA AND EPATH (IF 

CHECKPOINTED) ARE COPIED TO THE 

VARIABLE RECORDING AREA IN THE 

SDWA. IF THE EPATH ADDRESS IS 

ZERO GOTO STEP 22, SINCE NO 

RECOVERY CAN BE DONE WITHOUT THE 

INFORMATION IN THE EPATH. 

@}] THE CURRENT IOE (EPAIOEIP) IS ILRFRR01 ILRVIOE 25.27. 
18 

ADDRESS VERIFIED. IF VALID IT IS 

PLACED ON THE APPROPRIATE IOE 

QUEUE, WRTIOEQ OR EPAIOEQP. 

§] THE QUEUE OF READ IOE' S ON THE ILRFRR01 ILRVIOEQ ~5.27. 

WORK QUEUE (EPAIOEQP) IS 
, 

VALIDITY CHECKED. IF VALID. 

IOE' S, THEY ARE REPLACED ON THE 

PARTE (PAREIOEQ). EPAIOEQP 

SHOULD BE NON-ZERO ONLY IF 

Diagram 25.22 ILRSRTOI (Part 1 of 5) 

5-278 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

VS2.0J.807 

Processing Output 

:I_~;_S;I 1~1=:: 
ASMPCCW [I rQ81 
ASMPARTP PCCW ~ ~ 

1--__ -' -+1 I-II 
EPATH r§J r-E-P-A-F-F-I-O-E--'l ~ 

EPALFIOE ~ ~ 

IORB 

VALIDITY CHECK THE CURRENLr 

PCCW. 

VALIDITY CHECK ITS AlA. I 

VALID PUT IT ON THE PART 

AlA ERROR QUEUE. FREE THE 

PCCW. 

FREE IOE'S USED BY ILRSRT.~ 

VALIDITY CHECK THE CURRENT I b 
IORB. 

IF THE IORB IS INVALID, 

TRUNCATE THE IORB CHAIN IN 

THE PARTE AND IF AN IORB 

REMAI NS. GOTO STEP 14. 

ASMVT PCCW 

,----__ ,~~I --~ 

l 
ASMPCCW l 
ASMPARTP P:I C=C=W======= 

PART AlA 

IPARTAlAE IPI .... --'-----. 
ASMVT l rE 

I ASMIOEPC IJI IOE 
I~--~ 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ 

CHAIN (PAREIORB) IS TRUNCATED. 
CALL ILRVPCCW TO VALIDITY CHECK ILRFRR01 ILRVPCCW 25.27. 

14 IF PAREIORB IS NOW NON-ZERO, GO 
THE CURRENT PCCW (PCCWPTR) IN 

TO STEP 14. 
THE PARMLIST. 

§] THE AlA FROM THE PCCW IS ILRFRROl ILRVAIA 25.27. 
9 

VALIDITY CHECKED BY ILRVAIA. IF 

VALID IT IS PUT ON THE AlA ERROR 

QUEUE IN THE PART (PARTAIAE). IF 

lLRSRT HAD A CONVERT ERROR (083 

ABEND) COPY THE AlA AND EDB TO 

THE VARIABLE RECORDING AREA IN 

THE SDWA. THE AlA FIELD IN THE 

PCCW IS SET TO ZERO AND THE PCCW 

IS RETURNED TO ITS POOL 

(ASMPCCWQ) • 

~ THE IOE' S ON THE ILRSRT FREE ILRFRROl ILRVIOEQ ~5. 27. 
QUEUE (EPAFFIOE AND EPALFIOE) 

ARE VALIDITY CHECKED BY 

ILRVIOEQ. ANY VALID IOE' S ARE 

RETURNED TO THEIR POOL 

(ASMIOEPC) • 

@!1 CALL ILRVIORB TO VALIDITY CHECK ILRFRROl ILRVIORB 25.27. 
17 

THE CURRENT IORB (IORBPTR IN 

PARMLIST) . 

~ IF THE IORB IS INVALID, THE 

Diagram 25.22 ILRSRTOI (Part 2 of 5) 

SeCtion 2: Method of Operation 5·279 



VS2.o3.807 

Input Processing °litput 

ILRSRT01 : 

ATA 

L ·@] 

@] 

IATASRT 
IF THE IORB IS INVALID AND 

THERE ARE NO MORE ON THE 

PARTE, GET SQA STORAGE AND 

INITIALIZE A NEW IORB. 

IF ILRPTM WAS NOT 

PROCESSING AT TIME OF 

FAI LURE GOTO STEP 15. 

Notes Routine 

~ IF THE IORB IS INVALID AND ILRFRR01 

PAREIORB IS ZERO, ISSUE A 

GETMAIN FOR SQA TO BUILD A NEW 

IORB, IOSB AND SRB. INITIALIZE 

THE REQUIRED FIELDS THEN CALL 

ILRVIORB TO FINISH THE 

CONSTRUCTION. STORE IN THE IORB 

THE ADDRESS IN PAREIORB AND GO 

TO STEP 14. IF THE GETMAIN FAILS 

SET PARENUSE=1 SINCE THIS PAGE 

DATA SET CANNOT BE USED. IF THE 

PARTE IS FOR A LOCAL PAGE DATA 

SET, DECREMENT TOTAL SLOTS 

AVAILABLE COUNT (ASMSLOTS). 

WRITE MESSAGE ILR009I. GO TO 

STEP 22. 

[1] IF ILRPTM WAS PROCESSING THERE 

IS NO I/O TO BE DONE AND 

POSSIBLY THE DSFULL ROUTINE IN 

ILRPTM FAILED. 

@] MAKE THE IORB AVAILABLE SINCE 

PROCESSING OF IT IS COMPLETE. 

G IF THE DSFULL (DATA SET FULL) 

ROUTINE WAS PROCESSING, INSURE 

THAT THE PROPER MESSAGE IS 

Diagram 25.22 ILRSTROI (Part 3 of 5) 

Q2] RELEASE THE IORB. 

G IF DSFULL ROUTINE WAS 

PROCESSING, WRITE THE 

PROPER MESSAGE AND PERFORM 

DATA SET FULL PROCESSING. 

GOTO STEP 21. 

Label Ref Notes 

---- ---
25.27. 

WRITTEN AND THE PARTE IS 
ILRVIORB 

17 PROPERLY ADJUSTED (AS IF DSFULL 

HAD COMPLETED PROCESSING). GO TO 

STEP 21 SINCE THERE IS NO I/O TO 

PERFORM. 

5-280 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Routine Label Ref 

---- ---



Input 

IORB PCCW 

~r:>1 
IORPCCW l 

PCCW 

l' PCCW 

I 

Notes 

~ THE PCCW CHAIN (IORPCCW) IS 

VALIDITY CHECKED BY ILRVPCWQ AND 

A COUNT IS MAINTAINED FOR THE 

PCCW'S THAT ARE KEPT ON THE 

CHAIN. IF THE CURRENT PCCW 

(PCCWPTR) IS ON THE CHAIN, IT IS 

REMOVED. 

GJ IF NO PCCW IS LEFT TO SEND TO 

IOS, RELEASE THE IORB AND 

CONTINUE AT STEP 21. 

@] FOLLOW THE PCCW CHAIN FROM 

IORPCCW AND FIND THE LAST ONE SO 

IT CAN BE UPDATED. 

~ THE LAST PCCW REMAINING ON THE 

IORB CHAIN IS SET UP AS FOLLOWS: 

- PCCWPCCW=O , -THE LAST CCW IS 

CHANGED TO A NOP AND CHAINING 

BITS ARE SET=O. 

VS1.03.807 

Processing 

>@J VALIDITY CHECK THE PCCW 

Routine 

ILRFRR01 

CHAIN OFF THE IORB. 

GJ IF NO PCCW REMAINS ON THE 

IORB, RELEASE THE IORB. 

GOTO STEP 21. 

@] LOCATE THE LAST PCCW ON 

THE IORB. 

~ SET UP THE LAST PCCW ON 

THE IORB CHAIN FOR I/O 

PROCESSING. 

Label Ref Notes 

---- ---
ILRVPCWQ 25.27. 

13 

Diagram 25.22 ILRSRTOI (Part 4 of 5) 

Output 

IORB PCCW 

) ~I 

lpccw IORPCCW 

IORFUSE 

C PCCW 

I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-281 



VS2.03.807 

Input Processing Output 

( 

EPATH SCYLWRT B PI I r UPDATE THE CURRENT PATMAP l EPA~PAT ENTRY WITH THE NEW MAP AND 
EPAWRTCT 

UPDATE THE SLOTS AVAILABLE 
EPACYLA 

COUNT IN THE PARTE. 

~ 
CURRENT 

> ISSUE STARTIO. PATMAP ENTRY 
CURRENT 

ISCYLWRT I PATMAP ENTRY 

I I 
--

~ UNLOCK THE PARTE. 

~ 
PARTE 

PARTE 

iPAREseTA I 
IpARESLTA I ~ SCHEDULE ILRPTM. 

SRB IOSB 

11 LJl I I~I 

r pccw r V 
RETURN TO RTM 

IORB 

I IPI I 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
B THE CURRENT PATMAP ENTRY AND 

AVAILABLE SLOT COUNT IN THE 

PARTE (PARESLTA) ARE UPDATED, 

USING EPAWTPAT,EPACYLA AND 

EPAWRTCT. 

~ FIELDS IN THE IORB AND IOSB ARE 

SET UP FOR lOS. THE SRB FOR lOS 

IS OBTAINED AND THE COUNT OF SRB 

(ASMIOCNT) FOR ILRIOCOO TO 

PROCESS IS UPDATED. THEN STARTIO 

IS ISSUED TO PROCESS PCCW' S ON 

THE IORB. 

~ PAREFSIP IS SET TO 0 TO. UNLOCK 

THE PARTE IF LOCKED BY CURRENT 

PART MONITOR (EPACPUID). 

~ SCHEDULE ILRPTM SO THAT ANY 

IOE'S OR AlA'S PUT BACK ON THE 

QUEUES WILL BE PROCESSED. 

Diagram 25.22. ILRSRTOI (Part 5 of 5) 

5-282 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

R~ ___ .... 11F~AP- I 
ATA j 

~~';;;~:: 
t==J 

SRB 

FROM RTM 
(IEAVTRTS) 

Notes Routine 

§J ILRCMP01 IS THE RECOVERY ROUTINE 
FOR ALL FOUR ENTRIES OF ILRCMP. 
THE ATA WILL ALWAYS BE RECORDED 
IN THE SDWA VARIABLE RECORDING' 
AREA. THE MODID WILL BE SET IN 
THE SDWA IF NOT PERCOLATED TO. 

§] FOR A RECORD-ONLY ABEND iX' 084' , 

~~~~~~DbZ~~ ~itHlkR~t;I~5 '1 r~ BE 
lOSCOD.

@] IF THE IOSB HAS NOT BEEN

~~~C~~~~N~~~EDE6ftH~nET~~E~gSB 
OCCURRED BEFORE PROCESSING 
BEGAN. NO RECOVERY CAN BE DONE, 
SO GO TO STEP 22. 

§] THE IOSB-IORB-SRB WILL BE ILRFRR01 
VALIDITY CHECKED FOR CERTAIN 
BASIC FIELDS AND THEN THE 
REMAINING FIELDS REFRESHED. 

@] ~~6~~R~0¥~ ~N~~TG~A¥6DST~~ 22. 

Diagram 2 5.23 ILRCMPOI (Part 1 of 5) 

VS2.03.807 

processing 

ILRCMP01 : 

~ MOVE THE ATA TO THE SDWA 
t.::.:.J VARIABLE RECORDING AREA. 

IF IT IS A RECORD-ONLY 
ABEND, GO TO STEP 20. 

IF NO lOSB IS 
CHECKPOINTED, GO TO STEP 
22. 

VALIDITY CHECK THE 
IOSB-IORB-SRB. 

IF IOSB-IORB-SRB IS NOT 
VALID, GO TO STEP 22. 

Label Ref Notes 

---- ---

ILRVIORB 25.27. 
17 

• 
Output 

SDWA 
) 

~ 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-283 



VS2.03.807 

Input Processing Output 

ATA 
~ IF NO AlA'S TO RETURN TO 

F I LRPAGCM , GO TO STEP 9. l AT~~~ ATACPCCW @] gJj ) VALIDITY CHECK THE AlA 
QUEUE. 

EJ]J ~ PUT ALL VALID AlA'S ON 
PARTAIAE FOR LATER RETURN 
TO ILRPAGCM. 

~ 
PART 

~~T~~NStgwf~~c~~~II~BLE 

~L 
QUEUE, GO TO STEP 12. 

AIAQUEUE 

~ VALIDITY CHECK THE 
ATA SCCW/PCCW QUEUE. 

~ .---l ATA~ 0] ATACPCCW 

-=-
EJ]J AIAQUEUE 

SCCW/PCCW QUEUE 

! 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ AIA'S·TO BE RETURNED TO ILRPAGCM 

ARE CHECKPOINTED IN ATACOMPQ. 

@] BEFORE AlA'S ARE SENT TO THE ILRFRROl ILRVAIAQ 25.27. 
~&~lt?TgH~~KT~~U~fi~.tNtH~/M~ 4 

fATACPCCW) WILL BE COMPARED WITH 
tl~u~~R~i ~I~~~HT¥~ ~6~M~HE 

iIA POINTER IN ATACPCCW IS'SET 
TO ZERO SINCE THIS AlA ALREADY 
HAD BEEN PROCESSED BY ILRCMP 
'~~O~¥AT~E~~e~~i¥~~RECR~~~ 

§] liA~sN~EZ~~ ggE~lRt~I~T~~~, 
AlA ERROR ~EUE). ILRPTM M ST BE 
SCHEDULED TER. 

~ S~PCCW' S TO BE RETURNED TO THE 
A AILABLE 8UEUE ARE CHECKPOINTED 
IN ATAPCCW • 

~ BEFORE THE SCCW/PCCW'S ARE SENT ILRFRROl ILRVSCWQ 25.27. 
!~At~~~I£fT~EC~~~~~~gT~EtHE 5 

ILRFRROl ILRVPCWQ 
II~tc~Ci~/~5:0°NT~~EA~2~~CwIF 25.27. 
IS SET TO ZERO SiNCE THIS PCCW 

13 

ALREADY HAD BEEN PROCESSED BY 
ILRCMP BEFORE THE ERROR 
OCCURRED. THEN THE VALIDITY 
CHECK ROUTINE IS CALLED. 

Diagram 25,;23 ILRCMPO 1 (Part 2 of 5) 

5-284 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



VS2.03.801 

Input processing Output 

Q2] PUT ALL VALID SCCW6pCCW'S 
ASMVT 

ON THE AVAILABLE Q EUE. 

~L ~ IF THERE IS NO CURRENT 
SCCW!PCCW, GO TO STEP 18. .---

j::ACpCCW 1,.;t!=P=C=CW====J:~::::::::~> 

~ VALIDITY CHECK THE ol SCCW!PCCW QUEUE. 

@] IF THE ~~£16i!f~W C~~~~E T~~ XtkI~F IT IS PRESENT. ~ PCCW 

SART 

~L .---ol 
SCCW 

PART AlA 

~"I I 
PARTAIAE 

Notes Routine Label Ref Notes Routine Label Ref 

---- ---- --- ---- ---
Q2] f~E~HlR~C~~f0~~~~ST~~H~ALID, 

APPROPRIATE AVAILABLE QUEUE. 

~ ~U~c~~~~~¥ID Si~Wf~~C~TI~pccw. 
THE AlA POINTER MAY BE ZERO. THE 
SCCW,PCCW MAY BE ON THE IORB 
CHAI M OR THE ATAPCCWQ. SPECIAL 
CARE UST BE TAKEN TO INSURE 
THAT NEITHER AN AlA NOR A 
fr~~~~:CW IS PROCESSED TWICE BY 

~ THE SCCW!PCCW IS CHECKED AGAINST ILRFRR01 ILRVSCWQ 25.27. 
~~cAo~§c~~6~gRS!f~~ n~~~cc~F A 

5 
ILRFRR01 ILRVPCWQ 

WILL BE ZEROED' AND CONTROL SENT 25.27. 
§gc~;~~c~ 8 is I~A~nfT~H~HECKED. 13 

@] IF PCCWAIA!SCCWAIA IS NONZERO, ILRFRR01 ILRVAIA 25.27. 
THE AlA IS VALIDITY CHECKED. 9 

Diagram 25.23 ILRCMPO 1 (Part 3 of 5) 

Section 2: Method of Operation 5-285 



Input 

ATA 

IATAMODID I ==-

IORB 

I'LRPCCW I 

VS2.03.807 

processing 

~ It I~E~I~R~5RV~~I~'R~ 
AND PUT IT ON THE 
PARTAIAE. 

f161 SET THE PCCWAIA!SCCWAIA TO 
~ ZERO. 

[22] Kg~R6~~I~f~W~~XIrA~~E THE 

~g~ufLLR~&E~~ES~~~EJ~-17 
QUEUE. 

Output 

F=-. IPPL.IC_C_W ___ -, 

~ 'VALIDITY CHECK THE ~UEUE ASMVT SRB 

ASMPSRB 

~&ESyg~,:CCWS CHAIN DOFF UF ~r+lr-----...., 

I!====:)\ ~ IF ILRPTM IS TO BE IOSB 

~ :::~~;;~~ :;~~ I ~ j::'OOB I~~ 
SRB J 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ SINCE THE STATUS OF THIS AlA IS 

¥~~~~Efs~~yI6N~SA~A~EI~YT~~RE 
~~ ~R~~~I~I~tEAI~SMU~~EI~O~S 
BADPACK PROCESSING. 

~ THE AlA POINTER IS ALWAYS ZERO 
FOR A SCCW!PCCW ON THE AVAILABLE 
QUEUE. 

@] ~~~ ~~ij~':CCW IS MADE AVAILABLE 

@] WHATEVER REMAINS ON THE IORB IS ILRFRR01 ILRVSCWQ 25.27. 
PROCESSED BY THE MAINLINE 5 
TERMINATION ROUTINE - ILRCMP. ILRFRR01 ILRVPCWQ 

25.27. 
13 

~ IF ANY AlA'S WERE PUT ON THE 

§~I~Ot~D~U¥~~'sth~bfi~Es~g8~¥ ¥~ 
CHECKED TO DETERMINE IF ILRPTM 
IS ALREADY SCHEDULED. 

~ ILRCMP SHOULD BE RESCHEDULED 
USING THE SRB POINTED TO BY THE 
IOSB. A X' 45' WILL BE PUT IN THE 
lOSB. 

Diagram 25.23 ILRCMPOI (Part 4 of 5) 

5-286 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



VS2.03.807 

Input processing 

ATA 

I'T.BAD.. I 
:======~) ~ IF A MESSAGE NEEDS TO BE 

f5S¥fRMs~~6.UP FOR A CALL 

Notes Routine 

IIi] IF THE ERROR WAS IN THE BADPACK ILRMSGOO 
5~B~~!A~¥ERC£~§~EI~DS~InNG UP 
ILRMSGOO. UNCONDITIONALLY SET 
THE BADPACK FLAG IN THE PARTE OR 
THE SARTE. 

A. IF THE IOSB WAS LOST 
~ATAIOSB=O) OR THE AlAS WERE 

I~~P~~ ~tl~TP~T~~ft~D8~~gEiF 
IT IS NOT ALREADY SCHEDULED. 
IF THE IOSB WAS LOST FOR A 
SWAP DATA SET THEN SWAP 
DRIVER IS ALSO SCHEDULED. 

B. IF THE ILRPTM SCHEDULE BIT IS 
~~B I~E~TSy~E~g~EArM~~~RPTM 
SCHEDULED. 

IE] FOR ILRCMPAE OR ILRCMPDI, lOS 
i~c~6L~O G~T 4~<j>~T~gk ~~I~6o THE 
THERE IS NO FRR BELOW ILRCMP01 
BUT ILRCMP HAS BEEN RESCHEDULED. 

Diagram 25.23 ILRCMPOl (Part 5 of 5) 

RETURN TO RTM TO PERCOLATE 
ERROR. 

Label Ref Notes 

--..-- ---
ILRMSGOO 

V 
TO RTM 

Output 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-287 



VS2.03.S07 

Input processing Silutput 
FROM RTM 
(IEAVRTS) 

I ill I ~ 
ILRGOS01 : 

R SDWA §] R 1 SDWA 

'11 SOWAPA" 

ILRGOS01 : SET FRR ) I.r+ 
INDICATOR IN SDWA. 

SDWACOMP 
ATA @] SDWAACEJ 

llATAEPATH 
I R 0 

INDICATE SALLOC AND ASM 

I CLASS LOCKS TO BE FREED. 

C 
GOTO STEP 5. 

EPATH WORKAREA @) I I IF ILRCGOSE: IF A SDWA WAS 
NOT OBTAINED, SET THE 
CONTINUE-WITH-TERMINATION 

R 0 

112 
INDICATOR AND RETURN TO 
RTM. 

f11 .V 
RTM 

§] R 1 
SET THE ESTAE INDICATOR IN > / .. SDWA 
SDWA. 

IsDWACOMP I @] SET THE RECORD INDICATOR 
IN SDWA. 

Notes Routihe Label Ref Notes Routine Label Ref 

---- --- ---- ---
§] SDWA IS SET TO NON-ZERO FOR 

ILRGOS01 IS THE RECOVERY ROUTINE 
ESTAE PROCESSING. WHEN THE 200 

FOR ILRGOS, ILRRLG, ILRACT, 
BYTE WORKAREA IS OBTAINED ITS 

ILRSAV, AND ANY OF THEIR PATHS 
ADDRESS WILL BE PUT IN THAT 

THROUGH ILRVSAMI. IT IS AN FRR 
FIELD. 

FOR ILRGOS AND ILRRLG, AN ESTAE 
FOR THE OTHERS. FOR FRR ENTRY 
POINT, COMMUNICATION FIELD IN [§] COMMON PROCESSING FOR ESTAE AND 
SDWA(SDWAPARM) WILL BE USED TO FRR - SDWA HAS BEEN OBTAINED. 
INDICATE WHETHER THIS IS THE FRR THE SDWA IS MARKED TO BE 
OR ESTAE PROCESSING. THE FRR RECORDED IN SYS 1 • LOGREC. 
WILL SET THE FIELD TO ZERO. 

@] WHEN ILRGOS.RECEIVED CONTROL AND 
ESTABLISHED THE FRR, THE LOCAL 
LOCK WAS THE ONLY LOCK HELD. ALL 
OTHER LOCKS OBTAINED DURING 
MAINLINE OR RECOVERY PROCESSING 
SHOULD BE FREED BEFORE 
PERCOLATING TO VBP' S RECOVERY. 
GO TO STEP 5. 

@) THIS IS THE ESTAE ENTRY POINT 
GIVEN CONTROL BY RTM ROUTINE 
IEAVTAS1. IF NO SDWA WAS 
OBTAINED BY RTM, RECOVERY IS NOT 
ATTEMPTED. 

~ THE COMMUNICATION FIELD IN THE 

Diagram 25.24 ILRGOSOI (Part 1 of 8) 

5-288 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



VS2.03.807 

Input Processing Output 

R 

IJ~Srsl~m::~A~p~~~lll::========~> ~ 
ATA rn:;"I 

R~1 ______ ~I"I:::ARA I 

MOVE THE ATA TO THE SDWA. > 

' 

.... ----,1 ~ 

l ATAEPATH . 

EPATH 

L~ 

IF EPATH IS NOT 

CHECKPOINTED, RETURN TO 

RTM TO CONTINUE WITH 

TERMINATION. 

Notes Routine 

~ THE ATA IS RECORDED IN THE 
VARIABLE RECORDING AREA 

(SDWARA) . 

@] IF THE EPATH HAS NOT BEEN 

CHECKPOINTED, NO RECOVERY IS 
ATTEMPTED. 

~ THE EPATH IS RECORDED IN THE 

VARIABLE RECORDING AREA. 

@!) THE ROUTINE IN CONTROL AT THE 
TIME OF ERROR IS DETERMINED FROM 

THE ATA AND THE PROPER MODULE, 
CSECT, AND THE RECOVERy NAME IS 
PUT IN THE SDWA. 

[§ IF IT IS A RECORD-ONLY ABEND 
(X'COD' , X'085', X'086', OR 

X'087'), SET UP THE RETRY 

REGISTERS FROM THE EPATH 

POINTER, INDICATE RETRy AT THE 

NEXT SEQUENTIAL INSTRUCTION, AND 
RETURN TO RTM. 

@] IF IT IS NOT A RECORD-ONLY ABEND 
OR RETRy IS IMPOSSIBLE, THEN 

Diagram 25.24. ILRGOSOI (Part 2 of 8) 

[1:-2) ...----------. 
MOVE THE EPATH TO THE =r===rr II~ 
:::A~HE APPROPR'ATE ~ L ___ ~_S_D_W_AR_A __________________ ~ 
RECOVERY ROUTINE NAMES IN 
THE SDWA. 

~ IF IT IS A RECORD-ONLY 

ABEND AND RETRY IS 

POSSIBLE, SET UP FOR RETRY 

AND RETURN TO RTM. 

Q:2J INDICATE IN THE SDWA TO 
CONTINUE WITH TERMINATION. 

Label Ref Notes 

----- ---
INDICATE 

V 
TO RTM 

IN THE SDWA TO CONTINUE 

Routine Label Ref 

------ ---
WITH TERMINATION. 

Section 2: Method of Operation 5-289 



Input 

li 4 IrE

:::
CE L 

ATA JI EPAAASP 

IATAEPATH I 
ASPCT 

~ 

Notes Routine 

@] IF ESTAE ENTRY: 

A. OBTAIN A 200 BYTE WORKAREA. 

EACH FRR IS PASSED ONE. 

B. IF ILRVSAMI HAD CALLED VSAM ENDREQ 

(POSSIBLE ONLY IF ESTAE 

ENTRY), VSAM MUST BE ALLOWED 

TO CLEAN UP ITS RESOURCES. 

THE ENDREQ MACRO IS ISSUED. 

C. IN PREPARATION OF OBTAINING 

THE SALLOC LOCK, PAGE FIX THE 

SDWA. SDWA IS FIXED IF FRR 

ENTRY. 

@) FOR COMMQN RECOVERY PROCESSING, SETLOCK 

MAKE BOTH ENTRY POINTS HOLD THE 

SAME LOCKS AND SET UP COMMON 

REGISTERS. FOR THE ESTAE ENTRY 

POINT, THE LOCAL, SALLOC, AND 

ASM LOCKS ARE OBTAINED. FOR THE 

FRR ENTRY, THE LOCAL LOCK WAS 

ALREADy HELD AND THE OTHER LOCKS 

MAy BE HELD. THE SALLOC AND ASM 

LOCKS ARE OBTAINED. IF THE ASM 

WAS HELD AND THE SALLOC CANNOT 

BE OBTAINED CONDITIONALLY, NO 

RECOVERY IS DONE AND CONTROL IS 

Diagram 25.24 ILRGOSOI (Part 3 of 8) 

VS2.03.807 

Processing Output 

IF ESTAE ENTRY, PREPARE :::;:===~r;::41 'R 1 lr+rL II 
THE ENVIRONMENT TO ENABLE L~====~-_~' ====:::.1-_ 
COMMON PROCESSING. 

SET UP THE COMMON 

REGISTERS AND LOCKS. IF 

THE NECESSARY LOCKS CANNOT 

BE OBTAINED, RETURN TO 

RTM. 

IF THE ACE IS 

CHECKPOINTED, VALIDITY 

CHECK THE ACE. IF THE ACE 

IS INVALID, SET THE ACE 

POINTER TO ZERO. 

IF THE ACTIVE ASPCT IS 

CHECKPOINTED, IT IS 

ADDRESS VERIFIED AND THEN 

THE LGE IS VERIFIED. ANY 

ERROR INDICATOR CAUSES THE 

APPROPRIATE POINTER TO BE 

ZEROED. 

Label Ref Notes 

---- ---
RETURNED TO RTM. 

G IF THE ACE IS CHECKPOINTED IT IS 

VALIDITY CHECKED. IF THE POINTER 

IS INVALID, THE ACE POINTER IN 

THE EPATH IS SET TO ZERO. 

@] IF THE ACTIVE ASPCT IS 

CHECKPO;rNTED, ADDRESS VERIFY THE 

ASPCT. IF THE ADDRESS IS 

INVALID, SET THE POINTER TO THE 

ACTIYE ASPCT TO ZERO. IF ASPCT 

ADDRESS IS VALID, VERIFY THE LGE 

ADDRESS IN THE ASPCT. IF LGE 

ADDRESS IS INVALID, ZERO POINTER 

TO LGE IN ASPCT. 

Routine Label Ref 

---- ---

ILRFRROl ILRVACE 25.27. 
10 

ILRFRR01 ILRVLGE 25.27. 
11 

IEAVEADV IEAVEADV 

5-290 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

R 4 EPATH 

C 
r EPMeE 

EPALGEP 

ATA EPAACT 

IATAEPATH 

I EPAACASR 

Notes 

~ IF AN ACTIVATE REQUEST WAS 

PROCESSING, CLEAN UP ANY 

RESOURCES OBTAINED ON BEHALF OF 

THIS REQUEST. 

A. IF THE ACE IS STILL 

CHECKPOINTED, DEQUEUE THE ACE 

FROM THE PROCESS QUEUE AND 

RETURN IT TO THE ACE POOL. 

B. IF AN LGE WAS OBTAINED, 

ILRFRELG IS CALLED TO FREE 

STORAGE AND MAKE THE LGVTE 

AVAILABLE. 

C. THE BUFFER COUNT IN THE ASMVT 

MUST BE INCREMENTED SO THAT 

THE GROUP OPERATORS CAN 

CONTINUE TO 00 I/O. 

VS2.03.807 

Processing 

ILRGOS01 : 

> ~ IF AN ACTIVATE REQUEST WAS : 

Routine 

ILRGMA 

ILRGOS 

PROCESSING: 

A. FREE THE ACE. 

B. IF EPALGEP IS 

CHECKPOINTED, ZERO 

LGESLTCT, THEN CALL 

ILRFRELG TO FREE THE ur 
LGE AND MAKE THE LGVTE 

AVAILABLE. 

C. INCREMENT THE BUFFER 

COUNT BY 1 IN ASMVT. 

Label Ref Notes 

---- ---

ILRFRELG 

Diagram 25.24 ILRGOSOI (Part 4 of 8) 

Output 

R 4 

I
I 
ATA 

II""A-T-A-E-P-A-T-H--'" 

R 3 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-291 



VS2.03.807 

Input 

R 4 EPATH 

C 
rEP~N EPASRB 

ATA EPALGVTP 

IATAEPATH 
I EPALGEP 
• EPAACASR 

EPABKSLT 

Notes 

I:IZl IF AN ASSIGN REQUEST IS BEING 
PROCESSED, CLEAN UP ANY 
RESOURCES OBTAINED ON BEHALF OF 
THIS REQUEST. 

A. IF EPAASGN IS ON, THE BACKING 
SLOTS COUNT OBTAINED FOR THIS 
LOGICAL GROUP MUST BE 
RETURNED. THE NUMBER OF SLOTS 
RETURNED IS ADDED TO THE 
ASMBKSLT COUNT IN ASMVT. 

B. IF THE SRB IS CHECKPOINTED, 
FREE THE SRB STORAGE. 

C. IF THE LGVT IS CHECKPOINTED, 
FREE THE LGVT STORAGE. 

D. IF THE LGE IS CHECKPOINTED, 
CALL ILRFRELG TO FREE LG 
RELATED STORAGE. IF 
UNSUCCESSFUL, FREE THE LGE 
STORAGE. 

Processing 

> I:IZl IF AN ASSIGN REQUEST WAS : 

Routine 

FREEMAIN 

ILRGOS 
FREEMAIN 

PROCESSING: 

A. ADJUST THE BACKING 
SLOTS COUNT IN THE 
ASMVT. 

B. IF THE SRB IS 
CHECKPOINTED, FREE 
STORAGE. 

C. IF THE LGVT IS 
CHECKPOINTED, FREE 
STORAGE. 

D. IF THE LGE IS 
CHECKPOINTED, FREE 
STORAGE. 

Label Ref Notes 
---- ---

ILRFRELG 

Diagram 25.24 ILRGOSOI (Part 5 of 8) 

,5-292 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Output 

Lr :'--4 ___ .... I,.~LT I 

C 
A1'":;":-A-E-P-A-T-H--'r EPATH 

EPAASGN 
EPASRB 
EPALGVTP 
EPALGEP 
EPAACASR 
EPABKSLT 

, 

Routine Label Ref 
---- ---



Input 

R 4 EPATH 

C r EPARLG 
ATA EPALGE 

IATAEPATH I 

Notes 

IT!l IF A RELEASE LOGICAL GROUP 
REQUEST WAS PROCESSING (ILRRLG), 
ALLOW THE REQUEST TO REMAIN ON 
THE PROCESS QUEUE UNTIL MEMORY 
TERMINATION. 

A. THE WORK PENDING FLAG IN THE 
LGE BEING OFF PREVENTS THE 
SRB CONTROLLER FROM 
PROCESSING THIS LGE. 

B. IF THE LGE IS STILL 
CHECKPOINTED, IT HAS NOT BEEN 
QUEUED, SO THIS SQA IS FREED. 

VS2.03.807 

Processing Output 

ILRGOSOl : 

> ~ IF A RELEASE LOGICAL GROUPI':======~> : ACE LGE 

t~~r ILOE_PO I 

Routine 

FREEMAIN 

REQUEST WAS PROCESSING: 

A. TURN OFF THE WORK 
PENDING FLAG IN THE 
LGE. 

B. IF THE LGE IS 
CHECKPOINTED, FREE THE 
STORAGE. 

Label Ref Notes 
----- ---

Routine Label Ref 

---- ---

) 

Diagram 25.24 ILRGOSOI (Part 6 of 8) 

Section 2: Method of Operation 5-293 



VS2.03.807 

Input Processing Output 

ASPCT [2!J .... ;.:.~~:vEDl:======~:> 19 IF A SAVE REQUEST WAS '---------I~ 'IIASPSAVED .-'" , PROCESSING: 
EPASAVE 

> 
EPATH 

EPAAASP A. IF THE SAVE FLAG IS OFF 
IN THE ASPCT, SET THE 

's' SYMBOL IN THE 
ASPCT. 

ACE f,---------, I ACELGE I WEWRXffi 

Notes Routine 

[2!J IF ILRSAV WAS PROCESSING, CLEAN 

UP THE RESOURCES OBTAINED FOR 
THIS REQUEST. 

A. IF THE ASPCT HAS NOT BEEN 
MARKED SAVE, ZERO THE'S' 

SYMBOL SO THAT FUTURE RELEASE 
REQUEST WlLL BE HONORED. 

B. IF THE ASPCT HAS NOT BEEN ILRALSOO 
MARKED SAVED OR, IF THE 
EPAUNSAV FLAG IS ON, MARK ALL 
LPME'S AS UNSAVED. THIS WILL 

ALLOW SLOTS TO BE FREED 
LATER. 

C. THE ACE SHOULD BE THE FIRST 

ACE ON THE LGE PROCESS QUEUE 
(LGEPROCQ) . 

D. THE WORK-PENDING AND THE 

SAVE-REQUEST FLAGS IN THE LGE 
ARE TURNED OFF. IF MORE ACE'S 

ARE QUEUED, THE WORK-PENDING 

FLAG IS TURNED ON. IF MORE 

SAVE REQUESTS EXIST ON QUEUE, 
THE SAVE- REQUEST-QUEUED FLAG 

IS TURNED ON. 

E. THE GROUP-OP FLAG WAS ON 

Diagram 25.24 ILRGOSO 1 (Part 7 of 8) 

B. IF THE SAVE FLAG IS OFF 

OR THE EPAUNSAV FLAG IS 

ON, CALL ILRALSOO TO 
MARK ALL THE LPME'S IN 

THE ACTIVE ASPCT AS 
UNSAVED. 

C. DEQUEUE THE ACE FROM 

THE LGE. 

D. TURN ON THE 

WORK-PENDING FLAG AND 

THE SAVE­

REQUEST-QUEUED FLAG IN 

THE LGE, IF NECESSARY. 

E. TURN OFF THE 

GROUP-IN-PROCESS FLAG 
IN THE LGE . 

F. FREE THE ACE. 

G. INCREMENT THE BUFFER 

COUNT IN THE ASMVT BY 1 

R 3 

Label Ref Notes 

------- ---- DURING THE SAVE TO SERIALIZE 
WORK BEING DONE FOR THIS LGE. 

F. THE ACE IS FREED AND RETURNED 

TO THE POOL VIA ILRGMA. 

G. THE BUFFER COUNT IN THE ASMVT 

SHOULD BE INCREMENTED BY 1 TO 
ALLOW ADDITIONAL I/O 

PROCESSING BY THE GROUP 

OPERATORS. . 
" 

5-294 OS/VS2 System LOgic Library Volume 5 (VS2.03.807) 

LGEGRINP 

LGESAVRQ 

Routine Label Ref 

------- ---

ILRGMA 



Input 

R 4 EPATH 

C rEP~ EPAVWKA 

ATA EPAAASP 

1 I, EPABASP 

IATAEPATH I EPARASP 

IATAWORKA I EPALGVTP 

EPALGEP 

EPASRB 

EPAACE 

EPARBASP 

Notes 

[3:£] ANY WORKAREAS OR CONTROL BLOCKS 

STILL CHECKPOINTED AT THIS POINT 

ARE FREED. IN PREVIOUS STEPS 

WHERE AREAS HAVE BEEN FREED, THE 

EPATH POINTERS HAVE BEEN 

CLEARED. 

~ IF ESTAE ENTRY POINT, THE 200 

BYTE WORKAREA MUST BE FREED, ALL 

LOCKS OBTAINED MUST BE FREED, 

AND THE SDWA MUST BE PAGE FREED. 

@] THE SDWA HAS ALREADY BEEN SET UP 

TO CONTINUE WITH TERMINATION. 

VS2.03.807 

Processing 

> §] CLEAN UP ANY REMAINING : 

Routine 

FREEMAIN 

FREEMAIN 

SET LOCK 

PGFREE 

STORAGE. 

~ IF ESTAE ENTRY POINT, FREE 

WORKAREA, LOCKS, AND SDWA. 

~ RETURN TO RTM TO CONTINUE 

WITH TERMINATION. 

Label Ref Notes 

---- ---

L---,l 
V 

TO RTM 

_.-

Diagram 25.24 ILRGOSO 1 (Part 8 of 8) 

Output 

R 1 SDWA 

> ~ ____ ~Ir+~1 ____ ~ 

Routine Label Ref 

---- ---

"-

"-', 

Section 2: Method of Operation 5-295 



VS2.03.807 

Input Processing output 
FROM "RTM 
(IEAVTRTS) 

~ ILRSRB01 : 

I FRR WORK I REG 0 §] SET UP COMMON REGISTERS L,.AREA 

I AND PERFORM COMMON I INITIALIZATION. 

I REG 1 
I LSDWA §] IF SRB CONTROLLER ISSUED A 

J ISO""" I 
~~~R¢B~g'R~~~RgPTbO~TM. 

ATA

lJl
LPA .. ATAEPATH - V

RTM

@] INITIALIZE THE SDWA FOR
PERCOLATION.

EPASWRK
ATAAIACE

EPAOWRK
~ CALL ILRCQIOE FOR AN ERROR

ATAAIAQ
OCCURRING IN ILRQIOE.

IREG 1 I SDWA ATAACEQ

r
~ UNCONDITIONALLY OBTAIN THE I ASM CLASS LOCK. ,

I REG 2 IL,.RSMHD
~ SKIP TO STEP 14 FOR AN

I ERROR THAT OCCURRED DURING ,
C PSMOLD r RSMHO

ILRSRBC ENTRY PROCESSING.

'REG
ILASMVT k) 3

ASCB ASHLGEQ §J VALIDITY CHECK THE ASMHD t.=) I I Lij~U~U¥METRfi~cI¥~DLGE
~ERMINATE THE ERROR MEMORY IREG 4

IL ~ ASHLOCK AND SKIP TO STEP 14.
ASCBRSM ATA

I I I I REG 8 L FRR WORK AREA

I I

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] VERIFICATION. THE SRB SCHEDULED

PLACE THE NECESSARY POINTERS IN FLAG IN THE ASM HEADER
REGISTERS TO STANDARDIZE THE i~~tl~~H~~lTI¥HiU~~~D cg~~R6£LER' S INTERFACE TO RECOVERY
SUBROUTINES. COMMON SRB IS RESCHEDULED.
INITIALIZATION INCLUDES: SETTING
THE FRR WORKAREA TO ZERO AND
COPYING THE ATA INTO THE SDWA.

@] n· 27 • g~~HI~~~~~~RV~IFYu~fi~H LGE ILRFRR01 ILRVLGEQ

§] (ASHLGEg) AND THE PROC~SS ggEUE ILRFRR01 ILRVLPRQ
THE SRB CONTROLLER ISSUES A COD SETRP ~~Hg~oJNBIHfLt8~E~~~P~R88kss 25.27.
ABEND FOR AN AlA THAT DOES NOT CALLRTM 2
CONTAIN A LOGICAL TO PHYSICAL ~oKVTg~EARf8gr~If ~~~u~HI~TRY ~P~I~u~NJ~~ ~~~~~)ATT~~Esg~~T ~~lNI¥~TT~YM~R~Xfi~!NG THE ig~g~~TA~5ut~ST~M~gON ~~TER THE ERROR SYSTEM COMPLETION CODE
RECOVERY ROUTiNE IDS'ARE COPIED (SDWACMPC). ILRTERMR WILL
INTO THE SDWA. A RETURN IS RECOVER ASM RESOURCES.
ISSUED TO RT/M.

@] THIS ROUTINE PERCOLATES FOR SETRP
UNEXPECTED ABENDS. THE MODULE
g~Ct6p~g ~~~gv~~t ~g~I~N~D~RS
FLAGSt WHICH R~UEST THAT RT~
FREE ~:~M KRES¥6R~~~: D
~~S DEFA6LT RECORDING
PROCEDURE IS USED.

~ A FLAG IN THE ATA ~ATAQIOE) ILRIOFRR I LRCQIOE 25.20.
INDICATES THAT ILR 10E WAS IN 1
CONTROL AT THE TIM OF ERROR.
ILRSRBC'S AlA PROCESSING IS
COMPLETED BEFORE THE CALL TO
ILR2IOE. THE SDWA CSECT ID
~SD ACSCTt IS RESET TO ILRiIOE.
oM~EC~tOROT5~~~I~~I~gStHEEASM
CLASS LOCK.

@] THE LOCK MAY HAVE BEEN HELD ON SETLOCK
ENTRY. THE LOCK IS USED TO
SERIALIZE ASM PROCESSING FOR
THIS MEMORY. IT WILL BE FREED BY
RT/M ON PERCOLATION.

~ IF SRB CONTROLLER'S MODID IS NOT
&~T&~~I~~RRiN~H~Eft~~RMI~ulfiE

Diagram 25.25 ILRSRBOI (Part 1 of 3)

5-296 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

FAACEQ ItL...'::--...J'F
l' I

ACE

VS2.03.807

Processing

ro8l PROCESS THE INTERNAL OUEUE
~ OF GROUP OPERATION ACES.

VALIDITY CHECK A CURRENT
AlA OR ACE CHECKPOINTED IN
THE ATA.

~ ~~~F~~~§~~~ ~~~Ei~!NG
CHECKPOINTED IN THE ATA.
SKIP TO STEP 12.

Notes Routine Label Ref Notes

Output

Routine Label Ref
1---.. ·1-.......... -- -------..... -- 1----------------------------11 ---------------

SRB CONTROLLER MAINTAINS IN THE
S~~Tt6~OA8~~U~OO~EG~~~ESSED.
AFTER VALIDITY CHECKING THE
OUEU!L SET TH! GROUP OP IN
PROC~S FLAG LGEGRINPl AND WORK PENDING FLAG EWRKPD IN THE
ASSOCIATED LG ACELGE SO THAT
SRB CONTROLLER ~ILL RE ROCESS
THE ACES ON THIS INTERNAL QUEUE.

ILRFRR01 ILRVACEQ ~~.27.

@!] VALIDITY CHECK THE CURRENT ACE ILRFRR01 ILRVAIAC ~5.27.
!I~~~~ ~~gg~~~I~l.O~H~I~IELD
ATAAIA MAY BE EITHER AN ACE OR
AN AlA. AN ACE IS IDENTIFIED BY
~~~ET~~b~Xfa~f)~CE OPERATION 

~
THE ACE TARGET LPME 

ACETLPME) IS MARKED VALID AND 
SAVEDL MARK THE LPME INVALID 

TO AVOlD r"REEING A SLOT 
TWICE. (IN NORMAL PROCESSINGALIF 
~U, ~G~V~T~~ ~E¥SV 10 
FREED. SINCE iT MAY HAVE BEEN 
~~~~¥~E~RfGI¥~ ~£RA£C~RRED, 
ILRSRT TO ALLOCATE IT TWICE. IF
IT HAD NOT BEEN FREED BEFORE THE
~R6NT~~ES~RKI~E~~ ~~~D.)
FOR THE LGE (ACELGE) SO THAT
THIS ACE IS.~EPROCESSED BY THE
SRB CONTROLLER. .

Diagram 25.25 ILRSRBOI (Part 2 of 3)

Section 2: Method of Operation 5-297

Input

ATA AlA

~I I
ATAAIAQ

lAIA
ATAAIACE

C
I

AlA

I I

ICVTASMVT I,..ASMVT

ASMSTAGF

ASMSTAGL

EPATH

EPAASP

EPAOWRK

EPASWRK

;...;.

VS2.03.807

Processing

PROCESS A CURRENT AlA
CHECKPOINTED IN THE ATA.

A. IF AN ERROR FLAG IS ON
f~ fU~ ~~T ~O~HE AlA
QUEUE. SKI P TO STEP 12.

B. IF THE AlA IS CURRENTLY
LAST ON THE ASMVT
¥fA~I~~ ~~~U¥NT~~22fUE
~~~UES. SKIP TO STEP 

C. IF IT IS A WRITE AlA, 
INVALIDATE ITS 
ASSOCIATED LPME. 

I II ~ @] VALIDITY CHECK THE ASMVT !:h!l_ STAGING QUEUE. 

----0/) ~ b~~¥~~ S :HE INTERNAL QUEUE , 

SCHEDULE THE SRB 
2~~i~~kk~~'S SRB, IF 

PROCESS AN ERROR OCCURRING 
IN ILRRLG. 

FREE SRB CONTROLLER'S 
WORKAREA CELL. 

@] RETURN TO CALLER. 

Ljt 

~------------------------~ 

V 
RETURN TO 
CALLER 

Output 

Notes Routine Label Ref Notes 

J ---- ----
[ill IF AN AlA WAS CURRENTLY BEING ~ IF RELEASE LOGICAL GROUP WAS IN 

~~~~~~~ ¥6 A~~~~~i f~~I~TAGE CONTROL AT THE TIME OF ERROR, AN 
OF PROCESSING FOR THE AlA. Og~~s~rL ('~~~~¢ BE

CHECKPOINTED IN THE EP TH. THE
ACTIVE ASPCT ADDRESS IN THE

A. IF AN ERROR FLAG IS ON IN THE ~f~~~~T¥g ~~vt~E~~tI~ THE CURRENT AI~ IT IS DEQUEUED
~?~TigET~ B~R~~ ~~~ ~UE ASPCT S SLOTS TWICE IN THE EVENT

OF ANOTHER RELEASE LOGICAL GROUP
~~~AI2Ef~E PART ERROR QUEUE e~~iAFg~LrH¥s~~EE6~E 

B. ¥~~~gff~I!H~u~~~ i~~~Ri~E ~ SRB CONTROLLER'S WORKAREA CELL 
THAT THIS AlA WILL NOT BE IS CHECKPOINTED IN THE 
SETUP FOR REPROCESSING BY EPATH (EPASWRK) • 
THIS RECOVERY. 

C. THE SLOT ASSOCIATED WITH A @] THIS RECOVERY PATH ALWAYS 
WRITE AlA MAY HAVE ALREADY PERCOLATES. 
BEEN FREED. INVALIDATING THE 
LPME INSURES THAT IT WILL NOT 
BE FREED AGAIN. 

[ill THE VALIDITY CHECKING ROUTINE ILRFRR01 ILRVASGQ tS •27 • REMOVES A PARTIALLY QUEUED AlA. 

~ ~~Bsf2aNt~t~~I~I~!~~¥AS)~U¥~~ ILRFRR01 ILRVAIAQ i s.27 . 

~~~~~~AT~f~~fEbF THE AlA 
iUEUE NOT YET PROCESSED BY THE

ESTART SUBROUTINE, IF THE
fH~~~~ISu~8i ~~hERESET
CURRENT AlA. ~ALIDITY CHECK THE
~~~I2U~~~OF AIASG ~T8~ 
ON THE LGE WORK ING FLAG FOR 
~CM~~ ~. ~f.o SE A~~U¥o 
BE REPROCESSED BY I SRBC. 

~ THE SRB CONTROLLER'S SRB IS SCHEDULE 
RESCHEDULED IF NOT ALREADY 
SCHEDULED. THE ASH HEADER . 
~81m~gL~NF~Gf~~ff~E~hEI~RB 
CONTROLLER IS SCHEDULED FOR THIS 
MEMORY. 

Diagram 25.25 ILRSRBO 1 (Part 3 of 3) 

5-298 OS/VS2 System Logic Library Volum3 5 (VS2.03.807) 

Routine Label Ref 

---- ----
FREECELL tS • 2S • 

FREECELL tS • 2S • 



Input 

FROM ILRSRB01 
MAINLINE 

VS2.03.807 

Processing 

l
lREG 2 

D FREECELL: 

~~====~> @2]IFTHEWORKAREACELL 

WORKAREA 
CELL 

Notes 

§] THE STORAGE POINTED TO BY THE 

WORKAREA CELL ADDRESS IS 

VERIFIED TO BE ADDRESSABLE AND 

FREE OF STORAGE CHECKS. 

§] IF THE STORAGE IS VALID THE 

WORKAREA CELL IS RETURNED TO THE 

PROPER ASM CELL POOL. 

Routine 

IEAVEADV 

ILRGMA 

Diagram 25.25.1 FREECELL (Part 1 of 1) 

ADDRESS IS NOT ZERO, 

VERIFY THE STORAGE 

ADDRESS. 

~ FREE A VALID CELL ADDRESS. 

liB RETURN TO CALLER. 

Label Ref Notes 

---- ---
IEAVEADV 

V 
TO ILRSRB01 
MAINLINE 

Output 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-299 



VS2.03.807 

Input 

FROM RTM 
(IEAVTRTS) 

Processing 

ILRTMIOl : 

@2] IF ILRTMRLG IS ALREADY 

UNUSABLE OR THIS ERROR HAS 

ALREADY BEEN RETRIED, 

PERCOLATE. 

REG 0 EPATH 

~ Ix'oc' , r r::===~> ~ IF RTM DID NOT PASS A 

EPATMI 
REG EPARECUR 

1 I 

Notes Routine 

@2] I LRTMI 0 1 IS THE RECOVERY ROUTINE 

FOR ILRTMRLG AND I LRTMI 00 . IF 
ASMNOTMR=l OR EPARECUR=l, A 

DOUBLE ERROR HAS OCCURRED SO SET 

ASMNOTMR TO ONE, IF NOT ALREADY, 
AND PERCOLATE. 

@] RTM COULD NOT OBTAIN A SDWA. 

A. IF RTM DID NOT PASS A SDWA, 

THERE IS NOWAY TO TELL RTM 

TO RETRY WITH UPDATED 

REGISTERS. IF MASTER 
SCHEDULER INITIALIZATION HAS 
BEEN POSTED (EPAMAST=l), 

ILRTMRLG MAIN LINE CODE WAS 

PROCESSING, THUS WE HAVE 

ENOUGH INFORMATION TO DO A 

SPECIAL ,RETRY. 

B. IF MASTER SCHEDULER 

INITIALIZATION IS NOT POSTED 
AND RTM COULD NOT GET STORAGE 
FOR A SDWA, PERCOLATE AND 

ALLOW M.S.I. TO TERMINATE THE 
IPL. 

Diagram 25.26 ILRTMIOI (Part 1 of 2) 

SDWA: 

A. IF MASTER SCHEDULER 

INITIALIZATION (M.S.I.) 

IS POSTED, GOTO 

SETRETRY. 

B. IF M.S.I. IS NOT 

POSTED, PERCOLATE. 

Label Ref Notes 

---- ---

SETRETRY 25.26. 
1 

5-300 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

ljl 
V 

TO RTM 

ljl 
V 

TO SETRETRY 

ljl 
V 

TO RTM 

Output 

Routine Label Ref 

---- ---



Input 

REG 0 

I <j:Cj>DE.,=X ' OC I 

REG 1 

l' SDWA 

rowAP

- I 

Notes Routine 

§] PLACE ERROR RECORDING 

INFORMATION INTO THE SDWA, 
INCLUDING A COPY OF THE EPATH TO 
THE VARIABLE RECORDING AREA, 

THEN GO PREPARE TO RETRY INTO 

ILRTMIOO OR ILRTMRLG. 

I 

Diagram 25.26 ILRTMIOI (Part 2 of 2) 

VS2.03.807 

Processlng Output 

IF RTM PASSED A SDWA, MOVE::::::::::::~> 

RECOVERY DATA INTO THE I 
SDWA AND PREPARE TO RETRY. 

LJl 
V 

TO CKRETRY 

Label Ref Notes 

---- ---
CKRETRY 25.26. 

2 

SDWA 

~ 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-30 1 



Input 

FROM CHART 
25.26 

REG 2 

I
I 
EPATH r-----...., 

EPAOWKA 

EPAVSAMI 

EPABASP 

EPARASP 

EPAACE 

EPATMRSV 

EPARECUR 

EPAVWKA 

ASMVT 

I ASMRLGWQ 

Notes 

§] WITHOUT THE SDWA NO ERROR 

RECORDING OR VALIDITY CHECKING 

IS POSSIBLE. SET EPARECUR=1 SO 

THAT RECURSION CAN BE DETECTED. 

THE FOLLOWING EPATH FIELDS ARE 

SET TO ZERO UNCONDITIONALLY: 

EPAVSAMI, EPABASP, EPARASP, 

EPAACE, ASMRLGWQ, EPAVWKA. 

@] THE RETRY ADDRESS ILRCRTMX IN 

ILRTMI01 IS PUT IN REGISTER ZERO 

AND A 4 IS PUT IN REGISTER 15 TO 

CAUSE RTM TO RETRY. 

@] CONTROL IS RETURNED TO RTM WHO 

WILL CONTINUE AT STEP 4. 

Routine 

Diagram 25.26.1 SETRETRY (Part 1 of 2) 

VS2.03.807 

Processing output 

SETRETRY: 

§] REINITIALIZE EPATH AND 

OTHER REQUIRED FIELDS FOR 

RETRY TO ILRTMRLG. 

§J SET UP TO CAUSE RETRY IN 

ILRTMI01. 

EPATH n EPAVSAMI=O 

EPABASP=O 

EPARASP=O 

EPAACE=O 

EPARECUR=Q 

EPAVWKA=O 

§] RETURN TO RTM WHO WILL 
ASMVT 

RETURN TO STEP 4. I ASMRLGWQ=O I 

LJl REG 0 

ADDR.OF 
V 

~ 
ILRCRTMX 

TO RTM 

REG 15 

14 I 

Label Ref Notes Routine 

---- ---

5-302 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Label Ref 

---- ---



Input 

FROM RTM 

REG 1 
[S 

C 
I 

EPATH 

I EPAOWKA I 
I EPATMRSV I 

ILRTMRLG 

jILRCBTMl I ==-
IILRCRTMl I 

Notes Routine 

§] AT THIS POINT, IT APPEARS (TO 

THE SYSTEM) THAT ILRTMIOl IS NO 

LONGER RUNNING AS AN ESTAE BUT 

AS A MAINLINE RETRY ROUTINE. THE 

FOLLOWING REGISTERS ARE LOADED 

WITH VALUES REQUIRED TO BRANCH 

TO THE MAIN RETRY POINT IN 

ILRTMRLG: REGISTER 3, REGISTER 

4, REGISTER 9, REGISTER 10, 

REGISTER 13. 

Processing 

§] SET UP THE 

MAIN RETRY 

ILRTMRLG. 

~ BRANCH TO 

ILRTMRLG. 

Label Ref 

VS2.03.807 

REGISTERS 

POINT IN 

ILRCRTMl IN 

Notes 

FOR 

V 
TO ILRTMRLG 
(ILRCRTMl ) 

---- ---

@] BRANCH TO ILRTMRLG TO CONTINUE ILRTMRLG ILRCRTMl 

PROCESSING ACES OR WAIT IF NO 

MORE ACES ARE ON THE QUEUES 

(ASMRLGWQ AND ASMRLGRQ) • 

Diagram 25.26.1 SET RETRY (Part 2 of 2) 

Output 

REG 3 

IADDR.OF 
ASMVT I 

REG 9 

I EPAOWKA I 
REG 10 

IILRCBTMl I 
REG 13 

I EPATMRSV I 
REG 4 

IADDR.OF 
EPATH I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-303 



Input 

FROM CHART 
25.26 

REG 1 0 
C 

I ') 

SDWA l S~AP_ SDWACMPC 

=-EPATH 

EPAMAST 

EPAVSAMI 

EPAVWKA 
EPABASP 

EPARASP 

EPAACE 

EPATMRSV 

Notes Routine 

EJ SET UP FOR RETRY IF ONE OF THE 

FOLLOWING CODES IS IN SDWACMPC: 
X' 086000', X' 087000'. RETURN TO 
RTM. 

@] IF MASTER SCHEDULER 

INITIALIZATION IS NOT POSTED, 

ILRTMRLG MAIN LINE ACE PROCESSOR 

WAS NOT IN CONTROL, SO GO TO 
STEP 8. 

§] IF THE ERROR OCCURRED DURING ENDREG 
ILRTMRLG'S CALL TO VSAM ILRGMA 
(SDWAPERC=l) , ISSUE ENDREQ FOR FREEMAIN 

VSAM CLEAN UP. IF EPAVWKA IS 
NON-ZERO, ISSUE ILRGMA TO FREE 
THE VSAMI WORKAREA. ISSUE 

FREEMAIN FOR THE ASPCT BUFFER. 

§! VALIDITY CHECK THE ACE ADDRESSED ILRFRROl 
BY EPAACE AND ISSUE ILRGMA TO ILRGMA 
FREE IT. 

@] CALL ILRAFSOO TO FREE ASPCT 

STORAGE IF EPARASP IS NON-ZERO. 

Diagram 25.26.2 CKRETRY (Part 1 of 3) 

V82.03.807 

Processing 

CKRETRY: 

@2] IF PROCESSING A 'RECORD 

ONLY' ABEND, RECORD THE 

ERROR AND RETRY. 

@] IF MASTER SCHEDULER 

INITIALIZATION IS NOT 
POSTED GO TO STEP 8. 

@] FREE THE STORAGE GOTTEN 
ILRVSAMI. 

~ FREE THE CURRENT ACE. 

§] FREE THE STORAGE USED TO 
RETRIEVE THE ASPCT. 

Label Ref Notes 

---- ---

ILRVACE f8· 27 • 

BY 

LJt 
V 

RETURN TO RTM 

5-304 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Outt>ut 

Routine Label Ref 

---- ---



Input 

Notes 

~ VERIFY THE ACE WORK QUEUE 
(ASMRLGWQ): SET EPAVSAMI-O AND 
SET EPARECUR-l TO STOP RECURSION 
DUE TO ERRORS IN ILRTMRLG. 

@] UPDATE THE FOLLOWING REGISTER 
VALUES IN THE SDWA TO CONTAIN 
THE VALUES REQUIRED AT THE MAIN 
RETRY POINT (ILRCRTM1) IN 
ILRTMRLG: REG 3, REG 4, REG 9, 
REG 10, REG 13. 

VS2.03.807 

Processing 

Routine 

ILRFRROl 

~ RESET THE TRACKING FLAGS 
IN EPATH AND VERIFY THE 
ACE WORK QUEUE. 

[§ RETURN TO RTM INDICATING 
RETRY AT ILRTMRLG MAIN 
RETRY POINT. 

Label Ref Notes 

---- ---
ILRVACEQ ~~.27. 

Diaaram 25.26.2 CKRETRY (Part 2 of 3) 

Output 

EPATH 

> I EPAVSAMI .. O/ 

SDWASR04 

\
ADDR OF \ 

. EPATH _ 

SDWASR03 

I~~OF I 
SDWASR09 

IEPAOWKA I 

SDWASR10 

IILRCBTMl I 
SDWASR13 

I EPATMRSV I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-305 



Input 

EPATH 

EPATMI : > 
EPATMXIT 

EPAMSECB 

EPAMAST 

ASMVT 

1 ASMNOTMR I 
: > 

Notes Routine 

~ IF EPATMI IS 1, GOTO TMIPROC. 

@] IF EPATMXIT FLAG HAS BEEN TURNED 

ON BY TMIPROC, GO TO STEP 11. 

~ THE FAILURE HAPPENED SOMETIME 

BEFORE ILRTMRLG CALLED ILRTMIOO 

SO ISSUE MESSAGES ILR021 I AND 

ILR022A TO INFORM THE OPERATOR 

OF AN ERROR AND TO DETERMINE IF 

HE WANTS TO CONTINUE WITHOUT VIO 

JOURNALING. IF HE DOES, ASMNOTMR 

IS SET TO 1 TO INDICATE ILRTMRLG 

IS NOT AVAILABLE. SET TO ZERO 

SARDSNL, PARTDSNL, AND PARTTPAR. 

[Ii] EPAMSECB IS USED TO POST MASTER 

SCHEDULER IN1TIALIZATION -

SETPAMAST=l. 

@] RETRY AT THE MAIN RETRY POINT. IN 

ILRTMRLG (ILRCRTM1), WHICH WILL 

PUT THE ILRTMRLG TASK IN A WAIT. 

Diagram 25.26.2 CKRETRY (Part 3 of 3) 

VS2.03.807 

Processing 

§J IF ILRTMIOO WAS 

PROCESSING, ATTEMPT TO 

RECOVER. 

[§ IF ILRTMIOO HAS PROCESSED 

GOTO STEP 11. 

~ INFORM THE OPERATOR OF THE 

ERROR AND DETERMINE IF HE 

WANTS TO CONTINUE. 

G POST MASTER SCHEDULER 

INITIALIZATION. 

@] RETURN TO RTM INDICATING 

RETRY AT THE MAIN ENTRY 

POINT IN ILRTMRLG. 

Label Ref Notes 

---- ---
TMIPROC 25.26. 

3 

I 

L---,l 
V 

RETURN TO RTM 

5-306 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Output 

ASMVT .. 

I ASMNOTMR= 1 I 
EPATH 

I EPAMAST=1 I 

Routine Label Ref 

---- ---



VS2.03.807 

Input Processing Output 
FROM CKRETRY 
Mj~6tl~¥~E) 

~ EPATH 
EPATMWKA 
EPAWARM 
EPAMSECB 
EPATMACB 
EPATMIBA 
EPATMISV 

ILRTPARB 

TPARWARM ~:~ 

Notes Routine 

§] IF EPAWARM=O, THE WARMSTRT (WARM 
START) SECTION OF ILRTMIOO WAS 
NOT EXECUTING. GO TO STEP 5 TO 
DETERMINE WHERE THE ERROR 
OCCURRED. 

@] A WARM START WAS PROCESSING. IF 
TPARWARM=O, THEN WARMERR (WARM 
START RETRY CODE) WAS 
PROCESSING. SO THERE IS A DOUBLE 
OR RECURSIVE ERROR. GO TO STEP 
16 TO ISSUE MESSAGES. 

@] SINCE THIS IS A SINGLE WARM 
START ERROR, PREPARE TO RETRY. 
THE FOLLOWING REGISTERS ARE 
REQUIRED BY WARMERR: 
3,4,5,6,' ,11,12 AND 13. 

§] RETURN TO RTM TO RETRY AT 
WARMERR (ILRCRTM2) IN ILRTMIOO. 

Diagram 25.26.3 TMIPROC (Part 1 of 4) 

TMIPROC: 

~ IF WARMSTRT WAS NOT 
PROCESSING, GOTO STEP 5. 

@] IF WARMERR WAS PROCESSING, 
GOTO STEP 16. 

@] SET UP TO RETRY AT WARMERR 

rl IN ILRTMIOO. 

§] RETURN TO RTM INDICATING 
RETRY AT WARMERR. 

Label Ref Notes 

---- ---

[Jl 
V 

RETURN TO RTM 

SDWASR03 SDWASR07 

IADDR OF ASMVT I IADDR OF IOBUFFER I 
SDWASR04 SDWASR11 

IADDR OF EPATH I I EPATMIBA I 
SDWASR12 

SDWASR05 
1~~tTMlBA+41 I EPATMACB I 

SDWASR06 SDWASR13 

I EPATMWKA I I EPATMISV I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-307 



VS2.o3.807 

Input processing 

EPATH 
)@iJ I EPACOLD I IF CVIOSTRT WAS NOT 

PROCESSING, GOTO STEP 10. 

~ WRITE MESSAGES TO 
DETERMINE IF THE OPERATOR 
WANTS TO CONTINUE. 

@! RESET TRACKING FLAGS. 

~ CLOSE SYS1.STGINDEX. 

§] RETURN TO RTM INDICATING 
RETRY AFTER CVIOSTRT. 

Notes Routine Label Ref Notes 

---- ---
@] IF EPACOLD=O GOTO STEP 10. 

~ WRITE MESSAGES ILR001I AND 
ILR022A TO INDICATE AN ERROR 
OCCURRED AND SEE IF THE OPERATOR 
WANTS TO CONTINUE. 

@) CONTINUING, SET EPACO~O 
(CVIOSTRT NO LONGER PROCESSING) 
AND ASMNOTMR-l (ILRTMRLG WILL 
NOT BE USED TO RELEASE SAVED LG 
THIS IPL). 

§] IF ASMSTGXA IS NOT ZERO ISSUE 
CLOSE FOR SYS1.STGINDEX AND SET 
ASMSTGXA=O. 

§] SET UP SDWA WITH VALUES FOR 
REGISTERS REQUIRED AFTER 
CVIOSTRT (ILRCRTM3) AND RETURN 
TO RTM TO RETRY. 

Diagram 25.26.3 TMIPROC (Part 2 of 4) 

5-308 OSjVS2 System Logic Library Volume 5 (VS2.03.807) 

Lf 

[Jl 
V 

RETURN TO RTM 

Output 

SDWASR03 SDWASR04 

IADDR OF ASMVT I IADDR OF EPATH I 
SDWASROS SDWASR11 
I EPATMACB I I EPATMIBA I 
SDWASR12 SDWASR13 

I EPATMIBA+4I K-l 
I EPATMISV I 

Routine Label Ref 

---- ---



Input 

EPATH 

EPABUILD > 
EPADSLST 
EPATMIRT 

EPATMWKA 

EPATMACB 

EPATPART 

r 
PART 

IPARTDSNL I 
SART 

ISARDSNL I 

Notes Routine 

~ IF EPABUILD=O, GOTO STEP 16. 

G WRITE MESSAGE ILR003I TO INFORM 

THE OPERATOR THAT PAGEADD WILL 

NOT WORK. 

@] SET THE DATA SET NAME LISTS 

(PARTDSNL AND SARDSNL) TO ZERO. 

@] ISSUE FREEMAIN FOR LIST FREEMAIN 

ADDRESSED BY EPADSLST. 

~ SET EPABUILD=O. 

D] SET UP SDWA WITH REQUIRED 

REGISTER VALUES AND RETURN TO 

RTM TO RETRY AFTER BUILDSNL 
(ILRCRTM4 IN ILRTMIOO). 

Diagram 25.26.3 TMIPROC (Part 3 of 4) 

V82.03.807 

Processing Output 

lliJ IF BUILDSNL WAS NOT 
PROCESSING GOTO STEP 16. 

INFORM THE OPERATOR THAT Lr 
PAGEADD WILL NOT WORK. 

ZERO POINTERS TO THE DATA 

SET NAME LIST IN THE PART 

AND SART .. 

~ FREE THE STORAGE FOR LIST. 

~ RESET THE TRACKING FLAG. 

~ RETURN TO RTM INDICAT'ING 

RETRY AFTER BUILDSNL. 

Label Ref Notes 

---- ---

V 
RETURN TO RTM 

PART 

IPARTDSN~I 
S~T 

10AR_C.· I 

SDWASR03 

IADDR OF ASMVT I 
SDWASR04 

IADDR OF EPATH I 
SDWASR05 

I EPATMACB I 
SDWASR11 

I EPATMIBA I 
SDWASR12 

I EPATMIBA+4 I 
K-1 

SDWASR13 

I EPAIMISV I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-309 



Input 

Notes Routine 

~ AT THIS POINT THE PLACE OF 
FAILURE IS UNKNOWN UNLESS 
WARMERR FAILED. ISSUE MESSAGES 
ILR021I AND ILR022A TO SEE IF 
THE OPERATOR WANTS TO CONTINUE. 

@] CONTINUING, SET ASMNOTMR=l FREEMAIN 
(INDICATING ILRTMRLG WILL NOT BE 
USED TO RELEASE LG ON SAVED 
LOGICAL GROUPS). IF ASMSTGXA IS 
ZERO, FREE THE STORAGE USED FOR 
THE ACB(EPATMACB). FREE THE WORK 
AREA FOR ILRTMIOO (EPATMWKA). 
FREE THE STORAGE FOR TPARTBLE 
(EPATPART). ZERO PARTTPAR. 

QII SET EPATMXIT-1. 

~ ILRTMRLG AT ILRCI\TMS REQUIRES 
REGISTERS 3, 4, 6, 9, 10 AND 13. 

§] RETURN TO RTM TO RETRY AT 
ILRCRTMS. 

Diagram 25.26.3 TMIPROC (Part 4 of 4) 

VS2.o3.807 

Processing 

~ ASK THE OPERATOR IF HE 
WANTS TO CONTINUE INSPITE 
OF UNKNOWN ERROR. 

@] FREE STORAGE. 

QII SET TRACKING FLAGS. 

~ SET UP TO RETRY AT 
ILRCRTMS. 

~ RETURN TO RTM INDICATING 
RETRY IN ILRTMRLG AFTER 
CALL TO ILRTMIOO. 

Label Ref Notes 

---- ---

J 

LJl 
V 

RETURN TO RTM 

5-310 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Output 

SDWASR03 

IADDR OF ASMVT I 
SDWASR04 

IADDR OF EPATH I 
SDWASR06 

I EPAMSECB I 
SDWASR09 

I EPAOWKA I 
SDWASR10 

IILRCBTM1 I 
SDWASR13 
I EPATMRSV I 

Routine Label Ref 

---- ---



Input 

I REG 1 

I REG 3 

I REG 8 

I REG 13 

I REG 8 

I SDWA 
"-+1 I 

14ASMVT 

lA_TACO I 

14WORK AREA 

I I 

14SAVE AREA 

I 1 

FROM ASM 
RECOVERY 
ROUTINE 

I 

r 
I..-+WORK AREA 

~I 

No t-e s Routine 

§] INITIALIZE THE PARAMETERS OF THE 

QUEUE VERIFIER PARAMETER LIST 

THAT ARE UNIQUE FOR THE 

VERIFICATION OF THE ASMSTAGQ. 

THESE PARAMETERS ARE THE ADDRESS 

OF THE QUEUE HEADER (ASMSTAGF), 

THE ADDRESS OF THE QUEUE TRAILER 

(ASMSTAGL), THE ADDRESS OF THE 

ELEMENT VERIFICATION ROUTINE 

(ILRVAIA), AND THE OFFSET OF .THE 

FORWARD CHAIN POINTER 

(AIANXAIA) • 

§J CALL COMMON ROUTINE TO SET UP ILRFRR01 

THE INTERFACE FOR THE QUEUE 

VERIFIER. AN INTERNAL VARIABLE, 

QTYPE, IS SET TO INDICATE THE 

QUEUE IS A SINGLE-THREADED, 

DOUBLE-HEADED QUEUE (QTYPE=2) • 

Diagram 25.27.1 ILRVASGQ (Part 1 of 1) 

VS2.03.807 

Processing Output 

ILRVASGQ: 

§J INITIALIZE QUEUE VERIFIER ====:::6 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF THE 

ASMSTAGQ. 

CALL COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN 25.27. 
20 

I lb 
LJl 

V 
TO CALLER 

I REG 8 1..-+ WORK AREA 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

QVPLTRLR 

I REG 3 /..-+ASMVT 

IA~STAGQ I 

IREG 15 IrlRETURN I CODE 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-311 



,mput 

IREG 0 

IREG 1 

IREG 8 

I REG 13 

IREG 8 

FROM ASM 
RECOVERY 
ROUTINE 

I,..LGE I 

IWBPROCQ I 

IL,.SDWA 

I I r 
IL,.WORK AREA 

I I 
IL,.SAVE AREA 

I I 

I ,.. WORK AREA I 

~I 

Notes Routine 

@) VERIFY THAT REGISTER 0 POINTS TO ILRFRR01 
A VALID LGE. IF IT DOES NOT, 
RETURN TO THE CALLER SINCE NO 
FURTHER VERIFICATION CAN BE 
DONE. 

@] INITIALIZE THE PARAMETERS OF THE 
QUEUE VERIFIER PARAMETER LIST 
THAT ARE UNIQUE FOR THE 
VERIFICATION OF THE LGEPROCQ. 
THESE PARAMETERS ARE THE ADDRESS 
OF THE QUEUE HEADER (LGEPROCF), 
THE ADDRESS OF THE QUEUE TRAILER 
(LGEPROCL),ITHE ADDRESS OF THE 
ELEMENT VERIFICATION ROUTINE 
(ILRVAIAC), THE OFFSET OF THE 
FORWARD CHAIN POINTER (AIAFQPA); 
AND THE OFFSET OF THE BACKWARD 
CHAIN POINTER (AIABQPA). 

@] CALL THE COMMON ROUTINE TO SET ILRFRR01 
UP THE INTERFACE FO~ THE QUEUE 
VERIFIER. SET QTYPE-3 TO 
INDICATE THE QUEUE IS A 
DOUBLE-HEADED, DOUBLE-THREADED 
QUEUE. 

Diagram 25.27.2 ILRVLPRQ (Part 1 of 1) 

VS2.03.807 

Processing Output 

ILRVLPRQ: 

@2]VERIFYTHATREGISTER 0 ====~r;:::)J 
POINTS TO A VALID LGE. IF 
NOT, NO FURTHER 
VERIFICATION CAN BE DONE. 

[ITO 1 
INITIALIZE THE QUEUE Ilk 
VERIFIER PARAMETER LIST 
WITH PARAMETERS UNIQUE TO 
THE VERIFICATIO~ OF THE 
LGEPROCQ. 

CALL THE COMMON ROUTINE TO~===::;:1 
INTERFACE WITH THE QUEUE 1 II 
VERIFIER. ~ 

Label 

----
ILRVLGE 

COMQRTN 

Ref 

---
25.27. 
11 

25.27. 
20 

Notes 

[--,l 
V 

TO CALLER 

I I REG 

I REG 

I REG 

I REG 

5-312 OSfVS2 System Logic Library Volume 5 (VS2.03.807) 

15 Irl~~5MRN II 

8 I ,.. WORK AREA 

QVPLEVR 
QVPLHDR 
QVPLFPTR 
QVPLTRLR 
QVPLBPTR 

0 I,..LGE 

IW~ROCQ I 

15 IrlRETURN I CODE 

Routine Label Ref 

---- ---



Input 
FROM ASM 
RECOVERY 
ROUTINE 

I REG 1 
, SDWA 
r-+I 

b , 

I REG 3 IL.,ASMVT 

IASHSMT I 

I ASMSART 'L.,SART 

ISMNAlTO I 
=-

I REG 8 'L.,WORK AREA 

I , 

IREG 13 'L.,SAVE AREA 

I I 
I r-+ WORK AREA 1 IREG 8 

~:=-QTYPE I 

Notes Routine 

[ill INITIALIZE THE PARAMETERS OF THE 
QUEUE VERIFIER PARAMETER LIST 
THAT ARE UNIQUE FOR VERIFICATION 
OF THE SARWAITQ. THESE 
PARAMETERS ARE THE ADDRESS OF 
THE QUEUE HEADER (SARWAITF), THE 
ADDRESS OF THE QUEUE TRAILER 
(SARWAITL), THE ADDRESS OF THE 
ELEMENT VERIFICATION ROUTINE 
(ILRVAIA), AND THE OFFSET OF THE 
FORWARD CHAIN POINTER 
(AIANXAIA) • 

§] CALL COMMON ROUTINE TO SET UP ILRFRR01 
THE INTERFACE FOR THE QUEUE 
VERIFIER. SET QTYPE=2 TO 
INDICATE THE QUEUE IS A 
SINGLE-THREADED, DOUBLE-HEADED 
QUEUE. 

[§] THE VARIABLE AIAPTR IS ILRFRR01 
INITIALIZED TO THE ADDRESS OF 
THE FIRST AlA ON 'THE SARWAITQ. 
THIS IS DONE TO SET UP FOR THE 
VERIFICATION OF THE LATERAL 
AlA • S OF EACH AlA ON THE 
SARWAI~Q. THIS VERIFICATION IS 
ACTUALLY DONE. IN ILRVSPAQ. 

Diagram 25.27.3 ILRVSWTQ (Part 1 of 1) 

VS2.o3.807 

Process~ng 

ILRVSWTQ: 

§] INITIALIZE QUEUE VERIFIER 
PARAMETER LIST WITH 
PARAMETERS UNIQUE TO THE 
VERIFICATION OF THE 
SARWAITQ. 

§] CALL COMMON ROUTINE TO 
INTERFACE WITH THE QUEUE 
VERIFIER. 

[§] SET AIAPTR TO THE ADDRESS 
OF THE FIRST AlA ON THE 
SARWAITQ. THEN BRANCH TO 
SECTION OF ILRVSPAQ THAT 
VERIFIES THE AlA' S IN A 
SWAP GROUP. 

LJt 
V 

TO VERLAI 
(IN ILRVS 

Label Ref Notes 

---- ---

COMQRTN ~8·27 • 

ILRVSPAQ g5.27. 

AS 
PAQ) 

Output 

'REG 8 I r-+ WORK AREA 

QVPLEVR 
QVPLHDR 
QVPLFPTR 
QVPLTRLR 

I ASMSART I r-+SART 

ISMNAlTO I 

I REG 15 IrlRETURN I CODE 

I IAIAPTR IrlSARWAITF II 

Routine Label Ref 

---- ---

Section 1: Method of Operation 5-313 



Input 

IREG 0 I~ll 
AlA I'------, 

~~ __ ~IL.S~D_WA~ __ ~ 
1 I 

IREG 1 

IREG 8 

I REG 13 

IREG 8 

FROM ASM 
RECOVERY 
ROUTINE 

Notes Routine 

@i] INITIALIZE THE PARAMETERS OF THE 

QUEUE VERIFIER PARAMETER ·LIST 
THAT ARE UNIQUE FOR VERIFICATION 
OF AN AlA QUEUE. THESE 

PARAMETERS ARE THE ADDRESS OF 

THE QUEUE HEADER (VALUE OF 

REGISTER 0), THE ADDRESS OF THE 

ELEMENT VERIFICATION ROUTINE 
(ILRVAIA), AND THE OFFSET OF THE 
FORWARD CHAIN POINTER 
(AIANXAIA) • 

[§] CALL COMMON ROUTINE TO SET UP ILRFRROl 

THE INTERFACE FOR THE QUEUE 

VERIFIER. SET QTYPE=l TO 
INDICATE THE QUEUE IS A 

SINGLE-THREADED, SINGLE HEADED 

QUEUE. 

Diagram 25.27.4 ILRVAIAQ (Part 1 of 1) 

VS2.03.807 

Processing 

ILRVAIAQ: 

~ INITIALIZE QUEUE VERIFIER :::::::::6 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF AN AlA 

QUEUE. 

CALL COMMON ROUTINE TO 
INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN 25.27. 
20 

I 
L---,l 

V 
TO CALLER 

5-314 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

Output 

1 REG 8 I,......WORK AREA 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

I IREG 15 1r+IMfiMRN II 

Routine Label Ref 

---- ---



Input 

~I R_EG __ -'I~ll'--__ -' 
SCCW 

IL-R_E_G_1 __ .... I-t. .. S,....D_WA __ --, 

I I 

IREG 13 

I REG ~ 

L....----.-I t==J I 

FROM ASM 
RECOVERY 
ROUTINE 

Notes Routine 

§] INITIALIZE THE PARAMETERS OF THE 

QUEUE VERIFIER PARAMETER LIST 

THAT ARE UNIQUE FOR VERIFICATION 

OF AN SCCW QUEUE. THESE 

PARAMETERS ARE THE ADDRESS OF 

THE QUEUE HEADER (VALUE OF 

REGISTER 0), THE ADDRESS OF THE 

ELEMENT VERIFICATION ROUTINE 

(ILRVSCCW), AND THE OFFSET OF 

THE FORWARD CHAIN POINTER 

(SCCWSCCW) • 

~ CALL COMMON ROUTINE TO SET UP ILRFRR01 

THE INTERFACE FOR THE QUEUE 

VERIFIER. SET QTYPE=l TO 

INDICATE THE QUEUE IS A 

SINGLE-THREADED, SINGLE-HEADED 

QUEUE. 

Diagram ~5.27.5 ILRVSCWQ (Part 1 of 1) 

VS2.03.807 

Processing Output 

ILRVSCWQ: 

~ INITIALIZE QUEUE VERIFIER :::::::::lb~ 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF AN SCCW 

QUEUE. 

CALL COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN 25.27. 
20 

V 
TO CALLER 

I REG 8 
I ,.... WORK AREA 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

I IREG 15 I.r+ I ~~6~RN II 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-315 



VS2.o3.807 

Input Processing output 

I REG 0 

IREG 1 

I REG 8 

I REG 13 

IREG 8 

T AlA 

I 

'L,..SDWA 

I 

'L,..WORK 

I 

IL,..SAVE 

I 

AREA 

AREA 

FROM ASM 
RECOVERY 
ROUTINE 

fl f , 

I 

I 

I 
I ..... WORK AREA 

~I 

ILRVSPAQ: 

@II INITIALIZE THE QUEUE 

VERIFIER PARAMETER LIST 

WITH PARAMETERS UNIQUE TO 

THE VERIFICATION OF A 

QUEUE OF SWAP AlA'S. 

CALL THE COMMON ROUTINE TO:::::::::~~ 
INTERFACE WITH THE QUEUE 

VERIFIER. 

SET AIAPTR TO THE ADDRESS :::::::::~~ 
OF THE FIRST AlA TO 

PREPARE FOR VERIFICATION 

OF THE AlA'S IN EACH SWAP 

GROUP. 

lABEL:> ALTER THE QUEUE VERIFIER 
VERLAIA3 [§] ---~ 

Notes Routine 

@i] INITIALIZE THE PARAMETER OF THE 

QUEUE VERIFIER PARAMETER LIST 

THAT ARE UNIQUE FOR THE 

VERIFICATION OF A QUEUE O~ SWAP 

AlA'S. THESE PARAMETERS ARE THE 

ADDRESS OF THE QUEUE HEADER 

(VALUE OF REGISTER 0), THE 

ADDRESS OF THE ELEMENT 

VERIFICATION ROUTINE (ILRVAIA), 

AND THE OFFSET OF THE FORWARD 

CHAIN POINTER (AIANXAIA). 

@] CALL THE COMMON ROUTINE TO SET ILRFRR01 

UP THE INTERFACE FOR THE QUEUE 

VERIFIER. SET QTYPE~l TO 

INDICATE THE QUEUE IS A 

SINGLE-THREADED, SINGLE-HEADED 

QUEUE. 

@] THE VARIABLE AIAPTR IS 

lNITIALIZED TO THE ADDRESS OF 

THE FIRST AlA ON THE INPUT 

CHAIN. THIS IS DONE TO SET UP 

FOR THE VERIFICATION OF THE 

LATERAL AlA'S OF EACH AlA ON THE 

INPUT CHAIN. 

~ CHANGE THE OFFSET'OF THE FORWARD 

Diagram 25.27.6 ILRVSPAQ (Part 1 of 2) 

PARAMETER LIST FOR THE 

VERIFICATION OF EACH SWAP 

GROUP. 

Label Ref Notes 

---- ---
CHAIN POINTER (TO AIAFQPA) 

VERIFY THE LATERAL AlA'S. 

COMQRTN 25.27. 
20 

~316 .OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

I REG 

I I REG 

I IAIA 

I REG 

TO 

8 I ..... WORK AREA 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

15 1~1~~6~RN II 

PTR 
I FIRST AlA 
..... 1 II 

8 
I ..... WORK AREA 

IQVPLFPTR I 

Routine Label Ref 

---- ---



VS2.03.807 

Input Processing 

'-___ -'1 ~ W~ORK AREA~ I r;;;::'] ....---"\ I REG . .-~ r-;:. ====:::> ~ LOOP THROUGH THE AlA' S ON ====~-"""J 
THE INPUT CHAIN, CALLING 

QTY.PE I THE COMMON QUEUE VERIFIER 

INTERFACE ROUTINE FOR EACH 

SWAP GROUP. 

Notes Routine 

----
@] FOR EACH AlA ON THE INPUT CHAIN, ILRFRR01 

CALL THE COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. QTYPE=1 TO INDICATE 

THE QUEUE IS A 

SINGLE-THREADED, SINGLE-HEADED 

QUEUE. AFTER ALL THE SWAP GROUPS 

HAVE BEEN VALIDITY CHECKED, 

RETURN TO THE CALLER. THE RETURN 

CODE IS SET TO THE LARGEST 

RETURN CODE PASSED BACK BY THE 

QUEUE VERIFIER. 

Diagram 25.27.6 ILRVSPAQ (Part 2 of 2) 

Label 

----
COMQRTN 

Ref 

---

25.27. 
20 

Notes 

V 
TO CALLER 

Output 

I L.. R_E_G_1_5_~I.r+ I ~~6~RN 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-317 



VS2.03.807 

Input Processing Output 
FROM ASM 
RECOVERY 
ROUTINE 

I.-------.REG 0 '1..-------.: ~ : ill I ~ 
________ ~I1-.S~D-W-A----~ 

I I 
I REG 

I REG 8 

I REG 13 

I REG 8 

Notes Routine 

@2] INITIALIZE THE PARAMETERS OF THE 

QUEUE VERIFIER PARAMETER LIST 
THAT ARE UNIQUE FOR VERIFICATION 

OF AN IOE QUEUE. THESE 
PARAMETERS ARE THE ADDRESS OF 

THE QUEUE HEADER (VALUE OF 

REGISTER 0), THE ADDRESS OF THE 

ELEMENT VERIFICATION ROUTINE 
(ILRVIOE), AND THE OFFSET OF THE 

FORWARQ CHAIN POINTER (IOENEXT) • 

§] CALL COMMON ROUTINE TO SET UP ILRFRR01 

THE INTERFACE FOR THE QUEUE 
VERIFIER. SET QTYPE=l TO 
INDICATE THE QUEUE IS A 

SINGLE-THREADED, SINGLE-HEADED 

QUEUE. 

Diagram 25.27.7 ILRVIOEQ (Part 1 of 1) 

ILRVIOEQ: 

§] INITIALIZE QUEUE VERIFIER ====:;lb~ 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF AN IOE 

QUEUE. 

CALL COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN 25.27. 
20 

==::::=..~ 

I 
LJl 

V 
TO CALLER 

5-318 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

IREG 

I 
IREG 

8 I r-+ WORK AREA 

QVPLEVR 

QVPLHDR 
QVPLFPTR 

15 1"-' I ~55~RN II 

Routine Label Ref 

---- ---



Input 

FROM ASM 
RECOVERY 
ROUTINE 

r--;::::::::~I-IAUIAA~-A~C~E~-l ~. 
o-IR_EG_O_--,_ ,.....I'-__ --'I~ ) 

..... 1 R_EG __ ---'h.+ SDWA I 
1'------'1 

Notes Routine 

§] IF THE STORAGE POINTED TO BY IEAVEADV 

REGISTER ZERO CANNOT BE 

REFERENCED, RETURN IS MADE TO 

THE CALLER WITH A RETURN CODE OF 

8, MEANING THAT THE ELEMENT IS 

NEITHER AN AlA NOR ACE. 

@] IF THE STORAGE CAN BE 

REFERENCED, AN AlA IS 

DISTINGUISHED FROM AN ACE BY THE 

OPERATION CODE. SEPARATE 

ROUTINES PERFORM FURTHER 

VERIFICATIONS FOR AN AlA AND AN 

ACE. 

A. AlA VERIFICATION ROUTINE. ILRFRR01 

B. ACE VERIFICATION ROUTINE. ILRFRR01 

Diagram 25.27.8 ILRVAIAC (Part 1 of 1) 

YS2.0l.HOI 

Processing 

ILRVAIAC: 

~ IF THE STORAGE POINTED TO 

BY REGISTER 0 CANNOT BE 

REFERENCED, RETURN TO 

CALLER. 

<::::::> IEAVEADV 

ADDRESS VERIFIER 

~ DIFFERENTIATE BETWEEN AlA 

AND ACE BY OP CODE, AND 

ROUTE CONTROL TO THE 

APPROPRIATE ROUTINE FOR 

FURTHER VERIFICATIONS. 

A. AlA VERIFICATION 

ROUTINE. 

B. ACE VERIFICATION 

ROUTINE. 

Label Ref Notes 

---- ---
IEAVEADV 

I LRVAI A 25.27. 
9 

ILRVACE 25.27. 
10 

V 
TO CALLER 

LJl 
V 

TO ILRVAIA OR 
ILRVACE 

Output 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-319 



VS2.o3.801 

Input Processing 

ENTRY ILRVAIA 
RECOVERY 
ROUTINE 

~ ILRVAIA: 

\REG 
I AlA I~ @) 0 > IF INPUT ADDRESS IS NOT 0, r+1 

c:::) 
CALCULATE PCB ADDRESS. 

\ REG '4SDWA ,1 §] ENTRY ILRVPCB: SECONDARY ENTRY 
\ ILRVPCB 

POINT. 

I REG 0 
I PCB/AlA 
r+\ ,~ >§] IF INPUT ADDRESS IS NOT 0, 

IREG 1 14SDWA 

I ,1 

Notes 

@) FOR ENTRY ILRVAIA, IF INPUT 

ADDRESS IS 0, A RETURN CODE OF 8 

IS SET. OTHERWISE, THE OFFSET TO 

THE PCB IS CALCULATED. 

§] THIS IS THE ENTRY POINT FOR 

ILRVPCB. 

§] IF INPUT ADDRESS IS 0, A RETURN 

CODE OF 8 IS SET. OTHERWISE, 

VERIFY THAT THE STORAGE POINTED 

TO BY THE PCB ADDRESS CAN BE 

REFERENCED. IF IT CANNOT, A 

RETURN CODE OF 8 IS SET. 

§] IF THE PCB/AlA CAN BE 

REFERENCED, VERIFY THAT THE 

STORAGE POINTED TO BY PCBASCB 

CAN ALSO BE REFERENCED. IF IT 

CANNOT, A RETURN CODE OF 8 IS 

SET. IF IT CAN BE REFERENCED; 

THE ASCBASCB FIELD IS CHECKED 

FOR THE ACRONYM 'ASCB'. IF THE 

ACRONYM IS NOT THERE, A RETURN 

CODE OF 8 IS SET. 

Routine 

IEAVEAOV 

IEAVEADV 

DETERMINE IF PCB/AlA CAN 

BE REFERENCED. 

c::> IEAVEAOV 

ADDRESS VERIFIER 

§] IF THE STORAGE CAN BE 

REFERENCED, VERIFY THAT 

THE STORAGE POINTED TO BY 

PCBASCB CAN BE REFERENCED 

AND CONTAINS THE ASCB 

IDENTIFIER. 

c::> IEAVEADV 

ADDRESS VERIFIER 

Label Ref Notes 

---- ---

IEAVEAOV 

IEAVEAOV 

Diagram 25.27.9 ILRVAIA/ILRVPCB (Part 1 of 2) 

5-320 OS/VS2 System Logic Library Volume 5 (VS2.Q3.807) 

Oufput 

Routine Label . Ref 

---- ---



Input 

Notes 

§] IF THE PREVIOUS VERIFICATIONS 

ARE SUCCESSFUL, PERFORM 

VERIFICATIONS TO CHECK FOR BAD 

DATA (AIAOP=X' 00' ) • ~F THIS 

VERIFICATION FAILS, A RETURN 

CODE OF 4 IS SET. 

~ RETURN IS MADE TO THE CALLER 

WHEN AN ERROR IS FOUND OR 

VALIDITY CHECKING IS COMPLETE. 

THE POSSIBLE RETURN CODES ARE: 

A. o - ELEMENT PASSED ALL TESTS. 

B. 4 -' ELEMENT IS A PCB/AlA, BUT 

IT CONTAINS BAD DATA. 

C. 8 - ELEMENT IS NOT A PCB/AlA. 

Routine 

Processing 

~ IF STORAGE IS A PCB/AlA, 

VERIFY THAT IT DOES NOT 

CONTAIN BAD DATA. 

RETURN TO CALLER WITH 

RETURN CODE INDICATING 

SUCCESS OR FAILURE. 

Label Ref Notes 

---- ---

Diagram 25.27.9 ILRVAIA/ILRVPCB (Part 2 of 2) 

Output 

======~~ 1~ __ ~I_R_E_G~_1_5~~~I_r+_._I~_5_6~_R_N __ ~1I 
I 
fJl 

V 
TO CALLER 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-321 



Input 
FROM ASM 
RECOVERY 
ROUTINES 

IREG 0 I ACE I b:> ~. _~. r+~1 _~I~r;==~-, 

.... 1 R_EG __ -Jh ... SDWA I 
1 I 

Notes Routine 

@II IF INPUT ADDRESS IS 0, A RETURN IEAVEADV 

CODE OF 8 (NOT AN ACE) IS SET. 

OTHERWISE, VERIFY THAT THE 
STORAGE POINTED TO BY THE ACE 

ADDRESS CAN BE REFERENCED. IF IT 

CANNOT, A RETURN CODE OF 8 IS 

SET. 

@) IF THE STORAGE CAN BE ILRFRR01 

REFERENCED, VERIFY THAT ACELGE 

POINTS TO A VALID LGE. IF IT 

DOES NOT POINT TO A VALID LGE, A 

RETURN CODE OF 8 IS SET. 

§} IF THE PREVIOUS VERIFICATIONS 

ARE SUCCESSFUL, CHECK FOR BAD 

DATA BY VERIFYING THAT ACELGID 

EQUALS LGELGID. IF IT DOES NOT,_ 

A RETURN CODE OF 4 IS SET. 

~_RETURN IS MADE TO THE CALLER 
WHEN AN ERROR IS FOUND OR 

VALIDITY CHECKING IS COMPLETE. 

THE POSSIBLE RETURN CODES ARE: 

A. o - ELEMENT PASSED ALL TESTS. 

B. 4 - ELEMENT IS AN ACE BUT 

Diagram 25.27.10 ILRVACE (Part 1 of 1) 

YS2.03.807 

Processing 

ILRVACE: 

§J IF INPUT ADDRESS IS NOT 0, 

DETERMINE IF ENTIRE ACE 

CAN BE REFERENCED. 

<::::::>IIEAVEADV I 
LADDRESS VERIFIER j 

~ IF STORAGE CAN BE 
REFERENCED, VERIFY THAT 

ACELGE POINTS TO A VALID 

LGE. 

@Il IF ACELGE POINTS TO A 

VALID LGE, VERIFY THAT 

ACELGID EQUALS LGELGID. 

Oc:put 

RETURN TO CALLER WITH 

RETURN CODE INDICATING 
SUCCESS OR FAILURE. 

===~~ IL_L.-IR~E_G ___ 15~~~_I.r-~I~=~=;r;~=RN==::::J11 
I 

Label Ref Notes 

---- ---
IEAVEADV 

C. 

ILRVLGE 25.27. 
11 

LJl 
V 

TO CALLER 

CONTAINS BAD DATA. 

8 - ELEMENT I S NOT AN ACE. 

Routine Label Ref 

---- ---

,.322 OS/VSl System Logic Library Volume 5 (VSl.03.807) 



FROM ASM 
RECOVERY 
ROUTINE 

VS2.03.807 

Output 

I I LrG_E ______ ~ 
L-R_EG __ ....J. r+ I I~ ~ ~V~':NPU' ADDRESS I S NOT 0, 

~IR_E~G __ ' __ ~I1-.srD_W_A ____ ~ 
I 

Notes Routine 

§] IF INPUT ADDRESS IS 0, A RETURN IEAVEADV 

CODE OF 8 (NOT AN LGE) IS SET. 

OTHERWISE, VERIFY THAT THE 

STORAGE POINTED TO BY THE LGE 

ADDRESS CAN BE REFERENCED. IF IT 

CANNOT, A RETURN CODE OF 8 IS 

SET. 

~ IF THE LGE CAN BE REFERENCED, IEAVEADV 

VERIFY THAT THE STORAGE POINTED 

TO BY LGEASPCT CAN ALSO BE 

REFERENCED. IF THIS STORAGE 

CANNOT BE REFERENCED, A RETURN 

CODE OF 8 IS SET. IF IT CAN, THE 

ASPIDENT FIELD IS CHECKED FOR 

THE ACRONYM • ASPC' • IF THE 

ACRONYM IS NOT THERE, A RETURN 

CODE OF 8 IS SET. 

@II IF THE PREVIOUS VERIFICATIONS 

ARE SUCCESSFUL, CHECK FOR AN LGE 

CONTAINING BAD DATA BY VERIFYING 

THAT LGELGID EQUALS ASPLGID. IF 

IT DOES NOT, A RETURN CODE OF 4 

(BAD DATA) IS SET. 

§] RETURN IS MADE TO THE CALLER 

WHEN AN ERROR IS FOUND, OR 

Diagram 25.27.11 ILRVLGE (Part 1 of 1) 

DETERMINE IF THE ENTIRE 

LGE CAN BE REFERENCED. 

W IEAVEADV 

ADDRESS VERIFIER 

~ IF STORAGE .CAN BE 

REFERENCED, VERIFY THAT 

STORAGE POINTED TO BY 

LGEASPCT CAN BE REFERENCED 

AND CONTAINS THE ASPCT 

IDENTIFIER. 

W IEAVEADV 

ADDRESS VERIFIER 

@II IF STORAGE IS AN LGE, 

VERIFY THAT THE LGE DOES 

NOT CONTAIN ANY BAD DATA. 

~ RETURN TO CALLER WITH 

RETURN CODE INDICATING 

SUCCESS OR FAILURE. 

Label Ref Notes 

---- -----
VALIDITY 

IEAVEADV 
CHECKING IS COMPLETE. 

THE POSSIBLE RETURN CODES ARE: 

~I R_E_G __ ' 5 __ ~1.r-1 M6~RN 

Routine Label Ref 

---- ---- -----

A. o - ELEMENT PASSED ALL TESTS. 

B. 4 - ELEMENT IS AN LGE BUT 

CONTAINS BAD DATA. 

C. 8 - ELEMENT IS NOT AN LGE. 

IEAVEADV 

Section 2: Method of Operation 5-323 



Input 

I REG ° 
I sccw 
'-+1 ' 

1 REG 1 h .... SDWA 

1 

VS2.03.807 

FROM ASM 
RECOVERY 
ROU"rINE 

Processing 

11 

~ ILRVSCCW: 

II 1I(,;;:::===>@2]IFTHEINPUTADDRESSIS 
=.J NOT 0, DETERMINE IF THE 

II 
ENTIRE SCCW CAN BE 

REFERENCED. 

OrIEAVEADV 1 
lADDRESS VERIFIER I 

[§ IF THE SCCW CAN BE 

REFERENCED, VERIFY THAT 

THE STORAGE IS IN THE 
NUCLEUS, AND THAT IT 

CONTAINS THE SCCW 

IDENTIFIER. 

~ IF THE STORAGE IS AN SCCW, 
VERIFY THAT THE SCCW DOES 

NOT CONTAIN ANY BAD DATA. 

~ RETURN TO CALLER WITH A 
RETURN CODE INDICATING 

SUCCESS OR FAILURE. 

V 
TO CALLER 

OHtput 

I IREG 

Notes Routine Label Ref Notes 

---- ---
@2] IF THE INPUT ADDRESS IS 0, A 

SCCWSSEC IS THE SET SECTOR 
IEAVEADV IEAVEADV 

RETUR~ CODE OF 8 (NOT AN SCCW) 
COMMAND CODE (X'23'). 

IS SET. OTHERWISE, VERIFY THAT 

THE STORAGE POINTED TO BY THE 
C. CHECK THAT THE DATA ADDRESS 

SCCW ADDRESS CAN BE REFERENCED. 
OF SCCWSSEC IS THE ADDRESS OF 

IF IT CANNOT, A RETURN CODE OF 8 
SCCWSECT. 

IS SET. 

~ RETURN IS MADE TO THE CALLER 

@] IF THE STORAGE CAN BE 
WHEN AN ERROR IS FOUND OR 

REFERENCED, VERIFY THAT THE 
VALIDITY CHECKING IS COMPLETE. 

STORAGE IS IN THE NUCLEUS « 
THE POSSIBLE RETURN CODES ARE: 

CVTNUCB} • IF IT IS NOT, A RETURN 
CODE OF 8 IS SET. ALSO VERIFY 

A. o - ELEMENT PASSED ALL TESTS. 

THAT THE SCCWID FIELD CONTAINS 
THE SCCW IDENTIFIER, X'87'. IF 

B. 4 - ELEMENT IS AN SCCW BUT 

IT IS NOT THERE, A RETURN CODE 
CONTAINS BAD DATA. 

OF 8 IS SET. 
C. 8 - ELEMENT IS NOT AN SCCW. 

~ IF THE PREVIOUS VERIFICATIONS 

ARE SUCCESSFUL, MAKE THE 
FOLLOWING TESTS TO CHECK FOR BAD 

DATA. IF ANY OF THESE TESTS 
FAIL, A RETURN CODE OF 4 IS SET. 

A. CHECK THAT THE FIRST BYTE OF 

SCCWSEEK IS THE SEEK COMMAND 
CODE (X'OB'). 

B. CHECK THAT THE FIRST BYTE OF 

Diagram 25.27.12 ILRVSCCW (Part 1 of 1) 

5 - 324 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

15 1~1~~6~RN II 

Routine Label Ref 

---- ---



Input 

I REG 0 

IREG 1 

IREG 8 

IREG 13 

I REG 8 

I~I 
lpccw 

I 

I1..,.SDWA 

I 
I1..,.WORK AREA 

I 

I1..,.SAVE AREA 

I 

FROM ASM 
RECOVERY 
ROUTINE 

II 

I 

I 

f 
, 

, 
I r-+ WORK AREA 

~l 

Notes Routine 

@2] INITIALIZE THE P}l.RAMETERS OF THE 

QUEUE VERIFIER PARAMETER LIST 

TH}l.T ARE UNIQUE TO THE 

VERIFIC}l.TION OF }I. PCCW QUEUE. 

THESE PARAMETERS ARE THE ADDRESS 

OF THE QUEUE HE}l.DER (V}l.LUE OF 

REGISTER 0), THE }l.DDRESS OF THE 

ELEMENT VERIFICATION ROUTINE 

(ILRVPCCW), AND THE OFFSET OF 

THE FORWARD CH}l.IN POINTER 

(PCCWPCCW) • 

@] CALL COMMON ROUTINE TO SET UP ILRFRR01 

THE INTERF}l.CE FOR THE QUEUE 

VERIFIER. SET QTYPE=1 TO' 

INDIC}l.TE THE QUEUE IS }I. 

SINGLE-HEADED, SINGLE-THREADED 

QUEUE. 

Diagram 25.27.13 ILRVPCWQ (Part 1 of 1) 

VS2.03.807 

Processing Output 

ILRVPCWQ: 

@2]INITIALIZEQUEUE VERIFIER ====:lb~'" " 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF A PCCW 

QUEUE. 

CALL COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN ~3·27 . 

I 
f---, t 

V 
TO CALLER 

IREG 

I 'REG 

8 
, r-+ WORK AREA 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

15 ,rl~~6~RN II 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5 - 325 



Input 

FROM ASM 
RECOVERY 
ROUTINE 

..------,\ PCCW I ~ 
I...\R_EG_O _--I. '-+,,------.I~ . > 
IL. R_EG __ ..-Jh .... SDWA I ,.-----'1 

Notes Routine 

@D IF THE INPUT ADDRESS IS 0, A IEAVEADV 

RETURN CODE OF S (NOT A PCCW) IS 

SET. OTHERWISE, VERIFY THAT THE 

STORAGE POINTED TO BY THE PCCW 

ADDRESS CAN BE REFERENCED. If IT 

CANNOT, A RETURN CODE OF S IS 

SET. 

~ IF THE STORAGE CAN BE 

REFERENCED, VERIFY THAT THE 

STORAGE IS IN THE NUCLEUS « 

CVTNUCB) • IF IT IS NOT, A RETURN 

CODE OF S IS SET. ALSO CHECK 

THAT THE PCCWID FIELD CONTAINS 

THE IDENTIFIER X' 86'. IF IT DOES 

NOT, A RETURN CODE OF 8 IS SET. 

@] MAKE THE FOLLOWING TES;rS TO 

CHECK FOR BAD DATA. IF ANY OF 

THESE TESTS FAILS, A RETURN CODE 

OF 4 IS SET. 

A. CHECK THAT THE FIRST BYTE OF 

PCCWSRCH IS THE SEARCH 

COMMAND CODE (X'31'). 

B. CHECK THAT THE FIRST BYTE OF 

PCCWTIC IS THE TIC COMMAND 

CODE (X'OS') • 

Diagram 25.27.14 ILRVPCCW (Part 1 of 1 

VS2.03.807 

processing 

ILRVPCCW: 

@D IF THE INPUT ADDRESS IS 

NOT 0, DETERMINE IF THE 

ENTIRE PCCW CAN BE 

REFERENCED. 

<::::::>IIEAVEADV I 

\ADDRESS VERIFIER \ 

~ IF THE PCCW CAN BE 

REfERENCED, VERIFY THAT 

THE STORAGE IS IN THE 

NUCLEUS AND THAT IT 

CONTAINS THE PCCW 

IDENTIFIER. 

@] VERIFY THAT THE PCCW DOES 

NOT CONTAIN BAD DATA. 

Output 

RETURN TO CALLER WITH A 

RETURN CODE INDICATING 

SUCCESS OR FAILURE. 

======~~ IL __ \I...R~EG~~15~~~_Ir+~I~=~=6M=RN==~11 
I 

Label Ref 

---- ---
IEAVEADV 

LJl 
V 

TO CALLER 

Notes 

[§] RETURN IS MADE TO THE CALLER 

WHEN AN ERROR IS FOUND OR 

VALIDITY CHECKING IS COMPLETE. 

THE POSSIBLE RETURN CODES ARE: 

A. o - ELEMENT PASSED ALL TESTS. 

B. 4 - ELEMENT IS A PCCW BUT 

CONTAINS BAD DATA. 

C. S - ELEMENT IS NOT A PCCW. 

Routine Label Ref 

---- ---

5 - 326 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

IREG 1 

1 REG 2 

1 REG 8 

tREG 13 

I REG 8 

\ 

1 SDWA 

"1 I 
14RSMHD 

IRSMLIOQ I 

14
WORK AREA 

1 I 

14
SAVE AREA 

I I 

FROM ASM 
RECOVERY 
ROUTINE 

I f 
I,.WORK AREA 

~I 

Notes Routine 

§] INITIALIZE THE PARAMETERS OF THE 

QUEUE VERIFIER PARAMETER LIST 

THAT ARE UNIQUE TO THE 

VERIFICATION OF THE RSMLIOQ. 

THESE PARAMETERS ARE THE ADDRESS 

OF THE QUEUE HEADER (RSMLIOQF) , 

THE ADDRESS OF THE QUEUE TRAILER 

(RSMLIOQL), THE ADDRESS OF THE 

ELEMENT VERIFICATION ROUTINE 

(ILRVPCB), THE OFFSET OF THE 

FORWARD CHAIN POINTER (PCBFQP, 3 

BYTE POINTER), AND THE OFFSET OF 

THE BACKWARD CHAIN POINTER 

(PCBBQP, 4 BYTE POINTER). 

§] CALL COMMON ROUTINE TO SET UP ILRFRR01 

THE INTERFACE FOR THE QUEUE 

VERIFIER. SET QTYPE=3 TO 

INDICATE THE QUEUE IS A 

DOUBLE-HEADED, DOUBLE-THREADED 

QUEUE. 

Diagram 25.27.15 ILRVPCBQ (Part 1 of 1) 

VS2.03.807 

Processing Output 

ILRVPCBQ: 

EI INITIALIZE QUEUE VERIFIER r===l 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF THE 

RSMLIOQ. 

CALL COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN 25.27. 
20 

V 
TO CALLER 

WORK AREA 
IREG I,. 8 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

QVPLTRLR 

QVPLBPTR 

IREG 2 
I,.RSMHD 

IRSMLIOQ I 

IREG '5 I.r--+IRETURN I CODE 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5 - 327 



Input 

I REG 0 

IREG 1 

I REG 8 

IREG 13 

.I REG 8 

T I' 
ACE 

I I 

14
SDWA 

I I 
14

WORK AREA 

I I 
14SAVE AREA 

I I 
I r-+ WORK AREA , 

~I 

~N~~fR§LRVACEQ 
ILRVACQ2 

Notes Routine 

§] ENTRY IS FROM ASM RECOVERY 

ROUTINES. INITIALIZE THE 

PARAMETERS OF THE QUEUE VERIFIER 

PARAMETER qST THAT ARE UNIQUE 

TO THE VERIFICATION OF AN ACE 

QUEUE. THESE PARAMETERS ARE THE 

ADDRESS OF THE QUEUE HEADER 

(VALUE OF REGISTER 0), THE 

ADDRESS OF THE ELEMENT 

VERIFICATION ROUTINE (ILRVACE), 

AND THE OFFSET OF THE FORWARD 

CHAIN POINTER (ACESRBWK FOR 

ENTRY ILRVACEQ, ACEFQPA FOR 

ENTRY ILRVACQ2) • 

§J CALL COMMON ROUTINE TO SET UP ILRFRR01 

THE INTERFACE FOR THE QUEUE 

VERIFIER. SET QTYPE=l TO 

INDICATE THE QUEUE IS A 

SINGLE-HEADED, SINGLE-THREADED 

QUEUE. 

Diagram 25.27.16 ILRVACEQ (Part 1 of 1) 

VS2.03.807 

processing Outp6t 

ILRVACEQ: 

§] INITIALIZE QUEUE VERIFIER ====::;6 
PARAMETER LIST WITH 

PARAMETERS UNIQUE TO THE 

VERIFICATION OF AN ACE 

QUEUE. 

CALL COMMON ROUTINE TO 

INTERFACE WITH THE QUEUE 

VERIFIER. 

Label Ref Notes 

---- ---

COMQRTN ~3·27 • 

V 
TO CALLER 

I REG 

I I REG 

5 - 328 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

8 I r-+ WORK AREA 

QVPLEVR 

QVPLHDR 

QVPLFPTR 

15 1r+1~~6~RN II 

Routine Label Ref 

---- ---



Input 
FROM ASM 
RECOVERY 
ROUTINE 

r--;========I~~IO~R~B------l ~ 
IL-R_EG_O_---I. r+lr----....,I!:!:!i L.S 
.... 1 R_E_G ____ ---'h .... SDWA r '--1 -I 

Notes Routine 

@] IF INPUT ADDRESS IS 0, A RETURN IEAVEADV 
CODE OF 8 (NOT AN IORB-IOSB-SRB) 

IS SET. OTHERWISE, VERIFY THAT 

THE STORAGE POINTED TO BY THE 

IORB ADDRESS CAN BE REFERENCED. 

IF IT CANNOT, A RETURN CODE OF S 

IS SET. 

@II IF THE STORAGE CAN BE 

REFERENCED, VALIDITY CHECK THE 

IORB STORAGE. IF ANY OF THE 

TESTS FAIL, A RETURN CODE OF S 

IS SET. 

A. CHECK THAT IORIO CONTAINS THE 
IORB IDENTIFIER, X'SS'. 

B. VERIFY THAT THE STORAGE IEAVEADV 

POINTED TO BY IORPARTE CAN BE 
REFERENCED. IF IT CAN, CHECK 
THAT THE PARTE INDICATED BY 

PARENN (OR SARTE INDICATED BY 

SRENN, IF IORSWAP IS ON) IS 

THE SAME AS lOR PARTE • 

[§] IF THE IORB VALIDITY CHECKS, 

VALIDITY CHECK THE IOSB STORAGE. 

IF ANY TEST FAILS, A RETURN CODE 

OF S IS SET. 

Diagram 25.27.17 ILRVIORB (Part 1 of 2) 

VS2.03.807 

Processing 

ILRVIORB: 

~ IF INPUT ADDRESS IS NOT 0, 
DETERMINE IF ENTIRE 

IORB-IOSB-SRB COMBINATION 

CAN BE REFERENCED. 

<::::::)IIEAVEADV 1 
IADDRESS VERIFIER I 

@II VALIDITY CHECK IORB 

STORAGE: 

A. CHECK FOR IORB 
IDENTIFIER. 

B. CHECK THAT IORPARTE 

POINTS TO A PARTE. 

<::::::) IIEAVEADV 1 
IADDRESS VERIFIER I 

@I) VALIDITY CHECK IOSB 

STORAGE: 

A. CHECK IOSDVRID. 

B. CHECK IOSASID. 

Output 

§] REFRESH IORB FI ELDS . 1 IORBPTR 
IORB 

Ir+ 

ib IORFRPS 

IORIOSB 
IORSAVE 

Label Ref Notes Routine Label Ref 

---- ---- ---- ---
A. CHECK THAT IOSDVRID CONTAINS 

lEAVEADV 
IOSMISID (THE MISCELLANEOUS 
10) • 

B. CHECK THAT IOSASID CONTAINS 1 

(MASTER SCHEDULER'S ADDRESS 

SPACIi\ 10). 

§] IF ALL PREVIOUS VERIFICATIONS 

ARE SUCCESSFUL, REFRESH IORB 

FIELDS ORIGINALLY SET BY 

ILROPSOO: THE IORFRPS FLAG, 
IORSAVE, AND IORIOSB. 

IEAVEADV 

I 

Section 2: Method of Operation 5 - 329 



Input 

Notes Routine 

@B REFRESH IOSB FIELDS ORIGINALLY 

SET BY ILROPSOO: FLAGS IOSCC3WE, 
IOSIDR, IOSPESLL, IOSTSLL, AND 

FIELDS IOSPGAD, IOSSRB, IOSUSE, 

IOSNRM, IOSABN, IOSDIE (WITH 

HIGH ORDER BIT ON), AND IOSFMSK. 

~ REFRESH SRB FIELDS: SRBID, 

SRBPARM, AND SRBPRIOR. 

@] RETURN IS MADE TO THE CALLER 

WHEN AN ERROR IS FOUND OR THE 

REFRESH IS COMPLETE. THE 
POSSIBLE RETURN CODES ARE: 

A. o - STORAGE PASSED ALL TESTS 

AND WAS REFRESHEP. 

B. 8 - STORAGE IS NOT AN 
IORB-IOSB-SRB. 

I 
Diagram 25.27.17 ILRVIORB (Part 2 of 2) 

VS2.03.807 

Processing Output 

@B REFRESH IOSB FIELDS. 

~ REFRESH SRB FIELDS. 

@2] RETURN TO CALLER WITH 

INDICATION OF SUCCESS OR 

FAILURE. 

Label Ref Notes 

---- ---

II 

IlL 
l~ll 

V 
TO CALLER 

I 

IIOSBPTR Ir-+ IOSB 

IOSCC3WE 

IOSIOR 
IOSPSLL 

IOSTSLL' 

IOSPGAD 

IOSSRB 

IOSUSE 

IOSNRM 

IOSABN 
IOSDIE 

IOSFMSK 

ISRBPTR 
. SRB 
I r-+ SRBID 

SRBPARM 

SRBPRIOR 

I REG 15, 1.r+1~~5~RN II 

Routine Label Ref 

---- ---

5 - 330 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

I 



Input 

FROM ASM 
RECOVERY 
ROUTINE 

I I IOE I 0:> L-R_
EG 
__ -" "L-' __ ~I~r.===~.· 

ILR_EG_'_---'h •• SDWA I 
.----, ---" 

Notes Routine 

VS2.03.807 

Processing 

ILRVIOE: 

@2] IF INPUT ADDRESS IS NOT 0, 

DETERMINE IF ENTIRE IOE 

CAN BE REFERENCED • 

<::::::> IEAVEADV 

ADDRESS VERIFIER 

~ IF IOE CAN BE REFERENCED 

AND AN AlA IS CHECKPOINTED 

IN THE IOE, ROUTE CONTROL c:::> 
ROUTINE TO VERIFY THE AlA. 

Output 

TO THE AlA VERIFICATION ITO ILRVAIA 

RETURN TO CALLER WITH ~ I' ... R_E_G_'5_---'lrl~56~RN II 
RETURN CODE INDICATING I L. ________ ~'====:::J', 
SUCCESS OR FAILURE. 

Label Ref Notes 

---- ---

LJl 
V 

TO CALLER 

Routine Label Ref 

---- ---
@2] IF INPUT ADDRESS IS 0, A RETURN IEAVEADV IEAVEADV 

CODE OF 8 (NOT AN IOE) IS SET. 

OTHERWISE, VERIFY THAT THE 

STORAGE POINTED TO BY THE IOE 

ADDRESS CAN BE REFERENCED. IF IT 

CAN NOT, A RETURN CODE OF 8 IS 

SET. 

@] IF THE STORAGE CAN BE REFERENCED ILRFRRO' ILRVAIA 25.27. 
9 

AND IOEAIA IS NOT 0, THE AlA 

VERIFICATION ROUTINE IS GIVEN 

CONTROL TO VERIFY THE AlA. THIS 

~OUTINE WILL RETURN DIRECTLY TO 

THE CALLER OF ILRVIOE. 

§] RETURN IS MADE TO THE CALLER 

WHEN AN ERROR IS FOUND OR IF 

ILRVAIA HAS NOT BEEN GIVEN 

CONTROL. THE POSSIBLE RETURN 

CODES ARE: 

A. 0 - ELEMENT PASSED ALL TESTS. 

B. 8 - ELEMENT IS NOT AN IOE. 

Diagram 25.27.18 ILRVIOE (Part 1 of 1) 

Section 2: Method of Operation 5 - 331 



VS2.o3.807 

Input Processing Output 

W~~v~~~fDQ 

~ ILRPSRMT: 

I I SRB i L-.J rn7l L.,R_E_G_l __ -.J. 0+, I~~ .===~> ~ RE-SCHEDULE THE SRB 
~ ___________ L.,_-~_-_-_-_-_-_-.J..J. DEQUEUED BY PURGEDQ. 

§] RETURN TO PURGEDQ. 

LJl 
V 

TO PURGEDQ 

Notes Routine Label Ref Notes Routine Label Ref 
---- --- ---- ---

§J THE SRB'S FOR ~ART MONITOR AND 

SWAP DRIVER SHOULD NOT BE 
PURGED. IF PURGEDQ IS EVER 

CALLED TO PURGE ALL SRB'S IN THE 

MASTER SCHEDULER'S ADDRESS 

SPACE, THIS ROUTINE RESCHEDULES 

THE SRB THAT WAS PURGED. 

; 

I II I 
Diagram 25.27.19 ILRPSRMT (Part 1 of 1) 

5 - 332 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 



Input 

L.I R_E...;.G_'_3_---IIL. SAVE AREA 

1 

Notes Routine 

§] FOR DOUBLE-HEADED QUEUES (QTYPE 

> 1), CHECK THE VALUE OF THE 

HEADER ELEMENT FOR O. IF IT IS 

·0, NO FURTHER VERIFICATION NEEDS 

TO BE DONE. INSURE THAT THE 

VALUE OF THE TRAILER ELEMENT IS 

ALSO 0 AND RETURN TO THE CALLER. 

IF THE HEADER ELEMENT IS NOT 

ZERO, CONTINUE. 

§] INITIALIZE THE COMMON PARAMETERS 

FOR THE QUEUE VERIFIER, SUCH AS 

THE ADDRESS OF THE VARIABLE 

RECORDING AREA IN THE SDWA AND 

THE ADDRESS OF THE WORKAREA FOR 

THE QUEUE VERIFIER. 

@:B CALL THE APPROPRIATE QUEUE 

VERIFIER ROUTINE ACCORDING TO 

THE QTYPE SPECIFIED BY THE 

CALLER. 

A. QTYPE=', VERIFY IEAVEQVO 

SINGLE-THREADED, 

SINGLE-HEADED QUEUE. 

B. QTYPE=2, VERIFY IEAVEQVO 

SINGLE-THREADED, 

DOUBLE-HEADED QUEUE. 

Diagram 25.27.20 COMQRTN (Part 1 of 1) 

VS2.03.807 

Processing Output 

COMQRTN: 

@2JIFQTYPE>1AND THE VALUE:====:~J 
OF THE HEADER· ELEMENT IS 

0, SET THE VALUE OF THE 

TRAILER ELEMENT TO 0 AND 

RETURN. 

~ COMPLETE THE 

INITIALIZATION OF THE 

QUEUE VERIFIER PARAMETER 

LIST. 

I 
1 REG 

IREG 

IREG 

15 1r+1~56~RN II 

8 I ,.-+ WORK AREA 

QVPLODA 

QVPLWKA 

0 I SDWA 
"-+1 

I 

@:B CALL ONE OF THE QUEUE 

VERIFIER ROUTINES 

ACCORDING TO THE QTYPE 

SPECIFIED. It 
<:::::>IIEAVEQVX I I 

IREG 1 IL.
PARM LIST 

I I 

IQUEUE VERIFIER I 

~ CONVERT RETURN INFORMATIO~~I =====6 
FROM QUEUE VERIFIER INTO 

RETURN CODE INDICATING 

SUCCESS OR FAILURE. 

Label Ref Notes 

---- ---
C. 

LJl 
V 

TO CALLER 

QTYPE=3, VERIFY 

DOUBLE-THREADED, 

DOUBLE- HEADED QUEUE. 

~ THE QUEUE VERIFIER RETURNS 

I REG 

I 
I REG 

INFORMATION ABOUT HOW THE QUEUE 

WAS CORRECTED IN ADDITION TO A 

RETURN CODE INDICATING WHETHER 

ANY ERRORS WERE FOUND. PRESERVE 

ONLY THE RETURN CODE. 

IEAVEQV1 

IEAVEQV2 

13 
IL.

SAVE AREA 

I I 

15 1r+1~56~RN II 

Routine Label Ref 

---- ---
IEAVEQVO IEAVEQV3 

Section 2: Method of Operation 5· 333 



Service Routines 
This section describes three service routines in 
ASM: 

• ILRPEX - Pool Extender, 
• ILRTERMR - Address Space Termination 

Resource Manager, 
• ILRFMTOO - Control Block Formatter. 

Pool Extender 
The Pool Extender routine (ILRPEX) expands a 
pool of control blocks or work areas if the pool 
becomes temporarily empty. The ILRGMA macro 
(issued in mainline ASM routines) passes control to 
ILRPEX. Input to ILRPEX is the address of the 
appropriate pool controller. The pool controller 
contains the size of each cell and the number of 
cells to build for the expansion. ILRPEX obtains 
sufficient space from SQA and formats it by 
chaining together cell-sized portions of the storage. 
ILRPEX returns the first cell to the caller and places 
the remaining cells on the available queue of the 
pool controller. 

Address Space Termination Resource 
Manager 
The ASM Address Space Termination routine 
(ILRTERMR) provides clean-up of ASM resources 
during normal or abnonilal address space 
termination and attempts to recover auxiliary 
storage resources from an address space that is 
terminating abnormally. All ASM resources for the 
address space including storage, control blocks, and 
auxiliary storage slots, are freed or marked to be 
freed when in-process operations complete. 

RTM (Recovery Termination Manager) gives 
control to ILRTERMR during termination of any 
address space. ILRTERMR attempts to free auxiliary 
storage slots assigned to private area address space 
pages and VIO data set logical groups. Abnormal 
address space terminations are not scheduled while 
the address space is swapped out. If the address is 
swapped out, ASM tables for the address space are 
unavailable; only swap sets assigned to the address 
space can be freed. 

5-334 OS/VS2 System Logic Library Volume 5 (VS2.03.807) 

VS2.03.807 

The ASM termination routine also receives 
control during normal address space termination. 
This is a safety-valve type operation to assure that 
all auxiliary storage resources assigned to an 
address space have in fact been freed. If resources 
have not been freed, an error is assumed to have 
occurred and the error is recorded before 
attempting to free the resources. 

Another entry point of ILRTERMR (ILRSLTRV) 
receives control during memory creation (from 
IEAVITAS) to determine if there are enough slots to 
create a new memory. 

Control Block Formatter 
The system dump-printing routine (AMDPRDMP) 
invokes the Control Block Formatter (ILRFMTOO). 

ILRFMTOO calls ILRFMTPG, ILRFMTSW, and 
ILRFMTCV to format ASM and shared RSM control 
blocks. The control blocks are contained in storage 
areas passed by AMDPRDMP. Formatting is done as 
follows: 

1. Beginning from the CVT address passed in 
the input parameter list, the routine attempts 
to access the ASMVT. If successful, it formats 
the ASMVT (including the bad slot error 
record, message buffer, ACEs and AlAS). 

2. Calls module ILRFMTPG to format the PART 

and its associated blocks (AlAs, IOEs, PARTEs, 
PCTs, PATs, IORBs, IOSBs and pccws). 

3. Calls ILRFMTSW to format the SART and its 
associated blocks (AlAs, SARTEs, SATs, SDCTs, 
IORBs, IOSBs and sccws). 

4. Calls module ILRFMTCV at entry point 
ILRFMTC to format the common service area 
page tables (PGTs) and external page tables 
(XPTs). 

5. Calls module ILRFMTCV at entry point 
ILRFMTH for each address space to format 
RSMHD, SPCT, ASMHD, AlAs and private area 
PGT/XPTs. 

6. Calls module ILRFMTCV at entry point 
ILRFMTV to format LGVT and its associated 
blocks (LGEs, ASPCTs, LPMEs, ASSTs, 
AlA/ACEs). 



YS2.03.807 

I 
I 25.28 

Address Space 
Termination 
(tLRTERMR) 

25.x. 
25.x.y. 

Module 
Entry point in module 25.x. 

Figure 2-62. Service Routines Overview 

I 6 

Service Routines 

I 25.29 

Pool Expansion 
(ILRPEX) 

I 
I 25.30 

Swap Formatter 
(tLRFMTSW) 

I 25.30 

ASM Control 
Block Formatter 
(tLRFMTOO) 

I 
I 25.30 I 25.30 

Page Formatter VIO Formatter 
(tLRFMTPG) (ILRFMTCV) 

Section 2: Method of Operation 5-335 



VS2.03.807 

Input Processing 01!lt.put 

REG 1 

FROM RTM 
(IEAVTMTCl 

ILRTERMR: 

rQi1 OBTAIN SALLOC. ESTABLISH 
t.:::..:..J RECOVERY. 

I
I 
RMPL 

l
'-----"I 

======~) ~ NORMAL TERMINATION. 

ASCB A. 1~~!£~~fE~SQA 

) B. UPDATE AlAS ON LOCAL 
I/O QUEUE. 

C. GOTO STEP 4. 

)@J ABNORMAL TERMINATION: 

r_1 __ ----, 1-= 
Ie RSMHD SPCT I II 

-rLOCAL PCB 1r+1 I~ 
11/0 QUEUE II IL_~I.====~ 

A. ~bT5S~~E~S3~~AILABLE, 

B. ~kS~~ b~A~~~~~§t~~LE, 
c. IF A SWAP-OUT IS IN 

t~~~~¥~6 ~~EUNSTARTED 
~~~'Afk~:S. SAVE 

D. 1~~!£~~fE~SQA IS

E. VALIDITY CHECK SEGMENT
TABLE. IF ERROR, GOTO
STEP 2B.

F. UPDATE AlAS
I/O QUEUE.

ON LOCAL

Notes Routine Label Ref Notes

---- ---- ---
@2] ILRTERMR RECEIVES CONTROL FROM L~ ~R~~R~K~~C8~~vI~fA~~OR,

~66~E~~R~~~C~~~L~AI~~NR~~ofi~~ES AN8 PROCESSING CONTINUES At
STEP 2B. IF A SWAP-IN FAILURE

FOR THE ADDRESS SPACEK INCLUDING HAS OCCURRED (RSMFAIL=l),
io~~tYfRYC~~6~~~EB~£8T~ A~E ~I~~~AA¥N~¥~~L~~~E.
FREED OR MARKED TO BE F~EED WHEN
IN-PROCESS OPERATIONS COMPLETE.
THE SALLOC IS OBTAINED IN ORDER C. f~EAS~~~-~~~iTi~ ~~OGRESS, TO SERIALIZE ASM/RSM PROCESSING.
AN FRR IS ESTABLISHED FOR ~~~~5E~~DS~~I~~~~ ~~TURE RECOVERY. TERMRFRR, ANOTHER

~~~~ftsI&tb~~¥~fNH~~¥~~ . ~UEUE. ALL AlAS ARE REMOVED 
ROM THE CAPTUREA2UEUE AND 

THE SWAP ~UEUE! D SAVED ON 
AN INTERN L QU UE. 

~ THE RMPL IS CHECKED TO DETERMINE 
IF THE ADDRESS SPACE IS D. SET LOCAL FLAG INDICATING 
TERMINATING NORMALLY OR THAT LSQA IS AVAILABLE. 
ABNORMALLY. THE FOLLOWING IS 
DONE FOR NORMAL TERMINATION: 

E. THE SEGMENT TABLE IS VALIDITY 
CHECKED TO PREVENT ANY 

A. A LOCAL FLAG IS SET OBVIOUS ERRORS. IF IT IS 
1~~Ig~L~~ THAT LSQA IS ~WA~k!~Bt~Q~6Sp~~~ING 

CONTINUES AT STEP 2B. 

B. §~fN~~~LAL(OA~~~UfRiSMARKED TERMAIAl 
F. §~fN~~~Lp~6gE~M¥g~ !~ TO FREE THE SLOTS WHEN THE 

OPERATION COMPLETES AND TO IDENTICAL WITH STEP 2B. AN 
INDICATE THAT TERMlNATION HAS ~D~~N~~ f~~ ~~ Ie~I~~~~. PROCESSED THEM. 

XPTVALID IS ¥8RNED OFF FOR 

C. CONTINUE COMMON PROCESSING AT ~~M~5¥T~~~~-¥6°~EN~~E~gQA 
STEP4. BECAUSE THE SLOT WILL BE 

FREED WHEN THE OPERATION 
COMPLETES. THIS PREVENTS 

@J ILRTERMR FROM FREEING THE 
E~~AA¥~O~5E6E~I~~~~g~ §g~E SLOT IN LATER PROCESSING. 
OF THE CLEAN-UP. 

A. IF LS~A IS AVAILABLE AS 
INDIC TED BY RSMFAILbOt> 
~~~ki~%NO fNA~~~~S~WA 
CONTINUE AT STEP 3D.'

B. IF THE ADDRESS SPACE IS TERMRFRR

I
f~AKP~2A~~iN(~~Mt~Q~k08k!s~R
~~is~~~ ~~obAI~~26 ~ ¥~8~D

Diagram 25.28 ILRTERMR (Partt of 3)

5-336 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Routine Label Ref

---- ---

ILRFRSLT ILRFRSLl

ILRFRSLT I LRFRSW 1

TERMSOUT

TERMAIAl

TERMAIA2

I

VS2.03.807

Input Processing Output

§] R
ASMVT ACE

PERFORM VIO ASPCT §r"IRELEASE LGI KC~~~E~~ ~KE~S8~sl~ED
SLOTS.

~ PERFORM VIO COMMON
PROCESSING - CLEAN UP VIO BKSLT
WORK.

A. FREE AlA WORK ELEMENTS
- SAVE AlAS WHICH ARE
NOT IN PROCESS ON
§~i~R~~r.QUEUE (SEE

B. FREE ACES WHICH DO NOT
NEED ANY MORE WORK.

C. PLACE RELEASE LG ACES
ON TASK-MODE RELEASE
QUEUE.

D. FREE LGES AND MAKE
LGVTES AVAILABLE.

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
[E) ~~~~~~I~ t~A~~~EALtSrai·s ILRFRSLT I LRFRSL 1

~~~s~~~viMEs~~D~EFREED. ILRALSOO 

~~~ ~f~~~Vf~~~i~E~R 

~ IN PROCESS VIO WORK IS CLEANED TERMVIO
UP AND GLOBAL ~ESOURCES ARE
FREED. ALL LGE S iUEUED FROM THE
ASMHD ARE PROCESS D.

A. ALL WORK ELEMENTS ARE
D8iUEUED FROM THE LGE PROCESS sg UES. AlAS WHICH ARE FOR
PR~~~ED~~A~~AO~IN
INTERNiLJUEUE SINCE THEY
WILLNEV BE FREED ANY OTHER
WAY.

B. ~~U~~~~ ~ET~~QU~fDE~PT ILRGMA
FOR RELEASE LG ACES FOR WHICH
TASK MODE RELEASE PROCESSING
IS NEEDED.

C. RELEASE LG ACES NEEDING TASK
MODE RELEASE PROCESSING ARE
PLACED ON THE TASK· MODE
~~ET~~U~o~~~~~IN THE
PROCESSING IS NOT POSTED AT
THIS TIME. THE RELEASE
PROCESSING WILL OCCUR WHEN
TASK MODE RELEASE PROCESSING
IS POSTED LATER.

D. THE LGES AND SRB USED FOR VIO
ARE FREED. LGVTES ARE MADE
~~~IkOftfABlE28~~~I~NT¥~ TO 
LGVT. 

Diagram 25.28 ILRTERMR (Part 2 of 3) 

Section 2: Method of Operation 5-337 



VS2.03.807 

Input Processing 

RSMHD SPCT 

1M )~ I IJI FREE PRIVATE AREA SLOTS. 

IPGT 

I I @] RETURN SLOTS TO UNRESERVE 
COUNT. 

XPT 

I ASMHD I TIl ~ CALL IEAVPIOP TO FREE 
PCB/AlAS AND FRAMES NO 
LONGER NEEDED. 

I ASMVT I -~ ~ FREE RECOVERY AND SALLOC. 

>~ i~Ry~/¥~Q~~~~DO~~D~IO SRB 

Q2J POST TASK MODE RELEASE ECB 
IF THERE IS ANY TASK-MODE 
RELEASE WORK. 

Notes Routine Label Ref Notes 

---- ---
~ FOR ABNORMAL TERMINATION,WITH ILRFRSLT ILRFRSL1 

~E8~sA~~I~B~! ~~IrtT~LtR~~TED TERMPA 
ARE FREED. THIS IS DONE BY USING 
THE SPCT SEGMENT ENTRIES TO FIND 
ALL THE VALID PAGE TABLES AND 

~~I~~~~LAltG~L6~L~~fc~~E 
STILL MARKED VALID. 

@] THE UNRESERVED SLOT COUNT 
ASMVT IS UPDATED. 

IN THE 

§] ~~~ocP<f~f~5A~~~~) T~~I~H ARE NO 
LONGER NEEDED ARE FREED. THESE 

IEAVPIOP 

INC7UDE THE LSQA SWAP-OUT 
PCB AlAS WHICH HAVE COMPLETED! 
AND VIO WORK WHICH HAS NOT BE N 
STARTED. ALL IN-PROCESS WORK 
WILL BE FREED AS THEY COMPLETE 
BECAUSE OF THE FLAGGING OF THE 
AlAS. 

@!] THE FM IS DELETED AND THE 
SALLOC IS RELEASED. 

~ I¥EaK~OB~~~ ~~H~gn~~b~E~~¥~E¥sIF 
NECESSARY SINCE THE STORAGE 
CANNOT BE FREED IF THE SRB IS ON 
~~~~~~¥f~ i~E~~EE~H~ySRB 
lEAVDLAS.

[ill IF THERE IS ANY WORK ON THE TASK
~~~EA~~~S¥H~E~2~~TM8g~u~EE~ASE 
PROCESSOR ECB IN THE ASMVT IS 
POSTED. 

I I I II 
Diagram 25.28 ILRTERMR (Part 3 of 3) 

5-338 OS{VS System Logic Library Volume 5 (VS2.03.807) 

LJl 
V 

RETURN TO RTM 
(IEAVTMTC) 

Output 

Routine Label Ref 

---- ---

I I I I 



Input 

FROM RTM 
(IEAVTRTS) 

Processing 

VS2.03.807 

o TERMRFRR: 

SDWA .r+ArT-A----l======~) @2]SETUPADDRESSABILITY 

~ 
I I ~E~¥f~~~T~~~R.TO 

SDWAPARM 

rQ'2l OBTAIN ADDRESSABILITY TO 
~ MASTER SCHEDULER ADDRESS 

SPACE. 

II L:::.J RECORDING AREA. 

Output 

BJ 
r;===::::>1 roJl INITIALIZE DATA IN SDWA It 

~ IF A CONTROL BLOCK QUEUE S§DWA 
~ft~ R~~~gpk~~~SSED, CALL 
VERIFICATION ROUTINE. 

~ I ILRVSPAO ILRVPCBQ I 
'\,---../ lOR ILRVr:;PRQ 

AlAS 

BJ =-
LGES 

BJ 
PCBS 

Notes Routine 

§] REGISTER 1 CONTAINS THE ADDRESS 
OF THE SDWA WHICH CONTAINS THE 
ADDRESS OF THE ATA. THE ATA 
CONTAINS OTHER NEEDED ADDRESSES 
(RMPL, WORKAREA). 

[§] TRAS IS NECESSARY TO GET 
ADDRESSABILITY TO THE CORRECT 
ADDRESS SPACE TO RECOVER. 

@] THE FAILING CSECT NAME IS PUT IN 
THE SDWA. 

~ THE ROUTINES THAT COULD BE ILRFRR01 
~5L¥~R~~~Q~LRVSPAQ, ILRVPCBQ, 

ILRFRR01 

ILRFRR01 

§] THE ADDRESS AT WHICH TO RETRY 
IN ILRTERMR' S WORKAREA. 

IS 

~ RETRY IS NOT POSSIBLE IF SO 
INDICATED IN THE SDWA 
(SDWARCDE) • 

§] ~iL~E~~f t3N¥~3~If¥EfT§~t~~ 
RETRY POINT. 

Diagram 25.28.1 TERMRFRR (Part 1 of 1) 

I ASM ROUTINES I 
§] stET UP RETRY ADDRESS. 

/'Q6l IF RETRY IS N9T POSSIBLE, 
~ FREE ILRTERMR. S WORKAREA. 

§] RETURN TO RTM. 

Label Ref Notes 

---- ---

ILRVSPAQ 

ILRVPCBQ 

ILRVLPRQ 

LJl 
V 

IEAVTRTS 

SDWA 

ISDNARTY, I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-339 



.Lnput 
FROM INVOKER 
OF ILRGMA 
MACRO 

r---R-EG-----------p-OO--L------'I ~ 

'~~liF 

VS2.03.807 

Processing 

ILRPEX: 

~ ~f~~E~ILi~k~E~~~E~DIN 
THE ASMVT. 

@II IF THE SALLOC LOCK WAS 
~~L~C~Y c~~f ~~5~E~HERf~~VE 
RESERVE POOL. 

@!] IF THE SALLOC WAS NOT HELD 
~~ ~~~RiNP~t ~&~O!sH~5¥· 
~~~T~60f~MOVE A CELL FROM 

IF THE INPUT POOL IS EMPTY
AND THE CALLER DID NOT
~~kgET~~ gt~~E~~A SQA
GETMAIN AND FORMATTED. THE
FIRST CELL FORMATTED IS
SAVED FOR RETURN TO THE
CALLER.

OUtput

@] ~~¥f~~~D T~DS~~~NL!f8KTH~=======~>
CALLER. I

REG 1

I~g~ CELL

Notes Routine Label Ref

------- -----
~ ~~~E~~~SPgg~T~~IE~R~'~~K~~'

ROUTINE INVOKING THE ILRGMA
MACRO WHEN THE POOL BEING
PROCESSED IS EMPTY. ILRPEX WILL
BE CALLED ONLY FOR EXPANDABLE
POOLS. INPUT REGISTERS 13 AND 14
MUST BE SAVED ACROSS THE SETLOCK
FOR THE SALLOC LOCK. ONCE THE
3~~I~~I~T~~~DAR~H~AVED IN
THE ASMVT WORK SAVE AREA
RESERVED FOR ILRPEX.

@II THE RETURN CODE FROM THE SETLOCK
~~~~~THiioN~~L~OO~FEm~Y. THE 
ONLY POOL FROM WHICH CELLS CAN 
¥~ERf8~E~~f.H~~Dt~ f~~£S 
CONTROLLER ADDRESS WAS PASSED AS 
~~HAAE~ ~~L¥HiS C~~~~D I~OTft~ 
POOL WAS EMPTY OR THE ACE POOL 
~~LN2bDk~~E¥S~Ein~I6.A ZERO 

@!] THE SALLOC LOCK WAS OBTAINED BY 
ILRPEX IF THE SETLOCK RETURN 
~f =~TZ~OCHi~K~MI¥OC~~,4~HE 
IT HAD ALREADY BEEN EXPANDED BY 
ILRPEX RUNNING ON ANOTHER CPU. 
lFC~~L I~ER~~EfiSF~~ ~~~~ 
TO BE RETURNED TO THE CALLER. 

§] 6~~A~O~TD~iE~~N~EA~~ t~E SIZE 
IR:AVGMOO GLBRANCH 

AND NUMBER OF CELLS INDICATED IN 
THE POOL CONTROLLER. IF THE 
~r.rRi~DF%L~HEACH~~~DRESS IS 

@] REGISTERS ARE RESTORED AND THE 
CELL ADDRESS IS PASSED BACK IN 
REG 1. THE SALLOC LOCK IS 

I I I 
RELEASED ONLY IF THE CALLER DID 
NOT HOLD IT AT ENTRY TO ILRPEX. 

Diagram 25.29 ILRPEX (Part 1 of 1) 

5-340 OSJVS System Logic Library Volume 5 (VS2.03.807) 

Notes 

I 

[Jl 
V 

RETURN TO 
CALLER. 

RO'ltine 

I 

Label Ref 

------- -----

I I I 



VS2.o3.807 

Input Processing 

FROM ABDPRUIM 

REGISTER 1 r+ 
L...--_--IP 

ADDR.OUTPU 
T BUFFER 

ADDR.ACCES 
S RTN. 

ADDR.CVT 

ADDR.PRINT 
RTN. 

ADDR.FORMA 
T RTN. 

Notes 

@2J ~~~R~I~~ ~~~tut~~~~~PtHE 
ASMDATA CONTROL STATEMENT 

t~~L~g~D 6o~~~b~Tg~~sE~~R~8ME 
RSM CONTROL BLOCKS ALSO USED BY 
ASM ARE FORMATTED. THE CONTROL 
BLOCK INFORMATION CAN THEN BE 
EASILY FOUND AND READ. 

~ THE ASMVT IS ACCESSED VIA THE 
CVTASMVT FIELD. IT IS FORMATTED 
FOLLOWED BY: 

A. AlA'S CHAINED FROM ASMSTAGQ. 

B. THE MESSAGE BUFFER, ASMMSGBF. 

C. I~~E~~.SLOT ERROR RECORD, 

D. ~~'fs~ta~E~ ~~~~ ~~~~~iR 
MODULES AREQCALLED IN TURN, 
I LRFMTPG I LRFMTSW , 
ILRFMTCVt ILRFMTC

t6 
ILRFMTCV 

! It~~=RJl: ILRFM V 

~ THE PART IS ACCESSED FROM 
ASMPART AND FORMATTED ALONG 
WITH: tAl PCTS CHAINE6 fROM 

~~fKIAi·~~)t~~?~E~I~RgMFROM 
PARTC~, PAR S Li6 PARTDUP2t 
r~~~ TT~~Xlio~G Ult~T(f) ~XT 
FROM PAREPATP. (B~ IOES FROM 
PAREIOEw AND (C~ ORBS~ roSBS 
AND PCC S AND A AS FOU D VIA 
PAREIORB. 

Routine 

ILRFMTPG 

Diagram 25.30 ILRFMTOO (Part 1 of 3) 

ILRFMTOO: 

@2J FORMATTER OF ASM CONTROL 
BLOCKS. 

~ ACCESS AND FORMAT ASMVT 
AND ASSOCIATED BLOCKS. 

~ ACCESS AND FORMAT PART 
ASSOCIATED BLOCKS. 

<::::::>IILRFMTPG I 

I I ASM ROUTINE 

Label Ref Notes 

---- ---

ILRFMTPG 

Output 

ASMVT ~ 

=r===l I I I I 
AlA MSGBF 

I I I I 
EREC 

I I 
PART PeT 

I I I I 
PAT PCCW 

I I I I 

~ AlA roSB 

I I I I 
IOE 

I I 
IORB 

I I 

Routine Label Ref 

---- ---

Section 2: Method of Operation 5-341 



VS2.0l.S07 

Input Processing Output 

SART SCCW 
§) ACCESS AIID FORMAT SART ANn I I I I ~=IATm B~S. n 
<:=::> IILRFMTSW 

SAT lOSB 
I I I I I IASM ROUTINE I 

@] ACCESS AND FORMAT COMMON =:) SDCT 
SERVICE AREA PAGE TABLES 

I I AND EXTERNAL PAGE TABLES. 

<:=::> IILRFMTC . -' AlA 
IILRFMTCV ENTRY I I I 

IORB 

I I 

~I PGT XPT II I I I 

Notes Routine Label Ref Notes Routine Label Ref 
---- --- ---- ---

§] THE SART IS ACCESSED FROM 
ASMSART AND FORMATTED ALONG WITH 
~~SI~~~N~~~~~TiAcftN~~¥EE~~~ 

ILRFMTSW ILRFMTSW 

IS FORMATTED WITH ITS 
ASSOCIATED: 

A. SAT FROM SRESAT 

B. SCCW FROM SRESCCW AND. 

C. ~~~S~RI~3~~: SCCWS AND AlAS 

@] THE COMMON SERVICE AREA PAGE AND 
EXTERNAL PAGE TABLES ARE 

ILRFMTCV ILRFMTC 
ACCESSED VIA THE MASTER 
SCHEDULER SEGMENT TABLE 
~gA¥1~Rlss~1~T~~G~x1~~~fL(~~~ 
TABLE (XPT) ARE FORMATTED. 

I II I 
Diagram 25.30 ILRFMTOO (Part 2 of 3) 

5-342 OS/VS System Logic Library VoltJme 5 (VS2.03.807) 



VS2.03.807 

Input Processing Output 

~ 
RSMHD AlA 

ACCESS AND FORMAT FOR EACH I I I I ~~~~S~~P~~~6cU~E~SMHD, 
~ks<>t~~' .J~I~~f~R~fApX~~E 
TABLES. ASMHD PGT 

OIILRFMTH I I I I I :=) 
IILRFMTCV ENTRY I SPCT XPT 

@2] ACCESS AND FORMAT LGVT AND I I I I ASSOCIATED BLOCKS. 

OIILRFMTV 

LGE 

I I I 
lILRFMTCV ENTRY J 

~ RETURN. 
LGVT AlA 

I I I I 

[Jl~ 
ASPCT 

I I 
V 

TO CALLER ACE 

I I 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
~ THE RSMHD IS ACCESSED VIA ILRFMTCV ILRFMTH 

CVTASVT AND ASCBRSM. IT AND THE 
SPCT ARE FORMATTED. THEN THE 
ASMHD IS FORMATTED WITH: 

A. ~§ft~A~~~M ASHSWAPQ AND 

B. b~T~~Kfs~g~E§~Es~~~~A~¥AAREA 
SPCTPGT. 

@2] THE LGVT IS ACCESSED VIA ILRFMTCV ILRFMTV 
ASMLGVT. THE LGVT ENTRY FOR THAT 
ADDRESS SPACE IS LOCATED AND 
FORMATTED WITH THE ASSOCIATED: 

A. LGE FROM LGVELGEP. 

B. AlAS FROM LGEPROCQ AND 

C. t~~~TSF~~(~E~~§~§ ~~ 
PRESENT. A SO AIA~ACE'S 
CHAINED FROM AIAC PTR. 

~ RETURN TO CALLER. 

Diagram 25.30 ILRFMTOO (Part 3 of 3) 

Section 2: Method of Operation 5-343 



Page Expa"sio" 
The dynamic page expansion facility (ILRPGEXP) 
allows the system operator to add page or swap 
data sets to the system by entering the PAGEADD 
command. The number of page or swap data sets 
that can be added throughout one ILP is limited to 
the number specified by the PAGNUM system 
parameter at IPL time. 

Control Blocks Used 
The major control blocks ILRPGEXP uses are: 

• ASMVT - Auxiliary Storage Management 
Vector Table 

• PART - Page Activity Reference Table 
• PAT - Page Allocation Table 
• SART - Swap Activity Reference Table 
• SAT - Swap Allocation Table 
• Data Set Name List 
• ILRTPARB- TPARTBLE 
• PCT - Performance Characteristics Table 

The ASMVT resides in the nucleus and is ASM's 
extension of the CVT. It contains a count of 
available slots and back slots that are changed 
when slots are allocated and page data sets are 
added. The ASMVT also contains an indicator that 
specifies whether TPARTBLE is valid or not 
(ASMNOTPT). 

The PART resides in SQA and consists of one 
header and an entry (PARTE) for each page data 
set that is open and for the number of entries 
required to support page expansion. When a page 
data set is added, ILRPGEXP updates an empty 
PARTE and chains it to the others. 

The PAT resides in SQA and contains a bit map 
of allocated and unallocated page slots. 

The SART resides in SQA and consists of a 
header and an entry (SARTE) for each swap data 
set and additional entries for the number of swap 
sets that may be added. 

The SAT resides in SQA and describes the 
allocated and' available slots for a swap data set. 

The Data Set name lists reside in CSA and 
contain lists of swap and page data set names that 

5-344 OS/VSl System Logic Library Volume 5 (VS1.03.807) 

P82e of SY28-0717-O 

are currently in use; they also have additional 
entries for page and swap data sets to be added by 
page expansion. 

ILRTPARB (TPARTBLE) resides on the PLPA page 
data set. It is built during IPL, contains the page 
data set information that is used when quick or 
warm starting. ILRPGEXP updates ILRTPARB when 
a new page data set is added. 

Processing 
The Master Scheduler attaches ILRPGEXP when the 
operator issues the PAGEADD command, passing 
the command text in a CSCB (Command Scheduling 
control block). ILRPGEXP loads the read/write 
routine (ILRPREAD) and the open routine 
(ILROPSOO), establishes an ESTAE, syntax checks 
the command, and then processes the page or swap 
data set request(s). If there is more than one 
request the process is repeated as many times as 
necessary. 

Page Data Sets 
ILRPGEXP calls ILRPREAD to read the TPARTBLE 
and calls ILROPSOO to open. the page data·set. 

ILRPGEXP then updates the following control 
blocks. If the page data set being added is of a 
different device type than the existing page data 
sets, ILRPGEXP builds a PCT. Then it finds an 
empty PARTE, fills it in, and chains it to the others. 
Next ILRPGEXP gets storage for and initializes a 
PAT to reflect the available slots on the new page 
data set. Finally, ILRPGEXP updates the TPARTBLE, 
the data set name list, increases the slot and back 
slot counts in ASMVT, and calls ILRPREAD to write 
the TPARTBLE back to the PLPA data set. 

Swap Data Sets 
ILRPGEXP calls ILROPSOO to open the data set, fills 
in and chains a SARTE, updates the SART header, 
builds a SAT to reflect available swap space, and 
updates the data set name list. 



I 
I 25.32 

Open Page and 
Swap Data Sets 
(ILROPSOO) 

25.x. 
25.x.y. 

Module 
Entry point in module 25.x. 

Figure 2-63. Page Expansion Overview 

VS2.03.807 

I 7 

Page Expansion 

I 25.31 

Page Expansion 
(lLRPGEXP) 

I 
I 25.33 

Special I/O to 
Page Data Sets 
(tLRPREAD) 

" Section 2: Method of Operation 5-345 



Input 

INTERNAL 
LIST OF 
D.S.NAMES 

IEEVWAIT VIA 
COMMAND FROM 
OPERATOR 

~ 

VS2.03.807 

Processing 

ILRPGEXP: 

fQ1l SERIALIZE PAGEADD 
~ COMMANDS. 

@] ESTABLISH ESTAE. 

@) PAGEFIX THE MODULE. 

CSCB I > §] 

~I 
SYNTAX CHECK COMMAND. 
STEPS 5 -1 5 ARE FOR ADDING 
A PAGE DATA SET. SEE STEPS 
16-22 FOR SWAP DATA SETS. 
(THESE STEPS ARE EXECUTED 
FOR ONE DATA SET AT A 
TIME) • 

PART :::::!j > §] 

~lr~ 
CH'ECK FOR ROOM IN THE 
PART. 

IF TPARTBLE IS NOT 
USEABLE, GOTO STEP 8. 

Notes Routine Label Ref Notes 

---- ---
§] ~~~~~~P W~~~~¢~R I~~~G~~~kA6B 

COMMAND IS ISSUED BY THE 
OPERATOR. ITS PURPOSE IS TO ADD 
PAGE DATA SET(S) OR SWAP DATA 
SET(S) TO THE SYSTEM. THE EN8 
MACRO IS USED TO KEEP SUBSE~ ENT 
PAGEADD COMMANDS FROM EXECU ING 
BEFORE THIS ONE HAS COMPLETED. 

@] ILRPGEXP SETS UP THE INTERFACE 

§gH~~~£~~68sEiH~S~~T~~UTINE AND 

I~~~E~sr~5f~~~SE&1~YO~ ESTAE, 
ILRPGEXP) • 

@) A PAGEFIX IS NEEDED IN ORDER TO 
OBTAIN THE SALLOC LOCK FOR 
SERIALIZATION OF CONTROL BLOCKS. 

§] THE DATA SET NAMES ARE CHECKED 
FOR THE CORRECT LENGTH AND FOR 
DUPLICATES. IF THE LENGTH IS 
INCORRECT OR IF THERE ARE 
DUPLICATES, THE OPERATOR IS 
NOTIFIED. 

@] THERE IS ONLY ROOM IN THE PART 
TO PROCESS THE NUMBER OF PAGE 
DATA SETS SPECIFIED ON THE 
PAGNUM SYSTEM PARAMETER. 

~ IF TPARTBLE IS UNUSEABLE, 
~~~IjNgiPfip~1'h6~EN IT IS NOT 

I II
Diagram 25.31 ILRPGEXP (Part 1 of 4)

5'-346 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Output

Routine Label Ref

---- ---

I

VS2.03.807

Input Processing Output

C J
PLPA DATA
SET

OPEN
PARMLIST

1 1

PART PCT

I
r+1

LCT
1

DATASET NAME
LIST

1 I

~II===~~ ~ IF TPARTBLE HASN'T BEEN Ib
... > ~~~I~EI~mG~~~I~T~N AREA

r IQ'81 OPEN THE DATA SET, CALL
~ ILROPSOO.

<::::>lrI-L-R-o-ps-O-O----'1

IASM ROUTINE I

II ill!
ro9l SEARCH EXISTING PCTS FOR A
~ DEVICE TYPE MATCH. IF

I~E~ElSF~~ ~~~~'pg¥T~5N
BUJ;LD IT.

r;Ql FILL IN FIELDS IN THE
~ PARTE.

)

I~~
I I

PAT. I22J GETMAIN AND INITIALIZE A I II
:> f121 ADD THE PAGE DATA SET NAMErt -, ~ TO THE DATA SET NAME LIST.

=::)

Notes Routine Label Ref Notes

---- ---
~ IF THE GETMAIN OR READ FOR ILRPREAD ILRPREAD

I~~~B~~t~I¥~'c~~~I~tl~.OPERATOR

~ ~~TB~~C~¥~~U~HEI~fi~~~~OO~I~tOTS ILROPSOO ILROPSOO

IN THE DATA SET AND ADDRESSES OF
THE IORBF EDB6 AND UCB CONTROL
f~~~~'E~~R~ g~T6p~~TMAIN AND

b~~E~~iNyS ~~¥L~~~U¥~~ bg~RI~6~
IS NOTIFIED.

~ A DIFFERENT PCT IS NEEDED FOR
EACH OPEN PAGE DATA SET DEVICE
TYPE. IF THE NEW PAGE. DATASET IS
ON A DIFFERENT DEVICE FROM THE
EXISTING ONES A NEW PeT IS
NEEDED. IF THE GETMAIN FOR THE
PCT FAILS THE OPERATOR IS TOLD
AND THIS PAGE DATA SET REQUEST
IS FAILED.

!2£] ADDRESSES OF CONTROL BLOCKS AND
THE NUMBER OF SLOTS FOR THIS
DATA SET RETURNED FROM ILROPSOO
ARE PUT INTO THE PARTE. THE
ADDRESS OF THE PCT IS ALSO
INCLUDED.

I22J IF THE GETMAIN FOR THE PAT

~~itStH~~T5IfAT~~TOkWu~~~. AND

@] THE DATA SET NAME LIST IS USED
FOR CHECKING NEW DATA SET NAMES
AGAINST EXISTING ONES.

Diagram 25.31 ILRPGEXP (Part 2 of 4)

TPARTBLE
WORKAREA

§
PCT

PARTE

PARESZSL

PAREEDBP

PAREUCBP

PAREIORB

PAREPCTP

PAT

DATASET NAME
LIST

Routine Label Ref

---- ---

Section 2: Method of Operation 5-347

Input

TPARTBLE
WORKAREA

VS2.03.807

Processing

, ') r:jjl IF THE TPARTBLE IS GOOD,

Output

TPARTBLE
WORKAREA

. DATA SET INFORMATION. I ~

IIC

"' t..:...:.J FILL AN ENTRY WITH PAGE

~ MAKE ASM MAINLINE AWARE OFLJI

I

PART

~1L
ASMVT I ~

I~

Notes Routine

@] IF TPARTBLE IS NOT GOOD
(ASMNOTPT=l), IT IS NOT UPDATED.

G AFTER THE DATA SET IS OPENED AND
COMPLETELY INITIALIZED IT CAN BE
USED BY ASM.

A. IF THE WRITE OF TPARTBLE ILRPREAD
i~Ih~'w~¥sO~~6~I~fiE~SKED

B. THE SALLOC LOCK IS OBTAINED
TO UPDATE THE COUNT OF LOCAL

~ft~~ ~~r~A~~6~ 4~~~k§~TbA~D
~~T~Ne~~~~T~g~NIN~P~IE~~tE
IS CHAINED VIA PAREPARE.

C. THE TOTAL PAGE SLOTS COUNT IN
THE ASMVT IS INCREMENTED.
ALSO THE AVAILABLE SLOTS FOR
BACKING (ASMBKSLT) AN ADDRESS
SPACE OR VIO DATA SET IS
INCREMENTED.

Diagram 25.31 ILRPGEXP (Part 3 of 4)

L.:.:J THE DATA SET:

A. UPDATE THE TPARTBLE
HEADER AND WRITE
TPARTBLE BACK TO THE
PLPA DATA SET.

<::::::>IILRPREAD I
IASM ROUTINE I

B. CHAIN THE PARTE AND U
UPDATE THE P.ART HEADER.

I
C. ~~8~E~f~:Y: ~g~N~~~ AND =1 ===::;L!:::)~
TELL THE OPERATOR THE DATArt SET IS NOW AN ACTIVE PAGE
DATA SET. GOTO STEP 4 FOR
ADDITIONAL PAGE DATA SETS.
~bN:Y:~~n~ ~ES~~pM~~~,

Label Ref Notes

---- ---

ILRPREAD

II

5-348 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

PLPA DATA
SET

PART

PARTEUSE
!

i
PARTLCNT

PAREPARE

ASMVT

ASMSLOTS

ASMBKSLT

OPERATOR
CONSOLE

Routine Label Ref

---- ---

I

Input

VS2.03.807 .

Processing

STEPS 16-22 ARE FOR
PROCESSING SWAP DATA SETS.
CHECK FOR ROOM IN THE
SART.

I ~ ILOOPSOO £r~~ PARM JJJ I-A-S-M-R-O-UT-I-N-E----I

========:'=1 Q!] FILL L.I-N-T-H-E-S-AR-T-E-.--...J

DATASET NAME
LIST

~ GETMAIN AND BUILD A SAT.
I =~rp
I

1 =fill .. ===~~> GQl ADD THE SWAP DATA SET NAME====~r;:=) ... •. t.=:::.J TO THE DATASET NAME LIST. -

I SART

~
Tj1 :> f2il CHAIN THE SARTE AND UPDATE:===:~~ - "' L:..:J THE SART HEADER. (THIS IS -

DONE HOLDING THE SALLOC I
LOCK.)

rw TELL THE OPERATOR THE SWAn ~ DATASET IS NOW AN ACTIVE
SWAP DATA SET. FOR MORE

g~A~R~f§~ gg~~I~6~: 16,

TPARTBLE I Ir I;::::===~~> '231 IF A TPARTBLE WORKAREA WAS
WORKAREA::::j "' ~ OBTAINED FREE IT. a ~ PREPARE FOR EXIT.

Ljl
V

RETURN TO
IEEVWAIT L.-______________________ ~

Notes Routine Label Ref Notes

---- -----
~ THERE IS ONLY ROOM IN THE SART

TO PROCESS THE NUMBER OF SWAP
DATA SETS SPECIFIED ON THE
PAGNUM SYSTEM PARAMETER.

@] ~iT~U~~~S~~M~ERI5~o§rg~sR~~U~~~S ILROPSOO ILROPSOO

DATA SET AND ADDRESSES OF THE
IORB EDB AND UCB CONTROL

g~~t3TSU¥~NC~~~~~EDT¥~ ~~~BER
NUMBER OF SWAP SETS. FOR MOUNT
GETMAIN AND LOCATE ERRORS ON

~k~ES§~~G O~~~A:f~~s IgA:f~~~TA~E
FAILED.

[i!) ADDRESSES OF CONTROL BLOCKS
RETURNED BY ILROPSOO ARE PUT
INTO THE SART ENTRY. ALSO PUT IN
THE ENTRY IS THE NUMBER OF SWAP
SETS (SRETOTSL).

~ IF THE GETMAIN FOR THE SAT

~~~~ssI~~ ~g~R~A~~ IS TOLD AND 
DATASET IS 

FAILED. 

~ THE DATA SET NAME LIST IS USED 
FOR CHECKING NEW SWAP DATA SETS 
AGAINST ALREADY EXISTING ONES. 

~ THE SALLOC LOCK IS NEEDED TO 
KEEP ASM FROM USING THE SART 
WHILE IT IS BEING UPDATED. 

~ ¥fK~~X~E~~~~~~~ l~~T~~¥AE FOR 

~fg~~~Y RE~~8M~~E~bR~~s6~~ A 
PGFREE MACRO. 

Diagram 25.31 ILRPGEXP (Part 4 of 4) 

output 

SARTE 

SRETOTSL 

SREIORB 

SR'EUCB 

SREEDB 

SAT 

DATASET NAME 
LIST 

SART 

SARUSE 

SARSETCT 

SRENEXT 

OPERATOR'S 
CONSOLE 

Routine Label Ref 

---- -----

Section 2: Method of Operation 5-349 



Input 

FROM RTM 
(IEAVTASl ) 

VS2.03.807 

Processing Output 

SImA b ::;'AER' Lr 
r-----,:=====~) ~ ~~~M~X~~~S¥~~I~6~~A. 

ILRPGEXP' S I [§] 
WORKAREA, :> 02 IF ILRPREAD WAS IN 

IE
' CONTROL THE OPERATOR IS 

~ ______ ~I 6~F2~Dst~tsF~I~~EH~~~CK 
OPERATOR 
CONSOLE 

Notes 

§] ~¥t~¥~ IrR~~~~~~~L~iR~~N~~§~ED 
REGISTER. 

[§] l~T~~~¥R~~~ ~~¥NaN~g~T~gLRE~ 
OR WRITE TPARTBLE. IF TPARTBLE 
IS BAD IT MAY NO LONGER BE 
~~~n~~EI~~7~~IC~sO~s~~ ~6ART. 
INFORM THE OPERATOR OF THE
SITUATION.

[§] ALL ADDRESSES OF CONTROL BLOCKS
OBTAINED BY ILRPGEXP AND
ILROPSOO ARE VALIDITY CHECKED.

[§J THE CONTROL BLOCKS FREED INCLUDE
THE PCT PAT SAT EDB AND
IORB. ALSO

t
THE RELATED CONTROL

Rhgc~A~~T~E~SN.ll1ETr¥s¥~E SART,
CLEARED.

RANDOM RESULTS.

:> IQ3l VERIFY THAT ALL CONTROL
-, ~ BLOCK ADDRESSES ARE VALID

ADDRESSES.

Routine

IQ4l FREE ALL VALID CONTROL
L.:::.:J BLOCKS THAT ILRPGEXP AND

ILROPSOO BUILT PRIOR TO
THE ERROR.

~ RETURN TO RTM.

Label Ref Notes

---- ---

Diagram 25.31.1 ESTAER (Part 1 of 1)

5-350 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

LJl
V

IEAVTASl

Routine Label Ref

---- ---

VS2.03.807

Input Processing Output

FROM ILRASRIM
OR ILRPGEXP

~ ILROPSOO:

@]
CLUSTER

OPEN A PAGE OR SWAP DATA PARMLIST

SET. WCATU I I
@] PREPARE THE CATALOG

PARAMETER LISTS.

REG 1 UI >[§J ~ CI PARMLIST
IADDR I

L'
I

LOCATE DATA SET IN OF
I I UCB

CATALOG.

-
I

A. PAGE DATA SET - LOCATE I FLAG
PAGE DATA SET.

IDATA SET
I NAME

B. SWAP DATA SET - LOCATE

SWAP DATA SET.

§] MOUNT DATA SET.

A. NIPTIME - USE NIP

SERVICE.

B. AFTER NIP TIME - USE

DYNAMIC ALLOCATION.

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
§] ILROPSOO OPENS A PAGE OR SWAP §] MOUNT METHOD IS BASED ON THE VMTVER ~5.31.

DATA SET FOR ASM' S RIM TIME REQUESTED. NIPMOUNT IS USED DYNALLO
25.31.

(ILRASRIM) DURING SYSTEM AT NIPTIME,DYNAMIC ALLOCATION IS 4

INITIALIZATION OR FOR PAGE USED AFTER NIP TIME. IF MOUNT

EXPANSION (ILRPGEXP) AFTER IPL. FAILS, RETURN TO CALLER WITH

'08' IN REGISTER 15.

@il INITIALIZE THE CATALOG LOCATE

PARAMETER LISTS (CTGPL) AND

CATALOG FIELD PARAMETER LISTS

(CTGFLS) FOR CLUSTER LOCATE AND

DATA CONTROL INTERVAL (CI)

LOCATE, RESPECTIVELY.

INFORMATION, SUCH AS DATA SET

TYPE, VOLSER, ATTRIBUTES, DEVICE

TYPE AND STATISTICAL DATA WILL

BE REQUESTED FROM VSAM CATALOG.

@] ISSUE THE TWO LOCATES TO LOCATE LOCPAGE 25.32.
1

PAGE OR SWAP DATA SET . CHECK LOCSWAP
25.32.

THE RETURN PARAMETER TO INSURE 2

THE REQUESTED DATA SET IS

LOCATED, AND CHECK THAT TRACK

OVERFLOW IS NOT INDICATED FOR

SWAP DATA SET. IF LOCATE FAILS,

SET RETURN CODE TO '12' IN

REGISTER 15 AND RETURN TO

CALLER.

Diagram 25.32 ILROPSOO (Part lof 2)

Section 2: Method of Operation 5-351

Input

Notes Routine

@] SHORT PATH IS ONLY (MEANING

CONTROL BLOCKS SHOULD NOT BE

BUILT) IS ONLY REQUESTED DURING

SYSTEM INITIALIZATION. THE TYPE

OF PROCESSING IS BASED ON AN

INPUT FLAG. IF A SHORT PATH IS

DESIRED, RETURN TO THE CALLER.

OTHERWISE CONTINUE PROCESSING.

~ BUILD LPME, EDB, IORB, SRB, IOSB

AND SAVE AREA FOR PAGE OR SWAP

DATA SET. IF THE REQUESTED DATA

SET IS A PAGE DATA SET AND ON

NIPTIME, PCCW'S WILL BE BUILT IN

NUCLEUS BUFFER SPACE. IF SQA

SPACE IS NOT AVAILABLE FOR THE

CONTROL BLOCKS, RETURN CODE IS

SET TO ' 16' (' 20' FOR NUCLEUS

BUFFER SPACE NOT AVAILABLE).

@2] IF ALL ABOVE PROCESSING IS

SUCCESSFUL, A RETURN PARAMETER

LIST WILL BE SET AND PASSED BACK

TO CALLER WITH A RETURN CODE OF

ZERO.

Diagram 25.32 ILROPS 00 (Part 2 of 2)

VS2.03.807

Processing

~ DETERMINE THE TYPE OF PAT H

REQUESTED.

A. SHORT PATH - RETURN TO

CALLER.

B. LONG PATH - CONTINUE.

,r ~ GET CORE AND BUILD CONTRO

BLOCKS.

§] RETURN TO CALLER WITH A

RETURN PARAMETER LIST AND

RETURN CODE IN REG 15.

Label Ref Notes

---- ---

GETCORE 25.31.
5

Output •

~

LJl
V

RETURN T
CALLER

I REG.

[!~IL
I

V
RETURN TO
CALLER

5-352 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

CONTROL
BLOCKS

lORB

EDB

IOSB

SRB

LPMB

1 1.1 FLAG
OF ADDR

lORB

ADDR OF
UCB

ADDR OF
EDB

SLOT NO.

DEV TYPE

VOL SER

SQA PTR

SQA LEN

Routine Label Ref

---- ---

Input

~~~d~~OP:;OO 

CLUSTER PARM FIELD PARM 0 
LIST LISTS 

~~~ 
lFIEW P-

LISTS

~
=-RETURN AREA

ID.S.TYPE I
IDATACI I

I I

RETURN AREA

I PAGE SPACE I

I FLAG I

I I

Notes Routine

@2] ISSUE A LOCATE ON A CLUSTER NAME SVC26

REQUESTING NAMEDS AND CATTR

INFORMATION. NAMEDS INCLUDES THE

DATA SET TYPE (, INDEX' OR 'DATA')

AND THE DATA CONTROL INTERVAL

FOR ALL OTHER INFORMATION ON

THIS DATA SET. CATTR CONTAINS A

PAGE SPACE FLAG.

A. CHECK THAT THE REQUESTED DATA

SET TYPE IS ONLY 'DATA'.

B. CHECK THAT THE PAGE DATA SET

FLAG IS ON AND SWAP FLAG IS

OFF.

C. IF LOCATE FAILS OR THE DATA

SET TYPE IS NOT 'DATA' OR THE

DATA SET IS NOT A PAGE DATA

SET, THEN SET REGISTER 15" TO

'12' AND RETURN TO CALLER.

Diagram 25.32.1 LOCPAGE (Part 1 of 2)

VS2.03.807

Processing

LOCPAGE:

@2] INVOKE CATALOG LOCATE ON AI

CLUSTER NAME FOR PAGE DATA

SET.

A. CHECK DATA SET TYPE.

B. CHECK PAGE DATA SET.

C. FAIL - RETURN TO

CALLER. I
LJl

V
RETURN TO
CALLER

Label Ref Notes

---- ---

~ >

Output

RETURN AREA

DATA SET
TYPE

DATA CI

PAGE FLAG

SWAP FLAG

REG 15

I RETURN
. CODE

Routine Label Ref

---- ---

Section 2: Method of Operation 5-353

Input

DATA CI PARM
LIST

FIELD PARM FIELD PARM

II

LISTS LISTS

[
I I [>1 -
FIELD PARM FIELD PARM
LISTS LISTS

I I I I
AMDSB ATTR1 >§ >§

~§ ~§

Notes

[§J USING THE DATA CONTROL INTERVAL

FROM THE FIRST LOCATE, ISSUE A

LOCATE ON A DATA CONTROL

INTERVAL, REQUESTING VOLPHV,

VOLDEV, AMDSB AND ATTR 1

INFORMATION. VOLPHY AND VOLDEV

CONTAIN RESPECTIVELY PHYSICAL

AND DEVICE RELATED DATA. THE

AMDSB CONTAINS CONTROL INTERVAL

DATA • ATTR 1 CONTAINS A TRACK

OVERFLOW FLAG.

A. IF 2ND LOCATE FAILS, ILROPSOO

SETS REGISTER 15 TO 12 AND

RETURN TO CALLER.

B. IF SUCCESSFUL, THEN CONTINUE.

VS2.03.807

Processing

>[§J INVOKE CATALOG LOCATE ON A

DATA CONTROL INTERVAL.

A. FAIL - RETURN TO

CALLER.

B. SUCCESSFUL - CONTINUE.

Routine Label Ref Notes

---- --'-

SVC26

I
I

V
RETURN TO
CALLER

V
RETURN TO
ILROPSOO
MAINLINE

Output

REG 15

I RETURN
. CODE

Routine

RETURN AREA

DEVICE
TYPE

VOLSER

TRACK
OVERFLOW

STATISTIC
INFO

Label Ref

---- ---

II ,,0.....---___ ---------...
Diagram 25.32.1 LOCPAGE (Part 2 of 2)

5-354 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

Input Processing Output

FROM ILROPSOO
MAINLINE

CLUSTER
PARMLIST

o LOCSWAP:

...:.....Ir; .;:::===' ~> @]INVOKECATALOGLOCATE ON A,======~>
---' CLUSTER NAME FOR SWAP DATA

FIELD FIELD PARM
PARMLIST LIST

-~~~~
ID.S.TYPE I JPAGE SPACE I

IDATA CI I I FLAG I

I I I J

Notes Routine

@TI ISSUE A LOCATE ON A CLUSTER NAME SVC26

REQUESTING NAMEDS AND CATTR

INFORMATION. NAMEDS INCLUDES THE

DATA SET TYPE (' INDEX' OR

'DATA') AND THE DATA CONTROL

INTERVAL FOR ALL OTHER

INFORMATION ON THIS DATA SET.

CATTR CONTAINS A SWAP DATA SET

FLAG AND PAGE DATA SET FLAG.

A. CHECK THAT THE SWAP DATA SET

TYPE IS 'DATA'.

B. CHECK THAT THE SWAP AND PAGE

DATA SET FLAGS ARE BOTH ON.

C. IF LOCATE FAILS OR THE TYPE

IS NOT 'DATA' OR THE DATA SET

IS NOT A SWAP DATA SET, THEN

SET RETURN CODE TO '12' AND

RETURN TO THE CALLER.

Diagram 25.32.2 LOCSWAP (Part 1 of 2)

SET.

A. CHECK DATA SET TYPE.

B. CHECK SWAP DATA SET.

C. FAIL - RETURN TO

CALLER.

Label Ref Notes

---- ---

I L6
LJl

V
RETURN TO
CALLER

RETURN AREA

DATA SET
TYPE

DATA CI

PAGE FLAG

SWAP FLAG

REG 15

I RETURN
. CODE

Routine Label Ref

---- ---

Section 2: Method of Operation 5-355

Input

DATA CI PARM
LIST

FIELD PARM FIELD PARM

II
LIST LIST

I I I
--

FIELD PARM FIELD PARM
LIST LIST

I I I I
AMDSB ATTR1

I I I I
VOLDEV VOLPHY

I I I I

Notes Routine

[§J USING THE DATA CONTROL INTERVAL SVC26

FROM THE FIRST LOCATE, ISSUE A
LOCATE ON A DATA CONTROL

INTERVAL, REQUESTING VOLPHV,

VOLDEV, AMOSB, AND ATTRC

INFORMATION. VOLPHY AND VOLDEV

CONTAIN RESPECTIVELY PHYSICAL

AND DEVICE RELATED DATA. THE
AMOSB CONTAINS CONTROL INTERVAL

DATA. ATTRC CONTAINS A TRACK,

OVERFLOW FLAG.

A. TRACK OVERFLOW IS NOT AL~WED
FOR SWAP DATA 'SET.

B. IF THE SECOND LOCATE FAILS OR

THE TRACK OVERFLOW FLAG IS

ON, SET THE RETURN CODE TO 12
AND RETURN TO CALLER.

C. IF SUCCESSFUL, THEN CONTI~UE.

I I
Diagram 25.32.2 LOCSWAP (Part 2 of 2)

VS2.03.807

Processing

I

[§J INVOKE' CATALOG LOCATE ON A

DATA CONTROL INTERVAL.

A'. CHECK SWAP DATA SET. NO

TRACK OVERFLOW.

B. FAIL - RETURN TO or
CALLER.

C. SUCCESSFUL - CONTINUE.

Label Ref Notes

---- ---

I II

I
LJl

V
RETURN TO
CALLER

V
RETURN TO
ILROPSOO
MAINLINE

5-356 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Output

REG 15

I RETURN
. CODE

Routine

RETURN AREA

DEVICE
TYPE

VOLSER

TRACK
OVERFLOW

STATISTIC
INFO

Label Ref

---- ---

I

Input

FROM ILROPSOO
MAINLINE

DATA SET 0
NAME r
~t~fDATAT

VOLPHY

VOLSER

Notes Routine

@D PUT THE DATA SET NAME AND VOLSER

IN THE PARAMETER LIST FOR

NIPMOUNT.

§] INVOKE NIPMOUNT SERVICE. IEAPMNIP

A. IF SUCCESSFUL, REGISTER 1

WILL CONTAIN A UCB POINTER.

B. IF NIPMOUNT FAILS, PUT AN 8

IN REGISTER 15, AND RETURN TO

CALLER.

C. IF SUCCESSFUL, THEN CONTINUE.

Diagram 2 S. 32. 3 VMTVER (Part 1 of 1)

VS2.03.807

Processing Output

VMTVER:

@D INITIALIZE PARAMETER LIST

FOR VOLUME MOUNT AND

VERIFY REQUEST.

~ INVOKE NIPMOUNT.

A. GET UCB ADDRESS.

B. TAKE ERROR EXIT ON

FAILURE.

C. SUCCESSFUL - CONTINUE.

Label Ref Notes

---- ---

ur
I===~)
I
LJl

V
RETURN TO
CALLER

LJl
V

RETURN TO
ILROPSOO
MAINLINE

I
REG 1 UCB

II I 1.r+1

ERROR EXIT
REG 15

I RETURN
CODE I

Routine Label Ref

---- ---

Section 2: MethoC; of Operation 5·357

VS2.0l.S07

Input Processing
FROM ILROPSOO
MAINLINE

1m: DYNALLO:

I FLAG §] SET UP ADDRESSABILITY TO

I OS NAME REQUEST BLOCK FOR DYNAMIC
ALLOCATION.

§] REQUEST A DSNAME
ALLOCATION.

@I) SET TEXT UNITS FOR
ALLOCATION.

Notes Routine Label Ref Notes

---- ---
§] THE REQUEST BLOCK - S99RB IS

MAPPED BY IEFZB4DO. IT IS THE
INPUT PARAMETER TO DYNAMIC
ALLOCATION.

§] SET CODES IN REQUEST BLOCK TO
INDICATE THAT DSNAME ALLOCATION
IS DESIRED. TURN ON THE OFFLINE
UNITS BIT (S990FFLN) AND THE

MOUNT VOLUME BIT (S99MOUNT), SO
DYNAMIC ALLOCATION WILL NOTIFY
THE OPERATOR WHEN THESE
CONDITIONS OCCUR.

@I) TEXT UNITS, POINTED TO BY THE
REQUEST BLOCK, ACTUALLY CONTAIN
THE INPUT DATA (DSNAME AND
DISPOSITION) AND THE EkPECTED
OUTPUT DATA (DDNAME). THE OUTPUT
DATA IS FILLED IN BY DYNAMIC
ALLOCATION.

Output

>

I
11 ----------i =:)

--->

REG 1

L' l ~DR ~f8g~ST

RE UEST
BLGGK-S99RB

LEN
CODES
ADDR OF
TEXT UNITS
RESERVED
S99MOUNT
S990FFLN

TEXT UNIT

IAI>DR TEXT
UNIT

TEXT UNIT

IADDR TEXT UNIT

TEXT UNIT

IADDR ·TEXT UNIT

\

I

IJ102 DSNAME' I

rlgisP-OLD I

I
['" DDNAME I

I

Routine Label Ref

---- ---

II~ ______ ~I II~ __ ~~~I I
Diagram 25.32.4 DYNALLO (Part 1 of 3)

5-358 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

Notes Routine

~ INVOKE DYNALLOC MACRO TO SVC99

ALLOCATE A DATA SET.

~ IF DYNAMIC ALLOCATION FAILS, SET

REG 15 TO 8 AND RETURN TO

CALLER.

Diagram 25.32.4 DYNALLO (Part 2 of 3)

VS2.03.807

Processing Output

~ INVOKE DYNAMIC ALLOCATION. I ~
~ CHECK RETURN CODE FROM ~

DYNALLOC.

A. FAIL - SET MOUNT FAIL

RETURN CODE, RETURN TO

CALLER.

Label Ref Notes

---- ---

LJl
V

RETURN TO
CALLER

REG 15

I RETURN
. CODE

Routine Label Ref

---- ---

Sec"tion 2: Method of Operation 5-359

Input

TCB

I~~ IpSATOLD

l~~~ JSCDSABQ

TIOT DD l OS.: DBAB J ENrRY
-

DDNAME

DSABTIOT
ADDR UCB

TIOT DO
DSAB ENTRY l nUAB

.r+
DDNAME

DSABTIOT

ADDR UCB

DSAB TIOT DO
ENTRY

0 ,...
DDNAME

DSABTIOT

ADDR UCB

Notes Routine

~ THE UCB ADDRESS IS NOT RETURNED

BY DYNAMIC ALLOCATION SO IT MUST
BE OBTAINED BY SEARCHING TIOTS

WITH THE RETURNED DO NAME. IF

THE DO NAME CANNOT BE FOUND IN

TIOTS SET REG 15 TO 8 AND RETURN

TO CALLER. IF SUCCESSFUL, THEN

CONTINUE.

VS2.03.807

Processing

~ FIND UCB ADDRESS THRU
TIOT.

A. IF UNSUCCESSFUL, SET

RETURN CODE TO INDICATE
THAT MOUNT FAILED AND

RETURN TO CALLER.

B. SUCCESSFUL - CONTINUE.

Label Ref Notes

---- ---

LJl
V

RETURN TO
CALLER

LJl
V

RETURN TO
ILROPSOO
MAINLINE

Output

REG 15

I RETURN
. CODE

Routine Label Ref

---- ---

II~ __ ~~~I II~ ______ ~I I
Diagram 25.32.4 DYNALLO (Part 3 of 3)

5-360 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

DEVICE ID
TABLE

CATALOG
LOCATE DATA

VOLDEV

DEVTYP

FROM ILROPSOO
MAINLINE

Notes Routine

§] SEARCH A TABLE OF VALID DEVICE

TYPE FOR A MATCH WITH THE DEVICE

TYPE RETURNED BY THE CATALOG

LOCATE. IF A MATCH IS NOT FOUND,

PUT A 12(LOCATE FAIL) IN REG 15

AND RETURN TO CALLER.

@] CALCULATE THE TOTAL SIZE FOR SVC120

IORB-IOSB-SRB, EDB AND LPMB.

ISSUE A CONDITIONAL GETMAIN. IF

REQUESTED SPACE IS NOT
AVAILABLE, .SET REG 15 TO 16 (NOT

ENOUGH SQA SPACE) AND RETURN TO

CALLER.

Diagram 25.32.5 GETCORE (Part 1 of 3)

VS2.03.807

Processing Output

GETCORE:

@2] IDENTIFY
REG 15

DEVICE TYPE.
r--J I RETURN I CODE

"'. IF THE DEVICE TYPE IS
INVALID, SET THE RETURN

TO INDICATE LOCATE

FAILURE AND RETURN TO

CALLER.

LJl
V

RETURN T
CALLER

[§J GETMAIN SQA SPACE FOR

CONTROL BLOCKS.

A. IF SPACE IS NOT
AVAILABLE, SET THE

RETURN CODE AND RETURN

TO CALLER.

LJl
V

RETURN TO
CALLER

Label Ref Notes Routine Label Ref

---- --- ---- ---

Section 2: Method of Operation 5-361

VS2.03.807

Input Processing output

INPUT FLAG @] ASMVT PCCW
IF PAGE SPACE REQUEST AT >

~1~~
I PAGE-NIP-L

ONG PATH

I

NIPTIME, ACQUIRE NUCLEUS
BUFFER SPACE FOR PCCWS.

NVT
I I A. IF SPACE IS NOT -

NVTNBFND
AVAILABLE, SET THE
RETURN CODE AND RETURN REG 15
TO CALLER.

hllC
I RETURN I NVTNUCNP CODE

UCB
ASMVT UCBPRES

I I ==- IRETURNVT UCBALOC
CALLER

B. INITIALIZE PCCWS. UCBUSER

I UCBPGFL

§] IF NIPTIME, UPDATE UCB
INFORMATION.

Notes Routine Label' Ref Notes Routine Label Ref

---- --- ---- ---
@] CALCULATE THE NUMBER OF ~CCWS

FOR THIS DEVICE TYPE AND CHECK
THAT THERE IS ENOUGH SPACE FOR
PCCWS IN THE NUCLEUS BUFFER. IF
THERE IS NOT ENOUGH SPACE, SET
REG 15 TO 20 (NUCLEUS BUFFER
DOES NOT HAVE ENOUGH SPACE) AND

RETURN TO. CALLER. INITIALIZE THE
CCW STRING WITH SEEK, SET
SECTOR, SEARCH, ID, TIC,
READ/WRITE NOP. CHAIN THE PCCWS
TOGETHER.

§] THE UCB INFORMATION IS'UPDATED
TO INCRE~ENT USER COUNT, AND TO
MARK IT AS A PAGE SPACE AND
PERMANENTLY RESIDENT.

I I I II I
Diagram 25.32.5 GETCORE (Part 2 of 3)

5-362 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Input

CATALOG
LOCATE DATA

IVOLPHY

CATALOG
LOCATE DATA

IAMDSB

ASMlTT

UCB

VS2.03.807

Processing Output

CATALOG ~
LOCATE DATA r;:::===:» ~ INITIALIZE LPMB WITH

LPMP

> LPMBID

LPMBLEN
I

VOLDEV I I DEVICE TYPE

.. CHARACTERISTICS.

CATALOG 1Fll1'====~> IQ61 INITIALIZE EDB HEADER AND =====6
LOCATE DATA I L ., ~ .

ENTRY FOR EACH DATA SET

IATTRl I

EDB

EDBID
EXTENT.

I Irl;:::::::~> ~ INITIALIZE IORB-IOSB-SRB

=.J STRING OF CONTROL BLOCKS.

LJl
V

RETURN TO
ILROPSOO
MAINLINE

EDBLPMBA

IORB

IOSB

Ir+

:l SRB

Notes Routine Label Ref Notes Routine Label

---- --- ----
@]

FIELDS INITIALIZED ARE: 10, AND
THE LPMB (LOGICAL TO PHYSICAL

MAPPING BLOCK) FIELDS
NON-QUIESCEABLE PRIORITY. THE

SRB IS POINTED TO BY IOSB WHICH
INITIALIZED ARE: 10, LENGTH

IS POINTED TO BY IORB.
TRACKS PER ALLOCATION UNIT,

TRACKS PER CYLINDER, BLOCKS PER

TRACK, BLOCK SIZE, BYTES PER

TRACK, BYTES PER ALLOCATED

UNITS, THE TRACK OVERFLOW AND

RPS DEVICE FLAGS IF APPLICABLE.

~ INITIALIZE ROB (EXTENT

DEFINITION BLOCK) HEADER FIELDS:

10, LENGTH, NUMBER OF EXTENTS,

LPMB ADDRESS. FOR EACH EXTENT

INITIALIZE: LPMB ADDRESS, EXTENT

NUMBER, STARTING TRACK, LOW RBA,

HIGH RBA, TRACK OVERFLOW.

@] AN IORB-IOSB-SRB STRING WILL BE

INITIALIZED FOR EACH IORB

REQUIRED. THE IORB FIELDS

INITIALIZED ARE: 10, NUMBER OF

IORB 'S, RPS FLAG, IOSB ADDRESS,

AND CHAIN FIELD TO NEXT IORB OR

ZERO. THE I~ITIALIZED FIELDS IN

IOSB ARE: DRIVER 10, If<> FILE

MASK, IORB ADDRESS, SRB ADDRESS,

I/O TERMINATION ADDRESS, NORMAL

AND ABNORMAL END APPENDAGE. SRB

Diagram 25.32.5 GETCORE (Part 3 of 3)

Ref

Section 2: Method of Operation 5-363

VS2.03.807

Input Processing Output

r
FROM ASM
INITIALIZATION
OR ILRPGEXP

~ ILRPREAD:

REG 1 REG 1

C
I CPA .. I E1 ILRPREAD IS A SPECIAL ASM

I/O DRIVER.

SRB
~ CCWS §] I I FLAGS OBTAIN STORAGE FOR ADDR.GETMA rl I BUILDING CCWS, IOSB, AND IN IN SQA

TOTAL SLOT SRB FROM SQA.
NO. GETMAIN

LEN
FIRST SLOT @] ISSUE ESTAE.

SRB
NO. r SRBPTCB
ADDR.PARE/ IOSB
TPARE

ADDR.BUFFE §] BUILD IOSB AND SRB.
SRBPARM

R
> IOSVST

SRBPASID

I IOSB IOSSRB
I- @] BUILD .CHANNEL PROGRAM fOSUSE(ECB (CCWS) . l lOOV~ IOSNRM

fOSUSE(ECB

>§]
IOSABN

START I/O.
IOSPGAD

CCWS @] WAIT FOR I/O TO COMPLETE. I I
~

CCWS

SEEK HEAD

~ CHECK I/O SUCCESSFUL.
SEARCH ID
EQ
TIC

A. SUCCESSFUL: CONTINUE TO
RD/WT

PROCESS.

B.' UNSUCCESSFUL: SET ERROR
RETURN CODE, GOTO STEP
10.

Notes Routine Label Ref Notes Routine Label Ref

---- --- ---- ---
[!D PASSED TO 10.

ILRPREAD IS AN I/O DRIVER THAT
READS AND WRITES SLOTS
CONTAINING CONTROL BLOCKS AND §] CALL START I/O FOR READ/WRITE. OTHER INFORMATION NEEDED BY ASM. STARTIO
SYSTEM INITIALIZATION READS AND
~~b~ bL~I~~~AM~~Ql~~~E~D

@] READS AND WRITES ILRTPARB mE ~'6Tcb~~L~~0&ORg~¥~~T~iLIH~OST WAIT PREADNRM. ~5.33. TPARTBLEk' THESE CONTROL B KS
~fR~~E¥oDotgnR?UICK AND WARM ECB WHEN IT GETS CONTROL. PREADABN

PREADTRM
~5.33.

§] ENTRY IS FROM ASM INITIALIZATION GETMAIN ~5.33.

~~~A~~8) (6~~~AM~A!~~~~l&~ION 
tILRPGEXP~. STORAGE IS OBTAINED §] CHECK I/O COMPLETION. IF IT IS ~OMS~~ T~~ ~g~L~~ g~~ifN~gSB ~grp~~~~s~bU~TE~H~O:ONTROL WILL 
i~N~~S~N~~GME~~¥~~~~~;EA 
CODE OF 8 IS RETURNED. 

@] ESTABLISH ESTAE FOR ABNORMAL ESTAE ESTAEXIT 25.33. 
TERMINATION. 3 

§] THE ADDRESSES OF NORMAL END 
APPENDAGE ABNORMAL END 
~b~~~~~:~Os~~~~~I~~NARE 
PUT, INTO THE IOSB. THE ROUTINES 
ARE SECONDARY ENTRY POINTS IN 
ILRPREAD. THE ADDRESSES OF THE 
TCB AND IOSB ARE PUT INTO THE 
SRB. THE ASID (ADDRESS SPACE 
IDENTIFIER) IS ALSO PUT INTO THE 
SRB. SINCE THE TCB AND ASID 
AFFINITY ADDRESSES ARE IN THE 
12~Bf~~E~~~~g~~E~L~S UP 

gg~~~~~NIfgsub~NI~~~ 
APPENDAGE ROUTINES. 

1 

@] CREATE THE CHANNEL PROGRAM FOR 
READS OR WRITES - MAXIMUM TEN 

I 
SLOTS WITHIN A CYLINuER. THESE 

I 
CONSIST OF SEEK HEADWRSEARCH ID 
~~'~~ijR~U:¥~/CO~~T~~AN 
SLOT NUMBER TO REAL SEARCH 
ADDRESS THE CONTROL WILL IS 

Diagram 25.33 ILRPREAD (Part 1 of 2) 

5-364 OSVS2 System Logic Library Volume 5 (VS2.03.807) 



V82.03.807 

Input processing Output 

§] ~ 
REGISTER 15 

CHECK IF MORE SLOTS TO I RETURN I PROCESS. 
CODE 

A. YES: GOTO STEP ·5. 

B. NO: CONTINUE TO 
PROCESS. 

[§ CANCEL ESTAE. 

E2J FREE STORAGE OBTAINED FOR 
CCWS, IOSB AND SRB. 

~ RETURN. 

I 
LJl 

V 
RETURN TO 
CALLER 

Notes Routine Label Ref Notes Routine Label Ref 

---- --- ---- ---
§] !~C~~~S~6£L~OMth~T~8MBER OF 

~~QM~~iS s~I~~GT6S B~HECKED. 
PROCE$SED, REPEAT FROM STEP 5. 

[§ CANCEL THE ESTAE. ESTAE 

E2J ~E~~~M~fi¥~~TERL~E~~~ ~~o~aIES FREEMAIN 

• 2¥rtI~~DF~~~D~CWS' IOSB, ANDSRB 

QII A~THfi~6~FSFI~E~gCS¥ffF~~, A 
RETURNED. OTHERWISE A RETURN 
'CODE OF FOUR FOR 
~~~kNWR~6~,cg~~~aH~~g~ ~~A~E 
NOT AVAILABLE WILL BE RETURNED.

Diagram 25.33 ILRPREAD (Part 2 of 2)

Section 2: Method of Operation 5·365

Input

Notes

FROM lOS
(IECVPST)

Routine

@II FOR NORMAL AND ABNORMAL
APPENDAGES~ CONTROL IS PASSED
BACK TO 10 IMMEDIATELY.

I
Diagram 25.33.1 PREADABN (Part 1 of 1)

VS2.03.807

Processing

PREADABN:

~ RETURN TO lOS

Label Ref

--- ---
Notes

II

[ll
V

RETURN TO lOS
(IECVPST)

5-366 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

Output

Routine Label Ref

--- ---

I

VS2.03.807

This blank leaf represents pages 5-367 - 5-483 which were deleted by Supervisor Performance # 2;

Section 2: Method of Operation 5-367 - 5-483

5-484 OS/VS2 ~ystem Logic Library Volume 5 (VS2.03.807)

ABDUMP initialization (See OS/VSl System IoitiaIizatiOD
Logic)

ABEND
intentional 5-82

access control block (see ACB)
access method, pseudo (see pseudo access method)
account tables (see ACT)
ACE (ASM control element) (VSl.03.807)

in save, activate, and release processing 5-203, 5-222
(VS1.03.807)

in transfer page processing 5-202 (VSl.03.807)
ACTCACE diagram 5-258
ACTCLUP diagram 5-276
ACTCOND diagram 5-254
ACTFREE diagram 5-274
ACTGETB diagram 5-250
ACTGETN diagram 5-322
ACTINIT diagram 5-266
ACTINPR diagram 5-258
ACTIVATE diagram 5-122
ACTIV ATE LG request (VS1.03.807)

functional description 5-222 (VS1.03.807)
initial processing of 5-203 (VS2.03.807)
recovery for 5-252 (VS1.03.807)

ACTREEN diagram 5-248
ACTSLOT diagram 5-270
ACTUPDT diagram 5-312
ADDLSID diagram 5-286
address, translating real to virtual 5-80
address space (see also memory)

clean-up 5-104
control blocks (see ASCB)

in VSM address space creation 5-102
error recovery 5-103
initialization

in VSM address space creation 5-102
processing 5-58

obtaining storage 5-102
address space queue elements, dequeueing 5-105
ADDSLOT diagram 5-464
affinity (see CPU affinity)
AlA (auxiliary storage manager I/O request area)

in completion processing 5-119, 5-153 (VSl.03.807)
in deleting an address space 5-60
in general frame allocation 5-24
in page I/O initiation 5-52
in page I/O post 5-28
in page processing 5-119 (VS1.03.807)
in swap processing 5-119 (VS1.03.807)
in YIO completion processing 5-202 (VSl.03.807)
in YIO data set processing 5-203 (VSl.03.807)
in VIO services 5-56

allocate from groups picked by algorithm (see IEF AB478
object module)

allocate function control (see IEFDB410 object module)
allocating region space 5-98
allocation queue manager (see IEFAB4FA object module)
allocation queue manager request block (see AQMRB)
allocation/unallocation 3-269

insufficient space for V=R region 5-98
RSM V=R region 5-98
storage, virtual 5-94

allocation of virtual storage (GETMAIN processing) 5-94
allocation work area (see ALCW A)
ALSPROC diagram 5-342
APF (see authorized program facility)
AQE (available queue element)

in FREEMAIN 5-97
in VSM task termination 5-106

ARLSEG diagram 5-156
ASCB (address space control block)

in deleting an address space 5-60
in freeing an address space 5-104
in initializing an address space 5-58
in page I/O initiation 5-52

VSl.03.807

in swap-in
root exit 5-44

in swap-out
processing 5-46

in VSM task termination 5-106
ASM (see auxiliary storage manager)
ASMHD (auxiliary storage management header)

(VSl.03.807)
in VIO data set processing 5-202 (VSl.03.807)

ASMST AGQ (ASM staging queue) (VS1.03.807)

Index

in page processing 5-119 (VS1.03.807)
in VIO data set processing 5-202 (VS1.03.807)

ASPCT (auxiliary storage page correspondence table)
(VS1.03.807)

in save, activate, and release processing 5-202
(VS2.03.807)

in VIO completion 5-203 (VS2.03.807)
in VIO data set processing 5-222 (VS1.03.807)

ASPECT} diagram 5-216
ASPECT2 diagram 5-220
ASSIGN diagram 5-132
ASSIGNLGN

MO diagram of 5-216
processing of 5-202 (VS1.03.807)
recovery for 5-252 (VS2.03.807)

assign processing in VIO services 5-54
ASXB (address space extension block)

in VSM address space creation 5-102
asynchronous exits (see exit asynchronous)
AT A (ASM tracking area) (VS2.03.807)

in recovery processing 5-250 (VS1.03.807)
attributes, user (see V APS)
automatic priority group (see APG)
auxiliary storage, freeing 5-16
auxiliary storage manager (ASM)

introduction to MOs 5-117 (VS2.03.807)
recovery 5-250 (VS2.03.807)
relationship to real storage manager 5-3
VTOC 5-118 (VS2.03.807)

auxiliary storage manager I/O request area (see AlA)
auxiliary storage management visual table of contents

5-117
available queue element (see AQE)
available space, returning virtual region space to 5-100

BADSLOT diagram 5-460
BASEA (see MSRDA)
BLDTSKQ diagram' 5-184
broadcast data set (see SYS1.BRODCAST)
BUFLPROC diagram 5-454

chain ACE diagram 5-128
CHANGKEY routine (VS1.03.805)

function 5-88 (VS2.03.805)
channel availability table (see CAT)
CIW A (common internal work area)

in PGFIX/PGLOAD 5-34
in PGFREE 5-38
in PGOUT 5-40

clock, TOO (see TOO clock)
coefficients, resource (see resource factor coefficient)
;;ommand, reconfiguration (see reconfiguration commands)
common I/O active queue 5-38
common page data set (ASM) (VS2.03.807)

~verflow processing 5-152 (VS2.03.807)
comparator, clock (see clock comparator)
COMPBRST diagram 5-466
control, common allocation (see common allocation

control)
control blocks (see data areas)
corequisite publications iv (preface)
CPAB (cell pool address block)

in building a cell pool 5-108

Index 1-1

•

in deleting a cell pool 5-114
in FREECELL routine 5-112
in GETCELL routine 5-110

CTRUPDTE diagram 5-228
CVT (communication vector table)

in deleting a quick cell pool 5-114
in FREECELL routine 5-112
in freeing an address space 5-104
in GETCELL routine 5-110
in RSM functional recovery routine 5-83

deferred requests (in general frame allocation) 5-24
DEQ macro instruction (see ENQ/DEQ/RESERVE

routine)
dequeueing address space queue elements 5-105
de queueing POST queue elements 5-100
dequeueing region control blocks 5-104-5-105
dequeueing WAIT queue elements 5-100
device allocation/unallocation (see allocation/unallocation)
devices, generic (see generic allocation control)
direct access data set (see OADSM)
DOM (delete operator message) ID entries
DQE (descriptor queue element)

in freeing a virtual region 5-101
in VSM address space creation 5-102

duplex page data set (ASM) (VS2.03.807)
overflow processing 5-152 (VS2.03.807)

DWWIN
dynamic support system (see DSS)

ECB (event control block)
in page services interface 5-32
in PGFIX/PGLOAD root exit 5-36
in real storage reconfiguration 5-70
in V =R region allocation 5-10

ECCDB
end of task (see EOT)
ENQ macro instruction (see ENQ/DEQ/RESERVE

routine)
enqueueing a V=R request on the wait queue 5-98
EPAL (external parameter area locate mode, see EPA)
EP AM (external parameter area move mode, see EPA)
EPA TH (recovery audit trail area) (VS2.03.807)

in recovery processing 5-250 (VS2.03.807)
error messages

in getting a virtual region 5-99
error processing (see also error recovery EST AE processing)

in FREEMAIN 5-97
paging I/O post 5-29

error recovery (FRRs) e2
MO diagram 5-502

error recovery (see also error processing, EST AE
processing)

address space create 5-103
allocating virtual storage in GETMAIN 5-95
in free address space routine 5-105

error recursion (see recursion processing of errors)
exclusive control (see XCTL routine)
exit, attention (see attention exit)
exit handling (see EXIT routine)
external parameter area (see EPA)
external parameter area locate mode (see EPA)
external parameter area move Il}ode (see EPA)

faults (see page faults)
FBQE (free block queue element)

in FREEMAIN 5-97
in VSM address space creation 5-102

fetch (see program fetch)
find page routine 5-78
FINDPE diagram 5-378
FINISH diagram 5-320
FOE (fixed ownership element)

in PGFIX/PGLOAD 5-34
in PGFREE 5-38

FQE (free queue element)
in VSM address space creation 5-102

1-2 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

VS2.03.807

frame (see page frame)
frame, page, allocation of 5-24
FREECELL routine processing 5-112
FREECORE diagram 5-134
freeing a virtual region (FREEPART routine) 5-100
freeing a V=R region 5-12
freeing an address space 5-104
freeing pages 5-:14
FREEMAIN processing (freeing virtual storage) 5-96
FREEMAIN release processing 5-16
FRR (see functional recovery routine)
full analysis (see system resources manager)
functional recovery routine (see also termination conditions)

RSM 5-82

GOA (global data area)
in freeing an address space 5-104
in GETMAIN 5-95
in deleting a quickcell 5-114
in FREECELL 5-112
in GETCELL 5-110

generation data group (see GDG)
GETACE diagram 5-130
GET ALLX diagram 5-324
GETANIDE diagram 5-384
GETCELL routine processing 5-110
GETCORE diagram 5-126
GETERASE diagram 5-332
GETEXTS diagram 5-326
GETIOE diagram 5-380
GETLGN diagram 5-124
GETLPME diagram 5-190
GETMAIN processing 5-94
GETONE diagram 5-314
GETPART/FREEPART routine 5-98-5-101
getting a virtual region 5-98
GF A (general from allocation) queue

in PGFREE routine 5-39
global storage

freed when task terminates 5-106
GMAFREE diagram 5-164
GMAGET diagram 5-162

HIPO (see Method-of-Operation section)
housekeeping (see JFCB housekeeping)

lEA V AMSI object module
function 5-55

IEAVBLDP object module
function 5-74

lEA VCARR object module
function 5-105, 5-103, 5-107

lEA VCKEY object module (VS2.03.805)
function 5-88, 5-93, 5-116 (VSl.03.805)

lEA VCSEG object module
function 5-19

lEA VDLAS object module
function 5-60-5-62

lEA VDSEG object module
function 5-20

lEA VEQR object module
function 5-8

lEA VFP object module
function 5-78

lEA VFRCL object module
function 5-112

lEA VFREE object module
function 5-38

lEA VFXLO object module
function 5-34

lEA VGCAS object module
function 5-102-5-107

IEAVGFA object module
function 5-24

lEA VGFRR object module
function 5-95, 5-97

lEA VGMOO object module

function 5-94-5-97
lEA VGPRR object module

function 5-99, ~-1 0 1
lEA VGTCL object module

function 5-110
lEA VINV object module

function 5-76
lEA VIOCP object module

function 5-30
lEA VIT AS object module

function 5-58 -
lEA VOUT object module

function 5-40
lEA VPCB object module

function 5-74
lEA VPFfE object module

function 5-72
lEA VPIOI object module

function 5-52
lEA VPIOP object module

function 5:-28
lEA VPIX object module

function 5-22
lEA VPREF object module

function 5-84, 6-145
lEA VPRTO object module

function 5-98-5-101
lEA VPSI object module

function 5-32
lEA VRCF object module

function 5-68
lEA VRCV object module

function 5-82
lEA VRELS object module

function 5-14
lEA VRFR object module

function 5-64
IEAVSOUT object module

function 5-46, 5-50
lEA VSQA object module

function 5-6-5-7
lEA VSWIN object module

function 5-42, 5-44
lEA VSWPC object module (VS2.03.807)

function 5-50 (VS2.03.807)
lEA VSWPP object module (VS2.03.807)

function 5-45.0 (VS2.03.807)
lEA VTERM object module

function 5-62
IEAVTRV object module

function 5-80
IEAOPTOI object module

function 5-98-5-99
IEEMSER (see MSRDA)
ILRACT object module (VS2.03.807)

functional description 5-222 (VS2.03.807)
MO diagram 5-225 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRACTOO diagram 5-244
ILRALSOO diagram 5-340
ILRASNOO overview diagram 5-212
ILRASNLS diagram 5-188
ILRCMP object module (VS2.03.807)

functional description 5-153 (VS2.03.807)
MO diagram 5-184 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRCMPAE (entry point in ILRCMP) (VS2.03.807)
functional description 5-153 (VS2.03.807)
MO diagram 5-186 (VS2.03.807)

ILRCMPDI (entry point in ILRCMP) (VS2.03.807) "
functional description 5-153 (VS2.03.807)
MO diagram 5-185 (VS2.03.807)

ILRCMPNE (entry point in ILRCMP) (VS2.03.807)
functional description 5-153 (VS2.03.807)
MO diagram 5-187 (VS2.03.807)

ILRCMPOI object module (VS2.03.807)
functional description 5-252 (VS2.03.807)
MO diagram 5-283 (VS2.03.807)

ILREOTOO diagram 5-496
ILREOTOO-ILRETXR diagram 5-500

VS2.03.807

ILREOTOO-ILRRETRY dif;lgram 5-498
ILRFMTCV object module (VS2.03.807)

functional description 5-334 (VS2.03.807)
ILRFMTPG object module (VS2.03.807)

functional description 5-334 (VS2.03.807)
ILRFMTSW object module (VS2.03.807)

functional description 5-334 (VS2.03.807)
ILRFMTOO object module (VS2.03.807)

functional description 5-334 (VS2.03.807)
MO diagram 5-341 (VS2.03.807)

ILRFRROO overview diagram 5-502
ILRFRROO-ILRDETOO diagram 5-478
ILRFRROO-ILRFRROI diagram 5-480
ILRFRROO-ILRIOBOI diagram 5-486
ILRFRROO-ILRPEXOI diagram 5-504
ILRFRRO 1 object module (VS2.03.807)

functional description 5-254 (VS2.03.807)
ILRFRSL T object module (VS2.03.807)

MO diagram 5-149 (VS2.03.807) -
ILRGOS object module (VS2.03.807) ,

functional description 5-202 (VSl.03.807)
MO diagram 5-210 (VS2.03.801)
recovery for 5-252 (VS2.03.807)

ILRGOSOI object module (VS2.03.807)
functional description 5-252 (VS2.03.807)
MO diagram 5-288 (VS2.03.807)

ILRINTOO overview diagram 5-120
ILRINTOI diagram 5-476
ILRINTOI overview diagram 5-474
ILRIOCOO overview diagram 5-448
ILRIOCOI diagram 5-488
ILRIOFRR object module (VS2.03.807)

functional description 5-250 (VS2.03.807)
MO diagram 5-257 (VS2.03.807)

ILRJTERM object module (VS2.03.807)
functional description 5-203 (VS2.03.807)
MO diagram 5-219 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRMONOI diagram 5-482
ILRMSGOO object module (VS2.03.807)

functional description 5-153 (VS2.03.807)
in overflow processing 5-152 (VS2.03.807)
MO diagram 5-195 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILROPSOO object module (VS2.03.807)
in PAGEADD processing 5-344 (VS2.03.807)
MO diagram 5-351 (VS2.03.807)

ILRPAGCM object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-135 (VS2.03.807)
recovery for 5-251 (VS2.03.807)

ILRPAGIO object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-122 (VS2.03.807)
recovery for 5-251 (VS2.03.807)

ILRPEX object module (VS2.03.807)
functional description 5-334 (VS2.03.807)
MO diagram 5-340 (VS2.03.807)

ILRPGEXP object module (VS2.03.807)
functional description 5-344 (VS2.03.807)
MO diagram 5-346 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRPOS object module (VS2.03.807)
functional description 5-202 (VS2.03.807)
MO diagram 5-205 (VS2.03.807)
recovery for 5-250, 5-253 (VS2.03.807)

ILRPREAD object module (VS2.03.807)
in PAGEADD processing 5-344 (VS2.03.807)
MO diagram 5-364 (VS2.03.807)
recovery for 5-254 (VS2.03.807)

ILRPTM object module (VS2.03.807)
functional description 5-152 (VS2.03.807)
MO diagram 5-156 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRPTMOO diagram 5-388
ILRRLG object module (VS2.03.807)

functional description 5-222 (VS2.03.807)
MO diagram 5-235 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRGIOOO overview diagram 5-370

Index 1-3

ILRRLGOO overview diagram 5-300
ILRRLPOO overview diagram 5-222
ILRSA V object module (VS2.03.807)

functional description 5-222 (VS2.03.807)
MO diagram 5-228 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRSA VOO overview diagram 5-278
ILRSRBC object module (VS2.03.807)

functional description 5-203 (VS2.03.807)
MO diagram 5-214 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRSRBOI object module (VS2.03.807)
functional description 5-253 (VS2.03.807)
MO diagram 5-296 (VS2.03.807)

ILRSRT object module (VS2.03.807)
functional description 5-152 (VS2.03.807)
MO diagram 5-165 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

ILRSRTOO overview diagram 5-390
ILRSRTOI object module (VS2.03.807)

functional description 5-252 (VS2.03.807)
MO diagram 5-278 (VS2.03.807)

ILRSW AP object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-130 (VS2.03.807)
recovery for 5-250, 5-251 (VS2.03.807)

ILRSWPDR object module (VS2.03.807)
functional description 5-119 (VS2.03.807)
MO diagram 5-134 (VS2.03.807)
recovery for 5-250, 5-251 (VS2.03.807)

ILRSWPOI object module (VS2.03.807)
functional description 5-251 (VS2.03.807)
MO diagram 5-270 (VS2.03.807)

ILRTERMR object module (VS2.03.807)
functional description 5-334 (VS2.03.807)
MO diagram 5-336 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRTMCOO diagram 5-358'
ILRTMIOI object module (VS2.03.807)

functional description 5-253 (VS2.03.807)
MO diagram 5-300 (VS2.03.807)

ILRTMRLG object module (VS2.03.807)
functional description 5-223 (VS2.03.807)
MO diagram 5-239 (VS2.03.807)
recovery for 5-253 (VS2.03.807)

ILRTMROO diagram 5-506
ILRTMROI diagram 5-492
ILRTMROI error processing diagram 5-494
ILRTMROloverview 5-490
ILRTRPAG (entry point in ILRPOS) (VS2.03.807)

functional description 5-202 (VS2.03.807)
MO diagram 5-209 (VS2.03.807)
recovery for 5-250, 5-251 (VS2.03.807)

ILRTRPOO overview 5-230
ILRVIOCM object module (VS2.03.807)

functional description 5-203 (VS2.03.807)
MO diagram 5-217 (VS2.03.807)
recovery for 5-251 (VS2.03.807)

ILRVSAMI· object module (VS2.03.807)
functional description 5-223 (VS2.03.807)
in save, activate, and release processing 5-222

(VS2.03.807)
MO diagram 5-242 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

initialize BUPC diagram 5-410
input stream (see converter)
input options for MF/l (see options, MF/l)
installation performance specifications (see IPS value$)
in-stream procedures (see JCL statements)
instructions (see also macro, instructions)
insufficient space for V =R region allocation 5-98-5-99
integrity (see data'·set integrity processing)
intentional ABENDs, handling in RSM FRR 5-82-5-83
INTMON diagram 5-170
input/output diagram 5-146
1/0 completion

page I/O post 5-28
I/O control (ASM) (VS2.03.807)

introduction to MOs 5-119 (VS2.03.807)
overview diagram 5-121 (VS2.03.807)

1-4 OS/VS2 System Logic Ubrary Volume 5 (VS2.03.807)

VS2.03.807

I/O error processing 5-29
I/O paging queues, checking by PGFREE routine 5-38
I/O request overview diagram 5-366
I/O subsystem (ASM) (VS2.0J.807)

introduction to MOs 5-152 (VS2.0J.807)
overview diagram 5-155 (VS2.0J.807)

10E (I/O request element) (VS2.03.807)
in page processing 5-119 (VS2.03.807)

10RB (1/0 request block) (VS2.03.807)
in completion processing 5-119 (VS2.03.807)
in swap processing 5-153 (VS2.0J.807)

job control language (see JCL)
job step allocation (see step allocation)
journal (see job journal)

LCCA (logical communications configuration area)
in page invalidation 5-76
in program interruption extension 5-22

LDA (local data area)
in freeing a virtual region 5-100
in FREEMAIN 5-96
in getting a virtual region 5-98
in VSM address space creation 5-102

LGE (logical group entry) (VS2.0J.807)
in VIO data set processing 5-202 (VS2.03.807)

LGE process queue (VS2.03.807)
in save, activate, and release processing 5-203

(VS2.0J.807)
in transfer page processing 5-203 (VS2.0J.807)
in VIO completion processing 5-203 (VS2.0J.807)
in VIO data set processing 5-202 (VS2.0J.807)

LGVT (logical group vector table) (VS2.0J.807)
in VIO data set processing 5-202 (VS2.0J.807)

LGVTE (logical group vector table entry) (VS2.0J.807)
description of 5-202 (VS2.0J.807)

link pack area (see LP A)
local I/O active queue, in PGFREE routine' 5-38
lock manager (see SETLOCK)
log data set (see system log)
log hardcopy (see hardcopy of system log)
log, system (see system log)
logical reconfiguration (see reconfiguration commands)
LPME (logical-to-physical mapping entry) (VS2.0J.807)

in VIO data set processing 5-202 (VS2.0J.807)
LSID (logical slot identifier) (VS2.0J.807)

in page processing 5-119 (VS2.0J.807)
in VIO completion processing 5-202 (VS2.0J.807)
in VIO data set processing 5-202 (VS2.0J.807)

LSQA
allocation 5-6-5-7
allocation of virtual storage in GETMAIN routine

5-94-5-95
stealing a frame if no preferred area frame is on

available frame queue 5-7
LSQA control blocks, setting up

in VSM address space creation 5-102-5-103
LSQA storage

freed when task terminates 5-106-5-107
LSQA swap I/O initiator 5-52 (VS2.0J.807)

mark slot available diagram 5-472
master JCL
method of operation (ASM) 5-117

ACTCACE 5-260
ACTCLUP 5-276
ACTCOND 5-254
ACTFREE 5-274
ACTGETB 5-250
ACTGETN 5-322
ACTINIT 5-266
ACTINPR 5-258
ACTIVATE 5-122
ACTREEN 5-248
ACTSLOT 5-270
ACTUPDT 5-312
ADDLSID 5-286

ADDSLOT 5-464
ALSPROC 5-342
ASPCTII 5-216
ASPCTI2 5-220
ASSIGN 5-132
auxiliary storage management overview 5-118
auxiliary storage management visual table of contents

5-117
BADSLOT 5-460
BLDTSKQ 5-184
BUFCPROC 5-454
chain ACE 5-128
FINDPE 5-378
FINISH 5-320
FREECORE 5-134
GETALLX 5-324
GETCORE 5-126
GETERASE 5-332
GETEXTS 5-326
GETIOE 5-380
GETLGN 5-124
GETONE 5-314
GMAFRGET 5-162
ILRACT 5-225 (VS2.03.807)
ILRACTOO 5-244
ILRALSOO 5-340·
ILRASNOO overview 5-212
ILRCMP 5-184 (VS2.03.807)
ILRCMPAE 5-186 (VS2.03.807)
ILRCMPDI 5-185 (VS2.03.807)
ILRCMPNE 5-187 (VS2.03.807)
ILRCMPOI 5-283 (VS2.03.807)
ILREOTOO 5-496
ILREOTOO-ILRETXR 5-500
ILREOTOO-ILRRETRY 5-498
ILRFMTOO 5-341 (VS2.03.807)
ILRFRROO overview 5-502
ILRFRROO-ILRDETOO 5-478
ILRFRROO-ILRFRROI 5-480
ILRFRROO-ILRIOBOI 5-486
ILRFRROO-ILRPEXOI 5-504
ILRFRSL T 5-149 (VS2.03.807)
ILRGOS 5-210 (VS2.03.807)
ILRGOSOI 5-288 (VS2.03.807)
ILRINTOO overview 5-120
ILRINTOI 5-476
ILRINTOI overview 5-474
ILRIOCOO-ILRIOCOI 5-488
ILRIOFRR 5-257 (VS2.03.807)
ILRJTERM 5-219 (VS2.03.807)
ILRIOCOO overview 5-448
ILRMONOO overview 5-158
ILRMONOI 5-482
ILRMSGOO 5-195 (VS2.03.807)
ILROPSOO 5-351 (VS2.03.807)
ILRPAGCM 5-135 (VS2.03.807)
ILRPAGIO 5-122 (VS2.03.807)
ILRPEX 5-340 (VS2.03.807)
ILRPGEXP 5-346 (VS2.03.807)
ILRPOS 5-205 (VS2.03.807)
ILRPREAD 5-364 (VS2.03.807)
ILRPTM 5-1 S6 (VS2.03.807)
ILRPTMOO 5-388
ILRQIOOO overview 5-370
ILRRLG 5-235 (VS2.03.807)
ILRRLGOO overview 5-300
ILRRLPOO overview 5-222
ILRSA V 5-228 (VS2.03.807)
ILRSA VOO overview· 5-278
ILRSRBC 5-214 (VS2.03.807)
ILRSRBOI 5-296 (VS2.03.807)
ILRSRT 5-165 (VS2.03.807)
ILRSRTOO overview 5-390
ILRSRTOI 5-278 (VS2.03.807)
ILRSW AP 5-130 (VS2.03.807)
ILRSWPD~ 5-134 (VS2.03.807)
ILRSWPOI 5-270 (VS2.03.807)
ILRTERMR 5-336 (VS2.03.807)
ILRTMCOO 5-360
ILRTMCOO overview 5-358

VS2.03.807

ILRTMIOI 5-300 (VS2.03.807)
ILRTMRLG 5-239 (VS2.03.807)
ILRTMROO 5-506
ILRTMROI 5-492
ILRTMROI error processing 5-494
ILRTMROloverview 5-490
ILRTRPAG 5-209 (VS2.03.807)
ILRTRPOO overview 5-230
ILRVIOCM 5-217 (VS2.03.807)
ILRVSAMI 5-242 (VS2.03.807)
input/output 5-146
INTIALIZE BUFC 5-410
INTMON 5-170
I/O request overview 5-366
mark slot available 5-472
Dlovehead 5-446
NOAIE 5-174
prepare for a write 5-418
process request 5-430
PROCLG· 5-166
PUTASPCT 5-338
PUTONE 5-318
QUEIOE 5-382
QUEIT 5-176
QUESW AP 5-374
RECHAIN 5-458
RECHAIN 5-438
RELLG 5-136
RELLP 5-138
REMOVA 5-192
REVERSER 5-172
RLGSGOI 5-304
RLGSG02 5-308
RLGSG03 5-310
RLGSG04 5-354
RLGSG05 5-356
RLPSGOI 5-224
SAVE 5-140
SA VEACT 5-150
SAVEPUT 5-334
SA VSG04 5-282
SA VSG06 5-288
SA VSG08 5-292
SA VSG 10 5-294
SA VSG 11 5-284
SAVSG061 5-344
SA VSG062 5-346
SA VSG063 5-348
select I/O request 5-402
sort rotation 5-434
STARTOP 5-178
STINDV 5-180
SVRLGGET 5-328
SW APCHK 5-148
TRPAGE 5-142
TRPSG02 5-234
TRPSG03 5-236
TRPSG04 5-240

mounting a volume (see voluDle mount & verify)
MOVEHEAD diagram 5-446
move-out processing in VIO services routine 5-56-5-57
MP (see multi-processor system)
MSRDA or BASEA (master scheduler resident data area)

in VSM address space creation 5-102
MSS
multi-unit generic (see MUG)

new address space (see address space)
NOAIE diagram 5-174 .
NOTREADY diagram 5-468
null assignment in VIO services routine 5-55

Operation (see Method of Operation Section)
operator console (see console)
Organization (see Program Organization Section)

page data sets (ASM) (VS2.03.807)

Index 1-5

dynamic addition of 5-344 (VS1.03.807)
page expansion (ASM) (VS1.03.807)

introduction to MOs 5-344 (VS1.03.807)
overview diagram 5-345 (VS1.03.807)

page faults
error in 5-82
global locks end 5-22
satisfying 5-22
validity checking 5-22

page, finding 5-78
page fix (see also PGFIX)

freeing a fixed page 5-38
"long fix" processing 5-24, 5-38
processing 5-34

page frame (see also GFA)
allocation 5-24, 5-34
assigning real 5-42
freeing 5-52, 5-40
interruption 5-22
paging out 5-40
reclamation 5-24
replacement 5-64, 3-47
status, determining 5-8
stealing 5-6
validating 5-64

page free request (see PGFREE)
page I/O completion processing 5-28
page I/O initiation 5-52
page I/O initiation error 5-59
page I/O post 5-28
page load (see PGLOAD)
page release processing 5-14
page seconds 5-73 (VS1.03.807)
page services interface 5-32
page services interface error 5-32
page table building/creation

in obtaining a new memory 5-102, 2-250
in V =R region allocation 5-8

page table, freeing 5-12
page-in completion 5-28
paging termination services 5-62
page-out completion 5-28
page validation 5-65
PAGEADD command (ASM) (VS1.03.807)

processing of . 5-344 (VS1.03.807)
paging I/O 5-119 (VS1.03.807)
parse (see HOP ARSE)
PART (page activity reference table) (VS1.03.807)

in page processing .5-119 (VS1.03.807)
PARTE (page activity reference table entry) (VS1.03.807)

in page processing 5-152 (VS1.03.807)
path, device (see device path)
PCB (page control block)

in freeing a V=R region 5-12
in FREEMAIN release processing 5-16
in general frame allocation 5-24
in page I/O initiation 5-52
in page I/O post 5-28
in page release processing 5-14
in page termination services 5-62
in PCB management 5-74
in PGFIX/PGLOAD root exit 5-36
in PGOUT 5-40
in program interruption extension 5-22
in real storage reconfigurafion 5-70
in swap-in processor routine 5-42
in swap-in root exit 5-44
in swap-out processor routine 5-46
in swap-out root exit 5-50
in V=R region allocation 5-10
in VIO services 5-56
I/O complete 5-46
I/O not-complete 5-46

. PCB manager 5-74
PCCW (program channel command workarea) (VS2=03=807)

in completion processing 5-153 (VS1.03.807)
in page processing 5-152 (VS1.03.807)

PFK (see program function key)
PFTE (page fix table entry)

in deleting an address space 5-60

1-6 OS/VSl System Logic Ubrary Volume 5 (VS1.03.807)

VS1.03.807

in freeing a V=R region 5-12
in FREEMAIN release processing 5-16
in general frame allocation 5-24
in initializing an address space 5-58
in LSQA/SQA allocation 5-6
in page frame replacement 5-64
in page I/O completion processing 5-30
in page release processing ~-14
in page termination services 5-62
in PFTE enqueue/dequeue 5-72
in PGFIX/PGLOAD 5-36, 5-34
in PGFREE 5-38
in PGOUT 5-40
in swap-out 5-46
in translating real to virtual 5-80
in VIO services 5-54
in V =R region allocation 5-8
putting on LSQA frame queue 5-58

PFTE (enqueue dequeue 'routine) 5-72
PGFIX

completion 5-36
interfaces 5-32
processing 5-34

PGFREE
interfaces 5-32
processing

PGLOAD
completion
interfaces
processing

PGOUT

5-38

5-36
5-32
5-34

processing 5-40
PGTE (page table entry)

calculating addresses in 5-78
in creating a segment 5-18
in destroying a segment 5-20
in finding a page 5-78
in FREEMAIN release processing 5-16
in general frame allocation 5-24
in LSQA/SQA allocation 5-6
in page frame replacement 5-64
in page I/O post 5-28
in page invalidation 5-76
in page release processing 5-14
in PGFIX/PGLOAD processing 5-34
in PGOUT 5-40
in program interruption extension 5-22
in real storage reconfiguration 5-68
in swap-in root exit 5-44
in VIO services 5-54
in invalidating real and virtual pages 5-14, 5-76
initializing 5-18

PLP A page data set (ASM) (VS1.03.807)
overflow processing 5-152 (VS1.03.807)

PLP ASA VE diagram 5-186
pool (see quick cell)
posting region requests

error termination 5-100
PQE (partition queue element)

in freeing a virtual region 5-101
in VSM address space creation 5-103

preferred area, meaning of 5-25
preferred area steal (in RSM) 5-84
prepare for a write diagram 5-430
process request diagram 5-430
processors, command (see command processing)
PROCLG diagram 5-171
program interrupt extension 5-22
programmer, writing to (see WTP)
prompting exit (see pre-prompt exit, LOGON)
PUT ASPCT diagram 5-338
PUTONE diagram 5-318
PVT (page vector table)

in PFTE enqueue/dequeue 5-72
in RSM functional recovery routine 5-82
in swap-in 5-42

QUEIOE diagram 5-382
QUEIT diagram 5-176

QUESWAP diagram 5-374
quick cell

allocating 5-110
boundary alignment of pool 5-112
building pools 5-108
deleting pool 5-114
formatting pool 5-108
freeing pool space 5-114, 5-112
returning to pool 5-112

RCA (RSM recovery communications area)
in initializing an address space 5-58
in initiating page I/O 5-52
in page 110 post 5-28
in page termination services 5-62
in RSM functional recovery routine 5-82
in swap-in 5-42

real address, translating to virtual 5-80
real frame (see page frame)
real frame replacement 5-64
real storage

reconfiguration 5-68
real storage manager

functional recovery routine 5-82
PGFIX function 5-34, 5-36
preferred area steal 5-84

RECHAIN diagram 5-458, 1-2-2-282
recording, error (see error recording)
recovery (ASM) (VS2.03.807)

introduction to MOs 5-250 (VS2.03.807)
overview diagram 5-256 (VS2.03.807)

recovery, error (see error recovery EST AI)
recovery, FRR (see functional recovery routine)
region allocation

insufficient space for 5-99, 5-9
V=R 5-8
XMPOST errors during 5-99

region control blocks
creating 5-102-5-103
dequeueing 5-104-5-105
releasing 5-12-5-13, 5-101

region control task
posting by swap-in root exit 5-44

region requests
checking V =R requests after freeing a region

5-100-5-101
V=R 5-98
V=V 5-98
XMPOST error during 5-99

region size, system default 5-99
region validation 5-10-5-11
RELEASE LG (RELLG)

functional description5-222 (VS2.03.807)
initial processing of 5-203 (VS2.03.807)
MO diagram 5-136
recovery for 5-252 (VS2.03.807)

release processing in FREEMAIN routine 5-16
RELLG diagram 5-136
RELLP diagram 5-138
REMOVA diagram 5-192
requests, allocation
requests, region (see region requests)
resources manager (see system resources manager)
restarting (see restart)
returning virtual region space to available space (in

FREEPART) 5-100
REVERSER diagram 5-172
RLGSGOI diagram 5-304
RLGSG02 diagram 5-308
RLGSG03 diagram 5-310
RLGSG04 diagram 5-354
RLGSG05 diagram 5-356
RLPSGO 1 diagram 5-224
RMPL (system resources manager parameter list)

in page termination services 5-62
RMWA

in page termination services 5-62
RSM (see real storage manager)
RSM functional recovery routine 5-82

VS2.03.807

RSM preferred area steal 5-84
RSM V =R region allocation 5-98
RSMH

in deleting an address space 5-60
in destroying a segment 5-20
in initializing an address space 5-58

R/TM (see recovery termination)

'S' symbol (VS2.03.807)
in save, activate, and release processing 5-222

(VS2.03.807)
SART (swap activity reference table) (VS2.03.807)

in swap processing . 5-119 (VS2.03.807)
SARWAITQ (SART wait queue) (VS2.03.807)

in swap completion processing 5-120 (VS2.03.807)
SAVE LG request (VS2.03.807)

functional description 5-222 (VS2.03.807)
initial processing of 5-203 (VS2.03.807)
recovery for 5-252 (VS2.03.807)

SA VEACT diagram 5-150
SAVE diagram 5-140
SAVE PUT diagram 5-334
SA VSG04 diagram 5-282
SA VSG06 diagram 5-288
SA VSG08 diagram 5-292
SA VSG 10 diagram 5-294
SA VSG II diagram 5-284
SA VSG061 diagram 5-344
SAVSG062,diagram 5-346
SA VSG063 diagram 5-348
SCCW (swap channel command workarea) (VS2.03.807)

in completion processing 5-153 (VS2.03.807)
in swap processing 5-119 (VS2.03.807)

scheduler (see job scheduler)
screen image buffer (see SIB)
SDW A (system diagnostic work area)

in freeing an address space 5-104
in freeing a virtual region 5-100
in getting a virtual region 5-98
in RSM functional recovery routine 5-82
in VSM address space creation 5-102
in VSM task termination 5-106

SECCHK diagram 5-386
second level interrupt handler (see SLIH)
segment

creating, in lEA V CSEG 5-18
destroying, in lEA VDSEG 5-20
invalidating, in RSM 5-16

SEGRLSE diagram 5-226
select I/O request diagram 5-402
service routine (ASM) (VS2.03.807)

introduction to MOs 5-334 (VS2.03.807)
overview diagram 5-335 (VS2.03.807)

SGTE (segment table entry)
in creating a segment 5-18
in destroying a segment 5-20
in FREEMAIN release processing 5-16
in initializing an address space 5-58
initializing 5-18
invalidating 5-20
swap-in root exit 5-44
in V =R region allocation 5-8

shared subpools
exception in freeing when task terminates 5-106

SIB (screen image buffer)
signal processor (see SIGP instruction)
single line message (see WTO)
SMF (System Measurement Facility)

TCT "storage-used" field, updating by FREEMAIN
5-97

sort rotation diagram 5-434
space, address (see address space)
space, region

allocating in GETPART 5-98
SPCT (swap control table)

in creating a segment 5-18
in deleting an address space 5-60
initializing 5-58, 5-18
in swap-in 5-42

Judex 1-7

processing 5-46
root exit 5-50

repacking 5-20
SPQE (subpool queue element)

in freeing a virtual region 5-100
in" FREEMAIN 5-96
in GETMAIN 5-94
in getting a virtual region 5-98
in VSM task termination 5-106

SQA
allocation 5-6
allocation, virtual storage for 5-94
GETMAIN for, processing 5-94
reserve queue, search of to satisfy SQ A request 5-7
search of the available frame queue 5-6
stealing a frame if no preferred area frame is on the

available frame queue 5-7
SRB (service request block) (see also dispatcher)

in deleting an address space 5-60
in page I/O initiation 5-60
in page I/O post 5-28
in PCB management 5-74
in PFTE enqueue/dequeue 5-72
in real storage reconfiguration 5-68
in swap-in root exit 5-44 (VS2.03.807)
in swap-in post processor 5-45.0 (VS2.03.807)
in V =R region allocation 5-8

stack, FRR (see FRR stack)
STARTDP diagram 5-178
statement (see JCL statement)
status, console (see console status)
stealing Rage frames 5-64, 3-46, 5-7, 5-25, 5-84
STEPL (ST AE exit parameter list)
STINDY diagram 5-180
STOP MONITOR command
storage, global

freed when task terminates 5-106
storage management (see real storage manager, virtual

storage management, system resources manager)
storage, real allocation of frames 5-25
stream, input (see converter)
subpool numbers, attributes of 5-89
subpool number, checking in GETMAIN 5-94
subpool storage

freeing at task termination 5-106
subpool, checking in FREEMAIN 5-96
subpools, shared

exception from freeing at task termination 5-106-5-107
subsytem name, determination of 638
SVC interruptions (see supervisor interruptions handler)
SVC 109 (see extended SVC routing)
SVC 116 (see extended SVC routing)
SVC 122 (see extended SVC routing)
SVCIH (see supervisor interruption handler)
SVRLGGET diagram 5-328 '
SWA storage

freed when task terminates. 5-106
swap data sets (ASM) (VS2.03.807)

dynamic addition of 5-344 (VS2.03.807)
SW APCHK diagram 5-148
swapping I/O 5-119 (VS2.03.807)
swap-in, address space

root exit 5-44
completion error 5-82

swap-in processor routine (in RSM) 5-42, 5-44
swap-in root exit routine (in RSM) 5-44
swap-in post processor 5-45.0 (VS2.03.807)
swap-in SRM notification if swap-in fails 5-43
swap-out, address space

completion processor 5-50 (VS2.03.807)
initiating 5-52
root exit routine 5-50
SRM notification that swap-out is complete 5-51
swap-out processor (in RSM) 5-46, 5-50

System Activities Measurement Facility (see MF/l)
system default region size 5-99
system log data set (see system log)
System Measurement Facility (see SMF)
system parameter library (see SYS1.PARMLIB)
system reconfiguration (see reconfiguration commands)

1-8 OS/VS2 System Logic Ubrary Volume 5 (VS2.03.807)

VS2.03.807

system resources manager (SRM) (see also workload
manager) 3-3

swap-out completion, notification from RSM 5-50
system, stopping (see stopping)
system trace (see trace, system)
system trace termination (see trace termination)

TCB (task control block)
in freeing an address space 5-104
in GETMAIN 5-94
in page termination services 5-62
in PGFREE 5-38
in VSM task termination 5-106

TCT (timing control table)
FREEMAIN 5-96

terminator (see initiator/terminator)
text, internal (see converter, internal text)
timer second level interrupt handler (see timer SLIH)
TIOT manager control routine
TLB (translation look-side buffed

invalidating 5-20
purging 5-52

TMCMSG diagram 5-364
TMCSG06 diagram 5-360
TMCSGI0 diagram 5-362
TPCA (see TPC)
TRANSFER PAGE

MO diagram 5-142
translating real addresses to virtual 5-80
TRPAGE diagram 5-142
TRPSG02 diagram 5-234
TRPSG03 diagram 5-236
TRPSG04 diagram 5-240
TSO LOGON (see LOGON)

unit affinity (see allocating affinity requests)
unit, allocating request to (see allocating requests to units)
user, allocating virtual storage for (GETMAIN) 5-94
user, swapping (see swap-in, swap-out)

V==R completion processing for intercepted frames 5-6
V==R frame interception 5-11
V == R region allocation 5-8
V==R region requests, processing in GETPART 5-98
V == V region requests, processing in GETPART 5-98
values, IPS (see IPS values)
VCB

in VIO services 5-54
VIO control (ASM) (VS2.03.807)

introduction to MOs 5-202 (VS2.03.807)
overview diagram 5-204 (VS2.03.807)

VIO data sets (VS2.03.807)
activating 5-222 (VS2.03.807)
ASM processing of 5-202 (VS2.03.807)
creating 5-203 (VS2.03.807)
saving 5-222 (VS2.03.807)

VIO group operators (ASM) (VS2.03.807)
introduction to MOs 5-222 (VS2.03.807)
overview diagram 5-224 (VS2.03.807)

VIO services routine 5-54
virtual addresses, translating from real 5-80
virtual region

freeing 5-100
getting 5-98-5-99
space to available space, returning 5-100

virtual storage, a:uocating (GETMAIN processing) 5-94
virtual storage management (VSM)

address space creation 5-102
overview 5-87

virtual storage unallocation 5-96
volume serial number (see VOLSER)
volume, specific a:uocation (see specific volume a:uocation

control)
volume unload control (see IEFAB494 object module)
volunit table
VRWAITQ

in freeing a V=R region 5-101

VRWPQE (V=R wait/post queue element)
in getting a virtual region 5-98

VSL (virtual subarea list)
in freeing a virtual region 5-12
in page services 5-32
in PGOUT 5-40

VSM (see virtual storage management)
VSM address space creation 5-102
V=R region

freeing 5-12
getting 5-98-5-99, 5-8

write-to-programmer (see WTP)
WTOMSG diagram 5-154

XPTE (external page table entry)

VS2.03.807

calculating addresses in 5-78
in creating a segment 5-18
in finding a page 5-78
in freeing a virtual region 5-12
in FREEMAIN release processing 5-16
in general frame allocation 5-24
in LSQA/SQA allocation 5-6
in page processing 5-119 (VS2.03.807)
in PGFIX/PGLOAD 5-38
in PGO UT 5-40
in swap-in root exit 5-44
in VIO services 5-54
in V=R region allocation 5-8
initializing 5-18

XSA (extended save area)
in getting a virtual region 5-98

Index 1-9

1-10 OS/VS2 System Logic Library Volume 5 (VS2.03.807)

OS/VS2
System Logic Library
Volume 5

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READER'S
COMMENT
FORM

SY28-0765-0

Your comments, please ...

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

(')

s.

I
Fold Fold

- ------ - - - ---- - -----~

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

First Class
Permit 81
Poughkeepsie
New York

I
I
I
I

I
I
I
I
I
I
I
I
I

-----------------------~
Fold

TIrn~
<!)

iniernaiionai Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

c
g
<
(f.
I\:
(f.
-< en
S-
3 ,...
o
:c
n'
c
C"
""I
Q)

-<
<
Q..
c:
3
(1)

U1

Cii
Co)
-..J
o
W
S

CJ)

-<
I\,)
00
6
-..J
0)
U1
6

