-*

i TR

A Guide to the IBM
4341 Processor

GC20-1877-0
File No. $/370-01

A Guide to the IBM
Systems 4341 Processor

This guide presents hardware 1/O device, programming
systems, and other pertinent information about the IBM
4341 Processor that describes its significant new features
and advantages. Knowledge of System/360 hardware and
I/0 devices is assumed. The contents of the guide are in-
tended to aquaint the reader with the 4341 Processor and to
be of benefit in planning for its installation.

First Edition (April 1979)

This guide is intended for planning purposes only. It will be updated from time to time;
howeverz, the reader should remember that the authoritative sources of system information
are the system library publications for the 4341 Processor, its associated components and its
programming support. These publications will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form has been provided at the back of this publication for readers’ comments. If this form
has been removed, address comments to: IBM Corporation, Technical Publications, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604. IBM may use or distribute any of
the information you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979

PREFACE

This publication assumes the reader is familiar with a System/360
Model 22 or higher. The reader should have a general knowledge of
System/360 architecture, channels, I/O devices, and programming systems
support. This publication highlights and discusses the significance of
only those hardware, I/0, and programming systems features of the 4341
Processor that are different from those of System/360 Models 22 and up.

This publication is also designed for readers who are knowledgeable
about System/370 architecture, channels, I/0 devices, and programming
systems. Compatibility between the architectures implemented in 4300
Processors and System/370 processors and their programming systems
support are also discussed.

CONTENTS

Section

Section
05:05

05:10

05:15

Section
10:05

10:10

10:15

10:20

10:25
10:30

10:35

01: Highlights . . « . ¢« . . « . .
05: Technology, Architecture, and P
Technology « « o« « ¢ o o o o =« .
Introduction
System/360 Technology. « « « «
System/370 Technology.
4341 Processor Technology. . . .
Design Objectives and Architectures
Design Objectives.
Architectures Implemented. . . .
System/360 Program Compatibility
4341 Processor
Sgstem/370 Program Compatlblllty
41 Processor « « « o« ¢ o o o @
Physical and Logical Components. .

10: The 4341 Processor . . .
The Instruction Processing Fun
General Description. . . .
Control Registers.
Basic Control Mode
Extended Control Mode. . .
Expanded Instruction Set .
Byte-Oriented Operands . .
Monitoring Feature
Architecture Implementation
Interval Timer
Time-of-Day Clocke.
Clock Comparator and CPU Ti
Storage. « « « « o o o o o @
Processor Storage.
Auxiliary Storage. . . .« . . .
The Storage Control Function .
The Support Processor Subsystem.
Components and Functions . .
System Initialization. . .
System Diskette Drive. . .
Natively Attached Devices.
Support Bus Adapter. . . .
Channels « « o« « o ¢ o ¢ « &
General Description.
Device Addresses and Unit Control
General Operation of the Channels
Byte Multiplexer Channel
Block Multiplexer Channels . . .

hysical

s o & & s &
s & & s & s
e o o & & & & o

with the

with the

s 8 & 6 ¢ & & -8 ° 0 & s e s Qe o s s s o0 o0

W

r

[0)]

8 & 8 85 6 6 6 6 & 8 5 8 s & 5 & s & & 8 & 8 5 s s o 0 s

e« 8 O o o & & s s s s 2 s s s s o0
e s 0,8 6 o & s & 5 s 6 o s s s 0

.- e e -

Block Multiplexing Operations with Count, Key,

Rotational Position Sensing Devices
Block Multiplexing Operations with
Architecture Devices
Fixed Block Architecture Design.
Track Formatting . . « « « « « &
Command S€et. w « o « ¢ « o o o o
Read and Write Command Execution
Differences Between FBA and CKD C
Advantages « « « « o o « o o o
_Standard and Optional Features .
Standard Features. . . . « « =
Optional Features. . . « « « .

Fixed Block

han

o Je o & o & 2 s 8 s ¢ o 0 4 4 s s s s s s s s 5 s 0 s s oo

Y]

o (Fe o o o i e 8 o s s 4 s s e s 8 s s 6 0 86 & i s s s o 0

Components

s & o & o s

e & 8 5 8 & 0 & 2 i 8 2 s s 2 8 2 6 s s s s 2 s a2 s 0+ o

e 8 & o s e ¢ = @

¢ o & i s s s s 0

@ 6 8 e 6 & a2 & & & & 6 6 & 2 8 8 & & & 8 & & & a2 2 s o o

e o & o o .6 & & s

Section
12:05

12:10

12:15

Section
15:05

15:10

15:15

15:20

Section
18:05

18:10

Section
20:05
20:10

20:15

20:20

20:25

12:

General DesSCription. .« o « ¢ o o o o o o o o o o o

Operator DisplayS. . « « « «

MaintenanCe. « « « « « « o o o o« =

15:

Operator CONSOLEe ¢ « « o« o o o o o o o o o o =

Operator/Operating System Communication Modes. .
Operator Control Panel . . . <« ¢ « « o« ¢ « « =« =
Keyboard « « « & ¢« ¢« ¢ « o o .
Display Controls and Indicators
Configuration Display.

s o o o o @
¢ s & s o &
s o 2 o e o
s & o & & o
* s e s s @
* & s & s @
¢ & & s s o
L S S S)
« s s 8 s @

Program Load Display
Display/Alter Display. . .
Check Control Display. -
Operation Rate Control Display .
Compare/Trace Display. « « « «

General Selection Display. .

L[]

s @
e 8 o 8 & ¢ o+ e

* 0

.
e s o & o
e« o o & a4
s s & s
.
.
e s & s
.

Virtual Storage and Address Translation.

Virtual Storage Concepts, Advantages, and Terminology.

The Need for Larger AQJress SpaC€. « « « « « o« o « «
Virtual Storage and Address Translation Concepts . .
General Advantages Offered by IBM Operating Systems
that Support a Virtual Storage Environment
Virtual storage and Address Translation Terminology.

Address Translation Facility for the 4341 Processor
Operating in System/370 Mode . « v ¢ & o o o« o o o o =

Virtual Storage Organization . . « « ¢« « ¢ ¢« ¢ « .« .
Operation of Dynamic Address Translation Hardware. .
Features To Support Demand Paging. . . «. « « « « « »
Channel Indirect Data Addressing . . . « e e s e

Address Translation Facility for the u3u1 Processor
Operating in ECPS:VSE MOG€ . ¢ « « o« o « o o o o o

Virtual Storage Organization . . « « ¢ « o ¢ ¢ « «
Operation of Address Translation . . « . « « &« « o«

System Performance in a Virtual Storage Environment.

18:

System Resources Required To Support a Virtual
Storage Environment. . ¢ « ¢ o ¢ o ¢ o ¢ o o o = o o
New Factors that Affect System Performance
Relationship Between Virtual Storage Size and System
PerformanCe. « . « o o o o o o o = o s o s o s o s =
Increasing System Performance in a Virtual Storage
Environment. « « « ¢ ¢ o ¢ 4 o o o o o o o e o o o o

Virtual Machines . . . ¢ 4 ¢ ¢ 4 v o o o o o o o« =

Definition and General Operation . . . « « « « o o « &

ECPS:VM/370. .« ¢ e o s e .« o

General Advantages of a Vlrtual Machlne Env1ronment .

20:

I/70 DEVICES: o o o« o o o s a s o s a o« « o o s o o

I/70 Device SUuppOrt . ¢ o o o o o o s o o o s o o o o @
3330-Series Disk Storage

3350 Direct Access StOXrage . « « « « o s o o «

3340 Direct Access StOrage . « « « o « o o &

3344 Direct Access StOrage . . .« « o« o « o o =

3330 Disk storage and 3333 DlSk Storage and control.
3830 Storage Control . . <« ¢ ¢ ¢ ¢ ¢ e e 4 e e o o .
SUMMALY. « o o = o o o o o o = o o o o o o =

Models, Features, and String Configurations.
Track, Cylinder, and Read/Write Head Layout.
Track Formatting and Initialization.
Advantages o o« v o ¢ o o o o o o o o a o o

* & e & e s e

3340 Disk Storage Drives and the 3348 Data Module
Attachment via 3830 Storage Control Model 2. . .
SUMMAYY. o « o o o o o « o o s o o s « o s « =

Models, Features, and String Configurations.
Track, Cylinder, and Read/Write Head Layout.
Track Formatting and Initialization.
Advantages . .« . « 4 o o o o o e o o s o o

o & &

* 8 s 6

s s s s

s & & & 8 8 8 s & & 8 & s 0

144

145
147

150
154

158
158
165
169

172
172
172
172
176
181

182
184
190
192
194
194
209
212
217
217
218
224
226

20:30

20:35
20:40

Section
30:05

30:10
30:15

Section
40:05

Section
50:05
50:10

50:15

Section

60:05
60:10
60:15
60:20

The 2305 Fixed Head Storage Module and 2835 Storage
Control Model 2. ¢ v v ¢ ¢ v e o o o o o o o o o o o

The 3803/3420 Magnetic Tape Subsystem.

30:

Data Recording e e e

Rotational Position Senslng and Multlple Requestlng.
The 3203 Model S Printer . . . « o v o ¢ o o « o o &

3803 Tape Control Model 1 and Models 3, 5
3420 Magnetic Tape Unit. . . .
6

’
3803 Tape Control Model 2 and Models 4, 6, and 8
3420 Magnetic Tape Unit. . . ¢ ¢ ¢ o« o o ¢ o o o =
SUMMAYY. o « « = o o o o o o o o s o s o s o o o o

Programming Systems SuppOrt. « « « « o« « « o o

DOS/VSEe o« o o @ 2 o o o o o @ s o o a o a o « o s =

0S/VS1l &« & & &« o & & .

VM/370 & @ o o o o o .

40:

The IBM Systems 1uo1/1u40/1u60 Emulator Program.

50:

Diagnostic Facilities . . . « « o« & .

60:

System Configuration and Generation.
Job Scheduling . . & « « « &« o « o« .
Data Management Parameters
SUMMAYYe « o o @ « o « = « o « o « o

DOS/VSE Functions. . . « o o« o =
DOS/VSE Support of 4341 Processor Features

and I/0 DevicesS. . « o« « o« o « =«
Program Products for DOS/VSE
Using DOS/VS Release 34. .
Using DOS Release 26 . .

e e
* o
e o
e e
. e
e e

« s s 8 s @
e & & & & @
s o e s s
e« s s 3 s 8 s
s s 3 s s o
¢ & o 6 & & o

ECPS:VS1 . ¢« ¢ ¢ @ ¢ « &
Emulators. . . « s s e e o s o @

General OperatioN. « « « o o o o o o o o o s =
Support of 1401/1440/1460 Features

Reliability, Availability, and Serviceability (RAS)
Introduction . .« o« ¢« ¢ 2« ¢ ¢ o o o o o o o o o o
Recovery Features. .« « « « ¢ « o o o o o o &

Automatic Instruction Retry.
ECC Validity Checking on Processor Storage
I/70 Operation REtry. o« « o o o o o o o o« &
Expanded Machine Check Facilities. o« o
Machine Checks on System/360 Models 50 and
Machine Check Analysis and Logging to the
System Diskette. . . . « . . ¢ ¢ 4 i e 4 e e e o e
System Diskette Logouts. . « « ¢« & ¢ ¢ ¢ ¢ o o o
Power System . . . <« & « o o o ¢ o o o o

Recovery Management Support for DOS/VSE and OS/Vsl.
Error Recovery Procedures for DOS/VSE and OS/VSl. .
Recovery Management Support Recorder for DOS/VSE. .
Environment Recording, Edit, and Print Program
for DOS/VSE and OS/VSl. . ¢ &« o o o o o o o«
I/0 RMS for OS/VSl. « ¢« o o« ¢ o o o o =
OLTEP and OLTs for DOS/VSE and VSl. . .

65.

e s s @

System Test. « e @ e o o o o
Support Processor Subsystem Diagnosties. . .
Power Controller Adapter Diagnostics
Instruction Processing Function Diagnostics.

Error Logout Analysis Program. . « « « « « =
Remote Support Facility. . . .« « <« . « « .« .

s 6 e 0 s
e o s o &

Planning Optimal System Performance, Using
Block Multiplexer Channels and Rotational
Position Sensing Devices

LI S S)
D S S)
TR T
s s s @
* s s 8 s
L S S S)
L R N)
s & o 8 &

" & s

s s o 8

and 7 of the

of the

e o o o « a2 o s s o

s 8 s & s s s

s o s & 0

227
227
228
232
235

235

242
2u8

254
254
254

256
258
264
265
266
267
269

271
271
271
277

280
280
282
282
283
284
284
289

290
291
292
294
295
295

296
296
297
298
298
298
299
299

300

304
304
305
306
307

Section 70:

70:05
70:10

Index .

FIGURES

05.05.1
05.05.2
05.05.3

05.05.4

05.05.5

05.05.6

05.05.7
05.05.8
05.05.9

05.15.1
05.15.2
10.05.1
10.05.2
10.05.3
10.10.1
10.10.2
10.10.3
10.20.1

12.10.1
12.10.2
12.10.3
15.05.1
15.05.2
15.05.3
15.05.4

15.10.1
15.10.2

15.10.3
15.10.4

15.10.5

15.20.1

Comparison Tables of Hardware Features - System/360
Models 50 and 65, System/370 Models 125 to 145,
and the 4341 ProCesSsOr . . « o o o o« o o « o o o o o o

Hardware Features - System/360 Models 50 and 65
and the 4341 Processor e o o ‘e e e o o
Hardware Features - System/370 Models 125 to 1u5
and the U341 ProCeSSOY + « « « o o o o« o o o o a o o o o =

SLT substrate. e e o o e 8 o s e o = o o o o
The 704-circuit logic Chlp resting on a paper clip . . .
An MST and 704-circuit logic chip surrounded by salt
crystals e o o o e e 8 s e e s s.e o o s
The MLC 50 module used for instruction processing
function logic in the 4341 Processor without and

With itS CApP « ¢ o @ o ¢ o ¢ o e e o o o« o o o o o o o
One MLC 50 logic module containing approximately

4200 circuits and 700 MST logic modules containing

the same number of circuits. . . . o & e e « o .
One MLC 50 logic module with six chlps and 23 MST

logic cards with the same number of circuits
The 6UK-bit storage chip resting on a coin
A processor storage card containing 512K . bytes
Logic, control storage, and one megabyte of processor
storage for the Model 138 and logic, control storage,
and two megabytes of processor storage for the
4341 Processor o o ® @« s sis e
The 4341 Processor (de51gn model). * e e s wie
Logical components in the 4341 Processor
BC and EC mode PSW formats

BC mode fixed processor storage locatlons 0 to 511
EC mode fixed processor storage locations 0 to 511
Layout of auxiliary storage for System/370 mode. .
Layout of auxiljiary storage for ECPS:VSE mode. . .
Buffer organization in the 4341 Processor.
General flow of data between the channels and
ProcesSSOr StOrag€e « « o« o o o o o o o o o o
The general selection display. . « « « « « «
The display/alter display. « « « « « o o o «
The check control display. « « « « « « o o «
Names and location of instructions and data in a

virtual storage environment. . « ¢ ¢ ¢ ¢ ¢ ¢ o w0 o s o
Relationship of virtual storage, direct access storage,
and real storage e o o & 4 e 8 o o o e o o o o
Cconceptual illustration of real storage utilization in

a mixed batch and online virtual storage environment . .
Layout of virtual storage, external page storage, and
real storage @ s a 8 o o e & 8 e & o e o o
Virtual storage address fields for a 64K segment
Segment table and page tables used for dynamic address
translation. « « . ¢ ¢ ¢ T d e @ o e o o o « . e e
Dynamic address translation procedure for System/370
MOAE & o @ o @ o @ o 0 o o o. o o o o s s o o o o o o o o
TLB for the U341 ProCeSSOr . o+ « o « o o o oo o s o = o
Example of IDALs requlred for a CCW list when page

size is 2K e« o o o e e e« o o o o
General effect on page faults of increasing the ratio of
the virtual storage used to the real storage present

in the SYSteMe « « ¢ ¢ o o « o o o o o o o o s o o s o s

e & o & & & & & &
s & o &8 & & & s s
e s o *» s s o

e s a @
s o s
s s s 0
s o &
s s e »

-
.
-
-

309
310
316
326

16
19

20

21

22
22

27
30

105
115

117
123

124

126
128

133

151

15.20.2
15.20.3
15.20.4
18.05.1
18.05.2
18.05.3
20.10.1
20.15.1
20.15.2
20.15.3
20.15.4
20.20.1

20.20.2
20.20.3

20.20.4
20.20.5
20.20.6
20.20.7
20.25.1
20.25.2
20.25.3
20.30.1
20.30.2
20.35.1
20.40.1
20.40.2
20.40.3
50.10.1

50.10.2

50.10.3

TABLES

10.20.1
10.20.2
15.10.1

General effect on system performance of the paging
factor only. . . . - « e e e e « e e s e s e o @
General effect of the paglng factor on system
performance for various active-to-passive page ratios. .
General system performance curve for a virtual storage
environment. . . . - . . . « o . o e
Conceptual 1llustratlon of the real and v1rtual machlne
environment that is supported by vM/370. . . . « o o
Conceptual illustration of the implementation of v1rtual
storage in a virtual machine environment
Segment table and page tables built when a virtual
storage operating system executes in a virtual machine .
Summary of 3330-series string configurations for the
4341 Processor a e e s o 8 e o @
Location of phy81cal tracks and read/wrlte heads

on a data surface in 3350 Direct Access Storage.
Cylinder and read/write head layout for a 3350

drive formatted in 3350 native mode. . . . o .
Cyllnder and read/write head layout for a 3350 operatlng
in 3330 Model 11 compatibility mode. . . . « e e o o
Cyllnder and read/write head layout for a 3350 operating
in 3330 Model 1 compatibility mode . . . « « ¢ ¢ &« ¢ o« .
A five-drive 3340 string with 3340 Model A2, B2,

and Bl units . . . e o o & o s s e e s e s e ® e e a
The 3348 Data Module « o o o . « o o e s e & s o
Location of physical and loglcal tracks and reads/write
heads on a data surface in a 3348 Data Module. . . .
Cylinder and read/write head layout for a 3348 Model 35

Data Module. o« . . . « o o . .« . « o o @ .
Cylinder and read/wrlte head 1ayout for a 3348 Model 70
Data Module. - e e - .« o . .« . o o 4 o a
Cylinder and read/wrlte head 1ayout for a 33&8 Model 70F
Data Module. « o . e o e e

String sw1tch1ng for 3340 fa0111t1es attached to a 3830
Model 2. . . . e e s e o e e e e e e e e

Maximum 3830 Model 2 strlng conflguratlon for

3340/3344 SEYINGS.e « o o o o o o o s o @ o o 8 o o o o o
Location of physical and logical tracks and read/write
heads on a data surface in 3344 Direct Access Storage. .
Cylinder, read/write head, and logical volume layout for
3344 Direct ACCeSS StOYaAge . o« « o« « o = o o o o o o o
Top view of a 2305 Model 2 disk surface. . . . « « .« « .
Multiple requesting on the 2305 facility« .
The 3203 Model 5 Printer (design model). . . « o e e e
Tape-switching configurations for the 3803/3420
Magnetic Tape SubsysStem. . « « &« « o ¢ o o o o o o « o «
Sample 3420 tape unit configurations for which separate
power and signal cables are required ¢« . . . o .
Sample tape-switching configuration with mixed 3803 and
3420 MOA@LS. o =« v o ¢ o o o o o o ° ® W o = e = e o = =
Data representation used in processor storage in the
4341 Processor o % s e e e e @ e e e s @
Data representatlon used 1n Model 50 and 65 processor
storage and in the 4341 Processor in other than
Processor Storage. « . + « « « o o 4 2 o o o o o 2 e o =
4341 Processor machine check code. « « « « « . .

Maximum byte mode data rates for the byte multiplexer

channel in the 4341 Processor.« . .- .
Channel attachment and UCW mode for frequently used
I/0 devices for the 4341 Processor

Number and size of segments and pages for a 16 mllllon-
byte virtual storage . . . ¢« « ¢ 4 ¢ o ¢ ¢ o o o o o o @

151
152
153
160
162
163
180
185
186
187
188

195
195

199
201
202
204
211
219
220
221
228
229
232
240
244
247
283

283
286

66
70

121

15.10.2

20.10.1
20.10.2
20.10.3

20.10.4

20.15.1

20.20.1

20.20.2
20.20.3

20.20.4
20.25.1
20.30.1
20.30.2
20.30.3

20.40.1

20.40.2

20.40.3
20.40.4

30.05.1
40.05.1

40.05.2
40.05.3
50.10.1

Virtual and real storage addresses used by, and supplied

to, programs in the 4341 Processor operating in System/370
mode with DAT enabled. « « ¢ « &« ¢« ¢« « o « 4« & o o « « « 130
Capacity and timing characteristics of 3330-series

drives . « .« « e e o e e e o e o o« 174
3336 Models 1 and 11 and 2316 DlSk Pack

characteristicsS. ¢« ¢ ¢ @ 6 ¢ ¢ e e o o ¢ o « o o o« o o o 174
Comparison of capacity and timing characteristics of
3330-series and 2314 disk storage and the 2321 Data

Cell Drive e o o« o o 175
Hardware features of 3330-ser1es and 231u d1sk
storage. « « « « o« . . . e e e o e o o o o s o o 181

3350 capacity characterlstlcs by mode. « + < « . o « o » 184
Physical and capacity characteristics of 3348 Data

Modules and the 2316 Disk Pack . . @ o e e s e« o o o o 206
Timing characteristics of 3340 and 231u disk storage . . 207
summary of the hardware features of 3340 and 2314 disk
storage. . . « e s e s » e o . o 213
Summary of the features of 3830 Storage Control

Models 1 and 2 o & v o o o o o o © o o o o s o o o« o« « o 215
Physical, capacity, and timing characteristics of

2314, 3340, 3344, 3330, and 3350 drives. . . & 225
2305 Model 2 fac1lity and 2303 Drum Storage

characteristics. « « 230
Effective capacity of the 2305 Model 2 and the 2303
for various block sizes with a 25~-byte key« o« 231

Effective capacity of the 2305 Model 2 and the 2303

for various block sizes when records are written

without Key. « ¢ v o & @ o ¢ @ o e s e e s e s o o o 231
3803 Model 1 control unit conflguratlons and capabilities
with Single Density, Dual Density, and Seven Track

features o . ¢ ¢ ¢ 0 0 0 e 0 e e e e e e e v e we e e o« 239
Model combinations and maximum number of 3420 tape units
that can be powered from one 3803 Model 1 or 2 243
3803 Model 2 control unit configurations 246
3420, 2420, and 2401 Magnetic Tape Unit

characteristics. . . . « « . + . . . e e . « o o - 249
4341 Processor features and major I/o dev1ces not supported
by DOS Release 26. « « « o o 2 o« o s @ o o o « « o« « 265
1401/1440/1460 I/0 devices and features supported by

the IBM Systems 1401/1440/1460 Emulator Program and

corresponding 4341 Processor devices . . . « o o o 278
1401/144041460 CPU features supported by the IBM Systems
1401714401460 Emulator Program. . . . « o = « 279

1401/1440/71460 I/0 devices not supported by the
IBM Systems 1401/1440/1460 Emulator Program. 279
4341 Processor machine check interruptions 287

SECTION 0l1: HIGHLIGHTS

——n

The 4341 Processor is an intermediate~scale, general purpose
processor. It is one of the IBM 4300 Processors and is compatible with
the #331 Processor. The 4341 Processor offers System/360- and
System/370-compatible architecture, a new architecture that provides new
function, and a new level of price performance for intermediate system
users made possible by the use of large-scale integrated technology.

The 4341 Processor provides the range of commercial and scientific
data processing capabilities offered by System/360 and System/370, as
well as the advanced functions provided by System/370, such as support
of virtual storage. Virtual storage support is designed to facilitate
new application development and to ease entry into, and expansion of,
online data processing operations.

The 4341 Processor provides a growth path for users of System/360
Models 50 and 65. It offers such installations advanced functions,
significantly increased internal performance, greatly improved price
performance, and hardware and programming systems compatibility. The
price performance of the 4341 Processor together with its hardware and
programming systems compatibility with System/370 also make the 4341
Processor a suitable growth processor for installations with a
System/370 Model 125, 135, 138, or 145. 1In addition, the 4341 Processor
can be utilized in distributed processing environments that require high
performance and large-capacity storage.

Transition from System/360 Model 50 and 65 configurations to a 4341
Processor configuration can be accomplished with a minimum of effort
because most System/360 user programs, I/0 devices, and programming
systems are upward compatible with those of the 4341 Processor.

Compatible growth from System/360 operating systems to a 4341
Processor virtual storage environment can be achieved using Disk
Operating System/virtual Storage Extended (DOS/VSE) and Operating
System/Virtual Storage 1 (0S/VS1l), which is extended to support the 4341
Processor as of Release 7. DOS/VSE is a compatible extension of DOS/VS
Release 34, which utilized DOS Version 4 as a base, while 0S/VSl is
based on OS MFT. DOS/VS Release 34 will also operate correctly in the
4341 Processor but will not be modified to support its features.

In addition to supporting virtual storage, the operating systems that
support the 4341 Processor offer a large number of other capabilities
and performance-oriented enhancements that are not provided by
System/360 operating systems. If necessary (for transition purposes,
for example), DOS Release 26 can be used in a 4341 Processor.

A virtual machine environment is supported by Virtual Machine
Facilitys/370 (vM/370), the successor to CP-67/CMS for System/370.
VM/370 Release 6 and the Virtual Machines/Basic System Extensions
(VM/BSE) Release 2 program product support the 4341 Processor. VM/370
Release 5 with the appropriate PLC level will also operate correctly in
the 4341 Processor. While CP-67/CMS is available only to Model 67
System/360 users, VM/370 operates on all Systems/370 processors except
Models 115, 125, 155, and 165 and supports all 4300 Processors.

VM/370 provides interactive computing via its Conversational Monitor
System (CMS) component and remote spooling via its Remote Spooling
Communications Subsystem (RSCS) component.

While the 4341 Processor does not have a 1400 compatibility feature,
simulation of 1401/1440/1460 programs on the 4341 Processor using a DOS
Release 26, DOS/VS Release 34, or DOS/VSE operating system is supported.

A 1400 simulator program can be generated using the IBM Systems
1401/1440/1460 Emulator Program (a program product).

Highlights of the 4341 Processor, when compared with System/360
Models 50 and 65, are as follows:

e Upward compatibility with most System/360 and System/370
architecture and programming systems has been maintained in the 4341
Processor through implementation of the System/370 mode of processor
operation. This mode provides compatibility for System/360 and
System/370 control programs and problem programs.

The Extended Control Program Support:Virtual Storage Extended
(ECPS:VSE) mode of operation, not provided in System/360 or
System/370, is also implemented in the #4341 Processor. This mode is
designed to provide increased processor performance when DOS/VSE is
used. ECPS:VSE mode provides compatibility for System/360 and
System/370 problem programs but not control programs.

e The 4341 Processor is capable of an instruction execution rate of up
to 3.2 times that of the 3138 Processing Unit and 1.73 times that of
the 3148 Processing Unit with identical programs and equivalent
configurations running under DOS/VS Release 34, 0OS/VS1l Release 7, or
VM/370 Release 6. This performance is achieved for 0S/VS1l and
VM/370 when the appropriate hardware assist is utilized in the 4341
Processor (ECPS:VSl or ECPS:VM/370, respectively) and Models 138 and
148 (vsl hardware assist function and VM/370 hardware assist
function of the ECPS feature).

The 4341 Processor offers balanced performance for binary, decimal,
and scientific (floating-point) arithmetic instructions. 1In a
scientific environment, the 4341 Processor has been measured to be
up to 3.1 times faster than a 3148 Processing Unit running the same
FORTRAN jobs.

A reduction of up to 13 percent of total processor utilization time
has been measured when DOS/VSE, running in an interactive
environment, is used with ECPS:VSE mode instead of System/370 mode
in effect in the 4341 Processor.

e The following are instruction processing function features of the
4341 Processor.

Implementation of a System/370 mode and an ECPS:VSE mode is
standard. Both modes provide the ability to support virtual
storage. The major difference between the two modes is the way in
which address translation is performed to support a virtual storage
environment.

System/370 mode provides compatibility with System/360 and
System/370. When System/370 mode is in effect, either the basic
control (BC) mode or the extended control (EC) mode of operation
will also be in effect. BC mode is the System/360-compatible mode
for 4300 Processors and is architecturally equivalent to BC mode for
Systen/370.

The EC mode of System/370 mode provides a different PSW format and
an altered, permanently assigned lower processor storage area.
These changes provide additional processor control and support new
functions, such as the dynamic address translation facility to
support virtual storage, that are not available in BC mode. The EC
mode of System/370 mode is architecturally equivalent (with a few
exceptions) to the EC mode of System/370.

When Systems/370 and EC modes are in effect, the standard dynamic
address translation (DAT) facility can be enabled to provide
translation of addresses in instructions (but not addresses in
channel command words) during program execution. The standard
channel indirect data addressing function is provided for this mode
to enable an I/0 buffer to span a set of noncontiguous processor
storage areas when DAT is enabled.

The DAT facility can be used to support one virtual storage of up to
16 million bytes or multiple virtual storages of up to 16 million
bytes each. The DAT facility in the 4341 Processor is functionally
identical to the DAT facility for System/370 processors.

ECPS:VSE mode is specifically designed to be utilized with the
DOS/VSE operating system to provide increased processor performance
when compared to that achieved using DOS/VSE executing with
Systen/370 mode in effect.

ECPS:VSE mode provides an alternative method for translating
addresses in instructions during instruction execution and, in
addition, provides for translating addresses in channel command
words during I/0Q operations. The address translation technique used
in ECPS:VSE mode permits only one virtual storage of up to 16
million bytes to be supported.

ECPS:VSE mode offers a reduction in the processor time required to
perform address translation to support one virtual storage. The
reduction occurs primarily because programmed channel program
translation and the use of channel indirect data addressing are
eliminated. In addition, the instruction address translation
technique used in this mode is faster than the DAT facility
technique used in System/370 mode.

The cycle time of the 4341 Processor varies from 150 to 300
nanoseconds.

The instruction processing function design provides increased
instruction execution performance. Instruction prefetching is
implemented that results in the overlap of instruction fetching with
instruction execution during sequential instruction processing. In
addition, an eight-byte-wide arithmetic logic unit is used that
improves the performance of decimal and floating-point operations.

Improvements in the number of functions performed during the
instruction cycle of instruction execution result in the faster
execution of many other instructions, most of which are among the
more frequently used instructions.

The standard instruction set for the 4341 Processor includes many
new general purpose and control-program-oriented instructions in
addition to the powerful System/360 instruction set. The standard
4341 Processor instruction set consists of the entire instruction
sef, provided for System/370 (except for multiprocessing and direct
control instructions) and several new control instructions that can
be utilized only when ECPS:VSE mode is in effect.

Floating-point arithmetic, which includes extended precision
operations, is standard. Precision of up to 28 hexadecimal digits,
equal to up to 34 decimal digits, is provided by the extended
precision data format.

An interval timer of 3.3 milliseconds resolution at location 80 in
processor storage, which can improve job accounting accuracy, is
standard. (A 16.6-ms resolution timer is available for Models 50
and 65.)

A time-of-day clock is included as a standard feature to provide
more accurate time-of-day values than does the interval timer. This
clock has a one-microsecond resoclution.

A CPU timer and clock comparator are standard. The CPU timer
provides an interval timing capability similar to that of the
interval timer but has a much larger capacity than the latter and is
updated every microsecond, as is the time-of-day clock. The clock
comparator can be used to cause an interruption when the time-of-day
clock passes a specified value. These items provide higher
resolution timing facilities than the interval timer and enable more
efficient timing facility routines to be used.

The standard byte-oriented operands facility permits byte boundary
alignment for the operands of nonprivileged instructions, making it
unnecessary to add padding bytes within records or to blocked
records to align fixed- or floating-point data. In the 4341
Processor, minimal performance degradation results from the use of
unaligned data.

A monitoring feature that can be used to trace user-defined program
events for the purpose of debugging or statistics gathering is
standard.

Program event recording is standard and is designed to be used as a
problem determination aid. This feature includes hardware that
monitors the following during program execution: successful
branches, the alteration of general registers, and instruction
fetching from, and alterations of, specified areas of processor
storage. It can operate only when the 4341 Processor is in EC mode.

The Extended Control Program Support features are standard. They
provide a VSl hardware assist function (ECPS:VS1l) and a VM/370
hardware assist function (ECPS:VM/370) for the 4341 Processor.
Either ECPS:VS1 or ECPS:VM/370 can be activated only when System/370
mode is in effect. The two assists cannot be used concurrently.

The operator selects the assist to be active for an IML using the
operator console. '

ECPS:VS1l and ECPS:VM/370 increase the performance of a VS1 and
VM/370 operating system (respectively) when it operates in a #341
Processor, since these functions cause certain control program
routines to execute in hardware instead of as routines written using
4341 Processor instructions.

ECPS:VS1l for the 4341 Processor is functionally equivalent to the
0S/VS1l Extended Control Program Support feature for the System/370
Model 158 and 3031 Processor Complex. ECPS:VM/370 provides the same
facilities as the Virtual Machine Assist feature, which is available
for most System/370 processors, plus several additional facilities.
It is functionally equivalent to the VM/370 hardware assist function
for Models 135 Model 3, 138, 145 Model 3, and 148.

A reduction of up to 7 percent of supervisor state processor busy
time has been measured when ECPS:VS1l is utilized by the 4341
Processor as compared to the same version of 0S/VS1l operating
without the assist activated. A reduction of up to 84 percent of
the supervisor state processor time used by CP has been measured
when ECPS:VM/370 is utilized as compared to the same CP operating
without the assist activated.

e The following are significant storage features of the 4341 Processor.

All storage in the 4341 Processor--processor (main), control, high-
speed buffer, and local--is implemented using monolithic technology
instead of discrete ferrite cores. The technology used for
processor storage in the 4341 Processor provides a much denser
storage chip (64K bits per chip) than is used in most System/370
processors (2K bits per chip) and a new bipolar technology is used
for control storage and high-speed buffer storage (see Section
05:05).

A two-level storage system is implemented, consisting of large
processor storage used as backing storage for a smaller high-speed
buffer storage. The instruction processing function works mostly
with the buffer so that the effective processor storage cycle is a
fraction of the actual processor storage cycle. For Systems/370,
high~-speed buffer storage is implemented only in large-scale
processors (Models 155 and up and 303X processors). N
%
8K bytes of high-speed buffer storage are standard. Data is fetched |
from the buffer at a rate of 225 nanoseconds for a doubleword. .. .-

2048K and u4096K of processor storage are available--eight times the
maximum amount of main storage available on the Model 50 and four
times the maximum amount available on the Model 65.

A minimum of 14K and a maximum of 108K of highest addressed
installed processor storage will not be accessible to programs. The
amount of unavailable processor storage depends on the number of
UCWs installed, the mode (System/370 or ECPS:VSE) in effect, and the
amount of p¥ocessor storage installed for ECPS:VSE mode.

Reloadable control storage to contain all the microcode required by
the instruction processing function of the 4341 Processor is
standard. ' Use of writable, instead of read-only, control storage
offers the advantages of improved system serviceability and ease of
optional feature and engineering change installation.

Error checking and correction (ECC) hardware (like that implemented
in system/370), which automatically corrects all single-~bit
processor storage errors and detects (but does not correct) all
double-bit and many multiple-bit errors, is standard. System/360
processors use parity checking for processor storage.

e The following channel features are provided for the 4341 Processor.

Two channel groups are available for the 4341 Processor. The
standard channel group consists of one byte multiplexer and two
block multiplexer channels. The optional channel group consists of
three block multiplexer channels.

The byte multiplexer channel has an 8-KB/sec maximum data rate in
byte mode for single-byte transfer operations and a 32-KB/sec
maximum byte mode data rate for four-byte transfer operations. For
burst mode operations, a maximum data rate of 1 MB/sec is possible
for a buffered device. Functionally, the byte multiplexer channel
for the 4341 Processor is equivalent to that for System/360 and
System/370 processors.

The two standard block multiplexer channels have a maximum data rate
of 2 MB/sec each. Two of the block multiplexer channels in the
optional channel group have a maximum data rate of 2 MB/sec while
one has a maximum data rate of 1 MB/sec. The maximum aggregate data
rate for the block multiplexer channels is 4 MB/sec when the

optional channel group is not installed and 9 MB/sec when the
optional channel group is installed.

Functionally, a block multiplexer channel in the 4341 Processor is
equivalent to that for System/370 processors. A block multiplexer
channel is a superset of a selector channel and is designed to
increase total system throughput by permitting increased amounts of
data to enter and leave the processor in a given time period. A
single block multiplexer channel can support interleaved, concurrent
execution of multiple high-speed 1I/0 operations. The block
multiplexer channel for the 4341 Processor can also operate in
selector channel mode.

Block multiplexer channels with data rates of up to 2 MB/sec support
attachment to the 4341 Processor of 3370, 3330-series, 3340/3344,
3350, and 2305 Model 2 direct access storage, which cannot be
attached to Models 50 and 65. These disk devices have rotational
position sensing capability and are designed to be used with block
multiplexer channels.

Optionally, one Channel-to-Channel Adapter can be installed in a

4341 Processor and attached to any block multiplexer channel. The
adapter can be used to connect the channel in the 4341 Processor to
a channel in a System/360, a System/370, or another 4341 processor.

A 3278 Model 2A Display Console, consisting of a cathode ray tube,
keyboard, and operator control panel, is required as the operator
console. Display mode and a printer-keyboard mode are standard for
this console, which natively attaches to the 4341 Processor. The
display console provides a faster means of display than a
typewriter-~keyboard device.

The display console is used to perform manual operations that for
Systen/360 processors are performed using switches and pushbuttons
on a control panel located on the front of the processor unit. The
display console is also used for operator-to-operating system
communication and by the customer engineer for diagnosing processor
malfunctions.

Up to three 3278 Model 2A Display Consoles (without the operator
control panel) and/or 3287 Model 1 or 2 Printers (any combination of
the two) can be natively attached to the 4341 Processor in addition
to the required 3278 Model 2A Display Console. The additional 3278
displays can be used as alternate or additional consoles.

The 3287 Printer can be used for hard-copy backup of a 3278 Display
Console that operates in display mode. A 3287 Printer is
recommended for hard-copy output when the display console operates
in printer—-keyboard mode, which is made availble to enable a
System/360 operating system that utilizes a 1052 Printer-Keyboard or
a System/370 operating system that uses a 3210/3215 Console Printer-
Keyboard as the operator console device to execute in the 4341
Processor.

I/0 devices for the 4341 Processor include the following.

Most I/0 devices for Systems/360 Models 50 and 65 can be attached.

In addition, several I/0 devices that cannot be attached to Models
50 and 65 because of their data rate or to any System/360 processors
are attachable to the 4341 Processor.

The 3505 Card Reader and the 3525 Card Punch with optional card read
capability (not attachable to Models 50 and 65) can be attached to
the 4341 Processor. A variety of models are available. They offer
2500-series 80-column card users configuration flexibility, new

functions, high reliability, and greatly expanded error recovery
facilities.

Models Bl and B2 of the 3505 Card Reader ¢an operate at 800 and
1200 cards per minute, respectively. Significant new features
for 2500-series users include Optical Mark Reading (optional) and
Read Column Eliminate (standard). The latter is designed to
permit the successful reading of cards containing internal
perforations or other holes that normally would cause an error.

Models P1, P2, and P3 of the 3525 Card Punch can punch and,
optionally, read 100, 200, and 300 cards per minute,

- respectively. New features of this unit for 2500-series users
include automatic punch retry when an error is detected during
non-read/punch operations (standard) and optional card printing.
A two~line print feature and a multiline (up to 25 lines) print
feature are available.

The 3203 Model 5 Printer (not attachable to Models 50 and 65), with
a tapeless carriage and print speed of 1200 alphameric lines per
second (with a 48-character set), can be attached. The 3203 Model 5
is a standalone version of the 3203 Model 2, which attaches to
System/370 Models 115 and 125. In addition to improved price
performance, the 3203 Printer offers several advantages over the
1403 Printer, such as reduced operator intervention, higher
reliability, quieter operation, and a more compact design.

The high-speed 3211 Printer, with a tapeless carriage and print
speed of 2000 alphameric lines per minute (for 48-character sets),
is attachable. The 3211 can be installed instead of, or in addition
to, 3203 Model 5 Printers when the volume of print activity in the
installation is high enough to require its faster print speed or
when additional print capability is needed.

The 3800 Printing Subsystem (not attachable to Models 50 and 65) can
be attached to provide very high-speed printing (up to 10,020 lines
per minute for 11-inch-long paper with 6 lines to the inch and up to
20,040 lines per minute with 12 lines to the inch). The 3800 is a
nonimpact printer that uses an electrophotographic technique with a
low-powered laser to print on single-form paper. It offers a
variety of printing features not provided by other IBM printers as
well as operational features such as a burster-trimmer-stacker.

The 3410/3411 Magnetic Tape Subsystem (not attachable to a Model
65), Models 1, 2, and 3, can be attached to provide data transfer
rates of 20, 40, and 80 KB/sec, respectively, at 1600-BPI density.
Phase-encoded recording is used. A Model 1 subsystem can consist of
from one to four tape units. Models 2 and 3 of the subsystem can
have from one to six tape units. This subsystem offers improved
price performance over 2400-series tape units for data rates under
120 KB/sec, a simplified tape path to speed tape setup, Dual Density
and Seven Track features, a totally new compact physical design that
minimizes floor space requirements, and reliability, availability,
and serviceability improvements.

The 3803/3420 Magnetic Tape Subsystem is attachable. Models 3, 5,
and 7 of the 3420 Magnetic Tape Unit have data rates of 120, 200,
and 320 KB/sec, respectively, at 1600-BPI recording density. Phase-
encoded recording, which permits automatic correction of all single-
bit read errors in flight, is used for these models. Models 4, 6,
and 8 of the 3420 Magnetic Tape Unit have data rates of 470, 780,
and 1250 KB/sec, respectively, at 6250-BPI recording density. The
advanced recording technique used for these models provides
automatic correction of all single~ and double-bit read errors in
flight.

This tape subsystem, at 6250-BPI density, offers significantly
faster data rates than 2400-series tape units; increased tape reel
capacity at 6250-BPI density; Dual Density and Seven Track features
for compatibility with, and conversion of, 2400-series tape volumes;
greatly reduced operator handling through implementation of such
features as automatic tape threading and cartridge loading; lower
cost tape switching than is provided for 2400~series tape units; and
enhanced reliability, availability, and serviceability features.

3370 Direct Access Storage (not attachable to Systemv/360 or
System/370) can be attached to the 4341 Processor via 3880 Storage
control. The 3370 is very large capacity, high-speed, fixed-media
direct access storage with movable heads. Data is stored on
nonremovable disks utilizing fixed block architecture (FBA) instead
of the count, key, data (CKD) architecture utilized for System/360
and System/370 disk devices. Fixed block recording is designed to
utilize fully the block multiplexing capability (rotational position
sensing is a standard facility) and it provides data mobility
advantages over the self-formatting recording technique.

A 3370 drive has a data transfer rate of 1.86 MB/sec, average seek
time of 20 milliseconds (ms), and full rotation time of 20.2 ms.
Each 3370 drive has a capacity of 571.3 million bytes and two
actuators, each of which can access half the data in the drive. A
3370 string can contain from one to four drives in one-drive
increments for a string capacity of approximately 2.3 billion bytes
of disk storage.

Each 3370 contains two logical drives, one per actuator. Only one
actuator can transfer data at a time. However, both actuators can
perform seeking and rotational positioning operations concurrently
or one actuator can transfer data while the other is involved in a
positioning operation.

Automatic error correction, rotational position sensing, and
multiple requesting facilities like those implemented for CKD 33XX
direct access devices (which are not implemented for System/360
direct access devices) are standard for 3370 strings.

3880 storage Control provides functional and cost advantages over
3830 sStorage Control. A 3880 Storage Control unit contains two
independent storage control functions called storage directors, each
of which can have up to four direct access storage strings attached
(total of eight strings per 3880 unit). When the two storage
directors are attached to two different channels, a 3880 can handle
two data transfer operations simultaneously, one for each storage
director.

3880 Storage Control can have both CKD and FBA disk devices
attached. The devices attached to one storage director must be all
of the same architecture. The 3370 and 3340/3344 Direct Access
Storage drives can be attached to 3880 Storage Control.

3330-series disk storage Models 1, 2, and 11 (not attachable to
Models 50 and 65) can be attached to the block multiplexer channels
in a 4341 Processor via 3830 Storage Control Models 1 and 2. The
3330-series is large-capacity disk storage that offers significantly
faster seeks and more than twice the data rate of the 2314 facility.
The 3336 Model 1 and 11 removable disk packs are used as the storage
medium. Eight Model 1 3330-series drives offer more than three
times the capacity of eight 2314 drives. Automatic error correction
features, rotational position sensing, and multiple requesting are
provided as standard features.

The 3330-series has a data transfer rate of 806 KB/sec, average seek
time of 30 ms, and full rotation time of 16.7 ms. A 3330-series
Model 1 or 2 drive has a maximum capacity of 100 million bytes while
a Model 11 drive has a 200-million~-byte capacity. A string of from
one to eight 3330-series Model 1, 2, or 11 drives can be configured.
Model 1 of 3830 Storage Control can handle one string of from one to
eight 3330-series drives. Model 2 of 3830 Storage Control can
handle from one to four strings of from two to eight 3330-series
drives each.

3340 Direct Access Storage (not attachable to Models 50 and 65) can
be attached to the block multiplexer channels in a 4341 Processor
via 3830 Storage Control Model 2 and 3880 Storage Control. The 3340
facility is intermediate-capacity direct access storage that,
because of its unique design and advanced technology, offers
advantages over 2314 disk storage in addition to those provided by
3330-series disk storage. Automatic error correction features and
multiple requesting are standard. Rotational position sensing is
optional.

The storage medium for the 3340 is the removable interchangeable
3348 DpData Module, a sealed cartridge that is never opened by the
operator. In addition to the disks on which data is written, the
3348 pata Module contains a spindle, access arms, and read/write
heads. The 3340 disk storage drive contains the mechanical and
electrical components required to operate the 3348 Data Module.

The 3340 facility has an 885-KB/sec data transfer rate, average seek
time of 25 ms, and full rotation time of 20.2 ms. A 3348 Data
Module has a maximum capacity of approximately 35 million bytes or
70 million bytes, depending on the model. One model of the 3348 _
offers fixed heads for zero seek time to approximately 502,000 bytes
maximum and movable heads for an average seek time of 25 ms to the
remaining bytes in the data module.

A string of from two to eight 3340 drives can be configured. From
one to four strings can be attached to the 3830 Model 2 or to a
storage director in 3880 Storage Control. Any model of the 3348 can
be mounted on a 3340 drive. Therefore, 3340 string capacity can
vary from 70 million to 560 million bytes in increments of 35 and/or
70 million bytes.

The sealed cartridge design of the 3340 facility offers the
advantages of multiple capacities per 3340 drive, increased data
reliability over other removable recording media, such as disk
packs, and simplified data medium loading and unloading.

3344 Direct Access Storage (not attachable to Models 50 and 65) can
be attached to a 4341 Processor via 3830 Storage Control Model 2 and
3880 storage Control. It offers significantly increased maximum
online capacity per drive for 3340 users without the necessity of
program conversion. The 3344 is fixed-media disk storage. Data is
recorded on nonremovable disks. The 3344 is designed to eliminate
operator handling, eliminate exposure to external contamination
(like the 3348 Data Module), and provide high reliability.

The 3344 has the same data transfer rate, average seek time, and
full rotation time as the 3340. However, the maximum capacity of a
3344 drive is 280 megabytes, or the equivalent of four 70-million-
byte 3348 Data Modules. The 3344 is a two-drive unit that attaches
to the 3340 Model A2. A 3340/3344 string can contain any mixture of
3344 and 3340 units (as long as the first is a 3340 Model A2) for a
maximum of eight drives with a maximum capacity of over 1.8 billion
bytes.

10

Automatic error correction, rotational position sensing, and
multiple requesting are standard in the 3344. Models are also
available that contain fixed heads for zexro access time to a portion
of the data and movable heads for access to. the balance of the data.

3350 Direct Access Storage (not attachable to Models 50 and 65) can
be attached to a 4341 Processor via 3830 Storage Control Model 2.
The 3350 is very large-capacity, high-speed, fixed-media direct
access storage. Data is stored on nonremovable disks. The 3350,
like the 3344, is designed to eliminate operator handling, eliminate
exposure to external contamination, and provide high reliability.

The 3350 has a data transfer rate of 1198 KB/sec, average seek time
of 25 ms, and full rotation time of 16.8 ms. A 3350 drive operating
in native mode has a maximum capacity of 317.5 megabytes. A 3350
string can contain from two to eight drives in two-drive increments
for a maximum string capacity of over 2.5 billion bytes of online
disk storage.

The standard Selective Format feature enables the format of each
3350 to be set during volume initialization. A 3350 drive can
operate in 3350 native mode, 3330 Model 1 compatibility mode, or
3330 Model 11 compatibility mode. When operating in 3330 Model 1
compatibility mode, a 3350 drive is the equivalent of two 3330 Model
1 drives in capacity. When operating in 3330 Model 11 compatibility
mode, a 3350 drive is the equivalent of one 3330 Model 11 drive in
capacity. This feature enables an installation that first utilizes
3330-series disk storage to move to 3350 disk storage and obtain the
price performance and functional advantages of the 3350 without
program conversion.

Automatic error correction, rotational position sensing, and
multiple requesting features are standard for the 3350. The 3350 is
also available in fixed head models. These models provide fixed
heads for zero access time to a portion of the data and movable
heads for access to the balance of the data.

The 2305 Fixed Head Storage facility Model 2 can be connected to
4341 Processor block multiplexer channels via 2835 Storage Control
to provide faster access to data than other disk devices for the
4341 Processor. Two disk storage modules can be contained in a
facility. The Model 2 has a 1.5-MB/sec data rate, a maximum single-
module capacity of 11.2 million bytes, and an average access time of
5 ms.

The technology implemented in the 4341 Processor for logic and
processor storage (which is not utilized in any System/360 or
System/370 processor) provides significantly increased reliability,
greatly reduced space requirements, reduced power and cooling
requirements, reduced cost, and reduced maintenance costs (see

- discussion in Section 05:05).

Extensive hardware and programming systems error recovery and repair
features for 4341 Processor hardware errors, not implemented for
System/360, are provided to enhance system availability and
serviceability. These features also include facilities not
implemented in most System/370 processors, such as processor
diagnosis of logout data after a hardware error occurs to generate a
reference code that identifies the field replaceable unit or the
procedure to follow to attempt to locate the malfunction.

In addition, inquiry into a remote data bank by the on-site customer
engineer and remote diagnosis of hardware failures by IBM support
center personnel are supported via the optional, no-charge Remote

Support Facility. Remote maintenance facilities are not provided
for system/370 Models 125 to 145 or System/360 processors.

As the highlights indicate, the 4341 Processor offers Model 50 and 65
users a wide variety of improved features and additional functions that
provide improved throughput and expanded capabilities. The 4341
Processor contains many facilities that for System/370 are available
only in large-scale processors. These facilities include an eight-byte-
wide arithmetic logic unit, an eight-byte-wide data path, a high-speed
buffer, the Remote Support Facility, microcode-controlled power
sequencing, and microcode-controlled voltage and temperature monitoring.

Specifically, the 4341 Processor offers the following advantages, in

addition to significantly better price performance, when compared with
Models 50 and 65.

Larger, Faster Processor Storage

Processor storage sizes of 2048K and 4096K are provided. The Model
50 can have a maximum of 512K and the Model 65 a maximum of 1024K. The
effective access time to processor storage in the 4341 Processor is
faster than that of Models 50 and 65 (two microseconds for four bytes
for the Model 50 and 750 nanoseconds for eight bytes for the Model 65
versus 225 nanoseconds for eight bytes for the 4341 Processor). The
effective access time to processor storage in the 4341 Processor is
lower because of the implementation of a high-speed buffer. This
improved access time increases internal performance and permits faster
I/0 devices to be attached to the 4341 Processor.

The availability of two processor storage sizes for the 4341
Processor, instead of multiple sizes, simplifies decisions regarding the
amount of processor storage to install. The operating system to be used
and applications to be installed can be selected primarily on the basis
of their advantages, with less regard for their processor storage costs.

Additional processor storage can contribute significantly to system
capabilities and performance. Specifically, the availability of larger
processor storage for the 4341 Processor provides the ability to:

e Support more virtual storage

e Execute more or larger jobs concurrently, including new application
and integrated emulator jobs

¢ Add and expand applications, such as graphics, teleprocessing, time
sharing, and data base, that require larger amounts of storage

e Use higher level language translators and linkage editors that
provide more functions and execute faster

e Execute larger processing programs without the necessity of overlay
structures

¢ Allocate more storage to language translators and sorts to improve
their execution speed

® Use more and larger I/0 areas to speed up input/output operations
and optimize use of direct access storage and tape media space

e Include operating system options that improve control program
performance and support additional functions

11

Support of a Virtual Storage Environment ;

While the 4341 Processor has significantly more processor storage
than its comparable-scale System/360 processors, it is specifically
designed to support a virtual storage. environment, which allows
programmers to write and execute programs that are larger than the
processor storage available to them. When virtual storage is supported,
many of the restraints normally imposed by the amount of processor
storage available in a system are eased. The removal of certain
restraints can enable applications to be installed more easily and can
be valuable in the installation and operation of online applications.

While many of the new hardware features and 1/0 devices for the 4341
Processor and the new facilities supported by operating systems that
support the 4341 Processor are designed to improve system performance, a
virtual storage environment provides new functions that can help improve
the productivity of data processing personnel and enhance the
operational flexibility of the installation (see discussion in Section
15:05).

Greatly Expanded I/0 Capabilities

The fast internal performance of the 4341 Processor, together with
the expanded use of multiprogramming, requires that more data be
available faster than on Models 50 and 65. The 4341 Processor supports
more and faster concurrent high-speed I/O operations than Models 50 and
65. It also provides the block multiplexing capability, which is not
available for Models 50 and 65.

The 1/0 features of the 4341 Processor provide:

¢ Two more channels than are available for the Model 50 (six versus
four) ‘

e Attachment of the 3505 reader and 3525 punch, not attachable to
Models 50 and 65

e Attachment of a larger variety of printers (3203 Model 5 Printer and
3800 Printing Subsystem in addition to 1403 and 3211 Printers)

e Low-cost attachment of up to three 3278 Model 2A displays and/or
3287 Model 1 or 2 printers

e Support of synchronous data link control communications for remote
units attached via the 3704,/3705 Communications Controllers

e Attachment of high-speed, high-capacity, direct access devices, such
as 3370, 3330-series, 3340/3344, 3350, and the 2305 Model 2 (not
attachable to Models 50 and 65). The 4341 Processor can have
‘significantly lower cost online disk storage attached than Models 50
and 65.

e Attachment of higher speed tape units, such as the 3420 Models 6 and
8, which do not attach to the Model 50. In addition, the 4341
Processor can have more higher speed tape units attached. The Model
50 can have 3420 Model 4 tape units attached to only one channel.
The 4341 Processor is not limited to having 3420 Model 4, 6, and 8
units attached to only one channel.

e potential increases in channel throughput via use of block

multiplexing and rotational position sensing to improve effective
data transfer rates

12

e A significantly higher attainable aggregate I/O data rate than
Models 50 and 65 to balance the higher performance capabilities of
the 4341 Processor {(maximum 9 MB/sec for the 4341 Processor with
five block multiplexer channels versus 1 MB/sec and 4 MB/sec for
Models 50 and 65, respectively)

Summa; Y

Since hardware features and programming systems support for the 4341
Processor are upward compatible with those of System/360, the 4341
Processor offers Model 50 and 65 users significantly expanded computing
capabilities without the necessity of a large conversion effort. Little
or no time need be spent modifying operational System/360 problem
programs or the 1400 programs currently being emulated.

Existing processor-bound System/360 programs can execute faster in a
4341 Processor because of the significantly increased internal
performance of the 4341 Processor, while I/0-bound programs can benefit
from the use of more processor storage, faster channel capability, block
multiplexing, and faster I/0 devices. The 4341 Processor also offers
economical and flexible entry into communications-based applications.

The increased power and new functions of the 4341 Processor provide
the base for expanded application installation and penetration of
previously marginal application areas. New application installation and
transition to online operations can be easier when a virtual storage
environment is implemented. The greatly improved price performance of
the 4341 Processor offers the System/360 and System/370 user the
opportunity to widen his data processing base for a significantly lower
cost than was previously possible.

For large installations that want undisrupted growth and
decentralization of their data processing facilities, the 4341 Processor
provides economical and easy entry into (or expansion of) distributed
data processing operations. The following outlines the distributed
application environments in which a 4341 Processor can be used:

e Distributed applications (periodic data transfer, remote job entry,
and pass through). The 4341 Processor can provide powerful
processing capability in a department or branch location of a larger
enterprise, with telecommunications connections to one or more host
processors in the data processing center of the enterprise. Host-
connect applications may vary from periodic transmission of summary
data between the 4341 Processor and the host system to a continuous
connection offering RJE and/or pass through capabilities.

Compatible System/370 architecture allows application processor
workloads to be distributed between central systems and the 4341
Processor via RJE facilities. RJE support is provided by two
DOS/VSE SNA and BSC program products, VM/370 RSCS Networking, and
the 0S/VS1 Host Remote Node Entry System (HRNES) Installed User
Program. Pass through facilities are supported by ACF/VTAME,
ACF/VTAM/MSNF, and VSE/3270 Bisynch Pass Through, allowing terminals
connected through the 4341 Processor to access such host facilities
as IMS or TSO, or local applications such as those using CICS.

s Distributed data applications. CICS/VS Intersystem Communications
(ISC) with DL/I and IMS Multiple Systems Coupling (MSC) provide
support for applications accessed from either host or node systems.
Data most frequently used locally may be stored on direct access
storage attached to the 4341 Processor with transaction-by-
transaction access to the central host data base as needed.

13

14

e Distributed network (host plus peer coupling). An SNA or VM/370
RSCS network may be enhanced through communication directly between
local or remote 4341 Processors to the host or 8100 Information
Systems. With a complete network, both data and processor loads can
ke spread to larger processors, to distributed 8100 systems, or
between 4341 Processors. Transactions from the 8100 to CICS/VS are
supported by the 8100 DPPX Host Transaction Facility. DPPX also
supports remote job entry to 0S/VS1 RES and VM/370 RSCS Networking
systens.

SECTION 05: TECHNOLOGY, ARCHITECTURE, AND PHYSICAL COMPONENTS

05:05 TECHNOLOGY

INTRODUCTION

The price performance and compact size of the 4341 Processor have:
been achieved in large part through the use of large-scale integrated
semiconductor technologies for both logic circuitry and storage. A new
IBM bipolar technology is used for logic circuitry, and SAMOS (Silicon
and Aluninum Metal Oxide Semiconductor) FET (Field Effect Transistor)
technology is used for processor storage in the 4341 Processor. A new
bipolar technology is used for reloadable control storage and high-speed
buffer storage in the 4341 Processor.

Just as the MST (Monolithic System Technology) logic and MOSFET
(Metal Oxide Semiconductor Field Effect Transistor) processor storage
technologies implemented in System/370 processors represented a major
technological advance over the SLT logic (Solid Logic Technology) and
core storage implemented in System/360, the large-scale integrated logic
and SAMOS storage technologies implemented in 4300 Processors represent
a major advance over System/370 technologies.

An advanced computer-based engineering design system, an improved
manufacturing process, and denser packaging approach are utilized in the
design and fabrication of logic chips and modules for the 4341
Processor, which contain several times more circuits than the MST logic
chips and modules utilized in System/370. The very high density of the
logic chip used in the 4341 Processor, 704 circuits maximum per chip,
and its packaging for the 4341 Processor, up to nine chips in a
multilayer ceramic logic module, result in the following advantages of
this logic over MST logic:

e Higher reliability per logic circuit

e Faster circuit speed

e Significantly reduced space requirements
e Greatly reduced cost

e Reduced power requirements and less heat dissipation. (The latter
reduces the amount of cooling required.)

¢ Reduced maintenance costs

The SAMOS technology used for processor storage in the 4341 Processor
also provides greatly improved chip density compared to the processor
storage chip used in most System/370 processors. In the 4341 Processor,
a processor storage chip contains 64K bits, while a 2K-bit chip is used
for processor storage in most System/370 processors.

The higher density of the SAMOS storage chip used in the 4341
Processor is achieved by (1) utilizing fewer elementary components to
form an individual storage cell (that can contain one bit of
information) than are utilized on a 2K-bit chip for System/370 and (2)
reducing the physical size of the elementary components. The smaller
component size results from the SAMOS technology process that is used to
produce the storage chips.

15

A new manufacturing facility is also used to produce SAMOS storage
chips. The facility is designed to minimize the number of contaminants
to which silicon wafers are exposed during the chip production process.
The wafers travel through an enclosed air track production line on an
air cushion. The air in this track is ultra clean, containing fewer
than ten contaminant parts per ten billion parts of air. The entire
. process is monitored by computers (over 60 IBM System/7 processors).

" The new manufacturing facility is designed to improve chip yield, which
reduces storage cost, and to improve the reliability of storage chips.

The higher density of the storage chip used in the 4341 Processor,
the SAMOS technology and design of the chip, and the new manufacturing
facility result in the following advantages for processor storage in the
4341 Processor compared to System/370 processor storage:

e Higher reliability (lower failure rate per bit of storage)
e Significantly reduced space requirements

e Greatly reduced storage cost

Reduced power requirements and less heat dissipation

Reduced maintenance costs

The magnitude of the technological advances that the 704-circuit
logic chip and SAMOS storage represent can best be illustrated by
comparison to the technology utilized in System/360 and System/370. The
discussion of the 704-circuit logic and SAMOS technologies will explain
in detail how the advantages listed above are achieved.

SYSTEM/360 TECHNOLOGY

System/360 utilized SLT for logic circuitry and wired, discrete
ferrite cores for processor storage. As shown in Figure 05.05.1, SLT
circuits were implemented on l1l.27-centimeter (half-inch) ceramic squares
called substrates. Metallic lands on the substrate formed
interconnections onto which the components were soldered. These
components consisted of transistors and diodes, which were integrated on
silicon chips about the size of a pinhead, and thin film resistors. Aan
SLT chip usually contained one type of component, and several chips and
resistors were needed to form one circuit. In general, an SLT substrate
contained four chips and a single circuit.

Ceramic substrate
with interconnections
containing one circuit

SLT chip with

one component \

Input/Output pin

Figure 05.05.1. SLT substrate (shown four times its actual size)

16

SYSTEM/370 TECHNOLOGY
MST

The monolithic system technology used in System/370 was a breakaway
from the hybrid circuit design concept of SLT. MST also makes use of a
1.27 by 1.27 centimeter (half-inch-square) ceramic substrate with metal
interconnections onto which silicon chips are placed. However, in
monolithic logic circuitry, large numbers of elementary components, such
as transistors, diodes, and resistors, are integrated on a single chip.

The MST logic chip used in System/370 processors is approximately 2
millimeters (about 3/32 of an inch) square and contains over 100
elementary components, which can form up to eight interconnected
circuits on the chip. This compares to a single component on an SLT
chip. :

of the eight possible circuits per MST logic chip, an average of six
are actually utilized in the MST logic implemented in System/370
processors. The speed of a circuit on an MST logic chip for System/370
processors is eight to twelve nanoseconds.

In MST, one logic chip is usually mounted on a substrate. (In a few
instances, a substrate contains two chips.) MST logic modules, each
consisting of one substrate, are mounted on circuit cards (the field
replaceable unit), which are in turn mounted on circuit boards (as in
SLT 1logic).

MST logic offers the following advantages over SLT:

e MST 1od1c circuitry is intrinsically more reliable because many
circuit connections are made on the chip, significantly reducing the
number of external connections.

¢ Faster circuit speeds can be obtained because the path between
circuits is considerably shorter.

¢ Space requirements for logic circuitry are greatly reduced by the
significantly higher density of components per chip.

® Processor cost is reduced because the amount of wiring for

interconnections and the number of modules and boards required for
logic are reduced.

Monolithic Storage

Monolithic storage design incorporates the same concepts described
for monolithic logic. Thus, monolithic storage, unlike core storage,
can be batch fabricated. However, instead of logic circuits, storage
cells that are used to contain information bits are implemented on a
chip.

The processor storage chip used in most System/370 processors is a
2,048 (2K) bit chip that utilizes MOSFET technology. This monolithic
storage array chip is 3.88 by 4.52 millimeters (approximately 5/32 by
6732 of an inch) and contains a large number of interconnected circuits
that form 2K storage cells and support circuitry on the chip. The most
dense processor storage chip used in System/370 (the 3033 Processor) is
a 4096 (4K) bit chip.

For System/370, two 2K-bit storage array chips are mounted on a 1.27-
centimeter (half-inch) square substrate, and a pair of substrates is
packaged in a storage array module. Storage array modules are mounted
on a storage array card, which is the field replaceable unit. In

17

outward appearance, therefore, monolithic storage resembles monolithic
logic circuitry.

The MOSFET processor storage in System/370 processors is static
rather than dynamic. The differences between static and dynamic storage
are discussed later in this subsection under "SAMOS Storage Technology".

The following are the general advantages‘of a static monolithic
storage over core storage:

e Faster storage speeds can be obtained because of (1) the shorter
paths between storage circuitry and (2) the nondestructive read-out
capability of monolithic storage. Since core storage read-out is
destructive, a regeneration cycle is required after a read and is
also used prior to a write. This type of regeneration cycle is not
required for static monolithic storage.

e Storage serviceability is enhanced because storage is implemented in
accessible, easily replaceable cards, each of which is a functional
storage component. Diagnostic routines can be written that need
jdentify only the failing storage card, which can be replaced in a
matter of minutes. Storage increments can also be field-installed
more rapidly.

e Space requirements for processor storage are significantly reduced.
Dense bit packaging per chip is achieved by the use of monolithic
technology and by the fact that the regularity of a storage pattern
lends itself to such packaging.

¢ Storage costs are reduced because production costs are reduced by
the ability to batch fabricate processor storage.

4341 PROCESSOR TECHNOLOGY

The basic objective of large-scale integrated logic technology and
high-ktit-density storage technology is to bring the physical elements
that make up the logic and storage in a processor physically closer
together. The distances between logic circuits or storage bits can also
be reduced by the packaging approach used for a logic or storage module.

When elements are brought closer together, the amount of wiring
required to form the specific logic circuitry or storage size required
by a processor is reduced, faster circuit speeds can be obtained, and
circuit or bit reliability is improved. The failure rate of circuits
and storage bits is related to the length and location of wired
connections. For example, circuits connected on a chip are more
reliable than circuits connected off the chip.

In the 4341 Processor, for example, wiring to accomplish the logic
for the instruction processing function occurs at several levels.
First, elementary components (transistors, diodes, and resistors) on a
chip are connected to form circuits, which are then interconnected at
the chip level. Additional circuit connections are then made at the
logic module level (that is, within the substrate) and at the card
level.

With the use of large~scale integrated logic technology and high-bit-
density storage technology, the total amount of wiring and the number of
" logic cards and storage cards required in the 4341 Processor are
significantly reduced from that required by the technology implemented
in System/370. Separate logic boards and separate processor storage
boards and the cabling between them are eliminated entirely for the 4341
Processor because only ten cards are required to contain the logic for

18

the instruction processing function in the 4341 Processor and only four
or eight cards are required for processor storage.

Logic Physical Design and Advantages

The logic chip used in the 4341 Processor is 4.57 by 4.57 millimeters
(approximately 3716 of an inch square) and contains over 7000 elementary
components (resistors, diodes, and transistors), as compared to over 100
on an MST logic chip approximately 2 millimeters (about 3/32 of an inch)
square. The 7000 elementary components on the chip can be connected to
form 704 logic circuits. The nominal speed of a circuit on this logic

chip is three nanoseconds.

Figure 05.05.2 shows the size of the 704-circuit logic chip relative
to a paper clip, while Figure 05.05.3 shows an MST logic chip on the
left and 704-circuit logic chip on the right surrounded by salt
crystals. The relative size of these chips can be seen in the latter

figure.

Figure 05.05.2. The 704-circuit logic chip resting on a paper clip

Of the 704 circuits available on a single chip, an average of 616 are
actually utilized in the logic implemented in the 4341 Processor. The
high circuit utilization is made possible in part because three layers
of wiring are used for interconnections on the chip itself. A logic
chip in the 4341 Processor contains up to 2.13 meters (seven feet) of
wire that interconnects the elementary components and circuits on the
chip. Only one layer of wiring is used on an MST logic chip.

Despite the greatly increased density of a logic chip in the 4341
Processor, a higher percentage of the circuits available on the chip are
used than are used on the MST logic chip. For the 4341 Processor,
average circuit utilization on a logic chip is over 87 percent, compared
to 75 percent average utilization for the MST logic chip in System/370

Processors.

19

Figure 05.05.3. An MST and 704-circuit logic chip surrounded by salt
crystals

In the 4341 Processor, three different sized modules are used for
logic: MLC (multilayer ceramic) 50, MLC 35, and MC (metalized ceramic) 28
modules. The MLC modules have up to 23 layers of ceramic available to
accormodate circuit interconnections within the ceramic itself.

The MLC 50 module is 50 by 50 millimeters (approximately 2 inches
square), can contain up to nine logic¢ and array chips, and has 361 I/O
pins. The MLC 35 module is 35 by 35 millimeters (approximately 1.5
inches square), can contain up to nine logic and array chips, and has
196 I/O pins. The MC 28 module is 28 by 28 millimeters (slightly over
one-inch square), contains one chip, and has 116 I/0 pins. The type of
module used for a specific function is selected to optimize I/0 pin
utilization and cost.

An MLC 50 module for the 4341 Processor has approximately 4.8 meters
(15.7 feet) of wiring contained within the ceramic substrate. In MST
logic, a single-layer ceramic is used and no interconnection wiring
exists within the substrate for a single-chip module.

The larger ceramic module size and use of multilayer wiring within
the substrate enable several logic chips to be packaged in a single
logic module. For the 4341 Processor, up to nine chips are mounted on a
single MLC 50 substrate, depending on the function performed by the
module. On the average, six chips are contained within each MLC 50
module for the 4341 Processor. The circuits on one chip within a module
are interconnected to circuits on one or more other chips via the wiring
contained within the substrate.

The MLC 50 logic module used in the 4341 Processor is shown in Figure
05.05.4 mounted on a card (the FRU) without and with its cap. The
substrate can accommodate surface wiring between chips. When necessary,
this wiring is used to make an engineering change to an MLC 50 module at

20

the plant of manufacture. This capability also exists for MLC 35
modules.

MLC modules are mounted on circuit cards 11.32 by 17.46 centimeters
(approximately 4.5 by 7 inches) in size. Logic cards in the 4341
Processor are mounted on a board that contains other functions in
addition to instruction processing function logic.

Figure 05.05.4. The MLC 50 module used for instruction processing
function logic in the 4341 Processor without and with
its cap

A new card and board design are used to contain MLC modules. The new
design is required to accommodate the higher density of I/0 pins on an
MLC module (which is required to handle the higher circuit density per
module). The number of pins in an MST logic module is 16.

The new card and board design also improves reliability, since each
logic card is held in place by screws at each end of the card to prevent
the card from coming loose.

The large space reduction that results from the use of the 704-
circuit logic chip and the multichip, multilayer ceramic substrate can
be seen by calculating ‘the number of MST logic modules required to
contain the same number of circuits as an MLC 50 logic module for the
4341 Processor. Assuming the maximum capacity of 704 circuits per chip
is utilized and six chips on an MLC 50 logic module (approximately 4200
circuits), 700 MST logic modules (at six circuits per module) are
required for the same number of circuits.

Figure 05.05.5 shows one MLC 50 module and the 700 MST logic modules
that provide the equivalent number of circuits (approximately #200).
Figure 05.05.6 shows the relative space requirements for the number of
MST logic cards (23) required to contain the same number of circuits as
are contained on one MLC 50 module with six chips.

21

Figure 05.05.5. One MLC 50 logic module containing approximately 4200
circuits and 700 MST logic modules containing the same
number of circuits

Figure 05.05.6. One MLC 50 logic module with six chips and 23 MST
logic cards with the same number of circuits

The advantages of the logic technology used in the 4341 Processor
over MST logic technology are the result of (1) the use of large-scale
integrated technology to provide smaller elementary components on a chip
and, thus, significantly increase circuit density per chip, (2) the use
of three levels of wiring on the chip to increase the percentage of
available circuits actually used per chip, (3) significant module
packaging improvements (the use of wiring within the ceramic substrate

22

and multiple chips per module), (4) the use of cards with higher I/0
(pin) density, and (5) the use of a higher grid density board (2.5-
millimeter versus 3.18-millimeter grid demnsity).

The density and packaging improvements bring logic circuits closer
together. The higher chip density enables many more circuits to be
connected at the chip level. The multiple-chip, multilayer ceramic
module enables circuits to be connected at the module instead of the
card level.

When only one logic chip is mounted on a single-layer ceramic
substrate for MST logic modules, circuit connections are made at the
chip level and, via pin soldering, at the card level. There is no
circuit connection at the module level for most MST modules. Therefore,
for a given number of circuits, a great deal less total wiring and
shorter wire lengths are required for eircuit connection when 704-
circuit, instead of MST, technology is used. Specifically,
approximately 305 meters (1000 feet) of wire for circuit connections are
saved by the utilization of one MLC 50 logic module instead of 700 MST
logic modules (equaling about a 96 percent reduction).

The reduction in the total amount of wiring required and the shorter
wire lengths possible using the 704-circuit chip technology and its
packaging for the 4341 Processor provide the following advantages over
MST technology:

e A significant reduction in the amount of space required to contain
the logic circuits of a processor. The 4341 Processor contains
approximately 106,500 logic circuits while the System/370 Model 138
contains approximately 18,000. In the 4341 Processor, only 27 cards
are required for the 106,500 circuits while 120 cards are required
for the 18,000 circuits in the Model 138.

e A significant reduction in logic circuitry cost because physical
packaging costs are so much less and production costs for the
fabrication of logic circuits have been reduced compared to
production costs for MST logic circuits

e Faster circuit speeds (3 to 5 nanoseconds in the 4341 Processor
versus 8 to 12 nanoseconds for MST) because of a shorter signal
distance (shorter wire lengths)

o Increased reliability because (1) many times the number of circuit
connections are made at the chip level and (2) circuit connections
are made at the module level, reducing the number of circuit
connections made at the card level. Circuit connections made at the
chip and module level are more reliable than those made via pin
soldering at the card level. Thus, a circuit at the MLC module
level is approximately 30 times more reliable than an MST circuit at
the module level.

¢ Reduced power requirements because of the smaller physical size of
the transistors on a logic chip and the shorter wire lengths. The
use of less power results in a reduction in the amount of heat
generated so that less cooling is required. (See comparison with
System/360 and System/370 processors under "Summary®” at the end of
this subsection.)

¢ Reduced maintenance costs because of increased reliability and
improved serviceability. Increased reliability should result in
fewer failures in logic circuits and, thus, less maintenance time.
As a result of the increase in the reliability of both logic
circuits and storage bits in the 4341 Processor, no preventive
maintenance is scheduled for 4341 Processors except replacement of
the filters in the cooling blowers (once a year).

23

Serviceability is improved because the diagnostic procedures for the
4341 Processor are designed to locate the field replaceable unit
more quickly. First, the use of scoping for problem determination
is eliminated as the high circuit density of the logic chip
precludes its use. Instead, microcoded procedures, some of which
are invoked during processing at the time a failure occurs, are used
to locate the failing FRU (see discussion of reference code
generation in Section 50). Second, the presence of fewer logic
cards in a processor makes locating the failing FRU faster.

Logic Fakrication and Design

The high circuit density and high circuit utilization of MLC 35 and
50 logic modules are made possible by improvements in the fabrication
procedure that is used to produce logic chips, the new packaging design
for logic modules already described, and the use of a computer-based
engineering design system that automates the logic design procedure from
the chip level to the board level.

The fabrication of MLC logic modules that perform specific logic
functions is basically composed of three production procedures. The
first procedure produces logic chips that perform specific logic
functions (as required by logic designers). The second produces a
multilayer substrate with the specific wiring required by specific logic
chips. The third procedure combines the appropriate chips with a
substrate to produce a capped logic module and tests for correct
operation of the module. '

The first procedure consists of two basic processing steps. The
first process produces a number of identical logic chips with elementary
components on a single silicon wafer. The second process personalizes
the chips by interconnecting the components on each chip to form
circuits that perform the specific functions desired by a logic
designer.

The two processes used in the first chip production procedure are
improved over those used in the fabrication of MST logic. First, the
increase in the density of the logic chip is made possible by several
improvements in the first process that produces logic chips on silicon
wafers (improvements in process control and photolithography precision).

Second, the productivity of the first process is improved by (1) the
use of larger silicon wafers than are used to produce MST logic chips
(it is more productive to process one large silicon wafer than two small
ones) and (2) by the fact that the circuits on the logic chip are
smaller (more total circuits are produced per silicon chip). This
results in less production cost per logic circuit and contributes to
reduced processor cost.

The second chip production process, which connects components and
circuits on a chip, utilizes electron beam direct exposure at several
processing steps to connect circuits instead of the optical mask
technology utilized in the production of MST logic chips. The
advantages of utilizing the electron beam in the second process are the
following:

* Different types of chips can be produced from the same silicon
wafer. That is, logic chips of different personalities can be
produced from one wafer.

e The production of new logic parts during the design of the logic for

a new processor is faster because the time required for the
construction of new optical masks is eliminated.

24

The end result of using the electron beam is reduced cost for logic
circuits, which ultimately results in lower processor cost.

The procedure that produces multilayer ceramic substrates is IBM-
designed. A substrate has a certain amount of predefined wiring and
other wiring that personalizes the substrate to perform the functions
required by the logic chips it contains. The personalized wiring is
designed using the engineering design system.

The engineering design system that automates the logic design
procedure was an extremely important element in the development of the
logic in the 4341 Processor. This system makes it practical to utilize
the high circuit density of the logic chip and offers several advantages
to the logic designer.

Before implementation of the engineering design system, the physical
wiring patterns required to connect the components on chips, cards, and
boards to perform specific logic functions were designed manually with
the help of display units. That is, the logic designer determined not
only the logical interconnections, but also the physical wiring patterns
required.

The engineering design system, which has been in continual
development within IBM for some time, is a generalized logic design
system that is now utilized throughout the entire IBM corporation. This
system is programmed to handle various technologies and enables the
technology designer and processor logic designer to operate
independently of one another.

Prior to the existence of the technology used for the 704-circuit
chip, the engineering design system was used to design wiring at the
chip level (for the densities available) and at the card level for the
logic used in System/370 processors. The design system has been updated
to handle a chip with a 704-circuit density and to design wiring at all
physical levels: chip, module, card, and board. The design system is
now capable of producing all the physical wiring design required to
implement the logic for a given processor. The design system is also
improved in that it automatically generates the test patterns required
to check the finished logic chips for proper electrical connection.

While the design system eliminates the need to manually design
physical circuit wiring at all levels, it also provides the logic
designer with the capability of manually intervening in the design
process, if necessary.

For logic that utilizes the 704-circuit chip, the physical wiring
patterns required to connect circuits from the chip to the board level
to perform specific logic functions are designed by the engineering
design system using input from the logic designer, who determines the
logical interconnections. In addition, the design system utilizes a
master slice and open part number approach that offers the advantages of
greater logic design flexibility, quick verification of logic design,
and more rapid logic design completion.

The first process in the fabrication of the 704-circuit logic chip
produces a master slice with a specific part number. Optical masks are
used in this process. A master slice is a single silicon wafer that
contains several logic chip areas, each of which contains the identical
optically defined configuration of elementary components. The chips on
a master slice are designed by the technology designer.

Each chip on the master slice used for the logic in the 4341
Processor contains over 7000 components, which can be connected during
the second chip fabrication process to form up to 704 circuits. This
704-circuit chip master slice is used in the production of logic chips

25

for 4341 and 4331 Processors and the IBM System/38 processor. Master
slices are produced in quantity and stored as inventory until required
by logic designers and for processor production. Having a master slice
available with the components already existing on the chip speeds up the
logic design process.

When circuits with specific logic functions are required during the
design of a new processor, the logic designer utilizes the engineering
design system to personalize a chip on a master slice to perform the
desired functions. This personalized chip is assigned a unique part
number. The logic designer provides the design system with a
. description of the logical functions the chip is to perform and can
request almost any desired interconnection of all or part of the
circuits available on the chip (704 in the case of the chip for the 4341
Processor).

The master slice and open part number approach are not utilized for
MST logic. For MST, each chip that performed a unique logic function
was assigned a part number. A certain number of part-numbered chips
were designed and logic designers had to use this set of logic chips to
develop the logic for a specific processor.

The logic chip design input supplied to the engineering design system
is first checked for possible design rule violations (exceeding the chip
circuit capacity, for example). The design system then designs the
physical chip wiring required to accomplish the desired logic functions.
The resulting wiring patterns minimize the amount of wiring required.
The design system also attempts to maximize utilization of the number of
circuits available on the chip. In some cases, the logic designer may
have to manually design some physical wiring on the chip to maximize
circuit utilization.

Once the chip design is complete, the design system identifies the
electron beam and optical mask patterns needed to manufacture the
specific logic chip and generates the data required to test the logic.
The output from the engineering design system is a magnetic tape that is
used to control the two processes that produce logic chips for a given
processor. The tape also contains the automatically generated test
patterns.

once the logic chips required for a specific function are designed,
the engineering design system is used to design the physical wiring
required at each successive level--substrate, card, and board--based on
the logic designer's input of logical connections.

SAMOS StoragevTeéhnOIOgy

Dynamic storage design. Processor storage in the 4341 Processor is a
dynamic type of monolithic storage, as opposed to the static type of
storage that is implemented in System/370 processors.

~ The 64K (65,536) bit SAMOS chip that is used in processor storage in
the 4341 Processor utilizes one transistor per storage cell. Processor
storage in the 4341 Processor is sometimes referred to as a single-cell
storage. The SAMOS 64K~-bit storage chip (shown in Figure 05.05.7
resting on a coin) is 6.35 by 6.35 millimeters (approximately one-
quarter of an inch square) in size. Six transistors per bit are used on
a 2K-bit storage chip for a System/370, which is 3.88 by 4.52
millimeters (approximately 5/32 by 6/32 of an inch) in size. The 4K-bit
storage chip in the 3033 Processor utilizes four transistors per bit.

For the static 2K~bit chip storage implemented in System/370, the six

transistors form a circuit. In effect, the circuit is a switch that can
be in one of two states: on or off. Current is supplied continuously

26’

to static storage cells while processor power is on. For the dynamic
6uUK~bit chip storage implemented in the 4341 Processor, a storage cell
is implemented as one capacitor onto which a charge is stored to reflect
a bit on or off condition. Current is supplied to a dynamic storage
cell when a bit is read or written, rather than continuously.

For any given dynamic storage, the charges will remain on the
capacitors only for a specific time interval, after which current must
be resupplied to maintain the stored data. The periodic supply of
current to a dynamic storage to maintain its contents is called
"refreshing”.

Figure 05.05.7. The 64K-bit storage chip resting én a coin

A kit in processor storage in the 4341 Processor must be refreshed '
every 6.1 milliseconds. 1In the 4341 Processor, all processor storage is
not refreshed at the same time. A portion of the storage is refresled
every 24 microseconds, such that in every 6.l1-millisecond interval all
processor storage is refreshed.

Refreshing occurs as follows. In one refresh operation, 256 bits on
every chip in one-half the processor storage installed are refreshpd,
This refresh operation requires 890 nanoseconds.

In the next refresh operation, which occurs 24 microseéconds aftexr the
first, 256 bits on every chip in the other half of processor storage are
refreshed. The next refresh operation 24 microseconds later causes a
different set of 256 bits in the first half of processor storage to be
refreshed, and so on, until every 256-bit group on every storage chip is
refreshed during a 6.1 millisecond interval.

Processor storage cannot be accessed during a refresh operatjion.
However, refreshing requires only 890 nanoseconds out of every 24
microseconds (24,000 nanoseconds). Thus, processor storage is
unavailable less than four percent of the time. Instruction processing
function operations are delayed very 1nfrequent1y by storage refreshing
in the 4341 Processor, since the instruction processing function works
primarily with the high-speed buffer.

27

Continuous power is required to maintain a one or zero state in a
static type of monolithic storage cell and periodic power is required to
maintain a one or zero state in a dynamic monolithic storage cell.

Thus, data in a monolithic storage is lost when power is turned off in a
processor. Monolithic storage is therefore said to be volatile. This
is not true of core storage, which retains a magnetized state when power
is removed.

The advantages of dynamic monolithic storage over static monolithic
storage are significantly increased bit capacity per chip and reduced
power and cooling requirements. The bit capacity of a chip is improved
by the use of fewer components per cell and the power utilization is
less because current is not supplied continuously to each storage cell.

The use of less power results in less heat generation and the need
for less cooling. Reduced heat generation also aids storage
reliability, since the operation of electronic devices can eventually be
impaired by continuous exposure to heat.

Processor storage. The 64K-bit chip used in processor storage in the
4341 Processor provides several advantages as a result of its
technology, design features, and high density. The 64K-bit chip
contains three functional areas: two storage array areas separated by a
support area. Each storage area contains 32K usable bits plus
additional (redundant) bits.

The redundant bits (approximately 2500 per chip) are provided to
enable a chip to be utilized even though some bits within a storage area
do not function properly. During the final testing of a 64K-bit chip,
functional redundant bits are substituted for any nonfunctional bits via
the programming of on-chip circuitry in the support area of the chip.

The two storage array areas occupy approximately 30 percent of the
total surface of the storage chip. The area between the two storage
arrays on a 64K-bit chip provides normal storage support functions (chip
timing and addressing functions, for example) and two registers that
speed up reading of storage bits.

Each of the two storage areas has its own dedicated support circuity
and register in the support area of the chip. Thus, a 64K-bit chip is
usable even if only one of the two storage arrays and its associated
circuitry are functional, since each storage area can operate
independently from the other. The use of two independent storage arrays
per chip and redundant storage bits on the chip improves chip yield,
which results in reduced processor storage cost.

The two high-speed, eight-bit registers, one for each storage array,
that are implemented in the support area are provided to reduce the time
required to access bits in the storage arrays, which are contained in
low-speed areas on the chip. Eight bits from a storage array area can
be placed in its associated register in 405 nanoseconds. A bit can then
be read out of the register in 100 nanoseconds. Thus, 1205 nanoseconds
are required to access eight sequential bits. Without implemention of
the eight-bit register, 405 nanoseconds would be required to access the
first bit and 1 microsecond would be required to access each additional
bit, for a total of 7.4 microseconds for eight sequential bits.

The implementation of storage support circuitry on the chip in the
support area, rather than off the chip, aids storage reliability. The
high density of the chip also aids reliability, since many more circuit
connections are made at the chip level than for the 2K-bit storage chip
used in System/370.

The reliability of the 64K~-bit chip is also improved by the SAMOS
technology. The technology is designed to protect the storage cells on

28

a chip from contamination and minimize the potential for charge leakage
after data is stored.

First, the chip has a double layer of insulation to help ensure good
coverage of the chip surface (one layer of oxide covered by one layer of
silicon nitride instead of a single oxide layer). Second, the chip
utilizes a layer of polysilicon that acts as a surface field shield.

The shield is designed to provide the very low current leakage level
required by the high density of the chip.

Space requirements for processor storage in the 4341 Processor are
greatly reduced because of the denser packaging of storage array modules
as well as because of the high density of the storage chip. A storage
array module for the 4341 Processor is 2.54-centimeters (one-inch)
square and contains one or two substrates. A substrate contains four
storage chips. The use of one or two substrates per module enables one
or two storage array areas per chip to be utilized.

A storage array module for the 4341 Processor contains either (1) two
substrates with eight chips containing 16 storage arrays or eight chips
containing 8 storage arrays or (2) one substrate with four chips
containing eight storage arrays. Thus, a storage module contains 256K
or 512K bits.

A storage array module for the 2K-bit processor storage chip used in
Systems/370 processors contains two substrates, each of which contains
two storage chips (four chips per module that provide 8K bits). Thus, a
storage array module for the 4341 Processor is either 32 or 64 times as
dense as a storage array module with 2K-bit chips for System/370
processors.

The processor storage array card for the 4341 Processor, which like
the logic card is 11.32 by 17.46 centimeters (approximately 4.5 by 7
inches) in size, contains a mixture of the types of storage array
modules described and provides 512K bytes of processor storage. Thus, a
4341 Processor contains four or eight processor storage cards for 2048K
or 4096K bytes of processor storage, respectively. A processor storage
card containing 512K bytes is shown in Figuire 05.05.8.

When the 2K-bit chip is used for processor storage in System/370, 36
cards 10.8 by 17.78 centimeters (4.25 by 7 inches) in size are required
for each 1024K bytes. The volume of space required for each 1024K bytes
of processor storage implemented in 2K-bit chips is 30 times greater
than the requirement for each 1024K bytes of processor storage
implemented in 64K-bit chips or 14,158 cubic centimeters versus 475
cubic centimeters (864 cubic inches versus 29 cubic inches). The large
reduction in the number of storage cards required for a given size makes
locating the failing FRU faster.

The new card and board design used for logic in the 4341 Processor is
also used for processor storage. Therefore, processor storage array
cards in the 4341 Processor are held in place by screws at each end to
prevent them from coming loose and, thus, aid reliability.

The reduction in space requirements that results from the use of
large-scale integrated logic technology and high-density SAMOS storage
technology in the 4341 Processor is illustrated in Figure 05.05.9. This
figure shows one megabyte of 2K-bit-chip processor storage and the logic
for the Model 138 and two megabytes of 64K-bit-chip processor storage
.and the logic for the 4341 Processor.

29

Figure 05.05.8. A processor storage card containing 512K bytes

Figure 05.05.9. Logic, control storage, and one megabyte of processor
storage for the Model 138 and logic, control storage, and
two megabytes of processor storage for the 4341 Processor

30

control storage and buffer storage. A new high-performance static
bipolar technology is used for the control storage and buffer storage in
the 4341 Processor to provide the faster access required by these types
of storage. The capacity of the bipolar chip is 256 bytes (2304 bits),
which is more than twice as dense as the chip used for control storage
in Models 138 and 148, which contains 1024 bits per chip. The new chip
also contains functions that are designed to increase its access speed.
Access time at the caxd level for the control storage in the 4341
Processor is 55 nanoseconds, while the control storage in Models 138 and
148 has a 75-nanosecond access time at the card level.

For the high-speed buffer, two chips are placed on a 2.54-centimeter
(one-inch) square substrate and there is one substrate in a module. Two
cards are required for the 8K-byte buffer storage in the 4341 Processor.
For control storage, two chips are placed on a substrate but a module
contains two substrates. Four cards are required for control storage in
the 4341 Processor.

Sutmary

The significant impact made on the physical and environmental
characteristics of the 4341 Processor by the use of large-scale
integrated logic technology and the high-density SAMOS storage
technology can best be shown by comparison with the same characteristics
of other appropriate System/360 and System/370 processors.

The 4341 Processor requires significantly less power than System/360
Models 50 and 65 despite its greatly increased function and larger
processor storage sizes. Specifically, a 4341 Processor with 4096K
bytes of processor storage and attached 3278 Model 2A console and 3287
Printer requires approximately 20 percent the amount of power (measured
in kilovolt amps) as a Model 65 processor (2065 Processing Unit) with
1024K of processor storage and approximately 63 percent the amount of
power as a Model 50 processor (2050 Processing Unit) with 512K bytes of
processor storage. '

The power requirement for a 4341 Processor with 4096K bytes of
processor storage and attached 3278 Model 2A and 3287 is approximately
45 percent of that for a System/370 Model 138 processor (3138 Processing
Unit) with 1024K bytes of processor storage and less than one-third that
of a Systems/370 Model 148 (3148 Processing Unit) with 2048K bytes.

The reduction in power requirements for a 4341 Processor causes it to
dissipate less heat, as measured in BTUs per hour. The 4341 Processor
with 4096K bytes and attached 3278 Model 2A and 3287 generates
approximately 22 percent the amount of heat as a Model 65 with 1024K, 60
percent the amount of heat as a Model 50 with 512K, 40 percent the '
amount of heat as a Model 138 with 1024K, and 28 percent the amount of
heat as a Model 148 with 2048K. Thus, less air conditioning is required
for a 4341 Processor.

Space savings in square feet of floor space also result when a 4341
Processor replaces a Model 50 or 65. A 4341 Processor with 4096K bytes
of processor storage (not including the 3278 Model 2A, 3287, or a
Channel-to-Channel Adapter) requires 88 percent less space than a Model
65 with 1024K bytes and three channels and 45 percent less Space than a
Model 50 with 512K bytes.

A 4341 Processor with 4096K bytes (without a 3278 console, 3287
Printer, or Channel-to-Channel Adapter) requires 84 percent the amount
of space as a Model 138 with 1024K bytes and 56 percent the amount of
space required by a Model 148 with 2048K bytes. Note also that the
height of the 4341 Processor is one meter (39.36 inches) or about two-
thirds that of a Model 138/148 processor.

%

31

05:10 DESIGN OBJECTIVES AND ARCHITECTURES

DESIGN OBJECTIVES

The basic design objectives embodied in the 4341 Processor provide
System/360 users with a growth system in the intermediate-system range
that incorporates several improvements and additions to System/360
architecture. The 4341 Processor provides System/360 users with many
new functional capabilities, significant performance improvements, and
features to enhance system availability and serviceability. This
progress has been achieved under the following conditions: '

e The architecture implemented in 4300 Processors is upward compatible
with that of Systems/360 so that most user-written problem programs
for Systems/360 Models 22 and up will operate without modification in
a 4341 Processor with either. System/370 or ECPS:VSE mode in effect.

e The architecture implemented in 4300 Processors is upward compatible
with that of System/370 so that most user-written problem programs
for sSystem/370 processors will operate without modification in a
4341 Processor with either System/370 or ECPS:VSE mode in effect.

* Programming systems support of the 4341 Processor is based on
certain operating systems that support System/370. These System/370
operating systems were developed using System/360 operating systems
as a base, namely, DOS Version 4 and OS MFT, to provide upward
compatibility for control programs when System/370 mode is utilized.

s Most System/360 and System/370 I/0 devices can be used in a 4341
Processor configuration.

ARCHITECTURES IMPLEMENTED

Two architectures are implemented in the 4341 Processor: System/370
and 4300 Processor architecture. The mode of processor operation
selected during an initial microcode load (IML) of the 4341 Processor
determines the architecture that is functional. When System/370 mode is
selected, System/370 architecture with certain modifications, is
functional. When ECPS:VSE mode is selected, 4300 Processor architecture
is functional.

System/370 Architecture

System/370 architecture is an extension of System/360 architecture.
The following are the more significant facilities that are implemented
in System/370 but not System/360 processors:

¢ Extended control mode of operation to support new facilities (such
as dynamic address translation and program event recording), as well
as a System/360-compatible basic control mode of operation. ASCII
mode is not implemented in System/370.

e Sixteen control registers to enable and disable and control the
operation of new facilities

e Expanded instruction set, including many additional general purpose
and processor control instructions

e Additional hardware timing facilities (time-of-day clock, CPU timer,
and clock comparator) and a higher resolution for the interval timer

32

3
LA

Monitoring facility and program event recording for statistics
gathering and proklem determination

Byte~oriented operands for certain instructions

More external interruption types to support new features

Hardware correction capabilities and expanded machine check
interruption levels and masking to improve availability and
serviceability

Expanded logouts to processor storage (both processor independent
and dependent) after machine checks and channel errors to aid
recovery and serviceability

Channel retry data provided in a limited channel logout to aid in
programmed recovery after channel errors

Block multiplexer channels to improve I/0 throughput

Dynamic address translation and channel indirect data addressing
hardware to support virtual storage available for intermediate as
well as large-scale processors. (Dynamic address translation is
provided only for the large-scale Model 67 in System/360.)

Store status facility to obtain processor status data after hardware
errors

System/370 Extended Facility/Feature for large-scale processors

The System/370 architecture implemented in 4300 Processors does no;
include the follow1ng facilities that are defined for optional P

implementation in System/370 processors:

Extended machine check logout (that processor-dependent data logged
beginning at the address specified in control register 15--normally
location 512), the processor-dependent logout to locations 256 to
351, and the processor-dependent I/0 extended logout (that data
logged beginning at the address in the word at location 172)

Direct Control (READ DIRECT and WRITE DIRECT) instructions. The
external signals facility in 4300 Processor architecture provides
the six external interruption lines included in the System/370
Direct Ccontrol facility without the two instructions READ DIRECT and
WRITE DIRECT.

System/370 Extended Facility

e Multiprocessing (includes SET PREFIX, STORE PREFIX, SIGNAL

the

PROCESSOR, and STORE CPU ADDRESS instructions)

Certain processor dependencies

System/370 architecture as implemented in 4300 Processors provides

ability to execute (1) all System/370 control and problem programs

that are not time-dependent or System/370 processor-dependent and (2)

all

System/360 control and problem programs that are not time-dependent

or System/360 processor-dependent (see specific compatibility
constraints later in this subsection).

System/370 architecture as implemented in 4300 Processors provides

dynamic address translation and channel indirect data addressing
facilities to support one or multiple wirtual storages, each of which

can

be up to 16,777,216 bytes in size.

33

The advantage of System/370 mode is that its address translation
facility allows for the support of multiple virtual storages, a
capability that is required to support multiple virtual machines. See
Section 15 for a detailed discussion of the operation and advantages of
both address translation facilities and Section 18 for the advantages of
virtual machines. :

4300 Architecture

The 4300 Processor architecture is essentially Systemv370
architecture with certain simplifications and enhancements. The 4300
Processor architecture is simplified in that it does not contain the
five optional items listed above that are not provided in the System/370
architecture supported by 4300 Processors.

The 4300 Processor architecture is enhanced in that it provides an
alternative to the dynamic address translation and channel indirect data
addressing facilities for support of virtual storage to improve
performance. Both 4300 Processor architecture and the System/370
architecture defined for 4300 Processors are improved in that they
provide for processor malfunction analysis, using processor-dependent
logout data (reference code generation) to aid processor serviceability.

The 4300 Processor architecture includes all System/370 architecture
functions except the following:

e Dynamic address translation and channel indirect data addressing
facilities

e Store status

e Processor-dependent machine check and I/0 extended logouts
e Direct Control instructions

. System/370 Extended Facility

e Multiprocessing

The 4300 Processor architecture provides the following functions that
are not implemented in System/370 architecture (for 4300 Processors or
System/370 processors):

e An internal mapping function that translates virtual storage
addresses in both instruction processing function programs and
channel programs to processor storage addresses during instruction
and channel program execution. This mapping function can support

- one virtual storage of 16,777,216 bytes maximum in size. Additional
instructions to support this translation function are provided for
control program use. This function is an alternative to the dynamic
address translation and channel indirect data addressing facilities
of System/370 architecture.

* A machine save function that preserves the state of the processor
and the contents of the first 2048 bytes of processor storage. This
function is an alternative to the store status function of
System/370 architecture.

The 4300 Processor architecture provides the ability to execute
System/360 and System/370 problem programs that are not time dependent
or processor dependent. System/370 control programs that support
virtual storage and System/360 control programs cannot execute correctly
in the 4341 Processor when ECPS:VSE and EC modes are active.:

34

The advantage of ECPS:VSE mode (4300 Processor architecture) over
System/370 mode is that when only one virtual storage is required,
ECPS:VSE mode provides a reduction in the amount of processor time
required for address translation functions. Specifically, programmed
address translation for channel programs is eliminated and the internal
mapping function utilized for address translation is faster than the
dynamic address translation facility.

While different control program support is required to support the
two different modes (System/370 and ECPS:VSE) of 4341 Processor
operation, 4300 Processor architecture was designed to ensure that
problem program compatibility would exist between the two modes. This
compatibility enables System/360 and System/370 problem programs to
execute with either ECPS:VSE or Systems/370 mode active in a 4341
Processor (subject to the compatibility constraints discussed later in
this subsection and any appropriate operating system constraints).

SYSTEM/360 PROGRAM COMPATIBILITY WITH THE 4341 PROCESSOR

For both System/370 and ECPS:VSE modes, two other modes of processor
operation, basic control mode and extended control mode, are also
implemented, as determined by bit 12 of the current PSW. When a 4341
Processor operates in BC mode, the contents, layout, and function of
permanently assigned processor storage locations 0 to 127 are identical
to these locations in System/360 Models 22 and up (except 44 and 67)
with the exception of the use of PSW bit 12. BC mode essentially is the
System/360-compatible mode of 4300 Processors.

When EC mode is operative in the 4341 Processor, the format of the
PSW is altered and the number of permanently assigned locations extends
beyond processor storage address 127. Changes to the PSW consist of
removal of certain fields to create space for additional mode and mask
bits that are required for 4341 Processor functions that are not
implemented in System/360. The removed fields are assigned to locations
above 127 and to a control register.

EC mode is effective when PSW bit 12 is a one. BC mode is effective
if this bit is a zero. BC mode is established during initial program
reset for both System/370 and ECPS:VSE modes. Therefore, a control
program must turn on bit 12 of the PSW in order to cause EC mode to
become operative. As a result, control and problem programs written for
System/360 (Models 22 and up except 44 and 67) can be run without
modification in BC mode in a 4341 Processor operating in System/370 mode
that has a comparable hardware configuration, with the following
exceptions:

1. Programs that depend on facilities that are not defined in the
System/370 architecture for 4300 Processors (READ DIRECT, WRITE
DIRECT, and tightly-coupled multiprocessing intructions, etc.)

2. Time-dependent programs. (They may or may not run correctly.)
3. Programs that depend on results defined in the System/370

Principles of Operation (GA22-7000) to be unpredictable or
processor-dependent

4., Programs that use unassigned fields in processor formats
(instruction formats, for example) that are not explicitly made
available for program use

5. Programs that depend on interruptions caused by errors, such as
unassigned operation codes or command codes

35

6. Programs that use PSW bit 12 as an ASCII bit. (ASCII mode is not
implemented in 4300 Processors.)

7. Programs that depend on storage locations that are assigned to
. fixed functions, such as the machine-check-save area in lower
processor storage. (The fixed logout area in locations 0 to 511
in the 4341 Processor is larger than that for System/360
processors.) ‘

8. Programs that, for I/0 operations, do not take into account the
effects of channel prefetching, command retry, and the operation
code assignment for HALT DEVICE

9. Programs that depend on data in storage after power has been
turned off and then restored

SYSTEM/370 PROGRAM COMPATIBILITY WITH THE 4341 PROCESSOR

Control and processing programs written to operate in BC mode in
Systen/370 processors can execute in a 4341 Processor operating in BC
and System/370 modes without modification subject to the constraints
listed above for System/360 programs, except item 6 (since ASCII mode is
not implemented in System/370 either), plus one additional constraint.
They cannot depend on the processor and channel identifications provided
by the instructions STORE CPU ID and STORE CHANNEL ID.

control programs written to operate in System/370 processors with EC
mode and dynamic address translation enabled can operate on a 4341
Processor without modification with EC mode, dynamic address
translation, and System/370 mode in effect, subject to the same
constraints indicated for System/370 BC mode programs.

System/370 control programs that depend upon dynamic address
translation hardware cannot execute in a 4341 Processor operating in
ECPS:VSE mode. However, the problem programs used with a System/370
control program that requires dynamic address translation hardware can
execute without modification in a 4341 Processor that is operating in
either Systems/370 or ECPS:VSE mode (with an.appropriate control program)
subject to the same constraints indicated for System/370 BC mode
programs.

36 i

05:15 PHYSICAL AND LOGICAL COMPONENTS

The physical components of a 4341 Processor configuration are the

4341 Processor, a 3278 Model 2A Display Console as
and I/0 devices. The 4341 Processor, which is air
Figure 05.15.1. The 3278 Model 2A Display Console
shown to the left of the 4341 Processor. A string
is shown to the left of the magnetic tape units on

the operator console,
cooled, is shown in
and 3287 Printer are
of 3370 disk drives
the right.

The functional components physically contained within the frames of
the 4381 Processor are the instruction processing function, all
processor storage, the storage control function, channels, and the
support processor subsystem. If the optional Channel-to-Channel Adapter

feature is installed, a frame is added to the 4341
shown in Figure 05.15.1. Figure 05.15.2 shows the
the 4341 Processor.

Processor frames
logical components of

Figure 05.15.1. The 4341 Processor (design model)

37

Processor
Storage

Storage Instruction Channel
|t ——— 3 g lt—®1 Processing 3] §
Control R hardware |pe———————
8 8 Function 8 I
bytes bytes bytes J
Support
Bus
Adapter
System
Diskette
Drive
3278
Required |Model 2A
Display Console
3278
Optional or 3287 — Support
Printer Processor
3278
Optional or —
3287
3278
Optional or —
3287
\ Physical
Power 1/0 bus
RSF
Remote
Console
Local
Channel
Adapter

W

Support Processor Subsystem

Figure 05.15.2. Logical components in the 4341 Processor

38

O=NWwHdHO

} Optional

SECTION 10: THE 4341 PROCESSOR

10:05 THE INSTRUCTION PROCESSING FUNCTION

GENERAL DESCRIPTION

The instruction processing function contains all the elements
necessary to decode and execute the instructions in the instruction set
for the 4341 Processor. 1I/0 instructions are partially processed by the
instruction processing function and partially processed by channel
hardware. Extensive parity checking is done within the instruction
processing function to ensure data validity.

All instruction execution functions and most channel operations are
microcode controlled. Microinstructions are four bytes in length.
Control storage for the residence of all instruction processing function
microcode is standard.

Certain basic control and service functions are provided for the 4341
Processor by the support processor, a component of the support processor
subsystem, instead of by the instruction processing function. The
support processor is a microcoded controller with its own control
storage. The support processor also handles I/0 operations for the
operator console device and up to three other display consoles and/or
printer devices that are directly attached to the 4341 Processor. 1In
addition, the support processor controls diagnostic facilities (see
discussion in Sections 10:15 and 50:15).

The instruction processing function in the 4341 Processor has a
variable~length cycle time. Cycle time varies from 150 nanoseconds to
300 nanoseconds, depending on the instruction. The data path within the
instruction processing function is eight bytes wide, which is the widest
data path implemented in large-scale System/370 processors.

Elements included in the instruction processing function to perform
instruction execution are instruction buffers for instruction
prefetching, an eight-byte-wide arithmetic logic unit, an eight-byte-
wide byte shifter, a bit shifter, and external registers.

The instruction processing function of the 4341 Processor includes
facilities not implemented in System/370 intermediate-scale processors
that are designed to speed up instruction execution. First, instruction
fetching is performed during instruction execution such that, during
sequential instruction processing, instruction fetching is overlapped
with instruction execution. Unoverlapped instruction fetching usually
occurs only when a successful branch instruction is processed.

Second, each instruction type has one 150-nanosecond instruction
cycle during which several functions are performed. The following are
performed during the instruction cycle: instruction decoding, selection
of the microcode required to execute the instruction, calculation of the
required storage address using base register and displacement values for
instructions that reference storage, fetching of the contents of the
register 1 specification in RR- and RS-type instructions, testing for
any interruptions, and complete execution of Branch On Condition (BC and
BCR) instructions that are not successful (that is, no branch is taken).

Third, the microcode for several of the most frequently used

instructions (such as LOAD, MOVE CHARACTERS, LOAD MULTIPLE, STORE
MULTIPLE, LOAD ADDRESS, and STORE) is optimized for faster execution.

39

Fourth, the use of an eight-byte-wide arithmetic logic unit for
floating-point and decimal arithmetic instructions enables floating-
point additions and subtractions that involve values with equal
exponents and decimal additions and subtractions to be performed with
the same speed as binary additions and subtractions. Usually, additions
and subtractions performed using binary arithmetic operate much faster
than when decimal or floating-point arithmetic is used.

Fifth, decimal arithmetic operations are performed significantly
faster in the 4341 Processor than in intermediate-scale System/370
processors and execute as fast as decimal operations in certain large-
scale System/370 processors.

Sixth, an eight-byte-wide instead of a one-byte-wide shifter is
utilized. This shifter speeds up the execution of shift instructions,
since a shift can be performed in one cycle instead of multiple.

The shifter is also used to align data that is not on the proper
boundary. The use of the shifter instead of microcode for the alignment
function eliminates in the 4341 Processor nearly all the performance
degradation that is experienced in most System/370 processors when data
is not aligned on the correct boundary. In the 4341 Processor, no
performance degradation occurs when alignment is performed within a
doubleword. Some degradation occurs when the unaligned data required
spans two doublewords, since both doublewords must be fetched to obtain
the needed data.

The multifunction instruction cycle, eight-byte-wide arithmetic logic
unit, and eight-byte-wide shifter give the instruction processing
function the ability to execute 32 of the 4341 Processor instructions
(such as the RR-type and certain other instructions) in two cycles (one
instruction and one execution cycle). Execution time for 31 of these
instructions is only 300 or 375 nanoseconds. TEST UNDER MASK executes
in 450 nanoseconds.

Eight-byte external registers are included in the instruction
processing function. These hardware registers provide data links
between instruction processing function microcode and channel or
instruction processing function hardware. The external registers
contain such items as the instruction counter, PSWs, the time-of-day
clock, storage address registers, the channel storage address register,
interruption registers, the next instruction buffer register, and status
registers.

The instruction processing function accesses a data local storage
area of 128 doublewords as required during the execution of
instructions. This data local storage contains certain control
registers, the general registers, the floating-point registers, six
channel work areas, save areas, and work areas.

A trace array of 32 entries is included in the instruction processing
function to trace the addresses of executed microcode. The array is
always updated during instruction execution and can be set to operate in
one of two modes. In the default mode, the trace array contains the
addresses of the last 32 microinstructions executed. In the other mode
(which the customer engineer can set using the operator console), the
trace array contains the addresses of the last 32 microinstructions that
caused switching from one microcode module to another. The trace array
is provided to aid in error detection and recovery. The array helps to
indicate the cycle that caused the error when a machine check occurs.

Unlike Systems/360 Models S50 and 65, the 4341 Processor contains
reloadable control storage (RCS) for instruction processing function
microcode residence instead of read-only control storage. The use of
writable storage for control functions adds to the advantages of using a

40

read-only storage instead of conventional circuitry. It provides
improved serviceability and simplifies extensions of functional
capabilities of the processor.

Serviceability is enhanced because of the speed and ease of
engineering change installation--the new microcode need only be loaded
into RCS--and because more extensive diagnostics can be provided without
the necessity of adding additional control storage (control storage is
available to be used for diagnostic residence). Functional capability
is extended by the ability to more easily support different
architectures and features in one system.

The address translation facilities provided for System/370 and
ECPS:VSE modes are discussed in Section 15. ECPS:VS1l and ECPS:VM/370
are discussed in Sections 30 and 18, respectively. Other significant
new features of the instruction processing function of the 4341
Processor for Model 50 and 65 users are discussed in the remainder of
this subsection.

CONTROL REGISTERS

The program states in which the 4341 Processor is operating are
reflected in the current program status word (PSW) and in processor
status indicators called control registers. Up to 16 control registers,
0-15, can be addressed. Certain control registers are used only when EC
mode is in effect. Control reglsters are program-addressable only when
the processor is in the supervisor state.

A control register can be set with the LOAD CONTROL instruction, and
its contents can be placed in processor storage with the STORE CONTROL
instruction. Additional status indicators contained in control
registers are requlred in order to support new functlons. A control
register is 32 bits in size.

Note that control register assignments for functions that are
implemented in both 4300 Processors and System/370 processors are the
same. Control register bits that control functions not supported in
4300 Processors (multiprocessing, extended machine check logouts, etc.)
are unassigned in 4300 Processors for compatibility purposes.

BASIC CONTROL MODE

As indicated previously, the contents, layout, and function of fixed
locations 0-127 in 4300 Processors and System/370 processors that are
operating in BC -mode are identical to these locations in most System/360
processors with the exception of bit 12 in the PSW, which specifies
EBCDIC or ASCII mode in System/360 processors and BC or EC mode in 4300
Processors and System/370 processors. ASCII mode is not implemented in
4300 Processor or System/370 architecture, nor was the mode bit
supported by IBM programming systems provided for System/360 processors,
because System/360 USASCII-8 did not become the ASCII standard.

However, ASCII-encoded tapes are supported by certain DOS/VS,
DOS/VSE, and OS/VS language translators and service programs. That is,
ASCII-mode tapes are accepted by certain DOS/VS, DOS/VSE, and 0S/VS
language translators and service programs as input and converted to
EBCDIC for processing. The capability of writing ASCII-mode tapes is
also provided. :

To improve system availability and serviceability, implementation of
the machine check class of interruption for the 4341 Processor is
considerably altered from its implementation in Models 50 and 65 (see
Section 50). However, the other four interruption classes (I/0, SVC,

41

program, and external) operate in the same manner in Models 50 and 65
and the 4341 Processor except for the (1) expansion of external
interruption masking, (2) expansion of channel masking, and (3) addition
of program and external interruptions to support new features in the
4341 Processor. Imprecise interruptions do not occur in the 4341
Processor.

Five external subclass mask bits, which allow selective masking of
external signals (2-7), interval timer, CPU timer, clock comparator, and
operator console interruptions, are provided in control register 0.

When the PSW external mask bit is off, the processor is disabled for all
external interruption types. When the PSW external mask bit is on, an
external interruption occurs for an external interruption type only if
its associated subclass mask bit is on also.

Execution of the SET SYSTEM MASK (SSM) instruction is under the
control of the SSM mask bit in control register 0. When the SSM mask
bit is on, an attempt to execute an SSM instruction causes a program
interruption without execution of the SSM instruction. When the SSM
mask bit is off, SSM instructions are executed as usual.

This SSM interruption is implemented to enable existing programs that
were written for Systems/360 processors or for System/370 BC mode of
operation to execute correctly in EC mode without modification of the
system mask field addressed by existing SSM instructions. When an SSM
interruption occurs, the contents of the BC mode format system mask
indicated by the SSM instruction can be inspected and the appropriate EC
mode mask bits can then be set by an SSM simulation routine.

EXTENDED CONTROL MODE

Extended control mode is a major facility that is not implemented in
System/360 architecture. Facilities that depend on which mode is in
effect are discussed below and apply to System/370 and ECPS:VSE modes
unless otherwise noted. Any item not covered operates identically in BC
and EC modes.

When a 4341 Processor operates in System/370 and EC modes, it
operates exactly like a System/370 processor operating in EC mode,
except for the basic architecture implementation differences previously
listed in Section 05:10.

Change in PSW Format

When a 4341 Processor operates in EC mode, the format of the PSW
differs from its BC mode format. Both PSW formats are shown in Figure
10.05.1. In EC mode, the PSW does not contain individual channel mask
bits, an instruction length code, or the interruption code for a
supervisor call, external, or program interruption. The channel masks
are contained in control register 2, and the other fields are allocated
permanently assigned locations in the fixed lower processor storage area
above address 127.

Removal of the fields indicated provides room in the EC mode PSW for
control of new features that are unique to EC mode (such as dynamic
address translation for System/370 mode and program event recording) and
for the addition of summary mask bits (such as channel and I/0 masks).
Use of a single mask bit to control the operation of an entire facility
(such as program event recording) or an entire interruption class (such
as I/0 and external) simplifies the coding required to enable and
disable the processor for these interruptions.

42

BC MODE PSW FORMAT

s}
=

Content

Channel O mask

-Channel 1 mask

Channel 2 mask

Channel 3 mask

Channel 4 mask

Channel 5 mask

1/O mask

External mask

Protect key

© 0N|® s WiN =IO

12 | EC/BC mode (0 is BC)

13 Machine check mask

14 Wait/running state

15 Problem/supervisor state

16 Interruption code

J)
b}
«

31 \

2
RSN

32 nstruction length code

34 |.Condition code

.36 | Program mask

37 |}
38 l
39

40 | Instruction address

D)
<
)]
<

Figure 10.05.1.

System
mask

. EC MODE PSW FORMAT

@
-

Content

0

.PER mask

0

0

System

Q

mask

Translation mode (DAT feature mask) -

1/0 summary mask

External summary mask

Protect key

© oj~loldls winl=lo

12 EC/BC mode (1 is EC)

13 Machine check mask

14 Wait/running state

15 Problem/supervisor state
16 0
17 0

18 Condition code

20 Program mask

21
22
23 | Y

24 0

b Py
<
byY
L{3

30
3 4

3)
L0

32 0

35
37

\

Instruction address-

S2alug

)

))
<

61
62
63 | y

b P
¢

*Not defined for ECPS: VSE mode and must be zero

BC and EC mode PSW formats

Note that the BC and EC mode PSW formats shown in Figure 10.05.1 are

the same for System/370 and ECPS:VSE modes with one exception.

Bit 5,

which enables/disables the dynamic address translation facility, must be

zexo for ECPS:VSE mode.

Change in Permanently Assigned Processor Storage Locations

When a 4341 Processor operates in EC mode, the number of permanently
assigned locations in lower processor storage is increased to include
fields for storing instruction length codes, interruption codes (for
supervisor call, external, and program interruptions), program event
recording data, the I/0 address for an I/O interruption, and an
exception address for the address translation capability.

The fixed storage layout for BC mode is shown in Figure 10.05.2 and

for EC mode in Figure 10.05.3.
same for 4300 Processors and System/370 processors for fields
implemented in both. System/370 processors implement additional

The format of locations 0 to 511 is the

43

processor-dependent fields, such as a region code in locations 252 to
255, that are reserved fields in 4300 Processors. The access exception
field shown in Figure 10.05.2 is not implemented in System/370
processors for BC mode operations. Locations 0 to 127 are the same for
4300 Processors and System/360 processors. :

BC MODE FIXED AREA 0-159
Decimal 0
locations s IPL PSW
IPLCCW 1
IPL CCW 2
External old PSW

24
32
40

Supervisor call old PSW

Program old PSW
48

56
64
72
80
88
96
104
112
120
128
136

Machine check old PSW
1/0 old PSW

Channel status word — CSW

Channel address word — CAW 76 Unused

Interval timer 84 Unused

External new PSW

Supervisor call new PSW

Program new PSW

Machine check new PSW

1/0 new PSW
V] 132
0 140
144 Monitor
0 | Access excp. addr. 148 0 | cjass
152

0 156 0 Monitor code
160

168
176
184
192
216
224
232
240
248
256

Reserved

Channel 1D 172 Reserved

Limited channel logout 180 Reserved

Unused 188 Reserved

)]
1y

Unused

3
144

Contents of CPU Timer

Contents of Clock Comparator

Machine check code

Unused

Failing storage address 252 Reserved

Current PSW save area
264

362
384

3
<«
J)
X¢

Reserved

b)Y
«

Floating point register save area

¢

General register save area ~~
448

r Control register save area A

Figure 10.05.2. BC mode fixed processor storage locations 0 to 511

Channel Masking Changes

When a 4341 Processor operates in EC mode, interruptions from each
channel are controlled by the summary I/0 mask bit (bit 6) in the
current PSW and an individual channel mask bit in control register 2.

In the 4341 Processor, bits 0 to 5 in control register 2 are assigned to
control channels 0 to 5, respectively. Both the summary mask bit and
the appropriate individual channel mask bit must be on in order for an
interruption from a given channel to occur. In BC mode, interruptions

44

from channels 0 to 5 are controlled only by the channel mask bits (bits
0 to 5) in the current PSW.

EC MODE FIXED AREA 0-159

IPL PSW
IPLCCW 1
16 IPL CCW 2
2 External old PSW
82 Supervisor call old PSW
40 Program old PSW
@ Machine check old PSW.
% 1/0 old PSW
& Channel status word — CSW
72 Channel address word — CAW 76 Unused
80 Interval timer 84 Unused
88 External new PSW
% Supervisor call new PSW
104 Program new PSW
12 Machine check new PSW
120 1/0 new PSW
128 0 132 0 External int. code
136 O|ILC l SVC int. code 140 0 | ILC | Program int. code
144 Monitor
0 | Access excp. addr. 148 0| ¢jass I PER code I 0
152 0 PER address 156 0 Monitor code
160 Rese‘rved
168 Channel 1D 172 Reserved
176 Limited channel logout 180 Reserved
184 Reserved I 0 l 1/O address| 188 : Reserved
192 a Unused o~
216 Contents of CPU Timer
224 Contents of Clock Comparator
232 Machine check code
240 Unused
248 Failing storage address 252 Reserved
zzz Current PSW save area
~ Reserved ~
zZi ~ Floating point register save area Y
a8 ~ } General register save area ~
P Control register save area -1

Figure 10.05.3. EC mode fixed processor storage locations 0 to 511

Expansion of Storage Key Size

The size of the storage key associated with each 2K storage block for
store and fetch protection is seven bits (as in System/370) instead of
five bits, as in System/360. The two additional bits (reference and
change) are included for use with address translation and are discussed
in Section 15:10. The SET STORAGE KEY instruction sets a seven-bit key
regardless of the mode, BC or EC, in effect. The INSERT STORAGE KEY
instruction causes a five-bit or a seven-bit key to be loaded into a
register, depending on whether BC or EC mode, respectively, is in
effect.

45

Changes to Certain Instruction Definitions

As a result of the differences between the PSW format and the
permanently assigned processor storage locations in EC and BC modes, the
definition of certain instructions is affected. 1Instructions provided
for System/360, System/370, and 4300 Processors whose definition is
altered for EC mode are:

BRANCH AND LINK (RR, RX) SET STORAGE KEY
INSERT STORAGE KEY SET SYSTEM MASK:
LOAD PSW SUPERVISOR CALL -

SET PROGRAM MASK

Revised definitions of these instructions to include BC/EC mode
differences are contained in the System/370 and 4300 Processor
Principles of QOperation publications. Programs that operate in BC mode
and that use LOAD PSW and/or SET SYSTEM MASK (SSM) instructions must be
modified in order to operate correctly in EC mode. The eight-byte PSW
to be loaded by LPSW instructions and the eight-bit system mask to be
set by SSM instructions must be changed to EC mode format. (Programs
that use SSM instructions and that are executed in an 0S/VS1l environment
need not be so modified because the interruption for SSM instructions
and an SSM simulation routine are supported.)

Programs that use the other instructions listed do not have to be
changed in order to operate correctly in EC mode, unless they use other
facilities that are mode-dependent. System/370 programs that operate in
BC mode and that use STORE THEN OR SYSTEM MASK and STORE THEN AND SYSTEM
MASK instructions (not provided for System/360) must also be modified in
order to operate correctly in EC mode.

Program Event Recording

Program event recording (PER), a standard feature for the 4341
Processor, is designed to assist in program debugging by enabling a
program to be alerted to any combination of the following events via a
program interruption: ~

¢ Successful execution of any type of branch instruction

* Alteration of the contents of the general registers designated by
the user

* Fetching of an instruction from a processor storage area defined by
the user

e Alteration of the contents of a processor storage area defined by
the user

The PER feature can operate only when EC mode is in effect and the
PER mask, bit 1 of the current PSW, is a one. Control register 9 (bits
0 to 3) 'is used to specify which of the four PER event types are to be
monitored. A PER program interruption is taken after the occurrence of
an event only if both the PER mask bit and the respective event mask bit
in control register 9 are on. Control register 9 (bits 16 to 31) also
specifies which of the 16 general registers are to be monitored if
monitoring of this event is specified. Control registers 10 and 11
indicate the beginning address and the ending address, respectively, of
the contiguous processor storage area that is to be monitored for
instruction fetching and/or alteration.

46

When an event that is being monitored is detected, PER hardware
causes a program interruption, if the PER mask bit is on, and the
identification of the type of event is stored in the fixed processor
storage area (location 150). The address of the instruction associated
with the event is also stored (locations 153 to 155). Program event
interruptions are lost if they occur when the PER mask bit or the
particular event mask bit is off. In the 4341 Processor, additional
processor time is required to execute instructions when program event
recording is operative.

When System/370 mode is in effect, if dynamic address translation
mode is specified when PER is active, virtual storage addresses instead
of real storage addresses (discussed in Section 15) are placed in the
control registers to monitor references to a contiguous virtual storage
area. For ECPS:VSE mode, virtual storage addresses are always used.

EXPANDED INSTRUCTION SET

The instruction set for the 4341 Processor is a superset of that
provided for System/360 processors. It consists of the System/360
instruction set plus several new instructions that support System/370
and 4300 Processor architecture and provide additional functions. The
standard instruction set contains all the 4341 Processor instructions
{no instructions are optional).

The standard instruction set for the 4341 Processor consists of (1)
all systems/370 instructions except those associated with features not
implemented in 4300 Processors (READ DIRECT, WRITE DIRECT, and the four
multiprocessing instructions), (2) several control instructions that are
valid only for ECPS:VSE mode, and (3) the MOVE INVERSE instruction. The
ECPS:VSE mode instructions, discussed in Section 15:15, and MOVE INVERSE
instruction are the only 4300 Processor instructions that are not also
available for System/370 processors.

The STORE CPU ID instruction permits a program to determine the
processor and version of the processor upon which it is operating and
provides the processor serial number.

The STORE CHANNEL ID instruction can be used to identify the types of
channels present in the system (selector, byte multiplexer, and block
multiplexer). Selector is indicated for a block multiplexer channel
when it is operating in selector mode at the time the STORE CHANNEL ID
instruction is issued. Some of the other new instructions are:

e General purpose instructions

Several general purpose instructions, which can be of benefit to
both control and processing program performance, are prowvided.

SHIFT AND ROUND DECIMAL provides right or left shifting of packed
decimal data using a single instruction. This instruction can save
from 6 to 18 bytes of instruction storage and instruction execution
time for each decimal shift and round operation performed in
commercial processing.

MOVE LONG provides for the movement of up to 16 million bytes from
one location in processor storage to another with a single
instruction, thereby removing the System/360 limitation of 256 bytes
per move. A check for the possibility of destructive overlap is
made by the hardware prior to the movement of any data and the MOVE
LONG instruction is not executed if operand destruction can occur.
This instruction can eliminate the necessity of multiple move
instructions or the inclusion of move subroutines. The format and
operation of MOVE LONG facilitates efficient record blocking and

47

48

!

deblocking, field padding, and storage clearing, which are.
operations frequently performed in commercial processing. -

The COMPARE LOGICAL LONG instruction can be used to compare
logically two fields of up to 16 million bytes in length, thus
removing the System/360 256-byte limit on byte compares. In
addition, when an unequal compare occurs, the two characters that
caused the inequality are identified.

" The MOVE LONG and COMPARE LOGICAL LONG 1nstruct10ns are

interruptible. Thus, when an I/0 operation terminates during their
execution, the interruption is taken and the channel is not held up
awaiting termination of what might be a lengthy move or compare.

COMPARE LOGICAL, INSERT, and STORE CHARACTERS UNDER MASK
instructions provide byte addressability within the general
registers and permit nonword-size data ‘that is not on a word
boundary to be compared with data in a register, loaded into a

' register, and stored from a register. These three instructions can

be of most benefit to control program programmers, to compiler
writers, and to others who must manipulate processor storage
addresses.

The MOVE INVERSE instruction is standard in the 4341 Processor. It
causes bytes from the second operand to be fetched in right-to-left
sequence and placed in 1eft—to-rlght sequence in the first operand
location. The instruction is useful for handling languages in which
writing occurs right to left.

‘Qontrol instructions

STORE THEN AND SYSTEM MASK and STORE THEN OR SYSTEM MASK are two
privileged instructions that affect the system mask (bits 0 to 7 in
the current PSW). The STORE THEN AND SYSTEM MASK instruction
provides, via a single instruction, the capability of storing the
cyrrent system mask for later restoration, while selectively zeroing
certain system mask bits. The STORE THEN OR SYSTEM MASK provides
system mask storing and selective setting of system mask bits to
ones. These two instructions simplify the coding required to alter
the system mask, partlcularly when the existing settings must be
saved.

- COMPARE AND SWAP and COMPARE DOUBLE AND SWAP instructions provide

the capability of controlling access to a shared processor storage
area in a multiprogramming environment. Although the TEST AND SET:
instruction can also be used for this purpose, these compare
instructions enable a program to leave a message when the shared
area is in use. This message can be inspected, via a compare and
swap instruction, by the other programs that share the processor
storage area. .

Two PSW key-handling instructions are provided. The INSERT PSW KEY
privileged instruction enables a program to place in general
register 2 the four-bit access control (protection) key from the
current PSW. The SET PSW KEY FROM ADDRESS privileged instruction
enables a program to place an access control key contained in
general register 2 or processor storage in the current PSW. When a
control program is requested to access a given processor storage
location by a problem program, these two instructions can be used by
the control program during its processing of the request to
determine whether or not the problem program is authorlzed to access
the specified processor storage location.

* Extended Precision Floating Point

The standard floating-point feature includes extended precision
operations. Extended precision is provided for use in application
areas in which the precision provided by the long-form floating-
point format is not large enough.

Precision of up to 28 hexadecimal digits, equal to up to 34 decimal
digits, is provided by the extended precision data format. Extended
precision is achieved by using two doublewords (16 bytes) to
represent an extended precision floating-point number instead of
using one doubleword as is done in long-form representation.
Fourteen hexadecimal digits, or up to 17 decimal digits, of
precision are provided by the long floating-point format.

Seven extended precision floating-point instructions are included in
this feature. They provide addition, subtraction, and
multiplication operations for extended precision data, using a pair
of floating-point registers, and the ability to round from long to
short form or from extended to long form. An extended precision
divide instruction is not provided; however, a simulator for this
operation is provided in 0S/VSl.

BYTE-ORIENTED OPERANDS

The 4341 Processor supports a standard byte boundary alignment
facility for processor storage, identical to that for System/370. The
presence of the byte-oriented operand function allows the processor
storage operands of unprivileged instructions (RX and RS formats) to
appear on any byte boundary without causing a specification program
interruption. Without this facility, operands must be aligned on
integral boundaries, that is, on storage addresses that are integral
multiples of operand lengths. Byte orientation does not apply to
alignment of instructions or channel command words (CCWs).

Byte orientation can be used effectively in commercial processing to
eliminate the padding bytes added within records or to blocked records
to ensure binary and floating-point field alignment. The smaller
physical record that results from the elimination of padding bytes
requires less external storage and increases effective I/0 data rates.
I/0-bound commercial programs, in which throughput is in almost direct
proportion to the I/0 data rate, can achieve performance improvement by
using byte alignment for binary and floating-point data. In the 4341
Processor, the use of byte alignment in a program only minimally
degrades instruction execution performance.

A program written to use byte boundary alignment will not necessarily
run on a Systen/360 processor that does not have the feature.
Therefore, programs that are to run in both the 4341 Processor and a
System/360 processor without byte orientation should be written to
adhere to integral boundary rules.

MONITORING FEATURE

The monitoring feature is standard in the 4341 Processor and
functionally identical to the System/370 monitoring feature. This
feature provides the capability of monitoring the occurrence of
programmed events. For example, monitoring can be used to perform
measurement functions (how many times a routine was executed) or for
tracing functions for the purpose of program debugging (which routines
were executed).

49

The MONITOR CALL instruction is provided with the monitoring feature.
Execution of this instruction indicates the occurrence of one of the
events being monitored. The operands of the MONITOR CALL instruction
permit specification of up to 16 classes of events, each class with up
to 16 million unique types of events. The 16 monitor classes are
individually maskable via mask bits in control register 8. When a
MONITOR CALL instruction is executed, a program interruption occurs, if
the monitor class indicated is specified, and the event identification
(class and type) is stored in the lower fixed storage area.

Both the PER facility and the monitoring feature are prov1ded for
debugging purposes. The two features differ from one another in (1) the
number of events that can be defined, (2) whether the events are defined
by the hardware or the programmer, and (3) whether the hardware or the
programmer checks for the events and causes the interruptions. When PER
is used, once the events to be monitored have been designated by the
user, processor hardware checks for the occurrence of the events and
causes the interruption. When the monitoring feature is used, the user
defines the events to be monitored (up to 16 classes with up to 16
million codes each, instead of four events), and causes the program
interruption by placing MONITOR CALL instructions at the desired places
within the program.

ARCHITECTURE IMPLEMENTATION ALTERATIONS

Two alterations have been made to the action taken in the 4341
Processor during the execution of certain instructions common to both
System/360 processors and 4300 Processors. These alterations are also
implemented in System/370 processors. The first involves all
instructions that check the validity of operands involved in packed
decimal operations. 1In the 4341 Processor, an invalid sign in an
operand causes the instruction to be suppressed (never executed) rather
than terminated during execution as is done on System/360 processors.

Suppression, rather than termination, of an instruction when an
invalid sign occurs ensures that the data fields involved remain
unchanged. Therefore, a routine that inspects the field that has the
invalid sign can be executed when a program check occurs. For example,
when an invalid sign results from packing an entirely blank field, the
sign can be corrected by programming, and transactlon deletion or
program termination is avoided.

The second alteration concerns the recognition of a storage
protection exception during the execution of an EDIT or an EDIT AND MARK
instruction. 1In the 4341 Processor, a protection exception always
occurs when a pattern character is fetched from a location protected for
storing but remains unchanged during the edit operation. This change
eliminates unpredictable processor operation during editing operations
in a 4341 Processor. The occurrence of a protection exception for the
situation described is processor-dependent for System/360 processors.

INTERVAL TIMER

The interval timer at decimal location 80 in the fixed processor
storage area is a standard feature and has a resolution of 3.3
milliseconds instead of the 16.6-ms resolution implemented for the
interval timer provided for Models 50 and 65. Its maximum time period
remains 15.5 hours. For accounting routines that utilize the interval
timer (those in System/360 operating systems, for example), the higher
resolution of this interval timer eliminates many of the accuracy
problems caused by task execution durations shorter than the 16.6-ms
resolutlon interval.

50

TIME-OF-DAY CLOCK

This clock is a binary counter of 52 bits with a cycle time of
approximately 143 years. It is a standard feature and functionally like
the time-of-day clock in System/370. The clock is updated every
microsecond. Two instructions (SET CLOCK and STORE CLOCK) are provided
to set the time and to request that the current time be stored in the
specified doubleword of processor storage. The time can be set only
when the processor is in supervisor state and only when time-of-day
clock setting is enabled using the operator console.

The time-of-day clock can be used for more accurate time stamping
than the interval timer. More accurate time of day can be maintained
because, during normal system operation, the clock stops only when
processor power is turned off. Execution of time-of-day clock
microdiagnostic tests and an error in the clock also invalidate the
clock time.

The interval timer cannot be as accurate as the clock for time-of-day
maintenance because it is not updated when the processor is in the
stopped state, and its updating may be omitted under certain conditions
of excessive system activity. The 15.5-hour cycle time of the interval
timer is also a restriction. The time-of-day clock better answers the
timing needs of teleprocessing and realtime applications and has the
capacity to handle special switchover situations, such as midnight, New
Year's eve, etc.

CLOCK COMPARATOR AND CPU TIMER

These timing facilities are a standard feature of the 4341 Processor
and functionally identical to the same timing facilities in System/370.
The clock comparator provides a means of causing an external
interruption when the time-of-day clock has passed a time specified by a
program. This feature can be used to initiate an action, terminate an
operation, or inspect an activity, for example, at specific clock times
during system operation.

The clock comparator has the same format as the time-of-day clock.
The clock comparator is set to zero during initial program reset. The
SET CLOCK COMPARATOR privileged instruction is provided to place a value
that represents a time of day in the clock comparator.

When clock comparator interruptions are specified via the external
interruption summary mask bit in the current PSW and the clock
comparator subclass mask bit in control register 0, an external
interruption occurs when the time-of-day clock value is greater than the
clock comparator value. If clock comparator interruptions are masked
when this condition occurs, the interruption remains pending only as
long as the time-of-day clock value remains higher than the value in the
clock comparator. The STORE CLOCK COMPARATOR privileged instruction can
be used to obtain the current value of the clock comparator.

The use of a clock comparator instead of the interval timer at
location 80 to cause an interruption when a specified time is passed
offers two advantages. First, the time-of-day clock increments when the
processor is in the stopped state while the interval timer does not.
Hence, if a processor stop occurs during processing and the processor is
restarted, the clock comparator can still cause an interruption at the
time requested. The interruption caused by the interval timer in such a
situation is late. Second, implementing the time-of-day clock and the
clock comparator in the same format eliminates the need to convert
doubleword time-of-day clock values to single-word interval timer values.

51

The CPU timer provides a means of causing an external interruption
when an interval of time specified by a program has elapsed. The CPU
timer is implemented as a binary counter with a format identical to that
of the time~of-day clock; however, bit 0 of the CPU timer is considered
to be a sign. Therefore, the CPU timer has a maximum time period half
as large as that of the time-of-day clock. When both the CPU timer and
the time-of-day clock are running, the stepping rates of the two are
synchronized so that they are stepped at exactly the same rate.

The CPU timer is set to zero at initial program reset, and the SET
CPU TIMER privileged instruction is provided to place an interval of
time in the CPU timer. The STORE CPU TIMER privileged instruction can
be used to obtain the current CPU timer value. The CPU timer decrements
every microsecond. If the external interruption summary mask bit in the
current PSW and the CPU timer subclass mask bit in control register 0
are on, an external interruption occurs whenever the CPU timer value is
negative (not just when the timer goes from positive to negative),
indicating that the time interval has elapsed. The CPU timer decrements
when the instruction processing function is executing instructions and
while the processor is in the wait state. It is not decremented when
the processor is in the stopped state.

While providing essentially the same function as the interval timer
at location 80, the CPU timer provides advantages over the interval
timer as follows. Task processing intervals of less than 3.3
milliseconds can be more accurately measured because of the one-
microsecond read-out resolution of the CPU timer. A pending CPU timer
interruption is reset when a SET CPU TIMER instruction is issued to set
a positive value in the CPU timer, eliminating the need to take an
interruption in order to reset the CPU timer, as is required for the
interval timer.

In addition, the amount of timing facilities processing required
during a task switch can be reduced because the format of the time-of-
day clock and the CPU timer are the same. Conversion of doubleword
time-of-day clock values to single-word interval timer values is
eliminated, and timer queues can be structured so that little of the
processing required during a task switch, when the interval timer is
used, is necessary.

10:10 STORAGE

The 4341 Processor has a two-level storage system--a small high-speed
buffer storage backed by a large processor (main) storage. In
System/360 and System/370, such a concept is implemented only in large-
scale, high internal performance systems such as System/360 Models 85
and 195 and System/370 Models 155 and up. Processor storage in the 4341
Processor is buffered by 8K of high-speed buffer storage.

The use of a two-level storage system, in which the instruction
processing function works mostly with the buffer, significantly reduces
the effective processor storage cycle of the 4341 Processor and greatly
contributes to the high internal performance of the 4341 Processor.

PROCESSOR STORAGE

The 4341 Processor is available with 2048K bytes (Model K1) or #4096K
bytes (Model L1) of processor storage (where K is 1024). A Model K1 is
field-upgradable to a Model Ll.

Access to processor storage is made via the storage control function,
which operates under the control of the instruction processing function.

52

The path to and from processor storage is eight bytes wide and data that
enters/leaves processor storage is aligned on a doubleword boundary.

Error checking and correction (ECC) hardware provides automatic
detection and correction of all single-bit processor storage. errors and
detection, but not correction, of all double-bit and many multiple-bit
errors. ECC logic is contained in the storadge control function. The
ECC feature is discussed fully in Section 50.

The translation table used for ECPS:VSE mode, UCWs, and certain work
areas are located in highest addressed processor storage. This storage,
called auxiliary storage, is reserved for processor rather than program
use and is inaccessible to all programs.

The size of auxiliary storage depends on the number of UCWs
installed, mode (System/370 or ECPS:VSE) in effect, and processor
storage size. The minimum size is 14K for 128 UCWs, System/370 mode,
and two or four megabytes of processor storage. The maximum size is
108K for 1024 UCWs, ECPS:VSE mode, and four megabytes of processor
storage.

The amount of processor storage required for UCWs varies from a
minimum of 8K to a maximum of 64K for 128 and 1024 UCWs, respectively,
in 2K-byte increments. For System/370 mode, 6K is required in addition
to the UCW requirement. For ECPS:VSE mode, 42K or 44K is required in
addition to the UCW requirement.

The size of auxiliary storage is determined during IML. When
System/370 mode is in effect, the processor storage address of the first
byte of auxiliary storage is calculated and placed in an address check
boundary (ACB) register. Any attempt to access an address equal to or
above the ACB register value during program execution with System/370
mode in effect results in an addressing exception program level
interruption. The ACB register is not used when ECPS:VSE mode is in
effect.

AUXILIARY STORAGE

The contents of auxiliary storage vary depending on the mode,
System/370 or ECPS:VSE, in effect. During an IML, the size of the
auxiliary storage area is determined and each area in it is initialized
as appropriate.” Auxiliary storage for System/370 mode, shown in Figure
10.10.1, is always 6K bytes plus the UCW requirement in size. It
contains the following in the highest to the lowest addressed locations:

® UCW area with a minimum of 128 and a maximum of 1024 UCWs. Size
varies from 8K to 64K in 2K-byte increments.

. Channel dlrectory area of 4K bytes. This area contains one
directory of UCWs for each channel (see discussion under "Device
Address and Unit Control Words” in Section 10:20) and two buffer
areas used by the support processor.

® Program event recording area of 256 bytes

* Support processor local channel adapter work area of 256 bytes

* Support processor command validity table of 256 bytes

¢ K-addressable auxlllary storage area of 1K bytes. This area
contains various pointers and data fields used by the instruction

processing function (pointers to the beglnnlng of the other areas in
auxiliary storage, for example).

53

Highest —%

UCW area 8K to 64K
addressed . n
processor Channel directories
and
storage Channe! error log and 4K

support processor buffer area
Unused - 256 bytes

PER table - 256 bytes

~

Support processor local
channel adapter work . f K
area - 256 bytes

Support processor command
validity table - 266 bytes

K- addressable auxiliary
storage area

1K

\ ACB register value

Figure 10.10.1. Layout of auxiliary storage for System/370 mode

For ECPS:VSE mode, the size of auxiliary storage depends on the
amount of processor storage installed. Auxiliary storage for ECPS:VSE
mode, shown in Figure 10.10.2, is 42K or 44K bytes for a two~- or four-
megabyte processor storage size, respectively, plus the UCW requirement
and contains the following in the highest to the lowest addressed
locations:

e Address translation table used to translate virtual storage
addresses in instructions to real storage address during ECPS:VSE
mode operations. This table is always 32K bytes (see discussion in
Section 15:15).

® UCW area of 8K minimum and 64K maximum

e Channel directory area of UK bytes

¢ Page management area of 2K or 4K bytes for a processor storage size
of two or four megabytes, respectively (see discussion in
Section 15:15).

e Machine save area of 2K bytes. Used to store the first 2048 bytes
of processor storage during a machine save operation (see discussion
in Section 12:10).

e Machine save area of 256 bytes for saving status information during
a machine save operation

e Program event recording area of 256 bytes
e Support processor local channel adapter work area of 256 bytes
e Support processor command validity table of 256 bytes

¢ K-addressable auxiliary storage area of 1K bytes. The contents of
this area varies slightly for System/370 and ECPS:VSE modes.

For both System/370 and ECPS:VSE modes, at IML the customer engineer
can activate a microcoded instruction processing function trace facility
to trace such items as PSW switching, I/70 interruptions, CSWs, specific
channel and device interruptions, CAWs, and I/0 instructions. When
activated, this trace causes a 4K-byte buffer to be defined in auxiliary

54

storage between the UCWs and channel directories and, thus, J.ncreases
the size of auxiliary storage by 4K bytes.

v

Highest Address translation table 32K

addressed

processor UCW area 8K to 64K

storage Channel directories and

Channel error log and 4K
support processor buffer area

Page management area 2K or 4K

Machine save area

first page 2K

Machine save area
256 bytes of status

PER table - 256 bytes

Support processor local f 1K
channel adapter work
area - 256 bytes

Support processor command
validity table - 256 bytes

K - addressable
auxiliary storage area

1K

N~ ACB register value

Figure 10.10.2. Layout of auxiliary storage for ECPS:VSE mode

THE STORAGE CONTROL FUNCTION

The storage control function operates under the control of the

instruction processing function to handle all access to processor
storage. The following components are part of the storage control
function: '

High-speed buffer storage and its directory

The processor TLB for translating virtual storage addresses in
instructions to real storage addresses for both System/370 and
ECPS:VSE modes (discussed in Section 15)

The channel TLB for translating virtual storage addresses in channel
programs to real storage addresses when ECPS:VSE mode is in effect
(discussed in Section 15)

The key stack that contains one seven-bit key for each 2K of
processor storage installed. Each key consists of four access
control (store protection) bits, one fetch protection bit, one
reference bit, and one change bit. The key stack contains 1024 or
2048 entries for processor storage 51zes of two or four megabytes,
respectively.

The ECC logic for processor storage (see Section 50)
The eight-byte-wide input/output data register that is used to
transfer data (1) among the components of the storage control

function and (2) between processor storage and the instruction
processing function

55

High-Speed Buffer Storage

The high internal performance of the 4341 Processor is achieved in
part by the inclusion of high-speed buffer storage. The 8K buffer is a
standard feature and provides high-speed data access for instruction
processing function fetches. The instruction processing function can
obtain a doubleword of instructions from the buffer in 150 nanoseconds.
A doubleword of data can be read from or written to the buffer by the
instruction processing function in 225 nanoseconds. If the buffer does
not contain the instruction or data needed, the instruction or data nust
be obtained from processor storage.

Buffer storage control and use are handled entirely by buffer control
function hardware and are transparent to the programmer, who need not
adhere to any particular program structure in order to obtain close to
optimum use of the buffer. Parity checking is used for data :
verification in the buffer.

When a data fetch request is made by the instruction processing
function, buffer storage control determines whether or not the requested
data is in the high-speed buffer by interrogating the buffer directory,
which indicates the current contents of the buffer. If the data
requested is present in the buffer and is valid, it is sent directly to
the instruction processing function without a processor storage
reference.

If the requested data is not currently in the buffer, a processor
storage fetch is made and the data obtained is sent to the instruction
processing function. The data is also assigned a buffer location and
stored in the buffer. When data is stored by the instruction processing
function, the buffer is updated if the contents of the processor storage
location being altered is currently being maintained in the buffer.
Processor storage is not modified, however, as the buffer in the 4341
Processor is a store-in, rather than a store-through, type of buffer, as
discussed later.

The channels read into and write from processor storage using the
input/output data register in the storage control function. When a
channel writes data, the data is placed only in processor storage and
the buffer directory is interrogated. If data from the affected
processor storage address is being maintained in the buffer, appropriate
bits are set in the buffer directory to indicate that this buffer data
is no longer valid.

When a channel reads data, the buffer directory is interrogated, and
if the required data is in the buffer and valid, it is read from the
buffer and presented to the channel. If the buffer does not contain the
requlred data, the channel reads the data from processor storage but the
data is not placed in the buffer.

As shown in Figure 10.10.3, the 8K buffer is divided into four
sections numbered 0 through 3, each of which is 2K bytes in size. Each
2K section contains 32 buffer block locations, each of which can contain
eight doublewords (64 consecutive bytes from processor storage located
on a 64-byte boundary). Thus, the buffer can contain 128 blocks of data
from processor storage.

For buffer usage purposes, processor storage is also considered to be
divided into 2K sections, each of which contains 32 blocks (eight
doublewords) of data. The first block of data in each 2K section of
processor storage can be placed in the first buffer block location in
any one of the four 2K buffer storage sections. The second block of
data in each processor storage section can be placed in the second
buffer block location in any of the four buffer storage sections, etc.

56

The buffer directory, also shown in Figure 10.10.3, is used to
maintain knowledge of the current contents of the 128 block locations in
the buffer. The directory contains 32 locations that correspond to the
32 buffer blocks in each 2K section of the buffer. Each location
contains four directory entries to indicate the contents of the
corresponding buffer block in each of the four sections of the buffer.

The first directory entry in each location is associated with section 0,
the second with section 1, etc.

Also associated with each of the 32 directory locations are six least
recently used (LRU) bits that are used when a block of data from
processor storage must be assigned a block location in the buffer. The
LRU bits for a location are modified as appropriate each time one of the
associated buffer blocks is referenced. The setting of these bits
indicates which of the four entries is the least recently used.

8K Buffer
(o
, 32 blocks AR }
Saction 0 block = eight doublewords 2K ¢ fa 4 ’\&“' 4
L .L?‘ oLy
Section 1 32 blocks 2K | & 5 M(s
A&
ot
Section 2 32 blocks 2K
Section 3 32 blocks 2K
oo lde ol et
RS ,L‘g un.(:-v-?f‘r‘ﬂ Y,
\MO\\J —_— s
I - R
R 1 e i (e
R LR Y Ay
< o K? o 3
fat i ~ t s
?:igﬁ “ Buffer Directory
Real Real Real Real
Status|] LRU
0 address Status address Status address Status address atus
" Y 6
! 3_ bits
bits bits
+P +P
32 ;" ~ ,.:
- locations 1-’ ”
31

Section O Section 1 Section 2 Section 3
entries entries entries entries

Figure 10.10.3. Buffer organization in the 4341 Processor

Each directory entry contains an eleven-bit real storage address
field with an associated parity bit and a three-bit status field with an
associated parity bit. The real storage address field contains bits 2

57

to 12 of the real storage address of the data located in the buffer
block location with which the directory entry is associated.

The status field contains one invalid, one modification, and one
malfunctioning bit. The invalid bit indicates whether the data in the
corresponding buffer block is valid, while the malfunctioning bit
indicates whether or not the buffer block is functioning correctly.

The modification bit for a directory entry is set when the
instruction processing function stores data in the associated buffer
block to indicate that this block has been changed. When the contents
of a buffer block are to be replaced, the modification bit is inspected
to determine whether the contents of the buffer block must be written to
processor storage before the new data is loaded.

The store-in approach used for the high-speed buffer in the 4341
Processor contrasts with the store-through approach used in the high-
speed buffers in System/370 processors in which processor storage is
altered whenever data is stored in the buffer. -The store-in approach
increases performance in the situation in which the data in a buffer
block is modified more than once. The data the block contains is
written to processor storage only once and only if the data is to be
replaced.

Buffer operation is as follows. When the instruction processing
function issues a fetch request to processor storage, bits 13 to 17 of
the specified real storage address are used to address one of the 32
locations in the buffer directory. Bits 2 to 12 of the real storage
address are then compared simultaneously with the real storage address
bits in each of the four directory entries in the selected directory
location to determine whether the buffer contains the requested data.

If an equal comparison occurs for an entry and its valid bit is on,
the requested data is fetched from the buffer section associated with
the entry. Bits 13 to 17 of the real storage address are used to select
one of the 32 block locations while bits 18 to 20 are used to select one
of the doublewords within the 64-byte block. The selected doubleword is
sent to the instruction processing function and no processor storage
reference is made.

If no directory entry produces an equal comparison, the 64-byte block
containing the required data must be fetched from processor storage,
assigned a buffer location, and stored in the buffer. To determine the
block to assign, the buffer control function first inspects the invalid
bit in each section entry in the addressed directory location. If any
of the four buffer blocks that can be assigned contains invalid data,
that block is assigned to receive the needed block of data from
processor storage. If no entry has its invalid bit on, the LRU bits for
the addressed directory location determine the buffer block to select.

The modification bit in the directory entry for the selected buffer
block is then inspected to determine whether the data in the selected
block has been modified. If the bit is not on, the required 64-byte
block of data is loaded from processor storage into the selected buffer
block and the directory is updated (invalid bit is turned off in the
directory entry for the selected block and LRU bits are modified as
appropriate for the directory location that contains the entry).

If the modification bit is on in the directory entry for the selected
buffer block, the contents of the selected buffer block are written to
processor storage before the required block of data from processor
storage is loaded into the selected buffer block. Whether or not
processor storage must be updated, the instruction processing function
waits until buffer block loading is completed. . That is, all 64 bytes

58

are loaded in the assigned block before the required doubleword is
fetched.

Buffer block loading requires 2.36 microseconds when the contents of
the selected block do not have to be written to processor storage. The
time required to store the contents of a buffer block in processor
storage and then load the required block of data from processor storage
varies from 3.75 to 5.85 microseconds, depending on whether and how soon
the instruction processing function makes a subsequent reference to the
buffer and does not find the required data.

Note that when the CLEAR PAGE instruction for ECPS:VSE mode is
issued, all the directory entries that reference the cleared processor
storage page have their invalid bits turned on and no data is written to
processor storage from the invalidated buffer blocks.

Operation of the entire buffer cannot be disabled. However,
utilization of an individual buffer block can be disabled by turning on
the malfunctioning bit in the associated directory entry. Using the
operator console, the customer engineer can turn on a malfunctioning bit
in the buffer directory.

10:15 THE SUPPORT PROCESSOR SUBSYSTEM

COMPONENTS AND FUNCTIONS

The support processor subsystem provides basic operational functions
for the 4341 Processor and is the primary maintenance tool for
diagnosing hardware malfunctions. It is designed to maximize total
system availability and to provide rapid fault location and repair,
where possible.

The components of the support processor subsystem are the support
processor, support bus adapter, local channel adapter, console
attachment adapters and attached devices, power controller adapter and
power information panel, common communication adapter for the remote
support facility, and system diskette drive and associated adapter.

The microcoded support processor controls the operation of the
support processor subsystem. The support processor subsystem is
responsible for the following:

e System initialization functions (IML and IPL), including microcode
loading for the support processor and the instruction processing
function

e Control of the system diskette drive

* Control of the I/0 devices that natively attach to the 4341
Processor via the console attachment adapters. These devices
include the operator console display and up to three additional
display consoles and/or printers.

e Analysis of logout data and the writing of processor logout data and
analysis information (reference code) to the system diskette after a
machine check occurs

¢ Retry of retryable instructions after an error occurs

e Diagnostic program loading and execution

59

..® Microcode controlled power sequencing, power monitoring to detect
under- and over-voltage conditions, and electrostatic discharge and
temperature monitoring

e Control of the"rémofe support facility.

~ Operation of the support processor is independent of, and overlapped
with, operation of the instruction processing function for certain of
its functions. During system operation, while instruction execution
occurs, the support processor controls the operation of the natively
attached display consoles and printers. It also performs power,
temperature, and electrostatic discharge monitoring under microcode
control. and, when necessary, logging to the system diskette of
environmental conditions.

Whenever a machine check condition occurs, the support processor
receives control to initiate an instruction retry operation or machine
check interruption in the instruction processing function. While the
instruction processing function is operating, the support processor logs
the error to the system diskette and performs error diagnosis to
generate a reference code.

Details about the last five functions listed are covered in Section
50. The other functions of the support processor subsystem are
discussed in the remainder of this subsection.

SYSTEM INITIALIZATION

When the power-on/IML pushbutton on the operator control panel
(located on the 3278 Model 2A Display Console) is pressed, a hardwired
sequence is activated to power on the support processor, system diskette
drive, and adapters connected to the I/0 bus of the support processor.

Diagnostics resident in storage of the support processor are executed
to test the operation of the support processor and the system diskette
drive and its adapter. If these tests execute successfully, the :
resident microcode for the support processor is loaded from the system
diskette. :

Diagnostics that verify the.correct operation of the console
attachment adapters, operator console, and power controller adapter are
then loaded into the support processor and executed. The power
controller adapter is initialized if no errors occur.

When the bootstrap functions have completed successfully, the support
processor loads its own control storage and reads the IML program for
the instruction processing function of the 4341 Processor from the
system diskette. The path to the operator console is tested and finally
the microcode~controlled power-~on sequence for the balance of the 4341
Processor jis initiated. The instruction processing function and channel
hardware, Channel-to~Channel Adapter (if installed), and channel-
attached I/0 devices with their power control switch set to the remote
position are powered on, in the sequence listed, by power sequencing
microcode.

Powering of the natively attached 3278 Model 2A displays and 3287
printers must be done by the operator. The instruction processing
function and the Channel-to-Channel Adapter can be powered off and on
individually when CE mode is in effect. CE mode is established using a
customer engineer panel that is located within the frames of the #4341
Processor. -

//

If no errors occur during powering, instruction processxng function
hardware is 1n1t1a112ed at the completion of the power-on sequence. The

60

microcode for the instruction processing function is then loaded into
reloadable control storage from the system diskette drive if the
installation has established that an automatic IML is to occur at the
completion of a power-on (see discussion in Section 12). The local
channel adapter is initialized and the general selection display is
shown on the operator console.

SYSTEM DISKETTE DRIVE

The systen diskette drive is a small read/write drive, that is
located in the right-hand end of the 4341 Processor (as shown in Figure
05.15.1). It reads removable prerecorded disk cartridges (diskettes).
Recording is done on both sides of the diskette.

A power-on of the 4341 Processor causes the system diskette drive to
be turned on and made ready for I/0 operations that are required by the
initial microcode load of the support processor that follows a power-on.

The operation of the system diskette drive is controlled by command
bytes that are interspersed within the data (microcode or diagnostics)
contained on the tracks of the diskette. There are no I/0 instructions
or commands that a user program can execute to cause read or write
operations to the system diskette drive.

Several diskettes are sent to each 4341 Processor installation. Two
are identical system diskettes (one for backup) and the other four are
the diagnostic diskettes. The system diskette contains all the
microcode required for the configuration (instruction processing
function and support processor microcode), areas for logout data from
the 4341 Processor, diagnostic programs, and error analysis programs
(see additional discussion of the system diskette in Section 50).

The microcode on a system diskette for the 4341 Processor is not
customized. However, the system diskette does contain certain timing
values that are specific to the particular 4341 Processor with which it
is to be used. The service diskettes contain additional service
programs that are to be used by customer engineers. Storage space for
diskettes is provided within the frames of the 4341 Processor.
Normally, the system diskette will stay mounted on the system diskette
drive and diskette changing will occur only when diagnostics are to be
performed.

When the system diskette is mounted on the system diskette drive, an
IML of instruction processing function microcode can occur automatically
after a power-on of the 4341 Processor is performed. The operator can
establish this mode of operation using the program load display for the
operator console. If an IML for the instruction processing function is
required thereafter, it can be performed using the program load display
for the operator console. Parity checking is used for reloadable
control storage during processor operation.

A procedure exists that enables the customer engineer to temporarily
patch the microcode in reloadable control storage or the support
processor. Any patches made are also made to the mounted system
diskette. Such patches are included in the microcode provided on the
next level of system diskette sent to the installation.

Note that when processor power is turned off, the data in control
storage for the support processor, processor storage, and control
storage for the instruction processing function is lost, and an IML nust
be performed when power is turned on again.

A system diskette for a given 4341 Processor contains the processor
serial number and is not portable from one 4341 Processor to another

61

(since the serial number on the diskette is checked against the
processor serial number during any IML and a mismatch causes termination
of the IML procedure). The system diskette for a given 4341 Processor
also contains configuration information specific to that 4341 Processor
that is written by the customer engineer (such as UCW assignments) and
that precludes portability.

The system diskette drive is also used for loading and executing
diagnostic routines, and it is a basic debugging tool for the system. A
comprehensive set of fault-locating diagnostic routines is supplied to
each 4341 Processor installation on service diskettes. These routines
can be loaded directly from the system diskette drive into the #4341
Processor and executed (see Section 50:15).

NATIVELY ATTACHED DEVICES

Up to four devices can be natively attached to the 4341 Processor via
the I/0 bus of the support processor. The following devices can be
natively attached:

e Required 3278 Model 2A Display Console (with operator control panel)

e Up to three additional devices, which can be any combination of 3278
Model 2A Display Consoles and 3287 Model 1 or 2 Printers.

The additional 3278 Model 2A displays can be used as alternate and/or
additional consoles, as supported by the operating system utilized. The
additional displays cannot have the operator control panel that is
located on the primary operator console. The 3287 Printers can be used
for hard-copy backup of the 3278 Model 2A displays. The 3287 Printer is
a desktop printer with a print speed of 80 characters per second (Model 1)
or 120 characters per second (Model 2).

The natively attached devices attach to channel 0 in the 4341
Processor via the local channel adapter and must have specific addresses
assigned (see discussion in Section 10:20).

SUPPORT BUS ADAPTER

The support bus adapter provides an interface between the support
processor and the instruction processing function and channel hardware.
Via this direct path, the support processor can access maintenance
hardware in the instruction processing function and the channels.

The support bus adapter also provides an interval timing facility for
power monitoring microcode in the support processor by informing this
module that it is time for it to execute. This adapter also controls
the system and wait indicators and the lamp test switch on the operator
control panel.

10:20 CHANNELS

GENERAL DESCRIPTION

While channel functions compatible with those available on Models 50
and 65 are provided, the 4341 Processor also offers additiomnal
facilities (such as block multiplexing), faster channel data rates, and
attachment of faster direct access devices with larger capacities.
These capabilities enable the user to tailor a 4341 Processor
configuration to I/0 processing needs, on an improved price performance
basis, to increase channel throughput.

62

One standard and one optional channel group are provided for the 4341
Processor. The standard channel group consists of one byte multiplexer
channel, addressed as channel 0, and two block multiplexer channels,
addressed as channels 1 and 2. The optional channel group (Block
Multiplexer Channels, Additional feature) provides three additional
block multiplexer channels, addressed as channels 3, 4, and 5.

The byte multiplexer channel for the 4341 Processor, like that for
System/360 Models 50 and 65, can handle the concurrent operation of
multiple slower speed devices when operating in byte interleave mode.
The block multiplexer channels, not available for the Models 50 and 65,
are designed to increase system throughput by increasing the amount of
data entering and leaving the system in a given period of time (the
ef fective data rate).

A single block multiplexer channel can support interleaved,
concurrent execution of multiple high-speed channel programs. A block
multiplexer channel can be shared by multiple high-speed I/0 devices
operating concurrently, just as the byte multiplexer channel can be
shared by multiple low-speed devices.

Each installed channel can have up to eight control units attached.
For the byte multiplexer channel, one control unit position is used by
the local channel adapter. This internal adapter provides attachment of
support processor subsystem devices to the byte multiplexer channel.

Without the optional Channel Control Units, Additional feature
installed, the 4341 Processor can have up to 23 external control units
attached in addition to the internal local channel adapter (the maximum
number attachable to the standard number of channels). When the
optional channel group is installed, the Channel Control Units,
Additional feature may be required to provide the ability to attach more
than 23 external control units (up to 47 maximum). The optional channel
group must be present in order to install the Channel Control Units,
Additional feature.

Comprehensive error checking is incorporated in the basic design of
the channel hardware. Checking is performed on the control logic in
most areas, and standard parity checking is done on the data flow
between the channels and instruction processing function. Improved
error recovery data is provided by the channels (discussed fully in
Section 50).

The standard instruction set for the 4341 Processor includes three
I/0 instructions not provided for System/360: HALT DEVICE, CLEAR 1/0,
and START I/0 FAST RELEASE. HALT DEVICE is specifically designed to
stop an I/0 operation on a particular device on a byte or block
miltiplexer channel without interfering with other I/0 operations in
progress on the channel. HALT DEVICE, instead of HALT I/0, should
always be used to stop an I/0 operation on a multiplexer channel.

The CLEAR I/O instruction is provided to reset byte and block
multiplexer subchannels when errors and control unit lockups occur that
could cause processor termination. START I/O FAST RELEASE is
implemented as a START I/0 instruction in the 4341 Processor.

Optionally one Channel-to-Channel Adapter can be installed in a 4341
Processor and attached to any block multiplexer channel. The other
channel to which the adapter is attached can be contained in a
Systemv/ 360, System/370, or 4341 processor. One control unit position
and one nonshared UCW for each of the two channels interconnected via
the adapter are required. The adapter operates in burst mode and
transfers data at the rate of the lower speed channel to which it is
attached.

63

DEVICE ADDRESSES AND UNIT CONTROL WORDS

The byte multiplexer channel and each block multiplexer channel
installed can have 256 device addresses (00 to FF). Any device
addresses can be used for block multiplexer channels 1 to 5. For the
byte multiplexer channel, addresses OF0 to OFF are reserved for support
processor subsystem devices attached via the local channel adapter and
any device addresses other than these can be used for the I/0 devices
attached to the byte multiplexer channel via external control units.

The 4341 Processor can have a minimum of 128 and a maximum of 1024
UCWs as a standard feature. UCWs are allocated by the customer
engineer, using the display console. UCWs above 128 are allocated in
groups of 32. Each UCW is 64 bytes in size and resides in auxiliary
storage. Each group of 32 UCWs requires 2K bytes of storage.

The UCWs allocated are assigned a three-digit reference number 000 to
N~1, where N is the number of UCWs allocated. UCWs with reference
numbers 000 to OOF are reserved for internal functions (system diskette
drive and support processor, for example) and support subsystem devices.

The UCWs defined are shared by all the channels actually present in
the processor. A maximum of 256 can be assigned to any one channel.
The customer engineer assigns UCWs to specific channel addresses using
the console (display/alter display). Each UCW can be designated as
shared or nonshared.

A shared UCW can be used by a set of devices, one device at a time.
A shared UCW generally is assigned to a control unit that has multiple
devices attached, only one of which can be in operation at a time. A
nonshared UCW is one that is assigned to only one device. A nonshared
UCW is designed for use with a control unit that has only one I/0 device
attached or that has multiple I/O devices attached that can operate
concurrently.

A channel directory for each channel is allocated in auxiliary
storage. Each directory has 256 entries, one for each of the possible
device addresses for a channel. A directory entry indicates whether a
UCW is assigned to the associated device address, characteristics of the
assigned UCW, and characteristics of the device assigned the associated
device address.

A channel directory entry contains the following:

e Valid bit to indicate whether or not a UCW is assigned to the
associated device address

o Reference number of the UCW assigned, if any

An indication of whether the UCW is shared or nonshared (shared bit)

e An indication of whether the device associated with this entry can
operate in block multiplexer mode (disconnect during command-chained
channel programs)--DCC bit

Devices attached to a block multiplexer channel that are capable of
block multiplexing should have the shared bit off and DCC bit on in
their channel directory entry to indicate allocation of a nonshared UCW
that is capable of disconnection. Devices such as the 3272 Control Unit
should be assigned a shared UCW that is capable of disconnecting (shared
and DCC bits on in the appropriate channel directory entries).

The display/alter display for the operator console is used by the
customer engineer to select functions associated with UCWs. The
functions provided enable the customer to display the allocated UCW
reference numbers and the device addresses they are assigned, and to
display and alter the contents of a channel directory. The alter
capability is used to assign device addresses and attributes to UCWs.

64

GENERAL OPERATION OF THE CHANNELS

The channels in the 4341 Processor are microcode- and hardware-
controlled. They are integrated channels and, thus, share the use of
certain hardware with the instruction processing function, such as the
arithmetic logic unit, byte shifter, and control storage.

The general flow of data between I/0 devices and processor storage
via the channels is shown in Figure 10.20.1. Each installed channel has
an interface controller that contains a data-in and a data-out register
for transferring data between the standard I/0 interface to I/0 devices.
All the interface controllers can be transferring data to I/O devices
(one device per controller) at the same time.

o .
‘ \&b\\}‘\F v Channel Hardware \
Standard

LA
Control
\0‘{(K 1/0 Interface
Channel 0 p~———rrrere

¢ Interface

A\ .
\» Instruction
Processor ' Processing ’ Channel Data
Storage Function Buffer Channel
. i i Channel 1
\ By Storage DataA 756 bytes in register
~ hif Transfer Register
shifter Channel 2
Storage

oo] -
control) A L Channel 3

L.

256 bytes Channel Channel 4

out
register _A Channel 5

i

{

{

{

Figure 10.?0.1. General flow of data between the channels and processor
' storage

Data is transferred between the individual interface controllers and
the channel data buffer via a channel-in . and channel-out register, each
of which is two bytes in size. One or two bytes are transferred at a
time. The channel data buffer contains one 256-byte buffer area for
each channel. Only one channel can be transferring data to, or
receiving data from, the channel data buffer at a time. A set sequence
for handling channel requests is implemented in the channel control
hardware.

Data is transferred between a buffer area in the chamnel data buffer
and processor storage via the eight-byte data transfer register and the
eight-byte shifter, which is in the instruction processing function.
This data transfer is microcode-controlled. The shifter provides
doubleword boundary alignment for data entering processor storage, when
required, and any needed alignment for eight bytes of data entering the
channel data buffer.

A data transfer between processor storage and the channel data buffer
handles 64 bytes aligned on a 64-byte boundary, except for beginning and
ending transfers for a processor storage buffer that is not located on a
64 -byte boundary. A 64-byte data transfer requires four microseconds.

Channel control hardware determines the priority for servicing the
channels according to predetermined priorities. When multiple channel
trap requests (requests for microcode service) are outstanding, the
lowest numbered channel with an outstanding request is serviced first.
A trap request for this channel will not be serviced again until the
other channels with a request outstanding have one trap request
serviced. That is, each channel is guaranteed not to have to wait for
the servicing of more than an average of two (if the optional channels

65

e

£
'
A

Voo

o

are not installed) or five (if the optional channels are installed)
other trap requests between the servicing of two successive trap
requests of its own (each channel is guaranteed, on an average, every
third or sixth trap service).

The channels are given priority over the instruction processing
function for access to shared facilities. The channels interfere with
instruction processing function operation when a channel trap request is
serviced. Trap requests occur for such operations as data transfer
between processor storage and the channel data buffer, processing of a
UCW, command chaining, data chaining, and status handling.

The 4341 Processor generates less total interference with instruction
execution than intermediate-scale System/360 and System/370 processors
because the amount of time required to transfer a byte of data between
processor storage and the channel data buffer during an I/0 operation is
much less (64 bytes are transferred in 4 microseconds in the 4341
Processor versus 4 bytes transferred to or from processor storage in .54
microseconds in the Model 148, for example).

The channels in the 4341 Processor do not prefetch CCWs for input
operations. For output operations, one CCW and up to 128 bytes of
associated data are prefetched.

BYTE MULTIPLEXER CHANNEL

The standard byte multiplexer channel for the 4341 Processor is
functionally identical to the byte multiplexer channel for System/360
and Systemn/370 processors. The channel can operate in byte interleave
mode to permit several slower speed I/0 devices to operate concurrently
or in burst mode to permit one buffered device to operate.

For input, a maximum of up to 1 MB/sec is possible for a burst mode
operation involving a buffered device. The effective burst mode data
rate for an output operation involving a buffered output device must be
calculated. This rate equals 1000 times the data rate of the device in
KB/sec divided by 1000 plus the data rate of the device in KB/sec.

The maximum data rate for byte mode operation depends on other
channel activity and the number of bytes transferred. Table 10.20.1
gives the maximum byte multiplexer data rates for byte mode operations.

Table 10.20.1. Maximum byte mode data rates for the byte multiplexer
channel in the 4341 Processor

Maximum data rate Maximum data rate when
when only the byte the five block multiplexer
multiplexer channel channels are operating
Type of Transfer is active(KB/sec) at full capacity (KB/sec)
Single-byte transfer 8 2
Two-byte transfer 16 4
Four-byte transfer 32 8

I/0 devices in the support processor subsystem attach to the byte
multiplexer channel via the local channel adapter, which occupies the
last control unit position on this channel. Thus, a maximum of seven
external control units can be attached to the byte multiplexer channel.

66

The local channel adapter operates as a channel-to-channel adapter
that connects the I/0 bus of the support processor to channel 0. The
local channel adapter provides a low-cost method of attaching support
processor subsystem devices to the byte multiplexer channel.

The local channel adapter appears as a shared control unit that can
have multiple device addresses. It operates in multibyte mode in the
4341 Processor and has a maximum data rate of 24 KB/sec. Data is
transferred from the local channel adapter to the byte multiplexer
channel two bytes at a time.

Addresses OF0 through OFF are reserved for the attachment of the
support processor subsystem devices, for the SIGM and SIGP instructions
that are used by the instruction processing function and support
processor to communicate with each other, and as spare addresses.
Additional I/0 devices attached to channel 0 cannot use addresses 0OF0 to
OFF, which have the following assignments:

¢ OF2 - 3278 Model 2A primary console

e OF3 - 3278 Model 2A additional console or 3287 Printer
e OF4 - 3278 Model 2A additiomnal console or 3287 Printer
e OF5 - 3278 Model 2A additional console or 3287 Printer
e OF6 - SIGM instruction |
¢ 0F7 ~ SIGP instruction

e 0F0, OF1, OF8 through OFF - spares

BLOCK MULTIPLEXER CHANNELS

Block multiplexer channels 1 to 5 in the 4341 Processor can operate
in block multiplexer or selector mode. When operating in selector mode,
a block multiplexer channel in the 4341 Processor is functionally
equivalent to the selector channels for System/360 and System/370
processors. When a block multiplexer channel in the 4341 Processor
operates in block multiplexer mode, it is functionally equivalent to a
System/370 block multiplexer channel. A block multiplexer channel
presents a standard I/O interface and can have a maximum of eight
control units attached.

The maximum data rate for block multiplexer channels 1, 2, 3, and &4
is 2 MB/sec each. Block multiplexer channel 5 has a maximum data rate
of 1 MB/sec. The maximum aggregate data rate of the block multiplexer
channels installed is the sum of the individual maximum data rates.
Thus, when the optional channels are not present, the maximum aggregate
data rate of channels 1 and 2 is 4 MB/sec. When all five block
multiplexer channels are present, their maximum aggregate data rate is 9
MB/sec.

Like the byte multiplexer, the block multiplexer channel can have
maltiple subchannels, each of which can support one I/0 operation. The
setting of a channel mode bit (0) in control register 0 determines
whether the addressed subchannel of a block multiplexer channel operates
in block multiplexer (assuming it is capable of operating in block
multiplexer mode) or selector mode when a START I/O instruction is
issued. The mode bit is set to 0 (selector mode) at IPL and can be
altered by programming at any time.

67

Block Multiplexer Channel Operation

A block multiplexer channel functions differently from a selector
channel in the way in which it handles command-chained channel programs.
A selector channel or a block multiplexer channel operating in selector
mode executing a command-chained channel program is busy during the
entire time the channel program is in operation, whether or not data
transfer is occurring. A block multiplexer channel operating in block
multiplexer mode and executing a command-chained channel program has the
ability to disconnect from the operational channel program during
certain non-data-transfer operations. That is, a block multiplexer
channel can be freed during a nonproductive activity, for example,
during disk seeking and most record positioning, thereby allowing more
data to be transferred per unit of channel busy time.

Block multiplexing operates as follows. Assume a block multiplexer
channel is executing a channel program consisting of multiple command-
chained CCWs. When channel end is presented without concurrent device
end, the channel disconnects from the I/0 device and becomes available
for an I/0 operation on another device--even though the channel program
of the disconnected device is not complete. At channel disconnect time,
the subchannel and the control unit for the device retain the
information necessary to restart the disconnected channel program.

When the device signals that it is again ready for the channel (by
presenting device end), its control unit attempts to regain use of the
channel. If the channel is free at this time, the channel registers are
reloaded with the information previously saved (in the UCW for the
device), and the disconnected channel program is resumed at the
appropriate CCW. If the channel is busy when reconnection is requested,
the device must wait until the channel becomes available. Once multiple
channel programs have been initiated on one channel, the interleaving of
data transfer operations is controlled by block multiplexer channel
hardware and the control units of the devices operating in block
multiplexing mode.

To facilitate channel scheduling on block multiplexer channels, an
interruption condition, called channel available, is defined. At
disconnect time for a channel program, the block multiplexer channel is
available for the resumption of an uncompleted channel program
previously started, or another channel program can be initiated. A
channel available interruption occurs at disconnect time to indicate
channel availability if a START 1/0, TEST I/0, TEST CHANNEL, or HALT
DEVICE instruction was issued previously while the block multiplexer
channel was busy.

Two additional facts should be noted about block multiplexer channel
operations:

1. When multiple channel programs are operating concurrently in
block multiplexing mode, a device can regain control of the
channel only when the channel is not busy. Thus, only cyclic
devices (such as direct access devices with rotational position
sensing capability) or buffered devices (such as the 3505 Card
Reader and the 3203 Printer) can disconnect during the execution
of a command-chained channel program on a block multiplexer
channel and resume operation later.

2. Data transfer operations for concurrently operating devices on a
block multiplexer channel are interleaved on a first-come, first-
served basis as the desired records become available. Thus,
devices are serviced in the order in which their records become
available, not necessarily in the order in which their channel
programs are initiated.

68

Examples of devices that can block multiplex on the 4341 Processor
when attached to a nonshared subchannel of a block multiplexer channel
are:

e 3330-series, 3340/3344, and 3350 disk storage. One UCW per drive in
each string is required.

e 3370 Direct Access Storage. One UCW per logical device address (two
UCWs per 3370 drive) are required.

¢ 2305 disk storage. Eight UCWs per drive are required.

e 2540 Card Read Punch. One UCW for the reader and one for the punch
are required.

e 3505 Card Reader and 3525 Card Punch. One UCW for each reader and
for each punch is required.

e 3203 Model 5 Printers. One UCW per printer is required.

e 1403 Printers attached to a 2821 Control Unit. One UCW per printer
is required.

e 3211 Printer. One UCW per printer is required.

When attached to the 4341 Processor, magnetic tape units and direct
access devices without rotational position sensing capability, such as
the 2311, 2314, and 2319, should be associated with a shared UCW of the
block multiplexer channel. Selector mode (DCC bit off) should be
assigned for these shared UCWs.

Each 3272 control Unit attached to the block multiplexer channel in
the 4341 Processor should be assigned a shared UCW that is set to
operate in block multiplexer mode. While only one of the devices
attached to a 3272 can operate at a time, the 3272 can disconnect from
the channel during certain operations. Thus, when shared UCWs with
block multiplexing capability are assigned to 3272 Control Units,
multiple 3272 units can have a channel program executing concurrently.

The following summarizes how direct access devices without rotational
position sensing capability and other I/0 devices operate on a block
mzltiplexer channel for the 4341 Processor when executing a command-
chained channel program:

1. Direct access devices without rotational position sensing
capability (2311, 2314, and 2319) assigned to a nonshared or
shared UCW operate in the same way whether the channel is in
block multiplexer or selector mode. That is, the channel and the
disk control unit are busy during the entire time a command-
chained disk channel program is in operation. Thus, there is no
disconnection after a chained seek.

2. All tape drives attached to a shared or nonshared UCW operate
exactly the same whether the channel is in block multiplexer or
selector mode. That is, they do not block multiplex and the
channel is busy during the entire time a command-chained channel
program is in operation.

3. Buffered card and print devices (or devices operating with
buffered control units), such as the 1442, 2501, 2520, 2540,
3505, 3525, 1403, 1443, 3203, 3211, and 3800, disconnect during
the mechanical motion of the device when assigned to a nonshared
UCW. Reconnection occurs later to fill or empty the associated
buffer.

69

For example, a 3203 Model 5 Printer assigned to a nonshared UCW
on a channel operating in block multiplexing mode disconnects
from the channel during print time and carriage motion.
Reconnection occurs when the channel is free to transfer the data
for the next line to the buffer in the control function in burst

mode.

4. The following control units and I/O devices are not capable of
block multiplexing (do not disconnect during command-chained
1419, 2250, and 2701 units.

channel programs):

Performénce is degraded if a device that is capable of block
multiplexing’ is not assigned a nonshared UCW of a block multiplexer

channel.

Table 10.20.2 indicates, for the most frequently used 1/0

devices, the (1) type of channel to which the device can be attached,
(2) preferred type of channel to which the device should be attached,
and (3) preferred UCW type when the device is attached to a block

multiplexer channel operating in block multiplexer mode.

Where selector

is specified as the channel type, it means the block multiplexer channel
operating in selector mode.

Table 10.20.2.

used I/0 devices for the 4341 Processor

Channel attachment and UCW mode for frequently

I/0 Device or

Channel Attachment

Recommended

Recommended or
Required UCW

Mode When
Attached to a
Block Multiplexer

control Unit Capability Channel Type Channel
Card Readers, Card

Punches, and

Printers

144271443 Byte, Selector, Block Byte Nonshared
250172520 Byte, Selector, Block Byte Nonshared
3203 Model 5 Byte, Selector, Block Block Nonshared
282173811 Byte, Selector, Block | Block Nonshared
350573525 Byte, Selector, Block Block Nonshared
Magnetic Character

Readers

125571259 Byte Byte -
1419 Byte Byte -
3890 Byte, Block Block Nonshared
Optical Character

Readers

1287/1288 Byte, Block Byte Nonshared
3881 Byte Byte -
3886 Byte, Selector, Block Byte Nonshared

70

Table 10.20,2 (continued)
Recommended or

Required UCW

Mode When
Attached to a
I/0 Device or Channel Attachment Recommended Block Multiplexer
Control Unit Capability Channel Type Channel
Displays
2250 Byte, Selector, Block Byte Shared in
selector mode
3272 Byte, Selector, Block Block Shared in
block multiplexer
mode
Magnetic Tape
2415 Selector, Block Selector Shared in
selector mode
280373803 Selector, Block Selector Shared in
selector mode
3411 Selector, Block Selector Shared in

selector mode

Direct Access

Storage
231472319 Selector, Block Selector Shared in
selector mode
2841 Selector, Block Selector Shared in
selector mode
2835 Block Block Nonshared
3830 Block Block Nonshared
3880 Block Block Nonshared
Communications
2701 Byte, Selector, Block Byte Nonshared
3704 Byte Byte -
3705-Channel Byte Byte -
Adapter Type 1
3705-Channel Byte, Selector, Block Block Nonshared
Adapter Type
2, 3, or 4

10:25 BLOCK MULTIPLEXING OPERATIONS WITH COUNT, KEY, DATA ROTATIONAL
POSITION SENSING DEVICES ’

Rotational position sensing, multiple requesting, and block
multiplexing are designed to increase system throughput by increasing
channel throughput. The rotational position sensing function is
provided for certain count, key, data format direct access devices (such
as 3330-series, 3340/3344, 3350, and 2305) to enable them to utilize
block multiplexing more effectively. This function is also implemented
in fixed block architecture devices, such as the 3370.

This subsection discusses the operation and advantages of the
rotational position sensing function for count, key, data devices while
Section 10:30 discusses the operation and advantages of fixed block
architecture disk devices.

71

The presence of the rotational position sensing (RPS) function in the
control unit of a direct access device enables it to operate in block
multiplexing mode. The use of rotational position sensing reduces the
number of channel programs that have to be initiated for direct access
devices that require an arm-positioning seek, frees a channel more often
during direct access device operations--specifically, during most of the
time required to position a head assembly to a desired record--and
permits disk channel programs to be initiated sooner on a block
multiplexer channel than is possible with a selector channel.

Multiple requesting is implemented in a direct access device control
unit to enable it to handle concurrent execution of multiple RPS channel
programs. The 3830 Model 2 Storage Control unit, for example, can
simultaneously control 32 RPS channel programs, one on each of its
attached disk drives.

In order to overlap seek operations for movable arm direct access
devices without RPS, channel scheduling routines must initiate two
channel programs for each record read or written. The first is a
standalone seek, which frees the channel as soon as the control unit
accepts the seek address. (The control unit is also free during arm
movement.) At the completion of the seek, a device-end interruption is
presented, and the data transfer channel program is subsequently
initiated to search for the desired record and transfer the data.

A selector channel is busy during the entire search operation
(execution of the SEARCH command by the control unit) that locates the
desired disk record on the track. Search time can be significantly
greater than data transfer time for disk records smaller than half a
track in size. Search time averages one-half of a rotation for a read
or write (8.3 ms for a 3330-series drive) and requires a full rotation,
less record write time, for a write verification chained from a write.

Use of RPS reduces the time the channel is busy during the search for
@ disk record. It permits the SEARCH command to be initiated just
before thé desired record is to come under the read/write heads, that
is, when the desired rotational position is reached. To accomplish
this, a "sector" concept is employed. The tracks in each cylinder of a
direct access device are considered to consist of equally spaced sectors
(the number of sectors varies by device). Track formatting is unchanged
but each record has a sector location as well as a record address.

A sector is not physically indicated on the disk tracks of count,
key, data devices, but is the length of the track arc that passes under
the read/write heads in one sector time. For 3330-series drives, for
example, sector time is defined to be approximately 130 microseconds.
Thus, there are 128 sectors per logical track.

A disk control unit with RPS and multiple requesting can determine
the sector currently under the heads of each of its drives. A sector
counter is contained in each drive. The counter is incremented once
every sector time period and set to zero each time the index marker
passes under the heads. The sector in which a record falls is a
function of the length of all records that precede it and of its
sequential position on the track. Therefore, sector location can be
calculated for fixed-length records.

Two disk commands, SET SECTOR and READ SECTOR, are provided for use
with rotational position sensing. If the sector address of a record is
known or can be calculated, a SET SECTOR command can be included in the
disk channel program to cause the control unit to look for the
designated sector. Once the control unit accepts the sector number
provided by a SET SECTOR command, both the block multiplexer channel and
the disk control unit disconnect and are available for another I/0
operation. '

72

When SET SECTOR is used for positioning, the time the channel is busy
during the search for a record is reduced from an average of 8.3 ms to
an average of 260 microseconds for the 3330-series. (Allowing for the
worst case of speed variation and for disk pack interchange, the search
time for a record, from sector found to beginning of desired record, can
vary from 120 to 380 microseconds for a 3330-series drive.)

The READ SECTOR command is useful for sequential disk processing and
for write verification. When chained from a READ, WRITE, or SEARCH
command, READ SECTOR provides the sector number required to access the
record processed by the previous CCW. This sector number can be used to
reposition the track in order to verify the record just written or in
order to read or write the next sequential record. These two sector
commands, used in conjunction with the block multiplexer channel, permit
a single command-chained channel program, which frees the channel and
disk control unit during seek and rotational positioning operations, to
be initiated for each disk operation.

When the record ID is known, the two channel programs shown below
illustrate direct retrieval of a record from a file/data set on a direct
access device without RPS, such as the 2314 (key was not written). The
seek operation can be overlapped with other seeks and one data transfer
operation on the same selector channel. (Commands shown in the sample
channel programs that follow are only those that illustrate the
advantage of RPS. Thus, commands such as SEEK HEAD and SET FILE MASK,
which are used by data management to ensure correct operation, are not
shown.)

Channel program 1. Initiate the standalone seek to position the disk arm.

Selector Channel
and Disk Control

Command Unit Status

Free as soon

as the control
unit aceepts the
seek address

SEEK (Seek address)

Initiate the data transfer operation after the seek
is complete.

Channel program 2.

Selector Channel

Command Chaining and Disk Control

Flag Command Unit Status
ccC SEARCH ID (ID - sequential Busy (for 12.5 ms
EQ position on the on the average
track) for a 2314)
cC TIC (Back to search if
ID not equal)
READ DATA (Processor storage Busy

address of input
area)

When the sector address is known or can be calculated, the channel
program below illustrates direct retrieval of a record from the same
file/data set on a 3330 drive with RPS installed that is attached to a

block multiplexer channel.

The records are fixed-length standard

format, and sector numbers are calculated from record ID (by data

management).

73

Channel program 1. Initiate the seek and data transfer operation.

Block Multiplexer
Channel and Disk

Command Chaining Control Unit Status
Flag Command
cc SEEK (Seek address) Free during
arm motion
cc SET SECTOR (Sector number of Free until
sector preceding sector found

desired record)

ccC SEARCH ID (ID - sequential Busy
EQ position on track) (260 microseconds)
average for a 3330)

cC TIC (Back to search if Busy
ID is not equal.
With the logic
shown, the first
ID inspected
normally is that of
the desired record,
and the TIC command
is not executed.)

READ DATA (Processor storage Busy
address of input
area)

The preceding example indicates the advantages of rotational position

sensing and block multiplexing:

e Only one channel program is required to locate a disk record and

transfer the data, thereby eliminating a standalone-seek I/0
interruption and the I/0 supervisor processing required to schedule
a data transfer channel program. A channel-available interruption
may occur, however, during channel program execution.

The channel and disk control unit are free during arm motion and
rotational positioning, allowing other I/0 operations on that
control unit and channel to be overlapped with the seek and
rotational positioning operations in progress. Implementation of
rnultiple requesting permits a disk control unit to control
concurrent execution of multiple RPS channel programs in order to
overlap seek and set sector operations for its drives.

Performance improvement gains achieved on a block multiplexer channel

are not due entirely to the fact that direct access device rotational
delays are overlapped. Also important is the ability to initiate seek
commands a number of milliseconds earlier, because a block multiplexer
channel is free. The initiation of standalone seeks on a selector
channel is delayed during search and data transfer operations. On a
block multiplexer channel, seeks can be initiated during rotational
positioning, since the channel and disk control unit are not busy.

4

10:30 BLOCK MULTIPLEXING OPERATIONS WITH FIXED BLOCK ARCHITECTURE
DEVICES

FIXED BLOCK ARCHITECTURE DESIGN

Fixed block architecture (FBA) devices are specifically designed to
take advantage of the block multiplexing capability. They have
rotational position sensing capability like 33XX count, key, data (CKD)
format direct access devices and, therefore, offer all the advantages of
the RPS capability, as discussed in Section 10:25.

However, FBA devices provide advantages over count, key, data
devices. Specifically, they require a less costly storage control
function to control their operation and they facilitate data mobility
via their utilization of device-independent channel programs. These
advantages are discussed in more detail at the end of this subsection.

TRACK FORMATTING

Data is recorded in fixed-length blocks of 512 bytes on the tracks of
an FBA disk device instead of in the self-formatting record format used
for CKD disk devices. Primary data blocks are addressed using a linear
binary value (relative block address) that ranges from 0 to N-1, where N
is the number of fixed-length blocks on the device. These relative
block addresses are used in the channel programs for FBA architecture
devices.

The basic unit of transfer between an FBA device and the chanhel is
the addressable, fixed-length block, one or more of which can be read or
written using a single read or write command. For 3370 disks, for
example, an addressable block is physically recorded on a track as two
fields separated by a small gap. The first field is a fixed-length
block control field, which is an identification area for the fixed-
length data block field of 512 bytes that follows.

The identification area provides control information for the data
block (primary or alternate block, nondefective or defective block,
alternate assigned, for example) and uniquely identifies the data block
in terms of its physical location on the direct access device (contains
the cylinder, head, and block number of the block). The identification
field also contains error detection bytes while the data block field
contains error detection and correction bytes.

A data set/file on an FBA device, whether contained on one or
multiple extents or one or more disk wvolumes, is also addressed in
channel programs via relative block addresses.

Alternate data blocks that can be assigned to replace defective
primary blocks can be placed anywhere on the disk device and do not have
to be located in the last cylinders. Alternates are assigned on a block
basis, instead of on the track basis used for CKD devices.

COMMAND SET

While the command set for count, key, data format disks consists of
over 70 commands, only 16 commands are defined to contrcl the operation
of FBA disk devices. Four of these commands (DEFINE EXTENT, LOCATE,
READ, and WRITE) are used for all normal (nondiagnostic) read and write
operations. Set file mask, seek, search, and sector commands, such as
those used for CKD devices, are not defined for protection and record
positioning in fixed block architecture. The DEFINE EXTENT and LOCATE
control commands are provided in place of these commands.

75

As a result of the differences in the command sets utilized by CKD
and FBA devices, channel programs for CKD and FBA disk devices are not
compatible.

The following command-chained channel program is used to read or
write one or more data blocks contained on an FBA device:

Command

Flag

Specification

DEFINE EXTENT CC

Command types that can be
used, bounds of the extent
(relative to the origin of
the data set) that can be
accessed in the remainder
of the channel program,
and location of the extent
(relative to the beginning
of the disk device)

Function

Provides extent
location and
protection information
used by the storage
control function

LOCATE CC Location of the first data Causes required
block to be accessed seeking and rotational
(relative to the beginning positioning to first
of the data set), number data block to be
of data blocks to be accessed and orients
processed, and the specific the storage control
reads/write operation to be function for a specific
performed when the read or write
following command is operation. Storage
executed control function is
disconnected from
channel during
execution of
LOCATE (seek and
block locate)
functions.
READ/WRITE I/0 buffer in processor Causes the transfer of

storage and number of
bytes to be transferred

data for the operation
specified in the LOCATE
command. One or more
data blocks are
transferred between the
disk device and the
processor via a
channel.

The DEFINE EXTENT command transfers 16 bytes of data to the storage

control function.

information.

DEFINE EXTENT specifies protection mask and extent

The mask byte is used to inhibit or permit the use of

certain commands in the balance of the channel program and to indicate

that the data area or CE area is to be accessed.

Execution of all write

operations (formatting and nonformatting writes) and/or diagnostic
commands (DIAGNOSTIC CONTROL and DIAGNOSTIC SENSE) can be inhibited or

permitted.

Format write subcommands (Format Defective Block operations)

can also be inhibited separately from normal write commands.

A block size field is provided in the DEFINE EXTENT command for use

in calculating the number of bytes to be transferred.

Block size must

be 512 or 0, where 0 is interpreted as a default for 512.

The extent information in a DEFINE EXTENT command consists of the
range of data blocks that can be accessed by the subsequent chained
commands in the channel program and the location of the first block of

the extent on the disk device.

76

The beginning and ending blocks of the

extent of data that can be accessed are defined relative to the data set
itself. .

For example, if a data set consists of 300 blocks contained in two
extents of 200 blocks and 100 blocks and the second extent is to be
accessed, the DEFINE EXTENT command would specify blocks 200 to 299.
The actual location on the direct access device of the beginning of the
second extent is specified in terms of a relative block address. Thus,
if the second extent begins with the thousandth block on the disk
device, the DEFINE EXTENT command would specify 999 as the location of
the first block of the second extent.

If the parameters specified in the DEFINE' EXTENT command are valid,
they are saved by the storage control function for use in processing the
balance of the channel program. The parameters are retained until the
channel program completes. Only one DEFINE EXTENT command is permitted
in a channel program. There is no disconnection from the channel during
the execution of a DEFINE EXTENT command.

The DEFINE EXTENT command includes the functions of the SET FILE MASK
command for CKD disk devices in that it permits or inhibits the
operation of certain commands. However, DEFINE EXTENT also specifies
data set/file protection information that is utilized by the storage
control function during channel program execution. The entire range of
data to be accessed can be specified regardless of internal device
boundaries. For CKD devices, the protection specification is limited to
a track or cylinder boundary.

The LOCATE command transfers eight bytes of data to the storage
control function. It specifies the location and amount of data to be
processed and the specific type of read or write operation (subcommand)
that is to be performed when the following data transfer command is
executed. LOCATE also establishes read or write orientation for the
control function. It must be command-chained from a DEFINE EXTENT or
READ IPL command. The latter command is provided to perform the initial
program load function from disk.

The LOCATE command specifies the first or only data block to be
processed by the subsequent commands in the channel program relative to
the beginning of the data set and indicates the number of sequential
data blocks to be processed. Access to a maximum of 65,535 consecutive
blocks can be specified in a LOCATE command. LOCATE also specifies a .
subcommand: Read Data, Read Replicated Data, Write Data, Write and
Check Data, or Format Defective Block. .

For all subcommands except Format Defective Block, the subcommand
specified in a LOCATE command is actually executed when the READ or
WRITE command is processed. When Format Defective Block is specified,
it is executed as part of LOCATE command processing and a read or write
command does not follow the LOCATE command. '

The storage control function checks the validity of the LOCATE
parameters (all blocks to be, accessed are within the defined extent,
command type is not inhibited, etc.) and then performs the required seek
and record positioning functions. The storage control function is also
oriented for the specified read or write operatlon.‘

In order to position the ac¢cess mechanism to the block specified in
the LOCATE command, the storage control function calculates the actual
Tocation of the required block on the direct access device (cylinder, :
head, and block numbers) utilizing the relative block addresses provided
in the DEFINE EXTENT and LOCATE commands and the physical
characteristics of the disk device being accessed. The number of bytes
to be transferred is also calculated by the storage control function -
using the block size of 512 and block count value.

77

Disconnection from the channel occurs as soon as the data specified
by the LOCATE command is transferred to the storage control function.
The channel then becomes available for the initiation of another channel
program or the resumption of a previously initiated channel program.

Execution of the LOCATE command is completed as soon as the storage
control function has completed the required seeking and record
positioning. The storage control function tries to reconnect to the
channel to execute the data transfer command after LOCATE. If the
channel is not available, the storage control function will reposition
to the required block and again request reconnection.

The LOCATE command combines the functions of the SEEK and SET SECTOR
commands utilized with CKD devices that have the rotational position
sensing feature. LOCATE provides the advantages of this feature and
eliminates programmed seek address and sector address calculations.
Since data blocks are fixed in size, sector location can always be
calculated for an FBA device.

The READ or WRITE command in an FBA channel program causes the actual
execution of the read or write subcommand specified in the LOCATE
command. A READ or WRITE command must be command chained from a LOCATE
command. READ or WRITE commands cannot be command chained from other
READ or WRITE commands, respectively, but READ/WRITE commands can be
data-chained when the chaining occurs between data blocks. If data
chaining of READ or WRITE commands is attempted within a data block, an
overrun condition occurs.

Commands that enable a program to determine the device type and its
physical characteristics are also defined for FBA disk devices. The
SENSE I/0 command enables a program to obtain the storage control
function type and model number and the disk device type and model
number. The READ DEVICE CHARACTERISTICS command causes the storage
control function to present 32 bytes of device characteristics to a
program (number of blocks on the device, number of blocks on a track,
etc.).

As for CKD devices attached to a 3830 Storage Control, 24 bytes of
sense data are provided for FBA devices and their storage control
function. These bytes provide information required by the FBA error
recovery routine and statistical usage information. The READ AND RESET
BUFFERED LOG command, also provided for 33XX CKD devices that attach to
3830 storage Control, is provided to enable the contents of the
statistical usage counters to be placed in processor storage at a time
other than when a counter overflows (at the end of processing for the
day, for example).

Two diagnostic commands, DIAGNOSTIC CONTROL and DIAGNOSTIC SENSE, are

defined. The exact functions defined for the diagnostic commands are
device-dependent.

Format Defective Block

The Format Defective Block subcommand is used to cause the storage
control function to locate an available alternate block on the device
and assign it to the specified defective primary block. The storage
control function automatically does all the positioning required to seek
to the alternate cylinder location, locate a nondefective alternate
block, and establish forward and backward pointers (within the block
identification fields) between the defective primary block and its
assigned alternate. - '

The LOCATE command terminates with an operation incomplete unit check
condition if no alternate block is available for assignwent. When a

78

defective primary with an alternate assigned block is encountered during
a read or write operation, the storage control function automatically
seeks and positions to the alternate block. If additional blocks after
the defective primary blocks are to be processed by the executing
channel program, the storage control function automatically repositions
the access mechanism to the next block after the defective primary’ block
when processing of the alternate block is completed.

READ AND WRITE COMMAND EXECUTION
The following indicates how a READ or WRITE command executes,

depending on the subcommand specified in the LOCATE command that
precedes it.

Read Data and Write Data

The Read Data and Write Data subcommands function in a similar
manner. Read Data prepares the control function to transfer one or more
data blocks from disk to processor storage while Write Data prepares the
control function to transfer one or more data blocks to disk from
processor storage. When a READ/WRITE command is received after a LOCATE
command that specifies Read Data or Write Data, the control function
reads the next ID field encountered to verify that the positioning done
by the LOCATE command is correct. If so, reading or writing of data
block fields begins.

Reading or writing continues until the block count reaches zero. If
the count in a READ or WRITE command is less than the count calculated
from the LOCATE command block count specification, actual data transfer
between processor storage and the disk device terminates when the count
in the command reaches zero. Command execution completes when the block
count reaches zero. For a Write Data operation, the storage control
function writes zeros to any unfilled and/or remaining blocks until the
block count reaches zero. If the count in the READ or WRITE command is
greater than the calculated block count, data transfer terminates when
the calculated block count reaches zero.

The data blocks read or written during execution of a READ or WRITE
command can span cylinder as well as track boundaries. If the end of a
cylinder is reached before the block count reaches zero, the storage
control function calculates the block identification (cylinder, head,
and block numbers) of the first block of the next cylinder, repositions
the access mechanism to the next required block, and continues the data
transfer operation. For CKD devices, a cylinder boundary cannot be
crossed during a single data transfer operation and the cr0531ng of
cylinder boundaries must be programmed.

!

N

A WRITE command that follows a LOCATE command with the Write and
Check Data subcommand specified functions like a WRITE command for which
the Write Data subcommand was specified, with one exception. After the
data is written, the storage control function automatically verifies
that the data has been written correctly. That is, when the data
transfer completes, the storage control function reinitializes the block
count, and initiates repositioning to the first data block written.

Write and Check Data

When the correct position is reached fthe storage control function
reads the data blocks written but does nqt transfer any data to the
channel. Checking is accomplished usinggthe error detection and
correction bytes that are at the end of each data block. The checking
operation terminates when the block count reaches zero.

79

Read Replicated Data

The Read Replicated Data subcommand is provided to read one or more
blocks of data from a range of replicated data, that is, from a range of
data that contains the same data duplicated some number of times (such
. as a sequence set index record of the index for a VSAM data set).

The LOCATE command specifies the number of blocks to read (number of
blocks required to contain the data that is replicated), the replication
count, and the location of the first unit of replicated data relative to
the beginning of the data set. The replication count indicates the
number of blocks contained in the range of data. It is the product of
the block count and the number of times the data unit is replicated.

When a LOCATE command specifies the Read Replicated Data subcommand,
the storage control function can position the access mechanism to the
first block of any unit of the replicated data. The unit chosen is the
one that will minimize total access time, that is, the unit closest to
the current position of the access mechanism. When the READ command for
which Read Replicated Data was specified is executed, the unit of
replicated data is read just as for a READ command for which the Read
Data subcommand was specified.

DIFFERENCES BETWEEN FBA AND CKD CHANNEL PROGRAMS

The following summarizes the basic differences between the content
and operation of channel programs for FBA devices and those for CKD
devices with the rotational position sensing feature attached to 3830
Storage Control:

e Disk channel programs for FBA devices are simplified. Any normal
read/write operation involving multiple (up to 65,535) data blocks
can be accomplished using three commands, whereas to utilize
rotational position sensing for CKD devices, a basic read or write
operation involving only one physical record with file protection
specified requires a minimum of six commands (a SET FILE MASK plus
the five commands shown in Section 10:25). A write with
verification for CKD devices requires additional commands, and the
reading or writing of multiple physical records requires one
additional read or write command per record if the Read Multiple
Count-Key-Data command is not available. This command, however, is
limited to reading multiple records on only one track of a CKD
device.

e Programming is simplified for FBA devices because more functions are
performed by the storage control function than for count, key, data
devices. Specifically, seek and sector addresses are calculated by
the storage control function, which also handles cylinder switching
during channel program execution (eliminating the need to switch
cylinders by programming for sequential processing).

e The protection checking specification for FBA devices is oriented to
logical boundaries (extents of data sets) and is not limited by
device (track and cylinder) boundaries, as it is for CKD devices.

e Alternate blocks can be located anywhere on a disk volume for FBA
devices. Disk designers can place alternate blocks for a specific
device in locations that minimize access mechanism movement. For
CKD devices, by programming convention, alternate tracks are located
at the end of the volume. (Positioning to, and returning from, an
alternate blocks/track location during processing is automatically
performed by the storage control function for both FBA and 33XX CKD
devices.) The storage control function performs alternate block

80

assignment functions for FBA devices. For CKD devices, locating and
assigning an alternate track is a programmed procedure.

ADVANTAGES

FBA disk devices provide the following two major advantages over CKD
disk devices:

e FBA disk devices can be controlled by a storage control function
that is significantly less costly than that required to control CKD
devices. A storage control function that handles only disk devices
with fixed-size data blocks does not have to be as complex as one
that handles disks with self-formatting records.

For example, during channel program execution, the storage control
function for a CKD device must be able to obtain a read or write CCW
from processor storage, determine the exact operation to be
performed and the location of the required microcode, and orient
itself for reading or writing in the time interval available for
crossing the gap between a count or key area and the data area. By
contrast, the storage control function for an FBA device determines
the operation to be performed, locates the required microcode, and
establishes read or write orientation during processing of the
LOCATE command before the time-dependent connection with the device
is established.

e The programming required to support FBA devices is independent of
device type and thus facilitates data mobility. Only one FBA access
method is required to handle any number of different FBA devices,
because channel programs contain only relative block addresses and
are independent of device type characteristics (number of cylinders
in the volume, number of tracks per cylinder, number of blocks per
track, etc.). For CKD devices, disk access methods are device-type-
dependent and device independence may be achieved within a
processing program, in an 0S/VS environment, for example, only by
dynamically loading the specific disk access method required when
processing of the disk device begins.

The device independence provided by FBA devices permits an
installation to move from one FBA direct access device type to
another (for example, from a 4331 Processor with 3310 Direct Access
Storage to a 4341 Processor with 3370 Direct Access Storage) without
changing the operating system being used, processing programs that
access the disks, or job control statements for these programs
solely for the purpose of handling the new disk device type.

Device independence reduces maintenance costs for operating system
control programs, program products, and user-written disk access
methods and error recovery procedures. Once support of FBA devices
is added to a program, it supports all FBA devices without the need
for modifications.

10:35 STANDARD AND OPTIONAL FEATURES

STANDARD FEATURES

The following are standard features of the 4341 Processor and are
operative for both System/370 and ECPS:VSE modes:

e Instruction set that includes binary, decimal, and floating-point

(including extended precision) arithmetic instructions, the new
general purpose instructions, conditional swapping instructions, PSW

81

82

key-handling instructions, certain new control-program-type
instructions, and the instructions required to handle new standard
features. Standard instructions for the 4341 Processor (that are
not available for Models 50 and 65) are the ECPS: VSE-mode-only
1nstuct10ns and the following:

COMPARE AND SWAP

COMPARE DOUBLE AND SWAP

COMPARE LOGICAL CHARACTERS UNDER MASK

COMPARE LOGICAL LONG
*HALT DEVICE

INSERT CHARACTERS UNDER MASK
*INSERT PSW KEY
*LOAD CONTROL

MONITOR CALL

MOVE INVERSE

MOVE LONG.
*RESET REFERENCE BIT
*SET CLOCK
*SET CLOCK COMPARATOR
*#*SET CPU TIMER :
*SET PSW KEY FROM ADDRESS

SHIFT AND ROUND DECIMAL
*STORE CHANNEL ID

STORE CHARACTERS UNDER MASK

STORE CLOCK
*STORE CLOCK COMPARATOR
*STORE CONTROL
*STORE CPU ID
*STORE CPU TIMER
*STORE THEN AND SYSTEM MASK
*STORE THEN OR SYSTEM MASK

(START I/0 FAST RELEASE, a privileged instruction functionally
inplemented in certain System/370 processors, is executed as a
START I/0 in the 4341 Processor because it provides no advantage as a
result of the utilization of the instruction proce381ng
function for I/0 initialization.)

BC and EC modes of operation and control registers
Monitoring feature

Program event recording

Interval timer (3.3-ms resolution)

Time-of-day clock

CPU timer and clock comparator

Reference and change recording

Expanded machine check interruption class
Interruption for SSM instruction

Reloadable control storage

ECC on processor storage

Instruction retry

Byte-oriented operands

Store and fetch protection

External signals

ECPS:VSl

ECPS:VM/370

High-speed buffer storage (8K)

Support processor subsystem

Channel group 1 (which includes one byte multiplexer and two block
multiplexer channels)

128 to 1024 UCWs in increments of 32

Channel retry data in a limited channel logout area

*Privileged instruction

The following are standard features that operate only when System/370
mode is in effect:

e Dynamic address translation to perform address translation for
instruction addresses but not CCW addresses (including the PURGE TLB
and LOAD REAL ADDRESS instructions)

¢ Channel Indirect Data Addressing

e Store Status

The following are standard features that operate only when ECPS:VSE
mode is in effect:

e Internal mapping function to perform address translation for
instruction and channel program addresses

e Page control functions that include page control exceptions, page
description bits, and capacity counts

® Page control privileged instructions:

CLEAR PAGE

CONNECT PAGE
DECONFIGURE PAGE
DISCONNECT PAGE
INSERT PAGE BITS
LOAD FRAME INDEX
MAKE ADDRESSABLE
MAKE UNADDRESSABLE
SET PAGE BITS

STORE CAPACITY COUNTS

e Machine save function (including the RETRIEVE STATUS AND BLOCK
privileged instruction)

OPTIONAL FEATURES

Optional features for the 4341 Pfocessor, all of which can be field-
installed and can operate with System/370 or ECPS:VSE mode in effect,
are:

e 3278 Model 2A Display Console with operator control panel
{(includes display and printer-keyboard modes)--required feature

e Block Multiplexer Channels, Additional (channel group 2, which
includes three block multiplexer channels)

e Channel Control Unit Positions, Additional (provides for attachment
and automatic powering of 24 additiomnal control units for a total
of 48)

¢ Channel-to-Channel Adapter (one maximum)

* Remote Support Facility (specify feature)-no charge

83

SECTION 12: OPERATOR CONSOLE

12:05 GENERAL DESCRIPTION

A display console for system control and operator/operating system
communication is reguired for the 4341 Processor. The 1052 Model 7
Printer-Keyboard (for System/360 models) and 3210/3215 Console Printerxr-
Keyboards (for system/370 models) cannot be attached to the 4341
Processor. A display console provides faster display than a typewriter
keyboard and the console for the 4341 Processor offers functions not
available for the typewriter consoles for System/360 and System/370.

The operator console is used to (1) manually control operation of the
4341 Processor when the console is in manual mode, (2) communicate with
the operating system when the console is in system mode, and (3) perform
diagnostic operations when CE mode is in effect. CE mode is made
effective when the CE switch on the CE panel located within the frames
of the 4341 Processor is turned on. The cable connecting the operator
console to the 4341 Processor can be a maximum of 6 meters (20 feet) in
length.

The operator console for the 4341 Processor is the 3278 Model 2a
Display Console (cathode ray tube for displaying data and keyboard for
entering data). The 3278 Model 2A is a 3278 Model 2 with modlflcatlons
to the function of several of its keys to support console-type.
operations. The primary 3278 Model 2A has an operator control panel
mounted on it. This control panel cannot be mounted.on the other
optional 3278 Model 2aA dlsplays that can be natively attached to the
4341 Processor.

The 3278 Model 2A Display console has twelve program function keys.
A light pen, such as that for the Systems/370 Model 158 display console,
is not provided for the 3278 Model 2A console. The 3278 Model 2A is
also used as the operator console for the 4331 Processor.

The audible alarm, which is sounded under program control, is
standard on the 3278 Model 2A.. The securlty keylock feature is
optional. When the security key is in the locked position, the console
becomes inoperative, with the keyboard locked and the screen blank. A
keyboard-locked message appears on line 25 of the display.

The screen of the operator console can simultaneously display 25
lines of 80 characters each. Lines 21 to 25 on the screen cannot be
used for operator-to-operating system communication. Predefined
displays are provided to enable the operator to select and execute -
manual functions (such as resets, IPLs, address compares, etc.) that for
System/360 processors are performed using a control panel on the
processor. :

OPERATOR/VUPERATING SYSTEM COMMUNICATION MODES

The 3278 Model 2A Display Console for the 4341 Processor has two
standard modes of operation for operator/operating system communication:
display and printer-keyboard. Printer~keyboard mode is provided to
enable the operator console to emulate 1052, 3210, and 3215 printer-
keyboards. Printer~keyboard mode must be used when an operatlng systen
that uses a 1052 or 3210/3215 as the operator console executes in a 4341
Processor.

84

Display Mode

For display mode, the operator console appears to be a 3277 display
attached to a 3272 Model 2 Control Unit. The keyboard is used for input
and the cathode ray tube for output. The first 20 lines of the screen
are used by the operator and operating system. Optionally, a natively
attached 3287 Model 1 Printer (80 characters per second) or 3287 Model 2
Printer (120 characters per second) can be used for hard-copy output.

The display/keyboard combination and console printer, if present, are
addressed separately when display mode is in effect. While addresses in
the range of 000 to OEF can be utilized, for compatibility with
System/370 processors the preferred addresses for the display/keyboard
are X'01lE' and X'009' and for the 3287 Printer, X°012' and X'015".

DCs/vs, DOS/VSE, 0S/vSl, and VM/370 support display mode operations
for the 3278 Model 2A. The 3287 Printer is supported for hard-copy
during display mode operations by DOS/VSE, 0S/VSl, and VM/370. The
operator can also use the copy key, when the console is in manual mode,
to write the contents of the display console to the hard-copy printer.
This copy capability must be established using the program load display.

For display mode, the first 20 lines of the screen are the system
area while the next 4 lines are the system status area. Line 25 is used
as a console indicator area. The system area is used for communication
between the operator and the operating system and for displays
associated with manual operations performed by the operator or customer
engineer. The system status area is used to display certain status
information about the processor and messages for the customer engineer.
The console indicator area displays status data regarding the screen and
keykoard.

Printer-Keyboard Mode

For printer-keyboard mode, the display console appears to the
processor as a 1052 Printer-Keyboard if a System/360 operating system is
being used or as a 3210/3215 Console Printer-Keyboard if a Systems/370
operating system is being used. The keyboard is used for input and the
cathode ray tube is used for output. A natively attached 3287 Model 1
or 2 Printer is optional for hard-copy output. Device address X'01F*' or
X" 009" would normally be used for the display/keyboard.

For printer-keyboard mode, the message area for operator-to-operating
system communication consists of lines 1 to 18. Lines 19 and 20 are the
operator input area that displays the data the operator keys in (up to
126 characters). Lines 21 to 25 are used for the same functions as when
display mode is in effect.

In this mode, the screen is treated like a printer-keyboard device.
Messages appear on the screen in successive lines until the screen
becomes full. Then the top six lines are deleted automatically by the
hardware and the remaining lines are moved up to leave six blank lines
in positions 13 to 18. Since the operator cannot control the contents
of the screen, as with display mode, the 3287 Printer is recommended for
hard-copy output. '

In printer-keyboard mode, the 3278 Model 2A Display Console is
controlled using 3210/3215 commands. The displays/keyboard and optional
3287 Printer have the same address and the same data is automatically
printed on the 3287 as is displayed on the screen. A maximum of two of
the natively attached 3287 Model 2A Display Consoles can be operating in
printer-keyboard mode. Each can have an associated hard-copy 3287
Printer.

85

Sys

tem Status Area

Lines 21 to 24 of the operator console screen are used as the system

status area. This area appears on all operator and maintenance

dis

plays. ©ILine 21 shows certain status information about the processor,

line 22 shows modes in effect that the operator established via a manual

ope

ration, and lines 23 and 24 are reserved for customer engineer use.

The following is indicated on lines 21 and 22 of the operator

console:

eng

86

Running when the instruction processing function is operating or
there is I/0 activity

Wait state when the instruction processing function is in the wait
state

Manual state when the instruction processing function is in the
stopped state

Test state when a control function is not operating in its normal
state or when a maintenance function is being performed

Load state during a program (new PSW) load
Machine save function successfully completed

BC or EC mode of operation in effect when System/370 mode is
operative

Mode in effect: System/370 or ECPS:VSE

Whether the interval timer is enabled or disabled

The condition that will cause the processor to stop execution

A machine check occurred that caused the processor to stop operating
When the processor is in the stopped state, the contents of the
related address. During processor operation, this indicator does
not. change.

Addressing state for the mode in effect. For System/370 mode, the
addressing state is virtual (V) when DAT is enabled and real (R)
when DAT is disabled. For ECPS:VSE mode, the addressing state is
always virtual.

The setting of the rate control: process, instruction step, and,
for CE mode, word step or clock step

The check control setting in effect
Time-of~day clock state for setting (enabled or secure)

The setting of the address compare control: normal or stop for
normal (non-CE mode) operations

The area in which address compares are to be made (any reference,
1I/0 reference, processor storage, instruction counter)

The address or the data value currently set for an address compare
stop

Lines 23 and 24 are designed to be used primarily by customer
ineers. For example, they contain such items as the reference code

that is generated when a hardware error occurs (see Séction 50),
messages from the support processor, and the identifier of the last
module loaded into the support processoxr.

Console Indicator Area

Information can be displayed on line 25 of the screen only by the
support processor. It can contain one of the following indications:

¢ MANUAL CONTROL to indicate the display is currently operating in
manual mode and is not available to the operating system

e DISPLAY MODE or PTR/KYBD MODE to indicate the display console is
operating in display or printer-keyboard mode, respectively.

e INSERT when the INS key is pressed to place the console in insert
mode. This indication is removed when the reset key is pressed.

e INHIBIT when all keys except RESET, START, STOP, and INTR are
disabled because the operator tried to perform a certain invalid
function, such as enter data in a protected area of the screen.

operator can press the RESET key to clear the condition or it can be

cleared via the programming.

e PRT-BUSY when the printer for which a hard-copy operation was
requested via the copy key is busy. When the printer becomes
available or the RESET key is pressed, the indicator is removed.

e PRT-CHECK when the printer for which a hard-copy operation was

requested is out of paper, out of order, or not attached. The RESET

key is used to remove the indication.

e PRT-INV REQ when operator intervention is required for the hard-copy

printer (such as when end of forms occurs). The indicator is
removed when the RESET key is pressed.

¢ DISCONNECTED to indicate the display console is not logically

connected to the 4341 Processor. (No unit address has been assigned

to the console via the program load display.)

When printer-keyboard mode is in effect, the following indicators can

be displayed in position 47 to 80 of line 25:

¢ PROCEED when a READ command is in process. This indicator informs
the operator that data can be keyed in to the input area.

e REQUEST when the REQ key is pressed and the attention status is
stacked because the console is busy executing a command. The
indicator is cleared when the current command completes and the
attention status is presented to the channel.

e ALARM when the audible alarm is sounded by the execution of a
command

o INTV-REQD when the 3287 Printer being used for hard-copy output

becomes not ready (power is turned off, paper runs out, error
condition exists, etc.)

OPERATOR CONTROL PANEL P

The operator control panel is located on the keyboard of the primary

3278 Model 2A Display Console. It contains the following pushbutton
controls and indicators:

87

e Power on/IML pushbutton. When this pushbutton is pressed, a power
on of the support processor subsystem and IML of the support
processor occur. At the successful completion of these operations,
the balance of the 4341 Processor is powered on. An IML of
instruction processing function microcode occurs automatically if
the operator has specified an automatic IML after power on using the
program load display (see discussion under "Program Load Display" in
Section 12:10).

Then a power-cn reset of the 4341 Processor (clear reset and time-
of-day clock reset) is performed. The processor is placed in the
stopped state and the program load display is shown on the operator
console. When a power on is not successful, an IML and reset do not
occur. This pushbutton is also used to perform an IML of the
support processor only when power is already on.

e Power off pushbutton. This pushbutton is used to remove power from
the 4341 Processor under control of the power-off sequencing
microcode that is resident in the support processor.

¢ I/0 interface control switch. When the optional Channel-to-Channel
Adapter is installed, this switch is used to enable and disable the
logical interface to the other processor to which the adapter is
attached.

¢ Disable indicator. When the I/O interface control switch is in the
disable position, this indicator is 1lit to indicate the Channel-to-
Channel Adapter logical interface to the other processor is not
enabled. When this indicator is 1lit, the operator can power down
the 4341 Processor without loss of data or interruption of the other
processor. The power off pushbutton should not be pressed unless
the disable indicator is on.

e Power in process indicator. This light turns on as soon as the
power on/IML pushbutton is pressed and stays on until power-on
sequencing of all system components is successfully completed, at
which time it is turned off.

e Power complete indicator. When 1lit, this light indicates power is
on. It is turned on at the successful completion of a power-on
sequence when the power in process indicator is turned off.

¢ Basic check indicator. When this indicator is 1lit, a hardware
malfunction exists in the hardwired power sequence or the display
console.

o System indicator. This indicator is lit whenever instruction
processing is taking place.

® Wait indicator. This indicator is 1lit when instruction execution is
not occurring because the current PSW has the wait bit on.

e Lamp test pushbutton. When pressed, this pushbutton causes all
functional indicator bulbs on the operator®'s control panel to be l1lit
and is used for testing purposes.
KEYBOARD

There are 75 keys on the keyboard. Certain keys have a normal and an
alternate function. The alternate function is selected by holding the
ALT key down and pressing the desired functional key.

In addition to alphabetic, numeric, cursor control, and keyboard
control, the following keys are provided:

88

e MODE SEL/DIAG. This key is used to initiate use of the display
screen for manual operations instead of operator-to-operating system
communication (switch from system to manual mode). Activation of
the mode select function invokes a general selection display that
lists the manual functions the operator can perform. The specific
mode selection display shown depends on whether System/370 or
ECPS:VSE mode is in effect. Activation of the DIAG function causes
a diagnostic program (the test case monitor discussed in Section
50:15) to be loaded into the support processor and executed.

o CHG DPLY. This key causes a switch between system and manual modes
and a switch in the display currently being shown.

¢ CNCL (PA2). When system mode is in effect, this key causes an
attention interruption (PA2 type) to be generated for display mode
operations or a unit exception when printer-keyboard mode is in
effect. The key is inactive when manual mode is in effect.

e INTR/LINE DISC. When the INTR function is selected, an external
interruption occurss; The LINE DISC function is used to terminate
operation of the Remote Support Facility.

e REQ (PAl)/COMM REQ. When the REQ function is selected, an attention
interruption (PAl type) is generated for display mode. An attention
interruption without the PAl indication is generated when printer-
keyboard mode is in effect. The COMM REQ function is used to
request communication between a local and remote customer engineer
when the Remote Support Facility is active.

e COPY. When this key is pressed, the contents of lines 1 through 24
of the current display are written to the locally attached 3287 that
has been designated to receive copy-key data. This key is
functional only when manual mode is in effect for either display or
printer-keybcard mode.

e START and STOP keys. These keys are use to start and stop
instruction processing.

e Page up and page down keys. These keys increase and decrease
addresses during manual operations. The increment/decrement depends
on the operation being performed. ¢ ’

e pProgram function keys 1 to 12. These keys are effective dnly whene
the ALT key is pressed. The function performed by each of these - -
keys is defined via programmlng.v . : ’

e SP/MO key (alternate function for the ERASE EOF key). This support
processor manual operations key is active only when the CE mode is
active and is used to invoke SPIL manual operations (read, display,
modify, instruction step, etc.) for support processor mlcrocode for
debugging purposes.

DISPLAY CONTROLS AND INDICATORS

Certain control switches and indicators are contalned on the dlSplay
console (to the left and right of the screen). These include the
follow1ng.' '

e A power on/off switch, and a power on/off indicator to control power
to the display and indicate the current power condition

¢ A switch to cause both upper- and lowercase characters or only
uppercase characters to be displayed on the screen

A
W

89

¢ A normal/test mode switch that establishes normal operating mode for
controlling system processing operations or a test mode that can be
used by the operator to execute problem detexrmination procedures
when the-display console malfunctions. Three different tests that
check for correct operation of various display console hardware can
be executed in test mode.

¢ An audible alarm control that is used to raise or lower the volume
of the sound produced by the program-controlled audible alarm

e The screen contrast and screen brightness control knobs that permit
the operator to adjust the character display for comfortable viewing

CONFIGURATION DISPLAY

The configuration display is designed to be used by the customer
engineer and can be selected from the general selection display only
when CE mode is in effect. The configuration display is used to select
the system configuration display, module transfer display, and three
displays associated with the Remote Support Facility (discussed in
Section 50:15).

Configuration data about the 4341 Processor is displayed when the
system configuration display is selected. The customer engineer uses
this display to change configuration data. The entered data is stored
on the system diskette in a configuration record. An IML must be
performed whenever the configuration record is changed.

The following configuration data can be entered using the system
configuration display:

e The part number of the system diskette and the date and number of
its engineering change level

e Processor storage size
e Console language
¢ Number of channels installed

e Addresses of the natively attached 3278 Model 2A Display Consoles
and 3287 Model 1 or 2 Printers and the printers that are to be used
for hard copy

¢ Channel-to-Channel Adapter is installed

e I/0 power-up timeout (length of time for all I/O devices with their
processor switch in the remote position to power on)

The system configuration display also lists the model and serial
number of the 4341 Processor and indicates which natively attached 3278
Model 2A consoles and 3287 Printers are actually operational. This data
cannot be changed by the customer engineer.

The module transfer display is used when a new system diskette is
sent to a 4341 Processor installation. This display enables the
customer engineer to copy the processor-dependent data, such as
configuration data, UCW directories, logout records, clock skew data,
and reference codes, from the existing system diskette to the new
diskette. .

920

12:10 OPERATOR DISPLAYS

Several displays are provided that enable the operator to perform
manual operations. The functions the operator can perform are listed in
the general selection display. Each function has a single or multiple-
character identification associated with it. The operator selects the
function to be performed by keying in the associated identification.
Certain functions have their own display associated with them while
others do not.

GENERAL SELECTION DISPLAY

The general selection display for operator use is shown in Figure
12.10.1. When CE mode is in effect, additional functions that can be
utilized only in CE mode are listed as well. The general selection
display is automatically displayed when manual mode operations are
initiated (via pressing of the CHG DPLY key, for example) and can be
selected by pressing the mode select key. This display can also be
selected from other operator displays.

The functions listed on the general selection display are the same
for System/370 and ECPS:VSE modes with one exception. When System/370
mode is in effect, the store status function is listed.. When ECPS:VSE
mode is in effect, the machine save function is listed instead of store
status. =

GENERAL SELECTION

PROGRAM IOAD

COMPARE/TRACE
CHECK CONTROL
OPERATION RATE
DISPLAY/ALTER

Y TIME-OF-DAY SWITCH
J INTERVAL TIMER SWITCH
PROGR SYSTEM RESET PROGRAM
CLEAR SYSTEM RESET CLEAR
" RES RESTART PSW
SAVE STORE STATUS

CoXRPH

Z _RETURN TO PROG SYS

SELECTION:

/

The functions listed on the left-hand side of the general selection
display do not have a display associated with them. Each of the
functions listed on the right of the display dces have an associated
display. To perform a function, the operator first must display the
general selection display on the screen by pressing the MODE SEL key on
the operator console keyboard. The general selection display can also
be invoked by entering Q in the selection area of another display.

Figure 12.10.1. The general selection display

Before the general selection display is shown on the screen, the
current contents of the screen are saved. The current state of the
processor (running or in the stopped state) is not changed when the MODE
SEL key is pressed.

91

To perform the desired function, the operator enters its associated
identification and presses the enter key. For functions that do not
have a display, execution of the function occurs as soon as the enter
key is pressed. For functions that have a display, the associated
display replaces the general selection display on the screen when the
enter key is pressed.

The functions that have a display are those that require information
from the operator in order to be executed. If the operator knows the
data that must be supplied, this data can be entered together with the
identification of the function. When the enter key is pressed, the
associated display is shown and the function is executed. This is
called fast selection.

A validity check is performed on the identification and any supplied
data as soon as the enter key is pressed. The operator is notified if
the specification is incorrect.

Functions

The TIME-OF~-DAY SWITCH function is used to enable time-of-day clock
setting via the SET CLOCK instruction. TOD:ENBL is indicated on line 22
of the screen when this function is selected. After 6 seconds, the
ability to set the clock is automatically disabled. The INTERVAL TIMER
SWITCH function is used to enablesdisable the interval timer.

The program reset function causes a reset of the instruction
processing function and channels. Pending I/0 interruptions are cleared
and the processor is placed in the stopped state. The clear reset
function causes a program reset to be performed and clears the current
PSW, CPU timer, clock comparator, general registers, floating-point
registers, and processor storage to zero. In addition, control
registers are initialized to their reset values. The time-of-day clock
value is not altered.

The message "Selection Complete®™ appears on the general selection
display as soon as a program reset or clear reset function completes.
The operator can select another function (such as program load to re-IPL
the operating system) to resume processor operation. The CNCL or CHG
DPLY key must also be pressed to return control of the display screen to
the operating system.

When the restart pSW function is selected, program execution is
resumed using the PSW located at program processor storage location 0 if
the processor is in the stopped state. When the processor is in the
operating state, the current operation is completed, PSW switching
occurs (current PSW is stored at processor storage location 8, PSW at
location 0 becomes current PSW) after all enabled interruptions are
taken, and program execution continues, using the PSW located in
processor storage location 0. The operating system regains control of
the display screen. A restart cannot be performed if the processor is
in a check stopped state.

The store status function, not available for System/360 processors
and identical to the System/370 store status function, can be performed
only when System/370 mode is in effect and the processor is in the
stopped state. It is designed to be used after the processor enters a
disabled wait state after an uncorrectable error occurs. After a store
status is completed, the message SAVE appears on line 21 and the
processor is in the stopped state.

92

The contents of the following are placed in program processor storage
during a store status operation:

CPU timer - locations 216-223

Clock comparator - locations 224-231

Current PSW - locations 256-263
Floating~-point registers - locations 352-383
General registers - locations 384-447
Control registers - locations 448-511

The operator should perform the store status function to preserve
processor status after an error causes a processor halt and before
resetting the processor to load a standalone processor storage dump
program. Otherwise, the contents of these fields and registers at the
time the halt occurred are lost during the reset that is performed to
IPL the dump program. The standalone dump programs provided are
modified to obtain the system status information indicated. The store
status function should not be performed before SEREP is executed.

The machine save function, which is not available for System/360 or
System/370 processors, can be performed only when ECPS:VSE mode is in
effect and the processor is in the stopped state. It is designed to be
used instead of the store status function. When machine save is
invoked, 256 bytes of processor status and the contents of page 0
(addresses 0 to 2047 of processor storage) are saved in auxiliary
storage.

The processor status information saved is the following: CPU timer
and clock comparator values, current PSW contents, time-of-day clock
value, floating-point register contents, general register contents,
control register contents, processor identification (as for a STORE CPU
ID instruction), page capacity count, existing frame capacity count,
available frame capacity count, free frame capacity count, page bits for
page 0, reference and change bits for page 0, access control key for
page 0, fetch protection bit for page 0, and frame index for page O.

A reset, IPL, or power off that occurs during the machine save
procedure halts the procedure. When the machine save successfully
completes, the message SAVE appears on line 21.

The RETRIEVE STATUS AND PAGE instruction can be used to place the
saved processor status and page 0 contents in two specified locations in
processor storage (as long as the machine save completed successfully).
This instruction can be issued, for example, by a dump program that is
loaded after the machine save function is performed. Thus, the dump
program can obtain the processor status, contents of addresses 0 to
2047, and contents of any other processor storage locations desired at
the time of a hard failure. The processor should not be cleared before
the dump program is loaded.

The RETURN TO PROG SYS function switches the display to system mode
and causes the previously saved contents of the screen to be displayed.

PROGRAM LOAD DISPLAY

The program load display is used to specify certain default
parameters that are to be used either during IML or IPL, initiate an
IML, initiate an IPL, and set up certain operator console parameters.
The parameters controlled by this display are stored in the
configuration record on the system diskette. When the program load
display appears on the screen, it indicates the parameters selected
previously.

93

The program load display always appears automatically after a power
on when CE mode is not in effect and can be selected from the general
selection display. Any time a parameter is selected using the program
load display, it is written to the conflguratlon record and becomes
effective the next time an IML or IPL is performed, as appropriate,
unless changed by the operator.

The program load dlsplay is used to spec1fy the follow1ng parameters
for IML:

e Whether an IML of instruction processing function microcode is to
occur ‘automatically after a power on is performed (power on/IML
pushbutton is pressed). If an automatic IML is not performed, only
microcode for the support processor is loaded during a power on and
the operator must select the program load display and execute the
perform IML function to cause an IML of instruction processing
function microcode. The first IML that occurs after a power on
resets the entire 4341 Processor. Subsequent IMLs will reset
everything except the time-of-day clock.

e The mode, System/370 or ECPS:VSE, that is to be made effective.
When System/370 mode is selected, either ECPS:VS1l or ECPS:VM/370 can
be selected also.

¢ Whether or not microcode patches contained on the system diskette
are to be loaded. The customer engineer establishes the patches
that can be loaded.

The following IPL parameters can be specified using the program load
display:

¢ Address of the IPL device
e The type of clear to be performed: clear or initial program

The following parameters associated with the natively attached
consoles and printers are specified using the program load display:

¢ The mode, display or pr1nter~keyboard to be made effective for the
console(s)

e The addresses and types (console or hard-copy printer) of the
natively attached devices. T indicates a 3278 Model 2A console
while H indicates a 3287 Printer. When DSC is specified as an
address, the device is logically disconnected from the operating
system even. though it may be physically installed.

¢ The 3287 Printer(s) to be used for hard copy. For printer-keyboard
mode, a 3287 Printer is designated as a hard-copy device by -
assigning it to the same address as a 3278 Model 2A console. Only
two unique addresses can be specified for printer-keyboard mode.
For display mode, no two addresses can be the same. A hard-copy
printer is designated by specifying H for its type.

e The 3287 Printer that will receive the data contained on the
operator console display when the copy key is pressed. The copy key
function can also be made inoperative.

When the program load display appears on the screen, the device type
(display or printer) and assigned device address for each natively
attached device is displayed. The operator can use the display to
logically disconnect one of these devices, when it is malfunctioning,
for example, and change the address of a device. Thus, if the primary
operator console malfunctions during system operation, the operator can
stop the processor, select the program load display, logically

94

disconnect the malfunctioning operator console, and assign the address
of the malfunctioning console to another attached 3278 Model 2A display.
System operation can then be continued without a re-IPL.

Note also that during IML of the support processor, if the primary
operator console device is not functional, the microcode determines
whether there are any other natively attached 3278 Model 2Aa displays.
The next functional display found, if any, is assigned as the primary
operator console and the operator is notified that the display normally
used as the primary operator console is not functional.

If an error occurs during IML of the support processor or the
instruction processing function, the message IML ERROR appears on the
program load display and a reference code is also displayed. There is
no automatic re-IML after an error occurs. When an IML is successfully
completed, the message IML COMP appears on the program load display. If
the operator selects the perform IPL function and an IML has not been
performed, the message NO IML appears on the program load display.

DISPLAY/ALTER DISPLAY

The displays/alter display enables the operator and customer engineer
to display ands/or alter the contents of several items. Figure 12.10.2
shows the display/alter display for the operator.

The operator selects the item to be alteredsdisplayed by keying in
its associated one-character identification. When the operator requests
a display, it is shown on the right-hand portion of the screen while the
selection list remains on the left<«hand side.

DISPLAY/ALTER

GENERAL REGISTERS
CONTROL REGISTERS
FLOATING POINT REGISTERS
CURRENT PSW

KEY IN STORAGE

VIRTUAL STORAGE

REAL STORAGE

TRACE AREA

HEARYEO®

GENERAL SELECTION
RETURN TO PROG SYS SELECTION

N0

Figure 12.10.2. The display/alter display

The processor is stopped before any alter or display operation is
actually executed. To resume processor operations, the operator must
press the START key and the CHG DPLY key must be pressed to return
control of the screen to the operating system.

When ‘the virtual storage or real storage item is selected, 128 bytes
of storage can be displayed in hexadecimal. The page up and page down
" keys enable the operator to display the next 128 bytes after the current
display or the 128 bytes preceding the current display, respectively.

.95

For display operations, the translate function can be requested to cause
hexadecimal characters to be displayed as EBCDIC characters 1f they have
such a translation.

The trace area function can be selected to access the contents of the
instruction trace area that is located in auxiliary storage. This area
contains the addresses of the last 168 instructions that were exeécuted

when instruction tracing was activated using the address compare
"~ display.

CHECK CONTROL DISPLAY

The check control display, shown in Figure 12.10.3, is used to
specify the action to be taken when a machine check condition occurs.
The normal, hardstop, no retry, disable, and stop on unrecoverable error
settings are mutually exclusive. The MS single-bit switch or MS double-
bit switch functions can be enabled together with one of the other
settings. @ Section 50 discusses the actions taken for the various"

settings.
* CHECK CONTROL * ' f\\\\
N NORMAL
S HARDSTOP
R NO RETRY
D DISABLE
C STOP ON UNRECOVERABLE ERROR
1 MS SINGLE-BIT SWITCH
2 MS DOUBLE-BIT SWITCH
Q GENERAL SELECTION
Z RETURN TO PROG SYSTEM
SELECTION:

/

Figure 12.10.3. The check control display

CPERATION RATE CONTROL DISPLAY

The operation rate control display is used to select the rate at
which instructions are executed. Certain rate control functions are
deS1gned for customer engineer use only and can be selected only when CE
mode is in effect.

one of the following rates can be selected by the operator:

o Normal - After the START pushbutton has been pressed, the
instruction processing function executes instructions at the normal
speed. This function also clears any other rate selection (except
the Repeat Microword Switch selection for CE mode).

e Instruction step - The instruction processing function executes one
instruction each time the START key is pressed. The processor

96

accepts all pending enabled interruptions and then returns to the
stopped state. If another function is selected, such as
display/alter, it will be accepted and instruction step remains in
effect. Changes in data can be seen on the system console as each
instruction step is completed. Line 21 shows the address and the
data at this address.

COMPARE/TRACE DISPLAY
The compare/trace display can be used to perform the following:

* Establish an address comparison on a virtual or real storage address
within a specific location (any reference, instruction counter,
processor storage, I/0 instruction reference, microword, or local
storage). The action to be taken when the address match occurs
(normal stop or turn off compare and continue execution, for
example) can be specified also.

e Establish a data comparison between the data in a specific processor
storage location and data in another location (any reference,
instruction counter, processor storage, or I/0 instruction
reference). The processor stops when an equal comparison occurs.

e Establish a trace function that inspects the instruction addresses
utilized by the instruction counter to search for a specified
address. When the trace function is activated, the instruction
address utilized by the instruction counter is saved in a trace area
that is located in auxiliary storage. This area can hold 168
addresses. When the area becomes full, the action specified when
tracing was initiated is taken. If trace stop was specified, no
more tracing occurs. If trace wrap was specified, tracing continues
and each new address overlaps the oldest saved address. The
contents of the trace area can be inspected using the trace area
function of the display/alter display.

12:15 MAINTENANCE

A problem determination guide for the 3278 Model 2A Display Console
will ke provided with each 4341 Processor. When the operator console
malfunctions, the operator can take the steps outlined in the guide
before calling the customer engineer. The procedures include the
execution of certain offline tests on the operator console.

97

SECTION 15: VIRTUAL STORAGE AND ADDRESS TRANSLATION

The first subsection, 15:05, discusses the needs that virtual storage
and address translation are designed to meet. No previous understanding
of these facilities is assumed. 1In this discussion, an address space is
defined as a consecutive set of addresses that can be used in programs
to reference data and instructions. System operation in IBM-supplied
virtual storage environments is explained conceptually, without use of
all the terminology new to such an environment.

The general advantages of IBM-supplied virtual storage operating
systems are presented in Section 15:05. Included in this subsection are
those that apply to DOS/VSE and 0S/VsSl.

The last portion of subsection 15:05 defines the terminology
associated with virtual storage and address translation hardware. The
terminology included is that common to the IBM-supplied programming
systems that support a virtual storage environment for 4300 Processors.

Subsection 15:10 describes in detail the implementation of address
translation for System/370 mode. The operation of dynamic address
translation and channel indirect data addressing hardware in the 4341
Processor are discussed. Other hardware items associated with dynamic
address translation, such as reference and change recording, are
discussed also.

Subsection 15:15 describes in detail the implementation of address
translation for ECPS:VSE mode. The internal mapping function and
address translation table are described together with the page control
instructions.

The last subsection, 15:20, discusses the new factors that affect
system performance in a virtual storage environment. The information
presented is related to efficient installation and utilization of an
IBM-supplied virtual storage operating system.

15:05 VIRTUAL STORAGE CONCEPTS, AQVANTAGES, AND TERMINOLOGY

THE NEED FOR LARGER ALDRESS SPACE

The past and present rapid growth in the number and types of data
processing applications being installed has led to an increasing demand
for more freedom to design applications without being concerned about,
or functionally constrained by, the physical characteristics of a
particular computer system--system architecture, I/0 device types, and
processor storage size. As program design and implementation become
easier, they can enable more rapid installation of applications so that
the benefits of data processing can be achieved sooner.

The design of System/360 and OS allowed programmers to be less
concerned than before about specific processor architecture and I/0
device types when designing and implementing applications by (1)
providing a compatible set of processor models ranging in size from
small to large scale; (2) providing a variety of high-level languages
with greatly expanded capabilities, including a new language (PL/I); (3)
providing comprehensive data management functions, including support of
I/0 device independence where data organization and the physical
characteristics of devices permitted; and (%) supporting dynamic
allocation of system resources {channels, 1/0 devices, direct access
space, and processor storage). System/360 users who installed DOS
Version 3 (Release 26) also experienced more system configuration

98

independence than was previously available, although to a lesser degree
than 0S users,

While System/360 and its primary operating, systems represented major
steps toward giving programmers a larger measure of system configuration
independence, constraints imposed by the need to design applications to
fit within the available processor storage gtill existed. In addition,
although System/360 processors provided more, less-costly processor
storage than was previously available, increasingly larger amounts of
processor storage began.to be required as the use of high-level
languages increased, the usage and level of multiprogramming increased,
the functions supported by operating system control programs expanded,
and applications that require relatively larger amounts of processor
storage (such as telecommunications and data base) were designed and
installed more frequently.

The requirement for more processor storage is still growing. The new
applications being developed and installed tend to have larger and
larger storage design points in order to provide the functions desired.
More processor storage is also required for I/0 buffer areas to achieve
maximum capacity and performance for sequential operations using new
direct access devices with significantly larger track capacities.

Larger blocking of tape records, which requires larger 1I/0 buffers, also
results in increased tape reel capacity and decreased tape processing
time. As a result, Systemn/370 processors provide significantly more
processor storage than their predecessor System/360 processors and offer
it for a lower cost. This trend is continued with 4300 Processors.

The availability of more processor storage, however, has not relieved
all the constraints associated with it. Applications still must be
tailored to the amount of processor storage actually available in a
given system even though storage design points (partition sizes in
DOS/VSE and 0OS/VSl, for example) can be larger than they were
previously.

Consider the following situations that can occur in installations:

1. An application is designed to operate in a 50K processor storage
area that is adequate to handle current processing needs and that
provides room for some expansion. Some time after the
application is installed, however, maintenance changes and the
addition of new functions cause one of the programs in the
application to require 51K and another to require 52K.
Installation of the next processor storage increment cannot be
justified on the basis of these two programs, so time must be
spent restructuring and retesting the programs to fit within 50K.

2. An existing application has programs with a planned overlay
structure. The volume of transactions processed by these
programs has doubled, and better performance is now required.
Additional processor storage is installed. However, the overlay
programs cannot automatically use the additional storage.
“nerefore, reworking of the overlay programs is required to take
them out of planned overlay structure and, thereby, achieve the
better performance desired.

3. A low-volume, terminal-oriented, simple inquiry program that will
operate for three hours a day is to be installed. If the program
is written without any type of overlay structure, it will require
60K of processor storage to handle all the various types of
inquiries. However, because of a low inquiry rate, only 8K to
12K of the total program will be active at any given time. 1In
order to justify its operational cost, considerable additional
program development time is spent designing the inquiry program

29

100

7.

to operate with a dynamic overlay structure so that only 12K of
processor storage is required for its execution.

A multiprogramming installation has a daily workload consisting
primarily of long-running jobs. There are also certain jobs that
require a relatively small amount of time to execute. The times
at which these jobs must be executed is unpredictable; however,
when they are to be run, they have a high completion priority.
While it is desirable to be able to initiate these high-priority
jobs as soon as the request to execute them is received, this
cannot be done because long-running jobs are usually in
operation. Hence, a certain time of day is established for
initiating high-priority jobs and the turnaround time for these
jobs is considerably longer than is desired.

A series of new applications are to be installed that require
additional computing speed and twice the amount of processor
storage available in the existing system. The new application
programs have been designed and are being tested on the currently
installed system until the new one is delivered. However,
because many of the new application programs have storage design
points that are much larger than those of existing applications,
testing has to be limited to those times when the required amount
of processor storage can be made available.

Although another smaller scale processor is also installed that
has time available for program testing, it cannot be used because
it does not have the amount of processor storage required by the
new application programs. In addition, although the smaller
scale processor now provides backup for the currently installed
larger scale processor, the smaller scale processor cannot be
used to back up the new system because of processor storage size
limitations.

A large terminal-oriented application is to be operative during
one entire shift. During times of peak activity, four times more
processor storage is required than during low-activity periods.
Peak activity is experienced about 20 percent of the time and low
activity about 40 percent. The rest of the time, activity ranges
from low to peak. Allocation of the peak activity processor
storage requirement for the entire shift cannot be justified, and
a significantly smaller storage design point is chosen. As a
result, a dynamic program structure must be used, certain desired
functions are not included in the program, and response times
during peak and near-peak activity periods are increased above
that originally planned.

In this installation, most of the batched jobs are processed
during the second shift. However, there is also a need to
operate the large terminal-oriented application for a few hours
during second shift. This cannot be done because the system does
not have the amount of processor storage required for concurrent
operation of the batched jobs and the terminal program (which
must have its storage design point amount allocated even though
that amount of processor storage would not be required during
second-shift operations). The large amount of additional
processor storage required to operate the terminal program for
only a portion of the second shift cannot be justified.

An application program with a very large storage design point is
executed only once a day as a batched job. A significant benefit
would result from putting the program online to a few terminals
during the morning hours. However, the program continues to be
run as a batched job because it is very large and would be made
larger by putting it online. The large amount of additional

processor storage required to operate the program concurrently
with the existing morning workload cannot be justified.

8. A terminal~-based application has been installed on a full
production basis for several months. During this period, the
benefits accrued from the online application have encouraged the
gradual -installation of several additional terminals, and peak
activity is considerably higher than it was initially. Because
growth has been gradual, much additional programming time
(significantly more than is required to maintain batch-oriented
applications) has to be spent periodically restructuring the
terminal-based application program to handle the increasing
volume of activity.

9. An online application is currently active during an entire shift
and operates concurrently with batched jobs. It would be
advantageous to install a second terminal-oriented application
that would operate concurrently with the existing workload during
the entire shift. However, the amount of processor storage that
would have to be dedicated to each online application for the
entire shift in order to handle its peak activity is very large,
and times of peak activity for the two applications do not
completely overlap. Because so much processor storage would be
unused during a large portion of the shift if both online
applications were always active, installation of the second
online application is difficult to justify.

In the situations described, processor storage is a constraining
factor in one way or another and the constraints highlighted can apply
in some degree to all systems regardless of their scale (small,
intermediate, large) or processor storage size. ' The availability of
larger, less expensive processor storage does not remove these
constraints for two major reasons.

First, once a storage design point has been chosen for an
application, whether the design point is relatively large or small, the
application is dependent on that processor storage size for its
operation. ‘The application cannot execute in less than its design point
storage amount,. nor can it take advantage of additional available
processor storage without being modified (unless it has been
specifically structured to use additional storage as, for example, are
most IBM—supplled language translators).

Second, although processor storage has .become less costly, it still
is a resource that should be used efficiently because of its importance
in the total system operation. Thus, when storage design points are
chosen, tradeoffs among processor storage cost, application function,
and system performance are often made. Making applications fit within
the storage design points selected becomes.the respon51b111ty of
application designers and programmers. This situation is made more
difficult by the fact that . for many applications an optimum storage
design p01nt cannot be detérmined until the- appllcatlon 1s written and
tested using expected transaction volunes.

The significance of processor storage restraints should be evaluated
in light of the following trends evidenced by new types of applications:
(1) the total amount of storage required to support their new facilities
continues to grow larger, (2) the storage they actually require for
operation during their execution is tending to become more variable, -and
(3) it is becoming as desirable to install many of these new
applications on smaller scale systems with relatively small maximum
processor storage sizes and low volume requirements as it is to install
them on larger scale systems. Reduction of the constraining factors
currently imposed by processor storage is, therefore, a necessary step

101

in making new applications easier and less costly to install and
available to a wider range of data processing installations.

Given the described processor storage restraints on application
design and development and the storage requirements that are becoming
increasingly more characteristic of many of the new types. of
applications, it becomes advantageous to allow programmers to design and
code applications for a larger address space than they currently have.
That is, programmers should be able to use as much address space as an
application requires so that special program structures and techniques
are not required to fit the application into a given storage size.
Programmers can then concentrate more on the application and less on the
techniques of programming. -In addition, the size of the address space
provided should not be determined by processor storage size, as it is in
Systen/360 operating systems, such as DOS Versions 3 and 4 and OS MFT
and MVT, so that the address space can be larger -than the processor
storage available.

A larger address space should be provided, therefore, by a means
other than making processor storage as large as the address space
desired. This requirement can be satisfied by providing programmers
with an address space (called virtual storage) that is supported using
online direct access storage and address translation hardware. This
approach also offers the advantage of supporting a larger address space
for a lower cost than if larger processor storage is used, since direct
access storage continues to be significantly less expensive per bit than
processor storage. In addition, address translation hardware offers
functional capabilities that large processor storage alone cannot
provide.

VIRTUAL STORAGE AND ADDRESS TRANSLATION CONCEPTS

Virtual storage is an address space the maximum size of which is
determined by the addressing scheme of the computing system that
supports it rather than by the actual number of physical processor
storage locations present in the computing system. In the 4341
Processor, for example, which uses a 24-bit binary address, a virtual
storage of 16,777,216 bytes is supported. When virtual storage is
implemented, the storage that can be directly accessed by the processor,
normally called processor storage, is referred to as real storage.

The concept of virtual storage is made possible by distinguishing
between the names of data and instructions and their physical location.
In a virtual storage environment, there is a distinction between address
space and real storage space. Address space (virtual storage) is a set
of identifiers or names {virtual storage addresses) that can be used in
a program to refer to data and instructions. Real storage space is a
set of physical storage locations in the computer system in which
instructions and data can be placed for processing by the processor.

The number of addresses in the two spaces need not be the same, although
both spaces begin with address zero and have consecutive addresses. The
programmer refers to data and instructions by name (virtual storage
address) without knowing their physical (real storage) location.

When virtual storage is not implemented, there is, in effect, no
differentiation between address space and real storage space. The
address space that can be used in programs is identical in size to the
real storage space available and the address. in an instruction
represents both the name and the location of the information it
references. :

In a virtual storage environment, therefore, the address space

available to programmers is that provided by the virtual storage size
implemented by a given system--not the address space provided by the

102

real storage available in the given system configuration. In DOS/VSE
and 0S/VS1l, virtual storage rather than real storage, is divided into
consecutively addressed partitions for allocation to problem programs.
The fact that storage addresses in executable programs are virtual
rather than real does not affect the way in which the programmer handles
addressing. For the 4341 Processor, for example, an Assembler Language
programmer assigns and loads base registers and manipulates virtual .
storage addresses in a program just as if they were real storage
addresses.

Virtual storage is so named because it represents an "image of
storage®™ rather than physical processor storage. Since virtual storage
does not actually exist as a physical entity, the instructions and data
to which its virtual storage addresses refer, which are the contents of
virtual storage, must be contained in some physical location.

In a virtual storage operating system environment, the contents of
virtual storage are divided into a portion that is always present in
real storage, namely, all or part of the control program, and another
portion that is not always present in real storage. The instructions
and data that are not always present in real storage must be placed in
locations from which they camn be brought into real storage for
processing by the processor during system operation. This requirement
is met by using direct access storage to contain this portion of the
contents of virtual storage (see Figure 15.05.1). The amount of direct
access storage required to support a given amount of virtual storage
varies by operating system, depending on how direct access storage is
organized and allocated.

In addition, a mechanism is required for associating the virtual
storage addresses of instructions and data contained in direct access
storage with their actual locations in real storage when instructions
and data are being processed by the processor. This requirement is met
by using address translation hardware in the processor to associate
virtual storage addresses with appropriate real storage addresses.

With this design, a processor can support an address space that is
larger than the actual size of the real storage present in the '
processor. This is accomplished by bringing instructions and data from
direct access storage into real storage only when they are actually
required by an executing program, and by returning altered instructions
and data to direct access storage when the real storage they occupy is
needed and they are no longer being used. At any given time, real
storage contains only a portion of the total contents of virtual
storage.

Such a design is made practical by the fact that the logical flow of
processing within the majority of programs is such that the entire
program need not be resident in real storage at all times during
execution of the program. For example, initialization and termination
routines are executed only once during the operation of a program. Any
exception-handling procedure, such as an error routine, is required only
if the exception condition occurs. A program that handles a variety of
transaction types (whether batch or online oriented) need have resident
at any given time only the transaction routine required to process the
current transaction type.

It is this property of programs that has enabled planned overlay and
other dynamic program structures to be used successfully in nonvirtual
storage environments when the amount of processor storage available was
not large enough. As indicated previously, this variable storage
requirement characteristic of programs tends to be even more pronounced
in new types of applications and in online environments in which
processing is event-driven.

103

Virtual Storage Direct Access Storage

d r' -l
Address space Contents of a portion
available to qu— mapped —3m={ of virtual storage
Consecutive programmers (instructions and data)
addresses

Oto 16,777,215 ¢
maximum in
System/370

Location of data

Address space allocated . .
and instructions

to the control program
that is always present
in real storage

———— d

Names of instructions
and data

|
|
|
|
|
I
|
) N
|
|
|

——— - ——-—————-=

Contains
virtual storage
addresses

Executable program

Figure 15.05.1. Names and location of instructions and data in a
virtual storage environment

For the purpose of resource management in a virtual storage
environment, virtual storage and its contents, direct access storage
used to contain a portion of the contents of virtual storage, and real
storage are divided into contiguous, fixed-length sections of equal
size. Once a program has been fetched from a program library and
initiated, instructions and data within a program are transferred
between real storage and direct access storage, a section at a time,
during program execution. A section of an executing program is brought
into a real storage section only when it is required, that is, only when
a virtual storage address in the section is referenced by the executing
program. A program section that is present in real storage is written
back in a direct access storage section only when the real storage
assigned to it is required by another program section and only if it has
been changed.

A virtual storage operating system control program monitors the
activity of the sections of all executing programs and attempts to keep
the most active sections in real storage, leaving the least active
sections in direct access storage. Figure 15.05.2 illustrates the
relationship of virtual storage, direct access storage, and real storage

104

without regard to a specific virtual storage operating system
implementation.

The division of a program and its data into sections and the transfer
of these sections between direct access storage and real storage during
program execution is handled entirely by the virtual storage operating
system without any effort by the programmer. When a planned overlay or
dynamic overlay program structure is used, the programmer is responsible
for dividing the program and its data into phases, determining which
phases can be present at the same time in the amount of real storage
available (partition), and indicating when phases are to be loaded into
real storage during processing.

Virtual Storage Direct Access Storage
N\
AN
N
AN
N
Tables or an . N
Add algorithm used C:n'trimsl otf aportion N
il risesds‘t)ace to map virtual (()inz;rul:::i:n:l:r?: Real Storage
:x(:::a ting :rog storage sections data for executing
u rams .
to direct ac(.:ess programs)
storage sections Tabl
aples map Active sections
vnrtlfal storage of executing
sections to real programs
storage sections

______ S~

Control program Control program

Figure 15.05.2. Relationship of virtual storage, direct access
storage, and real storage

While a virtual storage 16 million bytes in size can be addressed by
any 4341 Processor, the virtual storage size that can be effectively
implemented by a given system is affected by (1) the amount of real
storage present, (2) the amount of direct access storage space made
available to contain the contents of virtual storage, (3) the speed of
the direct access storage devices containing virtual storage contents
and contention for these devices or the channels to which they are
attached, (4) the speed of the processor, and (5) the characteristics of
the programs operating .concurrently. Hence, the amount of real storage
required to effectively implement a specific amount of virtual storage
can vary by system, depending on the characteristics of the applications
in the workload and the performance desired, as is discussed in Section
15:20.

Once a program section has been loaded into real storage, its virtual
storage addresses can be translated when they are referenced. Dynamic
address translation hardware (for System/370 mode) or an internal
mapping function (for ECPS:VSE mode) is the mechanism in 4300 Processors
that translates the virtual storage addresses contained in instructions
into actual physical storage addresses during instruction execution.

105

In 4300 Processors, the dynamic address translation facility of
System/370 mode provides address translation using a hardware-
implemented, two-level table lookup procedure that accesses tables
contained in real storage. These tables, which are maintained by
control program routines, (1) define the amount of virtual storage
supported and allocated, (2) indicate whether or not any given program
section is currently present in real storage, and (3) contain the
addresses of real storage sections allocated to the program sections
that are currently present in real storage.

The address translation mechanism for the ECPS:VSE mode of 4300
Processors consists of an internal mapping function that utilizes one
table, called the address translation table in the 4341 Processor. This
table contains the same type of information that is present in the
tables used by DAT hardware but the table is maintained entirely by
hardware instead of by the control program.

During the execution of each instruction in either System/370 or
ECPS:VSE mode, address translation is performed on any virtual storage
address in the instruction that refers to data or to an instruction.
Translation occurs after the 24-bit effective virtual storage address
has keen computed by adding base, displacement, and, if any, index
values together, as usual. The result of the address translation is a
24-bit real storage address designating the location containing the data
or instruction referenced by the virtual storage address in the
instruction.

For System/370 mode, the virtual storage addresses in channel
programs (CCW lists) are not translated to real addresses by channel
hardware during channel program execution, and programmed translation
before initiation of a channel program is required. For ECPS:VSE mode,
virtual addresses in channel programs are translated during channel
program execution, eliminating the necessity for programmed translation.

In reality, address translation hardware (both DAT and the internal
mapping function) provides dynamic relocation of the sections of a
program during its execution. This capability is not provided by DOS
Version 3 or 4 and 0S MFT and MVT. DOS Version 3 and 4 support program
relocation only at link-edit time. OS MFT and MVT support program
relocation at program load time as well as at link-edit time.

Once a program has been loaded into an area of real storage by the
program fetch routine, the DOS Version 3 or 4 and 0S MFT or MVT
operating systems cannot relocate the program to another area of real
storage during its execution. Thus, an entire program or a portion of a
program cannot be written in direct access storage during execution and
later reloaded intoc different real storage locations to continue
execution. Once loaded, therefore, a program is bound during its
execution to its initially allocated real storage addresses. In a
virtual storage environment a program is bound only to the virtual
storage addresses it was assigned during loading.

The dynamic relocation provided by address translation hardware
eliminates, for most programs, the need for allocating and dedicating a
contiguous area of real storage to an entire program for the duration of
its execution, a requirement for all programs in DOS Version 3 or 4 and
0S MFT or MVT. (As discussed later in this subsection, some programs
cannot operate correctly in the manner being described, that is, with
sections transferred only as required between direct access storage and
real storage.) In DOS/VSE and 0S/VSl1l environmments, real storage is no
longer divided into contiguously addressed partitions that can contain
one executing job step (program) at a time.

Further, when real storage is allocated to a section of an executing
program, the real storage is not dedicated to that program section for

106

the duration of program execution. Concurrently executing programs can
dynamically share the same real storage sections. That is, in general,
the real storage available for allocation to executing programs can be
allocated to any program section as needed. When a section of an
executing program must be loaded, any available section of real storage
can be assigned (subject to certain restrictions imposed by operating-
systen—-dependent real storage organizations). When the program section
is no longer required, it can be written to direct access storage, if it
has been altered, and the real storage assigned to it can be made
available for allocation to another section of the same program or to a
section of another program.

The assignment of real storage sections is handled entirely by the
operating system, which keeps account of which sections of concurrently
operating programs are the most active. The problem programmer has no
explicit control over when and how much real storage is allocated to an
executing program. The operating system does not attempt to allocate a
given amount of real storage to each executing program. It merely
allocates real storage to those sections it determines are the most
active, without taking into account the particular program to which the
active section belongs.

Address translation hardware, therefore, provides more than
translation from address space (virtual storage) to real storage space.
It provides the capability of implementing dynamic real storage
management that requires no effort on the part of the programmer and
significantly less processor time than programmed address translation
during program execution. (The large amount of processor time required
to translate addresses during program execution using programmed means
has precluded implementation by IBM of an operating system that supports
such programmed address translation.)

Much of the real storage utilization preplanning required for OS MFT
or MVT and DOS Version 3 or 4 environments in order to use real storage
can effectively be eliminated in a virtual storage environment. Dynamic
real storage management capability is another advantage the technique of
using address translation hardware and direct access storage to support
a large address space has over using larger real storage.

Another capability made available by the implementation of large
address space using direct access storage and dynamic address
translation (DAT) hardware in System/370 mode is that of supporting more
than one virtual storage with one processor. (The internal mapping
function used in ECPS:VSE mode supports only one virtual storage.)
Multiple virtual storages can be used to support multiple virtual
machines. The concepts and general advantages of virtual machines are
discussed in Section 18.

The use of virtual storage and address translation hardware to enable
programs to operate in less real storage than the total storage
requirement of the programs can also offer better performance potential
than the technique of using a planned overlay program structure. When a
planned overlay program executes in MFT or MVT, considerable time can be
spent executing the overlay supervisor in order to perform programmed
address translation (relocation) when a program phase is loaded.

In addition, more efficient real storage utilization may be achieved
in a virtual storage environment, sinc¢e the control program reacts to
changing processing needs and only portions of the program that are
actually required are loaded (all phases of an overlay program may not
be the same size and all code within a phase may not be used when the
phase is loaded). Once a planned overlay program has been structured to
handle the currently required set of program phases -efficiently, it
cannot automatically adapt to a change in the set of program phases
required or to a change in the activity of the required set of phases.

107

In a virtual storage environment, the performance of the system can
be directly affected by the amount of time spent transferring program
sections between direct access storage and real storage. Satisfactory
system performance is achieved when each of the concurrently executing
programs has enough real storage dynamically allocated to it so that the
need for transferring program sections into and out of real storage is
‘kept at an acceptable level.

As previously mentioned, most programs can be structured in such a
way that processing is localized in one area or another of the program
during time intervals rather than equally spread over the entire

-program. In other words, at any given time period during execution of
the program, only a subset of the entire program need be referenced.
This is sometimes called the "locality of reference®" characteristic of
programs. A program achieves satisfactory performance when its most
frequently referenced sections in any given time interval remain in real
storage and there is a limited amount of program sec¢tion transfer
activity.

Most programs require a certain minimum amount of real storage in
which to execute in order to achieve satisfactory performance. If such
programs operate with less than their minimum requirement dynamically
allocated, program section transfer activity increases and performance
degradation can occur. The minimum real storage requirement of a
program is related to the amount of real storage required by the most
active sections of the program. Because of the locality of reference
characteristic of most programs, the minimum real storage requirement of
a program for satisfactory operation frequently can be less than its
total storage requirement. This fact enables an operating system to
efficiently support a virtual storage that is larger than the real
storage actually present in the computing system.

A vi:tual storage environment, therefore, enables most programs to be
independent of real storage size to a large degree. A program can
execute using varying amounts of dynamically available real storage
without being modified. - The amount of real storage dynamically
available to a program during its execution primarily affects its
performance, to the extent that program section transfer activity is
affected, rather than its capability to be executed.

For example, while a given 100K language translator might be able to
operate with an average of 40K of real storage dynamically available to
"it during its operation, the time required to compile a program on a
‘smaller.scale prbcessor under these conditions might be unaéceptable,

Alternatlvely, the performance desired on the smaller scale processor
might be achieved if an average of 60K is dynamically available to the
language translator while it operates. Without a virtual storage
operating system, the 100K language translator probably could not be
used at all on the smaller-scale processor because of its relatively
large design point size.

The availability of lower-cost processor storage for 4300 Processors
and the storage independence that a virtual storage environment offers
provide new flexibility in tradeoffs among processor storage cost,
function, and individual program or total system performance.

GENERAL'ADVANTAGES OFFERED BY IBM OPERATING SYSTEMS THAT SUPPORT A
VIRTUAL STORAGE ENVIRONMENT

Each of the IBM operating systems that supports a virtual storage
environment for the 4341 Processor using address. translation hardware
of fers the capability of using address space that is larger than that
provided by the processor storage actually available, and each supports

108

dynamic processor storage management that is transparent to the user.

As a result, these operating systems offer certain general potential
advantages that do not depend on their unique features. The
implementation of virtual storage also provides benefits that are
specific to each of these operating systems because of their design and
the particular functions they support. The following discusses the
potential advantages of virtual storage and address translation hardware
that are common to DOS/VSE and 0S/VS1 environments.

The general advantages of virtual storage operating systems are the
potential they offer for:

s Increased application development
e Expanded operational flexibility
e System performance improvement

A virtual storage operating system can facilitate more rapid
development of new applications because, by removing most existing real
storage restraints on application design, it can help improve the
productivity of programmers. Specifically, a virtual storage operating
system has characteristics that can be used to reduce the effort, time,
and cost associated with application design, coding, testing, and
maintenance., This makes the installation of new applications more
readily justifiable and encourages the addition of new functions to
existing applications.

The potential advantage of improved operational flexibility is made
possible by the greater independence of applications from real storage
size. Enhanced system performance can result from improved real storage
utilization. While these latter two benefits have their own individual
value, they too, either indirectly or directly, ease the installation of
new applications.

Potential for Increased New Application Development

The following capabilities are characteristic of a virtual storage
operating system environment,

o Greater flexibility in the design of applications is possible.

Larger programs can be written without the necessity of using
planned overlay techniques or other dynamic program structures
designed to fit programs into the amount of real storage available.
The need for intermediate (or working) data sets is reduced or
eliminated because tables, relatively small data groups, etc., that
are placed on direct access storage because of real storage
limitations can become part of the program and will be brought into
real storage automatically, as required. Program planning, coding,
and testing time can be reduced by elimination of the use of these
programming techniques and other real storage management facilities,
which also require additional programming knowledge and skill. Also
avoided is the restructuring of application programs after they have
been written, because they are larger than the real storage
available for their execution. Hence, applications can become
operational more quickly.

Open-ended, straightforward application design is possible and more
comprehensive programs can be written. An application can be
segmented into a series of programs according to its logical flow
instead of according to the functions that can be performed in the
specific amount of real storage available to each step in the
application. Programming and processing duplication inherent in the

109

110

approach of using two or more job steps to perform one logical
process is thereby avoided.

Additional programmlng facilities can become available that
otherwise could not be used because of real storage limitations.
Specifically, full-function high-level language translators, which
offer more capabjlities than their subset versions (such as
additional debugging facilities and performance options) but which
also have larger storage design points, can be used because they can
operate in a virtual storage environment using less real storage
than their design point requirement.

Preproduction testing of larger than average application programs
can be increased if enough virtual storage can be made available to
enable them to run during normal testing periods. Turnaround time
during testing can be reduced.

In a nonvirtual storage environment such programs are usually
grouped together and executed only at certain times when their
larger design point storage requirements can be made available.

Fine tuning of application programs to achieve performance
improvements, when necessary, can be delayed until after the
application is in production. This capability enables an
application to become operative sooner.

Startup costs for new applications may be reduced.

A new application can be developed and tested on the existing
system, assuming the required I/0 devices are present in the
confiquration, before the additional real storage the application
requires for performance on a production basis is actually
installed. When the application is ready for production, the
additional real storage required can be added to the system. In
some cases it may be possible to operate the application on a
rroduction basis on the existing system without adding real storage
initially, because during the startup period, transaction volume is
very low. As the volume grows, real storage can be added to achieve
better performance.

Growth of existing applications and the maintenance of operational
programs is simplified.

Because of the removal of most real storage restraints, new
functions can be more easily and more rapidly added to most existing
applications. Program expansion because of added functions or
maintenance changes does not require the use of overlay techniques,
multiple job steps, etc., when the size of the extended program
exceeds the original storage design point size.

In general, alteration and debugging of nonoverlay programs are also
easier than alteration and debugging of programs with planned
overlay or dynamic structures.

Application programs whose real storage requirements, based on
transaction volume and complexity, vary widely during their
execution may be justified, designed, and installed more easily.

Design, coding, and testing time can be reduced because dynamic
storage management is automatically provided by the operating
system. Time and effort need not be spent structuring such programs
to use available real storage dynamically to support the functions
and/or response times required.

e Design and installation of one-time, low-usage, or low-volume
programs of very large storage size are more easily justified.
Existing applications in these categories that currently operate in
a batch environment can also more easily be altered to operate
online, a growth step that might not be justifiable in a nonvirtual
storage environment.

e Applications can be installed on a trial basis for the purpose of
observing and evaluating their functions and their operation.

Most IBM-supplied application program products can be temporarily
installed on an existing system, assuming the required I/0 devices
are present. The additional hardware resources that may be required
to operate the application on a production basis can be added later,
when the application is permanently installed.

e The benefits of the functions provided by many IBM-supplied
application program products with larger storage design points can
ke realized using smaller 4300 Processors with relatively smaller
amounts of available real storage. '

Currently, it may be difficult to justify the real storage required
to install a relatively large storage design point application on a
smaller scale system to handle a low volume of transactions, even
though the functions provided by the application are very desirable.
In a virtual storage environment, such an application can execute
using that amount of dynamically available real storage required to
satisfy the desired performance requirements for the low volume of
activity.

Potential for Additional Operational Flexibility

The reduction of real storage restraints makes most applications more
independent of the real storage size of a system configuration and
permits most applications to be processed on systems with varying
amounts of available real storage without program modification. Dynamic
real storage management reduces the amount of jobstream and operations
preplanning that is normally done to use real storage as efficiently as
possible in a multiprogramming environment. The following benefits can
result:

e A system can back up another system even though it has less real
storage than the system it backs up.

A smaller-scale system with the appropriate I/0 configuration can
provide backup for a larger-scale system if necessary. (Performance
experienced on the backup system may vary from that normally
achieved, depending on the two system configurations involved.)

¢ A single design and one operating procedure can be used for an
application that is to operate on multiple systems with varying
amounts of real storage, as long as the virtual storage required is
supported by all the systems.

When data processing is decentralized among multiple installations
with systems that have different amounts of real storage, one
location can design, implement, and maintain an application that can
be used by other installations. Duplication of this type of effort
can be minimized or eliminated.

e Most applications can be tested on systems with less real storage
than the one on which they will run in a production environment, as
long as the required amount of virtual storage is supported.

e Growth to a larger real storage configuration can be easier.

111

Real storage can be added to an existing system to improve system
performance (by the reduction of program section transfer activity)
without the necessity of modifying existing application programs so
that they can take advantage of additional real storage. Additional
real storage (up to a maximum of their design point size) is
automatically used by programs that operate in a virtual storage
environment.

® Operators need not perform certain procedures that are solely
related to efficiently managing real storage.

The operator is concerned primarily with the division of virtual
storage and therefore need not change partition sizes at various
times (in DOS/VSE or 0S/VSl, for example) for the purpose of making
storage available for larger than average jobs. (An installation
can define virtual storage partitions that are larger than those
currently defined in the DOS Version 3 or 4 or OS MFT environment,
and the partitions can be made big enough to contain the largest
existing or currently planned storage design point programs.)

e Priority jobs whose need to be processed cannot be predicted can be
scheduled when required.

A nonvirtual storage environment does not provide the capability of
effectively handling the scheduling of high-priority jobs on a-
random basis. Hence, this type of job is not permitted to exist in
an installation, or such jobs must be scheduled to operate only at
certain times. 1In a virtual storage environment, a high-priority
virtual partition (in DOS/VSE and 0S/VSl) can be defined and
reserved for the purpose of processing only high-priority jobs.
Except for that required for certain tables, real storage is not
required for this partition until a job is actually scheduled.

Potential for Pérformance Improvement

The improved real storage utilization made possible by the use of
address translation hardware can have a positive effect on the
performance of a system that handles a job mix whose use of real storage
varies considerably while it is being processed. The extent of the
performance improvement depends on the types of applications involved
and the current utilization of system resources. Therefore, the amount
of performance gain, if any, that may be achieved is highly variable by
installation. Environments with the greatest potential for improved
performance are as follows:

¢ Batch-oriented multiprogramming environments with application
programs of widely varying real storage requirements.

Real storage may not be most efficiently used in such an
environment, because in DOS Version 3 or 4 and OS MFT environments,
it is difficult to divide real storage into a set of partitions that
is optimum for all programs. (Consider the inefficient use of real
storage in a 54K partition allocated for assemble, link-edit, and
test jobs in which a 54K language translator, a 10K linkage editor,
and problem programs no larger than 40K execute.) 1In addition, real
storage is not efficiently used when the real storage requirement of
a given program, based on transaction mix or volume, varies widely,
and the amount of real storage that is allocated is designed to
handle the peak requirement. (This is typically true of graphics
applications, for example.)

Further, real storage assigned to a program is not productively used

during the time the program is waiting for a human response, such as
for the operator to locate and/or mount a volume or to make a

112

decision and enter a message on the console, or during the time
required to guiesce the system in order to change partition
definitions or start a high-priority job.

In a virtual storage enviromnment, in which all concurrently
executing job steps share real storage dynamically and use real
storage only when it is actually required for program execution,
real storage is more efficiently used. Hence, if real storage
currently is the restraint, a given real storage size might be
capable of supporting a higher level-of multiprogramming than can be
achieved without the use of dynamic storage management (assuming
other required resources, such as processor time, I/O devices, and
channels, are available). For example, installation of a large
storage design point, terminal-oriented application to handle only a
few terminals might be possible. Alternatively, a higher level of
multiprogramming might be supported by the addition of a smaller
real storage increment than would otherwise be required.

System performance may also be improved if more efficient use of
.available real storage enables additional heavily used functions to
ke made resident instead of transient or allows the incorporation of
performance-oriented options in the control program. This
improvement can apply to environments with batch and online
operations, as well as to batch-only multiprogramming environments.

Multiprogramming environments with a mixture of batch-oriented and
terminal-based applications.

While the real storage required for the communication control
‘portion of a teleprocessing application remains constant, terminal-
kased processing programs are typically subject to wide variations
in the amount of real storage they require during their execution,
because the transaction mix being handled concurrently varies, the
activity of each terminal online varies, or the number of terminals
operating concurrently changes. In order to provide the functions
desired, ensure the capability of handling peak activity periods and
maximum transaction type mixes that can occur concurrently, and
guarantee a given response during times of peak activity, a certain
anmount of- real storage is required.

This peak requirement is generally significantly more than is needed
during periods of medium and low activity. Allocation of the
maximum storage requirement results in inefficient use of real
storage, since unused real storage dedicated to any terminal program
cannot be used by other concurrently operating batched or terminal-
oriented jobs in a nonvirtual storage environment. In addition, it
is usually difficult, and sometimes impossible, to effectively
preplan real storage .usage for an online application.

Dynamic real storage management in a virtual storage environment
automatically provides a more efficient method of allocating real
storage in such an environment. Real storage is not divided into
that which can be used only by the terminal-based program(s) and
that which can be used only by batched jobs. During times of peak
terminal activity, the active sections of terminal-oriented
processing programs with a higher priority are automatically
allocated more real storage, making less real storage available to
the lower-priority batched jobs in execution at that time. During
periods when terminal activity is relatively low, real storage not
used by any terminal program is available for assignment to the
active sections of executing batched jobs. Such an environment is
represented conceptually in Figure 15.05.3. '

In existing mixed batch and online-oriented installations, dynamic
real storage management allows programming techniques that can

113

improve the performance of the online application. This improvement
can be in the form of better response for existing terminals or the
ability to support more terminals. A given online application may
also be able to support a higher level of multiprogramming, as a
result of better real storage utilization, without any additional
programming effort. A virtual storage environment can also make the
concurrent operation of multiple terminal-based applications more
practical, because real storage equal to the design point storage
amount of each online application need not be dedicated to
applications the entire time the applications are active.

Figure 15.05.3 shows sample allocations of real storage to two
batched jobs and two terminal-oriented jobs in a multiprogramming
environment during low, medium, and peak activity points in time. Job
priority from high to low is TP2, TP1l, BJ2, BJl. For simplicity,
virtual and real storage are shown to be totally allocated at all times.
No particular virtual storage operating system (DOS/VSE or 0OS/VSl) is
assumed, since the concepts illustrated apply to DOS/VSE and 0OS/Vsl
telecommunications environments.

Real storage is shown to be contiguously allocated to each job in
high-to-low priority sequence. This is done only to illustrate the
relative amount of real storage the control program has dynamically
allocated to each program during the instant shown. In reality, the
total amount of real storage allocated to an executing program at any
given time is usually not contiguous in a virtual storage environment.
In addition, during times of low terminal program activity, it may be
possible to support a higher level of batched job multiprogramming,
which is not shown in the figure.

Summary

As the preceding discussion indicates, a virtual storage environment
is designed primarily to provide new functional capabilities for the
installation as a whole, although performance gains are possible for
installations with particular environmental characteristics. The
general functional aims of IBM-supplied virtual storage operating
systems are (1) to use new hardware features and additional control
program processing to support certain facilities that are not possible
in a nonvirtual storage environment because of real storage restraints
and (2) to handle other functions that must be performed by installation
personnel (programmers, operators, and system designers) when virtual
storage and address translation are not used.

It is also important to note that, while a virtual storage operating
system permits an installation to be independent of real storage
restraints to a large degree and enables real storage to be utilized
more efficiently, the performance of the system and specific advantages
that can be achieved still depend largely on the amount of real storage
present in the system and on the computing speed of the processor, among
other things. Hence, virtual storage and an address translation
capability are not a substitute for real storage. Rather, they provide
an installation with greater flexibility in the tradeoff between real
storage size and function or performance. :

The degree to which a particular installation experiences the
potential benefits of a virtual storages/address translation environment
is highly system configuration dependent and application dependent
(number, type, complexity of applidations installed or to be installed).
In addition, consideration must be given to the system resources that
are Spec1f1cally required to support a v1rtua1 storage env1ronment
(discussed in Section 15:20).

114

~ Virtual Storage

Control Batched Batched Terminal program 1 Terminal program 2
program jobs jobs (Total storage requirement (Total storage requirement
(BJ1) (BJ2) without overlays) without overlays)
Lowest Next to lowest Next to highest Highest
execution execution execution execution
priority priority priority priority
Real Storage
Low activity Control
for TP1 and program BJ1 BJ2 TP1 |TP2
TP2
Real Storage
Peak activity Control BJ | By
TP1 TP2
for TP2 and program 4 6
low for TP1
Real Storage
Peak activity
for TP1 and Control
medium activity | Program ™ P2
for TP2

Figure 15.05.3.

BT = \BJG

Conceptual illustration of real storage utilization
in a mixed batch and online virtual storage
environment

Some of the potential advantages, such as those associated with
application maintenance and operational flexibility and those that
result from better management of real storage, can be experienced as

soon as a virtual storage operating system is installed.

Others may be

achieved in the future, when new applications are installed and the less
restrictive program design techniques available in a virtual storage

environment are more fully utilized.

In any case, installation of a

virtual storage operating system can make a 4341 Processor easier to use

115

and can be a major step toward more rapid installation of applications.
Such an operating system can be of greatest benefit to installations
desiring to move to, or extend, online operations and thereby attain the
advantages such an environment offers.

VIRTUAL STORAGE AND ADDRESS TRANSLATION TERMINOLOGY

For the purpose of presenting the concepts of virtual storage and
address translation in the previous discussion, virtual storage,
programs and data, direct access storage, and real storage were
described as being divided into areas called sections. 1In reality, a
unique term is used to describe each of the various sections, namely,
virtual storage page, page, slot, and page frame, respectively. In
addition, virtual storage, as implemented for System/370 mode, has two
levels of subdivision. The following defines the new terminology used
by the IBM-supplied virtual storage operating systems.

The virtual storage supported for System/370 mode is divided into
contiguous segments, which contain virtual storage pages. A virtual
storage segment, as implemented in the 4341 Processor, is a fixed-
length, consecutive set of addresses for either 64K or 1024K bytes that
begins on a 64K or 1024K boundary, respectively, in virtual storage. A
virtual storage is divided into segments all of one size or the other.
In general, in an OS/VS1l environment, a segment is the unit of virtual
storage allocation.

Each segment of virtual storage is divided into contiguous, fixed-
length, consecutive sets of addresses called virtual storage pages.
Each segment in the virtual storage contains the same number of virtual
storage pages, each of which is the same size. A virtual storage page,
as implemented for System/370 mode, can be either 2K or 4K bytes and is
located on a 2K or 4K virtual storage boundary, respectively, within a
segment.

For ECPS:VSE mode, virtual storage is divided into contiguous, fixed-
length, consecutive sets of addresses called virtual storage pages.
There are no segments for this mode. A virtual storage page is always
2K Lkytes in size and located on a 2K boundary.

The contents of virtual storage--instructions and data--are divided
(by the operating system) into fixed-length contiguous areas called
pages. For System/370 mode, a page corresponds in size to the virtual
storage page size chosen, either 2K or 4K bytes. For ECPS:VSE mode, a
page is always 2K bytes. The addresses associated with a virtual
storage page refer to the contents of a page.

The direct access storage used to contain the portion of the total
contents of virtual storage that is not always present in real storage
is called external page storage. Direct access space within external
page storage ge is divided into phy31cal records called slots, which are of
page size, either 2K or 4K bytes (always 2K for ECPS:VSE mode). Hence,
a slot can contain one page at a time. A virtual storage page that is
allocated and that actually has contents usually has a slot in external
page storage associated with it to contain these contents (depending on
the nature of the contents and how external page storage is managed by
the operating system).

Instructions and data are transferred between external page storage
and real storage, as needed, on a page basis. This transfer process is
called paging, and a direct access device that contains external page
storage is called a paging device. A slot in external page storage is
associated with a particular virtual storage page by means of an
algorithm or via tables that are maintained by the control program.

116

Real storage also is divided into fixed-length, consecutively
addressed areas called page frames, which are always the same size as
the page being used, either 2K or 4K bytes (always 2K for ECPS:VSE
mode). Page frames are located on 2K or 4K real storage boundaries. A
page frame is a block of real storage that can contain one page. Hence,
a page of data and/or instructions occupies a slot when it is in
external page storage and a page frame when it is in real storage.
Whether or not a page is present in real storage, a program addresses
the contents of the page using virtual storage addresses.

The act of transferring a page from external page storage into real
storage is called a page-in. This action may also be described as the
loading of a page. The reverse act, transferral of a page contained in
real storage to a slot in external page storage, is called a page-out.
Figure 15.05.4 illustrates the relationship of virtual storage, external
page storage, and real storage that was conceptually shown in Figure
15.05.2.

External
Page Storage

Virtual Storage

Segment N \
(pages 0 to 15 or 31) Tables or an
algorithm \
map pages \
and slots \
\ Real Storage
Virtual l Slots | l | ['
? 1 ¥ T (containing ¥ Tables map
storage Paged are virtual storage
aged area pages of
pages ;] pages and
within instructions page frames
segments and data) Page frames
(containing active
~ . ~~
T pages of executing
rograms
Page-out prog)
4—’\
Page-in | \l ‘ l
~ ~ Contents of
pageable
virtual storage
Control
Segment 1 Nonpaged area ~ program 5
(pages 0 to 15 or 31)
Segment 0
(pages O to 15 or 31) J_

Address space for
programmers use

Figure 15.05.4. Layout of virtual storage, external page storage, and
real storage

As previously indicated, DAT hardware for System/370 mode uses tables
to perform address translation. These tables are the segment table and

117

page tables and are loéated in the processor storage available for
programming (program. processor Storage). One segment table and a set of
page tables are requlred to perform address translation for omne virtual
- storage. ,

The segment table defines the virtual storage size, indicates
allocated virtual storageé, and points to the real storage location of
the page tables. .The page tables indicate which pages are currently in
real storage and contain the real storage addresses of these pages. As
pages are ﬁaged in and out, the control program makes changes to the
page tables as required.

_The internal mapping function provided for ECPS:VSE mode uses one
tadble, called the address translation table, to perform virtual storage
address to real storage address translation. This table indicates which
pages are currently in real storage and the real storage addresses of
these pages. The address translation table is located in auxiliary
storage. A program cannot directly address the address translation
table. However, instructions provided for page handling in ECPS:VSE
mode cause the address translation table to be updated as necessary.

Basic to the implementation of virtual storage using direct access
storage and address translation hardware is the method of determining
when pages are to be brought into real storage and, therefore, when real
storage is allocated to pages. The method supported by IBM-supplied
virtual storage operating systems, that of bringing a page into real
storage only when it is needed by an executing program, is called a
demand paging technique. Since programs execute on a priority basis in
DOS/VSE and 0OS/VSl environments, as they do in OS MFT and MVT and DOS
(Versions 3 and 4) environments, real storage is, in effect, still
allocated on a priority basis.

When System/370 mode is in effect, a request for a page-in is
generated by the occurrence of a page exception or a page translation
excegtion, a condition that is also called a page fault. An
}nterruptlon occurs during the execution of an instruction when dynamic-
address translation hardware attempts to translate a virtual storage
address into a real storage address and the appropriate page table
indicates that the page is not currently present in real storage. A
page fault condition causes an interruption in order to alert the
control program to the fact that a page frame must be allocated.
Usually, a page-in is also required to bring in the referenced
instruction or data.

When ECPS:VSE mode is in effect, a request for a page-in is generated
when a page access exception (or page fault condition) occurs as a
result of explicitly or implicitly addressing a virtual storage page
that does not have real storage assigned (a page that is not
addressable). The address translation table entry for the virtual
storage page indicates its state.

. While page~ins usually are initiated as a result of a page
translation/page access exception, 0S/VS1l and DOS/VSE provide an
Assembler Language macro that can be used to cause one or more pages to
be brought into real storage before they are referenced. Such requests
are sometimes referred to as page-ahead requests. A page-ahead is
required if, for reasons of proper system operation, a routine must
operate without incurring any page translation/page access exceptions.
However, unlimited use of this facility can defeat the objective of
demand paging.

When a page translation/page access exception occurs and the control
program determines that a page frame is not currently available for
allocation, a choice must be made as to which allocated page frame will
be taken away from the page to which it is currently assigned. The rule

118

governing this choice is called the page replacement algorithm. If the
page replacement algorithm is designed to choose from among only those
page frames currently allocated to the program that caused the page
fault, it is said to operate locally. If a page frame can be chosen
from among all those available for allocation to all executing programs,
the algorithm is said to operate globally. DOS/VSE and OS/VS1l implement
a global page replacement algorithm. VM/370 implements a global page
replacement algorithm and supports a local page replacement algorithm as
an option.

The algorithms used attempt to keep the most active pages of
executing programs present in real storage. Hardware is included in the
4341 Processor that indicates whether or not a page has been referenced
or changed. Hence, when a page frame is required, a page determined by
the algorithm to be relatively inactive is chosen for replacement.

Before loading a new page into the page frame chosen, the existing
contents of the page frame must be saved if they were modified during
processing. If modification occurred, a page-out operation is required;
otherwise, an exact copy of the page already exists in external page
storage. Code that is not modified during its execution, therefore, has
an additional advantage in a virtual storage environment in that it need
never be paged out once it has been written in external page storage. A
program requiring a page-in is placed in the wait state until the page
it requires has been loaded, during which time processor control is
given to another ready task, if one is available.

For various reasons, it is necessary to prevent a page-out of certain
pages that are in real storage. One reason is for better operation of
the system. This reason applies to a portion of the control program,
some routines that operate with the processor in a disabled state
{masked for I/O and external interruptions), most system tables, and
most system control blocks. Integrity of system operation is another
reason, Pages associated with certain types of operations must not be
paged out while the operation is in progress, in order for the operation
to proceed correctly.

For example, pages that contain I/0 buffer areas must remain in real
storage while the buffers are being referenced during an I/O operation,
after which a page~out can take place, if necessary. Another reason is
the existence of time dependency. A page should not be written out if
the program to which the page belongs must complete a logical operation
that requires the page in less time than it takes to perform a page-in.
Programs that handle I/0 device testing operations, such as online tests
(OLTs), can have such a time dependency.

A page that is identified as one that cannot be paged out (or that is
nonpageable) is called a fixed page. IBM-supplied virtual storage
operating systems support both long-term fixing and short-term fixing,
which are called permanent fixing and temporary fixing, respectively, in
DOS/VSE. 1In VM/370, a nonpageable page is called a locked page. Pages
that should never be paged out when they are present in real storage are
marked permanently (long-term) fixed. The resident portion of an
operating system control program is never paged and, therefore, its
pages are marked long-term fixed.

Pages that must be fixed for only a portion of the time they are
present in real storage are marked temporarily (short-term) fixed. For
example, a page containing an I/0 buffer is marked temporarily (short-
term) fixed before the initiation of the I/0O operation that references
the buffer. After the I/0 operation completes, the page is unfixed and
it becomes eligible for a page-out. Pages should be marked fixed only
when necessary, since page fixing reduces the amount of real storage
that can be shared by concurrently executing paged programs (that real

119

storage available to be allocated to the nonfixed pages) and can,.
therefore, affect system performance.

As indicated previously, a portion of the control program is resident
in real storage. That is, its pages are marked fixed and they are not
placea in external page storage (because they are not paged) even though
they are allocated space in virtual storage. In both DOS/VSE and
0S/VsSl, certain other portions of the control program are pageable and
are made resident in virtual storage, which means they are contained in
external page storage during system operation. During system
initialization, these pageable control program routines are allocated
virtual storage and loaded into real storage from system libraries by
the program fetch routine. These routines will be written in external
page storage as a result of normal paging activity. Control program
routines that are resident in virtual storage are brought into real
storage from external page storage, instead of from a system library,
when they are required during system operation.

Just as control program routines can be fixed or pageable, problem
programs operate in one of two modes in a DOS/VSE environment: virtual
mode or real mode. For an 0S/VS1l environment, these are paged mode or
nonpaged mode, respectively. The latter is also sometimes called
virtual equals real (V=R) mode.

When a problem program operates in virtual (paged) mode, it is
resident in virtual storage and pageable. A pageable program operates
in a contiguous area of virtual storage (partition) and is assigned
available real storage on a demand paged basis. Hence, virtual storage
addresses must be translated into real storage addresses. The real
storage dynamically allocated to programs operating in paged mode need
not be contiguous, and such programs normally can operate with less real
storage than the design point (virtual storage) amount dynamically
allocated to them. This is the mode of operation described in this
subsection.

Virtual (paged) mode is the normal mode of operation of programs in a
paging environment. However, certain programs cannot operate correctly
in this mode and must run in real (nonpaged) mode. In general, a
program must operate in real (nonpaged) mode if it:

e Contains a channel program that is modified while the channel
program is active (for System/370 mode operations only). Section
15:10 discusses the reason.

e Is highly time-dependent (involves certain testing operations on I1/0
devices, for example)

* Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

In a DOS/VSE environment with System/370 mode in effect, one or more
contiguously addressed real storage partitions must be defined if any
programs are to operate in real mode. For ECPS:VSE mode, real
partitions are not defined and real mode programs execute in virtual
partitions that have permanently fixed page frames assigned. Real mode
programs are not paged and do not occupy external page storage. The
entire program (except for dynamically loaded phases) is loaded when the
program is initiated and must operate in a real/virtual partition that
is equal to or larger than its design point size.

In 0OS/VS1l, a program that operates in nonpaged mode is dynamically
allocated a contiguous virtual storage area and a contiguous real ,
storage area with addresses identical to those of the allocated virtual
storage area. (That is, virtual and real storage addresses of the
allocated area are equal.) As in a DOS/VSE environment, programs

120

operating in nonpaged (V=R) mode are not paged and do not occupy
external page storage. The entire program (except for dynamically
loaded modules) is loaded into real storage when it is initjated, and
all its pages are fixed. The amount of real storage allocated to a
program that runs in nonpaged mode must be a multiple of the page size
used.

15:10 ALDRESS TRANSLATION FACILITY FOR THE 4341 PROCESSOR OPERATING IN
SYSTEM/370 MODE

When the 4341 Processor is operating in System/370 and EC modes,
dynamic address translation hardware is made operative by turning on the
translation mode bit in the current PSW. When DAT is operative, virtual
storage addresses in programs referring to instructions and data are
translated into real storage addresses after instructions are fetched
during program execution, The address in the instruction counter is
translated also. When DAT is not operative and System/370 mode is in
effect, storage addresses in programs are used as real storage
addresses.

When DAT is operative, the storage addresses in CCW lists are not
translated by channel hardware during channel program operation. The
channel indirect data addressing feature, also standard in the 4341
Processor, and programmed channel program translation are discussed
later in this subsection under "Channel Indirect Data Addressing".

The following instructions are associated with the dynamic address
translation facility: LOAD REAL ADDRESS (LRA), RESET REFERENCE BIT
(RRB), and PURGE TLB (PTLB). The LRA and PTLB instructions are valid
only for System/370 mode, with either EC or BC mode in effect. All
three instructions operate in the same way regardless of which mode (EC
or BC) is in effect and all are privileged.

VIRTUAL STORAGE ORGANIZATION

The 4341 Processor supports a virtual storage segment size of either
6UK or 102u4K bytes, as determined by bits 11 and 12 of control register
0. With either segment size, the page size can be 2K or 4K, as
determined by bits 8 and 9 of control register 0. A segment size of
1024K bytes is not supported by DOS/VSE, 0S/VSl, or VM/370. Table
15.10.1 summarizes the wirtual storage organization provided by 4300
Processors for System/370 mode, which is identical to the virtual
storage organization provided by System/370 processors.

Table 15.10.1. Number and size of segments and pages for a 16-million-
byte virtual storage

Number of
CR 0 Bits Segment Size | Segments in the Page Size Number of Pages
11,12 8,9 in Bytes Virtual Storage in Bytes in a Segment
10 01 1,048,576 16 2048 512
10 10 1,048,576 16 4096 256
00 01 65,536 256 2048 32
00 10 65,536 256 4096 16

121

While a 1l6-megabyte virtual storage is always available for
System/370 mode operations as far as the DAT hardware is concerned, the
actual amount of virtual storage to be supported for a given 4341
Processor is defined by the installation when the operating system to be
used (DOS/VSE or 0S/VSl) is generated. The size of the real storage in
the given configuration is equal to the amount of program processor
storage available (that is, the amount of processor storage available
after the auxiliary storage requirement is subtracted).

As already described, the addresses supplied in programs directly
address a location in the virtual storage that is supported by the
virtual storage operating system. In this sense, program-supplied
addresses can be viewed as virtual storage addresses that specify a byte
within a particular virtual storage page and segment. The logic of the
translation process is described in this subsection in these terms.

The architectural definition of dynamic address translation found in
System/370 Principles of Operation (GA22-7000) assumes that the
addresses in programs consist of three fields, two of which are used to
index tables during the translation process. Under these conditions the
addresses supplied by a program are considered to be logical addresses
instead of virtual storage addresses. '

For the purpose of translation, a virtual storage address is divided
into three fields: (1) a segment field, which identifies a segment
within the virtual storage; (2) a page field, which identifies a page
within the segment addressed; and (3) a byte displacement field, which
identifies a byte within the page addressed. The number of bits in each
field varies depending on the segment and page sizes used. Virtual
storage address fields for a segment size of 64K and a specific example
of how the fields are used to address a location in virtual storage are
shown in Figure 15.10.1.

OPERATION OF DYNAMIC ADDRESS TRANSLATION HARDWARE

Address Translation Tables

The page and segment tables used for the DAT facility in the 4341
Processor reside in real storage and are identical to the tables used by
the DAT facility in Systems/370 processors without the System/370
Extended Facility/Feature (that is, there is no common segment
capability for 4300 Processors). The address translation process using
these tables in the 4341 Processor is identical to the process used in
System/370. The segment and page table formats and entries used for
address translation are shown in Figure 15.10.2.

One segment table is required to describe one virtual storage. If
more than one virtual storage is supported by a single processor, there
is a segment table for each virtual storage. A segment table contains
one four-byte entry for each segment in the virtual storage the table
describes, up to a maximum of 256 entries for the maximum-size virtual
storage of 16 million bytes (using 64K segments).

The real storage address of the segment table (or of the currently
active segment table if multiple virtual storages are implemented) is
contained in control register 1. The current length of the segment
table is also indicated in control register 1. The length value is used
by the hardware during translation to ensure that the segment entry
being referenced falls within the segment table. The segment table
entries contain the real storage addresses of the page tables.

122

FORMATS

. Effective 24-bit virtual storage address
N

-
8 16 21 31
64K segment Segment Page Byte displacement Supported by
2K page address address from beginning of page DOS/VSE
bits bits and OS/VS1
\ - \ / \ -
0 to 255 0to 31 0 to 2047
Effective 24-bit virtual storage address
A
ls \
8 16 20 31
64K segment Segment Page Byte displacement Support'ed by
4K page address address from beginning of page VM/370
bits bits
[\ Y SN — \ _/
0to 255 0to 15 0 to 4095
EXAMPLE OF ADDRESSING A 2K PAGE
Virtual storage of
16, 777, 216 bytes
(16, 384K)
| Page 31
Segment 255
Page OI
16,320K
o~ Segments 2 to 254 [~
Hex address 0 1 F 8 0 4
128K
| Page 31 8 16 21 31
Segment 1 L 00000001 { 11111 | 00000000100
Segment Page Byte
684K Page O I 1 31 4
| Page 31
Segment 0
Virtual
storage Page 0 I
address O 9

Figure 15.10.1.

64K segments, 2K pages

Virtual storage address fields for

a 6uK

segment

123

Control register 1

Page Tables -Page Tables
Segment for 2K pages for 4K pages
table addr. Segment O Page Table Segment O Page Table
0 8 26 31 0 o g
Page 0 entry Page O entry
AN —
32
or = P~
64 2 bytes 2 bytes A bytes
0 2 A
Segment 0 entry bytes 15 Page 15 entry
1 Segment 1 entry B
~ — 31 Page 31 entry
4 bytes °
.
[]
256 entries N
for L] .
16 million T b .
bytes
Segment 255 Page Table Segment 255 Page Table
0 Page O entry 0 Page O entry
or x %J
L 255 Segment 255 entry 15 Page 15 entry
31 Page 31 entry
Segment Table
for one virtual
storage — 1024 256 Page Tables
bytes maximum maximum
for 64K
segment size
Segment Table Entry 2K Page Table Entry 4K Page Table Entry
Page Page
L]o |Tale O] d ifolu 1'fooju
address address
0 4 8 29 31 0] 131415 0 1213 15
Bits Bits Bits
0-3 Page table length 0—12 High-order 13 0-11 High-order 12
8—28 Page table origin bits of real bits of real
address storage address storage address
31 Invalid bit of page of page
13 Invalid bit 12 Invalid bit

Figure 15.10.2.

15 User bit for
programming
systems use

address translation

15 User bit for
programming
systems use

Segment table and page tables used for dynamic

There is one page table for each segment in the virtual storage
defined in a DOS/VSE or 0S/VS1 environment, up to a maximum of 256 page

tables for a l1l6-million-byte virtual storage with 64K segments. A
segment table entry contains an indication of the length of its
associated page table, the high-order 21 bits of the real storage
address of the beginning of the page table, and an indication of whether
or not the entry itself is valid and can be used for translation
purposes (invalid bit). If the invalid bit is on in a segment table
entry, a translation exception occurs during the translation process.

124

A page table has one entry for each page in the particular segment
the page table describes. For a 64K segment, there are 32 or 16 entries
in a page table depending on whether a 2K or a 4K page is used,
respectively. A page table entry is two bytes in size. It contains the
12 (for a 4K page) or 13 (for a 2K page) high-order bits of the real
storage address of the page frame that is currently allocated (if any)
to the virtual storage page that the page table entry describes.

Each page table entry also contains an invalid bit to indicate
whether the entry can be used for translation. The invalid bit is on
when a virtual storage page does not have real storage currently
allocated to it. A page translation exception occurs during the
translation procedure if this invalid bit is on.

For System/370 mode, the control program maintains knowledge of the
page frames available for allocation., When a translation exception
occurs, the control program receives control and tries to allocate an
available page frame. If none are free, the page replacement routine is
executed to make a page frame available.

In effect, the segment and page tables define the relationship
between virtual and real storage at any given time. The segment table
reflects the current size of virtual storage and the location of
required page tables. The segment table also indicates, by means of its
invalid bits, which segments of virtual storage are currently allocated
and have a page takle available. The page tables indicate, via their
invalid bits, which virtual storage pages currently have a page frame
allocated and the location (real storage address) of these page frames.

In DOS/VSE and 0S/VSl environments, segment and page tables are
defined by the control program at system initialization. Page tables
are modified during system operation by control program routines to
reflect the current allocation of real storage to virtual storage so
that address translation can take place.

Address Translation Process

A translation request is either explicit or implicit. Explicit
translation in System/370 mode is invoked via execution of the LOAD REAL
ADDRESS instruction. 1Implicit translation is invoked to translate all
instruction addresses and data addresses contained in other
instructions. Implicit address translation takes place during
instruction execution. :

The logical flow of the translation process for System/370 mode is
given in Figure 15.10.3. The procedure consists of a two-level, direct
address table lookup operation that produces a real storage address.

Any type of translation exception that occurs during the address
translation process causes a program interruption and termination of the
translation process. The processor cannot be disabled for translation.
exception interruptions. Segment and page translation exceptions that .
occur during explicit translation requests (LOAD REAL ADDRESS
instruction) are indicated via the condition code settlng instead of via
gn interruption. . .

125

Effective 24-Bit Virtual Storage Address

64K 2K
l Segment | Page | Displacement |
8 16 16 20 21 31
Control Register 1
Segment Table
Length l Address l J
0 8 I 26 31
XX ee————— X 000000
/ / 0—0XXXXXXXX00 0—OXXXXX0
8 25
30
Add

Segment Table Page Table
|
i
Length| PaAgg d-[:ge Page Address
_i/— Page Table
Page Table X X X -

\ . 8 20 21 31
® Y
Page Frame

Number Displacement

Figure 15.10.3. Dynamic address translation procedure for System/370

mode

The details of the translation process are as follows (refer to
Figure 15.10.3):

1.

126

Bits 8, 9, 10, and 11 in control register 0 are checked for
validity. A translation specification interruption occurs if an
invalid setting is present. Segment address bits from the
virtual storage address are checked using length bits in control
register 1. If the segment entry addressed is outside the
segment table, a segment translation exception is indicated.

Six low-order zeros are appended to the segment table address in
control register 1. Two low-order zeros are appended to the
segment bits from the virtual storage address. The two values
are added to obtain the real storage address of a segment table
entry. If the invalid bit is on in the selected entry, a segment
translation exception is indicated.

Page address bits from the virtual storage address are checked
using page table length bits contained in the segment table
entry. A page translation exception is indicated if the entry
addressed is outside the page table.

Three low-order zeros are appended to the page table address
contained in the segment entry. One low-order zero is appended
to the page address from the virtual storage address. The two
values are added to obtain the real storage address of a page
table entry. If the invalid bit is on in this entry, a page
translation exception is indicated.

J

5. The 24-bit real storage address is formed using the 12 or 13
high-order bits from the page table entry and the 12 or 11 low-
order bits from the virtual storage address, depending on page
size (2K or 4K). The resulting real storage address 1s used to
access program processor storage. v

The time required for address translation utilizing the DAT hardware
in System/370 mode is 6.9 microseconds when 102u4K~byte segments are used
and 7.05 microseconds when 64K-byte segments are used. This translation
time is eliminated if the processor translation lookaside buffer can be
used for the translation. (see discussion below) .

Processor Translation Lookaside Buffer

When the 4341 Processor operates in System/370 fode with DAT
specified, additional processor time is required to perform address
translation using the segment and page tables. Thus, a processor
translation lookaside buffer (TLB) is implemented primarily to minimize
the amount of time required to perform address translation when DAT mode
is enabled. .

However, in the 4341 Procfssor, the TLB is also utilized when
System/370 mode is in effect’for BC mode operations and when EC mode is
in effect without DAT enabled. The TLB is used for all System/370 mode
operations so that the same microcode can be used, regardless of the
other modes in effect, and because access1ng the protect key in the TLB
is faster than accessing the key stack. - ,

As shown in Figure 15.10.4, the TLB'contains 32 rows and 2 columns.
Each row contains two entries (one per column). Each entry contains one
address translation, three status bits, and the seven~b1t storage key.

A set of 32 least recently used (LRU) bitS‘(one for leach row) is
provided for determining which column to assign when a translation is
stored in the TLB.. The LRU bits are set to 1ndicate the left hand
column during a TuB reset.

An address translation in an entry consists of a Virtual address and
a real address when DAT mode is enabled or the same two real addresses
when DAT mode is not enabled. The status, bits are valid, virtualsreal,
and ACB check, while the storage key contains the store protect, fetch
protect, reference, and change bits. .

S

The valid bit indicates whether or not the entry is valid and can be
used for address translation. When the TLB is reset during a processor
reset, all the valid bits are turned off. 1In addition, when a SET °
STORAGE KEY instruction is issued, the entire TLB is searched by .
hardware. All virtual entries are invalidated as iE any real entry that
has the same real address as the one for which the key is being set..

The virtuals/real bit indicates. the eptry contains a v;rtual/real
address pair (virtual entry) or a réal/real address pair (real entry).
The TILB can contain a mixture of wvirtual and real entries. The bit is
set when the entry is placed in the TLB based on the setting of the DAT
bit. A real entry is indicated when the virtual/real bit is on.

The ACB check bit is used to indicate the real address in a virtual
entry is invalid because it is equal to or higher than the address in
the ACB register. When a virtual entry is placed in. the’ TLB, the real
address is checked against the ACB register a d the ACB check bit is
set, as appropriate. :

When DAT is enabled, every time a v1rtua1 storage’@ddress
translated during instruction execution using the segment and page
tables, the real storage address resulting from the translation . .
N 127

Coh \ .
[T .
i , . B . ¢

procedure, its associated access control key, and the virtual storage
address are placed in the TLB. The validity bit for the entry is turned
on. The virtual/real bit is set to zero to indicate a virtual entry.
The ACB check bit is set to zero when the real address is less than the
ACB register value.

Bits 8 to 12 of the virtual storage address are used to select the
row to assign. The LRU bit for the row determines which column (left or
right) is assigned. Thereafter, each time a TLB entry is loaded or its
translation is used, the associated LRU bit is set to indicate the
column not containing the referenced entry.

Note that the TLE is oriented toward a 2K-byte page size. When the
page size is UK bytes and a page is referenced that does not have a
translation in the TLB, a translation is placed in the TLB for the 2K-
byte portion of the 4K page that was referenced. A translation for the
other 2K bytes of the page is not placed in the TLB unless that 2K bytes
is referenced.

Virtual Real Virtual Real
address address Status) Key address address Status| Key | LRU
8 1 3 7 8 1 3 7 1
bits bits bits | bits bits bits bits | bits bit
32 pairs
of entries Ju
pout T

31

Figure 15.10.4. Processor TLB for the 4341 Processor

During System/370 mode operations with DAT enabled, when a virtual
storage address must be translated, the TLB is inspected before the
translation procedure is performed. Bits 8 to 12 of the virtual address
in the instruction are used to select one of the 32 rows.

The virtual address in the instruction is compared simultaneously
with the first address in each entry in the selected row. If there is
an equal comparison with either address, the status bits of the
associated entry are checked. 1If the address is virtual (virtual/real
bit is zero), the entry is valid, and the ACB check bit is off, the real
address bits in the entry are combined with bits 13 to 31 of the virtual
address in the instruction to form the real storage address. The LRU
bit is set appropriately. When the required real storage address can be
obtained from the TLB, no address translation time is added to the time
required for execution of the instruction.

If the valid bit is off, the translation is not used and the full
translation procedure is performed. If the ACB check bit is on, an
addressing exception program check occurs and no further address
translation processing occurs. If an equal comparison does not occur
when the instruction address is compared with the two addresses in the
addressed TLB row, the full translation process, using segment and page
tables, is performed, as previously described, to obtain a real storage
address. The appropriate bits of the virtual storage address in the
instruction and the appropriate real storage address bits obtained from

128

the translation process are placed in the TLB. The LRU bit setting for
the selected row determines the column assigned.

When DAT is not enabled during System/370 mode operations, the real
addresses in instructions are used to address the TLB. When the TLB
contains the required real address pair, no address translation time is
added to instruction processing time. If the TLB does not contain the
required real storage address, the real storage address is placed in the
two address locations in the selected TLB entry (as determined by the
LRU bit setting). When the real address is not in the TLB during
System/370 mode operations with DAT disabled, 1.4 microseconds are added
to instruction processing time.

All entries in the TLB are automatically invalidated when the page
size in effect changes. The PURGE TLB instruction provides the
capability of invalidating all the TLB entries by programming, when
required. For example, in general, this instruction must be issued
whenever an entry in a page table is invalidated, since the processor
storage address associated with the real storage address bits being
invalidated could be contained in the TLB. (The control program purges
the TLB as required.)

Operation of the TLB cannot be disabled. If an error occurs in the
TLB, the instruction in execution when the error occurred is retried if
it is a retryable instruction. For unretryable errors, an uncorrectable
error condition (instruction processing damage) exists (see Section 50).

Addresses Translated

All storage addresses that are explicitly designated by a program and
that are used by the instruction processing function to refer to
instructions or data in processor storage are virtual storage addresses
when System/370 and DAT modes are in effect and are subject to address
translation. Thus, when DAT is operative, the starting and ending
storage addresses used with the program event recording feature are
virtual, as are the storage addresses stored in PSWs during
interruptions.

Address translation is not applied to addresses that explicitly
designate access control key storage locations or to quantities that are
formed as storage addresses from the values designated in the base and
displacement fields of an instruction that are not used to address
processor storage (shift instructions, for example). In addition,
address translation is not applied to the storage addresses in CCW lists
used for I/0 operations during System/370 mode operations.

Some of the storage addresses supplied to a program by the
instruction processing function are virtual and some are real. Table
15.10.2 lists, for the 4341 Processor operating in System/370 mode with
DAT enabled, those storage addresses designated by a program, either
explicitly or implicitly, that are virtual. The virtual addresses are
subject to translation using the TLB or segment and page tables. Table
15.10.2 also indicates those storage addresses that are real or not used
to reference processor storage. The table also indicates which storage
addresses supplied to a program are virtual and which are real.

129

Table 15.10.2. Virtual and real storage addresses used by, and
. supplied to, programs in the 4341 Processor operating in
System/370 mode with DAT enabled

Virtual Storage Addresses Explicitly Designated by the Program (translated
using the segment tablke and page tables)

Instruction address in the PSW

Branch addresses

Addresses of operands in real storage

Operand address in LOAD REAL ADDRESS instruction

PER starting address in control register 10 and PER ending address
in control register 11

Real Storage Addresses Explicitly Designated by the Program (not
translated)

e Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,

and RESET REFERENCE BIT instructions

Segment~table-origin address in control register 1

Page-table-origin address in a segment table entry

Page frame address in a page table entry

CCW address in the channel address word (CAW)

Address in a CCW specifying a data area or the location of another CCW
Data address in channel indirect data address lists

Addresses Not Used To Address Storage (not translated)

¢ Operand addresses specifying the amount of shift in fixed-point,
logical, or decimal shift instructions

¢ Operand address in LOAD ADDRESS and MONITOR CALL instructions

e I/0 addresses in 1I/0 instructions and the fixed processor storage area

Real Storage Addresses Used Implicitly (not translated)

¢ Addresses of PSWs used during an interruption and in executing the
programmed or manually initiated restart function

¢ Address used by processor to update the timer at location 80

e Address of the CAW, the CSW, and the I/0 address within the fixed
processor storage area used during an I/0 interruption or during
execution of an I/0 instruction, including execution of
STORE CHANNEL ID

e Addresses used for the store status function

Virtual Storage Addresses Provided to the Program

¢ Address stored in the instruction address field of the o0ld PSW during an
interruption

e Address stored by a BRANCH AND LINK instruction

¢ Address stored in register 1 by TRANSLATE AND TEST and
EDIT AND MARK instructions

e Address stored in location 144 on a program interruption
for a page translation or segment translation exception

e Address stored in location 152 on a PER interruption

Real storage Addresses provided to the Program

* The translated address generated by a LOAD REAL ADDRESS instruction
e pddress of a segment table entry or page table entry provided
ky the LOAD REAL ADDRESS instruction
e Failing storage address at location 248
® CCW address in the CSW

130

FEATURES TO SUPPORT DEMAND PAGING

Reference and Change Recording Facility for Processor Storage Blocks

A hardware recording facility is standard in the #4341 Processor.
This facility provides continuous recording of the activity of all 2K
processor storage blocks in the program processor storage sections via
reference and change bits. The settings of these recording bits can be
used by control program routines to support a demand paging environment.
This hardware facility is always active in both System/370 and ECPS:VSE
modes.

The seven-bit storage key associated with a 2K processor storage
block in the 4341 Processor has four access control bits (for store
protection), one fetch protection bit, one reference bit, and one change
bit. In the 4341 Processor, the storage keys are located in the key
stack and a copy of the storage key settings is maintained in the
address translation table.

During processor operation, the activity of each 2K block in program
processor storage is monitored by hardware. Whenever a fetch is made by
either the instruction processing function or a channel to a real
storage address during System/370 mode operations, the reference bit in
the storage key associated with the 2K processor storage block that
contains that real storage address is turned on by the hardware. A
store into any real storage address causes the hardware to turn on both
the change bit and the reference bit for the affected 2K block.

Altersdisplay operations initiated from the operator console also
cause appropriate changing of reference and change bits. The RESET
REFERENCE BIT instruction is provided to allow the reference kit of any
2K storage block to be reset to zero by programming without altering the
contents of the other six bits in the storage key.

The hardware reference and change recording facility is used by the
page replacement algorithm of a virtual storage operating system. When
a page is loaded into a page frame, the reference and change kits for
that page frame are set to zero. Thereafter, the reference bit is used
to determine the activity of a page. The change bit is inspected to
determine whether a page must be paged out when its page frame is
reassigned. The SET STORAGE KEY instruction must be used to reset a
change bit.

Instruction Nullification

When a page fault occurs in a demand paging environment, execution of
the instruction that caused the page fault stops and the control program
gains control to initiate a page-in operation. When the contents of the
missing page have been loaded (and the appropriate page table entry has
been updated), the instruction that caused the page fault is reissued.
In order for the instruction to operate correctly the second time,
execution of the instruction must have been stopped in such a way that
reexecution gives the same results as would have occurred if the
instruction had been executed only once. Therefore, the contents of
processor storage, the general and floating-point registers, and the PSW
must not be altered.

The execution of an instruction is said to be nullified when it is
stopped so that no operation is performed, no fields are changed, and
the PSW indicates the address of the instruction that was stopped.
Interruptible instructions, such as MOVE LONG, are divided into
execution units. One or more execution units may have completed before
a page fault is detected. In this case, only the current execution unit
is nullified.

131

Various methods are used, depending on the type of instruction, to
determine the need for nullification. In some cases, execution of the
instruction is attempted where hardware detection of page faults permits
nullification. 1In other cases, pretesting is required to determine
whether the virtual storage pages to be referenced have page frames
allocated. Nullification testing is required only for 1nstruct10ns that
reference virtual storage.

“

CHANNEL INDIRECT DATA ADDRESSING

Since address translation is not performed by the channels for
programs that operate in paged (virtual) mode when System/370 mode is in
effect and DAT is enabled, address translation must be performed on CCW
lists by programming before the initiation of I/0 operations. Such
address translation need not: be performed on the CCw llStS of programs
that operate in nonpaged (real) mode.

In addition, a contiguously addressed 1I/0 area in wirtual storage can
span a set of noncontiguous page frames. - Hence, a method of handling a
noncontiguously addressed I/0 area in real storage during the operation
of a CCW list is required. The standard channel indirect data
addressing feature is used to provide this capability. It applies to
the byte multiplexer channel and all block multiplexer channels. As
shown in Figure 15.10.5, the use of channel indirect data addressing
allows the channel program ldgic used in the CCW list with virtual
storage addresses to be maintained in the new CCW llst that contains
real storage addresses.

When channel indirect data addressing is present in a processor, bit
37 of a CCW is designated as the indirect data address (IDA) flag. The
IDA flag applles to read, read backward, write, control, and sense
commands and is valid in both BC and EC modes. When the IDA flag in a
CCW is zero, bits 8 to 31 of the CCW specify the real storage address of
the beginning of the I/0 area as usual.

When the I/0 area referenced by a CCW is completely contained in one
page,: an indirect data address list (IDAL) is not required and the IDA
flag is set to zero. When the IDA flag is one, CCW bits 8 to 31 specify
the real storage address of an IDAL instead of an 170 area. When the
I/0 area referenced by a CCW spans two or more pages, an IDAL 1s
required and the IDA flag is set to one.

An IDAL consists of two or more contiguous indirect data address
words (IDAWs) of four bytes each aligned on a fullword boundary. There
is one IDAW in an IDAL for each 2K storage block spanned by the 1I/0
area. An IDAW, which must be aligned on a fullword boundary, contains a
real storage I/0 area address in bits 8 to 31. 'Bits 0 to 7 must be
zero. The first IDAW in the list points to the beginning of the I1/0
area to be used by the CCW and is obtained by translating the virtual
storage address contained in the original CCW. :

Any valid real storage address can be spec1f1ed in the flrst IDAW of
a list. All IDAWs after the first must address the beginning (or end
for a read backward operation) of a 2048-byte block located on a 2048-
byte boundary, or a program check occurs. That is, bits 21-31 of the
address in the IDAW must be zeros (or ones for a read backward).

Figure 15.10.5 shows an example of the IDALs required for a command-
chained CCW list when 2K pages are used. The IBM-supplied virtual
storage operating systems construct a new CCW list with translated (real
storage) addresses that is used to control the I/0 operation. The new
CCW list points to any required IDALs.‘

132 \ ‘ -

T

CCW List Provided by the Program

ccwi 1/0 area 1 3625
address
1/O area
ccw2 address 0 3625
0o 8 7 31 33 48 63

Virtual storage
address

CCW List and IDAL's Constructed for the 1/O Operation
CCW1 1/0 area in real

storage — 3625 bytes

IDAL1 576

address 1/0 area

/ bytes
Daw1| © Real storage Page frame X

Real storage 2048
New translated CCW list IDAW2| O address 1/0 area bytes
used for Start 1/0 o | Real storage Page frame Y
IDA IDAW3 address 1/O area
CAMW at location 72 flag 0 8 31 1001
o bytes
IDAL1
- fi z
address CCw1 address 1 1 3625 Page frame
IDAL2
0 1 3625
cew2 ~ address 6
CCW2 1/0 area in real

133 37 48 63
o 8 7 3 storage — 3625 bytes

Real storage

dd IDAL2
acdress 1800 bytes
0 Real storage
IDAW1 address 1/0 area Page frame A
Real storage
IDAW2| O address 1/0 area \‘
0 8 31 1825 bytes

Page frame B

Figure 15.10.5. Example of IDALs required for a CCW list when page
size is 2K

When a START I/0 instruction is executed, the channel fetches the
first CCW in the list, pointed to by the channel address word (CAW), and
inspects bit 37. If it is zero, the I/0 operation is started to the
real storage address specified in the CCW.

If bit 37 in the first CCW is a one, the first IDAW is fetched from
real storage address specified in the CCW. The I/0 operation is begun
using the real storage address in the first IDAW. Assuming that the I/O0
operation is not a read backward, ascending real storage addresses in
the I/0 area are used by the channel until a 2048-byte boundary is

reached.

The channel detects a 2K boundary by monitoring I/0 area address bits
21-31. When these bits change from all ones to all zeros, which causes
a carry from bit 21 when the address is incremented by one, the first
byte of the next 2K real storage block is indicated. At this point, the
channel accesses the second IDAW in the list to obtain the next real
storage I/0 area address to be used and the data transfer operation
continues. The channel continues using the IDAL until the operation
indicated by the CCW completes (CCW count reaches zero, IBG on tape is

133

y

reached, etc.). The next CCW is accessed if command or data chaining is
indicated. Bit 37 is 1nspected and the I/0 0perat10n continues as
described until the CCW list is exhausted.

When a program operates in paged mode, the CCW list for each I/0
operation must be inspected, a new CCW list with real addresses must be
built, and the appropriate IDALs must be constructed before a START I1I/0
instruction is issued. At the completion of an I/0 operation, some
retranslation is also required. In general, the following steps must be
taken for each CCW in a given list:

1. Determine whether the I/0 area specified in the CCW spans pages
or is contained in only one. If a single page is involved,
translate the virtual storage address to a real storage address
and store it in the CCW. Ensure that a page frame is allocated
to the page containing the buffer and that the page frame is
marked fixed.

2., If two or more pages are involved, set up the required number of
IDAWS, place a pointer to the IDAL in the CCW, and turn on CCW
bit 37.

3. While setting up IDAWs, determine whether all pages in the I/0
area have real storage assigned. If not, ensure that page frames
are allocated and fixed.

At the completion of the I/O operation, the real storage address in
the channel status word must be translated to a virtual storage address,
and the pages that were short-term fixed before the initiation of the
1/0 operation must be unfixed. Channel program translation and page
fixing are performed by the I/0 control portion of the control program
in IBM-supplied virtual storage operating system support.

A program containing a CCW list that is dynamically modified during
its execution in System/370 mode with DAT enabled cannot operate
correctly in paged mode, since the modification is made to the CCW list
with virtual storage addresses rather than to the translated CCW list
that is actually controlling the I/0 operation on the channel.

15:15 ADDRESS TRANSLATION FACILITY FOR THE 4341 PROCESSOR OPERATING IN
ECPS:VSE MODE

The address translation facility for ECPS:VSE mode is an internal
mapping function that utilizes the address translation table. This
internal mapping function is always active when ECPS:VSE mode is in
effect. That is, it cannot be disabled and is used for both BC and EC
modes. All addresses in programs are assumed to be virtual when
ECPS:VSE mode is in effect for both BC and EC modes.

The intermnal mapping function is used to translate virtual storage
addresses in instructions and the instruction counter to real storage
addresses during program execution. Virtual storage addresses in CCW
lists are translated to real storage addresses during channel program
operation using a set of channel TLBs. Reference and change recording
and instruction nullification are performed in ECPS:VSE mode in the same
manner as described for System/370 mode.

. Several privileged instructions are provided for page control during
ECPS:VSE mode operations. These instructions, which are valid only when
ECPS:VSE mode is in effect (for both BC and EC modes), are:

¢ CLEAR PAGE

e CONNECT PAGE

134

* DECONFIGURE PAGE

¢ DISCONNECT PAGE

* INSERT PAGE BITS

* LOAD FRAME INDEX

e MAKE ADDRESSABLE

* MAKE UNADDRESSABLE

e SET PAGE BITS

STORE CAPACITY COUNTS

The CLEAR PAGE instruction enables 2K bytes of program processor
storage located on a 2K boundary to be cleared quickly with a single
instruction and validated. CLEAR PAGE should be used in ECPS:VSE mode
(instead of MOVE LONG, for example) to validate processor storage. - The
other page control instructions are provided to enable the control
program to support address translation.

VIRTUAL STORAGE ORGANIZATION

In the 4341 Processor, a virtual Storage size of 16,777,216 bytes is
always supported for ECPS:VSE mode. Virtual storage size cannot be set
by the operator, as for a 4331 Processor.

Virtual storage is divided into 2K-byte virtual. storage pages that
are located on 2K-byte address boundaries. These pages are addressed 0
to 8191. The page control instructions listed previously can address
pages in virtual storage using the address of any byte within the
virtual storage page. When the entire page is being addressed, only the
13 page address bits (8 to .20 in the virtual address) are utilized.

In order for a virtual storage page to be accessed by the instruction
processing function or channel programs, it must have processor storage
assigned. For ECPS:VSE mode, as for System/370 mode, the processor
storage available to programs is divided into 2K-byte page frames that
are located on 2K-byte address boundaries. A page frame can be assigned
to only one virtual storage page at a time. The allocation and
deallocation of page frames to virtual storage pages is accomplished
using page control instructions.

Each page frame has a unique 16-bit binary integer associated with it
that is called its frame index. The first page frame in program
processor storage has frame index 0, the next has frame index 1, etc.
The maximum value of the frame index is the total number of page frames
in program processor storage less one. The frame index is the method by
which the instruction processing function keeps account of individual
page frames for assignment.

Virtual Stotage Page States

Each virtual storage page is considered to be in one of three states:
disconnected, connected, or addressable. The state of a virtual storage
page determines its accessibility and 'is checked whenever the virtual
storage page is addressed explicitly or implicitly by the instruction
processing function or the channels.

A virtual storage page is in the disconnected state when it does not
have a page frame assigned. A disconnected virtual storage page cannot

135

be accessed and causes a page access or page state exception if the
instruction processing function attempts to access the disconnected
page. A page access exception occurs when the referenced virtual
storage page does not have a page frame assigned (as indicated by the
address translation table). A page transition exception can occur only
when a page control instruction that causes a page state change is
issued and an invalid page state transition is attempted. An I/0
interruption that indicates protection check occurs when a channel
attempts ' to access a dlsconnected page.

A connected v1rtual storage page has a page frame a331gned. It can
be accessed by the channels but not by the instruction processing.
function except via the CLEAR PAGE instruction. A page access exceptlon
occurs if the instruction processing function attempts to access a
connected page other than by a CLEAR PAGE instruction. In effect, a
connected virtual storage page is not disconnected and not yet
addressable by the instruction processing function.

An addressable virtual storage page has a page frame assigned and is
addressable by the instruction processing function and the channels.
Normally, a virtual storage page is placed in the addressable state
after a page-in is performed. Page zero is always addressable. It
cannot be placed in the connected or disconnected state.

The connected state is defined to provide protection against
accessing a page frame during a page-in or page-out operation. In
System/370 and when System/370 mode is in effect in the 4341 Processor,
a page frame cannot be accessed by the instruction processing function
during a page-in or page-out, since the invalid bit in the page table
entry for the associated virtual storage page is on during the paging
I/0 operation. However, a channel can access the page frame during an
I/0 operation, since the CCWs contain real addresses.

The states of virtual storage pages are managed using page control
instructions. A disconnected virtual storage page must enter the
connected state before it can enter the addressable state. Similarly,
an addressable virtual storage page must enter the connected state
before it can enter the disconnected state.

The CONNECT PAGE instruction is used to assign a free page frame to a
disconnected virtual storage page. It specifies a general register and
the address of the virtual storage page to be placed in the connected
state. If a page frame is free, it is assigned to the virtual storage
page, the page is placed in the connected state, the frame index of the
assigned page frame is placed in the specified general register, and the
condition code is set to indicate a successful connection. See the
discussion under "Page Frame Assignment" in this subsection for an
explanation of how the page frame allocated by a CONNECT PAGE
instruction is chosen by the instruction processing function.

When the CONNECT PAGE instruction is issued for a virtual storage
page that is already connected, the frame index is returned in the
specified register and the condition code indicates the page was already
connected. If the virtual storage page is in the addressable state when
the CONNECT PAGE is issued, a page transition exception exists and the
instruction is suppressed. A program interruption occurs. .

If no page frames are free when the CONNECT PAGE instruction is
issued, no frame index is stored in the specified register and the
conditiancode indicates an unsuccessful connection.

The MAKE ADDRESSABLE instruction is used to place a connected virtual
storage page in the addressable state. This instruction specifies the
address of the virtual storage page that is to be made addressable. If
the page is in the connected state, it is made addressable and the

136

condition code is set to indicate the page was in the connected state.
If the MAKE ADDRESSABLE instruction is issued to a virtual storage page
that is already in the addressable state, it remains addressable and the
condition code is set to indicate the page was already addressable. If
the page was in the disconnected state, a page transition exception
exists, the instruction is suppressed, and a program interruption
occurs.

The MAKE UNADDRESSABLE instruction is used to place an addressable
virtual storage page in the connected state. It specifies only the
address of a virtual storage page. If the specified page is in the
addressable state, it is placed in the connected state and the condition

code is set to indicate the page was in the addressable state. The
condition code indicates already connected when the MAKE UNADDRESSABLE
instruction is issued to a connected page, and a page transition
exception program interruption occurs if the page was in the
disconnected state.

The DISCONNECT PAGE instruction is used to place a connected virtual
storage page in the disconnected state. It specifies the address of a
virtual storage page. If the page is in the connected state, it is
placed in the disconnected state and the condition code is set to
indicate the page was in the connected state. When the DISCONNECT PAGE
instruction is issued to a page that is already disconnected, the page
remains in that state and the condition code indicates the page was
already disconnected. A page transition exception program 1nterruptlon
occurs if the page was in the addressable state.

The LOAD FRAME INDEX instruction can be used to determine whether a
page frame is assigned to a virtual storage page. The returned
condition code indicates the state of the specified virtual storage page
(addressable, connected, or disconnected). The frame index of the page
frame assigned is returned in the specified register if the page is
addressable or connected.

virtual Storage Page Description

A page description is associated w1th‘each virtual storage page in
the virtual storage defined. This page descrlptlon is located in the
address translation table and consists of the following:

e A seven-bit storage key that consists of a four-bit access control
key, a fetch protection bit, one reference bit, and one change bit.
The access control key and fetch protection bit are used to provide
store and fetch protection that is functionally equivalent to the
same facility in System/360 and System/370. The reference and I
change bits provide the same reference and change recording function
as described for System/370 mode. Reference and change recording in
the 4341 Processor is functionally equivalent to the same facility
in System/370.

Note that the following instructions (while they address a page) do
not cause implicit setting of the reference or change bit: CONNECT
PAGE, INSERT PAGE BITS, INSERT STORAGE KEY, LOAD FRAME INDEX, MAKE
ADDRESSABLE, and MAKE UNADDRESSABLE. The DECONFIGURE PAGE and
DISCONNECT PAGE instructions cause the reference and change bits to
be turned off while RESET REFERENCE BIT turns off the reference bit.
The SET PAGE BITS and SET STORAGE KEY instructions cause the
reference and change bits to be set, as indicated in the
instruction.

¢ Three programmable bits that are provided for use by the page

supervisor of virtual storage operatihy systems. For example, one
of these bits could be utilized like the user bit (15) in the page

137

table entry. IBM-supplied operating systems that operate in
System/370 mode use bit 15 to indicate whether a page-in is required
when a page frame is assigned.

e Page state bits (two) to indicate the state of the page
(disconnected or connected and unaddressable or addressable)

* The address of the page frame currently assigned to the virtual
storage page, if any. This value is bits 8 to 20 of the real
storage address of the assigned page frame.

The page control instructions, except for CLEAR PAGE, operate on the
page description for the addressed virtual storage page rather than on
the page itself. :

Virtual Storage Page and Page Frame Capacity Counts

Four capacity counts are defined for the management of virtual
storage pages and page frames during ECPS:VSE mode operations. Each
count is a 16~bit unsigned binary integer that is initialized during IML
and updated by the processor during processing. These four counts,
which are not established for System/370 mode of operation, are located
in the K-addressable area of auxiliary storage in the 4341 Processor.
The four counts can be placed in real storage (each as a 32-bit unsigned
binary integer with 16 high-order zeros) using the STORE CAPACITY COUNTS
instruction. '

The four capacity counts are:

e Page capacity count (PCC), which is the number of virtual storage
pages in the virtual storage supported. This count is set during
IML and for the 4341 Processor is always 8192.

e Existing frame capacity count (EFCC), which is the number of page
frames in program processor storage. This count is established
whenever a processor clear reset occurs. ’

e Available frame capacity count (AFCC), which is the existing frame
capacity count less any page frames that are made unavailable for
use by programming via execution of the DECONFIGURE PAGE instruction
during processor operation (because they are malfunctioning, for
example). This is the number of page frames available for
allocation to virtual storage pages during processor operation.
During a processor clear reset operation in the 4341 Processor, the
AFCC is set to the same value as the EFCC.

¢ Free frame capacity count (FFCC), which is the number of page frames
that are currently not allocated to a virtual storage page and thus
are available for assignment. The FFCC can range from 0 to the AFCC
minus one. (Since virtual storage page 0 must always be
addressable, one page frame can never be free.) The FFCC is changed
as required during processor operation as each CONNECT PAGE and
DISCONNECT PAGE instruction is executed.

During a processor clear reset operation, the FFCC is set to zero
whenever the PCC is equal to or greater than the AFCC because reset
processing causes the allocation of all available page frames to the
lowest addressed virtual storage pages.

Page Frame Assignment

In ECPS:VSE mode, as in System/370 mode, the allocation and
deallocation of page frames to virtual storage pages during processor

138

operation is initiated by programming., However, in ECPS:VSE mode, the.
actual page frame that is assigned to a virtual storage page is selected
by the hardware instead of by programming, as in System/370 mode.

In ECPS:VSE mode, the hardware maintains a list of the addresses of
the page frames that are free for allocation to virtual storage pages.
This list is contalned in the page management area of auxiliary storage.
This area is 2K bytes for a processor storage size of two megabytes and
4K bytes for a processor storage size of four megabytes.

After processor initialization, the page management.area is empty,
since all program processor storage is allocated to the first N virtual
storage pages. Page frame addresses are added to and deleted from the
page management area as DISCQONNECT PAGE and CONNECT PAGE 1nstruct10ns,
respectively, are issued during processing.

A last-in, first-out queuing technique is used for the page frame
addresses in the page management area. A pointer is maintained in K-
addressable storage that indicates the next address location in the page
management area to be used. It points to the next address location in
the area after the last address location containing the frame index of
an available page frame. The pointer is initialized to indicate the
first address location in the -area.

When a page frame address is added to the area, as a result of the
execution of a DISCONNECT PAGE instruction, it is placed in the address
location indicated by the p01nter and the pointer value is incremented.
When a CONNECT PAGE instruaction is issued, ‘the pointer value is
decremented. The page frame address in the location indicated by the:
decremented pointer value is used for the connection and, in effect, is
removed from the page management area. !

A page frame must be a531gned to a virtual storage page during
. processor operation in ECPS:VSE mode when a page access exception
occurs. This exception occurs for an instruction when the address
translation table indicates the referenced page is not in the)
addressable state. If the page is in the connected state, a MAKE
ADDRESSABLE instruction should be issued. Otherwise, the CONNECT PAGE
instruction should be issued to cause the assignment of free page frame.

If the page management area is not empty (FFCC is not zero), the

. CONNECT PAGE instruction causes the instruction processing function to
decrement the page management pointer and assign the free page frame
indicated by the pointer. The cOntents of the assigned page frame are
not cleared. The FFCC is reduced by one. The virtual storage page is
placed in the connected state (connected-bit in the associated address
translation table entry is turned on). After a page-in of the required
page is performed (if necessary), the MAKE ADDRESSABLE insgruction must
-be issued to place the connected page in the addressable state so that
it can be acdessed.

If the FFCC is zero when a CONNECT PAGE instruction is issued to a
disconnected virtual storage page, the control program must then execute
its page replacement algorithm to:make a page frame free for assignment.
When the control program determines the virtual storage page whose page
frame is to be taken, it first must issue_a MAKE UNADDRESSABLE
instruction to place the virtual storage page in the connected state.

While the virtual storage page is in the connected state, a page-out
can be performed if the page was changed. The 'DISCONNECT PAGE
instruction should be issued after the page-out. The address of the
page frame the virtual storage page was assigned is placed in the page
management area and the FFCC is increased by one when the instruction is
issued. The page frame is not cleared by the processor. .

139

The preceding procedure makes a page frame free for assignment to the
virtual storage page that caused the page access exception while the
FFCC was zero. A CONNECT PAGE instruction for that virtual storage page
can then be issued again and connection will occur. The MAKE
ADDRESSABLE instruction should then be issued to place the virtual
storage page in the addressable state so that address translation can be
performed.

When the DECONFIGURE PAGE instruction is issued, the AFCC is
decremented and the address of the specified page frame is not placed in
the page management area. In effect, the page frame becomes unavailable
for use.

While programmed translation of the virtual storage addresses in
channel programs is not required for ECPS:VSE mode operations, all
virtual storage pages within the buffers addressed by a given channel
must have page frames assigned and the page frames must be fixed before
the channel program is started. The LOAD FRAME INDEX instruction can be
used to determine whether page frames are assigned to buffer areas.

OPERATION OF ADDRESS TRANSLATION

Address Translation Table

The address translation table is used in ECPS:VSE mode for the
translation of virtual storage addresses in instructions and channel
programs when the required translation is not in the processor TLB or
channel TLB. There is one four-byte entry in the address translation
table for each virtual storage page. Thus, the size of the address
translation table is 32K bytes for a 16~-megabyte virtual storage.

A 32-bit address translation table entry contains the following:

o Connected bit (0). This bit indicates whether the virtual storage
page associated with this entry is connected (bit is 1) or
disconnected (bit is 0). This bit is set by microcode when CONNECT
PAGE and DISCONNECT PAGE instructions are issued. When a page is
addressable, its connected bit is one to indicate it is also
connected.

¢ Addressable bit (1). This bit indicates whether the virtual storage
page associated with this entry is addressable (bit is 1) or
unaddressable (bit is 0). The setting of this bit indicates whether
the entry can be used for translation purposes. This bit is set by
microcode when MAKE ADDRESSABLE and MAKE UNADDRESSABLE instructions
are issued.

¢ Programmable bits (5, 6, and 7). These bits are set by programming
using the SET PAGE BITS instruction. Their contents can be placed
in program processor storage using the INSERT PAGE BITS instruction.

® Page frame address bits (8 to 20). This entry is the address of the
page frame currently assigned to the associated virtual storage page
when it is in the addressable or connected. state. This address is
set by the microcode when it assigns a page frame as a result of a
CONNECT PAGE instruction.

e Storage key bits (21 to 27). These bits are the reference, change,
fetch protection, and four access control bits (in the sequence
listed) that are used for reference and change recording and store
and fetch protection. The entire storage key (all seven bits) is
set using the SET STORAGE KEY instruction and inspected using the
INSERT STORAGE KEY instruction. The reference and change bits also
can be set and reset using the SET PAGE BITS instruction and the

140

INSERT PAGE BITS stores their value in program processor storage.
The RESET REFERENCE bit is used to set the reference bit to zero
and, via the condition code setting, determine the setting of the
reference and change bits before the instruction was executed. The
reference and change bits are altered by the microcode as pages are
referenced and changed.

During a processor clear reset operation for ECPS:VSE mode, the
microcode assigns all existing page frames in program processor storage
to the first N virtual storage pages and initializes the address
translation table as follows:

e All addressable bits and connected bits are set to one in the first
N entries, which are for the first N virtual storage pages with a
page frame assigned. The virtual storage pages are cleared to
zeros. For the balance of the entries these bits are set to zero.

e All programmable bits in all entries are set to zero.

e The first N entries with page frames assigned have a valid page
frame address that indicates the page frame assigned to the
associated virtual storage page. The balance of the entries have
zeros in this field.

e All storage key bits in all entries are set to zero.

This initialization enables a control program that operates in BC
mode (the default established during IPL) and does not support ECPS:VSE
mode (such as a System/360 operating system) to execute with this mode
in effect. No page access exceptions will occur during translation
operations as long as no address higher than the program processor
storage size is addressgd.

Translation Process for Instructions

Address translation for instructions occurs as follows during
instruction execution with ECPS:VSE mode in effect. BAs each instruction
is processed, the microcode uses any virtual storage address in the
instruction to directly address the address translation table (if the
translation is not in the processor TLB). Bits 8 to 20 of the virtual
storage address are the page address and are used to select the
appropriate four~byte table entry. The addressable bit is inspected.

If it is on (page is addressable), the 13 bits in the page frame address
field are combined with bits 21 to 31 of the virtual storage address to
form a program processor storage address. This translation process
requires 1.4 microseconds.

If the addressable bit is off, a page access translation program
interruption is generated and instruction execution is suppressed. The
control program receives control and must perform the procedure
previously described to make the referenced virtual storage page
addressable. Once this has been completed, the instruction causing the
interruption is reissued when PSWs are switched. Address translation is
then performed.

Processor Translation Lookaside Buffer

The processor translation loeckaside buffer is also utilized to speed
up address translation during ECPS:VSE mode operations. However, it is
used only for the translation of virtual storage addresses in :

141

instructions and not for'the virtual storage addresses in channel
programs. A separate set of channel TLBs is used for channel programs.

"When an instruction address must be translated, the TLB is inspected
first to determine whether the translation can be taken from the TLB.
If so, no translation time is required, as for System/370 mode. If the
TLB doces not contain the translation, the address translation table is
accessed to perform the translation, as previously described. The
method of addressing a TLB entry and use of the LRU b1ts are the same
for ECPS:VSE and System/370 modes.

The TLB is managed entlrely by microcode in ECPS:VSE mode. When a
MAKE ADDRESSABLE instruction is issued, the specified virtual storage
page address and its associated processor storage address are placed in
the TLB when the page is referenced. Simllarly, when a MAKE
UNADDRESSABLE instruction is issued, the TLB is 1nspected to determlne
whether the address of the specified page is currently in the TLB. If*
so, the entry containing the page address is invalidated.

The full TLB is automatically purged during system reset.
‘Thereafter, the full TLB is never purged during ECPS:VSE mode
operations, since address translation is always operative and both
virtual and real entries can be.contained in the processor TLB.

' As a result of the technique used for address translation in ECPS:VSE
mode, the PURGE TLB instruction is not required and is not valid for
- this mode. The PURGE TLB. instruction is utilized in System/370 made,
for example, when multiple virtual storages are being supported and a
switch from one virtual storage to another is made or when page
replacement occurs and a page table entry 1s invalidated (since the
invalidated entry could be in the TLB).‘

Channel Program Translation
i

Cne channel TLB consisting of four entries for each channel is
provided in the 4341 Processor to handle address transldtion during
operation of a channel program for the channel. For each channel, the
channel TLB contains one evén and one odd entry for translating virtual
storage addresses in CCWs and one even and one odd entry for translating
data (I/0 buffer) addresses in ccus. . .

A CCW or data entry contains a 12-bit virtual storage address, an 11-
bit real storage address (the address of the assigned page. frame), and a
validity bit to indicate whether the entry is valid.

‘A pair of entries is provided for CCW address translation to handle
the situation in which the SEARCH and TIC commands in a disk channel
‘program are located in two separate virtual: storage pages and have
noncontiguous page frames assigned. If only one CCW entry were
available, a TLB miss would occur each time the SEARCH and TIC commands
were executed during a searchzng operation. Two data entries are
utilized for consistency. in the way in which addresses are translated
using. the channel TLB.

When a START I/0 instruction is processed, a READ CCW
microinstruction is issued. This microinstruction causes a reference to
the channel TLB to translate the virtual storage address of the first
- CCW in- the channel program. This wvirtual storage address is in the
channel address word. The three channel address bits specified in the
instruction are used to locate the channel TLB CCW entries for the
specified channel. Bit 12 in the virtual storage address of the channel
program to be started is used to select the odd or even CCW entry for
the channel. :

142

The virtual address in the selected CCW entry is compared to the
virtual address in the channel address word. If they are equal and the
entry is valid, the real address bits in the CCW entry are combined with
the real address bits from the channel program address and the first CCW
is fetched from this real address. The CCW is then processed. The
channel TLB reference procedure is performed by hardware and does not
add any time to I/0 processing when the required virtual address is in
the channel TLB. :

When the required translation is not in the channel TLB (unequal
virtual address comparison occurs), bits 8 to 20 in the virtual address
in the channel address word are used to select the required entry in the
address translation table. The real storage address and the setting of
the connected bit are taken from the addressed entry. The assumption is
the page containing the channel program is connected to a page frame.

The real storage address from the address translation table and its
associated virtual storage address are placed in the appropriate CCW
entry in the channel TLB and the setting of the connected bit is
inspected. If the bit indicates the page was connected (and thus the
‘real address is valid), the invalid bit is turned off in the CCW entry.
If the page was not connected, the invalid bit is turned on in the CCW
‘entry. This translation procedure requires 1.95 microseconds.

After channel TLB updating is completed, the READ CCW
microinstruction is reexecuted. The appropriate CCW entry in the
channel TLB is again addressed and the virtual storage address in the
entry is compared with the address in the channel address word. If the
entry is valid, the CCW is fetched and processed. If the entry is
invalid, a channel error condition exists. , ’

When the CCW is fetched, a READ DATA or WRITE DATA microinstruction,
as appropriate for the CCW, is issued to cause processing of the first
64 bytes to be transferred. The READ/WRITE DATA microinstruction
specifies the virtual storage address of the data to be processed. This
address is taken from the CCW. .

The READ/WRITE DATA microinstruction causes the appropriate odd or
even data entry in the channel TLB to be referenced to determine whether
the translation for the data address from the CCW is in the channel TLB
and is valid. Bit 12 in the virtual storage address determines which
one of the two data entries for the specified channel is used.

If the channel TLB does not contain the required translation, the
translation procedure described for translating a CCW address, using the
address translation table, is executed to translate the address in the
CCW and place it in the channel TLB. The READ/WRITE DATA
microinstruction is then reexecuted.

The READ/WRITE DATA microinstruction causes the processing of up to
64 bytes of data. If the CCW count is not zero after 64 bytes have been
read from or written to processor storage, another READ/WRITE DATA
microinstruction with its virtual data address incremented by 64 is
issued. This causes another reference to the channel TIB to translate
the address. Translations for successive READ/WRITE DATA
microinstructions can be taken from the channel TLB at 1east until the
end of the assigned page frame is reached.

When an I/0 buffer spans two or more noncontiguous page frames, the
first READ/WRITE DATA microinstruction whose virtual data address
crosses a 2K boundary will cause an unequal comparison between that
virtual address and the one in the appropriate channel TLB entry. This
TLB miss causes the translation procedure to be performed and the
appropriate channel TLE entry for the channel to be updated. The new

143

translation can then be used for accessing the next 2K bytes of data, if
necessary.

All channel TLB entries are invalidated during processor resets. A
channel TLB entry is updated only when a translation is performed during
channel program operation. An entire channel TLB is never purged during
processor operation. However, when an entry in the address translation
table is invalidated, all the odd or even channel TLB entries (as
appropriate) are inspected. Any entry containing a virtual storage
address that is the same as the one for which invalidation occurred in
the translation table is also invalidated.

15:20 SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

A virtual storage environment is designed to provide new data
processing capabilities. As is true of any other capability offered by
an operating system, support of a new function requires control program
use of a certain amount of the hardware resources of the system. 1In
this respect, V1rtual storage is no different from multiprogramming and
the many other new capabilities that were added to DOS and OS after
their initial release.

The characteristic that makes virtual storage different from most
other features is that virtual storage is not primarily designed to
improve system performance, as are many other control program
facilities. Virtual storage is first a functional tool and, in certain
cases, can also be a performance tool. The objectives of DOS and 0OS
virtual storage operating systems are to (1) provide new functions, (2)
maintain upward compatibility with LOS and 0OS non-virtual-storage
environments, and (3) provide performance equal to or better than that
achieved with a non-virtual-storage operating system using the same
system hardware configuration. Attainment of the last objectlve may not
be possible for all 4341 Processor configurations.

- In addition, some of the new functions a virtual storage environment
provides cannot be achieved in a non-virtual-storage environment or are
not practical. 1In these cases, performance is not the primary
consideration when using the facility virtual storage offers. As the
cost of hardware resources continues to decline on a unit cost basis
(cost per processor storage bit, cost per direct access bit, etc.), it
becomes increasingly more economical to use system resources to perform
functions that otherwise are handled by installation personnel.

The other new characteristic of virtual storage is that it enables a
given system configuration to provide a wider range of performance, as
well as function, as a result of the new factors that affect operation
of a system with virtual storage support. Thus, a slightly different
approach must be taken in planning for and in evaluating system
performance in a virtual storage environment.

Many of the same factors that affect system performance in a DOS/VSE
or 0S/VS1l environment apply to DOS Version 3 or 4 and OS MFT,
respectively. First, the system configuration must include the hardware
resources (processor speed, channels, I/0 devices, storage) required for
the control program and job mix. This subsection jdentifies the system
resources specifically required to support a virtual storage
environment. Second, the system should be designed to balance resource
usage to achieve optimum throughput, and to use applicable performance
and control' program design opticns the particular operating system
of fers, taking into account the characteristics of the installation
jobstream.

The performance of a system in a virtual storage environment is also
affected by certain new factors that do not apply to systems without

1uy

virtual stcrage support. This subsection identifies these new factors,
explains how they generally affect system performance, and indicates the
steps that can be taken to increase and maximize system performance when
a virtual storage operating system is used.

This discussion applies to DOS/VSE and 0OS/VSl, and is restricted to
performance factors that are common to the virtual storage environments
they support., The virtual storage operating systems also offer new
performance-oriented enhancements that are not related to the
1mplementat10n of virtual storage.

The performance 1nformat10n in this subsection is de51gned to present
concepts and considerations for a virtual storage environment. Figures
and graphs are used for illustrative purposes. They do not represent
any particular installation or measured results. Their purpose is to
illustrate the interrelated factors of multiprogramming performance in a
virtual storage environment. The performance information presented is
conceptual. It is based on the experience and judgment of IBM
individuals with performance knowledge and on performance measurements
made during develorment of 0S/VS. Therefore, it may not apply to all
installations.

SYSTEM RESOURCES REQUIRED TO SUPPORT A VIRTUAL STORAGE ENVIRONMENT

In order to support a demand paged virtual storage environment in a
4341 Processor, in which programs are operating in paged mode,
additional system resources are used by the IBM-supplied virtual storage
operating systems, as follows:

¢ Address translation hardware (dynamic address translation facility
or the internal mapping function) requires processor time to perform
virtual storage to processor storage address translation. The
amount of time required for a 4341 Processor is affected by which
address translation hardware is used and the number of times the
address translation hardware procedure must be performed. The 4341
Processor has a processor translation lookaside buffer that is
designed to minimize use of the address translation hardware. The
processor time required for translation is also affected by program
structure (which is discussed later).

A small amount of additional processor time is also required to
pretest certain instructions that reference storage, as discussed
under "Instruction Nullification" in Section 15:10. Studies have
shown that a relatively small percentage of the total processor time
specifically required to support a virtual storage environment is
devoted to address translation by hardware. In the 4341 Processor,
hardware address translation time can be minimized by the use of
ECPS:VSE mode, which provides significantly faster translation for
virtual storage addresses in instructions than System/370 mode when
the required address is not in the processor TLB.

e For System/370 mode operations in the 4341 Processor, processor time
is required to translate the virtual storage addresses in channel
programs (CCW lists) into real storage addresses, build indirect
data address lists (when necessary), and temporarily (short-term)
fix pages that will be referenced during I/0 initiation, execution,
and interruption handling. Channel program translation and page
fixing are performed before the initiation of each 1/0 operation

with a channel program that contains virtual storage addresses.
- Channel status word retranslation and page unfixing are performed at
the completion of these I/0 operations.

The amount of processor time this function requires per data set is
affected by the number of 1I/0 requests (EXCP macros) issued, the

145

number of CCWs in the channel programs started, the number of pages
that must be fixed, and whether or not indirect data address lists

have to be constructed. Studies have shown that a large portion of
the total processor time specifically required to support a virtual
storage environment is used to perform channel program translation

and page fixing.

When the 4341 Processor operates in ECPS:VSE mode, programmed
address translation for CCW lists and construction of indirect data
address lists are not required. The I/0 supervisor must only ensure
that each page referenced in a channel program has a page frame
assigned and that each page is marked temporarily (short~term)
fixed. Page unfixing must be performed at the completion of each
I/0 operation. The elimination of channel program translation for
CCW lists reduces the total processor time required to support a
virtual storage environment for ECPS:VSE mode operations.

¢ Processor time is required to process page translation/access
exceptions and for the execution of other control program code that
is specifically required to support a virtual storage environment.
Processor time is required for such things as servicing additional
program interruptions, managing and allocating real and external
page storage, maintaining segment and page tables used by DAT
hardware (System/370 mode only), and testing for paged or nonpaged
mode of program operation. The processor time required for this
support during ECPS:VSE mode operations is less than for System/370
mode - operations, since the updating of the table used for address
translation (address translation table) and available page frame
maintenance are handled by hardware rather than the control program.

¢ I/0 time is required for paging operations. The amount of paging
I/70 time required is related to the number of page faults that occur
and the speed of the paging I/0 device(s) used.

e Direct access storage is required for external page storage. The
amount required depends on the amount of virtual storage that is to
ke supported and the way in which the particular operating system
organizes and manages external page storage.

¢ The amount of processor storage required by the resident (fixed)
control program is increased by the amount of processor storage
needed for additional routines and code that are included ,
specifically to support a demand paged virtual storage environment.

The effect this additional use of hardware resources has on the
performance of a given system configuration, when a change from a non-
virtual-storagée to a virtual storage operating system is made without
expanding the system configuration, depends on the resource requirements
of the jobstream and current utilization of system resources. To the
degree that the additional required processor and I/0 time can be
overlapped with existing processor and I/0O time that currently is
unoverlapped, system throughput is not affected. System throughput will
be affected by the increase in processor and I/0 time that cannot be
overlapped.

When a virtual storage operating system is used with an existing
system configuration (say DOS/VSE replaces DOS Version 3 in a 4341
Processor configuration), for example, and the same jobstream is
processed, performance is affected by the use of any new performance
enhancements these operating systems provide as well as by an increase
in resource utilization that is.required to support a virtual storage
environment.

146

NEW FACTORS THAT AFFECT SYSTEM PERFORMANCE

In addition to the factors that affect system performance in a non-
virtual-storage environment, the performance of a system in a virtual
storage environment is affected by the relationship of the following
factors: the speed and number of paging devices, the speed of the
processor, the size of real storage, the structure of the programs in
the jobstream, and the way in which real storage is organized and
allocated by the virtual storage operating system. The
interrelationship of each of these factors and their individual effect
on performance, except for the last factor listed, are as follows (page
replacement algorithms are not discussed).

Speed and number of paging devices. A certain amount of I/O time is
required to read in (or write out) a page using a given direct access
device type. This time is a function of device type characteristics--
seek time, rotation time, and data transfer rate. Assuming one page-in
is performed at a time, no page-outs, and no contention for the paging
device or its channels/adapter, a maximum paging rate, in terms of the
nunber of page faults that can be serviced per time interval, could be
calculated for a given device type. This rate could be improved by
certain programming techniques, such as use of rotational position
sensing when it is present, and initiation of multiple page-in and page-
out requests with a single channel program. The maximum paging
capability of a given system can be increased by various means, such as
using a faster paging device or using more than one paging device.

The paging characteristic of a virtual storage environment is the
feature that permits an operating system to support virtual storage that
is larger than real storage. The paging activity of a system begins to
adversely affect system performance, however, once the processor is in
the position of frequently having to wait for paging I/0 operations to
complete. When requests for paging operations are permitted to occur
faster than the paging rate the system can sustain, so that the
processor can do little or no processing except that related to paging,
the system is in a paging-I/0-bound situation and is said to be
thrashing. When a thrashing condition exists, little or no productive
work can be accomplished unless paging activity is reduced.

In order to prevent thrashing, DOS/VSE and 0S/VS1 monitor the
activity of the system to determine when paging activity becomes
excessive. At this point, task deactivation is performed. This
involves placing a partition in deactivated status. When the page
frames associated with a deactivated partition become available, they
can be allocated to other tasks to reduce paging activity. Later, when
paging activity becomes sufficiently low, the deactivated partition is
reactivated.

Processor speed. An improperly balanced relationship between
processor speed and paging device speed can also cause the system to
become I/0-bound as a result of paging. A 4341 Processor can execute a
certain number of instructions during the time required to service a
page~in raquest using a given direct access device type. As long as
there is useful work for the processor to perform while paging
operations occur, the system is not kept waiting for paging I/O.
However, if the concurrently operating programs are constantly executing
instructions faster than the pages they require can be brought into real
storage, an excessively high paging rate could develop if task
deactivation were not invoked. Therefore, the direct access device type
selected for paging operations should be selected for its ability to
handle the particular page fault rate of the given configuration.

Real storage size. The amount of real storage present in a processor
(that is, program processor storage in a U341 Processor) affects the
number of page faults that occur when a given jobstream is processed.

147

If the amount of real storage present in the system is equal to the
total amount of virtual storage being used by the concurrently executing
tasks, no page faults occur for programs that have been fetched and
initiated. When the amount of real storage present is less than the
amount of virtual storage being used, page faults occur. The total
number of page faults that cccur for a given jobstream is affected by
the ratio of virtual storage used to real storage available.

Assuming the amount of virtual storage used in a given system remains
the same, the virtual-to-real storage ratio can vary. This occurs while
a given system experiences variations in the amount of real storage
actually available for paging as the amount of fixed real storage
changes during jobstream processing. The real storage availakle for
paging at any point in time is the difference between the amount of real
storage in the system and the total amount of long- and short-term fixed
real storage. For IBM-supplied virtual storage operating systems, the
total amount of fixed real storage at any given time is the sum of the:

¢ Resident (fixed) control program size, which does not vary after IPL

e Amount of long-term fixed real storage required for control blocks,
which can change as the level of multiprogramming changes (0S/Vsl
only)

e Amount of short-term fixed real storage required for outstanding I/O
operations that have virtual channel programs, which fluctuates with
the I/0 activity of the system

e Amount of long-term fixed real storage required by the job steps
executing in nonpaged (real) mode, if any

e Amount of long-term fixed real storage required by programs that
operate in paged mode but that have a portion of their partition
always fixed (VIAM, for example) '

As the virtual-to-real storage ratio of a jobstream increases, so
usually does the page fault rate. In general, the page fault rate
increases slowly for a while. At some point, the increase in page
faults begins rising rapidly as the virtual-to-real storage ratio
continues to increase. Figure 15.20.1, shown later, illustrates the
general relationship between the number of page faults and the virtual-
to-real storage ratio.

The amount of real storage available to process a given jobstream
also varies when a given jobstream is processed on systems with various
amounts of real storage, such as when a smaller-scale system is used to
back up a larger-scale system.

The degree to which reducing the real storage available for paging
affects the paging fault rate depends on the paging activity pattern of
the programs in a jobstream. Therefore, the virtual-to-real storage
ratio at the point at which a given number of page faults occurs will
usually vary by jobstream. The point can also be different for systems
with similar paging activity patterns and the same amount of real
storage installed, but with different amounts of long-term fixed real
storage.

As the virtual-to-real storage ratio increases, because of a
reduction in the real storage available (or an increase in the amount of
virtual storage used) and the page fault rate increases, more demand is
placed on the paging devices. If too small ‘an amount of real storage is
present in a system, this situation can cause the page fault rate to
exceed the permissible rate and task deactivation will occur. 1In
‘general, therefore, in order to obtain a certain level of performance, a
configuration that supports a given jobstream and virtual storage size

148

requires more real storage when a relatively slower paging device is
used than if a faster paging device is used.

Program structure. The total amount of virtual storage a program
uses is not nearly as significant a factor in system performance as the
way in which virtual storage is used. That is, the pattern and
frequency of reference to pages in a program have more effect on the
numker of page faults that occur than does the total size of the
program. '

For example, assume a case in which a program has a 100K virtual
storage design point. If the program can be structured to execute as a
series of logical phases of four or five pages each and the pages of
each logical phase reference only each other, no more than four or five
page frames (8K to 10K or 16K to 20K of real storage, depending on page
size) need be dynamically available to the program at one time, and
paging activity occurs only as the program progresses from one logical
phase to the next.

However, assume the program is structured such that during its
execution each page of instructions constantly references a large number
of different pages of instructions and data for short durations on a
highly random basis. An excessively high paging rate could occur if
only four or five page frames were dynamically available to such a
program at any time.

As indicated previously, most types of programs naturally have a
locality-of-reference characteristic so that they can be structured to
operate as a series of logical phases. In the simplest case, for
example, a program can logically consist of an initialization phase, a
main phase, one or more exception-handling phases, and a termination
phase. The total amount of virtual storage referenced in each logical
phase usually varies but, generally, the amount is less than the total
size of the program. 1In addition, the pages that are part of
(referenced in) a given logical phase can usually be described as active
or rassive.

For the purpose of the discussion in this subsection, an active page
is defined as one with a high probability of being referenced multiple
times during execution of the logical phase, while a passive page has a
low probability of being referenced more than once during execution of
the phase. A logical phase experiences the least amount of paging:
activity as it executes when its active pages remain in real storage
during its execution and its passive pages are paged in when required.
A program uses real storage most efficiently when the active
instructions and data in each logical phase are contained within the
fewest number of pages possible.

The locality-of-reference characteristic does not apply to certain
types of programs. For example, it does not apply to any program that
is designed to optimize its performance at execution time by using the
total amount of storage it has been allocated. This characteristic is
usually true of sort/merge programs that initialize themselves to use
all the storage made available to them in their partition during the
sorting passes. The reference pattern for such a sort/merge is random
and encompasses all the storage (and, therefore, all the pages) the
program is assigned.

RELATIONSHIP BETWEEN VIRTUAL STORAGE SIZE AND SYSTEM PERFORMANCE
Assuming other required system resources are available, a given
configuration can support a given virtual storage size and provide

satisfactory performance when paging activity is kept at an acceptable
level. Minimal paging activity occurs when enough real storage is

149

present in the system to contain most or all of those pages of
concurrently executing programs that are active at any given time.
Paging activity is then required primarily for passive pages. Active
pages are paged in (and later paged out as required) as the set of
active pages for each program changes from one logical phase to another.
The paging device(s) present must be capable of handling the demand for
pages that results from the range of paging activity of the system.

As the amount of virtual storage used in a given system increases,
the number of active and passive pages that the system must handle
increases also. The ratio of active to passive pages will vary for a
given increase in virtual storage, depending on how the additional
virtual storage is used. As long as enough real storage is present to
contain all or most of the increased number of active pages, the
increase in paging activity required to support the additional virtual
storage will be needed primarily for passive pages and should be
relatively small. As soon as the use of more virtual storage causes the
number of concurrently active pages to constantly exceed the capacity of
real storage, the paging activity increase required to support the
additional virtual storage becomes relatively large. As more and more
active pages must be handled, paging activity could exceed the maximum
paging capability of the system if task deactivation did not occur.

Figure 15.20.1 illustrates the increase in page faults that generally
occurs as more virtual storage is used in a given system configuration.
The curve begins at the point at which the amount of virtual storage
used is equal to the amount of real storage present (virtual-to-real
storage ratio is 1). Paging activity begins as soon as the amount of
virtual storage used exceeds the real storage present. As the virtual-
to-real storage ratio increases, so does paging activity. The system
moves from passive paging activity (primarily paging of passive pages)
into active paging (paging active pages in and out more of the time) and:
approaches the maximum paging capability of the system. As indicated
previously, Figure 15.20.1 also illustrates the increase in page faults
that generally occurs as less real storage is made available to support
a given virtual storage size. The increase in page faults also causes
the virtual-to-real storage ratio to increase.

Figure 15.20.2 illustrates the general effect on system performance
of the paging factor only. Figure 15.20.4, shown later, illustrates
system performance, taking into account all factors. The curve shows
the performance of the system when passive and active paging are
occurring, relative to the virtual-to-real storage ratio. The use of
virtual storage can be increased with little or no adverse effect on
performance as long as paging remains in the passive area. This is true
because in the passive paging area there is a relatively small amount of
paging and a high probability that all or most paging processing
(processor and I/0 time) can be overlapped with other processing. As
paging activity increases, there is a higher probability that processor
processing will be held up waiting for a paging operation to complete.
As the processor enters the wait state more frequently to wait for
paging I/0 and less paging I/0 is overlapped, the paging factor causes
performance tc degrade more rapidly.

150

Maximum

paging ‘» .
v capabi|ity\-l
)
/
Task /

deactivation

]

Number of :

page faults |

per second |
| \ Active
|#—————— Passive paging paging

-1 /’ Virtual-to-real storage ratio

()

Figure 15.20.1. General effect on page faults of increasing the ratio
of the virtual storage used to the real storage
present in the system

DI<

Paging Overhead -

: Passive paging Active !

e [i !

l ’ paging I

- |

| |
System | |
performance : | o

! L deactivation

I AN

| N\

I N\

| \

|

|

|

|

/J ‘ Virtual-to-real storage ratio

=1

<

(5>

Figure 15.20.2. General effect on system performance of the paging
factor only

The actual virtual-to-real storage ratio at the time active paging
begins in Figures 15.20.1 and 15.20.2 is a variable and depends on the

151

way in which virtual storage is used, that is, active-to-passive page
ratio of concurrently executing tasks.

Figure 15.20.3 illustrates the way in which the paging factor alone
can affect system performance in a given configuration, based on the
active~-to-passive page ratio. If the ratio of active to passive pages
for executing tasks is relatively high most of the time, as shown in
curve 1, the virtual-to-real storage ratio at the point at which active
paging begins will be relatively low. Performance drops very rapidly in
this case as more virtual storage is used. This happens because the
increased paging processing (I/C and processor time) cannot be
overlapped with other processing. This situation may apply initially to
an installation when a switch from a non-virtual-storage to a virtual
storage environment is made and more virtual storage is used, since
existing programs were structured for optimum performance in a given
partition size rather than for optimum performance in a virtual storage
environment.

Paging Overhead

Curve 3
(active-to-passive
page ratio low—
overlapped paging)

Curve 2

System

Curve 1
performance

(active-to-passive
page ratio high—
nonoverlapped
paging)

il
=1 /‘ Virtual-to-real storage ratio

(+>)

Figure 15.20.3. General effect of the paging factor on system
performance for various active-to-passive page ratios

o<

If the active-to-passive page ratio for the system is low, as shown
in curve 3, the virtual-to-real storage ratio can be relatively high
when active paging begins. The performance curve stays flatter longer
as virtual storage is increased when the active-to-passive page ratio is
low. This situation can apply to an installation in which all executing
programs are structured in such a way that real storage requirements and
page faults are wminimized. An installation that continues executing all
or most existing programs as they are presently designed and that
structures new arplications for most efficient operation (low active-to-
passive ratio) may be more common. Such installations may experience a
virtual-to-real storage ratio somewhere between the low and the high
extremes possible for a given jobstream, as shown in curve 2.

The amount of virtual storage used in a system can be increased in
several ways. First, the size of existing application programs can be
increased by the addition of new functions. Second, the level of
multiprogramming and/or multitasking can be increased, assuming other
required resources, such as processor time and I/0 devices, are
available. Third, the size of existing application programs can be

152

expanded by (1) restructuring programs with a planned overlay or a
dynamic structure to take them out of these structures and (2) combining
two or more job steps within a job into one logical job step. The
active-to-passive ratio of the additional pages the system must handle
will usually be higher when the level of multiprogramming is increased
than when existing jobs are restructured.

The way in which an installation should view the amount of virtual
storage used and system performance for a given configuration, taking
all performance factors into account, is illustrated in Figure 15.20.4.
The increased use of virtual storage is beneficial to system performance
up to a point. Thereafter, additional virtual storage can be used to
handle additional functions at a variable cost in system performance.

In reality, the virtual-to-real storage ratio and the page fault rate
vary during system processing as the amount of virtual storage used (out
of the total amount supported) and the amount of real storage available
for paging vary. Best overall system performance is achieved when
paging activity falls most of the time in the area identified on the
curve as the operating range. More significant performance reduction
begins when active paging is experienced.

Performance- All Factors

Active
paging

r«——— Passive paging —————>

Configuration
changes
necessary

]

]

]

]

]

'

1

)

)

!

1

1

]

i "\

1 t N

1] \N
! Task ' N
) deactivation \
H

1}

]

]

]

1

1

<«———————— QOperating range ———————»

System
performance

point

1 / Virtual-to-real storage ratio
\"
(+>)

Figure 15.20.4. General system performance curve for a virtual storage
environment

Occasional active paging on an exception bkasis should be acceptable.
More frequent active paging can be performed to achieve a desired
function that does not justify changing the system configuration.
However, when paging activity in a system is constantly at the point at
which task deactivation occurs, system configuration changes should be
rade to improve system performance. Such changes might be the addition
of more real storage, the addition of more (in 0S/VS1l environments) or
faster paging devices, or installation of a faster processor. A history
of the paging activity of the system can be maintained by recording the
paging statistics provided by the virtual storage operating systems.
0S/Vsl provides page-in and page-out statistics, while DOS/VSE provides
a page fault trace capabjility.

153

INCREASING SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

The IBM-supplied virtual storage operating systems are designed to
provide an acceptakle level of performance when existing problem
programs are run without modification. - However, given the additional
resource requirements of virtual storage support and the new factors
that affect system performance in a virtual storage environment, once a
virtual storage operating system is installed (either on an existing
configuration or a larger configuration), certain steps can be taken to
improye' performance or to achieve optimum performance. The benefit to
be achieved by taking any one of the steps outlined must be evaluated on
an installation basis, taking the specific configuration and operating
environment into account. Some steps, for example, are more practical
for large conflguratlons than for small configurations. The following
can be done.

o Use larger I/0 buffers. This step is practical primarily for
sequential data sets and can be used most effectively when previous
real storage limitations prevented the use of larger buffer sizes in
general and optimum buffer sizes for disk data sets. In addition to
reducing the total I/0 time required to process a data set, as would
occur in a non-virtual-storage environment, increasing buffer size
reduces the number of I/0 requests required to process the data set
and, thereby, reduces the processor time required for channel
program translation and page fixing.

This technique should be used taking into account the amount of real
storage present in the system. If the buffer size of several data
sets that are being proceéssed concurrently is increased considerably
or made large initially, the amount of real storage that must be
short-term fixed increases considerably also and potentially
increases the number of active pages. This may adversely affect
system performance in systems with a relatively limited amount of
real storage available for paging.

e Increase the page-fault-handling capability of the system when
paging activity constantly causes task deactivation. This can be
accomplished by (1) using a direct access device for paging that is
faster than the currently used paging device, (2) allocating more
direct access devices for paging to enable more overlap of paging
activity, or (3) reducing or eliminating contention for the existing
paging device(s). cContention for the paging device can be relieved
by using dedicated paging devices or reducing the amount of other
I/0 activity on the channels/adapter to which the paging device is
attached. Alternatively, the same paging device configuration can
ke maintained while page fault occurrence is decreased by the
addition of real storage.

¢ Use code that does not modify itself. Use of this type of code can
reduce the amount of page-out activity required. Such code can be
produced using the Assembler Language and PL/I language translators.

¢ Execute programs in nonpaged (real) mode only when actually
required. Use of nonpaged mode should be limited because the amount
of real storage available for paging operations during the operation
of a nonpaged program is reduced by the size of the program and can
affect system performance. If a nonpageable program is to be
present in a system for an extended period of time or at all times,
it should be considered part of the fixed real storage requirement
so that the amount of real storage actually available for paging can
be more accurately determined.

e Structure new application programs to .operate efficiently in a

paging environment. This is done by structuring programs to achieve
a reasonable balance between page faults and real storage

154

requirements. The extent to which this is done can vary widely by
installation. The benefits that can be obtained should be evaluated
in light of the additional programmer effort required. In this
respect, deciding on the degree to which programs should be
structured for efficient operation in a paging environment is
similar to deciding how a high-level language should be used. The
emphasis can be on most efficient program execution, which can
require more programmer effort, or on most efficient use of
programmer time, which can result in less efficient programs.
Alternatively, there can be a tradeoff between programmer time and
efficient programs (only the most frequently or heavily used
programs are optimized, for example).

Many of the general program structure techniques discussed do not
require a large amount of additional effort or knowledge on the part
of programmers--only that they adopt a particular programming style.
All of the suggested techniques can be used by Assembler Language
programmers. Some can be used with certain high-level languages and
not with others. More of the suggested techniques can be used in
PL/I programs than in other high-level language programs.

Two major steps can be taken to structure programs to use real
storage most efficiently and to incur the smallest possible number
of page faults. The first is to adopt a certain programming style,
one aspect of which is similar to the style that has been encouraged
with System/360 and System/370, namely, that of modular programming.
The second is to takeé page boundaries into account and to package
program code and data into page groups.

The objective of improving programming style is to construct a
program that consists of a series of logical processing phases, each
of which contains a relatively small number of active pages. The
objective of packaging code within pages is to group active code
together to avoid crossing page boundaries in such a way that more
real storage than is really necessary is required to contain the
active pages of a logical phase.

In order to cause references to active instructions and data to be
localized, the following general rules should be applied to
programs:

1. A program should consist of a series of sequentially executed
logical phases or--in System/370 and 4300 Processor programming
terminology--a series of subroutines or subprograms. The
mainline of the program should contain the most frequently used
subroutines in the sequence of most probable use, so that
processing proceeds sequentially, with calls being made to the
infrequently used subroutines, such as exception and error
routines. This structure contrasts with one in which the
mainline consists of a series of calls to subroutines.
Frequently used subroutines should be located near each other. -
Infrequently used subroutines that tend to be used at the same
time whenever they are executed should be located near each other
also.

2. The data most frequently used by a subroutine should be defined
: together so that it is placed within the same page, or group of
pages, instead of scattered among several pages. If possible,
the data should be placed next to the subroutine so that part or
all of the data is contained within a page that contains active
subroutine instructions (unless the routine is to be written so
that it is not modified during its execution). This eliminates

references to more pages than are actually required to contain
the data and tends to keep the pages with frequently referenced
data in real storage.

155

3. Data that is to be used by several subroutines of a program

(either in series or in parallel by ccncurrently executing
subtasks) should be defined together in an area that can be
referenced by each subroutine.

2 v

4. A data field should be initialized as close as possible to the
time it will ‘be used to avoid a:page-out and a page-in between
initialization and first use of the data field.

5. Structures of data, such as arrays, should be defined in virtual

156

storage in the sequence in which they will be referenced, or
referenced by the program in the sequence in which a high-level
-language stores them (by row or by column for arrays, for
example).

6. Subroutines should be packaged within pages when possible. For
example, avoid starting a 1500~-byte subroutine .in the middle of a
2K page so that it crosses a page boundary and requires two page
frames instead of one when it is active. Subroutines that are
smaller than page size should be packaged together to require the
fewest number of pages, with frequently used subroutines placed
in the same page when possible. This .applies to large groups of
data as well.

The linkage editor supplied with 0S/VS1l has new control
statements that can be used to cause CSECTs and COMMON areas to
be aligned on page boundaries, and to indicate the order in which
CSECTs are placed in the load module. This linkage editor
facility can be used with certain high-level language programs
that contain multiple CSECTs (such as PL/I and ANS COBOL) as well
as with Assembler Language programs.

Use the PL/I Optimizing Compiler available for DOS/VSE and 0OS/VS1
instead of 0S PL/I F or DOS PL/I D. The code produced by these
language translators has characteristics that makes it more suited
to a virtual storage environment than the code produced by the Type
I PL/I language translators. First, generated code is grouped into
functionally related segments, by PROCEDURE. and DO group, for
example, which can help reduce paging. When PL/I allocates buffers
and I/0 control blocks, they are packed together and potentially can
require fewer pages than if no attempt was made to define them
together. Reentrant code can be produced by the 0S PL/I Optimizing
Compiler, and its library routines are reentrant. This reduces
pagée-out requirements. User-written reentrant 0S PL/I routines that
are required by concurrently executing problem programs can be made
resident in virtual storage and shared to reduce real storage and
paging requirements for active pages of these routines.

Use the shared library feature of the OS Optimizing Compiler and the
COBOL Library Management Facility of the OS ANS COBOL language
translators to make library modules resident in virtual storage so
they can be shared by concurrently executing problem programs.

Pages containing active library modules will tend to remain in real
storage and thereby reduce paging and real storage requirements for
these modules.

Restructure existing application programs to incur as few page
faults as possible, to use the least amount of real storage, and to
take a2dvantage of the program structure facilities that a virtual
storage environment offers. This can be accomplished by (1) using
the techniques described above, (2) taking planned overlay and
dynamic structure programs out of these structures, and (3)
combining into one logical job step two or more steps of a job that
would have been one job step if the required real storage were
available. The last of these techniques can eliminate redundant I/0

time that is currently used for such things as reading the same
sequential input data into two or more job steps and writing
intermediate results from one job step in one or more sequential
data sets for input to the next job step..

e Increase the level of multiprogramming in the system. This can be
accomplished by (1) performing more peripheral I/0O operations
concurrently {(more readers and writers in 0OS/VS1l, use of VSE/POWER
in DOS/VSE), (2) operating more partitions concurrently, or (3)
increasing the use of multitasking (structuring a VSE/VTAM message
processing program to use multitasking to enable several different
types of transactions to be processed concurrently, for example).

System throughput can be improved in a virtual storage environment
if a higher level of multiprogramming causes more processor and I/0
time to be overlapped and results in more effective utilization of
system resources. The larger the number of tasks in the system
under these conditions, the less chance there is for the processor
to enter the wait state because no task is ready to execute. Better
utilization of real storage in a virtual storage environment can
enable more tasks to be present in the system.

In order to achieve performance gains by increasing the level of
multiprogramming, the potential for more overlap of processor and
I/0 time must exist in a system, and/or the potential must exist for
a reduction of I/0 time via increased overlapping of channel
operations and reductions in unoverlapped seek time (that can result
from new system performance enhancements). The required hardware
resources, such as processor time, real storage, I/0 devices, and
direct access storage, must be available as well. The most critical
resource in this situation is available processor time. As the
percentage of processor utilization gets higher, there is less
potential for increasing throughput via increasing the level of
multiprogramming.

The information presented in this subsection is designed to enable
the reader to more fully understand the way a system operates in a
virtual storage environment and the factors that influence system
performance. Understanding the environment and knowing the actions that
can ke taken to increase system performance will enable each
installation to quantify the amount of effort that is to be devoted to
optimizing the performance of a virtual storage operating system.

157

SECTION 18: VIRTUAL MACHINES

T

This section discusses the basic concepts, general operation, and
advantages of virtual machines, as defined and implemented in Virtual
Machine Facility/370. No previous knowledge of virtual machines is
assumed.

The v1rtua1 machine concept is a logical exten81on of the virtual
storage concept and requires support of multiple virtual storages.
Therefore, VM/370 can execute only with Systém/370 mode in effect in
4300 Processors. Comprehension of dynamic address translation hardware
and virtual storage concepts, terminology, and’ advantages, as discussed
in Sections 15:05 and 15:10, is assumed. .

VM/370 consists of the Control Program (CP), Conversational Monitor
System (CMs), Remote Spoollng Communications Subsystem (RSCS), and
Interactive Problem Control System (IPCS) components. CP .supports the
concurrent operation of multiple virtual machines. CMS, operating in a
virtual machine under CP control, provides conversational time-sharing
facilities to a single user. RSCS, operating in a virtual machine under
CP control, provides for the transmission of data between remote users
and virtual machines via binary synchronous communications lines. IPCS,
operating in a CMS virtual machine, provides interactive problem
management, problem determination, and problem isolation.

VM/370 is the successor to CP-67/CMS. Virtual machine support was
first provided by IBM in CP/67. In the CMS time-sharing environment in
which CP-67/CMS was primarily used, the major advantage of the virtual
machine facility was that it enabled each CMS user to appear to have a
complete System/360 (Model 22 to 75) at his disposal and to be isolated
from all other CMS users. Each CMS user had access only to his own
virtual machine and, therefore, could not inadvertently interfere with
the operation of other CMS virtual machines. VM/370 also provides these
facilities and can be used in nondedicated time-sharing environments to
provide other advantages as well.

18:05 DEFINITION AND GENERAL OPERATION

A virtual machine is a functional simulation of a complete computer
system, including a virtual processor, virtual storage, virtual
channels, virtual I/0 devices, and a virtual operator's console, that
appears to the user to be a real machine. In a VM/370 environment, a
virtual machine is the functional equivalent of a 4300 Processor or
System/ 370 processor (Models 135 to 168 and 3033, 3032, and 3031
Processors) and its associated 1I/0 devices.

The control program (CP) component of VM/370, executing in a real
machine (4300 Processor, System/370 Models 135 through 168 with dynamic
address translation hardware, and 3033, 3032, and 3031 Processors),
supports concurrent operation of multiple virtual machines using
multiprogramming techniques that enable real machine resources to be
shared by multiple virtual machines. Each virtual machine is dedicated
to a single user and isolated from other virtual machines. None of the
components of one virtual machine can be accessed by a program that is
executing in another virtual machine except via the controlled sharing
facilities that are provided by CP. .

The operation of a virtual machine and scheduling of the work it
performs are handled by an operating system rather than by CP. That is,
each virtual machine has an operating system. executing in it that
allocates machlne resources and schedules the execution of problem

158

programs just as if the operating system were executing in a real
machine.

In order to initiate operations in a virtual machine, the user must
log on the virtual machine and IPL an operating system in it. The logon
procedure establishes a connection with CP and the existence of a
specific virtual machine for this user. A logon is performed using a
console or terminal: device of the type that CP supports as a virtual
operator's console.

The virtual operator‘'s console is the means by which the user
controls the operation of his virtual machine and communicates with the
operating system executing in it. CP provides a set of commands that
(1) simulate the system control panel or operator console of the virtual
machine, (2) provide for alteration of a virtual machine configuration,

- (3). request various services from CP for a virtual machine, and (4)
control operation of the real machine. When a CP command is entered via
the virtual operator's console, CP receives. control and performs the
requlred functlons.

Communication between the user and the operating system is
accomplished using the operating system command language and the virtual
operator's console. CP performs any simulation required to make the
real I/0 device the operator is using as a virtual operator's console
appear to be the primary console device type that is defined for the
operating system.

In a VM/370 environment, a virtual operator's console is frequently
called a remote terminal because, in most cases, a terminal device type
is actually used as the virtual operator’'s console device. However, the
real I/0 device that is used as the virtual operator's console can be a
console device for the specific processor as well as a local or remote
terminal. '

VM/370 supports execution of any one of the following System/360 and
System/370 operating systems in a virtual machine:

e CMS component of vM/370
¢ RSCS component of VM/370
e DOS Version 3, DOS Version 4, DOS/VS, or DOS/VSE (DOS/VSE operating
in a virtual machine must be generated to support System/370 mode
when VM/370 is executing in a 4341 Processor)
¢ APL 360-DOS
e OS PCP, MFT, or MVT
¢ OS ASP Version 3
e 0OS/Vs1
e 0S/VS2 sSVS (Releases 1, 1.6, and 1.7)
® 05/VS2 MVS (Releases 2 and up) operating in uniprocessor mode only
¢ PSuL
e VM/370
Any number and combination of the above bpérating systems can execute
concurrently in a VM/370 environment, subject to the availability of the
required real machine resources, including multiple copies of the same

operating system (DOS/VSE executing in more than one virtual machine,

)

159

for example). With a few exceptions, ‘all the facilities that are _
supported by these operating systems when they execute in a real machine
can be used when the operating system executes in a virtual machine in a
VM/370 environment. Figure 18.05.1 conceptually. illustrates the real
and virtual machine environment that is supported by VM/370.

-Simulated Virtual Machine Environment

Virtual /O units Virtual 1/0 units Virtual /O units Virtual 1/0O units
: Operating :] Operating Operating Operating
: system : system system e system
Virtual Virtual Virtual Virtual
operator’s operator’s operator'’s operator’s
console console console console’
User 1 User 2 User 3 User N
Virtual machine 1 Virtual machine 2 Virtual machine 3 Virtual machine N
Real Machine
User 1 User 2 User 3 User N

Virtual operator’s

Virtual operator’s
console

console Real machine

operator

Virtual operator’s Virtual operator’s
console console

—————

Console
Card

punch(es) I

Prnter(! ¢ cp < '

Card
Reader(s)
Direct Direct Direct
access access (XX access
Other 1/0 storage storage storage Other 1/0
device)) device
types types

Conceptual illustration of the real and virtual machine

Figure 18.05.1.
environment that is supported by VM/370

160

Each virtual machine that is to be supported by CP must be user-
defined and the definition stored in a VM/370 directory. The size of
virtual storage, virtual I/70 devices to be used, options to be used, and
a virtual console are usually specified. Virtual machine configurations
can be different from each other and, within certain limitations,
different from that of the real machine in terms of these
specifications.

Virtual Instruction Processing Function Simulation

CP is resident in processor storage during operation of the real
machine. It controls the operation of the real machine, schedules the
execution of virtual machines, and simulates virtual machine hardware
components using the hardware components of the real machine. In order
to be able to perform its functions and isolate virtual machines from
each other, CP must have exclusive control over the status and modes of
operation of the real machine, as does the control program of an
operating system. Hence, CP always executes with the real machine in
supervisor state and receives control after all real machine
interruptions.

Virtual machines always operate with the real machine in problem
state. Therefore, any time any program that is executing in a virtual
machine issues a privileged instruction, an interruption occurs in the
real machine. CP receives real machine control and takes the required
action. This may involve simulating execution of the privileged
instruction for the virtual machine or returning real machine control to
the control program in the virtual machine for which the interruption
occurred so that the interruption can be processed by that control
program. In this manner, CP maintains control of the real machine. 1In
addition, CP simulates the existence of both a supervisor state and a
problem state in the virtual machine while, in reality, the virtual
machine operates only in problem -state.

CP gives control of the real machine to operating virtual machines on
a time-shared basis to simulate the existence of multiple processors. A
virtual machine can execute any instruction for the 4341 Processor
except SET CLOCK, which is treated as an NOP because CP controls the
setting of the time-of-day clock, and the instructions that are valid
only when ECPS:VSE mode is in effect. In addition, the DIAGNOSE
‘instruction is reserved for communication between executing operating
systems and CP.

The processor features that are used by the control and problem
programs executing in a virtual machine must be present in the real
machine in which CP executes. CP does not simulate the existence of
processor hardware features that are not present in the real machine. A
virtual machine can appear to be executing in System/370 mode with
either BC mode or EC and DAT modes specified, depending on the mode
required by the operating system executing in it. However, EC and DAT
modes are always specified in the real processor when a virtual machine
is exécuting since dynamic address translation hardware is required to
support the existence of virtual storage for the virtual machine. 2a
‘virtual machine cannot appear to be executing in ECPS:VSE mode.

' Virtual Storage Simulation

.

The implementation of virtual storage in a virtual machine
environment is conceptually illustrated in Figure 18.05.2. Each virtual
machine can have up to 16,777,216 bytes of virtual storage, which is the
virtual storage size for the 4341 Processor. The existence of virtual
storage for a virtual machine is simulated by CP using DAT hardware and

161

external page storage, as for a virtual storage environment that is
supported in System/370 mode (discussed in Section 15).

Virtual machine 1
virtual storage

Contro!
program

Problem
programs

External
Page Storage

Virtual machine 2
/’_\ virtual storage
Real Storage ~—

Control
program

cp

Contents of Program
Pages of Demand] virtual storage #r programs

A3

virtual storage Paging for virtual
for operating machines 1 to N
virtual machines

)Y
W«
b)Y
W

\v)

Virtual machine N
virtual storage

Control
program

Problem
programs

?
)
1< 9

Figure 18.05.2. Conceptual illustration of the implementation of
virtual storage in a virtual machine environment

Operating system programs that are executing in a virtual machine
(both control and problem programs) are paged in and out of processor
storage in the real machine on a demand paged basis as they execute.
Processor storage allocation, external page storage allocation, and
paging operations are handled entirely by CP and are transparent to the
control and problem programs that are executing in the virtual machines.
In this manner, CP provides one virtual storage for each virtual
machine, and processor storage in the real machine is shared by
concurrently operating virtual machines.

162

The virtual storage defined for a virtual machine always appears to
be real storage to the operating system that is executing in the virtual
machine. 1In effect, an operating system that does not support virtual
storage, such as DOS (Version 3 or 4) or OS MFT and MVT, has virtual
storage support provided by CP when such an operating system executes in
a virtual machine and, therefore, offers the functional advantages of a

virtual storage operating system.

When executing in a virtual machine, an operating system that does

support virtual storage uses the virtual storage defined for the virtual

machine as real storage in order to simulate the existence of the

As shown in Figure 18.05.3,
the virtual storage operating system builds a segment table and page
tables to translate addresses in the virtual storage it supports to
addresses in the virtual storage defined for the virtual machine, which

virtual storage it is designed to support.

the operating system assumes is real storage.

CP always builds and

maintains a segment table and page tables for each virtual machine.
These tables are used to translate addresses in the virtual storage of
the virtual machine to addresses in real storage in the real machine.

Real machine
real storage

cp

Segment
table

Virtual machine
virtual storage

Assumed to be
real storage by
the virtual

Virtual storage

Segment
table

e

Supported by
the virtual
storage

Pageable — storage operating operating system
real Page system Page
storage tables tables
& [~
Built by Built by
CP for each the virtual

storage operating
system

virtual machine

Built by
CcP

Segment
table

Page
tables

Tables used for
address translation

Figure 18.05.3. Segment tables and page tables built when a virtual

storage operating system executes in a virtual machine

When a virtual storage operating system is executing in a virtual
machine, CP constructs and maintains a third set of tables, using the
contents of the other two sets of tables. The third set of tables, a
shadow segment table and shadow page tables, are the tables that are
actually used for address translation when the virtual machine operates.

163

The shadow tables are used to translate addresses in the virtual storage
the operating system supports to addresses in real storage.

Vittual I/0 Component Simulation

The virtual channels, control units, and I/0 devices defined in each
virtual machine configuration are simulated by CP using real channels,
control units, and I/0 devices that are of the same type. While each
virtual I/0 device defined must have a real I/0 device counterpart in
the real machine configuration, there does not necessarily have to be a
one-to-one correspondence. In addition, the I/O device addresses
assigned to virtual I/O0 devices need not be the same as the addresses of
their real I/0 device counterparts.

CP also allows a virtual direct access device to be simulated by only
a portion of a real direct access device volume. Such a virtual direct
access device is called a minidisk. Support of a minidisk facility
enables one real direct access device to simulate the existence of
several virtual direct access devices of the same type and thus provides
more efficient use of available direct access storage.

Virtual I/0 devices are always simulated on a real I/O device of the
same device type unless the spooling facility of CP is used. (CP also
allows 2311 disk storage to be simulated using 2314/2319 disk storage
and the minidisk facility.) The local spooling capability of CP
provides data transcription between unit record devices and direct
access storage devices and is functionally similar to DOS and DOS/VS
POWER, DOS/VS POWER/VS, VSE/POWER, OS readers and writers, OS HASP, and
0S/VS JES. 1In effect, the CP spooling facility enables virtual unit
record devices (card readers, card punches, and printers) to be
simulated using direct access storage. CP also provides console
spooling and a remote spooling facility.

The virtual I/0 devices in a virtual machine configuration are
logically controlled by the operating system that is executing in the
virtual machine rather than by CP. That is, all the data management
routines of the operating system (physical record processing, logical
record processing, and error recovery routines) execute as usual.
Therefore, a virtual machine I/O configuration can include any I/O
device types that are supported by the operating systems that will
execute in the virtual machine, as long as real I/0 device counterparts
exist in the real machine I/0 configuration as required.

CP controls only the scheduling and actual initiation of virtual
machine I/0 operations in the real machine. When a START I/0
instruction is issued by an operating system control program that is
executing in a virtual machine, a privileged operation exception
interruption occurs and CP receives real processor control. CP
translates the virtual I/0 device address to its counterpart real 1I/0
device address and, for minidisks, converts virtual cylinder addresses
to corresponding real cylinder addresses, as required. CP also performs
the necessary channel program translation and page-locking operations
and queues the I/0 request if it cannot be started.

After the I/0 operation is started, CP returns the condition code to
the operating system control program that initiated the I/0O request so
that appropriate action can be taken. When the I/0 operation completes
and causes an I/0 interruption, CP receives processor control, gathers
I/0 status information, and attempts to restart the available real I/0
components. CP presents the status data to the operating system control
program via a simulated I/O interruption for the virtual machine in
which the operating system is executing.

164

CP completely controls operation of the real I/0 devices that are
required for its own execution, such as paging and spooling devices.
This includes determining the need for I/O operations, scheduling and
initiating I/0 requests, handling I/O interruption processing, and
performing error recovery procedures.

ECPS:VM/370

General Description:

ECPS:VM/370, a portion of the standard Extended Control Program
Support feature for the 4341 Processor, is designed to improve VM/370
performance by providing for the execution of certain CP routines and
functions in hardware to reduce the amount of processor time used by CP.
A reduction of up to 84 percent of processor busy time for the VM/370 CP
has been measured when compared to the same version of VM/370 running
without ECPS:VM/370 enabled.

The hardware assist is provided for the following functional areas:
e Virtual machine and control block dispatching

e I1/0 handling and CCW translation

e Virtual interval timer simulation

e Privileged instruction simulation

e SVC handling

e Page management functions

e Storage management functions

ECPS:VM/370 as implemented in the 4341 Processor is like the VM/370
hardware assist function for System/370 Models 135 Model 3, 138, 145
Model 3, and 148. Thus, ECPS:VM/370 for the 4341 Processor includes as
one of its components the Virtual Machine Assist feature that is
available for the 3031 Processor and Models 135 (Model 0), 145 (Models 0
and 2), and 158 (and as an RPQ for Models 165 II and 168 and the 3032
and 3033 Processors).

ECPS:VM/370 consists of the Virtual Machine Assist, Control Program
Assist, Expanded Virtual Machine Assist, and Virtual Interval Timer
Assist components. The Virtual Machine Assist and Expanded Virtual
Machine Assist components consist of microcode routines that perform the
function of certain frequently used virtual machine instruction
simulation routines of CP. The Control Program Assist component
consists of microcode routines that perform certain frequently used
general CP routines and functions that are required to support a virtual
machine environment. The Virtual Interval Timer Assist component
simulates a virtual interval timer for a virtual machine.

Either ECPS:VM/370 or ECPS:VS1l can be activated in a 4341 Processor
during IML when System/370 mode is in effect. However, the actual
operation of the four components of ECPS:VM/370 is enabled and disabled
using three bits (0, 6, and 7) in control register 6. The Virtual
Machine Assist component can be enabled separately from the other
components. Other bits in control register 6 enable and disable
specific functions within the Virtual Machine and Expanded Virtual
Machine Assist components.

165

A

Shown below are the settings for control register 6 bits 0, 6, and 7

and the assist components they enable.

control Register 6 Assist Component Enabled
Bit 0 Bit 6 Bit 7
0 0 0 None. (This is the processor
reset setting.)
? A3
0 1 0. control Program Assist only
1 0 0 Virtual Machine Assist only
1 0 1 Virtual Machine Assist and
Virtual Interval Timer Assist
1 1 0 Control Program, Virtual Machine,
and Expanded Virtual Machine Assists
1 1 _ 1 control Program, Virtual Machine,
: Expanded Virtual Machine, and
Virtual Interval Timer Assists
Virtual Machine Assist Component

fol

The Virtual Machine Assist component is entered when one of the
lowing occurs:

A privileged instruction program exception occurs that is caused
when a virtual machine issues an INSERT PSW KEY, -INSERT STORAGE KEY,
LOAD PSW#, LOAD REAL ADDRESS, RESET REFERENCE BIT, SET PSW KEY FROM
ADDRESS, SET STORAGE KEY, SET SYSTEM MASK¥, STORE CONTROL, STORE
THEN AND SYSTEM MASK#, or STORE THEN OR SYSTEM MASK* instruction.
For most of these instructions, the Virtual Machine Assist component
simulates execution of the privileged instruction, and operation of
the virtual machine continues with execution of the instruction
after the privileged instruction. CP code is not entered.

For the instructions identified by an asterisk, certain conditions
prevent simulation of the instruction by the Virtual Machine Assist
component. In these cases, control is passed to the Expanded
Virtual Machine Assist component (without entry into CP coding) and
simulation of the instruction is attempted again.

Bit 3 in control register 6 determines whether all or only some of
the instructions listed above are handled by the Virtual Machine
Assist component. When bit 3 is a zero, all the instructions are
handled. This setting would be used when an operating system that
operates in EC mode, such as DOS/VS, DOS/VSE, 0OS/VS, or VM/370, is
executing in a virtual machine. When bit 3 is a one, only
instructions that are valid for System/360 and System/370 as well as
4300 Processors (LPSW, ISK, SSK, and SSM) are handled. This setting
would be used when an operating system that operates in BC mode,
such as 0S MFT or MVT or DOS Version 3 or 4, is executing in the
virtual machine.

An SVC instruction, except SVC 76, is issued by a virtual machine.
PSW switching for the virtual machine is simulated by the Virtual

Machine Assist component. Handling of SVC instructions other than
SVC 76 by the Virtual Machine Assist component can be disabled by

turning on bit 4 in control register 6.

166

® A page translation program exception occurs in a virtual machine in
which a virtual storage operating system is executing. The Virtual
Machine Assist component updates the appropriate shadow page table,
if possible. Handling of page translation exceptions by the Virtual
Machine Assist component must be enabled by turning on bit 5 in
control register 6.

Expanded Virtual Machine Assist Component

The Expanded Virtual Machine Assist component is designed to perform
some or all of the CP simulation required for the following privileged
instructions when they are issued by a virtual machine:

LPSW - Load PSW

SCKC - Set Clock Comparator

SIO0 Start I/0 and Start I/0 Fast Release
SPT - Set CPU Timer

SSM - Set System Mask

STNSM - Store Then And System Mask

STOSM ~ Store Then Or System Mask

PTLB - Purge Translation Lookaside Buffer
STPT - Store CPU Timer

TCH - Test Channel

When an LPSW, SSM, STNSM, or STOSM instruction is issued by a virtual
machine, the Virtual Machine Assist component is entered first to
determine whether it can simulate the instruction. When the Virtual
Machine Assist component can perform the simulation, the Expanded
Virtual Machine Assist component is not invoked. When certain
conditions exist, the Virtual Machine Assist component cannot perform
the simulation and control is passed to the Expanded Virtual Machine
Assist component, which makes further tests to determine whether it can
simulate the instruction. The Expanded Virtual Machine Assist component
handles certain conditions that are not handled by the Virtual Machine
Assist component. If the Expanded Virtual Machine Assist component
cannot perform the simulation, the appropriate CP simulation routine is
entered via an interruption (a privileged operation exception occurs).

For PTLB, STPT, and TCH instructions, the Expanded Vvirtual Machine
Assist component completely simulates the instruction and no entry into
CP is made. For all the other instructions listed above, simulation by
the Expanded virtual Machine Assist component is only partial and a
certain amount of CP code is also executed to perform the simulation.

Note that while the Control Program Assist and the Virtual Machine
Assist components execute independently from the other components of
ECPS:VM/370, the Expanded Virtual Machine Assist component uses portions
of the Control Program Assist component in its execution.

control Program Assist Component

Privileged instructions are defined for the CP functions and routines
supported by the Control Program Assist component. These new
instructions are designed to be used only in the VM/370 programming
system and are not provided for general use in installations. Assembler
Language mnemonics are not provided for these new instructions. These
Control Program Assist instructions are automatically included in the CP
of a VM/370 system that is generated using a Release 3 PLC 8 or later
starter system.

When one of the Control Program Assist instructions is executed

during VM/370 operation, the required routine or function is performed
by the Control Program Assist function instead of by the appropriate CP

167

routine if the Control Program Assist function is enabled and supervisor
state is in effect. '

A Control Program Assist instruction is executed as an NOP
instruction if the Control Program Assist function is present in a
system but disabled (bit 6 in control register 6 is a zero) and
supervisor state is in effect. This enables a VM/370 system that
includes ECPS:VM/370 support to execute correctly on a system that has a
VM/370 assist feature when the feature is not enabled (because it is
malfunctioning, for example). If a Control Program Assist instruction
is issued in a processor that does not have the Control Program Assist
component, an operation exception program interruption condition occurs.

All the new instructions defined for the Control Program Assist
function are six bytes in length and have a storage-to-storage
instruction format and the same operand code to identify them as Control
Program Assist instructions. An extended operand code byte in each
instruction uniquely identifies each individual instruction.

The following are the Control Program Assist instructions and the CP
function they perform:

® FREE ~ Obtain space from the free storage area

¢ FRET - Return space to the free storage area

¢ PTRLK - Lock a page

e PTRUL - Unlock a page «

* DESCCW - Decode subsequent CCW commands in a list

e UNTFR - Free CCW storage

®* SCNVU -~ Locate virtual I/O control blocks

¢ DSPBLOKO - Dispatch a control block or a virtual machine

e TRANBRNG - Determine whether a page is present in real storage and,

if not, load it

e TRANLOCK - Lock or load and lock a page in real storage

* ZAPSEGS - Invalidate a segment table:

e ZAPPAGE - Invalidate a page table

¢ DEFRCCW - Decode the first CCW command in a list

* DSPCH . - Main entry into the virtual machine dispatch function
* SCNRU - Locate real I/0 control blocks

¢ CCWGENRL - Common CCW command processing

e UNTRN - Untranslate a CSW

[J

DSPBLOK1 - Dispatch a control block or a virtual machine without
testing for the need to call the scheduler to process
scheduling and dispatching queues

e STECPSVM - Store VM/370 assist level identification.

This instruction stores a value to indicate the architecture

level of the VM/370 assist. It is used

by CP during IPL to determine whether the ECPS:VM/370

or VM/370 hardware assist function is installed in the

processor and, if so, the level of the support.

In addition to the above, the SVC instructions with codes X'08" and
X'0C* specified that are issued by CP are defined as the LINK and RETURN
Control Program Assist instructions, respectively. When the Control
Program Assist function is enabled, these two SVC instructions are also
executed by the function.

Virtual Interval Timer Assist Component

The Virtual Interval Timer Assist component is active only when the
Virtual Machine Assist component is also enabled (bits 0 and 7 in
control register 6 are both one). However, this component operates
independently from the other three components (does not reference any
other component during its operation).

168

The Virtual Interval Timer Assist component maintains a virtual
interval timer for the currently operating virtual machine in location
80 of page 0 of the virtual machine in a manner that is similar to the
way the real interval timer in location 80 of the real machine is
maintained. This component also presents virtual interval timer
interruptions to virtual machines and the real machine. Virtual
machines operating in BC or EC mode are supported.

When the Virtual Interval Timer Assist component is enabled and a
virtual machine is executing (indicated by problem state set in the
current PSW in the real machine), bit 23 in the virtual interval timer
for the virtual machine is also decremented when the real interval timer
is decremented. If page 0 of the virtual machine is not currently
resident in real storage, the interval timer word is maintained in the
virtual machine control block (VMBLOK) for the virtual machine until
such time as page 0 is loaded. When the real machine is in the wait
state, the virtual interval timer may or may not be decremented and, if
it is, may or may not be decremented at the same rate as the real
interval timer.

When a virtual interval timer being maintained by the Virtual
Interval Timer Assist component decrements from a positive to a negative
value, a virtual interval timer interruption condition is generated.

The assist component attempts to present the interruption to the virtual
machine. The interruption is presented if the virtual machine is
enabled for interval timer interruptions, page 0 of the virtual machine
is resident in real storage, the virtual external new PSW for the
‘virtual machine has a valid format, and no illegal state changes for the
virtual machine would occur if the interruption were presented (current
virtual PSW and external new PSW for the virtual machine are compared).

When an interval timer interruption cannot be presented to the
virtual machine, a virtual interval timer interruption is presented to
the real machine if the real machine is enabled for interval timer
interruptions. A unique external interruption code is presented to
differentiate between virtual interval timer and real interval timer
interruptions.

18:10 GENERAL ADVANTAGES OF A VIRTUAL MACHINE ENVIRONMENT

The advantages of VM/370 complement those of virtual storage
operating systems. Like a virtual storage environment, a virtual
machine environment is designed primarily to support new functions
rather than increase system performance.

The new functions provided by virtual machines can (1) increase the
rate of new application development and (2) expand operational
capabilities over those provided by virtual storage. The CMS component
of VM/370 supplements these two major advantage areas of a virtual
machine environment by supporting time-sharing facilities such as online
program development, conversational program execution and problem
solving, and interactive text processing.

The following indicates the way in which the virtual machine
environment that is supported by the CP component of VM/370 aids the
installation of new applications and identifies the new operational
features such an environment supports.

169

Increasing New Application Development

Since virtual machine support includes support of a virtual storage
environment for each virtual machine, all the capabilities virtual
storage provides that aid new application development are present in a
virtual machine environment as well. (These capabilities are discussed
at the end of Section 15:05.) By enabling multiple operating systems to
execute concurrently in one real machine, the virtual machine
environment supported by CP also provides the following new
capabilities:

e Testing of new programs can be more extensive and completed sooner
through the elimination of dedicated testing periods. While a
virtual storage environment can eliminate most program testing
restrictions that result from processor storage size limitations,
the isolation that is provided by executing a program in a virtual
machine eliminates the need to test programs that can cause total
system termination in a dedicated environment.

For example, system-oriented routines written by system programmers
and teleprocessing programs, which usually are tested only during
scheduled dedicated testing periods, can be tested while production
work is in progress. This can eliminate the need to establish
testing periods during second or third shift and, by reducing
individual test turnaround time, enables more of this type of
testing to be accomplished in a given time period.

¢ Testing of new programs can be completed sooner through the use of
console debugging, when necessary. Using the CP commands that
simulate system control panel functions, the programmer can use any
console debugging facility that is available on a real machine, such
as setting address stops, examining and altering general registers,
displaying and altering virtual storage, etc., without interfering
with production work. CP also provides other debugging services,
such as an extensive set of traces, that can be invoked by CP
commands.

Console debugging, which can enable difficult-to-locate program
errors to be detected more quickly than with desk debugging, is
usually not permitted in a nonvirtual machine environment, except as
a last resort, or is scheduled for nonproduction periods. Program
testing turnaround time can be significantly reduced through the use
of console debugging.

e Transition from one release of an operating system to another
release or from one operating system to another can be accomplished
more quickly because of the capability of executing multiple
operating systems concurrently. A new release of an operating
system can be generated and tested in one virtual machine while
production work continues in another virtual machine using the
existing release., Existing application programs and system-oriented
programs that must be modified or newly written (to use a new
facility or new language translator, for example) can be tested
during production processing as well.

The multiple virtual machine facility also enables an installation
to execute programs that are dependent on a back release (because
the release is user-modified, for example) concurrently with each
new release of that operating system or with an entirely new
operating system (such as a back release of a DOS/VS version
operating concurrently with 0S/Vsl).

e CMS can be used to perform online program development concurrently

with the processing of production work using DOS, DOS/VS, or
DOS/VSE. ~Significant gains in programmer output can be realized

170

through writing, compiling, and testing programs using an online
terminal in a conversational manner. This enables new applications
to become operational sooner. When CMS is used, each programmer has
his own virtual machine with CMS executing in it. Therefore, the
occurrence of a programming or operational exrror in one virtual
machine can cause termination of that virtual machine only. Other
programmers and production work are not affected.

Expanded Operational Capabilities

In addition to the new operational facilities a virtual storage
environment provides (discussed in Section 15:05), a multiple wvirtual
machine environment offers the following capabilities:

e Operating system maintenance can be performed concurrently with
production work. PTFs can be applied and tested using one virtual
machine without causing the abnormal termination of another virtual
machine that is processing production work.

e Operator training can be done using a virtual machine, which
eliminates the need to dedicate the entire real machine to this
function. Multiple operators can be trained while production work
is in process without terminating real system operations through an
operator error.

e A system can be backed up by another system that not only has less
processor storage but that has real I/O devices with different
addresses, fewer direct access devices, and fewer channels, as long
as sufficient I/0 devices of the required type are available.

e New channel and direct access device configurations can be simulated
using a virtual machine for the purpose of evaluating the load on
the new I/0 configuration before it is installed on the real
machine.

As the above indicates, a virtual machine environment, as supported
by VM/370, offers several unique capabilities that can be of benefit to
small, intermediate, and large system users. In most cases, VM/370 can
be used to best advantage as complementary programming system support in
installations in which a version of DOS, DOS/VS, DOS/VSE, 0OS/VS, or OS
is used as the primary programming system.

171

SECTICN 20: I/0 DEVICES

20:05 I/0 DEVICE SUPPORT

Most I/0 devices that attach to System/360 and System/370 can be
attached to the 4341 Processor. This subsection discusses the operation
and advantages of certain disk, printer, and tape devices. The
following I/0 devices are discussed in this section:

3330-series disk storage

3350 Direct Access Storage

3340 Direct Access Storage Facility

3344 Direct Access Storage

The 2305 Fixed Head Storage Facility Model 2
The 3203 Model 5 Printer

The 380373420 Magnetic Tape Subsystem

The 3330-series, 3340/3344, 3350, and 2305 represent significant
advances in direct access device technology. They provide larger online
data capacity and faster data rates and access than direct access
devices for System/360, as well as expanded error correction features.
All have rotational position sensing and multiple requesting
capabilities. The 3340, 3344, and 3350 offer advances in reliability as
a result of their design.

The 3203 Model 5 Printer offers several advantages over the 1403-Ni
Printer. The 3803/3420 Magnetic Tape Subsystem incorporates advances in
tape speed, density, design, and technology. It offers new features and
enhanced reliability, availability, and serviceability to 2400-series
magnetic tape users.

The major new characteristics of these I/0 devices are dlscussed in
the following subsections.

20:10 3330-SERIES DISK STORAGE

3330 DISK STORAGE AND 3333 DISK STORAGE AND CONTROL

The 3330-series is large-capacity, high-performance direct access
storage that consists of 3330 Disk Storage Models 1, 2, and 11 and 3333
Disk Storage and Control Models 1 and 11. A 3330-series string can
consist of from one to four modules (from one to eight drives), and
connects to a block multiplexer channel in the 4341 Processor via 3830
Storage Control Model 1 or 2. The removable 3336 Model 1 or 11 Disk
Pack is used for data storage. Track overflow, rotational position
sensing, and multiple requesting are standard features of 3830 Storage
Control.

A 3330-series string can consist of 3333 Disk Storage and Control
and/or 3330 Disk Storage modules. A 3333 Model 1 or 11 Disk Storage and
Control module. congists of two independent drives, device-oriented
control functions, and power for itself and the drives that can be
attached to it. It must be the first unit in a 3330-series string
attached to a block multiplexer channel via 3830 Storage Control Model
2. The 3333 does not attach to 3830 Storage Control Model 1. Models 1
and 11 of 3330 Disk Storage consist of two drives and do not contain the
device-oriented control functions that are part of a 3333 module. The
3330 pisk storage Model 2 module contains one drive and no control
functions.

172

A 3330 module connects directly to 3830 Storage Control Model 1 and
to 3333 modules. Up to four 3330 modules, in any combination of Models
1 and 2, can be attached to the 3830 Model 1. Up to three 3330 modules,
in any combination of Models 1, 2, and 11, can be attached to a 3333
Model 1 or 11 module.

With one exception, Model 11 3330-series drives are functionally like
Model 1 and 2 drives. The drives in 3330 and 3333 Model 11 modules have
a standard write format release feature that is not provided for 3330
Model 1 and 2 and 3333 Model 1 drives. This feature enables a Model 11
drive to disconnect from a 3333 Model 11 or 3830 Model 2 while the drive
is erasing to the end of the track after a record has been written with
a formatting write command. This facility frees the control unit and
channel for the initiation of another I/0 operation.

The 3336 Model 1 Disk Pack is used with 3330 Model 1 and 2 and 3333
Model 1 drives. It has ten recording disks that contain 19 recording
surfaces. The bottommost surface is the servo surface. It contains
information for the servo system that is used to control seek
operations, positioning of the read/write heads over tracks, data
clocking, index generation, and signal generation required by the RPS
feature. The required servo information is prerecorded on the servo
surface of each 3336 Model 1 Disk Pack at the plant of manufacture and
is read by a servo head at the bottom of the access mechanism. The
servo system is designed to provide fast, precise access mechanism -
positioning.

The 3336 Model 1 Disk Pack has a maximum capacity of 100 million
bytes when full-track records are used. A 3330-series string can
consist of a maximum of eight drives for a total of 800 million bytes
per string when only Model 1 drives are used. The removable 3336 Model
1 Disk Pack is interchangeable across all 3330 Model 1 and 2 and 3333
Model 1 drives. Model 1 3336 Disk Packs are not interchangeakle with
the 2316 Disk Packs used on 2314 disk drives.

The removable 3336 Model 11 Disk Pack is used with 3333 and 3330
Model 11 drives. Like a 3336 Model 1, a 3336 Model 11 has 19 recording
surfaces. However, the Model 11 disk pdck has 808 data cylinders,
instead of 404, for a maximum capacity 6f 200 million bytes. The Model
11 disk pack alsqQ has seven alternate cylinders, like a Model 1. Hence,
the maximum capacity of a 3330-series strlng of all Model 11 drives is
1600 million bytes.

Model 11 3336 Disk Packs are interchangeable across all 3330 Model 11
and 3333 Model 11 drives but cannot be used with Model 1 and 2 3330-
series drives. The 3336 Model 11 Disk Pack has a physical interlock so
that it cannot be mounted on a 3330 Model 1 or 2 drive or a 3333 Model 1
drive. The 3336 Model 1 Disk Pack has a physical interlock so that it
cannot be mounted on a Model 11 drive. The 3336 Model 1 Disk Pack can
be converted to a Model 11.

Self-formatting records are written on 3336 packs the same as on 2316
packs. However, each physical area written (count, key, and data) has a
field of error correction code appended to it for data validity checking
by the 3830 instead of the cyclic check area used on the 2314. The
correction code used detects single-error bursts of 22 bits or less and
corrects single-error bursts of il bits or less.

Table 20.10.1 compares Model 1, 2, and 11 drive characteristics.
Table 20.10.2 compares 3336 Model 1 and 11 and 2316 Disk Pack
characteristics.

173

Table 20.10.1. Capacity and timing characteristics of 3330-series drives

3330-series 3330-series
Characteristic Model 1 or 2 drive | Model 11 drive
Capacity in thousands of bytes 100,018 200,036
(full-track records)
Seek time (ms)
Maximum 55 55
Average 30 30
Average cylinder-to-cylinder 10 10
Time channel busy searching when
SET SECTOR is used (ms) .
Minimume .120 .120
Maximum .380 380
Rotation tjme (ms) 16.7 16.7
Rotation speed (rpm) 3600 3600
Data transfer rate (KB/sec) 806 806

Table 20.10.2 3336 Model 1 and 11 and 2316 Disk Pack characteristics

3336 3336
Characteristic Model 1 Model 11 2316
Number of disks per pack 12 12 13
Number of recording disks 10 10 11
Number of recording surfaces 19 19 20
Disk diameter in 35.6 (14) 35.6 (14) 35.6 (14)
centimeters (inches)
Disk pack weight in 9(20) 9(20) 6.8 (15)
kilograms (pounds)
Disk*pack maximum capacity in | 100 200 29.1
millions of bytes
Full-track capacity in bytes 13,030 13,030 7294
Cylinders per pack 404 plus 7 | 808 plus 7 200 plus 3
alternates | alternates alternates
Tracks per cylinder 19 19 20
Tracks per pack 7676 15,352 4000

Each drive in a 3330 or 3333 module is mounted in a powered drawer
that is opened and closed by a switch on the operator panel contained in
each module. Each panel provides the switches and indicators associated
with individual drives in the module. Included on each operator panel
are write-inhibit switches, one for each drive. A switch can be
individually set to permit both reading and writing or reading only on
its associated drive.

When an attempt is made to write on a drive that is set for read
operations only, an interruption occurs and IBM-supplied programming
support terminates the program that attempted to write on the protected
drive. Each operator panel also contains a removable logical address
plug, similar to that of the 2314, for each drive in the module. 1In
addition, a CE service plug is supplied that is to be used when IBM-
supplied diagnostic programs are executed.

Functionally, the 3330-series provides more capabilities than the
2314, particularly in the areas of performance, availability, and
configurability. The 3330-series supports all the standard 2314
commands (except the file scan commands) in addition to several new
operations, including RPS and diagnostic commands. (Table 20.10.4, at
the end of this subsection, compares 3330-series and 2314 features.)

174

The 3330-series also is an attractive growth(device for the 2321 Data
Cell Drive. Table 20.10.3 compares the capacity and timing
characteristics of the 3330-series with those of the 2314 and the 2321
Data Cell Drive. The increase in capacity achieved by replacing a 2314
or a 2321 with a 3330-series string depends upon the block size chosen.
for the data on the 3330. .

Table 20.10.3. Capacity and timing characteristics of 3330-series and
2314 disk storage and the 2321 Data Cell Drive

3330- 3330~
series series : e i
(Model 11 (Model 1 b
‘ drives and 2 drive)
Characteristic only)* combinations 2314 2321
Capacity in thousands of
bytes (full-track <
records) ‘
Pack or cell 200,036 100,018 29,176 39,200
String or Data Cell
Drive
2 drives/cells 400,072 | 200,036 58,352 78,400
3 drives/cells - ' 300,054 87,528 117,600
4 drives/cells 800,144 400,073 116,704 156,800
5 drives/cells - .| 500,091 145,880 196,000
6 drives/cells 1,200,216 600,109 175,056 | 235,200
7 drives/cells, - 700,127 204,232 | 274,400
8 drives/ceélls 1,600,288 800,146 233,408 | 313,600
10 cells - - - 392,000
Access time (ms) D
Maximum 55 55 130 600 (for strip ™
' : select and load)
Average ' 30 30 60 +175 (minimum
for strip select
and load)

Average cylinder-to- 10 10 25 95 (on a strip)

cylinder ’ . ;.
Time channel busy

searching ‘'when SET :

SECTOR is used {(ms) B ! _ ‘

Minimum .120 «120 - ' -

Maximum .380 «320 - -
Rotation time (ms) 16.7 16.7 . .25 50 (strip on drum)
Rotation speed (rpm) 3600 - 3600 - 2400 1200
Data transfer rate (KB/S?C) 806 - 806 312 55

*permissible combinations of Model 11 drives and Model 1 and 2 drives,- -
are not listed. - ‘ ‘

For example, if the 2314 full-track block size of 7294 bytes is
maintained for a given data set on the 3330 to avoid programming
changes, the 3330 yields a 91% increase in full-pack capacity (almost
.twice the capacity) when a 3336 Model 1 is used. However, reblocking to
a full track on‘the 3330, 13,030 bytes, yields a 242% full-pack capacity
increase using a 3336 Model 1. If enough processor s)orage is not
~available to allocate I/0 areas of 13,030 bytes,. lowerlng the 3330 block

! N s

size to one-half of a 3330 track yields a 239% increase in full 3336
Model 1 pack capacity.

If a 2321 is replaced by a 3330-series string, six full-track blocks
of data from the 2321 (2000 bytes/2321 track) can be placed on each 3330
track, if full-track blocking is used, for a total of 92,112,000 bytes
per 3336 Model 1 pack (12,000 bytes times 7676 tracks). Thus, slightly
over four 3336 Model 1 packs provide the capacity equivalent of ten data
cells, or a full 2321 drive, if full tracks are used. Ten full data
cells, blocked full track, also can be contained in slightly more than
four 3336 packs if half-track blocking is used on the 3336 Model 1.

3830 STORAGE CONTROL

Model 1

The 3830 Storage Control Model 1 unit contains the power and the
control functions required to operate one 3330-series string consisting
of from one to eight drives in one-drive increments. Only 3330 Disk
Storage Models 1 and 2 can be attached to 3830 Storage Control Model 1.
When multiple requesting is used, the 3830 Model 1 can control
concurrent operation of eight channel programs, one on each drive. Only
one of the eight drives can be transferring data at any given time.

The 3830 Model 1 control unit is microcode controlled. Read/write
monolithic storage contained in the control unit is used for microcode
residence. The control unit also contains a diskette device that reads
interchangeable disk cartridges. This device. is used for micrococde
backup storage and for storage of nonresident diagnostics for the 3330-
series string. During a 3830 power-on sequence, the functional ,
microcode is loaded from the device into control storage within the
control unit. Therefore, microcode engineering changes can be installed
merely by replacing the current disk cartridge with another cartridge
that contains the new microcode.

The Two-Channel Switch feature, identical to the same feature for the
2314 facility, can be installed on a 3830 Model 1 control unit to allow
the 3830 to be attached to two channels. The Two-Channel Switch,
Additional feature can be added to this configuration to permit the 3830
to be attached to four channels. A maximum of two of the channels can
be in the same processor.

The channels to which a 3830 Model 1 with one or both of these
features are connected must each have one control unit position and, if
block multiplexing is to be used, eight nonshared subchannels available.
The enablesdisable switch can be set to dedicate the 3830 Model 1 to any
subset of the four channels. The string switching capability that is
available for the strings attached to the 3830 Model 2 is not available
for the string attached to the 3830 Model 1.

The 3830 Model 1 also incorporates error detection, correction, and
logging features, designed to improve its availability and
serviceability. The following features implemented in the 3830 Model 1
are not provided for system/360 direct access devices:

e I/0 error routine correction of recoverable data errors on read
operations with data supplied by the control unit in sense bytes

¢ Command retry initiated by the control unit to attempt hardware
correction of certain errors without programming assistance

e Error logging by the control unit in its control storage of
successful command retry operations

176

e Inline diagnostic tests contained on disk cartridges, which can be
run on a single drive to diagnose hardware malfunctions while other
drives in the string continue normal operations. (Inline
diagnostics are provided only for 2314 facilities.)

Recovery of correctable data area errors. When the control unit
detects a correctable data error during the reading of the data portion
of a record, it generates the information necessary to correct the
erroneous bytes. The sense bytes presented by the control unit contain
a pattern of corrective bits and a displacement value to indicate which
of the bytes transferred to processor storage contain the errors. The
disk error recovery program need only EXCLUSIVE OR (logical operation)
the corrective bit pattern with the error bytes in the input area in
processor storage to correct the errors.

Command retry. Error correction (without programming assistance) is
performed by a channel/control unit command retry procedure without an
intervening I/O interruption in the following situations:

1. When a correctable data error occurs during a search or read
operation on home address, record count, or record key.

During a search or read operation, the home address, count, or
key read from the disk track is placed in a buffer in control
storage within the control unit. When a correctable data error
occurs, the control unit corrects the data in the buffer and
reissues the command that caused the error. During reorientation
to the record, the control unit disconnects and frees the block
multiplexer channel. When the failing search or read command is
reexecuted, the corrected data in the buffer is used instead of
the data actually on the track.

2. When an uncorrectable data error is detected on any portion of
the record during a read or a search operation.

The failing CCW is reissued twice by the control unit. If one of
the two retries is successful, the channel program continues.

3. When a seek malfunction is detected.

The control unit retries the command ten times in an attempt to
position the access mechanism correctly.

4. When an alternate or defective track condition is recognized
before data transfer begins.

The control unit determines the location of the alternate or
defective track (from RO on the track), initiates a seek to this
track, and orients to the index point. When this sequence
completes, the original command is reissued by the control unit.
This is a programmed procedure for announced System/360 direct
access devices.

5. When a command overrun (or late command-chaining) condition
occurs during execution of a channel program because of
interference from another channel or the processor.

The control unit initiates a retry of the command that was late.

6. When a data overrun occurs, except for

a. A data overrun that occurs during a track overflow operation
in the second or subsequent segments

b. A data overrun that occurs during a formatting write

177

Exrror logging. Usage and error counters for each drive in the string
are maintained continuously in the control unit. The usage counters are
used to accumulate the number of bytes read and seeks issued. The error
counters are used to accumulate the number of seek, correctable data,
and uncorrectable data errors that were retried successfully by a
command retry procedure, as already described. BAlso accumulated is the
total number of command and data overrun conditions that were retried by
the storage control unlt.

When a counter reaches its threshold or when a pack is removed from a
drive, the control unit indicates the condition via a unit check when -
the next I/0 operation is initiated to the drive. Counter data can be
obtained and counters can be reset by issuing a READ AND RESET BUFFERED
LOG command. These statistics can then be logged in the system error
data set for later diagnosis. :

Inline diagnostic tests. A 3830 Model 1 control unit can execute
diagnostic tests on a malfunctioning drive while normal operations take
place on the remaining drives in the string. After the service address
plug is inserted in the malfunctioning drive, diagnostic tests can be
loaded into a transient area of the control storage of the 3830 Model 1
and executed on the malfunctioning drive. This can be done in an online
environment using OLTEP or the CE panel on the 3830 Model 1. OLTSEP can
be used in a standalone environnent.

Inline testing allows CEkdiagnosis and repair of most 3330-series
drive failures without the necessity of taking the entire 3330-series
string out of the system configuration. ,

Model 2

The 3830HS£orage Control Model.z unit is functionally equivalent to
the 3830 Storage Control Model 1 unit, except for the following:

e Up to four strings of from two to eight drives, in one-drive
increments, can be attached to Model 2 of the 3830. When multiple
requesting is used, the 3830 Model 2 can control up to 32 channel
programs concurrently, one on each of its drives. Only one of the 2
to 32 drives attached to the 3830 Model 2 can be transferring data
at any given time.

e The 3830 Model 2 does not contain power for any of the drlves that
can be attached to it.

¢ The 3830 Model 2 does not contain the device-oriented hardware that
is present in Model 1 of the 3830.

¢ A string switching capability is avéilable for the strings attached
- to a 3830 Model 2. .

e The 3830 Model 2 can have 3340, 3340/3344, or 3350 strings attached
and 3330-series, 3340, and 3350 strings can be mixed on one 3830
Model 2.

Model 2 of the 3830 can have from one to four strings of 3330-series
drives attached to it. The 32 Drive Expansion and Control Store
Expansion optional features must be installed on a 3830 Model 2 in order
to attach more than two strings to it. Both of these features are field
installable. Each string must include 3333 Disk Storage and Control
Model 1 or 11 as the first module attached to Model 2 of 3830 Storage
Control. Up to three 3330 Disk Storage modules, in any combination of
Models 1, 2, 11, can then be added to each string for a total of eight
drives per string. Only one 3333 module can be present in each string.

178

A 3333 module is connected to a 3830 Model 2 via cables, which can be
a maximum of 150 feet in length. The 3830 Model 2 attaches to a block
multiplexer channel via a cable up to 150 feet in length. Model 1 of
3830 sStorage Control can be field-converted to Model 2. Field
conversion of Model 2 of 3830 Storage Control to Model 1 is not
recommended. The 3830 Model 2 provides lower cost attachment of two,
three, or four 3330-series strings to a channel than the 3830 Model 1,
since only one 3830 Model 2 unit is required.

The Two-Channel Switch and the Two-Channel Switch, Additional
features can be installed on a 3830 Model 2 unit to enable the strings
it controls to be accessed by two or four channels, as discussed for the
3830 Model 1. The 3333 String Switch optional feature can be installed
on a 3333 attached to the 3830 Model 2. This field-installable feature
enakles the 3333 and all its attached 3330s (a 3330-series string) to be
connected to two control-unit-type attachments instead of only one. The
attachments can be any combination of two of the following:

e 3830 Storage Control Model 2 attached to a block multiplexer channel
in a 4341 Processor or System/370 processor (Models 135 and up)

e Integrated Storage Controls for System/370 Models 158 and 168
e Integrated Storage Control for the System/370 Model 145 or 148

s 3345 storage and Control Frame Models 3, 4, and 5 for the System/370
Model 145 Model 0

e 3330/3340-series Integrated File Adapter for the System/370 Model
135 or 138

The two attachments to which a 3333 with the 3333 String Switch .
feature is attached can be attached to the same or different channels in
the same processor, or to channels in two different processors. In
addition, channel switching features can be installed on one or both of
these attachments.

The 3333 String Switch is functionally similar in its operation to
the Two-Channel Switch. A switch on the 3333 can be set to allow the
3330-series string to be accessed via both attachments, one at a time.
In effect, this setting provides two control unit paths to the string.
String switching is accomplished dynamically under program control.
Alternatively, the switch can be set to dedicate the string to one
attachnent or the other so that the string can be accessed only via that
attachment. ' :

Figure 20.10.1 illustrates 3333 string switching for two 3330-series
strings. In the configuration shown, both strings can be accessed via
two channels and two control units. Figure 20.10.1 also summarizes the
3330-series string configurations that are possible for a 4341
Processor. Channel switching, string switching, and 32 Drive Expansion
features can be used to enhance the availability of 3330-series disk
storage and to extend backup capabilities when two 4341 Processors or a
4341 Processor and a System/370 processor that can have 3330-series disk
storage attached are present in an installation.

179

081

e One string maximum of from

one to eight drives connected
to from one to four channels

" & No string switching

3830 Model 2

® . 4SC — Model 158 or 168

® One to four strings of from two to

eight drives, each connected to from

one to four channels

o 3333 String Switch can be added to
any or all four 3333's to connect
a 3333 to a second attachment in the

same or a different processor except

Models 115 and 125

Figure 20.10.1. summary of 3330-series string'configurations for
4341 Processor . :

the

: 3333 String Switching
String Configurations For Two Strings
Channel Channel Channel Channel Channel Channel Channei Channel Channel in Channel in same 4341
nnst _ 4341 Processor Processor or another processor
o Two-Channel Switch 4 ®
3830 o Two-Channel Switch 3830 [Twachépnel Switch, ‘
Modet 1 ® Two-Channel Switch, Mi::i el 2 Additional ;\;;a‘;:;’/‘";z": ; Attachment 2 °
Additional ® 32 Drive Expansion © .
e Control Store Extension
.
N Models 333r'3 33%‘3
witl witl
3330 3333 3333 3333 3333 1and 11 Strin, Strin
Switc Switcl
| I l I) | [
3330 3330 3330 3330 3330 3330 3330
Any 7
conmr i i
I 4 of Models l I I l I
1and2 : o inati
combination
3330 3330 3330 3330 3330 of Models 3330 3330
I | T I 1,2,and 11 | I
3330 3330 3330 3330 3330 5330 3330
- o

1SC — Model 145
3345 Model 3, 4, or

5 for Model 146
3330 IFA — Model 135

" SUMMARY

The 3330-series offers more than large capacity, faster access, and
A 3330-series string and its control unit

attractive price performance.
A 3830 control unit can control the

are actually a subsystemn.

concurrent execution of one RPS channel program on each of its drives
and can handle certain error correction and logging functions, which
normally must be programmed, thereby relieving the control program of

these act1v1t1es.

. In add1taon,-the availability and serviceability of the 3330-series
are improved by the implementation of error correction features in
hardware, by use of inline diagnostics, and by the speed and ease of

engineering change installation.

These factors, together with the

extended channel switching and string switching features available, add
to the improvement of total system availability.

Table 20.10.4.

Hardware features of 3330-series and 2314 disk storage

Feature

3330-series

2314 (A-Series)

Number of drives per
string or facility

Number of strings
or facilities per
control unit
Removable interchangeable
disk packs
Removable address plugs
Record Overflow feature
File Scan feature
Multiple track operations
Two-Channel Switch
Attachment of the control
unit to four channels

Attachment of a string
or facility to two
control mnits in the
same or different
processors

Rotational position sensing

Multiple requesting
Read-only switch on each
drive to prevent all
write operations
Command retry by control
unit and charnnel
Error correction data
presented by control unit
Writakle storage in
control unit loaded
from a disk cartridge
Inline diagnostic tests
initiated via OLTEP or
the CE panel in the strlng
or facility

1 to 8 or 2 to 8

~in one-drive

increments

From 1 to 4

Yes

- Yes

Standard

Not available
Standard .
Optional

Yes, using the
Two-Channel Switch
and Two-Channel
Switch, Additional
features

Yes via 3333
String Switch
feature. Only

one data transfer

operation permitted
‘per string.

Standard

(128 sectors/track)
Standard

Standard

Standard

Yes

Yes

Standard

1 to 8 in one-drive
increments. (A ninth
can be included as a
spare only.)

1 maximum

Yes

Yes

Standard

Standard

Standard.

Optlonal

Yes, using Two-
Channel Switch and
2844 Auxiliary
Storage Control

Yes via 2844

Auxiliary Storage
Control. Two con-
current data transfer
operations per facility
permitted.

Not available

Not availakle
Not implemented

| Not implémented

No

No

Standard

181

20:15 3350 DIRECT ACCESS STORAGE

MODELS, FEATURES, AND STRING CONFIGURATIONS

The 3350 Direct Access Storage is very large capacity, high-
performance, modular, fixed- media disk storage. It has a significantly
faster data transfer rate than 3330-series disk storage and much larger
capacity. Two 3330-compatible modes of operation, in addition to 3350
native mode, are provided to aid in converting from 3330-series to 3350
direct access storage. :

A 3350 does not have a storage medium that is removable by the
operator. The reads/write head mechanism and recording disks of the 3350
are assembled as units and fixed in the 3350 drive. The headr/disk
assemkly can be removed only by the customer engineer if it is necessary
to send the assembly to the plant of manufacture for repair or data
retrieval.

The 3350 is available in Models A2, A2F, B2, B2F, C2, and C2F. The
Model A2 consists of a controller and two drives. The Model B2 consists
of two drives and no controller. The Model C2 has a controller function
and two drives. It can be utilized to prov1de an alternate controller
for a 3350 string.

The A2, B2, and C2 models contain storage that is accessible only by
movakle read/wrlte heads and have a maximum capacity (with full-track
records) of 317.5 million bytes per drive. The A2F, B2F, and C2F models
are .jdentical to the A2, B2, C2 models, respectively, except that each
of the two drives in a model contains fixed head _storage (up to
1,144,140 bytes maximum) with a. seek time of zero in addltlon to movable
head storage.

‘A 3350 string consists of one to four 3350 units. Movable head and
fixed head models can be mixed within a string. The first unit in the
string must be a Model A2/A2F. The remaining three units can be all
Model B2/B2F units or two Model B2/B2F units and one Model C2/C2F unit.
Only one Model C2/C2F unit can be included in a 3350 string and it must
- be the last unit in the string. The maximum capacity of a 3350 string
- is more than 2.5 billion bytes. . '

When a Model C2/C2F is present in a 3350 string, the Primary
Controller Adapter feature is required on the Model A2/A2F and a switch
on the control panel of the Model C2/C2F must be set to determine
whether the controller in the Model A2/A2F or Model C2/C2F is online as
the controller for the string. The unit whose controller is offline
operates as a Model B2/B2F. Manual switching from one controller to the
other must be preceded by a power-off of both the Model A2/A2F and

C2/C2F units.

A 3350 string attaches to a block multiplexer channel of the 4341
Processor via 3830 Storage Control Model 2. The 3830 Model 2 must have
the Control Store Extension, Expanded Control Store, and Register
Expansion features installed in order to attach a 3350 string. Up to
four 3350 strings can be attached to a 3830 Model 2. The four strings
on an attachment can also be any mixture of 3350, 3340, and 3330-series
strings. A 3340/3344 string (a 3340 string with at least one 3344 unit)
cannot be intermixed with 3350 or 3330-series strings attached to the
same control unit.

All models of the 3350 also can be attached to 3830 Storage Control
Model 3 to be used as real (but not staging) devices for the 3850 Mass
Storage System. Only 3350 native mode of operation can be used when a
3350 drive is attached to the 3830 Model 3 as a real device.

182

An operator panel is located on the top of each 3350 drive. This
panel contains a start/stop switch to start and stop rotation of the
disks and a switch to provide read-only protection for the disks. When
the latter switch is in the read position, no write or erase commands
can be executed on the drive. When the switch is in the R/W position,
all commands can be executed.

The standard selective format feature of the 3350 permits any model
drive to operate in one of three modes: 3350 native mode, 3330 Model 11
compatibility mode, or 3330 Model 1 compatibility mode. The mode is
specified for each drive at the time of manufacture and the tracks in
each drive are formatted for the specified mode. The mode can be
changed in the field by the customer engineer. The 3350 drives within a
given string can have any mixture of the three formats.

When 3350 native mode is in effect, a track in a 3350 has a maximum
capacity of 19,069 bytes (for full-track records) and maximum drive
capacity is 317.5 million bytes. When 3330 Model 11 compatibility mode
is in effect, maximum track capacity is that of the 3330 Model 11
(13,030 bytes) and the maximum capacity of the 3350 drive is 200 million
bytes. The 3330 Model 1 compatibility mode provides the equivalent of
two logical 3330 Model 1 volumes per 3350 drive and, thus, a maximum
capacity of 200 million bytes (100 million bytes per logical 3330
volume).

When a fixed head 3350 model operates in a 3330 compatibility mode, a
maximum of 742,710 bytes of fixed head storage are available. They are
associated with the first logical volume only for 3330 Model 1
compatibility mode. Programs written to access 3330-series drives can
be used without modification to access 3350 drives operating in a 3330
compatibility mode.

When a 3350 string contains one or more drives formatted in 3330
Model 1 compatibility mode, logical device addresses are used to address
the two logical volumes within a drive. A maximum of 64 logical
addresses (00 through 3F) are possible for the maximum of four 3350
strings (32 drives) that attach to the 3830 Model 2. The bits in the
170 device address byte in a START I/0 instruction (byte 3) are coded to
perform the required addressing for 3350 strings.

When a drive in 3330 Model 1 compatibility mode is in a 3350 string,
bits 0 and 1 of the I/0 address byte are the storage control address
bits. (Bits 0, 1, and 2 are used to address storage control when there
is no 3330 Model 1 compatibility mode drive in the string.) Bits 3 and
4 address one of the four strings and bits 5, 6, and 7 address one of
the eight drives in the selected string. Bit 2 is then used to indicate
which logical device within the selected drive is addressed. The first
logical volume is selected when bit 2 is off, while the second logical
volume is selected when bit 2 is on. (See 335073344 Installation and
Conversion Guide, GC20-1780, for the permissible device addresses for
3350 string configurations.)

The timing characteristics of a 3350 drive are 1198 KB/sec data
transfer rate, 10 milliseconds cylinder-to-cylinder seek time, 25
milliseconds average seek time, 50 milliseconds maximum seek time, and.
8.4 milliseconds average rotational delay. These figures compare with
806 KB/sec, 10 milliseconds, 30 milliseconds, 55 milliseconds, and 8.4
milliseconds for 3330-series drives.

The 3350 timing characteristics are the same regardless of the mode
in which the 3350 drive is operating. Thus, the 3330 compatibility
modes of the 3350 offer improved seek and data transfer times as well as
easier conversion from 3330-series drives. They-also offer fixed head
storage, which is not available for 3330-series drives. Table 20.15.1

183

compares capacity characteristics of the 3350 drive for its three
operating modes.

Table 20.15.1. 3350 capacity characteristics by mode

Characteristic 3350 Native Mode 3330 Model 1 3330 Model 11
Compatibility Mode | Compatibility Mode
Cylinders per drive 555 plus 5 404 plus 7 808 plus 7
alternates alternates (per alternates

logical volume)

Tracks per cylinder 30 19 19
Tracks per drive 16,650 plus 150 7676 plus 15,352 plus
alternates 133 alternates 133 alternates
(per logical
volume)
Full-track capacity 19,069 13,030 13,030
in kytes
Cylinder capacity 572,070 247,570 247,570
in kytes
Drive capacity in 317.5 100 per 200
millions of bytes logical volume
(200 total)
Fixed head 1,144,140 742,710 742,710
capacity in bytes in first logical

volume

Rotational Position Sensing and Record Overflow are standard on all
3350 drives, which have no optional features. String switching can be
installed on 3350 Models A2, A2F, C2, and C2F to enable the string to be
accessed by two control-unit-type attachments, as for 3330-series
strings. ‘When string switching is installed on a Model A2/A2F, it is
recorrended that it also be installed on the Model C2/C2F, if one is
present in the string. 1In addition, a 3830 Model 2 to which 3350
strings are attached can have channel-switching features installed (Two-
Channel Switch and Two-Channel Switch, Additional).

The following 3350 model changes are field installable: A2 to A2F,
B2 to B2F, C2 to C2F and the reverse conversions (A2F to A2, etc.). The
following model changes are available at the time of manufacture only:
A2 to B2 or B2F; B2 to any other model except B2F; C2 to B2 or B2F; A2F
to B2 or B2F; B2F to any other model except B2; and C2F to B2 or B2F.
The fcllowing conversions are not recommended for field installation:
A2 to C2; A2 to C2F; C2 to A2F; A2F to C2F; and the reverse conversions
(C2 to A2, etc.).

The physical, capacity, and timing characteristics of 2314, 3350,
3330-series, 3340, and 3344 drives are compared in Table 20.25.1 in
Section 20:25.

TRACK, CYLINDER, AND READ/WRITE HEAD LAYOUT
The layout of physical tracks on a data surface in a 3350 drive and

the relative position. of the read/write heads for a surface are shown in
Figure 20.15.1. A data surface contains 1122 physical tracks. There '

184

are two read/write heads associated with each data surface that are
positioned 561 physical tracks apart, as shown in Figure 20.15.1.

The access mechanism can be placed at any one of 561 access positions
on the data surface. Therefore, an outermost head on the access
mechanism can access physical tracks 0 to 560 on its associated data
surface while an innermost head can access physical tracks 561 to 1121.
At any of the 561 possible access mechanism positions, two physical
tracks can be accessed on a data surface. However, only one read/write
head in a 3350 drive can be active at a time.

N\

Disk
rotation

Index point

561 physical
tracks R2

561 physical R2
tracks

Access mechanism
with two heads
per data surface
has 5661 possible
access positions

Figure 20.15.1. Location of physical tracks and read/write heads on a
data surface in 3350 Direct Access Storage

Figure 20.15.2 shows the layout of cylinders and read/write heads in
3350 Direct Access Storage for 3350 native mode. A 3350 drive always
contains eight recording disks. Fifteen of the surfaces are used for
data recording. They are accessed by 30 read/write heads addressed 0 to
29. The 30 physical tracks that can be accessed at each physical
position of the access mechanism constitute a cylinder in 3350 native
mode. There are 555 data cylinders (addressed 0 to 554) and 5 alternate
cylinders (addressed 555 to 559).

Cylinder 560 is the CE cylinder. It is designed to be used only by
the customer engineer for testing the read/write capability of the 3350
drive. It contains a prewritten area for read testing and an area in
which write tests can be performed. ‘

185

29 e’ 28 =’
— Y Ju
27 mm 26 -
2 25 e’ 24 w’
23 w—m 22 -
21 e’ -’
— 22 2
19 - 18 -
N 17 ar” 16 =’
—_— 22
15 w—- 14 -m
» s 13 wr” 12 =l
S b 11 o 10 —
» . 9 =" 8 =
0 Y 7 R 6 R
— 22 sl =
3 wm 2 wm
N 4 N d
-vl* 1’ [y "
1121 562 561 560 2 vt o0
Servo Physical f fe————]
surface track CE cylinder 60 fixed heads
Servo |
arm -
T Cylinder 0
(30 physical tracks)
Cylinder 1
Number of recording disks 8
Numker of recording surfaces 15
Number of logical tracks per physical track 1
Numker of movable read/write heads 30
Number of fixed read/write heads (Models A2F, B2F, and C2F only) 60
Number of tracks per cylinder 30
Namber of data cylinders per drive 555
Number of data tracks per drive 16,650
Number of alternate tracks per drive 150
Numker of CE cylinders per drive 2

Figure 20.15.2. Cylinder and read/write head layout for a 3350 drive
formatted in 3350 native mode

The bottommost surface in a 3350 drive is used as the servo surface,
as it is in a 3330-series drive. This surface contains information for
the servo system that is used to control seek operations, positioning of
the heads over tracks, data clocking (the synchronization of data with
rotational speed during writing operations), index generation, and
signal generation required by the RPS feature. Functionally, the 3350
servo system is like that used in 3330-series drives. However, design
improvements, such as elimination of the electromechanical tachometer,
have been made.

The required servo information is prerecorded on the servo surface at
the plant of manufacture and is read by a servo read head at the bottom
of the access mechanism. The servo information on this surface cannot
be read or written using 3350 commands. The servo surface for a fixed
head 3350 model also contains the physical tracks that are read by the
fixed heads.

Figure 20.15.3 shows the cylinder and read/write head layout for a

3350 operating in 3330 Model 11 compatibility mode. Three consecutively
addressed 3330 cylinders are mapped in every two physical cylinders.

186

The first physical cylinder of a pair contains the 19 tracks of the
first 3330 cylinder (accessed by heads 0 through 18) and the first 10
tracks of the second 3330 cylinder (accessed by heads 20 through 29).
The second physical cylinder of a pair contains all 19 tracks of the
third 3330 cylinder (accessed by heads 0 through 18) and the last 9
tracks of the second 3330 cylinder (accessed by heads 20 through 28).
Head 19 is unused. Head 29 is unused for the second physical cylinder
of a pair.

Head 29 is unused

in odd-numbered 2
physical cylinders 20 umr’” 28 =’ h
— o & 5 2% Heads 20 to 29 access first
27 - = 10 tracks; heads 20 to 28
. 25 e 20 e’ > access last 9 tracks in the
- e T 22 = e s
. 21 o’ 20 =’) ’
— X " R
Head 19 is 19 -— 18 wm
always unused 170 16 w’
3 %
n - 15 wm 14 e
5 3 13 12 -’ :
-—d & ” 0 Heads O to 18 access the 19
- = tracks in the two complete
Y 33 9 e 3330 cylinders contained in
B R N 6 mm two physical cylinders.
5wl -
— 2 2
3 = 2 wm
N | -’ 0 wr’
- & 7
2 562 561 560 10
Servo Physical f "—"‘
surface track CE cylinder Servo 2\ 60 fixed heads
arm 1

T Two physical cylinders.
contain three consecutive
t 3330 cylinders (0 to 2, 3 to 5,
..., 804 to 806).

Two physical cylinders contain three consecutive 3330 cylinders
Physical cylinders 0 through 537 contain 3330 cylinders

0 through 806, while 3330 cylinder 807 is in physical cylinder 538
Alternate 3330 cylinders 808 through 814 are contained in

physical cylinders 538 through 543
Physical cylinders 544 through 559 and the balance of 543 are used
Physical cylinder 560 is the CE cylinder

Figure 20.15.3. Cylinder and read/write head layout for a 3350
operating in 3330 Model 11 compatibility mode

Physical cylinders 0 through 537 are used to map the 3330 cylinders 0
to 806 while the first 19 tracks in physical cylinder 538 are used to
map 3330 cylinder 807. The balance of physical cylinder 538 and
cylinders 539 through 542 plus the top nine tracks in cylinder 543 are
used as alternate 3330 cylinders 808 through 814. Cylinder 560 is the
CE cylinder while the remaining cylinders (544 through 559 and a portion
of 543) are unused.

Figure 20.15.4 shows the cylinder and read/write head layout for a
3350 operating in 3330 Model 1 compatibility mode. As for 3330 Model 11
compatibility mode, each three 3330 cylindérs are mapped in two physical
cylinders. However, the first logical 3330 volume (404 3330 data
cylinders plus 7 alternate cylinders) is mapped in physical cylinders 0

187

through 273. The second logical 3330 volume is mapped in physical
cylinders 274 through 547. The CE cylinder is in 560 and cylinders 548
through 559 are unused.

Head 29 is unused
in odd-numbered

-
physical cylinders g 7 28 =’ 3
- D e Heads 20 to 29 access first
27 e 26 em 10 tracks, heads 20 to 28
26 wr’ 24 w’ > access last 9 tracks in the
-— D Jeemee 3330 cylinder contained
23 m 22 wm in every two physical cylinders.
21« 20 =’ J
-) Qe .
Head 19 is 19 mm 18 am h
always unused 17 quy’ 16 =’
- = X
15 = 14 -
L 13 e’ 12 et Heads O to 18 access the
-—d -2 & TN 10 e 19 tracks in the
0 e’ 4 > two complete 3330
- 2 & cylinders contained in
7 - 6 == two physical cylinders
— 22 5 oml 4 et
3 - 2 -
1 J (0] J
3 S
A
i 1121 562 561 560 547 273 T 0
Servo Physical A
surface track CE 60 fixed heads
cylinder Servo L
arm \
Two physical cylinders
contain three consecutive
f 3330 cylinders.
Second 3330 First 3330
Modei 1 Model 1

logical volume logical volume

Two physical cylinders contain three consecutive 3330 cylinders
Physical cylinders - 0 through 273 contain the first
3330 Model 1 logical volume
3330 cylinders 0 through 403 are in physical
cylinders 0 through 269
3330 cylinders 404 through 410 (alternates) are
in physical cylinder 269 through 273
Physical cylinders 274 through 547 contain the second
3330 Model 1 logical volume
3330 cylinders 0 through 403 are in physical
cylinders 274 through 543
3330 cylinders 404 through 410 (alternates) are in physical
cylinders 543 through 547
Physical cylinders 548 through 559 are unused
Physical cylinder 560 is the CE cylinder

Figure 20.15.4. Cylinder and read/write head layout for a 3350
operating in 3330 Model 1 compatibility mode

A four-byte CCHH field is used in seek commands for the 3350. The
seek limits depend on the mode being used. For native mode, valid CC
values are 0 through 559 and valid HH values are 0 through 29. For 3330
Model 11 compatibility mode, 0 through 814 and 0 through 18 are valid CC
and HH values, respectively. Valid CC and HH values for 3330 Model 1

188

compatibility mode are 0 through 410 and 0 through 18, respectively.
When the second logical 3330 Model 1 volume in a 3350 drive is
addressed, a value of 274 is added to the converted 3330 seek address to
obtain the correct physical cylinder.

The fixed head 3350 models have 60 fixed read/write elements located
on a plate under the servo surface, as shown in Figures 20.15.2 through
20.15.4. They access cylinders 1 and 2 for a drive in native mode and
3330 cylinders 1 through 3 for a drive in 3330 compatibility mode. When
a command that addresses a fixed head cylinder is received, the 3350
automatically selects the associated fixed read/write element instead of
the movable head. Therefore, the same channel programs used for movable
head models can be used to access fixed head models.

The tracks in physical cylinders 1 and 2 are not used in 3350 Model
A2F, B2F, and C2F drives and cannot be accessed by a user or customer
engineer because of the way head selection is performed. Thus, the data
capacity of a fixed head 3350 model is the same as that of a movable
head model. Seek time for the cylinders accessed by the fixed heads is
zero. Seek times for the cylinders accessed by movable heads are the
same as for movable head models.

A data set or file can be contained in both fixed head cylinders and
cylinders that are accessed by movable heads. A 3350 drive, however,
can perform only one operation at a time. Therefore, a seek, search, or
data transfer operation involving a fixed head in a Model A2F, B2F, or
C2F cannot be performed at the same time a movable head is involved in a
seek, search, or data transfer operation.

The best performance gains can be achieved for fixed head 3350 drives
by assigning the fixed head tracks to small active system data
sets/files (such as the DOS/VS or DOS/VSE page data set, system catalog,
TCAM message queue, VTOC, 0S/VS pageable link pack area, JES2 spool
file), small active user data sets/files (containing tables, indexes,
work areas, data, etc.), large active data setss/files that can be
segmented (0S/VS1l page data set, partitioned data sets, ISAM index
levels, for example), and data sets/files with major activity
concentrated at the beginning of the data set/file (such as the 0S/VS
job gqueue).

The assignment of such data sets/files to the fixed head tracks in a
Model A2F, B2F, or C2F is a user responsibility. DOS/VS or DOS/VSE
EXTENT and 0S/VS DD statements for these files and data sets must
specifically request, by actual address, locations within the fixed head
logical cylinders. Note also that the device type code in the device
table that is generated in the control program during a system
generation (DOS/VS or DOS/VSE PUB table, 0S/VS UCB table) does not
differentiate between 3350 drives with and without fixed heads.
Therefore, if generic device type assignment by device type (3350) is
used in a configuration that contains 3350 drives with and without fixed
heads, either type drive can be selected by the operating system.

The assignment of a 3350 drive with fixed heads can be assured in an
0S/Vs environment by specifying a user-defined device class name for
such 3350 drives at system generation and using this name (instead of
UNIT=3350) in the appropriate DD statements. DOS/VS and DOS/VSE users
utilizing the generic I/0 device assignment capability can specify an
address list of the 3350 drives with fixed heads in the ASSGN statements
for files that are to be located on a 3350 Model A2F, B2F, or C2F.

Cylinders that provide alternate tracks for the physical tracks
accessed by the movable heads can also provide alternate tracks for the
fixed head tracks. This approach is taken because the probability a
fixed head track will develop a defect is lower than that for movable

189

head tracks and the possibility of a defect occurring in a movable head
track is very low.

The low probability of defects occurring in fixed head cylinders of a
3350 results in part from the fact that these cylinders are recorded on
the servo surface, which is a specially manufactured surface because of
its primary function. The width of a fixed head physical track is six
times greater than that of a movable head track on a data surface.

If an uncorrectable error does occur on a fixed head track in a 3350,
the customer engineer will normally replace the heads/disk assembly
instead of assigning an alternate movable head track to avoid loss of
performance. If an uncorrectable error occurs on a movable head track,
the track should be flagged and an alternate track should be assigned.
This can be done using the IEHTLAS, IEHDASDR, or IBCDASDI utility of
0S/VS. IEHDASDR or IBCDASDI should then be used to test the flagged
track to determine whether the track is really defective. If the track
is found not to be defective, the flag is removed and the assigned
alternate track is released.

Note that the defective track testing capability of 0S/VS IEHDASDR
and IBCDASDI is not provided by any DOS/VS or DOS/VSE utility. DOS/VS
users can obtain IBCDASDI, the standalone utility, by ordering the
0S/Vsl system.

The Analysis Program-1l (AP-1l) utility is provided as a problem
determination aid for 3350 drives. When errors occur on a 3350, AP-1
can ke used to determine whether the drive is failing or a problem
exists on a recording disk. The AP-1 program operates as a problem
program under DOS/VS, DOS/VSE, or 0S/VS.

TRACK FORMATTING AND INITIALIZATION

Self-formatting records consisting of count, key, and data or count
and data areas are written on the tracks in a 3350 drive just as on the
tracks in a 3330-series drive. However, each home address, count, and
key area written on a 3350 track has a detection code field appended to
it for data validity checking by the 3830 Model 2. The detection code
can detect a single error of ten bits span or less.

A correction code field is appended to each data area written on a
3350 track. The correction code used has the same detection capability
as the detection code and the ability to correct single-error bursts of
four bits span or less. The actual error correction procedure must be
performed by programming (error recovery routines) using corrective bits
that are supplied by the controller.

That is, when the controller detects a correctable data error during
the reading of the data portion of a record, it generates the
information necessary to correct the erroneous bytes. The sense bytes
presented by the controller contain a pattern of corrective bits and a
displacement value to indicate which of the bytes transferred to
processor storage contain the errors. The disk error recovery program
need only EXCLUSIVE OR (logical operation) the corrective bit pattern
with the error bytes in the input area in processor storage to correct
the errors.

The home address and count areas written on a track in a 3350 contain
two new fields in addition to the same fields as are written in home
address and count areas on 3330 tracks. The home address and each count
area on a 3350 track contain a two-byte skip defect field and a two-byte
physical address field in front of the flag byte. The automatic surface
defect skipping capability of the 3350 allows valid data to be written
before and after a surface defect on a track.

190

The skip-defect (SD) bytes are used to indicate the location of the
center of the surface defect relative to the index point of the track.
Bits in the flag byte field indicate whether the surface defect is
located in the next count, key, or data area.

The error detection and correction code capabilities of the 3350
controller permit successful recovery from an error within the data
portion of a physical record even when it contains a surface defect gap.

Partial initialization of the disks in all 3350 drives is performed
at the plant of manufacture. A home address record and track descriptor
(RO) record are written on each track in the drive. If a single
skippable defect is found during the analysis of the surface of a track,
the appropriate SD bytes and flag byte are written in the home address
to indicate this fact. If no surface defect is found, the SD bytes are
written as zeros.

The SD bytes and flag byte are supplied in the count area field in
virtual storage only for a WRITE HOME ADDRESS command. When RO is
written during disk drive initialization and thereafter whenever a
formatting write is performed, the SD and flag bytes for the count area
to be written on disk are supplied by the controller, which reads them
from the record immediately preceding the record to be written.

If data cannot be read from a 3350 track during its use in an
installation and recovery of this data is critical, the headrsdisk
assembly unit can be returned to the plant of manufacture where recovery
will ke attempted.

The two physical address bytes in home address and count areas on a
3350 track contain the physical cylinder and track address of the track
on which they are written. When a seek command is issued to a 3350
., drive operating in a 3330 compatibility mode, the controller converts
the cylinder and track address specified by the seek command to a
physical cylinder and track address that is actually used by the drive
in the seek operation. This physical address is saved in the controller
for later use in seek verification. For a drive operating in 3350
native mode, the seek address is saved as specified.

The physical address bytes are automatically written and read by the
controller and are not processed by programming. That is, when a home
address or count area is written, the physical address bytes are
automatically supplied by the controller and are not contained in the -
home address or count area field in processor storage that is indicated
by the write command. Similarly, when a home address or count area is
read, the controller reads the physical address bytes but they are not
placed in the home address or count field area in virtual storage.

The physical address bytes are used by the controller for seek
verification during normal operations and by the 3350 microdiagnostic
routines. When a home address or count area is processed during a read,
search, or clock operation, the physical address bytes read are compared
with the most recent seek address {(physical cylinder and track address)
that was saved in the controller when the last seek command was issued.
If the two physical addresses are not equal, the command is terminated
and a unit check condition results. Seek check is indicated in the
sense bytes.

The commands for the 3350 are the same as those for the 3330, except
that one additional command, READ MULTIPLE COUNT-KEY-DATA, is
implemented for the 3350. This command causes reading to begin with the
count field of the next record that passes under the read/write heads
(unless it is RO). Reading continues until all remaining records on the
track are read. This command enables all the records on a physical
track to be read using one command. The command retry capability

191

implemented in the 3830 for 3330-series drives is also implemented for
3350 drives (see discussion in Section 20:10 under "3830 Storage Control®").

The write format release feature that is implemented for 3330 Model
11 drives is also standard for 3350 drives. This feature enables a 3350
drive to disconnect from the 3830 Model 2 while the drive is erasing to
the end of the track after a record has been written with a formatting
write command. This facility frees the controller and channel for the
initiation of another I/0 operation.

ADVANTAGES

The 3350 is a growth direct access device for medium and large 3330-
series installations. It offers significantly larger capacity at a
lower cost per bit than the 3330 series; improved performance; enhanced
physical characteristics; reliability, availability, and sexrviceability
improvements; and minimal conversion effort. The 3350 can be used to
increase online direct access capacity where data portability is not
required.

Improved Perforpance

The 3350 has a higher data transfer rate than the 3330-series drive
(almost 50 percent faster) as well as faster average and maximum seek
times (approximately 16 percent and 9 percent faster, respectively).
Improved seek time also results from the fact that more data is covered
per minimum, average, and maximum seek time on a 3350 drive than on a
3330-series drive, and from the availability of fixed head 3350 models
that have a zero seek time for a portion of the data.

Enhanced Physical Characteristics

A 3350 drive (which is the same size as a 3340 and 3344 drive) is
smaller and contains significantly more data than a 3330-series drive.
For a given capacity, a 3350 configuration requires approximately one-
fourth the amount of space as a 3330 Model 1 configuration and
approximately one~half the space required by a 3330 Model 11
configuration.

A 3350 unit requires 44 percent less power than a 3330-series Model 1
or 11 unit, which also results in reduced air conditioning requirements.
In addition, the perceived noise level of a 3350 drive is approximately
40 percent less than that of a 3330-series drive.

Improved Reliability

Reliability is improved by the removal of head-to-disk alignment
problems. Each read/write head within a 3350 drive is dedicated to
certain tracks on one data surface. Therefore, each head reads only the
data it wrote previously. Since common head alignment across 3350
drives is not required, the critical alignment tolerances that are
normally necessary for a disk pack are not needed for the 3350. There
is little chance of a misaligned head causing an error, because the 3350
drive servo system actually uses information from each data head to
position itself. The 3350 provides accurate tracking and data transfer
with minimal errors for far greater data densities than previously
announced direct access devices.

Reliability is improved because the chance of damaging read/write

heads through mishandling and exposure of disk data to outside
contamination are eliminated by the fixed media design of the 3350.

192

In addition, the possibility of head crashes is minimized by the
improved flying characteristics of the read/write heads in a 3350 drive.
The low mass of the read/write heads and the low loading force used
enakle the heads to fly over the rotating disks at a very low height.
This near contact (or proximity) recording capability of the readswrite
heads in the 3350 permits a bit with a weaker than normal signal to be
read correctly.

The recording density in bits per inch of a track in a 3350 drive is
approximately 1.5 times greater than the recording density of a track in
3330-series drives. The number of tracks per inch in a 3350 drive is
approximately 2.5 times greater than the number of tracks per inch in a
3330-series Model 1 or 2 drive and almost 1.3 times greater than for a
3330-series Model 11 drive. The advanced head design used for the 3350

enakles greater density to be achieved together with improved reliability.

Reliability of 3350 direct access storage is also improved because
many critical mechanical parts have been eliminated, such as a complex
head loads/unlcad mechanism. In other cases, electronic functions have
replaced mechanical functions. While the 3350 drive contains more
electronics than the 3330, higher density logic cards are used in the
3350, which results in significantly fewer logic cards.

The improved power design of the 3350 further aids reliability as it
results in fewer components, fewer power regulators, improved power
isolation, and paralleling of critical circuits. As a result of the
reliability features of the 3350, no preventive maintenance is scheduled
for 3350 drives.

Improved Availability

The alternate controller function provided in Model C2 and C2F units
enables a 3350 subsystem to remain operational in the event of a failure
in the primary controller. This is accomplished without customer
engineer intervention.

Improved Serviceability

Serviceability improvements for the 3350 are designed to help the
customer engineer find and correct failures more quickly. The following
are the major serviceability improvements:

e An enhanced fault symptom index has been added to provide faster
problem isolation. It contains a list of "possible causes", an
action/checklist, and cross references.

¢ Maintenance information Manuals for the customer engineer have been
improved by the addition of summaries of adjustments and items to
check. Additional theory and recovery actions have been developed,
especially in the "no trouble found" sections.

e Microdiagnostics have been enhanced and are more powerful in fault
isolation capability. In addition, they are much faster and execute
with less CE intervention.

e System-level online test programs provide better read/write tests
for the CE than have been available for 3330-series drives.

Serviceability is also improved because in a string that contains an

alternate controller, the malfunctioning controller can be serviced
while normal processing continues using the other controller.

193

20:20 3340 DIRECT ACCESS STORAGE

3340 DISK STORAGE DRIVES AND THE 3348 DATA MODULE

The 3340 Direct Access Storage unit is intermediate-capacity,
modular, high-performance direct access storage that consists of 3340
Disk Storage and Control Model A2 and 3340 Disk Storage Models Bl and
B2. A 3340 string can consist of from one to four units and is
connected to a block multiplexer channel in a 4341 Processor via 3830
Storage Control Model 2 or 3880 Storage Control. Up to four 3340/3344
strings can be attached to each storage director in 3880 Storage
Control.

A 3340 string can consist of from two to eight drives. A 3340 Disk
Storage and Control Model A2 must be the first unit in a 3340 string.
The 3340 Model A2 consists of two drives, drive-oriented control
functions, and power for itself and the 3340 drives attached to it.

Up to three 3340 units, any combination of 3340 Disk Storage Models
B1 and B2, can be attached to a 3340 Model A2. The 3344 (Models B2 and
B2F) can also be attached to the 3340 Model A2 (see Section 20:25). The
3340 Model B2 consists of two drives and does not contain the power and
device-oriented control functions that are part of the 3340 Model A2.
The 3340 Model Bl contains one drive and no control functions.
Functionally, all 3340 drives are alike regardless of whether they are
part of a Model A2, B2, or Bl unit.

Figure 20.20.1 shows a 3340 string of five drives that includes one
3340 Model A2, one 3340 Model B2, and one 3340 Model Bl. An operator
control panel is located on the top of each 3340 drive. This panel
contains the three-digit hexadecimal address of the drive, the switches
required to operate the drive, and status indicator lights. The address
of a 3340 drive is wired on a logic board in the 3340 unit.

The removable 3348 Data Module is used for data storage. Unlike the
removable 2316 and 3336 Disk Packs that are the storage medium for 2314
and 3330-series disk storage, respectively, the 3348 Data Module is a
sealed cartridge that contains a spindle, access mechanism