Systems

SH20-1773-1

IBM System/370

Special Real Time
Operating System |
Programming RPQ Z06751
Description and Operation
Manual

Program Number 5799-AHE

The Special Real Time Operating System Programming
RPQ is a system which augments the services provided
by OS/VS1 to support realtime computer operatiorns.
The Special Real Time Operating System is designed

to meet the needs of Electric Utility Energy Manage-
ment Systems and oil refinery applications, but is not
restricted to these applications. The Special Real Time
Operating System runs as an OS/VS1 job step and
performs services which support independent task
management, time management, and data base
management. The installation of the Special Real Time
Operating System on an OS/VSI system requires no
modifications to the OS/VS1 System.

This manual contains all the information necessary to
understand, install, use, and operate the Special Real
Time Operating System PRPQ.

This Programming RPQ is available on a special
quotation only (see inside front cover).

Second Edition (November 1984)
This is a reprint of SH20-1773-0 incorporating changes released in Technical Newsletter:

N20-3619 (dated 31 Aug 1976)

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers’ comments has been provided at the back of this publication.

If the form has been removed, address comments to IBM Corporation, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604. IBM may use or distribute
whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

©Copyright International Business Machines Corporation 1976

CONTENTS

Section

PREFACE - - - - - -

CHAPTER 1. GENERAL INFORMATION
Introduction . . . o

General Description -
Customer Responsibilities
Programming Systems -
System Configuration .

Storage Requirements . - -
Timing Information . . 5
Timing Chart . - - - -
Initialization - - - -
Task Management . . . -
Time Management . . - -
Data Base . - - - -
Data Base Logging . - -
Supplementary Services - -
CHAPTER 2. APPLYCATION SERVICES
Introduction -
General Description - . -
Processing Description - .
Task Management . - - 5
Time Management . - - -
Realtime Message Handler . -
Report Data Output Pacility .
Input Message Processing . -
Data Base Management . - -

Data Recording and Playback .
High lLevel Language Interfaces
Duplicate Data Set Support -

DDS Failover/Restart Comnsiderations

Failover/Restart Feature . -

Additional Special Real Time OPeratlng

Two-Partition Operation .

Special Real Time Operating 5ystem Debug Gulde
Coding and Performance Considerations
Special Real Time Operating System Online Macros

BEGIN - - - - - .
CHAIN - . - - -
DDSBLDL . . - - -
DDSCLOSE -
DDSDCB
DDSFTIND
DDSOPEN
DDSSTOW
DEFLOCK
DPATCH . - -
DPPXBLKS - -
DUMPLOG . - -
EXIT - - -
FREFEWA . . -
GETARRAY - -
GETBLOCK
GETITENM .
GETLOG
GETWA
LOCK
MESSAGE
PATCH

& 8 o 8
s s 0
» 8 o ¢ s 0
s & & 0 & & @
o 8 & & 8 4 o
I T S I)

[I T)
S 0 o 0 a2 e

e s o s

S & & 5 8 5 8 8 8 8

s 6 & 8 & s

s & 8 8

s 8 8 8 & ¢ & 2 2

L Y) L 3 . [] LI] . L]

L] s 8 .] []

System Service

.] L] . L] .

s 6 4 & 5 % & s s s

L . . & 1] e ']

S

] L . [L] L ™ 0 . []

& 2 0 9 2 ¢ & o & 3

[] . o .] .

Contents

o
13
a
o

<

R b b b e b e b e
yl H-

{2 T T A |

NN N
i

wr |]
HONNMFRFEHE OWWOOWOOOIUEWWN P

I

iii

Section

PTIME o
PURGEWQ .
PUTARRAY
PUTBLOCK
PUTITEN .
PUTLOG .
RECORD .
REPATCH .

CHAPTER 3.
Introduction

INSTALLATION

3
-

GUIDE

0S/VS1 SYSGEN Con51deratlons
Pre-Special Real Time Operating
The Special Real Time Operating System Data Set Allocation

Failover/Restart Storage Requirements
The Special Real Time Operating System SYSGEN

SYSGEN Restart Procedures

The Special Real Time Operating System SYSGEN Hacros
Set Macros

System SYSGEN

e & ¢ & 9 3 ¢

Configuration Customer Definition Data

Sof tware Customer Definition

CONFIGH .
Vs . -
FAILRST .
DUPDISK .
DBASE -
L0G . .
PLISUB .
FORSUB .
MSGRC -
IMP . -
DATASET .
GENEMS .

Systenm Inltlallzatlon
Offline Utility Program

offline Macro
BLOCK -
ITEM N
DEFMSG -

S

-

Data Set Macros

-

T ¢ a4 e 3

Data Base BDAM Data Set Compress -

CHAPTER 4.
Introduction

Normal Operating Procedure

CANCEL Command

RZPORT Comman
DREC Command

DDSCNTRL Command

DLMP Conmand
MSGRC Command
STAE Command

Coutrol Card Informatlon

Continuation

a

Two-Partition Operatlon
Failover/Restart Operation
Single CPU Environment
Single CPU Environment With Contxnuous

Two-CPU Environment #ith Continuous Monitor and Probe

OPERATOR'S REFERENCE

-
-
-
®
-
-
@
°
*

Normal Termination Procedures .
The Special Real Time Operating Systesn Abend Codes
The Special Real Time Operating System Online Messages

Offline Utility Messages

iv

Description and Operation Manual

»

4 & & 0 6 ¢ & & 5 O

¢ ¢ o 0 3 o 3 o

-

s ¢ 2 e & ¢ & & ® 2 8 e O° @

8 L e @& o

Initialization

Monitor

-

e 8 » ¢ s @

¢ % o & 5 & & & 8 9 0 0

¢ & & 8 o & B o 5 o

& & 8 6 » 2 8 8. 6,0 s 2 O

s & &8 & & ¢ @ 2 8 & 0 8

IDJIDSJ‘:-DJ:I:E
i
W~ O U & W

e

Section

APPENDIX A. THE SPECIAL REAL TIME OPERATIRG SYSTEM SAMPLE

PROGRAN . . . - - . - - - -

APPENDIX B. LISTING AIDS . . - N . N .

APPENDIX C. MODULE NAME -~ FUNCTION CROSS~REFERENCE

APPENDIX D. SPECIAL REAL TIME OPERATING SYSTEMNM
PROGRAMS /M ACROS - - . - . -

APPENDIX G. GLOSSARY . - - - -

Contents

v

2-6.1
2=6.2

2-6. 3
2"'60“
2-7

2-8

2-9
2-10
2-11

2-12
2-13

2-14
2-15
2-16
2=17
2-18

vi

User Special Real Time Operating System
0S/VS Interface . . - . - - . -

Storage Requirements. - .

The Special Real Time Operating Systenm
Overview of the Online System - - . .

Task Management Overview - - - - -

The Special Real Time Operating System
Task Structure and Priorities . - - -

Task Management Control Blocks . . - -
Control Blocks Built for Example 1 . . -
Control Blocks after Initialization . . .
Task/Queue Structure

Queue Processor/Queue Holder

Structure

Task/Queue Structure
Task/Queue Processing
PTIME Logic and Control Flow . . . -
Time Drift - Special Real Time Operating

System Time Relationship - - . . .
Real Time Message Handler Components . -
Report Data Output Facility Overview . .

Data Recording and Playback Processing
Overview o . . . - - - - .

Macros Supported by FORTRAN-PL/I . . -

High Level Language Interfaces for the Special
Real-Time Operating System Services . - .

PL/1I Example - - . - . o . -
GETARRAY Services . - . . - - -
PUTARRAY Services o . -
GETITEM Services o - -

PUTITEM Services - - -

Description and Operation Manual

[
1]
o

2-19
2-20

2-21

2-24
2-25
2-26
2-27

2-28

3-10

GETBLOCK Services - .‘ . - .
PUTBLOCK Services - - - - -
GETARRAY Services
PUTARRAY Services - - . . .
GETITEM Services . . - - -
PUTITEM Services . . - . -
GETBLOCK Services . . . - -
PUTBLOCK Services . . - . -
Restart Process . - - - . -
Probe Function Failure/Restart Feature
Remote System Reset Feature . . -

System with Automatic 2914 Switch -

Computer Status Panel Indicators and Switches

Computer Status Panel Connections (Functional)

Control Block Format Entry to PATCHed Progranm

Relationship of PATCH Operands to Type of Task

The Special Real Time Operating System SYSGEN

Data Sets - . - o - - -

The Special Real Time Operating System
SYSGEN - Stage I - . - - -

The Special Real Time Operating System
SYSGEN - Stage II - - - - -

XXXDSET Parameter Values - - e
The Special Real Time Operating System
Initialization . - . - . .
Control Statement Input Stream . -

of fline Utility Processing Overview .
Update Processing Overview . . -

Online Data Set Processing Overview .

Hexadecimal and Binary Variable Descriptions

List of

- - 2-134
. . 2-138
- . 2-138

. - 2=141

. < 2=165
- < 2=-177

- . 2-235

Figures vii

BREFACE

This publication provides information on the Special Real Time Operating
System (5799-AHE).

This manual is organized so that it can be used as four separate
manuals, each chapter addressing the needs of a different audience.

In each case, the intended audience is a group within a typical computer
department. The intended audience and the applicable chapters are:

e Management -- Chapter 1 - GENERAL INFORMATION

e Application Programmers -- Chapter 2 -~ APPLICATION SERVICES
e System Programmers —- Chapter 3 - INSTALLATION GUIDE

e Operators —-- Chapter 4 - OPERATORS® REFERENCE

The intended audience for the section entitled "GENERAL INFORMATION™
includes those people wishing to gain an overview of the Special Real
Time Operating System and to become familiar with the general functions
of the PRPQ. This chapter is prerequisite reading to the following
chapters.

The section entitled "APPLICATION SERVICES" is intended to be used by
programmers to gain knowledge of the realtime system concepts and
processing methods. It is technically oriented. Users of this section
should have a thorough knowledge of programming techniques as well as

a general knowledge of Operating System/Virtual Storage (0S/VS1). The
parts of this section dealing with high-level lanquage interface require
a prior knowledge of the language specifications for the given
high-level language.

The intended audience for the section entitled "INSTALLATION GUIDE"
are the people involved with the preparation for and the installation
of the Special Real Time Operating System PRPQ. Users of this section
should have prerequisite knowledge of 0S/VS1 system programming, job
control (JCL), SYSGEN, and generally a thorough knowledge of 0S/VS1.

The final section entitled YOPERATORS' REFERENCE" is intended for the
system console operator. This section contains operations information
to enable the operator to start, terminate, and communicate with the
Special Real Time Operating System. The operator should be familiar
with 0S/VS1 operating techniques.

viii Description and Operation Manual

CHAPTER 1. GENERAL INFORMATION

INTRODUCTION

The Special Real Time Operating System PRPQ is a support program that
augments the services of 0S/VS1 to support realtime applications and
provides a stable operating environment. The services provided by
0S/VS1 are still available to a program or system of programs utilizing
the Special Real Time Operating System. Although in some cases, the
Special Real Time Operating System acts as an interface between 0S/VS1
and user programs, as shown in Pigure 1-1.

A "7 Special
Real Time
Operating
0S/VS ystem 5| User
Services Services N Programs

Figure 1-1. -User Special Real Time Operating System-0S/VS Interface
The installation of the Special Real Time Operating System on the user's
0S/VS1 system entails no modifications to the 0S/VS1 system; although
there are certain additions to that system. In particular, there are
supervisor call (SVC) routines that must be included into the 0S/VS1
libraries. The Special Real Time Operating System services augment
the 0S/VS1 services in the following areas:

e Lower overhead through independent task management

e Significantly enhanced time management routines

e Realtime message handler

e Data base management and data base logging

e Duplicate data set support for critical Special Real Time Operating
System and user data sets.

e Selective termination of units of work

e Selective data recording for post-run analysis

e Input message processing

¢ High-level language support for PL/I and FORTRAN

e Failover restart support.
In addition to these enhancements, the Special Real Time Operating
System is designed so that each user builds and tailors his own Special
Real Time Operating System for his own equipment configquration and for
his own operational requirements through a system build or system

generation (SYSGEN) process.

Creation and modification of the table structure and initial conditions
for the online system are handled by offline utility programs. As a

GENERAL INFORMATION 1-1

result, changes in this area do not require additional system
generations.

GENERAL DESCRIPTION

The Special Real Time Operating System is designed to enhance areas
which are critical to a realtime operation. The following paragraphs
discuss the enhancements which are provided by the Special Real Time
Operating Systen.

Independent task management allows a task to be created and remain in
existence when its processing is finished. Units of work are queued
to the task, and the task does its processing with the overhead of
resource allocation, initiation, and termination only once and not for
any subsequent processing of units of work by the task. The Special
Real Time Operating System task management routines bring a task into
virtual storage, queue work against the task, and delete the task or
specified units of work upon request from the user. This results in
a significant decrease in task management processing overhead. Also,
the Special Real Time Operating System provides the user with greater
flexibility and control over the work to be processed by a given task.

The Special Real Time Operating System time management services fall
into two categories. First, the Special Real Time Operating System
maintains system time and date independently of 0S/VS1 time and date.
The Special Real Time Operating System time can be synchronized with

an external time source or can be adjusted by manual inputs. Second,
the Special Real Time Operating System time management services provide
the user with the capability to pass a work request to a specific task
at a selected time and, optionally, have the work request repeated at

a specified interval.

The realtime message handler allows messages which the user has
previously defined offline to be accessed in realtime. These messages
can then be selected by message number, modified, and routed in realtime
with minimum impact on system performance.

The Special Real Time Operating System data base services maintain a
data base in virtual storage and on direct access storage. The services
also allow the data base to be accessed independently by several tasks.
The data is defined as a group of named arrays and named items within
the arrays. The data is accessed by name, and this allows associated
programs to be coded independently of most changes or additions to the
data base. The content of the data base arrays may be logged to history
files on a cyclic or demand basis. The logged data cam then be used

for reinitialization of the data base after a system outage as well as

a historical record of system operation. The data base arrays and

items are created by an offline utility program for use in the realtinme
run.

Duplicate copies of the critical Special Real Time Operating System
and/or user data sets can be maintained to provide backup copies should
the primary copy experience a failure. This provides a smooth
transition when making modifications to these critical data sets. The
duplicate data set support services are optional and may be selected
when the Special Real Time Operating System is created. Duplicate data
sets may be used to keep backup copies of the data base data sets.

The impact of failing “asks is minimized through selective termination
of units of work. If a task experiences a failure while executing a
unit of work, that unit of work is terminated. However, the task is
maintained, and all remaining units of work queued to the task will be
executed.

1-2 Description and Operation Manual

The Special Real Time Operating System record and playback feature
provides services for the user to define data that can be recorded on
tape or direct access device during realtime execution. This recorded
data can then be used for post-run analysis or as test data on a
subsequent program execution.

An input message processor is provided to allow for operator
communication. This allows operator commands to be entered through a
system console and routed to designated user programs.

An interface is provided so that the user may code his programs in PL/I
or FORTRAN and request the normal Special Real Time Operating System
services through the interface program.

The Special Real Time Operating System has facilities to allow execution
on a two CPU configuration where a job in the backup CPU monitors the
performance of the online CPU. When either CPU recognizes that a
failure has occurred, that CPU can request a failover, and the backup
CPU becomes the online CPU., Failover can also be initiated by program
request to facilitate scheduled maintenance or changes to the
operational environment.

CUSTOMER RESPONSIBILITES

It is the customer's responsibility to provide in his installation:

e Facilities and minimum hardware configuration required for the
Special Real Time Operating Systenm

e Ordering, generation, and testing of the host 0S/VS1 system

o Ordering, generation, and testing of the Special Real Time Operating
System
*

e Processing programs required for the realtime operation

e Ordering, generation, and testing of any related PRPQOs or progranm
products to be installed

e Data set contents for defining initial values, limits, and other
control parameters

e A thorough knowledge of his system and his desired control strategy

e Orders for required computer and terminal equipment needed in the
system

e Installation of any instrumentation and/or common carrier facilities
required to meet his desired control strategy

e Design and implementation of any specialized application programs
and/or display formats required to meet his control strategy

e Training of personnel

PROGRAMMING SYSTEMS

All sSpecial Real Time Operating System programs are coded using the
System/370 Assembler Language. The Special Real Time Operating System
executes under control of IBM Operating System/Virtual Storage 1,
Version 3.0 or a later release. The following components of 0S/VS1
are required:

GENERAL INFORMARTION 1-3

e Supervisor

Sequential Access Method
Direct Access Method
Linkage Editor

Loader

System Assembler

System Utilities

Partitioned Access Methods.

In addition to the 0S/VS1 components, the user may require any of the
following:

PL/I_F (360S-NL-511) and PL/I_F_Subroutine Library (360S-LM-512

Vst1)

PL/I Optimizing Compiler - 5734-PL1

PL/I Optimizing Compiler and Libraries - 5734 - PL3

PL/I _Resident Library - 5734-LM4

PL/I Transient Library - 5734-LMS

FORTRAN IV (G1) - 5734~F02

FORTRAN IV (H Extended) - 5734-F03

FORTRAN IV Library - 5734-LM3.

SYSTEM CONFIGURATION

The
the

The

following minimum configuration is required to compile and execute
Special Real Time Operating Systen.

machine configuration for the Special Real Time Operating Systenm

varies according to the user's application needs. Typical systems are
shown as a guideline:

For Compilation - A 3135 Processing Unit Model DH (245,760 bytes)
and appropriate system console. Sufficient Input/Output (I/0)
devices must be included to support the requirements for systen
input, system output, system residence, and system data sets.

Minimum Operational System - A 3135 Processing Unit Model H
(245,760 bytes) including one byte multiplexer channel, one block
nultiplexer channel, and floating-point instruction set. The
configuration must include sufficient I/0 devices to support the
requirements for system output, system residence, ani system data
sets. Sufficient direct access storage must be providzd to satisfy
user information storage requirements. Direct access devices may
be chosen from a 2305 Pixed Head Storage, a 2319 Disk Storage
Control (Integrated), a 3330 (3333) Disk Storage Facility, 3340
Disk Storage Facility, or combinations.

Description and Operation Manual

A magnetic tape unit (9-track) must be available for progranm
distribution and maintenance.

Storage requirements for the Special Real Time Operating System are

presented below. The figures are approximate and assume a typical
customer environment. They are intended as a guide only.

STORAGE REQUIREMENTS

Figure 1-2 showvs the approximate Virtual Storage required by the load
nodules which comprise the Special Real Time Operating System. The
total size represents the approximate maximum number of bytes of storage
required for all load modules of each function. Several functions are
selectable by Special Real Time Operating System SYSGEN which may reduce
the total size of any SYSGENed system from these values. The table
includes estimates for routines which are used in an offline environment
only and will never be a part of the online system. Some of the
routines may be a part of the online system during initialization for

a short duration when requested by the user or while processing unusual
conditions.

The frequently used column represents the approximate number of bytes
of each function which may be used frequently in most systems during
a continuing realtime execution. The actual use of any function is
dependent upon the application programs and as such, the amount of
virtual or real storage occupied by any function is predictable only
through analysis of the application.

In addition to the storage represented in Table 1, approximately 320
bytes are added to the 0S/VS1 fixed nucleus, and 7700 bytes are added
to the pageable nucleas.

The Special Real Time Operating System programs also require
approximately five cylinders of a 3330 direct access storage device
(or equivalent).

These figures do not include virtual storage or direct access storage
which are required for the user's data base.

GENERAL INFORMATION 1-~5

Function Frequently Used Total Size
Task Management 5,000 11,000
Time Management 3,000 5,000
Data Base 4,000 5,000
Data Base Logging 6,000
Message Handler 3,300 3,300
Data Recording 7,000
Report Data Output 900
Duplicate Data Set Support 5,000 22,000
Input Message Processing 7,400
System Initialization 41,000
Failover/Restart 1,000 20,000
FORTRAN PL/1 Interface 2,000
Offline Utility Routines 35,000

*Specifies functions wich are optionally selected by the user when he generates his Special
Real-Time Operating System.

Figure 1-2. Storage Requirements

1-6 Description and Operation Manual

TIMING INFOFMATION

The timing information given here is meant to aid the user in evaluating
factors which may impact the performance of the Special Real Time
Operating System. Timings were obtained on a Release 3.0 version of
0S/VS1 with eight megabytes of virtual storage and System Management
Facility (SMF). The following was the basic hardware configuration:

e System/370 Model 145
* 512K bytes of main storage
e Four 3330 direct access storage devices.

wWhile timing statistics were being gathered, no other jobs were
executing. The Special Real Time Operating System was generated with
the following options:

e Two-partition support
e Duplicate data set support
e Failover/restart.

The test data base consisted of 46 arrays. Of these arrays, 5 were
loggable and 12 vere direct access storage resident arrays (this
includes 5 log arrays). Of the loggable arrays, 4 were refreshed during
initialization.

The following chart gives approximate timings for the major Special
Real Time Operating System services. The timings all include 0S/VS1
control program services. Task management timings do not include the
time of execution of the test program. Times are given as CPU time

and as such do not represent elapsed time. The elapsed time could vary
greatly depending on system activity, paging, I/0 activity, device
types, etc.

Caution and judgment should be used in evaluating these statistics due
to the many 0S/VS1 SYSGEN options and other variables involved. The
statistics must be interpreted only as the results obtained in the
environment described, and not as a commitment to be met in any or all
environments. All times are shown in millisecond units (ms).

GENERAL INFORMATION 1-7

TIMING CHART

INITIALIZATION

Basic Jobstep Initialization
(includes task management initialization)

Time Management Initialization
Data Base Initializationx

Logging Initialization **
(includes data base refresh)

Supplementary Services ***
(includes Message Handler & Duplicate Data
Set Support)

IASK MANAGENENT

PATCH to existing independent task for a
reentrant load module previously loaded

PATCH to existing independent task for a
reentrant load module not previously loaded

PATCH to existing independent task for a
non-reentrant load module

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
previously loaded, assuming there were no
dormant Special Real Time Operating System
tasks available

*Dependent upon size of data base.

900- 1200 ms

125-150 ms
1500-up ms

425-up ms

900-up ms

3.70-5.0 ms

60-100 ms

50-100 ms

25-75 ms

**pependent upon number of log arrays and initialization

refresh options.

**%Dependent upon number of messages and the number of

duplicate data sets.

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
previously loaded, assuming a dormant Special
keal Time Operating System task is available

PATCH to dependent task (or non-existing
independent task) for a reentrant load module
not previously loaded, assuming a dormant
Special Real Time Operating System task is
available

PATCH to dependent task (or non-existing
independent task) for a reentrant load
rodule not previously loaded, assuming
there were no dormant Special Real Time
Operating System task available

PATCH to dependent task (or non-existing

independent task) for a non-reentrant load
module, assuming there vwere no

1-8 Description and Operation Manual

20-75 ms

65~100 ms

70-150 ms

75-155 ms

dormant Special Real Time Operating Systen
tasks available

PATCH to dependent task (or non-existing 70-150 ms
independent task) for a non-reentrant

load module, assuming a dormant Special

Real Time Operating System task is available

REPATCH SVC

DPATCH SVC

TIME MANAGEMENT

TIME - update time array routine

PTIM - execute PATCH routine
PTIMF sSVC

DATA BASE*
GETARRAY/PUT ARRAY

TYPE=ADDR
TYPE=SPEC
TYPE=DATA

GETITEM/PUTITEM

TYPE=ADDR

TYPF=SPEC

TYPE=DATA (address given)
TYPE=DATA (no address given)

GETBLOCK/PUTBLOCK

VS resident
DA resident

DATA BASE LOGGING**

PUTLOG
NORMAL
LOGHDR
BLKLST

GETLOG

DUMPLOG

SUPPLEMENTARY SERVICES

CHAIN

DEFLOCK

LOCK

GETWA

MESSAGE HANDLER(includes PATCH)
DUPLICATE DATA SET

DDS READ/DDSWRITE

DDS CHECK

DDSPOINT/DDSFIND

DDSBLDL

1-5 ms

6-2.5 ms

3-5 ms
6-15 ms
5-10 ms

2.5-5.0 ms
15-40 ms
2.75-5.0 ms

15.0-55.0 ms
15.0-55.0 ms
3.0-5.0 ms

15.0-55.0 ms

2.0-3.5 ms
10-20 ms

13.0-40.0 ms
22.0-65.0 ms
10.0-30.0 ms

14.0-100 ms

200-up ms

0.5-1.5 ms

2.5-5.0 ms

0.1-0.5 ms

0.45-1.0 ms
30-50 ms

12-50 ms
7-25 ms
5-20 ms
20-60 ms

GENERAL INFORMATION

1-9

*Dependent upon size of data base and number of ITEMS being processed.

**xDependent upon number and size of log arrays and nuamber of log copies.

1-10 Description and Operation Manual

CHAPTER_2. APPLICATION SERVICES

INTRODUCT ION

The objectives of the Special Real Time Operating System in a real-time
environment are to provide additional services to user coded, real-time
programs and to minimize the impact normally caused by ABENDing
programs. The additional services are provided for lower supervisor
overhead and added capabilities and fleéexibility in the areas of task
management, time management, data base, message handling, and failover
restart, as well as other less significant enhancements. Minimizing
system impact due to ABENDs is accomplished by isolating user tasks
from one another ‘and by handling work requests as separate entities
from the user programs.

GENERAL DESCRIPTION

The Special Real Time Operating System, by itself, as a real-time
program, does meaningful processing only when its services are requested
by user programs in a real-time environment. The Special Real Time
Operating System services are requested through the use of macro calls
which invoke the Special Real Time Operating System SVC routines or
branch to the Special Real Time Operating System subroutines. This is
shown in Figure 2-1.

User

Macro
Call
y
i
SVC Routines H Branch to Subroutine
1
H
[7
y Y Yy
Data .
Task Time Failover Data Message Duplicate Record L';:_?h Lvl
Mgmt Mgmt Restart Base Handler Data Set and Play I tg#age
Back ntertace

Figure 2-1. The Special Real Time Operating System Overview of the
Online Systen

Figure 2-1 shows the major areas in which the Special Real Tinme
Operating System supplies services for real-time execution

The task management services provide facilities to create the real-time
task, queue work to an existing task, or delete a task. These services
are provided to the user through the PATCH, REPATCH, and DPATCH macros.

Time management services allow for maintenance of time and for causing
work to be passed to tasks at a given time or cyclically for a given
interval. The time management services are available to the user via
the PTIME macro.

For a real-time environment, the system must have the ability to recover
quickly from a failure or system outage. The Special Real Time

APPLICATION SERVICES 2-1

Operating System failover restart services allow for a fast switch to

a backup-CPU (failover) or a fast restart in the failing CPU. These
services are either automatic or under operator control. The data base
services in the real-time application allow the user to access the data
base but prevent (when requested) access to data by one program if that
data is currently being modified by another program. User access to
the data base is achieved through six macros; GETITEM, PUTITEM,
GETBLOCK, PUTBLOCK, GETARRAY, and PUTARRAY.

The data base, or portions of it, may be logged at given intervals to
create a history file. The user interface to the logging routines is
through the GETLOG, PUTLOG, and DUMPLOG macros.

The real-time message handler provides a service whereby predefined
messages may be retrieved, modified, and routed to predefined devices

in real-time. The user interface to this service is through the MESSAGE
macro.

Duplicate data set support provides a service whereby the user can
maintain duplicate copies of critical data sets. The user requests
this service via the DDSBLDL, DDSCLOSE DDSDCB, DDSFIND, DDSOPEN, and
DDSSTOW macros.

Data record and playback provide a facility for the user to record
areas of virtual storage under program control and later to retrieve
or play back the data. The user requests data to be recorded via the
RECORD macro.

The high-level lanquage interface programs provide an interface for
the real-time services to be used from a PL/I or FORTRAN program.

Each of the Special Real Time Operating System services shown in Figure
2-1 is described in detail in the following sections. Additional
services are described later. For the convenience of the application
programmer, all online macros are described in detail in the section
entitled 'Special Real Time Operating System Online Macros'. The macros
in this section are listed in alphabetical sequence.

PROCESSING DESCRIPTION

TASK MANAGEMENT

The Special Real Time Operating System task management services are an
extension of the 05/VS1 task supervision and virtual storage supervision
to make more efficient use of system resources in a real-time processing
system. These additional services are provided by the Special Real

Time Operating System through the use of SVC routines, monitor routines,
and service subroutines. This is shown in Pigure 2-2. The service
subroutines can be used only by the SVC routines and the monitor
routines. The user invokes the monitor through the SVC interface.

2-2 Description and Operation Manual

])
. User ': SvC g Monitor E Service
—Program ~Boutines _ i i
E : i
H ! System '
PATCH — FOST, Monitor —f Sontrol
i : DPPTSMON| ‘: Gor
! PATCH/ ! ' OPPTCBGT
! REPATCH + »
i DPPTPSVC i :
1}
1]]
REPATCH |« H — osr 11 vl/)vo‘rk Queue
] t elete
5 IPOST! iy DPPTWQDL
: 1 PATCH '
K H Monitor H
! POST} DPPTPMON !
) DPATCH 1]
DPATCH 1&—— opeTOSVC| | :
' : :
1 | |
] 1
GETWA T GETWA/ ! End of Task E
: FREEWA : Routine fed 1
FREEWA -4 DPPTWSVC ! DPPTETXR !
)
| | : :
' 1 : Purge Work
PURGEWQ 4 . v Queue
' ‘) DPPTPWQE
[]

rigure 2~2, Task Management Overview

Iask Structure

The Special Real Time Operating System utilizes many tasks (TCBs) during
online execution. The task structure for the permanent TCBs is
established during initialization. Pigure 2-3 shows the Special Real
Time Operating System task structure and the task's relative priorities.

O

DPPTSMON PRTY=JOBSTEP

-~
i
1
|
|
|
]
-

0 0 Ol ol o

DPPTPMON DPPTPMON DPPXIMPW DPPCTIME DPPCPYTIM DPPMMSGH DPPDFREQ
PRTY=0 PRTY=0 PRTY= PRTY= PRTY= PRTY= PRTY=
JOBSTEP-3 JOBSTEP-1 JOBSTEP-2 JOBSTEP-3 JOBSTEP-3

Fiqure 2-3. The Special Real Time Operating System Task Structure and
Priorities

Task DPPTSMON receives control from initialization via XCTL. There

vill be a vuariable number of tasks for DPPTPMON. The number will depend
upon £YSGEN options. Pollowing initialization these advance TCBs ¥ill
have a dispatching priority of zero and a limit priority of JOBSTEP

task rninus three (JOBSTBP-3), which is the highest available user
priority.

The task for the input message processor program (DPPXIMPW) is

established with a dispatching priority of JOBSTEP-3. Time management
(DPPCTINE) has a priority of JOBSTEP-1, and the PTIME monitor (DPPCPTIN)

APPLICATION SERVICES 2-3

has a priority of JOBSTEP-2. The real-time message handler progranm
(DPPMNMSG1) is PATCHed with a priority of JOBSTEP-3.

If cyclic logging (DPPDFREQ) were selected during system generation,
the cyclic logging program would be invoked at initialization time and
would have a TCB with the priority of JOBSTEP-3. Demand logging does
not create a TCB at initialization.

The tasks used by the Special Real Time Operating Systee are true 0S/VS1i
tasks and vwill be assigned 0S task priorities based upon the priority

of the jobstep task. These tasks compete for resources among themselves
and with tasks of other jobs in the system based on their assigned
priority. When two or more tasks have the same priority, the order of
assignment to that priority value determines which task will be serviced
first.

PATCH/REPATCH

PATCH is the service by which a task is created or by which a work
request is made for a task already in existence. REPATCH is the means
by which a failing PATCH may be retried.

To provide its services, the Special Real Time Operating System builds
control blocks and tables which it uses to maintain control of the
system and to interface with user programs. Figure 2-4 shows the
relationship of the Special Real Time Operating Systea control blocks
for the first PATCH issued on a basic Special Real Time Operating Systenm
system, when the user gains control. The Special Real Time Operating
System builds its control blocks in protected storage and allocates it
via an internal routine called CBGET (control block get). This storage
is allocated at initialization and is not expandable.

2-4 Description and Operation Ranaal

E:na_____ a8
DPPTSMON
TCBUSER
TCBLTC "‘“‘"‘""“’[::ISE
RB
cax DPPTPMON
Register 1 L ICBX wQe 00000
»XCVT t xcvr
t RsSTB
T PARM
5 SCVT co T 1c8
1 EP=ONE
T™MCT
L Bl
t EP-ONE PATCH EP=ONE, TASK FIRST

Figure 2-4. Task Management Control Blocks

At the point that program ONE gains control following the PATCH, general
register 1 will point to the three words in the TCBX (TCB extension)
containing pointers to the XCVT, the resource table, and the parameters
being passed into program ONE. The XCVT is the Special Real Time
Operating System equivalent to the 0S CVT'. The XCVT contains pointers
and control information which must be available to the subsystems as
vell as the Special Real Time Operating System. The SCVT contains
pointers to system areas and control information which must always be
available to the Special Real Time Operating System. The Task
Managesent Control Table (TNCT) contains task-oriented information
vhich must be available to all the Special Real Time Operating Systenm
tasks. The TCBX contains control informatiomn pertinent only to the
specific task and contains a pointer to the XCVT. This pointer links
each task to the basic Special Real Time Operating System control
information.

The resource table is an 8~byte area of virtual storage that the Special
Real Time Operating System gets from subpool zero and passes to the
user. This area can be used by the user to pass information across
PATCHes to the same task. For example, two PATCHes could be performed
for TASK=A, one for EP=A and the second for EP=B. Program A could open
a DCB and put its address in the resource table. When program B
executes, it could do I/0 processing using the open DCB. The resource
table is initialized to contain zeros when the task is created amd is

APPLICATION SERVICES 2-5

not changed by the Special Real Time Operating System as locg as the
task is in existence.

The work gueue element (WQE) is built by the Special Real Time Operating
System to represent the PATCH request for execution of program ONE

under task FIRST. Once program ONE has completed execution and returned
control to the Special Real Time Operating System, the WQE is deleted.
If additional PATCHes had been made for task FIRST, additional WQFs

are gueued to the TCBX. When the first execution of program ONE is
completed, the first WQE is removed and the second scheduled. This
process continues until there are no WQEs left on the queue. There is
one WQE created for every PATCH.

The load control block (LCB) is created by the Special Real Tinme
Operating System to represent the load module for program ONE. Progran
ONE in Figure 2-4 is represented by two LCBs. This is the case when
the program is reentrant. A non-reentrant module is represented by
only one LCR chained to the requesting WQE. There is on2 LCB for each
module (EP=) under each task (TASK=), plus one LCB for each reentrant
module ip the partition. LCBs are created for modules loaded through
the use of the Special Real Time Operating System servicas. PFigure 6
shows the Special Real Time Operating System LCB-WQE blocks that will
be built for the following PATCHes:

EXAMPLE 1:

. PATCH 1 PATCH TASK=X,EP=A (reentrant)
. PATCH 2 PATCH TASK=X,EP=8B (non-reentrant)
. PATCH 3 PATCH TASK=Y,EP=A (reentrant)
. PATCH &4 PATCH TASK=X,EP=B (non-reentrant)
. PATCH S PATCH TASK=Y,EP=B (aon-reentrant)
o PATCH 6 PATCH TASK=Y,EP=A (reentrant)

2-6 .Description and Operation Manual

TCB (] vcs
TASK=X TMCT TASK=Y
,__TCBX TCBX

s LCB
EP=A

. WOE LCB LcB 5 WOQE
PATCH #1 EP=A EP=A |¢ PATCH #3

. _WQE e . LCB v _WOE
PATCH #2 > EP=B EP=8 PATCH #5

A
WQE WOE
L

PATCH #4 PATCH #6

Figure 2-5. Control Blocks Built for Example 1

The control blocks will be built as shown in Figure 2-5 at a point in
time when all PATCHes have been issued, and program A and B are
executing, under the first WQE.

PATCH 1 causes a WQE to be scheduled for program R on task X. PATCH
1 also creates the LCB pointed to by the WQE and the LCB pointed to by
the THMCT.

PATCH 2 creates the WQE and its LCB for task X, program B.

PATCH 3 creates the WQE on task Y and the LCB for program A pointed to
by the WQE. It also points the LCB to the existing LCB for program A
on the TMCT.

PATCH 4 creates the WQE for task X and points it to the LCB for progran
B that was previously created by PATCH 2.

PATCH 5 creates the WQE for task Y, and because this is the first
request for program B on task Y, creates an LCB for B and chains it to
the WQE.

PATCH 6 creates a WQE for task Y and points it to the LCB previously
created by PATCH 3.

The Special Real Time Operating System task management is initialized

by DPPINIT. DPPINIT dgets protected core from subpool 253 and builds
the XCVT, the SCVT, and the TMCT. It then initializes the get work

area (GETWA) and control block get (CBGET) storage. Next,
initialization determines the number of TCBs and task control block
extensions (TCBXs) to be obtained and initialized, and creates the TCBs
by attaching the PATCH monitor (DPPTPMON) for the number of TCBs. Next,

APPLICATION SERVICES 2-7

DPPINIT gets CBGET storage for TCBXs, chains the TCBX to a TCB, and
puts the TCBX on the TMCTPREE chain. When initialization is completed,
it XCTLs to the system monitor (DPPTSMON). At this point the systenm
is configured as shown in Figure 2-6.

TCB RB
Job Step
Task DPPTSMON
TCBUSER
TCE ¥ TCBLTC
o 1CBX TCB R
™ DPPTPMON
XC TCBNTC
TCBX [TCB
. s > DPPTPMON
SC
TCBNTC
5 TCBX TCB
T™C
Task DPPTPMON
Management
Control Table

Figure 2-6. Control Blocks After Initialization

When DPPTPMON is in storage and begins execution, it waits until it is
posted by DPPINIT. DPPINIT posts DPPTPMON when a TCBX has been
initialized and chained to the TCB. DPPTPMON then does a GETMAIN for
the resource table, and chains it to the TCBX. A STAE macro call is
then executed by DPPTPMON specifying load module DPPTSTAE as the STAE
exit routine. DPPTPMON then executes a WAIT macro call. At this point
the Special Real Time Operating System is ready for user service
requests.

The user requests that a task be brought into virtual storage and
executed via the PATCH macro. Two different types of tasks can be
executed. Dependent tasks operate similarly to normal 0S/VS1 tasks;
the requested module is loaded and executed once; then the module is
deleted, and the task is terminated. Independent tasks, however, can
request loading of multiple programs; each can be executed many times
and is terminated only upon a specific request from a user by the DPATCH
macro. To facilitate multiple execution of independent tasks, the
Special Real Time Operating System loads each reentrant program only
for the initial PATCH. The WQE and LCB are built and queued to the
tasks TCBX. On subsequent PATCHes to the same task requesting the
execution of the same program (EP=), a WQE will be created; but the
program will not be reloaded, and the WQE will be pointed to the LCB
created by the first PATCH.

An option on the PATCH macro allows programs to be deleted after the
WOE has been processed, even though the program is reertrant.

2-8 Description and Operation Manual

The user's PATCH macro results in the PATCH SVC code (DPPTPSVC) gaining
control. The SVC validity checks the input parameters, and if they

are valid, obtains a TCBX and a TCB for the task. DPPTPSVC then builds
a WQE and an LCB for the program and chains them to the TCBX. DPPTPSVC
then posts DPPTSHMON to change priority (CHAP) of the TCB to the
specified priority (PRTY=) and returns control to the program that
issued the PATCH SVC.

The system monitor (DPPTSMON) has three main functions.
e When posted by DPPTPSVC, it CHAPs the TCB to the requested priority.
e It creates TCBs and TCBXs and maintains theam on the TMCT chain.
e DPPTSMON handles the loading and deleteing of reentrant modules.

The PATCH monitor (DPPTPMON) is the Special Real Time Operating
System-user interface, DPPTPNON manipulates WQEs and non-reentrant
LCBs. DPPTPHON is the program under wvhich all user tasks are executed.
When the program has been loaded and the WQE scheduled, DPPTPMON
branches to the user code. UOpon completion, the user executes a normal
BR14 return, and DPPTPMON regains control, posts the user ECB, and
attempts to schedule the next WQB. If no WQEs exist, DPPTPMON waits
for the next PATCH.

Note: Because user programs are loaded and branched to by DPPTPMON,
the user program will not be represented by an RB on the 0S/VS1
systea, As a result, user programsing errors will cause ABEND
dunsps that show DPPTPMON as the ABENDing prograsa.

The folloving examples shovw hov the user would invoke the Special Real
Time Operating System task management services through the use of the
PATCH macro.

PTCHO 1 PATCH TASK=ONE,EP=PIRST,QL=3, *
QPOS=PIRST,PRT Y= (TWO,4), *
ECB= (ECBONE) , *
PREE=P,ID=4

This PATCH will cause a task with the name ONE to be created. If task
ONE already exists, a WQE will be queued to it to represent PATCH
PTCHO1. PTCHO' is a request for execution of program FIRST, and the
WQE will be queued at the top of the queue (QPOS=PIRST). If the task
does not exist, it will be created with a priority of 4 less than the
existing task named TWO and will allov a maxiaum of three WQEs (QL=3)
to be queued plus the current WQB being processed. If task TWO does
not exist, the PATCH will not be processed, and the PATCHor will be
given a return code 10. If task ONE does exist, the QL and PRTY
keyvords will have no effect. The ECB=keyword specifies that an ECB

at location ECBONE is to be posted when the Special Real Time Operating
System task management dequeues the WQE which represents this PATCH
request. The ECB will be posted with a Special Real Time Operating
Systea task management POST code in the high-order byte and the
low-order three bytes of register 15 if the PATCHed program is completed
successfully, or the ABEND code is in the low~-order three bytes if the
task ABENDed. FPREE=P requests that the Special Real Tiwme Operating
System task management services free (PREEMAIN) the virtual storage
ocrupied by the PROBL (user problem parameter list). The ID=4 requests
that a value of & be put into the PROBL and passed to the PATCHed
program.

APPLICATION SERVICES 2-9

PTCHO2 PATCH ID=255,TASK=MAIN *
EP=NORKO1, PRTY=(,1), *
QL =9

PTCHO2 uses the special ID (ID=255). This ID creates a Special Real
Time Operating System task named MAIN with a queue length of 9 and a
priority of 1 less than the PATCHor. The program named WORKO1 is loaded
but never given control, because the ID is 255, This facility allows
the user to create a task structure of reentrant and serially reusable
programs. As a result, he knows the task structure prior to the
execution of the PATCHed tasks.

Reentrant and serially reusable programs are kept in virtual storage
and are not deleted at completion of their execution. If the user
vishes to have a reentrant or serially reusable program deleted at its
coapletion, he must code the PATCH with EP=(name, DELETE). This will
result in the LCB for the program being removed from the task's LCB
chain, and if no other tasks have issued PATCHes for the program, the
load module will be deleted. However, if other tasks did PATCH the
program and did not request the DEIETE option, the load module will
not be deleted. If multiple tasks PATCH a module and all specify the
DELETE option, a use count is kept by the Special Real Time Operating
System task management, and the module is deleted when the use count
becomes zero. The Special Real Time Operating System use count is
independent of 0S/VS1 use count. As a result, if a user program does
a LOAD, followed by PATCH with EP=(name,DELETE), the Special Real Time
Operating System DELETE will not necessarily result in the module being
removed from virtual storage, as the 0S/VS1 use count will not go to
zero. This is because the Special Real Time Operating System task
management routines will issue LOAD for the module on the first PATCH
to it resulting in an 0S/VS1 use count of 2.

WORK Queue Pooling

Work queue pooling is a capability of Special Real Time Operating Systen
to allow a single task to process work that vould otherwvise be processed
by several tasks, or several tasks to process the work that would
otherwise be processed by a single task, or combinations thereof. A
close similarity to this concept can be observed in the 0S/VS1 job
scheduler vhere an initiator can process work from several job classes
or jobs of a given class can be processed by any of several initiators.

Wwork queue pooling may be invoked for a givemn execution of the Special
Real Time Operating System by including in the initialization strean
the commands which define the elements, Queue Holders (QH) and Queue
Processors (QP), to be active on this execution. To make use of work
queue pooling, the user will execute PATCHes to the queue holders,
exactly as done to independent task. One command (card) will define
one QH or QP. The QP represents a Special Real Time Operating Systea
and 0S task, the same as with an independent task. It is defined at
initialization and will remain for the duration of the job. There is
no provision for adding or deleting QPs after initialization. The QP
differs from an independent task in that work cannot be passed directly
to the QP via a PATCH.

The QH appears as an independent task without an associated 0S5 task.
Work is passed to the QH via PATCH but the work is processed by one of
the QPs associated with the QH. The QH has a name, exactly as an
independent task and the TASK= operand of the PATCH and other macros
¥ill reference the QH by this name. As with QPs, all QHs must be
specifiel at initialization. When specifying QHs, the user assigns

the name and other attributes. Any QH may be specified to be connected
to several QPs; that is, any of the connected QPs are allowed to process
vork that is 'PATCHed' to this QH. Also, several QHs may be connected

2-10 Description and Operation Manual

to any one QP, which means that a QP can process work from any of
several QHs. There is an implied priority relationship in this schene
in that when a QP completes a piece of work, it will look for wvork in
the first QH connected to it and only if that QH is empty will it look
to the next QH, etc. The opposite is also true when a piece of work
is passed to a QH, the work will be given to the first QP that is
connected to it and is not busy. If all connected QPs are busy, the
work will be queued to the QR to await a QP that becomes available.

The relationships between QPs and QHs is defined through the
initialization stream commands., The QP command allows the user to
specify the order in which the QP is to search the QHs for new work
when a piece of work is completed. The ordering of the QP commands
implies the order in which to search for an available QP when work is
added to a QH. Each QP is assigned a number (0 to 99) on the OP
command. From this number a name is generated. The user

assigned number will be used for all references by other commands.
Each QH is assigned a name (1 to 8 EBCDIC characters) by the QH command.
This name will be used for all references to it, either by other
commands or by programs via the PATCH macro, etc. Various other
parameters may be specified on the QH and QP commands. The PRTY=
parameter on the QP command is similar to the same parameter on the
PATCH command. The HOLD=YES parameter allows the QP to be initialized
in a hold status which meands that it will mot process any work until
a release is entered through the IMP commands provided.

The QL= parameter on the QH command specifies the number of work queues
that can be stacked for this QH, similar to the same parameter on the
PATCH command. The parameter SEQ=YES specifies that only one QP may

be processing work from this QH at any time. The HOLD=YES parameter
specifies that no work is to be processed from this QH. The PATCH=NO
parameter specifies that the PATCH processor is to reject all PATCHes
to this QH. The SEQ=, HOLD= and PATCH= parameters can be modified
during execution through the IMP command processing provided.

The inclusion of work queue pooling on a given execution of Special

Real Time Operating System does not effect independent or dependent

task operations. W®When a PATCH is executed, the PATCH code will search
for a TCBX with the task name equal to that specified on the PATCH.

If the name is not found or a name is not specified (dependent task)

a Special Real Time Operating System task is created and the work queued
to the new task. If the name is found, the work is added to the work
queue of the TCBS. If the TCBX is a QH, the work participates in the
queue pooling.

The user of Work Queue Pooling has the ability to determine the status
of and control certain functions of the QPs and QHs through the IXP
comnand processor. The user can hold or release either a QP or QiH.

If a QP is held, it ¥ill not accept any new work. If a QH is held,
the QP (s) will not take work from it. The user can set a QH to he
sequential or non-sequential. In the sequential state, only one QP
may be processing vwork from this QH at any time. Non-sequential is
the normal state where all connected QPs may be processing work fron
this QH simultaneously. The QH can be set to a PATCH or NOPATCH state.
In the NOPATCH state all PATCHes to it will be rejected. PATCH is the
normal state. In addition to changing one of the above conditicas,
the command can cause all work to be specified QH to be purged.

The IMP command can cause Special Real Time Operating System messages
to be output to report the status of these states as well as other
information about the QPs or QHs. This information will include the
element (QP and QH) name, the names of the elements connected to it,
and the number of work queue elements awaiting processing.

APPLICATION SERVICES 2-11

When a program receives control as the result of a PATCH, Register 1
contains the address of a 3 vord table. The second vord of this table
contains the address of a resource table. If the program is executing
under control of a QP, this resource table is associated with the QP.
Every program that is PATCHed to execute under a given QP will receive
this same resource table. In addition, register 0 will also contain
the address of a resource table. If the program is executing under
control of a QP, this .resource table will be associated with the QH
from which the work was taken. This means that all programs which
execute as the result of a PATCH to a given QH will have access to the
same QH resource table. Caution must be exercised by the user if the
QH is connected to two or more QPs, since several programs may be
competing for this resource table. If the program is executing under
Special Real Time Operating System task (not a QP) register 0 will
contain the same address as is in the second word of the table addressed
by register 1.

The following example shows how QP and QH statements in the SYSINIT
input stream can be used to define two queue processors and two gqueue
holders. All other control statements in the input stream have been
omitted.

//SYSINIT DD
QP 19,QH= (DPPQABC,DPA DM NO)
QP 2,QH= (DPADMNO ,DPPQABC)
QH DPPQABC
QH DPADMNO

In this example both gueue processor 19 (QP19) and queue processor 2
(QP02) have been created to process work from queue holders DPPQABC

and DPADMNO. However, since in the QP statement for QP19, queue holder
DPPQABC has defined first, QP19 will give it a higher logical priority.
Since the inverse is true in the other QP statement, QP02 will process
the work from DPADMNO before processing work from DPPQABC.

Assume the following PATCH macro calls are executed to route work to
the queue holders.

PATCH TASK=DPPQABC,. ..
PATCH TASK=DPADMNO,. ..
PATCH TASK=DPPQABC,e¢ e«
PATCH TASK=DPPQABC,. ..
PATCH TASK=DPPQABC,. ..

OO w>»

The resulting task/queue structure is illustrated in Figure 2-6.1.

2-12 Description and Operation Manual

QP19 QP02

A(DPPQABC) A(DPADMNO)
A(DPADMNO) A(DPPQABC)
DPPQABC DPADMNO
Work Queue Work Queue
A B

Figure 2-6.1. Task/Queue Structure

QP19 will select work queue A from queue holder DPPQABC and QP02 will
sel2ct work queue B from queue holder DPADMNO. Assume QP19 completes
work queue A before QP02 completes work queue B. When QP02 completes
work queue B, QP02 will attempt to select additional work from queue
holder DPADMNO and, finding it empty, will select work queue D from
queue holder DPPQABC. Upon completion of work queue D, QP02 will again
attempt to select work from queue holder DPADMNO and, finding it still
empty, will select work queue E from queue holder DPPQABC.

Using a similar example to illustrate the functions of some of the
optional parameters on the QP and QH statemtns, assume the following
SYSINIT input stream was specified. Again only the QP and QH statements
will be shown.

APPLICATION SERVICES 2-13

//SYSINIT DD

QP 19 ,,QH= (DPPQABC,DPADMNO,D PPQXYZ)

QP 2,QH= (DPPQXYZ ,DPPQABC) , PRTY=(JOBSTEP-0)
QH DPPQXYZ,SEQ=YES,QL=10

QH DPPQABC

QH DPADMNO,HOLD=YES

In the second example, queue processor number 19 (QP19) has been created
with a default dispatching priority of the job step task minus 8 to
process work queued in queue holders DPPQABC, DPADMNO, and DPPQXYZ and
queue processor number 2 (QP02) has been created with a dispatching
priority of the job step task minus 3 (the highest allowed to any user
task) to process work queued in queue holders DPPZXYZ and DPPQABC (see
Fiqure 2-6.2).

Queue holder DPPQXYZ has been created as a sequential queue holder with
a queue length of 10. Queue holders DPPQABC and DPADMNO have been
created with default queue lengths of 255 (see Fiqure 2-6.2). DPADMNO
has been held, that is PATCHes specifying a task name of DPADMNO will

be accepted but neither queue processor (QP19 or QP02) will be permitted
to select work from that queue holder.

2-14 Description and Operation Manual

QP19

A(DPPQABC)

A{DPADMNO)

A(DPPQXY2Z)

DPPZXYZ

Figure 2-6.

Now assume the following PATCH macro calls are executed to route

QPp2

A(DPPQXYZ)

A(DPPQABC)

DPPZABC DPADMNO

2. Queue Processor/Queue Holder Structure

to the three queue holders.

o Qw >

PA TCH
PATCH
PATCH
PATCH
PATCH

TASK=DPPQXYZ,. ..
TASK=DPADMNO,. ..
TASK=DPPQABC,. ..
TASK=DPPQXYZ,...
TASK=DPPQXYZ,. ..

APPLICATION SERVICES

work

2-15

The resulting task/queue structure is shown in Figure 2-6.3.

QP19 QP02
A(DPPQABC)

A(DPADMNO) A(DPPQXYZ)
A(DPPQXY2) A(DPPQABC)

DPPQXYZ DPPQABC \ DPPADMNO

Work Queue Work Queue Work Queue

Figure 2-6.3. Task/Queue Structure

QP02, having the higher priority, will select work queue A from queue
holder DPPQXYZ. QP19 will select work queue C from queus holder
DPPQABC.

2-16 Description and Operation Manual

Assume QP19 completes work queue C before QP02 completes work quaue A.
QP19 will try to select additional work from gqueue holder DPPQABC first;
(see Figure 2-6.4) but since all work for that queue holder has been
exhausted, QP19 will then try to select work from queue holder DPADMNO.
However, since DPADMNO was defined on the QH statement as being helgd,
the work queue B cannot be selected by any queue processor. Therefore,
QP19 will then attempt to select work-from queue holder DPPQXYZ. Since
queue holder DPPQXYZ was defined on the QH statement as being seguential
and queue processor QP02 is currently executing a work queue from
DPPQXYZ (work queue A), QP19 will be unable to select work from this
queue holder either. Having searched for work on all queue holders

that QP19 can process and having found none, QP19 will then be placed

in a wait state.

QP19 QP2
A(DPPQABC) Work Queue
A(DPADMNO) A(DPPZXYZ)
A
- A(DPPOXYZ) A(DPPOABC)
DPPQXYZ DPPQABC DPADMNO

\ Work Queue Work Queue

Figure 2-6.4. Task/Queue Processing

If a 0S command of the form r xx,QS,AALQH,REL were to be issued, then
QP19 would then be allowed to select work queue B from queue holder
DPADMNO.

DPATCH

The DPATCH macro is used to stop the processing of a specified task

APPLICATION SERVICES 2-17

and to cause the program to be deleted. Since the task may have several
entries on its work queue, four types of DPATCHes allowv flexibility.

First, the TYPE=I causes the task to be DPATCHed immediately. The task
is not allowed to complete the processing of the current WQE, but is
ABTERMed. If ECB= was specified at PATCH time, the ECB is posted with
the ABEND completion code hex'4C*. The ECBs for further WQEs are posted
with a DPATCH completion (hex'42).

Second, the TYPE=U causes the task to be DPATCHed when the current WQE
completes, and the ECBs for remaining WQEs are posted with a DPATCH
completion. ‘

Third, TYPE=C causes the task to be DPATCHed only if there are no WQEs
when the DPATCH request is received.

Fourth, TYPE=W causes the task to be DPATCHed only when the work queue
becomes empty. Additional WQEs can be added after the DPATCH request,
and the DPATCH would only occur after the queue becomes enmpty.

Fifth, TYPE=A causes the program being executed under the specified
task to be ABENDed without deleting the task or any WQE's that may be
awaiting execation.

Note: 1If QPOS=DPATCH was specified on any one of the PATCHes to a
given task, that WQE is scheduled, and the program executed at
DPATCH time before the task is removed from the systenm.

URGEWQ

The Purge Work Queue Facility provides the capability of selectively
purging work requests to a specified independent task. The selected
work requests will be removed from the active work gqueue (i.e., a chain
of work requests that have been generated in response to PATCH macro
calls but have not yet been executed) or from the DPATCH wWwork queue
(i.e., a work request generated in response to a PATCH
QPOS=DPATCH,...macro call). Other work requests for that task will

not be purged but will be allowed to execute normally.

PURGEWQ, on request, also notifies the user whenever the last of the
selected work requests has been purged.

The current work request (i.e., work request currently in execution

for the specified task) will not be purged but will be allouwed to
complete normally eventhough it may be one of the selected work
requests. PURGEWQ, in this case, will notify the user after the
specified task has completed the execution of the selected work request.
In addition to providing the synchronization of the completion (or
purging) of selected work requests, PURGEWQ can be used in a "work
shedding" environment as well, For example, work requests deemed to

be of lesser importance can be selectively purged from the queue of
work requests for a specified independent task to allow more time for
the more important work requests to execute. The execution of a PURGEWQ
macro call will not prohibit the scheduling of future work requests
(PATCHes) to the specified indepemndent task. PURGEW)Q operates only on
those work requests that have previously been scheduled.

End of Task Exit Routine

The Special Real Time Operating System end of task exit routine (ETXR)
is the program (DPPTETXR) that gains control from 0S/VS1 upon
termination of a Special Real Time Operating System task. The ETXR

2-18 Description and Operation Manual

routine executes under the jobstep task (DPPTSMON) and cleans up after
task termination.

In the event that a task ABENDs, DPPTETXR issues a message through the
real-time message handler specifying the task name and the failing
program EP name. The TCBX is saved, and the TCB is detached. DPPTETXR
also posts DPPTSMON to have the TCBX chained to a new TCB.

If the task is terminating normally, the TCB is detached. 1In either

case, normal or abnormal termination, control of all locked resources
is released and GETWA type AT areas are freed.

STAE Processing

Two STAE exit routines are used (1) to provide an interface to a user
exit routine and to provide the Special Real Time Operating System with
a DUMP/NODUMP facility upon abnormal termination of a subtask and (2)
to allow cleanup functions to be performed when the real-time job step
task is terminating.

An initialization input stream command, STAEX, allows the user to
specify the name of the user coded load module (exit routine) which is
to be given control when any one of a list of load modules encounters
an ABEND. A STAE is invoked for every Special Real Time Operating
System task so that when an ABEND occurs in one of the so specified
load modules while executing under a Special Real Time Operating Systen
task, including QPs, the exit routine will be given control before the
DUMP/NODUMP decision is made by the standard Special Real Time Operating
System STAE processor. Within the exit routine, the user may schedule
a retry routine, force the ABEND to proceed with a dump or allow the
Special Real Time Operating System STAE option in effect to determine
if a dump is to be taken.

On entry to the user exit routine, registers 0, 1, 13, 14 and 15 will
contain the values as defined by 0S/VS1 STAE interface routines (see
0S/¥S1 Planning and User Guide, STAE macro instruction). Register 2
will contain the address of the TCBX for the abending task. In a queue
pooling environment this will be the address of the QP TCBX. The user
exit routine is limited by the same restrictions as a normal STAE exit
routine.

The DUMP/NODUMP facility allows control of System ABEND dumps for all
load modules, for a group of load modules, or for an individual load
module., This facility will not suppress user ABEND dumps. It is

invoked by amn entry to the Input Message Processor (IMP) of the form:

+DUMP

r xx,STAE[,SLAVE]|] ,NODUMP {modulename,modulename,... }
+ONEDUMP,
+STEP

+OPTION

The first positional operand, STAE, is required and defines the reply
to the Input Message Processor as a command to the DUMP/NODUMP service
interface routine.

The second operand, SLAVE, is used by the Input Message Processor to
route the command to the DUMP/NODUMP service routine in the SLAVE
partition only. It is not a positional operand in that a null field
(double comma) is not required to denote its absence.

APPLICATION SERVICES 2-19

Examples:
r XX, 'STAE,NODUMP!

This IMP command will cause all system ABEND dumps to be suppressed
for the MASTER partition.

r XX,'STAE,SLAVE, NODUMP!

This IMP command will cause all system ABEND dumps to be suppressed
for the SLAVE partition.

The third operand is used by the DUMP/NODUMP service routine in
establishing the options that will be in effect for those modules This
operand is a positional operand, and its absence must be denoted by a
null field (double comma). If omitted, the DUMP option will be assumed
for those modules specified in this reply.

The valid options are:

DUMP - allows a dump to be taken for these modules (provided
there is a SYSUDUMP or SYSABEND DD statement).

NODUNMP - suppresses a dump from being taken for these modules.

ONEDUMP - allows one dump to be taken for these modules (provided
there is a SYSUDUMP or SYSABEND DD statement) then
suppresses any more dumps for that module.

STEP - ABENDs the job step if one of these modules ABENDs.

OPTION - allows the operator to choose whether or not to take a

dump following an ABEND of these modules. The operator
is informed of the ABEND via a WTQR (message 850) and
nust reply 'YES' to receive the dump.

The remaining operands, if any, are used to indicate the load module(s)
that are to be covered by the specified option. A maximum of 10 load
module names may be specified on any one reply. Null fields (double
commas) will not be accepted.

Example:

r xx,'STAE,NODUMP!*
r xx,'STAE,ONEDUMP,MODA, MODB

These two IMP commands will cause all system ABEND dumps to be
suppressed for the MASTER partition except ABENDs for modules MODA
and MODB. One dump will be taken for MODA on ABEND, and one dump
vill be taken for module MODB on ABEND after the command is entered.

The usc of a question mark (?) to terminate a load module name indicates
that the specified option is in effect for all modules beginning with
the portion of the name specified. The portion of the name specified
must be at least one character and must not exceed seven characters.

The modules are processed as a group and not as individual modules.

This means that if the ONEDUMP option is specified with the module nanme
DPP?, only one dump would be taken for the first module to ABEND with

a name beginning with the three characters DPP. Dumps will be
suppressed for any subsequent ABENDs for modules which have names
beginning with DPP.

Example:

r XX,'STAE,NODUMP!

2=20 Description and Operation Manual

r xx,'STAE,STEP,MODUL?

These two IMP commands will cause all system ABEND dumps to be
suppressed for the MASTER partition except that a system ABEND from
any module with a name beginning with MODOL will dump and will ABEND
the entire jobstep.

If no load module name is provided on a reply, the specified option
will be in effect for all l1oad modules regardless of any previous
DUMP/NODUMP service command. This will allow the option to pe reset
without having to cancel each previous command. Providing one or more
load module names will set (or reset) the option for only those modules
specified on that command. Any previous DUMP/NODUMP service commands
for other modules will not be modified and will remain in effect.

Note: The options in effect at the time of the ABEND are the options
that ¥ill be honored except that dumps for step ABENDs are not
suppressed. It should also be noted that the user exit roatine
invoked in response to the STAEX statement in the SYSINIT input
stream will receive control before the STAE option processing
is initiated. Any request by that routine to retry or bypass
STAE option processing will take precedence over the STAE IMP
conmand option in effect.

Upon abnormal termination of a subtask executing under the real-time

job step task, one of the Special Real Time Operating System STAE exit
routines (DPPSTAE) will gain control. This routine will then examine
the STAE command options in effect at the time of the ABEND to determine
vhether or not a dump should be taken for this task.

Upon termination of the real-time job step task, another Special Real
Time Operating System STAE exit routine (DPPISTAE) will gain control.
This routine will unfix any storage previously fixed by the DPPIPFIX
routine and clear the external interrupt handler flags. If the job
step terminating is a MASTER job, the corresponding SLAVE job is also
terminated (USER ABEND code of 41). 1If the job step terminating is a
SLAVE job, the corresponding MASTER job is located, and the MASTER
jobt's two-partition flags are turned off.

It is important to note that there are certain conditions in wvhich the
STAE routine is not given control when the real-time job step is
terminated (e.g., an operator CANCEL command) and these cleanup
functions cannot be executed. Therefore, the user must use care and
terminate a real-time job step by a reply to the Input Message Processor
of the fornm

r xx,CANCEL[,...]

If the SLAVE partition has terminated with a supervisor ABEND code of
122, 13E, 222, 322, or 722, an INP command of the form

r xx,CANCEL,SLAVE
will ensure that the two-partition flags in the MASTER partition will

be reset even though the SLAVE partition job is no longer active.

Dynamic Load Module Purge

The Dymnamic Load Module Purge Facility permits the system operator to
cause a load module, which has been loaded in response to one or more
PATCH requests, to be deleted from virtual memory. Thus, the user can
redefine a load module in the library (JOBLIB, STEPLIB, or LINKLIB)
and purge the in-memory copy, so that when the load module is next
requested, the new copy will be fetched. The redefinition may entail

APPLICATION SERVICES 2-21

replacing the existing copy of the load module or adding a copy on a
data set that is searched ahead of the one on which it was originally
found. The redefinition can be done in.a background partition or in

a backup System/370 which shares disks with the online System/370.
Through the use of this facility, the new load module can be integrated
into the online system without otherwise disturbing the job.

This procedure is not necessary for modules that are link-edited as
non-reentrant because they are fetched from the library for each
execution. 'Those modules that are represented in a system BLDL list
are not normally affected by this procedure since the disk address of
those modules is resolved at system IPL time and cannot be re-resolved
except by re-IPL. Those modules that are identified in a Resident
Access Method (RAM) list are loaded at IPL time and as such are also
not affected. This procedure affects only those modules that are
invoked through a PATCH or PTIME service and not those which may be
loaded, attached, linked, or XCTLed to outside of the PATCH interface.

Dynamic Load Module Purge is invoked by a reply to the Special Real
Time Operating System Input Message Processor.

r xx,DLMP,[SLAVE,]Jtime,modulename, modulenane...

DLMP defines the reply as a command to purge the modules specified.

Up to 10 module names may be specified with one command. If SLAVE is
specified, the purge operation is performed in the SLAVE partition; if
it is omitted, it is performed in the MASTER (or only) partition. A
time value may be specified on the command as a decimal integer between
0 and 1200; if omitted, a default of 2 is used. This value defines

the maximum number of seconds that the DLMP program will wait to allow
other tasks to complete execution of the specified load modules.
Therefore, this value plus the necessary time for all DELETE operations
is also the time that all other tasks with a request for one of the
specified modules may have to wait before they are permitted to use
their module.

In response to the request, the Dynamic Load Module Purge program
DPPTDLMP searches the TCB extensions for the Special Real Time Operating
System tasks that have requests for, or are currently using, the
specified load module(s). If the task is not currently using one of

the modules, it will not be permitted to resume using it until the

purge operation has been completed. If a task is currently using the
load module, a flag is set, and the current use is permitted to
complete, but the task cannot process another WQE that requests a module
in purge until the purge operation is completed.

However, only those tasks are quiesced that have a WQE on top of the
queue which requests a module that is in purge; every other execution
continues undisturbed. DPPTDLMP waits the specified time for the using
tasks to complete execution of the modules. If the time expires before
all tasks are through, the operation is abandoned, and messages DPP021
will specify the name of those modules that were not completed, plus
message DPP022 will specify that the operation is abandoned. If all
tasks complete using one or more of the specified modules in time,
DPPTDLMP causes the module(s) to be deleted and message DPP023 will
specify that the operation is completed. In either case, all tasks
that had been quiesced are then allowed to resume normal operation.

TIME MANAGEMENT

The Special Real Time Operating System provides time management
facilities to meet the requirements of a real-time operating systen.
The Special Real Time Opereting System time management services fall
into two major categories. First, the Special Real Time Operating

2-22 Description and Operation Manual

System time and date are maintained independently of the 05/VS1 time
and date. Second, the capability of issuing PATCHes on a cyclic time
interval is provided through the PTIME macro call. Figure 2-7 is a
block diagram of PTIME logic and control flow.

DPPCTSVC DPPCTIMA

PTIME DPPCT!
?IX'(F: ——> Array
(Type 2) Data N
Base

Time
Update
Routine

POST-

> PTQE € >

l DPPCPTIM

PTIME
Monitor

Issues
PATCH

Figure 2-7. PTIME Logic and Control Flow

A Special Real Time Operating System data base array, DPPCTIMA, contains
the Special Real Time Operating System time and date in several formats
as shown below:

+TINED DSECT

Rk K

+x TIME ARRAY DSECT

+ Xk

+TIMEHS DC F 0! TOD IN 10 MIL UNITS IN HEXADECIMAL
+TIMETOD DC F'O° TOD IN DECIMAL 10 MIL UNITS-HHMMSSTH
+TIMEJDAY DC F'O° JULIAN DATE-00YYDDDC

+TIMEMDAY DC F'O DAY OF MONTH DATE-OMMDDYYC

+TIMEEBC DC CL10' EBCDIC DATE-bDD/MNM/YY

The Special Real Time Operating System time and date can be synchronized
with an external time source or can be adjusted by manual inputs through
customer-written interface programs. The Special Real Time Operating
System time is updated at a periodic rate specified at the Special Real
Time Operating System system build. A PTIME macro call will return

the current Special Real Time Operating System time and the address of
the Special Real Time Operating System time data base array. The
address of the array can also be obtained from a pointer in the SCVT

at label SCVTTIME or from a GETARRAY macro call for array name DPPCTIMA.

The Special Real Time Operating System time management facilities
provide the ability to specify PATCHes which will be issued by a time
management task at the requested time intervals. The PATCH operands
(e.g., time of the first PATCH, interval between PATCHes) are defined
in the PTIME macro call. The PATCH may be issued only once at a
specified time or repeated for a specified number of PATCHes. Also
the PATCH may be issued repeatedly at a specified time:interval for an
indefinite period of time. The PTIME macro call can also be used to
nodify or delete a previously defined PTIME.

APPLYCATION SERVICES 2-23

There are three functional areas of the Special Real Time Operating
System time management.

e The PTIME macro and the resulting PTIME SVC, DPPCTSVC, provide the
user interface to time management.

¢ The time update routine, DPPCTIME, operates as an OS/VS task and
is responsible for maintaining the current Special Real Time
Operating System time in the data base array.

e The DPPCPTIM monitor routine, which also operates as an 0S/VS task,
is responsible for issuing the PATCHes requested via the PTIME
macro call.

The time management programs are described individually in the following
section.

PTIME Macro and PIIME S¥C
The PTIME macro provides the user with an interface to the Special Real
Time Operating System time management services.

PTIME can be used to cause a task to be given control at a given tinme,
cyclically at a given interval, or cyclically at a given interval from
time x to time y.

There are four types of PTIME service requests:

e RET -- This causes the system to return the current Special Real
Time Operating System time in register 0 and the address of the
Special Real Time Operating System time array in register 1.

Note: Since the time contained in the array is updated only at a
periodic rate, the time returned as a result of a PTIME RET
macro call will be more exact than the array value.

e ADD -- This causes the system to build a PTIME queue element (PTQE)
which exists independently of the creating task. This control
block contains all information required to issue a PATCH macro;
that is, the PATCH parameters are built according to the "PATCH
operands" specified on the PTIME macro and are contained in the
PTQE. The PTQE also contains information necessary for issuing
the PATCH at the specified time; and, if requested, repeatedly
reissuing the PATCH at a given time interval until the specified
number of PATCHes has been issued or until a specified stop time
has been reached. A PTIME ID may be supplied by the or assigned
by Special Real Tirme Operating System if omitted by the user. The
ID will be returned to the user in register 1.

Note: If the interval time is omitted or if the interval time is
less than the SYSGEN time interval used for updating the
Special Real Time Operating System time array, the SYSGENed
time interval will be substituted for the interval time.

e MOD -- This causes an existing PTQE to be modified. Since the PTQE
exists independently of the creating task, the PTQE is referred to
by a combination of task name, entry point name, and/or ID value
of the parameter referred to by the operands TASK=, TASKLOC=, EP=,
EPLOC=, and/or ID=. Either task name or entry point name must be
specified, but the remaining two are optional. An additional level
of identification, the PTIME ID, can be used to uniquely identify
a PTQE eventhough several PTQE's may exist with the same PATCH
parameters. However, if only a task name or an entry point name

2-24 Description and Operation Manual

is specified on a PTIME MOD macro call, all PTQEs with that name
are modified regardless of the original entry point name or task
name, respectively.

e DEL -- This causes an existing PTQE to be deleted. Since the PTQE
exists independent of the creating task, the PTQE is referred to
by a combination of task name, entry point name, and/or ID value
of the parameters referred to by the operands TASK=, TASKLOC=, EP=,
EPLOC=, and/or ID=. EPBither task name or entry point name must be
specified, but the remaining two are optional. An additiomal level
of identification, the PTIME ID, can be used to uniquely identify
a PTQE eventhough several PTQE's may exist with the same PATCH
parameters. However, if only a task name or eantry point name is
specified on a PTIME DEL macro call, all PTQEs with that name are
deleted regardless of the original entry point name or task name,
respectively.

For example, assupe that a given user program were to be executed
from a Special Real Time Operating System job step and assume that
the given program contained the folloving macro calls:

ONE PTINE RET

TWO PTIHE ADD,TASK=A,EP=X,ID=lU,...
THREE PTINE ADD,TASK=1,EP=Y,ID=5,...
FOUR PTIHNE ADD,TASK=B,EP=X,ID=5,...
FIVE PTINE MOD,TASK=A,EP=X,ID=4,...
SIX PTINE DEL,EP=X,. ..

Macro call "ONE" cagses the current time and the address of the Special
Real Time Operating Systeam time array to be returned to the user.

Macro call "TWO" causes a PTQE ¢o be built so that PATCHes could be
issued for task A, entry point X with an ID of 4.

Macro call "“THREE" causes a PTQE to be built so that PATCHes could be
issued for task A, entry point Y, with an ID of S.

Macro call "POUR" causes a PTQE built so that PATCHes could be issued
for task B, entry point X, with an ID of 5.

Macro call "FIVE" causes the PTQE built by macro call "TWO" to be
modified.

Macro call "SIX" causes the PTQEs built by macro call "TRO" and "FOUR"
to be deleted.

Note: If the PTQPE is specified by a combination task name, entry point
name, and/or ID value cannot be located on a PTIME MOD or DEL,
no action is taken by the system, and the user is notified of
this condition by a return code of 8. That is, it had not been
previously defined by a PTIME ADD, it had been deleted through
a PTINE DEL, it had reached the specified STOP time, or it had
issued the specified number of PATCHes.

The PTINE macro allows the user to specify a time to begin issuing
PATCHes (START=), a time to cease issuing PATCHes (STOP=), or a total
number of PATCHes to be issued (count=), and a2 time interval betWeen
PATCHes (INTERVAL=). All time values are specified in the same format.
The time is specified explicitly by hours, minutes, secoands, or any
combination of the three. The time value must not exceed 24 hours.

APPLICATION SERVICES 2-25

Por example, if a relative start time of three hours is required, the
PTIME macro could be coded in any of the following three foras:

PTIME START=(3H),...
PTIME START=(180M),...
PTIME START=(1H,60K,3600S),...

If a relative stop time of 1 hour, 3 minutes, 1 and 1/2 seconds is
required, the PTINE macro could be coded as:

PTIME sTOP=(1H,3N4,1.55), ...

If four PATCHes are to be issued regardless of the start time, the
PTIME macro could be coded as:

PTINE COONT=4,...

In addition to explicitly coding the time fields within the PTINE macro,
the required time values may be loaded in a register or contained in

a fullword at the address specified. Hovever, the time values must be
specified in binary hundredths of secomds to use either the register

or address form of the PTIME macro.

For example, the following sequence of code

LA 3,5
PTIME START=(A=ASTART),COUNT=(3),..-

ASTART DC F'S500"

vould cause five PATCHes tn be issued with a relative start tisme
of five seconds.

To allow greater flexibility in controlling the time of the PATCHes,
three suboperands are permitted with the START= and STOP= keyword
parameters of the PTIME macro.

e REL -- This suboperand is used to indicate that the time value is
relative to the current Special Real Time Operating System time.
That is, the time value in the keyvord parameter is added to the
current Special Real Time Operating System time to determine the
correct start or stop time. This is the default suboperand.

e TOD -- This suboperand is used to indicate that the time value is
time of day value. That is, the first PATCH will occur when the
Special Real Time Operating System time is equal to the time of
day specified in the remainder of the operand. If this time value
is less than the current Special Real Time Operating System time,
thea the first PATCH will not be executed until the next day.

e ADJ -- This suboperand is used to indicate that the time value is
an adjusted time of day value. That is, if the specified time
value is less than the current Special Real Time Operating Systen
time, then the time of the first PATCH is calculated by repeatedly
adding the time value of the INTRVAL= operand to the specified tinme
value until the sum is greater than the current Special Real Time
Operating System time. This prevents the possibility of
uniatentionally specifying a TOD less than the current Special Real
Time Operating System time and the first PATCH not occurring for

2-26 Description and Operation Manual

almost 24 hours. If the specified time value is greater than the
current Special Real Time Operating System tiee, the n processing
would proceed as if the TOD suboperand had been coded.

Assume that the current Special Real Time Operating System time is
11:05, and the following PTINE macro call vas executed:

ONE PTIME START= (TOD, 10H) ,STOP=(ADJ, 10H, 30M8) ,INTRVAL=(1H) ,...

PTINE macro call "ONE" would cause a PTQE to be built with a start time
of 10:00. Since this is less than the current time, a 24-bour value

is added to the start time so that the actual start time is 10:00 of
the following day. The specified stop time (10:30) would be adjusted
to 11:30 (i.e., 10:30 plus the interval of 1 hour). Since the stop
time would be less than the start time, a 24-hour value is added to

the stop time so that the actual stop time would be 11:30 the following
day.

The remaining PTIME operands are identical to the PATCH operands, and
their functions are described in the PATCH macro documentation. Two
restrictions should be noted.

1. QPOS=DPATCH cannot be specified. LAST will be substituted.

2. PREE= Can be specified, but the PREEMAIN will not be executed
until the PTINE queue element (PTQE) generated by this PTIME is
deleted. If the PTQE is not repeating, this will be like a
normal PATCH.

NHote: 1In response to a PTIME DEL request or a return code greater than
8 on the resulting PATCH macro call, the FREENMAIN vill be
executed when the PTQE is deleted, regardless of any outstanding
vork requests. This may result in abnormal termination of a
program trying to reference the area that has been freed.

Time Update Routine

The time update routine executes under a high priority task and is in
a continuous loop repeating at a rate specified during the Special Real
Time Operating Systeam systea generation. Each execution causes the
time value in the data base to be updated. The value retrieved from
the Systen/370 TOD clock is adjusted by a conversion factor so that
the Special Real Time Operating System time can be maintained
independently of the 0S time routine. The time update routine detects
any inconsistency between the TOD clock and the Special Real Time
Operating System time. If an inconsistency is discovered, a new
conversion factor is calculated to correct the Special Real Time
Operating Systea time.

After the current Special Real Time Operating System time has been
calculated, the time update routine determines whether a PTQE requires
servicing, and if so, the PTIME monitor routine is notified.

PTINE Use of the Clock Comparator

The PTIME time update routine normally controls its execution rate by
issuing STIMER to delay for the specified amount of time. Optionally
the PTINE time update routine can be directed to use the optional clock
coaparator feature of the System/370, if 0S/VS1 is generated to not

use this feature. This feature is selected by coding CLOCKCP=YES in
the VS macro of the Special Real Time Operating System SYSGEN. PTINE
usage of the clock comparator, if selected, is available to the first
single partition real-time job step that enters the system or to the

APPLICATION SERVICES 2-27

first "MASTER" partition to enter. Use of the clock comparator saves
STIMER overhead. 1If other Special Real Time Operating System real-time
jobs are also run at the same time, they will use the STIMER interface.

2-28 Description and Operation Manual

PTIMFE Monitor Routine

The PTIME monitor routine is responsible for issuing PATCHes requested
via a PTIME macro call. All active PTQEs with the time of the next
PATCH less than the current time plus the SYSGENed update interval are
serviced by issuing a PATCH. If the PTQE is repeating and the count
of PATCHes has not been exceeded, the next PATCH time is calculated;
otherwise, the PTIME request is terminated, and the PTQE is deleted.

Time Drift Correction

Many real-time systems require highly accurate maintenance of time of
day. The System/370 TOD clock is susceptible to a certain amount of
drift. As a result, a user may wish to correct this drift by using a
highly accurate external time source to correct for TOD clock drift.
The time drif¢ correction feature of the Special Real Time Operating
System allows for correction of long term drift in the System/370 TOD
clock. Time drift correction is optionally selected during the Special
Real Time Operating System SYSGEN if supvort is required for an extermal
time source. To include time drift correction in the Special Real Time
Operating System, the TIMEEXT keyword on the VS macro of the Special
Real Time Operating System SYSGEN must be coded to specify the external
signal line (2-7) on which the time interrupt will occur. Tte external
time source may then interrupt the Special Real Time Operating System
at the given frequency and allow for correction.

Time drift correction operates as a Special Real Time Operating System
subtask with a module name DPPDRIFT. The feature operates by accepting
external interrupts from the erternal source on a periodic basis from
one per second to one per ten minutes. A period of one interrupt per
minute is recommended. To create a time interval of other than one
minute, the required value must be specified in the TIMERAT keyword of
the VS macro during the Special Real Time Operating System SYSGEN.

The external interrupts are assumed to be accurate. If the external
time standard is not accurate, the TOD clock will appear to have
excessive drift. An allowance is made for discrepancies caused by
delay in the handling of the interrupt. This type of delay can occur
if the interrupt arrives at a point in time when the CPU is disabled
for external interrupts.

Drift corrections are made by passing adjustment factors to the Special
Real Time Operating System time routines which update the Special Real
Time Operating System time conversion factor, not by altering the TOD
clock. Time drift correction does not supply any initial times, it
merely accounts for long term drift. The function of passing an
adjustment factor and the functional relationship between time drift
correction and the Special Real Time Operating System time management
is i1llustrated in Fiqure 2-8 below.

APPLICATION SERVICES 2-29

SPECIAL REAL TIME OPERATING SYSTEM TIME MANAGEMENT

> DPPCALCF
DPPCTIME

Time Array DPPCUPCF

Correction
Factor

DPPDRIFT

PATCH
EP = DPPCUPCF

Figure 2-8. Time Drift-Special Real Time Operating System Time
Relationship

The maximum correction made at one instant is 50 milliseconds; the
minimum is 10 milliseconds. Errors of greater than 50 milliseconds

are spread over succeeding corrections until the time error has been
corrected. Small differences in which the TOD clock appears fast are
not corrected immediately, as the difference may be due to processing
or interrupt lockout time. These errors are averaged over many
interrupts before the correction is made. Errors in which the TOD
clock appears to be behind are always adjusted immediately. Interrupts
indicating errors in excess of one second are ignored. Resetting of
the Special Real Time Operating System time (PTIME) by an application
prograa has no effect on drift accounting. The resetting of the TOD
clock by a user program, hovever, wWill cause unpredictable results. A
malfunction in the TOD clock that causes condition code settings of 2
or 2 on an OS STCK instruction will cause the termination of time drift
correction.

Time drift correction supplies a user interface to allow a user's
program to set current time. The first external signal time interrupt
following the completion of initialization causes a LINK to DPPDRIFE.
On entry to DPPDRIFE, general register 1 points to a doubleword
containing the value of the TOD clock at the time of the external time
interrupt. The module DPPDRIFE supplied by the Special Real Time
Operating System is a dummy, and the user may replace with a module to
set initial time. Using standard 0S linkage conventions, DPPDRIFPE can
issue a PATCH to the Special Real Time Operating System time management
to adjust the conversion factor (see Figure 2-8). The format of the
data to be passed is described in the Special Real Time Operating System
Program Logic Specification.

Warning: By whatever means the user version of DPPDRIFE determines
the desired system time, the user must be aware that the
time of its determination is some time later than the time
stored at interrupt time. The amount of delay can be
determined by reading the TOD clock and subtracting from it
the value passed as a parameter (pointed to by register 1).

2-30 Description and Operation Manual

Drift correction is available to the first single partition Special
Real Time Operating System real-time job that eanters the system or the
first "MASTER" partition to enter. If more than one Special Real Time
Operating System is run on the same 0S/VS1 system, time correction will
be suppressed for the other Special Real Time Operating System systens.
Thus for testing purposes, an application should be coded such that

its DPPDRIFE routine does not have to be executed for the application
to function. Time drift correction is never available to "SLAVE"
partitions, as SLAVE partitions use their MASTER partitions time
management tables.

REAL TIME MESSAGE HANDLER

The Special Real Time Operating System provides facilities for defining
a series of messages by means of an offline utility program. These
messages can later be modified and issued in real-time. All messages
can be predefined and kept in a partitioned data set on a direct access
storage device. This allows for easy modification of messages without
making changes to functioning programs. It also allows for easy
translation of all messages to other languages and avoids duplication
of messages. The data set is created and updated by the offline utility
program (DPPXUTIL)Y. It is used online only as input to the message
writer. Although this data set is built by the offline utility, it is
a normal partitioned data set and none of tle data base data set
restrictions apply to it. There are two components to the real-time
message handler: offline processing and online message processing.
This is illustrated in Figure 2-9.

%
] 1
' :
1
Offline H Message H Message
Utility | Data Set ! Writer
: :
) L}
! > E
[}
1 1
] i
—_—r> —_—>
DEFMSG H PDS H Message
H :
1 1
])
) 13
) 1 .
Offiine ' H Online
1]

Figure 2-9, Real Time Message Handler Comporents

Offline Processing

The DEFPMSG macro is used to define messages to the offline utility
program that processes the macro and places the resultant skeleton
message in the message data set. For further information on the offline
utility, refer to the section entitled "Offline Utility Program". The
DEFMSG macro defines a unique message number, the routing code, action
code, a date indicator, and the message text.

The message number identifies a specific message and is the means by
which online programs refer to that message. The message number has

a range from 001-999. The Special Real Time Operating System messages
fall within the range of 001-099 and 800-899. The user should not
assign message numbers in these ranges. Related PRPQs should restrict
their messages to a defined range. This is by convention only, and no
restrictions are placed on the user's message numbers.

The routing code (ROUTE=) is used to specify the output device to which

the message is to be written. At the Special Real Time Operating System
SYSGEN time, routing codes are established to identify the output device

APPLYCATION SERVICES 2-31

The routing code has a range of 1-255. It can also identify a user
program as a device, in which case the message is passed to the progranm
as a PATCH parameter. A routing code must be specified with the DEFMSG
macro. A routing code of 255 results in a no-operation (255 goes to

no output device).

The action code (ACT=) identifies the type of action that the message
requires. ACT=I identifies the message as being informational only.
ACT=A means that some action is required. ACT=D requires a decision
to be made. These codes cause no action within the message output
process but are intended for user information.

The date indicator (DATE=) is the date that the message was issued from
an online program. The date can be included (DATE=YES) or excluded
(DATE=NO) . DATE=NO is the default.

The messace text (TEXT=) contains the text of the message to be written
or passed to a PATCHed program. Within the text, there can be variable
data. The variable data will be inserted when the message is issued
online. Variables are specified to appear in the message by coding,

in the message definition, information in the following format:

#cfs#

where: # (pound sign) is a delimiter character and must appear before
and after the other specifications. No blanks are allowed
between them.

c defines the number of characters to be occupied by tkis
variable in the output message.

f defines the type of data conversion to be performed on the
data being output.

s specifies the position of this variable in the variable list
that is passed by the calling program when the message is
selected for output.

The following are examples of the use of the DEFMSG macro.

EXAMPLE 1: DEFMSG 307,ROUTE=10,ACT=I, DATE=YES,TEXT='THIS MESSAGE HAS
' NO VARIABLES'

This defines message 307 as being informational; a routing code of 10,
and the time and date which are to be inserted when the message is to
be written.

EXAMPLE 2: DEFMSG 2,ROUTE=250,ACT=D,DATE=NO,TEXT='PROGRAN #8C1#
fIAS TERMINATED. SHOULD PROGRAM #8C2# CONTINUE?®

This defines message 2 which has a routing code of 250. The date will
not be formatted in the message, and the text contains two character
variables.

EXAMPLE 3: DEFMSG 50,ROUTE=1,ACT=D,TEXT='MSG #3C3#%# HAS FIVE VARIABLES:
#2F1#, #1H2#, #6BU#, #5X5%'

Message 50 will require a decision, has a routing code of 1, will not
print the date, and has five variables:

1. #2F1# is the first variable with a length of 2 characters and

integer format, and the user will provide a fullword for
conversion.

2-32 Description and Operation Manual

2. #1H2# is the second variable with a length of 1 character,
integer format, and the user will provide a halfword for
conversion.

3. #3C3#% is the third variable with a length of three characters,
and the user will provide 3 EBCDIC characters to be inserted.

4. #6B4# is the fourth variable with a length of 6 characters,
binary format, and the user will provide one byte for conversion
{(the six low order bits of the byte will be converted).

5. #5X5# is the fifth variable with a length of S characters,
hexadecimal format. The user will provide 3 bytes of data for
conversion (the five low-order hexadecimal digits will be
converted) .

Online Processing

Messages are retrieved, formatted, and written during online processing
through the MESSAGE macro. W®ith the MESSAGE macro¢, options selected

by the DEPMSG macro can be overridden, or omitted from the MESSAGE
macro, and the DEFMSG options taken. The AREA= operand will indicate
that the message is to be returned to the user specified area. The
area should be defined at least to the maximum length of the message
plus two bytes. The length of the message is put into the first two
bytes of the virtual storage specified by AREA= and the formatted text
in the remaining bytes.

The maximum message length that can be moved is 255 characters.

If the message contains variables, the user passes the data to be
inserted in the message (VAR=). The data is inserted in the order
presented into the variables fields defined by the DEFMSG macro (see
examples below).

In online processing, a message can be output to several devices by

two methods. The MESSAGE macro allows up to 8 routing codes to be
specified and the MSGRC macro of the Special Real Time Operating System
SYSGEN can be included, for a given routing code, several times, each
time specifying a different device.

If a message is issued to a routing code that does not exist, no attempt
is made to output the message, and a return code of 12 is returned to
the user. WKhen a message is issued to nultiple devices, and one of

the devices is out-~of-service, an attempt will be made to issue the
ressage to the backup (alternate) device defined during SYSGEN. The
cut-of-service route code does not affect the other route codes. The
message will still be output to these devices.

The format of the message is an identifier, time, and date (if
requested), and text. The identifier is:

DPPrnna

where: nnn is message number
a is the action code

The time and date are represented by:
HH:MM:SS.t DD/MMM/YY
vhere: HH is hour

MM is minutes
SS is seconds

APPLICATION SFRVICES 2-33

t is tenths of seconds
MMM is month

DD is day

YY is year

The message will be truncated to conform to the line length of the
device selected by the routing code.

When a message is routed to a user program, the PATCH parameters and
the message will be in the following format.

Register 1
GPR1 = XCVT
RESOURCE

PATCH

PROBL 0 2 4
LGTH ID

" Formatted
1 Message 0 2
> Lg;h Formatted

Message Message

Length - Length of PROBL

Lgth of Message - Length of Message
.4 - Address

ID - PATCH ID

Note: All messages issued prior to the processing of a RESTART card
and during initialization will be written to the system console.
After the RESTART card is processed or if there was no RESTART
card, the messages will be routed to their respective routing
code devices.

The following examples of the MESSAGE macro show the resulting messages
for the previously defined DEFMSG macro.

EXAMPLE 1: MESSAGE 307,ROUTE=(1,2,3) ,ACT=A,AREA=MSG. 1In this exanmple,
message 307 will be routed to the devices identified by routing codes

1, 2, and 3. The routing code on the MESSAGE macro overrides the ROUTE=
from the DEFMSG macro. The formatted message will be returned to the
user area labeled MSG. The resultant message will appear as follows:

DPP307A 14:37:21:92 07/JAN/73 THIS MESSAGE HAS NO VARIABLES

EXAMPLE 2: MESSAGE 2,VAR=((7),(8))- 1In this example, message 2 will
be routed to the device or program for routing code 250. The date will
not be printed. The message will require a decision. The registers

(7 and 8) point to areas in virtual storage from which eight characters
¥ill be moved into the message variables before the message is written.
Assuming that register 7 points to the eight characters TIMECALL, and
register 8 points to the eight characters CORRFACT, the resultant
message would appear as follows:

DPPO02D 12:22:20:21 PROGRAM TIMECALL HAS TERMINATED.
SHOULD PROGRAM CORRFACT CONTINUE?

EXAMPLE 3: MESSAGE 50,ROUTE=({21, 1) ,ACT=I,VAR=(A,B,C,D,E). In this
example, message 50 will be routed to the devices or programs specified
by 21 and 1. The message consists of information, overriding the DEFNSG
action A. The date will print as YES on the default. Assuming the
following pointers:

2-34 Description and Operation Manual

fullword integer = DC F'320!
halfword integer = DC H'9!
character DC C'00u4"

binary integer DC Bf011011!
hexadecimal DC X'Cal 20!

Mo N m>»
oo ouwon

The resultant message would be:

DPPOS50T 14:39:20:07 07/FEB/71 MSG 004 HAS FIVE VARIABLES:
320,09,011011, CA420.

Message Routing Code Status Change Facility

The Message Routing Code Status Change Facility provides a service
which allows the user to place a routing code in or out of service.

The facility will also provide upon request the status of one or aill
of the routing codes in the Special Real Time Operating System message
handler.

The facility is activated by an Input Message Processing (IMP) command.
The format of the command is:

MSGRC, lrc,} N

0 ouT {raltrc]
STATUS
STATALL
MSGRC Informs the IMP routine that this reply is for the
Message Routing Code Status Change Facility.
rc Routing code.
0 This parameter is 0 if STATALL is specified.
IN Place rc in service.
ouT Place rc out of service.
STATUS Display the status, via a system message, of the

specified routing code (rc).

STATALL Display the status, via a system message, of all the
routing codes in the systenm.

altrc The routing code to which messages are directed should
the primary routing code be out of service or the output
operation fail. This parameter is recognized only if
IN or OUT is specified.

REPORT DATA OUTPUT FACILITY

A facility is provided to transfer report data which is ultimately
destined to be printed, from one or more working data sets to a QSAM
supported output data set.

The Report Data Output Pacility will write the data as it is generated
to working data sets (QSAM data set on any QSAM device). Subsequently,
the data may be transfered to a print device. The data could be
collected from several working data sets by the report data output
facility and written to another data set to be printed by a job step
in another partition or another computer which shares direct access
(DA) devices with the online computer.,

APPLICATION SERVICES 2-35

INPUT
WORKING
DATA
SET

S

INPUT
WORKING REPORT COMPOSITE
DATA ot OUTPUT

SET DATA
FACILITY SET

Y

INPUT
WORKING
DATA
SET

~

Figure 2-10. Report Data Output Facility Overview

All input and output data sets used by the Report Data Output Facility
must be BSAM data sets. The maximum record length must not be greater
than 255. For a unit record device the BLKSIZE and LRECL must not
exceed the maximum for that device. The Report Data Output Facility
is invoked through IMP commands.

ADD
REPORT,[SLAVE] { NEW‘}] ,OUTPUT DDNAME, INPUT DDNAME,
[INPUT DDNAME,...INPUT DDNAME |

REPORT
Informs the input message processing routine that this reply is for
the Report Data Output Facility.

SLAVE
Indicates the PATCHed routine is to run in the SLAVE partition.

NEW
Report Data Output Facility starts writing data at the beginning of
the output data set.

ADD
Report Data Output Facility adds all data at the end of the output
data set.

OUTPUT DDNAME
A DD name which points to a QSAM data set to be used as the output
data set. The BLKSIZE of the data set must be equal to or greater
than the maximum BLKSIZE of the input data sets.

INPUT DDNAME

A DD name which points to a QSAM data set to be used as an input data
set. A maximum of 10 input DD names may be specified.

2-36 Description and Operation Manual

INPUT MESSAGE PROCESSING

The Special Real Time Operating System provides a facility to allow

for operator--Special Real Time Operating System communication or for
the operator to communicate with a subsystem. This facility is the
Input Message Processor (IMP). The Special Real Time Operating Systenm,
during initialization, issues a WTOR and leaves the reply outstanding.
At a later time, the operator may reply with a predefined IMP command.
This IMP command is defined at SYSGEN by the IMP macro and also defines
the action the Special Real Time Operating System is to take upon
receiving the IMP code. The following example shows the sequence of
events and alternate methods of invoking Input Message Processor.

OPERATOR
REPLY TO
WTOR

INPUT MESSAGE
WTOR ROUTINE
DPPXIMPW

OR

PATCH CARD
IN INITIALIZATION
INPUT STREAM

INPUT MESSAGE A PREDEFINED

PROCESSING SRTOS OR

OR > ROUTINE SUBSYSTEM
DPPXIMPP ROUTINE
PATCH FROM
A USER
PROGRAM

Input Message Processing will accept IMP commands in the following
format: “code,parami,param2,...,paramn” where code is the command word
defined during SYSGEN by the IMP macro. Param corresponds to the
parameters defined by the IMP macro. Any parameters may be omitted by
entering double commas (null parameters). The command will be compared
with entries in a table (an array in the data base). This table
contains valid IMP commands, the names of the task and load module
which process the command (the program to be PATCHed)}, PATCH ID, and
parameter conversion codes. If the IMP command is valid, Input Message
Processing will patch the appropriate task with the specified input
parameters.

New commands can be added to the table through SYSGEN. Input Message
Processing will accept commands from several different sources (as a
reply to a WTOR, through a PATCH macro and initialization PATCH Input
Cards). The different ways of entering IMP commands are described
below. The keyword SLAVE in all cases is optional; and if omitted,
should not have the comma included to represent its absence.

* Input Message Processing will issue the following WTOR: ¢
Input Message Processing Awaliting Reply'. In response to this
WTOR, the operator car issue an IMP command. There will always be
an outstanding WTOR in the system. In response to an IMP command,
Input Message Processing will issue the fpllowing message (WTO).
IMP COMMAND RECEIVED.
The IMP commands are in the following formax:

r xx,command,sLAVE,paramj,param2,...,paramn

APPLICATION SERVICES 2-37

where r xx, is the format required by 0S/VS.

e IMP commands issued through initialization PATCH input cards must
be in the following format:

P1 PATCH EP=DPPXIMPP,ID=0
PARAM= (C'comrmand,SLAVE,paraml, param2,...,parang

EP=DPPXIMPP The entry point of the input message processing
routine. No TASK= parameter is specified because
the task pust be dependent.

ID=0 The ID must be O.
PARANM= (C'imp comuwand') is the IMP command to be processed.
SLAVE The command is to be processed in the SLAVE

partitioun.

e IMP commands issued through a PATCH macro must be in the following

format:
L r,ADDR
P2 PATCH EP=DPPXIMPP,ID=1,PARAM= ((r))
ADDR DC AL 1(LGTH) , AL3 (IMPCODE)
IMPCODE DC C'COD®,SLAVE,parami,param2,... ,paramn
where:
ID = 1 The ID must be 1 when entered through PATCH macro.
ADDR This is a U4-byte area. The first byte contains the
length of the IMP command and the next three bytes
contain the address of the IMP command.
r Register 2-12
IMPCODE The IMP commang.

The followving example shows the parameters as they would appear when
the task which is patched as a result of the IMP command gains control.
If no parameters are passed, there will be no parameter pointer. A

null parameter results in a zero address being passed for the parameter
address.

2-38 Description and Operation Manual

REGISTER 1

XCVT

PROBL
0 2 3

t RESOURCE TBL

LENGTH UNUSED| ID
t PARAMETERS ’/,,’/”’4'

LL 4 PARM

PARAMETER

}

The address of a parameter.

LENGTH = Length of PROBL plus PARMS.
ID = ID specified during SYSGEN.
LL = Length of this parameter.
PARM = ADDRESS of parameter.

Note: The first LL and PARM parameters may contain zeros if only the
last parameters of a multiparameter IMP code are specified,
example:

‘code,,,param3, parami‘.

When only the first parameters of a multi~parameter IMP code
are specified, the last parameters defined during SYSGEN by IMP
macro will be ignored. A comma followed by a comma(,,) with no
intervening character constitutes a null parameter.

EXAMPLE 1: This example shows an IMP command being defined:

SYMBOL IMP CODE=EXAMPLE1,TASK=DPPTEST,
LM=DPPTEST,ID=0,
PARAM= (C10,F4,X3)

In this example, an IMP comrand is defined with a command word of
EXAMPLE1. DPPTEST will accept three parameters:

1. a character parameter of length 10.
2. a fullword parameter of length 4.
3. a hexadecimal parameter of length 3.

For more details on defining IMP commands see the section on SYSGEN
macros (IMP macro).

APPLICATYION SERVICES 2-39

EXAMPLE 2: 1In this example, the IMP command defined in EXAMPLE 1 will
be entered through the system console as a reply to the WTOR "INPUT
MESSAGE PROCESSING WAITING ON REPLY".

r xx,'EXAMPLE1,SLAVE,START!

SLAVE parameter says DPPTEST is to execute in the SLAVE partition.
When DPPTEST is entered, the parameters will be in the following
format:

b IS A BLANK

REGISTER 1 j ‘ 0 2 3

C 4 XCVT 10 4 PARM :
4 RESOURCE TBL
4 PARAMETERS C START bbbbb

EXAMPLE 3: In this example, the IMP command defined in EXAMPLE 1 will
be entered through the initialization input streanm.

PATCH EP=DPPXIMPP,ID=0,
PARAM= (C*EXAMPLE1, START,,12")

When DPPTEST is entered, the parameters will be in the following format:

REGISTER 1

XCVT
4 0 2 3
RESOURCE TBL
t PARAMETERS
10 4 PARM
0000
3 t PARM
L» START bbbbb
000012
B IS A BLANK

2

40 Description and Operation Manual

EXAMPLE 4: 1In this example, the IMP command defined in EXAMPLE 1 will

be entered by a PATCH macro.
The IMP code follows:

L r,ADDR
P1 PATCH EP=DPPXIMPP,ID=1,PARAM=((r))

ADDR DC AL1(21),AL3 (IMPCODE)
IMPCODE DC C'EXAMPLE1, START,708,12°*

When DPPTEST is entered, the parameters will be in the following format:

REGISTER 1

’

XCVT
! RESOURCE TBL 0 2 3
/ 16 0 0
t PARAMETERS
10 t PARM
4 t PARM
3 t PARM
L—. START bbbbb
00000708
000012

b 1S A BLANK

APPLICATION SERVICES

2-41

DATA BASE MANAGEMENT

The Special Real Time Operating System data base is designed to fulfill
the needs of data storage and access of a realtime operating systen.
The Special Real Time Operating System data base subroutines provide
the user with an interface to the information contained in the data
base. Through the use of these subroutines, data may be retrieved from
or replaced in the data base. In addition, sections of the data base
may be copied to a direct access device to provide an historical log.

Tte data base consists of data items which are logically grouped into
arrays. These arrays may also contain one or more blocks of related
information. Each block is identical in size and shape to every other
block within that array. For example, assume that the temperature and
volume are to be monitored for three separate storage tanks. The two
items (temperature and volume) can be grouped into one block. Three
blocks (one for each storage tank) can be grouped into one array. This
array can then be logged on a cyclic time interval to provide a history
of the contents of the storage tanks as shown below.

Block If Item A - Temperature
Storage Tank 1 Item B - Volume

Block 2 lItem A - Temperature
Storage Tank 2 Item B - Volume

Block 31 Item A - Temperature
Storage Tank 3 Item B - Volume

The Special Real Time Operating System arrays can either reside in VS
or on a DA device. Duplicate data set support will be provided for
all data base data sets (i.e., data sets containing DA resident arrays).
However, it is the user's responsibility to ensure that the data base
data sets do indeed meet the requirements for duplicate data set
support, to create the required backup data set(s), and to identify
these data sets through the normal duplicate data set input stream
(refer to the section entitled "Duplicate Data Set Support" for a
detailed description of duplicate data set). VS resident arrays nay
either be blocked or nonblocked arrays and are eligible to be logged.
All DA resident arrays must be blocked and cannot be logged. An array
that contains a copy (or copies) of a loggable VS resident array is
called a log array. All log arrays must be DA resident. All arrays
must be defined by the offline data base utility which is discussed in
detail in the section entitled "Offline Utility Programs."

The data base utility builds two data sets: (1) a data base
initialization data set containing all the information necessary for
the online data base initjialization routine to construct the required
control blocks, and (2) a composite items data set containing all the
information necessary for the online data base subroutine to locate a
particular item or items.

During a normal start, i.e., when the job is initially started through
standard 05/VS1 Job Control statements with the EXEC card specifying
PGM=DPPINIT, the data base initialization program will read in the
initial data for all VS resident arrays that specified "INIT=YES" on
the ARRAY macro in the offline utility phase. Those VS arrays for
which "INIT=YES" was not specified have VS storage space allocated,
but no data is moved into the space.

buring a refresh start, i.e., when the job is reinitialized from a

restart data set, or during a normal start when the SYSINIT input streanm
does not contain a "DBREF NO" control statement, the data base

2-42 Description and Operation Manual

initialization program will refresh all VS resident arrays that
specified "REINIT=YES" and that requested logging in the offline utility
phase with the last logged copy of that array. The log arrays are
initialized to resume logging with the last logged copy of each loggable
VS resident array.

Note that VS resident arrays are arranded in virtual storage by the
USE code specified during offline utility processing. Arrays with
similar USE codes are grouped together in virtual storage. This is
intended to optimize the use of real storage by improving the
probability that the high usage arrays will remain in real storage.
Grouping high usage arrays will cause them to be distributed in a
smaller number of pages to reduce the number of page faults.

Data Base Access Routine

Access to the data base is achieved through a set of six macros:
GETITEM, PUTITEM, GETBLOCK, PUTBLOCK, GETARRAY, and PUTARRAY as shown
in the following example.

' 1
1 1
1]
User H Data Base H
Program ! Subroutines !
) 1
: :
H ! Composition
H » DPPDITEM $ Items >
! ! Data Set vs
GETITEM 1 ' 4
1 ' Resident
PUTITEM : ! Array
i H
T T
1 1
) 1
] 1
1 1
) 1
) i
1 1
1)
) 1
H H DA
¢ DPPDBLOK : > A
rray
| H or VS
GETBLOCK ' ' Resident
PUTBLOCK H H Blocked
H H Array
1 1
< 1 1
i)
1 1
) 1
) 1
H)
: DPPDARAY 4 >
' H VS
GETARRAY ! ' Resident
PUTARRAY 1 I Non Blocked
H H Array
”2 (] & ‘l
) 1
1 1
1 1
1 1
) t
' !
GETITEM

The GETITEM macro can be used to retrieve certain inforxation from one
or more items in the data base. This information is stored in the
address indicated by the DATA= keyword parameter. The user may request
that the address within the data base of the item(s) and length of the
item(s) be retrieved (TYPE=ADDR) or that the data contained in each
item be returned (TYPE=DATA). TYPE=DATA and TYPE=ADDR are valid for
direct access resident arrays. For blocked arrays, the user must
specify the number assigned to the data block which contains the iten
(BLKN=number) . The item or items for which information is to be
retrieved is indicated with the NAME=, NAMELST=, or ADDRLST= keyword
parameter. The NAME= keyword parameter is an 8-character name of a
single item for which information is to be retrieved. The NAMELST=
keyvword parameter specifies the address of a list of 8-character item

APPLICATION SERVICES 2-43

names for which information is to be retrieved. The ADDRLST= keyword
parameter specifies the address of a list of data base item addresses
which were returned from a previous execution of this macro with NAME=
or NAMELST= specified and TYPE=ADDR. The PROTECT= keyword parameter
allows the user the option (PROTECT= YES) of preventing other programs
from modifying the data base during the execution of this GETITEM. If
PROTECT=RISK is specified, the information will be moved without regard
to other programs which may be storing into the data base.

The following exanples indicate how the GETITEN macro may be used to
retrieve information.

GETITEM NAMELST=A, TYPE=ADDR, DATA=B
GETITEM ADDRLST=B, DATA=C,TYPE=DATA, PROTECT=YFS...
A DC CLB*ITEM1'
A1 DC CLBYITEN2'
DC X'FF!
B DC A (0)
B1 DC A (0)
DC 4XIPF
C DC CL167 ¢
c1 DC c132¢ v

The first GETITEM will move the length and address of items ITEM1 and
ITEM2 into the data fields B and B1, respectively. The second GETITEM
will move the data associated with the items whose addresses are
contained in the address list fields, B and B1, into the data fields,
C and C1, respectively. Therefore, data associated with ITEM1 will
have been moved into C, and data associated with ITEM2 will have been
moved into C1.

PUOTITEM

The PUTITEM can be used to store data into one or more items of the

data base. This data is moved from the address indicated by the "DATA="
keyword parameter. For blocked arrays, the user must specify the number
assigned to the data block which contains the item (BLOCKNO=number).

The item or items for which data is to be stored is indicated with the
NAME=, NAMELST=, or ADDRLST= keyword parameter. The NAME= keyword
parameter is an 8-character name of a single item for which data is to
be stored. The NAMELST= keyword parameter specifies the address of a
list of 8-character item names for which data is to be stored. The
ADDRLST= keyword parameter specifies the address of a list of data base
item addresses as returned from a previous execution of a GETITEM macro
with a NAME= or NAMELST= specified and a TYPE=ADDR.

GETBLOCK

The GETBLOCK macro can be used to retrieve one or more data blocks from
one or more blocked arrays. The arrays may be either VS or DA resident
arrays. The NAME= and NAMELST= keyword parameters are used to indicate
the 8-character name or names of the arrays from which one or more
blocks of data are to be retrieved. The NUMBER and NUMBLST= keyword
parameters are used to indicate the two-byte number or numbers assigned
to a numbered array or arrays from which one or more blocks of data

are to be retrieved. The DATALST= keyword parameter specifies the
address of a list of block numbers and associated memory addresses
where the data blocks are to be written. Each entry in the list will
contain a byte flag field, a 3-byte area address, and a 2-byte block
number. A flag byte of X'40' indicates the last entry to be processed
for a particular entry in the name list or number list.

2-44 Description and Operation Manual

The PROTECT= keyword parameter allows the user the option (PROTECT=YES)
of preventing other programs from modifying the data base during the
execution of this GETBLOCK. For DA resident arrays, a PROTECT=YES
request will reserve the data set containing the specified array. For
VS resident arrays, the VS resident data base is reserved. If
PROTECT=RISK is specified, the information will be moved without regard
to other programs which may be storing into the data base.

For an example of the use of the GETBLOCK macro, assume that array
FIRST is a VS resident blocked array and array SECOND is a DA resident
array. Por this example, each array is assumed to be composed of three
40-byte blocks. If the following GETBLOCK macro were to be executed,
blocks 1 and 3 of the array FIRST would be moved into the DATA1 and
DATA2, respectively.

The entire array SECOND (blocks 1, 2, and 3) would be read into DATA3,
DATA4, and DATAS5, respectively.

GETBLOCK NAMELST=A, DATALST=B,e. .
B EQU *
DC X*0',AL3 (DATAY) ,H' 1!
DC X*40*',AL3(DATA2) ,H*'3"
DC X*Q00*',RL3(DATA3) ,H*1"
DC X*0',AL3 (DATAY4) ,H* 2"
nc X'40¢*,AL3(DATAS) ,H*3*
A EQU *
DC CL8'FIRST®
DC CL8YSECOND?®
DC X'FF?*
DATA1 DC 10F*0¢
DATAZ2 DC 10F0?
DATA3 DC 10F'0?
DATAY DC 10Fr* 0"
DATAS DC 10F' 0!
VS Data Base
Biock 1
Block 2 Array
FIRST
Biock 3
DATA1 ‘FIRST1’
DATA2 ‘FIRST3’
DATA3 ‘SEC1’ DA Data Base
DATA4 'SEC2" |«
DATAS SECy
Block 1 Array
Block 2 SECOND
Block 3

APPLICATION SERVICES 2-U45

PUTBLOCK

The PUTBLOCK macro can be used to move data from one or more user
specified virtual storage locations into one or more blocks of one or
more blocked arrays. The arrays may be either VS or DA resident arrays.
The NAME= and NAMELST= keyword parameters are used to indicate the
8-character name or names of the arrays into which one or more blocks

of data is to be written.

The NUMBER= and NUMBLST= keyword parameters are used to indicate the
two-byte numbers assigned to a numbered array(s) into which one or more
blocks of data are to be written. The DATALST= keyword parameter
specifies the address of a list of block numbers and associated storage
addresses from which data blocks are to be written.

Other routines executing data base requests with a PROTECT=YES option
will be prevented from accessing the VS resident data base (or DA data
set) during the execution of a PUTBLOCK request.

GETARRAY

The GETARRAY macro can be used to retrieve data which is stored in VS
resident array(s), to retrieve the address of and certain information
about VS or DA resident array(s), or to determine specific information
about all items defined as part of VS or DA resident array(s). Which
type of data is to be retrieved is specified by the TYPE parameter.
The array for which data is to be retrieved is identified through the
NAME, NAMELST, NUMBER, or NUMBLST keyword operands. The NAME= parameter
specifies the 8-character name of the array as defined through the
offline utility data base definition. The NUMBER= parameter specifies
the number (1-255) of the array. Associated with the NAME= or NUMBER=
parameter, the DATA= parameter specifies the address to which the data
is to be moved.

The NAMELST= parameter specifies the address of a list of 8-character
names of one or more arrays for which data is to be retrieved. The
NUMBLIST= parameter specifies the address of a list of one or more
halfwords which contain the numbers which identify the arrays for which
data is to be retrieved. The area(s) into which data is to be moved
when NAMELST or NUMBLST is specified are identified by the DATALST or
FINDLST parameters.

The data to be returned is specified by the TYPE= parameter. If
TYPE=DATA is specified, the content of the entire array(s) is moved
into the area specified by the DATA= or DATALST= parameters. If
TYPE=SPEC is specified, the specification information (16 bytes) is
returned for each item contained in the specified array(s). This
information contains, for each item, item name, length of the item,
defined data type, displacement into the array of the first byte of
the item and repetition factor (number of identical items defined by
one ITEM definition statement). Ii TYPE=ADDR is specified, 8 or 10
bytes of data are returned. This data contains a flag byte, the address
of the array (if VS resident), the number of blocks defined for the
array, and the size of the array (if unblocked) or the size of each
block. Optionally, the number of items defined for the specified
array(s) may also be retrieved.

2-46 Description and Operation Manual

GET ARRAY EXAMPLE 1: This example will retrieve the content of array
ABC into the area specified by the symbol ABCAREA. It is assumed that
array ABC is less than or equal to 100 bytes.

GETARRAY NAME=ABC,DATA=ABCAREA, TYPE=DATA,...
ABCAREA DC XL100¢O¢
GETARRAY EXAMPLE 2: This example will retrieve the address and

associated data for array number 1 into the area specified by symbol
ADDR1.

GETARRAY NUMBER=1,DATA=ADDR1,TYPE=ADDR, ...
ADDR1 DS OF
DC XL1'0! Flag byte
DC AL3(0) Array address
DC H'0! Number of blocks
DC H' O Size of array or block

GETARRAY EXAMPLE 3: This example will retrieve the addr2ss data for
each array specified in list *ADRL'. Since the increment (the second
subparameter) of the PINDLST is greater than 10, the number of items

in the array will be returned also. This increment causes the returned
addresses to be moved into storage locations separated by 12 bytes for
each entry.

GETARRAY NAMELST=ADDL,FINDLST=(FINDL,12),TYPE=ADDR
ADRL DC CL8'A1"*

DC cCL8'A2!
DC CL8*'A3"

DC X'FF! Flag byte to terminate the name list
FINDL DS OF

pDC Xx'0! Flag byte for array A1

DC AL3' (0)* Address of array A1

DC H'O! Number of blocks in array A1

pc H'O! Length of array or each block

DC H'O! Number of items in array 1

bC H'0O! Pad list to 12 bytes

DC 2XL12'0°* Space for 2 additional lists as above for
arrays A2 and A3

DC XL4'0" Space for list termination flag

APPLICATION SERVICES 2-47

GETARRAY EXAMPLE 4: This example will cause the data from the arrays
for which the adiresses had been previously retrieved (as in example

3) to be retrieved. The data from the first array will be moved into
area ATDATA; from the second array into area A2DATA, etc. It is assumed
for this example that all three arrays are less thar or equal to 190
bytes. For this example, it is assumed that the example 3 macro has
been successfully executed to establish valid data into the following
fields.

GETARRAY ADDRLST=(FINDL,12) ,DATALST=DATAL,TYPE=DATA,...

DATAL DC A(A1D,A2D,A3D)
A1D DC XL100'0"
A2D DC XL100t'0O!
A3D DC XL100*OQ?
FINDL DS OF
DC X*'0¢ Flag byte
DC AL3'0! Addr. of array
DC H'O! Number of blocks
DC H' Q! Length of block or array
DC H'0O! Number of items
DC H'0! Unused
DC 2XL12'0¢ Space for 2 repeats of above
DC X' FF! List terminator flag
PUT ARRAY

The PUTARRAY macro is similar to the GETARRAY with the difference being
that data is moved from the user's area to the VS resident data base.
There is no TYPE= parameter on the PUTARRAY macro, so when compared to
the GETARRAY macro, execution is always as if TYPE=DATA were specified.

Data Base Logging

Data base logging is a Special Real Time Operating System option which
may be selected at the Special Real Time Operating System SYSGEN time
by the LOG macro.

During the offline utility phase, the user specifies which VS resident
arrays are to be logged. These are called loggable arrays. A DA
resident array with the array name specified by the LOGNAME keyword
parameter in the ARRAY macro is constructed for each array to be logged.
This array is called a log array. The LOGDD keyword parameter specifies
the name of a data definition statement which describes a BDAM data

set where the log array is to reside. The LOGCOPY keyword parameter
specifies the number of historical copies that can be contained in this
log array.

For example, the following ARRAY macro causes the offline utility
routine to generate the following array structure.

ARRAY NAME=VSARRAY,LOGNAME=LOGARRAY, *
LOGDD=DBLOG1,LOGCOPY=2,... *

2-48 Description and Operation Manual

Primary Array Locator Table VS Resident Arrays

Loggable Array
N "VSARRAY
A(VSARRAY) VSARRAY

A(LOGARRAY)

Log Array
'LOGARRAY

The first logging request for VSARRAY would cause the VS resident array
to be copied into the space allocated for copy 1. The second logging
request for VSARRAY would cause the VS resident array to be copied into
the space allocated for copy 2. Since all the space allocated to the
history files for VSARRAY has now been filled, the third logging request
for VSARRAY would cause the VS resident array to be copied into the
space allocated for copy 1 overlaying the data logged as a result of

the first logging request.

To prevent a loss of history data, the user may specify the name of a
user-written load module to be given control when the last block of

the logging array has been filled through the LOGWRAP keyword parameter
of tlie ARRAY macro. This load module will be entered via a PATCH to

a dependent task. It is that load module's responsibilitv to preserve
a record of the contents of the logged array at that time, possibly by
dumping the log array to a sequential data set by the execution of a
DUMPLOG macro call. Tf no user program has been specified, the user
will not be notified that wraparound has occurred. The LOGFREQ keyword
parameter consists of a code from 0 to 3 specifying the frequency at
which the VS resident array is to be logged. A code of 0 indicates
that it is to be logged only on demand, i.e., only when the user program
executes a PUTLOG macro call. Codes 1 to 3 are used in conjunction
with system generation parameters to specify the log frequency. A code
of 1 is the highest frequency and 3 is the lowest. The Special Real
Time Operating System logging routines will issue a PUTLOG for all Vs
arrays that are to be logged on the specified log frequency. Three
macro calls; PUTLOG, GETLOG, and DUMPLOG, provide the user interface
with the log subroutines.

PUTLOG

The PUTLOG macro is used to copy the VS resident array to the proper
copy of the log array. The NAME and NAMELST keyword parameters are
used to specify the 8-character names of the VS resident array(s) from
which data is to be logged. The NUMBER and NUMBLST keyword parameters
are used to specify the 2-byte number (s) assigned to a numbered VS
resident array(s) from which data is to be logged.

The user may replace a previously logged copy of the VS resident array
vithout interrupting the normal sequential logging process. To
accomplish this, the user vould retrieve a log copy from the log array
by executing a GETLOG macro call. This would read the requested log

APPLICATION SERVICES 2-49

3

copy along with the log header into VS storage. The logheader contains
the time this copy of VS resident array wvas logged and a pointer to

its location in the log array. The user may then modify the data in
this log copy and replace the log copy by executing a PUTLOG with the
LOGHDR keyword parameter specifying the address of the previously read
in logheader. The copy of the array that will replace the copy in the
log array is assumed to immediately follow the specified logheader.

IJf the logheader in the log array does not match the logheader indicated
by the LOGHDR parameter, the logged copy will not be replaced. This
will prevent the possibility of accidentally overlaying a newer log
copv. The LOGHDR parameter is not valid with the NAMELST and NUMBLST
keyword parameters.

The user also has the capability of updating selected blocks of the
last logged copy in the log array for blocked VS resident arrays through
the use of the PUTLOG with BLKLIST option. The BLKLIST keyword
parameter identifies the blocks in the VS resident array that are to

be logged. Each entry in the list must contain at least a 1-byte flag
field and a 2-byte block number. A flag byte of X*'40' indicates the
last entry to be processed for a particular entry in the name list or
number list. The PUTLOG when executed with the BLKLIST option will
cause the log array block that corresponds to the specified VS resident
array block to be updated in the last log copy of the log array. The
entire log copy is not updated and repeating PUTLOG macro calls with
the BLKLIST parameter will update the same log copy. A PUTLOG without
the BLKLIST parameter will cause the entire VS resident array to be
logged to a new log copy.

For example, assume that loggable array, A, consists of four logical
blocks, and the associated log array, B, has been defined to contain
three complete copies of loggable array A. Because of the physical
block size of the data set that contains a log array, each copy of the
loggable array may be placed in one or more blocks of the log array.
Assume that each copy of loggable array A can be placed in two blocks
of log array B. Therefore, the entire log array, B, would consist of
six blocks (i.e., three copies and two blocks per copy).

Array A LOG ARRAY B ~
BLOCK !
BLOCK 1
BLOCK 2
U | LOG COPY i
BLOCK 4
BLOCK 3
|_ LOG COPY2
BLOCK 4
BLOCK §
i LOG COPY3
BLOCK 6

The user might issue a PUTLOG to log an entire first copy of array A,
and at sometime later issue a PUTBLOCK to update block 3 of the VS

2-50 Description and Operation Manual

resident array A follovwed by a PUTLOG, with the BLKLIST option, using
the same data list. The log block in the log array that contains the
request loggable array block would be updated. That is, blocks 3 and
4 from the loggable array A would be moved into block 2 of the Log
Array B.

GETLOG

The GETLOG macro call can be used to retrieve copies of arrays that
have been logged to the log array on the basis of time or by specifying
a particular logheader. The NAME keyword parameter specifies the nanme
of a VS resident array for which a logged copy is to be retrieved. The
NUMBFR keyword parameter specifies the number of a VS resident numbered
array for which a logged copy is to be retrieved. The AREA keyword
parameter specifies the address of the user allocated area of storage
vhere the logged copy of the array is to be written upon retrieval from
the log data set. This area must be large enough to contain the entire
log copy plus the logheader information.

The TIME keyvword parameter specifies the time and day to be used as a
comparison value to establish a relative starting point to determine
which copy of the array will be retrieved from the log data set. An
attempt will be made to locate a copy of the array logged at the exact
time specified. If a copy of the array with the exact time cannot be
found, the first copy of the array logged after that time will be used.

The LOGHDR keyword parameter specifies the address of an array
logheader. Information in this logging header will establish a relative
starting point to determine which copy of the array will be retrieved
from the log data set. The logging header which was retrieved as part
of a previous GETLOG macro call can be used to retrieve additional data
by stepping either forward or backward in time. TIME and LOGHDR are
nutually exclusive.

The STEP keyword parameter is used in conjunction with either the TIME
or LOGHDR parameter to determine the copy of the VS resident array to
be retrieved from the log array. The value specified in the STEP
parameter is a signed number which may be either positive, negative,
or zero. The absolute value of the number specified must be less than
the number of log copies in the log array. The value indicates the
nunber of copies prior to or after the log copy determined by either
the TIME or LOGHDR parameter.

If the TIME, LOGHDR, and STEP parameters are omitted, then the latest

logged copy of the array will be retrieved. For example, assume that
the log array LOG contains five log copies of VS resident array, ARRAY.

Log Array - LOG

Copy 6 Copy 7 Copy 3 Copy 4 Copy 5
6:00 7:00 3:00 4:00 5:00

t

Next Log Copy

This array had been logged hourly for 7 hours starting at 1:00.
Therefore, copies 1 and 2 would have been overlaid by copies 6 and 7,
respectively, because of the wraparound processing. The following
macro calls would all result in retrieving the same log copy, copy 4.

1. GETLOG TIME=T,STEP=1,...

ARPPLICATION SERVICES 2-51

2. GETLOG TIME=X,STEP=-3,AREA=1H,...
3. GETLOG LOGHDR=LH, STEP=0

T DC '2:30' —-- Actual value is in 10 millisecond units
X DC '7:00°¢
LH DC 'COPY 4' -- Actual logheader.

Example 1 will find the first time logged after 2:30 and step 1 entry
forward. Example 2 will find the first time logged after 7:00 and step
backward 3 entries. Zxample 3 presumes that the logheader from
example 2 exists in “LH'; this example will retrieve the same data,
since STEP=0.

DUMPLOG

The DUMPLOG macro call can be used to dump or unload the historical
log copies of VS resident arrays from the log array to a user defined
sequential data set. This sequential data set may then be accessed by
user—-written routines.

Note: Duplicate data set support is not provided for the user-defined
sequential data set used in DUMPLOG processing.

The NAME and NAMELST keyword parameters specify the 8-character name(s)
of the VS resident arrays for which the log array(s) are to be dumped.
The NUMBER or NUMBLST keyword parameters specify the 2-byte number (s)
assigned to a numbered array(s) for which the log array(s) are to be
dumped.

The DUMPDD keyword parameter specifies the name of a data definition
(DD) statement which describes a sequential data set to receive the
dumped copies of the array from the log array. The USRDATA keyword
parameter specifies the address of a 256-byte area of user data to be
used as a dump header for each array on the sequential dump data set.

The log copies to be dumped are indicated by the STARTIM and STOPTIM
keyvord parameters. The STARTIM parameter specifies the time and day
to be used to determine the first log copy to be dumped. An attenpt
will be made to locate a copy of the array with the exact time; if it
cannot be found, the first copy of the array logged after that tinme
will be used as the first log copy to be dumped. If STARTIM is onmitted,
dumping will commence with the oldest logged copy of the array.

The STOPTIM parameter specifies the time and day to be used to deteraine
the last log copy to be dumped. An attempt will be made to locate a
copy of the array logged at the exact time specified. 1If a copy of

the array with its exact time cannot be found, the log copies of the
array will be dumped until the most recently logged copy has been dumped
or until the first copy of the array logged after that time has been
dumped. If this parameter is omitted, dumping will terminate when the
most recently logged copy of the array has been dumped.

Note that the DUMPLOG routine will insert a byte of 'FF*' into the first
byte of the logheader of the last copy of each array dumped to the
sequential data set. This is done to indicate the end of the dump of
each array to the user delog routine.

Data Base Refresh Function
The data base refresh function will allow the user to replace the

current contents of one or more loggable VS arrays with the contents
of the most recently logged copy(s) of the array(s). To invoke the

2-52 Description and Operation Manual

function, the requesting program must PATCH the refresh program
DPPDUPDL.

The PATCH request will consist of a list of arrays to be refreshed.

If no list is specified, all refreshable arrays will be refreshed. A
refreshable array is any array that was defined via the offline utility
with the REINIT=YES parameter on the ARRAY macro. These modifications
do not supersede the option of placing a DBREF card in the
initialization stream if the data base is to be refreshed during
initialization.

The PATCH macro format is as follows:
Symbol PATCH TASK=taskname, EP=DPPDUPDL,

PARAM= (LIST) ,any other patch parameter
the user may want to specify

LYIST DS OH
DC CL8'nane’
DC CL8'nanme’
DC H*number,'XL6'0?
DC H'nunber,*XL6'0" -
DC X'FF
or
LA R, LIST
Symbol PATCH TASK=taskname, EP=DPPDUPDL,
PARAM= ((R))
R is any register (2-12)
or
Symbol PATCH TASK=taskname, EP=DPPDUPDL
TASK= May be omitted to cause the program to execute as a dependent

task or may specify any valid task nanme.

LIST Is the passed parameter list of the data base arrays to
refresh. The list consists of 8-byte entries terminated by
a byte of X'FF'. Fach entry will consist of an 8-character
array name or a half-word array number in 2 bytes followed
by 6 bytes of zeros.

DATA RECORDING AND PLAYBACK

Data recording and playback provide a service which allows user programs
to write data to a sequential data set and to retrieve that data at a
later time. Both are standard Special Real Time Operating System
services (not SYSGEN options). Data recording collects the data from
several user programs, adds to it appropriate control information and
user-supplied identifications, and writes the data to a sequential tape
or disk data set. Data recording can be supressed or enabled through
operator command (see "Input Message Processing"). Recorded data can
later be selectively read back (based on time and ID) and passed to a
user program or to the Special Real Time Operating System hezxadecimal
data print (hex dump) routine if no user program is supplied. The data

APPLICATION SERVICES 2-53

may be printed, used to drive analysis programs, or used as test data
to drive programs that are being developed. A 10-byte header is added
to the data; otherwise, it is not changed in the recording playback
sequence.

Both data recording and playback can be invoked in a single realtime
job in one of two ways.

1. the two functions can use different data sets; that is, the
playback can be from a data set that was recorded on a previous
run and new data written on another data set.

2. the record function can be invoked, and the playback routine
can be invoked for the same data set.

An example of the DRECOUT and DPBIN DD cards needed for the second case
are as follows:

//DRECOUT DD DSN=username,DISP=(NEW,PASS) yeee
//DPBIN DD DSN=%,DRECOUT,DISP=SHR,
// VOL=REF=*.DRECOUT

Figure 2-11 shows the functions of data recording and playback.

User

Data
Record Recording
Routine

Program

Data

Playback
Data Set

PATCH
Control Card in
SYSINIT
Initialization User

Stream Program

Playback
or Conversion F;ayb.“k
S " Routine outine R
(Noi?g?egial Special Reat Time
Real Time Operating System
i Hex
Operjgggsiy; tom) Print Routine

or

or

User Program
“LINK”

Figure 2-11. Data recording and Playback Processing Overview

Data Recording Initialization

—_

The data recording service is initialized at the Special Real Time
Operating System initialization, so that any RECORD macro issued prior
to the activation of data recording will be non-operational with a
return code of 04. During realtime operation, the writing of data can
be suppressed or enahled by the user. Data recording is enabled or
disabled by an input message processing command.

2-54 Description and Operation Manual

JALL
'DREC JENABLE ,ADD [id.id...]
,DEL
,DISABLE

DREC Informs the input message processing routine that
this reply is for data recording.

ENABLE/DISABLE Causes data recording to be either enabled or
disabled. Disable requires no other parameters.

ADD Causes the following ID(s) to be placed in the Data
Recording Table. Up to 20 IDs may be included in
the table.

DEL Causes the following ID(s) to be deleted from the
Data Recording Table. DEL not followed by any ID
causes all IDs to be deleted.

ALL Causes all IDs to be enabled. No IDs are required.

id A three-digit hexadecimal number (001-FFF) for which

data is to be recorded.

Data Recording

Requests to record data for later playback are passed to the data
recording function by the RECORD macro. With this macro, the user
supplies an ID=(X'001-FFF'), the address (ADDR=) of the data, and the
court (COUNT=) of bytes of data to be recorded (value of 1 to 65525).
The data is written to a sequential data set defined by the user and
is recorded on fixed length records. If the request is to record more
data than will fit¢ on one record, the data is split into two or more
records to be reassembled into a single record when it is read back.

The data is time-tagged upon receipt (execution of the RECORD macro)
and recorded in chronological order.

Data recording requests cannot span the partition boundary, so recording
must be enabled in the partition where the program executing the RECORD
macro resides. Recording may be enabled in both the MASTER and SLAVE
partition simultaneously. When a given ID is enabled (either explicitly
by entering that ID or implicitly with the ALL option) it is enabled

for all programs in that partition. It is the responsibility of the
user to select IDs that identify the source of the data and be
meaningful when played back.

The following DD card is required by data recording:

//DRECOUT DD defines a sequential data set to which the data will be
written.

This data set will be opened (QSAM, LOCATE mode) when data recording

is enabled and closed when data recording is disabled. Standard JCL
conventions apply to this data set, and the user should be aware of

the effect of all of the parameters that are specified. Some of the

DD card parameters by which the user may affect data recording operation
are as follows:

DISP= If anything except MOD is specified, each time data
recording is enabled, data will be written at the
beginning of the data set. This may have the effect of
over-writing data which was recorded by previous
ENABLE/DISABLE sequences.

APPLICATION SERVICES 2-55

DCB=BLKSIZE= Defines the size of records written and QSAM buffers.
The data is packed within the buffer by data recording.
Specifying a large block size will reduce the number of
I/0 accesses but increase virtual storage use. A block
size of less than 200 bytes is not recommended. If not
specified, a block size of 2K bytes will be used; if
specified, LRECL should be the same as BLKSIZE.

DCB=BUFNO= Specifies the number of buffers to be allocated by QSAM
and, consequently, will affect the amount of waiting
for I/0 by the RECORD function. If not specified, three
buffers will be allocated.

Data Playback

The data which has been recorded by the data recording facility may be
read and passed to a user-supplied routine or to the Special Real Tine
Operating System hex data prict (hex dump) routine based on time and
IDs (which were assigned at data recording time).

The user specifies to the playback routine the data IDs and time range
(start and stop times) for which data is to be processed. Also, the
name of a user~supplied load module for data processing may be specified
to the playback routine. If no user processing module is specified,

the default processing routine is the Special Real Time Operating System
hex data print routine. The user module may process the data according
to the user's needs. The hex data print routine will supply a hex dump
of the recorded data in a format similar to that of an ABEND dump. The
data, when passed to a user load module, will be in the following
format:

0 FLG 1D LGTH
Header

4 TIME

8 REC

The header is a 10-byte field where FLG is four bits of flags set by
data recording, ID is a 12-bit field that contains the identification
supplied by the user, and LGTH is a 2-byte field which contains the
length of the entry (including this 10-byte header). TIME is a 4-byte
field that contains the time (in packed decimal format) that the data
was recorded. User data is the data passed by the user. REC is data
recording control data.

The playback routine may be invoked by any of three methods:

1. Through the Special Real Time Operating System initialization
routine by PATCH control cards

2. As a separate (non-Special Real Time Operating System) Jjob step

3. Through a LINK issued by a job rumring under the Special Real
Time Operating Systen.

2-56 Description and Operation Manual

The following DD cards are required by data playback:

//DPBIN DD Defines a sequential data set which contains
data recorded by the RECORD macro.

//SRTODUMP DD Defines a sequential (printer) message data
set.

Playback Via Patch Control Card

To invoke data playback at the Special Real Time Operating System
subsystem initialization time through the use of a PATCH statement,
the PATCH statement should be coded as shown:

llabel] PATCH EP=DPPXPCON, [TASK =name,] [QL=n,}

[ID=n,]
[PRTY: {JOBSTEP—n }]
(taskname, n
PARM=(C"STARTDATE’, C’'STARTIME’,
C*STOPDATE", C*'STOPTIME’,
C*LM’,C*COUNT’, C‘IDI", C‘ID1A’,
CID2°,C*ID2A’,C*ID3”,CID3A’, . ..)

See the section entitled "Special Real Time Operating System
Initialization" for a complete description of the PATCH control
statement. Only the parameters required by data playback are described
here.

In some of t.~ following parameter definitions, a zero has special
meaning. In tuese cases, the parameter should be specified on the
PATCH statement as a numer ic value, using the F or X format (i.e.,
specified as F'0' rather than C'0°?).

DPPXPCON

Is the entry point of the playback conversion routine that converts
the specified parameters to a form recognized by data playback and
then passes the converted parameters via LINK to data playback.

STARTDATE

A date in the form of DD/MMM/YY (where DD is the day, MMM is the month
(first three letters of the month are specified), YY is the year)
specifies the day to start the playback process. Zero specifies that
data playback is to start at the beginning of the data
recording/playback data set. The characters ‘'ALL' specify that the
entire data recording data set is to be played back. If ALL is
specified, all other parameters are set to zero except the LM
parameter.

STARTIME .
Specifies the start time of data playback on the start date specified.
Time is in the form of HHMMSST (where HH is hours, MM is minutes, SS
is seconds, and T is tenth of seconds).

STOPDATE

4 date, in the same format as STARTDATE, for which the last date is
to be processed. Zero specifies that data recording is to stop at
the end of the data recording/playback data set.

STOPTIME

Specifies the latest time on the date specified for which recorded
data is to be processed. Time is in the same format as STARTIME.

APPLICATION SERVICES 2-57

L
Is an B-character entry point name of a load module to which data
playback will pass the recorded data. If less than eight characters,
it must be padded on the right with blanks. Zero specifies that the
recorded data will be passed to the Special Real Time Operating System
hexadecimal data priant routine.

ID Coant
Is the number of ID pairs (01-20) specified. The maximum number of
ID pairs is 20.

IDn-IDm

Specifies a range of IDs to be played back within the time frame
specified. IDn is the lowest ID in the ramge, and IDm is the highest
ID in the range. If only one ID is to be played back, IDn and IDm
must be identical. ID (001-FFF) is a three-digit hexadecimal nuaber.

Example 1 shows three different patch cards for invoking data playback.

EXAMPLE 1:

// EXEC PGM=DPPINIT

V4 -

Va4 - DD cards required by the Special Real Time

- Operating System Initialization

V44 -

//SYSINIT DD *

P1 PATCH EP=DPPXPCON, TASK=DPPXPCON,
QL=5,ID=7,PRTY=JOBSTEP-15,
PARAM= (CO9/JAN/73* ,C*1520207",
C'09/FEB/73* ,C1730412* ,C*TESTNODE"!,
Cc'02*,C*'FP20*, C*'F76*', C'001',C*'S510")

P2 -PATCH EP=DPPXPCON, TASK=DPPXPCON,
PARAM=(X'0',C* 1521459 ,x'0°,
C*1643782* ,X*0',C*'01*,C*100°*,C*200°*)

P3 PATCH EP=DPPXPCON, TASK=DPPXPCON,

QL=10,ID=9,PRTY=JOBSTEP-10,
PARAM= (C*ALL', X*0* ,X*0*,X*0°*,
C*TESTMODE *)

These three PATCH statements will cause data playback to be entered
three times. PATCH statement P1 will cause any data recorded between
15 hours, 20 minutes, 20.7 seconds (3:20:20.7 pm) on January 9, 1973
and 17 hours, 30 minutes, 4%.2 seconds (5:30:41.2 pm) on February 9,
1973 which has record IDs F20 through F76 or 001 through 510 to be
passed to user load module TESTMODE.

PATCH statement P2 will cause all recorded data that has an ID 100
ttrough 200 and was recorded between 15 hours, 31 minutes, 45.9 seconds
and 16 hours, 43 minutes, and 78.2 seconds to be dumped to a SYSOUT
data set by the Special Real Time Operating System raw data print
routine. Because no dates are specified, the data set will be searched
for the first data which has a time greater than the STARTIME,
regardless of date and processed through the first data with a time
greater than the STOPTIME regardless of date.

PATCH statement P3 will cause all data on the data set to be passed to
load module TESTMODE. See the Special Real Time Operating System
Initialization in Chapter 3, for a complete description of the PATCH
cards.

2-58 Description and Operation Manual

Playback as a Separate Jobstep

When run as a separate (non-Special Real Time Operating System) job
step, either in a backgrourd partition or on an offline CPU, the
parameters are passed to the data playback non-realtime initialization
through the PARM parameter of the JCL EXEC statement.

//stepname EXEC PGM=DPPXNRTI,
PARM=' STARTDATE, STARTINE,
STOPDATE,STOPTIME,
LM ,COUNT,ID1,
ID1A,ID2,1ID2A,
ID3,ID3A,..."

stepname
Is the name of the job step.

DPPXNRTI
Is the name of the non-realtime Special Real Time Operating System
program to which the parameters will be passed.

STARTDATE, STARTTIME, STOPDATE, STOPTINME, LM, COUNT, ID
Have the same meaning as described for PATCH control statement.

Note: Every playback parameter must be specified except when ALL is
specified.

When ALL is passed to the non-realtime playback routine (DPPXNRTI) with
a load module name, the parameters should be in the following format:

//stepname EXEC PGM=DPPXNRTI,PaRM="ALL bbbbbb, L#*
where ALL is followed by six blanks as the first parameter and the lodd
module name as the second parameter.

The fields within the PARM string are positional, and each field must
occupy the exact number of positions allocated to that field as follows:

STARTDATE 9
STARTIME 7
STOPDATE 9
STOPTIME 7
LM 8 If a Load Module name is specified or
1 if zero is specified

COUNT 2

Ip 3 each

All fields must be separated by commas.

In examples 2 and 3 the Special Real Time Operating System playback is
run as a separate (Non-Special Real Time Operating System) job step.

EXAMPLE 2:

// EXEC PGM=DPPXNRTI,
PARM='07/JAN/73,0800000,07/FEB/73,
0900000, 0,02,020,025,040,050

All data that has an ID in the range 020 through (25 and 040 through
050 and that was recorded after 08:00:00.0 on January 7, 1973 and
09:00:00.0 on February 7, 1973 will be printed by the Special Real Time
Operating System raw data print routine.

APPLICATION SERVICES 2-59

EXAMPLE 3:

// EXEC PGM=DPPXNRTI,
PARM=' ALLbbbbbb, TESTNODE'

All data on the data set will be passed to load module TESTMODE.

Playback via Link

The LINK macro instruction may be used to invoke data playback.

LINK macro should be in the following format:

FXAMPLE CSECT
instructions
symbol LINK EP=DPPXDPB,PARAM=(PARY)
or
LA R, PAKM
LINK EP=DPPXDPB,PARAN= ((R))
instructions
PARM DS oF
STARTDAT DS CL9
STARTTIM DS PLY
STOPDATE DS CL9
STOPTIME DS PLU4
M DS CL8
IDCOUNT DS AL2
ID1 DS XL2
ID1A DS XL2
ID2 DS XL2
ID2 DS XL2
ID2A DS XL2
D3 DS X1L2
ID3A DS XL 2
R

Is a general purpose register.

DPPXDPB
Is the data playback entry point name.

PARM
Is the address of the playback parameters.

The playback parameters for the LINK should be in the following format:

Bytes Field Name Field Description, Contents, Meaning

STARTDAT

STARTTIN

STOPDAT

STOPTIME

1M

IDCOUNT

ID

ID

. additional IDs in pairs

NN EOVEY

2-60 Description and Operation Manual

The

Examples 4 and 5 shov a LINK to the playback function from a user coded
program.

EXAMPLE 4:
EXAMPLEY CSECT
instructions
LINK EP=DPPXDPB,PARAM= (PARMN)
DS OF
PARM DC CL9'0S/JAN/73!

DC PL4'1540071°

DC CL9'09/FEB/73"

DC PL4'1650509"

DC CL8'TESTMODE®

DC AL2(3)

DC XL2'111%,XL2'222"
DC XL2'100;XL2'110"
DC XL2'FFOY,XL2'FFF'
END

A job running under the Special Real Time Ope-ating System will LINK
to the Special Real Time Operating System data playback routine. 1ll
data that has an ID in the range 111 through 222, 100 through 110, and
FFO through FFF and that was recorded between 15 hours, 40 minutes,
07.1 seconds and 16 hours, 50 minutes, 50.9 seconds on 09/JAN/73 will
be passed to load module TESTMODE.

EXAMPLE 5:
EXAMPLES CSECT
instructions
LA 1,PARM

LINK EP=DPPXDPB,PARAM= ((1))

PARM DS OF

DC CLY9'ALL'
DC PL4*'Q
DC XLO9*'0°
DC PLU'Q*

DC CLB'TESTMODE®

A2 job running under the Special Real Time Operating System will LINK
to the Special Real Time Operating System data playback routine. All
data in the data set will be passed to load module TESTMODFE.

HIGH-LEVEL LANGUAGE INTERFACES

The Special Real Time Operating System routines provide an interface
to allovw PL/I and FORTRAN users to use most of the services provided
by the Special Real Time Operating System. The interface routines are
independent of the compiler level or the optimizing compilers. Figure
2-12 lists the Special Real Time Operating System macros supported by
the interface routines for PL/I. The macros in the figure are also
supported for FORTRAN, but there are no default structures.

APPLICATION SERYICES 2-61

PL/1
Macro Name ID -
Structure Name Member Name
PATCH 0 PATCHSTR PATCHDEF
PATCH Param |0 PARMSTR PARMDEF
PTIME 4 PTIMESTR PTIMEDEF
PTIME 4 PTIMRSTR PTIMRDEF
DPATCH 8 DPACHSTR DPACHDEF
REPATCH 12 REPCHSTR REPCHDEF
GETARRAY 16 ARRAYSTR ARRAYDEF
GETITEM 20 ITEMSTR ITEMDEF
GETBLOCK 24 BLOCKSTR BLOCKDEF
PUTARRAY 16 ARRAYSTR ARRAYDEF
PUTITEM 20 ITEMSTR ITEMDEF
PUTBLOCK 24 BLOCKSTR BLOCKDEF
MESSAGE 40 MESAGSTR MESAGDEF
PUTLOG 44 PTLOGSTR PTLOGDEF
GETLOG 48 GTLOGSTR GTLOGDEF
DUMPLOG 52 DPLOGSTR DPLOGDEF
RECORD 56 RECRDSTR RECRDDEF
PATCH WAIT 60 WAITSTR WAITDEF

Figure 2-12. Macros Supported by PORTRAN-PL/I Interface Routines

All interface routines are invoked as shown in Figure 2-13. The
parameters are passed using standard linkage conventions to the
assembler language interface routine. The interface routine adjusts
the parameter list and then issues an execute form of the appropriate
macro to invoke the desired service. After the service routine has
completed execution, the interface routine stores the return code for
use by the calling program and returns to the caller.

X -
BAL Special SVC/BAL | RSpeq[al
Realtime ealtime
Operating Oéreratmg
System ystem
PL/1Y or FORTRAN Macro Sevice
CALL X (PARAM) MF =E
) Save
Return
Code.
RETURN RETURN

Figure 2-13. High-Level Language Interfaces for the Special Real Tiae
Operating System Services

The high level language user must refer to the Special Real Time
Operating System macros section when using the language interfaces, as
more details are given with each macro description.

The Special Real Time QOperating System-PL/I Interface

The PL/I interfaces to the Special Real Time Operating System services
are designed to be independent of the PL/I compiler used. This means
"dope vectors" or "locator/descriptors" are not referenced by the
interface routines. To avoid referencing "secondary® pointers, the
parameter of a CALL statement must point to the first element of the
structure defining the parameter list.

DCL 1 PATCHSTR,
2 MACID,
2 RC,

For example, given the above structure, the call statement would have

2-62 Description and Operation Manual

to be CALL DPPPIF (PATCHSTR.MACID) for the correct parameter list to be
passed to the interface routine DPPPIF.

All Special Real Time Operating System services invoked by a PL/I
program have unique parameter lists which can be described by a
structure. An aid to the PL/I programmer are default structure
definitions. The programmer may invoke them through the compiler
preprocessor option - ®RINCLOUDE. A list of the PL/I structure
definitions and names is included in Figure 2-12. Each of the default
structures is explained in the following sections describing the Special
Real Time Operating System services provided for PL/I programs. Any
option changes made by the PL/I program to a default structure must be
reset if the structure is reused and the option is not desired.

In addition, users of the default structure will notice the two fields
(MACID and RC) at the beginning of each. They are common to every
structure used as a parameter when calling DPPPIF. MACID is initialized
in the default structures with the correct value to tell the interface
routine which service is being requested. RC is where the return code
from the service routine is stored.

PL/I programs in a normal 0S/VS1 job shop environment are initiated,
the PL/I Prolog routines and the user program are executed, and at
termination the PL/I Fpilog routine is executed. In a realtine
environment where the PL/I program is to be cyclically executed, the
PL/YI Interface routines provide facilities to allow the PL/I program

to keep its resources across cyclic executions and to execute cyclically
without incurring the overhead of Prolog and Epilog for each execution
following the initial execution. This facility applies only to
independent tasks that are PATCHed with the EP= parameter specifying
the same EP name. Figure 2-14 shows the coding of a PL/I program using
this facility.

PL/1 PROGRAM

PL/I PROLOG

LOOP:
CALL DPPPARM (PARMSTRID);

IF RETCD = 0 THEN RETURN;
. PL/1 PROGRAM
GO TO LOOP; AS CODED BY USER
FND;
PL/1 EPILOG

Figure 2-14. PL/I Example

APPLICATION SERVICES 2-63

The following is a series of PATCHes to PL/I programs which will
illustrate when a program would be forced through Epilog.

A PATCH TASK=A ,EP=PLIPROG
B PATCH TASK=A ,EP=PLIPROG
C PATCH TASK=A ,EP=PLIPROG
D PATCH TASK=A ,EP=PLIEXMP
E PATCH TASK=A ,EP=PLIPROG
F PATCH TASK=A ,EP=PLIEXMP
G PATCH TASK=A ,EP=PLIEXMP
where: PLIPROG and PLIEXMP are PL/I programs coded as shown in the

previous example.

PATCH A executes Prolog for PLIPROG, then the body of PLIPROG. When
the body finishes, a second CALL is made to DPPPARM. PATCH 3 then
executes without going through Prolog. PATCH B in turn finishes and
again calls DPPPARM. PATCH C then executes - again without going
through Prolog. When PATCH C finishes, another call is made to DPPPARM.
The PL/I interface routine determines that the next PATCH (D} is to a
different program. A non-zero return code forces PATCH C to terminate
and thus execute PL/I Epilog. PATCH D then executes, going through
PROLOG and the code body for PLIEXMP. PATCH D finishes and again calls
DPPPARM. Once again, the interface recognizes that the next program

to be executed is different and returns a non-zero return code. Program
DPPEXMP is forced through Epilog. PATCH E passes through both Prolog
and Epilog and PATCH ¥ passes through Prolog and PATCH G executes
without Prolog. Then, on the next call to DPPPARM, Task A is placed

in a wait state until another PATCH to it is received.

PATCH-to-PL/I Interface

PL/I programs cannot easily retrieve parameters passed via register 1.
To obtain the parameters in a PL/I program invoked by PATCH, an
interface routine DPPPARM and a structure PARMSTR, which may be copied
into the PL/I program by RINCLUDE PARMDEF; are provided. The following
PL/I statements define PARMSTR:

DCL 1 PARMSTR,
2 ID FIXED BIN INIT(O), /* RESERVED */
2 RETCD FIXED BIN INIT (1), /* 0 IF PARMS CHANGED */
2 XCVT POINTER, /* A(XCVT) */
2 RESOURCE POINTER, /* A(RESOURCE TABLE) */
2 PARMS POINTER; /* A(PATCH PARAMETERS) */
PARMSTR

Is the name of the structure used to obtain the PATCH problem
parameters.

ID
Is reserved halfword initialized to zero.

RETCD

Is a halfword binary number indicating the validity of the pointer
value in PARMS. If not zero, the PL/I program should not use the
address in PARMS and should return control to the system. If zero,
PARMS contains a valid address.

XCVT

Specifies the address of the Special Real Time Operating System
control block XCVT.

2-64 Description and Operation Manual

RESOURCE

Specifies the address of a two fullword area available to all prograss
executing under the current task.

PARMS

Specifies the address of the problem parameters being passed by a
PATCH to the prograa.

The PL/I program using this inter face must declare the structure only
once and in the highest block. The structure amust be reused without
reinitializing. If the program CALLs for another set of PATCH
parameters and the task wvork queue is empty, the progras will be placed
in a wait until a PATCH is issued for the task.

The example below is the proper method for using the structure. This
example uses the default structure PARMSTR to obtain the PATCH pointers.
The structure defining the parameter list is based on the PARMS pointer
variable. Note that the PL/I program loops back to the CALL staterant
and that the only exit occurs if the return code from DPPPARM is nct
zero. This minimizes the execution of PL/I Prolog and Epilog.

1 PARHSTR,

2 ID PIXED BIN IRIT(O),

2 RETCD PIXED BIN INIT (0),
2 XCVT POINTER,

2 RESOORCE POINTER,

2 PARMS POINTER;

DCL 1 PARANETER BASED (PARAS),
2 LENG PIXED BIN,
2 PATCHID FIXED BIN;

LOOP:
CALL DPPPARN (PARASTR.ID);
IF RETCD =70 THEN RETURN;

[]
L]
[]
norsal execution
L
®
[]
GOTO LOOP;
END progranm;

PL/I-PATCH Interface
The default structure which defines the parameter list for invoking

the PATCH service may be copied into the program by %INCLUDE PATCHDEF.
The PL/I statements and definitions are listed as follows:

APPLICATION SERVICES 2-65

DCL 1 PATCHSTR, /* PATCH STROUCTURE */

2 MACID FIXED BIN INIT({(O), /% PATCH MACRG ID */

2 RC FIXED BIN INIT({O), /* RETURN CODE #*/

2 PACHPARM POINTER, /* A(PARAMETERS) */

2 TASKNAME CHAR(8) INIT(* Y /* TASKNAME %/

2 EPNAME CHAR(8) INIT('IEPBR14'), /* LOAD MODULE */

2 NAME CHAR(8) INIT(*' ") /* RELATIVE TASK OF VALUE =/

2 QUEUE FIXED BIN INIT (1), /* DEFAULT = 1 %/

2 VALUE PIXED BIN INIT(0), /* DEFAULT = 0 */

2 BECB POINTER, /* ECB ADDRESS */

2 PREEL PIXED BIN(31,0) INIT(0), /* RESERVED */

2 PREEA FIXED BIN(31,0) INIT(O), /* RESERVED */

2 TCEX FIXED BIN(31,0) INIT(O), /* TCB EXTERSION %/

2 PFLAGS /* PLAG OPTIONS IF BIT IS SET ON =/
3 {(Fo, /* RESERVED »/
MASTER, /* PATCH MASTER PARTITION =/
SLAVE, /% PATCH SLAVE PARTITION %/
P3, /* RESERVED */
REPCH, /* ECB REPATCH */
QPOS, /* QPOS=FIRST %/
DPCH, /* QPOS=DPATCH %/
DEL) BIT (1) INIT('O*D) ; /* EP DELETE =*/

PATCRSTR

The name of the default structure.

MACID
Specifies the halfword binary value set to zero to identify the PATCH
service request.

RC
Specifies a halfword binary field containing the return code from
the service routine. The return codes are described in the PATCH
macro definition.

PACHPARM

Specifies the address of a parameter list being passed. The format
is a halfword binary value (minimum value is 4) describing the length
of the entire parameter list, followed by a halfword binary value
from 0 to 255 called the PATCH ID with the remainder of the list
being the parameters. The diagram below represents the format of a
PATCH parameter list.

Note: If the list is greater than 8 bytes, the interface routine will
move it to a GETMAIN area to be freed when processing of the
work queue is completed.

0 2
length | PATCHID

parameters

TASKNANE
Specifies a 1 to 8 character name which is the name of the task being
referenced by this PATCH. If the task does not exist, one by that
name will be created.

EPNANE

Specifies a 1 to 8 character valid program name which is the name of
the program to be scheduled under the task being created vith the
PATCH.

2-66 Description and Operation Manual

NAME and VALUE

Specifies a task name and a value vhich will determine the priority
of the new task. VALUE will be subtracted from the dispatching
priority of the specified task. VALUFE may range from 0 to 255 with
zero default. See PRTY option of PATCH macro for further detail.

QUEUE
Specifies the number of work queue entries to be provided for the
new independent task. Any decimal value from 0 to 255 may be
specified. The default value is 1. A work queue entry provides
space to queue PATCHes which have not been executed by the task. If
0 is specified as the queue length, the task accepts one PATCH, works
on that request, and when completed, waits for the next request. 1If
a PATCH is issued for that task while the task is busy, it is not
executed. If the queue length is 1, the task can accept one PATCH
even while it is busy. Any PATCH parameters waiting in the queue
when a task completes processing the current request will be executed
one at a time, with the top of the queue executed next. This
procedure is the same for all queue values from 0 to 255.

ECR

Specifies the address of the ECB within a WAITSTR which is to be used
in a CALL DPPPIF. This ECB is posted when processing for this PATCH
is completed. The REPCH flag causes the ECB to be posted with the
address to be used in the REPATCH macro if this PATCH is not executed
because of a DPATCH or a QPOS=FIRST PATCH with the queue full.
Default is no ECB. See PL/I PATCH WAIT.

FREEL and FREERA
Are reserved.

TCBX

Specifies the address of the TCB extension control block (TCBX) for
an existing independent task. The TCBX address is returned in
structure after each PATCH. Use of this operand with all PATCHes to
the same task after the initial PATCH will reduce system processing
time. Note that other parameters must still be specified for
verification or in the event the task has been DPATCHed.

PFLAGS
Are PATCH option flags as described below:

FO and F3
Are reserved.

MASTER
Specifies this is a PATCH to the MASTER partition.

SLAVE
Specifies this is a PATCH to the SLAVE partition.

REPCH

Specifies that the ECB will be posted when a REPATCH control block
is built. Default is no REPATCH control block.

QPOS and DPCH
Specifies in the task work queue where this work request is to go
if the task is busy. If QPOS is on, the request is to be placed so
as to be processed before those already on the queue. If DPCH is
on, the processing for this PATCH will not be executed until a‘ DPATCH
is issued for this task. Default is last on the work gueue.

DEL

Specifies that a DELETE is issued for the EP name after processing
completes for this PATCH. Default is no.

APPLICATION SERVICES 2-67

The Special Real Time Operating System PATCH service may be invoked by
including the PATCHDEF in the PL/I program, completing the required
information within the structure including building a parameter list
and calling the interface routine DPPPIF with the PATCHSTR. Examples
of using the PATCH facility follow.

In Example 1, structures are declared for a parameter list and the
PATCH structure. The task DPPZTS00 is created with a queue length of
1. Program DPPZTS13 is executed, and the parameter list contains only
the length field and a PATCH ID of 10. The new task must have the same
priority as the task issuing the PATCH. The PATCHing program does
not want notification ‘of the completion of the PATCH. Note that if

the task already exists, the PFLAGS indicate this work request will be
queued behind any others on the queue.

DCL 1 PARAMETER,

2 LENG FIXED BIN,

2 PATCHID FIXED BIN,

2 PARAMS (10) FIXED BIN (31,0);
DCL WAITSTR,

MACID FIXED BIN INIT (60),
RC FIXED BIN INIT (0),
ECBX FPIXED BIN (31,0) INIT (O0);

NN =

%INCLUDE PATCHDEF;

DCL 1 PATCHSTR,

2 MACID FPIXED BIN INIT (O), /* PATCH MACRO ID */

2 RC FIXED BIN INIT (O0), /* RETURN CODE #/

2 PACHPARM POINTER, /% A(PARAMETERS) */

2 TASKNAME CHAR(8) INIT (' ') /* TASK NAME */

2 EPNAME CHAR(8) INIT ('IEFBR14') /% LOAD MODULE */

2 NAME CHAR(8) INIT(' '), /* RELATIVE TASK OF VALUE */

2 QUEUE FIXED BIN INIT(1), /% DEFAULT = 1 %/

2 VALUE FIXED BIN INIT(0), /* DEFAULT = 0 */

2 ECB POINTER, /% ECB ADDRESS */

2 FPREEL FIXED BIN(31,0) INIT(0), /* RESERVED */

2 PREEA FIXED BIN(31,0) INIT(O0), /* RESERVED */

2 TCBX FIXED BIN(31,0) INIT(0), ,/* TCB EXTENSION */

2 PFLAGS. /* FLAG OPTIONS IF BIT IS SET ON */
3 (FO, /* RESERVED */
MASTER, /% PARTITION=MASTER */
SLAVE, /% PARTITION=SLAVE %/
F3, /% RESERVED */
REPCH, /* ECB REPATCH */
QPOS, /* QPOS=FIRST */
DPCH, /* QPOS=DPATCH */
DEL) BIT (1) INIT('0'B) ; /% EP DELETE */

LENG = 4;

PATCHID = 10;

PACHPARM = ADDR(PARAMETER. LENG);
TASKNAME = 'DPPZTS0Q0';

EPNAME = 'DPPZTS13';

CALL DPPPIF (PATCHSTR.MACID) ;

Example 1

In Example 2, assume that the CALL in Example 1 has returned, and a
dependent task is to be created at a priority of 10 less than the task
DPP2TS00 and that program DEPENDX is to be passed a parameter list of
10 numbers with a PATCH ID of 2. The PATCHing program will wait for

2-68 Description and Operation Manual

the dependent task to complete. The WAIT function is done via a CALL
to the interface routine using the WAITSTR structure.

DCL 1 PARAMETER,

2 LENG FIXED BIN,

2 PATCHID FIXED BIN,

2 PARAMS (10) FIXED BIN (31,0);
DCL WAITSTR,

MACID FIXED BIN INIT(60),
RC PIXED BIN INIT(O),
ECBX FIXED BIN (31,0) INIT(0);

NN

%INCLUDE PATCHDEF;

DCL 1 PATCHSTR,

2 MACID FIXED BIN INIT(O), /% PATCH MACRO ID */

2 RC FIXED BIN INIT(O), /* RETURN CODE */

2 PACHPARM POINTER, /* A (PARAMETERS) %/

2 TASKNAME CHAR(8) INIT(' '), /* TASK NAME */

2 EPNAME CHAR(8) INIT (*IEFBR14'), /* LOAD MODULE */

2 NAME CHAR(8) INIT(' *) /* RELATIVE TASK OF VALUE %/

2 QUEUE FIXED BIN INIT(1), /% DEFAULT = 1 */

2 VALUE FIXED BIN INIT(0), /% DEPAULT = 0 */

2 ECB POINTER, /* ECB ADDRESS */

2 FREEL FIXED BIN(31,0) INIT(O), /* RESERVED */

2 FREEA FIXED BIN(31,0) INIT(0), /* RESERVED */

2 TCBX FIXED BIN(31,0) INIT(O0), /* TCB EXTENSION */

2 PFLAGS, /% FLAG OPTIONS IF BIT IS SET ON */
3 (Fo, /% RESERVED */
MASTER, /% PARTITION=MASTER */
SLAVE, /* PARTITION=SLAVE */
F3, /* RESERVED */
REPCH, /% ECB REPATCH */
QPOS, /* EPCS=FIRST #*/
DPCH, /% QPOS=DPATCH */
DEL) BIT(1) INIT('0'B) ; /* EP DELETE */

CALL DPPPIF (PATCHSTR. MACID) ;/*EXAMPLE 1%/
LENG = 44;

PATCHID = 23

TASKNAME = u;

EPNAME = 'DEPENDX';

NAME = 'DPPZTSO00°';

VALUE = 10;

ECB = ADDR (ECBX) ;

CALL DPPPIF (PATCHSTR. MACID) ;

IF PATCHSTR.RC <8 THEN DO;

CALL DPPPIF (WAITSTR.MACID);
END;

Example 2

PL/I-PTIME Interface
The Special Real Time Operating System PTIME service provides two

different functions, time and PATCH, issued on a time queue basis.
Therefore, two default structures may be copied into the program by

APPLICATION SERVICES 2-69

$INCLUDE PTIMEDEF and PTIMRDEF which define the parameter lists for
the PTIME services. The PL/I statements and their meanings are as
follows:

DCL 1 PTIMRSTR, /¥ STRUCTURE FOR PTIME TYPE=RET */
2 MACID FIXED BIN INIT(4), /* PTIME SERVICE */
2 RC FIXED BIN INIT(O), /% RETURN CODE %/
2 TYPE PIXED BIN(31,0) INIT(O0), ,* PTIME CALL TYPE %/
2 TIME FIXED BIN({31,0) INIT(0), ,/* CURRENT TIME #*/
2 TIMDSECT POINTER; /* A(TIME ARRAY) */
PTIMRSTR

Is the name of the default structure used to obtain the current time
and the address of the time array.

MACID
Is the halfword binary value set to 4 to identify a PTIME service
request.

RC

Is a halfword binary value containing the return code from the service
request. always 0.

TYPE

Is a fullword binary number identifying the PTIME service being
requested. For this structure, it is For this structure, it is
always O.
TIME

Is a fullword binary field which will contain the current time of
day in 10 millisecond units when the interface routine retarns.

TIMDSECT
Specifies the address of the Special Real Time Operating System time
array when the interface routine returns.

DCL 1 PTIMESTR, /*PTIME STRUCTURE FOR ADD,MOD,DEL #*/
2 MACID FIXED BIN INIT (4), /* PTIME SERVICE */
2 RC FIXED BIN INIT (0), /% RETURN CODE */
2 TYPE FIXED BIN (31,0) INIT(4), ,* PTIME CALL TYPE */
2 STIME FIXED BIN (31,0) INIT(O), /*START TIME */
2 ITIME FIXED BIN (31,0) INIT(O), /*INTERVAL TIME %/
2 ETIME FIXED BIN (31,0) INIT(0), /*STOP TIME %/
2 PATCH POINTER, /%A (PATCH SUPL) */
2 PARMS POINTER, /*A (PARAMETERS) */
2 START, /*FLAGS DEFINE STIME CONTENTS */
3 (rO,F1,F2,F3,F4, /*RELATIVE TIME */
SADJFLAG, /*ADJUSTED TIME %/
STODFLAG, /*TIME OF DAY #*/
SRELFLAG) BIT (1) INIT ('0'B), /*RELATIVE TIME */
2 PURGE, /*FLAGS DEFINE PTIME PURGE OPTIONS */
3 (FO,F1,F2,F3, /*RESERVED */
PURGEI, /%*DPATCH = I */
PURGEW, /%DPATCH = W */
PURGEC, /%DPATCH = C */
PURGEU) BIT (1) INIT ('0°'B), /*DPATCH = U %/
2 srop, /*FLAGS DEFINE ETIME CONTENTS */
3 (FO,F1,F2,F3, /*RESERVED */
ECNTFLAG, /*COUNT VALUE */
EADJFLAG, /*¥*ADJUSTED TIME */
ETODFLAG, /*TIME OF DAY */
ERELFLAG) BIT (1) INIT ('0'B); /*RELATIVE TIME */
PTIMESTR

Is the name of the default structure used to create or modify PATCH

2-70 Description and Operation Manual

service requests by time queue.

MACID
Is a halfword binary value set to 4 to identify a PTIME service
request.

RC

Is a halfword binary value containing the return code from the service
request. If the return code is 8 or larger, the PTIME was not
successful, and the existing PTIME specification was not changed.

The return codes are defined in the macro description.

TYPE
Is a fullword binary number specifying the type of PTIME service
requested. Values may be 4, 8, or 12. 1If 4, a PTIME queue element
(PTQE) is created which controls the PATCHes issued according to the
PTIME request. Since the PTQE exists independently of the creating
task and may be modified (8) or deleted (12), the PTQE is referred
to by task name, entry point name, and the PATCH ID value in the
passed parameter list. Either task name or entry point name must be
given for a modify (8) or delete (12) request. However, if only a
task.name or entry point name is specified, all PTQEs with that name
are deleted or modified. The default is to create a PTQE (4).

STIME*

Is a fullword binary number specifying the time in 10 millisecond
units of the first PATCH. The flags START specify the value in this
field.

SRELFLAG
If on, the first PATCH will be issued at current time plus the value
of STIME.

STODFLAG
If on, the first PATCH will be issued when current time equals the
value of STIME. If STIME is less than current time, the PATCH will
occur the next day.

SADJFLAG
If on, the time of the first PATCH is calculated by assuming STIME
contains the time of day (TOD), except that the value in ITIME is
added to STIME until that value is greater than current time.

ITIMEX*
Is a fullvord binary number specifying the interval in 10 millisecond
units between successive PATCHes.,

ETIME*
Is a fullword binary number specifying vhen the PTQE is to be deleted.
The flags STOP identify the value in this field.

*A11 time values are in 10 millisecond units and must not exceed 24
hours.

ECNTFLAG
If on, ETIME contains a count of the number of PATCHes to be issued
by this PTQE.

ERELFLAG*

If on, ETIME contains a time value in 10 millisecond units, when
added to the current time equals the stop tinme.

APPLICATION SERVICES 2-71

ETODFLAG*
If on, ETIME contains the stop time 1in 10 millisecond units.

EADJFLAGx

If on, the stop time is calculated by assuming ETIME contains the
time of day (TOD) in 10 millisecond units, except that the value in
ITIME is added to ETIME until the value is greater than current
time.

*Regardless of what value is calculated for a stop time, if it is less
than the calculated start time (see STIME above), a 24-hour value is
added to the stop time until the stop time exceeds the start time.

Note: If all the STOP flags are zero and ETIME is zero, the PTIME is
assumed to be infinite, and PATCHes will be issued until a PTIME
to modify (8) or delete (12) is issued for that task and/or
entry point name.

PATCH

Is the address of the supervisor portion of the PATCH parameters.

The options provided will be used by PTIME to issue PATCHes based on
the above time options. If PATCHSTR (the default structure) is used,
this parameter must point to TASKNAME. All information desired for
the PATCH by PTIME must be supplied prior to CALLing the interface
routine.

RESTRICTION: Queue Position of DPATCH is not permitted (PFLAGS.DPCH
set to 1).

PRRMS

Is the address of a parameter list to be passed by the PATCH issued
by PTIME. See PL/I PATCH Inter face for format. WNote that if this
parameter list is greater than 8 bytes, the interface routine will
move it to a GETMAIN area to be freed when the PTQF is destroyed.

START

Specifies the start time option flags which define the contents of
STIME. Only one of the flags must be set. See STIME for flag
definitions.

PURGE
Is the flag that controls the kind of DPATCH which will be issued
wvhen the PTQE is destroyed. If no flag is set, no DPATCH is issued.
Flags at a PTIME delete (12) will override the flags when the PTQE
was created (4) or modified (8) last. Only one flag may be set.

PURGEI
If on, task is deleted regardless of its condition.

PURGEU
If on, the task is deleted immediately or shen the current work
queue, if executing, completes. Any work queued to the task is
posted as deleted.

PURGEC
If on, the task is deleted only if its work queue is enpty.

PURGEW
If on, the task will be deleted when the work queue becomes empty.

2-72 Description and Operation Manual

STOP

Specifies the stop time option flags which define the contents of
ETIME. Only one of the flags may be set. See ETIMNE for flag
definitions.

The PTIME facilities are invoked by calling DPPPIF with the appropriate
structure properly completed. Examples presented on the next pages

use the default structure definitions PTIMESTR and PTIMRSTR (explained
above), which are copied via %INCLUDE PTIMEDEF and %INCLUDE PTIMRDEF,
respectively. Each example assumes the following PL/I statements:

DCL 1 PATCHSTR,
2 MACID FIXED BIN INIT(O), /* PATCH MACRO ID */
2 PC FIXED BIN INIT(O), /* RETURN CODE */
2 PACHPARM POINTER, /* A (PARAHMETERS) */
2 TASKNAME CHAR(8) INIT(' '), /* TASK NAME */
2 EPNAME CHAR(8) INIT('IEFBR14'), /* LOAD MODULE */
2 NAME CHAR(8) INIT(' *). /% RELATIVE TASK OF VALUE */
2 QUEUE FIXED BIN INIT(1), /* DEFAULT = 1 */
2 VALUE FIXED BIN INIT(O), /% DEFAULT = 0 %/
2 ECB POINTER, /% ECB ADDRESS */
2 FREEL PIXED BIN(31,0) INIT(0), /* RESERVED */
2 FREEA FIXED BIN(31,0) INIT(0), /* RESERVED */
2 TCBX FIXED BIN(31,0) INIT(0), /* TCB EXTENSION */
2 PFLAGS, /* FLAG OPTIONS IF BIT IS SET ON ¥/
3 FO, /* RESERVED */
MA STER, /% PARTITION=MASTER */
SLAVE, /* PARTITION=SLAVE %/
F3, /* RESERVED */
REPCH, /% ECB REPATCH */
QPOS, /% QPOS=FIRST */
DPCH, /% QPOS=DPATCH */
DEL) BIT (1) INIT('0'B) ; /* EP DELETE */
DCL 1 PATCHPRY,
2 LENG FIXED BIN,
2 PATID FIXED BIN,
2 PARX (10) FIXED BIN(31,0);
DCL 1 PTIMRSTR, /* STRUCTURE FOR PTIME TYPE=RET */
2 MACID FIXED BIN INIT(4), /* PTIME SERVICE */
2 RC FIXED BIN INIT(O), /% RETURN CODE */
2 TYPE FIXED BIN(31,0) INIT(0), /* PTIME CALL TYPE */
2 TIME FIXED BIN(31,0) INIT(O0), /% CURRENT TINE */
2 TIMDSECT POINTER; /* A(TIME ARRAY */
DCL 1 PTIMESTR,
2 MACID FIXED BIN INIT(4),
2 RC FIXED BIN INIT(O),
2 TYPE FIXED BIN(31,0) INIT(4), /* PTIME CALL TYPE */
2 STIME FIXED BIN(31,0) INIT(O), /* START TIME */
2 ITIME FIXED BIN(31,0) INIT(O0), /* INTERVAL TIME */
2 ETIME PIXED BIN(31,0) INIT(0), /* STOP TIME */
2 PATCH POINTER, /* A(PATCH SUPL) */
2 PARMS POINTER, /* A(PARAMETERS) */
2 START, /* FLAGS DEFINE STIME CONTENTS */
3 (FO,F1,F2,F3,F4, /% RESERVED */
SADJFLAG, /* ADJUSTED TIME */
STODFLAG, /% TIME OF DAY */
SRELFLAG)BIT (1) INIT('0'B), /* RELATIVE TIME */
2 PURGE, /% FLAGS DEFINE PTIME PURGE OPTIONS */
3 (rO,FP1,F2,F3, /* RESERVED %/
PURGEI, /* DPATCH=I %/
PURGEW, /* DPATCH=W */

APPLICATION SERVICES 2-73

PURGEC, /% DPATCH=C %/
PURGEU) BIT(1) INIT('0'B), /* DPATCH = U */

2 SToOP, /* FLAGS DEFINE ETIME CONTENTS */
3 (FO,F1,F2,F3, /* RESERVED */
ECNTFLAG, /% COUNT VALUE %/
EADJFL AG, /* ADJUSTED TINE %/
ETODFLAG, /* TIME OF DAY %/

ERELFLAG)BIT (1) INIT('0'B); ,* RELATIVE TIME */
DCL TIMED BASED (TIMDSECT),
TIMEHS FIXED BIN(31,0),
TIMETOD FIXED BIN(31,0),
TIMEJDAY FIXED DEC(7,0),
TIMEMDAY FIXED DEC(7,0),
TIMEEBC CHAR (10),
TIMEBDAY FIXED BIN;

NNNNONN =

EXAMPLE 1: 1In the first example, the program uses the default structure
PTIMRSTR to obtain the current time. Note, that as a result of the
CALY, the time array structure TIMED is usable since its base variable
(a POINTER variable in PTIMRSTR) has been set. The current time is
used to set the start time in PTIMESTR for PATCHes by PTIME, at current
time plus 1 hour. The interval is set to 1 hour, and the last PATCH

is to occur 3 hours later. The PATCH parameters are set to create the
task TIMETEST with a work queue length of 5, and a dispatching priority
of 15 less than the PTIME task. The PATCH will execute program TTEST
and delete it when the processing of each work request completes. The
parameters passed are day of the year and time of the PTIME request
with a PATCH ID of 10.

CALL DPPPIF(PTIMRSTR.MACID) ; /* CURRENT TIME %/
PATCH = ADDR (PATCHSTR.TASKNAME) ; /* BUILD THE PTIME */
PARMS = ADDR (PATCHPRM.LENG) ; /¥ PARAMETERS */

STIME TIME+360000;
STODFLAG = *1'B;
ITIME = 360000;

ETIME = STIME+1080000;

ETODFLAG = ' 1'B;

TASKNAME = 'TIMETEST'; /* BUILD THE PATCH */
QUEUE = 5; /* PARAMETERS */
VALUE = 15;

EPNAME = 'TTEST';

DEL = '1'B;

LENG = 12; /* BULILD THE PROGRAN */
PATID = 10; /* PARAMETERS */

PARX (1) = TIMEBDAY;

PARX (2) = TIME;

CALL DPPPIF(PTIMESTR.MACID) ; /% ISSUE THE PTIME */

EXAMPLE 2: For the second example, the PTQE built by Example 1 will

be modified (TYPE = 8) to start the PATCHes 15 seconds after this PTIME
is issued, the interval to once a minute, and the stop time to never
end. The program will not be deleted when a work request is finished
processing and the work request will be queued first. The PATCH ID
will be charged to 5. ©Note, that all parameters must be re-specified,
as a modify acts as a replace. Rll structures are initially default.

2-74 Description and Operation Manual

TYPE = 8;

PATCH = ADDR (PATCESTR.TASKNAME) ;
PARMS = ADDR (PAT CHPRM.LENG) ;
STIME = 1500;

SRELFLAG = '1'B;

ITIME = 6000;

TASKNAME = 'TIMETEST?';
QUEUE = 5

VALUE = 1

5
EPNAME '

= 'TTEST':
QPOS 1;
LENG 12;
PATID = 5,
PARX (1) = TIMEBDAY;

PARX (2) = TIME;

CALL DPPPIF (PTIMESTR.MACID) ;

EXAMPLE 3:
PTIME.

/* MODIFY PTQE */

/% BUILD PATCH PARAMETERS */

/* BUILD PROGRAM PARAMETERS */

/* ISSUE PTIME */

Exanple 3 shows the use of the adjusted time facility of
The first FATCH is to occur at 5 a.m. or within 30 minutes of

when the PTIME was issued and at 30-minute intervals for 6 times. The
task is to be deleted immediately when the PTQE is destroyed.

PURGEU = '1'B;

STIME = 1800000;

SADJFLAG = '1'B;

ITIME = 180000;

ETIME = 6;

ECNTFLAG = '1'B;
PATCH PARAMETERS

-
-

PROBLEM PARAMETERS

CALL DPPPIF(PTIMESTR.MACID) ;

EXAMPLE 4:

Example 4 is the example for deleting a PTQE.

/* BUILD PTIME PARAMETERS */

/* ISSUE PTIME */

Since the

function of this PTIME service request is to locate the PTQE which is
to be destroyed, only the parameters required to identify the PTQE need

be given.

PURGEU = '1'B;

TYPE = 12;

PATCH = ADDR (TASKNAME) ;
PARMS = ADDR (LENG) ;

TASKNAME = *TIMETEST';
EPNAME = ' TTEST';

PATID = 10;

CALL DPPPIF(PTIMESTR.MACID);

In this case, the task is to be DPATCHed as vwell.

This example would remove the PTQE created by Example 1.

APPLICATION SERVICES 2-75

PL/I-DPATCH Interface

The Special Real Time Operating System DPATCH facility provides the
programmer the method for destroying tasks which were created by the
PATCH service.

A PL/I interface exists to provide a DPATCH service. The default
structure, DPACHSTR, shown below, may be c¢opied into the PL/I progranm
by a ®RINCLUDE DPACHDEF.

DCL 1 DPACHSTR, /* DPATCH STRUCTURE */
2 MACID FIXED BIN INIT (8) /* DPATCH ID */
2 RC FIXED BIN INIT(O0), /* RETURN CODE */
2 TYPE FIXED BIN INIT(O), /* DEFAULT PURGE = U */
2 TASK CHAR(8) INIT(' '); /% TASK NAME */
DPACHSTR

Specifies the name of the default structure used to destroy tasks
created by a PATCH.

MACID

Specifies a halfword binary value set to 8 to identify a DPATCH
service request.

RC

Specifies a halfword binary value containing the return code from
the service request. The return codes are defined in the macro
description.

TYPE

Specifies halfword binary value specifying the DPATCH service
requests. If 0 is specified, the task is deleted immediately or at
the completion of the currently executing work request. Any work
queued to the task is posted as deleted. If 4 is specified, the task
is deleted only if its work queue is empty. If 8 is specified, the
task is deleted when the work queue becomes empty. This does not
prevent new work from being queued. If 12 is specified, the task is
deleted even if it is active.

TASK
Specifies the name of the task being deleted. If left blank, the
current task is deleted.

The example assumes the above default structure. The first DPATCH
request sets up the current task to be deleted when its work queue
becomes empty. The second DPATCH requests that the task be deleted
only if it is not doing any work. The last DPATCH requests that the
task be destroyed regardless of its condition.

TYPE = 83

CALL DPPPIF (DPACHSTR.MACID) ;
TYPE = U;

TASK = 'TESTDPCH';

CALL DPPPIF(DPACHSTR.MACID);
TYPE = 123

TASK = 'DPCHTEST';

CALL DPPPIF(DPACHSTR.MACID) ;

2-76 Description and Operation Manual

PL/I MESSAGE Interface

The MESSAGE service is used to cause a predefined message to be printed
or displayed. The message must have been defined through the offline
utility system using the DEFMSG macro.

The PL/I structure, MESAGSTR, (defined below) contains the paramesters
for the MESSAGE service-and may be copied into the program via ¥INCLUDE
MESAGDEF;

DCL 1 MESAGSTR,

2 MACID FIXED BIN INIT (40),

2 RC FIXED BIN INIT(O),

2 MSGNUM PIXED BIN INIT(O), /* MESSAGE NUMBER */

2 ACT CHAR(1) INIT (" '), /* ACTION CODE */

2 WAIT BIT(1) INIT('0'B), /% WALT = NO */

2 RESERVED FIXED BIN(31,0) INIT(0) /* RESERVED */

2 AREA POINTER, /* A(RETURN OF MESSAGE) */

2 ROUTE (8) FIXED BIN INIT (0), /* ROUTING CODES */

2 VAR (10) POI NTER; /* B(VARIABLES) ARRAY */
MESAGSTR

Is the name of the default structure used for the PL/I message
interface.

MACID
Is a halfword binary value of 40 to indicate the service requested
to the interface routine.

RC

Is a halfword binary value containing the return code from the service
routine. See MESSAGE macro for possible values.

APPLICATION SERVICES 2-~77

MSGNUM

Is a halfword binary value from 1 to 999 identifying the message
requested.

ACT

Is a 1-byte character to be appended to the message number. I denotes
information; A denotes action is required; and D denotes that a
decision is required.

WAIT
Is a flag bit indicating the program's decision to WAIT for the
message to be sent. Default is off, which is no wait.

RESERVED
Is a fullword binary field reserved for the interface routine.

AREA

Is a pointer variable containing the address of an area where the
service routine will place the formatted message for use by the
program.

ROUTE

Specifies a table of 8 halfword binary numbers representing the
devices on which the message will appear or will be printed. All
unused entries must be zero.

VAR

Specifies a table of 10 pointer variables addressing the variable
data to be converted and inserted into the message. All unused
entries must be zero. 0Only consecutive non-zero entries will be
used.

The example below requests the MESSAGE service to output to routing
code (1) message number 37 with a variable text field of "JOB IS
FINISHED, PLEASE CANCEL". The message number will have an action code
of "A" appended to notify the operator to act. The program will wait
for the message to be transmitted. The example presumes the above
MESAGSTR structure.

®INCLUDE MESAGDEF;

DCL A CHAR(50)
INIT('JOB IS FINISHED. PLEASE CANCEL') ;

DCL X CHAR(128);
MSGNUM = 37;

ACT = 'A';
WAIT = '1'B;
AREA = ADDR(X) ;

ROUTE(1) = 1;

VAR(1) = ADDR(A);

VAR(2) = NULL;

CALL DPPPIF (MESAGSTR.MACID) ;

PL/I-RECORD Interface

The RECORD facility provides a method for writing data to a sequential

data set. The data can be retrieved at a later time for offline
processing.

The default PL/Y structure RECRDSTR, defined below, can be copied into
the program via a XINCLUDE RECRDDEF;

2-78 Description and Operation Manual

DCL 1 RECRDSTR,
2 MACID FIXED BIN INIT (56), /* RECORD ID */
2 RC FIXED BIN INIT(O), /* RETURN CODE */
2 COUNT FIXED BIN(31,0) INIT(O), /* DATA LENGTH */
2 DATX POINTER, /% DATA ADDRESS */
2 ID FIXED BIN INIT(O); /* DATA ID NO. */
RECRDSTR

Is the name of the default structure used to invoke the RECORD
service.

MACID
Is a halfword binary number used to identify the service being
requested. Default is 56 for RECORD.

RC

Is a halfword binary value containing the completion code from the
RECORD service routine. See RECORD macro writeup for valid return
codes.

COUNT
Is a fullword binary number which is the number of bytes to be
recorded. A waximum value of 65535 bytes may be specified.

DATX
Is the address of the data to be recorded.

ID
Is a halfword binary number from 1 to #4095 which identifies the data
being recorded.

The following example presumes the RECRDSTR structure above:

DCL A (16) FIXED BIN INIT(S);
COUNT = 32;

ID = 10;

DATX = ADDR(R) ;

CALL DPPPIF (RECRDSTR.MACID) ;

PL/I PATCH-WAIT Interface

This interface provides the PL/I programmer the facility to wait for
the completion of a work queue element generated by a PATCH. The
following default structure WAITSTR may be copied into a PL/I progran
by a #INCLUDE WAITDEF.

DCL 1 WAITSTR, /% PATCH-WAIT STRUCTURE */
2 MACID FIXED BIN INIT(60), /% WAIT MACRO ID */
2 RC FIXED BIN INIT(O), /* ECBPOST CODE %/
2 EVENT PIXED BIN(31,0) INIT(O); /% ECB */

WAITSTR

Is the name of the default structure provided for waiting on PATCH
request completion.

MACID
Is a halfword binary number of 60 identifying the service requested
to the interface routine.

RC

Is a halfword binary number containing the completion flag byte from
POST. See PATCH macro for possible values.

APPLICATION SERVICES 2-79

EVENT

Is a fullword binary field containing the completion code from the
finished work queue processing or the address of a REPATCH control
block. The value in this field is governed by the contents of RC.

Note: For this structure, RC will never be zero when the interface
routine returns to the PL/I progran.

The following example uses the default structures for PATCHSTR and
WAITSTR as shown. Note, that the user need not zero the variable EVENT
as the interface routine will automatically zero the first byte when
roving it to the RC field.

DCL PATCHPRHN,
LENG FIXED BIN,
PATID FIXED BIN,
PARX (10) FIXED BIN(31,0);

NN =

DCL PATCHSTR,
MACID PIXED BIN INIT(0),
RC FIXED BIN INIT(O),
PACHPARM POINTER,
TASKNAME CHAR(8) INIT(' '),
EPNAME CHAR(8) INIT (*IEFBR14'),
NAME CHAR(8) INIT('),
QUEUE FIXED BIN INIT(1),
VALUE FIXED BIN INIT(O),
ECB POINTER,
FREEL FIXED BIN(31,0) INIT(O),
FREEA FPIXED BIN(31,0) INIT(O),
PCBX PIXED BIN(31,0) INIT(O),
PFLAGS,

3 (FO,

MA STER,

SLAVE,

F3,

REPCH,

QPOS,

DPCH,

DEL) BIT(1) INIT(*0'B);

NN NN -

DCL WAITSTR,
MACID FIXED BIN INIT(60) ,
RC FIXED BIN INIT(O),
EVENT FIXED BIN(31,0) INIT (0):
LENG = U
PATID = 2
PACHPARM = ADDR (PATCHPRM.LENG);
TASKNAME = 'TESTWAIT!;
EPNAME = 'WAITTEST';
ECB = ADDR(EVENT) ;
CALL DPPPIF (PATCHSTR.MACID) ;

2 EVENT FIXED BIN(31,0) INIT(0);

HNNON -

N e

BPL/I REPAICH Interface

This PL/I interface provides the programmer the facilities of the
Special Real Time Operating System REPATCH service. The default
structure, REPCHSTR (defined below), may be copied into the PL/I progranm
via a %INCLUDE REPCHDEF;.

2-80 Description and Operation Manual

DCL 1 REPCHSTR, /* REPATCH STRUCTURE */

2 MACID FIXED BIN INIT(12), /% REPATCH MACRO ID */

2 RC FIXED BIN INIT(O), /% RETURN CODE */

2 TYPE FIXED BIN(31,0) INIT(O0), /* SERVICE TYPE %/

2 REPCB FIXED BIN(31,0), /* A(REPATCH CNTL BLK) */

2 TASK CHAR(8), /% TASKNAME */

2 EP CHAR (8) /* LOAD MODULE */

2 RELTASK CHAR (8), /% REL TASK FOR VALUE */

2 QUE FIXED BIN, /* QUEUE LENGTH */

2 VAL FIXED BIN, /* PRIORITY CHG */

2 ECB POINTER, /* ECB ADDRESS */

2 RES (2) POINTER, /* RESERVED */

2 TCBX POINTER, /% TCBX ADDRESS */

2 PFLAGS, /* FLAG OPTIONS IF BIT IS SET ON */
3 (ro, /* RESERVED */
MAST, /* PATCH PARTITION = MASTER */
SLAV, /* PATCH PARTITION = SLAVE %/
F3, /% RESERVED */
RPECB, /% ECB REPATCH */
QPOS1, /% QPOS=FIRST %/
DP ACH, /* QPOS=DPATCH */
DELET) BIT (1), /* EP DELETE #*/

2 RES1 (3) POINTER; /* RESERVED SUPERVISOR POINTERS */

REPCHSTR

Name of the default structure provided for the Special Real Tinme
Operating System REPATCH service requests.

MACID
A halfword binary value of 12 identifying the service required to
the interface routine.

RC

A halfword field contaiaing a binary number return code from the
REPATCH/PATCH service routine. See REPATCH macro write-up for REPATCH
and related PATCH return codes.

TYPF
A fullword binary value indicating the interface routine service
required.

0 -- The REPATCH control block is to be copied to the REPCHSTR to
permit alteration of PATCH parameters prior to REPATCH.
4 -- Issue REPATCH TYPE=EXEC.
8 -- Issue REPATCH TYPE=PURGE.
REPCB

A fullvord binary field to contain the REPATCH control block address
placed in the WAITSTR.EVENT when WAITSTR.RC equaled 68. The value
in EVENT must be moved to REPCB before any interface call except the
first interface call TYPE=4 or 8 following a TYPE=0 interface call.

TASK
Specifies an 8-character name which is the name of the task being
referenced by this PATCH.

EP
Specifies the 8-character valid program name of the program to be
scheduled under the task specified in TASK.

RELTASK and VAL

Specifies an 8-character task name and a halfword value which will
determine the priority of the new task. VAL will be subtracted from

APPLICATION SERVICES 2-81

the dispatching priority of the specified task. VAL may range fronm
0 to 255 with zero default. See PRTY option of PATCH macro for
further detail.

QUE
A halfword value specifying the number of work queue entries to be
provided for a new independent task.

ECB

Specifies the address of the ECB within a WAITSTR which is to be used
in a CALL DPPPIF. This ECB is posted when processing for this PATCH

completes. The ECB which contained the REPATCH control block address
Bay be reused and will be if this parameter is left unchanged.

TCBX
Specifies the address of the TCB extension control block for an
existing independent task.

PFLAGS
The PATCH option flags as described below:

MAST
This PATCH is intended for the MASTER partition.

SLAV
This PATCH is intended for the SLAVE partition.

RPECB
Specifies that if this work request is pushed off the queue, the
ECB is to be posted with a REPATCH control block address.

QPOS1 and DPACH
Specifies where in the task work queue this work request is to go
if the task is busy. If QPOS1 is on, the request is to be placed
first on the queue. If DPACH is on, the processing for this PATCH
will not be executed until a DEPATCH is issued for this task. Both
flags off means this request is queued last.

DELET
Specifies that a DELETE is issued for the EP name after processing
completes for this PATCH.

RES and RESt
The pointers must remain unchanged.

The Special Real Time Operating System REPATCH service may be invoked
by including the REPCHDEF in the PL/I program, moving the REPATCH
control block address from the event control block to REPCB and then
executing one of the following:

a. If the REPATCH is to be done without change, set TYPE to 4 or 8
and CALL DPPPIF.

b. If the REPATCH is to be changed prior to executioa, set TYPE to O,
CALL DPPPIF, make changes desired, set TYPE to 4 and CALL DPPPIF
again.

Users of this facility should be aware that only the "supervisor"
portion of the PATCH parameters can be altered. The problem parameters
cannot be changed. All REPATCH control biocks must be returned to the
system through a TYPE=4 or 8 service request.

2-82 Description and Operation Manual

The following examples will shov the various methods of using REPCHSTR.

The examples for using the REPCHSTR use the following set of structures:

DCL 1 REPCHSTR, /* REPATCA STRUCTURE */

2 MACID FIXED BIN INIT(12), /* REPATCH MACRO ID */

2 RC FIXED BIN INIT (0), /* RETURN CODE %/

2 TYPE FIXED BIN(31,0) INIT(0), /* SERVICE TYPE */

2 REPCB PIXED BIN(31,0), /* A(REPATCH CNTL BLK) */

2 TASK CHAR(8), /* TASKNAME */

2 EP CHAR (8), /% LOAD MODULE */

2 RELTASK CHAR (8), /* REL TASK FOR VALUE %/

2 QUE FIXED BIN, /* QUEUE LENGTH */

2 VAL PIXED BIN, /* PRIORITY CHG */

2 ECB POINTER, /% ECB ADDRESS */

2 RES (2) POINTER, /* RESERVED */

2 TCBX POINTER, /* TCBX ADDRESS */

2 PFLAGS, /* FLAG OPTIONS IP BIT IS SET ON */
3 (FO, /* RESERVED */
MAST, /* PATCH PARTITION = MASTER %/
SLAV, /* PATCH PARTITION = SLAVE */
F3, /* RESERVED #*/
RPECB, /* ECB REPATCH */
QPOS1, /* QPOS=FIRST */
DPACH, /* QPOS=DPATCH */
DELET) BIT(1) . /* EP DELETE */

2 RES1 (3) POINTER; /* RESERVED SUPERVISOR POINTERS */

DCL 1 WAITSTR, /% PATCH-WAIT STRUCTURE */

2 MACID FIXED BIN INIT(60), /% WAIT MACRO ID */

2 RC FIXED BIN INIT(O), /% ECB POST CODE */

2 EVENT PIXED BIN(31,0) INIT(O); /% ECB */

EXAMPLE 1: Example 1 shous the correct method for purging a REPATCH
control block, should a work request fail to be executed. The example
begins with the PATCH-WAIT which is notified about the work request

not getting done.

CALL DPPPIF (WAITSTR.MACID) ;

IF WAITSTR.RC = 68 THEN DO;
REPCHSTR.REPCB = WAITSTR.EVENT;
REPCHSTR.TYPE = 8;

CALL DPPPIF (REPCHSTR.MACID) ;

END;

Example 1

APPLICATION SERVICES 2-83

EXAMPLE 2: Example 2 demonstrates the method for altering a REPATCH
control block. As with Example 1, this example begins with a WAIT on
a PATCH. ,

CALL DPPPIF (WAITSTR.MACID);

IF WAITSTR.RC = 68 THEN DO;
REPCHSTR.REPCB = WAITSTR.EVENT;
REPCHSTR.TYPE = 0;

CALL DPPPIF (REPCHSTR.MACID) ;

REPCHSTR.PFLAGS.QPOS1 = *1'B;

WAITSTR.EVENT = O;

REPCHSTR.TYPE = 4;

CALL DPPPIF (REPCHSTR.MACID);

IF REPCHSTR.RC <8 THEN GOTO X;
END;

X

Example 2
The above example replaces the work request on the work queue for the
same task as previously requested, except that it will be placed first
on the queue.

PL/I GETARRAY/PUTARRAY Ipterface

This PL/I interface provides the programmer the facilities of the
Special Real Time Operating System GETARRAY and PUTARRAY services.
default structure, ARRAYSTR (defined below), may be copied into the
PL/1 program via a SINCLUDE ARRAYDEF;.

The

DCL 1 ARRAYSTR, /* GET/PUT ARKAY STRUCTURE */
2 MACID FIXED BIN INIT(16), /% ARRAY MACRO ID */
2 RC FIXED BIN INIT(0), /* RETURN CODE */
2 NAME POINTER, /* A (NAMELIST/NUMBERLIST/ADDRLIST) */
2 AREA POINTER, /* A (FINDLIST/DATAAREALIST) */
2 NAMEINCR FIXED BIN INIT(O), /* LIST INCREMENT */
2 AREAINCR FIXED BIN INIT(O), /* LIST INCREMENT %/
2 TYPE FIXED BIN INIT(O): /* TYPE OF ARRAY SERVICE */
ARRAYSTR

Name of the default structure provided for the Special Real Time
Operating System array service regquests.

MACID

A halfword binary value of 16 identifying the service required to

the interface routine.

RC

A halfword field contaiaing a binary number return code from the

array service routine.
for possible values.

NANME

See GETARRAY and PUTARRAY macro write-ups

The address of one of the following based on the specifications

implied by the value of TYPE.

If TYPE specifies 'NAMELIST', then NAME points to a list of

8-character array names followed by an X'FF' after the last name

where the next name would start.

NAMEINCR contains the value

to be added to the list address to locate the next array name.

2-84

Description and Operation Manual

NAME LIST

0 NAME |

8 NAME2
r

16 FF

b. If TYPE specifies YNUMBERLIST', then NAME points to a list of
halfword binary array numbers followed by an X'FF' after the
last array number where the next number would start. NAMEINCR
contains the value to be added to the list address to locate
the next array number in the list.

NUMBER LIST

0 IST NUMBER

2 2ND NUMBER

FE

£

c. If TYPE specifies 'YADDRESSLIST', then NAME points to a list of
array addresses as returned from a previous GETARRAY execution.
The list must be terminated by a fullword binary value of -1
after the last array address where the next address would be
located. NAMEINCR contains the value to be added to the list
address to locate the next array address.

ADDRESS LIST

0] A(IST ARRAY)

41 A(QQND ARRAY)

8, FFFFFFFF

ARERA
The address of one of the following based on the specifications
implied by the value of TYPE.

a. If TYPE specifies 'DATALIST!, then AREA points to a list of
addresses into or from which the data of the specified arrays
(see NAME above) is to be moved. AREAINCF contains the value
to be add=d to the list address to locate the next data area
address in the list.

DATA AREA ADDRESS LIST

O[AUST DATA AREA)

4V\(ZNI) DATA ARFA

<

AGRD DATA AREA)

b. If TYPFE specifies 'FINDLIST', then AREA points to a list of
10-byte fields to be filled with a flag byte (see GETARRAY macro
write-up), a 3-byte array address, a halfword block count, a
halfword array size or block size and a halfword item count.

The 1list must contain one entry more than the number of addresses
expected to allow for an end of list X'FF'. AREAINCR contains

APPLYICATION SERVICES 2-85

the value to be added to the list address to locate the next
10-byte field. The minimum value for AREAINCR under this option
is 8; in which case, the item count halfword will not be in the
list.

FIND LIST

O0|FLG|{ ARRAY ADDR NO.BLKS| SIZE [NO.ITEMS

10lFLG] ARRAY ADDR |NO.BLKS| SIZE [NO.ITEMS

20 FF

c. If TYPE specifies 'SPECLIST', then AREA points to a list of
16-byte fields to be filled with an 8-byte item name, a 1-byte
item length, a 1-byte data type, a halfword array displacement
to the start of the item, a halfword array ID, anid a halfword
number idsntifying the number of identical and sequential items
defined by this entry. AREAINCR contains the value to be addad
to the list address to locate the next 1€6-byte field.

ARRAY SPECIFICATIONS LIST

0 ITEM NAME LNG | TYPE DISP. AlID REPT

16 ITEM NAME LNG | TYPE DISP AID REPT

32 ITEM NAME LNG | TYPE DISP AID REPT
NAMEINCR

A halfword value added to NAME to locate the next entry in the list.
A value must be specifiegd.

AREAINCR
A halfword value aided to AREA to locate the next entry in the 1list.
A value must be specified.

TYPE

A halfword binary value specifying the array service options selected.
The values (given in the tables below) identify the contents of NAME
and AREA, either a GETARRAY or PUTARRAY, the array service (i.e.,
DATALIST, ADDRLIST or SPECLIST), and the desired protection for

GET ARRAYs (PROTECT or RISK).

DATALIST
Specifies that the content of the array(s) is to be returned
(GETARRAY) or updated (PUTARRAY).

ADDRLIST
Specifies that a 'FINDLIST' entry is to be completed for each array
name or number in the list. Option is valid for virtual storage
resident arrays only.

SPECLIST
Specifies that a 'SPECLIST' entry is to be completed for each item
of each array name or number in the list.

PROTECT

Specifies that the array service will lock during processing to
prevent changes from altering results.

2-86 Description and Operation Manual

RISK

Specifies that the array service will be processed regardless of the

possibility of parallel processing changing the array content.

NAME AREA REQUESTED REQUESTED | VALUE
A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 16
A(NAME LIST) A(DATA LIST) DATA LIST RISK 17
A(NAME LIST) A(SPEC LIST) SPECLIST PROTECT 20
A(NAMELIST) A(SPEC LIST) SPECLIST RISK 21
A(NAME LIST) A(FIND,LIST) ADDR LIST PROTECT 34
A(NAME LIST) A(FIND LIST) ADDR LIST RISK 35
A(ADDR LIST) A(DATA LIST) DATA LIST PROTECT 48
A(ADDR LIST) A(DATA LIST) DATA LIST RISK 49

A(NUMBER LIST) A(DATA LIST) DATA LIST PROTECT 80
A(NUMBER LIST) A(DATA LIST) DATA LIST RISK 81
A(NUMBER LIST) A(SPEC LIST) SPECLIST PROTECT 84
A(NUMBER LIST) A(SPEC LIST) SPECLIST RISK 85
A(NUMBER LIST) A(FIND LIST) ADDR LIST PROTECT 98
A(NUMBER LIST) A(FIND LIST) ADDR LIST RISK 99
Figure 2-15. GETTARRAY Services
A(NAME LIST) A(DATA LIST) DATA LIST N/A 128
A(ADDR LIST) A(DATA LIST) DATA LIST N/A 144
A(NUMBER LIST) A(DATA LIST) DATA LIST N/A 176

PUOT ARRAY Services

Figure 2-16.
The GETARRAY/PUTARRAY services are invoked in PL/I by CALLing DPPPIF
with the properly completed array name/number/address list data address
list and structure (ARRAYSTR or a similar structure).

The examples for using GETARRAY or PUTARRAY services in PL/I use the
following list of structures and variables:

APPLICATION SERVICES 2-87

No
ar

DCL ARRAYSTR,
MACID FIXED BIN INIT(16),
RC FIXED BIN INIT(O),

NAME POINTER,

AREA POINTER,

NAMEINCR FIXED BIN INIT(O),
AREAINCR FIXED BIN INIT(O),
TYPE FIXED BIN INIT(0);
ARRAY,

NAME (2) CHAR(8), NO (2) FIXED BIN,
FIND (2),

ADDRESS POINTER,

BLKCNT FIXED BIN,

BLKSIZ FIXED BIN,

ITEMCNT FIXED BIN,

RES FIXED BIN,

CORE (2) POINTER;

ARRAYITM (255),

NAME CHAR(8),

LNG BIT(8),

TYP BIT(8),

DISP FIXED BIN;

DCL ITEM (255) CHAR (16):

DCL Q POINTER BASED (P);

DCL

DCL

NN aaNWWWWWRN=20NNDNDONN =

te, that the structure ARRAY has the field NAME
rays by name, or NO for use when calling arrays

for use when calling
by number.

Both of the following examples make use of the fact that once a

st

ructure has been altered it remains unchanged;

i.e., the array nanme

in the first example needed to be specified only once.

The first example will locate array *'B' through the FINDLIST option,
rzad in the item specifications through the SPEC option and then read
the array. The array is then changed and the new array transmitted.

ia

/*

/*

/*
/*

/*

ARRAY.NAME(1) = *B ' /*
P = ADDR(ARRAY, NAME(2)): /*
Q = NULL: /¥

ARRAYSTR. NAME = ADDR (ARRAY.NAME(1)) :
ARRAYSTR. NAMEINCR = 8;

ARRAYSTR.AREA = ADDR (ARRAY.FIND(1).ADDRESS);
ARRAYSTR. AREAINCR = 12;

ARRAYSTR. TYPE = 35;

CALL DPPPIF (ARRAYSTR.MACID) ;

THE FIND LIST HAS BEEN BUILT */
ARRAY.CORE(1) = ADDR(ARRAYITM (1).NAME); Vi
ARRAYSTR. AREAINCR = 4; /*
ARRAYSTR. AREA = ADDR(ARRAY.CORE(¢1)) ; /*
ARRAYSTR. TYPE = 21; /*

CALL DPPPIF (ARRAYSTR.MACID) ;

THE ITEM SPECIFICATIONS HAVE BEEN OBTAINED */
ARRAY.CORE(1) = ADDR(ITEM (1)) ; /*
ARRAYSTR. TYPE = 16; /*

CALL DPPPIF (ARRAYSTR.MACID) ;
THE ARRAY HAS BEEN READ */
ITEM(1) = 'THIS BLOCK ZAPED';
THE ARRAY IS ALTERED */
ARRAYSTR. TYPE = 1283 /*
CALL DPPPIF (ARRAYSTR.MACID);
THE ARRAY IS UPDATED */

Example 1

BUILD PARAMETER */
LIST TO LOCATE */
NAMED ARRAY */

BOILD PARAMETER */
LIST TO */

OBTAIN */

LIST OF ITEM NAMES */

READ THE */
ENTIRE ARRAY */

WRITE THE ENTIRE ARRAY */

Note that in the above example all services to the array are by name.

2-88 Description and Operation Manual

The second example is identical to the first, except that the array is
numbered.

ARRAY.NO(1) = 1
ARRAY.NO(2) = =-1;
ARRAYSTR. NAME = A
ARRAYSTR. NAMEINCR
ARRAYSTR. AREA = A
ARRAYSTR. AREAINCR
ARRAYSTR. TYPE = 99;

CALL DPPPIF (ARRAYSTR. MACID) ;

/* THE FINDLIST HAS BEEN BUILT */

ARRAY.CORE(1) = ADDR(ARRAYITM (1) . NAME);
RRRAYSTR. AREA = ADDR(RRRAY.CORE (1)) ;
ARRAYSTR. AREAINCR = U;

ARRAYSTR. TYPE = 85;

CALL DPPPIF (ARRAYSTR.MACID) ;

/* THE ITEM SPECIFICATIONS HAVE BEEN OBTAINED */
ARRAY.CORE(1) = ADDR(ITEK (1)) ;

ARRAYSTR. NAME = ADDR (ARRAY.FIND(1).ADDRESS) ;
ARRAY.FIND(2) .ADDRESS = NULL;
/ARRAYSTR.NAMEINCR = 12;

ARRAYSTR. TYPE = U48;

CALL DPPPIF (ARRAYSTR.MACID);

/* THE ARRAY HAS BEEN READ */
ITEM(1) = 'THIS BLOCK ZAPED';

/* THE ARRAY IS ALTERED */

ARRAYSTR.TYPE = 144
CALL DPPPIF (ARRAYSTR.MACID);
/* THE ARRAY HAS BEEN UPDATED */

ODR (ARRAY. NO (1)) 5

= 2;

DDR (ARRAY.FIND (1) . ADDRESS) ;
= 123

Example 2
Note, that the array was read and written using the ADDR option.

PL/I GETITEM/PUTITEM Interface

This PL/TI interface provides the programmer the facilities of the
Special Real Time Operating System GETITEM and PUTITEM services. The
default structure, ITEMSTR (defined below), may be copied into the PL/I
program via a RINCLUDE ITEMDEF;.

DCL 1 ITEMSTR, /* GET/PUT ITEM STRUCTURE */

2 MACID FIXED BIN INIT({(20), /* ITEM MACRO ID */

2 RC FIXED BIN INIT(O), /* RETURN CODE */

2 NAME POINTER, /* A(NAMELIST/ADDRLIST) */

2 AREA POINTER, /% A(DATA AREA) */

2 NAMEINCR FIXED BIN INIT(0), /* LIST INCREMENT */

2 AREAINCR FIXED BIN INIT(0), /* LIST INCREMENT */

2 TYPE FIXED BIN INIT(O): /* TYPE OF ITEM SERVICE */
ITEMSTR

Name of the default structure provided for the Special Real Time
Operating System array-item service requests.

MACID

A halfword binary value of 20 identifying the service required to
the interface routine.

APPLICATION SERVICES 2-89

RC

A halfword field containing a binary number return code from the itenm
service routine. See GETITEM and POTITEM macro write-ups for possible
values.

NAME

The address of one of the following based on the specifications
implied by the value of TYPE.

a.

AREA

If TYPE specifies 'NAMELIST', then NAME points to a list of
8-character item names followed by a X'FF' after the last nanme
where the next name would start. NAMEINCR contains the value
to be add=2d to the list address to locate the next item nanme.

NAME LIST
0 NAME 1
8 NAME 2

16} I FT

If TYPE specifies 'ADDRESS LIST', then NAME points to a list of
item addresses as returned from a previous execution. The list
must be terminated by a fullword of -1 where the next address
would be in the list. NAMEINCR contains the value to be added
to the list address to locate the next address in the list.

ADDRESS LIST

0 A(ITEM a)
4 A(ITEM b)
8 FFFF FFFF

the address of one of the following based on the specifications
implied by the value of TYPE.

a.

2-90

If TYPE specifies *DATALIST', then AREA points to a data area
into or from which item data is moved. AREAINCR contains the
value to be added to the area address to locate the next area
for the next item. If AREAINCR is zero, then the item length
is used to determine the location for the next item data area.

If TYPE specifies *ADDRLIST', then AREA points to a list of
L-byte entries into which the item length and address are stored
for each item specified in the YNAMELIST'. The list must be
one entry longer than the number of addresses being obtained to
allow the service routine to store an end of list X'FF°'.
AREAINCR contains the value to be addz2d to the area address to
locate the next entry.

ADDRESS LIST

ITEM N
Ol LENGTH| ITEM ADDRESS
ITEM = .

4 ENGTH| |TEM ADDRESS
8 FF FFFFFF

Description and Operation Manual

C. If TYPE specifies 'SPECLIST', then AREA points to a list of
4-byte entries containing the iter length, flags identifying
data type and a displacement into the array to the first byte
of the item. AREAINCR contains the value to be added to the
area address to locate the next entry.

ITEM SPECIFICATIONS LIST

ITEM o
LENGTH TYPE FLAGS |JARRAY DISPLACEMENT

ITEM
LENGTH | TYPE FLAGS |ARRAY DISPLACEMENT

ITEM
LENGTH | TYPE FLAGS JARRAY DISPLACEMENT

<

EN

X

NAMEINCR
A halfword binary value added to the list address in NAME to locate
the next entry. A value must be specified.

AREAINCR
A halfword binary value added to the list address in AREA to locate

the next entry. A value must be specified unless TYPE specifies
'"DATALYST' in which case Zero may be used.

TYPE

A halfword binary number specifying the item service options selected.
The values (given in the tables below) identify the kind of service
(i.e., DATA, ADDR or SPEC), and whether it is a GETITEM with or
without protection (PROTECT or RISK) or a PUTITEM.

DATALIST
Specifies that the content of the array-item is to be moved froa the
array to AREA or updated by the contents of AREA.

ADDRLIST
Specifies that the item 'ADDRESSLIST® is to be built in AREA for each
named item.

SPECLIST
Specifies that the item 'SPECIFICATION LIST' is to be built in AREA
for each named itemn.

PROTECT
Specifies that the GETITEM service will ensure data integrity during
processing.

RISK

Specifies that the GETITEM service will process the request regardless
of the possibility of parallel processing updating the content of

the named item(s).

Note: DATALIST and DDDRLIST are invalid service requests for direct
access resident arrays.

APPLICATION SERVICES 2-91

. SERVICE PROTECTION TYPE
NAME AREA REQUESTED REQUESTED VALUE
A(NAME LIST) A(DATA LIST) DATA LIST PROTECT 136
A(NAME LIST) A(DATA LIST) DATA LIST RISK 137
A(NAME LIST) A(ADDR LIST) ADDR LIST PROTECT 138
A(NAME LIST) A(ADDR LIST) ADDR LIST RISK 139
A(NAME LIST) A(SPEC LIST) SPEC LIST PROTECT 140
A(NAME LIST) A(SPEC LIST) SPEC LIST RISK 141
A(ADDR LIST) A(DATA LIST) DATA LIST PROTECT 152
A(ADDR LIST) A(DATA LIST) DATA LIST RISK 153
Figure 2-17. GETITEM Services
A(NAME LIST) A(DATA LIST) DATA LIST N/A 184
A(ADDR LIST) A(DATA LIST) DATA LIST N/A 200

Figure 2-18. PUTITEY Services

The GETITEM/PUTITEM services are invoked in PL/I by CALLing DPPPIF with
the properly completed item name/address list, data address list and
structure (ITEMSIR or a similar structure).

The example for using GETITEM or PUTITEM services in PL/I uses the
following list of structures and variables:

DCL ITEMSTR,
MACID FIXED BIN INIT (20),
RC FIXED BIN INIT(O),
NAME POINTER,
AREA POINTER,
NAMEINCR FIXED BIN INIT(O),
AREAINCR FIXED BIN INIT(O),
TYPE FIXED BIN INIT(O);
ITEMLIST (6),
NAME CHAR(S),
ADR POINTER,
LNG BIT(8),
FLGS BIT (8),
DISP FIXED BIN;
DCL ITEM(5) CHAR(16) ;
DCL Q POINTER BASED (P)
DCL F BIT(8) BASED(PT)

DCL

OO =INONNDNON N =

.
’
-
’

The following example will use GETITEM services to obtain the address,
specifications and data for a list of five items from the same array.
It will change the data and use PUTITEM services to update the array.

2-92 Descripticn and Operation Manual

ITEMLIST(1) .NANE = *BO1 *; /% BUILD LIST OF */
ITEMLIST(2) .NANE = 'B03 °*; /* ITEN NAMES %/
ITEMLIST(3) .NANE = 'BOS °*;
ITEMLIST(4) .NABE = 'BO7 °*;:
ITEMLIST(S) .NANE = 'B09 *;
P = ADDR(ITEMLIST (6).NANE);
Q = NOLL; /* TERMINATE LIST */
ITENSTR.NAME = ADDR (ITEMLIST(1) .NANE); ,* BUILD PARN LIST %/
ITEASTR.NAMEINCR = 16; /* TO LOCATE ITENS #*/
ITENSTR.AREA = ADDR (ITEMLIST(1) .ADR);
ITENSTR.AREAINCR = 16;
ITEMSTR.TYPE = 136;
CALL DPPPIF (ITEMSTR.HMACID);

/* ITEM ADDRESSES ARE RESOLVED #/
DO I = 1T0 53 /* ZERO UPPER BYTE */
PT = ADDR(ITEMLIST(I).ADR); /* OP ADDRESS WORDS */

P = '00000000'B;
END; .

/* PREPARE PARM LIST TO GET ITEM SPECS */
ITENSTR.AREA = ADDR (ITEBLIST (1) .LNG) ;
ITEASTK.TYPE = 138;

CALL DPPPIF (ITENASTR.MACID) ;
/% ITEN SPECIPICATIONS OBTAINED */

ITEMSTR.NARE = ADDR (ITEMLIST(1) .ADR); /% BUILD */
ITENLIST(6) .ADR = NULL; /* PARANETER LIST */
ITENSTR. AREA = ADDR (ITEN(1)); /¥ TO READ */
ITENSTR.AREAINCR = 16; /* BY ADDRESS */

ITENSTR.TYIPE = 158;
CALL DPPPIP (ITENSTR.MACID) ;
/% DATA HAS BEEN READ %/
DO I =1T0 5;
ITEN(I) = 'THIS BLOCKS GONE'; /* ALTER DATA */
END;
/* WRITE ARRAY UPDATES BY ADDRESS */
ITEASTR.TYPE = 200;
CALL DPPPIP (ITEMSTR.NMACID) ;
/% UPDATE IS COMPLETE */

PL/I GETBLOCK/PUTBLOCK Interface

This PL/I interface provides the programmer the facilities of the
Special Real Time Operating System GETBLOCK and PUTBLOCK services. The
default structure, BLOCKSTR (defined below), may be copied into the
PL/I program via a XINCLODE BLOCKDEF.

DCL 1 BLOCKSTR, /* GET/PUT BLOCK STRUCTURE */

2 MACID PIXED BIN INIT(24), /* BLOCK MACRO ID */

2 RC PIXED BIN INIT(O), /* RETOURN CODE */

2 NAME POINTER, /¥ A\NAMELIST/NUMBERLIST) #*/

2 AREA POINTER, /% A(DATA ADDR-BLK NO. LIST) */

2 ADD PIXED BIN INIT(S), /* DATA AREA INCREMENT */

2 TYPE FIXED BIN INIT(4); /% TYPE OF BLOCK SERVICE #/
BLOCKSTR

Name of the default structure provided for the Special Real Tinme
Operating System blocked arrays service requests.

MACID
A halfword binary value of 24 identifying the service required to
the interface routine.

RC
A halfwvord field containing a binary nuamber return code from the

APPLICATION SERVICES 2-93

blocked array service routine. See GETBLOCK and PUTBLICK macro
write-ups for possible values.

NRME

The adéress of one of the following based on the specifications
implied by TYPE.

a. If TYPE specifies 'NAME LIST', then NAME points to a list of
8-character array names follovwed by a X'FF' in the first byte
after the last name where the next name would start.

ARRAY NAME LIST

0 NAME
8 NAME
16} F F[

b. If TYPE specifies 'NUMBER LIST', then NAME points to a list of
halfword (2-byte) binary array numbers followed by a X'PP* in
the first byte after the last number where the next number would

start.

NUMBER LIST
0 NUMBER
2 NUMBER

"

AREA

The address of a list of 6-byte entries. ADD contains the value to
be added to the list address to locate the next entry.

DATA AREA LIST

0] FLG | DATA AREA | BLK. NO.

6| FLG | DATA AREA | BLK. NO.

12} FLG | DATA AREA | BLK. NO.

PLG
A 1-byte flag field. A X'40' indicates the last data area and block
nunber for a specified array, but not the end of the 1list. A X'8)!
indicates the last entry for the last array and the end of the list.
A X*'00' should appear in all other entries.

DATA AREA

A 3-byte address of the area into or from which the specified array
blocii is moved.

BLK. 0.
A halfword binary number specifying the array block being moved.

ADD

A halfword binary value added to the contents of AREA to locate the
next entry in the list. If zero, a length of 6 is assumed.

2-94 Description andVOperation Manual

TYPE

A halfword binary value specifying the blocked array service options
selected. The values (given in the tables below) identify the
contents of NAME and whether it is a GETBLOCK with or without

or a PUTBLOCK. :

protection (PROTECT or RISK)

PROTECTION TYPE

NAME AREA REQUESTED VALUE
A(NAME LIST) A(DATA LIST) RISK 4
A(NUMBER LIST A(DATA LIST) RISK 6
A(NAME LIST) A(DATA LIST) PROTECT 12
A(NUMBER LIST) A(DATA LIST) PROTECT 14

Figure 2-19.

GETBLOCK Services

A(NAME LIST)
A(NUMBER LIST)

A(DATA LIST)
A(DATA LIST)

N/A
N/A

~3

Figure 2-20.

The GETBLOCK/PUTBLOCK services are invoked in PL/I by CALLing DPPPIF

PUTBLOCK Services

with the properly completed structure {BLOCKSTR or a similar structure),
the array name or number list and data address list.

APPLYCATION SERVICES

2=-95

The following example will GETBLOCK for block 5 from the two arrays
BLK1 and BLOKB, and PUTBLOCK the block 5 of array BLK1 to block 5 of
array BLOKB.

DCL BLOCKSTR,
MACID FIXED BIN INIT(24),
RC FIXED BIN INIT(O),
NAME POINTER,
AREA POINTER,
ADD FIXED BIN INIT(8),
TYPE FIXED BIN INIT(4);
BLK,
NAME (2) CHAR(S),
NO (2) FIXED BIN,
LIST (2),
3 AREA POINTER,
3 NUM FIXED BIN,
3 RES FIXED BIN;
DCL BLOCK (2) CHAR(256) ;
DCL Q POINTER BASED (P);
DCL P BIT(8) BASED(PT);

DCL

NNV =ONNONNN -

BLK.NAME(1) = 'BLK1 ';
BLK.NAME (2) = 'BLOKB ';
BLK.NO(1) = -13

BLK.LIST(1) .AREA = ADDR (BLOCK (1)) ;
PT = ADDR (BLK.LIST(1).AREA);
F = v01000000'B;
BLK.LIST(1) .NUM = 5;
BLK.LIST(2) .AREA = ADDR (BLOCK (2));
PT = ADDR(BLK.LIST(2).AREA);
F = '10000000°';
BLK.LIST(2) .NUM = 5;
BLOCKSTR.NAME = ADDR(BLK.NAME(1));
BLOCKSTR.AREA = ADDR(BLK.LIST (1).AREA);
BLOCKSTR.TYPE = 12;
CALL DPPPIF (BLOCKSTR.MACID) ;
/* BLOCK 5 ARRAYS BLK1 AND BLOKB HAVE BEEN READ */
BLK.NAME (1) = BLK.NAME(2);
P = ADDR(BLK.NAME(2));
Q = NULL;
PT = ADDR(BLK.LIST(1).AREA);
F = '10000000'B;
BLOCKSTR. TYPE = 5;
CALL DPPPIF (BLOCKSTR.MACID) ;
/* BLOCK 5 OF ARRAY BLK1 HAS BEEN WRITTEN TO
BLOCK 5 OF ARRAY BLOKB */

oM

PL/I-GETLOG Interface

This PL/I interface provides the programmer the facilities of the GETLOG
service. The default structure (defined below) may be copied into tke
PL/I program via a %INCLUDE GTLOGDEF;.

2-96 Description and Operation Manual

DCL 1 GTLOGSTR, /% GETLOG DEFPAULT STRUCTURE */

2 MACID FIXED BIN INIT(48), /% GETLOG MACRO ID */
2 RC FIXED BIN INIT(O), /* RETURN CODE */
2 TYPE, /* PARAMETER LIST FLAGS */
3 (FO,F1, /% RESERVED */
LOGHDR, /% A(LOGHEADER) IN HEAD */
F3, /* RESERVED %/
PROTECT, /* ON IF PROTECTION REQ'D %/
F5, /% RESERVED */
NOMBER, /* NUMBERED ARRAY */
F7) BIT(1) INIT('O'B), /* RESERVED #*/
2 RES BIT (1) INIT('0'B), /* RESERVED %/
2 NO FIXED BIN, /* ARRAY NUMBER */
2 AREA POINTER, /% DATA ARFR */
2 STEP FIXED BIN(31,0) INIT (o), /* RELATIVE COPY NO */
2 HEAD POINTER, /% A (LOGHEADER/TIME FIELD) */
2 NAME POINTER; /% A(ARRAY NAME) */
GTLOGSTR

Name of the default structure provided for the Special Real Tinme
Operating System GETLOG service requests.

MACID
A halfword binary value of 48 identifying the requested service to
the interface routine.

RC
A halfword binary field containing a binary number return code from
the GETLOG service routine, See GETLOG macro write-up for possible
values.

TYPE
R flag's field indicating to the GETLOG secvice routine the options
requested.

LOGHDR

If on, HEAD contains the address of a 24-byte log header identifying
the relative starting point to determire which copy of the array will
be retrieved from the log data set.

If off and HEAD is zero, the current copv becomes the relative
starting point. If off and HEAD is not zero, then it contains the
address of a 6-byte time and day field beginning on a fullword
boundary. The first four bytes will contain a time in 10 millisecond
units. The last two bytes will contain a binary value from 1 to 366
representing the day of the year. This time and day will be used as
a comparison value to establish a relative starting point to determine
which copy of the arrav ¥ill be retrieved from the log data set.

PROTECT
If on, a lock is set to prevent other programs from modifying the
data set while this GETLOG is in process. If off, the data is moved
without regard to other programs which may be storing into the data
set.

NUMBER

If on, specifies that NO contains an array number. If off, NAME
contains the address of an 8-character array name padded on the right
with blanks if needed.

NO

Specifies the number of a numbered array for which a logged copy of
the array is to be retrieved.

APPLICATION SERVICES 2-97

AREA

Specifies the address of a user-allocated storage area where the
logged copy of the array will be written upon retrieval from the log
data set. This area must be large enough to hold the entire array
and a logheader (24 bytes).

STEP
Is used to determine which copy of a logged array, relative to the
HEAD parameter will be retrieved from the log data set. The value
1s a signed number which may be either positive, negative, or zero.

HEAD
Zero or the address of an array logging header or of a 6-byte time

and day field. See LOGHDR, under TYPE above for discussion of the
contents of HEAD.

NAME
The address of the name of a numed array for which a logged copy of
the array is to be retrieved.

The GETLOG service is invoked in PL/I by CALLing DPPPIF with a properly
completed GTLOGSTR or a similar structure.

The following example will execute a GETLOG for the previously logged
copy of array B referenced from the current copy. Note that the
structure into which the log copy is read provides space for the log
header.

DCL 1 GTLOGSTR, /* GETLOG DEFAULT STRUCTURE */
2 MACID FIXED BIN INIT(48), /* GETLOG MACRO ID */
2 RC FIXED BIN INIT(O), /* RETURN CODE */
2 TYPE, /* PARAMETER LIST FLAGS */
3 (FO,F1, /%* RESERVED */
LOGHDR. /* A (LOGHEADER) IN HEAD %/
F3, /* RESERVED */
PROTECT, /* ON IF PROTECTION REQ'D */
F5, /* RESERVED */
NUMBER, /* NUMBERED ARRAY */
F7) BIT (1) INIT('O'B), /% RESERVED */
2 RES BIT(1) INIT ('0'B), /* RESERVED */
2 NO FIXED BIN, /* ARRAY NUMBER */
2 AREA POINTER, /* DATA AREA */
2 STEP FIXED BIN(31,0) INIT(), /¥ RELATIVE COPY NO */
2 HEAD POINTER, /* A (LOGHEADER/TIME FIELD */
2 NAME POINTER; /* A(ARRAY NAME) */

DCL A CHAR(8) INIT('B');
DCL 1 LARAY,

2 LOGHD (12) FIXED BIN,

2 ARRAY (24) FIXED BIN (31,0);
GTLOGSTR. STEP == 1
GTLOGSTR. AREA= ADDR (LARAY.LOGHD (1)) ;
GTLOGSTR.NAME= ADDR (A);
CALL DPPPIF (GTLOGSTR.MACID) ;

2-98 Description and Operation Manual

PL/I PUTLOG Interface

This PL/I interface proviies the programmer the facilities of the PUTLOG
service. The default structure, PTLOGSTR (defined below), may be copied
into the PL/I program via a %INCLUDE PTLOGDEF;.

DCL 1 PTLOGSTR, /* PUTLOG DEFAULT STRUCTURE */
2 MACID FIXED BIN INIT(44), /* PUTLOG MACRO ID */
2 RC FIXED BIN INIT(O), /% RETURN CODE */
2 NAME POINTER, /* b (NAME/NUMBER/LIST) %/
2 HEAD POINTER, /* A(LOGHEADER/BLOCKLIST) */
2 TYPE, /* PARAMETER LIST FLAGS */
3 (F0,F1, /* RESERVED */ :
LOGHDR, /* A(LOGHEADER) IN HEAD %/
BLOCK, /% A (BLOCKLIST) IN HEAD %/
PROTECT, /* ON IF PROTECTION REQ'D */
LIST, /* A(LIST FORM) IN NAME %/
NUMBER) BIT(1) INIT('O'B), /* A(NUMBER) IN NAME %/
3 PUT BIT(1) INIT('1'B), /* MUST BE ON */
2 RES BIT (1) INIT('0'B), /* RESERVED */
2 BLKADD FIXED BIN INIT (0); /* DISPLACEMENT NEXT BLKNO */
PTLOGSTR

Name of the default structure provided for the Special Real Time
Operating System PUTLOG service requests.

MACID '
A halfword binary value of 44 identifying the requested service to
the interface routine.

RC
A halfword binary field containing a binary number return code from
the PUTLOG service routine. See PUTLOG macro write-up for possible
values.

NAME

The address of an array name, number or a list of array names or
numbers. The flags LIST and NUMBER in the flag field TYPE define
the contents of this field.

LIST = *'0'B and NUMBER = '0'B

Specifies the address of a name of a named array from which data is
to be logged.

LIST = '0'B and NUMBER = '1'B

Specifies the number assigned to a numbered array from which data is
to be logged in a halfword field binary field.

LIST = *1'B and NUMBER = 'Q'B

Specifies the address of a user-constructed list of array names fron

which data is to be logged. The name list will be a table of 8-byte

entries with one valid array name in each entry. The first byte past
the last valid entry will be set to X'FF' to indicate the end of the

name list.

APPLICATION SERVICES 2-99

EXAMPLE: Name List

0

ARRAYNAM

HOUSTONbB

TEXASbbb
24

X'FF

LIST = "1'B and NUMBER = '1'B

Specifies the address of a user-constructed list of array numbers
from which data is to be logged. The number list will be a table of
halfword entries with one valid array number in each entry. The
first byte past the last valid entry will be set to X'FF' to indicate
the end of the number list.

EXAMPLE: Number List

H'T

H255

£

H'139'

XFF

HEAD

The address of a logheader or blocklist or zero. The flags LOGHDR
and BLOCK in the flag field TYPE define the contents of this field.
If neither flag is set, HEAD is ignored.

LOGHDR = '1'B and BLOCK = '0'B

Specifies the address of an array logging header. Information in
this logging header will identify the copy of the array which is to
be replaced in the log data set.

The logging header is a 24-byte control block which precedes the
array, both as the array exists in virtual storage and as is written
to the logging array. The logging header which was retrieved as pait
of a previous GETLOG macro may be used to replace that copy in the
log data set.

BLOCK = *1'B and LOGHDR = '0'B

Specifies the address of a user-constructed list of block numbers
and of core addresses. The data list will be a table of 6-byte
entries. Each entry will contain a 1-byte flag field, a 3-byte area
address, and a 2-byte block number. This will allow the user to
update selected segments of the DA log array for block VS resident
arvrays on demand basis. The latest log copy will be modified.
However, the entire VS resident array is not logged; only the log
block corresponding to the VS resident block specified will be
updated. The actual log copy will not change; that is repeating
PUTLOG macro calls with the BLOCK parameter will update the same log
copy. A PUTLOG without the BLOCK parameter will cause the entire
array to be logged to a new log copy.

2-100 Description and Operation Manual

PL/I BLKLIST Fntry Description

-- Indicates the last entry to be processed for a
particular entry in the name list or number list,

0 1 2 3 4 5
FLAG BLOCK
BYTE AREA ADDRESS NUMBER

FLAG BYTE

X140

X180"

AREA ADDRESS

BLOCK NUMBER

-~ Indicates the last entry in the data list.

Ignored.

The number assigned to the data block to be retrieved

and placed in the array described in the Name List

or Number List.

EXAMPLE: BLKLIST and Name List

Name List Data List
FIRSThbb A(Area) HT
SECONDbb A(Area) H's'
THIRDbbD X'40 A(Areu) H'10
N —
X'FF I X'40' A(Area) H'3
A(Areat H"255
A(Area) H'Y
A(Area) H?2
A(Area) H'37
A(Area) H'186
X80 A(Area) H249

TYPE
LOGHDR
BLOCK

PROTECT

LIST
NUMBER
PUT

BLKADD

Blocks in first
array

t——_ Blocks in second array

Blocks in third array

-- A 1-byte flags field specifying the parameter options.

-- See HEAD.

-- See HEAD.

-- If on, a lock is set to prevent any other modifications
to the data base during the PUTLOG service. If off,
the data will be logged without regard to other
concurrent modifications.

-- See NAML.
-- See NAME.
-- Must be on for PUTLOG

-~ The value to be added

service.

to HEAD to locate the next block
number. A value must be specified.

The PUTLOG service is invoked in PL/I by CALLing DPPPIF with a properly
completed array name, array number, array name list, array number 1list,
logheader address block list address and structure (PTLOGSTR or a

similar structure).

APPLICATION SERVICES 2-101

The following example will PUTLOG Array B.

DCL 1 PTLOGSTR, /* PUTLOG DEFAULT STRUCTURE */

2 MACID FIXED BIN INIT(44), /* PUTLOG MACRO ID */

2 RC FIXED BIN INIT(O), /* RETURN CODE */

2 NAME POINTER, /* A(NAME/NUMBER/LIST) */

2 HEAD POINTER, /% A(LOGHEADER/BLOCKLIST) #*/

2 TYPE, /* PARAMETER LIST PLAGS */
3 (FO,F1, /* RESERVED */
LOGHDR, /* B (LOGHEADER) IN HEAD */
BLOCK, /* A(BLOCKLIST) IN HEAD */
PROTECT, /% ON IF PROTECTION REQ'D */
LIST, /% A(LIST FORN) IN NAME */
NUMBER) BIT(1) INIT('0'B), /* A(NUMBER) IN NAME %/
3 PUT BIT(1) INIT('1'B), /* MUST BE ON */

2 RES BIT (1) INIT('0'B), /% RESERVED */

2 BLKADD FIXED BIN INIT(O); /* DISPLACEMENT NEXT BLKNO */

DCL A CHAR(8) INIT('B');:
PTLOGSTR.NAME = ADDR () ;
CALL DPPPIF (PTLOGSTR, MACID) ;

Note that because HEAD was left zero, the array was logged at the
current log copy plus 1.

PL/I DUMPLOG Interface

This PL/I interface provides the programmer the facilities of the
DUMPLOG service. The default structure DPLOGSTR (defined below), may
be copied into the PL/I program via a SINCLUDE DPLOGDEF;.

DCL 1 DPLOGSTR, /% DUMPLOG PARAMETER STRUCTURE */

2 MACID FIXED BIN INIT(52). /* DUMPLOG MACRO ID */

2 RC FIXED BIN INIT(O), /* RETURN CODE #*/

2 TYPE, /* SERVICE OPTIONS FLAGS */
3 (FO,P1,F2, /% RESERVED */
DISP, /% NEW - IF ON */
Fi, /* RESERVED */
LIST, /* LIST OF NAMES/NUMBERS */
NUMB, /* ARRAY NUMBER/NUMB.LIST */
F7) BIT(1) INIT('0'B), /% RESERVED */

2 RES BIT (1), /* RESERVED */

2 NO FIXED BIN INIT(0), /% ARRAY NUMBER %/

2 START POINTER, /* A(START TIME) */

2 STOP POINTER, /* (STOP TIME) */

2 AREA POINTER, /* A(USER DATA) #*/

2 DDNAM CHAR(8) INIT('DUMPLOG '), /% DEFAULT DDNAME #*/

2 LIST POINTER; /* A (NAME/NUMBER LIST) */

DPLOGSTR

Name of the default structure provided for *he Special Real Tiame
Operating System DUMPLOG service requests.

MACID
A halfword binary value of 52 identifying the requested service to
the interface routine.

RC

A halfword binary field containing a binary number return code from
the DUMPLOG service routine. See DUMPLOG macro write-up for possible
values.

2-102 Description and Operation Manual

TYPE
A flags field indicating the requested options to the DUMPLOG service
routine.

DISP

Specifies whether the dumped copies are to be written at the beginning
of the dump data set (DISP = *1'B;) or added to the existing dumped
copies (DISP = *'0'B;).

If the disposition parameter specified on the DD card statement for
this data set is either OLD or SHR and the data set is empty, then
the first DUMPLOG request must specify NEW (DISP='1'B;).

Specifying DISP='1'B; on subsequent DUMPLOG requests will position
a direct access data set to record one and will cause a tape data
set to force the EOV before the log copies are written.

LIST
If on, specifies a list of array names or numbers is pointed to by
the LIST pointer variable.

NUMB

If on, specifies numbered array(s) to be processed by this request.
Either NO contains the array number, or LIST contains the address of
a number list.

NO
Specifies the halfword number assigned to a numbered array for which
the log array is to be dumped. LIST bit in TYPE must be off.

START

Specifies the address of a 6-byte time and day field beginning on a
fullword boundary. The first four bytes will contain a time in
10-millisecond units. The last two bytes will contain a binary value
from 1 to 366 representing the day of the year. The logged copies

of the array will be searched until a copy is found with a log time
equal to or greater than the start time specified. If this parameter
is omitted, dumping will commence with the oldest logged copy of the
array.

STOP

Specifies the address of a 6-byte time and day field beginning on a
fullword boundary. The first four bytes will contain a time in
10-millisecond units. The last two bytes will contain a binary value
from 1 to 366 representing the day of the year. The logged copies

of the array will be dumped until the most recently logged copy has
been dumped or until a copy is dumped with a log time equal to or
greater than the stop time specified. If this parameter is omitted,
dumping will terminate when the most recently logged copy of the
array has been dumped.

Note: The DUMPLOG routine will insert a byte of X'FF'into the first
byte of the logging header of the last copy of each array dumped
to the sequential data set. This function to indicate the end
of the dump of each array to the user delog routine.

AREA
Specifies the address of a 256-byte area of user data to be contained
in the dump header for each array on the sequential dump data set.

DDNAM

Specifies the name of a data definition statement which described a
sequential data set to receive the dumped ccpies of the array from
the log data set. If this parameter is omitted, the DD name 'DUMPLOG'
vill be assumed as the default.

APPLICATION SERVICES 2-103

The output will consist of spanned variable length records. The
blocksize of the data set defined by the DDNAM parameter must be at
least 264 bytes but no more than 32,760 bytes. The blocksize should
be large enough to contain one array copy, the log header (24 bytes),
the user dump header (256 bytes), if any, and the descriptor words
for variable length records (8 bytes) for maximum processing
efficiency.

LIST
Specifies the address of the array name of the log array to be dumped
(LIST bit of TYPE and NUMB bit are off) or the address of a list of
array names or numbers (LIST bit of TYPE is on)e.

The name list will be a table of 8-byte entries with one valid array
name in each entry. The first byte past the last valid entry will
be set to X'FF' to indicate the end of the name list.

EXAMPLE: Name List

ARRAYNAM

HOUSTONb

TEXASbHbb

24

XFF

The number list will be a table of halfword entries with one valid
array number in each entry. The first byte past the last valid entry
will be set to X'FF' to indicate the end of the number list.

EXAMPLE: Number List

H255

H'139’

X'FF

The DUMPLOG service is invoked in PL/I by CALLing DPPPIF with a properly
completed DPLOGSTR or a similar structure.

The following example will DUMPLOG all the logged copies of array '13¢

beginning with the oldest copy. The dumped records will be at the
start of the data set pointed to by DD name DUMPLOG.

2-104 Description and Operation Manual

DCL 1 DPLOGSTR, /% DUMPLOG PARANETER STROUOCTORE */

2 NACID PIXED BIN INIT(S2), /* DUMPLOG WACRO ID #/

2 RC PIXED BIN INIT(O), /% RETURN CODE */

2 TYPE, /% SERVICE OPTIONS PLAGS %/

3 (FO,P1,P2, /% BRESERVED %/

DISP, /% NEW - IP ON %/
P4, /% RESERVED %/
LIST, /% LIST OF NAME/NUMBERS %/
NUMB, /* RRRAY NOMBER/NUNB.LIST %/
P7) BIT(1) INIT('0°'B), /% RESERVED #/

2 RES BIT(1), /% RESERVED %/

2 NO PIXED BIN INIT(0), /* ARRAY NUNBER */

2 START POINTER, /% A(START TINME) ®/

2 STOP POINTER, /% A(STOP TIME) &/

2 AREA POINTER, /% A(USER DATA) %/

2 DDNAH CHAR(8) INIT('DUMPLOG'), /% DEPAULT DDNAME */

2 LIST POINTER; /* A (NANME/NUMBER LIST) */

DCL A CHAR(8) INIT ('B');
DPLOGSTR.TYPE.DISP = *'{'B;
DPLOGSTR.LIST = ADDR(A)
CALL DPPPIP(DPLOGSTR.MACID) ;

PL/I Optimizing Compiler Pacilities

The method of supplying PL/I Optimizing compiler executior time options is
not compatible with the Special Real Time Operating System. Therefore, a
program, DPPPLIO, is provided to allov the user to exercise some of these
options. The execution time options which DPPPLIO passes to the prolog
are, NOREPORT, SPIE, NOSTAEB, NOCOUNT, NOFLOW and ISASIZE. The ISASIZE

may be supplied by the PL/I proaram by declaring an external fullword,
ISASTZE, and assigning as inftial data the required TSA size in bytes,

see example.

DCL TYSASIZE EBXTERNAL PIXED BIN(17) INIT(4096) ;

If the external is not provided or is zero, then a default of 2048 bytes
is assumed. All values supplied will automatically be rounded upward to
a aultiple of eiaht.

To determine the optimum ISA size to request, the report option may be
used. To do this the user must modify the load module at the location
DPPPLIEO. DPPPLIEO is a full word external symbol which will appear in
the linkage editor map of the load module. Set bits 0 and 1 of byte 0 at
DPPPLIEQO to 1 and 0 respectively. Execute the proqram in such a manner
as to force execution of the epilog which will generate the necessary
report. Ifter sufficient test time modify the PL/I program to supply

the smallest regquired fixed ISA size and relink edit the PL/I proqraa.

APPLICATION SERVICES 2-105

Special Real Time QOperating System PORTRAN Interfaces

This portion of the manual explains the programming considerations for
FORTRAN programs to be run under Special Real Time Operating System
epvironment. PFORTRAN programs which do not use Special Real Time
Operating System services should follov standard procedures as described
in the FORTRAN Programmer's Guyide, Form No. GC28-6817.

The remainder of this section explains procedures pertiment only if
Special Real Time Opr2rating System services will be used in PORTRAN
programs. The user should be aware that these services are intended
for FORTRAN programs which are invoked via the PATCH function. Other
means of executing FORTRAN (such as LINK, CALL, XCTL) using these
services should be used only by programmers who are aware of the
interfaces between FORTRAN and the Special Real Time Operating Systeam.

The interface routines described here use PORTRAN COMMON areas to pass
and receive parameters. It should be noted that, when using the G
level FORTRAN compiler, the variable name that is passed to the

interface routine (s) must be the name of a variable within the CONMON
area and not the name of the COMMON area.

Epnhapcepents to FORTRAN Data Manipulation apnd Movement

This section describes three enhancements provided to the PORTRAN
programmer to interface with Special Real Time Operating Systea:

1. Identification of the computer storage address of one variable
and setting another variable to that value.

2. Execution of storage bits.

3. MNovement of up to 32,767 computer storage bytes of data from
one location to another.

The PORTRAN programaer will discover that one or more of these
capabilities is probably needed when using the capabilities described
in the remainder of this section.

IADDR Punction

This function computes and returns to the caller the 32-bit address
requested and stores it at the desired location.

X=IADDR (Y)

ORBIT Subroutine
This subroutine ORs the specified bit mask into the specified address.
The location to be modified must be specified first in the CALL
parameters.

LOGICAL*1 FF/IZFPF/

CALL ORBIT(X,FPP)
NDBIT Subroutine

This subroatine ANDs the specified mask with data at the specified

2-106 Description and Operation Hanual

address. The location to be modified must be specified first in the
call parameters.

LOGICAL*1 SF/ZTF/

CALL NDBIT(X, S5F)
COPY Subroutine

This function moves up to 32,767 contiguous bytes of data from one
iocation to another. More than one move operation can be specified
in the same call. The format of the CALL subroutine is as follows:

CALL COPY (INLIST,OUT,,OUT, ...,00T)

where INLIST specifies an address variable or a common area consisting
of aldress variables. (An address variable is one which has been set
using the IADDR function to contain the address of, or point to, a
data area.) The address variable(s) in INLIST should point-to the data
area from which data is to be moved. The variable 00T ,...,OOT should
be the labels for the data area to which the data is to be moved. The
number of copy operations will be equal to the number of 0UT
variables. Data will be moved to the OUT, data area from the data
area addressed by the first address varlable of INLIST, data will be
moved to the OUT, data area from the data area addressed by the second
address variable of INLIST, and so on until OUT has been likevise
processed.

If either OUT, or the corresponding address variable of inlist is zero
no move takes place for that OUT,. The copy operation proceeds to the
next OUT . .

The length of each move will be determined independently for each OUT,
either by the first halfword of the OUT data area, or by the first
halfword of the data area pointed to by'the corresponding address
variable of INLIST. The length of the move will be equal to the
smaller positive value of the tvwo halfwords, as zero and negative
values are not recognized. (No move will take place for this oOUT if
neither halfword referred to is positive.) Note that the first haifword
of both areas is included in the mov¥e, and the two bytes occupied by
the length must be included in the length specification.

For example, moving one data area, INA1, to another data 'area, 0UTAA1,
is accomplished as follows:

Given:
COMMON/INA1/INHALF, INF (30)
INTEGER INHALF*2, INF%2
COMMON/OUTA1/OUTHAF, OUTF (70)
INTEGER OUTHAF*2, OQUTF*2

Then code:

INHALF=30%2+42 Set the first halfword of the input area
equal to its length,

OUTHAF=T70%2+2 Set the first halfword of the output area

equal to its maximum length - in case the
input area's length varies.

APPLICATION SERVICES 2-107

INADD=IADDR(INHALF) Set the address variable INADD to point to
labeled common area INA1l.

CALL COPY (INADD,OUTHAF)

This causes the common area INA1 to be moved in its entirety (62 bytes)
to the common area OUTA1. Note that the value of OUTHAF would be 62
after the MOVE operation.

The next example describes moving several common areas (COM1, COM2Z,
COM3) to ountput common areas (0UT1, OUT2, COUT3). It is assumed that
the first halfword of each common area has been set to its desired
length.

Given:

COMMON/COM1/CHALF1...
COMMON/COM2/CHALF2..«
COMMON/COM3/CHALF3...
COMMON/INCOM/IN1,IN2,IN3
INTEGER IN1,IN2,XIN3
COMMON /OUT1/0HALF1...
COMMON /0OUT2 /OHALF 2. ..
COMMON /OUT3 /OHALF3...

Then code:

IN1=IADDR (CHALF1) Set the address variables
IN2=IADDR (CHALF2) to point to their common
IN3=IADDR (CHALF3) areas.

CALL COPY(IN1,0HALF1,0HALF2,O0HALF3)

Locating Input Parameter(s) After Being PATCHed

This section explains the coding of PORTRAN program to interrogate the
data which may have been specified via the PATCH function. Refer to
the section on the PATCH macro for a detailed discussion of the PATCH
parameters. The only requirement of this discussion is to know that
the PAYCH macro can specify a list of input parameters to be passed to
the user in his PROBL. This discussion applies to a program which is
re-entered at the beginning for each execution of the function to be
processed. A FORTRAN program may be coded to be logically entered
several times when actually being entered at the beginning only once.
This is described in the section entitled, "Repeated Execution of a
FORTRAN Progranm".

The FORTRAN program receiving control due to the PATCH can gain access
to this PROBL parameter list by including a call to a special interface
routine (DPPFPM) and having a predefined common area properly
initialized, as described. The common area is described in the
following example and will be called PARM throughout this write-up.

PARM
0 +2
PRMAC PRMRC

+4
PRXCVT

+8
PRMRES

+12
PRMADD

While the first two halfwords, PRMAC and PRMRC, must be initialized to

2-108 Description and Operation Manual

zero prior to calling DPPPPM, the remainder of the common area need
not be initialized.

Following is a layout of the common area PARM in FORTRAN code, with an
explanation of each variable as they pertain to this section.

C
C COMMON NAMED'PARM'--PARAMETER TABLE FOR RECEPTION OF PATCH
COMMON/PARM. PRMAC
INTEGER*2 PRMAC
CONMON/PARM/ PRMRC
INTEGER*2 PRMRC
COMMON/PARM/PRXCVT
INTEGER*4 PRXCVT
COMMON/PARM/ PRMRES
INTEGER*4 PRMRES
COMMON/PARM/ PRMADD
INTEGER*4 PRMADD
C END OF COMMON NAMED 'PARM'
c

PRMAC
A halfword vaiiable reserved for use by DPPFPM. It must be initialized
to zero prior to calling DPPFPM (the first call only) and its contents
will have no meaning to the FORTRAN programmer. It should not be
altered after the first call to DPPFPM.

PRMERC

A halfword variable which will contain the return code as set by
DPPFPM. This variable should be set to zero prior to calling DPPFPHM.
Its subsequent contents have no meaning to the FORTRAN programmer w¥hen
calling DPPFPM solely to gain access to the PATCHed input parameters.
(The section entitled, "Repeated Execution of FORTRAN Program"
describes another use of the program DPPFPM and common area PARM in
which this variable is pertinent).

PRXCVT
This fullword variable, which need not be initialized, contains the
address of the XCVT after calling DPPFPM. This variable does not
pertain to the present discussion.

PRMRES
This fullword variabie, which need not be initialized, contains the
address of the Resource Table for this task after calling DPPFPM.
This variable is not pertinent to the present discussion on input
parameters.

PRMADD
This fullword variable, which need not be initialized contains the
address of the Problem Parameter List (PROBL) for the causative PATCH.
It is through this variable that the FORTRAN programmer gains access
to his PROBL, which contains the input parameters or pointers to the
input parameters.

The PROBL, pointed to by the variable PRMADD (within common PARM),
should also be described by a labeled common area, ¥which shall
henceforth be called PROBL. The PROBL has one of two formats,
depending on whether this program is PATCHed via a PATCH macro (from
an already executing program) or via an input control stream PATCH
CAED. In either case, the length of the table varies with the number
of parameters passed on the PATCH, so the common area (PROBL) should
be specified according to the maximum number of parameters expected.
The following example depicts the two formats of the PROBL.

APPLICATION SERVICES 2-109

PROBL from
PATCH Macro

+2 +3
Length of PROBL 00 iD PROBL from
an Input Control Stream PATCH Card
Length of PROBL 00 iD
Data as set up by PATCH or
4 (Reserved Flags)
8 | Length Address of
of first first parameter
parameter p
Y . 7
(One fullword per parameter)
t?nlg;? Address of
parameter last parameter

Note that the first word of both formats is the same and that while

the format of the remainder is fixed in the PATCH card type, the foraat
of the remainder is flexible in the PATCH macro type. In most cases
the PROBL of a PATCH macro, when used in conjunction with FORTRAN
programs, will be set up to consist of data rather than pointers to
data as in the PATCH card type.

The common area, then, for the PROBL would be coded as follows:

COMMON/PROBL/PRBLNG
INTEGER*2 PROBLNG

COMMON/PROBL /I D
INTEGER*2 ID

COMMON/PROBL /PROBP 1
INTEGER*4 PROBP1

PRBLNG
The total length in bytes of this PROBL, including this halfword.

ID
The ID value specified on the PATCH CARD or macro (defaults to zero).

PROBP1
A fullword variable which (1) contains the first PATCH parameter or
(2) contains the address of the first PATCH parameter. (1) or (2) is
the user's (caller's) option.

The Special Real Time Operating System initialization process allows

a PATCH to be executed under control of a PATCH card. The format of
the parameters that may be specified with the PATCH card are such that
passing parameters from the PATCH card may not be practical, without
an 2ssembler language routine specially written for this purpose.

In the following example, assume that the FORTRAN program will be
PATCHed by a program (already in execution) with which a common format
for the PROBL has been previously established. Suppose that the
following statements describe this PROBL format and appear in the
FORTRAN progranm.

2-110 Description and Operation Manual

COMMON/PROBL/PRBLNG, ID, PROBP {10)
INTEGER PRBLNG*2,ID*2,PROBP*4

These cards indicate that 10 fullword parameters will be passed to this
FORTRAN progranm.

Ther, to interrogate the parameters within the FORTRAN program, code
the following:

COMMON/PARM/PRMAC,PRMRC,PRXCT ,PRMRES,PRMADD
INTEGER PRMAC*2,PRMRC*2,PRXCVT,PRMRES,PRMADD

These cards defined the common area PARM previously explained.

PRMAC=0 These statements initialize the

PRMC=0 comnon area PARM as required.

CALL DPPFPM(PRMAC) Cause the common area PARM to be properly
filled in.

PRBLNG=U44 Set length of PROBL to maximum expected.

CALL COPY (PRMADD,PRBLNG) Cause the common area PROBL to be filled in
as per the PROBL of the PATCHING progranm.

The variables PROBP (1) through PROBP(10) will have the values specified
in the PATCH and can be referenced normally.

Repeated Executions of a FOBTRAN Program

This section describes the procedure to be used for a FORTRAN progranm
which is to be repeatedly executed in a realtime environment.

Under standard executing conditions when a FORTRAN program is executed

a second time after completing one execution, a fresh copy is fetched
and both prologue and epilogue are executed again. This fetching of

a fresh copy and the re-executing of the prologue/epilogue can sometimes
be avoided when executing a FORTRAN program under the Special Real Time
Operating System. This is done by coding rultiple calls to an interface
program (DPPFPM) in a certain sequence and by having a predefined common
area properly initialized.

The description of the common area, hereafter called PARM, was presented
in the section entitled "Locating Input Parameters after being PATCHed"
and will be repeated here with explanations pertinent to this section.
The following example depicts the PARM common area.

PARM
0 +2
PRMAC PRMRC
+4
PRXCVT
+8
PRMRES
+12
PRMADD

APPLICATION SERVICES 2-111

The FORTRAN-coded statements for the specification of the PARM common
area follows:

o
C COMMON NAMED'PARM'--PARAMETER TABLE FOR RECEPTION OF PATCH
COMMON/PARM/PRMAC
INTEGER*2 PRMAC
COMMON/PARM/PRMRC
INTEGER*2 PRMRC
COMMON/PARM/PRXCVT
INTEGER*4 PRXCVT
COMMON/PARM/PRMRES
INTEGER*U4 PRMRES
COMMON/PARM/PRMADD
INTEGER*4 PRMADD
C END OF COMMON NAMED 'PARM'
c

PRMAC

This halfword variable should be initialized to zero prior to the
first call to DPPFPM only. It will be used by DPPFPM and should not
be subsequently altered by this FORTRAN program. TIts contents will
be of no significance to the FORTRAN prograumer.

PRMRC
This halfword variable should be initialized to zero prior to the
first call to DPPFPM only. It is used as both an input variable and
an output variable by the FORTRAN program following An in-depth
explanation of the use of this vital parameter follows the remaining
description of the PARM common area.

PRXCVT
This fullword variable, which need not be initialized, contains the
address of the XCVT. This variable is immaterial to our present
discussion.

PRMRES

This fuilword variable, which need not be initialized, contains the
address of this task's resource table. This variable is immaterial
to our present discussion.

PRMADD

This fullword variable, which need not be initialized, contains the
address of the PROBL (problem parameter list) for this PATCH. Refer

to the section entitled "Locating Input Parameters after being PATCHed"
for a full explanation of accessing the problem parameter list.

To understand the use of the PARM common area (in particular the
variable PRMRC) in conjunction with multiple calls to DPPFPM, the
concept of a work queue for a task must be understocod. The FORTRAN
program should be capable of performing a specified function when
invoked, and if this function is requested again (or several times)
under the same task, then the second request will be the first entry
in the work queue of that task.

When the original request is serviced and the FORTRAN program has
returned, the second request (first entry in the work queue) will be
honored and the FORTRAN program will be executed again. When the
FORTRAN program has returned and no additional requests are waiting,

a condition indicated by an empty work queue, the Special Real Time
Operating System will place this task in wait state until such a request
is made. If a request is made for a different program to be executed
unéer this task, the Special Real Time Operating System will allow this
FORTRAN program to be purged.

2-112 Description and Operation Manual

If the author of the FORTRAN program foresees no entry in the work
queue for this program's task at the completion of the program or at
a later time, he should return as in standard FORTRAN (i.e., he need
not call DPPFPM at all except for input parameter considerations).

Given that entries in this task's work queue for this program are
expected on completion of the processing of this PATCH, the programmer
can avoid the overhead of program fetch and epilogue/prologue by not
returning normally but instead, calling DPPFPM again. (The first call
to DPPFPM must have been done). Through the use of the variable PRMAC
(maintained by DPPFPM), DPPPPM will know that this is not the first
call and consider it a RETURN. DPPFPM will then locate .the first entry
in the work queue for this task (or wait until there is one) and, if
the entry is for this FORTRAN program, properly fill in the PARM conmmon
area according to the PATCH causing this work queue entry.

If the previous PATCH (the one for which processing has just completedj
had specified an ECB for posting, then that ECB will be posted with a
completion code equal to the value in the variable PRMRC, which can be
set by this program. 1If the first entry in the work queue was for
another program, then this FORTRAN program should return normally,
yielding this task to the new request. This This condition will be
indicated by a non-zero value in PRMBRC. This setting of PRMRC by DPPFPM
is done on each call, including the first call, so the FORTRAN coder

can surmise that only one call to DPPFPM is needed, followed by a RETOURN
if PRMRC is not zero. At the end of processing, or anyvhere a normal
RETOUORN would be coded, he would GO TO the statement of the CALL to
DPPFPM.

The following example illustrates the use of the multiple calls to
DPPFPM for a FORTRAN program written with the expectation that it would
be PATCHed repeatedly under the same task.

Given:
A FORTRAN program that expects to be PATCHed (via PATCH macro) with
different PATCH IDs to indicate various macro processing options
desired.
Then code:
COMMON/PARM/PRMAC, PRMRC,PRXCVT, PRMRES ,PRMADD
INTEGER PRMAC*2,PRMRC*2,PRXCVT, PRMRES,PRMADD
COMMON/PROBL/PR BLNG,ID, PROBP1
INTEGER PRBLNG*2,1ID*2,PROBP1

These cards define the required common areas.

PRMAC=0 Initialize the PARM common
PRMC=0 area as required

1000 CALL DPPFPY(PRMAC) Call DPPFPP¥ to get PATCH ID parameters
IF (PRMRC.NE.O) RETURN Non-zero indicates a different program

has been PATCHed to execute under this
task. Return and give up control of
this task. This condition will not
occur on the first call.

A zero value indicates that variables in the PARM common area
(especially PRMADD) have been set according to the PATCH. Proceed with
processing. ‘

APPLICATION SERVICES 2-113

PRBLNG=12 Set PRBLNG for a copy operation.

CALL COPY (PRMADD,PRBLNG) Copy the PROBL for this PATCH to the common
area PROBL.

Now inspect ID and proceed processing.

When processing is completed, set PRMRC according to a previously agreed

upon return code (agreed upon with the author of the program which

executed the PATCH this program has been processing).

PRMRD= return code

GO TO 1000 This causes another call to DPPFPM indicating that
processing is completed for this PATCH and the
program expects another,

Note: The input parameters of each PATCH could also be interrogated
in this example. Refer to the previous section for a description
of this procedure,

pecial Real Time Operating System Online Macro Subroutines for FORIRAN

[1%]

This section explains the coding of each of the online macros provided
to the FORTRAN programmer by the Special Real Time Operating System.
Each of these functions is provided to assembler language programmers
through macro calls. There is a parallel (but more detailed) write-up
on each function in the online macro section of this manual. Although
this section may attempt to explain to varying degrees the functions
themselves, the main purpose here is to describe the format of the
COMMON areas required for invoking each function and point out
peculiarities where pertinent.

FORTRAN-PATCH Interface

The PATCH service provides the programmer the facility of creating work
queues for passing parameters to programs executing under the Special
Real Time Operating System. The following FORTRAN statements define
the parameter list for this service:

2-114 Description and Operation Manual

c
C COMMON NAMED “'PATCH'--PARAMETERS NECESSARY FOR PATCH FROM
C FORTRAN
c
COMMON/PATCH /P ATMAC
INTEGER*2 PATMAC
COMMON/PATCH/PAT RC
INTEGER*2 PATRC
COMMON/PATCH/PATPRN
INTEGER*4 PATPRN
COMMON/PATCH /PAT ASK
INTEGER*4 PATASK (8)
COMMON/PATCH /PATEP
LOGICAL*1 PATEP (8)
COMMON/PATCH/PAT NAM
LOGICAL*1 PATNAM (8)
COMMON/PATCH /PATQ
INTEGER*2 PATQ
COMMON/PATCH/PATV
INTEGER*2 PATV
COMMON/PATCH /P AT ECB
INTEGER*4 PATECB
COMMON/PATCH/PATRES
INTEGER*4 PATRES (2)
COMMON/PATCH /P AT CBX
INTEGER*4 PATCBX
COMMON/PATCH/PATFLG
LOGICAL*1 PATFLG
C END OF COMMON NAMED 'PATCH'
c

PATMAC
A halfword binary constant value of zero to identify a PATCH service
request to the interface routine.

PATRC
A halfword binary field containing the return code from the service
routine. See PATCH macro write-up for possible values.

PATPRM

A fullword address of the parameter list being passed. The format is
a halfword binary value (minimum value is 4) describing the length of
the entire parameter list, (including length and patch ID) followed
by a halfword binary value from 0 to 255 called the PATCH ID with the
remainder of the list being the parameters. The diagram below
represents the format of a PATCH problem parameter list.

LENGTH PATCHID

PARAMETERS

PATASK
An 8-byte character field containing the name of the task being
PATCHed. If the task does not exist, one by that name will be created.
If PATASK is all blanks, the PATCHed program will execute under a
dependent task.

PATEP
An 8-byte character field containing a valid entry point name which

APPLICATION SERVICES 2-115

is the name of the projyram to be scheduled under the task being created
wvith the PATCH.

PATNAM and PATV
Specifies an 8-byte character field containing the task name for
determining priority amd a halfword binary value which will determine
that priority relative to the task name in PATNAM.

PATQ
A halfword binary value from 0 to 235 specifying the number of work
queue entries to be allowed for the new independent task., If 0 is
specified, the task accepts one PATCH, works on that request, and,
wvhen completed, waits for the next request. If a PATCH is requested
for that task while it is busy, the request is not executed. If the
queue length is 1, the task can accept one PATCH even while it is
busy. Any PATCH parameters waiting in the queve when a task completes
processing of the current request will be executed one at a time, with
the start of the queue being executed first. This procedure is the
same for all queue values from 0 to 255.

PATECB .

The address of a fullword event control block (ECB) within a PATCH-WAIT
parameter list of the common area WAIT. The ECB is posted when
processing for this PATCH completes.

PATRES
Filler position for required space for PATCH MACRO (not usable by
programmers) .

PATCBX
A fullvord address of the TCB extension control block (TCBX) for an
existing independent task. The TCBX address is stored by the interface
routine after each PATCH service call. Use of this parameter with
all successive PATCHes to the same independent task after the initial
PATCH will reduce system processing time. Note that the other
parameters must still be specified for verification or in the event
the task has been DPATCHed.

PATFLG
The PATCH option flags as described below:

X'40" -~ This PATCH is intended for the MASTER partition.
X'20" -- This PATCH is intended for the SLAVE partition.

X'08' -- If this vork request is pushed off the gqueue, the ECB is to
be posted with a REPATCH control block address.

X'04' -- Place the work request at the start of the work queue. If
off, the request is queued last.

X'02' -- Place this work request on the task DPATCH queue to be
executed vhen a DPATCH is issued for this task.

X'01' -~- sSpecifies a DELETE is to be issued for the load module named
previously after processing completes for this PATCH.

X'00' -- Execute this PATCH last.

All combinations are valid except X'04*' and X'02*' must not both be
set to 1.

The PATCH service may be invoked by assigning values to the above

defined variables and CALLing DPPPIF passing the common area as the
(only) parameter. Exaaples of using the PATCH facility follow.

2-116 Description and Operation Manual

Examples 1 and 2 use the following parameter lists, variables, and
constants as expressed in FORTRAN statements:

BLOCK DATA

COMMON/PATCH/PATNAC, PATRC,PATPRM, PATASK (2) , PATEP (2) ,PATNAN(2) ,
1PATQ,PATV,PATECB, PATRES (2) » PATCBX,PATFLG

INTEGER PATMAC%2/0/,PATRC*2/0/,PATPRM,PATQ*2/1/,PATV%2/0/,
1PATECB, PATRES, PATCBX

LOGICAL PATASK*4/! /. ' ,DATEP*Y4 ,PATNAMXLU/Y /0 ',
1PATFLG*1

COMMON/WAIT/WTKAC,WTRC, WTECB

INTEGER WTMAC*2,/60/,WTRC*2/0/,WTECB/0/

END

(The above common areas should be repeated in the main program
without data initialization. The following statements are in
MAIN only.)

L)
LOGICAL*4 TN(2) /*DPPZ',"TS00'/, TP (2)/'DPPZ', ' TS13'/
LOGICAL*Y4 DP(2) /' DEPE',*NDX'/,BLK(2)/* ',' %y

Example 1

In this example, the task DPPZTSO00 is to be created with a queue length
of 1. Program DPPSTS13 is to be executed, and the parameter list is

to contain only the length field and a PATCH ID of 10. The new task

is to have the same priority as the task issuing the PATCH. ©Note that
if the task already exists, the PATFLG (all bits off) indicates this
work request will be queued behind any others on the queue.

PRBLNG=4
ID=10
PATPRM=IADDR (PRBLNG)
Do 100 I=1,2
PATASK (I)=TN (I)

100 PATEP(I)=TP(I)
CALL DPPPIF (PATMAC)

Example 2

In this example, assume that the CALL in Example 1 has returned, and

a dependent task is to be created at a priority of 10 less than the
task DPPZTS00 and that program DEPENDX is to be passed a parameter list
PRTCH ID of 2. The PATCHing program will WAIT for the dependent task
to complete. The WAIT function is executed via a CALL to the interface
routine using the WAITSTR structure.

CALL DPPPIF(PATMAC)
ID=2
DO 200 I=1,2
PATASK(TI)=BLK (I)
PATEP (I) =DP (I)

200 PATNAM(I)=TN(I)
PATV=10
PATECB=IADDR (WTECB)
CALL DPPPIF {PATMAC)
IF(PATRC.GE.8) GO TO 400
CALL DPPPIF (RTHAC)

400 CONTINUE

APPLICATION SERVICES 2-117

FORTRAN PATCH-WAIT Interface

Ttis interface provides the FORTRAN programmer with the facility to
wait for the completion of a WQE generated by a PATCH. The following
FORTRAN statements define the interface parameter list:

c
C COMMON NAMED 'WALT'--PARAMETER TABLE FOR WAIT
COMMON/WAIT/WTNAC
INTEGER*2 WTMAC
COMMON/WATT/WTRC
INTEGER*2 WTRC
COMMON/WAIT/WTECB
INTEGER*4 WTECB
C END OF COMMON NAMED *WAIT'
c

WTMAC
A halfword binary constant value of 60 identifying the reguested
service to the interface routine.

WTRC
A halfword binary number containing the high order byte of the
completion code from the PATCHed program. See PATCH macro for possible
values. It should be initialized to zero.

WTECB

. fullword binary field containing the 3 low order bytes of the
completion code from the WQE just processed or the address of a REPATCH
control block. The value of this field is governed by the contents

of WTRC. It should be initialized to zero.

Note: For this interface, WTRC will never be zero when the interface
returns to the FORTRAN program.

Example 2 of the FORTRAN-PATCH interface shows the correct method for
using this service.

FORTRAN-DPATCH Interface

The DPATCH facility provides the programmer the method of destroying
tasks which were created by the PATCH service. The following FORTRAN
statements define the parameter list for this service:

C
C COMMON NAMED 'DPATCH'
COMMON/DPATCH/DPRES
INTEGER*2 DPRES
COMMON/DP ATCH/DPHMAC
INTEGER*2 DPMAC
COMMON/DP ATCH /DPRC
INTEGER*2 DPRC
COMMON/DPATCH /DPTYP
INTEGER*2 DPTYP
COMMON/DPATCH /DPTSK
LOGICAL*1 DPTSK (8)
C END OF COMMON NAMED 'DPATCH'
o

DPRES
A halfword field inserted to align DEPTSK on a fullword boundary.

DPMAC

A halfword binary constant value of 8 identifying to the interface
routine the required service.

2-118 Description and Operation Manual

DPRC

A halfword binary field containing a binary number return code from
the service routine. See DPATCH macro write-up for return codes. It
should be initialized to zero.

DPTYP
A halfword binary value specifying the DPATCH service requested. 1If
0 is specified, the task is deleted immediately or when the currently
executing work request completes. Any work queued to the task is
posted as deleted., If 4 is specified, the task is deleted only if
its work queue is empty. This does not prevent new work from being
queued. If 12 is specified, the task is deleted even if it is active.
See the DEPATCH function under ONLINE MACRO for further explanation
of the DEPTYP operand in the DEPATCH function.

DPTSK
Two logical fullwords specifying the name of the task being deleted.
If blank, the current task is deleted. If the task is active, the
program that is running will be ABENDed.

The following example will force the task named 'BOLDTASK' to be
DPAT(Hed immediately regardless of its active state and the amount of
queued work. If the task is active, the running program will be
ABENDed.

C FORTRAN DEPATCH EXAMPLE
BLOCK DATA
COMMON/DEPT CH/DEPRES, DEPMAC ,DEPRC,DEPTYP,DEPTSK (2)
INTEGER DEPMAC*2/8/,DEPRC*2/0/, DEPTYP*2/0/, DEPRES*2
LOGICAL DEPTSK*U4
END

{(The above common areas should be repeated in the main progran
vithout data initialization. The following statements are in
MAIN only.)

LOGICAL A*4 (2) /'BOLD®," TASK'/

DEPTSK (1) =A (1)
DEPTSK (2) =A (2)
DEPTYP=12

CALL DPPPIF (DEPMAC)

FORTRAN-REPATCH Interface

This FORTRAN interface provides the programmer the facilities of the
Special Real Time Operating System REPATCH service. The following
FORTRAN statements define the parameter list for this service:

APPLICATION SERVICES 2-119

C
C COMMON NAMED 'RPATCH'--PARAMETER TABLE FOR RPATCH
COMMON/RPATCH/RPMAC
INTEGER*2 RPMAC
COMMON/RPATCH/RPRC
INTEGER*2 RPRC
COMMON/RPATCH/RP TYP
INTEGER*4 RPTYP
COMMON/RPATCH/RP CB
INTEGER*4 RPCB
COMMON/RPATCH/RP TSK
LOGICAL*1 RPTSK (8)
COMMON/RPATCH/RPEP
LOGICAL*1 RPEP (8)
COMMON /RPATCE/RPRTK
LOGICAL*1 RPRTK (8)
COMMON/RPATCH/RPQUE
INTEGER*2 RPQUE
COMMON /RPATCH/RP VAL
INTEGER*2 RPVAL
COMMON/RPATCH/RPECB
INTEGER*4 RPECB
COMMON/RPATCH/RPRES
INTEGER*4 RPRES (2)
COMMON /RPATCH/RP TCB
INTEGER*4 RPTCB
COMMON /RPATCH/RPFLG
LOGICAL*1 RPFLG
COMMON /RPATCH/PPAD
LOGICAL*1 RPAD(3)
COMMON/RPATCH/RPPRM
INTEGER*4 RPPRM (3)
C END OF COMMON NAMED 'RPATCH'
o

RPMAC
A halfword binary value of 12 identifying to the interface routine
the required service.

RPRC
A halfword field containing a binary number return code from the
REPATCH/PATCH service routine. See REPATCH macro uWrite-up for REPATCH
and related PATCH return codes.

RPTYP
A fullword binary value indicating the interface routine service
required:

0 -- The REPATCH control block is to be copied to this parameter list
for alteration prior to REPATCH.
4 -- 1Issue REPATCH TYPE = EXEC.
8 ——- 1Issue REPATCH TYPE = PURGE.
RPC3

A fullword binary field to contain the REPATCH control block address
placed in the WTECB when WTRC equals 68. The value in WTECB must be
moved to RPCB before any interface call except the first interface
call RPTYP = 4 or 8 following a RPTYP = 0 interface call.

RPTSK

Two 4-byte lcgical words containing the name of the task being
referenced by this PATCH.

2-120 Description and Operation Manual

RPEP
Two 4-byte logical words containing the name of the program to be
scheduled under task specified in RPTSK.

RPRTK and RPVAL

Specifies two 4-byte logical words containing a task name and a
halfword value which will determine the priority of the new task
relative to the named task in RPRTK.

RPQUE
A halfword specifying the number of work queue entries to be provided
for a new independent task.

RPECB
Specifies the address of the ECB within a COMMON/WAIT area which is
to be used in a CALL DPPPIF. This ECB is posted when processing for
this PATCH completes. The ECB which contained the REPATCH control
address may be reused and will be if this parameter is left unchanged.

RPRES
Filler position required by REPATCH macro (not used by programmer).

RPTCB
Contains the address of the TCB extension control block for an existing
independent task.

RPF1LG
The PATCH option flags as described belouw:
X*40' -- This PATCH is intended for the MASTER partition.
X'20' -- This PATCH is intended for the SLAVE partition.
X'08' ——- If this work request is pushed off the queue, the ECB is to

be posted with a REPATCH control block address.

X*04' -- Place the work request on the front of the work queue. If
off, the request is queued last.

X*02' -- Place this work request on the task DPATCH queue to be
executed when a DPATCH is issued for this task.

X*'01* -- sSpecifies that a DELETE is to be issued for the load module
named above after processing completes for this PATCH.

Codes X'04' and X'02' are mutually exclusive; all other combinations
are allowed.

RPPAD, and RPPRM
Pointers which must not be altered by programmer.

The Special Real Time Operating System REPATCH service may be invoked
by a FORTRAN program by defining a COMMON area as described above,
moving the REPATCH control block address from the event control block
to the RPCB field and then doing one of the following:

a. If a REPATCH is to be executed without changes, set RPTYP to U4 or
8 and CALL DPPPIF.

b. If the REPATCH is to be changed prior to execution, set RPTYP = O,
CALL DPPPIF, make changes desired, set RETYP to 4 and CALL DPPPIF
again.

Users of this facility should be aware that only the supervisor portionm
of the PATCH parameters can be altered. The problem parameters cannot

APPLICATION SERVICES 2-121

be changed. All REPATCH control blocks must be returned to the system
through a RPTYP = 4 or 8 service request.

Examples 1 and 2 shov the various methods of using REPATCH. The example
for using REPATCH service in FORTRAN use the following definitions of
COMMON areas and constants:

BLOCK DATA
COMMON/ RPAT CH/REPMAC, REPRC, REPTYP, TEPCB, REPTSK (2) ,
1REPE