
Systems

SH20-1773-1

IBM System/370
Special Real Time
Operating System
Programming RPQ Z06751

Description and Operation
Manual

Program Number 5799-AH E

The Special Real Time Operating System Programming
RPQ is a system which augments the services providt!d
by OS/VSl to support realtime computer operations.
The Special Real Time Operating System is designed
to meet the needs of Electric Utility Energy Manage­
ment Systems and oil refinery applications, but is not
restricted to these applications. The Special Real Time
Operating System runs as an OS/VSl job step and
performs services which support independent task
management, time management, and data base
management. The installation of the Special Real Time
Operating System on an OS!VSl system requires no
modifications to the OS/VSl System.

This manual contains all the information necessary to
understand, install, use, and operate the Special Real
Time Operating System PRPQ.

This Programming RPQ is available on a special
quotation only (see inside front cover).

----- ------- - - ----- -. ---- - - -----=--.'------, -

Second Edition (November 1984)

This is a reprint of SH20-1773-0 incorporating changes released in Technical Newsletter:

N20-3619 (dated 31 Aug 1976)

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for copies of IBM
pu blications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments has been provided at the back of this publication.
If the form has been removed, address comments to IBM Corporation, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604. IBM may use or distribute
whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

(£copyright International Business Machines Corporation 1976

PREFACE
CHAPTER 1. GENERAL INFORMATION
Introduction
General Description
Customer Responsibilities •
Programming Systems
System Configuration
Storage Requirements
Timing Information
Timing Chart.
Initialization
Task Management
Time Management
Data Base
Data Base Logging
Supplementary Services

CHAP1ER 2. APPLICATION SERVICES
In trod \i1C tion
General Description
Processing Description
Task Management
Time Management
Realtime Message Handler •
Report Data output Facility
Input Message Processing.
Da~a Base Management •
Data Recording and Playback
High Level Language Interfaces
Duplicate Data Set Support
DDS Failover/Restart Considerations
Failover/Restart Feature •
Additional special Real Time Operating system Services
Tvo-Partition Operation
Special Real Time Operating System Debug Guide
Coding and Performance Considerations
Special Real Time operating System Online Macros.

BEGIN
CHAIN
DDSBLDL •
DDSCLOSE
nDSDCB
DDSl"IND •
DDSOPEN •
DDSSTOW •
DEFLOCK •
DPATCH
DPPXBLKS
DUMPLOG •
EXIT
FREEWA
GETARRAY
GET BLOCK
GETITEI1 •
GETLOG
GETWA
LOCK
MESSAGE •
PATCH

viii
1.,..1
1-1
1-2
1-3
1-3
1-4
1-5
1-7
1-8
1-8
1-8
1-9
1-9
1-9
1-9

2-1
2-1
2-1
2-2
2-2

2-22
2-31
2-35
2-37
2-42
2-53
2-61

2-151
2-154
2-154
2-166
2-172
2-176
2-178
2-180
2-181
2-183
2-186
2-187
2-188
2-189
2-190
2-191
2-192
2-194
2-197
2-201
2-204
2-205
2-206
2-210
2-213
2-216
2-220
2-222
2-224
2-228

Contents iii

PTIME
PURGEWQ •
PUTARR AY
PUTBLOCK
PUTITEM •
PUTLOG
RECORD
REPATCH •

CHAPTER 3. INSTALLATION GUIDE.
In trod uction
as/VS1 SYSGEN Considerations •
Pre-Special Real Time Operating System SYSGEN Initialization

The special Real Time Operating system Data Set Allocation
Failover/Restart storage Requirements
The Special Real Time Operating System SYSGEN
SYSGEN Restart Procedures •
The special Real Time Operating System SYSGEN Macros •
Configuration Customer Definition Data Set "acros

CONFIGH. • • • •
Software customer Definition Data Set "acros •

VS
FAILRST •
DUPDISK •
DBASE
LOG •
PLISUB
FORSUB
MSGRC
IMP •
DATASET •
GENEI1S

System Initialization
Offline Util~ty Program
Offline Macros

ARRAY,.
BLOCK
ITEM
DEPMSG

Data Base BDAM Data Set Compress.

CHAPTER 4. OPERATOR'S REFERENCE
Introduction
Normal Operating Procedure

CANCEL Command
R'epORT Command
DREC Command.
nDSCNTRL Command
DLMP Comman d •
MSGRC Command
S T A E COil. an d •

Coutrol Card Information
C':mtinuation •

Two-Partition Operation
Failover/Restart Operation
Single CPU Environme'lt. ••
Sinqle CPU Environment With continuous Konitor
Tvo-CPU Environment with Continuous ~onitor and Probe

Normal Termination Procedures •
The special Real Time Operating System Abend Codes
The Special Real Time Operating ~ys~em Online Messages
Offline Utility ~essages

iv Description and Operation Manual

2-236
2-242
2-245
2-247
2-250
2-252
2-255
2-256

3-1
3-1
3-1
3-2
3-6
3-6
3-8

3-10
3-16
3-16
3-16
3-16
3-17
3-20
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-33
3-47
3-59
3-60
3-65
3-67
3-70
3-72

4-1
4-1
4-1
4-3
4-4
4-5
4-6
4-7
4-8

4-11
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16
4-23
4-64

APPENDIX A. THE SPECIAL REAL TIME OPERATING SYSTEM SAMPLE
PROGRAM

APPENDIX B. LISTING AIDS

APPENDIX C. MODULE NAME - FUNCTION CROSS-REFERENCE

APPENDIX D. SPECIAL BEAL TIME OPERATING SYSTEM
PROG RAMS/M ACROS

APPENDIX G. GLOSSARY

A-I

B-1

C-I

D-l

G-I

Contents v

1- 1

1-2

2- 1

2-2

2-3

2-4

2-5

2-6

2-6.1

2-6.2

2-6.3

2-6.4

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

2-15

2-16

2-17

2-18

vi

User Special Real Time Operating system
OS/iS Interface •

Storage Requirements.

The Special Real Time operating System
overview of the Online System

Task Kanagemen t overview

The special Real Time Operating System
Task Structure and Priorities

Task Management control Blocks

Control Blocks Built for Example 1

Control Blocks after Initialization •

Task/Queue Structure

Queue Processor/Queue Holder
Structure

Task/Queue Structure

Task/Queue Processing

PTIME Logic and Control Flow

Time Drift - Special Real Time Operating
System Time Relationship

Real Time Kessage Handler Components

Report Data output Facility Overview

Data Recording and Playback Processing
Overview

Macros Supported by PORTR1N-PL/I

High Level Language Interfaces for the Special
Real-Time Operating system Services •

PL/I Example

GETABRAY Services

PUTARRAY Services

GETITEK Services

PUTITEM Services

Description and Operation Manual

1-1

1-6

2-1

2-3

2-3

2-5

2-7

2-8

2-13

2-15

2-16

2-17

2-23

2-30

2-31

2-36

2-54

2-62

2-62

2-63

2-87

2-87

2-92

2-92

2-19

2-20

2- 21

2-22

2-23

2-24

2-25

2-26

2-27

2-28

2-29

2-30

2- 31

2-32

2-33

2-34

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

GETBLOCK Services

PUTBLOCK Services

GETARR AY Services

PUTARR AY Services

GETITEM Services

PUTITEM Services

GETBLOCK Services

PUTBLOCK Services

Restart Process •

Probe Function Failure/Restart Feature

Remote System Reset Feature.

System with Automatic 2914 Switch

computer Status Panel Indicators and switches

computer Status Panel Connections (Functional)

Control Block Format Entry to PATCHed Program

Relationship of PATCH operands to Type of Task

The Special Real Time Operating System SYSGEN
Da ta Sets

The Special Real Time Operating System
SYSGEN - Stage I

The Special Real Time Operating system
SY SGEN - Sta- ge II

XXXDSET Parameter Values

The Special Real Time operating System
Initialization

control Statement Input Stream

Offline Utility Processing Overview.

Update Processing Overview

Online Data Set Processing Overview.

Hexadecimal and Binary Variable Descriptions

2-95

2-95

2-134

2-134

2-138

2-138

2-141

2-141

2-155

2-16C

2-161

2-162

2-163

2-165

2-177

2-235

3-2

3-8

3-9

3-32

3-33

3-34

3-47

3-49

3-52

3-72

List of Figures vii

This publication provides information on the Special Real Time Operating
system (5799-AHE).

This manual is organized so that it can be used as four separate
ruanuals r each chapter addressing the needs of a different audience.
In each case, the intended audience is a group within a typical computer
department. The intended audience and the applicable chapters are:

• "anagement -- Chapter 1 - GENERAL INFORftATION

• Application Programmers -- Chap~er 2 - APPLICATION SERVICES

• System Programmers -- Chapter 3 - INSTALLATION GUIDE

• Operators -- Chapter 4 - OPERATORS' REFERENCE

The intended audience for the section entitled "GENERAL INFORMATION"
includes those people wishing to gain an overview of the Special Real
Time Operating System and to become familiar with the general functions
of the PRPQ. This chapter is prerequisite reading to the following
chapters.

The section entitled "APPLICATION SERVICES" is intended to be used by
programmers to gain knowledge of the realtime system concepts and
processing methods. It is technically oriented. Users of this section
s.hould ha ve a thorough knowledge of programming techniques as well as
a general knowledge of operating system/Virtual storage (OS/VS1). The
parts of this section dealing with high-level language interface require
a prior knowledge of the language specifications for the given
high-level language.

The intended audience for the section entitled "INSTALLATION GUIDE"
are the people involved with the preparation for and the installation
of the special Real Time Operating system PRPQ. Users of this section
should have prerequisite knowledge of OS/VS1 system programming, job
control (JCL) ~ SYSGEN, and generally a thorough knowledge of OS/VS1.

The final section entitled "OPERA TORS' REFERENCE" is intended for the
system console operator. This section contains operations information
to enable the operator to start, terminate, and communicate with the
Special Real Time Operating System. The operator should be familiar
with OS/VS1 operating techniques.

viii Description and Operation Manual

The Special Real Time Operating system PRPQ is a support program that
augments the services of OS/VS1 to support realtime applications and
provides a stable operating environment. The services provided by
OS/VS1 are still available to a program or system of programs utilizing
the special Real Time Operating system. Although in some cases, the
special Real Time Operating system acts as an interface between OS/VS1
and user programs, as shown in Figure 1-1.

------------- ...
Special

Real Time

,

O£erating
OS/VS ystem

""'- User
Services Services Programs

Figure 1-1. -User Special Real Time Operating System-OS/VS Interface

The installation of the Special Real Time Operating System on the user's
OS/VS1 system entails no modifications to the OS/VS1 system; although
there are certain additions to that system. In particular, there are
supervisor call (SVC) routines that must be included into the OS/iS1
libraries. The Special Real Time Operating system services augment
the OS/VS1 services in the following areas:

• Lower overhead through independent task management

• Significantly enhanced time management routines

• Realtime message handler

• Data base management and data base logging

• Duplicate data set support for critical Special Real Tim~ Operating
system and user data sets.

• Selective termination of units of work

• Selective data recording for post-run analysis

• Input message processing

• High-level language support for PL/I and FORTRAN

• Failover restart support.

In addition to these enhance.ents, the Special Real Time Operating
System is designed so that each user builds and tailors his own Special
Real Time Operating system for his own equipment configuration and for
his own operational requirements through a system build or system
generation (SYSGEN) process.

Creation and modification of t~e table structure and initial conditions
for the online system are handled by offline utility programs. As a

GENERAL INFORKATION 1-1

result, changes in this area do not require additional system
generations.

The Special Real Time operating System is designed to enhance areas
which are critical to a realtime operation. The following paragraphs
discuss the enhancements which are provided by the special Real Time
Opera ting S yste m.

Independent task management allows a task to be created and remain in
existence when its processing is finished. Units of work are queued
to the task, and the task does its processing with the overhead of
resource allocation, initiation, and termination only once and not for
any subsequent processing of units of work by the task. The Special
Real Time operating System task management routines bring a task into
virtual storage, queue work against the task, and delete the task or
specified units of work upon request from the user. This results in
a significant decrease in task management processing overhead. Also,
the Sp~ial Real Time Operating System provides the user with greater
flexibility and control over the work to be processed by a given task.

The Special Real Time Operating system time management services fall
into two categories. First, the Special Real Time Operating System
maintains system time and date independently of OS/VS1 time and date.
The Special Real Time Operating system time can be synchronized with
an external time source or can be adjusted by manual inputs. Second,
the special Real Time Operating system time management services provide
the user with the capability to pass a work request to a specific task
at a selected time and, optionally# have the work request repeated at
a specified interval.

The realtime message handler allows messages which the user has
previously defined offline to be accessed in realtime. These messages
can then be selected by message number, modified, and routed in realtime
with minimum impact on system performance.

The Special Real Time operating System data base services maintain a
data base in virtual storage and on direct access storage. The services
also allow the data base to be accessed independently by several tasks.
The data is defined as a group of named arrays and named items within
the arrays. The data is accessed by name, and this allows associated
programs to be coded independently of most changes or additions to the
data base. The content of the data base arrays may be logged to history
files on a cyclic or demand basis. The logged data can then be used
for reinitialization of the data base after a system outage as well as
a historical record of system operation. The data base arrays and
items are created by an offline utility program for use in the realtime
run.

Duplicate copies of the critical Special Real Time Operating System
and/or user data sets can be maintained to provide backup copies should
the primary copy experience a failure. This provides a smooth
transition when making modifications to these critical data sets. The
duplicate data set support services are optional and may be selected
when the Special Real Time Operating System is created. Duplicate data
sets may be used to keep backup copies of the data base data sets.

The impact of failing tasks is minimized through selective termination
of units of work. If a task experiences a failure while executing a
unit of work, that unit of work is terminated. However, the task is
maintained, and all remaining units of work queued to the task will be
executed.

1-2 Description and Operation Manual

The special Real Time Operating System record and playback feature
provides services for the user to define data that can be recorded on
tape or direct access device during realtime execution. This recorded
data can then be used for post-run analysis or as test data on a
subsequent program execution.

An input message processor is provided to allow for operator
communication. This allows operator commands to be entered through a
system console and routed to designated user programs.

An interface is provided so that the user may code his programs in PL/I
or FORTRAN and request the normal Special Real Time Operating System
services through the interface program.

The Special Real Time Operating system has facilities to allow execution
on a two CPU configuration where a job in the backup CPU monitors the
performance of the online cpu. When either CPU recognizes that a
failure has occurred, that CPU can request a failover, and the backup
CPU becomes the online CPU. Failover can also be initiated by program
request to facilitate scheduled maintenance or changes to the
operational environment.

It is the customer's responsibility to provide in his installation:

• Facilities and minimum hardware configUration required for the
Special Real Time Operating System

• Ordering, generation, and testing of the host OS/VS1 system

• Ordering, generation, and testing of the Special Real Time Operating
System

• Processing programs required for the realtime operation

• Ordering, generation, and testing of any related PRPQs or program
products to be installed

• Data set contents for defining initial values, limits, and other
control parameters

• A thorough knowledge of his system and his desired control strategy

• Orders for required computer and terminal equipment needed in the
system

• Instailation of any instrumentation and/or common carrier facilities
required to meet his desired control strategy

• Design and implementation of any specialized application programs
and/or display formats reqUired to meet his control strategy

• Training of personnel

All Special Real Time Operating system programs are coded using the
System/310 Assembler Language. The Special Real Time Operating syst.em
executes under control of IBK Operating system/Virtual storage 1,
Version 3.0 or a later release. The following co.ponents of OS/VS1
are required:

GENERAL INFORMATION 1-3

• Super visor

• Sequential Access Kethod

• Direct Access Method

• Linkage Editor

• Loader

• System Assembler

• System Utilities

• Partitioned Access Methods.

In addition to the OS/VS1 components, the user may require any of the
following:

• R1LI_r (360S-NL-511) and ~1LI-1_liubroutin~-1i~£~£Y (360S-LM-512
VS1)

• EQE1~!N_IY-~!QI~Il - 5734-LM1

• lQB!B!!!_!.! (H Ex t en de d) - 573 4- F 0 3

• rQE!E!!!_!.Y-1i~£~£Y - 5734-LM3.

The following minimum configuration is required to compile and execute
the Special Real Time Operating System.

The machine configuration for the Special Real Time Operating System
varies according to the user's application needs. Typical systeMs are
shown as a guideline:

• For Compilation - A 3135 processing Unit Model DR (245,760 by test
and appropriate system console. Sufficient Input/Output (I/O)
devices must be included to support the requirements for system
input, system output, system residence, and system data sets.

• Minimum Operational System - A 3135 Processing Unit Model H
(245,760 bytes) including one byte multiplexer channel, one block
multiplexer channel, and floating-point instruction set. The
configuration must include sufficient 110 devices to support the
requirements for system output, system residence, and system data
sets. Sufficient direct access storage must be provided to satisfy
user information storage requirements. Direct access devices may
be chosen from a 2305 Fixed Head Storage, a 2319 Disk Storage
Control (Integrated), a 3330 (3333) Disk Storage Facility, 3340
Disk Storage Facility, or combinations.

1-4 Description and Operation Manual

A magnetic tape unit (9-track) must be available for program
distribution and maintenance.

Storage requirements for the special Real Time Operating system are
presented below. The figures are approximate and assume a typical
customer environmente They are intended as a guide only.

Figure 1-2 shows the approximate Virtual Storage required by the load
modules whiCh compris~ the Special Real Time Operating system. The
total size represents the approximate maximum number of bytes of storage
required for all load modules of each function. Several functions are
selectable by Special Real Time Operating system SYSGEN which may reduce
the total size of any SYSGENed system from these values. The table
includes estimates for routines which are used in an offline environ.ent
only and will never be a part of the online system. Some of the
routines may be a part of the online system during initialization for
a short duration when requeste~ by the user or while proc~ssing unusual
conditions.

The frequently used column represents the approximate number of bytes
of each function which may be used frequently in ruost systems during
a continuing realtime execution. The actual use of any function is
dependent upon the application programs and as such, the amount of
virtual or real storage occupied by any function is predictable only
through analysis of the application.

In addition to the storage represented in Table 1, approximately 320
bytes are added to the OS/VS1 fixed nucleus, and 7700 bytes are added
to the pageable nucleus.

The Special Real Time Operating System programs also require
approximately five cylinders of a 3330 direct access storage device
(or equivalent).

These figures do not include virtual storage or direct access storage
which are required for the user's data base.

GENERAL INFORMATION 1-5

Function Frequently Used Total Size

Task Management 5,000 11, 000

Time Management 3,000 5,000

Data Base 4,000 5,000

Data Base Logging 6,000

Message Handler 3,300 3,300

Data Recording 7,000

Report Data Output 900

Duplicate Data Set Support 5,000 22,000

Input Message Processing 7,400

System Initialization 41,000

Failover /Restart 1,000 20,000

FORTRAN PL/I Interface 2,000

Offline Utility Routines 35,000

·Specifies functions wich are optionally selected by the user when he generates his Special
Real-Time Operating System.

Figure 1-2. storage Require.ents

1-6 Description and Operation Manual

The timing information given here is meant to aid the user in evaluating
factors which may impact the performance of the Special Real Time
Operating system. Timings were obtained on a Release 3.0 version of
OS/VS1 with eight megabytes of virtual storage and System Management
Facility (SMF). The following was the basic hardware configuration:

• system/370 Model 145
• 512K bytes of main storage
• Pour 3330 direct access storage devices.

While timing statistics were being gathered, no other jobs were
executing. The Special Real Time Operating System was generated with
the following options:

• Two-partition support
• Duplicate data set support
• Failover/restart.

The test data base consisted of 46 arrays. Of these arrays, 5 were
loggable and 12 were direct access storage resident arrays (this
includes 5 log arrays"). Of the loggable arra ys, 4 were refreshed during
ini ti aliza tiona

The following chart gives approximate timings for the major Special
Real Time Operating system servicesQ The timings all include as/VS1
control program services. Task management timings do not include the
time of execution of the test program. Times are given as CPU time
and as such do not represent elapsed time. The elapsed tima could vary
greatly depending on system activity, paging, I/O activity, device
types, etc.

Caution and judgment should be used in evaluating these statistics due
to the many OS/VS1 SYSGEN options and other variables involved. The
statistics must be interpreted only as the results obtained in the
environment described, and not as a commitment to be met in any or all
environments. All times are shown in millisecond units (ms).

GENEnAL INFORMATION 1-7

INITIALIZATION

Basic JODstep Initialization
(includes task managemen t initia Ii za tion)

Time Management Initialization

Data Base Initialization*

Logging Initialization **
(includes data base refresh)

Supplementary Services ***
(includes Message Handler & Duplicate Data
Set support)

PATCH to existing independent task for a
reentrant load module previously loaded

PATCH to existing independent task for a
reentrant load module not prevLously loaded

PATCH to existing independent task for a
non-reentrant load module

PATCR to dependent task (or non-existing
independent task) for a reentrant load module
previously loaded, assuming there vere no
dormant Special Real Time Operating Syste.
tasks available

*Dependent upon size of data base.

900-1200 liS

125-150 IRS

1500-up liS

425-up IRS

900-up illS

3.70-5.0 ms

60-100 BlS

50-100 ms

25-75 illS

**Dependent upon number of log arrays and initialization
refresh options.

***Dependent upon numher of messages and the number of
duplicate data sets.

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
previously loaded, assuming a dormant Special
Real Time Operating system task is available

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
not previously loaded, assuming a dorllant
Special Real Time Operating System task is
available

PATCH to dependent task (or non-existing
independent task) for a reentrant load
module not previously loaded, assuming
there were no dormant Special Real Time
~perating system task available

PATCH to dependent task (or non-eXisting
independent task) for a non-reentrant load
module, assuming there vere no

1-8 Description and Operation Manual

20-75 ms

65-100 illS

70-150 liS

75-155 ms

dormant Special Real Time Operating System
tasks available

PATCH to dependent task (or non-existing
independent task) for a non-reentrant
load module, assuming a dormant Special
Real Time Operating system task is available

REPATCH SVC

DPATCH SVC

TIME MANAGEKE NT

TIME - update time array routine
PTIM - execute PATCH routine
PTIME SVC

DATA BASE*

GETARRAY/PUTAFRAY

TYPE=ADDR
TYPE=SPEC
TYPE=DATA

GETITEM/PUTI TEM

TYPE=ADDR
TYPF=SPEC
TYPE=DATA(address given)
TYPE=DATA(no address given)

GETBLOCK/PUTBLOCK

VS resident
DA resident

DATA BASE LOGGING**

PUTLOG
NORMAL
LOGHDR
BLKLST

GETLOG

DUMPLOG

SUPPLEMENTARY SERVICES

CHAIN
DEFLOCK
LOCK
GETWA
MESSAGE HANDLER(includes PATCH)
DUPLICATE DATA SET

DDS READ/DDSWRITE
DDS CHECK
DDSPOINT/DDSFIND
DDSBLDL

70-150 ms

1-5 ms

6-2.5 ms

3-5 ms
6-15 ms
5- 10 ms

2.5-5.0 ms
15-40 ms
2.75-5.0 ms

15.0-55.0 ms
15.0-55.0 ms
3.0-5.0 IDS

15.0-55 .• 0 ms

2.0- 3.5 ms
10-20 ms

13.0-40.0 ms
22.0-65.0 mS
10.0-30.0 ms

14.0-100 ms

200- up ms

o. 5-1.5 ms
2.5-5.0 ms
0.1-0.5 ms
0.45-1.0 IDS

30-50 ms

12-50 ms
7-25 ms
5-20 ms
20-60 ms

GENERAL INFORKATION 1-9

*Dependent upon size of data base and number of ITEMS being processed.

**Dependent upon number and size of log arrays and nuaber of log copies.

1-10 Description and Operation ftanual

The objectives of the Special Real Time Operating System in a real-time
environment are to provide additional services to user coded, real-time
programs and to minimize the impact normally caused by ABENDing
programs. The additional services are provided for lower supervisor
overhead and added capabilities and flexibility in the areas of task
management, time management, data base, message handling, and failover
restart, as well as other less significant enhancements. Minimizing
system impact due to ABENDs is accomplished by isolating user tasks
from one another 'and by handling work requests as separate entities
from the user program s.

The Special Real Time Operating System, by itself, as a real-time
program, does meaningful processing only when its services are requested
by user programs in a real-time environment. The Special Real Time
Operating System services are r€quested through the use of macro calls
which invoke the Special Real Time Operating System SVC routines or
branch to the Special Real Time Operating System subroutines. This is
shown in Figure 2-1.

User
Macro

Call

I
I

SVC Routines I Branch to ,Subroutine I
I
I

~

Data High Lvi Task Time Failover Data Message Duplicate Record
Mgmt Mgmt Restart Base Handler Data Set and Play Language

Back Interface

Figure 2-1. The Special Real Time Operating System Overview of the
Online S yste m

Figure 2-1 shows the major areas in which the Special Real Time
Operating System supplies services for real-time execution

The task management services provide facilities to create the real-time
task, queue work to an existing task, or delete a task. These services
are provided to the user through the PATCH, REPATCH, and DPATCH macr~s.

Time management services allow for maintenance of time and for causing
work to be passed to tasks at a given time or cyclically for a given
interval. The time management services are available to the user via
the PTIME macro.

For a real-time environment, the system must have the ability to recover
quickly from a failure or system outage. The Special Real Time

APPLICATION SERVICES 2-1

operating System fail over restart services allow for a fast switch to
a backup-CPU (failover) or a fast restart in the failing cpu. These
services are either automatic or under operator control. The data base
services in the real-time applica tion allow the user to access the data
base but prevent (when requested) access to data by one program if that
data is currently being modified by another program. User access to
the data base is achieved through six macros; GETITEM, PUTITEM,
GETBLOCK, PUTBLOCK. GETARRAY, and PUTARRAY.

The data base, or portions of it, may be logged at given intervals to
create a history file. The user interface to the logginq routines is
through the GETLOG, PUTLOG, and DUftPLOG macros.

The real-time message handler provides a service whereby predefined
messages may be retrieved, modified, and routed to predefined devices
in real-time. The user interface to this service is through the KESS AGE
macro.

Duplicate data set support provides a service whereby the user can
maintain duplicate copies of critical data sets. The user requests
this service via the DDSBLDL, DDS CLOSE DDSDCB, DDSFIND, DDSOPEN, and
DDSS't'OW macros.

Data record and playback provide a facility for the user to record
areas of virtual storage under program control and later to retrieve
or play back the data. The user requests data to be recorded via the
RECORD macro.

The high-level language interface programs provide an interfacp. for
the real-time services to be used from a PL/I or FORTRAN program.

Each of the Special Real Time Operating System services shown in Figure
2-1 is described in detail in the following sections. Additional
services are described later. For the convenience of the application
programmer, all online macros are described in detail in the section
entitled 'Special Real Time Operating System Online Macros'. The macros
in this section are listed in alphabetical sequence.

TASK MANAGEMENT

The Special Real Time Operating system task management services are an
extension of the OS/VS1 task supervision and virtual storage supervision
to make more efficient use of system resources in a real-time processing
system. These additional services are provided by the Special Real
Time operating System through the use of SVC routines, monitor routines,
and service subroutines. This is shown ~n Figure 2-2. The service
subroutines can be used only by the SVC routines and the monitor
routines. The user invokes the monitor through the SVC interface.

2-2 Description ana Operation Manual

U.., SVC Monitor Service
Proaram RoliDnes I Roulinea c:>.

I
I
I

PATCH ""'- POST: Svatem Control Monitor
I I

DPPTSMON r-- Block
I I Get I I
I PATCH/ I DPPTCBGT I I
I REPATCH
I

DPPTPSVC
I

I I
I

REPATCH I I

I I Work Queue ,
iPOS-n ' POST Delete ,

I DPPTWQDL
I I

PATCH
~

I I
I I Monitor

POS~ DPPTPMON

DPATCH DPATCH :
DPPTDSVC I

I
I , , ,
I

GETWA ! GETWAI End of Taak
FREEWA Routine -FREEWA OPPTWSVC DPPTETXR

PURGEWQ
, Purge Work

Queue
DPPTPWQE

~igure 2~2. Task Raaageaeat Overview

The Special Real Tiae operating Syste. utilizes many tasks (TCBs) during
online execution. The task structure for the peraanent TeBs is
established d ur ing init 1a liza tiOR. Pig ure 2- 3 sb ovs the Spec 1a 1 Real
Tiae Operating SJ~tea task structure and the task's relative priorities.

DPPTPMON DPPTPMON DPPXIMPW
PRTY-Q PRTY-o PRTY-

JOBSTEP·3

DPPTSMON PRTY-JOBSTEP

------,

DPPCTIME
PRTY­
JOBSTEP·'

DPPCPTIM
PRTY­
JOBSTEP·2

DPPMMSGI
PRTYu
JOBSTEP·3

en
DPPDFREQ
PRTY'"
JOBSTEP·3

Figure 2-3. The Special Real Time Operating syste. Task structure and
Priorities

Task DPPTSftON receives control froa initialization via leTL. There
vill be a vuriable nuaber of tasks for OPPTPftON. The number vill depend
upon SYSGEN options. Following initialization these advance TCBs viII
have a dispatching priority of zero and a limit priority of JOBSTEP
task "inus three (JOBSTEP-3), which is the highest a vailable user
priority.

The task for the input aessage processor program (DPPXIMPW) is
est~blished with a dispatching priority of JOBSTEP-3. Time management
(DPPCTIftE) has a priority of JOBSTEP-l. and the PTIME .onitor (DPPCPTIM)

APPLICATION SERVICES 2-3

has a priority of JOBSTEP-2. The real-time message handler program
(DPP"MSG1) is PATCHed with a priority of JOBSTEP-3.

If cyclic logging (DPPDFBEQ) vere selected during systea generation,
the cyclic logging program would be invoked at initialization time and
would have a TeB vith the priority of JOBSTEP-3. Demand logging does
not create a TeB at initialization.

The tas~s used by the Special Real Time Operating System are true OS/VS1
tasks and vill be ass~gned OS task priorities based upon the priority
of the jobstep task. These tasks compete for resources among themselves
and vith tasks of other jobs in the system based on their assigned
priority. When two or more tasks have the same priority, the order of
assignment to that priority value determines vhich task viII be serviced
first.

PATCH is the service by which a task is created or by vhich a vork
request is made for a task already in existence. REP ITCH is the means
by which a failing PATCH may be retried.

To provide its services, the Special Real Time Operating System builds
control blocks and tables which it uses to aaintain control of the
system and to interface with user programs. Figure 2-4 shows the
relationship of the Special Real Time Operating System control blocks
for the first PATCH issued on a basic Special Real Time Operating System
system, when the user gains control. The Special Real Tiae Operating
System build~ its control blocks in protec~ed storage aDd allocates it
via an internal routine called CBGET (control block get). This storage
is allocated at initialization ADd is not expandable.

2-' Description aDd Operation Ranaal

liTes B8

I l DPPTSMON
r--- TCSUSER

TCBLTC .IITCS

AS

TeBX

"'

DPPTPMON 1

....--

Reg • ., 1 TCBX wae
I

XCVT t XCVT

r--- t RSTB .----

- t PARM

scvr Resource Table leB

t EP-ONE

r---

-

TM(;T
lCB

t EP"ONE PATCH EP-ONE. TASK FIRST

Figure 2-q. Task Nanagement Control Blocks

At the point that program ONE gains control folloMing the PATCH, gene~al
register 1 vill point to the three words in the TCBX (TCB extension)
containing pointers to the XCVT, the resource table, and the parameters
being passed into program ONE. The XCVT is the Special Real Time
Operating system equivalent to the OS CVT. The ICfT contains pointe~s
and control information Mhich must be available to the SUbsystems as
veIl as the Special Real Time operating System. The scvr contains
pointers to syste. areas and control information which must always be
available to the Special Real Time Operating System. The Task
~anage~ent Control Table (T~CT) contains task-oriented information
which must be available to all the Special Real Time op~rating System
tasks. The TCBX contains control information pertinent only to the
specific task and contains a pointec to the XCVT. This pointer links
each t.!sk to the basic Special Real Time Operating system control
information.

The re;ource table is an a-byte area of virtual storage that the Special
Real Time Operating systea gets fro. subpool zero and passes to the
user. This area can be used by the user to pass inform~tion across
PATCHes to the saae taSK. For exaaple. two PATCHes could be performed
for TASK=A, one for EpzA and the second for EP=B. Program A could open
a DCB 3nd put its address in the resource table. When program B
executes, it could do I/O processing using the open DCB. The resource
table is initialized to contain zeros when the task is created and is

APPLICATION SERVICES 2-5

not changed by the Special Real Time Operating System as long as the
task is in existence.

The work queue element (WQE) is built by the Special Peal Time Operating
System to represent the PATCH request for execution of program ONE
under task FIRST. Once program ONE has completed execution and returned
control to the Special Real Time Operating System, the WQE is deleted.
If additional PATCHes had been made for task PIFST, additional WQFs
are queued to the TCBX. When the first execution of program ONE is
completed, the first WQE is removed and the second scheduled. This
process continues until there are no WQEs left on the queue. There is
one WQE created for every PATCH.

The load control block (LeB) is created by the Special Real Time
Operating System to represent the load module for program ONE. Program
ONE in Figure 2-4 is represented by two LCBs. This is the case when
the program is reentrant. A non-reentrant module is represented by
only one LCE chained to the requesting WQE. There is one LCB for each
module (EP=) under each task (TAS K=), plus one LCB for each reentrant
.odule ~ the partition. LCBs are created for modules loaded througn
the use of the Special Real Time Operating System services. Figure 6
shows the Special Real Time Operating System LCB-WQE blocks that will
be bu il t for the follow ing PA TC He s:

EXA!!PLE 1 :

• PATCH 1 PATCH TA SK=X, EP=A (reentrant)
• PATCH 2 PATCH T ASK=X, EP= B (non-reentrant)
• PATCH 3 PATCH TA SK=Y ,EP=A (reentrant)
• PA TCH " PATCH T ASK=X, EP= B (non- reent ra nt)
• PATCH 5 PATCH TA SK=Y ,E P=B (Ilon-re~ntrant)

• PATCH 6 PATCH TASK=!, EP=A (r eent rant)

2-6 .Description and Operation ~anual

r- TCB B - TASK=X TMCT
TASK=Y

r----

TCBX TCBX

,----- r--- lCB

EP=A

WOE ~ lCB , lCB WOE

~

,--- PATCH #1 ----+ EP=A EP=A PATCH #3 f---
r---

WOE LCB lCB WOE

,--- PATCH #2 ~ EP=B EP=B PATCH #5 r--

WOE WOE

~ r---
PATCH #4 PATCH #6

Figure 2-5. Control Blocks Built for Example 1

The control blocks will be built as shown in Figure 2-5 ~t a point in
time when all PATCHes have been issued, and program A and Bare
executing, under the first WQE.

PATCH 1 causes a WQE to be scheduled for program A on task X. PATCH
1 also creates the LCB pointed to by the WQE and the LCB pointed to by
the TMCT.

PATCH 2 creates the WQE and its LCB for task X, program B.

P~TCH 3 creates the WQE on task Y and the LCB for program A pointed to
by the WQE. It also points the LCB to the existing LCB for program A
on the TMCT.

PATCH 4 creates the WQE for task X and points it to the LCB for program
B that was previously created by PATCH 2.

PATCH 5 creat es the WQE for task Y, and because this is the first
request for program B on task Y, creates an LCB for B and chains it to
the WQE.

PATCH 6 creates a WQE for task Y and points it to the LCB previously
created by PATCH 3.

The Special Real Time Operating System task management is initialized
by DPPINIT. DPPINIT gets protected core from subpool 253 and builds
the XCVT, the SCVT, and the TMCT. It then initializes the get work
area (GETWA) and control block get (CBGET) storage. Next,
initialization determines the number of TCBs and task control block
extensions (TCBXs) to be obtained and initializej, and creates the TCBs
by attaching the PATCH monitor (DPPTPMON) for the number of TCBs. Next,

APPLICATION SERVICES 2-7

DPPINIT gets CBGET storage for TCBXs, chains the TCBX to a TCB, and
puts the TCBX on the TMCTFREE chain. When initialization is completed,
it XCTLs to the system monitor (DPPTSKON). At this point the system
is configured as shown in Figure 2-6.

TCB~

r-

XCVT

.----

SCVT

.----

TMCT
Task

amant Manag
Contro , Table

I TCB
Job Step

Task

TCBUSER

TCBLTC

TCBX

TCBX

~

TCBX

RB
_ r

I DPPTSMON

rl
Tee RB

~-1 DPPTPMON

r--- TCBNTC

TTCB
~ J
I' " DPPTPMON

TCBNTC t---

I TCB
.f

l DPPTPMON

Figure 2-6. Control Blocks After Initialization

I

I

1

When DPPTPKON is in storage and begins execution, it waits until it is
posted by DPPINIT. DPPINIT posts DPPTP!ON when a TCBX has been
initialized and chained to the TCB. DPPTPKON then does a GETftAIN for
the resource table, and chains it to the TeBX. A STAE macro call is
then executed by DPPTPMON specifying load module DPPTSTAE as the STAE
exit routine. DPPTPMON then executes a WAIT macro call. At this point
the special Real Time Operating System is ready for user service
requests.

The user requests that a task be brought into virtual storage and
executed via the PATCH macro. Two different types of tasks can be
executed. Dependent tasks operate similarly to normal OS/VS1 tasks;
the requested module is loaded and executed once; then the module is
deleted, and the t~sk is terminated. Independent tasks, however, can
request loading of multiple programs: each can be executed many times
and is terminated only upon a specific request from a user by the DPATCH
macro. To facilitate multiple execu'tion of independent tasks, the
Special Real Time Operating System loads each reentrant program only
for the initial PATCH. The WQE and LCB are built and queued to tile
tasks TCBX. On subsequent PATCHes to the same task requesting tb.e
execution of the same program (EP=), a WQE vill be created; but the
program will not be reloaded, and the WQE will be pointed to the LCB
created by the first PlTCH.

An option on the PATCH macro allows programs to be deleted after the
WOE has been processed, even though the program is reentrant.

2-8 Description and Operation Kanual

The user's PATCH aacro results in the PATCR s,e code (DPPTPSVC) ga1n1ng
control. The SVC yalidity checks the input parameters, and if they
are valid, obtains a TCBX and a TCB for the task. DPPTPsve then builds
a WQE and an LCB for the program and chains them to the TCBI. DPPTPSVC
then posts DPPTSftON to change priority (CHAP) of the TCB to the
specified priority (PRTY=) and returns control to the program that
issued the PATCH SVC.

The system monitor (DPPTSMON) has three aain functions.

• When posted by npPTPSVC, it CHAPs the TCB to the requested priority.

• It creates TCBs and TCBls and maintains thea on the TKCT chaine

• DPPTSftON handles the loading and deleteing of reentrant modules.

The PATCH aonitor (DPPTPftON) is the Special Real Time Operating
Systea-user interface, DPPTPftOI aanipulates WOEs and non-reentrant
LCBs. DPPTP!ON is the prograa under which all user tasks are executed.
Wh~n the prograa bas been loaded and the WOE scheduled, DPPTPKON
branches to the user code. Opon coapletion, the user executes a normal
8R14 return, and DPPTPftOI regains control, posts the user lCB, and
atteapts to schedule the next 101. If no-WOEs exist, DPPTP!ON waits
for the nezt PA'l'C B.

lote: Because user prograas are loaded and branched to by DPPTPftON,
the user proqraa vill not be represented by an RB on the OS/YS1
srste.. As a result. user progra •• inq errors vill cause ABEND
duaps that shov DPPTPftOIF as th-e ABEliDing prograa.

The following exaaples shov hov the user vould invoke the SpeCial Real
!i.e Operating Systea task aanage88nt services through the use of the
PATCH aacro.

P'leBO 1 PATCR T1SK=OIE.!P-PIBST,Qt-3.
QPOS-PIRST.PB'lY=('l10,4),
Ee S- (ICBOI!) ,
PI.Bap,ID:4

• • •
This PITCH vill cause a task vith the name OBE to be created. If task
ONE already exists, a WQE vill be queued to it to represent PATCH
PTCH01. PTCH01 is a request for execution of prograa FIRST, and the
WOE vill be queued at the top of the queue (QPOS=FIRST). If tae task
does not exist. it vill be created vith a priority of 4 less than the
existing task naaed TWO and vill allow a .aximua of three WOEs (QL=3)
to be queued plus the current IOE being processed. If task TWO'does
not exist, the PATCH vill not be processed, and the PATCHor will be
giYen a return code 10. If task Ol! does exist, the Ot and PRTY
keywords vill haye no effect. The ECB=keyvord specifies that an BCB
at location ICBOHE is to be posted when the Special Real Tiae Operating
Systea task .anage.ent d.queues the WOE vhich represents this PATCH
request. The ICB vill b~ posted with a Special Real Tiae Operating
Syste. task aanageaent POST code in the high-order byte and the
lov-ordel: three bytes of register 15 if the PATCHed program is completed
successfully, or the ABEIO code is in the low-order three bytes it the
task ABENDed. PIEB=P requests that the Special Real Ti .. Operating
Systea task aanage.ent services free (PIEEftAII) the virtual storage
o~upied by the PIOBt (user proble. paraaeter list). The 1D=4 requests
that a value of 4 be put into the PROBL and passed to the PATCHed
prograa.

APPLIC1TIOIL SERVICES 2-9

PTCH02 PATCH ID=255,T1SK=~AIJ
EP=iOB~Ol,PRTy·(,l),
QL-9

*
*

PTCH02 uses the special ID (I0-255). This 10 creates a Special Real
Time Operating System task named "AIN with a qUEue length of 9 and a
priority of 1 less than the PATCHor. The program na~ed WORKO' is loaded
but never given control, because the ID is 255. This facility allows
the user to create a task structure of reentrant and serially reusabl(~
programs. As a result, he knows the task structure prior to the
execution of the PATCHed tasks.

Reentrant and serially reusable programs are kept in virtual storage
and are not deleted at coapletion of their execution. If the user
wishes to have a reentrant or serially reusable program deleted at its
completion, he must code the PATCH with EP=(naae, DELETE). This will
result in the LCB tor the program being removed from the task's LeB
chain, and if no other tasks have issued PATCHes for the program, the
load module vill be deleted. However, if other tasks did PATCH the
program and did not request the DElETE option, the load module vill
not be deleted. If multiple tasks PATCH a module and all specify the
DELETE option, a use count is kept by the Special Real Time Operating
System task management, and the module is deleted when the use count
becomes zero. The Special Real Time Operating system use count is
independent of OS/VS1 use count. As a result, if a user program does
a LOAD, followed by PATCH with EP=(name,DELETE), the Special Real Time
Operating System DELET! viII not necessarily result in the module being
removed fro. virtual storage, as the OS/VSl use count vill not go to
zero. This is because the Special Real Time Operating System task
management routines viII issue LOlD for the module on the first PATCH
to it resulting in an OS/'S1 use count of 2.

~OR~ Q.y!tjl~ fgoling

Work queue pooling is a capability of Special Real Time operating System
to allow a single task to process vort that would otherwise be processed
by several tasks, or several tasks to process the work that would
otherwise be processed by a single task, or combinations thereof. A
close siailarity to this concept can be observed in the OS/VS1 job
scheduler vhere an initiator can process work from several job classes
or jobs of a given class can be processed by any of several initiators.

Work queue pooling may be invoked for a given execution of the Special
Real Time Operating system by including in the initialization stream
the commands which define the elements, Queue Holders (QH) and Queue
Processors (QP), to be active on this execution. To make use of work
queue pooling, the user will execute PATCHes to the queue holders,
exactly as done to independent task. One comlland (card) lIill define
one OH or QP. The OP represents a special Real Time Operating system
and as task, the same as with an independent task. It is defined at
initialization and vill remain for the duration of the job. There is
no provision for adding or d~leting OPs after initialization. The OP
differ$ from an independent task in that vork cannot be passed directly
to the QP via a PATCH.

The QH appears as an independent task without an associated OS task.
Work is passed to the QH via PATCH but the vork is processed by one of
the QPs associated with the QH. The OH has a name, exactly as an
independent task and the TASK= operand of the PATCH and other macros
will reference the OK by this name. As with OPs, all OHs must be
specifiel at initl.:alization. When specifying QHs, the user assigns
the name and other attributes. Any OH may be specified to be connected
to several QPs; that is, any of the connected QPs are allolled to process
work that is 'PATCHed' to this OH. Also, sev~ral QHs may be connected

2-10 Description and Operation Manual

to anyone QP, which means that a QP can process work from any of
several QHs. There is an implied priority relationship in this scheme
in that when a QP completes a piece of work, it will look for vork. in
the first QH connected to it and only if that QH is empty vill it look
to the next QH, etc. The opposite is also true when a piece of vork.
is passed to a QH, the vork will be given to the first QP that is
connected to it and is not busy. If all connected QPs are busy, the
work will be queued to the QR to await a QP that becomes available.

The relationships between QPs and QHs is defined through the
initialization stream'commands. The QP command allows the user to
specify the order in which the QP is to search the QHs for new work
when a piece of work is completea. The ordering of the QP commands
implies the order in which to search for an available QP when work is
added to a QH. Each QP is assigned a number (0 to 99) on the OP
command. From this number a name is generated. The user
assigned number will be used for all references by other commands.
Each QH is assigned a name (1 to 8 EBCDIC characters) by the QH command.
This name viII be used for all references to it, either by other
commands or by programs via the PATCH macro, etc. Various other
parameters may be specified on the QH and QP commands4 The PRTY=
parameter on the QP cOlnmand is similar to the same parameter on the
PATCH command. The HOJ:.D=YES parameter allows the QP to be initialized
in a hold status which meands that it viII Got process any work until
a release is entered through "the IMP commands provided.

The QL= parameter on the QH command specifies the number of vork queues
that can be stacked for this QH, similar to the same parameter on the
PATCH command. The parameter SEQ=YES specifies that only one QP may
be ptocessing work from this QH at any time. The HOLD=YES parameter
specifies that no work is to be processed from this QR. The PATCH=NO
parameter specifies that the PATCH processor is to reject all PATCHes
to this QR. The SEQ=, ROLD~ and PATCH= parameters can be modified
during execution through the IMP command processing provided.

Th~ inclusion of work queue pooling on a given execution of Special
Real Time Operating System does not effect independent or dependent
task operations. When a PATCH is executed. the PATCH code will search
for a TCBX with the task name equal to that specified on the PATCH.
If the name is not found or a name is not specified (dependent tas~)
a Special Real Time operating System task is created and the work. queued
to the new task. If the name is found, the work is added to the work
queue of the TCBS. If the TCBX is a QH, the work participates in the
queue pooling.

The user of Work Queue Pooling has the ability to determine the status
of and control certain functions of the QPs and QHs through th~ I'P
command processor. The user can hold or release either a QP or QH.
If a QP is held, it will not accept any new work. If a QH is held,
the Q~~s) will not take work from it. The user can set a QH to be
sequential or non-sequential. In the sequential state, only one QP
may be processing work from this QH at any time. Non-sequential is
the normal state where all connected QPs may be processing work from
this QH simultaneously. The QH can be set to a PATCH or NOPATCH state.
In the NOPATCH state all PATCHps to it will be rejected. PATCH is the
normal state. In addition to changing one of the above conditions,
the command can cause all vork to be specified QH to be purged.

The IMP command can cause Special Real Time Operating System messages
to be output to report the status of these states as veIl as other
information about the QPs or QHs. This information will include the
element (QP and QH) name, the names of the elements connected to it,
and the number of work queue elements awaiting processing.

APPLICATION SERVICES 2-1'

When a program receiYes control as the result of a PATCH, Register 1
contains the address of a 3 word table. The second word of this table
contai~s the address of a resource table. If the program is executing
under control of a OP, this resource table is associated with the QP.
Every program that is PATCHed to execute under a given OP vill receive
this same resource table. In addition. register 0 will also contain
the address of a resource table. If the program is executing under
control of a QP, this ,resource table vill be associated "vith the OR
from which the vork was taken. This means that all programs vhich
execute as the result of a PATCH to a given QR viII have access to the
same QH resource table. caution must be exercised by the user if the
QH is connected to two or more OPs, since several programs may be
competing for this resource table. If the program is executing under
Special Real Time Operating system task (not a OP) register 0 viII
contain the same address as is in the second word of the table addressed
by register 1.

The folloving example shovs how QP and OR statements in the SYSINIT
input stream can be used to define two queue processors and tvo queue
holders. All other control statements in the input stream have been
omitted.

//SYSINIT DD

QP 19,QH= (DPPQABC,DPADKNO)
OP 2,QH=~PADKNO,DPPQABC)
QH DPPQABC
OR DPADMNO

In this example both queue processor 19 (QP19) and queue processor 2
(QP02) have been created to process work from ~ueue holders DPPQABC
and DPADKNO. Hovever, since in the OP statement for OP19, queue holder
DPPOABC has defined first, QP19 viII give it a higher logical priority.
Since the inverse is true in the other OP statement, QP02 vill process
the vork from DPADKNO before processing work from DPPQABC.

Assume the following PATCR macro calls are executed to route work to
the queue holders.

A
B
C
D
E

PATCH
PATCH
PATCH
PATCH
PATCH

TASK=DPPQABC, •••
TA SK=DPADK NO, •• '.
TASK=DPPQABC, •••
TASK=DPPQABC, •••
TASK=DPPQABC, •••

The resulting task/queue structure is illustrated in Figure 2-6.1.

2-12 Description and Operation Manual

QP19 QP02

A(DPPQABC) A(DPADMNO)

A(DPADMNO) A(DPPQABC)

DPADMNO

Work Queue Work Queue

A B

C

o
E

Fi.gure 2- 6. 1. Task/Q ue ue Structu re

QP19 will select work queue A from queue holder DPPQABC and OP02 will
sel~ct work queue B from queue holder DPADMNO. Assume QP19 completes
work queue A before QP02 completes work queue B. When QP02 completes
work queue B, QP02 will attempt to select additional work from queue
holder DPADMNO and, finding it empty, will selec~ work queue D from
queue holder DPPQABC. Upon completion of work queue 0, QP02 will again
attempt to select work from queue holder DPADMNO and, finding it still
empty, will select work queue E from queue holder DPPQABC.

Using a similar example to illustrate the functions of some of the
optional parameters on the QP and QH statemtns, assume the following
SYSINIT input stream was specified. Again only the QP and QH 3tatements
viII be shown.

APPLICATION SERVICES 2-13

//SYSINIT DD

QP 19 .QH= (DPPQABC ,DPADMNO,DPPQIYZ)
QP 2, QH= (DPPQXYZ ,DPPQABC) , PRTY= (JOBSTEP-O)
QH DPPQXYZ,SEQ=YES,QL=10
QH DPPQABC
QH DPADMNO,HOLD=YES

In the second example, queue processor number 19 (QP19) has been created
with a default dispatching priority of the job step task minus 8 to
process work queued in queue holders DPPQABC, DPADMNO, and DPPQXfZ and
queue processor number 2 (QP02) has been created with a dispatching
priority of the job step task minus 3 (the highest allowed to any user
task) to process work queued in queue holders DPPZIYZ and DPPQABC (see
Figure 2-6.2).

Queue holder DPPQXYZ has been created as a sequential queue holder with
a queue length of 10. Queue holders DPPQABC and DPADMNO have been
created with default queue lengths of 255 (see Figure 2-6.2). DPADMNO
has been held, that is PATCHes specifying a task name of DPADMNO vill
be accepted but neither queue processor (QP19 or QP02) will be permitted
to select work from that queue holder.

2-14 Description and Operation Manual

OP19 OP02

A(DPPOABC)

A(DPADMNO) A(DPPOXYZ)

A(DPPOXYZ) A(DPPOABC)

DPPZXYZ DPADMNO

Figure 2-6.2. Queue Processor/Queue Holder structure

Now assume the following PATCH macro calls are executed to route work
to the three queue holders.

A
B
C
D
E

PA TCH
PATCH
PATCH
PATCH
PATCH

TASK=DPPQXYZ, •••
TASK=DPADMNO, •••
TASK=DPPQABC, •••
TASK=DPPQXYZ, •••
TASK=DPPQXYZ, •••

APPLICATION SERVICES 2-15

The resulting task/queue structure is shown in Figure 2-6.3.

OP19 OP02

A(DPPOABC)

A(DPADMNO) A(DPPQXYZ)

A(DPPQXYZ) A(DPPOABC)

DPPADMNO

Work Queue

A C B

o
E

Figure 2-6.3. Task/Queue Structure

QP02, having the higher priority, will select work queue A from queue
holder DPPQXYZ. QP19 will select work queue C from queue holder
DPPQABC.

2-16 Description and Operation Manual

Assume QP19 completes work queue C before QP02 completes work queue A.
QP19 will try to select additional work from queue holder DPPQABC first;
(see Figure 2-6.4) but since all work for that queue holder has been
exhausted, QP19 will then try to select work from queue holder DPADMNO.
However, since DPADMNO .was defined on the QH statement as being held,
the work queue B cannot be selected by any queue processor. Therefore,
QP19 will then attempt to select work,/irom queue holder DPP;;}XYZ. Since
queue holder DPPQXYZ was defined on the QH ~tatement as being sequential
and queue processor QP02 is currently executing a work queue from
DPPQXYZ (work queue A), QP19 will be unable to select work from this
queue holder either. Having searched for vork on all queue holders
that QP19 can process and having found none, QP19 will then be placed
in a wait state.

QP19 QP2

A(DPPOABC) Work Queue

A(DPAOMNO) A(DPPZXYZ)

A(DPPQXYZ) A(DPPOABC)
A

DPPOABC DPADMNO

Work Queue Work Queue

o B

E

Figure 2-6.4. Task/Queue Processing

If a QS command of the form r xx,QS,AALQH,REL were to be issued, then
QP19 would then be allowed to select work queue B from queue holjer
DPADMNO.

The DPATCH macro is used to stop the processing of a specified task

APPLICATION SERVICES 2-17

and to cause the program to be deleted. Since the task may have several
entries on its work queue, four types of DPATCHes allow flexibili ty ..

First, the TYPE=! causes the task to be DPATCHed immediately. The task
is not allowed to complet~ the processing of the current WQE, but is
ABTERMed. If ECB= was specified at PATCH time, the ECB is posted with
the ABEND completion code hex'4C'. The ECBs for further WQEs are posted
with a DPATCH completion (hex'42).

Second, the TYPE=U causes the task to be DPATCHed when the current WQE
completes, and the ECBs for remaining WQEs are posted w~th a DPATCH
completion.

Third, TYPR=C causes the task to be .DPATCHed only if there are no WQEs
when the DPATCH request is received.

Fourth, TYPE=W causes the task to be DPATCHed only when the work queue
becomes empty_ Additional WQEs can be added after the DPATCH request.
and the DPATCH would only occur after the queue becomes empty.

Fifth, TYPE=A causes the program being executed under the specified
task to be ABENDed without deleting the task or any WQE's that may be
a waiting exec ution.

Note: If QPOS=DPAT"CH was specified on anyone of the. PATCHes to a
given task, that WQE is scheduled, and the program executed at
DPATCH time before the task is removed from the system.

The Purge Work Queue Facility provides the capability of selectively
purging work requests to a specified independent task. The selected
work requests w ill be removed fro m the acti ve work queue (i. e .. , a chain
of work requests that have been generated in response to PATCH macro
calls but have not yet been executed) or from the DPATCH work queue
(i.e., a work request generated in response to a PATCH
QPOS=DPATCH , ... _ macro call). Other work requests for that task will
not be purged but will be allowed to execute normally.

PURGEWQ, on request, also notifies the user whenever the last of the
selected work requests has been purged.

The current work request (i.e., work request currently in execution
for the specified task) will not be purged but will be allowed to
complete normally eventhough it may be one of the selected work
requests. PURGEWQ, in this case, will notify the user af!g~ the
specified task has completed the execution of the selected work request.
In addition to providing the synchronization of the completion (or
purging) of selected work requests, PURGEWQ can be used in a "work
shedding" environment as well. For example, work requests deemed to
be of lesser importance can be selectively purged from the queue of
work reques~s for a specified independent task to allow more time for
the more important work requests to execute. The execution of a PORGEWQ
macro call will not prohibit the scheduling of future work reque~ts
(PATCHes) to the specified independent task. PURGEWQ operates only on
those work requests that have previously been scheduled.

The special Real Time Operating System end of task exit routine (ETIR)
is the program (DPPTETXR) that gains control from OS/VS1 upon
termination of a Special Real Time Operating System task. The ETXR

2-18 Description and Operation "anual

routine executes under the jObstep task (DPPTSMON) and cleans up after
task termination.

In the event that a task ABENDs, DPPTETXR issues a message through the
real-~ime message handler sp~cifying the task name and the failing
program EP name. The TeBX is saved, and the Tea is detached. DPPTETXR
also posts DPPTSMON to have the TeBX chained to a new TeB.

If the task is terminating normally, the TCB is de~ached. In either
case, normal or abnormal termination, control of all locked resources
is released and GETWA type AT areas are freed.

Two STAE exit routines are used (1) to provide an interface to a user
exit routine and to provide the Special Real Time Operating System with
a DUMP/NODUMP facility upon abnormal termination of a subtask and (2)
to allow cleanup functions to be performed when the real-time job step
task is terminating.

An initialization input stream command, STAEX, allows the user to
specify the name of the user coded load module (exit routine) which is
to be given control when anyone of a list of load modules encounters
an ABEND. A STAE is invoked for every Special Real Time Operating
System task so that when an ABEND occurs in one of the so specified
load modules while executing under a Special Real Time Operating System
task, including QPs, the exit routine will be given control before the
DUMP/NODUMP decision is made by the standard special Real Time Operating
System STAE processor. Within the exit routine, the user may schedule
a retry routine, force the ABEND to proceed with a dump or allow the
Special Real Time operating System STAE option in effect to determine
if a dump is to be taken.

On entry to the user exit routine, registers 0, 1, 13, 14 and 15 will
contain the values as defined by OS/VS1 STAE interface routines (see
OS/Y~l ~l~llning ~rrg Q~£ Guig~, STAE macro instruction). Register 2
will contain the address of the TCBX for the abending task. In a queue
pooling environment this will be the address of the QP TCBX. The user
exit routine is limited by the same restrictions as a normal STAE exit
routine.

The DUMP/NODUMP facility allows control of System ABEND dumps for all
load modules, for a group of load modules, or for an individual load
module. This facility will not suppress user ABEND dumps. It is
invoked by ~n entry to the Input Message Processor (IMP) of the form:

I xx,STAE['SLAVE][(:~g~~MP IJ [modulename,modulename, •••]
,ONEDUMP,
, STEP
,OPTION

The first positional operand, STAE, is required and defines the reply
to the Input Message Processor as a command to the DUftP/NODUMP service
interface routine.

The second operand, SLAVE, is used by the Input Message Processor to
route the command to the DUMP/NODUMP service routine in the SLAVE
partition only. It is not a positional operand in that a null field
(double comma) is not required to denote its absence.

APPLICATION SERVICES 2-19

Examples:

r xx, 'STAE,NODUKP'

This IMP command will cause all system ABEND dumps to be suppressed
for the MASTER partition.

r xx,'STAE,SLAVE,NODUMP'

This IMP command will cause all system ABEND dumps to be suppressed
for the SLAVE partition.

The third operand is used by the DUKP/NODUKP service routine in
establishing the options that will be in effect for those modules This
operand is a positional operand, and its absence must be denoted by a
null field (double comma) _ If omitted, the DUMP option viII be assumed
for. those modules specified in this reply.

The valid options are:

DUMP

NODUMP

ONEDUMP

STEP

OPTION

allows a dump to be taken for these modules (provided
there is a SYSUDUMP or SYSABEND DD state.ent).

suppresses a dump from being taken for these modules.

allows one dump to be taken for these modules (provided
there is a SYSUDUMP or SYSABEND DD statement) then
suppresses any more dumps for that module.

ABENDS the job step if one of these modules ABENDs.

allows the operator to choose whether or not to take a
dump following an ABEND of these modules. The operator
is informed of the ABEND via a WTQR (message 850) and
must reply "YES' to receive the dump.

The rema1n1ng operands, if any, are used to indicate the load module(s)
that are to be covered by the specified option. A maximum of 10 load
module names may be specified on any one r~ply. Null fields (double
commas) will not be accepted.

Example:

r xx,'STAE,NODUMP'
r xx,'SrAE,ONEDUMP,MODA,KODB

These two IMP commands will cause all system ABEND dumps to be
suppressed for the MASTER partition except ABENDs for modules MODA
and !ODB. One dump will be taken for MODA on ABEND, and one dump
viII be taken for module KODB on ABEND after the command is entered.

The us~ of a question mark (1) to terminate a load module name indicates
that the specified option is in effect for all modules beginning with
the portion of the name specified. The portion of the name specified
must be at least one character and must not exceed seven characters.
The modules are processed as a group and not as individual modules.
This means that if the ONEDUMP option is specified with the module naae
DPP?, only one dump would be taken for the first module to ABEND with
a name beginning with the three characters DPP. Dumps will be
suppres~ed for any subsequent ABENDs for aodules vhich have names
beginning with DPP.

Example:

r XX,'STAE,NODOKP'

2-20 Description and Operation Manual

r xx,'STAE,STEP,HODUL?

These two IMP commands will cause all system ABEND dumps to be
suppressed for the MASTER partition except that a system ABEND from
any module vith a name beginning with KODOL viII dump and will ABEND
the ~ntire jobstep.

If no load module name is provided on a reply, the specified option
viII be in effect for all load modules regardless of any previous
DUHP/NODUMP service command. This viII allow the option to De reset
without having to cancel each previous command.. Providing one or more
load module names viII set (or reset) the option for only those modules
specified on that command. Any previous DUHP/NODUHP service commands
for other modules viII not be modified and will remain in effect.

Note: The options in effect at the time of the ABEND are th~ options
that viII be honored except that gum~ fQ£ ~£ AB]!~§ ~ n2i
~££~§§~~. It should also be noted that the user exit routine
invoked in response to the STAEX statement in the SYSINIT input
stream will receive control before the STAE option processing
is initiated. Any request by that routine to retry or bypass
STAE option processing viII take precedence over the STAE IHP
command option in effect.

Upon abnormal termination of a subtask executing under the real-time
job step task, one of the Special Real Time Operating system STAE exit
routines (DPPSTAE) will gain control. This routine will then examine
the STAE command options in effect at the time of the ABEND to determine
whether or not a dump should be taken for this task.

Upon termination of the real-time job step task, another Special Real
Time Operating System STAE exit routine (DPPISTAE) will gain control.
This routine will unfix any storage previously fixed by the DPPIPFIX
routine and clear the external interrupt handler flags. If the job
step terminating is a HASTER job, the corresponding SLAVE job is also
terminated (USER ABEND code of 41). If the job step terminating is a
SLAVE job, the corresponding MASTER job is located, and the MASTER
job's two-partition flags are turned off.

It is important to note that there are certain conditions in which the
,STAE routine is not giwen control when the real-time job step is
terminated (e.g., 'an operator CANCEL command) and these cleanup
functions cannot be executed. Therefore, the user must use care and
terminate a real-time job step by a reply to the Input Message Processor
of the form

r x x , CAN C E L[, • ••]

If the SLAVE partition has terminated with a supervisor ABEND code of
122, 13E, 222, 322, or 722, an IMP command of the form

r xx,CANCEL,SLAVE

will ensure that the two-partition flags in the MASTE'R partition will
be reset even though the SLAVE partition job is no longer active.

The Dynamic Load Module Purge Facility permits the system operator to
cause a load module, which has been loaded in response to one or more
PATCH requests, to be deleted from Yirtual memory. Thus, the user can
redefine a load module in the library (JOBLIB, STE'PLIB, or LINKLIB)
and purge the in-memory copy, so that when the load module is next
requested, the new copy will be fetched. The redefinition may entail

APPLICATION SERVICES 2-21

replacing the existing copy of the load module or adding a copy ~n a
data set that is searched ahead of the one on which it was originally
found. The redefinition can be done in.a background partition or in
a backup System/310 which shares disks with the online System/310.
Through the use of this facility, the new load module can be integrated
into the online system without otherwise disturbing the job.

This procedure is not necessary for modules that are link-edited as
non-reentra~t because they are fetched from the library for each
execution. 'Those modules that are represented in a system BLOL list
are not normally affected by this procedure since the disk address of
those modules is resolved at system IPL time and cannot be re-resolved
except by re-IPL. Those modules that are identified in a Resident
Access Method (RAM) list are loaded at 1PL time and as such are also
not affected. This procedure affects only those modules that are
invoked through a PATCH or PT1ME service and not those which may be
loaded, attached, linked, or XCTLed to outside of the PATCH interface.

Dynamic Load Module Purge is invoked by a reply to the Special Real
Time Operating System Input Message Processor.

r xx,DLMP,[SLAVE,]time,modulename,modulename •••

DLMP defines the reply as a command to purge the modules specified.
Up to 10 module na-mes may be specified with one comman,d. If SLAVE _is
specified, the purge operation is performed in the SLAVE partition; if
it is omitted, it is performed in the MASTER (or only) partition. A
time value may be specified on the command as a decimal integer betveen
o and 1200; if omitted, a default of 2 ig used. This value defines
the maximum number of seconds that the DLMP program vill wait to allow
other tasks to complete execution of the specified load modules.
Therefore, this value plus the necessary time for all DELET-E operations
is also the time that all other tasks with a request for one of the
specified modules may have to wait before they are permitted to use
their module.

In response to the request, the Dynamic Load Module Purge program
DPPTDLMP searches the TeB extensions for the Special Real Time Operating
System tasks that have requests for, or are currently using, the
specified load module (s). If the task is not curr~ntly using one of
the modules, it will not be permitted to resume using it until the
purge operation has been completed. If a task is currently using the
load module, a flag is set, and the current use is permitted to
complete, but the task cannot process another WQE that requests a module
in purge until the purge operation is completed.

However, only those tasks are quiesced that have a WQE on top of the
queue which requests a module that is in purge; every other execution
continues undisturbed. DPPTDLMP waits the specified time for the usinq
tasks to complete execution of the modules. If the time expires before
all tasks are through, the operation is abandoned, and messages OPP021
will specify the name of those modules that vere not completed, plus
message DPP022 will specify that the operation is abandoned. If all
tasks complete using one or more of the specified modules in time,
DPPTDLMP causes the module(s) to be deleted and message DPP023 viII
specify that the operation is completed. In either case, all tasks
that had been quiesced are then allowed to resume normal operation.

TIME f1ANAGEMENT

The Special Real Time operating system provides time management
facilities to meet the requirements of a real-time operating system.
The special Real Time Opcrzting System time management services fall
into tvo major categories. First, the Special Real Time Operating

2-22 Description and Operation Manual

System time and date are maintained independently of the OS/VSl time
and date. Second, the capability of issuing PATCHes on a cyclic time
interval is provided through the PTIME macro call. Figure 2-7 is a
block diagram of PTIME logic and control flov.

PTIME
SVC

(Type 2)

~ SVC
~ INT ~

DPPCTSVC

Data
Base

f

DPPCTIMA

Array
""'-

?' PTQE

.. -

DPPCTIME

Time
Update
Routine

I
POST-

1 DPPC PTIM

PTIME
Monitor

Issues
PATCH

Figure 2-7. PTIME Logic and Control Flow

A Special Real Time Operating System data base array, DPPCTIMA, contains
the Special Real Time Operating System time and date in several formats
as shown below:

+TIMED
+***
+*
+***
+TIMEHS
+TIMETOD
+TIMEJDAY
+TIMEMDAY
+TIMEEBC

DSECT

TI ME ARR AY DSECT

DC F' 0'
DC F' 0'
DC P' 0'
DC F' 0'
DC CL10'

TOO IN 10 MIL UNITS IN HEXADECIMAL
TOO IN DECIMAL 10 MIL UNITS-HHKMSSTH
JULIAN DATE-OOYYDDDC
DAY OF MONTH DATE-OMMDDYYC
EBCDIC DATE-QDD/MMM/YY

The Special Real Time Operating System time and date can be synchronized
with an external time source or can be adjusted by manual inputs through
customer-written interface programs. The Special Real Time Operating
System time is updated at a periodic rate specified at the Special Real
Time Operating system system build. A PTIME macro call will return
the current Special Real Tiffie operating System time and the address of
the Special Real Time Operating System time data base array. The
address of the a~ray can also be obtained from a pointer in the SCVT
at label SCVTTIME or from a GETARRAY macro call for array name DPPCTIMA.

The special Real Time Operating System time management facilities
provide the ability to specify PATCHes which will be issued by a time
management task at the requested time intervals. The PATCH operands
(e.g., time of the first PATCH, interval between PATCHes) are defined
in the PTIME macro call. The PATCH may be issued only once at a
specified time or repeated for a specified number of PATCHes. Also
the PATCH may be issued repeatedly at a specified time,interval for an
indefinite period of time. The PTIME macro call can also be used to
modify or delete a previously defined PTIME.

APPLICATION SERVICES 2-23

There are three functional areas of the Special Real Time Operating
System time management.

• The PTIME macro and the resulting PTIME SVC, DPPCTSVC, provide the
user interface to time management.

• The time update routine, DPPCTIME, operates as an OS/VS task and
is responsible for maintaining the current Special Real Time
Operating system time in the data base array.

• The OPPCPTIM monitor routine, which also operates as an OS/iS task,
is responsible for issuing the PATCHes requested via the P~IME
macro call.

The time management programs are described individually in the following
section.

The PTIME macro provides the user with an interface to the Special Real
Time Operating System time management services.

PTIME can be used to cause a task to be given control at a given time,
cyclically at a given interval, or cyclically at a given interval from
time x to time y.

There are four types of PTIME service requests:

• RET -- This causes the system to return the current Special Real
Time operating System time in register 0 and the address of the
Special Real Time Operating System time array in register 1.

Note: Since the time contained in the array is updated only at a
periodic rate, the time returned as a result of a PTIME RET
macro call will be aore exact than the array value.

• ADO -- This causes the system to build a PTIKE queue element (PTQE)
which exists independently of the creating task. This control
block contains all information required to issue a PATCH macro:
that is, the PATCH parameters are built according to the "PATCH
operands" specified on the PTIME macro and are contained in the
PTQE. The PTQE also contains information necessary for issuing
the PATCH at the specified time; and, if requested, repeatedly
reissuing the PATCH at a given time interval until the specified
number of PATCHes bas been issued or until a specified stop time
has been reached. A PTIME 10 may be supplied by the or assigned
by Special Real Ti~e Operating System if omitted by the user. The
ID will be returned to the user in register 1.

Note: If the interval time is omitted or if the interval time is
less than the SYSGEN time interval used for updating the
Special Real Time ope~ating System time array, the SYSGENed
time interval will be substituted for the interval time.

• MOD -- This causes an existing PTQE to be modified. Since the PTQE
exists independently of the creating task, the PTQE is referred to
by a combination of task name, entry point name, and/or ID value

2-24

of the parameter referred to by the operands TASK=, TASKLOC=, EP=,
EPLOC=, and/or IO=. Either task name or entry point name must be
specified, but the remaining two are optiona'l. An additional level
of identification, the PTI~E 10, can be used to uniquely identify
a PTQE eventhough several PTQE's may exist with the same PATCH
parameters. However, if only a task name or an entry point name

Description and Operation Manual

is specified on a PTIME ~OD macro call, all PTQEs with ~hat name
are modified regardless of the original entry point nam~ or task
name, respect ively.

• DEL -- This causes an existing PTQE to be deleted. Since the PTQ!
exists independent of the creating task, the PTQE is referred to
by a combination of task name, entry point name, and/or ID value
of the parameters referred to by the operands TASK=, TASKLOC=, EP=,
EPLOC=, and/or ID:. Either task naae or entry point name .ust be
specified, but the reaaining two are optional. An additional level
of identification, the PTIME ID, can be used to uniquely identify
a PTQ! eyenthough several PTQE's aay exist with the same PATCH
parameters. However, if only a task naae or entry point name is
specified on a PTIftE DEL macro call, all PTQEs with that nase are
deleted regardless of the original entry point name or task name,
respectively.

For example, assume that a given user program were to be executed
fro. a special Real Time operating Systea job step and assuae that
the given program contained the following .acro calls:

ONE
TVO
THREE
FOUR
FIVE
SIX

PTIRE
PTIftE
PTlftE
PTIflE
PT IftE
PTIftE

RET
lDD,TASK=1,EP=X,ID=4, •••
ADO,TISl=1,EP=Y,ID=5, •••
lDD,T1SI:8,EP=I,ID=5, •••
ftOD,TASl=A,EP=X,IO=4, •••
o E L, EP z:X , •• 4

Macro call "ONE" causes the current time and the address of the Special
Real Time Operating System tiae array to be returned to the user.

Placro call "TVO" causes a PTQE {:.O be built so that PITCHes could be
issued for task A, entry point I with an 10 of 4.

Macro call "THREE" causes a ~TQE 'to be built so that PATCHes could be
issued for task 1, entry point r, with an 10 of 5~

Placro call "POUR" causes a PTQE built so that PATCHes could be issued
for task B, entry point X, with an IO of 5.

Placro call "FIVE" causes the PTQE built by macro call "TWO" to be
modified.

Placro call "SIX" causes the PTQEs built by macro call "TWO" and "FOUR"
to be deleted.

Mote: If the PTQE is specified by a combination task name, entry point
name, and/or ID yalue cannot. be located OD a PTIPIE PlOD or DEL,
no action is taken by the systea, and the user is notified of
this condition by a return code of 8. That is, it had not been
previously de! ined by a PTIPIE ADD, it had been deleted through
a PTI"E DEL, it had reached the specified STOP tiae, or it had
issued the specified nuaber of PATCHes.

The PTIftE macro alloMs the user to specify a time to begin issuing
PATCHes (START=), a tiae to cease issuing PATCHes (STOP=), or a total
nuaber of PATCHes to be issued (count=), and a tiae interval between
PATCHes (INTERVAL=). 111 tiae values are specified in the salle foraat.
The time is specified exp,1icitly by hours, ainutes, seconds, or any
coabination of the three.' T'he tiae value aust not exceed 24 hours.

APPLICATION SERVICES 2-25

Por example, if a relative start time of three hours is required, the
PTI~E macro could be coded in any of the folloving three forms:

PTII'!E START=(3") , •••
PT I I'! EST ART = (180 I'!) , •••
PTII'!E START=(1H,60M,3600S) , •••

If a relative stop time of 1 hour, 3 minutes, 1 and 1/2 seconds is
required, the PTI~E maCTO could be coded as:

PTI~E STOP=(lH,3~,1.5S), •••

If four PATCHes are to be issued regardless of the start time, the
PTI~E macro could be coded as:

PTI~E COUNT=4, •••

In addition to explicitly coding the time fields vithin the PTI~E macro,
the required time values aay be loaded in a register or contained in
a fullvord at the address specified. However, the time values must be
specified in binary hundredths of seconds to use either the register
or address for1l of the PTI~E .aero.

For example, the following sequence of code

LA 3,5
PTI~E START=(A=ASTART),COOKT={J), •••

A ST AR T DC F' 5 00 •

would cause five PATCHe~ t~ be issued w1th a relative start ti.e
of five seconds.

To allow greater flexibility in controlling the time of the PATCHes,
three suboperands are permitted vith the START= and STOP= keyword
parameters of the PTI~E macro.

• REL -- This suboperand is used to indicate that the time value is
relative to the current Special Real Time Operating System time.
That is, the time value in the keyvord parameter is added to the
current Special Real Tiae Operating System time to determine the
correct start or stop time. This is the default suboperand.

• TOO -- This suboperand is used to indicate that the time value is
time of day value. That is, the first PATCH viII occur when the
Special Real Time operating system time is equal to the time of
day specified in the remainder of the operand. If this time value
is less than the current Special Real Time operating system time,
the!1 the first PATCH viII not be executed until the next day.

• AOJ -- ~his suboperand is used to indicate that the time value is
an adjusted time of day value,. That is, if the specified time
value is less than the current Special Real Time Operating system
time, then the time of the first PATCH is calculated by repeatedly
adding the time value of the INTRVAL= operand to the specified time
value until the sum is greater than the current Special Real Time
Operating System time. This prevents the possibility of
unintentionally specifying a TOO less than the current SpeCial Real
Time Operating System time and the first PATCH not occurring for

2-26 Description and Operation ~anual

alaost 24 hours. If the specified time value is greater than the
current Special Real Tiae Operating Syste. tiae, the n processing
would proceed as if the TOO suboperand had been coded.

Assume that the current Special Real Time Operati,ng System tiDl~ is
11:05, and the following PTI~E sacro call was executed:

OME PTlrtE START= (TOD,10H),STOP={ADJ, 10H,30f!) ,INTRVAL=(1H) , •••

PTI"E sacro call "OME" would cause a PTQE to be built with a start time
of 10:00. Since this is less than the current tiQe, a 24-bour value
is added to the start tiae so that the actual start time is 10:00 of
the following day. The specified stop time (10:30) would be adjusted
to 11:30 (i.e., 10:30 plus the interval of 1 hour). Since the stop
tiae would be less than the start tise, a 24-hour Yalue is added to
the stop tiae so that the actual stop time would be 11:30 the following
day.

The reaaining PTI"! operands are identical to the PATCH operands, and
their functions are described in the PATCH aacro documentation. Two
restrictions should be noted.

1. QPOS=DPATCH cannot be specified. LAST viII be substituted.

2. PR!!= can be specified, but the FREEf!AIN viII not be executed
antil the PTIftE queue eleaent (PTOE) generated by this PTI"E is
deleted. If the PTQ! is not repeating, this will be like a
noraal PATCH.

lote: In response to a PTIKE DEL request or a return code greater than
8 on the resulting PATCH aacro call, the FRE!ftAIN viII be
executed when the PTO! is deleted, regardless of any outstanding
vork requests. This say result in abnoraal termination of a
prograa trying to reference the area that has been freed.

The tiae update routine executes under a higb priority task and is in
a continuous loop repeating at a rate specified during the Special Real
Tiae Operating System systea generation. Each execution causes the
tiae value in the data base to be updated. The value retrieved from
the System/370 TOO clock is adjusted by a conversion factor so that
the Special Real Tiae Operating Systea time can be maintained
independently of the OS tiae routine. The time update routine detects
any inconsistency between the TOO clock and the Special Real Tise
Operatinq Systea time. If an inconsistency is discovered, a nev
conversion factor is calculated to correct the SpeCial Real Time
Operating systea tiae.

After the current Special Real Tile operating system time has been
calculated, the time update routine determines whether a PTQE requires
servicinq. and if so, the PTI~E monitor routine is notified.

~ Use 2! 1h~ £!2£t Comparator

The PTIf!E time update routine no~.ally controls its execution rate by
issuing STlf!ER to delay for the specified aaount of time. Optionally
the PTlftE time update routine can be directed to use the optional clock
comparator feature of the Systea/370, if OS/VSl is generated to not
use this feature. This feature is selected by coding CLOCKCP=YES in
the VS macro of the Special Real Time Operating system SYSGEN. PTIME
usage of the clock coaparator. if selected, is ayailable to the first
single partition real-tiae job step that enters the system or to the

APPLICATION SERVICES 2-27

first "~ASTER" partition to enter. Use of the clock comparator saves
STI~ER overhead. If other Special Real Time Operating system real-time
jobs are also run at the same time, they vill use the STI~ER interface.

2-28 Description and operation ~nual

The PTIME monitor routine is responsible for issuing PATCHes requested
via a PTIME macro call. All active PTQEs with the time of the next
PATCH less than the current time plus the SYSGENed update interval are
serviced by issuing a PATCH. If the PTQE is repeating and the count
of PATCHes has not been exceeded, the next PATCH time is calculated;
otherwise, the PTIME request is terminated, and the PTQE is deleted.

Many real-time systems require highly accurate maintenance of time of
day. The System/370 TOO clock is susceptible to a certain amount of
drift. As a result, a user may wish to correct this drift by using a
highly accurate external time source to correct for TOO clock drift.
The time drift correction feature of the Special Real Time Operating
System allows for correction of long term drift in the System/370 TOO
clock. Time drift correction is optionally selected during the Special
Real Time operating System SYSGEN if support is required for an external
time source. To include time drift correction in the Special Real Time
Operating System, the TIMEEXT keyword on the VS macro of the Special
Real Time operating System SYSGEN must be coded to specify the external
signal line (2-7) on which the time interrupt will occur. Tte external
time source may then interrupt the Special Real Time Operating System
at the given frequency and allow for correction.

Time drift correction operates as a special Real Time Operating System
subtask with a module name DPPDRIFT. The feature operates by accepting
external interrupts from the erternal source on a periodic basis from
one per second to one per ten minutes. A period of one interrupt per
minute is recommended. To create a time interval of other than one
minute, the required value must be specified in the TIMERAT keyword of
the VS macro during the Special Real Time Operating System SYSGEN.

The external interrupts are assumed to be accurate. If tne external
time standard is not accurate, the TOO clock viII appear to have
excessive drift. An allowance is made for discrepancies caused by
delay in the handling of the interrupt. This type of delay can occur
if the interrupt arrives at a point in time when the CPU is disabled
for external interrupts.

Drift corrections are made by passing adjustment factors to the Special
Real Time Operating System time routines which update the Special Real
Time operating system time conversion factor, not by altering the TOD
clock. Time drift correction does not supply any initial times, it
merely accounts for long term drift. The function of passing an
adjustment factor and the functional relationship between time drift
correction and the Special Real Time Operating System time management
is illustrated in Figure 2-8 below.

APPLICATION SERVICES 2-29

SPECIAL REAL TIME OPERATING SYSTEM TIME MANAGEMENT

r---

I
I
I
I
I
I
I

DPPCTIME

Time Arrav

Correction
Factor

DPPCALCF

DPPCUPCF

L__ -----------

DPPDRIFT

PATCH
EP = DPPCUPCF

Figure 2-8. Time Drift-special Real Time Operating System Time
Relationship

The maximum correction made at one instant is 50 milliseconds; the
m~n~mum is 10 milliseconds. Errors of greater than 50 milliseconds
are spread over succeeding corrections until the time error has been
corrected. Small differences in which the TOO clock appears fast are
not corrected immediately, as the difference may be due to processing
or interrupt lockout time. These errors are averaged over many
interrupts before the correction is made. Errors in which the TOO
clock appears to be behind are always adjusted immediately. Interrupts
indicating errors in excess of one second are ignored. Resetting of
the Special Real Time Operating System time (PTIME) by an application
progra~ has no effect on drift accoun ting. The reset ting of the TOD
clock by a user program, however, will cause unpredictable results. A
malfunction in the TOO clock that causes condition code settings of 2
or 3 on an OS STCK instruction will cause the termination of time drift
correction.

Time drift correction supplies a user interface to allow a user's
program to set current time. The first external signal time interrupt
following the completion of initialization causes a LINK to DPPDRIFE.
On entry to DPPDRIFE, general register 1 points to a doubleword
containing the value of the TOO clock qt the time of the external time
interrupt. The module DPPDRIFE supplied by the Special Real Time
Operating System is a dummy, and the user may replace with a m~dule to
set initial time. Using standard OS linkage conventions, DPPDHIFE can
issue a PATCH to the Special Real Time Operating system time management
to adjust the conversion factor (see Figure 2-8). The format of the
data to be passed is described in the Special Real Time Operating System
Program Logic Specification.

2-30

By whatever means the user version of DPPDRIFE determines
the desired system time, the user must be aware that the
time of its determination is some time later than the time
stored at interrupt time. The amount of delay can be
determined by reading the TOO clock and subtracting from it
the value passed as a parameter (pointed to by register 1).

Description and Operation Manual

Drift correction is available to the first single partition Special
Real Time Operating System real-time job that enters the system or the
first "MASTER" partition to enter. If more than one Special Real Time
Operating System is run on the same OS/VS1 system, time correction will
be suppressed for the other Special Real Time Operating System systems.
Thus for testing purposes, an application should be coded such that
its DPPDRIFE routine does not have to be executed for the application
to function. Time drift correction is never available to "SLAVE"
partitions, as SLAVE partitions use their MASTER partitions time
management tables.

REAL TIME MESSAGE HANDLER

The Special Real Time Operating System provides facilities for defining
a series of messages by means of an offline utility program. These
messages can later be modified and issued in real-time. All messages
can be predefined and kept in a partitioned data set on a direct access
storage device. This allows for easy modification of messages without
making changes to functioning programs. It also allows for easy
translation of all messages to other languages and avoids duplication
of messages. The data set is created and updated by the offline utility
program (DPPXUTIL). It is used online only as input to the message
writer. Although this data set is built by the offline utility, it is
a normal partitioned data set and none of tt,e data base data set
restrictions apply to it. There are two components to the real-time
message handler: offline processing and online message processing.
This is illustrated in Figure 2-9.

*
Offline
Utility

EJ
Message
Data Set

Message
Writer

'l Memge

Offline Online

Figure 2-90 Real Time Message Handler Components

The DEFMSG macro is used to define messages to the offline utility
program that processes the macro and places the resultant skeleton
message in the message data set. For further information on the offline
utility, refer to the section entitled "Offline utility Progra~". The
DEFMSG macro defines a unique messa.ge num·ber, the routing code, action
code, a date indicator, and the message text.

The message number identifies a specific message and is the means by
which online programs refer to that message. The message number has
a range from 001-999. The Special Real Time Operating system messages
fall within the range of OJ1-099 and 800-899. The user should not
assign message numbers in these ranges. Related PRPQs should restrict
their messages to a defined range. This is by convention only, and no
restrictions are placed on the user's message numbers.

The routing code (ROUTE=) is 'used to specify th€ output device to which
the message is to be written. At the Special Real Time Operating System
SYSGEN time, routing codes are established to identify the output device

APPLICATION SERVICES 2-31

The routing code has a range of 1-255. It can also identify ~ user
program as a device, in which case the message is passed to the program
as a PATCH parameter. A routing code must be specified with the DEFMSG
macro. A routing code of 255 results in a no-operation (255 goes to
no output device).

The action code (ACT=) identifies the type of action that the aessage
requires. ACT=I identifies the message as being informational only_
ACT=A means that some action is required. ACT=D requires a decision
to be made. These codes cause no action within the message output
process but are intended for user information.

The date indicator (DATE=) is the date that the message was issued from
an online program. The date can be incl~ded (DATE=YES) or excluded
(DATE=NO). DATE=NO is the default.

The messa~9 text (TEXT=) contains the text of the message to be written
or passed to a PATCHed program. Within the text, there can be variable
data. The variable data viII be inserted when the message is issued
online. Variables are specified to appear in the message by coding,
in the message definition, information in the following format:

'cfs.

where: # (pound sign) is a delimiter character and must appear before
and after the other specifications. No blanks are allowed
between them.

c defines the number of characters to be occupied by this
variable in the output message.

f defines the type of data conve~sion to be performed on the
data being out put.

s specifies the position of this variable in the variable list
that is passed by the calling program vhen the message is
selected for output.

The following are examples of the use of the DEFMSG macro.

EXAMPLE 1: DEFMSG 307,ROUTE=10,ACT=I,DATE=YES,TEXT='THIS MESSAGE HAS
NO VARIABLES'

This defines message 307 as being informational; a routing code of 10,
and the time and date which are to be inserted when the message is to
be written.

EXAMPLE 2: DEFMSG 2,ROUTE=250,ACT=D,DATE=NO,TEIT='PROGRAM #8Cl.
HAS TERMINATED. SHOULD PROGRAM t8C2t CONTINUE?'

This defines message 2 vhich has a routing code of 250. The date will
not be formatted in the message, and the text contains two character
variables.

EXAMPLE 3: DEFMSG 50,ROUTE=1,ACT=D,TEXT='MSG #3C3# HAS FIVE VARIABLES:
#2F1', .1H2., #6B4#, .515.,

Message 50 vill require a decision, has a routing code of 1, vill not
print the date, and has five variables:

1. #2Fl# is the first variable vith a length of 2 characters and
integer format, and the user vill provide a fullword for
conversion.

2-32 Description and operation Manual

2. #1H2# is the second variable with a length of 1 character,
integer format, dnd the user viII provide a halfvord foe
con ver sion.

3. #3C3j is the third variable with a length of three characters,
and the user viII provide 3 EBCDIC characters to be inserted.

4. #6B4# is the fourth variable vit)1 a length of 6 characters,
binary format, and the user will provide one byte for conversion
(the six lov order bits of the byte will be converted).

5. #5X5# is the fifth variable with a length of 5 characters,
hexadecimal formatG The user will provide 3 bytes of data for
conversion (the five lov-order hexadecimal digits viII be
converted) •

Messages are retrieved, formatted, and written during online processing
through the MESSAGE macro. with the MESSAGE macrv, options selected
by the DEFMSG macro can be overridden, or omitted from the MESSAGE
macro, and the DEFMSG options taken. The ABEA= operand will indicate
th:\t the message is to be returned to the user specified area. The
area should be defined at least to the maximum length of the message
plus tvo bytes. The length of the message is put into the first two
bytes of the virtual storage specified by AREA= and the formatted text
in the remaining bytes.

The maximum message lengt h that can be moved is 255 characters.

If the message contains variables, the user passes the data to be
inserted in the message (VAR=). The data is inserted in the order
presented into the variables fields defined by the DEFMSG macro (see
e xa mple s belo w) •

In online processing, a message can be output to several devices by
tvo methods. The MESSAGE macro allows up to 8 routing codes to be
specified and the MSGRC macro of the Special Real Time Operating System
SYSGEN can be included, for a given routing code, several times, each
time specifying a different device.

If a message is issued to a routing code that doE'S not exist, no attempt
js made to output the message, and a return code of 12 is returned to
the user. When a message is issued to multiple devices, and one of
the devices is out-of-service, an attempt viII be made to issue the
rressage to the backup (alternat~ device defined during SYSGEN. The
out-of-service route code does not affect the other route code:::>. The
message will still be output to these devices.

The format of the message is an identifier, time, and date (if
requested), and text. The identi fier is:

DPPnnna

where: nnn is message number
a is the action code

The time and date are represented by:

HH:HM:SS.t

vhere:

DD/MMM/YY

HH is hour
MM is minutes
SS is seconds

APPLICATION SF.RVICES 2-33

t is tenths of seconds
MKM is month

DD is day
YY is year

The message will be truncated to conform to the line length of the
device selected by the routing code.

When a message is routed to a user program, the PATCH parameters and
the message will be in the following format.

Register 1

GPRl _ XCVT

RESOURCE

PATCH
PROBL 023 4

LGTH! 1 10

t Formatted
Message r"-0 ___ -r=-2 ____ -,

Length - Length of PROBl
Lgth of Message - Length of Message
.t -Address
10- PATCH 10

Lgth
~---+. of

Message

Formatted
Message

Note: All messages issued prior to the processing of a RESTART card
and during initialization will be written to the system console.
After the RESTART card is processed or if there was no RESTART
card, the messages will be routed to their respective routing
code devices.

The following examples of the MESSAGE macro show the resulting messages
for the previously defined DEFKSG macro.

EXAMPLE 1: P1ESSAGE 307,ROUTE=(1,2,3) ,ACT=A,AREA=MSG. In this example,
message 307 will be routed to the devices identified by routing codes
1, 2, and 3. The rou ting code on the MESSAGE macro overrides the ROOTE=
from the DEFMSG macro. The formatted message will be returned to the
user area labeled MSG. The reSUltant message will appear as follows:

DPP307A 14: 37:21:92 07/JAN/73 THIS MESSAGE HAS NO VARIABLES

EXAMPLE 2: MESSAGE 2,VAR=((1), (8». In this example, message 2 will
be routed to the device or program for routing code 250. The date will
not be printed. The message will require a decision. The registers
(7 and 8) point to areas in virtual storage from which eight character.s
will be moved into the message variables before the message is written.
Assuming that register 7 points to the eight characters TIMECALL, and
register 8 points to the eight characters CORRFACT, the resultant
message would appear as follows:

DPP002D 12:22:20:21 PROGRAM TIMECALL HAS TERMINATED.
SHOULD PROGRAM CORRFACT CONTINUE?

EXAMPLE 3: MESSAGE 50,ROUTE= (21, 1) ,ACT=I,VAR=(A,B,C,D,E). In this
example, message 50 will be routed to the devices or programs specified
by 21 and 1. The message consists of information, overriding the DEFMSG
action A. The date viII print as YES on the default. Assuming the
following pointers:

2-34 Description and Operation P1anual

A fullword integer = DC P'320'
B halfword integer = DC H'9'
C character DC C'004'
D binary integer DC B'011011'
E hexadecimal DC X'C~420'

Th~ resultant message would be:

DPP050I 14:39:20:07 07/FEB/71 MSG 004 HAS FIVE VARIABLES:
320,09,011011,CA420.

The Message Routing Code status Change Facility provides a service
which allows the user to place a routing code in or out of ~rvice.
The facility will also provide upon request the status of one or all
of the routing codes in the Special Real Time Operating System message
handler.

The facility is activated by an Input ~essage Processing (IMP) command.

The format of the command is:

MSGRC

rc

o

IN

OUT

STATUS

STATALL

altrc

\ ;~T je , al trc]
ST ATUS
STATALL

Informs the IMP routine that this reply is for the
Message Routing Code status Change Facility.

Routing code.

This parameter is 0 if STATALL is specified.

Place rc in service.

place rc out of service.

Display the status, via a system message, of the
specified routing code (rcl.

Display the status, via a system message, of all the
routing codes in the system.

The routing code to which messages are directed should
the primary routing code be out of service or the output
operation fail. This parameter is recognized only if
IN or OUT is specified.

REPORT DATA OUTPUT FACILITY

A facility is provided to transfer report data which is ultimately
destined to be printed, from one or more working data sets to a QSAM
supported output data set.

The Report Data Output ~acility will write the data as it is generated
to working data sets (QSAM data set on any QSAM device). subseguently,
the data may be transfered to a print device. The data could be
collected from several working data sets by the report data output
facility and written to another data set to be printed by a job step
in another partition or anothe~ computer which shares direct access
(DA) devices with the online computer~

APPLICATION SERVICES 2-35

-iC ::>

INPUT
WORKING

DATA
SET

........ _
- C ~

<. ::>

INPUT REPORT WORKING DATA COMPOSITE
DATA OUTPUT OUTPUT
SET FACILITY DATA

SET

........ -
<-::> , -"

INPUT
WORKING

DATA
SET

,--"
Figure 2-10. Report Data Output Facility Overview

All input and output data sets used by the Report Data Output Facility
must be BSAM data sets. The maximum record length must not be greater
than 255. For a unit record device the BLKSIZE and LRECL must not
exceed the maximum for that device. The Report Data Output Facility
is invoked through IMP commands.

REPORT,[SLAVE.i1 ~:JJ ,OUTPUT DDNAME, INPUT DDNAME,
[INPUT DDNAME, ... ,INPU DDNAME]

REPORT
Informs the input message processing routine that this reply is for
the Report Data Output Facility.

SLAVE
Indicates the PATCHed routine is to run in the SLAVE partition.

NEW
Report Data output Facility starts writing data at the beginning of
the output data set.

ADD
Report Data Output Facility adds all data at the end of the output
da ta set.

OUTPUT DDNAME
A DD name which points to a QSAM data set to be used as the output
data set. The BLKSIZE of the data set must be equal to or greater
than the maximum BLKSIZE of the input data sets.

INPUT DDN AM E
A DD name which points to a QSAM data set to be used as an input data
set. A maximum of '0 input DD names may be specified.

2-36 Description and Operation Manual

INPUT MESSAGE PROCESSING

The Special Real Time operating System provides a facility to allow
for operator--Special Real Time Operating system communication or for
the operator to communicate with a SUbsystem. This facility is the
Input Message Processor (IMP). The Special Real Time operating System,
during initialization, issues a WTOR and leaves the reply outstanding.
At a later time, the operator may reply with a predefined IMP command.
This IMP command is defined at SYSGEN by the IMP macro and also defines
the action the Special Real Time Operating system is to take upon
receiving the IMP code. The following example shows the sequence of
events and alternate methods of inVOking Input Message Processor.

OPERATOR
REPLY TO

WTOR

OR

PATCH CARD
IN INITIALIZATION

INPUT STREAM

OR

PATCH FROM
A USER

PROGRAM

r--

----..

-

INPUT MESSAGE
WTOR ROUTINE

DPPXIMPW

i

1
INPUT MESSAGE

PROCESSING
ROUTINE

DPPXIMPP

A PREDEFINED
SRTOS OR

SUBSYSTEM
ROUTINE

Input Message Processing will accept IMP commands in the following
format: "code,param1,param2, ••• ,paramn" where code is the command word
defined during SYSGEN by the IMP macro. Param corresponds to the
parameters defined by the IMP macro. Any parameters may be omitted by
entering double commas (null parameters). The command will be compared
with entries in a table (an array in the data base). This table
contains valid IMP commands, the names of the task and load module
which process the command (the program to be PATCHed), PATCH 10, and
parameter conversion codes. If the IMP command is valid, Input Message
Processing viII patch the appro~riate task with the specified input
parameters.

New commands can be added to the table through SYSGEN. Input Message
Processing will accept commands from several different sources (as a
reply to a WTOR, through a PATCH macro and initialization PATCH Input
Cards). The different ways of entering IMP commands are described
below. The keyword SLAVE in all cases is optional; and if omitted,
should not have the comma included to represent its absence.

• Input Message processing will issue the following WTOR:
Input Message Processing Awaiting Reply'. In response to this
WTOR, the operator can issue an IMP command. There will always be
an outstanding iTOR in the system. In response to an IMP command,
Input Message Processing will issue the following message (WTO).

IMP COMMAND RECEIVED.

The IMP commands are in the following forma~:

r xx,command,SLAVE,paraml,param2, ••• ,paramn

APPLICATION SERVICES 2-31

where r xx, is the format required by OSjVS •

• IMP commands issued through initialization PATCH input cards must
be in the following format:

P1 PATCH

EP=OPPXIMPP

ID=O

PARAM=

SLAVE

EP=OPPXIMPP, IO=O
PARAM=(C·command,SLAVE,paraml,param2, ••• ,param n

The entry point of the input message processing
routine. No TASK= parameter is specified because
the task ~Y§! be dependent.

The 10 must be O.

(C'imp com·llland') is the IMP command to be processed.

The command is to be processed in the SLAVE
partit ion •

• IMP commands issued through a PATCH macro must be in the following
forma t:

P2

ADDR

IMPCOOE

where:

10 = 1

AODR

r

1M PCODE

L r, ADOR

PATCH EP=DPPXIMPP,ID=l,PARAM=«r»

DC AL 1 (LGTH) , AL3 (IMPCOOE)

DC C·COD~,SLAVE.param1,param2, ••• ,paramn

The ID m~st be 1 when entered through PATCH macro.

This is a 4-byte area. The first byte contains the
length of the IMP command and the next three bytes
contain the address of the IMP command.

Register 2-12

The IMP command.

The following example shows the parameters as they would appear when
the task which is patched as a result of the IMP command gains control.
If no parameters are passed, there will be no parameter pointer. A
null parameter results in a zero address being passed for the parameter
address.

2-38 Description and Operation Manual

LENGT H
ID
LL
PARM

Note:

REGISTER I

XCYT

RESOURCE TBL

PARAMETERS

PARAMETER

The address of a parameter.
Length of PROBL plus PAR MS.
ID specified during SYSGEN.
Length of this parameter.

= ADDRESS of parameter.

PROBl

The first LL and PARM parameters may contain zeros if only the
last parameters of a multiparamete.r IMP code are specified,
example:

'code",param3, param4'.

When only the first parameters of a multi-parameter IMP code
are specified, the last parameters defined during SYSGEN by IMP
macro will be ignored. A comma followed by a commae,,) with no
intervening character constitutes a null parameter.

EXAMPLE 1: This example shows an IMP command being defined:

SYMBOL IMP CODE=EXAMPLE1,TASK=DPPTEST,
LM=DPPTEST,ID=O,
PARAM= (C10, F4, X3)

In this example, an IMP command is defined with a command word of
EXAMPLE1. DPPTEST will accept three parameters:

1. a character parameter of length 10.

2. a fullword parameter of length 4.

3. a hexadecimal parameter of length 3.

For more details on defining IMP commands see the section on SYSGEN
macros (IMP macro).

APPLICATION SERVICES 2-39

EXAMPLE 2: In this example, the IMP command defined in EXAMPLE 1 will
be entered through the system console as a reply to the WTOR "INPUT
MESSAGE PROCESSING WAITING ON REPLY".

r xx,'EXAMPLE1,SLAVE,START'

SLAVE parameter says DPPTEST is to execute in the SLAVE partition.
When DPPTEST is entered, the parameters will be in the folloving
format:

CL---l REGIS---JTER I I:J
XCVT

bISABLANK

o

10

RESOURCE TBL

PARAMETERS START bbbbb

EXAMPLE 3: In this example, the IMP command defined in EXAMP1E 1 viII
be entered through the initialization input stream.

PATCH EP=DPPXIMPP,ID=O,
PARAM= (C'EXAMPLE1 ,START, ,12')

When DPPTEST is entered, the parameters 'viII be in the following format:

REGISTER 1

t XCVT

t RESOURCE TDL

t PARAMETERS

CI STARTbt>tlbb

b IS A BLANK

2-40 Description and Operation Manual

EXA~PLE 4: In this example, the IMP command defined in EXA~PLE 1 vill
be entered by a PATCH macro.

The I~P code follows:

L r,ADDR
P1 PATCH EP=DPPXIMPP,ID=1,PARAM=«r»

ADDR DC AL1(21),AL3(IMPCODE)
IMPCODE DC C'EXAMPLE1,START,708,12'

When DPPTEST is entered, the parameters will be in the following format: ,
REGISTER I

t XCYT

t RESOURCE TBL o

t PARAMETERS

------r 16 0

---- 1----,----'---~-----1

CI STARTbb!>!>b

!> IS A BLANK

APPLICATION SERVICES 2-41

DATA BASE MANAGEKENT

The Special Real Time Operating System data base is designed to fulfill
the needs of data storage and access of a realtime operating system.
The Special Real Time Operating system data base subroutines provide
the user with an interface to the information contained in the data
base. Through the use of these subroutines, data may be retrieved from
or replaced in the data base. In addition, sections of the data base
may be copied to a direct access device to provide an historical log.

T~e data base consists of data items which are logically grouped into
arrays. These arrays may also contain one or more blocks of related
information. Each block is identical in size and shape to every other
block within that array. For example, assume that the temperature and
volume are to be monitored for three separate sto~age tanks. The two
items (temperature and volume) can be grouped into one block. Three
blocks (one for each storage tank) can be grouped into one array. This
array can then be logged on a cyclic time interval to pt"ovide a history
of the contents of the storage tanks as shown below.

Block I
Storage Tank I

Block 2
Storage Tank 2

Block 3
Storage Tank 3

Itcm A - Temperature
Item B - Volume

Itcm A - Temperature
Item B - Volume

Item A - Temperature
Item B - Volume

The Special Real Time Operating system arrays can either reside in VS
or on a DA device. Duplicate data set support will be provided for
all data base data sets (i.e., data sets containing DA resident arrays).
However, it is the user's responsibility to ensure that the data base
data sets do indeed meet the requirements for duplicate data set
support, to create the required backup data set{s), and to identify
these data sets through the normal duplicate data set input stream
(refer to the section entitled "Duplicate Data Set Support" for a
detailed description of duplicate data set). VS resident arrays may
either be blocked or nonblocked arrays and are eligible to be logqed.
All DA resident arrays must be blocked and cannot be logged. An array
that contains a copy (or copies) of a loggable VS resident array is
called a log array_ All 109 arrays must be DA resident. All arrays
must be defined by the offline data base utility vhich is discussed in
detail in the section entitled "Offline Utility Programs."

The data base utility builds two data sets: {1, a data base
initialization data set containing all the information necessary for
the online data base initialization routine to construct the required
control blocks, and (2) a composite items data set containing all the
information necessary for the online data base subroutine to locate a
particular item or items.

During a normal start, i.e., when the job is initially start.ed through
standard OS/VS1 Job Control statements with the EXEC card specifying
PGM=DPPINIT, the data base initialization program vill read in the
initial data for all VS resident arrays that specified "INIT=YES" on
the ARRAY macro in the offline utility phase. Those VS arrays for
wh~ch "INI1'=YES" was not specified have VS storage space allocated,
but no data is moved into the space.

During a refresh start, i.e., when the job is reinitialized fro. a
restart data set, or during a normal start when the SYSINIT input stream
does not contain a "DBREr NO" control statement, the data base

2-42 Description and Operation Manu~l

initialization program will refresh all VS resident arrays that
specified "REINIT=YES" and that requested logging in the offline utility
phase with the last logged copy of that array_ The log arrays are
initialized to resume logging with the last logged copy of each loggable
vs resident array.

Note that VS resident arrays are arranged in virtual storage by the
USE code specified during offline utility processing. Arrays with
similar USE codes are grouped together in virtual storage. This is
intended to optimize the use of real storage by improving the
probability that the high usage arrays will remain in real storage.
Grouping high usage arrays will cause them to be distributed in a
smaller number of pages to reduce the number of page faults.

Access to the data base is achieved through a set of six macrOs:
GETITEM~ PUTITEM, GETBLOCK, PUTBLOCK, GETARRAY, and PUTARRAY as shown
in the following example.

User Data Base
Proaram Subroutines r<: -:;,

Composition
DPPDITEM Items

Data Set
GETITEM
PUTITEM

'- ../

!

DPPDBLOK

GETBLOCK
PUTBLOCK

, DPPDARAY

GETARRAY
PUTARRAY

GETITEM

!<:

DA
Array

'-

-----.

Data Bas4

VS
Resident

Array

::::>

or

."

VS
Resident

Non Block ed
Array

VS
Resident
Blocked

Array

The GETITEM macro can be used to retrieve certain infor~ation from one
or more items in the data base. This information is stored in the
address indicated by the DATA= keyword parameter. The user may request
that the address within the data base of the item(s) and length of the
item(s) be retrieved (TYPE=ADDR) or that the data contained in each
item be returned (TYPE=DATA). TYPE=DATA and TYPE=ADDR are valid for
direct access resident arrays. For blocked arrays, the user must
specify the number assigned to the data block which contains the item
(BLKN=number). The item or items for which information is to be
retrieved is indicated with the NAME=, NAMELST=, or ADDRLST= keyword
parameter. The NAME= keyword parameter is an 8-character name of a
single item for which information is to be ret~ieved. The NAMELST=
keyword parameter specifies the address of a list of 8-character item

APPLICATION SERVICES 2-43

names for which information is to be retrieved. The ADDRLST= keyword
parameter specifies the address of a list of data base item addresses
which were returned from a previous execution of this macro with HAME=
or NAMELST= specified and TYPE=ADDR. The PROTECT= keyword parameter
allows the user the option (PROTECT= YES) of preventing other programs
from modifying the data base during the execution of this GETITEM. If
PROTECT=RISK is specified, the information will be moved without regard
to other programs which may be storing into the data base.

The following examples indicate how the GETITE" macro may be used to
retrieve information.

A
A1

B
B1

C
C1

GETITEM

GETITEM

DC
DC
DC
DC
DC
DC
DC
DC

NAMELST=A,TYPE=ADDR,DATA=B

ADDRLST=B,DATA=C,TYPE=DATA,PROTECT=YFS •••

CLa' ITEM l'
CLS'ITEM2'
X' FP'
A (0)
A (0)
4X'FF'
CL 16 v •
Cl32' ,

The first GET ITEM will move the length and address of items ITEM1 and
ITEM2 into the data fields Band B1, respectively·. The second GETlTEft
will move the data associated with the items whose addresses are
contained in the address list fields, Band B1, into the data fields,
C and C1 , respectively. Therefore, data associated with ITEM' will
have been moved into C, and data associated with lTEft2 will have been
moved into C1.

P OTITEM

The PUTITEM can be used to store data into one or more items of the
data base. This data is moved from the address indicated by the "DATA="
keyword parameter. For blocked arrays, the user must specify the number
assigned to the data block which contains the item (BLOCKNO=number).
The item or items for which data is to be stored is indicated with the
NAME=, NAMELST=, or ADDRLST= keyword parameter. The NAME= keyword
parameter is an B-character name of a single item for which data is to
be stored. The NAMELST= keyword parameter specifies the address of a
list of a-character item names for which data is to be stored. The
ADDRLST= keyword parameter specifies the address of a list of data base
item addresses as returned from a previous execution of a GETITEM macro
with a NAM~= or NAMELST= specified and a TYPE=ADDR.

GETBLOCK

The GETBLOCK macro can be used to retrieve one or more data blocks from
one or more blocked arrays. The arrays may be either VS or DA resident
arrays. The NAME= and NAMELST= keyword parameters are used to indicate
the a-character name or names of the arrays from which one or more
blocks of data are to be retrieved. The NUMBER and NUMBLST= keyword
parameters are used to indicate the two-byte number or numbers aSSigned
to a numbered artay or arrays from which one or more blocks of data
are to be retrieved. The DATALST= keyword parameter specifies the
address of a list of block numbers and associated memory addresses
where the data blocks are to be written. Each entry in the list will
contain a byte flag field, a 3-byte area address, and a 2-byte block
number. A flag byte of X'40' indicates the last entry to be processed
for a particular entry in the name list or number list.

2-44 Description and Operation Manual

The PROTECT= keyword parameter allows the user the option (PROTECT=YES)
of preventing other programs from modifY1ng the data base during the
execution of this GETBLOCK. For DA resident arrays, a PROTECT=YES
request vill reserve the data set containing the specified array. Por
VS resident arrays, the VS resident data base is reserved. If
PROTECT=RISK is specified, the information vill be moved vithout regard
to other programs which may be storing into the data base.

For an example of the use of the GETBLOCK macro, assume that array
FIRST is a VS resident blocked array and array SECOND is a DA resident
array. For this example, each array is assumed to b~ composed of three
40-byte blocks. If the following GET BLOCK macro were to be executed,
blocks 1 and 3 of the array FIRST would be moved into the DATAl and
DATA2, respectively.

The entire array SECOND (blocks 1, 2, and 3) would be read into DATA3,
DATA4, and DATA5, respectively.

B

A

DATAl
DATA2
DATA3
DATA4
DATA5

GETBLOCK

EQU
DC
DC
DC
DC
DC

EQU
DC
DC
DC

DC
DC
DC
DC
DC

DATA1

DATA2

DATA3

DATA4

DATA5

'FIRST"

'FIRST3'

'SEC1'

'SEC2'

'SEC3'

NAMELST=A, DATALST=B, •• '.

*
X' 0' , A L3 (D AT A 1) , H' 1 •
X' 40' ,AL3(DATA2) ,H'3'
X' 00 ' , AL 3 (DA T A 3) , H ' 1 '
X'O',AL3(DATA4),H'2'
X' 40' , AL 3 (D A T A 5) , H ' 3 '

*
CLS' FIRST'
CL 8' SECOND'
X'PP'

lOP'O'
10P'0'
10F'0'
10 P' 0'
10P'0'

VS Data Base

Block'

Block 2

Block 3

DA Data Base

~ ::> -
'---

Block 1
Block 2
Block 3

--

Array
FIRST

Array
SECOND

APPLICATION SERVICES 2-45

PUT BLOCK

The PUTBLOCK macro can be used to move data from one or more user
specified virtual storage locations into one or more blocks of one or
more blocked arrays. The arI:'ays may be eithe.r VS or DA reaident arrays.
The NAME= and NAMELST= keyword parameters are used to indicate the
a-character name or names of the arrays into which one or more blocks
of data is to be written.

The NUMBER= and NUMBLST= keyword parameters are used to indicate the
two-byte numbers assigned to a numbered array(s, into which one or more
blocks of data ar~ to be written. The DATALST= keyword parameter
specifies the address of a list of block numbers and associated storage
addresses from which data blocks are to be writtenA

other routines executing data base requests with a PROTECT=YES option
will be prevented from accessing the VS resident data base (or DA data
set) during the execution of a PUTBLOCK request.

GETARRAY

The GETARRAY macro can be used to retrieve data which is stored in VS
resident array(s). to retrieve the address of and certain information
about VS or DA resident array(s), or to determine specific information
about all items defined as part of VS or DA resident array(s). Which
type of data is to be retrieved is specified by the TY·PE parameter.
The array for which data is to be retrieved is identified through the
NAME, NAMELST, NUMBER, or NUMBLST keyword operands. The NAME= parameter
specifies the a-character name of the array as def~ned through the
offline utility data base definition. The NUMBER= parameter specifies
the number (1-255) of the array. Associated with the NAME= or NUMBER=
parameter, the DATA= parameter specifies the address to which the data
is to be moved.

The NAMELST= parameter specifies the address of a list of 8-character
names of one or more arrays for which data is to be retrieved. The
NUMBLIST= parameter specifies the address of a list of one or more
halfwords which contain the numbers which identify the arrays for which
data is to be retrieved. The area(s) into which data is to be moved
when NAMELST or NUMBLST is specified are identified by the DATALST or
FINDLST parameters.

The data to be returned is specified by the TYPE= parameter. If
TYPE=DATA is specified, the content of the entire array(s) is moved
into the area specified by the DATA= or DATALST= parameters. If
TYPE=SPEC is specified, the specification information (16 bytes) is
returned for each item contained in the specified array(s). This
information contains, for each item, item name, length of the item,
defined data type, displacement into the array of the first byte of
the item and repetition factor (number of identical items defined by
one ITEM definition statement). Ii TYPE=ADDR is specified, a or 10
bytes of data are returned. This data contains a flag byte, the address
of the array (if VS resident), the number of blocks defined for the
array, and the size of the array (if unblocked) or the size of each
block. optionally, the number of items defined for the specified
array(s) may also be retrieved.

2-46 Description and Operation Manual

GET ARRAY EXAMPLE 1: This example will retrieve the content of array
ABC into the area specified by the symbol ABCAREA. It is assumed that
array ABC is less than or equal to 100 bytes.

GETARRAY NAME= ABC, D AT A= ABCA REA, TYPE=DATA, •••

ABCAREA DC XL100'0'

GETARRAY EXAMPLE 2: This example will retrieve the address and
associated data for array number 1 into the area specified by symbol
ADDR1.

ADDR1

GETARRAY

DS OF
DC XL1'0'
DC AL 3 (0)
DC H'O'
'DC H' O'

NUMBER=1,DATA=ADDR1,TYPE=ADDR, •••

Flag byte
Array address
Number of blocks
Size of array or block

GET ARRAY EXAMPLE 3: This example will retrieve the address data for
each array specified in list 'ADRL'. Since the increment (the second
subparameter) of the FINDLST is greater than 10, the numbQr of items
in the array will be returned also. This increment causes the returned
addresses to be moved into storage lo'cations separated by 12 bytes for
each entry.

GETARRAY

ADRL DC
DC
DC
DC

FINDL DS
DC
DC
DC
DC
DC
DC
DC

DC

CLS' A 1 '
CL S' A2'
CLS' A3 '
X' FF'

OF
xt 0'
AL 3' (0) ,
H'O'
H' 0'
H'O'
H' 0'
2XL12'O'

XL 4' 0'

NAMELST=ADDL,FINDLST=(FINDL,12),TYPE=ADDR

Flag byte to terminate the name list

Flag byte for array A1
Address of array A 1
Number of blocks in array A1
Length of array or each block
Number of items in arr ay 1
Pad list to 12 bytes
Space for 2 additional lists as above for

arrays A2 and A3
Space for list termination flag

APPLICATION SERVICES 2-47

GETARFAY EXAMPLE 4: This example will cause the data from the arrays
for which the ad1resses had been previously retrieved (as in example
3) to be retrieved. The data from the first array will be moved into
area A1DATA; from the second array into area A2DATA, etc. It is assumed
for this example that all three arrays are less than or equal to 100
bytes. For this' example, it is assumed that the example 3 macro has
be~n successfully executed to establish valid data into the following
fields.

GETARRAY ADDR LS T= (F IN DL, 12) ,DATALST=DATAL ,TYPE=DATA, •••

DATAL DC A (A 1 D, A2 D, A3 D)

A1D DC XL100'0'

A2D DC XL 100' 0'

A3D DC XL100'O'

FIN'DL DS OF
DC X'O' Flag byte
DC AL 3' 0' Addr. of array
DC H • 0 ' Number of blocks
DC HI 0' Length of block or array
DC H' 0 ' Number of items
DC HIO' Un used
DC 2XL12'O' Space for 2 repeat s of above
DC X' FF' List terminator flag

PUTARFAY

The PUTARRAY ma~ro is similar to the GETARRAY with the difference being
that data is moved from the user's area to the VS resident data base.
There is no TYPE= parameter on the PUTARRAY macro, so when compared to
the GETARRAY macro, execution is always as if TYPE=DATA were specified.

Data base logging is a Special Real Time Operating System option which
may be selected at the Special Real Time Operating System SYSGEN time
by the LOG macro.

During the offline utility phase, the user specifies which VS resident
arrays are to be logged. These are called loggable arrays. A DA
resident array with the array name specified by the LOGNAME keyword
parameter in the ARRAY macro is constructed for each array to be logged.
This array is called a log array. The LOGDD keyword parameter specifies
the name of a data definition statement which describes a BDAM data
set where the log array is to reside. The LOGCOPY keyword parameter
specifies the number of historical copies that can be contained in this
log array.

For example, the following ARRAY macro causes the offline utility
routine to generate the following array structure.

ARRAY

2-48

NAME=VSARRAY,LOGNA,H'E=LOGARRAY,
LO GDD= DBLO G 1, LOGCO PY=2 , •••

Description and Operation Manual

*
*

Primary Array Locator Table

A(VSARRAY)

A(LOGARRAY)

VS Resident Arrays

VSARRAY

~ -:::
r-. ../

Copy 1
..... ------;"

Copy 2
'- ./

'- .."..

Loggable Array
]-'VSARRAY

'LOGARRAY

}

Log Array

The first logging request for VSARRAY would cause the VS resident array
to be copied into the space allocated for copy 1. The second logging
request for VSARRAY would cause the vs resident array to be copied into
the space allocated for copy 2. Since all the space allocated to the
history files for VSARRAY has now been filled, the third logging request
for VSARRAY would cause the VS resident array to be copied into the
space allocated for copy 1 overlaying the data logged as a result of
the first logging request.

To prevent a loss of history data, the user may specify the name of a
user-written load module to be given control when the last block of
the logging array has been filled through the LOG WRAP keyword parameter
of the ARRAY macro. This load module will be entered via a PATCH to
a dependent task. It is that load module's responsibility to preserve
a record of the contents of the logged array at that time, possibly by
dumping the log array to a sequential data set by the execution of a
DUMPLOG macro call. If no user program has been specified, the user
will not be notified that wraparound has occurred. The LOGFREQ keyword
parameter consists of a code from 0 to 3 specifying the frequency at
which the VS resident array is to be logged. A code of 0 indicates
that it is to be logged only on demand, i.e., only when the user program
executes a PUTLOG macro call. Codes 1 to 3 are used in conjunction
with system generation parameters to specify the log frequency_ A code
of 1 is the highest frequency and 3 is the lowest. The Special Real
Time Operating system logging routines will issue a PUTLOG for all VS
arrays that are to be logged on the specified log frequency. Three
macro calls; PUTLOG, GETLOG, and DU~PLOG, provid~ the user interface
with the log subroutines.

PUT LOG

The PUTLOG macro is used to copy the VS resident array to the proper
copy of the log array. The NA~E and NA~ELST keyword parameters are
used to specify the 8-character names of the VS resident array(s) from
which data is to be logged. The NU~BER and NU~BLST keyword parameters
are used to specify the 2-byte number(s) assigned to a numbered 1S
resident array(s) from which data is to be logged.

The user may replace a previously logged copy of the VS resident array
without interrupting the normal sequential logging process. To
accomplish this, the user would retrieve a log copy from the log array
by executing a GETLOG macro call. This would read the requested log

APPLICATION SERVICES 2-49

copy along with the log header into VS storage. The logheader contains
the time this copy of VS resident array vas logged and a pointer to
its location in the log array. The user may then modify the data in
th1S log copy and replace the log copy by executing a PUTLOG with the
LOGHDR keyword parameter specifying the address of the previously read
in logheader. The copy of the array that will replace the copy in the
log array is assumed to immediately follow the specified logheader.
If the logheader in the log array does not match the logheader indicated
by the LOGHDR parameter, the logged copy will not be replaced. This
will prevent the possibility of accidentally overlaying a newer log
COPy. The LOGHDR parameter is not valid with the NAftELST and RUMBLST
keyword parameters.

The user also has the capability of updating selected blocks of the
last logged copy in the log array for blocked VS resident arrays through
the use of the PUTLOG with BLKLIST option. The BLKLIST keyword
parameter identifies the blocks in the VS resident array that are to
be logged. Each entry in the list aust contain at least a l-byte flag
field and a 2-byte block number. A flag byte of x·qo· indicates the
last entry to be processed for a particular entry in the name list or
number list. The PUTLOG when executed with the BLKLIST option will
cause the log array block that corresponds to the specified VS resident
arr~y block to be updated in the last log copy of the log array. The
entire log copy is not updated and repeating POTLOG macro calls with
the BLKLIST parameter will update the same log copy. A PUTLOG without
the BLKLIST parameter will cause the entire VS resident array to be
logged to a new log copy.

For example, assume that loggable array, A, consists of four logical
blocks, and the associated log array, B, has been defined to contain
three complete copies of loggable array A. Because of the physical
block size of the data set that contains a log array, each copy of the
ioggable array may be placed in one or more blocks of the log array.
Assume that each copy of loggable array A can be placed in two blocks
of log array P. Therefore, the entire log array, B, would consist of
six blocks (i.e., three copies and two blocks per copy).

Array A
LOG ARRAY B

BLOCK I
BLOCK I

BLOCK 2
LOG COpy I

BLOCK 3

LOG COPY 2

BLOCK 4

BLOCK 5

LOG COpy 3

BLOCK 6

The user might issue a PUTLOG to log an entire first copy of array A,
and at sometime later issue a PUT BLOCK to update block 3 of the VS

2-50 Descri ption and Operation ftanual

resident array A followed by a POTLOG, with the BLKLIST option, using
the same data list. The log block in the log array that contains the
request loggable array block would be updated. That is, blocks 3 and
4 from the loggable array A would be moved into block 2 of the Log
Array B.

GETLOG

The GETLOG macro call can be used to retrieve copies of arrays that
have been logged to th~ log array on the basis of time or by specifying
a particular logheader. The NAKE keyword parameter specifies the name
of a VS resident array for which a logged copy is to be retrieved. The
NUMBER keyword parameter specifies the number of a VS resident numbered
array for which a logged copy is to be retrieved. The AREA keyword
parameter specifies the address of the user allocated area of storage
where the logged copy of the array is to be written upon retrieval from
the log data set. This area must be large enough to contain the entire
log copy plus the log header informa tion.

The TIME keyword parameter specifies the time and day to be used as a
comparison value to establish a relative starting point to determine
which copy of the array vill be retrieved from the log data set. An
attempt will be made to locate a copy of the array logged at the exact
time specified. If a copy of the array with the exact time cannot be
found, the first copy of the array logged after that time viII be used.

The LOGHDR keyword parameter specifies the address of an array
logheader. Information in this logging header will establish a relative
starting point to determine which copy of the array will be retrieved
from the log data set. The logging header which was retrieved as part
of a previous GETLOG macro call can be used to retrieve additional data
by stepping either forward or backward in time_ TIME and LOGHDR are
mutually exclusive.

The STEP keyword parameter is used in conjunction with either the TIME
or LOGHDR parameter to determine the copy of the VS resident array to
be retrieved from the log array. The value specified in the STE~
parameter is a signed number which may be either positive, negative,
or zero. The absolute value of the number specified must be less than
the number of log copies in the log array. The value indicates the
number of copies prior to or after the log copy determined by either
the TIME or LOGHDR parameter.

If the TIME, LOGHDR, and STEP parameters are omitted, then the latest
logged copy of the array viII be retrieved. For example, assume that
the log array LOG contains five log copies of VS resident array, ARRAY.

Log Array - LOG

t
Next Log Copy

This array had been logged hourly for 7 hours starting at 1 :03.
Therefore, copies 1 and 2 would have been overlaid by copies 6 and 7,
respectively, because of the wraparound processing. The following
macro calls would all result in retrieving the same log copy, copy 4.

1. GETLOG TIME=T,STEP=1, •••

APPLICATION SERVICES 2-51

2. GETLOG TIME=X,STEP=-3,AREA=LH ••••

3. GETLOG LOGHDR=LH,STEP=O

T DC '2:30' -- Actual value is in 10 millisecond units
X DC' 7: 00 '
LH DC 'COpy 4' -- Actual togheader.

Example 1 viII find the first time logged after 2:30 and step 1 entry
forward. Example 2 viII find the first time logged after 1:00 and step
backward 3 entries. Example 3 presumes that the logheader fro.
example 2 exists in ~LH'; this example will retrieve the same data,
since STEP=O.

DUMPLOG

The DUMPLOG macro call can be used to dump or unload the historical
log copies of VS resident arrays from the log array to a user defined
sequential data set. This sequential data set may then be accessed by
user-written routines.

Note: Duplicate data set support is not provided for the user-defined
sequential data set used in DUMPLOG processing.

The NAME and NAMELST keyword parameters specify the 8-character name(s)
of the VS resident arrays for which the log array(s) are to be du~ped.
The NUMBER or NUMBLST keyvord parameters specify the 2-byte number(s)
assigned to a numbered array(s) for which the log array(s) are to be
dumped.

The DUMPDD keyvord parameter specifies the name of a data definition
(DD) statement vhich describes a sequential data set to receive the
dumped copies of the array from the log array. The USRDATA keyword
parameter specifies the address of a 256-byte area of user data to be
used as a dump header for each array on the sequential dump data set.

The log copies to be dumped are indicated by the STARTIM and STOP TIM
keyword parameters. The STARTIM parameter specifies the time and day
to he used to determine the first log copy to be dumped. An attempt
viII be made to locate a copy of the array vith the exact time; if it
cannot be found, the first copy of the array logged after that time
viII be used as the first log copy to be dumped. If STARTIM is omitted,
dumping viII commence vith the oldest logged copy of the array.

The STOPTIM parameter specifies the time and day to be used to deter.ine
the last log copy to be dumped. An attempt viII be made to locate a
copy of the array logged at the exact time specified. If a copy of
the array with its exact time cannot be found, the log copies of the
array viII be dumped until the most recently logged copy has been du.ped
or until the first copy of the array logged after that time ha~ been
dumped. If this parameter is omitted, dumping will terminate when the
most recently logged copy of the array has been dumped.

Note that the DUMPLOG routine will insert a byte of 'FF' into the first
byte of the logheader o~ the last copy of each array dumped to the
sequential data set. This is done to indicate the end of the dump of
each array to the user delog routine.

nAt.~ ~n Ref£.~~ lYA£!.i211

The data base refresh function vill allow the user to replace the
current contents of one or more loqqable VS arrays with the contents
of the most recently l09ged copy(s) of the array(s). To invoke the

2-52 Description and Operation Kanual

function, the requesting program must PATCH the refresh program
DPPDUPDL.

The PATCH request will consist of a list of arrays to be refresh~d.
If no list is specified, all refreshable arrays will be refreshed. A
refreshable array is any array that vas defined via the offline utility
with the REINIT=YES parameter on the ARRAY macro. These modifications
do not supersed~ the option of placing a DBREF card in the
initialization stream if the data base is to be refresbed during
ini tializat ion.

The PATCH macro format is as follows:

Symbol

LIST DS

DC

DC

DC

DC

DC

or

LA

symbol PATCH

PATCH

OH

TASK=taskname,EP=DPPDUPDL,
PARAM=(LIST) ,any other patch parameter
the user may want to specify

CLS' name'

CLS' name'

H' n u m b er , • XL 6 ' 0 •

H' number,' XL6' 0'

X'FF

R,LIST

TASK=taskname,EP=DPPDUPDL,
PARAf1= «R))

R is any register (2-12)

Symbol

TASK=

LIST

or

PATCH TASK=taskname,EP=DPPDUPDL

May be omitted to cause the program to execute as a dependent
task or may specify any valid task name.

Is the passed parameter list of the data base arrays to
refresh. The list consists of S-byte entries terminated by
a byte of X'FP'. Each entry will consist of an 8-character
array name or a half-vord array number in 2 bytes followed
by 6 bytes of zeros.

DATA RECORDING AND PLAYBACK

Data recording and playback provide a service which allows user programs
to write data to a sequential data set and to retrieve that data at a
later time. Both are standard Special Real Time Operating System
services (not SYSGEN options), Data recording collects the data from
several user programs, adds to it appropriate control information and
user-supplied identifications, and writes the data to a sequential tape
or disk data set. Data recording can be supressed or enabled through
operator command (see "Input Message Processing"). Recorded data can
later be selectively read back (based on time and ID) and passed to a
user program or to the Special Real Time Operating System he~adecimal
data print (hex dump) routine if no user program is supplied. The data

APPLICATION SERVICES 2-53

may be pr in ted, used to dri ve ana lysis programs, or used as test data
to drive programs that are being developed. A 10-byte header is added
to the data; otherwise, it is not changed in the recording playback
sequence.

Both data recording and playback can be invoked in a single realtime
job in one of two ways.

1. the tva functions can use different data sets; that is, the
playback can be from a data set that vas recorded on a previous
run and new data written on another data set.

2. the record function can be invoked, and the playback routine
can be invoked for the same data set.

An example of the DRECOUT and OPBIN DO cards needed for the second case
are as follow s:

IIDRECOUT DD DSN=username,DISP=(NEW,PASS) I •••

IIDPBIN DD DSN=*.DRECQUT,DISP=SHR,
II VOL=REF=*.DRECOUT

Figure 2-11 shovs the functions of data recording and playback.

User

Data
Record ---. Recording

Routine

Program

-"I.,..

<->
Data

Recording
and

Playback
Data Set

PATCH "- ./
Control Card in

SYSINIT r-
Initialization User

Stream Program

Playback
or ~ Conversion I--- Playback or

Routine Routine
Separate Speciat Real Time (Non-Special Operating System Rell Time r-

Operating System) Hex

Job Step Print Routine

or

User Program
"LINK"

Figure 2-11. Data recording and Playback Processing Overview

Qll.~ E.~£2rd!ng Iniiializati.Q!!

The data recording service is initialized at the Special Real Time
Operating System initialization, so that any RECORD macro issued prior
to the activation of data recording vill be non-operational with a
return code of 04. During realtime operation, the writing of data can
be suppressed or enabled by the user. Data recording is enabled or
disabled by an i~put message processing command.

2-54 Descri pt ion and. Operat ion ~anual

'DREC

DREC

I ,ENABLE

,DISABLE

ENABLE/DISABLE

ADD

DEL

ALL

id

I ,ALL I
,ADD
,DEL

[id,id ... 1 1

Informs the input message processing routine that
this reply is for data recording.

Causes data recording to be either enabled or
disabled. Disable requires no other parameters.

Causes the following ID(s) to be placed in the Data
Recording Table. Up to 20 IDs may be included in
the table.

Causes the following ID(s) to be deleted from the
Data Recording Table. DEL not followed by any 10
causes all IDs to be deleted.

Causes all IDs to be enabled. No IDs are required.

A three-digit hexadecimal number (001-FFF) for which
data is to be recorded.

Requests to record data for later playback are passed to the data
recording function by the RECORD macro. with this macro, the user
supplies an ID=(X'001-FFF'), the address (ADDR=) of the data, and the
COUl't (COUNT=) of bytes of data to be recorded (value of 1 to 65525).
The data is written to a sequential data se~ defined by the user and
is recorded on fixed length records. If the request is to record more
data than will fit on one record, the data is split into two or more
records to be reassembled into a single record when it is read back.

The data is time-tagged upon receipt (execution of the RECORD macro)
and recorded in chronological order.

Data recording requests cannot span the partition boundary, so recording
must be enabled in the partition where the program executing the RECORD
macro resides. Recording may be enabled in both the MASTER and SLAVE
partition simultaneously. When a given ID is enabled (either explicitly
by entering that ID or implicitly with the ALL option) it is enabled
for all programs in that partition. It is the responsibility of the
user to select IDs that identify the source of the data and be
meaningful when played back.

The following DD card is required by data recording:

I/DRECOUT DD defines a sequential data set to which the data will be
written.

This data set will be opened (QSAM, LOCATE mode) when data recording
is enabled and closed vhen data recording is disabled. Standard JCL
conventions apply to this data set, and the user should be aware of
the effect of all of the para mete rs that are specified. Some of the
DD card parameters by whic!l the user may affect data r·ecording operation
are as follows:

DISP= If anything except KOD is specified, each time data
recording is enabled, data viII be written at the
beginning of the data set. This may have the effect of
over-writing data vhich vas recorded by previous
ENABLE/DISABLE sequences.

APPLICATION SERVICES 2-55

DCB=BLKSIZE= Defines the size of records written and QSAK buffers.
The data is packed within the buffer by data recording.
Specifying a large block size will reduce the number of
I/O accesses but increase virtual storage use. A block
size of less than 200 bytes is not recommended. If not
specified, a block size of 2K bytes wi1l be used; if
specified, LRECL should be the same as BLKSIZE.

DCB=BUFNO= Specifies the number of buffers to be allocated by QSAK
and, consequently, will affect the amount of waiting
for I/O by the RECORD function. If not specified, three
buffers will be allocated.

The data which has been recorded by the data recording facility may be
read and passed to a user-supplied routine or to the Special Real Time
Operating System hex data pri~t (hex dump) routine based on time and
IDs (which were assigned at data recording time).

The user specifies to t.he playback routine the data IDs and time range
(start and stop times) for which data is to be processed. Also, the
name of a user-supplied load module for data processin9 may be specified
to the playback routine. If no user processing module is specified,
the default processing routine is the Special Real Time Operating System
hex data print routine. The user module may process the data according
to the user's needs. The hex data print routine will supply a hex dump
of the recorded data in a format similar to that of an ABEND dump. The
data, when passed to a user load module, will be in the following
format:

2

o FLG LGTH

Header
4 TIME

8 REC

User Data

The header is a 10-byte field where FLG is four bits of flags set by
data recording, ID is a 12-bit field that contains the identification
supplied by the user, and LGTH is a 2-byte field which contains the
length of the entry (including tbis 10-byte header). TIKE is a 4-byte
field that contains the time (in packed decimal format) that the data
vas recorded. User data is the data passed by the user. REC is data
recording control data.

The playback routine may be invoked by any of three methods:

1. Through the Special Real Time Operatin9 System initialization
routine by PATCH control cards

2. As a separate (non-Special Rea 1 Ti me Opera ting System) job step

3. Through a LINK issued by a job running under the Special Real
Time operating System.

2-56 Description and Operation Kanual

The following 00 cards are required by data playback:

//DPBIN DO Defines a sequential data set which contains
data recorded by the RECORD macro.

//SRTODUMP DD Defines a sequential (printer) message data
set.

To invoke data playback at the Special Real Time Operating System
sUbsystem initialization time through the use of a PATCH statement,
the PATCH statement should be coded as shown:

llabel] PATCH EP = DPPXPCON , [TASK = name,] l QL = n,]
[1D=n,]

[
PRTY = {JOBSTEP-n}]

(taskname, n '
PARM=(C"STARTDATE' ,C'STARTIME',

C 'STOPDA TE " C 'STOPTlME ' ,
C'LM', C'COUNT', C'lDl', C'IOIA',
C'1D2' ,C'102A', C'ID)" C'ID3A', ...)

See the section entitled "Special Real Time Operating System
Initialization" for a complete desc:::-iption of the PATCH control
statement. Only the parameters required by data playback are described
here.

In some of tt. ~ following parameter definitions, a zero has special
meaning. In these cases, the parameter should be specified on the
PATCH statement as a numer ic value, using the F or X format (i.e.,
specified as FlO' rather than CIO·).

DPPXPCON
Is the entry point of the playback conversion routine that converts
the specified parameters to a form recognized by data playback and
then passes the converted parameters via LINK to data playback.

STARTDATE
A date in the form of DD/AMM/YY (where DD is the day, MAM is the month
(first three letters of the month are specified), YY is the year)
specifies the day to start the playback process. Zero specifies that
data playback is to start at the beginning of the data
recording/playback data set. The characters 'ALL' specify that the
entire data recording data set is to be played back. If ALL is
specified, all other parameters are set to zero except the LM
parameter.

STAf..TIME
Specifies the start time of data playback on the start date specified.
Ti~e is in the form of HHMMSST (where HH is hours, MM is minutes, SS
is seconds, and T is tenth of seconds).

STOPDATE
A da te, in the same format as ST ARTD ATE, for which the last date is
to be processed. Zero specifies that data recording is to stop at
the end of the data recording/playback data set.

STOPTIME
Specifies the latest time on the date specified for which recorded
data is to be processed. Time is in the same format as STARTIME.

APPLICATION SERVICES 2-51

LM
Is an 8-character entry point name of a load ,module tovhich ,d,ata
playback viII pass the recorded data. If less than ei<jht characters,
it must be padded on the right with blanks. Zero specifies that the
recorded data will be passed t:o the Special RealTime Operating Sys,teJl
hexadecimal data print routine.

1:D count
Is the number of 10 pairs (01-20) specified. The maxiltum number of
I'D pairs is 20.

IDn-IOm
Specifies .a range of IDs to be played back within the time frame
specified. IOn is the lowest 10 in the range, and 10m is the highest
ID in the range. If only one 10 is to be played back, IDn and IDm
must be id.enticai. 10 (OOl-FFF) is a three-digit hexade.c i·ma 1 ,DUIIDe.c.

Example 1 sho Ws three different patch cards for invoking da taplayback.

EXAMPLE 1:

//
//
//

//

EXEC PGM=DP PI NIT

DO cards required by the Special Real Time
Operating System Initialization

//SYSINIT DO *
Pl PATCH

P2 PATCH

P3 PATCH

EP=DPP XPCON, TA SK=OPPXPCON,
QL=5,I 0=7, PRTY=JOBSTE,P-15,
PARAr1= (C09/JAN/13' ,C'1520207',
C'09/FEB/73 t ,C1730412' ,C'TESTMODE',
C' 02 I, c' F 20 I, C' F16 I ,e 'O'() 1 • ,.C· -5 10 I)

EP=DPPXPCON,TASK=OPPXPCON,
PARAM= (X' 0' ,et 1521459' ,X'O',
C'164J782' ,X'O-,C' 01',C'100',C ' 200')

EP=DP,PXPCON, TASK=DPPXPCON,
QL=10,ID=9,PRTY=JOBSTEP-l0,
PARA"=(C·ALL·,~O'~X·O·.X-O',

C' TEST MODE ')

Th,ese three PATCH sta tements will cause data playback to be entered
three times. PA~CH statement Pl will cause any data reeorded between
15 hours, 20 minutes, 20.7 seconds (3:20:20.7 pm) on January 9, 1973
and 17 hours, 30 minutes, 41.2 seconds (5:30: 41.2 pm) on February 9,
1973 which bas record IDs F20 through F76 or 001 through 510 to be
passed to user load module TESTMODE.

PATCH statement P2 viII cause all recorded data that has an ID 100
tr.rough 200 and was recorded between 15 hours, 31 minutes,4~.9 seconds
and 16 hours, 43 minutes, and 18.2 seconds to be dumped to a SYSOUT
data set by the Special Real Time Operating System raw data print
routine. Because no da tes are specified, the data s.et will be searched
for the first data vhich has a time greater than the STARTIME,
regardless of date and processed through the first data with a time
greater than the STOPTIME regardless of date.

PATCH statement P3 will cause all data on the data set to be passed to
load module TESTMODE. See the Special Real Time Operatjng System
Initialization in Chapter 3, for a complete description of the PATCH
card~.

2-58 Deseri ption and operation "anual

Playback as a Separate Jobstep

When run as a separate (non-Special Real Time Operating system) job
step, either in a backgrour-d partition or on an offline CPU, the
parameters are passed to the data playback non-realtime initialization
through the PAR~ parameter of the JCL EXEC statement.

Ilstepname EXEC

stepname

PGK=DPPXNRTI,
PARK=' STARTD ATE, START! ME,

ST OPDATE,STOPTIKE,
Mt ,COUNT ,ID1 ,

ID1A,ID2,ID2A,
ID 3,10 3A, ••• '

Is the name of the job step.

DPPXNRTI
Is the name of the non-realtime Special Real Time Operating System
program to which the parameters viII be passed.

STARTDATE, STARTTIME, STOPDATE, STOPTIME, LM~ COUNT, ID
Have the same meaning as described for PATCH control statement.

Note~ Every playback parameter must be specified except when ALL is
specif ied.

When ALL is passed to the non-realtime playback routine (DPPXNRTI) with
a load module name, the parameters should be in the following format:

Iistepname EXEC PGM=OPPXNRTI,PARM='ALL bbbbbb, L~'

where ALL is followed by six blanks as the first parameter and the load
module name as the second parameter.

The fields within the PARM string are positional, and each field must
occupy the exact number of positions allocated to that field as follows:

ST AR '1'D ATE 9
STARTIME
STOPDATE
STOPTIME
LM

7
9
7
8 If a Load Module name is specified or

1 if zero is specified
COUNT
10

2
3 each

All fields must be separated by commas~

In examples 2 and 3 the Special Real Time Operating System playback is
run as a separate (Non-Special Real Time Operating system) job step.

EXAMPLE 2:

1/ EXEC PGM=DPPXNRTI,
PARM='07/JAN/73,0800000,07/FEB/13,

0900000 q O,02,020,025,OQO,050'

All data that has an ID in the range 020 through 025 and 040 through
050 and that was recorded after 08:00:00.0 on January 1, 1973 and
09:00:00.0 on February 1, 1913 vill be printed by the Special Real Time
operating System raw data print routine.

APPLICATION SERVICES 2-59

EXA MPl.E 3:

II EXEC PGM=DPPXNRTI.
PARM='ALLRbb~R~,TESTMODE'

All data on the data set will be passed to load module TES·lMODE.

Playbact Via Link

The LINK macro instruction may be used to invoke data playback. The
LINK macro should be in the following format:

EXAMPLE

symbol

PARM
ST ARTD AT
STARTTIM
STOPDATE
STOPTIME
LM
IDCOUNT
ID1
ID1A
I02
102
I02A
ID3
I03A

R

CSECT
instructions

LINK
or
LA
LINK

OS
DS
DS
OS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

EP=DPPXDPB.PARAM=(PARM)

R,PAkM
EP=DPP XDPS ,PAR AM= ((Il))
instructions
OF
CL9
PL4
CL9
PL4
eLa
AL2
XL2
XL2
XL2
XL2
XL2
XL2
XL2

Is a general purpose register.

DPPXDPB
Is the data playback entry point name.

PARM
Is the address of the playback parameters.

The playback parameters for the LINK should be in the following format:

Bytes

9
4
9
4
a
2
2
2

2-60

Field Name

STARTDAT
STARTTIM
STOPDAT
STOPTIME
LM
IDCOUNT
ID
ID

Field Description, contents, Meaning

additional IDs in pairs

Description and Operation Manual

Examples 4 and 5 show a LINK to the playback function from a user coded
program.

EXAMPLE 4:

EX AMPLE4

PARM

CSECT
inst ructions

LINK .EP=DPPXDPB,PARAM= (PARM)

DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

OF
CL9' 09/J AN/7 3'
PL4'1540071'
CL9' 09/FEB/73'
PL4' 1650509'
CLS'TESTMODE'
AL 2 (3)
XL2' 111' ,XL2'222'
XL2' 100;XL2'11 0'
XL2'FFO',XL2'FFF'

A job running under the Special Real Time ope=ating System will LINK
to the Special Real Time Operating System data playback routine. All
data that has an ID in the range 111 through 222, 100 through 110, and
FFO through PFF and that was recorded between 15 hours, 40 minutes,
07.1 seconds and 16 hours, 50 minutes, 50.9 seconds on 09/JAN/73 vill
be passed to load module TESTMODE.

EXAMPLE 5:

EXAMPLES CSEC'!'

PARM

in stru ct io ns
LA 1, PARM
LINK EP=DPPXDPB,PARAM= ((1)}

DS OF
DC CL9' ALL'
DC PL4'0'
DC XL9'O'
DC PL4'0'
DC CLS'TESTMODE'

A job running under the special Real Time Operating System will LINK
to the Special Real Time Operating System data playback routine. All
data in the data set will be passed to load module TESTMODF..

HIGH-LEVEL LANGUAGE INTERFACES

The special Real Time Operating system routines provide an interface
to allow PL/I and FORTRAN users to use most of the services provided
by the Special Real Time Operating system. The interface routines are
independent of the compiler level or the optimizing compilers. Figure
2-12 lists the special Real Time operating system macros supported by
the interface routines for PL/I. The macros in the figure are also
supported for FORTRAN, but there are no default structures~

APPLICATION SERVICES 2-61

PL/I
Macro Name ID

Structure Name Member Name

PATCH 0 PATCHSTR PATCHDEF
PATCH Param 0 PARMSTR PARMDEF
PTIME 4 PTIMESTR PTIMEDEF
PTIME 4 PTIMRSTR PTIMRDEF
DPATCH R DPACHSTR DPACHDEF
REPATCH 12 REPCHSTR REPCHDEF
GETARRAY 16 ARRAYSTR ARRAYDEF
GETITEM 20 ITEMSTR ITEMDEF
GETBLOCK 24 BLOCKSTR BLOCKDEF
PUTARRAY 16 ARRAYSTR ARRAYDEF
PUTITEM 20 ITEMSTR ITEMDEF
PUTBLOCK 24 BLOCKSTR BLOCKDEF
MESSAGE 40 MESAGSTR MESAGDEF
PUTLOG 44 PTLOGSTR PTLOGDEF
GETLOG 48 GTLOGSTR GTLOGDEF
DUMPLOG 52 DPLOGSTR DPLOGDEF
RECORD 56 RECRDSTR RECRDDEF
PATCH WAIT 60 WAITSTR WAITDEF

Figure 2-12. ~acros Supported by PORTRAN-PL/I Interface Routines

All interface routines are invoked as shown in Figure 2-13. The
parameters are passed using standard linkage conventions to the
assembler language interface routine. The interface routine adjusts
the parameter list and then issues an execute form of the appropriate
macro to invoke the desired service. After the service routine has
completed execution, the interface routine stores the return code for
use by the calling program and returns to the caller.

X SVC/BAL BAL Special Special

Realtime Realtime

Operating Operating

PL/ t or FORTRAN System System
Sevice

CALL X (PARAM) Macro
MF::::E.
Save

Return
Code. ~ RETURN RETURN

Figure 2-13. High-Level Language Interfaces for the Special Real Ti.e
Operating System services

The high level language user must refer to the Special Real Time
Operating System macros section when using the language interfaces, as
more details are given with each macro description.

The PL/I interfa=es to the Special Real Time Operating System services
are designed to be independent of the PL/I compiler used. This means
"dope vectors" or "locator/descriptors" are not referenced by the
interface routines. To avoid referencing "secondary" pointers, the
parameter of a CALL statement must point to the first element of the
structure defining the parameter list.

DCL 1 PATCHSTR,
2 MACID,
2 Re,

For example, given the above structure, the call str~tement would have

2-62 Description and Operation Manuil

to be CALL DPPPIF(PATCHSTR.MACID) for the correct parameter list to be
passed to the interface routine DPPPIF.

All special Real Time Operating System services invoked by a PL/I
program have unique parameter lists which can be described by a
structure. An aid to the PL/I .programmer are default structure
definitions. The programmer may invoke them through the compiler
preprocessor option - ~INCLUDE. A list of tbe PL/I structure
definitions and names is included in Figure 2-12. Each of the default
structures is explained in the following sections describing the Special
Real Time operating System services provided for PL/I programs. Any
option changes made by the PL/I program to a default structure must be
reset if the structure is reused and the option is not desired.

In addition, users of the default structure viII notice the two fields
(MACID and RC) at the beginning of each. They are common to every
structure used as a parameter vhen calling DPPPIF. MACID is initialized
in the default structures with the correct value to tell the interface
routine which service is being requested. RC is where the return code
from the service routine is stored.

PL/I programs in a normal OS/VS1 job shop environment are initiated,
the PL/I Prolog routines and the user program are executed, and at
termination the PL/I Epilog routine is executed. In a realtime
environment where the PL/I prog ram is to be cyclically executed, the
PL/I Interface routines provide facilities to allow the PL/I program
to keep its resources across cyclic executions and to execute cyclically
without incurring the overhead of Prolog and Epilog for each execution
following the initial execution. This facility applies only to
independent tasks that are PATCHed with the EP= parameter specifying
the same EP name. Figure 2-14 shows the coding of a PL/I program using
this facility.

LOOP:

PL/I PROGRAM

PL/I PROLOG

CALL DPPPARM (PARMSTRID);
II: ({FTCI) I" () TIIEN RETURN;

GO TO LOOP;
Jo'NI>;

PL/I EPILOG

Figure 2-14. PL/I Example

1'1./1 PROGRAM
AS CODED BY USER

APPLICATION SERVICES 2-63

The following is a series of PATCHes to PL/I programs which will
illustrate when a program vould be forced through Epilog.

where:

A
B
C
o
E
F
G

PATCH
PATCH
PATCH
PATCH
PATCH
PATCH
PATCH

TASK=A,EP=PLIPROG
TASK=A,EP=PLIPROG
TASK=A,EP=PLIPROG
TASK=A,EP=PLIEXftP
TASK=A,EP=PLIPROG
TASK=A,EP=PLIEXMP
TASK=A,EP=PLIEXKP

PLIPROG and PLIEXKP are PL/I programs coded as shown in the
previous example.

PATCH A executes Prolog for PLIPROG, then the body of PLIPROG. When
the body finishes, a second CALL is made to OPPPARM. PATCH:3 then
executes without going through Prolog. PATCH B in turn finishes and
again calls OPPPARM. PATCH C then executes - again without going
through Prolog. When PATCH C finishes, another call is made to OPPPARM.
The PLII interface routine determines that the next PATCH (0) is to a
different program. A non-zero return code forces PATCH C to terminate
and thus execute PL/I Epilog. PATCR 0 then executes, going through
PROLOG and the code body for PLIEXMP. PATCH D finishes and again calls
DPPPARM. Once again, the interface recognizes that the next program
to be executed is different and returns a non-zero return code. program
DPPEXMP is forced through Epilog. PATCH E passes through both Prolog
and Epilog and PATCH F passes through Prolog and PATCH G executes
without Prolog. Then, on the next call to DPPPARM, Task A is placed
in a wait state until another PATCH to it is received.

PL/I programs cannot easily retrieve parameters passed via register 1.
To obtain the parameters in a PL/I program invoked by PATCH, an
interface routine DPPPARM and a structure PARKSTR, which may be copied
into the PL/I program by %INCLUDE PARMDEF; ale provided. The following
PL/I statements define PARMSTR:

DeL 1 PARMSTR,

PARMSTR

2 10 FIXED BIN INIT(O) ,
2 RETCD FIXED BIN INIT (1),
2 XCVT POI NTER ,
2 RESOURCE POINTER,
2 PARKS POINTER;

1* RESERVED *1
1* 0 IF PARMS CHANGED *1
1* A (XCVT) *1
1* A (RESOURCE TABL E) *1
1* A(PATCH PARAMETERS) *1

Is the name of the structure used to obtain the .PATCH prOblem
parameters.

IO
Is reserved halfword initialized to zero.

RETCD
Is a halfword binary number indicating the validity of the pointer
value in PARMS. If not zero, the PL/I program should not use the
address in PARMS and should return control to the system. If zero,
PARKS contains a valid address.

XCVT
Specifies the address of the Special Real Tille Operating System
control blOCK XCVT.

2-64 Description and Operation Manual

RESOORCE
specifies the address of a tvo fu11word area awailable to all prograas
executing under the current task.

PAR~S

specifies the address of the problea paraaeters being passed by a
PATCH to the prograa.

The PL/I prograa using this interface aust declare the structure only
once and in the highest block. The structure must be reused without
reinitializing. If the prograa CALLs for another set of PATCH
parameters and the task vork queue is empty. the prograa vil1 be placed
in a wait until a PATCH is issued for the task.

The exaaple belov is the proper method for using the structure. This
exaaple uses the default structure PARftSTR to obtain the PATCH pointers.
The structure definin9 the paraaeter list is based on the PAR"S pointer
variable. lote that the PL/I program l\lops back to the CALL statea>.-ant
and that tbe only exi t occurs if the return code fro. DPPP1R! is n(, t
zero. This .iniaizes the execution of PLIl Prolog and Epilog.

DCL 1 PARftSTR,
2 ID PIXED BIH IIIT(~ ,
2 RETCD PIXED BIR IIIT(O),
2 XCVT POI IT ER ,
2 RESOORCE POIRTER,
2 PARtiS POliTER;

DCL 1 P1R1BET!R BASED (PARBS),
2 LBIG PIXED BII,
2 PATCBID PIlED BII;

LOOP:
CALL DPPP1!! (P1BaSTR.ID);
IF a!TeD =70 THE. RETORN;

•
•
•

nor.al execatioD
•
•
•

GOTO LOOP;
EIfD prograa;

PL/I-PATCD ln1lIi~s

The default structure which de~1nes the parameter list for invoking
the PATCH service aa1 be copied into the prograa by IINCLOD! PATCHDEF.
The PL/I stateaents and definitions are listed as follows:

APPLICATION SERVICES 2-65

DCL ,
2
2
2
2
2 ... ,
2
2
2
2
2
2
2

PATCHST~

PATCHSTR, /* PATCH STRUCTURE *1
~ACID FIXED BIN INIT(O), /* PATCH ~ACRG ID */
RC FIXED BIN INIT(O) # /* RETURN CODE */
PACHPARM POINTER, /* A(PARA~ETEES) */
TASKNAME CHAR(8) INIT(' ') 1* TASKNAME */
EPNAME CRAR(S) INIT('IEFBR14'), /* LOAD MODULE */
NAME CHAR(8) IN!T(' ') /* RELATIVE TASK OF VALUE */
QUEUE FIXED BIN INI! (1), /* DEFAULT = 1 *1
VALUE FIXED BIN INIT (0), 1* DEFAULT:;:: 0 */
EeB POINTER, / .. EeB ADDRESS */
FREEL FIXED BIN(31,0) INIT(O), /* RESERVED */
fREEA FIXED BIN (31,0) IN'IT(O), /* RESERVED */
TCEX FIXED BIN(31.0) INIT(O). /* TCB EXTENSION *1
PPLAGS 1* FLAG OPTIONS IF eIT IS SET ON *1

3 (FO, /* RESERVED */
~ASTER, / .. PATCH eASTER PARTITION */
SLAVE, 1* PATCH SLIVE PARTITION *1
f3, /* RESERVED */
REPCH, /* ECB BEP1TCH *1
QPOS, 1* QPOS=FIRST */
DPCH. 1* QPOS=DPATCH *1
DE L) BIT (1) IIi IT (. o· u) ; 1* EP DEL ETE * /

The na.e of the default structure.

"ACID
Specifies the halfvord binary value set to zero to identify the PATCH
service request.

BC
Specifies a halfword binary field contaiDiDg the return code fro.
the service routine. The return codes are described in the PATCH
.acro definition.

PACHPAR~

Speci fies t he address of a para IIEter list being passed. The format
is a halfvord binary value (ainillua .. allle is 4) describing the length
of the entire parameter list, followed by a half_ord binary value
from 0 to 255 called the PATCH ID with the re.ainder of the list
being the parameters. The diagraa below represents the format of a
PATCH parameter list.

Note: If the list is greater than 8 bytes, the interface routine vill
move it to a GETM1IN area to be freed when processing of the
work queue is completed.

o 2
length I PATCH ID

parametcn

TASKNll!E
Speci ties a , to 8 character name 1ihich is the naae of the task being
referenced by this P~TCH. If the task does not exist, one by that
name vill be created.

EPNAME
Specifies a 1 to 8 character valid program name which is the Dame of
the program to be scheduled und er the task being crea ted wi th the
PATCH.

2-66 Description and Operation Manual

NAME and VALUE
Specifies a task name and a value which viII determine the priority
of the new task. VALUE viII be subtracted from the dispatching
priority of the specified task. VALUE may range from 0 to 255 with
zero default. See PRTY option of PATCH macro for further detail.

QUEUE
Specifies the number of work queue entries to be provided for the
new independent task. Any decimal value from 0 to 255 may be
specified. The default value is 1. A work queue entry provides
space to queue PATCHes vhich have not been executed by the task. If
o is specified as the queue length, the task accepts one PATCH, works
on that request, and when completed, waits for the next request. If
a PATCH is issued for that task while the task is busy, it is not
executed. If the queue length is 1, the task can accept one PATCH
even while it is busy. Any PATCH parameters waiting in the queue
when a task completes processing the current request viII be executed
one at a time, vith the top of the queue executed next. This
procedure is the same for all queue values from 0 to 255.

ECF
Specifies the address of the ECB within a WAITSTR which is to be used
in a CALL DPPPIF. This ECB is posted when processing for this PATCH
is completed. The REPCH flag causes the ECB to be posted with the
address to be used in the REPATCH macro if this PATCH is not executed
because of a DPATCH or a QPOS=FIRST PATCH with the queue full.
Default is no ECB. See PL/I PATCH WAIT.

FREEL and FREEA
Are reserved.

TCBX
Specifies the address of the TCB extension control block (TCBX) for
an existing independent task. The TCBX address is returned in
structure after each PATCH. Use of this operand with all PATCHes to
the same task after the initial PATCH will reduce system processing
time. Note that other parameters must still be specified for
verification or in the event the task has been DPATCHed.

PFLAGS
Are PATCH option flags as described below:

FO and F3
Are reserved.

MASTER
Specifie~ this is a PATCH to the MASTER partition.

SLAVE
specifies this is a PATCH to the SLAVE partition.

REPeH
Specifies that the ECB will be posted when a REPATCH control block
is built. Default is no REPATCH control block.

QPOS and DPCH
Specifies in the task work queue where this work request is to go
if the task is busy. If QPOS is on, the request is to be placed so
as to be processed before those already on the queue. If DPCH is
on, the processing for this PATCH will Dot be executed until a'DPATCH
is issued for this task. Defa~t is last on the work queue.

DEL
Specifies that a DELETE is issued for the EP name after processing
completes for this PATCH. Default is no.

APPLICATION SERVICES 2-61

The special Real Time Operating system PATCH service may be invoked by
including the PATCHDEF in the PLII program, completing the required
information within the structure ~cluding building a parameter list
and calling the interface routine DPPPIF with the PATCHSTR. Examples
of using the PATCH facility follow.

In Example 1, struc~ures are declared for a parameter list and the
PATCH structure. The task DPPZTSOO is created with a queue length of
1. Program DPPZTS13 is executed, and the parameter list contains only
the length field and a PATCH ID of 10. The new task must have the same
priority as the task issuing the PATCH. The PATCHing program does
not want notification 'of the completion of the PATCH. Note that if
the task already exists, the PFLAGS indicate this work request will be
queued behind any others on the queue.

DCL 1 PARAMETER,
2 LENG FIXED BIN,
2 PATCHID PIXED BIN,
2 PARAMS (10) FIXED BIN (31,0);

DC L 1 W A I T ST R,
2 MACID FIXED BIN INIT (60),
2 RC FIXED BIN INIT (0),
2 ECBX FIXED BIN (31,0) INIT (0);

~INCLUDE PATCHDEF;

DCL 1 PATCHSTR,
2 MAcro FIXED BIN INIT (0), 1* PATCH MACRO 10 *1
2 RC PIXED BIN INIT (0), 1* RETURN CODE */
2 PACHPARM POINTER, 1* A(PARAMETERS) *1
2 TASKNAME CHAR (8) INIT (' ') 1* TASK NAf!E *1
2 EPNAME CHAR(8) INIT ('IEFBR14') 1* LOAD KODULE */
2 NAME CHAR(8) INIT(' '), 1* RELATIVE TASK OF VALUE *1
2 QUEUE FIXED BIN INIT(l), 1* DEFAULT = 1 */
2 VALUE FIXED BIN INIT(O), 1* DEFAULT = 0 *1
2 ECB POINTER, 1* ECB ADDRESS *1
2 FREEL FIXED BIN(31,0) INIT(O), 1* RESERVED *1
2 FREEA FIXED BIN(31,0) INIT(O), 1* RESERVED *1
2 TCBX FIXED BIN(31,0) INIT(O), 1* TCB EXTENSION *1
2 PFLAGS. 1* PLAG OPTIONS IF BIT IS SET ON *1

3 (FO, 1* RESERVED *1
MASTER, 1* PARTITION=MASTER *1
SLAVE, 1* PARTITION=SLAVE *1
F3, 1* RESERVED *1
REPCR, 1* ECB REPATCH *1
QPOS, 1* QPOS=FIRST *1
DPCH, 1* QPOS=DPATCH */
DEL) BIT(1) INIT('O'B); 1* EP DELETE *1

LENG = 4;
P A TC RID = , 0 ;
PACHPARM = ADDR(PARAMETER.LENG);
TASKNA~E = 'DPPZTSOO';
EPNAME = 'DPPZTS13',
CALL DPPPIP (PATCHSTR.MACI~;

Ex ample 1

In Example 2, assume that the CALL in Example 1 has returned, and a
dependent task is to be created at a priority of 10 less than the task
DPPZTSOO and that program DBPENDX is to be passed a parameter list of
10 numbers with a PATCH ID of 2. The PATCHing program will wait for

2-68 Description and Operation Manual

the dependent task to complete. The WAIT function is done via a CALL
to the interface routine using the WAITSTR structure.

DCL 1 PARA METE R,
2 LENG FIXED BIN,
2 PATCHID FIXED BIN,
2 PAR A M S (1 0) FI XED BIN (3 1 , 0) ;

DCL 1 WAITSTR,
2 MACID FIXED BIN INIT(60) ,
2 RC FIXED BIN INIT(O).
2 ECBX FIXED BIN (31,0) INIT{O);

%INCLUDE PATCHDEF;

DCL 1 PATCH STR,
2 MACID FIXED BIN INIT(O), /* PATCH MACRO 10 *1
2 RC FIXED BIN INIT(O), 1* RETURN CODE *1
2 PACHPARM POINTER, /* A (PARAMETERS) *1
2 T ASK N AM E C H A R (8) I NIT (' .), /* T ASK N A ME * /
2 EPNAME CHAR(8) INIT ('IEFBR14'), 1* LOAD MODULE *1
2 NAME CHAR(8) INIT(' .) /* RELATIVE TASK OF VALUE *1
2 QUEUE FIXED BIN INIT(l), 1* DEFAULT = 1 *1
2 VALUE FIXED BIN INIT(O), 1* DEFAULT = 0 *1
2 ECB POINTER, /* ECB ADDRESS *1
2 FREEL FIXED BIN(31,O) INIT(O), 1* RESERVED *1
2 FREEA FIXED BIN(31,O) INIT(O), /* RESERVED */
2 TCBX FIXED BIN (31, 0) INIT(O). /* TCB EXTENSION *1
2 PFLAGS, 1* FLAG OPTIONS IF BIT IS SET ON *1

3 (FO, /* RESERVED *1
MASTER, 1* PARTITION=MASTER *1
SLAVE, /* PARTITION=SLAVE */
F3, 1* RESERVED *1
REPCR, 1* ECB REPATCH *1
QPOS, 1* EPCS=FIRST *1
DPCH, 1* QPOS=DPATCH */
DE~ BIT(l) INIT('O'~ 1* EP DELETE *1

CALL DPPPIF (PATCHSTR.MACID) ;/*EXAMPLE 1*1
LENG = 44;
PATCHID = 2;
TASK NAME = ft;
EPNAME = 'DEPENDX';
NAME = 'DPPZTSOO';
VALUE = 10;
ECB = ADDR(ECBX);
CALL DPPPIF (PATCHSTR. MACID) ;

IF PATCHSTR.RC <8 THEN DO;
CALL DPPPIF (WAITSTR.MACID);

END;

Example 2

PL/I-PTIME Interface

The special Real Time Operating System PTIME service provides two
different functions, time and PATCH, issued on a time queue basis.
Therefore, tvo default structures may be copied into the program by

APPLICATION SERVICES 2-69

~JNCLUDE PTIftEDEF and PTIftRDEF ,hieh define the parameter lists for
the PTIME services. The PL/I statements and their meanings are as
follows:

DCL 1 PTIMHSTR, 1* STRUCTURE POR PTIKE TYPE=RET *1
2 MACID FIXED BIN INIT(4), 1* PTIKE SERVICE *1
2 RC FIXED BIN INIT(O), 1* RETURN CODE *1
2 TYPE FIXED BIN(31,0) INIT(O) , 1* PTIME CALL TYPE *1
2 TIME FIXE'D BIN(31,0) INI T(O) , 1* CURRENT TIME *1
2 TI l1D SECT POI NTER ; 1* A (TIME ARRAY) *1

PTI M RSTR
Is the name of the default structure used to obtain the current time
and th~ address of the time array.

MACID
Is the half word binary value set to 4 to identify a PTIME service
request.

HC
Is a halfworG. binary value containing the return code from the service
request. always O.

TYPE
Is a fullword binary number identifying the PTIME service being
requested. For this structure, it is For this structure, it is
al ways o.

TIME
Is a fullword binary field whi.ch will contain the current time of
day in 10 millisecond units when the interface routine returns.

TIMDSECT
Specifies the address of the special Real Time Operating system time
array when the interface routine returns.

DCL 1 PTIMESTR, /*PTIME STRUCTURE FOR ADD, KOD,DEL *1
2 ftACID PIXED BIN INIT (4), /* PTlftE SERVICE *1
2 RC FIXED BIN INIT (0), /* RETURN CODE *1
2 TYPE FIXED BIN (31,0) INIT(4), /* PT!ftE CALL TYPE *1
2 STIME FIXED BIN (31,0) lNIT(O), /*START TIME *1
2 ITIME FIXED, BIN (3'1,0) INIT(O), /*INTERVAL TIME *1
2 ETIME FIXED BIN (31,0) INIT(O), /*STOP TIftF. */
2 PATCH POINTER, /*A(PATCH SUPL)*I

2 PARftS POINTER, /*A(PARAftETERS) *1
2 START, /*FLAGS DEFINE STlftE- CONTENTS *1

3 (FO,Fl,F2,P3,F4, /*RELATIVE TIME *1
S ADJFLAG, /* ADJUSTED TIK E *1
STODFLAG, /*TIME OF DAY *1

SRELFLAG) BIT (1) INIT ('O'B), I*BELATIVE TIME *1
2 PURGE, /*FLAGS DEFINE PTI ME P{JRGEOPTIONS *1

3 (FO,Fl,F.2,F3, /*RESERVED *1
PURGEI, I*DPATCH = I *1

PURGEW, /*DPATCH = W *1
PUR~EC, /*DPATCH = C */
PURGEU) BIT (1) INIT ('O'B), /*DPATCH = U *1

2 STOP, /*FLAGS DEFINE ETIME CON'l'ENTS *1
3 (FO,Fl,F2,F3, /*RESERVED *1

ECNTFLAG, /*COUNT VALUE *1
EADJFLAG, /*ADJUSTED TIME *1
ETODFLAG, /*TIME O~ DAY *1

ERELFLAG) BIT (1) INIT ('O'B); I*RELATIVE TIME *1

PTlftESTR
Is the name of the default structure used to create or modify PATCH

.2-70 Description and Operation'ftanual

service requests by time queue.

MACID
Is a halfvord binary value set to 4 to identify a PTIKE service
request.

RC
Is a halfvord binary value containing the return code from the service
request. If the return code is 8 or larger, the PTIKE was not
successful, and the existing PTIKE specification vas not changed.
The return codes are defined in the macro description.

TYPE
Is a fullvord binary number specifying the type of PTIKE service
requested. Values may be 4, 8, or 12. If 4, a PTIKE queue element
(PTQE) is created which controls the PATCHes issued according to the

PTIME request. Si~ce the PTQE exists independently of the creating
task and may be modified (8) or deleted (12), the PTQE is referred
to by task name, entry point name, and the PATCH ID value in the
passed parameter list. Either task name or entry point na~e must be
given for a modify (8) or delete (12) request. Hovever, if only a
task. name or entry pOint name is ~pecified, all PTQEs vith that name
are deleted or modified. The default is to create a PTQE (4).

STIME*
Is a fullvord binary number specifying the tiae in 10 millisecond
units of the first PATCH. The flags START specify the value in this
fielJ..

SRELFLAG
If on, the first PATCH viII be issued at current time plus the value
of STIME.

STODFLAG
If on, the first PATCH viII be issued when current time equals the
value of STIeE. If STIME is less than current time, the PATCH viII
occu~ the next day.

SADJPLAG
If on, the time of the first PATCH is c~lculated by assuming STIKE
contains the time of day (TOD), except that the value in ITIKE is
added to STIKE until that yalue is greater than current time.

ITIKE*
Is a fullword binary number specifying the interval in 10 millisecond
units betveen successive PATCHes.

ETIME*
Is a fullvord binary number specifying when the PTQE is to be deleted.
The flags STOP identify the value in this field .•

*All time values are in 10 millisecond units and must not exceed 24
hours.

ECNTFLAG
If on, ETIKE contains a count of the number of PATCHes to be issued
by this PTQE.

ERELFLAG*
If on, ETIKE contains a time value in 10 millisecond units, when
added to the current time equals the stop time.

APPLICAT.!ON SERVICES 2-71

ETODFLAG*
If on, ETIME contains the stop time 1n 10 millisecond units.

EADJFLAG*
If on, the stop time is calculated by assuming ETIME contains the
time of day (TOO) in 10 millisecond units, except that the value in
ITIME is added to ETIME until the value is greater than current
time.

*Regardless of what value is calculated for a stop time, if it is less
than the calculated start time (see ST1ME above), a 24-hour value is
added to the stop time until the stop time exceeds the start time.

Note: If all the STOP flags are zero and ET1KE is zero, the PT1ME is
assumed to be infinite, and PATCHes will be issued until a PTIME
to modify (8) or delete (12) is issued for that task and/or
entry point name.

PATCH
Is the address of the supervisor portion of the PATCH parameters.
The options provided will be used by PTIME to issue PATCHes based on
the above time options. If PATCHSTR (the default structure) is used,
this parameter must point to TASKNAME. All information desired for
the PATCH by ~TIME must be supplied prior to CALLing the interface
routine.

RESTRICTION: Queue Position of DPATCH is not permitted (PFLAGS.DPCH
set to 1).

PARMS
Is the addrpss of a parameter list to be passed by the PATCH issued
by PTIME. See PL/I PATCH Interface for format. Note that if this
parameter 1 ist is greater than 8 bytes, the interface routine will
move it to a GETMAIN area to be freed when the PTQE is destroyed ..

START
Specifies the start time option flags which define the contents of
STIME. Only one of the flags must be set. See STIME for flag
definitions.

PURGE
Is the flag that controls the kind of DPATCH which vill be issued
when the PTQE is destroyed. If no flag is set, no DPATCH is issued.
Flags at a PTIME delete (12) will override the flags vhen the PTQE
vas created (4) or modified (8) last. only one flag may be set.

PURGEI
If on, task is deleted regardless of its condition.

PURGEU
If on, the task is deleted immediately or ~hen the current work
queue, if executing, completes. Any work queued to the task is
posted as deleted.

PURGEC
If on, the task is deleted only if its work queue is empty_

PURGEW
If on, the task will be deleted when the work queae becomes empty.

2-72 Descri ption and Operation Manual

STOP
Specifies the stop time option flags which define the contents of
ETI~E. Only one of the flags may be set. See ETIME for flag
definitions.

The PTIME facilities are invoked by calling DPPPIF with the appropriate
structure properly completed. Examples presented on the next pages
use the default structure definitions PTIMESTR and PTIMRSTR (explained
above), which are copied via %INCLUDE PTIMEDEF and %INCLUDE PTIMRDEF,
respectively. Each example assumes the following PLII statements:

DCL 1 PATCHSTR,
2 MACID FIXED BIN INIT (0) , 1* PATCH MACRO ID *1
2 FC FIXED BIN INIT(O}, 1* RETURN CODE *1
2 ~ACHPARM POINTER, 1* A (PARAMETERS) *1
2 T ASK N AM E C H A R (8) I NIT (. '), 1* T ASK N A ME *1
2 EPNAME CHAR(8) INIT('IEFBR14'), 1* LOAD MODULE *1
2 N A ME C H A R (8) I NIT (, .), 1* R EL A 'J'I VET ASK 0 F V A L U E *1
2 QUEUE FIXED BIN INIT(1), 1* DEFAULT = 1 *1
2 VALUE FIXED BIN INIT(O), 1* DEFAULT = 0 *1
2 ECB POINTER, 1* ECB ADDRESS *1
2 FREEL FIXED BIN(31,O) INIT(O), 1* RESERVED *1
2 FREEA FIXED BIN(31,0) INIT(O), 1* RESERVED *1
2 TCBX FIXED BIN(31,0) INIT(O), 1* TeB EXTENSION *1
2 PFLAGS, 1* FLAG OPTIONS IF BIT IS SET ON ~I

3 fO, 1* RESERVED *1
MA STER, 1* PARTITI ON=M ASTER *1
SLAVE, 1* PARTITION=SLAVE *1
F3, 1* RESERVED *1
REPCH, /* BCB REPATCH *1
QPOS, 1* QPOS=FIRST *1
DPCH, 1* QPOS=DPATCH *1
DEL) BIT(1) INIT('O'm 1* EP DELETE *1

DCL 1 PATCHPRM,

DCL

2 LENG FIXED BIN,
2 PATIO FIXED BIN,
2 PARX (10) FIXED BIN(31,O);

1 PTIM RSTR,
2 MACID FIXED BIN INIT(4),
2 RC FIX ED BIN INIT (0) ,
2 TYPE FIXED BIN (31,0) INIT(O),
2 TIME FIXED BIN(31,O) INIT(O),
2 TIMDSECT POINTER;

1* STRUCTURE FOR PTIME
/* PTIME SERVICE *1
1* RETURN CODE *1
1* PTIME CALL TYPE *1
1* CURRENT TIME *1
1* A(TIME ARRAY *1

TYPE=BET *1

DCL 1 PTIMESTR,
2 MACln FIXED BIN INIT (4) ,
2 RC FIXED BIN INIT(O),
2 TYPE FIXED BIN(31,O) INIT(4)', /* PTIME CALL TYPE *1
2 STIME FIXED BIN(31,0) INIT(O), 1* START TIME *1
2 ITIME FIXED BIN(31,0) INIT(O), 1* INTERVAL TIME *1
2 ETIME PIXED BIN(31,O) INIT(O), 1* STOP TI"E *1
2 PATCH POINTER, /* A (PATCH SUPL) *1
2 PARMS POINTER, 1* A(PARAMETERS) *1
2 START. 1* FLAGS DEFINE STIME CONTENTS *1

3 (F O. F 1 , F 2, F 3 , F 4 , 1* RES E RV E D * I
SADJFLAG, 1* ADJUSTED TIME *1
STODFLAG, 1* TIME OF DAY *1
SRELFLAG) BIT (1) INIT (' 0' B), /* RELATIVE Tlr!E *1

2 PURGE, 1* FLAGS DEFINE PTIME PURGE OPTIONS *1
3 (FO,F1,F2,F3, 1* RESERVED *1

PURGEI, 1* DPATCH=I *1
PURGEW, 1* DPATCH=W *1

APPLICATION SERVICES 2-73

PURGEC~ 1* DPATCH=C *1
PURGEU) BIT(1) INIT('O'B). 1* DPATCH ; U *1

2 STOP~
3 (FO,F1,F2,F3.

ECNTFLAG.
EADJ FLAG,
ETODFLAG,

1* FLAGS DEFINE ETIME CONTENTS *1
1* RESERVED *1
1* COUNT VALUE *1
l* ADJUSTED TIME *1
1* TIME OF DAY *1

ER EL FL AG) B.IT (1) INIT('O'B); 1* RELATIVE TIRE *1

DCL 1 'rIMED BASED (TIMDSECT).
2 TIMEHS FIXED BIN(31,0),
2 TIMETOD FIXED BIN(31.0)~
2 TIMEJDAY FIXED DEC(7,O)~
2 TIMEMDAY FIXED DEC(7,0),
2 TIMEEBC CHAR (10) ..
2 TIMEBDAY PIXED BIN;

EXAMPLE 1: In the first example, the program uses the default structure
PTIMRSTR to obtain the current time. Note, that as a result of the
CAL~, the time array structure TI~ED is usable since its base variable
(a POINTER variable in PTIMRSTR) has been set. The current time is
used to set the start time in PTIMESTR for PATCHes by PTIME, at current
time plus 1 hour. The interval is set to 1 hour, and the last PATCH
is to occur 3 hours later. The PATCH parameters are set to create the
task TIMETEST with a work queue length of 5~ and a dispatching priority
of 15 less than the PTIME task. The PATCH will execute program TTEST
and delete it when the processing of each work request completes. The
parameters passed are day of the year and time of the PTIME request
with a PATCH ID of 10.

CALL DPPPIF(PTIMRSTR.MACID);
PATCH ADDR (PATCHSTR.TASKNAM~

PARMS = ADDR (PATCHPRM.LENG);
STIME = TIME+360000;
STODFI.AG = 'l'B;
ITIME = 360000;
ETIME = STIME+l080000;
ETODFLAG = 'l'B;
TA S K N A M E = 'TI ME TE ST ' ;
QUEUE = 5;
VALUE = 15;
EPNAME = 'TTEST';
DEL = '1' B ;
LENG = 12;
PATIO = 10;
PARX(l) = TIMEBDAY;
PARX(2) = TIME;
CALL DPPPIP(PTIMESTR.MACID);

1* CURRENT TIME *1
1* BUILD THE PTIME *1
1* PAR AMETERS *1

1* BUILD THE PATCH *1
1* PARAMETERS *1

1* BUILD THE PROGRAM *1
1* PARAMETERS *1

1* ISSUE THE PTIME *1

EXAMPLE 2: For the second example, the PTQE built hy Example 1 will
be modified (TYPE = 8) to start the PATCHes 15 seconds after this PTIME
is issued, the interval to once a minute, and the stop time to never
end. The program will not be deleted when a work request is fin,ished
processing and the work request will be queued first. The PATCH ID
will be char-ged to 5. Note, that all parameters must be re-sp~cified,
as a modify acts as a replace. All structures are initially default.

2-74 Description and Operation Manual

TYPE = 8;
PATCH = ADDR(PATCHSTR.TASKNAME);
PARMS = ADDR(PATCHPRM..LENG);
STIME = 1500;
SRELFLAG = ", B;
ITIME = 6000;
TASKNAME = 'TIMETEST';
QUEUE = 5;
VALUE = 15;
EPNAME = 'TTEST';
QPOS = 1;
LENG = 12;
PATID = 5,
PARX(1) = TIMEBDAY;
PARX (2) = TIME;
CALL DPPPIF (PTI ME STR. MACID) ;

1* MODIFY PTQE */

1* BUILD PATCH PARAMETERS *1

1* BUILD PROGRA~ PARAMETERS *1

1* ISSUE PTIME *1

EXAMPLE 3: Example 3 shows the use of the adjusted time facility of
PTIME. The first Pll.TCH is to occur at 5 a.m. or within 30 minutes of
when the PTIME was issued and at 30-minute intervals for 6 times. The
task is to be deleted immediately when the PTQE is destroyed.

PURG EU = '1' B;
STIMF = 1800000;
SADJFLAG = '1'B;
ITIME = 180000;
ETIME = 6;
ECNTFLAG = '1 t B;

PATCH PAR AMETER S

PROBLEM PAFAMETERS

CALL DPPPIF(PTIMESTR.MACID);

1* BUILD PTIME PARAMETERS *1

1* ISSUE PTIME *1

EXAMPLE 4: Example 4 is the example for deleting a PTQE. Since the
function of this PTIME service request is to locate the PTQE which is
to be destroyed, only the parameters required to identify the PTQE need
be given. In this case, the task is to be DPATCHed as well.

PURGEU = '1'B;
TYPE = 12;
PATCH = ADDR (TASKNAME);
PARMS = ADDR (LENG) ;
TASK NAME = 'TIMETEST';
EPNAME = 'TTEST';
PATID = 10;
CALL DPPPIF(PTIMESTR.MACID);

This example would remove the PTQE created by Example 1.

APPLICATION SERVICES 2-75

The Special Real Time Operating System DPATCH facility provides the
programmer the method for destroying tasks which were created by the
PATCH service.

A PL/I interface exists to provide a DPATCH service. The default
structure, DPACHSTR, shown below, may be copied into the PL/I program
by a %INCLUDE DPACHDEF.

DCL 1 DPACHSTR,
2 MACID FIXED BIN INIT (8)
2 RC FIXED BIN INIT (0),
2 TYPE .FIXED BIN INIT(O) ,
2 TA S K C H A R (8) I NI T (' ');

DPACHSTR

1* DPATCH STRUCTURE *1
1* DPATCH ID *1
1* RErURN CODE *1
1* DEFAULT PURGE = U *1
1* TASK NAME *1

Specifies the name of the default st~ucture used to destroy tasks
created by a PATCH.

MACID
Specifies a halfword binary value set to 8 to identify a DPATCH
service request.

RC
Specifies a halfword binary value containing the return code from
the service request. The return codes are defined in the macro
description.

TYPE
Specifies halfword binary value specifying the DPATCH service
requests. If 0 is specified, the task is deleted immediately or at
the completion of the currently executing work request. Any work
queued to the task is posted as deleted. If 4 is specified, the task
is deleted only if its work queue is empty~ If 8 is specified, the
task is deleted when the work queue becomes empty. This does not
prevent new work from being queued. If 12 is specified, the task is
deleted eve'n if it is active.

TASK
Specifies the name of the task being deleted. If left blank, the
current t as k is del eted.

The example assumes the above default structure. The first DPATCH
request sets up the current task to be deleted when its work queue
becomes empty. The second DPATCH requests that the task be deleted
only if it is not doing any work. The last DPATCH requests that the
task be destroyed regardless of its condition.

TYPE = 8;
CALL DPPPIF(DPACHSTR.MACID);
TYPE = 4;
TA SK = I TE STDPCH ' ;
CALL DPPPIF(DPACHSTR.MACID);
TYPE = '2;
TASK = 'DPCHTEST';
CALL DPPPIF(DPACHSTR .MACID) ;

2-16 Description and operation Manual

The MESSAGE service is used to cause a predefined message to be printed
or displayed. The message must have been defined through the offline
utility system using the DEFMSG macro.

The PL/I structure, MESAGSTR, (defined below) contains the parameters
for the MESSAGE service-and may be copied into the program via %INCLUDE
MES AGDEF;

DCL 1 MESAGSTR,
2 MACI D FI XED BI N INI!f (40) ,
2 RC FIXED BIN INIT (0) ,
2 MSGNUM FIXED BIN INIT (0) ,
2 ACT CHAR (1) INIT (' '),
2 WAIT BIT(1) INIT('O'B),
2 RESERVED FIXED BIN(31,0) INIT(O)
2 AREA POINTER,
2 ROUTE (8) FIXED BIN INIT(O),
2 VAR (10) POINTER;

MESAGSTR

1* MESSAGE NUMBgR *1
1* ACTION CODE *1
1* WAIT = NO *1
1* RES ERVED *1
1* A{RETURN OF MESSAGE) *1
1* ROUTING CODES *1
1* A(VARIABLES) ARRAY *1

Is the name of the default structure used for the PL/I message
int er face.

MACID
Is a halfword binary value of 40'to indicate the service requested
to the interface routine.

RC
Is a halfword binary value containing the return code from the service
routine. See MESSAGE macro for possible values.

APPLICATION SERVICES 2-11

MSGNUM
Is a halfword binary value from 1 to 999 identifying the message
requested.

ACT
Is a 1-byte character to be appended to the message number. I denotes
information; A denotes action is required; and D denotes that a
decision is required.

WAIT
Is a flag bit indicating the program's decision to WAIT for the
message to be sent. Default is off, which is no wait.

RESERVED
Is a full word binary field reserved for the interface routine.

AREA
Is a pointer variable containing the address of an area where the
service routine will place the formatted message for use by the
program.

ROUTE
Specifies a table of 8 halfword binary numbers representing the
devices on which the message will appear or will be printed. All
unused entries must be zero.

VAR
Specifies a tahle of 10 pointer variables addressing the variable
data to be converted and inserted into the message. All unused
entries must be zero. Only consecutive non-zero entries will be
used.

T~e example below requests the MESSAGE service to output to routing
code (1) message number 37 with a variable text field of "JOB IS
FINISHED, PLEASE CANCEL". The message number viII have an action code
of "A" appended to notify t.he operator to act. The program will vait
for the message to be transmitted. The example presumes the above
MESAGSTR structllr e.

%INCLUDE MESAGDEF;

DCL A CH AR (50)
INIT('JOB IS FINISHED. PLEASE CANCEL');

DCL X CHAR(128);
MSGNUM = 37;
ACT = 'A';
WAIT = '1'B;
AREA = ADDR (X) ;
ROUTE(1) = 1;
VAR (1) = ADDR (A) ;
V A R (2) = NUL L;
CALL DPPPIF(MESAGSTR.MACID);

The RECORD facility provides a method for writing data to a sequential
data set. The data can be retrieved at a later time for offline
process ing.

The defallit PL/T structure RECRDSTR. defined below, can be copied into
the program via a %INCLUDE RECRDDEF;

2-78 Description and Operation Manual

DCL , RECR DSTR,
2 MACI D FIXED BI N INIT (56) ,
2 R C F IX ED BIN I ~ IT (0) ,
2 COUNT FIXED BIN(31,0) INIT(O),
2 DATX POI NTER ,
2 ID FIXED BIN INIT(O);

RECRDSTR

1* RECORD ID *1
1* RETURN CODE *1
1* DATA LENGTH *1
1* DAT A ADDRESS *1
1* DATA 10 NO. *1

Is the name of the default structure used to invoke the RECORD
service.

MACID
Is a halfword binary number used to identify the service being
requested. Default is 56 for RECORD.

BC
Is a halfword binary value containing the completion codQ from the
RECORD service routine. See RECORD macro writeup for valid return
codes.

COUNT
Is a fullword binary number which is the number of bytes to be
recorded. A maximum value of 65535 bytes may be specified.

DATX
Is the address of the data to be recorded.

ID
Is a halfword binary number from 1 to 4095 which identifies the data
being recorded.

The following example presumes the RECRDSTB structure above:

DCL A (16) P IX ED B IN I NI T (5) ;
COUNT = 32;
ID = 10;
DATX = ADDR(A);
CALL DPPPIF (RECRDS'!'R. MAClD) ;

This interface provides the PL/I programmer t.he facility to wait for
the completion of a work queue element generated by a PATCH. The
following default structure WAITSTR may be copied into a PL/I program
by a %JNCLUDE WAlTDEF.

DCL 1 WAITSTB, 1* PATCH-WAIT STRUCTURE *1
2 MACID FIXED BIN INIT (60) , 1* WAIT r1ACRO ID *1
2 RC FIXED BIN INIT(O) , 1* ECBPOST CODE *1
2 EVENT FIXED BIN(31,O) INIT(O); 1* ECB *1

WAITSTR
Is the name of the default structure provided for waiting on PATCH
request completion.

MACID
Is a halfword binary number of 60 identifying the service requested
to the interface routine.

BC
Is a halfword binary number containing the completion flag byte from
POST. See PATCH macro for possible values.

APPLICATION SERVICES 2-79

EVENT
Is a fullword binary field containing the completion code from the
finished work queue processing or the address of a BEPATCH control
block. The value in this field is governed by the contents of BC.

Note: For this structure, RC will never be zero when the interface
routine returns to the PL/I program.

The following example uses the default structures for PArCHsrR and
WAITSTR as shown. Note, that the user need not zero the variable EVENT
as the interface routine will automatically zero the first byte when
moving it to the RC field.

DCL , PATCHPRM,
2 LENG FIXED BIN,
2 PATID FIXED BIN,
2 PAR X (, 0) F I XED BI N (3 1 ,0) ;

DCL , PATCHSTR,
2 MACI D PIXED BIN INIT (OJ ,
2 HC FIXED BIN INIT(O) ,
2 PACHPARM POINTER,
2 TASKNAME CHAR(8) INIT(' '),
2 EPN AM E CHA R (8) I N IT (. I EF BR 14') ,
2 NAME CHAR (8) INIT{' '),
2 QU EU E FIXED BIN INIT (1) ,
2 V A L U E F I XED BI N I NIT (O) ,
2 EC B PO IN TE R ,
2 FREEL FIXED BIN(3',O) INIT(O),
2 FREEA FIXED BIN(3',O) INIT(O),
2 PCBX FIX ED BIN (3',0) IN IT {OJ ,
2 PFLAGS,

3 (FO,
MA STER,
SL AVE,
F3,
REPCH,
QPOS,
DPCH,
DEL) BIT('> INIT('O'B);

DCL 1 WAITSTR,
2 MACID FIXED BIN INIT (60) ,
2 HC FIXED BIN INIT(O),
2 EVENT FIXED BIN{31,0) INIT(O);

LENG = 4;
PATID = 2;
PACHPARM = ADDR(PATCHPRK.LENG);
TASKNAME = 'TESTWAIT';
EPNAME = 'WAITTEST';
ECB = ADDR (EVENT) ;
CALL DPPPIF (PATCHSTR.MACID);

2 EVENT FIXED BIN(31,O) INIT(O);

This PL/I interface provides the programmer the facilities of the
Special Real Time Operating System REPATCH service. The default
structure, REPCHSTR (defined beloW), lIay be copied into the PL/I prograll
via a ~INCLUDE REPCHDEP;.

2-80 Description and Operation Manual

DCL 1 REPCHSTR,
2 MACI D FIXED BI N INIT (12) ,
2 RC FIXED BIN INIT(O),
2 TYPE FIXED BIN(31,0) INIT(O),
2 REPCB FIXED BIN (31 ,0) ,
2 T AS K CH AR (8) ,
2 EP CHAR (8)
2 RELTASK CHAR (8),
2 QU E FIXED BI N,
2 VAL FI XED B1 N,
2 ECB POINTER,
2 RES (2) POINTER,
2 TCBX POINTER,
2 PFLAGS,

3 (FO,
MA ST,
SLAV,
F3,
RP ECB,
QP as 1,
DP ACH,
DELET) BIT (1) ,

2 RES 1 (3) POI NTER;

REPCRSTR

1* REPATCH STRUCTURE *1
1* REPATCH MACRO 10 *1
1* RETURN CODE *1
1* SERVICE TYPE *1
1* A(REPATCH CNTL BLK) *1
1* TASKNAME *1
1* LOAD MODULE *1
1* REL TASK FOR VALUE *1
1* QUEUE LENGTH *1
1* PRIORITY CHG *1
1* ECB ADDRESS *1
1* RESERVED *1
1* TCBX ADDRESS *1
1* FLAG OPTIONS IF BIT IS SET ON *1
1* RESERVED *1
1* PATCH PARTITION = MASTER *1
1* PATCH PARTITION SLAVE *1
1* RESERVED *1
1* ECB REPATCH *1
1* QPOS=FIRST *1
1* QPOS=DPATCH *1
1* EP DELETE *1
1* EESERVED SUPERVISOR POINTERS *1

Name of the default structure provided for the Special Real Time
Operating System REPATCR service requests.

MACID
A halfword binary value of 12 identifying the service required to
the interface routine.

RC
A halfword field containing a binary number return code from the
REPATCH/PATCH service routine. See REPATCH macro write-up for REPATCH
and related PATCH return codes.

TYPF
A fullword binary value indicating the interface routine service
required.

o -- The REPATCH control block is to be copied to the REPCHSTR to
permit alteration of PATCH parameters prior to REPATCH.

4 Issue REPATCH TYPE=EXEC.

8 Issue FEPATCH TYPE=PURGE.

REPCB
A fullword binary field to contain the REPATCH control block address
placed in the WAITSTR.EVENT when WAITSTR.RC equaled 68. The value
in EVENT must be moved to REPCB before any interface call except the
first interface call TYPE=4 or 8 following a TYPE=O interface call.

TASK
Specifies an 8-character name which is the name of the task being
referenced by this PATCH.

EP
Specifies the 8-character valid program name of the program to be
scheduled under the task specified in TASK.

RELTASK an d VAL
Specifies an 8-character task name and a halfword value which will
det~rmine the priority of the new task. VAL will be subtracted from

APPLICATION SERVICES 2-81

the dispatching priority of the specified task. VAL may range from
Q to 255 with zero default. See PRTY option of PATCH macro for
further detail.

QUE
A halfword value specifying the number of vprk queue entries to be
provided for a new independent task.

ECB
specifies the address of the ECB within a WAITSTR which is to be used
in a CALL DPPPIF. This ECB is posted when processing for this PATCH
completes. The ECB which contained the REPATCR control block address
mdY be reused and will be if this parameter is left unchanged.

TCBX
Specifies the address of the TCB extension control block for an
existing independent task .•

PFLAGS
The PATCH option flags as described below:

MAST
This PATCH is intended for the MASTER partition.

SLAV
This PATCR is intended for the SLAVE partition.

RPECB
Specifies that if this work request is pushed off the queue, the
ECB is to be posted with a REPATCH control block address.

QPOS1 and DPACH
Specifies where in the task work queue this work request is to go
if the task is busy. If QPOS1 is on, the reqQest is to be placed
first on the queue. If DPACH is on, the processing for this PATCH
will not be executed until a DEPATCH is issued for this task. Both
flags off means this request is queued last.

DELET
Specifies that a DELETE is issued for the EP name after processing
completes for this PATCH.

RES and RES1
The pointers must remain unchanged.

The Special Real Time Operating System REPATCH service may be invoked
by including the REPCHDEF in the PL/I program, moving the REPATCH
control block address from the event control block to REPCB and then
executing one of the following:

a .• If the REPA'J'CH is to be done without change, set TYPE to 4 or 8
and CALL DPPPIF.

b. If the REPATCH is to be changed prior to execution, set TYPE to 0,
CALL DPPPIF, make changes desired, set TYPE to 4 and CALL DPPPIF
again.

Users of this facility should be aware that only the "supervisor"
portion of the PATCH parameters can be altered. The problem paraaeters
cannot be changed. All REPATCH control b~ocks must be returned to the
system through a TYPE=4 or 8 service request.

2-82 Description and Operation Manual

The following examples will show the various methods of using REPCHSTR.

The examples for using the REPCHSTR use the following set of structures:

DCL

DCL

1 REPCHSTR,
2 MACID FIXED BIN INIT(12),
2 RC fIXED BIN INIT (0) ,
2 TYPE FIXED BIN(31,O) INIT(O),
2 REPCB FIXED BIN(31,0),
2 TASK CHAR(8),
2 EP CHAR (8),
2 RELT AS K CH AR (8) ,
2 QUE fIXED BIN,
2 VAL FIXED BIN,
2 ECB POINTER,
2 RES (2) POINTER,
2 TCBX POINTER,
2 PFLAGS,

3 (FO,
MAST,
SLAV,
F 3,
RPECB,
QPOS1,
DPACH,
DEL ET) BI T (1) ,

2 RES1 (3) POINTER;
1 WAITSTR,
2 MACI D PI XED BI N INIT (60) ,
2 RC PIXED BIN INIT(O),
2 EVENT PIXED BIN(31,O) INIT(O);

1* REPATCa STRUCTURE *1
1* REPATCH MACRO ID *1
1* RETURN CODE *1
1* SERVICE TYPE *1
1* A(REPATCH CNTL BLK) *1
1* TASKNAME *1
1* LOAD MODULE *1
1* REL TASK FOR VALUE *1
1* QUEUE LENGTH *1
1* PRIORITY CHG *1
1* ECB ADDRESS *1
1* RESERVED *1
1* TCBX ADDRESS *1
1* FLAG OPTIONS IF BIT IS SET ON *1
1* RESERVED *1
1* PATCH PARTITION = MASTER *1
1* PATCH PARTITION = SLAVE *1
1* RESERVED *1
1* ECB REPATCH *1
1* QPOS=FIRST *1
1* QPOS=DPATCH *1
1* EP DELETE *1
1* RESERVED SUPERVISOR POINTERS *1
1* PATCH-WAIT STRUCTURE *1
1* WAIT MACRO ID *1
1* EeB POST CODE *1
1* ECB *1

F.XAMPLE 1: Example 1 shows the corre~t method for purging a REPATCH
control block, should a work request fail to be e)(ecuted. The example
begins with the PATCH-WAIT which is notified about the work request
not getting done.

CALL DPPPIF (WAITSTR.MACID);
IF WAITSTR.RC = 68 THEN DO;

REPCHSTR.REPCB = WAITSTR.EVENT;
REPCHSTR.TYPE = 8;
CALL DPPPIF (REPCHSTR .. MAC! D) ;

END;

Exam pIe 1

APPLICATION SERVICES 2-83

EXAMPLE 2: Example 2 demonstrates the method for altering a REPATCH
control block. As with Example 1, this example begins with a WAIT on
a PATCH.

X: CALL DPPPIF (WAITSTR.MACID);
IF WAITSTR.RC = 68 THEN DO;

REP C H S TR • REP C B = if A ITS TR • E VE NT ;
REPCHSTR.TYPE = 0;
CALL DPPPIF (REPCHSTR. MACID) ;
REPCHSTR.PFLAGS.~POS' = "'B;
WAITSTR.EVENT = 0;
REPCHSTR.TYPE = 4;
CALL DPPPIF (REPCHSTR.KACID);
IF REPCHSTR.RC (8 THEN GOTO X;

END;

Example 2
The above example replaces the vork request on the work queue for the
same task as previously requested, ex~ept that it viII be placed first
on th e queue.

This PL/I interface provides the programmer the facilities of the
Special Real Time operating System GETARRAY and PUTARRAY services. The
default structure, ARRAYSTR (defined below), may be copied into the
PL/I program via a %INCLUDE ARRAYDEF;.

DCL 1 ARRAYSTR, 1* GET/PUT ARRAY STRUCTURE *1
2 MACID FIXED BIN INIT (16) , 1* ARRAY MACRO ID *1
2 RC FIXED BIN INIT (0) , 1* RETURN CODE *1
2 NAME POI NTER, 1* A (NAKELIST/NUKBERLIST/ADDRLIST)
2 AR EA POI NTER, 1* A (FINDLIST/DATAAREALIST) *1
2 NAMEINCR FIXED BIN INIT (0) , 1* LIST INCREMENT *1
2 ARE AINCR FIX ED BIN INIT (0) , 1* LIST INCREMENT *1
2 TYPE FIXED BIN I NIT (0) ; 1* TYPE OF ARRAY SERVICE */

ARRAYSTR
Name of the default structure provided f~r the Special Real Time
Operating System array service requests.

MACID
A halfword binary value of 16 identifying the service required to
the interface routine.

RC
A halfword field containing a binary number return code from the
array service routine. See GET ARRAY and PUTAERAY macro write-ups
for posRible values.

NAME
The address of one of the following based on the specifications
implied by the value of TYPE.

a. If TYPE specifies 'NAMELIST', then NAME points to a list of
8-character array names followed by an X'FF' after the last name
where the next name would start. NAftEINCR contains the value
to be added to the list address to locate the next array name.

2-84 Description and operation Manual

*1

NAME LIST

o NAMEI

NAMU

b. If TYPE specifies 'NUMBERLIST', then NAME points to a list of
halfword binary array numbers followei by an X'FF' after the
last array number where the next number would start. NAMEINCR
contains the value to be added to the list address to locate
the next array number in the list.

NUMBER LIST

o 1ST NUMBER

2 2ND NUMBER

4 FF I

c. If TYPE specifies 'ADDRESSLIST', then NAME points to a list of
array addresses as returned from a previous GETARRAY execution.
The list must be terminated by a fullword binary value of -1
after the last array address where the next address would be
located. NAMEINCR contains the value to be added to the list
address to locate the next array address.

ADDRESS LIST

) A(IST ARRAY)

4 A(2ND ARRAY)

\:FFFFFFF

AREA
The address of one of the following based on the specifications
implied by the value of TYPE.

a. If TYPE specifies 'DATALIST', then AREA points to a list ~f
addresses into or from which the data of the specified arrays
(see NAME above) is to be moved. AREAINCP contains the value
to be add?d to the list address to locate the next data area
address in t he list.

DATA ARFA ADDRFSS LIST

) Al 1ST DATA ARI'A)

4!A(2ND DATA ARFA

x ADRIJ \)ATA ARFA)

b. If TYPE specifies 'FINDLIST', then AREA points to a list of
10-byte fields to be filled with a flag byte (see GETARRAY macro
write-up), a 3-byte array address, a halfword block count, a
halfword array size or block size and a halfword item count.
The,list must contain one entry more than the number of addresses
expected to allow for an end of list X'FF'. AREAINCF contains

APPLICATION SERVICES 2-85

the value to be added to the list address to locate the next
10-byte field. The minimum value for AREAINCR under this option
is 8; in which case, the item count halfword will not be in the
list.

FIND LIST

o FLG ARRAY ADDR NO.BLKS SIZE NO.ITEMS

IO FLG ARRAY ADDR NO.BLKS SIZE NO.ITEMS

20 FF

c. If TYP E specifies' SPECLIST', then AREA points to a list ::>f
16-byte fields to be filled with an 8-byte item name, a 1-byte
item length, a 1-byte data type, a halfword array displacement
to the start of the item, a halfword array 10, and a halfword
number identifying the number of identical and sequential items
defined by this entry. AREA1NCR contains the value to be added
to the list address to locate the next 1E-byte field.

ARRAY SPECIFICATIONS LIST

o ITEM NAME LNG TYPE DISP. AID REPT

16 ITEM NAME LNG TYPE DISP AID REPT

32 ITEM NAME LNG TYPE DISP AID REPT

NAMEINCR
A halfword value added to NAME to locate the next entry in the list.
A value must be specified.

AREAINCR
A halfword value added to AREA to locate the next entry in the list.
A value must be specified.

TYPE
A halfword binary value specifying the array service options selected.
The values (given in the tables below) identify the contents of NAME
and AREA, either a GETARRAY or PUTARRAY, the array service (i.e.,
DATALIST, ADDRLIST or SPECLIST) , and the desired protection for
GETARRAYs (PROTECT or RISK) •

DA TA L1 ST
Specifies that the content of the array(s) is to be returned
(GETARRAY) or updated (PUTARRAY).

ADDRL1ST
Specifies that a 'FINDL1ST' entry is to be completed for each array
name or number in the list. Option is valid for virtual storage
resident arrays only.

SPECLIST
Specifies that a 'SPECL1ST' entry is to be completed for each item
of each array name or number in the list.

PROTECT
Specifies that the array service will lock during processing to
prevent changes from altering results.

2-86 Description and Operation Manual

RISK
Specifies that the array service will be processed regardless of the
possibility of parallel processing changing the array content.

NAME AREA SERVICE PROTECTION TYPE
REQUESTED REQUESTED VALUE

A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 16

A(NAME LIST) A(DAT A LIST) DATA LIST RISK 17

A(NAME LIST) A(SPEC LIST) SPECLIST PROTECT 20

A(NAMELIST) A(SPEC LIST) SPECLIST RISK 21

A(NAME LIST) A(FIND,LIST) ADDR LIST PROTECT 34

A(NAME LIST) A(FIND LIST) ADDR LIST RISK 35

A(ADDR LIST) A(DATA LIST) DATA LIST PROTECT 48

A(ADDR LIST) A(DATA LIST) DATA LIST RISK 49

A(NUMBER LIST) A(DATA LIST) DATA LIST PROTECT 80

A(NUMBER LIST) A(DATA LIST) DATA LIST RISK 81

A(NUMBER LIST) A(SPEC LIST) SPECLIST PROTECT 84

A(NUMBER LIST) A(SPEC LIST) SPECLIST RISK 85

A(NUMBER LIST) A(FIND LIST) AD DR LIST PROTECT 98

A(NUMBER LIST) A(FIND LIST) ADDR LIST RISK 99

Figure 2-15. GETTARRAY Services

A(NAME LIST) A(DATA LIST) DATA LIST N/A 128

A(ADDR LIST) A(DATA LIST) DATA LIST N/A 144

A(!'IUMBER LIST) A(DATA LIST) DATA LIST N/A 176

Figure 2-16. POTARRAY Services

The GETARRAY/PUTARRAY services are invoked in PL/I by CALLing DPPPIF
with the properly completed array name/number/address list data address
list and structure (ARRAYSTR or a similar structure).

The examples for using GETARRAY or PUTARRAY services in PL/I use the
following list of structures and variables:

APPLICATION SERVICES 2-87

DCl 1 ARRAYS TR ..
2 MACID FIXED BIN INIT (16) ,
2 HC F IX ED BIN INIT (0) ,
2 NA ME POI NTER ,
2 APEA POINTER,
2 NAMEINCR FIXED BIN INIT(O),
2 AREAINCR FIXED BIN INIT(~ ..
2 TYPE FIXED BIN I NIT (0) ;

DCL 1 ARRAY,
2 NAME (2) CHAR (8), NO (2) FIXED BIN,
2 PI ND ('2),
3 ADDRESS POINTER,
3 BLKCNT FIXED BIN,
3 BLKSIZ FIXED BIN,
3 IT EM CN'r F I XED BI N ,
3 RES FIXED BI N,
2 CORE (2) POINTER;

DCL 1 ARRAYITM (255),
2 NAME CHAR (8) ,
2 LNG BIT (8) ,
2 TYP BI T (8) ,
2 DISP FIXED BIN;

DCL ITEM (255) CHAR (16) ;
DCL Q POINTER BASED (P);

Note, that the structure ARRAY has the field NAME for use when calling
arrays by name, or NO for use when calling arrays by number.

Both of the following examples make use of the fact that once a
structure has been altered it remains unchanged; i.e., the array name
in the first example needed to be specified only once.

The first example will locate array 'B' through the FINDLIsr option,
r~ad in the item specifications through the SPEC option and then read
i:l the arra y.. The arra y is then changed and the new array transmitted.

ARRAY.NAME(1) = 'B ';
P = ADDR(ARRAY .. NAME(2»;
Q = NULL;
ARRAYSTR.NAME = ADDR(ARRAY.NAME(1»;
ARRAYSTR.NAMEINCR = 8;

1* BUILD PARAMETER *1
1* LIST TO LOCATE *1
1* NAMED ARRAY *1

ARRAYSTR.AREA = ADDR(ARRAY.FIND(1).ADDRESS);
ARRAYSTR. AREAINCR = 12;
ARRAYSTR.TYPE = 35;
CALL DPPPIF (ARRAYSTR. MACID) ;

1* THE FIND LIST HAS BEEN BUILT *1
ARRAY .COR E(1) = ADDR (ARRAYITM (1). NAME);
ARRAYSTR. AREAINCR = 4;
ARRAYSTR .. AREA = ADDR (ARRAY.CORE(1)} ;
ARRAYSTR.TYPE = 21;
CALL DPPPIF (ARRAYSTR. MACID) ;

1* BUILD PARAMETER *1
1* LIST TO *1
1* OBTAIN *1
1* LIST OF ITEM NAMES */

1* THE ITEM SPECIFICATIONS HAVE BEEN OBTAINED *1
A R RAY. CO R E (1) = A DD R (IT EM (1)) 1* REA D TR E *1
ARRAYSTR.TYPE = 16; 1* ENTIRE ARRAY *1
CALL DPPPIF(ARRAYSTR.MACID);

1* THE ARRAY HAS BEEN READ *1
ITEM(1) = 'THIS BLOCK ZAPED';

1* THE ARRAY IS ALTERED *1
AFRAYSTR.TYPE = 128;
CALL DPPPIF(ARRAYSTR.MACID);

1* THE ARRAY IS UPDATED *1

Exampl e 1

1* RRITE THE ENTIRE ARRAY *1

Note that in the above example all services to the array are by name.

2-88 Description and Operation Manual

The second example is identical to the first, except that the array is
numbered.

ARRAY.NO(1) = 1;
ARRAY.NO(2) = -1;
ARRAYSTR.NAMR = AODR(ARRAY.NO(1»;
ARRAYSTR.NAMEINCR = 2;
ARRAYSTR. AREA = ADDR (ARRAY .. FI ND (1). ADDRESS) ;
ARRAYSTR.AREAINCR = 12~
ARRAYSTR.TYPE = 99;
CALL DPPPIP (ARR AYSTR. MACID) ;

1* THE FINDLIST HAS BEEN BUILT *1
ARRAY.CORE(1) = ADDR(ARRAYITM(1) • NAME) ;
ARRAYSTR. AREA = ADDR(ARRAY.CORE(1»;
ARRAYSTR.AREAINCR = 4;
ARRAYSTR. TYPE = 85;
CALL DPPPIF (ARRAYSTR. MACID) ;

1* THE ITEM SPECIFICATIONS HAVE BEEN OBTAINED *1
ARRAY.CORE(l) = ADDR(ITEM(1»;
ARRAYSTR.NAME = ADDR(ARRAY.FIND(l).ADDRESS);
ARRAY .FIND(2) .ADDRESS = NULL;
IARRAYSTR.NAMEINCR = 12;
ARRAYSTR.TYPE = 48;
CALL DPP~IF(ARRAYSTR.~ACID);

1* THE ~RRAY HAS BEEN READ *1
ITEM(1) = 'THIS BLOCK ZAPED';

1* THE ARRAY IS ALTERED *1
ARRAYSTR.TYPE = 144;

CALL DPPPIF(ARRAYSTR.MACID);
1* THE ARRAY HAS BEEN UPDATED *1

Example 2

Note, that the array was read and written u~ing the ADDR option.

This PLjI interface provides the programmer the facilities of the
Special Real Time operating System GETlTE" and PUTlTEM services. The
default structure, ITEMSTR (defined below), may be copied into the PL/I
program via a %INCLUDE ITEMDEF;.

DCL , ITEMSTR, /* GET/PUT ITEM STRUCTURE */
2 MACID FIXED BIN INIT (20) • 1* ITEM MACRO 10 */
2 RC FIXED BIN INIT(O) , /* RETURN CODE *1
2 NAME POINTER, 1* A (NAKELIST/ADDRLIST) *1
2 AR EA POI NTER , 1* A (0 AT A AREA) *1
2 NAMEINCR FIX ED BIN INIT (0) • /* LIST INCREMENT *1
2 AREAINCR FIX ED BIN INIT (0) • 1* LIST INCREMENT *1
2 TYPE PIXED BIN 1 NIT (0) ; /* TYPE OF ITEM SERVICE *1

ITEMSTR
Name of the default structure provided for the Special Real Time
Operating System array-i.tem service requests.

MACID
A halfword binary value of 20 identifying the service required to
the interface routine.

ABPLICATION SERVICES 2-89

FC
A halfword field containing a binary number return code from the item
service routine. See GETITEM and PUT ITEM macro write-ups for possible
values.

NAME
The address of one of the following based on the specifications
implied by the value of TYPE.

a. If TYPE specifies 'NAMELIST', then NAME points to a list ~f
8-character item names followed by a X'FF' after the last name
where the next name would start. NAMEINCR contains the value
to be addad to the list address to locate the next item name.

NAME LIST

o NAME I

8 NAME2

16 r: FI

b. If TYPE specifies 'ADDRESS LIST', then NAME points to a list ~f
item addresses as returned from a previous execution. The list
must be terminated by a fullword of -1 where the next address
would be in the list. NAMEINCR contains the value to be added
to the list address to locate the next address in the list.

ADDRESS LIST

) A(ITEM a)

A(JTEM h)

x FFFF FFFF

ARRA
the address of one of the following based on the specifications
implied by the value of TYPE.

a. If TYPE specifies 'DATALIST', then AREA points to a data area
into or from which item data is moved. AREAINCR contains the
value to be added to the area address to locate the next area
for the next item. If AREAINCR is zero, then the item length
is used to determine the location for the next item data area.

b. If TYPE specifies 'ADDRLIST', then AREA points to a list of
4-byte entries into which ~he item length and address are stored
for each item specified in the 'NAMELIST'. The list must be

2-90

one entry longer than the number of addresses being obtained to
allow the service routine to store an end of list X'FF'.
AREAINCR contains the value to be addad to the area address to
locate the next entry.

ADDRESS LIST

o ITEM II
LENGTH ITEM ADDRESS

ITEM I ITEM ADDRESS LENGTHj 4

FF I FFFFFF

Description and Operation Manual

c. If TYPE specifies 'SPECLIST', then AREA points to a list of
4-byte entries containing the item length, flags identifying
data type and a displacement into the array to the first byte
of the item. AREAINCR contains the value to be added to the
area address to locate the next entry.

ITEM SPECIFICATIONS LIST

o ITEM TYPE FLAGS ARRAY DISPLACEMENT LENGTH
ITEM TYPE FLAGS ARRAY DISPLACEMENT LENGTH 4

ITEM TYPE FLAGS ARRAY DISPLACEMENT\ LENGTH

NAr.I::INCR
A halfword binary value added to the list address in NAME to locate
the next entry. A value must be specified.

AREA INCR
A halfword binary value added to the list address in AREA to locate
the next entry. A value must be specified unless TYPE specifies
'DATALIST' in which case ~ero may be used.

TYPE
A halfword binary number specifying tbe item service options selected.
The values (given in the tables below) identify the kind of service
(i.e., DATA, ADDR or SPEC), and whether it is a GETITEM with or
without protection (PROTECT or RISK) or a PUTITEM.

DATALIST
Specifies that the content of the array-item is to be moved from the
array to AREA or updated by the contents of AREA.

ADDRLIST
Specifies that the item • ADDRESSLIST' is to be built in AREA for each
named item.

SPECLIsr
Specifies that the item 'SPECIFICATION LIST' is to be built in AREA
for each named item.

PROTECT
Specifies that the GETITEM service will ensure data integrity during
processing.

RISK
Specifies that the GETITEM service will process the request regardless
of the possibility of parallel processing updating the content of
the named item(s).

Note: DATALIST and DDDRLIST are invalid service requests for direct
access resident arrays.

APPLICATION SERVICES 2-91

NAME AREA SERVICE PROTECTION TYPE
REQUESTED REQUESTED VALUE

A(NAME LIST) A(DAT A LIST) DATA LIST PROTECT 136

A(NAME LIST) A(DATA LIST) DATA LIST RISK 137

A(NAME LIST) A(ADDR LIST) ADDR LIST PROTECT 138

A(NAME LIST) A(ADDR LIST) ADDR LIST RISK 139

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 140

A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 141

A(ADDR LIST) A(DAT A LIST) DATA LIST PROTECT 152

A(ADDR LIST) A(DATA LIST) DATA LIST RISK 153

Figure 2-17. GETITEI1 Services

A(NAME LIST) A(DAT A LIST) DATA LIST N/A 184

A(ADDR LIST) A(DAT A LIST) DATA LIST N/A 200

Figure 2-18. PUTITEM Services

The GETITEM/PUTITEM services are invoked in PL/I by CALLing DPPPIF with
the properly completed item name/address list, data address list and
structure (ITEMSrR or a similar structure).

The example for ~sing GETITEM or PUTITEM services in PL/I uses the
following list of structures and variables:

DCL 1 ITEMSTR,
2 MACID FIXED BIN INIT (20) ,
2 RC FIXED BIN INIT (0) ,
2 NAME POINTER,
2 AREA POI NTER ~
2 NAM EIN CR FIX ED BIN INIT(O),
2 AREAINCR FIXED BIN I NIT (0) ,
2 TYPE FIX ED BIN INIT(O);

DCL 1 ITEMLI ST (6) ,
2 NAME CHAR(8),
2 ADR POINTER,
2 LNG BIT(8),
2 FLGS BIT (8),
2 DISP FIX ED BIN;

DCL ITE M (5) CHAR(16) ;
DCL Q POINTER BASED(P);
DCL F BIT (8) BASED(PT) ;

The following example will use GETITEM services to obtain the address,
specifications and data for a list of five items from the same array.
It will change the data and use PUTITEM services to update the array.

2-92 Descripticn and Operation Manual

ITE"LIST(l) .lfAftE = 'BOl ';
ITE"LIST(2) .MA"! = 'B03 ';
ITE"LIST(3) .HA"E = 'B05 ';
ITE"LIST (4) • IAftE s: '807 • ;
ITE"L 1ST (5) • H A"E = 'B09 ' ;
P = ADDR(ITEftLIST(6) .. lfA"E);
o = HULL;
ITE"STR.lIAftE = ADDR (ITE!tLIST(1) .. tllftl);
ITE"STR.IAftEIICR = 16;
ITE"STR.AREA = ADDR (ITEftLIST(l) .ADR);
ITEftSTR.1REAIMCR = 16;
ITE"STReTYPE = 136;
CALL DPPPIP (ITEftSTR."ACID);

/* ITE" ADDRESSES ARE RESOLVED */
DO I = 1 TO 5;
PT = ADDR(IT!ftLIS~(I).ADR);
F = • 00000000 • B ;
EMD;

/* PREPARE P1Rft LIST TO GET ITE" SPECS */
ITE"STR.AREA = lDDR (ITEftLIST(l) .LMG);
ITEftSTR.TYPE = 138;
CALL DPPPIP (ITEftSTR.ftlCID) ;

/* ITEft SPECIPIC1TIOHS OBTAINED */
ITEflSTR. M A!U!: = lDDR (ITEftLIST (1) .1DR) ;
ITE"LIST(6) .ADR z lULL;
ITEftSTB.1REl = ADDR(ITEft(l»;
IT!ftSTR.AREAIICR = 16;
ITEftSTB.TIPE = 158;
CALL DPPPIP (ITE"STR.ftACID) ;

/* DATl HAS BEEM READ */
DO I = 1 TO 5;
ITEft(I) = 'THIS SLOCKS GONE';
EID; '* IRITE ARRAY UPDATES BY ADDRESS */
ITEftSTR.TYPE = 200;
CALL DPPPIP (ITE"STR.ft ACID) ;

/* UPDATE IS CO"PLETE */

1* BUILD LIST OF *'
1* ITE" If A RES */

/* TER!IllTE LIST */
/* BUILD PAR" LIST */
1* TO LOCATE I TE"S *'

/* ZERO UPPER BYTE */
1* OP lDDRESS VOROS */

1* BOILD */
/* PARA"ETER LIST *1
/* TO BEAD *'
/* BY ADDRESS *1

1* ALTER DATA */

This PL/I interface provides the programmer the facilities of the
Special Real Tiae Operating System GETBLOCK and PUTBLOCK ~ervices. The
default structure, BLOCKSTR (defined below), may be copied into the
PL/I program via a ~INCLUDE BLOCKDEF.

DCL 1 BLOCKSTR, 1* GET/PUT BLOCK STRUCTURE *1
2 l't A CI D FI XED Bt N I NIT (24) , ,. BLOCK ~ACRO ID *1
2 RC FIlED BIN INIT(O). ,. RETURN CODE *1
2 !lAME POI 1fT ER, /* AlNA~ELIST'NU~BERLIST) */
2 AREA POINTER, ,* A (D AT A ADDR- BLK NO. LIST)
2 ADD FIXED BIN INIT(8), '* DATA AREA INCREMENT */
2 TYPE FIXED BIN INIT (4) ; /* TYPE OF ELOCK SERVICE */

BLOC~STR
Naae of the default structure provided for the Special Real Time
Operating systell blocked arrays service requests.

"ACID
A halfvord binary value of 24 identifying the service required to
the interface routine.

RC
A halfword field containing a binary number return code from the

*1

APPLICATION SERVICES 2-93

blocked array service routine. See GETBLOCK and PUTBLJCK macro
write-ups for possible values.

NA ME
The adtress of one of the following based on the specifications
implied by TYPE.

a. If TYPE specifies 'NAME LIST', then NAME points to a list of
8-character array names folloved by a X'FF' in the tirst byte
after the last name where the next name would start.

ARRAY NAME LIST

o NAME

8 NAME

161f-F-F""T"----------1

b. If TYPE specifies 'NUMBER LIS'!", then NAP!E points to a list of
halfword (2-byte) binary array numbers folloved by a X'PF' in
the first byte after the last number vhere the next nu.ber would
start.

NUMBER LIST

o NUMBER

2 NUMBER

4 Ff I

AREI
The address of a list of 6-byte entries. ADD contains the value to
be added to the list address to locate the next entry.

DATA AREA LIST

o FLG DATA AREA BLK. NO.

6 FLG DATA AREA BLK. NO.

12 FLG DATA AREA BLK. NO.

FLG
A 1-byte flag field. A X'40' indicates the last data area
number for a specified array, but not the end of the list.
indicates the last entry for the last array and the emd of
A X'OO' should appear in all other entries.

DATA AREA

and blJcit
A X'8:>'

the list.

A 3-byte address of the area into or from which the specified array
bloc:, is moved.

BLK. :iO.
A halfword binary number specifying the array block being moved.

ADD
A halfvord binary 7alue added to the contents of AREA to locate the
next entry in the list. If zero, a. length of 6 is assumed.

Description and operation !anual

TYPE
A halfword binary value specifying the blocked array service options
selected. The values (given in the tables below) identify the
contents of NAME and whetheL it is a GETBLOCK with or without
protection (PROTECT or RISK) or a PUTBLOCK.

NAME

A(NAME LIST)

A(NUMBER LIST

A(NAME LIST)

A(NUMBER LIST)

AREA

A<DAT A LIST)

A(DATA LIST)

A<DATA LIST)

A(DAT A LIST)

PROTECTION
REQUESTED

RISK

RISK

PROTECT

PROTECT

Figure 2-19. GETBLOCK Services

TYPE
VALUE

4

6

12

14

_
__ A_(_N_A_M_E_L_[_ST_)~~ __ A~(D_A_T~A __ L_[S_T_) __ L-____ ~N~/A ______ i :,
A(NUMBER LIST) A<DATA LIST) N/A ~

Fig ure 2- 20 • PUT BLOC K Se rvices

The GETBLOCK/PUTBLOCK services are invoked in PL/T by CALLing DPPPIF
with the properly completed structure (BLOCKS'rR or a similar structure),
the array name or number list and data address list.

APPLICATION SERVICES 2-95

The following ex~mple will GETBLOCK for block 5 from the two arrays
BLK1 and BLOKB, and PUTBLOCK the block 5 of array BLK1 to block 5 of
array BLOKB.

DCL 1 BLOCKSTR,
2 MACIO FIXED BIN INIT (24) ,
2 RC FIXED BIN I NIT (0) ,
2 NA ME POI NTER ,
2 AR EA POI NTER ,
2 ADD FIXED BIN INIT(8),
2 TYPE FIXED BIN I NIT (4) ;

DCL 1 B1K,
2 NAME (2) CHAR(8),
2 NO (2) FIXED BIN,
2 LIST (2),

3 AREA POI NTER,
3 NUM FIXED BI N,
3 RES FIXED BIN;

DCL BLOCK (2) CHAR (256) ;
DCL Q POINTER BASED (P);
D CL FBI T (8) B.A SED (PT) ;
BLK.NAME(1) :: 'BLK1 ';
B L K .. N A M E (2) = 'Bl 0 K B ';
BLK.NO(1) -= -1;
BLK.LIST(1) .AREA :: ADDR (BLOCK (1»;
PT = ADDR (BLK.LIST(1) .AREA) ;
F = '01000000'B;
BLK.LIST(1) .NUM :: 5;
BLK.LIST(2) .AREA :: ADDR (BLOCK(2»;
PT = ADDR(BLK.LIST(2) .AREA);
F = '10000000';
BLK.LIST(2} .NUM "" 5;
BLOCK STR. NAME :: A DDR (BLK. NA ME (1» ;
B LOCK S T R. AR E A :: ADD R (B L K. LIS T (1) .• ARE A) ;
BLOCKSTR.TYPE :: 12;
CALL DPPPIF (BLOCKSTR. MACID) ;

1* BLOCK 5 ARRAYS BLK1 AND BLOKB HAVE BEEN READ *1
BLK.NAME(1) :: BLK.NAME(2);
P = ADDR(BLK.NAME(2»;
Q = NULL;
PT = ADDR (BLK.LIST(1) • AREA) ;
F = '10000000'B;
BLOCKSTR.TYPE :: 5;
CALL DPPPIF(BLOCKSTR.MACID);

1* BLOCK 5 OF ARRAY BLK1 HAS BEEN WRITTEN TO
BLOCK 5 OF ARRAY BLOKB *1

'This PL/I interface provides the programmer the facilities of the GETLOG
service. The default structure (defined below) may be copied into the
PL/I program via a %INCLUDE GTLOGDEF;.

2-96 Description and Operation Manual

DCL 1 GTLOGST R,
2 MACID FIXED BIN INIT(48),
2 RC PIXED BIN INIT(O),
2 T YP E,

3 (F 0, F 1,
LOGHDR,
F3,
PROTECT,
FS,
NUMBER,
F7) BIT (1) I NIT (' 0' B) ,

2 RES BIT(1) INIT('O'B),
2 NO FIXED BIN,
2 ARE A PO I N T E R,
2 STEP FIXED BIN (31 ,0) INIT (0),
2 HEAD POINTER,
2 NAME POINTER;

GTLOGSTR

/* GETLOG DEfAULT STRUCTURE *1
/* GETLOG ~ACRO 10 *1
/* RETURN CODE *1
1* PARAMETER LIST FLAGS *1
/* RES ERVED *1
1* A(LOGHEADER) IN HEAD *1
1* RESERVED *1
1* ON IF PROTECTION REQ'D *1
/* RESERVED *1
1* NUMBERED ARRAY *1
/* RESERVED *1
/* RESERVED *1
/* ARRAY NUMBER *1
1* D AT A AR FA *1
1* RELATIVE COpy NO *1
/* A (L OG HE ADER/TIf'! E FI ELD) *1
/* A (A RR AY N AM E) '*'1

Name of the default struct~re provided for the Special Real Time
Operating S yste m GETLOG service requests.

MACID
A halfword binary value of 48 identifying the requested service to
the interface routine.

RC
A halfword binary field containing a binary number return code from
the GETLOG service routine. See GETLOG ~acro write-up for possible
values.

TYPE
A flag's field indicating to the GETLOG se~vice routine the options
req uested.

LOGHDR
If on, HEAD contains the address of a 24-byte log header identifying
the relative starting point to determine which copy of the array will
be retrieved from the log data set.

If off and HEAD is zero, the current copy becomes the relative
starting point. If off and HEAD is not zer.o, then it contains the
address of a 6-byte ti~e and day field beginning on a fullword
boundary. The first four bytes will contain a time in 10 millisecond
units. The last two bytes will contain a binary value from 1 to 366
representing the day of the year. This time and day viII be used as
a comparison value to establish a reiativp. starting point to determine
which copy of the array ~ill be retrieved from the log data set.

PROTECT
If on, a lock is set to prevent other programs from modifying the
data set while this GETLOG is in process. If off, the data is moyed
without regard to other programs which may be storing into the data
set.

NUMBER
If on, specifies that NO contains an array number. If off, NAME
contains the address of an 8-character array name padded on the right
with blanks if needed.

NO
Specifies the number of a numbered array for which a logged copy of
the array is to be retr ieved.

APPLICATION SERVICES 2-91

AREA
Specifies the address of a user-allocated storage drea where the
logged copy of the array will be written upon re~rieval from the log
data set. This area must be large enough to hold the entire array
and a logheader (24 bytes).

STEP
Is used to determine which copy of a logged array, relative to the
HEAD parameter will be retrieved from the log data set. The value
is a signed number which may be eithP.r positive, negative, or zero.

HEAD
Zero or the address of an array logging header or of a 6-byte time
and day field. See LOGHDR, under TYPE above for discussion of the
contents of HEAD.

NA~E

The address of the name of a named array for which a logged copy of
the array is to be retrieved.

The GETLOG service is invoked in PL/I by CALLing DPPPIF with a properly
completed GTLOGSTR or a similar c:;tructure.

The following example will execute a GETLOG for the previously logged
copy of array B referenced from the current copy. Note that the
structure into which the log copy is read provides space for the log
header.

DCL 1 GTLOGSTR,
2 MACID FIXED BIN INIT (48) ,
2 RC FIXED BIN INIT(O) ,
2 T YP E,

3 (FO,Y1,
LOGHDR.
F3,
PROTECT,
F5,
NUMBER,
P7) BIT (1) I NIT (' O' B) ,

2 RES BIT(l) INIT ('O'B),
2 NO FIXED BIN,
2 ARE A PO IN T E R ,
2 STEP FIXED BIN (31,0) INIT (0),
2 HEA D PO INTER,
2 NAME POINTER;

DCL A CHAR(8) INIT('B');
DCL 1 LARAY,

2 LOGHD (12) FIXED BIN,
2 ARRAY (24) FIXED BIN(31,O);

GTL OG STR. STEP =- 1 ;
GTLOGSTR. AREA= ADDR (LARAY.LOGHD(l»;
GTLOGSTR. NAME= ADDR (A) ;
CALL DPPPIF (GTLOGSTR. MACID) ;

1*
1*
/*
1*
/*
1*
/*
1*
/*
1*
/*
1*
1*
1*
/*
/*
1*

GETLOG DEFAULT STRUCTURE
GETLOG MACRO ID *1
RETU RN CODE *1
PARAMETER LIST FLAGS *1
RESERVED *1
A (LOGHEADER) IN HEAD *1
RESERVED *1
ON IF PROTECTION REQ'D *1
RESERVED *1
NUMBERED ARRAY *1
RESERVED *1
RESERVED *1
ARRAY NUMBER *1
DATA AREA */
R E1. ATIV E COpy NO *1
A (LOGHE ADER/TIM E FIELD *1
A (ARRAY NAM E) *1

2-98 Description and Operation Manual

*1

PL/I PUTLOG Interface

This PL/I interface provi1es the programmer. the facilities of the PUTLOG
service. The default structure. PTLOGSTR (defined below), may be copied
into the PLII program via a %INCLUDE PTLOGDEF;.

DCL 1 PTLOGSTR,
2 MACID FIXED BIN INI~(44},
2 ReF IX ED BIN I NI T (0) ,
2 NAME POINTER,
2 HEAD POINTER,
2 TYPE,

3 (FO, F1 ,
LOGHDR.
BLOCK,
PROTECT,
LIST,
NUMBER) BIT(1} INIT(tO'B),
3 PU'!' BI T (1) I NI T (• 1 ' B) ,

2 FES BIT (1) INIT (. 0' B) ,
2 BLKADD FIXED BIN INIT (0) ;

PTLOGSTR

1* PUTLOG DEFAULT STRUCTURE */
1* PUT LOG MACRO ID *1
/* RETURN CODE *1
/* A (NAME/NUMBER/LIST) *1
1* A (LOGHEADER/BLOCKLIST) *1
1* PARAMETER LIST FLAGS *1
1* RESERVED *1
1* A (LOGHE ADER) IN HEA D *1
1* A(BLOCKLISf) IN HEAD *1
1* ON IF PROTECTION FEQ'D *1
1* A(LIST FORM} IN NAME *1
1* A(NUMBER) IN NkME *1
1* MUST BE ON *1
1* RESERVED */
1* DISPLACEMENT NEXT BLKNO *1

Name of the default structure provided for the special Real Time
Operating system PUTLOG service requests.

MACID
A halfword binary value of 44 identifying the requested service to
the interface routine.

FC
A halfword binary field containing a binary number return code from
the PUTLOG service routine. See PUTLOG macro write-up for possible
val ues.

NAME
The address of an array name, number or a list of array names or
numbers. The flags LIST and NUMBER in the flag field TYPE define
the contents of this field~

LIST = 'O'B and NUMBER = 'O'D

Specifies the address of a name of a named array from which data is
to be logged.

LIST = 'O'B and NUMBER = "'B

Specifies the number assigned to a numbered array from which data is
to be logged in a halfword field binary field.

LIST = "'B and NUMBER = 'O'B

Specifies the address of a user-constructed list of array names from
which data is to be logged. The name list will be a table of 8-byte
entries with one valid array name in each entry_ The first byte past
the last valid entry will be set to X'FF' to indicate the end of the
name list.

APPLICATION SERVICES 2-99

EXA MPLE: Name List

0

ARRAYNAM
8

HOUSTONt)
16

TEXASt)t>t>
24

X'FF' I

LIST = '1'B and NUMBER = '1'B

Specifies the address of a user-constructed list of array numbers
from which data is to be logged. The number list vill be a table ~f
ha1fword entries with one valid array number in each entry. The
first byte past the last valid entry will be set to X'FF' to indicate
the end of the number list.

EXAMPLE: Number List

o

2 I H'I'

I H'255'
4

I H'139'
6
!

X'FF' I I

HEAD
The address of a logheader or blocklist or zero. The flags LOGHDR
and BLOCK in the flag field TYPE define the contents of this field.
If neither flag is set, HEAD is ignored.

LOGHDR = '1'B and BLOCK = 'O'B

specifies the address of an array logging header. Information in
this logging header viII identify the copy of the array which is to
be replaced in the log data set.

The logging header is a 24-byte control blOCK which precedes the
array, both as the array exists in virtual storage and as is written
to the logging array_ The logging header which was retrieved as pa1t
of a previous GETLOG macro may be used to replace that copy in the
log data set.

BLOCK = "'B and LOGHDR = 'O'B

Specifies the address of a user-constructed list of block numbers
and of core addresses. The data list will be a table of 6-byte
entries. Each entry will contain a 1-byte flag field, a 3-byte area
address, and a 2-byte block number. This will allow the user to
update selected segments of the DA log array for block VS resident
artays on demand basis. The latest log copy will be modified.
However, the entire VS resident array is not logged; only the log
block corresponding to the VS resident block specified will be
updated. The actual log copy will not change; that is repeating
PUTLOG macro calls with the BLOCK parameter will update the same log
copy. A PUTLOG without the BLOCK parameter will cause the entire
array to be logged to a new log copy.

2-100 Description and Operation Manual

o 2 4
r------r---------------------r~------~

FLAG
BYTE

AREA ADDRESS BLOCK
NUMBER

FLAG

X'40'

X'80'

AREA ADDRESS

BLOCK NUMBER

BYTE

Indicates the last entry to be processed for a
particular entry in the name list or number list.

Indicates the last entry in the data list.

Ignored.

The number assigned to the data block to be retrieved
and placed in the array described in the Name List
or Number List.

EXAMPLE: BLKLIST and Name List

Name List Data List
FIRSTbbb A(Area) H'I'

A(Arca)

X'40' A(Area)

SECONDbb =.=ll
THIRDbbb ~ L __

~X'FF'~I -----' I L
H'5'

H'IO' I Blocks in first
array

TYPE

LOGHDR

BLOCK

PROTECT

LIST

NUMBER

PUT

BLKADD

X'40' A(Arca) H'3' - Blocks in second array

A(Area! H'25S'

A(Arca) H'I' I
A(Area) H'2'

A(Area) H'37'
Blocks in third array

A(Area) H'I86'

X'80' A(Area) H'249'

A 1-byte flags field specifying the parameter options ..

See HEAD.

See HEAD.

If on, a lock is set to prevent any other modifications
to the data base during the PUTLOG service. If off,
the data will be logged without regard to other
concurrent modifications.

See NA ME.

See NAME.

Must be on for PUTLOG service.

The value to be added to HEAD to locate the next block
number. A value must be specified.

The PUTLOG service is invoked in PL/I by CALLing DPPPIF with a properly
completed array name, array number, array name list, array number list,
logheader address block list address and structure (PTLOGSrR or a
similar structure).

APPLICATION SERVICES 2-101

The following example viII PUTLOG Array B.

DCL 1 PTL OGST H,
2 MACID FIXED BIN INIT(44),
2 Be FIXED BIN INIT(O),
2 NAl'IE POINTER,
2 HEAD POINTER,
2 TYPE,

3 (FO,Fl,
LOGHDR,
BLOCK,
PROTECT,
LIST,
NUMBER) BIT(l) INIT('O'S),
3 PUT BIT(l) INIT('l'B),

2 H ES BIT (1) INIT (' 0' B) ,
2 BLKADD FIXED BIN INlT(O);

DeL A CHAR(8) INIT('B');
PTLOGSTR.NAME = ADDR(A);
CALL DPPPIF(PTLOGSTR,MACID);

/* PUTLOG DEFAULT STRUCTURE */
/* PUT LOG MACRO ID */
/* RETURN CODE */
/* A(NAME/NUMBER/LIST) */
/* A (LOGHEADER/BLOCKLIST) */
/* PARAMETER LIST FLAGS */
/* RESERVED *1
/* A(LOGHEADER) IN HEAD */
/* A(BLOCKLIST) IN HEAD *1
/* ON IF PROTECTION REQ'D */
1* A(LIST ¥ORft) IN NAME *1
/* A(NUMBER) IN NAME */
1* KUST BE ON *1
/* RESERVED *1
/* DISPLACEMENT NEXT BLKNO */

Note that because HEAD was left zero, the array was logged at the
current log copy plus 1.

This PL/I interface provides the programmer the facilities of the
DUMPLOG service. The default structure DPLOGSTR (defined below), may
be copied into the PL/I program via a %INCLODE DPLOGDEP;.

Del.. 1 DPLOGST R, 1* DUMPLOG PARAMETER STRUCTURE
2 MACID FIXED BIN INIT (52) , 1* DUMPLOG MACRO ID */
2 RC FIXED BIN INIT (0) , /* RETURN CODE */
2 TYPE, /* SERVICE OPTIONS FLAGS *1

3 (FO,F1,F2, 1* RESERVED *1
DISP, 1* NEW - IF ON *1
F4, /* RESERVED */
LIST, 1* LIST 0" NAMESINUMBERS *1
NUMB, /* ARR AY NUMBER/NU ft B. LIST */
F7) BIT (1) INIT('O'B) , 1* RESERVED */

2 RES BIT (1), 1* RESERVED *1
2 NO FIXED BIN INlT CO) , /* ARRAY NUMBER *1
2 START POINTER, 1* A (START TIME) */
2 STOP POINTER, /* (STOP TIrlE) */
2 AREA POINTER, 1* A (0 SER DATA) */
2 DDNAM CHAR (8) INlT (' DOMPLOG ') . 1* DEFAULT DDNAMP. */
2 LIST POINTER; 1* A (NAtiE/NOMBER LIST) *1

DPLOGSTR
Name of the default structure provided for the Special Real Tiae
Operating System DUMPLOG service requests.

MACID
A halfword binary value of 52 identifying the requested service to
the interface routine.

RC

*/

A halfword binary field containing a bi nary number return code from
the DUMPLOG service routine. See DUMPLOG macro write-up for possible
val ues.

2-102 Description and Operation Manual

TYPE
A flags field indicating the request~d options to the DUMPLOG service
routine.

DISP
specifies whether the dumped copies are to be written at the beginning
of the dump data set (DISP = " 'B;) or added to the eXisting dumped
copies (DISP = ·O'B;).

If the disposition parameter specified on the DD card statement for
this data set is either OLD or SHR and the data set is empty, then
the first DUMPLOG request must specify NEW (DISP="'B;).

specifying DISP='1'B; on subsequent DUMPLOG requests will position
a direct access data set to record one and will cause a tape data
set to force the EOV before the log copies are written.

1,1ST
If on, specifies a list of array names or numbers is pointed to by
the LIST pointer variable.

NUMB
I f on, specifies nu mbered array (s) to be processed by this request.
Either NO contains the array "umber, or LIST contains the address of
a number list.

NO
Specifies the halfword number assigned to a numbered array for which
the log array is to be dumped. LIST bit in TYPE must be off.

START
Specifies the address of a 6-byte time and day field beginning on a
fullword boundary. The first four bytes will contain a time in
10-millisecond units. The last two bytes will contain a binary value
from 1 to 366 representing the day of the year. The logged copies
of the array will be searched until a copy is found with a log time
equal to or greater than the start time specified. If this parameter
is omitted, dumping will commence with the oldest logged copy of the
array_

STOP
Specifies the address of a 6-byte time and day field beginning on a
fullword boundary. The first four bytes will contain a time in
10-millisecond units. The last two bytes viII contain a binary value
from 1 to 366 representing the day of the year. The logged copies
of the array will be dumped until the most recently logged copy has
been dumped or until a copy is dumped vith a log time equal to or
greater than the stop time specified. If this parameter is omitted,
dumping will terminate when the most recently logged copy of the
array has been dumped.

Note: The DUMPLOG routine will insert a byte of X'FF'into the first
byte of the logging header of the last copy of each array dumped
to the sequential data set. This function to indicate the end
of the dump of each array to the user delog routine.

AREA
Specifies the address of a 256-byte area of user data to be contained
in the dump header for each array on the sequential dump data set.

DDNAM
Specifies the name of a data definition statement which described a
sequential data set to recei~e the dumped copies of the array from
the log data set. If this parameter is omitted, the DD name 'DUMPLOG'
will be assumed as the default.

APPLICATION SERVICES 2-103

The output will consist of spanned variable length records. The
blocksize of the data set defined by the DONAK parameter must be at
le·ast 264 bytes but no more than 32,760 bytes. The blocksize should
be large enough to contain one array copy, the log header (24 bytes),
the user dump header (256 bytes), if any, and the descriptor words
for variable length records (8 byte~ for maximum processing
efficiency.

I..IST
Specifies the address of the array name of the log array to be dumped
(LIST bit of TYPE and NUMB bit are off) or the address of a list of
array names or numbers (LIST bi t of Typ·E is on).

The name list will be a table of a-byte entries with one valid array
name in each entry. The first byte past the last valid entry will
be set to X'FF' to indicate the end of the name list.

EXAMPLE: Name List

0

ARRAYNAM
8

HOUSTONt>
16

TEXASt>t;t;
24

X'FF' J

The number list will be a table of halfword entries with one valid
array number in each entry. The first byte past the last valid entry
will be set to X'FP' to indicate the end of the number list.

EXAMPLE: Number List

0,--__ -,

H'I'
2t--__ ~

H'255'
4t--__ ~

H'139'
6t--__ -I

X'FF'

The DUMPLOG service is invoked in PL/I by CALLing DPPPIF vith a properly
completed DPLOGSTRor a similar structure.

The following example viII DUKPLOG all the logged copies of array '13'
beginning with the oldest copy_ The dumped records viII be at the
start of the data set pointed to by DD name DUMPLOG.

2-104 Description and operation Kanual

DCL , DPLOGSTR,
2 "ACID PIlED BIR INIT(52),
2 RC FIXED BIll 18IT(0),
2 TYPE,

3 (FO,P" ,P'2,
OISP,
1'4,
LIST,
Ntf fIIB,
1'1) BIT(l) IN1'1'('O'B),

2 RES BIT(1),
2 MO PIlED 81M 1NIT(O),
2 START POINTER,
2 STOP POI 1fTE ft,
2 AREA Pon'T!R,
2 DONA!!! CH\R(8) IlIIT('DtJPlPLOG'),
2 LIST POINTER;

DC LAC R A R (8) I If IT (• 8') ;
DPLOGSTR.TYPE.DISP = "'B;
OPLOGSTR.LIST = AOOR(A);
CALL DPPPI1' (DPLOGSTB. PlACID) ;

PL/I Optimiz\ng Compiler P'!£iliti~

/* DUPIPLOG PARAPIETER STRUCTURE */
/* DUPIPLOG P1ACRO ID ./
/* RETURI CODE */
/* SERVICE OPTIONS PLAGS */
/. RESERVED */
/* NES - IF ON ./
/. RESERVED */
/* LIST OP N1PlE/NUPIBERS */
/. ARRAY NUftBEB/NUPlB.LIST */
/* RESERVED */
/* RESERVED */
/* ARBAY HUPIBER */
/. A (START TIPI!E} */
/* l(STOP TYPlE) */
/* A(USES DATA) */
/. DEFAULT DDNA"E */
/* 1 (NA!E/NUPIBER LIST) */

The m~thod of supplying PL/I OptimiZing coropiler executior time options is
not co.patibl~ vith the 5pecial Real Time 0Peratinq Systea. Therefore, a
proqram, DPPPLIO, is provided to allov the user to exercise some of these
options. The ~xecution tiae options which DPPPLIO passes to the proloq
are, !fOREPORT, SPIE, NOSTAE, HOCOTJNT, NOFLOW and ISASIZE. The ISASIZE
aa, be supplied by the PL/I peooraa by declarinq an external fullvord,
ISASrZE, and a~signing as initial data the required ISA size in bytes,
see example.

DCL rSASIZE EXTERNAL FIXED BIN (17) tNIT (4096) ;

If the eItern~l is not provided or is zero, then a default of 2048 bytes
is assumed. \11 values supplied will automatically be rounded upward to
a multiple of eiaht.

To det~rmine the optimum I~A size to request, the report option .ay be
used. To do this th~ user must modify the load module at the location
DPPPLIEO. DPPPLIEO is a full word external sy_bol which viII appear in
the lin~aq~ e1itor map of the load module. Set bits 0 and 1 of byte Oat
DPPPLIEO to 1 and 0 respectively. Execute the proora. in such a manner
as to force execution of the epiloq which will qenerate the necessary
report. ~ft~r sufficient test time modify the PL/I program to supply
the smallest required fixed rSA size and relink edit the PL/1 proora ••

APPLIC~TION SERVICES 2-105

This portion of the manual explains the programming considerations for
FORTRAN programs to be run under Special Real Time Operating System
environment. FORTRAN programs which do not use Special Real Tise
operating System services should follow standard procedures as described
in tbe FORTRAE f£Qg~~~ Guide, Fora No. GC28-6811.

The remainder of this section explains procedures pertinent only if
Special Real Time O~rating System services will be used in PORTRAN
programs. The user should be aware that these services are intended
for FORTRAN programs which are invoked via the PATCH function. Other
means of executing FORTRAN (such as LINK, CALL, XCTL) using these
services should be used only by programmers who are aware of the
interfaces between FORTRAN and the Special Real Time Operating System.

The interface routines described here use PORTRAN COMftON areas to pass
and receive parameters. It should be noted that, when O5ing the G
level PORTRAN compiler, the variable name that is passed to the
interface routine(s) must be the name of a variable within the CO""ON
area and not the name of the CORMON area.

This section describes three enhancements provided to the PORTilN
programmer to interface with special Real Time operating system:

1. Identification of the computer storage address of one variable
and setting another variable to that value.

2. Execut ion of storage bits.

3. Rovellent of up to 32,167 coapu.ter storaCJe bytes of data fro.
one location to another.

Tbe FORTRAN progra •• er will discover that one or aore of these
capabilities is probably needed when using the capabilities described
in the remainder of this section.

I ADDR Function

This function compu.tes and returns to the caller the 32-bit address
requested and stores it at the desired location.

I=IADDR (Y)

OR BIT S ubrout ine

This subroutine ORs the specified bit mask into the specified address.
The location to be .odified aust be specified first in the CALL
pa ra aeters.

LOGICAL.1 FF/ZF¥/

CALL ORBIT(I,FP)

NDBIT subroutine

This subroutine AMDs the specified .ask with data at the specified

2-106 Description and Operation 8anual

address. The location to be aodified must be specified first in the
call paramet ers.

LOGICAL*1 SF/Z1F/

CALL NDBIT{X,~)F)

COpy Subroutine

This function moves up to 32,161 contiguous bytes of data from one
location to another. More than one move operation can be specified
in the same call. The format of the CALL subroutine is as follows:

CALL COpy (I NLIST, OUT 1 ,OUT 2··. ,OUT n'
wher~ INLIST specifies an address variable or a common area consisting
of aJ.dress variables. (An addL"ess variable is one which bas been set
usinlJ the IADDR function to contain the address of, or point to, a
data area.) The address variable (s) in INt,IST should point- to ·the data
area from which data is to be moved. The variable OUT,., ••• ,OUT n should
be the labels for the data area to which the data is to be moved. The
number of copy operations will be equal to the number of OUTn
variables. Data viII be moved to the OUT, data area from the data
area addressed by the first address variable of INLIST, data will be
moved to the OUT

2
data area from the data area addressed by the second

address variable of INLIST, and so on until OUTn has been likewise
processed.

If either OUT
i

or the corresponding address varial.ile of inlist is zero
no move takes place for that OnT

i
• The copy operation proceeds to the

next OUT i+1 •

The length of each move will be determined independently for each OaT.
either: by the first halfword of the OUT. data area, or by the first I

half~ord of the data area pointed to hy'the corresponding address
variable of INLIST. The length of the move viII be equal to the
smaller positive value of the two halfwords, as zero and negative
values are not recognized. (NO move lIill take place for this OUT. if
neither halfword referred to is positive.) Note that the first halfword
of both areas is included in the move, and the two bytes occupied by
the length must be included in the length specificatio~

For example, moving one data area, INA1, to another data 'area, OUTA1,
is accomplished as follows:

Given:

CO~MON/INA1/INHALF, INF (30)
INTEGER INHALF*2, INF*2
COMMON/OUTA 1/0UTHAF,. OUTF (70)
INTEGER OUTHAF*2, OUTF*2

Then code:

1NHALF=30*2+ 2

OUTHAF=1 0*2+ 2

set the first halfword of the input area
equal to its length.

Set the first halfvord of the output area
equal to its maximum length - in case the
input area's length varies.

APPLICATION SERVICES 2-101

INADD=IADDR(INHALF)

CALL COPY(INADD,OUTHAF)

set the address variable INADD to pOint to
labeled common area INA'.

This causes the common area INA' to be moyed in its entirety (62 bytes)
to the common area OUTA'. Note that the value of OUTHAF would be 62
after the MOVE operation.

The next example describes moving several common areas (COM1, COM2,
COM3) to output common areas (OUT1, OUT2, COUT3). It is assumed that
the first halfvord of each common area has been set to its desired
length.

Given:

COMMON/COM1/CHALP1 •••
COMMON/COM2/CHAL F2 •••
CO~MON/COM3/CHALF3 •••
COMMON/INCOM/IN1,IN2,IN3
INTEGER IN1,IN2,IN3
COMMON /OUT1/0HALF1 •••
COMMON /OUT2/0HALP2 •••
COMMON /OUT3/0HALF3 •••

Then code:

IN1=IADDR(CHALP1) Set the address variables
IN2=IADDR (CHALF2) to point to their common
IN3=IADDR (CHALF3) areas.
CALL COPY (IN1 ,OHALF1,OHALF2,OHALF3)

This section explains the coding of FORTRAN program to interrogate the
data which may have been specified via the PATCH function. Refer to
the section on the PATCH macro for a detailed discussion of the PATCH
parameters. The only requirement of this discussion is to know that
the PA~CH macro can specify a list of input parameters to be passed to
the user in his PROBL. This di sc ussion applies to a program which is
re-entered at the beginning for each execution of the function to be
processed. A FORTRAN program may be coded to be logically entered
several times when actually being entered at the beginning only once.
This is described in the section entitled, "Repeated Execution of a
FORTRAN Program".

The FORTRAN 'program receiving control due to the PATCH cah gain access
to this PROBL parameter list by including a call to a special interface
routine (DPPFPM) and having a predefined common area properly
initialized, as described. The common area is described in the
following example ana. will be called PARM throughout this write-up.

PARM

o +2

PRMAC I PRMRC

+4
PRXCVT

+8
PRMRES

+12
PRMADD

While the first two halfvords, PRM1C and PRMRC, must be initialized to

2-108 Description and Operation Manual

zero prior to calling DPPFPM, the remainder of the common area need
not be initia lized.

Following is a layout of the common area PARM in FORTRAN code, with an
explanation of each variable as they pertain to this section.

c
C COMMON NAMED'PARM'--PARAMETER TABLE FOR RECEPTION OF PATCH

COMMON/PARM.PRMAC
INTEGER*2 PRMAC

COHMON/PARM/PRMRC
IN'!'EGER*2 PRMRC

COMMON/PARM/PRXCVT
INTEGER*4 PRXCVT

COMMON/PARM/PRMRES
INTEGER*4 PRMRF.S

COMMON/PARM/PRMADD
INTEGER*4 PRMADD

C END OF COMMON NAMED 'PARM'
C

PRMAC
A halfword vaLiable reserved for use by DPPFPM.
to zero prior to calling DPP~PM (the first call
will have no meaning to the FORTRAN programmer.
altered after the first call to DPPFPM.

PRMRC

It must be initialized
only) and its contents
It should not be

A halfword variable which will contain the return code as set by
DPPFPM. This variable should be set to zero prior to calling DPPFPM.
Its subsequent contents have no meaning to the FORTRAN programmer when
calling DPPFPM solely to gain access to the PATCHed input parameters~
(The section entitled, "Repeated Execution of FORTFAN Program"
describes another use of the program DPPFPM and common area PAR~ in
which this variable is pertinent)u

PRXCVT
This fullvord variable, which need not be initialized, contains the
address of the XCVT after calling DPPFPM. This variable does not
pertain to the present discussion.

PRMRES
This fullword variahle, which need not be initialized, contains the
addr€ss of the Resource Table for this task after calling DPPFPM.
This variable is not pertinent to the present discussion on input
parameters ..

PRMADD
This fullword variable, which need not be initialized contains the
address of the Problem Parameter List (PROBL) for the causative PATCH.
It is through this variable that the FORTRAN programmer gains access
to his PROSL, which contains the input parameters or pOinters to the
input parameters.

The PROSL, pointed to by the variable PRMADD (within common PARM),
should also be described by a labeled common area, which shall
henceforth be called PROSL. The PROBL has one of two formats,
depending on whether this program is PATCHed via a PATCH macro (from
an already executing program) or via an input control stream PATCH
CA~D. In either case, the length of the table varies with the number
of parameters passed on the PATCH, so the common area ~ROBL) should
be specified according to the maximum number of parameters expected.
The following example depicts the two formats of the PROBL.

APPLICATION SERVICES 2-109

PROBl from
PATCH Macro

length of PROBl

+2 +3

10

4

8

PROBl from
an Input Control Stream PATCH Card

length of PROB l I 00 I 10

(Reserved Flags)

length Address of
of first first parameter parameter

· · i~ Jf ·
(One fullword per parameter)

length Address of
of last last parameter parameter

Note that the first word of both formats is the same and that while
the format of the remainder is fixed in the PATCH card' type, the foraat
of the remainder is flexible in the PATCH macro type. In most cases
the PROBL of a PATCH macro, when used in conjunction witb FORTRAN
programs, will be set up to consist of data rather than pointers to
data as in the PATCH card type.

The common area, then, for the PROBL would be coded as follows:

COMMON/PROBL/PRBLNG
INTEGER*2 PROBLNG

COMMON/PROBL/ID
INTEGER*2 ID

COMMONjPROBLjPROBP1
INTEGER*4 PROBPl

PRBLNG
The total length in bytes of this PROSL, including this halfword.

ID
The In value specified on the PATCH CARD or macro (defaults to zero) •

PROBP 1
A fullword variable which (l) contains the first PATCH parameter or
(2) contains the address of the first PATCH parameter. (1) or (2) is
thf user's (caller's) option.

'lhe Special Real Time Operating System initialization process allows
a PATCH to be executed under control of a PATCH card. The format of
the parameters that may be specified with the PATCH card are such that
passing parameters from the PATCH card may not be practical, without
an assembler language routine specially written for this purpose.

In the following example, assume that the FORTRAN program will be
PATCHed by a program (already in execution) with which a common format
for the PROBL has been previously established. Suppose that the
following statements describe this PROSL format and appear in the
FOR'!'R AN program.

2-110 Description and Operation "anual

COMMON/PROBL/PRBLNG r ID r PROBP(10)
INTEGER PRBLNG*2,ID*2 r PROBP*4

These cards indicate that 10 full word parameters will be passed to this
FORTRAN program.

The!', to interrogate the parameters within the FORTRAN program r code
the following:

COMMON/PARMjPRMAC,PRMRC,PRXCTrPRMRES,PRMADD
INTEGER PRMAC*2,PRMRC*2,PRXCVT,PRMRES,PRMADD

These cards defined the common area PARM previously explained.

PRMAC=O These statements initialize the
PRMC=O common area PARM as required.

CALL DPPFPM(PRMAC) Cause the common area PARM to be properly
filled in ..

PRBLNG=44 Set length of PROBL to maximum expected.

CALL COPY(PRMADD,PRBLNG) Cause the common area PROBL to be filled in
as per the PROBL of the PATCHING program.

The variables PROBP (1) through PROBP(10) will have the values specified
in the PATCH and can be referenced normally.

Thi~ section describes the procedure to be used for a FORTRAN program
which is to be repeatedly executed in a realtime environment.

Under standard executing conditions when a FORTRAN program is executed
a second time after completing one execution, a fresh copy is fetched
and both prologue and epilogue are executed again. This fetching of
a fresh copy and the re-executing of the prologue/epilogue can sometimes
be avoided when executing a FORTRAN program under the Special Real Time
Operating system. This is done by coding reultiple calls to an interface
program (DPPFPM) in a certain sequence and by having a predefined common
area properly initialized.

The description of the common area, hereafter called PARM, was presented
in the section entitled "Locating Input Parameters after being PATCHed"
and will be repeated here with explanations pertinent to this section.
The following example depicts the PARM common area.

PARM

o +2

PRMAC I PRMRC

+4
PRXCVT

+8
PRMRES

+12
PRMADD

APPLICATION SERVICES 2-111

The FORTRAN-coded statements for the specification of the PARM common
area follows:

C
C COMMON NAMED'PARM'--PARAMETER TABLE FOR RECEPTION OF PATCH

COMMON/PARM/PRMAC
INTEGER*2 PRt'lAC

COMMON/PARM/PRMRC
INTEGER*2 PRMRC

COMMON/PARM/PRXCVT
INTEGER*4 PRXCVT

COMMON/PARM/PRMRES
INTEGER*4 PRMRES

COMMON/PARM/PRMADD
INT EGER*4 PRM ADD

C END OF COMMON NAMED 'PARM'
C

PRMAC
This halfword variable should be initialized to zero prior to the
first call to DPPFPM only. It will be used by DPPFPM and should not
be subsequently altered by this FORTRAN program. Its contents viII
be of no significance to the FORTRAN prograMmer.

PRMRC
This halfword variable should be initialized to zero prior to the
first call to DPPFPM only. It is used as both an input variable and
an output variable by the FORTRAN program following An in-depth
explanation of the use of this vital parameter follows the remaining
description of the PARM common area.

PRXCVT
This fullword variable, which need not be initialized, contains the
address of the XCVT. This variable is immaterial to our present
di scussion ..

PRMRES
This fullword variable, which need not be initialized, contains the
address of this task's resource table. This variable is immaterial
to our present discussion.

PRMADD
TRis fullword variable, which need not be initialized, contains the
address of the PROBL (problem parameter list) for this PATCH. Refer
to the section entitled "Locating Input Parameters after being PATCHedfl

for a full explanation of accessing the problelll parameter list.

To understand the use of the FARM common area (in particular the
variable PRMRC) in conjunction with multiple calls to DPPFPM, the
concept of a work queue for a task must be understood. The FORTRAN
program should be capable of performing a specified function when
invoked, and if this function is requested again (or several times)
under the same task, then the second request will be the first entry
in the work queue of that task.

When the original request is serviced and the FORTRAN program has
returned, the second request (first entry in the work queue) will be
hQnored and the FORTRAN program will be executed again. When the
FORTRAN program has returned and no additional requests are waiting,
a condition indicated by an empty work queue, the Special Real Time
Operating System will place this task in wait state until such a request
is made.. If a request is made for a different program to be executed
un~er this task, the Special" Real Time Operating System will allow this
FO~TRAN program to be purged.

2-112 Description and Operation Manual

If the author of the FORTRAN prog ram foresees no entry in the work
queue for this program's task at the completion of the program or at
a later time, he should return as in standard FORTRAN (i.e., he need
not call DPPFP~ at all except for input parameter considerations).

Given that entries in this task's work queue for this program are
expected on completion of the processing of this PATCH, the programmer
can avoid the overhead of program fetch and epilogue/prologue by nQ~
returning normally but instead., calling DPPFPM again. (The first call
to DPPFPM must have been done). Through the use of the variable PRMAC
(m~intained by DPPFPM), DPPPPH will know that this is not the first
call and consider it a RETURN. DPPFPM vill then locate.the first entry
in the work queue for this task (or wait until there is one) and, if
the entry is for this FORTRAN program, properly fill in the PARM common
area according to the PATCH causing this work queue entry.

If the previous PATCH (the one for which processing has just completed)
had specified an ECB for posting, then that EeB will be posted with a
completion code equal to the value in the variable PRHRC, vhich can be
set by this program. If the first entry in the work queue was for
another program., then this FORTRAN program should return normally,
yielding this task to the new request. This This condition will be
indicated by a non-zero value in PRMRC. This setting of PRMRC by DPPFPM
is done on each call, including the first call, so the FORTRAN coder
can surmise that only one call to DPPFPM is needed. followed by a RETURN
if PRMRC is not zero. At the end of processing, or anywhere a normal
RETURN would be coded., he would GO TO the statement of the CALL to
DPPFPM.

The following example illustrates the use of the multiple calls to
DPPFPM for a FORTRAN program written with the expectation that it would
be PATCHed repeatedly under the same task.

Given:

A FORTRAN program that expects to be PATCHed (via PATCH macro) with
different PATCH IDs to indicate various macro processing options
desired.

Then code:

COMMON/PARM/PRKAC,PRHRC,PRXCVT,PRMRES,PRKADD
INTEGER PRMAC*2,PRMRC*2,PRXCVT,PRMRES,PRMADD
COM MON/PROBL/PR B1 NG, ID. PROBPl
INTEGER PRBLNG*2,ID*2,PROBPl

These cards define the r~quired common areas.

1000

PRKAC=O
PR!'!C=O

CALL DPPFPK(PRKAq

IF (PRMRC. NE. 0) RETURN

Initialize the PARM common
area as required

Call DPPFPM to get PATCH ID parameters

Non-zero indicates a different program
has been PATCHed to execute under this
task. Return and give up control of
this task. This condition will not
Q££Y! Q!! 1~ tI~st cal!. - --- ---

A zero value indicates that variables in the PARM common area
(especially PRMADD) have been set according to the PATCH. Proceed with
processing.

APPLICATION SERVICES 2-113

PRBLNG=12 set PRBLNG for a copy operation.

CALL COPY(PRMADD,PRBLNG) copy the PROBL for this PATCH to the com.on
area PROBL.

Now inspect ID and proceed processing.

When processing is completed, set PRMRC according to a previously agreed
upon return code (agreed upon with the author of the program which
executed the PATCH this program has been processing).

PRMRD= return code

GO TO 1000 This causes another call to DPPFPM indicating that
processing is completed for this PATCH and the
program expects another.

Note: The input parameters of each PATCH could also be interrogated
in this example. Refer to the previous section for a description
of this procedure.

This section explains the coding of each of the online macros provided
to the FORTRAN programmer by the Special Real Time Operating System.
Each of these funct ions is provided to assembler langu"age programmers
through macro calls. There is a parallel (but more detailed) write-up
on each function in the online macro section of this manual. Although
this section may attempt to explain to varying degrees the functions
themselves. the main purpose here is to describe the format of the
COMMON areas required for invoking each function and point out
peculiarities where pertinent.

The PATCH service provides the programmer the facility of" creating work
queues for passing pa ra meters to prog rams executi n9' under the SpeCial
Real Time Operating system. The following FORTRAN statements define
the parameter list for this service:

2-11 " Descri ption and Operation Manual

C
C COMMON NAMED "PATCH '--PARAMETERS NECESSARY FOR PATCH FROM
C FORTRAN
C

COMKON/PATCH/PATMAC
INTEGER*2 PATMAC

COMMON/PATCH/PATRC
INTEGER*2 PATRC

COMKON/PATCH/PATPRM
INTEGER*4 PATPRM

COKMON/PATCH/PATASK
INTEGER*4 PATASK(8)

COKKON/PATCH/PATEP
LOGICAL*1 PATEP(8)

COMMON/PATCH/PATNAM
LOGICAL*1 PATNAK(8)

r.OMMON/PATCH/PATQ
INTEGER*2 PATQ

COMMON/PATCH/PATV
INTEGER*2 PATV

COMMON/PATCH/PATECB
INTEGER*4 PATECB

COMMON/PATCH/PAT RES
INTEGER*4 PATRES(2)

COMMON/PATCH/PATCBX
INTEGER*4 PATCBX

COMMON/PATCH/PATFLG
LOGICAL*1 PATFLG

C END OF COMMON NAMED 'PATCH'
C

PATMAC
A halfword binary constant value of zero to identify a PATCH service
request to the interface routine.

PATRC
A halfword binary field containing the return code from the service
routine. See PATCH macro write-up for possible values.

PATPRM
A fullword address of the parameter list being passed. The format is
a halfword binary val~e (minimum value is 4) describing the length ~f
the entire parameter list. (including length and patch 10) followed
by a halfword binary value from 0 to 255 called the PATCH ID with the
remainder of the list being the parameters. The diagram below
represents the format of a PATCH problem parameter list.

o 2

LENGTH I PA TCIl ID

4

PARAMETERS

PATASK
An 8-byte
PATCHed.
If PATASK
dependent

PATEP

character field containing the name of the task being
If the task does not exist. one by that name will be created.
is all blanks, the PArCHed program viII execute under a
ta sk.

An 8-byte character field containing a valid entry point name which

APPLICATION SERVICES 2-115

is the name of the pro'lram to be scheduled under the task being created
with the PATCH.

PATNAM and PATV
Specifies an a-byte character field containing the task name for
determining priority and a halfword binary value which vill determine
that priority relative to the task naille in PATNAM.

PATQ
A halfvord binary value from 0 to 235 specifying the number of work
queue entries to be allowed for the new independent task. If 0 is
specified, the task accepts one PATCH. works on that request. and.
when completed, waits for the next request. If a PATCH is requested
for that task while it is busy, the request is not executed. If the
queue length is 1, the task can accept one PATCH even while it is
busy. Any PATCH parameters waiting in the queu.e when a task completes
processing of the current request will be executed one at a time, with
the start of the queue being executed first. This procedure is the
same for all queue values from 0 to 255.

PATECB
The addre~~ of a fullword event control block (EeB) within a PATCH-WAIT
parameter list of the common area WAIT. The EeB is posted when
processing for this PATCH completes.

PATRES
Filler position for required space for PATCH MACRO (not usable by
programmers) •

PATCBX
A full word address of the TCB extension control block (TCBX) for an
existing independent task. The TCSX address is stored by the interface
routine after each PATCH service call. Use of this parameter with
all successive PATCHes to the same independent task after the initial
PATCH will reduce system processing time. Note that the other
parameters must still be specified for verification or in the event
the task has been DPATCHed.

PATFLG
The PATCH option flags as described below:

X'40'

X'20'

X'08'

This PATCH is intended for the KASTER partition.

This PATCH is intended for the SLAVE partition.

If this work request is pushed off the queue, the ECB is to
be posted with a REPATCH control block address.

X'04' -- Place the work request at the start of the work queue. If
off, the request is queued last.

X'02' -- Place this work request on the task DPATCH queue to be
executed when a DPATCH is issued for this task.

x'01' -- Specifies a DELETE is to be issued for the load module named
previously after processing completes for this PATCH.

X' 00' -- Execut e this PATCH las t.

All combinations are valid except X'04' and X'02' must not both be
set to 1.

The PATCH service may be invoked by assigning values to the above
defined variables and CALLing DPPPIF passing the common area as the
(only) parameter. Exaaples of using the PATCH facility follow .•

2-116 Description and Operation Manual

E~amples 1 and 2 use the following parameter lists, variables, and
constants as expressed in FORTRAN statements:

BLOCK DATA
COMr!ON/PATCH/PATMAC~ PATRC~PATPRl1, PATASK (2), PATEP (2) ,PATNAr.(2) ,

1PATQ,PATV,PATECB,PATRRS(2).PATCBX,PATFLG
INTEGER PATMAC*2/0/,PATRC*2/0/,PATPRM,PATQ*2/'/,PATV*2/0/.
1PATECB~PATRES,PhTCBX

LOGICAL PATASK*4/'
1PATFLG*1

'/, ,
COMMON/WAIT/WTM AC, WTRC, WTEC B

',PATEP*4,PATNAM*4/'

INTEGER WTMAC*2/60/,WTRC*2/0/,WTECB/O/
END

/, , ,

(The above common areas should be repeated in the main program
without data initialization. The following statements are in
MAL N only.)

,
LOGICAL*4 TN(2)/'DPPZ','TSOO'/,TP(2)/'DPPZ','TS13'/
LOGICAL*4 DP(2)/'DEPE','NDX'/,BLK(2)/' I,' '/

Example

In this example, the task DPPZTSOO is to be created with a queue length
of 1. Program DPPSTS13 is to be executed, and the parameter list is
to contain only the length field and a PATCH ID of 10. The new task
is to have the same priority as the task issuing the PATCH. Note that
if the task already exists, the PATFLG (all bits off) indicates this
work request will be queued behind any others on the queue.

PRBLNG=4
ID=10
PATPRM=IADDR (PRBLNG)
DO 100 1=1,2
PATASK (1) =TN (I)

100 PATEP(I)=TP(I)
CALL DPPPIF(PATMAC)

Example 2

In this example, assume that the CALL in Example 1 has returned, and
a dependent task is to be created at a priority of 10 less than the
task DPPZTSOO and that program DEPENDX is to be passed a parameter list
PhTCH ID of 2. The PATCHing program will WAIT for the dependent task
to complete. The WAIT function is executed via a CALL to the interface
routine using the WAITSTR structure.

CALL DPPPIF(PATMAC)
ID=2
DO 200 I=1,2
PATASK(I) =BLK (I)
PATEP (I) =DP (I)

200 PATNAM(I)=TN(I)
PATV=10
PAT EC B = I ADD R (WT EC B)
CALL DPPPIF (PATMAC)
IF(PATRC.GE.8) GO TO 400
CALL DPPPIF (WTM AC)

400 CONTINUE

APPLICATION SERVICES 2-111

EQIi1li!B: gAT£!!::!AI! lnUtl9.£~

This interface provides the FORTRAN programmer with the facility to
wai t for the completion of a WQE generated by a PATCH. The following
FORTRAN statements define the interface paramete~ list:

c
C COMMON NAMED 'WAIT'--PARAMETER TABLE FOR WAIT

COMMON/WAIT/WTMAC
INTEGER*2 WTMAC
COMMON/WAIT/WlI'RC
INTEGER*2 WTRC
COMMON/WAIT/WTECB
INTEGER*4 WTECB

C END OF COMMON NAMED 'WAIT'
C

WTMAC
A half word binary constant value of 60 id~ntifying the requested
service to the interface routine.

WTRC
A halfword binary number containing the high order byte of the
completion code from the PATCHed program. See PATCH macro for possible
values. It should be initialized to zero.

WTECB
A full word binary field containing the 3 low order bytes of the
completion code from the WQE just processed or the address of a REPATCH
control block. The value of this field is governed by the contents
of WTRC. It should be initialized to zero.

Note: For this interface, WTRC will never be zero when the interface
returns to the FORTRAN program.

Example 2 of the FORTRAN-PATCH interface shows the correct method for
using this service.

The DPATCH facility provides the programmer the method of destroying
tasks which were created by the PATCH service. The following FORTRAN
statements define the parameter list for this service:

C
C COMMON NA~ED 'DPATCH'

COMMON/DPATCH/DPRES
INTEGER*2 DPRES
COMMON/DPATCH/DPMAC
INTEG ER*2 DPM AC
COMMON/DPATCH/DPRC
INTEGER*2 DPRC
COMMON/DPATCH/DPTYP
INTEGER*2 DPTYP
COMMON/DPATCH/DPTSK
LOGICAL*1 DPTSK(8)

C END OF COMMON NAMED 'DPATCH'
C

DPRES
A halfword field inserted to align DEPTSK on a fullvord boundary.

DPMAC
A halfword binary constant value of 8 identifying to the interface
routine the required service.

2- .118 Description and Operation Manual

DPRC
A halfword binary field containing a binary number return code from
the service routine. See DPATCH macro write-up for return codes. It
should be initialized to zero.

DPTYP
A halfword b,inary value specifying the DPATCH service requested. If
o is specified, the task is deleted immediately or when the currently
executing work request completes. Any work queued to the task is
posted as deleted. If q is specified, the task is deleted only if
its work queue is empty. This does not prevent nev work from being
queued. If 12 is specified, the task is deleted even if it is active.
See the DEPATCH function under ONLINE "ACRO for further explanation
of the DEPTYP operand in the DEPATCH function.

DPTSK
Two logical fullvords specifying the name of the task being deleted.
If blank, the current task is deleted. If the task is active, the
program that is running vill be ABENDed.

The following example will force the task named 'BOLDTASK' to be
DPATCHed immediately regardless of its active state and the amount of
queu(d work. If the ta sk is acti ve, the running program will be
ABENDed.

C FOBTRAN DEPATCH EXAMPLE
BLOCK DATA

COMMON/DEPTCH/DEPRES,DEPMAC,DEPRC,DEPTYP,DEPTSK(2)
INTEGER DEPMAC*2/8/,DEPRC*2/0/,DEPTYP*2/0/,DEPRES*2
LOGICAL DEPTSK*4

END

(The above common areas should be repeated in the main program
without data initialization. The following statements are in
MAIN only.)

LOGICAL A*4(2}/'BOLD','TASK'/

DEP TSK (1) =A (1)
DEPTSK (2) =A (2)
DEPTYP=12
CALL DPPPIF(DEPMAC)

EORTR AN=!!~gAlcH !nt~face

This FORTRAN interface provides the programmer the facilities of the
Special Real Time Operating System REPATCH service. The following
FORTRAN statements define the parameter list for this service:

APPLICATION SERVICES 2-119

C
C COMMON NAMED 'RPATCH'--PARAMETER TABLE FOR RPATCH

COMMON/RPATCH/RPMAC
INTEGER*2 RPMAC

COMMON/RPATCH/RPRC
INTEGER*2 RPRC

CO~MON/RPATCH/RPTYP

INTEGER*4 RPTYP
COMMON/RPATCH/RPCB

INTEGER*4 RPCB
COMMON/RPATCH/RPTSK

LOGICAL*1 RPTSK(8)
COMMON/RPATCH/RPEP

LOGICAL*1 RPEP(8)
COMMON/RPATCH/RPRTK

LOGICAL*1 RPRTK(8)
COMMON/RPATCH/RPQUE

JNTEGER*2 RPQUE
COMMON/RPATCH/RPVAL

INTEGER*2 RPVAL
COMMON/RPATCH/RPECB

INTEGER*4 RPECB
COMMON/RPATCH/RPRES

INTEGER*4 RPRES(2)
COMMON/RPATCH/RPTCB

INTEGER*4 RPTCB
COMMON/RPATCH/RPFLG

LOGICAL*1 RPFLG
COMMON/RPATCH/PPAD

LOGICAL*1 RPAD(3)
COMMON/RPATCH/RPPRM

INTEGER*4 RPPRM(3)
C END OF COMHON NAMED 'RPATCH'
C

RPMAC
A halfword binary value of 12 identifying to the interface routine
the required service.

RPRC
A halfword field containing a binary num~er return code from the
REPATCH/PATCH service routine. See REPATCH macro write-up for REPATCH
and related PATCH return codes.

RPTYP
A full word binary value indicating the interface routine service
required:

o -- The REPATCH control block is to be copied to this parameter list
for alteration prior to REPATCH.

4 Issue REPATCH TYPE = EXEC.

8 Issue REPATCH TYPE = PURGE.

RPC3
A fullword binary field to contain the REPATCH control block address
placed in the WTECB when WTRC equals 68. The value in WTECB must be
moved to RPCB before any interface call except the first interface
call RPTYP = 4 or 8 following a RPTYP = 0 interface call.

RPTSK
Tvo 4-byte logical words containing the name of the task being
referenced by this PATCH.

2-120 Description and Operation Manual

RPEP
Two 4-byte logical words containing the nams of the program to b~
scheduled under task specified in RPTSK.

RPRTK and RPV AL
Specifies two 4-byte logical words containing a task name and a
half word value which will determine the priority of the new task
relative to the named task in RPRTK ..

'RPQUE
A halfword specifying the number of work queue entries to be provided
for a new independent task.

RPECB
Specifies the address of the ECB within a COMMON/WAIT area which is
to be used in a CALL DPPPIF. This ECB is posted when processing for
this PATCH completes. The ECB which contained the REPATCH control
address may be reused and will be if this parameter is left unchanged.

RPRES
Filler position required by REPATCH macro (not used by programmer).

RPTCB
Contains the address of the TCB extension control block for an existing
independent task.

RPFLG
The PATCH option flags as described below:

X'40'

X'20'

X'OS'

This PATCH is intended· for the MASTER partition.

This PATCH is intended for the SLAVE partition.

If this work request is pushed off the queue, th~ ECB is to
be posted with a REPATCH control block addr_ess.

X'04' -- Place the work request on the front of the work queue. If
off, the request is queued last.

X'02' -- Place this work request on the task DPATCH queue to be
executed when a DPATCH is issued for this task.

X'01' -- Specifies that a DELETE is to be issued for the load module
named above after processing completes for this PATCH.

Codes X'04' and X'02' are mutually exclusive; all other combinations
are allowed.

RPPAD, and RPPRM
Pointers which must not be altered by programmer.

The Special Real Time Operating System REPATCH service may be invoked
by a FORTRAN program by defining a COKKON area as described above,
moving the REPATCH control block address from the event control block
to the RPCB field and then doing one of the following:

a. If a REPATCH is to be executed without changes, set RPTYP to 4 or
8 and CALI DPPPIF.

h. If the FEPATCH is to be changed prior to execution, set RPTYP = 0,
CALL DPPPIF, make changes desired, set RETYP to 4 and CALL DPPPIF
again.

Users of this facility should be aware that only the supervisor portion
of the PATCH parameters can be altered. The problem parameters cannot

APPLICATION SERVICES 2-121

be changed. All REPATCH control blocks must be returned to the system
through a RPTYP = 4 or 8 service request.

Examples 1 and 2 show the various methods of using REPATCH. The example
for using REPATCH service in FORTRAN use the followin9 definitions of
COMKON areas and constants:

BLOCK DATA
CO~~ON/RPATCH/REPMACrREPRCrREPTYP,TEPCBrREPTSK(2) r

lREPEP(2) rREPRTK(2)rREPQUErREPVALrREPECB,REPRES(2)r
1 REPTC Br REPFLG, R EPAD (3) , REPP RM (3)

LOGICAL REPTSK*4,REPEP*4,REPRTK*4,REPFLG*1,REPAD*1
INTEGER REPKAC*2/12/r REPRC*2,REPTYP*4,REPCB*4,REPQUE*2,

lRPVAL*2,RPECB*4,RPRES*4,RPTCB*4,RPPRft*4
CO""ON/WAITJWTKACrWTRC,WTECB
INTEGER WTKAC*2/60/,WTRC*2/0/,WTECB/O/
END

(The above common areas should be repeated in the main program
without data initialization. The following statements are in
KAI N only.)

LOGICAL QPOS*1/Z04

Example ,1

This example shows the method for purging a REPATCH control block,
should a work request fail to be executed. The example begins with
the PATCH-WAIT which is notified that a REPATCH is needed.

CALL DPPPIF (WTM AC)
IF(WTRC.NE.68) GO TO 100
REPCB=WTECB
REPTYP=8
CALL DPPPIF (REPMAC)

200 CONTINUE

Example 2

This example demonstrates the method of altering a REPATCH control
block. In this case, the REPATCH will place the work request in the
front of the work queue. As in Example 1, this example begins with a
PATCH- WAIT.

100 CALL DPPPIF(WTMAC)
IF(WTRC.NE.68)GO TO 200
RPCB=WTECB
RPTYP=O
CALL DPPPIF(RPMAC)
CALL ORBIT(RPFLG,QPOS)
WTECB=O
RPTYP=4
CALL DPPPIF(RPMAC)
IF(RPRC.LT.8) GO TO 100

200 CONTINUE

The PTIME service provides two different functions, return current time
and PATCHes, issued on a time-queue basis. The following FORTRAN
statements define the two different parameter lists for this service:

2-122 Description and Operation Kanual

C
C COMMON NAMED 'PTIKR'--PARAKETER TABLE FOR PTI!E

COMMON/PTIMR/pTRMAC
INTEGER*2 PTRMAC

COKMON/PTIMR/PTRC
INTEGER*2 PTRC

COKMON/PTIMR/PTRTYP
INTEGER*4 PTRTYP

COMMON/PTIMR/pTRTIM
INTEGER*4 PTRTIM

COMMON/PTIMR/PTRARY
I NTEGER*4 PTR ARY

C END OF COMMON NAMED 'PTIMR'

PTRMAC
A halfword binary value of 4 to identify to the interface routine the
requested service.

PTRC
A halfword binary value set to zero by the interface routine.

PTRTYP
A halfword binary value identifying the PTIMR service being req~ested.
For this parameter list it is always zero.

PTRTIM
A fullword binary field which viII contain the current time of day in
10-millisecond units when the interface routine returns.

PTR AR Y

C

A fullword field which viII contain the address of the time array
DPPCTIMA when the in terface routine returns.

C COMMON NAMED 'PTIME--PARAMETER TABLE FOR PTIKE
COKMON/PTIME/PTiKAC

INTEGER*2 PTIMAC
COMMON/PTIME/PTIRC

INTEGER*2 PTIRC
COMMON/PTIME/PTITYP

INTEGER*4 PTITYP
COMKON/PTIKE/PTISTR

INTEGER*4 PTISTR
COKKON/PTIME/PTITVL

INTEGER*4 PTITVL
COMMON/PTIKE/PTIEND

INTEGER*4 PTIEND
COKMON/PTIKE/PTIPAT

INTEGER*4 PTIPAT
COMMON/PTIME/PTIPRK

INTEGER*4 PTIPRM
COKKON/PTIME/PTIS

LOGICAL*l PTI S
COKMON/PTIKE/PTIP

LOGICAL*l PTIP
COMMON/PTIME/PTIE

LOGICAL*l PTIE
C END OF COMKON NAKED 'PTI"E'
C

PTIKAC
A halfword binary value of 4 to identify to the interface routine the
requested service.

APPLICATION SERVICES 2-123

PTIRC
A halfvord binary field containing a binary number return code from
the serv ice.

PTITYP
A fullword binary value identifying the requested PTIKE service.
Values may be 4, 8, or 12. If 4, a PTIME queue element (PTQE) is
created which controls the PATCHes issued according to the PTIME
requested. Since the PTQE exists independently of the creating task
and may be modified (8) or deleted (12), the PTQE is referred to by
task name, entry point name, and the PATCH ID number in the problem
parameter list. Eitber task name or entry point name must be given
for a modify (8) or delete (12). However, if only a task or entry
point name is specified, all PTQEs with that name are deleted or
modified.

PTISTR
A fullword binary value specifying the time in 10-millisecond units
of the first PATCH. The flag bit in PTISTR defines the content of
this field, according to the folloving table:

X'04' -- The first PATCH vill be issued at aurrent time plus the
value of PTISTR.

X'02' -- The first PATCH vill be issued vhen current time equals the
value in PTISTR. If PTISTR is less than current time, the
first PATCH viII occur the next day.

X'01' -- The time of the first PATCH is calculated by assuming PTISTR
contains the time of day, except that the value in PTITVL

PTITVL*

is added to PTISTR until that value is greater than current
time.

A fullvord binary value specifying the interval in 10-millisecond
units between successive PATCHes.

PTIEND**
A full word binary value specifying vken the PTQE is to be deleted.
The flag bit in PTIE defines the content of this field~

X'08'

X'04'**

X'02'**

X'01'**

PTIEND contains the count of the number of PATCHes to
be issued by this PTQE.

PTIEND contains a time value in 10-millisecond units,
when added to current tiae equals the stop time.

PTIEND contains the stop time in 10-millisecond units.

The stop time is calculated by assuming PTIEND contains
the time of day in 10-millisecond un~ts except that the
value in PTITVL is added to PTIEND until the valoe is
greater than curre nt time.

*All time units are in 10-millisecond units and must not exceed 24
hours.

**Regardless of vhat value is calculated start time (see PTISTR above),
a 24-hour value is added to the stop time until the stop time exceeds
the start tim e.

Note: If PTIEND and PTIE are zero, the PTIME is assumed infinite, and
PATCHes vill be issued until the PTQE is .odified or deleted.

2-124 D~scription and Operation Manual

PTIPAT
contains the address of the supervisor portion of the PATCH parameters.
The options provided viII be used by PTIME to issue PATCHes based on
the above time options. If the common area PATCH is used as defined
in the FORTRAN PATCH Interface write-up, the parameter must point to
PATASK(1). All information desired for the PATCH by PTIME must be
supplied prior to CALLing the interface routine. RESTRICTION: Queue
position of DPATCH (X'02' in PATFLG) is not permitted.

PTIPRM
contains the address of the parameter list passed by PTIME's PATCH.
See FORTRAN PATCH write-up for formats.

Note: If this parameter list is greater than 8 bytes, the interface
routine will move it to a GETMAIN area to be FREEMAINed when
the PTQE is destroyed.

PTIS
A 1-byte logical field containing the flag which defines the content
of PTISTR. See PTISTR above for flag definitions.

PTIP
A 1-byte logical field containing the flag which controls the kind of
DPATCH which will be issued when the PTQE is destroyed. Flags at a
PTIME delete (12) will override the flags when the PTQE was created
(4) or last modified (8). Only one flag may be set.

X'08' Task is deleted rega rd less of its condition.

X'04' Task is deleted when its work queue becomes empty.

X'02' Task is deleted only if its work queue is empty.

X'01' Task is deleted immediately or when the current work queue,
if executing, completes. Any work queue to the task is
posted as deleted.

PTIE
A 1-byte logical field containing the flag which defines the content
of PTIEND or zero. See PTIEND above for flag definitions.

The PTIME facilities are invoked by CALLing DPPPIF with the properly
completed param~ter list. Examples 1 through 4 assumed the following
FORTRAN statements about COKMON area, variables, and constants:

BLOCK DATA
COKftON/PATCH/PATftAC,PATRC,PATPRM,PATASK(2),

1PATEP(2),P1TNAM(2),PATQ,PATV,PATECB,PATRES(2),
1PATCBX, PATFLG

INTEGER PATMAC*2/0/,PATRC*2/0/,PATPRM,PATQ*2/1/,
1PATV*2/0/,PATECB,PATRES.PATCBX

LOGICAL PATASK*4/' " l' 'I,PATEP*4
1PATNAM*4/' ',' 'I, PATFLG*1

COKMON/PTIKE/PTIKAC,PATIRC,PTITYP,PTISTR,PTITVL,
1PTIEND,PTIPAT,PTIPRM,PTIS,PTIP,PTIE

INTEGER PTIMAC*2/4/,PTIRC*2jO/.PTITYP.PTISTR,PTITVL.
1PTIEND,PTIPAT,PTIPRM,

LOGICAL PTIS*1,PTIP*1,PTIE*1
COMftON/PTIMR/PTR"AC,PTRC,PTRTYP,PTRTIK,PTRARY
INTEGER PTRMAC*2/4/,PTRC*2/0/,PTRTYP/O/,PTRTIM,PTRARY
END

APPLICATION SERVICES 2-125

(The above cOllmon areas should be repeated in the main prograll
without data initialization. The following statements are in
MAIN only.)

LOGICAL TOD*1,/Z02/,TN*4(2)/'TIKE','TEST'I,
lTT*4(2)/'TTES','T 'I
LOGICAL QPOS*1/Z04/,REL*1/Z01/,CNT*1/Z08/,ADJ*1/Z04/
LOGICAL PU*1/Z01/,DEL*1/Z01/
CO~~ON/PROBL/PRBLNG,ID,PROBPl
INTEGER PRBLNG*2,ID*2,PROBP1*4

Include the preceding com.on areas in ~AIN area also.

Example

In Example 1, the program uses the COKMON PT1MR to obtain the current
time. The current time is used to set the start time in PTISTR for
PATCHes by PTIME, at current time plus 1 hour. The interval is set to
1 hour, and the last PATCH is to occur 3 hours later. The PATCH
parameters are set to create the task TIMET!ST with a work queue length
of 5, and a dispatching priority of 15 less than the PTIME task. The
PATCH will execute progra. TTEST and delete it when the processing of
each work request completes. The parameters are passed with a PATCH
ID of 10.

CALL OPPPIF(PTR~AC)
P~1PAT=1ADOR(PATASK(l»
PT1PRM=1AODR(PRBLNG)
P~1STR=PTRT1M + 360000
CALL ORBIT(PTIS,TOD)
PTITVL=360000
PT1END=PTISTR + 1080000
CALL ORBIT(PTIE,TOD)
DO 100 1=1,2
PAT ASK (I) =TN (I)

100 PATEP(1)=TT(1)
PATQ=5
PATV=15
CALL ORB1T(PATFLG,DEL)
PRBLNG=4
10=10
PT1TYP=4
CALL DPPPIF(PTIMAq

2-126 Description and Operation Manual

Example 2

In example 2, the PTQE built by Example 1 will be modified (TYPE=8) to
start the PATCHes 15 seconds after this PTI~E is issued, the interval
is changed to once a minute, and the stop time is changed to never end.
The program will not be deleted when a work request is finished
processing and the work request will be queued first. The PATCH 10
will be changed to 5. Note that all parameters .ust be specifieo, as
a modify acts as a replace. All COMMONs are initially as defined.

PTITYP=8
PTIPAT=IADDR(PATASK(l»
PTIPRM=IADDR(PRBLNG)
PTISTR= 1500
CALL ORBIT(PTIS,REL)
PTITVL=6000
DO 100 1=1,2
PATASK (I) =TN (I)

100 PATEP (I)
PATQ=5
PATV=15
CALL ORB1T(PATFLG,QPOS)
PRBLNG=4
1D=5
CALL OPPPIF (PT1 MAC)

Example 3

Example 3 shows the use of the adjusted time facility of PTIME. The
first PATCH is to occur at 5 A.M., or within 30 minutes after the PTIME
was issued and at 30-minute intervals for six times. The task is to
be deleted immediately when the PTQE is destroyed.

CALL ORBIT(PTIP,PU)
PTISTR=180000
CALL ORBIT(PTIS,ADJ)
PTITVL=18000 0
PTIEND=6
CALL ORBIT(PTIE,CNT)

PATCH parameters

PROBLEM parameters

PTITYP=4
CALL DPPPIF(PTIMAC)

APPLICATION SERVICES 2-127

Example 4

Example 4 shows the method for deleting a PTQE. Since the function of
this PTIME service request is to locate the PTQE to be destroyed, only
the parameters required to identify the PTQE need be 9iven~ In this
case, the task is to be DPATCHed as veIl.

PTITYP=12
CALL OR BI T (PTIP ,PU)
PTIPAT=IADDR(PATASK(1)
PTIPRM=IADDR(PRBLNG)
DO 1001=1,2
PATASK (I) =TN (1)

100 PATEP(I)=TT(I)
1D=10
CALL DPPPIF (PTIMAC)

The MESSAGE service is used to cause a predefined message to be printed
or displayed. The message must have been defined through the offllne
utility system using the DEFMSG macro.

The following FORTRAN statements define the parameter list tor this
service:
C
C COMMON NAMED 'MESSAG'--PARAMETER TABLE FOR KESSAGE

COMMON/MESSAG/MESMAC
INTEGER*2 MESMAC

COMMON/MESSAG/MESRC
INTEGER*2 MESRC

COMMON/MESSAG/MESNUM
INTEGER*2 MESNUM

COMMON/MESSAG/MESACT
LOGICAL*1 MESACT

COMMON/MESSAG/MESWT
LOGICAL*1 MESWT

COMMON/MESAG/MESRES
INTEGER*4 MESRES

COMMON/MESSAG/~ESDAT

INTEGER*4 MESDAT
COMMON/MESSAG/MESRTE

INTEGER*2 MESRTE(8)
COMMON/MESSAG/MESVAR

INTEGER*4 MESVAR(10)
C END OF COMMON NAMED 'MESSAG'
e

MES11AC
A halfword binary value of 40 identifying to the interface routine
the requested service.

MESRC
A halfword field containing a binary number return code from the
MESSAGE service routine. See MESSAGE macro write-up for valid return
codes.

MES NUM
A halfword binary value from 1 to 999 identifying the message
requested.

2-128 Description and Operation Manual

MESACT
A l-byte logical field to be appended to the message number. I denotes
information, A denotes action is required, and D denotes that a
decision is required. Zero viII indicate that the message definition
default should be used.

MESWT
A 1-byte flag field using a X'08' to indicate the program's decision
to WAIT for the message to be sent. A X'OO' implies NO WAIT.

MESRES
A fullword binary field reserved for the interface routine.

[1 ESDAT
A fullvord binary field containing the address of an area vhere the
service routine will place the formatted message for use by the
program.

MESRTE
An array of eight halfvord binary numbers representing the devices on
which the message viII appear or viII be printed. All unused entr~es
must be zero or 255. Values must range from 1 to 254. Entries with
a zero will use the message definition default routing code.

M ESVAR
An array of 10 fullvords containing addresses of message variables to
be inserted into the message. All unused entries must be zero. Only
consecutive non-zero entries viII be used.

~'he following example requests the MESSAGE service to output to route
code (1) message number 37 with a variable text field of "END OF TEST."
The message number viII have an action coGe of "I" appended to identify
the message as an advisory. The program viII vait for the message to
be transmitted.

BLOCK DATA
C FORTRAN MESSAGE EXAMPLE

COMMON/MESSAG/MESMAC,MESRC,MESNUM,MESACT,HESWT,HESRES,MESDAT,
lMESRTE(8) ,MESVAR(10)

INTEGER MES MAC*2/140/, M ESRC* 2/0/, MESNUM* 2, ME SRES,
HIESDAT, MESR TE ,MES VAR

LOGICAL MESAC'.i'*1/100/,MESWT*1
END

(The above COMMON areas should be repeated in the main program
without data initialization. The following statements are in
MAIN only.)

LOGICAL A*4 (4) /' !!EN D', • £OF 12' , , TEST' , bb~' I, ACT* 1/' 1'1,
WT*1/Z80/
MESNUM=37
MES ACT=ACT
CALL ORBIT(MESWT,WT)
M ES RT E (1) = 1
MESVAR(l) =IADDR (A(l»
MESVAR(2)=O
CALL DPPPIF (MESMAC)

The RECORD facility provides a method for writing data to a sequential
data set. The data can be retrieved at a lRter time for offline
processing (see section on data playback). The following FORTRAN
statements define the parameter list for this service:

APPLICATION SERVICES 2-129

C
C COMMON NAMED 'RECORD'--PARAKETER TABLE FOR RECORD

COMMON/RECORD/RECMAC
INTEGER*2 RECMAC

COMMON/RECORD/RECRC
INTEGER*2 RECRC

COMMON/RECORD/RECCNT
INTEGER*4 RECCNT

COMMON/RECORD/RECDAT
INTEGER*4 RECDAT

COMMON/RECORD/RECID
INTEGER*2 RECID

C END OF COMMON NAMED'RECORD'
C

RECMAC
A halfword binary value of 56 identifying to the interface routine
the requested service.

RECRC
A halfword field containing a binary number return code ftom the RECORD
service routine. See RECORD tDacro write-up for valid return codes.

RECCNT
A fullword binary field con~aining the number of data bytes to be
recorded. A maxi.mum value of 65535 may be specified._

R ECDAT
The address of the data to be recorded.

RECID
A halfword binary number from 1 to 4095 which identifies the data
being recorded.

The foliowing example uses RECORD to write the entire 100 fullwords
from array ANNUAL with an ID OF 100.

C FOFTRAN RECORD EXAMPLE
BLOCK DATA
COMMON/RECORD/RECMAC,RECRC,RECCNT,RECDAT,RECID
INTEGER RECMAC*2/56/,RECRC*2/0/,RECCNT,RECDAT,RECID*2/0/
END

(The above COMMON areas should be repeated in the main program
without data initialization. The following sta~e.ents are
in MAIN only.)

INTEGER ANNUAL (100)

RECCNT=400
RECDAT=IADDR(ANNUAL (1»
RECIO=100
CALL DP PPIF (RECMAC)

This FORTRAN interface provides the program~er the facilities of the
GET ARRAY and PUTARRAY services. The following FORTRAN statements define
the interface parameter list:

2-130 Description and Operation Manual

C
C COMMON NAMED'ARRAY'--PARAMETER TABLE FOR GETARRAY AND PUTARRAY

COMMON/ARRAY/ARMAC
INTEGER*2 ARMAC

COMMON/ARRAY/ARRC
INTEGER*2 ARRC

COMMON/ARRAY/ARNAM
INTEGER*4 ARMAM

COMMON/ARRAY/ARAREA
INTEGER*4 ARAREA

COMMON/ARRAY/ARNADD
INTEGER*2 ARNADD

COMMON/~RRAY/ARADD

INTEGER*2 ARADD
COMMON/ARRAY/ARTYPE

INTEGER*2 ARTYPE
C END OF COKMON NAMED 'ARRAY'
C

ARMAC
A halfword binary value of 16 identifying the service required 'to the
in te rf ace ro ut in e.

ARRC
A halfword binary field containing the return code from the array
service routine. See GETARRAY and PUTARRAY macro write-ups for
possible val ues.

ARNAM
A fullword field containing the address of one of the following based
on the specifications implied by the value of ARTYPE.

a. If ARTYPE specifies the 'NAME LIST' option for ARNAM (sAe Figure
2-21), then ARNAM contains the address of a list of a-character
array names followed by an X'FF' after the last name where the next
name would start. ARNADD contains the value to be added to the
list address to locate the next array name ..

NAME LIST

) NAME 1

NAME2

16 F FI

b. If ARTYPE specifies 'NUMBER LIST' then ARNAM contains the address
of halfword binary array numbers followed "by a X'FF' after the last
array number where the next number would start. ARNADD contains
the value to be added to the list address to locate the next array
number in the list.

NUMBER LIST

o! 1 ST NUMBER

24r _____ 2N __ D_N~U-M-B-E-R----~
t F F I

c. If ARTYPE specifies 'ADDRESS LIST', then ARNAM contains the address
of a list of array addresses as returned from a previous GETARRAY
execution. The list must be terminated by a fullword binary value

APPLICATION SERVICES 2-131

of -1 after the last array address where the next address would be
located. ARNADD contains the value to be added to the list address
to locate the next array address.

ADDRESS LIST 4 6 8 10

o FLAG A(IST ARRAY) NO. BLKS SIZE NO. ITEMS I
+ARADD FLAG A(2ND ARRA Y) NO. BLKS SIZE

FFFFFFFF

This list is the same as returned as the find list specified below
with the addition of the termination flag which must be added by the
user.

ARA RE A
A fullword field containing the address of one of the following based
on the specifications implied by the value of ARTYPE.

a. If ARTYPE specifies the "DATA LIST' option for ARAREA (see Figure
2-21) , then ARAREA contains the address of a list of addresses into
or from which the data of the specified arrays (see ARNAM abvve)
is to be moved. ARADD contains the value to be added to the list
address to locate the next data area address in the list.

DATA AREA ADDRESS LIST

o A(JST DATA AREA)

ARADD>i'l A(2ND DATA AREA

ARADD*2 A(3RD DATA AREA)

b. If ARTYPE specifies 'FIND LIST', then ARAREA contains the address
of a list of 10-byte fields to be filled: a flag byte (see GETARRAY
macro write-up), a 3- byte array address, a halfword block. count,
a halfword array size or block size, and a halfword item count.
ARADD contains the value to be added to the list address to locate
the next entry in the list. The minimum value for ARADD under this
option is 8, in which case, the item count halfword will not be in
the list.

FIND LIST

4 6 8

o FLG ARRAY ADDR NO. BLKS SIZE NO. ITEMS

FLG ARRAY ADDR NO. BLKS SIZE NO. ITEMS

FLG ARRAY ADDR NO. BLKS SIZE NO. ITEMS

2-132 Description and operation Kanual

c. If ARTYPE of addresses specifies 'SPEC LIST', the ARAREA contains
the address of a list of areas to be filled in by the service
routine. Each area will receive a 16-byte field for each item in
the array. These 16-hyte fields will contain an a-byte item name,
a l-byte item length, a 1-byte data type, a halfword array
displacement to the start of the item, a halfword array ID, and a
halfvord number identifying the number of identical and sequential
items defined by this entry. ARADD contains the value to be added'
to the list address to locate the next 16-byte field.

ARRAY SPECIFICATIONS LIST
8 9 10 J? 14 -

) ITEM NAME LNG TYPE DISP. AID REPT

16 ITEM NAME LNG TYPE DISP AID REPT

32 ITEM NAME LNG TYPE DISP AID REPT

ARNADD
A halfword value ad1ed t~ ARNAME to locate the next entry in the list.
A value must be specified.

ARADD
A halfword value added to ARAREA to locate the next entry in the list.
A value must be specified.

ARTYPE
A halfword binary value specifying the array service options selecten.
The values (given in the tables below) identify the contents of ARNAME
and ARAREA, either a GETARRAY or PUTA'RRAY, the array (i.e., DATALISr,
ADDRLIST, or SPECLIST), and the desired protection for GET ARRAYs
(PROTEer or RISK).

DATALIST
Specifies that the contents of the arrays are to be returned (GE'l'ARRAY)
or updated (PUTARRAY).

ADDRLIST
Specifies that a ~FIND LIST' entry is to be completed for each array
name or number in the list. This option is valid for virtual storage
resident arrays only.

SPECLIST
Specifies that a 'SPEC LIST' entry is to be completed for each item
of each array naae or number in the list.

PROTECT
Specifies that the array service will be locked during processing to
prevent changes from altering results.

RISK
Specifies that the array service viII be processed regardless of the
possibility of parallel processing changing array content.

APPLICATION SERVICES 2-133

ARNAM ARAREA SERVICE PROTECTION ARTYPE
REQUESTED REQUESTED VALUE

A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 16

A(NAME LIST) A(DATA LIST) DATA LIST RISK 17

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 20

A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 21

A(NAME LIST) A(F[ND LIST) ADDR LIST PROTECT 34

A(NAME LIST) A(FIND LIST) AD DR LIST RISK 35

A(ADDR LIST) A(DATA LIST) DATA LIST PROTECT 48

A(ADDR LIST) A(DAT A LIST) DATA LIST RISK 49

A(NUMBER LIST) A(DATA LIST) DATA LIST PROTECT 80

A(NUMBER LIST) A(DATA LIST) DATA LIST RISK 81

A(NUMBER LIST) A(SPEC LIST) SPEC LIST PROTECT 84

A(NUMBER LIST) A(SPEC LIST) SPEC LIST RISK 85

A(NUMBER LIST) A(FIND LIST) ADDR LIST PROTECT 98

A(NUMBER LIST) A(FIND LIST) ADDR LIST RISK 99

1igure 2-21. GETARRAY Service

A(NAMELlST) A(DATA LIST) DATA LIST N/A 128

A(ADDR LIST) A(DATA LIST) DATA LIST N/A 144

A(NUMBER LIST A(DATA LIST) DATA LIST N/A 176

Figure 2-22. PUTARRAY Services

The GETARRAY/PUTARRAY services are invoked by CALLing DPPPIF with the
properly completed parameter list.

The following example shows the use of the array services in locating
the array B, reading in the item specifications, reading the entry
array into FORTRAN core, and upda ting the array.

BLOCK DATA
C FORTRAN GET/pUT-ARRAY EXAMPLE
C

2-134

COMMON/ARRAY/ARMAC,ARRC,ARNAft,ARAREA,ARNADD,ARADD,ARTYPE
INTEGER ARMAC*2/0/,ARRC*2/0/,ARRAN.ARAREA,ARNADD*2/8/,

1ARADD*2/4/,ARTYPE*2/16/
END

(The above COMMON areas should be repeated in the .ain prograll
without data initializtion. The following statements
are in MAIN only.)

Descri ption and Operation Kanual

C

C

C

C

COKKON/ARAY/ANAME(2),AEND,AFIND(6,2),ACORE
INTEGER END*4,AFIND*2,ACORE*4
LOGICAL ANAKE*4
COKMON/AITM/INAME(16,255)
LOGICAL INAME*1
EQUIVALENCE (AFIND(1,1) ,ADRA(l,1)
INTEGER ADRA(3,2)
EQUIVALENCE (INAftE(l,l) ,SPEC(l,l»
INTEGER SPEC*2(8,255)
CO! KONI AREA/D AT A (16,255)
LOGICAL DATA*l
LOGICAL A*4(2)/'B
ANAME (1) =A (1)
ANAME (2) =A (2)
AEND= 1
ARNAM=IADDR(lNAME(l»
ARN ADD=8

, I ,

ARAREA=IADDR(AFIND(l,l)
ARADD=12
ARTYPE=35
BUILD FIND LIST
CALL DPPPIF (ARMAC)
ACORE=IADDR(INAME(l,l»
ARAREA=IADDR (ACORE)
ARADD=4
ARTYPE=21
BUILD ITEM SPEC LIST
CALL DPPPIF(ARMAC)
ACORE=IADDR(DATA(l,l»
ARTYPE= 16
READ ARRAY
CALL DPPPIF(ARMAC)
ARTYPE=128
UPDATE ARRAY
CALL DPPPIF (ARK AC)

II

This FORTRAN interface provides the prograamer the facilities of the
GETITEM and PUTITEM services. The following FORTRAN statements define
the interface paramater list:

C
C COMMON NAMED 'ITEK'--PAR1KETER TABLE FOR GETITE! AND PUTITEM

COMMJN/ITEM/ITMAC
IiTEGEh*2 ITKAC

COMMJN/ITEM/ITMRC
INTEGER*2 ITMRC

~O!KON/ITEM/ITMNAM

INTEGER*4 ITMNAM
COMMON/ITEM/ITMDAT

INTEGER*4 ITKDAT
COMMON/ITEM/ITMNAD

INTEGER*2 ITMNAD
COMMON/ITEM/ITMDAD

INTEGER*2 ITMDAD
COMMON/ITEM/ITMTYP

INTEGER*2 ITMTYP
C END OF COMMON NAMED 'ITEM'
C

ITfUC
A ~alfword binary value of 20 identifying the service required to the
interface routine.

APPLICATION SERVICES 2-135

ITMRC
A halfword field containing a bi nary num ber retu rn code froll the item
service routine. See GETITEM and PUTITEM macro write-ups for possible
val ues.

ITMNAM
A fullword field containing the address of one of the following based
on the specifications implied by the value of ITMTYP.

a. If ITMTYP specifies 'NAMELIST', the ITMNAM contains the address of
a list of a-character item names followed by a X'FF' after the last
name where the next name would start.

ITMNAD contains the value to be added to the list address to locate
the next item name.

NAME LIST

o NAME I

+ITMNAD NAME 2

+ITMNAD*2 F F I
L-~ ______________ ~

b. If ITMTYP specifies 'ADDRESS LIST', the ITMNAM contains the address
of a list of item addresses as returned from a previous execution.
The list must be terminated by a fullword of -1 where the next
address would be in the list. ITI1NAD contains the value to be
added to the list address to locate the next item address in the
list.

o
+ITMNAD

+ITMNAD*2

ITMDAT

LENGTH

LENGTH

ADDRESS LIST

I A(ITEMA)

I A(ITEMB)

FFFFFFFF

A full word field containing the address of one of the following based
on the specifications implied by the value of ITMTYP.

a. If ITMTYP specifies 'DATA LIST', the ITMDAT contains the address
of a data area into or from which data is moved. ITMDAD contains
the value to be added to the data area addresss to locate the area
for the next item. If ITMDAD is zero, the item length is used to
locate the next item data area.

b. If ITMTYP specifies 'ADDR LIST', the ITKDAT contains the address
of a list of 4-byte entries into which an item length and address
is stored for each item specified in the • NAftE LIST.' The list must
contain room for one more entry to allow the service routine to
store an end of list X'FF.' ITMDAD contains the value to be added
to the list address of locate the next entry.

ADDRESS LIST

o LENGTH ITEM ADDRESS

4 LENGTH ITEM ADDRESS

8 FF FFFFFF

2-136 Description and Operation Manual

c. If IT~TYP specifies 'SPECLIST'. the ITKDAT contains the address of
a list of 4-byte entries each containing the item length, flags
identifying data type, and an array displacement to the first byte
of the ite.. ITMDAD contains the value to be added to the list
address of locate the next entry~

Item Specification List
8 9 10 12 14 16

o ITEM NAME LNG TYPE DISP. AID REPT

ITEM NAME LNG TYPE DISP. AID REPT

ITEM NAME LNG TYPE DISP. AID REPT

IT~NAD

A halfword binary value added to the list aadress in ITMNAK to locate
the next entry A value must be A value must be specified.

ITKDAD
A halfword binary value added to the list address in ITKDAT to locate
the next entry. A value must be specified unless ITKTYP specifies
'DATA LIST', in which 'case zero may be used.

IT~TYP

A halfvord binary number specifying the item service options selected.
The values (given in the figures 2-23 and 2-24) identify the kind of
service (i.e., DATALIST,ADDRLIST, or SPECLIS~), if it is a GETITEM or
PUTITEM, and if GETITEK is protected (PROTECT or RISK). A value must
be specified.

DATALIST
Specifies the content of the item is to be moved to or updated from
the data area.

ADDRLIST
Specifies the item 'ADDRESS LIST' is to be built for each named item.

SPECLIST
specifies the item 'SPECIFICATION LIST' is to be built for each named
item.

PROTECT
Specifies the GETITE~ service viII ensure data integrity during
processing.

RISK
Specifies the GETITE~ service viII process the request regardless of
the possibility of parallel processing updating the content of the
named item(s).

Note: DATALIST and ADDRILIST are invalid service requests for direct
access resident arrays.

APPLICATION SERVICES 2-137

ITMNAM ITMDAT SERVICE PROTECTION ITMTYP
REQUESTED REQUIRED VALUE

A(NAME LIST) A(DAT A LIST) DATA LIST PROTECT 136

A(NAME LIST) A(DATA LIST) DATA LIST RISK 137

A(NAME LIST) A(ADDR LIST) ADDR LIST PROTECT 138

A(NAME LIST) A(ADDR LIST) ADDR LIST RISK 139

A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 140

A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 141

A(ADDR LIST) A(DAT A LIST) DATA LIST PROTECT 152

A(ADDR LIST) A(DAT A LIST) DATA LIST RISK 153

Figure 2-23. GETITEM Services

A(NAME LIST) A(DAT A LIST) DATA LIST N/A 184

A(ADDR LIST) A(DAT A LIST) DATA LIST N/A 200

Figure 2-24. PUTITEM Services

The GETITEM/PUTITEM services are invoked by CALLing DPPPIF with a
properly completed parameter list.

2-138 Description and Operation Manual

The following example viII use the item service to obtain the addresses,
specifications, and data for a list of five items from the same array
and update them in the array_

BLOCK DATA
C FORTRAN GET/PUT-ITEM EXAMPLE

COMMON /ITEM/ I TM AC ,ITftRC ,ITKNA l!, IT MD AT, ITMNAD, ITMD AD,
1ITMTYP

INTEGER ITMAC*2/20/,ITMRC*2/0/,ITMNAft,ITKDAT,ITMNAD*2,
1ITMDAD*2,ITMTYP*2/0/

COMMON /AREA/ DAT~(16,5)
LOGICAL*1 DATA
COMMON /N/ NAME(2,5),END
INTEGER END/-1/
LOGICAL*4 NAME/1B01 ',' • ,. B03 .,. ., 'B05 .,.

1'B07Q', '~Q£','B09l2' ,'bbbb'/
END

(The above common areas should be repeated in the main program
vithout data initialization. The following statements are
in MAIN only.)

INTEGER ADR (6)
LOGICAL*1 LNG(4,5}
ITMNAM=LADDR(NAME(1,1»
ITMNAD=8
ITMDAT=IADDR(ADR(1»
ITMDAD=4
ITMTYP=139

C FIND ARRAY ITEMS
CALL DPPPIF (ITMAC)
ITMDAT=IADDR(LNG(1,1)
ITMTYP=141

C GET ITEM SPECS
CALL DPPPIF (ITMAC)
ITMNAM=IADDR(ADR(1»
ITMNAD=4
ITMDAT=IADDRtDATA(1,1»
ITMDAD=16
ITMTYP=152

C READ ITEMS BY ADDRESS
CALL DPPPIF (ITM AC)
ITMTYP=200

C UPDATE ITEMS BY ADDRESS
CALL DPPPIF (ITMAC)

This FORTRAN interface provides the programmer the facilities of the
GETBLOCK and PUTBLOCK services. The following PORTRAN statements define
the interface parameter list:

APPLICATION SERVICES 2-139

C
C CO~U!ON NAMED 'BLOCK' aPARAftETER TABLE FOR GETBLOCK AND

PUTBLOCK

COMMON/BLOCK/BLKMAC
INTEGER*2 BLKMAC

COMMON/BLOCK/BLKRC
INTEGER*2 BLKRC

COMMON/BLOCK/BLKNAM
INTEGER*4 BLKNAM

COMMON/BLOCK/BLKDAT
INTEGER*4 BLKDAT

COMMON/BLOCK/BLKADD
INTEGER*2 BLKADD

COMftON/BLOCK/BLKTYP
INTEGER*2 BLKTYP

C END OF COMMON NAMED 'BLOCK'
C

BLKI'1AC
A halfword binary value of 24 identifying the service requested to
the interface routine.

BLKRC
A halfword field containing a binary number return code from the
blocked array service routine. Zero indicates successful completion
while any non-zero indicates unsuccessful completion.

BLKNAM
A fullword field containing the address of one of the following based
on the speci fica tions implied by BLKTYP ..

a. If BLKTYP specifies 'NAME LIST' the BLKNAM contains the address of
a list of a-character array names followed by a X 'FF' in the first
byte after the last name where the next name vould start.

NAME LIST

o NAME

8 NAME

16 FFI

b. If BLKTYP specifies 'NUMBER LIST', the BLKNAM contains the address
of a list of halfword array number followed by a X'FF' in the first
byte after the last number where the next number would start.

NUMBER LIST

o NUMBER

2 NUMBER

4 FF 1

2-1QO Description and operation Manual

BLKADD contains the value to be added to the list address to locate
the next entry.

DATA AREA LIST
1 4

o FLG DATA AREA BLK. NO.

FLG DATA AREA BLK. NO.

FLG DATA AREA BLK. NO.

FLG -- A 1-byte flag field. A X'40' indicates the last data area
and block number for a specified array but not the end of the list.
A X'SO' indicates the last entry for the last array and the end of
the list. A X'OO' should appear in all other entries.

DATA AREA -- A 3-byte address of the area into or from which the
specified array block is moved.

BLK. NO. -- A halfword binary number specifying the array block being
moved.

BLKADD
A halfword binary value added to the contents of BLKDAT to locate the
next entry in the list. If zero, a value of 6 is assumed.

BLKTYP
A halfword binary value specifying the blocked array service options
selected. The value (given in the tables below) identify the contents
of BLKNAM and if it is a GETBLOCK with or without protection (PROTE:T
or RISK) or a PUTBLOCK.

BLKNAM BLKDAT PROTECTION
REQUESTED

A(NAME LIST) A(DA T A LIST) RISK

A(NUMBER LIST) A(DATA LIST) RISK

A(NAME LIST) A(DATA LIST) PROTECT

A(NUMBER LIST) A(DA T A LIST) PROTECT

Figure 2-25. GETBLOCK Services

A(NAME LIST)

A(NUMBER LIST)

A(DAT A LIST)

A(DAT A LIST)

Figure 2-26. PUTBLOCK Services

N/A

N/A

BLKTYP
VALUE

4

6

12

14

7

The GETBLOCK/PUTBLOCK services as invoked by calling DPPPIF with a
properly completed parameter list.

APPLICATION SERVICES 2-1ql

The following example viII execute a GETBLOCK for block number 5 from
array BLK' and BlOKB. Then the blocks are written out to their
respective arrays.

BLOCK DATA
C FORTRAN GET/PUT-BLOCK EXAMPLE

COMMON /BLOCK/ BLKMAC,BLKRC,BLKNAM,BLKDAT,BlKADD,BLKTYP
INTEGER BLKMAC*2/24/,BlKRC*2,BLKNAM,BLKDAT,BLKADD*2,

1BLKTYP*2
COMMON /N/ NAME (2,2) , END
LOGICAL*4 NAME/'BLK1',' ','BlOK','S '/
INTEGER*2 END/-1/
END

(The above COMKON areas should be repeated in the main program
without data initialization. The following statements are in
MAIN only.)

COMMON /LIST/ AREA(2,2)
INTEGER *4 AREA
EQUIVALENCE (AREA(1, 1) ,NUM(1,1)
INTEGER*2 NUM(4,2)
COMMON /BLK/ OATA(256,2)
LOGICAl*l DATA
LOGICAL*l NEXT/Z40/,STOP/Z80/
AREA (1,1) =IADDR(DATA(l ,1»
NUM (3,1) =5
CALL ORBIT(AREA (1,1) ,NEXT)
AREA(1, 2) =IADDR (DATA(l, 2»
NUM(3,2)=5
CALL ORBIT(AREA(l,l),STOP)
BLKNAM=IADDR(NAME(1,1»
BLKDAT=IADDR (AREA (1,1»
BLKADD=8
BLKTYP=12

C READ BLOCK 5 OF ARRAYS BLK' and BLOKB
CALL DPPPIP(BLKMAq
BLKTYP=5

C UPDATE BLOCK 5 IN ARRAYS
CALL DP PPIF (BLK MAC)

This FORTRAN interface provides the programmer the facili.ties of the
GETLOG service. The following FORTRAN statements define the interface
parameter lis t.

2-142 Descri ption and Operation Manual

C
C COMMON NAKED 'GETLOG' PARAMETER TABLE FOR GETLOG
C

COMMON/GETLOG/GETMAC
INTEGER*2 GET MAC

COMMON/GETLOG/GETRC
INTEGER*2 GETRC

COMMON/GETLOG/GETYPE
INTEGER*2 GETYPE

COMMON/GETLOG/GETNO
INTEGER G ETNO *2

COMMON/GETLOG/GETDAT
INTEGER*4 GETDAT

COMMON/GETLOG/GETCPY
INTEGER*4 GETCPY

COMMON/GETLOG/GETHD
INTEGER*4 GETHD

COMMON/GETLOG/GETNAM
INTEGER*4 GETNAM

C END OF COMMON NAMED 'GETLOG'
C

GETMAC
A halfvord value of 48 identifying the service required to the
interface routine.

GETRC
A halfword binary field containing a binary number return code from
the GETLOG service routine. See GETLOG macro write-up for possible
values.

GETYPE
A halfword flags field indicating the requested options to the GETLOG
service routine. Bits are numbered 0 to 7.

Bits Ow 1,
3, 5, and 77

Bit 2

Bit 4

Bit 6

Byte 2

GETNO

Reserved.

See GETHD.

If on, the GETLOG service routine protects the data
content across the service request.

If onw GETNO contains the array number of the log
copy being rea d. If off, GETNAM contains the address
of the array name.

Reserved.

A halfword field containing the number of the array whose log copy is
being read. Valid only if Bit 6 of GETYPE is on. If bit 6 is off,
this field is zeroed by the interface routine.

GETDAT
A fullword field containing the address of the data area into which
the log copy requested will be placed. The area must be large enough
to hold the entire array and its 24-byte log header.

GETCPY
A full word binary number used to determine which copy of a logged
array, relative to the GE~HD parameters, will be retrieved from the
log data set.

APPLICATION SERVICES 2-143

GETHD
A fullword field containing one of the following based on Bit 2 in
GETYPE

a. If Bit 2 is on, then GETHD contains the address of a 24-byte log
header identifying the relative starting point to determine which
copy of the array will be retrieved from the log data set.

b. If Bit 2 is off and GETHD is zero, then the current copy becomes
the relative starting point.

c. If Bit 2 is off and GETHD is non-zero, then GETHD contains the
address of a 6-byte time and day field. The first 4 bytes will
contain a time in 10-millisecond units. The last two bytes contain
a binary value from 1 to 366, representing the day of the year.
This time and day will be used as a comparison value to establish
a relative starting point to determine Which copy of the array will
be retrieved from the log data set.

GETNAM
A fullword address of the name of the named array, a log copy of which
is being requested. Valid only if BIT 6 of GETYPE is off.

The GETLOG service is invoked by CALLing DPPPIF with a properly
completed parameter list.

The following example will GETLOG the previous logged copy of array B
referenced from the current copy.

BLOCK DATA
C FORTRAN GETLOG EXAMPLE
C

2-144

COMMON/GETLOG/GETMAC,GETRC,GETYPE,GETNO,GETDAT"GETCPY,
1GETHD,GFTNAM

INTEGER GETMAC*2/48/,GETRC*2/0/,GETYPE*2/0/,GETNO*2,
1GETDAT, GETCPY,G ETHD,GETNAM

END

(~he above common areas should be repea~ed in the main program
without data initialization. The following statements
are in MAIN only.)

COMMON/LOG/HEADR (12) ,LDATA (24)
INTEGER*2 HEADR,tDATA
LOGICAL A*4(2)/'B

GETDAT=IADDR(HEADR(1»
GETNAM=IADDR(A{1)
GETCPY=-1
CALL DPPPIF (GET MAC)

, , , '/

Description and Operation Manual

This FORTRAN interface provides the programmer the facilities of the
PUTLOG se,rvice. The following FORTRAN statements define the interface
parameter list.

C
C COMMON NAMED 'PUTLOG' PARA~ETER TABLE POR PUTLOG
C

c

COMMON/PUTLOG/PUTMAC
INTEGER*2 PUTMAC

CO"MON/~UTLOG/PUTRC

INTEGER*2 PUTRC
COMMON/PUTLOG/PUTNAM

INTEGER*~ PUTNAM
COMMON/PUTLOG/PUTHD

INTEGER*4 PUTHD
COMMON/PUTLOG/PUTYPE

INTEGER*2 PUTYPE
COMMON/PUTLOG/PUTBLK

INTEGER*2 PUTBLK

C END OF COMMON NAMED 'PUTLoe'
C

PUTMAC
A halfword binary value of 44 ideLtifying the requested service to
the interface routine.

PUTRC
A halfword binary field containing a binary number return code from
the PUTLOG service routine. See PPUTLOG macro write-up for possible
values.

PUTNAM
A fullword containing the address of one of the following based on
Bits 5 and 6 in PUTYPE.

a. If Bits 5 and 6 are zero (where bits in a byte are numbered 0 to
7), then PUTNAM contains the address of an 8-character array name.

b. If Bit 5 is off and Bit 6 is on, then PUTNAM contains the address
of a halfword containing an array number.

c. If Bit 5 is on and Bit 6 is off, then PUTNAM contains the address
of a list of 8-character array names. The first byte past the last
valid entry must be set to X'FF' to indicate the end of the name
list.

NAME LIST

o NAME!

8 NAME2

!6~

d. If Bits 5 and 6 are on, then PUTNAM contains the address of a list
of half word binary array numbers. The first byte past the last

APPLICATION SERVICES 2-145

valid entry must be set X 'FF' to indicate the end of the number
list.

NUMBER LIST

o 1ST NUMBER

2ND NUMBER

4 FF I

PUTHD
A full word field containing the address of one of the following based
on Bits 2 and 3 in PUTYPE.

a. If Bits 2 and 3 are both off, then PUTHD must be zero.

b. If Bit 2 is on and Bit 3 is off, then PUTHD contains the address
of an array logging header. Information in this logging header
will identify the copy of the array which is to be repla=ed in tbe
log data set. The logging header is a 24-byte control block which
precedes the array, both as the array exists in virtual storage
and as it is written to the logging array. The ~ogging header
which was retrieved as part of a previous GETLOG may be used to
replace tha t copy in the log data set.

c. If Bit 2 is 6ff and Bit 3 is on, the PUTHD contains the address of
a user-constructed list of block numbers and storage addresses.
The latest log copy will be modified. However, only the log block
corresponding to the VS resident block specified will be updated.

o I 4

I FLG IDATA ADDREssl BLK. No·1

FLG A 1-byte flag field.

X'40' Indicates the last entry to be processed for a
particular entry in the name or number list.

X'80' Indicates the last entry in the data li~t.

DATA ADDRESS Ignored.

BLK NO. The number assigned to the data block to be updated.

2-146 Description and Operation Manual

EXAMPLE: BLKLIST and Name List

NAME LIST BLKLIST

FIRSTbbb A(AREA) H'I'

SECONDbbb A(AREA) H'S'

THIRDbbb X'40' A(AREA) H'lO'

~ ~
~

X'40' A(AREA) H't'

A(AREA) H'2'

X'80 A(AREA) H'3'

PUTYPE
A 2-byte flags field specifying the selected options.

Bits ° and 1 Reserved.

Bits 2 and 3 See PUTHD.

Bit 4 If on, the PUT LOG is protected while processing.

Bits 5 and 6 See PUTNAM.

Bit 7 Must be on to indicate a PUTLOG.

Byte 2 Reserved.

PUTBLK
If flag bit 2 is off and Bit 3 is on, then the halfword value in this
field is used to increment the address in PUTHD.

The PUTLOG service is invoked by CALLing DPPPIF with the properly
completed parameter list.

The following example logs the array B as the current log copy.

BLOCK DATA
C FORTRAN PUTLOG EXAMPLE
C

COMMON/PUTLOG/pUTMAC,PUTRC,PUTNAM,PUTHD,PUTYPE,
1 PUT BLK

INTEGER PUTMAC*2/44/,PUTRC*2/0/,PUTNAM.PUTHD,PUTYPE*2/0/,
1 PUTBLK *2/0/
END

(The above COKMON areas should be repeated in the main program
without data initialization. The following statements
are in MAIN onl Y4)

, , , LOGICAL*4 A (2) /" B
LOGICAL*1 PUT/Z01/
CALL ORBIT(PUTYPE,PUT)
PUTNAM=IADDR(A(1)
CALL DPPPIF(PUTMAC)

'/

APPLICATION SERVICES 2-147

This FORTRAN interface provides the programmer the facilities of the
DUMPLOG service. The following FORTRAN statements define the interface
parameter list:

C COMMON NAMED 'DUMPLG'--PARAMETER TABLE FOR DU!PLOG
COMMON/DUMPLG/DPLMAC

INTEGER*2 DPLMAC
COMMON/DUMPLG/DPLRC

INTEGER*2 DPLRC
COMMON/DUMPLG/DPL~YP

INTEGER*2 DPLTYP
COMMON/DUMPLG/DPLNO

INTEGER*2 DPLNO
COMMON/DUMPLG/DPLSTR

INTEGER*4 DPLSTR
COMMON/DUMPLG/DPLEND

INTEGER*4 DPLEND
COMMON/DUMPLG/DPLDAT

INTEGER*4 DPLDAT
COMMON/DUMPLG/DPLDD

LOGICAL*1 DPLDD(8)
COMMON/DUMPLG/DPLIST

INTEGER*4 DPLIST
C END OF COMMON NAMED 'DUMPLG'
C

DPLMAC
A halfword binary value of 52 identifying the requested service to
the interface routine.

DPLRC
A halfword binary field containing a binary number return code from
the DUMPLOG service routine. See DUHPLOG macro write-up for possible
values.

DPLTYP
A halfword flags field indicating the requested options to the GETLOG
service rout ine. Bits are numbe red 0 to 1.

Bits 0, 1,
2, 4 and 7

Bit 3

Bit 5

Bit 6

2-148

Reserved

This flag specifies whether the dumped copies are
to be written at the beginning of the dump data set
(Bit 3 is on) or added to the existing dumped copies
(Bit 3 is off). If the disposition parameter
specified on the DD card statement for thi s data
set is either OLD or SHR and the data set is empty,
then the first DUMPLOG request must specify 'NEW'
(Bit 3 is on). Specifying 'NEW' (Bit 3 is on) on
subsequent DUMPLOG requests will position a direct
access data set to record one and will cause a tape
data set to force EOV b~fore the log copies are
wr itten.

If on, specifies a list of array names or numbers
is pointed to by DPLIST.

If on, specifies array number(s) is to be processed.
If off, array name(s) is given for processing.

Descri ption and Operation Kanual

DPLNO
A halfword number which is the number of a numbered array to be dumped.
Valid only if Bit 5 is off and Bit 6 of DPLTYP is on.

DPLSTR
A full word which specifies the address of a 6-byte time and day fi~ld.
The first four bytes viII contain a time in 10-millisecond The last
two bytes will contain a binary value from 1 to 266 representing the
date of the year. The logged copies of the array will be searched
until a copy is found with a log time equal to or greater than the
start time specified. If this parameter is zero, dumping commences
wi th the oldest logged copy of t"he array.

DPLEND
A fullword which specifies the address of a 6-byte time and day field
formatted as in DPLSTR. The logged copies of the array will be dumped
until the most recently logged copy has been dumped or until a copy
is dumped whose log time is equal to or greater than the specified
stop time. If this parameter is zero, dumping viII terminate when
the most recently logged copy of the array has been dumped.

Note: DUMPLOG viII insert a byte of X'FP' into the first byte of the
logging header of the last copy of each array dumped to the
sequential data set to indicate the end of the dump of each
array to the user delog routine.

DPLDAT
A full word which specifies the address of a 256-byte user data area
to be contained in the dump header for each array on the sequential
damp data set.

DPLDD
Two 4-byte logical vords containing the name of the data definition
(DD) statement which describes a sequential data set to receive the
dumped copies of the array(s) from the log data set. A name must be
specified.

The output viII consist of spanned variable length records. The
blocksize of the data set defined by DPLDD must be at least 264 bytes
but no more than 32,160 bytes. The blocksize should be large enough
to contain one array copy, its log header, the user dump header, if
any, and the variable length descriptor words (8 bytes) for maximum
effiency.

DPLIST
A fullword containing the address of one of the following based on
Bits 5 and 6 DPLTYP:

a. If Bits 5 and 6 are off, then DPLIST contains the address of an
8-charact er Iogga ble array na me t a be dum pede

b. If Bit 5 is on and Bit 6 is off, then DPLIST contains the address
of a list of loqgable array names to be dumped.

APPLICATION SERVICES 2-149

Each name is eight characters long with a t'FF' after the last valid
name as an end of list indicator.

NAME LIST

o ARRAY NAME

8 ARRAY NAME

16~

c. If Bits 5 and 6 are on, then DPLIST contains the address of a list
of halfvord loggable array numbers. A X'FF' follows the last valid
number as an end of list indicator.

NUMBER LIST

o NUMBER

2 NUMBER

4 FF I

The DUKPLOG service may be invoked by CALLing DPPPIF with a properly
completed parameter list.

The following example vill dump log array B at the beginning of the
data set. All log copies of array B will be dumped starting with the
oldest copy available.

C FORTRAN DUMPLOG EXAMPLE
BLOCK DATA
COMMON /DUMPLG/ DPLMAC,DPLRC,DPLTYP,DPLNO,DPLSrR,DPLEND,

1DPLDAT, DPLDD(2) ,DPLIST
INTEGER DPLMAC*2/52/,DPLRC*2/0/,DPLTYP*2/0/,DPLNO*2,

1DPLSTR,DPLEND,DPLDAT,DPLIST
LOGICAL DPLDD*4/'DUMP','LOG 'I
END

(The above common areas should be repeated in the main program without
data initialization. The following statements are in l!AIN only.)

LOGICAL A*4(2)/'B . , ,

CALL ORBIT(DPLTYP,DISP)
DPLIST = IADDR(A(1»
CALL DPPPIF(DPLMAC)

'I, DISP*l/Z 101

2-150 Description and Operation ftanual

DUPLICATE DATA SET SUPPORT

The operation of the Special Real Time Operating system and associateQ
subsystems is dependent upon several direct access data sets. Some of
these, such as data base definitions, are only read in realtime
execution, while others, such as history logs, are read and written.
The Special Real Time Operating system provides the capability to use
two ident ical copies of certain data sets to improve the total system
availability. While this service is provided primarily for data sets
which are used by the system. a limited capability is provided to the
system user to utilize the duplicate data set support.

The principal purpose of the duplicate data set facility is to provide
a backup copy of the data should the primary copy experience a failure.
In maintaining this duplicate data set, the primary and backup are
updated simultaneously during realtime processing. In case of failure
of one copy, the system takes that copy out of service and uses the
other copy. Appropriate messages are output to make the operator aware
of the trouble.

Duplicate data set support (DDS) is a SYSGENable option which is
selected by coding the DUPDISK macro at Special Real Time Operating
System SYSGEN time. With DDS SYSGENed, a user can declare via JCL the
data sets that are duplicates. The user programs include special I/O
macro codes to use the DDS services. However, this does not prevent
these programs from functioning when DDS is not supported, because the
special macros default to their standard OS/VS1 counterparts for data
sets not supported by DDS.

DDS services are in three logical areas:

1. Initia liza tion

2. Pseudo-SVC routines

3. I/O CALL routines

Initialization analyzes the DDS input stream to determine which data
sets are being declared as duplicate. A control table is established
for properly declared duplicate data sets, and its address is placed
in the Special Real Time Operating System SCiT.

The DDS pseudo-SVC routines are given control when the user requests
an I/O function which is normally an SiC under standard OS access
methods. Thus, the OPEN, CLOSE, BLDL. FIND, and STOW macro functions
require corresponding ~DS macr0S (OS macros preceded by DDS) which
expand not to an SVC, but to a branch to the respective nos routine.
If the data set has been declared a duplicate, these routines viII
issue the SVC for both data sets; if not. these routines vill issue
the SVC only once. The DCBOFLGS and SiC return codes are provided to
the user in either case.

DDS I/O call routines will be entered for all I/O requests (READ. WRITE,
NOTE, POINT, and CHECK) to a data set that vas opened with the DDS OPEN
macro and was declared a duplicate. These routines vill treat the
request in the following manner: all requests to alter the data set
are issued to both data sets, and all requests to read data are issued
only to the primary data set. In the update mode, the read request is
issued twice. In case of an incorrectable I/O failure. the failing
data set is closed, and processing continues with the reaaining data
set. For double I/O failures. the user's SYNAD is given control. To
prevent double 1/0 failures, the data sets should be on devices that
are on different I/O channels~

APPLICATION SERVICES 2-151

The user declares which data sets are duplicates via JeL, by including
the DD card DDSCTLIN. Each duplicate data set should be described by
a separate 'DDSNAMES' card in the DDSCTIIN stream. The format of the
DDSNAMES card is as follows:

[DDS-DDNAME] DDSN A[1 ES (D DN AM El, DON AKE2=O UT)

DDS-DDNAME
Is optional and must begin in column 1. It should be the DDNAME that
will be referenced in all IIO macros for this duplicate data set. If
left blank, its value will default to that supplied in the DDNA~E1
field.

DDS NAMES
Is the required op code and should be preceded by at least 1 blank.

DDNAMEl
Is the DDNAME of the DD card fo£ the primary data set of the duplicate
pair. This field is required.

DDNAME2
Is the DDNAME of the DD card for the backup data set of the duplicate
pair. This field is required and the backup can be initialized out
of service.

certain DDS functions can be requested dyr.amically during realtime
operation. These functions allow the user, through the input message
processor, to:

o Create a backup

• Take a backup out of service

• switch the primary and backUp

• Replace t he primary

• Compare primary and backup

• Give the status of the duplicate data sets.

The format of the replies required to invoke these routines is
documented in the section entitled "DDSCNTRL Command. The input message
command is DDSCNTRL.

The user can have his current primary data set copied to his backup to
bring the backup to the same level as the primary. This operation
requires that the backup data set be out of service for the copy
operation. The user also may use the DDSCNTRL reply to take the backup
out of service.

The DDSCNTRL reply may be used to cause the backup to become the primary
and have the primary switched to an out of service backup. But backup
must be in service at the time of the switch request.

A primary data set may be replaced by another data set specified by
DDNAME on the DDSCNTRL command provided that no DDSDCB opened for the
duplicate data set exists at the time of the request. This would cause
the new DDNAME to becollle the primary copy and the old primary to become
the in-service backup copy.

The user may wish to yerify that his primary and backup copies of a
DDS are, in fact, the same •. He may do this with the COMPARE operand
of the DDSCNTRL command. To invoke this operation, he must be sure
that a COMPRINT and DDSCMPIN DD card was supplied. When invoked, the

2-152 Description and Operation Kanual

as/vs 1 utilit y IEBCO£! Pi is used to do the COIl pare. To use this operand,
LRECL .ust have been specified on the DDS DD cards fo't partitioned data
sets.

See Section 3, entitled "DDS INITIALIZATION" for a description of DD
card usage.

The status of the priaary and backup DD na.es may be determined (in or
out of service, which is priaary, which is backup) by invoking DDSCHTRL
with the STATUS operand.

The following is a list of restrictions and guidelines for using the
DDS services.

1. 111 duplicate data sets .ust begin on a cylinder boundary and
can have only one extent.

2. The user should be certain tha t any two da ta sets being declared
as duplicates are, in fact, identical in their content.

3. Two tasks can reference the sa.e DDSDCB provided it is treated
as a serially reusable resource. In update mode the user must
treat each RElD-CHECK and VRITE-CHEC~ operation as a slngle
fUnction.

4. Only Disk resident data sets can be declared duplicates.

5. Only one DDS DCB pe~ DOS can be opened at a ti.e.

6. 10 copy aDd control functions can be used if the DDSDCB is opened
for update (BPA! or BS18).

1. DDS services are available only to the Special Real Ti.e
operating syste. tasks.

8. Only 20 duplicate data set pairs are supported.

In the following example of typical use of DDS, the user wishes to
create a duplicate BPA~ data set and update an existing BSA~ duplicate
data set. The job step JCL would include these cards:

IIBPA!1 DO DSH=BP1,DISP=(NEW,PASS) .SPACE=(CYL, (1,,1» .UNIT=DISK
IIBPA!2 DO 0 SI=BP2, DISP= (HEW ,PAS S) .5 PACE= (CYL. (1,,1)) , UN IT=DISK
IIBS1ft1 DO DSI=BS81, DISP=(OLD.PASS)
IIBS Aft 2 DO D SI=B 5112. DI SP= (OLD, PA 55)
IIODSCTtltI DO •

DDSHA! ES
DOSIAftES

I·

(BPAft1,BPAPJ2)
(BS AI 1, BS All 2)

The OPEl and DDSDCB macros would be coded as follows:

ODSOPElf
DOSOPEtI

DDSBPl
DDSBSftl

(DDSBP1. (OUTPUT))
(DDSBS!l, (UPDl T))

DDSDCB
DnSDCB

DDN1PJE=BPA81 ••••
DDNA!E=BS1!1 ••••

The READ, WRITE, and CHEC~ .acros would be coded exactly as if they
vere standard os.

APPLICATION SERVICES 2-153

The STOW and CLOSE macros vould be coded as follovs:

DDSSTOW
LIST DC
DDSC'LOSE
DDSCLOSE

DDSBP1,LIST,R
CL8'~E~BEF1',XL4'O'
(DOSBP1)
(DOSBSI11)

DOS FAILOVf.R/RESTART CONSIDERATIONS

The sta·tus of each declared DOS vill be kept on a disk resident data
set with DDN~~~, OOSTlTUS. All chanqes (via COpy and CONTROL) vill be
recordpd on this data set. In the case of failover or restart, the
status of each DDS vill be taken fro. tbis data set.

If the us@.r wishes to uSP. an existina OOSTATUS for his declarations at
initialization time, be must include in his DDSCTLIM input stream a
REFRESH card as the first card (REFRESH can beqin in any coluan except
column ')-~ .~ll the remaininq cards (if any) viII be ignored, and the
declarations currentl, Oft the DDSTATUS data set viII be used.

When initializinq a backup co.puter, the first card in tbe DDSCTtIN
input stream must be RElDOMLY which may start in any column p.xcept
colu.n 1. This will inhibit all data transfer to disk by DDS until
failover occurs and this .acbine beco.es priaary. REIDOMLY i.plies
REPRESH~ so the current declarations on ODSTATUS vill be used.

Whp.ft DOS is entered durinq failover/restart, it expects all DDSDCB to
be closed. Any task which has a DDSDCB opened at that ti.e vill be
ABENDed with code 81 decimal (51 heE). Normal task clean up viII then
close tbe OOSDCB and free the associated storaqe qott@ll by DDS.

PAILOVER/RESTART FEATURE

The failover/restart feature of the Special Real Time Operatinq System
is SYSGEMable and optionally provides the continuous monitor and probe
function and the co.puter status panel.

Pailover/restart operates by copyinq the contents of virtual storaqe,
the OS/VS1 10b que UP., and the SWADS for the one or tvo partitions that
enco.pass the realtime job, into a disk data set. If two-partition
operation is being Ilsed, both SYSIBIT streams must contain RESTART
WRITE statements. The writinq of the failover/restart data set is
delayed until both partitions execute this s~atement. After this data
set is written, a -bootstrap" rp.cord is written at the front of the
data set, and the IPL1 and IPL2 records on the volume containinq this
data set are adjusted to allow them to read in the bootstrap proqraa.
Thus, the volume containing the failover/restart data set bp.comes an
IPLable volume. IPLinq this volume is the aethod of accomplishing the
restart. If this occurs on a different CPU, the operation is known as
a failo .. er.

The effect of IPLinq this volaae is to return the System/370 to the
identical state it was when the RESTAFT WRITE card vas encountered in
the STSIHIT Special Real Time operating system initialization stream.
This is illustrated in Fiqure 2-27. The failover/restart bootstrap
restores virtual storage, the 10b queue data set, and one or tvo SiADS
data sets to the identical state they were when the restart was written.
No savina or restorinq of the SYS1.SYSPOOL data sets occurs. Use of a
scheduler work area (SiA) in place of SWADS by tbe ~ASTER or SLAVE
partition will cause the SWADS not to be saved. The equivalent
information is available within the partition.

2-154 Description and Operation ~anQal

I I EXEC PGM = DPPINIT
II SYSINIT DD *
PI PATCH TASK=XX,EP=Y

WAIT PI
RESTART WRITE
PATCH TASK=XX.EP= Z

OS Job
Scheduler

Write
Failover/Restart

Data Set

IPL Hardware

Bootstrap

~_R_E.,.....-NIP J
~--------------------------~----------------~

Figure 2-27. Restart Process

Realtime jobs which use the failover/restart feature must observe the
following restrictions:

1. The failover/restart data set and its copies must reside on a
direct access volume. The volume may be on any device supported
by OS/VS1. It may not be the volume containing the SYS1.NUCLEUS
data set (OS IPL volume). No Eore than one failover/restart
data set may be allocated on a volume. The failover/rescart
data must not be an as temporary data set; it must reside
en tire ly upon one volume a nd can contain only one extent. (Only
the first extent vill be used.)

2. The failover/restart data set should be allocated on a cylinder
boundary. SYS1.SYSJOBQE and the SWADS data sets must end on a
cylinder boundary.

~. The SWADS data sets cannot be temporary data sets unless SWA is
used in place of SWADS.

4. No data set used by the realtime job should be a temporary data
set nor should the realtime job be dependent on SYSIN data sets
after the RESTART WRITE card is executed. Because the job is
never e~ding, it should not use DD cards containing the SISOUT
parameter. If such SYSIN/SYSOUT data sets are used, contents
may be lost. This does not apply to the SYSINIT input stream
as it is read in its entirety prior to executing any of it.

5. No tape positioning is done by failover/restart.

6. At the time of restart readw all necessary direct access volumes
must be mounted and ready. Data sets that are to be referenced
and were allocated prior to restart write must exist on the same
volume as they did prior to restart write. If DCBs were opened
for any direct access data sets prior to restart vrite, these
data sets must occupy exactly the same physical disk location
they did prior to restart write. The device address upon which
a particular volume resides may differ, however. A necessary
volume is one that contains a system data set or that is
allocated to the realtime job.

7. At the time of restart read, multiple volumes with the same
volume serial number must not be accessible4 There-NIP routine

APPLICATION SERVICES 2-155

will attempt to. read the volume serial number from all direct
access devices which were SYSGENed into the OS/VS1 system.

8. At the time of restart write, the user should take steps to
ensure that no jobs are active in the CPU other than the realtime
job and its SLAVE partition job, if any. If this restriction
is ignored when the failover/restart data set is IPLed, these
jobs will resume at the point where they were written without
the benefit of a restored SWADS and possibly with data extent
blocks (DEBs) containing invalid disk addresses. Resumption
could occur in the middle of a DADSM function, thereby
compromising VTOC and data set integrity.

9. Restrictions 3 through 8 do not apply if the failover/restart
is to be written, but never read. Restrictions 1 and 2 apply
in any case.

10. The Special Real Time opera~ing System initiali2ation routine
invokes restart when the RESTART WRITE card is encountered in
the execution pass of the SYSINIT input stream. This is executed
by issuing the WTFAILDS macro (no operands). A user program
can also issue this macro. Use of this feature repetively (to
take checkpoints) is not recommended for all the reasons listed
above. In addition, since each execution of WTFAILDS would
cause the existing copies of the failover/restart data set to
be overlayed, a failover in the middle of the restart write
could result in no usable fail over/restart data set, old or new.
Failover/restart is a method of getting a fast 1PL; it is not
a substitute for checkpoint restart.

11. If a failover/restart data set is to be written on one CPU and
potentially read by any CPU other than the creating one, the
following restrictions should be observed:

a. The CPUs should have identical configuration or the OS/VS1
system involved should be a superset of all the CPJs.

b. The CPUs should all be of the same model at the same
EC/feature level to ensure that RMS will operate correctly.

c. If the CPUs are of different real storage sizes r the
failover/restart data set must be written by the one with
the smallest real storage size. When IPLed on the larger
CPU, this CPU's extra real storage will not be used.

12. A copy of a failover/restart data set can be made only by using
IEHDASDR (an as/VS1 utility) or DOMIRCPY (a Special Real Time
Operating System utility to copy failover/restart data set).
IEHDASDR can be used only in the sense of making a tape backup
for later restore.

13. The WTFAILDS macro should not be used by an application program
if the Time Dri~t Correction feature is used. This does not
preclude the use of the RESTART WRITE statement in the DPPIN1T
input stream.

When failover/r~start write is invoked r it copies all of virtual
storage r SYS1.SYSJOBQE, and the SWADS data set(s) to the data set
allocated by the DPPFAIL DO card. copying of virtual storage consists
of copying all real storage and those entries on the paging data set
which are active. After the writes to DPPFAIL are completed r the
desired backup copies of the entire failover/restart are made by copying
from DPPFAIL to DPPFAILx, where x is a unique character (the method of
copying the Failover data s~t is described later in this section) •
Each DPPFAILx must reside on a unique volume which is of the same device

2-156 Description and Operation Manual

type as DPPFAIL. This operation has no connection with duplicate data
set support and is independent of it.

Failover/restart data set write will not write the failover/restart
data set if another realtime job (~ASTER JOB) reached the Special Real
Time operating system initializatio~ prior to the job issuing the
WTFAILDS (or RESTART WRITE card)~ If this occurs, WTFAILDS will be
treated as non-operative; although the pre-r~start flag in SYSINIT
PATCHes will be cleareda When the job having 'ownership' of
failover/restart eligibility terminates, the next MASTER realtime job
that starts will acquire it. In addition, if the byte at displacement
X'OD' past the CSECT/ENTRY name DPrICINF in the OS/VS1 nucleus is
nonzero, no job viII acquire restart write eligibility. This byte is
assembled as non-zero, but may be altered by using HMASPZAP, an OS/VS1
ser vice aid.

(The name DPPICINF will be a CSECT name in the pageable nucleus in the
Special Real Time Operating system without external interrupt handling;
that is, without the TIMEEXT option or the CLOCKCP option on the VS
SYSGEN macro and without the FAILEXT option on the FAILRST macro. In
systems with external int~rrupt handling. it will be an ENTRY name in
the CSECT IEAXYZ5u)

The return codes issued by WTFAILDS are listed below:

GRI5 I MEANING I Message Written to Routine

I
OPPFAIL

I Code 5

data set written successfully
,

° I DPP090, DPP093 I I or fail over/restart write I
I suppressed by other R/T job. !

I
•

4 same return code as 0 except
I DPP091 restart data set was just read.

8 Invalid or missing DPPFAIL

I
DPpon I

I
DO card.

12 I/O error writing OPPFAIL DPPOXO-OPP087 I)0 or end of extent I

When IPLing a failover/restart data setw several WAIT states can occur.
They are listed below:

X'1S'

X' 19 '

X'E2'

X 103'

CPU too small for failover/restart data set or other
immediate program check in bootstrap.

Program check in bootstrap while copying data sets
or I/O err or ..

Machine check in restart bootstrap.

One or more necessary disks missing.

Program check loop Failover/restart data set has been scratched.

Hangs in LOAD Failover/restart data set has been scratched or I/O
error.

The load module DOMIRCPY is used internally by failover/restart write
to copy DPPFAIL to DPPFAILx DD cards. It can also be invoked as a
PATCHed task to perform the same operation in any realtime job, which
is shown in the example below.

APPLICATION SERVICES 2-157

Return codes from OOMIRCPY

i
Message to Routing i GRI5 MEANING

1 Code 5

0 Copy Sucl.:t:ssful None

One or more invalid
: 8 DPPFAIL or DPPFAILx DD DPP089

cards. No I.:opy done.

12 I/O error during COPY. DPP088 COpy terminated.

IIX JOB 1,1,MSGLEVEL=1
II
IISTEPLIB
IISYSPRINT
IIDPPFAIL
IIDPPFAIL2
IISYSINIT
COpy PATCH

II

WAIT
ABEND

EX EC PGM=OPPINIT
DO
DO SYSOUT=A
DO DSN=FAILRST.DS,OISP=SHR
DD DSN=PAILRST2.DS,DISP=OLD
DO *
EP=OOMIRCPY
COpy
o

Ex ample 1

OLD F/RD/S
NEW F/RD/S

The continuous monitor feature of the Special Real Time Operating System
is available in all systems having the failoverlrestart feature. Its
selection is made by coding the CONTMON parameter on the FAILRST SYSGEN
macro.

The continuous monitor is started by PATCHing a task with EP=DOMIRCMN.
This can be done by a user program, by a PATCH card in the SYSINIT
input stream, or by the CHON parameter on the RESTART card. DOMIRCMN
is a never ending program. DOMIRCMN should be invoked after the
failover data set is written, if a failover/restart data set is being
written.

'.lhe continuous monitor tests certain locations within the Special Real
',~ime Operating System virtual storage data base on a periodic basis.
"he period is determined by the CONTINT parameter on the FAILRST macro.

If the continuous monitor determines that the test locations have not
heen modified for a certain period of time (indicating that some cyclic
·~unction has failed), it recommends that failover occur. The action
taken depends upon the mode of operation of the continuous monitor,
simplex or duplex. A system without a probe function generated (PROBE
parameter in FAILRST macro) always operates in the simplex mode. In
a system with the probe function, the continuous monitor operates in
duplex mode unless one or both of the following conditions are met:

• The realtime job under which the continuous monitor is operating
is not au~horized to write a failover/res~art data set (see
Failover/Restart section) •

• A probe function is running under any job on this cpu.

If either of these conditions is met, the continuous monitor will
operate only in simplex mode. In the simplex mode, when the continuous

2-158 Description and Operation Manual

monitor recommends failover, it issues messaqe DPP098 and places the
task under ~hich it is executing in a permanent YAIT. In the duplex
aode, the continuous monitor sends a siqnal via the direct control
feature to the backnp ~PU that the continuous monitor is recommending
failover. This siqnal is rec~iyed by the probe function in the backup
cpu. The backup CPU then initiates the failover.

The test locations examined by the continuous .ouitor are either
determined iaplicitly by the options qenerated into the syste., or
additional customp.r test locations can be stated explicitly in the
CONTADL paraaeter of the FAILRST SYSGEN sacro. Each location to be
tested is a 2-byte named, virtual storage resident data base item.
This 2-bvte itell should be defined io an ITE" macro as initially
·~ero. The first byte of th~ item is the period in seconds at which
the second byte viII be updated. The second byte should be chanqed
from 1 to 2, 3 •••• , up to 250, back to 1 again at the rate specified
in the first byte. If the value fails to chanqe for a tiae interval
equal to tvice the first byte, the continuous aonitor viII recollmend
failover. If the second byte is ~ero, it indicates that the data base
itea viII no lonaer be incremented at the rate specified and should
not be checked aqain until it is once again nonzero. A value of 255
(hex FF) in the second byte indicates that the co.ponent is recoamendinq
failover. If this occurs, the continuous monitor vill recommend
failover. Values of 251 througb 254 are reserved for expansion.

Noraally, the continuous aonitor sends pp.riodic siqnals to the probe
function, but the converse does not occur. To have the continuous
monitor report if the probe function is no longer checking it, the
C~C~PRB paraaeter should be set to YES on the FAILRST SYSGEN .acro.

The probe function is a STSGENable opt.ion of the Special Real Tiae
Operating System failover/restart feature. It operates in the backup
CPU and tests the online CPO (the continuous monitor) via the direct
control data bus. If the 4-bit value represented on the static signal
lin~s fails to chanqe for a time interval of tvice the saaple period
(CONTINT paramp.ter). the probe function recoa.ends that the backup CPU
become thp prim~ cpu. The location of the 4-bit quantity on the static
siqnal lines is deterained by the PRORIT parameter of the FAILR5T macro.
These four lines must be connected between the tvo CPUs so that d signal
placp.d on th~ lines by WRD in one CPU can be read by RDD in the other
CPU and vice v~rsa. A value ot 15 (hex F) on the linp.s indicates that
the co~tinuous monitor is recommendinq failover to the probe function
becausp the continuous Monitor found a value of 255 in one of the data
base items eXd~i~ed~ or that the continuous monitor is recommending
failov~r to thp probe function because one of the test locations has
failed to chanae at its spp.cified rate. Thus the probe function vill
recommend failover when it qP.ts a Continuous ~onitor Recommended
Pailover siqnal or if the continuous monitor fails to change the bits
on the st.atic sianal lines at the specified rate. (This could occur
if th~ prime cpry went down.} Tn a system vithout the failover confirmed
external interrupt (paILEXT parameter on the FAILRST .acro), Failover
~ecommendert is the same as Failover Confirmed (see Piqure 2-28).

\PPLICATION SERVICES 2-1Sg

Shared
110

1

CPU
CPU ""' A '-'

4 Bits or the 8
(Prime) Direct Control

Slatic Prohe
Continuous Signal Lines

(Backupl Monitor

Figure 2-28. Probe Punction Failure/Restart Feature

The probe function can be started in a realtime or non-realtime job.
It viII not start if another probe function is already operating on
this CPU, or if a continuous monitor function operating in duplex mode
is running. The probe can be started by the RESTART card in the Special
Real Time Operating System SYSIMIT stream or by a user program. It
should be started on the backup CPU after the continuous monitor has
been started on the priaary CPU. If the probe is started first, it
viII i •• ediately recoa.end failover.

The action taken by the probe vhen it enters the Failover Confirmed
state is deter.ined by its entry point. If the probe vas entered at
EP=DOMIRPRB, it vill simulate a hardvare IPL to the direct access device
pointed to by the DPPP1IL DD card. This device should contain a
successfully vritten failover/restart data set. If the probe vas
entered at EP=DO~IRPWT. it vill return to its caller with a code of 4
in register 15. Coding the PROBE paraaeter in the RESTART card causes
the DO~IRPWT entry to be used.

The DO~IRPRB entry point is intended for use in a duplex CPU environ»ent
vhere a system outage of 15 to 60 seconds can be tolerated. Upon
reaching the Failover Confirmed state, DOMIRPRB viII simulate a hardware
1Pt to the failover/restart data set. The realtime system viII resu~e
at a point after the execution of the RESTARr WRITE card in the SYS1NIT
stream or the issuance of a WTPAILOS macro by an application program.
The jobs, SYSIN and SYSOUT, and operating system running on the backup
CPU prior to the simulated 1PL vill be lost.

The DOt1IRPWT entry point is intended for use in 1uplex environllents
where a faster failover is needed. Using this scheme, the PROBE
parameter is coded on the RESTART card. This causes the PROBE to be
invoked after RESTART WRITE, if any. This causes a delay in the Special
Real Time operating System initialization until the probe function
returns. Thus initialization stops until the probe enters the Pailover
Confirmed state. While tne realtime job is executing only the probe,
much of the remainder of it vill be paged out by OS/VS1. Batch jobs
can then be run. If the offline CPU later becomes the online CPO,

2-160 Description and Operation ~anual

these batch jobs can be cancelled if they are interfering with the
realtime job. The following example depicts a sample SYSINIT stream
for this type of operation.

II EXEC PG f1=DP PI NI T

DD *
EP=ONE~TASK=X INIT TASKS

IISYSINIT
PATCH
PATCH

RESTART
PATCH
PATCH

EP=TWO,TASK=:Y
WRITE,PROBE,CMON
EP=ONEONE,TASK=X
EP=TWOTWO,TASK=Y

(1 MPLI ED WI AT ON ABOVE TWO)

1*

The Special Real Time Operati~g system supports the remote system reset
RPQ (Z06741) in systems with the continuous monitor and probe function.
This feature allows one CPU to force another CPU to execute a system
reset. The probe function resets the online CPU which has j~st failed
when it enters the Failover Confirmed state. Since during a failure
the online GPU may have degraded to a disabled loop and has 1/0 devices
reserved, this feat~re increases system availability by giving the
backup CPU the ability to force a system reset in the online cpu. The
RESET parameter in the PAILRST macro is used to include this feature
in the probe function~ The operand of the RESET parameter is a direct
control signal-out line number (0-7) for the reset feature.. Figure
2-29 depicts a two-cPU configuration with remote system reset.

~I
[

(

~-----l
)ir.::ct Control

Stat ic Data Lines
4 Bits U~ed) I

(SYSRESET!
CPU A

Signal-out Line

Signal-out Linc
___ ~L:JI !

CPU 8
(SYSRESET)I

Figure 2-29. Remote System Reset Feature

The special Real Time Operating system also supports the automatic 2914
Remote Equipment Switch RPQs (880882 a.nd 880920) in a system with the
continuous monitor and probe functions. This feature allows devices
which are connected to two CPOs through a 2914 switch to be
automatically switched from the prime CPU to the backup cpu. When the
probe function enters the Failover Confirmed state, it will cause the
2914 to switch the shared equipment to the backup cPU. The EQUIPSW
parameter on the FAILRST macro specifies which direct control signal-ont
line (0-7) is to be used t~ cause the 2914 to switch shared equipment
to the CPU issuing the direct control instruction. The EQUIPDY

APPLICATION SERVICES 2-161

parameter specifies in milliseconds how long the probe function should
delay after issuing the 2914 switch command until it returns (DOMIRPWT)
or IPLs the failover/restart data set (DOMIRPRB). Figure 2-30 depicts
a two-CPU configuration with 2914 remote switching. The remote system
reset, 2914 Remote Switch, and computer status panel features are all
independent of each other.

CPUA

.. Switch to Me ..
Signal-out Lines

Shared I/O
(Two Channel
Switch Type)

Direct Control
Static Data Lines

(4 Bits Used)

2914

I/O I/O

" Switch to Me "
Signal-out Lines

CPUB

i
I

I

Figure 2-30. System With Automatic 2914 Switch

The Special Real Time Operating System offers software for the computer
status panel (see Figure 2-31) as an option fot systems with the
continuous monitor and probe features. In addition a smaller model
can be supported for systems with only the continuous monitor feature.

2-162 Description and Operation Manual

~
{fr
:~ ,.:;

~
~,
~

Computer A
Prime

Computer A
Rudy

Computer
Failover
Request

Select

~ n
-:y;-

~ ~ Auto
"-/. ?; Failover
"~'. Active
~~;,

~ .w:

~
~~~j 

"·t 

...... 

l"'-
)i 

/J_; 

(~ 

) 
;.,;i; 

Computer B I 
Prime i 

Computer B 
Ready 

Computer 
Failover 
Requm 

Select 

Push Butlons 

~ 
~ ~ 
~~ 

.... 

Computer 
Status 
Panel 

Computer 
Control 

Panel 

Pigure 2-31. Co.puter Status Panel Indicators and switches 

The co.puter status panel consists of six indicator lights and two or 
three backlighted pushbuttons. The Computer A Prime/Computer B Prime 
lights are .utually exclusive; the one that is lit indicates which 
system is currently the online (prime) cpu. This light is illusinated 
by a pulse fro. a direct control signal-out line on the system that is 
the online system~ It re~ains lit until a pulse is received on the 
same signal-out line on the other CPU, in which case the other PRI"E 
light is lit. The Cosputer A Ready/Computer B Ready lights are 
illuminated by a signal on the direct control signal-out lines. They 
remain lit for approximately tvo seconds at which point they extinguish 
(time-out) unless they are re-illuminated prior to that time by another 
pulse on the same signal-out line. This light indicates that the CPO 
is successfully executing the online system or is capable of becoming 
the online system if it is the ba.ckup computer (probe function is 
running). For systems without a probe function, only these tvo 
indicators (four bu Ibs) are supported. 

The Computer Pailover Request light is illuminated by a bit on a direct 
control static data line. As long as the bit on the line is one, the 
light remains illuminated. Illumination is by the probe function when 
it enters a Failover Recommended state. The Select light backlighted 
pushbutton is lit by the probe function when it enters the Failover 
Confirmed state. This indication ~eans that failover has begun. The 
Select and Failover Request lights are extinguished and the prime light 
is lit when the continuous monitor function starts to execute on the 
new failover-to-pri~e CPU. 

APPLICATION SERVICES 2-163 



In systems uithout the Failover Confirmed external interrupt (FlILEXT 
parameter on the FAILRST macro), the Pailover Request and Select liqnts 
are illuminated simultaneously as the Failover REcommended and Failover 
Confirmed states are the sa.e. In systems with the Failover Confirmed 
external intPrrupt, the Failover Requ~st light will be illuminated when 
the probe function eDt~rs the Failover Recommended state. If the Auto 
Failover ~ctive switch is on (is backlighted), an external signal 
interrupt occurs in the CPO liqhtinq the Failover Request light. (Which 
external siqnal used (2-7) is indicated in the PAlLElT operand of the 
PAILRST macro.) This ezternal interrupt causes the probe function to 
enter the Failover CODfir.ed state. If the Auto Pailover Active switch 
is off, the SELECT backliqht pushbutton must be pressed to cause the 
probe to enter the Pailoyer Coofir.ed state. (The SELECT button causes 
the same external int@rrupt.) 

If the continuous monitor begins to change the bit confiquration on 
the four direct control static data lines, durinq the time the probe 
function is in the Pailoyer Recommended state, the probe function 
extinquishes the Pailoyer Bequest liqht and resuaes normal operation. 

In systems with the ,ailover Confir.ad external interrupt feature, the 
SELECT pushbutton may be pressed at any time to force a failover. The 
SELECT pushbutton on the online co.puter .a1 be pressed to force a 
restart. When the continuous monitor forces an IPL of the 
Pailo.er/Rest.art data set, it places a special (14 hex E) bit 
configuration on the direct control static data lines to indicate that 
the p~obe fUDction should delay one ainute before continuing its 
checking of the online cpu. 

The IPL that is forced by the continuous monitor is achieyed by ICTLinq 
to DO"IRtPL. This module exists in all systems with a probe function 
aod aay also be called by a user proqraa (via CALL, LIMK, ICTL, ATTACH, 
or PATCR) to force an IPL of the failover/restart data set. 

The LTS parameter on the PAILRST macro is used to indicate which 
siqnal-out and static data lines are used to support the computer status 
panel. Figure 2-32 depicts a two-CPU configuration with a computer 
status panel. 

The computer status panel is not an RPQ and aust be fabricated by the 
customer. 

2-'64 Description and Operation "anual 



CPU A 

I~~ I 0 I' 1 2 3 4 I 5 I 6 I ;l 

Shared I/O 

4 Bits of 
Direct Control 

Static Static Signal Lines Static 

Lines ,..... Lines r-cm-S 
~ 

8 Signal 8 Signal 

r-- -
r-- -
I--- -
r-- -
I--- -
r-- -
~ ,----

I 0 I' 2 I 3 4 5 6 I 7 I Ext In! 

8 Signal gnal-Out 1 I -Out I I I I I I I I I I I I I 8 Si 
L s ines Line 

I 

~ 
I 

r----

A B I 
Prime Prime 

A B 
Ready Ready 

I I I 
I A I-- r--

B 
REG REG 

Select Select , 
Light Light 

Select Select 
Pushbutton Pushbutton 

I 
SS .I SS 

Figure 2-32. computer status Panel Connections (Functional) 

APPLICATION SERVICES 2-165 



ADDIrIONAL SPECIAL REAL TIME OPERATING SYSTEM SERVICES 

There are additional Special Real Time Operating System services that 
do not fall into the areas of task management or time management, etc. 
These additional services are: 

CHAIN 

CHAI N 
GETW AI FR EEWA 
LOC K/DEF LOCK 
PAGE FIX 

CHAIN allows a programmer to modify a control block chain without the 
need of ENQ/DEQ to protect against another program modifying the chain 
at the same time. CHAIN operates as a Type I SVC. CHAIN can be used 
to add (ADD) a block (BLOCK=) to a specified chain (ORG=) or delete 
(REMOVE) a block from a chain. The block to be added (BLOCK=) may be 
placed at the start of the chain (POS=FIRST), the end of the chain 
(POS=LAST), or to put the block into the chain in a collating sequence 
(POS=disp). To place the block in collating sequence, the POS=disp 
specifies the displacement into the block to a word which is to be used 
to determine the block's relative position on the chain. This is sh~wn 
below: 

CHAIN ADD,ORG=START,POS=12,BLOCK=X 

START 

I t A ~ A 

4 
~ S 

8 4 

\ 12 8 
00000026 12 P 

00000042 
+-- 1WORD~ 

4 

8 

X 12 

0000007C :~ 8 

12 

00000052 

In this example, block X will be added to the chain and will be inserted 
between blocks Sand P. 

If the blocks on the chain are not chained together by pointers in the 
first word of each block, the chaining field can be specified by INDEX= 
and supply the displacement into the blocks which are to be used for 
chaining pointers. 

CHAIN will also post an ECB upon completion if the (ECB=) user requests 
this action. 

All addresses are validity checked and must be within the partition 
(or either partition if two partition operation). 

~ETW A/FREEW A 

The GETWA/FREEWA function provides the facility for obtaining short-term 
work areas without adversely increasing paging rates and without 
incurring all the overhead of a GETKAIN. The amount and sizes of GEfWA 

2-166 Description and Operation Manual 



areas are determined by the Special Real Time Operating System SYSGEN 
(VS Ma.::ro, GETWAS=) and may be changed at the Special Real Time 
Operating System initialization time by a GETWA card. The number of 
unique GETWA sizes is limited to 32. The maximum size of a GETWA area 
is limited to 30710 bytes. All sizes greater than 2048 bytes must be 
defined as a multiple of 2K. All must be defined as a multiple of 8 
bytes. 

Note: The Special Real Time operating System requires a minimum GETaA 
s i z e 0 f 1 0 24 by t es • 

GETWA storage is requested via the GETiA macro and may be explicitly 
freed by FREE WA. The requestor may have the Special Real Time Operating 
System free the storage for him and thereby relieve himself of the 
necessity of keeping track of his GETWA storage. To have the Special 
Real Time operating System free the gotten storage, he must use the 
TYPE= operand on his GETWA request. TYPE=AP requests the Special Real 
Time Operating System to release the GETWA storage when this PATCH 
completes. TYPE=AT frees TYPE=AT frees the storage when the task 
terminates (a DPATCH is issued). TYPE=PC is specified when the user 
wishes to free the storage explicitly with the FREEWA macro. Storage 
obtained with TYPE=PC will be lost to the system if the requesting task 
terminates and does not execute the FREEWA. Programs which are ATTACHed 
rather than PATCHed are defaulted to TYPE=PC and must explicitly release 
the area with a FREEWA macro. 

The amoun t of space requested on a GETW A macro ca 11 all it ill be "rounded 
up" to the size of the smallest GETWA area defined which is as large 
or larger than the amount of space requested. (For example, sizes 8, 
48, 96, and 1024 were generated and the request is for 680 bytes, the 
request will be satisfied with a 1024-byte block.) 

When a GETWA is executed for a valid size area and all allocated blocks 
of that size are in use, the GETWA program will allocate additional 
space to sa ti sfy the request. The addit ional The additional space 
will always be allocated in multiples of 2K and divided (if necessary) 
into blocks of a size that would otherwise be used to satisfy the 
request. The space, thus allocated, may be automatically released by 
a subsequent FREEWA when it is determined that there are sufficient 
free blocks of that size do not require immediate expansion again and 
an entire 2K block (or multiple) is not in use. This dynamic expansion 
of GETWA space will ensure that storage space is available as required. 
However, for performance considerations, the size of each GETWA area 
and the number of blocks defined for each size should approximate their 
actual usage during the realtime execution of an application. This 
will minimize both the CPU overhead and the amount of "wasted" storage 
areas. 

GETWA storage area that has been obtained by one task may be passed to 
another task through the task management routines. The GETWA storage 
area may have been obtained originally via a GETWA macro call specifying 
TYPE=AP, AT, or PC and can be passed to another task by issuing a PATCH 
macro call of the form 

PATCH F REE= ( {!~}' aadress), ••• 

where "address" is the address of the GETWA storage and "AP" or "AT" 
indicates the GETWA queue to which the GETWA storage is to be chained 
on the receiving task (i. e., PATCHed task). 

An AP request causes the storage to be freed whenever the work queue 
element built in response to this PATCH is completed. An AT request 
causes the storage to be freed whenever the PATCHed task is terminated. 
In this respect, an AP or AT request is analogous to the PATCHed task 

APPLICATION SERVICES 2-167 



acquiring the storage area by issuing a GETWA T¥PE=AP or AT, 
respectively. 

Note that if the PATCHing task receives a return code equal to or 
greater than 8 from the PATCH macro call, the PATCH cannot be executed, 
and the PATCHing task is responsible for freeing this GETWA storage 
area by executing a FREEWA macro call (eventhough the area may have 
originally been obtained by the PATCHing task through the issuance of 
a GETWA TYPE=AP or AT macro call) • 

If the PATCH is successful (return code less than 8), but the work 
queue built in response to the PATCH is later removed from the PATCHed 
tasks work queue chain before it can be executed, the storage area 
specified is freed by the Special Real Time operating system when the 
work queue is purged eventhough the PATCH may have specified FREE= (AT, 
address). If the PATCH was successful, the PATCHing task must assume 
that the storage area passed has already been freed and no reference 
to that area should be made after the PATCH has been executed. 

DEFLOCK/LOCK 

The DEFLOCK/LOCK routines may be used in combination to define and 
reserve user specified resources without incurring the overhead of thp 
ENQ/DEQ routines. 

Each resource to be reserved must be defined to the Special Real Time 
Operating System by a DEFLOCK macro call (TYPE=GET). This macro call 
will cause a Special Real Time operating System control block to be 
built describing the resource. The name of the resource will be 
returned in register 0, and the address of the new control block will 
be returned in register 1. This control block address must be specified 
whenever reserving a resource with a LOCK macro call. Once the control 
block has been defined, the address of the control block can be obtained 
by a DEFLOCK macro call (TYPE=FIND). After all processing for a 
particular resource has been completed, the control block may be 
released by a DEFLOCK macro call (TYPE=REL). Note that once the control 
block has been released, it must be redefined by a DEFLOCK macro call 
(TYPE=GET) before that resource can be reserved again by a LOCK macro 
call. 

A LOCK macro call (TYPE=LOCK) is used to reserve exclusively a resource 
that has been released previously by a DEFLOCK macro call. If the 
resource is unavail·allle at the time the LOCK macro is executed, the 
requesting task is placed in a WAIT state until that resource becomes 
available. A LOCK macro call (TYPE=UNLOCK) is used to release control 
of the resource. Note that the LOCK macro call used to release the 
resource must be executed from the same task that executed the LOCK 
macro that reserved the resource. If a Special Real Time Operating 
System task (i.e., a PATCHed task) is DPATCHed or ABENDs before 
releasing the resource# the Special Real Time Operating system exit 
routine will release the resource for that task. However, if a 
non-Special Real Time Operating System task (i.e., an ATTACHed task) 
returns or ABENDs before releasing the resource, the LOCK viII remain 
set indefinitely. 

2-168 Description and operation Manual 



PAGE FIX 

The Special Real Time operating System provides a facility to allow 
users to 'fix' specific storage locations. To fix the storage, the 
user must create array DPPXFIX and put in it the names or numbers of 
arrays to be fixed and/or load modules to be fixed. Program DPPIPFIX 
will then process array DPPXFTX and LOAD the load modules and fix the 
virtual stora.ge occupied by the specified arrays and load mod.ules. 

No attempt should be made to fix the storage for load modules which 
are link-edited as other than REENTRANT. The page fix function, when 
applied to load modules, operates by executing a LOAD macro to bring 
the module into storage and determine the address and length of the 
module. This LOAD is independent of the LOAD that is executed by the 
Special Real Time operating Task Management or a LOAD, LINK or ATTACH 
executed b.y a user program. The result of this sequence is that if 
the module is not reentrant, each execution of the LOAD for a given 
module will bring into storage a separate copy of the module. Even 
though a non-reentrant load module may be fixed, the copy which is 
fixed cannot be accessed by normal means. 

The format of the array named DPPXFIX is: r 1 WORDi2WORDST2WORDS1 

T I LLL t NNNNNNNN I 00000000 

I 
1 
i 

i 
FFFFFFFF I I 

ARRAY DPPXFIX 

IIIhere: 
T 

LLL 

NNNNNNNN 

Type of fix request 
L = loa d m od u Ie 
A named array 
N numbered array 
C = control block 

Length of the fix request; zero indicates fix all storage 
occupied by the module or arra y. 

The left justified name of the load module or named 
array to be fixed or the array number of the numbered 
array to be fixed in the first word followed by a word 
of zeros. For control block requests, the left justified 
name must be 'CBGET' to indicate that CBGET storage is 
to be fixed. 'GETWA' to indicate that GETWA storage is 
to be fixed; or 'USERcccc' to indicate that a user 
control block is to be fixed. 

APPLICATION SERVICES 2-169 



0000000 = Each item must contain two words of zeros to be used by 
the page fix routine. 

The following is an example of the control statements required to create 
a OPPXFIX array. 

f/DPPXUCTL AREA=OBDEF ,INPUT=*,OPTION=REPL 
ARRAY NA~E=OPPXFIX,INIT=YES 

* Request 1 

A ITEM TYPE=C, INIT=' L' 
B ITEM TYPE= A, LEN= 3, INIT=O 
C ITEM TYPE=C, INIT=' OPPI NITl ' 
D IT'F.M TYPE=F, RPT=2 

* Request 2 

E ITEM TYPE=C,INIT=' N' 
F ITEM TYPE=- A, LEN=3, INIT=50 
G ITEM TYPE= F, INIT=1 
H ITEM TY PE= F, RPT=2 

* Request 3 

I ITEM TYPE=C,INIT=' A' 
J ITEM TYPE=A,LEN=3,INIT=150 
K ITEM TYPE=C, IN IT=' AA 
L ITEM TYPE=F, RPT=2 

* List Terminator 

M ITEM TYPE=F,INIT=-l 

* Request 4 

M ITEM TYPE=C,INIT='C' 
N ITEM TYPE=A,LEN=3,INIT=0 
0 ITEM TYPE=C,INIT='CBGET' 
P ITEM TYPE= F, RPT=2 

* Request 5 

Q ITEM TYPE=C,INIT='C' 
R ITEM TYPE=A,LEN=3,NAME=ULEN 
S ITEM TYPE=C,INIT='USERXYZ1' 
T ITEM T Y P E= F, N A M [= U ST AR T 
U ITEM TYPE=F,INIT=O 

The above example creates an array named DPPXFIX for storage at 
initialization time and consists of: 

1. A fix request for all (ITEM card B) of load module (ITEM card 
A) named 'DPPINIT1' (ITEM card C). 

2. A fix request for 50 bytes (ITEM card P) of number~d array (ITEM 
card E) number 1 (ITEM card G) • 

3. A fix request for 150 bytes (ITEM card J) of named array (ITEM 
card I) named AA (ITEM card K). 

4. A fix request for all (ITEM card N) CBGET storage (ITEM cards 
M and 0). 

2-110 Description and operation Manual 



5. A fix request for a user defined control block (ITEM cards Q 
and S). On this request, the final 4 characters of the name 
field (ITEM card S) must be 'USER'. The last 4 characters are 
not used by the page fix routine and may be used to further 
identify the control block by the user. 

6. ITEM card M generates a fullword of binary ones to indicate the 
end of the array. 

Note: On a user defined control block, the user ~i supply the length 
(ITEM card R) and the starting address (ITEM card T) before 
PATCHing the page fix routine (DPPIPFIX). By defining ITEM 
names for the length and start address, user PUTITEM macro calls 
could be used to fill in the array. 

with array DPPXFIX created, the user must either have a PATCH card in 
his input s~ream for EP=DPPIPFIX or have a program which PATCHes 
DPP IPFIX. 

It is also important to note that the user must terminate the realtime 
job step with a reply to the Input Message Processor (IMP) of the form 

r Xx,CANCEL[, ••• ] 

in order to release the pages that have been "fixed" by the Special 
Real Time operating System. 

Note: It is recommended that all arrays being fixed should be created 
with a use count of one (USE=1), that the BNDRY parameter not 
be used and no other arrays be created ~ith a use count of 1. 
Also, Array DPPXFIX must not be logged. If it is, a copy will 
be used which has non-zero for the two fullvords requested by 
page fix, and the page fix function viII be bypassed. 

APPLICATION SERVICES 2-111 



TWO-PARTITION OPERATION 

Two-partition operation may be requested at the Special Real Time 
operating system SYSGEN time via the TWOPART operand on the VS macro. 
This allows programs running under control of the Special Real Time 
Operating System to communicate with programs running under control of 
the Special Real Time Operating System in a different job step. This 
environment is created by starting a job step and invoking the Special 
Real Time Operating System initialization (PGK=DPPINIT) in each of tvo 
partitions. Through this procedure. one of the job steps is designated 
as the MASTER and the other as a SLAVE to it. The MASTER job step has 
complete Special Real Time Operating system facilities included in it; 
the SLAVE has limited special Real Time operating System facilities in 
it, but has access to the facilities included in the MASTER partition. 

The MASTER and SLAVE job steps are run in separate partitions of the 
OS/VS1 system and. as such. run under different storage protect keys. 
affording the user some protection for his data base. etc •• from 
routines in the SLAVE partition. To attain effective communication 
between the two partitions. fetch protect must not be included in the 
system. This allows the programs in either partition to fetch data 
from the other partition, but prevents inadvertent storage of data into 
the other partition. Services are provided whereby programs in a SLAVE 
partition can store data into the data base, which is included in the 
MASTER partition. 

Two-partition operation is initiated through normal Special Real Time 
Operating System initialization procedures with one additional control 
statement in each job's input stream. The MASTER job is designated by 
including the following control statement anywhere in the job's input 
stream. 

label 

w~ere: 

MASTER 

SLAVE= 

MASTER SLAVE=jobname 

Label is optional and must start in column 1 

Specifies this is the MASTER job step 

specifies the name on the job card (JCL) of the job which 
is to be the SLAVE job step. 

The SLAVE job is designated by including the following control statement 
any where in the SLAVE job's input stream. 

label 

where: 

SLAVE 

MASTFR= 

2-172 

SLAVE MASTER=jobname 

Label is option and must start in column 

Specifies this is the SLAVE job step 

Specifies the name on the job card (JCL) of the job which 
is to be the MASTER job step. 

Description and Operation Manual 



When initializing the system in this mode, both job steps must be 
started before the Special Real Time operating System initialization 
can effectively proceed in either partition. When a RESTART WRITE 
statement is encountered in either partition, it must be included in 
both. The restart data sets are written only from the MAsrER partition, 
but not before the SLAVE has completed the specified pre-restart 
processing. 

When the MASTER partition terminates, the SLAVE is terminated with a 
USER 041 ABEND by the STAE routine. When the SLAVE terminates, 
two-partition operations are stopped in the M~STER until the SLAVE is 
restarted. 

An attempt to start a SLAVE partition job when the MASTER job already 
has a SLAVE job executing will result in a user 41 ABEND for the second 
SLAVE job step. 

Services not documented in the following two-partition description will 
exist in both the partitions. 

Both the MASTER and SLAVE partitions are provided Special Real Time 
Operating system task management services. 

The PTN= parameter on the macro calls allows the user to specify the 
target partition for his PATCH, DPATCH and REPATCH: 

PA TCH ..• , PT N= I !~~~iR I 
FIND 

If not explicitly specified on the macro call, the caller's own 
partition is the target partition for the macro. 

Note on the PATCH macro: 

a. The FREE= area must be in the partition, where the work represented 
by this PATCH will be executed and may not be used otherwise, 
because it is impossible to FREEMAIN storage in another than the 
own partition. For the same reason, FREE= is invalid if a PATCH 
goes to the other partition and REPATCH option is specified. 

b. The PRTY/PRTYLOC parameter, if used, must specify the name of a 
task in the same partition as the created task. 

While it is not a special Real Time operating System restriction, 
consideration must be given to passing data area addresses across 
partition boundaries. The area cannot be stored into except by programs 
in the same partition as the area or by supervisor services. 

Task management control blocks will reside in both partitions as will 
the task management routineso However, if two-partition operation is 
desired, consideration should be given to the inclusion of certain task 
management routines in the Link Pack Area so that the same copy may be 
used for both partitions (see Coding and Performanc~ Considerations). 

Both the MASTER and SLAVE partitions are provided Special Real Time 
Operating System time manag~ment services. The Special Real Time 
Operating system time and date are the same for both partitions. 

APPLICATIOW SERVICES 2-173 



The PTN= parameter on the PTIME macro allows the user to specify the 
partition in which a routine will be executed as the result of the 
PATCH macro call(s) by the time management routines. 

The parameter 

IOWN ) PTIME ••• , PTN= SL AVE 
MASTER 
FIND 

is identical in form and function with the PATCH parameter (PTN=) and 
is also subject to all restrictions specified for cross partition 
PATCHes~ 

Note that the time management routines and control blocks (PTQES) will 
reside only in the MASTER partition and, therefore, all resulting 
PATCHes will be issued from the MASTER partition. 

Both the MASTER and SLAVE partitions will be provided Special Real Time 
Operating System data base services. The Special Real Time Operating 
System data base will be the same for both partition. All data 
definition statements required to define the data base must be contained 
in the JeL for the MASTER partition job. The data definition statements 
relative to the data base are not required in the JCL for the SLAVE 
partition job and if present will be ignored. This includes the DD 
statements for the data base partitioned data set, all data base BDAM 
data sets, and all sequential data sets required for any DUMPLOG macro 
calls. Also, the DBREF statement, if desired, must be included in the 
input stream for the MASTER partition's job. The VS resident arrays 
and all data base control blocks will reside in the MASTER partition. 
Therefore, it should be noted that the user in the SLAVE partition 
cannot store directly into the VS resident data base but must use the 
Special Real Time Operating System data base macro calls. 

All data base macro calls (i.e., GETLOG, PUTARRAY, etc.) will be 
supported from the SLAVE partition except GET/PUTARRAY with the ADDRLST 
option and GET/PUTITEM with the ADDRLST option. A return code 16 will 
be issued for these requests from the SLAVE partition. 

Note: Data base macro calls issued from the SLAVE partition require 
th~ use of additional SVC routines to resolve the interpartition 
communication problem and, therefore, viII incur additional 
syst em overhea d. 

rhe capability to define and reserve a resource will be provided for 
the SLAVE partition. However, partition LOCK/DEFLOCK routines will 
operate independently of each other; that is, a resource defined in 
one partition cannot be reserved via a LOCK macro call from the other 
partition. Cross-partition LOCK/DEFLOCK requests will not be supported. 

Duplicate data set support is available to programs in both partitions. 
A data set pair which is DDSOPENed in one partition should not be 
accessed by programs in the other partition except by DDSOPENing it in 
both partitions. 

2-174 Description and Operation Manual 



All messages issued out of the SLAVE partition will be output from the 
MASTER partition. A message issued in the SLAVE partition will have 
an S affixed to the message when it is output. 

EXAMPLE: 

DPP001S 2:29:23:3 o 1/FEB/14 REAL-TIME MESSAGE 

The MSGDS DD card must be included in the JCL for each partition. 

Input Message Processing (IMP) commands can be issued only to the MASTEl 
partition, but Input Message Processing can accept IMP commands to the 
SLAVE partition. The parameter SLAVE will follow the IMP command word. 
The parameters passed to the processing program viII follow SLAVE. 

EXAMPLE: 

'EXAMPLE,SLAVE,PARAM1,PARAM2, ••• PARAM20' 

EXAMPLE: IM P Code. 

SLAVE: Issue IMP command to SLAVE partition. 

PARAM: Parameters accepted by the processing program. 

Data recording and playback will run in both the MASTER and SLAVE 
partitions. The DRECOUT DD card must be included in the JCL for each 
partition. The DPBIN and SRTODUMP DD cards must be included irr the 
JCL for each partition if Data Playback is to be run as a Special Real 
Time operating system job. 

llilE2!:! J2~ta Qut2.!!! l.~cili:U 

The report data output facility viII run in both the MASTER and SLAVE 
parti tion s. 

APPLICATION SERVICES 2-175 



SPECIAL REAL TIME OPERATING SYSTEM DEBUG GUIDE 

User programs which run under the Special Real Time Operating System 
and ABEND vill appear in a storage dump to be ABENDing in DPPTMON 
because the user programs ate loaded by DPPTPMON which then branches 
to them. As a result, the user programs are not represented by a PRS 
on the TeB's active RB chain. They run under the PRB for DPPTPMON. 
Figure 2-33 shows how the special Real Time Operating system and OS 
control blocks would look upon entry to a user program. 

The entry point of the program to which DPPTPMON gave control can be 
determined by looking 16 10 bytes into the register save area pointed 
to by the TCBFSA field. Using the ABEND PSi and the entry point, the 
user can determine the displacement into the failing ~rogram of the 
last instruction e~ecuted prior to the failure. The program name can 
also be found by locating the LPRB with this entry point on the LPRB 
chain. An alternate method of locating the failing program is through 
the TCBOSER-TCBICWQ-WQLCB-LCBEPAD and LCBEPNAM chain. 

The TCBXNAME field of the TCBX vill contain the task name (TASK=) of 
the task or DEPNDNT if this is a dependent task. 

For additional debug information, refer to the IB~ ~L!~ ~eb~ng 
Guig~ (GC24-5093). 

2-176 Description and Operation Manual 



IV 
I .... 
~ 
....,j 

IV 
I 

W 
W 

* 
REGISTER 0 

TCBX 

NAME 

TCBXLCB 

TCBXWQ 

TCBXCWQ 

WQLCB 
______ ~TCBXDCVT 

TCBXRSTB 

TCBXPARM 

______ --'"----~--eESOURCE TABLE =o=J 
"1-------

R14 

RI5 

RO 

RI 

T 



CODING AND PERFORMANCE CONSIDERATIONS 

Certain considerations are normally made by a programmer when he is 
coding a program which viII execute in a batch processing environment. 
However, additional considerations should be made when coding programs 
for a realtime environment. These additional considerations should be 
evaluated to determine if they will impact execution efficiency and 
system reliability. Some of these considerations are discussed on the 
following pages. 

The Special Real Time Operating system tasks and user programs execute 
as subtasks; as a result, virtual storage gotten for a subtask by an 
OS/VS1 GETMAIN or REGMAIN must be explicitly freed. If it is not, the 
storage is lost and causes fragmentation within the partition. Storage 
Which the Special Real Time Operating System GETW"A rout.ine gets for 
TYPE=PC must also be explicitly freed by FREEWl or this storage is also 
lost. OS/VS1 task management routines build control blocks with fixed 
PQA in a part ition. If this PQA storage must be expanded dur ing a 
realtime run, it may cause fragmentation of the partition. One 
consideration to help avoid fragmentation by PQA is to get the maximum 
number of TCBs which will be required for the realtime run through the 
use of the TCB control statement. 

Programs coded for the Special Real Time Operating System should be 
coded as reentrant programs, if possible, to avoid having aultiple 
copies in storage and to improve the OS/VS1 paging frequency_ Also, 
because the Special Real Time Operating System PATCH monitor loads then 
branches to user programs, no user program which is to be PATCHed should 
ever issue EXIT (SVC3) or XCTL. 

Careful consideration should be given to the amount of storage which 
is to be fixed by the page fix routine (DPPIPFII), because page fixing 
has an adverse effect on the paging rate and may lead to thrashing. 

Dependent Special Real Time operating System tasks are initiated, 
execute once only, and are terminated. The additional overhead of 
initialization can be avoided by using independent tasks. This, 
however, causes the program (if reentrant) to remain in virtual storage 
and to maintain its resources. Careful consideration should therefore 
be given to whether user programs should be executed as dependent or 
independent tasks. Also, programmers who code programs to execute as 
independent tasks that open DCBs should be aware that the DCBs will 
not be closed after an execution of the program and that they will not 
be closed by a DPATCH. This may caUse problems, since the TCB may be 
used by another special Real Time Operating System task. This is also 
true of tasks which issue STIftER, then continue and never issue a TTIMER 
CANCEL for the STIMER. 

If there is frequent use of GETWA blocks greater than 2K, the paging 
rate in the system may be improved if the user executes an OS/VS PGRLSE 
macro on the GETWA area prior to the FREEWA of the area. 

Non-Special Real Time Operating system tasks (created by ATTACH) which 
reserve a resource via LOCK then ABEND, will not cause the Special Real 
Time Operating System ETXR routine to have the resource freed. 

If the Special Real Time operating System job step is to be terminated, 
careful consi dera tion should be given to the method by wh ich it is 
terminated, because the Special Real Time Operating Systea STAE routine 
will not be entered for ABEND codes 122, 13E, 222~ 322, 522, or 722. 

Programs which include the Special Real Time Operatinq System macro 
statements can be made more efficient and independent of the user SVC 
numbers generated by coding the DCVTR or DCVTLOC on Special Real Time 
operating System macro statements. 

2-118 Description and Operation Manual 



The SYSGEN time interval for the Special Real Ti.e Operatinq Systea 
time update routine CPTI"E= operand on the is SYSGEN macro) should be 
.ade as larqe as practical in order to reduce the Special Real Tiae 
Operating system time management overhead. This is also true of data 
base loqqinq overhead, which can be reduced by specifyinq as larqe as 
practical logqing frequencies (LOGFFEQ operand of LOG macro for the 
Special Real Time Operatina Syste. SYSGEN) • 

A loqical BLOC~ of a DA array will be represented by a physical bloct 
in the direct access data set. As a result, the DA array block size 
should be as larqe as possible for aore efficient use of direct access 
storage. 

Initiali~ation usinq a DBR!P MO stateaent will result in the loss of 
previously loqqed data. 

Blocked arrays should be used whenever possible because they may then be 
used as either OJ. or is resident a~rays. Number arrays require less 
overhead than named arra,s when accessed throuqh GETARRAY, PUTARRAY, 
GETBLOCK, or PUTBLOC~ macrose ~lso, when a GET!T!" or PUTITRft macro 
is executed, IIO processinq is invoked to resolve itea naaes to storage 
addresses. Therefore, it may be aore efficient to resolve the item names 
at one time and to make subsequent accesses to the same items via these 
addresses rather than via the itea Daaes. 

Proqrams should use data base macros to access the data base to ensure 
the integrity of the data base and to allow the program to be 
independent of the partition in which it executes (~ASTER or SLAVE). 

QPOS=DPATCR is not alloved if the task name represents a QR. 

EP=(name DELETE) vill remove the load module for the QP under vhich the 
vork queue is processed and not necessarily for all QPs that may have 
processed work fro. this OR. 

The TCBX address returned from the PATCH .acro is the address of the 
OH TeEI. If the user is using this address to interrogate the progress 
of the work, the inforaation that is picked up .a1 not be aeaninqful. 

PRT!: and QL= viII never be seaninqful when the NA~E= specifies a QH. 
These parameters are established when the OH is defined. 

If several PATCHes are executed with the PROSL or other work space to 
be freed bV the FREE= paraaeter on the last PATCH, the last PATCH 
executed may not be the last to complete processing. The result may 
be that the area is freed before the last use of the area. This can 
happen vhen the PATCR is executed by the PTI~E function. 

An immediate DPATCH(OPATCH TYPE=I) to a OP viII terminate the work 
currently active, but viII not delete the task. 111 other DPATCHs for 
a OP and all DPATCH's for a OH are disallowed. 

GETVl TYPE=AT executing under a OP or GETWA areas passed via P~TCR to 
the AT chain of a OP viII never be freed by Special Real Time Operatinq 
system (a OP can never be DPATCHed). 

If the user were to set a LOCK while processing one Work Oueoe and 
return leaving the LOCK set intending the release the LOCK when 
processinq the next work queue, it .ay not work because the next work 
queue may be processed under a different task (QP) and the LOCK must 
be released by the sa.e task which it was set. 

APPLICATION SERVICES 2-179 



SPECIAL REAL TIftE OPERATING SYST!! ONLINE "ACROS 

Por conyenience. all online aacros and their calling sequence are 
asseabled in alphabetical order by .acro naae in the following pages. 

2-180 Description and Operation "anual 



BEGIN 

The BEGIN macro provides standard as linkage conventions for reentrant 
or non-reentrant routines. In general, the BEGIN statement is designed 
to: 

• Identify and label the main control section or entry point address 

• Save the calling program's general purpose registers. 

• Establish main control section addressability. 

• Prepare a save area. 

• Define register usage through the EQUATE macro. 

The following options are available for the BEGIN macro example: 

Note: All register specifications should be absolute numbers rather 
than equated symbols (i.e. ~ 13 rather than R13). 

Programs using the BEGIN macro must be provided a higher save area by 
the calling program. 

[ symbol) BEGIN [csect name] 

~ ENTRY=Symbol] 

~ BASE= (reg, [label] ) ] 

~ADDB= (reg 1, [reg 2, • • ., reg n))] 

[ SAVE= INONE 2 )}J , (reg 1, reg 

[SAVEA= 
( symbol 

)/ ] {GETMAIN} [,label] 
GETWA 

k LV=number J 
~ SP=numberJ 

[ ENTER=PATCH ] 

APPLICATION SERVICES 2-181 



CSECT name 
The name to be given to the main control section. 

ENTRY= 
The label name to be given to the first instruction and to be declared 
via the ENTRY assembler instruction. 

BASE= 
specifies the general purpose register to be used as the initial main 
control section base and the label to be given to the point of zero 
displacement. Note that if no save area is requested and "reg" is 
omitted, register 15 is assumed. If a save area is to be assembled 
internally and a "reg ft is omitted, register 13 is assumed. If a save 
area is to be obtained via a GET MAIN or GETWA and "reg" is omitted, 
register 12 is assumed. 

ADDB= 
Specifies additional main control section bases to be initialized at 
zero displacement + 4096, zero displacement + 2*4096, etc. 

SAVE= 
Indicates range of general purpose registers to be saved in the 
caller's save area. If omitted, registers 14 through 12 are saved. 

SAVEA= 
Specifies the type of save area to be used by the program. 
"SAVEA=GETMAIN" indicates that a GETMAIN is to be issued to obtain 
the save area.. "SAVEA=GETWA" indicates that GETWA is to be issued to 
obtain the save area. "SAVEA=symbol" indicates that the save area is 
to be expanded within the program. Both SAVEA=GETMAIN and SAVEA=GETWA 
will resul t in reentrant code being genera ted. SAVE A=symbol is 
non-reentrant. Register 13 will contain the address of the save area. 
If omitted, no save area will be reserved. The "label" operand. if 
specified, will be used as the name of the DSECT describing the work 
area. 

LV= 
The length, in bytes, of the storage area to be obtained via a GETKAIN 
or GETWA. If SAVEA=GETMAIN or GETWA and LV= omitted, 72 bytes Ifill 
be obtained. If GETWA is specified and the LV= value is greater than 
the largest GETWA size allocated, a system ABEND (probably OC4) will 
occur within the code expanded by the BEGIN macro. 

SP= 
The number of the subpool from which the save area is to be 
obtained. If omitted, 0 is assumed and when executed under as/VS1, 
the subpool specification will default to o. 

ENTER=PATCH 
Specifies that the program is always entered via a PATCH interface. 
This operand is used only when SAVEA=GETWA is specified. If this 
operand j.s omitted or if anything other than PATCH is coded, it is 
assumed that the program may be entered by a linkage other than PATCH. 
Use of this parameter allows a smaller macro expansion. 

2-182 Description and operation Manual 



CHAIN 

The CHAIN macro provides the facility for allowing multiple tasks to 
modify the same control block chains without the necessity of the user , 
issuing ENQ/DEQ or getting himself into a disabled state. 

[symbol] CHAIN [
ADD, ] 
REMOVE, 

ORG= I (r) I address 

BLOCK= I (r) I ' address 

[, pos= 1~~;T I ] 
d~sp. 

[ INDEX= I (r) lJ ' value 

~ECB= (ladd~!J, [j con~ltion COde!J )] 
rl,DCVTR= r ] 

'- ,DCVTLOC= ladd~!ss II 
fMF=LJ ~l-W= (E,~ (r) l)l 

laddress~ J 

where 'r' is a general purpose 
register, 2-12. 

APPLICATION SERVICES 2-183 



ADD 
If the control block specified is to be added to the chain. This 
value is the default value. 

IEMOVE 
If the control block is to be removed from the chain. 

OFG= 
Specifies the origin of the chain~ This address must be in the origin 
of the chain and not in a previous control block in the chain. The 
reason is that the task could lose control, and the chain could be 
modified so that the "previous" control block address would no longer 
be valid when the task regained CPU control. However, since CHAIN 
executes disabled, this cannot occur when the origin of the chain is 
used. Any RX-type instruction address format is valid. 

BLOCK= 
Address of control block to be added or removed. An RX-type 
instruction address format is valid. 

POS= 
Only valid with ADD and specifies at which end of the chain to insert 
~he block. FIRST implies the end of the chain nearest the origin. 
LAST implies the end of the chain farthest from the origin. 'disp' 
is the displacement into the block of a full word containing a value 
to be used as a comparand. This value is used to insert the block in 
an increasing collating sequence relative to other blocks on the chain. 

INDEX= 
Specifies the offset in the control block to the chain point 
(fullword). Note that INDEX does not apply to the ORG address 
i.e., ORG always specifies the exact address of the fullword containing 
the address of the first control block. The index may be loaded in 
a register, r, and INDEX=(r) specified. If this parameter is omitted, 
the chain pointer is assumed to be the first word of the block. 

ECB= 
specifies a~ ECB to be posted with the specified completion code after 
the chain is modified. Any RX-type insturction address format is 
valid for the ECB address. The condition code can be loaded in a 
register and specified as ECB=(addr, (r». 

DCVTR=r 
Where 'I" is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'rOt is the general purpose register (2-'2) enclosed in 
parentheses that has the address of a 4-byte core location that 
contains the address of the XCVT. 

DCVTLOC=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the XCVT. 

MF= 
The list or execute forms of the CHAIN macro which are generated by 
specifying MF=L or MF=(E, address). 

2-184 Description and Operation r!anual 



CHAIN Return Codes: 

Decimal 
~od~ __ _ 

00 

04 

08 

12 

Successful completion. 

REMOVE block address not found in chain. When this 
condition exists, the ECB will not be posted. 

Invalid address in list. When this condition exists. 
the ECB will not be posted. 

ECB specified had been previ.ous posted. 

APPLICATION SERVICES 2-185 



DDSBLDD 

The DDSBLDL macro is used to construct a note/point list of a DDS the 
same as BLDL for a standard OS data set. Return codes will be the same 
as from the OS BLDL macro. 

lsymbol] DDSBLDL (OS parameters) 
[('DCvn=(,) IJ 

.DCVTLoc={ad~essl 
The OS parameters are the same as in BLDL; that is, DCB address, list 
address. 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, having the address of a 4-byte core location that contains 
the address of the xeVT. 

DCVTLOe=address 
Where 'address' is the label of a 4-byte core location that contains 
the address of the xeVT. 

2-186 Description and Operation "anual 



DDSCLOSE 

The DDSCLOSE macro is used to close a DDSDCB. Only one DDSDCB can be 
specified and TYPE=T is not valid. 

[symbol] DDSCLOSE (OS parameters) [f'DCVfR_<rl I 11 ] 
,DCVTLOC= ad~;ess 

The valid OS parameters are DDSDC B address and MF=operand. 

DCVTR=r 
Where 'r' is the general pnrpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, that has the address of a 4-byte core location that 
contains the address of the XCVT. 

DCVTLOC=address 
Where 'address' is th~ label of a 4-byte core location that contains 
the address of the IC'T. 

APPLICATION SERVICES 2-181 



DDSDCB 

The DDSDCB macro is used to define the DCB for a Duplicate Data set. 
The DDNAME specified in the macro should be the same as the name field 
of the DDSNAMES card in the DDSCTLIN input stream. 

I [symbol) I DDSDCB ( OS parameters) 

This macro is coded identically to the os DCB macro with the following 
notes: 

• DSORG must be PS, PO, or D1. 

• OPTCD can be omitted or i, R, or F. 

• Multi-tracking cannot be specified. 

• only the following parameters are yalid: BLKSIZE, DDNAME, DSORG, 
KEYLEN, LRECL, MACRF, NCP, OPTCD, RECF", and SYNAD. 

The DDSDCB macro performs the same function for the Duplicate Date set 
(DDS) facility as the DCB macro performs forthe OS/VS1 data management. 
Whenever the address of a DCB is Dequired with the other DDS macros, 
the address of a DDSDCB must be specified. The operands of DDSDCB ate 
a subset of the DCB operands. The valid operands are listed below by 
access method. Refer to the ~a.§1 Qat~ ManagemeD,1 11~!:Q InstructiQ!l§ 
manual (GC26-3793) for a detailed description of the operands. If an 
operand listed below does not have any restrictions other than those 
listed in the DDS description in Chapter 2, the field to the right of 
the operand is left blank. If the field is not blank, a restriction 
or extension to the OS/VS1 options is noted. 

Operands valid with BDAM are: 

• BLKSIZE= MACRF= 

• D DNA M E= d d sn am e 

• DSORG=DA only OPTCD=W/R, F only 

• EODAD= RECFM= 

• KEYLEN= SYNAD= 

• LRECL= DEVD=DA 

Operands valid with BSAM and BPAM are: 

• BLKSIZE= LRECL= 

• DDNAME=ddsname MACRF= 

• DEVD=DA only NCP= 

• DSORG=PS and PO OPTCD: (i) 

• EODAD 

• KEYLEN= SYNAD= 

Note: Invalid DCB options or operands must not be specified in the DD 
card DCB=operand. 

2-188 Description and Operation Manual 



DDSFIND 

The DDSFIND macro is used to perform that same function as FIND but 
for a DDSDCB. Return codes vill be the same as from the OS FIND macro. 

[ symbol] DDSFIND (OS parameters) [\,DCVTR=<r) l lJ 
,DCVTLOC= ad~ess l 

The as parameters are the same as in OS FIND, that is, DCB address 
member/name/point list, type. 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the xeVT. 

DCVTLOC= (r) 
'~here 'r' is the general purpose register (2-12) enclosed in 
)arentheses that has the address of a q-byte core location that 
contains the address of the xeVT. 

DCVTLOC=addrecs 
WL-ere 'address' is the label of a 4-byte core location that contains 
the address of the xeVT. 

APPLICATION SERVICES 2-189 



DDSOPEN 

The DDSOPEN macro is used to open a DDSDCB. Only one Only one DDSDCB 
can be specified and, for update option, the task opening the DDSDCB 
must maintain exclusive control over it. 

[symbol] ODSOPEN (OS parameters) [I'DCVTR= r ! llJ 
.DCVTLOC= ad~:ess 

The valid OS parameters are DDSDCB address, OPEN option and ftF=. 

DCVTR=r 
Where 'r' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, having the address of a q-byte core that contains the 
address of the XeVT. 

DCVTLOC=address 
Where 'address' is the label of a q-byte core location that contains 
the address of the XeYT. 

2-190 Description and Operation "anual 



DDS STOW 

The DDSSTOW macro is used to STOW a member of a partitional DDS. Return 
codes viII be the same as from the OS STOW macro. 

[symbol] DDSSTOW (OS parameters) [l'DCVTR= r lJ 
. 'DCVTLoc={a:~~ess ~ 

The OS parameters are the same as in OS STOW; that is. DeB address, 
member-name, and type. 

DCV'fR=r 
Where Ir' is the general purpose register (2-12) that contains the 
address of the XCVT. 

DCVTLOC= (r) 
Where 'r' is the general purpose register (2-12) enclosed in 
parentheses, having the address of a q-byte core location that contains 
the address of the XCVT. 

DCVTLOC=address 
Where 'address' is the label of a q-byte core location that contains 
the address of the XCVT. 

APPLICATION SERVICES 2-191 



DEFLOCK 

Each resource to be reserved must be defined to the Special Real Time 
Operating System by the use of a DEFLOCK macro. The DEFLOCK macro will 
cause a control block to be built describing the resource. The name 
of the resource will be returned in register 0 and the address of the 
control block will be returned in register 1. This control block 
address must be used whenever reserving a resource with the LOCK macro. 
After all processing for a particular resource has been completed, the 
control block may be released by another DEFLOCK macro. Once the 
control block has been released, it must be re-defined by a DEFLOCK 
macro before that resource can be reserved again. In the case of 
two-partition operation, separate lock controls are maintained for each 
partition. Thus a program cannot use a lock control block created in 
th~ other partition. 

The DEFLOCK macro may also be used to obta.in the address of a pre viously 
defined lock control block. 

The following o?erands are available for the DEFLOCK macro: 

[symbol] 

(r) 
name 

DEFLOCK { (r)} 
name 

[ , TYPE= {
GET }l 
~~~D J 

[I
,DCVTR= r 1
'DCVTLoc={ad~~!ss}}J

Is the positional operand that defines the 4-byte resource name. If
(r) is specified, the general purpose register (0 or 2-12) contains
the resource name.

TYPE=
Is used to indicate that a resource control block is being defined
(TYPE=GET) or released (TYPE=REL). The address of the control block
on TYPE=GET requests is returned in register 1.

A DEFLOCK with a TYPE=FIND option wil~ cause the address of a
previously defined lock control block to be returned in register 1.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte core location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte core location that contains
the address of the XCVT.

2-192 Deseri ption and Operation Kanual

When control is returned, register 15 contains one of the following
return codes:

Decimal
Cod! ___

o

4

8

12

Successful completion.

Resource already defined. Register 1 contains the
previously defined control block address.

Job step is not a Special Real Time Operating Syste~
task.

Resource not previously defined. (Valid only for
TYPE=REL and TYPE=FIND requests.)

APPLICATION SERVICES 2-193

DPATCH

An independent task is created to be executed continuously over an
indefinite time period. When an independent task is no longer required,
it can be deleted by use of the DPATCH macro. Since the task may have
several elements on its work queue an unconditional DPATCH does not
allow these elements to be executed. Any ECBs associated with the work
queue elements are posted with a DPATCH completion code. The DPATCH
can be specified as W, which prevents losing any work queues, or it
can be specified as conditional, which deletes the task only if it is
dormant. A DPATCH immediate can be used to abnormally terminate a task
that executes a long running program (e.g., report-routine). DPATCH
of a queue holder is not allowed. only TYPE=I or A is allowed to a
queue 1>rocessor.

r [symbol] DPATCH [(r)]
name

[.TYPE={ f}J
[

(
OWN}]
MA STER

· PTN= l ~~:6E

[(

,DCVTR= (r) }]

,DC VTLOC = {<:1 dress I
Where 'r' is a general purpose register (2-12).

I I

name
~'-s a 1 to 8 character name of the task to be deleted. If register
"orm is specified, t he reg ister contains the address of the task name.
If omitted, the current task is to be deleted.

TYPE:
If I is specified, the task is to be deleted immediately. It will be
abnormally terminated with a user abend code of 65. However, a WQE
that was queued Witl QPOS=DPATCH will still be executed as part of
the cleanup processing.

If U is specified or the operand is omitted, the task specified is to
be deleted unconditionally. Any work queue to the Any work queue
to the task is posted as deleted. The current WQE, if executing, is
allowed to complete. If C is specified, the specified task is deleted
only if its work queue is currently empty. If W is specified, the
task is deleted when the work queue becomes empty. This does not
prevent work being queued to the task. If register form is specified,
the register contains a numeric code of 0, 4, 8, or 12. A numeric
code of 0 corresponds to a TYPE=U request, 4 corresponds to a TYPE=C
request, 8 corresponds to a TYPE=W request, and 12 corresponds to a
T~PE=I request. If A is specified, the program executing under the
task viII be abnormally terminated with use code 65. The task will
not be deleted as an independent task and any work queues that are
awaiting execution will not be deleted.

2-194 Description and Operation ~anual

PTN=
In tvo-partition operation, this operand defines the target partition
for the DPATCH. OWN means that the target partition is the partition
that executes the DPATCH; MASTER defines the MASTER partition as the
target partition. SLAVE defines the SLAVE partition as the target
partition; if SLAVE is coded and tvo-partition operation is not
initialized (no MASTER/SLAVE control cards in the SYSINIT input
stream), the DPATCH viII be rejected and a return code passed back in
register 15. FIND causes the SVC to search for the task in its own
partition first, then in the other partition and the first one found
will be DPATCHed.

If register form is used to specify the task name and the PTN= operand
is not specified, the high-order byte (byte 0) of the register also
defines the target partition. The same bits are used as in the PATCH
supervisor list (SUPL). and they have the same meaning.

SUPLPTNS=1 PTN=SLAVE

SUPLPTNM=1 PTN=MASTER

both zero PTN=OWN

both one PTN=FIND

However, if the PTN= operand is specified, the expansion of the macro
will insert the proper bit into the high-order byte.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of th~ XCVT.

DCVTLOC=(r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses having the address of a 4-byte core location that contains
the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte core location that contains
the address of the XCVT.

When control is returned, register 15 contains one of the following
return codes:

APPLICATION SERVICES 2-195

Decimal
£~~ -

0

4

8

12 No

16 No

20 No

22 No

24 No

28 No

2-196

DPATCH

DPATCH

DPATCH

DPATCH

DPATCH

DPATCH

Successful completion.

Task vas already DPATCHed=W

Task lias already DPATCHed=U

Task is not dorlllant (DPATCH=C only)

Task is being removed

Task name not found on independent task chain

PTN=SLAVE requested but not initialized

Invalid pa rameters passed.

Task name specified a queue processor and type
not I or A or task name specified a queue holder.

Oeser! ption and Operation !anual

DPPXBLKS

The DPPXBLKS macro generates DSECTs for various Special Real Time
Operating System and as/VS1 control blocks. define requested control
blocks. When a keyword is omitted, the When a keyword is omitted, the
control block associated with that keyword is not expanded. With the
exception of the "TY,PE-" para mete r, any non-blank character is
acceptable as the keyword operand.

The following operands are ayailable for DPPXBLKS.

[symbol] DPPXBLKS [TYPE= {DSECT}]
CSECT

[,REGS=]

[,TASK=] [,TCBX=] [,TMCT=] [,WQ=]

[,LCB=] [,GFCB=] [,GFMB=]

[,TIME=] [,PTQE=] [, TIMED=] [, PTIMEL=]

[,DDS=] [, DDSDA=]

[, OS=] [, TCB=] [,CVT=] [,RB=]

[,SRTOS=] [,XCVT=] [, SCVT=] ~
I

[, SUPL=] [, REPL=]

[,DB=] [,ALTPRI=] [,ALTSEC=] [,DADD=]

[,DIRB=] [,DIRR=] [,DMPHDR=] [,PBT=]

[,LOGCB=] [,LOGHDR=] [,DACNTL=] [LOCK=]

[,MSG=] [,IMP=] [,DREC=] [,GFMB]

APPLICATION SERVICES 2-197

TYPE=
Used in conjunction vith the TCBX, TMCT, WQ, LCB, GFCB, and PTQE
parameters and indicates that the control block is to be expanded as
a DSECT or CSECT. If omitted, DSECT is assumed.

REGS=
Indicates that the macro is to be expanded to provide register equates.

TASK=
Used to indicate that the control blocks related to task management
are to be expanded as DSECTs (CSEX:Ts). Tl1ese are the TCBX, TlfCT, WQ,
LCB, and GFCB control block.

TeBX=
Used to indicate that the control block for the TeB extension (TeBX
is to be exp an ded as a DSECT (CS EX:T) •

TMCT=
Used to indicate that the control block for the task management control
table (TMCT) is to be expand~d as a DSECT (CSECT)~ The control block
for the GETWA/FREEWA main block (GFftB) viII also be expanded.

WQ=
Indicates that the control block for the vork queue (WQ) is to be
expanded as a DSECT (CSECT).

LCB=
Indicates that the control block for the load control block (LCB) is
to be expanded as a DSECT (CSECT).

GFCB=
Indicates that the control block for the GETWA/FREEWA control block
(GFCB and GFBE) are to be expanded as a DSECTs (CSECTs).

TIME=
Indicates that the control blocks PTQE, TIMED, and PTIMEL, related to
time management are to be expanded as DSECTs (CSECTs).

PTQE=
Indicates th~~ the control block for the PTIME queue element (PTQE)
is to be expanded as a DSECT (CSECT).

'IIMED=
Indicates that the time array DSECT (TIltED) is to be expanded. If
"TIMED-PTIME" is specified, the control blocks used in time management
are also expanded.

PTIMEL=
Indicates that the DSECT describing the PTIME input paraaeter list
(PTIMEL) is to be expanded.

DDS=
rndicates that the DSECT (DDSD!) for duplicate data sets is to be
~xpanded.

r)SOA=
rndicates that the DSECT describing the duplicate data set data area
(ODS OA) is to be exp anded.

05=
Indicates that certain OS control blocks are to be expanded as OSECTs.
These are the CVT, TCB, and RB control blocks.

2-198 Description and Operation Manual

CVT=
Indicates that the DSECT that describes the OS communications vector
table (CVT) is to be expanded.

TCB=
Indicates that the OSECT that describes the os Track Control Block
(TCB) is to be expanded.

RB=
Indicates that the OSECT that describes the OS Request Block (RB) is
to be expanded.

SRTOS=
Indicates that the Special Real Time Operating System communications
table are to b€ expanded as DSECTs. These are the XCVT and SCVT
tables.

XCVT=
Indicates that the DSECT that describes the primary Special Real Time
operating System communication table' (XCVT) is to be expanded.

SCVT=
Indicates that the DSECT that describes the secondary Special Real
Time Operating System communication table (SCVT) is to be expanded.

REPL=
Indicates that the DSECT that describes the PATCH superviSor input
parameter list (SUPL) is to be expanded. The PATCH problem program
input parameter list (PROBL) is also expanded.

SUPL=
Indicates that the DSECT that describes the PATCH supervisor input
parameter list (SUPL) is to be expanded. The PATCH problem program
input p~rameter list (PROBL) is also expanded.

DB=
Indicates that the control blocks for the data base are to he expanded
as OSECTs. These are the ALTPRI, ALTSEC, DADD, DIRB, DIRR, DMPHDR,
PBT, LOGCB, and LOGHDR.

ALTPRI=
Indicates that the control block for the primary array location table
is to be expanded as a DSECT.

ALTSEC=
Indicates that the control block for the secondary array location
table is tc be expanded as a DSECT.

DACNTL=
Indicates that the control block that describes the direct access
array control record is to be expanded as a DSECT

DADD=
Indicates that the control block for the direct access DD name table
is to be expanded as a DSECT.

DIRB=
Indicates that the control block that describes the BLDL directory is
to be expanded as a DSECT.

DIRR=
Indicates that the control block that describes the PDS directory is
to be expanded as DSECT.

APPLICATION SERVICES 2-199

DMPHDR=
Indicates that the control block that describes the DUMPLOG header is
to be expanded as a DSECT.

PET=
Indicates that the control block that describes the page Boundary
Table is to be expan ded as a DSECT.

LOGeB=
Indica tas that the control block tha t describes the log control block
is to be expanded as a DSECT.

LOGHDR=
Indicates that the control block that describes the LOG header is to
be expanded as a DSECT.

LOCK=
Indicates that the control block for the LOCK control block (LOCKCBLK)
is to be expanded as a DSECT.

MSG=
Indicates that the control block for the realtime message handler is
to be expanded as a DSECT.

IMP=
Indicates that the DPPXIMP array, input message processing control
block, is to be expanded as a DSECT.

DREC=
Indicates that the control block for data recording is to be expanded
for a DSECT ..

GFMB=
Indicates that the control block for the GETWA/FREEWA main block,is
to be expanded as a DSECT.

2-200 Description and operation Manual

i)UftPLOG

The DUMPLOG macro is used to dump (unload) logged copies of virtual
storage resident arrays from the log data set to a sequential data set
which may then be accessed by user-written routines.

[symbol] DUMP LOG
,
)
(

I I NAME= name

NUMBER= number

~ NAMELST= {address} (
(r)

I NUMBLST= {addres s })
(r)

[STARTIM= { address }]
, (r)

[,STOPTIM= { ad~~)ss }]

[DUMPDD= {DUMP LOG}]
, ddname

[,USRDATA= { ad~~)ss }]

[,DISP= { ~~~}]

[I' DCVTR= r IJ
,DCVTLOC= {ad~~)ss}

APPLICATION SERVICES 2-201

The parameters NAME, NUMBER w NAMELST, and NUMBLST are mutually
exclusive. The macro will not expand if more than one of these
parameters is specified or if all of these parameters are omitted.

NAME=
specifies the name of a named array for which the log array is to be
dumped.

NUMBER=
Specifies the number assigned to a numbered array for which the log
array is to be dumped.

NAf1F.LST=
specifies the address or a register (2-12) which contains the address
of a user-constructed list of array names for which the log arrays
are to be dumped. The name list viII be a table of 8-byte entries
with one valid array name in each entry. The first byte past the last
valid entry will be set to X'FF' to indicate the end of the name list.

EXAMPLE: Name List
0.--_____ --,

ARRAYNAM

HOUSTONb
J6~-----_!

TEXASbbb
24~ __ .-__ --,

X'FF' I

NUMBLST=
specifies the address or a register (2-12) which contains the address
of a user-constructed list of array numbers for which the log array
are to be dumped. The number list viII be a table of halfword entries
with one valid array number in each entry. The first byte past the
last valid entry will be set to X'FF' to indicate the end of the number
list.

8XAMPLE: Number List

0r-__ ---,

H'J'
2~-----I

H'255'
4~ __ ---I

H'J39'
6~ __ ---;

X'FF'

STARTIl1=
Specifies an address or a register (2-12) containing the address of
a 6-byte time and day field beginning on a fullword boundary. The
first four bytes will contain a time in 10 millisecond units. The
last two bytes will contain a binary value from 1 to 366 representing
the day of the year. The logged copies of the array viII be searched
until a copy is found with a log time equal to or greater than the
start time specified. If this parameter is omitted, dumping will
commence with the oldest logged copy of the array .•

STOPT!M=
Specifies an address or a register (2-12) containing the address of
a 6-byte time and day field beginning on a fullword boundary. The
first four bytes will contain a time in 10-millisecond units. The
last two bytes will contain a binary value from 1 to 366 representing

2-202 Description and Operation Manual

the day of the year. The logged copies of the array vill be dumped
until the most recently logged copy has been dumped or until a copy
is dumped with a log time equal to or greater than the stop time
specified. If this parameter is omitted, dumping will terminate when
the most recently logged copy of the array has been dumped.

Note: The DUMPLOG routine will insert a byte of X'FF' into the first
byte of the logging header of the last copy of each array dumped
to the sequential data set to indicate the end of the dump of
each array is to be a use~ delog routine.

DUMPDD=
specifies the name of a data definition statement which describes a
sequential data set to receive the dumped copies of the array from
the log data set. If this parameter is omitted, the DD name 'DUMPLOG'
viII be assumed as the default. The output viII consist of spanned
variable length records. The blocksize of the data set defined by
the DUMPDD parameter must be at least 264 bytes but no more than 32160
bytes. The blocksize should be large enough to contain one array
copy, the log header (24 bytes), the user dump header (256 bytes) if
any, and the descriptor vords for variable length records (8 bytes)
for maximum processing efficiency.

USRDATA=
Specifies an address or a register (2-12) containing the address of
a 256-byte area of user data to be contained in the dump header f~r
each array on the sequential dump data set.

DISP=
specifies whether the dumped cop~s are to be written at the beginning
of the DUMPDD=data set (DISP=NEW) or added to the existing dumped
copies (DISP=ADD).

If the disposition parameter specified on the DD statement for this
data set is either OLD or SHR and the data set is empty then the first
DUMPLOG request must specify DISP=NEW.

Specifying DISP=~EW on subsequent DUMPLOG requests will position a
direct access data set to record one and viII cause a tape data set
to force the end of volume before the log copies are written.

DCVTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a core location which contains the
address of the XCfT.

MF=L
Indicates that the list form of the macro is used to create a parameter
list that can be referenced by an execute form of the DUMPLOG macro
instruction.

MF=(E address

Specifies that the execute form of the DUMPLOG macro instruction and
an existing parameter list are used.

Note: A zero returned in register 15 indicates successful cop-plation.
A non-zero in register 15 indicates that one or more errors vere
encountered during processing of this DUMPLOG request. The
high-order byte of register 15 contains a count of the number
of errors encountered and the low-order 3 bytes contain the
address of the first invalid array name or number.

APPLICATION SERVICES 2-203

EXIT

The EXIT macro is to be used in conjunction with the BEGIN macro and
will perform the exit linkage convention requirements. That is,
register 13 will be restored to point to the caller's save area; the
other general purpose registers that vere saved vill be restored; and
the GET!AINed save area, if one exits, viII be released.

The following options are available for the EXIT macro .•

[symbol] EXIT [CODE =h~~r}]

[FREE ={i~S 1]
[(,DCVTR= r 1]

!,DCVTLOC= {ad~~)SS} ,

CODE=
specifies a return code to be passed to the RETURN macro; if a register
is to contain the return code, only 15 is valid.

FREE=
Specifies whether or not EXIT is to FREE the save area allocated by
the corresponding BEGIN macro. Either a FREEKAIN or FREEWA viII be
executed, depending upon how the save area vas gotten.

The folloving parameters are meaningful only if FREE=YES is specified
and the save area vas allocated by GETWA.

DCVTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a storage location which contains the
address of the XCVT.

2-204 Description and Operation Manual

FREEWA

The FREEWA macro releases control of a work area obtained via the GETWA
macro. If the GETWA was not TYPE=PC, the FREEWA must be issued under
the same task as the corresponding GETWA.

{ (r) 1
lsymbol] FREEWA address

{,DCVfR=(r) I
,DCVTLOC= { (ad~ess) 1

where 'r' is a general purpose register (2-12)

If 'r' is specified, the register contains the address of the work area
as returned to the caller after a GETWA macro execution.

If an 'address' is specified, it is a label of a fullword that contains
the address of the work area as returned to the caller after a GETWA
macro execution.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the xeVT.

DCVTLoe= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses having the address of a 4-byte location that contains
the address of the xeVT.

DCVTLOe=address
Where 'address' is the label of a 4-byte !ocation that contains
the address of t he X CVT.

When control is returned, register 15 contains one of the following
return codes:

Decimal
~odg __ _

o Successful completion.

4 In va lid FR EEW A;

• Area already free

• Invalid address

APPLICATION SERVICES 2-205

GETARRAY

The GETARRAY macro is used to retrieve the data contained in one or
more arrays of the data base, the address of those arrays in the data
base, or the specifications of the items in the array (s). When data
is to be retrieved from the data base and the amount ~f space required
to contain the data is unknown, the GETARRAY macro with a TYPE=ADDR
option can be used to obtain the size of the array before the macro
with a TYPE=DATA or TYPE=SPEC option is used to retrieve the data. The
macro does not actually return the size of the data area to contain an
array's item names and specifications but instead will ret~rn the number
of items contained in the array_ The number of items can then be
multiplied by 16 to obtain the actual size of the area for TYPE=SPEC.
Where incr is specified, it may be any value from 1 to 255.

\

[symbol] GETARRAY NUMBER=nurnber, DATA= { (r) }
address

{ (r) }
NAME=narne, DATA= address

)
< {

(r) } f
NAMELST= address [,iner])

j (r) }
I

ADDRLST= < { address [,incr])

NUMBLST= ({ (r) }
address [liner])

I

,DATALST= <{
(r) }

addres s [, iner])

,FINDLST= ({ (r) }
address [, iner])

[,TYPE= rATA }] ADDR
SPEC

[,PROTECT= {~~~K}]

[,DCVTR= r I]
,DCVTLOC={ (r) }

address

2-206 Description and Operation Manual

The parameters NUMBER=, NAME=, NAMELST=, ADDRLST, NUMBLST, are mutually
excl usive, only one may be specif ied.

NAME=
Is an 8-character name of a single array for which data is to be
retrieved or the address is to be resolved.

NUMBER=
Is an array number of a single array for which data is to be retrieved
or the address is to be resolved.

DATA=
Is used with NAME= or NUMBER=. It specifies the address into which
the content of the array is to be moved (TYPE=DATA) or the address,
number of blocks, length of the array, or size of each block is to be
moved. In the latter case, the address viII occupy a fullword, and
the number of blocks and the length of each blocK will occupy the next
two halfwords.

NAMELST=
Specifies the address of a list of 8-character array names for whicb
data is to be retrieved or the addresses are to be resolved. Iner is
the value by which this address is to be incremented to locate the
next name. If not specified, a value of 8 is assumed. A value or
less than 9 must not be specified for incr~ The list must be
terminated by a byte containing X'FF' in the position that would be
occupied by the first byte of the next name~

NUMBLST=
Specifies the address of a list of 2-byte fields containing array
numbers for which data is to be retrieved or the addresses are to be
resolved. Incr is the value by which this address is to be incremented
to locate the next number. If incr is omitted q a value of two is
assumed. A value less than two must not be specified for incr. The
list must be terminated by a byte containing X'FF' in the first byte
of the 2-byte field which would be occupied by the next array number.

EXAMPLE: Number List

o r--------,
H'I'

2t-----i

H'255'
4t-----i

6
H'139'

X'FF' I

ADDRLST=
Specifies the address of a list of data base array address~s as
returned from a previous execution of this macro with NAME=, NAMELST=,
or NUMBLST= specified and TYPE=ADDR. Incr is the value by which this
address is to be inc~emented to locate the next array address. If
incr is not specified, a value of 8 is assumed. This list must be
terminated by four bytes containing X'FFFFFFFF' in the position that
would be occupied by the first four bytes of the address of the next
array. If the GETARRAY macro specifying NAMELST or NUMBLST is used
to build this list, it viII place the 4 X'FF' at the ~nd of the list.

DATALST=
Is used with NAMELST= or NUMBLST= and TYPE=DATA or SPEC or ADDRLST=
and TYPE=DATA. The address of a list of addresses into which the data
from the specified arrays is to be moved. This must contain an entry

APPLICATION SERVICES 2-201

for each array for which data is to be retrieved. This entry will
contain a fullword address which identifies the memory address to
which the first byte of the array data is to be moved. Incr is the
value by which the address within the list is to be incremented to
pick up the memory address to receive the start of the next array.

If incr is not coded, a value of 4 is assumed~

FINDLST=
Is used with NAMELST= or NOMBLST= and TYPE=ADDR. It specifies the
address of an area to receive an entry for each array specified. This
entry will be eight bytes if incr is specified as less than 10 (or
omitted) and 10 bytes if incr is specified as 10 or greater. The
entry will be in the following format.

O...--_,-I-___ ..,..4"--____ -r6"'--___ ----r8_ - - ___ - - - - - --,

number
blocks

array/bk
size

number : , , items
L--_..l-___ ~ ____ __l. ____ --L.._ ----- •. ------,

If bit 7 of the flag byte is set to 1, the array is direct access
resident, and the address is not valid. If flag bit 6 is set to 1,
it is a blocked array, and the block size must be multiplied by the
number of blocks to determine the total size of the array. The number
of items is the number of item names specified for this array through
the offline definition of the array.

Incr is the value by which the address specified is to be incremented
to determine the location to receive the next entry_ If incr is not
specified, a value of 8 is assumed.

TYPE=
Specifies the type of request. DATA specifies that the content of
the array(s) is to be moved into the area specified by the DATA= or
DATALST= parameter.. ADDR specifies that the address of the array(s)
and associated data as defined with the FINDLST parameter is to be
moved into the area specified by DATA= (if NAME= or NUMBER= is
specified) or FINDLST= (if NAMELST o~ NOMBLST is specified). SPEC
specifies that the definition specifications as specified to the
offline utility for each named item defined for the array(s) is to be
moved into the area specifieds

The data that is returned when the TYPE=SPEC is specified will contain
a 16-byte entry for each named item in the following format:

I name I len type disp aid rept
o

name

len

type

9 10 12 14 16

The 8-character came of the item.

The length of the item in bytes.

The data type of this item. An EBCDIC character as defined
through the ITEM macro.

disp The displacement into the array (or block) of the item.

aid The ID of the array as assigned by the offline utility progrlm.

2-208 Description and Operation Manual

rept The number of identical and sequential items defined by this
entry.

PROTECT=!]~

RISK

If YES is specified, a LOCK vill be set to prevent other programs that
also specify PROTECT=YES from accessing the data base via the data
base macros while the data is being moved. If another program is in
the process of modifying the data base (a lock is set) when this macro
is executed, this program will be delayed until the lock is released.
The parameter has no effect if TYPE=ADDR or TYPE=SPEC is specified.

DCVTR=
specifies a register which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register containing the location which
contains the address of the XCVT.

After execution of the GETARRAY request, the return code in register
15 is set to zero to indicate successful completion or to four to
indicate that the request could not be satisfied because Qf one or
more of the following reasons:

• One or more of the named arrays is not defined to the system.

• A numbered array vas requested which is higher than the higmest
numbered array defined to the system •

• A TYPE=DATA request was made for a direct access resident array_

APPLICATION SERVICES 2-209

GETBLOCK

The GETBLOCK macro will retrieve the data from blocked arrays and place
that data into user-allocated storage. The macro may be used to
retrieve one or more blocks of data from one or more arrays. The arrays
may be either virtual storage or direct access resident.

I NAME= h~)e j
\

[symbol] GETBLOCK)
) NUMBER= h~er j

((

J NAMELST= address
(r)

t NUMBLST= address)
(r)

,DATALST= address
(r)

[,PROTECT= RISK)]
YES

[/' DCVTR= r lJ
DCVTLOC=!addressj , (r)

The parameters NAiE, NUMBER, NAMELST, and NUMBLST are mutually
exclusive. The macro will not expand if more than one of these
parameters is specified or if all of these parameters are omitted.

DCVTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a location which contains the
~ddress of the XCVT.

NAME=
Specifies the name or a register (2-12) from which data is to be
retrieved.

NUMBER=
Specifies the number or a register (2-12) from which data is to be
retrieved.

NAMELST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array names from which data blocks are
to be retrieved. The name list will be a table of 8-byte entries with
one valid array name in each entry. The first byte past the last
valid entry will be set to X'FP' to indicate the end of the name list.

2-210 Description and Operation Manual

EXAMPLE: Name List

0,.-' _____ ---,

ARRAYNAM
8r---____ --f

HOUSTONb
16r--_____ --f

TEXASbbb
24r-__ .---__ --'

X'FF' I

NUMBLST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array numbers from which data blocks
are to be retrieved. The number list viII be a table of halfword
entries with one valid array number in each entry. The first byte
past the last entry will be set to X'FF' to indicate the end of the
number list.

EXAMPLE: Number List

0....-------.

21--_--1

H'2SS'
4f-------t

6
H'I39'

X'FF' I

DATALST=
Specifies the address or a register (not register 1) vhich contains
the address of a user-constructed list of block numbers and of core
addresses where the data blocks are to be written. The data list will
be a table of 6-byte entries. Each entry will contain a 1-byte flag
field r a 3-byte area address and a 2-byte block number.

PROTECT=
If YES is specified, a .LOCK will be set to prevent other programs that
also specify PROTECT=YES fron accessing the data base while this
GETBLOCK is in the process of accessing the data base. If RISK is
specified r the data will be moved without regard to other programs
which may be storing into the data base.

DATA LIST ENTRY DESCRIPTION:

°
FLAG
BYTE

FLAG BYTE
X' 40'

2

AREA ADDRESS

X' 40' or X' 80'

AREA ADDRESS

4

BLOCK
NUMBER

Indicates the last entry to be processed for a
particular entry in the name list or number
list.

Indicates the last entry in the data list.

The 3-byte address of a user-allocated area of storage where the data

APPLICATION SERVICES 2-21'

block is to be written. The area must be large enough to contain the
entire data block.

BLOCK NUMBER
The number assigned to t.hu data block to be retrieved and placed in
the area pointed to by the area address.

EXAMPLE: Data List and Name List

l"iame List Data List
FIRSTbbb A(Area) H'I'

I SECONDbb A(Area) H'S' Blocks in first
array

THIRDbbb X'40' A(Area) H'W'

X'FF' I X'40' A(Area) H'3' r-- Blocks in second array

A(Area) H'2SS'

A(Area) H'l'

A(Area) H'2'

A(Area) H'37'
Blocks in third array

A(Area) H'l86'

X'SO' A(Area) H'249'

Note: A zero returned in register 15 indicates successful completion.
A non-zero returned in register 15 indicates that one or more
errors were encountered during the processing of this GETBLOCK
request. The high-order byte of register 15 contains a count
of the number of errors encountered and the low-order three
bytes contain the address of the first invalid array name or
number.

2-212 Descri ption and Operation Manual

GET ITEM

The GETITEM macro is used to retrieve the data contained in one or more
items of the data base or, alternately. the address or definition
specification of those items in the data base. When data is to be
retrieved from the data base and the amount of space required to contain
the data is unknown, the GETITEM macro with a TYPE=ADDR option can be
used to obtain the size of the item before the macro with a TYPE=DATA
option is used to retrieve the data~ Where incr is specified, it may
be any value from 1 to 255.

[symbol] GETITEM NAME= name

NAMELST= {
(r) }

(address (,iner])

ADDRLST= {
(r) }

(address [liner])

[
, TYPE= j ~~~~} lJ l SPEC

[,BLKNO= {nu~er}]
,DATA= { (r) }

(. address [f iner])

[, PROTECT= {~~~K}]

[I

,DCVTR= r

I ,DCVTLOC=

NAME=
Is an 8-character name of a single item for which data is to be
retrieved or the address is to be resolved.

NAMELST=
Is the address of a list of 8-charaeter ITEM names for which data is
to be retrieved or the addresses to be resolvede Incr ~s the value
by which this address is to be incremented to locate the next name.
If not specified, a value of 8 is assumed. If specified, must not be
less than 8. The end of the list must be indicated by a byte
containing X'FF' in the position that vould be occupied by the first
byte of the next name.

If the items are contained in blocked arrays and TYPE=DATA or TYPE=ADDR
is specified, the block number for which data is to be retrieyed must
be specified in the halfvord immediately following the 8-byte name.
Also the BLKNO= parameter should be specified as BLKNO=1, and the incr
must be coded as a value of least 10.

TYPE=
specifies the type of request. DATA specifies that the content of
the ITEM(s) is to be returned. ADDR specifies that the address within
the data base of the item(s) and the length(s) of the item(s) is to
be returned. DATA and ADDR are invalid for direct access resident
arrays. SPEC specifies that the definition specifications associated

APPLICATION SERVICES 2-213

with each item is to be returned. If the ADDRLST parameter is used,
this parameter must be omitted, or DATA must be specified.

ADDRLST=
Is the address of a list of data base item addresses as returned from
a previous execution of this macro with NAME= or NAMELST= specified
and TYPE=ADDR. Incr is the value by which this address is to be
incremented to locate the next item address. If incr is not specified,
a value of 4 is assumed. The end of the list must be indicated by a
4-byte field containing X'FFFFFFFF' in the position that would be
occupied by the next address. If the GETITEM macro with NAMELST option
is used to build this list, it will place the 4 X'FF' at the end of
the list.

DATA=
Is the address into which the first data is to be stored. If TYPE~DATA
was coded, DATA is the data from the first item specified, according
to the length defined for the item in the data base. If TYPE=ADDR
was coded, the length of the ITEM as defined in the data base is moved
into the byte specified, and the address in the data base of the item
is moved into the next three bytes. If TYPE=SPEC is coded, the
specification for each item as defined to the offline utility will be
returned. This will occupy an 8-byte field for each requested item
and will have the following format:

Lin type I disp I aid I rept o --~----~~2----~4~----~6~--~

len

type

disp

aid

rept

The length of the item in bytes

The data type of this item. An EBCDIC character as specified
in the ITEM macro to the offline utility

The displacement into the array (or block) of this item

The 10 of the array in vhich this item resides as assigned by
the offline utility

The number of identical and sequential items defined by this
en try.

Incr is the value by which the data address is to be incremented to
determine the next address to ~ove either the next address or data.
If incr is not coded and TYPE=DATA, the length of the moved item will
be used as the increment. If incr is not coded and TYPE=ADOR or
TYPE=SPEC. a value of 4 is assumed. If incr is coded and TYPE=DATA,
the data will be moved for the defined length of the item, up to the
number of bytes defined by the incr value. If TYPE=ADDR or TYPE=SPEC
is coded, four bytes of data will be moved in any case, and if the
incr value is less than 4. the movement of data may overlay previously
moved data.

When TYPE=ADDR is coded, a terminator flag (X'FFFFFFFF') viII be moved
into the position that would be occupied by the next address after
the last to be resolved.

PROTECT=XES
RISK

If YES is specified, a LOCK will be set to prevent other programs that
also specify PROTECT=YES from accessing the data base via the data
base macros while the GETITEM is in the process of accessing the data
base (a lock is set). When this macro is executed, the other program
viII be delayed until the lock is released. If RISK is specif'ied.

2-214 Description and Operation Manual

the data viII be moved without regard to other programs which may be
storing into the data base.

BLKNO= _lL __
number

If U is specified or if the parameter is omitted, tbe array is assumed
to be unblocked ..

A number is used to specify that the data is to be retrieved from a
blocked array(s). If NAME= vas specified e the number is the block
number from which data is to be retrieved... If NAMELST= is specified,.
any number from 1 to 32765 may be coded to indicate that the block
numbers are coded as part of the NAMELST.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the xeVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When cont~ol is returned register 15 contains one of the folloving
return codes:

Decimal
£od~ __

o

4

8

12

16

Successful execution.

One or more of the item names specified could not be
resolved or data vas requested to be moved for an item
with a defined length of 0 bytes.

Invalid options were passed to the GETITEM routine
(probably the macro expansion had been modified).

A block number vas specified for an unblocked array or
a block number vas specified that is greater than the
highest block number defined for the array.

GETITEM request for an item that is contained in a direct
access array.

APPLICATION SERVICES 2-215

GETLOG

The GETLOG macro retrieves logged arrays by time or by using array
logging header information.

[symbol]

2-216

GETLOG NAME= {name}
(r)

NUMBER= {nUmber}
(r)

,AREA=

[,STEP=

{
address}

(r)

[,PROTECT= {~~~K}]

[

,DCVTR= r

, DCVTLOC=

[,MF=L]

{
address

(r)

[,MF=<E,

Description and operation Manual

The parameters NAAE and NUMBER are mutually exclusive. The macro will
not expand if more than one of these parameters is specified or if both
of these parameters are omitted.

NAME=
Specifies the name or a register (2-12) containing the address of the
name of a Ddmed array for which a logged copy of the array is to be
retr ieved.

NUMBER=
Specifies the number or a register (2-12) containing the number of a
numbered array for which a logged copy of the array is to be retrieved.

AREA=
Specifies an address or a register (2-12) containing the address
a user-allocated storage area where the logged copy of the array
be written upon retrieval from the log data set., This area must
large enough to hold the entire array and logbeader (24 bytes).
is a required parameter~

STEP=

of
will
be
AREA

Is used to deter mine which copy of a logged array, relative to the
TIME or LOGHDR parameters, ttfill be retrieved from the log data set.
The value is a signed number which may be either positive, negative,
or zero. If the STEP parameter is omitted, a value of zero will be
assumed as the defaultv If no sign is specified, the number is assumed
to be positi ve 0

PROTECT=
If YES is specified, a LOCK will be set to prevent other programs that
specify PROTECT=YES froru accessing the data base while this GETLOG is
in the process of accessing the data base.. If RISK is specified, the
data will be moved without regard to other programs which may be
storing into the data base~

(See GETLOG examples on the following pages for use of this parameter
in combination with the TIME and LOGHDR parameters.)

TIME=
Specifies an address or a register (2~12) containing the address of
a 6-byte time and day field beginning on a fullword boundary. The
first four bytes will contain a time in 10 millisecond units. The
last tvo bytes viII contain a binary value from 1 to 366 rep~esenting
the day of the year. This time and day will be used as a comparison
value to establish a relative starting point to determine which copy
of the array will be retrieved fr.om the log data set. The TIME
parameter cannot be specified if the LOGHDR parameter is specified.

LOGHDR=
Specifies an address or a register (2-12) containing the address of
an array logging header. Information in this logging header will
establish a relative starting point to determine which copy of the
array will be retrieved from the log data set. The LdGHDR parameter
cannot be specified if the TIME parameter is specified.

The logging header is a 24-byte control block which precedes the array,
both as the array exists in VS and as it is written to the logging
array_ The logging header which was retrieved as part of a previous
GETLOG macro can be used to retrieve additional data stepping either
forward or backward in time.

DCVTR=
Specifies a register (2-12) which contains the add.ress of the XCVT.

APPLICATION SERVICES 2-217

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a location which contains the
address of the XCVT.

MF=L
Indicates that the list form of the macro is used to create a parameter
list that can be referenced by an execute form of the GETLOG macro
instruction.

MF=(E, address
(r)

Specifies that the execute form of the GETLOG macro instruction and
an existing parameter list are used.

When control is returned, register 15 contains one of the following
return codes:

Decimal
~od~ __ _

o

4

8

16

20

GET LOG Examples

Successful completion.

Requested time is later than most recent logged copy.
The most recently logged copy sill be read into the user
defined area.

Invalid STEP parameter value.

The number of log copies -1 will be substituted for the
STEP parameter and that logged copy will be read into
the user defined area.

The specified array had not been defined. No data is
read into the user defined area.

The specified array is not a loggable array. No data
is read into the user defined area.

These examples will not describe the Assembler Language statement used
to call the GETLOG macro, but will describe the response of the GETLOG
routine to the different combinations of the TIME and L03HDR parameters
with the STEP parameter.

• STEP, TIME, and LOGHDR omitted -- Information will be extracted
from the logging header on the virtual storage resident copy of
the array, and the last logged copy of the array will be retrieved.

• TIME is specified and STEP= 0 or omitted -- An attempt will be made
to retrieve a copy of the array logged at the exact time specified.
If the array was not logged at that exact time, the first copy of
the array logged after that time will be retrieved.

• TIME is specified and STEP=-2 -- The second copy of the array logged
prior to the time specified will be retrieved.

• TIME is specified and STEP=+5 The fifth copy of the array logged
after the time specified will be retrieved.

• LOGHDR is specified and STEP=O or omitted -- Information will be
extracted from the logging header s~cified and the copy represented
by the logging header specified will be retrieved.

2-218 Description and Operation Manual

• LOGHDR is specified and STEP=-3 -- Information will be extracted
from the logging header specified and the third copy prior to the
copy represented by the logging header specified will be retrieved.

• LOGHDR is specified and STEP=+4 -- Information will be ex tracted
from the logging header specified. and the fourth copy after the
copy represented by the logging header specified will be retrieved.

APPLICATION SERVICES 2-219

GETWA

The GETWA macro provides the facility for obtaining. short-term work
areas without adversely increasing paging rates. The work areas can
be freed explicitly with the FREEWA macro or freed automatically at
the end of the current patch queue or at the end of the current task
processing. The address of the work area is returned in register 1.
If the GETiA was unsuccessful, register 1 will contain 32 binary ones.

[symbol] GETWA {~~}]

[

,DCVTR= r

DCVTLOC= { (r) }
, address 1

where 'r' is a general purpose register, 2-12.

I 1

length
Is the length of the requested work area that can be specified in any
RX-type format or in a general purpose register.

TYPE=
Specifies the status of the work area~ If omitted or if TYPE=AP is
specified, the work area will be freed automatically when the
processing of the current PATCH work queue element is completed. If
TYPE=AT is specified, the work area is freed when the current task
terminates. If TYPE=PC is specified and the work ~rea is completely
under program control, a FREEWA must be specified for the work area.
A FREEWA may be specified for any type of GETWA. GETWA TYPE=AT
executing under a QP or GETWA areas passed via PATCH to the AT chain
of a QP will nefer be freed by Special Real Time Operating system (a
QP can never be DPATCHed).

DCVTR=r
Where 'b' is th~ general purpose register (2-12) that contains the
address of XCVT.

DCVTLOC= (r)
Where 'r' is th~ general purpose register (2-12) enclosed in
parentheses, ha'ling the address of a 4-byte location that contains
the address of XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

GETWA RETURN CODES:

Decimal
~od~ __

o

4

12

2-220

Successful cDmpletion.

Invalid size requested.

An attempt vas made to obtain additional GETWA storage.
The attempt was unsuccessful because there vas

Description and Operation ~anual

insufficient CBGET storage to build the GETWA control
blocks.

APPLICATION SERVICES 2-221

LOCK

Every resource that has been prev iously defined by a DEFLOCK macro can
be exclusively reserved by use of a LOCK macro. The address of the
control block (which is returned by the DEFLOCK macro) must be specified
in the LOCK macro. If the resource is unavailable at the time,. the
LOCK macro is issued, and the requesting task is placed in a wait state
until that resource becomes available. Another LOCK macro must be used
to release the resource.

Note: The tOCK macro used to release the resource must be executed
from the same task as the LOCK macro used to reserve the
resource.

If a Special Real Time Operating system task (i.e •• a PATCHed task)
terminates or ABENDs before releasing the resource, the Special Real
Time Operating System exit routine will release the resource for that
task. However, if a non-Special Real Time Operating system task (i.e.,
an ATTACHed task) returns or ABENDs before releasing the resource, the
LOCK will remain set indefinitely.

The following operands are available for the LOCK macro:

[symbol]

(r)
name

LOCK

[

[

{(r) }
name

,CBLOC=
{ (r) }

address

,TYPE= { LOCK
UNLOCK }]

,DCVTR= r

1 DCVTLOC= { (r) }
I address

The positional opE-rand defines the 4-byte resource name. If (r) is
specified. the general purpose register must contain the resource
name.

CBtOC=
The CBtoC= keyword parameter is used to indicate the address of the
control block as defined by the DEFLOCK macro. If (r) is specified,
general purpose register 1 should contain the control block address.
"Address" is the label of a fullword that contains the control block
address.

TYPE=
Is used to indicate that a resource is being reserved (TYPE=LOCK) or
released (TYPE=UNLOCK).

DCVTR=r
Where fr' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in

2-222 Description and Operation Manual

parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When control is ret~rned, register 15 contains one of the following
return codes:

Decimal
Cod~ __

o

8

16

SQccessful completion.

This task has previoQsly reserved and bas cont=ol of
the resource (TYPE=LOCK).

This task has not previously reserved the resource
(TYPE= UN LOCK) •

Invalid resource name and control block address
combination. ResoQrce vill not be reserved.

APPLICATION SERVICES 2-223

MESSAGE

The MESSAGE macro is used by the Special Real Time Operating System
and the programs running under the Special Real Time Operating system
are nsed to cause a predefined message to be printed or displayed. The
message must have been defined th rough the offline utility system using
the DEFMSG macro.

[symbol] MESSAGE 1 (r) I number

[.ACT= { ! }]
[.ROUTE= ({~~)l [, {~~)1···' {~~)}])]
[.VARs ({ (r) J [{ (r) } {(r) }J J addressl ,address2 ... , address]O)

[AREA- radJ~!ss }] [, WAIT= {~~s 1]

[1'D~RS r I]
,DCVTLOC= JadJ~!ssf

symbol
Is any symbol ialid in the assembler language.

number
Is a unique 3-digit number which identifies the requested message.
(r) is the general purpose register (2-12) enclosed in parentheses
which contains the message number.

ACT=
Is the action code to be appended to the message number. I denotes
information. A denotes action is required, and D denotes that a
decision is required. If not coded, the action code specified through
the offline utility will be used.

ROUTE=
Is the code or codes that identify the devices on which this message
is to be displayed or printed. unique routing codes are associated
with de~ices during the Special Real Time Operating system build
procedure. If this parameter is not included, the message vill be
routed to the devices specified through the offline utility procedure
using the DEFKSG macro. The maximum number of routing codes that can
be specified is 8. (r) is the general purpose register (2-12) enclosed
in parentheses which contains the route code.

VAR=
Is variable data to be converted and inserted into the message to be
output. The variables mnst be in the sequence and lengths specified
through the offline definition of/the message~ The maximum number of
variables that can be specified is 10, addr is any address valid in
an Rx-type instruction, and (r) is a general purpose register (2-12)
which contains the address.

WAIT=
Informs the Special Real Time Operating System that performance of
the active task cannot continue until the specified message has been

2-224 Description and Operation Manual

issued. YES specifies that the active task is to go into a wait state;
and NO specifies that the active task is not to wait until the
specified message has been issued.

AREA=
Is the address into which the formatted message is to be returned to
the caller. The term addr is any address valid in an Rx-type
instruction and (r) is any register that was loaded with the address.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCV~LOC=(r)

Where (r) is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte iocation that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

MESSAGE RETURN CODES:

The Message Handler will issue return codes through register 15. If
the return code is 08 or greater, the message is not output.

Decimal
~Qg~---

o

2

4

8

12

16

Normal completion.

specified number of variables less than nu~ber of
variables specified through offline utility procedure.
The remaining variables are padded with hyphens.

Specified number of variables greater than number of
variables specified through offline utility procudure.
The last variables in the list are dropped until number
of specified variables equals number of variables defined
through offline utility procedure.

Invalid message number.

Invalid routing code.

Input/output error.

APPLICATION SERVICES 2-225

MESSAGE MACRO List Form

The list form of the MESSAGE macro is used to construct a problem
program pacameter list. This problem program parameter list can be
referred to in the execute form of a MESSAGE macro instruction.

The description of the standard form of the ~ESSAGE macro instruction
provides the explanation of the function of each operand. The
description of the standard form also indicates which operands are
totally optional and which are required in at least one of the pair of
list and execute forms. The format description below indicates the
optional and required operands in the list form only. The message must
have been defined through the offline utility system using the DBFMSG
mt,cro. The message text will be trunca ted to conform to the length
rt~strictions of the device(s) it will be routed to.

~-------r------~------------------~----------------------------~

.ymbol] MESSAGE number [,ACT= {~n[ROUTE= (Cl, [C2, .•. ,CSl)]

[,VAR= (addrl, [addr2, ••. ,addrlO]]

,MF=L [WAIT= {~~S}]

symbol
Is any symbol valid in the Assembler Language.

addr
Is any address that may be written in an A-type address constant.

ROUTE=
The MESSAGE macro will expand space for eight route codes if none are
specified.

MF=L
Indicates the list form of the MESSAGE macro instructionJ

2-226 Description and Operation Manual

MESSAGE MACRO -- Execute Form

A remote control program parameter list is uS'3!d in, and can be modified
by, the execute form of the MESSAGE macro ins=ruction. The control
program parameter list is generated by the list form of the MESSAGE
macro instruction.

The description of the standard form of the MESSAGE macro instruction
provides the explanation of the function of each operand. The
description of the standard form also indicates which operands are
totally optional and which are required in at least one of the pair of
list and execution forms. The format description below indicates the
optional and ~equired operands in the execute form only. The message
must have been defined through the offline utility system using DEFMSG
macro. The message text will be truncated to conform to the length
restrictions of the device(s) to which it will be routed.

[symbol] MESSAGE

jremote list addressl]
I (r) ~

I
[

, WAIT= {NO }] [j I DCV'rR= r l]
YES l ,DCVTLOC= J (r) } ~

laddress

symbol
Is any symbol valid in the Assembler Language.

addr
Is any address that can be written in an A-type address constant.

MF=(E,remote list address)
Indicates the execite form of the MESSAGE macro instruction using a
remote parameter list. The address of the remote parameter list can
be loaded into register 1, in which case MF=(E,(1» should be coded.

ROUTE=
[f more route codes are expand~d in the remote list than are required
~n the MF=E form, only the number specified on the MF=E form viII be
modified. For example, if the remote list expanded 5 route codes and
the MF=E only 2, only the first 2 in the remote list would be modified
and the message would be routed to all 5 route codes. If this is not
(\esired, the remote list should be zeroed prior to executing the MF=E
form.

APPLICATION SERVICES 2-227

PATCH

The PATCH macro is used to create a Special Real Time Operating System
task and to queue vork to it. If no task name is specified, a dependent
task viII be created. A dependent task can accept only one PATCH and
flags are set which viII cause it to disappear as soon as the vork
represented by the single queue element is completed. If a name is
specified, the PATCH SVC checks to determine if an independent task by
that name already exists, and if not, an independent task is created.
Then the vork is queued to that task. Independent tasks viII be kept
available until they are removed from the system explicitly via the
DPATCH macro; if all queued vork is completed, they viII go into a
dormant state, ready to accept more work with function. the next PATCH.

The PATCH macro has tvo different kinds of operands: task-oriented
and work-oriented.

Task-oriented operands are used only at task creation and, if the task
already exists, they are ignored (priority, queue length, target
parti tion) •

Work-oriented operands are relevant vith every execution of the PATCH
macro (entry point name, queue position, ECB address, FREE request).

The various operands available can be used to control overall system
overhead, core usage, task synchronization, and execution times. Their
use should be considered carefully so that they correspond to the
requirements of the task they aff ect.

Each time a program is called or executed as a result of a PATCH, a
parameter list is passed to the program. These parameters may be used
to identify the PATCHing program, the reason for the PATCH, to pass
data or an address of data arrays, or, in general, to provide the
PATCHed program any information it might need to execute a given This
parameter list is always headed by one word containing the length of
the parameter area and the ID of the PATCH. The remainder of the
list can be any combination of values and/or addresses needed by the
PATCHed program.

When the PATCH SVC returns to the caller, register 15 will contain a
return code. In addition, if the return code is less than or equal to
8 and was for an independent task, register 1 viII contain the address
of the TCB extension (TCBX). If this address is supplied with the next
PATCH to the same task (TCBX=), it will speed up execution of the PATCH
SVC routine.

When the "called" program gains control as the result of a PATCH,
register 1 viII contain the address of a 3-vord bloCK vhich contains
the address of: (a) XCVT, (b) resource table, (c) the parameters
specified in the PATCH macro. The address of XCVT will be used as
input to many Special Real Time Operating System macros as the keyvord
operand DCVTR or DCVTLOC. The resource table is a double word which is
allocated and set to zero vhen the task is created and is maintained
as a task resource as long as the task is in existence. The user may
store data into the resource table and have the data preserved between
independent task (program) executions eventhough the program may be
deleted or a Qifferent program may be executed under the same task.

2-228 Description and Operation Manual

PATCH Input Parameter Format

Rl

~CVT

[symbol]

RESOURCE
TABLE

PARAMETERS

PATCH

Parameters
as specified
inPARAM

[

TASK = name]

TASKLOC = { (r) }
address

(name [,DELETE]) J
= (address[,DELETE})

{n~~er}J

ID }

I [PRTY = (taskname , I v~~;e })]
I PRTYLOC =({ad~~~Ss},valUe)

[, ECB = ({ad~~!Ss} [, REPATCH])]

[,FREE ~1(jFJ Lad~~~SS l) l
[, TCBX { adJ~~ss}]

OWN l] f.1ASTER
SLAVE
FIND

[,SUPL ~ ! (i, 1 ad~~iss pI]
[

ID - { (r) }]
, - value

[

PARAM = (r) [(r), .•• ,(rn)]),]
, PI' P2 ,···,Pn

[,PROBL ~ I (i, 1 ad~~iss » I]
[

\,DCVTR =

-~'DCVTLOC rl adJ~!ss Ii]
Where 'r' is a general purpose register, 2-12.

LENGTH

APPLICATION SERVICES 2-229

TASK=name
specifies a , to 8 character name which is the name of the task or
queue holder being referenced by this PATCH. If the task does not
exist, one by that name will be created.

TASKLOC=address
Specifies the address of a 1 to 8 character task name. The name must
be on a fullword boundary, be left-justified and padded on the right
with blanks, if necessary, to complete eight characters. The address
can be any format valid with an RX-type instruction.

EP=
Specifies a 1 to 8 character valid program name which is the name of
the program to be scheduled under the task being created with the
PATCH. If DELETE is specified and this is the only task using the
program, a DELETE is issued for the EP name after proces~ing for this
PATCH completes. DELETE may be abbreviated as DEL. If EP is not
specified and an ID other than 255 is specified, the PATCH will fail
during an attempt to LOAD a program with a name of blanks.

EPLOC=address
Specifies the address of a 1 to 8 byte program name. The program name
must begin on a fullword boundary, be left-justified and padded on
the right with blanks, if necessary, to complete eight characters.
The address can be in any format valid with an Rx-type instruction.
DELETE has the same meaning as with EP=.

QL=
Specifies the limit number of WQEs that may be queued to ~he
independent task in addition to the one that might be currently
executing. This parameter is meaningful only for new, independent
tasks and is ignored otherwise. Any decimal value from 0 to 255 may
be specified; the default value is 1. If (r) is specified, the value
is assumed to be in the low-order byte of register r.

If .zero is specified as the queue length, the task accepts one PATCH,
works on it and, when completed, waits for the next request. If a
PATCH is issued for that task while the task is busy, it is not
executed.

If the queue length is 1, the task can accept one PATCH even while it
is busy.

When a task completes processing the current regu~st, the top element
on the queue will be e~ecuted next.

QFOS=
S)ecifies where in the task work queue this work request is to go if
tIe task is currently busy. FIRST indicates that it is to be placed
s) as to be processed before those already in the queue. LAST
indicates that those already in the queue should be processed before
this request. If DP ATCH is specified, the processing for this PATCH
WJII not be executed until a DPATCH is issued for this task. Only
01 e PATCH with QPOS=DPATCH is allowed to each task. QPOS=DPATCH is
n<t allowed if TASK= specifies a queue holder.

PR'l ¥=
Srecifies a task name and a value which will determine the priority
of the new task. The value (0-255) will be subtracted from the
dispatching priority of the specified task. If (r) is specified, the
value is assumed to be in the low-order byte of register r. If a
value is omitted, zero is assumed.

2-230 Description and Operation Manual

PRTYLOC=
Has the same function as PRTY except that the task name is an 8-byte
field at the address specified. The name must be left-justified and
padded on the right with blanks. The value is specified exactly as
with the PRTY=operand.

ID=
Specifies a decimal value from 0-254 to be passed as a parameter to
the PATCHed task's program. If (r) is specified r the ID value should
be in the low-order byte of the register. An 10 of 255 is special.
A PATCH request with an 10 of 255 will cause a task to be created and
initialized if it does not already exist and the module to be loaded.
It will work its way to the top of the queue, but the program will
never be entered. This provides a task pre-initialization capability.
If ID is omitted r a default value of 0 is assumed. If the ID is 255
and EP is not specified r the task will be creatEd and no program will
be loaded.

PAR AM=
Specifies one or more parameters which vill be passed to the PATCHed
task's program. The parameters may be any values or addresses
meaningful to the program. If (r) is specified for a parameter, the
value must be contained in the register r; otherwise, the parameter
expands as an A-type address constant. Note that if only one parameter
is specified and it is in a register r two sets of parentheses are
required.

ECB=
specifies the address of an ECB which may be used in a WAIT macro.
~his ECB is posted when processing for this PATCH completes or when
ihe work represented by the PATCH is purged. The REPATCH option causes
ihe ECB to be posted with the address of the REPATCH list (REPL) to
be used in the REPATCH macr:o if this PATCH is not serviced because of
a QPOS=FIRST PATCH with the queue being full. If REPATCH opt~on is
specified and the REPATCH occurs (ECB posted with a completion code
t)f X '44 ') r a REPATCH macro must be issued. See description of the
REPATCH macro. Note that if only ECB address is specified ~nd it is
in a register r two sets of parentheses are required.

FREE=
Specifies that a work space is to be passed to the PATCHed task and
is to be freed after the work queue element built in response to this
PATCH is completed (either GETMAINed area or GETWA area) or after the
PATCHed task has terminated (GETWA storage creas only). The area must
have been obtained via a GETMAIN from subpo01 zero or a GETWA and must
be part of the partition where the work repi esented by this PATCH is
to be executed. If REPATCH option is speci~ ied and the ECB is posted,
the area will not be freed immediately. Houever, the area will be
freed as a result of the mandatory REPATCH macro. It is invalid to
code this operand if the PATCH goes to the other partition and thE'
REPATCH option is specified.

A work area originally obtained via a GET~AIN macro call may be freed
by specifying either the length and address of the work area or FREE=P.
If FFEE=P is specified, the problem program parameters (ID and PARMi
or PROBL=) are FREEMAINed. A GET~AINed ar2a will be FREEMAINed after
the execution of the work represented by this PATCH.

A work area originally obtained via a GETWA macro call may b~ freed
by specifying either AP or AT and the address of the work area. An
AP request will cause the storage to be FREEWAed after the execution
of the work represented by this PATCH. An AT request will cause the
storage to be freed whenever the PATCHed task is terminated.

APPLICATION SERVICES 2-231

Any storage area associa t~d work que ue built in response to a
successful PATCH (return Gode less than eight) and later removed from
the PATCHed tasks' work queue chain before it can be executed, will
be freed when the work queue is purged.

Any format valid for an Rx-type instruction can be specified for the
length or address.

TCBX=
Specifies the address of the TCB Extension Control Block (TCBX) for
an existing independent task. If TCBX is specified as a register,
TCBX=(r), that register is assumed to contain the actual TCBX address.
If TCBX is specified as a relocatable expression, TXCB=addr, the TCBX
address will be loaded from the specified address. The TCBX address
is returned in register 1 after each successful PATCH to an independent
task. Use of this operand with all PATCHes to the same task after
the initial PATCH will reduce system processing time. Note that other
parameters must still be speciffed for verification or in the event
the task has been DPATCHed.

PTN=
In two-partition operation, this operand defines the target partition
for the PATCH. OWN means that the target partition is the partition
that executes the PATCH; MASTER defines the MASTER defines the master
partition as the target partition. SLAVE defines the slave partition
as the target partition; if SLAVE is coded and two-partition operation
is not initializ~d (no MASTER/SLAVE control cards in the SYSINIT input
stream), the PAT:H will be rejected, and a return code is passed back
in register 15. FIND causes the SVC to search fcr the specified task
in the patchor's own partition; if it is found, it is used and the
search exits. If it is not found, a switch is made to the other
partition which is searched also. If a task by the specified name is
not found in eit~er partition, the SVC routine switches back to the
patchcc's own pCictition and behaves as if OWN was coded.

If the PTN operand is not coded, it defaults to OWN.

If t wo- posit ion oper at ion is not speci fied at th e Specia 1 Rea 1 Time
Operating' System SYSGEN. this parameter is ignored.

SOPL=
Specifies a list or execute form of the PATCH supervisor operands.
If the list form, SUPL=L is specified, no executable code is generated;
therefore, all register notations are ignored as well as TASKLOC,
EPLOC and PRTYLOC. with the execute form, SUPL= (E,addr), the address
specifies a SUPL=L form para:neter list, and any additional operands
specified cause executable code to be generated which modifies the
remote parameter list before the SVC instruction is generated. The
address can be in any format valid with an RX-type instruction. SUPL=L
and PROBL=L cannot both be specified.

PROBL=
Specifies a list or ex ecute form of the problern para mete r operands,
ID and PARAM. PROBL=L generates a parameter list, and PROBL=(E,address)
specifies the address of such a list in an execute form of the PATCH
macro. Both PROBL=L and SUPL=L cannot be specified. Note: If the
length of the Note: If the length of th PROBL parameter is equal to
or less than eight bytes, the entire parameter is moved into a
supervisor area. This will allow the use of a single PROBL list even
though the ID might vary with each individual PATCH execution.

DCVTR=r
Where 'r· is the general purpose register (2-12) that contains the
address of the XCVT.

~-232 Description and Operation Manual

DCVTLOC= (r)
Where Ir' is the general purpose register (2-12) enclosed in
parentheses having the address of a 4-byte location that contains
the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When control is returned, register 15 contains one of the following
ret urn codes:

Decimal
Cod~ __ _

2

4

6

8

10

12

14

16

18

20

22

28

30

32

PATCH
~~!:!ied

YES

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

TCBX=Address specifies the address of a TCBX
which does not \ave the same name as specified
in the SUPL. The proper TCBX is found or a ne~

task is created ..

QPOS=FIRST caused loss of previous WQ.

Specified task is in the no-PATCH state.

Queue full.

PRTY task name does not exist.

In valid PROBL parm list or address.

In valid SUPL parm list or address ..

DPATCH queue overflow.

Invalid PR EE=operand.

DPATCH in prog ress for this task ..

PTN=SLAVE requested but not initia lized,.

No CBGET storage for 'fCBX, WQE or LCB.

Task name sp~cified is a queue processor.

Task. name specified is a queue processor and
QPOS=DPATCH.

ECB COMPLETION CODES:

High-Order
Byt~_£Qg~_

X'40'

X'42'

X'44'

X'4S'

Low-Order
l=1Ute_Cod~

Same as register successful completion.
contents from program

Zero

Address of block
or zero

Zero

DPATCH occurred before work could
be exe.euted ..

REPATCH A PATCH with QPOS=FIRST
forced this PATCH out of queue.

BLOL failed (member not found or
I/Oerror) •

APPLICATION SERVICES 2-233

xt4Ft

2-234

ABEND code

Same as
register 15

Task abnormally terminated while
processing this request.

The PATCH Farameters vere specified
as part of a PTIME macro. The PTIKE
specification has been deleted r and
no more PATCHes will be executed.

Description and Operation Manual

Relationship of Patch Operands to type of Task

Operands
or

Suboperand

TASK/
TASKLOC

EPI
EPLOC

DELETP

PRTY/
PR-IYLOC

QL

QP()S

DPATCH*

Eell

RfI'ATCH*

F'RFE

P'

T(,[IX

Il)

P·\RAM

R = Required
0= Optional
N = Ignored
I = Invalid

I

I

Create Queue Dependent Independent Independent Task Task Task

R R I

R R R

0 0

0 N 0

0 N N

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0

*Subopcrand of Pn::ccding Operand

Figure 2- 34.

Program
Input

Parameters

i

I
0

0

APPLICATION SERVICES 2-235

PTIME

The PTIME macro provides Special Real Time Operating System time
management services to the user. The macro causes a task to be PATCHed
at a specified or relative time. Optionally, this PATCH can be repeated
at a specified cycle interval continuously or for a certain number of
PATCHes. The PTIME macro also allows previous PTIME calls to be
modified or deleted. An additional function of the PTIME macro allows
access to the correct Special Real Time Operating System time and date.

The following operands are available for the PTIME macro.

2-236

[symbol]

wlere 'r'

PTIME

!
ADD j MOD
DEL
RET

[,START= (m~ l I' A=address
, (r)
I nH ,nM ,n .n S J)]

[

,STOP=

"COUNT= {

(~:~ f}ormat as START)]

number

,INTRVAL= (1 ::a~~~:: . n S I)]
[,PURGE= ! r i]

,MF= (E () [! L lJ I I add~ess I .

[)

,DCVTR= r l]
,DCVTLOC= la~~~essl \
[PATCH operands (See PATCH Macro)]

is a general purpose register 2-12.
~ ________ L-____ ~I ________________________ . ______________ ~

Description and Operation Manual

All tiae values are specified, in the salle for.at. The time is specified
explicitly by hours, ainutes. seconds, or any coabination of the three
as long as one is specified. The tiae value must not exceed 24 hours.

Exaaples are as follows:

3 hours: 3H or 180~ or 10800S
1 hour, 3 ainutes, 1-1/2 seconds: 1B, 3ft, 1.5S or 3181.5S.

If (r) is specified, the tiae in hundredths of seconds is in register
r. The A= suboperand allows the tille value to be specified in a
fullvord at the address specified. The time value in the word must be
specified in hundredth of seconds. The address may be any RX-type
address.

ADD
!!OD
DEL
Specifies the type of PrI!!! service requested. If omitted or if ADD
is specified, a PTIftE queue element (PTQE) is activated which controls
the. PATCHes issued according to the PTI"E request.. since the PTQE
exists independently of the creating task and lIay be modified or
deleted, the PTQE is referred to by the task nalle. entry point name,
and IO value of the paraaeters referred to by the operands TASK=,
TASKLOC=, EP=, EPLOC=, and ID= as defined in the PATCH macro. Either
task name or entrf point nalle must be specified with a 80dif, (!tOO)
or delete (DEL), but the reaaining tva are optional. Hovever, if only
a task nalle or entry point name is specified, all PTQEs with that nalle
are deleted or lIodified regardless of entry point nalles or IO-values.

RET
Causes the system to return the current ti.e in 10 .illisecond units
in register 0 and the address of the Special Real Tiae Operating System
time array in register 1. This tille is a Special Real rille Operating
System time which can be synchronized vith an external tille soarce.
The ti.e and date are aaintained in several foraats and are updated
periodically. Thus one PTI~E RET call gives a roatine the current
time as long as the address of the array is retained. See the TIftED
DSECT for a description of time formats. All other operands are
ignored with RET.

START=
Specifies the time of the first PATCH to be executed. The first
suboperand determines the meaning of the time yalue specified in the
remainder of the operand. If REL is specified, or if the operand is
omitted, the time of the first PATCH equals the current Special Real
Time operating System tise plus the time value in,the remainder of
the operand. If· TOD is specified, the first PATCH occurs when the
Special Real Time Operating System time equals the time of day
specified by the remainder of the operand. If this time is less than
the current Special Real Tille Operating Syste. time, the first PATCH
does not ace ur until the next da y. If ADJ is specified, the'time of
the first PATCH is calculated by assuming the time value in the operand
to be a TOD value, except that the time value in the INTERVAL= operand
is repeatedly added to the assumed TOD or lDJ is specified and the
calculated STOPTI~E is less than the calculated START time until that
value is greater than current special Real rime Operating system time.
This pre/~.ents the possibility of unintenti.anally specifying a TOO less
than the current Special Real Ti.e Opetating System time and the fi~st
PATCH not occurring for almost 24 hours. 11so this allows distribution
of toe time management processing by offsetting ADJ time relatiye to
a standard t ille.

APPLICATION SERVICES 2-237

STOP=
Specifies the Special Real Time Operating System system time after
vhich no more PATCHes are issued. If RlL is specified, or if the
operand is omitted, the stop time is equal to the current Special Real
Time Operating System ti~e plus thti tiae value in the remainder of
the operand. If TOOois specified, the stop time is equal to the time
value in the remainder of the operand. If lDJ is specified, the stop
time is calculated by assuming the time value in the operand to be a
TOO value except that the interval time is repeatedly addad to the
assumed TOD time until that valu~ is greater than the current Special
Real Ti.e operating System time. When either REL. TOD, or ADJ is
specified and the stop time is less than the calculated start time,
a 24-hour value is added to the stop tiae until the STOP time equals
or exceeds the START tiae.

COUNT=
Is equal to the number of PATCHes that are issued before the PTI~E
control block is deleted. This operand is an alternative to STOP=.
The count value can be specified in a register, but aust not exceed
a halfvord value.

Bote: If both STOP= and COOWT= operands are specified, the COUNT field
viII be igDored. If neither operand is specified, the PTI~E is
assumed to be infinite, and PATCHes viII be issued until a PTI~E
DRL or ROD is issued for that task and/or entry point name.

IRTRVAL=
Is the interval between successi.e PATCHes. If this operand is oaitted
or less than the SYSGEled tiae interwal, the SYSGEJed tiae interval
viII be substituted. The tiae mar be specified vith the 1= suboperand
as described above.

PORGE=
Provides a method of deleting the task associated with a PTI"E. This
operand can be specified when the PTQ! is created (i.e •• vith ADD or
"00) or wben th~ PTQ! is deleted (DEL). If PURGl~ (O,c,or W) is
specified, f.r. DP1TCH is issued vb en the PTQE is deleted. The operand
U, C, or i, specifies the type of DPATCH to be issued (see OPATCH
description). If the task is to be deleted when the PTQE is deleted
autoaatically via the STOP or COUNT operand, the PURGE operand .ust
be specified in an ADD or "00 PTIftE for the PTQ!. Specification of
the PURGE operand vith a DEL type overrides the operand specified when
the PTQ! vas created.

PTIOz
Is a four byte value llsed to uniquely identify aPTQ!. If this operand
is oaitted on a PTIftE ADD request, the Special Real Tiae Operating
syste. vill assign a PTID. The PTID is returned to the user in
Register 1 on PTlft! ADD or ROD requests. PTID of a fullvord of zeros
or blanks vill be ignored. If register notation is used, the specified
register must contain the 10 to be used.

ftF=
Are the list and execute foras 0 f PTlft E Which are genera ted by
specifying ftF=L and lIP: (E,address), respecti vely. The list and execute
for.s are Dot valid with the RET option since this form has no
parameter list. Also, the PATCH operands cannot be specified vith
8F=L.

OCVTR-r
Where r is the general purpose regis~r (2-12) that contains the
addre£s of the leVT.

OCVTLOC= (r)

2-238 Description and Operation ftanual

Where r is the general purpose register (2-12) enclosed in parentheses
having the address of a 4-byte memory location that contains the
address of the XCVT.

DCVTLOC=address
Where address is the label of a 4-byte memory location that contains
the address of the XCVT.

PATCH Operands
Specifies the PATCH to be issued. Any valid combination of PATCH
operands can be specified. Note that the PATCH supervisor and/or
program parameter list can be expended with the list form of PATCH
and then specified in execute form, i.e., SUPL= (E,addr),
PROBL=(E,addr).

Note that there are some restrictions to the use of PATCH parameters
with PTII1E:

QPOS=
DPATCH cannot be specified. LAST will be substituted.

FRFE=
Can be specified, but the FREEI1AIN will not be executed until the
PTIME queue element (PTQ~ generated by this PTIME is deleted. If
the PTQE is not repeating, this will be like a normal PATCH.

When control is returned, register 15 contains one of the following
retu::n codes:

~
Ption

Return
Code

o
4

8
12

16

20

24

RET

Successful
NA

NA
NA

NA

NA

NA

ADD

Successful
Interval time less
than SYSGEN time
interval--SYSGEN
time interval
SUbstituted
NA
NA

No CBGET area

Duplicate PTQE
(i. e ., a PTQE
already exists
with the same
PATCI! Parameter
and PTID value.)

Invalid PATCH
p:nameters
(e.g., invalid
ECB address)

MOD

Successful
Interval time less
than SYSGEN time
interval~-SYSGEN

time interval
SUbstituted
PTQE not found
TASK or EP name
not specified
NA

NA

Invalid PATCH
parameters
(e.g., invalid
ECB address)

DEL

Successful
NA

PTQE not found
TASK or EP name
not specified
NA

NA

Invalid PATCI!
parameters
(e.g., invalid
ECB address)

When the return code is 8 or greater, the PTIME was not successful,
and the existing PTIME specification will not be changed.

APPLICATION ,SERVICES 2-239

TIME ARRAY (DPPCTIMA) :

+TIMED DSECT
+***
+* TIME ARRAY DSECT
+***
+TIMEHS DC F' 0' TaD IN 10 MIL UNITS
+TIMETOD DC F' 0' TOD IN 10 KIL UNITS-HHMMSSTH
+TIMEJDAY DC 'P' O' JULIAN DATE-OOYYDDDC
+TIKEMDAY DC F'O' DAY OF MONTH DATE-OMMDDYYC
+TIMEEBC DC Cl10' , EBCDIC DATE-DD/MMM/YY

PTIME INPUT PARAMETERS:

+PTIMEL DSECT
+***
+*
+*
+*
+*
+*
+*
+*
+***
+PTIMSFLG
+PTIMSTRT
+PTIMIFlG
+PTHIINT:'
+PTIMEFLG
+PTIMSTOP
+
+PTIMCNT
+ PTHiPTCH
+PTIMPARM
+ PTIMPTQE
+PTIMLNGH
+*
+PTIMFPRG
+PTIMFJPC
+ PTIMFDPW
+*
+PTIMCFG
+PTIKREL
+PTIMTOD
+PTIMA)J
+PTIM A)DR
+PTIMLN

2-240

PTIME INPUT PARAMETERS

DC
DC
DC
DC
DC
DC
ORG
DC
DC
DC
DC
EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

REG1=ADDR OF SUPERVISOR LIST (IF REG 0 ZERO)
REGO=O RET OPTION

=4 = A DD OPTION
=8 = MOD OPTION
=12= DEL OPTION

XL l' 0 I TIME OPTION FLAG
AL3 (0) S TAR T TI MEV A L HE (OR ADDRESS)
XL l' 0 I PURGE OPTION FLAG
AL3(0) INTERVAL TIME VALUE (OR ADDRESS)
XL l' 0' TIME OPTION FLAG
AL3(O) STOP TIME VALUE (OR AD ORES S)
PTIMSTOP
AL 3 (0) COUNT VALUE
A (0) PATCH SUPERVISOR LIST
A (0) PATCH PROBLEM LIST
A (0) PTQE ADDRESS
*-PTIMEL
PURGE OPTION FLAGS
XI 01' PU RG E DP ATCH=U
X'02' PU RG E DP ATCH=C
X'04' PURGE DPATCH=W
'1'1 ME OPTIO N FLAGS
X'08' THIS FIELD CONTAINS COUNT VALUE
X'01' RELATIVE TIME
X' 02' TaD TIME
X'04' ADJUSTED TIME
X'SO' THIS FIELD CONTAINS TI ME A DDRE SS
*-PTIMEL

Descri ption and Operation Manual

VALID PTIME OPERAND CO~BINATIONS:

Operand

START
STOP
COUNT
INTRVAL
PURGE
MF
DCVTR
DCVTLOC
PATCH operands

R = Required
0= Optional

Option

ADD MOD

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
R R

DEL RET

0 0
0 0
R

010372

APPLICATION SERVICES 2-241

PURGEWQ

Thcl PURGEWQ macro is used to selectively purge work requests to a
sp(!cified independent Special Real Time Operating System task or queue
ho::;'der. The selected work req,lests will be removed from the active
work queue (i.e., a chain of wt)rk requests that have been generated in
response to PATCH macro calls but have not been executed yet) or from
the DPATCH work queue (i.e., a work request generated in response to
a PATCH OPOS=DPATCH ••• macro call). other work requests for that task
will not be purged and will be allowe~ to execute normally.

!

ruPL ~ I !~~r 1 symbol
I

PURGEWQ

I

EP ~ I (r) I [TASK~I (r) lJ [PTN~! ~~D I]
I addr' name' MASTER

SLAVE

IO = { (r) }
value

[FREE ~ C (r) II (r) j)J
' - (length , address

,OPT = WAIT (r) [rOPOST IJ
(POST, {ECB addrl)

,-
1!~1rl] lDCVTLOC ~

,OCVTR = (r)

EMF ~ I (E ~ 1!~1rj)1 J
where ' r' is a gener.,l purpose register (2-12)

I

SUPL=
Specifies a list form of the PATCH supervisor operands. PURGEWQ uses
this list to obtain the entry point name, task name, and partition
reference. The SUPL= option allows the user to use the same SGPL tor
PATCH macro calls and the PURGEWQ macro call. If register form is
specified, the register contains the address of the SUPL.

EP=
Specifies a 1 to 8 character valid program name which is the name of
the program that is scheduled to be executed in response to a previous
PATCH macro call. Th<~ entry point name is used in conjunction with
the ID value to identLfy the work requests to be purged. If register
form is specified, th.~ register contains the address of an 8-character
field which contains ':~he program name. The name must be on a fullworCi.
boundary, be left-jus~ified and padded on the right, if necessary, to
complete eight characters.

TASK=
Specifies a 1 to 8 ch,Tacter name which is the name of a previously
created independent t~sk being referenced by this PURGEWQ. The task
name identities the task for ·which work requests are to be purged.
If omitted, the current task is assumed to be the one for which work
requests are to be purged. If register form is specified, the register

2-242 Description and Operation Manual

contains the address of an 8-character field which contains the task
name. The name must be on a fullword boundary, be left-justified and
padded on the right with blanks, if necessary, to complete eight
chiiracters.

?TN=
In two-partition operation, this operand specifies the target partition
for this PURGEWQ. OWN means that the target partition is the partition
that executes the PURGEWQ; MASTER defines the master partition as the
target partition; SLAVE defines the slave partition as the target
partition; FIND causes the PURGE WQ subroutine to search for the
specified task in the partition that executes the PURGEWQ; if it is
not found, the other partition is searched. OWN is the default option.

ID=
Sp~cifies a decimal value from 0 to 254 to be used in conjunction with
th,~ entry point name to identify the work requests to be purged. This
i~-, the 10 that was passed as a parameter on a previous PATCH macro
cz 11. A PURGEWQ request with an 10 of 255 will cause all work requests
t, the specified task with the specified entry point name to be purged
r' gardless of the 10 value specified on the originating PATCH macro.
I 10 is omitted, a default value of 0 is assumed. If register form
i: specified, the register must contain the ID value in the low-order
b' te.

FR}:E=
Specifies the length and address of a GETMAINed area t}~t is to be
FREEMAINed when the last specified work queue has been purged. Both
the length and address are required and identify the area of storage
to be freed. Either the length or address or both may be in registers.

OPT=
Specifies the PURGEWQ option used to determine if the L,er is to be
notified when all specified work requests have been pur red or, in the
case when a work request to be purged is currently acti"e, ha\e been
completed. NOPOST indicates that the specified work re 'uests are to
be scheduled for purging but control is to be returned a the user
and no indication will be made when the work requests h. ve actually
been purged. WAIT indicates that the user is to be pIa, ed in a wait
-state until all specified work requests have been purgec or, if a work
request to be purged is currently active, until that work request has
completed normal processing. POST indicates tilat the specified work
requests are to be scheduled for purging but control is to be returned
to the user. The user will be notified via a POST to the specified
EeE whenever all specified work requests have been purged or, if a
work request to be purged is currently active, when that work request
has completed normal processing. If register form is specified on
the OPT = POST parameter, the register contains the address of the
FCB to be posted.

OCVTLOC=
Specifies the address of a 4-byte memory locatlon that contains the
address of the XCVT. If register form is specified r the register must
contain the address of the location that contains the address of the
XC1T.

DCV'l'R=
The register s~ecified contains the address of the XCVT.

MF=
Specifies the list to execute form of the PURGEWQ which are generated
by specifying MF=Land MF=(E r address) respectively. The list form is
not valid with the SUPt parameter.

APPLICATION SERVICES 2-2ij3

Note: The EP, TASK, and/or PTN l arame1.erscannot be used with the SUPL
parameter. Either the SUfL or the EP parameter must be
.3pecified.

After completion of a PURGEWQ macro call Register 15 will contain a
~eturn code and register 1 will contain a count of the number of work
requests purged or zero (oependii g on the return code). This count of
work requests purged does not include the current. work request, if
applicable, since it was Lot actually purged.

o

4

8

12

16

20

24

28

32

2-244

No. of work
requests purged

o

NO. of war /(
reques ts purged

o

No. of wor
requests s· heduled
to be purg~d

o

o

o

No. of work
reques ts purged

Successful completion

Task was dormant (no active work
requests

One of the work requests is the
currently active work request

No work reques ts found to be purged

OPT= (POST, ECB addr) specified but
due to PATCH return code, we are
unable to WAIT until all work
requests have been purged before
posting the user ECE

DPATCH in progress for this task

In valid PT N= s peci fied

Invalid input address or unable to
locate specified task.

Task was for the current task and
OPT=WAIT was specified. This may
cause an interlock situation.
Therefore the WAIT request is
ignored.

Description and Operation Manual

PUTARRAY

The PUTARRAY macro is used to move data into one or more VS resident
arrays of the data base. The data in the entire array based on the
length defined through the offline utility will be replaced. This
macro is not valid for use with b locked arrays.. Where incr is
specified, it may be any value from 1 to 255.

I
{ (r) } [symbol] PUTARRAY NUMBER=number,DATA= address

NAME=name,DATA= {(r) }
} address (

!
NAMELST= \ I aA~~e S8 I [, iner]) I I

J I
ADDRLST= ({ (r) } [incr])

address '

NUMBLST= ({ (r) } [,iner]) I address ,

I DATALST=(! (r) I ' address [,incr]) 1

[I' DCVTR= r l J
,DCVTLOC= {ad~~ess} i

The parameters NUMBER=, NAME=, NAMELST=, ADDRLST=, and NUMBLST are
mutually exclusive; only one may be specified.

NAME=
Is an 8-character name of a single array into which data is to be
moved.

NUMBER=
Is an array number of a single array into Which data is to be moved.

DATA=
Is used with NAME= or NUMBER= operand.. "he address from which data
is to be moved into the specified array.

N AI1EL ST=
Is the address of a list of 8-character array names for which data is
to be moved. Incr is the value by which this address is to be
incremented to locate the next name. If not specified, a value of 8
is assumed. The list must be terminated by a byte containing X'PF'
in the position that would be occupied by the first byte of the next
name.

ADDRLST=
Is the address of a list of data base array addresses as returned from
a previous execution of the GETARRAY macro with NAME, NAMELST NUMBER,
or NUKBLST specified and TYPE=ADDR. Incr is the value by which this
address is to be incremented to locate the next array address. If
iocr is not specified, a value of 8 is assumed. If specified, must

APPLICATION SERVICES 2-245

be (l0 less than 8. The list mu~:;t be terminated by four bytes
co caining X'FFFFFFFP' in the position that would be occupied by the
adt ress of the next array. If the GETARRAY macro, TYPE=ADDR, and
NA: ELST or NUMBLST is used to build the list, it will place this flag
at the end of the list.

NUM,LST=
Is the NUMBLST parameter that specifies the address of a list of 2-byte
fi01ds containing array numbers for which data is to be written. Incr
is the value by which this address is to be incremented to locate the
next number. If incr is omitted, a value of 2 is assumed. A value
less than 2 must not be specified for iner. The list must b€
terminated by a byte containing X'FF' in the first byte of tbe 2-byte
field which would be occupied by the next array number.

EXAMPLE: Num ber List

o
~--

II' i'
2f------1

H'2:-S'
-+ I

I-flW 1
6 i

X'FF I

DATALST=
Is the address o~ a list of addresses into which the data from the
specified array(s) is to be moved. The list must contain an entry
for each a':'Tay for which data is to beloved. This entry .ill contain
a full word address which identifies the memory address from which the
first byte of the array data is to be mGved. Incr is the value by
whicn the ~ddress of the list is to be incremented to pick up the
memory address to which the next array is to be moved. If incr is
not coded, a value of 4 is assumed. If specified, must not be less
than 4.

DCVTR=r
Where Ir' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where Ir' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

After execution of tke PUTARRAY request, the return code in register
15 is set to zero to indicate successful completion or to fou~ to
indicate that the req~est could not be satisfied. This may be because
of one or more of the following reasons:

• One or more of the named arrays is not defined to the system.

• A numbered array was requested which is higher than the highest
numbered array defined to th.e system,

• A TYPE=DATA request vas made for a direct access resident array.

?-246 Description and Operation Manual

PUTBLOCK

The PUTELOCK macro will retrieve the data from user-allocated storage
and place that data into blocked arrays. The macro may be used to
write one or more blocks of data into one or more arrays. The arrays
may be either virtual storage or direct access resident.

[symbol] PUT BLOCK NAME = { name}
(r) I

1 NUMBER= {number}
(r) I

J NAMELST= { addres 3 } I
(r)

I NUMBLST= { addres3
(r) }

,DATALST= { addre~ s
(r) }

[,DCVTR= r

1 ,DCVTLOC= { address}
(r)

The parameters NAMEw NUMBER, NAMELST and NUMBL.~T are mutually exclusive.
The macro will not expand if more than one of hese parameters is
specified or if all of these parameters are om tted.

D(,VTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a location which contains the
address of the XCVT.

NAME=
Specifies the name or a register containing the address of the name
of a named array into which data is to be written.

NUM9ER=
Specifies the number or a register containing the n~mber assigned to
a numbered array into which data is to be written.

NAMELST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array names into which data blocks are
to be written. The name list will be a table of 8-byte entries with
one valid array name in each entry. The first byte past the last
va lid entry will be set to X' Fpt to in dica te the end of the name list.

APPLICATION SERVICES 2-241

EXAMPLE: Name List

0

ARRAYNAM
8

HOUSTONb
16

TEXASbbb
24

X'FF I

NUT1BLST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array numbers into which data blocks
are to be written. The number list will be a table of halfword entries
with one valid array number in each entry. The first byte past the
last valid entry will be set to X'PP' to indicate the end of the number
list.

0

1

I H'I' .

DATALST=
Specifies the ~ddress or a register (not register 1) which contains
the address of a user-constructed list of block numbers and of
address from which the data blocks are to be moved. The data list
will be a table of 6-byte entries. Each entry will contain a 1-byte
flag field, a 3-byte area address and a 2-byte block number.

DATA LIST ENTRY DESCRIPTION:

o

FLAG
BYTE

FLAG BYTE

2

AREA ADDRESS

4

BLOCK
NUMBER

X'40' Indicates the last entry to be processed for a
particular entry in the name list or number list.

X'80' Indicates the last entry in the data list.

AREA ADDRESS The address of a user-allocate area of storage from
which the data block is to be oved. The area must
contain the entry data block tl be placed in the
block.

2-248 Description and Operation Manual

BLOCK NUl1BER The number assigned to the data block to be retrieved
and placed in the array described in the Name List
or Number List ..

EXAMPLE: Data List and Name List

Name List Data Lis'
FIRSTbbb A(Area} H'i'

I
SECONDbb A(Area} H'S' Blocks in first

array
THIRDbbb X'40' A(An:a) H'IO'

X'FF' I

Note:

X'40' A(Ar~a) H')' r-- Blocks in second array

A(Area) H'255'

A(Area) H'I'

A(Area) H'2'

AIArea) H'37'
Blocks in third array

A(Area) H'I86'

X'SO' A(Area) H'249'

A zero returned in register 15 indicates successful completion.
A non-zero returned in register 15 indicates that one or more
errors were encountered during processing of this PUTBLOCK
request. The high-order byte in register 15 contains a count
of the number of errors encountered and the low-order three
byses contain the address of the first invalid array name or
nU:lber.

APPLICATION SERVICES 2-249

PUTITEM

The PUTITEM macro is used to store data into one or more items of the
data base. If another user of the data base is executing a data base
access macro with PROTECT=YES, the operation of the PUTITEH macro viII
be delayed until all other users of the data base which have specified
PROTECT=YES complete. This macro is not valid for use with direct
access resident arrays. Where incr is specified, it may be any value
from 1 to 255.

[symbol] PUTITEM NAME= name)
(I NAMELST= ({a~~~ess} [, incr]) !

}

I (

ADDRLST= ({a~~~ess} [, incr]))

[I DCVTR~ r
:DCVTLOC~ t~~~ess} 1]

[,BLKNO~ {nuler}]
,DA'rA= ({a~~~ess} [, incr])

The parameters NAME=, NAMELST=, and ADDRLST are mctually exclusiYe;
only one may be specified.

N Ai1E=
Is an 8-character name of a single item for which data is to be st0~2~.

NA:!ELST=
I::; the address of a list of 8-character ITEM names for which data is
to be moved. Incr is the value by which this address is to be
illcremen ted to locate the next name. If not specified, a va lue of 8
is assumed. If specified, the value must not be less than 8. The
end of the list must be indicated by a byte containing X'FF' in the
position that would be occupied by the first byte of the next name.

If the items are contained in blocked arrays, the blOCK number for
which data is to be retrieved must be specified in the halfvord
immediately following the 8-byte name. Also, the BLKNO=parameter
should be specified and the incr must be coded as at least 10.

ADDRLST=
Is the address of a list of data base item addresses as returned from
a previous execution of the GETITEH macro with NAME= qr NAMELIST=
specified and TYPE=ADDR. Incr is the value by which this address is
to be incremented to locate the next item addr.ess.. If incr is not
specified, a value of 4 is assumed. The end of the list must be
indicated by a 4-byte field containing X'FFFFFFFF' in the position
that would be occupied by the next address. If the GETITEM macro with
NAMELST option is used to build thi5 list, it wilL place that value
at the end of the list.

2-250 Description and Operation Manual

DATA=
Is the address from which the first data is to be moved. Data ~ill
be moved to the first ITEM specified, according to the length d~fined
for that ITEM in the data base. Incr is the value by which the data
address is to be incremented to determine the address to pick up the
next data. If incr is not coded, the length of the ite~s .is used.

BLKNO= __ .!L __
number

If U is specified or if the parameter is omitted, the array is
unblocked. A number is used to specify that the data is to be
retrieved from a blocked array(s). If NAME= was specified, number is
the block number from which data is to be retrieved. If NAMELST= is
specified, any number from 1 to 32767 may be coded to indicate that
the alock numbers are coded as part of the NAMELIST=.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC=r
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

When control is returned, register 15 contains one of the following
return codes:

Decimal
£odg __ _

o

4

8

12

16

Successful execution.

One or more of the item names specified could not be
resolved or data was requested to be moved for the item
with defined length of 0 bytes.

Invalid options were passed to the PUTITEM routine
(probably the .acro expansion had been modified).

A block number was specified for an unblocked array or
a block number was specified that is greater than the
highest block number defined for the array.

PUTITEM request for an item that is contained in a direct
access array.

APPLICATION SERVICES 2-251

PUTLOG

The PUTLOG macro logs data base arrays on demand.

[symbol] PUT LOG NAME= 1 name!
(r)

I NUMBER= In(~er! I
I NAMELST= 1 a~~~ess ! I
I NUMBLST= 1 a~~~ess !

I

[

,LOGHDR= 1 a~~~ess ! 1
'BLKLIST=~ a~~~ess[,incrl I)

[,PROTECT= I ~~~K \]

The parameters NAME, NUMBER, NAMELST, AND NUMBLST are mutually
exclusive. The macro will not expand if more than one of these
parameters is specified or if all of these parameters are omitted.

DCVTR=
Specifies a register (2-12) which contains the address of the XCVT.

DCVTLOC=
Specifies the address or a register (2-12) enclosed in parentheses
which contains the address of a memory core location which contains
the address of the XCVT.

NAME=
Specifies the name or a register (2-12) which contains the address of
a name of a named array from which data is tc be logged.

NUMBER=
Specifies the number or a register (2-12) containing the number
assigned to a numbered array from which data is to be logged.

NAMELST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of array nawes froll which data is to be
logged. The name list will be a table of 8-byte entries with one
valid array name in each entry. The first byte past the last valid
entry will be set to X'FF' to indicate the end of the name list.

2-252 Description and Operation Manual

EXAMPLE: Name List

0

ARRAYNAM
8

HOUSTONb
16

TEXASbbb
24

X'FF' I

NUMBLST=
Specifies the address or a register (2-12) which con':ains the address
of a user-constructed list of array numbers from which data is to be
logged. The number list viII be a table of halfvord entries with one
valid array number in each entry. The first byte past the last valid
entry will be set to X'FF' to indicate the end of the number list.

EXA~PLE: Num ber List

o
H'I'

2

H'255'
4

H'139'
6

X'FF' l

LOG!1DR=
Specifies an address or a register conta: ning the address of any array
logging header. Information in this log[ing header viII identify the
copy of the array which is to be replaced in the log data set. The
LOGHDR parameter cannot be speci fied if the BLKLIST parameter is
specified.

The logging header is a 24-byte control block vhich precedes the array,
both as the array exists in virtual storage and as it is written to
the logging array. The logging header vhich was retrieved as part of
a previous GETLOG macro may be used to replace that copy in the log
data set.

BLKLIST=
Specifies the address or a register (2-12) which contains the address
of a user-constructed list of block numbers and of core addresses from
wh ich da ta block s ar e to be move d.. The data list .,i 11 be a table of
6-byte entries. Each entry viII contain a 1-byte flag field, a 3-byte
area address, and a 2-byte block number. This will allow the user to
update selected segments of the DA log array for block VS resident
arrays on demand basis. The latest log copy will be modified.
However, the entire VS resident block is not necessarily logged; only
the log block which contains the VS resident block specified viII be
updated. The actual log copy will not change when using this
parameter; that iS 6 repeated PUT LOG macro calls with BLKLIST parameters
will update the same log copy.

BLKLIST ENTRY DESCRIPTION:

o 2 4 r-----,--------------------,,--------,
FLAG
BYTE

AREA ADDRESS BLOCK
NUMBER

APPLICATION SERVICES 2-253

FLAG BYTE

X'40'

X'SO'

AREA ADDRESS

BLOCK NU fiBER

Indicates the last entry to be processed for a
particular entry in the name list or number list.

Indicates the last entry in the data list.

Not applicable for PUTLOG. The area is allocated
so that list forms of PUTLOG and PUTBLOCK are the
sa me.

The number assigned to the data block to be retrieved
and placed in the array described in the name list
or n urn be r 1 _ st •

EXAMPLE: BLKLIST and Name Lis1:

Name Li~t Data LIst
FlRSTbbb A(Area)

SECONDbb A(Area)

THIRDbbb X'4Q' A(Area)

X'FI-" I X'40' A(Area)

A(Arcal

~.
A(Area)

A(Arca)

A(Area)

A(Area)

X'XO' A(Area)

PROTECT=

H'J'

H'S'

H'W'

H'3'

H'2SS'

H'I'

H'2'

H'37'

H'186'

H'249'

I
t--

J

Blocks in first
array

Blocks in second array

Blocks in third array

If YES is specified, a lock will be set to prevent other programs that
(pecify PROTECT=YES from accessing the data base while this PUTLOG is

n the proces;, of modifying the data base. If RISK is specified, the
.ata will be moved without regard to other programs which may be
ccessing the data base.

)te: A zero returned in register 15 indicates successful completion.
A non-zero return~d in register'15 indicates that one or more
errors were encountor~d during processing of this PUTLOG request.
The high-order byte of cegister 15 contains a count of the number
of errors encountered and the lbw-order three bytes contain the
address of the first invalid artay name or number.

2-254 Description and Operation Manual

RECORD

The RECORD macro is used to write data from programs in e~ecution to
a sequential data set. The data in the data set can then be retrieved
at a later time through the playback function.

[symbol1 RECORD ID= { (r) }
number

{(r) } ' ADDR= address ,COUNT= { (r) J
numbe

[,DCV'l'R= r

] DCVTLOC= {(r) }
! address

ID=
Is a unique 3-digit hex number (001-FFP) which identifies the data
that is to be recorded (written) to a sequential data set~ If (r) is
specified, the register must contain the 3-digit hex number.

ADDct=
Is the address of the data that is to be recorded. If (r) is
specified, the register must contain the address of the data to be
recorded ..

COUNT=
Is the number of bytes that is contained in the data. The maximum
size is 65525 bytes. If (r) is coded, the specified register must
contain the number of bytes to be recorded.

DCVTR=r
Where 'r' is the general purpose register (2-12) that contains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses that has the address of a 4-byte location that
contains the address of the XCVT.

DCVTLOC=address
Where 'address' is the label of a 4-byte location that contains
the address of the XCVT.

Code Description

00 Normal Completion
04 ID is Disabled
12 End of data set reached

or ~O error on output
of ata record. All data
recording is disabled for
this job step.

RETURN CODES. RECORD macro will issue return codes via register 15.

APPLICATION SERVICES 2-255

REPATCH

When a PATCH forces a WQE to fallout of the queue (QPOS=FIRST is
specified and the queue vas full) , a Repatch List (REPL) vill be
constructed if the failing PATCH had REPATCH option specified. The
user's ECB will be posted with a completion code of X'44' in the
high-order byte and the address of the Repatch List in the three
low-order bytes.

Note: The three low-order bytes represent a REPL address only if the
REPATCH option vas specified and the completion code (high-order
by t e) is X' 4 4 ' •

If the REPATCH option was specified, and the ECB is posted
with X'44', a REPATCH macro must be executed, so that the
Repatch List built from Special Real Time Operating system
Control Block storage can be freed.

[symbol] REPATCH REPL= 1 (r) ! address ' TYPE= 1 EXEC !
PURGE

[, PATCH operand. • • J

[,DCVTR= r

1 DCVTLOC= 1 (r) ! ' address

REPL= (r)
Where 'r' is the general purpose register (2-12) that contains the
address of the REPL.

REPL=address
Where 'address' is the label of a 4-byte storage location that contains
the address of the REPL, e.g., the label of the EeB that vas posted
with the address of the REPL.

TYPE=
Specifies whether the PATCH is to be retried (EXEC) or deleted (PURGE).
Only one REPATCH is permitted for every original PATCH. If TYPE=EXEC
is specified and the WQE is pushed out again, no REPL will be built.
A 1YPE=PURGE causes the FREE=, if specified in the original PATCH, to
be issued and the Repatch List to be freed.

2-256 Description and Operation Manual

PATCH Operands

If any PATCH operands are specified with a REPATCH TYPE=EXEC, the
REPATCH macro will internally invoke the PATCH macro and the code will
be generated that modifies the REPL. Since the REPL supplied by the
Special Real Time Operating System is in protected storage prior to
issuing a REPATCH macro with PATCH operands, the user must obtain
storage (length=REPLLNTH) and copy the supplied REPL (for that same
length) into his own storage. Since one of tke vords in the Special
Real Time Operating System supplied REPL contains its own address, the
user's REPL vill also have this address so that the REPATCH SVC routine
can free its storage. Se vera 1 re strict ions for PATCH operands fo llov:

• SUPL, PROBL, IDw and PARAM must not be specified.

• If PRTY or PRTYLOC is specified, both subvalues (name, priority)
must be specified.

• REPATCH option must not be specified .•

• Care must be taken in modifying FREE=operands since the original
FREE request bas not been processed.

Specifying PATCH operands with a REPATCH TYPE=PURGE viII not generate
instructions to modify the Repatch List and will therefore have no
effect on the execution of the REPATCH SVC routine.

DCVTR=r
Where 'r' is the general purpose register (2-12) that Gontains the
address of the XCVT.

DCVTLOC= (r)
Where 'r' is the general purpose register (2-12) enclosed in
parentheses baving the address of a q-byte location that contains
the address of the XCVT~

DCVTLOC=address
Where 'address' is the label of a q-byte location that contains
the address of the xeVT.

Note: The REPL DSECT can be obtained by the macro DPPXBLKS REPL=Y.

REPATCH RETURN CODES:
The REPATCH SVC routine returns a return code of 32 if an invalid TYPE
or REPL address vas specified. If the TYPE and REPL addresses are
valid, the REPATeH SVC routine internally invokes the PATCH SVC routine
and the return codes received upon return from PATCH are passed back
to the user upon return from REPATCH.

APPLICATION SERVICES 2-257

Three distinct phases must be considered prior to building a Special
Real Time Operating System: pre-SYSGEN, SYSGEN, and system
initialization. In addition, there are certain considerations prior
to generating the host OS/VS1 system. These considerations and the
building and running of the special Real Time Operating system are
discussed in the following sections.

The pre-SYSGEN phase of building the Special Real Time Operating System
consists of performing such functions as copying libraries, creating
SYSGEN input, and allocating data sets, i.e., the normal preparatory
work that must be done for any SYSGEN.

The SYSGEN is the procedure by which the customer creates a Special
Real Time Operating System tailored to his individual software
requirements and hardware installation. SYSGEN comprises a series of
OS/VS1 job steps for normal functions such as assemblies, link-edits,
and copies.

System initialization is the process through which the Special Real
Time Operating System is brought into virtual storage and initialized
for a realtime run. When initialization is completed, the Special Real
Time Operating System is operating.

In addition to building and running the Special Real Time Operating
System, modifications may be made, to the data base for example, in an
offline mode. To allow minor modifications without the necessity of
a SYSGEN~ an offline utility program is supplied with the Special Real
Time operating System. The use of this program is described in this
section, as its primary function is the creation and modification of
the customer's data sets.

The installation of the Special Real Time Operating System in an OS/VS1
system does not require any modifications to the VS system. However,
certain 0 S/VS 1 facili ties must be pro vi ded to the Special Rea I Ti me
Operating System through the OS/VS1 SYSGEN, and careful consideration
should be given to other OS/VS1 SYSGEN options. In addition, the
requirements of related PRPQs being installed along with the Special
Real Time operating System must be considered.

The Special Real Time operating system requires three user-generated
SVCs: a Type I, a Type II, and a Type IV. The SVC numbers may be any
of the allowable as/VS1 user SVCs. The SVCs should be generated
disabled. An example of the generation of the Special Real Time
Operating System SVCs during the OS/VS1 SYSGEN is shown belove

SPECSVCS SVCTABLE SVC-255-D1-S0,
SVC-254-D2-S6~
SV C- 253- 04 -S6

*
*

OS/VS1 has reserved the names IEAXYZ1 through IEAXYZ5 for CSECTs that
must reside in the V=R nucleus. If the installation requires that the
Special Real Time Operating System be SYSGENed with the Computer Status
Panel or an external time source~ a CSECT named IEAXYZ5 will be

INSTALLATION GUIDE 3-1

gene~ated. This precludes the use of this CSECT name by other programs
that would reside in the nucleus.

Careful consideration should be given to multiple console support
routing codes in the OS/VS1 SYSGEN, as they ~ill affect the Special
Real Time Operating System. (See MCS operand on VS SYSGEN macro.)

The allocation for the SYS1.MACLIB data set should be made for
BLKSI~E=6080, if possible, to allo~ for conformity with the Special
Real Time Operating System source data sets A5799AHE.SOURCE and
A5799AHE.MSGFILE. If this size is not possible or practical, the
Special Real Time Operating System data sets A5799AHE.SOURCE and
A5799AHE.MSGFILE must be reblocked to the block size of the customer's
SYS1. MACLIB data set. Also, the data sets named by the MACDSET=keyw:)rd
and the ARRDSET=keyword must be allocated with the same block size as
the SYS1.MACLIB data set.

Certain preparations must be made prior to the Special Real Time
Operating System SYSGEN. Data sets must be allocated, modules moved
o~ copied, and the Special Real Time Operating System distributi:)n
tapes must be restored to a direct access device.

The Special Real Time Operating System SYSGEN re~uires (as input) the
OS/VS1 Stage 2 input stream in a sequential data set. This input must
be saved when executing the OS/VS1 SYSGEN fo~ this purpose.

The data sets requi~ed for the Special Real Time Operating System SYSGEN
fall in to three categories, as shown in Figure 3-1.

INPUT~

r---
I
I
I
I
I
I
I
I
I
I
I

Distribution

(Supplied) i

I
Data Sets

Definition

Customer
Allocated
(Definition)

: Data Sets
I
I L ____________________ _

I

SYSGEN
Procedure

~OUTPUT
I
I
I
I
I
I
I
I
I
I
I
I

Target

Customer
Allocated

Data Sets

Figure 3-1. The Special Real Time Operating System SYSGEN Data Sets

The Special Real Time Operating System distribution data sets that a~e
required a~e distributed to the customer on the tape sent from the IBM
prog~am library. The three distribution data sets are:

A5799AHE. SOURCE

A 57 99 A HE. 0 B JE C T

A 5799 AH E. M S GF IL E

The definition data sets are optional and are not required for a Special
Real Time Operating System only, or for a Special Real Time Operating

3-2 Description and Operation Manual

System and Display Management SYSGEN. However, if they ar~ used, the
customer must allocate them. The four definition data sets are
configuration, software options, display, and data base. They viII be
named and allocated by the customer and each mnst be a partitioned data
set.

The configuration and the software options data sets are required as
input to Stage I of SYSGEN, only if the customer chooses to invoke ·the
SYSGEN utility program DOMXSTG1 to do the SYSGEN. The alternative to
invoking DOMXSTG1 is to code the Special Real Time Operating system
SYSGEN macros in card image and to pass the cards to the OS/iS1
assembler, as is done for an OS/VS1 SYSGEN.

If DOMXSTGl is invoked, however, the configuration definition and
software options data sets must be created prior to Stage I. The The
data sets must be partitioned card image and must contain the following:

• Configuration Data Definitions -- Each member must represent one
System/? or System/370 in the hardware configuration. All
configuration data for each system of a computer hierarchy must be
in this one data set. Each member name must be of the form S?xx
or S370xx, where xx is the CPU identifier of that particular system.
Macro statements in this data set must be those from the section:
"Configuration customer Definition Data Set Macros" •

• Software options Definition -- Each member must represent one
System/? or one System/370 in the configuration. All software
options data for either system of a CPU hierarchy must be in this
one data set. Each member name must be of the form S310xx or S7xx,
where xx is the identifier of that particular system~ Macros in
this data set must be those f rom the section: "Software customer
Definition Da ta Set Macros U'.

The display and data base data sets are optional. When these data sets
are used, they provide additional input to the offline utility program
when it is invoked during stage II of the Special Real Time Operating
System SYSGEN. Their presence, which signifies additional processing
in Stage II, is indicated by pointing to the data sets by the DISDSET
and DBDSET keywords on the GENEMS macro. When used, the data sets must
be partitioned card image, with a BLKSIZE equal to the customer's
SYS1.MACLIB data set and must. contain the following:

Data Base Definition -- Each member must contain at least one data
base array definition that the eus·tomer desires to be placed in the
final system by the SYSGEN process. All data base definitions for
all system/3?Os and System/7s may be placed either in one data set or
in separate data sets.

The output is placed in the target data sets by the SYSGEN procedures.
SYSGEN is informed of these data sets through the GENEMS macro, as
described in the SYSGEN macros section of this manual.

A number of OS/VS1 macros are required by the Special Real Time
Operating System. These macros exist on the OS/VS1 distribution library
SYS1. AMODGEN. Prio£" to the Special Real Time Operating System SYSGEN,
the required macros must be moved from SYS1.AMODGEN to SYS1.MACLIB.
Below is an example of the JeL needed to move the required macros. The
members named in the SELECT statements are the equivalent of a list of
members that must be in SYS1. If the member is already in SYS1.MACLIB,
it will not be copiede

INSTALLATION GUIDE 3-3

IICOPY JOB ACCOQ!1LPROGB!MMER
II EXEC PGM=IEBCOPY
II DD SYSOUT=A
IIDDIN DD DSN=SYS1.AMODGEN,UNIT=l11~,
II VOL=SER=TESTQ1,DISP=SHR
IIDDOUT DD DSN=SYS1.MACLIB,DISP=OLD
IISYSIN DD *

COPY OUTDD=DDOUT,INDD=«DDIN,R»
SELECT MEMBER=(IEFTIOT1,IHBPSINR,IKJTCB,IHAFLC)
SELECT MEMBER=(IEFUCBOB,IEFJFCBN,IHAPDDT,IHARB)
SELECT MEMBER=(IEZDEB,IEZXRB,IHBRELNO,CVT,SYNCH)

The data shown underlined in the previous example will need to be
changed to suit each customer's requirements.

The Special Real Time Operating System modules are distributed on tape
from the program library; however, prior to the Special Real Time
Operating system SYSGEN, the distributed data sets must be restored to
a direct access device.. A job st ream is provided as a first file on
the distribution tape that will move the libraries. To execute this
job stream, the user must first place in his SYS1 .. PROCLIB a PROC named
PPDSDEF. This procedure is the first job step encountered in the job
stream in the distribution package. The only function of this PROC is
to make DD statements available to succeeding job steps.

The following statements are required in this procedure:

IISTEPABC
IIDOMVOL
II

EXEC
DD

PGM=IEFBR14
UNIT=SYSDA,DISP=OLD,
VOL=SER=PACKQ!

The step name must be STEPABC; the DD card must be named DOMVOL and
must have the volume serial number of the pack to which the Special
Real Time Operating system modules are to be moved.

After executing the described procedure as the first job step,
subseguent job steps in the same job stream can determine the target
pack for the special Real Time Operating System modules by making a
reference of the form:

VOL=REF=* .. A .. STEPABC .. DOMVOL

The following is an example of the JCL and control cards required to
add procedure PPDSDEF to the SYS1 .. PROCLIB.

IIADDPROC
II
IISYSUT2
IISYSPRINT
IISYSIN
.. I ADD
.. I NUMBER
IISTEi?ABC
IIDOMVOL
·1
1*

JOB
EXEC
DD
DD
DD

EXEC
DD
ENDUP

AC CO !HiL.2 ROQB AM ME~
PGM=IEBUPDTE,PARM=' NEW'
DSN=SYS1.PROCLIB,DISP=OLD
SYSOUT=A
DATA
NAME=PPDSDEF,LIST=ALL
NEW1=Q.Q,INCR=lQ
PGM=IEFBR14
UNIT=SYSDA,DISP=OLD,VOL=SER=PACKQ1

The data shown underlined in the preceding example viII need to be
changed to the customer's installation requirements.

3-4 Description and Operation Manual

with the member PPDSDEF in the SYS1.PROCLIB, the Special Real Ti.me
Operating System modules may be restored by entering the following
start command on the as/VS1 console.

START RDRT, 181, LA BEL= (1, NL)

Note: 181 should be replaced by the I/O device address where the
distribution tape is mounted.

If related PRPQs or program products are being SYSGENed along with
Special Real Time Operating system, the Special Real Time operating
system libraries should be restored first. If the Display Management

PRPQ 5199-AFD is also being SYSGENed, it should be done next, followed
by the resto~ation of other related products' tapes.

If supplementary material has been ordered by the customer, the tape
containing this material can be restored to disk by executing the same
start command.

The optional material is added to the existing distribution data sets.
The basic material must be restored to disk before the optional
material. When the optional material is restored, the disk data sets
are already defined and cataloged. Consequently, the PROC PPDSDEF is
not needed.

INSTALLATION GUIDE 3-5

THE SPECIAL REAL TIME OPERATING SYSTEM DATA SET ALLOCATION

The user must, prior to Stage II of SYSGEN, allocate target data sets.
The following example gives the recommended space allocation required
for the Special Real Time Operating System SYSGEN:

OBJDSET
LMDSET
MACDSET
ARRDSET
DB1DSET
DB2,DSET
DB~DSET
PLIDSET
PLSDSET
FORDSET

SP AC E= (C YL, (1, 1 , 50))
SPA C E= (C Y L , (1 , 1 , 50))
SPACE= (CYL, (1,1,50»
SPA C E= (C Y L, (1 , 1 , 50))
SPACE= (CYL, (2, ,50))
SPACE= (CYL, (2))
SPACE=(CYL,(2,,50))
SP ACE= (CYL, (1, 1,50))
SP AC E= (C YL, (1, 1,50))
SPACE= (CYL, (1,1,50»

These figures can be used in conjunction with the chart in the
description of the GENEMS macro to allocate the Special Real Time
Opera.ting System target data sets. The above space is for a 3330 direct
access storage device and is for a Special Real Time Operating System
only SYSGEN. The DB1DSET, DB2DSET, and DB4DSET data sets may have to
have larger space allocation depending on the user's data base and
messages. If these data sets are not going to be supported by duplicate
data set support, secondary allocation may be requested.

FAILOVER/RESTART STORAGE REQUIREMENTS

Failover/Restart write requires an amount of virtual address space
determined by the following formula. In addition, the entire area is
page fixed during Restart Write.

Address space required = 12,288 + (k*2048)

where k = (Tl + 8 + 2047)/2048
and from the above calculation for k,
k is the integer and any fractions
are ignored.

where TL = Maximum blocksize of the device upon which
the Failover/Restart da ta set is alloca ted
(13030 for a 3330, 7294 for a 2314, etc.)

Example
for a 3330, k would be
k =. (13030 + 8 + 2047)/2048

'k = 7 ignoring the fraction;

therefore, the address space required
= 12,288 + (7*2048)
= 26,624 bytes.

The entire address space used is released when Restart Write is
completed.

The amount of direct access space required for the Failover/Restart
data set can be computed as follows:

vumber of tracks required = 1 • A + B + C + D + E

where: A

3-6

Space required for the real storage portion of the
da ta set

Description and Operation Manual

B = Space required for duplica ting the active paging
data set entries.

C = Space required for the SYS1.SYSJOBQE dump

D = Space required for the SWADS dump for the MASl'ER
partition

E Sp ace required for the SWADS dump for the SLAVE
partition.

In the following formulas the following terms and functions apply.

=
=

=

R

TRUNe

=

=

Maximum blocksize of the Failover/Restart set

Number of active paging entries on the SYS1.PAGE
da ta set

Number of devices containing SYS1.PAGE data sets

Real st.orage size

A function that takes the integer portion of a
quantity only and discards the fraction

Number of 24-byte records in SYS1. SYSJOBQE

Number of 176-byte records in SYS1.SYSJOBQE

Number of records in SWADS for the MASTER partition

Number of records in SWADS for the SLAVE partition

A - TRUNC(R/2048) + 4
- TRUNC (T

L
!2048

B = TRUNC(T
L

/20S6) + OP

C = TRUNC (:~~~CITLI32»)+ TRUNC(:~~C(TL/"') + 2

o = 0 if SWA is used in MASTER partition, or

(

NS1 \
D = TRUNC TRUNC(T

L
/184)) + 1

E = 0 if no SLAVE partition or SWA is used in SLAVE, or

(NS2 \
E = TRUNC \TRUNC(TL/184)j + 1

Estimation of quantity NIP requires consideration of the size of the
link pack area, BLDL list, JES options, numbers of partitions, and size
and current allocation of active partitions.

INSTALLATION GUIDE 3-7

THE SPECIAL REAL TIME OPERATING SYSTEM SYSGEN

System generation (SYSGEN) is the procedure whereby the Special Real
Time operating System and associa ted PRPQs are combined to create a
realtime system tailored to the needs of an individual user. The
Special Real Time Operating system SYSGEN is analogous to the OS/VS1
SYSGEN procedure used to create an operational OS/VS1 system. The
Special Real Time Operating System SYSGEN is normally performed only
when major changes to the system occur. Data of a more changeable
nature is entered into the system through the offline utility.

The Special Real Time Operating system SYSGEN process is patterned
after the OS/VS1 SYSGEN procedure. It is comprised of two phases,
Stage I and Stage II. stage I creates the job streaffi input for Stage
II. stage I can be executed either by using the Special Real Time
Operating system utility DOMXSTG1, or by directly invoking the as/iS1
assembler or the assembler H program product (5734-AS1) to assemble
the Stage I input cards.

The direct implementation of the assembler method can be used if the
Special Real Time Operating system only is being SYSGENed, or if the
Special Real Time Operating System and the Display Management PRPQ
(5799-AFD) are being SYSGENed. For the Special Real Time Operating
System only, the required SYSGEN macros are coded and passed to the
assembler. For the Special Real Time Operating system and the Display
Management PRPQ, the macros are also passed to the assembler; however,
care must be taken to ensure that the SYSGEN macros are properly
sequenced for the member. (CONFIGH, DEFDEV, and GENEMS is the correct
order.)

If other related PRPQ or program products are being SYSGENed, the
utility program DOMXSTG1 should be used.

If the customer has coded his SYSGEN macros and configuration macros
and placed them in configuration and software option definition data
sets, DOMXSTG1 may be used. This is shown in Figure 3-2.

Configuration
Data Set

Software
Options

Data Sets
1--

OR I'----,---_J
r------1-1 _ 1

DOMXSTGl .1 A'''mb"]

I
~age2
L Job Stream

Figure 3-2. The Special Real Time Operating System - SYSGEN - stage I

3-8 Description and Operation Manual

The following statement is the JCL required to invoke the DOMXSTG1
utility.

IISTGl
II
IISTEPLIB
IISYSLIB
IISOFTOPT
IICONFG
IISYSPRINT
IISYSUT1
L~YSQ1l!
LL2X~Q1l!
LL§.YS2Q!.!
II
IISYSIN
II

JOB
EXEC
DD
DD
DD
DD
DD
DD
DD
DD
DO

DO

ACCOUN1..r.._f. RO GRAt1MEE
PGM=DOMXSTG16PARM=~37Q01'
DSN=A5799AHE.OBJECT,DISP=SHR
DSN=A5799AHE.SOURCE,DISP=SHR
DS&=(QSER-CR~~TEQ) ,DISP=SHR
DSN=(QSEli-CREATEQ) ,DISP=SHR
SYSOUT=A
UNIT=~YSDAcl~!CE::1CYh2.1.
UNIT::.~YSDA..clR.!CE::1CY1.c.2..L
UNIT=~YSDA.clPACE::.1CYh2..l
UNIT=240~DIS£~.d~.ASaL1ABEL=.1dllL
OCB=j1.R~CL=8QLBLKSIZE=S!Q~.R~~rM=FB.L
UNIT::.~YSDA..clPACE.::.1CYh1h.ll.l.
DC B=BL KS IZ E=.§Q 80

*Not required for assembler H
**If assembler H is used, SYSGO should be SISLIN.

The JOB card should contain proper accounting- information and any other
data required in the customer!s account. The PARM= field on the EXEC
card identifies the system to be builte If the assembler H program
product is to be used for the stage I SYSGEN, the PARM field would be
PARM='H,S37001'. The SOFTOPT and CONFG DD cards must define the
software options and configuration definition data sets respectiYely,
as these data sets are customer built. The SYSUT1, SYSUT2, and SYSUT3
DD cards may be coded to suit the customer's account. The The SYSGO
(or SYSLIN for assembler H) DD cards specify the output data set, and
if coded as shown in the previous example, stage II of the Special Real
Time Operating System SYSGEN can be started by starting an OS/VS1 reade~
to the data set, e.g., START RDRT,180,LABEL=(1,NL). DOMXSTG1 will
place the source code macros from the configuration and softWare options
data sets in the SYSIN data set and pass it as input to the assembler.

The output from the stage I is an OS/VS1 job stream which, when
executed, comprises the Stage II of SYSGEN~ stage II creates the
Special Real Time Operating System from the input data sets, and places
the components of the system in the target data sets pOinted to by the
GENEMS macro. This is shown in Figure 3-35

Distril1ution

OS!VS Lil1raries
r- -~

SYSl.SVCUB

A5799AHE.SOURCE
A5799AHF.OBJECT
A5799AHE.MSGFILEf--_~~---L---...,

~
.YSI/NUCI._EUS

SYS l.PARMLlU r SYSI.MACL'."

Lihraries

Definition r-----------,
I ,

: Di~plays :
: Data Base ~-----------
, I L __________ .J

Data Sets

SYSGEN
~

I------J User L Created

Data Sets

Figure 3-3. The Special Real Time operating System
SYSGEN - Stage II

One of the final steps of Stage II invokes the offline utility program.
At this point the system-defined data base macros are processed,

INSTALLATION GUIDE 3-9

followed by the customer definition data base macros (DBDSET=). Then
the system messages and the system displays (if Display Management is
being generated) are processed. Following this, the customer-defined
displays (DISDSET=) are processed by the offline utility.

The data base data sets are either partitioned or direct
organization, and are built by the offline utility DPPXUTIL.
The records and members of these data sets contain references
to and have dependencies on other records and members. These
references and dependencies are constructed by DPPXUTIL,
and the data sets must not b~ modiifed except by DPPXUTIL.
Concatenation of data base groups for realtime execution is
not allowed. The macros used for SYSGEN and the available
options are described in a following section.

SYSGEN RESTART PROCEDURES

The system generation process may come to an unsatisfactory completion
because of errors that occurred during stage I or stage II. This
section contains the information necessary to restart system generation.

The most common errors during stage I and the restart procedures for
Stage I are discussed, as are the most common error causes during Stage
II, the restart techniques, and the reallocation of data sets.

The most common causes of error during stage I are keypunching errors
in the input deck and contradictory or invalid specifications in the
macro instructions. Keypunching errors are indicated by system
generation error messages or assembler error indications. Invalid
specifications are indicated with the system generation error messages
printed in the SYSPRINT data set. If any errors are found during Stage
I, the job stream is not produced.

Stage I consists of a single assembly of the system generation macro
instructions. It can be restarted only from the beginning. To restart
Stage I, the errors in the input deck or in the definition data sets
must be corrected and the job reswomitted.

The most common error causes during Stage II are:

• Machine interruptions and non-continuous machine time

• Faulty space allocation of the system data sets during the
preparation for system generation

• Errors in the input deck that cannot be detected during Stage I

• Procedural errors such as improper volume mounting

Stage II can be restarted at the beginning of any job step.. If any
statements in the job stream are to be changed, the job stream must be
on cards. If no statements are to be changed, the IEBEDIT utility
program can be used to restart a job stream. A later section discusses
the techniques used for restarting the job stream after any other
necessary operations have been performed. The topics include restarting
from cards, punching the job stream, and restarting from tape or from
a direct access volume.

If the job stream is on cards, a job step can be restarted by placing
a JOB card ahead of the job step's EXEC card and entering the cards in
the card read er.

If the output from stage I was not a card punch, the IEBPTPCH utility
program can be used to punch the job stream. The following example

3-10 Description and Operation Manual

shows the statements required to punch the job stream using IEBPTPCH.
The fields shown underlined may require modification for different
installations.

/IPUNCH JOB
EXEC
DD

II
//SYSUT1

PG M=IE BPTP CH
UNIT=182,LABEL=(,NL) ,VOLUME=SER=EX1!~1,
DISP=OLD,DCB=(RECFM=F,BLKSIZE=80)
UNIT=l540-1

II
//SYSUT2
I/SYSPRINT
I/SYSIN

DD
DD
DD

SYSOUT=A

* PUNCH TY PORG=PS

1*

When using the IEBPTPCH utility program to punch the job stream, the
following points should be considered~

• The value of the UNIT parameter of the SYSUT1 DD statement is the
specific unit address of the magnetic tape drive or direct-access
storage device on which the job stream resides. Unless the job
stream tape or direct-access volume has been demllunted, the value
of this UNIT parameter is the same as the value of the UNIT
parameter of the SYSGO or SYSLIN DD statement in the input deck
for stage I. If the job stream is on a. direct access volume, the
LABEL parameter must specify a standard label, and a DSNAME
parameter must be specified.

• The value of the VOLUME parameter of the SYSUT1 DD statement is
either an external serial number assigned to the job stream tape
reel, or the volume serial number of the tape or direct access
volume. The system viII issue a MOUNT command for the specified
volume on the magnetic tape or direct access storage device
indicated by the UNIT parameter.

• Sequence numbers can be specified for the punched cards by putting
the CDSEQ or CDINCR parameters in the PUNCH control cards of the
IEBPTPCH input decko

The IEBEDIT utility program can be used to restart stage II from any
job step, after the first, ·when the job stream is on tape or a
direct-access volume. To restart form the first-job step, a START RDR
command can be issued for the tape drive or direct-access storage device
that contains the job stream.

IEBEDIT creates a new job stream by editing and selectively copying
the job stream provided as input. The IEBEDIT utility program can copy
an entire set of jobs including JOB statements and associated job step
statements, or selected job steps in a job, as shown below in the
control statements required by IEBEDIT when the job stream is on tape.

INSTALLATION GUIDE 3-11

IIRESTART
II
IISYSPRINT

JOB
EXEC PGM=IEBEDIT
DD SYSOUT=A

I I~· YSUTl
II

DD UNIT=xxx,LABEL=(,NL),
YOLUME=SER=ser ia 1,
DISP= (OLD, KEEP) ,
DSN=data set name,
DCB= (DCB information)

x
X
X
X

II
II
II
IISYSUT2 DD UNIT=xxx,LABEL=(,N~ ,

YOLUME=SER=serial,
DISP== (,KEEP) ,
DSN=data set name,
DCB: (DCB information)

X
X
X
X

II
II
II
II
IISYSIN DD *

EDIT
or EDIT

ST ART= SY SG ENnn ,STEPN AM E=SGxx (, NOPR INT)
START=SYSGENnn,TYPE=INCLUDE,

or EDIT
STEPNAME= (SGxx t.SGxx)) (,NOPRINT)
START=SYSGENnn,TYPE=EXCLUDE,
STEPNAME=(SGxx ("SGxx)) (,NOPRINT)

1*

When using the IEBEDIT utility program to restart Stage II, the
following should be considered ..

• The value of the UNIT parameter of the SYSUT1 DD statement is the
unit address of the magnetic tape drive or direct-access storage
device on which the job stream tape or direct-acess volume is
mounted. Unless the job stream has been demounted, the value of
the UNIT parameter is the same as the value of the UNIT parameter
of the SYSGO or SYSLIN DD statement in the Stage I input deck. If
the job stream is on a direct-access volume, the LABEL parameter
must specify a standard label •

• The value of the VOLUME parameter of the SISUTl DD statement is
either any serial number assigned to the job stream tape reel, or
the volume serial number of the tape or direct-access volume. The
system will issue a MOUNT command for the specified volume on the
magnetic tape drive or direct-access storage device indicated with
the UNIT parameter.

• The value of the UNIT parameter of the SYSUT2 DD statement is the
unit address of a magnetic tape drive or direct-access storage
device. If the job stream is on a direct-access volume, the LABEL
parameter must specify a standard label.

• One or more EDIT statements can be specified when executing IEBEDIT.
If the TYPE parameter is omitted, STEPNAME specifies the first job
step in the job specified by the START parameter to be placed in
the ney job stream.

• If T¥PE=INCLUDE or TYPE=EXCLUDE is specified, STEPNAME specifies
the job steps to be included or excluded, respectively, from the
new job stream. Individual job steps and sequences of job steps
can be specified for inclusion or exclusion~ For example:

START=SYSGEN4,T¥PE=INCLUDE,STEPNAME=(SG3,SG6-SG9)

indicates that job steps 3, 6 j 7, 8, and 9 of job 4 are to be
included in the restart of system generation.

• NOPRINT must be included if a listing of the new job stream is not
desired. After the new job stream is created, a START RDR command

3-12 Description and Operation Manual

must be issued for the magnetic tape drive or direct-access storage
device designated by the SYSUT2 DD statement.

An IEBEDIT input deck for restarting stage II is shown below~ In this
example, space allocation for 5Y51.SVCLIB was not sufficient, causing
the subsequent job steps to fail.

IIRl4.:5TART
II
IISYSPRINT
IISYSUT1
II
II
IISYSUT2
II
II
II
IISYSIN

EDIT

1*

JOB
EXEC
DD
DD

DO

DD

PG M=IE BEDI T
SYSOUT=A
UNIT=2400, LABEL= (, NL,) , D5N=STAGE,
VOL=5ER=JO BSTH, DCB= (RECFM= F,
BLKSIZE=80,DEN=2) ,DISP=(OLD,KEEP)
UN IT=2 400, DI SP = (, KEEP) ,
VOL=SER=001234,DSN=OUTTAPE,
LA BEL= (, NL) ,
DC B= (R ECFM =F, BLKSIZE=8 0, DE N=2)

* 5T ART= 5370 01, TYPE=EXCLUDE,
STEPNAME=(5G1-SG24)

x
X

x
X
X

x

The following section gives guidelines for restarting Stage II.
Restarting may require the scratching and reallocation of space for
the system data sets. When this is necessary, the following guidelines
should be referenced for the procedure to be followed. After the
necessary corrections have been made, the actual restarting of Stage
II can be accomplished by one of the methods described.

If the problem encountered is other than space allocation, e.g.,
component failures or machine malfunctions, the instructions printed
out in the error messages or error codes should be followed.

The method for reallocating space for a system data set depends on
whether the data set contains data that must be saved. If the data
set does not contain data that needs to be saved (for example, the data
set will be re-copied completely when system generation is restarted) ,
the IEHPROGM utility program can be used to scratch and reallocate
space for the system data set w If the system data set contains data
that must be saved, the data will have to be copied into a temporary
data set, space for the original data set will have to be reallocated,
and the contents of the data set will be copied from the temporary data
set into the reallocation data set.

The input deck for scratching and reallocating space for system data
sets must contain the following statements in the order shown:

1. A JOB statement with any parameters required by the particular
in stalla tion

2. An EXEC statement with the PGM=IEHPROGM parameter

30 A SYSPRINT DD statement defining the system output unit

4~ A DO statement defining the unit address and serial number of
t~~ generating system's system resident volume:

IISYSRES DO UNIT=unit,VOLUME=SER=serial,DISP=OLD

5. A DO statement defining any other permanent volume on which the
system data sets to be reallocated reside:

INSTALLATION GUIDE 3-13

IIOTHERVOL DD UNIT=unit,VOLUME=SER=serial,
DISP=OLD

x

6. A DD statement for each type of removable volume on which the
system data sets to be reallocated reside:

IIDDNAME DD UNIT=(unit"DEFER),
VOLUME=PRIVATE,DISP=OLD

7. A DO * sta tement (SYSIN)

x

8. A SCRATCH statement for each new system data set to be
reallocated. The SCRATCH statement must have the following
format:

SCRATCH DSNAME=dsname,VOL=device=serial,PURGE

9. A 1* statement

10. An EXEC statement with the PGK=IEHPROGM parameter

11. A DO statement defining the unit address and serial number of
the generating system;s system residence volume (example shown
above)

12. A DD statement for each permanent volume on which the system
data sets to be reallocated reside (example shown above)

13. A DD statement for each type of removable volume on which the
system data sets to be reallocated reside (example shoun above)

14. A SYSPRINT DD statement defining the system output unit

15. A DD statement for each of the new system data sets to be
reallocated. This DD statement must be the same as the one used
in the input deck for the original allocation.

Iiddname DD
II
II
II
1/

DSNAME=dsname,
VOLUME=(,R~rAINvSER=serial),
UNIT=unit,LABEL=EXPDT=99350,
SPACE= (allocation) , DISP= (, KEEP) ,
DCB:::: (parameters)

16. A DD * statement (SYSIN)

17. A 1* statement

x
X
X
X

If the system data set to be reallocated contains data, one of two
procedures can be followed. If there is enough space on the volume
for a new space allocation, the following procedure may be used.

1. Rename the system data sete

2. Allocate space for the system data set (with its correct name)
on the same volume using the IEHPROGM utility program.

3. copy the data in the renamed data set onto the newly allocated
system data set using the IEBCOPY utility program.

4. Scratch the renamed data set using the IEHPROGM utility program.

3-14 Description and Operation Manual

The following statement illustrates space reallocation for a data set
on the same volumeo The system data set to be reallocated is
SYS1.PARMLIB. It vas allocated space during the preparation for system
generation with the following IEHPROGM DD statement:

IIPARMLIB
II
II
II
II
II

DD DSNAME=SYS 1. PARMU B,
VOLUME= (,R ET AI N, SER=SY STEM) ,
UNIT=2314, DISP=(,KEEP) ,
SPACE= (TRK, (7, ,3), ,CONTIG) ,
LA BEL=EXPD T=99 350,
DEB= (RECFM=F,BLKSIZE=80)

x
X
X
X
X

The new system residence volume is 2314 volume whose serial number is
SYSTEM. The renamed SYS1.PARMLIB will be called SYS1.TEMPPARM.

/IMOVE
IISTEPl
IISYSPRINT
IINEWRES
IISYSIN

1*
IISTEP2
IIPARMLIB
II
II
II
II
II
1*
IISTEP3
IISYSPRINT
IISYSUT1
II
/ISYSUT2
IISYSIN

COpy
1*
IISTEP4
IISYSPRINT
IINEWRES
IISYSIN

1*
II

JOB
EXEC
DD
DD
DD
RENAME

EXEC
DD

PGM=IEHPROGM -RENAME-
SYSOUT=A
UNIT=2314,VOLUME=SER=SYSTEM,DISP=OLD

* DS NAME=SYS 1 .. PARMLI B,
VOL= 2314=S YSTEM
NEWNAME=SYS1.TEMPPARM

PGM=IEFBR14 -REALLOCATE-
DSNAME=SYS 1.PARMLIB,
VOLUME=(,RETAIN,SER=SYSTEM),
UNIT=2314, DISP= (,KEEP) ,
SPACE=TRK, (8,,3) ,,,CONTIG),
LA BEL= EXPD T= 99350,
DCB: (RECFM=F,BLKSIZE=80)

PGM=IEBCOPY -COpy~

SYSOUT=A

X

X
X
X
X
X

EXEC
DD
DD DSNAME=SYS1.TEMPPARM,OISP=OLD X

UNIT=2314 6 VOL=SER=SYSTEM
DD
DD

DS NAME=SYS 1 .. PARMLI B" OISP=OLD

* INDD=SYSUT1,OUTDD=SYSUT2

EX EC PG [1= IE HPRO GM -SCRATCH-
DD SYSOUT==A
DO UNIT=2314,VOLUME=SER=SYSTEM,DISP=OLD
DD *
SCRATCH DSNAME=SYS1eTEMPPARM, X

VOL=2314=SYSTEM,PURGE

I NSTALLATION GUIDE 3-15

ThE SPECIAL REAL-TIME OPERATING SYSTEM SYSGEN ftACROS

The Special Real Time Operating System SYSGEN macros fall into two
categories: configuration and software. The following pages define
the SYSGEN macros and list the calling sequence for each.

CONFIGURATION CUSTOMER DIEFINTION DATA SET MACROS

CONFIGH

This macro defines configuration hierarchy. CONFIGH must be the first
macro in each member of a configuration data set. For a Special Real
Time operating System onlY6 it is not needed, and neither is the
configuration data set. For a system with Display Management, it
becomes the header macro for configuration information for the CPU it
references.

I symbol CONFIGH CPU=S370xx,LEVEL=integer

CPU

Must be of the form S310xx, where xx is a value between 01 and 99.
For a system with tne Special Real Time Operating System or the Special
Real Time Operating System and Display Management, xx can be any value
between 01 and 99.

LEVEL

Is a number between 01 and 99 which specifies at what level in thb
hierarchy this CP(J occurs. A 1 indicates the top (highest) level.
The value of this parameter increases by 1 each time a lower-level
CPU is encountered.

The name of the configuration data set member containing the above
macro must be the same as the CP(J= parameter.

For a Special Real Time Operating System only, no other macros follow
the CONFIGH macro if it is used. For a system with Display Management,
DEFDEV macros follow the CONFIGH to define each display unit •. Refer
to the ~i2El~Y ~gnggg~~n! Qg§££iEtiQU ~nd QEg£~~iQn§ Ma~al for a
description of this macro.

SOFTWARE CUSTOMER DEFINITION DATA SET MACROS

This section defines the various macros that can be placed in the
members of a software options data set for the Special Real Time
Operating System portion of a system generation. The name chosen for
a member of the software option data set should be the same name used
for the corresponding member of the configuration data set.

The macros defined below may appear in any order, except that the GENEMS
macro must be last. All statements following the last continuation
card of the GENEMS mac~o are ignored; as such, an assembler END
statement is not required.

All of the macros are optional except the VS and GENEMS macro, which
a or-e req uired.

3-16 Description ~nd operation Manual

VS
Defines information relating to the customer's VS system.

lsymbol] VS MCS= < integer 1 [, integer 2' ••• , integern])

,DESC=integer

,SVCNO=(value 1 ,value 2 ·value 3)

[,APNDG=<value 1 ,ValUe 2)]

CNUCNUM= I Char~cter I J
GCLOCKCP= ! ~~s I J
[,RAM=XXJ

CPTlME= (nu~er lJ
C TIMEEXT=number J [, TlMERAT= I se~~ndS 1 J
[, GETWAS= (s i ze , number [,s i ze , number, •••])]

[TWOPART= I ~~s lJ [,DIRSVC= ! ~~s I J

MCS
Is a list of integers, each with a value of 1 to 16, indicating which
console routing cod~s are to be used by WTOs and WTORs issued within
the Special Real Time Operating System.

DESC
Is a number from 1 to 9 indicating which descriptor codes are to be
used by WTOs or WTORs issued within the Special Real Time Operating
System.

SVCNO
Is three decimal integers, in the range of 200 to 255, indicating
which user SVC members the customer has provided for the Special Real
Time Operating System to use. The numbers are stated in Type I, Type
II, Type IV order.

APNDG
Is required only if System/370 Energy Management System is being
generated. It specifies the last two characters of the name to be
used by System/370 Energy Management System for its I/O appendages
and must meet the rules for user 1/0 appendages described in the
publication Q2.LY2.1 ~at~ Mans.9:~ment fQ£ ~Y21~J!!§ ~£Qg£!!.!!LID~£, GC28-06.31.

CLOCKCP
If YES is specified, the optional PTIME use of ~he System/370 clock
comparator feature is selected.

The CPU upon which the generated Special Real Time Operating System
will be executed must have the clock comparator feature. The OS/VS1
system must be generated to n21 use the clock comparator feature.

INSTALLATION GUIDE 3-17

NUCNUM
Is an alphameric character that specifies the eighth character of the
OS/VS 1 nucleus name to be crea ted by genera ting the Special Real TimE'
Operating System. IEANUC01 is always used as input to the Special
Real Time Operating System generation. This parameter allows the
output (modified) nucleus to be given a different member name. If
NUCNUM is not specified, the resultant nucleus will have the name
IEANUC01.

RAM
Specifies the seventh and eighth characters of the member to be created
in SYS1.PARKLIB, which will contain a list of resident reentrant
routines after the special Real Time Operating system generation is
completed. If this parameter is omitted, no list is created. If the
data set specified in the LMDSET parameter of the GENEMS ruacro is
concatenated with SYS1.LINKLIB via the LNKLSTOO member of SYS1.PARMLIB,
this RAM list member can be used to place the reentrant module of the
Special Real Time Operating System (and Display Management and
System/370 Energy Management System, if selected) in the link pack
area ..

PTIME
Specifies the time interval minimum value and basic cycle interval of
PTIME. The default value is ten 10-millisecond units (100 ms). If
a different Interval is desired, it must be specified as a number of
10-millisecond units.

GETWAS
Specifies the default sizes and number of blocks of each Slze to be
reserved by GETWA at the Special Real Time Operating System
initialization. The sizes must be specified in ascending sequence.
It may be overridden at the Special Real Time operating system
initialization time.

The maximum number of sizes is 32. The maximum size allowed is 30720
bytes. The maximum number of blocks of a given size is 4095. Sizes
greater than 2K must be defined as multiples of 2K.

Note: A GETWA space of sufficient size to satisfy the requirements of
all special Real Time Operating system programs must be provided.
Failure to define sufficient GETWA space during system generation
on the GET WAS parameter of the VS macro or on the GETiA statement
in the SYSINIT input stream will result in the termination of

TIMEEXT

the realtime job with a user 46 ABEND code. The Special Real
Time Operating System routines require that blocks of at least
1024 bytes be defined.

SpeGifies on which external signal line (2-7) a periodic time pulse
is available. 'fhis pulse is used to correct for long-term drift in
the System/370 TOO clock. Its omission indicates that no time sync
pulses are available.

TIMERAT
Specifies the period (in seconds) at which the periodic time pulse
will occur. The default value is 60.

TWOPART
If YES is specified, a twu-partition operation will be made available
in the Special Real Time Operating System. If no (default) is
specified, a two-partition operation will not be a vailable. A
two-partition operation should not be selected unless it is needed as
it increases the size of the pageable nucleus.

3-18 Description and Operation Manual

OIRSVC
This parameter indicates hov the Special Real Time operating System
macros vhich issue SVCs are to be expanded when the DCVTR and DCVTLOC
parameters are not supplied. It applies only to the usage of the
special Real Time Operating system macros by user programs. The
special Real Time operating System programs are required to use the
DCVTR/ DCVTLOC parameter or to be assembled at SYSGEN time. If yes
(default) is specified, the macro expansion vill issue the correct
SVC number inline. This ties the assembly of the user programs to
the SVC numbers used at that installation. If no is specified, the
macro vill expand 6 load instructions to obtain the XCVT and then
execute the SVC from the XCVT. Thus, the user program is not tied to
the SVC numbers.

INSTALLATION GUIDE 3-19

FAILRsr

This macro causes the Failover/Restart facility to be included in the
system. Also, it optionally includes the continuous monitor or PROBE
and the Computer Status Panel.

[;ymbol) FAILRST [
'NO j] [j 1 l]

CONTMON= 1 YES ~ ,CONTINT= 1 nuIDber ~

[,CONTADL=(name l [,name 2 ,·.·,narnen])]

[,PROBE= { ~~s~J [,PROBIT= 1 ~~~~4U
[,EQUIPSW= ~ nu~erfJ [,EQUIPDy=nUrnber]

[,RESET= 1 nu:er ~]
[,STATUSP= ~ ~~s~] [,LTs=(n l / n 2 [,n 3 ,n 4])]

[, FAILEXT=(number [,static line J)[, CMCKPRB= 1 ~~s U

CONTMON
Causes the continuous monitor. facility to be included in the system
if YES is specified.

CONTINT
Specifies the period (in seconds) at which t he continuous monitor is
to check the operation of the online CPU and report to the backup CPU
(if PROBE is selected) •

CONTADL
Specifies the names of additional 2-byte virtual storage resident data
base items which the continuous monitor is to periodically check.
This is in addition to locations it implicitly checks within the
Special Real Time Operating System.

PROBE
Causes the PROBE function to be generated if YES is specified.
CONTMON=YES is required. The period at which the PROBE function
expects to be transmitted to by the continuous monitor is specified
in the CONTINT parameter.

PRO BIT
Specifies whether the low-order (4-7) or high-order (0-3) bits ::>f the
direct control static data lines are to be used for the continuous
monitor to send signals to the PROBE.

EQUIPSW
Specifies to which direct control signal-out line (0-7) the remote
2914 switch is attached. This option This option requires PROB1=YES.

EQU IPDY
Indicates how long (in milliseconds) the PROBE function is to delay
after switching the 2914 before either IPLing the Failover/Restart
data set or returning to allow the realtime job to continue. The
delay is to allow the 2914 to complete the switch.

3-20 De~cription and Operation Manual

RESET

If specified, indicates on which direct control signal-out line (0-7)
a signal can be sent to allow one CPU to system reset the other CPO.
This option requires PROBE=YES.

STATUSP
If specified, indicates that the continuous monitor and/or PROBE is
to support the Computer status Panel. CONTMON=YES is required.

LTS
Is required if STATUSP=YES. Two values are required if PROBE=NO, and
four values if PROBE=YES. The first (or only) two values indicate
which direct control signal-out line (0-1) is to be used to illuminate
the Online light and the Ready light. The second two values indicate
which bi ts on the direct control sta tic data lines (0-7) are used to
illuminate the Failover Recommend and Computer Selected for Failover
lights ..

FAILEXT
If specified, the first parameter indicates which external signal line
(2-7) will be used to indicate the Failover Confirmed Interrupt of
the Computer status Panel. Requires PROBE=YES and STATUSP=YES. The
second parameter (optional) indicates which static signal line is used
to verify that the Failover Confirmed External Interrupt is to be
honored. This line must be 1 or the interrupt is ignored.

C(1CKPRB
This parameter indicates if the PROBE function (bacKup CPO) is to be
checked by the continuous monitor (online CPU). The PROBE (if
selected) always checks the continuous monitor. If the continuous
monitor detects that the PROBE is no longer running, it issues a
message and continues operation.

If this option is chosen, the PROBE also writes and therefore
it is possible to start a PROBE function in each CPU and
ha ve neither PROBE recommend failover as each PROBE is
receiving data on the static data lines from the otller PROBE.
This is not possible without this option as the PROBE
attempts only to "read" from the continuous monitor but
never write to it.

INSTALLATION GUIDE 3-21

DUPDISK

Includes duplicate disk data set support in the Special Real Time
Operating System.

lsymbol] DUPDISK

3-22 Des:::ri ption and Operation Manual

DBASE

Specifies customer arrays to be generated.

USERARR
specifies the member names of customer-supplied data base arrays, in
source format, which are to be processed through the offline utility
during Stage II SYSGEN. The data set containing the array definitions
is defined in the DBDSET parameter of the GENEMS macro.

INSTALLATION GUIDE 3-23

LOG

Includes data base logging in the Special Real Time Operating System.

[symbol] LOGFREQ (value ,value ,value)

LOGFREQ

Specifies the logging period in seconds corresponding to LOGFREQ values
of 1, 2, and 3 in the ARRAY macro. All three values are required.
The values must be in ascending sequence.

3-24 Descri ption and Operation Manual

PLISUB

Indicates that PL/I structures and library routines are to be included
-for the Special Real Time Operating System services. If Display
Management and/or System/310 Energy Management System are being
gener-ated also, structures and library routines are included for their­
services as well. These routines can be used with PL/I F, the PL/I
Optimizing Compiler and the PL/I Checkout Compil~r.

[symbol] PLISUB

INSTALLATION GUIDE 3-25

FOR SUB

Indicates that FORTRAN library routines are to be included for the
Special Real Time Operating System services. If Display Management
and/or System/370 Energy Management System is being generated also,
library routines are included for their services as veIl. These
routines can be used witn the FORTRAN G and H compilers.

[symbol] FORSUB

3-26 Description and Operation Manual

MSGRC

Defines devices for routing codes for system messages.

[SYmbOl] MSGRC RC=code ~ ALTRC= I Cide 1]

,DEV= I SYSCONS I (OSDEVICE,DDNAME=name)
(DISPLAY,ACCESSA=name [,FUNCA=narne])
(PATCH,EP=name)

RC
Indicates which routing code is being fully or partially defined.
Valid codes are numeric in the range of 1 to 255. Codes 1 through 9
are reserved for the Special Real Time Operating System. The customer
should define the destination for codes 1 through 9 for the Special
Real Time Operating System messages as vell as his own from 10 to 255.
A routing code can be defined to go to multiple devices by including
multiple MSGRC macros with the same RC specification. The MSGR~ macros
must be in ascending routing code order. Code 1 will always go to
the system console (in addition to any other defined devices).

ALTRC
Indicates an alternate routing code to use if the device defined is
not available.

DEV
Indicates which device to output the message.

S YSCONS
Indicates that a WTO will be issued.

OSDEV ICE
Indicates that a QSAM PUT will be done to the DDname specified.

DISPLAY
Is valid only in systems with Display Management. The message will
be written to the system message zone using the indicated access area
and function area codes, if supplied.

PATCH
Indicates that the message is to be passed to a Special Real Time
Operating System independent task at the entry point indicated. The
task name is the same as the entry point name.

ACCESSA
Indicates the Display Management access area associated with a DISPLAY
routing code.

FUNCA
Indicates the Display Management function area associated with a
DISPLAY routing code.

INSTALLATION GUIDE 3-27

IMP

Indicates input message processing commands in addition to those defined
as part of the Special Real Time Operating System. There is one IMP
mac ro pe r code.

[symbol] IMP CODE=name,TASK=name,LM=name,

[,ID= {nU~ber}] [,PARAM= (vall GvaI 2 , ... ,vaIn])]

CODE
Is the command which the Input Message Processor is to recognize; it
contains a maximum of eight characters. By specifying a command
implicitly defined by the Special Real Time Operating System the
customer can re-define these codes.

TASK
Is the name of the task which is to be PATCHed as a result of the
command being entered.

LM
Is the load module name which is to be PATCHed.

ID
Is the ID field to be passed to the PATCHed task.

PARAM
Indicates the conversion codes of positional parameters that will be
passed to the task. Each value is of the form Tl, where T can be
C (character) , X(hexadecimal), or F (fixed point decimal); I represents
the length of the area into which the data is converted; 1 can be any
values from 1 to 255.

3-28 Description and Operation Manual

DATA SET

Indicates location of noncataloged OS/VS1 data set. If the as/vs, data
set is cataloged, this macro need not be specified.

[symbol] DATASET name,VOL=(serial,type)

name
Is a positional parameter that indicates for which as/VS1 data set
location information is being given. Valid values are:

VOL

NUCLEUS
SVClIB
MACL IB
PARfiLl B
TELCML IB

Indicates the volume serial number and device type upon which the data
set in question resides, e.g., VOL=(TST346, SYSDA).

INSTALLATION GUIDE 3-29

GENEMS

Generates the Special Real Time Operating System.

[symbol) GENEMS {
370} cpu- S370xx

['ASMPRT~ { ~~F}] [,ASMBLR= {~}]

[,LKPRT= ([{~::F}][LISTJ)]
,JOBCTL= ([{ jOb~laSS}] 0, out~laSS}] [,jOb acctJ [,step acct J)
,OBJDSET=name [,OBJVOL=(serial,type)]

,LMDSET=name [,LMVOL=(serial,type)]

,MACDSBT=name [,MACVOL=(serial,type)]

[,DBD J [,DBVOL=(serial,type))

[, lHSDSET=name) [, DISVOL= (serial, type)]

,ARRDSET=name [,ARRVOL=(serial,type)]

,OB1DSET=name (,DB1VOL=(serial,type)]

,DB2DSET=name [,DB2VOL (serial,type»)

(,DB3DSET=name] (,DB3VOL=(serial,type»)

, DB4DSET=namc (, DB4VOL= (ser ial, type)]

(,DB5DSET=namel [,DB5VOL=(serial,type)]

[,PLIDSET=name) (,PLIVOL=(serial,type)]

(,PLSDSST=name) [,PLSVOL=(serial,type))

(,FORDSET=name] [,FORVOL=(serial,ty~e»)

[,OS2DSET=name] [, OS2VOL= (serial, type) J

3-30 Description and Operation Manual

CPU
May be specified as either S370 or S370xx, where xx is equal to the
ID assigned to this CPO in the :ONFIGH macro CPU keyword.

ASMPRT
Is indicated if assembly listings are to be produced during Stage II.
The default is OFF.

ASMBLR
Indicates which assembler is to be used during Stage II. The default
is the OS/VS1 Assembler ~). The Assembler H Program Product,
5734-AS1, may be specified. If the H assembler is specified, it is
assumed that it has been installed using the default DD names.

LKPRT
Indicates which linkage editor listing options are desired.

JOBCTL
Indicates values for job and SYSOUT classes and accounting information
for the stage II job stream.

jobclass
Specifies the value to be used in the CLASS parameter of the generated
job car d.

outclass
Specifies the output class to be used in the SYSOUT parameter ~n DD
cards and the MSGCLASS parameter on the JOB card.

jo b acct
Is the information to be reproduced in the accounting field of the
JOB card.

step acct
Is step accounting information to be reproduced in the ACCT parameter
of each EXEC card.

The following table summarizes the use of each XXXDSET parameter. The
value specified is in each case the name of a data set allocated and
named by the installing installation. The corresponding XXXVOL
parameter is used to indicate the location of the data set, e.g.,
XXXVOL= (TST346;SYSDA), if it is not cataloged. All of the data sets
must be disk resident, and all are partitioned except the DB2DSET which
is direct organization and the OS2DSET which is sequential or the member
of a partitioned data set.

INSTALLATION GUIDE 3-31

Parameter

OBJDSET

LMDS[;T

Ml\CDSET

D1305E'1'

DISDSET

ARRDSET

0[;10SET

0[;2DSET

0i330SE'J'

Di;4DSL.:'J'

DBSDSET

PLIDSLT

PLSOSET

FORDSET

OS2DSLT

Required Contents DCB Info

Yes Output of Language LRECL=80,RECFM~FB,
Translator During

BLKSIZE=XXX 1 Stage II

Yes Load Modules for real RECFM=U,BLKSIZE=Xxx 2,6
Time Execution

Yes Macros Generated LRECL=80,RECFM=FB,
During Stage II and

BLKSIZE=XXX3 For Customer Use

If USERARR PAR~ in Customer-Defined Data LRECL=80,RECFM=FB,

DBASE Macro is Used Base Arrays BLKSIZE=XXX 3

If DISM ~n System
and iser Displays
Defi.led

Yes

Yes

Yes

If DIS;,! 1n Syst.em

Yes

If DISM ~n System

If PLISUi3 Macro
Spec1fieo

1 f ['LlSlHl Macro
Spec1 f ied

If fORSlJB Macro
Spcclficd

If 1nstall1ng in
kc 1 3. 0 0 r l. a te r

Customer-Defined
Display Definition

Arrays Generated
During SYSGEN

Data Base Arrays

Data Base Arrays

Displays

Messages

Displays

LRECL=80,RECFM=FB,

BLKSIZE=XXX 3

LRECL=80,RECFM=FB,

BLKSIZE=XXX 3

RECFM=U,BLKSIZE=XXX 2

RECfM=U,BLKSIZE=XXX 2 ,DSORG=DA

RECFM=U,BLKSIZE=XXX 2

RECFM=U,BLKSIZE=292

RECFM=U,BLKSIZE=XXX 2

PL,'l Library Routines.RECFM=U,BLKSIZE=Xxx 4,6

PL/I Structures

FORTRAN Library
Routines

OS/VS Stage II
SYSGEN job stream

BLKSIZE=XXX3,5
LRECL=80,RECFM=FB,

BLKSIZE=XXX3,5

RECFM=U,BLKSIZE=XXX 4 ,6

RECFM=FB,LRECL=80,

IMaXll1lUIII of 3200 due to OS/VS Linkage Editor restriction.

2value of at least half track length recommended.

3Shoulo have ,jame 13LKSlZE as installations SYS1.MACLIB.

4 May be same data set as LMDSET.

5 lf PL/lf 13 to be used, BLKSIZE cannot exceed 400.

6 A value equal to SYS1.LINKLIB recon@ended. Minimum of 7294.

Figure 3-4. XXXDSET Parameter Values

3-32 Description and Operation Manual

SYSTEM INITIALIZATION

The Special Real Time Operating System executes as a job step under
control of OSjVS1. The job is started initially through standard OS/VS,
Job Control (JCL) statements with the EXEC card specifying PGM=DPPINIT.
The JCL defines to the Special Real Time Operating System the data sets
which have been created by the offline utility and the Special Real
Time Operating System SYSGEN procedures. The JCL also defines the
devices such as display and data acquisition, which are to be used by
the online routines. Control statements for the initialization of
subsystems are defined to the Special Real Time Operating system through
the //SYSINIT DD card. Also included in the SYSINIT input stream are
certain Special Real Time Operating System parameters that can override
SYSGENed values.

The Special Real Time Operating System initialization consists of three
processing phases: card read, basic initialization, and SUbsystem
initialization, as shown in Figure 3-5.

Basic Initialization

CALL
EP = DPPINITO

ATTACH EP = DPPINIT1
XCTL EP = DPPTSMON

11+--,0(~f'd Re.d _J
DPPINITO

Subs stem Initialization

DPPINIT DPPINIT1

Figure 3-5. The Special Real Time Operating system Initialization

Program DPPINIT gains control from as and immediately CALLs program
DPPINITO, the control statement read routine. DPPINITO reads control
statements from the input stream specified by the DD card named SYSINIT,
and builds a chain of control blocks to represent the input stream,
with one block built for each PATCH, WAIT, RESTART, and ABEND card
found in th~ input stream. When End-of-File (EOF) is reached, control
is returned to DPPINIT, with register 1 containing the origin of the
control block chain. DPPINIT initializes the task management c~trol
blocks and when this is completed, attaches program DPPINIT1, then
XeTLs to DPPTSMON. DPPINIT passes the origin of the control block
chain built by DPPINITO to DPPINIT1, which processes and issues the
PATCHes as specified by the user in the input stream. Figure 3-6 shows
the control statements that are valid as inp~t to initialization.

The control statement input stream defines the sequence of events that
is to occur during subsystem initialization. The stream is a series
of card image input statements coded similar to assembler l"anguage
macros. The rules for continuation of control statements are the same
as those for continuation of assembler language macro calls.

A control statement consists of a NAME field which is optional, an
OPERATION field, which is required, and operands. The maximum number
of operand characters is 255. There is no limit on the number of
continuation statements, as the limiting factor is the number of
characters of operands.

INSTALLATION GUIDE 3-33

NAME OPERATION

label PATCH

label WAIT

label

label QH

label QP

label STAEX

label RESTART

label TCB

label GETWA

label CBGET

label ABEND

label MASTER

label SLAVE

* comment

label DBREF

OPERANDS

EP=name ~TASK=nameJ ~QL=nJ
i, ID=nJ

[,PRTY = f~~:~~~=~~ ,n)}]

r L ,PARAM= (f C'Characters' })u
X'hexadecimal digits' ... ,
F'decimal number'

label

name ,QL=2~5 ,SEQ= ~~s • NO
,HOLD: YES

YES
,PATCH= rw-

number, QH=(name
2

, •.• ,name
n

) PRTY= JOBSTEP-5·
• JOBSTEP-n

NO
,HOLD= YES

EXI1'=name, LH=(name
l

,name
2

,· •. ,name
n

)

(, WRITE }
t,NOWRITE

number

J, PROBE }
~,NOPROBE

(number,value, ...)

number

t,DUMP

SLAVE=jobname

MASTER=jobname

comment

f, CHON } L CANCEL }
t,NOCMON t,NOCANCEL

Figure 3-6. Control statement Input stream

PATCH
Causes the creation of a task as defined by the PATCH macro. The
PATCH control statement operands are:

EP=name
Is the name, one to eight characters in length, of the program to be
PATCHed. EP= must be specified. The card read routine checks that
the name does not exceed eight characters, but does no other validity
checking on the name. This applies to any other operand that requires
name, taskname, or jobname •

. TASK=name
Is the name, one to eight characters in length, to be given to the
task created by this patchG

QL=n
Is the maximum number of work queue entries to be given to the task.
The number (n) must be a decimal number from 0 to 255, with a default
value of 1.

3-34 Description and Operation Manual

ID=n
K ust be a decimal n umber from 0 to 255 which vi 11 be passed to thf~
PATCHed program. The default is 0, and 255 has special meaning as
specified in the PATCH macro documentation.

PRTY=
Is used to deter.ine the priority of the PATCHed task. When JOBS'rEP··>!:!
is coded, the PATCHed task's priority is calculated by subtracting
the value "n" from the highest priority available to users, which is
the job step task (DPPTSftON) priority minus three. Value n must be
a deciaal number from 0 to 255. When (taskname,n) is coded, the task
is given a priority of the task specified in taskname minus the value
n. In either case, value n is a decimal value from 0 to 255. There
is no default, and value n must be supplied. If PRTY is not
specified, the task vill have the priority of the PATCHor (in this
case the highest possible user priority).

PARA"=
Specifies the parameters to be passed to the PATCHed program. There
are three types of data which can be coded:

C' characters'
Cause a character string to be passed. ThG single quote character
(') is not alloved in the character string.

X'hexadeciaal digits'
Cause hexadecimal data to be passed and must be valid hexadecimal
digits 0-9 or A-F.

F'decimal number'
Causes a fullvord value to be passed and must be a signed uecimal
number from 0 to 2 31 • 1 con version vill be done by the
initialization pr09ram.

WAIT
Causes initialization to vait for the completion of a specified task,
the task being the one PATCHed by the control statement with the same
name as the operand "label." The wait is only for the task to return
(i.e., the processing of the work queue that is created as a result
of the patch card to be completed) and has no relationship to any WO'LI\':

that may be created by that task via PATCHes or other means.

QP
Causes the cteation of a queue processor identified by the number
paramet'er and a logical sequence for processing queue holders defined
by the QH parameter. The number and QR parameters are required. The
QP control statement operands are defined as follows:

number
Is a numberic value fro. 0 to 99 used to uniquely identify a queue
processor. If more than one QP statement is found in the input stream
vith the same number, initialization viII be terminated. This queue
processor may be referenced in subsequent OS commands by this number~
An internal TCBX (task) name viII be created for each OP in the format
****QPnn, vhere nn is the number specified here. PATCHes specifying
the queue processor name as the task name vill be rejected and a
condition code viII be returned to the user.

QH=name
D'efines the names of fro. 1 to 21 queue holders for which work is to
be processed by this queue processor. Anyone queue holder name may
be specified on up to 21 QP statements. The specified queue holder
names are treated on a priority basis where vork from the queue holder
appearing first in the list viII be processed first. This queue
processor viII select work from the first queue holder specified

INSTALLATION GUIDE 3-35

until all vork in the queue holder has been selected before selecting
work from the second queue holder specified. Each queue holder name
specified on a QP statement must be defined by a OR statement.

PRTY=
Is an optional parameter used to determine the dispatching priority
of this queue processor task. When JOBSTEP-n is coded the queue
processor task's priority is calculated by subtracting the value, n,
from the highest priority available to users, which is the jobstep
task (DPPTSMON) priority minus three. The value. n, is a decimal
number from 0 to 255. If PRTY is not specified, the queue processor
task will be assigned a priority of JOBSTEP-5 (i.e., the job step
t ask's pr i 0 ri t y m in us 8).

HOLD=

QH

Is an optional 'parameter that can be used (HOLD=YES) to inhibit this
queue processor from selecting work from any queue holder until
released by a subsequent QS command specifying r xx,QS,QPnn,REL where
nn is the number specified on this QP statement (or the equivalent
using the ALL or ALL QP operands). If HOLD=YES is not specified,
theis queue processor will be immediately available for normal
processing.

Defines the queue holders and i~entifies each by the name parameter.
The name parameter is required. The QR control statement operands
are defined as follows:

name
Is a 1 to 8 character name used to uniquely identify a queue holder.
If more than one QR statement is found in the input stream with the
same name, initialization will be terainated. This queue holder may
be referenced in subsequent QS commands by this name. Work requests
for this queue holder must specify this name as the task name on the
PATCH -.macro call.

QL=
Is an optional parameter that is used to limit maximum number of work
queue entries to be given to this queue holder. This number, n, must
be a decimal number from 1 to 255. The default queue length is 255.

SEQ=
Is an optional parameter that can be used (SEQ=YES) to request that
work queued to this queue holder be processed sequentially (i.e.,
whenever work has been selected from this queue holder by a queue
processor, no other queue processor may select work from this queue
holder until that work has been completed) until altered by a
subsequent QS command specifying r xx,QS,name,NONSEQ where "name" is
the name specified on this QH statement. If SEQ=YES is not specified,
work from this queue holder may be processed simultaneo~sly by all
queue processors which are eligible to process vork from it.

HOLD=
Is an optional parameter that can be used (HOLD=YES) to prohibit any
queue processor from selecting work from this queue holder until
released by a subsequent QS command specifying r xx,QS,name,REL where
"name" is the name specified on this QH statement. If HOLD=YES is
not specified, this queue holder will be immediately available for
normal processing_

PATCH=
Is an optional parameter that can be used (PATCH=NO) to cause all
PA~CHes to this queue holder to be rejected and a condition code to
be returned to the user until altered by a subsequent QS command
specifying r xx,QS,name,PATCH where "name" is the name specified on

3-36 Description and Operation ~anual

this QH statement. If PATCH=NO is not specified, this queue holder
will accept all valid PATCHes.

STAEX
Is used to specify an exit routine load module that will be given
control when one of the load modules specified on this STAEX statement
abends. Kultiple STAEX statements may be included in the SYSINIT
input stream to define additional exit routine and/or load module
names. However, if a particular load module name is specified on more
than one STAEX statement, the exit routine defined on the last STAEX
statement in the input stream that references this load module name
is the exit routine that will be given control in the event of an
abend of that load module. Unless the exit routine requests that the
STAE processing be bypassed, the STAB options as defined
by the STAE IMP command (i.e., DUMP, NODUMP, etco) will remain in
effect.

EXIT=
Is the name of an exit routine load module to be given control through
standard linkage conventions during STAE processing~ The same
exit routine may be specified on tvo or more STARX statements. This
routine will be given control while in STAE processing and standard
limitations for STAE routine apply (i.e., a STAE macro cannot be
issued, etc.). On entry to the exit routines, registers 0, 1, 13, 14
and 15 will contain the values as defined by OS/VS1 STAE interface
routines. Register 2 will contain the address of the QP TCBXG The
exit routine must specify, by a return code in register 15, one of
the following:

Zero Continue STAE processing as defined by
the STAE IMP command (i.e., DUMP, NODUMP, etc.).

Positive Value Bypass STAE processing and return to the
OS/VS1 ABEND processing routine with registers
0, 1, and 15 as returned by the exit routine.
This viII allow the user to schedule a retry
routine.

Negati ve 4 Bypass STAE processing, zero register 15,
and return to the OS/VS1 ABEND process1ng
routine. Abnormal termination will continue.

If the load module specified is not available on the JOBLIB/STEPLIB
data sets at initialization time, initialization will be terminated.

LM=
Is the name of one or more user load modules for which the specified
exit routine is to be given control in the event of an abend of that
load module.

RESTART
The operands are not positional and may be coded in any sequence;
however, if the statement is to be in the input stream, at least one
of the operands must be used.

WRITE or NOW RITE specifies whether or not the failover data set is to
be written.

PROBE causes the PROBE function to be PATCHed after the RESTART
proces9ing whether or not a failover data set is written. NOPROBE
causes no PATCH to the PROBE. If both PROBE and CMON are requested,
the PROBE is PATCHed first.

INSTALLATION GUIDE 3-37

CKON causes the continuous monitor function to be PATCHed.

NPCMON does not PATCH the continuous monitore

CANCEL causes the job step task to ABEND with a user code 45
immediately after the RESTART processing. The CANCEL function will
occur prior to the PATCH to PROBE or continuous monitor.

NOCANCEL does not ABEND the jobstep and normal processing continues.

TCE
Causes a change in the number of advance TCBs to be obtained by
initialization. The number (0-99) overrides the value specifi.ed at
SYSGEN time~ If moce than one TCB statement is found, the value used
will be the value on the last statement.

GETWA
Overrides the SYSGENed values for GETWA sizes. The values must be in
parentheses and be paired (i.e., number,value). The maximum number
of pairs is 32, where number represents the number of blocks, and
value represents the size of the GETWA blocks; i.e., (5,72) requests
5 blocks of 72 bytes each. The maximum size of number is 4095, and
the maximum size of value is 30710 bytes. If more than one GETWA
statement is found in the input stream, the values used for
initialization are the values from the last GETWA statement
encountered. If two parameters request the same size, the second
request is unusable. Sizes greater than 2K must be 2K multiples. The
Special Real Time Operating System uses GETWA space in blocks up to
1024 bytes. If the GETWA statement is used, it must include blocks
of 1024 bytes or larger.

CBGET
Causes the amount of CBGET (the Special Real Time Operating System
Control Block) storage to be varied. The initialization default value
is the number of TCBs multiplied by TCBXLNTH, rounded to 2K plus 6K.
The value, specified by number, overrides the initialization default
value and is a decimal number from 1 to 99 representing the number of
2K blocks of storage to get for CBGET core. For example, 10 would
get 20K of CBGET storage. If more than one CBGET statement is in the
input stream, the value used is the value from the last statement
encountered. A CBGET 0 statement will cause initialization to use a
default value for CBGET storage. This would be the same as if no
CBGET statements were in the input stream.

ABEND
Is a control statement used in a testing environment. When an ABEND
card is processed, the job step will be ABENDed with a user 22 ABEND
after a time specified by t, where t is the number of seconds from 1
to 999. The default value for t is 30 seconds. A dump can be taken
by coding DUMP, and the default is no dumpo Control statements that
follow the ABEND statement in the input stream will never be processed,
as the ABEND causes a STIMER WAIT followed by the user ABEND.

MASTER
Is a statement used to designate this Special Real Time Operating System
initialization as a MASTER partition for two-par'tition operation ..
SLAVE=jobname specifies the jobname of the SLAVE partition.

SLAVE
Indicates this initialization is for a SLAVE partition in two-partition
operation_ The MASTER-jobname operand specifies the jobname of the
MASTER partition. only one KASTER or SLAVE card is allowed in an
input stream v and the jobname on the operand must be unique in the
system.

3-38 Description and Operation Manual

*
Is a comment statement. No continuations are allowed on comment
statements and there is no limit to the number of comment statements
in an input stream. Comments do not affect the initialization
sequence, but vill appear in the listing of control statements.

DBREF
Indicates to data base logging that the data base should be refreshed
during a normal start operation. That is, the most recently logged
copy is to be used. The operand NO must be coded to stop data base
refresh. The absence of a DBREF statement is the same as a DBREF YES.
A DBREF NO statement in the input stream takes precedence oYer any
DBREF YES statements in the same input stream.

The card read routine reads until EOF is reached and then returns
control to DPPINIT. All control statements are processed, and input
statements and any diagnostic error messages are written to the data
set specified by the SYSPRINT DD statement. If any control statements
are in error, the run is aborted with a user 34 ABEND, and a WTO message
is written to the console.

The following example shows the JCL required and a typical input stream
for the Special Real Time operating System system initialization.

/IREAL JOB
II EXEC
IISTEPLIB DD
IIDBINIT DD
IIDBINIT2 DD
IIMSGDS DD
IIDPPFAIL DD
IISYSPRINT DD
IIMSGOUT DO
IISYSUDUMP DO
I/SYSINIT DD
P1 PATCH

P2 PATCH

P3 PATCH
W1 WA IT P 2
P4 PATCH

P5 PATCH
RESTART

P6 PATCH

P7 PATCH

J.I!E5Ql~OGRAMMER~CL!~S=r
PGM=DPPINI T
DSN=!£S370~~Ql,DISP=SHR
DSN=!CS370.D~1,DISP=SHR
DSN=!£S370.D]1,DISP=SHR
DSN=!£~1Q~~~,DISP=SHR
DSN=!£S37Q.FALRSI,DISP=OLD
SYSOUT=A
SYSOUT=A
SYSOUT=A
*
EP=PINITOO,TASK=STARTER,
QL=5,ID=7,PRTY=JOBSTEP-15
EP=XINIT,TASK=SUBSYS1,
QL=10,ID=10,PRTY=JOBSTEP-16
EP=OBUILD,TASK=DATBAS,ID=255

EP=XUSE,TASK=SUBSYS2,
QL=5,ID=15,PRTY=(SUBSYS1,5),
PARAM= (F'47' ,F'52' ,X'AOB')
EP=PUSE
WRITE
EP=XREINT,TASK=MCTL,QL=15,
PARAM= (C' P OSTWRS')
EP=DBRST., T ASK- DBUS E,
PR TY=JOB ST EP-2

*
*

*
*

*
*

In this example, the JOB card is standard OS, and accounting information
must be as required for the individual installation. The EXEC card
must specify PGM=DPPINIT. The ST EPLIB DD card points to the
library (ies) conta.i-ning the Special Real Time Operating system and user
programs. The library name vill depend upon the name given the data
sets at SYSGEN time. The data $ets required for the data base are
pointed to by the DO cards OBIN1T and DBINIT2. The online message
handler requires the KSGOS and MSGOUT DD cards. The SYSPRINT DD card
is re'quired by initialization to print the input control statements.
A SY5UDUMP or SYSABEND DO card is optional, depending on whether a dump
is required on ABEND conditions. The 5YS1N1T DD card is required, and

INSTALLATION GUIDE 3-39

it must point to the data set containing the control statements for
the online run.

The input control statements in the preceding example show a typical
initialization sequence. The RESTART statement implies a wait on PATCH
statements labeled P1, P2, P3, P4, and PS. There is also an implied
.ait on P6 before initialization is completed. The The RESTART WRITE
makes the DPPFAIL DD card necessary.

All programs which are to be PATCHed via a PATCH statement prior to
the RESTART statement must go to termination before the restart data
set can be written. Each program PATCHed prior to the RESTART statement
is PATCHed with the ECB= operand. The ECB will be posted with the POST
bit, plus the contents of register 15 at the time the PATCHed program
returns control to the Special Real Time Operating System. If there
is no RESTART WRITE in the input stream, there is an implied wait before
initialization termination on all PATCHes issued with the PARAM= keyword
coded on the PATCH statement. Any PATCH receiving a non-zero return
code will cause the job step to abend with a user 031 ABEND code.

PATCHes in the input stream that follow a RESTART statement do not
imply WAIT unless the PATCH statement contains the PARAM= keyword.
There is an implied wait on each PATCH with the PARAM= keyword that
follows the RESTART WRITE statement. Explicit waits may be forced on
any PATCH statement through the use of the WAIT statement.

Upon regaining control from DPPINITO, DPPINIT initializ~$ the task
management control blocks. The XCVT and SCVT are initialized in subpool
253. The MASTER and SLAVE partitions are synchronized at this point
if the run is for two-partition operation. DPPINIT then creates the
TMCT in subpool 253 and initializes the GETWA control blocks and GETWA
core, and the Special Real Time Operating System control block (CBGET)
core. After creating the advance TCBs, DPPINIT links to other Special
Real Time Operating System initialization routines in the following
order:

• Duplicate Data Set Support (if SYSGENed)

• Data Base

• Realtime Message Handler

• Time Management

• Data Base Logging

Upon completion of these routines, task management is initialized and
ready to process PATCHes. At this time, DPPINIT attaches DDPINIT1 and
then XCTLs to DPPTSMON.

3-40 Description and Operation Manual

~rogram DPPINIT1 processes the input stream ~nd PATCHes the subsysteD
programs. A program that has been PATCHed by initialization receives
control with pointers as shown below.

Register I XCYT 8-byte Resource Table

t Resource Table
2 3

t PROBL ID

4 FLGS

I

8 : LL I t PARM : L ________ ~ ___________________________ :

The PROBL contains the LENGTH, which is the length of the PROBL
including parameter pointers. If PARAM= were coded on the PATCH input
statement, there would be one vord appended to the PROBL for each
parameter being passed. The format of this word is that the high-order
byte contains the length of parameter data, and the low-order three
bytes contain the address of the data.

The ID is the value coded in the 10= field of the PATCH statement. fhe
FLGS are as shown below:

FLGS

BIT o 2 4 , 5 v,..--_..i
UNUSED

6 7

I
PRE-RESTART

INITIAL IPL

SAME CPU AS IPL

Through interpretation of the PROBL FLGS, programs can determine if
they were PATCHed prior to the writing of the failover data set (bit
7=1), if the system is being restarted (bit 6=0), or if the system has
been failed-over to a backup CPU (bit 5=0).

INSTALLATION GUIDE 3-41

The following PATCH statement would cause the program na~ed REFNAME to
receive control with parameters as shown below.

i

PI PATCH EP=REFNAME, ID=15,
PARAM=(C'FIRST',X'FFA',F'72',F-l')

Register 1 ~ t XCYT

t Resource TBL 4 8-byte Resource T ABL 1

t PROBL

0018 I 00 I OF r1 C6C9D9E2E2 I
07 Unused

05 i PARM -

02 i PARM -1 OFFA I
04 i PARM

}, 04 t PARM 00000048 I

Y FFFFFFFF I

PATCHes issued ptior to RESTART WRITE are issued with ECB=, and upon
completion the post code is checked. MESSAGE DPP044I is issued for
each PATCH prior to RESTART WRITE that is posted with a non-zero post
code. If any ECBs have been posted non-zero, the job step will be
ABENDed with a user 35 ABEND code just prior to the writing of the
restart data set.

PATCHes issued for PATCH statements following the RESTART WRITE
statement will be issued with the ECB= keyword also, only if they are
coded with PARAH= or have WAIT statements naming the PATCH statement.
As prior to RESTART WRITE, the EeBs are checked for non-zero post code,
and message DPP044I will be issued for any task being posted non-zer~.
The job step, however, will not be ABENDed due to post cod~s for PAT:Hes
following RESTART WRITE. If there is no RESTART WRIT~ statement in
the input stream, the job step will be ABENDed (user 35) for any task
posted non-zero.

When all the input stream control blocks have been processed, DPPINlr
frees all storage obtained, and exits from the system. At this point
Special Real Time Operating System and subsystem initialization is
completed.

The initialization of Duplicate Data Set (DDS) support is accomplished
by including the DUPDISK macro in the Special Real Time ~perating System
SYSGEN input. This vill cause the initialization to link to DDS
initialization in the prescribed sequence.

3-42 Description and Operation Manual

DDS initialization consists of the following functions:

1. Processing the DDS input control stream (defined by DDSCTLIN DD
card) for DDS declarations.

2. Initially writing (and creating if not already done) the DDSTATOS
data set record (calculating the maximum block size for use in
later updates to this data set).

3. Allocating a DDS control header table (DDSCTLHD) and one DDS
control area (DDSCTLA) for each DDS declared (initializing these
tables with correct values).

4. Defining locks for each DDS declared (logically referred to as
DDS-Iock/share-ECB-thain locks).

5. Loading all DDS load modules (except the large and infrequently
used modules) and saving their addresses in the DDS control
table header.

6. connecting the DDS-kontrol table header to the SCVT and each
DDS control area to the DDS control table header.

Detailed Explanations

The DDS input control stream (consisting of 80-byte card images) is
outlined in the following table:

Name Opcode Parameters

ddsname DDSNAMES (ddname 1 ,ddname2 [= OUT])

blank REFRESH blank

blank READ ONLY blank

DDSNAl'IES
This op code is used to declare a data set pair as being duplicates.
There must be one DDSNAMES card for each data set pair the user wishes
to be treated as duplicates. The number of declarations cannot be
changed after initialization.

ddsname
Is the name which must be used by all DDS macros and commands which
refer to this DDS. The The DDSDCB must use this name in its name
field. If this operand is omitted, the value specified as ddnamel
will be taken as the DDS NAME.

ddname1
This parameter is required and specifies the DDNAME of the primary
data set.

ddname2
This parameter is required and specifies the DDNAME of the backup
data set.

=OUT
Specifies that the backup should be initialized out-oi-service.

INSTALLATION GUIDE 3-43

REFRESH
This op code indicates that a DDSTATUS data set has already been
created and that the declarations contained therein should be used
for this run. This op code is only valid as the first card, and, if
present, all subsequent cards will be ignored.

READONLY
This op code~indicates that this is the backup computer and that all
DDS outputs should be inhibited until failover/restart occurs. This
op code i!llEli~-R~ERESH, so a previously created DDSTATUS data set
is required. This op code is only valid as the first card, and all
subsequent cards will be ignored.

The DDSTATUS data set ~ill be sequential and will consist of one record
(undefined record format) which will be the core image of the DDS
control areas for all duplicate data sets. Thus, the needed information
is contained for each DDS; primary DD name, backup DD name, and
serviceability of the backup. This data set allows DDS to continue
using the most current status for each DDS after a failover/restart.

DDS lock/share logic is required since more than one task may be using
a DDS d~ring the same time period. Some DDS functions require that no
other tasks be using that same function at the same time, while other
functions can proceed in parallel with each other. Thus four logical
states can be defined for tasks with respect to DDS: (1) locking a
DDS, (2) waiting-to-Iock a DDS, (3) sharing a DDS, and (.4)
waiting-to-share a DDS.

The implementation of these states is accomplished by having a chain
of DDS Lock ECBs and DDS share ECBs, both starting with the DDS control
area for each DDS. The DDSLOCK ECB chain will consist of all tasks
waiting-to-lock this DDS. A non-zero value in the high-order byte of
the starting DDS lock ECB signifies that DDSLOCK is in effect for that
task (as opposed to 'waiting-to-Iock'). The DDS share ECB chain
consists of all tasks waiting to share this DDS. The high-order byte
of the starting DDS share ECB will contain a count of the tasks
currently sharing this DDS.

The locks that will be defined during initialization are DD lock/share
ECB chains just explained. All functions which modify those chains
(DDSLOCK, DDSUNLOCK, DDSHARE, DDSUNSHARE) must first acquire a lock on
the DDS lock/share chain in question.

3-44 Description and Operation Manual

A sample JCL deck to run a Special Real Time Operating System test
program using DDS follows:

//SRTOS
//STEPLIB
//DBINIT
//DBINIT2
//MSGDS
//DOSTATUS
//DOSEQ
//DDSEQ1
//DDBPMl
//DDBPM2
//DDSCMPIN

//MSGOUT
//SYSPRINT
//SYSUDOMP
//COMPRINT
//DDSCTLIN

DDS BPAM
//SYSINIT

TO

/*

Card 1

Card 2

Cards 3-4

Card 5

Card 6

Cards 7-10

Card 11

Card 12

Card 13

Card 14

Card 15

EXEC PGM=DPPINI T Card 1
DD DSN=EKS370.LM71,DISP=SHR Card 2
DD DSN=EMS370.DB171,DISP=SHR Card 3
DD DSN=EMS370,DB271,DISP=SHR Card 4
OS DSN=EMS370,DB471,DISP=SHR Card 5
OD DSN=EMS370,DDS71,DISP=SHR Card 6
DO DSN=DDS1,OISP=SHR Card 7
DO DSN=DDS2 ,DISP= SHR Card 8
DD DSN=DDSBP1,DISP=SHR Card 9
DO DSN=DDSBP2,DISP=SHR Card 10
DO UNIT=DISK, DISP= (,PASS) ,

SPACE::: (TRK, (1,1) Card 11
DO SYSOUT=A Card 12
DO SYSOUT=A Card 13
DO SYSOUT=A Card 14
DO SYSOUT=A Card 15
OD * Card 16
ODSN AM ES (DDSEQ, DDSEQ1) Card 17
DDSNAMES (DDBPM1,DDBPM2=OUT) Card 18
DD * Card 19
TCB 1 Card 20
PATCH EP=TESTPGM1,TASK=TESTPGMl Card 21
WAIT TO Card 22
ABEND 1 Card 23

Card 24

The entry point for a Special Real Time Operating System
execution is DPPINIT.

The Special Real Time Operating System load modules
exist on this data set in executable form.

These data sets contain the required arrays for Special
Real Time Operating system data base.

This data set contains the messages previously created
during Special Real Time Operating System SYSGEN.

The data set will contain a copy of the DOS control
areas to keep a current status of all DDS declarations.

These data sets will be the two duplicate data set pairs
for th is test run.

This data set is a one-track sequential data set which
will be used by DDS if a DDS COMPARE function is
requested.

This data set will receive Special Real Time operating
System output messages.

This data set will receive initialization messages
output.

This data set will receive a dump if one should occur.

This data set viII receive the output of IEBCOMPR if a
DDS Compare Function is requestedQ

INSTALLATION GUIDE 3-45

Card 16

Card 17

Card 18

Card 19

Cards 20-23

3-46

This data set contains the DDS input cards.

This card declares that DDSEQ is a duplicate data set
name, that DDSEQ is the primary DDNAME, that DDSEQ1 is
the backup and that the backup is in-service.

This card declares that DDSBPAM is a duplicate data set
name, that DDBPM1 is the primary DDname, that DDBPM2 is
the backup DDname, and that the backup is out-oi-service.

This data set contains the Special Real Time Operating
Systel initialization input cards.

These cards control the Special Real Time Operating
System execution.

Description and Operation Manual

OFPLI!E UTILITY PROGR1!

IntI"oduction

A realtime system typically requires a detailed description of the
enyironaent in which it operates. This description contains information
of two types. The first is the selection of options that are to be
This includes both hardware and software options, which are selected
at installation or system generation (SYSGEN) time. The second type
of environment description anco.passes those parameters that are of a
more dynaaic natare. In the Special Real Time Operating SysteD, these
consist of display, data base, and message definitions. These
definitions are initially made at Special Real Tine Operating System
SYSGEN tiae through the ase of the offline utility program DPPXUTIL.
This saae program (DPPXUTIL) is used, as the realtime systea develops,
to add new definitions or to change old ones. The offline utility
prograa aay be run in a partition during an online run, or on a backup
cpu.

The data base and message data sets are created and updated using the
offline utility. The control cards and macro state.ents coded by the
user result in the data sets being created to the user specification.
This is shown in Pigure 3-1.

/DPPXUCTL
Control

Statement

Coded
Source
Macro

Statements

figure 3-7 ..

Dat8 Base
Final Phase
Processor

Mesflage Final
Phase Processor

Allocated by
DO Cards Named
DBINIT
DBINIT2

Allocated by
DO Cards Named
DOOUOO
OPOU002

Offline Utility processing Overveiv

The control statement (1/ OPPIUCT~ defines to the offline utility data
set(s~ that is to be created or modified, the locations of the source
lIIacro statellents to be u.sed to create or modify the data set, and the
function to be perforlled on the data set, i.e., ADD, DEL, REPL, or
TEST. The format of the required source macro statements is different
for e~ch of the three typ~s of output data sets, and the description
of these macros follows in the final phase processor descriptions.

In addition, a facility is pro¥ided by the offline utility to al1011
the user t.o medify hi.s source .acro statement data set prior: to its

INSTALLATION GUIDE 3-47

use in generalinq the output data set. The user requests the update
function with a '/ DPPI~:PDT control card. The offline utility t:rogralTl
invokes the 05/V51 upda~€ utility proora~ IEBUPDTE. Therefore, the
user can code I?EOPDTP. statements, pass them to DPPXUTIL, and have his
source ~acro data set updated in the sa~e execution as the creation of
the output data sets. It should be r;oted that the offline utility
processp.s in the sa.e sequence as the control statements it receives.
~s a result, if the update is to take place before the online data set
is modified or created, the DPPXUPDT card .ust precede the DPPXUCTL
statement in the inpot stream. No limit is imposed by the offline
utility on the nuaber of control statements that aay be used in one
e xecut 1'on.

Input to the offline utility must be either cards or blocked or unblocked
card imaqe records from a source library. The input consists of control
statp~ents, which define the operation to be perfor.ed by the offline
utility and source macro statements. The macro statements may be in the
input strea~ or in a source library. The .acro source library cannot
contain control cards. Th~ control statement may be in the input stream
or say be a sequential data set.

Each control statement consists of an identifier, an operation, and
parameters. The identifier consists of the characters II in columns
, and 2 to denote a control card. The operation aust be preceded and
folloved by at least one blank. The operation describes the function
to be perfor.ed by the offline utility. DPPIUCTt specifies that an
online 'data set is to be created or modified. DPPIUPDT specifies that
a source ~acro data set is to be updated. Tbe paraaeters further describe
the operation to tbe utility.

Tbe utility proqraa beqias processing by looking in the SYSIN data set
for a control state.ent. The first state.ent should be a control
statement; if it is not, an error message is issued, and data in SYSIN
will be bypassed until a control state.ent is found. When a control
statement is found, it is validity checked, any errors vill cause error
aessaqes to be issued and a search begins for the next control statement.
Control statement errors do not terainate the utility program; however,
processing foe the control statement in error viII be bypassed vith
appropriat~ diaqnostic .essaqes. Tbe offline utility proqraa terainates
wben no mor~ control statements are to be processed.

When a valid DPPXOCTL control statement has been processed, all the input
source .acro state.ents for the control state.ent are read in and rewritten
into the data set allocated to the 10b by the SYSUT4 DO card. This data
set is then passed to the asse.bler. When a yalid DPPIUPDT control
statement is processed, the I!BUPDTE control and data statements (vhich
must folio'll the DPPIUPDT statement in the SYSIM input stream) are read in
and rewritten to the SYSUT~ data set. This data set is then passed to
IEBUPDTE.

Source ~ ~~ Update Operation

Tbe source macro statements used to define an online data set mar be
.aintained as a sequential data set or as a .e.ber of a partitioned data
set. These s~urce mac~o data sets may be created and modified by the
offline utility. The .odification of a source macro data set is invoked
by the ./ DPPXUPDT control statement. Figure 3-8 shovs an oyerviev of
tbe update processinq.

3-"8 Description and Operation ~anual

DPPXUTIL

Write to
SYSUT4 DO

Input to
IEBUPDTE

link to
IEBUPDTE

Return

Print
Output

Figure 3- 8.

" DPPXUPOT CONTRC'L CARD PROCESSING

ink

R t rn

IEBUPDTE Input
Source
Member

Update Processing Overview

Output
Source
Member

INSTALLATION GUIDE

The format of the DPPXUPDT control statement is:

#1 DPPXUPDT OLDSET=ddname,NEWSET=ddname

II Is required in columns 1 and 2.

DPPXUPDT
specifies a source data set update and must be preceded and followed
by a t least one blan k.

OLDSET=ddname
Specifies the ddname of the DD card allocating the data set to be used
as input (SYSUT1) by IEBUPDTE.

NEWSET=ddname
Specifies the ddname of the DD card allocating the data set to be used
as output (SYSUT2) by IEBUPDTE.

The IEBUPDTE control statements and input data statements must be coded
as specified in the Q~VSl Utilitie§ Ma~al, GC35-0005, and must
immediately follow the DPPXUPDT control statement in the SYSIN input
stream. Standard assembler language rules apply to comments and
continuation.

The following example shows a typical offline utility input stream for
an update function.

il DPPXUPDT OLDSET=DBASIN, NEWS ET=DBASOUT
.1 ADD NA~E=DBAS1,LIST=ALL

A R RAY N AM E= A R RAY 0 1
ITEM NAME=ITEM101,TYPE=F
ITEM NAME=ITEM102,TYPE=F

ARRAY NA~E=ARRAY02
ITEM NAME=ITEM201,TYPE=C,LEN=16

.1 CHANGE NAME=DBAS2,LIST=ALL

.1 DELETE SEQ1=200,SEQ2=300
ITEM NAME=ITEM705,TYPE=F 00000500

.1 HEPL NAME=DBAS3,LIST=ALL
ARRAY NAME=ARRAY05

ITEM NAME=ITEM501,TYPE=A

source Data Set Update Control Card Example

In this example, DD cards named DBASIN and DBA50UT may define the same
or different data sets. A new member named DBAS1 will be created in
~he data set defined by DD statement DBASOUT. Existing member DBAS2
will have statement numbers 200 through 300 deleted, and statement
number 500 will be replaced. Existing member DBA53 will be replaced.

The DPPXUCTL control statement requests the creation or modification
of a data set which is normally used online. The utility program,
after reading the source macro data set and rewriting it to the SYSUT4
data set, links to the assembler. The link will be to the OS/V51
assembler unless the user requests the use of the assembler H program
product (5134-A51) by coding PARM=H on the JCL EXEC card. The data in
SYSUT4 is assembled and control is returned to the offline utility.
If the assembler return code is 8 or greater, processing for this
control statement is aborted, and the utility attempts to read another
control card. If the return code is less than 8, the utility loads
the OS/VS1 Loader, which loads the assembled module into virtual
storage. Control is returned to the utility and if the return code is
less than 8, the appropriate final phase proce~sor is invoked by a link

3-50 Description and Operation Manual

to update the online data set. The appropriate final phase processor
depends upon which operand was coded in the AREA= keyword of the control
statement. Figure 3-9 shows an overview of the online data set
processing function.

The format of the DPPXUCTL control statement is shown below. Standard
assembler language rules apply to comments and continuation with the
exception that each parameter must not be split across two cards; that
is, each parameter must be wholly contained on one card.

I DISPDEFI I · I
#/ DPPXUCTL AREA = DBDEF , INPUT = ddname

MSGDEF ddname(membername)

[! ADD 1] [, TYPE = device type 1
DEL

, OPTION = REPL

TEST

#/ Must be in columns 1 and 2.

DPPXUCTL
Specifies an online data set is to be modified or created. This must
be preceded and followed by at least one blank.

AREA=
Must be specified and must specify one of three keywords:

DISPDEF
Specifies that the operation be performed against the display data
set.

DBDEF
Specifies that the operation be performed against the data base data
set.

MSGDEF
Specifies that the operation be performed against the message data'
set.

INSTALLATION GUIDE 3-51

;;~ac r,puf

;'C'T'l Card!
:J' I e,ul
Ja:a SeT

and \At'r.:€'
"10 SYSC)T4

L,nk 10
As.sembler

L~" .. 10
Lca.6er

In wI

wI ul

Return

Link.

Return

SYSU T 4

[j
iOt>I~CI

npw!

P'lrll
Qui ul

P',nl Output

Figure 3-9. Online Data Set Processing overview

I NPUT=
Must be specified and must specify one of the follo~ing:

* specifies that the input for this execution immediately follows the
control statement in the.SYSIN input stream.

ddname
Specifies that the input for this execution is in the sequential data
set allocated to the job by the named (ddname) DD statement.

ddname(member name)
Specifies that the input for this execution is in tbe "member name"
member of the partitioned data set allocated to the job by the named
(ddname) DD statement. The ddname and member name may consist of
from 1 to 8 alphabetic (A-Z) or numeric (0-9) characters, the first
of which must be alphabetic. Special characters ii, #, and $ are not
allowed.

OPTION=
~ust be specified; it indicates the type of operation to be performed.
One of the following must be specified:

ADD
Add a new member to the online data set.

3-52 Descri ption and Op.eration fSanual

REPL
Indicates to replace an existing member in the online data set and
if the member does not exist, to add the new one.

DEL
Signifies to delete an existing member from the online data set.

TEST
Is similar to REPL; the member is assembled, listing produced and so
forth, but the content of the online data set is not changed.

TYPE=
Is optional and is recognized only when AREA=DISPDEF is specified.
If AREA=KSGDEF or DBDEF,TYPE= is ignored. When coded, it must specify
the device type of the display hardware, i.e., 3277-1, 3271-2, 5985.
The default, if AREA=DISPDEF and TYPE= is not coded, is 3271-2.

The following example shows a typical input stream to the offline
utility to process an online data set •

• / DPPXUCTL

1/ DPPXUCTL

1/ DPPXUCTL

1/ DPPXUCTL

AREA=DBDEF,INPUT=*,OPTION=ADD
ARRAY NAKE=ARRAY09

ITEM NAME=ITEK901,TYPE=F
ITEM NAME=ITEM902,TYPE=F

AREA=DBDEF,OPTION=REPL,
INPUT=DBASOUT(DBAS1)

AREA=MSGDEF,OPTION=REPL
INPUT=MSGIN(TIKEMSG)

AREA=KSGDEF,OPTION=DEL,
INPUT=KSGSEQ

Online Data Set Update Example

*
*

*

In the preceding example, the following processing is being requested.

1. A new member (ARRAY09) is being ADDed to the online data base
data set. The member will be created from the ARRAY and ITEM
cards following the control statement in the input stream
(INPUT=*).

2. The member named DBAS1 from the source macro input data set
allocated by DD card DBASOUT is to be assembled. The resulting
member(s) will R~PLace corresponding members in the online data
base data set.

3. The member named TIKEKSG from the source macro input data set
allocated to the job by the DO card named MSGIN is to be
processed. The resulting member(s) will REPLace corresponding
members in the online message data set.

4. The sequential source macro input data set allocated to the job
by the DD statement named KSGSEQ is to be processed. The .
resulting member names will be DELeted from the online message
data set.

The following example is typical of the JCL required to execute the
offline utility program (DPPXUTIL). Following is a description of each
of the JCL statements in the example. The ~nderlined portions of the
JCL will likely have to be changed by the user to suit the requirements
of his operation.

INSTALLATION GUIDE 3-53

IIBUILD JOB l!CCQ.!lNTIN~INFQRM!1IOli)
liS 1 EXEC PGM=DPPXUTIL,~ARM=li
IISTEPLIB DD DSN=QSER~INK~IB,DISP=SHR
IISYSPRINT DO SYSOUT=A
IIASMPRINT DD SYSOUT=A
IIUPDPRINT 00 SYSOUT=A
IILODPRINT DD SYSOUT=A
IISYSLIB OD DSN=Q~ER.MAC1!~,DISP=SHR

II DO DSN=SYS1.MACLIB,DISP=SHR
IISYSUT1 OD UNIT=(SYSOA,SEP=SYSLIB) ,SPACE= (CYL, (2,2»
IISYSUT2* DD UNIT= (SYSDA,SEP=SYSUT1) ,SPACE= (CYL, (2,2»
IISYSUT3* DO UNIT=(SYSDA,SEP=SYSUT1),SPACE=(CYL, (2,2»
IISYSUT4 OD UNIT=(SYSDA,SEP=SYSUT1),SPACE=(CYL, (2,2»
II DCB= (RECF M=FB, LRECL=8 0, BLKS IZ E= 3200)
IIDBINIT DO OSN=Q~ER.DB1,DISP=OLD

IIDBINIT2 DD DSN=Q~ER.DB2,DISP=(MOD,PASS) ,DCB=(DSORG=DA)
IIMSGDS DD DSN=US~R~SG,DISP=OLD

IIDPOUDD DD DSN=Q~~R~IS~l,DISP=OLD
IIDPOUDD2 DD DSN=Q~ER.DISP2,DISP=OLD
IIDBASIN DD DSN=Q~ER~OUR~~DB~~ACR02,DISP=OLD

I/DBASOUT DD DSN=Q~ER~OUBf~~DB~MA~EOS,DISP=OLD
IIMSGIN DD DSN=Q~ER~OUR~~MS~MAfROS,DISP=OLD

IIMSGSEQ DD DSN=Q2ER~OUBf]~SE~~@~~ACRO~,DISP=OLD
IISYSGO DD UNIT=SYSDA,SPACE=(CYL, (1,1»,
II DCB= (RECFM=FB,LRECL=80, BLKSIZ E=3200)
IISYSIN DO *
1*

(I np u t Can trol S ta temen ts)

JCL Exa mple

*Not required when "PARM=H" is specified on the execute card.

JOB
Is a standard OS/VS1 job card; the accounting information is dependent
upon individual installation requirements.

EXEC
Is a standard OS/VS1 EXEC card; it must specify PGM=DPPXUTIL or an
applicable user PROC.

PARM
The offline utility will provide the option to print or not to print
statements gener.ated by the processing of a macro.. This viII be
accomplished by the offline utility inserting or not inserting a PRINT
NOGEN statement ~s the first statement in the Assembler SYSIN stream.
Control will be provided through the PARM keyword operand on the
execute card for DPPXUTIL. This option is provided in addition to
the option to select the OS/VS1 assembler or the H assembler ..

The following values may be specified:

F Selects the aS/VS1 Assembler.

H Select s the HAsse mble r.

GEN Print macro generated statements.

NOGEN Do not print macro generated statements.

In all cases, the default values will be "F" and "NOGEN"

3-54 Description and Operation Manual

Valid combinations of the values are:

PARM = , F '
PARM = , H'
PARM = 'GEN'
PAR f1 = 'NOGEN'
PARM = 'F,G EN'
PARM = .', F, NOGEN'
PARM = 'H,GEN'
PARM = 'H, NOGEN'

If an invalid value is specified for the PARK operand or if the PARM
operand is omitted, the default of PARM='F,NOGEN' will be used and
message DPPXUT25 will be printed.

STEPLIB DD
Defines the library containing the DPPXUTIL program and final phase
processors and. is not required if these programs reside in
SYS1,LINKLIB.

SYSPRINT DD
Defines a data set in which printed output wilL be placed, or may
specify a standard output class.

ASMPRINT DD
(Same as SYSPRINT) for printed output from the assembler.

UPDPRINT DD
(Same as SYSPRINT) for printed output from IEBUPDTE.

LODPRINT DD
(Same as SYSPRINT) for printed output from the loader. This may be
a DD DUMMY to reduce printed output.

SYSLIB DD
Defines the data set (s) containing the macros used by the assembler.

SYSUT1 DD
Defines the assembler work data sets. The device classname SYSDA
defines a direct-access device. This name (SISDA), if used, must have
been generated into the OS/VS1 system. SEP= is specified to improve
assembler performance.

SYSUT2 DD
(Same as SISUT1). Not required when "PARM=H" is specified on the
execute card.

SYSUT3 DD
(Same as SYSUT2).

SY5UT4 DD
Defines a work data set for DPPXUTIL. The DCB parameters must specify
RECFM=FB and a BLK5IZE that is a multiple of 80. The LRECL must be
80.

DBINIT DD
Defines the data base partitioned data set that contains a member for
every array in the data base, control information for direct access
resident arrays and initial data for VS resident arrays. This OD card
is required if any utility control card specifies AREA=DBDEF.

DBINIT2 DD
Defines the BDAM data set which contains the initial data for DA
resident arrays. This DD card is required if any utility control
statement specifies AREA=DBDEF. The data set described by this DO

INSTALLATION GUIDE 3-55

card must be allocated prior to the execution of the offline utility.
The OISP= operand on the DO card must specify (MOD.PAS~.

MSGDS OD
Defines the data set containing online display information. This DO
card is required if any utility control statement specifies
AREA=MSGDEF.

DPOUDD DD
Defines the data set containing online display information. This DO
card is required if any utility control statement specifies
AR EA=DISPDEF.

OPOUDD2 DD
Defines the display online comment data set. This OD card is required
if any utility control statement specifies AREA=DISPDEF and the DISPGEN
statement specifies COKMENT=YES.

DBASIN DD
May have any OD NAME. In this example, the DBASIN DD name vas used
to correspond to the OLDSET= name in the source data set update control
card example. The name chosen on the OLDSET= may be any valid DD
name; however, it must have a corresponding DD statement.

DBASOUT DD
(Same as DBA SIN) for NEWSET= keyword

MSGIN DD
{Same as OBASINl for INPUT= in the online data set update example

MSGSEQ DO
(Same as DBA SIN) for INPUT= in the source data set update control card
example

SYSGO DO
Defines the data set to contain the object deck output from the
assembler. This data set is used as input to the OS/VSl loader.

SYSIN DD
Defines the input from which DPPXUTIL gets its conteol statements as
possibly some source macro statements.

The message final phase processor accepts the load modules created as
a result of offline utility processing of DEFMSG statements and puts
them into the online message data set. Each DEFMSG statement results
in a member being processed in the partitioned data set allocated by
the MSGDS DD card.

The type of processing is determined from· the request in the control
card, e.g., ADD, DEL, REPL, or TEST.

The following is an example of offline utility control statements that
vould result in the iuYoking of the message final phase processo~.

#1 DPPXUCTL AREA=MSGDEF,INPUT=*,OPTION=ADD
DEFMSG 7,ROUTE=200,ACT=I,TEXT='DUMMY MESSAGE'

A control statement such as this vould cause message number 7 to be
added to the online message data set. The message would be a member
with the name DPP007.

3-56 Description and Operation Manual

There are more examples and additional descriptions of the DEFKSG in
this manual in the section describing the online message handler.

The data base final pbase processor receives control from the offline
utility to process the assembled and loaded input created by the input
cards following the AREA=DBDEF card. The function of the data base
final phase processor is to build and modify the online data base data
sets.

The input is the assembled and loaded data generated from the user
coded ARRAY, BLOCK, and ITEM macros. These macros are used offline
only and are described in detail in the following section.

For the purpose of the following discussion, an ARRAY is defined as an
arrangement of data ITEMS in one or more dimensions or BLOCKS. The
Special Real Time Operating system arrays with data items of one
dimension only are called UNBLOCKED arrays. Arrays with tvo or more
dimensions are BLOCKED arrays.

Arrays which will reside in virtual storage during online processing
are known as VS resident arrays. A VS resident array may be either a
BLOCKED array or an UNBLOCKED array. An array which resides on a direct
access device during online execution is known as a DA resident array.
A DA resident array must be a BLOCKED array.

A 'LOGGABLE' array is a VS array for which logging has been requested.
A 'LOGGING' array is a DA resident array into which a VS resident
logable array is being logged. For a more detailed description of data
base logging refer to the section in Chapter 2 entitled, "Data Base
Logging_"

The Special Real Time Operating system data base consists of VS resident
arrays and DA resident arrays. Data base logging will be performed on
a demand basis or on a cyclic basis if cyclic logging is SYSGENed.

The offline utility program and the data base final phase processor
create and update the data base. The type of array and the operation
to be performed are defined through the utility control statements and
the offline macros ARRAY, ITEM, and BLOCK.

The ARRAY macro is used to define the array, its characteristics, and
its dimensions. The BLOCK macros define the boundaries within the
dimensions of the array. The ITEM macro defines each item or element
of the array and its initial values. An item control block is created
to define each ITEM defined. The item control block contains the item
name, the type of data, the length of data, the repetition factor of
the item, and the displacement into the array of the start of the data
item.

The operation to be performed on the data base is defined to the offline
utility by the OPTION= parameter on the #1 DPPXUCTL input control
statement. The operation types and meanings are shown as follows:

ADD
Indicates a new array is to be added to the data base. If the data
base already contains an array with the same name, the new array will
not be added, and an error message will be issued.

REPL
Indicates that a new array is to be added to the data base. If the
data base does not contain an array with the same name, the array will

INSTALLATION GUIDE 3-57

be added. If the data base does contain the named array, it will be
replaced in the data base.

DEL
Indicates that an existing array is to be deleted from the data base.
If the array does not exist, an error message is written.

TEST
Is similar to REPL except the data base is not modified.

Th~ Special Real Time operating System data base consists of one
partitioned data set (DSORG=PO) and one or more direct data sets
(DSORG=DA). The partitioned data set (PDS) is allocated at the Special
Real Time Operating System SYSGEN time and is referenced in realtime
by the DD card named DBINIT. The direct data set is also allocated at
the Special Real Time Operating System SYSGEN time and is referenced
by the //DBINIT2 DD card.

The PDS contains a directory entry for every array in the data base.
Information in the directory entry is used for data base initialization.
The members of the PDS contain the Item Control Blocks for each arra~
in the data base. For VS resident arrays the member containing the
Item control Block also contains the VS resident array and its initial
data. For DA resident arrays the PDS member containing the Item Control
Block also contains control information used to locate the corresponding
DA array in the direct data set.

There can be only one PDS in the data base. However, additional direct
data sets can be allocated and become part of the data base. Once an
additional direct data set has been referenced during execution of the
offline utility, any further reference to this data set as part of the
data base must be made through a DD card with the DD name the same as
the DD name used on the DADD or the LOGDD keyword on the ARRAY macro
used to create the array. This is because the DD name becomes part of
the control information written into the PDS member for the array_

Secondary data bases may be created by the user. To do this, he would
create a PDS and one or more direct data sets and reference them through
the DBINIT and DBINIT2 DD cards.

3-58

The data base data sets contain records with references to
and dependencies on other records and members. These
references and dependencies are constructed by the offline
utility program DPPXUTIL, and the data sets must not be
modified except by DPPXUTIL. This precludes moving or
copying an entire data base data set, and also prohibits
modifying their content by adding or deleting records or
members, or by changing block sizes. Concatenation of data
base data set groups for realtime execution is not allowed.

Description and Operation Manual

OFFLINE MACROS

The following pages describe the operands and functions of the offline
macros. For convenience they are listed in alphabetical order.

Some of the operands on the data
to accept self-defining terms or
actual value. This will pr.ovide
maintenance of data base arrays.
this capability are shown below~

base offline macros have been designed
absolute expressions in place of an
grea ter flexibility in design an d"
The macros and operands which provide

ARRAY

BLOCK

ITEM

EXAMPLE:

BLKCT=
BLKSIZE=

start number

LEN=
RPT=
DISP=

,stop number

The following will illustrate some self-defining terms and absolute
expressions, the format of that can be used in the ARRAY, BLOCK, and
ITEM macros.

DATA
COUNT
START
A
B
C
strop
SIZE

Note:

DSECT
EQU
DS
DS
DS

10
on
F
D

DS F
DS OD
EQO STOP - START
ARRAY NAME=ARAY, BLKCT= (COUNT) ,BLKSIZE= (SIZE)
BI.OCK (L U A) , (C-B)
ITEr1 TYPE=C,LEN= (LIA) ,DISP=(A-START)
ITEfIt TYPE=C, LE N= (C aUNT) ,01 SP=4, RPT= (L' B)

• Self-defining terms and absolute expressions must be enclosed in
parenthesis.

• Care must be taken not to become "B" assembler dependent.

• No validity checking of block numbers will be done in the BLOCK
macro if a self-defining term or absolute expression is used on a
block macro.

• No validity checking viII be done to prevent items from overlapping
when the "DISP=" operand is used.

INSTALLATION GUIDE 3-59

ARRAY

The ARRAY macro is used to define a data base array to the database
offline utility.

[symbol] ARRAY {NAME=name }
NUMBER=number

[,INIT= {~~s}J

[,REINIT= { ~~s}]

[,LOCATE= {~i}]

[,BLKCT=
BLOCK lJ number
(self-defining term)
(absolute expression)

lBLKSIZE= rUmber n (self-defining term)
.(absolute expression)

[,DADD= ddname]

[, USE= { vaiue }]

[BNDRY= I DBLWD!] PAGE
MIN

[LOGNAME= name]

[LOGDD= ddnameJ

[LOGFREQ= { v~lue}J
[LOGCOPY= {v~lue }]

[LOGWRAP=name]

3-60 Description and Operation Manual

NAME=
Is a 1 to 8 byte alphameric name that conforms to standard OS naming
conventions for members of a partitioned data set. The array name
for each array must be unique for all arrays in the data base. The
NAME and NUMBER parameters are mutually exclusive.

NUMBER=
Is a decimal number from 1 through 255 by which the array may be
referenced during online data base processing. The total number of
arrays in the data base is not limited to 255, however, the maximum
number of NUMBERed arrays is 255. An entry will be allocated in the
online tables for each number from one to the highest assigned array
number even though all numbers do not have an array built for them
(i.e., tvo arrays are created - NUMBER=2 and NUMBER=10 - this will
create only two arrays in the data base but will create 10 entries in
the online tables.) For this reason, numbers should be assigned in
ascending sequence starting with one. Skipped numbers are valid, but
will result in wasted virtual storage and extra processing time for
online data base processing. The NAME and NUMBER parameters are
mutually exclusive.

INIT=
Is used to determine whether a vs resident array is to be initialized
at data base initialization time. If YES is specified, space will be
allocated in VS, and the data specified in the ITEM cards for this
array will be moved from a direct access device into the allocated
space in VS. If NO is specified, space viII be allocated in vs, and
no data will be moved into the allocated space. (The space may contain
residue data from previous programs.) The The default value for this
parameter is NO. This parameter is ignored if DA is specified on the
LOCATE parameter.

REINIT=
Defines reinitialization action to be taken after a Special Real Time
Operating system restart. The parameter is valid only if LOCATE=VS
is specified and if logging is specified for the array. If REINIT=YES
is specified, the data from the most recently logged copy of the array
will be read into the space allocated to the array after the restart
occurs. Reinitialization will be bypassed by the data base online
initialization routines if the logged copy is not at the same update
level as the array which was loaded at the special Real Time Operating
System initialization. This would occur if the array had been
redefined through the offline utility programs.

If REINIT=NO is specified or the parameter is omitted, the content of
the array will not be modified after a restart occurs.

LOCATE=
Is used to determine whether the array is to reside on a direct access
device or in virtual storage during online data base processing. If
VS is specified, the array will be initialized in virtual storage in
accordance with specifications of the INIT parameter. If DA is
specified, no initialization viII take place at data base
initialization time. The default value for the LOCATE parameter is
VS.

BLKCT=
Determines whether the array is blocked or unblocked. If this
parameter is omitted, the array is assumed to be unblocked and,
therefore, must reside in virtual storage. A number from 1 through
32767 will specify the exact number of data blocks that will be created
for this array. The number of data blocks can be implied by specifying
BLOCK on the BLKCT This indicates that the highest block number
specified on a BLOCK macro for this array will determine the number
of data blocks for-this array. BLKCT is required if DA is specified

INSTALLATION GUIDE 3-61

on the LOCATE parameter. When BLKCT=n is specified, there cannot be
either more BLOCK macros than n or a BLOCK macro cannot specify a
number great er than n.

Examples:

ARRAY
BLOCK

BLOCK

BLOCK

NAME=EXAMP1,BLKCT=2

ITEM

ITEM

ITEM

This is invalid because BLKCT=2 is specified but the array has 3 BLOCK
macros.

ARRAY
BLOCK

NAME=EXAMP 2, BLKCT=4
1,5
ITEM

This is invalid because BLKCT=4 was specified and the BLOCK macro has
a request for 5 blocks.

ARRAY
BLOCK

NA ME=E XA MP 3, BL KCT= 10
2,5
ITEM

This example is valid and will build an array with 10 blocks in which
blocks 2 through 5 will be created with the initial data as requested
in ITEM cards and blocks 1 and 6 through 10 will also be created but
will have initial data of binary zeros.

If BLKCT=BLOCK were specified, the/number of blocks created would be
the same as the highest block number generated by a BLOCK macro.

ARRAY
BLOCK

BLOCK

BLOCK

NAME=EXAMP4,BLKCT=BLOCK
1,5
ITEM

ITEM

ITEM

The above example would result in a block count of 1 as block numbers
are assigned sequentially when no operands are specified.

BLKSIZE=
Specifies the number of bytes to be allocated to each block of data
in this array. This parameter is ignored if the BLKCT parameter is
omitted. If the BLKSIZE parameter is omitted and the BLKCT parameter
is specified, the size of the first data block described by ITEM macros
for this array will determine the block size for all blocks in this
array. The maximum block size is limited to the track capacity of
the device to which the array will be-allocated. If the amount of
data specified in the ITEM cards for the first BLOCK is greater than
the data set block size, the data block will be truncated to data set
block size and this will be the size for all subsequent blocks. If
subsequent blocks generate less data than the first BLOCK, they will
be padded with binary zeros to the same size as the first block. If
subsequent blocks exceed the size of the first block, they will be
truncated. When BLKSIZE=n is specified, each BLOCK will be created
n by tes long.

3-62 Description and Operation Manual

DADD=
Specifies the name of a data definition (DO) statement which describes
a BDAM data set where space for this direct access resident array will
be allocated. This parameter is required if DA is specified on the
LOCATE parameter; however, if VS is specified on the LOCATE parameter,
the DADO parameter is ignorede

USE=
Is a code from 1 to 7 which indicates the expected frequency of
reference to items in the arraYe The arrays are loaded into virtual
memory based upon this code. Code 1 indicates the highest usage, and
code 7 has the lowest usage. If the USE parameter is omitted or if
an invalid value is specified, a value of 7 will be assumed as the
default use code. This parameter is ignored if DA is specified on
the LOCATE parameter.

BNDRY=
Is used to determine the boundary alignment for a virtual storage
resident array at data base initialization time. If the parameter is
omitted or if DBLWORD is specified, the array may be initialized
starting on any doublevord boundarYa If PAGE is specified, the array
will be initialized to start on a virtual storage page boundary.
Specification of MIN viII cause Data Base Initialization to do
calculations based on the array length and position the start of the
array so that it will be contained in the smallest possible number of
virtual storage pagts.

Those arrays for which logging is specified will have a 24-byte logging
header appended to the front of the space allocated in VS. For
boundary alignment purposes, the first byte of the logging header will
be considered the start of the array.

The following operands describe the logging array associated with a VS
array and the logging characteristics of the array being defined.
Logging of the array will not be allowed if they are not specified.
Since a DA resident array is allocated in response to these operands,
they should not be specified if logging is not required.

LOGNAME~

Specifies a 1 to 8 character name to be used as the array name of a
direct access resident array where the virtual storage resident array
is to be logged. The log array name must conform to the same standards
and conventions as set forth under the NAME parameter. This parameter
is ignored if DA is specified on the LOCATE parameter. If this
parameter is omitted and is is specified'on the LOCATE parameter, no
logging will be performed.

LOGDD=
Specifies the name of a data definition statement which describes a
BDAM data set where space can be allocated for the logging array where
this array is to be logged. This parameter is required if VS is
specified on the LOCATE parameter and if a name was specified on the
LOGNAME parameter. This parameter is ignored if DA is specified on
the LOCATE parameter.

LOGFREQ=
Indicates by a code of 0 to 3 the frequency at which this array is to
be logged. A code of 0 indicates that it is to be logged only on
demand. Codes 1 to 3 are used in conjuntion with system generation
parameters to specify the log frequency. A code of 1 is the highest
frequency, and 3 is the lowest frequency. If the LOGFREQ parameter
is omitted, or if an invalid value is specified, a value of 0 will be
assumed. This parameter is ignored if DA is specified on the LOCATE
parameter.

INSTALLATION GUIDE 3-63

LOGCOPY=
Specifies the number of history copies of this array for which space
is to be allocated in the logging array_ If the LOG COpy parameter is
omitted or if 0 is specified, a value of 1 will be assumed as the
default value. This parameter is ignored if DA is specified on the
LOCATE parameter.

LOGWRAP=
Specifies the name of a user-written load module to be given control
when the last block of the logging array has been filled and vrap
around viII occur on the next request to log this array. This
parameter is ignored if DA is specified on the LOCATE parameter.

The load module viII be entered via a PATCH to the load module as a
dependent task. The parameter field will be eight bytes and contains
the name of the array for which the logging array wrapped around.

The following chart shows the ARRAY macro operands, which are required
and which are optional for the creation of any type array.

3-64

,-
VS Array. I VS Array OA Array VS Array I Oper ands

Unblocked I Blocked Blocked with Logging
Unblocked

t
NAME
NUMB
INIT

ER

T REIN!

LOeA

BLKC1

TE

ZE

y

AME

0

REQ

Opy

R

0

0

0

*
I

I

0

0

** ,
,
,

BLKS'

DADO

USE

BNOR

LOGN

LOGO

LOGF

LOGC

LOGW
I RAPL

I

R - REQUIRED OPERAND
o - OPTIONAL OPERAND
I - IGNORED OPERAND

R R R

0 , 0

0 , 0

0 R 0

R R *
0 0 I

I R I

0 , 0

0 , 0

** , R , , R , I 0 , , 0 , I 0

* - THE PRESENCE OF THIS OPERAND WOULD CHANGE THE ARRAY FROM
UNBLOCKED TO BLOCKED

.. - THE PRESENCE OF THIS OPERAND WOULD CHANGE THE ARRAY INTO
A LOGABLE ARRAY_

VS Array
with Logging

Blocked

R

0

0

0

R

0

I

0

0

R

R

0

0

0

Description and operation Manual

I

BLOCK

The BLOCK macro is used to define data blocks to the Data Base Final
Phase Processor. Each block in an array will have identical dimensions.
Two consecutive BLOCK macros are not allowed. The BLOCK macro must be
followed by an ITEM macro.

[I start number I J
symbol BLOCK (self-defining term)

(absolute expression)

[{end number I] (self-defining term)
(absolute expression)

start number
Is the number to be assigned to the data block described by the ITEM
macro statements following this macro statement. If this parameter
is omitted, the next sequential block number will be assumed. The
lowest valid block number is 1.

end number
Is the number to be assigned to the last data block described by the
ITEM macro statements following this macro statement. This parameter
is not required when only one data block is described by the BLOCK
macro. This parameter causes the data block described to be duplicated
and assigned a block number for each consecutive number from the start
number through the end number. The value of the end number must be
greater than the value of the start number.

Block numbers should be assigned in consecutive, ascending sequence
starting with the number 1. Missing block numbers between 1 and the
highest block number specified will cause the generation of a block
of binary zeros to be generated for each of the missing numbers.

If the BLKCT parameter was not specified on the ARRAY macro, the BLOCK
macro will be ignored. The BLOCK macro must not specify a block number
greater than the value specified in the BLKCT parameter on the ARRAY
macro.

EXAKPLES:

ARRAY
BLOCK

BLOCK

NAME=BLKEXA~,BLKCT=BLOCK

IT EM TYPE= H, IN IT=21
10

ITEM TYPE=N

This example will create an array of 10 blocks with each block two
bytes long. Block 1 will be initialized to 21, while 2 through 10 will
be bi na ry zeros.

ARRAY
BLOCK

NAME=XMP,BLKCT=10
3,5
IT EM T Y P E= F, I N IT =- 1

This example will create an array with ten 4-byte blocks. Blocks 1
and 2 will be initialized to binary zeros, blocks 3, 4, and 5 to binary
ones, and blocks 6 through 10 to binary zeros.

INSTALLATION GUIDE 3-65

ARRAY
BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

NAME=BLKEX ,BLKCT=BLOCK
4
ITEM TYPE=C, INIT=' A' ,LEN=l 0
6
IT EM T YPE= C, IN IT=' B' ,L EN=6
7
ITEM TYPE=F
10,15
ITEM TYPE=F,INIT=-l

ITEM TYPE= C,LEN=5

The above example will create an array with 16 blocks, each having 10
bytes. Blocks 1, 2, and 3 viII each have 10 bytes of binary zeros.
Block 4 viII be the character 'A' -(HEX 'Cl') followed by 9 bytes of
blanks (HEX '40'). Block 5 will be 10 bytes of binary zeros. Block
6 viII be the character 'B' -(HEX 'C2'), 5 bytes of blanks (HEX '40'),
followed by 4 padding bytes of binary zeros. Block 7 viII be fullvord
aligned and will have 4 bytes of veros (F) followed by 6 bytes of
padding, also binary zeros. Blocks 8 and 9 viII each have 10 bytes of
binary zeros. Blocks 10 through 15 viII also be fullvord aligned, each
containing 4 bytes of binary ones (INIT=-l) folloved by 6 bytes of
padding (binary zeros). Block 16 viII be 10 bytes long with the first
5 bytes being blanks (HEX '40') and 5 bytes of binary zeros.

3-66 Description and Operation Manual

ITEM

The ITEM macro is used to define, to the data base offline utility~ a
data item to be contained in a data base array_

symbol ITEM TYPE = type

[,NAME= symbol1

[,INIT= value

I
I

I
I
,

[inumber 'J
,LEN '(self-defining term) I

(absolute expression)

1

r ,RPT =1' value - j-1
I (self-defining term)
L ,(absolute expression) .J

[

lnUmber 1J .DISP=~ (self-defining term)
l(absolute expression)

NAME=
Is a 1 to 8 byte alphanumeric nameu The ITEM name for each ITEM must
be unique for all items in the entire data base.

ITEM names may be assigned to ITEMs in the first block of a blocked
array and will be applied to all blocks of that array. Names may be
coded for ITEMs in succeeding blocKs, but the names will be ignored;
that is, they will not appear in any Special Real Time operating system
ITEM name lists and will not be checked for duplication.

TYPE=
Is required and must be one of the following:

I TYPE 11 DEFAULT!

I
. LENGTH 1

I

I I !
I I I
• A I
I H I 4 •

I D I i

DEFAUL T
ALIGNMENT

I'ul!w"rd

Fullword

[)ouhi.:woo'd

I
I 4 i FuHwurd

I ~ I :~:~
() I N NOlle

DATA
TYPE

Addre~s Constanl

Fixed POlOt

Fix~d Poinl

FloatiT1!(Poml

FI"alin~ Point

Packed Dccimai

Character

Nonc

G"'XIMUM
I Lr.N=

Note: The "A" type must be specified in non-relocatable terms or
expressions since it will not relocate addresses.

The "N" tYVe allows the user to give an additional name or 'alias
name' to the ITEK which immediately follows the null item, or
it allows the user to generate a name which will define one o~
more of the following items which have no name assigned. The
INIT and RPT parameters are ignored.

INSTALLATION GUIDE 3-67

The following examples shows the use of the TYPE=N operand:

ARRAY
ITEM
ITEM
ITEM

NA ME=N ULLE X
NAME=NULL01A,TYPE=N
NAME=NULL01B,TYPE=N
NAME=NULL01,TYPE=F,INIT=21

In this example the null items named NULL01A and NULL01B will have
the same displacement into array NULLEX as item NULL01. A GETITEM
TYPE=ADDR during online processing for item name NULL01B would return
the same address as for name NULL01.

LEN=
May be any integer value from 1 through 256, inclusive. When LEN= is
coded, boundary alignment is negated. LEN= coded on a TYPE=N item
will determine the length of data to be returned by a GETITEM on a
null or alias name. This is shown in the following example:

ARRAY
ITEM
ITEM
ITEM
ITEM
ITEM
ITEM

NA ME=N ULLE Xl
NAME=NULLALL,LEN=16,TYPE=N
NAME=NULL1A,TYPE=A
NAME=NULL1B,TYPE=D
NAME=NULL1C,TYPE=F
NAME=NULLPART,LEN=2,TYPE=N
NAME=NULL2C,TYPE=F

In this example, an online GETITEM TYPE=DATA for item name NULLALL
would get all the data for items NULL1A, NULL1B, and NULL1C. A GETITEM
TYPE=DATA for name NULLPART, however, would get only the first two
bytes of data from item NULL2C.

The LEN parameter is required for types Band P if initial data is
specified on the INI T parameter.

The LEN parameter can be used with type N to determine the total length
of subsequent unnamed items.

The LEN parameter for types A, E, and F may be specified as a value
from 1 through 4. If the parameter is omitted. or an invalid value
is specified, the default length of 4 will be assumed.

The LEN parameter for type H may be specified as a value of 1 or 2.
If the parameter is omitted or an invalid value is specified, the
default length of 2 will be assumed.

The LEN parameter for type D may be specified as a value from 1 through
8. If the parameter is omitted or an invalid value is specified, the
default length of 8 will be assumed.

The LEN parameter may be specified for type c. However, if it is
omitted, the number of characters, not including the enclosing
apostrophes, specified on the INIT parameter will be used as the
length.

The LEN parameter may be specified for type x. However, if it is
omitted, the number of characters specified on the INIT parameter will
be used to determine the length. If the number of characters in the
INIT parameter is odd, 1 will be added to the number, and the sum is
divided by 2. If the number of characters in the INIT parameter is
even, the number will be divided by 2. The result of the division
will be used as the length.

INIT=
Specifies the initial data to be placed on the data base for this
item. If the INIT parameter is omitted and the TYPE is C~ the initial

3-68 Description and Operation Manual

data will default to blanks. If the INIT parameter is specified and
the TYPE is C, the initial data must be enclosed in single apostrophes
and must conform to assembler language specifications for a
character-type constant. The default data for all other types viII
be zeroes.

RPT=
Is a repetition factor to determine the number of times the initial
data for this item will appear on the data base as part of this item.
If the RPT parameter is omitted or specified as 0, the default value
of 1 will be assumed. The value specified for this parameter includes
the original copy of the item data. For example, "RPT=1" gives only
the original item data; "RPT=2" gives the original item data plus one
copy of the item data.

DISP=
Provides the capability to specify the displacement into an unblocked
array or the displacement into a block of a blocked array where the
initial data on the ITEM macro will start.

INSTALLATION GUIDE 3-69

DEFMSG

The DEFMSG macro is used to define messages to be used by the message
writer function. The maximum length of a message including variates.
However, when defining a message, the length should conform to the
length restrictions of the device(s) to which it will be routed.

[s ymbo 1] DEFMSG number. ROUTE=code ~ ACT=\!}] [• .DATE-! ~~S lJ. TEXT= • da ta •

number
Is a three digit (001-999) unique message number with the first digit
indicating the subsystem. (The numbers from 001-099 and 800-899 are
reserved for use by the Special Real Time Operating System.)

ROUTE=
Defines routing code (0-255). Codes are assigned Codes are assigned
(during SYSGEN) indicating the types of output devices. Examples
would be a display unit or display group, a printer or printer group.
By convention the codes 1-9 are reserved for use by the Special Real
Time Operating System.

ACT=
Defines action code. Codes are assigned to indicate the type of action
required in connection with a message.

I Information (default if operand omitted) •
A Action required.
D Operator/user decision required.

DATE=
Indicates whether the date will be affixed to the message during online
operations.

YES Affix date.
NO Do not affix date.

TEXT=
Defines the text of the message and the variables to be supplied by
the user when the message is requested during online execution. The
text is a character string, enclosed in apostrophies, with the
variables positioned in the stri ng a t the posi.tion they should appear
in the output message. Variables are specified by coding information
in the following format:

#cfs#

Where

c

f

s

3-70

is a delimiter character and must appear before and after the
other specifications. No blanks are allowed between them.

defines the number of characters to be occupied by this variable
in the output message.

defines the type of data conversion to be performed on the data
being output.

specifies the position of this variable in the variable list
that is passed by the calling program when the message is
selected for output.

Description and Operation Manual

The maximum number of variables allowed is 10. The maximum message
length, including variables, is 255 characters. The message will be
truncated by the message writer if necessary to conform to the line
length restrictions of the device to which the message is routed.

The variable data is converted to alphanumeric characters as defined
by the variable specification. The ~lid character specifications
and associated conversion actions are as follows:

F The four bytes at the address specified will be converted to
decimal and inserted into the message.

H The two bytes at the address specified will be converted to
decimal and inserted into the message.

C Data beginning at the ad~ress specified, for the length specified
in the format specification (c above) will be moved into the
message. It is assumed that the data consists of 'printable'
characters.

X The data beginning at the address specified is converted to
hexadecimal characters and moved into the message. If the number
of characters allocated in the message is even, data is converted
beginning with the first 4 bits at the address specified, and
each 4 bits following are conyer ted to a character until the
message field is filled. If the number of characters allocated
in the message is odd, the first 4 bits of the byte at the
address specified are skipped, and conversion proceeds as above.

B The data beginning with the byte specified by the address is
converted, each bit being converted to a character (1 or 0)_
If the number of characters allocated in the message (c) is an
even multiple of 8, data conversion begins with the first bit
of the first byte at the address.

If c is not a multiple of 8, c is divided by 8, and the value
1 is added to the quotient (the remainder is dropped). This
determines the number of bytes (n) from which data will be
converted. The right most c bits of the n byte field will be
converted to characters and moved to the message.

The following figure shows how the data would appear in the message if
converted according to various variable specifications. In all cases,
assume that the user has passed the address of a 4-byte area which
contains X'D3042FOO'.

INSTALLATION GUIDE 3-71

Variable output Position of Bit
~l2.§.cifi~ti2J! £hy~te~ ~!!!cted_f.2!:~.Q!l~gio!l

#1Xn# 3 LOIf-order of " bits
of first byte

#2Xn# D3 En tire first byte

#3Xn# 304 Low-order 4 bi ts of first byte
and entire second byte

#6Xn# D3042F Entire first 3 bytes

18Bnl 11010011 Entire first byte

ISBnl 10011 Low-order S bits of first byte

#3Bn# 011 Low-order 3 bits of first byte

#16Bn# 1101001100000100 En ti re fir st two bytes

#13Bn# 1001100000100 Low-order S hi ts of first byte
and second byte

Figure 3-10. Hexadecimal and Binary Variable Descriptions

3-72 Description and Operation Manual

DATA BASE BDAM DATA SET COMPRESS

The data base BOAK data set compress program O~PXDBCP provides the
capability to recover lost space on data base BOAM data sets.

A single execution of the compress program can be used to compress all
BOAM data sets in a single data base. However, a single execution of
the compress program cannot be used to compress BDAM data sets from
more than one data base.

JCL requirements are:

II EXEC PGM=DPPXOBCP oefin~s program name to be executed.

//STEPLIB DO Defines the data set which con tain s the
compress program.

//SYSPRINT DO SYSOUT=A Ou tput message data set.

//SYSUT1 DD Defines a BOAM data set to be used by
the compress program.

The space allocated to this data set and the data set block size must
be at least as large as the largest used by a BDAM data set to be
com pr essed.

//DBINIT

I/ANYDAOD

DO

DD

Defines a data base partitioned data
set.

Defines a data base BDAM data set which
is part of the same data base as the
POS defined by the DBINIT OD card. The
DD name used here must be the same as
the DO name used during execution of
the offline utilit y.

There may be a DD statement for every
BOAK data set associated with the POC
defined by the DBINIT DO statement.

Example 1 is a sample set of JCL to create a data base PDS and three
associated BOAK data sets. Example 2 shows a sample of how the data
base data sets are referenced during execution of the offline utility
program.

Example 3 is a sample of the JCL required to collapse the BDAK data
sets described in Examples 1 and 2. Notice that the DD names used to
describe the data base data sets in Example 3 are identical to those
DD names used in Example 2.

The SYSUT1 DO statement in Example 3 allocates two cylinders of space.
This corresponds to the DBINIT2 OD statement in Example 1 which is the
largest BDAM data set in this data base. The SYSUT1 DD statement in
Example 3 specifies a data set BLKSIZE of 13030. This corresponds to
the USEROADD DO statement in Example 1 which has the largest data set
BLKSIZE in this data base.

INSTALLATION GUIDE 3-73

The SYSUT1 DD statement in Example 3 may be given a disposition of NEW
or OLD, but must never be given a disposition of MOD.

II EXEC
IIDBINIT
1/
II
II
IIDBINIT2
II
II
IIUSERDADD
II
II
IIANYDADD
II
II

EXAMPLE 1.:

PGM=IEFBR14
DD DSN=DATAB!~,UNIT=SYSDA,

DISP=(,~AT~),VOL=SER=ggLOQ1,
SPACE=(CYL~LL1Qll
DCB= (R ECFM=U, BLKSI ZE=130lQ)

DD DSN=DATA~!S2,UNIT=SYSDA,DISP={L£!I1Q),
VOL=SER=PP~QQ1,SPACE=lCY1LJlll,
DCB=(RECFM=U,BLKSIZE=~Q~~,DSORG=DA)

DD DSN=USER~AQQ,UNIT=SYSDA,D1SP=(L£AI~~),
VOL=SER=PPLOQ1,SPACE=lTRKL121) ,
DCB=(RECFM=U,BLKSIZE=13030,DSORG=DA)

DD DSN=ANYDAQ~,UNIT=SYSDA,DISP=(L~!I1~),
VOL=SER=PPLOQ1,SPACE=lTR~121) ,
DCB=(RECFM=U,BLKSIZE=~04~,DSORG=DA)

Creating Data Base Data Sets

Note: The underlined portions of the JCL in Examples 1, 2, and 3 are
the only portions which may be changed from the way they appea

II EXEC PGM=DPPXUTIL

IIDBINIT
IIDBINIT2
IIUSERDADD
IIANYDADD

IISYSIN

EXAMPLE 2:

II EXEC
IISTEPLIB
IISYSPRINT
IISYSUT1
/1
IIDBINIT
IIDBINIT2
IIANYDADD
IIUSERDADD

EXAMPLE 3:

3-74

DD DSN=DATABA~,DISP=OLD

DD DSN=Q!TA~!S2,DISP=(MOD,PASS),DCB=DSORG=DA
DO DSN=USERQ!DD,DISP=(MOD,PASS),DCB=DSORG=DA
DO DS N= AN YD!~.Q, D1 SP= (MOD, PASS) , DC B= DS ORG:: DA

DO *

Offline utility use of Data Sets

PG M=DPPXCBCP
DD DSN=Y!N370.LM1IB,DISP=SHR
DD SYSOGT=A
DD DSN=~~SY~YT1,UNIT=SYSDA,SPACE=(£YLL11L)'
DCB=(RECFM=U,FLKSIZE=1301Q,DSORG=DA)
DD OSN=Q!TABA~,DISP=OLO
DD DS N=DATABAS2, DISP= OLD, DCB=DSORG=DA
DD DSN=!!YDADQ,DISP=OLD,DCB=DSORG=DA
DD DSN=!!~~RDAQQ,DISP=OLD, DCB=DSORG=DA

Compress Program JCL

Description and operation Manual INSTALLATION GUIDE 3-75

This section of the manual is intended to be used at the CPU main
console as an operator's manual. Certain information that is normally
found in this section of a Description and Operations Manual is
dodumented in the previous chapter in the section entitled, "Pre"":,,SYSGEN
Initialization" and will not be d uplica ted.

The Operator's Reference contains the Special Real Time Operating System
operation information. It is to be used as part of the operator's
library. This section is intended for the system operator, but some
sections are also of interest to operators at secondary consoles or
terminals.

The user of this section should have a thorough knowledge of OS/VS1
operation. This section is not intended to replace OS/VS1 operator
reference mat erial.

The JCL required for realtime execution will vary greatly for each
account and will most likely be provided to the operator by the system
programmer. Therefore, the JCL requirements are documented in the
section entitled, "system Initialization".

The information in this section is intended to assist the operator
running the Special Real Time Operating System and in diagnosing the
Special Real Time Operating System control statement errors. It is
organized as follows:

• Normal Operating Procedures

• Control Card Information

• Two-Partition Operation

• Failover/Restart

• Normal Termination Procedures

• Abend Codes

• The special Real Time operating System Messages

The special Real Time Operating System executes as an OS/VS1 job which
does not terminate normally. It is entered into the system through
JCL just as any OS/VS1 job. The Special Real Time Operating System
has its own messages with operator action for some, these are described
in this section under messages.

OPERATOR'S REFERENCE 4-1

After the Special Real Time Operating system job has been started and
the os job started, message appears, the Special Real Time Operating
System issues a iTOR 'SRTOS INPUT MESSAGE PROCESSING AWAITING REPLY',
and leaves the reply outstanding. This allows the operator to
communicate with the Special Real Time Operating system. The commands
which are defined as part of the Special Real Time Operating system
are:

CA NCEL,o perands
REPORT, 0 pera nds
DREC ,operands
DDSCNTRL,operands
DLM P ,operands
MSGRC, operands
QS ,operands
STAE,operands
STOP

Each of these commands requests a specific service. Other commands
may be defined by other PRPQs or program products or by the user through
the IMP macro of SYSGEN.

The operator may enter a command by replying to the iTOR in the
following format:

, d [~ ,SLAVE I , PI, P2, ... , pn]j] ,
r XX, comman tLP \,P2 ... Pn]

R xx is the format required by as/VS1, and IX is the message number
to which the reply responds. The content of the reply will be in a
standard format$ The command verb is the first element of the entry_
It may be selected from any valid IMP command defined at SYSGEN.

If two-partition operation is SYSGENed and active, the keyword SLAVE
may be included as the second element. If included, the command will
be processed in the SLAVE partition. If SLAVE is omitted or two
partition operation is not SYSGENed, the command will be processed in
the master partition~

Parameters to be associated with the command are entered following the
command verb or the keyword SLAVE, separated by commas.

The keyword SLAVE is not referenced in the following command
descriptions. Unless specifically disallowed, the command may be
entered to be processed in the slave partition by including the keyword
following the command verb.

4-2 Description and Operation Manual

CANCEL Comman d

The CANCEL command should be used to terminate a Special Real Time
Operating sys tem job.

The format of the command and its operands is:

r xx, 'CANCEL [(: ~~~~MP n I ,COMMENTS I '

CANCEL
Informs the input message processing routine that this reply is to
cancel the Special Real Time Operating system jobstep for which this
reply is outstanding.

DUMP
Cancel Special Real Time Operating System with a dump. The ABEND
(dump) code is a user 122.

NODUMP
Cancel the Special Real Time operating System without a dump. The
ABEND code is a user 222.

Comments
Operator explanation as to reason for cancelling the Special Real
Time Operating System. MESSAGE 60 will be issued, before cancelling
the Special Real Time Operating System, containing the comment. The
maximum length of the comment is 80 characters.

OPERATOR'S REFERENCE 4-3

REPORT Command

The REPORT command is used to control the execution of the Report Data
output facility of the Special Real Time Operating System. The format
of the REPORT command is:

, xx, REPORT [, I ~~~ l] ,output ddname. input ddname

[, input ddnallle, input ddname, ... J

REPORT
Informs the input message processing routine that this reply is for
the Report Data Output Facility.

NEW
Report Data output Facility will begin writing data at the beginning
of the output data set.

ADD
Report Data Output Facility will begin writing data at the end of
the output data set.

output ddname
A ddname which points to a QSAM data set to be used as an output data
set. The record length of the data set must be equal to or greater
than the maximum record length of the input data sets.

Input ddname
A ddname which points to a QSAM data set to be used as an input data
set. A maximum of 10 input DDNAMES may be specified.

4-4 Description and Operation Manual

DREC Command

The DREC command is used to control the execution of the Special Real
Time Operating System Data Record and Playback function. The format
of the DREC Command is:

\

' ENABLE I : ~~~ I ,ID, 10, 10, ... j
r xx, DREC , ALL

, DISABLE

DREC
Inform the input message processing routine that this reply is to
initialize data recording.

ENABLE Initialize data recording.

DISABLE
Deinitialize data recording.

ADD
Add the following ID's to the data recording table.

DEL
Delete the following ID's from the data recording table.

ALL
Enable all data recording IDs.

ID
Three digit hex numbers (OOl-FPF) that must be used in recording data
as (enable ID's).

OPERATOR'S REFERENCE 4-5

DDSCNTRL Command

The DDSCNTRL Command is used to control the functions of duplicate data
set support. The format of the DDSCNTRL command is:

r xx. DDSCNTRL {, xxxxxxxx }

,TAKE I ,REPLACE [PRIMARY WITH YYYYYyYYJ
,SWITCH
,CREATE

,STATUS C [ddnamel] ['ddname2tl
,COMPARE

The DDS NAME specified (or defaulted) on the DDS NAMES input control
card which declared this duplicate data set.

TAKE
Causes the backup to be taken out-of-service.

REPLACE PRIMARY WITH YYYYYYYY
Causes the primary to become the backup (still in service), and sets
the data set with DDNAME yyyyyyyy to become primary. (YYYYYYYY will
default to the old backup.) This function requires that the DDS DCBs
be closed.

CREATE
Causes the primary to be copied track-by-track onto t~e backup, and
sets the backup to be in-service (requires backup to be out-of-service
on request) •

SWITCH
Causes the backup to become the primary and sets the primary as the
backup out-ot-service. (Requires backup to be in-service on request).

S1'ATUS
Prints a message (#56) stating primary and backup DDNAMES, and if
backup is out-ot-service.

COMPARE
Invoke the IEBCOMPR utility against ddnamel and ddname2. ddnamel
will default to the primary DDNAME and ddname2 will default to the
backup DDNAME.

4-6 Description and Operation Manual

DLKP Command

The DIKP Command controls the operation of the Dynamic Load Kodule
Purge feature of the Special Real Time Operating System. It permits
the system operator to cause a load module to be deleted from virtual
storage which bas been loaded by the Special Real Time Operating system
task management in response to PATCH requests.

The format of the command and its operands is:

r xx,DLKP,time,module-name,module-name •••

DLKP
This input command is for the dynamic load module purge feature.

time
Decimal integer value between 0 and 1200i time in seconds that the
DLKP feature will wait to allow other tasks to complete execution of
the specified load modules. If time is omitted, a default value of
2 seconds will be used.

module name
Name of the load module(s) that is to be purged from virtual storage.
Up to 10 module names, separated by commas, may be specified in one
request.

OPERATOR'S REFERENCE 4-1

MSGRC COMMAND

The MSGRC command is used to place a sjstem message routing code in or
out of service, determine the status of one or more routing codes, or
change the alternate routing code.

! IN 1 rc OUT
, xx, ~ISGRc' (0 1 · STATUS

, STATALL

[,altrc]

MSGRC
Informs the input message processing routine that this reply is for
the Message Routing Code status Change Facility.

Note: This command should not be entered in the SLAVE partition.

rc
Routing code.

o
This parameter is 0 if STAT ALL is specified.

IN
Place RC in service.

OUT
Place RC out of service.

STATUS
Display the statlis, via a system message, of the specified routing
code (Re).

STATALL
Display the status, via a system message, of all the routing codes in
the system.

al trc
This parameter is recognized only if IN or OUT is specified.

altrc is the routing code to which messages are directed should the
primary routing code be out of service or the output operation fail.

4-8 Description and Operation Manual

QS COMMAND

The QS command is an IMP command which may be used to display or alter
the status of queue holders and queue processorsG The format of the
command and its operands is:

(

QP nn I ALLQP
name

r: xX,QS, ALLQH
ALL

(SEQ
NONSEQ
HOLD
REL
NOPATCH
STATUS
XREF

[, PU RGE]

Where the first positional parameter, QS, is the input message
processing command name for the queue status facility, the second
positional parameter is a noun used to identify the queue holders,
queue processors, or independent task, the third positional parameter
is a verb used to specify the pri mary action to be t.aken, and the fourth
positional parameter is a verb used to specify the secondary action to
be taken. The first three positional parameters are required. The
fourth positional parameter is optional.

QPnn
The numberic value, nn, of this noun identifies a specific queue
processor to be serviced on this command. The queue processor is
identified by the numberic value specified on the QP statement in the
SYSINIT input stream. This ID has a range 00 to 99. Two characters
must be supplied.

ALLQP
This noun is used to indicate that all queue processors are to be
serviced on this command.

name

The 1 to 8 character name of this noun idnetifies a specific queue
holder or independent task to be serviced on this command. The queue
holder is identifed by the name specified on the QR statement in the
SYSINIT input. stream or an independent task by the name specified by
the PATCH which created it.

ALLQR
This noun is used to indicate that all queue holders are to be serviced
on this-command.

ALL
This noun is used to indicate that all queue holders, queue processors,
and independent. tasks are to be serviced on this command.

SEQ
This verb is used to request that work queued to the specified queue
holder(s) be processed sequentially, (i.e., whenever work has been
selected by a queue processor from a sequential queue holder, no other
queue processor may select work from that queue holder until that work
has been completed). Entry of this command will have no effect on
any work that has already been selected by any queue processors.

NONSEQ
This verb is used to request that work queued to the specified queue
holder (s) be processed non-sequentially (i.e., two or more queue
processors may process work from that queue holder concurrently.). A
NONSEQ QS command will have no effect on any work that has already
been selected by a queue processor.

OPERATOR'S REFERENCE 4-9

HOLD
This verb is used to request that the specified queue holders, queue
processors and/or independent tasks be held. As a result, no work
may be selected from the specified queue holder(s) by any queue
processor, the specified queue processor(s) will be prohibited from
selecting work from any queue holder and specified independent task(s)
will be prohibited from starting processing for any work that may be
queued. Work may be added to the specified queue holder(s) or
independent task(s) until the maximum queue length has been reached.
A HOLD QS command will have no effect on any work that has already
been selected for processing.

REL
This verb is used to release the work from the HOLD state the specified
queue holders, queue processor and/or independent tasks for normal
processing. A REL QS command will have no effect on any work that
has already been selected by a queue processor.

NOPATCH
This verb is used to request that the specified queue holder(s) or
independent task(s) to not accept additional PATCHes. Any PATCHes
executed to a queue holder or independent task in a NOPATCH state will
be rejected and condition code 6 will be returned to the user. Any
work previously queued to the specified queue holder(s) and/or
independent task(s} will be processed normally and will not be effected
by a NOPATCH QS command.

PATCH
'l'h is verb is used to request tha t the specifeid queue holder (s) and/or
independent task(s) may now accept PATCHes.

STArrus
This verb is used to request that the current status of the specified
queue holder(s), queue processor(s) and/or independent task(s) be
displayed. This information is output as message 862 and includes:
TCBX name, element type (QP, QH or TSK), PATCH/NOPATCH status, HOLD/REL
status, SEQ/NO.NSEQ status, current queue length and the character 'A'
if the task for a QP or independent task is currently processing a
work queue.

XREF
This verb is used to request that the current status of the specified
queue holder(s), queue processor(s) and/or independent tasks to be
displayed. This information includes message 862 as defined for the
STATUS verb and in addition, message 863 will be output one or more
times for each queue holder and/or queue processor specified. It
includes, for a queue holder, the names of the queue processors which
may select work from it and for a queue processor, the names of the
queQe holders from which it may select work.

PURGE
This verb may be used in conjunction with any primary verb to request
that any work previously queued to the specified queue holder(s) and/or
independent task(s) be purged by a PURGEWQ macro. A PURGE command
will have no effect on any work that has already been selected by a
queue proces sor.

4-10 Description and Operation Manual

STAE COMMAND

The STAE command may be used to suppress system ABEND dumps for all or
selected load modules.

The format

r xx,STAE

STAE

of the command and its operands is:

[I :~~~~MP J~ ,modename1, ••• ,modname n
,ONEDUMP
,STEP
,OPTION

Is a required positional operand which informs the input message
processor that his reply is for the Dump/No Dump facility.

DUMP
Allow a dump to be taken for these modules (provided there is a
SYSUDUMP or SYSABEND DD statement).

NODUMP
Suppress a dump from being taken for these modules.

ONEDUMP
Allow one dump to be taken for these modules (provided there is a
SYSUDUMP or SYSABEND DD statement) but suppress any additional dumps
for that mod ule.

STEP
ABEND the job step if one of these modules ABEND.

OPTION
Allows the operator to choose whether or not to take a dump following
an ABEND of these modules. The operator is informed of the ABEND via
a WTQR (message 850) and must reply 'YES' to receive the dump. If no
reply is issued in five minutes, the dump is automatically suppressed.

modname1, ••• ,modname n
Is used to indicate the load module(~ that are to be covered by the
specified option. A maximum of 10 load module names may be specified
on anyone reply. Null fields (double commas) will not be accepted.

If no load module names are specified, the mode defined by the previous
parameter will apply to all load modules.

OPERATOR'S REFERENCE 4-11

STOP command

r xx, STOP

STOP
Cancel the Special Real Time Operating System without a dump. The
ABEND code is a user 222.

4-12 Description and Operation Manual

The format of the Special Real Time Operating System control statements
is very similar to the format of JCL statements. That is, there are
four standard fields in the card. They are:

LABEL OPERATION OPERANDS COMMENTS

where: LABEL
Is the control statement label and must begin in column one. If
column one contains an asterisk (*), the entire card is a comment
card. The LABEL cannot exceed eight characters and must be separated
from the OPERATION by at least one blank. The LABEL field is
optional.

where: OPERATION
Is the type of action that the card represents. This field must
contain one of the following:

QP
QH
PATCH
WAIT
RESTART
TCB
GETWA
CBGET
ABEND
MASTEB
SLAVE
DBREF
STAEX

The OPERATION field must be separated from the LABEL (if any) and
OPERANDS by at least one blank. If no LABEL exists the OPERATION
must not start in column one. The OPERATION field is required.

where: OPERANDS
The OPERANDs field is required for all OPERATION types except ABEND
and must begin on the same card as the OPERATION. Each OPERATION
has unique OP~RANDs (see System Initialization). The OPERANDs must
be separated from the OPERATION and COMMENTs by at least one blank.
There is a limit of 255 OPERAND characters for one OPERATION.

where: COMMENTS
The COMMENTs are optional and there is no limit to the length of
COMMENTs allowed. The COMMENTs must be separated from the OPERANDs
by at least one blank.

CONTINUATION

Control cards may be continued. Continuation is requested by
Continuat1on is requested by ending the OPERAND's field with a comma
or putting a nonblank in column 12, or both. If the OPERANDS are
completed and COMMENTs are to be continued, column 72 must be nonblank.

OPERATOR'S REfERENCE 4-13

An example of valid continuations follows:

COL 72
P1 PATCH EP=TEST, *

TASK=TEST

P2 PATCH EP=TEST,
TASK=TEST

P3 PATCH EP=TEST TEST PROGAM*
AN D RETURN

continuation cards must begin in column 16. PATCH cards with PARAM
data containing blanks within quotes may be continued to the next card.
The continuation is assumed to start in column 16.

EXAMPLE:

COL 72
PTCH PATCH EP=TEST,PARAM= (C'ABC~Qbb~Q£Q£Q~~Q£~bbQQbbQQQQ£Qbb~~*

QQ£Qbb.QQQXYZ·)

COL 16
The PARAM data would be

'ABCQQQQQQQbbbbQQbbbbbbbbbbbbQQbbQQQQbbbbbbbbQQQQbbbbbbXIZ'

The presence of a MASTER or a SLAVE statement in the input stream
signifies two-partition operation. When this occurs, the first job
started will issue the message DPP046I and will repeat the message at
one-minute intervals until the other job has started. The operator
should ensure that the job names of the SLAVE corresponds to the na me
given on the MASTER card by the SLAVE=jobname operand and that the
jobname of the MASTER corresponds to the name given on the SLAVE card
by the MASTER=jobname operand. If the MASTER job terminates, the SLAVE
will also be terminated with a USER 41 ABEND code. However, if the
SLAVE job terminates and the MASTER is still executing, the SLAVE job
may be restarted in the same or another partition.

Note: The Special Real Time Operating System job should not be
terminated by a CANCEL JOBNAME command as STAE processing will
be bypassed. As a result, the SLAVE will not be terminated when
the MASTER ends, and the SLAVE will not restart if an attempt
is made to restart it.

SINGLE 'CPU ENVIRONMENT

The operator may cause a RESTART by dialing the device address which
contains the RESTART data set into the 'LOAD UNIT ADDRESS' switches of
the CPU and depressing LOAD (IPLing). This operation will be successful
only if a RESTART data set had been previously written by a RESTART
WRITE statement. The data set would have been written to the data set
allocated to the DPPFAIL DD card. If copies had been made of the
DPPFAIL data set, a RESTART could be caused by the operator IPLing the
DA device containing the DPPFAIL data set or a copy of the DPPFAIL data
set ..

4-14 Description and Operation Manual

SINGLE CPU ENVIRONMENT WITH CONTINUOUS MONITOR

The continuous monitor is a program which monitors the online CPU and,
if any failures are detected, recommends a RESTART. The RESTART is
recommended by message DPP098. When this message is issued, the operator
must RESTART the system as described above.

TWO-CPU ENVIRONMENT WITH CONTINUOUS MONITOR AND PROBE

with the continuous monitor operating in the realtime CPU and the PROBE
in the backup CPU, no operator intervention is required on a FAILOVER
condition. The FAILOVER is initiated by the PROBE when an error
condition is detected. If, however, the system has a Computer Status
Panel installed, and the status panel is not switched to auto mode,
the operator must decide whether to cause a FAILOVER to the backup CPU
or to RESTART in the online CPU. He must then initiate the action by
depressing the SELECT button for the CPU which he wants to execute as
the online CPU.

The Special Real Time Operating system should be terminated by replying
to the Input Message, Processor's outstanding message with a CANCEL or
STOP command. This command and its operands are documented earlier in
this chapter. The Special Real Time Operating system should not be
terminated by the OS/VS1 CANCEL command which causes the SrAE processing
for the job step task to be bypassed. The effect of bypassing the STAE
may be to leave certain system functions in a condition which will
degrade subsequent system operation. If it is necessary to use the
OS/VS1 CANCEL command, the OS/VS1 system should be re-IPLed at the
earliest convenience.

The Special Real Time Operating System should be terminated with the
OS CANCEL command only as a last resort. Terminating the Special Real
Time operating system with the OS CANCEL command bypasses STAE cleanup
routines and will not cause the SLAVE job to be terminated when the
MASTER ends and the MASTER may cause processing errors for any job that
starts in the partition the SLAVE ended in. If a SLAVE job is
terminated with the ris CANCEL command, it will not be able to restart.

If it'is necessary to use the as CANCEL to terminate a MASTER job, the
SLAVE must also be terminated with the OS CANCEL command.

OPERATOR'S REPERENCE 4-15

USER 001 Issued by: DPPITIMI

Explanation:

Action:

An invalid TCBX address was found in the job step TCBUSER
field.

Restart the system.

USER 002 Issued by: DPPITIMI

Explanation:

Action:

An invalid SCVT or XCVT address was found in the job
step control block chain.

Restart the system.

USER 003 IEsued by: DPITIMIl

Explana tion : The time-of-day (TOD) clock vas not operational.

Action: Probable hardware failure.

USER 004 Issued by: DPPITIMI

Explanation:

Action:

Time array - DPper IMA - was not found in the data base.

DD card DBINIT must allocate a data base data set that
contains a DPPCTIMA array.

USER 010 Issued by: DPPIDBAS

Explana tion:

Action:

An invalid TCBX ad dres s was found in the job step TCBU SER
field.

Restart the system.

USER 011 Issued by: DPPIDBAS

Explanation:

Act ion:

An invalid SCVT or XCVT address was found in the job
step control block chain.

Restart the system.

USER 012 Issued by: DPIDBAS1,DPIDBAS2, or DPIDBAS3

Explanation:

Action:

Data base initialization was unable to open one of the
following data sets:

DDname - DBINIT
DDname - DBINIT2

or a user specified data base data set.

DD cards must exist for DBINIT and DBINIT2 and
user-requested data base sets Be sure that the data set
exists.

USER 013 Issued by: DPIDBAS 1

4-16 Description and operation Manual

Explana tion:

Action:

Data base initialization was unable to find member mINIT
in the DBINIT data set via BLOL.

DD card DBINIT must allocate the correct data base data
set containing member name mINIT.

USER 020 Issued by: OPPMINIT

Expla na tion:

Action:

The online message handler initialization was unable to
OPEN the message data set DCB.

The job's JCL must contain a OD statement with DO name
MSGDS.

USER 022 Issu ed by: DPPI NIT1

Expla na tion:

Action:

This ABEND was requested by the user through the presence
of an ABEND statement in the SYSINIT input stream.

None.

USER 023 Issued by: DPPMINIT

Explanation:

Act ion:

The online message handler initialization could not find
the message routing code array OOMXSMRC in the data
base.

The array should be generated at the Special Real Time
Operating System SYSGEN time by the use of the MSGRC
macro. DMINIT must have a DD card that allocates the
correct data set.

USER 030 Issued by: DPPINIT

Explana tion:

Action:

The Special Real Time operating System initialization
(DPPINIT) was not running under the job step task TCB.

Program DPPINIT cannot be attached, but must be the job
step task.

USER 031 Issued by: DPPI NIT1

Explanation:

Action:

A PATCH macro was executed in response to a PATCH
initialization card. The ret~rn code from the PATCH
macro was greater than 4 (i.e., the PATCH failed).

At the time of the dump, Register 3 contains the address
of a PATCH control block. Four bytes past that address
is the address of the PATCH PROBL and X'14' bytes past
that add~ess is the PATCH SUPL. The first 9 bytes of
the SUPL contain the task name and the second 8 bytes
contain the entry point name specified on the PATCH card
for which the failure occurred. Register 15 contains
the PATCH return code. Make appropriate corrections
and retry.

USER 032'Issued by: DPPFIXFR

OPERATOR'S REFERENCE 4-11

Explanation:

Action:

An invalid address range was passed to be either fixed
in real storage or unfixed.

Correct the address range and retry, ensure that array
DPPXFIX is valid.

USER 033 Issued by: DPINIT3

Explanation:

Action:

Initialization was unable to get enough control block
(CBGET) storage in which to create a TCBX at
initialization time.

Increase the CBGET storage with a CBGET statement in
the SYSINIT input stream and retry.

USER 034 Issued by: DPINIT05

Explanation:

Action:

A syntactical error was detected on one or more of the
in it ia Ii za tion i np ut (SY SI NI T) sta tement s.

Correct the statement (s) in error and retry.

USER 035 issued by: DPPINIT1

Explanation:

Action:

A pre-WRITE RESTART progr~m which was PATCHed as a result
of a PATCH statement in the SYSINIT input stream
completed and returned with a non-zero POST code.

Correct the failing program and retry_

USER 036 Issued by: DPINIT5

Expla na tion:

Action:

On a two-partition run, a MASTER or SLAVE partition had
been posted by the other partition; however, the
correspondingjobname could not be found.

Correct the MASTER or SLAVE card so that the operands
give the exact jobname of the job in the corresponding
partition.

USER 037 Issued by: DOMIRFLV

Explanation:

Act ion:

During an attempt to write a FAILOVER data set
(WTFAILDS), the SLAVE partition could not be found.

If the SLAVE job has ABENDED or terminated, fix the
failure and resubmit the run.

USER 038 Issued by: DOMIRFLV

Explanation:

Action:

Multiple simultaneous attempts were made to write a
FAILOVER data set (WTFAILDS) from the same job.

Correct the progra ms.

USER 039 Issued by: DOMIRFLV

4-18 Description and Operation Manual

Explanation:

Action:

The WTFAILDS macro was issued by a non-real time job.

The WTFAILDS macro must be issued by a Special Real Time
Operating system job.

USER 040 Issued by: DPINIT05

Explanation:

Action:

The SYSINIT DCB could not be opened, no SYSINIT DO card
was provided or a SYSINIT stream was processed that did
not contain a PATCH statement.

The job's JCL must contain a SYSINIT DD card and at
least one PATCH statement in the input stream.

USER 041 Issued by: DPPISTAE

Explanation:

Action:

The SLAVE job is abnormally terminated with this code
when the MASTER job step terminates. The SLAVE cannot
continue to run because it does not have full Special
Real Time Operating System services.

Restart MASTER and SLAVE jobs.

USER 042 Issued by: DPINIT5

Explanation:

Action:

During the restart of a SLAVE job, the initialization
routine could not locate the job named on the MASTER=
operand of the SLAVE statement.

Correct the SLAVE statement and retry_

USER 043 Issued by: DPINIT5

Explanation:

Action:

The SLAVE job was being restarted after a failure; during
initialization the SLAVE initialization found the MASTER
job step to be terminatingm

Restart both MASTER and SLAVE jobs.

USER 044 Issued by: DPINIT5

Explanation:

Action:

An attempt was made to restart a SLAVE for a MASTER
which already had a SLAVE job executing.

Verify the jobname on the SLAVE MASTER=jobname control
statement. It should have a jobname for a MASTER job
step that does not have a SLAVE job currently executing.

USER 045 Issued by: DPPINIT1

Explanation:

Action:

A RESTART statement was processed in the input stream
which requested the CANCEL function.

None.

USER 046 Issued by: DPPINITl

OPERATOR'S REFERENCE 4-19

Explanation:

Action:

The maximum size GETWA space allocated was not sufficient
to satisfy the requirements of the Special Real Time
Operating System. A GETWA size of 1024 bytes is
required.

Allocate a larger GETWA size (1024 bytes) on the GETWAS
parameter of the VS macro and regenerate the system or
specify appropriate GETWA sizes on the GETWA statement
in the SYSINIT input stream and rerun the job.

USER 050 Issued by: DPXDBIN6

Explanation:

Action:

The offline utility program was unable to OPEN the
initialization data set for DD name DBINIT.

The offline utility JCL must include a DBINIT DD card.

USER 051 Issued by: DPXDBIN4

Explanation:

Action:

The offline utility program had an error while attempting
to STOW initialization member ~INIT.

Retry.

USER 052 Issued by: DPXDBIN1

Explanation:

Action:

The offline utility program vas unable to obtain
initialization member ~INIT from the initialization data
set.

Retry run.

USER 053 Issued by: DPXDBIN2

Explanation:

Action:

A loggable array vas created vhich named a log array.
The named log array could not be found.

Recompile the loggable array to have the log array
recreated.

USER 054 Issued by: DPIDBAS3

Explanation:

Action:

A BLDL error vas encountered vhile attempting to read
the PDS directory entry for a loggable array.

Recompile to loggable array to have the log array
recreated.

USER 055 Issued by: DPPXUTIL

Explanation:

Action:

The assembler encountered an error and returned an error
code greater than 16.

Correct the problem indicated by the assembler output
and retry the job.

USER 064 Issued by: DPPTETXR

4-20 Description and Operation Manual

Explanation:

Action:

Program DPPTETXR has been entered under a TCB which is
not a job step TCB.

If a program is linking to DPPTETXR, correct and retry,
otherwise retry.

USER· 065 Issued by: DPPTDSVC

Explanation:

Act ion:

A DPATCH=I was issued for the specified task so the
Special Real Time Operating System task management
terminated it with this code.

None.

USER 071 Issued by: DPPXDPB

Explanation:

Action:

Data playback was unable to OPEN the data playback DCB.

A DD card named DPBIN must exist if data playback is to
be used.

USER 072 Issued by: DPPXDPB

Explanation:

Action:

The BLKSIZE and LREeL on the DPBIN DD card is smaller
than the maximum BLKSIZE and LRECL used when the data
recording/playback data set was defined and/or when data
was recorded on the data recording/playback data set.

The BLKSIZE and LRECL on the DPBIN DD card must be equal
to the maximum BLKSIZE and LRECL on the data
recording/playback data set.

USER 080 Issued by: DPPSINIT

Explanation: A bad card was found in the DDSCTLIN input stream.

Action: Correct control card and retry.

USER 081 Issued by: DPPSCHCK

Explanation:

Action:

User received software 1/0 error but did not specify a
SYNAD exit routine for a DDS data set.

None.

USER 122 Issued by: DPPXKILL, DP PXIMPW

Explana tion:

Act ion:

The job step task has been ABENDed due to the
CANCEL, DUMP request.

None.

USER 222 Issued by: DPPXKILL

Explanation: The job step task has been ABENDed due to a
CANCEL, NODUMP request.

OPERATOR'S REFERENCE 4-21

Action: None.

SYSTEM 4xx Issued by: A USER-GENERATED SVC

Explanation:

Action:

A user program made an invalid SVC The request vas fo~
the SVC number xx. xx is the hexadecimal number of the
SVC which was issued.

Correct p~ogram and ensure that a valid SVC request is
made.

SYSTEM 6xx Issued by: A USER-GENERATED SVC

Explanation:

Action:

4-22

A user program made a Special Real Time Operating System
SVC request from a non-Special Real Time Operating System
job step task. The SVC requested is indicated by xx.
xx is the hexadecimal number of the SVC which was issued~

Check the user program and be sure that services whicn
are not available to a non-Special Real Time Operating
System task are not requested by a non-Special Real Time
Operating system task.

Description and Operation Manual

THE SPECIAL REAL-TIME OPERATING SYSTEM ONLINE MESSAGES

DPP009I

Routing code:

POST-RESTART DATA BASE AND PRE-RESTART DATA BASE ARE
DIFFERENT

Message issued by segment: DPPDWRST

Explanation: One or more data base arrays have been recompiled onto
the DBINIT data set that is online at restart time since
the restart data set was written or a different data
base is being referenced. Results are unpredictable
and continued operation mayor may not be successful.

Response: None.

DPP010I Time date DPPTETXR * EXCEPTL CONDITION BAD WQE XXXXXXXX

Routing code: 2

Message issued by segment: DPPTETXR load module DPPTETXR

Explanation: A subtask running the PATCH monitor DPPTP~ON terminated
and caused the End-of-Task-Exit Routine to be entered.
The address of the current WQE XXXXXXXX was found to be
invalid. Therefore, DPPTETXR cannot perform its full
service which causes eB-GET storage to be lost.

Response: None.

DPP011I time DPPTETXR * ABEND IN MESSAGE OUTPUT TASK

Routing code: as defined through SYSGEN

Message issued by segment: DPPTETXM load module DPPTETXR

Explanation: The Special Real Time Operating System message output
task pPPMMSG1 ABENDed and caRsed the End-of-Task-Exit
Routine to be entered. This message is issued through
a WTO macro# because the message output task is not
available to print/display it.

Response: None.

DPP012I time date DPPTETXR * TASK TTTTTTTT ENDED WITH CC XXXXXXXX
or
DPP012I time date DPPTETXR * TASK TTTTTTTT ENDED WITH CC XXXXXXXX

WQ1D NNN PATCH EP EEEEEEEE

Routing code: 2

Message issued by segment: DPPTETXR load module DPPTETXR

Explanation: The special Real Time Operating System task TTTTTTTT
terminated and caused the End-of-Task-Exit Routine to
be entered. The TCB completion code field was ~XXXXXXX.

If the address of the current WQE is available to the
routine, it also displays the 1D NNN and the EP name
EEEEEEEE that was specified when the originating PATCH
vas issued.

OPERATOR'S REFERENCE 4-23

Response: None.

DPP013I time date DPPTETXR * EXCEPTL CONDITION BAD TCBX XXXXXXXX

Routing code: 2

Message issued by segment: DPPTETXR load module DPPTETXR

Explanation: A subtask running the PATCH monitor DPPTPMON terminated
and caused the End-of-Task-Exit Routine to be entered.
The address of the TCB extension XXXXXXXX, which is
contained in the TeB USER field, was found invalid.
Therefore, DPPTETXR cannot perform its full service.
This causes loss of CB-GET storage for TeBX, WQE chain,
and LCB chain and may also result in system degradation.

Response: None.

DPP014I time date DPPTPftON * TASK TTTTTTTT EP EEEEEEEE WQID NNN
NOT FOUND BY BLDL

Routing code: 2

Message issued by segment: DPTPMON3 load module DPPTPMON

Explanation: A PATCH macro was issued for task TTTTTTTT that specified
an ID of NNN and an EP name of EEEEEEEE. The PATCH
monitor DPPTPftON issued BLDL for the given EP name and
received a return code of 4, which indicates that the
module was not found. If an ECB = address was specified
with PATCH, that ECB is posted with a completion code
of 48 in the high order byte.

Response: None.

OPP01SI time date DPPTPftON * TASK TTTTTTTT EP EEEEEEEE WQID NNN
BLOL 1/0 ERROR

Routing code: 2

Message issued by segment: OPTPftON3 load module DPPTPMON

Explanation: A PATCH macro vas issued for task TTTTTTTT that specified
an ID of NNN and an EP name of EEEEEEEE. The PATCH
monitor DPPTPftON issued BLDL for the given EP name and
received a return code of 8, which indicates that a
permanent 1/0 error was detected when the OS/VS1 system
attempted to search the directory. If an ECB= address
was specified with PATCH, that ECB is posted with a
completion code of 48 in the high order byte.

Response: None.

OPP0161 time date DPPTPftON * TASK TTTTTTTT NOT FOUND ON ACTIVE
CHAIN

Routing code: 2

Message issued by segment: DPTPftON1 load module DPPTPftON

4-24 Description and Operation Manual

Explanation: The PATCH monitor attempted to remove a TCB extension
from the active task chain and could not find it on that
chain.

Response: None.

DPP017I time date DPPTSMON * NO LOAD REQUEST FOUND

Routing code: 2

Message issued by segment: DPTS"ON1 load module DPPTSMON

Explanation: The system monitor DPPTSMON was posted and attempted to
service a request for LOAD of a reentrant load module,
which is indicated by a flag in the TCBX. However, when
trying to find the LCB for which the LOAD was requested,
no LCB with the LOAD request flag turned on could be
found on the TeBX-Lea chain. DPPTSMON POSTs the PATCH
monitor to continue its processing.

Response: None.

DPP0181 time date DPPTETXR * TASK TTTTTTTT EP EEEEEEEE WQID NNN
DID NOT RETURN TO DPPTPMON

Routing code: 2

Message issued by segment: DPPTETXR load module DPPTETXR

Explanation:

Response:

A PATCH macro was issued for task TTTTTTTT that specified
an ID of NNN and an EP name of EEEEEEEE.

The PATCH monitor scheduled that WQE and passed control
to the specified module, which did not return control
to DPPTPMON as required in the Special Real Time
operating System environment.

The module returned control to OS/VS1 which scheduled
the End-of-Task-Exit routine.

If an ECB: address vas specified with PATCH, the ECB is
posted with 4C in the high order byte.

Check the module for possible
SVC 3 EXIT
ABEND 0
LINK
xeTL
Change to BR to return control to DPPTPMON.

DPP0191 time date DPPTDL~P * TIME VALUE TOO HIGH REQUEST
ABANDONED

Routing code: 2

Message issued by segment: DPPTDL~P load module DPPTDLMP

Explanation:

Besponse:

On an input .command DLMP to Dynamic Load ~odule Purge,
the time specified was not between 0 and 1200 seconds.

Use a valid time value and issue the command again.

OPERATOR'S REFERENCE 4-25

DPP020I time date DPPTDLMP * LOAD MODOLE PURGE ENTERED.

Routing code: 2

Message issued by segment: DPPTDLMP load module DPPTDLMP

Explanation: A valid DLMP command has been accepted and the Dynamic
Load Module Purge function is in progress.

Response: None.

DPP021I time date DPPTDLMP * MODULE KftKftKMKft DID NOT COKPLETE
IN TIKE POR PURGE

Routing code: 2

Message issued by segment: DPPTDLKP load module DPPTDLKP

Explana tion:

Response:

A DLMP command vas issued but the module ftKKKftKKM did
not finish executing before the time specified on the
command had expired.. Kessage DPP0221 viII follow to
indicate the end of the purge function.

One of the following:

• Retry command after module completes execution, if known.

• Try again using a higher time value.

• If module KMMMM"K" is a long running program, it may be impossible
to purge it at all.

• If module KMMMMMKM is either in an en~less loop or in a WAIT state,
it may be impossible to purge it.

DPP0221 time date DPPTDLKP • LOAD "ODULE PURGE ABANDONED

Routing code: 2

Message issued by segment: DPPTDLMP load module DPPTDLMP

Explanation: A DL[iP command vas issued but could not be completed.
This message follovs other explanatory messages and
indicates the end of the purge function.

Response: Check for previous messages DPP021I.

DPP023r time date DPPTDLMP • LOAD MODULE PURGE COMPLETE

Routing code: 2

Message issued by segment: DPPTDLKP load module DPPTDLMP

Explana tion:

Response:

DPP0241

4-26

A DLMP command vas issued and executed successfully.
This message indicates the end of the purge operation.

None.

STAE OPTION xxx IS 11Y ZZZ

Description and Operation Kanual

Routing code: 2

Kessage issued by segment: DPPTIMPS

Explanation: This message is issued to reply to the Input Message
Processor of the form:

R xx,STAE, •••

It is used to notify the operator of the results of the
STAE command. xxx is the option selected on the STAE
command. yyy is an indication as to whether the STAE
command was valid (yyy = IN EFFECT) or erroneous (yyy
= INVALID).

zzz further defines the result of the STAE command:

zzz = FOR ALL LM. ALL PREVIOUS STAE REQUESTS ARE
CANCELLED indicates that the general STAE command vas
accepted.

zzz = FOR VALID LM NAMES SPECIFIED ON THIS REQUEST
indicates that the specified STAE command vas accepted
for all load modules specified unless one or more of
the load modules names are rejected on a subsequent
DPP025I message.

zzz = THIS STAE REQUEST WILL NOT BE HONORED indicates
that the STAE command option was neither "DUMP",
"NODURP", or "STEP".

Response: If the STAE option vas invalid, select either "DUMP",
"NODUftP"', "ONEDUMP", or "STEP" option and re-issue the
comllan d.

DPP025I time LM NAME xxx - SPECIFIED ON STAE REQUEST IS INVALID
AND WILL NOT BE PROCESSED

Routing code: 2

Message issued by segment: DP PTIMPS

Explanation:

Response:

One of the load module names specified on the previous
STAE command vas found to be invalid. Message DPP024I
was issued to notify the user of the option in effect
as a result of tha t STAE command. ftul tiple DPP025I
messages may be issued, one for each invalid load module
name on that STAE command.

Ensure that all characters in a specified load module
name are either alphanumeric or one of the special
characters "$", , "ij". The special character 111"
may also be used to delimit the load module name. The
first character of a load module name cannot be numeric.
Re-issue the STAE command with the corrected load module
names.

DPP0261 time INVALID IMP COMMAND

Routing code: 1

Message issued by segment: DPPIIKPP

OPERATOR'S REFERENCE 4-27

Explanation: An invalid I~P command vas issued.

Response: If the I~P command vas misspelled, it should be reissued.
If the specified IMP command was entered correctly, it
is not known to the system. Therefore, the IMP command
requested should be defined and added to the system.

DPP027I time OPERATOR COMMAND NOT DUMP OR NODUMP - THE SPECIAL
REAL TIME OPERATING SYSTEM NOT CANCELLED

Routing Code: 2

Message issued by segment: DPPXKILL

Explanation: A cancel IMP command was issued which specified an action
other than DUMP or NODUMP.

Response: A cancel IMP command should be issued which specifies
an action of DUMP or NODUMP or the parameter should not
be specified. If no parameter is specified, the I~P
command parameter will default NODUMP.

DPP0281 time TASK - DPPSAMPl WAS ENTERED AT ENTRY POINT DPPSAMPl

Routing Code: 1

~essage issued by segment: DPPS API Pl

Explanation: Test message issued by the Special Real Time Operating
System sample proqram.

Response: None.

DPP029I time date RC = hhh cccccccccccccccccccccc CONSOLE OS
DESCRIPTOR AND ROUTING CODES xxxx ALTRC hhh

Routing Code: 1

Message issued by segment: DPPMPlSGV

Explanation: The message displays the status Un or out of servic~
of system messages console routing codes. The message
is issued in response to an MSGRC IMP command.

Response: None.

DPP030I time date RC = hhh cccccccccccccccccccccc PROGRAM TASK
NAPIE = tttttttt EPNAME = nnnnnnnn ALTRC = hhh

Routing code: 1

Message issued by segment: DPPl!~SGV

Expla na tion:

Response:

4-28

The message displays the status un or Out of SerYic~
of system messages output program routing codes. The
message is issued in response to an MSGRC IMP command.

None ..

Description and operation Manual

DPP031I time date RC = hhh cccccccccccccccccccccc OS DEVICE
DDNAKE = dddddddd ALTRC = hhh

Routing code: 1

Message issued by segment: DPPKMSGV

Explanation: The message displays the status (In or out-of-Servic~
of system messages OS DEVICE (printer, tape, etc. The
message is issued in response to an MSGRC IKP command.

Response: None.

DPP032I time date RC = hhh cccccccccccccccccccccc DISPLAY FUNC
AREA = x ACCESS AREA = x ALTRC = hhh

Routing code: 1

Message issued by segment: DPPKMSGV

Explanation: The message displays the status (In or Out of Service)
of system messages display routing codes. The message
is issued in response to an MSGRC IMP command.

Response: None.

DPP033I time INVALID REQUEST - ALTERNATE ROUTE CODE IS OUT OF
SERVICE

Routing Code: 1

Message issued by segment: DPPKMSGV

Explanation:

Response:

DPP0341

An KSGRC IMP command vas issued that specified an
alternate route code that is out of service. An MSGRC
IMP command should be issued that specifies no alternate
route code or one that specifies an alternate route code
that is in service. An MSGRC IMP command with a STATALL
parameter can be specified to determine that route codes
are in or out of service.

None.

time INVALID REQUEST - ROUTE CODE = ALTERNATE ROUTE CODE

Routing code: 1

Message issued by segment: DPPKKSGV

Explanation:

Besponse:

DPP0351

An KSGRC IMP command vas issued that specified the same
route code in the primary and alternate route code
paramRters.

An KSBRC IMP command should be issued that specifies
different route codes for the primary and alternate
route code parameters.

time BOUTING CODE NOT FOUND OR ACTION (STATUS STATALL,
IN OR OUT) PARAMETER NOT SPECIPIED

OPERATOR'S REFERENCE 4-29

Routing code: 1

Message issued by segment: DPPKMSGV

Explanation: An MSGRC IKP command contains a route code not in the
system or ACTION parameter, STATUS = STATALL-IN-OUT,
not specified.

Response: 'rhe validi ty of the route code should be determined
issuing an MSGRC IMP command with a STAT ALL parameter
or a valid action parameter (STATUS-STATALL-IN-OUT)
should be specified.

DPP036I DDSNAME = XXXXXXXX. COMPARE ENDED WITH I/O ERROR, RESULTS
ON COM PRINT REPORT DAT A SET

Routing code: 3

Message issued by segment: DPPSCMPR

Explanation: If IEBCOMPR returns with a return code G.7. 4, this
message is au t pu t.

Response: None.

DPP037I USER DATA

Routing code: 2

Message issued by segment: None.

Explana tion:

Response:

DPP0381

Routing code: 2

This message is comprised of 50 characters of user data
on which no translation is done. The data is output
exactly as passed by the user. There is no use of this
message by the released Special Real Time Operating
System system.

None.

POSSIBLE SPECIAL REAL TIME OPERATING SYSTEK TIME ERROR
- THE SPECIAL REAL TIME OPERATING SYSTEM TIME OF DAY
HAS BEEN RECALCULATED

Message issued by segment: DPPCTIME or DPPCTIM2

Explanation: The time interval between successive updates to the
Special Real Time Operating system time array exceeded
the allowable tolerance, so a new time vas calculated.

Response: None.

DPP039I THE OS/SPECIAL REAL TIME OPERATING SYSTEM TIME CONVERSION
FACTOR HAS BEEN UPGRADED

Routing code: 2

Message issued by segment: DPPCUPCF

4-30 Description and Operation Manual

Explanation: A time correction value has been passed to the Special
Real Time Operating System time management services and
the Special Real Time Operating System time and date
have been updated accordingly.

Response: None.

DPP041I xxx HAS BEGUN PROCESSING SYSINIT INPUT STREAM

Routing code: 2

Message issued by segment: DPPINIT1

Explanation: This message is used to notify the operator that the
SYSINIT input stream is being processed. It is an
indication that the Special Real Time Operating System
has completed initialization. xxx - is used to identify
the SYSINIT input stream.

xxx "SLA VE JOB" indica tes the SLAVE partition SYSINIT
in pu t streams.

xxx "MASTER JOB" indicates the MASTER partition
SYSINIT input stream.

xxx "SRTOS JOB" indica tes the real time parti tion
SYSINIT input stream in a single partition
en vironmen t.

Response: None

DPP0421 BLDL FAILED FOR MODULE MMMMMMMM - RETURN CODE WAS
CCCCCCCC

Routing code: 2

Message issued by segment: DDDIDFIX

Expla na ti on:

Response:

DPP0431

The page fix routine had a load module fix request for
module MMMMMMMM, a BLDL for the module failed, the return
code was CCCCCCCC.

Check array DPPXFIX and verify that the module to be
fixed exists as a load module and the array is properly
buil t.

FIX FAILED FOR TTTTTTTTTT - NNNNNNNN - RETURN CODE WAS
CCCCCCCC

Routing code: 2

Message issued by segment: DPPIPFIX

Explanation:

Response:

An attempt vas made to fix virtual storage for TTTTTTTTTT
- (load module, named array, numbered array) - named
NNNNNNNN - the return code from the page fix routine
vas CCCCCCCC.

The contents of array DPPXFIX should be reviewed; the
normal cause of this failure is too much real storage
is becoming fixed.

OPERATOR'S REFERENCE 4-31

DPPOij4I TASK = TTTTTTTT - EP=EEEEEEEE WAS POSTED WITH A NONZERO
POST CODE - ECB CONTENTS = CCCCCCCC

Routing code: 2

Message issued by segment: DPINIT11

Explanation: Task named TTTTTTTT, vith entry point named EEEEEEEE,
vas PATCHed by Special Real Time Operating System
initialization. The task was PATCHed with the ECB=
option and, at termination, the ECB had a non-zero
completion code. The contents of the ECB were CCCCCCCC.

Response: Notify the responsible programmer.

DPP045I CONTROL STATEMENT ERROR DETECTED - RUN ABORTED

Routing code: 2

Message issued by segment: DPINIT05

Explanation: The SYSINIT input stream contained control statement(s)
which were erroneous. The run is terminated.

Response: Have the erroneous control statements corrected and
resubmit the run.

DPP0461 MASTER OR SLAVE PARTITION WAITING FOR CORRESPONDING
MASTER OR SLAVE TO BE INITIALIZED

Routing code: 1

Message issued by segment: DPINIT5

Explanation: A job has been started whose SYSINIT stream contained
a MASTER or SLAVE statement. The job has reached a
point in its initialization whe~e it can go no further
until its corresponding MASTER or SLAVE has been started.
This message is issued at one-minute intervals until
the corresponding MASTER or SLAVE job is initialized.

Response: Start the corresponding MASTER or SLAVE job.

DPP047I GETARRAY FAILED FOR DPPXFIX - RETURN CODE WAS CCCCCCCC
- PAGE FFFFFFFF BYPASSED

Routing code: 2

Message issued by segment: DPPIPFIX and DPPDPFRE

Explanation:

Response:

DPP0481

4-32

A PATCH to DPPIPFIX was issued; however, array DPPXFIX
was not located4 The return code from the GET ARRAY for
array DPPXFIX was CCCCCCCC. The Function (FIX or FREE)
was The Function (FIX or FREE) was bypassed.

Remove the PATCH to DPPIPFIX or be sure that array
DPPXFlX exists in the data base being used (DBINIT and
DBINIT2 cards).

GETARRAY FAILED FOR TTTTTTTT - NNN - RETURN CODE WAS
CCCCCCCC.

Description .and Operation Manual

Routing code: 2

Message issued by segment: DPPIPFIX

Explanation: A PATCH vas issued to DPPIPFIX. While processing array
OPPXFIX, a fix request was found for TTTTTTTT (named
array or numbered array) F a GETARRAY vas issued to locate
the named or numbered array NNNNNNNN. The GET ARRAY
failed with return code CCCCCCCC.

Response: Check that the numbered or named array exists in the
data base, or that array OPPXFIX is valid.

DPP0491 ITEK 11111111 IN ARRAY DPPXFIX COULD NOT BE FIXED BECAUSE
THE TYPE FIELD IS INVALID

Routing code: 2

Message issued by segment: DPPIPFIX

Explana tion: A PATCH was issued to DPPIPFIX; while processing array
DPPXFIX, an Item IIIIII1I was found that contained an
invalid fix type.

Response: The only valid fix types are N, A and L. Have array
DPPXFIX corrected.

DPP050I time date DRECOUT DD CARD MISSING

Routing code: 2

Message issued by segment: DPPXRI NT

Explanation: Data recording initialization vas unable to open the
data recording DCB due to the absence of the DRECOUT DO
statement in the job step JCL.

Response: A DRECOUT DD statement ~hould be added to the job step
JCL.

OPP051I time date DPBIN DD CARD MISSING

Routing code: 2

Message issued by segment: DPPXOPB

Explanation: Data playback vas unable to open the data playback DCB
due to the absence of the DPBIN DO statement from the
job step JCL.

Response: A DPBIN DD statement should be added to the job step
JCL.

DPP0521 PAGE FIX FUNCTION COMPLETE - ALL ITEMS WERE XXXXXX

Routing code: 2

Message issued by segment: DPPIPFIX

Explana tion: A PATCH was issued to DPPIPFIX. Array DPPXFIX was
processed; when all processing had been co-mpleted, this

OPERATOR'S REFERENCE 4-33

message was issued to say all ITEMS were XXXXXX - (FIXED
or NOT FIXED).

Response: If all ITEMS were not fixed, a decision may be required
whether to continue or terminate this run.

DPP053I time date REPORT DATA OUTPUT FACILITY UNABLE TO OPEN
SPECIFIED DATA SET

Routing code: 2

Message issued by segment~ DPPXRPRT

Explanation: Report Data output Facility unable to open specified DD
statement due to the absence of the DD statement from
the job step JCL.

Response: A DD statement should be added to the job step JCL for
each DD name passed to the Report Date Output Facility
or the DD name that is not defined by a DD statement
should not be passed to the Report Data output Facility.

DPP054I WRITING OF FAILOVER DATA SET BYPASSED FOR RESTART OF
SLAVE PARTITION

Routing code: 2

Message issued by segment: OPPINITl

Explanation: A MASTER and a SLAVE had been running r and the SLAVE
terminated. The SLAVE is being restarted and its SYSINIT
stream contains a RESTART WRITE statement. A failover
data set had been written on the initial startup of the
MASTER and SLAVEr so this function -is bypassed.

Response: None.

DPP0551 ERROR ON DDS DECLARATION

Routing code: 3

Message issued by segment: DPPSINIT

Explanation:

Response:

OPP0561

One of the DDS NAMES cards has been incorrectly coded
(within the DDSCTLIN stream) •

Correct the bad DDSNAMES card and resubmit the job.

DDSNAME = XXXXXXXX, PRIMARY = YYYYYYYY, BACKUP = ZZZZZZZZ
(= OUT-OF-SERVICE)

Routing code: 3

Message issued by segment: DPPSMSGI

Explanation: This message only gives the status of a specified DDS.

Response: None.

4-34 Description and operation Manual

DPP057I DDSNAME = XXXXXXXX IS LOCKED OUT

Routing code: 3

Message issued by segment: DPPSLOCK

Explanation: A DDS LOCK is being placed on the DDS in question.

Response: None.

DPP058I DDSNAME = XXXXXXXX IS UNLOCKED

Routing code: 3

Message issued by segment: DPPSUNLK

Explanation: A DDS lock is being taken off the DDS in question.

Response: None.

DPP059I UNABLE TO CREATE BACKUP FOR DDSNAME = XXXXXXXX

Routing code: 3

Message issued by segment: DPPSCRBK

Explanation: An attempt to create a backup copy is unsuccessful
because of I/O errors.

Response: None.

DPP0601 time date (up to 80 characters of user data)

Routing code: 2

Message issued by segment: DPPXKILL

Explanation: The Special Real Time operating system cancel routine
displays any operator comments, passed to the cancel
routine, about the nature of the termination.

Response: None.

DPP0611 PTIME for TASK X EP Y TERMINATED BY PATCH RC Z

Routing code: 2

Message issued by segment: DPPCPTIM

Explanation:

Response:

DPP0621

A PATCH vas issued by a time service routine in response
to a previous PTIKE request to task X and EP Y, but
received an error return code of Z from the PATCH
routine. Therefore, its PTIKE for this task and EP have
been deleted. The return code is output as a hexadecimal
value.

None.

DDS REQUEST REJECTED

OPERATOR'S REFERENCE q-35

Routing code: 3

Message issued by segment: DPPSMSGI

Explanation:

Response:

DPP063I

A switch was attempted while the backup was out of
service.

None.

DDSNAME = XXXXXXXX WAS NOT DECLARED DURING INITIALIZATION

Routing code: 3

Message issued by segment: DPPSMSGI

Explana tion:

Response:

DPP064I

This message follows DPP062I stating that the DDSNAME
specified is a user command that could not be found
among the ones declared as duplicates at iniatization
time.

None.

DDSNAME = XXXXXXXX, BACKUP IS ALREADY IN SERVICE

Routing code: 3

Message issued by segment: DPPSCF. BK

Explanation:

Response:

DPP065I

The backup is already in service, so a user request to
create a backup will not be executed.

None:-

DDSNAME = XXXXXXXX = S CURRENTLY OPENED BY ANOTHER TASK

Routing code: 3

Message iss~ed by segment: DPfSMSGI

Explanation:

Response:

DPP066I

Routing code:

The user's request for 'REPLACE' cannot be satisfied
because the DDS is already open.

None.

time date

Message issued by segment: DPPZSAMP DPPSAMP1

Explanation:

Response:

DPP0671

4-36

Test message issued by the Special Real Time Operating
System sample program.

None.

ABEND sssuuu AT LOCATION xxxxxx DURING THE SPECIAL REAL
TIME OPERATING SYSTEM SERVICE OF PL/I - FORT MACRO ID
Y1

Description and Operation Manual

Routing code: 3

Message issued by segment: DP PPIF

Explanation: The message is intended to inform the high level language
user that a Special Real Time Operating System service
routine ABENDed with a completion code of sssuuu where
5S5 is the system completion code and uuu is the user
completion code at location xxxxxx for service call
identified by KACRO ID yy.

Response: None.

DPP06SI time date ISC1t MACRO FUNCTIONING

Routing code: 1

Message issued by segment: DPPZSAMP

Explanation: Test message issued by the Special Real Time Operation
System sample program. When the sample program executes
a macro, and the macro executed properly, message DPP068
will be issued with the macro name.

Response: None.

DPP069I time date ITEM DPPSAMP2 CONTENTS ARE #6Cl#

Routing code: 1

Message issued by segment: DP PZSA liP

Explanation: Test message issued by the Special Real Time Operating
system sample prog ra m. A GETITEM macro will be executed
by the sample program. The contents of item DPPSAMP2
(in array DPPZSAMP) will be displayed via message DPP069.

Response: None.

DPP070I time (content of the IMP command which was received)

Routing code: 1

Message issued by segment: DPPXIMPP

Explanation: Contains the IMP command issued by the operator.

Response: None.

DPP071I DDS REQUEST REJECTED - REQUEST NOT UNDERSTOOD

Routing code: 3

Message issued by segment: DPPSKSGI

Explanation: A DDS request was entered with a bad format, and the
DSS input handler could not interpret it.

Response: None.

OPERATOR'S REFERENCE 4-37

DPP072I time date PROGRAM .BCl. PATCHED AS A RESULT"OF AN IMP
COMMAND APPEARS TO BE IN A LOOP

Routing code: 2

Message issued by segment: DPPXIMPP

Explanation: An IMP command was issued to the SLAVE partition and
the routine that processes (routine patched by IMP as
a result of this command) the command appears to be in
a loop.

Response: The loop in the processing routine for this particular
IMP command should be corrected. The loop will not
affect the operation of the Special Real Time Operating
System.

DPP0731 DDSNAME = XXXXXXXX, UNABLE TO ACCESS DATA SETS COMPARE
REJECTED

Routing code: 3

Message issued by segment: DPPSCMPR

Explanation: A DDS compare request is being rejected because the
JFCBs for the data sets cannot be read.

Response: None.

DPP074I DOSNAME = XXXXXXXX, DATA SETS NOT SAME TYPE COMPARE
REJECTED

Routing code: 3

Message issued by segment: DPPSCMPR

Explanation:

Response:

DPP075I

A DDS compare request ~as made for data sets with
different OSORG fields in the DSCBS, so the request is
being dropped.

None.

DOSNAME = XXXXXXXX, COMPARE IN PROGRESS

Routing code: 3

Message issued by segment: DP PSCMPR

Explanation: The DOS specified is now being compared.

Response: None.

DPP076I DOSNAME = XXXXXXXX, COMPARE ENDED DATA SETS ARE EQUAL

Routing code: 3

Message issued by segment: DPPSCMPR

Explana tion:

4-38

A DDS compare function ended, and the two data sets were
found to be equal.

Description and operation Manual

Response: None.

DPP0771 DDSNA~E = XXXXXXXX, CO~PARE ENDED, DATA SETS ARE NOT
EQUAL

Routing code: 3

~essage issued by segment: DPPSC~PR

Explanation: A DDS compare function ended with the data sets not
being equal; IEBCOMPR output is on the COMPRINT report
data sets.

Response: None.

DPP0781 DDSNAME = XXXXXIXX, CO~PARE REJECTED, NO //DDSCMPIN DD
CARD FOR SYSIN

Routing code: 3

~essage issued by segment: DPPSC~PR

Explanation: A DDS compare request is being dropped because there is
no DDSCMPIN DD card in the 1107 to hold rEB COMPR input.

Response: None

DPP0791 time IMP PA~A~ETERS EXCEED MAXIMUM PARAMETERS DEFINED
FOR IMP COMMAND cccccccc

Rou ti ng code: 1

Message issued by segment: DP PXIMPP

Explanation: Too many parameters were passed by the IMP command.

Response: The I~P command should be issued again, not exceeding
the maximum number of parameters for this particular
IMP command.

DPP08~A FAIL/RST DATA SET NOT WRITTEN - END OF EXTENT ON DPPFAIL

Ro~ting code: 5

Message issued by segment: DOMIRFL2

Explanation: The data set named in the DPPFAIL DD card contains
insufficient space for the failure/restart data set.

Response: Allocate more space.

DPP081A FAIL/R~T DATA SET NOT WRITTEN - I/O ERROR ON DPPFAIL

Routing code: 5

Message issued by segment: DOPlIRFL2

Explanation: An I/O error occurred on the Failure/Restart data set.

OPERATOR'S REFERENCE 4-39

Response: Use a different disk or allocate the space at a different
place on the disk pack. Hardware error.

DPP082A FAIL/RST DATA SET NOT WRITTEN - 1/0 ERROR READING PAGING
DATA SET

Routing code: 5

Message issued by segment: DOMIRFL2

Explana tion: An 1/0 error reading the OS/VS1 paging data set.

Response: An IPL will be required. Hardware error.

DPP083A FAIL/RST DATA SET WRITTEN - 1/0 READING JOBQUEUE/SYSWADS

Routing code: 5

Message issued by segment: DOKIRFL2

Explanation:

Response:

An I/O error occurred while reading the OS/VS1 Job queue
or S YS 1. SY SWADS da ta sets.

An IPL will be required. Hardware error.

DPP084A FAIL/RST DATA SET NOT WRITTEN - 1/0 ERROR READING SWADS

Routing code: 5

Message issued by segment: DO MIRPL2

Explanation:

Response:

An I/O error occurred while reading the SWADS for the
MASTER partition.

Hardware error. A different SilOS viII probably be
required.

DPP085A FAIL/RST DATA SET NOT WRITTEN - 1/0 READING SWADS POR
SLAVEP ART

Routing code: 5

Message issued by segment: DOKIRPL2

Explanation:

Response:

DPP086A

An I/O error occurred while reading the SWADS for the
SLAVE partition.

Hardvare error. 1 different SilOS will probably be
required.

FAIL/RST DATA SET NOT WRITTEN - PROG eK. IN RESTART
WRITE

Routing code: 5

Message issued by segment: DOKIRFL2

Explanation: An unexplained program check occurred in restart write.

4-40 Description and Operation Manual

Response: Probable programming error in Failure/Restart.

DPPOS7A FAIL/RST DATA SET NOT WRITTEN - ~ACHINE CHECK IN RESTART

Routing code: 5

M~ssage issued by segment: DO MIRFL2

Explanation: A hardware error occurred in restart write.

Response: Retry the job.

DPP088A SECNDRY COPY OF FAIL/RST DATA SET NOT WRITTEN 1/0 ERROR
ddname

Routing code: 5

Message issued by segment: DOMIRCPY

Explanation: An I/O error occurred while attempting to make backup
copies of the failure/restart data set. No backup copies
were made. Insufficient space in the data set can cause
this error.

Response: Possible hardware error. Allocate the backup
failure/restart data set at a different location or
increase its size.

DPP089A DDNAME ddname INVALID FOR COpy OF F/R DATA SET

Routing code: 5

Message issued by segment: DO MIRCPY

Explanation: The ddname indicated is invalid for the failure/restart
data set for one or more of the following reasons:

• It is not a direct access device of the same type as the primary
F /R data set.

• Another F/R data set is on the volume.

• The volume contains the SYS1.NUCLEUS data set. No backup copies
were made.

Response: Correct the JCL.

DPP090I FAIL/RST DA~A SET WRITTEN

Routing code: 5

Message issued by segment: DOMIRFL2

Explanation: The Failure/Restart data set bas been successfully
vritte n.

Response: None.

DPP0911 FAIL/RST DATA SET READ COMPLETE

OPERATOR'S REFERENCE 4-41

Routing code: 5

Message issued by segment: DOMIRFL2

Explanation: The Failure/Restart data set had been successfully IPLed.

Response: None.

DPP092A FAIL/RST DATA SET NOT WRITTEN - DPPFAIL DD CARD INVALID
OR MIS SI NG

Routing code: 5

Message issued by segment: DOMIRFL2

Explanation: The Failure/Restart data set was not written because of
one or more of the following:

• No DPPF AI L DD card is provide d.

• The data set name in the DPPF AIL DDcard is not on direct access.

• The data set named in the DPPFAIL DD card is on the same volume
with SYS1.NUCLEUS.

Response: Correct the JCL and resume the job.

DPP0931 FAIL/RST DATA SET NOT WRITTEN - OTHER R/T JOB IN SYSTEM

Routing code: 5

Message issued by segment - DOMIRFL2

Explanation: Another realtime job in the same OS/VS1 system owns
restart write eligibility.

Response: None.

DPP094A PROBE FUNCTION NOT RUNNING IN OTHER CPU

Routing code: 5

Message issued by. segment: DOMIRCMN

Explanation: This message can appear only in systemE with CMCKPRB=YES
specified in the FAILRST SYSGEN macro. It indicates
that neither a continuous monitor or a PROBE is running
in the backup cpu.

Response: Start a PROBE function in the backup CPU if desired.

DPP0951 PROBE FUNCTION IS NOW RUNNING IN OTHER CPU

Routing code: 5

Message issued by segment: DO MIRCMN

Explanation:

4-42

Thi~ message can appear only in systems with CMCKPRB=YES
specif ied in the F AILRST SYSTEN macro. It indicates
that the continuous monitor has detected that a PROBE
function is running in the other CPU.

Description and Operation Manual

Response: None.

DPP096I ANOTHER CONT. MON IS IN OTHER CPU

Routing code: 5

Message issued by segment: DO MIRCMN

Explanation: This message can appear only in systems with CMCKPRB=YES
specified in the FAILRST SYSGEN macros. It indicates
that each CPU has a continuous monitor running in duplex
mode. Each CPU is operating as though it were the prime
CPU.

Response: Cancel the realtime job in olle of the CPUs unless the
configuration is specified.

DPP098A CONTINUOUS MONITOR RECOMMENDS FAILOVER

Routing code: 5

Message issued by segment: DOMIRCMN

Explanation: The continuous monitor has datected an error in the
online system and is recommending a failure or restart.

Response: Allow the failover to occur or invoke a restart as
appropriate.

DPP099I ANOTHER CONT. MON/PROBE ON SAME SYSTEM - NO HARDWARE
FAILOVER RECOM BY THIS CONT. MON

Routing code: 5

Message issued by segment: DOMIRCMN

Explanation: One of the following conditions exists:

• This realtime job does not own restart write eligibility.

• A PROBE function is running in another job on this cPU.

• A continuous monitor is already running in duplex mode on this CPU.

Response: None.

DPP8001 CONTROL STATEMENT LABEL MUST NOT EXCEED EIGHT CHARACTERS

Routing code: SYSPRINT

Message issued by segment: DPPINITO

Explanation:

Response:

DPP8011

The LABEL field of a control statement had a name that
exceeded eight characters. Eight is the maximum
allowable number of characters in this field.

Correct the name in the LABEL field and resubmit.

CONTROL STATEMENT MUST HAVE OPERANDS

OPERATOR'S REFERENCE ij-ij3

Routing code: SYSPRINT

Kessage issued by segment: DPPINITO,DPINITOA

Explanation: All control statements except ABEND must have OPERANDS
that begin on the same card as the OPERATION.

Response: Supply the proper OPERANDS and resubmit.

DPP802I INVALID OPERATION FIELD

ROQting code: SYSPRINT

Message issued by segment: DPPINITO

Explanation: An OPERAND other than one of the following was found:
PATCH, WAIT, WRITE, TCB, GETWA, CBGET, ABEND, ftASTER,
SLAVE, DBREF.

Response: Correct the OPERATION field and resubmit.

DPP803I TOO MANY OPERANDS ON CONTROL STATEMENT

Routing code: SYSPRINT

Kessage issued by segment: DPINIT03

Explana tion : The maximum number of OPERAND characters allowed on any
one control statement and its continuations is 255
characters.

Response: Correct the control statement and reSUbmit.

DPP804I INVALID CONTROL STATEMENT CONTINUATION

Routing code: SYSPRINT

Message issued by segment: DPINIT03

Explanation: A continuation was indicated and the card processed
either began in column 15 or before, or processing was
not within quotes and the continuation did not start in
column 16.

Response: Correct the control statement an~ retry.

DPP8051 INVALID OPERAND ON CONTROL STATEMENT

Routing code: SYSPRINT

ftessage issued by segment: DPINIT04,DPINITOA

Explanation:

Response:

DPP806I

4-44

The control statement contains an invalid operand for
the operation type specified in the operation field.

Correct the control statement and retry.

ONLY ONE ft ASTER OF SLAVE STATEMENT ALLO-W-ED IN INPUT
STREAM

Description and Operation Manual

Routing code: SYSPRINT

Message issued by segment: DPPINITO

Explanation: only one MASTER or SLAVE control statement is allowed
in each SYSINIT input stream.

Response: Remove the extra MASTER or SLAVE statement(s) from the
stream and retry.

DPP807I NAKE SPECIFIED ON WAIT STATEMENT NOT A LABEL ON A
PREVIOUS PATCH CONTROL STATEMENT

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The operand on the WAIT statement was not a label from
a PATCH statement which precedes the WAIT in the input
stream.

Response: Correct the WAIT operand, remove the WAIT, or place the
proper PATCH statement ahead of the WAIT in the input
stream and retry.

DPP8081 ONLY ONE RESTART STATEMENT ALLOWED IN THE INPUT STREAM

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The input stream contained more than one WRITE RESTART
statement. Only one is valid.

Response: Remove the extra WRITE RESTART statement(s) from the
SYSINIT stream and retry.

DPP809I INVALID NAME IN EP=FIELD

Routing code: SYSPRINT

Message issued by segment: DPINIT02

Explanation: The name specified on an EP= keyword of a PATCH statement
exceeded eight cha racters.

Response: Correct the EP= operand and retry.

DPP8101 INVALID NAKE IN TASK= FIELD

Routing code: SYSPRINT

Message issued by segment: DPINIT02

Explanation:

Response:

The TASK.: keyv,ord of a PATCH statement contained a task
name which exceede d eight charb.cters.

Corredt the TASK= operand and retry.

OPERATOR'S REFERENCE 4-45

DPP8l1I QL PIELD INVALID

Routing code: SYSPRINT

Message issued by segment: DP IN IT 02, DPP IN ITOA

Explanation: The QL= keyword on a PATCH statement contained a value
of greater than 999.

Response: Correct the QL= keyword operand and retry.

DPP812I ID FIELD INVALID

Routing code: SYSPRINT

Message issued by segment: DPINIT 02

Explanation: The ID= keyword on a PATCH statement contained an 10
greater than 255.

Response: Correct the ID= keyword operand and retry.

DPP813I INVALID KEYWORD

Routing code: SYSPRINT

Message issued by segment: DP PI NI TO. DPI NI TOA

Explanation: The control statement contained an invalid keyword for
the operation type specified in the operation field.

Response: Correct the keyword and retry.

DPP814I PRTY REPERENCE VALUE KISSING OR INVALID

Routing code: SYSPRINT

Message issued by segment: DPINIT02 ,DPI NITOA

Explanation: The PRTY= keyword on the PATCH statement vas either
missing the reference value or the value exceeded 255.

Response: Correct the PRTY reference value and retry.

DPP8l5I INVALID DELIftETER IN PRTY OPERAND

Routing code: SYSPRINT

Message issued by segment: DPINIT02

Explanation:

Response:

DPP8l6I

4-46

The PRTY= keyword on a PATCH statement vas not coded as
JOBSTEP - or (jobname,). The delimiter must be the
minus e-) or the comma e,).

Correct the PRTY= keyword operand and ensure that if
(jobname,) is used that the specified jobname does not
exceed eight characters.

INVALID TASK NAftE IN PRTY REFERENCE FIELD

Description and Operation Manual

Routing code: SYSPRINT

Message issued by segment: DPINIT02

Explanation: The PRTY= keyword on the PATCH statement contained a
name in the (jobname,) field which exceeded eight
characters.

Response: Correct the PRTY reference jobname and resubmit.

DPP8l7I DUPLICATE KEYWORD ON PATCH STATEMENT

Routing code: SYSPRINT

Message issued by segment: DPINIT02

Explanation: A keyword operand on the PATCH statement appeared twice
on a single control statement.

Response: Correct the control statement and retry.

DPP818I INVALID DELIHETER IN PARA" SUBOPERANDS

Routing code: SYSPRINT

Message issued by segment: DPINITOl

Explanation: All suboperands within a PARAH field must end with a
single quote (') character and be delimited by a comma.
This PATCH statement contained a suboperand that was
not delimited with a comma.

Response: Correct the control statement and retry.

DPP819I INVALID DATA IN PARAH FIELD

Routing code: SYSPRINT

Message issued by segment: DPINIT 01

Explanation: The PARAH= keyword operand on a PATCH statement contained
non-decimal data in an F' , field, or non-hexadecimal
data in an X' • field.

Response: Correct the PARAM data and retry.

DPP820I INVALID DATA TYPE IDENTIFIER IN PARAH FIELD - MUST BE
X, F, OR C.

Routing code: SYSPRINT

Message issued by segment: DPINIT01.

Explanation:

Response:

DPP821I

The PARAM= keyword on a PATCH statement contains a data
type identifier other than X, F, or C.

Correct the data type identifier and retry.

CHARACTER FOLLOWING PARAM DATA TYPE IDENTIFIER MUST BE
A QUOTE

OPERATOR'S REFERENCE 4-47

Routing code: SYSPRINT

~essage issued by segment: DP IN IT 01

Explanation: The data type identifier (F, C, or X) on a PATCH
statement must be followed by a single quote (')
character.

Response: Correct the PARA~ field and retry_

DPP822I UNBALANCED QUOTES IN PARAH FIELD

Routing code: SYSPRINT

~essage issued by segment: DPINIT01

Explanation: A PARA~ keyword on a PATCH statement must contain evenly
balanced single quote (I) characters. This character
is not valid with a PARAH suboperand.

Response: Correct the PARAH statement and retry.

DPP823I PARAH FIELD MUST END WITH RIGHT PARENTHESIS

Routing code: SYSPRINT

Hessage issued by segment: DPINIT01

Explanation: The PARAH= keywocd suboperands on a PATCH statement must
be enclosed in parentheses (--); the ending or right
parenthesis is missing on this PATCH statement.

Operator response: Correct the PARA~ field and retry.

DPP824I PARAH FIELD MUST START WITH LEFT PARENTHESIS

Routing code: SYSPRINT

Hessage issued by segment: DPINIT 01

Explanation: The PARAM= keyword suboperands on a PATCH control
statement must be enclosed in parentheses (--); the
beginning or left parenthesis on this PATCH statement
is missing.

Response: Correct the PARAH field .and retry.

DPP825I INVALID DELI~ETER FOLLOWING PARAH OPERAND

Routing code: SYSPRINT

Message issued by segment: DPINIT01

Explanation:

Response:

4-48

All operands on a PATCH statement must be delimited with
a comma or blank. This control statement has a character
other than a comma or blank following the ending (righ t)
pa rent hesis.

Correct the statement and retry.

Description and Operation Manual

DPP8261 QL FIELD CONTAINS NONDECIMAL DATA

Routing code: SYSPRINT

~essage issued by segment: DPINIT02

Explanation: The QL= operand on the PATCH statement contained a value
that included non-decimal characters.

Response: Correct the QL= operand and retry.

OPP827I 10 FIELD CONTAINS NONOECIMAL DATA

Routing code: SYSPRINT

Message issued by segment: DPINIT02

Explanation: The 10= keyword on the PATCH statement contained a value
that included non-decimal data.

Response: C()rrect the 10 field and retry.

DPP828I PRTY FIELD CONTAINS NONDECIMAL DATA

Routing code: SYSPRINT

Message issued by segment: DP INIT02 .. DPI NITOA

Explanation: The PRTY = keyword on the PATCH statement contained a
priority reference value that included a non-decimal
character(s).

Response: Correct the PRTY reference value and retry.

DPP829I CBGET DATA IS NONDECIMAL

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The CBGET statement operand contained a value which
included a non-decimal character(s).

Response: Correct the CBGET operand and retry .•

DPP8301 INVALID JOBNAME

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: A KASTER or SLAVE statement had an invalid jobname on
its operand. The jobname exceeds eight characters.

Response: Correct the MASTER or SLAVE statement jobname and retry.

DPP831I TI~E FIELD CONTAINS NONDECIMAL DATA

Routing code: SYSPRINT

OPERATOR'S REFERENCE 4-q9

~essage issued by segment: DPINIT04

Explanation: The time field on the ABEND card contained a value that
included a non-decimal character(s).

Response: Correct the time field on the CBGET statement and retry.

DPP832I TIME FIELD CANNOT BE GREATER THAN 999

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The time field on the ABEND card contained a value
greater than 999.

Response: Correct the time field and retry.

DPP833I SECOND OPERAND ON AN ABEND STATEMENT MUST BE DUMP OR
OMITTED

Routing code: SYSPRINT

~essage issued by segment: DPINIT04

Explanation: The second operand on the ABEND statement contained
characters other than the word 'DUMP'. This operand
must be 'DUMP' or omitted.

operator response: Correct the ABEND statement and retry.

DPP834I NUMBER OP TCBS IS NONDECIMAL

Routing code: SYSPRINT

~essage issued by segment: DPINIT04

Explanation: The operand on the TCB statement contained a value that
included a non-decimal character(s).

Response: Correct the TCB statement and retry.

DPP835I EP= MUST BE SPECIFIED ON A PATCH STATEMENT

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The PATCH statement processed did not have the EP=
keyword specified.

Response: Correct the EP= and retry.

DPP8361 INPUT DCB - SYSINIT - PAlLED TO OPEN

Routing code: SYSPRINT

Message issued by segment: DPPINITO

4-50 Description and Operation Manual

Explanation: The input DCB for the SYSINIT data set could not be
opened.

Response: Check the SYSINIT DO card and verify that it allocates
the correct data set.

DPP837I INVALID SUBPARAMETERS IN LIST

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The GETWA statement contained subparameters in its size
list which were invalid or had invalid delimiters.

Response: Correct the GETWA statement and retry.

DPP838I LIST ENTRY CONTAINS NONDECIMAL DATA

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The GETWA suboperand list contained subparameters that
contained a non-decimal character(s) e

Response: Correct the GETWA statement and retry.

DPP839I NUMBER OF BLOCKS CANNOT EXCEED 4095

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The GETWA statement had a request for a number of blocks
and the request exceeded the maximum of 4095.

Response: Correct the GETWA statement and retry.

DPP840I GETWA SIZE EXCEEDS 30720 OR GREATER THAN 2048 AND NOT
A 2K MULTIPLE OR NOT A MULTIPLE OF 8

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The GETWA statement contained a request for a block size
that exceeded the maximum size or is an invalid size.

Response: Correct the GETWA statement and continue.

DPP8411 EXCESSIVE NUMBER OF SUBOPERANDS IN LIST -64 IS THE
MAXIMUM

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The GETWA statement contained a list of subparameters
with more than 64 subparameters.

OPERATOR'S REFERENCE 4-51

Response: Correct the GETWA statement and retry.

DPP842I SUBLIST ftUST END WITH RIGHT PARENTHESIS

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: the GETWA statement contained a list of subparameters
that did not end with a right parenthesis.

Response: Correct the GETWA statement and retry.

DPP843I SUBLIST ftUST BEGIN WITH A LEFT PARENTHESIS

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The GETWA statement contained a subparameter list that
did not begin with a left parenthesis.

Response: Correct the GETWA statement and retry.

DPP844I CONTINUATION EXPECTED - NOT RECEIVED

Routing code: SYSPRINT

Message issued by segment: DPINIT05

Explanation: The last statement read from the input str~am indicated
that a continuation statement vas to follow. The
continuation statement vas not in the input stream.

Response: Correct the last statement or add the continuation
statement and retry.

DPP8451 TWO-PARTITION FUNCTION NOT AVAILABLE

Routing code: SYSPRINT

Message issued by segment: DPINIT04

Explanation: The input stream contains a MASTER or SLAVE statement;
however, at SRTOS SYSGEN, two-partition operation was
not selected.

Response: Remove the MASTER or SLAVE statement and retry.

DPP846I nnnnnnnn DEFINED AS QUEUE HOLDER BUT NOT REFERENCED BY
ANY QUEUE PROCESSOR

Routing code: SYSPRINT

ftessage issued by segment: DPINIT05

Explanation:

4-52

A QH statement defined nnnnnnnn as a queue holder but
that name is not specified on any QP statement. If
allowed to go into execution, work that is queued to
this queue ~older could never be executed.

Description and Operation ftanual

Response: Remove the QH card that specified this name or add this
name to some QP statement and retry.

DPP847I nnnnnnnn REFERENCED AS QUEUE HOLDER BY A QUEUE PROCESSOR
BUT NO T DE FINE D

Routine Code: SYSPRINT

Message issued by segment: DPINIT05

Explanation: The name nnnnnnnn appears in the QH= operand of a QP
statement but is not defined as a queue holder by a QH
statem ent.

Response: Define a queue holder by this name or delete this name
from the QP statement that references it and retry.

DPP848I {QH NAME}

Routing code: SYSPRINT

Message issued by segment: DPINITOA

Explanation: A QH name or QP number is required on every QH or QP
statement as a positional parameter. This parameter is
missing or invalid on the user statement preceding this
message.

Response: Correct the statement and retry.

DPP8491 cccccccc OPERAND CONTAINS TOO ftANY, TOO FEW OR ILLEGAL
CHARACTERS IN PARA~ETER OR SOB-PARAMETER

Routing code: SYSPRINT

Message issued by segment: DPINITOA

Expalanation: The operand specified by cccccccc is invalid on the user
statement preceding this message.

Response: Correct the statement and retry.

DPP850A sxxIN TASl\ yyyyyyyy. ABEND .nnn FOR MODULE zzzzzzzz.
REPLY 'YES' TO ALLOW DUMP OR 'NO' TO SUPPRESS DUMP.

Routing code: The message is issued as an OS/VS1 iTOR

Message issued by segment: DPPSTAE

Explanation: A subtask ABENDed while the "STAE.OPTION" request was
in effect. The operator may reply 'YES' to allow the
dump to be formatted or 'NO' to suppress the dump. If
the operator has not replied to this WTOR in 5 minutes,
the WTOR vill be cancelled and the dump formatting will
be bypassed. The message defines the type of ABEND and
the module responsible, where:

xxx - is the ABEND code

IIYYIYYI - is the task name

OPERATOR'S REFERENCE 4-53

Response:

DPP851I

nnn - is the total number of ABENDs for this module

ZZZZZZZZ - is the entry point name of the module

Messages DPP860 and DPP861 are issued in conjunction
with this WTOR to provide the PSW and register contents
at the time of the ABEND.

Reply 'YES' to allow the dump to be formatted.
Reply 'NO' to suppress formatting of the dump.

{YES}
{NO } DUMP REPLY ACCEPTED
REPLY NOT RECEIVED IN TIME INTERVAL. DUMP BYPASSED
XXX IS AN INVALID REPLY

Routing code: The message is issued as an OS/VS1 WTO

Message issued by segment: DP PTSTAE

Explanation: This message is issued in response to the operator reply
to WTOR DPP850A. 'DPP851I 'YES' DUMP REPLY ACCEPTED'
indicates that the operator reply was valid and issued
within the time interval and a dump will be formatted.
'DPP851I 'NO' DUMP REPLY ACCEPTED' indicates that the
operator reply was valid and issued within the time
interval and dump formatting will be bypassed. 'DPP851I
REPLY NOT RECEIVED IN TIME INTERVAL. DUMP BYPASSED'
indicates that no operator reply was received within
the time interval and dump formatting will be bypassed.
'DPP851I XXX IS AN INVALID REPLY' states that the
operator reply was not a 'YES' or 'NO' and the iTOR
DPP850A will be reissued.

Response: None.

DPP852I cccccccc OPERAND CONTAINS INVALID DATA

Routing code: SYSPRINT

Message issued by segment: DPINITOA

Explanation: The operand specified by cccccccc on the user statement
preceding this message contains invalid data.

Response: Correct the statement and retry.

DPP853I cccccccc OPERAND DATA MUST BE ENCLOSED IN PARENTHESIS.
ONE OR BOTH ARE MISSING

Routing code: SYSPRINT

Message issued by segment: DP INIT OA

Explanation:

Response:

4-54

The operand data of the parameter specified by cccccccc
must be enclosed in parenthesis. Either the opening or
closing parenthesis or both are missing on the user
statement preceding this message.

Correct the statement and retry.

Description and Operation Manual

DPP854I cccccccc

Routing code: SYSPRINT

Message issued by segment: DPINITOA

Explanation: The operand specified by cccccccc is required, but not
correctly provided on the user statement preceding this
message. Other messages may appear in conjunction with
this message.

Response: Correct the statement and retry.

DPP855I cccccccc SPECIFIED AS EXIT= OPERAND NOT FOUND ON
STEPLI B/JOBLlB DAT A SET

Routing code: SYSPRINT

Message issued by segment: DPINITOA

Explanation: A STAEX command specifies cccccccc as an exit routine
load module. The initialization routine has executed
a BLDL and found that the load module could not be
fetched if it should be needed.

Response: Add a load module by the specified name to the
STEPLIB/JOBLIB data set(s) and retry_

DPP856I {QP NUMBER}
{QH NAME} SPECIFIED ON THIS STATEMENT HAS BEEN
SPECIFIED ON A PREVIOUS STATEMENT

Routing code: SYSPRINT

Message issued by segment: DP INIT OA

Explanation: The queue processor number or queue holder name specified
as a positional parameter on the user statement preceding
this message has been defined on a previous QP or QR
statement ..

Response: Remove the duplica te specifica tions and retry_

DPP857I cccccccc IS CONNECTED TO MORE THAN 21 OTHER BLOCKS

Routine code: SYSPRINT

Message issued by segment: DPINITOA

Explana tion:

Response:

the QH= operand of a QP statement is not allowed to
contain more than 21 queue holder names and a queue
holder name is not allowed to appear in more than 21 QP
statement QP= operands. cccccccc is the QH or OP name
that violates this restriction. A OP name is in the
format ****QPnn, where nn is the user defined queue
processor number.

Reduce the number of references to the specified name
and retry.

OPERATOR'S REFERENCE 4-55

DPP860 PSW AT ABEND XXIX XXXX

Routing code: 1

Message issued by segment: DPPTSTAE

Expla na tion:

Response:

DPP861

Routine code:

Whenever an OS dump is suppressed by the STAE option
processing (i.e., "STAE,NODUMP") or whenever
"STAE,OPTION" is in effect, messages DPP860 and DPP861
are issued to provide a mini dump. Message DPP860
prov ides the PSW a t the time of the ABEND.

None.

,REGS aaaa bbbb cccc dddd

Message issued by segment: DPPTSTAE

Explanation:

Response:

DPP8621

Whenever an as dump is suppressed by the STAE option
processing (i.e., "STAE,NODUMP") or whenever
"STAE, OPTION" is in effect, messages DPP860 and DPP861
are issued to prov ide a mini dump. Message DPP861 is
issued four times to provide the contents of registers
0-3, 4-7, 8-11, and 12-15, respecti~ely at the time of
the du mp.

None.

QQQQQQQQ: IS

{HOLD} {SEQ}

{Q P}
{Q H}
{T SKI

{PATCH}
{NOPATCH}

{REL} , :{NON5EQ} ,CQL=nnn,[A]

Routine code: 2

Message issued by segment: DP PTQ! MP

Explanation:

4-56

This message is output as a result of the entry of every
Q5 command. It reports the status of the queue
processor(s), queue holder(s), and/or independent task(s)
specified in the QS command.

QQQQQQQQ is the name of the unit being reported

QP

QH

T5K

PATCH

NOPATCH -

HOLD

REL

This is a queue processor

This is a queue holder

This is an independent task

This unit is allowed to accept work (PATCHes)

PATCHes to this unit will be rejected

This unit is not allowed to start processing
any new work

This unit can process any work which it is
eligib Ie to process

Description and Operation Manual

Response:

DPP8631

Routing code:

Message issued

Explanation:

Response:

DPP8641

SEQ

NONSEQ

CQL=nnn -

A

None.

QQQQQQQQ IS

(meaningful for QH only) only one QP may be
processing work from this QH

(meaningful for QH onl~ any QP connected
to this QH may take work from this QH

nnn is the number of work queues currently
awaiting processing

If present, this unit (TSK or QP only) is
currently processing a piece of work

{QH}
{QP} X REF TO:

nnnnnnnn, ••• ,nnn nnn

2

by segment: DPPTQIMP

This message is output as a result of the entry of a QS
command with the SREF operand. It is output following
message DPP962. QQQQQQQQ is the unit being reported.
QP or QH specifies the type of unit, queue processor or
queue holder. If QP, the names following (nnnnnnnn, •••)
are the queue holders from which this QP may select
work. If QH, the names following are the queue
processors that may select work from this QH. Up to 1
names of connected units may appear in each message.
Up to 3 messages may be output to output all connections
to one uni t.

None.

QS COMMAND PARAMETER PPPPPPPP INVALID. COMMAND IGNORED

Routing code: 2

Message issued by segment: DPPTQIMP

Explanation~ A QS IMP command was entered with a misspelled, out of
sequence or invalid parameter. The unacceptable
parameter is reproduced as PPPPPPPP.

Response: Reenter request with correct parameters.

DPP865 COpy FAILED FOR 'FROM-OO' TO 'TO-OO'

Routing code: 3

Message issued by segment: DPPSRTCP

Explanation:

Response:

DPP866

The realtime copy operation pursuant to an RTCOPY command
has failed.

None.

UNABLE TO READ UFCBS FOR 'OONAME'

OPERATOR'S REFERENCE 4-51

Routine code: 3

~essage issued by segment: DPPSRTCP

Explanation: In a realtime copy operation, the JFCB for the DDname
could not be read.

Response: None.

DPP867 UNABLE TO READ COUNT FOR 'DDNAME'

Routing code: 3

~essage issQed by segment: DPPSRTCP

Explanation: In a realtime copy operation the count fields for ddname
could not be read.

Response: None.

DPP868 UNABLE TO READ RO FOR ddname

Routine code: 3

~essage issued by segment: DPPSRTCP

Explanation: In a realtime copy operation, RO could not be read for
ddname.

Response: None.

DPP869 UNABLE TO READ DATA FOR ddname

Routing code: 3

Message issued by segment: DPPSRTCP

Explanation; In a ~ealtime copy operation, the data fields could not
be read for ddname.

Response: None.

DPP870 UNABLE TO WRITE DATA FOR DDNAME

Routine code: 3

Message issued by segment: DPPSRTCP

Explanation: In a copy operation, the data could not be written for
ddname.

Response: None.

DPP871 COpy ENDED FOR 'ddname-l' TO 'ddname-2'

Routing code: 3

Message issued by segment: DPPSRTCP

4-58 Description and Operation Manual

Explanation: The realtime copy operation requested by a RTCOPY command
for ddname-l to ddname-2 has ended.

Response: None.

DPP880 UNABLE TO OPEN DDSTATUS, RUNNING SINGLE KODE

Routine code: 3

Message issued by segment: DPPSINIT

Explanation: When attempting to run REFRESH or READONLY mode, the
DDSTATUS data set could not be opened.

Response: None.

DPP881 UNABLE TO WRITE DDSTATUS RECORD

Rou ti ne code: 3

Message issued by segment: DPPSWRST

Explanation: The status of a DDS changed (or was being initialized)
but the record could not be written to the DDSTATUS data
set.

Response: None.

DPP882 UNABLE TO READ DDSTATUS RECORD, RUNNING SINGLE KODE

Routing code: 3

Message issued by segment: DPPSINIT

Explanation: When running REFRESH or READONLY, the DDSTATUS data set
record could not be reade

Response: None.

DPP883 DDSTATUS NOT OPEN FOR OUTPUT

Routing code: 3

Message issued by segment: DPPSWRST

Explanation: The status of a DDS changed (or was being initialized)
but the DDSTATUS data set could not be opened for output.

Response: None.

DPP884 DDSTATUS NOT UPDATED, RUNNING IN READONLY MODE

Routing code: 3

Message issued by segment: DPPSWRST

Explana ti on: The status of a DDS changed while running in READONLY
mode, so the DDSTATUS data set will not be updated.

OPERATOR'S REFERENCE 4-59

Response: None.

DPP885 DDSTATUS HAS BEEN UPDATED

Routing code: 3

Message issued by segment: DPPSWRST

Explanation: The status of a DDS changed or vas being initialized
and the DDSTATUS data set vas updated.

Response: None.

DPP886 DDSTATUS RECORD HAS MISSING DDSNAMES - OSING CURRENT
DECLARATIONS

Routing code: 3

Message issued by segment: DPPSRSTR

Explanation: The DDS declaration for the primary CPU has at least
one missing declaration from the backup cpu.

Response: None.

DPP887 DDSTATUS RECORD HAS EXTRA DDNAMES, SETTING THEM IN SINGLE
MODE

Routing code: 3

Message issued by segment: DPPSRSTR

Explanation: The primary CPU had at least one DDS declaration that
the backup did not have.

Response: None.

DPP888 DDS RESTART IS COMPLETE

Routing code: 3

Message issued by segment: DPPSRSTR

Explanation: The refresh of the DDS status has been completed at
failover/restart time.

Response: None.

DPP889 COpy REQUEST REJECTED, RUNNING IN SINGLE MODE

Routing code: 3

Message issued by segment: DPPSCRBK

Explanation:

Response:

4-60

A DDS CREATE vas attempted against a data set not
declared duplicate.

None.

Description and Operation Manual

DPP890 UNABLE TO OPEN DD STATUS FOR INPUT RUNNING WITH OLD
BACKUP CPU DECLARATIONS

Routing code: 3

Message issued by segment: DPPSRSTR

Explanation: At failover/restart time, the DO status data set could
not be opened for input. The DDS declarations of the
backup CPU vere used.

Response: None.

DPP891 SYNAD READING DDSTATUS RECORD, RUNNING WITH OLD BACKUP
CPU DECLARATIONS

Routing code: 3

Message issued by segment: DPPSRSTR

Explanation: At failover/restart time, a synad occurred trying to
read the DDSTATUS record. The backup CPU DD2
declarations viII be used.

Response: None.

DPP892 EOD READING DDSTATUS RECORD, RUNNING WITH OLD BACKUP
CP U DE CL AR A T ION S

Routing code: 3

Message issued by segment: DPPSRTCP

Explanation: At failoyer/restart time, the attempt to read the
DDSTATUS record resulted in End of data. The DDS
declarations for the backup CPU will be used.

Response: None.

DPP893 LOAD MODULE cccccccc NOT FOUND BY PLAYBACK

Routing code: message is issued as an OS/VS iTO

MEssage issued by segment: DPPXDPB

Explanation: A load module name was passed to playback that could
not be found in the specified JOBLIB of STEPLIB DD cards.

Response: Resubmit the playback job with a valid load module name
and/or STEPLIB data set.

DPP894 INVALID START OR STOP DATA PASSED TO PLAYBACK

Routing code: message is issued as an 05/V5 WTO

Message issued by segment: DPPXDPB

Explanation: lstart or stop date was passed to playback that could
not be converted to a valid julian date.

OPERATOR'S REFERENCE 4-61

Response: Resubmit the playback job with correct dates in the
following format:

DD/l .. 'M/IY

where
DD is the day of year
"MM is month of year (only first 3 letters of month
are specified Jan-Dec)

YY is year.

DPP0895 DATA RECORD DISABLED DUE TO UNUSUAL CONDITIONS

Routing code: 1

Message issued by segment: DPPXDRC

Explanation: Data record disabled due to one of the following
conditions:

• ABEND in data recording task (DPPXPRINT)

• I/O errors

• Data record data set reached end of volume.

Response: Data record may be restarted (enabled) after it has been
disabled by the Special Real Time Operating System if
one of the following conditions are found:

• The data set is still usable and was allocated with a DISP=OLD or
NEW.

• The data set was allocated with DISP=MOD and with space remaining
on the da ta set.

DPP896 NO DATA FOUND BY PLAYBACK WITHIN SPECIFIED TIME AND ID
RANGE

Routing code: Message is issued as an OS/VS WTO

Message issued by segment: DPPXDPB

Explanation: No data was found by playback within specified time and
10 range.

Response: Assure that the time and date are properly specified on
the playback request and that the data set specified
does contain data within that time interval.

DPP897 INCOMPLETE RECORD FOUND BY PLAYBACK

Routing code: The message is issued as an OS/VSl WTO

Message issued by segment: DPPXDP B

Explapa tion:

Response:

4-62

The BLKSIZE and LRECL (record length) specified on the
DPBIN DO card is too small to contain the largest record
on the data set.

The BLKSIZE and LRECL on the DPBIN DO card must be equal

Description and Operation Manual

to the maximum BLKSIZE and LRECL used when the data vas
recorded.

OPP898 DATA SET NOT OPEN FOR DDNAME cccccccc. ROUTE CODES
WHICH SPECIFY THIS DDNAME OUT OF SERVICE

Routing code: The message is issued as an OS/VS1 WTO

Message issued by segment: DPPKINIT

Explanation:

Response:

The specified DO name was defined in the message routing
code table (RCT) during SYSGEN by the MSGRC macro, but
no DD card with that name could be found in the JCL.
ALL routing codes referencing the specified 00 name are
put out of service.

A DD card with the specified DO name should be placed
in the JCL.

OPERATOR'S REFERENCE 4-63

QFF11M~ !!TILITY !1~2SA~~

DPPXDB01 DATA BASE FINAL PHASE PROCESSOR ENTERED

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: The data base final phase processor has been successfully
entered through execution of a LINK supervisor call by
the Offline utility.

Response: None.

DPPXDB02 INSUFFICIENT DIRECTORY SPACE ALLOCATED

Routing code: SYSPRINT

Message issued by segment: DPPXDBAT

Explanation:

Response:

The data base partitioned data set does not have enough
directory blocks allocated to hold all the arrays being
added to the data base. The da~a base remains as it
was prior to this execution of the data base final phase
processor. Test mode is set and a return code of 12 is
returned on completion.

The data base partitioned data set must be either:

• Scratched and reallocated with a larger number of directory blocks
specified, or

• Copied to a new data set which has been allocated with a larger
number of directory blocks allocated.

DPPXDB03 DATA BASE FINAL PHASE PROCESSOR COMPLETION CODE = XX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation:

,00

04

08

12

16

The data base final phase processor has completed
execution and is returning control to the Offline
Utility. xx is a return code with the following
meanings:

Successful completion.

An error~ indicated by previous messages, has occurred
but processing continued.

No arrays defined for this con trol card.

Test mode set -- An explanation exists in previous
messages.

The data set defined by the DBINIT DD card could not be
opened.

The data base is modified only if the return code is 00 or 04. For

4-64 Descri pt ion and Operation Ma nual

any other return code, the data base remains as it vas prior to this
execution of the data base final phase processor.

Response: If the re,turn code is not 00, make the changes necessary
to correct the errors indicated by messages or the return
code.

DPPXDB04 INVALID OPTION RECEIVED - TEST KODE ASSUKED

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: The proces~ing mode specified is not ADD, REPL, DEL, or
TEST, so the default mode of TEST is assumed. No changes
are made to the data base. A return code of 12 is
returned on completion.

Response: Correct the OPTION= operand on the Offline Utility
control card and rerun the job.

DPPXDBOS NO ARRAYS DEFINED - NO PROCESSING PERFORMED

Routing code: SYSPRINT

Message issued by segment: DP PXDBAS

Explanation: The input to the data base final phase processor did
not define any arrays; therefore, no processing could
be performed. A return code of 08 is returned on
completion.

Response: Correct input and reru n the job.

DPPXDB06 NO PROCESSING FOR DUP ARRAY NAME - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: xxxxxxxx is an array name or number as specified on the
NAME=or NUMBER= operand of the ARRAY macro.

An attempt has been made to add the named array to the
data hase, but an array with the same name already exists
on the data base. Processing for the named array is
bypassed, and a return code of 04 is set on completion
of execution of the data base final phase processor.

Response: Change the name of the array named in the message and
rerun the job.

DPPXDB07 UNABLE TO OPEN OAT A BASE DDNAME - DBINIT

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: The data base partitioned data set defined by the DBINIT
DO card cannot be opened. No processing is performed,
and a return code of 16 is ret.urned on completion.

OPERATOR'S REFERENCE 4-65

Response: Correct the DBINIT DD card and rerun the job.

DPPXDB08 TEST MODE SET - DOP ITEM NAME - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAT

Explanation: xxxxxxxx is an Item name as specified on the NAME=
operand of the ITEM macro.

An attempt has been made to add the named item to the
data base, but an item with the same name already exists
on the data base. The remainder of the input is
processed in TEST mode, and the data base will remain
as it was prior to this execution of the data base final
phase processor. A completion code of 12 is returned
on completion.

Response: Change the name of the ITEM being added to the data base
or delete the existing data b~se array that contains
the item name being duplicated.

DPPXDB09 DATA SIZE GT BLKSIZE - TRUNCATION FOR ARRAY NAME -
XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: XXXXXIXX is an array name. The amount of data specified
for a block in the named array is greater than the array
block size defined on the ARRAY macro. The data is
truncated to the array block size and processing is
continued. A return code of 04 is returned on
completion.

Response: Increase the array block size, or reduce the amount of
data for the named array, and rerun the job.

DPPXDB10 ARRAY BLOCK SIZE REDUECED TO DATA SET SIZE FOR ARRAY -
XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation:

Response:

4-66

XXXXXIXX is an array name. The array block size for
the named array is greater than the data base data set
block size. The array block size is reduced to the data
set block size, and processing is continued. A return
code of 04 is returned on completion.

Reduce the array block size or reallocate the data set
with a larger block size and rerun the job.

Description and Operation Manual

)PPXDB11 ARRAY ADDED - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: XXXXXXXX is an array name. The named array has been
added to the data base.

Response: None.

DPPXDB12 ARRAY DELETED - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: xxxxxxxx is an array name. The named array has been
deleted from the data base.

Response: None.

DPPXDB13 ~RRAY REPLACED - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: XXXXXXXX is an array name. The named array has been
replaced on the data base.

Response: None.

DPPXDB14 ARRAY TESTED IN REPLACE MODE - XXXXXXXX

Routing code: SYSPRINT

M~ssage issued by segment: DPPXDBAS

Explanation: XXXXXIXX is an array name. The named array was
successfully processed in TEST mode as if a replace
operation were being done. The data base is not
modified.

Response: None.

DPPXDB15 ARR~Y NOT FOUND - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation:

Response:

XXXXXXXX is an array name. An attempt vas made to
replace or delete the named array, but the array did
not exist on the data base.

When processing in DEL mode, ensure that the array name
is correct. When processing in REPL mode, ensure that
the array name is correct or that a new array is being
added to the data base.

OPERATOR'S REFERENCE 4-67

DPPXDB16 BLOCK COUNT EXCEEDED FOR ARRAY - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: XXXXXXXX is an array name. The number of blocks of data
specified on BLOCK macros for the named array is greater
than the block count specified on the ARRAY macro.
Excessive blocks of data will not be processed. A rerun
code of 04 vill be returned on completion.

Response: Increase the block count on the ARRAY macro, or reduce
the number of blocks of data specified on BLOCK macros.
After corrections are made, rerun the job.

DPPXDB11 DUMMY BIT SET - NO PROCESSING FOR ARRAY - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation: XXXXXXXX is an array name. The dummy bit has been set
for the named array. The array viII not be processed.
There will be either another data base error message
for the array or an MNOTE at the tim~ the array was
assembled. A rerun code of 04 will be returned on
completion.

Response: Correct the error indicated by a message or an MNOTE
and rerun the job.

DPPXDB18 RC=8 FROM BLDL - PERM 1/0 ERROR ON ARRAY - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation:

Response:

XXXXXXXX is an array name. A permanent 1/0 error
indication has been returned by the BLDL SVC vhile trying
to read the directory entry for the named array.
Processing for this array is hypassed. A rerun code of
04 vill be returned on completion.

Determine and correct the cause of the I/O error and
rerun the job.

Note: Ensure that the data base partitioned data set has been allocated
as a partitioned data set and not a sequential data set.

DPPXDB19 TEST MODE ENTERED - DUPLICATE ARRAY IN INPUT - XXXXXXXX
IN INPUT - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBAS

Explanation:

4-68

XXXXXXXX is an array name. The input contains two arrays
with the same name. Processing will continue in test
mode, and a rerun code of 12 will be returned on
completion.

Description and Operation Manual

Response: Correct the array names and rerun the job.

DDPXDB25 TEST MODE ENTERED - UNABLE TO OPEN DDNAME - XXXXXXXX
OPEN ODNAME - XXXXXXXX

Routing code~ SYSPRINT

Message issued by segment: OP PX DBLG

Explanation: XXXXXXXX is a DD name for a data base BDAM data set.
The named OD The named DO statement could not be opened
for data base processing. The remainder of the input
is processed in test mode. The da ta base is not modif ied
by this execution. A return code of 12 vill be returned
on completion.

Response: Correct the DD statement or the ARRAY macro that
specified the ddname and rerun the job.

DPPXDB35 RUN ABORTED - UNABLE TO OPEN ddname - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment - DPPXDBCP

Expla na tion:

Response:

DPPXDB36

XXXXXXXX is the name of a DD statement. The named DD
statement is required for the execution of the COMPRESS
No processing is performed.

Correct the DO statement and rerun the job.

INVALID DATA BASE DATA SET: ddname - DBINIT

Routing code: SYSPRINT

Message issued by segment - DPPXDBCP

Explanation: The data set described by the DBINIT DO statement is
not a valid data base partitioned data set. No
processing is performed.

Response: Correct the Op statement and rerun the job.

DPPXDB37 RC=8 FROM BLDt - PERM 1/0 ERROR

Routing code: SYSPRINT

Message issued by segment - DPPXDBCP

Expla na ti on:

Response:

A permanent I/O error indication vas returned by the
BLOL SVC while processing the DBINIT DO statement. No
processing is perf ormed.

Determine and correct the cause of the I/O error and
rerun the job.

Note: Ensure that the DBINIT DO statement desc~ibes a partitioned data
set and not a sequential data set.

OPERATOR'S REFERENCE 4-69

DPPXDB38 DATA BASE DOES NOT CONTAIN DIRECT ACCESS ARRAYS

Routing code: SYSPRINT

~essage issued by segment: DPPXDBCP

Explanation: No compress operations can be performed, since the data
base contains no direct access arrays.

Response: None.

DPPXDB39 DATA BASE COMPRESS COMPLETED FOR ddname - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DDPXDBCP

Explanation: XXXXXXXX is a DD statement name. The data base BDAM
data set described by the named DD statement has been
compressed, and all appropriate changes have been made
to the PDS described by the DBINIT DD statemente

Response: None.

DPPXDB40 ****** THE SPECIAL REAL TI~E OPERATING SYSTEM DATA BASE
BDAM DATA SET COMPRESS ******

Routing code: SYSPRINT

Message issued by segment: DPPX DBCP

Explanation: This message indicates that the data base BDAM data set
compress program has started execution.

Response: None.

DPPXDB41 ****** END OF DATA BASE EDAM DATA SET COMPRESS ******

Routing code: SYSPRINT

Message issued by segment: DPPX DBep

Explanation: This message indicates that the data base BDAM data set
compress program has completed execution.

Response: None.

DPPXDB42 NO DD STATEMENT INCLUDED FOR ddname - XXXIXXXX

Routing code: SYSPRINT

Message issued by segment: DDPXDBCP

Explanation:

Response:

4-70

XXXXXXXX is a DD statement name. The data base contains
direct access arrays which are referenced by the named
DD statement, but the JCL does not contain the DD
statement. The data set referenced by the named DO
statement is not compressed.

Include the DD statement in the JCL and rerun the job.

Description and Operation Manual

DPPXDB50 TEST MODE ENTERED - UNABLE TO OPEN ddname - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DDPXDBDA

Explanation: XXXXXIXX is a DD name for a data base BDAM data set.
The named DD statement could not be opened for data base
processing. The remainder of the input is processed in
test mode. The data base is not modified by this
execution. A return code of 12 will be returned on
completion.

Response: Correct the DD statement or the ARRAY macro which
specified the DD name and rerun the job.

DPPXDB51 TEST MODE ENTERED - NO PROCESSING FOR UNBLOCKED DA ARRAY
XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXDBDA

Explanation: XXXXXXXX is an array name. The array macro for the
named array specified the operand LOCATE=DA but describes
the array as unblocked. The array cannot be processed,
since all DA arrays must be blocked. The remainder of
the input is processed in TEST mode, and the data base
is not modified by this execution. A return code of 12
is returned on completion.

Response: Correct the array macro and rerun the job.

DPPXDB52 ARRAY BLOCK SIZE REDUCED TO DATA SET BLOCK SIZE FOR
ARRAY - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPIDBDA

Explanation: XXXXXXXX is an arr~y name. The array block size for
the named array is greater than the data base data set
block size. The array block size is reduced to the data
set block size and processing is continued. A return
code of 04 is returned on completion.

Response: Reduce the array block size or reallocate the data set
with a larger block size and rerun the job.

DPPXDB53 DATA SIZE GT BLKSIZE - TRUNCATION FOR ARRAY NAME -
XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: OPPXDBOA

Explanation: xxxxxxxx is an array name. The amount of data specified
for a block in the named array is greater than the array
block size defined on the ARRAY macro. The data is
truncated to the array block size and processing is
continued. A return code of 04 is returned on
completion.

OPERATOR'S REFERENCE 4-71

Response: Increase the array block size or reduce the amount of
data for the named array and rerun the job.

DPPXDB54 BLOCK COUNT EXCEEDED FOR ARRAY - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment - DPPXDBDA

Explanation: XXXXXXXX IS AN ARRAY NAME. The number of blocks of data
specified on BLOCK macros for the named array is greater
than the block count specified on the ARRAY macro.
Excessive blocks of data will not be processed. A return
code of 04 will be returned on completion.

Response: Increase the block count on the ARRAY macro or reduce
th e nu mber of bloc ks of da ta specified on BLOCK macros.
After corrections are made, rerun the job.

DPPXUTOl MISSING DDCARD - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: xxxxxxxx is a DD statement name. The named DD statement
is required but is not included in the JCL. DD
statements may be required because it is specified on
the INPUT= operand of the control card or may be required
for offline utility execution.

Response: Correct the control card or DD statement name and rerun
the job.

DPPXUT02 FIRST CARD MUST BE A CONTROL CARD

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The first card read from the SYSIN data set must be a
valid offline utility control card. If it is not, no
processing will be done.

Response: Correct the SYSIN input and rerun the job.

DPPXUT03 PARAMETER OR CONTINUATION "ARK MISSING

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation:

Response:

4-72

The control card being processed is missing a required
parameter, or a continuation mark is missing if the
control card is continued on another card.. Processing
for this control card is bypassed. processing will
commence with the next control card.

Correct the control card and rerun the job.

Description and operation Manual

DPPXUT04 EXPECTED CONTINUATION NOT RECEIVED

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The control card being processed indicated that a
continuation card existed but no continuation card was
received. Processing will continue with the next control
card.

Response: Correct the control card and rerun the job.

DPPXUT05 COLUMNS 1-15 MUST BE BLANK

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: Card columns 1 through 15 must be left blank on control
card continuations. on control card continuations.
Processing will continue with the next control card.

Response: Correct the control card and rerun the job.

DPPXUT06 CONTROL CARD TEXT BEYOND COL 71

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation:

Response:

DPPXUT07

The text of a control card must not extend past card
column 71. If more space is needed, then continuation
cards must be used. Processing will continue with the
next control card.

Correct the control card and rerun the job.

WRONG PARAMETER: XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation:

Response:

DPPXUT08

XXXXXIXX is the parameter in error. An invalid value
has been specified for one of the operands on the control
card. Processing will continue with the next control
card.

Correct the control card and rerun the job.

MULTIPLE KEYWORD: XXXXXXX!

Routing code: SYSPRINT

Hessage issued by segment: DPPXUTIL

Explanation: xxxxxxxx is a keyword operand on the offline utility
control card. The named keyword operand has been
specified more than once on the same control card.
Processing will continue with the next control card.

OPERATOR'S REFERENCE ~-13

Response: Correct the control card and rerun the job.

DPPXUT09 PARAMETER IN ERROR: XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: XXXXXXXX is a parameter specified on the offline utility
control card. The named parameter is invalid.
Processing will continue with the next control card.

Response: Correct the parameter and rerun the job.

DPFXUT10 RIGHT PARENTHESIS MISSING - TREATED AS VALID

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Expla na ti on:

Response:

DPPXUTll

One of the parameters on the offline utility control
~ard was started with a left parenthesis but not ended
with a right parenthesis. with a right parenthesis.
Processing continues as if the right parenthesis were
present.

Correct the control card.

WRONG KEYWORD: XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: XXXXXXXX is a keyword operand on an offline utility
control card. The named keyword operand is invalid.
Processing will continue with the next control card.

Response: Correct the contr.ol card and rerun the job.

DPPXUT12 INPUT SPECIFICATION MISSING

Routing code: SYSPRINT

Message issued by segment: DP PXUTIL

Explanation: The INPUT= operand is required on the DPPXUCTL control
card, but it has been omitted. Processing viII continue
with the next control card.

Response: Correct the control card and rerun the job.

DPPXUT'3 AREA SPECIFICATION "ISSING

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The AREA= operand is required on the DPPXUCTL control

4-74 Description and Operation Manual

card, but it has been omitted. Processing will continue
with the next control card.

Response: Correct the control card and rerun the job.

DPPXUT15 NEW SET SPECIFICATION MISSING

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The NEW SET= operand is required on the DPPXUPDT control
card, but it has been omittted. Processing will continue
with the next control card.

Response: correct the control card and rerun the job.

DPPXUT16 OLDSET SPECIFICATION MISSING

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The OLDSET= operand is required on the OPPXUPDT control
card, but it has been omitted. Processing viII continue
with the next control card.

Response: Correct the control card and rerun the job.

OPPXllT17 NO OPERAND FOUND

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: A DPPXUPDT or OPPXUCTL control card has been encountered,
but no operands vere specified. Processing will continue
with the next control card.

Response: Correct the control card and rerun the job.

DPPXUT18 INVALID OPERATION

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: An offline utility control card has been encountered,
but the operation field is invalid. Processing will
continue with the next control card.

Response: Correct the control card and rerun the job.

DPPXUT19 NO OPERATION FOUND

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

OPERATOR'S REFERENCE 4-75

Explanation: An offline utility control card has been encountered,
but no operation or operands have been specified.
Processing will continue with the next control card.

Response: Correct the control card and rerun the job.

DPPXUT20 SYSIN END-OF-FILE

Routing code: SYSPRINT'

Message issued by segment: DP PXUTIL

Explanation: An end-of-file has been encountered on the data set
described by the SYSIN DD statement.

Response: None.

DPPXUT21 CONTROL CARD INVALID, SKIPPING FOR NEXT CONTROL CARD

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Expla na tioD : An invalid off line uti Ii ty control ,card ha s been
encountered, and processing will continue with the next
control card.

Response: Correct the control card and rerun the job.

DPPXUT22 ****** THE SPECIAL REAL TIftE OPERATING SYSTEft OFFLINE
UTILITY DPPXUTIL ******

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The Special Real Time Operating system offline utility
program has started execution.

Response: No ne.

DPPXUT23 ****** END OF THE SPECIAL REAL TIME OPERATING SYSTEM
OFFLINE UTILITY DPPXUTIL ******

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The Special Real Time Operating system offline utility
program has completed execution.

Response: None.

DPPXUT24 END-OF-FILE ON INPUT DATA SET

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

4-16 Description and Operation ftanu~l

Explanation: An end-of-file has been reached on the input data set
described by the INPUT= operand of the DPPXUCTL control
card.

Response: None.

DPPXUT25 PARM FIELD INVALID - PAR"='F,NOGEN' ASSUKED

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: The value specified in the PARM field of the execute
card is invalid. The default PARM value of 'F,NOGEN'
will be assumed.

Response: Correct the PARK field on the EXEC card and rerun the
job.

DPPXUT26 PROCESSING ABORTED DUE TO BAD RETURN CODE FROM - XXXXXXXX

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation: XXXXXXXX is either ASSEMBLY or LOADER. A return code
of 8 or greater from the assembler or from the loader
will cause processing to be aborted for the current
control card. Processing will continue with the next
control card.

Response: Correct the errors indicated by the assembler or the
loader and rerun the job.

DPPXUT99 CONTROL CARD ACCEPTED

Routing code: SYSPRINT

Message issued by segment: DPPXUTIL

Explanation:The current control card has been accepted by the offline
utility program for processing.

Response: None.

OPERATOR'S REFERENCE 4-17

The Special Real Time operating System Sample Program provides a minimal
test of the functioning of the Special Real Time Operating System. It
also provides a demonstration of the Special Real Time Operating System.
It can be used as an example and training tool, as well as an
instructional aid for application program education. The sample program
consists of two programs (DPPZSAMP, DPPSAMP1).

DPPZSAMP will test and provide examples of the following Special Real
Time operating system subsystems:

Task Management (PATCH Macro)
Data Base Management (GETARRAY, GETITEM, PUTARRAY, PUTITEM,

GETLOG and PUTLOG Macros).
TIME Management (PTIME Macro)
Realtime Message Handler (MESSAGE Macro) •

DPPZSAMP will require the following array (DPPZSAMP} to be built by
the Special Real Time Operating System Offline Utility:

i/ DPPXUCTL AREA=DBDEF,INPUT=*,OPTION=ADD
ARR AY NA ME=D PPZS AM P, INIT=Y ES, R EI NIr.r=Y ES,

LOCATE=VS,LOGNAME=DPPSAMP1,
LOGDD=DBINIT2,LOGFREQ=O

ITEM NAME=DPPSAMP2,TYPE=C,LEN=6,INIT=ARRAY
ITEM NAME=DPPSAMP3,TYPE=C,LEN=9,INIT=DPPZSAMP
ITEM NAME=DPPSAMP4,TYPE=C,LEN=3,INIT=IS
ITEM NAME=DPPSAMP5,TYPE=C,LEN=5,INIT=USED
ITEM NAME=DPPSAMP6,TYPE=C,LEN=3,INIT=BY
ITEM NAME=DPPSAMP7,TYPE=C,LEN=6,INIT=SRTOS
ITEM NAME=DPPSAMP8,TYPE=C,LEN=7,INIT=SAMPLE
ITEM NAME=DPPSAMP9,TYPE=C,LEN=8,INIT=PROGRAM
ITEM NAME=DPPSAMPA,TYPE=C,LEN=4,INIT=POR
ITEM NAME=DPPSAMPB,TYPE=C,LEN=5,INIT=TEST
ITEM NAME=DPPSAMPC,TYPE=C,LEN=8,INIT=PORPOSES

APPENDIX A A-1

The following example is typical of the JCL required to define the
sample array. Following is a description of each of the JCL statements
in the example. The underlined portions of the JCL will likely have
to be changed by the user to suit the requirements of his operation.

//BU1LD JOB
/IS1 EXEC
//STEPLIB DD
//SYSPRINT DO
//ASMPRINT DO
/ILODPRINT DD
/ISYSLIB DD
II DO
I/SYSUTl DD
//SYSUT2 * OD
//SYSUT3 * DD
/ISYSUT4 DO
II
I/DBINIT DO
//DBINIT2 DD
/ISYSGO DD

//SYSIN DO

/*

JOB

(ACCOUNTING INFORMATION)
PG M=OPPXUTIl,f!~M=!!

DSN=USER.PROC1~,OISP=SHR

SYSOUT=A
SYSOUT=A
DUMMY
DSN=Q~ER~AC1I~,DISP=SHR
DS N=SYS 1. M AClIB, DISP=SHR
UNIT=(SYSD!,SEP=SYSLIB) ,SPACE=(CYL, (2,2»
UNIT=(SYSD!,SEP=SYSUT1),SPACE=(CYL, (2,2»
UNIT=(SYSDA,SEP=SYSUT1),SPACE=(CYL, (2,2»
UNIT=(SYSD!,SEP=SYSUT1) ,SPACE=(CYL, (2,2»
DC B= (RECFL1=F B, LR ECL=80, BlKSIZE=3200)
DSN=~~ER~Bl,DISP=OLD
DSN=Q~ER~B2,DISP=(MOD,PASS),OCB=(DSORG=OA)
UNIT=~YSDA,SPACE=(CYL, (1,1»,

DeB= (R ECFM =FB, LR ECL=80, BLK SIZE=~20Q)
*

(Input Control Statements)

JCL Example

Is a standard OS/VSl job card; the accounting information is dependent
upon individual installation requirements.

EXEC
Is a standard OS/VSl EXEC card; it must specify PGM=DPPXUTIL or an
applicable user PROC.

PARM
The offline utility will provide the option to print or not to print
statements generated by the processing of a macro. This will be
accomplished by the offline utility inserting or not inserting a PRINT
NOGEN statement as the first statement in the Assembler SYSIN stream.
Control will be provided through the PARM keyword operand on the
execute card for DPPXUTIL. This option is provided in addition to
the option to select the OS/VSl assembler or the H assembler.

The following values may be specified:

F Selects the aS/VS1 Assembler.

H Selects the H Assembler.

GEN Print macro generated statements.

NOGEN Do not print macro generated statements.

In all cases, the default values will be "F" and "NOGEN".

*Not required when "PARM=H" is specified on the execute card.

A-2 Description and Operation Manual

Valid combinations of the values are:

PARM
• F • PARM = • H • PARM = 'GEN •

PARM = • NOGEN'
PARM = 'F,GEN'
PARM = 'F,NOGEN'
PARM = 'H,GEN'
PARM = 'H,NOGEN'

If an invalid value
operand is omitted,

STEPLIB DD

is specified for the PARM operand or if the PARM
the default of PARM='F,NOGEN' will be used.

Defines the library containing the DPPXUTIL program and final phase
processors and is not required if these programs reside in SYS1,LINKLIB.

SYSPRINT DD
Defines a data set in which printed output viII be placed, or may
specify a standard output class.

ASMPRINT DO
(Same as SYSPRINT) for printed output from the assembler.

LODPRINT DD
(Same as SYSPRINT) for printed output from the loader. It is
recommended that this be a DD DUMMY to reduce printed output.

SYSLIB DD
Defines the data set(s) containing the macros used by the assembler.

SYSUT1 DD
Defines the assembler work data sets. SYSDA defines a direct-access
device. This name (SYSDA), if This name (SYSDA), if used, must have
been generated into the OS/VS1 system. SEP= is specified to improve
assembler performance.

SYSUT2 DD
(Same as SYSUT1). Not required when "PARM=H" is specified on the
execute card.

SYSUT3 DO
(Same as SYSUT2).

SYSUT4 DO
Defines a work data set for DPPXUTIL. The DeB parameters must specify
RECFM=FB and a BLKSIZE that is a multiple of 80. The LRECL must be
80.

DBINIT DD
Defines the data base partitioned data set that contains a member for
every array in the data base, control information for direct access
resident arrays and initial data for VS resident arrays. This DD card
is required if any utility control card specifies AREA=OBDEF.

DBINIT2 DD
Defines the BDAM data set which contains the initial data for OA
resident arrays. This DD card is required if any utility control
statement specifies AREA=DBDEF. The data set described by this OD
card must be allocated pr~or to the execution of the The OISP= operand
on this DD card must be specified as (MOD,PASS).

SYSGO DD

APPENDIX A A-3

Defines the data set to contain the object deck output from This data
set is used as input to the OS/VS1 loader.

SYSIN DD
Defines the input from which DPPXUTIL gets its control statements as
possibly some source macro statements.

The sample programs (DPPZSAMP and DPPSAMP1) are not copied to the target
data sets at SYSGEN time. Therefore, to execute them, the user must
copy them or use a STEPLIB DD card to allocate data set A5199AHE.OBJECT.

The Special Real Time Operating system Sample Program can be executed
by adding the following PATCH and WAIT input cards to the Special Real
Time Operating system Subsystem Initialization Stream:

P1 PATCH TASK=DPPZSAMP,EP=DPPZSAMP
WAIT P1

The following example is typical of the JCL required to execute the
sample problem.

IIREAL
II
I/STEPLIB
/IDBINIT
//DBINIT2
//MSGDS
I/DPPFAIL
/ISYSPRINT
//MSGOUT
//SYSUDUMP
//SYSINIT

JOB
EXEC
DD
OD
DD
DO
DD
DO
DD
DD
DD

3 D ES Ql.L~PR OG RA 1!l1ER~ CL!2.S= I
PGM=DP PINIT

DSN=!~~170~M01,DISP=SHR
DSN=!~S370~~1,DISP=SHR
DSN=!£S370~B2,DISP=SHR
DSN=ACS370~~~,DISP=SHR
DSN=!~S370~ALRS!,DISP=OLD
SY SOUT=A
SYSOUT=A
SYSOUT=A

*

In the previous example, the JOB card is standard OS, and accounting
information must be as required fo£ the individual installation. The
EXEC card must specify PGM-DPPINIT. The STEPLIB DD card pOints to the
library (ies) containing the Special Real Time Operating System and user
programs. The library name will depend upon the name given the data
sets at SYSGEN time. The data sets required for the data base are
pointed to by the DD cards DBINIT and DBINIT2. The online message
handler requires the MSGDS and ~SGOUT DO cards. The SYSPRINT DD card
is required by initialization to print the input control statements.
A SYSUDUMP or SYSABEND DD card is optional, depending on whether a dump
is required on ABEND conditions. The SYSINIT DO card is required, and
it must point to the data set containing the control statements for
the online run.

DPPZSAMP will issue the following messages, if all tested sUbsystems
are functioning properly:

DPP0681
DPP066I

DPP0681
DPP0661

DPPOf>81
DPP0691
DPP0681
DPP068I

HH:MM:SS.TH DD/MMM/YY PATCH MACRO FUNCTIONING
HH:~M:SS.TH DD/MMM/YY ARRAY DPPZSAMP IS USED BY
SRTOS SAMPLE PROGRAft FOR TEST PURPOSES
HH:MM:SS.TH DO/MMM/YY PUTLOG MACRO FUNCTIONING
HH:MM:SS.TH DD/MMM/YY ARRAY DPPZSAMP IS USED BY SRTOS
SAMPLE PROGRAM FOR TEST PURPOSES
HH:MM:SS.TH DD/MMM/YY PUTARRAY MACRO FUNCTIONING
HH:MM:SS.TH DD/MMM/YY ITEft DPPSAMP2 CONTENTS ARE ARRAY
HH:MM:SS.TH DD/MMM/YY PUTITEM MACRO FUNCTIONING
HH:M~:SS.TH DD/MMM/YY PTIME MACRO FUNCTIONING

The only function of DPPSAMPl is to issue messages. It is used to

A-4 Description and Operation Manual

EXTERNAL SYMBOL DICTIONARY PAGE

SYMBOL TYPE 10 AOOR LENGTH LO 10 ASM H V ~ 09.15 11/04/75

DPPlSAMP SO 0001 000000 0004AC

DPPZSAMP

LOC OBJECT CODE

000000

SAMPLE PROGRAfoI PAGE 2

ADORl ADDR2 STMT SOUP.CE STATEMENT ASM H V 04 09.15 11/04/75

18 •••••••• ***.* •••• * •••••••••••••••••• * ••••••••••••••••••••• * •• ** •••••••• 00002000
19 • MODULF. NAME =DPPlSAfoIP • 00002100
7.0 • DESCRIPTIVE NAME = SPECIAL R~AL TIME OPERATING SY~rEM SAMPLE PROGRAM. 00002200
21 • F:JNCTION " DPPlSAMP FUNCTION IS TO PROVIDE A MINIMAL TEST OF THE • 00003000
22 • FUNCTIONING OF THE SPFCIAl REAL TIME OPERATING SYSTEM. * 00003100
23 • NJfES = iT ALSO PRO~IDES A DEMONSTRATION AND CAN PE U~EO AS A * 00003200
24 TRAI"IING TOOL FOR APPLICATION PROGRA"I EDUCATION. * 00004000
25 Dt=PENDENCIES = ARRAV'DPPlSAKP'MUSr BE GENERAHD BY THE USER. A '" 00004100
26 • DE~C~[PTION OF THE A~RAY CAN BE FOU~D IN THE SPECIAL PEAL TiME. 00004200
27 • OPERAT ING SYST EM DOM APPENDIX 1 * 00005000
28 • RESTRICTIONS = NONE * 00005100
29 • REGISTER CO~VENfIONS = ALL REGS ARE ASS!G~ED AS $R WYERE REGS 0-15 • 00005200
30 • ARE $O-Sl5 • 00006000
31 • MODULE TYPE = SAMPLE PROGRAM • 00006100
32 * PROCESSOR = ASSEMBLER F • 00006200
33 • MODULE SIZE = 1192 DECIMAL BYTES • 00007000
34 • ATTRI8UT~S = REENTRANT '" 00007100
35 • ENTRY POr~T = DPPZSAMP • 00007200
3& '" INPUT = ARRAY OPPlSAMP '" 00008000
37. ruTPUT = SPECIAL REAL TIME OPERATING SYSTEM MESSAGES 68 • 66 ,69 *,0000810u
38. RETURN'" NORMAL OS/VS RETURN. NO RETURN CODES .00008200
39 • EXTERNAL REFERENCES • 00008300
40 * ROUTINES = DPPSAMPl • 00008400
41 • DATA AREAS = SPECIAL REAL T PH OPERAT ING SYSTEM DATA BASE • 00008500
42 • (ARRAY OPPlSAMPI • 00000600
43 • CONTROL BLOCKS = XCYT .. 00008700
44 TABU, S = NONE • 00008800
45 MACROS = SEGIN,EXIT,MESSAGE,PATCH,GETARRAy,PUTLOG,GETLOG,PUTARRAY, • 00008900
46 • GETITEM,PUTITEM.prrME '" 00008910
41 ••••••••••• ** •••••• ** ••••••••••••• * ••••••••••••••• * •••• ~ ••••• *.*.* ••••• 00000920
48 • • 00009000
49 •• THE BEGIN MACRO WILL ESTASI_ISH AN ENTRY POINT FOR THE •• 00010000
50" SAMPLE PROGPAM(DPPlSAMPI , A 1345E I{EGISTER(BASE =1 AND SAVE" 00011000
51.. THE CALLING PROGRAM REG!STERS(SAV~A= A"IO LV=) 00012000
'52 • 00013000
53 BEGIN DPPlSAfoIP,SAIIEA=(GET'lAIN,IoIORKI,BASE=(lZI,LV=72 00014000
54+DPPlSAMP (SECT. 'MAIN' CO~TROL SECTIO~ 01-BCGIN

)II
::3

PI
en
C/)
I'D
S
tr
~
I'D
11

~
en
("t
::3
IQ

0
HI

'='
"0
tt:l
~
til
>
01:
t-r;;S

PI
:::s
0.

'='
~
Cd
(..'1
>
::I:
"0
HI
0
I-'
~
0
e
Ul

S 3troen
0 I'D PI,<"Oc:
~ en n "01:7'

'" en 11 o til en
0 PI O"O)II("t
0\ \.Q tt!3P1
0\ I'D ~ "C::s
H enU)~ri'

... ·en ;lit
en ~ 3 C III

I'D "C ri'
>::%: ~ ~I'D
~o:: trI 1lI~

en tr::3 ("t
tz:I3: c: '< ~ tr ::r
2:3 I'D (t) I'D
1-3 •• ~Ori'
~tIl ~t:r"'HI
~tIl 't1I1)11C:

"C~
~I'D~=,
U)I'D("')n

00:: > ::J:("t
H 3 ("t I'D
2:0 tt:l ... ·~O
1-30 . S =' , I'D Hi ... ·
I :z en 0::3

3: tz:I C:::\.Q
013: PI 0 11 n::!' o =' 0
"tI~ ::r ("tHl
til....:; PI
:::- ~ e ~-3
:J£~ ~ It) PI
I'd> a I Ul Ul
.... tIl It) Cfi ~
~ (1)

00 3:
"CO 0 PJ
"tI:::"I1:S I::!

0 cn~nlll
~)II /'DIQ

'" ::.EO It)

til t'd "< ;::lJ 13
> "'nS:;1t)
3: ~I'D::J
"0 IT) r+

Ul ri'
n o PI

-= ro III eJ
> >< C ("to..
til I'D Ul ::r

() 1'D1T>t-3
tz:I ~ 0,
Z "tiS
1-3 I'Dtr>I'D
t'V ~'< ~
~ (")3
tz:I ("to::PI
0 ~::r :::s

::rro::s:PI
It) PI\.Q

"tin I'D
1"1181113
o H 0 (t)

r--::s: :::s
~tz:I rt"
0 Ul • e Ul s::
::J IT>

\.Q 0..

OPPlSAMP SAMPLE PROGR4'1 PAGE

LOC OBJFCT CODE APD~l ADOR2 STMT SOURce STATEMENT ASM H V 04 09.15 11/04/75

000000

000000 47FO FOOE
000004 08
000005 C4D101E9E2CI0401
000000 00
OOOOOE 90fC DOOC
000012 5800 F034

000016 4510 rOtA
00001A DADA
OOOOIC 50Dl 0004
000020 SOLO 0008
000024 1801
000026 581D 0004
OOOOlA ClAEl 100C

000000
000000
00002E

00002E 0100
000030 45(0 F 038
OOOOH
000034 00000048

00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
OOOOA
00008
OOOOC
00000
OOOOf
oooor
00000
00002
00004
00006

')1)000
OOOOE

OOOOC
00034

0001A

00004
00008

00004
OOOOC

0001)0

00038

00034

56+·
57 +$0
58+$1
59+S2
60+S3
61+S4
62+S5
63+$6
64+S 7
65 +$8
66+S9
61+$10
68+$11
69+ Sl2
10+$13
71+$14
1l+$ 15
73 +F~RO
14+F PR2
15+FPR4
16+FPR6

18+
79 +
80+
81+
82+

83+
84 +
85+·
86+
81+
88+
89 +
90+
'H+
92+

EQU
EQU
EQU
EQU
eQU
EQU
eou
EOU
EOU
eQU
eQU
E~

EQU
EOU
EQU
EOU
EOU
EQU
eou
EQU

o 7
1 7
2 7
3 ?

7
?

6 7
7 ?

?
9 7
10 7
11 7
12 7
13 ?
14 ?
15
a
2
4
6

OS 00.
USI~G • .15
B 14(0,15)
DC AL 11 81
DC CL8'OPPZSAMP'

S TM 14. II , 12 (131
L O,TKG0001G
GETMAIN R,LV=IOI
SAL 1, .+4
SVC 10
ST 13,4(11
ST 1,111131.
LR 13,1.
L I, It(13) •
LM 14,1,12111

94+ WORK OSECT •
95+ OS 9D.
96+DPPlSAMP CSECT
97+ USI NG WORK ,13

99+ CNOP 0,4
BAL Il,.+8
DS OF

GOES THRU REGISTER EQUATE ONLY ONCE
•• ••
•• •• ••
••
•• IF THEse SUBSTITUTES ARE USED AS
•• REGISTFR NUMBEPS THE CROSS-REFERENCE
**TAnlE WILL PROVIDE A LIST OF WHERE
•• EACH REGISTER WAS US~O

••
••
••
•• ••
••

FOR ~OUNOARY ALIGNMENT
TEMPORAR Y BASE OFCLARATION

BR ANCH AROUND I D
LENGTH OF IDENT IF IER
10Ef'.ITIFTER

SAVE REGISTERS
LOAD SP AND LV PARAMETERS

INDICATE GETMAIN
ISSUE GETMAIN SVC

SAVF CALLER'S SAVE AREA POINTER
FOR DOWNWARD SAVE AREA TRACE
ESTAellSH OwN SAVE AREA POINTER

RESTORE 15,0,1
RESTORE GET REGS

BEGIN GET~AINED AREA
OWN SAVE AREA

EST ABL ISH l'l IT IAL 'MA IN' CSECT BASE
BASE REFERENCE

100+
101+TKGOOOl"1
102+fI(G0001G DC

DROP 15
ALlIOI,AL3(721 • SUBPUOL, LENGTH

103+
104+
105 •

USING TKGOOOIM,12

106.. UPO~ ENTRY PASS PARAMETE RS TO DPP ZS AMP AS FOLLOWS
107 ••
108 ••

•••••••••••••• • •••••••••••••••••
.RESIGISTER 1.----> • XCVT •

•• •• ••

02-EQUAT
02-EQUA T
02-EQUAT
02-EQUAT
02-EQUA T
02-EQUAT
02-EQUAT
Ol-EQUAT
02-EQUAT
02-EQUA 1"
02-EQUAT
OZ-EQUA T
02-EQUA T
OZ-EQUAT
02-EQUA T
02-EQUAT
OZ-EQUAT
02-EQUA T
02-EQUAT
02-EQUAT

o l-BEGIN
01-BEGIN
02- SA VE
o 2-S AVE
02-SA VE

02-SAVE
01-BEG! N

02-GETMA
OZ-GETMA
01-BEGIN
01-BEGIN
01-BEGl N
OI-BEGIN
01-BEGIN

01-BEGIN
01-BEGIN
01-BEGIN
ot-BEGIN

01-BEGIN
Ol-8EGIN
OI-BEGIN
01-BEGIN
01-BEGIN
Oi-BEGIN
00015000
00016000
00017000
00018000

OPPZSAMP SAMPLE PROGRAM PAGE

LOC OBJECT CODE AOORI AODR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04/75

000038 5821 0000

00003C 4110 COlO
OOOO~O 47FO C03C
000044
000044 C4D7D7f2CI04D7Fl
00004C C4D7D7E2CI04D7Fl
000054 4040404040404040
OOOOSC 00
000050 01
00005E 0000
000060 00000000
000064 0000000000000000
00006C 00000000

000070 41FO C 04~
000074
000014 4500 C 048

000078 0004
00007A 0000

00007C 18F2
00007E BFF8 C051
000082 4700 0004
000086 440F 0004

00008A 12FF
00008C 4770 COAO

000090
000090 4510 C070
000094 01
000095 01
000096 0000
000098 00
000099 000000
00009C 0000
00009E 00000000
0000A4
0000A4 4100 0044

00000

00044
00070

00070
00078

0001C
00078

0007C

00085
00004
00004

00004

000A4

00044

109 ••
110 .*
III ••

. ••••••••• *RESOURCE TABLE •
PATCH PARAMETERS
* ••• *.* •••••• *****

** .* **

11Z •
113 l $2.0($1) PLACE * XCVT ADDRESS IN REG 2
114
115
116
117
lIB
119
120
121

* •
** THE FOLLOWING PATCH MACRO WILL CREATE AN INDEPENDANT TASK •
** NAMEOITASK=I DPPSAMPI • THE TASK ENTRY POINTCEP=I IS DPPSAMP 1**
** NOTE: THE OCVTR OR DCVTLOC OPERAND SHOULO BE USED ON ONLINE ••
•• MACROS TO INCREASE THEIR OPERATION EFFICIENCY. DCVTR **
** ANO DCVTLOC POINTS TO THE XCVT. **
* *

122+
1231-
124+IHB0005
125+
12b+
127+
128+
129+
no+
131+
132+
133+
134+IHBO005A
135+
136+
131 +
13B+IHP0005
139+
140+
141+IHP0005A
142+
143+
144+

PATCH
LA
B
OS
DC
DC
OC
DC
DC
DC
DC
DC
DC
EOU
LA
eNOP
BAl
EQU
DC
DC

EQU *

TASK~DPPSAMPl.EP:OPPSAMPl.DCVTR=($2)

1,[HB0005 SET UP PARAM L [ST ADDRESS
I HB0005A BR ANC H AROUND US T
OF
ClS'OPPSAMP1'
Cl 8 ' DP P S AM Pl'
CLB" ,
AlliOt
All (11
H' 0'
AIOI
2PO'
A(0)

•
15, [HP0005
0,4
O. [HP0005A

•

T ASK NAME
ENTRY POINT NAME
PkTY REFER ENCE NAME
FLAG BYTE
QUE UE l ENG TH
PRTY RELAT rYE VALUE
ECB ADORE SS
FREE lENGTH, FREE ADDRESS
TC F3X

SET UP LIST ADDRESS

SET UP REG 0 WITH PARAM LIST

Al2(I HP 0005A- I HP 00051 LENGTH OF PARMO\S
Al210t [0

lR 15,1$21 CVT ADDRESS
lCM 15.8.*+7
NOP 4
EX 0,4(151

10 [1'4 HIGH ORDER BYTE OF REG
CONSTANT FOR 10
EXECUTE SVC FROM CVT 145+

146 ••
147
148+

IF RETURN CODE FROM PATCH SVC
IF F,(Sl51.IS,ZERO,THEN
LTR 515.$15

IS ZERO THEN

BC 7, IFl0007 149+
150 •• OUTPUT MESSAGE 68 ,WHICH CONTAINS MSGIIVAR=I,TO
151 **
152
153+

THE SYSTEM CONSOlE(ROUTE=I).

154+
155+
156+
157+
15B+
159+
160+
161+
162+MSG0008
163+

MESSAGE 6B,VAR=(MSGlI,DCVTR=($2),RUJTE=1
CNOP 0,4
BAL 1, MSG0008
DC All! O+U
DC All (1)

DC AL2(01
DC X'OO'
DC AUI 0)
DC AL2101
DC lAl410t

OS OF
lA 0,68

ROUTI NG

VARIABLE COUNT
ROUTING CODE COUNT

MESSAGE NUMBER
Ae TI ON COOE
USER RETURN AREA

(OOE
MESSAGE VARIABLE

lOAD MSG * INTO REGISTER D

••

••

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
OI-PATCH
Ol-PATCH
o I-PA TCH
OI-PATCH
01-PATCH
01-PA TCH
OI-PATCH
Ol-PATCH
01-PA TCH
01-PATCH
01-PATCH
o I-PAlCH
Oi-PATCH
Ol-PA TCH
OI-PATCH
OI-PATCH
01-P A TCH
Ol-PATCH
01-PA TCH
01-PATCH
02-0PPSV
02-DPPSV
02-0PPSV
02-0PPSV
00032000
00033000
01-IF
OI-IF
00034000
00035000
00036000
01-MESS A
Ol-ME SSA
Ot-MESSA
Ol-MESSA
Ol-MESSA
Ol-MESSA
Ol-MESSA
Ot-MESSA
01-MESS A
Ol-HESSA
Ot-MESSA

> ,
co

DPPl SA~P SAMPLE PROGRAIol PAGE 5

LOC OBJECT CODE ADDRI ADOR2 STMT SOURCE STA TEMENT ~SM H V 04 09015 li/0~/75

0000A8 4001 0002
000QAC 4100 0001
ooooeo 4001 0008
000054 Q680 1008
0000 88 l8H
OOOOB.~ 43Ft 0001
oe008E 8<)"0 0001
0000C2 4100 (450
0000(6 5001 FOOS
OOOOCA 5SF2 0020
oaoaCE 5SFF OOqO
000002 OSEF

000004

000004
000004 4510 COAC

OOOOS

OOOOOS C40707EQE2CI0407
0000 EO
OOOOEO 4100 e3FC
0000E4 5SF2 0020
aOOOES 5SFf 0018
OOOOEC 45EO C OBE
OOOOFO 0200
OOOOF2 8FFS EOOO
0000F6 05EF

OOOOF S 12FF
OOOOFA 4110 C22S
OOOOH 5S30 C 3FC

000102 0700
000104 4510 COEO
000108 01
OOOlOq 00
OOOlOA 0000
000lOC 00
000100 000000
000110 00000000
000114
000114 4100 0042
000118 400} 0002
OOOllC 18H
OOOUE 43F 1 0001
000122 89FO 0001
000126 5031 FOOS
00012A 58F 2 0020

00002
00001
OOOOS

00001
00001
001084
00008
00020
00090

OOOEO

00430
00020
00018
OOOF2

00000

0025C
00430

00114

00042
00002

00001
00001
00008
00020

164+ 0.2(1) HOvE MSG (4 TO PARAMETER LIS!
165+ 0.1 LOAD ROUTING CODE INTO REGISTER 0
1&6+ 0, 8(U STORE ROUTING CODE INTO PARAMETER LIST
167+

STH
LA
5TH
01 8ill,X'80· SET HIGH BIT OF LAST ROUTINE CODE

16S+ SR 15.15 ZERO REG 15 fOR It
1.69~ [C

Sll
15,1111 II CF ROUTE CODES IN PARAMETER liST

170+ 15,1 lENGTH OF ROUTE caOE IN PARAf4 LIST
111+
172 +
173+
nlt+
175+
176
117+[F10007
17S*

LA
ST
l
L
BAlR
ENDIF
OS

O,MSGl VARI ABLE ADoR
O,SI IdS' STORE PHD MESSAGE LIST
15.32I(S211 ADDRESS OF CVT
15.116+2S(15) fOIESSAGE SUPPORT ROUTINE
14,15 CALL SUPPO~T ROUTINE

OH

179 ••
180 $$

lSI··

THE FOLLOWING GETARRAY MACRO WILL RETRIEVE THE ADDRESS
ITYPE=ADDR) OF ARRAY (NAME=) OPPlSAMP AND PLACE THE ADDRESS
IN lOCAHON'ARRAVO(OATA=) •

182 •
IS3
lS4+
lS5+
186+GOOll
lS7+GA 0011
IBS+
IS9+
190+
191+
192+
193+
194+

GET ARR AY NAME=DPP ZSAMP. DATA= ARR A Y, TYPE =ADDR ,DC VTR= IS 2)
CNOP 0. It
8Al 1, GAOOll
DC ClS'DPPZSAMP'
CNOP 0,4
LA O,ARRAY ADORE SS OF DATA
l 15,3Z((S2)) ADDRESS OF CVT
L 15, 116+ 4 (15) GETARRAY SUPPORT ROUTINE
8AL 14,.+6
DC ALl(Z',Al110)
ICM 15,8.0(11t) INSERT THE MACRO 10
BAlR. 14.15 CAll SUPPORT ROUTINE

195 ••
196

IF THE ARRAY ADDRESS WAS RETRIEVED FROM THE DATA BASE THEN
IF F,ISI5),IS,lERO,THfN

197+ UR Sl5,Sl5
19S+ BC 7.!F lOOL)
19Q l S3,ARRAV PLACE ARRAY AODRESS IN REG 3
200 ••
201 ••
202
203+

OUTPUT MESSAGE 66 ,WHICH CONTAINS ARRAY(VAR=)
OPPZSAMP.TO THE SYSTEM CONSOlEIROUTE=l)

204+
205+
206+
201+
20S+
209+
210+
211+MSG0014
212+
213+
214+
215.
216+
211+
218+

MESSAGE 66,VAR=1 ($3)),DCVTR=(S2)
CNOP 0.4
BAL l,HSGOOl4
DC III (0+1)
DC All! 0)
DC AL210'
DC X'OO'
DC Al3(0)
DC lAl41 0)

OS OF
lA 0.66 lOAD HSG
STH O,Z(1) MOVE MSG /I
SR 15,15
IC 15.1111
Sll 15,1
ST S3,Sf l,151
L 15,32(521)

VAR !ABLE COUNT
ROUTING CODE COUNT

MESSAGE NUMBER
ACTION CODE
USER RETURN AREA

MESSAGE VA~IABlE

• INTO REGISTER 0
TO PARAMETER LI ST

ZE RO REG 15 FOR IC
It OF ROUTE CODES IN PARAMETER
lE~GTH OF ROUTE CODE IN PARAM
STORE VARIABLE INTO PARAMETER

ADDRESS OF CVT

..
*. •• ••
•

••

*. ••

II S T
LI ST
LIST

Ol-HESSA
Ol-ME SSA
Ol-MESSA
OI-MESSA
Ol-MESSA
Ol-MESSA
o l-ME SSA
Oi-MESSA
01-MESSA
02-DPP SU
02-DPPSU
02-DPPSU
00031000
01-ENOI F
00038000
00039000
00040000
00041000
00042000
00043000
Ol-GE TAR
aI-GHAR
01-GETAR
o I-GE TAR
01-GHAR
02-DPPSU
OZ-OPPSU
02-0PPSU
02-DPPSU
02-0PPSU
02-DPPSU
00044000
00045000
01-1 F
Ol-If
000lt6000
0('047000
0004S000
000~9000
o 1-ME SSA
01-HESSA
Ol-ME SSA
01-MESSA
01-MESSA
01-MESSA
01-MESSA
01-HESSA
Ol-ME SSA
01-MESSA
Oi-MESSA
Ol-HESSA
01-MESSA
01-ME SSA
o l-MESSA
02-0PPSU

DPPZSAMP SAMPLE PROGRAM PAGE 6

LOC OBJEC T CODE AODRI AOOR2 STMT SOURCE ST AT EMENT ASH H V 04 09.15 11/04/75

000l2E 58FF 0090
000132 05EF

000134 4510 CIOC
000138 Clt0107E9E2CID4D7
000140 58F2 0020
000144 58FF OOBS
000148 45EO CllA
00014C 0100
00014E BFF8 EOOO
000152 05H

00015412Ff
000156 4770 C22S

00015A 0700
aOOl5C 4510 C138
000160 01
000161 00
000162 0000
000164 00
000165 000000
000166 00000000
00016C
00016C 4100 0044
000110 4001 0002
000174 18FF
000176 43Ft OOOL
00017A 89FO 0001
00017f 4100 C458
000t82 5001 F008
000186 5~F2 0020
00018A 58FF 0090
000l8E 05EF

0001<)0
000190 4510 C178
000194 OOOOOlAlt
000198 00000438
00019C 00000000
0001AO 00000(100
000lA4 C40707E9E 2C 10407
OOOlAC 58F2 0020
000180 5SFF 0084
0001B4 05H

00090

00140

00020
OOOBS
00l4E

00000

0025C

0016C

00044
00002

0000 1
00001
0048C
00008
00020
00090

OOlAC

00020
000B4

219+
220+
221 •
222 ••
223 •
224
225+
226+
227+
228+
229+
230.
231+
212+
233 ••
234
235+
236+
237 ••
23S ••
239
240 ..
24l+
242+
243 ..
244+
245+
246+

l
BALR

15.116+28(5)
14,15

MESSAGE SUPPORT ROUT INE
CALL SUPPORT POUTlNE

•
THE FOllOWING PUTlOG MACRO WIll LOG OUT ARRAY (NAME=) OPPISAMP ••

PUTLOG NAME= OPP IS AMP, DCVT R= ($2 I
BAL 1 12 A(ARRAY NAME!
DC CLS'OPPISAMP' AR~AY NAME
L 15,32($2)) ADDRESS OF CVT
L 15,l16+6S(l5)
BAL 1'., *+6
DC All! 11 ,All (0)
[CM 15,8,0(14) INSERT THE MACRO 10
8AlR 14.15 CALL SUPPORT ~OUTINE

IF ARRAY DPPZSAMP WAS LOGGED OUT THEN
IF F,($l5).IS,IERO,THEN

lTR $15,$15
BC 7.IF20018

OUTPUT MESSAGE 68 W~ICH CO~TAINS MSG2(VAR=) TO
THE SYSTEM CONSOLE I ROUTE=ll.

MESSAGE 66,VAR=(MSG2).OCVTR=IS2!
CNOP 0,4
BAl l.MSGOOI9
DC AlltO+11
DC All (0)
UC AL 2(0)
DC X' 00'
DC AUIO)

VAR !ABLE COUNT
ROUTING CODE COUNT

ME SSAGE NUMBE R
AC nON CODE

•

••

**

247+
248+MSG0019
249+

DC lAL4(0)
OS OF

LA 0,68 LOAD MSG
srH 0.211) MOVE MSG Ii

USER RETURN APEA
MESSAGE VARIABLE

Ii INTO REGISTER 0
TO PARAMETER LIST

ZERO REG 15 FOR IC
250+
251+
252+
253+
254+
255+
256+
257+
258+
259 •
260 ••
261 ••
262 •
263
264+
265+
266+
267+
268+
269+
270+
271 +
272+
273+

SR 15,15
IC 15.1111
SlL 15,1
LA 0,MSG2
ST 0,811,151
L 15,32((S2})
L 15,l16+28Il51
BAlR 14.15

Ii ~ ROUTE CODES I N PARAMETER LIST
LENGTH OF ROUTE CODE IN PARAM LIST
V A R I A B LEA DO R
STORE INTO MESSAGE LIST

ADDRESS OF CvT
MESSAGE SUPPORT ROUTINE

CALL SUPPORT ROUTINE

•
THE fOllCW\NG GETLOG MACRO lOll lOG IN ARRA,((NAME=I OPPISAMP ...
A~D PLACEIAREA=I THE ARRAY AT LOCATION lOGCOPY • •

GETLOG NAME=DprZSAMP.AREA~lOGCOPY.OCVTR=IS2)

CNOP 0,4
BAL 1 28
DC AL 11 0 I , A L 3 I *+ 1 5 1
DC A(lOGCOPVI
DC AIOI
DC AIO I
DC CLS'OPPZSAMP'
L 15,321(2))
L 15,116+64(151
BALR 14015

BRANCH ARROUND PARMS
ARRAY IDENTIFIER

OUTPUT AR EA
RELATIVE COpy
LOG COPY REFERENCE

ADORE SS OF CVT

CALL SUPPORT ROUTINE

•

02-DPPSU
Ol-OPPSU
00050000
00051000
00052000
00053000
Ol-PUTLO
01-Puno
02-0PPSU
02-0PPSU
02-DPP5U
02-0PPSU
02-DPPSU
02-DPPSU
00054000
00055000
Ol-IF
OI-IF
00056000
00051000
00058000
aI-ME SSA
ell-MESSA
Oi-MESSA
aI-PIE SSA
01.-MESSA
Ol-ME SSA
OI-MESSA
Ol-MESSA
Ol-ME SSA
Oi-MESSA
01-MESSA
OI-ME SSA
01-MESSA
Oi-ME SSA
01-MESSA
01-MESSA
02-0PPSU
02-DPPSU
02-DPPSU
00059000
00060000
00001000
00062000
00063000
Ol-GE TLO
Ol-GETLO
01-GETlO
OI-GEllO
OI-CElLO
Ol-GEllO
01-GE TLO
02-0PPSU
02-DPPSU
Ol-OPP SU

>
I

o

DPPlSAMP SAMPLE PROGRAM PAGE

l DC OBJECT CODE A DDR 1 A DDR 1 S HH SOURCE STATEMENT ASM H V 04 09.15 11/04115

000186 12FF
0001B8 4110 e22S

OOOlBC 4140 C4lC

OOOlCO
OOOlCO 4510 CIAO
0001(4 01
000 lC 5 01
0001C6 0000
0001C8 00
000IC9 000000
0001CC 0000
000 ICE 00000000
000104
000104 4100 0042
000108 4001 0002
OOOlOC 4100 0001
OOOIEO 4001 0008
0001E4 9680 1008
0001E8 1 BFF
OOOIEA 43Fl 0001
OOOlEE 89FO 0001
0001F2 5041 FOOS
OOOlF6 58F2 0020
OOOIFA 58FF 0090
OOOlH OSEF

000200
000200 4510 Cl08

00008

000204 C401D7E9E2CI04D1
00020C
00020C 1804
00020E 58F2 0020
000212 58FF 007C
000216 45EO (lEe
0002lA 1000
OOOllC BFF8 EOOO
000220 05EF

000222 I2FF
000224 4110 C228

000228

0025C

00450

00104

00042
00002
00001
00008

00001
00001
00008
00020
00090

OOlOC

00020
0001C
002lC

00000

OOl5C

274 **
215
276+

IF ARRAY DPPlSAMP WAS LOGGED IN THEN
IF F.IS151.IS.lERO.THEN

lTR. Sl5.S15
BC 7, IF30023

OUTPUT MESSAGE 66 ,WHICH CONTAINS THE lOGGED IN
ARRAYIVAR=I DPPlSAMP. TO THE SYSTEM eONSOLE(ROUTE=ll

••
277 +
278 *.
279 *.
280
281 *. LA S4.LOGCOPY+24 LOGGED AR~AY ADDRESS(lST 248YTES OF A

LOGGED ARRAY CONTAINS A HEAOER
282
283+
284+
285+
286+
281+
288+
289+
290+
291+
292+MSG0024
293+
294+
295+
296+
291+
298+
299+
300+
301+
302+
303+
304+
305 •

CNOP
BAl
DC
DC
DC
DC
DC
DC
DC

OS
LA
STH
LA
STH
01
SR
IC
SLl
ST
L
L
BAlR

MESSAGE 66.VAR =1 I H)I .DC VTR=I S21 .ROUTE=1
0.4
1. MSG 002 4
AL l(O+U
All 111
AL 2(01
X'OO'
Al3(0)
AL 2(0)
I ALit I 0 I
OF

ROUTI NG

VARI ABLE COUNT
ROUT ING CODE COUNT

MESSAGE NUMBER
AC TION CODE
USER RETUR~ AREA

CODE
MESSAGE VA~IA8LE

0.66 LOAD MSG " INTO REGISTER 0
0.2(lJ MOVE MSG " TO PARAMETER LIsr
0.1 LOAD ROUTING CODE INTO REGISTER 0
0,8111 STORE ROUTING CODE INTO PARAMETER LIST
8111.X'80' SET HIGH BIT OF LAST ROUTINE
15,15 ZERO REG 15 FOR IC
15,I(U " Of ROUTE CODES IN PARAMETER
15.1 LENGTH OF ROUT E CODE IN PARAM
$4.811,15) STORE VARIA8LE INTO PARAMETER
15.32((S21) ADDRESS OF CVT
15.116+28(15) MESSAGE SUPPORT ROUTINE
14.15 CALL SUPPORT ROUTINE

306 •• THE FO~LOWING PUTARRAY MACRO WILL PLACEIDATA=) THE
301 •• LOGGED IN ARRAYINAJI4E=) DPPlSAMP IN THE DATA 8ASE •
308 •
309
310+
311+
312+A0026
313+ PA0026
314+
315+
316+
311+
318 +
319+
320+
321 •• IF
322
323 +

PUTARRAY NAME=DPPlSAMP.DATA=IS4'.DCVTR=IS21
CNOP 0.4
BAl 1.PA0026
DC CL8'DPPISAMP'
CNOP 0.4
LR O. S4
L 15.32CIS2)1
l 15 .llb +8 u5 J
BAL 14,*+6
DC AlIClI2),AlICO)

ARRAY NA"IE

ADDRESS OF OAT A
ADORE SS OF C VT

PUTARRAY SUPPORT ROUTINE

ICM 15.e.OB4} INSERT THE MACRO 10
8ALR 14.15 CALL SUPPORr ROUTINE

THE LOGGED ARRAY WAS PLACED IN THE DATA 8ASE THEN
IF F,IU5) .IS,ZERO.THEN

LTR U5,S!5
BC 1. Iflt0028 324+

325 ••
326 ••
321

OUTPUT MESSAGE 68.WHICH CONTAINS MSG3(VAR=). TO THE
SYSTEM CONSOlECROUTE=lI

MESSAGE 68. YAR= (MSG3 1 • DCYT R= 1 SZ 1
328+ CNOP 0

CODE

LI ST
LIST
LI S T

• ••
•

•• ••

00064000
00065000
01- IF
01-IF
00066000
00067000
00068000
00068100
00068200
OI-ME SSA
OI-MESSA
01-JI4ESS4
Ol-ME SSA
Ol-MESSA
Ol-HESSA
Ol-MESSA
01-MESSA
OI-MESS4
o I-ME SSA
OI-MESSA
o I-ME SSA
OI-MESSA
OI-MESSA
Ot-ME SSA
OI-MESSA
Ol-MESSA
Ol-MESS4
Ol-MESSA
02-DPPSU
02-DPPSU
02-DPPSU
00069000
00010000
00071000
00012000
00013000
Ol-PUTAR
Ol-PUTAR
Ol-PUTAR
OI-PUTAR
OL-PUTAR
02-DPPSU
02-DPPSU
02-DPPSU
02-0PPSU
02-DPPSU
Ol-DPPSU
OOOHOOO
00075000
Ol-IF
OI-IF
00076000
00011000
00078000
Ol-"ESSA

>­
I

OPPI SA14P SAMPLE P~OGRUI PAGE 8

lOC OAJECT COOE ADORL AOORl STMT SOURCE STATEMENT ASM H V O~ 09.15 11/0~/75

000228 4510 C2~
ooonc 01
000220 00
00072E' 0000
000230 00
000231 000000
000234 00000000
000238
000238 4100 0044
00023C 4001 0002
000240 lRfF
000242 43Fl 0001
000246 89FO 0001
00024A 4100 C460
OOOZ4E 5001 FOOS
000252 58Fl 0020
000256 58FF 0090
00025A 05EF

00025C

00025C

00025C

0002SC

00025C
00025C 4510 C238
000260 C40707E2CI0407F2
000268 OOOOO't 7E
00026C
00026C 5800 (234
000270 58F2 0020
000214 58FF 0080
000278 45EO C24A
000l7C 7800
00027E BFFe EOOO
000282 05H

000l81t IlFF
000286 4770 C310

00028A 0700
000l8C 4510 C26C
000290 01
000291 01

00238

00044
00002

00001
00001
00lt94
0000&
00020
00090

0026C

002b8
00020
00080
OOHE

00000

00344

OOlAO

329+
330+
331+
332+
333+
lH+
33~
336+MS G0029
337+
338+
}39+

BAl
DC
DC
DC
DC
DC
DC

1.P1SG0029
All10+1I
All! 0)
Al210)
X'OO'
Al3(0)
lAl4(OI
OF
0,68 lOAD MSG
0,2111 MOVE MSG •
15.15

VARIABLE eruNT
ROUTING CODE COUNT

HESSAGE NU'4BER
AC TI ON CODe
USER RETURN AREA

MESSAGE VARIABLE

• INTO REGISTER 0
TO PARAMETER LIST

lERO REG 15 FOR Ie
340+
)41--
342+

OS
lA
STH
SR
Ie
Sll
LA
ST
l

15,1 (1)

15.l
Q,HSG}

• OF ROUTE CODES IN PARAHETER LIST
LENGTH OF ROUTE CODE IN PARA'" liST
VAR !ABLE A OOR

343+
344+
34S-v
346+
347

0.811,15)
15.32«($2))

l 15.116+26115.
BAlR 14,15

ENOIF
348+1 F40028 OS
349

OH
ENDIF

3SO+IF30023 OS OH
3S1 END[F

OS OH
ENOIF
OS OH

STORE INTO HESSAGE LIST
ADDRESS ~ tVT

MESSAGE SUPPORT ROUTINE
CALL SUPPORT ROUTINE

352+ IF 20018
353
354+[FI0013
355 ... •

THE FOLLOWING GET ITEM MACRO It III RETRI EVE THE CONTENTS * 35b ••
357 ••
356 ..
359 •

(TYPE=DATA} OF [TEMiNAME=1 DPPSAMP2 AND PLACE!OATA=' THE DATA"
AT LOCATION'ITEM'. ..*

360 GHI iEM NAME=DPPSAMP2,DA TA:I TUh TYPE=OATA.DCVTR=(SZ)
361+ CNOP 0.4
362+ BAl 1,G10035
363+10035 DC ClS'DPPSAM?2· I fE M NAI'E
304+ IX All(OI.AL3(1TEM)
365+GI0035 CNOP 0,4
366+ l 0,10035+8 ADORE SS OF DAn.
367+ l lS.32(H2J) ADDRESS OF tVT
368+ L 15.116+12(15) GETlTEM SUPPORT ROUTINE
369+ BAL 14,.+6
370+ DC Allt120»tALl(01
371+ IC,,", I5.S.0C 14) INSERl THE MACRO 10
372+ BALR 14.15 CAll SUPPORT ROUTINE
373 •• IF ITEM OPPSAMP2 WAS RETRiEVED THEN
374 IF F.(SI51.IS.ZERO,THEN
375+ LTR US.U5
376+ BC 1.fFI0037
377 •• WTPUT MESSAGE 69.WHICH CONTAIN.S IVAR=) THE ITEM. TO THE
378 •• SYSTEM CONSOlElROUTE=I)
379 MESSAGE 69. VAR=I ITEMI.DC VTR=I 521 ,ROUTE:::1
380+ CNOP O.~
381+ BAl I,MSG0038
382+ DC ALtc 0+1 J
383+ DC AllIl)

VAR IABLE COUNT
ROUT ING CODE CO~T

•

••

•• ••

01-MESSA
o I-MESSA
Ol-I1ESSA
Ol-ME SSA
Ol-MESSA
Ol-I1ESSA
OI-MESSA
OI-MESSA
Ol-ME SSA
Q I-HE SSA
Ol-MESSA
Oi-ME SSA
Ol-I1ESSA
Ot-MESSA
Oi-ME SSA
Ol-DPPSU
02-0PPSU
02-0PPSU
00079000
Ol-ENOlf
00080000
Ol-ENOIF
00081000
Ol-ENOIf
00082000
Oi.-ENOlf
00083000
00084000
00065000
00086000
00087000
00086000
Ot-GETIT
Ol-GE liT
OI-GHIT
Ot-GETIT
Ol-GErn
OI-GETIT
02-DPP5U
02-DPPSU
02-0PP5U
Ol-DPPSU
02-0PPSU
02-0PPSU
00089000
00090000
01-1f
Ol-If
00091000
00091000
00093000
OI-MESSA
OI-MESSA
Ol-MESSA
01-ME SSA

>­
I

tv

OPPZ SAMP SAMPlE' PROGRAM PAGE 9

lOC OBJECT CODE ADDR 1 ADOR2 STHT SOURCE STATEMENT ASM H V 04 09.15 11/04/75

000292 0000
000294 00
000295 000000
000298 0000
00029A 00000000
0002 AO
0002AO 4100 0045
0002A4 4001 0002
0002 A8 4100 000 1
0002AC 4001 0008
000260 9680 1008
OOO~ B4 1 BFF
000286 43Fl 0001
0002AA 89FO 0001
0002BF 4100 C44A
0002C 2 5001 F OOA
0002C6 58F2 0020
0002CA 58FF 0090
0002CF 05H

000200
000200 4510 C2AC

00008

000204 C4D7D7t2C lD407F2
0002 DC 0000047F
0002E 0
OQ02EO 5600 C7A8
0002E4 58F2 0020
0002ER 5RFF 0084
0002EC 45EO C2SE
0002FO A800
0002F 2 SFF 8 E 000
0002 F6 0<) EF

0002F8 12FF
0002FA 4770 C 31 0

0002FE 0700
000300 4510 C2EO
000304 01
000305 01
000306 0000
000308 00
000309 000000
00030C 0000
00030E 00000000
000314
000314 4100 0044
000318 4001 0002

00045
00002
00001
00008

00001
00001
0047E
00008
00020
00090

OOZEO

OOZDC
00020
00084
002F 2

00000

00344

00314

00044
00002

384+
385+
386+
387+
3'19+
389+MSG0038

DC
DC
DC
DC
DC

OS

Al 21 01
X'OO'
AL3101
Al2101
lAl4(01
OF

MESSAGE NUMBER
AC TION CODE
USEk RETUR~ AREA

ROUTING C(lOE
MESSAGE VARIABLE

0,69 LOAD MSG ~ INTO REGISTER 0
0,2111 MOvE'MSG II TO PIIRAMETER LIST
0,1 lOAD ROUTING CODE INTO REGISTER 0
0,8111 STURE ROuTING CODE INTO PARAMETER LJST

390+
391+
392+
3(n+
394+
395+
396+
397+-
39at-
399+
400+
401+
402+
403 •

LA
STH
LA
STH
01 611),X'80' SFr HIGH BIT OF LAST ROUTINE CODE

15,15 lER0 REG 15 FOR IC SR
Ie
SLL
LA
ST

15,1(11 /I OF ROUTE CODES IN PARAMETER LIST
15,1 LENGTH OF ROUTE CODE IN PARA'" LIST

L
l
8ALR

0, 1 TE M V A RIA B LEA DO R
0,all.l51 STORE INTO "'ESSAGE LIST
15,32(($211 ADORfSS OF cvr
15.116+28(15) MESSAr;E SUPPORT ROUTINE
14,15 CALL SUPPORT ROUTINE

404 .. THE FllOWING PUT!TEM "'ACRO WILL PLACEIDATA=I THE RETRIEVED
405 •• ITEMI NAME=I DPPSAMP2 IN THE DATA BASE.
40b •
401 PUTlTfM NAME=DPPSAMP2,DATA"'ITEM,DCVTR=I$21
408+ CNOP 0,4
409+ BAl 1,PI0040
410+P0040 DC CL6'DPPSAMP2' IT I'M NAME
411+ DC AlllOI,A13IITEMI
412+PI0040 CNOP 0,4
413+ l 0, P0040+8 AOORESS OF DATA
414+ l 15.32(($211 ADDRESS OF CVT
415+ l 15,1l6+16(151 PUTITEM SUPPORT ROUTINE
416+ BAl 14,.+6
417+ DC ALUI681,ALl(01
418+ Ie'" 15.8.01141 INSf~T THE MACRO 10
419+ BUR 14.15 CALL SUPPORT ROUT INE
420 .. IF ITEM DPPSAMP2 WAS UPDATED THEN
421 IF F. U151,I S, ZERO, THEN
422+ l TR $15,$15
423+ 8C 7.IF20042
424 •• OUTPUT MESSAGE 68, WHICH CONTAINS MSG4(VAR=1 ,TO THE SYSTEM
425 .. CONSOLE (ROUTE= U •
426 MESSAGE 68,VAR=(MSG41,DCVTR=($21.ROUTE=1
427+ CNOP 0.4
428+ 8AL 1.MSG0043
429+ DC All (0+11
430+ DC AL l(11
431+ DC AL2(01
4J2+ DC X'OO'
433+ DC Al3(0)
434+ DC AL2101
435+ DC 1AL4101
436+MS G0043 OS OF

ROUTING

VARIABLE COUNT
ROUTING CODE COUNT

MESSAGE NUMBER
ACTION CODE
USER RETURN AREA

COOE
MESSAGE VARIABLE

437+ lA 0.68 lOAD MSG II INTO REGISTER 0
438+ STH 0, 2(11 MOVE MSG II TO PARAMETER LIST

• ••
•• •

••

•• ••

01-MESSA
01-MESSA
01-ME SSA
01-MESSA
01-ME SSA
01-MESSA
01-MESSA
01-ME SSA
Ol-MESSA
01-MES~A

01-ME SSA
01-IoH:SSA
01-ME SSA
o I-ME SSA
01-MESSA
01-MESSA
02-0PPSU
02-DPPSu
02-DPP SU
00094000
00095000
00096000
00097000
00098000
o I-PUTIT
01-PUllT
OI-PUTlT
Ol-PUTIT
01-PUT IT
01-Pun T
OZ-DPPSU
02-DPPSU
02-DPPSU
02-0PPSU
02-DPPSU
02-DPPSU
00099000
00100000
01- IF
01-IF
00101000
00102000
00103000
o I-ME SSA
01-MESSA
01-ME SSA
OI-MESSA
01-MESSA
01-ME SSA
Ol-MESSA
01-ME SSA
o I-MESSA
01-MESSA
o I-ME SSA
o I-MESSA

>­
I

W

DPPZ SAMP SAMPlF PROGRAM PAGE 10

LOC OBJfCT cnOE AODRl ADDRl STMT SOURCE STATEMENT ASM H V 04 09.15 11/04/75

00031C 4100 0001
000320 4001 0008
000324 9680 1008
000328 1SH
00032A 43F1 OOOl
00032E 89FO 0001
000332 HOO C46S
000336 5001 F008
00033A 58F2 0020
00033E ;8FF 0090
000H2 05H

000344

000344

000344 4110 C318
0003~8 41FO C344
OOOHe

00008

00034C C4D7D7F2C lD407F 1
000354 C4 07 01 F2C 1 04D7F 1
0003;C 4040404040'+04040
000364 00
000365 01
000366 0000
000368 00000000
00036C 0000000000000000
000374 00000000

000318 4lFO C34C
OOOHC
00037C 4500 e350

000380 0004
000382 0000

000384
000384 5010 C36C
000388 5000 C310
00038C 4100 0004
000390 4510 C3H
000394 01000064
000398 00000000
00039C 08000003
0003 AO 00000000
0003A4 00000000
0003A8 40404040
0003AC
0003AC 1 ~F 2

00001
00008

00001
00001
0049C
00008
00020
00090

0034e
00378

00378
00380

00384
00380

00384

OOlAO
003A4
00004
003Ae

439+
440+
4~1+

442+
443+
444+
445+
446+
~47 +
448+
4'.9 +
450
451+ I F 20042
452
453+IF10031
454 *

lA 0,1 LOAD ROUTING CODE INTO REGISTER 0
STH 0,8(1) STORE ROUTING CODE INTO PARAMETER LIST
01 8(ll,X'SO' SET HIGH BIT Of lAST ROUTINE CODE
SR 15,15 ZERO REG 15 FOR IC
IC 15,1 (11 /I ~ ROUTE CODES IN PARAMETER LIST
SLL 15,1 LENGTH OF ROUTE CODE IN PARAM LIST
LA O,MSG4 VARIABLE AODR
ST 0,811,l51 STORE INTO MESSAGE lIST
L 1 5 , 32 (U 2) I ADD RES S OF C V T
L 15.116+28(15) MESSAGE SUPPORT ROUTINE
BALI! 14,15 CALL SUPPORT ROUTINE

ENDIF
OS OH
E"lDIF
OS OH

...
4S5 ** THE FOlLOWING PTIME MACRO WILL CREATE A PTOEIADDI WHICH will **
456 .. CAUSE DPPSAMPll TASK'" Alii) E P= I TO BE PArCHEO THREE TIMES ..
451" (CO~T=I WITH A 1 SECONO(SlART=1 INTERVAL BETWEEN EACH PATCH**
458 *
459

460.
461+
462+1 HB0048
463+
464"1-
'+65 +
466+
467+
468+
469+
470+
471+
472+ IHB0048A
473+
474+
475+
476+ [HP0048
471+
418+
419+ I HP0048A
480+
481+
482+
483+
484 +
485+
486+
487+
488+
48q +
490+
491+PT0047ND
4q2+

PTlI1E

LA
B
OS
DC
DC
DC
DC
DC
DC
DC
DC
DC
EQU
LA
CN.nP
BAL
EOU
DC
DC

EQU
CNOP
ST
ST
LA
BAL
DC
DC
DC
DC
DC
DC

lR

*

* ADD, S T ART= (R EL,l S I. COUNT = 3, DCVT R= ($11, EP= DPP SAMP 1,
TA SK=DPP SAMP 1
1, IHB004 8
IHB0048A
OF
CL8'DPPSAMPl'
Cl6'DPPSAMPl'
CL8' •
AUla I
ALl! 11
H'O'
AIOI
2F'O'
AIOI

*
15,IHP0046
0,4
0,IHP0048A

SET UP PAR AM LIST ADDRESS
BRANCH AROUND LIST

T ASK NAME
ENTRY POINT NAME
PRl'(REFERENCE NAME
flAG BYTE
OUEUE LENGTH
PRTY RELATIVE VALUE
FCB ADDRESS
FREE LENGTH.FREE ADDRESS
Tcax

SET UP lIST ADDRESS

SET UP REG 0 WITH PARAM LIST

* AllIIHP0048A-IHP00481 LENGTH OF PARAMS
AL1(0) 10

0,4
1,*+12+16
0,*+16+12
0,4
t,PTC041ND
All III ,Al31t00 I
AlllOI,Al3(0)
ALI 18) , A l3 13)
AIOI
AIOI
CL4'
OS OH
15, I $11

SAVE PATCH SUPERVISOR LIST ADDRESS
SAVE PATCH PROBLEM LIST ADDRESS
Rf:OUEST TYPE
BRANCH AROUND PTIME PARAMETERS

START TIME
INTERVAL TIME
STOP TIME

PATCH SUPERVISOR LIST
PATCH PROBLEM PARAME TER LI ST
PTOE 10

C VT ADORE S S

Ot-HESSA
Ol-ME SSA
01-MESSA
01-MESSA
01-MESSA
Ot-MESSA
01-ME SSA
OI-MESSA
02-0PPSU
02-0PPSU
02-0PPSU
00104000
Ol-ENOIF
00105000
01-Et-4oIF
00106000
00101000
00 t 08000
00109000
00110000

XOOlllOOO
00112000
Ol-PATCH
OZ-PA TCH
02-PATCH
02-P.tlCH
OZ-P.HCH
02-PATCt-l
02-PATCH
02-PATCH
02-PA TCH
02-PAT(.H
02-PATCH
02-PA TCH
02-PATCH
02-PATCH
02-PA TCH
02-PATCH
02-PATCH
OZ-PATCH
02-PATCH
Ol-PATCH
Ol-PTIME
01-PTIME
Ol-PTIME
Ol-PTIME
Ol-PTI ME
01-PTIME
Ot-PTIME
Ol-PTIME
o l-PT IME
Oi-PTIME
Ol-PTIME
Ol-prlME
02-0PPS.V

OPPZSAMP

LOC OBJECT CODE

0003AE BFF8 C381
0003B2 4100 0004
0003B6 440F 0008

0003BA 59FO C 3F 4
0003RE 4180 (304

0003(2 0100
0003C4 4510 C3A4
0003C8 01
0003C9 01
0003CA 0000
0003ec 00
0003CO 000000
000300 0000
000302 00000000
000308
000308 4100 0044
00030C 4001 0002
0003EO 4100 0001
0003E4 4001 0008
0003E8 9680 1008
0003EC lBFF
OOO'3EE 43F 1 0001
0003F2 89FO 0001
0003F6 4100 C470
0003FA 5001 F 008
0003FE 58F2 0020
000402 58FF 0090
000406 05EF

000408

000408
000408 1810
00040A 5800 0004
00040E 5800 COCO

000412 4111 0000
000416 OAOA
00~18 98EC DOOC
00041C 92FF DOOC
000420 41FO 0000
000424 07fE

000426 0000

SAMPLE PROGRAM PAGE II

ADD~l ADDR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04115

00008

OOOOC

003B5
00004
00008

00428
00408

00308

00044
00002
00001
00008

00001
00001
004A4
00008
OOOZO
00090

00004
00034

00000

OOOOC

00000

493+
494-+
495,.
496 •• IF
It 91
498+
499+

ICM 15,8,*+1 10 IN HIGH ORDER BHE OF REG
NOP 04 CONSTANT FOR 10
EX 0,8(15) EXECUTE SVC FROM CVT

RETURN CODE FROM TIME MANGEMENT IS LESS THAN EIGHT THEN
IF F,IS15I,LT,EIGHT,THEN
(Sl5,EIGHT
BC ll,lFI0050

.*

500 ..
501 ••
501
50H

OUTPUT MESSAGE 68, WHICH CONTAINS MSG5IVAR=), TO THE SYSTEH ..

504+
505+
506+
507+
508+
509+
5tO+

CONSOLE (ROUTE= 11
MESSAGE 68,VAR=IMSGS),DCVTR=(S21,ROUTE=1

CNOP 0,4
BAL I,MSG0051
DC ALlIO+1)
DC AlUlI
DC AL Z(0)

DC X'OO·
DC Al3(0)
DC AL Z(0) ROUTt NG

VARI ABLE (OUNT
ROUT ING CODE COUNT

MESSAGE NUMBER
AC HON CODE
US Ell. RETURN AREA

COOE

••

511+
512+MSG0051
513+

DC lAL4(0) MESSAGE VARIABLE
OS OF

LA 0,68 LOAD MSG * INTO REGISTER 0
STH O.Z(l) MOVE MSG * TO PARAMETER LIST 514+

515+ LA 0,1 LOAD ROUTING CODE INTO REGISTER 0
516 + STH 0,8(1) STORE ROUTING CODE INTO PARAMETER LIST
511+ 01 8(1),X'80' SET HIGH BIT OF LAST ROUTINE CODE
518+ SR l5,15 ZERO REG 15 FOR IC
519+ IC 15,1(1) M OF ROUTE CODES IN PARAMETER LIST
520+ Sll 15,1 LENGTH OF ROUTE CODE IN PARAM LIST
5Z1+ LA 0,MSG5 VARIABLE AOOR
522+ ST 0,8(1,15' STORE INTO ~ESSAGE LIST
523+ L 15,3Z«($ZII ADDRESS OF CVT
5Z4+ L 15,116+28(15) MESSAGE SUPPORT ROUTINE
525+ BAlR 14,15 CALL SUPPORT ROUTINE
526
521+IFI0050
528 •

ENOIF
OS OH

•
529 •• THE EXIT MACRO WILL RESTORE ALL REGISTERS AS THEY WERE WHEN ••
530 •• OPPISAMP WAS ENTERED AND RETURN BACK TO THE SYSTEH. ••
531 •
53Z
533+
534+
535+
536+
531+·
538+
539+
540+
541+
54Z+
543 +
544 •

EXIT
OS
LR
L
L

FREEMAIN
LA
SVC
LM
MVI
LA
BR

CoOE=O
OH
1,13 •
13,4(13) •
0, TKGOOO IG
R,LV=(O) ,A=(11
1,0(1,0)
10
l4.1Z, 12(13.
12(l31,X'FF'
15,0(0,0)
14

•
SUB POOL ADDRESS
GET CALLER'S SAVE AREA

LOAD SP AN~ LV PARAMETERS

CLEAR THE HIGH ORDER BYTE XM4511
ISSUE FREE MAIN SVC P1504

RESTORE THE REGISTERS
SET RETURN INDICATION
LOAD RETURN CO DE
RETURN

•
545 •• SRTOS SAMPLE PROGRAM DATA AND CONSTANT AREA
546 •

•• •

OZ-DPPSV
02-0PPSV
OZ-DPPSV
00113000
00114000
Ol-IF
Ol-IF
00115000
00116000
00117000
01-MESSA
01-HESSA
01-MESSA
01-ME SSA
01-MESSA
01-MESSA
01-ME SSA
01-MESSA
Ol-MESSA
o I-ME SSA
01-MESSA
Ol-MESSA
01-MESSA
01-MESSA
01-MESSA
Ol-MESSA
Ol-MESSA
Ol-MESSA
Oi-MESSA
Ol-MESSA
02-DPPSU
OZ-DPPSU
Ol-DPPSU
00118000
Ol-ENDIF
OO1l9000
00120000
00121000
00122000
00123000
Ol-EXI T
Ol-EXIT
Ol-EXIT
01-E XI T

Ol-FREEM
02-FREEM
02-RETUR
02-RETUR
OZ-RETUR
02-RETUR
00124000
00125000
00126000

OPPlSAMP C;AMPLE PROGRAM PAGE 12

lOC OBJECT CODE AOORI AOORZ STMT SOURCE STATEMENT ASM H V 04 09.15 11/04115

000428 00000008
000430
000438
00047E

000484 D7C 10C3C8'\0404O
0004SC D7E4E30306C74040
000494 D7E4E3CI0909C1E8
00049C 07E4E3C9E3CS(H40
0004A4 07E3C9D4C~404040

POS. I 0

0001
0001
0001
0001

PEL. 10

0001
0001
OOOl
0001

flAGS

08
OC
08
08

AOORES S

000195
000198
000269
000200

541 EIGHT
.,48 ARRAY
549 lOGCOPY
550 fTEM
551 •
552 **
553 *
554 MSGl
555 MSG2
556 MSG3
551 HSG4
558 HSG5
.,59

DC
OS
OS
OS

F' S'
o
CLTO
CL6

CONSTANT OF 8 USED IN IF INSTRUCTION
ADDRESS OF ARRAY DPPlSAMP
LOGGED COPY OF ARRAY DPPZSAMP
CONTENTS OF ITEM ~PPSAMP2

•
SAI1Plf PROGRAM D [AGNOS TIC ME SS AGES VAR IABl ES ••

00126100
00121000
00128000
00129000
00130000
00131000
00132000
00133000
0013/tOOO
00135000
00136000
00131000
00138000

DC
DC
DC
DC
DC
END

ClS' PATCH"
ClStpUTlOG'
Cl8"PUTARRAY'
ClSI PUT ITEM'
Cl8'PTlME'

RELOCATION DICTIONARY

•
PATCH MACRO OIAGMOSTIC MESSAGE
PUTLOG MACRO DIAGNOSTIC MESSAGE
PUTARRAY MACRO DIAGNOSTIC HESSAGE
PUTITE" MACRO OIAGNOSTIC MESSAGE
prIME MACRO or AGNOSITC MESSAGE

PAGE 13

AS M H II 04 09.l5 U/0411S

>' CROSS REFERENCE PAGE lit
I

0\ SYMBOL LEN VALUE OEFN REFERENCES ASM H V 04 09.15 11/01t175

$I 00001 00000001 0056 0113
SIS 00001 OOOOOOOF 0072 0146 0146 0197 0197 0235 0235 0276 0276 0323 0323 0375 0375 01t22 01t22 01t98
S2 00001 00000002 0059 0113 o lit 2 0173 0189 0218 0227 0256 0271 0302 0315 0344 0367 01t00 OItlit 0447

0492 0523
S3 00001 00000003 0060 0199 0217
S4 00001 00000004 0061 0280 0301 0314
ARRAY 00008 000430 05 ... B 0166 0199
DPPISAMP 00001 00000000 0054 0096

t:I EIGHT 00004 000428 0547 0It96
IT> C;AOO 11 00001 OOOOEO 0167 0165
Ul GI0035 00001 00026C 0365 0362 0 .., IFI0007 00002 000001t 0177 0149
~. I FlOO 13 00002 00025C 0354 0196
~ IF 1 003 7 00002 000344 0453 0376
r+ IFI0050 00002 000408 0527 0499
~. IF20016 00002 0002S<: 0352 0236
0 IF20042 00002 00034/t 0451 0423 ::J

If 30023 00002 00025C 0350 0217
(1) tF40026 00002 00025C 0348 0324
::J IHBOO05 00004 0000/t4 0121t 0122
0- I HBOO05A 00001 00000070 0134 0123

0 IHB0048 00004 00034C 0462 0460
'0 I HB0048A 00001 00000376 047Z 0461

IT> IHPOO05 00001 00000076 0138 0135 0139
1'1 IHPOO05A 00001 0000007C 0141 0137 0139
III I HP 004 8 0000l. 00000380 0476 0473 0477
r\" I HP 0048A 00001 00000364 0479 01t15 0477
t--' nEM 00006 000471': 0550 036/• 0398 0411 0
::J 10035 00006 000260 0363 0366

lOGCOPY 00070 000436 0549 0267 0260
::. MSGOO06 00004 OOOOAIt 0162 0154
I» MSC;OO14 00004 000114 0211 0204 ::s MSGOO19 00004 00016C 0248 02ltl £:
I» 14Se0024 000010 000101t 0292 0264 MSG0029 00004 000236 0336 0329

MSG0038 00004 0002AO 0369 0361
MSGOOlt3 00004 000311t 01036 0428
MSG0051 00001t 000308 0512 0504
MSG1 00006 000481t 0554 o 17l
MSG2 00008 00048C 0555 0251t
MSG3 00008 000491t 0556 031t2
MSG4 00008 00049C 0557 01t105
MSG5 00008 0004A4 0558 0521
PA0026 00001 00020C 0313 0311
PI0040 00001 0002EO 0412 0409
PT0047NO 00002 0003AC 01t91 0484
POOItO 00006 0002010 01t10 0413
TKGOOOIG 00001 OOOOH 0102 0064 0536
TKGOO01104 00004 000034 0101 0101t
WORK 00001 00000000 0094 0097

DIAGNOSTIC CROSS REFE~ENCE AND ASSEMBLER SU~MARY PAGE 15

ASM H V 04 09.15 11/04/75

NO STATEMENTS FlAGGED TN THYS ASSfMBlY

OVERRIDING PARAMETERS- NODfCK,NOLOAD,XREF{SHORTI
OPTIONS FOR THI S ASSEMBLY

NODECK, NOORJECT, LIST, XREFISHORTI, NORENT, NOTEST, NOBATCH, ALIGN, ESO, RLD, lINECDUIIITI551, FLAGIOI, SYSPARI1!1
NO OVERRIDING DD NAMES

165 CARDS F-ROM SYSTN
654 LINES OUTPUT

4267 CARDS FRCM SYSlIB
o CARDS OUTPUT

>­
I

ex>

EXTERNAL SYMBOL DICTIONARY PAGE

SYMBOL TYPF 10 AOOR lENG~ lD 10 ASM H V 04 09.15 11/04/75

OPPSAMP1 sn 0001 000000 0000C9

lOC

000000

OPPSAMPI - SAMPLE PROGRAM PATCH ENTRY ROOTINE PAGE

ORJ~CT COOf AOORI AODR2 STMT SOURCE STA TEMEN T ASM H V 04 09.15 11/04/75

00000
00001
00002
00003
00004

18 ••• 00002000
19 • MODULE NAME = DPPSAMP1 • 00002100
20 • DESCRIPTIVE NAME = SAMPLE PROGRAM PATCH ENTRY ROUTINE • 00002200
21 • FUNCTION = DPPSAMPI FUNCTIUN IS TO BF PATCHED BY THE SPECIAL REAL • 00003000
22 • TIME OPERATING SYSTEM SAMPLE PROGRAMIOPPlSAMP) • 00003100
~3 • NOTES = THE PROGRAM IS ENTERED FOUR TIMES. ONE TIME BY A PATCH MACRO. 00003200
24 • ISSUEO BY DPPlSAMP AND THREE 1 SECO~D CYCLIC PATCHES ISSUED BY • 00004000
25 • A PTIME MACRO IN DPPlSAMP. • 00004100
26 • DFPENDENCIES = NONE • 00004200
27 • RESTRICTIONS = NONE • 00005000
2R • REGISTER CONVENTIONS = ALL REGS ARE ASSIGNED AS $R WHERE REGS 0-15 • 00005100
2q • ARE $0-$15 • 00005200
30 • MODULE TYPE = SAMPLE PROGRAM • 00006000
31 • PROCESSOR = ASSEMBLER F • 00006100
32 • MODULE SIZE = 208 DECIMAL BYTES • 00006200
33 • ATTRIBUTES = REENTRANT • 00007000
34 • ENTRY POINT = DPPSAMPI • 00007100
35 • INPUT - NONE • 00007200
36 • OUTPUT = SPECIAL REAL TIME OPERATING SYSTEM MESSAGE 66 • 00006000
37 • RETURN = NORMAL OSIVS RETURN VIA 8R14. NO RETURN CODES • 00008100
38 • EXTERNAL REFERENCES - NONE • 00009000
39 • MACROS = BEGIN EXIT MESSAGE • 00010000
40 ••• 00011000

42 •••
43 ... THE BEGIN MACRO WILL ESTABLISH A BASE REGISTER FOR DPPSAMPI

44 --.
itS BEGIN OPPSAMPl,BASE-(12I,SAVEA=(GETMArN,WORKI.LV=72
1t6+DPPSAMPI (SECT • "MA IN' CUNTROL SEC nON

48+* GOES THRU REGIST ER EQUAT E ONLY ONCE
49 +$0 EeU 0 1 ••
50+S1 EeU 1 1 *.
51+ S2 EQU 2 1 ••
52 +S3 EeU 3 ? ••
53+ S4 EeU 4 ? ••

00013000
00011t000
00015000
00016000
Ol-BEGIN

02-EQU4T
02-EQUA T
02-EQUAT
02-EQUAT
02-EQUA T

OPPSAMPl - SAMPLE PROGPAM PATCH ENTRY ROUTINE PAGE 3

LOC OBJECT CODE ADORI ADDR2 STMT SOURCE STATEMENT ASM H V 04 09.15 11/04115

000000

000000 4 7F 0 F ODE
000004 08
000005 C40707E2Cl0407Fl
000000 00
OOOOOE 90E(Dooe
000012 5800 F034

000016 4510 F01A
OOOOlA OAOA
OOOOle 5001 0004
000020 5010 0008
000024 1 BDI
000026 5810 0004
00002A 9BEl toOC

000000
000000
00002E

00002F 0700
000030 45CO F03A
000034
000034 00000048

000038 5821 0000

0000 3C
00003C 4510 e018
000040 01
000041 00
000042 0000
000044 00
000045 000000
000048 00000000

OOOOS
00006
00007
00006
00009
OOOOA
OOOOB
OOOOC
00000
00001'
OOOOF
00000
00002
00004
00006

00000
ooaOf

OOOOC
00034

OOOlA

00004
00008

00004
ooooe

00000

00038

00034
00000

0004C

54+$5
55+$6
56+$ 7
51+$6
58+$9
59+Sl 0
60 +$11
61+$12
62+$13
63+ $14
64+ $15
65+FPRO
66+F PR2
67+FPR4
68 +FPR6

70+
71+
72+
73+
74+

75+
76+
77+-
78+
19+
80+
SI+
82+
83+
84+

EQU 5?
EQU 6?
EQU 1?
EOU 8?
EOU 9?
EOU 10 1
EQU 11?
EQU 12 1
EQU 13?
EQU 14?
EQU 15?
EQU a
EQU 2
EOU 4
EOU 6

OS 00.
USING -015 •
B 14(0,151
DC All (SI
DC CLS'oPPSAMPl'

STM 14,12,12(13)
L O,TKGOOOIG
GETMAIN R,LV=(OI
BAl I, *+4
SVC 10
ST 13,4111.
ST l,8(13I.
LR 13,1
L 1,4(131.
lM 14,1,1211)

**
.*IF THESE SUBSTITUTES ARE USEO AS
"REGIST ER NUMBERS T HE CROSS-REFERENCE
--TABLE WILL PROVIDE A LIST OF WHERE
•• EACH REGISTER WAS USED
•• •• .* •• *. .*

FOR BOUNDARY ALIGNMENT'
TEMPORARY 8ASE DECLARATION

BRANCH AROUND 10
LENGTH OF ID6NTlfIER
WENT[fl ER

SAVE REGISTERS
LOAD SP AND LV PARAMETERS

INDICATE GETMAIN
ISSUE GETMAIN SVC

SAVE CALLER'S SAVE AREA POINTER
fOR DOwNWARD SAVE AREA TRACE
ESTA~LISH OWN SAVE AREA POINTER

RESTORE 15,0,1
RE STORE GE T REGS

86+WORK DSEeT • BEGIN GETMAINED AREA
OWN SAVE AREA 87+ OS 90.

88+DPPSAMPI CSECT
S9+ USING WORK,13

91+
92+
93+TKG0001M
94+TKGOOOIG
95+
96+
97
98
99+

100+
101+
102+
103+
104+
105+
106+

CNOP 0,4
BAl 12,*+8 ESTABLISH l"~nIAL ''''AIN' CSECT BASE
OS OF. BASE REFERENCE

DC ALl(01,Al31721 • SUBPOOL, LENGTH
DROP 15
USING TKGOOOlM,12
L $2,01$11 ADDRESS OF XCVT
MESSAGE 66 ,VAR= (MSGI.DCVTR= ($21 ISSUE MESSAGE
CNOP 0,4
BAL 1. MSGOOO 5
DC AUIO+l1
DC AL 1(a I
DC Al2 (0)
DC X' 00'
DC AL3(0 I
DC LAL4(01

VARIABLE CruNT
ROUlING CODE COUNT

MESSAGE NUII\BER
ACTION CODE
USER RETURN AREA

MESSAGE VARIABLE

02-EQUAT
02-EQUAT
Q2-EQUAT
02-EQUAT
02-EQUAT
02-EQUAT
02-EQUAT
02-EQUA T
02-EQUAT
02-EQUAT
OZ-EQUA T
02-EQUAT
Ol-EQUAl
02-EQUAT
02-EQUAT

01-BEGIN
01-BEGIN
02- SAVE
02-SA VE
02-SAVE

02-SAVE
Ol-BEGIN

02-GETMA
02-GETMA
01-BEGIN
01-BEGIN
OI-BECa N
o l-BEGIN
Ol-BEGIN

Ot-BEGI N
o 1-BEGIN
Ol-BEGIN
Oi-BEGIN

01-BEGIN
01-BEGIN
OI-BEGIN
aI-BEGIN
01-BEGI N
o 1-BEGIN
00017000
0001BOOO
01-MESSA
01-ME SSA
OI-MESSA
01-MESSA
01-ME SSA
OI-MESSA
Oi-MESSA
Ol-ME SSA

DPPSAII4Pl - SAPIlPlE i?ROGRAM PAVCH ENCRY ROUTINE PAGE

lOC OBJEC T CODE ADOR1 AOOR2 ST"T SOURCE STATEMENT ASM H II O~ 09.15 11/~/75

OOOC4C
00004C 4100 0042
000050 4001 0002
000054 ISH
000056 43Fl 0001
00005 A 89 FO 0001
00005E 4100 C056
000062 5001 F008
000066 58F2 0020
00006A 58FF 0090
0000610 05EF

000070
000010 1810
000072 5800 0004
000076 5800 COOO

00007A 4111 0000
00007E' OAOA
000080 96EC DOOC
000084 92FF OOOC
000088 07FE

OOOOC

00008A E 3C IE 2!>240604OC 4
000092 07D7E2CID407F140

00042
00002

00001
00001
0008A
00008
00020
00090

00004
00034

00000

OOOOC

101+MSGO005
108+
109+
110+
111+
il2+
113+
114+
U5+
116+
117+
118 •••

OS
LA
STH
SR
IC
Sll
LA
ST
l
L
BAlR

OF
0,66 LOAD MSG
O,Z(11 MOVE M5G ,
l5.!5
15,1 (1)

15.1
O,MSG
O,8ll,151
15,32((5 2) I
15,116+28(15)
lIt.l5

, INTO REGISTER 0
TO PARAMET ER LIST

ZERO REG 15 FOR IC * OF ROUTE CODES IN PARAMETER lIST
LENGTH OF ROUT E CODE !M PARAM LIST
VARIABLE AODR
STORE INTO ~ESSAGE LIST

ADDRESS OF (VT
MESSAGE SUPPORT ROUTINE

CALL SUPPORT ROUTINE

119 ••• THE EXIT MACRO wIll RESTORE ALL REGISTERS AS THEY WERE WHEN •••
120 *** DPPSAMPl wAS ENTERED AND WILL RETURN BACK TO THE SYSTEM

01-HESSA
Ot-ME SSA
01-MESSA
01-MESSA
Ol-ME SSA
01-MESSA
01-MESSA
Ol-ME S5A
02-DPPSU
02-DPPSU
02-DPPSU
00020000
00021000
00022000
00023000
00023100
Ol-EX IT
Ol-EXIT
Ol-EXI T
01-EXIT

121 •••
122
123+
124+
125+
126+
121+.
128+
lZ'H
130+
131~

132+
133 MSG

EXIT
OS
LR
L
l

FREEMAJN
LA
SVC
lll4
114VJ
OR
DC

END

OH
1,13 •
13.4 (131 •
O,TKG0001G
R , LV = (0 I , A= (1 t
1,0(1.0J
10
14,12,12 U3.
12(131,X'FF'
14

SUBPOOL ADDRESS
GET CAlLER'S SAVE AREA

LOAD SP AND LV PARAMETERS

CLEAR THE HIGH ORDER BYTE XM4571
ISSUE FREEMAIN SVC P2504

RESTORE THE REGISTERS
SET RETURN INDICATION
RETURN

02-FREEi4
02-FREEM
02-RETUR
02-RETUR

Cl63'TASK - OPPSAMP1 WAS ENTERED
PI'

AT ENTRY POINT -
02-RETUR

opp SAMX00024000
00025000
00026000

eROS S REF Eft ENe E PAGE 5

SYII480l LEN VALUE DEFN REFERENCES ASM H V 04 09.15 1l/01t115

$1 00001 00000001 0050 0091
52 00001 00000002 0051 0097 011S
DPPSAMPI 00001 00000000 OO~6 0088
MSG 00063 00008A 0133 0113
MSGOO05 00004 00004C 0107 0100
TKGOOOIG 00001 000034 0094 0016 0126
TKGOOOIM 00004 00003!+ 0()Q3 0096
WORK 00001 00000000 0086 0089

>
I

N

DIAGNOSTIC CROSS REFERENCE AND ASSEMBLER SUMMARY PAGE b

ASH H V O~ 09.15 11/04115

NO STATEMENTS FLAGGED IN THIS ASSEMBLY

OVERRIDING PARAMETERS- NOOECK,NOLOAD.XREF(SHORT)
OPTIONS FOR THY S ASSEMBLY

NODECK, NOOBJECT, LIST, XREFISHORT), NORENT, NOTEST, NOBATCH. ALIGN, ESD, RLD. LlNECOUNTI5S), FLAGIO), SVSPARM()
~O OVERRIDING 00 NAMES

40 CARDS FROM SVSIN
163 LINES OUTPUT

1508 CARDS FROM SYSll B
o CARDS OUTPUT

Much of the source code for the Special Real Time Operating System is
written in OS/VS1 assembler language using structured programming'
techniques. The structured programming vehicles for the Special Real
Time operating system are a set of macro instructions know as HLAL.
HLAL is not a part of the Special Real Time Operating System PRPQ, but
is distributed with it as a necessary aid in assembling most of the
modules of the Special Real Time Operating System.

Most assembler language programs written in structured code are easier
to read if the nesting level of the various statements is printed along
with the listing Also, the various statements should be indented to
show the nesting level in a graphic manner. Nesting level refers to
a statement being in a basis IF/THEN/ELSE structure, or structures
within that structure.

Two listing aid programs are provided with the Special Real Time
Operating System PRPQ to facilitate the showing of the nesting level
of the Special Real Time Operating system source modules. One of these
programs, PPLPTPCH, post-processes the IEBPTPCH listing of a module;
the other, PPLUPDTE, post-proc~sses the IEBUPDTE listing of a module.
Each program shifts the print line of its input to produce a structured
listing. It does not alter (shift) the columns in which the source
is actually residen t in t he source partitioned da ta set. It will
automatically shift each member whose first card image does not contain
the operation code of MACRO.

Example 1 depicts the JCL which could be used to run both the PPLPTPCH
and PPLUPDTE utility programs. Example 2 shows sample output from both
programsu Example 3 shows the output from IEBUPDTE and IEBPTPCH as it
would appear if the post-processor were not used. IEBUPDTE and IEBPTPCH
are described in the SFL: Q~L!~ Utiliti~, GC35-0005.

PPLUPDTE and PPLPTPCH are contained in data set A5199AHE.OBJECT.

APPENDIX B B-1

IIJOB 1
IIA EXEC
IISYSPRINT
IISYSUT1
IISYSUT2
II
IISYSIN

PRI~T

MEMBER
RECORD

lIB EXEC
IISYSUTl
IISYSUT2
IISTEPLIB
IIC EXEC
IISYSPRINT
II
IISYSUT1
IISYSUT2
IISYSIN

00
DO
DO

DO

DO
00
00

DO

00
00
DO

I CHANGE

GORP OS
110 EXEC
IISYSUT1 00
IISYSUT2 DO
IISTEPLIB 00

MEMBER NAME MEMl

.JOB
PGM=lEBPTPCH
DUMMY
DSN=SOURCEDS. DlSP-SHR
UNIT=SYSDA. SPACE=(CYL.Cl»). DISP-(NEw,PASS),
DCB=(RECFM=FBA. LRECL=121. BLKSIZE-3630)
* TYPORG=PO, MAXNAM=lO, MAXFLOS-10
NAMEaMEMl
FIELD-(SO)
PGM=PPLPTPCH
DSN=*.A.SYSUT2.DISP-(OLD,DELETE)
SYSOUT=A
DSN=A5799AHE.OBJECT.DISP·SHR
PGM-1EBUPDTE
UNIT=SYSDA,SPACE-(CYL,Cl,l,»,DISP-CNEW,PASS).
DCB=CRECFM-FBA.LRECL-121, BLKSIZE=3630)
DSN-SOURCEDS. DISP=SHR
DSN-SOURCEDS, DISP=OLD
* LIST=ALL.NAME-MEMl
ST S6.GORP SAVE REG
F
PGM-PPLUPDTE
DSN-*.C.SYSPRINT, DISP-COLD.PASS)
SYSOUT-A
DSN-A5799AHE.OBJECT. DISP=SHR

EXAMPLE 1

* SAMPLE MODULE TO ILLUSTRATE INDENTION
IF C.ONE.EQ.TWO.THEN

01 * INDENTED COMMENT CAUSED BY ABOVE
01 UNTIL CB.LOC.NE.3)OR
01 UNTIL CF.CS6).EQ.X),DO
02 STH 7.LOC
02 L ETC *****
01 ENDDO
01 * NOTE INDENTION MOVES BACK

ENDIF
END

EXAMPLE 2

01000000
11000000

PAGE 0001

01000000
02000000
03000000
04000000
05000000
06000000
07000000
08000000
09000000
10000000
12000000

02

• w

MEMBER NAME MEM1
* SAMPLE MODULE TO ILLUSTRATE INDENTION

IF C,ONE.EQJTWO.THEN
* INDENTED COMMENT CAUSED BY ABOVE

UNTIL IB.LOC.NE,3).OR

~NDDO

UNTIL (F.(S61.Ea.XI.DO
STH 7.LOC
L ETC *****

* NOTE INDENTION MOVES BACK
ENDIF

END

SYSIN NEw MASTER
.1 CHANGE LIST=ALL,NAME=MEM1

IEB8261 MEMBER NAME FOUND IN OM DIRECTORY AS
* SAMPLE MODULE TO ILLUSTRATE INDENTION

01
01
01
02
02
01
01

ST $6.~ORP SAVE REG
IF C.ONE.EQ,TWO,THEN

.. INDENTED COMMENT CAUSED BY ABOVE
UNTIL (B.LOC,NE,),OR
UNTIL (F.($6l.EQ,X),DO

STH 7.LOC
L ETC *****

ENDDO
.. NOTE INDENTION MOVES BACK

ENOIF
GORP
END

OS F

AN ALIAS-

PAGE 0001

01000000
02000000
03000000
04000000
05000000
06000000
07000000
08000000
09000000
10000000
12000000

IEBUPDTE ~OG PAGE 0001

01000000
01100000
02000000
03000000
04000000
05000000
06000000
07000000
08000000
09000000
10000000
11000000
12000000

{EBB161
IEBa18I
IEB819I

MEMBER NAME (MEM1) FOUND IN NM DIRECTORY. TTR IS NOW ALTERED
HIGHEST CONDITION CODE WAS 00000000
END OF JOB IEBUPDTE.

EXAMPLE 3

SYSIN NEw MASTER
.1 CHANGE lIST=ALL.NAME=MEM1

IEB826I MEMBER NA~E FOUND IN OM DIRECTORY AS
CHANGED TO TRUE NAME IN NM DIRECTORY.

* SAMPLE ~ODULE TO ILLUSTRATE INDENTION
ST $6,GORP SAVE
IF C.ONE,EQ.TwO.THEN

* INDENTED COM~ENT CAUSED BY ABOVE
UNTIL (B,LOC,NE,3I,OR

ENDDO

STH
L

UNTIL (F,($6I,EQ,XhDO
7,LOC
ETC *****

* NOTE INDENTION MOVES BACK

GORP OS
END

ENDIF
F

AN ALIAS-

REG

IEBUPDTE LOG PAGE 0001

01000000
01100000
02000000
03000000
04000000
05000000
06000000
07000000
08000000
09000000
10000000
11000000
12000000

IEB6161 MEMBER NAME (MEM1 FOUND IN NM DIRECTORY. TTR IS NOW ALTERED.
lE88181 HIGHEST CONDITION CODE WAS 00000000
IEB6191 END OF JOB IEBUPDTE.

DOMICEXT

DmURBT
DOMIRCr!M
DOMIRCPY
o Of'! IR FLY
DOf'!IRFL2
DOrHRlNT
DOPlIRNlP
DOMIRPRB
DOMIRWT

DOMISVC1
DOMISVC2
DOPiISVC4
DOMX11ST
DOMXSTG1
DPPCALCF
DPPCPTIPi
DPPCTIl!E
DPPCTIPtE2
DPPCTSVC
DPPCUPC?
DPPDARAY
DPPDBLOK
DPPDBSIf
DPPDFREQ
DPPDGETL
DPPDITE!'l
DPPDPUTL
DPPDRIFE
DPPDRIFT
DPPDSUB2
DPPDU~PL

DPPDOPDL
DPPDWRST
DPPFAONC

DPPFIXFR
DPPIDBAS
DBPIIFP
o PPILOG N
DPPINIT
DPPINIT1
DPPILOGN
DPPIPFIX
DPPIPFRE
DPPISTAE
DPP IT I5I
DPPMIHIT
DPPM~SG

DPPMMSGV
DPPf!t!'lSG1
DPPPAR~

SUBSTITUTE EITERNAL PIRST LEVEL INTERRUPT
Hl MOLER
PAILOVER/RESTART BOOTSTRAP lND PROBE
CONTINUOUS MONITOR
CO PY A F AlLOVER/REST ART DA TA SET
L010 1 l/R SVC
L01D 2 PIR SVC
F/R-EXTERNAL INTERRUPT INIT.
RE-NIP
PROBE
PAILOVER/RESTART WRITE

THE FOLLOWING 3 MODULES ARE NAMED AT
SYSGEN TIftE ACCORDING TO NUMBERS SUPPLIED

TYPE 1 SVC PREFII HANDLER
TYPE 2 SYC PREFIX HANDLER
TYPE 4 SVC PREFIX HANDLER
PREPARE IEHLIST INPUT
STAGE 1 OF SYSGEN UTILITY
CALCULATE TIME CORRECTION FACTOR
PTIME 110NITOR ROUTINE
T1 ME U PO AT E ROUTIN E
ALTERNATE TIME UPDATE ROUTINE
PTIME TYPE 2 SiC
UPDATE TIKE CORRECTION FACTOR
GET/PUTARRAY PROCESSOR
GET/PUT BLOCK SUBROUTI liE
DATA BASE SLAVE PARTITION INTERfACE
CYCLIC LOGGI NG ROUTI NE
GETLOG ROUTINE
GET/PUTITEM PROCESSOR
POTLOG ROUTINE
DUMMY INIT. TI~E SETTER
TIME DRIFT CORRECTION
SLAVE PARTITION INTERFACE ROUTINE
DU MPLOG RO UTIN E
LOGGING REPRESH ROUTINE
DATA BASE OPEN/CLOSE FOR RESTART
FO RTR AN SU BROUT1 NE POR
COPY/ADDR/BIT SET
PAGE l"IIjPREE HANDLER
DATA BASE INITIALIZATION
5CHEDOLE IRB FOR DPPOWRST
LOGGING INITIALIZATION
5Y STEM INI TI ALIZATION
INITIALIZATION SOBSYSTE~ PATCHOR
LOGGING INITIALIZATION
PAGE FIX ROUTINE
PAGE FREE/UtiFI I ROUTINE
JOB STEP TASK STAE ROUTINE
TI~E INITIALIZATION
~SG HANDLER INITIALIZATION
SYSTEPi ~ESSAGE FORMATTER
SYSTE~ ~ESSAGE ROUTING CODE CHANGE
SYSTE~ !ESSAGE OUTPUT ROUTINE
FL/I AND FORTR A5 PAR A5 ETER INTERFACE ROUTI HE

APPENDIX C C-1

DPPPIF
DPPLIO
DPPSASOC
OPPSBF1
DPPSBFST
OPPSCHCK
DPPSCHPR
OPPSCtl
DPPSCLOP
OPPSCMPR
OPPSCRBK
DPPSCT2T
DPPSINIT
OPPSLOCK
OPPSMSGI
DPPSr!SGO
OPPSNOTE
DPPSNTPT
o PPSOP1
DPPSOPCl
DPPSPNTF
DPPSRCIO
OPPSRDiT
OPPSRSTR
DPPSSRAR
DPPSSRCH
OPPSSTl
OPPSSWCH
DPPSTBOS
DPPSUNlK
DPPSUNSH
OPPSWRST
OPPSXTCB
DPPTCBGT
DPPTCSVC
DPPTDLl!P
DPPTDSVC
OPPTETXR
DPPTGWFi
DPPTIMPS
OPPTPl!ON
DPPTPSVC
DPPTPWQE
DPPTQIP!P
OPPTRSVC
DPPTS"ON
DPPTSTAE
OPPTWAIT
OPPTWQDL
DPPTWSVC
DPPUr!SG
DPPIDBAS
DPPXDBAT
DPPXD8CP
OPPXDBDA

DPPXDBIN
DPPXDBLG

C-2

PL/I AND FORTRAN INTERFACE ROUTINE
PL/I OPTIMIZIER INVOKATION ROUTINE
ODS ASYNCHRONIS OPEN OR CLOSE
BLOt FIND TYPE 0 FOR A DDS
BLOL FIND TYPE 0 STOW FOR A DDS
DDS C H EC K "00 U lE
SET A PRIM ARY DECB AND A BACKUP DECB
CLOSE A DD S
DDS CLEAN UP BOUTINE
CO~PARE FOR DDS
eRE ATE ADDS B A C KU P
COpy TRACK TO TRACK
INITIALIZE THE DDS 5YSTE"
LOCK A DDS
DDS INPOT "ESSAG! PROCESSOR
DDS l!ESSSAGE OUTPUT PROCESSOR
PERFOR! NOTE ON A DDS
BRANCH CODE FOR NOTE POINT
OPEN A DDS DCB
OPEN CLOSE HALF OF A DDS
PERFORM POINT FIND TYPE C ON A DDS
RECREATE I 0 FOR A DDS HALF
READ WRITE "ODULE FOR DDS
DDS FAIlOVER/RESTART
SHARE A DDS
SEARCH A FIlED lENGTH TABLE FOR AN ENTRY WHO
STOll POR A DDS
SiITCH PRI!ARY TO BACKUP FOR A DDS
TAKE A BACKUP OUT OF SERVICE
UN LOCK 1 0 OS
UNSHAR! A DDS
DDS WRITE STATUS
LOCATE ALLOCATE A DDSXTCBC POR AN INPUT TASK
CBGET TYPE 1 SVC ROOTINE
CHAIN TYPE 1 SiC ROUTINE
LOAD SODULE PURGE
DPATCH SVC RTN
END OF TAS~ EXIT
GETWA/F6eeW4 INTBNPACE
STAE I NI TI ALIZ ATIO N
PATCH MONITOR
PATCH SVC RTN
PO RGEWQ RO UTIN E
QS Il!P COft~AND PROCESSOR
REPATCH SVC RTN
SY STE! flON ITOR
5TAE OO~P/NODO~P ROUTINE
PURGEWQ WAIT BOUTINE
WQE DELETE RTN
GETWA-FREEWA TYPE 1 SVC ROUTINE
SISTEr! r!ESSAGE OFFLINE PROCESSOR
DATA BASE FINAL PHASE PROCESSOR, FIRST LOAD
DATA BASE FINAL PHASE PROCESSOR, SECOND LOAD
DATA BASE BDAft DATA SET CO~PRESS
DATA BASE FINAL PHASE PROCESSOR SUPPORT ROUTINE
TO WRITE DATA TO DATA BASE 80Aft DATA SETS
OFFLINE DATA BASE TABLE CONSTRUCT
DATA BASE FINAL PHASE PROCESSOR
SUPPORT ROUTINE TO CALCULATE
LOGGING ARRAY BLOCK COUNT AND
BLOCK SIZE

Descri pt ion and Opera t ion "a nual

DPPXDBPT
DPPXDEfL
DDPPXDPB
DPPXDRC
DPPIDRCX
DPPXI"PP
DPPXI"PW
DPPXKILL
DPPXLOCK
DPPXNRTI
DPPXPCON
DPPXRDR
DPPXRINT
DPPXRPRT
DPPXS2SC

DPPXSVCP
DPPXOTIL
IEAXYZS

DATA BASE PRINT UTILITY
DEFINE LOCK ROUTINE
DATA RECORDING lMD PLAYBACK
DATA RECORDING COLLECTION ROUTINE
DU~ftY DATJ RECORDIBG COLLECTION
INPOT ftESSAGE PROCESSOR
INPUT rtESS AGE PROCESSOR IITOR ROUTINE
ORDERLY TERftlNATION ROUTINE
LOCK ROOTINE
D1TA PLAYBACK OFFLINE ENTRY ROOTINE
PLAYBlCK R!X)OEST INTERPRETER
DATA PLAYBACK PRINT ROOTINE
DATA RECORDING INITIALIZATION
REPORT DATA OOTPOT PROCESSOR
LOCATP. INSERT CIRDS IN OS/VS1 STAGE II
SYSGEN DECK
SETPSW TIP E 1 SiC
OFFLINE UTILITY CONTROL PROGRlrt
ALTERNATE NAftE FOR DOrtICEXT

APPENDIX C C-3

Below are programs/macros that comprise the Special Real Time Operating
system program package. Macros a re noted with asterisks.

~~~i£ ~QY££~ f.!:29 il\!2L!1~!:Q§ 

ABRAY * DDSDCB * DPPTNOTE * ARRAYDEF DDSFIND * DPPTPS VC 
BEGIN * DDSOPEN * DPPTRSVC 
BGNSEG * DDSSTOH * DPPTSETB * BIT * DECDEC * DPPTWQDL 
BLOCK * DECHEX * DPPXBLKS * BLOCKDEF DEFLOCK * DPPXBRT * BYTE * DEFMSG * DP TDEBUG 
CASE * DO * DP TDSVC1 
CBFREE * DOMBOOTH * DPTECBCC 
CBGET * DOMICEXT * DPTPSVC1 
CHAIN * DOMIRBT * DPTPSVC2 
CINFD * DOMIRCME * DPTPSVC3 
CLOSESEG * DOMIRCMN * DPTPSVC4 
CONFIGH * DOMIRPRB * DPTPSVC5 
CONF1 * DOMIRSIO DRECBLKS * DA.TASET * DOMISVC1 * DUMPLOG * 
DBALTPRI * DOfUSVC2 * DUPDISK * DBALTSEC * DOMISVC4 * ELSE * DBARRAYD * DOMSVCN * EMDDO * DBASE * DPACHDEF ENDIF * DBBLOCKD * DPATCH * ENDLOOP * DBDACNTL * DPINIT1 ENDSEG * DBDADD * DPINIT2 ENDSRCH * DBDEF * DPINIT3 ENTER * DBDEFD * DPINIT4 RQUATE * DEDIRB * DPINIT5 ERRENTER * 
DEDIRR * DPLOGDEF ERRETURN * 
DBDMPHDR * DPPERMAC * ERREXIT * 
DBEND * DPPFIX * ERRMSG * 
DBGBLPAK DPPFIX2 * EXIT * 
BGNWHILE * DPPFREE * EXITIF * 
DBITEMD * DPPPINIT * FAILRST * 
DBLOGCB * DPPLEVEL FORSUB * 
DBLOGHDR * DPPSUB * FREEWA * 
DBPBT * DPPSVC * GENCOMCK 
DBWAREA * DPPSVC9 * GE NEMS * DDSBLDL * DPPTDSVC GENINIT * 
DDSCLOSE * DPPTETXM * GEN30 * 
GEN370 * ORSELSE * GEN370CK * PARM * GEN3702 * PARMDEl" * GEN73A * PATCH * GEN73LE * PATCHDEF 
GF.N73NG PLISUB * GEN73Z * PNCHASM * GETARRAY * PNCHDD * GET BLOCK * PNCHLE * GETITEM * PRN * GET LOG * PTIME * GETWA * PTIMEDEF 
GLOBAL PTIMEL * GLOBALI PTI'M ROEI' 

APPENDIX 0 0-1 



GRETURN • PTLOGDEF 
G'I'LOGDEF PURGEWQ * HEADC • PUTARRAY * HEXDEC • PUTBLOCK * IF * PUTITEft * IMP * PUTLOG * IMPBLKS * RECORD * ITEM * RECRDDEF 
ITEMDEF REPATCH * LENGTH * REPCHDEF 
LOCK * SETPSW * LOCKCBLK * STRTSRCH * 
LOG * SUPL * LOG2 * SYSLEVEL 
MAINBLOK * TIllED * MATH * TMBIT * liES AGDEF UNTIL * MESSAGE * is * MSGBLKS * WAITDEP 
MSGDEF * WHILE * 
IISGEND * WTFAILDS * MSGRC * XIBIT * NIBIT * OIBIT * OPENSEG * 

D-2 Description and Operation Ranual 



Ba~;i.c Q!2j~l PrQgll.!§ 

DOflIRCPY DPP3AHPl DPPSONLK 
DO .. lRFL' DPPSASOC DPPSUNSH 
DOllIRFL2 DPPSBFST DPPSWRST 
DOPHRINT DPPSBPl DPPSXTCB 
DOfHRNIP DPPSCHCK DPPTCBGT 
DOMIRWT OPPSCHK2 DPPTCSVC 
DOl1XLIST DPPSCHJCJ DPPTDLflP 
DOMXSTG 1 DPPSCHK4 DPPTETXR 
DPPCALCF OPPSCHPR DPPTGWFW 
DPPCPTlM DP PSCLUP DPPTIMPS 
DPPCPTIME DPPSCL 1 DPPTPflON 
DPPCTlfl2 DPPSCflPR DPPTPWQE 
DPPCTSYC DPPSCP2B DPPTQlftP 
DPPCUPCF DPPSCRBK DPPTRGWI 
DPPDARIY DPPSCT2T DPPTSftOH 
DPPDBLOK DPPSDDSX DPPTST IE 
DPPDBSIF DPPSDSCB DPPTWIIT 
DPPDFREQ DPPSINIT DPPTWSVC 
DPPDGETL DPPSINI2 DPPUftSG 
DPPDITEM DPPSlNI3 DPPXDB1S 
DPPDPUTL DPPS IN I" DPPXDBAT 
DPPDRIFE DPPSlNI5 DPPXDBCP 
DPPDRIFT DPPSINI6 DPPIDBDl 
DPPDSUB2 DPPSLOCK DPPIDBLG 
DPPDOftPL DPPSftSGI DPPIDBLG 
DPPDOPDL DPPSHSGO DPPIDBPT 
DPPDWRST DPPSHOTE DPPXDEFL 
DPPF10BC DPPSHTPT DPPIDPB 
DPPPIXFR DPPSOPCL DPPIDRC 
DPPIDB1S DPPSOP1 DPPIDRCI 
DPPIIRB DPPSOP2 DPPIlflPP 
DPPILOGlf DPPSPNTF DPPllftPW 
DPPINITO DPPSRCIO DPPIKILL 
DPPIIIT1 DPPSRDWT DPPILOCK 
DPPIPFIX DPPSRDW2 DPPItiRTI 
DPPIPFRE DPPSRLSE DPPIPCOti 
DPPISTAE DPPSRSRY DPPXRDR 
DPPITIflI DPPSRSTR DPPIRIKT 
DPPfHNIT OPPSSH1R DPPIRPBT 
DPPftflSG DP PSSRCH DPPISYCP 
DPPflftSGV DP PSST 1 OPPIS2SC 
DPPflftSGl OPPSSWCH DPPIUTIL 
DPPPARI1 OP PST 80S DPPZSlftP 
DPPPIF OPPSTKCK 
DPPPLIO 

APPElfDlI D 0-3 



~ IUUg§ lUguu 

DDSl!SG 
ETIR"SG 
P lILRBT 
rlILRPBB 
P1ILRSTP! 
I NIT" Des 
SRTOSl!SG 

0-4 Description and Operation ~anual 



Q.E.!.i~Hl~l SO.Y1:~ f£Q~.U:Y§L"ac!Q§ 

BIGr!OVE * DPINIT08 DPPPARI1 
CVDEBC * DP1NIT09 DPPP1F 
DBARBLDL * DPPINITOA DPPPLIO 
DBIITEI1R * DPINIT11 DPPSAr!P1 
DBREFRSH * DPINIT12 DPPS ASOC 
DBSORT * DP1NIT13 DPPSBFST 
DDSDSECT DPINIT 14 DPPSBF1 
DDSNTPT DPITIr!I1 DPPSCHCK 
DDSSULU * DPPCALCP OPPSCHK2 
DDSTSSC DPPCPTIft DPPSCHK 
DOMIRCPY DPPCT1ME DPPSCHK4 
DOr! IR FLV DPPCT1K2 OPPSCHPR 
DOr! IRFt 2 DPPCTSVC OPPSCt UP 
DOI1IR1NT DPPCUPCF OPPSCL1 
DOI11RN1P DPPDAR AT * DP PSCI1 PR 
DCI1IRWT DPPDASUB DPPSCP2B 
DOI1XL1ST DPPDBLOK DPPSCRBK 
DOl1XSTG1 DPPDBSIF DPPSCT2T 
DPCAtCP1 DPPDFREQ DPPSDDSX 
OpeT1l1E1 DPPDGETL DPPSDSCB 
DPCT Il1E2 DPPD1TEft DPPS1N1T 
DPCTIH21 DPPDPUTL DPPS1N12 
DPCTIl122 DPPDRIPE DPPSIN13 
DPCTSVC1 DPPDRIFT * DPPSINI4 
DPCTSVC2 DPPDSTRT DPPS1NI5 
DPCTSVC3 DPPDSU B2 DPPSINI6 
DPCTSVC4 DPPDUttPL DPPSLOCK 
DPCUPCF1 DPPDUftPL DPPSftSGI 
DPCUPCF2 DPPDWRST DPPSftSGO 
DPCUPCF3 DPPPAONC DPPSNOTE 
OPCUPCF4 OPPPIIP! DPPSNTPT 
DPIDBAS1 DPPIDBAS DPPSOPCL 
DPIDBAS2 DPPIIRB DPPSOP 1 
DPIDBAS3 DPPILOGN DPPSOP2 
DPIOBAS5 DPPINITO DPPSPNTF 
DPIDBAS6 DPP1NITl DPPSRC10 
DPINITOl DPPIPFIX DPPSRDWT 
DPINIT02 DPP1PPRE DPPSRDW2 
DPINIT03 DPPISTAE DPPSRLSE 
DPIN1T04 DPPIT1!.'!I DPPSRS RV 
DPINIT05 DPPrl1M1T DPPSRSTR 
DPINIT06 OP Prlr!SG DPPSSHAR 
DPIN1T01 DPPftKSGV DPPSSRCH 
DPPSS WCH DPPI1MSGl DPPSST 1 
DPPSTBOS DPPXSVCP PSECTEMD * DPPSTKCK OPPXS2SC PWQE * DPPSUNLK DPPXUTIl. OHBK • 
DPPSUNSH DPPZSAI1P OPBK • DPPSWFST DPTCSVCl RCALL * DPPSXTCB DPTDLftPl RCSHEAD • 
DPPTCBGT DP TDLrlP2 RLI1HEAD • 
DPPTCSVC DPTDLl'!P3 SETO * DPPTDLMP DPTDLftP4 SE TPI1 • 
DPPTETXR DPTDLftPS ST AEBLK * DPPTGWFW DPTPftOMl STAEXBK • 
DPPTIMPS DPTPftON2 
DPPTPl10N DPTPftOM3 
D?PTPiQE DPTPKOM4 
DPPTQIl1P DPTPKON5 
DPPTRGWA DPTSltONl 
DPPTSMON DPTWSVC1 
D?PTSTAE DPTWSVC2 
DPPTW AIT DP TWSVC3 

APPEN DIX 0 0-5 



OPPTiSVC DPXDBINl 
DPPUl!SG DPIDBIN2 
DPPUftSG1 DPXDBIN3 
OPPUI!SG2 DPXDBIN4 
DPPXDB1S DPXDBIN5 
DPPXDBAT DPIDBIN6 
OPPXDBCP FINDPARft • DPPIDBDl GftSG • DPPXDBIN BEXEBC • 
DPPIDBLG INITCB • 
DPPXDBPT IPROB • 
DPPIDEPL LTYP • DPPXDPB !!ARK!!lSl( • DPPXDRC ftASKD1TA • DPPXDRCX ftXSTG101 
DPPII~PP f!ISTG102 
OPPXIftPW ftXSTG103 
DPPIKILL l!I5'l'Gl04 
DPPXLOCK l!X STG 1 05 
DPPIRRTI PPLPTPCB 
DPPXPCOR PPLSClll 
DPP~RDR PPLSClll2 
DPPXRIRT PPL[JPDT! 
DPP RPRT PSECT • 

D-6 Deseri ption a.nd operation ftanl1a1 



This manual introduces many new terms and acronyms not commonly used 
in data processing. This glossary defines those terms unique to or 
having a special meaning in this program and this manual. Accordingly, 
terms which are included in the IBM Data Processing Glossary (GC20-1699) 
are not included here. 

Array 

Block 

Blocked 

Backup 

continuous 

DA Resident 

Data Base 

An arrangement of data items in one or more dimensions. 

One or more data items. One or more blocks of equal 
dimensions make up an array. 

An array consisting of one or several blocks. A blocked 
array may be either VS or DA resident and may be accessed 
through GETBLOCK and PUTBLOCK. 

The secondary copy of a duplicate data set pair. 

A program that resides and executes in the monitor online 
CPU and monitors specified storage locations to ensure 
that the online system is functioning. 

A term used to group arrays by their residence during 
online operation. DA resident specifies that the array 
resides on direct access storage during online operation. 

The collection of data arrays and control information 
consisting of one partitioned data set, and one o~ more 
direct data sets. During real-time processing, part of 
data base will be loaded into virtual storage. 

Dependent Task A task created by the Special Real Time Operating system 
without a task name. A dependent task executes only 
once. 

Duplicate 
Data set 

Failover 

Independent 
Task 

Item 

Lock 

Log (Logging) 

A feature of the Special Real Time Operating system that 
allows for duplicate copies of critical data sets to be 
maintained by executing duplicate I/O accesses. 

The procedure by which the backup CPU is made to become 
the primary cpu. 

A task created by the Special Real Time Operating System 
with a task name. An independent task remains in 
existence after it has executed and is capable of 
executing program cyclicly_ 

One member of a group, one or more items make up an 
array. 

A method of controlling a resource so that only one 
program may use the resonrce at a time. 

The process of copying a VS resident array to a log 
dataset (DA resident). 

APPENDIX G G-1 



Log Array 

Log Header 

Master 

Normal Start 

Offline 

Online 

Playback 

Primary 

PROBE 

Record 

Refresh 

A DA L, 

of the VS Lc .... 

will contain the copy or copies 
.e array. 

The control informatio~ y~sociated with the VS resident 
loggab l~ array. 

The controlling partition in a two partition operation. 

The process by which the Special Real Time Operating 
System is initializing from the control statements in 
the input stream using the initial d~ta loggable arrays. 

That processing which is executed not under control of 
the Special Real Time Operating Syste.~ i.e., processing 
in another CPU or in a non-real time partition. 

That processing which is executed under control of the 
Special Real Time Operating System, i.e., as a subtask 
of the Special Real Time job step task itself. 

The process by which the data previously collected by 
the data record routine is retrieved and deformatted. 

The main CPU in a multiple CPU environment; i.e., the 
CPU which is currently controlling the functions for 
the real-time environment. Also the main copy of a 
duplicate data set group_ 

That program that runs in the backup computer and tests 
the continuous monitor in the online CPU. If the value 
on the direct control static data lines fails to change 
during twice of the update interval, the PROBE recommends 
a failure. 

The processing of collecting specified data and saving 
it in a formatted mode for later retrieval by the 
playback function. 

The process by which the Special Real Time Operating 
System is initialized using the most recent copies of 
loggable arrays. A refresh start may be from the input 
stream or from a failure data set. 

Resource Table An 8-byte area provided by the Special Real Time 
Operating System for each real-time task. 

Restart 

SLAVE 

Status Panel 

Time Drift 

G-2 

The procedure by which a real-time CPU is reinitialized 
to the point at which the failover restart data set was 
written. 

That partition in a two-partition real-time operating 
system which contains only some of the Special Real Time 
Operating System services. The services not contained 
in the SLAVE partition are provided by the MASTER 
part it ion. 

A user fabricated hardware panel used to indicate which 
CPU is primary and which is backup in a real-time 
environment and also to indicate when and how a failover 
is to occur. 

The variation of the System/310 Time of Day Clock from 
the absolute time. 

Description and Operation Manual 



Unblock 

Onblo~ked 

is Resident 

The freeing of a resource that had previously been 
reserved by the LOCK function. 

The freeiDq of a resource that had preyiously been 
reseryed by the LOCK fUDction. 

An array that resides in Yirtual storaqe. 

APPEl DII G G-3 



READER'S COMMENT fORM 

IBM System/370 SH20-1773-1 

Sp'lcial Real Time Operating System 

Programming RPO Z06751 

Description and Operation Manual 

Please comment on the usefulness and readability of this publication. suggest additions and 
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property oflBM. If you wish a reply, be sure to include your name and address. 

fold 

Fold 

COMMENTS 

• 111;Jllk Yl'll h.H Yl'l\r l·ullp\!ralion. No postage nl.'~essary if mailed in the U.S.A. 
rOLD ON TWO LINES. STAPLE AND MAIL. 

Fold 

Fold 



SH20-1773-1 

Your comments, please ... 

This manuai is part of l library that serves as a reference source for systems analysts. 
programmers, and operators of IBM systems. Your (omments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold 

Fold and tape 

--------· ----· ---· - ---· - - --­-------_.-
® 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 824 
1133 Westchester Avenue 
White Plains, New York 10604 

Please Do Not Staple 

Fold 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 



SH20-1773-1 

--..------- ---.-- - ---- - ---- - - --------___ 9_ 
<ID 


	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	G-01
	G-02
	G-03
	replyA
	replyB
	xBack

