

saUDS

Diagnosis Guide and Reference
for IBM VM Systems

Version 3 Release 4

"Reslricted Materials of IBM"
Licensed Materials - Property of IBM
LH08-8081-03 0 Copyright IBM Corp. 1887. 1883

LH09-8081-03

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Noml --,

Before using this information and the product it supports, be sure to read the general information
under "Notices" on page ix.

Fourth Edition (April 1993)

This edition applies to Version 3 Release 4, Modification Level 0, of the SOUDS Program 5688·103 and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or
addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address
your comments to:

IBM Canada Ltd. Laboratory
Information Development
21/986/844ITO R
844 Don Mills Road
North York, Ontario, Canada M3C 1V7

You can also send your comments by facsimile to (416) 448-6057 addressed to the attention of the RCF Coordi·
nator. If you have access to Internet, you can send your comments electronically to torrcf@vnet.lbm.com;
IBMLINK, to torlbm(torrcf); IBM/PROFS, to torolab4(torrcf); IBMMAIL, to Ibmmall(calbmwt8)

If you choose to respond through Internet, please include either your entire Internet network address, or a postal
address.

J

When you send Information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you. J
o Copyright Int.rnatlonal Busln ... Machin •• Corporation 1887, 1883. All rights r ... rv.d.
Note to U.S. Government U .. rs - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines Corporation, Armonk, N.Y.

"Restricted Material. of IBM"
Licensed Material. - Property of IBM

Contents

Notices
Programming Interface Information
Trademarks and Service Marks

About This Manual
Purpose
Audience
Contents
Components of the SQLlDS System
Syntax Notation Conventions

Summary of Changes for SQUDS Version 3 Release 4
Enhancements, New Functions, and New Capabilities

Support for the IBM DATABASE 2 AIX/6000 Database Manager
Cascade Delete Enhancement for Referential Integrity
Improved EXPLAIN Capabilities
Host Structure Variables
Removal of 512 Host Variable Restriction
Enhanced SHOW STORAGE Command .

Usability Enhancements
Package Dbspace Full Condition Handling
The Connectable and Unconnected State
Dual Logging Enhancement

Reliability, Availability, and Serviceability Improvements
Processing a DROP TABLE Statement
Enhancement to COLDLOG Processing
Improved Storage Trace

Library Enhancements
SQLlDS Performance Tuning Handbook
Revised Manuals

Chapter 1. Introduction to Problem Diagnosis
Diagnosis Flowcharts

Chapter 2. SQL/DS Concepts
Introduction

SQLlDS Components in the Application Requester
Database Services Utility (DBSU)
Interactive SQL (ISQL)
Preprocessors (PREP)
VM Resource Adapter (VRA)

SQLlDS Components in the Application Requester and the Application
Server

Data System Control (DSC)
Data Conversion (CONV)
Distributed Relational Resource Manager (DRRM)

SQUDS Components In the Application Server
Work Unit Manager (WUM)
Relational Data System (RDS)
Database Storage Subsystem (DBSS)

LHoa-aoa1.()3 e Copyright IBM Corp. 1887, 1883

ix
ix
x

xi
xi
xi
xi
xii
xiv

xix
xix
xix
xix
xix
xix
xx
xx
xx
xx
xx
xx
xx
xx
xxi
xxi
xxi
xxi
xxi

1
1

5
6
7
7
7
7
7

7
7
8
8
8
8
8
9

III

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The SQLlDS RDBMS in Single User Mode .
The SQLlDS RDBMS in Multiple User Mode

When Using the SQLlDS-only Protocol
When Using the DRDA Protocol

Logical Unit of Work Concepts
Agent Handling Concepts

Agent Handling Functions
Allocating Users to Agent Structures
Dispatcher Components
Conceptual Overview of Prioritization Scheme
Conceptual Overview of the Fair Share Auditing Process
Finding "Deprived" Agents
Setting Fair Share Interval Size
Locating and Dispatching a Dispatchable Agent
Agent Processing at the End of an LUW

Communications Concepts
Concepts on the Application Requester
Concepts on the Application Server ..
Inter-User Communications Vehicle (IUCV) Protocol
Advanced Program-to-Program CommunicationslVM (APPCIVM) Protocol
Application Program Use of IUCV or APPCIVM

Package Management Concepts
RDIiNs
Preprocessing
Execution-Time Processing
Package Cache Management
Repreprocessing
Authorization

Storage Management Concepts
Memory Management Concepts
Logical Storage Management Concepts
Physical Storage Management Concepts
Buffer Storage Management Concepts

Index Concepts
Basic Index Structure
Index Space Management
Invalid Indexes
Transient Indexes
Clustering Index
Clustered Indexes
Index Fragmentation

Sorting Concepts
Logging/Recovery Concepts
Locking Concepts

Specifying Isolation Levels
Locking Hierarchy
Lock Modes
Lock Durations
Lock Compatibility
Types of Internal Data Manipulation Calls
Locking for Different Internal OM Calls
Deadlock Detection
Escalation of Locks
Access to Private DBSPACEs

10
10
10
11
11
12
13
13
14
14
15
15
16
16
17
17
17
18
18
20
25
25
26
26
28
29
30
30
31
31
32
36
39
39
39
40
41
41
42
42
43
44
46
55
56
57
58
59
59
60
60
65
65
88

Iv SQLJDS Diagnosis for VM L.H09-I081-03 CI Copyright IBM Corp. 1887, 1&83

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Termination Concepts

Chapter 3. Reporting Defects
Developing the First (Two) Keyword(s)

Component Identification Keyword (PIDS)
Release Level Keyword (LVLS)

Developing the Remaining Keywords
Ab.normal Termination ..
Message
First Failure Data Capture
No Response
Wait or Loop
Slow Response
Incorrect or Missing Output
Document

Additional Keywords
SQLCODES
SQL Statements ..
Start-up Parameters
Data Type
Application Type
EXECs

Application Program Generated SQLCODES
Invocation
Interactions

Reporting a Problem
Materials '.
Environments

......... 66

. 69
70
70
71
72
72
74
76
80
80
81
81
81
82
82
82
82

.......... 82
83
83
83
83
85
85
85
87

Chapter 4. Functional Problems 95
System-Related Error Codes 95

SQL COMMAND FAILED (-901) 95
ROLLED BACK DUE TO A DEADLOCK (-911) " 96
ROLLED BACK DUE TO EXCESSIVE (SYSTEM WIDE) LOCK REQUESTS

(-912) 96
ROLLED BACK DUE TO EXCESSIVE LOCKS HELD FOR THIS LUW (-915) 96

Common User-related Error Codes 96
SQL COMMAND LIMITATION EXCEEDED (-101) 96
CREATOR.TABLE WAS NOT FOUND (-204) 97
INPUT VARIABLE DATA TYPE NOT COMPATIBLE WITH COLUMN (-301) 97
INPUT HOST VARIABLE TOO LARGE (-302) 98
AN INDICATOR VARIABLE IS MISSING (-305) 99
MISMATCH BETWEEN NUMBER OF HOST VARIABLES (-313) 99

Functional Deviations 99
Lockout with Cursor Stability 99
FETCH with Cursor Stability 99

Chapter 5. Diagnosing Performance Problems 101
Performance Analysis Glossaries 102

Glossary of Performance Index Headers 102
Glossary of Performance Indicator Terms 102
Glossary of Performance Terminology 103

Performance Problem Indexes 105
Application Function Indexes to Performance Problems 106

LH08-8081-03 e Copyright IBM Corp. 1887. 1e83 Contents V

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

General Performance Problems
Data Authorization Performance Problems
Data Definition Performance Problems ..
Data Manipulation Performance Problems
Data Utilities Performance Problems
Recovery Control Performance Problems
Performance Problems by Performance Symptom
Agent Related Performance Problems
CPU Related Performance Problems
I/O Related Performance Problems
Locking Related Performance Problems
Storage Related Performance Problems
Special Case Performance Problems

Analysis of Performance Problems ..
Adjacent Key Locking in User Data
Agents Being Held
Bad Data Distribution
BLOCK I/O, APPCIVM and IUCV Not Resident
Blocking Suppression for INSERT CURSORs
Buffer Pool Too Big
Buffer Pool Too Small
CHARNAME Not Set Correctly
Checkpoint is Being Forced at End-LUW
CHKINTVL Too Big
CHKINTVL Too Small
CMS Work Unit Support Set On
Conflict in Catalog Key Locking
Conflict on Key Hash in User Data
CREATE INDEX Requires a Large Sort
Data Not Cached
Database Machine Favored Too Little
DBSPACE Scan Being Performed
Deadlocks
DRDA Protocol Used to Access an SQUDS Database
DRDA Usage
ECMODE ON for Accounting
Excessive I/Os on INSERT .
Excessive Locking in User Data
Frequent Checkpoints caused by SOSLEVEL
Hot Spot in the Catalog Tables
Hot Spot in User Tables
I/O Capacity Exceeded
I/O Not Balanced
Inaccurate Statistics
Index Disqualified .
Index Maintenance .
Index No Longer Highly Clustered
Indexes Are Fragmented
Inefficient Search ...
Inefficient SELECT List
Insufficient Indexing
Invalid Entities Exist
Large Tables Share Same DBSPACE
Lock Level Too High

107
108
108
109
110
111
111
111
112
113
114
114
115
115
115
119
122
125
125
126
128
130
130
131
132
134
134
136
138
139
139
141
146
147
147
147
147
149
152
153
158
160
161
162
164
167
168
169
170
174
174
175
175
178

vi sQuos OI.gnosls tor VM LH08-8081·03 C Copyright IBM Corp. 1887, 1883

J

J

J

J

"Restricted Materials of IBM"
Licensed M ateri als - Property of IBM

Lock Level Too Low
Locks Held for Long Duration
Logging during Load
Long DBSS Calls Delaying Checkpoint
Missing Search Condition ...
Need a Highly Clustered Index
Need More CPU
Need More Real Storage
NLRB Parameters Too Large
NLRB Parameters Too Small
No Selective Index
One Database Machine Needs Too Much CPU
Package Needs Re-preprocessing
Package Cache Too Big or Threshold Too High
Package Cache Too Small or Threshold Too Low
Page Fault Serial·ization
Query Block Size Too Small
Range Predicate Used with Host Variables
Sequential Processing
Session Limit Exceeded
SET QDROP OFF USERS or SET QUICKDSP ON Not Used
SQUDS Code Not Shared
Storage Pool Full
Synchronous APPCIVM Not Used
Too Few Agents .
Too Many Agents
Too Many Joins
UPDATE STATISTICS by DATA LOAD
Very Nonunique Index Key Prefix

Chapter 6. Recovering from OBSS Errors
Interpreting the Diagnostic Display
Action to Take for FORWARD Processing Failures ..
Action to Take for ROLLBACK Processing Failures
Action to Take for UNDO Processing Failures

UNDO Processing Failure During a Warm Start .
UNDO Processing Failure During a Restore ...

Action to Take for REDO Processing Failures
REDO Processing Failure During a Warm Start ..
REDO Processing Failure During a Restore

Filtered Log Recovery
Extended Processing
Bypassing an UNDO WORK Failure
Rolling Back Committed Work
Filtered Log Recovery and Referential Integrity
Disabling a DBSPACE
Enabling a DaSPACE

Chapter 7. Recovering from Directory Verify Errors
Guidelines for Using Directory Verification
Recovery Actions for an Inconsistency

Chapter e. Problem Isolation and Handling
System Problems

179
180
183
184
185
187
188
189
190
191
192
193
194
195
196
197
198
199
200
203
203
204
204
205
205
206
208
210
211

213
213
219
221
221
221
222
223
223
224
224
225
228
231
237
240
241

243
243
243

247
247

LH08-eoe1-03 C> Copyright IBM Corp. 1887,1883 Contents ,,11

SQL/DS Database Machine Problems
SQUDS Virtual Machine Dump Processing

Problem Isolation
SQUDS Dumps
SQL/DS Link Maps and Access
Dump Navigation
Storage Layout after Initialization
Major Control Blocks

"Restricted Materials ot IBM"
Licensed Materials - Property ot IBM

247
249
250
250
252
253
256
260

Locating SQUDS Statements Associated with a System Error 262
DBSS OP Codes

Problem Isolation and The Trace Facility
Trace Facility

Trace in Storage
Using Trace for Deadlocks

Appendix A. RDIIN

Appendix B. Catalog Updates and References
Authorization
Interpretive Commands

Appendix C. SQLlDS Distributed Data Management (DDM) Command
Support

How to Read the Tables
Command Tables
Reply Tables

Glossary ..

Bibliography

Index

265
267
267
267
267

273

283
283
286

297
297
298
298

311

313

315

vIII SQLlDS DI.gnosiS for VU LH08-aOS1-03 II:) Copyright IBU Corp. 1887. 1993

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM licensed program in this publication is not
intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, is the user's respon
sibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

This publication may contain examples of data and reports used in daily busi
ness operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Programming Interface Information
This publication is intended to help the customer to do diagnosis of SQUDS*
problems and primarily documents Diagnosis, Modification or Tuning Informa
tion.

Warning: Do not use this Diagnosis, Modification or Tuning Information as a pro
gramming interface.

However, this publication also documents Product-sensitive Programming Inter
face and Associated Guidance Information provided by the SQl/OS product.

Product-sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of the SQl/OS product. Use of such interfaces creates dependencies on
the detailed design or implementation of the IBM software product. Product
sensitive programming interfaces should be used only for these specialized pur
poses. Because of their dependencies on detailed design and implementation, it
is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

LH08-I081·03 "Copyright IBM Corp. 1887, 1883 Ix

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Product-sensitive programming interface

Product-sensitive Programming Interface and Associated Guidance Information ...

L...-_____ End of Product-sensitive programming interface _____J

Trademarks and Service Marks
The following terms, denoted by an asterisk (*), used in this publication, are
trademarks or service marks of IBM Corporation in the United States or other
countries:

DATABASE 2 DB2 DB212

DB2/S000 Distributed Relational DRDA
Database Architecture

IBM OS/2 05/400

S.QUDS VM/ESA VM/XA

VTAM AIX/SOOO

X SQLJDS Dllgnosll tor V~ LH08-8081-03 C> Copyright IB~ Corp. 1987, 1883

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

About This Manual

Purpose

Audience

Contents

This manual is a task oriented publication. It provides background information
which will allow you to better perform the tasks listed below. This manual
should be used for one of these tasks:

1. Determining if there is a problem with the SQUDS· RDBMS. This could be a
defect. a functional problem, or a performance problem.

2. Gaining insight on what you can do to recover from certain situations or
problems.

3. Developing a symptom string that describes a defect and reporting that
defect along with the necessary documentation of the problem.

If your problem is occurring during distributed processing, you should also refer
to the Distributed Relational Database Problem Determination Guide.

Wherever the term VM is used in this document, the reference applies to VM/SP,
VM/XA-, or VM/ESA-. The term VM/SP refers to VM/SP Release 6 with or
without High Performance Option (HPO). The term VM/XA refers to VM/XA SP
Release 2. The term VM/ESA refers to VM/ESA Release 1.0 or above.

This manual is intended for persons responsible for diagnosing and fixing prob
lems with the SQUDS RDBMS.

SQUDS Diagnosis Guide and Reference has eight chapters:

• Chapter One, "Introduction to Problem Diagnosis," gives a general
description of the diagnosis task. It offers a "flowchart" as a means of
directing you to the proper area within the manual.

• Chapter Two, "SQLlDS Concepts," introduces the primary characteristics of
the Structured Query Language/Data System and discusses their use and
interaction.

• Chapter Three, "Reporting Defects," shows you how to build a symptom
string that describes a defect, how to report a problem, and how to list the
documentation that should accompany your defect report.

• Chapter Four, "Functional Problems," describes analysis of problems that
you might encounter in using the SQLlDS RDBMS. It gives possible causes
and actions to take in resolving problems.

• Chapter Five, "Diagnosing Performance Problems," assists you in deter
mining the ultimate cause of a performance problem. It includes analyses,
corrective actions, and problem indexes that help you get to the right spot to
perform the next item.

LH08-10I1-03 C Copyright IBU Corp. 1817, 1883 xl

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

• Chapter Six, "Recovering from DBSS Errors," tells you how to interpret the
diagnostic information following message ARI0126E and the actions to take to
recover from the error(s).

• Chapter Seven, "Recovering from Directory Verify Errors," tells you when to
use the Directory Verify function and how to recover from errors discovered
by the Directory Verify function .

• Chapter Eight, "Problem Isolation and Handling," describes the tools you can
use to correct a problem.

• Appendix A, "ROliN," lists the ROliN.

• Appendix B, "Catalog Updates and References," contains information about
how catalogs are searched and updated when specific statements are exe
cuted.

• Appendix C, "SQUDS Distributed Data Management (DDM) Support, II con
tains information on the DDM commands that the SQUDS product supports
for DRDA· (Distributed Relational Database Architecture·) level 1.

• Glossary contains definitions of SQUDS terms.

Components of the SQL/DS System
Figure 1 on page xiii depicts a typical SQUDS configuration with one database
and two users.

xII SQLJDS Diagnosis for VM LH08-8081-03 C Copyright IBM Corp. 1887, 1993

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Comm unlcatlon Lnk (IUCV or APPCNM)

Figure t. Basic Components of the SQLIDS RDBMS

The database is composed of:

• A collection of data contained in one or more storage pools, each of which in
turn is composed of one or more database extents (db exten ts). A dbextent is
a VM minidisk.

• A directory that identifies data locations in the storage pools. There is only
one directory per database.

• A log that contains a record of operations performed on the database. A
database can have either one or two logs.

The databa •• manager is the program that provides access to the data in the
database. It is loaded Into the database virtual machine from the production
disk.

The application server is the facility that responds to requests for information
from and updates to the database. It is composed of the database and the data
base manager.

The application reque.t.r is the facility that transforms a request from an appli
cation Into a form suitable for communication with an application server.

LHC»-I081..()3 CI Copyright IBM Corp. 1887, 1_ About This Menuel xUI

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Syntax Notation Conventions
Throughout this manual, syntax is described using the structure defined below .

• Read the syntax diagrams from left to right and from top to bottom, following
the path of the line.

The ~ symbol indicates the beginning of a statement or command.

The --+ symbol indicates that the statement syntax is continued on the next
line.

The ~ symbol indicates that a statement is continued from the previous
line.

The ---+0lIl symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the
~ symbol and end with the --+ symbol.

• Some SQL statements, Interactive SQL (ISQL) commands, or database ser
vices utility (DBS Utility) commands can stand alone. For example:

~SAVE---~~4

Others may be followed by one or more keywords and/or variables. For
example:

~SET AUTOCOMMIT OFF·---------------------------------,.~4

• Keywords may have parameters associated with them which represent user
supplied names or values. These names or values can be specified as
either constants or as user-defined variables called host-variables (host
variables can only be used in programs).

~DROP SYNONYM-synonymm-----------------------------------...... 4

• Keywords appear in either uppercase (for example, SAVE) or mixed case (for
example, CHARacter). All uppercase characters in keywords must be
present; you can omit those in lowercase.

• Parameters appear in lowercase and In italics (for example, synonym).

• If such symbols as punctuation marks, parentheses, or arithmetic operators
are shown, you must use them as indicated by the syntax diagram.

• All Items (parameters and keywords) must be separated by one or more
blanks.

• Required Items appear on the same horizontal line (the main path). For
example, the parameter integer is a required Item in the following command:

xlv sQuos Oiegnosis fOr VM LH08-Soa1-03 C Copyright IBM Corp. 1887, 1893

J

J

l.
I

l
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~SHOW DBSPACE-tntegerr---------"'--------..........

This command might appear as:

SHOW DBSPACE 1

• Optional items appear below the main path. For example:

~CREATE-.-----.......--I NDEX----------------1.~ ..
[UNIQUE]

This statement could appear as either:

CREATE INDEX

or

CREATE UNIQUE INDEX

• If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path . For
example:

~SHOW LOCK DBSPACE~ALL r=J
tntege

Here, the command could be either:

SHOW LOCK DBSPACE ALL

or

SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the
main path. For example:

~BACKWARD--,E-t~-i-~-ge--.-----------------·~ ..

Here, the command could be:

BACKWARD

or

BACKWARD 2

or

BACKWARD MAX

• The repeat symbol indicates that an item can be repeated . For example:

LHoe-a08H)3 = Copyright IBM Corp. 1887, 11Hl3 ADout ThiS Manual XV

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~ERASE--.£name-L-------------------1~~"

This statement could appear as:

ERASE NAMEl

or

ERASE NAMEl NAME2

A repeat symbol above a stack indicates that you can make more than one
choice from the stacked items, or repeat a choice. For example:

~VALUES--(1constant I
host-vartable-ltst
NULL .
spectal-regtste

• If an item is above the main line, it represents a default, which means that it
will be used if no other item is specified. In the following example, the ASC
keyword appears above the line in a stack with DESC. If neither of these
values is specified, the command would be processed with option ASC.

• When an optional keyword is followed on the same path by an optional
default parameter, the default parameter is assumed if the keyword is not
entered. However, if this keyword is entered, one of its associated optional
parameters must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you
also have to specify one of its associated optional parameters. If you don't
enter PCTFREE =, the system will set it to the default value of 10.

• Words that are only used for readability and have no effect on the execution
of the statement are shown as a single uppercase default. For example:

r~RIVILEGESl
~REVOKE ALL,-'--------"---------------... ~ ...

xvi sQuos Dlagnosll for VM L.H08-8081·03 (II) Copyright IBM Corp. 1Q87, 1993

:~
I

:l.
I

:l.

l I

l

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the
same thing.

• Sometimes a single parameter represents a fragment of syntax that is
expanded below. In the following example, fleldproc-block is such a frag
ment and it is expanded following the syntax diagram containing it.

~~ ---..-------------..---11 fi e 1 dproc-b lock f-I -----+~
LNOT NULL--,--------.--I

LUNIQUE J
LpRIMARY KEyJ

fleldproc-block:
!--FIELDPROC-program-name

~(~;onstant~)~

I

About This M.nI.I.1 xvII
I

xvIII SQUDS DiagnosIS for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LH09-1081-03 C> Copyright IBM Corp. 1987, 1983

I

I
- I

J I

I
I
I
I
I

J I
I
I

I

I

J:
I
I

I

I
I
I
I
I
I

I
I
I

J !
I
I
I
I
I
I
I

J

I
I
I
I

I~

:~
I

I

I~
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Summary of Changes for SQUDS Version 3 Release 4

This is a summary of the technical changes to
the SQUDS* Version 3 Release 4 database man
agement system. All manuals are affected by
some or all of the changes discussed here. This
summary does not list incompatibilities between
releases of the SQUDS product; see either the
SQL Reference or the System Administration
manual for a discussion of incompatibilities.
Version 3 Release 4 of the SQUDS database
management system is intended to run in the
following VM environments:

• Virtual Machine/System Product (VM/SP)
Release 6, with or without the High Perform
ance Option (HPO)

• Virtual Machine/Extended Architecture*
(VM/XA*) SP Release 2

• Virtual Machine/Enterprise Systems Archi
tecture* (VM/ESA*) Release 1 or later.

Enhancements, New Functions, and
New Capabilities

Support for the IBM DATABASE 2
AIX/6000 Database Manager

The IBM* DATABASE 2* AIXl6000* (DB2/60oo*)
database manager implements the DRDA*
remote unit of work feature. Your VM SQUDS
database manager can function as an applica
tion server for your DB2/6000 database man
agers.

Cascade Delete Enhancement for
Referential Integrity

Referential integrity ensures that references in
one table to data in another table are always
valid . In previous releases, you could specify
cascade delete constraints to ensure that if a
value was deleted from a parent table, the corre
sponding row of a dependent table would also
be deleted.

Version 3 Release 4 expands the capabilities of
the cascade delete constraint. When a row is
deleted from a dependent table because of a

LH08-808Hl3 II COpyright IBM Corp. 1987, 1a83

cascade delete, the delete rule that exists
between the dependent table and any tables that I

are its dependents will be processed. For
example, suppose a cascade delete constraint
exists for Table_A that results in a row being
deleted from Table_B. Table_B, in turn, might
have a delete rule that then causes a value in
Table_C to be set to NULL.

This enhancement can ensure integrity across
several tables and reduce the programming
effort needed to develop an application.

Improved EXPLAIN Capabilities

The EXPLAIN statement is used to analyze data
manipulation statements to provide information
about the structure, execution, and approximate
cost of the SQL statement being analyzed.

In Version 3 Release 4, the EXPLAIN function has I

been enhanced as follows:

• Several new columns have been added to
the existing EXPLAIN tables.

• The EXPLAIN function can now be used as a
preprocessing option for all static SQL state
ments embedded in an application program. I

• A DBS utility job file is shipped with the
SQUDS product to generate EXPLAIN tables, I

indexes, and views.

The enhanced EXPLAIN facility is more compat
ible with the DB2* EXPLAIN facility.

Host Structure Variables
I
I

Several of the host languages that are supported :
by the SQUDS database manager let you define I

variables in structured formats. For example, a :
COBOL program might specify the following I

structure for a three line address.

04 ADDRESS
05 LINE-l
05 LINE-2
05 LINE-3

A programmer can specify ADDRESS to refer to I

all three lines.

I

I

xix
I
I

_ J

The SQUDS database manager has been
enhanced to provide this kind of support for two
levels of structured variables. If you code a host
structure in an SQL declaration, you can use the
name of that host structure in any SQL state
ment where you would otherwise code a list of
host variables. This facility is available for SQL
code embedded in application programs written
in C, COBOL, PUI and RPG. If you code a struc
ture with more than two levels, all of the lowest
two level substructures can be used as host
structures by the SQUDS database manager.

Removal of 512 Host Variable
Restriction

The previous maximum number of host variables
allowed in a program module was 512. This
restriction has been removed. The number of
host variables is now restricted only by the size
of storage.

Enhanced SHOW STORAGE
Command

A new SHOW STORAGE operator command is
provided to let you determine the system load
and avoid problems caused by insufficient
storage. This command displays Information
about system storage currently being used and
the maximum total storage usage.

The SHOW STORAGE command can be used
together with the RESET HIGHSTOR command.
By resetting the HIGHSTOR value, performing a
function and then invoking the SHOW STORAGE
command, you can determine the maximum
storage needed to perform the function.

Usability Enhancements

Package Db.pace Full Condition
Handling

Previously, when a package was dynamically
repreprocessed and a package dbspace full con
dition occurred, the repreprocess would fall with
an SQLCOOE of -946 and the useI' would then
need to explicitly recreate the package.

If this condition occurs with Version 3 Release 4.
the database manager will automatically search

XX SQUDS DiagnosIs tor VM

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

for a non-full package dbspace that can accom
modate the repreprocessed package. Manual
intervention will only be required if all package
dbspaces are full (if they already contain 255
packages or do not have enough free space to
hold the additional package).

The Connectable and Unconnected
State

When a severe error occurs, the logical unit of
work is rolled back and the communication link
is severed. This causes the application to enter
a "connectable and unconnected" state. Previ
ously, if the next SQL statement was not a
CONNECT statement, SQUDS caused the appli
cation to abend.

However, if this condition occurs in Version 3
Release 4, SQL/DS does not cause the applica
tion to abend, but issues a severe error code
instead; SQLCODE of -900 and SQLSTATE of
51018.

Dual Logging Enhancement

If you are using dual logs and one is damaged, it
can be replaced with a new minidisk. SQUDS
will then copy the good log to the new one
without the necessity of doing a COLDLOG.

Reliability, Availability, and
Serviceability Improvements

Processing a DROP TABLE Statement

When a DROP TABLE statement is executed, the
rows of the specified table are not dropped
immediately; instead, the table is marked for
deletion by adding a row to the SYSDROP
system catalog table. After the current logical
unit of work (LUW) is committed, a new LUW Is
started and the table is dropped.

For each page that contains data for the table
being dropped, an equal number of shadow
pages must be retained until the delete opera
tion is completed, and the LUW can be com
mitted. If the table occupies a large number of
pages, it Is possible to run out of physical pages,
or to encounter a storage pool full condition.

LHOH~1-03 ~ Copyright IBM Corp. 1987, 1883

I

I
I

I

J 11
I
I
I
I

I

J 'I
I
I

II

I

I
I
I
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

With this enhancement, checkpoints are possible
as rows are deleted, freeing shadow pages more
quickly. As well, the database manager will no
longer abend if a storage pool full condition
occurs during a DROP TABLE operation.

Enhancement to COLD LOG
Processing

Previously, running a COLDLOG operation could
destroy log data needed for recovery if any
logical units of work were unresolved when the
database was last shut down. In Version 3
Release 4, the operator will get a warning
message if this condition exists and will be able
to cancel the COLDLOG operation before any
data is lost.

Improved Storage Trace

The storage trace facilities have been enhanced
to provide relevant trace point information about
the SQUDS application server. The new facility
provides consolidated trace information for
system and working storage.

j.Hoe-eoa1-03 CD CopyrIght IBM Corp. 1887, 1883

It can be invoked either during database startup
with a new STARTUP command parameter or
after the database is started with the TRACE
operator command.

Library Enhancements

SQUDS Performance Tuning
Handbook

A new manual provides information to enable
you to tune your SQUDS system more effec
tively.

Revised Manuals

The Database Administration and System Admin
istration manuals have been revised to provide
you with better information.

Chapter 6 of the Database Administration manual
and Chapter 8 of the System Administration
manual have been removed; this information has
been included in the SQLlDS Performance
Tuning Handbook.

Summary ot Changes tor SQUDS VerSIon 3 Release" xxi

xxII SQLJDS Dlegnoala tor w

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LH08-8081.()3 C COpyright IBM Corp. 1817.1_

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 1. Introduction to Problem Diagnosis

This chapter:

• Describes the tasks to be performed by persons involved in diagnosing prob
lems that may be encountered with the SQLlDS ROB MS.

• Describes some tasks that you might use to solve particular types of prob
lems.

• Offers guidance on using this book to effectively accomplish those tasks.

• Offers a "flowchart" to help you determine the correct chapter(s) and pages
to use to perform a task for a given condition(s).

If you have used this book before, you can skip the introductory remarks and go
directly to the flowchart or to the appropriate chapter.

You are here because someone has a problem using the SQLlDS RDBMS in a
VM environment. The problem may not be one of failure. It might be one of
poor performance, for example. In this case you would go to Chapter 5, "Diag
nosing Performance Problems" on page 101 to attempt to isolate and diagnose
the problem. Completion of a diagnosis task could result in your going to
Chapter 3, "Reporting Defects" on page 69 to:

1. Systematically develop a keyword string to describe the problem.

2. Check whether this same problem is already documented and corrected.

3. Report the problem to IBM if it is a new one.

Using this book will expedite an IBM-supplied correction for a defect problem.

Use this book even when you are not thoroughly convinced that the SQLlDS
RDBMS caused the problem. Instead, one of these might be causing the
problem: a subtle user error, the current management of SQLlDS resources, or
another IBM" product. If your problem is occurring during distributed proc
essing, you should also refer to the Distributed Relational Database Problem
Determination Guide.

This book also includes things you might want to do to aid in avoiding problems.

Diagnosis Flowcharts
Use the following flowchart to help you decide where you want to start using this
book. For example, if you are experiencing a performance problem associated
with a specific application or application function, this chart directs you to "Appli
cation Function Indexes to Performance Problems" on page 106 which will lead
you through the path(s) to follow for diagnosing the problem. You mayor may
not need to return from one of the paths to the starting point. Need is deter
mined by the path selected and/or the results of the task performed along the
path.

LH08·aOS1.()3 C Copyright IBM Corp. 1fM7. 1883 1

"Restricted Materials ot IBM"
Licensed Materials - Property ot IBM

Problem Type.-; ---.-"~ 11 Report Probab1e~page 69 (Follow this section
or Task SQL/DS Defect : step-by-step,

. beg i nning to end)

! I
--+-!Functiona1 rl--'

iProb1em
~-~-~ ~I ______ ~

o
Page 3

DBSS Error (via
II.ISG ARI0126E)

• Page 213

Inconsistency
in Database
Directory

I pag: 243

~ DB" .:", (•• ,
11SG ARI0040E
with module
pref i x ARIY)

Sys tem Re 1a ted
I Error Codes Page 95

!
SQL Command Fai1ed(-901)

1---------- Page 95

Rolled Back Due to
Deadlock (-9ll)

1----------+ Page 96

Rolled Back Due to
Excessive Lock
Requests (-912)

1----------+ Page 96

Rolled Back Due to Locks
Held for this LUW (-915)
---------+~ Page 96

Common User-Related
Error Codes:

-101

-204

-301

-302

-305

-313

Functional
Deviations:

:

Page 96

Page 96

Page 97

Page 97

Page 9B

Page 99

Page 99

Page 99
•

Figure 2 (Part 1 of 2) . Diagnosis Flowchart

2 SQLJOS DiagnosIs for VM LH09-8011'()3 C Copyright IBM Corp. 1887, 18a3

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

~
~

Performance

!
Performance Problem ,[I
Indexes by Performance
Symptom

Agent Related
Indexes

Page

CPU Related
Indexes

Page

I/O Related
Indexes

Page

Locking Related
Indexes

Performance I
Problem Indexes Ji
by Function

General Problem Indexes
111 Page 107

Data Definition
Problem Indexes

112 ~ Page 108

Data 11anipulation
Problem Indexes

ll3 Page 109

Data Authorization
Problem Indexes

Page 114 Page 108

Storage Related Data Utll ities
Indexes Problem Indexes

Page 114 Page 110

Special Case Recovery Control
Indexes Problem Indexes

Page ll5 Page III

Figure 2 (Part 2 of 2). Diagnosis Flowchart

LH09-8081.()3 C Copyright IBM Corp. 1887, 1893 Chapter 1. Introduction to Problem Diagnosis 3

4 SQUDS Diagnosis for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LH08-8011·03 C) Copyright IBM Corp. 1887, 1883

J

J

J

"Restricted Materials of IBM"
Licensed Materialls - Property of IBM

Chapter 2. SQUDS Concepts

This chapter presents an overview of the SQUDS RDBMS. including its purpose
and function, and how it interacts with other programs. It is intended to provide
background information to enable more efficient tuning, monitoring and problem
determination. In particular. this chapter discusses the following concepts:

• SQUDS Components
• Logical Unit of Work
• Agent Handling
• Mailbox/Communication
• Package Management
• Memory Management
• Logical Storage Management
• Physical Storage Management
• Buffer Storage Management
• Index
• Sorting
• Logging/Recovery
• Locking
• Termination.

LH08-8011-03 0 COpyright IBM COrp. 1887. 1883 5

Introduction

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 3 depicts the SQUDS components and shows where they are executed in
the VM environment when using SQUDS-only protocol.

P VRA RDS
R
E r--
P
S

-
I D S S Q C L

D
D B
S S
C S

-
D -
B DATA
S CONY.
U

Application Requester Application Server

Figure 3. SQLlDS Structure and Components when using SQLlDS-only Protocol.

Figure 4 depicts the SQUDS components and shows where they are executed in
the VM environment when using DRDA protocol.

P VRA WUM
R , DRAM
E 1--;- DDM GENERATOR! P
S i D PARSER

I-- I

~DRRM -
R DDM GENERATOR!
D PARSER

I I
I

I N -
S M D
Q G F

S

L I R D
C

-

I D N
D M R B
S G FD OCA D S
C :R S S

'--

- 0
C

D DATA A
B CONY.

DATA
CONY. -

S
U -

Application Requ Appiodon Serwr

Figure 4. SQLlDS Structure and Components when using DRDA Protocol.

6 SQLJOS Ol_gnosls for VM LH09-8011-03 Cl Copyright IBM Corp. 11187, 1883

J

J

J

"Restricted Material. of IBM"
Ucensed Materials - Property of IBM

SQL/DS Components in the Application Requester

Database Services Utility (DBSU)
The SQUDS DBS utility is an SQUDS application program. It is usually run as a
batch program and is used to load, unload and reload data and packages, and
process SQL statements.

Interactive SQL (ISQL)
ISQL is an interactive query environment that allows you to access an applica
tion server from a display terminal.

Preprocessors (PREP)
The preprocessors compile the SQL statements in an application source
program and create a modified copy of the source program so that it is suitable
for language processing (compiling, assembling).

VM Resource Adapter (VRA)
The VM resource adapter communicates between the user application and an
application server.

SQUDS Components in the Application Requester and the Application Server

Data System Control (OSC)
The DSC component provides the following control services. The majority of
these services are provided on the application server. Only the system
dependent routines and the communications services are provided on the appli
cation requester.

1. Initialization

DSC Initialization includes establishing the initial environment, and driving
the initialization and recovery process of the other SQUDS components.

2. SQUDS System Services

DSC provides Operator, Message, Trace, and Storage services for the other
SQUDS components.

3. Agent Handling and Communications

DSC allows other SQUDS components to handle multiple concurrent users
and to communicate with them. The dispatcher function is provided for
multi-threading multiple application requests in the SQUDS database
machine.

4. System-Dependent Routines

These routines shield the other SQUDS components from the VM system
functions, allowing them to be system-independent.

5. SQUDS Termination

DSC termination manages normal (SQLENO) and abnormal termination of the
SQUOS database machine.

LH08-I081-03 CI Copyright IB~ Corp. 1817, 1883 Chapter 2. SQLJDS Concepts 7

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Data Conversion (CONV)
Data Conversion is used for performing CCSID conversion on character and
graphic data. When the DRDA protocol is used, Data Conversion also performs
conversion of numeric data from one representation to another.

Distributed Relational Resource Manager (DRRM)
The DRRM component Is only Invoked when the DRDA protocol is used. It
resides in both the application server and the application requester. This com
ponent provides the following services:

1. DDM/FD:OCA Generator and Parser

The DRRM component in the application requester generates requests to be
sent to an application server and parses replies received from an application
server.

The DRRM component in the application server parses requests received
from an application requester and generates replies to be sent to an applica
tion requester.

2. DDM/FD:OCA Dictionary

The dictionary provides the definition of DDM and FD:OCA terms. These are
used by the DDM/FD:OCA Generator and Parser to build and interpret DRDA
data streams.

3. RDIIN Manager

The RDIIN manager is invoked by the DRRM Parser and Generator to inter
pret or build the RDIIN structure. The RDIIN structure contains the
SQUDS-specific internal format of SQL queries and replies.

SQL/DS Components in the Application Server

Work Unit Manager (WUM)
The WUM component Is only Invoked when the DRDA protocol Is used. It acts as
the central control point between application requester and application server
conversations. It tracks the status of those conversations, the current unit of
work, and enforces the various DRDA protocol rules. It manages and provides
the interface between the DRRM and RDS components.

Relational Data System (RDS)
The RDS component provides the following services:

1. Executives

The executives manage all work done in RDS:

• The invocation of the parser. optimizer. authorization, statement gener
ator. access generator and interpreter

• The block storage needed for statement compilation
• The loading and storing of packages.

2. SQUDS Parser

8 SQUDS DI-anosls for VM

The parser performs the primary syntactical analysis of the user's SQL state
ment and converts it into parse tree format.

LH08-8081"()3 C) Copyright IBM Corp. 1887, 1&93

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

3. Optimizer

The optimizer attempts to choose the optimal path to fulfill a user DML SQL
request, and represents it as an access plan for the access generator to
implement. For more information on accessing data, see the Performance
Tuning Handbook.

4. Gen-Time Access Generator

The Access Generator translates access plans generated by the optimizer
into easily interpretable control blocks.

5. Run-Time Access Generator

The Access Generator reads the control blocks representing the SQUDS
DML and interprets them to perform the DML statement.

6. Statement Generator

The Statement Generator creates SQUDS statements, turns them into easily
interpretable control blocks, and adds them to the output of the Gen-Time
Access Generator.

7. Authorization

This component manages authorization functions. It controls recording of
privileges and ensures that only authorized operations are performed by
SQL/DS users and applications.

8. Interpreter

The interpreter handles execution of data definition and of control SQL state
ments by translating the parser representation of the statements and then
immediately executing the appropriate database operation.

Database Storage Subsystem (DBSS)
The DBSS component provides the following services:

1. DBSS Initialization

The DBSS initialization process initializes the Work, Trace, Lock, Storage,
and Log components; opens the Directory, DBEXTENT(s), Logs, and
DBSPACEs; sets the system counters to zero; and performs filtered log
recovery if necessary.

2. DBSS Data Control

Data control operations manage the definition and operation of objects within
the database: DBSPACEs, tables, and indexes.

3. DBSS Data Manipulation

The Data Manipulation component retrieves and updates data in the data
base.

4. Index Management

The Index component controls the space on index pages, and acts on behalf
of data manipulation calls to maintain indexes when tables are modified.

5. Sort Component

The Sort component creates a sorted list of rows from an existing table. Sort
order is based on values In one or more columns.

LH08-8081-03 C) Copyright IBM Corp. 1987, 1&83 Chapter 2. SQUOS Concepts 9

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

6. Update Statistics

The Update Statistics component gathers statistics on DBSPACEs, tables,
and indexes, which are used by the RDS optimizer in path selection.

7. Logging and Recovery

The Log component maintains a record of all changes completed by each
logical unit of work, retaining old and new values for each updated object.

8. Work Component

The Work component controls the beginning and ending of LUWs (Logical
Unit of Work). It commits updates to the database or schedules rollbacks of
all work done by an LUW since the previous COMMIT or ROLLBACK.

9. Lock Component

The Lock component controls concurrent resource access.

10. Storage Component

The Storage component maps logical DBSPACEs to physical DBEXTENTs on
DASD, and does all database 1/0.

The SQL/DS RDBMS in Single User Mode
In single user mode, DSC initializes the application server and creates three
agent structures: the operator agent, the checkpoint agent, and the user agent.
In addition to establishing the application server, DSC loads the application
program, be it a user routine or an SQL routine (preprocessors, DBS utility,
DBMS function, and so forth), and passes control to it.

The user application issues SQL requests, which are processed by the SQL/DS
Resource Adapter. The Resource Adapter passes the requests directly to RDS.
After a request has been processed, RDS first uses the DSC reply function to
return the data to the application program, and then returns control to the
Resource Adapter, which in turn passes control to the application program.
When the application program finishes processing all of its SQL requests, it
returns to the application server at the point where it was invoked by DSC, and
control is then passed to the SQUDS termination routine.

The DSC termination function then closes the database files and returns control
to the host system.

DRDA protocol is not supported in single user mode.

The SQL/DS RDBMS in Multiple User Mode

When Using the SQL/DS-only Protocol
In multiple user mode, DSC initializes the application server and creates three
system agent structures: the operator, checkpoint and recovery agents. One or
more user agent structures, as specified by the NCUSERS initialization param
eter, are also created. The requests are processed by the Resource Adapter
which uses DSC mailbox functions to package the request into a message and
invokes the DSC communication function to send the message to the SQUDS
machine. The DSC dispatcher function dispatches an agent to process the SQL
request and passes the request to RDS for processing. The DSC reply function
packages the data In a message and sends the data back to the user machine.

10 SQLlDS DI.gnosls tor VM LH09·8081·03 C Copyright IBM Corp. 1987, 1993

(J

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

After the reply function is complete, the DSC receive function gets the next SQL
request. This process continues until the SQL/DS operator issues a SQLEND
command. After this command is issued, no new users are allowed to establish
a connection with the application server. When the last connected user discon
nects, control is passed to the DSC termination routine which closes the data
base files and returns control to the host system.

When Using the DRDA Protocol
The SQLIDS Application Requester: The SQL request is processed by the
Resource Adapter. The Resource Adapter calls DRRM to convert the request
from its SQL/DS internal format and generate the DRDA DDMIFD:OCA format
suitable to be sent to a DRDA application server. The DDM portion contains the
request information, and the FD:OCA portion contains the data and its format.
The Resource Adapter then uses the DSC communication function to send the
request to the application server for execution.

When the reply is received from the application server, DSC receives the reply
and passes it to the Resource Adapter. The Resource Adapter then invokes
DRRM. The reply received is in the DRDA DDM/FD:OCA format. DRRM parses
this reply into the SQUDS internal format, performing any necessary data con
version. Parsing involves verification of syntax and semantics, and data conver
sion.

The SQLIDS Application Server: The DSC dispatcher function calls the WUM
component to process the request sent by the application requester. The WUM
component calls DSC to receive the request. The request received is in the
DRDA DDM/FD:OCA format. When a request is received, WUM then invokes
DRRM to parse the request into the SQUDS internal format. Parsing involves
verification of syntax and semantics, and numeric data conversion. WUM then
passes the request to RDS for processing. RDS returns the reply to WUM, but
before sending it, WUM calls DRRM to generate the DRDA DDM/FD:OCA format
of the reply. WUM then invokes the DSC communication function to send the
reply back.

Logical Unit of Work Concepts
The logical unit of work (LUW) serves as the unit of consistency, allocation, and
recovery for a user. Also, at the boundaries of a logical unit of work, the real
agent structure is reset.

In general, a logical unit of work supports a set of one or more SQL statements.
When these statements are issued by an application, a logical unit of work is
automatically started. In general, the user application controls the length of the
LUW by the SQL COMMIT WORK and SQL ROLLBACK WORK statements. There
are other mechanisms that control the length of a logical unit of work. These are
discussed under the headings "Explicit Termination of an LUW" on page 12 and
"ImpliCit Termination of an LUW" on page 12.

Atomicity of SQL Statement.:

SQL statements are atomic. This means that the SQUDS database manager
does not allow a statement to be only partially completed; for example, when a
statement that makes several changes to the database is being processed, and
an error occurs after some changes have already been made, the database

LH09-8011-03 C Copyright IBM Corp. 1887, 1~ Chapter 2. SQUDS Concepts 11

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

manager undoes those changes before returning to the calling application. The
net effect is as if the SQL statement was never issued.

Note: Atomicity is not supported for objects stored in nonrecoverable storage
pools. Also, when LOGMOOE = N, the atomicity of a statement can only be
enforced by rolling back the entire logical unit of work.

Agent Handling:

While a logical unit of work is in process, the user is associated with a real
agent. In the SQL/OS ROBMS, the number of real agents is limited by the
NCUSERS initialization parameter. Thus NCUSERS is the maximum number of
active logical units of work at anyone time.

End of LUW Processing:

Whenever a logical unit of work terminates, normally or abnormally, internal
OBSPACEs that were allocated are freed and any remaining locks are released. J
Explicit Termination of an LUW:

There is no explicit invocation to start a unit of work. All explicit invocations
have to do with termination or recovery of a logical unit of work. The following
actions result in explicit termination of a logical unit of work:

• Commit. This is invoked when a user issues the SQL COMMIT WORK state
ment.

• Rollback. This is invoked when a user issues the SQL ROLLBACK WORK \
statement. .."

Implicit Termination of an LUW:

The following cause an implicit termination of a logical unit of work.

• The SQUOS FORCE command. In general, this supports only rollback.

• Specific abnormal conditions. These conditions include log full, deadlock,
and storage pool full.

• Return to CMS command line.

• The SQLRMENO exec

Agent Handling Concepts
The SQUOS ROBMS uses a set of control blocks called an agent structure (or
real agent) to service requests from multiple users to access a common data
base.

There are always two SQUDS agent structures created: the Operator and the
Checkpoint agents. (The initialization process is executed under the Operator
agent. The checkpoint agent is activated whenever a checkpoint is to be taken.)
In single user mode, there is also a User agent structure under which the user's
SQL requests are executed. In multiple user mode, one or more real agent
structures are allocated; the number is equal to the value of the NCUSERS
initialization parameter. There is also a set of agent structures called" pseudo
agents." (See "Pseudo-Agent and Real Agent Structures" on page 13). The

12 SQUOS 01_gnos15 tor VM LH08-8081-03 C Copyright IBM Corp. 1987, 1893

.)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

number of pseudo-agents allocated is equal to the value of MAXCONN specified
in the VM directory less the number of CMS DASDs used for the database and
one for the connection to -IDENT. Also, in multiple user mode, a
Ready/Recovery system agent structure is created.

The User agents are either general purpose or "in-doubt" agents. An agent is
in-doubt when it has reached a point in processing where the work may either
be committed or rolled back. If the database manager (or CICS) abnormally ter
minates at such a time, the next time it is restarted, the SQL/DS (or CICS) log is
coordinated by way ofthe Ready/Recovery agent, and the in-doubt agents have
the suspended work either committed or rolled back. Normally, agents are
general purpose; however, in a Guest Sharing CICS environment, the general
purpose agents can be in-doubt agents. There are also prototype agent struc
tures created. This type of agent is not dispatchable and is used for storage pur
poses only.

Agent Handling Functions
Agent handling consists of:

• Allocating users to agent structures

• Dispatching agent structures

• Agent processing at the end of a logical unit of work (LUW).

Allocating Users to Agent Structures
There are differences in agent handling between single user mode and multiple.

In single user mode this process is quite simple. There are three agents
created: the Operator, Checkpoint, and User agents. At initialization time, the
Operator agent performs the initialization functions. When initialization is com
plete, it becomes dormant and passes control to the User agent, which is said to
be "dispatched." The User agent executes until a checkpoint or archive is
required, at which point the Checkpoint agent is dispatched, and the User agent
waits until the checkpoint has been completed. When the checkpoint is com
plete, the User agent is redispatched to continue processing. When the applica
tion program terminates, it returns control to the database for termination.
Termination ensures that a final COMMIT or ROLLBACK is executed as neces
sary, based on the state of the last LUW.

In multiple user mode (MUM), when initialization has been completed, all the
user agents are dormant (not allocated). When the user issues an SQL state
ment, a connection is established between the user machine and the database
machine. This connection is made to a pseudo-agent structure by way of an
IUCV or APPCIVM CONNECT.

Note: The IUCV or APPCIVM CONNECT results in an external interrupt in the
database machine. The SQLlDS external interrupt handler allocates the pseudo
agent to the user and attempts to allocate a real agent, if available, to the
pseudo-agent.

Pseudo-Agent and Real Agent Structures:

Each real agent requires approximately 110K bytes of storage. (This does not
include dynamic storage requirements such as package storage.) Because it
would not be practical in terms of storage and performance to allocate a real

LH09-a081'()3 C> Copyright IBM Corp. 1a87, 1883 Chapter 2. SQUOS Concepts 13

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

agent for each user, pseudo-agents that use less than 600 bytes of storage were \
developed. Pseudo-agents allow many users to share (but not concurrently) a ...,
few real agent structures. Pseudo-agents are allocated to the real agent struc-
tures in FIFO order.

When a user virtual machine CONNECTs to the database machine, that user is
allocated a pseudo-agent. The pseudo-agent is then placed in an "in use"
queue until the user associated with that pseudo-agent sends a message to the
database machine. That pseudo-agent is then allocated a real agent (assuming
one is available). If all real agents are in use, any users having sent messages
to the database machine have their pseudo-agents .placed on a "wait" queue
until a real agent is available. A real agent becomes available whenever an
active user (one whose pseudo-agent already owns a real agent) completes a
logical unit of work. At this point, the first waiting pseudo-agent is allocated to
the newly available real agent. If the pseudo-agent that has just completed the
unit of work sends another message, it is added to the end of the waiting
pseudo-agent queue.

With Guest Sharing, the SQLlDS Online Resource Adapter, running under the
control of CICS, can establish the number of communication links specified
during Online Resource Adapter Initialization. Each of the links is associated
with a pseudo-agent to which a real agent is permanently assigned. These
pseudo and real agents are not available to other users until the Online
Resource Adapter is terminated.

After real agents are connected to a user, they are dispatched in a
nonpreemptive priority fashion. The following discussion describes the SQLlDS
dispatching scheme for real agents.

Dispatcher Components
The SQLlDS dispatcher is a nonpreemptive dispatcher, which means agents
must be willing to give up control of the processor. When agents give up control
of the processor, they turn control of the processor over to the SQLlDS dis
patcher. When given control, the dispatcher accomplishes the following actions:

• Agent Prioritization

• Fair Share Auditing

• Locating and dispatching a dispatchable agent.

The prioritization scheme ensures that agents are prioritized so that shorter
LUWs are given preferential treatment over longer ones. Fair share auditing is a
scheme that ensures that no LUW is denied a share of the processor indefinitely.
Finally, among all the agents, the dispatcher is responsible for locating a
dispatchable agent (that is, an agent that is not waiting for some event to occur
I/O completion, communications with a user, and so forth) and allowing the
agent to use the processor (dispatching It).

Conceptual Overview of Prioritization Scheme
Prioritization of agents, which occurs after each dispatch. is based on the
amount of referencing of database pages that agents do. Agents are sorted in
ascending order in the dispatch queue based on their database page reference
count values.

14 SQLJDS Dllgnosll for VU LH09-8011·03 CI Copyright IBU Corp. 1887. 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The priority dispatcher selects dispatchable agents by scanning the dispatch
queue from the top to bottom in search of a dispatchable agent. Upon return to
the dispatcher, the returning agent must undergo reprioritization in the dispatch
queue.

The reprioritization process scans the dispatch queue to find the appropriate
position in the dispatch queue for the returning agent. The process assumes
that the dispatch queue is always sorted by agents' database page reference
count. Thus, for performance reasons, the queue is scanned, beginning with the
agent (in the dispatch queue) that follows the returning agent. By scanning the
dispatch queue, the reprioritization process looks for the first agent with a data
base page reference count greater than the database page buffer reference
count for the returning agent. If an agent with a database page buffer reference
count is encountered before the end of the dispatch queue is reached, the
returning agent is placed between the agent with the higher database page ref
erence count and its predecessor. If the scan reaches the bottom of the dispatch
queue, the returning agent is placed at the bottom of the dispatch queue. This
mechanism ensures that the dispatch queue is always ordered. Note that
reprioritization applies to user or general purpose agents only. "Special
purpose" or "system" agents-operator and checkpoint-are not reprioritized
after each dispatch; rather, they permanently reside at the top of the dispatch
queue so that they receive the highest priority assigned to any agent.

After the above process has been completed, the reprioritization scheme is com
plete and the Fair Share Auditing process is invoked.

Conceptual Overview of the Fair Share Auditing Process
The function of the Fair Share Auditing process is to scan the dispatch queue
bottom-up, find one "deprived" (see description of deprived below) agent, and
enqueue that agent at the top of the dispatch queue (just below the system
agents). Being enqueued at the top of the dispatch queue allows a deprived
LUW the highest priority given to a general purpose agent for the next dispatch.

Finding "Deprived" Agents
When Fair Share Auditing is invoked, the "fair number" of buffer references that
an agent should have received during the interval is computed. The fair number
of buffer references is expressed by the formula:

total-buffer-references-during-the-interval

number-completed-LUWs + NCUSERS

The Fair Share Auditor scans the dispatch queue bottom-up and searches for the
first general purpose agent that has an interval buffer reference count value less
than the computed value of the above formula. If an agent is found that has an
Interval buffer reference count value less than the computed "fair number" it is
called deprived.

LH09-8011-03 Cl Copyright IBM Corp. 1887, 1983 Chapter 2. SQLJDS Concepts 15

Setting Fair Share Interval Size

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Users can control the frequency of Fair Share Auditing by changing the value of
the SQUDS parameter DISPBIAS. The frequency of Fair Share Auditing (Fair
Share Interval Size) is measured in dispatches. The table shown below
describes the mapping from a particular DISPBIAS setting to a Fair Share
Interval Size. For example, selecting DISPBIAS = 1 causes Fair Share Auditing to
occur every seven dispatches, 2 causes it to occur every seventeen dispatches
and so forth, as follows.

DISPBIAS

1
2
3
4
5
6
7
8
9
Hl

Fair Share
Interval Si ze

7
17
39
97

263
753

2215
6593

19719
59089

The DISPBIAS setting can be used to control the way the dispatcher treats
various LUWs. A setting of 10 causes short LUWs to be strongly favored and
long LUWs to be strongly disfavored whereas a setting of 1 causes less
favoritism among long and short LUWs. The default for DISPBIAS is 7.

After Fair Share processing has been completed, the function concludes by
scheduling the time of the next auditing interval. After the next interval has been
scheduled, the dispatcher starts scanning the prioritized dispatch queue from top
to bottom in search of a dispatchable agent to actually be dispatched and
receive control of the processor.

Locating and Dispatching a Dispatchable Agent
Agents are prioritized in the dispatch queue by the prioritization scheme. The
Fair Share Auditor completes its fair share auditing process if a Fair Share
Interval has expired. The dispatcher scans the agents starting from the top of
the dispatch queue, testing its associated wait flags to determine whether the
agent is dispatchable. An agent is dispatchable only if it is not waiting. The
various wait state conditions are tested in the order listed below. The first agent
encountered by the dispatcher that is dispatchable. is given control of the
processor (dispatched). When no agent is dispatchable, the database manager
performs a system wait. If an agent is waiting, it is in one of eight wait states,
which are mutually exclusive:

1. 110 Wait

In 110 wait, the agent is waiting for an 110 operation to be completed.

2. Inactive

16 SQUOS Ol.gnosl, for VM

This condition occurs only at initialization time and when the agent is not
connected to a communication link.

L.H08-8081·03 C Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

3. Lock Wait

In lock wait, the agent is waiting to obtain a lock held by another agent.

4. Latch Wait

In latch wait, the agent is waiting for a latch on a page or block buffer which
is in use by another agent who is reading into the buffer.

5. APPCIVM Wait

This wait state is entered by an agent when an APPCIVM RECEIVE or
SENDDATA is not completed immediately. The APPCIVM function is com
plete when VM has moved the data into or out of the message buffer.

6. Communication Wait

In communication wait, the agent is waiting for a message to be sent from
the user.

7. General Wait

This wait state condition is entered by other agents whenever the Checkpoint
agent is dispatched.

8. Buffer Wait

This wait occurs when an agent requests a data page or directory block
buffer to transfer data to or from, but none is available. The agent waits for
one to become available.

The above wait state conditions and dispatchability of an agent are tested in the
following order: I/O wait, lock wait, latch wait, APPCIVM wait, communication
wait, general wait, and buffer wait.

Agent Processing at the End of an LUW
When a user completes an LUW (end-of-LUW), that user relinquishes ownership
of the real agent (see "Pseudo-Agent and Real Agent Structures" on page 13).
A user maintains ownership of a real agent only if no other users are waiting for
a real agent, and the current user has issued another SQL request.

Communications Concepts
SQUDS communications support is provided by IUCV in a VM/XA environment
and by APPCIVM in a VM/SP and a VM/ESA environment. The communications
concepts differ slightly depending on the selected protocol. When using the
SQUDS-only protocol, requests are sent and replies are received through mail
boxes. When using the DRDA protocol, communication takes place in the form of
request and reply data streams.

Concepts on the Application Requester
When the selected protocol is SQUDS-only, the Resource Adapter uses DSC to
package the user's SQL statement into a "mailbox." Then, DSC sends the
mailbox to an SQL/DS application server and waits for a reply. The mailbox is
stored In one buffer. One send action is required to transmit it. When the reply
is detected by the Resource Adapter, it uses DSC to receive the mailbox. The
Resource Adapter unpackages the reply and moves it to the user's application
area. The mailbox is received in one or more receive actions using the same
buffer.

LHoe-a081-03 Cl Copyright IBM Corp. 1887, 1883 Ch.pter 2. SQUDS Concepts 17

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

When the selected protocol is DRDA, the Resource Adapter uses DRRM to
convert the user's SQL statement from its SQUDS internal format and package it
into a DRDA request data stream. This format is suitable to be sent to a DRDA
application server. The Resource Adapter then uses DSC to send the request
data stream to an SQL/DS or non-SQUDS application server and waits for a
reply. The data stream is stored in a list of buffers and is transmitted with
exactly one send action. When the reply is detected by the Resource Adapter, it
uses DSC to receive the reply data stream. The Resource Adapter then invokes
DRRM which converts the data stream into its SQUDS internal format before it is
moved to the user's application area. The data stream is received in one or
more buffers.

Concepts on the Application Server
When the protocol selected is SQUDS-only, the application server uses DSC to
receive the mailbox. RDS then interprets the request in the mailbox and calls
DBSS one or more times to process it. Having processed the request, RDS J"'
packages the reply in a mailbox and uses DSC to send it to the application
requester. The entire mailbox or a section is transmitted with each send action.
If the mailbox is large, several send actions are required to transmit it.

When the protocol selected is DRDA, the application server uses DSC to receive
the request data stream. The DRRM component is used to convert the request
from its DRDA format into the SQUDS internal format. RDS then interprets the
request and calls DBSS one or more times to process it. If the request gener
ates any reply data rows, this data is contained in an output mailbox. DRRM
must be used again to convert the reply into the form of a DRDA reply data
stream before being sent back to the application requester by DSC. The reply
data stream is stored in a list of buffers (if more than one buffer is required) and
is transmitted with exactly one send action.

Inter-User Communications Vehicle (lUCV) Protocol
Figure 5 on page 19 shows how an SQUDS application server uses IUCV in a
VM/XA environment. Both the application requester and the application server
use the HNDIUCV macro to enable IUCV communications. This allows the appli
cation requester to connect to the application server and communicate.

Note: VM does not queue subsequent connections after the maximum number
of connections has been reached.

The application requester calls CMSIUCV CONNECT to establish an IUCV con
nection to the application server. This causes an external interrupt to be pre
sented to the application server. VM passes control to the External Interrupt
Handler (EIH). The EIH calls CMSIUCV ACCEPT to accept the connection and
allocates a pseudo-agent to represent it. IUCV reflects the connection com
pletion to the application requester.

At this point, the application requester calls IUCV SEND (with reply) and waits for
the reply. This causes a message pending interrupt to be presented to the appli
cation server. EIH gets control and posts the RECEIVE ECB (RECB) associated
with the pseudo-agent. If a real agent is not allocated to the pseudo-agent, one
is allocated to it if available; otherwise. the pseudo-agent is placed in the wait
queue. When a real agent is allocated to the pseudo-agent the SQUDS Dis
patcher moves it to the active queue and initiates execution.

18 SQUDS DI.gnosls tor VM LH08-8081-03 C Copyright IBM Corp. 1987, 1993

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

When the request has been processed, the application server calls IUCV REPLY
to send the reply to the application requester. The application requester posts
the SEND ECS (SECS) and proceeds to process the next request (if one exists).

When all requests have been processed, the application requester calls
CMSIUCV SEVER to sever the communications link. This causes a sever
pending interrupt to be presented to the application server. The EIH receives
control and calls CMSIUCV SEVER to sever its half of the link. The agent is reset
and reassigned to another connection.

Having severed the link, the application requester uses the HNDIUCV macro to
disable IUCV communications.

Application Requester Application Server

INITIALIZE COMMUNICATIONS (HNDIUCV) INITIALIZE COMMUNICATIONS (HNDIUCY)

CONNECT to SQL/DS Application Server------1 r------.SQL/DS External Interrupt
(CMSlUCY) Handler (EIH). Allocates a

Wait for connecti on pseudo-agent and puts it in
(WAITECB CECB) the "In-Use" queue.

SQL/DS EIH post CECB, ... ----I r------.SQL/OS EIH. Accepts
pend1ng connect1on (CMSIUCY).

SEND(wi th REPLY) to SQL/Ds----i 11-.-- SQL/DS EIH. Post the RECB.

j I f pseudo-agent has been
allocated to a real agent,
return. If not, and a real
agent is ava1lable, allocate

WAIT for REPLY it to the pseudo-agent and
(WAITECB SECB) return. Else place the pseudo

j agent at end of wei t queue.

SOLIDS E[H post SECB

-RECLEN-e
(SENOR) EOP?

T
YES

!
'--No-l End of Co ... and

T
YES

!
DISCONNECT fro. SQL/DS -

(CIISIUCV)
LOGOFF fro. I UCV

(HNDIUCV)

RDS

f--f- 01 spatcher (WAITEtB
I RECB)

~
l..-I---+--REPLY

.I. I E~P?f-YES NO
I

'---4-_ Dhpatcher(WAIT RECB)

UCEIVE

'--+---'SQL/DS EIH. If pseudo-agent has
been allocated, a real agent
posts the RECB. If not, then
SEVER the application server
side of the connection (CHSIUCV).

Figure 5. SQLIDS Use of the VM IUCV Functions

LH08-e081·03 C Copyrl;!lt IBM Corp. 1887, 1883 Cn.pte, 2. SQLJDS Concepts 19
- - -

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Advanced Program-to-Program Communications/VM (APPC/VM) Protocol
Figure 6 on page 23 and Figure 7 on page 24 show how an SQL/DS application
server uses APPCIVM in a VM/SP and VM/ESA environment.

APPCIVM is not supported in a VM/XA environment. APPCIVM can be used
when either the SQUDS-only protocol or DRDA protocol is selected.

Both the SQUDS application requester and the SQUDS application server use
HNDIUCV SET to enable APPCIVM communications. This enables an SQUDS
application requester to communicate with either an SQUDS or non-SQUDS
application server. It also enables an SQUDS application server to communi
cate with an SQUDS or non-SQUDS application requester.

The SQUDS application server also establishes a connection to the ·IDENT
system service to identify itself as the application server for a particular
resource (database). The connection is maintained until the application server is
deactivated.

Note: VM does not queue subsequent connections after the maximum number
of connections has been reached. But if an outbound connection is routed
through an AVS gateway and all sessions are in use, AVS queues the connection
until a session becomes available or until the session limit between the AVS
gateway and the remote LU is increased. There is no time-out mechanism and a
connection can be pended indefinitely. It is recommended that you define your
session limit high enough to contain peak periods of usage.

The SQUDS application requester calls CMSIUCV CONNECT to establish an
APPC connection with an application server. This causes a connection pending
interrupt to be presented to the application server. In the case of an SQUDS
application server, VM passes control to the External Interrupt Handler (EIH).
The EIH calls CMSIUCV ACCEPT to accept the connection and allocates a
pseudo-agent to represent it. APPCIVM reflects the connection completion to
the 'application requester.

If an SQUDS application requester chooses to use SQL/DS-only protocol to com
municate with an SQUDS application server in the TSAF collection or some
where in the SNA network, the SQUDS application requester uses the APPCIVM
SENDCNF function to request an acknowledgement from the SQUDS application
server that the connection request has been accepted. The SQUDS application
server uses the APPCIVM SENDCNFD function to acknowledge its acceptance.

The SQUDS application requester uses the APPCIVM SENDDATA function with
the RECEIVE = YES option to transmit the individual request to the application
server and waits for a reply. This causes an external interrupt to be presented
to the application server. In the case of an SQUDS application server, VM
passes control to the EIH which posts the Receive ECB (RECB) associated with
the pseudo-agent. If a real agent is not allocated to the pseudo-agent yet, one is
allocated to it If available; otherwise, the pseudo-agent is placed in the wait
queue. When a real agent is allocated to the pseudo-agent the SQUDS Dis
patcher moves it to the active queue and initiates execution.

For the first request in a logical unit of work (LUW), the SQUDS application
server uses the APPCIVM RECEIVE function to buffer the request. Initially it uses
a default 1 K buffer. If the default 1 K buffer can not contain the entire request,
overflow buffers are allocated and one or more calls to APPCIVM RECEIVE are

20 SQUDS OI_Clnesls tor VM LH08-8081-03 C CopyrlClht IBM Corp. 1&87, 1a83

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

issued to buffer the entire request. Eventually, in both private and DRDA flows,
the entire request is contained in one buffer. This buffer becomes the default
receive buffer for the remainder of the logical unit of work or until an even larger
request is received. Subsequent requests within the same LUW are automat
ically moved into this default buffer. If there is overflow, again the same proce
dures are used to buffer the entire request.

If an insufficient storage situation arises in the process of buffering the request,
the SQLlDS application server uses the APPCIVM SENDERR function to purge
the buffered portion of the request plus any portion pending to be received.
Then it uses the APPCIVM RECEIVE function to return to Receive state so that it
can process the next request.

After the request has been processed, the SQLlDS application server uses the
APPCIVM SENDDATA function with RECEIVE=YES and RECEIVE=NO when
appropriate to transmit the reply back to the application requester.

SQL/DS-only Protocol: The reply is stored in a 32K buffer (mailbox) in its
entirety or a 32K segment at a time. If the reply is longer than 32K, several calls
to APPCIVM SENDDATA are issued to transmit the entire reply to the application
requester. The 32K buffer is simply reused to transmit a segment each time.

If the entire reply fits in the buffer, one call to APPCIVM SENDDATA suffices to
transmit it. If an end-of-LUW condition is detected, RECEIVE =YES with a zero
reply length is specified; otherwise RECEIVE =YES is specified with a reply
length set to the length of the default buffer.

If the reply is segmented, APPCIVM SENDDATA is called several times with
RECEIVE = NO and reply length set to zero. To send the last segment of the
reply, APPCIVM SENDDATA is called with RECEIVE=YES and zero reply length
(when end-of-LUW) or RECEIVE = YES and reply length set to the length of the
default buffer (when not end-of-LUW).

DRDA Protocol: The reply is stored in a single linked-list of buffers. One call to
APPCIVM SENDDATA with RECEIVE =YES always suffices to transmit the entire
reply. If the agent is at the end-of-LUW, a zero reply length is specified to cause
the application server to issue an APPCIVM RECEIVE to buffer the next request.
Otherwise, a reply length equal to the length of the default buffer is specified to
cause the next request to be moved automatically to the reply area. Synchro
nous communications are used to ensure that the buffer list is released only
after the reply is received by the application requester. If while processing the
request, the application server detects a severe error relating to its contents,
APPCIVM SENDERR is called to purge the request and send an error indication
to the application requester.

When the SQLlDS (or non-SQLlDS) application server issues an APPCIVM
SENDDATA (or equivalent), an external interrupt is presented to the SQLlDS
application requester. VM passes control to the EIH which posts the Send ECB
(SECB). This action Is treated as the completion of the original APPCIVM
SENDDATA with RECEIVE =YES issued by the SQLlDS application requester to
send the request to the application server. If the reply overflows the default
reply buffer, then one or more calls to APPCIVM RECEIVE are issued to receive
the entire reply. After the ECB has been posted, the application requester can
continue processing. This involves moving the reply data to the application area
and sending the next request.

LH08-'081-03 C) Copyright IBM Corp. 1087, 1883 Chapter 2. SQUDS Concepts 21

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

When all requests have been processed, the SQLlDS application requester uses \
the CMSIUCV SEVER function to terminate the connection. The SQL/DS applica- ..."
tion server is presented with an external interrupt and informs the real agent, if
one is allocated to the pseudo-agent, that the application requester has termi-
nated its half of the connection. If a real agent has not been allocated to the
pseudo-agent, the EIH uses the CMSIUCV SEVER function to terminate its half of
the connection. Otherwise, the SQLlDS Dispatcher deallocates the real agent
from the pseudo-agent and terminates its half of the connection likewise.

Finally, the SQLlDS application requester uses the HNDIUCV CLEAR function to
disable APPCIVM communications.

22 SQIJDS Diagnosis tor VM LH09-e081-03 C Copyright IBM Corp. 1887, 1993

J

I

I

I

I

I ~
I

I

I ~
I

I~
I

I ~
I

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Application Requester

Enable for
COlllllunl cations
(HNDIUCV SET)

Connect to Resource
CMSIUCV CONNECT --_.

WAIT-YES

(ReMote route only)
Request ConfirMation I
SENDCNF to Resource ---••

WAlT-YES I
Acknowl edgeMent ... ---
co.plete. request

I
Connection cOllplete ---

!
Build Input Mailbox

I I

Application Server

Enable for
Communi ca t Ions
(HNDIUCV SET)

CONNECT to *IDENT
(Identify Resource 10 to VM)

SOL/OS EIH RECEIVEs 'Allocate Data',
Caples synclevel from Allocate Data to
pseudo-agent and puts on "In Use' queue

SOL/OS EIH RECEIVEs Conflrutlon
Request and sends Acknowl edgeMent
using
SENOCNFO

SOL/OS EIH ACCEPTs pending connection

SENDDATA.RCV-Y.]GoL/DS EIH Posts RECB
ANSLEN-32K-l
BUFLlST-NO
WAIT-YES/NO If allocated to Real Agent RETURN

I If Real Agent available allocate and RETURN
WAIT for Reply Else put at end of walt queue,

1 Dispatcher
RDS

EIH post SECB
I

Data Moved
Into Output

Mailbox Buffer
I

r-YES-j EOP?
T

NO

I
RECEIVE -

WAIT-YES/NO

Endof~
APflcatlOn? I

~~s

~----------------------~
I f 1st Send In LUW then RECEIVE
If LEN> default buffer len then RECEIVE
Call DBSS

I
~Bulld Output MailBox

l.

EOP? r-YES- End Of LUW--YES-,
T I SENDDATA, RCV-Y ,-
NO NO ANSLEN-e

I
~SENDDATA.RCV-Y.-

ANSLEN-defaul t
buffer 1 ength

.r- ::JDATA.RCV-N .ANSLEM-e

Disconnect fro. -------,.......--SOL/OS EIH
Application Server Sever pseudo-agent If not connected
(CMSIUCV) to real agent,
Disable Co.unl cations Post Flags
(HMOI UCV CLR) Return

'----(Olspatcher)
Deallocate real agent fro.
pseudo-agent,
Sever pseudo-agent

Figure 6, SQL/DS APPC/VM Communlc.tlon Protocol with SQL/DS Flows,

Chapter 2, SQLJDS Concepts 23

Application Requester

Enabl e for
Communications
(HNDIUCY SET)

Connect to Resource
CMSIUCY CONNECT --_.

WAIT-YES

I
Connecti on compl ete ... ---

"'" D ... ; ... """, I
SENDDATA,RCY-Y,

ANSLEN-32K-l
8UFLI ST-YES
WAIT-YES/NO

I
WAIT for Reply

"Restricted Materials ot IBM"
Licensed Materials - Property ot IBM

Application Server

Enabl e for
Comllluni cat; ons
(HtlOl UCY SET)

CONNECT to "IDENT
(Identify Resource 10 to YM)

SOL/OS EIH RECEIYEs from 'Allocate Oata'.
Copies synclevel, conversation type
and LUWID from Allocate Data to)lseudo
agent and puts on "In Use" queue.

SOL/OS EIH ACCEPTs pending connection

SOL/OS EIH Posts REC8

I fall oca ted to Rea I Agent RETURN
If Real Agent available allocate and RETURN
Else put at end of wait queue.

1 '---- Dispatcher
RDS

EIH post SECB

I
Hove data to
other buffer

I fYES-1 In Send
State?

T
Move to NO
single 1
buffer l RECEIYE

WAIT-YES

End Of~
APr i cati on? I

~~s

I f 1st Send in LUW then RECE I YE LEN-IK
In Send State?-Ni

! RECEIYE LEN-32K-l
YES WAli"YES

1
Ca 11 D8SS
8uild DRDA Reply(les) In Buffer List

End of LUW?-YES~

! SENDDATA RCY-YES,BUFLIST-YES,
NO ANSLEN-e,WAIT-YES

~SENDDATA RCY-YES,BUFLIST-YES,
ANSLEN-defaul t buffer length,

WAIT-YES •

Di sconnect fro. --------.---SQL/DS EIH
Application Server Sever pseudo-agent if not connected
(CMSIUCY) to real agent.
Disable COMunicatlonl Post Flags
(HNDIUCY CLR) Return

'----(Dispatcher)
Deallocate real agent fro.
pseudo-agent.
Sever pseudo-agent

Figure 7. SQL/DS APPC/VM Communication Protocol with DRDA Flows.

24 SQUDS DiagnOSIS for VM LH09-8081-03 C Copyright IBM Corp. 1987, 11183

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Application Program Use of IUCV or APPC/VM
Use of IUCV or APPCIVM does not preclude application programs from using
IUCV or APPCIVM while using the SQL/DS RDBMS. This applies to application
programs running in both multiple user mode and single user mode. When
invoking IUCV or APPCIVM, the application program must follow the same proto
cols that the SQUDS RDBMS follows when it uses IUCV or APPCIVM:

1. Issue an HNDIUCV macro with the SET option to identify the application as
an IUCV or APPCIVM program.

2. Issue a CMSIUCV macro with the CONNECT option to establish a connection
to another virtual machine, and issue a CMSIUCV macro with the ACCEPT
option to accept a connection from another virtual machine.

3. Perform application communications, as appropriate.

4. Issue a CMSIUCV macro with the SEVER option to terminate a connection
with another virtual machine.

5. Issue an HNDIUCV macro with the CLR option to indicate that the application
no longer uses IUCV or APPCIVM services.

In single user mode, the SQUDS RDBMS uses IUCV to communicate to the VM
DASD BLOCK I/O System Service. In this case, the CMS HNDIUCV and
CMSIUCV macros are issued to establish the communication paths to the data
base devices. The Resource Adapter does not use IUCV or APPCIVM in single
user mode, because it communicates directly with the application server.

In addition to using the CMS IUCV support, the user must also ensure that the
MAXCONN value for the directory of the virtual machine is large enough to
handle all the communication links that may be active at one time. In multiple
user mode, the SQUDS Resource Adapter requires only one communication link.
In single user mode, the SQUDS communication paths to the database devices
are allocated prior to the application program being invoked. Therefore, the
number of communication paths available to the application program is the
MAXCONN value minus the number of database devices.

For further information on IUCV or APPCIVM, refer to the Connectivity Planning,
Administration, and Operation manual for your IBM VM System Product.

Package Management Concepts
A package is the internal representation of an application program. It is made
up of:

• A header, containing control information about the package, like thepreproc
essing options in effect.

• A series of sections. In general , a section is created for each OML or OOL
statement in the application program. The section contains the internal form
of the SQL statement.

• The statement itself (to be used for dynamic repreprocessing).

LH08-t081-03 = Copyright IBM Corp. 1&187, 1&183 Ch.pter 2. SQUOS Concepts 25

RDIiNs

Preprocessing

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The ROliN is the control block passed to the application server by the application
program. It contains all the information necessary for the application server to
fulfill an application request. The ROliN is received by the RDS component of the
application server and then passed to the appropriate handler to perform the
requested function.

When using the DRDA protocol, the ROliN on the SQL/DS application requester
is first translated into DDM commands by the ROliN Manager before it is sent to
the application server. Each DDM command received on the SQUDS application
server is then translated back into an ROliN format by the ROliN Manager.

There are certain ROliN calls that are specifically reserved for language pre
processor functions. The ROliN call types for preprocessors and their functions
are as follows:

• Preprocessor Initialization Call: results in the binding of the preprocessed
program and its creator to an unused package. A row of the SYSACCESS
table is updated and bound to the package being preprocessed.

• SQL Statement Call: results in the passed SQL statement being parsed and
then, if appropriate, optimized and transformed into control blocks that
describe how the statement is to be performed. Only data manipulation
statements (SELECT, UPDATE, DELETE, and INSERT) are optimized and
transformed into control blocks. In general, all other statements are consid- '}
ered interpretive and are stored in a parse tree format only. ~

• Preprocessor Finish Call: is issued by the preprocessor after all SQL state
ments in the application have been processed. It causes the finalization of
the package in the case of successful preprocessing. The preprocessor then
issues a COMMIT WORK to end the logical unit of work (LUW) started by the
preprocessor initialization call. Unsuccessful preprocessing results in a
rollback of the preprocessor logical unit of work.

There are four basic functions performed during SQL statement call processing:
Parsing, Optimization, Access Generation, and Statement Generation. J

• Parsing

The parsing function does the primary syntactical analysis of the user's SQL
statement and converts it into an internal form called a parse tree. It is used
either at preprocessing time (invoked by the preprocessor) or at run-time (for
dynamic statements).

• Optimization

The objective of the optimization function is to prepare a single SQL state
ment for execution. Input consists of the parse tree for that statement,
created by the parsing function. The following functions are performed
during optimization:

Authorization checking: The authorization control function is invoked to
ensure that the requestor of an operation has the appropriate authority.
Authorizations to perform specific operations on tables (for example,),
SELECT, INSERT, DELETE, UPDATE) are program dependencies and are .oJ
recorded in the system table SYSTABAUTH.

28 SQUOS OI_onOIII 'or VM LH09-8081·03 CI Copyright IBM Corp. 1987, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Symbol resolution: Names of tables, views, and columns are verified
against the contents of the catalog. Internal identifiers of such are saved
for use in preparing the run-time structures to communicate with DBSS.
Program dependencies for object existence are stored in the SYSUSAGE
system table.

Semantic checking: The SQL statement is checked for validity of
meaning. For example, the operands of each comparison operator are
checked to see that they are comparable.

Access path selection: A plan for executing each database request is
determined by considering both the access paths (including indexes)
available and statistics on the data to be accessed.

For more information on access path selection, see the Performance Tuning
Handbook.

• Access Generation

During access generation the output from the optimization phase is trans
formed into control blocks that describe how the statement is to be executed.
Only data manipulation statements (SELECT, UPDATE, DELETE and INSERT)
require access generation.

• Statement Generation

Statement Generation occurs when an SQUDS data manipulation statement
is preprocessed. Currently, statements are generated to enforce referential
integrity and the CHECK option in updateable views.

For referential integrity, the Statement Generator has three main functions:

1. It creates an SQUDS data manipulation statement.

2. It changes the SQL statement into an SQUDS internal representation (a
section of a package) by invoking the optimizer, and access generator.

3. It combines the original SQUDS statement with the internally generated
statement.

For enforcing the CHECK option in updateable views, the Statement Gener
ator does the same as for referential integrity except that it does not work on
a complete data manipulation statement. Instead, it works only on the predi
cates that are to be checked. The predicates are defined in the views which
are created with the CHECK option. In this case, the Statement Generator
does the following:

1. It creates a SELECT statement for the predicates to be checked.

2. It changes the predicates of the SELECT statement into an internal repre
sentation (run-time tables which process the predicates) by invoking the
parser, optimizer, and access generator.

3. It attaches the run-time tables of the predicates to the run-time block of
the original SQUDS statement.

LH09·aoe1-03 C Copyright IBM Corp. 1887, 1883 Chapter 2. SQLlDS Concepts 27

Execution-Time Processing

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

An application program communicates with the database manager using code
placed in the application by the SQL/DS preprocessor, which replaces the ori-
ginal SQL statements in the application. This code passes an RDIIN control
block to the database manager identifying the function to be performed. Part of
the RDIIN identifies the package and its section. The identified section within the
package can be empty (an indefinite section) or can contain control blocks that
describe how the statement is to be performed (a compiled section) or a parse
tree (a parsed section or an interpretive section).

• Static Statements

Most statements embedded in an application program are static statements.
These statements are converted into compiled sections or interpretive
sections.

• Parsed Section

J

Parsed sections result from an SQL statement that causes a preprocessing J
warning (for example, it references a table that does not yet exist). For such
statements, the SQL statement is parsed and the result is stored as a
section in the package. The intent is to allow the user to correct the warning
condition before the program is executed. When a parsed section is exe-
cuted, it is handled somewhat like an EXECUTE IMMEDIATE statement from
optimization through execution; the stored parsed data is treated as a
dynamiC statement starting at the optimization step because the parsing was
already done at preprocessing time. If it is a frequently executed SQL state-
ment, and if performance and storage requirements are important, consider
repreprocessing the program after the object is created or after the user is
properly authorized.

• Dynamic Processing

Applications can be written to dynamically preprocess SQL statements using
a PREPARE or EXECUTE IMMEDIATE statement. An application containing
these statements has an indefinite (or empty) section created in the package
for each different PREPARE statement and one for all EXECUTE IMMEDIATE
statements.

When a package with an indefinite section is loaded, an actual section does
not exist. As soon as a PREPARE or EXECUTE IMMEDIATE statement is exe
cuted, the actual section is generated and stored so that a subsequent user's
EXECUTE (or an implicit one, in the case of EXECUTE IMMEDIATE) can be
processed successfully.

• Extended DynamiC Processing

28 SQUDS Diagnosis for VM

There are two types of packages created by Extended Dynamic Statements.
These types are known as modifiable and non modifiable.

A nonmodifiable package cannot be altered after it is created and committed.
Sections can be added to the package in a consecutive manner using an
extended PREPARE statement, but the sections can be added only in the
same logical unit of work in which the CREATE PROGRAM has been exe
cuted to create the package. The sections cannot be executed until the
package is committed. This type of package is created in the same fashion
as those created by the Assembler, C, PUI, and COBOL preprocessors with
a CREATE PROGRAM statement analogous to a PREP INIT Call, the
EXTENDED PREPARE statement analogous to the PREP SQL Call, and the

LH08-8081-03 C> Copyrlgl! I~ ~or~ 1~7 .J99~ _

I

~

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

COMMIT/ROLLBACK statement analogous to the PREP FINISH Call. The
FORTRAN and RPG preprocessors create this type of package.

The other type of package is a modifiable package. This type of package
may have sections added to or deleted from it using the extended PREPARE
and DROP STATEMENT respectively. Additionally, the sections of the
package can be executed in the same logical unit of work in which the
package was created.

Note: The support for extended dynamic processing is restricted in the
DRDA protocol environment. For more information on the restrictions, see
the System Administration manual.

Package Cache Management
The RDS component manages and keeps track of the status of packages that
have been loaded from the database into memory. The package cache, named
PROGS, is used to hold information about all packages that have been loaded .

The package cache is an array of elements. The number of elements in the
package cache is calculated using two initialization parameters, NPACKAGE and
NCUSERS:

number of elements in package cache = NPACKAGE x NCUSERS

NPACKAGE defines the maximum number of packages in a logical unit of work.
The default value of NPACKAGE is 10. NCUSERS represents the number of con- :
current active users. The default value of NCUSERS is 5. The default number of '
elements in the package cache is 50.

During a logical unit of work, each package is loaded from the database into
memory, if it is not already available in memory, and is assigned an element in
the package cache. Each logical unit of work maintains its own chained list of
loaded packages.

The package cache has a threshold. The purpose of the threshold is to control
the amount of storage consumed by the loaded packages. The threshold is
derived using the following calculation:

threshold = * of elements in the package cache x NPACKPCT / lee

The default value of NPACKPCT is 30, the default threshold is 15.

At the end of the logical unit of work, if the threshold is exceeded, the assigned
elements that map to the loaded package are freed and returned to the package '
cache for use. This continues until either all elements assigned to a logical unit '
of work have been freed, or until the number of assigned elements drops below ,
the threshold.

If the threshold is not exceeded, the package stays in memory but is no longer
associated with the LUW that just completed.

Changing the initialization parameters NPACKAGE, NCUSERS and NPACKPCT
can impact performance. For more information, see the Performance Tuning
Handbook manual.

Chapter 2. SQLJOS Concepts 29'
I

Repreprocessing

Authorization

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Repreprocessing, or "reprep," is initiated when a package is loaded and is found
to be invalid. Execution of a RELOAD PROGRAM command will also force a
reprep to occur. This reprep is transparent to the user's application except that,
after the package is invalidated, extra time is required to reprep the program the
first time the application is run. This is because during repreprocessing, each
SQL statement stored in a package is preprocessed and the resulting generated
code or parsed output replaces its predecessor. This is a significant function of
package management.

When packages are created, an entry is made into the table SYSUSAGE for
every database object on which the package depends. DBSPACEs, tables, and
indexes are examples of such objects.

When any object is dropped from the database, SYSUSAGE is scanned to deter
mine which packages are dependent on the existence of the object. Packages
that are found to have dependencies on the dropped object are marked invalid.
SQL/DS also checks SYSTABAUTH to find and invalidate packages when the
necessary privilege or authority of the creator of the package has been revoked.
(Privileges granted to a package are those granted to the creator of the
package.)

Marking a package invalid implies that its SYSACCESS table row is updated so
that the column named VALID is updated to a value of N. Additionally, the
entries in the package cache are affected. Occurrences of the affected package
tied to an active logical unit of work have their cache entry marked invalid so
that they are removed from the cache at the end of their logical unit of work.

The effect of marking the package invalid is that the package has to be loaded
the next time it is needed by an application at the beginning of a logical unit of
work. During the load process, the database manager recognizes that the
package is invalid and initiates the repreprocessing. At successful completion of
this transparent reprep, the package is marked valid again in its SYSACCESS
row.

Authorizations are classified into two categories, (1) privileges and (2) system
authorities.

Privileges are the capabilities you possess to perform specific operations on
tables and views (for example, SELECT, INSERT, DELETE, and UPDATE) or the
RUN privilege for a package. Authorities are the levels of authorization you
possess In the SQUDS database (for example, CONNECT, RESOURCE,
SCHEDULE, and DBA). Privileges and authorities are recorded in the following
system catalog:

• SYSTABAUTH contains table and view privileges

• SYSCOLAUTH contains the column privileges when UPDATE is granted on
specific columns and not on the whole table

• SYSPROGAUTH contains the RUN privilege for packages

• SYSUSERAUTH contains the authorities that a user has.

30 SQUOS OI_gnosls 10r VM L.H08-I081-03 ~ Copyright IBM Corp. 1SM7, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Privileges and authorities of static statements are checked at preprocessing
time. Privileges and authorities of dynamic statements are checked at execution
time.

When a package is preprocessed. the authorization component determines the
RUN privilege that should be given to the creator. This depends on the creator's
existing privileges and authorities as well as the type of statements in the
package. Refer to the Application Programming manual for more detail.

Storage Management Concepts
This section discusses several different types of storage management concepts:

1. Memory Management

Virtual memory. or virtual storage. is the storage required during execution.
It is required. for example. to hold packages. agent structures and dynam
ically assigned variables.

2. Logical Storage Management

The actual data in the database is stored in DBSPACEs. A DBSPACE is a
portion of the database that can contain one or more tables and their associ
ated indexes. A DBSPACE. however. is not a physical space. It represents a
logical allocation of space in a storage pool. Each DBSPACE is assigned to a
specific storage pool.

3. Physical Storage Management

DBEXTENTs are the physical medium where the data in the database is
stored. Each DBEXTENT is a VM minidisk. A storage pool is a collection of
one or more DBEXTENTs.

Memory Management Concepts
Storage Services:

System storage is used for two things: stack storage and working storage.
Storage is obtained and released by calling SQUDS modules that execute the
host system's storage request macros DMSFREE. DMSFRET. and CMSSTOR.

To judge current and future storage requirements. and to assist in problem
determination. use the SHOW STORAGE command . This command displays
information about the system storage currently in use as well as maximum total
storage usage. For information on how to use this command to monitor and
assess storage usage. see the Performance Tuning Handbook.

Stack Storage:

Stack storage functions allocate the dynamic storage required by a module
during its execution. that is. storage required by its dynamically assigned vari
ables. This storage is allocated when the module is invoked and deallocated
when the module returns to its calling module.

When a called module requires more stack storage than is available in the
current stack. a stack extension occurs. allocating a minimum of 12K of storage.
This stack extension is added to the end of the stack chain and pointed to as the
current stack. Subsequent calls to other modules cause them to obtain their

_______ ~L'-"H08-~ oe"_'1'::"'-03 C Copyright IBM Corp. 1887. 1883 Ch.pter 2. SQUDS Concepts 31
- ---

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

storage from the stack extension (unless another stack extension occurs). As
each module returns to the caller, the stack extension is freed and removed from
the stack chain.

Working Storage:

The working storage functions allocate storage for an agent structure. This
storage is more permanent than stack storage; it is typically allocated and used
across module calls. When an agent structure is created, it is allocated two
initial working storage areas that are placed on two free queue chains. One
queue is for requests for storage that must be below the 16M line. The other
queue is for storage that can be above the 16M line. Initially, the entire working
storage areas are available for suballocation. Additional working storage exten
sions are allocated and freed as re.quired. At end-of-LUW, all remaining working
storage extensions are returned tothe host system.

When a module requests working storage, from one of the two areas, storage is
removed from the appropriate working storage area and allocated to the
requester. The remaining storage stays on that free queue chain . Whenever a
module frees an area of working storage, it is returned to the working storage
area from which it was suballocated by inserting it into the free queue chain.

Subsequent requests for working storage attempt to get storage from one of the
working storage areas by navigating its free queue chain until it finds an area
large enough to satisfy the request. If a large enough area cannot be found, a
request is made for additional storage. This additional storage, called a working
storage extension, is placed on the appropriate working storage extension chain
and its free storage (if any) is added to the corresponding free queue chain.
Additional working storage extensions are added to the end of this extension
chain. In some cases if all the area in a working storage extension becomes
free, it is returned to the system at that time. At end-of-LUW, all remaining
working storage extensions are returned to the host system.

There is also prototype working storage. This storage is managed much like
regular working storage but it is not freed at end-of-LUW. Prototype working
storage extensions are chained to the working storage extension chain of the
prototype agent rather than that of the agent requesting the storage.

Storage for each loaded package is also maintained in a working storage queue.
All extenSions and the initial pool are freed to the system when the package is
purged from memory.

Logical Storage Management Concepts
A OBSPACE Is logically divided Into three sections: header pages, data pages
and Index pages. The size of each of these sections is determined when the
OBSPACE Is ACQUIREd. Logical pages from these sections are allocated from
the top of each section when they are required.

32 SQUDS DI.gnOlls for VM LH08-8081-03 C Copyright IBM Corp~8I~ 1_
~-----

J

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

-----1i ~ HEADER PAGES
>--___ ---'1 ~ (1-8)

, il
TOTAL OF

PAGES (IN
11UL TlPLES OF

128)

, DATA PAGES
~TAL - (HEADER) - (INOEX)

i

~

F INDEX PAGES
TRUNC (PCTINDEX *

TOTAL PAGES)

Figure B. OaSPACE Structure (Logical View)

A page in a OSSPACE is 4096 bytes in size. Sixteen of these bytes are reserved
for the page header. Since SQUOS does not support rows that span OSSPACE
pages (except when using long fields), the maximum row length is 4080
(including row overhead).

The following diagram shows the format of a data page. The page slots at the
end of the page contain offsets to the rows on the page. A row is uniquely iden
tified in a OSSPACE by a tuple identifier (TIO) which consists of the page number
of the page on which it resides and the number of the slot which points to the
row.

i •

IpAGE H!:::! STORED ROW

I ~ ~IH-EA-D-ER-'--D-A-TA----~ 1

1'--________ 4 __ O-..,FISH~FO~F II

I I I I I I
~ PAGE SLOTS

o I 3 I 4

I PAGE'

TID (4 bytes)

Figure 9. L.llyoul of II 08SPACE Oala Page

PCTFREE is the minimum free space to be reserved on each data page of the
OSSPACE on an INSERT operation.

LH09·aOS1·03 C Copyright IBM Corp. 1987, 1883 Ch8pter 2. SQUDS Concepts 33

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The following objectives are factors in free space management:

1. Preservation of at least PCTFREE free space on an INSERT

2. Minimize overflow due to row expansion

3. Minimize II0s to find room for an INSERT.

The actual free space seldom works out to be exactly the PCTFREE specification.
For INSERT operations, SQL/DS overallocates free space with one exception:
SQL/OS always allows at least one row on a page regardless of the PCTFREE
specification .

For example, a table with fixed length 3K byte rows always results in approxi
mately 25% free space. Even if you specify PCTFREE = 10, you get 25% actual.
SQLlOS can put only one 3K row on a 4K page. If you specify PCTFREE = 50,
SQLlOS will still insert the 3K row even though the 50% free space request
cannot be honored.

The purpose of PCTFREE is to minimize overflow due to row expansion. When
UPDATE commands are executed on an existing row and the length of the row
increases, the row could expand into the free space reserved with PCTFREE. If
the expansion exceeds the free space, the page becomes full, and it causes an
overflow. The row is relocated to a new page and a pointer chaining to the new
location is set in the old page. If this row has to be moved again, the pOinter in
the original page is set to mark the newest location. Therefore, SQLlDS never
reads more than two pages for one row, (except when using long fields).

To minimize 1/0 operations in finding room for an INSERT, the system must have
some notion about the free space of the DSSPACE pages that can accommodate
the row to be inserted. To achieve this, SQLlDS maintains summary information
in the OSSPACE Page Map tables. DSSPACE Page Map tables are blocks in the
Directory, each block having entries for 128 consecutive pages. In particular,
each page map table entry contains a FREE CLASS designation that identifies
the range of free space (bytes) available on the referenced page. The relevant
free classes that a page might have are identified in Figure 10.

Figure 10. Free Classes

FREE MIN MAX
CLASS FREE FREE
2 0 14

3 15 29

4 30 49

5 50 99

6 100 249

7 250 499

8 500 999

9 1000 1999

10 2000 4017

11 4018 4077

12 4078 4078

34 SQLJOS Diagnosis tor VM LHC»-8081-03 C Copyright IBM Corp. 1987,1993

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

To determine whether or not a page qualifies for insertion of a row. SQLlDS
looks at the FREE CLASS of the page and checks the following condition to
qualify the page:

ROWLENGTH + PCTFREE * 40 <= MIN FREE

(The value 40 is from 4080/100.)

If the condition is true. the page qualifies and is used for the insertion. That is. if
the condition is true. insertion of the row does not compromise the current
PCTFREE specification.

-----M,'tIAX FREE----

---MIN FREE--

----IDATA--- -PCTFREE-
-ROW-

---ACTUAL FREE----

Figure ". Qualifying a Page Based on FREE CLASS

Figure 11 illustrates the case where the row fits in the difference between MIN
FREE and PCTFREE. Notice that the use of MIN FREE is a conservative check;
the actual free space is somewhat larger.

Figure 12 illustrates the results of the insertion and an attempt to insert another
row.

I--OLD MIN FREE-I

--MMAX FREE--I

I--MIN FREE-I

OLD NE\~
-----IDATA-- -ROW- -RO~J- -PCTFREE-

DOESN'T * 40
FIT

I-ACTUAL FREE--I

Figure 12. State of the Page after the Insertion

As a result of the insertion. the page had to be assigned a new FREE CLASS. In
this illustration. the new FREE CLASS has a MAX FREE value that is one byte
less than the old MIN FREE. Note that if another INSERT is attempted with a row
as shown. the page no longer qualifies for an insertion (ROWLENGTH > MIN
FREE - PCTFREE • 40).

Figure 12 also shows that the row would have actually fit without compromising
the PCTFREE. even though this page did not qualify for the insertion. Because
FREE CLASS does not identify the exact amount of actual free space. the data-

I.Hoe-e0l1-03 C Copyright IBM Corp. 1887. 1m Chapter 2. SQUDS Concepts 35

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

base manager cannot determine precisely whether a particular row fits. The '.J
result of this design is that the actual free space may be somewhat larger than
the amount suggested by PCTFREE. The degree to which the database manager
overallocates free space depends on the PCTFREE specification. the lengths of
rows being inserted. and the FREE CLASS range involved.

Physical Storage Management Concepts
Directory, LOGs, and DSEXTENTs:

The Directory. LOGs. and DBEXTENTs are reserved minidisks with a blocksize of
512 bytes for the Directory and 4096 bytes for the LOGs and DBEXTENTs. These
minidisks have CMS-like files that are in a format to be used with the VM
BLOCKIO process. The VM BLOCKIO process is used to read and write records
to these files. These minidisks are called reserved because they have been
processed by the CMS RESERVE command. The RESERVE command specifies
that the minidisk consists of a single CMS file, which is allocated using all avail- I
able disk blocks. This CMS file cannot be processed by most CMS file system,
commands and must never be modified, except by the database manager. For
an example of physical database concepts, see the System Administration
manual.

Mapping of DSSPACEs to DASD:

Logical DBSPACEs must be mapped to physical DBEXTENTS on DASD. SQUDS
does this by maintaining a page map table. for each DBSPACE, which is used to
map a given DBSPACE page to its location on DASD. The page map table is a
collection of constant size blocks (512 bytes) in the directory. Each entry of a
page map table is four bytes. Thus, the size of a DBSPACE is rounded up to the
nearest multiple of 128 pages (512/4=128). Each logical page of a DBSPACE
takes eight bytes of Directory space: four bytes for the current version of the
page and four bytes for its shadow page. Shadow pages are discussed in
"DBSPACE Recovery" on page 38.

36 SQLJOS Ol_gnosls tor VM LH08-8011-03 C) Copyright IBM Corp. 1887, 1983

J

"Re.trlcted Material. of IBM"
Ucenaed Material. - Property of IBM

DBSPACE
(LOGICAL VIEW)

Page 1 4K

Page 2 4K

Page 3 4K

I · I

Page 128 4K

Page 129 4K

· I · I

·
Page 256 4K

Page 257 4K

I

"

I
I

I
I

I

"

PAGE MAP TABLE
(REAL VIEW)

4 bytes

4 bytes

4 bytes

I · I ·
4 bytes

4 bytes

· I · I · ·
4 bytes

4 bytes

I

"
Figure 13. Mapping of DBSPACEs to DASD

Entry 1

Entry 2

Entry 3

I
I
Entry 128
-
Entry 1

I
I

Entry 128

Entry 1

I

"

STORAGE POOL
(PHYSICAL VIEW)

- ·U
DO
·n

Loglca' To Phy./cai Page Re/atlon.hlp.: Physical page slots in the storage pool
are allocated to the OBSPACEs dynamically upon first reference. Once a logical
page has had a physical page slot allocated to it, it will continue to have a phys
ical page allocated, even if empty, until the OBSPACE is dropped. This is illus
trated in the following example.

Example: A SHOW OBSPACE indicates number of pages occupied = 2000 and
number of empty pages = 29000.

This means that 29000 pages are allocated and are all free space. New pages
are required from the OBEXTENT when pages are needed for shadow page use.
Shadow pages are given back to the storage pool at checkpoint time.

Example: A SHOW POOL indicates total pages in use = 32000

This example shows that 32000 pages are in use. Assuming that the only
OBSPACE In this storage pool is the one in the previous example, only 31000
pages are actually assigned to the DBSPACE. This means that 1000 pages are
in use a. shadow pages, which will be released at checkpoint time. (For more
information regarding shadow pages, refer to "DBSPACE Recovery" on
page 38.)

Storage Pool.:

A storage pool is a collection of one or more DBEXTENTs, which can be used to
control the distribution of the database across DASDs. The maximum number of

LH08-8011.()3 CD Copyright IBM Corp. 1117, 1883 Chepter 2. SQUDS Concec:. 17

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

storage pools for a given database is specified by the database generation
keyword MAXPOOLS. A storage pool does not exist until a DBEXTENT is
assigned to it. DBSPACEs are assigned to a given storage pool when they are
defined. That means when physical page slots are allocated to the DBSPACE,
they are allocated from the storage pool to which the DBSPACE belongs. In
addition, if the storage pool contains more than one DBEXTENT, a physical page
slot may be allocated from any of these DBEXTENTs.

DSSPACE Recovery:

The DBSPACE recovery mechanism is the use of "shadow pages." Two page
map table entries are associated with each permanent (not internal) DBSPACE.
The entries are called "current" and "shadow." The shadow page contains the
original page data at the time of the last checkpoint, and the current page con
tains all updates made to the page since the last checkpoint. (See
"Logging/Recovery Concepts" on page 46 for a discussion of checkpoints.)

After a checkpoint, the current and shadow entries are identical. When there is
a request to update a page, and it is the first request since the last checkpoint, a
new physical page slot is allocated from the storage pool, and the current page
map table entry is set to the new page location. When the page is written to
DASD it is directed to the new location, whereas the shadow page and the
shadow page map entries are left intact. At a checkpoint, the physical pages
bound to the DSSPACE are brought up to date by writing out all buffer pages that
have been updated. Effectively, the shadow page map entries are set equal to
the current page map entries, and the physical pages in the shadow page map
entries that have been changed are released.

Note that only one additional page is allocated for all updates made by any LUW
since the last checkpoint. Also, the pages are physical pages from the storage
pool and do not deplete the available data pages of the DBSPACE.

Reserved Pages:

Twenty pages are reserved in each storage pool to enable recovery from situ
ations where the storage pool becomes full. In addition, if more than 20 new
pages in a recoverable storage pool are used since the last checkpoint and
logging is being performed, the database manager reserves one page in that
storage pool for each new page used in excess of 20 pages. The reserved
pages in excess of 20 are freed at checkpoint time. If an LUW requires a new
page which would cause the number of reserved pages to exceed the number of
free pages in the storage pool, a storage pool full condition occurs and the LUW
is rolled back. During rollback the reserved pages may be used. If the number
of free pages in the storage pool reaches 10 or less during rollback, a checkpoint
is triggered. This enables the database manager to recover shadow pages and
allows the rollback to continue without running out of pages In the storage pool.

For nonrecoverable storage pools, or when logging is not being performed
(LOGMODE = N), a maximum of 20 pages are always reserved.

38 SQlJDS Dlagnosll for VM LHoe-eoa1-03 C Copyright IBM COrp. 1887, 1883

"Re.trlcted Material. of IBM"
Ucenaed Material. - Property of IBM

Buffer Storage Management Concepts

Index Concepts

The Storage component manages the allocation of virtual storage buffers for
data pages and Directory blocks. The number of page and Directory buffers are
specified by the SQUDS initialization parameters NPAGBUF and NDIRBUF
respectively. Pages and blocks are fetched and fixed to a particular b!Jffer until
the agent is through referencing data and explicitly unfixes the page or block
buffer for reuse. Modified pages or blocks are not written to DASD at "unfix"
time but are written before the buffer is reused for another page or block. The
buffer replacement strategy incorporated is a least recently used algorithm. This
is predicated on the assumption that a recently used page is most likely to be
referenced in the near future, thus eliminating th'e overhead of 1/0 to refetch it
from DASD.

Buffer storage management works differently with the VM Data Spaces Support
feature. For more information, see the Performance Tuning Handbook and the
VM Data Spaces Support manual.

This section describes the internal format of SQUDS indexes. It also describes
the two important aspects of indexes from the user's point of view: fragmentation
and clustering.

Basic Index Structure
SQUDS indexes are B-tree structures as illustrated in the following diagrams.

HIKEYI ROOT PAGE
PAGE'

HIKEY/ NON-LEAF PAGES
PAGE'

I I I I
KEYI LEAF PAGES
TID

Figure 14. The a_I_need Tree Index Structure for Unique Indexe.

LH084011.()3 0 Copyright IBM Corp. 1817,1883 Chapter 2. SQUDS Concepti 3.

HIKEY/
HITID/
PAGE#

HIKEY /
HITID/
PAGE#

I I
KEY /
TIDs

"Restricted Materials ot IBM"
Ucensed Materials - Property of IBM

ROOT PAGE

HIKEY/ NON-LEAF PAGES
HITID/
PAGE#

I I
LEAF PAGES

Figure 15. The Balanced Tree Index Structure for Nonunique Indexes

In Figure 14 on page 39, the root page would contain the high key value and
page number for each of the non leaf pages at the next (second) level. Similarly,
the non leaf pages would contain the high key value and page number for each of
the leaf pages. The leaf pages would contain the uncompressed key and the TID
of the row in the table.

In Figure 15, the root page would contain the high key value, the corresponding
high TID value, and the page number for each of the nonleaf pages at the next
(second) level. Similarly, the non leaf pages would contain the high key value,
the corresponding high TID value, and the page number for each of the leaf
pages. The leaf pages would contain the uncompressed key and the TIDs of the
rows in the table.

A balanced tree structure means that the number of pages read to traverse the
index from the root page to anyone of the leaf pages is the same. It does not
necessarily mean that the keys are balanced across the pages.

Index Space Management
The Index component manages the space in its index pages. Unlike the Data
Manipulation component, which searches for free space in an available data
page to store a row, the Index component knows where the submitted key
belongs. The keys are stored in a particular physical order (ascending or
descending), and a particular key value has a specific position in an Index page.

When an index page becomes full with key/TID pairs (or page numbers for
non leaf pages) and another key is to be inserted in the page, a new page is allo
cated and the full one is split. The low-key-range half of the page is moved to
the new page and the high-key-range half is moved to the top of the previously
full page.

If all keys that reside on an Index page are deleted. the page is logically empty
but cannot be reused for other key values. Index pages that have been allocated

40 SQUOS DiagnosIs for VM LH09-aoa1·Q3 C Copyright IBM Corp. 1887. 1883

J

J

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Invalid Indexes

to an index are normally reclaimed only when the index is either dropped or
reorganized. The exception to this occurs when there are no more free pages
available and a page is needed during ROLLBACK or UNDO WORK operations.
In this case, an attempt is made to reclaim empty index leaf pages and merge
partially full index pages to enable rollback to continue. Index pages are not
reclaimed for DBSPACE SYSOOO1 (which contains the catalog tables), nor are the
indexes on catalog tables marked invalid.

An index can become invalid in the following ways.

• During a ROLLBACK or UNDO operation, if the database manager requires a
free index page but is unable to reclaim any, the index is marked invalid.
More than one index can become invalid during the LUW. SQLJDS rollback,
UNDO, or REDO processing continues, but no updates are made to invalid
indexes, and thus they no longer reflect the data. These indexes cannot be
used until they have been reorganized, or, dropped and recreated.

• An index can be marked invalid if duplicates have occurred in a unique
index. This can only happen if:

a checkpoint occurs during a searched UPDATE deferring checking of
uniqueness,
a system failure occurs before the end of the statement, and
the database is started with an empty log.

At the end of initialization, any unique indexes that contain duplicates are
marked invalid.

• An index can also be marked invalid if the following events occur in order:

A checkpoint occurs during a CREATE or REORGANIZE INDEX
A system failure occurs before the database manager can complete the
CREATE or REORGANIZE statement
The application server is restarted with an empty log.

When an index is marked invalid, packages that use that index are not marked
invalid; however, the packages will become invalid if the index is dropped. If the'
index is reorganized, the packages will remain valid.

Additional details about invalid indexes can be found under the SHOW INVALID
command In the Operation manual.

Transient Indexes
An index can be marked transient in the following ways.

• An index is marked transient during a CREATE INDEX statement or REOR
GANIZE INDEX command. In this case, the index remains transient for the
duration of the statement. When the Index has been created or reorganized
successfully, the index is marked valid.

• A unique Index can be marked transient during a searched UPDATE state
ment where uniqueness checking is being deferred. In this case, the index
remains transient for the duration of the LUW. The Index is marked transient
when the first duplicate Is inserted. When the statement is completed, if
duplicates stili exist SQLCODE -803 is issued, and the UPDATE statement Is
rolled back. The index is marked valid at the end of the LUW.

LH08-8081-03 C> Copyright IBM Corp. 1817, 1883 Chapter 2. SQUDS Concepts 41

Clustering Index

--~-- .. ---.-------

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Additional details about transient indexes can be found under the SHOW
INVALID command in the Operation manual.

A clustering index is used to determine placement of rows in pages of a .
DBSPACE. The first index created on a table is, by default, the clustering index.
SQLlDS uses this index to attempt to put rows with similar index key values onto
the same data pages.

When data is inserted into a table, there are two strategies for finding a place for
the data in the DBSPACE: default logic and cluster1ng index logic.

If the CLUSTERTYPE column in SYSTEM.SYSCATALOG for the table contains a
"D," the default logic strategy is used. This strategy uses the value in the
column CLUSTERROW in SYSTEM.SYSCATALOG for the table to determine the
starting pOint to look for available space for the insert. The value in
CLUSTERROW is a pointer to the end of the table. If the value in CLUSTERROW
is significantly incorrect, the database manager has to do extra work to find a
page that has sufficient free space to hold the row to be inserted. The value of
CLUSTERROW can be significantly incorrect if UPDATE STATISTICS has not been
executed recently or an application program that is doing the insert has not been
preprocessed (prepped) recently. Because a preprocessed program that inserts
with the default logic stores the value of CLUSTERROW in the package, you must
periodically repreprocess this kind of program to update the CLUSTERROW
value in the package.

The clustering index strategy is used when there is a clustering column in
SYSTEM.SYSCATALOG. This strategy attempts to place the new row on the
same page as rows with similar key values. This determines the starting point
to look for available space for the insert. If there is no available space on the
pages at or near this starting point then the database manager must do addi
tional work to find a page that has sufficient free space to hold the row to be
inserted. Insufficient free space can occur because no free space was estab
lished for the DBSPACE or because inserts have used all the free space. If you
reorganize the DBSPACE you can establish free space for inserts.

When you create a table, CLUSTERTYPE is set to "D" and CLUSTERROW is set
to zero. When you create the first index on a table, CLUSTERTYPE is set to "I."
If you REORGANIZE the clustering index it will remain the clustering index. If
you drop the clustering index, CLUSTERTYPE is set back to "D." To establish a
different index as the clustering index you must drop all indexes on the table,
create the new clustering index as the first index, and then create any other
indexes.

Clustered Indexes
An index is classified as either CLUSTERED or NOT CLUSTERED. An index is
considered clustered if the data is physically stored in the DBSPACE in an order
which closely matches the key sequence of the index. This means that the data
can be sequentially retrieved using the index with a minimal number of I/Os.

Assume that all rows of a table are to be retrieved. A measure is taken of the
data page referencing pattern that occurs in terms of data pages referenced. A

42 SQLlOS Ol.gnosls 'or VM LH09-8081-03 ID Copyright IBM Corp. 1887, 11183

,J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

count is incremented whenever the immediately preceding reference to a row
was to a different data page.

In the best case, the number of pages to be accessed is exactly equal to the
number of pages occupied by that table within the DBSPACE. A data page is
read, all the rows of the subject table in that page are retrieved, and then the
next page is read. In this case, the pages are read sequentially - each page
read only once.

A clustered index can be identified by either the CLUSTERRATIO or the
CLUSTER column in the SYSINDEXES catalog table.

The CLUSTERRATIO value is used by the optimizer to choose a suitable index
for access path selection. This value represents a percentage, with the two
decimal places implied. The value is calculated by:

ROWCOUNT - PAGE JUMPS
CLUSTERRATIO = 10000 *

ROWCOUNT - PAGE COUNT

where: PAGE COUNT = the number of pages the table occupies
PAGE JUMPS = the number of times a different data page is

referenced to access all the data in the table
in index order

The CLUSTER column, in addition to giving a general idea about whether or not
the index is clustered, is also used to identify the clustering index for the table.
If the value of the CLUSTER column is "F" or "C" then the index is clustered,
and a value of "F" means that the index is also the clustering index. A value of
"W" or "N" means that the index is no longer clustered, where "W" denotes the
clustering index. The CLUSTER column will show an index to be clustered if the
following is true:

'page jumps <= 110% of page count

Data is initially made clustered by loading it in the order of the clustering index.
If the clustering index becomes unclustered, the data should be unloaded and
reloaded to make it clustered again.

Index Fragmentation
A fragmented index is characterized by excessive amounts of free space in the
index pages, which usually is spread unevenly among the pages. Free space
distributed unevenly implies that index keys are also distributed unevenly.
Indexes can become fragmented by insert, delete, and update activity on the
table.

To help prevent index fragmentation, indexes should be created after the data
has been loaded into the table, and an adequate PCTFREE value should be spec
Ified for the index.

If the Index is created before the data is loaded, page splits occur and the index
becomes fragmented when the data is loaded. In fact, if the data is loaded in
clustering order, each index page of the clustering Index has 50% free space.

LH08-8081-03 C Copyright IBM Corp. 1887, 1883 Ch.pter 2. SQUOS Concepts 43

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If a sufficient PCTFREE value is specified for the index when it is created, subse
quent inserts do fit on the existing index page, avoiding index page splits.

Indexes must either be reorganized or dropped and recreated to correct the
fragmentation. If they are dropped and recreated, any packages with dependen
cies on them are marked invalid. In addition, if a clustering index is dropped, it
no longer functions as the clustering index if there are other indexes on the
table. In this case, all indexes would have to be dropped, the clustering index
recreated, and then the rest of the indexes recreated. If indexes are reorgan
ized, dependent packages are not marked invalid, and the clustering properties
do not change.

Sorting Concepts
The SQUDS Sort component sorts the rows of a table according to the values of
one or more of the table's columns. A sort is performed whenever an index is
created, or whenever an SQL statement is executed which requires that the
manipulated rows be ordered (such as a SELECT statement with an ORDER BY
clause) and no index providing that ordering exists, or the Optimizer does not
use the index.

The Sort component can sort all the rows in the table (such as when creating an
index on the table) or a subset of the rows (such as when ordering the results of
a query with an ORDER BY clause and a predicate that retrieves only part of the
table). It can sort the rows according to any or all columns in the table, in any
combination of ascending or descending order. If DRDA protocol is used, sorting
is always performed based on the application server encoding scheme. A
maximum of 16 ordering columns can be used, and the resulting ordering key
cannot exceed 255 bytes.

The result of a sort is an ordered list of rows. This list is stored in an INTERNAL
DBSPACE. The rows can then be retrieved from the INTERNAL DBSPACE to
build an index or to participate in the next phase of the execution of a query, as
appropriate.

When a sort is performed implicitly as part of creating an index, the INTERNAL
DBSPACE that holds the ordered list of rows is released before index creation is
completed. Whenever a sort is performed for any other reason, the INTERNAL
DBSPACE is not released until the current LUW is complete. The INTERNAL
DBSPACE and the space it occupies on DASD are not available until the end of
the LUW. In all cases, sorting requires either one or two additional INTERNAL
DBSPACEs to be used as work areas during the sort process, as described
below. These INTERNAL DBSPACEs are always released before sorting is com
pleted.

The table whose rows are being sorted Is never modified by the sorting. The
Sort component scans the table and retrieves each row that must participate in
the sort. For index creation, a DBSPACE scan is always used, and all the rows
of the table are retrieved. In all other cases, the access path used and the
number of rows retrieved depend on the SQL statement being processed. For
each row retrieved by the scan, the appropriate column values are extracted and
are encoded Into a sort key so that they are easy to compare to other sort keys.
The encoding of a sort key Is similar to the encoding of a key in an index.

44 SQLJOS Ol_gno.ll tor VM LH09-8081-03 C Copyright IBM COrp. 18&7, 1883

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The data being sorted includes at least the ordering columns, but it also includes
any other columns that must participate in the ordered result. For example, con
sider the following query:

SELECT COLUMNl, COLUMN2, COLUMN3
FROM MYTABLE
ORDER BY COLUMNl, COLUMN2

A sort key for this query consists of the encoded values of the ordering columns
COLUMN1 and COLUMN2 and, appended to it, the corresponding (non-encoded)
value of COLUMN3. The sort key together with the other columns (if any) is
called the sort row. The resulting sorted list contains all the information
requested in the select-list, avoiding the need to rescan MYTABLE to retrieve the
values of COLUMN3.

Sorting is completed in successive passes. Because it is not generally feasible
to retrieve all the required rows into virtual storage and sort them, the Sort
facility retrieves some of the rows (enough to fill an internal sort buffer), sorts
them, and then stores this sorted partial result in an INTERNAL OBSPACE. This
continues until all the input rows are sorted. Now the partial results must be
merged to create the final sorted list. This merging process is usually the most
costly part of a sort, requiring several passes through the partial results with
each pass reading and writing each sort row once. These multiple passes use
two INTERNAL OBSPACEs as sort work areas: one from which the partial results
are read, and another where the merged results are stored. In the next pass,
the partial results are read from the INTERNAL OBSPACE into which they were
stored by the previous pass. The number of passes is determined by the
number of partial results to be merged as well as the number of partial results
that can be merged at one time. If the number of rows is small enough, or the
data is essentially in the correct sequence to begin with, only one pass (and one
INTERNAL OBSPACE work area) may be required.

Sort keys often need to be decoded during the creation of the final ordered list.
In the example above, the sort key consisting of the values of COLUMN1 and
COLUMN2 is decoded so that the column values can be returned to the user in
the expected form. In the case of an ordered list that is used to build an index,
decoding is usually not required. In some cases, decoding of the last sort key
column is done to transform the sort key into an index key.

The result of a sort may not be what you expected if the OROA protocol is used.
For example, if the encoding schemes of the application requester and applica
tion server are different, sorting is done based on the encoding scheme of the
application server. For more information, refer to the SQL Reference manual.

For information on calculating the size of the INTERNAL DBSPACE(s), and DASD
space required to perform a sort, refer to the Database Administration manual.

LHoe-aOS1-03 C Copyright IBM Corp. 1887, 1883 Ch_pter2. SQUOS Concepts 45

Logging/Recovery Concepts

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The database manager maintains a log of all the database changes affecting
data in recoverable storage pools completed by each logical unit of work. For
changes made in nonrecoverable storage pools, the following rules apply to the
logging of updates:

• Data definition operations are logged and are thus recoverable. This
includes: CREATE TABLEIINDEX, DROP TABLEIINDEX, REORGANIZE INDEX,
ALTER TABLE, and ACQUIRE/ALTER/DROP DBSPACE. This ensures that
SQ UDS catalog tables are consistent with the state of the database.

• Row update operations (UPDATE,DELETE,INSERT) are not logged and are
therefore not recoverable.

Note: The adding and deleting of DBEXTENTs and the adding of DBSPACEs to
the database are not logged and are thus not recoverable. It is recommended
that a database archive be taken immediately following these operations to
ensure that your current database archive reflects the added DBSPACEs or
DBEXTENTs. For more information reference the System Administration manual.

The Log:

The SQUDS log is a minidisk with a block size of 4096 bytes. The last two pages
of the log are reserved for information to control the archiving and restoring
processes.

The log is an integral part of the physical configuration of the database, and one
must be defined because certain control information is written to the log even if
no logging is specified. With single logging, any 110 error on the log causes the
log component to terminate the application server.

Dual Logging:

The SQUDS dual logging option protects the database from log failures due to
DASD failures on the log devices. With dual logging, database updates are
recorded in both logs. Ideally, one log should be an exact copy of the other. An
unrecoverable error is unlikely to occur on both logs at the same time. The log
component continues processing as long as it can read or write from either log.

When specifying the logs for dual logging, both must be identical in size.

The processing done by the log component for dual logging is as follows:

For a log write operation:

1. Write a log record to the first log; if an error occurs, Issue an error message.

2. Write the same log record to the second log; if an error occurs, Issue an
error message.

3. If an error occurs on both write operations, terminate the procedure.

For a log read operation:

1. Read a log record from the first log; if an error occurs, Issue an error
message, and try the second log.

48 SQUDS DI.gnosls tor VU LHoe-a081-()3 e CopyrIght IBU Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

2. Read a log record from the second log; if an error occurs, issue an error
message, and terminate the procedure.

Checlcpo/nt:

The database manager takes periodic checkpoints. At a given point in time,
taking a checkpoint involves recording the state information in the log and taking
a "snapshot" of the database. This snapshot includes updates from completed
logical units of work as well as updates from logical units of work that are still in
progress. At the checkpoint, all Lipdates are written to the database regardless of
the state of their LUWs.

The SQUDS RDBMS provides functions to recover the database to a consistent
state with respect to logical units of work in the event of a system crash. In a
consistent state, each logical unit of work is either completely reflected in the
database (all updates) or is not present in the database (no updates).

A disk-oriented mechanism is used to recover from a "soft" failure (which
causes the contents of memory to be lost), and is oriented toward frequent
checkpoints and rapid recovery. This mechanism is dependent on the DBSPACE
recovery functions and the log.

The DBSPACE recovery mechanism is the use of "shadow pages." Two versions
of each DBSPACE are maintained: the "current pages" reflect all updates up to
the current point in time and the "shadow pages" reflect the state of the data
base at the time of the last checkpoint. Note that, until a page is updated, its
"current" and "shadow" versions are the same. The checkpoint process con
sists of making the current pages of the DBSPACEs become the shadow pages
and making the old shadow pages available for reuse. In addition, a special
checkpoint log record is written to the log to synchronize the log with the state of
the database. Another way of looking at a checkpoint is that a picture of the
database is taken, regardless of the state of the LUWs in progress, and the fact
that the picture was taken is recorded in the log.

A checkpoint is scheduled when:

• The number of log pages specified by the CHKINTVL initialization parameter
have been written to the log.

• During rollback, the total number of free pages in a storage pool is less than
or equal to 10. (This does not apply when LOGMODE = N.)

• The percentage of free pages in a storage pool reaches the minimum speci- ,
fied by the SOSLEVEL initialization parameter. (This does not apply when
LOGMODE = N.)

• A DROP DBSPACE is processed.
• A COMMIT WORK is processed in single user mode with no logging

(LOGMODE = N).
• Soft recovery processing is complete during startup.
• An archive is about to be taken and after the archive has completed suc-

cessfully.
• During shutdown in multiple user mode (MUM) and single user mode (SUM).
• A log-full condition occurs.
• An LUW that has updated row data in a nonrecoverable storage pool is com- ,

mitted or rolled back. A checkpoint is scheduled and completed before the
commit or rollback operation is complete. This ensures that all updates are '

LH08-I0I1.()3 C COpyright IBM COrp. 1887,1883 Ch.pter 2. SQUDS COncepts 47,

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

committed to the database and minimizes the user recovery effort in the
event of a subsequent application or system failure.

When a checkpoint has been scheduled. no new access to DBSS is allowed; that
is. no DBSS operations are started until the checkpoint process is complete. A
checkpoint must wait until currently running DBSS operations (but not their
logical units of work) are complete. Most long-running DBSS operations period
ically exit from DBSS to allow a pending checkpoint to be executed.

When a soft failure occurs and the application server is restarted. the database
is restored to the point of the last checkpoint by using DBSPACE page map
tables that reflect the current pages at that point. The checkpoint log record.
whose location on the log is saved in the Directory by the checkpoint. is obtained
and used to synchronize the log with the state of the database at the checkpoint.
Now the LUW recovery process can begin.

LUW Recovery:

The LUW recovery process determines the state of each LUW at the time of
failure and at the time of checkpoint:

• If the LUW starts and ends before the checkpoint. no processing has to be
done because all the updates are reflected in the database at the checkpoint.

• If the LUW starts before the checkpoint and commits work after the check
point but before the failure. those updates made after the checkpoint must be
redone. The updates made prior to the checkpoint are reflected in the data
base by the checkpoint.

• If the LUW starts before the checkpoint and is not completed before the
failure. those updates made prior to the checkpoint must be undone. The
updates made after the checkpoint are not reflected in the database.

• If the LUW starts after the checkpoint and commits work before the failure.
its updates must be redone. No updates are reflected in the database at the
checkpoint.

• If the LUW starts after the checkpoint and is not completed before the failure.
no recovery has to be done because none of the updates are reflected in the
database.

The following diagram illustrates the LUW Recovery process for the five cases
described above:

48 SQUDS Diagnosis for VM L.H09-8081-03 Cl Copyright IBM Corp. 1887, 1983

J

"Restricted Materials of IBM"
Ucenaed Material. - Property of IBM

Checkpoint Sys Failure
Time ---+ occurs ---+ occurs ---+ I I
1-------+------------1/

L---LUW-A II
no action required II

'----LUW-B,-f------....Ji

no action required ~redo---+

II
II
II
II

il.------+---LUW-C----------I I
+-undo---+

Figure 16. LUW Recovery Actions

Freeing Log Space:

no action required

L--LUW-D'---'
+--redo---"~

II
II
II
II
II

L-LUW E----I I
no action required II

This section describes how log space is freed when the database manager is not
archiving (LOGMODE = V). Freeing log space when the database manager is
archiving (LOGMODE=AIL) is discussed in topic "Archiving" on page 52.

The SQUDS log can be visualized as a straight line with the records for all
logical units of work being written on it. (See Figure 17)

Time ---+
1---------------------------------------
"--- A ------' '----C ---'

'----- B ------'

Figure 17. SQL/DS Log

Not •• :

1. Logical unit of work B starts before logical unit of work A finishes. Logical
unit of work C starts before B finishes.

2. The log is sequential. Records for B are interspersed with those for A, and
so forth.

In time, the log fills up. When this happens, new records would overwrite those
at the beginning of the log. (See Figure 18.)

LH09-8081-03 C Copyright IBM Corp. 1887, 1883 Chapter 2. SQLJDS Concepts 41

Time --+

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

1----------------------------------1
'---- A -----' '---- C ---I L--___ D --.

L....-__ B ----I

.

Figure 1B. SQLlDS Log Wrap-Around

This "wrap-around" condition is undesirable and is prevented; overlaying of log
records restricts the ability of the database manager to recover correctly. To
prevent this situation, periodic checkpoints are taken.

Taking a checkpoint involves recording status information in the log and

J

recording the current status of the database. Updates from all logical units of J
work are written to the database regardless of the state of the LUW. Log
records for LUWs that end before the checkpoint are no longer needed and can
be reclaimed, because the logical unit of work was complete when the updates
were written to the database by the checkpoint. Log records for LUWs that were
not ended before the checkpoint remain in the log file in case they need to be
undone or redone (either because of an SQLlDS failure, or an application-
specified ROLLBACK WORK).

Figure 19 shows a checkpoint at a time when only logical unit of work D is in
progress. For this illustration, designate this checkpoint C1.

Cl

i_ime --+-------i-I--
L....-__ A -----' '---- C __J '-+.--- D --

L....-__ B ___ -l

Figure 19. Checkpoint C1

After checkpoint C1 is taken, the database manager can reuse the log space for
merly holding log records for logical units of work A, B, and C. (See Figure 20.)

Cl

i-ime---+-------------------+t------I
-0-+ . D-+

Figure 20. Logical Unit of Work D Wraps Around

As time passes, new logical units of work E and F occur. They start and end
before 0 finishes. Another checkpoint, C2, occurs, as shown in Figure 21.

50 SQLJDS Dl-onOSl1 tor VM LH08-8081-Q3 C Copyright IBM Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Time ---+

I
-0

LE..-l
L- F ---l

Figure 21. Checkpoint C2

C2 Cl

I
•

I
O~

Because of the sequential nature of the log, checkpoint C2 does not free any log
space. Logical unit of work 0 is still in progress; and it started before logical
units of work E and F. Log space used for E and F cannot be reclaimed until 0
finishes.

In a worst-case condition, logical unit of work 0 continues until the log is almost
full. When the log reaches the percentage limit set by the SLOGCUSH initializa
tion parameter (which defaults to 90%), a log-full message is issued to the oper
ator. If log space cannot be made available, the longest running logical unit of
work is rolled back so that log space can be reclaimed when the next checkpoint
occurs. Then, when checkpoint C3 occurs, SQUDS reclaims the entire log
space. (See Figure 22.)

C2 C3 Cl
Time ---+
�--------------+-------~--~-------I
- 0 ---------+-----X I 0 ~

Figure 22. Checkpoint C3

D is j
stopped

when SLOGCUSH
is reached.

Note: The situation described here rarely occurs if an adequate log is defined
for the database.

There are alternatives to stopping work in progress. The obvious one is to have
a log large enough to hold the longest logical unit of work expected. When
installing the SQUDS RDBMS for the first time, this size cannot be easily judged.
It can be worthwhile to monitor the log usage by periodic use of the SHOW LOG
operator command. This command can be issued from the SQUDS operator
console or by any ISQL user.

The database manager does not discriminate when it stops a logical unit of
work. The work stopped can be a long-running program. or it can be an ISQL
user who has gone home without signing off. Periodic use of SHOW LOG tells
you how much log space remains so that you can begin to take action before
SQUDS begins stopping logical units of work. This action could be:

• In the case of the long-running ISQL user, contact the user and ask that
person to end the logical unit of work.

LHoe-a0l1-03 CI Copyright IBM Corp. 1887. 1883 Ch.pter 2. SQUDS Concepts 51

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• You can issue an SQUDS FORCE operator command to immediately roll
back the logical unit of work.

Archiving:

Archiving protects the database against media failures, such as a DASD head
crash. The archive process copies either:

• An image of the entire database onto a magnetic tape (a database or user
archive), or onto disk (a user archive).

• An image of the current SQUDS log onto magnetic tape or disk (a log
archive).

The LOGMODE SQUDS initialization parameter indicates the type of archiving to
be used. If LOGMODE =A, only database or user archiving is performed. If
LOGMODE = L, database or user, and log archiving are performed. If
LOGMODE =Y or N, archiving is not performed. For more information on
LOGMODEs, see the System Administration manual.

The archiving process can be driven by an SQL/DS facility or by both an SQL/DS
and a non-SQUDS facility. When driven entirely by an SQUDS facility, the
archive process (database or log) has three steps:

1. The database manager takes a base checkpoint for the archive. All other
SQUDS work waits while the base checkpoint is being taken. For log
archives, the database manager must wait until all active LUWs are com
plete and prevent any new LUWs from starting.

2. The database manager writes an image copy of the database (database
archive) to tape or an image copy of the log (log archive) to tape or disk.
Other SQUDS work can be done while this archiving is occurring. If,
however, a condition arises (during the image copying) that requires a
checkpoint to be taken, this checkpoint (and all other SQL/DS work) must
wait until the archive process is complete.

3. The database manager takes another checkpoint, called an after archive
checkpoint. All other SQL/DS work waits while this checkpoint is being
taken.

User archives are initiated byway of the SQLEND UARCHIVE command. During
a user archive operation, the database manager is interrupted after Step 1
(above) and a non-SQUDS facility is used to perform the actual database
archive. After the non-SQUDS utility has completed the user archive, step 3
(above) is performed on the subsequent warm start (after verification that the
user archive was performed).

When an SQLEND ARCHIVE, SQLEND LARCHIVE, or SQLEND UARCHIVE
command is used to shut down the database, the base checkpoint becomes the
start of the log. Log space preceding the base checkpoint is freed.

Note: When using SQLEND UARCHIVE for a user archive, log space is not freed
until the user archive is verified on the subsequent warm start.

The following situation applies to online database or log archives taken with the
ARCHIVE or LARCHIVE commands. Figure 23 shows the log with its logical units
of work (A through E) and the base and after-checkpoints. J

52 SQUOS Ol.gnosll tor VM LH09-eoa1-()3 C> Copyright IBM Corp. 1987, 1983

I

I

I

: ~

I

I ~
I

I~
I

I ~
I

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Time --+

Base
Checkpoint

NAfter N
Checkpoint

I------------i 1------.., 1--------
L A --1 L- C ---.J L D...J '1.-----1 r-- E __J

LB--1
Archive is
written to
tape.

Figure 23. Base and "After" Checkpoints

At the base checkpoint. logical units of work A. B. and C are committed to the
database and their log space could be freed. The image copy of the database or
the log is then written to tape. While this copying is going on. logical unit of
work 0 starts and finishes. and logical unit of work E starts but does not finish.

After the image has been written to tape. the database manager takes the after
checkpoint. This checkpoint frees the log space used by logical units of work A.
B. and C. Even though logical unit of work 0 has been committed to the data
base by the after checkpoint. the database manager does not free its log space
because the base checkpoint serves as the starting point of the log. The reason
for this arrangement is to protect against a media failure at some later time. as
shown in Figure 24.

Base
Checkpoint

HAfter
Checkpoint

Media
Failure

Occurs
Time --+ II
I---------l t---------i f------I I-I

L D -.J 11..--.., - E __J1 II Free Log Space

Archive is
written to
tape.

Figure 24. Media Failure Occurs after Archiving

L F -II
II
II
II

Recovery from the situation shown in Figure 24 is done by restoring the data
base from the last database archive and. if LOGMODE = L. any subsequent log
archives. The application server is started using the STARTUP=R initialization
parameter. This restores the database to its state at the base checkpoint.

Because the archive tape or disk was created just after the base checkpoint, the I

database manager must apply all changes recorded in the log after the base
checkpoint. This action includes the entire logicai unit of work D. (For this
reason, the log space used by 0 was not freed when the after-checkpoint was
taken.) This action also includes the entire logical unit of work E. The changes I

made by logical unit of work F are not applied because it was not finished when
the media failure occurred, (a partially completed logical unit of work is never
committed) and since it occurred after the checkpoint it is not reflected in the
database.

Chlpter 2. SQLlOS Concepts 53 1

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The situation in which the base checkpoint cannot be used as the start of the
new log arises as shown in Figure 25. In this situation, an LUW spans the base
checkpoint. This situation only applies to online database archives because for
log archives to begin, all active LUWs have to be completed and no new LUWs
are allowed to start.

Base
Checkpoint

NAfter
Checkpoint

Time -+
1--------

LA----l ~C ~
LB----l

Archive is
written to
tape.

Figure 25. Base Checkpoint Occurs during Logical Unit of Work C

Here, the database manager cannot use the base checkpoint as the start of the
log because some of the changes in logical unit of work C occur after the base
checkpoint. In this situation, the database manager uses the start of logical unit
of work C as the start of the log. (C was the "oldest" logical unit of work not
finished at the base checkpoint.) Log space prior to the start of logical unit of
work C is freed . If a media failure occurs later and application server has to be
started by first recovering the database from the tape, the database manager
can redo logical unit of work C using the log records.

When LOGMODE=A or L, a normal checkpoint does not free log space. The log
space that can be freed is determined by the archive base checkpoint and freed
by the archive" after" checkpoint. This is because the log is needed at least
from the point of the last database or log archive when a media failure occurs.
Consider checkpoint C in Figure 26.

Base
Checkpoint

Time -+
1--------

L A ----l ~ C ---
LB----l

Archive ;s
written to
tape.

NAftera

Checkpoint

Figure 26. Checkpoint C Occurs after Archive Tape or Disk Written

Checkpoint
C

-I

Even though all logical units of work are finished at checkpoint C, the database
manager cannot reclaim the log space of logical unit of work C; the log records
are needed to enable recovery If a media failure occurs after the archive base
checkpoint but before the next database or log archive. When the next database
or log archive occurs, log space up to the oldest logical unit of work not yet fin
Ished at that time can be reclaimed.

54 SQIJDS Dlegnosll for V~ L.H08-t081..()3 C COpyright IB~ Corp. 1.7,1883

J

J

"Re.trlcted Materials of IBM"
Ucenaed Materials - Property of IBM

Because normal checkpoints do not reclaim log space when LOGMODE = A or L,
a database or log archive must be taken when the log approaches overflow. (If
the log actually overflowed, log records needed for database recovery would be
lost when they were overwritten. The log would then be useless.) When the log
approaches overflow, as denoted by initialization parameter ARCHPCT, the data
base manager automatically activates the archive process if it is not already
activated. If LOGMODE=A, this is a database archive. If LOGMODE=L, this is
a log archive.

The database manager usually allows work to continue while the database or log
archive tape is being written; however, if the log approaches overflow, as
denoted by SLOGCUSH, while the archive tape is being written, the database
manager suspends all other SQUDS processing until the archive is complete.

Although normal checkpoints occurring while LOGMODE = A or L do not reclaim
log space, they are valuable because:

Locking Concepts

• When data is changed, the database manager maintains a duplicate physical
page called a shadow page to retain the state of that page before the change
occurred. Committing a logical unit of work to the database does not free
shadow pages, because they are needed in case recovery must be done.
When a checkpoint occurs, all shadow pages are freed because those pages
are no longer needed for recovery. (The log is sufficient for recovery after a
checkpoint.)

• A checkpoint minimizes the updates that the database manager must do
when recovering from a system failure. If a system failure does occur, the
database manager recovers when the application server is started again by
redoing the work done after the last checkpoint. The database manager
does not redo all the work since the last database or log archive operation.

This section explains the type of locking done when specific DML and DDL state
ments are executed. This is a very important concept to understand when
designing SQUDS applications and in diagnosing locking problems.

Because the SQUDS RDBMS is a concurrent-user system, locking techniques
have been employed to resolve various synchronization problems, both at the
logical level of objects (like tables) and at the physical level of pages.

At the logical level, the database manager must try to ensure that two concur
rent logical units of work (LUWs) do not read the same value and then try to
write back the updated values. If these LUWs are not synchronized, the second
overwrites the first, and the effect of one update is lost.

At the physical level of pages, locking techniques are required to ensure that the
database gives correct results. For example, a data page may contain several
rows from one or more tables. Even if no logical conflict occurs between two
LUWs (because each is accessing different tables or different rows in the same
table) a problem can occur at the physical level. If, for example, one LUW
causes an access to a row on some page, while another LUW updating a second
row on the same page causes data compaction (because of lack of contiguous
free space), row locations are reassigned wi'thln the page.

LHoa-a0l1-03 C) COpyright IBM Corp. 1887, 1883 Chepter 2. SQLJDS Concepts 55

Specifying Isolation Levels

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The user can improve performance by specifying a lower isolation level for
appropriate applications. An isolation level is the degree of independence that
one SQUDS application has from another.

There are two isolation levels: repeatable read and cursor stability. The user
can set or change the isolation level when preprocessing. The ISOLATION
parameter can be used to establish the isolation level for a program. The user
specifies ISOLATION(RR) for repeatable read and ISOLATION(CS) for cursor sta
bility. An alternative to setting the isolation level during preprocessing would be
to allow the program to set and change isolation levels during the running of the
program. This requires that ISOLATION(USER) be specified when the program is
preprocessed. If the user wants to change the isolation level that has already
been set, that user must preprocess, compile(assemble), and link the program
again.

The DRDA architecture defines two additional isolation levels, Uncommitted J
Read (UR), and Read Stability (RS). The SQUDS application server, upon
receiving a request at UR, will escalate it to CS and proceed without informing
the application requester. Similarly, RS will be escalated to RR.

Repeatable Read:

Repeatable read (RR) ensures that within a logical unit of work a user can
repeatedly read the same row of data without having it changed by some other
user. With repeatable read, the user is completely isolated from interference by '\
other applications. The price of this high degree of isolation is a reduction in"
concurrency; other users must wait until the logical unit of work is complete
before they can access data being used under repeatable read conditions
(unless the data is not being modified).

The following rules specify the isolation that repeatable read provides:

1. A logical unit of work cannot modify any data that another active logical unit
of work has modified. Modify includes SQL INSERT, PUT, DELETE, or
UPDATE.

2. A logical unit of work cannot see (read) any data that another active logical
unit of work modifies.

3. A logical unit of work cannot modify any data that another active logical unit
of work reads.

In terms of the data it reads or modifies, a logical unit of work is "unaware" of
the existence of any other concurrent logical unit of work.

Cursor Stability:

Cursor stability (CS) places a lock on the row or page of data the user's cursor
is pointing to. Rows in a table, or pages in a DBSPACE, that the user has
already read are subject to change by other users. This means that more than
one user can work on the same data at the same time. It also means that the
data can appear to be inconsistent. For example, it is possible for a user to
issue the same query twice within a logical unit of work and get different results.
Users must be very careful when deciding to use cursor stability for their appli
cations.

58 SQLJOS Of.gnosls tor V~ L.HOQ-aoe1·03 C> Copyright IB~ Corp. 1887, 1983

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Note that cursor stability applies only to tables in PUBLIC DBSPACEs with PAGE
or ROW level locking. Tables in PRIVATE DBSPACEs or PUBLIC DBSPACEs with
DBSPACE level locking always have the repeatable read isolation level.

Cursor stability provides the following:

1. Another logical unit of work cannot modify any data the user's active logical
unit of work has modified. "Modify" implies SQL INSERT, PUT, DELETE, or
UPDATE.

2. Another logical unit of work cannot see (read) any data the user's active
logical unit of work has modified.

Nota: When the database manager uses a DBSPACE scan (does not use an
index) to access a table in a DBSPACE with ROW level locking using isolation
level cursor stability, the effect is similar to repeatable read: no other logical unit
of work can update the table until the logical unit of work performing the
DBSPACE scan ends. Also, if one logical unit of work has updated a table,
another logical unit of work (using cursor stability) cannot access that table with
a DBSPACE scan until the updating logical unit of work ends. This reduced con
currency for DBSPACE scans does not apply for tables in DBSPACEs with PAGE
level locking, or when accessing through indexes.

Guidelines for Selecting an Isolation Level:

The effects of using cursor stability can be very subtle. SpeCific guidelines for
selecting isolation levels are in the appropriate SQUDS manuals. For guidelines
on selecting an isolation level in application programs, see the Application Pro
gramming manual. For guidelines that apply to the DBS utility, see the Database
Services Utility manual. For ISQL guidelines, see the ISQL Guide and Reference
manual.

Isolation Level and Updates:

Note that the isolation level does not affect the duration of the locks held on data
that has been inserted, deleted, or updated in an LUW. Locks on this data are
always held until the end of the LUW, regardless of the isolation level.

Locking Hierarchy
The locking protocol uses a locking hierarchy that allows conflicts to be detected
at the highest level. The locking hierarchy used is shown in Figure 27.

I
DATA PAGE

~

DBSPACE

~
TABLE

I
I

INDEX PAGE

~
ROW INDEX KEY VALUE

Figure 27. Locking Hler.rchy

LH08-8011-03 C Copyright IBM COrp. 1887, 1883 Chapter 2. SQUDS COncepts 57

Lock Modes

"Restricted Materials of IBM"
Wcensed Materials - Property of IBM

The protocol ensures that an agent issues lock requests in the order of the hier
archy. Thus, an agent accessing a row in table X of DBSPACE V, would first
have to obtain a lock on DBSPACE V, then obtain a lock on table X, then obtain a
lock on the page on which the row resides, and finally, obtain the lock on the
row.

Note: After the first row is locked, it is not necessary to get the DBSPACE and
table locks again, unless the required lock mode changes.

Before rows are accessed by an agent, the agent must first obtain a lock on the
DBSPACE that identifies the agent's intentions within that DBSPACE. Any other
agent does the same thing. For example, if one agent obtains EXCLUSIVE use of
the DBSPACE, other agents are locked out immediately when they attempt to
obtain any kind of lock on the DBSPACE.

Note: If a DBSPACE is defined to have PAGE level locking, row locks are not
obtained. Having a lock on the appropriate page guarantees that other agents
do not conflict on the row in question.

There are six modes in which a data object may be locked:

IS Intent Share

IX Intent Exclusive

S Share

U Update

SIX Share with Intent Exclusive

X Exclusive

Intent modes describe low level locking intentions at a higher level in the hier
archy. For example, an agent wanting to read data in a DBSPACE that has
PAGE level locking needs to obtain SHARE locks on the pages read. To do this,
the agent must first obtain INTENT SHARE locks on the DBSPACE and table.

SHARE locks are obtained for read operations at the lowest level of the locking
hierarchy. They can also be obtained at higher levels. For example, a lock
escalation can promote SHARE locks on pages to one SHARE lock on the
DBSPACE, or an SQL LOCK TABLE statement can be used to obtain a SHARE
lock on a table. For more information on lock escalation, see "Escalation of
Locks" on page 65.

EXCLUSIVE locks are obtained for UPDATE operations at the lowest level of the
locking hierarchy. They can also be obtained at higher levels. For example, a
lock escalation can promote EXCLUSIVE locks on pages to one EXCLUSIVE lock
on the DBSPACE, or an SQL LOCK TABLE statement can be used to obtain an
EXCLUSIVE lock on a table.

Note: PRIVATE DBSPACEs are locked with SHARE or EXCLUSIVE locks. With
DBSPACE level locking, the lower level locks are not obtained.

UPDATE locks are obtained at the lower levels of the locking hierarchy for read

J

operations with an intent to update. A lock escalation can promote UPDATE '\
LOCKS on pages to one share lock on the DBSPACE. If an UPDATE lock is ~

58 SQUDS DI.gnosll for VM LH08-e0l1-03 C) Copyright IBM Corp. 1817, 1883

"Reltricted Materiall of IBM"
Licensed Materials - Property of IBM

Lock Durations

requested at the low level, the agent must first obtain INTENT SHARE locks at
the higher levels.

The length of time that a lock is held can be one of the following:

INSTANT The lock is acquired and then freed immediately.

SHORT The lock is held for the duration of the DBSS operation.

MEDIUM The lock is held over multiple DBSS operations, but can be freed
before the end of the LUW.

LONG The lock is held until the end of the LUW.

UPDATE locks are not held for the duration requested. Instead, they are down
graded to SHARE locks (RR) or released (CS) when the agent has moved past
the data. For repeatable read, the SHARE locks are then held for the requested
duration.

Lock Compatibility
The matrices in Figure 28 through Figure 30 on page 60 indicate the modes that
are compatible with each other. Yes means the requested lock is compatible
with the held lock (and therefore is granted). No means the request is denied or
the requesting agent is put in a LOCK WAIT. The lock component chooses
whether the agent is to wait for the lock or to be given control immediately if the
lock is not available.

Figure 28. Compatibility of Row Lock Modes

MODE OF LOCK 8

MODE OF S U X
LOCKA

S Ves Ves No
U Ves No No
X No No No

Figure 29. Compatibility of Page & Table Lock Modes

MODE OF LOCK B

MODE OF IS IX S U SIX X
LOCKA

IS Vel Vel Ves Ves Ves No
IX Vel Vel No No No No
S Vel No Vel Vel No No
U Vel No Vel No No No
SIX Yel No No No No No
X No No No No No No

LH08-8()81-03 0 Copyright IB~ Corp. 1887, 1883 Chapter 2. SQLJOS Concepts 59

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Figure 30. Compatibility of DBSPACE Lock Modes

MODE OF LOCK B

MODE OF IS IX S SIX X
LOCKA

IS Yes Yes Yes Yes No

IX Yes Yes No No No

S Yes No Yes No No

SIX Yes No No No No

X No No No No No

Types of Intemal Data Manipulation Calls
Following is a list of the basic internal data manipulation operations performed
by the database manager. These are to be used in conjunction with Figure 31 to
understand the locking done for each operation.

OPEN SCAN: The OPEN SCAN operation causes a scan (the internal equivalent
of a cursor) to initiate access to:

• Rows in a table through a specified index. Index keys and key search condi
tions are supplied to support selective searching. This is an INDEX scan.

• Rows in a table in their inserted order without an index. Column values and
column search conditions can be supplied to support selective searching.
This is a DBSPACE scan.

• Rows in a sequential list (for example the output of a sort operation).

NEXT: causes the "next" row in an opened scan to be retrieved. For scans,
optional search arguments can be supplied and are used to determine whether
rows in the scan "qualify" as the desired next row. If a row does not qualify, the
scan continues to the next row.

CLOSE SCAN: terminates the scan.

FETCH: retrieves a table row by way of either its row identifier or an index key.
It does not use an open scan.

INSERT: Inserts a row into a table and inserts a corresponding key into each
index on the table.

DELETE: deletes a specified row from a table and deletes the corresponding
key from each index on the table.

UPDATE: replaces one or more columns in a specified row with user supplied
values and updates the affected indexes on the table.

Locking for Different Intemal DM Calls
The following Is a table of the locking that is done for the different internal data
manipulation calls.

80 SQUDS DI.gnOSI. tor VM LH08-aoa1-03 CI Copyright IBM Corp. 1887.1_

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 31 (Page 1 of 2). Locking for Different Internal DM Calls

SQL DBSS LOCKED PAGE
FUNCTION FUNCTION OBJECT LOCKING

INSERT INSERT DBSPACE LONG IX
TABLE LONG IX
PAGE LONG X
ROW none

DELETE DELETE DBSPACE LONG IX
TABLE LONG IX
PAGE LONG X
ROW none

UPDATE UPDATE DBSPACE LONG IX
TABLE LONG IX
PAGE . LONG X
PAGE LONG X
ROW none

DML with FETCH DBSPACE LONG IS
unique index TABLE LONG IS
and equal PAGE LONG S
predicate (3). ROW none

IPAGE LONG S
IKEY none

OPEN/FETCH OPENINEXT DBSPACE LONG IS
with DB SCAN DB SCAN TABLE LONG S
Repeatable Read PAGE MEDIUM S

ROW none

OPEN/FETCH OPEN/NEXT DBSPACE LONG IS
with DB SCAN DB SCAN TABLE LONG IS
Cursor Stability PAGE MEDIUM S

ROW none

OPEN/FETCH OPEN/NEXT DBSPACE LONG IS
with INDEX SCAN TABLE LONG IS
INDEX SCAN PAGE LONG S (4)
Repeatable Read ROW none

IPAGE LONG S
KEY none

OPEN/FETCH OPEN/NEXT DBSPACE LONG IS
with INDEX SCAN TABLE LONG IS
INDEX SCAN PAGE MEDIUM S
Cursor Stability ROW none

IPAGE MEDIUM S
KEY none

DML with unique FETCH using DBSPACE LONG IS
index and INDEX TABLE LONG IS
equal predicate. PAGE LONG U (2)
Update only ROW none
Repeatable Read IPAGE LONGS
(1) (3) IKEY none

DML with unique FETCH using DBSPACE LONG IS
index and INDEX TABLE LONG IS
equal predicate. PAGE LONG U (2)
Delete only ROW none
Repeatable Read IPAGE LONG U
(1) (3) IKEY none

ROW DBSPACE
LOCKING LOCKING

LONG IX LONG X
LONG IX none
SHORT X none
LONG X none

LONG IX LONG X
LONG IX none
SHORT IX none
LONG X none

LONG IX LONG X
LONG IX none
SHORT IX none
SHORT X none
LONG X

LONG IS LONG S
LONG IS none
SHORT IS none
LONG S none
SHORT S none
LONG S none

LONG IS LONG S
LONG S none
SHORT S none
none none

LONG IS LONG S
LONG S none
SHORT S none
none none

LONG IS LONG S
LONG IS none
SHORT IS none
LONG S (4) none
SHORT S none
LONG S none

LONG IS LONG S
LONG IS none
SHORT IS none
MEDIUM S none
SHORT S none
INSTANT S none

LONG IS LONG S
LONG IS none
SHORT IS none
LONG U (2) none
SHORT S none
LONGS none

LONG IS LONGS
LONG IS none
SHORT IS none
LONG U (2) none
SHORT S none
LONG U none

Chapter 2. SQLJDS Concepts 61

"Restricted Materials of IBM"
Ucenaed Material. - Property of IBM

Figure 31 (Page 2 of 2). Locking for Different Internal DM Calls

SQL
FUNCTION

OPEN/FETCH
with DB SCAN
Repeatable Read
Update/Delete

OPEN/FETCH
with DB SCAN
Cursor Stability
Update/Delete

OPEN/FETCH
with INDEX
SCAN
Repeatable Read
Update and
Format 2 delete

OPEN/FETCH
with INDEX
SCAN
Cursor Stability
Update and
Format 2 delete

OPEN/FETCH
with INDEX
SCAN
Repeatable Read
Format 1 delete
only

OPEN/FETCH
with INDEX
SCAN
Cursor Stability
Format 1 delete
only

DBSS LOCKED PAGE ROW DBSPACE
FUNCTION OBJECT LOCKING LOCKING LOCKING

OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
DB SCAN TABLE LONG U LONG U none

PAGE MEDIUM U SHORT S none
ROW none none none

OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
DB SCAN TABLE LONG IS LONG U none

PAGE MEDIUM U SHORT S none
ROW none none none

OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
INDEX SCAN TABLE LONG IS LONG IS none

PAGE LONG U SHORT IS none
ROW none LONG U none
IPAGE LONG S SHORT S none
KEY none LONG S none

OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
INDEX SCAN TABLE LONG IS LONG IS none

PAGE MEDIUM U SHORT IS none
ROW none MEDIUM U none
IPAGE MEDIUM S SHORT S none
KEY none INSTANT S none

OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
INDEX SCAN TABLE LONG is LONG IS none

PAGE LONG U SHORT IS none
ROW none LONG U none
IPAGE LONG U SHORT S none
KEY none LONG U none

OPEN/NEXT DBSPACE LONG IS LONG IS LONG S
INDEX SCAN TABLE LONG IS LONG IS none

PAGE MEDIUM U SHORT IS none
ROW none MEDIUM U none
IPAGE MEDIUM U SHORT S none
KEY none INSTANT S none

(1) U locks are only used for calls of this type when all the search arguments are
sargable. This guarantees that if a row is found. it is updated and prevents U
locks from being held until the end of the LUW when the row is not being
updated.

(2) These U locks are always upgraded to X locks on the next DBSS call involving
the scan for which they have been acquired.

(3) Locks on data pages and rows are acquired only if the page must be accessed.
This is the case only where there are search arguments that are not part of the
index key or when domains are requested.

(4) Locks on data rows or pages will only be acquired if data page access is
required. This is the case only where there are search arguments which are not
part of the index key or when domains are requested and are not part of the
index key or when a variable length domain is reque.ted.

Not.: There are three additional lock types that are not mentioned in the pre
vious tables:

1. Rollback Lock: a special system lock. acquired during rollback at the begin
ning of a particular operation that requests page locks during the rollback.

2. Internal OBSPACE Lock: a lock on an Internal OBSPACE.

62 SQUDS DiagnOSis for VM LH08-8081-03 C> Copyright IBM Corp. 1M7, 1883

J

J

"Re.trlcted Material. of IBM"
Ucenaed Material. - Property of IBM

3. Database Lock: a special system lock that is acquired in IX mode at the
beginning of each LUW. It is acquired in X mode at checkpoint time if a log
archive is to be performed. This prevents new LUWs from starting when a
log archive is scheduled.

These locks may appear as lock type SYS (rollback lock), INT (internal DBSPACE
lock), or DB (database lock) in the output of the SHOW LOCK operator command.

Locking on Indexes: SHARE and EXCLUSIVE locks are obtained on the pages
and keys of an index. The root and leaf pages that are traversed to obtain a
submitted key are locked for either a SHORT, MEDIUM or LONG duration
depending on the operation locking level (page or row), and isolation level
(repeatable read or cursor stability). Non-leaf pages are never locked.

With row level locking the successor key in the index is locked for an index
insert or delete, as well as the inserted or deleted key. Similarly, with page
level locking, the successor page may be locked if the successor key is on the
next page. This is referred to as "adjacent key locking."

Detailed locking on indexes is described in the following tables for each of the
more common internal data manipulation operations.

OPEN SCAN, NEXT and FETCH - REPEATABLE READ

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE LONG SHARE SHORT SHARE

KEY none LONG SHARE

OPEN SCAN, NEXT and FETCH - CURSOR STABILITY

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE MEDIUM SHARE SHORT SHARE

KEY none INSTANT SHARE

OPEN SCAN, NEXT and FETCH - for DELETE - REPEATABLE READ

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE LONG UPDATE SHORT SHARE

KEY none LONG UPDATE

LH08-t0l1.()3 0 Copyright IBM COrp. 1817, 1883 Chepter 2. SQLlDS COncepts 63

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

OPEN SCAN, NEXT and FETCH - for DELETE - CURSOR STABILITY

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE MEDIUM UPDATE SHORT SHARE

KEY none INSTANT SHARE

INDEX DELETE (DELETE or UPDATE for Deleted key)

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE LONG EXCLUSIVE SHORT EXCLU-
SIVE

DELETED KEY none INSTANT/LONG
EXCLUSIVE

SUCCESSOR KEY none LONG
EXCLUS IVE/none

INDEX INSERT (INSERT or UPDATE for Added key)

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGE LONG EXCLUSIVE SHORT EXCLU-
SIVE

INSERTED KEY none LONG EXCLUSIVE

SUCCESSOR KEY none INSTANT EXCLU-
SIVE

INDEX UPDATE WITH DEFERRED CHECKING OF UNIQUENESS

LOCKED PAGE ROW
OBJECT LOCKING LOCKING

ROOT PAGE SHORT SHARE SHORT SHARE

LEAF PAGES OF LONG EXCLUSIVE SHORT EXCLU-
INSERTED AND SIVE
DELETED KEYS

INSERTED KEY none LONG EXCLUSIVE

DUPLICATE OF none MEDIUM EXCLU-
INSERTED KEY SIVE

SUCCESSOR OF none INSTANT EXCLU·
INSERTED KEY SIVE

DELETED KEY none INSTANT EXCLU·
SIVE

SUCCESSOR OF none LONG
DELETED KEY EXCLUSIVE/none

84 SQUOS DiagnOSIS for VM L.H08-8011-03 ~ Copyright IBM Corp. 1817, 1883

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Notes:

1. For OPEN SCAN. NEXT. and FETCH. index locking occurs only for the index
used (if any) to retrieve the rows.

2. For UPDATE and DELETE operations. OPEN SCAN and NEXT are used to
locate the rows to be updated or deleted.

3. UPDATE causes index locking as described above for any index where a key
column value was updated.

4. INSERT and DELETE cause every index on the table to be updated.

Deadlock Detection
The database manager performs deadlock detection prior to placing any agent
into a lock wait. An example of a deadlock is: agent A holds resource X and
agent B wants resource X while holding resource Y. which agent A wants. There
is an impasse. which the system removes by rolling back the youngest LUW.
Agents that are in the process of being rolled back are never chosen as dead
lock "victims."

Escalation of Locks
In managing the lock requirements of a LUW. the database manager uses
internal control blocks called lock request blocks (LRBs). Each time a lock is
acquired one or more LRBs are used. The number of LRBs that can be held by
any given agent is defined by the SQUDS initialization parameter NLRBU. The
sum of the number ofLRBs held by all agents cannot exceed the limit defined by
the SQUDS initialization parameter NLRBS. When either of these limits is
reached. lock escalation is initiated for the agent that caused the limit to be
exceeded.

Lock escalation is the act of trading low level locks (page. row. table. index page.
or key value locks) for the appropriate DBSPACE lock for one of the DBSPACEs
in which the victim agent holds locks. The DBSPACE chosen is the one in which
the agent holds the most locks.

Note that the lock manager is selective about the locks it escalates. A request
for data in DBSPACE X does not necessarily cause escalation to go after a lock
on DBSPACE X.

If the agent holds any EXCLUSIVE locks in the DBSPACE. an EXCLUSIVE lock is
requested on the DBSPACE chosen. Otherwise. a SHARE lock is requested. If
the DBSPACE lock cannot be granted. the system checks for a possible dead
lock. If no deadlock is found. the DBSPACE lock request is queued. After the
DBSPACE lock is granted. the lower level locks are freed. except those which
are required to support the atomicity of SQL statements. For more information
on atomicity of SQL statements. see the Database Administration manual. When
calculating NLRBU. you will need to allocate extra LRBs when applications
contain SQL statements which affect multiple rows (such as UPDATE).

As the user resumes access to the DBSPACE (which is now locked at the
DBSPACE level). lower level locks are not required and are not obtained. Thus.
for any given LUW. the user can escalate only once on a particular DBSPACE.
Or another way of looking at It. the maximum number of times an LUW can be
escalated Is the number of DBSPACEs accessed during that LUW.

LH08-8081-03 C Copyright IBM Corp. 1887. 1. Ch.pter 2. SQUDS Concepts 65

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Access to Private DBSPACEs
More than one user can have concurrent access to a private DBSPACE, but for
read operations only. That is, multiple users can hold a shared lock on the
DBSPACE.

Termination Concepts
The application server can be terminated normally or abnormally. Normal termi
nation occurs in single user mode (SUM) when the application program returns
to the application server. In multiple user mode (MUM), normal termination
occurs when the SQUDS operator issues an SQLEND command without the
QUICK keyword, and after all users have disconnected their communication link
with the application server. If DVERIFY was specified, the directory is then veri
fied. For SQLEND with ARCHIVE or LARCHIVE, the appropriate archive operation
is performed.

During normal termination in the VM environment, the database manager severs
the IUCV connection to the *IDENT system service to relinquish ownership of the
database as a resource, so new users are not able to establish a connection.

Abnormal termination occurs when the database manager detects an internal
error, a resource limitation, a hardware error, a program check (or similar situ
ation), or the operator issues an SQLEND QUICK command, as follows:

• In the case of an internal error, the detecting module issues the message:

ARlee48E SQL/DS system error occurred-ARlxxxx nn

ARlxxxx is the name of the module detecting the error and nn is the point
within the module where the error was detected. This message is accompa
nied by the SQUDS mini-dump and a dump of the database machine
according to the DUMPTYPE initialization parameter specification.

• Whenever the database manager cannot obtain sufficient resources, usually
storage, it issues a limit error message, and normally there is an accompa
nying message preceding it:

ARlee39E SQL/DS limit error occurred-ARlxxxx nn

where ARlxxxx is the name of the module detecting the limit error and nn is
the detection pOint within the module. Because the accompanying message
indicates the cause of the error, no dump is taken.

• Whenever a hardware error is detected, the database manager issues the
message:

ARlee41E System hardware error occurred-ARlxxxx nn

where ARlxxxx is the module detecting the hardware error and nn the error
detection point. This message is normally preceded by a message indicating
the cause of the error. No dump Is taken for a hardware error.

Not.: For limit and hardware errors, the message

ARI99421 SQL/DS reason code is nl-X'n2'

is Issued where n1 (decimal representation) and n2 (hexadecimal representation)
Is the host system return code associated with the failure.

88 SQUDS DI8gnOlIs for VM LH08-8081..()3 C Copyright IBM Corp. 1887, 1983

J

J

J

"Restricted Material. of IBM"
Licensed Materials - Property of IBM

If a program check occurs, control is given to the SQLlDS abnormal termination
routines. The abnormal termination exit is established by way of a DMSABN
command. The action taken depends upon the environment (SUM or MUM) and
the time when the condition occurs (in DBSS, RDS, and so forth). The action can
be as simple as passing a return code to the application program, or as drastic
as terminating the database machine. These actions are described in "System
Problems" on page 247.

LH08-I081-03 C Copyright IBM Corp. 1887, 1883 Ch.pter 2. SQUDS Concepts 87

88 SQUDS DI_gnosll for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LHot-e081-03 C) Copyright IBM Corp. 1887. 1883

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 3. Reporting Defects

This chapter introduces you to the concepts that you need in order to build a
symptom string that describes a defect. You are here because someOne has a
problem with the SQUDS product and you are fairly certain that it was being
used correctly at the time of the failure. However. if a non-SQUDS application
requester or server was accessed at the time the problem was encountered. you
should also refer to the Distributed Relational Database Problem Determination
Guide. A problem reported on an SQUDS application requester COUld. for
example, be caused by a non-SQUDS application server.

This chapter will help you determine whether the SQUDS failure has been previ
ously documented and corrected. If it has not, the chapter will help you commu
nicate with IBM- support personnel to isolate and correct the problem.

Specifically this chapter will help you to:

• Systematically develop a set of "keywords" to describe the failure.

• Use these keywords to identify your problem when contacting the IBM
support center for assistance.

• Gather the necessary documentation to aid IBM support personnel in deter
mining and correcting the problem.

Using this chapter will therefore expedite your getting an IBM-supplied cor
rection for the problem.

For your convenience, a set of blank forms has been included (the first is on
page 89) to aid you in constructing a symptom string to describe your problem.
Figure 32 on page 70 is the hierarchy of keywords that are required for devel
oping a keyword string to describe your problem. The two topmost elements are
required for any problem you might encounter. The first (component id) is
already completed on the forms provided, and you need only to place a
checkmark for the second element (release level). Depending on what your
symptom is, follow the branch for the third-level element (ABNORMAL TERMI
NATION, NO RESPONSE, etc.) that describes your symptom, specifying the
information requested on the appropriate form. A separate form is provided for
each of the third-level elements.

LH08-I0I1-03 e Copyright IBM Corp. 1887, 1883 89

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

I PIDS / component id I

I LVLS / release level /

I / / / 1
ABNORMAL NO SLOW INCORRECT / MESSAGES/ /DOCUMENTeJ

TERMINATNl RESPONSE2 RESPONSE3 OUTPUT4

/ / I

I AB/Snnnn I
/

PDSYM • NON AUTOMATED I MS/message id I

J I I

l EXTSYM = ABRATE J I EXTSYM=RESULTI IpRcs/return cOdel

II
I

RIDS / module name / I

I POCONO = NON EXECUTION I

I

I POAID = PUB KEYED I
I

I PUBS / document number I

1 Use form on page a9.
2 Use form on page 91.
3 Use form on page 92.
4 Use form on page 93.
S Use form on page ge.
e Use form on page 94.

Figure 32. Anatomy of a Keyword String

Developing the First (Two) Keyword(s)
All keyword strings contain keywords of the following two types:

• Component Identification Keyword (PIDS)

• Release Level Keyword (LVLS)

Component Identification Keyword (PIDS)
The first keyword In the string holds the number by which IBM support personnel
Identify the SQLlDS database manager as the component detecting the error.
This is included on each of the forms. (If you choose not to use one of the forms
provided In this book, you must supply: PIDS/568810301.)

70 SQLlOS 0lagnoal8 for VM LH08-a081·03 C) Copyright IBM Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Release Level Keyword (LVLS)
The second keyword in the string shows the Component Level Code number for
the release. For previous releases and this release, check the appropriate level
on the form or (if you do not choose to use the form) specify the element as
follows:

Version 2 Release 2 :
- For all problems which are not specific to NLS Language type,

use LVLS/228
- For NLS specific problems, use the keyword for the language

in the list below
English Upper Case:
French
German
Italian
Spanish
Japanese
Korean
Chinese

Version 3 Release 1

LVLS/221
LVLS/222
LVLS/223
LVLS/224
LVLS/225
LVLS/226
LVLS/227
LVLS/228

- For all problems which are not specific to
use LVLS/318

- For NLS specific problems, use the keyword
in the list below

English Upper Case:
French
German
Italian
Spanish
Japanese
Korean

Version 3 Release 2

LVLS/311
LVLS/312
LVLS/313
LVLS/314
LVLS/315
LVLS/316
LVLS/317

NLS Language type,

for the language

- For all problems which are not specific to NLS Language type,
use LVLS/328

- For NLS specific problems, use the keyword for the language
in the list below

English Upper Case:
French
German
Ita1 ian
Spanish
Japanese
Korean

Version 3 Release 3

LVLS/321
LVLS/322
LVLS/323
LVLS/324
LV LS/325
LVLS/326
LVLS/327

- For all problems which are not specific to NLS Language type,
use LVLS/338

- For NLS specific problems, use the keyword for the language
in the list below

English Upper Case:
French
German
Italian
Spanish
Japanese
Korean
Chinese

LH08-8011-()3 C Copyright IBM Corp. 1887, 1883

LVLS/33A
LVLS/33B
LVLS/33C
LVLS/33D
LVLS/33E
LVLS/33F
LVLS/33G
LVLS/33N

Chapter 3. Reporting Defects 71

Version 3 Release 4 :

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

- For all problems which are not specific to NLS Language type,
use LVLS/34e

- For NLS specific problems, use the keyword for the language
in the list below

English Upper Case:
French
Ital ian
Spanish
Japanese
German
Chinese

LVLS/34A
LVLS/34B
LVLS/34D
LVLS/34E
LVLS/34F
LVLS/34H
LVLS/34J

Developing the Remaining Keywords

Abnormal Termination
To complete the keyword string for an abnormal termination. the system abend
code is necessary. and can be obtained from the SQUDS minidump provided
when the abend occurred. The keyword is specified as follows:

AB/Snnnn
RIDS/module name
ADRS/

where nnnn is the system abend code; module name is obtained from the

J

J

SQUDS minidump. For example. the keyword for an operation exception would J
be AB/SOOC1.

Figure 33 is an example of a minidump of an abend situation. The line displayed
before the ARlOO321 message is the SQUDS-generated symptom string.

DMSITPl4lT Operation exception occurred at 8eeFB852 in routine ARISDBBT

SQL/DS MINIDUMP FOLLOWS:
IF DUMPTYPE = N NO DUMP IS PRODUCED

SQL/DS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

ee787eFe eeeeee eeeeeeee eeeeeeee ee787eee eeeFB7Ee ••
ee787lee eeeele eeeFB3Ee eeeFB85e ee4FelS1 ee4EF1S2 • &.1 ... +1. •
ee78711e eeee2e eeeeeeee eeeeeee1 ee4E48C4 eeeFBS2e • •....•..• +.D •
ee78712e eeee3e ee1DEABe ee4EE1S3 8e4ED1S4 eeeFB8Se • .•••. + ..• +J •••. & •
ee78713e eeee4e eeeFB8Se ee4ED19E e3EC1Eee 8eeFB8S2 • ... &.+J ••••.•••. •
ee78714e eeeese eeeeeeee eeeeeeee eeeeeeee eeeeeeee • .•.•..•.....•... •
ee7871Se TO ee7871Ce SUPPRESSED LINE(S) SAME AS ABOVE .•.•.
ee7871Ce eeeeDe eeeeeeee eeeeeeee • •••.•..• •

Figure 33 (Part 1 of 2). SQLIDS Minidump, Example for Abend

72 SQLJOS OI_gn05II for VM LH08-e0l1·03 CD Copyright IBM Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucenled Materials - Property of IBM

ABTERM CODE eCl AT eeeFB85e

PROGRAM OLD PSW IS : e3EC1Eee 8eeFB852

GPR e = ee787eae eeeFB7Ee eeeFB3Ee eeeFB85e
GPR 4· ee4Fe15l ee4EF152 eeeeeeee eaeeeeel
GPR 8 = ee4E48C4 eeeFB52e eelDEABe ee4EE153
GPR 12· 8e4ED154 eeeFB85e eeeFB85e ee4ED19E

FAILURE AT OFFSET +eee3e7Fe IN ARISQLDS PROGRAM (ee7Fleee)
FAILURE AT OFFSET +eeeee1ge IN ARIYMee 93.ege

CALLED FROM OFFSET +eeeaE9C2 IN ARIXRDS PROGRAM (ee66Aeee)
CALLED FROM OFFSET +eeee636A IN ARIXEDB 93.696

SUMMARY OF USERS

DS2CVT
66787e6e

RDCVT
ee787888

YRSSCVT
6e78754e

CURRENTLY RUNNING DCE ee18eeA6

USERID
eln OPERATOR
ee2 CHECKPT
e63 RECOVERY
ee4 SQLUSR5

PROGRAM NAME DSCAREA
eelDE8Ae
eelF7D8e
eelF923e
ee2e6388

YTABLEl
eelDEABe
eelF7Fge
eelF944e
ee2e6598

RDAREA DCE
ee18eeAe
ee18elD8

ee2e2BFe ee18e3le
ee2eFCEe ee18e448

NOTE: USERID AND/OR PROGRAM NAME MAY BE RESIDUAL AND MAY NOT NECESSARILY
BE THE CURRENT VALUES

STORAGE NEAR 'FAILURE :

ADDR OFFSET DUMP DATA

eeeFB83e eeeeee eeeeee39 eeeeeeee eeeeeeee eelDEABe * *
eeeFB84e eeeele eeeFB8ee ee4E4gee eeeFB5B8 eeeFB724 * •.... + ..••...... *
eeeFB85e eeee2e eeeFB87e eeeFB7ge eeeeeeee eeeeeeee * •............... *
eeeFB86e eeee3e eeaeeeee eeeeeeee eeeeeeee eeeeeeee * *
eeeFB87e eeee4e ee3Aeeee C1D9C9Fe FeF6F3C9 4eE896A4 * ARIee63I Y .. *

SYMPTOM STRING:
AB/seeCl PIDS/5688le3el RIDS/ARIYMea

ARIee32I SQL/DS has terminated.
ARlea421 SQL/DS reason code is 193 - X'C1 1

ARleS43I SQL/DS return code is 516.

Figure 33 (Part 2 of 2). SQLIDS Min/dump, Example for Abend

ADRs/eeeeelge

Not.: The situation here was that module ARIXEDB called module ARIYMOO,
and an operation exception occurred at offset 00000190 in ARIYMOO.

LHoe-a0l1-03 C Copyright IBM Corp. 1887, 1883 Chepter 3. Reporting Derects 73

Message

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Use the following keywords to describe message-associated problems. such as:

• The user received the SQUDS "system error" (ARI0040E) message.

• The user received message ARI29091 indicating a First Failure Data Capture
dump is produced. For details see the next section. "First Failure Data
Capture" on page 76.

• The user had a problem with a message of format ARlnnnnx.

The following keywords should be specified for the ARI0040E messages:

MS/message id
RIDS/module name
PRCS/return code

where message id is ARIOO4OE;
module name is ARlxxxx from the message text;
return code is the nn from the message text.

Figure 34 on page 75 is an example minidump of an SQUDS system error. The
last line displayed in the minidump is the SQUDS-generated symptom string.

The following keywords should be specified for messages having a format of
ARlnnnnx (excluding ARI0040E and ARI29091):

MS/message id
PRCS/return code

J

where message id is the ARlnnnnx. return code is the return code from the J
message text if available. Pad the return code with zeroes on the left hand side.

J

'J
74 SQUDS DI.gnOlII for VM LH08-8011-03 C) COl)yrlght IBM COrl). 1817. 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ARIee4eE SQL/DS system error occurred - ARICMUD e3

SQL/DS MINIDUMP FOLLOWS:
IF DUMPTYPE = N NO DUMP IS PRODUCED

SQL/DS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

ee787eFe eeeese ssssssss sssesses eS787ses eeSFB7ES * *
SS7871es eSSS1S seSFB3ES SSSFB85e SS4FS151 S64EF152 * &.' ••• +1. *
SS78711S SSSS2S essesses essseeel se4E48C4 SSSFB52S * +.D •.•. *
SS78712S ssse3S SSlDEABS SS4EE153 8S4ED154 eSSFB85S * + ... +J & *
SS78713S SSSS4S eSSFB85S SS4ED19E S3EC1ESS 8SSFB852 * ... &.+J••.• *
SS78714S SSSS5S SSSSSSSS ssssssse esssssss sssssses * *
SS78715S TO SS7871ce SUPPRESSED LINE(S) SAME AS ABOVE ••••.
se7871CS seeeDS ssseesse sseesese * *

GPR e = eesssses se9C91FS ee82C13e seB8Dsee
GPR 4'~ ee82C134 seeeesel sssessee se822B1e
GPR 8 = eeseeeel ee7E827S ee81EF3S se82CSS8
GPR 12 = ee9C8668 se82cse8 4E9C9166 ee92EE58

FAILURE AT OFFSET +sese3162 IN ARIXRDS PROGRAM (eS9C6SeS)

CALLED FROM OFFSET +eseee796 IN ARIXRDS PROGRAM (Se9C6eee)
CALLED FROM OFFSET +eeseS4DE IN ARIXERD 93.e9S PLX

SUMMARY OF USERS

DS2CVT
SSB8Dses

RDCVT
eSB8D66e

YRSSCVT
eeB8D3AS

CURRENTLY RUNNING DCE ee7E827S

USERID
se1 OPERATOR
se2 CHECKPT
ee3 RECOVERY
ee4 SQLUSR5

PROGRAM NAME DSCAREA
se8e6688
SS8e9ECS
ee8eC628
ee81ED6e

YTABLE1 RDAREA
se8S6858
SS8eAe9S
ee8SC7F8 se8172D8
se81EF3e. ee82BA1S

DCE
se7E8S48
ee7E81SS
se7E81B8
eS7E827e

NOTE: USERID AND/OR PROGRAM NAME MAY BE RESIDUAL AND MAY NOT NECESSARILY
BE THE CURRENT VALUES

SYMPTOM STRING:
MS/ARIse4SE PIDS/568816361 RIDS/ARICMUD PRcs/seesseS3

Figure 34. SQLIOS Mlnldump. Example for SQLIOS System Error

.Not.: The situation here was that module ARIXERD called module ARICMUD.
ARICMUD then detected an internal system error at error detection point 3.

LH08-8011-03 C Copyright IBM Corp. 1887. 1883 Chepter 3. Reporting Detects 75

First Failure Data Capture

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

First Failure Data Capture support is only provided when using the DRDA pro
tocol. With this support, it may not be necessary to re-create an error in order to
report it to the IBM support center. All relevant diagnostic information, control
blocks and data streams are captured at the error detection point in the VM
console log of the application requester or application server and held in the
print queue.

This support is provided on both the application requester and the application
server, but the formats are different. It is invoked automatically when an error in
the communication data stream is detected, or an internal error is detected. At
that time, you will receive message ARI29091 which tells you that the error
occurred and that data is being captured for the dump. When you receive
message AR129101, you will know that the data capture process has completed
successfully.

The information captured includes:

• System information

LU 6.2 logical unit of work identifier
time and date
communication information
symptom string
probable cause string

• Failure point specific data area

• Control blocks

• request/reply data streams

The number of control blocks and data streams depend on the point at which the
error was detected. These are used by IBM Support personnel for diagnosis.

To complete the keyword string for a First Failure Data Capture, the following
keywords should be specified:

MS/message id
RIDS/module name
PReS/return code

where message id is AR129091,
module name is ARlxxxx from the dump,
return code is the nn.

The keywords are found in the symptom string of the dump.

Following is a modified example of an application requester First Failure Data
Capture dump. This type of dump is typically several pages long.

78 SQLJOS Ol.gnolll for VM LH09-S081-03 CID Copyright IBM Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

"'" BEGIN FIRST FAILURE DATA CAPTURE DUMP "'"

APPLICATION REQUESTER DUMP

LUWID m SNANETID.*IDENT.A36973962e95.eee1 DATE/TIME - e2-e5-91/15:15:52

EXTNAM:
RDBMS:
PACKAGE:

JONES
PAYROLL1
JONES
*IDENT
PAYROLL1

SQLDS/VM V3.3.e
• PAYROLL SECTION: eeel

LU:
TPN: X('D7C1E8D9D6D3D3F1 1)

SYMPTOM STRING: MS/ARI2ge9I PIDS/56881e3e1 RIDS/ARITFQA PRCS/e1

PROBABLE CAUSE OF FAILURE:
NULL POINTER

"'" DATA AREA BLHBUFP "'"

eeeeeele eeeeeeee eeee64Be * *

"'" END DATA AREA "'"

"'" CONTROL BLOCK DUMP FOR VMCBLOCK "'"

ee386DC8 eeeeeeee E5D4C3C2 D3D6C3D2 eeeee128 aeeeeeee * VMCBLOCK •••.•..• *
ee386DD8 eeaeeele eaeeeeee eeeeeeee eFeeeeeF eeeeeeee * •••.•..•..•••..• *
ee386DE8 eeeeee2e eeeeeeee eeeeeeee eeeeeeee eeeeeeee * •••••..••..•.•.• *
ee386DF8 TO ee386EE8 SUPPRESSED LINE(S) SAME AS ABOVE ••..
ee386EE8 eeeee12e eeeeeeee eeeeeeee *•••. *

"'" END CONTROL BLOCK DUMP "'"

"'" CONTROL BLOCK DUMP FOR BLHEADER "'"

ee2F5eee eeeeeeee D9D4C2E4 C6C64e4e eeeeee3e eeee7FFF * RMBUFF ..••..•• *
ee2F5e1e eeeeeele ee2F5e3e eeeeee2D eeeeeeee ee31geee * .. & *
ee2F5e2e eeeeee2e ee32ge6e eeD5eeee eeeeeeee eeeeeeee * ... -.N ..•.••...• *

"", END CONTROL BLOCK DUMP "'"

"'" REPLY DATA STREAM "",

ee2FSS3e eseeesee ee2DDee3 S3CSge27 2413ee19 ee1ee676
992FS94S eS999S1S 09929994 9971E9S4 S9910S9S 919671Fe
e92F595S sseesezs ESSS9gee eA147AFF ssseseee ac

"'" END DATA STREAM DUMP "'"

"", END FIRST FAILURE DATA CAPTURE DUMP "'"

Figure 35. Applic.tion requester First F.ilure D.t. C.pture Dump

LH08-8011-03 C Copyright IBM Corp. 1887, 1883

* E.4 •••••••• *
* e *
* . *

Chapter 3. Reporting Defects 77

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Following are descriptions of all possible fields contained in an application
requester dump. In general. a First Failure Data Capture Dump may contain all
or only some of these fields.

LUWIO This field contains an LU 6.2 Logical Unit of Work Identifier.

OATEITIME Date and time in MM-DD-YY/HH:MM:SS format.

EXTNAM

ROBMS

Name of the user task on the application requester.

Name of the application server the application requester is connected
to. This includes 18 byte application server name. the product name
of the application server and the versiol"! of the product the applica
tion server is running.

PACKAGE and SECTION These parameters appear on the same line. The
PACKAGE parameter is in the format "collectlon-Id.paclcage-name".
The SECTION parameter contains the section in the package that is
currently being executed.

LU Logical unit name. This identifies the gateway used to establish the
connection to the application server. With an SQUDS application
requester. the LU is either *IDENT (for a local or TSAF collection) or
an AVS gateway name. With a non-SQLlDS application requester. the
LU is the LU name of the application server.

TPN Transaction Program Name. This is the name used to identify the con
nection to the application server on the target network.

SYMPTOM STRING The symptom string consists of a set of keywords and
values.

PROBABLE CAUSE OF FAILURE: The line following this parameter should
contain a short description of why the error occurred.

The parameters PACKAGE. SECTION. LU. and TPN mayor may not appear in a
given dump. They do not appear if the current DDM request does not concern a
specific package. and the LU and TPN may not appear if the connection is local.

Following is a modified example of an application server First Failure Data
Capture dump. This type of dump is typically several pages long.

LH08-8081-03 0 Copyright IBM COrp. 1817, 1883

J

J

J

J

"Restricted Materials of IBM"
Ucenlecl Materials - Property of IBM

"", BEGIN FIRST FAILURE DATA CAPTURE DUMP "",

APPLICATION SERVER DUMP

LUWID = SNANETID.*IDENT.A3DDe74FE6BF.eee1 DATE/TIME = e5-e8-91/14:15:12

VM USERID: JONES SQUD: JONES
EXTNAM: JONES.1

ve3.e3.e AT TORVMLB8 REQUESTER: SQLDS/VM
PACKAGE: . JONES . PAYROLL SECTION: eeel

SYMPTOM STRING: MS/ARI2ge9I PIDS/56881e3e1 RIDS/ARIWDDM PRCS/e4

PROBABLE CAUSE OF FAILURE:
INVALID CORRELATION 10 IN DDM HEADER

"", DATA AREA ASPCORID "",

ee7E393A eeeeeeee eee8 *

"", END DATA AREA "",

"", DATA AREA DDMSVCOR "",

ee7D63ee eeeeeeee FFFFFFFF *

"", END DATA AREA "",

"", CONTROL BLOCK DUMP FOR VMQ "",

ee798FD8 eeeeeeee E5D4D8C5 D3C5D44e eeeeee78 ee799188 * VMQELEM j h
ee798FE8 eeeeeele eeeeeeee eeeeeeee eeeeeeee eeeeeeee * ·
ee798FF8 eeeeee2e eeeeeeee eeeeeeee eeeeeeee eeeeeeee * ·
ee79gee8 eeeeee3e seseeeee ee7983Fe ee79ge5e eeB5841e * ce ... & .. d.
ee79ge18 eeeSee4e 5e2e4ee4 esseesee eeeeeeee eeeeeeee * &.
ee79ge28 eeeSee5e eeseeeee eeseesee eeeeeeee eeeeeeee * ·

*

*

*
*
*
*
*
*

ee79ge38 Seeeee6e eeeeeeee A3DDe762 1eE9C8ee A3DDe75e * .•.. t ••.. ZH.t .• & *
ee79ge48 eeeSee7e eB57E8ee e2eeeeee * · . Y *

"", END CONTROL BLOCK DUMP "",

"", REQUEST DATA STREAM "",

ee7CCEOe eeeeeeee ee2eDee1 eee8ee1A 2eeFee16 211eE2D8 * ••.•••••..•.•. SQ *
BB7CCEES 99geeBle D3D4C1C3 C8D44e4e 4e4e4e4e 494e4e4e * LDBA *

"'" END DATA STREAM DUMP "'"

"'" END FIRST FAILURE DATA CAPTURE DUMP "",

Figure 36. Application server First Failure Data Capture Dump

LHoe-aOS1.()3 ~ Copyrlgnt IBM Corp. 1887, 1883 Cn.pter 3. Reporting Defects 71

No Response

Wait or Loop

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Following are descriptions of all possible fields contained in an application
server dump. In general a First Failure Data Capture dump may contain all or
only some of these fields.

LUWID This field contains an LU 6.2 Logical Unit of Work Identifier.

DATEITIME Date and time in MM-DD-YY/HH:MM:SS format.

VM USERID This is the VM userid received by the application server. Note that
in a remote connection, this may not be the original userid on the
originating system due to userid translation.

SQLID This is the SQUDS user id of the application requester.

EXTNAM Name of the user task on the application requester.

REQUESTER This is the type of application requester connected to the applica
tion server. This includes the product name of the application server,
the version of the product the application server is running, and the
server name of the application requester.

PACKAGE and SECTION These parameters appear on the same line. The
PACKAGE parameter is in the format "collect/on-id.package-name".
The SECTION parameter contains the section in the package that is
currently being executed.

SYMPTOM STRING The symptom string consists of a set of keywords and
values.

PROBABLE CAUSE OF FAILURE: The line following this parameter should
contain a short description of why the error occurred.

The PACKAGE and SECTION parameters may not appear in a given dump. They
do not appear if the current DDM request does not concern a specific package.

No Response can be either a wait or loop condition. Before contacting IBM
support center, you should go to Chapter 5, "Diagnosing Performance
Problems" on page 101 and determine if your situation may be caused by a per
formance problem within your system.

For a wait or loop condition, the following keywords should be specified:

PDSYM ~ NON AUTOMATED
EXTSYM - ABRATE
RIDS • module name

The module name (identified above by RIDS =) should be provided if it can be
determined. If the specific module name cannot be determined, it is recom
mended you use the following names depending on which environment you are
running:

ISQL - ARIISQL
DBS Utility - ARIDBS
SQL/DS - ARISQLDS

10 sQLJOS Ol.gnosl. for VM I.Hoe-a0l1-03 C Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Slow Response
Slow response is a performance related problem that you feel is caused by the
SQUDS product and not due to application design. Before contacting the IBM
support center, you should go to Chapter 5, "Diagnosing Performance
Problems" on page 101 and determine if your situation may be causeQ by a per
formance problem within your system. For a slow response problem the fol
lowing keywords should be specified:

PDSYM = NON AUTOMATED
EXTSYM = ABRATE
RIDS = module name

The module name (identified above by RIDS =) should be provided if it can be
determined. If the specific module name cannot be determined, it is recom
mended you use the following names depending on which environment you are
running:

ISQL - ARIISQL
DBS Utility - ARIDBS
SQL/DS - ARISQLDS

Incorrect or Missing Output

Document

When incorrect or incomplete output is delivered to the user, specify the fol
lowing keywords:

PDSYM = NON AUTOMATED
EXTSYM = RESULT
RIDS • module name

The module name (identified above by RIDS =) should be provided if it can be
determined. If the specific module name cannot be determined, it is recom
mended you use the following names depending on which environment you are I

running:

ISQL - ARIISQL
DBS Utility - ARIDBS
SQL/DS - ARISQLDS

When you find incorrect or misleading information in an SQUDS publication, or I

cannot find information that should be there, the keywords below should be
specified. Before you do this, however, consider the simpler alternative:
Describe your problem on the Reader's Comment Form in the back of the book I

with the apparent defect. Then mail the completed form to IBM according to the I

form's instructions. Only extremely severe defects warrant the procedure in this
section, such as when a documented procedure causes permanent damage to I

the database.

The following keywords should be specified for severe documentation problems: I

POCONO - NON EXECUTION
PoAIo - PUB KEYED
PUBS/document number

where document number is the xxnn-nnnn-w from the publication's cover.

J..H08-I0I1-03 _~ Copyright IBM Corp. 1887, 1983 Chepter 3. ReportIng Detect. 811

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Additional Keywords

SQLCODES

SQL Statements

Additional keywords can be used to describe failures related to SQLCODES, SQL
Statements, Start-up Parameters, Data Types, Application Languages, and
EXECs. These keywords will provide more information to expedite the search for
previously identified problems and resolutions.

If the failure is related to an SQLCODE, use the following keywords:

PRCS/SQLCODE (absolute value)
PRCS/SQLERRD1 (absolute value)
PRCS/SQLERRD2 (absolute value)
PRCS/SQLERRP

Note: The code must be 8 digits long, and left padded with zeroes.

For the following SQLCA values:

SQLCODE -ge1, SQLERRD1 -1, SQLERRD2 -3e, SQlERRP ARIXRSS

You would use these keywords:

PRCS/eeeeege1, PRCS/eeeeeee1, PRCS/eeeeee3e, RIDS/ARIXRSS

Use all SQUDS reserved keywords that are related to the failure. For an SQL
statement the following keywords should be specified.

PCSS/keyword

For example, if the failing statement was:

SELECT * FROM SQLDBA.ACTIVITY -
WHERE ACTNO IN (85,95)

then the symptom string would be:

PCSS/SELECT PCSS/WHERE PCSS/IN

Stan-up Parameters

Data Type

If the failure is related to the value of a start-up parameter, use the following
keyword:

PCSS/PARAMETER
PCSS/n (where n is the parameter value)

For example, if the failure only occurs in single user mode, (SYSMODE = S), then
the keywords would be:

PCSS/SYSMODE
PCSS/S

If the failure is dependant on the field data type, use the keyword:

FLDS/DATA TYPE

Here is a list of data types and keywords which can be used:

82 SQUDS Dlegnosls for VM LH08-8081-03 C Copyright IBM Corp. 1Q87, 1_

I

:<.

"Restricted Materials of IBM"
Ucensed Material. - Property of IBM

Application Type

EXECs

SMALL INTEGER
INTEGER
DECIMAL
DECIMAL(5,2)
FLOATING POINT
CHARACTER
VARYING CHARACTER
VARYING GRAPHIC
LONG VARCHAR
LONG VARGRAPHIC
HOST VARIABLE
DATE
TIME
TIMESTAMP

FLDS/SMALLI NT
FLDS/INTEGER
FLDS/DECIMAL
FLDS/DECIMAL VALU/C0502
FLDS/FLOAT
FLDS/CHAR
FLDS/VARCHAR
FLDS/VARGRAPHIC
FLDS/LONG FLDS/VARCHAR
FLDS/LONG FLDS/VARGRAPHIC
FLDS/HOSTVAR
FLDS/DATE
FLDS/TIME
FLDS/TIMESTAMP

Note: The keyword DECIMAL should be used for table columns defined as
NUMERIC.

If the failure is dependant on the language of the application program, use one of
these keywords:

RIDS/PLI
RIDS/ASSEMBLER
RIDS/C

RIDS/FORTRAN
RIDS/COBOL
RIDS/RPG

If the failure occurs as a result of running an EXEC, use the following keyword:

RIDS/exec name

For example, if the failure occurred while running a COLDLOG (EXEC SQLLOG),
the keyword would be:

RIDS/SQLLOG

Application Program Generated SQLCODES

Invocation

An interface is provided allowing application programs to format a symptom
string which can be used as another search argument to identify application
problems.

The interface is composed of two modules that can be called from an application I

program. The modules receive an SQLCA and return a formatted symptom
string in the form of five character strings.

For FORTRAN application programs, the invocation Is:

... > CALL ARISSMF(SQLCOD,SQLERP,Sl,S2,S3,S4,S5) /* FORTRAN */

For application programs of other languages, the invocations are as follows:

Chepter 3. Reporting Detect. a

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

=--> CALL ARISSMA(SQLCA,Sl,S2,S3,S4,S5); /* PL/I */ _._> CALL IARISSMA I USING SQLCA Sl S2 S3 S4 S5. /* COBOL */
===> ARISSMA(&sqlca,Sl,S2,S3,S4,S5) /* ICI */
=-=> CALL ARISSMA,(SQLCA,Sl,S2,S3,S4,S5),VL /* Assembly Language */
===> CALL ARISSMA(SQLCA,Sl,S2,S3,S4,S5) /* RPG .*/

(Note: For Assembly Language and RPG, this is pseudocode only.
See the Appltcatton Programmtng manual for syntax.)

Module

ARISSMA ARISSMA can be called by any PUI, RPG,
Assembler, COBOL and 'C' application
program.

ARISSMF ARISSMF can be called by any FORTRAN
application program.

Input

SQLCA The SQLCA causing the error.

Output Length Symptom string for

SQLCSTR1 13 SQLCODE

SQLCSTR2 13 SQLERRD1

SQLCSTR3 13 SQLERRD2

SQLCSTR4 12 SQLERRP (part 1)

SQLCSTR5 14 SQLERRP (part 2)

Figure 37. Symptom String invocation

The values returned by ARISSMA and ARISSMF are as follows:

SQLCSTR1 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLCODE, right justified, padded with D's, for
a total length of 8 digits.

SQLCSTR2 PRCS/nnnnnnnn; where n is the decimal representation of the
absolute value of the SQLERRD1, right justified, padded with D's, for
a total length of 8 digits.

SQLCSTR3 PRCS/nnnnnnnn; where n Is the decimal representation of the
absolute value of the SQLERRD2, right justified, padded with O's, for
a total length of 8 digits.

SQLCSTR4 FLDS/SQLERRP. This value Is always returned In the string.

SQLCSTR5 VALU/Caaaaaaaa; where a is left justified, padded by blanks, and is
the module name provided In field SQLERRP.

Suppose the SQLCA fields have the following values when the error occurred:

84 SQUOS OI.gn08II for V~ LH08-8011-03 C Copyright IB~ Corp. 1817, 1ee3

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Interactions

SQLCODE = -ge1
SQLERRD1 = -16e
SQLERRD2 = -33
SQLERRP = ARIXOEX

then the values of the strings will be:

SQLCSTR1 -=> PRCS/eeeeegel
SQLCSTR2 =-> PRCS/eeeee16e
SQLCSTR3 ==> PRCS/eeeeee33
SQLCSTR4 --> FLDS/SQLERRP
SQLCSTR5 ==> VALU/CARIXOEX

An application program can format a symptom string by calling ARISSMA or
ARISSMF, passing the SQLCA structure, and the 5 output strings.

The application program can then display or write the symptom string to a file as
required.

No messages are issued by ARISSMA and ARISSMF. The symptom strings are
built based on the SQLCA received.

Reporting a Problem

Materials

This section describes the types of material that can be sent to the IBM change
team when the problem reported to the IBM support center (using the keyword
string constructed) is a unique problem. The type of material required depends
on the problem encountered.

If your problem is occurring during distributed processing, you should also refer
to the Distributed Relational Database Problem Determination Guide for further
information on the types of material to collect.

This is the list of materials. See the Environments section for which material is
necessary for your problem.

• Environment

Operating system including version and mode, where applicable (for
example, VM/ESA 1.0 XA mode).
Other environment specifics (for example, fullscreen or VTAM*).
SQUDS release level.
Indication as to whether or not the DRDA code is installed.
Protocol parameter being used by the application server (AUTO or
SQLDS) and the application requester (AUTO, SQLOS, or OROA).
Identification of the SQL products involved (for example, SQUOS applica
tion server and OS/400* Database Manager application requester).
Virtual storage size.
CHARNAME (or CCSIDs) being used by the application server and the
application requester. If the CHARNAME being used is not an
IBM-supplied CHARNAME, provide specifics for that CHARNAME (that is,
the CCSID(s), the conversion table(s) and the entry into the
SYSCHARSETS catalog table).

J.H()@-I~1.()3 ~ ~y~gh!JB~ Corp. 1817, 1813 Ch.pter 3. Reporting Detects 85

"Restricted Materials of IBM"
Ucensec:l Materials - Property of IBM

• Maintenance History

- VM PUT service level applied.
- System configuration changes.

• SQLlDS User Tables

Tables used as input to the failing request.
- Table definitions, index definitions, and optionally table data.
- Obtained via an SQL SELECT statement issued from ISQL or DBS Utility.

• Failing SQL Statement or Sequence of Statements

- Is necessary for some problems.

• The Entire SQLCA

- From the SQLlDS user application.
- Obtaining the entire SQLCA requires coding in the application program.

• SQL Codes

Usually indicate errors in use of the SQL language.
- May appear in SQLlDS error messages.
- May also appear in SQLCA control block in user application.

.. Output from EXPLAIN statement

Is necessary for some problems.
Obtained via an SQL SELECT statement issued from ISQL or DBS Utility.
For details on the EXPLAIN statement refer to the Database Adminis
tration manual.

• SQLlDS Accounting Record Information

Is necessary for some problems.
- For more information on accounting records, refer to the System Admin

istration manual.

• VM Dump

- Taken by the operator for loops and waits.
- Either the SQLlDS machine or the user machine must be dumped.

• Database Machine Dump

Optionally taken by the database manager for abnormal terminations and
detected system errors (DUMPTYPE = Fin SQLSTART).
Output to the SQLlDS operator console and/or job listing.

• SQLlDS Minidump

Taken by the database manager for abnormal terminations in the data
base machine.
Output to the SQLlDS operator console and/or job listing.

• Job Output Listings

- From the database machine.
- From the SQLlDS user application.

• First Failure Data Capture Dump

- From the print queue

88 SQLJDS DlagnOil1 for VM L.H08-I0I1.()3 C) Copyright IBM Corp. 1887, 1883

J

"Restricted Material. of IBM"
Ucenaed Materials - Property of IBM

Environments

• SQLlDS Operator Console

Error messages.
SQL return codes.
Output from the SQLlDS SHOW SYSTEM command.
Output from the SQLlDS SHOW CONNECT command.

• Terminal Input and Output

SQL or ISQL commands entered.
Error messages.
Display results.
Output from SQLlDS SHOW SYSTEM command.

• SQLlDS System Catalog

Obtained via SQL SELECT statement issued from ISQL or DBS Utility.
- For names of the system catalog tables and their contents refer to the

SQL Reference manual.

• SQLlDS Trace Output

- For details on Trace usage and output refer to the Operation manual.

• Instruction Trace

- For small loops.
- Use hardware instruction step or PER trace.

• SQLlDS Error Messages

- May appear on operator console, job listing, or ISQL terminal.
- Record message id numbers, as well as exact message text.

• VM PER Trace

- For large loops.

This section describes what materials would be required for the different types of
failures in each environment. For the following descriptions, it is assumed that
the failure occurred in multiple user mode. If the application server is running in
single user mode, the database machine and the user machine will be one and
the same.

Note: Maintenance history is required for all problems. Items in square
brackets [] indicate optional materials.

LH08-8011.()3 0 Copyright IBM Corp. 1817, 1883 Chepter 3. Reporting Detect, 87

PROBLEMS IN
THE DATABASE

PROBLEM TYPE MACHINE

ABNORMAL SQUDS Mlnldump
TERMINATION SQUDS Machine

Dump
First Failure

Data Capture Dump·
[SQUDS Operator

Console]
[SQUDS Trace

Output]

MESSAGE SQUDS Operator
Console

SQUDS Error
Messages

First Failure
Data capture Dump·

[SQUDS Machine
Dump]

[SQUDS Trace
Output]

WAIT VM Dump
SQUDS SHOW

SYSTEM Command
[SQUDS Operator

Console]
[SQUDS Trace

Output]

LOOP Instruction Trace
(small loops)

VM PER Trace
(large loops)

SQUDS SHOW
SYSTEM Command

VM Dump
[SQUDS Operator

Console]
[SQUDS Trace

Output]

INCORRECT OUTPUT Application Server
CHARNAME Value

PROBLEMS IN
THE USER
MACHINE

VM Dump
JOB Output

Listings
First Failure

Data Capture Dump·
[SQUDS Operator

Console]

The Entire SQLCA
SQUDS Error

Messages
First Failure

Data Capture Dump·

SQUDS SHOW
SYSTEM Command

VM Dump
JOB Output

listings
[SQUDS Operator

Console]

Instruction Trace
(small loops)

VM PER Trace
(large loops)

SQUDS SHOW
SYSTEM Command

VM Dump
JOB Output

listings
[SQUDS Operator

Console]

SQL Codes
SQUDS Error

Messages
JOB Output

Listings
Application requester

CHARNAME Value
[SQUDS System

Catalog]
[SQUDS User

Tables]
[SQUDS Trace

Output]

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

ISQL
PROBLEMS

VM Dump
Terminal Input

and Output
[SQUDS Operator

Console]

SQUDS SHOW
SYSTEM Command

VM Dump
Terminal Input

and Output
[SQUDS Operator

Console]

Instruction Trace
(small loops)

VM PER Trace
(large loops)

SQUDS SHOW
SYSTEM Command

Terminal Input
and Output

[SQUDS Operator
Console]

Terminal Input
and Output

SQUDS Error
Messages

[SQUDS System
Catalog]

[SQUDS User
Tables]

Figure 38. Materl." for Defect Problem.

• The First Failure Data Capture Dump Is only available when using the OROA
protocol. Even then it is not always available. When It Is present, it is required
information that must be sent to the IBM change team when reporting a problem.

88 SQUOS OlagnOlls for VM LH08-I081-03 ~ Copyright IBM Corp. 1a87, 1883

J

J

J

"Restricted Material. of IBM"
Ucensed Material. - Property of IBM

SYMPTOM KEYWORD STRING FOR ABNORMAL TERMINATIONS
(for the SQLlDS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT 10:
COMPONENT 10:

LEVEL CODE:

568888481
568818381

_LVLS/228
LVLS/
_LVLS/318
LV LS/
_LVLS/328
LVLS/
_LVLS/336
LVLS/
_LVLS/346
LVLS/

SECTION II (PROBLEM IDENTIFICATION)

ABEND CODE: AB/S, __ _

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE:
(check one)

APAR:

SERVICE:

NOTES:

RET
PER
DOC
USER
NTF

PUT/ __ _
PTF -

(for Version 2 Release 2)
(for Version 3 Release 1, 2, 3, 4)

(for Version 2 Release 2, English) (check one)
(for Version 2 Release 2, other languages)
(for Version 3 Release 1, English)
(for Version 3 Release 1, other languages)
(for Version 3 Release 2, English)
(for Version 3 Release 2, other languages)
(for Version 3 Release 3, English)
(for Version 3 Release 3, other languages)
(for Version 3 Release 4, English)
(for Version 3 Release 4, other languages)

(Return)
(Program Error)
(Documentation error)
(User Error)
(No trouble found)

(APAR number)

(PUT level)
(Corrective Fix)

Thl. page may be reproduced without written perml •• lon from IBM

Ch.pter 3. Reporting Detects .8

"Re.tricted Material. of IBM"
Ucensed Material. - Property of IBM

SYMPTOM KEYWORD STRING FOR MESSAGE
(for the SQUDS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT ID:
COMPONENT ID:

LEVEL CODE:

568888481
568818381

_LVLS/228
LVLS/
_LVLS/318
LVLS/
_LVLS/328
LVLS/
_LVLS/338
LV LS/
_LVLS/348
LVLS/

SECTION II (PROBLEM IDENTIFICATION)

(for Version 2 Release 2)
(for Version 3 Release 1, 2, 3, 4)

(for Version 2 Release 2, English) (check one)
(for Version 2 Release 2, other languages)
(for Version 3 Release 1, English)
(for Version 3 Release 1, other languages)
(for Version 3 Release 2, English)
(for Version 3 Release 2, other languages)
(for Version 3 Release 3, English)
(for Version 3 Release 3, other languages)
(for Version 3 Release 4, English)
(for Version 3 Release 4, other languages)

MESSAGE 10: MS/ ____ _ (ARInnnnX)
MODULE NAME: RIDS/ ____ _

RETURN CODE: PRCS/ ___ _

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE:
(check one)

APAR:

SERVICE:

NOTES:

RET
PER
DOC
USER
NTF

PUT/ __ _
PTF •

(if MS/ARI8848E)

(Return code or absolute
value of SQLCODE in decimal)

(Return)
(Program Error)
(Documentation error)
(User Error)
(No trouble found)

(APAR number)

(PUT 1 evel)
(Corrective Fix)

Thl. pag8 may be reproduced without written perml •• lon from IBM

80 SQLJOS Ol-onotls tor VM LHoe-eoa1..()3 e Copyright IBM Corp. 1117, 1883

J

J

"Reatricted Materiala of IBM"
Ucenaed Materiala - Property of IBM

SYMPTOM KEYWORD STRING FOR NO RESPONSE
(for the SQUDS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT ID:
COMPONENT 10:

LEVEL CODE:

5688ElEl4(H
56881El3El1

_LVLS/22El
LVLS/
_LVLS/31El
LV LS/
_LVLS/32El
LV LS/
_LVLS/338
LVLS/
_LVLS/34€l
LVLS/

SECTION II (PROBLEM IDENTIFICATION)

(for Version 2 Release 2)
(for Version 3 Release 1, 2, 3, 4)

(for Version 2 Release 2, English) (check one)
(for Version 2 Release 2, other languages)
(for Version 3 Release 1, English)
(for Version 3 Release 1, other languages)
(for Version 3 Release 2, English)
(for Version 3 Release 2, other languages)
(for Version 3 Release 3, English)
(for Version 3 Release 3, other languages)
(for Version 3 Release 4, fnglish)
(for Version 3 Release 4, other languages)

PD SYMPTOM: PDSYM • NON AUTOMATED

EXTERNAL SYMPTOM: EXTSYM = ABRATE

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE:
(check one)

APAR:

SERVICE:

NOTES:

RET
PER
DOC
USER
NTF

PUT/ __ _
PTF •

(Return)
(Program Error)
(Documentation error)
(User Error)
(No trouble found)

(APAR number)

(PUT level)
(Corrective Fix)

this page may be reproduced without written permission from IBM

LH08-8011-03 C Copyright IBM Corp. 1887, 1883 Chapter 3. Reporting Detect, 11

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

SYMPTOM KEYWORD STRING FOR SLOW RESPONSE
(for the SQUDS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT ID:
COMPONENT ID:

LEVEL CODE:

568800401
568810301

_LVLS/220
LV LS/
_LVLS/310
LVLS/
_LVLS/320
LVLS/
_LVLS/330
LV LS/
_LVLS/349
LVLS/

SECTION II (PROBLEM IDENTIFICATION)

(for Version 2 Release 2)
(for Version 3 Release 1, 2, 3, 4)

(for Version 2 Release 2, English) (check one)
(for Version 2 Release 2, other languages)
(for Version 3 Release 1, English)
(for Version 3 Release 1, other languages)
(for Version 3 Release 2, English)
(for Version 3 Release 2, other languages)
(for Version 3 Release 3, English)
(for Version 3 Release 3, other languages)
(for Version 3 Release 4, English)
(for Version 3 Release 4, other languages)

PD SYMPTOM: PDSYM = NON AUTOMATED

EXTERNAL SYMPTOM: EXTSYM = ABRATE

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE:
(check one)

APAR:

SERV ICE:

NOTES:

RET
PER
DOC
USER
NTF

PUT/ ___ _
PTF •

(Return)
(Program Error)
(Documentation error)
(User Error)
(No trouble found)

(APAR number)

(PUT level)
(Correcti ve Fi x)

This pag8 may be reproduced without written permission from IBM

82 SQUOS Ol.gnoal. for VM LH08-aOS1-03 0 CopvrlghtJB~ Corp. 1887, 1~

J

"Restricted Material. of IBM"
Licensed Materials - Property of IBM

SYMPTOM KEYWORD STRING FOR INCORRECT OR MISSING OUTPUT
(for the SQUDS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT ID: 5688ee4e1 (for Version 2 Release 2)
COMPONENT ID: 56881e3e1 (for Version 3 Release 1, 2, 3, 4)

LEVEL CODE: _LVLS/22e (for Version
LVLS/ (for Version
_LVLS/31e (for Version
LVLS/ (for Version
_LVLS/32e (for Version
LVLS/ (for Version
_LVLS/33e (for Version
LVLS/ (for Vers; on
_LVLS/34e (for Version
LVLS/ (for Version

SECTION II (PROBLEM IDENTIFICATION)

PO SYMPTOM: PDSYM = NON AUTOMATED

EXTERNAL SYMPTOM: EXTSYM = RESULT

MODULE NAME: RIDS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE:
(check one)

APAR:

SERVICE:

NOTES:

RET
PER
DOC
USER
NTF

PUT/ ___ _
PTF ..

2 Release 2, English) (check one)
2 Release 2, other languages)
3 Release 1, Engl ish)
3 Release 1, other languages)
3 Release 2, English)
3 Release 2, other languages)
3 Release 3, English)
3 Release 3, other languages)
3 Release 4, English)
3 Release 4, other languages)

(Return)
(Program Error)
(Documentation error)
(User Error)
(No trouble found)

(APAR number)

(PUT 1 evel)
(Corrective Fix)

This page may be reproduced without written permission from IBM

LH08-10I1-03 C Copyright IBM Corp. 1817, 1883 Chapter 3. Reporting Detects 83

"Re.tricted Material. of IBM"
Ucenaed Material. - Property of IBM

SYMPTOM KEYWORD STRING FOR DOCUMENTATION PROBLEMS
(for the SQUDS Licensed Program)

SECTION I (PRODUCT IDENTIFICATION)

COMPONENT ID:
COMPONENT 10:

LEVEL CODE:

568888481
568818381

_LVLS/228
LVLS/
_LVLS/318
LVLS/
_LVLS/328
LVLS/
_LVLS/338
LVLS/
_LVLS/348
LVLS/

SECTION II (PROBLEM IDENTIFICATION)

(for Version 2 Release 2)
(for Version 3 Release 1, 2, 3, 4)

(for Version 2 Release 2, English) (checK one)
(for Version 2 Release 2, other languages)
(for Version 3 Release 1, English)
(for Version 3 Release 1, other languages)
(for Version 3 Release 2, English)
(for Version 3 Release 2, other languages)
(for Version 3 Release 3, English)
(for Version 3 Release 3, other languages)
(for Version 3 Release 4, English)
(for Version 3 Release 4, other languages)

PO CONDITION: POCONO = NON EXECUTION

PO AID: PDAID = PUB KEYED

PUBLICATION: PUBS/

SECTION III (PROBLEM RESOLUTION)

SERVICE RESPONSE:
(checK one)

APAR:

SERVICE:

NOTES:

RET
PER
DOC
USER
NTF

PUT/ ___ _
PTF •

(document number)

(Return)
(Program Error)
(Documentation error)
(User Error)
(No trouble found)

(APAR number)

(PUT level)
(Corrective Fix)

Thl. page may be reproduced without written perml .. lon from IBM

94 SQUDS Dlagnoel. tor VM LH08-8011..()3 CI Copyright IBM Corp. 1817, 1883

J

J

"Restricted Materials of IBM"
Wcensed Materials - Property of IBM

Chapter 4. Functional Problems

This chapter describes analysis of functional problems that might be encount
ered in the use of the SQUDS product. Problems are defined in this chapter by
symptoms; a symptom might be an SQUDS error code or a functional deviation.

For each symptom identified, possible causes of the problem are listed along
with the corresponding actions that should be taken. In some cases the action
will involve use of problem determination facilities or suggestions to further
isolate and identify the problem. This chapter is meant to supplement the Mes
sages and Codes manual. If an error code is sufficiently described in that
manual so that no additional suggestions are necessary, that code will not be
listed In this chapter.

This chapter is organized into the following sections:

• System-Related Error Codes

• Common User-related Error Codes

• Functional Deviations

System-Related Error Codes
The error codes listed here usually require action by the Systems Programmer.
Those for which the probable cause is 'INTERNAL SYSTEM ERROR' will usually
require the Systems Programmer to record appropriate data and contact the
deSignated IBM support group.

SQL COMMAND FAILED (-901)
SQL ROS OmCTEO
CODE CODE BY REASON

(SQLERR01) (SQL.ERRP)

-901 -100 ARIXSUT Alert the system programmer.
The SQUDS database manager
cannot use the STORE CL.OCK
value provided by the oper-
ating system because of any of
the following reasons:

1. The clock value repres-
ents elapsed time instead of
time of day,
2. ft.\e clock Is not in an
operational stat.,
3. The clock is in an error
state.

Not.: For System Error related SQL Code -901 occurrences, Diagnostics should
be run by the System Programmer before contacting the IBM support group.

LH0IH0I1-03 C COpyright IBM COrp. 1887, 1883 95

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

ROLLED BACK DUE TO A DEADLOCK (-911)
If this occurs frequently, have the system programmer investigate via SHOW
LOCKS and the guidelines in Chapter 5, "Diagnosing Performance Problems" on
page 101 where the bottleneck is, to determine whether design or system alter
ations would alleviate the problem.

EXCESSIVE DEADLOCKS: An unusually large number of deadlocks occur
between your applications.

Deadlocks are inherent to a DBMS with concurrent access. The SQUDS data
base manager does deadlock detection before placing any user in a lock wait.
The classic example of a deadlock situation is: User A holds resource X, which
User B wants, while User B is holding resource Y, which user A wants . There is
an impasse which the deadlock detector removes by rolling back the LUW which
started last.

If the applications are accessing the same table(s), then the deadlocks are most
likely due to the sequence of access to those tables. If the deadlocks are occur
ring between two applications that are acceSSing different user data, then the
contention is with the system catalogs.

ACTIONS: To try to theorize the possible points of contention that would result
in a deadlock would be futile in this publication. Therefore, it is recommended
that the Trace facility be used to collect locking information to determine the
pOints of contention resulting in a deadlock. To do this, refer to "Using Trace for
Deadlocks" section in Chapter 8, "Problem Isolation and Handling" on page 247.

ROLLED BACK DUE TO EXCESSIVE (SYSTEM WIDE) LOCK
REQUESTS (-912)
If this happens frequently, the system programmer should monitor lock requests
and refer to guidelines in Chapter 5, "Diagnosing Performance Problems" on
page 101 of this book. (See "NLRB Parameters Too Small" on page 191.)

ROLLED BACK DUE TO EXCESSIVE LOCKS HELD FOR THIS LUW
(-915)
Either the number of lock request blocks per user is too small (check with the
system programmer), or the locks are at too Iowa level (check with the system
or application programmers), or the program should be reviewed to see if all
accesses are necessary or if COMMIT WORKs issued within the program could
free up some of the locks. (See "NLRB Parameters Too Small" on page 191 in
Chapter 5, "Diagnosing Performance Problems" on page 101.)

Common User-related Error Codes

SQL COMMAND LIMITATION EXCEEDED (-101)
Occurring when using ISQL, DBSU or when preprocessing an application
program, or executing a PREPARE or EXECUTE IMMEDIATE SQL statement, this
error is usually because of an internal SQUDS storage limitation. The storage
limitation was caused by one of the following:

98 SQUDS DI.gnOlII tor VM LHoe-I081-03 C Copyright IBM Corp. 1887, 1883

J

J

J

"Restricted Material. of IBM"
Ucensed Material. - Property of IBM

1. The query is too long.

An SQL command cannot exceed 8192 characters. It is highly unlikely that
you have exceeded this limit, but you should check to make sure. Do not
count extra blanks and do not worry about the expansion of a view.

2. Too many columns.

3. Too many predicates.

4. View expansion of the request.

ACTIONS:

1. Shorten the query. If inspection of the query shows that it is more than 8192
bytes in length, then it must be shortened by using table labels, by using
views with shorter column names or by reorganizing the formulation of the
query.

2. Break up the query. If the query references too many columns, then it may
be necessary to break it up into multiple requests. If the end result does not
reference too many columns, then you may be able to do the desired func
tion in a series of steps using tables for holding intermediate results.

3. Simplify the query.

If none of the above are indicated, then you probably have more predicates than
the SQUDS database manager can handle or some internal storage space has
been exceeded. For a list of -101 SQLCODES and an explanation indicating
which limit is being exceeded, see the Messages and Codes manual.

CREATOR.TABLE WAS NOT FOUND (-204)
This error may be generated because the table really does not exist, or because
CREATOR was not specified and the userid by which the user was connected to
the database is appended as the creator.

To resolve this, create the table, connect with appropriate userid, or define a
synonym for the table so that "CREATOR" need not be coded.

INPUT VARIABLE DATA TYPE NOT COMPATIBLE WITH COLUMN
(-301)
The database manager was attempting to do conversion of an input host variable
to the data type of a column or expression in an SQL statement. Possible
reasOnS for getting the -301 SQLCODE are:

LHoe-a0l1-03 CD Copyright IBM Corp. 1817, 1883 Chapter.. Functional Problems 97

DATA TYPE OF TARGET
COLUMN OR EXPRESSION

FLOAT

DECIMAL

INTEGER

SMALLINT

CHAR

GRAPHIC

VARCHAR

VARGRAPHIC

DATE

TIME

TIMESTAMP

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

DATA TYPE OF INPUT HOST
VARIABLE WAS NOT:

NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT

NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT

NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT

NUMERIC: FLOAT, DECIMAL,
INTEGER, SMALLINT

CHAR, VARCHAR, OR
LONG VARCHAR

GRAPHIC,
VARGRAPHIC, OR
LONG VARGRAPHIC

CHAR, VARCHAR, OR
LONG VARCHAR

GRAPHIC,
VARGRAPHIC, OR
LONG VARGRAPHIC

CHAR, VARCHAR

CHAR, VARCHAR

CHAR, VARCHAR

Figure 39. Possible Reasons for -301 SQLCODE

INPUT HOST VARIABLE TOO LARGE (-302)
The database manager is attempting to convert an input host variable to the data
type of a column or expression in an SQL statement. The length of the input
host variable is too long if the target is graphic or character. The numeric value
of the input host variable is too large if the target column or expression is
numeric. Possible reasons for getting the -302 SQLCODE are:

DATA TYPE OF TARGET
COLUMN OR EXPRESSION HOST VARIABLE:

DECIMAL VALUE TOO LARGE

INTEGER VALUE TOO LARGE

SMALLINT VALUE TOO LARGE

FIXED CHAR OR GRAPHIC LENGTH TOO LONG

VARYING CHAR OR GRAPHIC LENGTH TOO LONG

Figure 40. Possible Reasons for -302 SQLCODE

II SQLlDS DlegnOils for VM LHe»-a0l1..os CD Copyright IBM Corp. 1817, 1883

.J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

AN INDICATOR VARIABLE IS MISSING (-305)
If a NULL value is fetched, an indicator variable must be supplied with the output
host variable. See "Using Indicator Variables" in the Application Programming
manual.

This indicator variable should be checked before manipulating data retrieved by
the select.

MISMATCH BETWEEN NUMBER OF HOST VARIABLES (-313)
The number of input host variables supplied in the SQLDA or host variable list
on an OPEN, PUT, or EXECUTE SQL statement does not match the number of
host variables specified in the original Data Manipulation Language (DML) SQL
statement. The original statement may be a SELECT statement specified in a
DECLARE CURSOR or PREPARE. Or it may be an INSERT, UPDATE, or DELETE
specified in a PREPARE or EXECUTE IMMEDIATE.

This condition most likely occurs when an application prepares (via PREPARE)
an SQL statement that contains "?" parameters. The application must supply
the host variables to be substituted for the "?" on a subsequent SQL statement.

The number of host variables in the SQLDA descriptor or host variable list sup
plied in the EXECUTE, OPEN, or PUT statements must be the same as the
number of question marks ("?") in the original statement.

Functional Deviations
Following are situations which do not result in SQUDS error codes; but which
may represent a problem.

Lockout with Cursor Stability
When SQUDS uses a DBSPACE scan to access a table in a DBSPACE with row
level locking using isolation level cursor stability, the effect is the same as
repeatable read. That is, no other LUW can update the table until the LUW per
forming the DBSPACE scan ends. Also, if one LUW has updated a table, another
LUW cannot access that table with a DBSPACE scan until the updating LUW
ends.

Possible actions that can be taken to avoid the lockout situations are:

• Ensure that the table is accessed via an index.

• Alter the DBSPACE specifying page level locking.

• Place the table in a DBSPACE with page level locking.

FETCH with Cursor Stability
When the isolation level is CS, the use of a DBSS FETCH is prevented at run
time for statements that can be updated. Instead, a DBSS OPEN SCAN is per
formed. In this case, isolation level RR may prove to be more efficient to allow a
DBSS FETCH operation and avoid the overhead of opening an Internal scan. See
"Types of Internal Data Manipulation Calls" on page 60, for a description of
OPEN SCAN and FETCH.

LH08-8011..()3 CD Copyright IBU Corp. 1817, 1883 Ch.pter 4. Functlon.1 Problems 99

100 SQUDS Diagnosis for VU

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

LHoe-aoe1.()3 C> Copyright IBU Corp. 1887, 1183

J

J

.J

J

J

"Reltricted Materials of IBM"
Ucensed Materiall - Property of IBM

Chapter 5. Diagnosing Performance Problems

This chapter covers performance problem diagnosis. It takes problem symptoms
and leads the reader through problem isolation and problem determination activ
ities to identify the ultimate cause of the problem. If your problem is occurring
during distributed processing, you should also refer to the Distributed Relational
Database Problem Determination Guide.

Sometimes it may not be obvious which kind of performance problem you have.
The first step in performance problem diagnosis is isolating the problem to a
particular type of problem. Once you have isolated the problem to a specific
type, you then do the analysis for that type of problem.

This chapter is organized into the following sections:

1. Performance Analysis Glossaries

This section provides three glossaries' of terms used in this chapter. The
glossaries may be used for reference to assist you in interpretation of the
performance problem indexes and problem analysis sections.

2. Performance Problem Indexes

The performance problem indexes provide a list of possible problems based
on what functions are being performed and what symptoms are being
observed. There are two sets of indexes: the first set is organized by appli
cation function, and the second is organized by performance symptom.

The performance problem indexes serve as an index into the specific
problem descriptions and their corrective actions. By using the application
function indexes starting on page 106, you can find the problems that might
be causing specific application functions to perform poorly. By using the
performance symptom indexes starting on page 111. you can find the prob
lems that might be causing a specific performance symptom to occur.

3. Analysis of Performance Problems

For each performance problem, a problem description is provided and a list
of possible corrective actions is identified. The problem description will
identify the cause of the problem and secondary symptoms that should help
confirm that you do or do not have that problem.

The list of possible corrective actions includes possible circumventions to the
problem, as well as actions that might completely eliminate the problem.

LH08-8081-Q3 0 Copyright IBM Corp. 1987, 1_ 101

Performance Analysis Glossaries

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Three glossaries are provided in this section to assist in your interpretation of
the performance problem indexes and problem descriptions. The three glossa
ries are:

1. Performance Index Headers

This glossary explains how to interpret the columns in the performance
problem indexes.

2. Performance Indicator Terms

This glossary explains how to interpret some of the column values that
appear in the performance problem indexes.

3. Performance Terminology

This glossary provides a quick reference to terminology used in the perform- J
ance problem descriptions.

Glossary of Performance Index Headers
Figure 41 lists the definitions of the headers used in the performance problem
indexes. It is important that you understand what each of the columns of the
indexes represent.

INDEX
HEADER DE.SCRIPTION

APPLICATION FUNC- This refers to the SOL function being performed when
TION the performance problem occurs. It is not necessarily

the function which caused the problem.

PAGE A page reference to the description of the problem
listed in the index line.

PERFORMANCE INDI- A performance indicator is a performance symptom
CATOR that indicates the possible existence of a problem.

POSSIBLE PROBLEM A possible problem is a performance problem that
might exist for the conditions shown in the index.

Figure 41. Glossary of Index Header Terms

Note: The APPLICATION FUNCTION column in the indexes refers to functions
that can show poor performance as a result of the listed problem.

Glossary of Performance Indicator Terms
Figure 42 on page 103 lists the definitions of performance Indicator terminology
used in the performance problem indexes. The indicator terms are abbreviated
references to problem symptoms and may not be self-explanatory. Figure 42
provides a brief definition of symptoms implied by the indicator terms.

102 SQUDS Dlagnoall tor VM LHoe-aoe1-03 CI Copyright IBM Corp. 1887, 1883

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

PERFORMANCE
INDICATOR DESCRIPTION

COMMUNICATION There is a high frequency of communication waits, or communication waits are of
WAITS INDICATOR long duration. (Note: A communication wait is the time an SQUDS agent spends

in·LUW waiting for the application requests)

CONSISTENTLY HIGH The response time is consistently higher than expected.
RESPONSE TIME INDI·
CATOR

ESCALATES INDI· There is a high frequency of lock escalations, as measured by COUNTER ESCA·
CATOR LATE and COUNTER LOCKLMT. (NOTE: ESCALATE counts successful escalations,

and LOCKLMT counts unsuccessful escalations.) .

HIGH CPU USAGE The amount of CPU time for an application is high.
INDICATOR

HIGH 1/0 INDICATOR The number of 110's to database DASD devices is high given the application or
work being done on the system. (Note: HIGH 1/0 usually also implies HIGH CPU
USAGE).

HIGH 1/0 UTILIZATION A high device or channel utilization on anyone device or channel.
INDICATOR

INDICATOR This refers to performance indicators used in the indexes into the performance
problem descriptions.

LINK WAITS INDI· There is a high frequency of link wait conditions, or link waits are of long duration.
CATOR

LOCK WAITS INDI· There is a high frequency of lock wait conditions, or lock waits are of long
CATOR duration.

LOG IIO'S INDICATOR There is a high number of log 110's occurring for the application or system.

LOW CPU UTILlZA· The percentage of time the CPU is busy is low. A CPU Utilization of 30 or 40%
TION INDICATOR would be considered low.

LOW 1/0 UTILIZATION A low device or channel utilization on anyone device or channel.
INDICATOR

PAGING INDICATOR Page faults are occurring on the system at a noticeable rate. (Could be considered
a high paging rate).

PERIODIC HIGH Unexplained phenomenon that result in users getting widely varying, unpredictable
RESPONSE TIME INDI· response times for repeated executions of the same query or application.
CATOR

Figure 42. Glossary of Index Indicator Terms

Note: The HIGH 1/0 indicator also implies some level of unnecessary CPU over·
head as well. Thus, HIGH 110 problems can also be investigated in situations
where your CPU usage is high.

Glossary of Performance Terminology
Figure 43 on page 104 defines some of the terms used in the performance
problem indexes and performance problem descriptions. You may want to famll·
iarize yourself with some of the terms before using this chapter, or you may
simply use this figure as a reference.

LHoe-e081-CI3 C Copyright IBM Corp. 1887, 1883 Chapter 5. DiagnOSing Performance Problems 103

PERFORMANCE
TERM

BUFFER HIT RATIO

BUFFER POOL
THRASHING

COMMUNICATION
WAIT

DATA AUTHORI-
ZATION COMMANDS

DATA DEFINITION
LANGUAGE (DDL)

DATA MANIPULATION
LANGUAGE (DML)

ESCALATE

INDEX ELIGIBLE
PREDICATE

KEY LOCKING

LINK WAIT

LINK WAIT RATIO

LOADING

LOCK LEVEL

LOCK WAIT

LOCK WAIT RATE

PREPROCESS

OCE

RECOVERY CONTROL
COMMANDS

SELECTIVE INDEX

UNLOADING

VERY NONUNIQUE
INDEX

VERY NONUNIQUE
KEY PREFIX

DESCRIPTION

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

This is the ratio of "looks in the page buffers" to actual page reads (LPAGBUFF
divided by PAGEREAD).

This is term for the condition when data for an application must be read from
DASD every time the application references it.

A communication wait occurs when an active (IN-LUW) agent returns control to the
application machine and is waiting for the next request from the application.

This refers to SQL commands that control data authorization (that is, GRANT and
REVOKE).

This refers to SQL commands for maintaining data definitions (CREATE, ALTER,
ACQUIRE and DROP).

This refers to SQL commands for reading and maintaining user tables (DELETE,
INSERT, SELECT and UPDATE).

A lock escalation occurs when the database manager trades several low level
locks (page or row and key locks) for one DBSPACE lock. Lock escalations are not
always successful.

This is a predicate that can be used as an argument of an index scan in the DBSS
component.

This refers to locking of key hash values on non-unique key accesses. Key locking
is done in DBSPACEs where row level locking is in effect.

A link wait is a wait condition that occurs when an application needs an agent, but
all the agents are in use by other applications. The application waits until an
agent frees up.

Refers to the ratio of number of users in a link wait state to the NCUSERS value.

This is used in the generic sense and refers to both the DBS Utility DATALOAD
and RELOAD functions.

This refers to the amount of data locked when SQUDS requests SHARE (S) or
EXCLUSIVE (X) locks. SQUDS supports DBSPACE, page and row level locking.

A lock wait is a wait condition that occurs when an application requests a "piece"
of data being used by one or more other applications for a conflicting purpose (For
example, Read access conflicts with update access).

This is the rate at which lock waits are occurring in terms of the number of lock
waits per LUW. (LOCKWAIT divided by BEGINLUW).

This refers to the execution of the SQUDS preprocessors
(PU1, COBOL, C, RPG, FORTRAN or Assembler).

This refers to the Query Cost Estimate displayed by ISQL for SELECT commands.

This refers to SQL commands that control data recovery (that is, COMMIT WORK
and ROLLBACK WORK).

This is an index that matches an index eligible predicate of a particular query.
Note: This does not refer to the data characteristics of the index. It is meaningful
only in the context of a specific query.

This is used in the generic sense and refers to both the DBS Utility DATAUNLOAD
and UNLOAD functions.

This is an index which has very few different key values (compared to the number
of rows in the indexed table).

Refers to an index for which the first a-bytes of the key values are very nonunique.

Figure 43. G/oss.ry of Perform.nee An.'ysls Terms

104 SQLJDS Dlagnosl. for VM I.Hoa-a081.()3 CI Copyright IBM Corp. 1987, 1883

J

J

"Restricted Materials of IBM"
Ucensed Material. - Property of IBM

Performance Problem Indexes
The performance problems in this chapter are indexed by application function
and performance symptom. If the performance problem can be observed when
using specific applications or application functions. then you should look directly
to "Application Function Indexes to Performance Problems" on page 106.

If the problem is not observed with any particular application or application func
tion. but you can observe some symptoms of poor performance (such as lock
waits. high CPU usage. etc.). then you should start with the "Performance Prob
lems by Performance Symptom" on page 111. Access to the performance
problem diagnosis information in this chapter is diagrammed below:

Performance

I

Performance Problem
Indexes by Performance
Symptom

Performance
Problem Indexes
by Function

Agent Related
Indexes

1-----. Page 111

CPU Related
Indexes

1-----. Page 112

I/O Related
Indexes

1-----. Page 113

Locking Related
Indexes

1-----. Page 114

Storage Related
Indexes

1-----. Page 114

Special Case
Indexes
~---+ Page 115

General Problem indexes
Page 167

Data Definition
Problem Indexes

Page 16S

Data Manipulation
Problem Indexes

Page 169

Data Authorization
Problem Indexes

Data Util i ti es
Problem Indexes

Page 16S

1--------+ Page 116

Recovery Control
Problem Indexes

Page 111
Figure 44. Diagnosis and Recovery Flowchart - Performance

LH08-e0l1-03 C> COpyright IBM COrp. 1N7, 1883 Chapter 5. DI_gnoslng Performance Problems 105

"Reatricted Materials of IBM"
Ucenaed Materials - Property of IBM

Application Function Indexes to Performance Problems

APPLICATION FUNCTION INDEXED FUNCTION PAGE

General (for any SQL) ANY SQL 107

Data Authorization GRANT 108
REVOKE

Data Definition ACQUIRE 108
ALTER
CREATE
DROP

Data Manipulation DELETE 109
INSERT
SELECT
UPDATE

Data Utilities LOADING 110
PREPROCESSOR
UNLOADING
UPDATE STATISTICS

Recovery Control COMMIT WORK 111
ROLLBACK WORK

Figure 45. Indexes For Performance Problems by Application Function

The following sections provide six problem indexes by application function. The
functions covered by each of the indexes are identified in Figure 45.

If all users are experiencing performance problems, you might want to start with
the "General Performance Problems" on page 107. If only the users issuing
data definition commands are experiencing performance problems, you should
start with "Data Definition Performance Problems" on page 108. However, for
completeness, you may want to review the problems in "General Performance
Problems" on page 107 as well. General problems are not all repeated in the
other indexes.

If you are experiencing performance problems with a specific "(unction (such as
DATALOADs), then you should start with the index that corresponds to that func
tion. In the case of DATALOAD, you would start with the "Data Utilities Perform
ance Problems" on page 110.

Not.: The functions used to index the problems are the functions being per
formed when the problem was observed. They are not necessarily the functions
that are causing the performance problem. You do not have to know the function
that is causing your problems to use these indexes. You need to know only the
function or functions that are Impacted by the problem.

108 SQUDS Dlegnoala tor VM LH08-aoa1-Q3 CD Copyright IBM Corp. 1887, 1_

J

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

General Performance Problems

Figure 46. General Performance Problems.

APPLICATION FUNCTION

ANY SQL

PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

ESCALATES NLRB Parameters Too Small 191

HIGH CPU USAGE Need More CPU 188
Invalid Entities Exist 175
CHARNAME Not Set Correctly 130
BLOCK 110, APPCNM and IUCV Not Resident 125
SQUDS Machine Favored Too Little 139
ECMODE ON for Accounting 147
CMS Work Unit Set On 134
DRDA protocol to Access an SQUDS Database 147

HIGH I/O Buffer Pool Too Small 128
and/or Sequential Processing 200
HIGH CPU Indexes are Fragmented 169
USAGE CHKINTVL Too Small 132

Data not Cached 139
Frequent Checkpoints caused by SOSLEVEL 152

HIGH I/O I/O Capacity Exceeded 160
UTILIZATION 110 Not Balanced 161

LINK WAITS Agents Being Held 119
Too Few Agents 205
Session limit Exceeded 203

LOCK WAITS Locks Held for Long Duration 180
NLRB Parameters Too Small 191
Conflict In Catalog Key Locking 134
Hot Spot In the Catalog Tables 153

LOW CPU One DB Machine Needs Too Much CPU 193
UTILIZATION (Multiprocessor systems only)

PAGING Page Fault Serialization 197
SET QDROP OFF USERS/SET QUICKDSP ON 203
SQUDS Code Not Shared 204
Buffer Pool Too Big 126
Too Many Agents 206
NLRB Parameters Too Large 190
Need More Real Storage 189

PERIODIC HIGH CHKINTVL Too Big 131
RESPONSE TIME Checkpoint Being Forced at End-LUW 130

Long DBSS Calls Delaying Checkpoint 184
Buffer Pool Too Big 126
Sequential Processing 200
Logging during Load 183
Storage Pool Full 204
DRDA protocol to Access an SQUDS Database 147
DRDA usage 147

Note: The possible problems listed in Figure 46 are problems that can be expe
rienced when using any SQL functions. That is, most of the problems listed here
will impact any SQL work you would be doing. However, it should be noted that
some of the problems will impact some types of SQL work more than others.
For speCific functions that are particularly sensitive to a general problem, the
general problem is repeated in the index for the specific function.

For example, although "Conflict in Catalog Key Locking" can impact any SQL
work; SQL DOL, SQL authorization commands and preprocessing will be partic
ularly sensitive to this problem. Thus, "Conflict in Catalog Key Locking" is
repeated in the indexes for those functions. On the other hand, SQL DML com-

LH08-I0I1-03 ~ Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 107

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

mands are less sensitive to the problem, and therefore, the problem is not
repeated in the index for SQL DML problems.

Data Authorization Performance Problems

Figure 47. Data Authorization Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

SQL AUTH LOCK WAITS Conflict In Catalog Key Locking 134
- GRANT Hot Spot in Catalog Tables 153
- REVOKE

Also See: -*- Index on: 107
ANY SQL General Performance Problems

Data Definition Performance Problems

Figure 48. Data Definition Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM PAGE

SQL DOL LOCK WAITS Conflict in Catalog Key Locking 134
- ACQUIRE Hot Spot In Catalog Tables 153
- ALTER
- CREATE
- DROP

CREATE INDEX HIGH I/O Create Index Requires a Large Sort 138
andlor Large Tables Share Same DBSPACE 175
HIGH CPU DBSPACE Scan Being Performed 141
USAGE Frequent Checkpoints caused by SOSLEVEL 152

DROP TABLE HIGH I/O Large Tables Share Same DBSPACE 175
andlor DBSPACE Scan being performed 141
HIGH CPU
USAGE

Also See: ** Index on: 107
ANY SQL General Performance Problems

108 SQLlOS OI.gnOiI. for VM LH08-8081-03 C Copyright IBM COrp. 1.7, 1983

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Data Manipulation Performance Problems

Figure 49. Data Manipulation Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR POSSIBLE PROBLEM

SQL DML ESCALATES Lock Level Too Low
- DELETE HIGH I/O Inaccurate Statistics
- INSERT andlor Insufficient Indexing
- SELECT
- UPDATE

HIGH CPU Need a Highly Clustered Index
USAGE Index No Longer Highly Clustered

No Selective Index
Index Disqualified
Indexes are Fragmented
Very Nonunlque Index Key Prefix
Bad Data Distribution
Inefficient Search
Missing Search Condition
Large Tables Share Same DBSPACE
DBSPACE Scan Being Performed
Package Needs Re-Preprocesslng
Range Predicate Used With Host Vars
Blocking Suppression for INSERT CURSORs

LOCK WAITS Lock Level Too High
Lock Level Too Low
Excessive Locking In User Data
Hot Spot in User Tables
Conflict on Key Hash In User Data
Adjacent Key Locking In User Data

SQL DML HIGH 1/0 Index Maintenance
- DELETE andlor
- INSERT HIGH CPU
- UPDATE USAGE

SQL DML HIGH CPU Inefficient SELECT List
- SELECT

HIGH I/O Too Many Joins
- INSERT FMT 2

andlor
HIGH CPU
USAGE

SQL DML CONSISTENTLY HIGH Query Block Size Too Small
- SELECT RESPONSE TIME

Also See: Index on:
ANY SQL General Performance Problems

LH08-aOS1-03 C) Copyright IBM Corp. 1M7, 1883

PAGE

179

162
174
187
168
192
164
169
211
122
170
185
175
141
194
199
125

178
179
149
158
136
115

167

174

208

198

107

Data Utilities Performance Problems

Figure 50. Data Utilities Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR

LOADING ESCALATES

HIGH 1/0
andlor
HIGH CPU
USAGE

LOCK WAITS

Log I/O's

UNLOADING ESCALATES

HIGH CPU
USAGE

HIGH I/O
andlor
HIGH CPU
USAGE

LOCK WAITS

CONSISTENTLY HIGH
RESPONSE TIME

PREPROCESSOR ESCALATES

LOCK WAITS

UPDATE HIGH I/O
STATISTICS and/or

HIGH CPU
USAGE

Also See:
ANY SQL

11 0 SQLlDS Diagnosis for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

POSSIBLE PROBLEM PAGE

Lock Level Too Low 179

Index Maintenance 167
UPDATE STATISTICS by DATALOAD 210
Frequent Checkpoints caused by SOSLEVEL 152
Blocking Suppression for INSERT CURSORs 125

Excessive Locking in User Data 149
Lock Level Too Low 179
Lock Level Too High 178
Connlct on Key Hash in User Data 136
Adjacent Key Locking in User Data 115

Logging during Load 183

Lock Level Too Low 179

Inefficient SELECT List 174

Large Tables Share Same DBSPACE 175
DBSPACE Scan Being Performed 141
Insufficient Indexing 174
Need a Highly Clustered Index 187
Index No Longer Highly Clustered 168
No Selective Index 192
Index Disqualified 164
Very Nonunlque Index Key Prefix 211
Inefficient Search 170
Missing Search Condition 185
Too Many Joins 208
I naccurate StatistiCS 162
Bad Data Distribution 122

Excessive Locking in User Data 149
Lock Level Too Low 179
Lock Level Too High 178
Conflict on Key Hash in User Data 136
Adjacent Key Locking in User Data 115

Query Block Size Too Small 198

NLRB Parameters Too Small 191

Conflict in Catalog Key Locking 134
NLRB Parameters Too Small 191

Large Tables Share Same DBSPACE 175
DBSPACE Scan Being Performed 141

Index on: 107
General Performance Problems

LH08-e081-03 C) Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Recovery Control Performance Problems

Figure 51. Recovery Control Performance Problems.

APPLICATION FUNCTION PERFORMANCE INDICATOR

RECOVERY PERIODIC HIGH
CONTROL RESPONSE TIME

- COMMIT
- ROLLBACK

Also See:
ANY SQL

POSSIBLE PROBLEM

Checkpoint Being Forced at End-LUW
Storage Pool Full

Index on:
General Performance Problems

Performance Problems by Performance Symptom
Figure 52. Indexes For Performance Problems by Symptom

PERFORMANCE AREA SYMPTOM INDEXED

Agent Related Problems Communication Waits
Link Waits

CPU Related Problems High CPU Usage
Low CPU Utilization

I/O Related Problems High I/O's
High I/O Utilization
Log I/O's

Locking Related Problems Escalates
Lock Waits

Storage Related Problems Paging

Special Case Problems Periodic High
Response Times
Communication Delays

PAGE

130
204

107

PAGE

111

112

113

114

114

115

The following sections provide six problem indexes by performance symptom.
The symptoms covered by each of the indexes are identified in Figure 52.

If you are experiencing performance problems with a specific symptom. then you
should start with the corresponding index. For example. if the primary symptom
of the problem you want to solve is lock waits. then you should start with the
index for "Locking Related Performance Problems" on page 114.

Agent Related Performance Problems

Figure 53. Agent Related Performance Problems.

PERFORMANCE INDICATOR APPUCATION FUNCTION POSSIBLE PROBLEM PAGE

COMM WAITS ANY SQL Agents Being Held 119
LOCkS Held for Long Our.tlon 180

LINK WAITS ANY SQL Too Few Agents 205
Agents Being Held 119
Locks Held for Long Dur.tlon 180

LH09-8081-03 CD Copyright IBM Corp. 1987.1993 Ch.pter 5. Ol.gnoslng Perform. nee Problems 111

CPU Related Performance Problems

Figure 54. CPU Related Performance Problems

PERFORMANCE INDICATOR APPLICATION FUNCTION

HIGH CPU ANY SQL
USAGE

SQL DOL
- CREATE INDEX

SQL DOL
- CREATE INDEX
- DROP TABLE
SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE
UNLOADING
UPDATE

STATISTICS

SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE

SQL DML
- DELETE
- INSERT FMT 2
- ,SELECT
- UPDATE
UNLOADING

SQL DML
- SELECT
- INSERT FMT 2
UNLOADING

LOADING

LOADING
SQL DML
- DELETE
- INSERT
- UPDATE

LOW CPU
UT!LIZATION

112 SQUDS Diagnosis tor VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

POSSIBLE PROBLEM PAGE

Indexes are Fragmented 169
Buffer Pool Too Small 128
BLOCK 110, APPCNM and IUCV Not Resident 125
Database Machine Favored Too Little 139
SET QDROP OFF USERS/SET QUICKDSP ON 203
CHKINTVL Too Small 132
Sequential Processing 200
Logging during Load 183
Need More CPU 188
Synchronous APPCNM Not Used 205
CHARNAME Not Set Correctly 130
Package Cache Too Big/Threshold Too High 195
Package Cache Too Small/Threshold Too Low 196

Create Index Requires a Large Sort 138
Frequent Checkpoints caused by SOSLEVEL 152

Large Tables Share Same DBSPACE 175
DBSPACE Scan Being Performed 141

Package Needs Re-Preprocessing 194
Range Predicate Used With Host Vars 199

Insufficient Indexing 174
Need a Highly Clustered Index 187
Index No Longer Highly Clustered 168
No Selective Index 192
Index Disqualified 164
Very Nonunlque Index Key Prefix 211
Inaccurate Statistics 162
Bad Data Distribution 122
Inefficient Search 170
Missing Search Condition 185

Inefficient SELECT List 174
Too Many Joins 208

UPDATE STATISTICS by DATALOAD 210
Frequent Checkpoints caused by SOSLEVEL 152
Blocking Suppression for INSERT CURSORs 125

Index Maintenance 167

One DB Machine Needs Too Much CPU 193
(Multiprocessor systems only)

LH09-8081-03 C Copyright IBM Corp. 1987, 11183

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

1/0 Related Periormance Problems

Figure 55. I/O Related Performance Problems.

PERFORMANCE INDICATOR APPLICATION FUNCTION

HIGH 1/0 ANY SQL

SQL DDL
- CREATE INDEX

SQL DDL
- CREATE INDEX
- DROP TABLE
SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE
UNLOADING
UPDATE

STATISTICS

SQL DML
- INSERT

SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE

SQL DML
- DELETE
- INSERT FMT 2
- SELECT
- UPDATE
UNLOADING

SQL DML
- SELECT
- INSERT FMT 2
UNLOADING

LOADING

LOADING
SQL DML
- DELETE
- INSERT
- UPDATE

HIGH I/O ANY SQL
UTILIZATION

LOG I/O LOADING

LH08-a081-03 CI Copyright IBM Corp. 1887.1883

POSSIBLE PROBLEM PAGE

Indexes are Fragmented 169
Buffer Pool Too Small 128
CHKINTVL Too Small 132
Sequential Processing 200
Too Many Agents 206
Data not cached 139
Package Cache Too Big/Threshold Too High 195
Package Cache Too Small/Threshold Too Low 196

Create Index Requires a Large Sort 138
Frequent Checkpoints caused by SOSLEVEL 152

Large Tables Share Same DBSPACE 175
DBSPACE Scan Being Performed 141

Excessive I/Os on INSERT 147

Package Needs Re-Preprocessing 194
Range Predicate Used With Host Vars 199

Insufficient Indexing 174
Need a Highly Clustered Index 187
Index No Longer Highly Clustered 168
No Selective Index 192
Index Disqualified 164
Very Nonunlque Index Key Prefix 211
Inaccurate Statistics 162
Bad Data Distribution 122
Inefficient Search 170
Missing Search Condition 185

Too Many Joins 208

UPDATE STATISTICS by DATALOAD 210
Frequent Checkpoints caused by SOSLEVEL 152
Blocking Suppression for INSERT CURSORs 125

Index Maintenance 187

I/O Capacity Exceeded 180
I/O Not Balanced 181

Logging during Load 183

Chapter 5. Diagnosing Pertormance Problems 113

Locking Related Periormance Problems

Figure 56. Locking Related Performance Problems.

PERFORMANCE INDICATOR APPLICATION FUNCTION

ESCALATES ANY SQL

LOADING
SQL DML
UNLOADING

LOCK WAITS ANY SQL

SQL DDL
- CREATE INDEX
- DROP TABLE
SQL DML
UNLOADING
UPDATE

STATISTICS

LOADING

LOADING
SQL DML
UNLOADING

SQL DML

SQL DML
- SELECT
- INSERT FMT 2
UNLOADING

DEADLOCKS ANY SQL

Storage Related Periormance Problems

Figure 57. Storage Related Performance Problems.

PERFORMANCE INDICATOR APPLICATION FUNCTION

PAGING ANY SQL

114 SQUOS Olagnosll for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

POSSIBLE PROBLEM PAGE

NLRB Parameters Too Small 191

Lock Level Too Low 179
Excessive Locking In User Data 149

NLRB Parameters Too Small 191
Locks Held for Long Duration 180
Agents Being Held 119
Conflict In Catalog Key Locking 134
Hot Spot in Catalog Tables 153
Too Many Agents 206

DBSPACE Scan Being Performed 141
Large Tables Share Same DBSPACE 175

UPDATE STATISTICS by DATALOAD 210

Adjacent Key Locking in User Data 115
Con'rlict on Key Hash In User Data 136
Excessive Locking in User Data 149
Lock Level Too High 178
Lock Level Too Low 179

Hot Spot in User Tables 158

Too Many Joins 208

Excessive Deadlocks 146

POSSIBLE PROBLEM PAGE

SET QDROP OFF USERS or QUICKDSP ON 203
SQUDS Code Not Shared 204
Too Many Agents 206
Buffer Pool Too Big 126
NLRB Parameters Too L~rge 190
Page Fault Serialization 197
Need More Real Storage 189
Package Cache Too BIg/Threshold Too High 195
Package Cache Too Small/Threshold Too Low 196

LHoe-a0l1-03 C Copyright IBM COrp. 1.7, 1993

J

J

J

"Re.tricted Material. of IBM"
Ucensed Material. - Property of IBM

Special Case Performance Problems

Figure 58. Special Case Performance Problems.

PERFORMANCE INDICATOR APPLICATION FUNCTION POSSIBLE PROBLEM PAGE

PERIODIC HIGH ANY SQL CHKINTVL Too Big 131
RESPONSE TIME Butter Pool Too Big 126
COMMUNICATION Checkpoint Being Forced at End-LUW 130

DELAYS Long DBSS Calls Delaying Checkpoint 184
CHKINTVL Too Small 132
Sequential Processing 200
Logging during Load 183
Storage Pool Full 204
Frequent Checkpoints caused by SOSLEVEL 152
DRDA usage 147

CONSISTENTLY HIGH SQL DML Query Block Size Too Small 198
RESPONSE TIME - SELECT

UNLOADING

Analysis of Performance Problems

Adjacent Key Locking in User Data
Problem Description: Adjacent key locking in user data refers to locking done
"around" a key that is locked for access. This problem addresses locking con
flicts on access to user tables that occur as a result of adjacent key locking.
That is, the locking conflict is in the indexes, rather than the data rows (data
pages). and the conflicting users are using "neighboring" keys, not the same
keys (or same key hash values).

Adjacent key locking is discussed in "Locking Concepts" on page 55. Basically,
when the database manager updates a key, an EXCLUSIVE lock is obtained on
the next higher key, as well as the key being updated. Similarly, when an index
scan is performed (read access) and if all matching rows are retrieved (that is
until SQLCODE 100 returned), the database manager will read one key beyond
the last key requested (obtaining a SHARE lock on both the key requested and
the next higher key). In the case of repeatable read this lock is held until the end
of the LUW.

One of the results of adjacent key locking is that you can experience locking con
flicts on indexes even when the keys addressed are different. If they are consec
utive (in key sequence), a lock conflict can occur.

The primary symptom of the" Adjacent Key Locking in User Data" problem is
lock walts, where the lock waits are occurring on index pages or key hash
values. Note that the "Adjacent Key Locking In User Data" problem can occur
under either row (key) or page level locking. The problem is not just a row level
locking phenomenon. An adjacent index page Is locked under page level locking
when an adjacent key is In the next index page.

Another characteristic of the "Adjacent Key Locking in User Data" problem Is a
relatively small number of lock requests. That Is, if your applications are
obtaining many locks in the index, your problem probably goes beyond the con
flicts that might be occurring on adjacent keys. You probably should be investi-

L.H084011..()3 e Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 115

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

gating one of the other lock wait problems, such as "Excessive Locking in User
Data" on page 149.

Note: This section specifically addresses adjacent key locking problems in user
DBSPACEs. For a discussion of adjacent key locking problems in the SQL/DS
catalog DBSPACE, see "Conflict in Catalog Key Locking" on page 134. Adjacent
key locking problems in the SQUDS catalog DBSPACE will look just like the
"Adjacent Key Locking in User Data" problem, except that the DBSPACE
involved will be DBSPACE 1.

A problem with symptoms that are identical to the "Adjacent Key Locking in
User Data" problem is the "Conflict on Key Hash in User Data" problem. In
observing SHOW LOCK results showing lock conflict on indexes, you will not be
able to tell whether the conflict is on users going after "adjacent keys" or the
same keys (or same key hash values). Knowledge of the conflicting applications
will be necessary to distinguish these two problems. For a discussion of con
flicts on the same keys (or same key hash values), see "Conflict on Key Hash in
User Data" on page 136.

A problem with similar symptoms is the "Hot Spot in User Tables" problem. For
a discussion of this problem, see "Hot Spot in User Tables" on page 158.

Possible Actions:

ACTION PAGE

Decrease Lock Level Below

Use Cursor Stability Below

Change Key Structures Below

Drop Unnecessary Indexes Below

Use Redundant Data Below

Use Multiple LUWs Below

Re-Design Application Below

For problems with similar symptoms, see:
- "Conflict on Key Hash in User Data" 136
- "Hot Spot in User Tables" 158

If lock conflicts in catalogs, see:
- "Conflict in Catalog Key Locking" 134
- "Hot Spot in the Catalog Tables" 153

Figure 59. Adjacent Key Locking in User Data - Actions

There are four basic approaches to resolving a lock contention problem due to
adjacent key locking in user data:

1. Reduce locking done by applications

118 SQUDS DiagnosIs tor VM

a. Decrease Lock Level

If the contention Is in a Des PACE with page level locking, changing the
DeSPACE to row level locking may help. Adjacent key locking will still
occur, but only the adjacent key will be locked (not the entire page of the
adjacent key).

LH08-I081-03 C Copyright IBM Corp. 1987,1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

b. Use Cursor Stability Isolation Level

Another easy action that reduces the potential lock conflict is to use the
Cursor Stability Isolation Level wherever possible. This will reduce the
locking done by applications, and possibly reduce or eliminate the inci
dents of adjacent key locking conflicts. Adjacent key locking will still be
done under Cursor Stability, but the key locks with which they are con
flicting may be released sooner (maybe even before the conflict occurs).

Note: This action applies only when adjacent key locking done by
updaters is conflicting with read access through the index. With cursor
stability, the readers may release their SHARE locks before the
"updaters arrive."

c. Use Multiple LUWs

The use of multiple LUWs to reduce adjacent key locking conflicts uses
the same principle as the use of the cursor stability isolation level. By
issuing COMMIT WORK (or ROLLBACK WORK) commands more fre
quently, locks that are conflicting are held for shorter periods of time. As
a result, the conflicts might not even occur, but if they do, the lock waits
will be shorter.

2. Change the index such that keys are not adjacent

Another way of reducing locking done by applications is to look for alternate
access paths for some of the applications, such that the index accesses do
not conflict. Specifically, two alternatives should be considered:

a. Change Key Structures

Since the conflict is on adjacent keys, one approach would be to change
the index definition (re-create the index) such that the key values have a
different sequence. In this way, you would be changing the definition of
what key value is the "adjacent key" value.

For example, in an index on PROJNO and DEPTNO columns of the
PROJECT table, the key value (AD3100,D01) would be adjacent to the key
value (AD3110,D21). However, in an index on DEPTNO and PROJNO, the
adjacent key value for (D01,AD3100) would be (D01,MA2100). Thus, by
redefining the index you could avoid conflicts between keys (AD3100,D01)
and (AD3110,D21).

b. Drop Unnecessary Indexes

Of course, the most effective way to avoid the adjacent key locking con
flicts is to drop the index in which the conflict occurs. The indexes in
which conflicts are occurring should be reviewed for their necessity. It
may be better to use a less efficient index and avoid lock contention,
than to use the current index and experience lock wait problems.

3. Change the table designs such that connlcting actions don't occur

The third approach to adjacent key locking problems is to review the data
required by your applications, and consider alternative data designs. Specif
Ically, you might consider alternative designs that would mean your con
flicting applications (users) would not be accessing the same tables with
conflicting requests.

One variation of this approach is to use redundant data to avoid the lock
contention problems. Three types of redundant data designs you can try are:

LH08-I081-03 C Copyright IBM Corp. 1887, 1883

a. Table Splitting

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

This refers to creating multiple tables from one table that is the source of
the lock contention. By splitting the tables based on type of reference
(read or write), and the mapping of columns used by the conflicting appli
cations, you may be able to achieve a design such that the rows ,locked
by the conflicting applications are in different tables.

b. Stored Results

This refers to storing the same data in multiple tables. This could be
complete duplication of a table, duplication of some of the rows, or dupli
cation of column information.

For example, storing intermediate query results in a separate table,
rather than running multiple queries against a "production" table can
reduce lock contention in the production table. Another example would
be to maintain "popular" column information in multiple tables, rather
than using joins to get the information from a single source table.

Note, for example, that CREATOR and TNAME appear in
SYSTEM.SYSCOLUMNS as well as SYSTEM.SYSCATALOG. From a
storage consumption point of view, it would have been "cheaper" to use
the internal table ID information for supporting joins of these two cata
logs. However, CREATOR and TNAME are almost always desired in
queries to SYSTEM.SYSCOLUMNS. Thus, those columns are
"duplicated," thus avoiding SYSCATALOG contention on accesses to
SYSCOLUMNS.

c. Transaction Tables

This refers to doing data entry and editing in a "mirror" copy of the
target (production) table, and later batch replacing rows in the production
table. The use of transaction tables avoids lock contention by consol
idating update access to the production table in one, less frequently exe
cuted, batch application. This can be very effective at alleviating lock
contention due to continuous data entry and edit activity.

4. Change applications such that actions don't conflict

The last approach to resolving adjacent key locking problems is to change
the applications such that the accesses they make to the data do not conflict.

If you are not sure that the lock contentions are due to adjacent keys, then you
should also review "Conflict on Key Hash in User Data" on page 136 and "Hot
Spot in User Tables" on page 158. Not all of the solutions to the "Adjacent Key
Locking in User Data" problem will work if you have one of these problems.

If the lock contention problems are in the catalog DBSPACE (DBSPACE 1), then
you should be reviewing "Conflict in Catalog Key Locking" on page 134 and "Hot
Spot in the Catalog Tables" on page 153. Solutions to these problems are quite
different from lock contention problems in user DBSPACEs.

118 SQUDS D'agnos'l for VM LH09-8081·03 C Copyright IBM Corp. 1987, 1883

J

J

J

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

Agents Being Held
Problem Description:

This problem refers to agents being held for long periods of time and the ill
effects this can cause. If agents are held for long periods of time, then users of
the system may experience long link waits or long lock waits.

If response time is long or erratic in multiple user mode, but OK when only one
user is on the system, then the problem could be agents held by other users.
This can occur when the system is extremely busy, or as a result of users (or
applications) holding their agents while they are not actively using them.

The most likely symptom of the "Agents Being Held" problem is link waits. A
link wait occurs when a user (or application) is waiting for an agent in the data
base machine. Link waits could be due to applications (or users) that are not
freeing agents when they should.

If the users are experiencing link waits, but no other performance problems, then
you may not have enough agents. This is particularly true if you are not experi
encing lock wait or paging problems. If this is the case, refer to "Too Few
Agents" on page 205.

Another possible symptom of the "Agents Being Held" problem is lock waits. A
lock wait occurs when a user (or application) is waiting for data being used by
another user. If the other user is active (holding its agent) for a long period of
time, the lock waits on that user will be a problem to the waiting users. If the
lock waits are more of a problem than the link waits, see" Locks Held for Long
Duration" on page 180.

Another symptom to look for is communications waits. A communications wait
occurs when the SQLlDS agent is waiting for communications from the user's
machine. If agents are spending a lot of time in communications waits, then the
agents could be being held unnecessarily. (Note: Communications waits can be
detected using the SHOW ACTIVE or SHOW LOCK ACTIVE SQLlDS operator
commands).

The user or application that causes or contributes to the" Agents Being Held"
problem will not necessarily notice a performance problem. Users that are
holding agents could be doing almost any SQL function. However, some
common examples of situations that could cause the agents being held problem
are:

1. ISQL Users running with AUTOCOMMIT set OFF

When an ISQL user runs with AUTOCOMMIT set OFF, the agent that services
Its requests is held between commands (until a COMMIT WORK, ROLLBACK
WORK or CANCEL command is issued). If commands are issued from a
routine, this would typically not be a problem. However, If the user is
entering commands 'by hand', there could be substantial delays between
commands. During those delays, the agent is just sitting there doing
nothing, but no other user can use it.

2. Conversational Programs

A conversational program Is a program that 'talks' to the user of the
program during a logical unit of work. That Is. It issues reads to the terminal
without committing the work it was doing. In this case. the agent is held for

LH08-80I1..()3 0 Copyright IBM Corp. 1887. 1883 Chapter 5. Diagnosing Pertormance Problems 119

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

the application while it is waiting for the application user to respond to the l
terminal read. Again, this could be a long time. ...,

3. Batch-Online Processing

Long running batch programs can also cause agents to be held for long
periods of time. Sometimes this is necessary, but sometimes it can be
avoided. Examples of long running batch programs that could cause a
problem include:

• Batch programs without periodic COMMIT WORKs

• Large DBS Utility DATALOADs without the COMMITCOUNT option.

Note: The" Agents Being Held" problem can affect any SQL application or user.
The contention is for SQUDS agents. If an agent is not available, it does not
matter what function the user wants to perform, the user must wait.

Possible Actions:

ACTION PAGE

Increase NCUSERS Below

Use Multiple LUWs Below

Use AUTOCOMMIT ON Below

Use Routines for AUTOCOMMIT OFF Processing Below

Use Pseudo-Conversational Programming Below

Use COMMITCOUNT On DATALOAD Processing Below

If no lock or communication waits, see also: 205
- "Too Few Agents"

If also experiencing lock waits, see: 180
- "Locks Held for Long Duration"

Figure 60. Agents Being Held - Actions

There are two basic approaches to addressing the "Agents Being Held"
problem:

1. Increase the number of available agents

The simplest approach to resolving an "Agents Being Held" problem is to
increase the number of available agents (by increasing NCUSERS) and the
corresponding connection "ports" to SQUDS. That is, increasing NCUSERS
and possibly increasing MAXCONN. Refer to the System Administration
manual and the Performance Tuning Handbook.

Increasing NCUSERS may not be practical due to virtual storage limitations
on your system or the number of users that will be holding agents. A large
number of agents may result in a high paging rate which can be detrimental
to all applications. If increasing the connections to the database machine is
not practical, then you need to review your applications and their need to
hold agents.

2. Reduce the length of time agents are required

If increasing NCUSERS is not practical, then you need to see what can be
done to reduce the length of time agents are being held. By reducing the

120 SQLJOS 011gnOi11 for VM LH08-eoa1-03 C> Copyright IBM Corp. 1887, 11193

J

J

"Re.tricted Material. of IBM"
Licensed Material. - Property of IBM

amount of time agents are held. you may be able to increase the amount of
time your existing agents will be available.

Even if the total amount of time an agent is needed is not reduced. reducing
the duration of each agent holding period will tend to minimize the occur
rence of long link waits by allowing other users to get processing time on a
more frequent basis.

The way you reduce the length of time agents are held is by having the
users and applications release the agents as soon as possible. Some of the
ways of doing this include:

a. Use of Multiple LUWs

This means issuing COMMIT WORK or ROLLBACK WORK commands
whenever practical. rather than doing work as one large LUW. If an
application does not need to be one LUW. then COMMIT WORK com
mands should be used.

b. Use of COMMITCOUNT in DATALOAD processing

A special case of "use of multiple LUWs" is the use of the
COMMITCOUNT option on DATALOADs.

c. Use of AUTOCOMMIT ON in ISQL Sessions

A special case of "use of multiple LUWs" is the use of the AUTOCOMMIT
ON during ISQL sessions. With AUTOCOMMIT set to OFF. agents are
held while the user views command output and enters his/her next
command. This time could be used to process requests from other
users. (Note: The use of AUTOCOMMIT ON causes ISQL to COMMIT
WORK. and therefore release locks. at the end of many commands.
However. COMMIT WORK commands are not automatically issued when
the user is in display mode or input mode).

If AUTOCOMMIT OFF is needed for multiple command LUW processing
from ISQL. it is recommended that the commands be executed from rou
tines. In this way there is minimal delay between the completion of one
command and the start of the next.

d. Use of Pseudo-Conversational Programming Techniques

This refers to programming such that terminal read operations are not
done while the application has an LUW in progress .. More specifically. it
means issuing the COMMIT (or ROLLBACK) WORK statement as the last
SQL statement before issuing a terminal read request.

If you are not experiencing lock waits or communications waits. then you may
not have enough agents. See "Too Few Agents" on page 205 for more informa
tion on this case.

If you are also experiencing lock waits. then the lock waits could be a factor con
tributing to why the agents are being held for long periods of time. You may
want to treat the problem as a lock walt problem. rather than a link wait
problem. See" Locks Held for Long Duration" on page 180 for more information
on this case.

LH08-e0l1-03 C Copyright IBM Corp. 1S1t7, 1883 Chapter 5. Diagnosing Performance Problems 121

Bad Data Distribution
Problem Description:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

If the statistics in the SQUDS catalogs do not accurately reflect the actual char
acteristics of the data, or if a query involves a predicate which prevents the
SQUDS optimizer from taking those characteristics into account, the optimizer
may choose an inefficient access path. This will not cause the SQL request to
fail, but the response time experienced may be longer than expected.

Inaccurate statistics might exist if the statistics have never been updated or are
out of date (See "Inaccurate Statistics" on page 162 for more information on this
case). However, it could also reflect the fact that the data, itself, defies charac
terization. The optimizer takes account of non-uniformity of distribution of data
values of certain columns by maintaining percentile points for 10%, 50% and
90%, together with statistics on the frequency of the two most common values.
These statistics are maintained only for columns which are the first column of an ')
index. They are held in the SYSCOLSTATS catalog table. ...,

For other columns, only the following statistics are maintained:

• number of distinct values
.• second-lowest value
• second-highest value

and for these columns the optimizer assumes an "even" distribution of data
values.

The optimizer takes this distribution into account when considering the selec
tivity of certain predicates such as equality, range, BETWEEN. However, in the
case where the predicate involves a column with a non-uniform distribution of
data, then the optimizer takes that non-uniformity into account only if the value
against which the column is being compared is a literal value, not a host vari
able. If it is a host variable, then an even distribution is assumed. (And, as
mentioned above, if the column is not the first column of an index, then an even
distribution is assumed). For more information on problems associated with
predicates containing host variables, refer to "Range Predicate Used with Host
Variables" on page 199.

For example, if the catalog statistics indicate that 75% of the employees in the
EMP _ACT table are assigned to activity number 95, then the optimizer will
assume that a predicate of:

ACTNO-95

will select 75% of the rows In the table.

Similarly If 90% of the employees are assigned to an activity number in the
range 30 to 95, then the optimizer will recognize that a predicate of:

ACTNO>95

will select no more then 10% of the rows in the table.

However, if the catalog statistics indicate that there are 20 different project
numbers in the EMP _ACT table, the optimizer will assume that a predicate of:

PROJNO-003See

LHoe-aOS1-o3 CI Copyright IBM Corp. 1887, 1913

J

J

I

:~

:~
I

:~

I

:~

I

:lr

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

will select only 5% of the rows in the EMP _ACT table since PROJNO is not the
first column in any index and so an even distribution of values is assumed. If the
actual distribution is not uniform, for example if 90% of the employees are
assigned to project number 003000, then the optimizer will be making a bad
assumption. In cases such as this, the optimizer may choose to use an index
that will be very inefficient, or it may fail to choose an index that, for most cases,
would work fine.

Note: - the distributions in the above examples are not the same as the distrib
utions in the supplied SQUOS sample tables.

In general, whenever, for any of the reasons described above, the optimizer
does not correctly take account of the true distribution of data values, problems
can arise. Consider the following situations:

1. False sense of High Selectivity

A column may appear to be highly selective (based on ROWCOUNT divided
by COLCOUNT), but actually have very low selectivity. This is the case cited
above. An index on project number would look very attractive in the pres
ence of queries based on project numbers. Unfortunately, if most of your
queries use PROJNO = 003000 just to limit the answer set to that particular
project, the optimizer might choose an index on PROJNO over an index on
ACTNO (if there were fewer activities than project numbers).

2. False sense of Low Selectivity

Equally frustrating is the case where the optimizer has a false sense of low
selectivity. If most of your queries are on other project numbers, the opti
mizer might choose the index on ACTNO over an index on PROJNO (if there
are more activities than projects).

The optimizer can be similarly misled when considering other predicates such
as range predicates and join conditions.

The bad data distribution problem can extend to indexes as well. That is, in con
sidering access through multiple column indexes, the optimizer will consider:

ROWCOUNT
FIRSTKEYCOUNT

and,
ROWCOUNT

FULLKEYCOUNT

Again. if the distributions of key values are not "even," the optimizer can get a
false sense of either high or low selectivity.

Note: You can sometimes benefit from bad data distributions. However. most of
the time they will hurt your performance more than help it. Thus, It is recom
mended that you avoid bad data distributions unless you really think you know
what you are doing.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Possible Actlonl:

ACTION PAGE

Make the optimizer take account of non-uniformity Below

Smooth Key Distributions Below

Hide Bad Column in the Index Below

Avoid Bad Distributions in Columns Below

For cases with Bad Query Cost Estimates, also see:
- "Inaccurate Statistics" 162

For other high CPU usage problems, see "CPU Related Per- 112
formance Problems"

For other high 1/0 problems, see "1/0 Related Performance 113
Problems"

Figure 61. Bad Data Distribution - Actions

There are several ways of approaching problems due to "Bad Data Distribution":

1. Make the optimizer take account of non-uniformity

. Change your query and/or table to meet the conditions described earlier:

a. column in predicate must be first column of an index
b. value in predicate must be a literal

J

The second condition may require use of Dynamic SQL instead of Static SQL; \
this incurs an overhead cost in itself, so a trade-off is involved. ..""

2. Special index design to achieve uniform distribution.

This technique affects the "accuracy" of the SQUDS index selection algo
rithms.

If key values of an index are "uneven," you can achieve a smoothing effect
by adding another column to the index. By adding a column, you can make
the distribution of values more even for whole keys. However, unless the
column added is made the first column of the index, it will have no effect on
the distribution inferred from FIRSTKEYCOUNT.

3. Redefine Columns with better distributions

Actual distribution of column values in columns is less of a concern.
However, it can have some effect on performance in cases where the opti
mizer has choices among columns to be used as arguments defining how to
scan an index (called "key domains ") or used as search arguments (called
SARGs) after the index scan has found a "candidate" row.

Thus, you may want to reconsider the design of your table such that you get
column statistics that more accurately reflect an "even" distribution of
values. For example, If you have a table that contains date information
(month, day and year), you have a choice of storing the date as one column,
two columns or three columns. If the distribution of months, days and years
Is even, then you can store the date any of the possible ways without
concern. On the other hand, if all possible dates are valid, but most of the
months are June or December, you may want to combine month with day (or
all three).

124 SQUOS Dlegnosls for VM LH08-8081-03 C Copyright IBM Corp. 1887,11)83

I

,~

I

:~

I

:<.r

I

:~

I

I

I~
I

L

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Before you consider the actions for correcting for bad data distributions, you
should verify that your system is currently operating with up-te-date statistics.
See "Inaccurate Statistics" on page 162.

You may also want to investigate other possible causes of the high I/O symptom
before taking the more radical step of changing the table (column) definitions.
Refer to "I/O Related Performance Problems" on page 113 for the complete list
of problems that could give you excessive database I/O's.

BLOCK 110, APPC/VM and IUCV Not Resident
In 370 mode operation, DMKBIO and all high use IUCV modules are placed in the
resident CP nucleus by default.

In XA and XC mode operation, HCPBIO and all IUCV modules are placed in the
resident CP nucleus by default. If they are not placed in the resident CP
nucleus, unnecessary CPU overhead will be caused. (VM/XA does not support
APPCNM.)

Possible Actions:

ACTION PAGE

Make BLOCK 110, APPCNM and IUCV Modules Resident Below

Figure 62. Block 1I0,APPCIVM and IUCV Not Resident - Actions

Make these modules part of the CP resident nucleus. This can be done by
moving these modules above DMKCPE or HCPCPE in the CP load list (CPLOAD
EXEC) and regenerating the CP nucleus. This process is explained in the VM/SP
Planning Guide and Reference. Consult your operating system programmer.

Note: These changes are only necessary if your CP nucleus has been previ-
ously modified by your operating system programmer.

Blocking Suppression for INSERT CURSORs
Problem D.scrlptlon:

Note: This problem is not applicable in a DRDA environment. Blocking is not
supported for PUT statements in this environment.

Two problems may occur:

1. A program receives a "W" in SQLWARNA while performing an INSERT
CURSOR (that is, programs that use OPEN, PUT, and CLOSE).

2. You are running a DBS utility DATALOAD and receive the following
message: "ARI80021 Blocked INSERT processing was suppressed for &1
&2 .. "

These problems occur even though the data row involved is small (for example,
a few hundred bytes) compared to the 8K-byte block. Normally, blocking should
have been done.

Chapter 5. Diagnosing Performance Problems 125 '
-----------~

Posslbl. Actions:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Blocking for INSERT CURSOR will be suppressed when two rows cannot fit into
an 8K block. This does not mean two times the row size of the rows to be
inserted. It is derived using the following calculation:

Minimum mailbox size to perform blocking =
2· row size +
length of ROliN structure +
size of SQLDA +
length of the mailbox header

For a table with a large number of columns, the SQLDA grows in size quickly
and carries a heavy weight in the above calculation.

For more information about INSERT blocking and suppressed blocking, see the
Performance Tuning Handbook manual.

Buffer Pool Too Big
Probl.m Description:

Generally speaking, you want to run with the buffer pools (NPAGBUF and
NDIRBUF) as large as you can afford to make them. This is because you can
realize substantial savings in DASD I/O costs. DASD I/O's are "expensive" in
terms of both CPU time and I/O wait time.

However, you can make the buffer pools too big. How big "too big" is will
depend on the configuration of your system, and the workload on your system.
More specifically, "too big" depends on how much "paging" is being done by
your system.

Database I/O is better than page fault I/O. Database I/O is more expensive than
paging I/O in terms of CPU cycles required, but SQLlDS processing does not
stop for database I/O. Since the database manager can process other requests
while doing database I/O (but not during page faults), you want to keep the
buffer pools small enough to avoid high paging.

The primary symptom of "Buffer Pool Too Big" is a relatively high paging rate.
The effect of the high paging rate will be generally poor performance (response
time) for all SQL applications and queries. Performance will be worse for the
less frequently used functions. The single user response time may be better
than multiple user response time, but if there is enough non-SQL activity on the
system, even this case will perform poorly.

There are other problems that can also cause paging problems. Some of these
are listed In Figure 63 on page 127. However, you can distinguish "Buffer Pool
Too Big" problems from these other paging problems by looking at your Buffer
Hit Ratio. Buffer hit ratio (BHR) is the ratio of "looks in the page buffer"
(LPAGBUFF) to actual DASD read operations (PAGEREAD).

This can be determined from COUNTER information as follows:

128 SQUDS DI.gnoal. tor VM

LPAGBUFF
PAGEREAD

LH08-8081-03 C> Copyright IBM Corp. 1887, 1883

J

"Restricted Material. of IBM"
Ucensed Materials - Property of IBM

A Buffer Hit Ratio of 7 would mean that 6 out of 7 requests for data pages are
being satisfied out of the page buffer pool. For most environments, this would be
considered a very good buffer hit ratio.

On the other hand, a buffer hit ratio between 1 and 2 would mean that your
buffer pool is not saving you database I/O's very often. As a result, if your buffer
pool is large, it probably isn't worth it. (Note: The buffer hit ratio cannot be less
than 1).

POlslble A et/onl:

ACTION PAGE

Decrease Page Buffers Below

Add More Real Storage Below

If your buffer hit ratio is not so good, see:
- "Too Many Agents" 206
- "NLRB Parameters Too Large" 190
- "SET QDROP OFF USERS or SET QUICKDSP ON Not Used" 203
- "SQUDS Code Not Shared" 204

Figure 63. Buffer Pool Too Big - Actions

For the "Buffer Pool Too Big" problem, there are basically two ways of
approaching the problem:

1. Reduce the demand for Real Storage

If your buffer hit ratio is good, you can probably afford to reduce the size of
your buffer pools without causing major problems with your
applications/queries. In fact, to the extent that reducing the size of the buffer
pools reduces the paging on your system, your users should see a response
time improvement.

If your buffer hit ratio is not impressive, then reducing the size of the buffer
pool will only make it worse. However, if your buffer pool is also large, you
may be able to decrease its size without making your buffer hit ratio signif
icantly worse. Thus, decreasing the size of the buffer pool can be a reason
able alternative even when your buffer hit ratio is not so impressive.

There is no easy way to estimate the optimal size for your buffer pool. You
must use trial and error. Decrease the size of your buffer pool until you see
a significant degradation in your buffer hit ratio. At that point, you probably
have reached the best trade-off between buffer pool size and the paging on
your system.

2. Get more Real Storage

At the point where database I/O's Increase sharply, you should consider
other alternatives, such as adding more real storage to your system.

Not.: Before you consider adding more real storage, you may want to investi
gate the related paging problems listed in Figure 63.

LHOIl-I0I1-03 C Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problem. 127

Buffer Pool Too Small
Problem Description:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The buffer pools maintained by the database manager (and established by the
NPAGBUF and NDIRBUF initialization parameters) are intended to minimize the
need to access DASD every time data is needed. The larger the buffer pools,
the less likely DASD accesses will be required. Conversely, the smaller the
buffer pools, the more likely it will be that the database manager will have to
perform actual DASD 1/0 to get the data.

The buffer pool sizes needed will depend on the nature of your SQL workload.
There is no one size that suits all situations. The defaults for NPAGBUF and
NDIRBUF are reasonable defaults for some environments. However, they may
not be appropriate for yours. In particular, for any given workload, there will
usually be a specific size where buffer pools are too small.

When buffer pools are too small, you will experience an unusually high number J
of database 1/0's. This is due to something known as buffer pool thrashing.
Buffer pool thrashing is a condition where an application that references the
same page(s) of data multiple times has to do database 1/0 each time because
other users have 'stolen' its buffers for their own data. As a result, each user (or
application) keeps dragging in the same pages of data over and over again until
they are done. Just when one user has established its data in the buffer pools,
another user gets control and replaces the data with its own.

Buffer pool thrashing, of course, means your applications are doing more data-. \
base 1/0 than they really need to. If the buffer pools were large enough, all"
users (agents) would be able to have all (or most) of their data in the buffer
pools at the same time.

In addition to experiencing a high number of 1I0's, you should also be able to
observe a very poor buffer hit ratio. That is,

LPAGBUFF
PAGEREAD

will be a very small value (For example, less than 2).

Note: A low buffer hit ratio can also occur when you have a lot of applications
that do large, sequential accesses to data (such as large sorts, CREATE INDEX
on large tables, DBSPACE scans, etc.). In these cases, the large, sequential
applications are flooding the buffer pools with large amounts of data. As a
result, the smaller applications will get their buffers 'stolen'. For more Informa
tion on this problem, see "Sequential Processing" on page 200.

In summary, you probably have the "Buffer Pool Too Small" problem when you
have all of the following conditions:

1. Few (If any) large, sequential applications,

2. A large number of database 1I0's, and

3. A very poor buffer hit ratio

Not.: The "Buffer Pool Too Small" problem will usually occur when the applica- - a
tlons are performing SQL data manipulation operations. If the applications are ..""
performing data definition operations (such as, CREATE INDEX or DROP TABLE),

128 SQUOS Ol.gno.ll for VM LH08-8081-03 C Copyright IBM Corp. 1a87, 1ee3

"Restricted Materials of IBM"
Wcenseel Materials - Property of IBM

loading/unloading or large reports, then you probably have the "Sequential
Processing" problem. For more information on this problem see "Sequential
Processing" on page 200.

Possible Actions:

ACTION PAGE

Increase Page Buffers Below

Decrease NCUSERS Below

Use Redundant Data to Avoid 1I0's Below

Re-deaign Application Below

For other problema with a poor buffer hit ratio, see:
- "Sequential Processing" 200

For other high CPU usage problema, see "CPU Related Per- 112
formance Problems"

For other high 110 problems, see "i/O Related Performance 113
Problems"

Figure 64. Buffer Pool Too Small - Actions

There are basically three ways of approaching the "Buffer Pool Too Small"
problem:

1. Increase the size of the buffer pools

The first approach is obvious. However, under your current workload, it may
not be practical to increase the size of the buffer pools to the size necessary
to avoid buffer pool thrashing. Thus, the first approach may, in fact, not be
appropriate for your situation. If the size is impractical, you need to investi
gate the other possible actions. If you do increase the buffer pool size, be
aware that is may also increase system paging I/O.

2. Decrease the number of users needing buffers

If increasing the size of the buffer pools is not practical, the next thing to
consider is reducing the contention for buffers by reducing the number of
users that are using the buffer pools. That is, reduce the number of users
that can be active at the same time.

For more information on problems relating to the number of users and
reducing the number of users, see "Too Many Agents" on page 206.

3. Decrease the number of buffers needed

In some cases, neither of the first two approaches will be desirable and it
will be necessary to consider a third approach. Specifically, you can also
reduce buffer contention by reducing the number of buffers each application
requires. This can be done in one of two ways:

a. Data design changes

In the first case, the objective Is to get the highly referenced data stored
on as few pages as possible. That is, If the average application
accesses 10 pages of data, you want to try to get the average down to
say 5 pages by reorganizing or restructuring the data. Clustering data,
lowering frees pace allocations, dropping and recreating Indexes,

LHC»-I0I1-03 C Copyright IB~ Corp. 1887, 1883 Ch.pter 5. Olegnoslng Perform.nee Problems 128

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

changing the mappings of tables to DBSPACEs, and even some uses of
redundant data can be used to do this.

b. Application design changes

In the second case, the objective is to get the applications to be more
specific in their data requests. That is, you would review your applica
tions to make sure they are not referencing more data than they really
need to. Some of the techniques discussed under "Inefficient Search" on
page 170 might apply.

CHARNAME Not Set Correctly
Problem Description:

The CHARNAME parameter specifies the CCSIDs to be used as the defaults for
either the application server or the application requester. If the CHARNAMEs of

J

the application server and the application requester are different, then in a '\
request the elements of predicates may have different CCSIDs. In any predicate ...",
where the elements of the predicate have different CCSIDs, the database
manager usually has to perform a CCSID conversion. This changes any sargable
predicate into a residual predicate. Both the data conversion and the sargability
have an impact on performance. For more information on the performance
impact of CCSIDs, see the Performance Tuning Handbook.

Different CHARNAMEs may be unavoidable to ensure data integrity. For
example, in some situations the application server and the application requester
must be set differently to reflect the code page of the terminal. However, the
CHARNAME of the application server and the application requester should be
the same unless there is a specific reason they should be different.

For additional information on CCSIDs, see the SQL Reference manual. For
details on choosing a CHARNAME, or CCSID conversion, see the System Admin
istration manual.

Checkpoint is Being Forced at End-LUW
Problem Description:

Normally, an SQUDS checkpoint is taken every time CHKINTVL log pages have
been filled (CHKINTVL is an SQUDS initialization parameter).' There are two
cases, however, where a checkpoint is forced at the end of every logical unit of
work (LUW):

1. The SQUDS application server is being run in single user, nolog mode
(LOGMODE = N). A checkpoint Is forced even if the LUW Is read-only.

2. An LUW modifies data in one or more nonrecoverable DBSPACEs.

Under normal, Intended use of nolog mode or nonrecoverable DBSPACEs, these
forced checkpoints have no significant performance effect. They can however,
significantly degrade performance If such LUWs occur frequently.

130 SQUDS Dlegnosls tor VM LH08-8081-03 e Copyright IBM Corp. 1887, 1983

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Possible Actions:

ACTION

Avoid Short LUWs

Run with Logging

Figure 65. Checkpoint Being Forced at End-LUW - Actions

PAGE

Below

Below

When running in single user mode with LOGMODE = N, package the work into
one or a few LUWs. If this is not practical, you should consider running with
logging in effect (LOGMODE = Y, A or L).

In general, the only modifications to nonrecoverable DBSPACEs should be due to
the bulk loading of data from an external source. These bulk load operations
should be packaged into one or a few LUWs to minimize checkpoint overhead.
Read-only use of nonrecoverable DBSPACEs involves no special performance
considerations, since in that case there is no forced checkpoint at end-LUW. If
you need to make updates to the data once it has been loaded, you probably
should be using a recoverable DBSPACE instead.

CHKINTVL Too Big
Problem Description:

If the checkpoint interval is set too high, the result can be unacceptably long
response time delays each time a checkpoint occurs. This is because:

1. The time required to process a checkpoint increases as CHKINTVL
increases.

2. All users must wait while a checkpoint is in progress.

This condition can be verified by issuing the SHOW ACTIVE operator command
each time a long, unexpected delay is being experienced. If you frequently see
"CHECKPOINT AGENT IS PROCESSING A CHECKPOINT" as a response, check
point processing delays may be a significant factor and a reduction in the check
point interval should be considered.

If you often see "CHECKPOINT AGENT IS WAITING TO START CHECKPOINT" as
a response, the database manager is in the process of quiescing activity in the
DBSS in preparation for doing a checkpoint. This problem is addressed under
"Long DBSS Calls Delaying Checkpoint" on page 184. If the results usually
show that the checkpoint agent is inactive, checkpoint-related delays are not the
problem.

LH08-8011-03 C Copyright IBM Corp. 1987, 1883

Possible Actions:

ACTION

Reduce CHKINTVL

If buffer pool is very large, see:

"Buffer Pool Too Big"

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

PAGE

132

126

If delays are during quiesce for checkpoint, see: 184

"Long DBSS Calls Delaying Checkpoint"

If checkpoint is inactive during delays, see:

"Sequential Processing" 200

Figure 66. CHKINTVL Too Big - Actions

Reduce the CHKINTVL initialization parameter. Proceed with caution, however,
since there are significant advantages to keeping CHKINTVL as high as is prac
tical. Review the discussion under "CHKINTVL Too Small."

CHKINTVL Too Small
Problem Description:

The checkpoint interval, as specified by the CHKINTVL initialization parameter, is
too short. This results in significant additional database 1/0 and associated
processing overhead.

A short checkpoint interval also increases the likelihood that a long-running
DBSS call (for example, to implement a DROP TABLE) will delay the initiation of
the checkpoint process. This delay will add to the response time of all other
users that concurrently have an SQL statement in progress. See "Long DBSS
Calls Delaying Checkpoint" on page 184 for a discussion of this problem.

Possible Actions:

ACTION PAGE

Increase CH KI NTVL Below

Decrease Logging Rate Below

See "Long DBSS Calis Delaying Checkpoint" 184

If high log 110, see: 183

"Logging during Load"

Figure 67. CHKINTVL Too Small- Actions

Consider increasing the CHKINTVL initialization parameter. With proper allow
ance for the additional secondary storage requirements (see below), many
installations will find that the optimum CHKINTVL setting Is in the 50-300 range.
Installations with large, randomly modified databases will be in the lower end of
that range, while Installations with small databases or large databases having a
relatively low frequency of random modifications will tend to be in the upper end
of that range.

Increasing CHKINTVL will realize the following advantages:

132 SQLJOS Olagnosl. for VM LH09-8081-03 C Copyright IBM Corp. 1887, 1883

~.

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• The overhead associated with the checkpoint process will decrease. This
can have a very beneficial effect on overall performance.

• The frequency of checkpoint-related response time delays is reduced. There
are two different types of delays:

1. The time it takes to quiesce all DBSS activity before the checkpoint can
be started.

2. The time it takes to do the actual checkpoint.

The advantages of increasing CHKINTVL should be weighed against the fol
lowing adverse side effects:

• It will take more time to restart the application server after a system failure.

• If you are running with LOGMODE =Y, the possibility of a log full condition is
increased because the database manager only reclaims log space as part of
checkpoint processing. This consideration does not apply if you are doing
archiving (LOGMODE = A) because in that case log space is reclaimed only
when the database is archived.

• Checkpoints will be less frequent, but when a checkpoint does occur, check
point processing will take longer (quiesce time stays the same). This delays
all users who currently have an SQL statement in progress.

This will be an important effect if the workload includes a significant amount
of random data modifications over a relatively large area (for example, more
than 100 megabytes). This will be an unimportant effect if the database is
small or there is very little random data modification activity. Bulk sequen
tial data modifications generally do not pose a problem.

• Secondary storage requirements will increase.

Whenever a page in the database is modified and it has to be written out to
secondary storage, the database manager does not overlay the original copy
of that page, but instead writes it out to a free page in that same storage
pool. The original, unmodified copy is referred to as a shadow page.

The shadow page mechanism is useful in facilitating system recovery, but it
does require that sufficient empty pages be available in each storage pool.
The secondary storage occupied by shadow pages is only reclaimed when
the database manager takes a checkpoint. Therefore, the amount of extra
space that must be set aside in each storage pool increases in proportion to
the CHKINTVL setting.

Of these side effects, it is the secondary storage requirements that usually
require the most attention. See "Estimating Database Storage" in the System
Administration manual.

You can check secondary storage availability by issuing the SHOW DBEXTENT or
SHOW POOL operator command.

Since an SQUDS checkpoint is triggered by the number of log pages that have
been filled, another way to reduce the checkpOint rate is to reduce the rate at
which log pages are filled. This may be useful in conjunction with a moderate
increase in CHKINTVL if larger CHKINTVL settings are precluded due to the side
effects cited above.

LHoe-eoe1-03 C Copyright IBM Corp. 1887, 1883 Chapter 5. DiagnOSing Performance Problems 133

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

One way to slow down the logging rate is to run big DATALOADs and other bulk
update operations off-line in single user mode with LOGMODE = N. Another
technique is to bulk load data into nonrecoverable DBSPACEs. This is appli
cable if the data is read-only and can be easily reconstructed from an external
source in the event of a DASD failure. See "Nonrecoverable Storage Pools" in
the System Administration manual for guidelines.

CMS Work Unit Support Set On
Problem Description:

When the database machine is running in a VM/SP or VM/ESA environment, it is
preferable that CMS work unit support be set OFF. Applications running with this
support set ON use more of the CPU because each call to the Resource Adapter
results in a CMS call to query the work unit identifier. The default parameter,
set in the SQL/NIT EXEC, is ON. Details on the SQLINIT EXEC are in the Data
base Administration manual.

CMS work unit support does not apply to VM/XA SP.

Conflict in Catalog Key Locking
Problem Description:

SQL Data Definition and Control statements result in update, insert and/or delete
operations on the catalog tables. Thus, they acquire EXCLUSIVE locks in the
catalog DBSPACE. This can result in conflicts with almost any other kind of SQL
activity.

In an attempt to minimize the contention in the catalog tables, the database
manager does row and key level locking in the catalog DBSPACE. However,
conflicts can arise. As with row (and key) locking on user tables, the following
types of conflicts can arise:

1. Conflicts on Key hashes on non-unique indexes

As a result of key level locking, conflict can arise when "names" of objects
(tables, indexes, programs, etc.) hash to the same value. If you observe
locking conflicts between objects with dissimilar "names," the problem is
probably a conflict on the hash values of the keys.

This applies only to non-unique indexes. See Figure 68 on page 135 to find
the catalogs that have non-unique indexes. For more information on key
hashing conflicts see "Conflict on Key Hash in User Data" on page 136.

2. Adjacent Key locking

Adjacent key locking conflicts can also arise in the catalogs. If you observe
locking conflicts between objects with similar "names," the problem is prob
ably an adjacent key locking problem.

For more information on adjacent key locking problems see "Adjacent Key
Locking in User Data" on page 115.

3. Multiple statements contending for the same catalog entries.

J

For more information on this conflict, see "Hot Spot in the Catalog Tables" l.
on page 153. ...,

134 SQLJDS DiagnOSIS for VM LH08-I081-03 CI Copyright IBM Corp. 1987, 1883

"Restricted Materials of IBM"
Wcenled Materials - Property of IBM

CATALOG

SYSACCESS

SYSCATALOG

SYSCCSIDS

SYSCHARSETS

SYSCOLAUTH

SYSCOLSTATS

SYSCOLUMNS

SYSDBSPACES

SYSDROP

SYSFIELDS

SYSINDEXES

SYSKEYCOLS

SYSKEYS

SYSLANGUAGE

SYSOPTIONS

SYSPROGAUTH

SYSSTRINGS

SYSSYNONYMS

SYSTABAUTH

SYSUSAGE

SYSUSERAUTH

SYSVIEWS

In order to understand the type of catalog key locking problem you have, you
need to know the indexing done on the catalogs. Figure 68 identifies the
indexes on the SQLlDS catalog tables.

UNIQUE INDEX COLUMNS

U IACCESS TNAME.CREATOR.TABTYPE

U I CAT TNAME.CREATOR

U ICCSIDS CCSID

U ICHARSETS NAME

- ICOLAUTH1 CREATOR, TNAME,COLNAME,GRANTEE

- ICOLAUTH2 TIMESTAMP,COLNAME

- ICOLAUTH3 GRANTEE,TIMESTAMP,COLNAME

U ICOLSTAT TNAME,CREA TOR,CNAME

U ICOL TNAME,CREATOR,CNAME

- IDBSPACE OWNER,DBSPACENAME

- IDBSPACE2 DBSPACETYPE,OWNER,NPAGES
U IDBSPACE3 DBSPACENO

- IDROP DBSPACENO,QUALF

U I FLO TNAME,CREATOR,CNAME

- IINDX TNAME,CREATOR
U IINDX2 INAME,ICREATOR

- ISYSKEYCOLS1 TNAME, TCREA TOR, KEYTYP E. KEYNAME. KEYORD

- ISYSKEYS1 TNAME, TCREATOR,KEYTYPE
- ISYSKEYS2 REFTNAME, REFTCREA TOR

- SYSLANGINDEX LANGUAGE
- SYSLANGIDINDEX LANGID

U IOPTIONS SQLOPTION

- I PROGAUTH 1 CREATOR, PROGNAME,GRANTEE, RUNAUTH

- IPROGAUTH2 GRANTOR,GRANTEE,CREATOR, PROGNAME

U ISTRINGS INCCSID,OUTCCSID

U ISYN USERID,ALTNAME

- ITABAUTH1 GRANTEE, TCREA TOR, TTNAME, G RANTEETYPE
- ITABAUTH2 GRANTOR,SCREATOR,STNAME

- ITABAUTH3 GRANTOR,GRANTEE,SCREA TOR, STNAME,GRANTEETYPE

- ITABAUTH4 SCREATOR,STNAME

- ITABAUTH5 TCREATOR,TTNAME

. IUSAGE BNAME, BCREATOR, BTYPE . IUSAGE2 DNAME,DCREATOR,DTYPE

U IUSERAUTH AUTHOR,NAME

U IVIEWS VIEWNAME,VCREATOR,SEQNO

Figure 68. Indexes on SQLIDS Catalog Tables

As can be seen from Figure 68, there are many ways in which a key locking con
flict might arise. For example, the USER1.INVENTORY key would presumably be
adjacent to the USER2.INVENTORY key in SYSTEM.SYSCATALOG and
SYSTEM.SYSTABAUTH. and possibly SYSTEM.SYSINDEXES and
SYSTEM.SYSUSAGE. Thus, creating an Index on USER2.INVENTORY (which Is
an SQL Data Definition statement inserting Into SYSINDEXES) could conflict with
an ad hoc query on USER1.INVENTORY (which references SYSINDEXES for index
Information on USER1.1NVENTORY), The conflict. in this case, would be an
"adjacent key lock" conflict in IINDX (SYSINDEXES).

Key hashing conflicts are less obvious. If SHOW LOCK WANTLOCK indicates a
conflict on a catalog key hash. and there is no evidence that the keys involved

LH08-8081-03 ~ Copyright IBM Corp. 1817, 1883 Chapter 5. Diagnosing Per10rmance Problems 135

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

are similar, then the conflict is probably a key hash conflict. This can only occur
for non-unique indexes.

Possible Actions:

ACTION PAGE

Schedule jobs with SQL data definition and control state- Below
menta in sequence

For other catalog locking problems, see:
- "Hot Spot in the Catalog Tables" 153

Figure 69. Conflict in Catalog Key Locking - Actions

You cannot change the indexing on the catalogs. Even if you add indexes, the
database manager will not use them for Data Definition or Data Authorization
statements. To avoid the contention in the catalog tables, schedule the con
tending jobs so that they run in sequence.

Conflict on Key Hash in User Data
Problem Description:

This section applies only to non-unique indexes. For unique indexes, the tuple
identifier (TID) is used as the gatename.

When a Des PACE is defined to have row level locking (LOCKMODE = "T"),
locking on non-unique index data in the DeSPACE is done at the 'key' leve\.
With key level locking, locks are not actually obtained on individual key values.
Instead, they are obtained on a 4-byte hash of the key values. Different key
values can hash to the same 4-byte hash value, resulting in the same
"gatename." That is, for locking purposes, the key values will look like they are
the same. This, of course, is the "Conflict on Key Hash in User Data" problem.

The "Conflict on Key Hash in User Data" problem will look like any other locking
conflict problem. That is, you will see lock waits. In addition, the lock waits you
will see, will be in the indexes.

A problem with almost identical symptoms is "Adjacent Key Locking in User
Data" on page 115.

A speCial case of conflicts on key hashing is the "Conflict in Catalog Key
Locking" problem. This case is where the key hash conflict occurs on non
unique indexes on the catalog tables. See "Conflict in Catalog Key Locking" on
page 134 for more information.

Normally the key hash conflicts occur In user data and show up as conflicts
between data manipulation statements, or conflicts between data manipulation
statements and load or unload operations. However, the conflict can also occur
be.tween data manipulation statements (DELETE, INSERT, SELECT and UPDATE)
and data definition or control statements (CREATE, DROP, GRANT or REVOKE) in
some cases. In particular, dynamic SQL data manipulation statements (for

J

J

J

example, SELECT from ISQL or the DBS Utility) will require references to the cat- J
alogs. This can conflict with data definition or data control statements which
update the catalogs. Since the catalog DBSPACE has row level (and therefore

138 SQlIOS 0I8gn05ll tor VM LH08-8011-03 C Copyright IBM Corp. 1887, 1983

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

key level) locking, conflicts on key hashes in the catalogs can occur. More detail
on these cases are provided in "Conflict in Catalog Key Locking" on page 134.

Possible Actions:

ACTION PAGE

Change Key Structure to Avoid Key Conflicts Below

Increase Lock Level Below

For other problems with similar symptoms, see:
- "Adjacent Key Locking in User Data" 115
- "Hot Spot in User Tables" 158

If lock waits are in catalog DBSPACE, see:
- "Conflict in Catalog Key Locking" 134
- "Hot Spot in the Catalog Tables" 153

For other lock wait problems, see:
- "Locking Related Performance Problems" 114

Figure 70. Conflict on Key Hash in User Data - Actions

Conflicts on Key hash values are not easily avoided. There are basically two
approaches that can be considered:

1. Changing the structure of the key

Since the hash value for keys is a function of the key values, one approach
to avoiding the conflict is to change the key values. That is, you can redefine
the index to be a different combination of columns, or a different sequence of
the same columns. By doing this, you may not totally eliminate hash value
conflicts, but can change the frequency of conflicts. It can also change the
characteristics of which keys conflict.

Another way to eliminate key hash conflicts is by redefining the index as
unique instead of non-unique.

2. Increasing the lock level

Since key hash conflicts occur only with key level locking, another approach
would be to use page level locking. Under page level locking, index pages
are locked instead of the key hash values. This means locks on "similar"
keys will cO.nflict, but this may be more desirable than the conflict on key
hash values.

You might also review the problems with similar symptoms (see Figure 70 for
the list) before concluding that your problem is the key hash problem. The dif
ferences between these problems and the key hashing problem are very subtle.
However, the solutions can differ significantly.

If the key locking problems are in the catalog OBSPACE (OBSPACE 1), then you
should refer to the problems dealing with catalog locking (see Figure 70 for the
list) .

LHoe-a081-03 0 COpyright IBM Corp. 1887, 1883

CREATE INDEX Requires a Large Sort
Problem Description:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

CREATE INDEX processing includes a sort of all index. key values. This step can
be time-consuming for a large table, especially if the keys are large.

Possible Actions:

ACTION PAGE

Define Fewer Key Columns Below

Make the Key Column(s) Smaller Below

Spread Sort Across a Number of Dev.ices Below

Ensure NPAGBUF is Large Enough Below

REORGANIZE INDEX 169

Also see: 141
"DBSPACE Scan Being Performed"

Figure 71. CREATE INDEX Requires a Large Sort - Actions

1. Define fewer Key Columns

In the case of a multicolumn key, check to see if any of the columns can be
eliminated from the index definition.

2. Make the Key Columns smaller

Consider the feasibility of redefining the key columns so as to make them
smaller. For example, a part number might currently be stored in a
CHAR(12) column. If all valid part numbers are numeric, you might be able
to store the part number in binary form in a 4-byte INTEGER column. This
will result in about a 3:1 reduction in the volume of data that has to be
sorted, which reduces sort time.

3. Spread Sort across a Number of Devices

For a very large sort, it is frequently the case that the time required to do the
sort is dominated by DASD seek time. This situation is indicated if, during
CREATE INDEX processing on a dedicated system, CPU utilization is not high
(less than 50 percent) and channel utilization is low (less than 5 percent).

This problem can be alleviated by putting the internal DBSPACEs into their
own storage pool which is associated with a number of DBEXTENTs, each on
a separate drive.

The size of each DBEXTENT is important because SQLlDS will not store
pages in the next-defined DBEXTENT in a storage pool until all previously
defined DBEXTENTs have been filled. When you are deciding on how big to
make each DBEXTENT, consider the following:

138 SQLJDS Diagnosis for VM

• The number of bytes that have to be sorted to accomplish a given
CREATE INDEX can be estimated by multiplying key length + 8 by the
number of rows in the table.

LHoe-a0l1-03 C Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Data Not Cached

• The amount of space that is used during sorting is approximately twice
this number.

Suppose that you wish to spread sort processing across six devices and that
you have estimated the number of bytes to be sorted for your largest
CREATE INDEX to be N. One approach, then, would be to make th~ size of
the six DBEXTENTs O.1N, O.2N, O.3N, O.4N, O.5N, and O.6N respectively. By
graduating the sizes, a wider range of sort sizes will result in 1/0 activity that
is spread across two or more devices. Actually, the sixth (last defined)
DBEXTENT should be made extra large so that unusually large sorts can still
be accommodated.

4. Ensure NPAGBUF is large enough

The merge phase of a large sort uses 25% of the page buffers, up to a
maximum of 64 buffers. If NPAGBUF is less than 256, the merge phase can
have many unnecessary merge passes.

Problem. Description:

DASD or Expanded Storage caching can improve SQLlDS performance by pro
viding faster access to data than can be obtained with normal DASD 1/0.
Caching support varies by operating system. Consult the operating system doc
umentation for your installation for instructions on how to utilize caching.

Caching is frequently used by the operating system to benefit all users. Consult
your System Programmer to see if more cache resource can be made available.

Possible Actions:

ACTION PAGE

Read-only Applications Below

Figure 72. Data Not Cached - Actions

1. Read-only Applications

Caching is of most use for applications that are read-only. It is not recom
mended that the directory and logs be candidates for caching. However, the
most important primary read-only database extents should be made eligible
for caching.

Database Machine Favored Too Little
Problem Description: The SQLlDS database machine was run with default dis
patching priority or with too little favoring, resulting in a disproportionate
increase in the response time experienced by SQLlDS users during periods of
high processor utilization.

If all virtual machines are run with default dispatching priority, the CP scheduler
will attempt to distribute the CPU equally among them. A database machine,
however, may be supporting a large number of users, whereas a user virtual
machine just has to support one user. In such situations, truly equitable distrib
ution of the CPU resource requires that the database machine be given a dis
patching priority that is better than the default.

LH08-8081-Cl3 C) Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 138

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

VM tries to optimize system throughput by monitoring the execution status of
virtual machines. When a virtual machine becomes idle, VM drops it from the
run list. The virtual machine's page and segment tables are scanned, and resi
dent pages are invalidated and put on the flush list. If this cycle of queue drop
ping and reactivation is executed repeatedly, the overhead of invalidating and
revalidating the virtual machine's pages can become large.

Possible Actions when using VM/SP and VM/ESA 370 Feature

ACTION PAGE

Increase SET PRIORITY and/or SET FAVORED Below

SET QDROP OFF USERS 203

Figure 73. Actions under VM/SP and VM/ESA 370 Feature

VM/SP and VM/ESA 370 Feature offer two different CP operator commands to
change the dispatching priority associated with a virtual machine: SET PRIORITY
and SET FAVORED. Priority can be raised by using one or both of these com
mands. SET PRIORITY requires less overhead then SET FAVORED, but SET
FAVORED can have a larger effect.

The exact values to use can be determined only by trial and error. First try "SET
PRIORITY userid 1," and if this does not have a large enough effect, additionally
issue "SET FAVORED userid 50." After observing the effect of this combination,
adjust the SET FAVORED percentage value upward or downward as necessary.

For further information, see "Performance" in VM/SP Administration for VM/SP
or in VM/ESA CP Planning and Administration for 370.

Note: Priority 1 is the best; larger values mean less priority.

Possible Actions when using VM/XA SP and VM/ESA ESA Feature

ACTION PAGE

Increase SET SHARE Below

SET QUICKDSP ON Below

SET RESERVED Below

Figure 74. Actions under VM/XA SP and VM/ESA ESA Feature

Increase SET SHARE: The VM operator can use the SET SHARE command to
control the percentage of system resources a user receives. These system
resources include processors, real storage, and paging I/O capability. The
SQLlDS database machine is usually a heavily loaded machine. If more system
resources can be allocated, users will usually benefit from better system
response.

A virtual machine receives its proportion of any scarce resource according to its
share setting. An ABSOLUTE share allocates to a virtual machine an absolute
percentage of all available system resources. A RELATIVE share allocates to a
virtual machine a portion of the total system resources minus those resources
allocated to virtual machines with an ABSOLUTE share. Also, a virtual machine
with a RELATIVE share receives access to system resources with respect to

140 SQLlDS DI.gnosls tor VM LH08·aoa1-03 C Copyright IBM Corp. 1887, 1_

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

other virtual machines with RELATIVE shares. If the SQLloS RoBMS is the
major application on your VM system, you may want to specify an ABSOLUTE
share; otherwise, specify a RELATIVE share.

SET QUlCKDSP ON: An SQLloS database machine usually requires critical
system response time and it is always expected to be in service to all user
machines. Having the database machine always available in the dispatch list is
one of the most important aspects of improving the database machine response
time.

VM offers a system operator command, SET QUICKoSP ON, to allow deSignated
virtual machines to not wait in the eligible list when they have work to do.
Therefore, a virtual machine with a QUICKoSP setting is assigned an eligible list
class of EO and is added to the dispatch list immediately.

When a virtual machine has both QUICKoSP and SHARE settings, it does not
wait in the eligible list and may spend a proportionally greater percentage of
time in the dispatch list. Because of this, a QUICKoSP virtual machine's SHARE
setting is spread out over a longer period of time. It is advisable to give a
QUICKoSP virtual machine a higher SHARE setting than normal.

SET RESERVED: To work with SET SHARE and SET QUICKDSP ON, users should
also consider using SET RESERVED to obtain the best effects under some condi
tions.

A virtual machine that has .pages reserved with the SET RESERVED command
gets to hold the reserved pages essentially 100% of the time, when the virtual
machine is dormant. Thus, no paging delays are incurred (normally) when the
virtual machine wants to use storage.

The CP scheduler allows a QUICKDSP virtual machine to enter the dispatch list
regardless of the virtual machine's storage requirements and the system's
current storage load. Also, when a virtual machine is dormant it is likely that CP
will steal some or all of its pages. When it leaves the dormant state, this virtual
machine will need its working set to be brought back into storage. This heavy
paging requirement will hurt the virtual machine's performance. The solution
may be to use SET RESERVED for at least some of the virtual machine's pages.

For further information, see "Performance" in VM/XA SP or VM/ESA ESA Feature
Planning and Administration.

DBSPACE Scan Being Performed
Problem Description:

A oBSPACE scan is one of the "access paths" available for accessing a table. A
DBSPACE scan does exactly that. All active data page. in the DBSPACE are
read in search of the desired rows. This frequently results in some rather
unpleasant performance characteristics. In particular, you will probably observe:

1. A high number of database 110's

It usually requires a substantial number of database 110's (to read all the
active data pages).

LH08-8081-o3 C> Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 141

2. A high CPU usage

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

In addition to the I/O wait time implied, a substantial number of CPU cycles
are used in doing the I/O's.

3. Lock wait conditions

Furthermore, since all active pages are going to be read, the database
manager usually gets a table lock to do the scan, even when the DSSPACE
is defined to have row or page level locking. The only exception to this is
when the scan is done under the cursor stability isolation level in a
DSSPACE defined to have page level locking.

Clearly, you do not want to use DSSPACE scans any more often than is neces
sary. However, for many requests, a DSSPACE scan is the only reasonable way
for the database manager to proceed.

For data manipulation operations (DELETE, INSERT, SELECT and UPDATE), the
database manager may have other access paths from which to choose (such as,
Index scans). In these cases, DSSPACE scans are usually the least efficient
access path. However, if the proper indexes or clustering have not been set up,
it may be the most efficient path available. Nonetheless, DSSPACE scans are
usually unattractive.

Some operations are done only through DSSPACE scans because the DSSPACE
scan is the only reasonable way to do them. In particular, CREATE INDEX, DROP
TASLE and UPDATE STATISTICS are always done with DSSPACE scans. In any
of these cases, the table in question might be quite small. Sut if it is in a
DSSPACE with a large number of active pages, all the pages will be read, and
you will get a lot of database I/O's. In cases where a CREATE INDEX is pre
ceded by DROP INDEX, the DSSU REORGANIZE INDEX command could be used,
and the DSSPACE scan is avoided.

For data manipulation statements, DSSPACE scans could be occurring because
of the lack of alternatives to choose from. If you are experiencing DSSPACE
scans on data manipulation statements, refer to some of the other problems doc
umented in this manual. Specifically, you might want to look at problems that
can result in DSSPACE scans, as listed in Figure 75.

142 SQLJDS Diagnosis tor VM LH08-I081-03 CD COpyright IBM Corp. 1817, 1883

J

.J

"Restricted Materials of IBM"
Licensed Material. - Property of IBM

Possible Actions:

ACTION

Try to Avoid DBSPACE Scans

Minimize the Impact of Scans

CREATE INDEX Before Loading

Run Offending Jobs Off-hours

For other possible DBSPACE scan problems. see:
- "Package Needs Re-preprocessing"
- "Bad Data Distribution"
- "Inaccurate Statistics"
- "Index Disqualified"
- "Index No Longer Highly Clustered"
- "No Selective Index"
- "Inefficient Search"
- "Insufficient Indexing"
- "Large Tables Share Same DBSPACE"
- "Missing Search Condition"
- "Need a Highly Clustered Index"
- "Range Predicate Used with Host Variables"
- "Too Many Joins"
- "Very Nonunique Index Key Prefix"

For similar CREATE INDEX problems. see:
- "CREATE INDEX Requires a Large Sort"

REORGANIZE INDEX

For similar UPDATE STATISTICS problems. see:
- "UPDATE STATISTICS by DATALOAD"

Figure 75. DBSPACE Scan Being Performed - Actions

PAGE

Below

Below

Below

Below

194
122
162
164
168
192
170
174
175
185
187
199
208
211

138

169

210

There are basically four approaches to addressing "DBSPACE Scan Being
Performed" problems:

1. Try to Avoid DBSPACE Scans

For data manipulation operations. you should try to avoid DBSPACE scans
when they are not really necessary. Usually this means proper indexing or
some type of data reorganization. See the actions for the problems listed in
Figure 75 under "For other possible DBSPACE scan problems."

2. Minimize the impact of the scans

If DBSPACE scans cannot be avoided (as in the case for CREATE INDEX.
DROP TABLE and UPDATE STATISTICS). and the REORGANIZE INDEX
command is not appropriate. then the next thing you might consider is mini
mizing the impact of a scan when it is done. That is. minimize the number of
110's needed to do the scan. This could be done by:

a. Minimizing frees pace allocations

By using a low frees pace setting for the DBSPACE. you maximize the
number of rows that fit on a page. This will minimize the number of
pages needed to hold all the rows.

b. Using the most space efficient data types

Some data types are more efficient than others. VARCHAR might be
considered instead of CHAR for character data that has many values

LH08-10I1-03 C Copyright IBM Corp. 11M7. 1883 Ch.pter 5. DI.gnoslng Pertorm.nee Problems 143

144 SQUDS DI_gnosll tor VM

"Restricted Materials of IBM"
Ucensed Materlal.s - Property of IBM

shorter than the maximum. Use SMALLINT instead of INTEGER where
possible. For information about the space used by the various data
types, see "Estimating Storage for a Table" in the Database Adminis
tration manual.

c. Correctly sequencing columns for storage efficiency

The following left-to-right arrangement of table columns may reduce the
amount of space required to contain a table:

• Fixed-length co~umns for which NOT NULL is specified.

• Variable-length columns for which NOT NULL is specified.

• Variable-length columns with nulls allowed.

• Fixed-length columns with nulls allowed.

This technique takes advantage of the fact that if a row is inserted with
the nullable columns being implicitly set to null (that is, the columns are
not explicitly stated in the INSERT statement) and the nullable columns
are the rightmost columns in the table definition, then no storage is allo
cated for the nullable columns explicitly stated (see Figure 76 on
page 145). This method of reducing the space required by a table is
only recommended in the case of "write-once" data, where table data is
loaded and never changed.

The following factors should be considered before a table is organized in
this fashion:

1) If the null data is updated, the storage required for the row con
taining the data will be larger than was initially allocated. This can
cause data fragmentation, where table data is spread across multiple
data pages, resulting in poorer performance of data manipulation
statements.

2) If the DBS utility is used to unload the table or DBSPACE, the reload
processing will result in more storage being required to contain the
same table. This is because the utility always explicitly specifies all
columns being reloaded, even when they contain null values.

In all cases where data rows will be updated, or where the DBS utility
unload facility is required, tables should be organized so that the last
column is not nullable or you should explicitly list all columns when data
is inserted.

LHoe-aoe1-03 ~ Copyright IBM Corp. 1887, 1993

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

CREATE TABLE T1 (A SMALLINT NOT NULL, B VARCHAR(10) NOT NULL,
C VARCHAR(10), D SMALLlNT)

INSERT INTO T1 (A,B) VALUES(1,'A')

INSERT INTO T1 (A,B,C) VALUES(2,'B',NULL)

INSERT INTO T1 (A,B,C,D) VALUES(3,'C','D',NULL)

1

Note: As each row is inserted, a 6 byte row header and a 2 byte
page offset field (at the end of the data page) are allocated.
Row 1 consists of the 6 byte header, 2 bytes for the small integer
column, 1 byte for the length of the VARCHAR column and one byte
for the data that was entered. The columns that were not specified
take up NO space. The second row is like the first but because the
third column was explicitly set to null it takes up 2 additional
bytes (one for the length of the field (including the null byte) and
one for the null byte). When the third row is inserted all columns
are specified explicitly. The third field in that row has one byte
for the length, one byte for the null byte and one byte for the data
entered. The fourth field, though null, takes up 3 bytes because it
is a fixed length field. It uses 1 byte for the null byte and 2 bytes
containing unknown data.

Figure 76. Internal View of Data Base Page

3. Create INDEX before loading the table(s)

Normally you want to create indexes after loading the table. However, for
tables that have a small number of large rows (such as tables with LONG
VARCHAR columns), it may be more efficient to create the index before
loading. The time lost dOing index maintenance during load in such cases
may be less of a problem than the time lost scanning the active pages after
the load.

4. Run Offending Jobs Off-hours

If all else fails, you should consider running the applications or commands
that cause the scans when the impact to other users is the least. That is,
run the offending jobs during non-peak hours.

LH08-8011.Q3 ~ Copyright IBM Corp. 1887, 1883 Ch.pter 5. DI.gnoslng Perform.nee Problem. 145

Deadlocks
Problem Description:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

When two update applications run concurrently, deadlock occurs and one appli
cation is rolled back. Note that in this context the SQLPREP preprocessor is
considered to be an update application; it updates the catalog tables.

Possible Actions:

ACTION PAGE

For High 110 problems, see:
- "I/O Related Performance Problems" 113

SET ISQL AUTOCOMMIT ON 180
see also - "Locks Held for Long Duration"

Revise application logic Below

Schedule preprocessing jobs which relate Below
to a common set of tables in sequence.

For other lock-related problems, see:
- "Locking Related Performance Problems" 114

Figure 77. Deadlocks - Actions

Deadlocks can arise for a variety of reasons. Four causes are listed here.
These are not the only causes.

1. Excessive number of DASD I/Os

When a DASD I/O is required, that user's work (agent) is suspended and
another user's agent may be dispatched. Often, when an agent is sus
pended waiting for DASD 1/0, it holds SHORT locks, (locks which would be
released at the end of the DBSS call). The longer duration that such locks
are held, the greater the likelihood of lock connict and hence of deadlock.

2. ISQL AUTOCOMMIT OFF

This is one instance of the more general case of holding locks for an exces
sive duration. If two ISQL users are both updating the same table with
AUTOCOMMIT OFF, and also issuing occasional SELECT statements inter
spersed with the UPDATE/OELETEIINSERT statements, then there is a high
likelihood of deadlock.

3. Application logic

The classical example of deadlock due to application logic is where one user
tries to update row A followed by row B while another user tries to update
row B followed by row A. If both users succeed in performing their respec
tive first updates before either commences their second, deadlock occurs.

However, deadlock can also occur where an application does:

a. INSERT a row
b. SELECT or FETCH the row just inserted

when the table has a nonunique index.

If two users U and V say run this application, and U successfully Inserts a
row with a particular key, and then V attempts to insert a different row but

148 SQIJOS OI_gn05II for VM LHoe-aOS1..()3 ~ Copyright IBM Corp. 1887, 1883

"Restricted Material. of IBM"
Licensed Materiall - Property of IBM

having the same key value, and then U attempts to SELECT or FETCH the
row he inserted, deadlock occurs.

4. Concurrent preprocessing of programs which all access a common set of
tables

If several users are concurrently preprocessing programs which all access a
common set of tables and if those programs are large enough that the pre
processing step takes an appreciable amount of time, to the extent that
several preprocessing tasks are in progress concurrently, then there is a
likelihood of deadlock involving updates to the Catalog tables which relate to
package usage (SYSUSAGE).

DRDA Protocol Used to Access an SQLlDS Database
Problem Description:

DRDA Usage

When the application server is an SQUDS server and the application requester
is an SQUDS user machine, the DRDA protocol should only be used in specific
cases where the extra processing involved is not a concern (for example, proto
typing).

There is additional overhead when the DRDA protocol is used. The extra over
head is primarily caused by the generation and parsing of application requests
and replies from SQUDS internal format to DRDA DDM/FD:OCA format, and
DRDA DDM/FD:OCA format to SQUDS internal format.

If your problem is occurring during distributed processing, it may be unrelated to
the performance of the database or application. It may be a communication sub
system performance problem. Refer to the Distributed Relational Database
Problem Determination Guide for additional information on problem diagnosis.

ECMODE ON for Accounting
Problem Description:

When running in 370 mode, it is preferable that ECMODE be set OFF when using
the SQUDS accounting facility. ECMODE OFF uses less CPU than ECMODE ON.
Details on using the SQUDS accounting facility are detailed in the System
Administration manual. ECMODE does not apply in XA or XC mode.

Excessive II0s on INSERT
Problem Description:

When an application Issues the SQL INSERT statement to insert a row or rows
Into a table, there is a high number of DASO I10s, on the OBSPACE OASO andlor
Directory OASD. "High" here means "Significantly higher than normally occurs."

If you can be sure that the OASO II0s are caused by the INSERT statement and
not by other activity, then it is likely that the database manager Is unable to find
free space to insert each row in its "preferred" page, and is searching through
the DSSPACE to determine where the insertion will occur.

The "preferred" page Is determined as follows:

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

• If there is an index, then it is the page containing the first row whose key is
greater than or equal to the key of the row to be inserted. If there is more
than one index, this is determined by the "clustering" index, i.e. the one
which has CLUSTER = 'F' or 'W' in SYSINDEXES. SQL/DS assigns which
ever index was created first to be the "clustering" index. When the "clus
tering" index is also highly clustered (it has a high CLUSTERRATIO, which
can be achieved by loading the table in clustering sequence), then the data
base manager will keep that index highly clustered when new rows are
inserted.

You can see if there is a "clustering" index on the table by executing the
following SQL statement:

SELECT * FROM SYSTEM.SYSINDEXES
WHERE TNAME=table name AND CREATOR=table creator
AND (CLUSTER='F' OR CLUSTER = IWI) -

Either one or no indexes will match this query.

If there is an index matching this query, then you can check its precise
degree of clustering from the CLUSTERRATIO column. Refer to "Need a
Highly Clustered Index" on page 187 for a discussion on
CLUSTERRATIO. Also, If the entry for this index has CLUSTER = 'F'
then this is a rough guide that the index is well clustered, whereas if the
entry has CLUSTER = 'W' then this is a rough guide that the index is
poorly clustered.

If there is no index matching this query, then you have no clustering
index.

• If there is no index, then it is the page identified by CLUSTERROW in the
table's entry in SYSCATALOG. (This is known as the "default insert rule").
However, the value in CLUSTERROW is used only on the first INSERT of a
Logical Unit of Work; for all subsequent INSERTS in the same Logical Unit of
Work, the "preferred" page is the one used for the previous INSERT.

In the case where there is at least one index, the cause of the high DASD I/0s is
a lack of free space in the vicinity of the "preferred" page.

In the case where there is no index, the cause of the high DASD I/0s is either
that the value of CLUSTERROW is out of date (many rows have been inserted
since statistics were last updated) or that there are one or more other tables
sharing the same DBSPACE and occupying the space starting at the page
pointed to by CLUSTERROW.

148 SQUDS Dlegnoall for VM LH08·e081·03 C Copyright IBM Corp. 1887, 1883

J

J

J

J

"Re.tricted Material. of IBM"
Licensed Materials - Property of IBM

Possible Actions:

ACTION

If there is an index, Re-organize the table with more
free space

If there is no index, Re-organize the table in a key
sequence and with sufficient free space.
Then create a clustering index

If there is no index, move other tables to another
DBSPACE and UPDATE STATISTICS

For other High 110 problems. see:
- "110 Related Performance Problems"

Figure 78. High liDs on INSERT - Actions

1. Re-organize the Table with more free space

PAGE

Below

Below

Below

113

If the intended clustering index is the first created index, re-cluster the table
by using the DBS Utility to UNLOAD and then RELOAD the table. This proce
dure is described in the Performance Tuning Handbook.

If you anticipate a large amount of additional INSERT activity against the
table. consider increasing the amount of free space that is reserved on each
page as this will increase the amount of time that the index will retain its
clustering. Free space is determined by the PCTFREE parameter on the
ALTER DBSPACE statement. Set PCTFREE to the desired value just prior to
doing the RELOAD and then set it to a low value after the RELOAD has com
pleted.

2. Create a Clustering Index

If you wish to keep the rows of the table in some logical sequence as rows
are inserted. then create an index on that sequence. If the table is not
already ordered in that sequence. then you will first need to re-organize it.
This can be done by creating the new index, UNLOADING and RELOADING.
as described in the Performance Tuning Handbook.

3. Move other tables to another DBSPACE and UPDATE STATISTICS

If you don't want newly inserted rows to be inserted in any particular logical
sequence, then you should arrange that rows from other tables in the same
DBSPACE are not inserted into pages beyond the start of the table under dis
cussion. The easiest way to ensure this is not to have any other tables in
the same DBSPACE. In addition. you need to update statistics after every so
many rows have been inserted.

If the problem is neither lack of free space nor out of date statistics nor interfer
ence from other tables in the same DBSPACE. then you should go back to the
index on "high I/O" problems and look for another possible cause.

Excessive Locking In User Data
Problem D •• crlpt/on:

The database manager locks all data it has to read in order to satisfy a user's
request. In particular. more data may be locked than what is specifically identi
fied by the request (in the WHERE clause). As a result. you may experience

LH08-8081-03 C COpyright IBM COrp. 1887. 1883

"Restricted Materials of IBM"
Ucensecl Materials - Property of IBM

"Excessive Locking in User Data" due to the amount of data the database
manager had to search in order to satisfy the request.

In many cases, the amount of locking will vary widely depending on which
access path is used to find the data. For example, a DBSPACE scan will typi
cally lock more data than an index scan. See "Locking Concepts" on page 55
for more information on locking done by scans.

This excessive locking may not be necessary for the application and in many
cases can be avoided. Excessive locking in user data can have several kinds of
symptoms, but the most common will be lock walts. That is, if an application or
request is locking more than it logically needs to, it will probably encounter more
lock waits or cause others to encounter lock waits.

Other symptoms that might be experienced are many locks or lock escalations.
A large index scan in a DBSPACE with row leve! locking will generate a lot of
lock requests. These can be seen by observing SHOW LOCK GRAPH use rid or
SHOW LOCK GRAPH agent-number output. These statements show how much
locking an application or user is doing. If a user is doing a lot of locking, some
of the lockS may get escalated.

J

Escalations can be detected using the COUNTER ESCALATE and COUNTER
LOCKLMT statements. COUNTER ESCALATE gives you the count of successful
escalations, and COUNTER LOCKLMT gives you the count of unsuccessful esca
lations. These tells you if escalations are occurring on your system. You can
detect if a particular user is experiencing escalations by looking for S or X locks
at the DBSPACE level in the output of SHOW LOCK USER or SHOW LOCK \
AGENT. ~

Possible Action.:

ACTION PAGE

Decrease Lock Level Below

Increase Lock Level Below

Index to Avoid DBSPACE Scans Below

Reorganize DBSPACE to Avoid DBSPACE Scans Below

Use Cursor Stability Isolation Level Below

Use Multiple LUWs to Avoid Lock Contention Below

For other problems with similar symptoms, see:
- "NLRB Parameters Too Small" 191
- "Lock Level Too Low" 179
- "Lock Level Too High" 178

For other lock wait problems, see:
- "locking Related Performance Problema" 114

Figure 79. Excessive Locking In User o.t. - Actions

There are basically three ways of approaching the "Excessive Locking In User
Data" problem in applications:

150 SQUOS OIagno.lS tor VM LHoe-aoe1-03 C Copyright IBM Corp. 1887, 1893

J

J

"Restricted Materiall of IBM"
Ucenaed Materials - Property of IBM

1. Change the locking level for the data

Changing the locking level on the data being accessed can reduce some of
the excessive locking. This can be true of increasing locking level, as well
as decreasing locking level.

• Oecreasing Locking Level

By reducing the locking level on data from OBSPACE to page, or page to
row level locking, you can reduce the amount of data locked by anyone
row access. However, this probably won't help if your application
accesses a lot of rows.

• Increasing Locking Level

Increasing the locking level on the data can help if you are experiencing
lock escalations. By increasing row locking to page locking, you might
avoid escalations to OBSPACE locks.

If you are already using page locking in the OBSPACE where the locks
are being escalated, you might be able to avoid the escalations by using
the SQL LOCK TABLE statement. This will be effective if your access to
the table is read only (that is, SHARE mode).

2. Reorganize data to obtain a better access path

In cases where the excessive locking can be blamed on the use of an ineffi
cient access path to the data, a data reorganization may be called for. That
is, locking might be significantly reduced by organizing the data such that a
more efficient access path is used.

Generally, this means avoiding OBSPACE scans. A OBSPACE scan will lock
(SHARE or EXCLUSIVE, depending on the SQL statement) the entire table.
This, of course, may lock a lot more data than intended.

• Indexing to avoid OBSPACE scans

For requests that access a relatively few number of rows (compared to
the total number of rows in the table), indexing can be the most effective
way to avoid OBSPACE scans.

• Reorganizing OBSPACEs to avoid OBSPACE scans

In some cases, indexing alone will not be enough to avoid a OBSPACE
scan. If a large number of rows are being accessed, a OBSPACE scan
may be chosen over an index. There are organizatIon techniques that
can be used to favor an index.

Specifically, if the table being scanned is not too large, you can cause
the database manager to "favor" index scans by storing the table in a
large OBSPACE with other tables, such that PCTPAGES for the table is a
small value (such as 5 or 10%). When PCTPAGES is very small, the esti
mated 110's for the OBSPACE scan will look less favorable when com
pared to the estimated 110's using an index.

3. Release locks earlier or more frequently

If no way can be found to avoid the excessive locking that is being done,
then the next alternative is to try to minimize the locking by releasing the
locks as soon as possible. There are two ways this might be done:

LH08-8081-03 CD Copyright IBM Corp. 1887, 1883 Chapter 5. DIagnosIng Performance Problems 151

• Use of Cursor Stability Isolation Level

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The use of the cursor stability isolation level will. in most cases, release
SHARE locks before the end of an LUW. If repeatable read capability is
not required, the use of cursor stability should be considered.

• Use of Multiple LUWs

Another way of releasing locks earlier is to do COMMIT WORK state
ments more frequently.

• Use of AUTOCOMMIT ON

For ISQL usage, one way of releasing locks as early as possible is
through the use of AUTOCOMMIT ON.

If AUTOCOMMIT OFF is to be used, it is recommended that it be used
within routines. This is to avoid long delays while users dynamically
respond.

If you are experiencing lock escalations, then you should also review "NLRB
Parameters Too Small" on page 191 and "Lock Level Too Low" on page 179.
These problems are the primary causes of lock escalations.

If you are not experiencing lock escalations, then you might want to consider
"Lock Level Too High" on page 178. This problem addresses "excessive
locking" where the excess is due to applications that request locks larger than
they really need.

Frequent Checkpoints caused by SOSLEVEL
Problem Description:

The percentage of free pages in a storage pool is very close to the SOSLEVEL
(short on storage level) defined at initialization. When DBSPACEs in the storage
pool are updated, SOSLEVEL is reached and a checkpoint is triggered. This can
happen repeatedly until the checkpoint no longer frees enough pages to bring
the storage pool above the SOSLEVEL. This problem can cause multiple check
points in a short period of time, especially during a dataload or an index creation
which causes the SOSLEVEL to be reached. It can cause checkpoints to become
so frequent that no other work can get done on the application server.

Possible Actions:

ACTION PAGE

Add a DBEXTENT to the Storage Pool Below

Figure 80. Frequent Checkpoints caused by SOSLEVEL - Actions

A DBEXTENT could be added to the storage pool to prevent SOSLEVEL from
being reached. If this Is temporarily Inconvenient or impossible, you could
decrease SOSLEVEL. However, you should make more space available as soon
as possible.

152 SQUOS DIagnosIs tor VM L.H08-8081-03 0 Copyright IBM Corp. 1987, 1883

J

J

J

"Re.tricted Material. of IBM"
Ucenaed Materials - Property of IBM

Hot Spot in the Catalog Tables
Problem Description:

"Hot Spot in the Catalog Tables" is a condition that occurs when multiple users
(or applications) are accessing the same catalog information in conflicting
modes (multiple updaters or multiple readers and one updater). Since the cata
logs are heavily used by the database manager and store a wealth of informa
tion, conflicts may not be uncommon. The conflicts can also be quite subtle due
to the "where used" information kept and maintained. If you have a lock wait
problem but not very many locks are being obtained, then it may be a hot spot in
the catalog tables.

A hot spot in the catalog tables is a relatively small portion of the catalogs that
is frequently referenced by multiple users. Since the catalog DBSPACE is
defined with row level locking, a hot spot would typically be a small number of
rows, or a hashed key value.

As you might expect, a hot spot in the catalog tables can have a much greater
impact than locking on user data. Since the data being referenced by users is
concentrated in the catalogs, almost any SQL work can be impacted.

Read access to the catalog tables is unavoidable. The database manager is
designed to make heavy use of the catalogs. Update access, however, is some
thing that should be exercised with discretion. The key to understanding the
"Hot Spot in the Catalog Tables" problem is knowledge of when and where
SQUDS functions obtain EXCLUSIVE locks in the catalog tables. This is summa
rized in Figure 81:

LHoe-a081-03 C Copyright IBM Corp. 1887, 1883

FUNCTION CATALOG

LOADING SYSCATALOG
(with SET UPDATE SYSCOLSTATS
STATISTICS ON) SYSCOLUMNS

SYSDBSPACES
SYSFIELDS
SYSINDEXES

PREPROCESSOR SYSACCESS
SYSPROGAUTH
SYSUSAGE

SQL AUTH SYSACCESS
- GRANT SYSCOLAUTH
- REVOKE

SYS PROGAUTH
SYSTABAUTH
SYSUSERAUTH

SQL DOL SYSDBSPACES
;, ACQUIRE
- ALTER SYSCATALOG
- CREATE
- DROP

SYSCOLUMNS

SYSINDEXES
SYSVIEWS
SYSTABAUTH

SYSCOLAUTH

SYSUSAGE

SYSACCESS

SYSKEYS

SYSKEYCOLS

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ROWS LOCKED

for table(s) being loaded.
for column statistics.
for certain columns.
for DBSPACE being loaded.
for field procedures on columns.
for indexes on tables.

to register program.
for owner of program.
for tabies, indexes, views and

DBSPACEs used.

if package invalidated.
for column update authority on

individual columns.
if RUN authority.
for tables authorizations.
for special authorities.

for the DBSPACE acquired or
altered.

on create, for table or view
created.

on drop, for table or view dropped.
to verify CCSID column attributes

on a table.
on alter, for table altered/dropped.
columns for table or view created

or dropped.
columns of dependent views

dropped.
on alter, row for column added.
for index created/dropped.
for view created/dropped.
row(s) for grant.

revoke "cascades."
revoke of colauth on drop of view

or table.
for any dependency established or

dropped.
for program or view being created

or dropped.
for invalidated programs when

dependent object dropped.
on create/drop, for activate or

deactivate primary key, foreign
key or unique constraint

on create/drop, for activate or
deactivate primary key, foreign
key or unique constraint

Figure 8' (Pert , of Z). Exclusive Locking in C.t.'og r.bl.s

154 !QUOS DI.gnOiI. for VM I.H08-I081·03 = Copyrlgnt IBM Corp. 1817, 1883

"Reltricted Materials of IBM"
Ucenled Materials - Property of IBM

FUNCTION

UPDATE
STATISTICS

CATALOG

SYSDBSPACES
SYSCATALOG
SYSCOLSTATS
SYSCOLUMNS
SYSFIELDS
SYSINDEXES

ROWS LOCKED

for DBSPACE involved.
for table(s) involved.
for column statistics.
for certain columns.
for field procedures on columns.
for indexes on tables.

Figure 81 (Part 2 of 2) . Exclusive Locking in Catalog Tables

Notes on Figure 81:

1. Loading

Loading user tables does not do any exclusive locking in the catalog tables .
unless the load is done with STATISTICS set on. If statistics are updated as
part of the load. then the SYSCATALOG row (or rows) for the table (or
tables) being loaded are locked exclusively to update the table statistics.
Furthermore. NACTIVE in SYSDBSPACES is updated for the DBSPACE(s)
being loaded.

2. Preprocessing

Preprocessing does exclusive locking in SYSACCESS to record the package
created . An exclusive lock is also obtained on a row (and keys) in
SYSPROGAUTH to record the fact that the creator of the program is author
ized to run the program.

Multiple exclusive locks will typically be obtained in SYSUSAGE to record the
dependencies the program has on tables. views. indexes and DBSPACEs. If
you are experiencing lock contention with preprocessor executions. one of
the places you want to look is in SYSUSAGE. Concurrent preprocessing of
programs that access the same data can result in conflicts in SYSUSAGE.

3. SQL Authorization (GRANT/REVOKE)

GRANT and REVOKE do exclusive locking in several tables. but they are typi
cally short operations. Serious conflicts due to GRANT and REVOKE are not
likely. However. they can get caught in a lock wait behind long running
operations such as preprocessing. When this happens. other users (such as
users of data manipulation statements) may see an impact as authorization
checks are attempted .

Another consideration on authorization statements are "cascading REVOKE
operations." If your installation makes heavy use of the GRANT OPTION. the
exclusive locking done on REVOKE statements can be quite extensive. as the
REVOKE is propagated to other users.

4. SQL DOL

Naturally. data definition statements do a lot of exclusive locking In the cata
logs. Most data definition statements have relatively short execution times
and should not be a problem. However, CREATE INDEX and DROP TABLE
are exceptions. They can have rather long execution times.

Note: Adding or activating a primary key. foreign key or unique constraint
requires a CREATE INDEX operation.

LH08-8081.()3 CD Copyright IBM Corp. 1817, 1183 eh.pter 5. Dlegnollng Perform.nee Problem. 155

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Another factor in data definition locking are the implicit operations that typi
cally will occur. For example, on a CREATE TABLE operation, entries are
made in SYSTABAUTH as well as SYSCATALOG and SYSCOLUMNS.

Perhaps the most extensive locking will occur on DROP statements. The
"change propagation" that occurs on DROP statements can be quite exten
sive. For example, dropping a table will typically cause entries to be deleted
from SYSACCESS, SYSCATALOG, SYSCOLAUTH, SYSCOLSTATS,
SYSCOLUMNS, SYSINDEXES, SYSKEYCOLS, SYSKEYS, SYSTABAUTH, and
SYSVIEWS.

5. UPDATE STATISTICS

The amount of exclusive locking done by UPDATE STATISTICS will vary
depending on the options used and whether or not indexes exist. If an index
exists, some amount of exclusive locking will be done in a/l the catalog
tables shown in Figure 81. If the ALL option is specified, all the
SYSCOLUMNS rows for the table(s) will be updated (locked exclusive). If the
statistics are being updated for a whole DBSPACE, then multiple
SYSCATALOG rows will be locked, as well as the corresponding rows in
SYSINDEXES and SYSCOLUMNS.

Also note that UPDATE STATISTICS can be a long running operation. That
. is, locking done by UPDATE STATISTICS can be held for a long time.

As you can see, the potential for locking conflicts in the catalog DBSPACE is
quite impressive. However, the situation is better than you might think. If you
are careful about the use of long running operations that get exclusive locks in
the catalog tables, you should not experience too many problems.

However, there are some considerations that you should make when using any
of the functions that do exclusive locking in the catalog tables:

1. Avoid long running LUWs

Even if you are performing a "short" operation that does exclusive locking in
the catalogs, the effect can be significant if the function is performed at the
start of a long running LUW. For example, doing CREATE functions from
ISQL with AUTOCOMMIT set OFF has the potential of holding up other users
quite noticeably. The !-Iser doing the CREATE statements may see very good
response time. But other users may get stuck in a lock wait until the
"creator" commits the LUW.

2. Beware of Catalog Queries

While it is convenient to be able to query the catalog tables, discretion
should be used. Queries on the catalogs acquire SHARE locks on the data
queried, and can hold up the operations shown· in Figure 81.

Use of the cursor stability isolation level or running such queries at discrete
times during the day Is recommended.

158 SQLJDS DI.gno.ll tor VM L.Hoe-a081-03 C> Copyright IBM Corp. 1887, 1883

I

I~

1,--

/'--

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Possible Actions:

ACTION

Run Offending Jobs Off-hours

Re-design Offending Applications

You should also investigate:
- "Conflict in Catalog Key locking"

Figure 82. Hot Spot in the Catalog Tables - Actions

PAGE

Below

Below

134

Since you cannot change the implementation of the SQUDS catalogs, your
options for resolving a "Hot Spot in the Catalog Tables" problem are limited.
There are basically three approaches that you can try:

1. Run Offending Jobs Off-hours

The most effective approach to addressing the problem is to reschedule the
offending jobs. That is, you would identify the jobs that are causing the most
lock. waits in the catalog tables and run them at a time when they are less
likely to conflict with other work.

Rescheduling of offending jobs is probably the most effective solution for
conflicts due to:

a. Preprocessing jobs

b. SQL Authorization Statements

c. SQL Data Definition Statements

d. Large Catalog Queries

2. Re-design Offending Applications

If rescheduling of the offending jobs is not attractive for your situation, then
you might be able to do some redesign of your applications such that con
flicts are less of a problem. Some of the possible changes are quite easy to
make and can be very effective. Consider the following possibilities:

a. Use Cursor Stability on Catalog Queries

Since catalog queries can block functions that need to update the cata
logs, the use of the cursor stability isolation level is recommended for
user queries on the catalogs.

b. Load Jobs

Running DATA LOAD jobs with STATISTICS set OFF, and postponing the
updating of statistics (via an explicit UPDATE STATISTICS) to a later time 1

is more costly due to the DBSPACE scan.

Catalog statistics are automatically accumulated during the DATA LOAD
(and RELOAD) command when UPDATE STATISTICS is set ON. This 1

avoids the DBSPACE scan performed by an explicit UPDATE STATISTICS. :
1

c. UPDATE STATISTICS 1

You might consider restricting the statistics you update during peak
hours. That is, avoid the DBSPACE or ALL options during peak hours.

Not.: Similar symptoms occur on adjacent key locking or key hash conflicts in 1

the catalog tables. See "Conflict in Catalog Key Locking " on page 134 for more 1

information.

LH08-808~-Q3 C Copyright IB~ Corp. 1887, 1883

1571
_ J

Hot Spot in User Tables
Problem Delcrlpt/on:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

"Hot Spot in User Tables" is a condition that can occur when applications are
locking at a reasonable level (row or page), but they conflict because they are
going after 'the same data (row or page).

If response time is long or erratic in multiple user mode but satisfactory when
only one user is connected to an application server, then it is probably a lock
wait problem. If you have a lock wait problem but not very many locks are being
obtained, then it may be a hot spot in user tables.

A hot spot in user tables is a relatively small portion of a table or DBSPACE, or a
small table, that is frequently referenced by multiple users. A hot spot can be a
data page, a small number of rows, or a hashed key value.

A hot spot in user tables will behave similar to a high lock level, but it can occur
with page or row level locking. Since the data being referenced by users is con
centrated in one spot in the database, locking a "popular" page, row or key can
be equivalent to locking the whole DBSPACE.

A hot data page is most likely to show up with page level locking. If you are
already using row level locking, then it may be a hot set of rows or a hot key
hash.

If the table being accessed is·a small table (low ROWCOUNT), then it may be a
hot spot problem. However, a hot spot can also occur on large tables (high
ROWCOUNT), if the table has a small number of very popular rows, or a small,
very popular key range.

If many different rows and pages are being accessed (no hot rows or pages),
then the problem could be a hot key range, and you need to investigate the
indexing on the tables in question. EXCLUSIVE locks on keys or index pages are
obtained on INSERT and DELETE operations. They are also obtained on UPDATE
operations when a column being updated is part of the index key. If ROWCOUNT
divided by FULLKEYCOUNT is a large value, then the problem could very well be
locking on the index keys or index pages. J
Note: Similar symptoms occur on adjacent key locking or key hash conflicts.
See "Adjacent Key Locking in User Data" on page 115 and "Conflict on Key
Hash in User Data" on page 136 for more information.

158 SQUOS Olegno.ls for VM LH08-I0I1-03 CI Copyright IBM Corp. 1887, 1813

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

POlllbl. Actions:

ACTION

Decrease Lock Level

Change Key Structures

Use Redundant Data

For problems with similar symptoms, see:
- "Adjacent Key Locking in User Data"
- "Conflict on Key Hash in User Data"

For catalog locking problems, see:
- "Hot Spot in the Catalog Tables"
- "Conflict in Catalog Key Locking"

For other lock wait problems, see:
- "Locking Related Performance Problems"

Figure 83. Hot Spot in User Tables - Actions

PAGE

Below

Below

Below

115
136

153
134

114

There are basically three approaches to resolving a "Hot Spot in User Tables"
problem:

1. Decrease Lock Level

If the DBSPACE is not already defined to have row level locking, altering the
DBSPACE to row level locking is probably the simplest action to take.
However. this may not be appropriate if the users and applications access a
lot of rows . Using row level locking when many rows are accessed can
result in lock escalations.

2. Re-design index keys

If a "hot key range" is indicated, you may want to re-design the indexes such
that FULLKEYCOUNT is closer to ROWCOUNT. If the current indexes are
needed, then it may be sufficient to add columns to the index definition to
achieve a higher FULLKEYCOUNT.

3. Re-design tables

If the above solutions do not work. consider using redundant data. Specif
ically, if update access to the data is conflicting with read access to the data.
separate copies of the data may be needed, one for the updaters for
dynamic maintenance and the other for readers. The read only copy would
have to be periodically refreshed from the updater's copy.

You might also want to investigate the other problems that have similar symp
toms. In particular. if the locking conflicts are in the indexes, see "Adjacent Key
Locking in User Data" on page 115 and "Connict on Key Hash In User Data" on
page 136.

Furthermore. if the locking conflicts are in the catalog DBSPACE (DBSPACE 1).
then you should be investigating "Hot Spot in the Catalog Tables" on page 153
and "Conflict in Catalog Key Locking" on page 134.

LHOI-t0l1-03 II Copyright IBM Corp. 1817. 1883 Chapter 5. DiagnOSing Performance Problem. 158

1/0 Capacity Exceeded

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

Problem Description: The database is not spread across enough channels
andlor devices. This condition is verified by examining the reports generated
from VM monitor data. For VM/SP and the VM/ESA 370 Feature, the VMI370 Per
formance Monitor Analysis Program (VMMAP) generates reports called "Channel
Activity Summary" and "Disk and Tape 1/0 Summary" that should be examined.
For VM/XA and VM/ESA ESA Feature, the VM Performance Reporting Facility
(VMPRF) generates reports called "Channel Busy" and "DASD By Activity" that
should be examined.

Insufficient channels is indicated if the utilization of each channel supporting the
database exceeds 30 percent. If some are high and some are low, see "1/0 Not
Balanced" on page 161.

Insufficient DASD actuators is indicated if the utilization of each device sup
porting the database exceeds 60 percent. If some are high and some are low,
see "1/0 Not Balanced" on page 161.

Possible Actions:

ACTION PAGE

Increase the Number of Buffers Below

Perform Tuning to Achieve More Efficient Access Below

Identify the Usage that Generates the Most 1/0 Below

Eliminate Contention due to non-SQUDS 1/0 Below

Add More ChannelslDevices Below

If some utilizations are low, see:
"1/0 Not Balanced" 161

For mostly Read Only data, see:
"Data Not Cached" 139

Figure 84. /10 Capacity Exceeded - Actions

1. Increase the Number of Buffers

Consider increasing the size of the buffer pools. This is a good first step
since it is easy to try and will sometimes cause a large reduction in data
base 1/0. See "Buffer Pool Too Small" on page 128 for a discussion of the
factors you should consider before doing so.

2. Perform Tuning to Achieve More Efficient Access

Review how the database manager Is being used in your Installation to see if
there are tuning steps that can be taken that would allow the requested data
to be accessed more effiCiently. See "1/0 Related Performance Problems"
on page 113.

3. Identify the Usage that Generates the Most 1/0

See if most of the database 1/0 is being generated by one or two applica
tions. The count of looks in the page buffer provided in the SQLlDS user
accounting records can be useful for this purpose. If so, see If this work can
be done more efficiently or at a different time.

180 SQLJDS DI.gnoall tor VM LH08-8011-03 C Copyright IBM Corp. 1887, 1883

J

J

1'-'

1

~

1

~

"Re.trieted Material. of IBM"
Weeneed Materials - Property of IBM

4. Eliminate Contention due to non-SQUDS I/O

Check to see if the problem is being caused by accesses to non-SQUDS
data that happens to be stored on the same channels and/or devices that
contain the database. If this is the case, consider moving the non-SQUDS
data elsewhere.

5. Add More Channels/Devices

Increase the capacity of the 1/0 subsystem used to support the database. If
there are insufficient channels, move some of the devices to one or more
additional channels. If there are insufficient devices, move some of the data
to one or more additional DASD actuators. You can do this either by moving
tables/DBSPACEs or by moving or copying DBEXTENTs. Moving
tables/DBSPACEs is discussed under "Maintaining your Database" in the
Database Administration manual. Moving and copying DBEXTENTs is dis
cussed in the System Administration manual.

1/0 Not Balanced
Problem Description:

Database I/O activity is not evenly balanced across the channels and/or devices
that are being used to support the database. This condition is verified by exam
ining the reports generated from VM monitor data. For VM/SP and VM/ESA 370
Feature, the VM/370 Performance Monitor Analysis Program (VMMAP) generates
reports called "Channel Activity Summary" and "Disk and Tape I/O Summary"
that should be examined. For VM/XA and VM/ESA ESA Feature, the VM Perform
ance Reporting Facility (VMPRF) generates reports called "Channel Busy" and
"DASD By Activity" that should be examined.

Unbalanced channel usage is indicated if the utilization of one or more of the
channels supporting the database exceeds 30 percent, while the utilizations of
the remaining channels are lower. If they all exceed 30 percent, see "1/0
Capacity Exceeded" on page 160.

Unbalanced device usage is indicated if the utilization of one or more of the
DASD supporting the database exceeds 60 percent, while the utilizations of the
remaining devices are lower. If they all exceed 60 percent, see "1/0 Capacity
Exceeded" on page 160.

Poa.lbl. Action.:

ACTION PAGE

Look for Way. to Reduee the 110 Rate Below

Balance Channel Usage Below

Balance Device U.age Below

If all utilization. are high :
"1/0 Capacity Exceeded" 180

Figure 85. 110 Not a.'.need - Action.

1

LHoe-eOS1-03 C) Copyright IBM Corp. 1887. 1_
- - -

Chapter 5. OI8O"OIlng Performance ProDlem. 181 ~

1. Look for Ways to Reduce the 1/0 Rate

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Before trying to redistribute the data, consider looking for ways to reduce
either the overall 1/0 rate or the 1/0 rate associated with the overloaded
devices/channels. See "1/0 Related Performance Problems" on page 113.

2. Balance Channel Usage

To balance channel usage, first study the VMMAP or VMPRF device usage
report to determine what grouping of devices would result in a rough
balance of 1/0 load across the available channels. Then either, physically
move the device to another channel, or, copy its contents to a device on
another channel. Copying the contents can be achieved by moving the
DBEXTENT. For details on moving DBEXTENTs, see the System Adminis
tration manual.

3. Balance Device Usage

Inaccurate Statistics

First determine what DBEXTENTs reside on each of the devices that show a
utilization in excess of 60 percent.

Then, for each such device, determine how much each DBEXTENT contrib
utes to the overall 1/0 load on that device. This can be done by collecting
VM monitor data with the SEEK class enabled and reducing the data using
VMMAP. The seek report provided by VMMAP will show the distribution of
II0s across the database minidisks. On VM/XA or VM/ESA ESA Feature
systems, the VM Performance Reporting Facility (VMPRF) provides the same
function as VMMAP.

Use this information to make and carry out a plan to add or copy one or
more DBEXTENTs to, or delete from one or more DBEXTENTs to the low
usage devices. The procedure for doing this is described under "Managing
Storage Pools" in the the System Administration manual.

Problem Description:

If the statistics in the SQUDS catalogs do not accurately reflect the actual char
acteristics of the data, the SQUDS optimizer may choose an inefficient access
path. This will not cause the SQL request to fail, but the response time experi
enced may be longer than expected. In fact, ISQL query users may notice
strange query cost estimates for the queries. Queries with small query cost esti
mates may take a relatively long time.

Note: You can also have cases where the query cost estimate is quite large, but
the query runs relatively fast.

Inaccurate statistics might exist if:

1. Statistics have never been generated 1 for the data, or

2. The data has changed significantly since the statistics were last updated.'

1 Statistics can be updated by the UPDATE STATISTICS statement, or, as a result of a DBSU DATALOAD or RELOAD command
with UPDATE STATISTICS set ON.

I Some statistics are generated when the CREATE INDEX statement Is processed.

182 SQLlDS DI.gnosl. for VM LH09-.0I1-()3 C Copyright IBM Corp. 1887, 1e83

J

L

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

If UPDATE STATISTICS has never been run on the table, the database manager
will use default values for the statistics. For the table in question, these values
may not come close to the statistics for the actual data. This, of course, can
result in a very bad choice of access path.

A similar result can occur if the statistics in the catalog become out of date.
This can occur if the table had a lot of INSERT, UPDATE and/or DELETE activity
since the last time UPDATE STATISTICS was run.

Catalog statistics are relevant only to the SQL DML statements (and not data
definition or authorization statements). Other SQL statements are not subjected
to access path selection. Thus, you will experience the "Inaccurate Statistics"
problem only on the DML statements. This is true of DML statements embedded
in application programs, as well as those issued dynamically (through ISQL or
the DBS Utility).

With inaccurate statistics, there will be little difference between response times
in single user environments and multiple user environments. The statistics will
be just as inaccurate for either case.

One symptom you might observe is that the query cost estimate (QCE) for
queries on the table in question may appear to be unrealistic because the QCE
is based on out-of-date statistics.

Another problem that has symptoms similar to "Inaccurate Statistics" is the
"Bad Data Distribution" problem. With the "Bad Data Distribution" problem, the
statistics can exist and be up-to-date, but are misleading because of peculiarities
in the data. See "Bad Data Distribution" on page 122 for more information on
this problem.

Possible Actions:

AcnON PAGE

Update Data Statistics Below

For other problems with similar symptoms, see:
- "Bad Data Distribution" 122

For other high CPU usage problems, see "CPU Related Performance 112
Problems"

For other high I/O problems, see "I/O Related Performance Problems" 113

Figure 86. Inaccurate Statistics - Actions

There is basically only one action that can be taken for the "Inaccurate
Statistics" problem. That is to update the statistics for the problem table(s).
However, there are variations that you may want to consider. You need to
decide whether or not you need to update the statistics for only the table, or to
update the statistics for all the tables in the DBSPACE. Furthermore, you may
also want to specify the ALL option to update the statistics for all the columns in
the table. The application must be reprocessed for the updated statistics to be
used. See "Package Needs Re-preprocessing" on page 194 for more informa
tion.

LH08-8011·03 C Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 163

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If your statistics are up-to-date and you still have the same (or similar) symp- J
toms, then you may have the "Bad Data Distribution" problem. You should
review that problem (on page 122) next.

If the problem is neither inaccurate statistics nor bad data distributions, then you
should go back to the index on "high I/O" problems and look for another'pos
sible cause.

Index Disqualified
Problem Description:

An index was either completely disqualified as a possible way to access the
table (Case 1 below), or it was disqualified as a means of gaining selective
access to the table (all remaining cases).

1. The index was disqualified as a possible way to access the table because
one of its columns is being updated by this SQL statement, or by another
SQL statement based upon cursor position provided by this SQL statement.
However, the index is not disqualified if the SET clause of the UPDATE state
ment has the form "column = value," and there is a predicate in the WHERE
clause which identifies a particular index key value. For example, the state
ment "UPDATE TABLE1 SET C1 = 125 WHERE C1 = 100" would be able to
use an index on C1.

2. The index could not be used to selectively access the table because the data
type of the value in the predicate could not be converted to the data type of
the indexed column.

Note: Such a predicate is also not eligible as a Database Storage Sub
system (DBSS) search argument (SARG).

For the numeric data types, the conversions that can be done are summa
rized by the following diagram:

SMALLINT-->INTEGER-->DECIMAL-->FLOAT

A value's data type can be converted into any of the data types that lie to its
right. For example, INTEGER can be converted into DECIMAL or FLOAT, but
not SMALLINT.

If the data type of the column is CHAR(n) or GRAPHIC(n), that column is eli
gible for use with an index if the length of the predicate value is less than or
equal to "n".

If the data type of the column is VARCHAR(n) or VARGRAPHIC(n), that
column is eligible for use with an index if the predicate value is any char
acter data type (fixed or variable, any length).

A jOin predicate (for example, column1 =column2), is eligible only for use
with an index if the data types of the two columns are identical (except for
whether the columns support NULLS):

• In the case of CHAR(n), VARCHAR(nS254), GRAPHIC(n), and
VARGRAPHIC(nS127), the lengths must match.

• In the case of DECIMAL (m,n), precision and scale must both match.

3. An index was not used to selectively access the table because OR was used
In the WHERE clause.

184 SQLlDS DiagnosIs tor VM LH09-8081-03 C> Copyright IBM Corp. 1M7, 1883

"Reltricted Materials of IBM"
Licenled Materials - Property of IBM

4. A multicolumn index was not used to selectively access the table because
the selective column specified in the predicate was not first in the index key.

5. The database manager does not provide index support for the predicate as
written. A predicate can generally be written in two or more equivalent
ways. For example, you could write "BALANCE + 100 = 1000" or
"BALANCE =900." Only the second case is eligible for selective index access
consideration, ("submitted key=va/ue"). In the first case, a nonselective
index scan is used.

Possible Actions:

ACTION PAGE

Replace UPDATE with DELETEIINSERT Below
Create Another Index that Excludes

Updated Column
Redesign so that the Updated Data is Not

Indexed

Use Compatible Data Types Below

Use IN or UNION instead of OR Below

Create Another Index with Selective Column First Below

Write Index-Eligible Predicates Below

See the following closely related problems:

"Inefficient Search" 170
"No Selective Index" 192

For other high CPU usage problems, see "CPU Related Perform- 112
ance Problems"

For other high I/O problems, see "I/O Related Performance 113
Problems"

Figure 87. Index Disqualified - Actions

1. Index key column is being updated:

• Replace UPDATE with DELETEIINSERT

If you need to update the column corresponding to the most selective
index into the table. it may be more efficient to delete and then reinsert
the row instead of updating it. The reason for this is that an index on an
updated column may be ineligible for use in accessing the table.
whereas no such restriction applies to the INSERT and DELETE SQL
statements.

The index will be eligible if the SET clause of the UPDATE statement has
the form "column = value." and there is a predicate in the WHERE
clause which Identities a particular index key value. For example. the
statement "UPDATE TABLE1 SET C1 = 125 WHERE C1 = 100" would be
able to use an index on C1.

• Create Another Index that Excludes Updated Column

Take a look at the WHERE clause of the UPDATE statement and see if
selective access to the table could be achieved by creating another index
on a different column.

LH09-aoa1-()3 C Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

In the case of a multicolumn index where the updated column is not the \
first column In the index key, reconsider whether the index has to include ~
the updated column. If it doesn't, drop and re-create the index excluding
the updated column. If it does, consider creating an additional index that
is just on the first column. Such an index could be used to get efficient
table access when the column that participates in the multicolumn index
is being updated.

• Redesign so that the Updated Column is Not Indexed

Try to redesign the table in such a way that the data that has to be
updated is in a different, unindexed column. For example, it may be the
case that only the right-hand portion of the column is ever updated. In
that case, it may be possible to split the column into two equivalent
columns and index only the column derived from the left-most portion.

2. Use Compatible Data Types

When writing an SQLlDS application, make sure that the data type of each
program variable is compatible with the data type of the column it is associ
ated with. The index compatibility requirements are provided above in the
Problem Description. For best performance, data types and lengths should
match exactly.

3. Use IN or UNION instead of OR

Rewrite the SQL statement using IN or UNION, as applicable. See Point 2 on
page 172 for further information.

4. Create Another Index with Selective Column First

Consider creating an index on the column that appears in the predicate.
This is also a good time to rejustify the multicolumn index. Perhaps there
only needs to be an index on the first column.

5. Write Index-Eligible Predicates

Write predicates in index-eligible form whenever possible. A predicate must
be in one of the following forms to be eligible for use with an index to
provide selective access to a table:

col name op value
"." , ">=", or ">M)

colnamel op colname2
("OP" is MC", "c.",

This case applies only to joins. Either colname1 or colname2 will be
considered for use with an index, depending on the join sequence
chosen by the optimizer.

col name BETWEEN valuel AND value2

col name IS NULL

colname IN (valuel, value2, •••)

col name LIKE value
(if value does not start with . "

166 SQUOS Ol_gnasl. tor VM LH08-a081-03 C Copyright IBM Corp. 1a87, 1883

"Re.trlcted Material. of IBM"
Ucenled Material. - Property of IBM

Index Maintenance
Problem Description:

You can expect execution times for data maintenance operations to be notice
ably longer if the target table has several indexes defined on it. This is partic
ularly true for DATALOAD. bulk INSERT or bulk DELETE operations. However. it
is also possible with bulk UPDATE operations when the column(s) being updated
occur in one or more indexes.

DATA LOAD execution time can be expected to be much longer if the target table
has one or more indexes defined on it. For eaclt row inserted into the table.
index maintenance has to be done for each index on that table. Consequently.
the more indexes. the larger the effect.

Posllble Actions:

ACTION PAGE

Drop Some Indexes Below

Create Indexes after Load Below

DROP/Re-CREATE INDEX Below

REORGANIZE INDEX 169

Increase the Number of Buffers Below

For other high CPU usage problems. see "CPU Related Performance 112
Problems"

For other high 1/0 problems. see "110 Related Performance Problems" 113

Figure 88. Index Maintenance - Actions

1. Drop Some Indexes

First. evaluate the indexes on the table and eliminate any indexes that are
not of significant value. Most very nonunique indexes can be removed
because they cannot provide very selective access to the table anyway.
Indexes on heavily updated columns should also be avoided.

2. Create Indexes after Load

For DATALOAD or bulk INSERT activity. it is preferable ·to create indexes
after rows are loaded/Inserted. Two exceptions: 1) the number of rows
being loaded is much smalier than the number of rows already in the table.
and 2) the table contains a small number of very large rows (for example.
10.000 bytes).

3. DROP/Re-CREATE INDEX

The most common reason for wanting to do DATALOADs against an indexed
target table is that new batches of data periodically need to be added to an
existing table.

If the table is not too large. or the percentage of the dataload to the overall
table small. it is faster to drop the indexes on that table. load the new data
and then re-create the Indexes. An advantage of this approach. is that when
the index has been recreated. the Index tree Is balanced. however. packages
will need to be repreprocessed. Similarly. for bulk DELETE operations. it
may be more efficient to DROP Indexes before the DELETE. and recreate

LHoe-a0l1.()3 CD Copyright IBM Corp. 1887.1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

them after the DELETE. This is certainly true when all the rows of the table J'
are being deleted. The same approach can be used with bulk INSERT and
DATA LOADs, if the number of rows in the existing table is smaller than the
number of rows being loaded/inserted.

4. Increase the Number of Buffers

If none of the above actions can be employed, consider increasing the size
of the buffer pool. This will keep many of the index pages in virtual storage,
thus minimizing database I/O to the indexes.

Index No Longer Highly Clustered
Problem Description:

A query involving a sequential scan of some significant number of rows (for
example. more than 20) is being performed inefficiently, for example. by a
DBSPACE scan, because the degree of clustering of a previously highly clus
tered index dropped so low that SQUDS no longer considers it to be highly clus
tered. The database manager calculated the degree of clustering the last time
UPDATE STATISTICS was explicitly run for this table, or when it was implicitly
run while data was being loaded (using the DBSU DATALOAD with UPDATE STA
TISTICS SET ON, or the DBSU RELOAD command).

We say that an index is highly clustered if the sequence in which the tabJe's
rows are stored in pages in the database corresponds closely to the index key
sequence. Whether or not an index is highly clustered does not have a signif
icant effect on performance if the number of rows examined by scanning the
table with that index is small (for example. less than 20). In that case a drop in
the degree of clustering of an Index is probably not the problem.

If a table does not have a highly clustered index. access to that table will be less
efficient for sequential scans because the database manager must access the
table using a DBSPACE scan or using an index scan via an unclustered (or only
slightly clustered) index. In the case of a DBSPACE scan. all active pages in the
DBSPACE are examined. not just those that contain rows of the desired table. In
the case of an unclustered index scan. each row examined will often require
another I/O to the database. J
This problem can arise either because you never created a highly clustered
index or because a highly clustered index became less clustered. The former
problem is covered in "Need a Highly Clustered Index" on page 187; this section
deals with the latter. Note however that the symptoms are the same.

Information as to whether or not a given index is highly clustered is maintained
in the CLUSTERRATIO column of the row corresponding to that index in the
SYSTEM.SYSINDEXES catalog table. For more information on CLUSTERRATIO
refer to the following:

• discussion in "Need a Highly Clustered Index" on page 187
• the Performance Tuning Handbook.

You can determine the current clustering status of all the indexes on a table by
issuing the following SQL statement:

SELECT INAME,ICREATOR,CLUSTERRATIO
FROM SYSTEM.SYSINDEXES
WHERE TNAHE-table_name AND CREATOR-table_creator

188 SQLJDS Diagnosis ror VM LH09-aoa1-03 ~ Copyright IBM Corp. 1Q87. 1983

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The result will show you if the index you intended to be highly clustered is cur
rently considered to be so.

Possible Actions:

ACTION PAGE

Make the Index you want Highly Clustered the First Created Index Below

Re-cluster the Table Below

For other high CPU usage problems, see "CPU Related Performance 112
Problems"

For other high 1/0 problems, see "1/0 Related Performance Problems" 113

Figure 89. Index No Longer highly clustered - Actions

A table can be loaded in any order you choose, but any given table loading has
only one ordering associated with it. As a result, you can force only one of the
table's indexes to be highly clustered. Occasionally, one (or more) of the other
indexes on a table will also be highly clustered, but this is fortuitous and cannot
be directly controlled.

1. Make the Index you want Highly Clustered the First Created Index

The index you intend to be highly clustered should always be the first index
created on that table. This is because the database manager always tries to
maintain clustering of the first created index. This index is known as the
"clustering" index. Use the query shown in the problem description for
Excessive II0s on Insert on page 148 to make sure that the index you
intended to be highly clustered is the first created index. If not, make it the
first created index. The procedure for doing so is described in the Perform
ance Tuning Handbook.

2. Re-cluster the Table

If the intended highly clustered index is the first created index, re-cluster the
table by using the DeS Utility to UNLOAD and then RELOAD the table. This
procedure is described in the Performance Tuning Handbook.

If you anticipate a large amount of additional INSERT activity against the
table, consider increasing the amount of free space that is reserved on each
page as this will increase the amount of time that the index will retain its
high degree of clustering. Free space is determined by the PCTFREE param
eter on the ALTER Des PACE statement. Set PCTFREE to the desired value
just prior to dOing the RELOAD and then set it to a low value after the
RELOAD has completed.

Indexes Are Fragmented
Probl.m D •• crlpt/on:

Extensive modifications to a table have fragmented its indexes, resulting in
increased 110 and associated processing overhead when those indexes are
used. This condition should be suspected if there has been a large amount of
data modification activity on the table since the time its Indexes were created.

Keep in mind that any index can become fragmented, including the indexes on
the system catalog tables. Catalog table INSERTs occur Implicitly as part of

LHoe-eOS1..Q3 ~ Copyright IBM Corp. 1887, 1883 Ch.pter 5. DI.gnoslng Perform.nee Problema 188

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ALTER TABLE, CREATE INDEX, CREATE TABLE, CREATE VIEW, CREATE
SYNONYM, GRANT, preprocessing a new program, and re-preprocessing a
program. Catalog table DELETEs occur implicitly as part of DROP INDEX, DROP
PROGRAM, DROP TABLE, DROP VIEW, DROP SYNONYM, REVOKE, and re
preprocessing a program.

Use the SHOW DBSPACE operator command to determine whether or not a
DBSPACE needs to be reorganized.

Possible Actions:

ACTION PAGE

REORGANIZE INDEX Below

For other high CPU usage problems, see "CPU Related Performance 112
Problems"

For other high 110 problems, see "I/O Related Performance Problems" 113

Figure 90. I.ndexes Are Fragmented - Actions

1. REORGANIZE INDEX

Reorganize the index using the DBSU REORGANIZE INDEX command. This
command performs faster than a DROP/Re-CREATE because neither a
DBSPACE scan nor a sort is performed.

An additional advantage of this feature is that packages do not need to be
repreprocessed.

In the case of the system catalog tables, use the catalog index reorganization
utility SQLCIREO. For more information, see the Database Administration
manual.

Inefficient Search
Problem Description:

J

1. The WHERE clause is not restrictive enough, resulting in a very large answer ')
set. ...",

2. The OR connector is used in the WHERE clause. When th.is is done, all pred
icates become ineligible for use in conjunction with an index to achieve
selective access to the table.

Note: The above rule applies only to the outermost grouping of predicates.
For example, all predicates in the following query are ineligible for use with
an index:

SELECT * FROM PROJ_ACT
WHERE PROJNO-'AD3199I
AND ACTNO-69 OR ACTNO-79

By way of contrast, in the following similar (but not equivalent) query
"PROJNO=AD3100" is eligible for use with an index, while the other two
predicates are not:

170 SQUDS Diagnosis tor VM

SELECT * FROM PROJ ACT
WHERE PROJNO-'AD31e9 1

AND (ACTNO-69 OR ACTNO-79)

LH08-8081-03 ~ Copyright IBM Corp. 1817, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

3. Nullable expressions may cause quantified predicates to be processed in an
inefficient way.

4. Even precision decimal can cause predicates to be processed in an ineffi
cient way.

5. The SQL statement contains a subquery. This may force SQUOS to satisfy
the query in an inefficient way.

6. Host variables are used for values in one or more predicates in the WHERE
clause. This problem applies only to precompiled applications.

If one or more of the predicate operators are BETWEEN or an inequality. the
database manager may choose a suboptimal way to access the table. This
is because the database manager normally uses linear interpolation to esti
mate how many of the table's rows will satisfy these types of predicates. If.
however. the comparison value is a host variable. the actual value is not
known at precompilation time so the database manager is forced to make a
much less accurate estimate based on default rules. See "Range Predicate
Used With Host Variables" on page 19.9.

7. The NOT modifier is used in conjunction with a predicate in the WHERE
clause. When this is done. the predicate must be evaluated at the ROS level.
resulting in increased processing overhead.

8. An indicator variable is used with a predicate in the WHERE or HAVING
clause. When this is done. the predicate must be evaluated at the ROS level.
resulting in increased processing overhead.

Possible Actions:

ACTION PAGE

Use More ANDed Predicates Below

Use IN or UNION Below

Avoid Nullable Expressions in Quantified Predicates Below

Avoid Even Precision Decimal in Predicates Below

Formulate as a Join Below

Use Dynamic Statements Below

Use Negative Form of Predicate Below

Avoid Indicator Variables on Predicates Below

See the following closely related topics:

"Insufficient Indexing" 174
192 "No Selective Index" 164 "Index Disqualified"

For other high CPU usage problems. see "CPU Related Performance 112
Problems"

For other high 110 problems. see "1/0 Related Performance Problems" 113

Figure 91. Inefficient Search - Actions

1. Use More AN Oed Predicates

Put in al# valid predicates. even If they are not needed to give the desired
answer set.

LH09-8011-03 C> Copyright la~ Corp. 1N7. 1883 Chapter 5. Diagnosing Performance Problems 171

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Reconsider what information you really need. Then see if you can further
qualify the WHERE clause by ANDing it with additional predicates.

Instead of giving end users access to an entire table, provide them with a
view on just the portion of the table that they need. This has the effect of
adding the predicates provided in the view definition to the predicates that
appear in the queries formulated by the users.

2. Use IN or UNION

Consider the following alternatives to the use of OR:

• If all predicates connected by OR are for the same column, substitute the
equivalent IN predicate. The database manager will then be able to use
an index on the IN column to selectively access just those rows that
satisfy the values in the IN list. For example, instead of:

SELECT * FROM PROJ_ACT
WHERE PROJNO='AD3100I
AND (ACTNO=60 OR ACTNO=70)

write:

SELECT * FROM PROJ ACT
WHERE PROJNO='AD3100 1

AND ACTNO IN (60,70)

Note: When the predicate columns are the same, the IN formulation is
generally the best, but the UNION approach (see below) is also
applicable and may occasionally give better performance.

• If one or more of the predicates connected by OR are for a different
column, consider rewriting the query as the UNION of two or more
SELECTs. For example, instead of:

SELECT * FROM EMPLOYEES
WHERE JOB='CLERK'
OR NAME= I JONES I

write:

SELECT * FROM EMPLOYEES WHERE JOB='CLERK'
UNION
SELECT * FROM EMPLOYEES WHERE NAME='JONES '

3. Avoid Nullable Expressions in Quantified Predicates

To avoid this case, consider either of the following:

• Define the column to be NOT NULL

• Rewrite the query to avoid the use of the nullable expression. For
example, Instead of:

C1 + 5 • 10

write:

C1 • 5
4. Avoid Even Precision Decimal in Predicates

Some application languages such as Assembler do not support even preci
sion decimal. When such table columns are referenced In a predicate con-

172 SQUOS Ollgno.ll tor VM LHoe-aOS1-03 "Copyright IBM Corp. 1887. 1883

J

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

taining a comparative host variable in these applications, the host variable
must be declared with a precision one higher than the column. As a result,
you get inefficient processing because the predicate is residual.

Redefine the table columns to odd numbered precision to avoid this situ
ation.

5. Formulate as a Join

In general, correlated subqueries will perform better than subqueries without
correlation. Furthermore, in many cases, a join can be used in place of
either. Joins will typically outperform either correlated or uncorrelated sub
queries.

For example, assume you want to find activity numbers and their
descriptions for all projects (in the PROJ_ACT table). The natural way to
express this in SQL is:

SELECT ACTNO, ACTDESC
FROM SQLDBA.ACTIVITY
WHERE ACTNO IN (SELECT ACTNO

FROM SQLDBA.PROJ_ACT)

However, the correlated subquery version of this query would usually run
faster:

SELECT ACTNO, ACTDESC
FROM SQLDBA.ACTIVITY A
WHERE ACTNO IN (SELECT ACTNO

FROM SQLDBA.PROJ ACT P
WHERE P.ACTNO-A.ACTNO)

Furthermore, you would normally get the best performance by expressing
the query using a join:

SELECT DISTINCT A.ACTNO, ACTDESC
FROM SQLDBA.ACTIVITY A,SQLDBA.PROJ_ACT P
WHERE P.ACTNO-A.ACTNO

6. Use Dynamic Statements

Instead of using host variables, execute the SQL statement dynamically with
fixed values.

7. Use Negative Form of Predicate

Whenever possible, use the negative form of a predicate rather than
negating it with the NOT modifier. For example:

• Use "colname < > or .., = value" rather than "NOT colname =value."

• Use "colname < = value" rather than "NOT colname > value."

• Use "colname < value1 OR colname > value2" rather than
"NOT BETWEEN value1 AND value2."

8. Avoid Indicator Variables on Predicates

Do not use an indicator variable with a predicate unless it Is specifically nec
essary.

LH08-I0I1.()3 C Copyright IBM Corp. 1817, 1883 Chapter 5. Diagnosing Performance Problems 173

Inefficient SELECT List
Problem Description:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

1. The data types of one or more program variables do not match the data
types of the corresponding columns specified in the select list of a SELECT
statement. As a result, the database manager has to do extra processing to
perform the data conversions.

2. The select list includes more columns than are actually needed. As a result,
extra processing must be done to return the additional data.

Possible Actions:

ACTION PAGE

Use Same Data Types Below

Select Only Required Columns Below

Figure 92. Inefficient SELECT LIST - Actions

1. Use Same Data Types

To avoid data conversion processing, make sure that the data types of the
program variables and the corresponding columns in the select list match.

2. Select Only Required Columns

Insufficient Indexing

Make sure that the select list includes only those columns that will actually
be used. In particular, avoid overuse of the "SELECT ." notation.

Problem Description:

1. There are no indexes on the table. As a result, the database manager is
forced to use a DBSPACE scan to access the table.

2. The absence of a suitable index forced an internal sort. This was required to
eliminate duplicates (SELECT DISTINCT), satisfy an ORDER BY or GROUP

J

J

BY, or support a join. When in doubt, the presence of an internal sort can be '\
verified by executing EXPLAIN PLAN for the SQL statement in question. For ...,.,
more information on using the explanation tables, see the Performance
Tuning Handbook.

Possible Actions:

ACTION PAGE

Create Indexes Below

Create Index on Sort Column(s) Below

For other high CPU usage problems, see "CPU Related Performance 112
Problems"

For other high I/O problems, see "I/O Related Performance Problems" 113

Figure 93. Insufficient Indexing - Actions

J
174 SQUDS Diagnosis tor VM LHoe-aoa1-03 C Copyright IBM COrp. 1887.1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

1. Create Indexes

Create one or more appropriate indexes on the table. For recommendations
on the number and placement of indexes, see the Performance Tuning Hand
book.

2. Create Index on Sort Column(s)

Try creating an index on the column(s) being sorted. If this index is used to
access the table, the rows returned will already be in sort order and the
internal sort will be bypassed. Bear in mind, however, that if the database
manager estimates that it can more efficiently access the table using some
other index, it will use that index instead. In that case, an index on the sort
column(s) will not affect performance.

This action is appropriate only if a large number of rows need to be sorted.
The database manager does small sorts very quickly.

Invalid Entities Exist
Problem Description: Before any index operation, DBSS verifies that the index
is valid. If there are invalid indexes, then this verification increases processing
time.

Possible Actions:

ACTION PAGE

Drop invalid indexes and recreate them. Below

Figure 94. Invalid Entities Exist- Actions

1. Drop invalid indexes and recreate them.

Use the SHOW INVALID command to display the invalid indexes. For more
information on invalid indexes, see "Invalid Indexes" on page 41. For more
information on the SHOW INVALID command, see Operation manual.

You can also force an invalid index to be dropped and recreated by using the
REORG statement.

Large Tables Share Same DBSPACE
Problem Description:

When large tables share the same DBSPACE, DBSPACE scans can be exces
sively long. That is, each of the large tables will use up a large number of pages
in the DBSPACE. This will typically result in a la.rge value for NACTIVE (active
pages in the DBSPACE), and a small to medium value for PCTPAGES (the per
centage of active pages occupied by any given table in the DBSPACE). A
DBSPACE scan reads al/ active pages in the DBSPACE.

Not.: The value used in path selection is calculated dynamically as

SYSCATALOG.NPAGES
SYSDBSPACES.NACTIVE

If the calculated value Is small, SQLlDS path selection will tend to favor INDEX
scans over DBSPACE scans. If the calculated value Is medium to high, then
SQLlDS path selection will tend to favor DBSPACE scans over index scans.

LHoe-eoa1-03 C Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performanee Problems 175

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If a DBSPACE scan is used for one of the tables, all the pages for the other large
table(s) will also be read. This, of course, means the scan will be doing a lot of
useless 110's for pages that do not contain rows of the table being searched.

For example, if you have a DBSPACE that contains a table that occupies 500
pages and another table that occupies 600 pages, and NACTIVE for the
DBSPACE is 900, you may experience the" Large Tables Share Same DBSPACE"
problem. If a DBSPACE scan is done on the 500 page table, 400 pages (900
minus 500) will be read with no rows found. Similarly, a DBSPACE scan of the
600 page table will result in 300 page reads with no.rows found.

As you can see, the problem is most severe for large tables. However, you can
also see the same basic problem if you have an unindexed table sharing a
DBSPACE with a large table. For example, if you add a 2 page table to the
DBSPACE in the previous example and do not index it, all accesses to the 2
page table will be via DBSPACE scans. Such accesses would result in 902
pages being read just to get 2 pages of rows! ,..)

Note, however, PCTPAGES for the 2 page table would be O. If any index were
created on "the two page table, the index would be used on almost all accesses
to the table.

When PCTPAGES is this small, the database manager will typically use an index
rather than a DBSPACE scan to find pages with rows of the table.

In summary, you probably have the "Large Tables Share Same DBSPACE"
problem if:

1. You have a large number of database I/O's,

2. The applications are dOing DBSPACE scans,

3. You have a Large table in a DBSPACE with other large tables (or small
tables that are not indexed), and

4. The problem persists in single user environments

Note: There are other problems that show similar symptoms (high I/O's with

J

high CPU usage). See "I/O Related Performance Problems" on page 113 for the ")
list of other possible "high I/O" problems.,

The "Large Tables Share Same DBSPACE" problem can show up in the fol
lowing situations:

1. On Data Manipulation Statements

Data manipulation statements (DELETE, INSERT, SELECT and UPDATE) can
result in DBSPACE scans. In the case of INSERT, this would apply only to
(ormat 2 INSERTs.

2. On CREATE INDEX, DROP TABLE or UPDATE STATISTICS Statements

These statements are always done as DBSPACE scans.

3; DATA LOAD Statements with SET UPDATE STATISTICS ON

DBSPACE scans are not performed during loading of data, when UPDATE
STATISTICS is set ON. However the following are exceptions. Under these
conditions, a DBSPACE scan will be performed.

• If data Is being loaded Into more than one table.

178 SQLJDS Diagnosis 'or VM L.H08-8081-03 C Copyright IBM Corp. 1987, 1983

"Reltricted Materlall of IBM"
Ucenled Materiall - Property of IBM

• If there are indexes on the table.

• If the table being loaded already contains data.

The above will require an explicit UPDATE STATISTICS following the
DATALOAD, which will cause a DBSPACE scan.

4. Unloading (DATAUNLOAD or UNLOAD)

If whole (or large portions of) tables are unloaded, then the unload operation
would typically be done as a DBSPACE scan.

Possible Actions:

ACTION PAGE

Index tables Below

Reorganize DBSPACEs Below

Redesign Applications to avoid DBSPACE scans Below

For other problems that result in DBSPACE scans, see:
- "DBSPACE Scan Being Performed" 141
- "Need a Highly Clustered Index" 187
- "Index No Longer Highly Clustered" 168
- "Inaccurate Statistics" 162

For other high CPU usage problems, see "CPU Related Perform- 112
ance Problems"

For other high 110 problems, see "110 Related Performance 113
Problems"

Figure 95. Large Tables Share Same DSSPACE - Actions

There are basically three ways you can try to resolve the "Large Tables Share
Same DBSPACE" problem:

1. Index the tables in the DBSPACE

In the first approach, the objective is to eliminate the problem by indexing
tables such that DBSPACE scans never (or rarely) occur. Clearly they are
going to occur on CREATE INDEX, DROP TABLE or UPDATE STATISTICS, but
you might be able to avoid DBSPACE scans on your data manipulation state
ments through proper indexing. Clustering indexes are particularly important
for avoiding DBSPACE scans.

This approach can be quite effective at eliminating DBSPACE scans for
searches on the smaller tables in the DBSPACE. It is less likely to be effec
tive if you have multiple large tables in the same DBSPACE. However, a lot
depends on how the large tables are being accessed and whether or not the
tables have a clustering index.

2. Reorganize the DBSPACEs .

In many cases, you will probably have to address the" Large Tables Share
Same DBSPACE" problem by redefining where your tables are stored. That
is, eliminate the problem by not storing large tables in the same DBSPACE.

3. Redesign Applications to avoid DBSPACE scans

DBSPACE scans can be avoided through Index and DBSPACE reorganiza
tion. They can also be avoided during DATA LOADs with SET UPDATE STA-

LH08-I081-03 C) Copyright IBM Corp. 1887, 1883 Ch.pter 5. DI.gnoslng Perform. nee Problems 177

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

TISTICS ON, with restrictions. For a list of restrictions see "OATALOAO. \
Statements with SET UPDATE STATISTICS ON" under Problem Description. ...",

If these do not sufficiently eliminate OBSPACE scans, then you might want to
then consider the third approach. That is, redesign your applications to be
more selective such that OBSPACE scans are less frequent.

In the first and third approaches, you would be trying to optimize performance
within the constraint that large tables must share the same OBSPACE. The
second approach more directly addresses the problem.

For other problems that could be causing high I/O's or OBSPACE scans, see "I/O
Related Performance Problems" on page 113. You may want to specifically
review the problems that are likely to result in OBSPACE scans (see list shown
in Figure 75 on page 143).

Lock Level Too High
Problem Description:

"Lock Level Too High" is a condition that occurs when applications are locking
more data than is necessary. Locking done by applications is determined by the
lock level defined for the OBSPACEs referenced (as defined by the LOCKMOOE
option on ACQUIRE or ALTER OBSPACE). However, the level of locking can also
be overridden by the application through use of the SQL LOCK statement.

If response time is long or erratic in multiple user mode, but OK when only one
user is connected to the application server, then it could be a LOCK WAIT
problem.

If it is a lock wait problem, check to see what OBSPACE(s) the lock waits are
occurring in and the level of locking being done in the OBSPACE(s). If the data
being accessed is in a OBSPACE defined with OBSPACE locking level
(LOCKMOOE=S in SYSOBSPACES), then the lock level is probably too high.

Since SHARE locks conflict with EXCLUSIVE locks, and EXCLUSIVE locks conflict
with all other locks, OBSPACE locking should not be used when multiple users
are updating the data, or when only one user is doing frequent updates while '\
other users are trying to read the data. ...",#

A similar problem can occur with LOCKMOOE = P (page level locking). The
locking level may be too high if LOCK MODE = P, but the number of pages occu
pied by the table (NPAGES in SYSCATALOG) is small. See "Hot Spot in User
Tables" on page 158 for more information on this case.

If the OBSPACEs being accessed are already defined with page or row level
locking, then the problem could be lock escalations or adjacent key locking. For
more information on these problems, refer to "NLRB Parameters Too Small" on
page 191, "Lock Level Too Low" on page 179, "Excessive Locking in User Data"
on page 149 or ·"Adjacent Key Locking in User Data" on page 115.

If the applications are using row level locking, then you may also want to investi
gate "Conflict on Key Hash in User Data" on page 136.

178 SQUDS Diagnosis for VM I.H08-8081-03 CI Copyright IBM Corp. 1887, 1883

"Reatricted Materiala of IBM"
Licenaed Materials - Property of IBM

Possible A et/ons:

ACTION

Decrease Lock Level

If using PAGE or ROW locking. see also:
- "Hot Spot in User Tablea"
- "Excessive Locking in User Data"
- "Lock Level Too Low"
- "Adjacent Key Locking in User Data"

If using ROW locking. see also
- "Conflict on Key Hash in User Data"

Figure 96. Lock Level Too High - Actions

PAGE

Below

158
149
179
115

136

There is basically only one solution to the "Lock Level Too High" problem. If
you currently are operating with OBSPACE level locking. use the ALTER
OBSPACE statement to reduce the LOCK MODE to page (P) or row m level
locking .

If you currently are operating with page or row level locking. continue the anal
ysis of the problem with the problems listed in Figure 96.

Lock Level Too Low
Problem Description:

Generally speaking. a low lock level (row or page locking) will allow more users
to access the same data (table) at the same time. However. if applications are
accessing a lot of rows. then a lot of data will be locked anyway. It will just take
more lock requests to get them. Thus. it is possible to access data with the lock
level too low.

If the application performs satisfactorily in single user mode but has erratic or
long response time in multiple user mode. then the problem could be a lock wait
problem.

If your applications are experiencing lock waits and you are also experiencing
lock escalations. then the problem may be that the locking level is too low. This
will occur if the locking level is page or row locking. and th"e application(s)
access a lot of rows.

Note: Rows accessed include rows inspected by the database manager to find
the rows requested. The rows accessed are not necessarily limited to just those
requested.

When applications access many rows. then page or row level locks can get esca
lated to OBSPACE locks. This escalation means that the applications are effec
tively running with OBSPACE locks. This is described more fully under
"Excessive Locking in User Data" on page 149.

Note: If the applications are not accessing that many rows. then the escalations
could be due to your NLRB initialization parameters being set too small (see
"NLRB Parameters Too Small" on page 191).

LH08-8011-Q3 CD CoPVrlOht IBM Corp. 1887. 1883 Chepter 5. Oleonosino Per1ormen~ PrOblems 171

Possible Actions:

ACTION

Increase Lock Level

Use LOCK Statement to Avoid Escalations

Use Cursor Stability Isolation Level

For other problems with similar symptoms, see:
• "Excessive Locking in User Data"
• "NLRB Parameters Too Small"

For other lock wait problems, see:
• "Locking Related Performance Problems"

Figure 97. Lock Level Too Low· Actions

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

PAGE

Below

Below

Below

149
191

114

If the OBSPACE in which locks are escalated is defined with row level locking,
then increasing the lock level to page level locking is the easiest corrective
action you can take, and may be sufficient.

If the locking level is already defined to be page level locking, changing the
locking level may help, but probably not much. If the OBSPACE is changed to
OSSPACE locking from page locking, all applications on the OSSPACE will
contend at the DSSPACE level.

Another approach to the problem is to reduce the number of locks held by an

J

application at anyone pOint in time by using the Cursor Stability Isolation Level J
in the applications that obtain many read locks. The use of Cursor Stability can
drastically reduce the number of locks held by an application and the length of
time SHARE locks are held.

For other reasons that might be causing lock escalations, see "Excessive
Locking in User Data" on page 149 and "NLRS Parameters Too Small" on
page 191.

For other possible lock wait problems, refer to "Locking Related Performance
Problems" on page 114.

Locks Held for Long Duration
Problem Description:

Locks protect data and applications in multiple user, read/write environments.
However, they also are a potential source of long response times due to long
lock walts. Thus, locking facilities should not be used indiscriminately. The
"Locks Held for Long Duration" problem is the condition that can occur when
users or applications hold locks longer than necessary.

If you are experiencing long or erratic response times In Multiple User Mode, but
the response time is OK when only one user is connected to the application
server, then you could have a lock wait problem.

One of the types of lock wait problems that can occur is locks being held for long
duration. This Is when a user or an application obtains locks, but delays or post·
pones freeing them when it should.

180 SQUOS DiagnosiS for VM LH08-8081..()3 C Copyright IBM Corp. 1887,1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The symptoms of the "Locks Held for Long Duration" problem are lock waits and
possibly link waits. However, there are other "lock wait" problems that have the
same symptoms.

Another condition to look for is communication waits. If users are waiting for
locks held by a user in a long communication wait, then you probably have the
"Locks Held for Long Duration" problem. A user in communication wait is not
actively processing SQL requests, or using the data he/she has locked.

This problem is most likely to occur if you have the following types of activity on
your system:

1. ISQL query usage

ISQL query usage is not necessarily a problem. However, if query users
spend a lot of time in display mode (looking at query results), then you might
experience the "Locks Held for Long Duration" problem. This is particularly
true if the ISQL users run with isolation level set at "repeatable read"
(ISOL = RR). While in ISQL display mode with ISOL = RR, ISQL will hold all
the locks obtained to get the query result. The locks will not be freed until
the user ENDs display mode.

2. ISQL usage in AUTOCOMMIT OFF mode

Use of the ISQL AUTOCOMMIT OFF function is another possible source of
the "Locks Held for Long Duration" problem. With AUTOCOMMIT set OFF,
all locks obtained between COMMIT (or ROLLBACK) WORK statements are
held until the user explicitly enters COMMIT (or ROLLBACK) WORK.

3. Conversational Applications

A conversational application is an application that holds resources (such as
SQUDS locks) as it "converses" with the user. Such applications leave the
system at the mercy of the user. Users that delay responding to such an
application delay releasing of locks.

4. Long Batch jobs

Long batch jobs can create the problem, if they do not issue periodic
COMMIT WORK statements.

5. Large Load jobs

Large load jobs can create the problem, if they do not use the
COMMITCOUNT option of the DATA LOAD command.

LH08-e081-03 ~ Copyright IBM Corp. 1887, 1883

Posslbl. Actions:

ACTION

Use Multiple LUWs

Use Cursor Stability Isolation Level

Run Offending Jobs Off-Hours

Use Redundant Data to Avoid Lock Contention

For other problems with similar symptoms, see:
- "Agents Being Held"
- "Too Few Agents"

For other lock wait problems, see:
- "Locking Related Performance Problems"

Figure 98. Locks Held for Long Duration - Actions

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

PAGE

Below

Below

Below

Below

119
205

114

J

There are two basic approaches to resolving a "Locks Held for Long Duration " J
problem:

1. Free locks earlier

The first approach that is recommended is to see what can be done to have
the offending applications or users free locks earlier. Two techniques that
might be explored are:

• Use Multiple LUWs

By having the offending applications COMMIT WORK more frequently,
you can reduce the amount of lock contention caused by the application.

• Use of Cursor Stability Isolation Level

By having the offending applications use the Cursor Stability isolation
level, fewer locks are held until the end of the LUW. This may be suffi
cient to resolve the conflicts caused by the applications.

2. Isolate the Offending Work

The second fundamental approach to the problem is to try to isolate the
offending applications. While multiple user read/write sharing is a desirable \
capability, it may not be practical in all cases. When an application cannot",
share data with other applications without causing undesirable contention
problems, then the application should be isolated.

There are basically two ways that an application can be isolated:

182 SQLJDS DI.gnolll for VM

• Reschedule Offending Jobs

By running the offending application at a time when other applications
don't need the data, you can avoid contention while retaining the concept
of common data. With this solution, you would be trading off application
availability to minimize storage and data maintenance costs.

• Use of Redundant data to avoid lock contention

By running the offending application against a copy of the data, you can
avoid the lock contention problems while retaining the ability to run the
offending application on a more flexible (and presumably convenient)
schedule. With this solution, you would be trading off storage and "real
time data" for application function availability.

LH08-aoa1·03 C Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Before pursuing application isolation, you might want to investigate problems
with similar symptoms. Specifically, you may want to investigate "Agents Being
Held" on page 119 or "Too Few Agents" on page 205. This is particularly true if
you are experiencing significant link wait conditions.

Logging during Load
Problem Description:

When loading a large amount of data with LOGMODE=Y, A or L, all rows
inserted into the table(s) are also written to the log. In addition to consuming log
space, the logging can noticeably affect the performance of the load operation.
A high volume of logging will tend to aggravate checkpoint-related problems.
See "CHKINTVL Too Small" on page 132 and "Long DBSS Calls Delaying
Checkpoint" on page 184.

Posllble Act/onl:

ACTION PAGE

Load in Single User, NOLOG Mode Below

Increase CHKINTVL Below

Use Nonrecoverable OBSPACES Below

Figure 99. Logging during Load - Actions

1. Load in Single User, NOLOG Mode

The most effective way to reduce the overhead of loading is to perform the
load in single user mode with LOGMODE = N. See "Switching Log Modes" in
System Administration manual for a discussion on how to do this. However,
if you normally run with LOGMODE =A, data ioaded with LOGMODE = N will
not be recoverable from a DASD failure until after the first archive following
the load operation. Therefore it is wise to use this solution when the load(s)
can be done just before an normal archive operation is scheduled .

2. Increase CHKINTVL

Another action that can relieve logging-related overhead during a load oper
ation is to set the CHKINTVL initialization parameter to a high value (for
example, 200 or higher). The resulting reduction in checkpoint frequency will
greatly reduce the amount of i/O and processing time associated with the
checkpoint function. There are some trade-offs you should consider before
Increasing CHKINTVL. These are described in "CHKINTVL Too Small" on
page 132.

3. Use Nonrecoverable DBSPACES

Yet another possible alternative Is to use nonrecoverable DBSPACEs for the
data being loaded. This should be considered if the data can be recovered
from an external source. Guidelines for the use of nonrecoverable
DBSPACEs are provided under "Nonrecoverable Storage Pools", in System
Administration manual. A multiple user mode DATA LOAD into a nonrecover
able DBSPACE will generally yield performance similar to loading in single
user mode with LOGMODE = N.

LH09-8081-03 II Copyright IBM Corp. 1887, 1883

Long DBSS Calls Delaying Checkpoint
Problem Description:

"Restricted Materials of IBM"
Ucenaed Material. - Property of IBM

In order to perform a checkpoint, all execution in the DBSS must first be qui
esced. To do this, SQUDS first keeps any new requests from entering the DBSS,
and then waits until all currently executing DBSS calls leave the DBSS. Check
point processing is then able to begin. Once the checkpoint has been com
pleted, the processing of DBSS calls is resumed.

Nearly all SQL statements that can be issued by a user are ultimately imple
mented by one or more DBSS calls. Effectively, then, the response times of all
users currently executing an SQL statement at the time checkpoint is initiated
will be delayed by the time it takes all users currently executing in the DBSS to
leave the DBSS plus the actual time to perform the checkpoint. This delay is
normally a few seconds. However, if one of the currently executing DBSS calls
is long-running, this delay can be much longer.

Most potentially long-running DBSS calls will make frequent checks to see if a
checkpoint is pending, and if so, temporarily leave the DBSS. Therefore, most
such calls should not cause undue delays at checkpoint time. The known
exceptions to this are the DBSS calls that implement the SQL statements DROP
TABLE and DROP INDEX, as well as the operator command SHOW DBSPACE.

This condition can be verified by issuing the SHOW ACTIVE operator command
each time a long, unexpected delay is being experienced.

The long DBSS call problem is indicated if you often see "CHECKPOINT AGENT
IS WAITING TO START CHECKPOINT" in the result. Then you will typically see
one agent in 1/0 wait, while the remaining agents are either inactive, in commu
nications wait, or in checkpoint wait. The one agent that is in 1/0 wait is the one
that is holding up the checkpoint. You may be able to contact that user and see
what was being executed at that time.

J

If you often see "CHECKPOINT AGENT IS PROCESSING A CHECKPOINT" in the
result, delays are occurring because of the time it takes to actually do the check
pOint. This problem is addressed under "CHKINTVL Too Big" on page 131. If
the results show that the checkpoint agent is inactive, checkpoint-related delays . '\
are not the problem.",

Possible Action.:

ACTION PAGE

Schedule Long-Running DROP TABLE, etc Below

Set CHKINTVL A. High As Possible Below

If delays are due to checkpoint processing, see:

"CHKINTVL Too Big" 131

If checkpoint Is inactive during delays, see:

"Sequential Processing" 200

Figure 100. Long DSSS Calls Delaying Checkpoint - Actions

J
184 SQUDS DI_gnosls for VU LH08-8081-03 C Copyright IBU Corp. 1917, 11H13

"Re.tricted Material. of IBM"
Ucen.ec:t Material. - Property of IBM

1. Schedule Long-Running DROP TABLE, etc

Schedule the execution of long-running cases of DROP TABLE, DROP INDEX,
and SHOW DBSPACE for periods when potential delays to other users will
not pose a problem.

2. Set CHKINTVL As High As Possible

Set the CHKINTVL initialization parameter to as high a value as is practical.
This will minimize the likelihood that a long-running DROP TABLE or DROP
INDEX will coincide with a checkpoint. See "CHKINTVL Too Small" on
page 132 for a discussion of the factors that you should consider before
changing CHKINTVL.

Missing Search Condition
Problem De.crlptlon:

A superior access strategy was overlooked during the preprocessing of a join
due to a missing search condition.

The SQLJDS optimizer will automatically add to your query certain types of pred
icates, described below. However, there are other types of predicate which, if
you omit them, will not be added by the optimizer.

It is important to explicitly state all predicates other than those described below
when writing a jOin. Otherwise, the optimizer will sometimes choose an inferior
access path, e.g. fail to consider a useful index or choose "inner" and "outer"
tables of the join the wrong way around.

Predicates are automatically added by the optimizer when:

The query (or subquery) is a join, and there is an equlJoln condition relating
two tables, that is of the form

A.COU-B.COl2

and there are one or more local predicates on either of the join columns, of
the form

A.COll <comparison_operator> <value>
or

B.COl2 <comparison_operator> <value>

then for each such local predicate, if it meets the following two conditions:
1. it is sargable
2. the query does not already contain a sargable predicate of the same kind

on the other join column
then the optimizer will add the implied predicate on the other join column, of
the form

B.COl2 <comparison_operator> <value>
or

A.COll <comparison_operator> <value>

respectively.

Consider the following example:

SELECT * FROM EMPLOYEE , DEPT
WHERE EMPlOYEE.DEPTNO • DEPT.DEPTNO
AND EMPlOYEE.DEPTNO • 288

LHoe-a081-Q3 C Copyright IBM Corp. 1817, 1883 Chapter 5. Diagnosing Performance PrOblems 185

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The SQUDS optimizer will automatically add the implied predicate

AND DEPT.DEPTNO • 288

and thus is able to consider a search strategy of accessing DEPT as the outer
table, and EMPLOYEE as the inner table within DEPT, as well as the other way
round. It will then choose whichever of these strategies is best.

However, in the following examples, the optimizer will not add any predicates:

SELECT * FROM EMPLOYEE , DEPT
WHERE EMPLOYEE.DEPTNO = DEPT.DEPTNO
AND EMPLOYEE.DEPTNO IN (288, 388, 488)

The optimizer will not add an additional predicate because the local predicate is
not sargable. EMPLOYEE will become the outer table (the one first accessed)
because this is the only table for which there is any selective access.

SELECT * FROM VEHICLES , BRIDGES
WHERE VEHICLES. WEIGHT < BRIDGES.MAXLOAD
AND VEHICLES.WEIGHT > 15

The optimizer will not add an additional predicate because the join condition is
not an equlJoln. VEHICLES will become the outer table (the one first accessed)
because this is the only table for which there is any selective access.

Possible A et/ons:

ACTION PAGE

Explicitly Write All Search Conditions other than those added by the Below
Optimizer

For other high CPU usage problems, see "CPU Related Performance 112
Problems"

For other high 1/0 problems, see "1/0 Related Performance Problems" 113

Figure 101. Missing Search Condition - Action

When writing a join, always make any implicit data relationships explicit by
writing additional search conditions other than those added by the optimizer.
This will allow the optimizer to consider all possible alternatives.

Continuing the example shown in the problem description, we know that if
VEHICLES.wEIGHT < BRIDGES.MAXLOAD AND VEHICLES.wEIGHT > 15 then it
is also true that BRIDGES.MAXLOAD > 15. This implicit relationship must be
stated explicitly in the form of an additional search condition for SQUDS to be
able to use it during the optimization process. Consequently, it is better to write
the example join as follows;

SELECT * FROM VEHICLES , BRIDGES
WHERE VEHICLES.WEIGHT < BRIDGES.MAXLOAD
AND VEHICLES. WEIGHT > 15
AND BRIDGES.MAXLOAD > 15

Now the optimizer will consider both VEHICLES and BRIDGES as realistic candi
dates for being the outer table. Depending on the situation, this may result in a
better access strategy and, hence, yield better performance when the join is exe
cuted.

188 SQUOS 01ignOll8 for VM LH08-e081-03 C) Copyright IBM Corp. 1987, 1983

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Similarly, for the other example, you should explicitly state the predicate

AND DEPT.DEPTNO IN (288, 388, 488)

Need a Highly Clustered Index
Problem Description:

A query involving a sequential scan of some significant number of rows (more
than 20) is being performed inefficiently by a DBSPACE scan, because there is
no highly clustered index.

We say that an index is highly clustered if the sequence in which the table's
rows are stored in pages in the database corresponds closely to the index key
sequence. Whether or not an index is highly clustered does not have a signif
icant effect on performance if the number of rows examined by scanning the
table with that index is small (for example, less than 20). In that case lack of a
Highly Clustered Index is probably not the problem.

If a table does not have a highly clustered index, access to that table will be less
efficient for sequential scans because SQUDS will have to access the table
using a DBSPACE scan or using an index scan via an unclustered (or only
slightly clustered) index. In the case of a DBSPACE scan, SQUDS will have to
examine all active pages in the DBSPACE, not just those that contain rows of the
desired table. In the case of an unclustered index scan, each row examined will
often require another 1/0 to the database.

This problem can arise either because you never created a highly clustered
index or because a highly clustered index became less clustered. The latter
problem is covered in "Index No Longer Highly Clustered" on page 168; this
section deals with the former. Note however that the symptoms are the same.

Information as to whether or not a given index is highly clustered is maintained
in the CLUSTERRATIO column of the row corresponding to that index in the
SYSTEM.SYSINDEXES catalog table. This information is initially filled in when
the index is created and is updated whenever an UPDATE STATISTICS statement
is explicitly issued for the associated table, or during a DBSU DATA LOAD with
SET UPDATE STATISTICS ON. Some restrictions apply for the DATALOAD. For
details see "Large Tables Share Same DBSPACE" on page 175. For more infor
mation on data clustering, see the Performance Tuning Handbook.

CLUSTERRATIO is a value in the range 0 to 10000. The higher the value, the
more efficient will be an index scan on the table. The SQUDS Optimizer con
siders CLUSTERRATIO when deciding whether to use a DBSPACE scan or index
scan to scan a table, and to choose between indexes. There is no absolute
value of CLUSTERRATIO which you can use as a criterion for whether the
degree of clustering of an index is "good enough"; the criterion will vary from
table to table and also depend on the queries you run. For example, If there are
two similar tables with Identical definitions, and each has a single index defined
on the same column or set of columns, and if one table has many more rows
than the other but both tables have the same number of "out-of-sequence" rows,
then the CLUSTERRATIO of the larger table will be larger than that of the smaller
table. However. for larger tables an index whose CLUSTERRATIO is less than
6000 Is unlikely to give good performance when used for sequential scans, and a
preferable value is 9500 or more. Also, you can create a totally clustered index
(CLUSTERRATIO = 10000) by following the procedure below. Refer to "Index No

LH09-&081-03 CI Copyright IBM Corp. 1987, 1883 Chapter 5. Diagnosing Performance Problems 187

Need More CPU

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

Longer Highly Clustered" on page 168 for actions needed to maintain a sufficient J
degree of clustering thereafter. .

You can determine whether there are any highly clustered indexes on a table by
issuing the following SQL statement:

SELECT INAME,ICREATOR,CLUSTERRATIO
FROM SYSTEM.SYSINDEXES
WHERE TNAME=table_name AND CREATOR=table_creator

This query tells you the CLUSTERRATIO of all indexes on the table.

• For very small tables, the value of CLUSTERRATIO is not too important, and
the only important thing to check is that there is at least one index.

• For larger tables, you should check that the value of CLUSTERRATIO is suffi
ciently high, based on the discussion above and on your own rules of thumb.

Possible Actions:

ACTION PAGE

Create a Highly Clustered Index Below

Figure 102. Need a Highly Clustered Index - Actions

Most tables should be supplied with one or more indexes. The main exception
to this would be very small tables for which optimum performance is not

J

required. These should be put into one or more DBSPACEs that do not contain J
any large tables.

For each indexed table, you should make one of these indexes highly clustered.
This will usually be the "clustering" index. The process of creating a clustering
index, and guidelines for deciding which indexes to make highly clustered, are
described in "Clustering rows of a table on an Index" in the Database Adminis
tration manual. Guidelines for deciding which index to make the clustering index
are provided under "Clustering Rows of a Table on an Index" in the Database
Administration manual.

Problem Description:

If you have a high CPU utilization and generally poor response times, it could
mean that you are simply trying to do too much work on the CPU you have. That
is, you may need a larger CPU. Obviously, before you conclude that this is the
case, you want to make sure that your problem is not one of the other problems
that result in high CPU usage. For more information on problems that may
cause high CPU usage, see "CPU Related Performance Problems" on page 112.

There are, however, other symptoms that suggest that you might need a larger
CPU. In particular, consider the following possible companion conditions:

1. Paging

If the paging rate is low on your system, then you are not using up CPU
cycles doing paging. On the other hand, if your paging rate Is high, then you
might be able to "buy back" some CPU cycles by trying to reduce the
paging.

J

J
188 SQUDS Dlagnosll for VM LH09-8081-03 C Copyright IBM Corp. 1987, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

2. Database 1I0's

You will use fewer CPU cycles by working out of the buffer pools, rather than
doing a lot of database 1I0's. As a result, if you have a low buffer hit ratio,
you might be able to "buy back" some CPU cycles by trying to improve your
buffer hit ratio.

Note: A high CPU utilization on your system could be due to non-SQL applica
tions. If you have a substantial amount of non-SQL work on your system, tuning
your application server may not be of any great benefit.

Possible Actions:

ACTION PAGE

Upgrade your CPU Below

For other high CPU usage problems, see: 112
- "CPU Related Performance Problems"

Figure 103. Need More CPU - Actions

If you cannot find another way to reduce the demand for CPU cycles, then your
only alternative is to upgrade your CPU.

Before resorting to upgrading your CPU, you should review problems that can
result in high CPU utilizations. Refer to "CPU Related Performance Problems"
on page 112 for problems that cause high CPU usage.

Need More Real Storage
Problem Description:

If you have a significant paging rate, it could mean that you simply need more
real storage to support the work on your system. That is, it may not be possible
to support your workload with your current real storage configuration . Obvi
ously, before you conclude that this is the case, you want to make sure that your
problem is not one of the other problems that result in high paging rates. For
more information on problems that may cause high paging rates, see "Storage
Related Performance Problems" on page 114.

There are, however, other symptoms that suggest that you might need more real
storage. In particular, consider the following possible companion conditions:

1. CPU Utilization

If the CPU UtiliZation is low on your system, and most of your workload is
SQL work, then your database machine is not using up CPU cycles because
It is spending too much time waiting on paging 110. On the other hand, if
your CPU utilization is high, then you might conclude that your database
machine is still getting enough time on the CPU to get a reasonable amount
of work done.

2. Database I/O's

You will use fewer CPU cycles by working out of the buffer pools, rather than
dOing a lot of database I/O's. On the other hand, a large buffer pool could
be contributing to your paging problems. Thus, it may be more advisable to
run with a smaller buffer pool and do more database I/O's, than do the
paging. That is, a high buffer hit ratio would Indicate that you might be able

LH09-S081-()3 0 Copyright IBM Corp. 1987, 1883 Chapter 5. Diagnosing Performance Problems 189

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

to reduce paging by reducing the size of the buffer pools. See "Buffer Pool
Too Big" on page 126 for more information on this case.

Nota: A high paging rate on your system could be due to non-SQL applications.
If you have a substantial amount of non-SQL work on your system, tuning your
application server may not be of any great benefit.

Possible Actions:

ACTION PAGE

Add more Real Storage Below

For list of other paging problems, see: 114
- "Storage Related Performance Problems"

Figure 104. Need More Real Storage - Actions

If you cannot find another way to reduce the demand for real storage, then your \
only alternative is to add more real storage. ...",

NLRB Parameters Too Large
Problem Description:

The NLRB initialization parameters (NLRBS and NLRBU) control the number of
lock request blocks that are allocated for use (in multiple user mode). The more
you allocate, the less likely you are to experience lock escalation problems.
However, LRBs are control blocks that consume storage. Thus, there is a prac
tical limit to how many you can afford to have allocated. If you allocate too
many, you may introduce paging problems.

With a large number of LRBs, you might cause a lot of page fault activity in the
database machine. High paging can be very detrimental to the SQUDS perform
ance for all applications. See "Page Fault Serialization" on page 197 for more
information on the effects of high paging rates.

Paging problems can be caused by many other problems. It really isn't likely
that your NLRB initialization parameter settings are your problem. LRB control
blocks each use only 24 bytes of storage. Thus, you would have to have them
set extremely high for them to cause paging problems. Furthermore, just having
them set high does not necessarily mean you will have a paging problem. You
would also have to be using them. (Note: You can tell how many you are using
through the SHOW LOCK MATRIX statement).

One way of considering this is that you would have. to be using about 43000
LRBs in order to generate a demand for 1 million bytes of real storage. While
this may seem ridiculous, It also means that 4300 LRBs will generate a demand
for 100 thousand bytes of real storage. With row level locking, it Is not that diffi
cult to generate a demand for 4300 LRBs (and the corresponding need for 100
KB of real storage).

If you are experiencing paging problems, and you are using a large number of
lock request blocks, you may have the "NLRB Parameters Too Large" problem.
This will depend on whether or not you really need the LRBs you are using. You
can determine this by checking the amount of lock escalation that is occurring on
your system. You can check this by using COUNTER ESCALATE and COUNTER

190 SQUDS Diagnosis for VM LH09-8081..()3 C Copyright IBM Corp. 1887, 1993

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LOCKLMT. If you are experiencing few or no lock escalations
(ESCALATE + LOCKLMT), and none of them are failing (LOCKLMT), then you
probably can afford to reduce the NLRB allocations.

Possible Actions:

ACTION PAGE

Decrease NLRB Parameters Below

For other problems with similar symptoms, see: 114
- "Storage Related Performance Problems"

Figure 105. NLRB Parameters Too Large - Actions

If you suspect you have your NLRB parameters set too high, the obvious action
to take is to decrease the NLRBU and/or NLRBS settings. This is easy enough
to do, but not necessarily easy to do right. That is, you need to determine what
settings can be done without causing other problems. You should use the SHOW
LOCK MATRIX command to see how many lock request blocks are being used.

Before assuming that your problem is "NLRB Parameters Too Large," you
should check the other potential paging problems (see "Storage Related Per
formance Problems" on page 114).

NLRB Parameters Too Small
Problem Description:

The NLRBU and NLRBS initialization parameters define how many lock request
blocks are to be available per agent and for the whole system, respectively.
When either one of these parameters is exceeded, locks held by the agent that
causes the limits to be exceeded will be "escalated." Lock escalation "trades"
many page or row (and key) level locks for a single OBSPACE level lock. In
many cases, this does not cause a problem. However, in other cases conflicts
arise when the database manager tries to obtain the OBSPACE lock.

If you are experiencing lock waits and Lock escalations, you may have the
"NLRB Parameters Too Small" problem.

Other problems with similar symptoms include" Lock Lever Too Low" on
page 179, and "Excessive Locking in User Data" on page 149. If your users (or
applications) are requesting a large number of locks, you may want to check for
those problems as well.

Specific situations where you might expect to encounter the "NLRB Parameters
Too Small" problem include:

1. Preprocessor Usage

Preprocessing of applications involves numerous catalog references. This
frequently results in a large number of lock requests. The actual number of
locks obtained will vary depending on the SQL statements in the programs
being preprocessed.

Lock escalations due to preprocessing activity are particularly severe
because most of the locks obtained are In the catalog OBSPACE (OBSPACE
1). Furthermore, preprocessing does updating to some of the catalog tables.

LH09-aoa1-03 e Copyright IBM Corp. 1987, 1993 Chapter S. Diagnosing Pertormance Problems 191

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Thus, the escalation attempt is for an EXCLUSIVE lock on the catalog
DBSPACE. This, of course, will conflict with most SQL operations.

2. High Loading/Unloading Usage

Loading or unloading can result in large numbers of locks being obtained.
Bulk loading of rows into a DBSPACE with row or page level locking can
result in numerous EXCLUSIVE lock requests. This, in turn, can result in a
lock escalation for an EXCLUSIVE lock on the DBSPACE being loaded.

Unload operations are less likely to cause the LRB limits to be exceeded.
But they can if they are accomplished through an index scan.

3. Large Query/Reports Activity

Like unload operations, queries and reports are less likely to cause the LRB
limits to be exceeded. But they can if they are accomplished through an
index scan.

Possible Actions:

ACTION PAGE

Increase NLRB Parameters Below

For other problems with similar symptoms, see:
- "Excessive Locking in User Data" 149
- "Lock Level Too Low" 179

Figure 106. NLRB Parameters Too Small- Actions

There is basically only one solution to the "NLRB Parameters Too Small"
problem. That is to increase NLRBU and/or NLRBS.

If your NRLB parameters are already large and you do not have enough virtual
storage to support the needed NLRB parameter values, you should then treat
your problem as an "Excessive Locking in User Data" or "Lock Level Too Low"
problem. See "Excessive Locking in User Data" on page 149 and" Lock Level
Too Low" on page 179 for more information on these cases. Note however, sol
utions to these problems will not generally work if the problem is due to preproc
essing activity.

No Selective Index
Problem Description:

No suitable index is available to support selective access to the table being ref
erenced. As a result, every row in the table is accessed with one of the indexes
on that table, with every row in the DBSPACE using a DBSPACE scan.

192 SQUDS DiagnosIs tor VM LH09-8081-03 C Copyright IBM Corp. 1987, 1993

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Possible Actions:

ACTION

Create Index(es) on Selective Columns

See the following closely related problems:
"Insufficient Indexing"
"Index Disqualified"
"Inefficient Search"

For other high CPU usage problems, see "CPU Related Performance
Problems"

For other high 110 problems, see "1/0 Related Performance Problems"

Figure 107. No Selective Index - Actions

PAGE

Below

174
164
170

112

113

Take a look at each search condition associated with the SQl statement in ques
tion and determine whether or not it is eligible to be supported by an index.
Then create an index on the column associated with each eligible search condi
tion . When the SQl statement is preprocessed, the database manager will
decide which index offers fastest access to the desired data.

This comprehensive indexing approach is most applicable when index mainte
nance overhead and index secondary storage requirements are not important
factors. If they are, it would be better to just create one index. This should be
placed on the column corresponding to the most selective search condition that
is eligible for index support.

For more information on indexes and predicate processing, see the Performance
Tuning Handbook.

One Database Machine Needs Too Much CPU
Problem Description:

In a multiprocessing environment, a virtual machine can be executing on just
one processor at any given moment in time. Consequently, if the CPU demand
rate of a database machine exceeds that of one of the processors, the result will
be poor SQUOS response times. This will be due to processor contention, even
though there may be much unused processing capacity in the multiprocessing
configuration as a whole.

This problem is indicated by the following combination of symptoms:

• A multiprocessing environment.

• SQUOS response times are long, while the response times of non-SQL/OS
requests are adequate.

• One database machine is using nearly one processor's worth of capacity.

To determine if this is the case, obtain VM monitor data for a representative
ten minute interval when SQL/OS response times are long. Reduce this
interval with the VM/370 Performance/Monitor Analysis Program (VMMAP)
and then look at the "User Resource Utilization Summary". SQUOS is using
nearly one processor's worth of capacity if total CPU-seconds consumed by
the SQUOS database machine (including its use of CP services) is within 10
percent of the number of seconds in the measured interval. On VM/XA and

LHOi-I081.()3 ~ Copyright IBM Corp. 1887, 1883 Chapter 5. Diagnosing Performance Problems 193

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

the VM/ESA ESA Feature systems, the VM Performance Reporting Facility
(VMPRF) provides the same function as VMMAP.

Possible Actions:

ACTION PAGE

Split Load across Two or More DB Machines Below

Larger Processor Below

Figure 108. One Database Machine Needs Too Much CPU - Actions

As a rule of thumb, try to keep the total CPU usage of any database machine
less than 40 percent of total CPU usage.

1. In some cases, the best way to accomplish this is to split the SQUDS usage
across two or more database machines.

2. In other cases, the solution may be to move to a larger processor so that the
same SQUDS load uses a smaller percentage of the overall processing
capacity. Other, non-SQUDS work could be moved to that processor to use
the processing capacity not needed by the database machine.

Package Needs Re-preprocessing
Problem Description:

A package can incorporate suboptimal access strategies if conditions in the
database have changed significantly since the last time it was preprocessed.
Probably the most dramatic example is the case where no indexes existed on
the tables accessed by the application when it was preprocessed, but suitable
indexes were created later.

Another example of when a package should be re-preprocessed is when the
package was preprocessed with warning messages because one or more of the
referenced base objects (for example, tables) did not exist in the database. If
the missing base objects are later added to the database, such a package will

J

J

execute. However, performance will be degraded for the SQL statements that)
reference those base objects since the database manager has to dynamically ..",
preprocess them every time they are executed.

Possible Actions:

ACTION PAGE

Reprep or Invalidate Package Below

For other high CPU usage problems, see "CPU Related Per- 112
formance Problems"

For other high 1/0 problems, see "110 Related Performance 113
Problems"

Figure 109. Package Needs Re-preprocessing - Actions

A package should be re-preprocessed whenever any of the following situations
apply:

194 SQUOS Diagnosis for VM L.H09·8081-03 C Copyright IBM Corp. 1987, 1993

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

• A new index was added to one of the tables referenced by that package and
there is some possibility that the package may be able to make use of it.

• The last time the package was preprocessed, warning messages were gen
erated because one or more base objects did not exist, which now exist.

• The contents of one or more of the tables referenced by that package have
changed significantly.

• The last time the package was preprocessed, the statistics for one or more
of the tables it references were not up to date, but are now up to date.

There are three ways to re-preprocess a package. The preferred way is to use
the DBS utility REBIND PACKAGE command. This command is not supported on
a non-SQUDS application server or if you are using the DRDA protocol. A
second way is to run the appropriate preprocessor against the source code
(recompilation is not necessary). The third way is to use the DBS utility
UNLOAD PACKAGE command followed by a RELOAD PACKAGE command. This
is faster than rerunning the preprocessor.

In any case, make sure that the statistics for all accessed tables are up to date.

You can use the following query to obtain a list of these tables:

SELECT BCREATOR,BNAME FROM SYSTEM.SYSUSAGE
WHERE BTYPE='R'
AND DNAME=package_name
AND DCREATOR=package_creator_name

Package Cache Too Big or Threshold Too High
Problem Description:

In general, you want the package cache size to be as large as possible for the
best performance. That is, you want the size of the package cache and the
threshold to be as high as possible. The larger the cache, the more packages
that are loaded into storage, and the higher the threshold. The higher the
threshold the more packages that remain loaded in storage at the end of the
logical unit of work.

However, the package cache and threshold consume storage, and the imposed
additional storage requirement can cause performance problems. The higher
the value of NPACKAGE, NCUSERS and NPACKPCT, the more storage is
required. If you set the values of these parameters high, and experience per
formance problems as a result, then the package cache is "too" large or the
threshold is "too" high.

Thus, there is a practical limit to how much you can afford to have allocated.
How large is "too large," depends on your system and the workload on your
system. More specifically, "too large" can Introduce paging problems. See
"Page Fau It Serialization" on page 197 for more information on the effects of
high paging rates.

For more information on how these initialization parameters affect performance,
see the Performance Tuning Handbook.

The size of the package cache is calculated by initialization parameters:
NPACKAGE x NCUSERS. The number of agents established by the NCUSERS

LH09-Sqe1-03 ~ Copyright IBM Corp. 1987, 1883 Chapter 5. Diagnosing Pertormance Problems 185

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

parameter determines the level of concurrency. If you set the NCUSERS param
eter too high, your users can experience paging and lock wait problems. See
"Too Many Agents" on page 206 for more information on this case.

Possible Actions

ACTION PAGE

Decrease Package Cache Size Below

Decrease N PACKPCT Below

Too Many Agents 206

Figure 110. Package Cache Too Large - Actions

1. Decrease package cache size.

To decrease the size of the package cache, decrease the value of the
NPACKAGE initialization parameter. This decreases the amount of storage
required for the cache.

2. Decrease N PACKPCT.

Performance can be improved by decreasing the threshold. When the
threshold is decreased, the same number of packages are loaded into
storage, but a lower number of packages remain in storage at the end of the
logical unit of work. Decreasing the value of the NPACKPCT initialization
parameter decreases the. threshold.

For more information on performance improvements using the package cache,
see the Performance Tuning Handbook.

Package Cache Too Small or Threshold Too Low
Problem Description:

The size of the package cache and size of the threshold determines how fre
quently loaded packages are released from storage. This has a direct effect on
performance. If either the cache size is too small or the threshold is too low, "
sufficient packages are not kept in storage and performance problems can occur. ...",

Possible Actions

ACTION PAGE

Increase NPACKPCT Below

Increase NPACKAGE Below

Figure 11'. Package Cache Too Small - Actions

1. Increase NPACKPCT.

Performance can be improved by increasing the threshold. When the
threshold is Increased, the same number of packages are loaded into
storage, but a higher number of packages remain in storage at the end of
the logical unit of work. Increasing the value of the NPACKPCT initialization \
parameter Increases the threshold.",

198 SQUOS Ol_gnosls for VM LH09-8081·03 C> Copyright IBM Corp. 1887, 1993

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

When increasing NPACKPCT, it is recommended to increase the value in
large increments. For example, if NPACKPCT is set to 30, increase
NPACKPCT to 50.

2. Increase NPACKAGE

Increasing the value of the NPACKAGE initialization parameter increases the
size of the package cache. More packages are now able to be loaded into
storage.

Increasing the size of the package cache also increases the threshold
(threshold = package cache size x NPACKPCT I 100). Although the value of
the NPACKPCT initialization parameter remains unchanged, the size of the
threshold increases. As a result, not only is the cache larger, but more
loaded packages remain in storage at the end of the logical unit of work.

This enlarges the cache, and increases the threshold.

For more information on performance improvements using the package cache,
see the Performance Tuning Handbook.

Page Fault Serialization
Problem Description:

Whenever a page fault occurs in a database machine, each user request cur
rently being processed must wait for that page fault to be resolved. This source
of serialization normally has only a minor effect on response time, but can be
important under the following worst case conditions:

• The system paging rate is high.

• A database machine supports a large number of concurrently active users.

• Page 1/0 is slow due to slow paging devices andlor high contention in the
portion of the 1/0 subsystem used for paging.

Possible Actions:

ACTION PAGE

Specify SET QDROP OFF USERS or SET QUICKDSP ON Below

Split Load Across Two or More SQL Machines Below

Add Real Storage Below

Improve real storage usage efficiency Below

Offload Some Work Below

More/Faster Paging Devices Below

Figure 112. Page Fault Serialization - Actions

1. Specify SET QDROP OFF USERS or SET QUICKDSP ON

Make sure that the database machine is being run with SET QDROP OFF
USERS or SET QUICKDSP ON in effect. See "SET QDROP OFF USERS or
SET QUICKDSP ON Not Used" on page 203.

lH09-I081-03 C Copyright IBM Corp. 1et7, 1893 Chapter 5. Diagnosing Performance Problems 197

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

2. Split Load Across Two or More SQL Machines

Split the database into two or more databases. This will spread the load
across two or more database machines. This helps because page faults in
one database machine do not serialize the users being serviced by a dif
ferent database machine. If you do this, be sure to install the RDS and DBSS
into saved segments so that just one copy is required. An explanation of
how to do this is provided in the System Administration manual.

3. Add Real Storage

Reduce the paging rate by adding real storage.

4. Improve real storage usage efficiency

Reduce the paging rate by improving real storage usage efficiency (see
"Storage Related Performance Problems" on page 114).

5. Offload Some Work

Off-load some SQUDS or non-SQUDS work onto another system.

6. More/Faster Paging Devices

Upgrade the paging subsystem to reduce the time required to do paging I/O.
This solution is indicated if the paging rate is relatively low, but the time to
handle each page fault is high. This condition can be determined from the
device statistics provided by the VM/SP Performance/Monitor Program
(VMMAP) or for VM/XA systems, the VM Performance Reporting Facility
(VM/PRF).

Query Block Size Too Small
Problem Description: The query block size, as specified by the QryBlksize
parameter on the SQLINIT exec, is too small. You can specify the query block
size from 1 to 32 kilobytes. The default is 8 kilobytes. When using the
SQUDS-only protocol the query block size is always 8 kilobytes thus this
problem only applies in a DRDA protocol environment.

The query block size determines the amount of data that is transferred with each
transmission for SELECT and UNLOAD operations, when blocking is in effect. A
small block size can result in a larger number of transmissions. This leads to
more communication overhead and thus higher than expected response times.

According to the DRDA protocol, the application server will send back either a
single row split over many blocks or multiple rows in one block (if blocking is
being used). It is more efficient if the query block size is large enough to hold
multiple rows and blocking is used.

Possible Actions: Increasing the query block size may Improve your perform
ance. Try rerunning the SQLlNIT exec using the maximum query block size of 32
kilobytes. If this does not help, you may want to revert to a query block size of 8
kilobytes to conserve storage on the user machine.

198 SQUOS Ol.gnosll for VM LH09-8081-03 C CopyrlghllBM Corp. 1887, 1Q83

"Reltricted Materiall of IBM"
Ucensed Materiall - Property of IBM

Range Predicate Used with Host Variables
Problem Description:

Range predicates (BETWEEN, >, <, > =, = < and some forms of LIKE) require
that the SQUOS optimizer "guess" at the number of rows that fall within the
range. When such predicates appear in programmed SQl statements, and the
limits of the range are host variables, the optimizer does not have sufficient
information to make an "informed" guess.

For example,

EXEC SQL DECLARE CURSOR Cl AS
SELECT *
FROM SQLDBA.ACTIVITY
WHERE ACTNO BETWEEN :X AND :Y

presents such a problem to the optimizer. When the preprocessor is executed,
the optimizer must estimate how many rows of the ACTIVITY table have a price
that falls between :X and :Y. Of course at preprocessing time, the database
manager doesn't know what :X and :Y are. As a result, the optimizer makes
assumptions about how many rows will satisfy the "unknown" range.

The assumptions made by the optimizer in these cases are pessimistic. That is,
the optimizer assumes a rather large percentage (25-33%) of the rows will
qualify. This has the effect of "favoring" OBSPACE scans in many cases. It can
also have the effect of "ignoring" an index in favor of another index. That is, you
can have the "Range Predicate Used with Host Variables" problem even though
you are not experiencing OBSPACE scans.

If you have such range predicates, and you are experiencing a large number of
database I/O's, and you find on further investigation that the program is indeed
doing OBSPACE scans, then you may have the "Range Predicate Used with Host
Variables" problem. The primary symptom of the "Range Predicate Used with
Host Variables" problem is high I/O's (with associated high CPU usage). There
are many problems with the same symptoms (see "I/O Related Performance
Problems" on page 113). Before concluding that you have the "Range Predicate
Used with Host Variables" problem, you should consider at least four of these
problems:

1. "Inaccurate Statistics" (see page 170.)

2. "Insufficient Indexing" (see page 174.)

3. "Inefficient Search" (see page 170.)

4. "Missing Search Condition" (see page 185.)

Note: This problem occurs only in precompiled applications. If your problem is
with an ISQl or OBSU command, you do not have the "Range Predicate Used
with Host Variables" problem.

Furthermore, it must be noted that the optimizer assumptions in these cases
cause a problem only if they are indeed wrong. If the actual ranges defined at
execution time are 25-33% of the table (or greater), the optimizer is, in fact.
making the appropriate assumptions, and you are getting the most appropriate
access path based on your selection criteria.

LH09-eoe1-03 C Copyright IBM Corp. 1987,1883 Chapter 5. Diagnosing Performance Problems 198

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Possible Actions:

ACTION PAGE

Use more Predicates Below

Use Dynamic SOL Statements Below

For other high CPU usage problems, see "CPU Related Per- 112
formance Problems"

For other high 1/0 problems, see "1/0 Related Performance 113
Problems"

Figure 113. Range Predicate Used With Host Variables - Actions

There are basically two approaches to resolving the "Range Predicate Used with
Host Variables" problem:

1. Use more qualification in your WHERE-clause

The first approach is an attempt to add predicates to the WHERE-clause to
give the optimizer other choices for selecting the access path. This is not
always possible, but should be considered before taking more radical steps.
For more information on this see "Inefficient Search" on page 170 and
"Missing Search Condition" on page 185.

2. Use dynamic SQL statements

If you cannot get the optimizer to choose a more desirable access path
through additional predicates, then you might try using dynamic SQL state
ments. That is, instead of "hard coding" the request in the application, con
struct the statement as a character string and use the PREPARE and
EXECUTE statements. By doing this, you can sUbstitute actual values
(literals) in the statement, rather than using host variables. In this way, the
optimizer evaluates possible access paths at execution time based on actual
values for the range limits.

Note: One way of checking to see that dynamic SQL statements will help
your situation is to try the statement on ISQL. The performance of a query
issued from ISQL will be essentially the same as the same query coded as a
dynamic SQL statement in your program.

Don't overlook other possible causes of high 110 problems. Host variables in
range predicates will frequently result in poor access paths, but you should still
consider other possible causes.

Sequential Processing
Problem Description:

This problem refers to problems that can arise when bulk sequential processing
is done when the application server is running in multiple user mode. In
general, bulk sequential processing can tend to dominate the database manager
and use of its resources, resulting in high 110 activity, poor buffer hit ratios, and
high CPU utilizations.

Bulk sequential processing refers to the following types of applications and
application functions:

1. Loading and Unloading

200 SQUDS Diagnosis tor VM LH09-8081-03 C> Copyright IBM Corp. 1987, 1983

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

2. Large Queries or Reports
3. Summary Queries or Reports on Large Tables
4. Large Sorts

a. ORDER BY
b. GROUP BY
c. Certain Joins
d. DISTINCT
e. UNION

5. Uncorrelated Subqueries
6. CREATE INDEX
7. DROP TABLE
8. UPDATE STATISTICS

The "Sequential Processing" problem will typically result in a high number of
database I/O's. This is due to the sequential processing, itself, but also is due to
buffer pool flooding. Buffer pool flooding occurs when an application accesses a
lot of data and "floods" the buffer pool with its own data. Other applications will
do more actual database I/O's than usual because the buffers are being used by
the sequential application.

You may also see an increase in CPU utilization as a result of sequential proc
essing on the system. This is partly due to the extra I/O activity, but is also due
to the nature of sequential processing. Bulk sequential applications tend to use
up a lot of CPU processing time without pausing. The only thing that slows them
up are I/O waits (and sometimes lock waits).

Thus, a high number of database I/O's and increased CPU utilization could indi
cate you have the "Sequential Processing" problem. Your buffer hit ratio can
further isolate the problem to the "Sequential Processing" problem. Sequential
processing will give you a very poor buffer hit ratio. Sequential processing, by
its nature, typically reads data once and does not read it again. As a result, very
few references to data are satisfied out of the page buffer.

A problem that also results in high I/O's and a bad buffer hit ratio is the "Buffer
Pool Too Small" (see page 128) problem. You may want to consider the size of
your buffer pools as well. However, if users are doing any of the functions listed
above, you probably have the "Sequential Processing" problem.

Another symptom of the "Sequential Processing" problem is periodic high
response times. This is when users see inconsistent response times. Some
times the response time is just fine, but other times (when the sequential appli
cations are running), the response time is dramatically worse.

LH09-8011-03 C Copyright IBM Corp. 1987, 1883

Possible Actions:

ACTION

Increase DISPBIAS

Index to Avoid 1I0's

Reorganize Data to Avoid 1I0's

Run Sequential Application Off-hours

Redesign Offending Applications

For another "bad buffer hit ratio" problem, see:
• "Buffer Pool Too Small"

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PAGE

Below

Below

Below

Below

Below

128

For other "periodic high response time" problems, see:
. "Special Case Performance Problems" 115

Figure 114. Sequential Processing - Actions

1. Minimize Impact of Sequential Processing

The first approach is to try to minimize the impact of the sequential proc
essing without making major changes to your basic data or application
designs. There are basically two ways you can try to do this:

a. Increase DISPBIAS

The simplest action you can try is to increase the DISPBIAS initialization
parameter. This parameter controls the processing priorities for applica
tions. A higher DISPBIAS value favors short applications (LUWs) over
long running applications. Since sequential processing applications are
long running, a high DISPBIAS will disfavor the sequential processing.

b. Data Reorganization

The next action you might consider would be data reorganizations that
minimize the resources required by the sequential processing. Recon
sider your indexing and clustering of the tables used by the sequential
application.

You might also reconsider how tables are stored. This includes \,
DBSPACEs used, the amount of free space reserved, and row lengths for ~
the table.

2. Reschedule Sequential Processing

If the previous approaches do not alleviate the problem, then you should
consider running the problem sequential processing applications at a time
when they will be of least impact to other work. This may not be a very
attractive alternative, but it may be more practical than the next approach
(which involves redesign of the applications).

3. Redesign Sequential Processing Application

If none of the previous actions can be applied, you may be able to re-design
your sequential processing application to be "less sequential." There is not
much you can do for DROP TABLE or UPDATE STATISTICS, but with the
Introduction of the REORGANIZE INDEX command, there is now an alterna
tive for DROP INDEX, loading and CREATE INDEX.

You may also be able to do something with sequential DML applications.

202 SQUOS Ol.gnosll tor VM LH09-8081·03 C Copyright IBM Corp. 1887, 1993

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

You also should consider whether or not your problem is the "Buffer Pool Too
Small" problem. The symptoms are nearly identical to the "Sequential
Processing" problem. However, with the "Buffer Pool Too Small" problem,
response time will usually be bad all of the time (as opposed to periodically
high).

You might also want to investigate other causes of the periodic high response
time symptom. See "Special Case Performance Problems" on page 115 for the
list of these possible problems.

Session Limit Exceeded
Problem Description:

When an application requester uses AVS to communicate with a remote applica
tion server, a connection is initiated. If this connection causes the established
session limit to be exceeded, AVS pends the connection. This state is main
tained indefinitely until another session becomes available. A session becomes
available when an existing connection is disconnected or terminates.

To interrupt this condition and return to CMS, re-IPL (#CP I CMS).

SET QDROP OFF USERS or SET QUICKDSP ON Not Used
Problem Description:

QDROP refers to a set of functions that are performed by the VM/SP and
VM/ESA 370 Feature operating systems every time a virtual machine becomes
idle. QDROP processing is normal and desirable for user virtual machines, but
is inappropriate for service machines such as SQUDS database machines. Con
sequently. VM provides the "SET QDROP OFF" CP command that causes most of
the normal QDROP processing to be bypassed for the specified virtual machine.

Failure to specify "SET QDROP userid OFF USERS" for an SQUDS database
machine will result in a significant amount of unnecessary paging and CPU over
head.

SET QDROP OFF is set on the database machine so that machine and user
pages remain in main storage between execution cycles. This reduces paging
and CPU usage.

With VSE Guest Sharing. SET QDROP userid OFF USERS is considered manda
tory for good performance.

For VM/XA and the VM/ESA ESA Feature systems. the "SET QUICKDSP userid
ON" CP command provides similar functions to the "SET QDROP userid OFF
USERS" command (see "Database Machine Favored Too Little" on page 139).

Possible Actions:

AcnON PACE

Specify SET QDROP OFF USERS or SET QUICKDSP ON Below

SQUDS Machine Favored Too Uttl. 139

Figure I IS. SET QDROP OFF USERS or SET QUICKDSP ON Not Used - Action.

LHOIH0I1-03 ~ Copyright IBM Corp. 1917. 1883 Ch.pter 5. Ol.gnoslng Perform.nee Problems 203

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The VM operator should specify "SET QDROP userid OFF USERS" or "SET
QUICKDSP userid ON" for each database machine that is run in multiple user
mode. The best time to dothis is right after each database machine is logged
on. Alternatively for VM/XA and the VM/ESA ESA Feature. each database
machine directory can have "OPTION QUICKDSP" specified. eliminating the
need for operator intervention.

SQL/DS Code Not Shared
Problem Description:

SQUDS components are not placed in saved segments. The resulting inefficient
real storage usage caused by duplicate copies of the code increased paging. It
also increased the time required to start up the ~pplication server and to
perform SQUDS-related initializations in the user machines.

Possible Actions:

ACTION PAGE

Install SOUDS Components in Saved Segments Below

Figure 116. SQLlDS Components Not Shared - Actions

Any SQUDS component that is frequently used by more than one user should be
installed in a discontiguous saved segment (DCSS) if possible. ISQl. the
Resource Adapter. RDS. DBSS. DSC. and the SQUDS message repositories are
eligible to be installed as saved segments. All other SQUDS components are
not. The Resource Adapter and ISQl (if used) should be installed as saved seg
ments for all multiple user environments. The RDS and DBSS should also be
installed as saved segments if the installation is running multiple database
machines on the same processor.

It is advantageous to load SQUDS components in saved segments even if
paging is not a problem. as the time required to load the code is bypassed. If
ISQl and the Resource Adapter are in DCSSs. the time to enter the ISQl envi
ronment is greatly reduced. If RDS and DBSS are in DCSSs. the time to initialize
SQUDS is greatly reduced. An explanation of how to install in saved segments
is provided in the System Administration manual.

Storage Pool Full
Problem Description:

If an lUW is forced to rollback because of a storage pool being full. then check
pOints may be triggered frequently during rollback. This can significantly
degrade performance. This is most likely to occur if the lUW is loading a signif
icant amount of data into one storage pool.

204 SQUDS DiagnOSIS for VM LHoe-eoa1-03 C Copyright IBM Corp. 1887. 1883

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Possible Actions:

ACTION PAGE

Avoid loading large amounts of data in a single LUW Below

Add a DBEXTENT to the storage pool Below

Figure 117. Storage Pool Full- Actions

1. It is better to load the data using several LUWs. This will prevent a long
running rollback, thus preventing frequent checkpoints.

2. Add a DBEXTENT to the storage pool and if necessary, after the DATALOAD,
it can be deleted.

Synchronous APPC/VM Not Used
Problem Description:

Too Few Agents

Higher than necessary CPU usage is occurring because of asynchronous com
munication between user machines and the database machine. The synchro
nous communication protocol is not the default protocol. Synchronous
communication performs better than asynchronous, because asynchronous
requires more operating system overhead.

There are restrictions with the synchronous protocol. SQLHX or CANCEL cannot
be used to cancel SQL statements, and the SQLQRY command cannot be used.

Synchronous APPCIVM is not supported by VM/XA SP.

Possible Actions:

ACTION PAGE

Change the communication protocol to synchronous Below

Figure 118. Synchronous APPCIVM Not Used - Actions

The SYNChronous parameter of the SQLlNIT EXEC determines the communi
cation protocol to be used. Invoke the SQLlNIT EXEC using the SYNC(YES)
option. For more details on the SQLlNIT EXEC, see the Database Administration
manual.

Problem Description:

The number of agents available to process SQUDS requests from users is deter
mined by the NCUSERS Initialization parameter. When NCUSERS is set too low,
there are more user requests than there are agents available to process them.
When all available agents are already in use, any additional incoming requests
are queued up until one of these agents becomes free. If NCUSERS is much
lower than required, this queueing time can greatly increase the overall
response time experienced by the end users.

LH09-8081-()3 Co? Copyright IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If repetitive executions of the SHOW USERS operator command often show that
one or more of users are waiting for an agent, insufficient agents is a likely
problem.

If VSE Guest Sharing is used, the number of links specified by NO LINKS is
reserved until the online support is terminated via CIRT. Increasing NOLINKS
will tie up more agents and may have a significant negative impact on CMS
users of the database.

Possible Actions:

ACTION PAGE

Increase NCUSERS Below

Decrease Link Holding Time Below

Decrease Online Resource Adapter NOLINKS Below

Figure 119. Too Few Agents - Actions

Too Many Agents

1. Increase NCUSERS

If the paging rate and CPU utilization on the system are good, then you prob
ably can afford to increase the NCUSERS initialization parameter. Note that
increasing NCUSERS may require you to allocate additional virtual storage to
the SQUDS database machine.

2. Decrease Link Holding Time

It is often the case that the available agents get used up because agents are
being held for unnecessarily long periods of time. This most commonly
arises when an SQl/DS application can (at least sometimes) be in-lUW over
a terminal read. If such cases are identified and corrected, it may not be
necessary to increase NCUSERS. See "Agents Being Held" on page 119.
Reducing link holding time will not help free agents reserved via the CIRB
transaction for VSE Guests.

3. Decrease Online Resource Adapter NOLINKS

If VSE Guest Sharing is used, the VSE online resource adapter reserves
agents using CIRB NOLINKS. These NOLINKS are "permanently" assigned
to the VSE Guest from the NCUSERS pool, and are only surrendered for use
by VM users of the shared database machine via the CIRT transaction. If it
is not practical to increase NCUSERS, decrease the number of links in CIRB
assigned to VSE Guest users.

Problem Description:

The number of agents established by the NCUSERS initialization parameter of
SQUDS determines the level of concurrency on your system. Specifically, it
defines how many lUWs can be active at the same time. If you set the
NCUSERS parameter too small, your SQl users may experience delays due to
"link waits" (See "Too Few Agents" for more information on this case). On the
other hand, you might experience "Paging" or "lock Wait" problems if you set ...
NCUSERS too high. That is, you can run SQUDS with too many agents. """"

208 SQIJDS Dlegnosls tor VM LH09-8081-03 C> Copyright IBM Corp. 1987, 1983

"Restricted Material. of IBM"
Licensed Materials - Property of IBM

Running with a large number of agents (high NCUSERS) exposes your system to
three possible problems:

1. Paging

Each agent (active LUW) can require up to 250K of virtual storage. With a
large number of agents, you might cause a lot of page fault activity in the
database machine. High paging can be very detrimental to the SQUDS per
formance for all applications. See "Page Fault Serialization" on page 197 for
more information on the effects of high paging rates.

2. Lock Contention (Lock Waits)

Each agent (active LUW) also represents a certain demand for locks in the
database. If you have a wide variety of applications that access different
data, this may not be a problem. But if your applications (or users) share a
lot of common data, then a large number of agents could cause lock con
tention problems. These will show up as lock waits. See "Locking Related
Performance Problems" on page 114 for more information on the types of
lock wait problems you might introduc.e by having too many agents.

3. Buffer Contention (High I/O's)

A third possible problem that can be caused by having too many agents is
contention for space in the buffer pools. Agents do not actually execute at
the same time. Agent requests are processed one at a time. When one
agent goes into a wait (lock wait, I/O wait or communication wait), another
agent's request is executed. In effect, the agents take turns at getting
SQUDS execution time.

With a large number of agents active at the same time, several other agents
may do some processing before anyone agent gets its next turn. As a
result, data that it has read into the SQL/DS buffer pools may get forced out
between turns. This means that each time an agent gets a turn, it has to
re-establish its data in the SQL/DS buffer pools. This is referred to as Buffer
Pool Thrashing.

If you are experiencing a buffer contention problem, this will show up as a
high number of I/O's for many of your applications, and a poor buffer hit
ratio. However, buffer contention and a poor buffer hit ratio could also be
due to a buffer pool that is too small. See "Buffer Pool Too Small" on
page 128 for more information on this case.

Obviously, there are many reasons why you might see paging, lock wait, or high
I/O problems on your system. In such cases, the problem is not necessarily the
"Too Many Agents" problem. However, if you do have a large number of agents,
or you think you may have more agents than you really need, then you might
consider decreasing NCUSERS.

One way of telling whether or not you have more agents than you need is con
sider the amount of time users are spending in link walt. This can be done using
the SHOW USERS operator command. If you are not experiencing a lot of link
wait conditions, then you may not need as many agents as you have allocated.

In general, it doesn't matter what SQL statements or applications you are
running for the "Too Many Agents" problem to show up. That is, it doesn't
matter if you are performing SQL DOL, SQL DML or SQL control functions. If
lock contention or buffer contention is a problem, then the problem is probably
too many SQL users (agents).

LH09-8081..()3 «II Copyright IBM Corp. 1987, 1883 Chapter 5. Diagnosing Performance Problems 207

Too Many Joins

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

However, the paging problem could also be as a result of other "non-SQL" appli
cations on the system. That is, other applications in other machines could be
placing enough of a demand on virtual storage that you cannot afford to use as
many SQUDS agents as you are using.

Possible Actions:

ACTION PAGE

Decrease NCUSERS Below

For other paging problems, see: 114
- "Storage Related Performance Problems"

Figure 120. Too Many Agents - Actions

If the problem is indeed that you are running with too many agents, then the sol
ution is to reduce the number of agents. Basically, this means decreasing
NCUSERS. However, this is slightly more involved than simply decreasing the
setting for NCUSERS. You may also want to decrease the setting for MAXCONN
by a similar amount. Refer to the System Administration manual.

Also, if NCUSERS are to be reduced, it may also be necessary to reduce the
Online Resource Adapter NOLINKS (when VSE Guests are used). Otherwise,
you may find that there will now be too few agents (See "Too Few Agents" on
page 205 for more information on this case).

If you are not sure that you have too many agents, then you should also review
the other problems that can cause paging. See "Storage Related Performance
Problems" on page 114 for the list of possible paging problems.

Problem Description:

Although you can easily combine data from multiple tables, such activity is not
without its costs. In particular, queries or subqueries that are joins of many

J

tables may require a large number of database 110's, and may require a large \
amount of CPU time. ..",

If you have a query or subquery that takes a long time to execute, you could be
asking the system to do too many joins. "Too Many Joins" could be your
problem if the problem request causes a large number of database 110's, or
uses a lot of CPU time to execute. You should also observe no particular
improvement when you run the request with no one else on the system. (That
is, the single user response time is also poor).

If you suspect your problem could be the "Too Many Joins" problem, the best
way to substantiate this is through the EXPLAIN PLAN function. If you EXPLAIN
the query, you can determine the joins being done by inspecting the METHOD
column in the resulting PLAN table entries. For information on using the
EXPLAIN statement to determine the number of Joins you have and how they are
being done, see the SQL Reference manual.

Note: If the problem is with a Format 2 INSERT, then do the EXPLAIN PLAN
analysis on the subquery of the INSERT. Similarly, if the problem is on a

208 SQUDS Diagnosis tor VM LH09-8081-03 C Copyright IBM Corp. 1.7, 1993

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DATAUNLOAD command, do the EXPLAIN PLAN analysis on the DATAUNLOAD
subquery.

Before you conclude that you are doing too many joins, you may want to make
sure that you don't have one of the other problems that would give you high
I/O's. In particular, before you conclude that you have too many joins, you want
to make sure you have given the database machine every opportunity to make
your query perform well. If, for example, the EXPLAIN analysis of the query indi
cates that one or more of the joined tables is being accessed by a DBSPACE
scan, you may want to consider adding indexes, rather than re-phrasing your
query.

Note that the "Too Many Joins" problem can occur on a subquery, as well as a
query. This means you can have this problem with a Format 2 INSERT as well
as a SELECT statement. You can also see this problem if you have subqueries
involving joins on UPDATE or DELETE statements. However, usually you will see
this problem with your SELECT statements.

Possible Actions:

ACTION PAGE

Index Tables to Avoid DB I/O's Below

Reorganize Data to Avoid DB I/O's Below

Use Redundant Data to Avoid DB I/O's Below

Combining Data in the Application Below

For other high CPU usage problems, see "CPU Related Per- 112
formance Problems"

For other high 1/0 problems, see "I/O Related Performance 113
Problems"

Figure 121. Too Many Joins - Actions

There are baSically three approaches you can take for the "Too Many Joins"
problem:

1. Reorganize the Joined tables

In this case, you would be trying to reduce the number of database I/O's by
finding a more effective organization. In its simplest form, this means
making sure you have all the needed indexes. However, it may be neces
sary to reconsider how you have tables clustered or where (in what
DBSPACEs) you have them stored.

2. Use of Redundant Data to avoid DB I/O's

If the data reorganization techniques described above do not help, more
radical action may be called for. In particular, you may have to resort to
some forms of redundant data, in order to avoid the database I/O's. Some
types of redundant data that might be considered include:

a. Stored Results

Rather than join tables to get all the column information desired, you
may want to consider duplicating frequently used columns in the tables
in which it is used. Updating of data can become more involved and you

LH09-8081..()3 CI Copyright IBM Corp. 1987, 1993 Ch.pter S. DI.gnoslng Perform.nee Problems 209

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

will use more DASD space, but you can significantly reduce the number
of joins required in most cases.

b. Table Splitting

You can also reduce the number of 110's to do your joins by splitting
tables, and thereby reducing the number of data pages required for each
table. If you have tables with a large number of columns, this technique
can be very effective at reducing the number of I/O's to do the joins.
You would split the table based on column usage such that col~mns
used together are stored together in the same table.

3. Combine the Data in the Application

Lastly, if all else fails, you will need to reconsider the implementation of your
application. In certain cases, combining data in the application can be more
efficient than having the database manager do it through join operations.

UPDATE STATISTICS by DATALOAD
Problem Description:

When UPDATE STATISTICS is set OFF, the DBS utility will issue an UPDATE STA
TISTICS statement following a DATALOAD. This can adversely affect perform
ance.

When UPDATE STATISTICS is set ON, catalog statistics are automatically accu
mulated during DATALOAD. This avoids the cost of a DBSPACE scan.

First, when UPDATE STATISTICS is set OFF, a DBSPACE scan is performed. This
can be quite time-consuming if the number of active data pages in that
DBSPACE is large. Note that this can be the case even if the target table is
small if other large tables also reside in the same DBSPACE. This can be quite
expensive in terms of database I/O and CPU time. Second, the UPDATE STATIS
TICS updates the catalogs. This requires some exclusive locks in the catalogs,
which may result in long lock waits.

Possible Actions:

ACTION PAGE

Set UPDATE STATISTICS Off Below

Set UPDATE STATISTICS On Below

Put Each Large Table in its Own DBSPACE Below

Figure 122. UPDATE STATISTICS by DATALOAD - Actions

1. Set U PDATE STATISTICS Off

Specify "SET UPDATE STATISTICS OFF". This is appropriate if there is not a
large number of DATA LOADs against the same target table, or if the
DATALOADs are against different target tables. UPDATE STATISTICS could
be executed after the last one, or on a periodic basis. It is also appropriate
if you know the statistics are not going to change Significantly. In that case
you could postpone updating the statistics until more substantial changes '\
have occurred. ...",

210 SQLJDS DI.gnosls for VM LH09-8081·03 C Copyright IBM Corp. 1987, 1993

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

However, this can be costly due to the DBSPACE scan required by the
UPDATE STATISTICS statement.

2. Set UPDATE STATISTICS On

This is especially appropriate ifthere are a large number of DATALOADs
against one target table.

3. Put Each Large Table in its Own DBSPACE

Each large table should be placed in its own DBSPACE. If desired, a number
of small tables can be placed in the same DBSPACE, as the time to do a
DSSPACE scan will still be short. It is best to provide each such table with
an index so that a DSSPACE scan can be avoided for normal table accesses.

Very Nonunique Index Key Prefix
Problem Description:

Sometimes the first six or more characters of a CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC column usually have the same value. For example, numbers
stored in character form often have many leading (high order) zeros. These
repeated characters can make it difficult to determine the best access path. This
is especially true for table access based of a WHERE clause containing an ine
quality (for example, WHERE ACTNO < 10000000090 I).

Possible Actions:

ACTION PAGE

Switch to Numeric Data Type Below

Remove Repeating Characters Below

Add a Redundant Column Below

For other high CPU usage problems, see "CPU Related Performance 112
Problems"

For other high I/O problems, see "I/O Related Performance Problems" 113

Figure 123. Very Nonunique Index Key Prefix - Actions

1. Switch to Numeric Data Type

If the column consists of numbers stored in character form, redefine the
column using the appropriate numeric data type (generally INTEGER or
DECIMAL). The specific steps involved are:

a. Use the DBS utility's DATAUNLOAD facility to put the table's contents on
an external file.

b. Drop and recreate the table, changing the data type of the affected
column(s).

c. Use DATALOAD to reload the table. DATA LOAD will handle the data
type conversions.

d. Recreate any Indexes and views that were on the table and restore table
authorizations.

LH09-8081-03 C) Copyright IBM Corp. 1917,1883 Chapter 5. Diagnosing Performance Problems 211

2. Remove Repeating Characters

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

If the first several character positions are always the same, it may be fea
sible to redefine the column with a shorter length and exclude these charac
ters. To do this, follow the steps shown above under "Switch to Numeric
Data Type", changing the table-column identification for that column so as to
exclude the repeating characters.

3. Add a Redundant Column

If the above suggestions are not applicable, consider adding an equivalent
column that excludes the leading character positions. Drop the index on the
original column and create an index on the new column. Finally, whenever
you have a predicate that refers to the original column, add the equivalent
predicate that refers to the new column.

212 SQLlOS Ol.gnosll 'or VM LH09-8081·03 C> Copyright IBM COrp. 1987, 1983

.J

J

I

I~
I
I

I

I~
I

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 6. Recovering from DBSS Errors

Some SQL/DS abnormal ends are accompanied by message ARI0126E. This
message, which is followed by diagnostic information, indicates that a failure
occurred during DBSS database access (DBSPACE) processing . DBSS (Data
base Storage Subsystem) is the component that physically accesses the data
base.

If message ARI0126E is displayed, it may be possible to recover from the error
and continue processing . If message ARI0126E is displayed:

1. Interpret the diagnostic information that follows message ARI0126E (see
"Interpreting the Diagnostic Display").

2. You may need/be able to recover from the DBSS error (see "Filtered Log
Recovery" on page 224)

3. Follow the instructions in Chapter 3, ".Reporting Defects" on page 69 to
report the defect to IBM.

If you did not receive message ARI0126E when the DBSS failure occurred, you
cannot perform recovery as described in this chapter. You can be confident that
the fa ilure was not caused by bad data in DBSPACEs or DBEXTENTs. In this
case:

1. Perform the Directory Verify function (see Chapter 7, "Recovering from
Directory Verify Errors" on page 243 for details)

2. Follow the instructions in Chapter 3, "Reporting Defects" on page 69 to
report the defect to IBM.

Interpreting the Diagnostic Display
Figure 124 and Figure 125 on page 214 show examples of diagnostic displays
that can follow message ARI0126E.

The action you should take to recover from the failure varies depending on
whether message ARI0126E says FORWARD, ROLLBACK, UNDO, or REDO. Each
action is described in topics starting with" Action to Take for FORWARD Proc
essing Failures" on page 219. Before reading those descriptions, however,
familiarize yourself with the meanings of the text and fields of the diagnostic
display. The meanings of the text are given following Figure 125 on page 214,
and the meanings of the fields are shown in Figure 126 on page 215.

Always save the diagnostic output.

ARISl26E DBSS TERMINATION DURING FORWARD PROCESSING
LUWID • 7B9 USERID • SMITH
OPERATION • CREATE INDEX DBSPACE • IS
TABLE-ID • -32765 (See3) INDEX-ID • -32762 (SeS6)
PAGE-ADDRESS· lEASeS PAGE-TYPE· INDEX
PAGE-NUMBER • 5A3

Figure '24. Example o(Output Caused by a Forward Processing Failure

LH09-aoe1.()3 CI Copyright IBM Corp. 1887. 1883 213

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

ARIS126E DBSS TERMINATION DURING ROLLBACK PROCESSING
LUWID = 7B9 USERID = SMITH
DATE = 12-S1-S5 TIME = 12:12:45
OPERATION = CREATE INDEX
TABLE-ID = -32765 (SSS3)
PAGE-ADDRESS = 1EASSS
PAGE-NUMBER = 5A3

DBSPACE = IS
INDEX-ID = -32762 (SSS6)
PAGE-TYPE = INDEX

Except for ROLLBACK in the message text of ARIS126E, the
displays for UNDO and REDO are identical to the display
above.

Figure 125. Example of Output Cause by a Rollback Processing Failure

The following texts can be displayed for message ARI0126E:

DBSS TERMINATION DURING FORWARD PROCESSING
An error occurred while DBSS was performing an operation that was
accessing data in the database (DBSPACE data). FORWARD indi
cates that the database manager was performing normal database
activity on behalf of an SQUDS application program or terminal user.

DBSS TERMINATION DURING ROLLBACK PROCESSING
An error occurred while the DBSS was trying to undo a database
update previously made by the LUW identified by LUWIO. ROLLBACK
indicates that the database manager is performing log recovery for an
LUW that failed because the application or terminal user or SQUOS
itself initiated the ROLLBACK WORK process. The error occurred
while OBSS was accessing data in the database (OBSPACE data).

DBSS TERMINATION DURING UNDO PROCESSING
An error occurred during the OBSS Log Recovery phase of warm start
or restore from archive. OBSS was trying to undo a database update
previously made by the uncommitted LUW identified by LUWIO. The
error occurred while OBSS was accessing data in the database
(OBSPACE data).

Note: This error can occur if a committed logical unit of work is
rolled back via the ROLLBACK COMMITTED WORK command.
See "Rolling Back Committed Work" on page 231.

DBSS TERMINATION DURING REDO PROCESSING
An error occurred during the OBSS Log Recovery phase of warm start
or restore from archive. OBSS was trying to redo a database update
previously made by the committed LUW identified by LUWIO. The
error occurred while OBSS was accessing data in the database
(OBSPACE data).

These types of errors are caused by:

• Bad data in the database.

• Data in the database that cannot be handled by OBSS code.

• Bad log records.

• Log records that cannot be correctly processed by the SQUDS code.

214 SQLlOS Ol_gnosll for VM L.H08-8081·03 0 Copyright IBM Corp. 1887, 1993

J ,

"Re,tricted Material, of IBM"
Wcen,eeI Material, - Property of IBM

Field

LUWID

USERID

DATE

TIME

• Log record data that has somehow become unsynchronized with the data in
the database. For example, the log record directs the DBSS to delete a row
that does not exist in the database.

In any case, DBSS has encountered a "should not occur" condition and cannot
complete its processing .

Meaning

Internal logical unit of work identifier. (The same identifier that is displayed in
SHOW operator commands and in the output of a DBSS trace.) This identifier can be
specified with the LUWID control keyword of the ROLLBACK COMMITTED WORK and
BYPASS UNDO WORK commands (see "Filtered Log Recovery" on page 224).

SQUDS userid. It identifies the user whose database access request failed in the
DBSS. This userid can be specified with the USERID control keyword of the
ROLLBACK COMMITTED WORK and BYPASS UNDO WORK commands (see "Filtered
Log Recovery" on page 224).

Date that the log record was created in the form mm-dd-yy. This value could be
used with the DATE control keyword of the ROLLBACK COMMITTED WORK
command.

This field is displayed only for ROLLBACK, UNDO, and REDO errors.

Time that the log record was created in the form hh:mm:ss. This value could be
used with the TIME control keyword of the ROLLBACK COMMITTED WORK
command.

This field is displayed only for ROLLBACK, UNDO, and REDO errors.

Figure 126 (Part 1 of 5) . Meanings of Fields in the Diagnostic Display

LH08-8011-03 C Copyright IBM Corp. 1887, 1883 Chapter 8. Recovering trom OBSS Errors 215

Field

OPERATION

Meaning

DBSS operation that failed. Can be:

o DELETE - delete a row from a table

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

o FETCH ROW - retrieve a row from a table (DBSS FETCH)
o INSERT - insert a row into a table-
o FETCH CURSOR - move the internal cursor to the next row in a table and

retrieve the row (DBSS NEXT)-
o OPEN CURSOR - open a cursor on a table-
o UPDATE - update a row
o FETCH SCRIMCRIICRILCR - fetch a data control record.
o NEXT SCRIMCRIICRILCR - move the internal cursor to the next data control

record.
o CREATE TABLE - create a table (CINSERT MCR).
o CREATE LIST - create a temporary list (CINSERT MCR)
o ACQUIRE DBSPACE - acquire a DBSPACE (CINSERT SCR).
o CREATE LINK - create a link (CINSERT LCR). Links are used internally. They

have no external equivalent. '\
o CREATE INDEX - create an index on a table (CINSERT ICR). ..""
o DROP TABLE - drop a table (CDELETE MCR).
o DROP DBSPACE - drop a DBSPACE (CDELETE SCR).
o DROP LINK - drop an internal link (CDELETE LCR).
o DROP INDEX - drop a table index (CDELETE ICR).
o ALTER TABLE - add a column to a table (CUPDATE MCR).
o ALTER DBSPACE - change the lock size or PCTFREE of a DBSPACE (CUPDATE

SCR).
o ALTER INDEX - alter an index on a table. ALTER INDEX is caused by an ALTER

DBSPACE command with the LOCK option specified. (Internally a CUPDATE
ICR.)

o SORT - DBSS sort.
o UPDATE STATISTICS - either start or end UPDATE STATISTICS processing. Can

be caused by either an UPDATE STATISTICS command or by a CREATE INDEX
command.

o - due to an SQUDS internal error, the DBSS operation cannot be deter
mined. In this case TABLE-ID and INDEX-ID are not displayed.

- If the displayed DBSPACE value indicates INTERNAL, the table is actually a tempo
rary list of rows.

Figure 126 (Part 2 of 5). Meanings of Fields in the Diagnostic Display

216 SQUOS Olegnosls for VM LH09-8081-03 C> Copyright IBM Corp. 1987, 1883

"Reatricted Materlala of IBM"
Wcenaed Materiala - Property of IBM

Field Me.nlng

DBSPACE The number of the DBSPACE. This number is the same number used in the
DBSPACENO column of the SYSDBSPACES catalog. If the number is followed by
"INTERNAL", the D.BSPACE is an INTERNAL DBSPACE. Otherwise, the DBSPACE is
either PUBLIC or PRIVATE.

If DBSPACE is followed by ******, the DBSPACE value could not be determined due to
an internal SOLIDS error. Because of this error, TABLE·ID and/or INDEX·ID may not
be displayed.

If the DBSPACE IS PUBLIC or PRIVATE, and the operation is SORT, then the
DBSPACE is the source for the sort. The sort itself takes place in INTERNAL
DBSPACEs. In addition to SORT, the following DBSS operations (see OPERATION
value) can access INTERNAL DBSPACEs:

INSERT
FETCH CURSOR
OPEN CURSOR
FETCH SCRIMCR
NEXT SCRIMCR
CREATE LIST
ACOUIRE DBSPACE

TABLE·ID The internal table identifier in decimai followed by the same value in hexadecimal in
parentheses. The DBSS internal table identifier, also known as the relation identifier
(RID), is the same value that appears in the TABID column of the SYSCATALOG
table. (If the table is a secondary table that is used to store LONG VAR data type
fields, the RID corresponds to the LFDTABID column in SYSCATALOG.) In these
cases, the DBSPACE number must match the DBSPACENO column value in
SYSCATALOG. If the DBSPACE is a package DBSPACE (DBSPACE is SYSOOOn and
n> 1), the RID corresponds to the TABID column in the SYSACCESS table and the
displayed DBSPACE number corresponds to the DBSPACENO column.

If the operation is not addressing a table at the time of the error, TABLE·ID is not
displayed. TABLE·ID is not displayed for UPDATE STATISTICS or for INTERNAL
DBSPACEs.

If ****** is displayed, an internal SOLIDS error caused an invalid table identifier.

Figure 126 (Part 3 of 5). Meanings of Fields in the Diagnostic Display

LH08-a0l1-03 C Copyright IBM Corp. 1867. 1883 Chepter 8. Recovering from DBSS Errors 217

Field

INDEX·ID

PAGE·ADDRESS3

Meaning

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The internal index identifier (liD) in decimal, followed by the same value in
hexadecimal in parentheses.

You can use the displayed DBSPACE number and TABLE·ID identifier to determine
the table name from SYSCATALOG. Then use the table name and INDEX·ID identi·
fier to locate the index name in SYSINDEXES (submitting TNAME and liD and
retrieving INAME and ICREATOR).

INDEX·ID is displayed only for:

• Data manipulation and sort operations that have accessed at least one index
page.

• DROP INDEX, ALTER INDEX, and FETCH ICR.

• CREATE INDEX and NEXT ICR (but only if a value is available). For CREATE
INDEX, INDEX·ID is displayed only if an liD was assigned to the index by the time
the failure occurred.

If •••••• is displayed, an invalid index identifier was found. The invalid identifier is
caused by an internal SQUDS error.

The virtual storage address of the last DBSPACE page retrieved from the database
by the DBSS operation. (This is the address of the DBSPACE page in the SQUDS
dump.)

. If the PAGE·ADDRESS value is "NONE," this DBSS operation has not retrieved any
DBSPACE pages from the database. Note that NONE means no data was accessed
in any DBSPACE page.

If PAGE·ADDRESS is NONE, none of the remaining fields are displayed. (They do not
apply.)

Figure 126 (Part 4 of 5). Meanings of Fields in the Diagnostic Display

218 SQUDS Dlegnosls tor VM LH09-8081·03 C Copyright IBM Corp. 1987, 1883

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

FI.ld

PAGE-TYPE3

PAGE-NUMBER'

M.anlng

Describes the type of DBSPACE page whose address is displayed by
PAGE-ADDRESS above:

EMPTY

HEADER

DATA
INDEX

LIST

SORT

••••••

means that the page is a newly-allocated DBSPACE page that had not been
formatted at the time of the failure. (After formatting. the page would have
had one of the following types.)
means the page is a header page for either a PUBLIC. PRIVATE. or
INTERNAL DBSPACE. DBSPACE header pages contain DBSPACE data
control records.
means that the page contains stored rows of tables.
means that the page contains root. leaf. or non-leaf information for an
index on a table in this DBSPACE.
means this page is an INTERNAL DBSPACE page that contains either the
output of a DBSS sort operation or temporary data stored in a list by RDS.
means that the page is an INTERNAL DBSPACE page that contains the
intermediate results of a DBSS sort. (Intermediate results are eventually
merged into list pages for the final sort result.)
means that an invalid page type was found. (See note below.)

Note: For forward and rollback DBSS processing in multiple user mode. it is pos
sible for the buffer containing the last retrieved DBSPACE to have been freed for
reuse and to have been reused by another agent. If this occurs. its contents (and
the contents of PAGE-TYPE) will not be meaningful. Further. the buffer could contain
a log page. which would cause unpredictable values for PAGE-TYPE and
PAGE-NUMBER.

A hexadecimal number that represents the internal address that the DBSS uses to
access the DBSPACE page whose address is displayed in PAGE-ADDRESS. If
PAGE-TYPE is the PAGE-NUMBER number may not be valid.

PAGE-NUMBER is not displayed if PAGE-TYPE is EMPTY.

Figure 126 (Part 5 of 5). Meanings of Fields in the Diagnostic Display

Actions to take for each of the processing failure types are given under:

• FORWARD processing - "Action to Take for FORWARD Processing
Failures."

• ROLLBACK processing - "Action to Take for ROLLBACK Processing
Failures" on page 221 .

• UNDO processing - "Action to Take for UNDO Processing Failures" on
page 221.

• REDO processing - "Action to Take for REDO Processing Failures" on
page 223.

Action to Take for FORWARD Processing Failures
When your SQUDS application server fails because of a DBSS forward proc
essing failure. SfJve the diagnostic output from the failure. Run the Directory
Verify function (see Chapter 7. "Recovering from Directory Verify Errors" on
page 243). If Directory Verify finds discrepancies. perform the recovery
described under "Recovery Actions for an Inconsistency" on page 243. Other-

, These nelds (PAGE-ADDRESS. PAGE-TYPE. and PAGE-NUMBER) are primarily to assist IBM support personnel In problem
determination.

LH08-8081-03 CI Copyright IBM Corp. 1917, 1883 Chapter 8. Recovering trom DBSS Errors 219

"Restricted Materiala of IBM"
Ucenaed Materials - Property of IBM

wise, restart the application server and allow normal database access. If the J
problem persists, compare the output from all the failures and try to find one of
the following patterns (there is another alternative described after step 4):

1. The DBSPACE numbers, the TABLE-ID values, and the INDEX-ID values in the
diagnostic displays are always the same.

Drop and re-create the index. If this index is a primary key or unique key
index, use the DEACTIVATE PRIMARY/UNIQUE KEY clause of the ALTER
TABLE statement to drop the index, and then use the ACTIVATE clause to
re-create the index. If the problem still persists, take the action in the next
step (below).

2. The DBSPACE numbers and the TABLE-ID values in the diagnostic displays
are always the same.

Issue the following SELECT statement to determine the name of the table
that is causing the failure:

SELECT CREATOR, TNAME
FROM SYSTEM.SYSCATALOG
WHERE TABID~table-id-value
AND DBSPACENO~dbspace-no

Prevent access to the table. If a known set of users access the table, you
can prevent access by "word of mouth." Otherwise, use DBA authority to
revoke all access to the table. Also, deactivate the primary and foreign keys
on the table. If the primary keys or referential constraints exist for this table
you should use the DEACTIVATE ALL clause of the ALTER TABLE statement
to restrict access to the table. Because the table creator and other users
with DBA authority will still have access to the table, you'll just have to ask
them not to access it.

After preventing access to the table, and the table's referential constraint,
allow normal access to the rest of the database. Then follow the instructions
in Chapter 3, "Reporting Defects" on page 69 to report the problem to IBM.
Once the problem is corrected, allow normal access to the table.

3. The DBSPACE numbers in the diagnostic displays are always the same but
the TABLE-ID values are variable.

In this case, prevent further access to the DBSPACE by using the DISABLE J
DBSPACE command. Then follow the instructions in Chapter 3, "Reporting
Defects" on page 69 to report the problem to IBM. Once the cause of the
problem is determined and corrected, you can allow access to the DBSPACE
by using the ENABLE DBSPACE command. See "Filtered Log Recovery" on
page 224 for instructions on disabling and enabling DBSPACEs. If the cor-
rective action could have invalidated any of the referential constraints they
should all be deactivated and reactivated.

4. Nothing seems to match in the diagnostic displays except the userid and the
log(s).

In this case, ask the user to stop running the application that appears to be
causing the failure. Then follow the instructions In Chapter 3, "Reporting
Defects" on page 69 to report the problem to IBM.

Another alternative Is to try restoring the database from the last archive copy. J
This often eliminates the bad data that is causing the failure. If your last data- ~~
base archive was quite recent, it may contain the bad data. If you are using log
archiving, you may restore the database from the next-te-Iast archive copy and

220 SQUDS DiagnOSIS tor VM LH08-8081-03 C Copyright IBM Corp. 1817,1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

subsequent log archives. If you are using database archiving without log
archiving, you may restore the next-to-Iast archive copy, but this will lead to a
back-level database.

Action to Take for ROLLBACK Processing Failures
When your SQUDS application server fails because of a DBSS ROLLBACK proc
essing failure, warm start it. There is a good chance that the failure will not
recur during a warm start. If it does recur, the diagnostic display output will be
the same except that the message will say UNDO instead of ROLLBACK.

For persistent ROLLBACK failures, follow the instructions for FORWARD proc
essing failures (previous topic).

Action to Take for UNDO Processing Failures
UNDO processing can fail during either a warm start or a restore from archive.
UNDO processing can occur on a restore only if the database archive was
created while users were updating the database. The action you should take is
different for each case, as the following two sections describe.

UNDO Processing Failure During a Warm Start
When your SQUDS application server fails because of a DBSS UNDO processing
failure during a warm start (STARTUP=W), do the following:

1. Restart with STARTU P = W, but bypass the UNDO processing for the logical
unit of work that is causing the failure.

Bypassing the UNDO processing for the logical unit of work allows you to get
the application server operational quickly. Recovery processing is only done
for logical units of work that do not cause DBSS errors.

Before bypassing UNDO processing, however, be sure you are aware of the
possible database integrity and recovery consequences. For a specific
logical unit of work that you wish to bypass, use the internal identifier of the
logical unit of work as input to the BYPASS UNDO WORK command. The
LUWID value in the diagnostic display is that identifier. Invoking BYPASS
UNDO WORK and the consequences of doing so are discussed under "Fil
tered Log Recovery" on page 224 and "Filtered Log Recovery and Referen
tial Integrity" on page 237.

2. If you bypass one logical unit of work, but others fail, perform the same
action as above. Instead of specifying a single logical unit of work identifier
on the BYPASS UNDO WORK command, however, specify:

• The DBSPACE number if all failures are in the same DBSPACE.

In this case, you should also prevent further access to the DBSPACE
using the DISABLE DBSPACE command.

• The USERID value if all the failures display the same userid.

• Multiple logical unit of work identifiers (or the ALL option) if there are
multiple UNDO failures and there is no matching pattern on the displayed
DBSPACE number or USERID.

LH09-8081.()3 C) Copyright IBM Corp. 1987, 1883 Chapter 8. Recovering from DBSS Errors 221

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

An alternative to bypassing the UNDO processing is to restore the database from
the last archive copy and the log(s). You can do the restore even after you do a
warm start with bypass processing. The UNDO processing failure is not likely to
occur during a restore because restore processing does not UNDO work.
Instead, the logical unit of work is bypassed when the log is being processed.
Also, if the problem is caused by bad data in the database, the restore process
is likely to eliminate the bad data. This is because the restore process will not
redo any LUW that did not commit. Therefore, if an LUW partially committed,
and in so doing committed bad data (then the system crashes during undo), the
restore process would skip the LUW and not insert the bad data. The disadvan
tage to restoring the database is that it takes much longer than a restart using
BYPASS UNDO WORK commands. A restart using BYPASS UNDO WORK com
mands takes about as long as a normal warm start.

UNDO Processing Failure During a Restore
When the SQUDS application server fails because of a DBSS UNDO processing
failure during an SQUDS archive restore, do the following:

1. Restart the restore from archive process, but bypass the UNDO processing
for the logical unit of work that is causing the failure. You restart the restore
process via warm start (STARTUP=W and LOGMODE=your-current-value).

Bypassing the UNDO processing for the logical unit of work allows you to
restore the database and get it operational quickly. The database manager
does recovery processing for logical units of work that do not cause DBSS
errors.

J

Before bypassing UNDO processing, however, be sure you are aware of the J
possible database integrity and recovery consequences. For a specific
logical unit of work you wish to bypass, use the internal identifier of the
logical unit of work as input to the BYPASS UNDO WORK command. The
LUWID value in the diagnostic display is that identifier. Invoking BYPASS
UNDO WORK and the consequences of doing so are discussed under "Fil-
tered Log Recovery" on page 224 and "Filtered Log Recovery and Referen-
tial Integrity" on page 237.

2. If you bypass one logical unit of work, but others fail, perform the same
action as above. Instead of specifying a single logical unit of work identifier J
on the BYPASS UNDO WORK command, however, specify:

222 SQUDS Dlagnosls for VM

• The DBSPACE number if all failures are in the same DBSPACE.

In this case, you should also prevent further access to the DBSPACE
using the DISABLE DBSPACE command.

• The USERID value if all the failures display the same use rid.

• Multiple logical unit of work identifiers (or the ALL option) If there are
multiple UNDO failures and there Is no matching pattern on the displayed
DBSPACE number or USERID.

LH09-8081·03 C Copyright IBM COrp. 1987, 1093

"Re.tricted Material. of IBM"
Licensed Materials - Property of IBM

Action to Take for REDO Processing Failures
REDO processing can fail during either a warm start or a restore from archive.
The action you should take is different for each case, as the following two
sections describe.

REDO Processing Failure During a Warm Start
When the SQUDS application server fails because of a DBSS REDO processing
failure during an SQUDS warm start (STARTUP=W), do the following:

1. Restart the SQUDS application server with STARTUP=W, but use the
ROLLBACK COMMITTED WORK command for the logical unit of work that is
causing the failure.

Rolling back the committed work for the logical unit of work circumvents the
DBSS processing that caused the error. ROLLBACK COMMITIED WORK
allows you to get the database operational quickly. The database manager
does recovery processing for logical units of work that do not cause DBSS
errors.

Before using ROLLBACK COMMITTED WORK, however, be sure you are
aware of the possible database integrity and recovery consequences. For a
specific logical unit of work that you want to roll back, use the internal identi
fier of the logical unit of work as input to the ROLLBACK COMMITTED WORK
command. The LUWID value in the diagnostic display is that identifier.
Invoking ROLLBACK COMMITTED WORK and the consequences of doing so
are discussed under "Filtered Log Recovery" on page 224 and "Filtered Log
Recovery and Referential Integrity" on page 237.

2. If you bypass one logical unit of work, but others fail, perform the same
action as above. Instead of specifying a single logical unit of work identifier,
however, specify:

• The DBSPACE number if all failures are in the same DBSPACE.

In this case, you should also prevent further access to the DBSPACE
using the DISABLE DBSPACE command.

• The USERID value if all failures display the same userid value.

• Multiple logical unit of work identifiers if there are multiple REDO failures
and there is no matching pattern on the displayed DBSPACE number or
USERID.

An alternative to rolling back the committed work is to restore the database from
the last archive copy and the log(s). (If your last database archive was quite
recent, it may contain the bad data. If you are using log archiving, you may
restore the database from the next-to-Iast archive copy and subsequent log
archives.) You can do the restore even after you do a warm start with
ROLLBACK COMMITTED WORK processing. However, the logical unit(s) of work
that were rolled back via the ROLLBACK COMMITTED WORK command will not
be redone, and thus their database updates will be bypassed (lost). The REDO
processing failure is not likely to occur during a restore if the failure was caused
by corrupt or very unusual (in its stored format) data in the database. Also, If
the problem is caused by bad data in the database, the restore process is likely
to eliminate the bad data. The disadvantage to restoring the database is that it
takes much longer than a warm start using ROLLBACK COMMITIED WORK

LHoe-a081.()3 C> Copyright IBM Corp. 1987, 1983 Chapter 8. Recovering from DBSS Errors 223

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

commands. A warm start using ROLLBACK COMMITTED WORK commands
takes about as long as a normal warm start.

REDO Processing Failure During a Restore
When the SQLlDS application server fails because of a DBSS REDO processing
failure during an SQUDS archive restore, do the following:

1. Restart the restore from archive process, but use the ROLLBACK COM
MITTED WORK command for the logical unit of work that is causing the
failure . You restart the restore process via warm start (STARTUP=W and
LOGMODE = your-current-value) .

Rolling back the committed work for the logical unit of work circumvents the
DBSS processing that caused the error. ROLLBACK COMMITTED WORK
allows you to get the database operational quickly. The database manager
does recovery processing for logical units of work that do not cause DBSS
errors.

Before using ROLLBACK COMMITTED WORK, however, be sure you are
aware of the possible database integrity and recovery consequences. Use
the internal identifier of the logical unit of work that you want to roll back as
input to the ROLLBACK COMMITTED WORK command. The LUWID value in

. the diagnostic display is that identifier. Invoking ROLLBACK COMMITIED
WORK and the consequences of doing so are discussed under "Filtered Log
Recovery," and "Filtered Log Recovery and Referential Integrity" on
page 237.

2. If you bypass one logical unit of work, but others fail, perform the same
action as above. Instead of specifying a single logical unit of work identifier,
however, specify:

• The DBSPACE number if all failures are in the same DBSPACE.

In this case, you should also prevent further access to the DBSPACE
using the DISABLE DBSPACE command.

• The USERID value if all failures display the same userid value.

• Multiple logical unit of work identifiers if there are multiple REDO failures
and there is no matching pattern on the displayed DBSPACE number or \
USERID. ..,

Filtered Log Recovery
The process of invoking the application server to recover from a DBSS error is
known as Filtered Log Recovery. This process is performed by invoking the
application server with Extended Processing. The Filtered Log Recovery process
can consist of steps which allow you to:

Bypass UNDO processing

Rollback work that was committed

Disable a DBSPACE

Enable a DBSPACE.

The following diagram Illustrates the LUW recovery process. The checkpoint
shown is referred to as the base checkpoint for recovery since It is the last
checkpoint taken before the system failure. At this checkpoint the database

224 SQUDS DI.gnosls for VM LHOIH081-03 CI Copyright IBM Corp. 1887, 1993

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

manager writes all database changes to DASD. The diagram describes the
actions taken during warmstart recovery when Filtered Log Recovery is not
used.

Checkpoint System Failure
Time ~ occurs ~ occurs ~ I I
I----------l----------II

L---LUW-A II
no action required II

L....---LUW-B,-,f----...J1

no action required ~redo~

II
II
II
II

'L....-----+--LUW-C:----------I I
+-undo~ no action required

L-LUW-O----'
+--redo---+~

II
II
II
II
II

L--LUW E'----II
no action required II

Figure 127, LUW Recovery Actions

Filtered Log Recovery allows you to do the following:

• LUW A (or completed LUWs in previous log archives) can be backed out
using the ROLLBACK COMMITTED WORK command

• The committed updates from LUW B can be backed out using the ROLLBACK
COMMITTED WORK command

• Recovery can be bypassed for LUW C with the BYPASS UNDO WORK
command

• LUW D can be ignored using the ROLLBACK COMMITTED WORK command.

After performing Filtered Log Recovery, database integrity may be impacted in
three ways:

1. Updates from uncommitted LUWs may be left in the database

2. Updates from LUWs may be based on LUWs that have been rolled back

3. Referential constraints may no longer hold true. You will have to reassert all
relationships in the affected tables.

For these reasons, call IBM support personnel for assistance before attempting
to u.e Filtered Log Recovery.

Extended Processing
The EXTEND input file commands will allow you to perform Filtered Log
Recovery. To invoke the SQLlDS application server to recover from a DBSS
error, specify the EXTEND = Y initialization parameter. EXTEND = Y specifies that
you want it to use extended SQLlDS initialization to process the EXTEND input
file. You can specify EXTEND=Yonly if STARTUP is W or R or U. Otherwise,
SQLlDS initialization ends. The default for EXTEND is N.

LH08-8081-03 CI Copyright IBM Corp. 1887, 1883 Chapter 8. Recovering from DBSS Errors 225

FILEDEF ARIEXTND DISK ZAP14 DATA A
SQLSTART DB(PROD) PARM(EXTEND=Y)

Contents of file ZAP14 DATA A:

BYPASS UNDO WORK WHERE
USERID SCOTT (.
DBSPACE 14 ~. (1. ~

DISABLE DBSPACE 14

Commands

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Figure 128. Example o(Invoking your Application Server to Process EXTEND Input File

J

Figure 128 is an example of invoking your application server to process EXTEND J
input file commands. EXTEND =Y indicates that EXTEND input file commands
are to be processed.

The CMS FILEDEF command identifies the EXTEND input file. The file you iden
tify must have a fixed record length of 80 bytes. There are no other restrictions
on the file. The ddname in the FILEDEF must be ARIEXTND, as shown. The
commands in the EXTEND input file must all be in upper case.

You can specify the commands anywhere in columns 1 to 72 of the input records.
The commands must be on lines by themselves.

Note: Comments are allowed. They must begin with an asterisk (*) in column 1.
Blank lines are also permitted.

When EXTEND input file commands are read, they are displayed on the operator
console.

The BYPASS UNDO WORK and ROLLBACK COMMITTED WORK commands have
control keywords associated with them. A control keyword and its associated
parameter strings must be entirely on a single separate line. They cannot be on
the same line as the command.

Neither the commands nor the control keywords can span input records. Except
for the "TIME" and "DATE" options in the ROLLBACK COMMITTED WORK
command, a control keyword can be used only once per command. Both of
these examples of the BYPASS UNDO WORK command are incorrect:

BYPASS UNDO WORK WHERE
USERID JONES KROL SCOTT THOMPSON TRACY SMITH WALTERS HENRY

COMO TOMS WALKER WARD SOLE HALL

(Error: USERID parameters span an input record.)

BYPASS UNDO WORK WHERE
USERID JONES KROL SCOTT THOMPSON TRACY SMITH WALTERS HENRY
USERID COMO TOMS WALKER WARD SOLE HALL

(Error: Duplicate control keywords used in one
BYPASS UNDO WORK command.)

226 SQUDS DiagnOSIS for VM LH08-8081-03 C> Copyright IBM Corp. 1987, 1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The correct way to bypass processing for those users is:

BYPASS UNDO WORK WHERE
USERID JONES KROL SCOTT THOMPSON TRACY SMITH WALTERS HENRY

BYPASS UNDO WORK WHERE
USERID COMO TOMS WALKER ~JARD SOLE HALL

Summ.ry M •••• g.s: The database manager analyzes the log to determine
which logical units of work will be affected by the BYPASS UNDO WORK and the
ROLLBACK COMMITTED WORK commands. Summary messages are displayed
for each logical unit of work affected. There are two types of summary mes
sages:

1. Message ARI02121 identifies the logical unit of work that will be bypassed
and/or rolled back because of the commands. For each of these logical units
of work, m •• sag. ARI02371 displays the affected DBSPACEs and the oper·
atlons on these DBSPACEs. Message ARI02101 is displayed if no logical
units of work will be bypassed or rolled back because of the commands.

2. Messages ARI02111 and ARI02141 are displayed if any logical units of work
may be impacted by those logical units of work that will be bypassed or
rolled back because of the commands. These impacted logical units of work
may be updating objects that no longer exist (or exist in a different form)
because of the bypassed or rolled back logical units of work. This could lead
to a DBSS UNDO or REDO termination error (message ARI0126E). Alterna
tively, it could cause incorrect updates to be made to the data base. These
database inconsistencies may cause problems later such as:

• DBSS terminations during FORWARD processing (message ARI0126E).

• "Should not occur" SQLCODE errors.

• Incorrect output.

After displaying the summary messages, the database manager displays
message ARI0213D. You should review the summary messages to ensure that
your command input will do what you thought it would. You can then reply CON
TINUE or CANCEL to message ARI0213D. A response of CONTINUE causes the
records in the log for the displayed logical units of work to be modified before
applying the logged changes. The changes made to the log will remain even if a
failure occurs while applying the changes.

If you are restoring the database from both database and log archives
(LOGMODE = L), you will get the summary messages and message ARI0213D for
each log archive file restored. Because you can stop the application server
before each log archive file is processed, you can submit different EXTEND input
files for each log archive file restored.

Because summary messages are issued for each log archive (and you can
change the EXTEND Input file for each log archive), the database manager
cannot detect impacted logical units of work in subsequent log archives. For
example, if a committed logical unit of work is rolled back in the first log archive,
it may impact logical units of work in subsequent log archives. However, no
"impacted" logical units of work will be detected in subsequent log archives.
This could lead to DBSS REDO termination errors (message ARI0126E). Alterna
tively, it could cause incorrect updates to be made to the database. These data
base inconsistencies may cause problems later such as:

• DBSS terminations during FORWARD processing (message ARI0126E).

LH08-8081-03 C> Copyright IBM Corp. 1a87, 1883 Ch.pter 8. Recovering from DBSS Errors 227

• "Should not occur" SQLCODE errors.

• Incorrect output.

"Restricted Materials of IBM"
Licensed Material. - Property of IBM

Bypassing an UNDO WORK Failure

Format:

..--gVPASS UNDO WORK WHERE--r-ALL J
Lselected

where selected Is:

~LUWID~ ~DBSPACE--*=dbspaceno~

You must indicate either ALL or at least one LUWID, DBSPACE, or USERID. You
can specify a LUWID, DBSPACE, and USERID in any order, but each must be on
a separate line. For a further explanation, see the examples listed on page 229.

During recovery processing, some logical units of work that are recorded in the
log are "undone." The logical units of work that are undone during warm start
are those that were not yet committed when the system failed. Logical units of
work may also have to be undone when restoring from a database archive that
was taken while users were accessing the database. When a DBSS error occurs
during undo work processing, it is possible to make the database available again
by using BYPASS UNDO WORK.

J

J

BYPASS UNDO WORK causes the database manager to bypass the undo proc
essing for uncommitted logical units of work. Because the cause of the failure is
bypassed, recovery processing can complete and the database can be available
~dort ubse. Tfhe database i~tindco, nS.iste, nt, .howfever·k Some o.f th.e chhandgesbto the . '\
a a ase rom uncommlt e oglca Units 0 wor now eXist In t e ata ase. ..."

Use the diagnostic display information to determine what control keywords and
parameters you should specify. The control keywords are:

LUWID id [id2 id3 ...]

ALL

identifies the logical unit of work for which undo work processing is to be
bypassed. You can specify more than one logical unit of work identifier.
Separate the identifiers with blanks. Use the diagnostic display to determine
which logical units of work should be bypassed.

Indicates that all logical units marked for undoing are to be bypassed. If you
use ALL, you cannot specify other control keywords or another BYPASS
UNDO WORK command with other control keywords.

228 SQUDS Diagnosis 'or VM LH08-8081-03 C> Copyright IBM Corp. 1917, 1883

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

DBSPACE dbspaceno [dbspaceno1 dbspaceno2 ...]
indicates that undo processing is to be bypassed for any logical unit of work
that updates the specified DBSPACE(s). You can specify more than one
DBSPACE. Separate the DBSPACE numbers with blanks.

You cannot specify DBSPACE 1. which contains the SQLlDS catalog.
Bypassing DBSPACE 1 is not allowed because it contains the SQLlDS cata
logs.

If a logical unit of work that is to be undone has updated the specified
DBSPACE. the database manager bypasses undo processing for all changes
recorded in the logical unit of work. That is. once a logical unit of work
meets the bypass condition. undo processing is bypassed for all changes
(including other affected DBSPACEs) in that logical unit of work.

USERID userid [useridl userid2 .. ,]
indicates that undo processing is to be bypassed for all logical units of work
done by the specified user. More than one userid can be specified. Sepa
rate each userid with blanks.

In this example. undo processing is bypassed for all logical units of work that
update either DBSPACE 14 or 47:

BYPASS UNDO WORK WHERE
DBSPACE 14 47

When more than one control keyword (other than LUWID - see below) is speci
fied. the parameters within each control keyword are ORed. while the control
keywords themselves are ANDed. For undo processing to be bypassed in the
following example. the logical unit of work must be either scon's or
THOMPSON's. and must have operated on either DBSPACE 22. 5. or 54.

BYPASS UNDO WORK WHERE
DBSPACE 22 5 54
USERID SCOTT THOMPSON

LUWID. however. is always ORed to the rest of the control keywords. In the fol
lowing example. logical unit of work 7BF is always bypassed regardless of the
userid associated with it or the DBSPACEs it modifies. Additional logical units of
work are bypassed only if they operate on DBSPACE 22. 5. or 54. and they have
the userid SCOTT or THOMPSON.

BYPASS UNDO WORK WHERE
DBSPACE 22 5 54
LUWID 7BF
USERID SCOTT THOMPSON

Regardless of what parameters you specify. it is always worthwhile to determine
which DBSPACEs have inconsistent data because of BYPASS UNDO work. A list
of all log records that were bypassed is displayed. DBSPACEs for which undo
processing is bypassed will contain inconsistent data. You should consider disa
bling these DBSPACEs so users don't update data based on inconsistent
changes.

Sometimes you can bypass a logical unit of work based on your analysis of the
diagnostic display and still get DBSS errors (message ARI0126E) on recovery. In
this case you must. once again. try to detect a pattern and bypass the undo
processing (UNDO failure) or redo processing (REDO failure) for the logical unit

LH09·8081-03 C Copyright IBM Corp. 1987. 1883 Chepter 8. Recovering from OBSS Errors 229

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

of work that seems to be causing the failure. Often you'll find that the errors
occur for undo or redo processing on a single DBSPACE. Bypassing undo or
redo processing for that DBSPACE could allow the recovery to complete suc
cessfully. Remember to disable the affected DBSPACE. Otherwise, users would
continue to update a DBSPACE that contains inconsistent data. If the affected
DBSPACE(s) are not disabled, these database inconsistencies may cause prob
lems later such as:

• DBSS terminations during FORWARD processing (message ARI0126E).

• "Should not occur" SQLCODE errors.

• Incorrect output.

The BYPASS UNDO WORK command leaves inconsistencies in the database.
After you correct the problem that caused the DBSS failure, you have the fol
lowing options to remove the inconsistencies if you are running with
LOGMODE = L or LOGMODE = A:

1. If you have not taken a database archive since the BYPASS UNDO WORK,
you can restore the database from the last archive.

2. If you have taken a database archive since the last BYPASS UNDO WORK
and LOGMODE = L. you can restore the database from an earlier database
archive and all subsequent log archives (if you have saved all the archive
files).

3. You can choose to restore the database to a previous (to the BYPASS UNDO
WORK) archive level. Refer to "Resetting the Database", in the System Plan
ning and Administration.

4. You can manually undo the inconsistencies.

5. You can leave part of the database inconsistent indefinitely, perhaps using
DISABLE DBSPACE.

With LOGMODE = Y, only the fourth and fifth options are available to you.

Example of Bypassing an UNDO WORK Failure:

The following is an example of using Filtered Log Recovery to bypass the undo
processing for an uncommitted logical unit of work.

Checkpoint System Failure
Time ---. occurs ---. occurs ~ II
1--------+-----------1/

II
'L...-----+---LUW-C----'--------I I

Figure 129. BYPASS UNDO WORK for LUW C

II
II
II

J

Consider the situation in Figure 129. The system has ended abnormally.
Warmstart recovery should undo all changes made prior to the checkpoint by),
LUW C since it was not committed, but there is a bad spot on the log causing a,

230 SQLlOS OI_gnoSls tor VU LH09-8081-03 C Copyright IBU Corp. 1~7, 1993

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

log record for LUW C to have an invalid DBSPACE number. The following
message appears during warmstart:

ARI0126E DBSS term;nation dur;ng UNDO process;ng.
LUWID = 103 USER ID • SQLDBA
DATE = 06-22-92 TIME = 13: 19:58
OPERATION· INSERT DBSPACE = -6169
TABLE ID - -6169 (E7E7)
PAGE ADDRESS - NONE

In this type of scenario, there is no possibility that any LUW has a dependency
on LUW C, since LUW C never committed (and hence its changes were never
accessible by other LUWs).

During restart, you can bypass the undo processing for LUW C with the following
command:

BYPASS UNDO WORK WHERE
LUWID 103

The result of the BYPASS UNDO WORK command is that some of the changes
from the uncommitted LUW C remain in the database. The DBSPACEs affected
by LUW C should be disabled until the partial updates can be removed.

Rolling Back Committed Work
The ROLLBACK COMMITIED WORK command rolls back logical units of work
that users or applications have already committed to the database. Before using
ROLLBACK COMMITTED WORK review "Filtered Log Recovery and Referential
Integrity" on page 237.

Normally. you would use ROLLBACK COMMITIED WORK when you get a DBSS
error during redo processing. You can also use it to back out changes that a
user had erroneously committed to the database.

When you use the ROLLBACK COMMITIED WORK command during a warm
start, you can force the rollback of any logical unit of work that completed after
the last checkpoint. In addition, for warm start:

if LOGMODE = A or L, and
you specify the DATE and/or TIME control keywords

you can force the rollback of any committed logical unit of work in the current
log, except for any logical units of work which contain a DROP TABLE or DROP
DBSPACE command.

When used with restore, you can do a ROLLBACK COMMITIED WORK for any
logical unit of work that completed after the database archive was taken.

If you are trying to make the database available after a DBSS error, you should
use the diagnostic display Information to determine what control keywords and
parameters you should specify.

If you want to back out user errors, you should get the userid associated with the
erroneous logical unit of work, and the date and time it was run. Ideally, you
should get the logical unit of work identifier, but few users know what Identifiers
are associated with their logical units of work. You should use ROLLBACK
COMMITTED WORK for user errors only as a last resort.

LH08-I0II1-03 CD Copyright IBM Corp. 1887, 1883 Ch8pter 8. Recovering from CBSS Errors 231

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

When you roll back committed work, subsequent logical units of work are J'
affected if they base their updates on changes made by that logical unit of work.
Some of the subsequent logical units of work will fail during recovery processing
(causing message ARI0126E to be displayed). This can happen if, for example, a
row that it had updated no longer exists. Other logical units of work might not
fail, but could yield database inconsistencies. These database inconsistencies
may cause problems later such as:

• DBSS terminations during FORWARD processing (message ARI0126E).

• "Should not occur" SQLCODE errors.

• Incorrect output.

The following is an example illustrating one possible affect of the ROLLBACK
COMMITTED WORK command on a subsequent logical unit of work.

Example: In this example, a unique index is affected by the ROLLBACK COM
MITTED WORK command.

Checkpoint System Failure
Time ~ occurs ~ occurs ~ II
1--------+-----------1/

L I II
LUW-A--+----' I I

lLUW-J ~~
II
II
II

Figure 130. ROLLBACK COMMITTED WORK for LUW A

Consider the situation in Figure 130. LUW A (LUWID 1265) deletes rows from
a table with a unique index. LUW B (LUWID 1268) then inserts new rows with
the same keys. LUW B depends on LUW A. An attempt to ROLLBACK COM
MITTED WORK for LUW A results in the following message during warmstart:

ARI0126E DBSS termination during
LUWID = 1268
DATE = 06-22-92
OPERATION = INSERT
TABLE ID = -32767 (S001)
PAGE ADDRESS = 45F000
PAGE NUMBER = 12C

REDO processing.
USER 1D = SQLUSRA
TIME = 15:43:04
DBSPACE = 11

PAGE TYPE· INDEX

This example shows what can happen when you perform the ROLLBACK
COMMITTED WORK command for an LUW which affects the same table as a
subsequent LUW. When attempting to insert a key into the unique index, the
application server detected that the insert would violate the uniqueness of
the index. A more insidious example would be where the second LUW could
be redone successfully, but the answer is not what is expected.

During restart, you should rollback the committed work for LUW B as well

J

J

with the following command: \

ROLLBACK COMMITTED WORK WHERE ~
LUWID 1268

232 SQIJDS Diagnosis 'or V~ LH09-8081·03 C> Copyright IB~ Corp. 1987,1883

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

The result of the ROLLBACK COMMITIED WORK commands is that both
LUW A and LUW B are rolled back. You should disable the DBSPACEs
affected by these LUWs until the LUWs can be redone (if desired) and the
referential integrity can be checked.

You are more likely to encounter this situation when restoring a database
and its associated log archives. since the number of LUWs following the one
being rolled back can be much larger.

The ROLLBACK COMMITIED WORK command causes records in the log to be
modified. How these modified records will affect subsequent use of the log
depends on the context in which ROLLBACK COMMITTED WORK is used. There
are two cases: the command is used during a restore. or the command is used
during a warmstart. In both cases. the distinction we need to make is whether
the log dataset contains the current log. or a copy of an archived log.

1. Restore

While applying logged changes during a restore. we copy archived logs onto
the log dataset (or datasets. for dual logging) so they can be manipulated by
the SQLlDS application server. A ROLLBACK COMMITIED WORK command
will modify the working copy of the log on the log dataset, but the archive
copy is not affected. Therefore. in any subsequent restore using the same
archived logs you will need to repeat the ROLLBACK COMMITIED WORK
commands in order to achieve the same results.

There is one exception to note involving the last log in the restore set. This
is the current log that was archived at the beginning of the restore. and will
be the last log you will apply (unless you end the restore prematurely). This
log will become the current log once again at the end of the restore. and will
not be part of the restore set. The changes made by ROLLBACK COM
MITTED WORK are reflected in this current log. and will therefore be saved
when the log is subsequently archived.

2. Warmstart

When performing a warmstart. the log which currently resides on the log
dataset(s) is always the current log. The ROLLBACK COMMITTED WORK
command modifies the records on this log. and these modified records will
be saved when the log is subsequently archived. It will not be necessary to
repeat any ROLLBACK COMMITIED WORK commands if this log is later
used during a restore.

To summarize. the SQLlDS application server can manipulate only those log
records which reside on the log dataset(s). and any changes made are perma
nent only when the resident log happens to be the current log rather than a copy
of an archived log.

Once you have rolled back a committed logical unit of work. the only way to
recommit it Is to rerun the logical unit of work or by restoring the database from
database and subsequent log archives (without using ROLLBACK COMMITTED
WORK command).

LH08-t0l1-03 CD CoPvrlght IBU Corp. 1817, 1e83 Chapter IS. Recovering from DBSS Errors 233

Format:

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

~ROLLBACK COMMITTED WORK \mERE-----------------------..

~lUWID~ ~DBSPACE--*=db5paceno~

C=TIME--hh:mm:55~

c= TO-C:0ATE -mm-dd-Y~
TIME -hh:mm: 55

...

You must specify at least one of the control keywords. If you choose more than
one, they may appear in any order, but each must be on a separate line.

The control keywords are:

LUWID id [id2 id3 ...]
identifies the logical unit of work for which the committed work will be rolled
back. You can specify more than one logical unit of work identifier. Sepa-
rate the identifiers with blanks. Use the diagnostic display to determine J
which logical units of work should be rolled back.

DBSPACE dbspaceno [dbspaceno1 dbspaceno2 ...]
indicates that committed work is to be rolled back for any logical unit of work
that updates the specified DBSPACE(s). You can specify more than one
DBSPACE. Separate the DBSPACE numbers with blanks.

If a committed logical unit of work has updated the specified DBSPACE, the
entire logical unit of work is rolled back, not just those changes that affect
the DBSPACE.

USERID userid [userid1 userid2 ...]
indicates any committed logical unit of work for a given user is to be rolled
back. More than one use rid can be specified. Separate each userid with
blanks.

DATE mm-dd-yy
Indicates the date from which the log is searched for the first committed
logical unit of work. Normally, the starting date would be some date that
work was done in the current log. If, however, you are restoring the data
base using log archiving, you can specify dates of logical units of work that
were done in previous log archives. Each portion of the date must consist of
two characters; that is, leading zeros must be added if necessary.

If the DATE control keyword Is omitted. but a TIME control keyword is
present, then the current date is used.

TIME hh:mm:ss
Indicates the time from which the database manager is to search for the first
committed logical unit of work that is to be rolled back. Each portion of the

234 SQUDS Diagnosis tor VM LH09-8081-03 C Copyright IBM Corp. 1.7, 1883

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

TO

time must consist of two characters: that is, leading zeros must be added if
necessary.

If the TIME control keyword is omitted, but the DATE control keyword is
present, 00:00:01 is used by default (12:00:01 A.M.).

this allows you to bound the date and time. TO must follow a starting date
and/or time, and must be followed by an ending date and/or time. See the
examples below for clarification.

In this example, committed work is rolled back for all logical units of work that
update either DBSPACE 14 or 47:

ROLLBACK COMMITTED WORK WHERE
DBSPACE 14 47

When more than one control keyword (other than LUWID - see below) is speci
fied, the parameters within each control keyword are ORed, while the control
keywords themselves are ANDed. For committed work to be rolled back in the
following example, the logical unit of work must be either SCOTT's or
THOMPSON's, and must have operated on either DBSPACE 22, 5, or 54.

ROLLBACK COMMITTED WORK WHERE
DBSPACE 22 5 54
USERID SCOTT THOMPSON

LUWID, however, is always ORed to the rest of the control keywords. In the fol
lowing example, logical unit of work 7BF is always rolled back regardless of the
userid associated with it or the DBSPACEs it modifies. Additional logical units of
work are rolled back only if they operate on DBSPACE 22, 5, or 54, and they have
the userid SCOTT or THOMPSON.

ROLLBACK COMMITTED WORK WHERE
DBSPACE 22 5 54
LUWID 7BF
USERID SCOTT THOMPSON

In the next example, logical unit of work 801 is always rolled back regardless of
when it occurred in the current log. All work started by SCOTT after 6:00 P.M. on
5-5-1985 is also rolled back.

ROLLBACK COMMITTED WORK WHERE
USERID SCOTT
DATE 05-05-85
TIME 18:00:00
LUWID 801

In this example, SCOTT's work is rolled back only if it started between 6:00 and
8:00 P.M. on 5-5-1985.

ROLLBACK COMMITTED WORK WHERE
USERID SCOTT
DATE 05-05-85
TIME 18:00:00
TO
DATE 05-05-85
TIME 20:00:00

LH08-8081-03 C Copyright IB~ Corp. 1917, 1883 Chapter S. Recovering from DBSS Errors 235

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

DROP DBSPACE and DROP TABLE Consideration.: The ROLLBACK COM
MITTED WORK command can be used to roll back a logical unit of work con
taining a DROP TABLE or DROP DBSPACE command if that logical unit of work
is failing during warmstart REDO recovery processing. It can also be used to roll
back a logical unit of work containing a DROP TABLE or DROP DBSPACE
command, if a database archive that still contains the table or DBSPACE is
restored first. It is not intended to be used to back out changes that a user has
erroneously committed to the database.

There are special considerations if a logical unit of work containing DROP
DBSPACE and/or DROP TABLE commands is to be rolled back because of the
manner in which SQLlDS processes DROPs. For performance and in order to
minimize the size of the log, specific database changes are not logged for DROP
DBSPACE and DROP TABLE (for example, the dropped rows are not logged).
For each such command in a logical unit of work, SQLlDS schedules another
logical unit of work that actually performs the DROP function. This logical unit of
work executes after the COMMIT WORK process of the logical unit of work con
taining the DROP command completes. If the second logical unit of work com
pletes successfully, the database manager writes a checkpoint to the log. As
well, it is possible for a checkpoint to occur when storage is being released for a
dropped table. You will not be able to use the ROLLBACK COMMITTED WORK
command during a warmstart to successfully restore a table or DBSPACE which
was dropped by accident if:

1. The second logical unit of work completes successfully, resulting in a check
point being written to the .Iog

2. During processing of the DROP TABLE command, a checkpoint occurs while
storage is being released.

There are two situations when you would be able to use the ROLLBACK COM
MITTED WORK command to roll back the updates for a logical unit of work con
taining a DROP TABLE or DROP DBSPACE command.

1. If the database manager abended and the last checkpoint occurred before
the beginning of the second logical unit of work that actually performed the
drop. In this situation you could use the ROLLBACK COMMITTED WORK
command during a warmstart of the SQLlDS application server.

2. If the following conditions apply:

a. The logical unit of work in question took place while LOGMODE was A or
L, and

b. you restored the system from a database archive and its related log
archives taken prior to this logical unit of work.

In other words, once a DROP TABLE orDBSPA·CE is committed, you cannot
restore the table or DBSPACE unless you are able to restore from a data
base archive and use the ROLLBACK COMMITTED WORK command.

If a logical unit of work containing DROP DBSPACE and/or DROP TABLE com
mands Is to be rolled back, the following rules apply:

1. The ROLLBACK COMMITIED WORK command must contain the DBSPACE
control keyword. All of the DBSPACEs affected by the DROP commands
must be specified via the DBSPACE control keyword.

238 SQLlDS Diagnosis tor VM LH08-8011-03 CI Copyright IBM Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucensed Material. - Property of IBM

2. The ROLLBACK COMMITTED WORK command may also contain the LUWID
control keyword, but must not contain any other control keywords. That is,
the USERID, DATE, and TIME control keywords are not permitted. (This is
because the ANDed options are not permitted in this case.)

If these rules are violated, the database manager displays message ARI0256E
and ends after it displays all the summary messages.

Filtered Log Recovery and Referential Integrity
Users of Filtered Log Recovery must ensure that the integrity of the data is main
tained after bypassing committed LUWs. A bypassed LUW may be inserting a
parent row upon which later inserts in later LUWs depend. Therefore, after Fil
tered Log Recovery, the database may be in an inconsistent state even though
the constraints all appear to be enforcing Referential Integrity.

It is the responsibility of the user to re-establish the integrity of the data by
determining all tables in the affected DBSPACEs and deactivating and then acti
vating keys for those tables. Otherwise there is no guarantee of the integrity of
the data:

The following scenario will be used as an example of how to re-assert Referen
tial Integrity after Filtered Log Recovery.

Assume that the following sequence of events has taken place and each step is
a separate LUW:

1. User 10 JONES has created the table T1 in DBSPACE 14 and T2 in DBSPACE
15. Both DBSPACEs are recoverable. T1 is the parent table and T2 is the
dependent table.

2. User 10 HALL inserts a row into the parent table T1.

3. User 10 SMITH inserts a row into the dependent table T2.

Then, before a checkpoint is issued assume that a "failure" occurs due to a
DASD I/O error.

To perform the Filtered Log Recovery to ROLLBACK the insert of a parent row,
two things must be done. Firstly, identify to the database manager the EXTEND
input file that contains recovery parameters. It can be identified in the following
way:

filedef eriextnd disk rollbeck filtperm e

The ROLLBACK FILTPARM file causes the COMMITTED WORK which inserts the
parent row to be bypassed. The command in the file looks like this:

ROLLBACK COMMITTED WORK WHERE
USERID HALL

Secondly. Invoke Filtered Log Recovery by starting the database with
EXTEND =Y: as In Figure 131 on page 238.

LHoe-eOS1-03 C Copyright IBM Corp. 1a17. 1883 Chapter e. Recovering from OBSS Errors 237

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

The highlighted message in Figure 131 tells you in which OSSPACE the table is
located. The operation on the table which was rolled back is also included. In
this example it was one INSERT on a table in OSSPACE 14.

SQLSTART DB(SQLMACBS) PARM(DUMPTYPE=N,EXTEND=Y)
ARIS717I START SQLSTART EXEC: S7/26/88 16:S8:22 EDT
ARIS663I FILEDEFS IN EFFECT ARE:
ARIEXTND DISK ROLLBACK FILTPARM A1
ARISQLLD DISK ARISQLLD LOADLIB Q1
BDISK DISK 3SS
LOGDSK1 DISK 3S1
LOGDSK2 DISK 3S2
DDSK1 DISK 3S3
DDSK2 DISK 3S4
ARIUSRDD DISK USERLIB LOADLIB *
ARIARCH TAP1 SL SSSSl
ARITRAC TAP2 SL SSSSl
ARILARC TAP3 SL SSSSl

•
•
•

ARISS16I DISPBIAS PARAMETER VALUE IS 7
ROLLBACK COMMITTED WORK WHERE
USERID HALL
ARIS283I LOG ANALYSIS COMPLETE
ARIS212I SUMMARY INFORMATION OF THE RECORDS TO BE ROLLED BACK :

LUWID = C4C USER ID = HALL
DATE = S7-26-88 TIME = 16:S5:17

ARIBZ37I DBSPACE 14 <-------
ARIS237I 1 INSERTS
ARIS213D ENTER 'CONTINUE' TO CONTINUE SQL/DS INITIALIZATION, OR

'CANCEL' TO END THE INITIALIZATION.
continue
ARIS282I LUW UNDO COMPLETE
ARIS281I LUW REDO COMPLETE
ARIS134I DATABASE SQLMACBS HAS BEEN IDENTIFIED AS A

GLOBAL RESOURCE.
ARISS6SI SQL/DS INITIALIZATION COMPLETE
ARISS45I READY FOR OPERATOR COMMUNICATIONS

Figure 131. Invoke Filtered Log Recovery Example

Filtered Log Recovery processing can leave the database in an inconsistent
state and the integrity of the data cannot be guaranteed. In this example,
although the parent row in the parent table no longer exists on the database, the
catalog does not renect this unmatched state. Therefore, an active foreign key
may contain a foreign key value without a matching primary key value.

After Filtered Log Recovery has completed you must recheck any referential con
straints which may have been affected. The console might look as follows when
determining which tables in the affected OSSPACE 14 have dependent foreign
keys. The OSSPACE number was obtained from the highlighted statement in
Figure 131.

238 SQLlDS DI.gnosls tor V~ LH08-t081.()3 C Copyright IBM Corp. 1987, 1883

J

"Rettricted Materialt of IBM"
Ucented Materialt - Property of IBM

ARI0870I ENTER: COMMAND FOLLOWED BY A SEMICOLON OR EXIT TO END
select creator,tname,dbspaceno from system.syscatalog
where dbspaceno = 14 and dependents > 0;
------> SELECT CREATOR,TNAME,DBSPACENO FROM SYSTEM.SYSCATALOG

WHERE DBSPACENO = 14 AND DEPENDENTS> 0;

CREATOR TNAME DBSPACENO

SMITH T1 14
ARI08S0I SQL SELECT PROCESSING SUCCESSFUL: ROWCOUNT=l

All active keys should be deactivated. The objective is to check that each foreign
key value in the dependent table has a matching primary key value in the parent
table. To do this you must first deactivate all active dependent foreign keys in
the relationship. Deactivating a primary key will implicitly deactivate all active
dependent foreign keys.

If the command

ALTER TABLE HALL. T1 DEACTIVATE PRIMARY KEY;

is entered the console will look like the following:

ARI0870I ENTER: COMMAND FOLLOWED BY A SEMICOLON OR EXIT TO END
alter table hall.t1 deactivate primary key;

------> ALTER TABLE HALL.T1 DEACTIVATE PRIMARY KEY;
ARI0S00I SQL PROCESSING WAS SUCCESSFUL.
ARI0S0SI SQLCODE = 0 ROWCOUNT = 0

To determine which foreign key, if any, does not have matching primary key
values for its foreign key values enter the following command.

ALTER TABLE HALL.T1 ACTIVATE PRIMARY KEY;

By activating the primary key you are also activating all dependent foreign keys
that were deactivated impliCitly when the primary key was made inactive.

The console will look like the following:

ARI9S701 ENTER: COMMAND FOLLOWED BY A SEMICOLON OR EXIT TO END
alter table hall.t1 activate primary key;

------> ALTER TABLE HALL.T1 ACTIVATE PRIMARY KEY;
ARI0Se3E AN SQL ERROR HAS OCCURRED.

THE FOREIGN KEY T1FOREIGN DEFINED FOR TABLE SMITH.T2
CANNOT BE ACTIVATED. REASON CODE • e3

ARI0SeSI SQLCODE - -667 ROWCOUNT • 0
ARIeS94I SQLERRP: ARIXIVR SQLERRD1: -819 SQLERRD2: 9

LH09-8081-03 C> Copyright IBM Corp. 1887. 1983 Chapter S. Recovering trom DBSS Errors 238

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

The SQLCODE = -667 and the reason code = 03 indicate that the operation J ..
failed because not every value in the foreign key is found in the primary key of
its parent. For more information see the Messages and Codes manual.

A referential constraint has been discovered which is no longer valid. It is inac
tive and will remain inactive until every foreign key value has a matching
primary key value. It can be fixed any of the following ways:

• Adding the appropriate row to the parent table

• Changing the appropriate row in the dependent table

• Moving the appropriate row from the dependent table to a special table.

See the Database Administration manual for more information on repairing rows
which violate referential constraints.

Disabling a DBSPACE

Format:

~DISABLE DBSPACE-.:fOdbspaceno--'-----------------------..........

This command takes the specified DBSPACEs "off-line." That is, it does not allow
users to access the DBSPACE. Only forward processing is disabled. The speci
fied DBSPACEs will be disabled only if SQUDS initialization completes. You
cannot disable DBSPACE 1. Also, in order to maintain referential integrity,
updates must not be performed on the tables which are related to the tables in
the disabled DBSPACE.

Usually you would use this command to disable a DBSPACE that is causing a
DBSS error, or that contains inconsistent data due to BYPASS UNDO WORK
processing. This command is also useful, however, for disabling access to
DBSPACEs in which you have discovered user errors. Once you determine how
to fix the user errors, you can use the ENABLE DBSPACE command to bring the
DBSPACE back "online."

The DBSPACE remains disabled for all future invocations of SQUDS until you
issue an ENABLE DBSPACE or until you restore the database from a previous
archive. When you restore a database from a previous archive, the only
DBSPACEs disabled are those that were disabled when the database archive
was taken.

At startup, disabled DBSPACEs are displayed in Informative messages.

240 SQUOS OI.gn08II tor VM LH09-8081-03 ~ Copyright IBM Corp. 1987, 1983

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Enabling a DBSPACE

Format:

~ENABLE DBSPACE~dbspaceno--..l....----------------------'-"'~"

This command enables a previously disabled DBSPACE. Users will be able to
access the DBSPACE. You can specify more than one DBSPACE number. Sepa
rate the numbers with spaces. The specified DBSPACEs will be enabled only if
SQUDS initialization completes.

LH09-8081..()3 C Copyright IBM Corp. 1S187, 1883 Chapter 8. Recovering from DBSS Errors 241

242 SQLJDS DI.gnoslS for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LH09-I081-03 Cl Copyright IBM Corp. 1S117, 1993

J

"Reltricted Materiall of IBM"
Licenled Materiall - Property of IBM

Chapter 7. Recovering from Directory Verify Errors

Guidelines for Using Directory Verification
The Directory Verify function is invoked via the DVERIFY parameter of the
SQLEND operator command.

You should use the Directory Verify function each time a database archive is
taken-either SQUDS archive or user archive. The Directory Verify function
checks for inconsistencies in the directory, and thus allows you to avoid
archiving an inconsistent directory.

In addition, you should periodically verify the directory on non-archive shut
downs. The interval depends on the frequency of the database archives and the
volume of database updates. For example, Directory Verify should be invoked at
shutdown after a significant amount of data has been loaded into the database
or after some critical data has been updated. These intervening verifications
can narrow the time period down as to when an inconsistency occurred and
reduce the time to recover.

Directory Verify should also be invoked if there are persistent SQUDS abnormal
terminations in the DBSS. (These terminations would display message ARI040E
which would identify a module whose first four characters are ARIY).

If Directory Verify does find discrepancies, you should:

• Follow the steps in Chapter 3, "Reporting Defects" on page 69 to report the
defect to IBM, and

• Follow the procedures outlined below.

Recovery Actions for an Inconsistency
If an inconsistency is detected by the Directory Verify function, take these steps:

1. Restore the database from the last database archive. This will recover all
database updates in single-thread mode. Frequently, single-thread recovery
mode database updates will not re-create the discrepancy.

If your last database archive was quite recent, it may contain bad data if you
did not request Directory Verify at that time. If you are using log archiving,
you may want to restore the database from the next to last database archive
and apply all the log archives.

2. If the restore from the database archive completes successfully, go to the
next step. If the restore from the database archive fails, then take the
recovery actions as indicated by the error messages displayed.

3. Shutdown your application server, specifying Directory Verify (Issue SQLEND
NORMAL DVERIFY).

If the inconSistency still exists, follow the procedures outlined below. according
to the type of the DBSPACE(s) having the Inconsistency.

LH08-8081-()3 C Copyright IBM Corp. 1887. 1883 243

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

System DBSPACEs: System DBSPACEs are those whose DBSPACE name is J
SYSOOOn. SYS0001 contains the catalog tables. The catalog tables are updated
by SQL data definition statements (such as CREATE TABLE, DROP INDEX,
ACQUIRE DBSPACE) and SQL authorization statements (such as GRANT and
REVOKE). Preprocessing of applications also causes updates to the catalog
tables. The other system DBSPACEs (SYSOOO2 - SYSOOOn) contain the SQUDS
packages and views. These are updated when any applications are preproc-
essed or any views are created.

If LOGMODE = A,

1. Warm start the database (STARTUP=W) using the ROLLBACK COMMITTED
WORK command (see "Rolling Back Committed Work" on page 231) to
rollback all logical units of work that caused updates to the DBSPACE(s)
having the inconsistency. You should use the DATE and TIME of the data
base archive you restored from and the DBSPACE number(s) as control
keyword values.

2. Since the system DBSPACE(s) will conta.in back-level information, the rolled
back work must be redone.

• For SYSOOO1, redo all the rolled-back work that made catalog updates to
bring the catalog tables up to date.

• For other system DBSPACE(s), redo all the rolled-back preprocessing
and CREATE VIEWs.

If LOGMODE = L,

1. Redo the restore of the database using the ROLLBACK COMMITTED WORK
command (see "Rolling Back Committed Work" on page 231) to rollback all
logical units of work that caused updates to the DBSPACE(s) having the
inconsistency. Specify the DBSPACE number(s) as control keyword values.

2. Since the system DBSPACE(s) will contain back-level information, the rolled
back work must be redone.

• For SYS0001, redo all the rolled-back work that made catalog updates to
bring the catalog tables up to date.

• For other system DBSPACE(s), redo all the rolled-back preprocessing
and CREATE VIEWs.

If you do not wish to use the ROLLBACK COMMITTED WORK commands, you
can use this alternate procedure:

1. Invoke the COLDLOG function (via the SQLLOG EXEC), which removes all
update activity from the log (see "Running the SQLLOG EXEC" in the System
Administration manual).

2. Restore the database from the last database archive copy.

3. Redo all database update activity since the database archive.

PUBLIC and PRIVATE DBSPACE(s): If the inconsistency exists in PUBLIC or
PRIVATE DBSPACE(s) (the DBSPACE name is not SYSOOOn), follow these proce
dures.

1. Unload each DBSPACE having an inconsistency using the DBS utility. If you
are unable to unload the DBSPACE, do the next step, skip the rest and call
your IBM support person.

244 SQLJDS Diagnosis for VM L.H09-8081-03 C) Copyright IBM Corp. 1987, 1983

J

"Restricted Materials of iBM"
Ucensed Materials - Property of IBM

Note: The DBSPACE should not be dropped. Dropping invokes the check
point process and, due to the inconsistency, your application server will most
likely terminate abnormally.

2. Warm start the database (STARTUP=W) using the DISABLE DBSPACE
command (see "Disabling a DBSPACE" on page 240) to disable all activity to
the inconsistent DBSPACE(s).

3. Acquire a new DBSPACE(s) and load the contents of the faulty DBSPACE(s)
using new table names.

4. If there were any views on the affected tables, re-create the views using the
new table names.

5. Grant appropriate access authorizations to the newly created DBSPACE(s),
tables, and views.

6. Update all applications with the new table, view, and DBSPACE names(s)
and preprocess and recompile those applications.

7. Drop the old DBSPACE(s) after you are able to repair the data base with
assistance from IBM Support Personnel.

LH09-aoa1-03 C Copyright IBM Corp. 1887, 1883 Chapter 7. Recovering from Directory Verify Errors 245

248 SQLJOS Olagnosla for VM

"Reatricted Materiala of IBM"
Licenaed Materiala - Property of IBM

LH09-8081-03 C Copyright IBM Corp. 1887, 1883

J

"Re.tricted Materials of IBM"
Licensed Materials - Property of IBM

Chapter 8. Problem Isolation and Handling

This chapter introduces how to isolate and handle system problems, and the
tools that will help you to do so.

Problem handling refers to the activities involved in coping with problems on the
system.

System Problems

SQL/DS Database Machine Problems
Abnormal termination occurs when the database manager detects an internal
error, a resource limitation, a hardware error, a program check (or similar situ
ation), or the operator issues an SQLEND QUICK command.

Facilities are provided for handling conditions that cause abnormal ends. The
action taken depends on the environment and when the condition occurs. The
action can be as simple as passing a return code to the application program, or
as drastic as terminating the database machine. Figure 132 summarizes these
actions.

Figure 132 (Page 1 of 2). SQLlDS Termination Action Summary-SUM and MUM

Component In Action Taken In Multiple U.er Mode Action Taken in
Control When Singi. U •• r Mode
Error Occur.

Program Check When FOR PROGRAM CHECK IN RANGE OF 8-12 Same as multiple
A Package is Being and 15 WHERE THE PROGRAM CHECK user mode.
Processed RESULTS IN THE SELECT CLAUSE AND AN

INDICATOR VARIABLE ASSOCIATED WITH
THE CLAUSE:
+ 802 is returned in the SQLCODE,
o in SQLERRD1 of the SQLCA. The
indicator variable contains a
-2 indicating a NULL program value
returned as a result of a program
check caused by user data.
Processing continues.

FOR PROGRAM CHECK IN RANGE OF 7-15 Same as multiple
WHICH DOES NOT MEET THE ABOVE user mode.
CONDITIONS:
-802 is returned in the SQLCODE
and -907 to -915 in the SOLERRD1 of
the SOLCA. Processing continues

FOR PROGRAM CHECK IN RANGE OF 1--8:
-802 Is returned in the SQLCODE Same as multiple
and -901 to -906 in the SQLERRD1 user mode.
of the SQLCA.
A mlnl-dump Is displayed
on the database machine console.
Processing continue •.

_ LH09-I0810()3 CD Copyright IBM Corp. 1817, 1883 247

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 132 (Page 2 of 2). SQLlDS Termination Action Summary-SUM and MUM J
Component In
Control When
Error Occurs

RDS Component is
Processing or there
is a Non-Program
Check in the Package

All other
SOLIDS Com-
ponents in the
SOLIDS Data-
base Machine

Action Taken In Multiple User Mode Action Taken In
Single User Mode

Communication between user machine A mini-dump is
and the SOLIDS machine ends. The displayed on the
user machine must re-establish database machine
communication to continue. console.

-933 is returned in the SOLCODE, A database machine
4 in the SOLERRD1, and 6 in the machine dump is
SOLERRD2 fields of the SOLCA. printed as specified

by the DUMPTYPE
parameter.

A mini-dump is displayed on the Processing ends.
database machine console. The
database manager then prints
a virtual machine dump in
accordance with the DUMPTYPE
initialization parameter.

Processing continues.

A mini-dump is displayed on the Same as multiple
database machine console. user mode.

A database machine dump is printed
in accordance with the DUMPTYPE
initialization parameter.

Processing ends.

Notes:

1. PROGRAM CHECK refers to the Program Status Word interruption code bits
16 through 31. This value can range from 1 to 15.

2. A virtual machine dump does not occur if DUMPTYPE = N is specified.

J

3. The database manager routes partial virtual machine dumps to the virtual ')
printer. Full virtual machine dumps are routed to the virtual reader. See ..."
"SQUDS Virtual Machine Dump Processing" on page 249 for instructions to
process dumps.

4. If DUMPTYPE=F, the virtual machine dump includes any SQUDS code in
dlscontlguous saved segments that the machine is using.

5. If an SQUDSlimit error (ARIOO39E) or hardware error (ARIOO41E) occurs,
neither a virtual machine dump nor a mini-dump is taken.

The SQUDS abnormal termination routines are invoked by VM whenever an
abnormal termination (including an unrecoverable program check) occurs.
These routines are also Invoked internally whenever any SQUDS System Error
situation is detected. A First Failure Data Capture dump may also occur in this
situation If the PROTOCOL = AUTO parameter was used when the SQLSTART
EXEC was Issued.

The last case of abnormal termination is the case when the SQUDS operator
Issues an SQLEND QUICK command, which immediately terminates all LUWs in

J
248 SQUDS Diagnosis ror VM LH09-8081-03 C) Copyright IBM Corp. 1G87, 1993

"Restricted Materials of IBM"
Ucenled Materials - Property of IBM

progress. The LUWs are rolled back the next time the application server is
started. This command may be issued anytime, even after a SQLEND NORMAL
or ARCHIVE command. SQLEND QUICK is accompanied by the message:

ARI00431 SQL/DS return code is 508

The 508 is a warning return code implying that any subsequent command/EXEC
that depends on the application server terminating normally might fail. An
exception is the case where the operator issues a SQLEND NORMAL, and users
have an IUCV or APPCIVM connection established with the database machine
but do not have work in progress. In this case, a SQLEND QUICK would most
likely not cause any problems.

Note: A CMS HX command also causes immediate termination. In this respect
it is similar to SQLEND QUICK; however, it also prompts the SQL/DS operator as
if a dump were desired (message ARIOO44D). A reply of 1 or YES results in a
dump, whereas a 0 or NO causes no dump.

In single user mode, if an application program establishes an abnormal end exit
(for example, ABNEXIT), it overrides the SQL/DS ABNEXIT. In this situation, the
database manager does not get control from CMS when an abnormal termi
nation condition or program check arises. Users should follow the instructions
under "CALL/RETURN Protocols for Application Programs in Single User Mode"
in System Administration. That section discusses important considerations for
user program abnormal end exits.

In installation exits that run on the database machine, any abnormal end exits
must also abide by the instructions regarding abnormal end exits. For a dis
cussion of these instructions, see the System Administration.

In multiple user mode, abnormal end exits in application programs are of no
concern. In this case, they are operating in a different virtual machine. Thus,
user exits do not override the SQL/OS exits.

SQL/DS Virtual Machine Dump Processing
The database manager routes partial virtual machine dumps to the virtual
printer. This is a printable spool file containing a translated storage dump
produced by the CP DUMP command. This file can 'be printed or received, and
should be sent to IBM Service. The virtual machine console log file, if available,
should also be sent to IBM Service.

The database manager routes full virtual machine dumps to the virtual reader.
This is a special format spool file, with a spool class of "DM P." It cannot be
printed or received. It must be processed by the IPCSDUMP or DUMPLOAO
command to create a CMS file.

If the dump was created on a VM/SP or VM/ESA 370 Feature system, use the
IPCSDUMP command which is part of the Interactive Problem Control System
(lPCS) component of the VM system.

If the dump was created on a VM/XA or VM/ESA ESA Feature system, use the
DUMPLOAD command which Is part of the Dump Viewing Facility (DVF) compo
nent of the VM system.

When you have loaded the full dump Into a CMS file, it can be viewed online or
printed using IPCS/DVF facilities. The CMS file should be sent to IBM Service on

LH09-I081-03 0 Copyright IBM Corp. 1817, 1883 Chapter 8. Problem Isolation end Handling 249

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

a tape created by the CMS TAPE or VMFPLC command. The virtual machine
console log file, if available, should also be sent to IBM Service.

See your VM systems programmer for more information about the IPCS or DVF
components and using them to process dumps.

J

Problem Isolation

SQL/DS Dumps
When the SQUDS abnormal end routines are entered, a mini-dump is displayed.
The SQUDS mini-dump displays the following:

1. ABEND save area, which contains:

• PSW at time of failure
• Registers 0-15 at time of failure.

When a mini-dump is invoked internally by the database machine, the PSW
points to the address following the BALR instruction (which branches to the
SQUDS system error routine) in the SQUDS module that detected the error.
The display of registers 0-15 shows their contents at the time of the BALR
instruction of the SQUDS module that detected the SQUDS system error.

2. Abnormal end code if VM invoked the SQUDS abnormal end routines.

3. PSW and registers. (Only the registers are displayed if the database
manager invokes abnormal end internally.)

4. If determinable, the offset from the start of the program and the start of the
module in which the failure occurred.

5. If determinable, the offset from the start of the program and the start of the
module that called the failing module (for example, the BALR address).

6. 80 bytes of data around the failing address, normally starting 32 bytes before
the failing address. This information is not displayed when the database
manager internally invokes abnormal end.

7. If a potential wild branch may have occurred, the following information is '\
also displayed: ...",

• Address of the potentially failing BAL or BALR instruction.
• If determinable, the offset from the start of the program.
• If determinable, the offset from the start of the module.
• 80 bytes of storage around the BAL or BALR instruction.

This information Is not displayed when the database manager internally
invokes abnormal end.

8. Locations of the (global control blocks) DS2CVT, RDCVT and YRSSCVT.

9. Information about the users running and the programs they were executing
at the time of the abend. This list may Include residual userlds and program
names and may not necessarily be the current values. The Information
includes the addresses of each users DSCAREA, YTABLE1, RDAREA and
DCE. The user executing at the time of the abend is also identified.

10. A symptom string that assists In uniquely identifying errors. There are three
formats for symptom strings:

250 SQUDS DIIgnos11 tor VM LH09·8081-03 C Copyrlgnt IBM Corp. 1887, 1883

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

a. For system errors:

MS/ARIOO4OE - ARlOO40E is the SQUDS system error message.
PIDS/568810301 - the SQUDS product identifier.
RIDS/nnnnnnnn - where nnnnnnnn is the name of the failing module.
PRCS/OOOOOOxx - where xx is the system error number or point.

b. For program checks:

AB/Sxxxx - where xxxx is the program check interrupt code.
PIDS/568810301 - the SQUDS product identifier.
RIDS/nnnnnnnn - where nnnnnnnn is the name of the failing module.
ADRS/OOnnnnnn - where nnnnnn is the offset into the failing module.

c. For abnormal ends other than program checks:

AB/yxxxx - if the abnormal end is a system abnormal end, y = S. If
the abnormal end is a user abnormal end, y = U. xxxx is the VM
abnormal end code.

PIDS/568810301 - the SQUDS product identifier.

11. The module identifier may also include a PTF/APAR level identifier if service
was done to that module.

In addition to the mini-dump, a virtual machine dump may also occur. The areas
of the virtual machine to be dumped are determined by the DUMPTYPE param
eter. (If DUM PTYPE = N was specified, the dump does not occur.)

If DUMPTYPE = F was specified, the entire database machine is dumped. In
addition, if the database machine is using any SQUDS code that resides in a
discontiguous saved segment, the saved segment is also dumped.

If DUMPTYPE = P was specified, the database machine is dumped, excluding the
SQUDS DBSS/DSC program (ARISQLDS) and the RDS program (ARIXRDS). In
single user mode, any load module name starting with "ARI" is excluded.

SQUDS has CSECTs (object modules) for the DBSS/DSC program and the RDS
program that contain the seven-character name of the CSECT and the storage
address of each CSECT within that program. These CSECTs are called
LINKMAPs. Whenever a dump for an abnormal end is taken, the database
manager displays these LlNKMAPs as part of the dump (including when
DUMPTYPE = Pl.

When the abnormal end routines are invoked internally by the database
manager, the mini-dump is preceded by SQUDS error message ARlOO4OE, which
is described in the Messages and Codes manual.

When the database manager ends due to a problem in the use of VM system
services (such as CMSSTOR, NUCXLOAD, or IUCV), the VM return code is dis
played as the reason code In message ARl00421.

The ARlOO431 message is always displayed when processing ends. A return
code of 0 denotes that either the SQUDS processing was successful, or that the
application program did not pass back a return code in single user mode. If
SQUDS processing was not successful, the return code can be 504, 508, 512,
516, or 520. (Refer to the Messages and Codes manual for details.) Similarly,
any return code from an application program operating In single user mode Is
also displayed when processing ends.

Chapter I. Problem Isolation and Handling 251

"Restricted Materials of IBM"
Ueensed Materials - Property of IBM

SQUDS Link Maps and Access
The last module in the DBSS/DSC and RDS load modules contain the name and
address of each module In the load module. When DUMPTYPE = P is specified
(default), the link maps are the last two areas dumped. When DUMPTYPE = F is
specified the link maps are at the end of each load module or phase.

Modules are ordered by their address (in the same order as the link edit book
entries) allowing a given module to be located quickly through the address in
register 15 in the save area chain.

RDS
Link Map

DS2MODE (ARICMOD) (1)

/
/

·1
/
{
I

2e(14) DS2MCVTP ------,

DS2CVT
41 1

/ /
I /

I I

DS2DBSLS J
I

12 (C) DS2DBSLE

2e(14)1 DS2RDSLS] DS2RDSLE

1

/ /
{ {

e 7 8 11
~

Module name address

Module name address

/ /
(I {

-. X'FFFFFFFFFFFFFFFF' 1- e

(continued on
~ the next page)

Figure 133 (P.rt I of 2). SQLIDS Link M.p •• nd Acce ..

252 SQUDS DI~nOSIl for VM LHOlH0I1..()3 C Copyright IBM Corp. 1817, 1883

J

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

DBSS/DSC Link Map
e 7 8 11

(from previous
page)

J r-M_O_d_u_le __ na_m_e ____ -ra_dd_r_e_ss~

Module name address

(1) The address of DS2MODE (ARICMOD)
is displayed as part of the SQL/DS
initialization time messages.

Figure 133 (Part 2 of 2). SQL/DS Link Maps and Access

Dump Navigation

/
/

Register 10 - Pointer to YTABLE1/RDAREA/RMLO (Bytes 0 - 7 contain
YTABLE1-, RDAREA-, or RMLO- as eyecatchers).

Register 13 - Pointer to save area (in stack) except for the Dispatcher, in which
case it points to a DCE.

The register 9 save area slot in the DCE contains the pointer to the save area of
the dispatcher's cal/er, either ARICDWT or ARICWAT).

Generally:

Register 12 is used as a base register.
Register 11 is used as a data register.
Register 11 = Register 13.

Due to the structure of the SQL/DS system-dependent routine (ARISYSD), it is
recommended that you use the registers displayed in the SQL/DS "mini-dump."

The save area is the start of the module's dynamic storage. Dynamic storage is
found in the stack.

If register 10 pOints to a YTABLE1/RDAREAlRMLO, register 10 + X'OC' points to
STACK.

Diagrams follow in Figure 134 on page 254 through to Figure 135 on page 254.

LH09-t0l1-03 e Copyright IBM Corp. 11187, 1883

"Restricted Materials of IBM"
Ucensect Materials - Property of IBM

,-----,----,-----,--------,,------,--------,----,--/ ...

'----------'----'--------'-------''-----'------'-----'-/ ...
a 4 8 12 16 20 24

(ac) (10) (14) (18)

... /

... /
64 68 72

(40) (44) (48)

Figure 134. Register 13

Assume a program check occurred in Module C, but Module A is the source of
the problem. The dynamic storage for Module A can be found by "back
tracking" through the save area chain (Register 13 is a pointer to the Module C
save area).

Module A
- (calls)

Module B
- (call s PLIST)

Module C

STACK

Header

Module A Dynamic Storage

Module B Dynamic Storage

Module C Dynamic Storage

Register 13 and Register 11
point to

~ Dynamic Storage for Mod

\\\\\\ Register save area(s)
\\\\\\
\\\\\\ Working values for

\\\\\\\\\\\\ Module C

(continues on the next page)

Figure 135 (Part 1 of 2). Dump Navigation Diagram

ule C

254 SQIJOS 01.gn0818 for VM LH08-8081-03 C CopyrIght IBM Corp.1e87, 1993

1

1

1

1

1

I~
1

1

1<...-
1

1<..,.
1

1(...,
1

1 .

I~

"Restricted Materiall of IBM"
Ucenled Materials - Property of IBM

(continues from the last page)

Module C Save Area

Reserved - Module B a Register Register Register
save area 14 15 a

... /
Data Base
Register Register ... /
Reg 11 Reg 12

+ Module B Save Area

Reserved - Module A - Module C Return to Entry to
save area save area Module B Module C
-

Reg 14 Reg 15 Reg a

... /
Data Base
Register Register ... /

Reg 11 Reg 12

:1 Module A Save Area
/

Reserved a - Module B Return to Entry to
save area Module A Module B

/
Reg 14 Reg 15

/ / ... /
Data Data Base
Register Regi ster Register

/ / ... /
Reg 7 Reg 11 Reg 12

Figure 135 (Part 2 of 2). Dump Navigation Diagram

-/ ...
Register

1
-/ ...

Reserved

-Parameter
List r--

/ ...
Reg 1

Reserved

Reserved

Storage Layout after Initialization

Tnl s area
Is always
a 11 ocated
In a
contiguous
block,
a 1 tnougn
tne area
as a whole
may snl ft
In the
picture of
the total
layout.

-

If not
In
DCSS

+-

CMS NUCON

DHSFREE (Low) area

User Program area

Remaining OMS FREE (High) area

Below 16MB
Working Storage Area
- WSG General Purpose
- WSG Ready/Recovery

(MVMM only)
- WSG Checkpoint
- WSG Operator

Anywhere **
Working Storage Area
- WSG General Purpose
- WSG Ready/Recovery

(MVMM only)
- WSG Checkpoint
- WSG Operator

Application Code (SVMM only)
If for OMS FREE area

Anywhere **
Working Storage Area

(Prototype) (WSGp)

Below 16HB Working Storage Area
(Prototype) (WSGp)

OS2CVT

VRSSCVT

VI NVALIO

ROCVT

OSCAREA (Prototype)

VTABLEI (Prototype)

STACK (Prototype)

STACK (Abend)

CPLIST for IUCV logon

VMCBLOCK for IUCV logon

VHCBLOCK for IUCV connect

DS2MODE *

RDS Link Book Code

OBSS Link Book Code

CMS Loader Tables

Figure '36. Storage Layout After 'nltl,llutlon

258 SQUOS Olagnotll. tor VM

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

r--

r--

** Tnls storage will be
allocated above the
16MB line (If available)

(See Figure 137 on page 257)

(See Figure 138 on page 258)

* Hay be Illoclted In
OHSFREE (Low) If

End of
Virtual
Storlge

LHOIH0I1-03 = Copyright IBM Corp. 1S187, 1883

J

"Re.trlcted Material. of IBM"
Ucen.ed Material. - Property of IBM

Must sta
a 4K pag
boundary

Must sta
a 4K pag
boundary

ft on
e

C
e

Storage Oueue
Headers

WAlTECB List

DCE Array

COM. Block Oueue
Header (ARICYMH)

YMO EleantsjYMCBLDCKS
(ARICYMO) (ARICYMC)
one per pseudo agent

TPMAP Array

LDCK WAIT Table

SLATCHES Table

NAMED &ATES Table

~REE LIST (LRBs)

YTABLE4

Syste. Counters

Reserved

PAGE BU~~ERS

DIRECTORY BU~FERS

PG BUFFER conn TBL

DIRECTORY BUFFER
CONTENT TABLE

ACCOUNTING RECORDS:
a)l per pseudo-agent
If Accntg Is active
b) Operator

c) Checkpoint

d) Inlt./Ter. and
Slit user

Syste. catalog
Table Addresses

Da ta Conyers I on
Tables

Folding and Class
Tables

AGENT STRUCTURES
Operator, Checkpt., r-(See FI gure 139 on page 259.)
Rdy/R.covery (1MIt)
General Purpose --

• (MYMM)
--

Figure 137. Anywhere Working Stor.ge Are. L.yout After Inlti.llz.tlon. Thl. I •• n
e"p.n.ion of the Anywhere Working Storage Are. In Figure 136.

LH09-8081.()3 CI Copyright IBM Corp. 1887, 1183 Chepter e. Problem Isoletlon end Hendllng 257

Working Storage
Queue Headers

WAITECB Para •• List

Trace File
Descri ptor Block

Operator Agent:
- STACK(VTl)

Checkpoint Agent
- STACK(VTl)

Ready/Recovery Agent
(HVHH only)
- STACK(VTl)
- STACK (RDA)

General Purpose Agent
- STACK(VTl)
- STACK (RDA)

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 138. Below 16MB Working Storage Area Layout After Initialization. This is an
expansion of the Below 16MB Working Storage Area in Figure 136 on page 256.

258 SQLlDS DiagnosIs tor VM LH08-8081-03 C Copyright IBM COrp. 1887. 1893

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Operator Agent:
- DSCAREA - YTABLEl
- SCAN Table
- COllin. ~lgr. pann list

Database I/O Control Blks
- DBCB(Database Ctl Blk)
- Haster - YTABLE2
- BLKALT - PGCTRS
- PBITHAP - HODHAP
- Directory VHCBLOCK and

CPLIST
- Data Disk VHCBLOCK(s)

and CPLlST(s)
- Log Disk VHCBLOCK(s)

and CPLlST(s)

Checkpoint Agent:
- DSCAREA - YTABLEl
- SCAN Table
- Comm. Hgr. pann. list

Ready/Recovery Agent
(HVHH only)

- DSCAREA - YTABLEl
- SCAN Table
- IUCV Control Blocks:

- COllin. Hgr. pann lIst
- Default input buffer
- Output buffer

- Output Hailbox pannlist
- RDAREA

General Purpose Agent
- DSCAREA - YTABLEl
- SCAN Table
- HVHH only: IUCV control

blocks:
- COlllnunication Manager

parameter list
- Default input buffer
- Output buffer

- Output Mailbox
parameter list

- RDAREA

Figure 139. Agent Structures Storage Layout After Initialization. This is an expansion of
the Agent Structures storage layout in Figure 137 on page 257.

LH08-I08H'3 C> Copyright IBM Corp. 1&87, 1883 Chapter.. Problem Isolation and Handling 259

Major Control Blocks

"Reatricted Materiala of IBM"
Ucenaed Materlala - Property of IBM

Figure 140 on page 261 shows the major control blocks and their intercon
nections for an agent structure.

Note: DRRMSTR and ASPAREA are only allocated when you are using
PROTOCOL = AUTO on the application server. They are only actually used when
the application server Is processing a DRDA protocol conversation.

280 SQLJDS DlagnOila for VM LH08-8011-03 CI Copyright IBM Corp. 1.7, 1893

J

J

J

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

OS2HOOE

I I
-DS2eVT r-

+ DS2eVT

U RDeVT
-VRsseVT tr -RDCVT

-RDS Fetch Hod
-DSeAREA r--

chain -DS2eVT

-DeE chafn I- -YRSSeVT

-Current DeE -ROAREA chafn t-

+ DeE DseAREA
~

-DS2eVT -DS2eVT

-DseAREA -DeE

-VTABLEl -YTABLEl

-RDAREA -RDAREA

-Next DCE -Next DSeAREA

~

YRSSeVT YTABLEl
~

-DBSS/Dse -STACK
patch module

-YRSSeVT
-OS2eVT

f--oSCAREA
-RDCVT

r--OeE TPHAP
-YTABLEl I- ~

chain r--ROAREA STATE

-YTABLEl ,--+Next
Prototype YTABLEl

user id

~ TPHAP I-

Entry ~
STATE

RDAREA

1 YTABLEl
user fd

-STACK

-RDCVT

-DSCAREA I--+TPHAP t-
Entry

-DeE

-YTABLEl

-Next RDAREA

-ASPAREA ASPAREA

-DRRHSTR n + DRRHSTR
-DeAREA -DS2eVT 1 -PARSEReB

-DSCAREA
-GENeB

-oCE
-ROHGRSTR

-RDAREA

~ -FDOCB

r:....cCSIDS Table
-YTABLEl

-OCAREA
-NEXT ASPAREA

-PAIRS Tabl.
'- -ORRMSTR

-Conversion
Cach.

Figure 140. M.Jor Appllc.tlon Server Control Slack •• nd Their Interconnection.

LH08-8081-03 C Copyright IBM Corp. 1887, 1883 Ch.pter I. Problem I.ol.tlon .nd H.ndllng 281

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Locating SQL/DS Statements Associated with a System Error
To find a package SECTION and associated SQL/OS application statements, the
following process has been compiled. This process is illustrated in Figure 142 on
page 264.

INPUT: DUMP MINIDUMP RI8 --> YTABLEI
R13 --> REGISTER SAVE AREA

YTABLE!: RI8 +X'IC' --> RDAREA

RDAREA: +X'18 1 --> RDCVT
+X ' 2C' --> index number into PROGS structure

for this package
+X'441 --> USERID running package
+X ' 4C' --> 2 bytes = length of package name

8 bytes ~ package name
+X '58 1 --> package creator

RDCVT: +X'48 1 --> entry poi nt of ARIXEBR .
+X ' 68 1 --> PROGS structure

PROGS:

The PROGS structure consists of 1 entry for each PACKAGE loaded into storage.
Each entry is X'28' bytes. To find the entry for N, where N is the index found at
+X'2C' in the ROAREA.

A(PROGS) + (X'28 1 * (N-I))

For this PROGS entry:

+X'41 package author
+XICI = package name
+X'28 1 = address of package header

Now we need to find the address of the package section that was executing at
the time of the failure. To do this we need two things:

R13 --> last save area
ROCVT + X'40' - > entry point of ARIXEBR

RESERVED BACKWARD PTR FORWARD PTR

RI4 RI5 R8

Figure 141. SAVE AREA Form.t

We now need to go backwards through the save areas to find the save area
used when ARIXEBR was called (ARIXEBR passes control to the AUX). R15 in
the save area is equal to the ARIXEBR entry found in the ROCVT +X'40'. When
the ARIXEBR entry save area has been located, use the save area forward
pointer (save area + 8) to locate the save area where ARIXEBR called the
package section.

262 SQUDS Diagnosis 'or VM LH08-801H)3 C> Copyright IBM Corp. 1987, 1883

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

In this save area, + X'10' points to the beginning of the section executing for this
AUX. Subtract X'20' from the value found there. Call this value 'Section
Location'.

Package Header:

+X'O'
+X'98'

The halfword giving the number of sections for this package.
The start of the section entry for the first section in this package.
There is one entry for each section in the package. Each entry is
X'1C' long. At X'18' into each entry is the address of where the
section is located in storage.

Scan all section entries and find the entry whose value at offset X'18' matches
the Section Location value calculated in the previous step. The first X'12' bytes
of this entry are the CURSOR NAME. If the CURSOR NAME is blanks, you may
want to determine the section number. The formula for this is:

(ADDR(section entry) - ADDR(package header) + X'98') / X'lC' = SECTION *
You can now go to the application program prep listing and determine the call
that was executing. The expansion of the SQUOS calls in the listing produced
by PREP has a ROliN for each call. The ROliN built for each call has the section
number placed in ROISECT#. Look in the listing for the call in which the
ROISECT# is equal to the SECTION # calculated in the previous step.

LH08-I0I1-03 C Copyright IBM Corp. 1817, 1883 Chapter 8. Problem Isolation and Handling 263

VTABLEl

X'lC' ROAREA
- ROAREA f-

X'H)'
- ROCVT

X'2C'
N-lndex
nlll1ber into
PROGS
structure

PROGS

V·X'28'*(N-l)
V + X'4'

Author
V + X'C'

Package
Name

V + X'2E1'
-Package

Header

ROCVT -
X'4E1'

-ARIXEBR

X'58'
-PROGS -

~ X'28'

X'28'

Package Header

, of ,I
sections

X '98'
1st section

entry

2nd section
entry

Z • offset of
Zth section Cursor Name

Z+X'18'
Ptr to
section

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

lX'lC'

• X'lC'
+

X'lC'

Section

D
I Figure 142. Locating SQL/DS Statements Associated with a System Error

264 SQUDS Ol~nOSI. tor V~ LH08-8081-03 C Copyright IB~ Corp. 1887, 1893

J

J

J

lr

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

Dass OP Codes
The OP codes are located in field:

YT10PCPD (in YTABLE1) - it contains the current (or last) DBSS OPCODE.

OP CODE MEANING

LUW Codes

1
2
3
4

Lock Codes

6
7

Begin work
Convnit work
Save work state (for rollback)
Rollback work to save point

Lock a DBSPACE, table, or row
Unlock a DBSPACE, table, or row

Data Manipulation Codes

8
Ul
12
13
14
15
17

DBSPACE Codes

22

Data Control

23
24
25
26
27

Codes

Close a scan
Delete a row
Fetch a row
Insert a row
Get the next row
Open a scan'
Update a row

Acquire a non-permanent DBSPACE

Get a control record
Get the next control record
Insert the control record
Delete the control record
Update the control record

Initialization/Termination Codes

28
39

Initialize DBSS within this process
Terminate DBSS within this process

Additional DBSPACE Codes

31

Operator Convnand Code

32

More LUW Codes

33
34

Release a non-permanent DBSPACE

Process the remote operator command

Retrieve in-doubt list
Prepare to commit LUW

LH09-eOS1-03 "Copyright IBM Corp. 1887, 1883

Sort Code

35

More LUW Codes

36

Sort an object

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Schedule user ID into DBSS and DSC

Update Statistics Codes

37
41

Start update statistics
End update statistics

Certain DBSS functions are executed without formal DBSI calls to the agent that
executes that function. DBSS sets (in YT10PCOD) special pseudo-OPCODEs to
cover a number of these situations as follows:

OPCODE =99: DBSS is performing warm start as a result of the initialization
parameter. STARTUP=W.

OPCODE =98: DBSS is performing database generation and initialization as a
result of the initialization parameter STARTUP=C.

OPCODE = 97: DBSS is being initialized and is restoring the database from an
archive tape as a result of the initialization parameter STARTUP=R.

OPCODE = 96: DBSS is being initialized and is adding new DBSPACE(s) to the
database as a result of the initialization parameter STARTU P = S.

OPCODE = 95: DBSS is being initialized and is adding new DBEXTENT(s) to the
database as a result of the initialization parameter STARTUP=E.

OPCODE = 94: DBSS is being initialized and is redefining/formatting the log data
set(s) (COLDLOG) as a result of the initialization parameter STARTUP= L.

OPCODE = 93: DBSS is performing a SQUDS checkpoint or checkpoint and
archive in the checkpoint agent (agent 2).

OPCODE = 92: DBSS is performing an asynchronous rollback or commit of an
LUW. This can be caused by conditions such as deadlock and the FORCE oper
ator command.

OPCODE = 91: DBSS is executing (in the operator agent) a SQUDS operator
command from the SQUDS operator.

288 SQUOS Olegnosll for VM LH08-8081-03 C Copyright IBM Corp. 1887, 1883

J

J

J

"Re.tricted Material. of IBM"
Licenaed Material. - Property of IBM

Problem Isolation and The Trace Facility

Trace Facility

Trace In storage
The SQLlDS trace facility can be used in problem determination for long-running
tasks or to trace intermittent problems. In these cases, when large amounts of
trace records are produced, the trace records should be directed to a designated
wrap around memory area known as a trace buffer.

The trace buffer is a wrap around memory area holding variable length trace
records. Execution of a trace point can produce one or more trace records. A
typical trace point produces several hundred bytes of information.

For information on using the trace buffer, see the Operation manual.

Using Trace for Deadlocks
Trace can be used to determine the resources that are in conflict causing dead
locks. Refer to the Operation manual for the specifics on the TRACE command.

To invoke trace for the LOCK component specify the following:

1. Issue the TRACE ON operator command.

2. Specify the user IDs of the deadlock victims or all if they are the only ones
running (message ARIOO84D).

3. Specify DBSS to message ARIOO87D.

4. Specify LOCK 2 to message ARIOO90D.

Alternately, you can use the startup parameter TRACDBSS = 00020000000.

Now trace is active for the Lock component and the applications can be started.
Refer to the Operation manual for the details on deactivating the trace facility.

Trece Sequence. During Locking: At the start, a deadlock victim has DBSS OP
Code =92. The entries to note at this stage are the agent trace point numbers,
and their user IDs. For example,

Tracepoint 627 for this user 10 is the wakeup of the agent to roll them
back because of deadlock.

Tracepoint 626 occurs when an agent needs to wait for access to a gate.

For a situation that does not involve deadlocks, you would normally see the fol
lowing sequence of trace points:

• Tracepoint 652 ARIYK41 - request a lock on a gate.

• Tracepoint 624 ARIYK12 - look for a deadlock cycle.

• Tracepoint 625 ARIYK12 - no deadlocks are detected.

• Tracepoint 626 ARIYK18 - wait for the lock to be freed.

• Tracepoint 627 ARIYK18 - wake up agent (either rollback, or lock freed).

LH08-I0I1-03 0 Copyright IBM Corp. 1817, 1883 Chepter I. Problem I,oletlon end Hendllng 287

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

For a deadlock situation, the wait is different. Trace points appear in the
sequence as follows:

• Tracepoint 652 ARIYK41 - request a lock on a gate.

• Tracepoint 624 ARIYK12 - look for a deadlock cycle.

• A deadlock is found this time. Therefore, the next trace
trace point is 628 ARIYK19 L_PROK=x, where x is the agent number that

should be rolled back because of deadlock.

• Tracepoint 629 ARIYK19 - rollback scheduled.

• Tracepoint 625 ARIYK12 - deadlock situation handled.

• Tracepoint 652 involving one of these actions:

The agent calls ARIYK18 (trace point 626) to SUSPEND, waiting for the
deadlock to be cleared. (that is, the other agent rolled back).

The agent in tracepoint 652 is rolled back.

The best approach in determining the deadlock resources is to locate in the
trace the call to ARIYK12 that woke up (via a call to ARIYK19) the other user in
conflict or a -1 return code from ARIYK41 where the request was denied because
of deadlock. The call to ARIYK41 identifies one of the resources that caused the
deadlock situation. From this point you must backtrack collecting the lock infor
mation from the trace output for the users in conflict. This requires interpreting
the gatenames in the trace records for ARIYK41. From the gatename, it can be
determined what DBSPACE, table, page, row or index caused the conflict.

Once the resources are known that caused the deadlock situation, then the
applications must be reviewed to understand the processing being done. If the
applications are doing Data Definition Language (DOL) statements (CREATE
TABLE, etc.), then the names of the objects (table, index, DBSPACE) should be
checked for similarities that might cause adjacent row or key conflicts in the
system catalogs. If the applications are accessing the same tables(s), then the
order of access should be checked.

By noting the trace point numbers and their user IDs, you can also look at

J

J

resource contention. This involves finding areas in the trace where a call to J
ARIYK41 (trace point 652) is not immediately followed by a return from ARIYK41
(trace point (653).

Trace Record Format for Lock Component Records:

Trace Record #652 for ARIYK41 Entry:

MOD_CALLED~IARIYK411 L_GNAME=leeeeeeeleeeeaaea1x L_HISMODE=6
L_HISDUR-255 L_CONTROL-2

The following Is a description of the keywords in the above record:

• L_GNAME is the gatename of the resource requested (See "How to Interpret
GATENAME" on page 269).

• L_HISDUR is the duration for which the resource is held.

1 • INSTANT
2 • SHORT
3 • MEDIUM
255 • LONG

268 SQLJOS Olegnosll for VM LH09-8011-03 C Copyright IBM Corp. 1987, 1.

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

• L_HISMODE is the mode in which the resource is held.

2 = INTENT SHARE
3 • INTENT EXCLUSIVE
4 = SHARE
5 = UPDATE
6 = SHARE with INTENT EXCLUSIVE
7 .. EXCLUSIVE

• L_CONTROL specifies whether or not to wait for the resource.

1 = NO WAIT
2 .. WAIT

Trace Record #653 for ARIYK41 Exit:

MOO RETURNED='ARIYK41 I RETCODE=e

• RETCODE is the return code from ARIYK41 indicating the status of the
request.

7 = EXCLUSIVE MODE GRANTED
6 = SHARE with INTENT EXCLUSIVE MODE GRANTED
5 = UPDATE MODE GRANTED
4 = SHARE MODE GRANTED
3 = INTENT EXCLUSIVE MODE GRANTED
2 = INTENT SHARE MODE GRANTED
e = TEST FAILED

-1 = DEADLOCK DETECTED

Trace Record #626 for ARIYK 18 Entry:

MOO_CALLEO='ARIYK18 I L_WAITTYPE='e2eeeeee ' x

• L_WAITTYPE is the type of wait that this user is to be placed in.

'e2eeeeee 'x - WAITING FOR LOCK
'e4eeeeee 'x - WAITING FOR CHECKPOINT TO RUN
'ee2eeeee 'x - WAITING FOR I/O
'ee4eeeee 'x - CHECKPOINT WAITING

How to Interpret GATENAME:

There are several subdivisions of GATENAME as follows:

1. The first byte describes the LOCK TYPE.

LOCK TYPE, in general, indicates level of locking. As is shown below, LOCK
TYPE may indicate special case internal locks, like DATABASE lock.

2. The second byte is used for the ordinal number of the index (1 to 255) in
cases of KEY-LEVEL locking when the index is unique.

3. Bytes 3 and 4 are the DBSPACE number. The value shown corresponds to
the DBSPACENO column in the SYSDBSPACES catalog table.

4. Bytes 5 - 8 identify the table or contain other information as shown below.
When bytes 5 - 8 identify a table, the value displayed corresponds to the
TABID (or LFTABID) column in the SYSCATALOG catalog table. If the
DBSPACE is a package DBSPACE, the value corresponds to the TABID
column in the SYSACCESS catalog table.

LH09-I081·03 C Copyright IBM Corp. 1887,1883

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

BYTE 1 - LOCK TYPE:

1. BIT 1, X ' 80 '

2.

3.

4.

5.

• 1 for DBSPACE or TABLE lock.

• 0 for DATA or INDEX lock.

The lock is either PAGE level or INDEX KEY/ROW level.

BIT 2, X ' 40 '

• 1 for PAGE lock.

• 0 for INDEX KEY/ROW lock.

BIT 3, X ' 20 '

• 1 for INDEX KEY lock.

• 0 for ROW lock.

BIT 4, X I 10 1

• Special backup lock.

BIT 6, X '04 1

• 1 for special system lock. If this bit is on then the lock is a fixed name.
There is a fixed name for a DATABASE lock, and a fixed name for a
BACKU Plock.

GATENAME for the DATABASE lock is X'0400111111111111 1 •

J

The DATABASE lock is acquired INTENT EXCLUSIVE with LONG dura- J
tion at the beginning of each LUW. When a log archive is initiated,
the DATABASE lock is acquired EXCLUSIVE with SHORT duration
while the checkpoint preceding the log archive is executed. This
ensures that no LUWs are active (by waiting for them to end) when
the begin log archive checkpoint is taken.

GA TENAME for the BACKU P lock is X I 0400222222222222 I •

This lock serializes the UNDO of a single update and is used by the
ROLLBACK WORK process. The lock is held only for the length of
time required to UNDO one log record. Contention for this resource J
should be brief, because no new locks are obtained during the UNDO
process. A serious lockout occurs if the holder of.this lock is in lock
walt. This condition, if it occurs, is a system error.

• 0 for the general case.

6. BIT 7, X '02 1

• 1 for INTERNAL DBSPACE. It is a system error if two users are ever con
tending for a INTERNAL DBSPACE.

• 0 for the general case.

7. BIT 5 and BIT 8 are reserved.

BYTE 2 - Internal Index ID if non-zero: This Is the internal Id of the locked index
used for key locking of unique Indexes.

BYTES 3 and 4 - DBSPACENO: This is the DBSPACENO that Is being contended
for. Based on what follows, either the entire DBSPACE Is locked, or a part of it
Is locked. The DBSPACENO is displayed as a hexadecimal value, but In order to

270 SQLJDS DI-anOSII tor VM LH08-8081-03 C Copyright IBM Corp. 1987, 1983

"Re.tricted Material. of IBM"
Ucenlec:l Material. - Property of IBM

associate this value with a DBSPACENO in SYSDBSPACES, the value must be
converted to decimal.

Identify the OBSPACE

The following example shows how to identify the DBSPACE:

Suppose that BYTES 3 and 4 have DBSPACENO=X'OOOA'.

The hexadecimal value translates to decimal 10.

The following SELECT statement identifies the DBSPACE:

SELECT DBSPACENO,DBSPACENAME FROM SYSTEM.SYSDBSPACES
WHERE DBSPACENO=1e

DBSPACENO DBSPACENAME

1e COLLEGE
* END OF RESULT ************** 1 ROW~ DISPLAYED *************

BYTES 5 through 8 - Resource in OBSPACE:

This field, x, identifies the resource in the DBSPACE that is being contended for.
x varies as follows:

1. If BYTE 1 - LOCK TYPE is X ' 80 ' , indicating DBSPACE or TABLE lock, then

• If x = 0, there is no sub-resource in the DBSPACE that is being con
tended for. Thus, the gatename indicates the resource is the whole
DBSPACE.

• If x not = 0, x is the TABID. Thus, the gatename indicates that the
resource is a TABLE in the specified DBSPACE.

The TABID is displayed as a hexadecimal value, but in order to associate
this value with a TABID in SYSCATALOG, the value must be converted to
decimal.

Identify the Table

The following example shows how to identify the table:

Suppose that BYTES 5 through 8 contain X 100008001 I. The low order two
bytes, X I 8001 1 is a half-word and is negative.

The negative hexadecimal value translates to decimal -32767.

The following SELECT statement identifies the table:

SELECT TABID,TNAME FROM SYSTEM.SYSCATALOG -
WHERE TABID--32767 AND DBSPACENO-1e

TABID TNAME

-32767 STUDENTS
* END OF RESULT ************** 1 ROWS DISPLAYED ***

The following technique may be useful for the above translation of a neg
ative half-word to a negative decimal value.

LH09-I081-03 CD Copyright IBM Corp. 1887, 1883 Chapter'. Problem Isolation and Handling 271

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Subtract the half-word from X I FFFF I, and add 1. For the example above
we have:

X'FFFF'
- X'See1 1

X' 7FFE'
+ X 'eee1 1

X'7FFF'

Translate the result to decimal. For the example above we have X ' 7FFF'
= DECIMAL 32767

Be sure to precede the result with a negative sign, thus using" WHERE
TABID=-32767 " in your SELECT statement above.

2. If BYTE 1 - LOCK TYPE is X ' 60 ' , indicating PAGE lock on INDEX, then x is
the internal page identifier of the page containing the INDEX. Thus, the
GATENAME indicates that the resource is a PAGE in the specified DBSPACE,
and the PAGE is held to lock an INDEX KEY in the PAGE.

3. If BYTE 1 - LOCK TYPE is X ' 40 ' , indicating PAGE lock on DATA, then x is
the internal page identifier of the page containing the data. Thus, the
GATENAME indicates that the resource is a PAGE in the specified DBSPACE,
and the PAGE is held to lock a ROW in the PAGE.

4. If BYTE 1 - LOCK TYPE is X 120 I, indicating INDEX KEY lock, then x will differ
for unique and non-unique indexes. The GATENAME indicates that the
resource is an INDEX KEY in the specified DBSPACE. For unique indexes, x
will be the TID (tuple identifier - the internal name for the pointer to a row)
of the row associated with the INDEX KEY. In this case BYTE 2 will contain
the internal index 10. For non-unique indexes, x is the internal hash value
associated with the INDEX KEY. In this case BYTE 2 will contains zeros.
(Because the INDEX KEY may be larger than four bytes, x is never the INDEX
KEY itself; rather, the INDEX KEY is hashed down to four bytes. Therefore, it
is possible for lock requests for two different INDEX KEYs in non-unique
indexes in the same DBSPACE to cause contention.)

5. If BYTE 1 - LOCK TYPE is X 100 I, indicating ROW lock, x is the TID (tuple
identifier - the internal name for the pointer to a ROW). Thus, the J
GATENAME indicates that the resource is a ROW in the specified DBSPACE.

272 SQUDS Diagnosis for VM LH08-I081-03 0 Copyright IBM Corp. 1817, 1G83

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Appendix A. ROliN

This chapter documents product-sensitive programming interfaces.

Product-sensitive programming interface

The ROliN is the control block passed to the application server by the application
program. (ROICTYPE indicates the call type.) A sample invocation is illustrated.

Dec (Hex) RDIIN

(0)

8 (8)

RDICTYPE - (1) RDIAUTHR - Creator of access module (2)

16(10)

24(18)

32(20)

40 (28)

48(30)

56(38)

RDIAUTHR RDIPROGL - (3)
(continued) Length of

module name

RDIPROGN (continued)

RDICODEP -. error code
structure (SQLCA)

RDIAUXPA -'(5)

RDICNFLG
RDISPEC IRDICALLIRDIWAITIRDIRELSE

(6) (6) (6) (6)

RDIMBLEN - Length of input
Mai 1 box (11)

RDIFDBCK -. Feedback area in
preprocessors for database
options (15)

RDIRESVD

RDIPROGN - module name

RDISECTN RDICLSSC

RDIVPARM -'(4)

RDISQTIE -. SQLTIE

RDIVIND RDIAIND RDIERROR
(7) (8) (9)

RDIRELNO RDICISL RDIDATE
(12) (13) (14)

RDIEXTP -. RDIEXT area

I
(16)

64(40)
RDIFORCIIRDIFORNBIRDIDBNTYIRDIASREL

(17) (17) (18) (18)

Figure 143. RDIIN Control Block

LHoe-a0l1-03 CI Copyright IBM Corp. 1&17, 1883

(3)

RDIDFLG
(H1)

RDITIME
(14)

J

273

(1)

(2)

(3)

(4)

274 SQUDS Diagnosis tor VM

This is a list of some of the
30 - package call
35 - setup call
40 - describe call
45 - close call
50 - open call
120 - connect/schedule call
125 - recovery list call
130 - prepinit call
131 - CREATE PROGRAM call
132 - OROP statement call
135 - lookup call
140 - SQL call
145 - prepfinish call
155 - operator command call
160 - prepare-to-commit call
165 - set/reset exit call
166 - modify cancel call

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

RDICTYPE values:

170 - operator command cont.i nue call
175 - open call to unload/reload package
180 - package call to unload/relaod package
185 - close call to unload/reload package
190 - set/change lang call
200 - reorganize index call
201 - rebind package call

For statements with a user 10 modifier on
uIN program" clause or in CREATE PROGRAM,
this is set to that value. When user 10 is
defaulted to in these cases, it is set to
blanks. In other cases, the value is
taken from PREP parameters or defaults.
For statements with "IN program"
clauses, these are set to that value.
In other cases, the value is taken
from PREP parameters or defaults.
ROIVPARM points to:
- Input Name List for prep-init.
- Input or output SQLOA on EXECUTE,

OPEN or FETCH.
- SQL statement on set-up call, SQL call,

and EXEC immediate package call.
- User SQLDA on DESCRIBE.
- user 10 on CONNECT.
- pointer to input RMRE on get recovery list or

prepare-to-commiti pointer to input OCOMBLK on
OPERATOR.

- I/O variable pointers on prep-init call.
ROlIN pointer on look up calls (for feedback).

- user's buffer to return access module row
information for unload program.

- package row to be inserted for reload
program.

LHoa-8081-03 C Copyright IBM Corp. 1987, 1993

J

J

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

(5) RDIAUXPA points to:

(6)
(7)

(8)

(9)

(10)
(11)
(12)

(13)

(14)

(15)
(16)
(17)

(18)

- Input SQLDA on package call.
- Password on CONNECT.
- Output Name List on prep-init.
- Name on lookup (search argument for compar-

ison against PLSTCNAME of SLT).
- Token/DCLLIST/callerls ROlIN on SQLCALL.
- User SQLDA on DESCRIBE.
- Pointer to output RMRE on get recovery list or

prepare-to-commit; pointer to
output OCOMBLK on operator.

- Cursor name for statements with a host
variable cursor-name.

- Pointer to a pointer pair on a setup call
- See IRDIIN Flags l on page 276.
- RDIVIND character:

ISI,III,or 10 1 for package call.
Ilion OPEN with input parameters.
IAI on UNLOAD and RELOAD calls.
IHI on if WITH HOLD specified on
DECLARE •.• CURSOR.

- RDIAIND character:
I I I or I I for package ca 11. I I I on
OPEN with input parameters.

- RDIERROR character:
IEI,IWI,IBI, or I I. Tells
Communication Manager to check for
errors, ·warnings, or both.

- RDIFLG: Used for label support.
- See IMailbox contents I on page 276.
- RDIRELNO character:

SQL/DS release number in which
the ROlIN was used/generated (by a
preprocessor). I I or XI00 1 means
Release 1, XI02 1 means Release 2,
and so forth.

- Isolation Level: ICI for cursor stability;
IRI for repeatable read.

- RDIDATE & RDITIME
III for ISO
IJ I for JIS
lUI for USA
lEI for EUR
ILl for LOCAL
I I for not defined

- RDIFDBCK - feedback pOinter
- See RDIEXT on page 277.
- RDIFORCI IVI indicates force index requested.

RDIFORNB IVI indicates force no blocking.
- RDIDBNTY indicates the data type of the dbname

host variable.
- RDIASREL indicates the release number of the

SQL/DS application server.

LHoe-e0&1-03 CD Copyright IBM Corp. 1887, 1883 Appenc:llx A. ROliN 275

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

RDIIN Flags

OFFSET FIELD NAME BITS MEANING

40(28)

41(29)

42 (2A)
43(2B)

RDISPEC
(PREP Time only)

RDIPAMER 1 ...

RDIISCUR .1 ..

Indicates error condition on
package reload.
Causes SQL/DS to turn ISCURSOR
bit on in PPOPGNSTR. Set by
caller on SQL call if prompted
"DECLARE CURSOR FOR SELECT .•• "
(In Release 1, preprocessors
initialized RDISPEC to X'40 1 ,

which turned this bit on. Because
this is used only at PREP time,
there is no conflict.)

RDIBLK .. 1 "BLOCKn preprocessor parameter
specified. Apply blocking to
the eligible sections in the
access module.

RDICHECK ... 1

RDIKEEP

RDIDESCR

RDINEW

Tell the application server we are in check
mode. (PREP INIT).

1 ... Tell the application server to keep current run
authorizations during reprep or
reload package or replace package on reload.

.1 .. Allow DESCRIBEs. Specified for
CREATE PROGRAM.

.. 1. New package on CREATE PROGRAM for OPEN package
calls. If on, user wants to create a
new package by way of
reload. If off, user wants
to replace an existing package or if none
exists create a new package by way of reload.

RDIMODFY .••••.. 1 Establish the access module as
modi fi abl e.

RDICALL character: lEI (COMMIT), 'R'(ROLLBACK), IC I
(CONNECT), I S I (SET) or I R I (RESET)
on set/reset exi t call, I I I for
implicit CONNECT on prep init call,
or Reorganize index on a REORG call,
'B' for Extended EXECUTE or Extended
DESCRIBE, 'D' for Extended Declare
lookup call, 'F' for FETCH, Ipi for
PUT, 'H' for CHANGE language,
IGI for GET language,
'T' for special operator commands
(see Figure 145 on page 278 for specifics),
or I I. These are unique only
within a particular call type.

RDIWAIT character: Always I I (Unused)
RDIRELSE character:'R' or I I

Mailbox contents and lengths:

• Mailbox header

input header 88 bytes
- output header 140 bytes

278 SQLlDS Dlagnosl. for VM LH09-8081-03 ~ Copyright IBM Corp. 1887, 1Qa3

J

J

J

"Re.tricted Material. of IBM"
Ucenled Material. - Property of IBM

• ROliN - 68 bytes

• SQlOA - 16 bytes + 44 bytes per variable

• Input Variables - Number of bytes required to store these variables

• Other values passed to SQUOS (user id, etc.) - Number of bytes required to
store the values.

liD/EXT: ROIEXT is a structure used to store additional information associated
with an SQl request. It is used as an extension to ROliN. This extension is
required, and ROIEXTP must point to it.

Dec (Hex) RDIEXT

RDIEXTEC - eyecatcher "RDIEXT"

RDIEXTL - length of RDIEXT RDIEXTA - pointer declarations
RDIDBNMP (1) - points to the

database name

RDICONSP - pOints to the RDIBPOPT - pOints to the bind
consistency token prep options

RDIPIPDP (2) - points to the Reserved
connect indicator

Reserved

Reserved

Figure 144. RDIEXT Structure

(1) If the database name host variable is declared as
a VARCHAR field, RDIDBNMP points to a 2 byte length
field, followed by the database name (in the CONNECT
statement). If the host variable is declared as CHAR(n),
RDIDBNMP points to the database name field which can range
from CHAR(l) to CHAR(18).

(2) RDIPIPDP is a pointer to a CHAR(8) field representing a
PIP data identifier (ARIEMQVQ). This is only for use with
RDICTYPE-120, when connecting to perform operator commands.

LH08-8081..()3 CI Copyright IBM Corp. 1817, 1883 Appendix A. ROliN 277

"Restricted Materials of iBM"
Ucensed Materials - Property of IBM

OPERATOR COMMAND CALL (Commands Issued from ISQL):

Hex
9

8

19

18

29

28

39

38
49

ROICTYPE - 155/
(1) 179

ROIAUXPA

ROICALL
(2)

4

ROIVPARM

ROIRELNO
'6'

ROIEXTP

• Length of command
• Operator Command +-
• Number of lines Mailbox

holds (for response)

Mailbox area to contain
response to operator ROIEXTEC = 'ROIEX
conmand

I

ROICONSP

A CHAR(8) field representing
the consistency token value
or 8 blanks.

T'

Figure 145. OPERATOR CALL (Commands Issued from ISQL)

278 sQUDSDlagnosls for VM

(1) RDICTYPE is 155 on first operator call and 179 on
subsequent operator calls after the first one.

(2) RDICALL is set to IT' for a fixed format response
(instead of formatted messages), for SHOW CONNECT,
SHOW LOCK USERS, and SHOW LOCK WANTLOCK.

LH08-S081.()3 C Copyright IBM Corp. 1887, 1883

J

J

J

"Re.tricted Material. of IBM"
Liceneed Material. - Property of IBM

Spec la' Operator Command Response Layouts:

The following are the layouts for the 80 byte records returned in the mailbox
area when one of the commands SHOW CONNECT, SHOW LOCK USER or SHOW
LOCK WANTLOCK is executed with an RDICALL value of'T'. The offset values
are shown in decimal format on the left-hand side of each layout.

9 record type ICC'

2 VM user IO

10 SQL user ID

18 application requestor level (e. g. ARI9394e)

26 application server name

44 state start time (37e TOO clock)

52 conversation start time (37e TOO clock)

69 CPU time if accounting indicator is 'V' (fixed)

64 status

65 accounting indicator - 'V' if on, otherwise 'N'

66 protocol indicator - x'ee' for private flows, X'e2' for OROA

67 unused

Figure 146. SHOW CONNECT Common Record (CC). There is one record for each data
base connection.

o record type 'CL'

2 SNA LUWIO

37 OROA External name (first 43 characters)

Figure 147. SHOW CONNECT LUWID Record (CL). This record may appear following II

'CC' record and represents additional information for the connection.

LH08-I081003 0 Copyright IBM Corp. 1887, 1883 Appendix A. ROliN 279

e

2

6

7

a

9

10

12

16

20

21

22

23

24

32

48

42

record type ICAI

agent number

work status (e-NIW, 1-NEW, 2-R/O, 3-R/W)

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

subsystem or application (0-APPL, 1-SUBS)

agent processing status (1-not processing SQL operator command
2-processing SQL operator command
3-not processing and in wait
4-processing and in wait
5-waiting log archive checkpoint
6-processing LPAGEBUF RSCP)

wait status (4-communication, 5-10ck, 6-checkpoint, 7-out of page,
a-out of block, 9-1/0, A-WITH LPAGE •••)

fill er

tranid (fixed)

resource consumption (fixed)

rollback/commit type (R-ro11back, C-commit or blank)

rollback/commit status (3-active, 4-scheduled)

rollback/commit requestor (4-scheduled, 5-user, 6-system, a-lock limit,
9-0BSS 1 imi t)

fi 11 er

package creator

package name

package section number (fixed)

unused

Figure 148. SHOW CONNECT Active Record (CA). This record may appear following
either a 'CC' or a 'CL' record and represents additional information for the connection.

e record type ICpl

2 checkpoint agent status (l-not active, 2-waiting start log archive,
3-waiting start checkpoint archive, 4- waiting start checkpoint,
S-processing checkpoint archive, 6-processing checkpoint)

3 unused

Figure 149. SHOW CONNECT Checkpoint Record (CP). There is one record for the
checkpoint agent statu •.

280 SQLJOS Olagnolll for VM LH09-8081-03 C Copyright IBM Corp. 1987, 1883

J

J

J

J

(...,

(...,

(...,

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

0 record type 'CIt

2 indoubt agent number

6 indoubt user ID

14 VM user 10

22 indoubt coordinator

30 indoubt adaptor (fixed)

32 transaction

36 terminal operator 10

40 terminal ID

44 unused

Figure 150. SHOW CONNECT Indoubt Record (CI). There is one record for each in-doubt
logical unit of work.

0 record type 'WI'

2 agent number

5 SQL user 10

13 lock type

17 dbspace number

22 lock qua 1 ifi er

33 request state

39 request mode

42 duration

47 VM user 10

55 database connection time (370 TOO clock)

63 unused

Figure 151. SHOW LOCK WANTLOCK Record (W1). There is one record for each agent
in a lock wait.

LH08-8011.()3 0 Copyright IBM Corp. 1887, 1883 Appendix A. ROliN 281

o

2

4

7

15

20

24

28

30

32

34

36

38

40

42

50

58

record type 'Ll'

fi 11 er

agent number

SQL user 10

dbspace number

lock type

fi 11 er

number of SIX modes (fixed)

number df IS modes (fi xed)

number of IX modes (fixed)

number of S modes (fixed)

number of U modes (fixed)

number of X modes (fixed)

number of waiters (fixed)

VM user id

database connection time (370 TOO clock)

unused

"Reltricted Materiall of IBM"
Ucenaed Materiall - Property of IBM

Figure 152. SHOW LOCK USER Record (U). There is one record for each database
resource an agent has locked.

e record type 'L21 or 'W2 1

2 SNA LUWID

37 unused

Figure 153. SHOW LOCK Luwid Record (L2 or W2). This type of record may follow an L1
or W1 type record and represents additional information about the database connection of
an agent holding or waiting for a resource.

L...-_____ End of Product-sensitive programming interface _____

212 &QUOS Olagnosl' for VM L.H08-t0l1-03 ~ Copyright IBM Corp. 1817, 1_

J

J

J

J

J

"Re,trlcted Material, of IBM"
Ucenled Material, - Property of IBM

Appendix B. Catalog Updates and References

Authorization
This section lists SQL authorization functions and discusses how they reference
and update the SQUDS system catalog tables. For descriptions of these func
tions refer to the SQL Reference manual.

GRANT AUTHORITIES:

• Granting CONNECT authority.

1. If the GRANT CONNECT is to change the issuer's password, check in
SYSTEM.SYSUSERAUTH for a tow where NAME equals the issuer and
AUTHOR is blank. If it is found, update PASSWORD with the password
specified in the GRANT CONNECT statement.

2. If the GRANT CONNECT is for another user, check
SYSTEM.SYSUSERAUTH for the issuer having DBA authority. If the
issuer does not have DBA authority, the GRANT statement fails.

Check in SYSTEM.SYSUSERAUTH for a row with NAME equal to the user
iD and update PASSWORD with the password specified. Otherwise, a
row does not already exist, so insert a row into SYSTEM.SYSUSERAUTH
for the user 10 specified. Repeat the check and update or delete proc
essing above for each user 10 specified in the GRANT CONNECT state
ment.

• Granting RESOURCE, SCHEDULE or DBA authority.

1. Check SYSTEM.SYSUSERAUTH for the issuer having DBA authority. If
the issuer does not have DBA authority, the GRANT statement will fail.

2. Check SYSTEM.SYSUSERAUTH to see whether the row already exists for
the user ID(s) specified. If it is found, update the authority column speci
fied, and update PASSWORD if a password was also specified. If no row
exists for the user ID(s) specified, insert a row into
SYSTEM.SYSUSERAUTH for each user 10, set each authority column to Y
and, if a password was specified, fill in PASSWORD.

GRANT TABLE PRIVILEGES:

• Granting table privileges (except UPDATE on specific columns)

1. Check SYSTEM.SYSTABAUTH to see whether the issuer has the GRANT
OPTION on the privilege(s) specified for the table or view. If not, check
in SYSTEM.SYSUSERAUTH to determine if the issuer has DBA authority
and check in SYSTEM.SYSTABAUTH to determine whether the owner has
the GRANT OPTION on the privllege(s) specified. If the issuer has the
GRANT OPTION, or the Issuer is a DBA and the owner has the GRANT
OPTION, then Insert a row Into SYSTEM.SYSTABAUTH granting the
prlvilege(s) on the table or view from the issuer (grantor) to the user
ID(s) (grantee(s» specified.

• Granting UPDATE privilege on specific columns

1. Check SYSTEM.SYSCOLUMNS to see whether the column(s) exist for the
table specified; if It doesn't exist, the GRANT UPDATE statement faill.

LHOH0I1-03 CI Copyright IBM Corp. '.7, 1883 283

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

2. Check SYSTEM.SYSTABAUTH for the issuer having UPDATE authority
with GRANT OPTION on the table or view. If the issuer has UPDATE
authority with GRANT OPTION on only a subset of the table or view,
check SYSTEM.SYSCOLAUTH to see whether the issuer has UPDATE
authority for each column specified in the GRANT UPDATE statement. If
so, insert a row into SYSTEM.SYSTABAUTH for the table or view and
then insert a row into SYSTEM.SYSCOLAUTH for each column specified.
The grantor is the issuer. The grantee(s) is/are the user ID(s).

3. Otherwise, check SYSTEM.SYSUSERAUTH to determine if the issuer has
DBA authority and check SYSTEM.SYSTABAUTH to determine if the
owner has the GRANT OPTION on the table or view. If the owner has
UPDATE authority with GRANT OPTION on only a subset of the table or
view, check SYSTEM.SYSCOLAUTH to see whether the owner has
UPDATE authority for each column specified in the GRANT UPDATE
statement. If so, insert a row into SYSTEM.SYST ABAUTH for the table or
view and then insert a row into SYSTEM.SYSCOLAUTH for each column
specified. The grantor is the issuer. The grantee(s) is/are the user ID(s).

• Granting ALL privileges

1. Check SYSTEM.SYSTABAUTH to see whether the issuer has GRANT
OPTION on any privilege(s) for the table or view, including UPDATE on
specific columns. If the issuer has at least one privilege with GRANT
OPTION, insert a row into SYSTEM.SYSTABAUTH granting the
privilege(s) on the table or view from the issuer (grantor) to the user
ID(s) (grantee(s» specified.

J

J

If the issuer has grant authority for UPDATE on specific columns but not J
for the overall UPDATE privilege on the table or view, check
SYSTEM.SYSCOLAUTH to see which columns the issuer has GRANT
OPTION on for the table or view. Insert a row into
SYSTEM.SYSCOLAUTH for each column found. The grantor is the issuer.
The grantee(s) is(are) the user ID(s).

2. Otherwise, check SYSTEM.SYSUSERAUTH to see if the issuer has DBA
authority and check SYSTEM.SYST ABAUTH to see whether the owner
has GRANT OPTION on any privilege(s) for the table or view, including
UPDATE on specific columns. If the owner has at least one privilege with
GRANT OPTION, insert a row into SYSTEM.SYSTABAUTH granting the
privilege(s) on the table or view from the issuer (grantor) to the user
ID(s) (grantee(s» specified.

If the owner has grant authority for UPDATE on specific columns but not
for the overall UPDATE privilege on the table or view, check
SYSTEM.SYSCOLAUTH to see which columns the owner has GRANT
OPTION on for the table or view. Insert a row Into
SYSTEM.SYSCOLAUTH for each column found. The grantor is the issuer.
The grantee(s) Is(are) the user ID(s).

GRANT RUN PRIVILEGE:

1. Check In SYSTEM.SYSACCESS for the program name specified. If not found,
the GRANT RUN statement falls.

2. Check in SYSTEM.SYSPROGAUTH for issuer having GRANT OPTION on the \
program specified In the GRANT RUN statement. If he doesn't, check In ..."
SYSTEM.SYSUSERAUTH to see If the issuer has DBA authority and check In
SYSTEM.SYSPROGAUTH to determine if the owner has the GRANT OPTION

284 SQUOS Ol.gnosls for VM LH08-I0I1-03 C Copyright IBM Corp. 1G87, 1.

"Restricted Material. of IBM"
Ucensed Materials - Property of IBM

on the program specified. If this is not the case, the GRANT RUN statement
fails.

3. Otherwise, insert a row into SYSTEM.SYSPROGAUTH granting RUN authority
from the issuer (grantor) to the user 10(s) (grantee(s) specified.

REVOKE AUTHORITIES:

1. Check SYSTEM.SYSUSERAUTH for DBA authority.

2. Check in SYSTEM.SYSUSERAUTH for the user ID(s) specified in the REVOKE
statement. If a row does not exist for each user 10, the statement fails.

Revoking CONNECT authority: Delete the row(s) found.

Revoking DBA authority: Check each user 10 for DBA authority. If the user
does not have DBA, the statement fails. Update each row found.
RESOURCE and SCHEDULE authority, as well as DBA authority are removed.

Revoking RESOURCE or SCHEDU LE authority: Check for non-DBA authority
and for the authority to be revoked. If they don't exist, the statement fails.
Update each row found, removing the authority specified.

REVOKE TABLE PRIVILEGES:

1. Check SYSTEM.SYSCATALOG for the table or VIEW name specified. If it
doesn't exist, the REVOKE statement fails.

2. Check SYSTEM.SYSTABAUTH to see if the issuer (grantor) granted the
privilege(s) to the user ID(s) (grantee(s» specified; if not, the REVOKE table
privilege statement fails.

3. Update the row(s) found, revoking the table privilege(s) specified. If there
are no other privilege(s) remaining for the grantee, delete the applicable row
from SYSTEM.SYSTABAUTH.

In the case of revoking UPDATE authority, all the associated rows in
SYSTEM.SYSCOLAUTH are also deleted.

After each user 10 has had the table privilege(s) revoked, the REVOKE
TABLE statement also revokes the table privilege(s) from any users who
cannot now maintain grantor/grantee chains from themselves to the creators
of the base tables. As well, any package that excercises the table privileges
will be marked invalid, if the creator of that package has had those privileges
revoked.

REVOKE RUN PRIVILEGE:

1. Check SYSTEM.SYSACCESS for the program named speCified; if it doesn't
exist, the REVOKE RUN statement fails.

2. Check SYSTEM.SYSPROGAUTH to see whether the issuer (grantor) granted
RUN authority to the user ID(s) (grantee(s» specified; if not, the REVOKE
RUN statement falls.

3. Delete the row(s) found from SYSTEM.SYSPROGAUTH.

If any revoked user 10 has GRANT OPTION, the REVOKE RUN statement also
revokes RUN authority from subordinate users who cannot maintain RUN
authority through another path.

Appendix B. catalog Updates and References 285

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Interpretive Commands
This section lists SQL interpretive statements and how they reference and
update the SQUDS system catalog. The interpretive statements are all data
definition SQL statements.

ACQUIRE DBSPACE:

1. PRIVATE DBSPACE

• If the owner is specified in the statement, ensure that the owner is the
connected user. Check SYSTEM.SYSUSERAUTH for RESOURCE
authority.

• If the owner is not the connected user, check SYSTEM.SYSUSERAUTH for
DBA authority.

2. PUBLIC DBSPACE:

• Check in SYSTEM.SYSUSERAUTH to see whether the connected user has
DBA authority. The owner is PUBLIC.

3. Check SYSTEM.SYSDBSPACES to see whether the DBSPACE to be acquired
already exists. If so, the ACQUIRE DBSPACE fails.

4. Scan SYSTEM.SYSDBSPACES for an available DBSPACE meeting the
characteristic(s) specified in the ACQUIRE DBSPACE statement.

5. Update the available DBSPACE row found in SYSTEM.SYSDBSPACES with
the attributes specified in the ACQUIRE DBSPACE statement.

ALTER DBSPACE:

1. If the owner of the DBSPACE is not the connected user, check
SYSTEM.SYSUSERAUTH for DBA authority.

2. Scan SYSTEM.SYSDBSPACES for the DBSPACE specified to be updated. If
the DBSPACE specified does not exist, the ALTER DBSPACE statement fails.

3. Update the row found in SYSTEM.SYSDBSPACES with the new attributes
specified in the ALTER DBSPACE statement.

4. If the LOCK level is specified to be changed in the ALTER DBSPACE
command, scan SYSTEM.SYSCATALOG to get the table name and the corre
sponding creator for all tables in the DBSPACE. Update the LOCKMODE in
SYSTEM.SYSINDEXES for all entries with matching table name and creator.

ALTER TABLE:

1. Check SYSTEM.SYSCATALOG to see whether the table exists.

2. Check SYSTEM.SYSTABAUTH to see whether the currently connected user
has ALTER privilege.

Further processing of the alter table statement depends on the clause that
follows. There are nine such clauses:

• Add a column

288 SQLJDS DiagnOSIS tor VM

1. Update SYSTEM.SYSCATALOG to increment NCOLS by one.

2. Insert a row into SYSTEM.SYSCOLUMNS for the new column. The Insert J
falls if the column to be added already exists.

LH09-8081-03 0 Copyright IBM Corp. 1887, 1883

:(.

:(.
I

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

3. If a field procedure is specified then insert a row into
SYSTEM.SYSFIELDS.

4. If a field procedure is specified and uses a parameter list then insert
row(s) into SYSTEM.SYSFPARMS.

• Add a primary key

1. Check SYSTEM.SYSKEYS to see whether the key already exists.

2. Create a unique index to enforce the primary key. See CREATE INDEX.

3. Validate the primary key.

4. Insert a row into SYSTEM.SYSKEYS to describe the primary key.

5. Insert rows into SYSTEM.SYSKEYCOLS to describe each column that
forms the primary key.

6. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali
date packages with dependencies on this table.

• Add a foreign key

1. Check SYSTEM.SYSCATALOG to see whether the referenced table
exists.

2. Check SYSTEM.SYSCATALOG to see whether the referenced table is a
real table.

3. Check SYSTEM.SYSDBSPACES to determine the storage pool number of
the parent table.

4. Check SYSTEM.SYST ABAUTH to see whether the currently connected
user has the REFERENCES privilege on the referenced table.

5. Check SYSTEM.SYSKEYS to see whether the key already exists.

6. Check SYSTEM.SYSKEYS to see whether the referenced table has an
active primary key.

7. Validate the foreign key.

8. Insert a row into SYSTEM.SYSKEYS to describe the foreign key.

9. Insert rows into SYSTEM.SYSKEYCOLS to describe each column that
forms the foreign key.

10. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali
date packages with a dependency on object table or the referenced
table.

11. Update SYSTEM.SYSCATALOG to increment the number of parents and
dependents for the object table and the referenced table.

• Add a unique constraint

1. Check SYSTEM.SYSKEYS to see whether the key already exists.

2. Create a unique Index to enforce the unique constraint. See CREATE
iNDEX.

3. Validate the unique constraint.

4. Insert a row into SYSTEM.SYSKEYS to describe the unique constraint.

5. Insert rows into SYSTEM.SYSKEYCOLS to describe each column that
forms the unique constraint.

LH08-8081-03 0 Copyright IBM Corp. 1117, 1883 Appendix B. c.telog Updetes end References

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

6. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali- J
date packages with dependencies on this table.

• Drop a primary key

1. Check SYSTEM.SYSKEYS to see whether a primary key exists.

2. Drop all the dependent foreign keys. See "Drop a foreign key" below.

3. Drop the underlying unique index. See "DROP INDEX" on page 292.

4. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali-
date packages with a dependency on this table.

5. Delete all the rows in SYSTEM.SYSKEYCOLS for this key.

6. Delete the row in SYSTEM.SYSKEYS for this key.

7. Update SYSTEM.SYSCATALOG to reset the number of dependents and
inactive keys for this table.

J • Drop a foreign key

1. Check SYSTEM.SYSKEYS to see whether the foreign key exists.

2. Check SYSTEM.SYSTABAUTH to see whether the currently connected
user has the REFERENCES privilege on the referenced table.

3. Delete all the rows in SYSTEM.SYSKEYCOLS for this key.

4. Delete the row in SYSTEM.SYSKEYS for this key.

5. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali-
date packages with dependencies on this table. J

6. Update SYSTEM.SYSCATALOG to reset the number of dependents and
inactive keys for the object table and the referenced table.

• Drop a unique constraint

1. Check SYSTEM.SYSKEYS to see whether the unique constraint exists.

2. Delete all the rows in SYSTEM.SYSKEYCOLS for this unique constraint.

3. Delete the row in SYSTEM.SYSKEYS for this unique constraint.

4. Drop the underlying unique index. See "DROP INDEX" on page 292.

5. Update SYSTEM.SYSCATALOG to reset the number of inactive keys for
this table.

6. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali
date packages with dependencies on this table.

• Activate a key or unique constraint

288 SQUDS Diagnosis for VM

1. Check SYSTEM.SYSKEYS to see whether the key or unique constraint
exists.

2. Check SYSTEM.SYSTABAUTH to see whether the currently connected
user has the necessary ALTER and REFERENCES privileges for the tables
Involved.

3. Revalidate the key or unique constraint.

4. If you are dealing with a primary key. activate all dependently Inactive
foreign keys.

5. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to Invali
date packages with a dependency on the tables Involved.

LH08-8081·03 C Copyright IBM Corp. 1887. 1883

J

"Restricted Materials of IBM"
Licensed Material. - Property of IBM

6. Update SYSTEM.SYSCATALOG to update the number of inactive keys for
the tables involved.

• Deactivate a key or unique constraint

1. Check SYSTEM.SYSKEYS to see whether the key or unique constraint
exists.

2. Check SYSTEM.SYSTABAUTH to see whether the currently connected
user has the necessary ALTER and REFERENCES privileges for the tables
involved.

3. If you are dealing with a primary key, deactivate all active dependent
foreign keys.

4. Check SYSTEM.SYSUSAGE and update SYSTEM.SYSACCESS to invali
date packages with a dependency on the tables involved.

5. Update SYSTEM.SYSCATALOG to update the number of inactive keys for
the tables involved.

COMMENT ON:

1. If the table creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. If commenting on a table, update the REMARKS column in
SYSTEM.SYSCATALOG for the table being commented on. Otherwise, it is
comment on column(s) in which case the REMARKS column in
SYSTEM.SYSCOLUMNS is updated for column(s) being commented on.

CREATE INDEX:

1. If the name specified for the table is in SYSTEM.SYSSYNONYMS, substitute
for the synonym the CREATOR and TNAME values (creator.tname) for the
matching row in SYSTEM.SYSSYNONYMS.

2. Check SYSTEM.SYSTABAUTH for INDEX authority on the table; if not, check
SYSTEM.SYSUSERAUTH for DBA authority.

3. Check SYSTEM.SYSINDEXES to see whether the index name specified
already exists. If so, CREATE INDEX fails.

4. Check SYSTEM.SYSCATALOG for table identifier and DBSPACE number.

5. Check SYSTEM.SYSDBSPACES for LOCKMODE.

6. Create and sort the new index keys. Statistics are generated automatically.

7. Insert into SYSTEM.SYSINDEXES a row for the new index created.

8. Update ROWCOUNT and NPAGES for the table in SYSTEM.SYSCATALOG.

9. Update NACTIVE for the DBSPACE in SYSTEM.SYSDBSPACES.

10. Update the index row in SYSTEM.SYSINDEXES with the new index statistics
on CLUSTER, KEYLEN, FIRSTKEYCOUNT, FULLKEYCOUNT, NLEAF, NLEVELS
and CLUSTERRATIO columns.

11. Update the first indexed column row in SYSTEM.SYSCOLUMNS with the new
column statistics on COLCOUNT, HIGH2KEY, LOW2KEY, AVGCOLLEN,
ORDERFIELD and COLINFO columns.

12. Insert a new row into SYSCOLSTATS if the first indexed column does not
match the first indexed columns of other indexes in the table. Otherwise, the

LH09-8081-03 CD Copyright IBM Corp. 1987, 1883 Appendix B. Catalog Updates and References 289

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

row corresponding to this column is updated in SYSTEM.SYSCOLSTATS with \
the column statistics on VAL 10, VALSO, VAL90, FREQ1V AL, FREQ1 PCT, ...",
FREQ2VAL, and FREQ2PCT columns.

13. If this is the first index created on this table, the row for the table in
SYSTEM.SYSCATALOG is updated by setting the column CLUSTERTYPE to I.

CREATE SYNONYM:

1. Check in SYSTEM.SYSSYNONYMS to see whether the creator and name
exist. If so, the CREATE SYNONYM statement fails because a new synonym
cannot be created on an existing synonym.

2. Check in SYSTEM.SYSCATALOG to see whether the synonym specified
already exists as a table or view; if so, the CREATE SYNONYM fails.

3. Insert into SYSTEM.SYSSYNONYMS a row for the new synonym created; the
insert fails if the synonym already exists.

CREATE TABLE:

1. If the table creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2 .. Check SYSTEM.SYSCATALOG to see whether the table name specified in the
CREATE TABLE statement already exists as a table or view. If so, the
CREATE TABLE statement fails.

3. Check SYSTEM.SYSSYNONYMS to see whether a synonym already exists
with the same name specified in the CREATE TABLE statement. If so, the \
CREATE TABLE statement fails. ~

4. Check SYSTEM.SYSDBSPACES for the DBSPACE specified. If no DBSPACE
was specified, find a private DBSPACE belonging to the creator.

5. If the table is in a PRIVATE DBSPACE and the owner of the DBSPACE is dif
ferent from the user of the statement, check in SYSTEM.SYSUSERAUTH for
DBA authority.

If the table is in a PUBLIC DBSPACE and the DBSPACE name starts with
SYS, check in SYSTEM.SYSUSERAUTH for DBA authority.

If the table is in a PUBLIC DBSPACE, check SYSTEM.SYSUSERAUTH for
RESOURCE authority.

6. Update the row in SYSTEM.SYSDBSPACES corresponding to the DBSPACE in
which the table is being created. Increment the corresponding field in the
NTABS column.

7. Insert into SYSTEM.SYSCATALOG a row for the new table being created.

8. Insert into SYSTEM.SYSCOLUMNS a row for each column in the new table
being created.

9. If a field procedure Is specified then insert a row into SYSTEM.SYSFIELDS.

10. If a field procedure Is specified and uses a parameter list then Insert row(s)
Into SYSTEM.SYSFPARMS.

11. Insert into SYSTEM.SYSTABAUTH a new row for the table created. This row
gives the table creator all the table authorities on that table with grant
options.

12. If requested, create a primary key. See "ALTER TABLE" on page 286.

280 SQUDS Diagnosis 'or VM LH08-8081-03 Cl Copyright IBM Corp. 18&7, 1_

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

13. If requested, create foreign keys for this table. See "ALTER TABLE" on
page 286.

14. If requested, create a unique constraint. See "ALTER TABLE" on page 286.

CREATE VIEW:

1. If the creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. Check in SYSTEM.SYSCATALOG to see whether the view specified exists as
a table or view; if so, the CREATE VIEW fails.

3. Check in SYSTEM.SYSSYNONYMS to see whether the view specified exists
as a synonym; if so, the CREATE VIEW fails.

4. Check in SYSTEM.SYSSYNONYMS to see whether any of the names speci
fied in the view SELECT statement exists for the user; if so, substitute the
synonym with the CREATOR and TNAME values (creator.tname).

5. Check in SYSTEM.SYSTABAUTH for SELECT authority on the table(s) or
view(s) on which the view is being based; if it doesn't exist, check
SYSTEM.SYSUSERAUTH for DBA authority.

• If the view is based on only one table or view (not a join), then DELETE,
INSERT, and UPDATE authority is checked in SYSTEM.SYSTABAUTH. A
row is inserted into SYSTEM.SYSTABAUTH for all the authorities that the
creator has on the underlying table or view. If no authority is found,
including SELECT authority, no row is inserted into
SYSTEM.SYST ABAUTH.

If the creator has only UPDATE authority on selected columns on the
underlying table or view, a row (or rows) is inserted in
SYSTEM.SYSCOLAUTH for the associated new view column that corre
sponds to the row(s) found in SYSTEM.SYSCOLAUTH for the underlying
table or view column.

Authorities on a table or view are also available if they are granted to
PUBLIC. In this case, no row is made in SYSTEM.SYSTABAUTH for
these authorities obtained by way of PUBLIC.

• If the view is a join of two or more tables, rows are inserted in
SYSTEM.SYSTABAUTH. There is one row for each table or view in the
join. Each row records only the SELECT authority (with or without grant
option) that the creator has on that table or view.

Authorities on a table or view are also available if they are granted to
PUBLIC. In this case, no row is made in SYSTEM.SYSTABAUTH for
these authorities obtained through PUBLIC.

6. Insert into SYSTEM.SYSVIEWS a row for the view being created.

7. Insert into SYSTEM.SYSCATALOG a row for the view being created.

8. Insert into SYSTEM.SYSCOLUMNS a row for each column in the view being
created.

9. Insert into SYSTEM.SYSUSAGE a row for each table or view in the view
being created to record the dependency(s) of the view on the underlying
table(s) or view(s).

LHoe-e081-03 = Copyright IBM Corp. 1a87, 1883 Appendix B. Cltllog Updltes Ind References 291

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

10. Scan SYSTEM.SYSACCESS for a nonallocated row and update the row to J
record its binding to the newly created view. Store the newly created pack-
ages in the associate table for the row found.

DROP DBSPACE:

1. If the creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. Check SYSTEM.SYSDBSPACES to see whether the DBSPACE specified
exists; if not, the DROP DBSPACE statement fails.

3. For each table in the DBSPACE being dropped .. the following is done:

• Drop the primary key, all foreign keys, and unique constraints for this
table. See "ALTER TABLE" on page 286.

• Process all dependencies on the table being dropped:

- Delete all rows in SYSTEM.SYSUSAGES that refer to view(s) or
program(s) dependent on this table.

- . If a view is dependent on the table being dropped, do the processing
to drop the dependent view.

Update SYSTEM.SYSACCESS if a program is dependent on the table
being dropped. Set the corresponding field in the VALID column to
N.

• Delete all rows for the table in SYSTEM.SYSCATALOG,
SYSTEM.SYSTABAUTH, SYSTEM.SYSCOLAUTH, SYSTEM.SYSCOLUMNS, J'
SYSTEM.SYSINDEXES, SYSTEM.SYSCOLST ATS, SYSTEM.SYSFIELDS and
SYSTEM.SYSFPARMS.

4. Update the row in SYSTEM.SYSDBSPACES to indicate that the DBSPACE is
unavailable until the end of the current logical unit of work. At COMMIT
WORK time, the row in SYSTEM.SYSDBSPACES is updated to the status of
available.

5. Insert a row in SYSTEM.SYSDROP for the DBSPACE being dropped. This
row is processed at explicit COMMIT WORK time and storage is released.

DROP INDEX:

1. If the creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. Check SYSTEM.SYSINDEXES to see whether the index being dropped exists.

If the index is a primary key index, it cannot be explicitly dropped.

3. Delete any rows In SYSTEM.SYSUSAGE that have a packages that depends
on the index being dropped. Also update the row for the package in
SYSTEM.SYSACCESS, setting the column VALID to N. This indicates that on
the program's next Invocation, It is preprocessed.

4. Delete the row in SYSTEM.SYSINDEXES corresponding to the index being
dropped.

5. If the first indexed column hasn't been used as a first indexed column of any
other index in this table, delete the row corresponding to this column from
SYSTEM.SYSCOLSTATS. Also, update the first indexed row In
SYSTEM.SYSCOLUMNS by setting the column COLINFO to N.

292 SQLJOS Ol.gnosls for VM LH08-8081-03 ~ Copyright IBM Corp. 1a17, 1883

"Reltricted Materiall of IBM"
Ucenaed Materials - Property of IBM

6. If this was a first index (CLUSTER = For W), update the
SYSTEM.SYSCATALOG row by setting the column CLUSTERTYPE to D.

DROP PACKAGE:

1. If the creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. Check in SYSTEM.SYSACCESS to see whether the program to be dropped
exists; if not, the DROP PACKAGE statement fails; if so, delete the row found.

3. Delete all the rows in the package.

4. Update the row in SYSTEM.SYSACCESS for the program being dropped to
change its status to available.

5. Delete all row(s) in SYSTEM.SYSPROGAUTH corresponding to the program
being dropped.

6. Delete all row(s) in SYSTEM.SYSUSAGE referencing this program.

DROP SYNONYM:

1. If the creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. Delete from SYSTEM.SYSSYNONYMS the row for the synonym being
dropped; the drop fails if the synonym specified doesn't exist.

DROP TABLE:

1. Check SYSTEM.SYSSYNONYMS for the name specified in the DROP TABLE
statement being a synonym. If so, SUbstitute the synonym with the CREATOR
and TNAME values (creator.tname).

2. If the creator is specified and is not the connected user, check
SYSTEM.SYSUSERAUTH for DBA authority.

3. Check SYSTEM.SYSCATALOG to ensure that the name specified is not the
name of a view.

4. Drop the primary key, all foreign keys and unique constraints for this table.
See "ALTER TABLE" on page 286.

5. Process all dependencies on the table being dropped:

• Delete all rows in SYSTEM.SYSUSAGES that refer to views or programs
dependent on this table.

• If a view is dependent on the table being dropped, do the processing to
drop the dependent view.

• Update SYSTEM.SYSACCESS if a program is dependent on the table
being dropped. Set the corresponding field In the VALID column to N.

8. Update the row In SYSTEM.SYSDBSPACES for the DBSPACE containing the
table being dropped. Decrement the corresponding field in the NT ABS
column.

7. Delete all rows for the table in SYSTEM.SYSCATALOG,
SYSTEM.SYSTABAUTH, SYSTEM.SYSCOLAUTH, SYSTEM.SYSCOlUMNS,
SYSTEM.SYSINDEXES, SYSTEM.SYSCOlSTATS, SYSTEM.SYSFIELDS and
SYSTEM.SYSFPARMS.

LH08-8081-03 C Copyright IBM Corp. 1887, 1883 Appendix B. Catalog Updates and Reterencea 213

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

8. Insert a row in SYSTEM.SYSDROP for the table being dropped. This row is J
processed at explicit COMMIT WORK time and processed to release the
storage for the table dropped.

DROP VIEW:

1. Check SYSTEM.SYSSYNONYMS for the name specified in the DROP VIEW
statement being a synonym. If so, substitute the synonym with the CREATOR
and TNAME values (creator.tname).

2. If the creator specified is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

3. Check SYSTEM.SYSCATALOG to see whether the view exists.

4. Delete rows in SYSTEM.SYSVIEWS corresponding to the view being dropped.

5. Delete all the rows in the package.

6. Update the row in SYSTEM.SYSACCESS for the view being dropped to
change its status to available.

7. Delete .all rows for the view in SYSTEM.SYSCATALOG,
SYSTEM.SYSTABAUTH, SYSTEM.SYSCOLAUTH, and SYSTEM.SYSCOLUMNS.

8. Process all dependencies on the view being dropped:

• Delete all rows in SYSTEM.SYSUSAGE that refer to views or programs
dependent on this view.

• If a view is dependent on the view being dropped, do the processing to
drop the dependent view.

• Update SYSTEM.SYSACCESS if a program is dependent on the view
being dropped. Set the corresponding field in the VALID column to N.

LABEL ON:

1. If the table creator is specified and is not the connected user, check in
SYSTEM.SYSUSERAUTH for DBA authority.

2. If labeling a table, update the row in SYSTEM.SYSCATALOG for the table
being labeled; otherwise, it is label on column(s) in which case the row(s) in
SYSTEM.SYSCOLUMNS for column(s) to be labeled are updated.

REORGANIZE INDEX:

1. If the user is not the owner of the index then check SYSTEM.SYSUSERAUTH
for DBA authority.

2. Check SYSINDEXES to see if the index exists and is not a primary or unique
key.

3. Check SYSTEM.SYSCATALOG for table identifier and DBSPACE number.

4. Reorganize the Index. Statistics will be collected automatically.

5. Update the index row in SYSTEM.SYSINDEXES with the new IPCTFREE and
RELEASE.

6. Update SYSTEM.SYSCATALOG with the new ROWCOUNT, and NPAGES.

7. Update NACTIVE for the DBSPACE in SYSTEM.SYSDBSPACES.

294 SQUOS 011gnOi11 tor VM LH08-&OS1-03 CI Copyright IBM Corp. 1817, 1883

"Restricted Material. of IBM"
Ucenaed Material. - Property of IBM

8. Update the index row in SYSTEM.SYSINDEXES with the new index statistics
on CLUSTER, KEYLEN, FIRSTKEYCOUNT, FULLKEYCOUNT, NLEAF, NLEVELS
and CLUSTERRATIO columns.

9. Update the first indexed column row in SYSTEM.SYSCOLUMNS with the new
column statistics on COLCOUNT, HIGH2KEY, LOW2KEY, AVGCOLL!=N,
OROERFIELO and COLINFO columns.

10. Update the first indexed column row in SYSTEM.SYSCOLSTATS with the new
column statistics on VAL 10, VALSO, VAL90, FREQ1VAL, FREQ1PCT,
FREQ2VAL an FREQ2PCT columns. Insert a row with these values if it does
not already exist.

UPDATE STATISTICS:

• If updating statistics on a OBSPACE:

1. Check SYSTEM.SYSOBSPACES to see whether the OBSPACE exists; if
not, the U POATE STATISTICS will fail.

2. Find each table in the OBSPACE by searching SYSTEM.SYSCATALOG.
For each table in the OBSPACE, the processing is explained in the
update statistics for table.

• If updating statistics on a table:

1. Check in SYSTEM.SYSCATALOG to see whether the table exists; if not,
the U POATE STATISTICS fails.

2. Lock OBSPACE in share mode.

3. Scan through each row of the table gathering statistics.

4. Gather statistics on the first index on this table if it exists.

5. Update the table row in SYSTEM.SYSCATALOG with the new table statis
tics on AVGROWLEN, ROWCOUNT, NPAGES, and PCTPAGES columns.

6. Update the OBSPACE row in SYSTEM.SYSDBSPACES with the new
OBSPACE statistics on the NACTIVE column.

7. Update the index row(s) in SYSTEM.SYSINOEXES with the new index sta
tistics on CLUSTER, KEY LEN, FIRSTKEYCOUNT, FULLKEYCOUNT, NLEAF,
NLEVELS, and CLUSTERRATIO columns.

8. Update the first indexed column row(s) in SYSTEM.SYSCOLUMNS with
the new column statistics on COLCOUNT, HIGH2KEY, LOW2KEY,
AVGCOLLEN, OROERFIELO, and COLINFO columns.

9. Update the first indexed column row in SYSTEM.SYSCOLSTATS with the
new column statistics on VAL 10, VALSO, VAL90, FREQ1VAL, FREQ1PCT,
FREQ2VAL and FREQ2PCT columns.

10. For every additional index on this table, gather index statistics and
perform steps 7 and 8.

Column statistics are gathered only for the first column in an index on a
table. If the ALL option Is specified, statistics are approximated for the
rest of the columns and their associated row(s) in
SYSTEM.SYSCOLUMNS are updated.

LHoe-e081-Q3 0 Copyright IBM Corp. 1887, 1803 Appendix B. Catalog Updates and Reterences 215

298 SQLJDS Diagnosis tor VM

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

LH08-8011'()3 C) Copyright IBM Corp, 1987, 1.

J

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Appendix C. SQUDS Distributed Data Management (DDM) Command
Support

This appendix describes the DDM commands and command parameters,
command data objects, and reply data objects, that the SQUDS product supports
for DRDA level 1.

An application requester (AR) using the DRDA protocol to connect to an applica
tion server (AS) uses a subset of Distributed Data Management (DDM) as part of
the underlying architecture of DRDA. DDM is a data management architecture
used for data interchange among like or unlike systems and is independent of a
particular system's hardware architecture and its operating system. DDM com
mands, parameters, objects, and messages actually define the structure and
rules for the data interchange between the systems. DDM objects carry actual
data items and are further described by Formatted Data: Object Content Archi
tecture (FD:OCA) descriptors and data.

DDM commands can request the remote system to execute an SQL statement
and return the result to the requester. For example, the DDM commands
OPNQRY, CNTQRY, and CLSQRY perform functions similar to the SQL cursor
statements OPEN, FETCH, and CLOSE.

For more information about how DRDA uses DDM, see Distributed Data Library,
Architecture Reference, SC26-4651.

How to Read the Tables
The tables in this section show how the SQUDS product supports each of the
DDM codepoints and parameters defined by DRDA level 1. There are two types
of tables:

• Commands and Command Data

• Reply Messages and Reply Data

Each DDM command can have the following object types associated with it:

• Parameters (instance variables)
• Command data objects
• Reply messages
• Reply data objects

These commands and associated object types are distinguished as follows
throughout the tables:

• Names of commands and reply messages are in upper case and are in the
top row of the table.

• Names of command objects are in upper case and. If present. are in the
bottom rows of the table.

• Names of reply data objects are in mixed case (first letter capitalized).
• Parameter names are in lower case.

LH08-8081..()3 C Copyright IBM Corp. 1887. 1883 297

Figure 154 (Page

DDM Cod. point

ACCRDB

Command Tables

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

These tables are full page width. The AR column indicates how the SQUDS
application requester will handle the codepoint or parameter:

Y Will flow it to the application server.

N Will not flow it to the application server.

The AS column indicates how the SQUDS application server will support the
codepoint or parameter:

Y Will recognize and process it.

S Will allow the parameter, depending on its value. The supported values are
defined after the table.

Will ignore it if received.

N Will reject it.

Reply Tables
These tables are indented in this document to help distinguish them from the
Command tables. Only a small subset of the reply messages are documented
here. These are generally the messages that indicate that the command com
pleted successfully. You might receive a reply message that is not documented
here in an error situation.

The AS column in the Reply Tables indicates how the SQUDS application server
will handle the codepoint or parameter:

Y Will flow it to the application requester.

N Will not flow it to the application requester.

The AR column indicates how the SQUDS application requester will support the
codepoint or parameter:

Y Will recognize and process it.

Will ignore it.

1 of 2). Definition of ACCRDB Command

AR AS ~R Valu.s
y Y

Invoked as part of the handshaking process;
see EXCSAT

rdbnam (nam~ of remote database). Y Y

AR obtains value from SQLINIT's DBNAME option

rdbaccci (access manager cia ..). Y Y

typdefnam (data type definition name). y y 'OTDSOL370'

typdefovr (data type definition override). Y Y

Value is deduced from the SQLINIT CHARNAME option

prdid (product specific Id). Y Y 'ARI03040'

rdbalwupd (rdb to allow updates) < optional> . N Y

prddta (product specific data) < optional> . N I

sttdeedel (statement deelmal delimiter) < optional> . N S

298 SQLJDS Diagnosis tor VM LH08-8081.()3 ~ Copyright IBM Corp. 1a17, 1.

J

J

"Restricted Material. of IBM"
Ucensed Materials - Property of IBM

Figure 154 (Page 2 of 2). Definition of ACCRDB Command

DDM Codepolnt

sttstrdel (statement string delimiter) < optional>.

crrtkn (correlation token) < optional>.

trgdftrt (target default values return) < optional> .

ACCRDB Parameter. Clarification:

• PRTOTA
- AS: will be ignored.

• STIOECOEL
- AS: only decimal or package default will be supported

• STISTROEL
- AS: only apostrophe or package default will be supported

AR

N

N

Y

Figure 155. Definition of ACCRDBRM reply message

DDM Code point

ACCROBRM

Invoked as part of the handshaking process;
see EXCSAT

svrcod (severity code).

prdid (product specific id).

typdefnam (data type definition name).

typdefovr (data type definition override).

AS returns SYSOPTIONS' CCSIDS/M/G entries

srvdgn (server diagnostic information) < optional>.

rdbinttkn (ROB interrupt token) < optional>.

crrtkn (correlation token) < optional> .

AS will not return CRRTKN if the AR has sent
one (eg. DB2*/CICS AR); otherwise AS will
return the AR's LU6.2 LUWID. In the latter
case, if the AR has no LU6.2 LUWID associated
with its conversation (e.g. an SQL/DS AR
running in VM/SP6), then the AS will generate
one and return it in CRRTKN.

pkgdftcst (package default character subtype)
< optional> .

AS does not use this value

userid (user id at the target system) < optional> .

Figure 156 (Page 1 of 3). Definition of BGNBND Command

DDM Codepolnt AR

BGNBNO y

The bind flow is initiated by the preprocessors, or
by the DBSU RELOAD PACKAGE command, or by the
SQL CREATE PACKAGE statement.

rdbnam (name of remote database as in ACCRDB) < optional>. Y

AS AR Value.

S

Y

Y TRUE

AR AS AS Value.

y Y

Y Y

Y Y 'ARI03040'

y y 'QTOSQL370'

Y Y

I N

I N

Y Y

Y Y

Y Y

AS SQUDS Prep
Option.

Y

Y

LH09-8081-()3 C Copyright IBM Corp. 1887, 1883 Appendix C. SQUDS DDM Command Support 299

Figure 156 (Page 2 of 3). Definition of BGNBND Command

DDM Cod. point

pkgnamct (package name and consistency token).

rdbnam (AS database name).
rdbcolid (rdb collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).

vrsnam (package version name) < optional>.

bndchkexs (bind existence checking) < optional>.

pkgrplopt (package replacement option) < optional>.

pkgathopt (package authorization option) < optional> .

sttstrdel (statement string delimiter) < optional>.

sttdecdel (statement decimal delimiter) < optional>.

sttdatfmt (date format of statement) < optional> .

stttimfmt (time format of statement) < optional> .

pkgisolvl (package isolation level).

bndcrtctl (bind creation control) < optional>.

bndexpopt (bind explain option) < optional>.

pkgownid (package owner identifier) < optional> .

rdbrlsopt (RDB release option) < optional>.

dftrdbcol (default RDB collection identifier) < optional>.

title (brief description of package) < optional>.

qryblkctl (query block protocol control) < optional>.

pkgdftcst (default character subtype) < optional> .

pkgdftcc (package default CCSID) < optional> .

pkgrplvrs (replaced package version name) < optional>.

decprc (decimal precision) < optional>.

300 SQUDS Diagnosis for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

AR AS SQUDS Prep
Options

Y Y

N S

Y Y NOEXIST I EXIST

Y Y REPLACE I NEW

Y Y KEEP I REVOKE

Y S SQLAPOST I
SQLQUOTE

Y S PERIOD I COMMA

Y Y DATE()

Y Y TIME()

Y S ISOL()

Y Y NOCHECK I CHECK
I ERROR

Y Y EXPLAIN()

Y S OWNER()

Y I RELEASE()

Y S QUALIFIER()

Y S LABEL()

Y Y SBLOCK I BLOCK I
NOBLOCK

Y Y CHARSUB ()

Y Y CCSIDS, CCSIDM,
CCSIDG

N N Parmnot supported

N N

LH08-8081.()3 C COpyright IBM COrp. 1887, 1893

J

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 156 (Page 3 of 3). Definition of BGNBND Command

DDM Codepolnt

BGNBND Parameter. Clarification:

• BNDEXPOPT
- AS: do not explain SOL statements parameter will be supported

• DFTRDBCOL
- AS: parameter will be supported if it matches the rdbcolid specified in pkgnamcsn

In SOUDS product V3.4, it must be same as the AS authid.
• PKGISOLVL

SQUDS Prep
Options

- AR: USER defined option is not supported by the DRDA protocol. It ·will be mapped to Cursor stability
instead.

- AS: Isolation level will be mapped to Cursor stability or Repeatable read
• PKGOWNID

- AS: parameter will be supported if it matches the rdbcolid specified in pkgnamcsn

In SOUDS product V3.4, it must be same as the AS authid.
• RDBCOLID

- AS: in SOUDS product V3.4, must be same as the AS authid.
• RDBRLSOPT

- AS: will check for valid DRDA options
• STIDECDEL

- AS: only decimal will be supported
• STISTRDEL

- AS: only apostrophe will be supported
• TITLE

- AS: length greater than thirty characters will be truncated.
• VRSNAM

- AS: null version name will be supported

Figure 157. Reply Objects for BGNBND command

DDM Codepolnt AR AS SQL State·
ment

Typdefnam (data type definition name) < optional> Y N

Typdefovr (TYPDEF override) < optional> Y N

Sqlcard (SOLCA reply data) Y Y

Figure 158 (Page , of 2). Definition of BNDSQLSTT Command

DDM Code point AR AS SQL Statement

BNDSOLSTI y Y Part of bind flow;
see BGNBND and
ENDBND

rdbnam (name of remote databaae aa in ACCRDB) < optional> . Y Y

pkgnamcsn (package name, consistency token and section #). y y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

aqlaUnbr (source application atatement number) < optional> . N I

LHOIH081-03 C Copyright IBM Corp. 1887, 1883 Appendix C. SQUOS OOM Command Support 301

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 158 (Page 2 of 2). Definition of BNDSQLSTT Command

DDM Code point AR AS SQL Statement

bndsttasm (bind statement assumptions) < optional> . Y Y

AR makes assumption for all but the SELECT statements

TYPDEFNAM (data type definition name) < optional> N Y

TYPDEFOVR (TYPDEF override) < optional> N Y

SOLSn (SOL statement to be bound in the AS package). Y Y

AR replaces the host variables within the SQL
statement with ":H" as defined in DRDA. When the
AS detects a syntax error, it will return ":H" instead
of the original host variable name.

SOLSTIVRB (description of each variable) < optional>. Y I

All host variable names and attributes are passed
in this parm. The SQL/DS AR does not send the original
names to the AS. The names sent are in the form of ":Hn"
where "n" is the position of the host variable within
the SQL statement. The SQL/DS application server will accept
this parameter, but does not use the information that it contains.

BNDSQLSn Parametera Clarification:

• SOLSnNBR
- AS: parameter value will not be saved

• SOLDIAGNAME
- AR: length initialized to zero
- AS: parameter value will be ignored

Figure 159. Reply Objects for BNDSQLSTT command

DDM Codepolnt AR AS SQL State-
ment

Typdefnam (data type definition name) < optional> Y N

Typdefovr (TYPDEF override) < optional> Y N

Sqlcard (SOLCA reply data) Y Y

Figure 160. Definition of CLSQRY Command

DDM Code point AR AS SQL Statement

CLSORY Y Y CLOSE

rdbnam (name of remote database as in ACCRDB) < optional> . Y Y

pkgnamcsn (package name, consistency token and section #). Y Y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

Figure 161 (Page 1 of 2). Reply Objects for CLSQRY command

DDM Codepolnt AR AS SQL State-
ment

Typdefnam (data type definition name) < optional> Y N

302 SQUDS Diagnosis ror VM L.H09-&081-03 ~ Copyright IBM Corp. 1887, 1_

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Figure 161 (Page 2 of 2). Reply Objects for CLSQRY command

DDM Codepolnt AR

Typdefovr (TYPDEF override) < optional> V

Sqlcard (SQLCA reply data) V

Figure 162. Definition of CNTQRY Command

DDM Code point AR AS

CNTQRV V V

rdbnam (name of remote database as in ACCRDB) < optional>. V V

pkgnamcsn (package name, consistency token and section #). V V

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

qryblksz (query block size). V V

Figure 163. Reply Objects for CNTQRY command

DDM Codepolnt AR

Typdefnam (data type definition name) < optional> V

Typdefovr (TYPDEF override) < optional> V

Sqlcard (SQLCA reply data) V

Qrydta (query answer set data) V

Figure 164. Definition of DRPPKG Command

DDM Codepolnt AR AS

DRPPKG V V

rdbnam (name of remote database as in ACCRDB) < optional> . V V

pkgnam (package grouping name and identifier). V V

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).

vranam (veraion name) < optional> . ON S

DRPPKG Parametera Clarlflcatlon:

• VRSNAM
- AS: null version name will be supported

Figure 165 (Page 1 of 2). Reply Objects for DRPPKG command

DDM Codepolnt AR

Typdefnam (data type definition name) < optional> V

AS SQL State-
ment

N

V

SQL Statement

FETCH

AS SQL State-
ment

N

N

V

V

SQL Statement

DROP PACKAGE

AS SQL State-
ment

N

LH084081.()3 C Copyright IBM Corp. 1887, 1883 Appendix C. SQUDS DDM Command Support 303

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 165 (Page 2 of 2). Reply Objects for DRPPKG command

OOM Code point AR AS SQL State·
ment

Typdefovr (TYPDEF override) < optional> Y N

Sqlcard (SOLCA reply data) Y Y

Figure 166. Definition of DSCRDBTBL Command

OOM Codepolnt AR AS SQL Statement

DSCRDBTBL N N

rdbnam (name of remote database as in ACCRDB) < optional> .

pkgnamcsn (package name, consistency token and section #).
rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

SOL TBLNAM (SOL table name).

Figure 167. Definition of DSCSQLSTT Command

OOM Code point AR AS SQL Statement

OSCSOLSn y y DESCRIBE

rdbnam (name of remote database as in ACCRDB) < optional>. Y Y

pkgnamcsn (package name, consistency token and section #). y y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (pacl<age identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

Figure 168. Reply Objects for DSCSQLSTT command

OOM Code point AR AS SQL State·
ment

Typdefnam (data type definition name) < optional> Y N

Typdefovr (TYPDEF override) < optional> Y N

Sqlcard (SOLCA reply data) Y Y

Sqldard (SOLDA reply data) Y Y

Figure 169 (Page 1 of 2). Definition of ENDBND Command

OOM Code point AR AS SQL Statement

ENOBND y Y Part of bind flow;
see BONBNO and
BNDSOLSTT

rdbnam (name of remote database as in ACCROB) < optional> . Y Y

304 SQUDS Diagnosis 'or VM LH08-8011.()3 C Copyright IBM Corp. 1887, 1883

J

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

Figure 169 (Page 2 of 2). Definition of ENDBND Command

DDM Cod. point

pkgnamct (package name and consistency token).

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).

maxsctnbr (maximum section number) < optional> .

Figure 170. Reply Objects for ENDBND command

DDM Cod.polnt

Typdefnam (data type definition name) < optional>

Typdefovr (TYPDEF override) < optional>

Sqlcard (SQLCA reply data)

Figure 171. Definition of EXCSA T Command

DDM Codepolnt

EXCSAT

When an implicit or explicit connect (via SQL CONNECT
statement) occurs, a handshaking process is performed.
The SQL/DS AR sends the EXCSAT command chained with
the ACCROB command to the AS, and expects the
chained replies of EXCSATRD and ACCRDBRM in return.

extnam (external name).

mgrlvlls (manager level list).

spvnam (supervisor name) < optional>.

srvclsnm (server class name).

srvnam (server name).

srvrlslv (server release level).

AR AS SQL Statement

Y Y

Y Y

AR AS SQL State·
ment

Y N

Y N

Y Y

AR AS AR Value.

y Y

y Y userid.
CMS·work·unit·id
(padded with trailing
blanks)

Y Y four required 3's

N I

y y 'QSQLDSNM'

y y AR's RSCS·nodeid

Y Y 'ARI03040'

Figure 172 (Page t of 2). Definition of EXCSATRD Reply Object

DDM Cod. point AR AS AS valu ••

EXCSATRD y Y

Invoked as part of the handshaking process;
see EXCSAT

extnam (external name). y Y Requester's
id at the AS

mgrlvlla (manager level liat). Y Y

srvelanm (aerver class name). Y Y 'QSQLDSI
VM'

LH09-eoa1-03 C Copyright IBM Corp. 1887. 1883 Appendix C. SQUOS OOM Command Support 305

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 172 (Page 2 of 2). Definition of EXCSATRD Reply Object

DDM Codepolnt AR AS AS values

srvnam (server name). Y Y AS'RSCS
nodeid

srvrlslv (server release level). Y Y 'ARI03040'

Figure 173. Definition of EXCSQLlMM Command

DDM Codepolnt AR AS SQL Statement

EXCSOLIMM y Y EXECUTE IMME-
DIATE

rdbnam (name of remote database as in ACCRDB) < optional>. Y Y

pkgnamcsn (package name, consistency token and section #). y y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

TYPDEFNAM (data type definition name) < optional> N Y

TYPDEFOVR (TYPDEF override) < optional> N Y

SOLSTT (SOL statement - cannot contain host variables). Y Y

Figure 174. Reply Objects for EXCSQLlMM command

DDM Code point AR AS SQL State-
ment

Typdefnam (data type definition name) < optional> Y N

Typdefovr (TYPDEF override) <optional> Y N

Sqlcard (SOLCA reply data) Y Y

Figure 175. Definition of EXCSQLSTT Command

DDM Codepolnt AR AS SQL Statement

EXCSOLSTT y Y EXECUTE

rdbnam (name of remote database as in ACCRDB) < optional> . Y Y

pkgnamcsn (package name, consistency token and section #). y y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

outexp (output expected-specifies non-cursor SELECT) < optional> . Y Y for non-cursor
SELECT only

TYPDEFNAM (data type definition name) < optional> N Y

TYPDEFOVR (TYPDEF override) < optional> N Y

SOLDTA (SOL program variable data) < optional> . Y Y

308 SQUOS DiagnOSIS 'or VM LH08-8081·03 C Copyright IBM Corp. 1Q87, 1993

"Restricted Materials of iBM"
Ucensed Materlall - Property of IBM

Figure 176. Reply Objects for EXCSQLSTT command

DDM Code point

Typdefnam (data type definition name) < optional>

Typdefovr (TYPDEF override) < optional>

Sqlcard (SOLCA reply data)

Sqldtard (SOL data reply data)

Figure 177. Definition of INTRDBRQS Command

DDM Code point AA

INTRDBROS N

rdbnam (name of remote database as in ACCRDB) < optional> .

rdbinttkn (relational database interrupt token).

Figure 178. Definition of OPNQRY Command

DDM Code point AR

OPNORY y

rdbnam (name of remote database as in ACCRDB) < optional>. Y

pkgnamcsn (package name, consistency token and section #). y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

qryblksz (query block size). Y

qryblkctl (query block control) < optional>. N

TYPDEFNAM (data type definition name) < optional> N

TYPDEFOVR (TYPDEF override) < optional> N

SOLDTA (Input variable data) < optional>. Y

AA AS SQL State·
ment

Y N

Y N

Y Y

Y Y

AS SQL Statement

N

AS SQL Statement

Y OPEN

Y

y

Y

Y

Y

Y

Y

Figure 179 (Page 1 of 2). Reply Message and Reply Objects for OPNQRY command

DDM Codepolnt AA AS SQL Statement

OPNORYRM (open query reply message) Y Y

svrcod (severity code) Y Y

qryprctyp (protocol type) Y Y

sqlcsrhld (curaor hold flag) < optional> Y N

srvdgn (server diagnostic information) I N
<optional>

Typdefnam (data type definition name) Y N
<optional>

Typdefovr (TYPDEF override) < optional> Y N

LH08-8011..()3 C Copyright IBM Corp. 1817,1883 Appendix C. SQUDS DDM Command Support 307

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Figure 179 (Page 2 of 2). Reply Message and Reply Objects for OPNQRY command

DDM Code point AR AS SQL Statement

Sqlcard (SOLCA reply data) <optional> Y Y

Orydsc (query answer set description) Y Y
< optional>

Orydta (query answer set data) < optional> Y Y

Figure 180. Definition of PRPSQLSTT Command

DDM Codepolnt AR AS SQL Statement

PRPSOLSTT y Y PREPARE

rdbnam (name of remote database as in ACCRDB) < optional>. Y Y

pkgnamcsn (package name, consistency token and section #). y y

rdbnam (AS database name).
rdbcolid (ROB collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).
pkgsn (package section number).

rtnsqlda (specifies if SOLDA should be returned) < optional>. N Y USING clause

TYPDEFNAM (data type definition name) < optional> N Y

TYPDEFOVR (TYPDEF override) < optional> N Y

SOLSTT (SOL Statement) Y Y

PRPSQLSTT Parametera Clarification:

• RTNSOLDA
- If requested by the AR, the PRPSOLSTT command is translated by the SOUDS AS into a PREPARE

call and a DESCRIBE ... USING BOTH call.

Figure 181. Reply Objects for PRPSQLSTT command

DDM Code point AR AS SQL Statement

Typdefnam (data type definition name) Y N
<optional>

Typdefovr (TYPDEF override) < optional> Y N

Sqlcard (SOLCA reply data) <optional> Y y

Sqldard (SQLDA reply data) <optional> Y Y

Figure 182. Definition of RDBCMM Command

DDM Code poInt AR AS SQL Statement

RDBCMM y Y COMMIT
< RELEASE>

rdbnam (name of remote database as In ACCRDB) < optional> . Y Y

308 SQUDS Diagnosis for VM LH09-8081-03 C Copyright IBM Corp. 1aa7, 1983

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Figure 183. Reply Objects for RDBCMM command

DDM Code point

Typdefnam (data type definition name)
<optional>

Typdefovr (TYPOEF override) < optional>

Sqlcard (SOLCA reply data) < optional>

Figure 184. Definition of RDBRLLBCK Command

DDM Code point

ROBRLLBCK

rdbnam (name of remote database as in ACCROB) < optional> .

AR

y

Y

Y

AR

y

Y

Figure 185. Reply Objects for RDBRLLBCK command

DDM Code point AR

Typdefnam (data type definition name) Y
<optional>

Typdefovr (TYPOEF override) < optional> Y

Sqlcard (SOLCA reply data) <optional> Y

Figure 186. Definition of REBIND Command

DDM Cod.polnt AR

REBINO N

rdbnam (name of remote database as in ACCROB) < optional>.

pkgnamct (package name and consistency token).

rdbnam (AS database name).
rdbcolid (rdb collection identifier).
pkgid (package identifier).
pkgcnstkn (package consistency token).

vrsnam (package version name) < optional> .

pkgisolvl (package isolation level).

bndexpopt (bind explain option) < optional> .

bndownid (bind owner identification) < optional> .

rdbrlsopt (ROB release option) < optional> .

bndchkexi (bind existence checking) < optional> .

dftrdbcol (default ROB collection identifier) < optional> .

AS SQL Statement

N

N

Y

AS SQL Statement

Y ROLLBACK
< RELEASE>

Y

AS SQL Statement

N

N

y

AS SQL Statement

N

LHoe-a081-Q3 C) COpyright IBM Corp. 1887, 1883 Appendix C. SQUDS DDM Comm.nCl Support 309

310 SQUDS Diagnosis tor VM

"Restricted Materials of 18M"
Licensed Materials - Property of IBM

LH09-8081-03 C Copyright IBM Corp. 1887, 1883

J

J

J

J

J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

Glossary

.cces. p.th. The path used to get to data specified
in SOL statements. An access path can involve either
an index, a sequential search, or a combination of
both.

I. .dvanced program.to.progr.m communlc.tlon/vlrtu.1
1 m.chlne (APPCNM). An application programming
1 interface that uses the SNA LU 8.2 protocol to enable
1 two application programs to communicate.

1 .gent. A structure that the SOUDS database
1 manager allocates to a user to enable the processing
1 of requests by an application server.

APPCNM. See advanced program·to-program
communication/virtual machine.

AUX. See Package.

checkpoint. A set of cleanup and recovery actions
taken periodically by the database manager. Actions
include writing a copy of the database to disk,
recording information in the SOUDS log, and freeing
storage pool space.

commit. The operation that terminates a unit of work
by releasing locks so that the database changes made
by that unit of work can be perceived by other proc·
esses.

cursor .t.blllty. An isolation level that (1) prevents a
row changed by a concurrently executing application
process from being read until that row is committed
by the application process and (2) ensures that the
current row of every cursor is not changed by concur·
rently executing application processes. Under level
CS, a row that is read and not updated during a unit
of work and is no longer the current row of a cursor
can be changed by concurrently executing application
processes.

d.ta p.ge.. 4098-byte pages that contain the tables
in a DBSPACE.

d.t.b •• e .rchlve. To copy the database (Directory
and DBEXTENTS) to tape for the purpose of media
recovery.

dbextent. The physical medium where database data
Is stored. Storage pools are composed of one or
more dbextents.

db.p.ce. A logical allocation of space in a storage
pool contained in a database. Contains one or more
tables and their associated indexes.

LH08-8011-03 C) Copyright IBM Corp. 1817, 1883

db.p.ce .c.n. An access path for retrieving the
results of an SOL statement by which all nonempty
data pages of the DBSPACE are fetched.

directory. A list of identifiers that map corresponding
items of data. For example, an SOUDS directory
maps dbspaces to addresses on a physical device.

directory block. A 512-byte record from the direc
tory.

directory buffer. A storage area for directory blocks.

dl.p.tcher. The component of SOUDS that is respon
sible for allocating processor service to agents.

distributed· data management (DDM). A protocol
architecture that allows an application program to
access data from a remote system. DDM, together
with LU type 8.2, CORA, and FD:OCA, provides the
base for DRDA architecture.

FD:OCA. See formatted data object content architec
ture.

formatted data object content architecture (FD:OCA).
An architected collection of constructs used to inter·
change formatted data. DDM, CORA, LU type 6.2, and
FD:OCA, provide the base for the remote unit of work
architecture.

free cl.... An approximation of the free space on a
data page.

free .pace. The number of bytes on a data page that
are available for storing rows.

g.ten.me. The SOUDS NAME for a lockable object.
It is a multipart name.

he.der p.ge.. 4098-byte pages that contain the
control row describing the tables and indexes in the
DBSPACE.

°IDENT. The VM system service that identifies the
database as a LOCAL or GLOBAL resource.

Index p.ge.. 4096-byte pages that contain the
indexes on the tables in a DBSPACE.

Index .c.n. (1) An access path that uses an index to
retrieve the results of an SOL statement. (2) To
retrieve all the rows using an index.

IUCV. The VM Inter User Communication Vehicle
(IUCV) function.

key. One or more columns identified as such in the
description of a table, index, or referential constraint.

311

leaf page. An index page at the lowest level in the
index tree structure; it contains key or TID pairs to
the data in the table on which the index was created.

link. (1) A communication path between a user
machine and SOUDS machine. (2) An XPCC con
nection between an application partition and the
SOUDS partition; there is one link for each SOUDS
user agent.

lock eacalatlon. A lock escalation occurs when the
SOUDS database manager increases the size of the
data being locked. The database manager always
escalates a lock to the dbspace level. (It does not
increase locking from a row level to a page leveL)

lock mode. The kind of lock that can be requested
(and held). Possible lock modes are IS, IX, S, SIX, X,
and U.

locking hierarchy. A prescribed sequence for locking
objects such that conflicts can be recognized at their
highest level.

locking protocol. Rules foHowed by the system to
assure that actions taken on behalf of LUWs are pro
tected against interference from other LUWs.

log archive. To copy the database log to tape or disk
for the purpose of media recovery.

logical unit of work (LUW). A recoverable sequence
of operations within an application process. At any
time, an application process is a single unit of work,
but the life of an application process can involve
many units of work as a result of commit or rollback
operations.

LRB. Lock Request Block. A data area used to hold
information about a lock request and define the char
acteristics of a lock on a data object.

LUW. See logical unit o(work (LUW).

mailbox. An area in which messages from one
machine to another machine are constructed.

nonleaf page. An index page at the intermediate
level in the index tree structure; it contains page
numbers of pages in the next level in the index tree
structure.

nonpreemptive. An environment in which agent.
willingly relinquish control of the processor; agent.
are not Interrupted.

312 SQUOS Diagnosis for VM

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

package. A control structure produced during
program preparation that is used to execute SOL
statements. Previously called access module.

PROGS. A table used by RDS to keep track of loaded
packages.

pseudo agent. An SOUDS structure that is allocated
to a user upon establishing an IUCV or APPCNM con
nection with the SOUDS machine.

ROliN. The key input data area to RDS from an
SOUDS application program.

receive. The act of accepting a message from
another machine.

repeatable read (RR). An isolation level that com
pletely isolates an application process from all other
concurrently executing application processes. Under
level RR, (1) rows read during a unit of work cannot
be changed by concurrently executing application
processes until the unit of work is complete and (2)
rows changed by concurrently executing application
processes cannot be read until they are committed by
that application process, and (3) phantom rows are
prevented.

I reply. The act of returning an answer to the virtual
I machine that sent the message.

request. A single SOL statement.

ROLLBACK WORK. The end of a logical unit of work
that results in the backout of its changes to the data
base.

root page. The highest level in the index tree struc
ture.

section. Portion of a package containing the proc
essed form of the SOUDS statement (PARSEDSECT,
INTERPSECT, COM PI LESECT, INDEFSECT).

section location table (SL T). Directory of sections
and their corresponding statements in a package.

.end. The act of sending a message from one
machine to another machine.

storage pool. A specific set of available storage
areas. These areas are used by the database admin
istrator to control storage of the database. A storage
pool contains one or more dbspaces.

TID. Tuple identifier. An internal identification of a
row (tuple).

LH08-8081-03 C Copyright IBM Corp. 1887, 1983

J

"Reltricted Material. of IBM"
Licenled Material. - Property of IBM

Bibliography

This bibliography lists publications that are referenced
in this manual or that may be helpful.

SQUDS Publications for VM

• Managing the SQLlDS Environment for IBM VM
Systems, S H09-S1 09

• SQLlDS Application Programming for IBM VM
Systems, SH09-S0S6

• SQLlDS Database Administration for IBM VM
Systems, GH09-S0S3

• SQLlDS Database Services Utility for IBM VM
Systems, SH09-S0SS

• SQLlDS Diagnosis Guide and Reference for IBM
VM Systems, LH09-S0S1

• SQLlDS General Information for IBM VM Systems,
GH09-S074

• SQLlDS Installation for IBM VM Systems,
GH09-S07S

• SQLIDS Interactive SQL Guide and Reference for
IBM VM Systems, SH09-S0S5

• SQLlDS Licensed Program Specifications for VM
Systems and for VSE Systems, GH09-S076

• SQLlDS Master Index and Glossary for IBM VM
Systems, SH09-S0S9

• SQLlDS Messages and Codes for IBM VM
Systems, SH09-S079

• SQLlDS Operation for IBM VM Systems,
SH09-S0S0

• SQLlDS Performance Tuning Handbook for IBM
VM Systems and VSE, SH09-S111

• SQLlDS Quick Reference for IBM VM Systems and
VSE, SX09-1140

• SQLlDS Solutions Directory, GX09-121S

LH08-8011-03 CI Copyright IBM Corp. 11187, 1883

• SQLlDS SQL Reference for IBM VM Systems and
VSE, SH09-S0S7

• SQLlDS System Administration for IBM VM
Systems, GH09-S0S4

Virtual Machine/System Product (VM/SP) Publications

• VMISP Planning Guide and Reference, SC19-6201

Distributed Relational Database L.ibrary

• Application Programming Guide, SC26-4773

• Architecture Reference, SC26-4651

• Connectivity Guide, SC26-47S3

•. Executive Overview, GC26-3195

• Planning for Distributed Relational Database,
SC26-4650

• Problem Determination Guide, SC26-47S2

Other Distributed Data Publications

• IBM Distributed Data Management (DDM) Archi
tecture, Architecture Reference, Level 3,
SC21-9526

• IBM Distributed Data Management (DDM) Archi
tecture, Implementation Programmer's Guide,
SC21-9529

• SAA Common Programming Interface Communi
cations Reference, SC26-4399

• SAA Common Programming Interface Database
Level 2 Reference, SC26-479S

• VMIDirectory Maintenance Licensed Program
Operation and Use Guide Release 4, SC23-0437

VM Data Spaces Support Publications

• VM Data Spaces Support, SH09-S107

Miscellaneous Publications

• IBM Dictionary of Computing., SC20-1699

313

314 SQUDS DI_gnosls for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LH08-8081-o3 C Copyright IBM Corp. 1987, 1883

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Index

A
ABNEXIT 249
abnormal end user exits 249
abnormal termination 72.247
access generation

description 27
access module (see package)
access path 122. 162

definition 311
inefficient choices 122. 162

accounting
ECMODE ON 147

ACQUIRE 108
performance problem index 108

ACQUIRE DBSPACE
how it works 286

adjacent index page locking
possible lock wait problems 115

adjacent key locking
definition 115
example 135
possible lock wait problems 115
possible problems in catalogs 134

advanced program-to-program communication
(APPCNM) 20

advanced program-ta-program communication/virtual
machine (APPCNM)

definition 311
agent

being held 119
definition 311
i ncreasi ng 120
index on related performance problems 111
too many 206

agent handling 12. 13
agent processing 17
allocating users 13
dispatcher components 14
dispatching agents 16
fair share auditing process 15
finding deprived agents 15
functional description 12
prioritization of agents 14
pseudo 13
real 13
setting fair share Interval size 18

agent processing at end of an LUW 17
allocating users to agent structures 13
ALTER 108

performance problem Index 108
ALTER DBSPACE

how it works 288

anatomy of a keyword string 69
developing the first two 70

APPCNM
not resident. possible CPU usage problem 125
synchronous 205

APPCNM (see advanced program-ta-program
communication/virtual machine)

application design
changing to avoid

catalog conflicts 157
DBSPACE scans 177
I/O's 130. 171.202.210
key lock contention 116

application function
definition of 102
performance problem index 106

application requester
components 7

application server
components 7

application server. SQLlDS
components 8

archiving
DBSS 52
log 52
user archive 52

ARI0126E message 213
See also recovering from DBSS errors

arithmetic operator
in syntax diagrams xiv

authorization 30
checking 30

AUTOCOMMIT
AUTOCOMMIT OFF

implications on catalog locking 156
possible link wait problems 119
possible lock wait problems 181
use in routines 121. 152

AUTOCOMMIT ON
use to avoid lock waits 152
use to reduce link waits 121

AVS session limit
exceeded 203

B
bad data distribution 122
basic index structure 39
batch

possible link wait problems 120
possible lock wait problems 181

BETWEEN. possible path selection problems 199
BLOCK 110 not resident. possible CPU usage

problem 125

315

blocking suppression 125
books

related 313
buffer hit ratio

definition of 104
large buffers 126
possible CPU usage problem 189
possible paging problem 189
small buffers 128
too many agents 207

buffer pool
contention 207
decreasing 127
flooding 128,201
increasing 129, 160, 167
management 39
thrashing 104, 128, 207
too big 126
too small 128

bypassing UNDO WORK failure 228

C
cache (see data caching) 139
call processing 26

access generation 26
optimization 26
parsing 26
statement generation 26

cascading REVOKE
locking done 155

catalog indexing, possible lock wait problems 134
catalog locking

due to catalog queries 156
due to naming conventions 134
due to preprocessing 191
exclusive locking in tables 153
hot spot problems 153
key conflicts 134

catalog statistics
inaccurate values 162
misleading values 122
possible accuracy problems 162
updating 163

channels
adding more 160
balancing usage 161

CHARNAME
not set correctly 130

checkpoint
"snapshot" of database 47
and high logging volume on load 183
bei ng forced 130
caused by SOSLEVEL 152
CHKIN1VL too big 131.
CHKIN1VL too small 132
definition 311
delayed by DBSS call, 184

318 SQUDS DiagnOSIS 10r VU

"Restricted Materials of IBM"
Licensed Material. - Property of IBM

checkpoint (continued)
frequent 152
functional description 47
i nterv al too big 131
interval too small 132
need for in 'soW failure 47

CHKINTVL
decreasing 132
increasing 132, 183, 184
too big 131
too small 132

choose
in syntax diagrams xv

CIRB 205
too few agents 205

CIRT 205
too few agents 205

CLOSE SCAN 60
clustering

creating 188
index 42
need for 187
to avoid DBSPACE scans 177
to avoid 1I0's 130, 202

CMS work unit support 134
COLCOUNT

use in determining column selectivity 123
column selectivity, false sense of 123
column sequencing, for storage efficiency 144
combining columns 124
COMMENT ON

how it works 289
commit

definition 311
COMMIT WORK 111

performance problem index 111
to avoid lock waits 152, 182
to reduce link waits 121
use to avoid lock wait problems 117

COMMITCOUNT
use to avoid link waits 121

communication concepts 17
DRDA data streams 17
mailbox functions 17
resource adapter interaction 17

communication wait
definition of 104
holding agents 119
performance problem index 111
when locks held long time 180

COMMUNICATION WAIT indicator
definition of 103

component identification 70
components of SOLIDS 8
concepts

authorization 283
catalog updates 283
grant authorities 283

LH09·8081-03 C Copyright IBM Corp, 1887, 1ea3

J

.J

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

concepts (continued)
authorization (continued)

grant run privileges 284
grant table privileges 283
revoke authorities 285
revoke run privilege 285
revoke table privilege 285

interpretive commands 286
ACQUIRE DBSPACE 286
ALTER DBSPACE 286
COMMENT ON 289
CREATE INDEX 289
CREATE SYNONYM 290
CREATE TABLE 290
CREATE VIEW 291
DROP DBSPACE 292
DROP INDEX 292
DROP PACKAGE 293
DROP SYNONYM 293
DROP TABLE 293
DROP VIEW 294
how they work 286
LABEL ON 294
UPDATE STATISTICS 295

overview 6
concurrency level 206
consecutive keys, possible lock wait problems 115
consistently high response time

query block size too small 198
consistently high response time indicator

definition of 103
control blocks 260
conventions

syntax diagram notation xiv
conversational programming

possible link wait problems 119
possible lock wait problems 181

COUNTER
ESCALATE, uses of 150, 190
LOCKLMT, uses of 150, 190
LOGIO, use of 183
LPAGBUFF, in buffer hit ratio 126, 128
PAGEREAD, in buffer hit ratio 126, 128

CPU
one database machine needs too much 193

CREATE 108
performance problem index 108

CREATE INDEX 138
before loading 145
how it works 289
large sorts required 138
posaible 110 problems 141,175,201

CREATE SYNONYM
how It works 290

CREATE TABLE
how it works 290

CREATE VIEW
how it works 291

cursor stability 56
definition 311

D

to avoid escalations 180
to avoid excessive locking 150
to avoid key locking problems 116
to avoid long lock waits 182
use on catalog queries 157

data areas
RDIEXT 277
ROliN 273

data authorization
commands, definition of 104
performance problem index 108

data caching 139
data not cached 139
expanded storage 139

data conversion
possible CPU usage problems 174

data conversion (CONV)
component description 8

data definition 104, 108
language, definition of 104
performance problem index 108

data design
changing to avoid 1I0's 124, 129
changing to avoid lock contention 117
use of efficient data types 143

data distribution, bad 122
data manipulation 104, 109

language, definition of 104
performance problem index 109

data page free-space management 33
Data System Control (DSC) 7

component description 7
overview 7

data type
use of same 165, 174

data utilities, performance problem index 110
database I/O's

versus paging I/O 126
database machine 139, 193

favored too little 139
needs too much CPU 193

database machine problems 247
Database Services Utility (DBSU) 7

description 7
Database Storage Subsystem (DBSS) 9

Initialization 9
management 9
manipulation 9
OP Codes 265
overview 9
sort component 9

Index 317

dbextent
definition 311

DBSPACE
definition 311
in deadlocks 268
scan via update statistics 210

DBSPACE 1
possible key locking problems 134
possible locking problems 153,191

DBSPACE loCking
decreasing 179
possible lock wait problems 178
through escalations 191
to avoid escalations 180
use of 180

DBSPACE recovery 38
DBSPACE scans

avoiding by indexing 151
avoiding by reorganization 151
avoiding by REORGANIZE INDEX 141
minimizing impact of 143
possible I/O problems 141,175
possible lock wait problems 150
when range predicates used 199
with large tables 175 .

DBSS (see Database Storage Subsystem)
DBSS errors, recovering from

See recovering from DBSS errors
DCSS, use to avoid paging 204
DOL, definition of 104
DDM (see distributed data management) 297
deadlock

using trace facility for 287
deadlocks 148
default

in syntax diagrams xvi
defect problems 69
DELETE 60, 109

performance problem index 109
deprived agents 15

finding 15
developing the first keyword(s) 70
deviations, functional 99
devices

adding more 160
balancing usage 161
need more for paging 197

diagnosing problems 247
diagnosis

error codes
common user-related 98
rolled back due to deadlock (-911) 96
rolled back, excessive system wide lock

requests (-912) 98
SOL command failed (-901) 95
system related 95
user-related 96

318 SQUDS Diagnosis for VM

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

diagnosiS (continued)
functional deviations 99
functional problems 95
introduction to 1
of performance problems 101

directory
definition 311

directory inconsistencies
checking for 243
recovery actions 243

directory verification 243
directory, logs, DBEXTENTs, and I/O in DBSS 36
disabling a DBSPACE 240
dispatcher components 14

fair share auditing 14
locating a dispatchable agent 14
prioritization scheme 14

DISPBIAS parameter
increasing 202

disqualification, of indexes 164
distributed data management

definition 311
distributed data management (DDM) 297
distributed relational database architecture

See DRDA protocol
Distributed Relational Resource Manager (DRRM) 8

component description 8
overview 8

DML, definition of 104
document 81
DRDA data streams 17
DRDA protocol

APPCNM communication protocol 24
communication concepts 17
overview of the SQUDS RDBMS 11
possible performance problems 147, 198
SQUDS components when using DRDA Protocol 6

DROP 108
performance problem index 108

DROP DBSPACE
how it works 292

DROP INDEX
how it works 292

DROP PACKAGE
how it works 293

DROP SYNONYM
how it works 293

DROP TABLE 141, 175,201
how it works 293
possible I/O problems 141,175,201

DROP VIEW
how it works 294

DRRM, component overview 8
dual logging 48
dump 250
dump navigation 253

LHoe-aoa1-03 C Copyright IBM Corp. 1987, 1983

J

J

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

dump processing 249
DVERIFY parameter of SOLEND 243
dynamic SOL

use for efficiency 171
use with range predicates 200

E
ECMODE ON

not needed for accounting 147
enabling a DBSPACE 241
errcds

See no error codes, but problem exists
error codes

-101 (command limitation exceeded) 96
-204 (creator.table not found) 97
-301 (input variable data type not compatible with

column) 97
-302 (input host variable too large) 98
-305 (indicator variable is missing) 99
-313 (mismatch between number of host

variables) 99
-901 (cannot use STORE CLOCK value) 95
-911 (rolled back due to a deadlock) 96
-912 (rolled back due to excessive lock

requests) 96
-915 (rolled back, excessive locks for this

LUW) 96
common user-related 96
system related 95

ESCALATE counter
uses of 150, 190

escalates indicator
definition of 103

escalation
definition of 104
excessive locking 149
low lock levels 179
performance problem index 114
small NLRB parameters 191
when it is good 190

explicit termination of LUW 12
EXTEND input file commands 224

F
fair share auditing 15

finding deprived agents 15
interval sizes 18
overview 15

FD:OCA (see formatted data object content architec-
ture)

FETCH 80
fetch with cursor stability 99
fleldproc block

in syntax diagrams xvii
filtered log recovery 224

LHOIH0I1-03 CD Copyrlgnt IBM Corp. 1887,1883

filtered log recovery and referential integrity 237
finding deprived agents 15
first failure data capture 76
FIRSTKEYCOUNT

use in determining index selectivity 123
formatted data object content architecture (FD:OCA)

definition 311 .
forms for reporting an SOUDS problem 89

abnormal termination 89
documentation problem 94
incorrect or missing output 93
message 90
no response 91

• output missing or incorrect 93
slow response 92

fragment of syntax
in syntax diagrams xvii

fragmentation 43
fragmented index 169
free classes 34
free space

lowering 130
use to avoid DBSPACE scans 143

free space management 33,34
free cl asses 34

freeing log space 49
FU LLKEYCOU NT

use in determining index selectivity 123
use to find hot keys 158

functional deviations 99
fetch with cursor stability 99
lockout with cursor stability 99

functional problems, diagnosis 95
system-related error codes 95

G
glossary

performance index headers 102
performance indicator terms 102
performance terms 103

GRANT 108
performance problem index 108

grant authorities 283
GRANT option 155

exclusive locking on REVOKE 155
grant run privileges (Authorization) 284
grant table privileges (Authorization) 283

H
handling of agents 12
hashing

key, possible lock wait problems 115
hiding bad columns 124
high CPU usage

bad statistics 122, 182
CMS work unit support 134

Index 318

high CPU usage (continued)
CREATE INDEX 138
DBSPACE scan 141
DRDA protocol used to access an SQUDS data-

base 147
fragmented index 169
in one DB machine 193
index disqualification 164
index maintenance 167
Inefficient search 170
inefficient SELECT list 174
insufficient indexing 174
invalid entity 175
invalid index 175
joins 208
large DBSPACE 175
I arge sort 138
missing search condition 185
nonunique key prefix 211
old package 194
performance problem index 112
possible problem 188
QDROP ON 203
range predicate 199
small buffer 128
small CHKINTVL 132
unclustered index 168, 187
VM code not resident 125

high CPU usage indicator
definition of 103

high 1/0 utilization
performance problem index 113
possible problems 160, 161

HIGH 1/0 UTILIZATION INDICATOR
definition of 103

high 1/0's
bad statistics 122, 162
causing high CPU usage 188
CREATE INDEX 138
DBSPACE scans 141,175
fragmented index 169
index disqualification 164
index maintenance 167
inefficient search 170
insufficient indexing 174
join. 208
large DBSPACE 175
large sort 138
misaing search condition 185
nonunique key prefix 211
old package 194
performance problem Index 113
range predicate 188
small buffer 128
small CHKINTVL 132
too many agents 208
unclustered index 188, 187

320 SQUDS DI.gnosls for VM

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

high 1/0's (continued)
UPDATE STATISTICS 210

high 110's indicator
definition of 103

high selectivity, false sense of 123
host variable 199

in syntax diagrams xiv
possible path selection problems 199

hot spot
in catalog tables 153
in user tables 158

1/0
capacity exceeded 160
index on performance problems 113
not bal anced 161
reducing rate 161

IBM manuals, related 313
implicit termination of LUW 12
IN predicate

instead of OR 171
use in place of OR 165

inconsistent directory 243
checking for 243
recovery actions 243

incorrect or missing output 81
index

clustering to avoid 110's 169
disqual ification 164
dropping 116
fragmented 189
invalid 41
maintenance, possible 1/0 problems 167
no longer clustered 188
nonunique key prefix problems 211
on performance problems

agent related 111
data authorization 108
data definition 108
data manipulation 109
data utilities 110
general 107
high CPU usage 112
1/0 related 113
locking related 114
low CPU utilization 112
recovery control 111
special case 115
storage related 114

on problems by performance symptom 111
pages, possible lock walt problems 115
re-creating 187, 170
re-deslgn to avoid hot keys 158
REORGANIZE INDEX 170
tranaient 41

LHOIH0I1-03 CI Copyright IBM Corp. 1987, 1883

I

J I
. I

I
I
I

I
I

"Restricted Materials of IBM"
Wcenseel Materials - Property of IBM

index eligible predicate
definition of 104
use of 165

index key prefix, nonunique problems 211
index locking 63
index management 39
index management, fragmentation 43
index management, space management 40
index structure, basic 39
indexes 42

clustering 42
indexing 39

after loading 167
concepts 39
hiding bad columns 124
insufficient 174
need to cluster 187
on catalog tables 135
on sort columns 174
possible 1/0 problems 138, 164, 168, 169, 187, 211
smoothing keys 124
to avoid DBSPACE scans 150, 177
to avoid 110's 165,167,169,174,188,202,209
use of numeric data types 211

indicator
COMM WAITS, definition of 103
CONSISTENTLY HIGH RESPONSE TIME, definition

of 103
definition of 103
ESCALATES, definition of 103
HIGH CPU USAGE, definition of 103
HIGH 1/0 UTILIZATION, definition of 103
HIGH 1/0, definition of 103
LINK WAITS, definition of 103
LOCK WAITS, definition of 103
LOG IIO'S, definition of 103
LOW CPU UTILIZATION, definition of 103
LOW 1/0 UTILIZATION, definition of 103
PAGING, definition of 103
PERFORMANCE, definition of 102
PERIODIC HIGH RESPONSE TIME, definition

of 103
INSERT 60

format 2 problems 209
performance problem index 109

INSERT logic 42
default logic 42

Inter-User Communication Vehicle (IUCV)
protocol 18

interactive SOL (see ISOL) 7
description 7

Interactive Structured Ouery Language (aee ISOL)
interpretive command., how they work 286
invalid entity 175
invalid index 40, 41, 175
invalidate package to improve performance 194

LHI»-8081.Q3 CD Copyright IBU Corp, 1&17, 1883

isolation level 56
isolation level, cursor stability (see cursor stability)
ISOL (Interactive Structured Ouery Language) 1
IUCV not resident, possible CPU usage problem 125

J
join

too many 208
use of 171

joining tables, in applications 210

K
key

definition 311
key hashing

hot key hashes 158
possible lock wait problems 115, 136

key locking
definition of 104
hot keys 158
in catalog tables 134, 153
possible lock wait problems 115, 136

key sequence, possible lock wait problems 115
key structure

changing to avoid hash conflicts 137
changing to avoid hot keys 159
changing to avoid lock conflicts 116
making keys smaller 138

keyword
additional 82
in syntax diagrams xiv

keyword types 70
abnormal termination 72
component identification 70
document 81
first failure data capture 76
incorrect or missing output 81
message 74
no response 80
release level 71
slow response 81

keyword, developing
first two 70
remaining 72

abnormal termination 72
document 81
first failure data capture 76
menage 74
no response 80
output missinglincorrect 81
slow response 81
wait or loop 80

Index 321

L
LABEL ON

how it works 294
large sort, required on CREATE INDEX 138
large tables 175, 177,210

in same DBSPACE 175
putting in own DBSPACE 177,210

layout of special operator command responses 279
layout of storage after initialization 256
link waits

causes of 180
definition of 104
due to held agents 119
indicator definition 103
performance problem index 111
ratio definition 104
when locks held long time 180

linkmap
access for SQUDS 252
definition of 251

loading data
definition of 104
exclusive locking in catalogs 154
logging during 183
performance problem index 110
possible DBSPACE scan problems 145
possible 110 problems 200,210
possible lock escalation problems 179, 192
possible lock wait problems 115, 136, 158, 178,

181,210
locating and dispatching a dispatchable agent 16
locating SQUDS statements 262
lock

held for long duration 180
lock concept 55

how it works 55
access to private DBSPACEs 66
deadlock detection 65
isolation level cursor stability 56
isolation level repeatable read 56
lock compatibility 59
lock durations 59
lock escal ation 65
lock modes 58
locking done by SQUDS 60
locking hierarchy 57

isolation levels 58
lock escalation

definition 312
definition of 104
due to excessive locking 149
due to low lock level. 179
due to small NLRB parameter. 191
performance problem index 114
when It i. good 190 .

lock level
decreasing 118,151,159,179

322 SQLlOS Ol.gnosll for VM

"Restricted Materials of IBM"
Ucensed Materials - Property of IBM

lock level (continued)
definition of 104
increasing 137, 151, 180
set too low 179
too high 178

lock request block (LRB) 190
possible paging problems 190

lock wait rate
definition 104

lock waits
definition of 104
due hot spots in data 158
due to adjacent key locking 115
due to DBSPACE scans 141,175
due to excessive locking 149
due to held agents 119
due to held locks 180
due to high lock levels 178
due to key hash conflicts 136
due to key locking in catalogs 134
due to large DBSPACEs 175
due to lock escalations 191
due to locking in catalogs 153
due to low lock levels 179
due to repeatable read usage 181
due to too many agents 207
due to UPDATE STATISTICS 210
indicator definition 103
performance problem index 114

locking
adjacent index page 115
adjacent key, example of 135
adjacent key, possible problems in catalogs 134
excessive 149
exclusive locking in tables 153
index on locking related problems 114
possible adjacent key problems 115

locking done by SQUDS 60
locking on indexes 63
LOCKLMT counter

uses of 150,190
LOCKMODE, possible lock wait problems 178, 179
lockout with cursor stability 99
log checkpoints 50
log 1I0's

due to loading 183
performance problem Index 113

LOG 1I0'S indicator, definition of 103
log recovery, filtered 224
log space, freeing 49
logging

decreasing rate 132
during load. 183
running with 131

logging/recovery concepts 48
logical storage management 32

LH08-8081..()3 C Copyright IBM COrp. 1987,1883

J

J

J

"Restricted Materials of IBM"
Ucenaed Materials - Property of IBM

logical unit of work (LUW) 46
avoiding short ones 131
definition 312
use of multiple 116,121, 150, 182

LOGIO COUNTER, use of 183
LOGMODE-N, use for loading 183
long DBSS calls, possible problems 184
low CPU utilization indicator

definition of 103
low CPU utilization, performance problem index 112
low I/O rate indicator

definition of 103
low selectivity, false sense of 123
LPAGBUFF counter

use in buffer hit ratio 126, 128
LRB (see lock request block) 190
LUW

See logical unit of work (LUW)
LUW (see logical unit of work)
LUW concepts 11

functional description 11
logical unit of work 11
LUW management 11

LUW recovery 48
LUW termination, implicit 12
LUW, explicit termination 12

M
mailbox functions 17

resource adapter interaction 17
maintenance

index 167
major control blocks 260
make BLOCK I/O resident 125
make IUCV resident 125
making key columns smaller 138
management of storage 32
manuals

related manuals 313
mapping DBSPACEs to DASD 36
materials for reporting a problem 85
materials to send to IBM 85

environments 87
MAXCONN

decreasing 208
increasing 120

memory, when to add 127, 190
message 74
message ARI0126E 213

See also recovering from DBSS errors
message handling, Resource Adapter 17

relationship with DSC 17
relationship with RDS 17

mini-dump 250
missing output 81
multiple database mode, to avoid paging effects 197

LH08-8011.()3 C COpyright IBM Corp. 1817, 1883

multiple LUWs
to avoid excessive locking 150
to avoid lock contention 182
to reduce link waits 121
to reduce lock waits 116

multiple queries, use of 171
multiple user mode 10

DSC 10

N
NACTIVE

large values 175
naming conventions, changing 136, 157
NCUSERS

decreasing 129, 208
increasing 120
too high 206

NDIRBUF
large enough 139
too big· 126
too small 128

NEXT 60
NLRB parameters

decreasing 191
increasing 192
too large 190
too small 191

NLRBS
increasing 192
too large 190
too small 191

NLRBU
increasing 192
too large 190
too small 191

no error codes, but problem exists
fetch with cursor stability 99
lockout with cursor stability 99

no response 80
wait or loop 80

NOLINKS 205,206
too few agents 205, 206

non-SOL work
possible CPU usage problems 189
possible paging problems 190,207

non-unique index, key locking 136
nonrecoverable DBSPACE 183

for loading without logging 183
nonunique index key prefix 211

possible I/O problems 211
nonunique index, definition of 104
nonunique key prefix, definition of 104
NPAGBUF

too big 126
too small 128

Index 323

o
OP Codes 265
OPEN SCAN 60
operator commands

layouts of responses to special operator com
mands 279

optimization 26
functional description 26

optional
default parameter

in syntax diagrams xvi
keyword

in syntax diagrams xvi
optional item

in syntax diagrams xv

p
package 25, 194

concepts 25
definition 312
needs re-preprocessing 194

page faults, serialization 197
page locking

hot pages 158
possible lock escalation problems 179, 191
possible lock wait problems 115, 178
to avoid escalations 180
use of 151,179,180

PAGEREAD counter
use in buffer hit ratio 126, 128

paging
causing high CPU usage 188
due to code not shared 204
due to I arge buffers 126
due to large NLRB settings 190
due to ODROP ON 203
due to too many agents 207
effects of 197
performance problem Index 114
possible CPU usage problem 188
possible problem 189

paging devices, need for more 197
paging faults, effects of 126
paging indicator

definition of 103
paging rate, high value 126, 189
parentheses

in syntax diagrams xiv
parsing 28

functional description 26
PCTPAGES

high values 175
inaccurate values 183
low values 151

performance analysis
chapter on diagnosing 101

324 SQUOS Diagnosis for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

PERFORMANCE INDICATOR, definition of 102
performance problem

diagnosing 101
index by

application function 106
data authorization functions 108
data definition functions 108
data manipulation functions 109
data utilities functions 110
recovery control functions 111

index on
agent related problems 111
CPU related problems 112
general problems 107
1/0 related problems 113
locking related problems 114
special case problems 115
storage related problems 114

performance symptom, index to problems 111
periodic high response time

DRDA protocol used to access an SOUDS data-
base 147

DRDA usage 147
due to big CHKINTVL 131
due to forced checkpoints 130
due to logging during loads 183
due to long DBSS calls 184
due to sequential processing 200
due to small CHKINTVL 132
performance problem index 115

periodic high response time indicator
definition of 103

POSSIBLE PROBLEM, definition of 102
predicates 186, 200

adding more 171, 186,200
PREP, locking problems 191
preprocessor

definition of 104
description 7
exclusive locking in catalogs 154
performance problem index 110
possible locking problems 191

prevention of log-record overlay 50
prioritization of agents 14

overview 14
problem handling 247
problem isolation and the trace facility 267
problems in the database machine 247
procedures

abnormal termination 72
document 81
first failure data capture 78
incorrect or missing output 81
message 74
no response 80
slow response 81

LH08-8011-03 C> Copyright IBM COrp. 1.7, 1993

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

processing dumps 249
pseudo-agent structure 13
pseudo-conversational programming

use to reduce link waits 121
publications

related 313
punctuation mark

in syntax diagrams xiv

Q
QCE, definition of 104
QDROP OFF USERS

not being used 203
setting 203

query block size 198
possible problem with size 198

query cost estimate
definition of 104
inaccurate results 122, 162

QUICKDSP ON 203

R
range predicates, possible path selection

problems 199
RDIEXT (data area) 277
ROliN (data area) 25, 273

functional description 25
ROliN control block 25

re-preprocess
package needs 194
to improve performance 194

real agent structure 13
real storage 127, 190, 197

when to add 127, 190, 197
recovering from DBSS errors 213-241

bypassing UNDO WORK failure 228
causes for errors 214
committed work, rolling back 231
disabling a DBSPACE 240
enabling a DBSPACE 241
examples of diagnostic displays 213
extended proceSSing 225
forward processing failure action 219
interpreting the diagnostic display 213
invoking SQUDS 224

example to process EXTEND input file com
mands 228

meanings of fields in display 215,218,217,218,
219

REDO proces.ing failure. 223
during re.tore 224
during warm start 223

ROLLBACK proces.ing failure 221
rolling back committed work 231
UNDO proce •• ing failure 221

during re.tore 222
during warm start 221

LH09-8081-03 e Copyright IBM Corp. 1817, 1883

recovery 224
filtered log 224

recovery control commands, definition of 104
recovery control, performance problem index 111
recovery of DBSPACE 38
recovery, LUW 48
redundant data

stored results 118
table splitting 118
to avoid

110' s 129, 209
key lock contention 159
lock contention 182
lock waits on keys 116

transaction tables 118
referential constraints, filtered log recovery 225
referential integrity, filtered log recovery 237
related publications 313
Relational Data System (RDS) 8

executives 8
functional description 8
invocation 8
loading and storing of packages 8
optimizing 8
overview 8
parsing 8

reorganization
to avoid DBSPACE scans 143, 150, 177
to avoid II0's 202, 209, 210

REORGANIZE INDEX
indexes are fragmented 169
to avoid DBSPACE Scan 141
to avoid large sorts 138

repeat symbol
in syntax diagrams xv

repeatable read 56
locking problems with ISQL usage 181

repeatable read (RR)
definition 312

reporting a problem 72
environments 87
forms for 89
materials 85

reporting an SQUDS program" problem 85
reprep 30

concepts 30
invalid packages 30

repreproces.ing 30
required item

in syntax diagrams xiv
reserved page. 38
Resource Adapter 7
REVOKE 108

performance problem index 108
revoke authorities 285
revoke run privilege (Authorization) 285

Index 325

revoke table privilege (Authorization) 285
ROLLBACK WORK 111

performance problem index 111
to reduce link waits 121
use to avoid lock walt problems 117

rolling back committed work 231
row locking

hot rows 158
in catalogs 134, 153
possible lock escalation problems 179, 191
possible lock wait problems 115, 136, 179
use of 151,159, 179

ROWCOUNT

S

use in determining column selectivity 123
use to find hot spots 158

saved segments, use to avoid paging 204
search

inefficient 170
missing condition 185

search condition
missing 185

SELECT 109
performance problem index 109

SELECT list, inefficient 174
selective index, definition of 104
selectivity, false sense of 123
sequential processing, possible 1/0 problems 200
serialization, on page faults 197
session limit

exceeded 203
SET QDROP OFF USERS

not being used 203
specifying 203
to avoid paging 197

SET QUICKDSP ON 203
SET STATISTICS OFF, on DATA LOA 0 210
setting fair share interval size 16
shadow pages 47
SHOW LOCK

ACTIVE, use to find communication waits 119
AGENT, uses of 150
MATRIX, use to find LRBs needed 190
USER, uses of 150
WANTLOCK, to find key lock conflicts 135

single user mode 10
DBSS 10
RDS 10
use for loading 183

slow response 81
smoothing keys 124
sort

possible 110 problems 201
required on CREATE INDEX 138
spreading 138

326 SQUDS Diagnosis tor VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

Sort Concepts 44
Sorting 44
space management 40
specifying isolation levels 56
splitting

tables 118, 210
work among DB machines 194

spreading sorts 138
SQUDS

advanced program-to-program communication
(APPCIVM) 20

agent handling and communications 13
code not shared 204
in multiple user mode 10
in single user mode 10
Inter-User Communication Vehicle (IUCV)

protocol 18
machine favored too little 139
statements associated with a system error 262
structure and components 6
termination 66
trace facility 267

SQUDS dumps 250
SQUDS free space management 33
SQUDS link maps and access 252
SQUDS program problems 69
SQLHX 205
stack storage 31
statement generator

description 27
statistics

inaccurate values 162
misleading values 122
possible accuracy problems 162
updating 163
updating on a DBSPACE 295

storage component 36
buffer pool management 39
DBSPACE recovery 38
directory, logs, DBEXTENTs, and 110 36
how it works 36
mapping DBSPACEs to DASD 36
storage pools 37

storage layout after initialization 256
storage management concepts 31

storage management, logical 32
storage pool

definition 312
putting internal DBSPACEs in 138
relation to CHKINTVL 133
shadow pages in 133

storage pools in CBSS 37
storage related performance problem index 114
storage services 31

stack storage 31
working storage 32

LHos-a0l1-03 ~ Copyright IBM Corp. 1987, 1883

J

J

J

"Re.tricted Material. of IBM"
Ucensed Material. - Property of IBM

stored results 118, 209
to avoid 110's 209

structure 13
pseudo-agent 13
real agent 13

structure, basic index 39
subqueries

possible 1/0 problems 201
possible problems 209

symptomstrings 250
synchronous 205

SOLINIT parameter 205
SYNC(YES) 205

syntax diagram
notation conventions xiv

SYSACCESS
exclusive locking on 154

SYSCATALOG
exclusive locking on 154

SYSCOLAUTH
exclusive locking on 154

SYSCOLUMNS
exclusive locking on 154

SYSDBSPACES
exclusive locking on 154

SYSINDEXES
exclusive locking on 154

SYSPROGAUTH
exclusive locking on 154

SYSTABAUTH
exclusive locking on 154

system error SOUDS statements 262
system-related error codes 95

See also functional problems, diagnosis
Systems Network Architecture (SNA)

AVS session limit exceeded 203
SYSUSAGE

exclusive locking on 154
SYSUSERAUTH

exclusive locking on 154
SYSVIEWS

exclusive locking on 154

T
table

large table problems 143, 175
locking 180

to avoid escalation. 180
mapping to DBSPACE. 130, 143
putting in own DBSPACE 210
small table problem. 158
.plittlng 118, 210
transaction table. 118

termination
abnormal 247

terminology
performance analy.l. 102

LH08-8011.()3 CI Copyright IBM Corp. 1817, 1883

terminology and concepts 5
trace facility 267
trace facility for deadlocks 267
transaction tables 118
transient index 41
type of keyword 70

u

abnormal termination 72
component identification 70
document 81
first failure data capture 76
incorrect or missing output 81
message 74
no response 80
release level 71
slow response 81

UNION
instead of OR 171
use in place of OR 165

unloading
definition of 104
performance problem index 110
possible 1/0 problems 141,175,200
possible lock escalation problems 179
possible lock wait problems 115, 136, 158, 178

UPDATE 60, 109
performance problem index 109

UPDATE STATISTICS
by DATA LOAD 210
exclusive locking in catalogs 155
performance problem index 110
possible DBSPACE scan problems 141
possible 1/0 problems 175,201
use of 163

updating
data statistics 163

problems addressed 163
useofmultipleLUWs 116,121,150,182
user exits 249
user-related error codes 96

command limitation exceeded (-101) 96
creator.table not found (-204) 97
indicator variable is missing (-305) 99
input host variable too large (-302) 98
input variable data type not compatible with

column (-301) 97
mismatch between number of host variables

(-313) 99 .
using the directory verify function 243

V
verify directory 243

u.ing 243
very nonunlque index key prefix 211

pos.ible 1/0 problem. 211

Index 327

very nonunique index. definition of 104
very nonunique key prefix 104

definition 104

W
wait or loop 80
Work Unit Manager (WUM) 8

component description 8
overview 8

work unit support 134
working storage 32

328 SQUDS Dlegnotll for VM

"Restricted Materials of IBM"
Licensed Materials - Property of IBM

LH08-8081-03 = Copyright IBM Corp. 1887. 1.

J

J

J

J

Readers. Comments

SQLlDS
Diagnosis Guide and Reference
for IBM VM Systems
Version 3 Release 4

Publication No. LH09-8081-Q3

Please use this form only to identify publication errors or to request changes in this publication. Direct any
requests for additional publications, technical questions about IBM systems, changes in programming
support, and so on, to your IBM representative or to your nearest IBM branch office. You may use this
form to communicate your comments about this publication, its organization, or subject matter with the
understanding that IBM may use or distribute whatever Information you supply In any way It
believes appropriate without Incurring any obligation to you.

o If your comment does not need a reply (for example, pointing out a typing error), check this box and
do not include your name and address below. If your comment is applicable, we will include it in the
next revision of the manual.

o If you would like a reply, check this box. Be sure to print your name and address below.

You can also send your comments by facsimile to (416) 448-6057 addressed to the attention of the RCF
Coordinator. If you have access to Internet, you can send your comments electronically to
torrcf@vnet.lbm.com; IBMLlNK, to torlbm(torrcf); IBM/PROFS, to torolab4(torrcf); IBMMAIL, to
Ibmmail(calbmwt9).

If you choose to respond through Internet, please include either your entire Internet network address, or a
postal address.

Page number(s): Comment(s):

Name Addre ..

COmpany or organiZation

Readers' Comments
LH09-8081-03

Fold and Tape Pi do not ."ple Fold and Tape ..•.. ~

Fold and Tape

LH09-8081-03

IBM Canada Ltd. Laboratory
Information Development
21/986/844fTOR
844 DON MILLS ROAD
NORTH YORK ONTARIO CANADA M3C 1V7

Pi do not "'ple

PLACE
POSTAGE
STAMP
HERE

Fold and Tape

